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Zhao Song, Ph.D.
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Supervisor: Eric Price

The matrix plays an essential role in many theoretical computer science and machine

learning problems. In this thesis, we develop a better understanding of matrices with a view

towards these applications. Our insights yield improvements for a number of old, well-studied

algorithmic problems.

In this thesis, we study matrices from three perspectives. We first consider their role in

optimization. We study a number of matrix optimization problems, and propose new solvers

and results for linear programs, empirical risk minimization, ordinary differential equations,

deep neural networks. We next consider how random matrices concentrate. Specifically, we

generalize a number of scalar Chernoff-type concentration inequalities and the Spencer-type

discrepancy theorems to matrices. Finally, we develop new algorithms for problems on ma-

trices. These fall roughly into two sub-categories, namely matrix factorization problems and

structured recovery problems. In the first category, we propose a number of new algorithms

xxx



for a variety of low-rank matrix factorization problems. In the second category, we give new

algorithms for some recovery tasks with structured matrices. We design matrices and corre-

sponding algorithms for compressed sensing tasks, and we give fast algorithms for the sparse

Fourier transform problem, which can be thought of as a sparse recovery problem where one

cannot freely choose the matrix. We now describe our contributions in more detail.

Linear programming is one of the fundamental problems in computer science. In both

theory and practice, many problems can be solved via linear programming, and doing so often

yields the best-known runtime. We present an algorithm that runs in the current matrix

multiplication time, which breaks a thirty-year-old barrier. Furthermore, our technique can

be generalized to speed up a large family of convex optimization problems, i.e., empirical

risk minimization.

Sampling logconcave functions which arise in statistics and machine learning has

been the subject of intensive study. This problem can be thought of as a special case

of solving multivariate ordinary differential equations (ODEs). Under sufficiently strong

smoothness conditions, discrete algorithms of Hamiltonian Monte Carlo (HMC) have runtime

and number of function evaluations growing with the dimension. We give new algorithms

that obtain a nearly linear implementation of HMC for a broad class of smooth, strongly

logconcave densities, with the number of iterations (parallel depth) and gradient evaluations

being polylogarithmic in the dimension (rather than polynomial, as in previous work).

Deep neural networks (DNNs) have demonstrated dominating performance in many

fields; since AlexNet, networks used in practice are going wider and deeper. We prove why

stochastic gradient descent (SGD) can find global minima on the training objective of DNNs

in polynomial time. We only make two assumptions: the inputs are non-degenerate and
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the network is over-parameterized. Furthermore, our results also hold for Recurrent Neural

Networks (RNNs) which are multi-layer networks widely used in natural language processing.

They are harder to analyze than feedforward neural networks, because the same recurrent

unit is repeatedly applied across the entire time horizon.

The Chernoff bound for the concentration of scalar random variables is a fundamental

tool in the analysis of randomized algorithms. Over the past decade, a matrix generalization

of the Chernoff bound has also found widespread application, but this generalization is fairly

restrictive. For a number of decades, it has been open whether one can remove some of these

restrictions. We answer this question in the affirmative by giving a number of new matrix

Chernoff bounds under more relaxed independence assumptions than before.

Spencer’s theorem is a famous result in discrepancy theory, and it is an important

open question how to generalize this result to the matrix setting. We make progress on this,

and prove a matrix generalization of this result, in some restricted settings. Our result also

generalizes the famous Kadison-Singer conjecture.

The classical low rank approximation problem is : given a matrix A, find a rank-k

matrix B such that the Frobenius norm of A−B is minimized. It can be solved in polynomial-

time using, for instance, singular value decomposition. If one allows randomization and

approximation, it can be solved in time proportional to the number of non-zero entries of

A with high probability. We consider a number of natural generalizations of this important

problem. We generalize the problem to consider a number of different norms, including

weighted norms, entry-wise L1, and more general loss functions including Huber and Tukey

loss. We also consider the natural tensor version of the problem. For all these settings, we

give new state-of-the-art algorithms, including a number of new fixed parameter tractable
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algorithms.

Compressed Sensing, or sparse recovery, is a powerful mathematical framework whose

goal is to reconstruct an approximately sparse signal from linear measurements. We consider

the extensively studied problem of L2/L2 compressed sensing. Our algorithm has faster de-

coding time and significantly smaller column sparsity, answering two open questions of prior

work. Previous work on sublinear-time compressed sensing employed an iterative procedure,

recovering the heavy coordinates in phases. We completely depart from that framework, and

give the first sublinear-time algorithm which achieves the optimal number of measurements

without iterating.

The Fourier transform is ubiquitous in computer science, mathematics, and beyond.

In recent years, a number of works have studied methods for computing the Fourier transform

in sublinear time if the output is sparse. We consider two important settings in which this

occurs: namely, the sparse high-dimensional setting, and the sparse continuous setting. In

the high dimensional setting, we consider the extensively studied problem of computing a

k-sparse approximation to the d-dimensional Fourier transform of a length n signal. Our

algorithm achieves a nearly optimal sample complexity and runs in time comparable to the

Fast Fourier Transform. All previous algorithms proceed either via the Restricted Isometry

Property or via filter functions. Our approach totally departs from the aforementioned

techniques, and we believe is a new approach to the sparse Fourier transform problem.

While many of the works on sparse Fourier transforms have focused on the discrete

setting, in many applications the input signal is continuous and naive discretization sig-

nificantly worsens the sparsity level. Assuming the frequency gap is known, we present an

algorithm for robustly computing sparse Fourier transforms in the continuous setting. Know-
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ing the frequency gap is necessary for robustly identifying individual frequencies. However,

was unknown whether interpolating the signal also requires a frequency gap. We resolve this

problem by giving an algorithm which shows that such a gap not necessary for estimating

the signal.
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(20% noise), means we have randomly perturbed 20% of the true labels in the
training set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

7.1 The function h(z) = −1+z
1−z +

√(
1+z
1−z

)2
+ 1 maps the unit disk {z ∈ C : |z| ≤ 1}

to the half disk {z ∈ C : |z| ≤ 1 and Re(z) ≥ 0}. . . . . . . . . . . . . . . . . 518

10.1 This is a visualization of part of the proof in Claim 10.4.7. We consider an
example where there are l = 10 blocks, B1 = 1, B2 = 1, B1 = 1, B3 = 0,
B4 = 0, B5 = 1, B6 = 1, B7 = 0, B8 = 0, B9 = 1 and B10 = 0. Recall the
two important conditions in the proof of Claim 10.4.7, the first one is B1 = 1
and the second one is, for all j ∈ [l],

∑j
j′=2 Bj′ > (j − 1)/2. The number on

the green arrow is
∑j

j′=2 Bj′ . It is to see that the example we provided here
is satisfying those two conditions. Recall the definition of set S1 and S0. Here
S1 = {2, 3, 5, 6, 9} and S0 = {4, 7, 8, 10}. Then S ′1 = {2, 3, 5, 6}. The mapping
π satisfies that π(4) = 2, π(7) = 3, π(8) = 5 and π(10) = 6. . . . . . . . . . 667

11.1 Filter Ĝ′(f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703

11.2 For an arbitrary frequency interval [lj − ∆l
2
, lj + ∆l

2
], we scale it by 2πσβ to

get a longer interval [2πσβ(lj + ∆l
2

), 2πσβ(lj − ∆l
2

)]. Then, we wrap the longer
interval on a circle [0, 2π). The number of folds after wrapping is dσβ∆le. For
any random sample, the observation cj is close to the true answer within 1/ρ
with some “good” probability. . . . . . . . . . . . . . . . . . . . . . . . . . . 723

11.3 The number of “blue” regions is equal to the number of folds m. The number
of total regions is t. For each observed cj, instead of checking all the t regions,
we only assign vote to the these “blue” regions. Since only these m “blue”
regions can be the candidate region that contains frequency f . . . . . . . . . 727

11.4 We demonstrate the algorithm for merging various stages(R = O(log k)) on
2-dimensional data. Note that the true data should be 3-dimensional, since
for each tone (vi, fi), vi ∈ C and fi ∈ R. The x-axis represents the frequency
and the y-axis represents the real part of magnitude. . . . . . . . . . . . . . 734

11.5 F (θ) is a sinc function and has derivate function F ′(θ). . . . . . . . . . . . . 745

11.6
∫ +∞
−∞ min(T, 1

|θ−fi|) ·min(T, 1
|θ−fj |)dθ . . . . . . . . . . . . . . . . . . . . . . . 747
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12.1 A picture of a Combs, rects, sincs, Gaussianµ,σ . . . . . . . . . . . . . . . . . 782

12.2 The filter function (H(t), Ĥ(f)) with a k-Fourier-sparse signal. The property
I, II and III are presented in the bottom one, the property IV is presented in
the top one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805

12.3 G and Ĝ. [PS15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806
12.4 The Property of sinc(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884

12.5 The light red area represents
∫ (1/2−2/s1)−t

(1/2−2/s1)
s0 · sinc (s1(τ))` dτ and the light

green area represents
∫ 1/2−2/s1+t

1/2−2/s1
s0 · sinc (s1(τ))` dτ . . . . . . . . . . . . . . . 886

12.6 Ĥ · x∗(f) and H · x∗(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892
12.7 Property VI of filter function H(t), first two figures of four figures. The light

green area represents RHS(without scalar) of Property VI of filter H. . . . . 894
12.8 Property VI of filter function H(t), last two figures of four figures. The light

red area represents LHS of Property VI of filter H, the light yellow area
represents the difference. Property VI says the light yellow area is only a
small constant fraction of the light green area. . . . . . . . . . . . . . . . . 895

12.9 Parameters for s1, s3 and `. . . . . . . . . . . . . . . . . . . . . . . . . . . . 901

12.10Ĝ(j)
σ,b(f) where the top one is j = 0 and the bottom one is j = 1, Ai,j =

[ 1
σ
(2π(i+ j

B
)− 2π

2B
), 1
σ
(2π(i+ j

B
)+ 2π

2B
)], Bi,j = [ 1

σ
(2π(i+ j

B
)− 2π(1−α)

2B
), 1
σ
(2π(i+

j
B

) + 2π(1−α)
2B

)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906

13.1 Illustration of box B∞(c, r) and grid Grg . Box B∞(c, r) refers to all the points
in the square centered at c with side length 2r. Grid Grg refers to all the
solid round points, and the distance between origin O and A0 is rg. Note that
the dashed lines are decision boundaries of the projection Πrg , and all the
points inside a minimum cell separated by the dashed lines are mapped (by
Πrg) to the same grid point in Grg (which is the center of the cell). We have
Πrg(c) = A1 and Πrg(B∞(c, r)) = {A1, A2, A3, A4}. . . . . . . . . . . . . . . . 939
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13.2 Illustration of the behavior of Line 16 to Line 20 in Algorithm 13.3. For any
f ∈ [p]d, we draw box B∞(y

(`−1)
f + zf , 2

1−hν`) after h iterations of the for
loop between Line 17 and Line 19 in Algorithm 13.3, where h ∈ {0, 1, . . . , H}.
Conditioned on LinfinityReduce is correct, for every h ∈ {0, 1, . . . , H},
after h-th iteration we have x̂f ∈ B∞(y

(`−1)
f + zf , 2

1−hν`). When h = 0,
i.e. before the loop between Line 17 and Line 19 starts, we know that x̂f ∈
B∞(y

(`−1)
f , 2ν`) as depicted by (a). After each iteration in h, the radius of the

box shrinks by half (and its center might change). Finally after H iterations,
as depicted by (c), we obtain z(`−1) such that x̂f ∈ B∞(y

(`−1)
f + z

(`)
f , 21−Hν`). 941

13.3 Illustration of the iteration between Line 25 and Line 28 in Algorithm 13.3.
The round solid points represent grid points in Gβν , and the dashed lines rep-
resent decision boundaries of Πβν` . In this example we have | supp(y(`−1) +

z(`))| = 3, and the dotted squares represent boxes B∞(y
(`−1)
f + z

(`)
f , 21−Hν`)

for f ∈ supp(y(`−1) + z(`)). The algorithm repeatedly samples a random
shift s ∼ B∞(0, αν`), until all the shifted boxes {B∞(y

(`−1)
f + z

(`)
f , 21−Hν`) +

s}f∈supp(y(`−1)+z(`)) do not intersect with the dashed lines (i.e. decision bound-
aries of Πβν`). In the figure, we color a shifted box in green if it does not
intersect with dashed lines, and color in red otherwise. After a series of failed
attempts from (a) to (b), we finally have a successful attempt in (c). . . . . 942

13.4 Illustration of good and bad shifts in Definition 13.2.6. In (a), the small square
represents box B∞(c, rb), and the dashed lines represent the decision boundary
of Πrg . The arrows in (b) and (c) represent two different shifts, where the shift
in (b) is an example of good shift, since the shifted box does not intersect with
the decision boundaries of Πrg , while the shift in (c) is an example of bad shift,
since the shifted box intersects with the decision boundaries of Πrg . . . . . . 954

13.5 Illustration of Lemma 13.2.6. In (a) the smallest square represents boxB∞(c, rb),
the medium-sized square represents B∞(c, rs), and the dashed lines represent
decision boundaries of Πrg . Note that for s ∼ B∞(0, rs), the center of the
shifted box s+B∞(c, rb) is s+ c ∼ B∞(c, rs). Shift s is good (recall in Defini-
tion 13.2.6) for box B∞(c, rb) and grid Grg if and only if the distance between
s + c and decision boundaries of Πrg is greater than rb. In (b), we draw in
red the set of points which are within distance at most rb to the decision
boundaries of Πrg . Then in (b) the red part inside B∞(c, rs) corresponds to
bad shifts (plus c), and the green part corresponds to good shifts (plus c).
Intuitively, the fraction of the green part is at least (1 − rb/rs)2 because the
vertical red strips can cover a width of at most 2rb on the x-axis of B∞(c, rs)
(whose side length is 2rs), and the horizontal red strips can cover a width of
at most 2rb on the y-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955
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14.1 Filter Ĝ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978

15.1 (a) Huber function (top) (b) Tukey function (bottom) . . . . . . . . . . . . . 994
15.2 ‖xS∩T‖H − ‖xT∩S‖H is the displacement error . . . . . . . . . . . . . . . . . 1000
15.3 ‖xS∩T‖H − ‖xT∩S‖H is the displacement error . . . . . . . . . . . . . . . . . 1021

17.1 The x-axis is n where A ∈ Rn×n, and the y-axis is ‖A′−A‖1 where rank(A′) =
k. This figure shows the performance of both our algorithm and [DZHZ06] on
input matrix A defined as Equation (17.40). . . . . . . . . . . . . . . . . . . 1287

17.2 The x-axis is n where A ∈ Rn×n, and the y-axis is ‖A′−A‖1 where rank(A′) =
k. This figure shows the performance of both our algorithm and [BDB13] on
input matrix A defined as Equation (17.41). . . . . . . . . . . . . . . . . . . 1289

17.3 The x-axis is n where A ∈ Rn×n, and the y-axis is ‖A′−A‖1 where rank(A′) =
k. This figure shows the performance of both our algorithm and [Kwa08] on
input matrix A defined as Equation (17.42). Algorithm [Kwa08] has two ways
of initialization, which have similar performance on matrix A. . . . . . . . . 1291

17.4 The x-axis is n where A ∈ Rn×n, and the y-axis is ‖A′−A‖1 where rank(A′) =
k. Algorithm [KK05] has two ways of initialization. The left figure shows the
performance of both our algorithm and [KK05] with random vector initializa-
tion on input matrix A defined as Equation (17.43). The right figure shows
the performance of both our algorithm and [KK05] with top singular vector
initialization on input matrix A defined as Equation (17.45). . . . . . . . . . 1296

17.5 Let A be (2n+2)×(2n+2) input matirx. (a) shows the performance of all the
algorithms when the matrix dimension is growing. The x-axis is n, and the
y-axis is ‖A′−A‖1 where A′ is the rank-3 solution output by all the heuristic
algorithms and also ours. The `1 residual cost of all the other algorithms is
growing much faster than ours, which is consistent with our theoretical results.
(b) shows the running time (in seconds) of all the algorithms when the matrix
dimension n is growing. The x-axis is n and the y-axis is time (seconds). The
running time of some of the algorithms is longer than 3 seconds. For most of
the algorithms (including ours), the running time is always less than 3 seconds.1298

20.1 The blue curve is the Huber function which combines an `2-like measure for
small x with an `1-like measure for large x. The red curve is the “reverse”
Huber function which combines an `1-like measure for small x with an `2-like
measure for large x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1464

21.1 A 3rd order tensor with size 8× 8× 8. . . . . . . . . . . . . . . . . . . . . . 1493
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21.2 Flattening. We flatten a third order 4× 4× 4 tensor along the 1st dimension
to obtain a 4 × 16 matrix. The red blocks correspond to a column in the
original third order tensor, the blue blocks correspond to a row in the original
third order tensor, and the green blocks correspond to a tube in the original
third order tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1495

21.3 A 3rd order tensor contains n2 columns, n2 rows, and n2 tubes. . . . . . . . 1498
21.4 A third order tensor has three types of faces: the column-row faces, the

column-tube faces, and the row-tube faces . . . . . . . . . . . . . . . . . . . 1500
21.5 Column subset selection, row subset selection and tube subset selection. . . . 1503
21.6 An example tensor CURT decomposition. . . . . . . . . . . . . . . . . . . . . 1506
21.7 Let W denote a tensor that has columns(red), rows(green) and tubes(blue).

For each i ∈ [3], let Wi denote the matrix obtained by flattening tensor W
along the i-th dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1659

21.8 Each face W∗,∗,i is a column-row face. W∗,∗,1 is the bottom column-row face.
r = 3. The blue blocks represent column-tube faces, the red blocks represent
column-tube faces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1661

21.9 Each face W∗,∗,i is a column-row face. W∗,∗,1 is the bottom column-row face.
r = 3. The blue blocks represent |C3| column-tube faces. The green blocks
represet |R3| row-tube faces. In each column-row face, the intersection be-
tween blue faces and green faces is a size |R3| × |C3| block, and all the entries
in this block are the same. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1666

21.10Cover number. For a 3SAT instance with n variables and m clauses, we can
draw a bipartite graph which has n nodes on the left and m nodes on the
right. Each node (blue) on the left corresponds to a variable xi, each node
(green) on the right corresponds to a clause Cj. If either xi or xi belongs to
clause Cj, then we draw a line between these two nodes. Consider an input
string y ∈ {0, 1}7. There exists some unsatisfied clauses with respect to this
input string y. For for example, let C1, C2 and C3 denote those unsatisfied
clauses. We want to pick a smallest set of nodes on the left partition of the
graph to guarantee that for each unsatisfied clause in the right partition, there
exists a node on the left to cover it. The cover number is defined to be the
smallest such number over all possible input strings. . . . . . . . . . . . . . . 1682

21.11There are 3n + m column-row faces, Vi,∀i ∈ [n], Si,∀i ∈ [n], Mi,∀i ∈ [n],
Cl,∀l ∈ [m]. In face Cl, each ul,j is either xi or xi where xi = e2i−1 and
xi = e2i−1 + e2i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1688

21.12Two possibilities for V (1)
i ,∀i ∈ [n], V (2),∀i ∈ [n], M (1)

i ,∀i ∈ [n]. . . . . . . . . 1690

21.13Ṽi,S̃i,M̃i,C̃l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1693
21.14There are n + p matrices Ai ∈ R2×(2n+p),∀i ∈ [n + p] and 2n + p matrices

Bi ∈ R2×(n+p), ∀i ∈ [2n+ p]. Tensor A and tensor B represet the same tensor,
and for each i ∈ [n+ p], j ∈ [2], l ∈ [2n+ p], (Ai)j,l = (Bl)j,i. . . . . . . . . . 1694
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21.15For any i ∈ [n], βi,1 ∈ R, for any l ∈ [m], γl,1, γl,2 ∈ R, for any l ∈ [m], if
the first literal of clause l is xj, then row vector ul,1 = e2i−1 ∈ R2n; if the first
literal of clause l is xj, then row vector ul,1 = e2i−1 + e2i ∈ R2n. . . . . . . . . 1698

21.16For any i ∈ [n], βi,1 ∈ R. For any i ∈ [q], βi,2 ∈ R. For any l ∈ [m],
γl,1, γl,2 ∈ R. For any l ∈ [m], if the first literal of clause l is xj, then row
vector ul,1 = e2i−1 ∈ R2n; if the first literal of clause l is xj, then row vector
ul,1 = e2i−1 + e2i ∈ R2n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1701

22.1 Sketching v.s. importance sampling. Running time with growing dimension . 1809

24.1 Our construction of A and b for the proof that Count-Sketch does not obey
the `∞ guarantee. α < d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1932

24.2 Count Sketch matrix S ∈ Rm×n. Event I, for any k′ ∈ [d] and k′ 6= k,
supp(Sk) ∩ supp(Sk′) = ∅. Event II, there exists a unique k′ ∈ {d + 1, d +
2, · · · , d+α} such that Sk and Sk′ intersect at exactly one location(row index). 1951

25.1 Algorithm for Orlicz norm regression . . . . . . . . . . . . . . . . . . . . . . 1981

27.1 The grid structure over the point set. From top to bottom, three levels of grids are
shown. Each cell splits into 2d cells in the next level. . . . . . . . . . . . . . . . 2091

27.2 Random shift of grid brings down the number of heavy cells. In the left panel, we
have a bad alignment of points and grids such that many cells contain lots of points.
In the right panel, after the random shift, only two cells contain many points. . . 2094

27.3 Telescope sum [BFL+17] fails for k-means. In the k-median problem, for a fixed set
of centers Z, the total cost can be written as a telescope sum

∑
p∈P (dist(cip, Z) −

dist(ci−1
p , Z)). For each piece, |dist(cip, Z)− dist(ci−1

p , Z)| is always upper bounded
by dist(ci−1

p , cip) which is independent from the choice of Z. However, in the k-means
problem, the telescope sum of the total cost is

∑
p∈P (dist(cip, Z)2 − dist(ci−1

p , Z)2).
For each piece, the upper bound of | dist(cip, Z)2−dist(ci−1

p , Z)2| may depend on the
location of Z, and it can be larger than ∆ in the worst case. . . . . . . . . . . . . 2137

29.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2200
29.2 Visualization of Case 1(a) which is 0(RA) ∈ [α/2±4β] and 1(RB) ∈ [α/2±4β].

If 0(L̂B) > α/2 + 10β, we use Greedy result. If 0(L̂B) ≤ α/2 + 10β, we use
the result BestMatch+ max(BestMatch,ApproxED). . . . . . . . . . . 2206

29.3 Case 3-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2210
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30.1 Birthday paradox for triangle inequality: let w1, w2, w3 be three windows of
length d = 8 and assume λ = 1/2. The LCS between w1 and w2 is λd = 4 and
the LCS between w2 and w3 is λd = 4. Finally due to birthday paradox, we
expect that the LCS between w1 and w3 is λ2d = 2. . . . . . . . . . . . . . . 2224

30.2 Let wi, wa, wb and wj denote four windows and each of them has length d = 8.
This figure shows how the intersection of the edges of three windows are
taken in order to construct a solution for the LCS of wi and wj. If the size
of the intersection is large, then such a tuple is called constructive. The solid
lines represent LCS between two strings, and the dashed line represents the
intersection of the three LCSs. . . . . . . . . . . . . . . . . . . . . . . . . . . 2229

30.3 Red rectangles show the elements of sai that contribute to lis(A) and gray
circles show the elements of sa that are sampled via our algorithm. . . . . . . 2235

30.4 The graph on the left is an example of the string-based graph and the graph
on the right is an example of the character-based graph. . . . . . . . . . . . 2244

30.5 computing a set of common subsequences between wa and wi for each i such
that every character of wa appears at most once among the sequences for a
fixed i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2260

30.6 The flowchart of the Oλ(n
ε) time algorithm is shown. . . . . . . . . . . . . . 2279

32.1 Each tree with green edges on the top-left is a rooted tree of each contracted
component. For example, there are five components {1, 2, 3}, {4, 5, 6, 7}, {8, 9,
10, 11, 12}, {13, 14, 15}, {16, 17}. The dashed edges in the bottom-left figure is
a root spanning tree of five components. The red edges in the top-right figure
correspond to the dashed edges in the bottom-left figure before contraction. In
bottom-right figure, by changing (see blue edges) the root of each contracted
tree, we get a rooted spanning tree in the original graph . . . . . . . . . . . 2490

32.2 Given a tree that has 42 vertices (top-left), we label all the vertices from 1 to
42. Firstly, we sample some leaves (red vertices, i.e. {5, 13, 24, 30, 32, 34, 36, 37,
40, 42}) in the tree (top-right tree). Then we find a DFS sequence of the tree
(the tree formed by all the blue and red vertices in the bottom-left tree)
which only contains all the sampled leaves and their ancestors. Finally, we
recursively find the DFS sequences of remaining subtrees(bottom-right). . . . 2498

32.3 A hard example for [RMCS13]. For each i ∈ {2, 3, · · · , n/D − 1} and j ∈
{1, 2, · · · , D − 1}, node (i− 1) ·D + j has degree 4. For node D and n, they
have degree 2. Node 0 has degree D. All the other nodes have degree 3. . . . 2502

32.4 An example where #roots ≈ ∑20
i=1 1/(d(vi) + 1). For each node, it has

two numbers, the first number is the ID, and the second number is weight.∑20
i=1 1/(d(vi)+1) = 1/4+1/3+1/3+1/6+1/5 +1/5+1/5+1/5+1/5+1/6

+1/4 + 1/6 + 1/8 + 1/7 + 1/6 +1/9 + 1/8 + 1/7 + 1/6 + 1/4 ≈ 3.89 and
#roots= 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2503
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Sparsity Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1633

21.23`1-Low Rank Approximation, Bicriteria Algorithm, rank-poly(k), Input Spar-

sity Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1635

21.24`1-Low Rank Approximation, Bicriteria Algorithm, rank-Õ(k2), Nearly Input
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21.29`1-CURT Decomposition Algorithm . . . . . . . . . . . . . . . . . . . . . . . 1644

21.30`1-CURT decomposition algorithm . . . . . . . . . . . . . . . . . . . . . . . 1648

21.31Weighted Tensor Low-rank Approximation Algorithm when the Weighted

Tensor has r Distinct Faces in Each of the Three Dimensions. . . . . . . . . 1652

21.32Weighted Tensor Low-rank Approximation Algorithm when the Weighted

Tensor has r Distinct Faces in Each of the Two Dimensions. . . . . . . . . . 1662

21.33Frobenius Norm Low (Tucker) Rank Approximation . . . . . . . . . . . . . . 1707

21.34Frobenius Norm Low (Train) rank Approximation . . . . . . . . . . . . . . . 1712

21.35`p-Low Rank Approximation, Bicriteria Algorithm, rank-Õ(k2), Input Spar-
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Chapter 1

Introduction

1.1 Introduction

Many important questions in computer science can be formulated as problems on

matrices. Having a better understanding of the matrix is crucial for devising fast algorithms

for many fundamental problems, including a majority of the 10 most important algorithms of

the 20th century [Cip00]. Examples of this include linear programming, Metropolis algorithm

for Monte Carlo, matrix/tensor factorization, low-rank approximation, Fourier transforms,

etc. In this thesis, we make progress on a number of long-standing open problems related

to this areas. Along the way, we propose a number of new techniques which be could be

useful in the future. We first summarize several core ideas, new insights, and new techniques

related to the matrix. These techniques will eventually lead to fast algorithms. Later on in

the introduction, we go to the details of each category.

• Sketching. A powerful technique we will use in many places throughout this thesis is

sketching. Given a matrix A ∈ Rn×d, our goal is to produce a concise representation

of A to summarize informationa about A without using A directly. This is typically

done by choosing a “small” sketching matrix S, and replacing A with SA. We say

SA is a sketch of A. There are many previously studied choices for S, depending

on the specific problem instance, including random Gaussian matrices, subsampled
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randomized Hadamard matrices, and Count-Sketch matrices. By using SA, which is

typically much smaller than A, we are able to speed up a number of algorithms.

This idea is often called “sketch and solve” in numerical linear algebra. Suppose that,

for a given problem, we can produce a solver, which we wish to speed up. Oftentimes,

we can apply a sketching matrix to reduce the dimensionality/freedom/size of the

original problem, and then run the original solver on this smaller problem, and obtain a

faster algorithm. Some classical examples are `2 norm linear regression and Frobenius

norm low-rank approximation. A number of results in this thesis use much more

complicated versions of these sketching techniques, such as “guess and sketch” and

“sketch and iterate,” to achieve similar speed-ups in other problem settings. Many

results in this thesis modify the classical iterating algorithms more decently with a

better understanding of hashing-trick, sampling, and concentration techniques.

• Sampling. Given a matrix A ∈ Rn×d, our goal is to obtain a concise representation of

A by sampling some rows of A and reweighting them. Let D ∈ Rn×n denote a sparse

diagonal matrix. Then DA can be viewed as a sampled version of A. The goal of this

is similar to sketching, as the goal is to produce a smaller representation of A, so that

our algorithms run faster. In our context, the main difference between sketching and

sampling is that in sketching, each row of SA is a linear combination of rows in A,

and whereas when we sample, each row of DA is a row of A with reasonable rescaling

factor. There are several well-known examples, e.g. importance sampling, leverage

scores sampling, and Lewis weights sampling.

– By sampling (in conjunction with some other ideas), we are able improve the
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runtime for solving some convex problems, e.g. linear programs [CLS19]. We pro-

pose an algorithm that solves linear programs in the current matrix multiplication

time. Our result breaks a thirty-year-old barrier.

– Sampling can also be used to solve some non-convex problems. We give a nearly

optimal matrix CUR decomposition [SWZ17, SWZ19b] algorithm. We also extend

the definition of matrix CUR problem to tensor CURT problem [SWZ19b] and

provide a nearly optimal algorithm.

– Sampling can be used to speed up the iterating algorithm for orthogonal tensor

decomposition [SWZ16]. This leads to a sublinear time finally.

• Matrix Maintainance. Given a matrix A and a sequence of T matricesW 1,W 2, · · · ,

W T , our goal is to approximately maintain f(A,W t) over all the iterations. For-

mally speaking, whenever we receives W t, we want to generate g(A,W t) such that

g(A,W t) ≈ f(A,W t). The objective is to do so faster than simply calculating f(A,W t)

independently for each t = 1, . . . , T , by leveraging some structure in the sequence of

update matrices.

– In [LSZ19], we propose a technique for doing this, which we call “iterate and

sketch”, when f takes the form of a projection. Specifically, we consider functions

f of the form

f(A,W ) =
√
WA>(AWA>)−1A

√
W.

When using the central path method to solve linear programs, in each iteration

we need to multiply f(A,W t) by some vector. However, since the updatesW t are
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very structured, we don’t need to compute this from scratch. By instead cleverly

maintaining the sequence of updates, we are able to decrease the running time of

the solver. Note that this idea is very different from “sketch and solve” described in

the early paragraph. The main difference between “sketch and solve” and “iterate

and sketch” is, the former just uses the original solver as a black-box, whereas the

latter changes the original solver and uses a different sketching matrix over each

iteration of the solver. There are other examples in the thesis can be thought of

as “iterate and sketch”, e.g. [CLS19, SWZ16].

• Matrix Concentration. The Chernoff bound for the concentration of scalar random

variables is a fundamental and ubiquitous tool in the analysis of randomized algorithms.

One common form of the bound is the following: given a list of independent random

variables x1, · · · , xk ∈ [0, 1] with mean µ, then

Pr

[∣∣∣∣∣
1

k

k∑

i=1

xi − µ
∣∣∣∣∣ > ε

]
≤ 2 exp(−Ω(kε2)).

There is a natural generalization of this to matrices. Namely, if X1, · · · , Xk are inde-

pendent n× n complex Hermitian random matrices with ‖Xi‖ ≤ 1 and mean µ, then

the following is true:

Pr

[∥∥∥∥∥
1

k

k∑

i=1

Xi − µ
∥∥∥∥∥ > ε

]
≤ 2n exp(−Ω(kε2)).

Over the past decade, the matrix generalization of the Chernoff bound has also found

widespread application, but this generalization is fairly restrictive. In particular, this

bound requires strong independence of the individual Xi. In contrast, in the scalar

setting, it is known that often times one can get away with some weak dependences
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between the summands. For a number of decades, it has been open whether one can

remove some of these restrictions in the matrix setting as well.

– In the scalar setting, it is well-known that if the random variables follow the

dependence structure of a random walk on a graph, then the random variables

still obey a Chernoff-style bound. It was conjectured by Wigderson and Xiao

that a similar result holds in the matrix setting. In [GLSS18], we resolve this

conjecture in the affirmative. Formally speaking, let v1, · · · , vk denote a random

walk on expander graphG, let f denote a mapping f : V → Rn×n with ‖f(v)‖ ≤ 1,

∀v ∈ V , then
∑k

i=1 f(vi) follows matrix Chernoff bound.

– We show a matrix Chernoff bound for random spanning trees [KS18]. Such a result

was conjectured by Batson, Spielman, Srivastava and Teng [BSST13]. Formally

speaking, let A1, · · · , Ak ∈ Rn×n denote a list of matrices where each of them

corresponds to a random spanning tree. We show that k = O(log2 n) suffices to

imply that
∑k

i=1Ai gives spectral sparsifier for graph G.

• Sketch and Guess. The “sketch and guess” is the following, surprisingly powerful,

paradigm: to solve matrix (or tensor) factorization problem, first demonstrate that

the optimal solution may be represented as a concise sketch with fewer degrees of

freedom, and then simply “guess” this sketch by exhaustively searching over all possible

sketches. Since we have reduced the degrees of freedom, this exhaustive search can be

done relatively efficiently. For instance, consider the problem of low-rank factorization.

Given a matrix A ∈ Rn×n, our goal is to find two matrices U ∈ Rn×k and V ∈ Rk×n so

that ‖UV −A‖F is minimized. The idea is to write a polynomial system with a small
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number of variables and constraints, abd low degree, and then run a polynomial system

solver on this small polynomial system. For example, in order to solve min ‖UV −A‖2
F ,

we can create 2nk variable (one for every entry of U and V ), and minimize the resulting

degree-4 polynomial system. The polynomial system solver has exponential dependence

on the number of variables, and thus has runtime 2O(nk). The trick to reduce the number

of variables is choosing two sketching matrices S (a fat one, it has size O(k)× n) and

R (a tall one, it has size n × O(k)), then focusing on minX,Y ‖ASXY RA − A‖2
F . To

solve this problem, we can create O(k2) variables to minimize a degree-4 polynomial

system, resulting in a runtime that, while exponential in k2, is polynomial in n. Of

course, for this specific problem, this technique is overkill, as we can solve this problem

in time which is polynomial in both n and k via SVD. However, in situations where

the problem we are trying to solve is NP-hard, this technique (and extensions thereof)

can provide a nearly optimal approximation algorithms.

– We first propose the “guess a sketch” idea in [RSW16]. The combination of

guessing and sketching can be used to get FPT-type algorithms for several ma-

trix/tensor factorization problems [SWZ17, SWZ19b].

– For the entry-wise L1 norm, we propose “sketch and relax” idea in [SWZ17]. We

want to solve min ‖UV −A‖1. To write a polynomial, we need to create variables

for U , V and also n2 sign variables. To reduce the number of variables, we use

L1 embedding matrix to reduce the dimension from n to r = poly(k) and then

relax the problem to Frobenius by losing some factors in the approximation ratio.
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Eventually, we just need to solve

min
X,Y
‖T1ASXY RAT2 − T1AT2‖1.

Since the number of rows of T1 and T>2 is small, thus, we only need to create small

number of sign variables, and as a result we obtain a faster runtime.

– For the tensor case, we propose “sketch and rotate” idea in [SWZ19b]. We want

to solve min ‖U⊗V ⊗W −A‖2
F . Slightly different from matrix case, we can create

3nk variables to minimize a degree-6 polynomial system. Applying the sketching

trick again, we can write

min
X,Y,Z

‖A1SX ⊗ A2RY ⊗ A3TZ − A‖2
F

where A1, A2, A3 ∈ Rn×n2 are the three possible flattening of tensor A and S,R, T

are random sketching matrices.

• Iterating and Concentration. Deep neural networks (DNNs) have demonstrated

dominating performance in many fields; since AlexNet, networks used in practice are

going wider and deeper. We want to give some explanation about why stochastic

gradient descent (SGD) can find global minima on the training objective of DNNs and

Recurrent Neural Networks (RNNs). In previous paragraphs, we have discussed several

techniques for improving convex, non-convex, and NP-hard problems. Unfortunately,

the theory of deep learning cannot benefit from those “sketch and solve”, “sketch and

iterate”, and “sketch and guess” techniques.

– One view of the over-parameterization theory of DNNs [AZLS19] is, ‖φ(Wx)‖2

has a good concentration when x is some fixed unit vector, W is random Gaus-

sian matrix, and φ(t) = max{t, 0} is the ReLU activation function. Technically
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speaking, if we normalize W properly, ‖φ(Wx)‖ ≈ (1 + ε)‖x‖2 with very high

probability. In each of iteration of SGD, we update W ← W + ∆W . There, we

need to argue such concentration-type result for different W s in each iteration.

We call it “iterate and concentrate”. A variation of this idea appears in [LSZ19]

(not involved ReLU), where we use subsampled randomized Hadamard matrix to

show concentration over each iteration.

– RNNs are multi-layer networks widely used in natural language processing. They

are harder to analyze than feedforward neural networks, because the same recur-

rent unit is repeatedly applied across the entire time horizon. By doing a more

careful randomness decomposition (in conjunction with other ideas, e.g., concen-

trations, Gram–Schmidt process), we can show the provable guarantees of RNNs

[AZLS18].

• Hashing. For a given vector x ∈ Cn and a parameter k, we consider the problem

where we observe y = Φx, and our goal is to figure out a O(k)-sparse approximation

to x. There are two situations in which this problem is often considered. In one

setting, we can design the matrix Φ. In this case, we want Φ to implement some

hashing-based function. The major things to minimize are, the number of rows of Φ,

the column sparsity of Φ (encoding time), and decoding time [GI10]. Alternatively,

in some other settings, we cannot design the matrix Φ. Typically, in this setting,

Φ is a discrete Fourier matrix, and the problem is referred to as the sparse Fourier

transform problem. In this case, we want to smartly take some samples from Φx, and

those samples are able to do a hashing job. The major things to minimize are sample

complexity and decoding time.
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The sparse Fourier transform also can be defined in the continuous setting. This

problem can be thought of as the mathematical abstraction of supperresolution prob-

lems [Moi15], the development of which was awarded the 2014 Nobel Prize in Chem-

istry. Intuitively, in the discrete setting we are working with a matrix Φ of finite size,

but in the continuous setting, we need to understand the “infinite matrix” Φ, which

is more formally a linear operator over functions. However, by generalizing intuitions

from the finite setting, many of the ideas can be transferred over to this infinite set-

ting. In the continuous setting, there is one more important parameter to consider, in

addition to the ones mentioned above. Namely, we should try to minimize the duration

of the signal our algorithm needs to observe.

– The setting where we can design Φ is often called the compressed sensing prob-

lem [Don06, CRT06b]. We give a new construction of Φ and the corresponding

algorithm that improves the classical L2/L2 compressed sensing task [NS19].

– We give a new iterating algorithm for the d-dimensional discrete sparse Fourier

transform with nearly optimal sample complexity [NSW19a].

– In the continuous setting, in [PS15] we propose an algorithm for the robust sparse

Fourier transform under the assumption of a frequency gap. The sample complex-

ity is linear in k and logarithmic in the signal-to-noise ratio and the frequency

resolution. Previous results with similar sample complexities could not tolerate

an infinitesimal amount of i.i.d. Gaussian noise, and even algorithms with higher

sample complexities increased the noise by a polynomial factor. We also give new

results for how precisely the individual frequencies of the signal can be recovered.
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– The previously mentioned work of [PS15] relies on recovering the frequencies, and

as a result, requires a dependence on the frequency gap. However, if all we care

about is reconstructing a k-sparse signal which is close to the original, but which

potentially uses different frequencies, such a gap is not necessary. In [CKPS16],

we demonstrate an algorithm for the robust sparse Fourier transform that does

not require any dependence on the frequency gap. In some ways, both [PS15]

and [CKPS16] can be thought of generalizations of the aforementioned hashing

techniques to the continuous setting.

1.2 Optimization

Linear programming is one of the key problems in computer science. In both theory

and practice, many problems can be reformulated as linear programs to take advantage of

fast algorithms. For an arbitrary linear program minAx=b,x≥0 c
>x with n variables and d

constraints1, the fastest algorithm takes O∗(
√
d ·nnz(A) +d2.5)2 where nnz(A) is the number

of non-zeros in A [LS14, LS15].

For the generic case d = Ω(n) we focus in this thesis, the current fastest runtime is

dominated by O∗(n2.5). This runtime has not been improved since the result by Vaidya on

1989 [Vai87, Vai89b]. The n2.5 bound originated from two factors: the cost per iteration n2

and the number of iterations
√
n. The n2 cost per iteration looks optimal because this is the

cost to compute Ax for a dense A. Therefore, many efforts [Kar84, Ren88, NN89, Vai89a,

1Throughout this thesis, we assume there is no redundant constraints and hence n ≥ d. Note that papers
in different communities uses different symbols to denote the number of variables and constraints in a linear
program.

2We use O∗ to hide no(1) and logO(1)(1/δ) factors and Õ to hide logO(1)(n/δ) factors.
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Figure 1.1: Linear Programming is Chasing Matrix Multiplication

LS14] have been focused on decreasing the number of iterations while maintaining the cost

per iteration. As for many important linear programs (and convex programs), the number

of iterations has been decreased, including maximum flow [Mad13, Mad16], minimum cost

flow [CMSV17], geometric median [CLM+16], matrix scaling and balancing [CMTV17], and

`p regression [BCLL18]. Unfortunately, beating
√
n iterations (or

√
d when d � n) for the

general case remains one of the biggest open problems in optimization.

Avoiding this open problem, this thesis develops a stochastic central path method that

has a runtime of O∗(nω +n2.5−α/2 +n2+1/6), where ω is the exponent of matrix multiplication
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and α is the dual exponent of matrix multiplication3. For the current value of ω ∼ 2.38 and

α ∼ 0.31, the runtime is simply O∗(nω). This achieves the natural barrier for solving linear

programs because linear system is a special case of linear program and that the currently

fastest way to solve general linear systems involves matrix multiplication. Despite the exact

approach used in [CW87, Wil12, DS13, LG14] cannot give a bound on ω better than 2.3078

[AFLG15] and all known approaches cannot achieve the bound ω = 2 [AW18b], it is still

possible that ω = 2.01 using all known approaches. Therefore, we believe improving the

additive 2 + 1/6 term remains an interesting open problem.

Our method is a stochastic version of the short step central path method. This short

step method takes O∗(
√
n) steps and each step decreases xisi by a 1 − 1/

√
n factor for all

i where s is the dual variable [Ren88] (See the definition of s in (2.1)). This results in

O∗(
√
n)×n = O∗(n1.5) coordinate updates. Our method takes the same number of step but

only updates Õ(
√
n) coordinates each step. Therefore, we only update O∗(n) coordinates in

total, which is nearly optimal.

Our framework is efficient enough to take a much smaller step while maintaining the

same running time. For the current value of ω ∼ 2.38, we show how to obtain the same

runtime of O∗(nω) by taking O∗(n) steps and Õ(1) coordinates update per steps. This is

because the complexity of each step decreases proportionally when the step size decreases.

Beyond the cost per iteration, we remark that our algorithm is one of the very few central

path algorithms [PRT02, Mad13, Mad16] that does not maintain xisi close to some ideal

vector in `2 norm. We are hopeful that our stochastic method and our proof will be useful

3The dual exponent of matrix multiplication α is the supremum among all a ≥ 0 such that it takes n2+o(1)

time to multiply an n× n matrix by an n× na matrix.
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Year Author Refs #Iters Cost/Iter Total
1984 Karmarkar [Kar84] O(nL) Õ(n2.2) Õ(n3.2L)

1986 Renegar [Ren88] O(
√
nL) Õ(n2.7L)

1989 Vaidya [Vai89b] O(
√
nL) O(n2) O(n2.5L)

1994 Nesterov and Nemirovskii [NN94] O(
√
nL) O(n2) O(n2.5L)

2014 Lee, Sidford [LS14] Õ(
√
nL) Õ(n2) O(n2.5L)

2015 Lee, Sidford [LS15] Õ(
√
nL) Õ(n2) O(n2.5L)

2019 Cohen, Lee, Song [CLS19](thesis) Õ(
√
nL) Õ(nω−1/2) O(nωL)

Table 1.1: Let ω denote the exponent of the current matrix multiplication. “Iters” denotes
the “number of iterations”. “Cost/Iter” denotes the “cost per iteration”. LP has n variables,
d = n constraints, and can be encoded in L input bits. We consider the case where A is a
dense full rank matrix. We remark that all of results have difference when rank(A) is low
rank, nnz(A) is sparse and n 6≈ d. However, when d = n, rank(A) = n and nnz(A) = n2, the
running time remains to be O(n2.5) for three decades.

for future research on interior point methods. In particular, it would be interesting to see

how this can be combined with techniques in [Cla95, LS14] to get a faster algorithm for

linear programs with d� n.

Besides the applications to linear programs, some of our techniques are probably

useful for studying other important problems in convex optimization. In particular, our

framework should be naturally extendable to a larger class of convex programs.

Empirical Risk Minimization Empirical Risk Minimization (ERM) problem is a funda-

mental question in statistical machine learning. There are a huge number of papers that have

considered this topic [Nes83, Vap92, PJ92, Nes04, BBM05, BB08, NJLS09, MB11, FGRW12,

LRSB12, JZ13, Vap13, SSZ13, DB14, DBLJ14, FGKS15, DB16, SLC+17, ZYJ17, ZX17,

ZWX+17, GSS17, MS17, NS17, AKK+17, Csi18, JLGJ18] as almost all convex optimization

13



machine learning can be phrased in the ERM framework [SSBD14, Vap92]. While the sta-

tistical convergence properties and generalization bounds for ERM are well-understood, a

general runtime bound for general ERM is not known although fast runtime bounds do exist

for specific instances [AKPS19].

Examples of applications of ERM include linear regression, LASSO [Tib96], elastic net

[ZH05], logistic regression [Cox58, HJLS13], support vector machines [CV95], `p regression

[Cla05, DDH+09, BCLL18, AKPS19], quantile regression [Koe00, KH01, Koe05], AdaBoost

[FS97], kernel regression [Nad64, Wat64], and mean-field variational inference [XJR02].

The classical Empirical Risk Minimization problem is defined as

min
x

m∑

i=1

fi(a
>
i x+ bi)

where fi : R → R is a convex function, ai ∈ Rd, and bi ∈ R, ∀i ∈ [m]. Note that this

formulation also captures most standard forms of regularization as well.

Letting yi = a>i x+ bi, and zi = fi(a
>
i x+ bi) allows us to rewrite the original problem

in the following sense,

min
x,y,z

m∑

i=1

zi (1.1)

s.t. Ax+ b = y

(yi, zi) ∈ Ki = {(yi, zi) : fi(yi) ≤ zi},∀i ∈ [m]

We can consider a more general version where dimension of Ki can be arbitrary, e.g. ni.

Therefore, we come to study the general n-variable form

min
x∈
∏m
i=1Ki,Ax=b

c>x
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where
∑m

i=1 ni = n. We give a result for solving the general model.

First-order algorithms for ERM are well-studied and a long series of accelerated

stochastic gradient descent algorithms have been developed and optimized [Nes98, JZ13,

XZ14, SSZ14, FGKS15, LMH15, MLF15, AY16, RHS+16, SS16, AH16, SLRB17, MS17,

LMH17, LJCJ17, All17b, All17a, All18b, All18a]. However, these rates depend polynomially

on the Lipschitz constant of ∇fi and in order to achieve a log(1/ε) dependence, the runtime

will also have to depend on the strong convexity of the
∑

i fi. In this thesis, we want to

focus on algorithms that depend logarithmically on diameter/smoothness/strong convexity

constants, as well as the error parameter ε. Note that gradient descent and a direct applica-

tion of Newton’s method do not belong to these class of algorithms, but for example, interior

point method and ellipsoid method does.

Therefore, in order to achieve high-accuracy solutions for non-smooth and non strongly

convex case, most convex optimization problems will rely on second-order methods, often un-

der the general interior point method (IPM) or some sort of iterative refinement framework.

So, we note that our algorithm is thus optimal in this general setting since second-order

methods require at least nω runtime for general matrix inversion.

Our algorithm applies the interior point method framework to solve ERM. The most

general interior point methods require O(
√
n)-iterations of linear system solves [Nes98],

requiring a naive runtime bound of O(nω+1/2). Using the inverse maintenance technique

[Vai89b, CLS19], one can improve the running time for LP to O(nω). This essentially implies

that almost all convex optimization problems can be solved, up to subpolynomial factors, as

fast as linear regression or matrix inversion!
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The specific case of `2 regression can be solved in O(nω) time since the solution is

explicitly given by solving a linear system. In the more general case of `p regression, [BCLL18]

proposed a Õp(n
|1/2−1/p|)-iteration iterative solver with a naive O(nω) system solve at each

step. Recently, [AKPS19] improved the runtime to Õp(n
max (ω,7/3)), which is current matrix

multiplication time as ω > 7/3. However, both these results depend exponentially on p and

fail to be impressive for large p. Otherwise, we are unaware of other ERM formulations that

have have general runtime bounds for obtaining high-accuracy solutions.

Recently several works [AW18a, AW18b, Alm19] try to show the limitation of current

known techniques for improving matrix multiplication time. Alman and Vassilevska Williams

[AW18b] proved limitations of using the Galactic method applied to many tensors of interest

(including Coppersmith-Winograd tensors [CW87]). More recently, Alman [Alm19] proved

that by applying the Universal method on those tensors, we cannot hope to achieve any

running time better than n2.168 which is already above our n2+1/6.

Algorithmic Theory of ODEs The complexity of sampling a high-dimensional density of

the form e−f(x) where f is a convex function is a fundamental problem with many applications

[LS90, LS92, LS93, LV06a, LV06b, Dal17, DK17, DRD18, DCWY18]. The focus of this part

is to give very fast, i.e., nearly linear time algorithms, for a large subclass of such densities.

A motivating and important case is the loss function for logistic regression, widely used in

machine learning applications [Ber44, Paa00, NJ02, HJLS13, Bou14]:
n∑

i=1

φi(a
>
i x)

where φi are convex functions; a popular choice is φ(t) = log(1 + e−t). Sampling according

to e−f for this choice of f corresponds to sampling models according to their KL-divergence,
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a natural and effective choice for classification problems [HJLS13].

A general approach to sampling is by an ergodic Markov chain whose stationary dis-

tribution is designed to have the desired density. Traditionally, this is done via a Metropolis

filter, which accepts a proposed (random) next step y from the current point x with prob-

ability min{1, f(y)
f(x)
}. While very general, one downside of this approach is the possibility of

high rejection probabilities, which typically force local steps to be very small. Nevertheless,

for arbitrary logconcave functions (including nonsmooth ones), this approach has the current

best guarantees [LV06b].

Another family of algorithms is derived from an underlying continuous stochastic

process with the desired stationary density. A classic example of such a continuous process

is Brownian motion. To sample a convex body for example, one could use Brownian motion

with a boundary reflection condition. This is written as the stochastic equation:

dXt = dWt

with reflection at the boundary of the domain, and dWt being infinitesimal Brownian motion.

To sample from the density proportional to e−f(x), one can use the stochastic differential

equation,

dXt = −∇f(Xt)dt+
√

2dWt.

By the classical Fokker-Planck equation, under mild assumptions on f , the stationary density

of this process is proportional to e−f(x).

How can we turn these continuous processes into algorithms? One approach is to take

small rather than infinitesimal steps, and this leads to the Langevin dynamics, of which there

are multiple flavors [Dal17, DK17, ZLC17, RRT17, DRD18, CCBJ18, CCAY+18, CFM+18].
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Year Refs. Method Iters. Gra/Iter Total time
2006 [LV06b] B./H.∗ d3, d4 1 d5, d6

2017 [Dal17] LMC ∗ κ2d, κ3d3 1 κ2d2, κ3d4

2017 [Dal17] LMCO ∗ κ2d, κ2d2.5 1 κ2d4, κ2d5.5

2018 [CCBJ18] DL κ2d0.5 1 κ2d1.5

2018 [DCWY18] MALA ∗ κd, κd2 1 κd2, κd3

2017 [MS17] HMC κ6.5d0.5 1 κ6.5d1.5

2018 [MV18] HMC ∗,† κ2.75d0.25, κ3.5d0.25 1 κ2.75d1.25, κ3.5d1.25

2018 [LSV18] HMC † κ1.5 1 κ1.5d
(thesis) HMC κ1.5 κ0.25d0.5 κ1.75d1.5

∗ have different bounds for warm start and general (cold) start. We stated the runtime
for cold start in green color.
†make smoothness and incoherence assumptions motivated by and applicable to
Bayesian logistic regression.

Table 1.2: Summary of results, d is the dimension, κ is the condition number of ∇2f . “Iters”
denotes “the number of iterations / parallel depth”. “Gra/Iter” denotes the “the number
of gradients per iteration”. We use the parallel depth of the algorithm as the number of
iterations. We suppress polylogarithmic terms and dependence on the error parameter.
Ball walk/hit-and-run apply to general logconcave distributions, the rest assume strongly
logconcave with Lipschitz gradient and possibly more. “B./H.” denotes “Ball Walk/Hit-and-
run”. “DL” denotes “Damped Langevin”. In all previous work, for simplicity, we report the
most favorable bounds by making various assumptions such as κ� d.

Starting with Dalalyan [Dal17], it has been established that these dynamics converge in

polynomial (in dimension) time for strongly logconcave functions, with the underdamped

version converging in O(
√
d) iterations (and polynomial dependences on appropriate condi-

tion numbers) [CCBJ18]. The dependence on dimension seems unavoidable in the discretized

algorithm, even though the continuous process has no such dependence.

Hamiltonian Monte Carlo. HMC is a random process that maintains a position x and

velocity pair v. To sample according to e−f , we define a Hamiltonian H(x, v) = f(x)+ 1
2
‖v‖2.
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At each step v is chosen randomly fromN(0, I) and x is updated using the following Ordinary

Differential Equation (ODE) for a some fixed time interval.

dx(t)

dt
= v(t),

dv(t)

dt
= −∇f(x(t)). (1.2)

This process has the particularly nice property that it conserves the value of H, and as a

result there is no need to apply a Metropolis filter. HMC has been studied in many works

[MS17, MV18, LV18]. Mangoubi and Smith [MS17] gave the following guarantee for strongly

logconcave densities.

Note that Eq. (1.2) is a special case of the following first order ODE

d

dt
x(t) = F (x(t), t), x(0) = v

where F : Rd+1 → Rd, x(t) ∈ Rd and v ∈ Rd.

Moreover, we can write the k-th order ODE in the following way

dk

dtk
x(t) = F (

dk−1

dtk−1
x(t), · · · , x(t), t)

di

dti
x(0) = vi, ∀i ∈ {k − 1, · · · , 1, 0}.

where F : Rkd+1 → Rd, x(t) ∈ Rd, and v0, v1, · · · , vk−1 ∈ Rd.

To solve HMC such special case ODE efficiently, it requires a better understanding of

the ODE system. We analyze the collocation method for solving ODEs [Ise09]. This method

is classical in numerical analysis.

We present the multivariate high-oder ODE guarantee. This generalizes and improves

on the guarantee from [LV17]. Note that our result is a general result about solving ODE
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efficiently, independent of the application to sampling. The only assumptions needed are that

the ODE function is Lipschitz and that the solution is close to the span of small number of

basis of functions. These natural assumptions suffice to get around the worst-case complexity

lower bounds for solving such general ODEs [KF82, Ko83, Ko10, Kaw10, KC12].

Deep Neural Networks Neural networks have demonstrated a great success in numerous

machine-learning tasks [KSH12, GMH13, LHP+15, AAA+16, HZRS16, SHM+16, SSS+17].

One of the empirical findings is that neural networks, trained by first-order methods from

random initialization, have a remarkable ability to fit training data [ZBH+17].

From an expressibility perspective, this may not be surprising since modern neural

networks are often over-parameterized: they have much more parameters than the number

of training samples. There certainly exist parameter choices with zero training error as long

as data is non-degenerate.

Yet, from an optimization perspective, the fact that randomly-initialized first-order

methods can find global minima on the training data is quite non-trivial : neural networks

are often equipped with the ReLU activation, making the training objective not only non-

convex, but even non-smooth. Even the general convergence for finding approximate critical

points of a non-convex, non-smooth function is not fully-understood [BLO05] and appears

to be a challenging question on its own. This is in direct contrast to practice, in which ReLU

networks trained by stochastic gradient descent (SGD) from random initialization almost

never suffer from non-smoothness or non-convexity, and can avoid local minima for a variety

of network architectures (see [GVS15]). A theoretical justification was missing to explain

this phenomenon.
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There are quite a few papers trying to understand the success of neural networks

from optimization perspective. Many of them focus on the case when the inputs are random

Gaussian, and work only for two-layer neural networks [BG17, Son17, Tia17, LY17, DLT+18,

GLM17, PRSZ18, ZSJ+17, ZSD17]. [LL18] show that for a two-layer network with ReLU

activation, SGD finds nearly-global optimal (say, 99% classification accuracy) solutions on

the training data, as long as the network is over-parameterized, meaning that the number of

neurons is polynomially large comparing to the input size. Moreover, if the data is sufficiently

structured (say, coming from mixtures of separable distributions), this accuracy extends also

to test data. As a separate note, over-parameterization is suggested as the possible key to

avoid bad local minima by [SS18] even for two-layer networks.

There are also results that go beyond two-layer networks with limitations. Some

consider deep linear neural networks without any activation functions [HM17, ACGH18,

BHL18, Kaw16]. [Dal17] studies multi-layer neural networks but essentially only with respect

to the convex task of training the last layer.4 [SC16] show that under over-parameterization

and under random input perturbation, there is bad local minima for multi-layer neural

networks. [JGH18] derive global convergence using neural tangent kernel for infinite-width

neural networks.

In this thesis, we study the following fundamental questions

Can DNN be trained close to zero training error efficiently under mild assumptions?

If so, can the running time depend only polynomially in the network depth and input size?

4[Dal17] works in a parameter regime where the weight changes of all layers except the last one make
negligible contribution to the final output.
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Motivation In 2012, AlexNet was born with 5 convolutional layers [KSH12]. The later

VGG network uses 19 layers [SSZ14], and GoogleNet uses 22 layers [SLJ+15]. In practice, we

cannot go deeper by naively stacking layers together, due to the so-called vanishing/exploding

gradient problem. To deal with this issue, networks with residual links (ResNet) were pro-

posed with the capability of handling at least 152 layers [HZRS16]. Compared with practical

networks that go much deeper, existing theory has been mostly around two-layer (thus one-

hidden-layer) neural networks, even just for the training process alone. Thus,

Can we theoretically justify how the training process has worked for multi-layer neural

networks?

In this thesis, we extend the over-parameterization theory to multi-layer neural net-

works.

Recurrent Neural Networks Among different architectures of neural networks, one of

the least theoretically-understood structure is the recurrent one [Elm90]. A recurrent neural

network recurrently applies the same network unit to a sequence of input tokens, such as a

sequence of words in a language sentence. RNN is particularly useful when there are long-

term, non-linear interactions between input tokens in the same sequence. These networks

are widely used in practice for natural language processing, language generation, machine

translation, speech recognition, video and music processing, and many other tasks [MKB+10,

MKB+11, SSN12, KB13, SSB14, SVL14, CVMBB14, CGCB14]. On the theory side, while

there are some attempts to show that an RNN is more expressive than a feedforward neural

network [KNO18], when and how an RNN can be efficiently learned has little theoretical

explanation.
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In practice, RNN is usually trained by simple local-search algorithms such as SGD.

However, unlike shallow networks, the training process of RNN often runs into the trouble

of vanishing or exploding gradient [SMH11]. That is, the value of the gradient becomes

exponentially small or large in the time horizon, even when the training objective is still

constant. 5

In practice, one of the popular ways to resolve this is by the long short term mem-

ory (LSTM) structure [HS97]. However, one can also use rectified linear units (ReLUs)

as activation functions to avoid vanishing or exploding gradient [SBS+17]. In fact, one of

the earliest adoptions of ReLUs was on applications of RNNs for this purpose twenty years

ago [Hah98, SA96].

Since the RNN structure was proposed, a large number of variations have been de-

signed over past decades. For a more detailed survey, we refer the readers to [SBS+17].

In this thesis, we study the following general question

• Can ReLU provably stabilize the training process and avoid vanishing/exploding gradi-

ent?

• Can RNN be trained close to zero training error efficiently under mild assumptions?

Remark 1.2.1. When there is no activation function, RNN is known as linear dynamical sys-

tem. Hardt, Ma and Recht [HMR18] first proved the convergence of finding global minima for

5Intuitively, an RNN recurrently applies the same network unit for L times if the input sequence is of
length L. When this unit has “operator norm” larger than one or smaller than one, the final output can
possibly exponentially explode or vanish in L. More importantly, when one back propagates through time
—which intuitively corresponds to applying the reverse unit multiple times— the gradient can also vanish
or explode. Controlling the operator norm of a non-linear operator can be quite challenging.
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such linear dynamical systems. Followups in this line of research include [HSZ17, HLS+18].

This part is based on the following papers:

• Michael B. Cohen, Yin Tat Lee, Zhao Song

Solving Linear Programs in the Current Matrix Multiplication Time.

STOC 2019 [CLS19]

• Yin Tat Lee, Zhao Song, Qiuyi Zhang

Solving Empirical Risk Minimization in the Current Matrix Multiplication.

COLT 2019 [LSZ19]

• Yin Tat Lee, Zhao Song, Santosh S. Vempala

Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave Densi-

ties.

Manuscript 2018 [LSV18]

• Zeyuan Allen-Zhu, Yuanzhi Li, Zhao Song

A Convergence Theory for Deep Learning via Over-Parameterization.

ICML 2019 [AZLS19]

• Zeyuan Allen-Zhu, Yuanzhi Li, Zhao Song

On the convergence rate of training recurrent neural networks.

Manuscript 2018 [AZLS18]
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1.3 Concentration

The study of concentration of sums of random variables dates back to Central Limit

Theorems, and hence de Moivre and Laplace [Tij], while modern concentration bounds for

sums of random variables were perhaps first established by Bernstein [Ber24], and a popular

variant now known as Chernoff bounds was introduced by Rubin and published by Chernoff

[Che52].

Concentration of measure for matrix-valued random variables is the phenomenon that

many matrix valued distributions are to close their mean with high probability, closeness

usually being measured by spectral norm. Modern quantitative bounds of the form often

used in theoretical computer science were derived by Rudelson [Rud99], while Ahlswede and

Winter [AW02] established a useful matrix-version of the Laplace transform that plays a

central role in scalar concentration results such as those of Bernstein. [AW02] combined this

with the Golden-Thompson trace inequality to prove matrix concentration results. Tropp

refined this approach, and by replacing the use of Golden-Thompson with deep a theorem on

concavity of certain trace functions due to Lieb, Tropp was able to recover strong versions

of a wide range of scalar concentration results, including matrix Chernoff bounds, Azuma

and Freedman’s inequalities for matrix martingales [Tro12].

Matrix concentration results have had an enormous range of applications in com-

puter science, and are ubiquitous throughout spectral graph theory [ST04, SS11, CKP+17],

sketching [Coh16a], approximation algorithms [HSSS16], numerical linear algebra, quantum

information theory, and deep learning [ZSJ+17, ZSD17, SY19]. Most applications are based

on results for independent random matrices, but more flexible bounds, such as Tropp’s

Matrix Freedman Inquality [Tro11a], have been used to greatly simplify algorithms, e.g.
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for solving Laplacian linear equations [KS16] and for semi-streaming graph sparsification

[AG09, KPPS17]. Matrix concentration results are also closely related to other popular tools

sampling tools, such as Karger’s techniques for generating sparse graphs that approximately

preserve the cuts of denser graphs [BK96].

We formally state the natural generalization of the Chernoff bound appeared in the

works of Rudelson [Rud99], Ahlswede-Winter [AW02], and Tropp [Tro12]. They showed

that a similar concentration phenomenon is true for matrix-valued random variables. In

particular, if X1, . . . , Xk are independent d × d complex Hermitian random matrices with

‖Xi‖ ≤ 1, then the following is true:

Pr

[∥∥∥∥∥
1

k

k∑

i=1

Xi − E[X]

∥∥∥∥∥ > ε

]
≤ 2d · exp(−Ω(kε2)). (1.3)

The only difference between this and the usual Chernoff bound is the factor of d in front of

the deviation probability; to see that it is necessary, notice that the diagonal case simply

corresponds to a direct sum of d arbitrarily correlated instances of the scalar Chernoff bound,

so by the union bound the probability should be d times as large in the worst case. This so

called “Matrix Chernoff Bound”.

Expander Walk An important generalization of this bound was achieved by Gillman

[Gil98] (with refinements later by [Lez98, Kah97, LP04, WX05, Hea08, Wag08, CLLM12,

RR17]), who significantly relaxed the independence assumption to Markov dependence. In

particular, suppose G is a regular graph with vertex set V = [n], X : V → C is a bounded

function, and v1, . . . , vk is a stationary random walk6 of length k on G. Then, even though

6That is the first vertex v1 is chosen uniformly at random – which is the stationary distribution of the
graph G.
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the random variables X(vi) are in not independent (except when G is the complete graph

with self loops), it is shown that:

Pr

[∣∣∣∣∣
1

k

k∑

i=1

X(vi)− E[X]

∣∣∣∣∣ > ε

]
≤ 2 · exp(−Ω((1− λ)kε2)), (1.4)

where 1 − λ is the spectral gap of the transition matrix of the random walk. The gain

here is that sampling a stationary random walk of length k on a constant degree graph

with constant spectral gap requires log(n) +O(k) random bits, which is much less than the

k log(n) bits required to produce k independent samples. Since such graphs can be explicitly

constructed, this leads to a generic “derandomization” of the Chernoff bound, which has

had several important applications (see [WX05] for a detailed discussion). In particular, it

leads to the following randomness efficient sampler for scalar-valued functions ([Gil98]) using

known strongly explicit constructions of expander graphs [RVW00, LPS88]:

Theorem 1.3.1 ([Gil98]). For any ε > 0 and k ≥ 1, there is a poly(r)-time computable

sampler σ : {0, 1}r → [n]k, where r = log(n) + O(k) s.t. for all functions f : [n] → [−1, 1]

satisfying E f = 0, we have that

Pr
w∈R{0,1}r

[∣∣∣∣
1

k

k∑

i=1

f(σ(w)i)

∣∣∣∣ ≥ ε

]
≤ 2 exp

(
−Ω

(
ε2k
))
.

In many applications of interest k is about log(n), and going from O(log2(n)) to

O(log(n)) random bits leads to a complete derandomization by cycling over all seeds w ∈

{0, 1}r.

It is natural to wonder whether there is a common generalization of (1.4) and (1.3),

i.e., a “Matrix Expander Chernoff Bound”. Such a result was conjectured by Wigderson and
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Xiao in [WX06]. In this thesis, we prove the Wigderson and Xiao conjecture. In order to

prove that conjecture, we also propose a new Golden-Thompson inequality. The original

Golden-Thompson inequality only holds for two matrices [Gol65, Tho65]. Our new Golden-

Thompson inequality holds for multiple matrices.

Strongly Rayleigh and Matrix Chernoff for Random Spanning Trees Negative

dependence of random variables is an appealing property that intuition suggests should help

with concentration of measure. Notions of negative dependence can be formalized in many

ways. Roughly speaking, these notions characterize distributions where where some event

occurring ensures that other events of interest become less likely. A simple example is the

distribution of a sequence of coin flips, conditioned on the total number of heads in the

outcome. In this distribution, conditioning on some coin coming out heads makes all other

coins less likely to come out heads. Unfortunately, negative dependence phenomena are not

as robust as positive association which can be established from local conditions using the

powerful FKG theorem [FKG71].

Strongly Rayleigh distributions were introduced recently by Borcea, Brändén, and

Liggett [BBL09] as a class of negatively dependent distributions of binary-valued random

variables with many useful properties. Strongly Rayleigh distributions satisfy useful negative

dependence properties, and retain these properties under natural conditioning operations.

Strongly Rayleigh distributions also satisfy a powerful stability property under conditioning

known as Stochastic Covering [PP14], which is useful for analyzing them through martingale

techniques. A measure on {0, 1}n is said to be Strongly Rayleigh if its generating polynomial

is real stable [BBL09]. There are many interesting examples of Strongly Rayleigh distribu-
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tions [PP14]: The example mentioned earlier of heads of independent coin flips conditional

on the total number of heads in the outcome; symmetric exclusion processes; determinental

point processes and determinental measures on a boolean lattice. An example of particu-

lar interest to us is the edges of uniform or weighted random spanning trees, which form a

Strongly Rayleigh distribution.

We prove a Matrix Chernoff bound for the case of k-homogeneous Strongly Rayleigh

distributions. Our bound is slightly weaker than the bound for independent variables. We

give lower bounds that show our bounds are close to tight in some regimes, but importantly,

our lower bounds do not establish separation from the behaviour of indepedent random

matrices, leaving open the question of whether the true bound should match the independent

case in all regimes – which seems plausible.

We use our bound to show new concentration results related to random spanning

trees of graphs. Random spanning trees are one among the most well-studied probabilistic

objects in graph theory, going back to the work of Kirchoff [Kir47] in 1847, who gave formula

relating the number of spanning trees in a graph to the determinant of the Laplacian of the

same graph.

Algorithms for sampling of random spanning trees have been studied extensively,

[Gue83, Bro89, Ald90, Kul90, Wil96, CMN96, KM09, MST15, HX16, DKP+17, DPPR17,

Sch18], and a random spanning tree can now be sampled in almost linear time [Sch18].

There is also a long line [BK96, ST11, SS11, BSS12, Zou12, LS17, LS18] of research about

generating graph spectral sparsifier as fast as possible. However, the connection between

those two objects is open for decades. We answer the question positively by providing the

following result
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Theorem 1.3.2. Given as input a weighted graph G with n vertices and a parameter ε > 0,

let T1, T2, · · · , Tt denote t independent inverse leverage score weighted random spanning trees,

if we choose t = O(ε−2 log2 n) then with probability 1− 1/ poly(n),

(1− ε)LG �
1

t

t∑

i=1

LTi � (1 + ε)LG.

In addition, we also show t = Ω(ε−2 log n) is necessary.

Discrepancy Discrepancy theory is an area of combinatorics that studies how well contin-

uous objects can be approximated by discrete ones. It lies at the heart of numerous problems

in mathematics and computer science [Cha00]. Although closely tied to probability theory,

direct randomized approaches rarely yield the best bounds. In a classical formulation in

discrepancy theory, we have n sets on n elements, and would like to two-color the elements

so that each set has roughly the same number of elements of each color. Using a simple

random coloring, it is an easy consequence of Chernoff’s bound that there exists a coloring

such that the discrepancy in all n sets is O(
√
n log n) [AS16]. However, in a celebrated result,

Spencer showed that in fact there is a coloring with discrepancy at most 6
√
n [Spe85].

Recently, there has been significant success in generalizing Chernoff [Che52], Ho-

effding, Bernstein, and Bennett-type concentration bounds for scalar random variables to

matrix-valued random variables [Rud99, AW02, Tro12]. Consider the following matrix con-

centration bound, which is a direct consequence of a matrix Hoeffding bound.

Theorem 1.3.3 ([Tro12]). Let ξi ∈ {±1} be independent, symmetric random signs and

A1, . . . , An ∈ Cm×m be positive semi-definite matrices. Suppose maxi∈[n] ‖Ai‖ ≤ ε and
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‖∑n
i=1Ai‖ ≤ 1. Then,

Pr

[∥∥∥∥∥
n∑

i=1

ξiAi

∥∥∥∥∥ ≥ t
√
ε

]
≤ 2m exp(−t2/2).

A consequence of this theorem is that with high probability

∥∥∥∥∥
n∑

i=1

ξiAi

∥∥∥∥∥ = O(
√

logm)
√
ε. (1.5)

The Kadison-Singer theorem of [MSS15b] is essentially equivalent to the following statement

(which can readily be derived from the bipartition statement in [MSS15b]).

Theorem 1.3.4 (Kadison-Singer [MSS15b]). Let u1, . . . , un ∈ Cm and suppose maxi∈[n] ‖uiu∗i ‖ ≤

ε and
∑n

i=1 uiu
∗
i = I. Then, there exists signs ξi ∈ {±1} s.t.

∥∥∥∥∥
n∑

i=1

εiuiu
∗
i

∥∥∥∥∥ ≤ O(
√
ε).

Thus, for rank 1 matrices the theorem improves on the norm bound in Equation (1.5),

by a factor
√

logm, in a manner analogous to the improvement of Spencer’s theorem over

the bound based on the scalar Chernoff bound.

For random signings of matrices one can establish bounds in some cases that are much

stronger than Theorem 1.3.3.

Theorem 1.3.5 ([Tro12]). Let ξi ∈ {±1} be independent random signs, and let A1, . . . , An ∈

Cm×m be Hermitian matrices. Let σ2 = ‖∑n
i=1 V[ξi]A

2
i ‖ . Then,

Pr

[∥∥∥∥∥
n∑

i=1

E[ξi]Ai −
n∑

i=1

ξiAi

∥∥∥∥∥ ≥ t · σ
]
≤ 2m exp(−t2/2).
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From this theorem we deduce that with high probability
∥∥∥∥∥

n∑

i=1

E[ξi]Ai −
n∑

i=1

ξiAi

∥∥∥∥∥ = O(
√

logm)σ. (1.6)

Of course, this implies that there exists a choice of signs ε1, . . . , εn ∈ {±1} such that
∥∥∥∥∥

n∑

i=1

E[ξi]Ai −
n∑

i=1

εiAi

∥∥∥∥∥ = O(
√

logm)σ.

For rank-1 matrices, we want to show there exists a choice of signs with a stronger

guarantee. Formally speaking, we can prove the following result.

Theorem 1.3.6. Consider any independent scalar random variables ξ1, . . . , ξn with finite

support. Let u1, . . . , un ∈ Cm and

σ2 =

∥∥∥∥∥
n∑

i=1

V[ξi](uiu
∗
i )

2

∥∥∥∥∥ .

Then there exists a choice of outcomes ε1, . . . , εn in the support of ξ1, . . . , ξn∥∥∥∥∥
n∑

i=1

E[ξi]uiu
∗
i −

n∑

i=1

εiuiu
∗
i

∥∥∥∥∥ ≤ O(σ).

This part is based on the following papers:

• Ankit Garg, Yin Tat Lee, Zhao Song, Nikhil Srivastava

A Matrix Expander Chernoff Bound.

STOC 2018 [GLSS18]

• Rasmus Kyng, Zhao Song

A Matrix Chernoff Bound for Strongly Rayleigh Distributions and Spectral Sparsifiers

from a few Random Spanning Trees.

FOCS 2018 [KS18]
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• Rasmus Kyng, Kyle Luh, Zhao Song

Four Deviations Suffice for Rank 1 Matrices.

Manuscript 2019 [KLS19]

1.4 Compressed Sensing and Sparse Fourier Transform

Compressed Sensing, or sparse recovery, is a powerful mathematical framework the

goal of which is to reconstruct an approximately k-sparse vector x ∈ Rn from linear mea-

surements y = Φx, where Φ ∈ Rm×n. The most important goal is to reduce the number

of measurements m needed to approximate the vector x, avoiding the linear dependence on

n. In discrete signal processing, where this framework was initiated [CRT06b, Don06], the

core principle that the sparsity of a signal can be exploited to recover it using much fewer

samples than the Shannon-Nyquist Theorem. We refer to the matrix Φ as the sketching or

sensing matrix, and y = Φx as the sketch of vector x.

Sparse recovery is the primary task of interest in a number of applications, such

as image processing [TLW+06, LDP07a, DDT+08], design pooling schemes for biological

tests [ECG+09, DWG+13], pattern matching [CEPR07], combinatorial group testing [SAZ09,

ESAZ09, KBG+10], localizing sources in sensor networks [ZBSG05, ZPB06], as well as neu-

roscience [GS12]. Furthermore, not surprisingly, tracking heavy hitters in data streams, also

known as frequent items, can be captured by the sparse recovery framework [Mut05a, CH09,

KSZC03, Ind07]. In practice, streaming algorithms for detecting heavy hitters have been

used to find popular destination addresses and heavy bandwidth users by AT&T [CJK+04]

or answer “iceberg queries” in databases [FSGM+99].

Sparse recovery attracts researchers from different communities, from both theoret-
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ical and practical perspective. During the last ten years, hundreds of papers have been

published by theoretical computer scientists, applied mathematicians and electrical engi-

neers that specialize in compressed sensing. While numerous algorithms using space linear

in the universe size n are known, [Don06, CRT06b, IR08a, NT09a, BIR08a, BD09a, SV16]

to name a few, our goal is to obtain algorithms that are sublinear, something that is crucial

in many applications.

The desirable quantities we want to optimize may vary depending on the application.

For example, in network management, xi could denote the total number of packets with

destination i passing through a network router. In such an application, storing the sketching

matrix explicitly is typically not a tenable solution, since this would lead to an enormous

space consumption; the number of possible IP addresses is 232. Moreover, both the query and

the update time should be very fast, in order to avoid congestion on the network. Incremental

updates to x come rapidly, and the changes to the sketch should also be implemented very

fast; we note that in this case, even poly-logarithmic factors might be prohibitive. Interested

readers can refer to [KSZC03, EV03] for more information about streaming algorithms for

network management applications.

“The goal of that research is to obtain encoding and recovery schemes with good com-

pression rate (i.e., short sketch lengths) as well as good algorithmic properties (i.e., low

encoding, update and recovery times).” – Anna Gilbert and Piotr Indyk [GI10]

In this thesis, we consider the extensively studied problem of L2/L2 compressed

sensing. The main contribution of our work is an improvement over [GLPS10] with faster

decoding time and significantly smaller column sparsity, answering two open questions of

the aforementioned work.
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Year Reference Measurements Decoding Time Encoding Time
2006 [Don06, CRT06b] k log(n/k) LP k log(n/k)
2006 [CCF02, CM06] ε−2k log n ε−1n log n log n
2008 [NT09a] k log(n/k) nk log(n/k) log(n/k)

2004 [CM04] ε−2k log2 n ε−1k logc n log2 n

2006 [CCF02, CM06] ε−2k logc n ε−1k log2 n logc n

2010 [GLPS10] ε−1k log(n/k) ε−1k logc n log(n/k) · log2 k

2019 [NS19] (thesis) ε−1k log(n/k) ε−1k log2(n/k) log(n/k)

Table 1.3: (A list of `2/`2-sparse recovery results). We ignore the “O” for simplicity. LP
denotes the time of solving Linear Programs [CLS19], and the state-of-the-art algorithm
takes nω time where ω is the exponent of matrix multiplication. The results in [Don06,
CRT06b, NT09a] do not explicitly state the `2/`2 guarantee, but their approach obtains it
by an application of the Johnson-Lindenstrauss Lemma; they also cannot facilitate ε < 1,
obtaining thus only a 2-approximation. The c in previous work is a sufficiently large constant,
not explicitly stated, which is defined by probabilistically picking an error-correcting code of
short length and iterating over all codewords. We estimate c ≥ 4. We note that our runtime
is (almost) achieved.

Previous work on sublinear-time compressed sensing employed an iterative procedure,

recovering the heavy coordinates in phases. We completely depart from that framework, and

give the first sublinear-time L2/L2 scheme which achieves the optimal number of measure-

ments without iterating; this new approach is the key step to our progress. Towards that,

we satisfy the L2/L2 guarantee by exploiting the heaviness of coordinates in a way that was

not exploited in previous work. Via our techniques we obtain improved results for various

sparse recovery tasks, and indicate possible further applications to problems in the field, to

which the aforementioned iterative procedure creates significant obstructions.

High-dimensional Discrete Fourier Transform Probably the most important subtopic

of compressed sensing/sparse recovery is the sparse Fourier transform, where one desires to
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reconstruct a k-sparse vector from Fourier measurements. In other words, measurements

are not allowed to be generic, but have to belong to the so-called Fourier ensemble. In Op-

tics imaging [Goo05, Voe11] and Magnetic resonance imaging (MRI) [ASSN08], the physics

[Rey89] of the underlying device restricts us to the Fourier ensemble, where the sparse Fourier

problem becomes highly relevant. In fact, one of the initial motivations of Candes, Romberg

and Tao came out due to the aforementioned applications. The number of samples plays

a crucial role: they determine the amount of radiation a patient receives in CT scans, and

taking fewer samples can reduce the amount of time the patient needs to stay in the machine.

The framework has found its way in practical life-changing applications. Software includes

the Compressed Sensing GRAB-VIBE, CS SPACE, CS SEMAC and CS TOF by

Siemens [Sie], as well as Compressed Sense by Phillips [Phi]. Its incorporation in the MRI

technology allows faster acquisition rates, depiction of dynamic processes or moving organs,

as well as acceleration of MRI scanning up to a factor of 40. On the webpage of SIEMENS

Healthineers, for example, one can see the following, as well as numerous similar statements.

This allows bringing the advantages of Compressed Sensing GRASP-VIBE to daily

clinical routine.

• Perform push-button, free-breathing liver dynamics.

• Overcome timing challenges in dynamic imaging and respiratory artifacts.

• Expand the patient population eligible for abdominal MRI.

The Fourier transform is in fact ubiquitous: image processing, audio processing,

telecommunications, seismology, polynomial multiplication, Subset Sum and other text-
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Year Reference Samples Time Filter RIP Gua.
2005 [GMS05] k logO(d) n k logO(d) n Yes No `2/`2

2006 [CT06] k log6 n poly(n) No Yes `2/`1

2008 [RV08] k log2 k log(k log n) log n Õ(n) No Yes `2/`1

2012 [HIKP12a] k logd n log(n/k) k logd n log(n/k) Yes No `2/`2

2013 [CGV13] k log3 k log n Õ(n) No Yes `2/`1

2014 [IK14] 2d log dk log n Õ(n) Yes No `∞/`2

2014 [Bou14] k log k log2 n Õ(n) No Yes `2/`1

2016 [HR16] k log2 k log n Õ(n) No Yes `2/`1

2016 [Kap16] 2d
2
k log n log log n 2d

2
k logd+3 n Yes No `2/`2

2019 [KVZ19] k3 log2 k log2 n k3 log2 k log2 n Yes Yes E.k
2019 [NSW19a] k log k log n Õ(n) No No `∞/`2

(thesis)

Table 1.4: n = pd. E.k denotes the “Exactly k-sparse” setting, which is a noiseless setting.
“Gua” denotes “Guarantee”. We ignore the O for simplicity. The `∞/`2 is the strongest
possible guarantee, with `2/`2 coming second, `2/`1 third and exactly k-sparse being the
less strong. We note that [CT06, RV08, CGV13, Bou14, HR16] obtain a uniform guaran-
tee, i.e. with 1 − 1/poly(n) they allow reconstruction of all vectors; `∞/`2 and `2/`2 are
impossible in the uniform case [CDD09]. We also note that [RV08, CGV13, Bou14, HR16]
give improved analysis of the Restricted Isometry property; the algorithm is suggested and
analyzed (modulo the RIP property) in [BD08]. The work in [HIKP12a] does not explicitly
state the extension to the d-dimensional case, but can easily be inferred from the argu-
ments. [HIKP12a, IK14, Kap16, KVZ19] work when the universe size in each dimension
are powers of 2. We also assume that the signal-to-noise ratio is bounded by a poly-
nomial of n, which is a standard assumption in the sparse Fourier transform literature
[HIKP12a, IK14, Kap16, Kap17, LN19].

book algorithms are a few of the examples where the Fast Fourier Transform finds appli-

cations. The Fast Fourier Transform by Cooley and Tukey [CT65] runs in O(n log n) time,

and has far-reaching applications in all of the aforementioned cases. It is thus expected that

algorithms which exploit sparsity assumptions about the input, and can outperform FFT in

applications are of high practical value. Generally, the two most important parameters one

37



would like to optimize are the sample complexity, i.e. the numbers needed to obtain from

the time domain, as well as time needed to approximate the Fourier Transform.

Two different lines of research exist for the problem: the one focuses solely on sample

complexity, while the other tries to achieve sublinear time while keeping the sample complex-

ity as low as possible. The first line of research operates via the renowned Restricted Isometry

Property (RIP), which proceeds by taking random samples and solving a linear/convex pro-

gram, or an iterative thresholding procedure [CT06, DDTS06, TG07, BD08, DM08, RV08,

BD09b, BD09a, NT09b, NV09, GK09, BD10, NV10, Fou11, Bou14, HR16]. The analysis

of the algorithms is performed in the following way, in two steps. The first step ensures

that, after sampling an appropriate number of points from the time domain, the inverse

DFT matrix restricted on the rows indexed by those points acts as a near isometry on the

space of k-sparse vectors. All of the state of the art results [CT06, RV08, Bou14, HR16]

employ chaining arguments to make the analysis of this sampling procedure as tight as

possible. The second part is how to exploit the aforementioned near-isometry property to

find the best k-sparse approximation to the signal. There the approaches either follow an

iterative procedure which gradually denoise the signal [BD08, NT09b, NV09], or perform `1

minimization [CT06], a method that promotes sparsity of solutions.

The second line of research tries to implement arbitrary linear measurements via

sampling Fourier coefficients [GL89, Man92, KM93, GGI+02, AGS03, GMS05, Iwe08, Iwe10,

HIKP12a, HIKP12b, LWC13, Iwe13, PR14, IKP14, IK14, Kap16, Kap17, CI17, BZI17,

MZIC17, LN19] and use sparse functions (in the time domain) which behave like bandpass

filters in the frequency domain. The seminal work of Kapralov [Kap17] achieves O(k log n)

samples and running time that is some log factors away from the sample complexity. This
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would be the end of the story, apart from the fact that this algorithm does not scale well with

dimension, since it has an exponential dependence on d. Indeed, in many applications, one

is interested in higher dimensions, rather than the one-dimensional case. The main reason7

why this curse of dimensionality appears is due to the lack of dimension-independent ways

to construct functions that approximate the `∞ ball and are sufficiently sparse in the time

domain. A very nice work of Kapralov, Velingker and Zandieh [KVZ19] tries to remedy

that by combining the standard execution of FFT with careful aliasing, but their algorithm

works in a noiseless setting, and has a polynomial, rather than linear, dependence on k; the

running time is polynomial in k, log n and the exponential dependence is avoided. It is an

important and challenging question whether a robust and more efficient algorithm can be

found.

We note that in many applications, such as MRI or computed tomography (CT), the

main focus is the sample complexity; the algorithms that have found their way to industry

are, to the best of our knowledge, not concerned with sublinear running time, but with the

number of measurements, which determine the acquisition time, or in CT the radiation dose

the patient receives.

In this work, we consider the extensively studied problem of computing a k-sparse

approximation to the d-dimensional Fourier transform of a length n signal. Our algorithm

uses O(k log k log n) samples, is dimension-free, operates for any universe size, and achieves

the strongest `∞/`2 guarantee, while running in time comparable to the Fast Fourier Trans-

form. All previous algorithms proceed either via the Restricted Isometry Property or via

7But not the only one: pseudorandom permutations for sparse FT in high dimensions also incur an
exponential loss, and it is not known whether this can be avoided.
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Year Refs. Duration Sample/Time Approx. Ratio
2012 [BCG+12] > 1

η
· k sublinear NO

2015 [Moi15] > 1
η

linear poly(k)

2015 [PS15] (thesis) > 1
η
· log(k) sublinear O(log k)

2015 [PS15] (thesis) > 1
η
· log2(k) sublinear O(1)

2016 [CKPS16] (thesis) > 0 sublinear O(1)

Table 1.5: Reconstructing the signal in the continuous setting. Let η denote the frequency
gap. The first three results requires a frequency gap, and the last result doesn’t require a
frequency gap. We reconstruct an x′(t) such that 1

T

∫ T
0
|x′(t)− x(t)|2dt ≤ α · 1

T

∫ T
0
|g(t)|2dt,

where α is the Approx. Ratio.

filter functions. Our approach totally departs from the aforementioned techniques, and we

believe it is a fresh look to the sparse Fourier transform problem.

Continuous Fourier Transform In many situations, much of the reason for using Fourier

transforms is because the transformed signal is sparse—i.e., the energy is concentrated in a

small set of k locations. In such situations, one could hope for a dependency that depends

nearly linearly on k rather than n. Moreover, one may be able to find these frequencies while

only sampling the signal for some period of time. This idea has led to a number of results on

sparse Fourier transforms, including [GGI+02, GMS05, HIKP12a, IK14], that can achieve

O(k log(n/k) log n) running time and O(k log(n/k)) sample complexity (although not quite

both at the same time) in a robust setting.

These works apply to the discrete Fourier transform, but lots of signals including

audio or radio originally come from a continuous domain. The standard way to convert a

continuous Fourier transform into a discrete one is to apply a window function then subsam-

ple. Unfortunately, doing so “smears out” the frequencies, blowing up the sparsity. Thus,
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Frequency

Time

x̂∗(f)
x̂(f)

F

x∗(t)

x(t)

T

Figure 1.2: Sampling Model. x∗ is a perfect signal. We are only allowed to samples from x
which is a signal that has noise.

one can hope for significant efficiency gains by directly solving the sparse Fourier transform

problem in the continuous setting. This has led researchers to adapt techniques from the

discrete setting to the continuous both in theory [BCG+12, TBSR13, CF14, DB13] and in

practice [SAH+13]. However, these results are not robust to noise: if the signal is sampled

with a tiny amount of Gaussian noise or decays very slightly over time, no method has

been known for computing a sparse Fourier transform in the continuous setting with sample

complexity linear in k and logarithmic in other factors. That is what we present in this

paper.

Formally, a vector x∗(t) has a k-sparse Fourier transform if it can be written as

x∗(t) =
k∑

i=1

vie
2πifit

for some tones {(vi, fi)}. We consider the problem where we can sample some signal

x(t) = x∗(t) + g(t)

at any t we choose in some interval [0, T ], where x∗(t) has a k-sparse Fourier transform and
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Frequency

Time

x̂∗(f)

x̂′(f)

F

x∗(t)

x′(t)

T

Figure 1.3: Recovered signal. Our goal is to output signal x′ such that x′ is close to x∗.

g(t) is arbitrary noise. As long as g is “small enough,” one would like to recover a good

approximation to x (or to x∗, or to {(vi, fi)}) using relatively few samples t ∈ [0, T ] and fast

running time. Our algorithm achieves several results of this form, but a simple one is an

`2/`2 guarantee: we reconstruct an x′(t) with k-sparse Fourier transform such that

1

T

∫ T

0

|x′(t)− x(t)|2dt . 1

T

∫ T

0

|g(t)|2dt

using a number of samples that is k times logarithmic factors8. To the best of our knowledge,

this is the first algorithm achieving such a constant factor approximation with a sample

complexity sublinear in T and the signal-to-noise ratio.

Our algorithm also gives fairly precise estimates of the individual tones (vi, fi) of the

signal x∗. To demonstrate what factors are important, it is helpful to think about a concrete

setting. Let us consider sound from a simplified model of a piano.

Thought experiment: piano tuning In a simplified model of a piano, we have keys

corresponding to frequencies over some range [−F, F ]. The noise g(t) comes from ambient

8We use f . g to denote that f ≤ Cg for some universal constant C.
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Frequency
η

Time

T = 1
2η

Figure 1.4: Thought Experiments

noise and the signals not being pure tones (because, for example, the notes might decay

slowly over time). For concrete numbers, a modern piano has 88 keys spaced from about

27.5 Hz to F = 4200Hz. The space between keys ranges from a few Hz to a few hundred Hz,

but most chords will have an η = 30Hz or more gap between the frequencies being played.

One typically would like to tune the keys to within about ±ν = 1Hz. And piano music

typically has k around 5.

Now, suppose you would like to build a piano tuner that can listen to a chord and

tell you what notes are played and how they are tuned. For such a system, how long must

we wait for the tuner to identify the frequencies? How many samples must the tuner take?

And how robust is it to the noise?

If you have a constant signal-to-noise ratio, you need to sample for a time T of at
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least order 1/ν = 1 second in order to get 1Hz precision—frequencies within 1Hz of each

other will behave very similarly over small fractions of a second, which noise can make indis-

tinguishable. You also need at least Ω(k log( F
kν

)) ≈ 50 samples, because the support of the

signal contains that many bits of information and you only get a constant number per mea-

surement (at constant SNR). At higher signal-to-noise ratios ρ, these results extend to Ω( 1
νρ

)

duration and Ω(k logρ(
F
kν

)) samples. But as the signal-to-noise ratio gets very high, there is

another constraint on the duration: for T < 1
η
≈ 33 milliseconds the different frequencies

start becoming hard to distinguish, which causes the robustness to degrade exponentially

in k [Moi15] (though the lower bound there only directly applies to a somewhat restricted

version of our setting).

This suggests the form of a result: with a duration T > 1
η
, one can hope to recover

the frequencies to within 1
ρT

using O(k logρ(
FT
k

)) samples. We give an algorithm that is

within logarithmic factors of this ideal: with a duration T > O(log(k/δ))
η

, we recover the

frequencies to within O( 1
ρT

) using O(k logρ(FT ) · log(k/δ) · log k) samples, where ρ and

1/δ are (roughly speaking) the minimum and maximum signal-to-noise ratios that you can

tolerate, respectively.

Instead of trying to tune the piano by recovering the frequencies precisely, one may

simply wish to record the sound for future playback with relatively few samples. Our algo-

rithm works for this as well: the combination x′(t) of our recovered frequencies satisfies

1

T

∫ T

0

|x′(t)− x(t)|2dt . 1

T

∫ T

0

|g(t)|2dt.

Continuous Fourier Transform without Frequency Gap In an interpolation problem,

one can observe x(t) = x∗(t)+g(t), where x∗(t) is a structured signal and g(t) denotes noise,
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at points ti of one’s choice in some interval [0, T ]. The goal is to recover an estimate x̃ of x∗

(or of x). Because we can sample over a particular interval, we would like our approximation

to be good on that interval, so for any function y(t) we define

‖y‖2
T =

1

T

∫ T

0

|y(t)|2dt.

to be the `2 error on the sample interval. For some parameters C and δ, we would then like

to get

‖x̃− x∗‖T ≤ C ‖g‖T + δ ‖x∗‖T (1.7)

while minimizing the number of samples and running time. Typically, we would like C to

be O(1) and to have δ be very small (either zero, or exponentially small). Note that, if we

do not care about changing C by O(1), then by the triangle inequality it doesn’t matter

whether we want to estimate x∗ or x (i.e. we could replace the LHS of (1.7) by ‖x̃− x‖T ).

Of course, to solve an interpolation problem one also needs x∗ to have structure. One

common form of structure is that x∗ have a sparse Fourier representation. We say that a

function x∗ is k-Fourier-sparse if it can be expressed as a sum of k complex exponentials:

x∗(t) =
k∑

j=1

vje
2πifjt.

for some vj ∈ C and fj ∈ [−F, F ], where F is the “bandlimit”. Given F , T , and k, how many

samples must we take for the interpolation (1.7)?

If we ignore sparsity and just use the bandlimit, then Nyquist sampling and Shannon-

Whittaker interpolation uses FT+1/δ samples to achieve (1.7). Alternatively, in the absence

of noise, x∗ can be found from O(k) samples by a variety of methods, including Prony’s
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method from 1795 or Reed-Solomon syndrome decoding [Mas69], but these methods are not

robust to noise.

If the signal is periodic with period T—i.e., the frequencies are multiples of 1/T—then

we can use sparse discrete Fourier transform methods, which take O(k logc(FT/δ)) time and

samples (e.g. [GGI+02, HIKP12a, IKP14]). If the frequencies are not multiples of 1/T (are

“off the grid”), then the discrete approximation is only k/δ sparse, making the interpolation

less efficient; and even this requires that the frequencies be well separated.

A variety of algorithms have been designed to recover off-grid frequencies directly,

but they require the minimum gap among the frequencies to be above some threshold.

With frequency gap at least 1/T , we can achieve a kc approximation factor using O(FT )

samples [Moi15], and with gap above O(log2 k)/T we can get a constant approximation using

O(k logc(FT/δ)) samples and time [PS15].

Having a dependence on the frequency gap is natural. If two frequencies are very

close together—significantly below 1/T—then the corresponding complex exponentials will

be close on [0, T ], and hard to distinguish in the presence of noise. In fact, from a lower

bound in [Moi15], below 1/T frequency gap one cannot recover the frequencies in the presence

of noise as small as 2−Ω(k). The lower bound proceeds by constructing two signals using

significantly different frequencies that are exponentially close over [0, T ].

But if two signals are so close, do we need to distinguish them? Such a lower bound

doesn’t apply to the interpolation problem, it just says that you can’t solve it by finding the

frequencies. Our question becomes: can we benefit from Fourier sparsity in a regime where

we can’t recover the individual frequencies?
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Frequency

Time

Figure 1.5: Moitra’s lower bound [Moi15]. ∀ε > 0, if sample duration T < (1−ε)
η

, then ∃ two
k-Fourier-sparse signals: x(t) and x′(t), each has η frequency gap. To tell them apart, need
noise ≤ 2−Ω(εk). This example only implies that frequency recovery requires frequency gap,
but what if we just want to interpolate signal?

We answer in the affirmative, giving an algorithm for the interpolation using

O(poly(k log(FT/δ)) samples.

This part is based on the following papers:

• Eric Price, Zhao Song

A Robust Sparse Fourier Transform in the Continuous Setting.

FOCS 2015 [PS15]

• Xue Chen, Eric Price, Daniel Kane, Zhao Song

Fourier-sparse Interpolation Without a Frequency Gap.

FOCS 2016 [CKPS16]

• Vasileios Nakos, Zhao Song, Zhengyu Wang
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The Power of (careful) Iterative Loop Analysis in Compressed Sensing.

Manuscript 2018 [NSW18]

• Vasileios Nakos, Zhao Song

Stronger L2/L2 Compressed Sensing; Without Iterating.

STOC 2019 [NS19]

• Vasileios Nakos, Zhao Song, Zhengyu Wang

(Nearly) Sample-Optimal Sparse Fourier Transform in Any Dimension; RIPless and

Filterless.

FOCS 2019 [NSW19a]

1.5 Factorization

Low rank approximation is arguably one of the most well-studied problems in ran-

domized numerical linear algebra, with diverse applications to clustering [DFK+04, FSS13,

LBKW14, CEM+15], data mining [AFK+01], distance matrix completion [Cha12], informa-

tion retrieval [PRTV00], learning mixtures of distributions [AM05, KSV08], recommendation

systems [DKR02], and web search [AFKM01, Kle99]. In practice one often has a low rank

matrix which has been corrupted with noise of bounded norm, and low rank approximation

allows one to approximately recover the original matrix. Low rank approximation may also

help explain a dataset, revealing low dimensional structure in high dimensional data. Given

a low rank approximation, one can store a matrix and compute a matrix-vector product

much more efficiently by storing the corresponding factorization. It can also be used as a

preprocessing step in applications, that is, by first projecting data onto a lower-dimensional
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subspace one preserves important properties of the input, but can now run subsequent algo-

rithms in the lower-dimensional space. For example, it has been proposed to reduce the data

dimension in Non-Negative Matrix Factorization [LS00] (more on this below), and Latent

Dirichlet Allocation (LDA) [BNJ01].

The basic low rank approximation problem is: given an n × n matrix A, find a

matrix Â of rank at most k for which ‖A − Â‖F is minimized, where for a matrix B,

‖B‖F =
(∑

i,j B
2
i,j

)1/2

is its Frobenius norm. This formulation intuitively corresponds to

the matrix Â capturing as much of the variance of A as possible. It is well-known that the

optimal solution is given by Ak, which if UΣV > is the singular value decomposition (SVD)

of A, where U and V are orthogonal matrices and Σ is a non-negative diagonal matrix

with Σ1,1 ≥ Σ2,2 ≥ · · · ≥ Σn,n, then Ak = UΣkV
>, where Σk agrees with Σ on its first k

diagonal entries and is 0 otherwise. Although the SVD is computable in polynomial time, it

is often acceptable to output a matrix Â for which ‖A− Â‖F ≤ (1 + ε)‖A−Ak‖F with high

probability. In the latter case, much more efficient algorithms are known, and it is possible

to compute such an Â in nnz(A) + n · poly(k/ε) time, where nnz(A) denotes the number of

non-zero entries of A [CW13, MM13, NN13a]. We note that for typical applications k and

1/ε are assumed to be much smaller than n, e.g., in [Har14] they are treated as absolute

constants.

Weighted Despite the large body of work on low rank approximation, the weighted case

is not well understood. In this case one is given an n× n matrix A and an n× n matrix W
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with Wi,j ≥ 0, and one seeks to solve:

min
rank-k matrices Â

‖W ◦ (A− Â)‖2
F = min

rank-k matrices Â

∑

i,j

W 2
i,j(Ai,j − Âi,j)2.

The classical low rank approximation is a special case in whichWi,j = 1 for all i and j. How-

ever, in general there may not be a good reason to weight all elements of the approximation

error A− Â equally, especially if one is given prior knowledge about the distribution of the

errors. For example, suppose the columns of A each come from a low-dimensional subspace

but one of the columns is then shifted by a fixed large vector so that its mean is differ-

ent. One may first want to recenter the data by subtracting off the mean from each of the

columns. While this is possible without weighted low rank approximation, suppose instead

that each of the columns of A comes from a perturbation of columns in a low dimensional

subspace but one of the columns has a much larger variance. Then if all weights were equal,

it would be enough for Â to fit this one single large variance column, which fails to capture

the entire low-dimensional subspace. One way of fixing this is to reweight each entry of A

by the inverse of its variance. This is a common technique used in gene expression analysis,

where the error model for microarray measurements provides entry-specific noise estimates,

or when entries of A represent aggregates of many samples such as in word co-occurrence

matrices and non-uniform weights are needed to appropriately capture any differences in the

sample sizes; see [SJ03] for a discussion, and also the Wikipedia entry on weighted low rank

approximation for a brief introduction.

While the extension of low rank approximation to the weighted case goes back to work

of Young in 1940 [You40], its complexity is not well-understood, partly because the weighted

case does not admit a solution via the SVD and may have many local minima [SJ03]. Early
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work by Shpak [Shp90] looked at gradient-based approaches while Lu et al. [LPW97, LA03]

looked at alternating minimization methods. These were significantly sped up in practice by

the work of Srebro and Jaakkola [SJ03], with success in various applications such as color

image restoration [MES08], though there are no provable time bounds and in the worst case

the running times could be exponential or worse. In fact, weighted low rank approximation

is known to be NP-hard to approximate up to a (1±1/ poly(n)) factor [GG11]. We note that

this also follows from the fact that matrix completion, arguably one of the most important

special cases of weighted low rank approximation in which case all weights are 0 or 1, which

we discuss more below, is also known to be NP-hard [Pee96, HMRW14]. Typically, though,

assumptions such as incoherence and randomly sampled entries allow one to circumvent this

hardness [CR09, LLR16]. There is some debate as to whether these assumptions are valid,

for instance in [SW15] an argument is made why randomly missing entries may not hold for

real-world datasets.

Many natural questions are left open from previous work. In particular one question

as we see it is the following:

For which weight matrices W is the problem tractable? More generally, is it possible to

identify a natural parameter of W and to obtain parameterized complexity bounds in terms

of that parameter?

Entry-wise L1 norm Two well-studied problems in numerical linear algebra are regression

and low rank approximation. In regression, one is given an n × d matrix A, and an n × 1

vector b, and one seeks an x ∈ Rd which minimizes ‖Ax−b‖ under some norm. For example,

for least squares regression one minimizes ‖Ax − b‖2. In low rank approximation, one is
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given an n × d matrix A, and one seeks a rank-k matrix Â which minimizes ‖A − Â‖

under some norm. For example, in Frobenius norm low rank approximation, one minimizes

‖A− Â‖F =
(∑

i,j(Ai,j − Âi,j)2
)1/2

. Algorithms for regression are often used as subroutines

for low rank approximation. Indeed, one of the main insights of [DMM06c, DMM06b, Sar06,

DMM08, CW09] was to use results for generalized least squares regression for Frobenius norm

low rank approximation. Algorithms for `1-regression, in which one minimizes ‖Ax− b‖1 =
∑

i |(Ax)i − bi|, were also used [BD13, SW11] to fit a set of points to a hyperplane, which

is a special case of entrywise `1-low rank approximation, the more general problem being to

find a rank-k matrix Â minimizing
∑

i,j |Ai,j − Âi,j|.

Randomization and approximation were introduced to significantly speed up algo-

rithms for these problems, resulting in algorithms achieving relative error approximation

with high probability. Such algorithms are based on sketching and sampling techniques;

we refer to [Woo14b] for a survey. For least squares regression, a sequence of work [Sar06,

CW13, MM13, NN13a, LMP13, BDN15, Coh16a] shows how to achieve algorithms running

in nnz(A) + poly(d) time. For Frobenius norm low rank approximation, using the advances

for regression this resulted in nnz(A) + (n + d) poly(k) time algorithms. For `1-regression,

sketching and sampling-based methods [Cla05, SW11, CDMI+13, CW13, MM13, LMP13,

WZ13, CW15b, CP15] led to an nnz(A) + poly(d) time algorithm.

Just like Frobenius norm low rank approximation is the analogue of least squares

regression, entrywise `1-low rank approximation is the analogue of `1-regression. Despite

this analogy, no non-trivial upper bounds with provable guarantees are known for `1-low rank

approximation. Unlike Frobenius norm low rank approximation, which can be solved exactly

using the singular value decomposition, no such algorithm or closed-form solution is known
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for `1-low rank approximation. Moreover, the problem was recently shown to be NP-hard

[GV15]. A major open question is whether there exist approximation algorithms, sketching-

based or otherwise, for `1-low rank approximation. Indeed, the question of obtaining betters

algorithms was posed in section 6 of [GV15], in [Exc13], and as the second part of open

question 2 in [Woo14b], among other places. The earlier question of NP-hardness was posed

in Section 1.4 of [KV09], for which the question of obtaining approximation algorithms is a

natural followup. The goal of our work is to answer this question.

We now formally define the `1-low rank approximation problem: we are given an

n × d matrix A and approximation factor α ≥ 1, and we would like, with large constant

probability, to output a rank-k matrix Â for which

‖A− Â‖1 ≤ α · min
rank-k matrices A′

‖A− A′‖1,

where for an n × d matrix C, we let ‖C‖1 =
∑n

i=1

∑d
j=1 |Ci,j|. This notion of low rank

approximation has been proposed as a more robust alternative to Frobenius norm low rank

approximation [KK03, KK05, KLC+15, Kwa08, ZLS+12, BJ12, BD13, BDB13, MXZZ13,

MKP13, MKP14, MKCP16, PK16], and is sometimes referred to as `1-matrix factorization or

robust PCA. `1-low rank approximation gives improved results over Frobenius norm low rank

approximation since outliers are less exaggerated, as one does not square their contribution

in the objective. The outlier values are often erroneous values that are far away from the

nominal data, appear only a few times in the data matrix, and would not appear again under

normal system operation. These works also argue `1-low rank approximation can better

handle missing data, is appropriate in noise models for which the noise is not Gaussian, e.g.,

it produces the maximum likelihood estimator for Laplacian noise [Gao08, KAC+08, VT01],

and can be used in image processing to prevent image occlusion [YZD12].
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To see that `1-low rank approximation and Frobenius norm low rank approximation

can give very different results, consider the n × n matrix A = [ n 0
0 B ], where B is any (n −

1) × (n − 1) matrix with ‖B‖F < n. The best rank-1 approximation with Frobenius norm

error is given by Â = n · e1e
>
1 , where e1 is the first standard unit vector. Here Â ignores all

but the first row and column of A, which may be undesirable in the case that this row and

column represent an outlier. Note ‖A− Â‖1 = ‖B‖1. If, for example, B is the all 1s matrix,

then Â = [0, 0; 0, B] is a rank-1 approximation for which ‖A − Â‖1 = n, and therefore this

solution is a much better solution to the `1-low rank approximation problem than n · e1e
>
1 ,

for which ‖A− n · e1e
>
1 ‖1 = (n− 1)2.

Despite the advantages of `1-low rank approximation, its main disadvantage is its

computationally intractability. It is not rotationally invariant and most tools for Frobenius

low rank approximation do not apply. To the best of our knowledge, all previous works

only provide heuristics. Using that for an n × d matrix C, ‖C‖F ≤ ‖C‖1 ≤
√
nd‖C‖F ,

a Frobenius norm low rank approximation gives a
√
nd approximation for `1-low rank ap-

proximation. A bit better is to use algorithms for low rank approximation with respect to

the sum of distances, i.e., to find a rank-k matrix Â minimizing ‖A − Â‖1,2, where for an

n × d matrix C, ‖C‖1,2 =
∑n

i=1 ‖Ci‖2, where Ci is the i-th row of C. A sequence of work

[DV07, FMSW10, FL11, SV12a, CW15a] shows how to obtain an O(1)-approximation to this

problem in nnz(A)+(n+d) poly(k)+exp(k) time, and using that ‖C‖1,2 ≤ ‖C‖1 ≤
√
d‖C‖1,2

results in an O(
√
d)-approximation.

Zero-one Law To understand the role of the Frobenius norm in the algorithms above,

we recall a standard motivation for this error measure. Suppose one has n data points in
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a k-dimensional subspace of Rd, where k � d. We can write these points as the rows of

an n × d matrix A∗ which has rank k. The matrix A∗ is often called the ground truth

matrix. In a number of settings, due to measurement noise or other kinds of noise, we

only observe the matrix A = A∗ + ∆, where each entry of the noise matrix ∆ ∈ Rn×n is

an i.i.d. random variable from a certain mean-zero noise distribution D. One method for

approximately recovering A∗ from A is maximum likelihood estimation. Here one tries to

find a matrix B maximizing the log-likelihood: maxrank-k B

∑
i,j log p(Ai,j −Bi,j), where p(·)

is the probability density function of the underlying noise distribution D. For example, when

the noise distribution is Gaussian with mean zero and variance σ2, denoted by N(0, σ2), then

the optimization problem is maxrank-k B

∑
i,j

(
log(1/

√
2πσ2)− (Ai,j −Bi,j)

2/(2σ2)
)
, which

is equivalent to solving the Frobenius norm loss low rank approximation problem defined

above.

The Frobenius norm loss, while having nice statistical properties for Gaussian noise,

is well-known to be sensitive to outliers. Applying the same maximum likelihood framework

above to other kinds of noise distributions results in minimizing other kinds of loss functions.

In general, if the density function of the underlying noise D is p(z) = c · e−g(z), where

c is a normalization constant, then the maximum likelihood estimation problem for this

noise distribution becomes the following generalized entry-wise loss low rank approximation

problem: minrank-k B

∑
i,j g(Ai,j − Bi,j) = minrank-k B ‖A − B‖g, which is a central topic

of recent work on generalized low-rank models [UHZ+16]. For example, when the noise is

Laplacian, the entrywise `1 loss is the maximum likelihood estimation, which is also robust

to sparse outliers. A natural setting is when the noise is a mixture of small Gaussian noise

and sparse outliers; this noise distribution is referred to as the Huber density. In this case
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the Huber loss function gives the maximum likelihood estimate [UHZ+16], where the Huber

function [Hub64] is defined to be: g(x) = x2/(2τ) if |x| < τ/2, and g(x) = |x|−τ/2 if |x| ≥ τ .

Another nice property of the Huber error measure is that it is differentiable everywhere,

unlike the `1-norm, yet still enjoys the robustness properties as one moves away from the

origin, making it less sensitive to outliers than the `2-norm. There are many other kinds of

loss functions, known as M -estimators [Zha97], which are widely used as loss functions in

robust statistics [HRRS11].

Although several specific cases have been studied, such as entry-wise `p loss [CLMW11,

SWZ17, CGK+17a, BKW17, BBB+19a], weighted entry-wise `2 loss [RSW16], and cascaded

`p(`2) loss [DVTV09, CW15a], the landscape of general entry-wise loss functions remains

elusive. There are no results known for any loss function which is not scale-invariant, much

less any kind of characterization of which loss functions admit efficient algorithms. This is

despite the importance of these loss functions; we refer the reader to [UHZ+16] for a survey

of generalized low rank models. This motivates the main question in our work:

Question 1.5.1 (General Loss Functions). For a given approximation factor α > 1, which

functions g allow for efficient low-rank approximation algorithms? Formally, given an n× d

matrix A, can we find a rank-k matrix B for which ‖A − B‖g ≤ αminrank−k B′ ‖A − B′‖g,

where for a matrix C, ‖C‖g =
∑

i∈[n],j∈[d] g(Ci,j)? What if we also allow B to have rank

poly(k log n)?

For Question 1.5.1, one has g(x) = |x|p for p-norms, and note the Huber loss function

also fits into this framework. Allowing B to have slightly larger rank than k, namely,

poly(k log n), is often sufficient for applications as it still allows for the space savings and
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computational gains outlined above. These are referred to as bicriteria approximations and

are the focus of our work.

Tensor Tensors are often more useful than matrices for capturing higher order relations

in data. Computing low rank factorizations of approximations of tensors is the primary

task of interest in a number of applications, such as in psychology[Kro83], chemometrics

[Paa00, SBG04], neuroscience [AAB+07, KB09, CLK+15], computational biology [CV15,

SC15], natural language processing [CYYM14, LZBJ14, LZMB15, BNR+15], computer vi-

sion [VT02, WA03, SH05, HPS05, HD08, AFdLGTL09, PLY10, LFC+16, CLZ17], com-

puter graphics [VT04, WWS+05, Vas09], security [AÇKY05, ACY06, KB06], cryptography

[FS99, Sch12, KYFD15, SHW+16] data mining [KS08, RST10, KABO10, Mør11], machine

learning applications such as learning hidden Markov models, reinforcement learning, com-

munity detection, multi-armed bandit, ranking models, neural network, Gaussian mixture

models and Latent Dirichlet allocation [MR05, AFH+12, HK13, ALB13, ABSV14, AGH+14,

AGHK14, BCV14, JO14a, GHK15, PBLJ15, JSA15, ALA16, AGMR16, ZSJ+17], program-

ming languages [RTP16], signal processing [Wes94, DLDM98, Com09, CMDL+15], and other

applications [YCS11, LMWY13, OS14, ZCZJ14, STLS14, YCS16, RNSS16].

Despite the success for matrices, the situation for order-q tensors for q > 2 is much

less understood. There are a number of works based on alternating minimization [CC70,

Har70, FMPS13, FT15, ZG01, BS15] gradient descent or Newton methods [ES09, ZG01],

methods based on the Higher-order SVD (HOSVD) [LMV00a] which provably incur Ω(
√
n)-

inapproximability for Frobenius norm error [LMV00b], the power method or orthogonal

iteration method [LMV00b], additive error guarantees in terms of the flattened (unfolded)
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tensor rather than the original tensor [MMD08], tensor trains [Ose11], the tree Tucker de-

composition [OT09], or methods specialized to orthogonal tensors [KM11, AGH+14, MHG15,

WTSA15, WA16, SWZ16]. There are also a number of works on the problem of tensor

completion, that is, recovering a low rank tensor from missing entries [WM01, AKDM10,

TSHK11, LMWY13, MHWG14, JO14b, BM16]. There is also another line of work using

the sum of squares (SOS) technique to study tensor problems [BKS15a, GM15, HSS15,

HSSS16, MSS16, PS17, SS17], other recent work on tensor PCA [All12b, All12a, RM14,

JMZ15, ADGM16, ZX17], and work applying smoothed analysis to tensor decomposition

[BCMV14]. Several previous works also consider more robust norms than the Frobenius

norm for tensors, e.g., the R1 norm (`1-`2-`2 norm in our work) [HD08], `1-PCA [PLY10],

entry-wise `1 regularization [GGH14], M-estimator loss [YFS16], weighted approximation

[Paa97, TK11, LRHG13], tensor-CUR [OST08, MMD08, CC10, FMMN11, FT15], or robust

tensor PCA [GQ14, LFC+16, CLZ17].

Some of the above works, such as ones based on the tensor power method or alternat-

ing minimization, require incoherence or orthogonality assumptions. Others, such as those

based on the simultaneous SVD, require an assumption on the minimum singular value. See

the monograph of Moitra [Moi14a] for further discussion. Unlike the situation for matri-

ces, there is no work for tensors that is able to achieve the following natural relative error

guarantee: given a q-th order tensor A ∈ Rn⊗q and an arbitrary accuracy parameter ε > 0,

output a rank-k tensor B for which

‖A−B‖2
F ≤ (1 + ε) OPT, (1.8)

where OPT = infrank-k B′ ‖A−B′‖2
F , and where recall the rank of a tensor B is the minimal

integer k for which B can be expressed as
∑k

i=1 U
i
1⊗U i

2⊗ · · ·⊗U i
q. General speaking, a q-th
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order tensor can have rank at most nq−1. A third order tensor, for example, has rank which

is an integer in {0, 1, 2, . . . , n2}.

For notational simplicity, we will start by assuming third order tensors with all di-

mensions of equal size, but we extend all of our main theorems below to tensors of any

constant order q > 3 and dimensions of different sizes.

The first caveat regarding (1.8) for tensors is that an optimal rank-k solution may

not even exist! This is a well-known problem for tensors (see, e.g., [KHL89, Paa00, KDS08,

Ste06, Ste08] and more details in section 4 of [DSL08]), for which for any rank-k tensor B,

there always exists another rank-k tensor B′ for which ‖A−B′‖2
F < ‖A−B‖2

F . If OPT = 0,

then in this case for any rank-k tensor B, necessarily ‖A − B‖2
F > 0, and so (1.8) cannot

be satisfied. This fact was known to algebraic geometers as early as the 19th century, which

they refer to as the fact that the locus of r-th secant planes to a Segre variety may not define

a (closed) algebraic variety [DSL08, Lan12]. It is also known as the phenomenon underlying

the concept of border rank9[Bin80, Bin86, BCS97, Knu98, Lan06]. In this case it is natural

to allow the algorithm to output an arbitrarily small γ > 0 amount of additive error. Note

that unlike several additive error algorithms for matrices, the additive error here can in fact

be an arbitrarily small positive function of n. If, however, OPT > 0, then for any ε > 0,

there exists a rank-k tensor B for which ‖A−B‖2
F ≤ (1+ ε) OPT, and in this case we should

still require the algorithm to output a relative-error solution. If an optimal rank-k solution

B exists, then as for matrices, it is natural to require the algorithm to output a relative-error

solution.

9https://en.wikipedia.org/wiki/Tensor_rank_decomposition#Border_rank
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Besides the above definitional issue, a central reason that (1.8) has not been achieved

is that computing the rank of a third order tensor is well-known to be NP-hard [Hås90, HL13].

Thus, if one had such a polynomial time procedure for solving the problem above, one could

determine the rank of A by running the procedure on each k ∈ {0, 1, 2, . . . , n2}, and check

for the first value of k for which ‖A − B‖2
F = 0, thus determining the rank of A. However,

it is unclear if approximating the tensor rank is hard. This question will also be answered

in this work.

This part is based on the following papers:

• Ilya Razenshteyn, Zhao Song, David Woodruff

Weighted low rank approximations with provable guarantees.

STOC 2016 [RSW16]

• Zhao Song, David Woodruff, Peilin Zhong

Low Rank Approximation with Entrywise `1-Norm Error.

STOC 2017 [SWZ17]

• Zhao Song, David Woodruff, Peilin Zhong

Towards a Zero-One Law for Entrywise Low Rank Approximation.

Manuscript 2018 [SWZ18]

• Zhao Song, David Woodruff, Peilin Zhong

Relative Error Tensor Low Rank Approximation.

SODA 2019 [SWZ19b]
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• Zhao Song, David Woodruff, Huan Zhang

Sublinear Time Orthogonal Tensor Decomposition.

NeurIPS 2016 [SWZ16]

1.6 More Algorithms

Regression Sketching has emerged as a powerful technique for speeding up problems in

numerical linear algebra, such as regression. In the overconstrained regression problem, one

is given an n × d matrix A, with n � d, as well as an n × 1 vector b, and one wants to

find a vector x̂ so as to minimize the residual error ‖Ax − b‖2. Using the sketch and solve

paradigm, one first computes S · A and S · b for a randomly chosen matrix S, then outputs

x′ = (SA)†Sb so as to minimize ‖SAx′ − Sb‖2.

The sketch-and-solve paradigm gives a bound on ‖x′ − x∗‖2 whenA is well-conditioned.

One of result cares about ‖x′−x∗‖∞, we call it `∞ regression problem. We also studied regres-

sion problem under general norms (i.e. symmetric norm regression min ‖Ax−b‖symmetric norm)

and general structure (i.e. tensor regression minx ‖(A1 ⊗ A2)x− b‖).

Clustering We consider the k-means clustering problem in the dynamic streaming setting,

where points from a discrete Euclidean space {1, 2, . . . ,∆}d can be dynamically inserted to

or deleted from the dataset. For this problem, we provide a one-pass coreset construction

algorithm using space Õ(k · poly(d, log ∆)), where k is the target number of centers. To

our knowledge, this is the first dynamic geometric data stream algorithm for k-means using

space polynomial in dimension and nearly optimal (linear) in k.

61



LCS Binary String Given a pair of n-character strings, the problems of computing their

Longest Common Subsequence and Edit Distance have been extensively studied for decades.

For exact algorithms, LCS and Edit Distance (with character insertions and deletions) are

equivalent; the state of the art running time is (almost) quadratic in n, and this is tight

under plausible fine-grained complexity assumptions. But for approximation algorithms the

picture is different: there is a long line of works with improved approximation factors for Edit

Distance, but for LCS (with binary strings) only a trivial 1/2-approximation was known. In

this work we give a reduction from approximate LCS to approximate Edit Distance, yielding

the first efficient (1/2 + ε)-approximation algorithm for LCS for some constant ε > 0.

LCS Longest common subsequence (LCS) is a classic and central problem in combinatorial

optimization. While LCS admits a quadratic time solution, recent evidence suggests that

solving the problem may be impossible in truly subquadratic time. A special case of LCS

wherein each character appears at most once in every string is equivalent to the longest

increasing subsequence problem (LIS) which can be solved in quasilinear time. In this work,

we present novel algorithms for approximating LCS in truly subquadratic time and LIS in

truly sublinear time. Our approximation factors depend on the ratio of the optimal solution

size over the input size. We denote this ratio by λ and obtain the following results for LCS

and LIS without any prior knowledge of λ.

• A truly subquadratic time algorithm for LCS with approximation factor O(λ3).

• A truly sublinear time algorithm for LIS with approximation factor O(λ3).

Triangle inequality was recently used by Boroujeni et al. [BEG+18] and Chakraborty
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et al. [CDG+18] to present new approximation algorithms for edit distance. Our techniques

for LCS extend the notion of triangle inequality to non-metric settings.

Map-Reduce Many modern parallel systems, such as MapReduce, Hadoop and Spark,

can be modeled well by the MPC model. The MPC model captures well coarse-grained

computation on large data — data is distributed to processors, each of which has a sublinear

(in the input data) amount of memory and we alternate between rounds of computation and

rounds of communication, where each machine can communicate an amount of data as large

as the size of its memory. This model is stronger than the classical PRAM model, and it is

an intriguing question to design algorithms whose running time is smaller than in the PRAM

model.

One fundamental graph problem is connectivity. On an undirected graph with n nodes

and m edges, O(log n) round connectivity algorithms have been known for over 35 years.

However, no algorithms with better complexity bounds were known. In this work, we give

fully scalable, faster algorithms for the connectivity problem, by parameterizing

the time complexity as a function of the diameter of the graph. Our main result is a

O(logD log logm/n n) time connectivity algorithm for diameter-D graphs, using Θ(m) total

memory. If our algorithm can use more memory, it can terminate in fewer rounds, and there

is no lower bound on the memory per processor.

We extend our results to related graph problems such as spanning forest, finding a

DFS sequence, exact/approximate minimum spanning forest, and bottleneck spanning forest.

We also show that achieving similar bounds for reachability in directed graphs would imply

faster boolean matrix multiplication algorithms.
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We introduce several new algorithmic ideas. We describe a general technique called

double exponential speed problem size reduction which roughly means that if we can use total

memory N to reduce a problem from size n to n/k, for k = (N/n)Θ(1) in one phase, then we

can solve the problem in O(log logN/n n) phases. In order to achieve this fast reduction for

graph connectivity, we use a multistep algorithm. One key step is a carefully constructed

truncated broadcasting scheme where each node broadcasts neighbor sets to its neighbors in

a way that limits the size of the resulting neighbor sets. Another key step is random leader

contraction, where we choose a smaller set of leaders than many previous works do.
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Chapter 2

Linear Programs

This chapter shows how to solve linear programs of the form minAx=b,x≥0 c
>x with n

variables in time

O∗((nω + n2.5−α/2 + n2+1/6) log(n/δ))

where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multipli-

cation, and δ is the relative accuracy. For the current value of ω ∼ 2.37 and α ∼ 0.31, our

algorithm takes O∗(nω log(n/δ)) time. When ω = 2, our algorithm takes O∗(n2+1/6 log(n/δ))

time.

Our algorithm utilizes several new concepts that we believe may be of independent

interest:

• We define a stochastic central path method.

• We show how to maintain a projection matrix
√
WA>(AWA>)−1A

√
W in sub-quadratic

time under `2 multiplicative changes in the diagonal matrix W .
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2.1 Introduction

Linear programming is one of the key problems in computer science. In both theory

and practice, many problems can be reformulated as linear programs to take advantage of

fast algorithms. For an arbitrary linear program minAx=b,x≥0 c
>x with n variables and d

constraints1, the fastest algorithm takes O∗(
√
d ·nnz(A) +d2.5)2 where nnz(A) is the number

of non-zeros in A [LS14, LS15].

For the generic case d = Ω(n) we focus in this paper, the current fastest runtime is

dominated by O∗(n2.5). This runtime has not been improved since the result by Vaidya on

1989 [Vai87, Vai89b]. The n2.5 bound originated from two factors: the cost per iteration n2

and the number of iterations
√
n. The n2 cost per iteration looks optimal because this is the

cost to compute Ax for a dense A. Therefore, many efforts [Kar84, Ren88, NN89, Vai89a,

LS14] have been focused on decreasing the number of iterations while maintaining the cost

per iteration. As for many important linear programs (and convex programs), the number

of iterations has been decreased, including maximum flow [Mad13, Mad16], minimum cost

flow [CMSV17], geometric median [CLM+16], matrix scaling and balancing [CMTV17], and

`p regression [BCLL18]. Unfortunately, beating
√
n iterations (or

√
d when d � n) for the

general case remains one of the biggest open problems in optimization.

Avoiding this open problem, we develop a stochastic central path method that has

a runtime of O∗(nω + n2.5−α/2 + n2+1/6), where ω is the exponent of matrix multiplication

1Throughout this paper, we assume there is no redundant constraints and hence n ≥ d. Note that papers
in different communities uses different symbols to denote the number of variables and constraints in a linear
program.

2We use O∗ to hide no(1) and logO(1)(1/δ) factors and Õ to hide logO(1)(n/δ) factors.
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and α is the dual exponent of matrix multiplication3. For the current value of ω ∼ 2.38 and

α ∼ 0.31, the runtime is simply O∗(nω). This achieves the natural barrier for solving linear

programs because linear system is a special case of linear program and that the currently

fastest way to solve general linear systems involves matrix multiplication. Despite the exact

approach used in [CW87, Wil12, DS13, LG14] cannot give a bound on ω better than 2.3078

[AFLG15] and all known approaches cannot achieve the bound ω = 2 [AW18b], it is still

possible that ω = 2.01 using all known approaches. Therefore, we believe improving the

additive 2 + 1/6 term remains an interesting open problem.

Our method is a stochastic version of the short step central path method. This short

step method takes O∗(
√
n) steps and each step decreases xisi by a 1 − 1/

√
n factor for all

i where s is the dual variable [Ren88] (See the definition of s in (2.1)). This results in

O∗(
√
n)×n = O∗(n1.5) coordinate updates. Our method takes the same number of step but

only updates Õ(
√
n) coordinates each step. Therefore, we only update O∗(n) coordinates in

total, which is nearly optimal.

Our framework is efficient enough to take a much smaller step while maintaining the

same running time. For the current value of ω ∼ 2.38, we show how to obtain the same

runtime of O∗(nω) by taking O∗(n) steps and Õ(1) coordinates update per steps. This is

because the complexity of each step decreases proportionally when the step size decreases.

Beyond the cost per iteration, we remark that our algorithm is one of the very few central

path algorithms [PRT02, Mad13, Mad16] that does not maintain xisi close to some ideal

vector in `2 norm. We are hopeful that our stochastic method and our proof will be useful

3The dual exponent of matrix multiplication α is the supremum among all a ≥ 0 such that it takes n2+o(1)

time to multiply an n× n matrix by an n× na matrix.
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for future research on interior point methods. In particular, it would be interesting to see

how this can be combined with techniques in [Cla95, LS14] to get a faster algorithm for

linear programs with d� n.

Besides the applications to linear programs, some of our techniques are probably

useful for studying other important problems in convex optimization. In particular, our

framework should be naturally extendable to a larger class of convex programs.
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2.1.1 Related Work

Interior point method has a long history, for more detailed surveys, we refer the

readers to [Wri97, Ye97, Ren01, RTV05, Meg12, Ter13]. This paper in part inspired by

the use of data-structure in Laplacian solvers [ST04, KMP10, KMP11, CKM+11, KOSZ13,

CKM+14, KLP+16, KS16, CKK+18, KPSZ18], in particular the cycle update in [KOSZ13].
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2.2 Results and Techniques

Theorem 2.2.1 (Main result). Given a linear program minAx=b,x≥0 c
>x with no redundant

constraints. Assume that the polytope has diameter R in `1 norm, namely, for any x ≥ 0

with Ax = b, we have ‖x‖1 ≤ R.

Then, for any 0 < δ ≤ 1, Main(A, b, c, δ) outputs x ≥ 0 such that

c>x ≤ min
Ax=b,x≥0

c>x+ δ · ‖c‖∞R and ‖Ax− b‖1 ≤ δ ·
(
R
∑

i,j

|Ai,j|+ ‖b‖1

)

in expected time
(
nω+o(1) + n2.5−α/2+o(1) + n2+1/6+o(1)

)
· log(

n

δ
)

where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multipli-

cation.

For the current value of ω ∼ 2.38 and α ∼ 0.31, the expected time is simply nω+o(1) log(n
δ
).

Remark 2.2.1. See [Ren88] and [LS13, Sec E, F] on the discussion on converting an approx-

imation solution to an exact solution. For integral A, b, c, it suffices to pick δ = 2−O(L) to

get an exact solution where L = log(1 + dmax + ‖c‖∞ + ‖b‖∞) is the bit complexity and

dmax is the largest absolute value of the determinant of a square sub-matrix of A. For many

combinatorial problems, L = O(log(n+ ‖b‖∞ + ‖c‖∞)).

In this paper, we assume all floating point calculations are done exactly for simplicity.

In general, the algorithm can be carried out with O(L) bits of accuracy. This is necessary

because each coordinate in the solution could require as much as Ω(L) bits to represent. See

[Ren88] for some discussions on the numerical stability of the interior point methods.
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If T (n) is the current cost of matrix multiplication and inversion with T (n) ∼ n2.38,

our runtime is simply O(T (n) log n log(n
δ
)). The log(n

δ
) comes from iteration count and the

log n factor comes from the doubling trick (|yπ(1.5r)| ≥ (1− 1/ log n)|yπ(r)|) in the projection

maintenance section. We left the problem of obtaining O(T (n) log(n
δ
)) as an open problem.

Finally, we note that our runtime holds for any square and rectangular matrix multi-

plication algorithm as long as ω ≤ 3−α (See Lemma 2.6.3) For example, Strassen algorithm

together with a simple rectangular multiplication algorithm gives a runtime of roughly n2.807.
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2.2.1 Central Path Method

Our algorithm relies on two new ingredients: stochastic central path and projection

maintenance. The central path method consider the linear programs

min
Ax=b,x≥0

c>x (primal) and max
A>y≤c

b>y (dual)

with A ∈ Rd×n. Any solution of the linear program satisfies the following optimality condi-

tions:

xisi = 0 for all i, (2.1)

Ax = b,

A>y + s = c,

xi, si ≥ 0 for all i.

We call (x, s, y) feasible if it satisfies the last three equations above. For any feasible (x, s, y),

the duality gap is
∑

i xisi. The central path method find a solution of the linear program

by following the central path which uniformly decrease the duality gap. The central path

(xt, st, yt) ∈ Rn+n+d is a path parameterized by t and defined by

xt,ist,i = t for all i, (2.2)

Axt = b,

A>yt + st = c,

xt,i, st,i ≥ 0 for all i.

It is known [YTM94] how to transform linear programs by adding O(n) many variables and

constraints so that:
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• The optimal solution remains the same.

• The central path at t = 1 is near (1n, 1n, 0d) where 1n and 0d are all 1 and all 0 vectors

with lengths n and d.

• It is easy to convert an approximate solution of the transformed program to the original

one.

For completeness, a theoretical version of such result is included in Lemma 3.8.2. This result

shows that it suffices to move gradually (x1, s1, y1) to (xt, st, yt) for small enough t.

2.2.1.1 Short Step Central Path Method

The short step central path method maintains xisi = µi for some vector µ such that

∑

i

(µi − t)2 = O(t2) for some scalar t > 0. (2.3)

Since the duality gap is
∑

i µi, it suffices to find x and s satisfying the above equation with

small enough t. There are many variants of central path methods. We will focus on the

version that decreases t and takes a step of µ at the same time. The purpose of moving µ is

to maintain the invariant (2.3) and the purpose of decreasing t is decrease the duality gap,

which is roughly nt. One natural way to maintain the invariant (2.3) is to do a gradient

descent step on the energy
∑

i(µi − t)2 defined in (2.3), namely, moving µ to µ − h(µ − t)

with step size h4. Compared to other versions, we only take one step instead of multiple

steps to move µ closer to the central path t per update of t.

4The classical view of central path method is to take a Newton step on the system (2.2), which turns
out to be same as taking a gradient step on the energy defined in (2.3). However, our main algorithm will
choose a different energy and this gradient descent view is crucial for designing our algorithm.
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More generally, say we want to move from µ to µ + δµ, we approximate the term

(x+ δx)i(s+ δs)i by xisi + xiδs,i + siδx,i and obtain the following system:

Xδs + Sδx = δµ,

Aδx = 0, (2.4)

A>δy + δs = 0,

where X = diag(x) and S = diag(s). This equation is the linear approximation of the

original goal (moving from µ to µ+ δµ), and that the step is explicitly given by the formula

δx =
X√
XS

(I − P )
1√
XS

δµ and δs =
S√
XS

P
1√
XS

δµ, (2.5)

where P =
√

X
S
A>
(
AX
S
A>
)−1

A
√

X
S
is an orthogonal projection and the formulas X√

XS
, X
S
, · · ·

are the diagonal matrices of the corresponding vectors.

In turns out that one can decrease t by 1 − 1√
n
multiplicative factor every iteration

while maintain the invariant (2.3). This requires Õ(
√
n) iterations to converge. Combining

this with the inverse maintenance technique [Vai87], this gives a total runtime of n2.5. More

precisely, the algorithm maintains the invariant
∑

i(µi−t)2 = O(t2) by making steps bring µi

closer to t while taking steps to decrease µi uniformly. The progress of the whole algorithm

is measured by t because the duality gap is bounded by nt.

2.2.1.2 Stochastic Central Path Method

This part discuss how to modify the short step central path to decrease the cost

per iteration to roughly nω−
1
2 . Since our goal is to implement a central path method in

sub-quadratic time per iteration, we even do not have the budget to compute Ax every
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iterations. Therefore, instead of maintaining
(
AX
S
A>
)−1 shown in previous papers, we will

study the problem of maintaining a projection matrix P =
√

X
S
A>
(
AX
S
A>
)−1

A
√

X
S
due to

the formula of δx and δs (2.5).

However, even if the projection matrix P is given explicitly for free, it is difficult to

multiply the dense projection matrix with a dense vector δµ in time o(n2). To avoid moving

along a dense δµ, we move along an O(k) sparse direction δ̃µ defined by

δ̃µ,i =

{
δµ,i/pi, with probability pi

def
= k ·

(
δ2
µ,i∑
l δ

2
µ,l

+ 1
n

)
;

0, else.
(2.6)

The sparse direction is defined so that we are moving in the same direction in expectation

(E[δ̃µ,i] = δµ,i) and that the direction has as small variance as possible (E[δ̃2
µ,i] ≤

∑
i δ

2
µ,i

k
). If

the projection matrix is given explicitly, we can apply the projection matrix on δ̃µ in time

O(nk). This paper picks k ∼ √n and the sum of the cost of projection vector multiplications

in the whole algorithm is about nk2 = n2.

During the whole algorithm, we maintain a projection matrix

P =

√
X

S
A>
(
A
X

S
A>
)−1

A

√
X

S

for vectors x and s such that xi and si are multiplicative approximations of xi and si respec-

tively for all i. Since we maintain the projection at a nearby point (x, s), our stochastic step

x← x+ δ̃x, s← s+ δ̃s and y ← y + δ̃y are defined by

Xδ̃s + Sδ̃x = δ̃µ,

Aδ̃x = 0, (2.7)

A>δ̃y + δ̃s = 0,

12



which is different from (2.4) on both sides of the first equation. Note that this system use X

and S because we have only maintained this projection matrix. The main goal of Section 2.4

is to show X = Θ(X) and S = Θ(S) is good enough for our interior point method. Similar

to (2.5), Lemma 2.4.2 shows that

δ̃x =
X√
XS

(I − P )
1√
XS

δ̃µ and δ̃s =
S√
XS

P
1√
XS

δ̃µ. (2.8)

The previously fastest algorithm involves maintaining the matrix inverse (AX
S
A>)−1

using subspace embedding techniques [Sar06, CW13, NN13a] and leverage score sampling

[SS11]. In this paper, we maintain the projection directly using lazy update.

The key departure from the central path we present is that we can only maintain

0.9t ≤ µi = xisi ≤ 1.1t for some t > 0

instead of µ close to t in `2 norm. We will further explain the proof in Section 2.4.1.
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2.2.2 Projection Maintenance via Lazy Update

The projection matrix we maintain is of the form
√
WA>

(
AWA>

)−1
A
√
W where

W = diag(x/s). For intuition, we only explain how to maintain the matrix

Mw
def
= A>(AWA>)−1A

for the short step central path step here. In this case, we have
∑

i

(
wnew
i −wi
wi

)2

= O(1) for each

step. Given this, there are mainly two extreme cases, w changes uniformly on all coordinates

and w changes only on a few coordinates.

If the changes
(
wnew
i −wi
wi

)2

is uniformly across all the coordinates, then wnew
i = (1 ±

1√
n
)wi for all i. Since it takes

√
n steps to change all coordinates by a constant factor and we

only need to maintain Mv for some vi = Θ(wi) for all i, we can update the matrix every
√
n

steps. Hence, the average cost per iteration of maintaining the projection matrix is nω−
1
2 ,

which is exactly what we desired.

For the other extreme case that the “adversary” puts all of his `2 budget on few coor-

dinates, only
√
n coordinates are changed by a constant factor during all

√
n iterations. In

this case, instead of updating Mw every step, we can compute Mwh online by the Woodbury

matrix identity.

Fact 2.2.2 ([Woo50]). The Woodbury matrix identity is

(M + UCV )−1 = M−1 −M−1U(C−1 + VM−1U)−1VM−1.

Let S ⊂ [n] denote the set of coordinates that is changed by more than a constant

factor and r = |S|. Using the identity above, we have that

Mwnew = Mw − (Mw)S(∆−1
S,S + (Mw)S,S)−1((Mw)S)>, (2.9)

14



where ∆ = diag(wnew−w), (Mw)S ∈ Rn×r is the r columns from S ofMw and (Mw)S,S,∆S,S ∈

Rr×r are the r rows and columns from S of Mw and ∆.

As long as there are only few coordinates violating vi = Θ(wi), (2.9) can be applied

online efficiently. In another case, we can use (2.9) instead to update the matrix Mw and

the cost is dominated by multiplying a n× n matrix with a n× nr matrix.

Theorem 2.2.3 (Rectangular matrix multiplication, [LGU18]). Let the dual exponent of

matrix multiplication α be the supremum among all a ≥ 0 such that it takes n2+o(1) time to

multiply an n× n matrix by an n× na matrix.

Then, for any n ≥ r, multiplying an n× r with an r × n matrix or n× n with n× r

takes time

n2+o(1) + r
ω−2
1−αn2−α(ω−2)

1−α +o(1).

Furthermore, we have α > 0.31389.

See Lemma 2.6.4 for the origin of the formula. Since the cost of multiplying n × n

matrix by a n× 1 matrix is same as the cost for n× n with n× n0.31, (2.9) should be used

to update at least n0.31 coordinates. In the extreme case only few wi are changing, we only

need to update the matrix n
1
2
−0.31 times during the whole algorithm and each takes n2 time,

and hence the total cost is less than nω for the current value of ω ∼ 2.37.

In previous papers [Kar84, Vai89b, NN91, NN94, LS14, LS15], the matrix is updated

in a fixed schedule independent of the input sequence w. This leads to sub-optimal bounds if

used in this paper. We instead define a potential function to measure the distance between

the approximate vector v and the target vector w. When there are less than nα coordinates

15



of v that is far from w, we are lazy and do not update the matrix. We simply apply the

Woodbury matrix identity online. When there are more than nα coordinates, we update v

by a certain greedy step. As in the extreme cases, the worst case of our algorithm is that

the “adversary” puts his `2 budget across all coordinates uniformly and hence the worst case

runtime is nω−
1
2 per iteration. We will further explain the potential in Section 2.5.1.
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2.3 Notations

For notation convenience, we assume the number of variables n ≥ 10 and there is no

redundant constraints. In particular, this implies that the constraint matrix A is full rank

and n ≥ d.

For a positive integer n, let [n] denote the set {1, 2, · · · , n}.

For any function f , we define Õ(f) to be f · logO(1)(f). In addition to O(·) notation,

for two functions f, g, we use the shorthand f . g (resp. &) to indicate that f ≤ Cg (resp.

≥) for some absolute constant C.

We use sinhx to denote ex−e−x
2

and coshx to denote ex+e−x

2
.

For vectors a, b ∈ Rn and accuracy parameter ε ∈ (0, 1), we use a ≈ε b to denote that

(1 − ε)bi ≤ ai ≤ (1 + ε)bi,∀i ∈ [n]. Similarly, for any scalar t, we use a ≈ε t to denote that

(1− ε)t ≤ ai ≤ (1 + ε)t,∀i ∈ [n].

For a vector x ∈ Rn and s ∈ Rn, we use xs to denote a length n vector with the i-th

coordinate (xs)i is xi · si. Similarly, we extend other scalar operations to vector coordinate-

wise.

Given vectors x, s ∈ Rn, we use X and S to denote the diagonal matrix of those

two vectors. We use X
S

to denote the diagonal matrix given (X
S

)i,i = xi/si. Similarly,

we extend other scalar operations to diagonal matrix diagonal-wise. Note that matrix
√

X
S
A>(AX

S
A>)−1A

√
X
S
is an orthogonal projection matrix.
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Convex body

N∞ = {xs ≈0.1 t, for some t}

Φλ(x) ≤ n3

t = 0

t = 1

xs = t

StochasticStep

ClassicalStep

Figure 2.1: ClassicalStep happens with n−2 probability

2.4 Stochastic Central Path Method
2.4.1 Proof Outline

The short step central path method is defined using the approximation (x+ δx)i(s+

δs)i ∼ xisi + xiδs,i + siδx,i. This approximate is only accurate if ‖X−1δx‖∞ ≤ 1/2 and

‖S−1δs‖∞ ≤ 1/2. For the δx step, we have

X−1δx =
1√
XS

(I − P )
1√
XS

δµ ∼
1

t
(I − P )δµ, (2.10)

where we used xisi ∼ t for all i.

If we know that ‖δµ‖2 ≤ t/4, then the `∞ norm can be bounded as follows:

‖X−1δx‖∞ ≤ ‖X−1δx‖2 .
1

t
‖(I − P )δµ‖2 ≤

1

t
‖δµ‖2 ≤ 1/2,

where we used that I − P is an orthogonal projection matrix. This is the reason why a

standard choice of δµ,i is −ct/
√
n for all i for some small constant c.

For the stochastic step, δ̃µ,i ∼ − t√
n
n
k
for roughly k coordinates where the term n

k

is used to preserve the expectation of the step. Therefore, the `2 norm of δ̃µ is very large
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Algorithm 2.1 Stochastic Step
1: procedure StochasticStep(mp, x, s, δµ, k, ε) . Lemma 2.4.2,2.4.3,2.4.7
2: w ← x

s
, ṽ ← mp.Update(w) . Algorithm 2.3

3: x← x
√

ṽ
w
, s← s

√
w
ṽ

. It guarantees that x
s

= ṽ and xs = xs

4: repeat
5: Generate δ̃µ such that . Compute a sparse direction

6: δ̃µ,i ←
{
δµ,i/pi, with prob. pi = min(1, k · ((δ2

µ,i/
∑n

l=1 δ
2
µ,l) + 1/n));

0 else.
7: . Compute an approximate step
8: . Find (δ̃x, δ̃s, δ̃y) such that these three equations hold

Xδ̃s + Sδ̃x = δ̃µ,

Aδ̃x = 0,

A>δ̃y + δ̃s = 0.

9: pµ ← mp.Query( 1√
XS
δ̃µ) . Algorithm 2.3

10: δ̃s ← S√
XS
pµ . According to (2.11)

11: δ̃x ← 1
S
δ̃µ − X√

XS
pµ . According to (2.12)

12: until ‖s−1δ̃s‖∞ ≤ 1
100 logn

and ‖x−1δ̃x‖∞ ≤ 1
100 logn

13: return (x+ δ̃x, s+ δ̃s)
14: end procedure

(‖δ̃µ‖2 ∼ t
√

n
k
). After the projection, we have ‖X−1δx‖2 ∼ 1

t
‖(I−P )δµ‖2 ∼

√
n
k
. Hence, the

bound of ‖X−1δx‖∞ using ‖X−1δx‖2 is too weak. To improve the bound, we use Chernoff

bounds to estimate ‖X−1δx‖∞.

Beside the `∞ norm bound, the proof sketch in (2.10) also requires using xisi ∼ t for

all i. The short step central path proof maintains an invariant that
∑

i(xisi − t)2 = O(t2).

However, since our stochastic step has a stochastic noise with `2 norm as large as t
√

n
k
,

one cannot hope to maintain xisi close to t in `2 norm. Instead, we follow an idea in
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Algorithm 2.2 Our Main Algorithm
1: procedure Main(A, b, c, δ) . Theorem 2.2.1
2: ε← 1

40000 logn
, εmp ← 1

40000
, k ← 1000ε

√
n log2 n

εmp
.

3: λ← 40 log n, δ ← min( δ
2
, 1
λ
), a← min(α, 2/3).

4: Modify the linear program and obtain an initial x and s according to Lemma 3.8.2.
5: MaintainProjection mp
6: mp.Initialize(A, x

s
, εmp, a) . Algorithm 2.3

7: t← 1 . Initialize t
8: while t > δ2/(2n) do . We stopped once the precision is good
9: tnew ← (1− ε

3
√
n
)t

10: µ← xs
11: δµ ← ( t

new

t
− 1)xs− ε

2
· tnew · ∇Φλ(µ/t−1)

‖∇Φλ(µ/t−1)‖2 . Φλ is defined in Lemma 2.4.11
12: (xnew, snew)← StochasticStep(mp, x, s, δµ, k, ε) . Algorithm 2.1
13: if Φλ(µ

new/tnew − 1) > n3 then . When potential function is large
14: (xnew, snew)← ClassicalStep(x, s, tnew) . Lemma 2.6.2, [Vai89b]
15: mp.Initialize(A, x

new

snew , εmp, a) . Restart the data structure
16: end if
17: (x, s)← (xnew, snew), t← tnew

18: end while
19: Return an approximate solution of the original linear program according to Lemma

3.8.2.
20: end procedure
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[LS14, LSW15] and maintain the following potential

n∑

i=1

cosh
(
λ
(xisi

t
− 1
))

= nO(1)

with λ = Θ(log n). This potential is a variant of soft-max. Note that the potential bounded

by nO(1) implies that xisi is a multiplicative approximation of t. To bound the potential,

consider ri = xisi
t

and Φ(r) be the potential above. Then, we have that

E[Φ(rnew)] ≤ Φ(r) + 〈∇Φ(r),E[rnew − r]〉+O(1)E ‖rnew − r‖2
∇2Φ(r).

The first order term can be bounded efficiently because E[rnew − r] is close to the short step

central path step. The second term is a variance term which scales like 1/k due to the k

independent coordinates. Therefore, the potential changed by 1/k ∼ 1/
√
n factor each step.

Hence, we can maintain it for roughly
√
n steps.

To make sure the potential Φ is bounded during the whole algorithm, our step is the

mixtures of two steps of the form δµ ∼ − t√
n
− t ∇Φ

‖∇Φ‖2 . The first term is to decrease t and

the second term is to decrease Φ.

Since the algorithm is randomized, there is a tiny probability that Φ is large. In that

case, we switch to a short step central path method. See Figure 2.1, Algorithm 2.1, and

Algorithm 3.6. The first part of the proof involves bounding every quantity listed in Table

2.1. In the second part, we are using these quantities to bound the expectation of Φ.

To decouple the proof in both parts, we will make the following assumption in first

part. It will be verified in the second part.

Assumption 2.4.1. Assume the following for the input of the procedure StochasticStep

(see Algorithm 2.1):
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• xs ≈0.1 t with t > 0.

• mp.Update(w) outputs ṽ such that w ≈εmp ṽ with εmp ≤ 1/40000.

• ‖δµ‖2 ≤ εt with 0 < ε < 1/(40000 log n).

• k ≥ 1000ε
√
n log2 n/εmp.
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Quantity Bound Place
‖E[s−1δ̃s]‖2, ‖E[x−1δ̃x]‖2, ‖E[µ−1δ̃µ]‖2 O(ε) Part 1, Lemma 2.4.3
‖E[µ−1(µnew − µ− δ̃µ)]‖2 O(εmp · ε) Part 1, Lemma 2.4.7
‖E[µ−1(µnew − µ)]‖2 O(ε) Part 1, Lemma 2.4.7
V[s−1

i δ̃s,i],V[x−1
i δ̃x,i],V[µ−1

i δ̃µ,i] O(ε2/k) Part 2, Lemma 2.4.3
V[µ−1

i µnew] O(ε2/k) Part 2, Lemma 2.4.7
‖s−1δ̃s‖∞, ‖x−1δ̃x‖∞, ‖µ−1δ̃µ‖∞ O(1/ log n) Part 3, Lemma 2.4.3
‖µ−1(µnew − µ)‖∞ O(1/ log n) Part 3, Lemma 2.4.7

Table 2.1: The bound of each quantity under Assumption 2.4.1. For intuition, think ε ∼
εmp ∼ 1/10 and k ∼ √n.

2.4.2 Bounding each quantity of stochastic step

First, we give an explicit formula for our step, which will be used in all subsequent

calculations.

Lemma 2.4.2. The procedure StochasticStep(mp, x, s, δµ, k, ε) (see Algorithm 2.1) finds

a solution δ̃x, δ̃s ∈ Rn to (2.7) by the formula

δ̃x =
X√
XS

(I − P )
1√
XS

δ̃µ (2.11)

δ̃s =
S√
XS

P
1√
XS

δ̃µ (2.12)

with

P =

√
X

S
A>
(
A
X

S
A>
)−1

A

√
X

S
. (2.13)

Proof. For the first equation of (2.7), we multiply AS−1 on both sides,

AS
−1
Xδ̃s + Aδ̃x = AS

−1
δ̃µ.
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Since the second equation gives Aδ̃x = 0, then we know that AS−1
Xδ̃s = AS

−1
δ̃µ.

Multiplying AS−1
X on both sides of the third equation of (2.7), we have

−AS−1
XA>δ̃y = AS

−1
Xδ̃s = AS

−1
δ̃µ.

Thus,

δ̃y = − (AS
−1
XA>)−1AS

−1
δ̃µ,

δ̃s = A>(AS
−1
XA>)−1AS

−1
δ̃µ,

δ̃x = S
−1
δ̃µ − S−1

XA>(AS
−1
XA>)−1AS

−1
δ̃µ.

Recall we define P as (2.13), then we have

δ̃s =
S√
XS
·

√
X

S
A>(A

X

S
A>)−1

√
X

S
· 1√

XS
δ̃µ =

S√
XS

P
1√
XS

δ̃µ,

and

δ̃x = S
−1
δ̃µ −

X√
XS
·

√
X

S
A>(A

X

S
A>)−1

√
X

S
· 1√

XS
δ̃µ =

X√
XS

(I − P )
1√
XS

δ̃µ.

which are matching (2.11) and (2.12).

To see why the StochasticStep outputs δ̃x, δ̃s satisfying (2.11) and (2.12), we note

that

pµ =
√
Ṽ A>

(
A
X

S
A>
)−1

A
√
Ṽ

1√
XS

δ̃µ = P
1√
XS

δ̃µ

because of Theorem 2.5.1.

Using the explicitly formula, we are ready to bound all quantities we needed in the

following two subsubsections.
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2.4.2.1 Bounding δ̃s, δ̃x and δ̃µ

Lemma 2.4.3. Under the Assumption 2.4.1, the two vectors δ̃x and δ̃s found by StochasticStep

satisfy :

1. ‖E[s−1δ̃s]‖2 ≤ 2ε, ‖E[x−1δ̃x]‖2 ≤ 2ε, ‖E[s−1δ̃s]‖2 ≤ 2ε, ‖E[x−1δ̃x]‖2 ≤ 2ε, ‖E[µ−1δ̃µ]‖2 ≤

4ε.

2. V[
δ̃s,i
si

] ≤ 2ε2

k
,V[

δ̃x,i
xi

] ≤ 2ε2

k
,V[

δ̃s,i
si

] ≤ 2ε2

k
,V[

δ̃x,i
xi

] ≤ 2ε2

k
,V[

δ̃µ,i
µi

] ≤ 8ε2

k
.

3. ‖s−1δ̃s‖∞ ≤ 0.01
logn

, ‖s−1δ̃s‖∞ ≤ 0.02
logn

, ‖x−1δ̃x‖∞ ≤ 0.01
logn

, ‖x−1δ̃x‖∞ ≤ 0.02
logn

, ‖µ−1δ̃µ‖∞ ≤ 0.02
logn

.

Remark 2.4.1. For notational simplicity, the E and V in the proof are for the case without

resampling (Line 12). Since the all the additional terms due to resampling are polynomially

bounded and since we can set failure probability to an arbitrarily small inverse polynomial

(see Claim 2.4.6), the proof does not change and the result remains the same.

Proof.

Claim 2.4.4 (Part 1, bounding the `2 norm of expectation).

‖E[s−1δ̃s]‖2 ≤ 2ε, ‖E[x−1δ̃x]‖2 ≤ 2ε, ‖E[s−1δ̃s]‖2 ≤ 2ε, ‖E[x−1δ̃x]‖2 ≤ 2ε, ‖E[µ−1δ̃µ]‖2 ≤ 4ε.

Proof. For ‖s−1δ̃s‖∞, we consider the i-th coordinate of the vector

s−1
i δ̃s,i =

1√
xisi

n∑

j=1

P i,j
δ̃µ,j√
xjsj

.

Then, we have

E
[
s−1
i δ̃s,i

]
=

1√
xisi

n∑

j=1

P i,j
E[δ̃µ,j]√
xjsj

=
1√
xisi

n∑

j=1

P i,j
δµ,j√
xjsj

.
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Since xs ≈0.1 t and ‖δµ‖ ≤ εt, we have ‖ δµ√
xs
‖2 ≤ 1.1εt√

t
. Since P is an orthogonal

projection matrix, we have ‖P δµ√
xs
‖2 ≤ ‖ δµ√

xs
‖2. Putting all the above facts and xs = xs, we

can show
∥∥∥E[s−1δ̃s]

∥∥∥
2

2
=

n∑

i=1

(
1√
xisi

n∑

j=1

P i,j
δµ,j√
xjsj

)2

=
n∑

i=1

1

xisi

(
n∑

j=1

P i,j
δµ,j√
xjsj

)2

≤ 1

0.9t

n∑

i=1

(
n∑

j=1

P i,j
δµ,j√
xjsj

)2

=
1

0.9t
‖P δµ√

xs
‖2

2

≤ 1

0.9t
‖ δµ√

xs
‖2

2 ≤
(1.1)2

0.9t
· (εt)2

t
≤ 1.4ε2,

which implies that
∥∥∥E[s−1δ̃s]

∥∥∥
2
≤ 1.2ε. (2.14)

Notice that the proof for x is identical to the proof for s because (I −P ) is also a projection

matrix. Since s ≈0.1 s and x ≈0.1 x, then we can also prove the next two inequalities in the

Claim statement.

Now, we are ready to bound ‖E[µ−1δ̃µ]‖2

‖E[µ−1δ̃µ]‖2 = ‖E[s−1x−1(xδ̃s + sδ̃x)]‖2 ≤ ‖E[s−1δ̃s]‖2 + ‖E[x−1δ̃x]‖2 ≤ 4ε.

by using µ = xs = xs and xδ̃s + sδ̃x = δ̃µ from (2.7).

Claim 2.4.5 (Part 2, bounding the variance per coordinate).

V[s−1
i δ̃s,i] ≤

2ε2

k
,V[x−1

i δ̃x,i] ≤
2ε2

k
,V[s−1

i δ̃s,i] ≤
2ε2

k
,V[x−1

i δ̃x,i] ≤
2ε2

k
,V[µ−1

i δ̃µ,i] ≤
8ε2

k
.

Proof. Consider the i-th coordinate of the vector

s−1
i δ̃s,i =

1√
xisi

n∑

j=1

P i,j
δ̃µ,j√
xjsj

.
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For variance of s−1
i δ̃s,i, we have

V[s−1
i δ̃s,i] =

1

xisi

n∑

j=1

P
2

i,j

xjsj
V[δ̃µ,j] by all δ̃µ,j are independent

≤ 1

xisi

n∑

j=1

P
2

i,j

xjsj

1

k

δ2
µ,j

δ2
µ,j∑n

l=1 δ
2
µ,l

+ 1
n

by (2.6)

≤ 1

xisi

n∑

j=1

P
2

i,j

xjsj

1

k

n∑

l=1

δ2
µ,l

≤ 1.3

t2

n∑

j=1

P
2

i,j

1

k

n∑

l=1

δ2
µ,l ≤

1.3ε2

k
, by xisi = xisi ≈1/10 t

where we used that
∑n

j=1 P
2

i,j = P i,i ≤ 1, ‖δµ‖2 ≤ εt at the end.

The proof for the other three inequalities in the Claim statement are identical to this

one. We omit here.

For the variance of µ−1
i δ̃µ,i,

V[µ−1
i δ̃µ,i] = V[x−1

i s−1
i (xiδ̃s,i + siδ̃x,i)]

≤ 2V[x−1
i xis

−1
i δ̃s,i] + 2V[s−1

i six
−1
i δ̃x,i]

= 2V[s−1
i δ̃s,i] + 2V[x−1

i δ̃x,i] ≤ 8ε2/k.

where the first step follows by definition of µ = xs = xs and (2.7), the second step follows

by triangle inequality and, the last step follows by V[s−1
i δ̃s,i],V[x−1

i δ̃x,i] ≤ 2ε2/k

Claim 2.4.6 (Part 3, bounding the probability of success). Without resampling, the following

holds with probability 1− 2n exp(− 0.003k
ε
√
n logn

).

‖s−1δ̃s‖∞ ≤
0.01

log n
, ‖s−1δ̃s‖∞ ≤

0.02

log n
, ‖x−1δ̃x‖∞ ≤

0.01

log n
, ‖x−1δ̃x‖∞ ≤

0.02

log n
, ‖µ−1δ̃µ‖∞ ≤

0.02

log n
.

With resampling, it always holds.
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Proof. We can write s−1
i δ̃s,i−E[s−1

i δ̃s,i] =
∑

j Yj where Yj are independent random variables

defined by

Yj =
1√
xisi

P i,j
δ̃µ,j√
xjsj

− 1√
xisi

P i,j
δµ,j√
xjsj

.

We bound the sum using Bernstein inequality (Lemma A.1.2). Note that Yj are mean 0 and

that Claim 2.4.5 shows that
∑n

j=1 E[Y 2
j ] = V[s−1

i δ̃s,i] ≤ 2ε2

k
. We also need to give an upper

bound for Yj

|Yj| =
∣∣∣∣∣

1√
xisi

P i,j

(
δ̃µ,j − δµ,j√

xjsj

)∣∣∣∣∣

≤ 1.2

t
|δ̃µ,j − δµ,j| by |P i,j| ≤ 1, xisi ≈1/10 t

≤ 1.2

t
|δµ,j/pj| by δ̃µ,j ∈ [0, δµ,j/pj]

=
1.2

t

1

k

1

(
δµ,i∑n
l=1 δ

2
µ,l

+ 1
nδµ,i

)
by (2.6)

≤ 0.6

t

1

k

(
n

n∑

l=1

δ2
µ,l

)1/2

by a2 + b2 ≥ 2ab

≤ 0.6ε
√
n

k
def
= M. by ‖δµ‖2 ≤ εt

Now, we can apply Bernstein inequality (Lemma A.1.2)

Pr

[∣∣∣∣∣
n∑

j=1

Yj

∣∣∣∣∣ > b

]
≤ 2 exp

(
− b2/2∑n

j=1 E[Y 2
j ] +Mb/3

)

≤ 2 exp

(
− b2/2

2ε2/k + (0.6ε
√
n/k) · b/3

)
.

We choose b = 0.005
logn

and use ε ≤ 1
400 logn

and n ≥ 10 to get

Pr

[∣∣∣∣∣
n∑

j=1

Yj

∣∣∣∣∣ ≥
0.05

log n

]
≤ 2 exp

(
− 0.003k

ε
√
n log n

)
.
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Since ‖E[s−1
i δ̃s,i]‖2 ≤ 2ε ≤ 0.005

logn
, we have that |s−1

i δ̃s,i| ≤ 0.01
logn

with probability 1 −

2 exp(− 0.003k
ε
√
n logn

). Taking a union bound, we have that ‖s−1δ̃s‖∞ ≤ 0.01
logn

with probability

1− 2n exp(− 0.003k
ε
√
n logn

). Similarly, this holds for the other 3 terms.

Now, the last term follows by

|µ−1
i δ̃µ,i| = |x−1

i s−1
i (xiδ̃s,i + siδ̃x,i)| = |s−1

i δ̃s,i|+ |x−1
i δ̃x,i| ≤

0.02

log n
.

2.4.2.2 Bounding µnew − µ

Lemma 2.4.7. Under the Assumption 2.4.1, the vector µnew
i

def
= (xi + δ̃x,i)(si + δ̃s,i) satisfies

1. ‖E[µ−1(µnew − µ− δ̃µ)]‖2 ≤ 10εmp · ε and ‖E[µ−1(µnew − µ)]‖2 ≤ 5ε.

2. V[µ−1
i µnew

i ] ≤ 50ε2/k for all i.

3. ‖µ−1(µnew − µ)‖∞ ≤ 0.021
logn

.

Claim 2.4.8 (Part 1 of Lemma 2.4.7).

‖E[µ−1(µnew − µ− δ̃µ)]‖2 ≤ 10εmp · ε, and ‖E[µ−1(µnew − µ)]‖2 ≤ 5ε.

Proof.

µnew = (x+ δ̃x)(s+ δ̃s) = µ+ xδ̃s + sδ̃x + δ̃xδ̃s = µ+ xδ̃s + sδ̃x︸ ︷︷ ︸
δ̃µ

+ (x− x)δ̃s + (s− s)δ̃x + δ̃xδ̃s︸ ︷︷ ︸
εµ

.

Taking the expectation on both sides, we have

E[µnew − µ− δ̃µ] = (x− x)E[δ̃s] + (s− s)E[δ̃x] + E[δ̃xδ̃s].
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Hence, we have that

‖µ−1 E[µnew − µ− δ̃µ]‖2

≤ ‖µ−1(x− x)s · s−1 E[δ̃s]‖2 + ‖µ−1(s− s)x · x−1 E[δ̃x]‖2 + ‖µ−1 E[δ̃xδ̃s]‖2

≤ ‖µ−1(x− x)s‖∞ · ‖s−1 E[δ̃s]‖2 + ‖µ−1(s− s)x‖∞ · ‖x−1 E[δ̃x]‖2 + ‖µ−1 E[δ̃xδ̃s]‖2

≤ εmp · ‖s−1 E[δ̃s]‖2 + εmp · ‖x−1 E[δ̃x]‖2 + ‖µ−1 E[δ̃xδ̃s]‖2

≤ 4εmp · ε+ ‖µ−1 E[δ̃xδ̃s]‖2, (2.15)

where the first step follows by triangle inequality, the second step follows by ‖ab‖2 ≤ ‖a‖∞ ·

‖b‖2, the third step follows by ‖µ−1(x − x)s‖∞ ≤ εmp and ‖µ−1(s − s)x‖∞ ≤ εmp (since

x ≈εmp x, s ≈εmp s), the last step follows by ‖E[s−1δ̃s]‖2 ≤ 2ε and ‖E[x−1δ̃x]‖2 ≤ 2ε (Part 1

of Lemma 2.4.3).

To bound the last term, using E[δ̃s] = δs and E[δ̃x] = δx, we note that

E[δ̃x,iδ̃s,i] = δx,iδs,i + E[(δ̃x,i − δx,i)(δ̃s,i − δs,i)].

Hence, we have

‖µ−1 E[δ̃xδ̃s]‖2 ≤ ‖µ−1δxδs‖2 +

(
n∑

i=1

(
E
[
x−1
i (δ̃x,i − δx,i) · s−1

i (δ̃s,i − δs,i)
])2
)1/2

≤ 4ε2 +
1

2

(
n∑

i=1

(
V[x−1

i δ̃x,i] + V[s−1
i δ̃s,i]

)2
)1/2

≤ 4ε2 +
1

2

(
n∑

i=1

2(V[x−1
i δ̃x,i])

2 + 2(V[s−1
i δ̃s,i])

2

)1/2

≤ 4ε2 + 2
√
n · ε4/k2 ≤ 4ε2 + 2ε · εmp ≤ 6ε · εmp, (2.16)

where the second step follows by ‖µ−1δxδs‖2 ≤ ‖x−1δx‖2·‖s−1δs‖2 ≤ 4ε2 (Part 1 of Lemma 2.4.3)

and 2ab ≤ a2 + b2, the third step follows by (a+ b)2 ≤ 2a2 + 2b2, the fourth step follows by
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V[x−1
i δ̃x,i] ≤ 2ε2/k and V[s−1

i δ̃s,i] ≤ 2ε2/k (Part 2 of Lemma 2.4.3), the last step follows by

k ≥ ε
√
n

εmp
.

Combining (2.15) and (2.16), we have that

‖µ−1(E[µnew − µ− δ̃µ])‖2 ≤ 4εmp · ε+ ‖µ−1 E[δ̃xδ̃s]‖2 ≤ 10εmp · ε.

where we used ε ≤ εmp.

From Part 1 of Lemma 2.4.3, we know that ‖µ−1 E[δ̃µ]‖2 ≤ 4ε. Thus using triangle

inequality, we know

‖µ−1(E[µnew − µ])‖2 ≤ 10εmp · ε+ 4ε ≤ 5ε.

Claim 2.4.9 (Part 2 of Lemma 2.4.7). V[µ−1
i µnew

i ] ≤ 50ε2/k for all i.

Proof. Recall that

µnew = µ+ δ̃µ + (x− x)δ̃s + (s− s)δ̃x + δ̃xδ̃s.

We can upper bound the variance of µ−1
i µnew

i ,

V[µ−1
i µnew

i ] ≤ 4V[µ−1
i δ̃µ,i] + 4V[µ−1

i (xi − xi)δ̃s,i] + 4V[µ−1
i (si − si)δ̃x,i] + 4V[µ−1

i δ̃x,iδ̃s,i]

≤ 32
ε2

k
+ 4

ε2

k
+ 4

ε2

k
+ V[µ−1

i δ̃x,iδ̃s,i]

= 40
ε2

k
+ V[x−1

i δ̃x,i · s−1
i δ̃s,i]

≤ 40
ε2

k
+ 2Sup[(x−1

i δ̃x,i)
2] · V[s−1

i δ̃s,i] + 2Sup[(y−1
i δ̃y,i)

2] · V[x−1
i δ̃x,i]

≤ 40
ε2

k
+ 2 · ( 0.02

log n
)2 · ε

2

k
+ 2 · ( 0.02

log n
)2 · ε

2

k
≤ 50

ε2

k
.
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where the second step follows by V[µ−1
i δ̃µ,i] ≤ 8ε2/k (Part 2 of Lemma 2.4.3),

V[µ−1
i (xi − xi)δ̃s,i] = V[x−1

i (xi − xi)s−1
i δ̃s,i] ≤ 2ε2mpV[s−1

i δ̃s,i] ≤ ε2/k.

and a similar inequality V[µ−1
i (si−si)δ̃x,i] ≤ ε2/k, the third step follows by µ = xs, the fourth

step follows by V[xy] ≤ 2Sup[x2]V[y]+2Sup[y2]V[x] (Lemma 2.6.1) with Sup denoting the

deterministic maximum of the random variable, the fifth step follows by V[s−1
i δ̃s,i] ≤ 2ε2/k

and V[x−1
i δ̃x,i] ≤ 2ε2/k (Part 2 of Lemma 2.4.3).

Claim 2.4.10 (Part 3 of Lemma 2.4.7). ‖µ−1(µnew − µ)‖∞ ≤ 0.021
logn

.

Proof. We again note that

µnew = µ+ δ̃µ + (x− x)δ̃s + (s− s)δ̃x + δ̃xδ̃s.

Hence, we have

|µ−1
i (µnew

i − µi − δ̃µ,i)|

≤ |(x− x)iµ
−1
i δ̃s,i|+ |(s− s)iµ−1

i δ̃x,i|+ |µ−1
i δ̃x,iδ̃s,i|

= |(x− x)ix
−1
i | · |s−1

i δ̃s,i|+ |(s− s)is−1
i | · |x−1

i δ̃x,i|+ |x−1
i δ̃x,i| · |s−1

i δ̃s,i|

≤ εmp|s−1
i δ̃s,i|+ εmp|x−1

i δ̃x,i|+ |s−1
i δ̃s,i||x−1

i δ̃x,i|

≤ εmp ·
0.2

log n
+ εmp ·

0.02

log n
+ (

0.02

log n
)2

≤ 1

1000 log n
,

where the first step follows by triangle inequality, the second step follows by µi = xisi, the

third step follows by x ≈εmp x and s ≈εmp s, the fifth step follows by |s−1
i δ̃s,i| ≤ 0.02

logn
and

|x−1
i δ̃x,i| ≤ 0.02

logn
(Part 3 of Lemma 2.4.3).
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Since we know that |µ−1
i δ̃µ,i| ≤ 0.02

logn
(Part 3 of Lemma 2.4.3), we have

|µ−1
i (µnew

i − µi)| ≤
1

1000 log n
+

0.02

log n
≤ 0.021

log n
.
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2.4.3 Stochastic central path

Now, we are ready to prove xisi ≈0.1 t during the whole algorithm. As explained in

the proof outline (see Section 2.4.1), we will prove this bound by analyzing the potential

Φλ(µ/t− 1) where Φλ(r) =
∑n

i=1 cosh(λri).

First, we give some basic properties of Φλ.

Lemma 2.4.11 (Basic properties of potential function). Let Φλ(r) =
∑n

i=1 cosh(λri) for

some λ > 0. For any vector r ∈ Rn,

1. For any vector ‖v‖∞ ≤ 1/λ, we have that

Φλ(r + v) ≤ Φλ(r) + 〈∇Φλ(r), v〉+ 2‖v‖2
∇2Φλ(r).

2. ‖∇Φλ(r)‖2 ≥ λ√
n
(Φλ(r)− n).

3.
(∑n

i=1 λ
2 cosh2(λri)

)1/2 ≤ λ
√
n+ ‖∇Φλ(r)‖2.

Proof. For each i ∈ [n], we use ri to denote the i-th coordinate of vector r.

Proof of Part 1. We have that

cosh(λ(ri + vi)) = cosh(λri) + λ sinh(λri)vi +
λ2

2
cosh(ζi)v

2
i ,

where ζi is between λri and λ(ri + vi). By definition of cosh and the assumption that

‖v‖∞ ≤ 1
2λ

, we have that

cosh(ζi) =
1

2
exp(ζi) +

1

2
exp(−ζi) ≤ exp(1) · 1

2
(exp(λri) + exp(−λri)) ≤ 3 cosh(λri).

Hence, we have

cosh(λ(ri + vi)) ≤ cosh(λri) + λ sinh(λri)vi + 2λ2 cosh(λri)v
2
i .
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Summing over all the coordinates gives
n∑

i=1

cosh(λ(ri + vi)) ≤
n∑

i=1

[
cosh(λri) + 2λ sinh(λri)vi + λ2 cosh(λri)v

2
i

]

=⇒ Φλ(r + v) ≤ Φλ(r) + 〈∇Φλ(r), v〉+ 2‖v‖2
∇2Φλ(r).

Proof of Part 2. Since Φλ(r) =
∑n

i=1 cosh(λri), then

∇Φλ(r) =
[
λ sinh(λr1) λ sinh(λr2) · · · λ sinh(λrn)

]>
.

Thus, we can lower bound ‖∇Φλ(r)‖2 in the following way,

‖∇Φλ(r)‖2 =

(
n∑

i=1

λ2 sinh2(λri)

)1/2

=

(
n∑

i=1

λ2(cosh2(λri)− 1)

)1/2

by cosh2(y)− sinh2(y) = 1,∀y

≥ λ√
n

n∑

i=1

√
cosh2(λri)− 1 by ‖ · ‖2 ≥

1√
n
‖ · ‖1

≥ λ√
n

n∑

i=1

(cosh(λri)− 1) by cosh(λri) ≥ 1

=
λ√
n

(Φλ(r)− n). by def of Φ(r)

Proof of Part 3. We have
(

n∑

i=1

λ2 cosh2(λri)

)1/2

=

(
n∑

i=1

λ2 + λ2 sinh2(λri)

)1/2

≤ (nλ2)1/2 +

(
n∑

i=1

λ2 sinh2(λri)

)1/2

= λ
√
n+ ‖∇Φλ(r)‖2.

where the first step follows from cosh2(y)− sinh2(y) = 1,∀y.
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The following lemma shows that the potential Φ is decreasing in expectation when Φ

is large.

Lemma 2.4.12. Under the Assumption 2.4.1, we have

E
[
Φλ

(
µnew

tnew
− 1

)]
≤ Φλ

(µ
t
− 1
)
− λε

15
√
n

(
Φλ

(µ
t
− 1
)
− 10n

)
.

Proof. Let εµ = µnew − µ− δ̃µ. From the definition, we have

µnew − tnew = µ+ δ̃µ + εµ − tnew,

which implies

µnew

tnew
− 1 =

µ

tnew
+

1

tnew
(δ̃µ + εµ)− 1

=
µ

t

t

tnew
+

1

tnew
(δ̃µ + εµ)− 1

=
µ

t
+
µ

t
(
t

tnew
− 1) +

1

tnew
(δ̃µ + εµ)− 1

=
µ

t
− 1 +

µ

t
(
t

tnew
− 1) +

1

tnew
(δ̃µ + εµ)

︸ ︷︷ ︸
v

. (2.17)

To apply Lemma 2.4.11 with r = µ/t− 1 and r+ v = µnew/tnew− 1, we first compute

the expectation of v

E[v] =
µ

t
(
t

tnew
− 1) +

1

tnew
(E[δ̃µ] + E[εµ])

=
µ

t
(
t

tnew
− 1) +

1

tnew
(δµ + E[εµ])

=
µ

t
(
t

tnew
− 1) +

1

tnew

((
(
tnew

t
− 1)µ− ε

2
tnew ∇Φλ(µ/t− 1)

‖∇Φλ(µ/t− 1)‖2

)
+ E[εµ]

)

= − ε

2

∇Φλ(µ/t− 1)

‖∇Φλ(µ/t− 1)‖2

+
1

tnew
E[εµ], (2.18)
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where the third step follows by definition of δµ.

Next, we bound the ‖v‖∞ as follows

‖v‖∞ ≤
∥∥∥∥
µ

t
(
t

tnew
− 1)

∥∥∥∥
∞

+

∥∥∥∥
1

tnew
(δ̃µ + εµ)

∥∥∥∥
∞
≤ ε√

n
+
‖µ−1(µnew − µ)‖∞

0.9

≤ ε√
n

+
0.021

0.9 log n
≤ 1

λ
.

where we used Part 3 of Lemma 2.4.7 and ε ≤ 1
400 logn

.

Since ‖v‖∞ ≤ 1
λ
, we can apply Part 1 of Lemma 2.4.11 and get

E[Φλ(µ/t+ v − 1)]

≤ Φλ(µ/t− 1) + 〈∇Φλ(µ/t− 1),E[v]〉+ 2E[‖v‖2
∇2Φλ(µ/t+v−1)]

= Φλ(µ/t− 1)− ε

2
‖∇Φλ(µ/t− 1)‖2 +

t

tnew
〈∇Φλ(µ/t− 1),E[t−1εµ]〉+ 2E[‖v‖2

∇2Φλ(µ/t−1)]

≤ Φλ(µ/t− 1)− ε

2
‖∇Φλ(µ/t− 1)‖2 +

t

tnew
‖∇Φλ(µ/t− 1)‖2 · ‖E[t−1εµ]‖2 + 2E[‖[v]‖2

∇2Φλ(µ/t−1)]

≤ Φλ(µ/t− 1)− ε

2
‖∇Φλ(µ/t− 1)‖2 + 10εmp · ε‖∇Φλ(µ/t− 1)‖2 + 2E[‖v‖2

∇2Φλ(µ/t−1)],

where the second step follows by substituting E[v] by (2.18), the third step follows by 〈a, b〉 ≤

‖a‖2 · ‖b‖2, the fourth step follows by ‖E[t−1εµ]‖2 ≤ 10εmp · ε (from Part 1 of Lemma 2.4.7

and µ ≈0.1 t).

We still need to bound E[‖v‖2
∇2Φλ(µ/t−1)]. Before bounding it, we first bound E[v2

i ],

E[v2
i ] ≤ 2E

[(
µi
t

(
t

tnew
− 1)

)2
]

+ 2E

[(
1

tnew
(δ̃µ,i + δ̂µ,i)

)2
]

≤ ε2/n+ 2.5E
[
((µnew

i − µi)/µi)2
]

= ε2/n+ 2.5V[(µnew
i − µi)/µi] + 2.5(E[(µnew

i − µi)/µi])2

≤ ε2/n+ 125ε2/k + 2.5(E[(µnew
i − µi)/µi])2

≤ 126ε2/k + 3(E[(µnew
i − µi)/µi])2, (2.19)
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where the first step follows by definition of v (see (2.17)), the second step follows by µ ≈0.1 t

and (t/tnew − 1)2 ≤ ε2/(4n), the third step follows by E[x2] = V[x] + (E[x])2, the fourth step

follows by Part 2 of Lemma 2.4.7, and the last step follows by n ≥ k.

Now, we are ready to bound E[‖v‖2
∇2Φλ(µ/t−1)]

E[‖v‖2
∇2Φλ(µ/t−1)]

= λ2

n∑

i=1

E[Φλ(µ/t− 1)iv
2
i ]

≤ λ2

n∑

i=1

Φλ(µ/t− 1)i · (126ε2/k + 3(E[(µnew
i − µi)/µi])2)

= 126
λ2ε2

k
Φλ(µ/t− 1) + 3λ2

n∑

i=1

Φλ(µ/t− 1)i · (E[(µnew
i − µi)/µi])2

≤ 126
λ2ε2

k
Φλ(µ/t− 1) + 3λ

(
n∑

i=1

λ2Φλ(µ/t− 1)2
i

)1/2

· ‖E[µ−1(µnew − µ)]‖2
4

≤ 126
λ2ε2

k
Φλ(µ/t− 1) + 3λ

(
λ
√
n+ ‖∇Φλ(µ/t− 1)‖2

)
· (5ε)2,

where the first step follows by defining Φλ(x)i = cosh(λxi), the second step follows from

(2.19), the fourth step follows from Cauchy-Schwarz inequality, the fifth step follows from

Part 3 of Lemma 2.4.11 and the fact that ‖E[µ−1(µnew−µ)]‖2
4 ≤ ‖E[µ−1(µnew−µ)]‖2

2 ≤ (5ε)2

(Lemma 2.4.7).
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Then,

E[Φλ(µ/t+ v − 1)]

≤ Φλ(µ/t− 1)− (
ε

2
− 10εmp · ε)‖∇Φλ(µ/t− 1)‖2 + 252

λ2ε2

k
Φλ(µ/t− 1)

+ 150λ2ε2
√
n+ 150λε2‖Φλ(µ/t− 1)‖2

≤ Φλ(µ/t− 1)− ε

3
‖∇Φλ(µ/t− 1)‖2 + 252

λ2ε2

k
Φλ(µ/t− 1) + 150λ2ε2

√
n

≤ Φλ(µ/t− 1)− λε

3
√
n

(Φλ(µ/t− 1)− n) + 252
λ2ε2

k
Φλ(µ/t− 1) + 150λ2ε2

√
n

≤ Φλ(µ/t− 1)− λε

3
√
n

(Φλ(µ/t− 1)/5− 2n),

where the second step follows from 1000λε ≤ 1 and 1000εmp ≤ 1, the third step follows from

Part 2 of Lemma 2.4.11, and the last step follows from 1000λεmp ≤ log n and k ≥
√
nε logn
εmp

.

As a corollary, we have the following:

Lemma 2.4.13. During the Main algorithm, Assumption 2.4.1 is always satisfied. Fur-

thermore, the ClassicalStep happens with probability O( 1
n2 ) each step.

Proof. The second and the fourth assumptions simply follow from the choice of εmp and k.

Let Φ(k) be the potential at the k-th iteration of the Main. The ClassicalStep

ensures that Φ(k) ≤ n3 at the end of each iteration. By the definition of Φ and the choice of

λ in Main, we have that
∥∥∥xs
t
− 1
∥∥∥
∞
≤ ln(2n3)

λ
≤ 0.1.

This proves the first assumption xs ≈0.1 t with t > 0.
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For the third assumption, we note that

‖δµ‖2 =

∥∥∥∥
(
tnew

t
− 1

)
xs− ε

2
· tnew · ∇Φλ(µ/t− 1)

‖∇Φλ(µ/t− 1)‖2

∥∥∥∥
2

≤
∣∣∣∣
tnew

t
− 1

∣∣∣∣ ‖xs‖2 +
ε

2
tnew

≤ ε

3
√
n
· 1.1√nt+ 1.01 · ε

2
t ≤ εt,

where we used xs ≈0.1 t and the formula of tnew. Hence, we proved all assumptions in

Assumption 2.4.1.

Now, we bound the probability that ClassicalStep happens. In the beginning of

the Main, Lemma 3.8.2 is used to modify the linear program with parameter min( δ
2
, 1
λ
).

Hence, the initial point x and s satisfies xs ≈1/λ 1. Therefore, we have Φ(0) ≤ 10n.

Lemma 2.4.12 shows E[Φ(k+1)] ≤ (1 − λε
15
√
n
)E[Φ(k)] + λε

15
√
n
10n. By induction, we have that

E[Φ(k)] ≤ 10n for all k. Since the potential is positive, Markov inequality shows that for any

k, Φ(k) ≥ n3 with probability at most O( 1
n2 ).
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2.4.4 Analysis of cost per iteration

To apply the data structure for projection maintenance (Theorem 2.5.1), we need to

first prove the input vector w does not change too much for each step.

Lemma 2.4.14. Let xnew = x+ δ̃x and snew = s+ δ̃s. Let w = x
s
and wnew = xnew

snew . Then we

have

n∑

i=1

(
E[wnew

i ]− wi
wi

)2

≤ 64ε2,
n∑

i=1

(
E

[(
wnew
i − wi
wi

)2
])2

≤ 1000ε2,

∣∣∣∣
wnew
i − wi
wi

∣∣∣∣ ≤ 0.1.

Proof. From the definition, we know that

wnew
i

wi
=

1

s−1
i xi

xi + δ̃x,i

si + δ̃s,i
=

1 + x−1
i δ̃x,i

1 + s−1
i δ̃s,i

.

Part 1. For each i ∈ [n], we have

E[wnew
i ]

wi
− 1 = E

[
1 + x−1

i δ̃x,i

1 + s−1
i δ̃s,i

]
− 1

= E

[
x−1
i δ̃x,i − s−1

i δ̃s,i

1 + s−1
i δ̃s,i

]

≤ 2|E[x−1
i δ̃x,i − s−1

i δ̃s,i]| by |s−1
i δ̃s,i| ≤ 0.2, part 3 of Lemma 2.4.3

≤ 2|E[x−1
i δ̃x,i]|+ 2|E[s−1

i δ̃s,i]|. by triangle inequality

Thus, summing over all the coordinates gives

n∑

i=1

(
E[wnew

i ]− wi
wi

)2

≤
n∑

i=1

8(E[x−1
i δ̃x,i])

2 + 8(E[s−1
i δ̃s,i])

2 ≤ 64ε2.

where the first step follows by triangle inequality, the last step follows by ‖E[s−1δ̃s]‖2
2, ‖E[x−1δ̃x]‖2

2 ≤

4ε2 (Part 1 of Lemma 2.4.3).
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Part 2. For each i ∈ [n], we have

E

[(
wnew
i

wi
− 1

)2
]

= E



(
x−1
i δ̃x,i − s−1

i δ̃s,i

1 + s−1
i δ̃s,i

)2



≤ 2E[(x−1
i δ̃x,i − s−1

i δ̃s,i)
2]

≤ 2E[2(x−1
i δ̃x,i)

2 + 2(s−1
i δ̃s,i)

2]

= 4E[(x−1
i δ̃x,i)

2] + 4E[(s−1
i δ̃s,i)

2]

= 4V[x−1
i δ̃x,i] + 4(E[x−1

i δ̃x,i])
2 + 4V[s−1

i δ̃s,i] + 4(E[s−1
i δ̃s,i])

2

≤ 16ε2/k + 4(E[x−1
i δ̃x,i])

2 + 4(E[s−1
i δ̃s,i])

2,

where the last step follows by V[x−1
i δ̃x,i],V[s−1

i δ̃s,i] ≤ 2ε2/k (Part 2 of Lemma 2.4.3).

Thus summing over all the coordinates

n∑

i=1

(
E

[(
wnew
i

wi
− 1

)2
])2

≤ 512nε4

k2
+ 64

n∑

i=1

(
(E[x−1

i δ̃x,i])
4 + (E[s−1

i δ̃s,i])
4
)

≤ 512nε4

k2
+ 2048ε4

≤ 1000ε2,

where the last step follows by ‖E[s−1δ̃s]‖2
2, ‖E[x−1δ̃x]‖2

2 ≤ 4ε2 and k ≥ √nε.

Part 3. For each i ∈ [n]

∣∣∣∣
wnew
i

wi
− 1

∣∣∣∣ =

∣∣∣∣∣
1 + x−1

i δ̃x,i

1 + s−1
i δ̃s,i

− 1

∣∣∣∣∣ ≤
∣∣∣∣
1 + 0.02

1− 0.02
− 1

∣∣∣∣ ≤ 0.1.

where the second step follows by |x−1
i δ̃x,i| ≤ 0.02 and |s−1

i δ̃s,i| ≤ 0.02 (Part 3 of Lemma 2.4.3).
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Now, we analyze the cost per iteration in procedure Main. This is a direct application

of our projection maintenance result.

Lemma 2.4.15. For ε ≥ 1√
n
, each iteration of Main (Algorithm 3.6) takes

n1+a+o(1) + ε · (nω−1/2+o(1) + n2−a/2+o(1))

expected time per iteration in amortized where 0 ≤ a ≤ α controls the batch size in the data

structure and α is the dual exponent of matrix multiplication.

Proof. Lemma 2.4.13 shows that ClassicalStep happens with only O(1/n2) probability

each step. Since the cost of each step only takes Õ(n2.5), the expected cost is only Õ(n0.5).

Lemma 2.4.14 shows that the conditions in Theorem 2.5.1 holds with the parameter

C1 = O(ε), C2 = O(ε), εmp = Θ(1).

In the procedure StochasticStep, Theorem 2.5.1 shows that the amortized time

per iteration is mainly dominated by two steps:

1. mp.Update(w): O(ε · (nω−1/2+o(1) + n2−a/2+o(1))).

2. mp.Query( 1√
XS
δ̃µ): O(n · ‖δ̃µ‖0 + n1+a+o(1)).

Combining both running time and using E[‖δ̃µ‖0] = O(1 + k) = O(ε
√
n log2 n) (ac-

cording to the probability of success in Claim 2.4.6 and matching Assumption 2.4.1), we

have the result.
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2.4.5 Main result

Proof of Theorem 2.2.1. In the beginning of the Main algorithm, Lemma 3.8.2 is called to

modify the linear program. Then, we run the stochastic central path method on this modified

linear program.

When the algorithm stops, we obtain a vector x and s such that xs ≈0.1 t with t ≤ δ2

2n
.

Hence, the duality gap is bounded by
∑

i xisi ≤ δ2. Lemma 3.8.2 shows how to obtain an

approximate solution of the original linear program with the guarantee needed using the x

and s we just found.

Since t is decreased by 1− ε
3
√
n
factor each iteration, it takes O(

√
n
ε
· log(n

δ
)) iterations

in total. In Lemma 2.4.15, we proved that each iteration takes

n1+a+o(1) + ε · (nω−1/2+o(1) + n2−a/2+o(1)).

and hence the total runtime is

O(n2.5−a/2+o(1) + nω+o(1) +
n1.5+a+o(1)

ε
) · log(

n

δ
).

Since ε = Θ( 1
logn

), the total runtime is

O(n2.5−a/2+o(1) + nω+o(1) + n1.5+a+o(1)) · log(
n

δ
).

Finally, we note that the optimal choice of a is min(2
3
, α), which gives the promised runtime.

Using the same proof, but different choice of the parameters, we can analyze the

ultra short step stochastic central path method, where each step involves sampling only

polylogarithmic coordinates. As we mentioned before, the runtime is still around nω.
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Corollary 2.4.16. Under the same assumption as Theorem 2.2.1, if we choose ε = Θ(1/
√
n)

and a = min(1
3
, α), the expected time of Main (Algorithm 3.6) is

(
nω+o(1) + n2.5−α/2+o(1) + n2+1/3+o(1)

)
· log(

n

δ
).
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2.5 Projection Maintenance

The goal of this section is to prove the following theorem:

Theorem 2.5.1 (Projection maintenance). Given a full rank matrix A ∈ Rd×n with n ≥ d

and a tolerance parameter 0 < εmp < 1/4. Given any positive number a such that a ≤ α

where α is the dual exponent of matrix multiplication. There is a deterministic data structure

(Algorithm 2.3, 2.4) that approximately maintains the projection matrices

√
WA>(AWA>)−1A

√
W

for positive diagonal matrices W through the following two operations:

1. Update(w): Output a vector ṽ such that for all i,

(1− εmp)ṽi ≤ wi ≤ (1 + εmp)ṽi.

2. Query(h): Output
√
Ṽ A>(AṼ A>)−1A

√
Ṽ h for the ṽ outputted by the last call to

Update.

The data structure takes n2dω−2 time to initialize and each call of Query(h) takes

time

n · ‖h‖0 + n1+a+o(1).

Furthermore, if the initial vector w(0) and the (random) update sequence w(1), · · · , w(T ) ∈ Rn

satisfies

n∑

i=1

(
E[w

(k+1)
i ]− w(k)

i

w
(k)
i

)2

≤ C2
1 ,

n∑

i=1


E



(
w

(k+1)
i − w(k)

i

w
(k)
i

)2





2

≤ C2
2 ,

∣∣∣∣∣
w

(k+1)
i − w(k)

i

w
(k)
i

∣∣∣∣∣ ≤
1

4
.
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Algorithm 2.3 Projection Maintenance Data Structure - Initial, Query
1: datastructure MaintainProjection . Theorem 2.5.1
2:
3: members
4: w ∈ Rn . Target vector
5: v, ṽ ∈ Rn . Approximate vector
6: A ∈ Rd×n

7: M ∈ Rn×n . Approximate Projection Matrix
8: εmp ∈ (0, 1/4) . Tolerance
9: a ∈ (0, α] . Batch Size for Update (na)
10: end members
11:
12: procedure Initialize(A,w, εmp, a) . Lemma 2.5.2
13: w ← w, v ← w, εmp ← εmp, A← A, a← a
14: M ← A>(AV A>)−1A
15: end procedure
16:
17: procedure Query(h) . Lemma 2.5.4
18: Let S̃ be the indices i such that (1− εmp)vi ≤ wi ≤ (1 + εmp)vi is false.
19: return

√
Ṽ · (M · (

√
Ṽ · h))−

√
Ṽ · (MS̃ · ((∆̃−1

S̃,S̃
+MS̃,S̃)−1 · (M>

S̃

√
Ṽ h)))

20: end procedure
21:
22: end datastructure

with the expectation is conditional on w
(k)
i for all k = 0, 1, · · · , T − 1. Then, the amortized

expected time5 per call of Update(w) is

(C1/εmp + C2/ε
2
mp) · (nω−1/2+o(1) + n2−a/2+o(1)).

Remark 2.5.1. For our linear program algorithm, we have C1 = O(1/ log n), C2 = O(1/ log n)

and εmp = Θ(1). See Lemma 2.4.14.

5If the input is deterministic, so is the output and the runtime.
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Algorithm 2.4 Projection Maintenance Data Structure - Update
1: datastructure MaintainProjection . Theorem 2.5.1
2: procedure Update(wnew) . Lemma 2.5.3
3: yi ← wnew

i /vi − 1, ∀i ∈ [n]
4: r ← the number of indices i such that |yi| ≥ εmp.
5: if r < na then
6: vnew ← v
7: Mnew ←M
8: else
9: Let π : [n]→ [n] be a sorting permutation such that |yπ(i)| ≥ |yπ(i+1)|
10: while 1.5 · r < n and |yπ(d1.5·re)| ≥ (1− 1/ log n)|yπ(r)| do
11: r ← min(d1.5 · re, n)
12: end while

13: vnew
π(i) ←

{
wnew
π(i) i ∈ {1, 2, · · · , r}

vπ(i) i ∈ {r + 1, · · · , n}
14:
15: . Compute Mnew = A>(AV newA>)−1A via Matrix Woodbury
16: ∆← diag(vnew − v) . ∆ ∈ Rn×n and ‖∆‖0 = r
17: Let S ← π([r]) be the first r indices in the permutation.
18: Let MS ∈ Rn×r be the r columns from S of M .
19: Let MS,S,∆S,S ∈ Rr×r be the r rows and columns from S of M and ∆.
20: Mnew ←M −MS · (∆−1

S,S +MS,S)−1 · (MS)>

21: end if
22: w ← wnew, v ← vnew, M ←Mnew

23: ṽi ←
{
vi if (1− εmp)vi ≤ wi ≤ (1 + εmp)vi

wi otherwise
24: return ṽ
25: end procedure
26: end datastructure

2.5.1 Proof outline

For intuition, we consider the case C1 = Θ(1), C2 = Θ(1), and εmp = Θ(1) in this

explanation. The correctness of the data structure directly follows from Woodbury matrix

identity. The amortized time analysis is based on a potential function that measures the
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distance of the approximate vector v and the target vector w. We will show that

• The cost to update the projection M is proportional to the decrease of the potential.

• Each call to query increase the potential by a fixed amount.

Combining both together gives the amortized runtime bound of our data structure.

Now, we explain the definition of the potential. Consider the k-th round of the

algorithm. For all i ∈ [n], we define x(k)
i =

w
(k)
i

v
(k)
i

− 1. Note that |x(k)
i | measures the relative

distance between w(k)
i and v(k)

i . Our algorithm fixes the indices with largest error x(k)
i . To

capture the fact that updating in a larger batch is more efficient, we define the potential as

a weighted combination of the error where we put more weight to higher x(k)
i . Formally, we

sort the coordinates of x(k) such that |x(k)
i | ≥ |x(k)

i+1| and define the potential by

Ψk =
n∑

i=1

gi · ψ(x
(k)
i ).

where gi are positive decreasing numbers to be chosen and ψ is a symmetric (ψ(x) = ψ(−x))

positive function that increases on both sides. For intuition, one can think ψ(x) behaves

roughly like |x|.

Each iteration we update the projection matrix such that the error of |x1|, · · · , |xr|

drops from roughly εmp to 0. This decreases the potential of ψ(x
(k)
i ) by Ω(εmp) from i =

1, · · · , r. Therefore, the whole potential decreases by Ω(εmp
∑r

i=1 gi). To make the term
∑r

i=1 gi proportional to the time to update a rank r part of the projection matrix, we set

gi =

{
n−a, if i < na;

i
ω−2
1−a−1n−

a(ω−2)
1−a , otherwise.

(2.20)
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where ω is the exponent of matrix multiplication and a is any positive number less than or

equals to the dual exponent of matrix multiplication. Lemma 2.6.3 shows that g is indeed

non-increasing and Lemma 2.5.3 shows that the update time of data-structure is indeed

O(rgrn
2+o(1)) = O(

∑r
i=1 gin

2+o(1)) for any r ≥ na.

Each call to Update, the expectation of the error vector x(k) moves roughly in an

unit `2 ball. Therefore, the changes of the potential is roughly upper bounded (
∑n

i=1 g
2
i )

1/2 ≈

nω−5/2. Since it takes us n2+o(1) time to decrease the potential by roughly 1 in the update

step, the total time is roughly nω−1/2.

For the case of stochastic central path, we note that the variance of the vector x is

quite small. By choosing a smooth potential function ψ (see (2.21)), we can essentially give

the same result as if there is no variance.
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2.5.2 Proof of Theorem 2.5.1

Now, we give the proof of Theorem 2.5.1. We will defer some simple calculations into

later sections.

Proof of Theorem 2.5.1.

Proof of Correctness. The definition of ṽ in Line 20 ensures that (1 − εmp)ṽi ≤

wi ≤ (1 + εmp)ṽi.

Using the Matrix Woodbury formula, one can verify that the update rule in Line 17

correctly maintains M = A>(AV A>)−1A. See the deviation of the formula in Lemma 2.5.2.

By the same reasoning, the Line 19 outputs the vector
√
Ṽ A>(AṼ A>)−1A

√
Ṽ h. This

completes the proof of correctness.

Definition of x and y. Consider the k-th round of the algorithm. For all i ∈ [n],

we define x(k)
i , x(k+1)

i and y(k)
i as follows:

x
(k)
i =

w
(k)
i

v
(k)
i

− 1, y
(k)
i =

w
(k+1)
i

v
(k)
i

− 1, x
(k+1)
i =

w
(k+1)
i

v
(k+1)
i

− 1.

Note that the difference between x(k)
i and y(k)

i is that w is changing. The difference between

y
(k)
i and x(k+1)

i is that v is changing. For simplicity, we define βi = (E[w
(k+1)
i ] − w(k)

i )/w
(k)
i ,

then one of assumption becomes
∑n

i=1 β
2
i ≤ C2

1 .

Assume sorting. Assume the coordinates of vector x(k) ∈ Rn are sorted such that

|x(k)
i | ≥ |x(k)

i+1|. Let τ and π are permutations such that |x(k+1)
τ(i) | ≥ |x

(k+1)
τ(i+1)| and |y

(k)
π(i)| ≥

|y(k)
π(i+1)|.
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Definition of Potential function. Let g be defined in (2.20). Let ψ : R → R be

defined by

ψ(x) =





|x|2
2εmp

, |x| ∈ [0, εmp]

εmp − (2εmp−|x|)2

2εmp
, |x| ∈ (εmp, 2εmp]

εmp. |x| ∈ (2εmp,+∞)

(2.21)

We define the potential at the k-th round by

Ψk =
n∑

i=1

gi · ψ(x
(k)
τk(i)).

where τk(i) is the permutation such that |x(k)
τk(i)| ≥ |x

(k)
τk(i+1)|.

Bounding the potential.

We can express Ψk+1 −Ψk as follows:

Ψk+1 −Ψk =
n∑

i=1

gi ·
(
ψ(x

(k+1)
τ(i) )− ψ(x

(k)
i )
)

=
n∑

i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k)
i )
)

︸ ︷︷ ︸
w move

−
n∑

i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k+1)
τ(i) )

)

︸ ︷︷ ︸
v move

. (2.22)

Now, using Lemma 2.5.5 and 3.6.12, and the fact that Ψ0 = 0 and ΨT ≥ 0, with (2.22), we

get

0 ≤ ΨT −Ψ0 =
T−1∑

k=0

(Ψk+1 −Ψk)

≤
T−1∑

k=0

(
O(C1 + C2/εmp) ·

√
log n · (n−a/2 + nω−5/2)− Ω(εmprkgrk/ log n)

)

= T ·O(C1 + C2/εmp) ·
√

log n · (n−a/2 + nω−5/2)−
T∑

k=1

Ω(εmprkgrk/ log n),
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where the third step follows by Lemma 2.5.5 and Lemma 3.6.12 and rk is the number of

coordinates we update during that iteration.

Therefore, we get,

T∑

k=1

rkgrk = O
(
T · (C1/εmp + C2/ε

2
mp) · log3/2 n · (nω−5/2 + n−a/2)

)
.

Proof of running time. See the Section 2.5.3.
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2.5.3 Initialization time, update time, query time

To formalize the amortized runtime proof, we first analyze the initialization time

(Lemma 2.5.2), update time (Lemma 2.5.3), and query time (Lemma 2.5.4) of our projection

maintenance data-structure.

Lemma 2.5.2 (Initialization time). The initialization time of data-structure Maintain-

Projection (Algorithm 2.3) is O(n2dω−2).

Proof. Given matrix A ∈ Rd×n and diagonal matrix V ∈ Rn×n, computing A>(AV A>)−1A

takes O(n2dω−2).

Lemma 2.5.3 (Update time). The update time of data-structure MaintainProjection

(Algorithm 2.4) is O(rgrn
2+o(1)) where r is the number of indices we updated in v.

Proof. Let AS ∈ Rd×r be the r columns from S of A. From k-th query to (k + 1)-th query,

we have

A>(AV (k+1)A>)−1A

= A>(A(V (k) + ∆)A>)−1A

= A>
(
(AV (k)A>)−1 − (AV (k)A>)−1AS(∆−1

S,S + A>S (AV (k)A>)−1AS)−1A>S (AV (k)A>)−1
)
A

= A>(AV (k)A>)−1A− A>(AV (k)A>)−1AS(∆−1
S,S + A>S (AV (k)A>)−1AS)−1A>S (AV (k)A>)−1A

= M (k) −M (k)
S (∆−1

S,S +M
(k)
S,S)−1(M

(k)
S )>,

where the second step follows by Matrix Woodbury Identity and the last step follows by

definition of M (k) ∈ Rn×n.
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Thus the update rule of matrix M (k+1) ∈ Rn×n can be written as

M (k+1) = M (k) −M (k)
S (∆−1

S,S + (M (k))S,S)−1(M
(k)
S )>.

The updates in round k can be splitted into four parts:

1. Adding two r × r matrices takes O(r2) time.

2. Computing the inverse of an r × r matrix takes O(rω+o(1)) time.

3. Computing the matrix multiplication of a n× r and r×n matrix takes O(rgr ·n2+o(1))

time where we used that r ≥ na (Lemma 2.2.3).

4. Adding two n× n matrices together takes O(n2) time.

Hence, the total cost is

O(r2 + rω+o(1) + rgr · n2+o(1) + n2) = O(r2 + rω+o(1) + rgr · n2+o(1)) = O(rgr · n2+o(1)).

where the first step follows by rgr ≥ 1 for all r ≥ na and the last step follows by the

calculations.

Lemma 2.5.4 (Query time). The query time of data-structure MaintainProjection (Al-

gorithm 2.3) is O(n · ‖h‖0 + n1+a+o(1)).

Proof. Let ∆̃ satisfies Ṽ = V + ∆̃. Let S̃ ⊂ [n] denote the support of ∆̃ and then |S̃| ≤ na.

Let r̃ denote |S̃|. We abuse the notation here, ∆̃ denotes both n× n diagonal matrix and a

length n vector.
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Using Matrix Woodbury Identity and definition of M , a same proof as Update time

(Lemma 2.5.3) shows

A>(AṼ A>)−1A = M +MS̃

(
∆̃−1

S̃,S̃
+MS̃,S̃

)−1

M>
S̃
,

where ∆̃S̃×S̃ has size r̃ × r̃, MS̃,S̃ has size r̃ × r̃ and MS̃ has size n× r̃.

To compute
√
Ṽ A>(AṼ A>)−1A

√
Ṽ h, we just need to compute

√
Ṽ M

√
Ṽ h+

√
Ṽ MS̃(∆̃−1

S̃,S̃
+MS̃,S̃)−1M>

S̃

√
Ṽ h.

Note the running time of computing the first term of the above equation only takes O(n·‖h‖0)

time.

Next, we analyze the cost of computing the second term of the above equation. It

contains several parts:

1. Computing M̃>
S̃
· (
√
Ṽ · h) ∈ Rr̃ takes r̃‖h‖0 time.

2. Computing (∆̃−1

S̃,S̃
+MS̃,S̃)−1 ∈ Rr̃×r̃ that is the inverse of a r̃ × r̃ matrix takes r̃ω+o(1)

time.

3. Computing matrix-vector multiplication between r̃ × r̃ matrix ((∆̃−1

S̃,S̃
+MS̃,S̃)−1) and

r̃ × 1 vector (M̃>
S̃

√
Ṽ h) takes O(r̃2) time.

4. Computing matrix-vector multiplication between n× r̃ matrix (MS̃) and r̃ × 1 vector

((∆̃−1

S̃,S̃
+MS̃,S̃)−1M>

S̃

√
Ṽ h) takes O(nr̃) time.

5. Computing the entry-wise product of two n vectors takes O(n) time

56



Thus, overall the running time is

O(r̃‖h‖0 + r̃ω+o(1) + r̃2 + nr̃ + n) = O(r̃ω+o(1) + nr̃) = O(na·ω+o(1) + n1+a).

Finally, we note that ω ≤ 3−α ≤ 3−a (Lemma 2.6.3) and hence a·ω ≤ a(3−a) ≤ 1+a.

Therefore, the runtime is n1+a+o(1).
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2.5.4 Bounding w move

The goal of this section is to prove Lemma 2.5.5.

Lemma 2.5.5 (w move). We have

n∑

i=1

gi · E
[
ψ(y

(k)
π(i))− ψ(x

(k)
i )
]
≤ O(C1 + C2/εmp) ·

√
log n · (n−a/2 + nω−5/2).

Proof. Observe that since the errors |x(k)
i | are sorted in descending order, and ψ(x) is sym-

metric and non-decreasing function for x ≥ 0, thus ψ(x
(k)
i ) is also in decreasing order. In

addition, note that g is decreasing, we have

n∑

i=1

giψ(x
(k)
π(i)) ≤

n∑

i=1

giψ(x
(k)
i ). (2.23)

Hence the first term in (2.22) can be upper bounded as follows:

E

[
n∑

i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k)
i )
)]

≤ E

[
n∑

i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k)
π(i))

)]
by (2.23)

=
n∑

i=1

gi · E[ψ(y
(k)
π(i))− ψ(x

(k)
π(i))]

= O(C1 + C2/εmp) ·
√

log n · (n−a/2 + nω−5/2). by Lemma 2.5.6

Thus, we complete the proof of w move Lemma.

It remains to prove the following Lemma,
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Lemma 2.5.6.

n∑

i=1

gi · E[ψ(y
(k)
π(i))− ψ(x

(k)
π(i))] = O(C1 + C2/εmp) ·

√
log n · (n−a/2 + nω−5/2).

Proof. Let I be the set of indices such that |x(k)
i | ≤ 1. We separate the term into two:

n∑

i=1

gi ·E[ψ(y
(k)
π(i))−ψ(x

(k)
π(i))] =

∑

i∈I

gπ−1(i) ·E[ψ(y
(k)
i )−ψ(x

(k)
i )]+

∑

i∈Ic
gπ−1(i) ·E[ψ(y

(k)
i )−ψ(x

(k)
i )].

Case 1: Terms from I Mean value theorem shows that

ψ(y
(k)
i )− ψ(x

(k)
i ) = ψ′(x

(k)
i )(y

(k)
i − x(k)

i ) +
1

2
ψ′′(ζ)(y

(k)
i − x(k)

i )2

≤ ψ′(x
(k)
i )

w
(k+1)
i − w(k)

i

v
(k)
i

+
L2

2

(
w

(k+1)
i − w(k)

i

v
(k)
i

)2

,

where L2 = maxx ψ
′′(x). Taking conditional expectation given w(k) on both sides

E[ψ(y
(k)
i )− ψ(x

(k)
i )] ≤ ψ′(x

(k)
i ) · E[w

(k+1)
i ]− w(k)

i

v
(k)
i

+
L2

2

1

(v
(k)
i )2

E[(w
(k+1)
i − w(k)

i )2]

= ψ′(x
(k)
i ) · w

(k)
i

v
(k)
i

βi +
L2

2

(w
(k)
i )2

(v
(k)
i )2

γi,

where βi =
E[w

(k+1)
i ]−w(k)

i

w
(k)
i

and γi = E

[(
w

(k+1)
i −w(k)

i

w
(k)
i

)2
]
.

To bound
∑

i∈I gπ−1(i) E[ψ(y
(k)
i )−ψ(x

(k)
i )], we need to bound the following two terms,

∑

i∈I

gπ−1(i)ψ
′(x

(k)
i )

w
(k)
i

v
(k)
i

βi, and
∑

i∈I

gπ−1(i)

L2

2

(w
(k)
i )2

(v
(k)
i )2

γi. (2.24)

For the term w
(k)
i

v
(k)
i

, we note that for i ∈ I, we have
∣∣∣∣
w

(k)
i

v
(k)
i

∣∣∣∣ ≤
∣∣∣x(k)
i

∣∣∣+ 1 ≤ 2. Using this,
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we can bound the first term by

∑

i∈I

gπ−1(i)ψ
′(x

(k)
i )

w
(k)
i

v
(k)
i

βi ≤


∑

i∈I

(
gπ−1(i)ψ

′(x
(k)
i )

w
(k)
i

v
(k)
i

)2∑

i∈I

β2
i




1/2

≤ O(L1)

(
n∑

i=1

g2
i · C2

1

)1/2

= O(C1L1‖g‖2). (2.25)

where L1 = maxx |ψ′(x)|, the first step follows by Cauchy-Schwarz inequality and the second

step follows by
∣∣∣ψ′(x(k)

i ) · w(k)
i /v

(k)
i

∣∣∣ ≤ 2L1 and
∑n

i=1 β
2
i ≤ C2

1 .

For the second term, we have

∑

i∈I

gπ−1(i)

L2

2

(w
(k)
i )2

(v
(k)
i )2

γi ≤ O(L2) ·
n∑

i=1

gi · γi = O(C2L2‖g‖2). (2.26)

Now, combining (2.25) and (2.26) and using that L1 = O(1), L2 = O(1/εmp) (from

part 4 of Lemma 2.5.9) and ‖g‖2 ≤
√

log n ·O(n−a/2 + nω−5/2) (from Lemma 2.5.7), we have

that

∑

i∈I

gπ−1(i) · E[ψ(y
(k)
i )− ψ(x

(k)
i )] ≤ O(C1 + C2/εmp) ·

√
log n · (n−a/2 + nω−5/2).

Case 2: Terms from Ic

For all i ∈ Ic, we have |x(k)
i | ≥ 1. Note that ψ(x) is a constant for x ≥ 2εmp and that

εmp ≤ 1/4. Therefore, if |y(k)
i | ≥ 1/2, we have that ψ(y

(k)
i ) − ψ(x

(k)
i ) = 0. Hence, we only

need to consider the i ∈ Ic such that |y(k)
i | < 1/2. For these i, we have that

1

2
< |y(k)

i − x(k)
i | =

∣∣∣∣∣
w

(k+1)
i − w(k)

i

v
(k)
i

∣∣∣∣∣ =

∣∣∣∣∣
w

(k+1)
i

v
(k)
i

∣∣∣∣∣

∣∣∣∣∣
w

(k+1)
i − w(k)

i

w
(k+1)
i

∣∣∣∣∣ ≤
3

2

∣∣∣∣∣
w

(k+1)
i − w(k)

i

w
(k+1)
i

∣∣∣∣∣ ,
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where we used that
∣∣∣y(k)
i

∣∣∣ =

∣∣∣∣
w

(k+1)
i

v
(k)
i

− 1

∣∣∣∣ ≤ 1/2. Hence, we have that
∣∣∣∣
w

(k+1)
i −w(k)

i

w
(k+1)
i

∣∣∣∣ > 1/3 and

hence
∣∣∣∣
w

(k+1)
i −w(k)

i

w
(k)
i

∣∣∣∣ > 1/4, which is impossible.

Hence, we have
∑

i∈Ic
gπ−1(i) · E[ψ(y

(k)
i )− ψ(x

(k)
i )] = 0.

Combining both cases, we have the result.

Lemma 2.5.7.
(

n∑

i=1

g2
i

)1/2

≤
√

log n ·O(n−a/2 + nω−5/2).

Proof. Since function g behaves differently when i ≤ na and i > na, we split the sum into

two parts.

For the first part, we have
na∑

i=1

g2
i =

na∑

i=1

n−2a = n−a.

For the second part, we have
n∑

i=na

g2
i =

n∑

i=na

i
2(ω−2)

1−a −2n−
2a(ω−2)

1−a =
n∑

i=na

1

i
· i

2(ω−2)
1−a −1n−

2a(ω−2)
1−a .

Note that

max
i∈[na,n]

i
2(ω−2)

1−a −1n−
2a(ω−2)

1−a = max(na
2(ω−2)

1−a −an−
2a(ω−2)

1−a , n
2(ω−2)

1−a −1n−
2a(ω−2)

1−a ) = max(n−a, n2ω−5).

Thus, the second part is
n∑

i=na

g2
i =

n∑

i=na

1

i
·max(n−a, n2ω−5) = O(log n) ·max(n−a, n2ω−5).

Combining the first part and the second part completes the proof.
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2.5.5 Bounding v move

Lemma 2.5.8 (v move). We have,

n∑

i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k+1)
τ(i) )

)
≥ Ω(εmprkgrk/ log n).

Proof. We split the proof into two cases.

We first understand some simple facts which are useful in the later proof. Note

that from definition of x(k+1)
i , we know that x(k+1) has rk coordinates are 0. Basically,

‖y(k) − x(k+1)‖0 = rk. The difference between those vectors is, for the largest rk coordinates

in y(k), we erase them in x(k+1). Then for each i ∈ [n−rk], x(k+1)
τ(i) = y

(k)
π(i+rk). For convenience,

we define y(k)
π(n+i) = 0, ∀i ∈ [rk] .

Case 1. We exit the while loop when 1.5rk ≥ n.

Let u∗ denote the largest u s.t. |y(k)
π(u)| ≥ εmp. If u∗ = rk, we have that |y(k)

π(rk)| ≥ εmp ≥

εmp/100. Otherwise, the condition of the loop shows that

|y(k)
π(rk)| ≥ (1− 1/ log n)log1.5 rk−log1.5 u

∗|y(k)
π(u∗)| ≥ (1− 1/ log n)log1.5 nεmp ≥ εmp/100.

where we used that n ≥ 4.

According to definition of x(k+1)
τ(i) , we have

n∑

i=1

gi(ψ(y
(k)
π(i))− ψ(x

(k+1)
τ(i) )) =

n∑

i=1

gi(ψ(y
(k)
π(i))− ψ(y

(k)
π(i+rk))) ≥

n∑

i=n/3+1

gi(ψ(y
(k)
π(i))− ψ(y

(k)
π(i+rk)))

≥
n∑

i=n/3+1

gi(ψ(y
(k)
π(i))) ≥

2n/3∑

i=n/3+1

giψ(εmp/100) ≥ Ω(rkgrkεmp),
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where the first step follows from x
(k+1)
τ(i) = y

(k)
π(i+rk), the second step follows from ψ(|x|) is

non-decreasing (part 2 of Lemma 2.5.9) and |y(k)
π(i)| is non-increasing, the third step follows

from 1.5rk > n and hence ψ(y
(k)
π(i+rk)) = 0 for i ≥ n/3 + 1, the fourth step follows from ψ is

non-decreasing and |y(k)
π(i)| ≥ |y

(k)
π(rk)| ≥ εmp/100 for all i < 2n/3, and the last step follows by

g is decreasing and part 3 of Lemma 2.5.9.

Case 2. We exit the while loop when 1.5rk < n and |y(k)
π(1.5rk)| < (1− 1/ log n)|y(k)

π(rk)|.

By the same argument as Case 1, we have that |y(k)
π(rk)| ≥ εmp/100. Part 3 of

Lemma 2.5.9 together with the fact

|y(k)
π(1.5r)| < min(εmp, |y(k)

π(r)| · (1− 1/ log n)),

shows that

ψ(|y(k)
π(1.5r)|)− ψ(|y(k)

π(r)|) = Ω(εmp/ log n). (2.27)
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Putting it all together, we have

n∑

i=1

gi · (ψ(y
(k)
π(i))− ψ(x

(k+1)
τ(i) ))

=
n∑

i=1

gi · (ψ(y
(k)
π(i))− ψ(y

(k)
π(i+rk))) by x(k+1)

τ(i) = y
(k)
π(i+rk)

≥
rk∑

i=rk/2

gi · (ψ(y
(k)
π(i))− ψ(y

(k)
π(i+rk))) by ψ(y

(k)
π(i))− ψ(y

(k)
π(i+rk)) ≥ 0

≥
rk∑

i=rk/2

gi · (ψ(y
(k)
π(rk))− ψ(y

(k)
π(1.5rk)))

≥
rk∑

i=rk/2

gi · Ω(
εmp

log n
) by (2.27)

≥
rk∑

i=rk/2

grk · Ω(
εmp

log n
) by gi is decreasing

= Ω (εmprkgrk/ log n) ,

where the third step follows by |y(k)
π(i)| is decreasing and ψ is non-decreasing (from part 2 of

Lemma 2.5.9).
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ε

ψ(x)′′

Figure 2.2: ψ(x), ψ(x)′ and ψ(x)′′. For εmp ∈ (0, 1).

2.5.6 Potential function ψ

Lemma 2.5.9 (Properties of function ψ). Let function ψ be defined in (2.21). Then function

ψ satisfies the following properties:

1. Symmetric (ψ(−x) = ψ(x)) and ψ(0) = 0;

2. ψ(|x|) is non-decreasing;

3. |ψ′(x)| = Ω(1), ∀|x| ∈ [0.01εmp, εmp];

4. L1
def
= maxx ψ

′(x) = 1 and L2
def
= maxx ψ

′′(x) = 1/εmp;

5. ψ(x) is a constant for |x| ≥ 2εmp.

Proof. We can see that

ψ(x)′ =





|x|
εmp

, |x| ∈ [0, εmp]
2εmp−|x|
εmp

, |x| ∈ (εmp, 2εmp]

0, x ∈ (2εmp,+∞)

and ψ(x)′′ =





1
εmp

, x ∈ [0, εmp] ∪ [−2εmp,−εmp]
− 1
εmp

, x ∈ (εmp, 2εmp] ∪ [−εmp, 0]

0. x ∈ (2εmp,+∞)

From the ψ(x)′ and ψ(x)′′, it is not hard to see that ψ satisfies the properties needed.
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2.6 Omitted Proofs

Lemma 2.6.1. Let x and y are (possibly dependent) random variables such that |x| ≤ cx

and |y| ≤ cy almost surely. Then, we have

V[xy] ≤ 2c2
x · V[y] + 2c2

y · V[x].

Proof. Recall that V[xy] ≤ E[(xy − t)2] for any scalar t. Hence,

V[xy] ≤ E[(xy − E[x]E[y])2] = E[(xy − xE[y] + xE[y]− E[x]E[y])2]

≤ 2E[(xy − xE[y])2] + 2E[(xE[y]− E[x]E[y])2]

≤ 2c2
x · V[y] + 2c2

y · V[x].

Lemma 2.6.2 ([Vai89b]). Given a matrix A ∈ Rd×n, vectors b ∈ Rd, c ∈ Rn. Suppose

x, s, y ∈ Rn satisfy that xs ≈0.1 t, Ax = b and A>y + s = c for some t > 0. For any

ε ∈ (0, 1/2], in Õ(n2.5 log(n/ε)) time, we can find vectors xnew, snew ∈ Rn and ynew ∈ Rd such

that

‖xnewsnew − t‖2 ≤ ε,

Axnew = b,

A>ynew + s = c.

Remark 2.6.1. Instead of using this, one can also run our algorithm with k = n forO(
√
n log n)

iterations. Since k = n, there is no randomness involves and hence Φ will decrease deter-

ministically to O(n).
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Lemma 2.6.3. ω ≤ 3− α.

Proof. We consider a n × n matrix A multiply another n × n B, we split A into n1−α

fat matrices where each of them has size nα × n. Since ω is the best exponent of matrix

multiplication, thus we know

nω+o(1) ≤ n1−α · n2+o(1),

which implies ω ≤ 3− α.

Lemma 2.6.4 (Rectangular matrix multiplication). For any n ≥ r, multiplying an n × r

with an r × n matrix or n× n with n× r takes time

n2+o(1) + r
ω−2
1−αn2−α(ω−2)

1−α +o(1).

Proof. The cost for multiplying a n×n and a n×r matrix is the same as multiplying a n×r

and a r × n matrix. So, we focus on the later case.

For the case r ≤ nα, it follows from the rectangular matrix multiplication result in

[LGU18].

For the case r ≥ nα, we let k = (n/r)
1

1−α . We can view the problem as multiplying a

k × kα and a kα × k block matrices and each block has size n
k
× n

k
size. Therefore, the total

cost is

k2+o(1) × (
n

k
)ω+o(1) = r

ω−2
1−αn2−α(ω−2)

1−α +o(1).

For a matrix A, we define ‖A‖1 to be
∑

i,j |Ai,j|.
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Lemma 2.6.5. Consider a linear program minAx=b,x≥0 c
>x with n variables and d con-

straints. Assume that

1. Diameter of the polytope : For any x ≥ 0 with Ax = b, we have that ‖x‖∞ ≤ R.

2. Lipschitz constant of the linear program : ‖c‖∞ ≤ L.

For any δ ∈ (0, 1], the modified linear program minAx=b,x≥0 c
>x with

A =

[
A 0 1

R
b− A1n

1>n 1 0

]
∈ R(d+1)×(n+2), b =

[
1
R
b

n+ 1

]
∈ Rd+1 and, c =



δ
L
· c
0
1


 ∈ Rn+2

satisfies the following :

1. x =




1n
1
1


, y =

[
0d
−1

]
and s =




1n + δ
L
· c

1
1


 are feasible primal dual vectors.

2. For any feasible primal dual vectors (x, y, s) with duality gap ≤ δ2, consider the vector

x̂ = R · x1:n (x1:n is the first n coordinates of x) is an approximate solution to the original

linear program in the following sense

c>x̂ ≤ min
Ax=b,x≥0

c>x+ LR · δ,

‖Ax̂− b‖1 ≤ 2nδ · (R‖A‖1 + ‖b‖1),

x̂ ≥ 0.

Proof. For the first result, straightforward calculations show that (x, y, s) are feasible, i.e.,

Ax =

[
A 0 1

R
b− A1n

1>n 1 0

]
·




1n
1
1


 =

[
1
R
b

n+ 1

]
= b
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and

A
>
y + s =




A> 1n
0 1

1
R
b> − 1>nA

> 0


 ·
[

0d
−1

]
+




1n + δ
L
· c

1
1




=



−1n
−1
0


+




1n + δ
L
· c

1
1




=



δ
L
· c
0
1




= c

For the second result, we let

OPT = min
Ax=b,x≥0

c>x, and, OPT = min
Ax=b,x≥0

c>x.

For any optimal x in the original LP, we consider the following x

x =




1
R
x

n+ 1− 1
R

∑
i xi

0


 (2.28)

We want to argue that x is feasible in the modified LP. It is obvious that x ≥ 0, it remains

to show Ax = b. We have

Ax =

[
A 0 1

R
b− A1n

1>n 1 0

]
·




1
R
x

n+ 1− 1
R

∑
i xi

0


 =

[
1
R
Ax

n+ 1

]
=

[
1
R
b

n+ 1

]
= b,

where the third step follows from Ax = b, and the last step follows from definition of b.

Therefore, using the definition of x in (2.28) we have that

OPT ≤ c>x =
[
δ
L
· c> 0 1

]
·




1
R
x

n+ 1− 1
R

∑
i xi

0


 =

δ

LR
· c>x =

δ

LR
·OPT . (2.29)
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where the first step follows from modified program is solving a minimization problem, the

second step follows from definition of c and (2.28), the last step follows from x is an optimal

solution in the original linear program.

Given a feasible (x, y, s) with duality gap δ2. Write x =



x1:n

τ
θ


 for some τ ≥ 0, θ ≥ 0.

We can compute c>x which is δ
L
· c>x1:n + θ. Then, we have

δ

L
· c>x1:n + θ ≤ OPT + δ2 ≤ δ

LR
·OPT +δ2, (2.30)

where the first step follows from definition of duality gap, the last step follows from (2.29).

Hence, we can upper bound the OPT of the transformed program as follows:

c>x̂ = R · c>x1:n =
RL

δ
· δ
L
c>x1:n ≤

RL

δ
(
δ

LR
·OPT +δ2) = OPT +LR · δ,

where the first step follows by x̂ = R · x1:n, the third step follows by (2.30).

We can upper bound the θ in the following sense,

θ ≤ δ

LR
·OPT +δ2 ≤ nδ + δ2 ≤ 2nδ

where the first step follows from (2.30) and δ
L
c>x1:n ≥ 0, the second step follows by OPT =

minAx=b,x≥0 c
>x ≤ nLR (because ‖c‖∞ ≤ L and ‖x‖∞ ≤ R), and the last step follows from

δ ≤ 1 ≤ n.

The constraint in the new polytope shows that

Ax1:n + (
1

R
b− A1n)θ =

1

R
b.

Using x̂ = Rx1:n, we have

A
1

R
x̂+ (

1

R
b− A1n)θ =

1

R
b.
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Rewriting it, we have Ax̂− b = (RA1n − b)θ and hence

‖Ax̂− b‖1 = ‖(RA1n − b)θ‖1 ≤ θ(‖RA1n‖1 + ‖b‖1) ≤ θ · (R‖A‖1 + ‖b‖1)

≤ 2nδ · (R‖A‖1 + ‖b‖1).
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Chapter 3

Empirical Risk Minimization

Many convex problems in machine learning and computer science share the same

form:

min
x

∑

i

fi(Aix+ bi),

where fi are convex functions on Rni with constant ni, Ai ∈ Rni×d, bi ∈ Rni and
∑

i ni = n.

This problem generalizes linear programming and includes many problems in empirical risk

minimization.

In this chapter, we give an algorithm that runs in time

O∗((nω + n2.5−α/2 + n2+1/6) log(n/δ))

where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multi-

plication, and δ is the relative accuracy. Note that the runtime has only a log dependence

on the condition numbers or other data dependent parameters and these are captured in

δ. For the current bound ω ∼ 2.38 [Vassilevska Williams’12, Le Gall’14] and α ∼ 0.31 [Le

Gall, Urrutia’18], our runtime O∗(nω log(n/δ)) matches the current best for solving a dense

least squares regression problem, a special case of the problem we consider. Very recently,

[Alman’18] proved that all the current known techniques can not give a better ω below 2.168

which is larger than our 2 + 1/6.
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Our result generalizes the very recent result of solving linear programs in the current

matrix multiplication time [Cohen, Lee, Song’19] to a more broad class of problems. Our

algorithm proposes two concepts which are different from [Cohen, Lee, Song’19] :

•We give a robust deterministic central path method, whereas the previous one is a stochas-

tic central path which updates weights by a random sparse vector.

•We propose an efficient data-structure to maintain the central path of interior point meth-

ods even when the weights update vector is dense.
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3.1 Introduction

Empirical Risk Minimization (ERM) problem is a fundamental question in statisti-

cal machine learning. There are a huge number of papers that have considered this topic

[Nes83, Vap92, PJ92, Nes04, BBM05, BB08, NJLS09, MB11, FGRW12, LRSB12, JZ13,

Vap13, SSZ13, DB14, DBLJ14, FGKS15, DB16, SLC+17, ZYJ17, ZX17, ZWX+17, GSS17,

MS17, NS17, AKK+17, Csi18, JLGJ18] as almost all convex optimization machine learning

can be phrased in the ERM framework [SSBD14, Vap92]. While the statistical convergence

properties and generalization bounds for ERM are well-understood, a general runtime bound

for general ERM is not known although fast runtime bounds do exist for specific instances

[AKPS19].

Examples of applications of ERM include linear regression, LASSO [Tib96], elastic net

[ZH05], logistic regression [Cox58, HJLS13], support vector machines [CV95], `p regression

[Cla05, DDH+09, BCLL18, AKPS19], quantile regression [Koe00, KH01, Koe05], AdaBoost

[FS97], kernel regression [Nad64, Wat64], and mean-field variational inference [XJR02].

The classical Empirical Risk Minimization problem is defined as

min
x

m∑

i=1

fi(a
>
i x+ bi)

where fi : R → R is a convex function, ai ∈ Rd, and bi ∈ R, ∀i ∈ [m]. Note that this

formulation also captures most standard forms of regularization as well.

Letting yi = a>i x+ bi, and zi = fi(a
>
i x+ bi) allows us to rewrite the original problem
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in the following sense,

min
x,y,z

m∑

i=1

zi (3.1)

s.t. Ax+ b = y

(yi, zi) ∈ Ki = {(yi, zi) : fi(yi) ≤ zi},∀i ∈ [m]

We can consider a more general version where dimension of Ki can be arbitrary, e.g. ni.

Therefore, we come to study the general n-variable form

min
x∈
∏m
i=1Ki,Ax=b

c>x

where
∑m

i=1 ni = n. We state our main result for solving the general model.

Theorem 3.1.1 (Main result, informal version of Theorem 3.7.3). Given a matrix A ∈ Rd×n,

two vectors b ∈ Rd, c ∈ Rn, and m compact convex sets K1, K2, · · · , Km. Assume that there

is no redundant constraints and ni = O(1), ∀i ∈ [m]. There is an algorithm (procedure Main

in Algorithm 3.6) that solves

min
x∈
∏m
i=1Ki,Ax=b

c>x

up to δ precision and runs in expected time

Õ
(

(nω+o(1) + n2.5−α/2+o(1) + n2+1/6+o(1)) · log(
n

δ
)
)

where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multipli-

cation.

For the current value of ω ∼ 2.38 [Wil12, LG14] and α ∼ 0.31 [LGU18], the expected

time is simply nω+o(1)Õ(log(n
δ
)).
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Remark 3.1.1. More precisely, when ni is super constant, our running time depends polyno-

mially on maxi∈[m] ni (but not exponential dependence).

Also note that our runtime depends on diameter, but logarithmically to the diameter.

So, it can be applied to linear program by imposing an artificial bound on the solution.
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3.1.1 Related Work

First-order algorithms for ERM are well-studied and a long series of accelerated

stochastic gradient descent algorithms have been developed and optimized [Nes98, JZ13,

XZ14, SSZ14, FGKS15, LMH15, MLF15, AY16, RHS+16, SS16, AH16, SLRB17, MS17,

LMH17, LJCJ17, All17b, All17a, All18b, All18a]. However, these rates depend polynomially

on the Lipschitz constant of ∇fi and in order to achieve a log(1/ε) dependence, the runtime

will also have to depend on the strong convexity of the
∑

i fi. In this chapter, we want to

focus on algorithms that depend logarithmically on diameter/smoothness/strong convexity

constants, as well as the error parameter ε. Note that gradient descent and a direct applica-

tion of Newton’s method do not belong to these class of algorithms, but for example, interior

point method and ellipsoid method does.

Therefore, in order to achieve high-accuracy solutions for non-smooth and non strongly

convex case, most convex optimization problems will rely on second-order methods, often un-

der the general interior point method (IPM) or some sort of iterative refinement framework.

So, we note that our algorithm is thus optimal in this general setting since second-order

methods require at least nω runtime for general matrix inversion.

Our algorithm applies the interior point method framework to solve ERM. The most

general interior point methods require O(
√
n)-iterations of linear system solves [Nes98],

requiring a naive runtime bound of O(nω+1/2). Using the inverse maintenance technique

[Vai89b, CLS19], one can improve the running time for LP to O(nω). This essentially implies

that almost all convex optimization problems can be solved, up to subpolynomial factors, as

fast as linear regression or matrix inversion!
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The specific case of `2 regression can be solved in O(nω) time since the solution is

explicitly given by solving a linear system. In the more general case of `p regression, [BCLL18]

proposed a Õp(n
|1/2−1/p|)-iteration iterative solver with a naive O(nω) system solve at each

step. Recently, [AKPS19] improved the runtime to Õp(n
max (ω,7/3)), which is current matrix

multiplication time as ω > 7/3. However, both these results depend exponentially on p and

fail to be impressive for large p. Otherwise, we are unaware of other ERM formulations that

have have general runtime bounds for obtaining high-accuracy solutions.

Recently several works [AW18a, AW18b, Alm19] try to show the limitation of current

known techniques for improving matrix multiplication time. Alman and Vassilevska Williams

[AW18b] proved limitations of using the Galactic method applied to many tensors of interest

(including Coppersmith-Winograd tensors [CW87]). More recently, Alman [Alm19] proved

that by applying the Universal method on those tensors, we cannot hope to achieve any

running time better than n2.168 which is already above our n2+1/6.
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3.2 Overview of Techniques

In this section, we discuss the key ideas in this chapter. Generalizing the stochastic

sparse update approach of [CLS19] to our setting is a natural first step to speeding up the

matrix-vector multiplication that is needed in each iteration of the interior point method. In

linear programs, maintaining approximate complementary slackness means that we maintain

x, s to be close multiplicatively to the central path under some notion of distance. However,

the generalized notion of complementary slackness requires a barrier-dependent notion of

distance. Specifically, if φ(x) is a barrier function, then our distance is now defined as

our function gradient being small in a norm depending on ∇2φ(x). One key fact of the

stochastic sparse update is that the variance introduced does not perturb the approximation

too much, which requires understanding the second derivative of the distance function. For

our setting, this would require bounding the 4th derivative of φ(x), which may not exist for

self-concordant functions. So, the stochastic approach may not work algorithmically (not just

in the analysis) if φ(x) is assumed to be simply self-concordant. Even when assumptions on

the 4th derivative of φ(x) are made, the analysis will become significantly more complicated

due to the 4th derivative terms. To avoid these problems, the main contributions of this

chapter is to 1) introduce a robust version of the central path and 2) exploit the robustness

via sketching to apply the desired matrix-vector multiplication fast.

More generally, our main observation is that one can generally speed up an iterative

method using sketching if the method is robust in a certain sense. To speed up interior

point methods, in Section 3.4 and 3.5, we give a robust version of the interior point method;

and in Section 3.6, we give a data structure to maintain the sketch; and in Section 3.7, we

show how to combine them together. We provide several basic notations and definitions for
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numerical linear algebra in Section 3.3. In Section 3.8, we provide some classical lemmas

from the literature of interior point methods. In Section 3.9, we prove some basic properties

of the sketching matrix. Now, we first begin with an overview of our robust central path and

then proceed with an overview of sketching iterative methods.
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3.2.1 Central Path Method

We consider the following optimization problem

min
x∈
∏m
i=1 Ki,Ax=b

c>x (3.2)

where
∏m

i=1Ki is the direct product of m low-dimensional convex sets Ki. We let xi be the

i-th block of x corresponding to Ki. Interior point methods consider the path of solutions

to the following optimization problem:

x(t) = arg min
Ax=b

c>x+ t
m∑

i=1

φi(xi) (3.3)

where φi : Ki → R are self-concordant barrier functions. This parameterized path is com-

monly known as the central path. Many algorithms solve the original problem (3.2) by

following the central path as the path parameter is decreased t → 0. The rate at which

we decrease t and subsequently the runtimes of these path-following algorithms are usually

governed by the self-concordance properties of the barrier functions we use.

Definition 3.2.1. We call a function φ a ν self-concordant barrier for K if domφ = K and

for any x ∈ domφ and for any u ∈ Rn

|D3φ(x)[u, u, u]| ≤ 2‖u‖3/2
x and ‖∇φ(x)‖∗x ≤

√
ν

where ‖v‖x := ‖v‖∇2φ(x) and ‖v‖∗x := ‖v‖∇2φ(x)−1 , for any vector v.

Remark 3.2.1. It is known that ν ≥ 1 for any self-concordant barrier function.

Nesterov and Nemirovsky showed that for any open convex set K ⊂ Rn, there is

a O(n) self-concordant barrier function [Nes98]. In this chapter, the convex set Ki we
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considered has O(1) dimension. While Nesterov and Nemirovsky gave formulas for the

universal barrier; in practice, most ERM problems lend themselves to explicit O(1) self-

concordant barriers for majority of the convex functions people use. For example, for the set

{x : ‖x‖ < 1}, we use − log(1 − ‖x‖2); for the set {x : x > 0}, we use − log(x), and so on.

That is the reason why we assume the gradient and hessian can be computed in O(1) time.

Therefore, in this chapter, we assume a νi self-concordant barrier φi is provided and that we

can compute ∇φi and ∇2φi in O(1) time. The main result we will use about self-concordance

is that the norm ‖ · ‖x is stable when we change x.

Theorem 3.2.1 (Theorem 4.1.6 in [Nes98]). If φ is a self-concordant barrier and if ‖y−x‖x <

1, then we have :

(1− ‖y − x‖x)2∇2φ(x) � ∇2φ(y) � 1

(1− ‖y − x‖x)2
∇2φ(x).

In general, we can simply think of φi as a function penalizing any point xi /∈ Ki. It

is known how to transform the original problem (3.2) by adding O(n) many variables and

constraints so that

• The minimizer x(t) at t = 1 is explicitly given.

• One can obtain an approximate solution of the original problem using the minimizer

at small t in linear time.

For completeness, we show how to do it in Lemma 3.8.2. Therefore, it suffices to study how

we can move efficiently from x(1) to x(ε) for some tiny ε where x(t) is again the minimizer

of the problem (3.3).
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3.2.2 Robust Central Path

In the standard interior point method, we use a tight `2-bound to control how far we

can deviate from x(t) during the entirety of the algorithm. Specifically, if we denote γti(xi) as

the appropriate measure of error (this will be specified later and is often called the Newton

Decrement) in each block coordinate xi at path parameter t, then as we let t → 0, the old

invariant that we are maintaining is,

Φt
old(x) =

m∑

i=1

γti(xi)
2 ≤ O(1).

It can be shown that a Newton step in the standard direction will allow for us to maintain

Φt
old to be small even as we decrease t by a multiplicative factor of O(m−1/2) in each iteration,

thereby giving a standard O(
√
m) iteration analysis. Therefore, the standard approach can

be seen as trying to remain within a small `2 neighborhood of the central path by centering

with Newton steps after making small decreases in the path parameter t. Note however that

if each γi can be perturbed by an error that is Ω(m−1/2), Φt
old(x) can easily become too large

for the potential argument to work.

To make our analysis more robust, we introduce a robust version that maintains the

soft-max potential:

Φt
new(x) =

m∑

i=1

exp(λγti(xi)) ≤ O(m)

for some λ = Θ(logm). The robust central path is simply the region of all x that satisfies

our potential inequality. We will specify the right constants later but we always make λ

large enough to ensure that γi ≤ 1 for all x in the robust central path. Now note that a

`∞ perturbation of γ translates into a small multiplicative change in Φt, tolerating errors on

each γi of up to O(1/poly log(n)).
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However, maintaining Φt
new(x) ≤ O(m) is not obvious because the robust central path

is a much wider region of x than the typical `2-neighborhood around the central path. We

will show later how to modify the standard Newton direction to maintain Φt
new(x) ≤ O(m)

as we decrease t. Specifically, we will show that a variant of gradient descent of Φt
new in the

Hessian norm suffices to provide the correct guarantees.
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3.2.3 Speeding up via Sketching

To motivate our sketching algorithm, we consider an imaginary iterative method

z(k+1) ← z(k) + P · F (z(k))

where P is some dense matrix and F (z) is some simple formula that can be computed

efficiently in linear time. Note that the cost per iteration is dominated by multiplying P

with a vector, which takes O(n2) time. To avoid the cost of multiplication, instead of storing

the solution explicitly, we store it implicitly by z(k) = P · u(k). Now, the algorithm becomes

u(k+1) ← u(k) + F (P · u(k)).

This algorithm is as expensive as the previous one except that we switch the location of P .

However, if we know the algorithm is robust under perturbation of the z(k) term in F (z(k)),

we can instead do

u(k+1) ← u(k) + F (R>RP · u(k))

for some random Gaussian matrix R : Rb×n. Note that the matrix RP is fixed throughout

the whole algorithm and can be precomputed. Therefore, the cost of per iteration decreases

from O(n2) to O(nb).

For our problem, we need to make two adjustments. First, we need to sketch the

change of z, that is F (P · u(k)), instead of z(k) directly because the change of z is smaller

and this creates a smaller error. Second, we need to use a fresh random R every iteration to

avoid the randomness dependence issue in the proof. For the imaginary iterative process, it
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becomes

z(k+1) ← z(k) +R(k)>R(k)P · F (z(k)),

u(k+1) ← u(k) + F (z(k)).

After some iterations, z(k) becomes too far from z(k) and hence we need to correct the error

by setting z(k) = P · u(k), which zeros the error.

Note that the algorithm explicitly maintains the approximate vector z while implicitly

maintaining the exact vector z by Pu(k). This is different from the classical way to sketch

Newton method [PW16, PW17], which is to simply run z(k+1) ← z(k) + R>RP · F (z(k)) or

use another way to subsample and approximate P . Such a scheme relies on the iteration

method to fix the error accumulated in the sketch, while we are actively fixing the error by

having both the approximate explicit vector z and the exact implicit vector z.

Without precomputation, the cost of computing R(k)P is in fact higher than that of

P ·F (z(k)). The first one involves multiplying multiple vectors with P and the second one in-

volves multiplying 1 vector with P . However, we can precompute [R(1)>;R(2)>; · · · ;R(T )>]> ·

P by fast matrix multiplication. This decreases the cost of multiplying 1 vector with P to

nω−1 per vector. This is a huge saving from n2. In our algorithm, we end up using only Õ(n)

random vectors in total and hence the total cost is still roughly nω.
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3.2.4 Maintaining the Sketch

The matrix P we use in interior point methods is of the form

P =
√
WA>(AWA>)−1A

√
W

where W is some block diagonal matrix. [CLS19] showed one can approximately maintain

the matrix P with total cost Õ(nω) across all iterations of interior point method. However,

the cost of applying the dense matrix P with a vector z is roughly O(n‖z‖0) which is O(n2)

for dense vectors. Since interior point methods takes at least
√
n iterations in general, this

gives a total runtime of O(n2.5). The key idea in [CLS19] is that one can design a stochastic

interior point method such that each step only need to multiply P with a vector of density

Õ(
√
n). This bypasses the n2.5 bottleneck.

In this chapter, we do not have this issue because we only need to compute RPz

which is much cheaper than Pz. We summarize why it suffices to maintain RP throughout

the algorithm. In general, for interior point method, the vector z is roughly an unit vector

and since P is an orthogonal projection, we have ‖Pz‖2 = O(1). One simple insight we

have is that if we multiply a random
√
n × n matrix R with values ± 1√

n
by Pz, we have

‖RPz‖∞ = Õ( 1√
n
) (Lemma 3.9.1). Since there are Õ(

√
n) iterations in interior point method,

the total error is roughly Õ(1) in a correctly reweighed `∞ norm. In Section 3.5, we showed

that this is exactly what interior point method needs for convergence. Furthermore, we note

that though each step needs to use a fresh random matrix Rl of size
√
n × n, the random

matrices [R>1 ;R>2 ; · · · ;R>T ]> we need can all fit into Õ(n)×n budget. Therefore, throughout

the algorithm, we simply need to maintain the matrix [R>1 ;R>2 ; · · · ;R>T ]>P which can be

done with total cost Õ(nω) across all iterations using idea similar to [CLS19].
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The only reason the data structure looks complicated is that when the block matrix

W changes in different location in
√
WA>(AWA>)−1A

√
W , we need to update the matrix

[R1;R2; · · · ;RT ]P appropriately. This gives us few simple cases to handle in the algorithm

and in the proof. For the intuition on how to maintain P under W change, see [CLS19,

Section 2.2 and 5.1].
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3.2.5 Fast rectangular matrix multiplication

Given two size n×n matrices, the time of multiplying them is n2.81 < n3 by applying

Strassen’s original algorithm [Str69]. The current best running time takes nω time where

ω < 2.373 [Wil12, LG14]. One natural extension of multiplying two square matrices is

multiplying two rectangular matrices. What is the running time of multiplying one n × na

matrix with another na × n matrix? Let α denote the largest upper bound of a such that

multiplying two rectangular matrices takes n2+o(1) time. The α is called the dual exponent

of matrix multiplication, and the state-of-the-art result is α = 0.31 [LGU18]. We use the

similar idea as [CLS19] to delay the low-rank update when the rank is small.
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3.3 Preliminaries

Given a vector x ∈ Rn and m compact convex sets K1 ⊂ Rn1 , K2 ⊂ Rn2 , · · · , Km ⊂

Rnm with
∑m

i=1 ni = n. We use xi to denote the i-th block of x, then x ∈∏m
i=1Ki if xi ∈ Ki,

∀i ∈ [m].

We say a block diagonal matrix A ∈ ⊕mi=1Rni×ni if A can be written as

A =




A1

A2

. . .
Am




where A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 , and Am ∈ Rnm×nm . For a matrix A, we use ‖A‖F to

denote its Frobenius norm and use ‖A‖ to denote its operator norm. There are some trivial

facts ‖AB‖2 ≤ ‖A‖2 · ‖B‖2 and ‖AB‖F ≤ ‖A‖F · ‖B‖2.

For notation convenience, we assume the number of variables n ≥ 10 and there are no

redundant constraints. In particular, this implies that the constraint matrix A is full rank.

For a positive integer n, let [n] denote the set {1, 2, · · · , n}.

For any function f , we define Õ(f) to be f · logO(1)(f). In addition to O(·) notation,

for two functions f, g, we use the shorthand f . g (resp. &) to indicate that f ≤ Cg (resp.

≥) for some absolute constant C. For any function f , we use domf to denote the domain of

function f .

For a vector v, We denote ‖v‖ as the standard Euclidean norm of v and for a symmetric

PSD matrix A, we let ‖v‖A = (v>Av)1/2. For a convex function f(x) that is clear from

context, we denote ‖v‖x = ‖v‖∇2f(x) and ‖v‖∗x = ‖v‖∇2f(x)−1 .
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3.4 Robust Central Path

In this section we show how to move move efficiently from x(1) to x(ε) for some tiny

ε by staying on a robust version of the central path. Because we are maintaining values that

are slightly off-center, we show that our analysis still goes through despite `∞ perturbations

on the order of O(1/poly log(n)).
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3.4.1 Newton Step

To follow the path x(t), we consider the optimality condition of (3.3):

s/t+∇φ(x) = 0,

Ax = b,

A>y + s = c

where ∇φ(x) = (∇φ1(x1),∇φ2(x2), · · · ,∇φm(xm)). To handle the error incurred in the

progress, we consider the perturbed central path

s/t+∇φ(x) = µ,

Ax = b,

A>y + s = c

where µ represent the error between the original central path and our central path. Each

iteration, we decrease t by a certain factor. It may increase the error term µ. Therefore, we

need a step to decrease the norm of µ. The Newton method to move µ to µ+ h is given by

1

t
· δideal

s +∇2φ(x) · δideal
x = h,

Aδideal
x = 0,

A>δideal
y + δideal

s = 0
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where ∇2φ(x) is a block diagonal matrix with the i-th block is given by ∇2φi(xi). Letting

W = (∇2φ(x))−1, we can solve this:

δideal
y = − t ·

(
AWA>

)−1
AWh,

δideal
s = t · A>

(
AWA>

)−1
AWh,

δideal
x = Wh−WA>

(
AWA>

)−1
AWh.

We define projection matrix P ∈ Rn×n as follows

P = W 1/2A>
(
AWA>

)−1
AW 1/2

and then we rewrite them

δideal
x = W 1/2(I − P )W 1/2δµ, (3.4)

δideal
s = tW−1/2PW 1/2δµ. (3.5)

One standard way to analyze the central path is to measure the error by ‖µ‖∇2φ(x)−1 and

uses the step induced by h = −µ. One can easily prove that if ‖µ‖∇2φ(x)−1 < 1
10
, one step

of Newton step decreases the norm by a constant factor. Therefore, one can alternatively

decrease t and do a Newton step to follow the path.
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3.4.2 Robust Central Path Method

In this section, we develop a central path method that is robust under certain `∞

perturbations. Due to the `∞ perturbation, we measure the error µ by a soft max instead of

the `2 type potential:

Definition 3.4.1. For each i ∈ [m], let µti(x, s) ∈ Rni and γti(x, s) ∈ R be defined as follows:

µti(x, s) = si/t+∇φi(xi), (3.6)

γti(x, s) = ‖µti(x, s)‖∇2φi(xi)−1 , (3.7)

and we define potential function Φ as follows:

Φt(x, s) =
m∑

i=1

exp(λγti(x, s))

where λ = O(logm).

The robust central path is the region (x, s) that satisfies Φt(x, s) ≤ O(m). To run

our convergence argument, we will be setting λ appropriately so that staying on the robust

central path will guarantee a `∞ bound on γ. Then, we will show how to maintain Φt(x, s) to

be small throughout the algorithm while decreasing t, always staying on the robust central

path. This is broken into a two step analysis: the progress step (decreasing t) and the

centering step (moving x, s to decrease γ).

It is important to note that to follow the robust central path, we no longer pick

the standard Newton direction by setting h = −µ. To explain how we pick our centering

step, suppose we can move µ → µ + h arbitrarily with the only restriction on the distance
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‖h‖∇2φ(x)−1 = α. Then, the natural step would be

h = arg min
‖h‖∇2φ(x)−1=α

〈∇f(µ(x, s)), h〉

where f(µ) =
∑m

i=1 exp(λ‖µ‖∇2φi(xi)−1). Note that

∇f(µt(x, s))i = λ exp(λγti(x, s))/γ
t
i(x, s) · ∇2φi(xi)

−1µti(x, s).

Therefore, the solution for the minimization problem is

hideal
i = −α · cti(x, s)idealµti(x, s) ∈ Rni ,

where µti(x, s) ∈ Rni is defined as Eq. (3.6) and cti(x, s) ∈ R is defined as

cti(x, s)
ideal =

exp(λγti(x, s))/γ
t
i(x, s)

(
∑m

i=1 exp(2λγti(x, s)))
1/2
.

Eq. (3.4) and Eq. (3.5) gives the corresponding ideal step on x and s.

Now, we discuss the perturbed version of this algorithm. Instead of using the exact

x and s in the formula of h, we use a x which is approximately close to x and a s which is

close to s. Precisely, we have

hi = −α · cti(x, s)µti(x, s) (3.8)

where

cti(x, s) =

{
exp(λγti (x,s))/γ

t
i (x,s)

(
∑m
i=1 exp(2λγti (x,s)))

1/2 if γti(x, s) ≥ 96
√
α

0 otherwise
. (3.9)

Note that our definition of cti ensures that cti(x, s) ≤ 1
96
√
α
regardless of the value of γti(x, s).

This makes sure we do not move too much in any coordinates and indeed when γti is small,
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it is fine to set cti = 0. Furthermore, for the formula on δx and δs, we use some matrix Ṽ

that is close to (∇2φ(x))−1. Precisely, we have

δx = Ṽ 1/2(I − P̃ )Ṽ 1/2h, (3.10)

δs = t · Ṽ −1/2P̃ Ṽ 1/2h. (3.11)

where

P̃ = Ṽ 1/2A>(AṼ A>)−1AṼ 1/2.

Here we give a quick summary of our algorithm. (The more detailed of our algorithm

can be found in Algorithm 3.5 and 3.6 in Section 3.7.)

• RobustIPM(A, b, c, φ, δ)

– λ = 216 log(m), α = 2−20λ−2, κ = 2−10α.

– δ = min( 1
λ
, δ).

– ν =
∑m

i=1 νi where νi are the self-concordant parameters of φi.

– Modify the convex problem and obtain an initial x and s according to Lemma

3.8.2.

– t = 1.

– While t > δ2

4ν

∗ Find x and s such that ‖xi − xi‖xi < α and ‖si − si‖∗xi < tα for all i.

∗ Find Ṽi such that (1− α)(∇2φi(xi))
−1 � Ṽi � (1 + α)(∇2φi(xi))

−1 for all i.
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∗ Compute h = −α · cti(x, s)µti(x, s) where

cti(x, s) =

{
exp(λγti (x,s))/γ

t
i (x,s)

(
∑m
i=1 exp(2λγti (x,s)))

1/2 if γti(x, s) ≥ 96
√
α

0 otherwise
.

and µti(x, s) = si/t+∇φi(xi) and γti(x, s) = ‖µti(x, s)‖∇2φi(xi)−1

∗ Let P̃ = Ṽ 1/2A>(AṼ A>)−1AṼ 1/2.

∗ Compute δx = Ṽ 1/2(I − P̃ )Ṽ 1/2h and δs = t · Ṽ −1/2P̃ Ṽ 1/2h.

∗ Move x← x+ δx, s← s+ δs.

∗ tnew = (1− κ√
ν
)t.

– Return an approximation solution of the convex problem according to Lemma

3.8.2.

Theorem 3.4.1 (Robust Interior Point Method). Consider a convex problem minAx=b,x∈
∏m
i=1 Ki

c>x

where Ki are compact convex sets. For each i ∈ [m], we are given a νi-self concordant barrier

function φi for Ki. Let ν =
∑m

i=1 νi. Also, we are given x
(0) = arg minx

∑m
i=1 φi(xi). Assume

that

1. Diameter of the set: For any x ∈∏m
i=1 Ki, we have that ‖x‖2 ≤ R.

2. Lipschitz constant of the program: ‖c‖2 ≤ L.

Then, the algorithm RobustIPM finds a vector x such that

c>x ≤ min
Ax=b,x∈

∏m
i=1Ki

c>x+ LR · δ,

‖Ax− b‖1 ≤ 3δ ·
(
R
∑

i,j

|Ai,j|+ ‖b‖1

)
,

x ∈
m∏

i=1

Ki.
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in O(
√
ν log2m log(ν

δ
)) iterations.

Proof. Lemma 3.8.2 shows that the initial x and s satisfies

‖s+∇φ(x)‖∗x ≤ δ ≤ 1

λ

where the last inequality is due to our step δ ← min( 1
λ
, δ). This implies that γ1

i (x, s) =

‖si+∇φi(xi)‖∗xi ≤ 1
λ
and hence Φ1(x, s) ≤ e ·m ≤ 80m

α
for the initial x and s. Apply Lemma

3.5.8 repetitively, we have that Φt(x, s) ≤ 80m
α

during the whole algorithm. In particular,

we have this at the end of the algorithm. This implies that

‖si +∇φi(xi)‖∗xi ≤
log(80m

α
)

λ
≤ 1

at the end. Therefore, we can apply Lemma 3.8.3 to show that

〈c, x〉 ≤ 〈c, x∗〉+ 4tν ≤ 〈c, x∗〉+ δ2

where we used the stop condition for t at the end. Note that this guarantee holds for

the modified convex program. Since the error is δ2, Lemma 3.8.2 shows how to get an

approximate solution for the original convex program with error LR · δ.

The number of steps follows from the fact we decrease t by 1− 1√
ν log2m

factor every

iteration.
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3.5 Robust Central Path

The goal of this section is to analyze robust central path. We provide an outline

in Section 3.5.1. In Section 3.5.2, we bound the changes in µ and γ. In Section 3.5.3, we

analyze the changes from (x, x, s) to (xnew, x, snew). In Section 3.5.4, we analyze the changes

from (xnew, x, snew) to (xnew, xnew, snew). We bound the changes in t in Section 3.5.5. Finally,

we analyze entire changes of potential function in Section 3.5.6.
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Statement Section Parameters
Lemma 3.5.2 Section 3.5.2 µti(x, s)→ µti(x

new, snew)
Lemma 3.5.4 Section 3.5.2 γti(x, x, s)→ γti(x

new, x, snew)
Lemma 3.5.5 Section 3.5.3 Φ(x, x, s)→ Φ(xnew, x, snew)
Lemma 3.5.6 Section 3.5.4 Φ(xnew, x, snew)→ Φ(xnew, xnew, snew)
Lemma 3.5.7 Section 3.5.5 Φt → Φtnew

Lemma 3.5.8 Section 3.5.6 Φt(x, s)→ Φtnew
(xnew, snew)

Table 3.1: Bounding the changes of different variables

3.5.1 Outline of Analysis

Basically, the main proof is just a simple calculation on how Φt(x, s) changes during

1 iteration. It could be compared to the proof of `∞ potential reduction arguments for the

convergence of long-step interior point methods, although the main difficulty arises from the

perturbations from stepping using x, s instead of x, s.

To organize the calculations, we note that the term γti(x, s) = ‖µti(x, s)‖∇2φi(xi)−1 has

two terms involving x, one in the µ term and one in the Hessian. Hence, we separate how

different x affect the potential by defining

γti(x, z, s) = ‖µti(x, s)‖∇2φi(zi)−1 ,

Φt(x, z, s) =
m∑

i=1

exp(λγti(x, z, s)).

One difference between our proof and standard `2 proofs of interior point is that we assume

the barrier function is decomposable. We define αi = ‖δx,i‖xi is the “step” size of the

coordinate i. One crucial fact we are using is that sum of squares of the step sizes is small.

Lemma 3.5.1. Let α denote the parameter in RobustIPM. For all i ∈ [m], let αi = ‖δx,i‖xi.
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Then,
m∑

i=1

α2
i ≤ 4α2.

Proof. Note that

m∑

i=1

α2
i = ‖δx‖2

x = h>Ṽ 1/2(I − P̃ )Ṽ 1/2∇2φ(x)Ṽ 1/2(I − P̃ )Ṽ 1/2h.

Since (1− α)(∇2φi(xi))
−1 � Ṽi � (1 + α)(∇2φi(xi))

−1, we have that

(1− α)(∇2φ(x))−1 � Ṽ � (1 + α)(∇2φ(x))−1.

Using α ≤ 1
10000

, we have that

m∑

i=1

α2
i ≤ 2h>Ṽ 1/2(I − P̃ )(I − P̃ )Ṽ 1/2h ≤ 2h>Ṽ h

where we used that I − P̃ is an orthogonal projection at the end. Finally, we note that

h>Ṽ h ≤ 2
m∑

i=1

‖hi‖∗2xi

= 2α2

m∑

i=1

cti(x, s)
2‖µti(x, s)‖∗2xi

≤ 2α2

m∑

i=1

exp(2λγti(x, s))/γ
t
i(x, s)

2

∑m
i=1 exp(2λγti(x, s))

1/2
‖µti(x, s)‖∗2xi

= 2α2

∑m
i=1 exp(2λγti(x, s))∑m
i=1 exp(2λγti(x, s))

= 2α2

where the second step follows from definition of hi (3.8), the third step follows from definition

cti (3.9), the fourth step follows from definition of γti (3.7).
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Therefore, putting it all together, we can show

m∑

i=1

α2
i ≤ 4α2.
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3.5.2 Changes in µ and γ

We provide basic lemmas that bound changes in µ, γ due to the centering steps.

Lemma 3.5.2 (Changes in µ). For all i ∈ [m], let

µti(x
new, snew) = µti(x, s) + hi + ε

(µ)
i .

Then, ‖ε(µ)
i ‖∗xi ≤ 10α · αi.

Proof. Let x(u) = uxnew +(1−u)x and µnew
i = µti(x

new, snew). The definition of µ (3.6) shows

that

µnew
i = µi +

1

t
δs,i +∇φi(xnew

i )−∇φi(xi)

= µi +
1

t
δs,i +

∫ 1

0

∇2φi(x
(u)
i )δx,i du

= µi +
1

t
δs,i +∇2φi(xi)δx,i +

∫ 1

0

(
∇2φi(x

(u)
i )−∇2φi(xi)

)
δx,i du.

By the definition of δx and δs (3.10) and (3.11), we have that 1
t
δs,i + Ṽ −1

i δx,i = hi. Hence, we

have

µnew
i = µi + hi + ε

(µ)
i

where

ε
(µ)
i =

∫ 1

0

(
∇2φi(x

(u)
i )−∇2φi(xi)

)
δx,i du+ (∇2φi(xi)− Ṽ −1

i )δx,i. (3.12)

To bound ε(µ)
i , we note that

‖x(t)
i − xi‖xi ≤ ‖x(t)

i − xi‖xi + ‖xi − xi‖xi ≤ ‖δx,i‖xi + α = αi + α ≤ 3α
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where the first step follows from triangle inequality, the third step follows from definition of

αi (Lemma 3.5.1), and the last step follows from αi ≤ 2α (Lemma 3.5.1).

Using α ≤ 1
100

, Theorem 3.2.1 shows that

−7α · ∇2φi(xi) � ∇2φi(x
(u)
i )−∇2φi(xi) � 7α · ∇2φi(xi).

Equivalently, we have

(∇2φi(x
(u)
i )−∇2φi(xi)) · (∇2φi(xi))

−1 · (∇2φi(x
(u)
i )−∇2φi(xi)) � (7α)2 · ∇2φi(xi).

Using this, we have
∥∥∥∥
∫ 1

0

(
∇2φi(x

(u)
i )−∇2φi(xi)

)
δx,i du

∥∥∥∥
∗

xi

≤
∫ 1

0

∥∥∥
(
∇2φi(x

(u)
i )−∇2φi(xi)

)
δx,i

∥∥∥
∗

xi
du

≤ 7α‖δx,i‖xi = 7α · αi, (3.13)

where the last step follows from definition of αi (Lemma 3.5.1).

For the other term in ε(µ)
i , we note that

(1− 2α) · (∇2φi(xi)) � Ṽ −1
i � (1 + 2α) · (∇2φi(xi)).

Hence, we have
∥∥∥(∇2φi(xi)− Ṽ −1

i )δx,i

∥∥∥
∗

xi
≤ 2α‖δx,i‖xi = 2α · αi. (3.14)

Combining (3.12), (3.13) and (3.14), we have

‖ε(µ)
i ‖∗xi ≤ 9α · αi.

Finally, we use the fact that xi and xi are α close and hence again by self-concordance,

‖ε(µ)
i ‖∗xi ≤ 10α · αi.
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Before bounding the change of γ, we first prove a helper lemma:

Lemma 3.5.3. For all i ∈ [m], we have

‖µti(x, s)− µti(x, s)‖∗xi ≤ 4α.

Proof. Note that

‖µti(x, s)− µti(x, s)‖∗xi =
1

t
‖si − si‖∗xi + ‖∇φi(xi)−∇φi(xi)‖∗xi .

For the first term, we have ‖si − si‖∗xi ≤ tα.

For the second term, let x(u)
i = uxi + (1 − u)xi. Since xi is close enough to xi,

Theorem 3.2.1 shows that ∇2φi(x
(u)
i ) � 2 · ∇2φi(xi). Hence, we have

‖∇φi(xi)−∇φi(xi)‖∗xi =

∥∥∥∥
∫ 1

0

∇2φi(x
(u)
i ) · (xi − xi)du

∥∥∥∥
∗

xi

≤ 2‖xi − xi‖xi = 2α.

Hence, we have ‖µti(x, s) − µti(x, s)‖∗xi ≤ 3α and using again xi is close enough to xi to get

the final result.

Lemma 3.5.4 (Changes in γ). For all i ∈ [m], let

γti(x
new, x, snew) ≤ (1− α · cti(x, s))γti(x, x, s) + ε

(γ)
i .

then ε(γ)
i ≤ 10α · (αcti(x, s) + αi). Furthermore, we have |γti(xnew, x, snew)− γti(x, x, s)| ≤ 3α.

Proof. For the first claim, Lemma 3.5.2, the definition of γ (3.7), h (3.8) and c (3.9) shows

that

γti(x
new, x, snew) = ‖µti(x, s) + hi + ε

(µ)
i ‖∗xi

= ‖(1− α · cti(x, s))µti(x, s) + εi‖∗xi
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where εi = α · cti(x, s)(µti(x, s)− µti(x, s)) + ε
(µ)
i .

From the definition of cti, we have that cti ≤ 1
96
√
α
≤ 1

α
and hence 0 ≤ 1−α·cti(x, s) ≤ 1.

Therefore, we have

γti(x
new, x, snew) ≤(1− α · cti(x, s))γti(x, x, s) + ‖εi‖∗xi . (3.15)

Now, we bound ‖εi‖∗xi :

‖εi‖∗xi ≤ αcti(x, s) · ‖µti(x, s)− µti(x, s)‖∗xi + ‖ε(µ)
i ‖∗xi

≤ 4α2cti(x, s) + 10α · αi (3.16)

where we used Lemma 3.5.3 and Lemma 3.5.2 at the end.

For the second claim, we have

∣∣γti(xnew, x, snew)− γti(x, x, s)
∣∣ ≤ ‖hi + ε

(µ)
i ‖∗xi ≤ 2α + 10α · αi

where we used (3.16) and that ‖hi‖∗xi ≤ 2‖h‖∗x ≤ 2α. From Lemma 3.5.1 and that α ≤ 1
10000

,

we have 10α · αi ≤ 20α2 ≤ α.
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3.5.3 Movement from (x, x, s) to (xnew, x, snew)

In the previous section, we see that γi will be expected to decrease by a factor of

α · cti up to some small perturbations. We show that our potential Φt will therefore decrease

significantly.

Lemma 3.5.5 (Movement along the first and third parameters). Assume that γti(x, x, s) ≤ 1

for all i. We have

Φt(xnew, x, snew) ≤ Φt(x, x, s)− αλ

5

(
m∑

i=1

exp(2λγti(x, s))

)1/2

+
√
mλ · exp(192λ

√
α).

Note that γ is a function that has three inputs. We use γ(x, s) to denote γ(x, x, s) for

simplicity.

Proof. Let Φnew = Φt(xnew, x, snew), Φ = Φt(x, x, s),

γ(u) = uγti(x
new, x, snew) + (1− u)γti(x, x, s).

Then, we have that

Φnew − Φ =
m∑

i=1

(eλγ
(1)
i − eλγ(0)

i ) = λ
m∑

i=1

eλγ
(ζ)
i (γ

(1)
i − γ(0)

i )

for some 0 ≤ ζ ≤ 1. Let vi = γ
(1)
i − γ(0)

i . Lemma 3.5.4 shows that

vi ≤ −α · cti(x, s) · γti(x, x, s) + ε
(γ)
i = −α · cti(x, s) · γ(0)

i + ε
(γ)
i

and hence

Φnew − Φ

λ
≤ −α

m∑

i=1

cti(x, s) · γ(0)
i exp(λγ

(ζ)
i ) +

m∑

i=1

ε
(γ)
i exp(λγ

(ζ)
i ). (3.17)
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To bound the first term in (3.17), we first relate γ(0)
i , γ(ζ)

i and γti(x, s) . Lemma 3.5.4

shows that

|γ(0)
i − γ(ζ)

i | ≤ |γ(0)
i − γ(1)

i | ≤ 3α. (3.18)

Finally, we have

∣∣∣γti(x, s)− γ(0)
i

∣∣∣ =
∣∣γti(x, x, s)− γti(x, x, s)

∣∣

≤
∣∣γti(x, x, s)− γti(x, x, s)

∣∣+
∣∣γti(x, x, s)− γti(x, x, s)

∣∣

≤ ‖µti(x, s)− µti(x, s)‖∗xi +
∣∣‖µti(x, s)‖∗xi − ‖µti(x, s)‖∗xi

∣∣

≤ 2‖µti(x, s)− µti(x, s)‖∗xi +
∣∣‖µti(x, s)‖∗xi − ‖µti(x, s)‖∗xi

∣∣

≤ 2‖µti(x, s)− µti(x, s)‖∗xi + 2α‖µti(x, s)‖∗xi
≤ 8α + 2α = 10α (3.19)

where the first step follows from definition, the second and third step follows from triangle

inequality, the fourth step follows from ‖µti(x, s)− µti(x, s)‖∗xi ≤ 2‖µti(x, s)− µti(x, s)‖∗xi , the

fifth step follows from self-concordance, the sixth step follows from Lemma 3.5.3 and that

‖µti(x, s)‖∗xi = γti(x, x, s) ≤ 1 for all i
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Using (3.18) and (3.19), we have

m∑

i=1

cti(x, s) · γ(0)
i exp(λγ

(ζ)
i )

=
m∑

i=1

cti(x, s) · γ(0)
i exp(λγti(x, s)− λγti(x, s) + λγ

(0)
i − λγ(0)

i + λγ
(ζ)
i )

≥
m∑

i=1

cti(x, s) · γ(0)
i exp(λγti(x, s)− 13λα)

≥ 1

2

m∑

i=1

cti(x, s) · γ(0)
i exp(λγti(x, s))

≥ 1

2

m∑

i=1

cti(x, s) · γti(x, s) exp(λγti(x, s))− 3α
m∑

i=1

cti(x, s) exp(λγti(x, s)). (3.20)

where the third step follows from exp(−13λα) ≥ 1/2, and the last step follows from (3.18).

For the first term in (3.20), we have

m∑

i=1

cti(x, s) · γti(x, s) exp(λγti(x, s))

=
∑

γti (x,s)≥96
√
α

exp(2λ · γti(x, s))
(
∑m

i=1 exp(2λγti(x, s)))
1/2

=
m∑

i=1

exp(2λ · γti(x, s))
(
∑m

i=1 exp(2λγti(x, s)))
1/2
−

∑

γti (x,s)<96
√
α

exp(2λ · γti(x, s))
(
∑m

i=1 exp(2λγti(x, s)))
1/2

≥
(

m∑

i=1

exp(2λγti(x, s))

)1/2

− m · exp(192λ · √α)

(
∑m

i=1 exp(2λγti(x, s)))
1/2
.

So, if
∑m

i=1 exp(2λγti(x, s)) ≥ m · exp(192λ · √α), we have

m∑

i=1

cti(x, s) · γti(x, s) exp(λγti(x, s)) ≥
(

m∑

i=1

exp(2λγti(x, s))

)1/2

−√m · exp(192λ
√
α).

Note that if
∑m

i=1 exp(2λγti(x, s)) ≤ m · exp(192λ · √α), this is still true because left hand
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side is lower bounded by 0. For the second term in (3.20), we have

m∑

i=1

cti(x, s) exp(λγti(x, s)) =
∑

γti (x,s)≥96
√
α

exp(λ · γti(x, s))/γti(x, s)
(
∑m

i=1 exp(2λγti(x, s)))
1/2

exp(λγti(x, s))

≤ 1

96
√
α

∑

γti (x,s)≥96
√
α

exp(2λ · γti(x, s))
(
∑m

i=1 exp(2λγti(x, s)))
1/2

≤ 1

96
√
α

m∑

i=1

exp(2λ · γti(x, s))
(
∑m

i=1 exp(2λγti(x, s)))
1/2

=
1

96
√
α

(
m∑

i=1

exp(2λγti(x, s))

)1/2

.

where the second step follows 1
γti (x,s)

≤ 1
96
√
α
, and the third step follows from each term in

the summation is non-negative.

Combining the bounds for both first and second term in (3.20), we have

m∑

i=1

cti(x, s) · γ(0)
i exp(λγ

(ζ)
i ) ≥ 1

2



(

m∑

i=1

exp(2λγti(x, s))

)1/2

−√m · exp(192λ
√
α)




− 3α

96
√
α

(
m∑

i=1

exp(2λγti(x, s))

)1/2

≥ 2

5

(
m∑

i=1

exp(2λγti(x, s))

)1/2

−√m · exp(192λ
√
α). (3.21)

where the last step follows from 1
2
− 3α

96
√
α
≥ 1

2
− 3

96
= 45

96
≥ 2

5
.

For the second term in (3.17), we note that |γ(ζ)
i − γti(x, s)| ≤ 13α ≤ 1

2λ
by (3.18) and

(3.19). Hence,
m∑

i=1

ε
(γ)
i exp(λγ

(ζ)
i ) ≤ 2

m∑

i=1

ε
(γ)
i exp(λγti(x, s)).
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Now, we use ε(γ)
i ≤ 10α · (αcti(x, s) + αi) (Lemma 3.5.4) to get

m∑

i=1

ε
(γ)
i exp(λγ

(ζ)
i ) ≤ 20α

m∑

i=1

(αcti(x, s) + αi) · exp(λγti(x, s))

≤ 20α

(
m∑

i=1

(αcti(x, s) + αi)
2

)1/2( m∑

i=1

exp(2λγti(x, s))

)1/2

.

where the last step follows from Cauchy-Schwarz inequality.

Note that by using Cauchy-Schwarz,
(

m∑

i=1

(αcti(x, s) + αi)
2

)1/2

≤ α

(
m∑

i=1

cti(x, s)
2

)1/2

+

(
m∑

i=1

α2
i

)1/2

≤ α · 1

96
√
α

+ 2α ≤
√
α

90
.

where we used the definition of cti, Lemma 3.5.1 and α ≤ 1
224 . Together, we conclude

m∑

i=1

ε
(γ)
i exp(λγ

(ζ)
i ) ≤ 1

5
α

(
m∑

i=1

exp(2λγti(x, s))

)1/2

. (3.22)

Combining (3.21) and (3.22) to (3.17) gives

Φnew − Φ

λ
≤ − 2

5
α

(
m∑

i=1

exp(2λγti(x, s))

)1/2

+
√
m · exp(192λ

√
α) +

1

5
α

(
m∑

i=1

exp(2λγti(x, s))

)1/2

= − 1

5
α

(
m∑

i=1

exp(2λγti(x, s))

)1/2

+
√
m · exp(192λ

√
α).

where the last step follows from merging the first term with the third term.
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3.5.4 Movement from (xnew, x, snew) to (xnew, xnew, snew)

Next, we must analyze the potential change when we change the second term.

Lemma 3.5.6 (Movement along the second parameter). Assume that ‖γt(x, x, s)‖∞ ≤ 1.

Then we have

Φt(xnew, xnew, snew) ≤ Φt(xnew, x, snew)+12α(‖γt(x, x, s)‖∞+3α)λ

(
m∑

i=1

exp(2λγti(x, x, s))

)1/2

.

Proof. We can upper bound Φt(xnew, xnew, snew) as follows

Φt(xnew, xnew, snew) =
m∑

i=1

exp(λγti(x
new, xnew, snew))

≤
m∑

i=1

exp(λγti(x
new, x, snew)(1 + 2αi)).

where the second step follows from γti(x
new, xnew, snew) ≤ γti(x

new, x, snew) · (1 + 2αi) by self-

concordance (Theorem 3.2.1) and ‖xnew
i − xi‖xi ≤ 2‖xnew

i − xi‖xi ≤ 2αi.

Now, by Lemma 3.5.4, we note that γti(xnew, x, snew) ≤ γti(x, x, s) + 3α ≤ 1 + 3α and

that α ≤ 1
100λ

. Hence, by a simple taylor expansion, we have

Φt(xnew, xnew, snew)

≤
m∑

i=1

exp(λγti(x
new, x, snew)) + 3

m∑

i=1

αi exp(λγti(x
new, x, snew))γti(x

new, x, snew).
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Finally, we bound the last term by

m∑

i=1

exp(λγti(x
new, x, snew))γti(x

new, x, snew)αi

≤
m∑

i=1

exp(λγti(x, x, s) + 3λα)(γti(x, x, s) + 3α)αi

≤ 2(‖γt(x, x, s)‖∞ + 3α)
m∑

i=1

exp(λγti(x, x, s))αi

≤ 2(‖γt(x, x, s)‖∞ + 3α)

(
m∑

i=1

exp(2λγti(x, x, s))

)1/2( m∑

i=1

α2
i

)1/2

≤ 4α(‖γt(x, x, s)‖∞ + 3α)

(
m∑

i=1

exp(2λγti(x, x, s))

)1/2

,

where the first step follows from λγti(x
new, x, snew) ≤ exp(λγti(x, x, s) + 3λα), the second step

follows exp(3λα) ≤ 2, the third step follows from Cauchy-Schwarz inequality, the last step

follows from
∑m

i=1 α
2
i ≤ 4α2.
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3.5.5 Movement of t

Lastly, we analyze the effect of setting t→ tnew.

Lemma 3.5.7 (Movement in t). For any x, s such that γti(x, s) ≤ 1 for all i, let tnew =
(

1− κ√
ν

)
t where ν =

∑m
i=1 νi, we have

Φtnew

(x, s) ≤ Φt(x, s) + 10κλ

(
m∑

i=1

exp(2λγti(x, s))

)1/2

.

Proof. Note that

γt
new

i (x, s) =
∥∥∥ s

tnew
+∇φi(xi)

∥∥∥
∗

xi

=

∥∥∥∥
s

t(1− κ/√ν)
+∇φi(xi)

∥∥∥∥
∗

xi

≤ (1 + 2κ/
√
ν)γti(x, s) + 2‖(κ/√ν)∇φi(xi)‖∗xi

≤ (1 + 2κ/
√
ν)γti(x, s) + 3κ

√
νi/
√
ν

≤ γti(x, s) + 5κ
√
νi/
√
ν

where the first step follows from definition, the second step follows from tnew = t(1−κ/√ν),

the second last step follows from the fact that our barriers are νi-self-concordant and the

last step used γti(x, s) ≤ 1 and νi ≥ 1. Using that 5κ ≤ 1
10λ

and γti(x, s) ≤ 1, we have by
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simple taylor expansion,

Φtnew

(x, s) ≤
m∑

i=1

exp(λγti(x, s)) + 2λ
m∑

i=1

exp(λγti(x, s))
(

5κ
√
νi/ν

)

=
m∑

i=1

exp(λγti(x, s)) + 10κλ
m∑

i=1

exp(λγti(x, s))
(√

νi/ν
)

≤
m∑

i=1

exp(λγti(x, s)) + 10κλ

(
m∑

i=1

exp(2λγti(x, s))

)1/2( m∑

i=1

νi
ν

)1/2

=
m∑

i=1

exp(λγti(x, s)) + 10κλ

(
m∑

i=1

exp(2λγti(x, s))

)1/2

,

where the third step follows from Cauchy-Schwarz, and the last step follows from
∑m

i=1 νi =

ν.
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3.5.6 Potential Maintenance

Putting it all together, we can show that our potential Φt can be maintained to be

small throughout our algorithm.

Lemma 3.5.8 (Potential Maintenance). If Φt(x, s) ≤ 80m
α
, then

Φtnew

(xnew, snew) ≤
(

1− αλ

40
√
m

)
Φt(x, s) +

√
mλ · exp(192λ

√
α).

In particularly, we have Φtnew
(xnew, snew) ≤ 80m

α
.

Proof. Let

ζ(x, s) =

(
m∑

i=1

exp(2λγti(x, s))

)1/2

.

By combining our previous lemmas,

Φtnew

(xnew, snew)

≤Φt(xnew, snew) + 10κλ · ζ(xnew, snew)

≤Φt(xnew, x, snew) + 12αλ(‖γt(x, s)‖∞ + 3α) · ζ(x, s) + 10κλ · ζ(xnew, snew)

≤Φt(x, x, s)− αλ

5
ζ(x, s) +

√
mλ · exp(192λ

√
α)

+ 12αλ(‖γt(x, s)‖∞ + 3α) · ζ(x, s) + 10κλ · ζ(xnew, snew) (3.23)

where the first step follows from Lemma 3.5.7, the second step follows from Lemma 3.5.6,

and the last step follows from Lemma 3.5.5. We note that in all lemma above, we used that

fact that ‖γt‖∞ ≤ 1 (for different combination of x, x, xnew, s, s, snew) which we will show

later.

We can upper bound γti(xnew, snew) in the following sense,

γti(x
new, snew) ≤ γti(x

new, x, snew) + 2α ≤ γti(x, x, s) + 5α. (3.24)
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where the first step follows from self-concordance and γi ≤ 1, the second step follows from

Lemma 3.5.4.

Hence, since ζ changes multiplicatively when γ changes additively, ζ(xnew, snew) ≤

2ζ(x, s).

Lemma 3.5.3 shows that ‖µti(x, s)− µti(x, s)‖∗xi ≤ 4α and hence

ζ(x, s) ≥ 2

3

(
m∑

i=1

exp(2λγti(x, x, s))

)1/2

≥ 2

3

(
m∑

i=1

exp(2λγti(x, x, s)− 8αλ)

)1/2

≥ 1

2
ζ(x, s). (3.25)

Combining (3.24) and (3.25) into (3.23) gives

Φtnew

(xnew, snew)

≥ Φt(x, s) +

(
12αλ(‖γt(x, s)‖∞ + 3α) + 20κλ− αλ

10

)
· ζ(x, s) +

√
mλ · exp(192λ

√
α)

≥ Φt(x, s) +

(
12αλ‖γt(x, s)‖∞ −

αλ

20

)
· ζ(x, s) +

√
mλ · exp(192λ

√
α)

where the last step follows from κ ≤ α
1000

and α ≤ 1
10000

.

Finally, we need to bound ‖γt(x, s)‖∞. The bound for other ‖γt‖∞, i.e. for different

combination of x, x, xnew, s, s, snew, are similar. We note that

Φt(x, s) ≤ 80
m

α

implies that ‖γt(x, s)‖∞ ≤ log(80m
α

)

λ
. Hence, by our choice of λ and α, we have that λ ≥

480 log(80m
α

) and hence

12αλ‖γt(x, s)‖∞ ≤
αλ

40
.
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Finally, using Φt(x, s) ≤ √m · ζ(x, s), we have

Φtnew

(xnew, snew) ≥ Φt(x, s)− αλ

40
ζ(x, s) +

√
mλ · exp(192λ

√
α)

≥
(

1− αλ

40
√
m

)
Φt(x, s) +

√
mλ · exp(192λ

√
α).

Since λ ≤ 1
400
√
α
, we have Φt(x, s) ≤ 80m

α
implies Φtnew

(xnew, snew) ≤ 80m
α
.
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Name Type Statement Algorithm Input Output
Initialize public Lemma 3.6.2 Alg. 3.1 A, x, s,W, εmp, a, b ∅
Update public Lemma 3.6.3 Alg. 3.2 W ∅
FullUpdate private Lemma 3.6.5 Alg. 3.3 W ∅
PartialUpdate private Lemma 3.6.4 Alg. 3.2 W ∅
Query public Lemma 3.6.6 Alg. 3.1 ∅ x, s
MultiplyMove public Lemma 3.6.9 Alg. 3.4 h, t ∅
Multiply private Lemma 3.6.8 Alg. 3.4 h, t ∅
Move private Lemma 3.6.7 Alg. 3.4 ∅ ∅

Table 3.2: Summary of data structure CentralPathMaintenance

3.6 Central Path Maintenance

The goal of this section is to present a data-structure to perform our centering steps in

Õ(nω−1/2) amortized time and prove a theoretical guarantee of it. The original idea of inverse

maintenance is from Michael B. Cohen [Lee17], then [CLS19] used it to get faster running

time for solving Linear Programs. Because a simple matrix vector product would require

O(n2) time, our speedup comes via a low-rank embedding that provides `∞ guarantees,

which is unlike the sparse vector approach of [CLS19]. In fact, we are unsure if moving in a

sparse direction h can have sufficiently controlled noise to show convergence. Here, we give

a stochastic version that is faster for dense direction h.

Theorem 3.6.1 (Central path maintenance). Given a full rank matrix A ∈ Rd×n with n ≥ d,

a tolerance parameter 0 < εmp < 1/4 and a block diagonal structure n =
∑m

i=1 ni. Given any

positive number a such a ≤ α where α is the dual exponent of matrix multiplication. Given

any linear sketch of size b, there is a randomized data structure CentralPathMainte-
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nance (in Algorithm 3.1, 3.2, 3.4) that approximately maintains the projection matrices

√
WA>(AWA>)−1A

√
W

for positive block diagonal psd matrix W ⊕i Rni×ni; exactly implicitly maintains central path

parameters (x, s) and approximately explicitly maintains path parameters through the follow-

ing five operations:

1. Initialize(W
(0)
, · · · ) : Assume W (0) ∈ ⊗iRni×ni. Initialize all the parameters in

O(nω) time.

2. Update(W ) : Assume W ∈ ⊕iRni×ni. Output a block diagonal matrix Ṽ ⊕iRni×ni

such that

(1− εmp)ṽi � wi � (1 + εmp)ṽi.

3. Query() : Output (x, s) such that ‖x− x‖Ṽ −1 ≤ εmp and ‖s− s‖Ṽ ≤ tεmp where t

is the last t used in MultiplyMove, where εmp = α log2(nT )n
1/4
√
b
and the success probability

is 1− 1/ poly(nT ). This step takes O(n) time.

4. MultiplyMove(h, t) : It outputs nothing. It implicitly maintains:

x = x+ Ṽ 1/2(I − P̃ )Ṽ 1/2h, s = s+ tṼ −1/2P̃ Ṽ 1/2h.

where P̃ = Ṽ 1/2A>(AṼ A>)−1AṼ 1/2. It also explicitly maintains x, s. Assuming t is decreas-

ing, each call takes O(nb+ naω+o(1) + na‖h‖0 + n1.5) amortized time.

Let W (0) be the initial matrix and W (1)
, · · · ,W (T ) be the (random) update sequence.

Under the assumption that there is a sequence of matrix W (0), · · · ,W (T ) ∈ ⊕mi=1Rni×ni sat-
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isfies for all k

∥∥∥w−1/2
i (wi − wi)w−1/2

i

∥∥∥
F
≤ εmp,

m∑

i=1

∥∥∥(w
(k)
i )−1/2(E[w

(k+1)
i ]− w(k)

i )(w
(k)
i )−1/2

∥∥∥
2

F
≤ C2

1 ,

m∑

i=1

(
E
[∥∥∥(w

(k)
i )−1/2(w

(k+1)
i − w(k)

i )(w
(k)
i )−1/2

∥∥∥
2

F

])2

≤ C2
2 ,

∥∥∥(w
(k)
i )−1/2(w

(k+1)
i − w(k)

i )(w
(k)
i )−1/2

∥∥∥
F
≤ 1

4
.

where w(k)
i is the i-th block of W (k), ∀i ∈ [m].

Then, the amortized expected time per call of Update(w) is

(C1/εmp + C2/ε
2
mp) · (nω−1/2+o(1) + n2−a/2+o(1)).

Remark 3.6.1. For our algorithm, we have C1 = O(1/ log2 n), C2 = O(1/ log4 n) and εmp =

O(1/ log2 n). Note that the input of Update W can move a lot. It is working as long as

W is close to some W that is slowly moving. In our application, our W satisfies C1, C2

deterministically. We keep it for possible future applications.
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Algorithm 3.1 Central Path Maintenance Data Structure - Initial, Query, Move
1: datastructure CentralPathMaintenance . Theorem 3.6.1
2:
3: private : members
4: W ∈ ⊗i∈[m]Rni×ni . Target vector, W is εw-close to W
5: V, Ṽ ∈ ⊗i∈[m]Rni×ni . Approximate vector
6: A ∈ Rd×n . Constraints matrix
7: M ∈ Rn×n . Approximate Projection Matrix
8: εmp ∈ (0, 1/4) . Tolerance
9: a ∈ (0, α] . Batch Size for Update (na)
10: b ∈ Z+ . Sketch size of one sketching matrix
11: R ∈ Rn1+o(1)×n . A list of sketching matrices
12: Q ∈ Rb×n . Sketched matrices
13: u1 ∈ Rn, F ∈ Rn×n, u2 ∈ Rn . Implicit representation of x, x = u1 + F · u2

14: u3 ∈ Rn, G ∈ Rn×n, u4 ∈ Rn . Implicit representation of s, s = u3 +G · u4

15: x, s ∈ Rn . Central path parameters, maintain explicitly
16: l ∈ Z+ . Randomness counter, Rl ∈ Rb×n
17: tpre ∈ R+ . Tracking the changes of t
18: end members
19:
20: public : procedure Initialize(A, x, s,W, εmp, a, b) . Lemma 3.6.2
21: . parameters will never change after initialization
22: A← A, a← a, b← b, εmp ← εmp
23: . parameters will still change after initialization
24: W ←W , V ←W , Ṽ ← V
25: Choose Rl ∈ Rb×n to be sketching matrix, ∀l ∈ [

√
n] . Lemma 3.9.1

26: R← [R>1 , R
>
2 , · · · ]> . Batch them into one matrix R

27: M ← A>(AV A>)−1A, Q← R
√
Ṽ M . Initialize projection matrices

28: u1 ← x, u2 ← 0, u3 ← s, u4 ← 0 . Initialize x and s
29: x← x, s← s
30: l← 1
31: end procedure
32:
33: public : procedure Query() . Lemma 3.6.6
34: return (x, s)
35: end procedure
36:
37: end datastructure
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Algorithm 3.2 Central Path Maintenance Data Structure - Update and PartialUpdate
1: datastructure CentralPathMaintenance . Theorem 3.6.1
2:
3: public : procedure Update(W

new
) . Lemma 3.6.3, W new is close to W new

4: yi ← v
−1/2
i wnew

i v
−1/2
i − 1, ∀i ∈ [m]

5: r ← the number of indices i such that ‖yi‖F ≥ εmp
6: if r < na then
7: PartialUpdate(W new)
8: else
9: FullUpdate(W new) . Algorithm 3.3
10: end if
11: procedure
12:
13: private : procedure PartialUpdate(W

new
) . Lemma 3.6.4

14: W ← W
new

15: ṽnew
i ←

{
vi if (1− εmp)vi � wi � (1 + εmp)vi

wi otherwise
16: F new ← F + ((Ṽ new)1/2 − (Ṽ )1/2)M . only takes n1+a time, instead of n2

17: Gnew ← G+ ((Ṽ new)−1/2 − (Ṽ )−1/2)M
18: u1 ← u1 + (F − F new)u2, u3 ← u3 + (G−Gnew)u4

19: F ← F new, G← Gnew

20: Let Ŝ denote the blocks where Ṽ and Ṽ new are different
21: xŜ ← (u1)Ŝ + (Fu2)Ŝ, sŜ ← (u3)Ŝ + (Gu2)Ŝ . make sure x and x are close, similarly

for s and s
22: end procedure
23:
24: end datastructure

3.6.1 Proof of Theorem 3.6.1

We follow the proof-sketch as [CLS19]. The proof contains four parts : 1) Definition

of X and Y , 2) We need to assume sorting, 3) We provide the definition of potential function,

4) We write the potential function.
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Algorithm 3.3 Central Path Maintenance Data Structure - Full Update
1: datastructure CentralPathMaintenance . Theorem 3.6.1
2:
3: private : procedure FullUpdate(W

new
) . Lemma 3.6.5

4: yi ← v
−1/2
i wnew

i v
−1/2
i − 1, ∀i ∈ [m]

5: r ← the number of indices i such that ‖yi‖F ≥ εmp
6: Let π : [m]→ [m] be a sorting permutation such that ‖yπ(i)‖F ≥ ‖yπ(i+1)‖F
7: while 1.5 · r < m and ‖yπ(1.5r)‖F ≥ (1− 1/ logm)‖yπ(r)‖F
8: r ← min(d1.5 · re,m)
9: end while

10: vnew
π(i) ←

{
wnew
π(i) i ∈ {1, 2, · · · , r}

vπ(i) i ∈ {r + 1, · · · ,m}
11: . Compute Mnew = A>(AV newA>)−1A via Matrix Woodbury
12: ∆← V new − V . ∆ ∈ Rn×n and ‖∆‖0 = r
13: Γ←

√
V new −

√
V

14: Let S ← π([r]) be the first r indices in the permutation
15: Let M∗,S ∈ Rn×O(r) be the r column-blocks from S of M
16: Let MS,S,∆S,S ∈ RO(r)×O(r) be the r row-blocks and column-blocks from S of M , ∆
17: Mnew ←M −M∗,S · (∆−1

S,S +MS,S)−1 · (M∗,S)> . Update M
18: Qnew ← Q+R · (Γ ·Mnew) +R ·

√
V · (Mnew −M) . Update Q

19: W ← W
new, V ← V new, M ←Mnew, Q← Qnew . Update in memory

20: ṽi ←
{
vi if (1− εmp)vi � wi � (1 + εmp)vi

wi otherwise

21: F new ←
√
Ṽ M , Gnew ← 1√

Ṽ
M

22: u1 ← u1 + (F − F new)u2, u3 ← u3 + (G−Gnew)u4

23: F ← F new, G← Gnew

24: Let Ŝ denote the blocks where Ṽ and Ṽ new are different
25: xŜ ← (u1)Ŝ + (Fu2)Ŝ, sŜ ← (u3)Ŝ + (Gu2)Ŝ . make sure x and x are close, similarly

for s and s
26: tpre ← t
27: end procedure
28:
29: end datastructure

124



Algorithm 3.4 Central Path Maintenance Data Structure - Multiply and Move
1: datastructure CentralPathMaintenance . Theorem 3.6.1
2:
3: public : procedure MultiplyAndMove(h, t) . Lemma 3.6.9
4: Multiply(h, t)
5: Move()
6: end procedure
7:
8: private : procedure Multiply (h, t) . Lemma 3.6.8
9: Let S̃ be the indices i such that (1− εmp)vi � wi � (1 + εmp)vi is false.
10: ∆̃← Ṽ − V
11: Γ̃←

√
Ṽ −

√
V

12: δm ← ((∆̃−1

S̃,S̃
+MS̃,S̃)−1 · ((MS̃,∗)

>
√
Ṽ h)) . |S̃| ≤ na

13: . Compute δ̃x = Ṽ 1/2(I −R>RP̃ )Ṽ 1/2h

14: δ̃x ← Ṽ h−
(

(R>l · ((Ql +Rl · Γ̃ ·M) ·
√
Ṽ · h))− (R>l · ((Ql,S̃ +Rl · Γ̃ ·MS̃,∗) · δm))

)

15: . Compute δ̃s = tṼ −1/2R>RP̃ Ṽ 1/2h

16: δ̃s ← t · Ṽ −1 ·
(

(R>l · ((Q+Rl · Γ̃ ·M) ·
√
Ṽ · h))− (R>l · ((Ql,S̃ +Rl · Γ̃ ·MS̃,∗) · δm))

)

17: l← l + 1 . Increasing the randomness counter, and using the new randomness next time
18: . Implicitly maintain x = x+ Ṽ 1/2(I − P̃ )Ṽ 1/2h

19: u1 ← u1 + Ṽ h

20: u2 ← u2 −
√
Ṽ h+ 1S̃δm

21: . Implicitly maintain s = s+ tṼ −1/2P̃ Ṽ 1/2h
22: u3 ← u3 + 0

23: u4 ← u4 − t
√
Ṽ h+ t1S̃δm

24: end procedure
25:
26: private : procedure Move() . Lemma 3.6.7
27: if l >

√
n or t ≥ tpre/2 . Variance is large enough

28: x← u1 + Fu2, s← u3 + Fu4

29: Initialize(A, x, s,W, εmp, a, b) . Algorithm 3.1
30: else
31: x← x+ δ̃x, s← s+ δ̃s . Update x, s
32: end if
33: return (x, s)
34: end procedure
35:
36: end datastructure

Definition of matrices X and Y . Let us consider the k-th round of the algorithm. For

all i ∈ [m], matrix y(k)
i ∈ Rni×ni is constructed based on procedure Update (Algorithm 3.2)
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:

y
(k)
i =

w
(k+1)
i

v
(k)
i

− I.

and π is a permutation such that ‖y(k)
π(i)‖F ≥ ‖y

(k)
π(i+1)‖F .

For the purpose of analysis : for all i ∈ [m], we define x(k)
i , x(k)

i and y(k)
i ∈ Rni×ni as

follows:

x
(k)
i =

w
(k)
i

v
(k)
i

− I, y
(k)
i =

w
(k+1)
i

v
(k)
i

− I, x
(k+1)
i =

w
(k+1)
i

v
(k+1)
i

− I,

where w
(k)
i

v
(k)
i

denotes (v
(k)
i )−1/2w

(k)
i (v

(k)
i )−1/2.

It is not hard to observe the difference between x(k)
i and y(k)

i is that w is changing.

We call it “w move”. Similarly, the difference between y(k)
i and x(k+1)

i is that v is changing.

We call it “v move”.

For each i, we define βi as follows

βi = ‖(w(k)
i )−1/2(E[w

(k+1)
i ]− w(k)

i )(w
(k)
i )−1/2‖F ,

then one of assumption becomes
m∑

i=1

β2
i ≤ C2

1 .

Assume sorting for diagonal blocks. Without loss of generality, we can assume the

diagonal blocks of matrix x(k) ∈ ⊕mi=1Rni×ni are sorted such that ‖x(k)
i ‖F ≥ ‖x(k)

i+1‖F . In

[CLS19], x(k)
i is a scalar. They sorted the sequence based on absolute value. In our situation,

x
(k)
i is a matrix. We sort the sequence based on Frobenius norm. Let τ permutation such

that ‖x(k+1)
τ(i) ‖F ≥ ‖x

(k+1)
τ(i+1)‖F . Let π denote the permutation such that ‖y(k)

π(i)‖F ≥ ‖y
(k)
π(i+1)‖F .
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Definition of Potential function. We define three functions g, ψ and Φk here. The

definition of ψ is different from [CLS19], since we need to handle matrix. The definitions of

g and Φk are the same as [CLS19].

For the completeness, we still provide a definition of g. Let g be defined as

gi =

{
n−a, if i < na;

i
ω−2
1−a n−

a(ω−2)
1−a , otherwise.

In [CLS19], the input of function ψ : R → R has to be a number. We allow matrix

here. Let ψ : square matrix → R be defined by

ψ(x) =





‖x‖2F
2εmp

, ‖x‖F ∈ [0, εmp];

εmp − (4ε2mp−‖x‖2F )2

18ε3mp
, ‖x‖F ∈ (εmp, 2εmp];

εmp, ‖x‖F ∈ (2εmp,+∞).

(3.26)

where ‖x‖F denotes the Frobenius norm of square matrix x, and let L1 = maxxDxψ[h]/‖H‖F ,

L2 = maxxD
2
xψ[h, h]/‖H‖2

F where h is the vectorization of matrix H.

For the completeness, we define the potential at the k-th round by

Φk =
m∑

i=1

gi · ψ(x
(k)
τk(i))

where τk(i) is the permutation such that ‖x(k)
τk(i)‖F ≥ ‖x

(k)
τk(i+1)‖F . (Note that in [CLS19] ‖·‖F

should be | · |.)

Rewriting the potential, and bounding it. Following the ideas in [CLS19], we can

rewrite Φk+1 − Φk into two terms: the first term is w move, and the second term is v move.
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For the completeness, we still provide a proof.

Φk+1 − Φk =
m∑

i=1

gi ·
(
ψ(x

(k+1)
τ(i) )− ψ(x

(k)
i )
)

=
m∑

i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k)
i )
)

︸ ︷︷ ︸
W move

−
m∑

i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k+1)
τ(i) )

)

︸ ︷︷ ︸
V move

Using Lemma 3.6.10, we can bound the first term. Using Lemma 3.6.12, we can bound the

second term.
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3.6.2 Initialization time, update time, query time, move time, multiply time

Remark 3.6.2. In terms of implementing this data-structure, we only need three operations

Initialize, Update, and Query. However, in order to make the proof more understood-

able, we split Update into many operations : FullUpdate, PartialUpdate, Multiply

and Move. We give a list of operations in Table 3.2.

Lemma 3.6.2 (Initialization). The initialization time of data-structure CentralPath-

Maintenance (Algorithm 3.1) is O(nω+o(1)).

Proof. The running time is mainly dominated by two parts, the first part is computing

A>(AV A>)−1A, this takes O(n2dω−2) time.

The second part is computing R
√
Ṽ M . This takes O(nω+o(1)) time.

Lemma 3.6.3 (Update time). The update time of data-structure CentralPathMainte-

nance (Algorithm 3.2) is O(rgrn
2+o(1)) where r is the number of indices we updated in

V .

Proof. It is trivially follows from combining Lemma 3.6.4 and Lemma 3.6.5.

Lemma 3.6.4 (Partial Update time). The partial update time of data-structure Central-

PathMaintenance (Algorithm 3.2) is O(n1+a).

Proof. We first analyze the running time of F update, the update equation of F in algorithm
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is

F new ← F + ((Ṽ new)1/2 − (Ṽ )1/2)M

F ←F new

which can be implemented as

F ← F + ((Ṽ new)1/2 − (Ṽ )1/2)M

where we only need to change na row-blocks of F . It takes O(n1+a) time.

Similarly, for the update time of G.

Next we analyze the update time of u1, the update equation of u1 is

u1 ← u1 + (F − F new)u2

Note that the difference between F and F new is only na row-blocks, thus it takes n1+a time

to update.

Finally we analyze the update time of x. Let Ŝ denote the blocks where Ṽ and Ṽ new

are different.

xŜ ← (u1)Ŝ + (Fu2)Ŝ

This also can be done in n1+a time, since Ŝ indicates only na blocks.

Therefore, the overall running time is O(n1+a).

Lemma 3.6.5 (Full Update time). The full update time of data-structure CentralPath-

Maintenance (Algorithm 3.3) is O(rgrn
2+o(1)) where r is the number of indices we updated

in V .
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Proof. The update equation we use for Q is

Qnew ← Q+R · (Γ ·Mnew) +R ·
√
V · (Mnew −M).

It can be re-written as

Qnew ← Q+R · (Γ ·Mnew) +R ·
√
V · (−M∗,S · (∆−1

S,S +MS,S)−1 · (M∗,S)>)

The running time of computing second term is multiplying a n×r matrix with another r×n

matrix. The running time of computing third term is also dominated by multiplying a n× r

matrix with another r × n matrix.

Thus running time of processing Q update is the same as the processing M update.

For the running time of other parts, it is dominated by the time of updating M and

Q.

Therefore, the rest of the proof is almost the same as Lemma 5.4 in [CLS19], we

omitted here.

Lemma 3.6.6 (Query time). The query time of data-structure CentralPathMainte-

nance (Algorithm 3.1) is O(n) time.

Proof. This takes only O(n) time, since we stored x and s.

Lemma 3.6.7 (Move time). The move time of data-structure CentralPathMainte-

nance (Algorithm 3.4) is O(nω+o(1)) time in the worst case, and is O(nω−1/2+o(1)) amortized

cost per iteration.
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Proof. In one case, it takes only O(n) time. For the other case, the running time is dominated

by Initialize, which takes nω+o(1) by Lemma 3.6.5.

Lemma 3.6.8 (Multiply time). The multiply time of data-structure CentralPathMain-

tenance (Algorithm 3.4) is O(nb + n1+a+o(1)) for dense vector ‖h‖0 = n, and is O(nb +

naω+o(1) + na‖h‖0) for sparse vector h.

Proof. We first analyze the running time of computing vector δm, the equation is

δm ←
(

((∆̃S̃,S̃)−1 +MS̃,S̃)−1 · (MS̃,∗)
>
√
Ṽ h
)

where ∆̃ = Ṽ − V . Let r̃ =
∑

i∈S̃ ni = O(r) where r is the number of blocks are different in

Ṽ and V .

It contains several parts:

1. Computing M̃>
S̃
· (
√
Ṽ h) ∈ Rr̃ takes O(r̃)‖h‖0.

2. Computing (∆̃−1

S̃,S̃
+ MS̃,S̃)−1 ∈ RO(r̃)×O(r̃) that is the inverse of a O(r̃) × O(r̃)

matrix takes O(r̃ω+o(1)) time.

3. Computing matrix-vector multiplication between O(r̃) × O(r̃) matrix ((∆̃S̃,S̃ +

MS̃,S̃)−1) and O(r̃)× 1 vector ((M̃S̃,∗)
>
√
Ṽ h) takes O(r̃2) time.

Thus, the running time of computing δm is

O(r̃‖h‖0 + r̃ω+o(1) + r̃2) = O(r̃‖h‖0 + r̃ω+o(1)).

Next, we want to analyze the update equation of δ̃x

δ̃x ← Ṽ h−
(

(R>l · ((Ql +Rl

√
∆̃M) ·

√
Ṽ · h))− (R>l · ((Ql,S̃ +RlΓ̃MS̃) · δm))

)
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where Γ̃ =
√
Ṽ −

√
V has O(r) non-zero blocks.

It is clear that the running time is dominated by the second term in the equation.

We only focus on that term.

1. Computing R>l Ql

√
Ṽ h takes O(bn) time, because Ql, Rl ∈ Rb×n.

2. Computing R>l Rl

√
∆̃M

√
Ṽ h takes O(bn + br̃ + r̃‖h‖0) time. The reason is,

computing
√

∆̃M
√
Ṽ h takes r̃‖h‖0 time, computing Rl ·(

√
∆̃M

√
Ṽ h) takes br̃, then finally

computing R>l · (Rl

√
∆̃M

√
Ṽ h) takes nb.

Last, the update equation of u1, u2, u3, u4 only takes the O(n) time.

Finally, we note that r ≤ O(na) due to the guarantee of FullUpdate and Par-

tialUpdate.

Thus, overall the running time of the Multiply is

O(r̃‖h‖0 + r̃ω+o(1) + r̃2 + br̃ + nb) = O(r̃‖h‖0 + r̃ω+o(1) + nb)

= O(r‖h‖0 + rω+o(1) + nb)

= O(na‖h‖0 + naω+o(1) + nb)

where the first step follows from br̃ ≤ nb and r̃2 ≤ r̃ω+o(1), and the second step follows from

r̃ = O(r), and the last step follows from r = O(na).

If h is the dense vector, then the overall time is

O(nb+ n1+a + naω+o(1)).

Based on Lemma 5.5 in [CLS19], we know that aω ≤ 1 + a. Thus, it becomes

O(nb+ n1+a+o(1)) time.
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If h is a sparse vector, then the overall time is

O(nb+ na‖h‖0 + naω+o(1)).

Lemma 3.6.9 (MultiplyMove). The running time of MultiplyMove (Algorithm 3.6.9)

is the Multiply time plus Move time.
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3.6.3 Bounding W move

The goal of this section is to analyze the movement of W . [CLS19] provided a scalar

version of W move, here we provide a matrix version.

Lemma 3.6.10 (W move, matrix version of Lemma 5.7 in [CLS19]).

m∑

i=1

gi · E
[
ψ(y

(k)
π(i))− ψ(x

(k)
π(i))

]
= O(C1 + C2/εmp) ·

√
log n · (n−a/2 + nω−5/2).

Proof. In scalar version, [CLS19] used absolute (| · |) to measure each x(k)
i . In matrix version,

we use Frobenius norm (‖‖F ) to measure each x(k)
i . Let I ⊆ [m] be the set of indices such

that ‖x(k)
i ‖F ≤ 1. We separate the term into two :

m∑

i=1

gi · E[ψ(y
(k)
π(i))− ψ(x

(k)
π(i))] =

∑

i∈I

gπ−1(i) · E[ψ(y
(k)
i )− ψ(x

(k)
i )] +

∑

i∈Ic
gπ−1(i) · E[ψ(y

(k)
i )− ψ(x

(k)
i )].

Case 1. Let us consider the terms from I.

Let vec(y(k)
i ) denote the vectorization of matrix y(k)

i . Similarly, vec(x(k)
i ) denotes the

vectorization of x(k)
i . Mean value theorem shows that

ψ(y
(k)
i )− ψ(x

(k)
i ) = 〈ψ′(x(k)

i ), y
(k)
i − x(k)

i 〉+
1

2
vec(y(k)

i − x(k)
i )>ψ′′(ζ)vec(y(k)

i − x(k)
i )

≤ 〈ψ′(x(k)
i ), y

(k)
i − x(k)

i 〉+
L2

2
‖y(k)

i − x(k)
i ‖2

F

= 〈ψ′(x(k)
i ), (v

(k)
i )−1/2(w

(k+1)
i − w(k)

i )(v
(k)
i )−1/2〉

+
L2

2
‖(v(k)

i )−1/2(w
(k+1)
i − w(k)

i )(v
(k)
i )−1/2‖2

F

where the second step follows from definition of L2 (see Part 4 of Lemma 3.6.14).
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Taking conditional expectation given w(k) on both sides

E[ψ(y
(k)
i )− ψ(x

(k)
i )] ≤ 〈ψ′(x(k)

i ), (v
(k)
i )−1/2(E[w

(k+1)
i ]− w(k)

i )(v
(k)
i )−1/2〉

+
L2

2
E[‖(v(k)

i )−1/2(w
(k+1)
i − w(k)

i )(v
(k)
i )−1/2‖2

F ]

≤ L1‖(v(k)
i )−1/2(E[w

(k+1)
i ]− w(k)

i )(v
(k)
i )−1/2‖F

+
L2

2
E[‖(v(k)

i )−1/2(w
(k+1)
i − w(k)

i )(v
(k)
i )−1/2‖2

F ]

≤ L1‖(v(k)
i )−1/2(w

(k)
i )1/2‖2 · ‖(w(k)

i )−1/2(E[w
(k+1)
i ]− w(k)

i )(w
(k)
i )−1/2‖F

+
L2

2
‖(v(k)

i )−1/2(w
(k)
i )1/2‖4 · E[‖(w(k)

i )−1/2(w
(k+1)
i − w(k)

i )(w
(k)
i )−1/2‖2

F ]

= L1‖(v(k)
i )−1/2(w

(k)
i )1/2‖2 · βi +

L2

2
‖(v(k)

i )−1/2(w
(k)
i )1/2‖4 · γi (3.27)

where the second step follows from definition of L2 (see Part 4 of Lemma 3.6.14), the third

step follows from ‖AB‖F ≤ ‖A‖F · ‖B‖, and the last step follows from defining βi and γi as

follows:

βi =
∥∥∥(w

(k)
i )−1/2(E[w

(k+1)
i ]− w(k)

i )(w
(k)
i )−1/2

∥∥∥
F

γi = E
[∥∥∥(w

(k)
i )−1/2(w

(k+1)
i − w(k)

i )(w
(k)
i )−1/2

∥∥∥
2

F

]
.

To upper bound
∑

i∈I gπ−1(i) E[ψ(y
(k)
i )−ψ(x

(k)
i )], we need to bound the following two

terms,

∑

i∈I

gπ−1(i)L1

∥∥∥(v
(k)
i )−1/2(w

(k)
i )1/2

∥∥∥
2

βi, and
∑

i∈I

gπ−1(i)

L2

2

∥∥∥(v
(k)
i )−1/2(w

(k)
i )1/2

∥∥∥
4

γi. (3.28)
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For the first term (which is related to β) in Eq. (3.28), we have

∑

i∈I

gπ−1(i)L1‖(v(k)
i )−1/2(w

(k)
i )1/2‖2βi ≤

(∑

i∈I

(
gπ−1(i)L1‖(v(k)

i )−1/2(w
(k)
i )1/2‖2

)2∑

i∈I

β2
i

)1/2

≤ O(L1)

(
n∑

i=1

g2
i · C2

1

)1/2

= O(C1L1‖g‖2). (3.29)

where the first step follows from Cauchy-Schwarz inequality, the second step follows from

ni = O(1) and ‖(v(k)
i )−1/2(w

(k)
i )1/2‖2 = O(1).

For the second term (which is related to γ) in Eq. (3.28), we have

∑

i∈I

gπ−1(i)

L2

2
‖(v(k)

i )−1/2(w
(k)
i )1/2‖4niγi ≤ O(L2) ·

m∑

i=1

gi · γi = O(C2L2‖g‖2). (3.30)

Putting Eq. (3.27), Eq. (3.29) and Eq. (3.30) together, and using several facts L1 =

O(1), L2 = O(1/εmp) (from part 4 of Lemma 3.6.14) and ‖g‖2 ≤
√

log n ·O(n−a/2 + nω−5/2)

(from Lemma 3.6.11) gives us

∑

i∈I

gπ−1(i) · E[ψ(y
k)
i )− ψ(x

(k)
i )] ≤ O(C1 + C2/εmp) ·

√
log n · (n−a/2 + nω−5/2).

(Note that, the above Equation is the same as [CLS19].)

Case 2. Let us consider the terms from Ic.

For each i ∈ Ic, we know ‖x(k)
i ‖F ≥ 1. We observe that ψ(x) is constant for ‖x‖2

F ≥

(2εmp)
2, where εmp ≤ 1/4. If ‖y(k)

i ‖F ≥ 1/2, then ψ(y
(k)
i ) − ψ(x

(k)
i ) = 0. Therefore, we only

need to focus on the i ∈ Ic such that ‖y(k)
i ‖F < 1/2.
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For each i ∈ Ic with ‖y(k)
i ‖F < 1/2, we have

1

2
< ‖y(k)

i − x(k)
i ‖F

= ‖(v(k)
i )−1/2(w

(k+1)
i − w(k)

i )(v
(k)
i )−1/2‖F

= ‖(v(k)
i )−1/2(w

(k)
i )1/2 · (w(k)

i )−1/2(w
(k+1)
i − w(k)

i )(w
(k)
i )−1/2 · (w(k)

i )1/2(v
(k)
i )−1/2‖F

≤ ‖(v(k)
i )−1/2(w

(k)
i )1/2‖ · ‖(w(k)

i )−1/2(w
(k+1)
i − w(k)

i )(w
(k)
i )−1/2‖F · ‖(w(k)

i )1/2(v
(k)
i )−1/2‖

= ‖(v(k)
i )−1/2w

(k)
i (v

(k)
i )−1/2‖ · ‖(w(k)

i )−1/2(w
(k+1)
i − w(k)

i )(w
(k)
i )−1/2‖F

≤ 3

2
‖(w(k)

i )−1/2(w
(k+1)
i − w(k)

i )(w
(k)
i )−1/2‖F (3.31)

where the last step follows from ‖y(k)
i ‖F = ‖w

(k+1)
i

v
(k)
i

− I‖F ≤ 1/2.

It is obvious that Eq. (3.31) implies

‖(w(k)
i )−1/2(w

(k+1)
i − w(k)

i )(w
(k)
i )−1/2‖F > 1/3 > 1/4.

But this is impossible, since we assume it is ≤ 1/4.

Thus, we have

∑

i∈Ic
gπ−1(i) · E[ψ(y

(k)
i )− ψ(x

(k)
i )] = 0.

We state a Lemma that was proved in previous work [CLS19].

Lemma 3.6.11 (Lemma 5.8 in [CLS19]).
(

n∑

i=1

g2
i

)1/2

≤
√

log n ·O(n−a/2 + nω−5/2)
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3.6.4 Bounding V move

In previous work, [CLS19] only handled the movement of V in scalar version. Here,

the goal of is to understand the movement of V in matrix version. We start to give some

definitions about block diagonal matrices.

Definition 3.6.1. We define block diagonal matricesX(k), Y (k), X(k+1) and Y (k)⊗i∈[m]Rni×ni

as follows

x
(k)
i =

w
(k)
i

v
(k)
i

− I, y
(k)
i =

w
(k+1)
i

v
(k)
i

− I, x
(k+1)
i =

w
(k+1)
i

v
(k+1)
i

− I, y
(k)
i =

w
(k+1)
i

v
(k)
i

− I.

Let εw denote the error between W and W

‖W−1/2
i (W i −Wi)W

−1/2
i ‖F ≤ εw.

Lemma 3.6.12 (V move, matrix version of Lemma 5.9 in [CLS19]). We have,

n∑

i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k+1)
τ(i) )

)
≥ Ω(εmprkgrk/ log n).

Proof. To prove the Lemma, similarly as [CLS19], we will split the proof into two cases.

Before getting into the details of each case, let us first understand several simple

facts which are useful in the later proof. Note that from the definition of the algorithm, we

only change the block if ‖y(k)
i ‖F is larger than the error between wi and wi. Hence, all the

changes only decreases the norm, namely ψ(y
(k)
i ) ≥ ψ(x

(k+1)
i ) for all i. So is their sorted

version ψ(y
(k)
π(i)) ≥ ψ(xτ(i))

(k+1) for all i.
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Case 1. The procedure exits the while loop when 1.5rk ≥ n.

Let u∗ denote the largest u such that ‖y(k)
π(u)‖F ≥ εmp.

If u∗ = rk, we have that

‖y(k)
π(rk)‖F ≥ εmp ≥ εmp/100.

If u∗ 6= rk, using the condition of the loop, we have that

‖y(k)
π(rk)‖F ≥ (1− 1/ log n)log1.5 rk−log1.5 u

∗ · ‖y(k)
π(u∗)‖F

≥ (1− 1/ log n)log1.5 n · εmp

≥ εmp/100.

where the last step follows from n ≥ 4.

Recall the definition of x(k+1)
τ(i) . We can lower bound the LHS in the Lemma statement

in the following sense,

n∑

i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k+1)
τ(i) )

)
≥

2n/3∑

i=n/3+1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k+1)
τ(i) )

)

≥
2n/3∑

i=n/3+1

gi · (Ω(εmp)−O(εw))

≥
2n/3∑

i=n/3+1

gi · Ω(εmp)

= Ω(rkgrkεmp).

where the second step follows from ‖y(k)
π(i)‖F ≥ ‖y

(k)
π(rk)‖F ≥ (1 − O(εw))‖y(k)

π(rk)‖F ≥ εmp/200

for all i < 2n/3.
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Case 2. The procedure exits the while loop when 1.5rk < n and ‖y(k)
π(1.5rk)‖F < (1 −

1/ log n)‖y(k)
π(rk)‖F .

Using the same argument as Case 1, we have

‖y(k)
π(rk)‖F ≥ εmp/100.

Using Part 3 of Lemma 3.6.14 and the following fact

‖y(k)
π(1.5r)‖F < min

(
εmp, ‖y(k)

π(r)‖F · (1− 1/ log n)
)
,

we can show that

ψ(y
(k)
π(1.5r))− ψ(y

(k)
π(r)) = Ω(εmp/ log n). (3.32)

Now the question is, how to relax ψ(y
(k)
π(1.5r)) to ψ(y

(k)
π(1.5r)) and how to relax ψ(y

(k)
π(r))

to ψ(y
(k)
π(r))

Note that ‖y(k)
i ‖F ≥ ‖x(k+1)

i ‖F for all i. Hence, we have ψ(y
(k)
π(i)) ≥ ψ(x

(k+1)
τ(i) ) for all i.

Recall the definition of y, y, π and π,

y
(k)
i =

w
(k+1)
i

v
(k)
i

− I, y
(k)
i =

w
(k+1)
i

v
(k)
i

− I.

and π and π denote the permutations such that ‖y(k)
π(i)‖F ≥ ‖y

(k)
π(i+1)‖F and ‖y(k)

π(i)‖F ≥

‖y(k)
π(i+1)‖F .

Using Fact 3.6.13 and ‖ · ‖2 = Θ(1)‖ · ‖F when the matrix has constant dimension

‖y(k)
π(i) − y

(k)
π(i)‖F ≤ O(εw).

where εw is the error between W and W .
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Next, ∀i, we have

ψ(y
(k)
π(i)) = ψ(y

(k)
π(i))±O(εwεmp) (3.33)

Next, we note that all the blocks the algorithm updated must lies in the range i = 1, · · · , 3rk
2
−

1. After the update, the error of rk of these block becomes so small that its rank will much

higher than rk. Hence, rk/2 of the unchanged blocks in the range i = 1, · · · , 3rk
2

will move

earlier in the rank. Therefore, the rk/2-th element in x(k+1) must be larger than the 3
2
rk-th

element in y(k). In short, we have ψ(x
(k+1)
τ(i) ) ≤ ψ(y

(k)
π(1.5rk)) for all i ≥ rk/2.

Putting it all together, we have
n∑

i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k+1)
τ(i) )

)

≥
rk∑

i=rk/2

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k+1)
τ(i) )

)

≥
rk∑

i=rk/2

gi ·
(
ψ(y

(k)
π(i))− ψ(y

(k+1)
π(1.5rk))

)
by ψ(x

(k+1)
τ(i) ) ≤ ψ(y

(k)
π(1.5rk)),∀i ≥ rk/2

≥
rk∑

i=rk/2

gi ·
(
ψ(y

(k)
π(i))− ψ(y

(k+1)
π(1.5rk))−O(εwεmp)

)
by (3.33)

≥
rk∑

i=rk/2

gi ·
(
ψ(y

(k)
π(rk))− ψ(y

(k+1)
π(1.5rk))−O(εwεmp)

)
by ψ(y

(k)
π(i)) ≥ ψ(y

(k)
π(rk)),∀i ∈ [rk/2, rk]

≥
rk∑

i=rk/2

grk ·
(

Ω(
εmp

log n
)−O(εwεmp)

)
by (3.32)

≥
rk∑

i=rk/2

grk · Ω(
εmp

log n
) by εw < O(1/ log n)

= Ω (εmprkgrk/ log n) .

Therefore, we complete the proof.
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Fact 3.6.13. Given two length n positive vectors a, b. Let a be sorted such that ai ≥ ai+1.

Let π denote the permutation such that bπ(i) ≥ bπ(i+1). If for all i ∈ [n], |ai− bi| ≤ εai. Then

for all i ∈ [n], |ai − bπ(i)| ≤ εai.

Proof. Case 1. π(i) = i. This is trivially true.

Case 2. π(i) < i. We have

bπ(i) ≥ bi ≥ (1− ε)ai

Since π(i) < i, we know that there exists a j > i such that π(j) < π(i). Then we have

bπ(i) ≤ bπ(j) ≤ (1 + ε)aj ≤ (1 + ε)ai

Combining the above two inequalities, we have (1− ε)ai ≤ bπ(i) ≤ (1 + ε)ai.

Case 3. π(i) > i. We have

bπ(i) ≤ bi ≤ (1 + ε)ai

Since π > i, we know that there exists j < i such that π(j) > π(i). Then we have

bπ(i) ≥ bπ(j) ≥ (1− ε)aj ≥ (1− ε)ai.

Combining the above two inequalities gives us (1− ε)ai ≤ bπ(i) ≤ (1 + ε)ai.

Therefore, putting all the three cases together completes the proof.
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3.6.5 Potential function ψ

[CLS19] used a scalar version potential function. Here, we generalize it to the matrix

version.

Lemma 3.6.14 (Matrix version of Lemma 5.10 in [CLS19]). Let function ψ : square matrix→

R (defined as Eq. (3.26)) satisfies the following properties :

1. Symmetric (ψ(x) = ψ(−x)) and ψ(0) = 0

2. If ‖x‖F ≥ ‖y‖F , then ψ(x) ≥ ψ(y)

3. |f ′(x)| = Ω(1/εmp),∀x ∈ [(0.01εmp)
2, ε2mp]

4. L1
def
= maxx

Dxψ[H]
‖H‖F

= 2 and L2
def
= maxx

D2
xψ[H,H]

‖H‖2F
= 10/εmp

5. ψ(x) is a constant for ‖x‖F ≥ 2εmp

Proof. Let f : R+ → R be defined as

f(x) =





x2

2ε3mp
, x ∈ [0, ε2mp];

εmp − (4ε2mp−x)2

18ε3mp
, x ∈ (ε2mp, 4ε

2
mp];

εmp, x ∈ (4ε2mp,+∞).

We can see that

f(x)′ =





x
ε3mp

, x ∈ [0, ε2mp];
4ε2mp−x

9ε3mp
, x ∈ (ε2mp, 4ε

2
mp];

0, x ∈ (4ε2mp,+∞).

and f(x)′′ =





1
ε3mp

, x ∈ [0, ε2mp];

− 1
9ε3mp

, x ∈ (ε2mp, 4ε
2
mp];

0, |x| ∈ (4ε2mp,+∞).

It implies that maxx |f(x)′| ≤ 1
εmp

and maxx |f(x)′′| ≤ 1
ε3mp

. Let ψ(x) = f(‖X‖2
F ).

Proof of Part 1,2 and 5. These proofs are pretty standard from definition of ψ.

Proof of Part 3. This is trivially following from definition of scalar function f .
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Proof of Part 4. By chain rule, we have

Dxψ[h] = 2f ′(‖X‖2
F ) · tr[XH]

D2
xψ[h, h] = 2f ′′(‖X‖2

F ) · (tr[XH])2 + 2f ′(‖x‖2
F ) · tr[H2]

where x is the vectorization of matrix X and h is the vectorization of matrix H. We can

upper bound

|Dxψ[h]| ≤ 2|f ′(‖X‖2
F )| · | tr[XH]| ≤ 2|f ′(‖X‖2

F )| · ‖X‖F · ‖H‖F

Then, we have

|f ′(‖X‖2
F )| · ‖X‖F =





‖X‖3
F/ε

3
mp ≤ 1, ‖X‖F ∈ [0, εmp]

(4ε2mp − ‖X‖2
F )‖X‖F/9εmp ≤ 2/3, ‖X‖F ∈ (εmp, 2εmp]

0, ‖X‖F ∈ (2εmp,+∞)

It implies that |Dxψ[h]| ≤ 2‖H‖F , ∀x.

By case analysis, we have

|f ′′(‖X‖2
F )| · ‖X‖2

F ≤
{

1
ε3mp
‖X‖2

F ≤ 4/εmp, ‖X‖2
F ∈ [0, 4ε2mp]

0, ‖X‖2
F ∈ (4εmp,+∞)

We can also upper bound

|D2
xψ[h, h]| ≤ 2|f ′′(‖X‖2

F )| · (tr[XH])2 + 2|f ′(‖X‖2
F )| · tr[H2]

≤ 2|f ′′(‖X‖2
F )| · (‖X‖F‖H‖F )2 + 2|f ′(‖X‖2

F )| · ‖H‖2
F

≤ 2 · 4

εmp
‖H‖2

F + 2 · 1

εmp
‖H‖2

F

=
10

εmp
‖H‖2

F .
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3.6.6 x and x are close

Lemma 3.6.15 (x and x are close in term of Ṽ −1). With probability 1−δ over the randomness

of sketching matrix R ∈ Rb×n, we have

‖xi − xi‖Ṽ −1
i
≤ εx

εx = O(α log2(n/δ) · n1/4
√
b

), b is the size of sketching matrix.

Proof. Recall the definition of δ̃x and δx, we have

δ̃x,i − δx,i = Ṽ
1/2
i (I −R>RP̃ )Ṽ 1/2h− Ṽ 1/2

i (I − P̃ )Ṽ 1/2h = Ṽ
1/2
i (P̃ −R>RP̃ )Ṽ 1/2h

For iteration t, the definition should be

δ̃
(t)
x,i − δ(t)

x,i = (Ṽ
(t)
i )1/2(P̃ (t) − (R(t))>R(t)P̃ (t))(Ṽ (t))1/2h.

For any i, let k be the current iteration, ki be the last when we changed the Ṽi. Then,

we have that

x
(k)
i − x(k)

i =
k∑

t=ki

δ̃
(t)
x,i − δ(t)

x,i

because we have x(ki)
i = x

(ki)
i (guaranteed by our algorithm). Since Ṽ (t)

i did not change

during iteration ki to k for the block i. (However, the whole other parts of matrix Ṽ could

change). We consider

(x
(k)
i − x(k)

i )> · (Ṽ (k)
i )−1 · (x(k)

i − x(k)
i ) =

(
k∑

t=ki

δ̃
(t)
x,i − δ(t)

x,i

)>
· (Ṽ (k)

i )−1 ·
(

k∑

t=ki

δ̃
(t)
x,i − δ(t)

x,i

)

=

∥∥∥∥∥
k∑

t=ki

(
(I − (R(t))>R(t))P̃ (t)(Ṽ (t))1/2h(t)

)
i

∥∥∥∥∥

2

2

.
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We consider block i and a coordinate j ∈ block i. We define random vector Xt ∈ Rni

as follows:

Xt =
(

(I −R(t)>R(t))P̃ (t)(Ṽ (t))1/2h(t)
)
i
.

Let (Xt)j denote the j-th coordinate of Xt, for each j ∈ [ni].

By Lemma 3.9.1 in Section 3.9, we have for each t,

E[Xt] = 0, and E[(Xt)
2
j ] =

1

b
‖(P̃ (t)(Ṽ (t))1/2h(t))i‖2

2

and with probability 1− δ,

|(Xt)j| ≤ ‖(P̃ (t)(Ṽ (t))1/2h(t))i‖2
log(n/δ)√

b
:= M.

Now, we apply Bernstein inequality (Lemma A.1.2),

Pr

[∑

t

(Xt)j > τ

]
≤ exp

(
− τ 2/2∑

t E[(Xt)2
j ] +Mτ/3

)

Choosing τ = 103
√
T√
b

log2(n/δ) · ‖(P̃ (t)(Ṽ (t))1/2h(t))i‖2

Pr

[∑

t

(Xt)j > 103

√
T√
b

log2(n/δ) · ‖(P̃ (t)(Ṽ (t))1/2h(t))i‖2

]

≤ exp

(
− 106 T

b
log4(n/δ) · ‖(P̃ (t)(Ṽ (t))1/2h(t))i‖2

2/2
T
b
‖(P̃ (t)(Ṽ (t))1/2h(t))i‖2

2 + 103
√
T
b

log3(n/δ)‖(P̃ (t)(Ṽ (t))1/2h(t))i‖2
2/3

)

≤ exp(−100 log(n/δ))

Now, taking a union, we have
∥∥∥∥∥

k∑

t=ki

(
(I − (R(t))>R(t))P̃ (t)(Ṽ (t))1/2h(t)

)
i

∥∥∥∥∥
2

= O

(√
T√
b

log2(n/δ)
∥∥∥(P̃ (t)(Ṽ (t))1/2h(t))i

∥∥∥
2

)

≤ O

(√
T√
b

log2(n/δ)α

)
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where we use that ‖(P̃ (t)(Ṽ (t))1/2h(t))i‖2 ≤ ‖((Ṽ (t))1/2h(t))i‖2 = O(α), ni = O(1).

Finally, we use the fact that the algorithm reset x = x, s = s in less than
√
n

iterations.
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3.6.7 s and s are close

Lemma 3.6.16 (s and s are close). With probability 1− δ over the randomness of sketching

matrix R ∈ Rb×n, we have

t−1‖si − si‖Ṽi ≤ εs,

εs = O(α log2(n/δ) · n1/4
√
b
, and b is the size of sketching matrix.

Proof. Recall the definition of δ̃s, δs, we have

δ̃s,i − δs,i = tṼ
−1/2
i (R>R− I)P̃ Ṽ 1/2h

The rest of the proof is identical to Lemma 3.6.15 except we use also the fact we make s = s

whenever our t changed by a constant factor. We omitted the details here.
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3.6.8 Data structure is maintaining (x, s) implicitly over all the iterations

Lemma 3.6.17. Over all the iterations, u1+Fu2 is always maintaining x implicitly, u3+Gu4

is always maintaining s implicitly.

Proof. We only focus on the PartialUpdate. The FullUpdate is trivial, we ignore the

proof.

For x.

Note that M is not changing. Let’s assume that u1 +Fu2 = x, we want to show that

unew
1 + F newunew

2 = xnew.

which is equivalent to prove

unew
1 + F newunew

2 − (u1 + Fu2) = δx

Let ∆u1 = unew
1 − u1 be the change of u1 over iteration t, then

∆u1 = Ṽ newh+ (F − F new)u2

Let ∆u2 = unew
2 − u2 be the change of u2 over iteration t, then

∆u2 = −(Ṽ new)1/2h+ 1S̃(∆̃−1

S̃,S̃
+MS̃,S̃)−1M>

S̃
(Ṽ new)1/2h.

By definition of δx at iteration t, we have

δx = Ṽ newh−
(√

Ṽ newM
√
Ṽ newh−

√
Ṽ newMS̃(∆̃−1

S̃,S̃
+MS̃,S̃)−1(MS̃)>

√
Ṽ newh

)
.
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We can compute

unew
1 + F newunew

2 − (u1 + Fu2)

= ∆u1 + (F newunew
2 − Fu2)

= Ṽ newh+ (F − F new)u2 + (F newunew
2 − Fu2)

= Ṽ newh+ F new(unew
2 − u2)

= Ṽ newh+ F new∆u2

= Ṽ newh− F new
√
Ṽ newh+ F new1S̃(∆̃−1

S̃,S̃
+MS̃,S̃)−1(MS̃)>

√
Ṽ newh

= δx

where we used F new =
√
Ṽ newM in the last step.

For s.

We have

Gnew =
1√
Ṽ new

M,G =
1√
Ṽ
M

Let ∆u3 = unew
3 − u3 be the change of u3 over iteration t, then

∆u3 = (G−Gnew)u4

Let ∆u4 = unew
4 − u4 be the change of u4 over iteration t, then

∆u4 = t ·∆u2

By definition of δs in iteration t,
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δs =

(
1√
Ṽ new

M
√
Ṽ new(th)− 1√

Ṽ new
MS̃(∆̃−1

S̃,S̃
+MS̃,S̃)−1(MS̃)>

√
Ṽ new(th)

)

We can compute

(unew
3 +Gnewunew

4 )− (u3 +Gu4) = ∆u3 + (Gnewunew
4 −Gu4)

= (G−Gnew)u4 + (Gnewunew
4 −Gu4)

= Gnew(unew
4 − u4)

= Gnewt∆u2

= δs

where the last step follows by definition of ∆u2.
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3.7 Combining Robust Central Path with Data Structure

The goal of this section is to combine Section 3.5 and Section 3.6.

Ntn Choice of Parameter Statement Comment
C1 Θ(1/ log2 n) Lem. 3.7.1, Thm. 3.6.1 `2 accuracy of W sequence
C2 Θ(1/ log4 n) Lem. 3.7.1, Thm. 3.6.1 `4 accuracy of W sequence
εmp Θ(1/ log2 n) RobustIPM Alg in Sec. 3.5 accuracy for data structure
T Θ(

√
n log2 n log(n/δ)) Thm. 3.4.1 #iterations

α Θ(1/ log2 n) RobustIPM Alg in Sec. 3.5 step size in Hessian norm
b Θ(

√
n log6(nT ) Lem. 3.6.15, 3.6.16, 3.7.2 sketch size

εx Θ(1/ log3 n) Lem. 3.6.15 accuracy of x (respect to x)
εs Θ(1/ log3 n) Lem. 3.6.16 accuracy of s (respect to s)
εw Θ(1/ log3 n) Lem. 3.7.2 accuracy of W (respect to W )
a min(2/3, αm) αm is the dual exponent of MM batch size

Table 3.3: Summary of parameters. “Ntn” denotes Notation.
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3.7.1 Guarantee for W matrices

Lemma 3.7.1 (Guarantee of a sequence ofW ). Let xnew = x+δx. LetW new = (∇2φ(xnew))−1

and W = (∇2φ(x))−1. Then we have

m∑

i=1

∥∥∥w−1/2
i (wnew

i − wi)w−1/2
i

∥∥∥
2

F
≤ C2

1 ,

m∑

i=1

∥∥∥w−1/2
i (wnew

i − wi)w−1/2
i

∥∥∥
4

F
≤ C2

2 ,

∥∥∥w−1/2
i (wnew

i − wi)w−1/2
i

∥∥∥
F
≤ 1

4
.

where C2 = Θ(α2) and C1 = Θ(α).

Proof. For each i ∈ [m], we have

∥∥∥W−1/2
i (W new

i −Wi)W
−1/2
i

∥∥∥
2

F

= ni

∥∥∥W−1/2
i (W new

i −Wi)W
−1/2
i

∥∥∥
2

= ni
∥∥(∇2φ(xi))

1/2(∇2φ(xnew
i )−1 −∇2φ(xi)

−1)(∇2φ(xi))
1/2
∥∥2

≤
(

1

(1− ‖xnew
i − xi‖∇2φ(xi))

2
− 1

)2

·
∥∥(∇2φ(xi))

1/2∇2φ(xi)
−1(∇2φ(xi))

1/2
∥∥2

= ni

(
1

(1− ‖xnew
i − xi‖∇2φ(xi))

2
− 1

)2

≤ 100ni‖xnew
i − xi‖2

∇2φ(xi)
,

where the second step follows by Theorem 3.2.1.

In our problem, we assume that ni = O(1). It remains to bound

‖xnew
i − xi‖2

∇2φ(xi)
= ‖δx,i‖2

∇2φ(xi)
. ‖δx,i‖2

xi
= α2

i

154



where the last step follows from definition αi = ‖δx,i‖xi .

Then, we have

m∑

i=1

‖xnew
i − xi‖2

∇2φ(xi)
≤

m∑

i=1

O(α2
i ) ≤ O(α2).

where the last step follows by Lemma 3.5.1.

Lemma 3.7.2 (Accuracy of W ). Let x and x be the vectors maintained by data-structure

StochasticProjectionMaintenance. Let W = (∇2φ(x))−1 and W = (∇2φ(x))−1.

Then we have

‖w−1/2
i (wi − wi)w−1/2

i ‖F ≤ εw,

where εw = O
(
α log2(nT ) · n1/4

√
b

)
, b is the size of sketching matrix.

Proof. By similar calculation, we have

‖w−1/2
i (wi − wi)w−1/2

i ‖F = O(1) · ‖xi − xi‖∇2φ(xi).

Then, using Lemma 3.6.15 with δ = 1/T

‖xi − xi‖∇2φ(xi) ≤ O

(
α log2(nT ) ·

√
n1/4

√
b

)
.
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Algorithm 3.5 Robust Central Path
1: procedure CentralPathStep(x, s, t, λ, α)
2: for i = 1→ m do . Figure out direction h
3: µti ← si/t+∇φi(xi) . According to Eq. (3.6)
4: γti ← ‖µti‖∇2φi(xi)−1 . According to Eq. (3.7)
5: cti ← exp(λγti )/γ

t
i

(
∑m
i=1 exp(2λγti ))

1/2 if γti ≥ 96
√
α and cti ← 0 otherwise . According to Eq. (3.9)

6: hi ← −α · cti · µti . According to Eq. (3.8)
7: end for
8: W ← (∇2φ(x))−1 . Computing block-diagonal matrix W
9: return h,W
10: end procedure
11:
12: procedure RobustCentralPath(mp, t, λ, α) . Lemma 3.5.8
13: . Standing at (x, s) implicitly via data-structure
14: . Standing at (x, s) explicitly via data-structure
15: (x, s)← mp.Query() . Algorithm 3.1, Lemma 3.6.6
16:
17: h,W ← CentralPathStep(x, s, t, λ, α)
18:
19: mp.Update(W ) . Algorithm 3.2, Lemma 3.6.3
20: mp.MultiplyMove(h, t) . Algorithm 3.4, Lemma 3.6.8, Lemma 3.6.7
21: . x← x+ δx, s← s+ δs, achieved by data-structure implicitly
22: . x← x+ δ̃x, s← s+ δ̃s, achieved by data-structure explicitly
23: . If x is far from x, then x← x
24: end procedure

3.7.2 Main result

The goal of this section is to prove our main result.

Theorem 3.7.3 (Main result, formal version of Theorem 3.1.1). Consider a convex problem

min
Ax=b,x∈

∏m
i=1 Ki

c>x

where Ki are compact convex set. For each i ∈ [m], we are given a νi-self concordant barrier
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Algorithm 3.6 Our main algorithm (More detailed version of RobustIPM in Section 3.4)
1: procedure Main(A, b, c, φ, δ) . Theorem 3.1.1, Theorem 3.7.3
2: λ← 216 log(m), α← 2−20λ−2 , κ← 2−10α
3: δ ← min( 1

λ
, δ) . Choose the target accuracy

4: a← min(2/3, αm) . Choose the batch size
5: bsketch ← 210

√
ν log6(n/δ) · log log(1/δ) . Choose the size of sketching matrix

6: Modify the ERM(A, b, c, φ) and obtain an initial x and s
7: CentralPathMaintenance mp . Algorithm 3.1, Theorem 3.6.1
8: mp.Initialize(A, x, s, α, a, bsketch) . Algorithm 3.1, Lemma 3.6.2
9: ν ←∑m

i=1 νi . νi are the self-concordant parameters of φi
10: t← 1
11: while t > δ2/(4ν) do
12: tnew ← (1− κ√

ν
)t

13: RobustCentralPath(mp, t, λ, α) . Algorithm 3.5
14: t← tnew

15: end while
16: Return an approximate solution of the original ERM according to Section 3.8
17: end procedure

function φi for Ki. Also, we are given x(0) = arg minx
∑

i φi(xi). Assume that

1. Diameter of the set: For any x ∈∏m
i=1 Ki, we have that ‖x‖2 ≤ R.

2. Lipschitz constant of the program: ‖c‖2 ≤ L.

Then, the algorithm Main finds a vector x such that

c>x ≤ min
Ax=b,x∈

∏m
i=1Ki

c>x+ LR · δ,

‖Ax− b‖1 ≤ 3δ ·
(
R
∑

i,j

|Ai,j|+ ‖b‖1

)
,

x ∈
m∏

i=1

Ki.
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in time

O(nω+o(1) + n2.5−α/2+o(1) + n2+1/6+o(1)) · Õ(log(n/δ)).

where ω is the exponent of matrix multiplication [Wil12, LG14], and α is the dual exponent

of matrix multiplication [LGU18].

Proof. The number of iterations is

O(
√
ν log2(m) log(ν/δ)) = O(

√
n log2(n) log(n/δ)).

For each iteration, the amortized cost per iteration is

O(nb+ n1+a + n1.5) +O(C1/εmp + C2/ε
2
mp) · (nω−1/2+o(1) + n2−a/2+o(1)) +O(nω−1/2+o(1))

= O(nb+ n1+a + n1.5) +O(α + α2) · (nω−1/2+o(1) + n2−a/2+o(1)) +O(nω−1/2+o(1))

= O(nb+ n1+a + n1.5) +O(1/ log4 n) · (nω−1/2+o(1) + n2−a/2+o(1)) +O(nω−1/2+o(1))

= O(n1.5+o(1) log6 log(1/δ) + n1+a+o(1)) +O(nω−1/2+o(1) + n2−a/2+o(1)).

where the last step follows from choice of b (see Table 3.3).

Finally, we have

total time

= #iterations · cost per iteration

= O
(√

n log2 n log(n/δ)
)

︸ ︷︷ ︸
#iterations

·O
(
n1.5+o(1) log6 log(1/δ) + n1+a+o(1) + nω−1/2+o(1) + n2−a/2+o(1)

)
︸ ︷︷ ︸

cost per iteration

= O
(
n1.5+a+o(1) + nω+o(1) + n2.5−a/2+o(1)

)
· log(n/δ) · log6 log(1/δ)

= O
(
n2+1/6+o(1) + nω+o(1) + n2.5−αm/2+o(1)

)
· log(n/δ) · log6 log(1/δ)
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where we pick a = min(2/3, αm) and αm is the dual exponent of matrix multiplication[LGU18].

Thus, we complete the proof.

Corollary 3.7.4 (Empirical risk minimization). Given convex function fi(y) : R → R.

Suppose the solution x∗ ∈ Rd lies in `∞-Ball(0, R). Suppose fi is L-Lipschitz in region

{y : |y| ≤ 4
√
n ·M · R}. Given a matrix A ∈ Rd×n with ‖A‖ ≤ M and A has no redundant

constraints, and a vector b ∈ Rd with ‖b‖2 ≤M ·R. We can find x ∈ Rd s.t.

n∑

i=1

fi(a
>
i x+ bi) ≤ min

x∈Rd

n∑

i=1

fi(a
>
i x+ bi) + δMR

in time

O(nω+o(1) + n2.5−α/2+o(1) + n2+1/6+o(1)) · Õ(log(n/δ)).

where ω is the exponent of matrix multiplication [Wil12, LG14], and α is the dual exponent

of matrix multiplication [LGU18].

Proof. It follows from applying Theorem 3.7.3 on convex program (3.1) with an extra con-

straint x∗ lies in `∞-Ball(0, R). Note that in program (3.1), ni = 2. Thus m = O(n).
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3.8 Initial Point and Termination Condition

We first need some result about self concordance.

Lemma 3.8.1 (Theorem 4.1.7, Lemma 4.2.4 in [Nes98]). Let φ be any ν-self-concordant

barrier. Then, for any x, y ∈ domφ, we have

〈∇φ(x), y − x〉 ≤ ν,

〈∇φ(y)−∇φ(x), y − x〉 ≥ ‖y − x‖2
x

1 + ‖y − x‖x
.

Let x∗ = arg minx φ(x). For any x ∈ Rn such that ‖x− x∗‖x∗ ≤ 1, we have that x ∈ domφ.

‖x∗ − y‖x∗ ≤ ν + 2
√
ν.

Lemma 3.8.2. Consider a convex problem minAx=b,x∈
∏m
i=1Ki

c>x where Ki are compact con-

vex set. For each i ∈ [m], we are given a νi-self concordant barrier function φi for Ki. Also,

we are given x(0) = arg minx
∑

i φi(xi). Assume that

1. Diameter of the set: For any x ∈∏m
i=1 Ki, we have that ‖x‖2 ≤ R.

2. Lipschitz constant of the program: ‖c‖2 ≤ L.

For any δ > 0, the modified program minAx=b,x∈
∏m
i=1 Ki×R+

c>x with

A = [A | b− Ax(0)], b = b, and c =

[
δ
LR
· c

1

]

satisfies the following:

1. x =

[
x(0)

1

]
, y = 0d and s =

[
δ
LR
· c

1

]
are feasible primal dual vectors with ‖s +

∇φ(x)‖∗x ≤ δ where φ(x) =
∑m

i=1 φi(xi)− log(xm+1).
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2. For any x such that Ax = b, x ∈∏m
i=1Ki×R+ and c>x ≤ minAx=b,x∈

∏m
i=1 Ki×R+

c>x+δ2,

the vector x1:n (x1:n is the first n coordinates of x) is an approximate solution to the

original convex program in the following sense

c>x1:n ≤ min
Ax=b,x∈

∏m
i=1Ki

c>x+ LR · δ,

‖Ax1:n − b‖1 ≤ 3δ ·
(
R
∑

i,j

|Ai,j|+ ‖b‖1

)
,

x1:n ∈
m∏

i=1

Ki.

Proof. For the first result, straightforward calculations show that (x, y, s) are feasible.

To compute ‖s+∇φ(x)‖∗x, note that

‖s+∇φ(x)‖∗x = ‖ δ

LR
· c‖∇2φ(x(0))−1 .

Lemma 3.8.1 shows that x ∈ Rn such that ‖x − x(0)‖x(0) ≤ 1, we have that x ∈ ∏m
i=1 Ki

because x(0) = arg minx
∑

i φi(xi). Hence, for any v such that v>∇2φ(x(0))v ≤ 1, we have

that x(0) ± v ∈ ∏m
i=1Ki and hence ‖x(0) ± v‖2 ≤ R. This implies ‖v‖2 ≤ R for any

v>∇2φ(x(0))v ≤ 1. Hence, (∇2φ(x(0)))−1 � R2 · I. Hence, we have

‖s+∇φ(x)‖∗x = ‖ δ

LR
· c‖∇2φ(x(0))−1 ≤ ‖ δ

L
· c‖2 ≤ δ.

For the second result, we let

OPT = min
Ax=b,x∈

∏m
i=1Ki

c>x and OPT = min
Ax=b,x∈

∏m
i=1Ki×R+

c>x.

For any feasible x in the original problem, x =

[
x
0

]
is a feasible in the modified

problem. Therefore, we have that

OPT ≤ δ

LR
· c>x =

δ

LR
·OPT.
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Given a feasible x with additive error δ2. Write x =

[
x1:n

τ

]
for some τ ≥ 0. We can

compute c>x which is δ
LR
· c>x1:n + τ . Then, we have

δ

LR
· c>x1:n + τ ≤ OPT + δ2 ≤ δ

LR
·OPT + δ2. (3.34)

Hence, we can upper bound the OPT of the transformed program as follows:

c>x1:n =
LR

δ
· δ

LR
c>x1:n ≤

LR

δ

(
δ

LR
·OPT + δ2

)
= OPT + LR · δ,

where the second step follows by (3.34).

For the feasibility, we have that τ ≤ − δ
LR
· c>x1:n + δ

LR
·OPT+ δ2 ≤ δ+ δ+ δ because

OPT = minAx=b,x≥0 c
>x ≤ LR and that c>x1:n ≤ LR. The constraint in the new polytope

shows that

Ax1:n + (b− Ax(0))τ = b.

Rewriting it, we have Ax1:n − b = (Ax(0) − b)τ and hence

‖Ax1:n − b‖1 ≤ ‖Ax(0) − b‖1 · τ.

Lemma 3.8.3. Let φi(xi) be a νi-self-concordant barrier. Suppose we have si
t

+∇φi(xi) = µi

for all i ∈ [m], A>y + s = c and Ax = b. Suppose that ‖µi‖∗x,i ≤ 1 for all i, we have that

〈c, x〉 ≤ 〈c, x∗〉+ 4tν

where x∗ = arg minAx=b,x∈
∏m
i=1 Ki

c>x and ν =
∑m

i=1 νi.
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Proof. Let xα = (1 − α)x + αx∗ for some α to be chosen. By Lemma 3.8.1, we have that

〈∇φ(xα), x∗ − xα〉 ≤ ν. Hence, we have ν
1−α ≥ 〈∇φ(xα), x∗ − x〉. Hence, we have

να

1− α ≥ 〈∇φ(xα), xα − x〉

= 〈∇φ(xα)−∇φ(x), xα − x〉+
〈
µ− s

t
, xα − x

〉

≥
m∑

i=1

‖xα,i − xi‖2
xi

1 + ‖xα,i − xi‖xi
+ 〈µ, xα − x〉 −

1

t

〈
c− A>y, xα − x

〉

≥
m∑

i=1

α2‖x∗i − xi‖2
xi

1 + α‖x∗i − xi‖xi
− α

m∑

i=1

‖µi‖∗xi‖x∗i − xi‖xi −
α

t
〈c, x∗ − x〉 .

where we used Lemma 3.8.1 on the second first, Axα = Ax on the second inequality. Hence,

we have

〈c, x〉
t
≤ 〈c, x

∗〉
t

+
ν

1− α +
m∑

i=1

‖µi‖∗xi‖x∗i − xi‖xi −
m∑

i=1

α‖x∗i − xi‖2
xi

1 + α‖x∗i − xi‖xi
.

Using ‖µi‖∗xi ≤ 1 for all i, we have

〈c, x〉
t
≤ 〈c, x

∗〉
t

+
ν

1− α +
m∑

i=1

‖x∗i − xi‖xi
1 + α‖x∗i − xi‖xi

≤ 〈c, x
∗〉

t
+

ν

1− α +
m

α
.

Setting α = 1
2
, we have 〈c, x〉 ≤ 〈c, x∗〉+2t(ν+m) ≤ 〈c, x∗〉+4tν because the self-concordance

νi is always larger than 1.
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3.9 Basic Properties of Subsampled Hadamard Transform Matrix

This section provides some standard calculations about sketching matrices, it can

be found in previous literatures [PSW17]. Usually, the reason for using subsampled ran-

domized Hadamard/Fourier transform [LDFU13] is multiplying the matrix with k vectors

only takes kn log n time. Unfortunately, in our application, the best way to optimize the

running is using matrix multiplication directly (without doing any fast Fourier transform

[CT65], or more fancy sparse Fourier transform [HIKP12b, HIKP12a, Pri13, IKP14, IK14,

PS15, CKPS16, Kap16, Kap17, NSW19a]). In order to have an easy analysis, we still use

subsampled randomized Hadamard/Fourier matrix.
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3.9.1 Properties obtained by random projection

Remark 3.9.1. The Subsampled Randomized Hadamard Transform [LDFU13] can be defined

as R = SHnΣ ∈ Rb×, where Σ is an n × n diagonal matrix with i.i.d. diagonal entries Σi,i

in which Σi,i = 1 with probability 1/2, and Σi,i = −1 with probability 1/2. Hn refers to the

Hadamard matrix of size n, which we assume is a power of 2. The b × n matrix S samples

b coordinates of n dimensional vector uniformly at random. If we replace the definition of

sketching matrix in Lemma 3.9.1 by Subsampled Randomized Hadamard Transform and let

R = SHn, then the same proof will go through.

Lemma 3.9.1 (Expectation, variance, absolute guarantees for sketching a fixed vector). Let

h ∈ Rn be a fixed vector. Let R ∈ Rb×n denote a random matrix where each entry is i.i.d.

sampled from +1/
√
b with probability 1/2 and −1/

√
b with probability 1/2. Let Σ ∈ Rn×n

denote a diagonal matrix where each entry is 1 with probability 1/2 and −1 with probability

1/2. Let R = RΣ, then we have

E[R>Rh] = h, E[(R>Rh)2
i ] ≤ h2

i +
1

b
‖h‖2

2, Pr

[
|(R>Rh)i − hi| > ‖h‖2

log(n/δ)√
b

]
≤ δ.

Proof. Let Ri,j denote the entry at i-th row and j-th column in matrix R ∈ Rb×n. Let

R∗,i ∈ Rb denote the vector in i-th column of R.
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We first show expectation,

E[(R>Rh)i] = E[〈R,R∗,ih>〉]

= E

[
b∑

j=1

n∑

l=1

Rj,lRj,ihl

]

= E

[
b∑

j=1

R2
j,ihi

]
+ E




b∑

j=1

∑

l∈[n]\i

Rj,lRj,ihl




= hi + 0

= hi

Secondly, we prove the variance is small

E[(R>Rhi)
2] = E[〈R,R∗,ih>〉2]

= E



(

b∑

j=1

n∑

l=1

Rj,lRj,ihl

)2



= E






b∑

j=1

R2
j,ihi +

b∑

j=1

∑

l∈[n]\i

Rj,lRj,ihl




2


= E



(

b∑

j=1

R2
j,ihi

)2

+ 2E




b∑

j′=1

R2
j′,ihi

b∑

j=1

∑

l∈[n]\i

Rj,lRj,ihl




+ E






b∑

j=1

∑

l∈[n]\i

Rj,lRj,ihl




2


= C1 + C2 + C3,

where the last step follows from defining those terms to be C1, C2 and C3. For the term C1,
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we have

C1 = h2
i E



(

b∑

j=1

R2
j,i

)2

 = h2

i E

[
b∑

j=1

R4
j,i +

∑

j′ 6=j

R2
j,iR

2
j′,i

]
= h2

i

(
b · 1

b2
+ b(b− 1) · 1

b2

)
= h2

i

For the second term C2,

C2 = 0.

For the third term C3,

C3 = E






b∑

j=1

∑

l∈[n]\i

Rj,lRj,ihl




2


= E




b∑

j=1

∑

l∈[n]\i

R2
j,lR

2
j,ih

2
l


+ E




b∑

j=1

∑

l∈[n]\i

Rj,lRj,ihl
∑

j′∈[b]\j

∑

l′∈[n]\i\l

Rj′,l′Rj′,ihl′




=
b∑

j=1

∑

l∈[n]\i

1

b

1

b
h2
l + 0 ≤ 1

b
‖h‖2

2

Therefore, we have

E[(R>Rh)2
i ] ≤ C1 + C2 + C3 ≤ h2

i +
1

b
‖h‖2

2.

Third, we prove the worst case bound with high probability. We can write (R>Rh)i−
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hi as follows

(R>Rh)i − hi = 〈R,R∗,ih>〉 − hi

=
b∑

j=1

n∑

l=1

Rj,l ·Rj,i · hl − hi

=
b∑

j=1

R2
j,ihi − hi +

b∑

j=1

∑

l∈[n]\i

Rj,lRj,i · hl

=
b∑

j=1

∑

l∈[n]\i

Rj,lRj,i · hl by R2
j,i = 1/b

=
∑

l∈[n]\i

hl〈R∗,l, R∗,i〉

=
∑

l∈[n]\i

hl · 〈σlR∗,l, σiR∗,i〉 by R∗,l = σlR∗,l

First, we apply Khintchine’s inequality, we have

Pr




∣∣∣∣∣∣
∑

l∈[n]\i

hl · σl · 〈R∗,l, σiR∗,i〉

∣∣∣∣∣∣
≥ Ct


∑

l∈[n]\i

h2
l (〈R∗,l, σiR∗,i〉)2




1/2

 ≤ exp(−C ′t2)

and choose t =
√

log(n/δ).

For each l 6= i, using [LDFU13] we have

Pr

[
|〈R∗,l, R∗,i〉| ≥

√
log(n/δ)√

b

]
≤ δ/n.

Taking a union bound over all l ∈ [n]\i, we have

|(R>Rh)i − hi| ≤ ‖h‖2
log(n/δ)√

b

with probability 1− δ.
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Chapter 4

Algorithmic Theory of ODEs

Sampling logconcave functions arising in statistics and machine learning has been a

subject of intensive study. Recent developments include analyses for Langevin dynamics

and Hamiltonian Monte Carlo (HMC). While both approaches have dimension-independent

bounds for the underlying continuous processes under sufficiently strong smoothness condi-

tions, the resulting discrete algorithms have complexity and number of function evaluations

growing with the dimension. Motivated by this problem, in this chapter, we give a general

algorithm for solving multivariate ordinary differential equations whose solution is close to

the span of a known basis of functions (e.g., polynomials or piecewise polynomials). The

resulting algorithm has polylogarithmic depth and essentially tight runtime — it is nearly

linear in the size of the representation of the solution.

We apply this to the sampling problem to obtain a nearly linear implementation of

HMC for a broad class of smooth, strongly logconcave densities, with the number of iterations

(parallel depth) and gradient evaluations being polylogarithmic in the dimension (rather than

polynomial as in previous work). This class includes the widely-used loss function for logistic

regression with incoherent weight matrices and has been subject of much study recently. We

also give a faster algorithm with polylogarithmic depth for the more general and standard

class of strongly convex functions with Lipschitz gradient. These results are based on (1)
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an improved contraction bound for the exact HMC process and (2) logarithmic bounds on

the degree of polynomials that approximate solutions of the differential equations arising in

implementing HMC.
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4.1 Introduction

The complexity of sampling a high-dimensional density of the form e−f(x) where f

is a convex function is a fundamental problem with many applications [LS90, LS92, LS93,

LV06a, LV06b, Dal17, DK17, DRD18, DCWY18]. The focus of this chapter is to give very

fast, i.e., nearly linear time algorithms, for a large subclass of such densities. A motivating

and important case is the loss function for logistic regression, widely used in machine learning

applications [Ber44, Paa00, NJ02, HJLS13, Bou14]:

n∑

i=1

φi(a
>
i x)

where φi are convex functions; a popular choice is φ(t) = log(1 + e−t). Sampling according

to e−f for this choice of f corresponds to sampling models according to their KL-divergence,

a natural and effective choice for classification problems [HJLS13].

A general approach to sampling is by an ergodic Markov chain whose stationary dis-

tribution is designed to have the desired density. Traditionally, this is done via a Metropolis

filter, which accepts a proposed (random) next step y from the current point x with prob-

ability min{1, f(y)
f(x)
}. While very general, one downside of this approach is the possibility of

high rejection probabilities, which typically force local steps to be very small. Nevertheless,

for arbitrary logconcave functions (including nonsmooth ones), this approach has the current

best guarantees [LV06b].

Another family of algorithms is derived from an underlying continuous stochastic

process with the desired stationary density. A classic example of such a continuous process

is Brownian motion. To sample a convex body for example, one could use Brownian motion
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with a boundary reflection condition. This is written as the stochastic equation:

dXt = dWt

with reflection at the boundary of the domain, and dWt being infinitesimal Brownian motion.

To sample from the density proportional to e−f(x), one can use the stochastic differential

equation,

dXt = −∇f(Xt)dt+
√

2dWt.

By the classical Fokker-Planck equation, under mild assumptions on f , the stationary density

of this process is proportional to e−f(x).

How can we turn these continuous processes into algorithms? One approach is to take

small rather than infinitesimal steps, and this leads to the Langevin dynamics, of which there

are multiple flavors [Dal17, DK17, ZLC17, RRT17, DRD18, CCBJ18, CCAY+18, CFM+18].

Starting with Dalalyan [Dal17], it has been established that these dynamics converge in

polynomial (in dimension) time for strongly logconcave functions, with the underdamped

version converging in O(
√
d) iterations (and polynomial dependences on appropriate condi-

tion numbers) [CCBJ18]. The dependence on dimension seems unavoidable in the discretized

algorithm, even though the continuous process has no such dependence.

Hamiltonian Monte Carlo. HMC is a random process that maintains a position x and

velocity pair v. To sample according to e−f , we define a Hamiltonian H(x, v) = f(x)+ 1
2
‖v‖2.

At each step v is chosen randomly fromN(0, I) and x is updated using the following Ordinary

Differential Equation (ODE) for a some fixed time interval.

dx(t)

dt
= v(t),

dv(t)

dt
= −∇f(x(t)).
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This process has the particularly nice property that it conserves the value of H, and as a

result there is no need to apply a Metropolis filter. HMC has been studied in many works

[MS17, MV18, LV18]. Mangoubi and Smith [MS17] gave the following guarantee for strongly

logconcave densities.

Theorem 4.1.1 ([MS17]). Let f be a smooth, strongly convex function s.t. for all y

m2 · I � ∇2f(y) �M2 · I.

Then, HMC converges to the density proportional to e−f in Õ((M2/m2)2) iterations with

each iteration being the exact solution of an ODE.

For the resulting algorithm presented in [MS17], which needs to approximate the

solution of the ODE, the number of function evaluations and overall time grow as square-root

of the dimension (and a higher polynomial of the condition number). Table 4.1 summarizes

related work on sampling logconcave functions with various structural assumptions. In all

these cases, even with higher-order smoothness and incoherence assumptions, the number of

gradient/function evaluations grows as a polynomial in d. A special case of much interest

is Bayesian logistic regression. To address this [MV18] define an incoherence parameter

and achieve the previously best dependence on the dimension of d1/4 for functions with

bounded incoherence. They note that this is nearly optimal for the leapfrog implementation

of HMC they use. Improving the complexity further, and in particular the dependence on the

dimension d is an important open problem. This brings us to our main motivating question:

For what class of functions can we avoid polynomial dependence on dimension (in an

algorithm)? Can we do this for the logistic loss function?

173



Year Refs. Method Iters. Gra/Iter Total time
2006 [LV06b] B./H.∗ d3, d4 1 d5, d6

2017 [Dal17] LMC ∗ κ2d, κ3d3 1 κ2d2, κ3d4

2017 [Dal17] LMCO ∗ κ2d, κ2d2.5 1 κ2d4, κ2d5.5

2018 [CCBJ18] DL κ2d0.5 1 κ2d1.5

2018 [DCWY18] MALA ∗ κd, κd2 1 κd2, κd3

2017 [MS17] HMC κ6.5d0.5 1 κ6.5d1.5

2018 [MV18] HMC ∗,† κ2.75d0.25, κ3.5d0.25 1 κ2.75d1.25, κ3.5d1.25

2018 [LSV18] HMC † κ1.5 1 κ1.5d
(thesis) HMC κ1.5 κ0.25d0.5 κ1.75d1.5

∗ have different bounds for warm start and general (cold) start. We stated the runtime
for cold start in green color.
†make smoothness and incoherence assumptions motivated by and applicable to
Bayesian logistic regression.

Table 4.1: Summary of results, d is the dimension, κ is the condition number of ∇2f . “Iters”
denotes “the number of iterations / parallel depth”. “Gra/Iter” denotes the “the number
of gradients per iteration”. We use the parallel depth of the algorithm as the number of
iterations. We suppress polylogarithmic terms and dependence on the error parameter.
Ball walk/hit-and-run apply to general logconcave distributions, the rest assume strongly
logconcave with Lipschitz gradient and possibly more. “B./H.” denotes “Ball Walk/Hit-and-
run”. “DL” denotes “Damped Langevin”. In all previous work, for simplicity, we report the
most favorable bounds by making various assumptions such as κ� d.

4.1.1 Results

We begin with an informal statement of our result for sampling from a class that

includes the logistic loss function.

Theorem 4.1.2 (Informal version of Theorem 4.5.6). Let A = [a1; a2; · · · ; an] ∈ Rn×d,

φi : R→ R with its k-th derivatives bounded by O(1)k and

f(x) =
n∑

i=1

φi(a
>
i x) +

m2

2
‖x‖2.
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Suppose that ∇2f has condition number κ and τ = ‖AA>‖∞→∞. Then we can find a random

point X whose Wasserstein distance to Y drawn from the density proportional to e−f satisfies

W2(X, Y ) ≤ ε√
m2

using Õ(κ1.5 + τ
m2

) iterations, where each iteration takes Õ(d) time and Õ(1) evaluations of

∇f .

Remark 4.1.1. The 1√
m2

term in the error is needed to make the statement invariant under

scaling of f .

For the logistic loss1 φ(t) = log(1 + e−t), we have φ′(t) = − 1
1+et

, and it has Cauchy

estimate M = 1 with radius r = 1 (See Lemma 4.9.2). The above result has the following

application,

Corollary 4.1.3 (Logistic loss sampling). Let f(x) =
∑n

i=1 φi(a
>
i x) + m2

2
‖x‖2 with φ(t) =

log(1 + e−t). Let τ = ‖AA>‖∞→∞ and suppose that ∇2f(x) � M2 · I for all x. Starting

at the minimum x(0) of f , we can find a random point X whose Wasserstein distance to Y

drawn from the density proportional to e−f satisfies

W2(X, Y ) ≤ ε√
m2

using Õ( τ
m2

+κ1.5) iterations with κ = M2

m2
. Each iteration takes Õ(d) time and Õ(1) matrix-

vector multiplications for A and A>.

Remark 4.1.2. Lemma 4.6.1 shows that ‖AA>‖∞→∞ = Θ(λmax(AA>)) for sparse enough

matrix AA>. Since λmax(AA>) usually has the same order as M2, the number of iterations

is dominated by the κ1.5 term.

1The logistic function is g(t) = 1
1+e−t and the logistic loss is − log(g(t)) = log(1 + e−t).
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The above results extend and improve previous work substantially. First, in all pre-

vious algorithms, the number of functions calls was polynomial in the dimension d, while

the dependence here is polylogarithmic. Second, our incoherence assumption for logistic

regression is simpler and milder. Third, due to the nature of how we implement each step,

the parallel depth of the algorithm is just the number of iterations, i.e., polylogarithmic in

the dimension and Õ(1) when the condition numbers are bounded. Fourth, the runtime and

depth of our algorithm depends polynomially in log(1/ε) while all previous (nearly) linear

time algorithms depends polynomially in 1/ε.

We also give an improved bound on the complexity of sampling from e−f when f is

strongly convex and has a Lipschitz gradient (no further smoothness assumptions).

Theorem 4.1.4. (Strongly Convex). Given a function f such that 0 ≺ m2·I � ∇2f(x) �M2·I

for all x ∈ Rd and 0 < ε <
√
d. Starting x(0) at the minimum of f , we can find a random

pointX whose Wasserstein distance to Y drawn from the density proportional to e−f satisfies

W2(X, Y ) ≤ ε√
m2

using O(κ1.5 log(d
ε
)) iterations where κ = M2

m2
. Each iteration takes O

(
κ

1
4 d

3
2

ε
log
(
κd
ε

))
time

and O
(
κ

1
4 d

1
2

ε
log
(
κd
ε

))
evaluations of ∇f , amortized over all iterations.

The previous best bound was κ2
√
d iterations [CCBJ18]. This result is one of the

key surprises of this chapter. Although this problem has been studied extensively with

specifically-designed algorithms and analysis, we show how to get a better result by a general

ODE algorithm and a general analysis which works for any ODE. Furthermore, our algorithm

is the first to achieve polylogarithmic depth dependence on the dimension, which seemed

impossible in prior work.
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The above results are based on three ingredients: (1) a new contraction rate for HMC

of κ1.5, improving on the previous best bound of κ2 (2) a proof that a solution to ODE’s

arising from HMC applied to the above problem are approximated by (piecewise) low-degree

polynomials and (3) a fast (nearly linear time and polylog parallel depth) algorithm for

solving multivariate second-order ODEs.

We next present the multivariate high-order ODE guarantee. This generalizes and

improves on the guarantee from [LV17]. While we state it below for the case of the piece-

wise polynomial basis of functions, it applies to any basis of functions. This is a gen-

eral result about solving ODE efficiently, independent of the application to sampling. The

only assumptions needed are that the ODE function is Lipschitz and that the solution is

close to the span of small number of basis of functions. These natural assumptions suf-

fice to get around the worst-case complexity lower bounds for solving such general ODEs

[KF82, Ko83, Ko10, Kaw10, KC12].

Theorem 4.1.5 (Informal version of Theorem 4.2.4 for 1st order ODE). Let x∗(t) ∈ Rd be

the solution of the ODE

d

dt
x(t) = F (x(t), t), x(0) = v

where F : Rd+1 → Rd, x(t) ∈ Rd and v ∈ Rd. Given some L and ε > 0 such that

1. There exists a piece-wise polynomial q(t) such that q(t) on [Tj−1, Tj] is a degree Dj

polynomial with

0 = T0 < T1 < · · · < Tn = T
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and that
∥∥∥∥q(t)−

d

dt
x∗(t)

∥∥∥∥ ≤
ε

T
,∀t ∈ [0, T ]

2. The algorithm knows about the intervals [Tj−1, Tj] and the degree Dj for all j ∈ [n].

3. For any y, z ∈ Rd,

‖F (y, t)− F (z, t)‖ ≤ L‖y − z‖,∀t ∈ [0, T ].

Assume LT ≤ 1/16000. Then, we can find a piece-wise polynomial x(t) such that

max
t∈[0,T ]

‖x(t)− x∗(t)‖ . ε.

using Õ (
∑n

i=1(1 +Di)) evaluations of F and Õ (d
∑n

i=1(1 +Di)) time.

We suspect these methods will be useful in many other settings beyond the focus

application of this chapter. Moreover, the result is nearly optimal. Roughly speaking, it says

that the complexity of solving the ODE is nearly the same as the complexity of representing

the solution. The assumption that LT < 1 is essential, as otherwise after longer time,

the solution can blow up exponentially. Also, the assumption on the piece-wise polynomial

approximation has a certain universality since this is how one implicitly represents a function

using any iterative method. Finally, each iteration of the ODE algorithm, the collocation

method, can be fully parallelized; as a result the parallel time complexity of the sampling

algorithms in this chapter are polylogarithmic in the dimension.

4.1.2 HMC and improved contraction rate

We give an improved contraction rate for HMC, stated explicitly as Algorithm 4.1. We
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Algorithm 4.1 Hamiltonian Monte Carlo Algorithm

1: procedure HMC(x(0), f, ε, h) . Theorem 4.3.2
2: Suppose that f is m2 strongly convex with M2 Lipschitz gradient on Rd.
3: Assume that the step size h ≤ m

1/4
2

2M
3/4
2

.

4: Let the number of iterations N = 1
θ
· log

(
4
ε2

(
‖∇f(x(0))‖22

m2
+ d
))

with θ = m2h2

8
.

5: For k = 1, 2, · · · , N do
6: Generate a Gaussian random direction v ∼ N(0, Id).
7: Let x(t) be the HMC defined by

d2x

dt2
= −∇f(x),

dx

dt
(0) = v, x(0) = x(k−1).

8: Find a point x(k) such that . Theorem 4.2.4

‖x(k) − x(h)‖2 ≤ ε :=
θ · ε

2
√
m2

.

9: end for
10: return x(N).
11: end procedure
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give two contraction bounds for the ideal HMC. The first bound is (m2

M2
)1.5 using T ∼ m

1/4
2

M
3/4
2

.

The second bound shows that there is a T that gives the optimal contraction bound m2

M2
.

However, as we will see this part cannot be used to bound the overall mixing time, because

the time T depends on the point we use for coupling, which is unknown to the algorithm.

We keep this as evidence for a possible m2

M2
bound. The improvement is from κ2 in previous

work to κ1.5.

Lemma 4.1.6 (Contraction bound for HMC). Let x(t) and y(t) be the solution of HMC

dynamics on e−f starts at x(0) and y(0) with initial direction x′(0) = y′(0) = v for some

vector v. Suppose that f is m2 strongly convex with M2 Lipschitz gradient., i.e., m2 · I �

∇2f(x) �M2 · I for all x. Then, for 0 ≤ t ≤ m
1/4
2

2M
3/4
2

, we have that

‖x(t)− y(t)‖2
2 ≤

(
1− m2

4
t2
)
‖x(0)− y(0)‖2

2.

Furthermore, there is t ≥ 0 depending on f, x(0), y(0), and v such that

‖x(t)− y(t)‖2
2 ≤

(
1− 1

16

m2

M2

)
‖x(0)− y(0)‖2

2.

4.1.3 Techniques

In this chapter we give bounds on the Collocation Method for solving ODEs. To

ensure the algorithm is applicable to the ODE’s that arise in the sampling application, we

need to show that the solution of the ODE is close to a low-rank basis. Given only bounds

on the Hessian of a function, we do this by approximating the solution of the ODE with a

piecewise degree two polynomial. For smooth functions, we can use low-degree polynomials.

The proofs of the degree bounds go via the Cauchy-Kowalevsky method, by showing

bounds on all derivatives at the initial point. To do this for multivariate ODE’s, we use
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the method of majorants, and reduce the problem to bounding the radius of convergence of

one-variable ODEs.

The improved convergence guarantees for exact HMC are also based on better analysis

of the underlying ODE, showing that a larger step size than previously known is possible.

For many optimization and sampling methods, there are corresponding customized

versions that deal with decomposable functions by sampling terms of the functions. These

algorithms usually take nearly linear time with the number of iterations being polynomial

in the dimension. Often, an improvement in the general case would lead to an improvement

in the decomposable case. To limit the length of this chapter, we focus only on results

with polylogarithmic depth. Therefore, in Table 4.1, we do not list algorithms that in-

volve sampling each term in decomposable functions [BFR16, DSM+16, DRW+16, BFFN17,

DK17, CWZ+17, NDH+17, CFM+18]. We expect our techniques can be further improved

for decomposable functions by sampling individual terms.

Outline of chapter. Then we give the main ODE algorithm and guarantees in Section

4.2. We give the proof of the improved convergence bound for HMC in Section 4.3. We use

both parts to obtain improved guarantees for sampling strongly logconcave functions with

Lipschitz gradients in Section 4.4 and smooth functions, including logistic loss in Section 4.5.

Some preliminaries including standard definitions and well-known theorems about

ODEs are in an appendix. Remaining proofs about ODEs are in Appendix 4.7. In Ap-

pendix 4.8, we present some useful tools for Cauchy estimates. Appendix 4.9 shows how to

calculate the Cauchy estimates of some function which are extensively used in practice.
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4.2 ODE Solver for any basis

In this section, we analyze the collocation method for solving ODEs [Ise09]. This

method is classical in numerical analysis. The goal of this section is provide an introduction

of this method and provide a non-asymptotic bounds for this method. In [LV17, LV18], we

applied this method to obtain faster algorithms for sampling on polytopes. Unfortunately,

the particular version of collocation method we used assume the solution can be approxi-

mated by a low-degree polynomial, which heavily restrict the set of functions we can sample.

To give an intuition for the collocation method, we first consider the following first-

order ODE

d

dt
x(t) = F (x(t), t), ∀0 ≤ t ≤ T,

x(0) = v.

where F : Rd+1 → R. The collocation method is partly inspired by the Picard-Lindelöf

theorem, a constructive existence proof for a large class of ODE. Therefore, we will first

revisit the proof of Picard-Lindelöf theorem for first-order ODE.

4.2.1 Picard-Lindelöf theorem

In general, we can rewritten the first-order ODE as an integral equation

x(t) = v +

∫ t

0

F (x(s), s)ds for all 0 ≤ t ≤ T.

To simplify the notation, we use C([0, T ],Rd) to denote Rd-valued functions on [0, T ].

We define the operator T from C([0, T ],Rd) to C([0, T ],Rd) by

T(x)(t) = v +

∫ t

0

F (x(s), s)ds for all 0 ≤ t ≤ T. (4.1)
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Therefore, the integral equation is simply x = T(x).

Banach fixed point theorem shows that the integral equation x = T(x) has a unique

solution if there is a norm, and j ∈ N such that the map T◦j has Lipschitz constant less than

1. Recall that T◦j is the composition of j many T, i.e.,

T◦j(x) = T(T(· · ·T︸ ︷︷ ︸
j many T

(x) · · · )).

Picard-Lindelöf theorem shows that if F is Lipschitz in x, then the map T◦j has

Lipschitz constant less than 1 for some positive integer j.

Lemma 4.2.1. Given any norm ‖ · ‖ on Rd. Let L be the Lipschitz constant of F in x, i.e.

‖F (x, s)− F (y, s)‖ ≤ L‖x− y‖ for all x, y ∈ Rd, s ∈ [0, T ].

For any x ∈ C([0, T ],Rd), we define the corresponding norm

‖x‖ def
= max

0≤t≤T
‖x(t)‖.

Then, the Lipschitz constant of T◦j in this norm is upper bounded by (LT )j/j!.

Proof. We prove this lemma with a stronger induction statement

‖(T◦j x)(h)− (T◦j y)(h)‖ ≤ Ljhj

j!
‖x− y‖ for all 0 ≤ h ≤ T.

The base case j = 0 is trivial. For the induction case j, we can upper bound the term
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as follows

‖T◦j x(h)− T◦j y(h)‖

= ‖T T◦(j−1) x(h)− T T◦(j−1) y(h)‖

≤
∫ h

0

‖F (T◦(j−1) x(s), s)− F (T◦(j−1) y(s), s)‖ds

≤ L

∫ h

0

‖T◦(j−1) x(s)− T◦(j−1) y(s)‖ds by f is L Lipschitz

≤ L

∫ h

0

Lj−1sj−1

(j − 1)!
‖x− y‖ds by the induction statement

=
Lj

j!
hj‖x− y‖.

This completes the induction.

4.2.2 Intuition of collocation method

To make the Picard-Lindelöf theorem algorithmic, we need to discuss how to represent

a function in C([0, T ],Rd). One standard way is to use a polynomial pi(t) in t for each

coordinate i ∈ [d]. In this section, we assume that there is a basis {ϕj}Dj=1 ⊂ C([0, T ],R)

such that for all i ∈ [d], dxi
dt

is approximated by some linear combination of ϕj(t).

For example, if ϕj(t) = tj−1 for j ∈ [d], then our assumption is simply saying dxi
dt

is

approximated by a degree D− 1 polynomial. Other possible basis are piecewise-polynomial

and Fourier series. By Gram-Schmidt orthogonalization, we can always pick nodes point

{ci}Dj=1 such that

ϕj(ci) = δi,j for i, j ∈ [D].

The benefit of such basis is that for any f ∈ span(ϕj), we have that f(t) =
∑D

j=1 f(cj)ϕj(t).
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For polynomials, the resulting basis are the Lagrange polynomials

ϕj(t) =
∏

i∈[D]\{j}

t− ci
cj − ci

for j ∈ [D].

The only assumption we make on the basis is that its integral is bounded.

Definition 4.2.1. Given a D dimensional subspace V ⊂ C([0, T ],R) and node points

{cj}Dj=1 ⊂ [0, T ]. For any γϕ ≥ 1, we call a basis {ϕj}Dj=1 ⊂ V is γϕ bounded if ϕj(ci) = δi,j

and we have
D∑

j=1

∣∣∣∣
∫ t

0

ϕj(s)ds

∣∣∣∣ ≤ γϕT for t ∈ [0, T ].

Note that if the constant function 1 ∈ V, then we have

1 =
D∑

j=1

1(cj)ϕj(t) =
D∑

j=1

ϕj(t).

Hence, we have

T =

∫ T

0

1ds ≤
D∑

j=1

∣∣∣∣
∫ T

0

ϕj(s)ds

∣∣∣∣ ≤ γϕT.

Therefore, γϕ ≥ 1 for most of the interesting basis. This is the reason why we simply put it

as an assumption to shorten some formulas.

In the section 4.2.5, we prove that for the space of low degree polynomial and piece-

wise low degree polynomial, there is a basis on the Chebyshev nodes that is O(1) bounded.

Assuming that dx
dt

can be approximated by some element in V, we have that

dx

dt
(t) ∼

D∑

j=1

dx

dt
(cj)ϕj(t) =

D∑

j=1

F (x(cj), cj)ϕj(t).
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Integrating both sides, we have

x(t) ≈ v +

∫ t

0

D∑

j=1

F (x(cj), cj)ϕj(s)ds. (4.2)

This inspires us to consider the following operator from C([0, T ],Rd) to C([0, T ],Rd):

Tϕ(x)(t)i = vi +

∫ t

0

D∑

j=1

F (x(cj), cj)iϕj(s)ds for i ∈ [d]. (4.3)

Equation (4.2) can be written as x ≈ Tϕ(x). To find x to satisfies this, naturally, one can

apply the fix point iteration and this is called the collocation method.

4.2.3 Collocation method

From the definition of (4.3), we note that Tϕ(x) depends only on x(t) at t = cj.

Therefore, we can only need to calculate Tϕ(x)(t) at t = cj. To simplify the notation, for

any x ∈ C([0, T ],Rd), we define a corresponding matrix [x] ∈ Rd×D by [x]i,j = xi(cj). For

any d×D matrix X, we define F (X, c) as an d×D matrix

F (X, c)i,j = F (X∗,j, cj)i. (4.4)

where X∗,j is the j-th column of X. Finally, we define Aϕ as a D ×D matrix

(Aϕ)i,j =

∫ cj

0

ϕi(s)ds. (4.5)

By inspecting the definition of (4.3), (4.4) and (4.5), we have that

[Tϕ(x)] = v · 1>D + F ([x], c)Aϕ

where 1D is a column of all 1 vector of length D. Hence, we can apply the map Tϕ by

simply multiply F ([x], c) by a pre-compute D ×D matrix Aϕ. For the basis we considered
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Algorithm 4.2 Collocation Method
1: procedure CollocationMethod(F, v, T, ϕ, c) . Theorem 4.2.3
2: Let N =

⌈
log
(
T
ε

maxs∈[0,T ] ‖F (v, s)‖
)⌉

. Choose number of iterations
3: Let Aϕ be the matrix defined by (Aϕ)i,j =

∫ cj
0
ϕi(s)ds.

4: X(0) ← v · 1>D. . 1D is a column of all 1 vector of length D
5: for j = 1, 2, · · · , N − 1 do
6: X(j) ← v · 1>D + F (X(j−1), c)Aϕ. . Matrix F (X, c) is defined in Eq. (4.4)
7: . Note that we evaluate D many F every iteration in this matrix notation.
8: end for
9: x(N)(t)← v +

∫ t
0

∑D
i=1 F (X

(N)
∗,i , ci)ϕi(s)ds

10: return x(N)

11: end procedure

in this chapter, each iteration takes only Õ(dD) which is nearly linear to the size of our

representation of the solution.

We state our guarantee for a first-order ODE (Algorithm 4.2).

Theorem 4.2.2 (First order ODE). Let x∗(t) be the solution of an d dimensional ODE

x(0) = v,
dx(t)

dt
= F (x(t), t) for all 0 ≤ t ≤ T .

We are given a D dimensional subspace V ⊂ C([0, T ],R), node points {cj}Dj=1 ⊂ [0, T ]

and a γϕ bounded basis {ϕj}Dj=1 ⊂ V (Definition 4.2.1). Given some L and ε > 0 such that

1. There exists a function q ∈ V such that
∥∥∥∥q(t)−

d

dt
x∗(t)

∥∥∥∥ ≤
ε

T
,∀t ∈ [0, T ].

2. For any y, z ∈ Rd,

‖F (y, t)− F (z, t)‖ ≤ L‖y − z‖,∀t ∈ [0, T ].
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Assume γϕLT ≤ 1/2. Then the algorithm CollocationMethod (Algorithm 4.2)

outputs a function x(N) ∈ V such that

max
t∈[0,T ]

‖x(N)(t)− x∗(t)‖ ≤ 20γϕε.

The algorithm takes O
(
D log

(
T
ε

maxs∈[0,T ] ‖F (v, s)‖
))

evaluations of F .

Next we state the general result for a k-th order ODE. We prove this via a reduction

from higher order ODE to first-order ODE. See the proof in Appendix 4.7.

Theorem 4.2.3 (k-th order ODE). Let x∗(t) ∈ Rd be the solution of the ODE

dk

dtk
x(t) = F

(
dk−1

dtk−1
x(t), · · · , x(t), t

)

di

dti
x(0) = vi,∀i ∈ {k − 1, · · · , 1, 0}.

where F : Rkd+1 → Rd, x(t) ∈ Rd, and v0, v1, · · · , vk−1 ∈ Rd.

We are given a D dimensional subspace V ⊂ C([0, T ],R), node points {cj}Dj=1 ⊂ [0, T ]

and a γϕ bounded basis {ϕj}Dj=1 ⊂ V (Definition 4.2.1). Given some L and ε > 0 such that

1. For i ∈ [k], there exists a function q(i) ∈ V such that
∥∥∥∥q(i)(t)− di

dti
x∗(t)

∥∥∥∥ ≤
ε

T i
,∀t ∈ [0, T ].

2. For any y, z ∈ Rkd,

‖F (y, t)− F (z, t)‖ ≤
k∑

i=1

Li‖yi(t)− zi(t)‖,∀t ∈ [0, T ].
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Assume γϕLT ≤ 1/8 with L =
∑k

i=1 L
1/i
i . Then, we can find functions {q(i)}i∈{0,1,··· ,k−1} ⊂

V such that

max
t∈[0,T ]

∥∥∥∥q(i)(t)− di

dti
x∗(t)

∥∥∥∥
p

= 20(1 + 2k)γϕ
ε

T i
,∀i ∈ {0, 1, · · · , k − 1}.

The algorithm takes O(D log(C/ε)) evaluations of F where

C = (4γϕT )k · max
s∈[0,T ]

‖F (vk−1, vk−2, · · · , v0, s)‖+
k−1∑

i=1

(4γϕT )i ‖vi‖ .

Note that the statement is a bit awkward. Instead of finding a function whose deriva-

tives are same as the derivatives of x∗, the algorithm approximates the derivatives of x∗

individually. This is because we do not know if derivatives/integrals of functions in V re-

main in V. For piece-wise polynomials, we can approximate the j-th derivative of the solution

by taking (k − j)-th iterated integral of q(k), which is still a piece-wise polynomial.

In section 4.2.5, we give a basis for piece-wise polynomials (Lemma 4.2.8). Using this

basis, we have the following Theorem.

Theorem 4.2.4. (k-th order ODE) Let x∗(t) ∈ Rd be the solution of the ODE

dk

dtk
x(t) = F

(
dk−1

dtk−1
x(t), · · · , x(t), t

)

di

dti
x(0) = vi,∀i ∈ {k − 1, · · · , 1, 0}.

where F : Rkd+1 → Rd, x(t) ∈ Rd, and v0, v1, · · · , vk−1 ∈ Rd. Given some L and ε > 0 such

that

1. There exists a piece-wise polynomial q(t) such that q(t) on [Tj−1, Tj] is a degree

Dj polynomial with

0 = T0 < T1 < · · · < Tn = T
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and that
∥∥∥∥q(t)−

dk

dtk
x∗(t)

∥∥∥∥ ≤
ε

T k
,∀t ∈ [0, T ]

2. The algorithm knows about the intervals [Tj−1, Tj] and the degree Dj for all j ∈ [n].

3. For any y, z ∈ Rkd,

‖F (y, t)− F (z, t)‖ ≤
k∑

i=1

Li‖yi − zi‖,∀t ∈ [0, T ].

Assume LT ≤ 1/16000 with L =
∑k

i=1 L
1/i
i . Then, we can find a piece-wise polynomial x(t)

such that

max
t∈[0,T ]

∥∥∥∥
di

dti
x(t)− di

dti
x∗(t)

∥∥∥∥
p

. εk

T i
,∀i ∈ {0, 1, · · · , k − 1}.

using O(D log(C/ε)) evaluations of F with the size of basis D =
∑n

i=1(1 +Di) and

O

(
dmin

(
n∑

i=1

(1 +Di)
2, D log(CD/ε)

)
log(C/ε)

)

time where

C = O(T )k · max
s∈[0,T ]

‖F (vk−1, vk−2, · · · , v0, s)‖+
k−1∑

i=1

O(T )i ‖vi‖ .

Remark 4.2.1. The two different runtime come from two different ways to the integrate of

basis in Lemma 4.2.8. The first one is an navie method which is good enough for all our

application. The second one follows from multipole method which gives an nearly linear

time to the size of the basis with an extra log dependence on the accuracy.

In the rest of this section, we prove the first-order guarantee, Theorem 4.2.2
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4.2.4 Proof of first order ODE

First, we bound the Lipschitz constant of the map Tϕ. Unlike the Picard-Lindelöf

theorem, we are not able to get an improved bound of the Lipschitz constant of the composite

of Tϕ. Fortunately, the Lipschitz constant of the map Tϕ is good enough for all applications

in this chapter.

Lemma 4.2.5. Given any norm ‖ · ‖ on Rd. Let L be the Lipschitz constant of F in x, i.e.

‖F (x, s)− F (y, s)‖ ≤ L‖x− y‖ for all x, y ∈ Rd, s ∈ [0, T ].

Then, the Lipschitz constant of Tϕ in this norm is upper bounded by γϕLT .

Proof. For any 0 ≤ t ≤ T ,

‖Tϕ(x)(t)− Tϕ(y)(t)‖ =

∥∥∥∥∥

∫ t

0

D∑

j=1

F (x(cj), cj)ϕj(s)ds−
∫ t

0

D∑

j=1

F (y(cj), cj)ϕj(s)ds

∥∥∥∥∥

≤
D∑

j=1

∣∣∣∣
∫ t

0

ϕj(s)ds

∣∣∣∣ · max
t∈[0,T ]

‖F (x(t), t)− F (y(t), t)‖

≤ γϕLT · max
s∈[0,t]

‖x(t)− y(t)‖

≤ γϕLT‖x− y‖.

where the third step follows by
∑D

j=1 |
∫ t

0
ϕj(s)ds| ≤ γϕT for all 0 ≤ t ≤ T .

For the rest of the proof, let x∗ϕ denote the fixed point of Tϕ, i.e., Tϕ(x∗ϕ) = x∗ϕ. The

Banach fixed point theorem and Lemma 4.2.5 shows that x∗ϕ uniquely exists if T ≤ 1
Lγϕ

.

Let x∗ denote the solution of the ODE, i.e., the fixed point of T, with T(x∗) = x∗. Let

x(0) denote the initial solution given by x(0)(t) = v and x(N) denote the solution obtained by
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applying operator Tϕ forN times. Note that x(N)(t) is the output of CollocationMethod

in Algorithm 4.2.

Let q ∈ V denote an approximation of d
dt
x∗ such that

∥∥∥∥q(t)−
d

dt
x∗(t)

∥∥∥∥ ≤
ε

T
.∀t ∈ [0, T ]

The next lemma summarizes how these objects are related and will allow us to prove

the main guarantee for first-order ODEs.

Lemma 4.2.6. Let L(j) be the Lipschitz constant of the map T◦jϕ . Assume that L(N) ≤ 1/2.

Then, we have

‖x(N) − x∗‖ ≤ L(N)‖x(0) − x∗‖+ 2‖x∗ϕ − x∗‖, (4.6)

‖x∗ϕ − x∗‖ ≤ 2 · ‖T◦Nϕ (x∗)− x∗‖, (4.7)

‖x∗ − T◦Nϕ (x∗)‖ ≤
N−1∑

i=0

L(i) · ‖x∗ − Tϕ(x∗)‖, (4.8)

‖x∗ − Tϕ(x∗)‖ ≤ 2γϕ · ε. (4.9)

Proof. We prove the claims in order.

For the first claim,

‖x(N) − x∗‖ ≤ ‖x(N) − x∗ϕ‖+ ‖x∗ϕ − x∗‖ by triangle inequality

= ‖T◦Nϕ (x(0))− T◦Nϕ (x∗ϕ)‖+ ‖x∗ϕ − x∗‖

≤ L(N)‖x(0) − x∗ϕ‖+ ‖x∗ϕ − x∗‖

≤ L(N)‖x(0) − x∗‖+ L(N)‖x∗ − x∗ϕ‖+ ‖x∗ϕ − x∗‖

≤ L(N)‖x(0) − x∗‖+ 2‖x∗ϕ − x∗‖
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where the last step follows by L(N) ≤ 1.

For the second claim,

‖x∗ϕ − x∗‖ = ‖T◦Nϕ (x∗ϕ)− x∗‖ by x∗ϕ = T◦Nϕ (x∗ϕ)

≤ ‖T◦Nϕ (x∗ϕ)− T◦Nϕ (x∗)‖+ ‖T◦Nϕ (x∗)− x∗‖ by triangle inequality

≤ L(N) · ‖x∗ϕ − x∗‖+ ‖T◦Nϕ (x∗)− x∗‖ by the definition of L(N)

≤ 1

2
‖x∗ϕ − x∗‖+ ‖T◦Nϕ (x∗)− x∗‖ by L(N) ≤ 1/2

For the third claim,

‖x∗ − T◦Nϕ (x∗)‖ ≤
N−1∑

i=0

‖T◦iϕ (x∗)− T◦(i+1)
ϕ (x∗)‖

≤
N−1∑

i=0

L(i) · ‖x∗ − Tϕ(x∗)‖
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For the last claim,

‖x∗(t)− Tϕ(x∗)(t)‖

= ‖T(x∗)(t)− Tϕ(x∗)(t)‖

=

∥∥∥∥∥

∫ t

0

F (x∗(s), s)ds−
∫ t

0

D∑

j=1

F (x∗(cj), cj)ϕj(s)ds

∥∥∥∥∥

=

∥∥∥∥∥

∫ t

0

d

dt
x∗(s)ds−

∫ t

0

D∑

j=1

d

dt
x∗(cj)ϕj(s)ds

∥∥∥∥∥

≤
∥∥∥∥∥

∫ t

0

(
d

dt
x∗(s)− q(s))ds−

∫ t

0

D∑

j=1

(
d

dt
x∗(cj)− q(cj))ϕj(s)ds

∥∥∥∥∥

+

∥∥∥∥∥

∫ t

0

q(s)ds−
∫ t

0

D∑

j=1

q(cj)ϕj(s)ds

∥∥∥∥∥

≤
∫ t

0

∥∥∥∥
d

dt
x∗(s)− q(s)

∥∥∥∥ ds+
D∑

j=1

∥∥∥∥
d

dt
x∗(cj)− q(cj)

∥∥∥∥
∣∣∣∣
∫ t

0

ϕj(s)ds

∣∣∣∣+ 0

≤ (1 + γϕ) · ε+ 0

where the first step follows by T(x∗) = x∗, the second step follows by the definition of T and

Tϕ, the third step follows by x∗(t) is the solution of ODE, the fourth step follows by triangle

inequality, the second last step follows by q ∈ V, and the last step follows by ‖ d
dt
x∗− q‖ ≤ ε

T

and the definition of γϕ.

Now, we are ready to prove Theorem 4.2.2.
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Proof. Using Lemma 4.2.6, we have

‖x(N) − x∗‖ ≤ L(N)‖x(0) − x∗‖+ 2‖x∗ϕ − x∗‖ by Eq. (4.6)

≤ L(N)‖x(0) − x∗‖+ 4‖T◦Nϕ (x∗)− x∗‖ by Eq. (4.7)

≤ L(N)‖x(0) − x∗‖+ 4
N−1∑

i=0

L(i) · ‖x∗ − Tϕ(x∗)‖ by Eq. (4.8)

≤ L(N)‖x(0) − x∗‖+ 8
N−1∑

i=0

L(i) · γϕ · ε. by Eq. (4.9)

Using the assumption that γϕLT ≤ 1
2
, Lemma 4.2.5 shows that L(1) ≤ 1

2
and hence

L(j) ≤ 1
2j
. Therefore, we have

‖x(N) − x∗‖ ≤ 1

2N
‖x(0) − x∗‖+ 16γϕ · ε =

1

2N
‖x∗ − x∗(0)‖+ 16γϕ · ε (4.10)

To bound ‖x∗ − x∗(0)‖, for any 0 ≤ t ≤ T

x∗(t) = x∗(0) +

∫ t

0

F (x∗(s), s)ds.

Hence, we have that

‖x∗(t)− x∗(0)‖ ≤
∥∥∥∥
∫ T

0

F (x∗(0), s)ds

∥∥∥∥+

∥∥∥∥
∫ t

0

(F (x∗(s), s)− F (x∗(0), s)) ds

∥∥∥∥

≤
∥∥∥∥
∫ T

0

F (x∗(0), s)ds

∥∥∥∥+ L

∫ t

0

‖x∗(s)− x∗(0)‖ds.

Solving this integral inequality (see Lemma 4.6.3), we have that

‖x∗(t)− x∗(0)‖ ≤ eLt
∥∥∥∥
∫ T

0

F (x∗(0), s)ds

∥∥∥∥ .

Now, we use LT ≤ 1
2
and get

‖x∗(t)− x∗(0)‖ ≤ 2

∥∥∥∥
∫ T

0

F (x∗(0), s)ds

∥∥∥∥ .
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Picking N =
⌈
log2

(
T
ε

maxs∈[0,T ] ‖F (x∗(0), s)‖
)⌉
, (4.10) shows that the error is less

than 20γϕε.

4.2.5 A basis for piece-wise polynomials

In this section, we discuss how to construct a bounded basis for low-degree piece-wise

polynomials. We are given n intervals {[Ii−1, Ii]}ni=1 where I0 = 0 and In = T . In the ith

interval [Ii−1, Ii], we represent the function by a degree Di polynomial. Formally, we define

the function subspace by

V
def
=

n⊕

i=1

Vi with Vi
def
=

{(
Di∑

j=0

αjt
j

)
· 1[Ii−1,Ii] : αj ∈ R

}
. (4.11)

The following Lemma shows we can construct the basis for V by concatenating the basis for

Vi.

Lemma 4.2.7. For i ∈ [n], we are given a γi bounded basis {ϕj,i}Dij=0 for the subspace

Vi ⊂ C([Ii−1, Ii],R) on nodes point {cj,i}Dij=0. Then, {ϕj,i}i,j is a
∑n

i=1 γi(Ii − Ii−1) bounded

basis for the subspace
⊕n

i=1 Vi ⊂ C([I0, In],R).

Proof. For any t ≥ 0, we have

n∑

i=1

Di∑

j=0

∣∣∣∣
∫ t

I0

ϕi,j(s)ds

∣∣∣∣ ≤
n∑

i=1

(
Di∑

j=0

∣∣∣∣
∫ t

Ii−1

ϕi,j(s)ds

∣∣∣∣ 1t≥Ii−1

)

≤
n∑

i=1

γi(Ii − Ii−1)

where we used that ϕi,j is supported on [Ii−1, Ii] in the first inequality.
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Next, we note that the boundedness for basis is shift and scale invariant. Hence,

we will focus on obtaining a basis for (t − 1)-degree polynomial on [−1, 1] for notation

convenience.

For [−1, 1], we choose the node points cj = cos(2j−1
2t
π) and the basis are

ϕj(x) =

√
1− c2

j cos(t cos−1 x)

t(x− cj)
.

It is easy to see that ϕj(ci) = δi,j. To bound the integral, Lemma 91 in [LV17] shows that
∣∣∣∣
∫ y

−1

ϕj(x)dx

∣∣∣∣ ≤
2000

t
for all y ∈ [−1, 1].

Summing it over t basis functions, we have that γϕ ≤ 2000. Together with Lemma 4.2.7, we

have the following result:

Lemma 4.2.8. Let V be a subspace of piecewise polynomials on [0, T ] with fixed nodes.

Then, there is a 2000 bounded basis {ϕ} for V. Furthermore, for any vector v, it takes

O(
∑n

i=1(1 +Di)
2) time to compute v>Aϕ where Di is the maximum degree of the i-th piece.

Alternatively, one can find u such that ‖u− v>Aϕ‖ ≤ εT‖v‖∞ in time

O

(
rank(V) log(

rank(V)

ε
)

)
.

Proof. The bound follows from previous discussion. For the computation cost, note that

(v>Aϕ)(i,j) =
∑

i′,j′

∫ c(i,j)

0

v(i′,j′)ϕ(i′,j′)(s)ds.

where (i, j) is the j-th node at the i-th piece. For any i 6= i′, the support of ϕ(i′,j′)(s) is

either disjoint from [0, c(i,j)] (if i′ > i) or included in [0, c(i,j)] (if i′ < i). Hence, we have that
∫ c(i,j)

0

ϕ(i′,j′)(s)ds =

{
0 if i′ > i∫∞
−∞ ϕ(i′,j′)(s)ds if i′ < i

.
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Therefore, we have

(v>Aϕ)(i,j) =
∑

i′<i,j′

v(i′,j′) ·
∫ ∞

−∞
ϕ(i′,j′)(s)ds+

∑

j′

v(i,j′) ·
∫ c(i,j)

0

ϕ(i,j′)(s)ds.

Note that
∫ c(i,j)

0
ϕ(i′,j′)(s)ds can precomputed. Since there are

∑n
i=1(1 + Di) many pairs of

(i, j), the first term can be computed in
∑n

i=1(1 +Di) time. Since there are
∑n

i=1(1 +Di)
2

many pairs of (i, j, j′), the second term can be computed in
∑n

i=1(1 +Di)
2 time.

Theorem 4.2.9 gives another way to compute the integration and its runtime is

O

(
rank(V) log(

rank(V)

ε
)

)
.

Remark 4.2.2. Experiment seems to suggest the basis we proposed is 1 bounded.

Here is the theorem we used above to compute the Lagrange polynomials.

Theorem 4.2.9 ([DGR96, Section 5]). Let φi be the Lagrange basis polynomials on the

Chebyshev nodes cj = cos(2j−1
2t
π) for j ∈ [t], namely, φi(s) =

∏
j 6=i

s−cj
ci−cj . Given a polynomial

p(s) =
∑t

j=1 αjφj(s) represented by {αj}tj=1, one can compute {`i}ti=1 such that
∣∣∣∣`i −

∫ ci

0

p(s)ds

∣∣∣∣ ≤ ε‖α‖∞

in time O(t log( t
ε
)).
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4.3 Improved Contraction Bound for HMC

In this section, we give an improved contraction bound for HMC (Algorithm 4.1).

Each iteration of Algorithm 4.1 solve the HMC dynamics approximately. In the later sections,

we will discuss how to solve this ODE.

To give a contraction bound for the noisy HMC, we first analyze the contraction of

the ideal HMC. We reduce the problem of bounding the contraction rate of the ideal HMC

to the following lemma involving a matrix ODE.

Lemma 4.3.1. Given a symmetric matrix H(t) such that 0 ≺ m2 · I � H(t) � M2 · I for

all t ≥ 0. Consider the ODE

u′′(t) = −H(t) · u(t),

u′(0) = 0.

Let α(t) = 1
‖u(0)‖2

∫ t
0
(t−s) · ‖H(s)u(0)‖2ds. For any 0 ≤ T ≤ 1

2
√
M2

such that α(T ) ≤ 1
8

√
m2

M2
,

we have that

‖u(T )‖2
2 ≤

(
1−max

(
1

4
m2T

2,
1

2

√
m2

M2

· α(T )

))
· ‖u(0)‖2

2.

Using this lemma, we prove both parts of the main contraction bound, Lemma 4.1.6.

Proof of Lemma 4.1.6. Let error function e(t) = y(t) − x(t). The definition of HMC shows

that

e′′(t) = −(∇f(y(t))−∇f(x(t))) = −H(t) · e(t)

where H(t) =
∫ 1

0
∇2f(x(t) + s(y(t) − x(t)))ds. By the strong convexity and the Lipschitz

gradient of f , we have that

m2 · I � H(t) �M2 · I.
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Hence, we can apply Lemma 4.3.1.

To get the first bound, we bound the α(t) defined in Lemma 4.3.1 as follows

α(t) =
1

‖e(0)‖2

∫ t

0

(t− s) · ‖H(s)e(0)‖2ds ≤M2

∫ t

0

(t− s)ds = M2
t2

2
.

Therefore, for 0 ≤ t ≤ m
1/4
2

2M
3/4
2

, we have that α(t) ≤ 1
8

√
m2

M2
and hence Lemma 4.3.1 gives the

first bound.

To get the second bound, we note that α(t) is increasing and hence there is t such

that α(t) = 1
8

√
m2

M2
. Using such t in Lemma 4.3.1 gives the second bound.

Now, we prove the main technical lemma of this section, a contraction estimate for

matrix ODE. We note that not all matrix ODEs come from some HMC and hence it might

be possible to get a better bound by directly analyzing the HMC.

Proof of Lemma 4.3.1. Let e1 denote the basis vector that it is 1 in the first coordinate and

0 everywhere else.

Without loss of generality, we can assume ‖u(0)‖2 = 1 and u(0) = e1.

The proof involves first getting a crude bound on ‖u(t)‖2. Then, we boast the bound

by splitting the movement of u(t) into one parallel to e1 and one orthogonal to e1.

Crude bound on ‖u(t)‖2:

Integrating both sides of u′′(t) = −H(t) · u(t) twices and using u′(0) = 0 gives

u(t) = u(0)−
∫ t

0

(t− s)H(s)u(s)ds. (4.12)
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We take the norm on both sides and use 0 � H(s) �M2 · I to get

‖u(t)‖2 ≤ 1 +M2 ·
∫ t

0

(t− s)‖u(s)‖2ds.

Applying Lemma 4.6.2 to this equation and using t ≤ 1
2
√
M2

gives

‖u(t)‖2 ≤ cosh(
√
M2t) ≤

6

5

Putting it back to (4.12) gives

‖u(t)− e1‖2 ≤
∫ t

0

(t− s)‖H(s) · u(s)‖2ds =

∫ t

0

(t− s) ·M2 ·
6

5
ds =

6

10
M2t

2.

In particular, for any 0 ≤ t ≤ 1
2
√
M2

, we have that

5

6
≤ u1(t) ≤ 7

6
. (4.13)

Improved bound on ‖u(t)‖2:

Let P1 be the orthogonal projection to the first coordinate and P−1 = I − P1. We

write u(t) = u1(t)+u−1(t) with u1(t) = P1u(t) and u−1(t) = P−1u(t), namely, u1(t) is parallel

to e1 and u−1(t) is orthogonal to e1.

Fix any 0 ≤ t ≤ T . Let β(t) = e>1 u(t). By the definition of u, we have

u′′(t) = −β(t) ·H(t)e1 −H(t)u−1(t). (4.14)

Integrating both sides twice and using u−1(0) = 0, we have

u−1(t) =

∫ t

0

(t− s)P−1u
′′(s)ds

= −
∫ t

0

(t− s) · β(s) · P−1H(s)e1ds−
∫ t

0

(t− s)P−1H(s)u−1(s)ds.
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Taking norm on both sides and using that 0 � H(t) � M2 · I and 5
6
≤ β(s) ≤ 7

6
, we have

that

‖u−1(t)‖2 ≤
∫ t

0

(t− s) · β(s) · ‖H(s)e1‖2ds+M2 ·
∫ t

0

(t− s) · ‖u−1(s)‖2ds

≤ 7

6

∫ t

0

(t− s) · ‖H(s)e1‖2ds+M2 ·
∫ t

0

(t− s) · ‖u−1(s)‖2ds

≤ 7

6
α(T ) +M2 ·

∫ t

0

(t− s) · ‖u−1(s)‖2ds (4.15)

where α(T )
def
=
∫ T

0
(T − s) · ‖H(s)e1‖2ds. Solving this integral inequality (Lemma 4.6.2), we

get

‖u−1(t)‖2 ≤
7

6
α(T ) · cosh(

√
M2t) ≤

7

6
α(T ) · cosh(1/2) ≤ 4

3
α(T ) (4.16)

where the second step follows from t ≤ 1
2
√
M2

, and the last step follows from cosh(1/2) ≤ 8
7
.

Next, we look at the first coordinate of (4.14) and get

β′′(t) = −β(t) · e>1 H(t)e1 − e>1 H(t)u−1(t)

≤ −5

6
e>1 H(t)e1 + ‖H(t)e1‖2 · ‖u−1(t)‖2. (4.17)

To bound the last term, we note that

‖H(t)e1‖2 =
√
e>1 H

2(t)e1

≤
√
M2 · e>1 H(t)e1 by H2(t) �M2 ·H(t)

=

√
M2

m2

√
m2

e>1 H(t)e1

e>1 H(t)e1

≤
√
M2

m2

· e>1 H(t)e1 by m2 ≤ e>1 H(t)e1. (4.18)

Using this into (4.17) and α(T ) ≤ 1
8

√
m2

M2
, we have

β′′(t) ≤ −e>1 H(t)e1 ·
(

5

6
− 4

3

√
M2

m2

α(T )

)
≤ −2

3
e>1 H(t)e1.
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Hence, we have that

β(t) ≤ 1− 2

3

∫ t

0

(t− s) · e>1 H(s)e1ds. (4.19)

Using (4.19), β(t) ≥ 5
6
and (4.16) gives

‖u(t)‖2
2 = β2(t) + ‖u−1(t)‖2

2

≤ 1−
∫ t

0

(t− s) · e>1 H(s)e1ds+

(
4

3

∫ T

0

(T − s) · ‖H(s)e1‖2ds

)2

≤ 1−
∫ t

0

(t− s) · e>1 H(s)e1ds+ 2

√
M2

m2

∫ T

0

(T − s) · e>1 H(s)e1ds · α(T )

= 1−
∫ t

0

(t− s) · e>1 H(s)e1ds

(
1− 2

√
M2

m2

α(T )

)

≤ 1− 1

2

∫ t

0

(t− s) · e>1 H(s)e1ds

where we used (4.18) at the second inequality and α(T ) ≤ 1
8

√
m2

M2
at the end.

Finally, we bound the last term in two way. One way simply uses e>1 H(s)e1 ≥ m2

and get

∫ t

0

(t− s) · e>1 H(s)e1ds ≥ m2

2
t2

which implies

‖u(t)‖2
2 ≤ 1− m2

4
t2.

For the other way, we apply (4.18) to get that

∫ t

0

(t− s) · e>1 H(s)e1ds ≥
∫ t

0

(t− s) · ‖H(t)e1‖2

√
m2

M2

ds =

√
m2

M2

· α(T ).
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where the last step follows by the definition of α(T ). Thus, we have

‖u(t)‖2
2 ≤ 1− 1

2

√
m2

M2

α(T ).

Finally, we analyze the contraction of the noisy HMC.

Theorem 4.3.2 (Contraction of noisy HMC). Suppose f is m2 strongly convexity with M2

Lipschitz gradient. For any step-size h ≤ m
1/4
2

2M
3/4
2

, let X ∼ HMC(x(0), f, ε, h) and Y ∼ e−f .

Then, we have that

W2(X, Y ) ≤ ε√
m2

.

In addition, the number of iterations is

N = O

(
1

m2h2

)
· log

(‖∇f(x(0))‖2
2/m2 + d

ε

)
.

Proof. To prove the W2 distance, we let x(k) be the iterates of the algorithm HMC. Let y(k)

be the k-th step of the ideal HMC starting from a random point y(0) ∼ e−f with the random

initial direction identical to the algorithm HMC. Let x∗(k) be the 1 step ideal HMC starting

from x(k−1) with the same initial direction as y(k). Lemma 4.1.6 shows that

‖x∗(k) − y(k)‖2
2 ≤

(
1− m2h

2

4

)
‖x(k−1) − y(k−1)‖2

2.

Let θ = m2h2

8
, then θ ≤ 1/(4κ3/4)

8
≤ 1/32. By the assumption of the noise, we have ‖x(k) −

204



x∗(k)‖2 ≤ εθ
2
√
m2

. Hence, we have

‖x(k) − y(k)‖2
2 = ‖(x∗(k) − y(k)) + (x(k) − x∗(k))‖2

2

≤ (1 + θ) ‖x∗(k) − y(k)‖2
2 + (1 + 1/θ)‖x(k) − x∗(k)‖2

2

≤ (1 + θ) (1− 2θ)‖x(k−1) − y(k−1)‖2
2 + (1 + 1/θ)‖x(k) − x∗(k)‖2

2

≤ (1− θ) ‖x(k−1) − y(k−1)‖2
2 + (1 + 1/θ)‖x(k) − x∗(k)‖2

2

≤ (1− θ) ‖x(k−1) − y(k−1)‖2
2 + (2/θ) · ε

2θ2

4m2

.

where the second step follows by (a+ b)2 ≤ (1 + θ)a2 + (1 + 1/θ)b2, the third step follows by

‖x∗(k)−y(k)‖2
2 ≤ (1−2θ)‖x(k−1)−y(k−1)‖2

2, the fourth step follows by (1+θ)(1−2θ) ≤ (1−θ),

the fifth step follow by θ ≤ 1/4 and ‖x(k) − x∗(k)‖2 ≤ εθ
2
√
m2

.

Applying this bound iteratively gives

‖x(k) − y(k)‖2
2 ≤ (1− θ)k ‖x(0) − y(0)‖2

2 +
ε2

2m2

. (4.20)

Let x(min) be the minimum of f . Then, we have

‖x(0) − y(0)‖2
2 ≤ 2‖x(0) − x(min)‖2

2 + 2‖y(0) − x(min)‖2
2. (4.21)

For the first term, the strong convexity of f shows that

‖x(0) − x(min)‖2
2 ≤

1

m2
‖∇f(x(0))‖2

2. (4.22)

For the second term, Theorem 1 in [DM16] shows that

E
[
‖y(0) − x(min)‖2

2

]
≤ d

m2

. (4.23)

Combining (4.20), (4.21), (4.22) and (4.23), we have

E
[
‖x(k) − y(k)‖2

2

]
≤ (1− θ)k

(
2‖∇f(x(0))‖2

2

m2
2

+
2d

m2

)
+

ε2

2m2

.

205



Picking

k =
1

θ
· log




2‖∇f(x(0))‖22
m2

2
+ 2d

m2

ε2

2m2


 =

1

θ
· log

(
4

ε2

(‖∇f(x(0))‖2
2

m2

+ d

))
,

we have that

E
[
‖x(k) − y(k)‖2

2

]
≤ ε2

m2

.

This proves that W2(X, Y ) ≤ ε√
m2

.
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4.4 Strongly Convex functions with Lipschitz Gradient

In this section, we give a faster sampling algorithm for strongly convex functions with

Lipschitz gradient. The purpose of this section is to illustrate that our contraction bound

and ODE theorem are useful even for functions that are not infinitely differentiable. We

believe that our bound can be beaten by algorithms designed for this specific setting.

4.4.1 Bounding the ODE solution

First, we prove that the HMC dynamic for these functions can be well approxi-

mated by piece-wise degree-2 polynomials. Note that this only requires that the Hessian has

bounded eigenvalues.

Lemma 4.4.1 (Smoothness implies the existence of degree-2 polynomial approximation).

Let f be a twice-differentiable function such that −M2 · I � ∇2f(x) �M2 · I for all x ∈ Rd.

Let 0 ≤ h ≤ 1
2
√
M2

. Consider the HMC dynamic

d2x

dt2
(t) = −∇f(x(t)) for 0 ≤ t ≤ h,

dx

dt
(0) = v1,

x(0) = v0.

For any integer k, there is a continuously differentiable k-piece degree 2 polynomial q such

that q(0) = v0, dq
dt

(0) = v1 and
∥∥∥d2q

dt2
(t)− d2x

dt2
(t)
∥∥∥

2
≤ ε

h2 for 0 ≤ t ≤ h with

ε =
2M2h

3

k
(‖v1‖2 + ‖∇f(v0)‖2 · h) .

Proof. Let x(t) be the solution of the ODE. We define a continuously differentiable k-piece
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degree-2 polynomial q by

q(0) = v0 and q′(t) =
dx(tpre)

dt
· tnext − t
tnext − tpre

+
dx(tnext)

dt
· tpre − t
tnext − tpre

with tpre =
⌊

t
h/k

⌋
· h
k
and tnext = tpre + h

k
. Clearly, we have that q(0) = x(0) = v0 and

dq
dt

(0) = dx
dt

(0) = v1. Also, we have that
∥∥∥∥

d2q

dt2
(t)− d2x

dt2
(t)

∥∥∥∥
2

=

∥∥∥∥∥

∫ tnext

tpre

d2x

dt2
(s)ds− d2x

dt2
(t)

∥∥∥∥∥
2

≤ h

k
max
0≤t≤h

∥∥∥∥
d3x

dt3
(t)

∥∥∥∥
2

≤ M2h

k
max
0≤t≤h

∥∥∥∥
dx

dt
(t)

∥∥∥∥
(4.24)

where we used that d3x
dt3

(t) = −∇2f(x(t))dx
dt

(t) at the end.

Therefore, it suffices to bound the term max0≤t≤h
∥∥dx

dt
(t)
∥∥. Using again that d3x

dt2
(t) =

−∇2f(x(t))dx
dt

(t), we have that

dx

dt
(t) =

dx

dt
(0) +

d2x

dt2
(0) · t+

∫ t

0

(t− s) · d3x

dt3
(s)ds

= v1 −∇f(v0) · t−
∫ t

0

(t− s) · ∇2f(x(s))
dx

dt
(s)ds.

Hence, for 0 ≤ t ≤ h, we have that
∥∥∥∥

dx

dt
(t)

∥∥∥∥
2

≤ ‖v1‖2 + ‖∇f(v0)‖2 · h+M2 ·
∫ t

0

(t− s)
∥∥∥∥

dx

dt
(t)

∥∥∥∥
2

ds.

Solving this integral inequality, Lemma 4.6.2 shows that

max
0≤t≤h

∥∥∥∥
dx

dt
(t)

∥∥∥∥ ≤ (‖v1‖2 + ‖∇f(v0)‖2 · h) · cosh(
√
M2 · h) ≤ 2 (‖v1‖2 + ‖∇f(v0)‖2 · h)

where we used that h ≤ 1
2
√
M2

. Applying this in (4.24) gives this result.

The precise runtime depends on how accurate we need to solve the ODE, namely,

the parameter ε in Lemma 4.4.1. The term ‖v1‖2 can be upper bounded by O(
√
d) with

208



high probability since v1 is sampled from normal distribution. The term ‖∇f(v0)‖2 is much

harder to bound. Even for a random v0 e
−f , the worst case bound we can give is

‖∇f(v0)‖2 = ‖∇f(v0)−∇f(x∗)‖2 ≤M2‖v0 − x∗‖2 .
√
κM2d

where we used that ‖v0− x∗‖2 .
√
d/m2 for random v0 e

−f [DM16]. This is not enough for

improving existing algorithms, as we would need
√
κd time per iteration. The crux of this

section is to show that ‖∇f(v0)‖2 = O(
√
M2d) for most of the iterations in the HMC walk

if the process starts at the minimum of f . This is tight for quadratic f .

Lemma 4.4.2 (Smoothness implies expected gradient is upper bounded). Let f be a function

such that −M2 · I � ∇2f(x) �M2 · I for all x ∈ Rd. Let x(k) be the starting point of the kth

step in HMC(x(0), f, ε, h) (Algorithm 4.1) with step size h ≤ 1
8
√
M2

. Then, we have that

1

N
E

[
N−1∑

k=0

‖∇f(x(k))‖2
2

]
≤ O

(
f(x(0))−minx f(x)

h2N
+M2d+

ε2

h4

)

ε is the error in solving the HMC defined in Algorithm 4.1.

Proof. Consider one step of the HMC dynamic. Note that

d

dt
f(x(t)) = ∇f(x(t))>

dx

dt
.

Hence, we have

d2

dt2
f(x(t)) =

dx

dt

>
∇2f(x(t))

dx

dt
+∇f(x(t))>

d2x

dt2

=
dx

dt

>
∇2f(x(t))

dx

dt
− ‖∇f(x(t))‖2 by

d2x

dt2
= −∇f(x(t))

≤ M2 · ‖
dx

dt
‖2

2 − ‖∇f(x(t))‖2. by ∇2f(x(t)) �M2 · I (4.25)
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In Lemma 4.4.1, we proved that ‖dx
dt
‖2 ≤ 2

(
‖dx

dt
(0)‖2 + ‖∇f(x(0))‖2 · h

)
for all 0 ≤ t ≤ h.

Using this, we have that

‖∇f(x(t))−∇f(x(0))‖ ≤ M2‖x(t)− x(0)‖2

≤ M2

∫ t

0

‖dx

dt
(t)‖2dt

≤ 2M2h ·
(
‖dx

dt
(0)‖2 + ‖∇f(x(0))‖2 · h

)

which implies

‖∇f(x(t))‖ = ‖∇f(x(0))‖ ± 2M2h

(
‖dx

dt
(0)‖+ ‖∇f(x(0))‖ · h

)
. (4.26)

Using our choice of h, we have that ‖∇f(x(t))‖ ≥ 1
2
‖∇f(x(0))‖ − 2M2h · ‖dx

dt
(0)‖2. Putting

these estimates into (4.25) gives

d2

dt2
f(x(t))

≤ 2M2

(
‖dx

dt
(0)‖2 + ‖∇f(x(0))‖2h2

)
− 1

4
‖∇f(x(0))‖2 + 2M2h · ‖∇f(x(0))‖ · ‖dx

dt
(0)‖

≤ 2M2

(
‖dx

dt
(0)‖2 + ‖∇f(x(0))‖2h2

)
− 1

4
‖∇f(x(0))‖2 + 2 · (1

8
‖∇f(x(0))‖)2 + 2 · (16M2h‖

dx

dt
(0)‖)2

= (2M2 + 512M2
2h

2)‖dx

dt
(0)‖2 − (

1

4
− 2M2h

2 − 1

32
)‖∇f(x(0))‖2

≤ 10M2 · ‖
dx

dt
(0)‖2 − 1

8
‖∇f(x(0))‖2

where we used that h ≤ 1
8
√
M2

at the last two equations.

Since dx
dt

(0) is sampled from normal distribution, we have that

E[f(x(h))] ≤ f(x(0)) +

∫ h

0

(h− t) d2

dt2
f(x(t))dt

= f(x(0)) + 5M2 · h2 · E
[
‖dx

dt
x(0)‖2

]
− h2

16
‖∇f(x(0))‖2

= f(x(0)) + 5M2 · h2 · d− h2

16
‖∇f(x(0))‖2
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where the last step follows from E[‖dx
dt

(0)‖2] = d.

For the ODE starting from x(k), we have that

E[f(x(h))] ≤ f(x(k))− h2

16
‖∇f(x(k))‖2 +O(M2 · d · h2).

To compare f(x(h)) and f(x(k+1)), we note that the distance between x(k+1) and x(h) is less

than ε in `2 norm. Using (4.26) and the fact ∇2f � M2I, the function value changed by at

most

ε · ‖∇f(x(k+1))‖+M2 · ε2 = 2ε · ‖∇f(x(k))‖+O(εM2

√
dh+ ε2M2)

with high probability. Hence, we have

E[f(x(k+1))] ≤ f(x(k)) + 2ε‖∇f(x(k))‖ − h2

16
‖∇f(x(k))‖2 +O(εM2

√
dh+ ε2M2 +M2dh

2)

≤ f(x(k)) + 2ε‖∇f(x(k))‖ − h2

16
‖∇f(x(k))‖2 +O(ε2M2 +M2dh

2)

≤ f(x(k)) + 2ε‖∇f(x(k))‖ − h2

16
‖∇f(x(k))‖2 +O(

ε2

h2
+M2dh

2)

≤ f(x(k))− h2

32
‖∇f(x(k))‖2 +O(

ε2

h2
+M2dh

2)

where the step follows from 2ab ≤ a2 + b2, the third step follows from our choice of h, the

second last step follows by 2ε‖∇f(x(k))‖ ≤ h2

64
‖∇f(x(k))‖2 + 64 ε2

h2 .

Summing k from 0 to N − 1, we have

N−1∑

k=0

E
[
f(x(k+1))− f(x(k)) +

h2

32
‖∇f(x(k))‖2

]
≤ N ·O

(
ε2

h2
+M2dh

2

)

Using f(x(N)) ≥ minx f(x) and reorganizing the terms gives the desired result.

Remark 4.4.1. Both Lemma 4.4.1 and Lemma 4.4.2 do not need convexity.
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4.4.2 Sampling

Now, we can apply our algorithm for second-order ODEs to the HMC dynamic. To

control the gradient of the initial point in a simple way, we start at the algorithm at a local

minimum of f .

Theorem 4.1.4. (Strongly Convex). Given a function f such that 0 ≺ m2·I � ∇2f(x) �M2·I

for all x ∈ Rd and 0 < ε <
√
d. Starting x(0) at the minimum of f , we can find a random

pointX whose Wasserstein distance to Y drawn from the density proportional to e−f satisfies

W2(X, Y ) ≤ ε√
m2

using O(κ1.5 log(d
ε
)) iterations where κ = M2

m2
. Each iteration takes O

(
κ

1
4 d

3
2

ε
log
(
κd
ε

))
time

and O
(
κ

1
4 d

1
2

ε
log
(
κd
ε

))
evaluations of ∇f , amortized over all iterations.

Proof. The number of iterations follows from Theorem 4.3.2 with

h =
m

1/4
2

16000M
3/4
2

. (4.27)

To approximate the HMC dynamic, we apply the ODE algorithm (Theorem 4.2.4).

Now, we estimate the parameters in Theorem 4.2.4. Note that L1 = 0, L2 = M2, L =
√
M2,

T = h, LT ≤ 1/16000, εODE =
ε·√m2h2

16
. Hence, if the solution is approximated by a k-piece

degree 2 polynomial, we can find it in O(dk) · log( C
εODE

) time and O(k) · log( C
εODE

) evaluations

where

C = O(h2)‖∇f(v0)‖+ h‖v1‖

with v0 and v1 are the initial point and initial velocity of the dynamic.
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Finally, Lemma 4.4.1 shows that the ODE can be approximated using a

k
def
=

2 ·M2h
3 (‖v1‖2 + ‖∇f(v0)‖2 · h)

ε/(
√
m2 · κ3/2)

piece degree 2 polynomials where v0 is the initial point and v1 is the initial velocity. Since

v1 is sampled from normal distribution, we have that

k . 1

ε

(
κ

1
4

√
d+
‖∇f(v0)‖2√

M2

)
.

in expectation.

Now, we apply Lemma 4.4.2 with ε =
√
m2h

2ε/16 and use the fact that f(x(0)) −

minx f(x) ≤ ‖∇f(x(0))‖22
m2

, we have

E

[
1

N

N−1∑

k=0

‖∇f(x(k))‖2
2

]
. ‖∇f(x(0))‖2

2

m2h2N
+M2d+

ε2

h4

. ‖∇f(x(0))‖2
2

m2h2N
+M2d+m2ε

2

. ‖∇f(x(0))‖2
2 +M2d+m2ε

2

. ‖∇f(x(0))‖2
2 +M2d

where the third step follows from N ≥ 1
m2h2 , our choice of h and ε (i.e., Eq. (4.27)), and we

used that ε ≤
√
d at the end. Hence, the expected number of evaluations per each HMC

iterations (amortized over all HMC iterations) is

O(k) · log(
C

εODE

) . 1

ε

(
κ

1
4

√
d+
‖∇f(x(0))‖+

√
M2d√

M2

)
log

(
h2(‖∇f(x(0))‖+

√
M2d) + h

√
d

εODE

)

. 1

ε

(
κ

1
4

√
d+
‖∇f(x(0))‖√

M2

)
log

(
1

ε

(‖∇f(x(0))‖√
m2

+ κ3/4
√
d

))
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where the last step follows from our choice of εODE =
ε·√m2h2

16
and our choice of h =

m
1/4
2

16000M
3/4
2

.

Since we start at the minimum of f , ‖∇f(x(0))‖ = 0 and this gives the expected number of

evaluations.

Similarly, we have the bound for expected time. This completes the proof.

214



4.5 Sampling from Incoherent Logistic Loss Functions and More

In this section we prove Theorem 4.5.6. Since the function

f(x) =
n∑

i=1

φi(a
>
i x) +

m2

2
‖x‖2

2,

the HMC dynamic for sampling e−f(x) is given by

d2

dt2
x(t) = −∇f(x(t)) = −A>φ′(Ax)−m2x

where the ith row of A ∈ Rn×d is a>i , ∀i ∈ [n] and φ′ : Rn → Rn is defined by

φ′(s) =

(
d

ds1

φ1(s1),
d

ds2

φ2(s2), · · · , d

dsn
φn(sn)

)
.

To simplify the proof, we let s(t) = Ax(t). Then, s satisfies the equation

d2

dt2
s(t) = F (s(t)) where F (s) = −AA>φ′(s)−m2s. (4.28)

Ignoring the term m2s, F consists of two parts the first part −AA> is linear and the second

part is decoupled in each variable. This structure allows us to study the dynamic s easily.

In this section, we discuss how to approximate the solution of (4.28) using the collocation

method.

The proof consists of (a) bounding ‖s(t)‖∞, (b) bounding Lipschitz constant of F

and (c) showing that s(t) can be approximated by a polynomial.

4.5.1 `∞ bound of the dynamic

Lemma 4.5.1 (`∞ bound of the dynamic). Let x(j) be the jth iteration of the HMC dynamic

defined in Algorithm 4.1 with

f(x) =
n∑

i=1

φi(a
>
i x) +

m2

2
‖x‖2

2.
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Assume that m2 · I � ∇2f(x) � M2 · I for all x, |φ′(s)| ≤ M for all s, and that τ =

‖AA>‖∞→∞. Let s(j) = Ax(j). Suppose that the step size T ≤ 1
2
√
m2

, we have that

max
j∈[N ]
‖s(j) − s(0)‖∞ = O

(√
τ

m2

+
τM

m2

)
· log(dN/η)

with probability at least 1− η.

Proof. We ignore the index of iteration (j) and focus on how s changes within each ODE

first.

For any 0 ≤ t ≤ T and for any i, we have that

si(t) = si(0) + s′i(0)t−
∫ t

0

(t− `)(AA>φ′(s(`)))id`−m2

∫ t

0

(t− `)si(`)d`. (4.29)

Using τ = ‖AA>‖∞→∞ and |φ′(s)| ≤M , we have

|si(t)− si(0)| ≤ T · |s′i(0)|+
∫ T

0

(T − `) · τ ·Md`+m2

∫ t

0

(t− `)|si(`)− si(0)|d`+
1

2
m2T

2|si(0)|

=
1

2
m2T

2 · |si(0)|+ T · |s′i(0)|+ 1

2
T 2 · τM +m2

∫ t

0

(t− `)|si(`)− si(0)|d`.

Solving this integral inequality (Lemma 4.6.2), we get

|si(t)− si(0)| ≤
(

1

2
m2T

2 · |si(0)|+ T · |s′i(0)|+ 1

2
T 2 · τM

)
· cosh(

√
m2t)

≤ 1

4
|si(0)|+ 2T · |s′i(0)|+ T 2 · τM (4.30)

where we used that t ≤ T ≤ 1
2
√
m2

.
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Using this estimate back to (4.29), we have
∣∣∣∣si(T )− si(0)− s′i(0)T +

1

2
m2T

2si(0)

∣∣∣∣

≤
∫ T

0

(T − `)|AA>φ′(s(`))i|d`+m2

∫ T

0

(T − `)|si(`)− si(0)|d`

≤
∫ T

0

(T − `)τMd`+m2

∫ T

0

(T − `)
(

1

4
|si(0)|+ 2T · |s′i(0)|+ T 2 · τM

)
d`

=
1

2
T 2 · τM +

1

2
m2T

2 ·
(

1

4
|si(0)|+ 2T · |s′i(0)|+ T 2 · τM

)

≤ 1

2
T 2 · τM +

1

2
m2T

2 ·
(

1

4
|si(0)|+ 1√

m2

· |s′i(0)|+ 1

4m2

· τM
)

=
5

8
T 2 · τM +

1

8
m2T

2|si(0)|+ 1

2

√
m2T

2 · |s′i(0)|

where the second step follows from |AA>φ′(s(`))i| ≤ τM and (4.30), the third step follows

from
∫ T

0
(T − `)d` = 1

2
T 2, the fourth step follows from T ≤ 1

2
√
m2

.

Note that we bounded how much each iteration of the HMC dynamic can change the

solution. Writing it differently, we have

s
(j+1)
i = (1− 1

2
m2T

2)s
(j)
i + s

(j)
i

′
(0) · T + β

where

|β| ≤ 1

4
m2T

2|s(j)
i (0)|+√m2T

2 · |s(j)
i

′
(0)|+ τM · T 2.

Note that s(j)
i

′
(0) ∼ N(0, (A>A)i) and that

λmax(A>A) = λmax(AA>) ≤ ‖AA>‖∞→∞ = τ.

Therefore, s(j)
i

′
(0)T ∼ αi ·N(0, 1) with 0 ≤ αi ≤

√
τT . Now, we simplify the dynamic to

s
(j+1)
i = (1− δ)s(j)

i + αiN
(j) + β
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where δ := 1
2
m2T

2, αi ≤ a :=
√
τT , and

|β| ≤ δ

2
|s(j)
i (0)|+ b|N (j)|+ c

with b :=
√
m2τT

2 and c := τM · T 2.

Applying Lemma 4.5.2, we have that

Pr

[
max
j∈[N ]
|s(j)
i − s(0)

i | ≥ C ·
(
a√
δ

+
c+ b

δ

)
log(N/ε)

]
≤ ε

for some constant C. Taking union bound over i ∈ [d], the bound follows from the calculation

a√
δ

+
c+ b

δ
=

√
2τT√
m2T

+
τM · T 2 +

√
m2τ · T 2

2m2T 2
&
√

τ

m2

+
τM

m2

.

Lemma 4.5.2 (Bounding the Martingale). Let X(i) be a sequence of random variable such

that

X(i+1) = (1− δ)X(i) + αiN
(i) + β

where N (i) ∼ N(0, 1) are independent, αi ≤ a, β ≤ δ
2
|X(i)| + b|N (i)| + c with positive a, b, c

and 0 < δ ≤ 1. For some constant universal C > 0, we have that

Pr

[
max
i∈[k]
|X(i) −X(0)| ≥ C ·

(
a√
δ

+
c+ b

δ

)
log(k/ε)

]
≤ ε

for any 0 < ε < 1.

Proof. We will first show that X(i) cannot grow to large. The proof of the other direction is

similar. Consider the potential Φ(i) = E
[
eλX

(i)
]
. Note that

Φ(i+1) ≤ E
[
eλ((1−δ)X(i)+αiN

(i)+b|N(i)|+c+ δ
2
|X(i)|)

]

≤ eλc E
[
eλ(1−δ)X(i)+ δ

2
|X(i)|

]
E
[
eλ(αiN

(i)+b|N(i)|)
]
,
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where we used that N (i) are independent. Picking λ ≤ 1
a+b

and using N (i) ∼ N(0, 1) and

|αi| ≤ a, we have that

E
[
eλ(αiN

(i)+b|N(i)|)
]
≤ eO(λb+λ2a2).

Therefore, for any η > 0, we have

Φ(i+1) ≤ eO(λc+λb+λ2a2) ·
(
E
[
eλ(1−δ)X(i)+ δ

2
|X(i)|1X(i)≤η

]
+ E

[
eλ(1− δ

2
)X(i)

1X(i)>η

])

≤ eO(λc+λb+λ2a2) ·
(
eλη + E

[
eλX

(i)−λ
2
δη
])

≤ eO(λc+λb+λ2a2+λη) + eO(λc+λb+λ2a2)−λ
2
δηΦ(i).

Choose η = Θ( c+b+λa
2

δ
) such that O(λc+ λb+ λ2a2)− λ

2
δη ≤ 0. Hence, we have

Φ(i+1) ≤ eO(λc+λb+λ2a2+λη) + Φ(i) ≤ eO(λc+λb+λ
2a2

δ
) + Φ(i).

Picking an appropriate λ, we have the result.

4.5.2 Lipschitz constant of F

Now, we bound the Lipschitz constant of function F .

Lemma 4.5.3 (Lipschitz bound of function F ). Let Lφ′ be the Lipschitz constant of φ′, i.e.,

‖φ′(s1)− φ′(s2)‖∞ ≤ Lφ′‖s1 − s2‖∞, ∀s1, s2.

The function F defined in (4.28) has Lipschitz constant (Lφ′τ + m2) in `∞ norm where

τ = ‖AA>‖∞→∞.
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Proof. Note that

‖F (s1)− F (s2)‖∞ = ‖AA>(φ′(s1)− φ′(s2))‖∞ +m2‖s1 − s2‖∞

≤ τ · ‖φ′(s1)− φ′(s2)‖∞ +m2‖s1 − s2‖∞

≤ (τ · Lφ′ +m2) · ‖s1 − s2‖∞,

where the second step follows by ‖AA>‖∞→∞ = τ , and second step follows by φ′ is Lφ′-

Lipschitz function.

Remark 4.5.1. If we think of the role of F in our second order ODE (4.28), then F is in fact

independent of ds
dt
. Therefore L1 = 0 and L2 = Lφ′τ +m2.

4.5.3 Existence of low-degree solutions

Next, we establish bounds on the radius up to which the solution to the ODE (4.28)

have a low-degree polynomial approximation.

Lemma 4.5.4 (Low-degree polynomial approximation). Assume that ‖AA>‖∞→∞ = τ and

that for all i, φ′i has Cauchy estimate M with radius r, i.e.,

∀l ≥ 0,∀a ∈ R, |(φi)(l+1)(a)| ≤M · l! · r−l.

Let s∗(t) ∈ Rn denote the solution of the ODE (4.28).

For any

0 ≤ T ≤ r

4

(
(Mτr +m2r(r + ‖s(0)‖∞))1/2 + ‖s′(0)‖∞

)−1
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and any 0 < ε < 1, there is a degree D = 2 d4 + log2(1/ε)e polynomial q : R→ Rn such that

q(0) = s∗(0), q′(0) = s∗′(0), and
∥∥∥∥

d2

dt2
q(t)− d2

dt2
s∗(t)

∥∥∥∥
∞
≤ ε · r

T 2
,∀t ∈ [0, T ]

First, we verify the condition in Lemma 4.6.6.

Lemma 4.5.5. (Bounding derivatives of F ). Under the same assumptions in Lemma 4.5.4,

we have

‖DkF (s)[∆1,∆2, · · · ,∆k]‖∞ ≤ g(k)(0) ·
k∏

j=1

‖∆j‖∞, ∀k ≥ 0,∀∆1, · · · ,∆k.

where

g(x) =
τ ·M +m2 · (r + ‖s‖∞)

1− r−1x
.

Proof. Recall that φ′(x) = (φ′1(x1), φ′2(x2), · · · , φ′n(xn)), ∀x ∈ Rn. We have

‖AA>Dkφ′(s)[∆1,∆2, · · · ,∆k]‖∞

≤ τ · ‖Dkφ′(s)[∆1,∆2, · · · ,∆k]‖∞ by ‖AA>‖∞→∞ = τ

≤ τ ·max
i∈[n]
|φ(k+1)
i | · |∆1,i| · |∆2,i| · · · |∆k,i|

≤ τ ·max
i∈[n]
|φ(k+1)
i |

k∏

j=1

‖∆j‖∞

≤ τ ·M · k! · r−k ·
k∏

j=1

‖∆j‖∞.

Next, the derivatives of the m2s term in F (s) = −AA>φ′(s) −m2s can be bounded

by the derivatives of x → m2(‖s‖∞ + x), which then can be bounded by the derivatives of

x→ m2(r + ‖s‖∞)/(1− r−1x). This explains the second part of the function g.
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Proof of Lemma 4.5.4. Theorem 4.6.4 and Lemma 4.5.5 shows that

‖s∗(k)(0)‖∞ ≤
k!αk

r−1
= r · k! · αk (4.31)

where

α = max

((
4

3
· (Mτ +m2(r + ‖s(0)‖∞)) · r−1

)1/2

, 2 · ‖s′(0)‖∞r−1

)
.

Since s∗ is real analytic at 0 (Theorem 4.6.4), around t = 0, we have

s∗(t) =
∞∑

k=0

s∗(k)(0)

k!
tk.

Apply Theorem 4.6.4 repeatedly at every t such that s∗(t) is defined, we can show that the

above equation holds as long as the right hand side converges.

Let q(t) =
∑D

k=0 s
∗(k)(0)tk. Then, we have that

∥∥∥∥
d2

dt2
q(t)− d2

dt2
s∗(t)

∥∥∥∥
∞
≤
∥∥∥∥∥

∞∑

k=D+1

s∗(k)(0)

(k − 2)!
tk−2

∥∥∥∥∥
∞

≤ r ·
∞∑

k=D+1

k!

(k − 2)!
αktk−2

≤ r

T 2
·
∞∑

k=D+1

(k − 1)k

2k

=
r

T 2
· 2−D(D2 + 3D + 4)

≤ 16
2−D/2r

T 2

where we used (4.31) at the second inequality, αT ≤ 1
2
at the third inequality, and D ≥ 1 at

the fourth inequality.
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4.5.4 Main result

Theorem 4.5.6 (Formal version of Theorem 4.1.2). Let A = [a1; a2; · · · ; an] ∈ Rn×d, φi :

R→ R be a function, and

f(x) =
n∑

i=1

φi(a
>
i x) +

m2

2
‖x‖2.

Let τ = ‖AA>‖∞→∞ and suppose that

1. f has M2 Lipschitz gradient, i.e., ∇2f(x) �M2 · I for all x,

2. φ′i has Cauchy estimate M with radius r, i.e., ∀i ∈ [n], ` ≥ 1, s ∈ R, |φ(l+1)
i (s)| ≤

M · l! · r−l.

Starting at x(0), we can output a random point X such that

E
Y ∝e−f

[
‖X − Y ‖2

2

]
≤ ε√

m2

using N . k log
(
k
ε

(
‖∇f(x(0))‖2

m2
+ d
))

iterations with

k . κ1.5 +
Mτ

m2r
log(dN) +

τ

m2r2
log2(dN) with κ =

M2

m2

.

Each iteration takes O(d log3(1
δ
)) time and O(log2(1

δ
)) evaluations to the function φ′ and the

matrix vector multiplications for A and A>, with

δ = Ω(
1

r
)

√
λmin(A>A)

n ·m2

· ε
k
.

Proof. The proof consists of bounding the cost of each HMC step in Algorithm 4.1 and

bounding the number of steps.

Cost per iteration:
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Parameters Value Source
k 2 Eq. (4.28)
L1 0 Lemma 4.5.3 and Remark 4.5.1
L2

Mτ
r

+m2 Lemma 4.5.3 and Remark 4.5.1
D O(log(1/δ)) Lemma 4.5.4
C O(r) Eq. (4.34)
εODE O(δr) Eq. (4.33)

Table 4.2: Summary of parameters of Theorem 4.2.4

As we discussed in this section, we consider the ODE (4.28) instead. We will use

Theorem 4.2.4 to solve the ODE (4.28). Hence, we need to bound the parameters of Theo-

rem 4.2.4, which are summarized in Table 4.2.

Parameters D and εODE: Let s denote its solution. Lemma 4.5.4 shows that if

h ≤ r

4

(
(Mτ · r +m2r(r + ‖s(0)‖∞))1/2 + ‖s′(0)‖∞

)−1

, (4.32)

for any δ > 0, there is a degree O(log(1/δ)) polynomial q such that

q(0) = s(0), q′(0) = s′(0), and
∥∥∥∥

d2

dt2
q(t)− d2

dt2
s(t)

∥∥∥∥
∞
≤ δ · r

T 2
for t ∈ [0, h]. (4.33)

Parameter C: To apply Theorem 4.2.4, we first show parameter C ≤ O(r) as

follows:

C . h · (h ‖F (s(0))‖∞ + ‖s′(0)‖∞)

≤ h ·
(
h
(∥∥AA>φ′(s(0))

∥∥
∞ + ‖m2s(0)‖∞

)
+ ‖s′(0)‖∞

)

≤ h2τ ‖φ′(s(0))‖∞ + h2m2‖s(0)‖∞ + h‖s′(0)‖∞

≤ h2τM + h2m2‖s(0)‖∞ + h‖s′(0)‖∞

≤ r

16
+

r

16
+
r

4
≤ r. (4.34)
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where the second step follows from (4.28) and triangle inequality, the third step follows from

‖AA>‖∞→∞ = τ , the fourth step follows from φ′ has Cauchy estimate M with radius r, and

the last step follows from (4.32).

Now, Theorem 4.2.4 shows that if h satisfies (4.32) and that

h ≤ 1

16000

1

L
=

1

16000

1

L1 +
√
L2

=
1

16000

√
r

Mτ +m2r
, (4.35)

then, we can find p such that

‖s(h)− p‖∞ ≤ O(δ · r) (4.36)

usingO(log(1
δ
) log( C

δ·r )) = O(log2(1
δ
)) evaluations of φ′i andO(d log2(1

δ
) log( C

δ·r )) = O(d log3(1
δ
))

time.

To understand the condition in Eq. (4.32), we note that s′(0) = Av where v ∼ N(0, I).

Hence, s∗′(0) ∼ N(0, A>A). Note that λmax(A>A) = λmax(AA>) ≤ ‖AA>‖∞→∞ = τ . Hence,

we have that

‖s′(0)‖∞ = O(1) ·
√
τ · log(dN/η)

with probability at least 1 − η probability for all N iterations. In Lemma 4.5.1, we proved

that

‖s(0)‖∞ = O

(√
τ

m2

+
τM

m2

)
· log(dN/η)

with probability at least 1− η for all N iterations.
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Putting the bound on ‖s′(0)‖ and ‖s(0)‖ into the right hand side of Eq. (4.32) gives

1

r

(√
Mτ · r +m2r(r + ‖s(0)‖∞) + ‖s′(0)‖∞

)
(4.37)

.
√
Mτ

r
+
√
m2 +

√
m2

r

(√
τ

m2

+
τM

m2

)
log(dN/η) +

√
τ

r

√
log(dN/η)

≤ M
3/4
2

m
1/4
2

+

(
(τm2)1/4

r1/2
+

√
Mτ

r
+

√
τ

r

)
√

log(dN/η)

≤ M
3/4
2

m
1/4
2

+

(√
τ

r

√
log(dN/η) +

√
m2√

log(dN/η)
+

√
Mτ

r
+

√
τ

r

)
√

log(dN/η)

. M
3/4
2

m
1/4
2

+

√
τ

r
log(dN/η) +

√
Mτ

r

√
log(dN/η)

where the second step follows by Eq. (4.32), the third step follows by
√
m2 ≤ M

3/4
2

m
1/4
2

and
√

log(dN/η) ≥ 1 , the fourth step follows by ab ≤ a2 + b2, the fifth step follows by
√

log(dN/η) ≥ 1 and
√
m2 ≤ M

3/4
2

m
1/4
2

.

Therefore,

h = Θ

(√
Mτ

r

√
log(dN/η) +

√
τ

r
log(dN/η) +

M
3/4
2

m
1/4
2

)−1

(4.38)

satisfies the condition in Eq. (4.32) and Eq. (4.35). It also satisfies the condition in Theo-

rem 4.3.2 (h ≤ m
1/4
2

2M
3/4
2

).

Next, we note that the corresponding HMC dynamic x∗(h) is given by

x∗(h) = (A>A)−1A>s∗(h).

Let p be the approximate of s∗(h) we find using Theorem 4.3.2 and q = (A>A)−1A>p, then,
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we have

‖x∗(h)− q‖2 = ‖(A>A)−1A>s∗(h)− (A>A)−1Ap‖2

≤ ‖(A>A)−1A>‖2→2 · ‖s∗(h)− p‖2

≤ ‖(A>A)−1A>‖2→2 ·O(
√
n · r · δ)

≤ (λmin(A>A))−
1
2 ·O(

√
n · r · δ),

where the first step follows by definition of x∗(h) and q, the second step follows by definition

of ‖‖2→2 norm, the third step follows from ‖s∗(h)− p‖2 ≤ O(
√
nrδ) (implied by (4.36) and

‖‖2 ≤
√
n‖‖∞).

Using such q as an approximation of x∗(h) in Algorithm 4.1, Theorem 4.3.2 shows

that the W2 error of the sampled point is bounded by

O
(

(λmin(A>A))−
1
2 · √n · r · δ

)
≤ ε · θ

2
√
m2

.

where θ = m2h2

8
and the last step follows from picking

δ = c · 1

r

√
λmin(A>A)

n ·m2

· ε · θ

for some small enough c. The cost of each iteration follows from Theorem 4.2.4 and all

parameters we pick.

Number of iterations:

Theorem 4.3.2 shows that the number of iterations is

O

(
1

θ

)
·
(

log

(
1

θ · ε

)
+ log

(‖∇f(x(0))‖2

m2

+ d

))
.
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Finally, we bound the term 1/θ as follows

1

θ
. 1

m2

(
Mτ

r
log

(
dN

η

)
+
τ

r2
log2

(
dN

η

)
+
M

3/2
2√
m2

)

= κ1.5 +
Mτ

m2r
log

(
dN

η

)
+

τ

m2r2
log2

(
dN

η

)
.

where we used κ = M2/m2 and (4.38).
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4.6 Preliminaries
4.6.1 Notation

For any function f , we define Õ(f) to be f · logO(1)(f). In addition to O(·) notation,

for two functions f, g, we use the shorthand f . g (resp. &) to indicate that f ≤ Cg (resp.

≥) for an absolute constant C.

Definition 4.6.1 (p→ q norm). Given matrix A ∈ Rn×d, we define ‖‖p→q norm as follows

‖A‖p→q = max
x∈Rd

‖Ax‖q
‖x‖p

.

‖A‖∞→∞ is a special case where p =∞ and q =∞.

Definition 4.6.2 (Wasserstein distance). The k-th Wasserstein distance between two prob-

ability measure µ and ν is

Wk(µ, ν) =

(
inf

(X,Y )∈C(µ,ν)
E
[
‖X − Y ‖k

])1/k

,

where C(µ, ν) is the set of all couplings of µ and ν.

Definition 4.6.3 (Cauchy’s estimates). We say function φ has Cauchy estimate M and

radius of convergence r, if for all x ∈ R and for all integers l ≥ 0

|φ(l)(x)| ≤M · l! · r−l.

Lemma 4.6.1. If the number of non-zeros for each row of AA> is bounded by s, then

λmax(AA>) ≤ ‖AA>‖∞→∞ ≤
√
s · λmax(AA>).
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Proof. Let v be the maximum eigenvalue of AA>. Then, we have that

AA>v = λmax(AA>) · v.

Since ‖AA>‖∞→∞ = max‖v‖∞=1 ‖AA>v‖∞, we have that λmax(AA>) ≤ ‖AA>‖∞→∞.

For the another direction,

‖AA>‖∞→∞ = max
i

∑

j

|AA>|ij ≤ max
i

√
s ·
√∑

j

(AA>)2
ij

≤ √s ·max
i

max
‖v‖2=1

e>i AA
>v =

√
s · λmax(AA>).

4.6.2 Simple ODEs

We prove two helper lemmas (Lemma 4.6.2 and 4.6.3) for the later use.

Lemma 4.6.2. Given a continuous function v(t) and positive scalars β, γ such that

0 ≤ v(t) ≤ β + γ

∫ t

0

(t− s)v(s)ds.

We have that v(t) ≤ β cosh(
√
γt) for all t ≥ 0.

Proof. Let v(t) be the solution of the integral equation v(t) = β + γ
∫ t

0
(t − s)v(s)ds. Note

that v satisfies the ODE

v′′(t) = γv(t), v′(0) = 0, v(0) = β.

Solving it, we have v(t) = β cosh(
√
γt). Hence, it suffices to prove that v(t) ≤ v(t) for all

t ≥ 0.
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Fix any ε > 0. We let T be the supremum such that (1 + ε)v(t) ≥ v(t) for all

0 ≤ t ≤ T . Suppose T < +∞. Then, we have that

v(T ) ≤ β + γ

∫ T

0

(T − s)v(s)ds ≤ β + (1 + ε)γ

∫ T

0

(T − s)v(s)ds < (1 + ε)v(T ).

By the continuity of v and v, we show that T is not the supremum. This is a contradiction.

Therefore, T = +∞ for any ε > 0.

Lemma 4.6.3. Given a continuous function v(t) and positive scalars β, γ such that

0 ≤ v(t) ≤ β + γ

∫ t

0

v(s)ds.

We have that v(t) ≤ βeγt for all t ≥ 0.

Proof. The proof is identical to Lemma 4.6.2.

Let v(t) be the solution of the integral equation v(t) = β + γ
∫ t

0
v(s)ds. Note that v

satisfies the ODE

v′′(t) = γv(t), v′(0) = 0, v(0) = β.

Solving it, we have v(t) = β exp(γt). Hence, it suffices to prove that v(t) ≤ v(t) for all t ≥ 0.

Fix any ε > 0. We let T be the supremum such that (1 + ε)v(t) ≥ v(t) for all

0 ≤ t ≤ T . Suppose T < +∞. Then, we have that

v(T ) ≤ β + γ

∫ T

0

v(s)ds ≤ β + (1 + ε)γ

∫ T

0

v(s)ds < (1 + ε)v(T ).

By the continuity of v and v,we show that T is not the supremum. This is a contradiction.

Therefore, T = +∞ for any ε > 0.
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4.6.3 Cauchy Estimates and Method of Majorants

In order to prove the solution of the HMC dynamic can be approximated by a low

degree polynomial, we first give a general bound the kth derivative of the second order ODE

u′′(t) = F (u(t)), by reducing it to bounding derivatives of a one-variable ODE. The low

degree result then follows from: first, we take the Taylor expansion of the original function;

second, truncate it at a certain degree; finally we can claim that the low-degree truncation

provides a good approximation to the original function.

Theorem 4.6.4. Given vectors v1, v0 ∈ Rd and any norm ‖ · ‖ on Rd. Let U ⊂ Rd be a

neighborhood of v0 and that F : U → Rd is real analytic near v0. Suppose that

‖D(k)F (v0)[∆1,∆2, · · · ,∆k]‖ ≤ k! · a · ck
k∏

j=1

‖∆j‖ for all k ≥ 0.

Then, the ODE
d2

dt2
u(t) = F (u(t)),

d

dt
u(0) = v1, u(0) = v0 (4.39)

has a unique real analytic solution around t = 0. Furthermore, we have

‖u(k)(0)‖ ≤ k!αk

c
∀k ≥ 1

with α = max(
√

4
3
ac, 2‖v1‖c).

Theorem 4.6.4 involves two steps. The first step (Lemma 4.6.6) involves bounding the

derivatives of the solution of the multivariate ODE (4.39) by its scalar version. The second

step (Lemma 4.6.7) involves bounding the scalar ODE directly.

The first step follows directly from the majorization proof of Cauchy–Kowalevski

theorem. See [vdH03] for an introduction of the method of majorants. This theorem usually
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stated qualitatively without an explicit bound. For completeness, we include a proof for the

first step.

Theorem 4.6.5 (Cauchy–Kowalevski theorem [Cau42, Kow75, Kro83, Nak94]). Given vec-

tors vk−1, vk−2, · · · , v0 ∈ Rd. Let U ⊂ Rkd+1 be a neighborhood of z def
= (vk−1, vk−2, · · · , v0, 0)

and that F : U → Rd is a real analytic near z. Then, the ODE

dk

dtk
x(t) = F

(
dk−1

dtk−1
x(t), · · · , x(t), t

)
,

di

dti
x(0) = vi,∀i ∈ {k − 1, · · · , 1, 0}

has a unique real analytic solution around t = 0.

Lemma 4.6.6. (Bounding multivariate ODE by scalar ODE). Given vectors v1, v0 ∈ Rd and

any norm ‖ · ‖ on Rd. Let U ⊂ Rd be a neighborhood of v0 and that F : U → Rd is a real

analytic near v0. Suppose that

‖D(k)F (v0)[∆1,∆2, · · · ,∆k]‖ ≤ f (k)(0)
k∏

j=1

‖∆j‖ for all k ≥ 0

for some real analytic function f around 0. Then the ODE (4.39) has a unique real analytic

solution around t = 0. Furthermore, for any b ≥ ‖v1‖, we have

‖u(k)(0)‖ ≤ ψ(k)(0) ∀k ≥ 1

where ψ is the solution of the ODE

ψ′′(t) = f(ψ(t)), ψ′(0) = b, ψ(0) = 0.

For many functions F , including the HMC dynamic or complex analytic F , we can

pick bound the derivatives of F by the function f(x) = a
1−cx for some a and c in Lemma

4.6.6. Therefore, we only need to give a bound on the scalar ODE for this function f .
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Lemma 4.6.7. (Bounding scalar ODE) Let f(x) = a
1−cx with positive a and c. Let ψ(t)

denote the solution of the ODE

ψ′′(t) = f(ψ(t)), ψ′(0) = b, ψ(0) = 0

with b ≥ 0. Then,

ψ(k)(0) ≤ k!αk

c
∀k ≥ 1

with α = max(
√

4
3
ac, 2bc).

Finally, we note that Theorem 4.6.4 follows from Lemma 4.6.6 and Lemma 4.6.7 with

f(x) = a
1−cx .
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4.7 Deferred Proof for ODE (Section 4.2)
4.7.1 Proof of general k-th order ODE

The goal of this section is to prove Theorem 4.2.3.

Proof. We define x(t) ∈ Rkd,

x(t) = (x1(t), x2(t), · · · , xk(t)) =

(
c1

dk−1

dtk−1
x(t), c2

dk−2

dtk−2
x(t), · · · , ckx(t)

)
,

where x1(t) ∈ Rd, x2(t) ∈ Rd, · · · , xk(t) ∈ Rd. We define the norm on Rkd by ‖x‖ =
∑k

i=1 ‖xi‖.

Then we have

d

dt
x(t) =

(
c1

dk

dtk
x(t), c2

dk−1

dtk−1
x(t), · · · , ck

d

dt
x(t)

)
.

In order to have F (x(t), t) = d
dt
x(t), we let

F (x(t), t) =
(
c1F

(
c−1

1 x1(t), c−1
2 x2(t), · · · , c−1

k xk(t), t
)
, c2c

−1
1 x1(t), c3c

−1
2 x2(t), · · · , ckc−1

k−1xk−1(t)
)
.

Now, we check that indeed

d

dt
x(t) =

(
c1

dk

dtk
x(t), c2

dk−1

dtk−1
x(t), · · · , ck

d

dt
x(t)

)

=

(
c1F

(
dk−1

dtk−1
x(t),

dk−2

dtk−2
x(t), · · · , x(t), t

)
, c2

dk−1

dtk−1
x(t), · · · , ck

d

dt
x(t)

)

=
(
c1F

(
c−1

1 x1(t), c−1
2 x2(t), · · · , c−1

k xk(t), t
)
, c2c

−1
1 x1(t), c3c

−1
2 x2(t), · · · , ckc−1

k−1xk−1(t)
)

F (x(t), t).
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We bound the Lipschitz constant of function F by

‖F (y(t), t)− F (z(t), t)‖ ≤ c1

k∑

i=1

Lic
−1
i ‖yi(t)− zi(t)‖+

k−1∑

i=1

ci+1c
−1
i ‖yi(t)− zi(t)‖

=
k−1∑

i=1

(c1Lic
−1
i + ci+1c

−1
i )‖yi(t)− zi(t)‖+ c1Lkc

−1
k ‖yk(t)− zk(t)‖.

We choose c1 = 1, ci =
∑k

j=i L
(i−1)/j
j + 1

T
i−1 , ∀i ∈ {2, · · · , k} where T = 4γϕT . Then we can

calculate for each i ∈ [k − 1],

c1Lic
−1
i + ci+1c

−1
i =

Li∑k
j=i L

(i−1)/j
j + 1

T
i−1

+

∑k
j=i+1 L

i/j
j + 1

T
i

∑k
j=i L

(i−1)/j
j + 1

T
i−1

=
Li

L
(i−1)/i
i +

∑k
j=i+1 L

(i−1)/j
j + 1

T
i−1

+

∑k
j=i+1 L

i/j
j + 1

T
i

∑k
j=i L

(i−1)/j
j + 1

T
i−1

≤ L
1/i
i +

k∑

j=i+1

L
1/j
j +

1

T

=
k∑

j=i

L
1/j
j +

1

T

For i = k, we have

c1Lkc
−1
k =

Lk

L
(k−1)/k
k + 1

T
k−1

≤ L
1/k
k .

Thus,

‖F (y(t), t)− F (z(t), t)‖ ≤
(

k∑

j=1

L
1/j
j +

1

T

)
·

k∑

i=1

‖yi(t)− zi(t)‖ =

(
k∑

j=1

L
1/j
j +

1

T

)
‖y(t)− z(t)‖.

It gives the following Claim:

Claim 4.7.1. Function F has Lipschitz constant L =
∑k

j=1 L
1/j
j + 1

T
.
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Then, we consider the following first order ODE,

d

dt
x(t) = F (x(t), t),

x(0) = (c1vk−1, c2vk−2, · · · , ckv0)

Let x∗(t) ∈ Rkd denote the optimal solution, then

x∗(t) =

(
c1

dk−1

dtk−1
x∗(t), c2

dk−2

dtk−2
x∗(t), · · · , ckx∗(t)

)
.

Now, we prove that d
dt
x∗(t) is approximate by some element in Vd. Let q : R → Rkd be

defined as follows

q(t) =
(
c1q

(k)(t), c2q
(k−1)(t), · · · , ckq(1)(t)

)
.

Then,
∥∥∥∥q(t)−

d

dt
x∗(t)

∥∥∥∥

=

∥∥∥∥
(
c1q

(k)(t), c2q
(k−1)(t), · · · , ckq(1)(t)

)
−
(
c1

dk

dtk
x∗(t), c2

dk−1

dtk−1
x∗(t), · · · , ck

d

dt
x∗(t)

)∥∥∥∥

=
k∑

i=1

ci

∥∥∥∥q(k+1−i)(t)− dk+1−i

dtk+1−ix
∗(t)

∥∥∥∥

≤
k∑

i=1

ci
ε

T
k+1−i =

1

T
ε

k∑

i=1

ci

T
k−i

︸ ︷︷ ︸
ε

.

By the assumption on T , we have that γϕLT ≤ 1/2 and hence theorem 4.2.2 finds

x(N)(t) = (x
(N)
1 (t), x

(N)
2 (t), · · · , x(N)

k (t)) ∈ Rkd
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such that

‖x(N)(t)− x∗(t)‖ ≤ 20γϕε (4.40)

This implies that
∥∥∥∥c−1

i x(N)(t)− dk−i

dtk−i
x∗(t)

∥∥∥∥ ≤ 20c−1
i γϕε,∀i ∈ [k]. (4.41)

To bound the last term, we show the following Claim:

Claim 4.7.2. Let ε = ε
∑k

i=1
ci

T
k−i . If we choose c1 = 1 and ci =

∑k
j=i L

(i−1)/j
j + 1

T
i−1 ,

∀i ∈ {2, · · · , k}, then

c−1
i ε ≤ ε

T
k−i (2k + 1).

Proof. For each i ∈ [k],

c−1
i ε = c−1

i ε
k∑

j=1

cj

T
k−j =

ε

T
k−i

k∑

j=1

cjc
−1
i

T
i−j

We can lower bound the term cjc
−1
i

T
i−j as follows,

cjc
−1
i

T
i−j =

∑k
l=j L

(j−1)/l
l + 1

T
j−1

T
i−j

(
∑k

l=i L
(i−1)/l
l + 1

T
i−1 )

=

∑k
l=j L

(j−1)/l
l + 1

T
j−1

∑k
l=i T

i−j
L

(i−1)/l
l + 1

T
j−1

≤
∑k

l=j L
(j−1)/l
l + 1

T
j−1

1

T
j−1

= 1 +
k∑

l=j

(L
1/l
l T )j−1
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Therefore, we have

c−1
i ε =

ε

T
k−i

k∑

j=1

cjc
−1
i

T
i−j

≤ ε

T
k−i

k∑

j=1

(
1 +

k∑

l=j

(L
1/l
l T )j−1

)

≤ ε

T
k−i


2k +

k∑

j=1

(
k∑

l=1

L
1/l
l T

)j



≤ ε

T
k−i

(
2k +

k∑

j=1

(1/2)j

)

where we used γϕLT ≤ 1/8 at the end. Thus we complete the proof of Claim.

Now, using the claim to (4.41), we have the error is

20(2k + 1)γϕ
ε

T
k−i ≤ 20(2k + 1)γϕ

ε

T k−i
.

To bound the number of iterations needed in the log term in Theorem 4.2.2, we note

that

∫ T

0

‖F (x(0), s)‖ds = c1

∥∥∥∥
∫ T

0

F (c−1
1 x1(0), c−1

2 x2(0), · · · , c−1
k xk(0), s)ds

∥∥∥∥+ T ·
k−1∑

i=1

ci+1c
−1
i ‖xi(t)‖

=

∥∥∥∥
∫ T

0

F (
dk−1

dtk−1
x(0),

dk−2

dtk−2
x(0), · · · , x(0), s)ds

∥∥∥∥+ T ·
k−1∑

i=1

ci+1

∥∥∥∥
dk−i

dtk−i
x(0)

∥∥∥∥ .

Note that

ci+1 ≤
k∑

j=1

L
i/j
j +

1

T
i ≤ Li +

1

T
i ≤

2

T
i
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where we used LT ≤ 1
2
. Hence, the number of iterations we need is

O

(
D log

(
1

ε

(∥∥∥∥
∫ T

0

F (vk−1, vk−2, · · · , v0, s)ds

∥∥∥∥+
k−1∑

i=1

‖vi‖
T
k−i−1

)))

= O

(
D log

(
1

ε

(
T
k−1 ·

∥∥∥∥
∫ T

0

F (vk−1, vk−2, · · · , v0, s)ds

∥∥∥∥+
k−1∑

i=1

T
i ‖vi‖

)))

where we used ε ≥ ε · ck ≥ ε

T
k−1 .
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4.8 Deferred Proof for Cauchy Estimates (Section 4.6.3)

In this section, we provide the proofs of some core Lemmas/Claims used for proving

Theorem 4.6.4.

Lemma 4.6.6. (Bounding multivariate ODE by scalar ODE). Given vectors v1, v0 ∈ Rd and

any norm ‖ · ‖ on Rd. Let U ⊂ Rd be a neighborhood of v0 and that F : U → Rd is a real

analytic near v0. Suppose that

‖D(k)F (v0)[∆1,∆2, · · · ,∆k]‖ ≤ f (k)(0)
k∏

j=1

‖∆j‖ for all k ≥ 0

for some real analytic function f around 0. Then the ODE (4.39) has a unique real analytic

solution around t = 0. Furthermore, for any b ≥ ‖v1‖, we have

‖u(k)(0)‖ ≤ ψ(k)(0) ∀k ≥ 1

where ψ is the solution of the ODE

ψ′′(t) = f(ψ(t)), ψ′(0) = b, ψ(0) = 0.

Proof. Theorem 4.6.5 shows that the solution u uniquely exists and is real analytic around

0. Therefore, we can take derivatives on both sides of u′′(t) = F (u(t)) and get

u(3)(t) = DF (u(t))[u(1)(t)],

u(4)(t) = DF (u(t))[u(2)(t)] +D2F (u(t))[u(1)(t), u(1)(t)]

u(5)(t) = DF (u(t))[u(3)(t)] + 2D2F (u(t))[u(2)(t), u(1)(t)] +D3F (u(t))[u(1)(t), u(1)(t), u(1)(t)]

... =
...
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Therefore, we have

‖u(3)(0)‖ = ‖DF (u(0))[u(1)(0)]‖

≤ f (1)(0)‖u(1)(0)‖

‖u(4)(0)‖ = ‖DF (u(0))[u(2)(0)] +D2F (u(0))[u(1)(0), u(1)(0)]‖

≤ ‖DF (u(0))[u(2)(0)]‖+ ‖D2F (u(0))[u(1)(0), u(1)(0)]‖

≤ f (1)(0)‖u(2)(0)‖+ f (2)(0)‖u(1)(0)‖2

‖u(5)(0)‖ = ‖DF (u(0))[u(3)(0)] + 2D2F (u(0))[u(2)(0), u(1)(0)]

+D3F (u(0))[u(1)(0), u(1)(0), u(1)(0)]‖

≤ ‖DF (u(0))[u(3)(0)]‖+ ‖2D2F (u(0))[u(2)(0), u(1)(0)]‖

+ ‖D3F (u(0))[u(1)(0), u(1)(0), u(1)(0)]‖

≤ f (1)(0)‖u(3)(0)‖+ 2f (2)(0)‖u(2)(0)‖‖u(1)(0)‖+ f (3)(0)‖u(1)(0)‖3

... =
...

Similarly, Theorem 4.6.5 shows that the solution ψ uniquely exists and is real analytic

around 0. By expanding ψ′′(t) = f(ψ(t)) at t = 0, we see that

ψ(3)(0) = f (1)(0)ψ(1)(0),

ψ(4)(0) = f (1)(0)ψ(2)(0) + f (2)(0)(ψ(1)(0))2,

ψ(5)(0) = f (1)(0)ψ(3)(0) + 2f (2)ψ(2)(0)ψ(1)(0) + f (3)(0)(ψ(1)(0))3,

... =
...

Since ‖u(1)(0)‖ ≤ b = ψ(1)(0) , ‖u(2)(0)‖ = ‖F (u(0))‖ ≤ f(0) = ψ(2)(0).
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For k = 3, 4, 5, · · · , we have

‖u(3)(0)‖ ≤ f (1)(0)‖u(1)(0)‖ = f (1)(0)ψ(1)(0) = ψ(3)(0)

‖u(4)(0)‖ ≤ ψ(4)(0)

‖u(5)(0)‖ ≤ ψ(5)(0)

... ≤ ...

Thus, we have that ‖u(k)(0)‖ ≤ ψ(k)(0) for all k ≥ 1.

Lemma 4.6.7. (Bounding scalar ODE) Let f(x) = a
1−cx with positive a and c. Let ψ(t)

denote the solution of the ODE

ψ′′(t) = f(ψ(t)), ψ′(0) = b, ψ(0) = 0

with b ≥ 0. Then,

ψ(k)(0) ≤ k!αk

c
∀k ≥ 1

with α = max(
√

4
3
ac, 2bc).

Proof. Let ψ̃(t) = 1
c

(
1−
√

1− αt
)
with α = max(

√
4
3
ac, 2bc). Note that

ψ̃′′(t) =
α2

4c(1− αt)3/2
= f̃(ψ̃(t)) with f̃(x) =

α2

4c(1− cx)3
.

Since α2 ≥ 4
3
ac, we have that

f̃ (k)(0) =
a

3
· (k + 2)!

2
ck ≥ k! · a · ck = f (k)(0).
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Also, we have that ψ̃(0) = 0 and ψ̃′(0) = α
2c
≥ b. Hence, Lemma 4.6.6 shows that

ψ(k)(0) ≤ ψ̃(k)(0) =
αk

c

k∏

i=1

|2i− 3|
2

≤ k!αk

c

for all k ≥ 1.
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4.9 Cauchy Estimates of Some Functions

We first state a useful tool,

Lemma 4.9.1. Let f : U → C be holomorphic and suppose that DR = {z : |z−z0| ≤ R} ⊂

U . Let γR = {z : |z − z0| = R} denote the boundary of DR. For all n ≥ 0

|f (n)(z0)| ≤ n!

Rn
max
z∈γR
|f(z)|.

4.9.1 Logistic loss function

Lemma 4.9.2 (Property of Logistic loss function). Let φ(t) = log(1 + e−t), then we know

that φ′(t) has Cauchy estimate M = 1 with radius r = 1.

Proof. Given the definition of φ(t), it is easy to see that

φ′(t) =
−1

1 + et
.

Let f(z) = 1
1+ez

. Let z = a+ bi. We have

|f(z)| =
∣∣∣∣

1

1 + ea cos b+ iea sin b

∣∣∣∣ =
1√

(1 + ea cos b)2 + (ea sin b)2
=

1√
1 + 2ea cos b+ e2a

Let z0 = a0 + ib0. We choose R = 1, then (a− a0)2 + (b− b0)2 = 1. Since we only care about

real numbers, we have b0 = 0. Then we know that b ∈ [−1, 1], which means cos b ∈ [0.54, 1].

Thus, we have,
√

1 + 2ea cos b+ e2a ≥
√

1 + ea + e2a ≥ 1.

Thus,
∣∣ 1

1+ez

∣∣ ≤ 1. Therefore, using Lemma 4.9.1, for all real z0,

|f (n)(z0)| ≤ n!
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4.9.2 Pseudo-Huber loss function

Huber function [Hub64] has been extensively studied in a large number of algorithmic

questions, e.g. regression [CW15b, CW15a], low-rank approximation [SWZ19b], clustering

[BFL16], sparse recovery [NSW19a]. Formally speaking, the Huber loss function can be

defined as

f(x) =

{
x2

2δ
, if |x| ≤ δ;

|x| − δ/2, otherwise .

where δ > 0 is a parameter. For many applications, the Pseudo-Huber loss function can be

used as a smooth alternative for the Huber loss function.

Lemma 4.9.3 (Property of Pseudo-Huber function). Fix any δ > 0. Let φ(x) =
√
x2 + δ2−

δ, then we know that φ′(x) has Cauchy estimate M = 1 with radius r = δ/2.

Proof. Given the definition of function φ(x), it is easy to see that

φ′(x) =
x√

x2 + δ2

Let f(z) = z√
z2+δ2 . Let z = a+ bi. We have

|f(z)| =
∣∣∣∣∣

(a+ bi)√
(a+ bi)2 + δ2

∣∣∣∣∣ =

∣∣∣∣
(a+ bi)√

a2 − b2 + δ2 + 2abi

∣∣∣∣ =
|(a+ bi)|

|
√
a2 − b2 + δ2 + 2abi|

For the numerator, we have |(a+ bi)| =
√
a2 + b2. For the denominator, we have

|
√
a2 − b2 + δ2 + 2abi| =

(
(a2 − b2 + δ2)2 + 4(ab)2

)1/4

Let z0 = a0 + ib0. We choose R = δ
2
, then (a− a0)2 + (b− b0)2 = (δ/2)2. Since we are

only real z0, we have b0 = 0. Then we know that b ∈ [− δ
2
, δ

2
]. Thus

|f(z)| =
√
a2 + b2

((a2 − b2 + δ2)2 + 4(ab)4)1/4
≤

√
a2 + δ2

4

(
(a2 − δ2

4
+ δ2)2 + 0

)1/4
=

√
a2 + δ2

4√
a2 + 3δ2

4

≤ 1.
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Therefore, using Lemma 4.9.1, for all real z0,

|f (n)(z0)| ≤ n! · (2/δ)n.
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Chapter 5

Convergence result of Deep Neural Network

Deep neural networks (DNNs) have demonstrated dominating performance in many

fields; since AlexNet, networks used in practice are going wider and deeper. On the theoret-

ical side, a long line of works has been focusing on training neural networks with one hidden

layer. The theory of multi-layer networks remains largely unsettled.

In this work, we prove why stochastic gradient descent (SGD) can find global minima

on the training objective of DNNs in polynomial time. We only make two assumptions: the

inputs are non-degenerate and the network is over-parameterized. The latter means the

network width is sufficiently large: polynomial in L, the number of layers and in n, the

number of samples.

Our key technique is to derive that, in a sufficiently large neighborhood of the random

initialization, the optimization landscape is almost-convex and semi-smooth even with ReLU

activations. This implies an equivalence between over-parameterized neural networks and

neural tangent kernel (NTK) in the finite (and polynomial) width setting.

As concrete examples, starting from randomly initialized weights, we prove that SGD

can attain 100% training accuracy in classification tasks, or minimize regression loss in

linear convergence speed, with running time polynomial in n, L. Our theory applies to

the widely-used but non-smooth ReLU activation, and to any smooth and possibly non-
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convex loss functions. In terms of network architectures, our theory at least applies to

fully-connected neural networks, convolutional neural networks (CNN), and residual neural

networks (ResNet).
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5.1 Introduction

Neural networks have demonstrated a great success in numerous machine-learning

tasks [KSH12, GMH13, LHP+15, AAA+16, HZRS16, SHM+16, SSS+17]. One of the empir-

ical findings is that neural networks, trained by first-order methods from random initializa-

tion, have a remarkable ability to fit training data [ZBH+17].

From an expressibility perspective, this may not be surprising since modern neural

networks are often over-parameterized: they have much more parameters than the number

of training samples. There certainly exist parameter choices with zero training error as long

as data is non-degenerate.

Yet, from an optimization perspective, the fact that randomly-initialized first-order

methods can find global minima on the training data is quite non-trivial : neural networks

are often equipped with the ReLU activation, making the training objective not only non-

convex, but even non-smooth. Even the general convergence for finding approximate critical

points of a non-convex, non-smooth function is not fully-understood [BLO05] and appears

to be a challenging question on its own. This is in direct contrast to practice, in which ReLU

networks trained by stochastic gradient descent (SGD) from random initialization almost

never suffer from non-smoothness or non-convexity, and can avoid local minima for a variety

of network architectures (see [GVS15]). A theoretical justification was missing to explain

this phenomenon.

There are quite a few papers trying to understand the success of neural networks

from optimization perspective. Many of them focus on the case when the inputs are random

Gaussian, and work only for two-layer neural networks [BG17, Son17, Tia17, LY17, DLT+18,
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GLM17, PRSZ18, ZSJ+17, ZSD17]. [LL18] show that for a two-layer network with ReLU

activation, SGD finds nearly-global optimal (say, 99% classification accuracy) solutions on

the training data, as long as the network is over-parameterized, meaning that the number of

neurons is polynomially large comparing to the input size. Moreover, if the data is sufficiently

structured (say, coming from mixtures of separable distributions), this accuracy extends also

to test data. As a separate note, over-parameterization is suggested as the possible key to

avoid bad local minima by [SS18] even for two-layer networks.

There are also results that go beyond two-layer networks with limitations. Some

consider deep linear neural networks without any activation functions [HM17, ACGH18,

BHL18, Kaw16]. [Dal17] studies multi-layer neural networks but essentially only with respect

to the convex task of training the last layer.1 [SC16] show that under over-parameterization

and under random input perturbation, there is bad local minima for multi-layer neural

networks. [JGH18] derive global convergence using neural tangent kernel for infinite-width

neural networks.

In this paper, we study the following fundamental questions

Can DNN be trained close to zero training error efficiently under mild assumptions?

If so, can the running time depend only polynomially in the network depth and input size?

Motivation In 2012, AlexNet was born with 5 convolutional layers [KSH12]. The later

VGG network uses 19 layers [SSZ14], and GoogleNet uses 22 layers [SLJ+15]. In practice, we

1[Dal17] works in a parameter regime where the weight changes of all layers except the last one make
negligible contribution to the final output.
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cannot go deeper by naively stacking layers together, due to the so-called vanishing/exploding

gradient problem. To deal with this issue, networks with residual links (ResNet) were pro-

posed with the capability of handling at least 152 layers [HZRS16]. Compared with practical

networks that go much deeper, existing theory has been mostly around two-layer (thus one-

hidden-layer) neural networks, even just for the training process alone. Thus,

Can we theoretically justify how the training process has worked for multi-layer neural

networks?

In this paper, we extend the over-parameterization theory to multi-layer neural networks.
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5.1.1 Our Result

We show that over-parameterized neural networks can be trained by vanilla first-

order methods such as gradient descent (GD) or stochastic gradient descent (SGD) to global

minima (e.g. zero training error), as long as the data is non-degenerate.

We say that the data is non-degenerate if every pairs of samples are distinct. This is a

minimal requirement since a dataset with two identical data points of different labels cannot

be trained to zero error. We denote by δ the minimum (relative) distance between two data

points, and by n the number of training samples. Now, consider an L-layer fully-connected

feedforward neural network, each hidden layer consisting of m neurons equipped with ReLU

activation. We show that,

• As long asm ≥ poly(n, L, δ−1), starting from random Gaussian initialization, GD/SGD

finds an ε-error global minimum in `2 regression using at most T = poly(n, L, δ−1) log 1
ε

iterations.

• If the task is multi-label classification, then GD/SGD finds an 100% accuracy classifier

on the training set in T = poly(n, L, δ−1) iterations.

• Our result also applies to other Lipschitz-smooth loss functions, and some other net-

work architectures including convolutional neural networks (CNNs) and residual net-

works (ResNet).

In contrast, prior work on this task either requires m and T to grow in eO(L) (and essentially

only the last layer is trained) [Dal17]; or requires m =∞ [JGH18].
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Our Contributions We summarize our technical contributions below.

• For a sufficiently large neighborhood of the random initialization, we prove that the

training landscape is almost convex and semi-smooth. This somewhat explains the

empirical finding by [GVS15] that GD/SGD will not be trapped in local minima. (See

Section 5.4.1.)

• For a sufficiently large neighborhood of the random initialization, we derive an equiv-

alence between neural networks and the neural tangent kernel (NTK) introduced by

[JGH18]. Unlike the prior work in which they show the equivalence only for infinite-

width networks (i.e., m =∞), here we only need m = poly(L) for such an equivalence

to hold. (See Section 5.4.2.)

• We show that equipped with ReLU activation, neural networks do not suffer from

exponential gradient explosion or vanishing. This is the key reason we can avoid

exponential dependency on L. If one is okay with eO(L) dependency, many proofs shall

become trivial. (See Section 5.5.)

• We derive a stability theory of neural networks against small but adversarial perturba-

tions that may be of independent interests. Previous results on this topic either have

exponential blowup in L [Dal17] or requires the width to go to infinity [JGH18]. (See

Section 5.5.)

• We derive our results by training only hidden layers. This can be more meaningful

than training all the layers together, in which if one is not careful with parameter

choices, the training process can degenerate as if only the last layer is trained [Dal17].
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That is a convex task and may not reflect the true power of deep learning. (Of course,

as a simple corollary, our results also apply to training all the layers together.)

Finally, we emphasize that this present paper as a deeply-simplified version of the recurrent

neural network (RNN) paper [AZLS18] by the same set of authors. To some extent, DNN is a

“special case” of RNN,2 thus most of the technical tools were already developed in [AZLS18].

We write this DNN result as a separate paper because: (1) not all the readers can easily

derive the DNN result from [AZLS18]; (2) the convergence of DNN can be important on its

own; (3) the proof in this paper is much simpler (30 vs 80 pages) and could reach out to

a wider audience; (4) the simplicity of this paper allows us to tighten parameters in some

non-trivial ways; and (5) the simplicity of this paper allows us to also study convolutional

networks, residual networks, as well as different loss functions (all of them were missing from

[AZLS18]). We also note that the techniques of this paper can be combined with [AZLS18]

to show the global convergence of training over-parameterized deep RNN. We ignore the

details so as not to complicate this paper.

Towards Generalization In practice, deeper and wider neural networks generalize bet-

ter [SGS15, ZK16], so what can we say in theory? Although this paper does not explicitly

cover generalization to test data, since a neural network in our parameter regime simulates

2A recurrent neural network executed on input sequences with time horizon L is very similar to a feedfor-
ward neural network with L layers. The main difference is that in a feedforward network, weight matrices are
different across layers, and thus independently randomly initialized; in contrast, in an RNN, the same weight
matrix is applied across the entire time horizon, so we do not have fresh new randomness for proofs that
involve in induction. In other words, the over-parameterized convergence theory of DNN is much simpler
than that of RNN.
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its neural tangent kernel (NTK), it is clear that neural networks provide generalization at

least as good as its NTK.

In the PAC-learning language, one may study generalization with respect to concept

classes. Follow-up work [ALL18c] shows that three-layer over-parameterized ReLU networks

can efficiently (in polynomial time and sample complexity) learn the concept class of three-

layer neural networks with smooth activations [ALL18c], and the follow-up work [AL19b]

shows stronger results for three-layer ResNet.

It is worth pointing out that the three-layer result [ALL18c] goes beyond the almost-

convex regime and thus is not captured by its NTK; more interestingly, the three-layer ResNet

result [AL19b] is not achievable (in a provable sense) by any kernel method including any

NTK.

A concurrent, independent and beautiful result We acknowledge a concurrent work

[DLL+19] by Du, Lee, Li, Wang and Zhai. They proved a similar result.
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5.1.2 Other Related Works

[LL18] originally prove their result for the cross-entropy loss, together with some test

accuracy guarantee. (If data is “well-structured”, they prove two-layer over-parameterized

neural networks can learn it using SGD with polynomially many samples [LL18].) Later,

the “training accuracy” part of [LL18] was extended to the `2 loss [DZPS19]. From another

perspective, [DZPS19] focus on gradient descent.

Linear networks without activation functions are important subjects on its own. Be-

sides the already cited references [HM17, ACGH18, BHL18, Kaw16], there are a number

of works that study linear dynamical systems, which can be viewed as the linear version of

recurrent neural networks or reinforcement learning. Recent works in this line of research

include [HMR18, HSZ17, HLS+18, DMM+17, OO18, AAMM18, SMT+18, MT18, DTMR18,

AHL+18].

There is sequence of work about one-hidden-layer (multiple neurons) CNN [BG17,

ZSD17, DLT+18, GKM18, Oym18]. Whether the patches overlap or not plays a crucial role

in analyzing algorithms for such CNN. One category of the results have required the patches

to be disjoint [BG17, ZSD17, DLT+18]. The other category [GKM18, Oym18] have figured

out a weaker assumption or even removed that patch-disjoint assumption. On input data

distribution, most relied on inputs being Gaussian [BG17, ZSD17, DLT+18, Oym18], and

some assumed inputs to be symmetrically distributed with identity covariance and bound-

edness [GKM18].

As for ResNet, [LY17] proved that SGD learns one-hidden-layer residual neural net-

works under Gaussian input assumption. The techniques in [ZSJ+17, ZSD17] can also be
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generalized to one-hidden-layer ResNet under the Gaussian input assumption; they can show

that GD starting from good initialization point (via tensor initialization) learns ResNet.

[HM17] deep linear residual networks have no spurious local optima.

If no assumption is allowed, neural networks have been shown hard in several different

perspectives. Thirty years ago, [BR93] first proved that learning the neural network is NP-

complete. Stronger hardness results have been proved over the last decade [KS09, LSSS14,

Dan16, DSS16, GKKT17, SVWX17, MR18].
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5.2 Preliminaries

We use N(µ, σ) to denote the Gaussian distribution of mean µ and variance σ; and

B(m, 1
2
) to denote the binomial distribution with m trials and 1/2 success rate. We use

‖v‖2 or ‖v‖ to denote Euclidean norms of vectors v, and ‖M‖2, ‖M‖F to denote spectral

and Frobenius norms of matrices M . For a tuple
−→
W = (W1, . . . ,WL) of matrices, we let

‖−→W‖2 = max`∈[L] ‖W`‖2 and ‖−→W‖F = (
∑L

`=1 ‖W`‖2
F )1/2.

We use φ(x) = max{0, x} to denote the ReLU function, and extend it to vectors

v ∈ Rm by letting φ(v) = (φ(v1), . . . , φ(vm)). We use 1event to denote the indicator function

for event.

The training data consist of vector pairs {(xi, y∗i )}i∈[n], where each xi ∈ Rd is the

feature vector and y∗i is the label of the i-th training sample. We assume without loss of

generality that data are normalized so that ‖xi‖ = 1 and its last coordinate (xi)d = 1√
2
.3 We

also assume ‖y∗i ‖ ≤ O(1) for notation simplicity.4

We make the following separable assumption on the training data (motivated by

[LL18]):

Assumption 5.2.1. For every pair i, j ∈ [n], we have ‖xi − xj‖ ≥ δ.

3Without loss of generality, one can re-scale and assume ‖xi‖ ≤ 1/
√

2 for every i ∈ [n]. Again, without
loss of generality, one can pad each xi by an additional coordinate to ensure ‖xi‖ = 1/

√
2. Finally, without

loss of generality, one can pad each xi by an additional coordinate 1√
2
to ensure ‖xi‖ = 1. This last coordinate

1√
2
is equivalent to introducing a (random) bias term, because A( y√

2
, 1√

2
) = A√

2
(y, 0)+b where b ∼ N(0, 1

mI).
In our proofs, the specific constant 1√

2
does not matter.

4If ‖y∗i ‖ ≤ Ω for some parameter Ω, our complexities shall also grow in poly(Ω).
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𝐴

𝑥

ReLU

𝑊1

ReLU

𝐵

𝑊𝐿

…

ReLU

To present the simplest possible proof, the main body of this paper

only focuses on depth-L feedforward fully-connected neural networks with

an `2-regression task. Therefore, each y∗i ∈ Rd is a target vector for the

regression task. We explain how to extend it to more general settings in

Section 5.6 and the Appendix. For notational simplicity, we assume all the

hidden layers have the same number of neurons, and our results trivially

generalize to each layer having different number of neurons. Specifically, we

focus on the following network

gi,0 = Axi hi,0 = φ(Axi) for i ∈ [n]

gi,` = W`hi,`−1 hi,` = φ(W`hi,`−1) for i ∈ [n], ` ∈ [L]

yi = Bhi,L for i ∈ [n]

where A ∈ Rm×d is the weight matrix for the input layer, W` ∈ Rm×m is the weight matrix

for the `-th hidden layer, and B ∈ Rd×m is the weight matrix for the output layer. For

notational convenience in the proofs, we may also use hi,−1 to denote xi and W0 to denote

A.

Definition 5.2.1 (diagonal sign matrix). For each i ∈ [n] and ` ∈ {0, 1, . . . , L}, we denote

by Di,` the diagonal sign matrix where (Di,`)k,k = 1(W`hi,`−1)k≥0 for each k ∈ [m].

As a result, we have hi,` = Di,`W`hi,`−1 = Di,`gi,` and (Di,`)k,k = 1(gi,`)k≥0. We make

the following standard choices of random initialization:

Definition 5.2.2. We say that
−→
W = (W1, . . . ,WL), A and B are at random initialization if

• [W`]i,j ∼ N(0, 2
m

) for every i, j ∈ [m] and ` ∈ [L];

260



• Ai,j ∼ N(0, 2
m

) for every (i, j) ∈ [m]× [d]; and

• Bi,j ∼ N(0, 1
d
) for every (i, j) ∈ [d]× [m].

Assumption 5.2.2. Throughout this paper we assume m ≥ Ω
(

poly(n, L, δ−1) · d
)
for some

sufficiently large polynomial. To present the simplest proof, we did not try to improve such

polynomial factors. We will also assume δ ≤ O( 1
L

) for notation simplicity.
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5.2.1 Objective and Gradient

Our regression objective is

F (
−→
W )

def
=

n∑

i=1

Fi(
−→
W ) where Fi(

−→
W )

def
=

1

2
‖Bhi,L − y∗i ‖2 for each i ∈ [n]

We also denote by lossi
def
= Bhi,L− y∗i the loss vector for sample i. For simplicity, we focus on

training only hidden weights
−→
W in this paper and leave A and B at random initialization.

Our result naturally extends to the case when A, B and
−→
W are jointly trained.5

Definition 5.2.3. For each ` ∈ {1, 2, · · · , L}, we define Backi,`
def
= BDi,LWL · · ·Di,`W` ∈

Rd×m and for ` = L+ 1, we define Backi,` = B ∈ Rd×m.

Using this notation, one can calculate the gradient of F (
−→
W ) as follows.

Fact 5.2.3. The gradient with respect to the k-th row of W` ∈ Rm×m is

∇[W`]kF (
−→
W ) =

∑n
i=1(Back>i,`+1lossi)k · hi,`−1 · 1〈[W`]k,hi,`−1〉≥0

The gradient with respect to W` is

∇W`
F (
−→
W ) =

∑n
i=1 Di,`(Back

>
i,`+1lossi)h

>
i,`−1

We denote by ∇F (
−→
W ) =

(
∇W1F (

−→
W ), . . . ,∇WL

F (
−→
W )
)
.

5We note that if one jointly trains all the layers, in certain parameter regimes, it may be equivalent to as
if only the last layer is trained [Dal17]. We therefore choose to fix the last layer B to avoid such confusion.
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5.3 Our Results and Techniques

To present our result in the simplest possible way, we choose to mainly focus on fully-

connected L-layer neural networks with the `2 regression loss. We shall extend it to more

general settings (such as convolutional and residual networks and other losses) in Section 5.6.

Our main results can be stated as follows:

Theorem 5.3.1 (gradient descent). Suppose m ≥ Ω̃
(

poly(n, L, δ−1) · d
)
. Starting from

random initialization, with probability at least 1− e−Ω(log2m), gradient descent with learning

rate η = Θ
(

dδ
poly(n,L)·m

)
finds a point F (

−→
W ) ≤ ε in T = Θ

(poly(n,L)
δ2 · log ε−1

)
iterations.

This is known as the linear convergence rate because ε drops exponentially fast in T . We

have not tried to improve the polynomial factors in m and T , and are aware of several ways

to improve these factors (but at the expense of complicating the proof). We note that d is

the data input dimension and our result is independent of d.

Theorem 5.3.2 (SGD). Suppose b ∈ [n] and m ≥ Ω̃
(

poly(n,L,δ−1)·d
b

)
. Starting from ran-

dom initialization, with probability at least 1 − e−Ω(log2 m), SGD with learning rate η =

Θ( bδd
poly(n,L)m log2 m

) and mini-batch size b finds F (
−→
W ) ≤ ε in T = Θ

(poly(n,L)·log2m
δ2b

· log ε−1
)

iterations.

This is again a linear convergence rate because T ∝ log 1
ε
. The reason for the additional

log2m factor comparing to Theorem 5.13.1 is because we have a 1−e−Ω(log2m) high confidence

bound.

Remark 5.3.1. For experts in optimization theory, one may immediately question the accu-

racy of Theorem 5.14.1, because SGD is known to converge at a slower rate T ∝ 1
poly(ε)

even
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for convex functions. There is no contradiction here. Imaging a strongly convex function

f(x) =
∑n

i=1 fi(x) that has a common minimizer x∗ ∈ argminx{fi(x)} for every i ∈ [n], then

SGD is known to converge in a linear convergence rate.
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Figure 5.1: Landscapes of the CIFAR10 image-classification training objective F (W ) near
the SGD training trajectory. The blue vertical stick marks the current point W = Wt at
the current iteration t. The x and y axes represent the gradient direction ∇F (Wt) and the
most negatively curved direction of the Hessian after smoothing (approximately found by
Oja’s method [AL17, AL18]). The z axis represents the objective value. Observation.
As far as minimizing objective is concerned, the (negative) gradient direction sufficiently
decreases the training objective, and it is not needed to use second-order method to find
negative curvature. This is consistent with our findings Theorem 5.11.1 and 5.12.1. Remark
1. Gradient norm does not tend to zero because cross-entropy loss is not strongly convex (see
Section 5.6). Remark 2. The task is CIFAR10 (for CIFAR100 or CIFAR10 with noisy label,
see Figure 5.2 through 5.7 in appendix). Remark 3. Architecture is VGG19 (for Resnet-32
or ResNet-110, see Figure 5.2 through 5.7 in the later sections). Remark 4. The six plots
correspond to epochs 5, 40, 90, 120, 130 and 160. We start with learning rate 0.1, and
decrease it to 0.01 at epoch 81, and to 0.001 at epoch 122. SGD with momentum 0.9 is used.
The training code is unchanged from [Yan18] and we only write new code for plotting such
landscapes.

5.4 Conceptual Messages and Technical Theorems
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We highlight two conceptual messages that arise from the proofs of Theorem 5.13.1

and 5.14.1.
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5.4.1 Objective is Almost Convex and Semi-Smooth

The first message is about the optimization landscape for points that are sufficiently

close to the random initialization. It consists of two theorems, Theorem 5.11.1 says that the

objective is “almost convex” and Theorem 5.12.1 says that the objective is “semi-smooth.”

Theorem 5.4.1 (no critical point). With probability ≥ 1− e−Ω(m/poly(n,L,δ−1)) over random-

ness
−→
W (0), A,B, it satisfies for every ` ∈ [L], every i ∈ [n], and every

−→
W with ‖−→W−−→W (0)‖2 ≤

1
poly(n,L,δ−1)

,

‖∇F (
−→
W )‖2

F ≤ O
(
F (
−→
W )× Lnm

d

)
and ‖∇F (

−→
W )‖2

F ≥ Ω
(
F (
−→
W )× δm

dn2

)
.

The first property above is easy to prove, while the second property above says that as long

as the objective is large, the gradient norm is also large. (See also Figure 5.1.) This means,

when we are sufficiently close to the random initialization, there is no saddle point or critical

point of any order.

Theorem 5.11.1 gives us hope to find global minima of the objective F (
−→
W ), but is not

enough. If we follow the negative gradient direction of F (
−→
W ), how can we guarantee that

the objective truly decreases? Classical optimization theory usually relies on objective’s

(Lipscthiz) smoothness [Nes04] to derive an objective-decrease guarantee. Unfortunately,

smoothness property at least requires the objective to be twice differentiable, but ReLU

activation is not. To deal with this issue, we prove the following.

Theorem 5.4.2 (semi-smoothness). With probability at least 1− e−Ω(m/poly(L,logm)) over the

randomness of
−→
W (0), A,B, we have: for every

−̆→
W ∈ (Rm×m)L with ‖−̆→W−−→W (0)‖2 ≤ 1

poly(L,logm)
,
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and for every
−→
W ′ ∈ (Rm×m)L with ‖−→W ′‖2 ≤ 1

poly(L,logm)
, the following inequality holds

F (
−̆→
W +

−→
W ′) ≤ F (

−̆→
W ) + 〈∇F (

−̆→
W ),
−→
W ′〉+

poly(L)
√
nm logm√
d

· ‖−→W ′‖2

(
F (
−̆→
W )
)1/2

+O
(nL2m

d

)
‖−→W ′‖2

2

Different from classical smoothness, we still have a first-order term ‖−→W ′‖2 on the right hand

side, while classical smoothness only has a second-order term ‖−→W ′‖2
2. As one can see in our

final proofs, as m goes larger, the effect of the first-order term becomes smaller comparing

to the second-order term. This brings Theorem 5.12.1 closer, but still not identical, to the

classical Lipschitz smoothness.

Back to Theorem 5.13.1 and 5.14.1 The derivation of Theorem 5.13.1+5.14.1 from

Theorem 5.11.1+5.12.1 is quite straightforward, and can be found in Section 5.13 and 5.14.

At a high level, we show that GD/SGD can converge fast enough so that the weights stay close

to random initialization by spectral norm bound 1
poly(n,L,δ−1)

. This ensures Theorem 5.11.1

and 5.12.1 both apply.6

In practice, one often goes beyond this theory-predicted spectral-norm boundary.

However, quite interestingly, we still observe Theorem 5.11.1 and 5.12.1 hold in practice (see

Figure 5.1). The gradient is sufficiently large and going in its negative direction can indeed

decrease the objective.

6This spectral norm bound seems small, but is in fact quite large: it can totally change the outputs and
fit the training data, because weights are randomly initialized (per entry) at around 1√

m
for m being large.
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5.4.2 Equivalence to Neural Tangent Kernel

Recall on input x ∈ Rd, the network output y(
−→
W ;x)

def
= y = BhL ∈ Rd is a function of

the weights
−→
W . Let us here focus on d = 1 for notational simplicity and leave d > 1 to the

appendix. The neural tangent kernel (NTK) [JGH18] is usually referred to as the feature

space defined by the network gradient at random initialization. In other words,

• Given two inputs x, x̃ ∈ Rd, the NTK kernel function is given as

Kntk(x, x̃)
def
= 〈∇y(

−→
W (0);x),∇y(

−→
W (0); x̃)〉

• Given weight matrix tuple
−→
W ′, the NTK model computes (we call the NTK objective)

yntk(
−→
W ′;x)

def
= 〈∇y(

−→
W (0);x),

−→
W ′〉 =

∑L
`=1〈∇W`

y(
−→
W (0);x),W ′

`〉 .

In contrast, the dynamic NTK is given by arbitrary weight tuple
−→
W =

−→
W (0) +

−→
W ′ that

may not be at random initialization. [JGH18] proved in their original paper that, when

m is infinite, dynamic NTK and NTK are identical because during the training process

limm→∞ ‖
−→
W ′‖2 = 0 if

−→
W =

−→
W (0) +

−→
W ′ is output of gradient descent.

In this paper, we complement [JGH18] by showing a polynomial bound on this equiv-

alence, for any point that is within a certain ball of
−→
W (0). It is a simple corollary of The-

orem 5.11.1 and Theorem 5.12.1, but we state it independently here since it may be of

additional interest.7

7Although Theorem 5.15.1 was not explicitly stated until version 5 of this paper, its proof was fully
contained in the proofs of Theorem 5.13.1 and 5.14.1. Since some readers cannot find it, we state it here as
a separate theorem.
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Theorem 5.4.3. Let
−→
W (0), A,B be at random initialization. For fixed unit vectors x, x̃ ∈

Rd, every (small) parameter ω ≤ 1
poly(L,logm)

, with probability at least 1 − e−Ω(mω2/3L) over
−→
W (0), A,B, we have for all

−→
W ′ with ‖−→W ′‖2 ≤ ω,

(a) ‖∇y(
−→
W (0) +

−→
W ′;x)−∇yntk(−→W ′;x)‖F ≤ Õ

(
ω1/3L3

)
· ‖∇yntk(−→W ′;x)‖F ;

(b) y(
−→
W (0) +

−→
W ′;x) = y(

−→
W (0);x) + yntk(

−→
W ′;x)± Õ

(
L3ω4/3

√
m
)
; and

(c)
〈
∇y(
−→
W (0)+

−→
W ′;x),∇y(

−→
W (0)+

−→
W ′; x̃)

〉
= Kntk(x, x̃)±Õ

(
ω1/3L3

)
·
√
Kntk(x, x)Kntk(x̃, x̃) .

Theorem 5.15.1a and 5.15.1c says that dynamic NTK and NTK are almost equivalent up to

a small multiplicative factor as long as ω < 1
poly(L,logm)

; while Theorem 5.15.1b says that the

NTK objective is almost exactly the first-order approximation of the neural network output

as long as ω < 1
m3/8 poly(L)

.

In comparison, in Theorem 5.13.1 and 5.14.1, GD/SGD outputs
−→
W ′ satisfying ω ≤

poly(n,δ−1)√
m

� 1
m3/8 poly(L)

under the assumption m ≥ poly(n, L, δ−1).8 Thus, Theorem 5.15.1b

implies
−→
W ′ is also a solution to the NTK regression objective.

Remark 5.4.1. If one wishes to have y(
−→
W (0) +

−→
W ′;x) ≈ yntk(

−→
W ′;x) without the zero-order

term y(
−→
W (0);x), this can be achieved by properly scaling down the random initialization by

a factor of the target error ε < 1. This was used in the follow-up [ALL18c] to achieve small

generalization error on over-parameterized neural networks.

8See (5.19) and (5.21) in the proofs.
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5.5 Proof Overview

Our proof to the Theorem 5.11.1 and 5.12.1 mostly consist of the following steps.

Step 1: properties at random initialization Let
−→
W =

−→
W (0) be at random initialization

and hi,` and Di,` be defined with respect to
−→
W . We first show that forward propagation

neither explode or vanish. That is,

‖hi,`‖ ≈ 1 for all i ∈ [n] and ` ∈ [L].

This is basically because for a fixed y, we have ‖Wy‖2 is around 2, and if its signs are

sufficiently random, then ReLU activation kills half of the norm, that is ‖φ(Wy)‖ ≈ 1. Then

applying induction finishes the proof.

Analyzing forward propagation is not enough. We also need spectral norm bounds

on the backward matrix and on the intermediate matrix

‖BDi,LWL · · ·Di,aWa‖2 ≤ O(
√
m/d) and ‖Di,aWa · · ·Di,bWb‖2 ≤ O(

√
L) (5.1)

for every a, b ∈ [L]. Note that if one naively bounds the spectral norm by induction, then

‖Di,aWa‖2 ≈ 2 and it will exponentially blow up! Our careful analysis ensures that even

when L layers are stacked together, there is no exponential blow up in L.

The final lemma in this step proves that, as long as ‖xi − xj‖ ≥ δ, then

‖hi,` − hj,`‖ ≥ Ω(δ) for each layer ` ∈ [L].

Again, if one is willing to sacrifice an exponential factor and prove a lower bound δ · 2−Ω(L),

this will be easy. What is hard is to derive such lower bound without sacrificing more than

a constant factor, but under the condition of δ ≤ 1
CL

. Details are in Section 5.8.
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Step 2: stability after adversarial perturbation We show that for every
−→
W that is

“close” to initialization, meaning ‖−→W −−→W (0)‖2 ≤ ω for some ω ≤ 1
poly(L)

, then

(a) the number of sign changes ‖Di,` − D̃i,`‖0 is at most O(mω2/3L)� m, and

(b) the perturbation amount ‖hi,` − h̃i,`‖ ≤ O(ωL5/2)� 1.

Since ω ≤ 1
poly(L)

, both changes above become negligible. We call this “forward stability”,

and it is the most technical proof of this paper. Intuitively, both “(a) implies (b)” and “(b)

implies (a)” are trivial to prove by matrix concentration.9 Unfortunately, one cannot apply

such derivation by induction, because constants will blow up exponentially in the number

of layers. We need some careful double induction introduced by [AZLS18], and details in

Section 5.9.1. Another main result in this step is to derive stability for the backward matrix

and the intermediate matrix. We show that when w ≤ poly(L), (5.1) remains to hold.

Details are in Section 5.9.2 and 5.9.3.

Remark 5.5.1. In the final proof,
−→
W is a point obtained by GD/SGD starting from

−→
W (0),

and thus
−→
W may depend on the randomness of

−→
W (0). Since we cannot control how such

randomness correlates, we argue for the above stability properties against all possible
−→
W .

This is why we call it “stability against adversarial perturbation.”

Step 3: gradient bound The hard part of Theorem 5.11.1 is to show gradient lower

bound. For this purpose, recall from Fact 5.2.3 that each sample i ∈ [n] contributes to the

9Namely, if the number of sign changes is bounded in all layers, then hi,` and h̃i,` cannot be too far away
by applying matrix concentration; and reversely, if hi,` is not far from h̃i,` in all layers, then the number of
sign changes per layer must be small.
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full gradient matrix by Di,`(Back
>
i,`+1lossi)h

>
i,`−1, where the backward matrix is applied to a

loss vector lossi. To show this is large, intuitively, one wishes to show (Back>i,`+1lossi) and

hi,`−1 are both vectors with large Euclidean norm.

Thanks to Step 1 and 2, this is not hard for a single sample i ∈ [n]. For instance,

‖h̃i,`−1‖ ≈ 1 by Step 1 and we know ‖hi,`−1− h̃i,`−1‖ ≤ o(1) from Step 2. One can also argue

for Back>i,`+1lossi but this is a bit harder. Indeed, when moving from random initialization
−→
W (0) to

−→
W , the loss vector lossi can change completely. Fortunately, lossi ∈ Rd is a low-

dimensional vector, so one can calculate ‖Back>i,`+1u‖ for every fixed u and then apply ε-net.

Finally, how to combine the above argument with multiple samples i ∈ [n]? These

matrices are clearly not independent and may (in principle) sum up to zero. To deal with

this, we use ‖hi,`−hj,`‖ ≥ Ω(δ) from Step 1. In other words, even if the contribution matrix

Di,`(Back
>
i,`+1lossi)h

>
i,`−1 with respect to one sample i is fixed, the contribution matrix with

respect to other samples j ∈ [n] \ {i} are still sufficiently random. Thus, the final gradient

matrix will still be large. This idea comes from the prior work [LL18], 10 and helps us prove

Theorem 5.11.1. Details in Section 5.10 and 5.11.

Step 4: semi-smoothness In order to prove Theorem 5.12.1, one needs to argue, if we

are currently at
−̆→
W and perturb it by

−→
W ′, then how much does the objective change in second

and higher order terms. This is different from our stability theory in Step 2, because Step

2 is regarding having a perturbation on
−→
W (0); in contrast, in Theorem 5.12.1 we need a

(small) perturbation
−→
W ′ on top of

−̆→
W , which may already be a point perturbed from

−→
W (0).

10This is the only technical idea that we borrowed from [LL18], which is the over-parameterization theory
for 2-layer neural networks.
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Nevertheless, we still manage to show that, if ~i,` is calculated on
−̆→
W and hi,` is calculated

on
−̆→
W +

−→
W ′, then ‖hi,` − ~i,`‖ ≤ O(L1.5)‖W ′‖2. This, along with other properties to prove,

ensures semi-smoothness. This explains Theorem 5.12.1 and details are in Section 5.12.

Remark 5.5.2. In other words, the amount of changes to each hidden layer (i.e., hi,` − ~i,`)

is proportional to the amount of perturbation ‖W ′‖2. This may sound familiar to some

readers: a ReLU function is Lipschitz continuous |φ(a) − φ(b)| ≤ |a − b|, and composing

Lipschitz functions still yield Lipschitz functions. What is perhaps surprising here is that

this “composition” does not create exponential blow-up in the Lipschitz continuity parameter,

as long as the amount of over-parameterization is sufficient and
−̆→
W is close to initialization.
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5.6 Notable Extensions

Our Step 1 through Step 4 in Section 5.5 in fact give rise to a general plan for

proving the training convergence of any neural network (at least with respect to the ReLU

activation). Thus, it is expected that it can be generalized to many other settings. Not only

we can have different number of neurons each layer, our theorems can be extended at least

in the following three major directions.11

Different loss functions There is absolutely no need to restrict only to `2 regression loss.

We prove in Section 5.16 that, for any Lipschitz-smooth loss function f :

Theorem 5.6.1 (arbitrary loss). From random initialization, with probability at least 1 −

e−Ω(log2m), gradient descent with appropriate learning rate satisfy the following.

• If f is nonconvex but σ-gradient dominant (a.k.a. Polyak-Łojasiewicz), GD finds ε-

error minimizer in12

T = Õ
(poly(n,L)

σδ2 · log 1
ε

)
iterations

as long as m ≥ Ω̃
(

poly(n, L, δ−1) · dσ−2
)
.

• If f is convex, then GD finds ε-error minimizer in

T = Õ
(poly(n,L)

δ2 · 1
ε

)
iterations

11In principle, each such proof may require a careful rewriting of the main body of this paper. We choose
to sketch only the proof difference (in the appendix) in order to keep this paper short. If there is sufficient
interest from the readers, we can consider adding the full proofs in the future revision of this paper.

12Note that the loss function when combined with the neural network together f(Bhi,L) is not gradient
dominant. Therefore, one cannot apply classical theory on gradient dominant functions to derive our same
result.
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as long as m ≥ Ω̃
(

poly(n, L, δ−1) · d log ε−1
)
.

• If f is non-convex, then SGD finds a point with ‖∇f‖ ≤ ε in at most13

T = Õ
(poly(n,L)

δ2 · 1
ε2

)
iterations

as long as m ≥ Ω̃
(

poly(n, L, δ−1) · dε−1
)
.

• If f is cross-entropy for multi-label classification, then GD attains 100% training ac-

curacy in at most14.

T = Õ
(poly(n,L)

δ2

)
iterations

as long as m ≥ Ω̃
(

poly(n, L, δ−1) · d
)
.

We remark here that the `2 loss is 1-gradient dominant so it falls into the above

general Theorem 5.6.1. One can also derive similar bounds for (mini-batch) SGD so we do

not repeat the statements here.

Convolutional neural networks (CNN) There are lots of different ways to design CNN

and each of them may require somewhat different proofs. In Section 5.17, we study the case

when A,W1, . . . ,WL−1 are convolutional while WL and B are fully connected. We assume

for notational simplicity that each hidden layer has d points each with m channels. (In vision

tasks, a point is a pixel). In the most general setting, these values d and m can vary across

layers. We prove the following theorem:

13Again, this cannot be derived from classical theory of finding approximate saddle points for non-convex
functions, because weights

−→
W with small ‖∇f(Bhi,L)‖ is a very different (usually much harder) task com-

paring to having small gradient with respect to
−→
W for the entire composite function f(Bhi,L).

14This is because attaining constant objective error ε = 1/4 for the cross-entropy loss suffices to imply
perfect training accuracy.
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Theorem 5.6.2 (CNN). As long as m ≥ Ω̃
(

poly(n, L, d, δ−1) ·d
)
, with high probability, GD

and SGD find an ε-error solution for `2 regression in T = Õ
(poly(n,L,d)

δ2 · log ε−1
)
iterations

for CNN.

Of course, one can replace `2 loss with other loss functions in Theorem 5.6.1 to get

different types of convergence rates. We do not repeat them here.

Residual neural networks (ResNet) There are lots of different ways to design ResNet

and each of them may require somewhat different proofs. In symbols, between two layers,

one may study h` = φ(h`−1 + Wh`−1), h` = φ(h`−1 + W2φ(W1h`−1)), or even h` = φ(h`−1 +

W3φ(W2φ(W1h`−1))). Since the main purpose here is to illustrate the generality of our

techniques but not to attack each specific setting, in Section 5.18, we choose to consider

the simplest residual setting h` = φ(h`−1 + Wh`−1) (that was also studied for instance by

theoretical work [HM17]). With appropriately chosen random initialization, we prove the

following theorem:

Theorem 5.6.3 (ResNet). As long as m ≥ Ω̃
(

poly(n, L, δ−1) ·d
)
, with high probability, GD

and SGD find an ε-error solution for `2 regression in T = Õ
(poly(n,L)

δ2 · log ε−1
)
iterations for

ResNet.

Of course, one can replace `2 loss with other loss functions in Theorem 5.6.1 to get

different types of convergence rates. We do not repeat them here.
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5.7 Detailed Proofs

• In Section 5.8, we derive network properties at random initialization.

• In Section 5.9, we derive the stability theory against adversarial perturbation.

• In Section 5.10, we gradient upper and lower bounds at random initialization.

• In Section 5.11, we prove Theorem 5.11.1.

• In Section 5.12, we prove Theorem 5.12.1.

• In Section 5.13, we prove Theorem 5.13.1.

• In Section 5.14, we prove Theorem 5.14.1.

• In Section 5.15, we prove Theorem 5.15.1.
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5.8 Properties at Random Initialization

Throughout this section we assume
−→
W,A and B are randomly generated according

to Definition 5.2.2. The diagonal sign matrices Di,` are also determined according to this

random initialization.
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5.8.1 Forward Propagation

Lemma 5.8.1 (forward propagation). If ε ∈ (0, 1], with probability at least 1 − O(nL) ·

e−Ω(mε2/L) over the randomness of A ∈ Rm×d and
−→
W ∈ (Rm×m)L, we have

∀i ∈ [n], ` ∈ {0, 1, . . . , L} : ‖hi,`‖ ∈ [1− ε, 1 + ε] .

Remark 5.8.1. Lemma 5.8.1 is in fact trivial to prove if the allowed failure probability is

instead e−Ω(mε2/L2) (by applying concentration inequality layer by layer).

Before proving Lemma 5.8.1 we note a simple mathematical fact:

Fact 5.8.2. Let h, q ∈ Rp be fixed vectors and h 6= 0, W ∈ Rm×p be random matrix with i.i.d.

entries Wi,j ∼ N(0, 2
m

), and vector v ∈ Rm defined as vi = φ((Wh)i) = 1(W (h+q))i≥0(Wh)i.

Then,

• |vi| follows i.i.d. from the following distribution: with half probability |vi| = 0, and with

the other half probability |vi| follows from folded Gaussian distributions |N(0, 2‖h‖2
m

)|.

• m‖v‖2
2‖h‖2 is in distribution identical to χ2

ω (chi-square distribution of order ω) where ω

follows from binomial distribution B(m, 1/2).

Proof of Fact 5.8.2. We assume each vector Wi is generated by first generating a gaussian

vector g ∼ N(0, 2I
m

) and then setting Wi = ±g where the sign is chosen with half-half

probability. Now, |〈Wi, h〉| = |〈g, h〉| only depends on g, and is in distribution identical

to |N(0, 2‖h‖2
m

)|. Next, after the sign is determined, the indicator 1〈Wi,h+q〉≥0 is 1 with half

probability and 0 with another half. Therefore, |vi| satisfies the aforementioned distribution.

As for ‖v‖2, letting ω ∈ {0, 1, . . . ,m} be the variable indicator how many indicators are 1,

then ω ∼ B(m, 1/2) and m‖v‖2
2‖h‖2 ∼ χ2

ω.
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Proof of Lemma 5.8.1. We only prove Lemma 5.8.1 for a fixed i ∈ [n] and ` ∈ {0, 1, 2, . . . , L}

because we can apply union bound at the end. Below, we drop the subscript i for notational

convenience, and write hi,` and xi as h` and x respectively.

Letting ∆`
def
= ‖h`‖2
‖h`−1‖2

, we can write

log ‖hb−1‖2 = log ‖x‖2 +
b−1∑

`=0

log ∆` =
b−1∑

`=0

log ∆` .

According to Fact 5.8.2, fixing any h`−1 6= 0 and lettingW` be the only source of randomness,

we have m
2

∆` ∼ χ2
ω where ω ∼ B(m, 1/2). For such reason, for each ∆`, we can write

∆` = ∆`,ω where m
2

∆`,ω ∼ χ2
ω and ω ∼ B(m, 1/2). In the analysis below, we condition on

the event that ω ∈ [0.4m, 0.6m]; this happens with probability ≥ 1 − e−Ω(m) for each layer

` ∈ [L]. To simplify our notations, if this event does not hold, we set ∆` = 1.

Expectation One can verify that E[log ∆`,ω | ω] = log 4
m

+ψ(ω
2
) where ψ(h) = Γ′(h)

Γ(h)
is the

digamma function. Using the bound log h− 1
h
≤ ψ(h) ≤ log h− 1

2h
of digamma function, we

have

log
2ω

m
− 2

ω
≤ E[log ∆`,ω | ω] ≤ log

2ω

m
− 1

ω
.

Whenever ω ∈ [0.4m, 0.6m], we can write

log
2ω

m
= log

(
1 +

2ω −m
m

)
≥ 2ω −m

m
−
(

2ω −m
m

)2

It is easy to verify Eω
[

2ω−m
m

]
= 0 and Eω

[(
2ω−m
m

)2]
= 1

m
. Therefore,

E
ω

[
log

2ω

m

]
≥ − 1

m
− Pr

[
ω 6∈ [0.4m, 0.6m]

]
· log

2

m
≥ − 2

m
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Combining everything together, along with the fact that Eω[log 2ω
m

] ≤ log E[2ω]
m

= 0, we have

(when m is sufficiently larger than a constant)

− 4

m
≤ E[log ∆`] ≤ 0. (5.2)

Subgaussian Tail By standard tail bound for chi-square distribution, we know that

∀t ∈ [0,∞) : Pr
[∣∣∣m

2
∆`,ω − ω

∣∣∣ ≤ t
∣∣∣ω
]
≥ 1− 2e−Ω(t2/ω) − e−Ω(t) .

Since we only need to focus on ω ≥ 0.4m, this means

∀t ∈ [0,m] : Pr
[∣∣∣m

2
∆`,ω − ω

∣∣∣ ≤ t
∣∣∣ω ≥ 0.4m

]
≥ 1−O(e−Ω(t2/m)) .

On the other hand, by Chernoff-Hoeffding bound, we also have

Pr
ω

[∣∣∣ω − m

2

∣∣∣ ≤ t
]
≥ 1−O(e−Ω(t2/m))

Together, using the definition ∆` = ∆`,ω (or ∆` = 1 if ω 6∈ [0.4m, 0.6m]), we obtain

∀t ∈ [0,m] : Pr
[∣∣∣m

2
∆` −

m

2

∣∣∣ ≤ t
]
≥ 1−O(e−Ω(t2/m)) .

This implies,

∀t ∈
[
0,
m

4

]
: Pr

[
| log ∆`| ≤

t

m

]
≥ 1−O(e−Ω(t2/m)) . (5.3)

Now, let us make another simplification: define ∆̂` = ∆` if | log ∆`| ≤ 1
4
and ∆̂` = 1

otherwise. In this way, (5.3) implies that X = log ∆̂` is an O(m)-subgaussian random

variable.
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Concentration Using martingale concentration on subgaussian variables (see for instance

[Sha11]), we have for ε ∈ (0, 1],

Pr

[∣∣∣∣∣
b−1∑

`=0

log ∆̂` − E[log ∆̂`]

∣∣∣∣∣ > ε

]
≤ O

(
e−Ω(ε2m/L)

)
.

Since with probability ≥ 1−Le−Ω(m) it satisfies ∆̂` = ∆` for all ` ∈ [L], combining this with

(5.2), we have

Pr

[∣∣∣∣∣
b−1∑

`=0

log ∆`

∣∣∣∣∣ > ε

]
≤ O

(
e−Ω(ε2m/L)

)
.

In other words, ‖hb−1‖2 ∈
[
1− ε, 1 + ε

]
with probability at least 1−O

(
e−Ω(ε2m/L)

)
.
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5.8.2 Intermediate Layers

Lemma 5.8.3 (intermediate layers). Suppose m ≥ Ω(nL log(nL)). With probability at least

≥ 1− e−Ω(m/L) over the randomness of
−→
W ∈ (Rm×m)L, for all i ∈ [n], 1 ≤ a ≤ b ≤ L,

(a) ‖WbDi,b−1Wb−1 · · ·Di,aWa‖2 ≤ O(
√
L).

(b) ‖WbDi,b−1Wb−1 · · ·Di,aWav‖ ≤ 2‖v‖ for all vectors v with ‖v‖0 ≤ O
(

m
L logm

)
.

(c) ‖u>WbDi,b−1Wb−1 · · ·Di,aWa‖ ≤ O(1)‖u‖ for all vectors u with ‖u‖0 ≤ O
(

m
L logm

)
.

For any integer s with 1 ≤ s ≤ O
(

m
L logm

)
, with probability at least 1 − e−Ω(s logm) over the

randomness of
−→
W ∈ (Rm×m)L:

(d) |u>WbDi,b−1Wb−1 · · ·Di,aWav| ≤ ‖u‖‖v‖·O
(√

s logm√
m

)
for all vectors u, v with ‖u‖0, ‖v‖0 ≤

s.

Proof. Again we prove the lemma for fixed i, a and b because we can take a union bound at

the end. We drop the subscript i for notational convenience.

(a) Let za−1 be any fixed unit vector, and define z` = D`W` · · ·DaWaza−1. According to

Fact 5.8.2 again, fixing any z`−1 and letting W` be the only source of randomness,

defining ∆`
def
= ‖z`‖2
‖z`−1‖2

, we have that m
2

∆` is distributed according to a χ2
ω where ω ∼

B(m, 1
2
). Therefore, we have

log ‖zb−1‖2 = log ‖za−1‖2 +
b−1∑

`=a

log ∆` =
b−1∑

`=a

log ∆` .
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Using exactly the same proof as Lemma 5.8.1, we have

‖zb−1‖2 = ‖WbDb−1Wb−1 · · ·DaWaza−1‖2 ∈
[
1− 1/3, 1 + 1/3

]

with probability at least 1− e−Ω(m/L). As a result, if we fix a subset M ⊆ [m] of cardi-

nality |M | ≤ O(m/L), taking ε-net, we know that with probability at least e−Ω(m/L),

it satisfies

‖WbDb−1Wb−1 · · ·DaWau‖ ≤ 2‖u‖ (5.4)

for all vectors u whose coordinates are zeros outside M . Now, for an arbitrary unit

vector v ∈ Rm, we can decompose it as v = u1 + · · · + uN where N = O(L), each uj

is non-zero only at O(m/L) coordinates, and the vectors u1, . . . , uN are non-zeros on

different coordinates. We can apply (5.4) for each each such uj and triangle inequality.

This gives

‖WbDb−1Wb−1 · · ·DaWav‖ ≤ 2
N∑

j=1

‖uj‖ ≤ 2
√
N
( N∑

j=1

‖uj‖2
)1/2

≤ O(
√
L) · ‖v‖.

(b) The proof of Lemma 5.8.3b is the same as Lemma 5.8.3a, except to take ε-net over all

O
(

m
L logm

)
-sparse vectors u and then applying union bound.

(c) Similar to the proof of Lemma 5.8.3a, for any fixed vector v, we have that with prob-

ability at least 1− e−Ω(m/L) (over the randomness of Wb−1, . . . ,W1, A),

‖Db−1Wb−1 · · ·DaWav‖ ≤ 2‖v‖.

Conditioning on this event happens, using the randomness of Wb, we have for each

fixed vector u ∈ Rm, we have

Pr
Wb

[∣∣∣u>Wb

(
Db−1Wb−1 · · ·DaWav

)∣∣∣ ≥ 4√
L
‖u‖‖v‖

]
≤ e−Ω(m/L).
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Now consider the case that v is a sparse vector that is only non-zero over some fixed

index set M ⊆ [m] (with |M | ≤ O(m/L)), and that u is of sparsity s = O
(

m
L logm

)
.

Taking ε-net over all such possible vectors u and v, we have with probability at least

1 − e−Ω(m/L), for all vectors u ∈ Rm with ‖u‖0 ≤ s and all vectors v ∈ Rm that have

non-zeros only in M ,

∣∣∣u>Wb

(
Db−1Wb−1 · · ·DaWav

)∣∣∣ ≤ 8√
L
‖u‖‖v‖ . (5.5)

Back to the case when v is an arbitrary vector, we can partition [m] into N index sets

[m] = M1∪M2∪ · · · ∪MN and write v = v1 + v2 + · · ·+ vN , where N = O(L) and each

vj is non-zero only in Mj. By applying (5.5) for N times and using triangle inequality,

we have

∣∣∣u>Wb

(
Db−1Wb−1 · · ·DaWav

)∣∣∣ ≤
N∑

j=1

∣∣∣u>Wb

(
Db−1Wb−1 · · ·DaWavj

)∣∣∣

≤ 8√
L
‖u‖ ×

N∑

j=1

‖vj‖ ≤ O(1)× ‖u‖‖v‖ .

(d) We apply the same proof as Lemma 5.8.3c with minor changes to the parameters. We

can show with probability at least 1−e−Ω(m/L) (over the randomness ofWb−1, . . . ,W1, A),

for a fixed vector v ∈ Rm:

‖Db−1Wb−1 · · ·DaWav‖ ≤ 2‖v‖ .

Further using the randomness of Wb, we have that conditioning on the above event,

fixing any u ∈ Rm, with probability at least 1− e−Ω(s logm) over the randomness of Wb:

∣∣uWb

(
Db−1Wb−1 · · ·DaWav

)∣∣ ≤
(s logm

m

)1/2 ×O
(
‖v‖‖u‖

)
.
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Finally, taking ε-net over all possible vectors u, v that are s sparse, we have the desired

result.
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5.8.3 Backward Propagation

Lemma 5.8.4 (backward propagation). Suppose m ≥ Ω(nL log(nL)). If s ≥ Ω
(

d
logm

)
and

s ≤ O
(

m
L logm

)
, then with probability at least 1−e−Ω(s logm), for all i ∈ [n], a = 1, 2, . . . , L+1,

(a) |v>BDi,LWL · · ·Di,aWau| ≤ O
(√

s logm√
d

)
‖v‖‖u‖ for all v ∈ Rd and all u ∈ Rm with

‖u‖0 ≤ s.

With probability at least ≥ 1− e−Ω(m/L), for all i ∈ [n], 1 ≤ a ≤ L,

(b) ‖v>BDi,LWL · · ·Di,aWa‖ ≤ O(
√
m/d)‖v‖ for all vectors u ∈ Rd if d ≤ O

(
m

L logm

)
.

Proof. (a) The proof follows the same idea of Lemma 5.8.3 (but choosing b = L). Given

any fixed vector u, we have with probability at least 1−e−Ω(m/L) (over the randomness

of WL, . . . ,W1, A),

‖DLWL · · ·DaWau‖ ≤ 2‖u‖ .

Conditioning on this event happens, using the randomness of B (recall each entry of

B follows from N(0, 1
d
)), we have for each fixed vector u ∈ Rm,

Pr
B

[∣∣∣v>B
(
DLWL · · ·DaWau

)∣∣∣ ≥
√
s logm√
d

·O(‖u‖‖v‖)
]
≤ e−Ω(s logm) .

Finally, one can take ε-net over all s-sparse vectors u ∈ Rm and all vectors v ∈ Rd and

apply union bound.

(b) The proof is identical to Lemma 5.8.3c, except the fact that each entry of B follows

from N(0, 1
d
) instead of N(0, 2

m
).
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5.8.4 δ-Separateness

Lemma 5.8.5 (δ-separateness). Let m ≥ Ω
(L log(nL)

δ6

)
. There exists some constant C > 1 so

that, if δ ≤ 1
CL

, ‖x1‖ = · · · = ‖xn‖ = 1 and ‖xi − xj‖ ≥ δ for every pair i, j ∈ [n], then with

probability at least 1− e−Ω(δ6m/L), we have :

∀i 6= j ∈ [n], ∀` ∈ {0, 1, . . . , L} : ‖(I −
hi,`h

>
i,`

‖hi,`‖2
)hj,`‖ ≥

δ

2
.

Proof of Lemma 5.8.5. We first apply Lemma 5.8.1 to show that ‖hi,`‖ ∈ [1 − δ3/10, 1 +

δ3/10]. Next we prove Lemma 5.8.5 by induction.

In the base case of ` = −1, since ‖xi− xj‖ ≥ δ by our Assumption 5.2.1 and without

loss of generality ‖xi‖ = 1 and (xi)d = 1√
2
, we already have

‖(I −
hi,`h

>
i,`

‖hi,`‖2
)hj,`‖2 = ‖(I − xix

>
i

‖xi‖2
)xj‖2 = ‖xj − xi · 〈xi, xj〉‖2 = 1−

(
〈xi, xj〉

)2 ≥ 3

4
δ2 .

Suppose hi,`−1 and hj,`−1 are fixed and satisfies ‖(I − hi,`−1h
>
i,`−1

‖hi,`−1‖2
)hj,`−1‖2 ≥ δ2

`−1 for some

δ`−1 ≥ δ/2. We write W`hi,`−1 = ~g1 where ~g1 ∼ N(0,
2‖hi,`−1‖2

m
I).

Denoting by ĥ = hi,`−1/‖hi,`−1‖, we can write W`hj,`−1 = W`ĥĥ
>hj,`−1 + W`

(
I −

ĥĥ>
)
hj,`−1 and the randomness of the two terms are independent. In particular, we can

write

W`hj,`−1 =
〈hi,`−1, hj,`−1〉
‖hi,`−1‖2

· ~g1 + ‖
(
I − ĥĥ>

)
hj,`−1‖ · ~g2 (5.6)

where ~g2 ∼ N(0, 2
m
I) is independent of g1. Applying Claim 5.8.6 for each coordinate k ∈ [m]

(and re-scaling by m
‖hi,`−1‖2

, we have

E[(φ(W`hi,`−1)− φ(W`hj,`−1))2
k] ≥

(
δ`−1

‖hi,`−1‖

)2(
1− δ`−1

‖hi,`−1‖

)
·‖hi,`−1‖2

m
≥ δ2

`−1 (1−O(δ`−1))

m
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Applying Chernoff bound (on independent subgaussian random variables), we have with

probability at least 1− e−Ω(δ4
`−1m),15

‖hi,` − hj,`‖2 = ‖φ(W`hi,`−1)− φ(W`hj,`−1)‖2 ≥ δ2
`−1 (1−O(δ`−1)) .

Since ‖hi,`‖ and ‖hj,`‖ are close to 1, we have
∥∥∥∥∥

(
I −

hi,`h
>
i,`

‖hi,`‖2

)
hj,`

∥∥∥∥∥

2

= ‖hj,`‖2 − 〈hi,`, hj,`〉
2

‖hi,`‖2

= ‖hj,`‖2 +
‖hi,` − hj,`‖2 − ‖hi,`‖2 − ‖hj,`‖2

2‖hi,`‖2
≥ δ2

`−1(1−O(δ`−1)) .

5.8.4.1 Auxiliary Claim

The following mathematical fact is needed in the proof of Lemma 5.8.5. Its proof is

by carefully integrating the PDF of Gaussian distribution.

Claim 5.8.6. Given g1, g2 ∼ N(0, 2), constant α ∈ R and δ ∈ [0, 1
6
], we have

E
g1,g2

[
(φ(g1)− φ(αg1 + δg2))2

]
≥ δ2(1− δ) .

Proof of Claim 5.8.6. We first tackle two easy cases.

Suppose a < 3
4
. If so, then with probability at least 0.3 we have g1 > 1. If this

happens, then with probability at least 1/2 we have g2 < 0. If both happens, we have

φ(g1)− φ(αg1 + δg2) = g1 − φ(αg1 + δg2) ≥ g1 − αg1 ≥
1

4
.

15More specifically, we can let Xk = m (φ(W`hi,`−1)− φ(W`hj,`−1))
2
k which is O(1)-subgaussian and let

X = X1 + · · ·+Xm. We have Pr[X ≥ E[X](1− δ`−1)] ≥ 1− e−Ω(δ2`−1 E[X]).

290



Therefore, we have if a < 3
4
then the expectation is at least 0.03. For similar reason, if

a > 5
4
we also have the expectation is at least 0.03. In the remainder of the proof, we assume

α ∈
[

3
4
, 5

4

]
.

If g1 ≥ 0, we have

f(g1)
def
= E

g2

[
(φ(g1)− φ(αg1 + δg2))2 | g1 ≥ 0

]

=

∫ ∞

0

(x− g1)2 exp
(
− (x−αg1)2

4δ2

)

√
4πδ2

dx

=
(α− 2)δg1e

−α
2g21
4δ2√

π
+

1

2

(
(α− 1)2g2

1 + 2δ2
) (

erf
(αg1

2δ

)
+ 1
)
.

If g1 < 0, we have

f(g1)
def
= E

g2

[
(φ(g1)− φ(αg1 + δg2))2 | g1 < 0

]

=

∫ ∞

0

x2 exp
(
− (x−αg1)2

4δ2

)

√
4πδ2

dx

=
1

2

(
α2g2

1 + 2δ2
) (

erf
(αg1

2δ

)
+ 1
)

+
αδg1e

−α
2g21
4δ2√

π
.
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Overall, we have

E
g1,g2

[
(φ(g1)− φ(αg1 + δg2))2

]

=

∫ ∞

0

f(g) exp
(
−g2

4

)

√
4π

dg +

∫ 0

−∞

f(g) exp
(
−g2

4

)

√
4π

dg

=

(
(α− 1)2αδ

π (α2 + δ2)
+

(α− 2)δ3

π (α2 + δ2)
+

1

2

(
(α− 1)2 + δ2

)
+

1

π

(
(α− 1)2 + δ2

)
arctan

(α
δ

))

+
1

2π

(
π
(
α2 + δ2

)
− 2

(
α2 + δ2

)
arctan

(α
δ

)
− 2αδ

)

=
δ (−2α2 + α− 2δ2)

π (α2 + δ2)
+

(1− 2α) arctan
(
α
δ

)

π
+ (α− 1)α + δ2 +

1

2

=
(
α2 − 2α + 1

)
+ δ2 +

2

π

∞∑

k=1

(−1)k
(α + k)δ2k+1

(2k + 1)α2k+1
.

It is easy to see that, as long as δ ≤ α, we always have (α+k)δ2k+1

(2k+1)α2k+1 ≥ (α+k+1)δ2k+3

(2k+3)α2k+3 . Therefore

E
g1,g2

[
(φ(g1)− φ(αg1 + δg2))2

]
≥
(
α2 − 2α + 1

)
+ δ2 − 2

π

(α + 1)δ3

3α3
≥ δ2(1− δ) .
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5.9 Stability against Adversarial Weight Perturbations

Let A, B and
−→
W (0) = (W̃1, . . . , W̃L) be matrices at random initialization (see Def-

inition 5.2.2), and throughout this section, we consider (adversarially) perturbing
−→
W by

−→
W ′ = (W ′

1, . . . ,W
′
L) satisfying ‖−→W ′‖2 ≤ ω (meaning, ‖W ′

`‖2 ≤ ω for every ` ∈ [L]). We stick

to the following notations in this section

Definition 5.9.1.

g̃i,0 = Axi gi,0 = Axi for i ∈ [n]

h̃i,0 = φ(Axi) hi,0 = φ(Axi) for i ∈ [n]

g̃i,` = W̃`hi,`−1 gi,` = (W̃` +W ′
`)hi,`−1 for i ∈ [n] and ` ∈ [L]

h̃i,` = φ(W̃`hi,`−1) hi,` = φ((W̃` +W ′
`)hi,`−1) for i ∈ [n] and ` ∈ [L]

Define diagonal matrices D̃i,` ∈ Rm×m and Di,` ∈ Rm×m by letting (D̃i,`)k,k = 1(g̃i,`)k≥0 and

(Di,`)k,k = 1(gi,`)k≥0,∀k ∈ [m]. Accordingly, we let g′i,` = gi,` − g̃i,`, h′i,` = hi,` − h̃i,`, and

diagonal matrix D′i,` = Di,` − D̃i,`.

293



5.9.1 Forward Perturbation

Lemma 5.9.1 (forward perturbation). Suppose ω ≤ 1
CL9/2 log3 m

for some sufficiently large

constant C > 1. With probability at least 1−e−Ω(mω2/3L), for every
−→
W ′ satisfying ‖−→W ′‖2 ≤ ω,

(a) g′i,` can be written as g′i,` = g′i,`,1 + g′i,`,2 where ‖g′i,`,1‖ ≤ O(ωL3/2) and ‖g′i,`,2‖∞ ≤

O
(
ωL5/2

√
logm√
m

)

(b) ‖D′i,`‖0 ≤ O(mω2/3L) and ‖D′i,`gi,`‖ ≤ O(ωL3/2).

(c) ‖g′i,`‖, ‖h′i,`‖ ≤ O(ωL5/2
√

logm).

Proof of Lemma 5.9.1. In our proof below, we drop the subscript with respect to i for no-

tational simplicity, and one can always take a union bound over all possible indices i at the

end.

Using Lemma 5.8.1, we can first assume that ‖h̃`‖, ‖g̃`‖ ∈ [2
3
, 4

3
] for all `. This

happens with probability at least 1 − e−Ω(m/L). We also assume
∥∥∏a+1

b=` W̃bD̃b−1

∥∥
2
≤ c1

√
L

where c1 > 0 is the hidden constant in Lemma 5.8.3a.

We shall inductively prove Lemma 5.9.1. In the base case ` = 0, we have g′` = 0 so

all the statements holds. In the remainder of the proof, we assume that Lemma 5.9.1 holds

for `− 1 and we shall prove the three statements for layer `. To help the readers understand

how the constants propagate without blowing up, we shall prove ‖g′i,`,1‖ ≤ 4c1L
1.5ω in

Lemma 5.9.1a without the big-O notation, while for all other terms we use big-O to hide

polynomial dependency on c1.16

16Alternatively, one can fully specify all the constants without using the big-O notation. This was done
in our prior work [AZLS18] but is notation-heavy. We refrain from doing so in this simplified paper.
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We first carefully rewrite:

g′` = (W̃` +W ′
`)(D̃`−1 +D′`−1)(g̃`−1 + g′`−1)− W̃`D̃`−1g̃`−1

= W ′
`(D̃`−1 +D′`−1)(g̃`−1 + g′`−1) + W̃`D

′
`−1(g̃`−1 + g′`−1) + W̃`D̃`−1g

′
`−1

= · · ·

=
∑̀

a=1

( a+1∏

b=`

W̃bD̃b−1

)(
W ′
a(D̃a−1 +D′a−1)(g̃a−1 + g′a−1)︸ ︷︷ ︸

(♦)

+ W̃aD
′
a−1(g̃a−1 + g′a−1)︸ ︷︷ ︸

(♥)

)

For each term in (♦), we have

∥∥∥
( a+1∏

b=`

W̃bD̃b−1

)(
W ′
a(D̃a−1 +D′a−1)(g̃a−1 + g′a−1)

)∥∥∥

≤
∥∥∥
a+1∏

b=`

W̃bD̃b−1

∥∥∥
2
·
∥∥∥W ′

a

∥∥∥
2
·
∥∥∥D̃a−1 +D′a−1

∥∥∥
2
·
∥∥∥g̃a−1 + g′a−1

∥∥∥

¬

≤ c1 · ω · 1 ·
∥∥∥g̃a−1 + g′a−1

∥∥∥


≤ 2c1

√
Lω +O

(
ω2L3

√
logm

)
.

Above, inequality ¬ uses Lemma 5.8.3a and ‖D̃a−1 +D′a−1‖2 = ‖Da−1‖2 ≤ 1; and inequality

 has used ‖g̃`‖ ≤ 2 and our inductive assumption Lemma 5.9.1c. By triangle inequality,

we have

g′` = −→err1 +
∑̀

a=1

( a+1∏

b=`

W̃bD̃b−1

)(
W̃aD

′
a−1(g̃a−1 + g′a−1)︸ ︷︷ ︸

(♥)

)

where ‖−→err1‖ ≤ 2c1L
1.5ω + O

(
ω2L4

√
logm

)
. We next look at each term in (♥). For each

a = 2, 3, . . . , `, we let

x
def
= D′a−1(g̃a−1 + g′a−1) = D′a−1(W̃a−1h̃a−1 + g′a−1) .

If we re-scale x by 1

‖h̃a−1‖
(which is a constant in [0.75, 1.5]), we can apply Claim 5.9.2

(with parameter choices in Corollary 5.9.3) on x and this tells us, with probability at least
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1− e−Ω(mω2/3L):

‖x‖0 ≤ O(mω2/3L) and ‖x‖ ≤ O(ωL3/2). (5.7)

Next, each term in (♥) contributes to g′` by

y =
( a+1∏

b=`

W̃bD̃b−1

)
W̃a

(
D′a−1(g̃a−1 + g′a−1)

)

using (5.7) and Claim 5.9.4 (with s = O(mω2/3L)), we have with probability at least 1 −

e−Ω(s logm), one can write y = y1 + y2 for

‖y1‖ ≤ O
(
ωL3/2 · L1/2ω1/3 logm

)
and ‖y2‖∞ ≤ O

(
ωL3/2 ·

√
logm√
m

)
.

And therefore by triangle inequality we can write

g′` = −→err1 +−→err2 +−→err3

where ‖−→err2‖ ≤ O
(
L ·ωL3/2 ·L1/2ω1/3 logm

)
= O

(
ω4/3L3 logm

)
and ‖−→err3‖∞ ≤ O

(
L ·ωL3/2 ·

√
logm√
m

)
. Together with the upper bound on −→err1, we have

‖−→err1 +−→err2‖ ≤ 2c1L
1.5ω +O

(
ω2L4

√
logm+ ω4/3L3 logm

)
.

We emphasize that the above big-O notion can hide polynomial dependency on c1. Never-

theless, when ω is sufficiently small, the above term is at most 4c1L
1.5ω. This finishes the

proof of Lemma 5.9.1a for layer ` without blowing up the constant. Finally,

• Lemma 5.9.1b is due to (5.7),

• g′` part of Lemma 5.9.1c is a simple corollary of Lemma 5.9.1a, and

• h′` part of Lemma 5.9.1c is due to h′` = D`g
′
` + D′`g` together with the bound on ‖g′`‖

and the bound on D′`g` from Lemma 5.9.1b.
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5.9.1.1 Auxiliary Claim

Claim 5.9.2. Suppose δ2 ∈ [0, O(1)] and δ∞ ∈ [0, 1
4
√
m

]. Suppose W̃ ∈ Rm×m is a random

matrix with entries drawn i.i.d. from N
(
0, 2

m

)
. With probability at least 1− e−Ω(m3/2δ∞), the

following holds. Fix any unit vector h̃ ∈ Rm, and for all g′ ∈ Rm that can be written as

g′ = g′1 + g′2 where ‖g′1‖ ≤ δ2 and ‖g′2‖∞ ≤ δ∞.

Let D′ ∈ Rm×m be the diagonal matrix where (D′)k,k = 1(W̃ h̃+g′)k≥0 − 1(W̃ h̃)k≥0,∀k ∈ [m].

Then, letting x = D′(W̃ h̃+ g′) ∈ Rm, we have

‖x‖0 ≤ ‖D′‖0 ≤ O(m(δ2)2/3 + δ∞m
3/2) and ‖x‖ ≤ O(δ2 + (δ∞)3/2m3/4) .

Corollary 5.9.3. In particular, if ωL3/2 ≤ O(1), then with probability at least 1−e−Ω(mω2/3L),

for every g′ = g′1 + g′2 with ‖g′1‖ ≤ O(ωL3/2) and ‖g′2‖∞ ≤ O
(
ω2/3L
m1/2

)
, it satisfies

‖D′‖0 ≤ O(mω2/3L) and ‖x‖ ≤ O(ωL3/2) .

Proof of Claim 5.9.2. We first observe g̃ = W̃ h̃ follows from N
(
0, 2I

m

)
regardless of the choice

of h̃. Therefore, in the remainder of the proof, we just focus on the randomness of g̃.

We also observe that (D′)j,j is non-zero for some diagonal j ∈ [m] only if

|(g′1 + g′2)j| > |(g̃)j| . (5.8)

Let ξ ≤ 1
2
√
m

be a parameter to be chosen later. We shall make sure that ‖g′2‖∞ ≤ ξ/2.

• We denote by S1 ⊆ [m] the index sets where j satisfies |(g̃)j| ≤ ξ. Since we know

(g̃)j ∼ N(0, 2/m), we have Pr[|(g̃)j| ≤ ξ] ≤ O (ξ
√
m) for each j ∈ [m]. Using Chernoff

bound for all j ∈ [m], we have with probability at least 1− e−Ω(m3/2ξ),

|S1| = |{i ∈ [m] : |(g̃)j| ≤ ξ}| ≤ O(ξm3/2) .
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Now, for each j ∈ S1 such that xj 6= 0, we must have |xj| = |(g̃+g′1 +g′2)j| ≤ |(g′1)j|+2ξ

so we can calculate the `2 norm of x on S1:
∑

i∈S1

x2
j ≤ O(‖g′1‖2 + ξ2|S1|) ≤ O(‖g′1‖2 + ξ3m3/2) .

• We denote by S2 ⊆ [m] \S1 the index set of all j ∈ [m] \S1 where xj 6= 0. Using (5.8),

we have for each j ∈ S2:

|(g′1)j| ≥ |(g̃)j| − |(g′2)j| ≥ ξ − ‖g′2‖∞ ≥ ξ/2 .

This means

|S2| ≤
4‖g′1‖2

ξ2
.

Now, for each j ∈ S2 where xj 6= 0, we know that the signs of (g̃ + g′1 + g′2)j and (g̃)j

are opposite. Therefore, we must have

|xj| = |(g̃ + g′1 + g′2)j| ≤ |(g′1 + g′2)j| ≤ |(g′1)j|+ ξ/2 ≤ 2|(g′1)j|

and therefore
∑

j∈S2

x2
j ≤ 4

∑

j∈S2

(g′1)2
j ≤ 4‖g′1‖2 .

From above, we have ‖x‖0 ≤ |S1| + |S2| ≤ O
(
ξm3/2 + (δ2)2

ξ2

)
and ‖x‖2 ≤ O

(
(δ2)2 + ξ3m3/2

)
.

Choosing ξ = max{2δ∞,Θ( (δ2)2/3

m1/2 )} for the former, and choosing ξ = 2δ∞ for the latter, we

have the desired result.

Claim 5.9.4. For any 2 ≤ a ≤ b ≤ L and any positive integer s ≤ O
(

m
L logm

)
, with

probability at least 1 − e−Ω(s logm), for all x ∈ Rm with ‖x‖ ≤ 1 and ‖x‖0 ≤ s, letting

y = W̃bD̃b−1W̃b−1 · · · D̃aW̃ax, we can write y = y1 + y2 with

‖y1‖ ≤ O
(√

s/m logm
)

and ‖y2‖∞ ≤
2
√

logm√
m

.
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Proof of Claim 5.9.4. First of all, fix any x, we can let u = D̃b−1W̃b−1 · · · D̃aW̃ax and the

same proof of Lemma 5.8.3 implies that with probability at least 1 − e−Ω(m/L) we have

‖u‖ ≤ O(‖x‖). We next condition on this event happens.

Let β =
√

logm/
√
m. If u is fixed and using only the randomness of Wb, we have

yi ∼ N
(
0, 2‖u‖2

m

)
so for every p ≥ 1, by Gaussian tail bound

Pr[|yi| ≥ βp] ≤ e−Ω(β2p2m/‖x‖2) ≤ e−Ω(β2p2m) .

As long as β2p2m ≥ β2m ≥ Ω(logm), we know that if |yi| ≥ βp occurs for q/p2 indices i out

of [m], this cannot happen with probability more than
(
m

q/p2

)
×
(
e−Ω(β2p2m)

)q/p2

≤ e
q

p2

(
O(logm)−Ω(β2p2m)

)
≤ e−Ω(β2qm) .

In other words,

Pr
[
|{i ∈ [m] : |yi| ≥ βp}| > q/p2

]
≤ e−Ω(β2qm) .

Finally, by applying union bound over p = 1, 2, 4, 8, 16, . . . we have with probability ≥

1− e−Ω(β2qm) · log q,

∑

i : |yi|≥β

y2
i ≤

dlog qe∑

k=0

(2k+1β)2
∣∣{i ∈ [m] : |yi| ≥ 2kβ

}∣∣ ≤
dlog qe∑

k=0

(2k+1β)2 · q
22k
≤ O(qβ2 log q) (5.9)

In other words, vector y can be written as y = y1 + y2 where ‖y2‖∞ ≤ β and ‖y1‖2 ≤

O(qβ2 log q).

Finally, we want to take ε-net over all s-sparse inputs x. This requires β2qm ≥

Ω(s logm), so we can choose q = Θ
(
s logm
mβ2

)
= Θ(s).
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5.9.2 Intermediate Layers

Lemma 5.9.5 (intermediate perturbation). For any integer s with 1 ≤ s ≤ O
(

m
L3 logm

)
, with

probability at least 1− e−Ω(s logm) over the randomness of
−→
W (0), A,

• for every i ∈ [n], 1 ≤ a ≤ b ≤ L,

• for every diagonal matrices D′′i,0, . . . , D′′i,L ∈ [−3, 3]m×m with at most s non-zero entries.

• for every perturbation matrices W ′
1, . . . ,W

′
L ∈ Rm×m with ‖−→W ′‖2 ≤ ω ∈ [0, 1].

we have

(a) ‖W̃b(D̃i,b−1 +D′′i,b−1) · · · (D̃i,a +D′′i,a)W̃a‖2 ≤ O(
√
L).

(b) ‖(W̃b +W ′
b)(D̃i,b−1 +D′′i,b−1) · · · (D̃i,a +D′′i,a)(W̃a +W ′

a)‖2 ≤ O(
√
L) if ω ≤ O( 1

L1.5 ).

Proof. For notational simplicity we ignore subscripts in i in the proofs.

(a) Note that each D′′` can be written as D′′` = D
0/1
` D′′`D

0/1
` , where each D0/1

` is a diagonal

matrix satisfying

(D
0/1
` )k,k =

{
1, (D′′` )k,k 6= 0;
0, (D′′` )k,k = 0. and ‖D0/1

` ‖0 ≤ s .

In order to bound the spectral norm of W̃b(D̃b−1 + D′′b−1)W̃b−1 · · · (D̃a + D′′a)W̃a, by

triangle inequality, we can expend it into 2b−a matrices and bound their spectral norms

individually. Each such matrix can be written as (ignoring the subscripts)

(W̃ D̃ · · · W̃D0/1)D′′(D0/1W̃ D̃ · · · W̃D0/1)D′′ · · ·D′′(D0/1W̃ D̃ · · · W̃ ) (5.10)

Therefore, it suffices for us to bound the spectral norm of the following four types of

matrices:
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• W̃ D̃ · · · W̃D0/1, such matrix has spectral norm at most 2 owing to Lemma 5.8.3b;

• D0/1W̃ D̃ · · · W̃ , such matrix has spectral norm at mostO(1) owing to Lemma 5.8.3c;

• D0/1W̃ D̃ · · · W̃D0/1, such matrix has spectral norm at most 1
100L1.5 owing to

Lemma 5.8.3d and our choice s ≤ O( m
L3 logm

);

• D′′, such matrix has spectral norm at most 3.

Together, we have

∥∥∥W̃b(D̃b−1 +D′′b−1)W̃b−1 · · · (D̃a +D′′a)W̃a

∥∥∥

≤ O(
√
L) +

b−a∑

j=1

(
b− a
j

)
·O(1) ·

(
1

100L1.5

)j−1

· 3j ·O(1) ≤ O(
√
L) .

(b) In order to bound the spectral norm of (W̃b+W
′
b)(D̃b−1+D′′b−1) · · · (D̃a+D′′a)(W̃a+W ′

a),

by triangle inequality, we can expend it into 2b−a+1 matrices in terms of W ′ and bound

their spectral norms individually. Each such matrix can be written as (ignoring the

subscripts, and denoting D̆ = D̃ +D′)

(W̃ D̆ · · · W̃ D̆)W ′(D̆W̃ · · · W̃ D̆) · · ·W ′(D̆W̃ · · · D̆W̃ )

Moreover, from Lemma 5.9.5a, we know the following three types of matrices

• W̃ D̆ · · · W̃ D̆,

• D̆W̃ · · · W̃ D̆, and

• D̆W̃ · · · D̆W̃
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all have spectral norm at most O(
√
L). Together, using ‖W ′

`‖2 ≤ O( 1
L1.5 ), we have

∥∥∥(W̃b +W ′
b)(D̃b−1 +D′′b−1)(W̃b−1 +W ′

b−1) · · · (D̃a +D′′a)(W̃a +W ′
a)
∥∥∥

≤
b−a+1∑

j=0

(
b− a+ 1

j

)
·
(
O(
√
L)
)j+1

·
(
O(

1

L1.5
)
)j
≤ O(

√
L) .
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5.9.3 Backward

Lemma 5.9.6 (backward perturbation). For any integer s ∈
[
Ω
(

d
logm

)
, O
(

m
L3 logm

)]
, for

d ≤ O
(

m
L logm

)
, with probability at least 1− e−Ω(s logm) over the randomness of

−→
W (0), A,B,

• for all i ∈ [n], a = 1, 2, . . . , L+ 1,

• for every diagonal matrices D′′i,0, . . . , D′′i,L ∈ [−3, 3]m×m with at most s non-zero entries,

• for every perturbation matrices W ′
i,1, . . . ,W

′
i,L ∈ Rm×m with ‖−→W ′‖2 ≤ ω = O( 1

L1.5 ),

it satisfies ‖B(D̃i,L+D′′i,L)(W̃L+W ′
L) · · · (W̃a+1+W ′

a+1)(D̃i,a+D
′′
i,a)−BD̃i,LW̃L · · · W̃a+1D̃i,a‖2 ≤

O
(√L3s logm+ω2L3m√

d

)
. Note that if s = O(mω2/3L), this upper bound becomes O

(
ω1/3L2

√
m logm√
d

)
.

Proof. For notational simplicity we ignore subscripts in i in the proofs.

Ignoring the subscripts for cleanness, we have

∥∥B(D̃i,L +D′′i,L)(W̃L +W ′
L) · · · (W̃a+1 +W ′

a+1)(D̃i,a +D′′i,a)−BD̃i,LW̃L · · · W̃a+1D̃i,a

∥∥
2

≤
L∑

`=a

∥∥BD̃i,LW̃L · · · W̃`+1D
0/1
`

∥∥
2︸ ︷︷ ︸

Lemma 5.8.4a

‖D′′` ‖2

∥∥D0/1
` (W̃` +W ′

`) · · · (D̃i,a +D′′i,a)
∥∥

2︸ ︷︷ ︸
Lemma 5.9.5b

+
L∑

`=a+1

∥∥BD̃i,LW̃L · · · W̃`+1D̃`

∥∥
2︸ ︷︷ ︸

Lemma 5.8.4b

‖W ′
`‖2

∥∥(D̃`−1 +D′′`−1)(W̃`−1 +W ′
`−1) · · · (D̃i,a +D′′i,a)

∥∥
2︸ ︷︷ ︸

Lemma 5.9.5b

≤ L ·O
(√

s logm√
d

)
·O(
√
L) + L ·O(

√
m/d) · ω ·O(

√
L)
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5.10 Gradient Bound at Random Initialization

Throughout this section we assume
−→
W,A and B are randomly generated according

to Definition 5.2.2. The diagonal sign matrices Di,` are also determined according to this

random initialization.

Recall we have defined Backi,`
def
= BDi,LWL · · ·Di,`W` ∈ Rd×m. In this section, we

introduce the following notion

Definition 5.10.1. For any vector tuple ~v = (v1, . . . , vn) ∈ (Rd)n (viewed as a fake loss

vector), for each ` ∈ [L], we define

∇̂~v[W`]k
F (
−→
W )

def
=

n∑

i=1

(Back>i,`+1vi)k · hi,`−1 · 1〈[W`]k,hi,`−1〉≥0,∀k ∈ [m]

∇̂~vW`
F (
−→
W )

def
=

n∑

i=1

∇̂~vW`
Fi(
−→
W ) where ∇̂~vW`

Fi(
−→
W )

def
= Di,`(Back

>
i,`+1vi)h

>
i,`−1

Remark 5.10.1. It is an easy exercise to check that, if letting ~v = (v1, . . . , vn) where vi =

Bhi,L − y∗i , then ∇̂~v[W`]k
F (
−→
W ) = ∇[W`]kF (

−→
W ) and ∇̂~vW`

Fi(
−→
W ) = ∇W`

Fi(
−→
W ).

Our main lemma of this section is the following.

Lemma 5.10.1 (gradient bound at random initialization). Fix any ~v ∈ (Rd)n, with proba-

bility at least 1− e−Ω(δm/n) over the randomness of A,
−→
W,B, it satisfies for every ` ∈ [L]:

‖∇̂~vW`
Fi(
−→
W )‖2

F ≤ O
(‖vi‖2

d
×m

)
‖∇̂~vW`

F (
−→
W )‖2

F ≤ O
(‖~v‖2

d
×mn

)

‖∇̂~vWL
F (
−→
W )‖2

F ≥ Ω
(maxi∈[n] ‖vi‖2

dn/δ
×m

)
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5.10.1 Proof of Lemma 5.10.1: Upper Bound

For each i ∈ [n], ` ∈ [L], we can calculate that

∥∥∥∇̂~vW`
Fi(
−→
W )
∥∥∥
F

=
∥∥Di,`(Back

>
i,`+1 ·vi) · h>i,`−1

∥∥
F

=
∥∥Di,`(Back

>
i,`+1 ·vi)

∥∥
2
· ‖hi,`−1‖2

≤ ‖Backi,`+1‖2 · ‖vi‖2 · ‖hi,`−1‖2

≤ ‖BWLDL−1 · · ·Di,`+1W`+1‖2 · ‖vi‖2 · ‖hi,`−1‖2

¬

≤ O(
√
m/d) ·O(1) · ‖vi‖2 .

where inequality ¬ uses Lemma 5.8.4b and Lemma 5.8.1 with high probability. Applying

triangle inequality with respect to all ` ∈ [L], taking square on both sides, and summing up

over all i ∈ [n] finish the proof.
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5.10.2 Proof of Lemma 5.10.1: Lower Bound

Let i∗ = argmaxi∈[n]{‖vi‖}. Recall

∇̂~v[WL]k
F (
−→
W ) =

n∑

i=1

〈Bk, vi〉 · hi,L−1 · 1(WLhi,L−1)k≥0

Let ĥ def
=

hi∗,L−1

‖hi∗,L−1‖
. For analysis purpose, after ĥ is fixed (so after fixing the randomness

of A,W1, . . . ,WL−1), we redefine WLĥ =
√

1− θ2ĝ1 + θĝ2 where ĝ1 and ĝ2 are generated

independently from N(0, 2I
m

). We can do so because the two sides are equal in distribution.

In other words, we can set

W ′
L

def
= WL

(
I − ĥĥ>)−

√
1− θ2ĝ1ĥ

> and W ′′
L

def
= θĝ2ĥ

>,

then we haveWL = W ′
L+W ′′

L. In particular, the randomness ofW ′
L andW ′′

L are independent.

In the remainder of the proof, let us choose θ def
= δ

5n
≤ 1

5
.

We first make two technical claims, and the proof of the first one can be found in

Section 5.10.2.1.

Claim 5.10.2. We have PrW ′L,WL−1,...,W1,A

[
|N2| ≥ δ

40n
m
]
≥ 1− eΩ(δm/n)

N2
def
=

{
k ∈ [m] :

(
|(W ′

Lhi∗,L−1)k| ≤
δ

10n
√
m

)∧(
∀i ∈ [n] \ {i∗}, |

(
W ′
Lhi,L−1

)
k
| ≥ δ

4n
√
m

)}

Claim 5.10.3. Given set N2 ⊂ [m] and ~v, we have

Pr
Bk

[∣∣∣∣
{
k ∈ N2 :

∣∣〈Bk, vi∗〉
∣∣ ≥ ‖vi∗‖√

d

}∣∣∣∣ ≥
|N2|

2

]
≥ 1− e−Ω(|N2|)

Proof of Claim 5.10.3. Observe that each 〈Bk, vi∗〉 follows from N(0, ‖vi∗‖2/d), so with prob-

ability at least 0.68 it satisfies |〈Bk, vi∗〉| ≥ ‖vi∗‖√
d
. Using Chernoff bound we have the desired

claim.
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Combining Claim 5.10.4 and Claim 5.10.3, we can obtain a set N ⊆ [m] satisfying

N
def
=

{
k ∈ [m] :

(
|(W ′

Lhi∗,L−1)k| ≤
δ

10n
√
m

)∧(
∀i ∈ [n] \ {i∗}, |

(
W ′
Lhi,L−1

)
k
| ≥ δ

4n
√
m

)

∧∣∣〈Bk, vi∗〉
∣∣ ≥ ‖vi∗‖√

d

}

of cardinality |N | ≥ δ
100n

m. Let us fix the randomness of W ′
L so that N is fixed. Let k be

any index in N . We can write

∇̂~v[WL]k
F (
−→
W ) =

n∑

i=1

〈Bk, vi〉 · hi,L−1 · 1(W ′Lhi,L−1)k+(W ′′Lhi,L−1)k≥0.

The only remaining source of randomness comes from W ′′
L = θĝ2ĥ

>.

Recalling that θ = 1
5n

and ĝ2 ∼ N(0, 2
m
I), so since θ(ĝ2)k ∼ N(0, 2θ2

m
), using numerical

values of Gaussian CDF, one can verify that

Pr
ĝ2

[
|θ(ĝ2)k| ∈

( δ

9n
√
m
,

δ

5n
√
m

)]
≥ 0.2 .

Let us denote this event of ĝ2 as Ek. Conditioning on Ek happens, recalling ‖hi,L−1‖ ∈

[0.9, 1.1] from Lemma 5.8.1,

• For every i ∈ [n] \ {i∗}, we have

|(W ′′
Lhi,L−1)k| = |(θĝ2ĥ

>hi,L−1)k| ≤ |(θĝ2)k| · ‖hi,L−1‖ <
δ

5n
√
m
· 1.1 < |(W ′

Lhi,L−1)k|

and this means 1(WLhi,L−1)k≥0 = 1(W ′Lhi,L−1)k≥0.

• For i = i∗, we have

|(W ′′
Lhi∗,L−1)k| = |(θĝ2ĥ

>hi∗,L−1)k| = |(θĝ2)k| · ‖hi∗,L−1‖ >
δ

9n
√
m
· 0.9 > |(W ′

Lhi∗,L−1)k|

and this means 1(WLhi∗,L−1)k≥0 6= 1(W ′Lhi∗,L−1)k≥0 with probability exactly 1
2
— this is

because, conditioning on event Ek, the sign of (θĝ2)k is ±1 each with half probability.
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Recall that for every k ∈ N ,

∇̂~v[WL]k
F (
−→
W ) = 〈Bk, vi∗〉 · hi∗,L−1 · 1(WLhi∗,L−1)k≥0︸ ︷︷ ︸

♠

+
∑

i∈[n]\{i∗}

〈Bk, vi〉 · hi,L−1 · 1(WLhi,L−1)k≥0︸ ︷︷ ︸
♣

Now, fix the randomness of A,B,W1, . . . ,WL−1,W
′
L and let ĝ2 be the only randomness.

Conditioning on Ek, we have that each term in ♣ is fixed (i.e., independent of ĝ2) because

1(WLhi,L−1)k≥0 = 1(W ′Lhi,L−1)k≥0. In contrast, conditioning on Ek, the indicator 1(WLhi∗,L−1)k≥0

of the ♠ term may be 1 or 0 each with half probability. This means,

Pr
(ĝ2)k

[
‖∇̂~v[WL]k

F (
−→
W )‖2 ≥ |〈Bk, vi∗〉|2 · ‖hi∗,L−1‖2

∣∣∣ k ∈ N ∧ Ek

]
≥ 1

2
.

Taking into account the fact that |〈Bk, vi∗〉| ≥ ‖vi∗‖√
d

(by definition of N), the fact that

‖hi,L−1‖ ≥ 0.9, and the fact that Pr(ĝ2)k [E] ≥ 0.2, we have

Pr
(ĝ2)k

[
‖∇̂~v[WL]k

F (
−→
W )‖2 ≥ 0.8

‖vi∗‖2

d

∣∣∣ k ∈ N
]
≥ 1

10
.

Using the independence of (ĝ2)k with respect to different k ∈ N , we can apply Chernoff

bound and derive:

Pr
ĝ2

[∑

k∈N

‖∇̂~v[WL]k
F (
−→
W )‖2 ≥ 0.8

‖vi∗‖2

d
· |N |

15

∣∣∣N
]
≥ 1− e−Ω(|N |) .

Finally, using and |N | ≥ δ
100n

m, we have

Pr

[
‖∇̂~vWL

F (
−→
W )‖2

F ≥
‖vi∗‖2

d

δ

2000n
m

]
≥ 1− e−Ω(δm/n) .

We finish the upper bound proof of Lemma 5.10.1. �
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5.10.2.1 Proof of Claim 5.10.4

Claim 5.10.4. We have PrW ′L,WL−1,...,W1,A

[
|N2| ≥ δ

40n
m
]
≥ 1− eΩ(δm/n)

N2
def
=

{
k ∈ [m] :

(
|(W ′

Lhi∗,L−1)k| ≤
δ

10n
√
m

)∧(
∀i ∈ [n] \ {i∗}, |

(
W ′
Lhi,L−1

)
k
| ≥ δ

4n
√
m

)}

Proof of Claim 5.10.4. Throughout the proof we assume WL−1, . . . , A are good enough so

that Lemma 5.8.1 holds (for ε = 0.01) and we fix their randomness. Define

N1
def
=

{
k ∈ [m] : |(W ′

Lhi∗,L−1)k| ≤
δ

10n
√
m

}

Since ‖hi∗,L−1‖2 ≤ 1.1 by Lemma 5.8.1, and since by definition ofW ′
L we have (W ′

Lhi∗,L−1)k ∼

N(0,
2(1−θ2)‖hi∗,L−1‖2

m
). By standard properties of Gaussian CDF (see Fact 5.10.5), we know

|(W ′
Lhi∗,L−1)k| ≤ δ

10n
√
m

with probability at least δ
25n

for each k ∈ [m]. By Chernoff bound,

Pr
W ′L

[
|N1| ≥

δ

30n
m

]
≥ 1− e−Ω(δm/n)

Next, suppose we fix the randomness of W ′
Lĥ. Define

N2
def
=

{
k ∈ N1 : ∀i ∈ [n] \ {i∗}, |

(
W ′
Lhi,L−1

)
k
| ≥ δ

4n
√
m

}

For each k ∈ N1 and i ∈ [n] \ {i∗}, we can write

W ′
Lhi,L−1 = W ′

Lĥ(ĥ>hi,L−1) +W ′
L(I − ĥĥ>)hi,L−1 .

Above, the first term on the right hand side is fixed (because we have fixed the randomness

of W ′
Lĥ); however, W ′

L(I − ĥĥ>)hi,L−1 is still fresh new random Gaussian. In symbols,

W ′
Lhi,L−1 ∼ N

(
W ′
Lĥĥ

>hi,L−1,
2‖(I − ĥĥ>)hi,L−1‖2

m
I

)
.
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According to Lemma 5.8.5, the variance here is at least 2
m
‖(I − ĥĥ>)hi,L−1‖2 ≥ δ2

2m
. Using

standard properties of Gaussian CDF (see Fact 5.10.5), we know |(W ′
Lhi,L−1)k| ≥ δ

4n
√
m

with

probability at least 1− 1
8n

for each k ∈ [m]. By union bound, for this k ∈ [m], with probability

at least 7
8
we know |(W ′

Lhi,L−1)k| ≥ δ
4n
√
m

for all i ∈ [n] \ {i∗}. By Chernoff bound (over all

k ∈ N1), we conclude that

Pr
W ′L

[
|N2| ≥

3

4
|N1|

∣∣∣N1

]
≥ 1− e−Ω(|N1|) = 1− e−Ω(δm/n) .

Combining the two bounds we finish the proof.

Fact 5.10.5. Suppose x ∼ N(0, σ2) is a Gaussian random variable. For any t ∈ (0, σ) we

have

Pr[x ≥ t] ∈
[

1
2
(1− 4

5
t
σ
), 1

2
(1− 2

3
t
σ
)
]
.

Similarly, if x ∼ N(µ, σ2), for any t ∈ (0, σ), we have

Pr[|x| ≥ t] ∈
[
1− 4

5
t
σ
, 1− 2

3
t
σ

]
.
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5.11 Theorem 5.11.1: Gradient Bound at After Perturbation

In this section we prove our main theorem on the gradient upper and lower bounds.

Theorem 5.11.1 (gradient bound, restated). Let ω def
= O

(
δ3/2

n9/2L6 log3 m

)
. With probability at

least 1 − e−Ω(mω2/3L) over the randomness of
−→
W (0), A,B, it satisfies for every ` ∈ [L], every

i ∈ [n], and every
−→
W with ‖−→W −−→W (0)‖2 ≤ ω,

‖∇W`
Fi(
−→
W )‖2

F ≤ O
(Fi(
−→
W )

d
×m

)
‖∇W`

F (
−→
W )‖2

F ≤ O
(F (
−→
W )

d
×mn

)

‖∇WL
F (
−→
W )‖2

F ≥ Ω
(maxi∈[n] Fi(

−→
W )

dn/δ
×m

)
.

Remark 5.11.1. Our Theorem 5.11.1 only gives gradient lower bound on ‖∇WL
F (
−→
W )‖F . In

principle, one can derive similar lower bounds on ‖∇W`
F (
−→
W )‖F for all ` = 1, 2, . . . , L − 1.

However, the proof will be significantly more involved. We choose not to derive those bounds

at the expense of losing a polynomial factor in L in the final running time. For readers

interested in the techniques for obtaining those bounds, we refer to them to the “randomness

decomposition” part of [AZLS18].

Proof of Theorem 5.11.1. Again we denote by D̃i,` and Di,` respectively the sign matrix at

the initialization
−→
W (0) and at the current point

−→
W ; and by h̃i,` and hi,` respectively the

forward vector at
−→
W (0) and at

−→
W . Let us choose s = O(mω2/3L) which bounds the sparsity

of ‖Di,` − D̃i,`‖0 by Lemma 5.9.1b. Recall

∇̂~vW`
F (
−→
W (0))− ∇̂~vW`

F (
−→
W )

=
n∑

i=1

((
v>i BD̃i,LW̃L · · · W̃`+1D̃i,`

)>
(h̃i,`−1)> −

(
v>i BDi,LWL · · ·W`+1Di,`

)>
(hi,`−1)>

)

(5.11)
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By Lemma 5.9.6, we know that

‖v>i BD̃i,LW̃L · · · D̃i,aW̃aD̃i,a−1−v>i BDi,LWL · · ·Di,aWaDi,a−1‖ ≤ O(ω1/3L2
√
m logm/

√
d)·‖vi‖

By Lemma 5.8.4b we know

‖v>i BD̃i,LW̃L · · · D̃i,aW̃aD̃i,a−1‖ ≤ O(
√
m/d) · ‖vi‖

By Lemma 5.8.1 and Lemma 5.9.1c, we have

‖hi,`−1‖ ≤ 1.1 and ‖hi,`−1 − h̃i,`−1‖ ≤ O(ωL5/2
√

logm)

Together, they imply

∥∥∥∇̂~vW`
F (
−→
W (0))− ∇̂~vW`

F (
−→
W )
∥∥∥

2

F
≤ n‖~v‖2 ·O

(
ω1/3L2

√
m logm/

√
d+

√
m/d× ωL5/2

√
logm

)2

≤ n‖~v‖2 ·O
(
m logm

d
· ω2/3L4

)
. (5.12)

With our parameter assumption on ω, this together with Lemma 5.10.1 implies the same

upper and lower bounds at point
−→
W =

−→
W (0) +

−→
W ′:

‖∇̂~vW`
Fi(
−→
W (0) +

−→
W ′)‖2

F ≤ O
(‖vi‖2

d
×m

)
‖∇̂~vW`

F (
−→
W (0) +

−→
W ′)‖2

F ≤ O
(‖~v‖2

d
×mn

)

‖∇̂~vWL
F (
−→
W (0) +

−→
W ′)‖2

F ≥ Ω
(maxi∈[n] ‖vi‖2

dn/δ
×m

)
.

Finally, taking ε-net over all possible vectors ~v = (v1, . . . , vn) ∈ (Rd)n, we know that the

above bounds hold not only for fixed ~v but for all ~v. In particular, we can now plug in the

choice of vi = lossi = Bhi,L− y∗i and it implies our desired bounds on the true gradients.
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5.12 Theorem 5.12.1: Objective Semi-Smoothness

The purpose of this section is to prove

Theorem 5.12.1 (objective semi-smoothness, restated). Let ω ∈
[
Ω( d3/2

m3/2L3/2 log3/2m
), O( 1

L4.5 log3m
)
]

and
−→
W (0), A,B be at random initialization. With probability at least 1− e−Ω(mω2/3L) over the

randomness of
−→
W (0), A,B, we have for every

−̆→
W ∈ (Rm×m)L with ‖−̆→W −−→W (0)‖2 ≤ ω, and for

every
−→
W ′ ∈ (Rm×m)L with ‖−→W ′‖2 ≤ ω, we have

F (
−̆→
W +

−→
W ′) ≤ F (

−̆→
W ) + 〈∇F (

−̆→
W ),
−→
W ′〉+

√
nF (
−̆→
W ) · ω

1/3L2
√
m logm√
d

·O(‖−→W ′‖2) +O
(nL2m

d

)
‖−→W ′‖2

2

We introduce the following notations before we go to proofs.

Definition 5.12.1. For i ∈ [n] and ` ∈ [L]:

g̃i,0 = Axi ği,0 = Axi gi,0 = Axi

h̃i,0 = φ(Axi) ~i,0 = φ(Axi) hi,0 = φ(Axi)

g̃i,` = W̃`h̃i,`−1 ği,` = W̆`~i,`−1 gi,` = (W̆` +W ′
`)hi,`−1

h̃i,` = φ(W̃`h̃i,`−1) ~i,` = φ(W̆`~i,`−1) hi,` = φ((W̆` +W ′
`)hi,`−1)

˘lossi = B~i,L − y∗i

Define diagonal matrices D̃i,` ∈ Rm×m and D̆i,` ∈ Rm×m respectively by letting

(D̃i,`)k,k = 1(g̃i,`)k≥0 and (D̆i,`)k,k = 1(ği,`)k≥0,∀k ∈ [m].

The following claim gives rise to a new recursive formula to calculate hi,` − ~i,`.
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Claim 5.12.2. There exist diagonal matrices D′′i,` ∈ Rm×m with entries in [−1, 1] such that,

∀i ∈ [n], ∀` ∈ [L] : hi,` − ~i,` =
∑̀

a=1

(D̆i,` +D′′i,`)W̆` · · · W̆a+1(D̆i,a +D′′i,a)W
′
ahi,a−1 (5.13)

Furthermore, we have ‖hi,`−~i,`‖ ≤ O(L1.5)‖W ′‖2, ‖Bhi,`−B~i,`‖ ≤ O(L
√
m/d)‖W ′‖2 and

‖D′′i,`‖0 ≤ O(mω2/3L).

Proof of Theorem 5.12.1. First of all, since

1

2
‖Bhi,L − y∗i ‖2 =

1

2
‖ ˘lossi +B(hi,L − ~i,L)‖2 =

1

2
‖ ˘lossi‖2 + ˘loss>i B(hi,L − ~i,L) +

1

2
‖B(hi,L − ~i,L)‖2

(5.14)

we can write

F (
−̆→
W +

−→
W ′)− F (

−→
W )− 〈∇F (

−→
W ),
−→
W ′〉

¬
= −〈∇F (

−̆→
W ),
−→
W ′〉+

1

2

n∑

i=1

‖Bhi,L − y∗i,L‖2 − ‖B~i,L − y∗i,L‖2


= −〈∇F (

−̆→
W ),
−→
W ′〉+

n∑

i=1

˘loss>i B(hi,L − ~i,L) +
1

2
‖B(hi,L − ~i,L)‖2

®
=

n∑

i=1

˘loss>i B

(
(hi,L − ~i,L)−

L∑

`=1

D̆i,LW̆L · · · W̆`+1D̆i,`W
′
`~i,`−1

)
+

1

2
‖B(hi,L − ~i,L)‖2

¯
=

n∑

i=1

˘loss>i B

(
L∑

`=1

(D̆i,L +D′′i,L)W̆L · · · W̆`+1(D̆i,` +D′′i,`)W
′
`hi,`−1 − D̆i,LW̆L · · · W̆`+1D̆i,`W

′
`~i,`−1

)

+
1

2

n∑

i=1

‖B(hi,L − ~i,L)‖2 (5.15)

Above, ¬ is by the definition of F (·);  is by (5.14); ® is by the definition of ∇F (·) (see

Fact 5.2.3 for an explicit form of the gradient).

We next bound the RHS of (5.15). We first note that by Lemma 5.9.1b, we have

‖D̆i,` +D′′i,` − D̃i,`‖0 ≤ s and ‖D̆i,` − D̃i,`‖0 ≤ s for s = O(mω2/3L).
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We ignore subscripts in i for notational convenience. We first use Claim 5.12.2 to get

‖B(hL − ~L)‖ ≤ O(L
√
m/d) · ‖−→W ′‖2 . (5.16)

Next we calculate that

∣∣∣ ˘loss>i B(D̆L +D′′L)W̆L · · · (D̆` +D′′` )W
′
`h`−1 − ˘loss>i BD̆LW̆L · · · D̆`W

′
`h`−1

∣∣∣

≤ ‖ ˘lossi‖ ·
∥∥∥B(D̆L +D′′L)W̆L · · · W̆`−1(D̆` +D′′` )−BD̆LW̆L · · · W̆`−1D̆`

∥∥∥
2︸ ︷︷ ︸

Lemma 5.9.6 with s = O(mω2/3L)

·‖W ′
`h`−1‖

≤ ‖ ˘lossi‖ ·O
(√

L3ω2/3Lm logm√
d

)
·O(‖W ′

`‖2) . (5.17)

Finally, we also have

∣∣∣ ˘loss>i BD̆LW̆L · · · D̆`W
′
`(h`−1 − ~`−1)

∣∣∣
¬

≤ ‖ ˘lossi‖ ·O
(√

m/d+
ω1/3L2

√
m logm√
d

)
· ‖W ′

`‖2 · ‖h` − ~`‖2



≤ O(L0.5
√
m/d) · ‖ ˘lossi‖2 · L1.5‖W ′

`‖2 (5.18)

where ¬ uses Lemma 5.8.4b (and Lemma 5.9.6 for bounding the perturbation) and  uses

Claim 5.12.2 to bound ‖h` − ~`‖2 and our choice of ω.

Putting (5.16), (5.17) and (5.18) back to (5.15), and using triangle inequality, we have

the desired result.
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5.12.1 Proof of Claim 5.12.2

We first present a simple proposition about the ReLU function.

Proposition 5.12.3. Given vectors a, b ∈ Rm and D ∈ Rm×m the diagonal matrix where

Dk,k = 1ak≥0. Then, then there exists a diagonal matrix D′′ ∈ Rm×m with

• |Dk,k +D′′k,k| ≤ 1 and |D′′k,k| ≤ 1 for every k ∈ [m],

• D′′k,k 6= 0 only when 1ak≥0 6= 1bk≥0, and

• φ(a)− φ(b) = (D +D′′)(a− b)

Proof. We verify coordinate by coordinate for each k ∈ [m].

• If ak ≥ 0 and bk ≥ 0, then (φ(a)− φ(b))k = ak − bk =
(
D(a− b)

)
k
.

• If ak < 0 and bk < 0, then (φ(a)− φ(b))k = 0− 0 =
(
D(a− b)

)
k
.

• If ak ≥ 0 and bk < 0, then (φ(a) − φ(b))k = ak = (ak − bk) + bk
ak−bk

(ak − bk) =
(
D(a− b) +D′′(a− b)

)
k
, if we define (D′′)k,k = bk

ak−bk
∈ [−1, 0].

• If ak < 0 and bk ≥ 0, then (φ(a) − φ(b))k = −bk = 0 · (ak − bk) − bk
bk−ak

(ak − bk) =
(
D(a− b) +D′′(a− b)

)
k
, if we define (D′′)k,k = bk

bk−ak
∈ [0, 1].
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Proof of Claim 5.12.2. We ignore the subscript in i for cleanness, and calculate that

h` − ~`
¬
= φ((W̆` +W ′

`)h`−1)− φ(W̆`~`−1)


= (D̆` +D′′` )

(
(W̆` +W ′

`)h`−1 − W̆`~`−1

)

= (D̆` +D′′` )W̆`(h`−1 − ~`−1) + (D̆` +D′′` )W
′
`h`−1

®
=
∑̀

a=1

(D̆` +D′′` )W̆` · · · W̆a+1(D̆a +D′′a)W
′
aha−1

Above, ¬ is by the recursive definition of h` and ~`;  is by Proposition 5.12.3 and D′′`

is defined according to Proposition 5.12.3; and inequality ® is by recursively computing

h`−1 − ~`−1. As for the remaining properties:

• We have ‖D′′` ‖0 ≤ O(mω2/3L).

This is because, (D′′` )k,k is non-zero only at the coordinates k ∈ [m] where the signs

of ğ` and g` are opposite (by Proposition 5.12.3). Such a coordinate k must satisfy

either (D̃`)k,k 6= (D̆`)k,k or (D̃`)k,k 6= (D`)k,k, and therefore by Lemma 5.9.1b there are

at most O(mω2/3L) such coordinates k.

• We have ‖h` − ~`‖ ≤ O(L1.5)‖−→W ′‖2.

This is because we have
∥∥(D̆`+D

′′
` )W̆` · · · W̆a+1(D̆a+D

′′
a)
∥∥

2
≤ O(

√
L) from Lemma 5.9.5b,

we have ‖ha−1‖ ≤ O(1) (by ‖h̃a−1‖ ≤ O(1) from Lemma 5.8.1 and ‖h̃a−1−ha−1‖ ≤ o(1)

from Lemma 5.9.1c); and and ‖W ′
aha−1‖ ≤ ‖W ′

a‖2‖ha−1‖ ≤ O(‖−→W ′‖2).

• We have ‖Bh` −B~`‖ ≤ O(L
√
m/d)‖−→W ′‖2.

This is because we have
∥∥B(D̆` + D′′` )W̆` · · · W̆a+1(D̆a + D′′a)

∥∥
2
≤ O(

√
m/d) from

Lemma 5.8.4b (along with perturbation bound Lemma 5.9.6), we have ‖ha−1‖ ≤ O(1)
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(by ‖h̃a−1‖ ≤ O(1) from Lemma 5.8.1 and ‖h̃a−1 − ha−1‖ ≤ o(1) from Lemma 5.9.1c);

and and ‖W ′
aha−1‖ ≤ ‖W ′

a‖2‖ha−1‖ ≤ O(‖−→W ′‖2).
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5.13 Theorem 5.13.1: Convergence Rate of GD

Theorem 5.13.1 (gradient descent, restated). For any ε ∈ (0, 1], δ ∈
(
0, O( 1

L
)
]
. Let m ≥

Ω̃
(

poly(n, L, δ−1)d
)
, η = Θ

(
dδ

poly(n,L)m

)
, and

−→
W (0), A,B are at random initialization. Then,

with probability at least 1−e−Ω(log2 m), suppose we start at
−→
W (0) and for each t = 0, 1, . . . , T−1,

−→
W (t+1) =

−→
W (t) − η∇F (

−→
W (t)) .

Then, it satisfies

F (
−→
W (T )) ≤ ε for T = Θ

(
poly(n, L)

δ2
log

1

ε

)
.

In other words, the training loss drops to ε in a linear convergence speed.

Proof of Theorem 5.13.1. Using Lemma 5.8.1 we have ‖hi,L‖2 ≤ 1.1 and then using the

randomness of B, it is easy to show that ‖Bh̃i,L−y∗i ‖2 ≤ O(log2m) with at least 1−e−Ω(log2m)

(where h̃i,L is defined with respect to the random initialization
−→
W (0)), and therefore

F (
−→
W (0)) ≤ O(n log2m) .

Let us assume for every t = 0, 1, . . . , T − 1, the following holds

‖−→W (t) −−→W (0)‖F ≤ ω
def
= O

(
n3
√
d

δ
√
m

logm

)
. (5.19)

We shall prove the convergence of GD assuming (5.19) holds, so that previous statements

such as Theorem 5.12.1 and Theorem 5.11.1 can be applied. At the end of the proof, we

shall verify that (5.19) is satisfied.
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To make the proof simple, we choose

m ≥ Ω
(n24L12d log5m

δ8

)
,

η = Θ
( dδ

n4L2m

)
,

T = Θ

(
n6L2

δ2
log

1

ε

)

We emphasize that

• Most of the polynomial dependency in n, L, δ−1 come from the non-smoothness of

the ReLU activation; if one instead studies smooth activations, their power can be

significantly reduced. For instance, for smooth activation functions, one does not need

the semi-smoothness Theorem 5.12.1.

• We have not tried to tighten the polynomial dependency on n, L, δ−1. We are aware of

many ways to improve the constant in the exponents at the expense of complicating

the proofs. Since the main focus of this paper is to derive the first polynomial running

time, we do not include such improvements.

Letting ∇t = ∇F (
−→
W (t)), we calculate that

F (
−→
W (t+1))

¬

≤ F (
−→
W (t))− η‖∇F (

−→
W (t))‖2

F + η

√
nF (
−→
W (t)) ·O

(
ω1/3L2

√
m logm√
d

)
· ‖∇t‖2 +O

(
η2nL

2m

d

)
‖∇t‖2

2



≤ F (
−→
W (t))− η‖∇F (

−→
W (t))‖2

F +O

(
ηnL2mω1/3

√
logm

d
+
η2n2L2m2

d2

)
· F (
−→
W (t))

®

≤
(

1− Ω
(ηδm
dn2

))
F (
−→
W (t)) . (5.20)
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Above, ¬ uses Theorem 5.12.1;  uses Theorem 5.11.1 (which gives ‖∇t‖2
2 ≤ max`∈[L] ‖∇W`

F (
−→
W (t))‖2

F ≤

O
(F (
−→
W (t))
d
×mn

)
); ® use gradient lower bound from Theorem 5.11.1 and our choice of η. In

other words, after T = Θ( dn
2

ηδm
) log n logm

ε
iterations we have F (

−→
W (T )) ≤ ε.

We need to verify for each t, ‖−→W (t) − −→W (0)‖F is small so that (5.19) holds. By

Theorem 5.11.1,

‖W (t)
` −W

(0)
` ‖F ≤

t−1∑

i=0

‖η∇W`
F (
−→
W (i))‖F ≤ O(η

√
nm/d) ·

t−1∑

i=0

√
F (
−→
W (i))

≤ O(η
√
nm/d) ·Θ(

dn2

ηδm
) ·O(

√
n log2m) ≤ O

(
n3
√
d

δ
√
m

logm

)
.

where the last step follows by our choice of T .
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5.14 Theorem 5.14.1: Convergence Rate of SGD

Theorem 5.14.1 (stochastic gradient descent, stated). For any ε ∈ (0, 1], δ ∈
(
0, O( 1

L
)
]
,

b ∈ [n]. Let m ≥ Ω̃
(poly(n,L,δ−1)·d

b

)
, η def

= Θ( bδd
poly(n,L)m log2m

), and
−→
W (0), A,B are at random

initialization. Suppose we start at W (0) and for each t = 0, 1, . . . , T − 1,

W (t+1) = W (t) − η · n|St|
∑

i∈St

∇F (W (t))

(for a random subset St ⊆ [n] of fixed cardinality b.)

Then, it satisfies with probability at least 1− e−Ω(log2 m) over the randomness of S1, . . . , ST :

F (W (T )) ≤ ε for all T = Θ
(poly(n, L) log2m

bδ2
log

n logm

ε

)
.

The proof of Theorem 5.14.1 is the same as Theorem 5.13.1 plus the careful use of martingale

concentration.

Proof of Theorem 5.14.1. Using similar argument as the proof of Theorem 5.13.1, we have

with at least 1− e−Ω(log2 m) probability

F (
−→
W (0)) ≤ O(n log2m) .

Let us assume for every t = 0, 1, . . . , T − 1, the following holds

‖−→W (t) −−→W (0)‖F ≤ ω
def
= O

(
n3.5
√
d

δ
√
bm

logm

)
. (5.21)

We shall prove the convergence of SGD assuming (5.21) holds, so that previous statements

such as Theorem 5.12.1 and Theorem 5.11.1 can be applied. At the end of the proof, we

shall verify that (5.21) is satisfied throughout the SGD with high probability.
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To make the proof simple, we choose

m ≥ Ω
(n24L12bd log5m

δ8

)
,

η = Θ(
bδd

n5L2m log2m
),

T = Θ
( dn2

ηδm
log

n logm

ε

)

= Θ
(n7L2 log2m

bδ2
log

n logm

ε

)

We emphasize that

• Most of the polynomial dependency in n, L, δ−1 come from the non-smoothness of

the ReLU activation; if one instead studies smooth activations, their power can be

significantly reduced. For instance, for smooth activation functions, one does not need

the semi-smoothness Theorem 5.12.1.

• We have not tried to tighten the polynomial dependency on n, L, δ−1. We are aware of

many ways to improve the constant in the exponents at the expense of complicating

the proofs. Since the main focus of this paper is to derive the first polynomial running

time, we do not include such improvements.

For each t = 0, 1, . . . , T − 1, using the same notation as Theorem 5.13.1, except that
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we choose ∇t = n
|St|
∑

i∈St ∇Fi(
−→
W (t)). We have ESt [∇t] = ∇F (

−→
W (t)) and therefore

E
St

[F (
−→
W (t+1))]

¬

≤ F (
−→
W (t))− η‖∇F (

−→
W (t))‖2

F + η

√
nF (
−→
W (t)) ·O

(
ω1/3L2

√
m logm√
d

)
· E
St

[‖∇t‖2]

+O
(
η2nL

2m

d

)
E
St

[‖∇t‖2
2]



≤ F (
−→
W (t))− η‖∇t‖2

F +O

(
ηnL2mω1/3

√
logm

d
+
η2n2L2m2

d2

)
· F (
−→
W (t))

®

≤
(

1− Ω
(ηδm
dn2

))
F (
−→
W (t)) . (5.22)

Above, ¬ uses Theorem 5.12.1 and ESt [∇t] = ∇F (
−→
W (t));  uses Theorem 5.11.1 which give

E
St

[
‖∇t‖2

2

]
≤ n2

b
E
St

[∑

i∈St

max
`∈[L]

∥∥∥∇W`
Fi(
−→
W (t))

∥∥∥
2

F

]
≤ O

(nmF (
−→
W (t))

d

)

E
St

[
‖∇t‖2

]
≤
(
E
St

[
‖∇t‖2

2

])1/2

≤ O
((nmF (

−→
W (t))

d

)1/2
)

;

® use gradient lower bound from Theorem 5.11.1 and our choice of η.
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At the same time, we also have the following absolute value bound:

F (
−→
W (t+1))

¬

≤ F (
−→
W (t)) + η‖∇F (

−→
W (t))‖F · ‖∇t‖F

+ η

√
nF (
−→
W (t)) ·O

(
ω1/3L2

√
m logm√
d

)
· ‖∇t‖2 +O

(
η2nL

2m

d

)
· ‖∇t‖2

2



≤ F (
−→
W (t)) + η ·O



√
LF (
−→
W (t))mn

d


 ·O



√
n2mLF (

−→
W (t))

bd




+ η

√
nF (
−→
W (t)) ·O

(
ω1/3L2

√
m logm√
d

)
·

√
n2mF (

−→
W (t))

√
bd

+O
(
η2nL

2m

d

)
· n

2

b
O
(mF (

−→
W (t))

d

)

®

≤
(

1 +O
(ηLmn1.5

√
bd

+
ηn1.5ω1/3L2m

√
logm√

bd
+
η2n3L2m2

d2b

))
F (
−→
W (t)) . (5.23)

Above, ¬ uses Theorem 5.12.1 and Cauchy-Schwarz 〈A,B〉 ≤ ‖A‖F‖B‖F , and  uses The-

orem 5.11.1 which give

‖∇t‖2
2 ≤

n2

b

[∑

i∈St

max
`∈[L]

∥∥∥∇W`
Fi(
−→
W (t))

∥∥∥
2

F

]
≤ n2

b
O
(mF (

−→
W (t))

d

)

‖∇t‖2
F ≤

n2

b

[∑

i∈St

L∑

`=1

∥∥∥∇W`
Fi(
−→
W (t))

∥∥∥
2

F

]
≤ Ln2

b
O
(mF (

−→
W (t))

d

)

and the derivation from (5.22).

Next, taking logarithm on both sides of (5.22) and (5.23), and using Jensen’s inequal-

ity E[logX] ≤ logE[X], we have

E[logF (
−→
W (t+1))] ≤ logF (

−→
W (t))− Ω

(ηδm
dn2

)
and logF (

−→
W (t+1)) ≤ logF (

−→
W (t)) +O

(ηLmn1.5

√
bd

)

By (one-sided) martingale concentration, we have with probability at least 1 − e−Ω(log2m),

for every t = 1, 2, . . . , T :

logF (
−→
W (t))− E[logF (

−→
W (t))] ≤

√
t ·O

(ηLmn1.5

√
bd

)
· logm .
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This implies for every t = 1, 2, . . . , T , we have

logF (
−→
W (t)) ≤

√
t ·O

(ηLmn1.5

√
bd

)
· logm+ logF (

−→
W (0))− Ω

(ηδm
dn2

)
t

¬
= logF (

−→
W (0))−

(√
ηδm

dn2
· Ω(
√
t)−

√
dn2

ηδm
·O
(ηLmn1.5

√
bd

logm
))2

+O
(ηL2mn5

bδd
log2m

)



≤ logF (
−→
W (0)) + 1−

(√
ηδm

dn2
· Ω(
√
t)−

√
dn2

ηδm
·O
(ηLmn1.5

√
bd

logm
))2

®

≤ logF (
−→
W (0)) + 1− 1

[
t ≥ Θ

(L2n7

bδ2
log2m

)]
· Ω
(
ηδm

dn2
t

)

¯

≤ logF (
−→
W (0)) + 1− 1

[
t ≥ Θ

(L2n7

bδ2
log2m

)]
· Ω
(

bδ2

L2n7 log2m
t

)
.

Above, in ¬ we have used 2a
√
t− b2t = −(b

√
t−a/b)2 +a2/b2; in  we have used our choice

of η; in ® we have used −(a
√
t−b)2 ≤ −1[t ≥ 2b2/a2] · a2t

4
; and in ¯ we have used our choice

of η again. We can read two things from the above formula:

• If T ≥ Ω
(
L2n7

bδ2 log2m log n logm
ε

)
then we have

logF (
−→
W (T )) ≤ logO(n log2m)− Ω

(
log

n log2m

ε

)
≤ log ε .

so F (
−→
W (T )) ≤ ε.

• Letting T0 = Ω
(
L2n7

bδ2 log2m
)
, we have

t−1∑

i=0

√
F (
−→
W (i)) ≤

√
n log2m · 2T0 +

√
n log2m

2
· 2T0 +

√
n log2m

4
· 2T0 + · · · ≤ O

(√
n log2mT0

)
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and therefore one can verify that ‖−→W (t) −−→W (0)‖F is small and (5.21) holds: by Theo-

rem 5.11.1,

‖W (t)
` −W

(0)
` ‖F ≤

t−1∑

i=0

∥∥∥η n

|St|
∑

i∈St

∇W`
Fi(
−→
W (t))

∥∥∥
F
≤ O

(
η

√
n2m

bd

)
·
t−1∑

i=0

√
F (
−→
W (i))

≤ O

(
η

√
n2m

bd

)
·O(T0

√
n logm) ≤ O

(
n3.5
√
d

δ
√
bm

logm

)
.
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5.15 Theorem 5.15.1: Equivalence to Neural Tangent Kernel

Recall on input x ∈ Rd, the network output y(
−→
W ;x)

def
= y = BhL ∈ Rd is a function

of the weights
−→
W . The neural tangent kernel (NTK) [JGH18] is usually referred to as the

feature space defined by the network gradient at random initialization. In other words, for

the j-th output dimension,

• the NTK kernel function Kntk
j (x, x̃)

def
= 〈∇yj(

−→
W (0);x),∇yj(

−→
W (0); x̃)〉

• the NTK objective yntkj (
−→
W ′;x)

def
= 〈∇yj(

−→
W (0);x),

−→
W ′〉.

We have the following theorem whose proof is subsumed by the proofs of Theorem 5.11.1

and 5.12.1. We prove it here for completeness’ sake.

Theorem 5.15.1. Let
−→
W (0), A,B be at random initialization. For every fixed unit vector

x ∈ Rd, every (small) parameter ω ∈
[
Ω( d3/2

m3/2L3/2 log3/2m
), O( 1

L4.5 log3m
)
]
, with probability at

least 1− e−Ω(mω2/3L) over
−→
W (0), A,B, we have for all

−→
W ′ ∈ (Rm×m)L with ‖−→W ′‖2 ≤ ω, for all

j ∈ [d],

(a) ‖∇yj(
−→
W (0) +

−→
W ′;x)−∇yntkj (

−→
W ′;x)‖F ≤ O

(√
logm · ω1/3L3

)
· ‖∇yntkj (

−→
W ′;x)‖F ; and

(b) yj(
−→
W (0) +

−→
W ′;x) = yj(

−→
W (0);x) + yntkj (

−→
W ′;x) +O

(
L3ω4/3

√
m logm√
d

)
.

(c) If x, x̃ ∈ Rd are two fixed unit vectors, and ω ≤ O( 1

L9 log3/2m
), then

∣∣〈∇yj(
−→
W (0) +

−→
W ′;x),∇yj(

−→
W (0) +

−→
W ′; x̃)

〉
−Kntk

j (x, x̃)
∣∣

≤ O
(√

logm · ω1/3L3
)
·
√
Kntk
j (x, x)Kntk

j (x̃, x̃) .
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Proof of Theorem 5.15.1. As before we denote by D̃1, . . . D̃L and h̃1, . . . , h̃L the diagonal sign

matrices and forward vectors determined at random initialization
−→
W (0) and by D1, . . . , DL

and h1, . . . , hL those determined at
−→
W

def
=
−→
W (0) +

−→
W ′. Recall ‖D′`‖0 = ‖D` − D̃`‖0 ≤ s

def
=

O(mω2/3L) from Lemma 5.9.1b.

(a) Let ej ∈ Rd be the j-th basis vector and ` be in [L]. We have

∇W`
yntkj (
−→
W ′;x)−∇W`

yj(
−→
W (0) +

−→
W ′;x)

=
(
e>j BD̃LW̃L · · · W̃`+1D̃`

)>
(h̃`−1)> −

(
e>j BDLWL · · ·W`+1D`

)>
(h`−1)>

This difference matrix is precisely (5.11) (by setting n = 1 and v = ej). Using the

bound (5.12) we have its Frobenius norm is at most O
(√

m logm/d · ω1/3L2
)
. On the

other hand, one can calculate for every k ∈ [m],

∇[WL]ky
ntk
j (
−→
W ′;x) = (B>ej)k · h̃L−1 · 1〈[WL]k,h̃L−1〉≥0 .

We already know ‖h̃L−1‖ ≥ Ω(1) from Lemma 5.8.1. Now, regardless of the randomness

of h̃L−1, we have 1〈[WL]k,h̃L−1〉≥0 = 1 with exactly half probability; also, regardless of

the randomness of
−→
W (0) and A, we have (B>ej)k ∼ N(0, 1

d
). Therefore, we conclude

that with probability at least 1 − e−Ω(m) it satisfies ‖∇WL
yntkj (
−→
W ′;x)‖2

F ≥ Ω(m/d) .

Putting the two abounds together we finish the proof.

(b) This statement can be derived from (5.15), (5.17) and (5.18). For completeness’ sake,
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below we provide a direct proof without invoking them. We first calculate that

∣∣∣yj(
−→
W (0) +

−→
W ′;x)− e>j BD̃LWL · · · D̃1W1x

∣∣∣ =

∣∣∣∣∣
L∑

`=1

e>j BD̃LWL · · · D̃`+1W`+1D
′
`g`−1

∣∣∣∣∣

≤
L∑

`=1

(∥∥∥BD̃LW̃L · · · D̃`+1W̃`+1D
′
`

∥∥∥
2︸ ︷︷ ︸

Lemma 5.8.4a

+
∥∥∥BD̃LW̃L · · · D̃`+1W̃`+1 −BD̃LWL · · · D̃`+1W`+1

∥∥∥
2︸ ︷︷ ︸

Lemma 5.9.6

)
· ‖D′`g`−1‖︸ ︷︷ ︸
Lemma 5.9.1b

≤ L ·
(
O
(√s logm√

d

)
+O

(
ωL1.5

√
m√
d

))
·O(ωL3/2) ≤ O

(L3ω4/3
√
m logm√
d

)
(5.24)

We next calculate that

∣∣∣e>j BD̃LWL · · · D̃1W1x− yj(
−→
W (0))− yntk(−→W ′;x)

∣∣∣

=

∣∣∣∣∣
L∑

`=1

e>j BD̃LWL · · ·W`+1D̃`W
′
`h̃`−1 − e>j BD̃LW̃L · · · W̃`+1D̃`W

′
`h̃`−1

∣∣∣∣∣

≤
L∑

`=1

∥∥∥B
(
D̃LWL · · ·W`+1D̃` − D̃LW̃L · · · W̃`+1D̃`

)∥∥∥
2︸ ︷︷ ︸

Lemma 5.9.6

·‖W ′
`‖2 · ‖h̃`−1‖︸ ︷︷ ︸

Lemma 5.8.1

≤ L ·O
(
ωL1.5

√
m√
d

)
· ω ·O(1) ≤ O

(
ω2L2.5

√
m√
d

)
(5.25)

Putting (5.24) and (5.25) together finishes the proof.

(c) This is a direct corollary of (a).
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5.16 Extension to Other Loss Functions

For simplicity, in them main body of this paper we have used the `2 regression loss.

Our results generalize easily to other Lipschitz smooth (but possibly nonconvex) loss func-

tions.

Suppose we are given loss function f(z; y) that takes as input a neural-network output

z ∈ Rd and a label y. Then, our training objective for the i-th training sample becomes

Fi(W ) = f(Bhi,L; y∗i ). We redefine the loss vector lossi
def
= ∇f(Bhi,L; y∗i ) ∈ Rd (where the

gradient is with respect to z). Note that if f(z; y) = 1
2
‖z − y‖2 is the `2 loss, then this

notion coincides with Section 5.2. We assume that f(z; y) is 1-Lipscthiz (upper) smooth

with respect to z.17

All the results in Section 5.8, 5.9 and 5.10 remain unchanged. Section 5.11 also

remains unchanged, except we need to restate Theorem 5.11.1 with respect to this new

notation:

‖∇W`
Fi(
−→
W )‖2

F ≤ O
(‖ lossi ‖2

d
×m

)
‖∇W`

F (
−→
W )‖2

F ≤ O
(‖ loss ‖2

d
×mn

)

‖∇WL
F (
−→
W )‖2

F ≥ Ω
(maxi∈[n] ‖ lossi ‖2

dn/δ
×m

)
.

Section 5.12 also remains unchanged, except that we need to replace the precise definition

of `2 loss in (5.14) with the semi-smoothness condition:

Fi(
−→
W ) = f(Bhi,L; y∗i ) ≤ f(B~i,L; y∗i ) + 〈∇f(B~i,L, y∗i ), B(hi,L − ~i,L)〉+

1

2
‖B(hi,L − ~i,L)‖2

= Fi(
−̆→
W ) + 〈 ˘lossi, B(hi,L − ~i,L)〉+

1

2
‖B(hi,L − ~i,L)‖2 (5.26)

17That is, f(z + z′; y) ≤ f(z) + 〈∇f(z; y), z′〉+ 1
2‖z′‖2.
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and the rest of the proof remains unchanged.

As for the final convergence theorem of gradient descent, we can replace (5.20) with

F (
−→
W (t+1)) ≤ F (

−→
W (t))− Ω

(ηδm
dn2

)
· ‖ loss(t) ‖2 . (5.27)

This means many things:

• If the loss is nonconvex but satisfies the Polyak-Łojasiewicz condition ‖∇f(z; y)‖2 ≥

σ(f(z; y)− f(z∗; y)), then in T = Ω
(

dn2

ηδmσ

)
= O

(
n6L2

δ2σ
log 1

ε

)
iterations, GD can find a

point
−→
W (T ) with ‖ loss(T ) ‖ ≤ ε. It suffices to choose m ≥ Ω̃

(
poly(n, L, δ−1) · dσ−2

)
for

same reason as before.

• If the loss is nonconvex but bounded (say, |f(z; y)| ≤ O(1)), then in T = O
(

dn2

ηδmε2

)
=

O
(
n6L2

δ2ε2

)
iterations, we can find a point

−→
W (T ) with ‖ loss(T ) ‖ ≤ ε. If suffices to choose

m ≥ Ω̃
(

poly(n, L, δ−1) · dε−1
)
.)

• If the loss is convex and its minimizer has bounded norm, meaning there exists z∗ so

that f(z∗; y) = minz f(z; y) and ‖z − z∗‖ ≤ D. Then, by convexity

f(z; y)− f(z∗; y) ≤ 〈∇f(z; y), z − z∗〉 ≤ D‖∇f(z; y)‖

Putting this into (5.27), we have (here
−→
W ∗ = argmin−→

W
Fi(
−→
W ) for all i ∈ [n])

F (
−→
W (t+1))− F (

−→
W ∗) ≤ F (

−→
W (t))− F (

−→
W ∗)− Ω

( ηδm

dn2D2

)
·
∑

i∈[n]

(
Fi(
−→
W (t))− Fi(

−→
W ∗)

)2

≤ F (
−→
W (t))− F (

−→
W ∗)− Ω

( ηδm

dn3D2

)
·
(
F (
−→
W (t))− F (

−→
W ∗)

)2
.

This implies (see for instance the classical calculation steps in [Nes04]) that after T =

O
(
dn3D2

ηδmε

)
= O

(
n7L2D2

δ2ε

)
iterations, we can have F (

−→
W (T )) − F (

−→
W ∗) ≤ ε. The amount

of over-parameterization needed is m ≥ Ω̃
(

poly(n, L, δ−1) · d log ε−1
)
.
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• If the loss is cross entropy f(z; y) = ezy∑d
i=1 e

zi
for classification, then ‖∇f(z; y)‖ < 1/4

implies perfect classification.18 Thus, we have 100% training accuracy in T = O
(
n6L2

δ2

)

iterations. If suffices to choose m ≥ Ω̃
(

poly(n, L, δ−1) · d
)

18Recall ∂f(z;y)
zy

= py(1− py) where pj = ezj∑d
i=1 e

zi
. If py > 1/2, then z correctly predicts the target label y

because py > pj for j 6= z.
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5.17 Extension to Convolutional Neural Networks

There are numerous versions of convolutional neural networks (CNNs) that are used

in practice. To demonstrate the capability of applying our techniques to such convolutional

settings, in this section, we study a simple enough CNN for the `2 regression task.

A Simple CNN Model We assume that for the input layer (corresponding to A) and for

each hidden layer ` = 1, 2, . . . , L− 1 (corresponding to W1, . . . ,WL−1), there are d positions

each consisting of m channels. (Each position can be thought as a pixel of an image in

computer vision tasks.) We assume the last hidden layer ` = L (corresponding to WL) and

the output layer (corresponding to B) are fully connected. We assume for each j ∈ [d],

there exists a set Qj ⊆ [d] of fixed cardinality q ∈ [d] so that the value at position j in any

convolutional layer is completely determined by positions k ∈ Qj of the previous layer.

Assumption 5.17.1. We assume that (Q1, . . . , Qd) give rise to a q-regular bipartite graph:

each Qj has exactly q entries and each k ∈ [d] appears in exactly q different sets Qj.

(In vision tasks, if 3 × 3 kernels are used then |Qj| = 9. We ignore the padding issue for

simplicity.)

The output of each convolutional layer ` = 0, 1, 2, . . . , L− 1 is represented by a dm-

dimensional vector h` = (h`,1, . . . , h`,d) where each h`,j ∈ Rm,∀j ∈ [d]. In the input layer

and each j ∈ [d], we assume

h0,j = φ
(
AjxQj

)
∈ Rm

where xQj ∈ Rq denotes the concatenation of xk for all k ∈ Qj given input x ∈ Rd, and

Aj ∈ Rm×q is randomly initialized at N(0, 2√
qm

) per entry. For notational simplicity, we
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define matrix A ∈ Rdm×d so that it satisfies h1 = φ
(
Ax
)
. Each row of A has q non-zero

entries.

For each layer ` = 1, . . . , L− 1 and each j ∈ [d], we assume

h`,j = φ
(
W`,jh`−1,Qj + τ · b`,j

)
∈ Rm

where h`−1,Qj ∈ Rqm denotes the concatenation of h`−1,k for all k ∈ Qj, the weights W`,j ∈

Rm×(qm) and the bias the b`,j ∈ Rm are randomly initialized at N(0, 2
qm

) per entry, and τ

is a small parameter (say, τ = δ2

10dL
) for bias. For notational simplicity, we define matrix

W` ∈ Rdm×dm and vector b` ∈ Rdm so that it satisfies h` = φ
(
W`h`−1 + τb`

)
, and define

vector g`
def
= W`h`−1 + τb` ∈ Rdm. Note that each row of W` has qm non-zero entries.

We assume the last layer WL and the output layer B are simply fully connected (say

without bias). That is, each entry of WL ∈ Rdm×dm is from N(0, 2
qm

), and of B ∈ Rd×dm is

from N(0, 1
d
).

We denote by hi,` the value of h` when the input vector is xi, and define gi,`, Di,` in

the same way as before.
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5.17.1 Changes in the Proofs

If one is willing to loose polynomial factors in L and d in the final complexity, then

changes to each of the lemmas of this paper is very little.19

Changes to Section 5.8 The first main result is Lemma 5.8.1: ‖hi,`‖ is in [1−ε, 1+ε] with

high probability. In the CNN case, for every j ∈ [d], recalling that hi,`,j = φ(W`,jhi,`−1,Qj +

τb`). Applying Fact 5.8.2, we have that qm‖hi,`,j‖2
2(‖hi,`−1,Qj

‖2+τ2)
is distributed as χ2

ω distribution

with ω ∼ B(m, 1
2
). Due to the concentration of χ2 distribution and the concentration of

binomial distribution, ‖hi,`,j‖2 is extremely close to
‖hi,`−1,Qj

‖2+τ2

q
(a careful argument of this

can be found in the proof of Lemma 5.8.1). Summing this up over all j ∈ [d], and using

Assumption 5.17.1, we have ‖hi,`,j‖2 is concentrated at ‖hi,`−1‖2 + τ2d
q
. Applying induction,

we have ‖hi,`‖ is in [1−ε, 1+ε] with probability at least 1−e−Ω(mε2/L2), as long as τ 2 ≤ εq
10dL

.20

The changes to Lemma 5.8.3 and Lemma 5.8.4 are the same as above, but we loose

some polynomial factors in L (because we are not careful in the argument above). For

instance, the intermediate bound in Lemma 5.8.3a becomes ‖WbDi,b−1Wb−1 · · ·Di,aWa‖2 ≤

O(L).

As for the δ-separateness Lemma 5.8.5, we need to redefine the notion of δ-separateness

between hi,` and hj,`:
∑

k∈[d]

∥∥∥(I − hi,`,kh
>
i,`,k

‖hi,`,k‖2
)hj,`,k

∥∥∥
2

≥ Ω(δ2) (5.28)

19We acknowledge the existence of more careful modifications to avoid loosing too many such factors, but
do not present such result for the simplicity of this paper.

20We note that in all of our applications of Lemma 5.8.1, the minimal choice of ε is around δ3 from the
proof of δ-separateness. Therefore, choosing τ = δ2

10dL is safe. We are aware of slightly more involved proofs
that are capable of handling much larger values of τ .
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Then, denoting by ĥk = hi,`−1,k/‖hi,`−1,k‖, we have

hj,`,k = φ(W`,khj,`−1,Qj + τb`,k) = φ
(
~g1 +

( ∑

z∈Qk

‖(I − ĥzĥ>z )hj,`−1,z‖2
)1/2

~g2

)

where ~g2 ∼ N(0, 2
qm
I) is independent of the randomness of hi,`,k once A,W1, . . . ,W`−1 are

fixed. One can use this to replace (5.6) and the rest of the proof follows.

Changes to Section 5.9 The first main result is Lemma 5.9.1, and we discuss necessary

changes here to make it work for CNN. The first change in the proof is to replace 2c1L
1.5

with 2c1L
2 due to the above additional factor from Lemma 5.8.3a. Next, call that the proof

of Lemma 5.9.1 relied on Claim 5.9.2 and Claim 5.9.4:

• For Claim 5.9.2, we can replace the definition of x with x = D′(W̃ h̃ + τb + g′) for

b ∈ N(0, 2
qm
I). This time, instead of using the randomness of W̃ like in the old

proof (because W̃ is no longer a full matrix), we use the randomness of τb. The new

statement becomes

‖x‖0 ≤ O
( dm

τ 2/3
‖g′1‖2/3 +

1

τ
‖g′2‖∞(dm)3/2

)
and ‖x‖ ≤ O

(
‖g′1‖+

1√
τ
‖g′2‖3/2

∞ (dm)3/4
)
.

and its proof is by re-scaling x by 1
τ
and then applying the old proof (with dimension

m replaced with dm).

• For Claim 5.9.4, it becomes ‖y1‖ ≤ O
(√

qs/m logm
)

and ‖y2‖∞ ≤ 2
√

logm√
qm

.

After making all of these changes, we loose at most some polynomial factors in L and d for

the new statement of Lemma 5.9.1:

(a) ‖D′i,`‖0 ≤ mω2/3 poly(L, d) and ‖D′i,`gi,`‖ ≤ ω poly(L, d).
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(b) ‖g′i,`‖, ‖h′i,`‖ ≤ ω poly(L, d)
√

logm.

Finally, the statements of Lemma 5.9.5 and Lemma 5.9.6 only loose polynomial factors

in L and d.

Changes to Section 5.10 The norm upper bound part is trivial to modify so we only

focus on the gradient norm lower bound. Since we have assumed WL to be fully connected,

the gradient on WL is the same as before:

∇̂~v[WL]k
F (
−→
W ) =

n∑

i=1

〈Bk, vi〉 · hi,L−1 · 1(WLhi,L−1)k≥0

Since we still have δ-separateness (5.28), one can verify for ` = L− 1,

‖hi,` − hj,`‖2 =
∑

k∈[d]

‖hi,`,k − hj,`,k‖2 ≥
∑

k∈[d]

∥∥∥(I −
hi,`,kh

>
i,`,k

‖hi,`,k‖2
)hj,`,k

∥∥∥
2

≥ Ω(δ2) .

Since ‖hi,`‖ ≈ 1 and ‖hj,`‖ ≈ 1, this gives back the old definition of δ-separateness:

(I − hi,`h
>
i,`/‖hi,`‖2)hj,` has norm at least Ω(δ). Therefore, the entire rest of Section 5.10

follows as before.

Final Theorem Since Section 5.11 and 5.12 rely on previous sections, they do not need to

be changed (besides some polynomial factor blowup in L and d). Our final theorem becomes

Theorem 5.17.2 (CNN). Let m ≥ Ω̃
(

poly(n, L, d, δ−1) · d
)
. For the convolutional neu-

ral network defined in this section, with probability at least 1 − e−Ω(log2m) over the ran-

dom initialization, GD and SGD respectively need at most T = poly(n,L,d)
δ2 log 1

ε
and T =

poly(n,L,d)·log2m
δ2 log 1

ε
iterations to find a point F (

−→
W ) ≤ ε.
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5.18 Extension to Residual Neural Networks

Again as we have discussed in Section 5.18, there are numerous versions of residual

neural networks that are used in practice. To demonstrate the capability of applying our

techniques to residual settings, in this section, we study a simple enough residual network

for the `2 regression task (without convolutional layers).

A Simple Residual Model We consider an input layer h0 = φ(Ax), L−1 residual layers

h` = φ(h`−1 + τW`h`−1) for ` = 1, 2, . . . , L− 1, a fully-connected layer hL = φ(WLhL−1) and

an output layer y = BhL. We assume that h0, . . . , hL ∈ Rm and the entries of W` ∈ Rm×m

are from N(0, 2
m

) as before. We choose τ = 1
Ω(L logm)

which is similar as previous work

[ZLSD18].

We denote by g0 = Ax, g` = h`−1 + τW`h`−1 for ` = 1, 2, . . . , L−1 and gL = WLhL−1.

For analysis, we use hi,` and gi,` to denote the value of h` when the input vector is xi, and

Di,` the diagonal sign matrix so that [Di,`]k,k = 1(gi,`)k≥0.
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5.18.1 Changes in the Proofs

Conceptually, we need to replace all the occurrences of W` with (I + τW`) for ` =

1, 2, . . . , L − 1. Many of the proofs in the residual setting becomes much simpler when

residual links are present. The main property we shall use is that the spectral norm

‖(I + τWa)Di,a+1 · · ·Di,b(I + τWb)‖2 ≤ 1.01 (5.29)

for any L− 1 ≥ a ≥ b ≥ 1 with our choice of τ .

Changes to Section 5.8 For Lemma 5.8.1, ignoring subscripts in i for simplicity, we can

combine the old proof with (5.29) to derive that ‖h`‖ ≤ 1.02 for every i and `. We also have

‖h`‖ ≥ 1√
20

by the following argument.

• Fact 5.8.2 says each coordinate of h0 follows i.i.d. from a distribution which is 0 with

half probability, and |N(0, 2
m

)| with half probability. Therefore, with high probability,

at least m/4 of the coordinates k ∈ [m] will satisfy |(h0)k| ≥ 0.6√
m
. Denote this set as

M0 ⊆ [m].

• In the following layer ` = 1, (h`)k ≥ (h`−1)k−τ |(W`h`−1)k|. SinceW`h`−1 ∼ N(0, 2‖h`−1‖2
m

I)

and ‖h`−1‖ ≤ 1.02, we know with high probability, at least 1 − 1
10L

fraction of the

coordinates in M0 will satisfy |(W`h`−1)k| ≤ O( logL√
m

). Therefore, for each of these

(1 − 1
10L

)|M0| coordinates, we have (h`)k ≥ (h`−1)k − 1
10L

by our choice of τ . Denote

this set as M1 ⊆M0, then we have (h`)k ≥ 0.6√
m
− 1

10L
√
m

for each k ∈M1.

• Continuing this argument for ` = 2, 3, . . . , L − 1, we know that every time we move

from M`−1 to M`, its size shrinks by a factor 1 − 1
10L

, and the magnitude of (h`)k for
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k ∈ M` decreases by 1
10L
√
m
. Putting this together, we know ‖h`‖2 ≥ ( 0.6√

m
− 1

10
√
m

)2 ·

(1− 1
10L

)L · m
4
≥ 1

20
for all ` = 1, 2, . . . , L− 1. The proof of the last layer hL is the same

as the old proof.

Lemma 5.8.3 is not needed anymore because of (5.29). Lemma 5.8.4 becomes trivial to prove

using (5.29): for instance for Lemma 5.8.4a, we have ‖Di,LWLDi,L−1(I+ τWL−1) · · ·Di,a(I+

τWa)u‖ ≤ O(‖u‖) and thus ‖BDi,LWLDi,L−1(I+τWL−1) · · ·Di,a(I+τWa)u‖ ≤ O
(√

s logm√
d

)
‖u‖

for all s-sparse vectors u.

Lemma 5.8.5 needs the following changes in the same spirit as our changes to Lemma 5.8.1.

With probability at least 1 − e−Ω(log2m) it satisfies ‖W`hi,`‖∞ ≤ O( logm√
m

) for all i ∈ [n] and

` ∈ L. In the following proof we condition on this event happens.21 Consider i, j ∈ [n] with

i 6= j.

• In the input layer, since ‖xi − xj‖ ≥ δ, the same Claim 5.8.6 shows that, with high

probability, there are at least 3
4
m coordinates k ∈ [m] with |(hi,0 − hj,0)k| ≥ δ

10
√
m
.

At the same time, at least 3
4
m coordinates k ∈ [m] will satisfy (hi,0)k ≥ 1

10
√
m

and

(hj,0)k ≥ 1
10
√
m
. DenoteM0 ⊆ [m] as the set of coordinates k satisfying both properties.

We have |M0| ≥ m
2
and

∑
k∈M0

|(hi,0 − hj,0)k| ≥ δ
20

√
m.

• In the following layer ` = 1, we have

(hi,` − hj,`)k = φ((hi,`−1)k + τ(W`hi,`−1)k)− φ((hj,`−1)k + τ(W`hj,`−1)k)

21For simplicity, we only show how to modify Lemma 5.8.5 with success probability 1−e−Ω(log2m) because
that is all we need to the downstream application of Lemma 5.8.5. If one is willing to be more careful, the
success probability can be much higher.
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Using ‖W`hi,`‖∞ ≤ O( logm√
m

) and our choice of τ , we know for every k ∈M0, it satisfies

(hi,`)k ≥ 1
10
√
m
− 1

100L
√
m

and (hj,`)k ≥ 1
10
√
m
− 1

100L
√
m
. Therefore, the ReLU activation

becomes identity for such coordinates k ∈M0 and

∆k
def
= (hi,` − hj,`)k = (hi,`−1 − hj,`−1)k + τ(W`(hi,`−1 − hj,`−1))k .

Let sk = 1 if (hi,`−1 − hj,`−1)k ≥ 0 and sk = −1 otherwise. Then,

∑

k∈M0

|∆k| ≥
∑

k∈M0

sk ·∆k =
∑

k∈M0

|(hi,`−1 − hj,`−1)k|+ τ · sk(W`(hi,`−1 − hj,`−1))k

Note that when hi,`−1 and hj,`−1 are fixed, the values sk(W`(hi,`−1 − hj,`−1))k are inde-

pendent Gaussian with mean zero. This means, with probability at least 1−e−Ω(log2m),

the summation
∑

k∈M0
sk(W`(hi,`−1 − hj,`−1))k is at most O(logm) in absolute value.

Putting this into the above equation, we have

∑

k∈M0

|∆k| ≥
∑

k∈M0

|(hi,`−1 − hj,`−1)k| −O(τ logm) ≥ δ

20

√
m−O(τ logm) .

• Continuing this process for ` = 2, 3, . . . , L− 1, we can conclude that
∑

k∈M0
|(hi,L−1 −

hj,L−1)k| ≥ δ
30

√
m and therefore ‖hi,L−1− hj,L−1‖ ≥ Ω(δ2). This is the same statement

as before that we shall need for the downstream application of Lemma 5.8.5.

Changes to Section 5.9 Lemma 5.9.1 becomes easy to prove with all the L factors

disappear for the following reason. Fixing i and ignoring the subscript in i, we have for

` = 1, 2, . . . , L− 1:

h′` = D′′`
(
(I + τW` + τW ′

`)h`−1 − (I + τW`)h̃`−1

)

= D′′`
(
(I + τW`)h

′
`−1 + τW ′

`h`−1

)
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For some diagonal matrixD′′` ∈ Rm×m with diagonal entries in [−1, 1] (see Proposition 5.12.3).

By simple spectral norm of matrices bound we have

‖h′`‖ ≤ (1+τ‖W`‖2+τ‖W ′
`‖2)‖h′`−1‖+τ‖W ′

`‖2‖h̃`−1‖ ≤ (1+
1

10L
)‖h′`−1‖+O(τω) ≤ · · · ≤ O(τω)

This implies ‖h′`‖, ‖g′`‖ ≤ O(τω) for all ` ∈ [L − 1], and combining with the old proof we

have ‖h′L‖, ‖g′L‖ ≤ O(ω).

As for the sparsity ‖D′`‖0, because g̃` = h̃`−1 + τW̃`h̃`−1 ∼ N
(
h̃`−1,

2τ2‖h̃`−1‖2
m

)
and

‖g′`‖ ≤ O(τω), applying essentially the same Claim 5.9.2, we have ‖D′`‖0 ≤ O(mω2/3) for

every ` = 1, 2, . . . , L− 1. One can similarly argue that ‖D′L‖0 ≤ O(mω2/3).

Next, Lemma 5.9.5 and Lemma 5.9.6 become trivial to prove (recall we have to change

W̃` with I + τW̃` for ` < L) and the L factor also gets improved.

Changes to Section 5.10 The proofs of this section require only notational changes.

Final Theorem Since Section 5.11 and 5.12 rely on previous sections, they do not need

to be changed (besides improving polynomial factors in L). Our final theorem becomes

Theorem 5.18.1 (ResNet). Let m ≥ Ω̃
(

poly(n, L, δ−1) · d
)
. For the residual neural net-

work defined in this section, with probability at least 1 − e−Ω(log2m) over the random ini-

tialization, GD needs at most T = O
(
n6L2

δ2 log 1
ε

)
iterations and SGD needs at most T =

O
(
n7L2 log2 m

bδ2 log 1
ε

)
iterations to find a point F (

−→
W ) ≤ ε.
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Figure 5.2: ResNet-32 architecture [Yan18] landscape on CIFAR10 vs CIFAR100.
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Figure 5.3: ResNet-110 architecture [Yan18] landscape on CIFAR10 vs CIFAR100.
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Figure 5.4: VGG19 architecture (with BN) [Yan18] landscape on CIFAR10 vs CIFAR100.
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Figure 5.5: ResNet-32 architecture [Yan18] landscape on CIFAR10 vs CIFAR10 (20% noise),
means we have randomly perturbed 20% of the true labels in the training set.
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Figure 5.6: ResNet-110 architecture [Yan18] landscape on CIFAR10 vs CIFAR10 (20% noise),
means we have randomly perturbed 20% of the true labels in the training set.
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Figure 5.7: VGG19 architecture (with BN) [Yan18] landscape on CIFAR10 vs CIFAR10
(20% noise), means we have randomly perturbed 20% of the true labels in the training set.
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Chapter 6

Convergence result of Recurrent Neural Network

In this chapter, we focus on recurrent neural networks (RNNs) which are multi-layer

networks widely used in natural language processing. They are harder to analyze than

feedforward neural networks, because the same recurrent unit is repeatedly applied across

the entire time horizon of length L, which is analogous to feedforward networks of depth

L. We show when the number of neurons is sufficiently large, meaning polynomial in the

training data size and in L, then SGD is capable of minimizing the regression loss in the

linear convergence rate. This gives theoretical evidence of how RNNs can memorize data.

More importantly, in this paper we build general toolkits to analyze multi-layer net-

works with ReLU activations. For instance, we prove why ReLU activations can prevent

exponential gradient explosion or vanishing, and build a perturbation theory to analyze

first-order approximation of multi-layer networks.
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6.1 Introduction

Neural networks have been one of the most powerful tools in machine learning over the

past a few decades [KSH12, GMH13, LHP+15, AAA+16, HZRS16, SHM+16, SSS+17]. The

multi-layer structure of neural network gives it supreme power in expressibility and learning

performance. However, it raises complexity concerns: the training objective is generally

non-convex and non-smooth. In practice, local-search algorithms such as stochastic gradient

descent (SGD) are capable of finding global optima, at least on the training data [ZBH+17,

GVS15]. How SGD avoids local minima for such objectives remains an open theoretical

question since [GVS15].

In recent years, there have been a number of theoretical results aiming at a better

understanding of this phenomenon. Many of them focus on two-layer (thus one-hidden-

layer) neural networks and assume that the inputs are random Gaussian or sufficiently

close to Gaussian [BG17, Son17, Tia17, LY17, DLT+18, GLM17, PRSZ18, ZSJ+17, ZSD17].

Some study deep neural networks but assuming the activation function is linear [HM17,

ACGH18, BHL18]. Some study the convex task of training essentially only the last layer

of the network [Dal17]. On the technique side, some of these results try to understand

the gradient dynamics [Son17, Tia17, BG17, LY17, Dal17, BGMSS18, DLT+18, PRSZ18,

ZSJ+17, ZSD17, VW18], while others focus on the geometry properties of the training ob-

jective [GLM17, SS18, FB17, ZL17, HM17].

More recently, [SS18] provided evidence that, even when inputs are standard Gaus-

sians, two-layer neural networks can indeed have spurious local minima, and suggested that

over-parameterization (i.e., increasing the number of neurons) may be the key in avoiding

spurious local minima. [LL18] showed that, for two-layer networks with the cross-entropy
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loss, in the over-parametrization regime, gradient descent (GD) is capable of finding nearly-

global optimal solutions on the training data. This result was later extended to the `2 loss

by [DZPS19].

In this paper, we show GD and SGD are capable of training multi-layer neural net-

works (with ReLU activation) to global minima on any non-degenerate training data set.

Furthermore, the running time is polynomial in the number of layers and the number of

data points. Since there are many different types of multi-layer networks (convolutional,

feedforward, recurrent, etc.), in this present paper, we focus on recurrent neural networks

(RNN) as our choice of multi-layer networks, and feedforward networks are only its “special

case” (see for instance a follow-up work [AZLS19]).

Recurrent Neural Networks Among different architectures of neural networks, one of

the least theoretically-understood structure is the recurrent one [Elm90]. A recurrent neural

network recurrently applies the same network unit to a sequence of input tokens, such as a

sequence of words in a language sentence. RNN is particularly useful when there are long-

term, non-linear interactions between input tokens in the same sequence. These networks

are widely used in practice for natural language processing, language generation, machine

translation, speech recognition, video and music processing, and many other tasks [MKB+10,

MKB+11, SSN12, KB13, SSB14, SVL14, CVMBB14, CGCB14]. On the theory side, while

there are some attempts to show that an RNN is more expressive than a feedforward neural

network [KNO18], when and how an RNN can be efficiently learned has little theoretical

explanation.

In practice, RNN is usually trained by simple local-search algorithms such as SGD.
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However, unlike shallow networks, the training process of RNN often runs into the trouble

of vanishing or exploding gradient [SMH11]. That is, the value of the gradient becomes

exponentially small or large in the time horizon, even when the training objective is still

constant. 1 In practice, one of the popular ways to resolve this is by the long short term

memory (LSTM) structure [HS97]. However, one can also use rectified linear units (ReLUs)

as activation functions to avoid vanishing or exploding gradient [SBS+17]. In fact, one of

the earliest adoptions of ReLUs was on applications of RNNs for this purpose twenty years

ago [Hah98, SA96].

Since the RNN structure was proposed, a large number of variations have been de-

signed over past decades, including LSTM [HS97], Bidirectional RNN [SP97], Bidirectional

LSTM [GS05], gate recurrent unit [CVMG+14], statistical recurrent unit [OPS17], Fourier

recurrent unit [ZLSD18]. For a more detailed survey, we refer the readers to [SBS+17].

1Intuitively, an RNN recurrently applies the same network unit for L times if the input sequence is of
length L. When this unit has “operator norm” larger than one or smaller than one, the final output can
possibly exponentially explode or vanish in L. More importantly, when one back propagates through time
—which intuitively corresponds to applying the reverse unit multiple times— the gradient can also vanish
or explode. Controlling the operator norm of a non-linear operator can be quite challenging.
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6.1.1 Our Question

In this paper, we study the following general question

• Can ReLU provably stabilize the training process and avoid vanishing/exploding gradi-

ent?

• Can RNN be trained close to zero training error efficiently under mild assumptions?

Remark 6.1.1. When there is no activation function, RNN is known as linear dynamical sys-

tem. Hardt, Ma and Recht [HMR18] first proved the convergence of finding global minima for

such linear dynamical systems. Followups in this line of research include [HSZ17, HLS+18].

Motivations One may also want to study whether RNN can be trained close to zero test

error. However, unlike feedforward networks, the training error, or the ability to memorize

examples, may actually be desirable for RNN. After all, many tasks involving RNN are

related to memories, and certain RNN units are even referred to memory cells. Since RNN

applies the same network unit to all input tokens in a sequence, the following question can

possibly of its own interest:

• How does RNN learn mappings (say from token 3 to token 7) without destroying others?

Another motivation is the following. An RNN can be viewed as a space constraint,

differentiable Turing machine, except that the input is only allowed to be read in a fixed

order. It was shown in [SS91] that all Turing machines can be simulated by fully-connected

recurrent networks built of neurons with non-linear activations. In practice, RNN is also

used as a tool to build neural Turing machines [GWD14], equipped with a grand goal of
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automatically learning an algorithm based on the observation of the inputs and outputs.

To this extent, we believe the task of understanding the trainability as a first step towards

understanding RNN can be meaningful on its own.

Our Result To present the simplest result, we focus on the classical Elman network with

ReLU activation:

h` = φ(W · h`−1 + Ax`) ∈ Rm where W ∈ Rm×m, A ∈ Rm×dx

y` = B · h` ∈ Rd where B ∈ Rd×m

We denote by φ the ReLU activation function: φ(x) = max(x, 0). We note that (fully-

connected) feedforward networks are only “special cases” to this by replacing W with W` for

each layer.2

We consider a regression task where each sequence of inputs consists of vectors

x1, . . . , xL ∈ Rdx and we perform least-square regression with respect to y∗1, . . . , y∗L ∈ Rd.

We assume there are n training sequences, each of length L. We assume the training se-

quences are δ-separable (say vectors x1 are different by relative distance δ > 0 for every pairs

of training sequences). Our main theorem can be stated as follows

Theorem 6.1.1. If the number of neurons m ≥ poly(n, d, L, δ−1, log ε−1) is polynomially

large, we can find weight matrices W,A,B where the RNN gives ε training error

• if gradient descent (GD) is applied for T = Ω
(poly(n,d,L)

δ2 log 1
ε

)
iterations, starting from

random Gaussian initializations; or

2Most of the technical lemmas of this paper remain to hold (and become much simpler) onceW is replaced
with W`. This is carefully treated by [AZLS19].
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• if (mini-batch or regular) stochastic gradient descent (SGD) is applied for

T = Ω
(poly(n, d, L)

δ2
log

1

ε

)

iterations, starting from random Gaussian initializations.3

(To present the simplest possible result, we have not tried to tighten the polynomial

dependency with respect to n, d and L. We only tightened the dependency with respect to

δ and ε.)

Our Contribution We summarize our contributions as follows.

• We believe this is the first proof of convergence of GD/SGD for training the hidden

layers of recurrent neural networks (or even for any multi-layer networks of more than

two layers) when activation functions are present.4

• Our results provide arguably the first theoretical evidence towards the empirical finding

of [GVS15] on multi-layer networks, regarding the ability of SGD to avoid (spurious)

local minima. Our theorem does not exclude the existence of bad local minima

3At a first glance, one may question how it is possible for SGD to enjoy a logarithmic time dependency in
ε−1; after all, even when minimizing strongly-convex and Lipschitz-smooth functions, the typical convergence
rate of SGD is T ∝ 1/ε as opposed to T ∝ log(1/ε). We quickly point out there is no contradiction here if
the stochastic pieces of the objective enjoy a common global minimizer. In math terms, suppose we want
to minimize some function f(x) = 1

n

∑n
i=1 fi(x), and suppose x∗ is the global minimizer of convex functions

f1(x), . . . , fn(x). Then, if f(x) is σ-strongly convex, and each each fi(x) is L-Lipschitz smooth, then SGD
—moving in negative direction of ∇fi(x) for a random i ∈ [n] per step— can find ε-minimizer of this function
in O

(
L2

σ2 log 1
ε

)
iterations.

4Our theorem holds even when A,B are at random initialization and only the hidden weight matrix W is
trained. This is much more difficult to analyze than the convex task of training only the last layer B [Dal17].
Training only the last layer can significantly reduce the learning power of (recurrent or not) neural networks
in practice.
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• We build new technical toolkits to analyze multi-layer networks with ReLU activation,

which have now found many applications [AZLS19, ALL18c, AL19a, CG19]. For in-

stance, combining this paper with new techniques, one can derive guarantees on testing

error for RNN in the PAC-learning language [AL19a].

Extension: Deep RNN Elman RNN is also referred to as three-layer RNN, and one may

also study the convergence of RNNs with more hidden layers. This is referred to as deep

RNN [SBS+17]. Our theorem also applies to deep RNNs (by combining this paper together

with [AZLS19]).

Extension: Loss functions For simplicity, in this paper we have adopted the `2 regres-

sion loss. Our results generalize to other Lipschitz smooth (but possibly nonconvex) loss

functions, by combining with the techniques of [AZLS19].
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6.1.2 Other Related Works

Another relevant work is [BGMSS18] where the authors studied over-paramterization

in the case of two-layer neural network under a linear-separable assumption.

Instead of using randomly initialized weights like this paper, there is a line of work

proposing algorithms using weights generated from some “tensor initialization” process [ABGM14,

SA15, JSA15, Tia17, ZSJ+17].

There is huge literature on using the mean-field theory to study neural networks [MMN18,

YS17, DFS16, XBSD+18, LBN+17, YS18, CPS18, PW17, PB17, PSG17, PLR+16, SGGSD17].

At a high level, they study the network dynamics at random initialization when the number

of hidden neurons grow to infinity, and use such initialization theory to predict performance

after training. However, they do not provide theoretical convergence rate for the training

process (at least when the number of neurons is finite).
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6.2 Notations and Preliminaries

We denote by ‖ · ‖2 (or sometimes ‖ · ‖) the Euclidean norm of vectors, and by ‖ · ‖2

the spectral norm of matrices. We denote by ‖ · ‖∞ the infinite norm of vectors, ‖ · ‖0 the

sparsity of vectors or diagonal matrices, and ‖ · ‖F the Frobenius norm of matrices. Given

matrix W , we denote by Wk or wk the k-th row vector of W . We denote the row `p norm

for W ∈ Rm×d as

‖W‖2,p
def
=
(∑

i∈[m] ‖wi‖p2
)1/p

. (6.1)

By definition, ‖W‖2,2 = ‖W‖F .

We use N(µ, σ) to denote Gaussian distribution with mean µ and variance σ; or

N(µ,Σ) to denote Gaussian vector with mean µ and covariance Σ. We use 1event to denote

the indicator function of whether event is true. We denote by ek the k-th standard basis

vector. We use φ(·) to denote the ReLU function, namely φ(x) = max{x, 0} = 1x≥0 · x.

Given univariate function f : R→ R, we also use f to denote the same function over vectors:

f(x) = (f(x1), . . . , f(xm)) if x ∈ Rm.

Given vectors v1, . . . , vn ∈ Rm, we define U = GS(v1, . . . , vn) as their Gram-Schmidt

orthonormalization. Namely, U = [v̂1, . . . , v̂n] ∈ Rm×n where

v̂1 =
v1

‖v1‖
and for i ≥ 2: v̂i =

∏i−1
j=1(I−v̂j v̂>j )vi

‖∏i−1
j=1(I−v̂j v̂>j )vi‖ .

Note that in the occasion that
∏i−1

j=1(I − v̂j v̂>j )vi is the zero vector, we let v̂i be an arbitrary

unit vector that is orthogonal to v̂1, . . . , v̂i−1.
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6.2.1 Elman Recurrent Neural Network

We assume n training inputs are given: (xi,1, xi,2, . . . , xi,L) ∈
(
Rdx
)L for each input

i ∈ [n]. We assume n training labels are given: (y∗i,1, y
∗
i,2, . . . , y

∗
i,L) ∈

(
Rd
)L for each input

i ∈ [n]. Without loss of generality, we assume ‖xi,`‖ ≤ 1 for every i ∈ [n] and ` ∈ [L]. Also

without loss of generality, we assume ‖xi,1‖ = 1 and its last coordinate [xi,1]dx = 1√
2
for every

i ∈ [n].5

We make the following assumption on the input data :

Assumption 6.2.1. ‖xi,1 − xj,1‖ ≥ δ for some parameter δ ∈ (0, 1] and every pair of

i 6= j ∈ [n].

Given weight matricesW ∈ Rm×m, A ∈ Rm×dx , B ∈ Rd×m, we introduce the following

notations to describe the evaluation of RNN on the input sequences. For each i ∈ [n] and

j ∈ [L]:

hi,0 = 0 ∈ Rm gi,` = W · hi,`−1 + Axi,` ∈ Rm

yi,` = B · hi,` ∈ Rd hi,` = φ(W · hi,`−1 + Axi,`) ∈ Rm

A very important notion that this entire paper relies on is the following:

Definition 6.2.1. For each i ∈ [n] and ` ∈ [L], let Di,` ∈ Rm×m be the diagonal matrix

where

(Di,`)k,k = 1(W ·hi,`−1+Axi,`)k≥0 = 1(gi,`)k≥0 .

As a result, we can write hi,` = Di,`Whi,`−1.

5If it only satisfies ‖xi,1‖ ≤ 1 one can pad it with an additional coordinate to make ‖xi,1‖ = 1 hold. As
for the assumption [xi,1]dx = 1√

2
, this is equivalent to adding a bias term N(0, 1

m ) for the first layer.
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We consider the following random initialization distributions for W , A and B.

Definition 6.2.2. We say that W,A,B are at random initialization, if the entries of W and

A are i.i.d. generated from N(0, 2
m

), and the entries of Bi,j are i.i.d. generated from N(0, 1
d
).

Throughout this paper, for notational simplicity, we refer to index ` as the `-th layer

of RNN, and hi,`, xi,`, yi,` respectively as the hidden neurons, input, output on the `-th layer.

We acknowledge that in certain literatures, one may regard Elman network as a three-layer

RNN.

Assumption 6.2.2. We assume m ≥ poly(n, d, L, 1
δ
, log 1

ε
) for some sufficiently large poly-

nomial.

Without loss of generality, we assume δ ≤ 1
CL2 log3 m

for some sufficiently large constant

C (if this is not satisfied one can decrease δ). Throughout the paper except the detailed

appendix, we use Õ, Ω̃ and Θ̃ notions to hide polylogarithmic dependency in m. To simplify

notations, we denote by

ρ
def
= nLd logm and %

def
= nLdδ−1 log(m/ε) .
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6.2.2 Objective and Gradient

For simplicity, we only optimize over the weight matrix W ∈ Rm×m and let A and B

be at random initialization. As a result, our `2-regression objective is a function over W :6

f(W )
def
=

n∑

i=1

fi(W ) and fi(W )
def
=

1

2

L∑

`=2

‖ lossi,` ‖2
2 where lossi,`

def
= Bhi,` − y∗i,` .

Using chain rule, one can write down a closed form of the (sub-)gradient:

Fact 6.2.3. For k ∈ [m], the gradient with respect to Wk (denoted by ∇k) and the full

gradient are

∇kf(W ) =
n∑

i=1

L∑

a=2

a−1∑

`=1

(Back>i,`+1→a · lossi,a)k · hi,` · 1〈Wk,hi,`〉+〈Ak,xi,`+1〉≥0

∇f(W ) =
n∑

i=1

L∑

a=2

a−1∑

`=1

Di,`+1

(
Back>i,`+1→a · lossi,a

)
· h>i,`

where for every i ∈ [n], ` ∈ [L], and a = `+ 1, `+ 2, . . . , L:

Backi,`→`
def
= B ∈ Rd×m and Backi,`→a

def
= BDi,aW · · ·Di,`+1W ∈ Rd×m .

6The index ` starts from 2, because Bhi,1 = Bφ(Axi,1) remains constant if we are not optimizing over A
and B.
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6.3 Our Results

Our main results can be formally stated as follows.

Theorem 6.3.1 (GD). Suppose η = Θ̃
(
δ
m

poly(n, d, L)
)
and m ≥ poly(n, d, L, δ−1, log ε−1).

Let W (0), A,B be at random initialization. With high probability over the randomness of

W (0), A,B, if we apply gradient descent for T steps W (t+1) = W (t) − η∇f(W (t)), then it

satisfies

f(W (T )) ≤ ε for T = Ω̃
(poly(n, d, L)

δ2
log

1

ε

)
.

Theorem 6.3.2 (SGD). Suppose η = Θ̃
(
δ
m

poly(n, d, L)
)
and m ≥ poly(n, d, L, δ−1, log ε−1).

Let W (0), A,B be at random initialization. If we apply stochastic gradient descent for T steps

W (t+1) = W (t) − η∇fi(W (t)) for a random index i ∈ [n] per step, then with high probability

(over W (0), A,B and the randomness of SGD), it satisfies

f(W (T )) ≤ ε for T = Ω̃
(poly(n, d, L)

δ2
log

1

ε

)
.

In both cases, we essentially have linear convergence rates. 7 Notably, our results

show that the dependency of the number of layers L, is polynomial. Thus, even when RNN is

applied to sequences of long input data, it does not suffer from exponential gradient explosion

or vanishing (e.g., 2Ω(L) or 2−Ω(L)) through the entire training process.

Main Technical Theorems Our main Theorem 6.17.1 and Theorem 6.18.1 are in fact

natural consequences of the following two technical theorems. They both talk about the

7We remark here that the Õ notation may hide additional polynomial dependency in log log ε−1. This is
not necessary, at the expense of slightly complicating the proofs, as shown by follow up [AZLS19].
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first-order behavior of RNNs when the weight matrix W is sufficiently close to some random

initialization.

The first theorem is similar to the classical Polyak-Łojasiewicz condition [Pol63,

Loj63], and says that ‖∇f(W )‖2
F is at least as large as the objective value.

Theorem 6.3.3. With high probability over random initialization W̃ , A,B, it satisfies

∀W ∈ Rm×m with ‖W − W̃‖2 ≤
poly(%)√

m
:

‖∇f(W )‖2
F ≥

δ

poly(ρ)
×m× f(W ) ,

‖∇f(W )‖2
F , ‖∇fi(W )‖2

F ≤ poly(ρ)×m× f(W ) .

The second theorem shows a special “semi-smoothness” property of the objective.

Theorem 6.3.4. With high probability over random initialization W̃ , A,B, it satisfies for

every W̆ ∈ Rm×m with ‖W̆ − W̃‖ ≤ poly(%)√
m

, and for every W ′ ∈ Rm×m with ‖W ′‖ ≤ τ0√
m
,

f(W̆ +W ′) ≤ f(W̆ ) + 〈∇f(W̆ ),W ′〉+ poly(%)m1/3 ·
√
f(W ) · ‖W ′‖2 + poly(ρ)m‖W ′‖2

2 .

At a high level, the convergence of GD and SGD are careful applications of the two

technical theorems above: indeed, Theorem 6.15.2 shows that as long as the objective value

is high, the gradient is large; and Theorem 6.16.1 shows that if one moves in the (negative)

gradient direction, then the objective value can be sufficiently decreased. These two technical

theorems together ensure that GD/SGD does not hit any saddle point or (bad) local minima

along its training trajectory. This was practically observed by [GVS15] and a theoretical

justification was open since then.
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An Open Question We did not try to tighten the polynomial dependencies of (n, d, L)

in the proofs. When m is sufficiently large, we make use of the randomness at initialization

to argue that, for all the points within a certain radius from initialization, for instance

Theorem 6.15.2 holds. In practice, however, the SGD can create additional randomness as

time goes; also, in practice, it suffices for those points on the SGD trajectory to satisfy

Theorem 6.15.2. Unfortunately, such randomness can — in principle — be correlated with

the SGD trajectory, so we do not know how to use that in the proofs. Analyzing such

correlated randomness is certainly beyond the scope of this paper, but can possibly explain

why in practice, the size of m needed is not that large.
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6.3.1 Conclusion

Overall, we provide the first proof of convergence of GD/SGD for non-linear neural

networks that have more two layers. We show with overparameterization GD/SGD can avoid

hitting any (bad) local minima along its training trajectory. This was practically observed

by [GVS15] and a theoretical justification was open since then. We present our result using

recurrent neural networks (as opposed to the simpler feedforward networks [AZLS19]) in this

very first paper, because memorization in RNN could be of independent interest. Also, our

result proves that RNN can learn mappings from different input tokens to different output

tokens simultaneously using the same recurrent unit.

Last but not least, we build new tools to analyze multi-layer networks with ReLU

activations that could facilitate many new research on deep learning. For instance, our

techniques in Section 6.5 provide a general theory for why ReLU activations avoid exponential

exploding (see e.g. (6.2), (6.5)) or exponential vanishing (see e.g. (6.2), (6.4)); and our

techniques in Section 6.6 give a general theory for the stability of multi-layer networks against

adversarial weight perturbations, which is at the heart of showing the semi-smoothness

Theorem 6.16.1, and used by all the follow-up works [AZLS19, ALL18c, AL19a, CG19].
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6.4 Proof Sketch

The main difficulty of this paper is to prove Theorem 6.15.2 and 6.16.1, and we shall

sketch the proof ideas in Section 6.5 through 6.8. In such high-level discussions, we shall put

our emphasize on

• how to avoid exponential blow up in L, and

• how to deal with the issue of randomness dependence across layers.

We genuinely hope that this high-level sketch can (1) give readers a clear overview of the

proof without the necessity of going to the appendix, and (2) appreciate our proof and

understand why it is necessarily long.8

8For instance, proving gradient norm lower bound in Theorem 6.15.2 for a single neuron k ∈ [m] is easy,
but how to apply concentration across neurons? Crucially, due to the recurrent structure these quantities
are never independent, so we have to build necessary probabilistic tools to tackle this. If one is willing to
ignore such subtleties, then our sketched proof is sufficiently short and gives a good overview.

367



6.5 Basic Properties at Random Initialization

In this section we derive basic properties of the RNN when the weight matrices

W,A,B are all at random initialization. The corresponding precise statements and proofs

are in Section 6.11.

The first one says that the forward propagation neither explodes or vanishes, that is,

1

2
≤ ‖hi,`‖2, ‖gi,`‖2 ≤ O(L) . (6.2)

Intuitively, (6.2) very reasonable. Since the weight matrix W is randomly initialized

with entries i.i.d. from N
(
0, 2

m

)
, the norm ‖Wz‖2 is around

√
2 for any fixed vector z.

Equipped with ReLU activation, it “shuts down” roughly half of the coordinates of Wz and

reduces the norm ‖φ(Wz)‖ to one. Since in each layer `, there is an additional unit-norm

signal xi,` coming in, we should expect the final norm of hidden neurons to be at most O(L).

Unfortunately, the above argument cannot be directly applied since the weight matrix

W is reused for L times so there is no fresh new randomness across layers. Let us explain how

we deal with this issue carefully, because it is at the heart of all of our proofs in this paper.

Recall, each time W is applied to some vector hi,`, it only uses “one column of randomness”

of W . Mathematically, letting U` ∈ Rm×n` denote the column orthonormal matrix using

Gram-Schmidt

U`
def
= GS (h1,1, . . . , hn,1, h1,2, . . . , hn,2, . . . , h1,`, . . . , hn,`) ,

we have Whi,` = WU`−1U
>
`−1hi,` +W (I − U`−1U

>
`−1)hi,`.
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• The second termW (I−U`−1U
>
`−1)hi,` has new randomness independent of the previous

layers.9

• The first termWU`−1U
>
`−1hi,` relies on the randomness ofW in the directions of hi,a for

a < ` of the previous layers. We cannot rely on the randomness of this term, because

when applying inductive argument till layer `, the randomness of WU`−1 is already

used.

Fortunately, WU`−1 ∈ Rm×n(`−1) is a rectangular matrix with m � n(` − 1) (thanks

to overparameterization!) so one can bound its spectral norm by roughly
√

2. This

ensures that no matter how hi,` behaves (even arbitrarily correlated with WU`−1), the

norm of the first term cannot be too large. It is crucial here thatWU`−1 is a rectangular

matrix, because for a square random matrix such asW , its spectral norm is 2 and using

that, the forward propagation bound will exponentially blow up.

This summarizes the main idea for proving ‖hi,`‖ ≤ O(L) in (6.2); the lower bound 1
2
is

similar. Our next property says in each layer, the amount of “fresh new randomness” is

non-negligible:

‖(I − U`−1U
>
`−1)hi,`‖2 ≥ Ω̃(

1

L2
) . (6.3)

This relies on a more involved inductive argument than (6.2). At high level, one needs to

show that in each layer, the amount of “fresh new randomness” reduces only by a factor at

most 1− 1
10L

.

9More precisely, letting v = (I−U`−1U
>
`−1)hi,`, we haveW (I−U`−1U

>
`−1)hi,` =

(
W v
‖v‖
)
‖v‖. Here, W v

‖v‖
is a random Gaussian vector in N(0, 2

mI) and is independent of all {hi,a | i ∈ [n], a < `}.
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Using (6.2) and (6.3), we obtain the following property about the data separability:

(I − U`U>` )hi,`+1 and (I − U`U>` )hj,`+1 are (δ/2)-separable, ∀i, j ∈ [n] with i 6= j (6.4)

Here, we say two vectors x and y are δ-separable if
∥∥(I − yy>/‖y‖2

2)x
∥∥ ≥ δ and vice versa.

Property (6.4) shows that the separability information (say on input token 1) does not

diminish by more than a polynomial factor even if the information is propagated for L

layers.

We prove (6.4) by induction. In the first layer ` = 1 we have hi,1 and hj,1 are

δ-separable which is a consequence of Assumption 6.2.1. If having fresh new randomness,

given two δ separable vectors x, y, one can show that φ(Wx) and φ(Wy) are also δ(1−o( 1
L

))-

separable. Again, in RNN, we do not have fresh new randomness, so we rely on (6.3) to give

us reasonably large fresh new randomness. Applying a careful induction helps us to derive

that (6.4) holds for all layers.10

Intermediate Layers and Backward Propagation Training neural network is not only

about forward propagation. We also have to bound intermediate layers and backward prop-

agation.

The first two results we derive are the following. For every `1 ≥ `2 and diagonal

10This is the only place that we rely on Assumption 6.2.1. This assumption is somewhat necessary in the
following sense. If xi,` = xj,` for some pair i 6= j for all the first ten layers ` = 1, 2, . . . , 10, and if y∗i,` 6= y∗i,`
for even just one of these layers, then there is no hope in having the training objective decrease to zero. Of
course, one can make more relaxed assumption on the input data, involving both xi,` and y∗i,`. While this is
possible, it complicates the statements so we do not present such results in this paper.
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matrices D′ of sparsity s ∈ [ρ2,m0.49]:

‖WDi,`1 · · ·Di,`2W‖2 ≤ O(L3) (6.5)

‖D′WDi,`1 · · ·Di,`2WD′‖2 ≤ Õ(
√
s/
√
m) (6.6)

Intuitively, one cannot use spectral bound argument to derive (6.5) or (6.6): the spectral

norm of W is 2, and even if ReLU activations cancel half of its mass, the spectral norm

‖DW‖2 remains to be
√

2. When stacked together, this grows exponential in L.

Instead, we use an analogous argument to (6.2) to show that, for each fixed vector

z, the norm of ‖WDi,`1 · · ·Di,`2Wz‖2 is at most O(1) with extremely high probability 1 −

e−Ω(m/L2). By standard ε-net argument, ‖WDi,`1 · · ·Di,`2Wz‖2 is at most O(1) for all m
L3 -

sparse vectors z. Finally, for a possible dense vector z, we can divide it into L3 chunks each

of sparsity m
L3 . Finally, we apply the upper bound for L3 times. This proves (6.5). One can

use similar argument to prove (6.6).

Remark 6.5.1. We did not try to tighten the polynomial factor here in L. We conjecture

that proving an O(1) bound may be possible, but that question itself may be a sufficiently

interesting random matrix theory problem on its own.

The next result is for back propagation. For every `1 ≥ `2 and diagonal matrices D′

of sparsity s ∈ [ρ2,m0.49]:

‖BDi,`1 · · ·Di,`2WD′‖2 ≤ Õ(
√
s) (6.7)

Its proof is in the same spirit as (6.6), with the only difference being the spectral norm of B

is around
√
m/d as opposed to O(1).
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6.6 Stability After Adversarial Perturbation

In this section we study the behavior of RNN after adversarial perturbation. The

corresponding precise statements and proofs are in Section 6.12.

Letting W̃ , A,B be at random initialization, we consider some matrix W = W̃ +W ′

for ‖W ′‖2 ≤ poly(%)√
m

. Here, W ′ may depend on the randomness of W̃ , A and B, so we say

it can be adversarially chosen. The results of this section will later be applied essentially

twice:

• Once for those updates generated by GD or SGD, whereW ′ is how much the algorithm

has moved away from the random initialization.

• The other time (see Section 6.7.3) for a technique that we call “randomness decomposi-

tion” where we decompose the true random initialization W into W = W̃ +W ′, where

W̃ is a “fake” random initialization but identically distributed as W . Such technique

at least traces back to smooth analysis [ST04].

To illustrate our high-level idea, from this section on (so in Section 6.6, 6.7 and 6.8)

we ignore the polynomial dependency in % and hide it in the big-O notion.

We denote by D̃i,`, g̃i,`, h̃i,` respectively the values of Di,`, gi,` and hi,` determined by W̃ and

A at random initialization; and by Di,` = D̃i,` + D′i,`, gi,` = g̃i,` + g′i,` and hi,` = h̃i,` + h′i,`

respectively those determined by W = W̃ +W ′ after the adversarial perturbation.

Forward Stability Our first, and most technical result is the following:

‖g′i,`‖2, ‖h′i,`‖2 ≤ O(m−1/2) , ‖D′i,`‖0 ≤ O(m2/3) and ‖D′i,`gi,`‖2 ≤ O(m−1/2) . (6.8)
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Intuitively, one may hope to prove (6.8) by induction, because we have (ignoring

subscripts in i)

g′`′ = W ′D`′−1g`′−1︸ ︷︷ ︸
¬

+ W̃D′`′−1g`′−1︸ ︷︷ ︸


+ W̃ D̃`′−1g
′
`′−1︸ ︷︷ ︸

®

.

The main issue here is that, the spectral norm of W̃ D̃`′−1 in ® is greater than 1, so we cannot

apply naive induction due to exponential blow up in L. Neither can we apply techniques

from Section 6.5, because the changes such as g`′−1 can be adversarial.

In our actual proof of (6.8), instead of applying induction on ®, we recursively expand

® by the above formula. This results in a total of L terms of ¬ type and L terms of  type.

The main difficulty is to bound a term of  type, that is:

∥∥W̃ D̃`1 · · · D̃`2+1W̃D′`2g`2
∥∥

2

Our argument consists of two conceptual steps.

1. Suppose g`2 = g̃`2 + g′`2 = g̃`2 + g′`2,1 + g′`2,2 where ‖g′`2,1‖2 ≤ m−1/2 and ‖g′`2,2‖∞ ≤ m−1,

then we argue that ‖D′`2g`2‖2 ≤ O(m−1/2) and ‖D′`2g`2‖0 ≤ O(m2/3).

2. Suppose x ∈ Rm with ‖x‖2 ≤ m−1/2 and ‖x‖0 ≤ m2/3, then we show that y =

W̃ D̃`1 · · · D̃`2+1W̃x can be written as y = y1 + y2 with ‖y1‖2 ≤ O(m−2/3) and ‖y2‖∞ ≤

O(m−1).

The two steps above enable us to perform induction without exponential blow up. Indeed,

they together enable us to go through the following logic chain:

‖ · ‖2 ≤ m−1/2 and ‖ · ‖∞ ≤ m−1 (1)
=⇒

‖ · ‖2 ≤ m−2/3 and ‖ · ‖∞ ≤ m−1 ⇐=
(2)



 ‖ · ‖2 ≤ m−1/2 and ‖ · ‖0 ≤ m2/3
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Since there is a gap between m−1/2 and m−2/3, we can make sure that all blow-up factors

are absorbed into this gap, using the property that m is polynomially large. This enables us

to perform induction to prove (6.8) without exponential blow-up.

Intermediate Layers and Backward Stability Using (6.8), and especially using the

sparsity ‖D′‖0 ≤ m2/3 from (6.8), one can apply the results in Section 6.5 to derive the

following stability bounds for intermediate layers and backward propagation:

∥∥Di,`1W · · ·Di,`2W − D̃i,`1W̃ · · · D̃i,`2W̃
∥∥

2
≤ O(L7) (6.9)

∥∥BDi,`1W · · ·Di,`2W −BD̃i,`1W̃ · · · D̃i,`2W̃
∥∥

2
≤ O

(
m1/3

)
. (6.10)

Special Rank-1 Perturbation For technical reasons, we also need two bounds in the

special case of W ′ = yz> for some unit vector z and sparse y with ‖y‖0 ≤ poly(%). We prove

that, for this type of rank-one adversarial perturbation, it satisfies for every k ∈ [m]:

|((W̃ +W ′)h′i,`)k| ≤ O
(
m−2/3

)
(6.11)

∥∥BDi,`1W · · ·Di,`2Wek −BD̃i,`1W̃ · · · D̃i,`2W̃ek
∥∥

2
≤ O

(
m−1/6

)
(6.12)

374



6.7 Proof Sketch of Theorem 6.15.2: Polyak-Łojasiewicz Condition

The upper bound in Theorem 6.15.2 is easy to prove (based on Section 6.5 and

6.6), but the lower bound (a.k.a. the Polyak-Łojasiewicz condition) is the most technically

involved result to prove in this paper. We introduce the notion of “fake gradient”. Given

fixed vectors {lossi,a}i∈[n],a∈{2,...,L}, we define

∇̂kf(W )
def
=

n∑

i=1

L−1∑

`=1

(ui,`)k · hi,` · 1(gi,`+1)k≥0 (6.13)

where ui,`
def
=
∑L

a=`+1 Back
>
i,`+1→a · lossi,a. Note that if lossi,a = Bhi,a − y∗i,a is the true loss

vector, then ∇̂kf(W ) will be identical to ∇kf(W ) by Fact 6.2.3. Our main technical theorem

is the following:

Theorem 6.7.1. For every fixed vectors {lossi,a}i∈[n],a∈{2,...,L}, if W,A,B are at random

initialization, then with high probability

‖∇̂f(W )‖2
F ≥ Ω̃

(
δm

poly(ρ)

)
×max

i,`
{‖ lossi,` ‖2} .

There are only two conceptually simple steps from Theorem 6.14.2 to Theorem 6.15.2 (see

Section 6.15).

• First, one can use the stability lemmas in Section 6.6 to show that, the fake gradient

‖∇̂f(W +W ′)‖F after adversarial perturbation W ′ (with ‖W ′‖2 ≤ 1√
m
) is also large.

• Second, one can apply ε-net and union bound to turn “fixed loss” into “for all loss”.

This allows us to turn the lower bound on the fake gradient into a lower bound on the

true gradient ‖∇kf(W +W ′)‖F .
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Therefore, in the rest of this section, we only sketch the ideas behind proving Theorem 6.14.2.

Let (i∗, `∗) = argmaxi,`{‖ lossi,` ‖2} be the sample and layer corresponding to the

largest loss. Recall W,A,B are at random initialization.
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6.7.1 Indicator and Backward Coordinate Bounds

There are three factors in the notion of fake gradient (6.13): (ui,`)k ∈ R the backward

coordinate, hi,` ∈ Rm the forward vector, and 1(gi,`+1)k≥0 ∈ {0, 1} the indicator coordinate.

We already know very well how the forward vector hi,` behaves from the previous sections.

Let us provide bounds on the other two factors at the random initialization. (Details in

Section 6.13.)

Our “backward coordinate bound” controls the value of (ui,`)k: at random initializa-

tion,
∣∣(ui∗,`∗)k

∣∣ ≥ ‖ lossi∗,`∗ ‖2
ρ

for at least 1− o(1) fraction of k ∈ [m] (6.14)

The main idea behind proving (6.14) is to use the randomness of B. For a fixed k ∈ [m],

it is in fact not hard to show that
∣∣(ui∗,`∗)k

∣∣ is large with high probability. Unfortunately,

the randomness of B are shared for different coordinates k. We need to also bound the

correlation between pairs of coordinates k1, k2 ∈ [m], and resort to MiDiarmid inequality to

provide a high concentration bound with respect to all the coordinates.

Our indicator coordinate bound controls the value (gi,`+1)k inside the indicator func-

tions 1(gi,`+1)k≥0. It says, letting β+
def
= δ

ρ2 and β−
def
= δ

ρ10 , then at random initialization, for at

least δ
poly(ρ)

fraction of the coordinates k ∈ [m],

|(gi∗,`∗+1)k| ≤
β−√
m

and |(gi,`+1)k| ≥
β+√
m

for i 6= i∗ and ` = `∗, or
for i ∈ [n] and ` > `∗. (6.15)

This should be quite intuitive to prove, in the following two steps.

• First, there are δ
poly(ρ)

m coordinates k ∈ [m] with |(gi∗,`∗+1)k| ≤ β−√
m
.
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To show this, we write (gi∗,`∗+1)k = (WU`∗U`∗hi∗,`∗ + Axi∗,`∗+1)k, and prove that for

every z ∈ Rn`∗ with bounded norms (by ε-net), there are at least δ
poly(ρ)

m coordinates

k ∈ [m] with |(WU`∗z + Axi∗,`∗+1)k| ≤ β−√
m
. This is possible using the independence

between WU`∗ and A.

• Then, conditioning on the first event happens, we look at |(gi,`+1)k| for (1) each i 6= i∗

and ` = `∗, or (2) each i ∈ [n] and ` > `∗. In both cases, even though the value of

gi∗,`∗+1 is fixed, we still have sufficient fresh new randomness (by invoking (6.4) for case

(1) and (6.3) for case (2)). Such additional randomness can make sure that, with high

probability (over the fresh new randomness), the value of (gi,`+1)k is larger than β+√
m
.
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6.7.2 Thought Experiment: Adding Small Rank-One Perturbation

We now focus on a fixed coordinate k ∈ [m] satisfying (6.15) and (6.14) in the

Section 6.7.1, and denote by vi∗,`∗
def
=

(I−U`∗−1U
>
`∗−1

)hi∗,`∗

‖(I−U`∗−1U
>
`∗−1

)hi∗,`∗‖
.

For analysis purpose, imagine that we apply a small random perturbation W ′
k to the

already-randomly initialized matrix W , in the rank-one direction ekv
>
i∗,`∗ . Namely, we set

W ′
k = g · ekv>i∗,`∗ where g ∼ N(0, θ2) and θ is a parameter satisfying β−√

m
� θ � β+√

m
. Using

the fact that k satisfies (6.15), one can show that11

(a) 1(gi,`+1)k≥0 stays the same with respect to perturbationW ′
k, except for i = i∗ and ` = `∗;

and

(b) 1(gi∗,`∗+1)k≥0 can be 0 or 1 each with at least constant probability over W ′
k.

At the same time, using the fact that k satisfies (6.14), one can show that

(c) hi,` and (ui,`)k does not change by much (owing to Section 6.6); and

(d) |(ui∗,`∗+1)k| ≥ ‖ lossi∗,`∗ ‖2
ρ

is large (owing to (6.14)).

11Specifically,

• For every ` < `∗, we have (gi,`+1)k is unchanged with respect to W ′k. This is because gi,`+1 only
depends on the randomness of WU`, but vi∗,`∗ is orthogonal to the columns of U`.

• For i = i∗ and i = `∗, we have (gi,`+1)k will change sign with constant probability with respect to
W ′k. This is because ‖W ′k‖ is above

β−√
m

— the original (gi,`+1)k before perturbation.

• For any other i and `, we have (gi,`+1)k will not change sign with high probability with respect to
W ′k. This is because ‖W ′k‖ is below

β+√
m

— the original (gi,`+1)k before perturbation.
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Putting (a), (b), (c), and (d) together, we know for such specially chosen k, at least with

constant probability over the random perturbation of W ′
k,

‖∇̂kf(W +W ′
k)‖F ≥ Ω

(‖ lossi∗,`∗ ‖2

ρ

)
. (6.16)
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6.7.3 Real Proof: Randomness Decomposition and McDiarmid’s Inequality

There are only two main differences between (6.16) and our desired Theorem 6.14.2.

First, (6.16) gives a gradient lower bound atW +W ′
k, while in Theorem 6.14.2 we need a gra-

dient lower bound at random initialization W . Second, (6.16) gives a lower bound on ∇̂kf(·)

with constant probability for a small fraction of good coordinates k, but in Theorem 6.14.2

we need a lower bound for the entire ∇̂f(·).

Randomness Decomposition To fix the first issue, we resort to a randomness decom-

position technique at least tracing back to the smooth analysis of [ST04]:

Proposition 6.7.2. Given small constant θ ∈ (0, 1) andm-dimensional random g ∼ N(0, 1
m
I),

we can rewrite g = g1 + g3 where g1 follows from N(0, 1
m
I) and g3 is very close to N(0, θ

2

m
I).

(Note that there is no contradiction here because g1 and g3 shall be correlated.)

Proof. Let g1, g2 ∈ Rm be two independent random vectors sampled from N(0, 1
m
I). We can

couple them and make sure g =
√

1− θ2g1 +θg2. We now choose g3 = θg2− (1−
√

1− θ2)g1.

Since (1−
√

1− θ2) ≤ O(θ2), when θ is sufficiently small, we know that g3 is close to being

generated from distribution N(0, θ
2

m
I).

Using Proposition 6.7.2, for each good coordinate k, instead of “adding” perturbation

W ′
k to W , we can instead decompose W into W = W0 +W ′

k, where W0 is distributed in the

same way as W . In other words, W0 is also at random initialization. If this idea is carefully

implemented, one can immediately turn (6.16) into

‖∇̂kf(W )‖F = ‖∇̂kf(W0 +W ′
k)‖F ≥ Ω

(‖ lossi∗,`∗ ‖2

ρ

)
. (6.17)
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Extended McDiarmid’s Inequality To fix the second issue, one may wish to consider all

the indices k ∈ [m] satisfying (6.15) and (6.14). Since there are at least δ
poly(ρ)

fraction of such

coordinates, if all of them satisfied (6.17), then we would have already proved Theorem 6.14.2.

Unfortunately, neither can we apply Chernoff bound (because the events with different k ∈

[m] are correlated), nor can we apply union bound (because the event occurs only with

constant probability).

Our technique is to resort to (an extended probabilistic variant of) McDiarmid’s

inequality (see Section 6.10.6) in a very non-trivial way to boost the confidence.

Give any fixed subset N of cardinality |N | = (poly(ρ)/δ)2, one can show that there

again exists δ
poly(ρ)

fraction of coordinate k ∈ N satisfying (6.15) and (6.14).12 Now, instead

of decomposing W = W0 + W ′
k, we decompose it as W = W1 + W ′

N for W ′
N = uNv

>
i∗,`∗

where uN is only supported on coordinates k ∈ N . In other words, we simultaneously

perturb in the directions of W ′
k for all k ∈ N . Since this perturbation is small enough —i.e.,

‖W ′
N‖2 ≤ poly(%)√

m
— one can show that (6.17) remains true, that is, for a large fraction of

k ∈ N , with at least constant probability over W ′
N :

‖∇̂kf(W1 +W ′
N)‖F ≥ Ω

(‖ lossi∗,`∗ ‖2

ρ

)
. (6.18)

In order to apply McDiarmid’s, we next need to bound on the difference between ‖∇̂kf(W1 +

W ′
N)‖F and ‖∇̂kf(W1 +W ′

N +W ′′
j )‖F for an arbitrary (but small) perturbation W ′′

j (in the

direction of ejv>i∗,`∗). We show that,

∑

k∈[N ]

∣∣∣‖∇̂k(W1 +W ′
N)‖2

2 − ‖∇̂k(W1 +W ′
N +W ′′

j )‖2
2

∣∣∣ ≤ O

(
ρ8 +

|N |
m1/6

)
. (6.19)

12We use (poly(ρ))2 to emphasize that the first polynomial needs to be bigger than the second poly(ρ).
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In other words, although there are |N | difference terms, their total summation only grows in

rate |N |
m1/6 according to (6.19). After applying a variant of McDiarmid’s inequality, we derive

that with high probability over W ′
N , it satisfies

∑

k∈N

‖∇̂kf(W )‖2
F =

∑

k∈N

‖∇̂kf(W1 +W ′
N)‖2

F ≥ Ω
(‖ lossi∗,`∗ ‖2

2

poly(ρ)
|N |
)
. (6.20)

Finally, by sampling sufficiently many random sets N to cover the entire space [m], we can

show

‖∇̂f(W )‖2
F =

∑

k∈[m]

‖∇̂kf(W )‖2
F ≥ Ω

(‖ lossi∗,`∗ ‖2
2

poly(ρ)
m
)
.

and therefore Theorem 6.14.2 holds.
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6.8 Proof Sketch of Theorem 6.16.1: Objective Semi-Smoothness

The objective semi-smoothness Theorem 6.16.1 turns out to be much simpler to prove

than Theorem 6.15.2. It only relies on Section 6.5 and 6.6, and does not need randomness

decomposition or McDiarmid’s inequality. (Details in Section 6.16.)

Recall that in Theorem 6.16.1, W̃ , A,B are at random initialization. W̆ is an adver-

sarially chosen matrix with ‖W̆−W̃‖ ≤ poly(%)√
m

, andW ′ is some other adversarial perturbation

on top of W̆ , satisfying ‖W ′‖ ≤ τ0√
m
. We denote by

• D̃i,`, g̃i,`, h̃i,` respectively the values of Di,`, gi,`, hi,` determined by weight matrix W̃ ;

• D̆i,`, ği,`, ~i,`, ˘lossi,` respectively those of Di,`, gi,`, hi,` and lossi,` at weight matrix W̆ ;

and

• Di,`, gi,`, hi,` respectively the values of Di,`, gi,`, hi,` at weight matrix W = W̆ +W ′.

Our main tool is to derive the following strong formula for hi,` − ~i,`: there exist

diagonal matrices D′′i,` ∈ Rm×m with entries in [−1, 1] and sparsity ‖D′′i,`‖0 ≤ O(m2/3) such

that,

hi,` − ~i,` =
`−1∑

a=1

(D̆i,` +D′′i,`)W̆ · · · W̆ (D̆i,a+1 +D′′i,a+1)W ′hi,a (6.21)

In particular, (6.21) implies ‖hi,` − ~i,`‖ ≤ O(L9)‖W ′‖2 after careful linear-algebraic manip-

ulations (esp. using (6.6)). The main take-away message from (6.21) is that, this difference

hi,`−~i,` is proportional to the norm of the perturbation, ‖W ′‖2, no matter how small it is. In

contrast, in (6.2), we only derived a weak upper bound of the form ‖hi,`− h̃i,`‖ ≤ O(m−1/2).

Nevertheless, the proof of (6.21) relies on (6.2), so we are not duplicating proofs.
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Finally, we carefully derive that

f(W̆ +W ′)− f(W )− 〈∇f(W ),W ′〉

=
n∑

i=1

L∑

`=2

˘loss>i,`B

(
(hi,` − ~i,`)−

`−1∑

a=1

D̆i,`W̆ · · · W̆ D̆i,a+1W
′~i,a

)
+

1

2
‖B(hi,` − ~i,`)‖2

(6.22)

and plug (6.21) into (6.22) to derive our final Theorem 6.16.1.
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6.9 Roadmap of Later Proof Details

• Section 6.10 recalls some old lemmas and derives some new lemmas in probability

theory.

• Section 6.11 serves for Section 6.5, the basic properties at random initialization.

• Section 6.12 serves for Section 6.6, the stability after adversarial perturbation.

• Section 6.13, 6.14 and 6.15 together serve for Section 6.7 and prove Theorem 6.15.2,

the Polyak-Łojasiewicz condition and gradient upper bound. In particular:

– Section 6.13 serves for Section 6.7.1 (the indicator and backward coordinate

bounds).

– Section 6.14 serves for Section 6.7.3 (the randomness decomposition and McDi-

armid’s inequality) and proves Theorem 6.14.2.

– Section 6.15 shows how to go from Theorem 6.14.2 to Theorem 6.15.2.

• Section 6.16 serves for Section 6.8, the proof of Theorem 6.16.1, the objective semi-

smoothness.

• Section 6.17 gives the final proof for Theorem 6.17.1, the GD convergence theorem.

• Section 6.18 gives the final proof for Theorem 6.18.1, the SGD convergence theorem.

Parameters We also summarize a few parameters we shall use in the proofs.
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• In Definition 6.13.1, we shall introduce two parameters

β+
def
=

δ

ρ2
and β−

def
=

δ

ρ10

to control the thresholds of indicator functions (recall Section 6.7.1).

• In Definition 6.14.2, we shall introduce parameter

θ ∈
[
ρ4 · β−, ρ−3 · β+

]

to describe how much randomness we want to decompose out ofW (recall Section 6.7.2).

• In (6.60) of Section 6.14.4, we shall choose

N =
ρ22

β2
−

which controls the size of the set N where we apply McDiarmid’s inequality (recall

Section 6.7.3).
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6.10 Preliminaries on Probability Theory

The goal of this section is to present a list of probability tools.

• In Section 6.10.1, we recall how to swap randomness.

• In Section 6.10.2, we recall concentration bounds for the chi-square distribution.

• In Section 6.10.3, we proved a concentration bound of sum of squares of ReLU of

Gaussians.

• In Section 6.10.4 and Section 6.10.5, we show some properties for random Gaussian

vectors.

• In Section 6.10.6, we recall the classical McDiarmid’s inequality and then prove a

general version of it.
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6.10.1 Swapping Randomness

Fact 6.10.1 (probability splitting). If f(X, Y ) holds with probability at least 1− ε, then

• with probability at least 1−√ε (over randomness of X), the following event holds,

– f(X, Y ) holds with probability at least 1−√ε (over randomness of Y ).

In other words,

PrX [PrY [f(X, Y )] ≥ 1−√ε] ≥ 1−√ε.

Fact 6.10.2 (swapping probability and expectation). If PrX,Y [f(X, Y ) ≥ a] ≥ ε, then

Pr
X

[
E
Y

[f(X, Y )] ≥ aε/2
]
≥ ε/2.

Proof. We prove it by making a contradiction,

Suppose

Pr
X

[
E
Y

[f(X, Y )] ≤ aε/2
]
≥ 1− ε/2,

which implies that

Pr
X,Y

[f(X, Y ) ≥ a|X] ≤ ε.
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6.10.2 Concentration of Chi-Square Distribution

Lemma 6.10.3 (Lemma 1 on page 1325 of [LM00]). Let X ∼ X2
k be a chi-squared distributed

random variable with k degrees of freedom. Each one has zero mean and σ2 variance. Then

Pr[X − kσ2 ≥ (2
√
kt+ 2t)σ2] ≤ exp(−t)

Pr[kσ2 −X ≥ 2
√
ktσ2] ≤ exp(−t)

One straightforward application is

Lemma 6.10.4. Let x1, x2, · · · , xn denote i.i.d. samples from N(0, σ2). For any b ≥ 1, we

have

Pr
[
|‖x‖2

2 − nσ2| ≥ n

b
σ2
]
≤ 2 exp(−n/(8b2)).

Proof. We choose t = k/(8b2) in Lemma 6.10.3,

Pr

[∣∣‖x‖2
2 − nσ2

∣∣ ≥ (
2n√
8b

+
2n

8b2
)σ2

]
≤ 2 exp(−n/(8b2)).

Since 2n√
8b

+ 2n
8b2
≤ 2n√

8b
+ 2n

8b
≤ n/b. Thus,

Pr
[∣∣‖x‖2

2 − nσ2
∣∣ ≥ n

b
σ2
]
≤ 2 exp(−n/(8b2)),

which completes the proof.

Lemma 6.10.5. Let x1, x2, · · · , xm denote i.i.d. samples from N(0, 1), and yi = max{x2
i −

logm, 0}. We have

Pr

[
m∑

i=1

yi ≥ 2
√
m

]
≤ e−Ω(

√
m) .
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Proof. First of all, letting g =
√

logm,

E[yi] =

∫ ∞

g

exp
(
−x2

2

)
(x− g)2

√
2π

dx =
1

2

(
g2 + 1

)
erfc

(
g√
2

)
− e−

g2

2 g√
2π
≤ 1

e
g2

2

=
1√
m

.

On the other hand, each random variable yi is O(1)-subgaussian. By subgaussian concen-

tration,

Pr

[
m∑

i=1

yi ≥ 2
√
m

]
≤ e−Ω(

√
m)
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6.10.3 Concentration of Sum of Squares of ReLU of Gaussians

Lemma 6.10.6 (Upper bound). Given n i.i.d. Gaussian random variables x1, x2, · · · , xn ∼

N(0, σ2), we have

Pr



(

n∑

i=1

max(xi, 0)2

)1/2

< (1 + ε)
√
n/2σ


 ≥ 1− exp(−ε2n/100).

Proof. Using Chernoff bound, we know that with probability 1−exp(−ε2n/6),
∑n

i=1 max(xi, 0)2

is a at most degree-(1 + ε)n
2
Chi-square random variable. Let us say this is the first event.

Using Lemma 6.10.3, we have

Pr[X ≥ kσ2 + (2
√
kt+ 2t)σ2] ≤ exp(−t)

=⇒ Pr[X ≥ kσ2 + (2εk + 2ε2k)σ2] ≤ exp(−ε2k) by choosing t = ε2k

=⇒ Pr[X ≥ k(1 + 4ε)σ2] ≤ exp(−ε2k)

=⇒ Pr
[
X ≥ (1 + ε)(1 + 4ε)

n

2
σ2
]
≤ exp(−ε2(1 + ε)n/2) by k = (1 + ε)n/2

Thus, we have with probability at least 1− exp(−ε2n/2),

X ≤ (1 + 4ε)2n

2
σ2.

Let the above event denote the second event.

By taking the union bound of two events, we have with probability 1−2 exp(−ε2n/6)

(
n∑

i=1

max(xi, 0)2

)1/2

≤ X ≤ (1 + 4ε)
n

2
σ

Then rescaling the ε, we get the desired result.
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Lemma 6.10.7 (Lower bound). Given n i.i.d. Gaussian random variables x1, x2, · · · , xn ∼

N(0, σ2), we have

Pr



(

n∑

i=1

max(xi, 0)2

)1/2

> (1− ε)
√
n/2σ


 ≥ 1− exp(ε2n/100)

Proof. Using Chernoff bound, we know that with probability 1−exp(−ε2n/6),
∑n

i=1 max(xi, 0)2

is a at most degree-(1− ε)n
2
Chi-square random variable. Let us say this is the first event.

Using Lemma 6.10.3, we have

Pr[X ≤ kσ2 − 2
√
ktσ2] ≤ exp(−t)

=⇒ Pr[X ≤ kσ2 − 2εkσ2] ≤ exp(−ε2k) by choosing t = ε2k

=⇒ Pr[X ≤ kσ2(1− 2ε)] ≤ exp(−ε2k)

=⇒ Pr
[
X ≤ (1− ε)(1− 2ε)

n

2
σ2
]
≤ exp(−ε2(1− ε)n/2) by k = (1− ε)n/2

Thus, we have with probability at least 1− exp(−ε2n/4),

X ≥ (1− 2ε)2n

2
σ2.

Let the above event denote the second event.

By taking the union bound of two events, we have with probability at least 1 −

2 exp(−ε2n/6),
(

n∑

i=1

max(xi, 0)2

)1/2

≥ X ≥ (1− 2ε)
n

2
σ.

Then rescaling the ε, we get the desired result.

Combining Lemma 6.10.7 and Lemma 6.10.6, we have
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Lemma 6.10.8 (Two sides bound). Given n i.i.d. Gaussian random variables x1, x2, · · · , xn ∼

N(0, σ2), let φ(a) = max(a, 0)2. We have

Pr
x

[
‖φ(x)‖2 ∈ ((1− ε)

√
n/2σ, (1 + ε)

√
n/2σ)

]
≥ 1− 2 exp(−ε2n/100)

Corollary 6.10.9 (Two sides bound for single matrix). Let x ∈ Rn denote a fixed vec-

tor. Given a random Gaussian matrix A ∈ Rm×n where each entry is i.i.d. sampled from

N(0, 2σ2/m).

Pr
A

[‖φ(Ax)‖2 ∈ ((1− ε)‖x‖2σ, (1 + ε)‖x‖2σ)] ≥ 1− 2 exp(−ε2m/100).

Proof. For each i ∈ [m], let yi = (Ax)i. Then yi ∼ N(0, σ̃2), where σ̃2 = 2σ2/m · ‖x‖2
2. Using

Corollary 6.10.8, we have

Pr
y

[
‖φ(y)‖2 ∈ ((1− ε)

√
m/2σ̃, (1 + ε)

√
m/2σ̃)

]
≥ 1− 2 exp(−εm/100)

which implies

Pr
y

[‖φ(y)‖2 ∈ ((1− ε)‖x‖2σ, (1 + ε)‖x‖2σ)] ≥ 1− 2 exp(−ε2m/100).

Since y = Ax, thus we complete the proof.

Corollary 6.10.10 (Two sides bound for multiple matrices). Let x1, x2, · · · , xk denote k fixed

vectors where xi ∈ Rni. Let x = [x>1 x>2 · · · x>k ]> ∈ Rn where n =
∑k

i=1 ni. Let A1, A2, · · ·Ak
denote k independent random Gaussian matrices where each entry of Ai ∈ Rm×ni is i.i.d.

sampled from N(0, 2σ2
i /m) for each i ∈ [k]. Let A = [A1 A2 · · · Ak]. We have

Pr
A


‖φ(Ax)‖2 ∈


(1− ε)

(
k∑

i=1

‖xi‖2
2σ

2
i

)1/2

, (1 + ε)

(
k∑

i=1

‖xi‖2
2σ

2
i

)1/2



 ≥ 1− 2 exp(−ε2m/100).
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Proof. It is similar as Corollary 6.10.9.

Fact 6.10.11 (see e.g. [AZLS19]). Let h, q ∈ Rp be fixed vectors and h 6= 0, W ∈ Rm×p

be random matrix with i.i.d. entries Wi,j ∼ N(0, 2
m

), and vector v ∈ Rm defined as vi =

1〈Wi,h+q〉≥0〈Wi, h〉. Then,

• |vi| follows i.i.d. from the following distribution: with half probability |vi| = 0, and with

the other half probability |vi| follows from folded Gaussian distributions |N(0, 2‖h‖2
m

)|.

• m‖v‖2
2‖h‖2 is in distribution identical to χ2

ω (chi-square distribution of order ω) where ω

follows from binomial distribution B(m, 1/2) (m trials each with success rate 1/2).

395



6.10.4 Gaussian Vector Percentile: Center

Fact 6.10.12. Suppose x ∼ N(0, σ2) is a Gaussian random variable. For any t ∈ (0, σ] we

have

Pr[x ≥ t] ∈
[

1

2
(1− 4

5

t

σ
),

1

2
(1− 2

3

t

σ
)

]
.

Similarly, if x ∼ N(µ, σ2), for any t ∈ (0, σ], we have

Pr[|x| ≥ t] ∈
[
1− 4

5

t

σ
, 1− 2

3

t

σ

]
.

Lemma 6.10.13. Let x ∼ N(0, σ2I). For any α ∈ (0, 1/2), we have with probability at least

1− exp(−α2m/100),

• there exists at least 1
2
(1− α) fraction of i such that xi ≥ 5ασ/16, and

• there exists at least 1
2
(1− α) fraction of i such that xi ≤ −5ασ/16 .

Proof. Let c1 = 4/5. For each i ∈ [m], we define random variable yi as

yi =

{
1, if xi ≥ ασ/(4c1);

0, otherwise.

Let p = Pr[yi = 1]. Using Fact 6.10.12 with t = ασ/(4c1), we know that p ≥ 1
2
(1 − α/4).

Letting Y =
∑m

i=1 yi, we have µ = E[Y ] = mp ≥ 1
2
(1 − α/4)m. Using Chernoff bound, we

have

Pr[Y ≤ (1− δ)µ] ≤ exp(−δ2µ/2).

Choosing δ = 1
4
α, we have

Pr[Y ≤ (1− α/4)µ] ≤ exp(−α2µ/32)
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Further we have

Pr[Y ≤ 1

2
(1− α)m] ≤ Pr[Y ≤ (1− α/4)

1

2
(1− α/4)m] by (1− α) ≤ (1− α/4)2

≤ Pr[Y ≤ (1− α/4)µ] by µ ≥ 1

2
(1− α/4)m

= Pr[Y ≤ (1− δ)µ] by δ = α/4

≤ exp(−α2µ/32)

≤ exp(−α2 1

2
(1− α/4)m/32) by µ ≥ 1

2
(1− α/4)m

= exp(−α2(1− α/4)m/64) .

We provide the definition of (α, σ)-good. Note that this definition will be used often

in the later proof.

Definition 6.10.1 ((α, σ)-good). Given w ∈ Rm, we say w is (α, σ)-good if the following

two conditions holding:

• there are at least 1
2
(1− α) fraction coordinates satisfy that wi ≥ ασ; and

• there are at least 1
2
(1− α) fraction coordinates satisfy that wi ≤ −ασ.

Lemma 6.10.13 gives the following immediate corollary:

Corollary 6.10.14 (random Gaussian is (α, σ/4)-good). Let x ∼ N(0, σ2I). For any α ∈

(0, 1/2), we have with probability at least 1− exp(−α2m/100) that x is (α, σ/4)-good.

Corollary 6.10.15. Let x1, x2, · · · , xk be k fixed vectors where xi ∈ Rni, and A1, A2, · · · , Ak
be k independent random Gaussian matrices where each entry of Ai ∈ Rm×ni is i.i.d. sampled

from N(0, σ2
i ) for each i ∈ [k]. Denote by x = (x1, . . . , xk) ∈ Rn for n =

∑k
i=1 ni, A =
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[A1, A2, · · · , Ak] ∈ Rm×n, and σ =
(∑k

i=1 σ
2
i ‖xi‖2

2

)1/2

. For any fixed parameter α ∈ (0, 1/2),

we have

Ax = A1x1 + · · ·Akxk is (α, σ/4)-good with probability at least 1− exp(−α2m/100).

Proof. It is clear that Ax follows from a Gaussian distribution N
(
0,
(∑k

i=1 σ
2
i ‖xi‖2

2

)
I
)
, so

we can directly apply Corollary 6.10.14.
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6.10.5 Gaussian Vector Percentile: Tail

Lemma 6.10.16. Suppose W ∈ Rm×n is a random matrix with entries drawn i.i.d. from

N
(
0, 2

m

)
. Given d ≤ s ≤ m, with probability at least 1 − e−Ω(s log2m), for all x ∈ Rn, letting

y = Wx, we can write y = y1 + y2 with

‖y1‖ ≤
√
s log2m√
m

· ‖x‖ and ‖y2‖∞ ≤
logm√
m
· ‖x‖ .

Proof of Lemma 6.10.16. Without loss of generality we only prove the result for ‖x‖ = 1.

Fixing any such x and letting β = logm
2
√
m
, we have yi ∼ N

(
0, 2

m

)
so for every p ≥ 1, by

Gaussian tail bound

Pr[|yi| ≥ βp] ≤ e−Ω(β2p2m) .

Since β2p2m ≥ β2m � Ω(logm), we know that if |yi| ≥ βp occurs for q/p2 indices i out of

[m], this cannot happen with probability more than
(
m

q/p2

)
×
(
e−Ω(β2p2m)

)q/p2

≤ e
q

p2

(
O(logm)−Ω(β2p2m)

)
≤ e−Ω(β2qm) .

In other words,

Pr
[
|{i ∈ [m] : |yi| ≥ βp}| > q/p2

]
≤ e−Ω(β2qm) .

Finally, by applying union bound over p = 1, 2, 4, 8, 16, . . . we have with probability ≥

1− e−Ω(β2qm) · log q,

∑

i : |yi|≥β

y2
i ≤

dlog qe∑

k=0

(2k+1β)2
∣∣{i ∈ [m] : |yi| ≥ 2kβ

}∣∣ ≤
dlog qe∑

k=0

(2k+1β)2 · q
22k
≤ 4qβ2 log q .

(6.23)

In other words, vector y can be written as y = y1 + y2 where ‖y2‖∞ ≤ β and ‖y1‖2 ≤

4qβ2 log q.
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At this point, we can choose q = s log2 m
mβ2 = 4s so the above event happens with

probability at least 1−e−Ω(β2qm) ≥ 1−e−Ω(s log2m). Finally, applying standard ε-net argument

over all unit vectors x ∈ Rn, we have for each such x ∈ Rn, we can decompose y = Wx into

y = y1 + y2 where

‖y2‖∞ ≤ 2β =
logm√
m

and ‖y1‖2 ≤ 8s log3m

m
.
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6.10.6 McDiarmid’s Inequality and An Extension

We state the standard McDiarmid’s inequality,

Lemma 6.10.17 (McDiarmid’s inequality). Consider independent random variables x1, · · · , xn ∈

X and a mapping f : Xn → R. If for all i ∈ [n] and for all y1, · · · , yn, y′i ∈ X, the function f

satisfies

|f(y1, · · · , yi−1, yi, yi+1, · · · , yn)− f(y1, · · · , yi−1, y
′
i, yi+1, · · · , yn)| ≤ ci.

Then

Pr[f(x1, · · · , xn)− E f ≥ t] ≥ exp(
−2t2∑n
i=1 c

2
i

),

Pr[f(x1, · · · , xn)− E f ≤ −t] ≥ exp(
2t2∑n
i=1 c

2
i

).

We prove a more general version of McDiarmid’s inequality,

Lemma 6.10.18 (McDiarmid extension). Let w1, . . . , wN be independent random variables

and

f : (w1, . . . , wN) 7→ [0, 1]. Suppose it satisfies:

• Ew1,...,wN [f(w1, . . . , wN)] ≥ µ, and

• With probability at least 1− p over w1, . . . , wN , it satisfies

∀k ∈ [N ],∀w′′k : |f(w−k, wk)− f(w−k, w
′′
k)| ≤ c (6.24)

Then, Pr[f(w1, . . . , wN) ≥ µ/2] ≥ 1−N2√p− eΩ( −µ2

N(c2+p)
)
.
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Proof of Lemma 6.10.18. For each t ∈ [N ], we have with probability at least 1 − √p over

w1, . . . , wt, it satisfies

Pr
wt+1,...,wN

[∀k ∈ [N ],∀w′′k : |f(w−k, wk)− f(w−k, w
′′
k)| ≤ c] ≥ 1−√p .

Define those (w1, . . . , wt) satisfying the above event to be K≤t.

Define random variable Xt (which depends only on w1, . . . , wt) as

Xt := E
w>t

[f(~w) | w≤t]1(w≤1,...,w≤t)∈K≤1×···×K≤t +N(1− 1(w≤1,...,w≤t)∈K≤1×···×K≤t)

For every t and fixed w1, . . . , wt−1.

• If (w≤1, . . . , w<t) 6∈ K≤1 × · · · ×K<t, then Xt = Xt−1 = N .

• If (w≤1, . . . , w<t) ∈ K≤1 × · · · ×K<t,

– If w≤t 6∈ K≤t, then Xt −Xt−1 = N − · · · ≥ 0.

– If w≤t ∈ K≤t, then

Xt −Xt−1 = E
w>t

[f(w<t, wt, w>t) | w≤t]− E
w≥t

[f(w<t, wt, w>t) | w<t]

Recall from our assumption that, with probability at least 1 − √p over wt and

w>t, it satisfies

∀w′′t : |f(w<t, w
′′
t , w>t)− f(w<t, wt, w>t)| ≤ c

Taking expectation over wt and w>t, we have

∀w′′t : E
w>t

[f(w<t, w
′′
t , w>t)]− E

w≥t
[f(w<t, wt, w>t)] ≥ −(c+

√
p)

This precisely means Xt −Xt−1 ≥ c+
√
p.
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In sum, we have just shown that Xt − Xt−1 ≥ −(c +
√
p) always holds. By applying

martingale concentration (with one-sided bound),

Pr[XN −X0 ≤ −t] ≤ exp

( −t2
N(c+

√
p)2

)

Notice that X0 = µ so if we choose t = µ/2, we have

Pr[XN ≥ µ/2] ≥ 1− exp

( −µ2

N(c+
√
p)2

)

Recalling

XN := f(~w)1(w≤1,...,w≤t)∈K≤1×···×K≤t +N(1− 1(w≤1,...,w≤t)∈K≤1×···×K≤t)

and we have XN = f(w1, . . . , wN) with probability at least 1 − N√p (and XN = N

with the remaining probabilities). Together, we have the desired theorem.
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6.11 Basic Properties at Random Initialization

Recall that the recursive update equation of RNN can be described as follows

hi,0 = 0 ∀i ∈ [n]

hi,` = φ(W · hi,`−1 + Axi,`) ∀i ∈ [n],∀` ∈ [L]

yi,` = B · hi,` ∀i ∈ [n],∀` ∈ [L]

Throughout this section, we assume that matricesW ∈ Rm×m, A ∈ Rm×dx , B ∈ Rd×m

are at their random initialization position: each entry of W and A is sampled i.i.d. from

N(0, 2
m

) and each entry of B is sampled i.i.d. from N(0, 1
d
). We recall

Definition 6.11.1. For each i ∈ [n] and ` ∈ [L], let Di,` ∈ Rm×m be the diagonal matrix

where

(Di,`)k,k = 1(W ·hi,`−1+Axi,`)k≥0 = 1(gi,`)k≥0 .

As a result, we can write hi,` = Di,`Whi,`−1.

We introduce two notations that shall repeatedly appear in our proofs.

Definition 6.11.2 (U`). Let U` ∈ Rm×n` denote the column orthonormal matrix using

Gram-Schmidt

U`
def
= GS (h1,1, . . . , hn,1, h1,2, . . . , hn,2, . . . , h1,`, . . . , hn,`)

Definition 6.11.3 (vi,`). For each i ∈ [n], ` ∈ [L], we define vector vi,` ∈ Rm as

vi,` =
(I − U`−1U

>
`−1)hi,`

‖(I − U`−1U>`−1)hi,`‖2
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Roadmap

• Section 6.11.1 proves that the forward propagation ‖hi,`‖2 neither vanishes nor ex-

plodes.

• Section 6.11.2 gives a lower bound on the projected forward propagation ‖(I−U`U>` )hi,`+1‖2.

• Section 6.11.3 proves that for two data points i, j ∈ [n], the projected forward propa-

gation (I − U`U>` )hi,`+1 and (I − U`U>` )hj,`+1 are separable from either other.

• Section 6.11.4 and Section 6.11.5 prove that the consecutive intermediate layers, in

terms of spectral norm, do not explode (for full and sparse vectors respectively).

• Section 6.11.6 proves that the backward propagation does not explode.
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6.11.1 Forward Propagation

Our first result of this section is on showing upper and lower bounds on the forward

propagation.

Lemma 6.11.1 (c.f. (6.2)). With probability at least 1− exp(−Ω(m/L2)) over the random

initialization W,A (see Definition 6.2.2), it satisfies

∀i ∈ [n], ∀` ∈ {0, 1, . . . , L− 1} : (1− 1/(4L))` ≤ ‖hi,`+1‖2 ≤ 2`+ 4.

‖gi,`+1‖2 ≤ 4`+ 8.

We prove Lemma 6.11.1 by induction on ` ∈ [L]. We only prove the hi,`+1 part and

the gi,`+1 part is completely analogous.

For the base case ` = 0, we have ‖xi,1‖2 = 1 and hi,1 = φ(Axi,1). Using Corol-

lary 6.10.10 we have 1−1/4L ≤ ‖hi,1‖2 ≤ 1+1/4L with probability at least 1−exp(−Ω(−m/L2)).

We proceed the proof for the case of ` ≥ 1, assuming that Lemma 6.11.1 already holds for

0, 1, . . . , `− 1. We first show

Claim 6.11.2. With probability at least 1− exp(−Ω(m/L2)) over W and A,

∀i ∈ [n] : ‖hi,`+1‖2 ≤ (1 + 1/L)(‖hi,`‖2 + 1)

Note if Claim 6.11.2 holds for all ` = 0, 1, . . . , ` − 1, then we must have ‖hi,`‖2 ≤

(1 + 1/L)`‖hi,0‖2 +
∑`

i=1(1 + 1/L)i = (1 + 1/L)` +
∑`

i=1(1 + 1/L)i ≤ 2`+ 4.

Proof of Claim 6.11.2. Recall the definition of hi,` ∈ Rm, we have

‖hi,`+1‖2 = ‖φ(W · hi,` + Axi,`+1)‖2
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We can rewrite vector Whi,` ∈ Rm as follows

Whi,` = WU`−1U
>
`−1hi,` +W (I − U`−1U

>
`−1)hi,`

= WU`−1U
>
`−1hi,` +W

(I − U`−1U
>
`−1)hi,`

‖(I − U`−1U>`−1)hi,`‖2

· ‖(I − U`−1U
>
`−1)hi,`‖2

= WU`−1U
>
`−1hi,` +Wvi,` · ‖(I − U`−1U

>
`−1)hi,`‖,

where the last step follows by definition of vi,` (See Definition 6.11.3). Define z1 ∈ Rn(`−1), z2 ∈

R, z3 ∈ Rd as follows

z1 = U>`−1hi,`, z2 = ‖(I − U`−1U
>
`−1)hi,`‖2, z3 = xi,`+1. (6.25)

Then

‖z1‖2
2 + z2

2 + ‖z3‖2
2 = ‖U>`−1hi,`‖2

2 + ‖(I − U`−1U
>
`−1)hi,`‖2

2 + ‖xi,`+1‖2
2

= ‖hi,`‖2
2 + ‖xi,`+1‖2

2 ≤ ‖hi,`‖2
2 + 1 . (6.26)

We can thus rewrite

Whi,` + Axi,`+1 = WU`−1z1 +Wvi,`z2 + Az3

=
[
M1 M2 M3

]
·



z1

z2

z3




= M · z,

where the last step follows by defining M ∈ Rm×(n(`−1)+1+d) as follows,

M =
[
M1 M2 M3

]
=
[
WU`−1 Wvi,` A

]
(6.27)
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We stress here that the entries of M1,M2,M3 are i.i.d. from N(0, 2
m

).13 We have ‖hi,`+1‖ =

‖φ(Whi,` + Axi,`+1)‖ = ‖φ(M · z)‖.

Next, applying Corollary 6.10.10, we know that if z1, z2, z3 are fixed (instead of defined

as in (6.25)), then, letting Choosing ε = 1/2L, we have

Pr
M

[
‖hi,`+1‖ ≤ (1 + ε) ·

√
‖z1‖2

2 + z2
2 + ‖z3‖2

2

]
≥ 1− exp(−Ω(ε2m)) .

To move from fixed choices of z1 and z2 to all choices of z1 and z2, we perform a standard

ε-net argument. Since the dimension of z1 and z2 are respectively n(`− 1) and 1, the size of

ε-net for z1 and z2 is at most eO(nL logL). Thus, with probability at least 1− eO(nL logL+logn) ·

exp(−Ω(ε2m)) ≥ 1 − exp(−Ω(ε2m)) we have: for all z1 ∈ Rn(`−1) and z2 ∈ R satisfying

‖z1‖ ≤ 2L+ 4 and 0 ≤ z2 ≤ 2L+ 4, and fixed z3 = xi,`+1,

‖hi,`+1‖ ≤ (1 + 2ε) ·
√
‖z1‖2

2 + z2
2 + ‖z3‖2

2.

In particular, since we have “for all” quantifies on z1 and z2 above, we can substitute the

choice of z1 and z2 in (6.25) (which may depend on the randomness of W and A). This,

together with (6.26), gives

Pr

[
‖h`+1‖2 ≤ (1 + ε) ·

√
‖hi,`‖2

2 + 1

]
≥ 1− exp(−Ω(ε2m)) .

Similarly, we can prove a lower bound

13Indeed, after Gram-Schmidt we can write U`−1 = [ĥ1, . . . , ĥn(`−1)], where each ĥj only depends on the
randomness of A and W [ĥ1, . . . , ĥj−1]. In other words, conditioning on any choice of A and W [ĥ1, . . . , ĥj−1],
we still have Wĥj is an independent Gaussian vector from N(0, 2

mI). Similarly, vi,` may depend on the
randomness of A and WU`−1, but conditioning on any choice of A and WU`−1, we still have Wvi,` follows
from N(0, 2

mI). This proves that the entries of M1,M2,M3 are independent.
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Claim 6.11.3. With probability at least 1− exp(−Ω(m/L2)) over W and A,

‖hi,`+1‖2 ≥ (1− 1

4L
)‖hi,`‖2.

Proof. We can define z1, z2, z3 in the same way as (6.25). This time, we show a lower bound

‖z1‖2
2 + z2

2 + ‖z3‖2
2 ≥ ‖z1‖2

2 + z2
2 = ‖hi,`‖2

2. (6.28)

Applying Corollary 6.10.10, we know if z1, z2, z3 are fixed (instead of defined as in (6.25)),

then choosing ε = 1/8L,

Pr

[
‖hi,`+1‖ ≥ (1− ε) ·

√
‖z1‖2

2 + z2
2 + ‖z3‖2

2

]
≥ 1− exp(−Ω(ε2m)) ..

Again, after applying ε-net, we know with probability at least 1−eO(nL logL+logn)·exp(−Ω(ε2m)) ≥

1 − exp(−Ω(ε2m)), for all z1 ∈ Rn(`−1) and z2 ∈ R satisfying ‖z1‖ ≤ 2L + 4 and 0 ≤ z2 ≤

2L+ 4, and fixed z3 = xi,`+1,

‖hi,`+1‖2 ≥ (1− ε) ·
√
‖z1‖2

2 + z2
2 + ‖z3‖2

2.

Substituting the choice of z1, z2, z3 in (6.25), and the lower bound (6.28), we have

Pr [‖hi,`+1‖ ≥ (1− ε) · ‖hi,`‖2] ≥ 1− exp(−Ω(ε2m)).

Choosing ε = 1/(4L) gives the desired statement.

Finally, recursively applying Claim 6.11.2 and Claim 6.11.3 for all ` = 0, 1, . . . , L− 1,

we have with probability at least 1− L2 exp(−Ω(m/L2)) ≥ 1− exp(−Ω(m/L2)), we have

‖hi,`‖2 ≥ (1− 1

4L
)`, ‖hi,`‖2 ≤ 2`+ 4 .

This finishes the proof of Lemma 6.11.1. �
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6.11.2 Forward Correlation

This subsection proves the following lemma which, as discussed in Section 6.5, bounds

how much “fresh new randomness” is left after propagating to layer `.

Lemma 6.11.4 (c.f. (6.3)). With probability at least 1 − e−Ω(
√
m) over the random initial-

ization W,A in Definition 6.2.2, letting U` be defined in Definition 6.11.2, we have

∀i ∈ [n],∀` ∈ {0, 1, · · · , L− 1} : ‖(I − U`U>` )hi,`+1‖2 ≥
1

2 · 106L2 log3m
.

To prove Lemma 6.11.4, we inductively (with the increasing order of `) show for each

i ∈ [n], for each ` ∈ {0, 1, · · · , L− 1}, we have

‖(I − U`U>` )hi,`+1‖2 ≥ ξ`
def
=

1

106L2 log3m
(1− 2α− 1

4L
)` where α

def
=

1

2 · 104L2 log2m
.

(6.29)

We first show (6.29) in the base case ` = 0. Since U0 is an empty matrix, we have

(I − U0U
>
0 )hi,1 = hi,1 so according to Lemma 6.11.1 we have ‖hi,1‖2 ≥ (1− 1/4L).

The remainder of the proof assumes (6.29) already holds for `− 1. We can write

hi,`+1 = φ(Whi,` + Axi,`+1) = φ(M1z1 +M2z2 +M3z3).

where M1 ∈ Rm×n(`−1), M2 ∈ Rm×1, M3 ∈ Rm×d and z1 ∈ Rn(`−1), z2 ∈ R, z3 ∈ Rd are

defined as

M1 = WU`−1 M2 = Wvi,` M3 = A

z1 = U>`−1hi,` z2 = ‖(I − U`−1U
>
`−1)hi,`‖2 z3 = xi,`+1 . (6.30)
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in the same way as (6.25) and (6.27) as in the proof of Lemma 6.11.1. We again have the

entries of M1,M2,M3 are i.i.d. from N(0, 2
m

) (recall Footnote 13). For the quantity M2z2,

we can further decompose it as follows

Mz2 = ν · (z2 − c5α)+ + ν ′z′2 (6.31)

where c5 = 1
16 logm

is some fixed parameter, ν and ν ′ denote two vectors that are indepen-

dently generated from N(0, 2I
m

), and

(z2 − c5α)+ =

{
0, if z2 < c5α;√
z2

2 − c2
5α

2, if z2 ≥ c5α.
z′2 =

{
z2, if z2 < c5α;

c5α, if z2 ≥ c5α.

It is clear that the two sides of (6.31) are identical in distribution (because M2 ∼ N(0, 2I
m

)

and (z2 − c5α)2
+ + (z′2)2 = z2

2).

Next, suppose z1 and z2 are fixed (instead of depending on the randomness of W and

A) and satisfies14

1√
2
≤ ‖z1‖ ≤ 2L+ 6 and |z2| ≤ 2L+ 6. (6.32)

We can apply Corollary 6.10.15 to obtain the following statement: with probability at least

1− exp(−Ω(α2m)),

w
def
= M1z1 + ν(z2 − c5α)+ +M3z3

is (α, σ/4)-good where σ =
(

2
m
‖z1‖2

2 + 2
m

((z2 − c5α)+)2 + 2
m
‖z3‖2

2

)1/2. Using ‖z1‖2
2 ≥ 1/2,

we can lower bound σ2 as

σ2 ≥ 2

m
(‖z1‖2

2 + z2
2 − c2

5α
2) ≥ 2

m
(
1

2
− c2

5α
2) ≥ 1

2m
.

14Note that if z1 and z2 are random, then they satisfy such constraints by Lemma 6.11.1.
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In other words, w is (α, 1
4
√

2
√
m

)-good. Next, applying standard ε-net argument, we have with

probability at least 1 − exp(−Ω(α2m)), for all vectors z1 ∈ Rn(`−1) and z2 ∈ R satisfying

(6.32), it satisfies w is (α, 1
8
√
m

)-good. This allows us to plug in the random choice of z1 and

z2 in (6.30).

We next apply Lemma 6.11.5 with

w = M1z1 + ν(z2 − c5α)+ +M3z3, r = z′2, v = ν, U = U`.

(We can do so because the randomness of v is independent of the randomness of U` and w.)

Lemma 6.11.5 tells us that, with probability at least 1− exp(−Ω(
√
m)) over the randomness

of v,

‖(I − U`U>` ) · φ(w + rv)‖ ≥ r(1− 2α)− α1.5

4
.

By induction hypothesis, we know

r = z′2 ≥ min{z2, c5α} ≥ min{ξ`−1, c5α} ≥ ξ`−1 ,

where the last step follows by ξ`−1 ≤ c5α. Thus, we have

‖(I − U`U>` ) · φ(w + rv)‖ ≥ r(1− 2α)− α1.5

4
≥ ξ`−1(1− 2α)− α1.5

4
≥ ξ`−1(1− 2α− 1

4L
) = ξ` ,

where the last inequality uses α1.5 ≤ ξ`−1

L
.

�

6.11.2.1 Tools

Lemma 6.11.5. Suppose α ∈ [ 1
100L4 , 1/2), m ≥ 4d̃/α and r ∈ (0, α

16 logm
]. Suppose w is a

fixed vector that is (α, 1
8
√
m

)-good (see Definition 6.10.1), and U ∈ Rm×d̃ is a fixed column
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orthonormal matrix. Then, if v ∼ N(0, 2
m
I), with probability at least 1 − exp(−Ω(

√
m)), it

satisfies

‖(I − UU>) · φ(w + rv)‖ ≥ r(1− 2α)− α1.5

4
.

Proof. We split w ∈ Rm into three pieces w = (w1, w2, w3) ∈ Rm with disjoint support such

that:

• w1 corresponds to the coordinates that are ≥ α/8
√
m,

• w2 is the remaining, which corresponds to the coordinates that are within (−α/8√m,α/8√m).

• w3 corresponds to the coordinates that are ≤ −α/8√m, and

We write v = (v1, v2, v3) according to the same partition. We consider the following three

cases.

• For each index k in the first block, we have
(
φ(w1 + rv1)

)
k
6=
(
w1 + rv1

)
k
only if

(rv1)k ≤ −α/8
√
m. However, if this happens, we have

0 ≤
(
φ(w1 + rv1)

)
k
−
(
w1 + rv1

)
k
≤ max

{(
rv1

)
k
− α/8√m, 0

}
.

Applying Lemma 6.10.5, we know with probability at least 1− e−Ω(
√
m),

δ1
def
= φ(w1 + rv1)−

(
w1 + rv1

)
satisfies ‖δ1‖2 ≤ 2

√
m

2r2

m
≤ 4α2/

√
m .

• Similarly, for each index k in the third block, we have
(
φ(w1 + rv1)

)
k
6= 0 only if

(rv1)k ≥ α/8
√
m. Therefore, we can similarly derive that

δ3
def
= φ(w3 + rv3) satisfies ‖δ3‖2 ≤ 4α2/

√
m .
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• For the second block, we claim that

δ2
def
= φ(w2 + rv2) satisfies ‖δ2‖2 ≤ α3/2/4 . (6.33)

To prove (6.33), we use triangle inequality,

‖φ(w2 + rv2)‖2 ≤ ‖φ(w2)‖2 + ‖φ(rv2)‖2

Since ‖φ(w2)‖∞ ≤ α/8
√
m and the size of support of φ(w2) is at most αm, we have

‖φ(w2)‖2 ≤ ((α/8
√
m)2αm)1/2 ≤ α3/2

8
.

Since v ∼ N(0, 2
m
I), and since the size of support of v2 is at most αm, we have

‖v2‖ ≤ 2
√
α with probability at least 1 − e−Ω(αm) (due to chi-square distribution

concentration). Thus

‖φ(rv2)‖2 = r · ‖φ(v2)‖2 ≤
α

16
· 2√α =

α3/2

8
.

Together, by triangle inequality we have ‖φ(w2 + rv2)‖ ≤ α3/2

4
. This finishes the proof of

(6.33).

Denoting by δ = (δ1, δ2, δ3), we have

φ(w + rv) = w1 + rv1 + δ.
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Taking the norm on both sides,

‖(I − UU>)φ(w + rv)‖ = ‖(I − UU>)(w1 + rv1 + δ)‖

≥ ‖(I − UU>)(w1 + rv1)‖ − ‖(I − UU>)δ‖
(by triangle inequality)

≥ ‖(I − UU>)(w1 + rv1)‖ − ‖δ‖ (by ‖(I − UU>)δ‖ ≤ ‖δ‖)

≥ ‖(I − UU>)(w1 + rv1)‖ − α3/2

4
− 4α

m1/4

≥ ‖(I − UU>)(w1 + rv1)‖ − α3/2

2

≥ ‖(I − UU>)w1 + rv1‖ − r‖U>v1‖ −
α3/2

2
.

Now, since U ∈ Rm×d̃, it is not hard to show that ‖U>v1‖2
2 ≤ 2d̃

m
with probability at least

1−exp(−Ω(m)). Using 2d̃
m
≤ α

2
(owing to our assumptionm ≥ 4d̃/α), we have r‖U>v1‖ ≤ rα

2
.

On the other hand, the random vector z = (I−UU>)w1+rv1 follows from distribution

N(µ, 2r2

m
) for some fixed vector µ = (I − UU>)w1 and has at least m

2
(1− α) dimensions. By

chi-square concentration, we have ‖z‖ ≥ r(1− 3α/2) with probability at least 1− e−Ω(α2m).

Putting these together, we have

‖(I − UU>)φ(w + rv)‖ ≥ r(1− 3α/2)− rα

2
− α3/2

2
= r(1− 2α)− α3/2

2
.
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6.11.3 Forward δ-Separateness

We first give the definition of δ-Separable,

Definition 6.11.4 (δ-separable vectors). For any two vectors x, y, we say x and y are

δ-separable if
∥∥∥∥(I − yy>

‖y‖2
2

)x

∥∥∥∥ ≥ δ and
∥∥∥∥(I − xx>

‖x‖2
2

)y

∥∥∥∥ ≥ δ ..

We say a finite set X is δ-separable if for any two vectors x, y ∈ X, x and y are δ-separable.

The goal of this subsection is to prove the δ-separateness over all layers `.

Lemma 6.11.6 (c.f. (6.4)). Let {xi,1}i∈[n] be δ-separable with δ ≤ 1
106L2 log3 m

. With prob-

ability at least 1 − e−Ω(
√
m), for all ` = 0, 1, . . . , L − 1, for all i, j ∈ [n] with i 6= j, we

have

(I − U`U>` )hi,`+1 and (I − U`U>` )hj,`+1 are
δ

2
-separable.

(Note that since we have assumed ‖xi,1 − xj,1‖ ≥ δ in Assumption 6.2.1 and assumed with-

out loss of generality that (xi,1)dx = 1√
2
, it automatically satisfies that {xi,1}i∈[n] is O(δ)-

separable.)

To prove Lemma 6.11.6, we inductively (with the increasing order of `) show for each

i ∈ [n], for each ` ∈ {0, 1, · · · , L− 1}, we have

(I − U`U>` )hi,`+1 and (I − U`U>` )hj,`+1 are δ` separable for δ`
def
= δ(1− 2α− 1

4L
)` (6.34)

where α def
= 16δ logm.
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We skip the base case and only prove (6.34) for ` ≥ 1 by assuming (6.34) already

holds for `− 1.15

Claim 6.11.7. For i 6= j, if (I − U`−1U
>
`−1)hi,` and (I − U`−1U

>
`−1)hj,` are δ`−1-separable,

then letting U = [U`, ĥ] where ĥ =
(I−U`U>` )hj,`+1

‖(I−U`U>` )hj,`+1‖2
, we have

‖(I − UU>)hi,`+1‖ ≥ δ` = δ`−1(1− 3α) .

holds with probability at least 1− exp(−Ω(
√
m)).

Since it is easy to verify that

∥∥∥
(
I − ĥĥ>

)
(I − U`U>` )hi,`+1

∥∥∥ = ‖(I − UU>)hi,`+1‖2 ,

Claim 6.11.7 immediately implies (6.34) for layer `, and thus finishes the proof of Lemma 6.11.6.

Therefore, we only need to prove Claim 6.11.7 below.

Proof of Claim 6.11.7. Let x = (I−U`−1U
>
`−1)hj,` and y = (I−U`−1U

>
`−1)hi,`. If x and y are

δ`−1-separable, we split y into two parts where y1 is parallel to x and y2 is orthogonal to x

y = y1 + y2, y1 =
〈x, y〉x
‖x‖2

2

, y2 = (I − xx>/‖x‖2
2)y

This also implies that the randomness in y1 is independent of the randomness in y2.

It is easy to see that ‖y1‖2 = 〈x,y〉
‖x‖2 , so we can rewrite Wy as follows

Wy = Wy1 +Wy2 = W
〈x, y〉x
‖x‖2

2

+Wy2 = (‖y1‖2/‖x‖2)Wx+Wy2.

15The proof of the base case is a replication of Claim 6.11.7 and only simpler. Indeed, for the base case of
` = 0, one can view hi,` = xi,1 and hj,` = xj,1, and view U` as an empty matrix. Then, the same analysis of
Claim 6.11.7 but with slightly different notations will apply.
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Therefore,

Whi,` + Axi,`+1 = WU`−1U
>
`−1hi,` +W (I − U`−1U

>
`−1)hi,` + Axi,`+1

= WU`−1U
>
`−1hi,` +Wy + Axi,`+1 (by definition of y)

= WU`−1U
>
`−1hi,` + (‖y1‖2/‖x‖2)Wx+ Axi,`+1 +Wy2

(by rewritting Wy)
= M1z1 +M2z2 +M3z3 +M4z4

where

M1 = WU`−1 M2 = W
x

‖x‖2

M3 = A M4 = W
y2

‖y2‖2

z1 = U>`−1hi,` z2 = ‖y1‖2 z3 = xi,`+1 z4 = ‖y2‖2 , (6.35)

and we know the entries of M1,M2,M3,M4 are i.i.d. from N(0, 2
m

), owing to a similar

treatment as Footnote 13. For the vector M4z4, we further rewrite it as

M4z4 = ν · (z4 − c5α)+ + ν ′z′4

where c5 = 1
16 logm

is a fixed parameter, and ν and ν ′ denote two vectors that are indepen-

dently generated from the same distribution N(0, 2
m
I) as vector M4 ∈ Rm, and

(z4 − c5α)+ =

{
0, if z4 < c5α;√
z2

4 − c2
5α

2, if z4 ≥ c5α.
z′4 =

{
z4, if z4 < c5α;

c5α, if z4 ≥ c5α.

Together, we can write

(I − UU>)hi,`+1 = (I − UU>)φ(Whi,` + Axi,`+1)

= (I − UU>)φ(M1z1 +M2z2 +M3z3 +M4z4)

= (I − UU>)φ(M1z1 +M2z2 +M3z3 + ν · (z4 − c5α)+ + ν ′z′4)

= (I − UU>)φ(w + ν ′z′4)
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where the last step follows by defining

w = M1z1 +M2z2 +M3z3 + ν · (z4 − c5α)+ .

Our plan is to first use the randomness in w to argue that w is (α, γ/4
√
m)-good.

Then we conditioned w is good, and prove that the norm of (I − UU>)φ(w + ν ′z′4) is lower

bounded (using (6.11.5)).

Now, suppose that z1 ∈ Rn(`−1), z2 ∈ R, and z4 ∈ R are fixed (instead of computed

based on the randomness of W and A), and satisfies16

1√
2
≤ ‖z1‖ ≤ 2L+ 6 and |z2|, |z4| ≤ 2L+ 6. (6.36)

we can use Corollary 6.10.15 to obtain the following statement: w is (α, σ/4)-good with prob-

ability at least 1− exp(−Ω(α2m)) where σ =
(

2
m
‖z1‖2

2 + 2
m
z2

2 + 2
m
‖z3‖2

2 + 2
m

(z2
4 − c2

5α
2)
)1/2.

Using ‖z1‖2
2 ≥ 1/2, we can lower bound σ2 as

σ2 ≥ 2

m
(‖z1‖2

2 + z2
2 + z2

4 − c2
5α

2) ≥ 2

m
(
1

2
− c2

5α
2)

In other words, w is (α, 1
4
√

2
√
m

)-good. Next, applying standard ε-net argument, we have

with probability at least 1 − exp(−Ω(α2m)), for all z1, z2, z4 satisfying (6.36), it satisfies w

is (α, 1
8
√
m

)-good. This allows us to plug in the random choice of z1, z2, z4 in (6.35).

We apply Lemma 6.11.5 with the following setting

U =

[
U`,

(I − U`U>` )hj,`+1

‖(I − U`U>` )hj,`+1‖2

]
, w = w, v = ν ′, r = z′4 ∈ [0, c5α]

16Note that if z1, z2 and z4 are random, then they satisfy such constraints by Lemma 6.11.1.
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where w is (α, γ/8
√
m)-good. (We can do so because the randomness of v is independent

of the randomness of U and w.) Lemma 6.11.5 tells us that, with probability at least

1− exp(−Ω(
√
m)) over the randomness of v,

‖(I − UU>) · φ(w + rv)‖ ≥ r(1− 2α)− α1.5

4
.

By induction hypothesis, we know

r = z′4 ≥ min{z4, c5α} ≥ min{δ`−1, c5α} ≥ δ`−1 ,

where the last step follows by δ`−1 ≤ c5α. Thus, we have

‖(I − UU>) · φ(w + rv)‖ ≥ r(1− 2α)− α1.5

4
≥ δ`−1(1− 2α)− α1.5

4
≥ δ`−1(1− 2α− 1

4L
) = δ` ,

where the last inequality uses α1.5 ≤ δ`−1

L
.
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6.11.4 Intermediate Layers: Spectral Norm

The following lemma bounds the spectral norm of (consecutive) intermediate layers.

Lemma 6.11.8 (c.f. (6.5)). With probability at least 1 − exp(−Ω(m/L2)), we have for all

L ≥ `2 ≥ `1 ≥ 0 and i ∈ [n]

∥∥∥
∏`1

`=`2
Di,`W

∥∥∥
2
≤ O(L3),

We start with an important claim whose proof is almost identical to Lemma 6.11.1.

Claim 6.11.9. Given ` > b ≥ 1, given i ∈ [n], and given zb−1 ∈ Rm a fixed vector, letting

z` = Di,`WDi,`−1 · · ·Di,bWzb−1 ,

we have with probability at least 1−exp(−Ω(m/L2)), it satisfies ‖z`‖2 ≤ (1+1/L)`−b+1‖zb−1‖2.

Proof. Let U denote the following column orthonormal matrix using Gram-Schmidt (its first

n(`− 1) columns coincide with U`−1):

U
def
= GS (h1,1, . . . , hn,1, h1,2, . . . , hn,2, . . . , h1,`−1, . . . , hn,`−1, zb−1, · · · z`−1) .

We can rewrite ‖z`‖2 as follows:

‖z`‖2 = ‖Di,`Wz`−1‖2

=
∥∥1Whi,`−1+Axi,`≥0 ·Wz`−1

∥∥
2

=
∥∥1WUU>hi,`−1+Axi,`≥0 ·WUU>z`−1

∥∥
2

= ‖1My+Ax≥0Mz‖2 .
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where in the last step we have defined M = WU , y = U>hi,`−1, x = xi,` and z = U>z`−1.

We stress here that the entries of M and A are i.i.d. from N(0, 2
m

).17

Now, Claim 6.11.10 tells us for fixed x ∈ Rd and fixed y, z ∈ Rn`+`−b, we have with

probability 1− exp(−Ω(m/L2)) (over the randomness of M,A),

‖1My+Ax≥0Mz‖2 ≤ ‖z‖2(1 + 1/2L) .

After taking ε-net over all possible y, z, we have that for fixed x ∈ Rd but all y, z ∈ Rn`+`−b:

‖1My+Ax≥0Mz‖2 ≤ ‖z‖2(1 + 1/L) .

We can thus plug in the choice y = U>hi,`−1 and z = U>z`−1 (both of which may depend on

the randomness of W and A). Using ‖z‖2 ≤ ‖z`−1‖2, we have

‖z`‖2 ≤ ‖z`−1‖2(1 + 1/L) .

Finally, taking union bound over all possible ` and applying induction, we have

‖z`‖2 ≤ (1 + 1/L)`−b+1‖zb−1‖2.

Now, to prove the spectral norm bound in Lemma 6.11.8, we need to go from “for

each zb−1 (see Claim 6.11.9)” to “for all zb−1”. Since zb−1 has m dimensions, we cannot afford

taking union bound over all possible zb−1 (or its ε-net).

To bypass this issue, we partition the coordinates of zb−1 into L3 trunk (each of length

m/L3). We write zb−1 =
∑L3

j=1(zb−1)j where each (zb−1)j ∈ Rm denotes a vector that only

17This follows from a similar argument as Footnote 13, taking into account the additional fact that each
zj may only depend on the randomness of A, WU`−1, and Wzb−1, . . .Wzj−1.
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has non-zero entries on m/L3 coordinates. For each j ∈ [L3], we have with probability

1− exp(−m/L2),

‖(z`)j‖2 ≤ (1 + 1/L)`−b · ‖(zb−1)j‖2 ≤ 2‖(zb−1)j‖2 .

By applying an ε-net argument over all such possible (but sparse) (zb−1)j, we have with

probability at least 1− 2O(m/L3) exp(−Ω(m/L2)) ≥ 1− exp(−Ω(m/L2)), the above equation

holds for all possible (zb−1)j.

Next, taking a union bound over all j ∈ [L3], we have with probability at least

1− exp(−Ω(m/L2)):

∀zb−1 ∈ Rm : ‖z`‖2 ≤ O(L3)‖zb−1‖2 .

Taking a union bound over all `, b, we complete the proof of Lemma 6.11.8. �

6.11.4.1 Tools

Claim 6.11.10. For fixed x ∈ Rd, y, z ∈ Rk. Let M ∈ Rm×k and A ∈ Rm×d denote

random Gaussian matrices where each entry is i.i.d. sampled from N(0, 2/m). We have with

probability at least 1− exp(−Ω(m/L2))

‖1My+Ax≥0 ·Mz‖2 ≤ ‖z‖2(1 + 1/2L) .

Proof. Without loss of generality we assume ‖z‖2 = 1. We can rewrite My as follows

My = M(zz>)y +M(I − zz>)y

= Mz · z>y +
M(I − zz>)y

‖(I − zz>)y‖2

· ‖(I − zz>)y‖2

= M1z1 +M2z2,
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where M1,M2 ∈ Rm and z1, z2 ∈ R are defined as follows

M1 = Mz, M2 =
M(I − zz>)y

‖(I − zz>)y‖2

z1 = z>y, z2 = ‖(I − zz>)y‖2

It is easy to see that M1 is independent of M2. We can rewrite

‖1My+Ax≥0 ·Mz‖2 = ‖1M1z1+M2z2+Ax≥0 ·M1‖2

Using Fact 6.10.11 together with concentration bounds (for binomial distribution and for

chi-square distribution), we have with probability at least 1− exp(−Ω(m/L2)),

‖1M1z1+M2z2+Ax≥0 ·M1‖2 ≤ ‖z‖2(1 + 1/2L).

Thus, we complete the proof.
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6.11.5 Intermediate Layers: Sparse Spectral Norm

This section proves two results corresponding to the spectral norm of intermediate

layers with respect to sparse vectors. We first show Lemma 6.11.11 and our Corollary 6.11.12

and 6.11.13 shall be direct applications of Lemma 6.11.11.

Lemma 6.11.11. For every k ∈ [m] and t ≥ 2, with probability at least

1− nL2eO(k log(m))(e−Ω(m/L2) + e−Ω(nLt2))

it satisfies, for all i ∈ [n], for all L > `2 ≥ `1 ≥ 1, for all k-sparse vectors z, y ∈ Rm

∣∣∣∣∣y
>W

(
`1∏

`=`2

Di,`W

)
z

∣∣∣∣∣ ≤
5t
√
nL

m1/2
· ‖y‖2 · ‖z‖2.

Proof. Without loss of generality we assume ‖y‖ = ‖z‖ = 1. Fixing `2 ≥ `1, fixing i, and fix-

ing z`1−1 = z, we have according to Claim 6.11.9, letting z`2 = Di,`2WDi,`2−1W · · ·Di,`1z`1−1,

then with probability at least 1− e−Ω(m/L2)

‖z`2‖2 ≤ (1 + 1/L)`2−`1−1‖z`1−1‖2 ≤ 2 .

Applying ε-net over all k-sparse vectors z, we have with probability at least 1−eO(k logm)e−Ω(m/L2),

it satisfies ‖z`2‖2 ≤ 3 for all k-sparse z:

Similar to the proof of Lemma 6.11.8, we let U denote the following column orthonor-

mal matrix using Gram-Schmidt:

U
def
= GS (h1,1, . . . , hn,1, h1,2, . . . , hn,2, . . . , h1,`2−1, . . . , hn,`2−1, z`1−1, · · · z`2) ,

and we have
∣∣∣∣∣y
>W

(
`1∏

`=`2

Di,`W

)
z

∣∣∣∣∣ =
∣∣y>WUU>z`2

∣∣ ≤
∥∥y>WU

∥∥ · ‖U>z`2‖ ≤ 3
∥∥y>WU

∥∥ .
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Next, observe the entries of WU ∈ Rm×n(`2−1)+(`2−`1+2) are i.i.d. drawn from N(0, 2
m

) (fol-

lowing a similar argument as Footnote 17). Therefore, if y is a fixed vector, then y>WU is

in distribution identical to a Gaussian vector N(0, 2
m
I) of n(`2 − 1) + (`2 − `1 + 2) ≤ 2nL

dimensions. By chi-square distribution tail bound (see Lemma 6.10.3), we have for t ≥ 2:

Pr[‖y>WU‖2 ≥ nLt2

m
] ≤ e−Ω(nLt2) .

Applying ε-net over all k-sparse vectors y, we have with probability at least 1−eO(k logm)e−Ω(nLt2),

it satisfies ‖y>WU‖2 ≤ 2nLt2

m
for all k-sparse vectors y.

Conditioning on both events happen, we have
∣∣∣∣∣y
>W

(
`1∏

`=`2

Di,`W

)
z

∣∣∣∣∣ ≤ 3

√
2nLt√
m

.

Taking union bound over all possible i, `1, `2 we finish the proof.

Choosing k = s2m2/3 and t = sm1/3 logm

5
√
nL

in Lemma 6.11.11, we have

Corollary 6.11.12 (c.f. (6.6)). Let s ∈ [m−1/4,m1/6] be a fixed real. With probability at least

1 − e−Ω(s2m2/3 log2m), we have for all i ∈ [n], for all L > `2 ≥ `1 ≥ 1, for all s2m2/3-sparse

vectors y, z ∈ Rm,
∣∣∣∣∣z
>W

(
`1∏

`=`2

Di,`W

)
y

∣∣∣∣∣ ≤
s logm

m1/6
· ‖z‖2 · ‖y‖2.

Choosing k = 1 and t =
√
nLd logm

5
in Lemma 6.11.11, we have

Corollary 6.11.13 (c.f. (6.6)). Let ρ = nLd logm. With probability at least 1−exp(−Ω(ρ2)),

it satisfies for all i ∈ [n], for all L > `2 ≥ `1 ≥ 1, and for all 1-sparse vectors y, z ∈ Rm,
∣∣∣∣∣z
>W

(
`1∏

`=`2

Di,`W

)
y

∣∣∣∣∣ ≤
ρ

m1/2
· ‖z‖2 · ‖y‖2 .
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6.11.6 Backward Propagation

This section proves upper bound on the backward propagation against sparse vectors.

We first show Lemma 6.11.14 and our Corollary 6.11.15 and 6.11.16 shall be immediate

corollaries.

Lemma 6.11.14. For any k ∈ [m], t ≥ 2 and any a ∈ Rd, with probability at least

1− nL2eO(k logm)(e−Ω(m/L2) + e−Ω(t2)),

over the randomness of W,A,B, we have for all i ∈ [n], for all L ≥ `2 ≥ `1 ≥ 1, and for all

k-sparse y ∈ Rm,
∣∣∣∣∣a
>B

(
`1∏

`=`2

Di,`W

)
y

∣∣∣∣∣ ≤
t√
d
· ‖a‖2 · ‖y‖2.

Proof of Lemma 6.11.14. Using Claim 6.11.9, we know that for fixed z`1−1 = y, letting

z`2 = Di,`2WDi,`2−1W · · ·Di,`1Wz`1−1 ,

with probability at least 1− exp(−Ω(m/L2)) we have

‖z`2‖2 ≤ (1 + 1/L)`2−`1+1‖z`1−1‖2 ≤ 3‖z`1−1‖2.

Next, fixing vectors a and z`2 and letting B be the only source of randomness, we know

a>Bz`2 follows from N(0, ‖a‖2
2‖z`2‖2

2/d). Then with probability at least 1−exp(−Ω(t2)) over

B,

|a>Bz`2| ≤ t · ‖a‖2‖z`2‖2/
√
d.
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Taking a union of the above two events, we get with probability 1 − exp(−Ω(m/L2)) −

exp(−Ω(t2)),

|a>Bz`2| ≤
3t√
d
· ‖a‖2 · ‖y‖2.

At this point, we apply ε-net argument for all k-sparse vectors y ∈ Rm (the size of which is

at most eO(k log(m/k))). Taking a union bound over all such vectors in the ε-net, we have with

probability at least

1− exp(O(d+ k log(m/k)))(exp(−m/L2) + exp(−Ω(t2))) ,

for all k-sparse vector y ∈ Rm,

|a>Bz`2| ≤
3t√
d
· ‖a‖2 · ‖y‖2 .

Finally, we also take a union bound over all `2, `1 and i, and there are at most O(nL2)

choices.

Using Lemma 6.11.14 with k = s2m2/3 and t = sm1/3 logm, and taking union bound

over all a ∈ Rd, give

Corollary 6.11.15 (c.f. (6.7)). Let s ∈ [m−1/4,m1/6] be a fixed real. With probability at

least 1 − exp(−Ω(s2m2/3 log2m)), we have for all i ∈ [n], for all L ≥ `2 ≥ `1 ≥ 1, for all

(s2 ·m2/3)-sparse y ∈ Rm, for all a ∈ Rd,
∣∣∣∣∣a
>B

(
`1∏

`=`2

Di,`W

)
y

∣∣∣∣∣ ≤ (sm1/3 logm) · ‖a‖2 · ‖y‖2 .

Using Lemma 6.11.14 with k = 1 and t = nLd logm, and taking union bound over

all a ∈ Rd, give
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Corollary 6.11.16 (c.f. (6.7)). Let ρ = nLd logm. With probability at least 1−exp(−Ω(ρ2)),

we have for all i ∈ [n], for all L ≥ `2 ≥ `1 ≥ 1, for all 1-sparse vector y ∈ Rm, and for all

a ∈ Rd,
∣∣∣∣∣a
>B

(
`1∏

`=`2

Di,`W

)
y

∣∣∣∣∣ ≤ ρ · ‖a‖2 · ‖y‖2.
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6.12 Stability After Adversarial Perturbation

Throughout this section, we consider some random initialization W̃ , A,B, and some

adversarially chosen perturbation W ′ ∈ Rm×m which may depend on the randomness of

W̃ , A,B. We introduce the following notations in this section

Definition 6.12.1.

g̃i,0 = h̃i,0 = 0 gi,0 = hi,0 = 0 for i ∈ [n]

g̃i,` = W̃ h̃i,`−1 + Axi,` gi,` = (W̃ +W ′)hi,`−1 + Axi,` for i ∈ [n] and ` ∈ [L]

h̃i,` = φ(W̃ h̃i,`−1 + Axi,`) hi,` = φ((W̃ +W ′)hi,`−1 + Axi,`) for i ∈ [n] and ` ∈ [L]

h′i,` = hi,` − h̃i,` g′i,` = gi,` − g̃i,` for i ∈ [n] and ` ∈ [L]

Define diagonal matrices D̃i,` and Di,` by letting

(D̃i,`)k,k = 1(g̃i,`)k≥0 and (Di,`)k,k = 1(gi,`)k≥0.

Accordingly, we let diagonal matrix D′i,` = Di,` − D̃i,`.

Roadmap

• Section 6.12.1 proves the stability at forward when the perturbation matrix W ′ has

small spectral norm. It gives bounds on ‖g′i,`‖2, ‖h′i,`‖2, ‖D′i,`‖0, and ‖D′i,`gi,`‖2.

• Section 6.12.2 proves the stability of intermediate layers. It gives bound on ‖∏`1
`=`2

Di,`W̃‖2

and ‖∏`1
`=`2

Di,`W‖2.

• Section 6.12.3 analyzes the stability for backward. It bounds the difference ‖a>B(
∏`1

`=`2
D̃i,`W̃−

∏`1
`=`2

Di,`W̃ )‖2.
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• Section 6.12.4 considers a special type of rank-one perturbation matrix W ′, and pro-

vides stability bounds on the forward and backward propagation.

As discussed in Section 6.6, the results of Section 6.12.1, 6.12.2 and 6.12.3 shall be

used twice, once for the final training updates (see Section 6.16), and once for the randomness

decomposition (see Section 6.14). In contrast, the results of Section 6.12.4 shall only be used

once in Section 6.14.
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6.12.1 Forward

The goal of this section is to prove Lemma 6.12.1,

Lemma 6.12.1 (forward stability, c.f. (6.8)). Letting % = nLdδ−1 log(m/ε), for any τ0 ∈
[
%−100, %100

]
, with probability at least 1− e−Ω(L6τ

4/3
0 m1/3) over the randomness of W̃ , A,B, for

every W ′ ∈ Rm×m with ‖W ′‖2 ≤ τ0√
m
, for every i ∈ [n] and ` ∈ [L], we have

(a) ‖g′i,`‖2, ‖h′i,`‖2 ≤ O(L6τ0)/m1/2 ,

(b) ‖D′i,`‖0 ≤ O(L10/3τ
2/3
0 ) ·m2/3 , and

(c) ‖D′i,`gi,`‖2 ≤ O(L5τ0)/m1/2 .

Proof of Lemma 6.12.1. Suppose C > 1 is a large enough constant so that the hidden con-

stant in Lemma 6.11.8 can be C. We inductively prove that one can write g′i,` = g′i,`,1 + g′i,`,2

where

I: ‖g′i,`,1‖2 ≤ τ1 ·
1

m1/2
II: ‖g′i,`,2‖∞ ≤ τ2 ·

1

m
III: ‖g′i,`‖2 ≤ τ3 ·

1

m1/2

IV: ‖D′i,`‖0 ≤ τ4 ·m2/3 V: ‖D′i,`gi,`‖2 ≤ τ5 ·
1

m1/2
VI: ‖h′i,`‖2 ≤ (τ3 + τ5)

1

m1/2
.

(6.37)

Above, we choose parameters

τ1 = 5CL4(L+ 2)τ0 τ2 = 4Lτ5 logm τ3 = τ1 + τ2 τ4 = 10(τ1)2/3 τ5 = 3τ1 .

We emphasize that all these parameters are polynomial in % so negligible when comparing

to m.

Throughout the proof, we focus on some fixed i ∈ [n] without loss of generality, and

one can always take a union bound at the end. We drop the subscript i for notational
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simplicity. In order to prove (6.37), we first assume that it holds for all 1, 2, . . . , ` − 1. In

particular, we assume for all `′ ≤ `− 1,

‖g′`′,1‖2 ≤ τ1 ·
1

m1/2
and ‖g′`′,2‖∞ ≤ τ2 ·

1

m
.

A useful observation is g′`′ can be split into three terms

g′`′ = W ′D`′−1g`′−1︸ ︷︷ ︸
z`′−1,1

+ W̃D′`′−1g`′−1︸ ︷︷ ︸
z`′−1,2

+ W̃ D̃`′−1g
′
`′−1︸ ︷︷ ︸

z`′−1,3

. (6.38)

After recursively applying (6.38), we can write

g′` = g′`,1 =
`−1∑

`a=1

(
W̃ D̃`−1 · · · W̃ D̃`−`a+1

)
z`−`a,1 +

(
W̃ D̃`−1 · · · W̃ D̃`−`a+1

)
z`−`a,2 . (6.39)

Applying Claim 6.12.2, with probability at least 1− e−Ω(τ
4/3
1 m1/3), we have for all `′ ≤ `− 1,

‖z`′,1‖2 ≤
τ0√
m

(
4`′ + 8 +

τ1 + τ2√
m

)
(6.40)

Applying Claim 6.12.5, we have with probability at least 1− e−Ω(τ
4/3
1 m1/3), one can write

(
W̃ D̃`−1 · · · W̃ D̃`−`a+1

)
z`−`a,2 = z`−`a,2] + z`−`a,2[

where

‖z`−`a,2]‖2 ≤
3τ5
√
τ4 log2m

m2/3
, ‖z`−`a,2[‖∞ ≤

4τ5 logm

m
. (6.41)

As a result, we can define g′` = g′`,1 + g′`,2 for

g′`,1 =
`−1∑

`a=1

(
W̃ D̃`−1 · · · W̃ D̃`−`a+1

)
z`−`a,1 + z`−`a,2] and g′`,2 =

`−1∑

`a=1

z`−`a,2[ .
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We first bound ‖g′`,1‖2,

‖g′`,1‖2 ≤
`−1∑

`a=1

‖W̃ D̃i,`−1 · · · W̃ D̃i,`−`a+1‖2 · ‖z`−`a,1‖2 + ‖z`−`a,2]‖2

¬

≤
∑̀

`a=1

(CL3‖z`−`a,1‖2 + ‖z`−`a,2]‖2)



≤ CL4 τ0√
m

(
4L+ 8 +

τ1 + τ2√
m

)
+ L

3τ5
√
τ4 log2m

m2/3

≤ 5CL4 · τ0(L+ 2)√
m

®

≤ τ1
1√
m

.

Above, inequality ¬ follows from Lemma 6.11.8, inequality  follows from (6.40) and (6.41),

and ® follows from our choice of τ1 = 5CL4(L+ 2)τ0. We next bound ‖g′`,2‖∞,

‖g′`,2‖∞ ≤
`−1∑

`a=1

‖z`−`a,2[‖∞
¬

≤ L · 4τ5 logm

m



≤ τ2
1

m

where inequality ¬ is due to (6.41), and  follows from our choice of τ2 = 4Lτ5 logm. Thus,

we have showed I and II of (6.37):

‖g′`,1‖2 ≤ τ1 ·
1

m1/2
and ‖g′`,2‖∞ ≤ τ2 ·

1

m
.

They together further imply

‖g′`‖2 ≤ (τ1 + τ2)
1

m1/2
= τ3

1

m1/2

so III of (6.37) holds. IV and V of (6.37) are implied by Claim 6.12.3, and VI is implied

because

‖h′`‖2 = ‖φ(g`)− φ(g̃`)‖2 ≤ ‖g` − g̃`‖2 ≤ ‖g′`‖2 .
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6.12.1.1 Tools

Claim 6.12.2. Suppose g`−1 = g̃`−1 + g′`−1 = g̃`−1 + g′`−1,1 + g′`−1,2 where

‖g′`−1,1‖2 ≤
τ1√
m

and ‖g′`−1,2‖∞ ≤
τ2

m
.

Then, we have with probability at least 1− e−Ω(m/L2)

‖W ′D`−1g`−1‖2 ≤
τ0√
m

(
4`+ 8 +

τ1 + τ2√
m

)
.

Proof of Claim 6.12.2. Using triangle inequality, we can calculate

‖W ′D`−1g`−1‖2 ≤ ‖W ′‖2 · ‖D`−1‖2 · (‖g̃`−1‖2 + ‖g′`−1,1‖2 + ‖g′`−1,2‖2)

Using Lemma 6.11.1, we have ‖g̃`−1‖ ≤ 4`+ 8. Using elementary calculation, we have

‖g′`−1,1‖2 + ‖g′`−1,2‖2 ≤
τ1√
m

+
√
m
τ2

m
≤ τ1 + τ2√

m

Together we finish the proof.

Claim 6.12.3. With probability at least 1− e−Ω(τ
4/3
1 m1/3) the following holds. Whenever

‖g′`−1,1‖2 ≤ τ1 ·
1

m1/2
, ‖g′`−1,2‖∞ ≤ τ2 ·

1

m
,

then letting τ4 = 10(τ1)2/3 and τ5 = 3τ1, we have

‖D′`−1g`−1‖2 ≤ τ5 ·
1

m1/2
, ‖D′`−1‖0 ≤ τ4 ·m2/3

Proof of Claim 6.12.3. We choose parameters ξ = (τ1)2/3

101/3m5/6 and α = 10ξ
√
m in the proof.

We have ‖g′`−1,2‖∞ ≤ ξ.
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First of all, using similar (but simpler) proof as Lemma 6.11.4, one can show with

probability at least 1 − exp(−Ω(α2m)), the vector g̃`−1 is (α, 1
5
√
m

)-good (recall Defini-

tion 6.10.1).18 This implies that g̃`−1 has at most αm = 10ξm3/2 coordinates j satisfying

|(g̃`−1)j| ≤ α
5
√
m

= 2ξ.

For each j ∈ [m], if it satisfies (D′`−1)j,j 6= 0, then the sign of g̃`−1 and g̃`−1 + g′`−1,1 +

g′`−1,2 must differ on coordinate j. As a result:

|(g′`−1,1 + g′`−1,2)j| > |(g̃`−1)j| .

Define y = D′`−1g`−1. There are two possibilities for such j with (D′`−1)j,j 6= 0.

• Case 1: |(g̃`−1)j| ≤ 2ξ. Let such coordinates be S1 ⊂ [m], and we have |S1| ≤ 10ξm3/2

using the above argument.

Next, for each such j ∈ S1, we must have |yj| = |(g̃`−1 + g′`−1,1 + g′`−1,2)j| ≤ |(g′`−1,1 +

18Indeed,

g̃`−1 = W̃ h̃`−2 +Ax`−1 = M1z1 +M2z2.

where M1 ∈ Rm×n(`−2), M3 ∈ Rm×d and z1 ∈ Rn(`−1), z3 ∈ Rd are defined as

M1 = W̃U`−2 M2 = A

z1 = U>`−2h̃`−2 z2 = x`−1 . (6.42)

The entries ofM1 andM2 are i.i.d. from N(0, 2
m ) (recall Footnote 13). Suppose z1 and z2 are fixed (instead of

depending on the randomness of W̃ and A) and satisfies 1√
2
≤ ‖z1‖ ≤ 2L+6. We can apply Corollary 6.10.15

to obtain the following statement: with probability at least 1− exp(−Ω(α2m)), g̃`−1 is (α, σ/4)-good where
σ2 = 2

m‖z1‖22 + 2
m‖z3‖22 ≥ 1

m . In other words, w is (α, 1
4
√
m

)-good. Applying standard ε-net argument, we
have with probability at least 1− exp(−Ω(α2m)), for all vectors z1 ∈ Rn(`−2) satisfying 1√

2
≤ ‖z1‖ ≤ 2L+ 6,

it satisfies g̃`−1 is (α, 1
5
√
m

)-good. This allows us to plug in the random choice of z1 in (6.42), to conclude
that g̃`−1 is (α, 1

5
√
m

)-good.
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g′`−1,2)j| ≤ |(g′`−1,1)j|+ ξ so we can calculate the `2 norm of y on S1:

∑

i∈S1

y2
j ≤ 2‖g′`−1,1‖2 + 2ξ2|S1| ≤

2τ 2
1

m
+ 20ξ3m3/2 =

4τ 2
1

m
.

• Case 2: |(g̃`−1)j| > 2ξ. Let such coordinates be S2 ⊂ [m] \ S1. In this case we must

have |(g′`−1,1)j| ≥ |(g̃`−1)j| − |(g′`−1,2)j| > 2ξ− ξ = ξ. Therefore, |S2| ≤
‖g′`−1,1‖

2
2

ξ2 ≤ τ2
1

mξ2 .

Next, for each j ∈ S2, we must have

|yj| = |(g̃`−1 + g′`−1,1 + g′`−1,2)j| ≤ |(g′`−1,1 + g′`−1,2)j| ≤ |(g′`−1,1)j|+ ξ/2 ≤ 5

4
|(g′`−1,1)j| .

and therefore
∑

j∈S2

y2
j ≤ 2

∑

j∈S2

(g′`−1,1)2
j ≤

2τ 2
1

m
.

In sum, we conclude that

‖D′`−1‖0 ≤ |S1|+ |S2| ≤ 10ξm3/2 +
τ 2

1

mξ2
< 10(τ1)2/3m2/3 = τ4 ·m2/3

and

‖y‖2 ≤
√

4τ 2
1 + 2τ 2

1√
m

≤ 3τ1√
m

= τ5 ·
1

m1/2
.

Claim 6.12.4. With probability at least 1− e−Ω(τ4m2/3 log2m), for all L ≥ ` + 1 ≥ b ≥ 1, for

all

x ∈ Rm with ‖x‖2 ≤
τ5√
m

and ‖x‖0 ≤ τ4 ·m2/3

we have that the vector y = W̃ D̃`W̃ · · · D̃bW̃x can be written as

y = y1 + y2 where ‖y1‖2 ≤
3τ5
√
τ4 log2m

m2/3
and ‖y2‖∞ ≤

4τ5 logm

m
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Proof of Claim 6.12.4. Let s = τ4·m2/3 for notational simplicity. Let zb−1 = x and assume for

now that x is a fixed vector. Letting z` = D̃`W̃ · · · D̃bzb−1, we have according to Claim 6.11.9,

with probability at least 1− exp(−Ω(m/L2)),

‖z`‖2 ≤ (1 + 1/L)`−b−1‖zb−1‖2 ≤ 3‖zb−1‖2.

Similar to the proof of Lemma 6.11.8, we let U denote the following column orthonormal

matrix using Gram-Schmidt:

U
def
= GS (h1,1, . . . , hn,1, h1,2, . . . , hn,2, . . . , h1,`−1, . . . , hn,`−1, zb−1, · · · z`) ,

and we have

W̃ D̃`W̃ · · · D̃bW̃x = W̃UU>z`2 .

Observe the entries of W̃U ∈ Rm×n(`−1)+(`−b+2) are i.i.d. drawn from N(0, 2
m

) (following

a similar argument as Footnote 17). Therefore, according to Lemma 6.10.16, we have can

write y = W̃ D̃`W̃ · · · D̃bW̃x as y = y1 + y2 with

‖y1‖ ≤
√
s log2m√
m

· ‖U>z`2‖ and ‖y2‖∞ ≤
logm√
m
· ‖U>z`2‖ .

Plugging in ‖U>z`‖2 ≤ ‖z`‖2 ≤ 3‖zb−1‖2 = 3‖x‖2 ≤ 3τ5√
m
, we have

‖y1‖ ≤
3τ5

√
s log2m

m
and ‖y2‖∞ ≤

3τ5 logm

m
.

Finally, taking ε-net over all s-sparse vectors x, we have the desired result.

Combining Claim 6.12.3 and Claim 6.12.4, we have
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Claim 6.12.5. With probability at least 1− e−Ω(τ
4/3
1 m1/3), whenever

‖g′`−1,1‖2 ≤
τ1√
m
, ‖g′`−1,2‖∞ ≤

τ2

m
,

we have the vector y = W̃ D̃`W̃ · · · D̃bW̃D′`−1g`−1 can be written as

y = y1 + y2 where ‖y1‖2 ≤
3τ5
√
τ4 log2m

m2/3
and ‖y2‖∞ ≤

4τ5 logm

m
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6.12.2 Intermediate Layers

The goal of this subsection is to prove Lemma 6.12.6.

Lemma 6.12.6 (intermediate stability, c.f. (6.9)). Letting % = nLd logm, for any τ0 ∈
[
%−100, %100

]
, with probability at least 1− e−Ω(L6τ

4/3
0 m1/3) over the randomness of W̃ , A,B, for

every W ′ ∈ Rm×m with ‖W ′‖2 ≤ τ0√
m
, for every i ∈ [n], for every L ≥ `2 ≥ `1 ≥ 1, the

following holds

•
∥∥∥
∏`1

`=`2
(D̃i,` +D′i,`)W̃

∥∥∥
2
≤ O(L7) .

•
∥∥∥
∏`1

`=`2
(D̃i,` +D′i,`)(W̃ +W ′)

∥∥∥
2
≤ O(L7) .

We show Claim 6.12.7 and then use it to prove Corollary 6.12.7.

Claim 6.12.7. Let s ∈ [m−1/4,m1/8] be any fixed real. With probability at least 1 −

e−Ω(s2m2/3 log2 m), it satisfies that for every i ∈ [n], for every L ≥ `2 ≥ `1 ≥ 1, if D′i,` ∈ Rm×m

is an arbitrary diagonal matrix with entries in {−1, 0, 1} of sparsity ‖D′i,`‖0 ≤ s2m2/3 (for

each ` = `1, . . . , `2), then
∥∥∥∥∥

`1∏

`=`2

(D̃i,` +D′i,`)W̃

∥∥∥∥∥
2

≤ O(L7) .

Proof of Claim 6.12.7. We define set C as follows

C =

{
`1∏

`=`2

(D′i,`)
c`(D̃i,`)

1−c`W̃

∣∣∣∣ c` ∈ {0, 1},∀` ∈ [`1, `2]

}
.

For `, we define set C` as follows

C` =

{
C ∈ C

∣∣∣∣ D′ appears ` times in C
}
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From Lemma 6.11.8, we can bound the ` = 0 term
∥∥∥∥∥
∑

C∈C`

C

∥∥∥∥∥
2

≤ O(L3).

For each C ∈ C` with ` > 0, we have

‖C‖2 ≤ O(L3) ·
(
s logm

m1/6

)`−1

·O(L3)

where we apply Lemma 6.11.8 twice(one on the left, one on the right) and apply Corol-

lary 6.11.12 ` − 1 times. The probability of the above event is at least 1 − eΩ(s2·m2/3 log2m).

Therefore, for each ` ∈ [`2 − `1], we can bound
∥∥∥∥∥
∑

C∈C`

C

∥∥∥∥∥
2

≤ O(L6)

(
`2 − `1

`

)(
s logm

m1/6

)`−1

which is at most O(L7) when ` = 1 and o(L7) for ` > 1 by our parameter choices. Putting

it altogether,

LHS =

∥∥∥∥∥
`2−`1∑

`=0

∑

C∈C`

C

∥∥∥∥∥
2

≤
`2−`1∑

`=0

∥∥∥∥∥
∑

C∈C`

C

∥∥∥∥∥
2

≤ O(L3 + L7)

Proof of Lemma 6.12.6. Applying Lemma 6.12.1c, we know with probability≥ 1−e−Ω(L6τ
4/3
0 m1/3)

it satisfies ‖D′i,`‖0 ≤ s2m2/3 for s2 = O(L10/3τ
2/3
0 ). Therefore, applying Claim 6.12.7 we have

∥∥∥
∏`1

`=`2
(D̃i,` +D′i,`)W̃

∥∥∥
2
≤ O(L7) .

On the other hand, since ‖W ′‖ ≤ τ0√
m
, we also have

∥∥∥
∏`1

`=`2
(D̃i,` +D′i,`)(W̃ +W ′)

∥∥∥
2
≤ O(L7) .

by expanding out the 2`2−`1+1 terms with respect to W ′.
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6.12.3 Backward

We state the main result in this section.

Lemma 6.12.8 (backward stability, c.f. (6.10)). Letting % = nLd logm, for any τ0 ∈
[
%−100, %100

]
, with probability at least 1 − e−Ω(L6τ

4/3
0 m1/3) over the randomness of W̃ , A,B,

for every W ′ ∈ Rm×m with ‖W ′‖2 ≤ τ0√
m
, for every 1 ≤ `1 ≤ `2 ≤ L, for every i ∈ [n], the

followings hold

(a)
∥∥∥a>B

∏`1
`=`2

D̃i,`W̃ − a>B
∏`1

`=`2
Di,`W̃

∥∥∥
2
≤ O

(
τ

1/3
0 L6 logm ·m1/3

)
· ‖a‖2.

(b)
∥∥∥a>B

∏`1
`=`2

Di,`W̃ − a>B
∏`1

`=`2
Di,`W

∥∥∥
2
≤ O(τ0L

15) · ‖a‖2.

(c)
∥∥∥a>B

∏`1
`=`2

D̃i,`W̃ − a>B
∏`1

`=`2
D̃i,`W

∥∥∥
2
≤ O(τ0L

7) · ‖a‖2.

(d)
∥∥∥a>B

∏`1
`=`2

D̃i,`W − a>B
∏`1

`=`2
Di,`W

∥∥∥
2
≤ O

(
τ

1/3
0 L6 logm ·m1/3

)
· ‖a‖2.

We first use Lemma 6.12.1 to derive that, with probability ≥ 1 − e−Ω(L6τ
4/3
0 m1/3),

‖D′i,`‖0 ≤ s2m2/3, for parameter s = O(L5/3τ
1/3
0 ). We prove the five statements separately.

Proof of Lemma 6.12.8a. Without loss of generality we assume ‖a‖ = 1. We define set C to

be

C =

{
`1∏

`=`2

(D′i,`)
c`(D̃i,`)

1−c`W̃

∣∣∣∣ c`1 , . . . , c`2 ∈ {0, 1}
}
.

For each ` ∈ [`2 − `1], we define set C` to be

C` = {C ∈ C | D′ appears ` times in C}.
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Ignoring subscripts for the ease of presentation, by Corollary 6.11.15, we know

‖a>BD̃W̃ · · · D̃W̃D′‖2 ≤ (s logm)m1/3 .

By Corollary 6.11.12, we know

∥∥∥D′W̃ D̃ · · · D̃W̃D′
∥∥∥

2
≤ (s logm)m−1/6 .

Thus, for each ` and C ∈ C`,

‖a>BC‖2 ≤ ‖a>BD̃W̃ · · · D̃W̃D′‖2 ·
∥∥∥D′W̃ D̃ · · · D̃W̃D′

∥∥∥
`−1

2
·
∥∥∥D′W̃ D̃ · · · D̃W̃

∥∥∥
2

≤ (s ·m1/3 logm)× (s ·m−1/6 logm)`−1 ×O(L3) .

Finally, the LHS of the Lemma 6.12.8a becomes

LHS =

∥∥∥∥∥
`2−`1∑

`=1

∑

C∈C`

a>BC

∥∥∥∥∥
2

≤
`2−`1∑

`=1

∑

C∈C`

‖a>BC‖2

≤
`2−`1∑

`=1

(
`2 − `1

`

)
(s ·m1/3 logm)× (s ·m−1/6 logm)`−1 ×O(L3) ≤ O

(
L4 · s logm ·m1/3

)
.

Proof of Lemma 6.12.8b. Again we assume ‖a‖ = 1 without loss of generality. We define set

C to be

C =

{
`1∏

`=`2

Di,`(W
′)c`W̃ 1−c`

∣∣∣∣ c`1 , . . . , c`2 ∈ {0, 1}
}

For each ` ∈ [`2 − `1], we define set C`

C` = {C ∈ C | W ′ appears ` times in C} .
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Ignoring subscripts for the ease of presentation, we have for each C ∈ C`,

‖a>BC‖2 ≤ ‖a>B‖2 · ‖W̃D · · · W̃D‖2 · ‖W ′‖2 ·
(
‖DW̃ · · · W̃D‖2‖W ′‖2

)`−1 · ‖DW̃ · · ·DW̃‖2

(6.43)

≤ O(
√
mL7) ·

(
τ0√
m

)
·
(
O(τ0L

7)√
m

)`−1

·O(L7) . (6.44)

Above, we have used ‖W ′‖2 ≤ τ0√
m
, ‖W̃D · · · W̃D‖2 ≤ O(L7) from Lemma 6.12.6, and

‖B‖2 ≤ O(
√
m) with high probability. Finally, by triangle inequality, the LHS of Lemma 6.12.8b

becomes

LHS =

∥∥∥∥∥
`2−`1∑

`=1

∑

C∈C`

a>BC

∥∥∥∥∥
2

≤
`2−`1∑

`=1

∑

C∈C`

∥∥a>BC
∥∥

2

≤
`2−`1∑

`=1

(
`2 − `1

`

)
O(
√
mL7) ·

(
τ0√
m

)
·
(
O(τ0L

7)√
m

)`−1

·O(L7)

≤ O(τ0L
15)

Proof of Lemma 6.12.8c. It is similar to the proof of Lemma 6.12.8b.

Proof of Lemma 6.12.8d. It is similar to the proof of Lemma 6.12.8a.
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6.12.4 Special Rank-One Perturbation

We prove two lemmas regarding the special rank-one perturbation with respect to a

coordinate k ∈ [m]. The first one talks about forward propagation.

Lemma 6.12.9 (c.f. (6.11)). Let ρ = nLd logm, % = nLdδ−1 log(m/ε), τ0 ∈ [%−100, %50],

N ∈ [1, %100]. If W̃ , A are at random initialization, then with probability at least 1− e−Ω(ρ2),

for any rank-one perturbation W ′ = yz> with ‖z‖ = 1, ‖y‖0 = N , ‖y‖∞ ≤ τ0√
m
, it satisfies

∀i ∈ [n],∀` ∈ [L],∀k ∈ [m] : |((W̃ +W ′)h′i,`)k| ≤ O
(ρ8N2/3τ

5/6
0

m2/3

)
.

Proof. Without loss of generality we only prove the statement for fixed i, `, k because one

can take union bound at the end. We can rewrite Wh′i,` as follows

(W̃ +W ′)h′i,` = W ′h′i,` + W̃h′i,`

= W ′h′i,` + W̃ (hi,` − h̃i,`)

= W ′h′i,` + W̃ ((D̃i,` +D′i,`)gi,` − D̃i,`g̃i,`)

= W ′h′i,` + W̃ D̃i,`g
′
i,` + W̃D′i,`gi,`

= W ′h′i,` + W̃ D̃i,`((W̃ +W ′)hi,`−1 − W̃ h̃i,`−1) + W̃D′i,`gi,`

= W ′h′i,` + W̃ D̃i,`(W̃h′i,`−1 +W ′hi,`−1) + W̃D′i,`gi,`

= W ′h′i,` + W̃ D̃i,` W̃h′i,`−1︸ ︷︷ ︸
recurse

+W̃ D̃i,`W
′hi,`−1 + W̃D′i,`gi,`

After recursively calculating as above, using h′i,0 = 0, and applying triangle inequality, we

have

|((W̃ +W ′)h′i,`)k| ≤ |(W ′h′i,`)k|+
∑̀

a=0

|(W̃ D̃i,` · · · W̃ D̃i,aW
′hi,a)k|+

∑̀

a=0

|(W̃ D̃i,` · · · W̃ D̃i,a+1W̃D′i,agi,a)k|

(6.45)
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We bound the three types of terms on the RHS of (6.45) as follows.

• First, we can bound

|(W ′h′i,`)k| = |e>k yz>h′i,`| = |e>k y| · |z>h′i,`| ≤ ‖y‖∞ · ‖h′i,`‖2 ≤
τ0√
m
· (O(L6τ0

√
N)√

m
)

where the last step follows by ‖y‖∞ ≤ τ0√
m
, ‖W ′‖2 ≤

√
Nτ0√
m

and Lemma 6.12.1a.

• Second, we can bound

|(W̃ D̃i,` · · · W̃ D̃i,aW
′hi,a)k| = |e>k W̃ D̃i,` · · · W̃ D̃i,ayz

>hi,a|

= |e>k W̃ D̃i,` · · · W̃ D̃i,ay| · |z>hi,a|
¬

≤ |e>k W̃ D̃i,` · · · W̃ D̃i,ay| · ‖hi,a‖2



≤ |e>k W̃ D̃i,` · · · W̃ D̃i,ay| ·O(L)

≤ N · ‖y‖∞max
j
|e>k W̃ D̃i,` · · · W̃ D̃i,aej| ·O(L)

®

≤ N · ‖y‖∞ ·
ρ√
m
·O(L)

¯

≤ N · (τ0
1√
m

) · ρ√
m
·O(L) ≤ O

(Nτ0ρL

m

)
.

where ¬ follows by ‖z‖2 ≤ 1,  follows by Lemma 6.11.1, ® follows by Corol-

lary 6.11.13, and ¯ follows by ‖y‖∞ ≤ τ0
1√
m
.

• Third, we can bound,

|(W̃ D̃i,` · · · W̃ D̃i,a+1W̃D′i,agi,a)k| ≤ ‖ekW̃ D̃i,` · · · W̃ D̃i,a+1W̃D′i,a‖2 · ‖D′i,agi,a‖2

≤ O

(
L5/3τ

1/3
0 N1/6 logm

m1/6

)
·O
(
L5τ

1/2
0

√
N√

m

)

where the last step follows by Corollary 6.11.12 (which relies on Lemma 6.12.1b to give

s = O(L5/3τ
1/3
0 N1/6)) together with Lemma 6.12.1c.
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Putting the three bounds into (6.45) (where the term one is the dominating term), we have

|((W̃ +W ′)h′i,`)k| ≤ O

(
ρ8N2/3τ

5/6
0

m2/3

)
.

The next one talks about backward propagation.

Lemma 6.12.10 (c.f. (6.12)). Let ρ = nLd logm, % = nLdδ−1 log(m/ε), τ0 ∈ [%−100, %50],

N ∈ [1, %100]. If W̃ , A,B are at random initialization, and given some perturbationW ′ = yz>

with ‖z‖ = 1, ‖y‖0 = N , ‖y‖∞ ≤ τ0√
m
whereW ′ can only depend on the randomness of W̃ and

A (but not on B), then with probability at least 1−e−Ω(ρ2), for all i ∈ [n], all 1 ≤ `1 ≤ `2 ≤ L,

all k ∈ [m]:

(a)
∣∣∣a>B

(∏`1
`=`2

Di,`W̃
)
ek − a>B

(∏`1
`=`2

D̃i,`W̃
)
ek

∣∣∣ ≤ ‖a‖2 ·O
(ρ3τ

1/3
0 N1/6

m1/6

)
,

(b)
∣∣∣a>B

(∏`1
`=`2

Di,`W
)
ek − a>B

(∏`1
`=`2

Di,`W̃
)
ek

∣∣∣ ≤ ‖a‖2 ·O
(ρ12N5/6τ

5/3
0

m1/3

)
.

Proof. We prove for a fixed i ∈ [n] and drop the subscript in i for notational simplicity.

Without loss of generality we assume ‖a‖ = 1.

(a) We define set C to be

C =

{
`1∏

`=`2

(D′`)
c`(D̃`)

1−c`W̃

∣∣∣∣ c` ∈ {0, 1},∀` ∈ [`1, `2]

}
.

For each ` ∈ [`2 − `1], we define set C` to be

C` = {C ∈ C | D′ appears ` times in C}.

Ignoring the subscripts for the ease of presentation, by Lemma 6.11.8, we know

‖D̃W̃ · · · D̃W̃ ·D′‖2 ≤ ‖D̃W̃ · · · D̃W̃‖2 ≤ O(L3) .
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By Corollary 6.11.12 (which relies on Lemma 6.12.1b to give s = O(L5/3τ
1/3
0 N1/6) ),

we know

∥∥∥D′W̃ D̃ · · · D̃W̃D′
∥∥∥

2
≤ O(

L5/3τ
1/3
0 N1/6

m1/6
logm) ,

∀k ∈ [m] :
∥∥∥D′W̃ D̃ · · · D̃W̃ ek

∥∥∥
2
≤ O(

L5/3τ
1/3
0 N1/6

m1/6
logm) .

Thus, for each k ∈ [m] and C ∈ C`, we can bound it

‖Cek‖ ≤L3 ×
(
O(
L5/3τ

1/3
0 N1/6

m1/6
logm)

)`

.

As a consequence, letting

v =

(
`1∏

`=`2

Di,`W̃

)
ek −

(
`1∏

`=`2

D̃i,`W̃

)
ek

we have

‖v‖ =

∥∥∥∥∥
`2−`1∑

`=1

∑

C∈C`

Cek

∥∥∥∥∥

≤
`2−`1∑

`=1

∑

C∈C`

‖Cek‖ ≤
`2−`1∑

`=1

(
L

`

)
·
(
O(
L5/3τ

1/3
0 N1/6

m1/6
logm)

)`

≤ O

(
ρ3τ

1/3
0 N1/6

m1/6

)
.

Finally, we use the randomness of B (recall that v does not depend on B), we conclude

that with probability at least 1− e−Ω(m), it satisfies

LHS =
∥∥a>Bv

∥∥ ≤ O

(
ρ3τ

1/3
0 N1/6

m1/6

)
.

(b) This time, we define set C to be

C =

{
`1∏

`=`2

D`(W
′)c`W̃ 1−c`

∣∣∣∣ c` ∈ {0, 1},∀` ∈ [`1, `2]

}
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For each ` ∈ [`2 − `1], we define set C`

C` = {C ∈ C | W ′ appears ` times in C}.

One can carefully derive that19

|a>BDW̃ · · · W̃Dy| ≤ O

(
ρ4N5/6τ

5/3
0

m1/3

)
.

By Lemma 6.12.6 we have

|z>DW̃ · · · W̃Dy| ≤ ‖z‖2 ·O(L7) · ‖y‖2 ≤ O
(L7
√
Nτ0√
m

)
,

|z>DW̃ · · · W̃Dek| ≤ ‖z‖2 ·O(L7) · ‖ek‖2 ≤ O(L7) .

Therefore, for each C ∈ C` we can upper bound ‖a>BC‖2 as follows

|a>BCek| ≤ O

(
ρ4N5/6τ

5/3
0

m1/3

)
·
(
O
(L7
√
Nτ0√
m

))`−1

·O(L7)

19Since we have done this too many times, let us quickly point out the calculation. By Corollary 6.11.16,
we have with probability at least 1− e−Ω(ρ2)

|a>BD̃W̃ · · · W̃ D̃y| ≤ ‖a‖2 ·
√
|N | logm · ‖y‖2 ≤ ‖y‖∞‖y‖0 · ρ ≤

τ0|N |√
m

.

Using binomial expansion again, we have

|a>BD̃W̃ · · · W̃ D̃y − a>BDW̃ · · · W̃Dy| ≤
L∑

`=1

(
L

`

)
‖a>BD̃W̃ · · · W̃D′‖ · ‖D′W̃ · · · W̃D′‖`−1

2 · ‖D′W̃ · · · W̃ D̃y‖

≤
L∑

`=1

(
L

`

)
(sm1/3 logm) ·

(
s logm

m1/6

)`−1

·
(
s logm

m1/6

)
· ‖y‖

≤ O(L)(sm1/3 logm)

(
s logm

m1/6

)
·
√
Nτ0√
m

= O

(
ρ4N5/6τ

5/3
0

m1/3

)

Here, we have used Corollary 6.11.15 and Corollary 6.11.12 with parameter s = O(L5/3τ
1/3
0 N1/6) chosen

from Lemma 6.12.1b, as well as ‖y‖ ≤
√
Nτ0√
m

.
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and therefore

LHS =

∣∣∣∣∣
`2−`1∑

`=1

∑

C∈C`

a>BCek

∣∣∣∣∣

≤
`2−`1∑

`=1

(
`2 − `1

`

)
·O
(
ρ4N5/6τ

5/3
0

m1/3

)
·
(
O
(L7
√
Nτ0√
m

))`−1

·O(L7) ≤ O

(
ρ12N5/6τ

5/3
0

m1/3

)
.
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6.13 Indicator and Backward Coordinate Bounds

In this section, let W ∈ Rm×m, A ∈ Rm×dx and B ∈ Rd×m denote three random

matrices where each entry of W and A is i.i.d. sampled from N(0, 2
m

) and each entry of B

is i.i.d. sampled from N(0, 1
d
). We let

{
lossi,` ∈ Rd : i ∈ [n], ` ∈ [L]\{1}

}
be arbitrary fixed

vectors, and let i∗, `∗ = arg maxi,` ‖ lossi,` ‖2.

• In Section 6.13.1, we prove that there are sufficiently many coordinates k ∈ [m] such

that the quantity |(gi,`+1)k| = |(Whi,` +Axi,`+1)k| is small for (i, `) = (i∗, `∗) but large

for (i, `) ∈ [n]× {`∗, `∗ + 1, L}\(i∗, `∗).

• In Section 6.13.2, we prove that there are sufficiently many coordinates k ∈ [m] such

that |∑a(Back
>
i∗,`∗→a · lossi∗,a)k| is large.
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6.13.1 Indicator Coordinate Bound

For this section, we fix some choice of i∗ ∈ [n] and `∗ ∈ [L]\{1}, and define two

parameters

Definition 6.13.1.

β+
def
=

δ

ρ2
and β−

def
=

δ

ρ10

Lemma 6.13.1 (indicator coordinate bound, c.f. (6.15)). Suppose W and A follow from

random initialization. Given fixed set N1 ⊆ [m] and define

N4
def
=



k ∈ N1

∣∣∣∣∣



|
(
Whi,` + Axi,`+1

)
k
| ≤ β−/

√
m, if i = i∗, ` = `∗;

|
(
Whi,` + Axi,`+1

)
k
| ≥ β+/

√
m, if i 6= i∗ and ` = `∗;

|
(
Whi,` + Axi,`+1

)
k
| ≥ β+/

√
m, if i ∈ [n] and ` > `∗.





Then, as long as |N1| ≥ n2L2/β−, we have

Pr
W,A

[
|N4| ≥

β−|N1|
64L

]
≥ 1− e−Ω(β−|N1|/L).

Lemma 6.13.2. Suppose W and A follow from random initialization. Given fixed set N1 ⊆

[m] and define

N2
def
=

{
k ∈ N1

∣∣∣∣ |〈Wk, hi∗,`∗〉+ 〈Ak, xi∗,`∗+1〉| ≤
β−√
m

}
.

Then, we have

Pr
W,A

[
|N2| ≥

β−|N1|
16L

]
≥ 1− e−Ω(β−|N1|/L).

Proof. Let i = i∗ and ` = `∗. Similar to the proof of Lemma 6.11.1, we can write

y = Whi,` + Axi,`+1 = WU`U
>
` hi,` + Axi,`+1 = M1z1 +M2z2
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where M1 ∈ Rm×n`, M2 = A, z1 = U>` hi,` and z2 = xi,`+1. Again, the entries of M1 and M2

are i.i.d. from N(0, 2
m

).

Now, suppose z1 is fixed (instead of depending on the randomness of W and A), and

it satisfies ‖z1‖ ≤ 6L. We have each entry of y is is distributed as N
(
0, 2‖z1‖2+2‖z2‖2

m

)
. By

property of Gaussian (see Fact 6.10.12), we have for each y ∈ [m],

Pr

[
|yk| ≤

0.9β−√
m

]
≥ 2

3

0.9β−√
2‖z1‖2 + 2‖z2‖2

≥ β−
15L

.

Since we have |N1| independent random variables, applying a Chernoff bound, we have

Pr

[∣∣∣∣
{
k ∈ N1 : |yk| ≤

0.9β−√
m

}∣∣∣∣ ≥
β−
16L
|N1|

]
≥ 1− exp(−Ω(β−|N1|/L)) .

Finally, by taking a union bound with respect to the ε-net over all possible choices of z1 ∈ Rn`,

we have that

Pr

[∣∣∣∣
{
k ∈ N1 : |yk| ≤

β−√
m

}∣∣∣∣ ≥
β−
16L
|N1|

]
≥ 1− exp(−Ω(β−|N1|/L)) .

for all z1 and a fixed z2. Plugging in the random choice of z1 = U>` hi,` (and we have ‖z1‖ ≤ 6L

by Lemma 6.11.1), we have the desired result.

Observe that the set N2 produced by Lemma 6.13.2 only depends on the randomness

of A, WU`∗−1 and Whi∗,`∗ . In other words, for any unit vector z ∈ Rm that is orthogonal to

the columns of U`∗−1 and orthogonal to hi∗,`∗ , we have that Wz is independent of N2.

We next proceed to refine N2:

Lemma 6.13.3 (i 6= i∗, ` = `∗). Suppose W and A follow from random initialization, and

N2 ⊆ [m] is a given set (that may only depend on the randomness of A, WU`∗−1 andWhi∗,`∗).
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Define

N3 =

{
k ∈ N2

∣∣∣∣ |〈Wk, hi,`∗〉+ 〈Ak, xi,`∗+1〉| ≥
β−√
m
,∀i ∈ [n]\i∗

}
.

Then

Pr

[
|N3| ≥

1

2
|N2|

∣∣∣∣ A,WU`∗−1,Whi∗,`∗

]
≥ 1− e−Ω(|N2|/n).

Proof. First fix some i ∈ [n]\i∗ and ` = `∗. Define set N3,i,

N3,i
def
=

{
k ∈ N2

∣∣∣∣ |〈Wk, hi,`〉+ 〈Ak, xi,`+1〉| ≥
β−√
m

}
.

Let v def
=

(I−U`−1U
>
`−1)hi∗,`

‖(I−U`−1U
>
`−1)hi∗,`‖

, and let column orthonormal matrix

U
def
= GS(U`−1, hi∗,`) = [U`−1, v] .

We have

〈Wk, hi,`〉+ 〈Ak, xi,`+1〉 =
(
WUUhi,` + Axi,`+1 +W (I − UU>)hi,`

)
k
.

The rest of the proof is focusing on having theWU and A being fixed (so the first two vectors

WUUhi,` +Axi,`+1 are fixed), and letting W (I −UU>)hi,` be the only random variable. We

have

W (I − UU>)hi,` ∼ N

(
0,

2‖(I − UU>)hi,`‖2
2 · I

m

)
.

and therefore for a fixed vector µ it satisfies

Whi,` +Axi,`+1 = WUUhi,` +Axi,`+1 +W (I − UU>)hi,` ∼ N

(
µ,

2‖(I − UU>)hi,`‖2
2 · I

m

)
.
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According to Lemma 6.11.6, with probability at least 1 − exp(−Ω(
√
m)), it satisfies ‖(I −

UU>)hi,`‖2 ≥ δ
2
. By property of Gaussian distribution (see Fact 6.10.12), we have for each

k ∈ N2:

Pr

[
|(Whi,` + Axi,`+1)k| ≥

β−√
m

∣∣∣WU,A

]
≥ 1− β−

δ
≥ 1− 1

4n
.

Applying Chernoff bound, with probability at least 1 − e−Ω(|N2|/n), we have |N3,i| ≥ (1 −
1

2n
)|N2|. Applying union bound over all possible i ∈ [n] \ {i∗}, we have N3 =

⋂
i 6=i∗ N3,i has

cardinality at least |N2|
2
.

Lemma 6.13.4 (` > `∗). Suppose W and A follow from random initialization, and N3 ⊆ [m]

is a given set (that may only depend on the randomness of A, WU`∗). Define

N4 =

{
k ∈ N3

∣∣∣∣ |〈Wk, hi,`〉+ 〈Ak, xi,`+1〉| ≥
β−√
m
,∀i ∈ [n], ` > `∗

}
.

Then

Pr

[
|N4| ≥

1

2
|N3|

∣∣∣∣ A,WU`∗

]
≥ 1− e−Ω(|N3|/nL) .

Proof. Letting N4,`∗
def
= N3. For any i ∈ [n] and ` = `∗ + 1, `∗ + 2, . . . , L, we define N4,i,` as

N4,i,`
def
=

{
k ∈ N4,`−1

∣∣∣∣ |〈Wk, hi,`〉+ 〈Ak, xi,`+1〉| ≥
β−√
m

}
and N4,`

def
=
⋂

i∈[n]

N4,i,` .

We rewrite

〈Wk, hi,`〉+ 〈Ak, xi,`+1〉 = (WU`−1U
>
`−1hi,` + Axi,`+1 +W (I − U`−1U

>
`−1)hi,`)k .

The rest of the proof is focusing on having the WU`−1 and A being fixed (so the first two

vectors WUUhi,` +Axi,`+1 are fixed and N4,`−1 is fixed), and letting W (I −U`−1U
>
`−1)hi,` be
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the only random variable. We have

W (I − U`−1U
>
`−1)hi,` ∼ N

(
0,

2‖(I − U`−1U
>
`−1)hi,`‖2

2 · I
m

)
.

and therefore for a fixed vector µ it satisfies

Whi,`+Axi,`+1 = WU`−1U`−1hi,`+Axi,`+1+W (I−U`−1U
>
`−1)hi,` ∼ N

(
µ,

2‖(I − U`−1U
>
`−1)hi,`‖2

2 · I
m

)
.

According to Lemma 6.11.4, with probability at least 1 − exp(−Ω(
√
m)), it satisfies

‖(I − UU>)hi,`‖2 ≥ δ
2
. By property of Gaussian distribution (see Fact 6.10.12), we have for

each k ∈ N4,`−1:

Pr

[
|(W̃hi,` + Axi,`+1)k| ≥

β−√
m

∣∣∣WU,A

]
≥ 1− β−

δ
≥ 1− 1

4nL
.

Applying Chernoff bound, we have

Pr

[
|N4,i,`| ≥ (1− 1

3nL
)|N4,`−1|

∣∣∣WU`−1, A

]
≥ 1− e−Ω(|N4,`−1|/nL) .

Applying union bound over all possible i ∈ [n], we have N4,` =
⋂
i∈[n] N4,i,` has cardinality

at least (1− 1
3L

)|N4,`−1|. After telescoping we have |N4| = |N4,L| ≥ 1
2
|N3|.
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6.13.2 Backward Coordinate Bound

Recall the following notions

Definition 6.13.2. Given matrices W,A,B. For each i, for each `, we define

Backi,`→` = B ∈ Rd×m.

For each i, for each a ≥ `+ 1, we define

Backi,`→a = BDi,aW · · ·Di,`+1W ∈ Rd×m.

The goal of this section is to prove Lemma 6.13.5.

Lemma 6.13.5 (backward coordinate bound, c.f. (6.14)). Let ρ = ndL logm and % =

nLdδ−1 log(m/ε). Let
{
lossi,` ∈ Rd : i ∈ [n], ` ∈ [L]\{1}

}
be fixed vectors and i∗, `∗ =

arg maxi,` ‖ lossi,` ‖2. If W ∈ Rm×m, A ∈ Rm×dx , B ∈ Rd×m are random, and N4 ⊆ [m] is a

set with |N4| ∈ [ρ4, %100] (N4 can depend on the randomness of W and A, but not depend on

B). Define

N5
def
=

{
k ∈ N4

∣∣∣∣

∣∣∣∣∣
L∑

a=`∗

(Back>i∗,`∗→a · lossi∗,a)k
∣∣∣∣∣ ≥
‖ lossi∗,`∗ ‖2

6
√
dnL

}
.

Then with probability at least 1− e−Ω(ρ2), we have

|N5| ≥
(

1− 1

2nL

)
|N4|.

Proof. For notational simplicity, in the proof we use ` to denote `∗, use N to denote N4,

and drop the subscript i∗. We denote B ∈ Rd×m as [b1, b2, · · · , bm] where each bi ∈ Rd. We

denote by Ca,`+1 = DaW · · ·D`+1W .
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We define a function vk(b1, b2, · · · , bm) ∈ R as follows

vk(b1, b2, · · · , bm)
def
=

L∑

a=`

(Back>`→a · lossi,a)k.

We can rewrite

vk(b1, b2, · · · , bm) =

(
B> · lossi,` +

L∑

a=`+1

Back>`→a · lossi,a
)

k

=

(
B> · lossi,` +

L∑

a=`+1

(Ca,`+1)>B> · lossi,a
)

k

= 〈bk, lossi,`〉+
L∑

a=`+1

〈
m∑

j=1

(Ca,`+1)k,j · bj, lossi,a
〉

=

〈
bk, lossi,` +

L∑

a=`+1

(Ca,`+1)k,j · lossi,a
〉

+
∑

j∈[m]\k

〈
bj,

L∑

a=`+1

(Ca,`+1)k,j · lossi,a
〉

where we have used (Ca,`+1)k,j to denote the (k, j) entry of matrix Ca,`+1.

Choose parameter Lh = 3
√
dnL

‖ lossi,` ‖2
and we can define function h : R→ [0, 1] by

h(t)
def
=

{
|t| · Lh, if |t| ≤ 1/Lh;

1, otherwise.

We have h(t) is Lh-Lipschitz continuous.

We define two probabilistic events E1, E2.

• Event E1 depends on the randomness of W and A:

E1
def
=

{
|z>Ca,`+1y| ≤

ρ√
m
‖z‖‖y‖ for all a, ` and for all 1-sparse vectors y, z

}

Corollary 6.11.13 says Pr[E1] ≥ 1− e−Ω(ρ2).

458



• Event E2 depends on the randomness of B:

E2
def
=

{
|Bi,j| ≤

ρ√
d
for all i, j

}

By Gaussian tail bound, we have Pr[E2] ≥ 1− e−Ω(ρ2).

In the rest of the proof, we assume W and A are fixed and satisfy E1. We let B be the only

source of randomness but we condition on B satisfies E2.

For simplicity we use subscript −j to denote [m] \ j, and subscript −N to denote

[m] \N . For instance, we shall write b = (b−k, bk) = (bN , b−N).

Step 1 Fixing b−N and letting bN be the only randomness, we claim for each k ∈ N :

E
bN

[h(vk)] ≥ Pr
bN

[
|vk| ≥

1

Lh

]
≥ 1− 1

4nL
.

We prove this inequality as follows. We can rewrite

vk =

〈
bk, lossi,` +

L∑

a=`+1

(Ca,`+1)k,k · lossi,a
〉

+
∑

j∈N\{k}

〈
bj,

L∑

a=`+1

(Ca,`+1)k,j · lossi,a
〉

+
∑

j∈[m]\N

〈
bj,

L∑

a=`+1

(Ca,`+1)k,j · lossi,a
〉

and vk is distributed as Gaussian random variable N(µ, σ2), and µ and σ2 are defined as

follows

µ =
∑

j∈[m]\N

〈
bj,

L∑

a=`+1

(Ca,`+1)k,j · lossi,a
〉

σ2 =
1

d

∥∥∥∥∥lossi,` +
L∑

a=`+1

(Ca,`+1)k,k · lossi,a
∥∥∥∥∥

2

2

+
1

d

∑

j∈N\{k}

∥∥∥∥∥
L∑

a=`+1

(Ca,`+1)k,j · lossi,a
∥∥∥∥∥

2

2
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Meanwhile, we calculate that
∥∥∥∥∥

L∑

a=`+1

(Ca,`+1)k,j · lossi,a
∥∥∥∥∥

2

¬

≤
L∑

a=`+1

|(Ca,`+1)k,j| · ‖ lossi,a ‖2



≤
L∑

a=`+1

|(Ca,`+1)k,j| · ‖ lossi,` ‖2

®

≤ Lρ√
m
· ‖ lossi,` ‖2 (6.46)

where ¬ follows by triangle inequality,  follows by i, ` = arg maxi′,`′ ‖ lossi′,`′ ‖, and ®

follows from event E1. Therefore,

σ2 ≥ 1

d

(
‖ lossi,` ‖2 −

∥∥∥∥∥
L∑

a=`+1

(Ca,`+1)k,j · lossi,a
∥∥∥∥∥

2

)2

≥ 1

d

(
1− Lρ√

m

)2

‖ lossi,` ‖2
2 ≥

1

2d
‖ lossi,` ‖2

2

where the first step follows by ‖a+ b‖2 ≥ ‖a‖2 − ‖b‖2, the second step follows by (6.46). In

sum, we have that vk is a random Gaussian with σ2 ≥ 1
2d
‖ lossi,` ‖2

2. This means,

Pr
bN

[
|vk| ≥

1

Lh

]
≥ Pr

bN

[
|vk| ≥

‖ lossi,` ‖2

3
√
dnL

]
≥ 1− 1

4nL
.

according to Fact 6.10.12.

Step 2 For every b1, b2, · · · , bm and b′k ∈ Rd satisfying event E2, for every j 6= k, we have

|vj(b−k, bk)− vj(b−k, b′k)| =
∣∣∣∣∣

〈
bk − b′k,

L∑

a=`+1

(Ca,`+1)k,k · lossi,a
〉∣∣∣∣∣

≤ ‖bk − b′k‖2 ·
∥∥∥∥∥

L∑

a=`+1

(Ca,`+1)k,k · lossi,a
∥∥∥∥∥

2

≤ ρ · Lρ√
m
‖ lossi,` ‖2 ≤

ρ3

√
m
‖ lossi,` ‖2 (6.47)

where the second step follows by |〈a, b〉| ≤ ‖a‖2 · ‖b‖2, the third step follows by (6.46).
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Step 3 Fixing b−N and letting function g(b1, b2, · · · , bm)
def
=
∑

k∈N h(vk(b1, b2, · · · , bm)). We

have

|g(bj, b−j)− g(b′j, b−j)| =
∣∣∣∣∣
∑

k∈N

h(vk(bj, b−j))−
∑

k∈N

h(vk(b
′
j, b−j))

∣∣∣∣∣

≤
∑

k∈N

∣∣h(vk(bj, b−j))− h(vk(b
′
j, b−j))

∣∣

=
∣∣h(vj(bj, b−j))− h(vj(b

′
j, b−j))

∣∣+
∑

k∈N\{j}

∣∣h(vk(bj, b−j))− h(vk(b
′
j, b−j))

∣∣

¬

≤ 1 +
∑

k∈N\{j}

∣∣h(vk(bj, b−j))− h(vk(b
′
j, b−j))

∣∣

≤ 1 +
∑

k∈N\{j}

Lh · |vk(bj, b−j)− vk(b′j, b−j)|



≤ 1 + |N | · 3
√
dnL

‖ lossi,` ‖2

·
(

(nLd logm)3‖ lossi,` ‖2√
m

)

≤ 1 +
|N | · 3(nLd logm)4

√
m

≤ 2 .

Above, inequality ¬ follows by h(t) ∈ [0, 1], inequality  follows from (6.47). Using McDi-

armid inequality (see Lemma 6.10.17), we have

Pr
bN

[∣∣∣∣g(b1, · · · , bm)− E
bN

[g]

∣∣∣∣ ≥ ε

]
≤ exp

(
− ε2

8|N |

)

=⇒ Pr
bN

[∣∣∣∣g(b1, · · · , bm)− E
bN

[g]

∣∣∣∣ ≥
|N |
4nL

]
< exp

(
− |N |

128(nL)2

)

where we choose ε = |N |
4nL

.

Finally, combining this with Step 1 —which gives EbN [g(b1, · · · , bm)] ≥ |N |(1− 1
4nL

)—

we have with probability at least 1− e−Ω(|N |/(nL)2) over randomness of bN ,

g(b1, · · · , bm) ≥ |N |
(

1− 1

2nL

)
.

This implies at least (1− 1
2nL

)-fraction of k ∈ N will have |vk| ≥ 1
2Lh

=
‖ lossi,` ‖2

6nL
√
d
.
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6.14 Gradient Bound at Random Initialization (Theorem 6.14.2)

The goal of this section is to understand the lower and upper bounds of gradients.

Instead of analyzing the true gradient directly —where the forward and backward propaga-

tion have correlated randomness— we assume that the loss vectors {lossi,a}i∈[n],a∈{2,...,L} are

fixed (no randomness) in this section, as opposed to being defined as lossi,a = Bhi,a − y∗i,a
which is random. We call this the “fake loss.” We define a corresponding “fake gradient”

with respect to this fixed loss.

Definition 6.14.1 (fake gradient, c.f. (6.13)). Given fixed vectors {lossi,a}i∈[n],a∈{2,...,L}, we

define

∇̂kf(W )
def
=

n∑

i=1

L∑

a=2

a−1∑

`=1

(Back>i,`+1→a · lossi,a)k · hi,` · 1〈Wk,hi,`〉+〈Ak,xi,`+1〉≥0

∇̂f(W )
def
=

n∑

i=1

L∑

a=2

a−1∑

`=1

Di,`+1(Back>i,`+1→a · lossi,a) · h>i,`

∇̂fi(W )
def
=

L∑

a=2

a−1∑

`=1

Di,`+1(Back>i,`+1→a · lossi,a) · h>i,`

In our analysis, we also write it as

∇̂kf(W ) =
n∑

i=1

L−1∑

`=1

(ui,`)k · hi,` · 1(gi,`+1)k≥0

∇̂f(W ) =
n∑

i=1

L−1∑

`=1

Di,`+1ui,` · h>i,`

∇̂fi(W ) =
L−1∑

`=1

Di,`+1ui,` · h>i,`

where vectors ui,`, gi,`+1 ∈ Rm are defined as

ui,`
def
=

L∑

a=`+1

Back>i,`+1→a · lossi,a gi,`+1
def
= Whi,` + Axi,`+1 .
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We first state a simple upper bound on the gradients.

Lemma 6.14.1. Letting ρ = nLd logm, given fixed vectors {lossi,` ∈ Rd}i∈[n],`∈[L]\{1}, with

probability at least 1− e−Ω(m/L2) over W,A,B, we have

‖∇̂f(W )‖F ≤ O(nL6
√
m) ·max

i,`
{‖ lossi,` ‖} and

∀i ∈ [n] : ‖∇̂fi(W )‖F ≤ O(L6
√
m) ·max

i,`
{‖ lossi,` ‖} .

With probability at least 1− e−Ω(ρ2), we have for every k ∈ [m]:

‖∇̂kf(W )‖2 ≤ O(nρL3) ·max
i,`
{‖ lossi,` ‖} .

Proof of Lemma 6.14.1. For each i, a, `, we can calculate that

∥∥Di,`+1(Back>i,`+1→a · lossi,a) · h>i,`
∥∥
F

=
∥∥Di,`+1(Back>i,`+1→a · lossi,a)

∥∥
2
· ‖h>i,`‖2

≤ ‖Backi,`+1→a‖2 · ‖ lossi,a ‖2 · ‖h>i,`‖2

¬

≤ O(
√
m) ·O(L3) ·O(L) · ‖ lossi,a ‖2 .

where inequality ¬ uses Lemma 6.11.8, Lemma 6.11.1, and ‖B‖2 ≤ O(
√
m) with high

probability. Applying triangle inequality and using the definition of fake gradient (see Defi-

nition 6.14.1), we finish the proof of the first statement.

As for the second statement, we replace the use of Lemma 6.11.8 with Corollary 6.11.16.

The rest of this section is devoted to proving a (much more involved) lower bound on

this fake gradient.
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Theorem 6.14.2 (gradient lower bound at random init, restated). Letting ρ = nLd logm,

given fixed vectors {lossi,` ∈ Rd}i∈[n],`∈[L]\{1}, with probability at least 1−e−Ω(ρ2) over W,A,B,

we have

‖∇̂f(W )‖2
F ≥ Ω

(
δ

ρ14

)
×m×max

i,`
{‖ lossi,` ‖2} .

In the rest of this section, we first present a elegant way to decompose the randomness

in Section 6.14.1 (motivated by smooth analysis [ST04]). We give a lower bound on the

expected fake gradient in Section 6.14.2. We then calculate the stability of fake gradient

against rank-one perturbations in Section 6.14.3. Finally, in Section 6.14.4, we apply our

extended McDiarmid’s inequality to prove Theorem 6.14.2.
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6.14.1 Randomness Decomposition

We introduce a parameter θ as follows:

Definition 6.14.2. Choose any

θ ∈
[
ρ4 · β−, ρ−3 · β+

]

where the notions β− and β+ come from Definition 6.13.1. We have θ ≤ δ
ρ
.

In the next lemma, we introduce a way to decompose the randomness of W into

W = W2 +W ′ for two corollated random matrices W2 and W ′. We will make sure that the

entries of W2 are also i.i.d. from N(0, 2
m

). This definition requires us to choose a specific

pair (i∗, `∗) ∈ [n]× [L].

Lemma 6.14.3. Suppose W and A follow from random initialization. Given any fixed

i∗ ∈ [n], `∗ ∈ [L], and parameter θ ∈
(
0, 1

2ρ

]
, letting random vector vi∗,`∗ ∈ Rm be defined as

vi∗,`∗
def
=

(I − U`∗−1U
>
`∗−1)hi∗,`∗

‖(I − U`∗−1U>`∗−1)hi∗,`∗‖2

,

then we can write W = W2 + W ′ for two random matrices W2 ∈ Rm×m and W ′ ∈ Rm×m

where

(a) entries of W2 are i.i.d. drawn from N(0, 2
m

) (so W2 is in the same distribution as W );

(b) W ′ is correlated with W2 and can be written as W ′ = uv>i∗,`∗ for some u ∈ Rm;

(c) With probability at least 1− e−Ω(ρ2) over the randomness of W2:

∀k : Pr
W ′

[
uk = (W ′vi∗,`∗)k ≥

θ

2
√
m

∣∣∣∣ W2

]
≥ 1

4
and

Pr
W ′

[
uk = (W ′vi∗,`∗)k ≤ −

θ

2
√
m

∣∣∣∣ W2

]
≥ 1

4
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(d) With probability at least 1− e−Ω(ρ2) over the randomness of W2:

Pr
W ′

[
‖u‖∞ = ‖W ′vi∗,`∗‖∞ ≤

3θρ

2
√
m

∣∣∣∣ W2

]
≥ 1− e−Ω(ρ2) .

Proof. Since vi∗,`∗ only depends on the randomness of WU`∗−1, we have Wvi∗,`∗ ∼ N(0, 2I
m

).

As a result, letting g1, g2 ∈ Rm be two independent random Gaussian vectors sampled from

N(0, 2I
m

), we can couple them to make sure

Wvi∗,`∗ =
√

1− θ2g1 + θg2 .

We define W2,W
′ ∈ Rn×n as follows

W2
def
= WU`∗−1U

>
`∗−1 + g1v

>
i∗,`∗ +W (I − U`∗−1U

>
`∗−1)(I − vi∗,`∗v>i∗,`∗)

W ′ def
= uv>i∗,`∗ where u

def
= θg2 − (1−

√
1− θ2)g1

• It is easy to verify that

W2 +W ′ = W (I − vi∗,`∗v>i∗,`∗) + g1v
>
i∗,`∗ + (θg2 − (1−

√
1− θ2)g1)v>i∗,`∗

= W (I − vi∗,`∗v>i∗,`∗) + (θg2 +
√

1− θ2g1)v>i∗,`∗

= W (I − vi∗,`∗v>i∗,`∗) +Wvi∗,`∗v
>
i∗,`∗

= W.

• We verify that the entries of W2 are i.i.d. Gaussian in two steps.

On one hand, let U = [ĥ1, . . . , ĥm] ∈ Rm×m be an arbitrary orthonormal matrix where

its first nL columns are identical to UL ∈ Rm×nL. For each k ∈ [nL], although ĥk may

depend on the randomness of W = W2 + W ′, it can only depend on W [ĥ1, . . . , ĥk−1].
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Therefore, conditioning on the randomness of W2[ĥ1, . . . , ĥk−1], we have that W2ĥk is

still N(0, 2I
m

). This shows that all entries of W2U still follow from N(0, 2
m

).

On the other hand, let V = W2U = [v1, . . . , vm] ∈ Rm×m, then we have vk = W2ĥk is

independent of ĥk as argued above. Since each vk ∼ N(0, 2I
m

), we have that all entries

of V U> =
∑

k vkk̂
>
k are i.i.d. from N(0, 2

m
). Since W2 = V U> this concludes the proof.

• By standard Gaussian tail bound, we have with probability at least 1 − e−Ω(ρ2), it

satisfies ‖g1‖∞ ≤ ρ√
m

and therefore ‖(1 −
√

1− θ2)g1‖∞ ≤ θ2ρ√
m
. If this happens, for

every k ∈ [m], we have (see for instance Fact 6.10.12) that Prg2 [(θg2)k >
θ√
m

] ≥ 1
4
and

Prg2 [(θg2)k < − θ√
m

] ≥ 1
4
. Recalling

u = (θg2 − (1−
√

1− θ2)g1 .

and using the fact that θ ≤ 1
2ρ
, we conclude that

Pr
W ′

[
uk >

θ

2
√
m

∣∣∣W2, A
]
≥ 1

4
and Pr

W ′

[
uk < −

θ

2
√
m

∣∣∣W2, A
]
≥ 1

4
.

• Again by Gaussian tail bound, we have with probability at least 1− e−Ω(ρ2), it satisfies

‖g1‖∞, ‖g2‖∞ ≤ ρ√
m
. Therefore, ‖(1−

√
1− θ2)g1‖∞ ≤ θ2ρ√

m
and using our assumption

on θ, we have

‖u‖∞ =
∥∥∥(θg2 − (1−

√
1− θ2)g1

∥∥∥
∞
≤ 3θρ

2
√
m

.

Lemma 6.14.4. Given any fixed i∗ ∈ [n], `∗ ∈ [L], and parameter θ ∈
(
0, 1

2ρ

]
, and suppose

suppose W and A are at random initialization and W = W2 + W ′ where W ′ = uv>i∗,`∗

(following Lemma 6.14.3).
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Now, we introduce another two ways of decomposing randomness based on this defi-

nition.

(a) Given fixed k ∈ [m], we can write W = W0 + W ′
k where W ′

k = ukv
>
i∗,`∗ for uk =

(0, . . . , 0, uk, 0, . . . , 0) that is non-zero only at the k-th coordinate. We again have the

entries of W0 are i.i.d. from N(0, 2
m

).

(b) Given fixed N ⊆ [m], we can write W = W1 + W ′
N where W ′

N = uNv
>
i∗,`∗ for uN being

the projection of u onto coordinates in N (so ‖u‖0 = |N |). We again have the entries

of W0 are i.i.d. from N(0, 2
m

).

(c) Given fixed N ⊆ [m], we can write W = W2 + W ′
N + W ′

−N where W ′
N = uNv

>
i∗,`∗ and

W ′
−N = u−Nv

>
i∗,`∗. Here, u−N is the projection of u onto coordinates in [m] \N .

Proof. The proofs are analogous to Lemma 6.14.3.
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6.14.2 Gradient Lower Bound in Expectation

The goal of this subsection is to prove Lemma 6.14.5 and then translate it into our

Core Lemma A (see Lemma 6.14.6).

Lemma 6.14.5 (c.f. (6.18)). Let ρ = nLd logm and % = nLdδ−1 log(m/ε). Fix integer

N ∈ [ρ6/β−, %
100], θ from Definition 6.14.2, fix vectors {lossi,` ∈ Rd}i∈[n],`∈[L]\{1}, let (i∗, `∗) =

argmini,` {‖ lossi,` ‖}. Suppose W1, A,B are at random initialization, and suppose W ′
N is

defined according to Lemma 6.14.4b so that W = W1 +W ′
N is also at random initialization.

With probability at least 1− e−Ω(ρ2) over the randomness of W1, A,B, we have
∣∣∣∣
{
k ∈ N

∣∣∣∣ E
W ′N

[
‖∇̂kf(W1 +W ′

N)‖2

]
≥ Ω

(‖ lossi∗,`∗ ‖2

nL
√
d

)}∣∣∣∣ ≥
β−|N |
100L

6.14.2.1 Proof of Lemma 6.14.5

Throughout this proof we denote by W̃ = W1. We introduce some (old and new)

notations:

B̃acki,`→` = B, Backi,`→` = B

B̃acki,`→a = BD̃i,aW̃ · · · D̃i,`+1W̃ , Backi,`→a = BDi,aW · · ·Di,`+1W,

and we let Back′i,`→a = Backi,`→a−B̃acki,`→a. For each i ∈ [n], ` ∈ [L], we define

g̃i,` =Axi,` + W̃ D̃i,`−1g̃i,`−1 gi,` =Axi,` +WDi,`−1gi,`−1 g′i,` =gi,` − g̃i,`

h̃i,` =D̃i,`(Axi,` + W̃ h̃i,`−1) hi,` =Di,`(Axi,` +Whi,`−1) h′i,` =hi,` − h̃i,`

ũi,` =
L∑

a=`

B̃ack
>
`→a lossi,a ui,` =

L∑

a=`

Back>`→a lossi,a u′i,` =ui,` − ũi,`
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We also let

vi∗,`∗ =
(I − U`∗−1U

>
`∗−1)h̃i∗,`∗

‖(I − U`∗−1U>`∗−1)h̃i∗,`∗‖2

and recall from Lemma 6.14.3d, we have

W ′
N = yv>i∗,`∗ for some y ∈ Rm with ‖y‖0 = |N | and ‖y‖∞ ≤

τ0√
m

def
=

3θρ

2
√
m
∈
[
%−20

√
m
,
%20

√
m

]

Proof of Lemma 6.14.5. We let N1 = N , apply Lemma 6.13.1 to obtain N4 ⊆ N1 with

|N4| ≥ β−|N1|
64L

, and apply Lemma 6.13.5 to obtain N5 ⊆ N4. According to the statements

of these lemmas, we know that with probability at least 1 − e−Ω(ρ2), the random choice of

W1, A,B will satisfy |N5| ≥ β−|N1|
100L

.

Fixing such k ∈ N5, we use ui,` to denote (ui,`)k and gi,` to denote (gi,`)k for notational

simplicity. We can rewrite ∇̂kf(W ) as follows and apply triangle inequality:

‖∇̂kf(W )‖ =
∥∥∥ui∗,`∗ · hi∗,`∗ · 1gi∗,`∗+1≥0 +

∑
(i,`)6=(i∗,`∗) ui,` · hi,` · 1gi,`+1≥0

∥∥∥

≥
∥∥∥ũi∗,`∗ · h̃i∗,`∗ · 1gi∗,`∗+1≥0 +

∑
(i,`)6=(i∗,`∗) ũi,` · h̃i,` · 1gi,`+1≥0

∥∥∥
2︸ ︷︷ ︸

♣

−∑i,`

∥∥∥u′i,` · h̃i,` + ũi,` · h′i,` + u′i,` · h′i,`
∥∥∥

2︸ ︷︷ ︸
♠

(6.48)

where recall gi,`+1 = 〈Wk, hi,`〉+ 〈Ak, xi,`+1〉.

Step 1 To bound the ♠ term on the RHS of (6.48), we consider the following bounds:

1. Using Lemma 6.12.10, we have with probability at least 1− e−Ω(ρ2), for all i, `, a

|(B̃acki,`→a · lossi,a)k − (Backi,`→a · lossi,a)k| ≤ O
(ρ3τ

1/3
0 N1/6

m1/6

)
· ‖ lossi,a ‖ .
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This implies, by triangle inequality and the fact that ‖ lossi,a ‖ ≤ ‖ lossi∗,a∗ ‖,

∣∣u′i,`
∣∣ = |ui,` − ũi,`| ≤ O

(ρ4τ
1/3
0 N1/6

m1/6

)
· ‖ lossi∗,a∗ ‖ .

2. Using Corollary 6.11.16, we have with probability at least 1− e−Ω(ρ2), for all i, `, a

|(B̃acki,`→a · lossi,a)k| ≤ ρ‖ lossi,a ‖ .

This implies, by triangle inequality and the fact that ‖ lossi,a ‖ ≤ ‖ lossi∗,a∗ ‖,

|ũi,`| ≤ ρ2‖ lossi∗,a∗ ‖ .

3. Using Lemma 6.11.1 and Lemma 6.12.1a we have

‖h̃i,`‖2 ≤ O(L) and ‖h′i,`‖2 ≤ O(L6τ0

√
N)/m1/2

All together, they imply

∑
i,`

∥∥∥u′i,` · h̃i,` + ũi,` · h′i,` + u′i,` · h′i,`
∥∥∥

2
≤ O

(ρ6τ
1/3
0 N1/6

m1/6

)
· ‖ lossi∗,a∗ ‖ . (6.49)

Step 2 We next turn to the ♣ term on the RHS of (6.48). We divide into three cases

to analyze the sign change of gi,`+1 for all possible i and ` in the above formula (under the

randomness of W ′
N). Before we do so, first note that Lemma 6.12.9 implies

|(Wh′i,`)k| = |(W1 +W ′
N)h′i,`| ≤ O

(ρ8N2/3τ
5/6
0

m2/3

)
(6.50)

1. Consider gi,`+1 for the case of i = i∗, ` = `∗. We want to show that the sign of gi,`+1

changes (at least with constant probability) with respect to the randomness of W ′
N .
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One can easily check that:20

gi,`+1 = 〈Ak, xi,`+1〉+ (W1h̃i,`)k + (Wh′i,`)k + (W ′
Nvi,`)k · ‖(I − U`−1U

>
`−1)hi,`‖2. (6.51)

By Lemma 6.13.1, we have |〈Ak, xi,`〉+ (W1h̃i,`)k| ≤ β−√
m

Thus, putting this and (6.50)

into (6.51), we can write

gi,`+1 = Ξ + (W ′
Nvi,`)k · ‖(I − U`−1U

>
`−1)h̃i,`‖2

for some value Ξ with |Ξ| ≤ 2β−√
m
. By Lemma 6.11.4, we have ‖(I − U`−1U

>
`−1)h̃i,`‖2 ≥

Ω
(

1
L2 log3m

)
. By Lemma 6.14.3c, we have (W ′

Nvi,`)k shall be larger than
θ

2
√
m
and smaller

than − θ
2
√
m

each with probability at least 1/4. Since by our choice of θ (see Defini-

tion 6.14.2),
θ

2
√
m
· Ω
( 1

L2 log3m

)
� 2β−√

m
≥ |Ξ|

This concludes that, with probability at least 1− e−Ω(ρ2) over W1 and A, it satisfies

Pr
W ′N

[gi,`+1 > 0 | W1, A] ≥ 1

5
and Pr

W ′N

[gi,`+1 < 0 | W1, A] ≥ 1

5

20We can write (gi,`+1)k = 〈Ak, xi,`+1〉+ (W (h̃i,` + h′i,`))k = 〈Ak, xi,`+1〉+ (Wh̃i,`)k + (Wh′i,`)k. For the
second term in the above equation, we have

(Wh̃i,`)k =

(
WU`−1U

>
`−1h̃i,` +

W (I − U`−1U
>
`−1)h̃i,`

‖(I − U`−1U>`−1)h̃i,`‖2
‖(I − U`−1U

>
`−1)h̃i,`‖2

)

k

¬
=
(
WU`−1U

>
`−1h̃i,` +Wvi,`‖(I − U`−1U

>
`−1h̃i,`)‖2

)
k


=
(
W1U`−1U

>
`−1h̃i,` +Wvi,`‖(I − U`−1U

>
`−1h̃i,`)‖2

)
k

®
=
(
W1U`−1U

>
`−1h̃i,` +W1vi,`‖(I − U`−1U

>
`−1h̃i,`)‖2

)
k

+
(
W ′Nvi,` · ‖(I − U`−1U

>
`−1h̃i,`)‖2

)
k

= (W1h̃i,`)k + (W ′Nvi,`)k · ‖(I − U`−1U
>
`−1h̃i,`)‖2

where ¬ follows by definition of vi,`,  follows by definition of W1, ® follows by W = W1 +W ′N .
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2. Consider gi,`+1 for the case of i ∈ [n]\{i∗}, ` = `∗ or i ∈ [n], ` > `∗. We want to show

the sign of gi,`+1 is fixed, meaning with high probability independent of the choice of

W ′
N . One can easily check that:

gi,`+1 = 〈Ak, xi,`+1〉+ (W1h̃i,`)k + (Wh′i,`)k + (W ′
N h̃i,`)k . (6.52)

By Lemma 6.13.1, we have |〈Ak, xi,`〉+ (W1h̃i,`)k| ≥ β+√
m
. Thus, putting this and (6.50)

into (6.53), we can write

gi,`+1 = Ξ + (W ′
N h̃i,`)k = Ξ + (W ′

Nvi∗,`∗)k · 〈vi∗,`∗ , h̃i,`〉

for some value Ξ with |Ξ| ≥ β+

2
√
m
. By Lemma 6.11.1, we have |〈vi∗,`∗ , h̃i,`〉| ≤ ‖h̃i,`‖2 ≤

O(L). By Lemma 6.14.3d, we have |(W ′
Nvi∗,`∗)k| ≤ 2θρ√

m
and by our choice of θ (see

Definition 6.14.2),
2θρ√
m
·O(L)� 2β+√

m
≤ |Ξ|

This concludes that, with probability at least 1− e−Ω(ρ2) over W1 and A, it satisfies

∃s ∈ {−1, 1} : Pr
W ′N

[sgn(gi,`+1) = s | W1, A] ≥ 1− e−Ω(ρ2) .

3. Consider gi,`+1 for the case of i ∈ [n] and ` < `∗. We want to show such gi,`+1 is fixed,

meaning independent of W ′
N . One can easily check that:

gi,`+1 = 〈Ak, xi,`+1〉+ (W1h̃i,`)k + (Wh′i,`)k + (W ′
N h̃i,`)k . (6.53)

Now, since ` < `∗, we know hi,` = h̃i,` because both of which only depend on the

randomness of WU`∗−1 = W1U`∗−1 and A; this implies h′i,` = 0. Also, since W ′
N =

(W ′
Nvi∗,`∗)v

>
i∗,`∗ but 〈vi∗,`∗ , h̃i,`〉 = 0, we know that

gi,`+1 = 〈Ak, xi,`+1〉+ (W1h̃i,`)k .
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This is a fixed value, independent of W ′
N .

Therefore, combining the three cases above, we conclude that with at least constant proba-

bility, the sign of gi∗,`∗+1 can possibly change, but the sign of gi,`+1 will not change for any

other (i, `) 6= (i∗, `∗). This means,

E[♣] = E
[∥∥∥ũi∗,`∗ · h̃i∗,`∗ · 1gi∗,`∗+1≥0 +

∑
(i,`)6=(i∗,`∗) ũi,` · h̃i,` · 1gi,`+1≥0

∥∥∥
2

]

≥ Ω(‖ũi∗,`∗h̃i∗,`∗‖2) = Ω
(
|ũi∗,`∗ | · ‖h̃i∗,`∗‖2

)

Finally, for each k ∈ N5, owing to Lemma 6.13.5 and Lemma 6.11.1, we have

|ũi∗,`∗|2 =

∣∣∣∣∣
L∑

a=`∗

(B̃ack
>
i∗,`∗→a lossi∗,a)k

∣∣∣∣∣ ≥
‖ lossi∗,`∗ ‖2

6
√
dnL

and ‖h̃i∗,`∗‖2 ≥
1

2
.

This means,

E[♣] ≥ Ω

(‖ lossi∗,`∗ ‖2√
dnL

)
. (6.54)

Putting (6.49) and (6.54) back to (6.48), we conclude that

∀k ∈ N5 : E[‖∇̂kf(W )‖] ≥ Ω

(‖ lossi∗,`∗ ‖2√
dnL

)
.

6.14.2.2 Core Lemma A

In Lemma 6.14.5, we split W into W = W1 + W ′
N for a fixed N ⊆ [m]. In this

subsection, we split W into three parts W = W2 + W ′
N + W ′

−N following Lemma 6.14.4c.

Our purpose is to rewrite Lemma 6.14.5 into the following variant:
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Lemma 6.14.6 (Core Lemma A). Let ρ = nLd logm and % = nLdδ−1 log(m/ε). Fix vec-

tors {lossi,` ∈ Rd}i∈[n],`∈[L]\{1}, integer |N | ∈ [ρ6/β−, %
100], and parameter t = m/|N |. Let

N1, . . . , Nt be i.i.d. random subsets of [m] with cardinality |Ni| = |N |. Then,

• with probability ≥ 1 − e−Ω(ρ2) over the randomness of W2, A,B and N1, · · ·Nt, the

following holds:

– for every N ∈ {N1, N2, · · · , Nt}, the following holds:

∗ with probability at 1 − e−Ω(ρ2) over the randomness of W ′
−N , the following

holds:

∑

k∈N

E
W ′N

[
‖∇̂kf(W2 +W ′

N +W ′
−N)‖2

2

]
≥ Ω

(
β−|N |
ρ2

)
·max

i,`
‖ lossi,` ‖2

2.

Proof of Lemma 6.14.6. We denote by (i∗, `∗) = argmaxi,` ‖ lossi,` ‖2. We first note that

Lemma 6.14.5 directly implies

• with probability ≥ 1− e−Ω(ρ2) over the randomness of W2,W
′
−N , A,B,N , the following

holds:
∣∣∣∣
{
k ∈ N

∣∣∣∣ E
W ′N

[
‖∇̂kf(W2 +W ′

−N +W ′
N)‖2

]
≥ Ω

(‖ lossi∗,`∗ ‖2

nL
√
d

)}∣∣∣∣ ≥
β−

100L
|N |

or putting it in another way, using our choice of q,

• with probability ≥ 1− e−Ω(ρ2) over the randomness of W2,W
′
−N , A,B,N , the following

holds (q = β−|N |
cρ2 for some sufficiently large constant):

∑

k∈N

E
W ′N

[
‖∇̂kf(W2 +W ′

−N +WN)‖2
2

]
≥ q · ‖ lossi∗,`∗ ‖2

2.

Applying simple tricks to switch the ordering of randomness (see Fact 6.10.2), we have

• with probability ≥ 1− e−Ω(ρ2) over the randomness of W2, A,B, the following holds:
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– with probability ≥ 1− e−Ω(ρ2) over the randomness of N , the following holds:

∗ with probability ≥ 1− e−Ω(ρ2) over randomness of W ′
−N , the following holds:

∑

k∈N

E
W ′N

[‖∇̂kf(W2 +W ′
N +W ′

−N)‖2
2] ≥ q · ‖ lossi∗,`∗ ‖2

2.

Repeating the choice of N for t times, and using union bound, we have

• with probability ≥ 1− e−Ω(ρ2) over the randomness of W2, A,B, the following holds:

– with probability ≥ 1−e−Ω(ρ2) over the randomness ofN1, N2, · · · , Nt, the following

holds:

∗ for all N ∈ {N1, N2, · · · , Nt}, the following holds:

· with probability ≥ 1 − e−Ω(ρ2) over randomness of W ′
−N , the following

holds:

∑

k∈N

E
W ′N

[‖∇̂kf(W2 +W ′
N +W ′

−N)‖2
2] ≥ q · ‖ lossi∗,`∗ ‖2

2.

Combining the above statement with Fact 6.10.1 (to merge randomness), we conclude the

proof.
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6.14.3 Gradient Stability

The goal of this subsection is to prove Lemma 6.14.7 and then translate it into our

Core Lemma B (see Lemma 6.14.9).

Lemma 6.14.7 (c.f. (6.19)). Fix parameter ρ = nLd logm, vectors {lossi,` ∈ Rd}i∈[n],`∈[L]\{1},

(i∗, `∗) = argmini,` {‖ lossi,` ‖}, index j ∈ [m]. Let N ⊆ [m] be a random subset containing

j of fixed cardinality |N |, let W,A,B be at random initialization, and W ′′
j be defined as

Definition 6.14.4a so that W + W ′′
j is also at random initialization. Then, with probability

at least 1− e−Ω(ρ2)

∑

k∈[N ]

∣∣∣‖∇̂k(W )‖2
2 − ‖∇̂k(W +W ′′

j )‖2
2

∣∣∣ ≤ O

(
ρ8 +

ρ11θ1/3

m1/6
|N |
)

. (6.55)

6.14.3.1 Proof of Lemma 6.14.7

Throughout this proof we denote by W̃ = W to emphasize that W is at random

initialization. We first show some properties before proving Lemma 6.14.7.

Claim 6.14.8. Fix parameter ρ = nLd logm, vectors {lossi,` ∈ Rd}i∈[n],`∈[L]\{1}, (i∗, `∗) =

argmini,` {‖ lossi,` ‖}, index j ∈ [m]. Let W̃ , A,B be at random initialization, and W ′′
j be

defined as Lemma 6.14.4a so that W = W̃ +W ′′
j is also at random initialization. Then, then

with probability ≥ 1− e−Ω(ρ2) over W̃ , A,B,W ′′
j ,

•
∣∣∣∣
{
k ∈ [m]

∣∣∣∣
∣∣∣‖∇̂kf(W̃ +W ′′

j )‖2
2 − ‖∇̂kf(W̃ )‖2

2

∣∣∣ ≤ O
(
ρ11θ1/3

m1/6

)}∣∣∣∣ ≥
(

1− ρ5θ2/3

m1/3

)
m .

•
∣∣∣‖∇̂kf(W̃ +W ′′

j )‖2
2 − ‖∇̂kf(W̃ )‖2

2

∣∣∣ ≤ O(ρ6) for every k ∈ [m].
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Proof of Claim 6.14.8. As before, let D̃i,` denote the diagonal matrix consisting of the indi-

cator function 1(g̃i,`+1)k≥0 for its k-th diagonal entry. Let Di,` be the same thing but with

respect to weight matrix W̃ + W ′′
j . Let D′′i,` = Di,` − D̃i,` be the diagonal matrix of sign

change.

• By Lemma 6.12.1 (with τ0 = 3θρ
2

owing to Lemma 6.14.3d), we have ‖D′′` ‖0 ≤ ρ4θ2/3m2/3.

Therefore, letting J def
= [m]\ ∪i,` supp(Di,`) be the set of all indices of sign changes, we

have

|J | ≥ m− nLρ4θ2/3m2/3 ≥
(

1− ρ5θ2/3

m1/3

)
·m.

Next, for every index k ∈ J , we have

‖∇̂kf(W̃ +W ′′
j )− ∇̂kf(W̃ )‖2

¬
=

∥∥∥∥∥
n∑

i=1

L∑

`=1

(ũi,`)k · h̃i,` · 1(g̃i,`+1)k≥0 −
n∑

i=1

L∑

`=1

(ui,`)k · hi,` · 1(gi,`+1)k≥0

∥∥∥∥∥
2


=

∥∥∥∥∥
n∑

i=1

L∑

`=1

(ũi,`)k · h̃i,` · 1(gi,`+1)k≥0 −
n∑

i=1

L∑

`=1

(ui,`)k · hi,` · 1(gi,`+1)k≥0

∥∥∥∥∥
2

®

≤
n∑

i=1

L∑

`=1

‖((ũi,`)k · h̃i,` − (ui,`)k · hi,`) · 1(gi,`+1)k≥0‖2 .

where ¬ follows by definition,  follows by our choice of k ∈ J , and ® follows by trian-

gle inequality. For each i, `, using the same proof as (6.49) (so invoking Lemma 6.12.10,

Corollary 6.11.16, Lemma 6.11.1 and Lemma 6.12.1a), we have with probability at least

1− e−Ω(ρ2):

‖(ũi,`)k · h̃i,` − (ui,`)k · hi,`‖2 ≤ O
(ρ6τ

1/3
0

m1/6

)
· ‖ lossi∗,a∗ ‖ . (6.56)
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which implies

‖∇̂kf(W̃ +W ′′
j )− ∇̂kf(W̃ )‖2 ≤ O

(ρ6τ
1/3
0

m1/6

)
· ‖ lossi∗,a∗ ‖ .

Combining this with ‖∇̂kf(W̃ )‖2 ≤ O(ρ4) from Lemma 6.14.1, we finish the proof of

the first item.

• For every index k ∈ [m], we have

‖∇̂kf(W̃ +W ′′
j )− ∇̂kf(W̃ )‖2

=

∥∥∥∥∥
n∑

i=1

L∑

`=1

(ũi,`)k · h̃i,` · 1(g̃i,`+1)k≥0 −
n∑

i=1

L∑

`=1

(ui,`)k · hi,` · 1(gi,`+1)k≥0

∥∥∥∥∥
2

≤
n∑

i=1

L∑

`=1

‖(ũi,`)k · h̃i,`‖2 + ‖(ui,`)k · hi,`)‖2 .

Using (6.56) and ‖(ũi,`)k · h̃i,`‖2 ≤ O(ρ2L) (see the proof of Lemma 6.14.1), we imme-

diately have the desired bound.

Proof of Lemma 6.14.7. Letting J def
=

{
k ∈ [m]

∣∣∣∣
∣∣∣‖∇̂kf(W̃ +W ′′

j )‖2
2 − ‖∇̂kf(W̃ )‖2

2

∣∣∣ ≤ O
(
ρ11θ1/3

m1/6

)}
,

we have |J | ≥
(

1− ρ5θ2/3

m1/3

)
m according to Claim 6.14.8.

Now, for the indices in N that are randomly sampled from [m], if |N ∩ J | ≥ |N | − S

for a parameter S = ρ2, then we have

∑

k∈N

∣∣∣‖∇̂kf(W̃ )‖2
2 − ‖∇̂kf(W̃ +W ′′

j )‖2
2

∣∣∣ ≤ |S| ·O(ρ6) + |N | ·O
(
ρ11θ1/3

m1/6

)
≤ O

(
ρ8 +

ρ11θ1/3

m1/6
|N |
)

.

Otherwise, if |N ∩ J | ≤ |N | − S, this means at least S indices that are chosen from

N are outside J ⊆ [m]. This happens with probability at most
(
ρ5θ2/3

m1/3

)S
≤ e−Ω(ρ2).
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6.14.3.2 Core Lemma B

In this subsection, we split W into three parts W = W2 + W ′
N + W ′

−N following

def:random-decomp:N-N. Our purpose is to rewrite Lemma 6.14.7 into the following variant:

Lemma 6.14.9 (Core Lemma B). Let ρ = nLd logm and % = nLdδ−1 log(m/ε). Fix parame-

ter θ from Definition 6.14.2, vectors {lossi,` ∈ Rd}i∈[n],`∈[L]\{1}, integer |N | ∈ [1, %100], param-

eter t = m/|N |. Let N1, . . . , Nt be i.i.d. random subsets of [m] with cardinality |Ni| = |N |.

Then, with probability ≥ 1 − e−Ω(ρ2) over the randomness of W2, A,B and N1, · · ·Nt, the

following holds:

• for every N ∈ {N1, N2, · · · , Nt}, the following holds:

– with probability at 1− e−Ω(ρ2) over the randomness of W ′
−N , the following holds:

∗ with probability at least 1− e−Ω(ρ2) over the randomness of W ′
N ,we have :

· for all j ∈ N , and for all W ′′
j = ujv

>
i∗,`∗ satisfying

‖uj‖0 = 1, ‖uj‖∞ ≤ 3θρ√
m
, vi∗,`∗ =

(I−U`∗−1U
>
`−1)hi∗,`hi∗,`∗

‖(I−U`∗−1U
>
`∗−1

)hi∗,`∗‖2
, (6.57)

we have

∑
k∈N

∣∣∣‖∇̂kf(W2 +W ′
N +W ′

−N)‖2
2 − ‖∇̂kf(W2 +W ′

N +W ′
−N +W ′′

j )‖2
2

∣∣∣

≤ O(ρ8) ·maxi,` ‖ lossi,` ‖2
2 .

Proof of Lemma 6.14.9. Without loss of generality we assume maxi,` ‖ lossi,` ‖2
2 = 1 in the

proof. We now first rewrite Lemma 6.14.7 as follows (recalling m is sufficiently large so we

only need to keep the O(ρ8) term):
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• with probability ≥ 1− e−Ω(ρ2) over random N ⊂ [m], random j ∈ N , random W,A,B,

and random W ′
j , the following holds:

∑

k∈[N ]

∣∣∣‖∇̂k(W )‖2
2 − ‖∇̂k(W +W ′′

j )‖2
2

∣∣∣ ≤ O

(
ρ8 +

ρ11θ1/3

m1/6
|N |
)
≤ O(ρ8) . (6.58)

We can split the randomness (see Fact 6.10.1) and derive that

• With probability ≥ 1− e−Ω(ρ2) over N ⊆ [m], W,A,B, the following holds:

– With probability ≥ 1− e−Ω(ρ2) over j ∈ N and W ′′
j , Eq. (6.58) holds.

Applying standard ε-net argument, we derive that

• With probability ≥ 1− e−Ω(ρ2) over N ⊆ [m], W,A,B, the following holds:

– for all j ∈ N , and for all W ′′
j = ujv

>
i∗,`∗ satisfying (6.57), we have Eq. (6.58) holds.

Finally, letting W = W2 +W ′
N +W ′

−N , we have

• With probability ≥ 1 − e−Ω(ρ2) over the randomness of N ⊆ [m],W2,WN ,W
′
−N , A,B,

the following holds:

– for all j ∈ N , and for all W ′′
j = ujv

>
i∗,`∗ satisfying (6.57), we have

∑

k∈N

∣∣∣‖∇̂kf(W2 +W ′
N +W ′

−N)‖2
2 − ‖∇̂kf(W2 +W ′

N +W−N ′ +W ′′
j )‖2

2

∣∣∣ ≤ O
(
ρ8
)
.

Finally, splitting the randomness (using Fact 6.10.1), and applying a union bound over

multiple samples N1, . . . , Nt, we finish the proof.
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6.14.4 Main Theorem: Proof of Theorem 6.14.2

Proof of Theorem 6.14.2. Without loss of generality, we assume that maxi,` ‖ lossi,` ‖2
2 = 1.

Combining Core Lemma A and B (i.e., Lemma 6.14.6 and Lemma 6.14.9), we know

that if |N | is appropriately chosen, with probability ≥ 1 − e−Ω(ρ2) over the randomness of

W2, A,B and N1, · · ·Nt, the following holds:

• for every N ∈ {N1, N2, · · · , Nt}, the following holds:

– with probability at 1 − e−Ω(ρ2) over the randomness of W ′
−N , the following boxed

statement holds:

• (core A)

EW ′N
[∑

k∈N ‖∇̂kf(W2 +W ′
N +W ′

−N)‖2
2

]
≥ q

def
= Ω

(
β−|N |
ρ2

)

• (core B) with probability at least 1 − e−Ω(ρ2) over the randomness of W ′
N , the following

holds:

– for all j ∈ N , and for all W ′′
j = ujv

>
i∗,`∗ satisfying

‖uj‖0 = 1, ‖uj‖∞ ≤ 3θρ√
m
, vi∗,`∗ =

(I−U`∗−1U
>
`−1)hi∗,`hi∗,`∗

‖(I−U`∗−1U
>
`∗−1

)hi∗,`∗‖2
,

we have

∑
k∈N

∣∣∣‖∇̂kf(W2 +W ′
N +W ′

−N)‖2
2 − ‖∇̂kf(W2 +W ′

N +W ′
−N +W ′′

j )‖2
2

∣∣∣ ≤ p
def
= O(ρ8) .

We now wish to apply our extended McDiarmid’s inequality (see Lemma 6.10.18) to

the boxed statement. For this goal, recalling that W ′
N = uNv

>
i∗,`∗ for a vector uN ∈ Rm that

is only supported on indices in N . That is, (uN)k = 0 for all k 6∈ N . Therefore, we can define

function z(uN)
def
=
∑

k∈N ‖∇̂kf(W2 + W ′
−N + W ′

N)‖2 where W ′
N = uNv

>
i∗,`∗ . We emphasize
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here that, inside the boxed statement, W2, W ′
−N and vi∗,`∗ are already fixed, and uN is the

only source of randomness.

Below, we condition on the high probability event (see Lemma 6.14.3d) that ‖uN‖∞ ≤
3θρ

2
√
m
. The boxed statement tells us:

• EuN [z(uN)] ≥ q, and

• With probability ≥ 1− e−Ω(ρ2) over uN , it satisfies

∀j ∈ [N ],∀u′′j :
∣∣z(u−j, uj)−z(u−j, u

′′
j )
∣∣ ≤ p .

At the same time, we have 0 ≤ z(uN) ≤ O(Nρ8) owing to Lemma 6.14.1. Therefore, scaling

down z(uN) by Θ(Nρ8) (to make sure the function value stays in [0, 1]), we can applying

extended McDiarmid’s inequality (see Lemma 6.10.18), we have

Pr
uN

[
z(uN) ≥ q

2

]
≥ 1−N2 · e−Ω(ρ2) − exp

(
−Ω

(
(q/ρ8)2

N(p/ρ8)2 +Ne−Ω(ρ2)

))
. (6.59)

As long as N ≥ ρ22

β2
−
, we have that the above probability is at least 1− e−Ω(ρ2).

Finally, we choose

N =
ρ22

β2
−

(6.60)

in order to satisfy Lemma 6.14.6. We replace the boxed statement with (6.59). This tells us

• with probability≥ 1−e−Ω(ρ2) over the randomness ofW2, A,B andN1, · · ·Nt, the following

holds:

– for every N ∈ {N1, N2, · · · , Nt}, the following holds:
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∗ with probability at 1− e−Ω(ρ2) over the randomness of W ′
−N and W ′

N , the following

holds:

∑

k∈N

‖∇̂kf(W2 +W ′
N +W ′

−N)‖2
2 ≥ Ω

(
β−|N |
ρ2

)

After rearranging randomness, and using W = W2 +W ′
N +W ′

−N , we have

• with probability ≥ 1− e−Ω(ρ2) over the randomness of W,A,B, the following holds:

– with probability ≥ 1− e−Ω(ρ2) over the randomness of N1, · · ·Nt, the following holds:

∗ for every N ∈ {N1, N2, · · · , Nt}, the following holds:

∑

k∈N

‖∇̂kf(W )‖2
2 ≥ Ω

(
β−|N |
ρ2

)

Finally, since N1, . . . , Nt are t random subsets of [m], we know that with probability at least

1− e−Ω(ρ2), for each index k ∈ [m], it is covered by at most ρ2 random subsets. Therefore,

∑

k∈N

‖∇̂kf(W )‖2
2 ≥

1

ρ2
× t× Ω

(
β−|N |
ρ2

)
= Ω

(
δ

ρ14

)
×m .
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6.15 Gradient Bound After Perturbation (Theorem 6.15.2)

We use the same fake gradient notion (see Definition 6.14.1) and first derive the

following result based on Lemma 6.14.1 and Theorem 6.14.2.

Lemma 6.15.1. Let ρ = nLd logm and % = nLdδ−1 log(m/ε). Given fixed vectors {lossi,` ∈

Rd}i∈[n],`∈[L]\{1}, with probability at least 1 − e−Ω(ρ2) over W̃ , A,B, it satisfies for all W ′ ∈

Rm×m with ‖W ′‖2 ≤ τ0√
m

with τ0 ≤ %100,

‖∇̂f(W̃ +W ′)‖2
F ≥ Ω

(
δ

ρ14

)
×m×max

i,`
{‖ lossi,` ‖2}

‖∇̂f(W̃ +W ′)‖2
F ≤ O(ρ12m)×max

i,`
{‖ lossi,` ‖2}

‖∇̂fi(W̃ +W ′)‖2
F ≤

1

n2
O(ρ12m)×max

i,`
{‖ lossi,` ‖2} .

Proof of Lemma 6.15.1. Like before, we denote by D̃i,`, ũi,`, h̃i,` the corresponding matrices

or vectors when the weight matrix is W̃ , and by Di,`, ui,`, hi,` the corresponding terms when

when the weight matrix is W = W̃ +W ′.

Lower bound on ‖∇̂f(W̃ +W ′)‖F Recall

∇̂f(W̃ +W ′) =
n∑

i=1

L∑

`=1

Di,`+1

(
L∑

a=`

Back>i,`→a lossi,a

)
h>i,` =

n∑

i=1

L∑

`=1

Di,`+1ui,`h
>
i,`

In Theorem 6.14.2 of the previous section, we already have a lower bound on ‖∇̂f(W̃ )‖F .
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We just need to upper bound ‖∇̂f(W̃ +W ′)− ∇̂f(W̃ )‖F .

‖∇̂f(W̃ +W ′)− ∇̂f(W̃ )‖F ¬
=

∥∥∥∥∥
n∑

i=1

L∑

`=1

Di,`+1ui,`h
>
i,` − D̃i,`+1ũi,`h̃

>
i,`

∥∥∥∥∥
F



≤
n∑

i=1

L∑

`=1

∥∥∥Di,`+1ui,`h
>
i,` − D̃i,`+1ũi,`h̃

>
i,`

∥∥∥
F

®

≤
n∑

i=1

L∑

`=1

‖D′i,`+1ûi,`ĥ
>
i,`‖F + ‖D̃i,`+1u

′
i,`ĥ
>
i,`‖F + ‖D̃i,`+1ũi,`h

′
i,`
>‖F + o(m1/3).

where ¬ follows by definition and  and ® follow by the triangle inequality. Note that in

inequality ® we have hidden four more higher order terms in o(m1/3). We ignore the details

for how to bound them, for the ease of presentation. We bound the three terms separately:

• Using Corollary 6.11.15 (with s2 = O(L10/3τ
2/3
0 ) from Lemma 6.12.1b) and Lemma 6.11.1

we have

‖D′i,`+1ûi,`ĥ
>
i,`‖F ≤ ‖D′i,`+1ûi,`‖2 · ‖ĥi,`‖2

≤ O(L · L4τ
1/3
0 m1/3 logm · ‖ lossi∗,`∗ ‖2) · L

• Using ‖D̃i,`+1‖2 ≤ 1, Lemma 6.12.8 and Lemma 6.11.1 we have

‖D̃i,`+1u
′
i,`ĥ
>
i,`‖F ≤ ‖D̃i,`+1‖ · ‖u′i,`‖2 · ‖ĥi,`‖2

≤ O(L · L6τ
1/3
0 m1/3 logm · ‖ lossi∗,`∗ ‖2) · L

• Using ‖D̃i,`+1‖2 ≤ 1, ‖ũi,`‖2 ≤ O(L4)
√
m‖ lossi∗,`∗ ‖2 (implied by Lemma 6.11.8) and

Lemma 6.12.1a, we have

‖D̃i,`+1ũi,`h
′
i,`
>‖F ≤ ‖D̃i,`+1‖ · ‖ũi,`‖2 · ‖h′i,`‖2

≤ O(L4
√
m · ‖ lossi∗,`∗ ‖2) · (L6τ

1/2
0

1√
m

)
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Putting it all together, we have

‖∇̂f(W̃ +W ′)− ∇̂f(W̃ )‖F ≤ O(ρ8τ
1/3
0 m1/3) · ‖ lossi∗,`∗ ‖F . (6.61)

Finally, using (a− b)2 ≥ 1
2
a2 − b2, we have

‖∇̂f(W̃ +W ′)‖2
F ≥ (‖∇̂f(W̃ )‖F − ‖∇̂f(W̃ +W ′)− ∇̂f(W̃ )‖F )2

≥ 1

2
‖∇̂f(W̃ )‖2

F − ‖∇̂f(W̃ +W ′)− ∇̂f(W̃ )‖2
F

≥ Ω

(
δ

ρ14

)
×m× ‖ lossi∗,`∗ ‖2 .

where the last step follows by (6.61) (with our sufficiently large choice of m) and Theo-

rem 6.14.2.

Upper bound on ‖∇̂f(W̃ +W ′)‖F Using (a+ b)2 ≤ 2a2 + 2b2, we have

‖∇̂f(W̃ +W ′)‖2
F ≤ 2‖∇̂f(W̃ )‖2

F + 2‖∇̂f(W̃ +W ′)− ∇̂f(W̃ )‖2
F

¬

≤ O(ρ12m) · ‖ lossi∗,`∗ ‖2
F + 2‖∇̂f(W̃ +W ′)− ∇̂f(W̃ )‖2

F



≤ O(ρ12m) · ‖ lossi∗,`∗ ‖2
F

where ¬ follows by Lemma 6.14.1 and  follows by (6.61).

Upper bound on ‖∇̂fi(W̃ +W ′)‖F This is completely analogous so we do not replicate

the proofs here.

By applying an ε-net argument over all possible lossi,` ∈ Rd, we can modify Lemma 6.15.1

from “for fixed loss” to “for all loss.” This allows us to plug in the true loss lossi,` = Bhi,`−y∗i,`
and derive that:
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Theorem 6.15.2 (restated). Let ρ = nLd logm and % = nLdδ−1 log(m/ε). With probability

at least 1− e−Ω(ρ2) over W,A,B, it satisfies for all W ′ ∈ Rm×m with ‖W ′‖2 ≤ %100
√
m
,

‖∇f(W̃ +W ′)‖2
F ≥ Ω

(
δ

ρ14

)
×m×max

i,`
{‖ lossi,` ‖2}

‖∇f(W̃ +W ′)‖2
F ≤ O(ρ12m)×max

i,`
{‖ lossi,` ‖2}

‖∇fi(W̃ +W ′)‖2
F ≤

1

n2
O(ρ12m)×max

i,`
{‖ lossi,` ‖2} .
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6.16 Objective Semi-Smoothness (Theorem 6.16.1)

The purpose of this section is to prove

Theorem 6.16.1 (objective semi-smoothness, restated). Let ρ = nLd logm, % = nLdδ−1 log(m/ε),

τ0 ∈ [%−100, %100], and W̃ , A,B be at random initialization. With probability at least 1−e−Ω(ρ2)

over the randomness of W̃ , A,B, we have for every W̆ ∈ Rm×m with ‖W̆ − W̃‖ ≤ τ0√
m
, and

for every W ′ ∈ Rm×m with ‖W ′‖ ≤ τ0√
m
, and letting (i∗, `∗) = argmaxi,`{‖ ˘lossi,`‖2},

f(W̆ +W ′) ≤ f(W̆ ) + 〈∇f(W̆ ),W ′〉+O(ρ11τ
1/3
0 m1/3) · ‖ ˘lossi∗,`∗‖2 · ‖W ′‖2 +O(L18nm)‖W ′‖2

2

We introduce the following notations before we go to proofs.

Definition 6.16.1. For i ∈ [n] and ` ∈ [L]:

g̃i,0 = h̃i,0 = 0 ği,0 = ~i,0 = 0 gi,0 = hi,0 = 0

g̃i,` = W̃ h̃i,`−1 + Axi,` ği,` = W̆~i,`−1 + Axi,` gi,` = (W̆ +W ′)hi,`−1 + Axi,`

h̃i,` = φ(W̃ h̃i,`−1 + Axi,`) ~i,` = φ(W̆~i,`−1 + Axi,`) hi,` = φ((W̆ +W ′)hi,`−1 + Axi,`)

˘lossi,` = B~i,` − y∗i,`

Define diagonal matrices D̃i,` and D̆i,` respectively by letting

(D̃i,`)k,k = 1(g̃i,`)k≥0 and (D̆i,`)k,k = 1(ği,`)k≥0.

The following claim gives rise to a new recursive formula to calculate hi,` − ~i,`.

Claim 6.16.2 (c.f. (6.21)). There exist diagonal matrices D′′i,` ∈ Rm×m with entries in [−1, 1]

such that,

∀i ∈ [n],∀` ∈ [L] : hi,` − ~i,` =
`−1∑

a=1

(D̆i,` +D′′i,`)W̆ · · · W̆ (D̆i,a+1 +D′′i,a+1)W ′hi,a (6.62)
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Furthermore, we have ‖hi,` − ~i,`‖ ≤ O(L9)‖W ′‖2 and ‖D′′i,`‖0 ≤ O(L10/3τ
2/3
0 m2/3).

Proof of Claim 6.16.2. We ignore the subscript in i for cleanness, and calculate that

h` − ~`
¬
= φ((W̆ +W ′)h`−1 + Ax`)− φ(W̆~`−1 + Ax`)


= (D̆` +D′′` )

(
(W̆ +W ′)h`−1 − W̆~`−1

)

= (D̆` +D′′` )W̆ (h`−1 − ~`−1) + (D̆` +D′′` )W
′h`−1

®
=

`−1∑

a=1

(D̆` +D′′` )W̆ · · · W̆ (D̆a+1 +D′′a+1)W ′ha

Above, ¬ is by the recursive definition of h` and ~`;  is by Proposition 6.16.3 and D′′`

is defined according to Proposition 6.16.3; and inequality ® is by recursively computing

h`−1 − ~`−1. As for the two properties:

• We have ‖h` − ~`‖ ≤ O(L9)‖W ′‖2. This is because we have

–
∥∥(D̆` +D′′` )W̆ · · · W̆ (D̆a+1 +D′′a+1)

∥∥
2
≤ O(L7) by Lemma 6.12.6;

– ‖ha‖ ≤ O(L) (by ‖h̃a‖ ≤ O(L) from Lemma 6.11.1 and ‖h̃a − ha‖ ≤ o(1) from

Lemma 6.12.1a); and

– ‖W ′ha‖ ≤ ‖W ′‖2‖ha‖.

• We have ‖D′′` ‖0 ≤ O(L10/3τ
2/3
0 m2/3).

This is because, (D′′` )k,k is non-zero only at the coordinates k ∈ [m] where the signs

of ğ` and g` are opposite (by Proposition 6.16.3). Such a coordinate k must satisfy

either (D̃`)k,k 6= (D̆`)k,k or (D̃`)k,k 6= (D`)k,k, and therefore by Lemma 6.12.1 — with

probability ≥ 1−e−Ω(L6τ
4/3
0 m1/3) — there are at most O(L10/3τ

2/3
0 m2/3) such coordinates

k.
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Proof of Theorem 6.16.1. First of all, since

1

2
‖Bhi,` − y∗i,`‖2 =

1

2
‖ ˘lossi,` +B(hi,` − ~i,`)‖2 =

1

2
‖ ˘lossi,`‖2 + ˘loss>i,`B(hi,` − ~i,`) +

1

2
‖B(hi,` − ~i,`)‖2

(6.63)

we can write

f(W̆ +W ′)− f(W )− 〈∇f(W ),W ′〉

¬
= −〈∇f(W̆ ),W ′〉+

1

2

n∑

i=1

L∑

`=2

‖Bhi,` − y∗i,`‖2 − ‖B~i,` − y∗i,`‖2


= −〈∇f(W̆ ),W ′〉+

n∑

i=1

L∑

`=2

˘loss>i,`B(hi,` − ~i,`) +
1

2
‖B(hi,` − ~i,`)‖2

®
=

n∑

i=1

L∑

`=2

˘loss>i,`B

(
(hi,` − ~i,`)−

`−1∑

a=1

D̆i,`W̆ · · · W̆ D̆i,a+1W
′~i,a

)
+

1

2
‖B(hi,` − ~i,`)‖2

¯
=

n∑

i=1

L∑

`=2

˘loss>i,`B

(
`−1∑

a=1

(D̆i,` +D′′i,`)W̆ · · · W̆ (D̆i,a+1 +D′′i,a+1)W ′hi,a − D̆i,`W̆ · · · W̆ D̆i,a+1W
′~i,a

)

+
1

2
‖B(hi,` − ~i,`)‖2 (6.64)

Above, ¬ is by the definition of f(·);  is by (6.63); ® is by the definition of ∇f(·) (see

Fact 6.2.3 for an explicit form of the gradient); ¯ is by Claim 6.16.2.

We next bound the RHS of (6.64). We drop subscripts in i for notational simplicity.
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We first use (6.62) in Claim 6.16.2 to calculate

‖B(h` − ~`)‖ ≤
`−1∑

a=1

‖B(D̆` +D′′` )W̆ · · · W̆ (D̆a+1 +D′′a+1)W ′ha‖

≤
`−1∑

a=1

‖B‖2‖(D̆` +D′′` )W̆ · · · W̆ (D̆a+1 +D′′a+1)‖2‖W ′‖2‖ha‖

¬

≤
`−1∑

a=1

O(
√
m) ·O(L7) ·O(L) · ‖W ′‖2 ≤ O(L9

√
m) · ‖W ′‖2 . (6.65)

In the last inequality ¬ above, we have used
∥∥∥(D̆` +D′′` )W̆ · · · W̆ (D̆a+1 +D′′a+1)

∥∥∥
2
≤ O(L7)

from Lemma 6.12.6; we have used ‖B‖2 ≤ O(
√
m) with high probability; and we have

used ‖ha‖ ≤ O(L) (by ‖h̃a‖ ≤ O(L) from Lemma 6.11.1 and ‖h̃a − ha‖ ≤ o(1) from

Lemma 6.12.1a).

Since for each D′′` , we can write it as D′′` = D
0/1
` D′′`D

0/1
` , where each D0/1

` is a diagonal

matrix satisfying

(D
0/1
` )k,k =

{
1, (D′′` )k,k 6= 0;
0, (D′′` )k,k = 0. and ‖D0/1

` ‖0 ≤ O(L10/3τ
2/3
0 m2/3)

Therefore,
∣∣∣ ˘loss>` B(D̆` +D′′` )W̆ · · · W̆ (D̆a+1 +D′′a+1)W ′ha − ˘loss>` BD̆`W̆ · · · D̆a+1W

′ha

∣∣∣
¬

≤ ‖ ˘loss`‖2 ·
`−a∑

b=1

(
`− a
b

)
‖BD̆W̆ · · · D̆W̆D0/1‖2 · ‖D0/1W̆ D̆ · · · D̆W̆D0/1‖b−1

2 · ‖D0/1W̆ · · · W̆ D̆W ′ha‖2



≤ ‖ ˘loss`‖2 ·
`−a∑

b=1

(
`− a
b

)
·O(ρ2τ

1/3
0 m1/3) ·

(
O(

ρ2

m1/6
)

)b−1

·O(L7) · ‖W ′‖2 ·O(L)



≤ ‖ ˘loss`‖2 ·O(ρ11τ
1/3
0 m1/3) · ‖W ′‖2 (6.66)

Above, ¬ is an abbreviation and we have dropped the subscripts for the easy of presentation;

 uses Corollary 6.11.15, Corollary 6.11.12, Lemma 6.12.6 and Lemma 6.11.1.
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Finally, we also have

∣∣∣ ˘loss>` BD̆`W̆ · · · D̆a+1W
′(ha − ~a)

∣∣∣
¬

≤ ‖ ˘loss`‖2 ·O(
√
m) ·O(L7) · ‖W ′‖2 · ‖ha − ~a‖2



≤ O(ρ16
√
m) · ‖ ˘loss`‖2 · ‖W ′‖2

2 (6.67)

where ¬ uses Lemma 6.12.6 and  uses Claim 6.16.2 to bound ‖ha − ~a‖2.

Putting (6.65), (6.66) and (6.67) back to (6.64), and using triangle inequality, we have

the desired result.
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6.16.1 Tool

Proposition 6.16.3. Given vectors a, b ∈ Rm and D ∈ Rm×m the diagonal matrix where

Dk,k = 1ak≥0. Then, then there exists a diagonal matrix D′′ ∈ Rm×m with

• |D′′k,k| ≤ 1 for every k ∈ [m],

• D′′k,k 6= 0 only when 1ak≥0 6= 1bk≥0, and

• φ(a)− φ(b) = D(a− b) +D′′(a− b)

Proof. We verify coordinate by coordinate for each k ∈ [m].

• If ak ≥ 0 and bk ≥ 0, then (φ(a)− φ(b))k = ak − bk =
(
D(a− b)

)
k
.

• If ak < 0 and bk < 0, then (φ(a)− φ(b))k = 0− 0 =
(
D(a− b)

)
k
.

• If ak ≥ 0 and bk < 0, then (φ(a) − φ(b))k = ak = (ak − bk) + bk
ak−bk

(ak − bk) =
(
D(a− b) +D′′(a− b)

)
k
, if we define (D′′)k,k = bk

ak−bk
∈ [−1, 0].

• If ak < 0 and bk ≥ 0, then (φ(a) − φ(b))k = −bk = 0 · (ak − bk) − bk
bk−ak

(ak − bk) =
(
D(a− b) +D′′(a− b)

)
k
, if we define (D′′)k,k = bk

bk−ba
∈ [0, 1].
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6.17 Convergence Rate of Gradient Descent (Theorem 6.17.1)

Theorem 6.17.1 (gradient descent, restated). There exists some absolute constant C > 1

such that the following holds. Let ρ = nLd logm, ε ∈ (0, 1], % = nLdδ−1 log(m/ε), and

η
def
= δ

ρ44m
. Suppose m ≥ C%C, and W (0), A,B be at random initialization. Then, with

probability at least 1 − e−Ω(ρ2) over the randomness of W (0), A,B, suppose we start at W (0)

and for each t = 0, 1, . . . , T − 1,

W (t+1) = W (t) − η∇f(W (t)) .

Then, it satisfies

f(W (T )) ≤ ε for all T ∈
[ρ59

δ2
log

1

ε
,
ρ59%28

δ2
log

1

ε

]
.

In other words, the training loss of the recurrent neural network drops to ε in a linear

convergence speed.

To present the simplest possible result, we have not tried to tighten the polynomial depen-

dency with respect to n, d and L. We only tightened the dependency with respect to δ and ε.

In fact, a more involved analysis can also get ride of the log(1/ε) dependency in m [AZLS19].

Proof of Theorem 6.17.1. Using Lemma 6.11.1 and the randomness of B, it is easy to show

that ‖Bhi,`− y∗i,`‖2 ≤ O(ρ2L2) with at least 1− e−Ω(ρ2) (where hi,` is defined with respect to

W (0)), and therefore

f(W (0)) ≤ O(nρ2L3) .

In the rest of the proof, we first assume that for every t = 0, 1, . . . , T−1, the following

holds

‖W (t) −W (0)‖F ≤
τ0√
m

def
=

%50

√
m

. (6.68)
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We shall prove the convergence of gradient descent assuming (6.68), so that previous state-

ments such as Theorem 6.16.1 and Theorem 6.15.2 can be applied. At the end of the proof,

we shall verify that (6.68) is satisfied throughout the gradient descent process.

For each t = 0, 1, . . . , T − 1, we let {loss(t)
i,`}i,` denote the loss vectors with respect to

the current point W (t). We denote by (i∗, `∗) = argmaxi,`{‖ loss(t)
i,` ‖2} and ∇t = ∇f(W (t)).

We calculate that

f(W (t+1))
¬

≤ f(W (t))− η‖∇t‖2
F +O(ρ11τ

1/3
0 m1/3) · ‖ loss(t)

i∗,`∗ ‖2 · η‖∇t‖2 +O(L18nmη2)‖∇t‖2
2



≤ f(W (t))− η‖∇t‖2
F +O

(
ρ30η2m2

)
· ‖ loss(t)

i∗,`∗ ‖2
2

®

≤ f(W (t))−
(

Ω
( ηδ
ρ14

m
)
−O(ρ30η2m2)

)
· ‖ loss(t)

i∗,`∗ ‖2
2

¯

≤ f(W (t))− Ω
( ηδ
ρ14

m
)
· ‖ loss(t)

i∗,`∗ ‖2
2

°

≤
(

1− Ω
( ηδ
ρ15

m
))

f(W (t))

Above, ¬ uses Theorem 6.16.1;  uses Theorem 6.15.2 (which gives ‖∇t‖2 ≤ ‖∇t‖F ≤

O(ρ6
√
m) × ‖ loss(t)

i∗,`∗ ‖), and our choices of τ0 and m; ® uses Theorem 6.15.2; ¯ uses our

choice of η; and ° uses f(W (t)) ≤ nL‖ loss(t)
i∗,`∗ ‖2. In other words, after T = Ω( ρ

15

ηδm
) log nL2

ε

iterations we have f(W (T )) ≤ ε.

We need to verify for each t, ‖W (t) − W (0)‖F is small so that (6.68) holds. By

Theorem 6.15.2,

‖W (t) −W (0)‖F ≤
t−1∑

i=0

‖η∇f(W (i))‖F ≤ O(ηρ6
√
m) ·

t−1∑

i=0

√
f(W (i)) ≤ O(ηρ6

√
m) ·O(T ·

√
nρ2L3)

≤ ηT ·O(ρ8.5
√
m) ≤ %50

√
m

.

where the last step follows by our choice of T .
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6.18 Convergence Rate of Stochastic Gradient Descent (Theorem 6.18.1)

Theorem 6.18.1 (stochastic gradient descent, stated). There exists some absolute constant

C > 1 such that the following holds. Let ρ = nLd logm, ε ∈ (0, 1], % = nLdδ−1 log(m/ε),

and η def
= δ

ρ42m
. Suppose m ≥ C%C, and W (0), A,B be at random initialization. Then, with

probability at least 1 − e−Ω(ρ2) over the randomness of W (0), A,B, suppose we start at W (0)

and for each t = 0, 1, . . . , T − 1,

W (t+1) = W (t) − η · n|St|
∑

i∈St

∇f(W (t)) (for a random subset St ⊆ [n] of fixed cardinality.)

Then, it satisfies with probability at least 1− e−Ω(ρ2) over the randomness of S1, . . . , ST :

f(W (T )) ≤ ε for all T ∈
[ρ57

δ2
log

1

ε
,
ρ57%28

δ2
log

1

ε

]
.

(To present the simplest possible result, we have not tried to tighten the polynomial depen-

dency with respect to n, d and L. We only tightened the dependency with respect to δ and

ε. In fact, a more involved analysis can also get ride of the log(1/ε) dependency in m.)

Proof of Theorem 6.18.1. The proof is almost identical to that of Theorem 6.17.1. We again

have with probability at least 1− e−Ω(ρ2)

f(W (0)) ≤ O(nρ2L3) .

Again, we first assume for every t = 0, 1, . . . , T − 1, the following holds

‖W (t) −W (0)‖F ≤
τ0√
m

def
=

%50

√
m

. (6.69)

We shall prove the convergence of SGD assuming (6.69), so that previous statements such

as Theorem 6.16.1 and Theorem 6.15.2 can be applied. At the end of the proof, we shall

verify that (6.69) is satisfied throughout the SGD with high probability.
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For each t = 0, 1, . . . , T − 1, using the same notation as Theorem 6.17.1, except that

we choose ∇t = n
|St|
∑

i∈St ∇fi(W (t)). We have ESt [∇t] = ∇f(W (t)) and therefore

E
St

[f(W (t+1))]

¬

≤ f(W (t))− η‖∇f(W (t))‖2
F +O(ρ11τ

1/3
0 m1/3) · ‖ loss(t)

i∗,`∗ ‖2 · η E
St

[‖∇t‖2] +O(L18nmη2)E
St

[‖∇t‖2
2]



≤ f(W (t))− η‖∇t‖2
F +O

(
ρ30η2m2

)
· ‖ loss(t)

i∗,`∗ ‖2
2

®

≤
(

1− Ω
( ηδ
ρ15

m
))

f(W (t)) . (6.70)

Above, ¬ uses Theorem 6.16.1 and ESt [∇t] = ∇f(W (t));  uses Theorem 6.15.2 (which gives

‖∇t‖2
2 ≤ n2

|St|2
∑

i∈St ‖∇fi(W (t))‖2
F ≤ O(ρ12m) × ‖ loss(t)

i∗,`∗ ‖2); ® is identical to the proof of

Theorem 6.17.1.

At the same time, we also have the following absolute value bound:

f(W (t+1))

¬

≤ f(W (t)) + η‖∇f(W (t))‖F · ‖∇t‖F +O(ρ11τ
1/3
0 m1/3) · ‖ loss(t)

i∗,`∗ ‖2 · η‖∇t‖2 +O(L18nmη2)‖∇t‖2
2



≤ f(W (t)) +O
(
ρ12ηm+ ρ30η2m2

)
· ‖ loss(t)

i∗,`∗ ‖2
2

®

≤
(
1 +O

(
ρ12ηm

))
f(W (t)) . (6.71)

Above, ¬ uses Theorem 6.16.1 and Cauchy-Shwartz 〈A,B〉 ≤ ‖A‖F‖B‖F , and  uses The-

orem 6.15.2 and the derivation from (6.70).

Next, taking logarithm on both sides of (6.70) and (6.71), and using Jensen’s inequal-

ity E[logX] ≤ logE[X], we have

E[log f(W (t+1))] ≤ log f(W (t))− Ω
( ηδ
ρ15

m
)

and log f(W (t+1)) ≤ log f(W (t)) +O
(
ρ12ηm

)
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By one-sided Azuma’s inequality (a.k.a. martingale concentration), we have with probability

at least 1− e−Ω(ρ2), for every t = 1, 2, . . . , T :

log f(W (t))− E[log f(W (t))] ≤
√
t ·O

(
ρ12ηm

)
· ρ .

This implies two things.

• On one hand, after T = Ω(ρ
15 log(nL2/ε)

ηδm
) iterations we have

log f(W (T )) ≤
√
T ·O

(
ρ12ηm

)
· ρ+ log f(W (0))− Ω

( ηδ
ρ15

m
)
T

≤ log f(W (0))− Ω
( ηδ
ρ15

m
)
T ≤ logO(nρ2L3)− Ω(log

ρ5

ε
) ≤ log ε .

Therefore, we have f(W (T )) ≤ ε.

• On the other hand, for every t = 1, 2, . . . , T , we have

log f(W (t)) ≤
√
t ·O

(
ρ12ηm

)
· ρ+ log f(W (0))− Ω

( ηδ
ρ15

m
)
t

¬
= log f(W (0))−

(√
ηδm

ρ15
· Ω(
√
t)−

√
ρ15

ηδm
·O(ρ13ηm)

)2

+O
(ρ41ηm

δ

)



≤ log f(W (0)) + 1

where in ¬ we have used 2a
√
t − b2t = −(b

√
t − a/b)2 + a2/b2, and in  we have

used η ≤ O
(

δ
ρ42m

)
. This implies f(W (t)) ≤ O(nρ2L3). We can now verify for each t,

‖W (t) −W (0)‖F is small so that (6.69) holds. By Theorem 6.15.2,

‖W (t) −W (0)‖F ≤
t−1∑

i=0

‖η∇t‖F ≤ O(ηρ6
√
m) ·

t−1∑

i=0

√
f(W (i)) ≤ O(ηρ6

√
m) ·O(T

√
nρ2L3)

≤ ηT ·O(ρ8.5
√
m) ≤ %50

√
m

.

where the last step follows by our choice of T .
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Part II

Matrix Concentrations
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Chapter 7

Matrix Chernoff Bound on Expander

We prove a Chernoff-type bound for sums of matrix-valued random variables sampled

via a random walk on an expander, confirming a conjecture due to Wigderson and Xiao

[WX06]. Our proof is based on a new multi-matrix extension of the Golden-Thompson

inequality which improves in some ways the inequality in [SBT17] and may be of independent

interest, as well as an adaptation of an argument for the scalar case due to Healy [Hea08].

Secondarily, we also provide a generic reduction showing that any concentration inequality for

vector-valued martingales implies a concentration inequality for the corresponding expander

walk, with a weakening of parameters proportional to the squared mixing time.
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7.1 Introduction

The Chernoff Bound [Che52] is one of the most widely used probabilistic results in

computer science. It states that a sum of independent bounded random variables exhibits

subgaussian concentration around its mean. In particular, when the random variables are

i.i.d. samples from a fixed distribution, it implies that the empirical mean of k samples

is ε-close to the true mean with exponentially small deviation probability proportional to

e−Ω(kε2).

An important generalization of this bound was achieved by Gillman [Gil98] (with

refinements later by [Lez98, Kah97, LP04, WX05, Hea08, Wag08, CLLM12, RR17]), who

significantly relaxed the independence assumption to Markov dependence. In particular,

suppose G is a regular graph with vertex set V = [n], X : V → C is a bounded function, and

v1, . . . , vk is a stationary random walk1 of length k on G. Then, even though the random

variables X(vi) are in not independent (except when G is the complete graph with self loops),

it is shown that:

Pr

[∣∣∣∣∣
1

k

k∑

i=1

X(vi)− E[X]

∣∣∣∣∣ > ε

]
≤ 2 · exp(−Ω((1− λ)kε2)), (7.1)

where 1 − λ is the spectral gap of the transition matrix of the random walk. The gain

here is that sampling a stationary random walk of length k on a constant degree graph

with constant spectral gap requires log(n) +O(k) random bits, which is much less than the

k log(n) bits required to produce k independent samples. Since such graphs can be explicitly

constructed, this leads to a generic “derandomization” of the Chernoff bound, which has

1That is the first vertex v1 is chosen uniformly at random – which is the stationary distribution of the
graph G.
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had several important applications (see [WX05] for a detailed discussion). In particular, it

leads to the following randomness efficient sampler for scalar-valued functions ([Gil98]) using

known strongly explicit constructions of expander graphs [RVW00, LPS88]:

Theorem 7.1.1 ([Gil98]). For any ε > 0 and k ≥ 1, there is a poly(r)-time computable

sampler σ : {0, 1}r → [n]k, where r = log(n) + O(k) s.t. for all functions f : [n] → [−1, 1]

satisfying E f = 0, we have that

Pr
w∈R{0,1}r

[∣∣∣∣
1

k

k∑

i=1

f(σ(w)i)

∣∣∣∣ ≥ ε

]
≤ 2 exp

(
−Ω

(
ε2k
))
.

In many applications of interest k is about log(n), and going from O(log2(n)) to

O(log(n)) random bits leads to a complete derandomization by cycling over all seeds w ∈

{0, 1}r.

A different generalization of the Chernoff bound appeared in the works of Rudelson

[Rud99], Ahlswede-Winter [AW02], and Tropp [Tro12], who showed that a similar concentra-

tion phenomenon is true for matrix-valued random variables. In particular, if X1, . . . , Xk are

independent d × d complex Hermitian random matrices with ‖Xi‖ ≤ 1, then the following

is true:

Pr

[∥∥∥∥∥
1

k

k∑

i=1

Xi − E[X]

∥∥∥∥∥ > ε

]
≤ 2d · exp(−Ω(kε2)). (7.2)

The only difference between this and the usual Chernoff bound is the factor of d in front of

the deviation probability; to see that it is necessary, notice that the diagonal case simply

corresponds to a direct sum of d arbitrarily correlated instances of the scalar Chernoff bound,

so by the union bound the probability should be d times as large in the worst case. This so

called “Matrix Chernoff Bound” has seen several applications as well, notably in quantum
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information theory, numerical linear algebra, and spectral graph theory; the reader may

consult e.g. the book [Tro15] for many examples.

We present two different extensions of the above results in this chapter.

7.1.1 A Matrix Expander Chernoff Bound

It is natural to wonder whether there is a common generalization of (7.1) and (7.2),

i.e., a “Matrix Expander Chernoff Bound”. Such a result was conjectured by Wigderson and

Xiao in [WX06] — in fact, [WX05] contained a proof of it, but the authors later discovered

a gap in the proof. In this chapter, we prove the Wigderson and Xiao conjecture, namely:

Theorem 7.1.2. Let G = (V,E) be a regular undirected graph whose transition matrix has

second eigenvalue λ, and let f : V → Cd×d be a function such that:

1. For each v ∈ V , f(v) is Hermitian and ‖f(v)‖ ≤ 1.

2.
∑

v∈V f(v) = 0.

Then, for a stationary random walk v1, . . . , vk with ε ∈ (0, 1) we have:

Pr

[
λmax

(
1

k

k∑

j=1

f(vj)

)
≥ ε

]
≤ d · exp

(
−Ω

(
ε2(1− λ)k

))
,

Pr

[
λmin

(
1

k

k∑

j=1

f(vj)

)
≤ −ε

]
≤ d · exp

(
−Ω

(
ε2(1− λ)k

))
.

This theorem adds to the amazingly long list of pseudorandom properties of expander

graphs. By applying the theorem with a strongly explicit bounded degree expander, one

obtains the following randomness-efficient sampler for matrix-calued functions conjectured

in [WX06].
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Theorem 7.1.3. For any ε > 0, k ≥ 1 and d ≥ 1, there is a poly(r)-time computable

sampler σ : {0, 1}r → [n]k, where r = log(n) + O(k) s.t. for all functions f : [n] → Cd×d

satisfying E f = 0 and for each v ∈ [n], f(v) is Hermitian and ‖f(v)‖ ≤ 1, we have that

Pr
w∈R{0,1}r

[∥∥∥∥∥
1

k

k∑

i=1

f(σ(w)i)

∥∥∥∥∥ ≥ ε

]
≤ 2d exp

(
−Ω

(
−ε2k

))
.

We remark that while the derandomization applications studied in [WX05] were later

recovered in [WX08] using the method of pessimistic estimators, that method requires addi-

tional assumptions to be efficiently implementable (specifically, computability of the matrix

moment generating function, which is problem-dependent) and therefore does not constitute

a truly black box derandomization of the matrix Chernoff bound, whereas Theorem 7.1.3

does. Given the increasing ubiquity of applications of this bound, we therefore suspect that it

will find further applications in the study of derandomization and expander graphs, beyond

the ones mentioned in [WX05].

Techniques

To describe the ideas that go into the proof of Theorem 7.1.2, let us begin by recalling

how the usual scalar Chernoff bound is proved, in the case when the random variables have

mean zero. The key observation is that if X1, . . . , Xk are independent random variables,

then the moment generating function of the sum is equal to the product of the moment

generating functions:

E

[
exp

(
t

k∑

i=1

Xi

)]
=

k∏

i=1

E[exp(tXi)].
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This is no longer true in case where the Xi come from a random walk, but we still have the

algebraic fact that

exp

(
t

k∑

i=1

Xi

)
=

k∏

i=1

exp(tXi), (7.3)

which allows one to decompose the sum as a product. The latter allows one to consider the

steps of the random walk separately and analyze the change in the expectation inductively.

The analogue of the moment generating function in the matrix setting is

E

[
tr

[
exp

(
t

k∑

i=1

Xi

)]]
,

and the main difficulty is that (7.3) no longer holds if the matrices Xi do not commute. A

substitute for this fact is given by the Golden-Thompson inequality [Gol65, Tho65], which

states that for any Hermitian A,B:

tr[exp(A+B)] ≤ tr[exp(A) exp(B)]. (7.4)

The latter expression may further be bounded by

‖ exp(A)‖ tr[exp(B)], and this is sufficient to prove (7.2) in the independent case as is done

in [AW02], where an inductive application of it yields

E

[
tr

[
exp

(
t

k∑

i=1

Xi

)]]
≤ tr[I] ·

k∏

i=1

‖E[exp(tXi)]‖ .

However, this approach is too crude to handle the Markov case, roughly because in the

absence of inependence, passing to the norm makes it difficult to utilize the fact that the

expectation of each Xi is zero.
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The original proof of Wigderson-Xiao was based on the following plausible multi-

matrix generalization of (7.4):

tr

[
exp

(
k∑

i=1

Ai

)]
≤ tr

[
k∏

i=1

exp(Ai)

]
,

which turns out to be false for k > 2. To see why, observe that the left hand side is always

nonnegative, whereas the right hand side can be the trace of a product of any three positive

semidefinite matrices, which can be negative (and this is not the case for two matrices). This

led to a fatal gap in their proof.

The main ingredient in our proof is a new multi-matrix generalization of (7.4), which

is inspired by the following statement that was recently proven in [SBT17] (see also [HKT16]).

Theorem 7.1.4 (Corollary 3.3 in [SBT17]). Let H1, . . . , Hk ∈ Cd×d be Hermitian matrices.

Then

log

[
tr

(
exp

(
k∑

j=1

Hj

))]
≤
∫ ∞

−∞
log

[
tr

(
k∏

j=1

exp

(
Hj(1 + ib)

2

) 1∏

j=k

exp

(
Hj(1− ib)

2

))]
dµ(b)

where µ is some probability distribution on (−∞,∞).

The above inequality successfully relates the matrix exponential of a sum to a product

of matrix exponential, but is not adequate for proving an optimal Chernoff bound. The

reason is that all known arguments require a Taylor expansion, and Theorem 7.1.4 involves

integration over an unbounded region (this region can be truncated, but this introduces a

loss which leads to a suboptimal bound). To remedy this, we prove a new multi-matrix

Golden-Thompson inequality, which only involves integration over a bounded region instead

of a line.
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Theorem 7.1.5 (Bounded Multi-matrix Golden-Thompson inequality). Let H1, . . . , Hk ∈

Cd×d be Hermitian matrices. Then

log

(
tr

[
exp

(
k∑

j=1

Hj

)])
≤ 4

π

∫ π
2

−π
2

log

(
tr

[
k∏

j=1

exp

(
eiφ

2
Hj

) 1∏

j=k

exp

(
e−iφ

2
Hj

)])
dµ(φ)

where µ is some probability distribution on [−π
2
, π

2
].

We present the proof in Section 7.3. Theorem 7.1.5 is likely to be of independent

interest and could have further applications, e.g. in quantum information theory. We draw

attention to the following notable features of the above two theorems:

(a) Since exp(H(1+ib)) = exp(H(1−ib))∗ and exp
(
eiφ

2
Hj

)
= exp

(
e−iφ

2
Hj

)∗
for Hermitian

H, the right hand always considers the trace of a matrix times its adjoint, which is

always positive semidefinite, ruling out the bad example described above.

(b) They are average case inequalities, where the averaging is done over specific distribu-

tions. We remark that the first inequality is known to be false in the worst case (i.e.,

with b = 0 and with other small values of b; see [SBT17] for a discussion).

The main point is that Theorem 7.1.5 allows one to relate the exponential of a sum

of matrices to a (two-sided) product of bounded d × d matrices and their adjoints. In

order to prove Theorem 7.1.2, we rewrite this as a one-sided matrix product of d2 × d2

matrices acting on Cd×d, by encoding left and right multiplication on this space via a tensor

product. However, these matrices are no longer Hermitian (or even normal), so it is difficult

to analyze the moment generating function of their product over the random walk using

the perturbation-theoretic approach of [WX05]. We surmount this difficulty by employing a
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variant of the more robust linear algebraic proof technique of Healy [Hea08]. The proof of

Theorem 7.1.2 is presented in Section 7.4.

7.1.2 Martingale Approximation of Expander Walks

While Theorem 7.1.2 provides a satisfactory generalization of the expander Chernoff

bound to the case when one is interested in the spectral norm of a matrix-valued function

on V , one could ask what happens for other matrix norms (such as Schatten norms), or

even more generally, for functions taking values in an arbitrary Banach space. Our second

contribution is a generic reduction from this problem, of proving concentration for random

variables sampled using a Markov chain, to the much more well-studied problem (see e.g.

[CL06]) of concentration for sums of martingale random variables. We remark that the

technique used in the proof of Theorem 7.1.6 is not new, and was introduced in a slightly

different context in the paper [NPSS06].

Theorem 7.1.6. Suppose G = (V,E) is a regular graph whose transition matrix has second

eigenvalue λ and f : V → RN is a vector-valued function satisfying
∑

v∈V f(v) = 0 with

F :=
√∑

v∈V ‖f(v)‖2
2, where ‖ · ‖2 denotes the Frobenius norm. If v1, . . . , vk is a stationary

random walk on G, then for every ε > 0, there is a martingale difference sequence Z1, . . . , Zk

with respect to the filtration generated by initial segments of v1, . . . , vk such that

1

k

k∑

i=1

f(vi) = W +
1

k

k∑

i=1

Zi,

where

1. W is a random vector satisfying ‖W‖2 ≤ ε.
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2. Each term Zi satisfies

‖Zi‖∗ ≤
2 log(F/ε)

1− λ ·max
v∈V
‖f(v)‖∗

for every norm ‖ · ‖∗.

Thus, the empirical sums of any bounded (in any norm) function on a graph are

well-approximated by a martingale whose increments are also bounded, with a loss in the

bound depending on the `2 norm F of the function and the spectral gap of the graph. Since

F will typically scale with the number of vertices, the ratio above is typically comparable to

the mixing time.

To see the theorem in action, consider the case when f(v) is matrix-valued in d × d

Hermitian matrices and ‖ · ‖∗ is the operator norm. If ‖f(v)‖ ≤ 1 then we have the bound

F 2 =
∑

v∈V

‖f(v)‖2
F ≤ dn.

Suppose we are interested in obtaining an estimate on the probability:

Pr

[∥∥∥∥∥
1

k

∑

v∈V

f(v)

∥∥∥∥∥ > ε

]
. (7.5)

Applying Theorem 7.1.6 with parameter ε/2 and noting that ‖W‖ ≤ ‖W‖F , we have that

(7.5) is at most

Pr

[∥∥∥∥∥
1

k

k∑

i=1

Zi

∥∥∥∥∥ > ε/2

]
,

where Zi is a martingale with bound

‖Zi‖ ≤
log(nd/ε)

1− λ .
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We now appeal to the existing martingale generalization of (7.2) (see e.g. [Tro12]) and find

that this probability is at most

2d · exp

(
−Ω

(
kε2(1− λ)2

log2(nd)

))
.

While this theorem is much weaker than the previous one in terms of parameters

(depending on the square of the mixing time rather than on the spectral gap), it shows

qualitatively that concentration for Markov chains is a generic phenomenon rather than

something specific to matrices. It also allows one to instantly import the wealth of results

regarding concentration for martingales in various Banach spaces (see e.g., [LT13]) to the

random walk setting, albeit with suboptimal parameters. The simple proof of Theorem 7.1.6

is presented in Section 7.5.
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7.2 Preliminaries

For an n ∈ N+, let [n] denote the set {1, 2, · · · , n}. Let i denote
√
−1. For z = a+ ib,

where a, b ∈ R, we define the complex conjugate of z to be z = a − ib and |z| =
√
a2 + b2.

Then |z|2 = zz. We define real part Re(z) = a and imaginary part Im(z) = b. Then

Re(z) = z+z
2

and Im(z) = z−z
2i

.

We will be working with D-regular undirected graphs G = (V,E). The number of

vertices of the graph, V will be denoted by n. A will denote the adjacency matrix of the

graph and P = A/D will denote its normalized adjacency matrix. A regular graph G will

be called a λ-expander (0 < λ < 1) if ‖Px‖ ≤ λ · ‖x‖ for all vectors x ∈ Cn s.t.
∑n

i=1 xi = 0.

We will use ei ∈ Cd to denote the standard basis vector with 1 in ith position and 0

everywhere else.

7.2.1 Linear Algebra

Matrices and Norms. For matrix A, we use A> to denote the transpose of A, we use

A to denote the entry-wise complex conjugate of A. For square matrix A ∈ Cn×n, we use

A∗ to denote the conjugate transpose of matrix A. It is obvious that A∗ = A
>

= A>. We

say a complex square matrix A is Hermitian, if A = A∗, unitary if AA∗ = A∗A = I, and

positive-semidefinite (psd) if A = A∗ and x∗Ax ≥ 0 for all x ∈ Cn. We use �,� to denote

the semidefinite ordering, e.g. A � 0 means that A is psd.

For p ∈ [1,∞), define the Schatten p-norm of A as

‖A‖p =

(∑

n≥1

spn(A)

)1/p
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for s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) ≥ · · · ≥ 0 the singular values of A, i.e., the eigenvalues of

the Hermitian matrix |A| =
√

(A∗A). Then ‖A‖pp = tr[|T |p].

For matrix A ∈ Cn×n, we define ‖A‖ to be the spectral norm of A, i.e.,

‖A‖ = max
‖x‖2=1,x∈Cn

x∗Ax.

Tensor Products. Given two vectors v ∈ Cd1 and w ∈ Cd2 , their tensor product v ⊗ w ∈

Cd1d2 is the vector whose (i, j)th entry is v(i)w(j) (for concreteness, assume the entries are in

lexicographic order). Given two matrices A1 ∈ Cd1×d1 and A2 ∈ Cd2×d2 , their tensor product

A1 ⊗ A2 ∈ Cd1d2×d1d2 is the matrix whose ((i, k), (j, l))th entry is A1(i, j)A2(k, l). It is easy

to see that

(A⊗B)(v ⊗ w) = Av ⊗Bw

and

(A⊗B)(C ⊗D) = AB ⊗ CD.

For a matrix X ∈ Cd×d, vec(X) ∈ Cd2

will denote the vectorized version of the matrix

X. That is

vec(X) =
d∑

i,j=1

X(i, j)ei ⊗ ej.

We have the following relationship between matrix multiplication and the tensor product:

vec(AXB) = (A⊗B>)vec(X).

Exponential and Logarithm. All logarithms will be taken with the base e, and exp(x)

will denote ex. The matrix exponential of a complex matrix A ∈ Cd×d is defined by the
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Taylor expansion:

exp(A) =
∞∑

j=0

Aj

j!
,

which converges for all matrices A. We will use the fact that

exp(A)⊗ exp(B) = exp(A⊗ I + I ⊗B),

which may be checked by expanding both sides and comparing terms.

The matrix logarithm of a positive definite matrix A = UDU∗ with D diagonal and

positive is defined by

log(A) := U log(D)U∗,

where the logarithm of D is taken entrywise. For such matrices we have

log(exp(A)) = exp(log(A)) = A.

For positive definite A and complex z, we define

Az := exp(z log(A)).

Polar Decomposition. The polar decomposition of a square complex matrix A is a matrix

decomposition of the form

A = UV

where U is a unitary matrix and V is a psd matrix. The polar decomposition separates matrix

A into a component that stretches the space along a set of orthogonal axes, represented by

V , and a rotation (with possible reflection) represented by U . The decomposition of the

complex conjugate of matrix A can written as

A = UV .

514



The decomposition of the conjugate transpose of matrix A can be written as

A∗ = V ∗U∗.

The following simple proposition will be useful in our proofs.

Proposition 7.2.1. Let A and B be Hermitian psd matrices. Then

tr[AB] ≤ ‖A‖ · tr[B]

Proof. Let B =
∑n

j=1 σjvjv
†
j be the eigenvalue decomposition of B. Then

tr[AB] =
n∑

j=1

σj tr
[
Avjv

†
j

]

=
n∑

j=1

σjv
†
jAvj

≤
n∑

j=1

σj · ‖A‖

= ‖A‖ · tr[B].

7.2.2 Complex analysis

A function f : U → C on a domain U ⊆ C is holomorphic if it has a complex

derivative in a neighborhood of every point z ∈ U . The existence of a complex derivative

in a neighborhood is a very strong condition, for it implies that any holomorphic function

is actually infinitely differentiable and equal to its own Taylor series (i.e., analytic) at every

point in U . A biholomorphic function is a bijective holomorphic function whose inverse is
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also holomorphic. It follows from the definition that sums, products, and compositions of

holomorphic functions are holomorphic. We will also talk about matrix-valued holomorphic

functions f : U → Cd×d, which just means that every entry is holomorphic.

The main property that we will use is that the value of a holomorphic function at a

point z ∈ U can be related to values that it takes on the boundary of U , in the following

way. A function f : U → R∪ {−∞} is called subharmonic if it is upper semicontinuous and

f(z) ≤ 1

2π

∫ 2π

0

f(z + reiθ)dθ

for all z ∈ U and r > 0 such that the closed disk D(z, r) is contained in U , and all of the

above integrals converge.

We will make frequent use of the following standard fact.

Proposition 7.2.2. If f is analytic on a domain U ⊂ C then log |f(z)| is subharmonic on

U .

Our main tool will be the Poisson Integral Formula for subharmonic functions.

Lemma 7.2.3 (Poisson integral formula on unit disk [Gao08, Eq 1.3.35]). For any subhar-

monic function U defined on the unit disk {z ∈ C : |z| ≤ 1}, we have that

U(z) ≤ 1

2π

∫ π

−π
U(eiϕ)

1− |z|2
|eiϕ − z|2 dϕ, ∀ |z| < 1.
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7.3 New Golden-Thompson inequality

We begin by giving an outline of the proof of Theorem 7.1.5. The proof of Theorem

7.1.4 in [SBT17] relies on the multivariate Lie-Trotter product formula (e.g. see [Bha97]),

which states that:

exp

(
k∑

j=1

Lj

)
= lim

θ→0+

(
k∏

j=1

exp(θLj)

) 1
θ

.

For Hermitian Lj, a judicious application of the above allows one to rewrite the trace of the

exponential as a limit of Schatten norms:

log

(
tr

[
exp

(
k∑

j=1

Lj

)])
= lim

θ→0+

2

θ
log

∥∥∥∥∥
k∏

j=1

exp

(
θ

2
Lj

)∥∥∥∥∥
2/θ

.

Thus, understanding the matrix exponential of a sum is the same as understanding the

behavior of a certain norm of the product as θ → 0. The idea of [SBT17] is to use complex

interpolation, along the lines of the Stein-Hirschman theorem in complex analysis: for every

fixed real θ near zero, find a complex function Fθ(z) that agrees with the right hand side at

z = θ and is holomorphic on the strip {0 ≤ <(z) ≤ 1}. Since the value of a holomorphic

function at any point can be related to an integral of its values on the boundary, this allows

one to relate Fθ(θ) to its integrals on {<(z) = 0} and {<(z) = 1}, which are easy to

understand. Taking the limit in θ yields Theorem 7.1.4.

To avoid integration on the whole vertical line {1 + ib : b ∈ R}, we observe that the

above strategy only relies on the fact that θ is enclosed by the two vertical lines {ib : b ∈ R}

and {1 + ib : b ∈ R}, and we could have used any other region enclosing a neighborhood of

real positive θ near zero, provided we can define the required holomorphic functions Fθ. We

choose the half-circle (which is easy to work with because the Riemann map to the unit
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Im

Re

Im

Re

Figure 7.1: The function h(z) = −1+z
1−z +

√(
1+z
1−z

)2
+ 1 maps the unit disk {z ∈ C : |z| ≤ 1}

to the half disk {z ∈ C : |z| ≤ 1 and Re(z) ≥ 0}.

disk is explicit) and use it to derive a variant of the Riesz–Thorin theorem (Theorem 7.3.3),

from which our new multi-matrix Golden-Thompson inequality follows by mimicking the

remainder of the proof of 7.1.4 given in [SBT17].

7.3.1 Complex estimate on the half disk

In general, we can upper bound the value of any subharmonic function on a simply

connected domain by mapping the domain to the unit disk via Riemann mapping theorem

and applying the Poisson integral formula. In this section, we will give such estimate on a

unit half disk.

The following lemma follows from the biholomorphic map from unit disk onto the

half disk defined in Figure 7.1.

Lemma 7.3.1 (Poisson Integral Formula on the Half-Disk). For any analytic function F on
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the half disk {z ∈ C : |z| ≤ 1 and Re(z) ≥ 0}, we have that

log |F (x)| ≤ 1

2π

∫ π

−π
log
∣∣F ◦ h(eiϕ)

∣∣ 1− ρ2

1− 2ρ cos(ϕ) + ρ2
dϕ (7.6)

for any 0 ≤ x ≤ 1 where

h(z) = −1 + z

1− z +

√(
1 + z

1− z

)2

+ 1 and ρ =
x2 + 2x− 1

x2 − 2x− 1
.

Proof. Note that the function h(z) is a biholomorphic map from the unit disk {z ∈ C : |z| ≤

1} to the half disk {z ∈ C : |z| ≤ 1 and Re(z) ≥ 0}. (We provide a proof for completeness,

see Lemma 7.6.1 2)

Since F and h are holomorphic, log |F ◦ h(z)| is subharmonic. Therefore, we can

apply the Poisson integral formula for subharmonic functions (Lemma 7.2.3) and get

log |F ◦ h(z)|

≤ 1

2π

∫ π

−π
log
∣∣F ◦ h(eiϕ)

∣∣ 1− |z|2
|eiϕ − z|2 dϕ

=
1

2π

∫ π

−π
log
∣∣F ◦ h(eiϕ)

∣∣ 1− ρ2

1− 2ρ cos(θ − ϕ) + ρ2
dϕ

for z = ρeiθ.

Setting x = h(z), we obtain that

z =
x2 + 2x− 1

x2 − 2x− 1
.

2The similar version is an exercise 4 in page 163 (Section VII) of [Con78],
and also can be found here, https://math.stackexchange.com/questions/882147/
find-a-conformal-map-from-semi-disk-onto-unit-disk
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Therefore, we have that

θ = 0 and ρ =
x2 + 2x− 1

x2 − 2x− 1
.

This gives the desired result.

The following lemma allows us to conveniently study the behavior of certain analytic

functions near zero. The idea is that when |F (z)| is at most 1 on the imaginary axis, log |F (θ)|

should be close to 0 for small θ, and the value of log |F (θ)|/θ can be upper bounded by a

suitable average of the values on the boundary of the half disk.

Lemma 7.3.2. Given any analytic function F on the half disk {z ∈ C : |z| ≤ 1 and Re(z) ≥

0}. Suppose that |F (iy)| ≤ 1 for all y ∈ [−1, 1]. Then, for any 0 ≤ θ ≤ 1/4, we have

log |F (θ)| ≤
(

4θ

π
+O(θ2)

)∫ π/2

−π/2
log
∣∣F (eiφ)

∣∣dµθ(φ)

where µθ is some probability distribution on [−π
2
, π

2
] depending only on θ, and µθ → some

probability distribution as θ → 0+.

Proof. Since log |F (iy)| ≤ 0 for all y ∈ [−1, 1] and since h(eiϕ) is imaginary with modulus

at most 1 whenever |ϕ| ≤ π/2, we can ignore these ϕ in the integral (7.6), namely,

log |F (x)|

≤ 1

2π

∫ π

−π
log
∣∣F ◦ h(eiϕ)

∣∣ 1− ρ2

1− 2ρ cos(ϕ) + ρ2
dϕ

≤ 1

2π

∫

π/2≤|ϕ|≤π
log
∣∣F ◦ h(eiϕ)

∣∣ 1− ρ2

1− 2ρ cos(ϕ) + ρ2
dϕ. (7.7)
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To bound the right hand side, for π/2 ≤ |ϕ| ≤ π and 0 ≤ ρ ≤ 1, we can prove the

following statement using elementary calculations (see Lemma 7.6.4),

1− ρ2

1− 2ρ cos(ϕ) + ρ2
=

1− ρ
1− cos(ϕ)

±O(1− ρ)2.

Note that ρ = θ2+2θ−1
θ2−2θ−1

≥ 1− 4θ for all 0 ≤ θ ≤ 1/4. Therefore, we have that 0 ≤ ρ ≤ 1 and

1− ρ2

1− 2ρ cos(ϕ) + ρ2
≤ 4θ

1− cos(ϕ)
+O(θ2).

Putting this inequality into (7.7), we have that

log |F (x)|

≤ 1

2π

∫

π/2≤|ϕ|≤π

(
4θ

1− cos(ϕ)
+O(θ2)

)
log |F ◦ h(eiϕ)|dϕ.

We now observe that

∫

π/2≤|ϕ|≤π

1

1− cos(ϕ)
dϕ

=

∫ −π/2

−π

1

1− cos(ϕ)
dϕ+

∫ π

π/2

1

1− cos(ϕ)
dϕ

= 2.

Note that h maps eiϕ for π/2 ≤ |ϕ| ≤ π to the boundary of the half disk ([−π/2, π/2]), and

let µθ be some probability distribution on [−π
2
, π

2
] depending only on θ. Then we can have

log |F (θ)| ≤
(

4θ

π
+O(θ2)

)∫ π/2

−π/2
log
∣∣F (eiφ)

∣∣dµθ(φ).

Note that µθ → some probability distribution as θ → 0+.
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7.3.2 Bounded Multimatrix Golden-Thompson type inequality

Plugging our new complex estimate into the proof of Theorem 3.1 in [SBT17], we ob-

tain the following Riesz-Thorin-type inequality. We give a complete proof for completeness.

Theorem 7.3.3 (Riesz-Thorin-type inequality). Let S = {z ∈ C : |z| ≤ 1 and Re(z) ≥ 0}

and let G be a holomorphic map from S to square matrices. Let p0 ≥ p1 ∈ [1,∞], for

θ ∈ (0, 1), define pθ by

1

pθ
=

1− θ
p0

+
θ

p1

.

If z → ‖G(z)‖pRe(z)
is uniformly bounded on S and ‖G(it)‖p0 ≤ 1, then for any 0 ≤ θ ≤ 1/4,

log ‖G(θ)‖pθ ≤
(

4θ

π
+O(θ2)

)∫ π/2

−π/2
log ‖G(eiφ)‖p1dµθ(φ)

where µθ is some probability distribution on [−π
2
, π

2
] depending only on θ.

Proof. To apply Lemma 7.3.2, we want to define a holomorphic function F (z) such that

|F (it)| ≤ 1 , |F (z)| ≤ ‖G(z)‖p1 and F (θ) = ‖G(θ)‖pθ .

Now, we describe how to define such F (z). For x ∈ [0, 1], define qx as the Hölder

conjugate of px such that p−1
x + q−1

x = 1. Hence, using the definition of px in the statement,

we have

1

qx
=

1− x
q0

+
x

q1

.

Now for our fixed θ ∈ (0, 1), let G(θ) = UV be the polar decomposition of G(θ), where V

is positive definite since G(θ) is always invertible, and U is unitary. Finally, we define X(z)
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and F (z) by

X(z)∗ = (V/c)
pθ( 1−z

q0
+ z
q1

)
U∗, where c = ‖V ‖pθ = ‖G(θ)‖pθ

F (z) = tr[X(z)∗G(z)].

Note that F (z) is holomorphic. Due to the renormalization c, we can show ‖X(x +

iy))‖qxqx = 1 for all x ∈ [0, 1]:

‖X(x+ iy)‖qxqx = tr
[√

X∗(x+ iy)X(x+ iy)
qx
]

= tr
[
(V/c)

qxpθ( 1−x
q0

+ x
q1

)
]

= tr [(V/c)pθ ]

= 1.

where the first step follows by definition of ‖ · ‖p, the second step follows by U∗U = I, the

third step follows by 1
qx

= 1−x
q0

+ x
q1
, and the last step follows by c = ‖V ‖pθ .

Therefore, F (z) is bounded on S as follows

|F (x+ iy)| ≤ ‖X(x+ iy)‖qx · ‖G(x+ iy)‖px ≤ ‖G(x+ iy)‖px .

Using this, it is obvious that

|F (it)| ≤ ‖G(it)‖p0 ≤ 1, and |F (z)| ≤ ‖G(z)‖pRe(z)
≤ ‖G(z)‖p1 .

for all z ∈ S where we used that p0 ≥ pRe(z) ≥ p1.
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Finally, we verify that F (θ) = ‖G(θ)‖pθ :

F (θ) = tr[X(θ)∗G(θ)]

= tr[(V/c)
pθ( 1−θ

q0
+ θ
q1

)
U∗ · UV ]

= tr[(V/c)
pθ( 1−θ

q0
+ θ
q1

)
V ]

= tr[c−pθ/qθV 1+pθ/qθ ]

= tr[c1−pθV pθ ]

= c1−pθcpθ

= ‖G(θ)‖pθ ,

where the first step follows by definition of X and G, the second step follows by U∗U = I, the

third step follows by 1
qθ

= 1−θ
q0

+ θ
q1
, the fourth step follows by pθ/qθ = pθ(1− 1/pθ) = pθ − 1,

the fifth step follows by (tr[V pθ ])1/pθ = c, and the last step follows by c = ‖G(θ)‖pθ .

Hence, the statement follows from Lemma 7.3.2.

Now, we are ready to prove our variant of multimatrix Golden-Thompson inequality.

It follows from plugging in Theorem 7.3.3 into the proof of Theorem 3.5 in [SBT17]. We give

a complete proof for completeness.

Theorem 7.3.4 (Multimatrix Golden-Thompson inequality). For any k Hermitian matrices

H1, · · · , Hk, we have:

log

(
tr

[
exp

(
k∑

j=1

Hj

)])
≤ 4

π

∫ π
2

−π
2

log

(
tr

[
k∏

j=1

exp

(
eiφ

2
Hj

) 1∏

j=k

exp

(
e−iφ

2
Hj

)])
dµ(φ)

where µ is some probability distribution on [−π
2
, π

2
].
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Proof. Define

G(z) =
k∏

j=1

exp
(z

2
Hj

)
.

Note that ‖G(iy)‖∞ = 1 for all y ∈ R. We now have:

log

(
tr

[
exp

(
k∑

j=1

Hj

)])

= log

(
tr

[
exp

(
k∑

j=1

Hj/2 +
1∑

j=k

Hj/2

)])

= log

(
tr

[
lim
θ→0+

(G(θ)G(θ)∗)1/θ

])

= lim
θ→0+

2

θ
log
(

tr
[
(G(θ)G(θ)∗)1/θ

]θ/2)

= lim
θ→0+

2

θ
log ‖G(θ)‖2/θ

≤ lim
θ→0+

2

(
4

π
+O(θ)

)∫ π/2

−π/2
log ‖G(eiφ)‖2dµθ(φ)

= lim
θ→0+

(
4

π
+O(θ)

)∫ π/2

−π/2
log
(
tr
[
G(eiφ)G(eiφ)∗

])
dµθ(φ),

where the first step follows from by the Lie-Trotter formula, the second step follows from

Hj are Hermitian, the third step follows from continuity of log away from 0, last inequality

follows from Theorem 7.3.3 with p0 =∞ and p1 = 2.

When θ → 0+, µθ(φ) converges to some probability distribution µ. This completes

the proof.

Remark 7.3.1. We suspect the constant 4/π is tight and that any constant larger than

one is unavoidable if we consider the maximum over a bounded domain inside the strip

{z ∈ C : 0 ≤ Re(z) ≤ 1}.
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7.4 Proof of Theorem 7.1.2

In this section we present the proof of Theorem 7.1.2. We restate it here (with explicit

constants) for convenience.

Theorem 7.4.1. Let G be a regular λ-expander on V and let f be a function f : V → Cd×d

s.t.

1. For each v ∈ V , f(v) is Hermitian and ‖f(v)‖ ≤ 1.

2.
∑

v∈V f(v) = 0.

If v1, . . . , vk is a stationary random walk on G, and ε ∈ (0, 1),

Pr

[
λmax

(
k∑

j=1

f(vj)

)
≥ +kε

]
≤ d2−π/4 · exp

(
−ε2(1− λ)k/80

)
,

Pr

[
λmin

(
k∑

i=1

f(vj)

)
≤ −kε

]
≤ d2−π/4 · exp

(
−ε2(1− λ)k/80

)
.

Remark 7.4.1. Depsite the exponent of d is different from Theorem 7.1.2, we note that since

the left hand side (the probability) is at most 1, one can prove the same statement with any

positive exponent by changing the constant 80.

Proof. Due to symmetry, it suffices to prove just one of the statements. Let t > 0 be a
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parameter to be chosen later. Then

Pr

[
λmax

(
k∑

j=1

f(vj)

)
≥ kε

]

≤ Pr

[
tr

[
exp

(
t

k∑

j=1

f(vj)

)]
≥ exp(tkε)

]

≤
E
[
tr
[
exp

(
t
∑k

j=1 f(vj)
)]]

exp(tkε)
. (7.8)

The second inequality follows from Markov’s inequality.

Now the question is how to bound

Ev1,··· ,vk [tr[exp(t
∑k

j=1 f(vj))]]. Using Theorem 7.3.4 and note that µ(φ) is a probability dis-

tribution on [−π
2
, π

2
], we have

log

(
tr

[
exp

(
t

k∑

j=1

f(vj)

)])

≤ 4

π

∫ π
2

−π
2

log tr

[
k∏

j=1

exp

(
eiφ

2
tf(vj)

) 1∏

j=k

exp

(
e−iφ

2
tf(vj)

)]
dµ(φ)

≤ 4

π
log

∫ π
2

−π
2

tr

[
k∏

j=1

exp

(
eiφ

2
tf(vj)

) 1∏

j=k

exp

(
e−iφ

2
tf(vj)

)]
dµ(φ),

where the the second step follows by concavity of log function. This implies that

tr

[
exp

(
t

k∑

j=1

f(vj)

)]

≤
(∫ π

2

−π
2

tr

[
k∏

j=1

exp

(
eiφ

2
tf(vj)

) 1∏

j=k

exp

(
e−iφ

2
tf(vj)

)]
dµ(φ)

) 4
π

. (7.9)
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Note that ‖x‖p ≤ d1/p−1‖x‖1 for p ∈ (0, 1), choosing p = π/4 we have

(
tr

[
exp

(
π

4
t

k∑

j=1

f(vj)

)]) 4
π

≤ d4/π−1 tr

[
exp

(
t

k∑

j=1

f(vj)

)]
. (7.10)

Combining Eq. (7.9) and Eq. (7.10), we have

tr

[
exp

(
π

4
t

k∑

j=1

f(vj)

)]
≤ d1−π/4

∫ π
2

−π
2

tr

[
k∏

j=1

exp

(
eiφ

2
tf(vj)

) 1∏

j=k

exp

(
e−iφ

2
tf(vj)

)]
dµ(φ).

(7.11)

The core of the proof is the following bound on the moment generating function-like

expression that appears above, thinking of iφ as γ + ib with γ2 + b2 = 1:

Lemma 7.4.2. Let G be a regular λ-expander on V , let f be a function f : V → Cd×d and
∑

v∈V f(v) = 0, let v1, · · · , vk be a stationary random walk on G, for any t > 0, γ ≥ 0,

b > 0, t2(γ2 + b2) ≤ 1, and tγ ≤ 1−λ
4λ

we have

E

[
tr

[
k∏

j=1

exp

(
tf(vj)(γ + ib)

2

) 1∏

j=k

exp

(
tf(vj)(γ − ib)

2

)]]

≤ d · exp

(
kt2(γ2 + b2)(1 +

8

1− λ)

)
.
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Assuming this lemma, we can easily complete the proof of the theorem as:

E
v1,··· ,vk

[
tr

[
exp

(
π

4
t

k∑

j=1

f(vj)

)]]

≤ d1−π/4 E
v1,··· ,vk

[∫ π
2

−π
2

tr

[
k∏

j=1

exp

(
eiφ

2
tf(vj)

) 1∏

j=k

exp

(
e−iφ

2
tf(vj)

)]
dµ(φ)

]

= d1−π/4
∫ π

2

−π
2

E
v1,··· ,vk

[
tr

[
k∏

j=1

exp

(
eiφ

2
tf(vj)

) 1∏

j=k

exp

(
e−iφ

2
tf(vj)

)]]
dµ(φ)

≤ d1−π/4
∫ π

2

−π
2

d exp

(
kt2|eiφ|2(1 +

8

1− λ)

)
dµ(φ)

= d2−π/4 exp

(
kt2(1 +

8

1− λ)

)∫ π
2

−π
2

dµ(φ)

= d2−π/4 exp

(
kt2(1 +

8

1− λ)

)
, (7.12)

where the first step follows by the Equation (7.11), the second step follows by swapping E

and
∫
, the third step follows by Lemma 7.4.2 , the fourth step follows by |eiφ| = 1, and the

last step follows by
∫ π

2

−π
2

dµ(φ) = 1.

Finally, putting it all together,

Pr
v1,··· ,vk

[
λmax

(
k∑

j=1

f(vj)

)
≥ kε

]

≤ d2−π/4 · exp

(
(4/π)2kt2

9

1− λ − ktε
)

= d2−π/4 · exp

(
(4/π)2kε2(1− λ)2 1

362

9

1− λ − k
(1− λ)ε

36
ε

)

≤ d2−π/4 · exp
(
−kε2(1− λ)/72

)
.

where the first step follows by Eq. (7.12) the second step follows by choosing t = (1 −

λ)ε/36.
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We now give the proof of Lemma 7.4.2

Proof of Lemma 7.4.2. We start by writing the expected trace expression in terms of the

transition matrix of the random walk. This is an analogue of a step which is common to

most of the expander chernoff bound proofs in the scalar case. Let P be the normalized

adjacency matrix of G and let P̃ = P ⊗ Id2 . Let E denote the nd2 × nd2 block diagonal

matrix where the vth diagonal block is the matrix

Mv = exp

(
tf(v)(γ + ib)

2

)
⊗ exp

(
tf(v)(γ − ib)

2

)
. (7.13)

Then
(
EP̃
)k

is an nd2 × nd2 block matrix whose (u, v)th (d2 × d2) block is given by the

matrix

∑

v1,...,vk−1

Pu,v1 ·
(
k−2∏

j=1

Pvj ,vj+1

)
· Pvk−1,v ·Mu ·

(
k−1∏

j=1

Mvj

)
. (7.14)

Let z0 ∈ Cnd2

be the vector 1√
n
⊗ vec(Id). Here 1 is the all 1’s vector and vec(Id) is the

vector form of the identity matrix. Then, by applying

〈vec(Id), A1 ⊗ A2 vec(Id)〉 = tr
[
A1A

>
2

]
,

it follows that for a stationary random walk v1, . . . , vk:

E

[
tr

[
k∏

j=1

exp

(
tf(vj)(γ + ib)

2

) 1∏

j=k

exp

(
tf(vj)(γ − ib)

2

)]]

= E

[〈
vec(Id),

k∏

i=1

Mvivec(Id)

〉]

=

〈
z0,
(
EP̃
)k
z0

〉
.

530



Hence we can focus our attention on
〈
z0,
(
EP̃
)k
z0

〉
.

Let 1 be the all 1’s vector. For a vector z ∈ Cnd2 , let z‖ denote the component of z

which lies in the subspace spanned by the d2 vectors 1 ⊗ ei, 1 ≤ i ≤ d2. Let z⊥ denote the

component in the orthogonal space. Letting zj =
(
EP̃
)j
z0, we are interested in bounding

〈z0, zk〉 = 〈z0, z
‖
k〉 ≤ ‖z0‖ · ‖z‖k‖ =

√
d · ‖z‖k‖.

The following lemma is the analogue of the main lemma in Healy’s proof for the scalar

valued expander Chernoff bound [Hea08]. Roughly speaking, it tracks how much a vector

can move in and out of the subspace we are interested in as the operator EP̃ is applied.

Lemma 7.4.3. Given four parameters λ ∈ [0, 1], γ ≥ 0, ` ≥ 0, and t > 0. Let G be a regular

λ-expander on V . Suppose each vertex v is assigned a matrix Hv ∈ Cd2×d2

s.t. ‖Hv‖ ≤ `

and
∑

vHv = 0. Let P be the normalized adjacency matrix of G and let P̃ = P ⊗ Id2. Let

E denote the nd2 × nd2 block diagonal matrix where the v-th diagonal block is the matrix

exp(tHv). Also suppose that ‖E‖ = maxv∈V ‖ exp(tHv)‖ ≤ exp(γt). Then for any z ∈ Cnd2

,

we have:

1. ‖(EP̃z‖)‖‖ ≤ α1‖z‖‖ where α1 = exp(t`)− t`,

2. ‖(EP̃z‖)⊥‖ ≤ α2‖z‖‖ where α2 = exp(t`)− 1,

3. ‖(EP̃z⊥)‖‖ ≤ α3‖z⊥‖ where α3 = λ · (exp(t`)− 1) ,

4. ‖(EP̃z⊥)⊥‖ ≤ α4‖z⊥‖ where α4 = λ · exp(tγ).

Proof of Lemma 7.4.3. Part 1.
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Note that

(EP̃z‖)‖ = (Ez‖)‖.

Let 1 ∈ Rn denote all ones vector, suppose z‖ = 1 ⊗ w for some w ∈ Cd2

. Then ‖z‖‖ =
√
n · ‖w‖ and

(Ez‖)‖ = 1⊗
(

1

n

∑

v∈V

exp(Hv)w

)
.

We can upper bound ‖ 1
n

∑
v∈V exp(tHv)‖ in the following way,

∥∥∥∥∥
1

n

∑

v∈V

exp(tHv)

∥∥∥∥∥ =

∥∥∥∥∥
1

n

∑

v∈V

∞∑

j=0

tjHj
v

j!

∥∥∥∥∥

=

∥∥∥∥∥I +
1

n

∑

v∈V

∞∑

j=2

tjHj
v

j!

∥∥∥∥∥

≤ 1 +
1

n

∑

v∈V

∑

j≥2

tj

j!
‖Hv‖j

= 1 +
∑

j≥2

(t`)j

j!

= exp(t`)− t`,

where the first step follows by Taylor expansion, the second step follows by
∑

v∈V Hv = 0,

the third step follows by triangle inequality, the fourth step follows by |V | = n and ‖Hv‖ ≤ `,

and last step follows by Taylor expansion.

Thus,

‖(Ez‖)‖‖ =
√
n

∥∥∥∥∥
1

n

∑

v∈V

exp(tHv)w

∥∥∥∥∥
≤ √n‖w‖(exp(t`)− t`)

= ‖z‖‖(exp(t`)− t`).
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Part 2. Note that (EP̃z‖)⊥ = (Ez‖)⊥ = ((E − I)z‖)⊥. and (z‖)⊥ = 0. We can upper

bound ‖((E − I)z‖)⊥‖ in the following way,

‖((E − I)z‖)⊥‖ ≤ ‖(E − I)z‖‖

≤ ‖E − I‖ · ‖z‖‖

= max
v∈V
‖ exp(tHv)− I‖ · ‖z‖‖

= max
v∈V

∥∥∥∥∥
∞∑

j=1

tj

j!
Hj
v

∥∥∥∥∥ · ‖z
‖‖

≤
(
∞∑

j=1

tj`j

j!

)
· ‖z‖‖

= (exp(t`)− 1) · ‖z‖‖,

where the second step follows by ‖Ax‖ ≤ ‖A‖ · ‖x‖, the third step follows by definition of

E, the fourth step follows by Taylor expansion, the fifth step follows by triangle inequality

and ‖Hv‖ ≤ `, and the last step follows by Taylor expansion.

Part 3. Note that (EP̃z⊥)‖ = ((E − I)P̃ z⊥)‖. This is because (P̃ z⊥)‖ = 0 since P̃

preserves the property of being orthogonal to the space spanned by the vectors 1⊗ ei (these

are the top eigenvectors of P̃ ). Hence we can bound

∥∥∥((E − I)P̃ z⊥)‖
∥∥∥ ≤

∥∥∥(E − I)P̃ z⊥
∥∥∥

≤ ‖E − I‖ ·
∥∥∥P̃ z⊥

∥∥∥

≤ (exp(t`)− 1) · λ ·
∥∥z⊥

∥∥ .

Third inequality follows from the fact that ‖E−I‖ ≤ exp(t`)−1 and that G is a λ-expander.
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Part 4. We can bound

‖(EP̃z⊥)⊥‖ ≤ ‖EP̃z⊥‖ ≤ exp(tγ) · λ‖z⊥‖,

where the second step follows by ‖E‖ ≤ exp(γt) and G is a λ-expander.

We now use the above Lemma 7.4.3 to analyze the evolution of z‖j and z⊥j . Recall the

definition of Hv,

Hv =
f(v)(γ + ib)

2
⊗ Id + Id ⊗

f(v)(γ − ib)

2
.

which means

exp(tHv) = exp

(
tf(v)(γ + ib)

2
⊗ Id + Id ⊗

tf(v)(γ − ib)

2

)

= exp

(
tf(v)(γ + ib)

2

)
⊗ exp

(
tf(v)(γ − ib)

2

)

= Mv,

where the the first step follows by definition of Hv, the second step follows by exp(A⊗ Id +

Id ⊗B) = exp(A)⊗ exp(B), and the last step follows by Eq. (7.13).

We can upper bound ‖Hv‖ ≤
√
γ2 + b2 and then set ` =

√
γ2 + b2. We can also

upper bound ‖ exp(tHv)‖,

‖ exp(tHv)‖ = ‖ exp(t · Re(Hv))‖

=

∥∥∥∥exp

(
γt

(
f(v)

2
⊗ Id + Id ⊗

f(v)

2

))∥∥∥∥
≤ exp(γt).

Note that
∑

v∈V Hv = 0 since
∑

v∈V f(v) = 0.
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Claim 7.4.4. ‖z⊥i ‖ ≤ α2

1−α4
maxj<i ‖z‖j ‖.

Proof.

‖z⊥i ‖ = ‖(EP̃zi−1)⊥‖

≤ ‖(EP̃z‖i−1)⊥‖+ ‖(EP̃z⊥i−1)⊥‖

≤ α2‖z‖i−1‖+ α4‖z⊥i−1‖

≤ (α2 + α2α4 + α2α4 + · · · ) ·max
j<i
‖z‖j ‖

≤ α2

1− α4

max
j<i
‖z‖j ‖,

where the first step follows by definition of zi, the second step follows by triangle inequality,

the third step follows by part 2 and 4 of Lemma 7.4.3.

Claim 7.4.5. ‖z‖i ‖ ≤ (α1 + α2α3

1−α4
) maxj<i ‖z‖j ‖.

Proof.

‖z‖i ‖ = ‖(EP̃zi−1)‖‖

≤ ‖(EP̃z‖i−1)‖‖+ ‖(EP̃z⊥i−1)‖‖

≤ α1‖z‖i−1‖+ α3‖z⊥i−1‖

≤ α1‖z‖i−1‖+ α3
α2

1− α4

max
j<i−1

‖z‖j ‖

≤ (α1 +
α2α3

1− α4

),

where the first step follows by definition of zi, the second step follows by triangle inequality,

the third step follows by part 1 and 3 of Lemma 7.4.3, the fourth step follows by Claim 7.4.4.
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Combining Claim 7.4.4 and Claim 7.4.5 gives

‖z‖k‖ ≤ (α1 +
α2α3

1− α4

)k‖z‖0‖ =
√
d · (α1 +

α2α3

1− α4

)k,

which implies that

〈
z0, (EP̃ )kz0

〉
≤ d · (α1 +

α2α3

1− α4

)k.

Now the question is how to bound (α1 + α2α3

1−α4
)k.

We can upper bound α1, α2α3 and α4 in the following sense,

α1 = exp(t`)− t` ≤ 1 + t2`2 = 1 + t2(γ2 + b2),

and

α2α3 = λ(exp(t`)− 1)2 ≤ λ(2t`)2 = 4λt2(γ2 + b2),

where the second step follows by t` < 1 (because exp(x) ≤ 1 + 2x, ∀x ∈ [0, 1]),

α4 = λ · exp(tγ) ≤ λ(1 + 2tγ) ≤ 1

2
+

1

2
λ,

where the second step follows by tγ < 1, and the third step follows by tγ ≤ (1− λ)/4λ.

Thus,

(α1 +
α2 · α3

1− α4

)k ≤
(

1 + t2(γ2 + b2) +
4λt2(γ2 + b2)

1
2
− 1

2
λ

)k

≤ exp

(
kt2(γ2 + b2)(1 +

8

1− λ)

)
.
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Remark 7.4.2. As is the case with Healy’s proof [Hea08], our proof also works for the case

when there are different mean zero functions f1, . . . , fk for the different steps of the walk and

also when there are k λ-expanders G1, . . . , Gk and the jth step of the walk is taken according

to Gj.

Remark 7.4.3. We suspect that with appropriate modifications, our proof should generalize

to random walks on irregular undirected graphs (or reversible Markov chains) as was done

for Healy’s proof in [CLLM12].

Remark 7.4.4. Although we have stated the theorem for Hermitian matrices, the same result

can be obtained for general matrices by a standard dilation trick, namely replacing every

d× d matrix M that appears with the 2d× 2d Hermitian matrix
[

0 M
M∗ 0

]
,

whose norm is always within a factor of two of M .
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7.5 Proof of Theorem 7.1.6

Proof. Observe that for every i = 2, . . . , k we have

E[f(vi) | vi−1] =
∑

u∼vi−1

P (vi−1, u)f(u) = Pf(vi−1),

whence the random vectors

Y
(1)
i := f(vi)− Pf(vi−1)

satisfy

E[Y
(1)
i | v1, . . . , vi−1] = 0

and thus form a martingale difference sequence with respect to the filtration generated by

initial segments of v1, . . . , vk. Denoting Y (1)
1 := f(v1), we can write the sum of interest as a

martingale part plus a remainder, which is a sum of k− 1 (i.e., one fewer) random variables:

S =
k∑

i=1

Y
(1)
i +

k−1∑

i=1

Pf(vi).

Notice that Pf is also a mean zero function on G, and by Jensen’s inequality we have

‖(Pf)(v)‖∗ ≤M := max
v∈V
‖f(v)‖∗ for all v.

The key point is that the remainder terms Pf(vi) are smaller on average than the original

terms f(vi) in squared Euclidean norm, because P is a contraction orthogonal to the constant

vector; in particular, by considering the action of P on each coordinate of f separately, we

have:
∑

v

‖Pf(v)‖2
2 ≤ λ ·

∑

v

‖f(v)‖2
2. (7.15)
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Iterating this construction on the remainder a total of T ≤ k times, we obtain a

sequence of martingales 1 ≤ t ≤ T :

Y
(t)

1 := P t−1f(v1)

Y
(t)
i := P t−1f(vi)− P tf(vi−1), i = 1, . . . , k − (t− 1)

which are related to the original sum as:

S =
T∑

t=1

k−t+1∑

i=1

Y
(t)
i +

k−T∑

i=1

P Tf(vi).

Interchanging the order of summation, we find that the random matrices

Zi :=

min{(k+1−i),T}∑

t=1

Y
(t)
i

themselves form a martingale difference sequence, with each

‖Zi‖∗ ≤
∑

t

‖Y (t)
i ‖∗ ≤ TM.

We bound the error W := 1
k

∑k−T
i=1 (P Tf)(vi) crudely as:

‖W‖2 ≤
1

k

k−T∑

i=1

‖P Tf(vi)‖2

≤ k − T
k

∑

v∈V

‖(P Tf)(v)‖2

≤ λT/2F

≤ exp(−(1− λ)T/2)F,

where F := (
∑

v∈V ‖f(v)‖2
2)1/2, by applying (7.15). Rearranging and setting T = 2 log(F/ε)/(1−

λ) yields the advertised bound on ‖Zi‖∗.
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7.6 Elementary calculations

Lemma 7.6.1. We define function h(z) : C→ C as follows

h(z) = −1 + z

1− z +

√(
1 + z

1− z

)2

+ 1.

Then function h(z) maps the unit disk {z ∈ C : |z| ≤ 1} to the half disk {z ∈ C : |z| ≤

1 and Re(z) ≥ 0}.

Proof. We first compute the inverse of function h(z), let f = h−1. By definition of h(z), we

can do the following elementary calculations,

h(z) +
1 + z

1− z =

√(
1 + z

1− z

)2

+ 1

=⇒
(
h(z) +

1 + z

1− z

)2

=

(
1 + z

1− z

)2

+ 1

=⇒ (h(z))2 + 2h(z)
1 + z

1− z = 1

=⇒ (1− z)(h(z))2 + 2h(z)(1 + z) = (1− z)

=⇒ (h(z))2 + 2h(z)− 1 = z((h(z))2 − 2h(z)− 1),

Thus, we obtain that

f(z) =
z2 + 2z − 1

z2 − 2z − 1
.

To finish the proof, we need Claim 7.6.2 and Claim 7.6.3.

Claim 7.6.2. For all z ∈ {z ∈ C : |z| ≤ 1 and Re(z) ≥ 0},

|f(z)| ≤ 1.
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Proof. Let z = reiφ, where r ∈ [0, 1] and

φ ∈ [−π/2, π/2]. It is easy to observe that cos(φ) ∈ [0, 1] We have

|f(z)| =
∣∣∣∣
z2 + 2z − 1

z2 − 2z − 1

∣∣∣∣

=

∣∣∣∣
r2ei2φ + 2reiφ − 1

r2ei2φ − 2reiφ − 1

∣∣∣∣

=
|r2ei2φ + 2reiφ − 1|
|r2ei2φ − 2reiφ − 1| .

We can compute the numerator,

|r2ei2φ + 2reiφ − 1|2

= |r2 cos 2φ+ ir2 sin 2φ+ 2r cosφ+ 2ri sinφ− 1|2

= (r2 cos 2φ+ 2r cosφ− 1)2 + (r2 sin 2φ+ 2r sinφ)2

= r4 + 4r2 + 1− 2r2 cos 2φ+ 4r3 cos 2φ cosφ

− 4r cosφ+ 4r3 sin 2φ sinφ

= r4 + 4r2 + 1− 2r2 cos 2φ+ 4r3 cosφ− 4r cosφ.

We can compute the denominator,

|ei2φ − 2eiφ − 1|2

= |r2 cos 2φ+ ir2 sin 2φ− 2r cosφ− 2ri sinφ− 1|2

= (r2 cos 2φ− 2r cosφ− 1)2 + (r2 sin 2φ− 2r sinφ)2

= r4 + 4r2 + 1− 2r2 cos 2φ− 4r3 cos 2φ cosφ

+ 4r cosφ− 4r3 sin 2φ sinφ

= r4 + 4r2 + 1− 2r2 cos 2φ− 4r3 cosφ+ 4r cosφ.
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Note that, in order to show |f(z)| ≤ 1, it is sufficient to prove

4r3 cosφ− 4r cosφ ≤ −4r3 cosφ+ 4r cosφ

which is equivalent to

8r(1− r2) cosφ ≥ 0.

It follows by definition of r and φ. Thus, we complete the proof.

Next, we can show that

Claim 7.6.3. For all z is on the boundary of half disk,

|f(z)| = 1.

Proof. First, we want to show that ∀z ∈ [−i, i], |f(z)| = 1. Let b ∈ [0, 1], let z = ib, then we

have

|f(z)| = |f(ib)| =
∣∣∣∣
−b2 + 2bi− 1

−b2 − 2bi− 1

∣∣∣∣ = 1.

Second, we want to show that for all z on half circle, |f(z)| = 1. We replace z by eiφ, where

φ ∈ [−π/2, π/2]. Then we have

|f(z)| =
∣∣∣∣
z2 + 2z − 1

z2 − 2z − 1

∣∣∣∣

=

∣∣∣∣
ei2φ + 2eiφ − 1

ei2φ − 2eiφ − 1

∣∣∣∣

=
|ei2φ + 2eiφ − 1|
|ei2φ − 2eiφ − 1| .
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We can compute the numerator,

|ei2φ + 2eiφ − 1|

= | cos 2φ+ i sin 2φ+ 2 cosφ+ 2i sinφ− 1|

=
(
(cos 2φ+ 2 cosφ− 1)2 + (sin 2φ+ 2 sinφ)2

)1/2

= (6− 2 cos 2φ+ 4 cos 2φ cosφ− 4 cosφ+ 4 sin 2φ sinφ)1/2

= (6− 2 cos 2φ+ 4 cosφ− 4 cosφ)1/2

= (6− 2 cos 2φ)1/2 .

We can compute the denominator,

|ei2φ − 2eiφ − 1|

= | cos 2φ+ i sin 2φ− 2 cosφ− 2i sinφ− 1|

=
(
(cos 2φ− 2 cosφ− 1)2 + (sin 2φ− 2 sinφ)2

)1/2

= (6− 2 cos 2φ− 4 cos 2φ cosφ+ 4 cosφ− 4 sin 2φ sinφ)1/2

= (6− 2 cos 2φ+ 4 cosφ− 4 cosφ)1/2

= (6− 2 cos 2φ)1/2 .

Thus, we have |f(z)| = 1.

Note the biholomorphic is basically follows from the formula of f and h, because they

are composition of holomorphic function.

Lemma 7.6.4. For any ρ ∈ [0, 1] and cosϕ ∈ [−1, 0], we have

1− ρ
1− cosϕ

− (1− ρ)2 ≤ 1− ρ2

1− 2ρ cosϕ+ ρ2
≤ 1− ρ

1− cosϕ
+ 2(1− ρ)2.
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Proof. This directly follows by combining Claim 7.6.5 and Claim 7.6.6

Claim 7.6.5. There exists some sufficiently large constant c ≥ 1 such that for any ρ ∈ [0, 1]

and cosϕ ∈ [−1, 0], we have

1− ρ2

1− 2ρ cosϕ+ ρ2
≤ 1− ρ

1− cosϕ
+ c(1− ρ)2.

Proof. It is equivalent to

1 + ρ

1− 2ρ cosϕ+ ρ2
≤ 1

1− cosϕ
+ c(1 + ρ)

(1 + ρ)(1− cosϕ) ≤ 1− 2ρ cosϕ+ ρ2 + c(1 + ρ)(1− cosϕ)(1− 2ρ cosϕ+ ρ2)

ρ− cosϕ ≤ − ρ cosϕ+ ρ2 + c(1 + ρ)(1− cosϕ)(1− 2ρ cosϕ+ ρ2)

which is equivalent to,

−ρ cosϕ+ ρ2 − ρ+ cosϕ+ c(1 + ρ)(1− cosϕ)(1− 2ρ cosφ+ ρ2) ≥ 0.

Since 1− 2ρ cosϕ+ ρ2 ≥ 1, thus it suffices to show

(ρ− 1)(ρ− cosϕ) + c(1 + ρ)(1− cosϕ) ≥ 0.

Note that (ρ− 1)(ρ− cosϕ) ≥ −2, by choosing c ≥ 2, we complete the proof.

Claim 7.6.6. There exists some sufficiently large constant c ≥ 1 such that for any ρ ∈ [0, 1]

and cosϕ ∈ [−1, 0], we have

1− ρ2

1− 2ρ cosϕ+ ρ2
≥ 1− ρ

1− cosϕ
− c(1− ρ)2.
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Proof. It is equivalent to

1 + ρ

1− 2ρ cosϕ+ ρ2
≥ 1

1− cosϕ
+ c(1 + ρ)

(1 + ρ)(1− cosϕ) ≥ 1− 2ρ cosϕ+ ρ2 − c(1 + ρ)(1− cosϕ)(1− 2ρ cosϕ+ ρ2)

ρ− cosϕ ≥ − ρ cosϕ+ ρ2 − c(1 + ρ)(1− cosϕ)(1− 2ρ cosϕ+ ρ2)

which is equivalent to,

−ρ cosϕ+ ρ2 − ρ+ cosϕ− c(1 + ρ)(1− cosϕ)(1− 2ρ cosφ+ ρ2) ≤ 0

which is equivalent to

(ρ− 1)(ρ− cosϕ) ≤ c(1 + ρ)(1− cosϕ)(1− 2ρ cosϕ+ ρ2).

It suffices to choose c = 1.
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Chapter 8

Matrix Chernoff Bound for Random Spanning Trees

Strongly Rayleigh distributions are a class of negatively dependent distributions of

binary-valued random variables [Borcea, Brändén, Liggett JAMS 09]. Recently, these dis-

tributions have played a crucial role in the analysis of algorithms for fundamental graph

problems, e.g. Traveling Salesman Problem [Gharan, Saberi, Singh FOCS 11]. We prove a

new matrix Chernoff bound for Strongly Rayleigh distributions.

As an immediate application, we show that adding together the Laplacians of ε−2 log2 n

random spanning trees gives an (1±ε) spectral sparsifiers of graph Laplacians with high prob-

ability. Thus, we positively answer an open question posed in [Baston, Spielman, Srivastava,

Teng JACM 13]. Our number of spanning trees for spectral sparsifier matches the number

of spanning trees required to obtain a cut sparsifier in [Fung, Hariharan, Harvey, Panigraphi

STOC 11]. The previous best result was by naively applying a classical matrix Chernoff

bound which requires ε−2n log n spanning trees. For the tree averaging procedure to agree

with the original graph Laplacian in expectation, each edge of the tree should be reweighted

by the inverse of the edge leverage score in the original graph. We also show that when using

this reweighting of the edges, the Laplacian of single random tree is bounded above in the

PSD order by the original graph Laplacian times a factor log n with high probability, i.e.

LT � O(log n)LG.
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We show a lower bound that almost matches our last result, namely that in some

graphs, with high probability, the random spanning tree is not bounded above in the spectral

order by logn
log logn

times the original graph Laplacian.

We also show a lower bound that in ε−2 log n spanning trees are necessary to get a

(1± ε) spectral sparsifier.
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8.1 Introduction

The study of concentration of sums of random variables dates back to Central Limit

Theorems, and hence de Moivre and Laplace [Tij], while modern concentration bounds for

sums of random variables were perhaps first established by Bernstein [Ber24], and a popular

variant now known as Chernoff bounds was introduced by Rubin and published by Chernoff

[Che52].

Concentration of measure for matrix-valued random variables is the phenomenon that

many matrix valued distributions are to close their mean with high probability, closeness

usually being measured by spectral norm. Modern quantitative bounds of the form often

used in theoretical computer science were derived by Rudelson [Rud99], while Ahlswede and

Winter [AW02] established a useful matrix-version of the Laplace transform that plays a

central role in scalar concentration results such as those of Bernstein. [AW02] combined this

with the Golden-Thompson trace inequality to prove matrix concentration results. Tropp

refined this approach, and by replacing the use of Golden-Thompson with deep a theorem on

concavity of certain trace functions due to Lieb, Tropp was able to recover strong versions

of a wide range of scalar concentration results, including matrix Chernoff bounds, Azuma

and Freedman’s inequalities for matrix martingales [Tro12].

Matrix concentration results have had an enormous range of applications in computer

science, and are ubiquitous throughout spectral graph theory [ST04, SS11, CKP+17], sketch-

ing [Coh16a], approximation algorithms [HSSS16], and deep learning [ZSJ+17, ZSD17, SY19].

Most applications are based on results for independent random matrices, but more flexible

bounds, such as Tropp’s Matrix Freedman Inquality [Tro11a], have been used to greatly sim-

plify algorithms, e.g. for solving Laplacian linear equations [KS16] and for semi-streaming
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graph sparsification [AG09, KPPS17]. Matrix concentration results are also closely related to

other popular tools sampling tools, such as Karger’s techniques for generating sparse graphs

that approximately preserve the cuts of denser graphs [BK96].

Negative dependence of random variables is an appealing property that intuition

suggests should help with concentration of measure. Notions of negative dependence can be

formalized in many ways. Roughly speaking, these notions characterize distributions where

where some event occurring ensures that other events of interest become less likely. A simple

example is the distribution of a sequence of coin flips, conditioned on the total number of

heads in the outcome. In this distribution, conditioning on some coin coming out heads

makes all other coins less likely to come out heads. Unfortunately, negative dependence

phenomena are not as robust as positive association which can be established from local

conditions using the powerful FKG theorem [FKG71].

Strongly Rayleigh distributions were introduced recently by Borcea, Brändén, and

Liggett [BBL09] as a class of negatively dependent distributions of binary-valued random

variables with many useful properties. Strongly Rayleigh distributions satisfy useful negative

dependence properties, and retain these properties under natural conditioning operations.

Strongly Rayleigh distributions also satisfy a powerful stability property under conditioning

known as Stochastic Covering [PP14], which is useful for analyzing them through martingale

techniques. A measure on {0, 1}n is said to be Strongly Rayleigh if its generating polynomial

is real stable [BBL09]. There are many interesting examples of Strongly Rayleigh distribu-

tions [PP14]: The example mentioned earlier of heads of independent coin flips conditional

on the total number of heads in the outcome; symmetric exclusion processes; determinental

point processes and determinental measures on a boolean lattice. An example of particu-
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lar interest to us is the edges of uniform or weighted random spanning trees, which form a

Strongly Rayleigh distribution.

We prove a Matrix Chernoff bound for the case of k-homogeneous Strongly Rayleigh

distributions. Our bound is slightly weaker than the bound for independent variables. We

give lower bounds that show our bounds are close to tight in some regimes, but importantly,

our lower bounds do not establish separation from the behaviour of indepedent random

matrices, leaving open the question of whether the true bound should match the independent

case in all regimes – which seems plausible. We use our bound to show new concentration

results related to random spanning trees of graphs. An open question is to find other

interesting applications of our concentration result, e.g. by analyzing concentration for

matrices generated by exclusion processes.

Random spanning trees are one among the most well-studied probabilistic objects in

graph theory, going back to the work of Kirchoff [Kir47] in 1847, who gave formula relating

the number of spanning trees in a graph to the determinant of the Laplacian of the same

graph.

Algorithms for sampling of random spanning trees have been studied extensively,

[Gue83, Bro89, Ald90, Kul90, Wil96, CMN96, KM09, MST15, HX16, DKP+17, DPPR17,

Sch18], and a random spanning tree can now be sampled in almost linear time [Sch18].

In theoretical computer science, random spanning trees have found a number of ap-

plications, most notably in breakthrough results on approximating the traveling salesperson

problem with symmetric [GSS11] and asymmetric costs [AGM+10]. Goyal et al. [GRV09]

demonstrated that adding just two random spanning trees sampled from a bounded degree
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graph gives a O(log n) cut sparsifier with probability 1− o(1). Later, it was shown by Fung,

Hariharan, Harvey, Panigraphi [FHHP11], that if we sample O(ε−2 log2 n) random spanning

trees from a graph, reweight the tree edges by the inverse of their leverage scores in the orig-

inal graph, and average them together, then whp. we get a graph where every the weight of

edges crossing every cut is approximately the same in as in the original graph, up to a factor

(1± ε). We refer to this as an ε-cut sparsifier. The techniques of Fung et al. unfortunately

do not extend to proving spectral sparsifiers.

Spectral graph sparsifiers were introduced by Spielman and Teng [ST04], who for

any graph G showed how to construct a another graph H with ε−2n poly log n edges s.t.

(1− ε)LG � LH � (1 + ε)LG, which we refer to as an ε-spectral sparsifier. The construction

was refined by Spielman and Srivastava [SS11], who suggested sampling edges independently1

with probability proportional to their leverage scores, and brought the number of required

samples down to ε−2n log n. This analysis is tight in the sense that if fewer than o(ε−2n log n)

samples are used, there will be at least a 1/ poly(n) probability of failure. Meanwhile,

ε−2n logn
log logn

independent samples in a union of cliques can be shown whp. to fail to give

a cut sparsifier. This can be observed directly from the degree distribution of a single

vertex in the complete graph. For a variant of [SS11] sampling based on flipping a single

coin for each edge to decide whether to keep it or not, it can also be shown that when the

expected number of edges is ε−2n logn
log logn

, whp. the procedure fails to give a cut sparsifier. For

arbitrary sparsification schemes, bounds in [BSS12] show that Θ(ε−2n) edges are necessary

and sufficient to give an ε-spectral sparsifier.

1[SS11] analyzed sampling with replacement, but based on [Tro12], a folklore result shows the same
behavior can be obtained by doing independent coin flips for every edge with low leverage score, again with
inclusion probabilities proportional to leverage scores.
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The marginal probability of an edge being present in a random spanning tree is exactly

the leverage score of the edge. This seems to suggest that combining ε−2 poly log n spanning

trees might give a spectral sparsifier, but the lack of independence between the sampled edges

means the process cannot be analyzed using existing techniques. Observing this, Baston,

Spielman, Srivastava, Teng [BSST13] in their excellent 2013 survey on sparsification noted

that “it remains to be seen if the union of a small number of random spanning trees can

produce a spectral sparsifier.” We answer this question in the affirmative. In particular,

we show that adding together O(ε−2 log2 n) spanning trees with edges scaled proportional to

inverse leverage scores in the original graph leads to an ε-spectral sparsifier. This matches the

bound obtained for cut sparsifiers in [FHHP11]. Our result also implies their earlier bound

since a spectral sparsifier is always a cut sparsifier with the same approximation quality.

Before our result, only a trivial bound on the number of spanning trees required to build a

spectral sparsifier was known. In particular standard matrix concentration arguments like

those in [SS11] prove that O(ε−2n log n) spanning trees suffice. Lower bounds in [FHHP11]

show that whp. Ω(log n) random spanning trees are required to give a constant factor

spectral sparsifier.

We show that whp. ε−2 logn
log logn

random spanning trees do not give an ε-spectral spar-

sifier. We also show that the Laplacian of a single random tree with edges weighted as above

satisfies LT � O(log n)LG whp., and we give an almost matching lower bound, showing

that in some graphs whp. LT 6≺ 1
8

logn
log logn

LG. Before our work, the main result known about

approximating graphs using O(1) random spanning trees is due to Goyal, Rademacher, Vem-

pala [GRV09], who showed that surprisingly, when the original graph has bounded degree,

adding two random spanning trees gives a graph whose cuts approximate the cuts in the
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original graph up to a factor O(log n) with good probability. As our result for a single tree

establishes only a one-sided bound an interesting open question remains: Does sampling O(1)

random spanning trees give a log n-factor spectral sparsifier with, say, constant probability?

8.1.1 Previous work

Chernoff-type bound for matrices. Chernoff-like bounds for matrices appear in Rudel-

son [Rud99] and Ahlswede and Winter [AW02]. The latter introduced a useful matrix-

variant of the Laplace transform that is central in concentration bounds for scalar-valued

matrices. Their bounds restricted to iid random matrices, an artifact of their use of the

Golden-Thompson inequality for bounding traces. In contrast, Tropp obtained more flexible

concentration bounds for random matrices by using a result of Lieb to bound the expected

trace of various operators [Tro12], including bounds for matrix martingales [Tro11c].

In a recent work by Garg, Lee, Song and Srivastava [GLSS18], they show a Chernoff

bound for sums of matrix-valued random variables sampled via a random walk on an ex-

pander graph. This work confirms a conjecture due Wigderson and Xiao. The proof of Garg

et al. is also concerned with matrices that are not fully independent. In this case the matrices

are generated from random walks on an expander graph. The main idea to deal with depen-

dence issue is using a new multi-matrix extension of the Golden-Thompson inequality and

an adaptation of Healy’s proof of the expander Chernoff bound in the scalar’s case [Hea08]

to matrix case. Their techniques deal with fairly generic types of dependence, and cannot

leverage the very strong stability properties that arise from the negative dependence and

stochastic covering properties of Strongly Rayleigh distributions. Harvey and Olver [HO14]

proved a matrix concentration result for randomized pipage rounding, which can be used to
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show concentration results for random spanning trees obtained from pipage rounding, but

not for (weighted) uniformly random spaning trees. The central technical element of their

proof is a new variant of a theorem of Lieb on concavity of certain matrix trace functions.

Matrix martingales have played a central role in a number of algorithmic results in

theoretical computer science [KS16, CMP16, KPPS17], but beyond a reliance on Tropp’s

Matrix Freedman Inequality, these works have little in common with our approach. How-

ever, our bound does share a technical similarity with [KS16], namely that a sequence of

increasingly restricted random choices in a martingale process lead to a log n factor in a

variance bound.

Strongly Rayleigh Distributions in Theoretical Computer Science. Perhaps the

most prominent result on Strongly Rayleigh distributions in theoretical computer science is

the generalization of [MSS15b] to Strongly Rayleigh distributions.

The central technical result of [MSS15b] essentially shows that given a collection of

independent random vectors v1, . . . , vm with finite support in Cn s.t.
∑m

i=1 E[viv
∗
i ] = I and

for all i, ‖vi‖2 ≤ ε, then Pr[‖∑m
i=1 viv

∗
i ‖ ≤ (1 +

√
ε)2] > 0. [AG15] establishes a related

result for k-homogeneous Strongly Rayleigh distributions, though they require an additional

constraint on the marginal probability that any given random variable is non-zero being

bounded above by δ, and then establish Pr[‖∑m
i=1 viv

∗
i ‖ ≤ 4(ε+ δ) + 2(ε+ δ)2] > 0. Based

on this, [AG15] shows2 that given an unweighted k-edge connected graph G where every edge

has leverage score at most ε, there exists an unweighted spanning tree s.t. LT � O( 1
k

+ε)·LG.

This is referred to as a spectrally thin tree with parameter O( 1
k

+ ε).

2Their full statement is more general, see [AG15] Corollary 1.9.
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[AGR16] showed how to algorithmically sample from k-homogeneous Determinental

Point Process in time poly(k)n log(n/ε), where n is the dimension of matrix giving rise to the

determinental point process and ε is the allowed total variation distance. Their techniques

are based on generalization proofs of expansion in the base graph associated with a balanced

matroid, a result first established by [FM92].

Random spanning trees. Algorithms for sampling random spanning trees have a long

history, but only recently have they explicitly used matrix concentration [DKP+17, DPPR17,

Sch18]. The matrix concentration arguments in these papers, however, deal mostly with how

modifying a graph results in changes to the distribution of random spanning trees in the

graph. We instead study how closely random spanning trees resemble the graph they were

initially sampled from. Whether our result in turn has applications for improving sampling

algorithms for random spanning trees is unclear.

The fact that spanning tree edges exhibit negative dependence has been used strik-

ingly in concentration arguments by Goyal et al. [GRV09] to show that two random spanning

trees gives O(log n)-factor approximate cut sparsifier in bounded degree graphs, with good

probability. This is clearly false when sampling the same number of edges independently,

because this graph has large probability of having isolated vertices. Goyal et al. improve

over independent sampling by leveraging the fact that for a fixed tree, in some sense, very

few cuts of a given size exist. This is a variant of Karger’s famous cut-counting techniques

[Kar93, KS96] specialized to unweighted trees.

Uses of negatively dependent Chernoff bounds applied to tree edges also appeared in

works on approximation algorithms for TSP problems [GSS11, AGM+10], where additionally
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the connectivity properties of the tree play an important role

In contrast, the techniques of Fung et al. [FHHP11] show that O(ε−2 log2 n) spanning

trees suffice to give a (1± ε)-cut sparsifier, but they do not show that tree-based sparsifiers

improve over independent sampling, The focus of their paper is to establish that wide range

of different techniques for choosing sampling probabilities all give cut sparsifiers, by estab-

lishing a more flexible framework than the original cut-sparsifier results of Benczur-Karger

[BK96], using related cut-counting techniques (see [Kar93, KS96]). To extend their results

to spanning trees, they simply observe that the (scalar-valued) Chernoff bounds they use

directly apply to negatively dependent variables, and hence edges in spanning trees.

Fung et at. [FHHP11] also establish a lower bound, showing that for any constant c,

there exists a graph for which obtaining a factor c-cut sparsifier by averaging trees requires

using at least Ω(log n) trees to succeed with constant probability.

8.1.2 Our results and techniques

Theorem 8.1.1 (First main result, a Matrix Chernoff Bound k-homogeneous Strongly

Rayleigh Distributions). Suppose (ξ1, . . . , ξm) ∈ {0, 1}m is a random vector of {0, 1} variables

whose distribution is k-homogeneous and Strongly Rayleigh.

Given a collection of PSD matrices A1, . . . Am ∈ Rn×n s.t. for all e ∈ [m] we have

‖Ae‖ ≤ R and ‖E[
∑

e ξeAe]‖ ≤ µ.

Then for any ε > 0,

Pr

[∥∥∥∥∥
∑

e

ξeAe − E

[∑

e

ξeAe

]∥∥∥∥∥ ≥ εµ

]
≤ n exp

(
− ε2µ

R(log k + ε)
Θ(1)

)
.
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This Matrix Chernoff bound matches the bounds due to Tropp [Tro12], up to the

log k factor in the exponent. Our lower bounds rule out that a much stronger bound is true

in the ε ≈ log k regime, since the level of concentration we prove at this ε is stronger than

what is ruled out for ε ≈ log k
log log k

by the lower bound in Theorem 8.1.3. However, this does

not rule out that the log k factor in our bound is unnecessary. I.e. we cannot rule out that

a stronger concentration statement might match the bound for the independent case given

by Tropp [Tro12].

Remark 8.1.1. When the Strongly Rayleigh distribution is in fact a product distribution on

a collection of l Strongly Rayleigh distributions that are each t-homogeneous, then the joint

distribution is lt-homogeneous Strongly Rayleigh, but in Theorem 8.1.1, the factor log(lt)

can be replaced by a factor log t. This applies to the case of independent random spanning

trees, but only gives a constant factor improvement in the number of trees required.

Our work is related to the concentration inequality of Peres and Pemantle [PP14],

who showed a concentration result for scalar-valued Lipschitz functions of Strongly Rayleigh

distributions. They used Doob martingales (martingales constructed from sequences of con-

ditional expectations) to prove their result. We use a similar approach for matrices, con-

structing Doob matrix martingales from our Strongly Rayleigh distributions. In addition,

we use the stochastic covering property of Strongly Rayleigh distributions observed by Peres

and Pemantle, but implicitly derived in [BBL09]. This property leads to bounded differences

in Doob martingale sequences for scalars. As in the scalar setting, it is possible to show con-

centration results for matrix-valued martingales. We use the Matrix Freedman inequality3

3Note, however, that we are able to prove deterministic bounds on the predictable quadratic variation
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of Tropp. This inequality allows makes it possible to establish strong concentration bounds

based on control of sample norms and control of the predictable quadratic variation process

of the martingale, a matrix-valued object that is used to measure variance (see [Tro11c]). We

show that as in the scalar setting, the stochastic covering property of Strongly Rayleigh dis-

tributions leads to bounded differences for Doob matrix martingales. But, we also combine

the stochastic covering property with deceptively simple matrix martingale properties and

a negative dependence condition to derive additional bounds on the predictable quadratic

variation process of the martingale. The key negative dependence property we use is a sim-

ple observation that generalizes, to k-homogeneous Strongly Rayleigh distributions, the fact

that in a random spanning tree, conditioning on the presence of a set of edges lowers the

marginal probability of every other graph edge being in the tree (see Lemma 8.1.7). While

we frame it differently, it is essentially an immediate consequence of statements in [BBL09].

The surprise here is how useful this simple observation is for removing issues with charac-

terizing conditional k-homogeneous Strongly Rayleigh distributions. As a corollary we get

our second main result.

Theorem 8.1.2 (Second main result, concentration bound of a batch of independent random

spanning trees). Given as input a weighted graph G with n vertices and a parameter ε > 0,

let T1, T2, · · · , Tt denote t independent inverse leverage score weighted random spanning trees,

if we choose t = O(ε−2 log2 n) then with probability 1− 1/ poly(n),

(1− ε)LG �
1

t

t∑

i=1

LTi � (1 + ε)LG.

process, which means the bound we use is more analogous to a matrix version Bernstein’s inequality, adapted
to martingales. We resort to the more complicated Freedman’s inequality only because it gives a directly
applicable statement that is known in the literature.
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Prior to our work, only a trivial bound on the number of spanning trees required to

build a spectral sparsifier was known, namely that standard matrix concentration arguments

like those in [SS11] prove that O(ε−2n log n) spanning trees suffice. Note that, the number of

spanning trees required to build spectral sparsifier in our Theorem 8.1.2 matches the number

of spanning trees required to construct cut sparsifier in previous best result [FHHP11]. The

total edge count we require is Θ(ε−2n log2 n), worse by a factor log n than the bound for

independent edge sampling obtained in [SS11]. It is not clear whether this factor in necessary.

Remark 8.1.2. Suppose we apply our Theorem 8.1.3 to show that any single random spanning

tree satisfies LT � O(log n) ·LG whp. This is tight up a log log n factor. Then, one can from

use this to derive Theorem 8.1.2 based on a standard (and tight) Matrix Chernoff bound,

and a (laborious) combination of Doob martingales and stopping time arguments similar

to those found in [Tro12, KS16]. This line of reasoning will lead to the same bounds as

Theorem 8.1.3. Thus, unless one proves more than just a norm bound for each individual

tree, it is not possible improve over our result, except for log log n factors.

Like the work of Fung et al. our results for spanning trees do not improve over the

independent case. Fung et al. achieved their result by combining cut counting techniques

with Chernoff bounds for scalar-valued negatively dependent variables. In our random matrix

setting, there are no clear candidates for a Chernoff bound for negatively dependent random

matrices that we can adopt, and this type of bound is exactly what we develop in the Strongly

Rayleigh case.

We establish a one-sided concentration result for a single tree, namely that whp.

LT � O(log n) · LG. Again, this is a direct application of Theorem 8.1.1.
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Theorem 8.1.3 (Third main result, upper bound for the concentration of one random

spanning tree). Given a graph G, let T be a random spanning tree, then with probability at

least 1− 1/ poly(n)

LT � O(log n) · LG.

This upper bound is tight up to a factor log log n as shown by our almost matching

lower bound stated below.

Theorem 8.1.4 (Lower bound for the concentration of one random spanning tree). For any

n ≥ 226, there is an unweighted graph G with n nodes, s.t. if we sample an inverse leverage

score weighted random spanning tree T , then with probability at least 1− e−n.4,

LT 6≺
log n

8 log log n
· LG.

Trivially, the presence of degree one nodes in LT means that in a complete graph,

LG 6≺ LT . So choosing any other scaling of the tree will make at least one of the inequalities

LT 6≺ 1
8

log n/ log log n · LG and LG 6≺ LT true with a larger gap. Note that in the complete

unweighted graph the trees we consider have weight Θ(n) on each edge. A random spanning

tree in the complete graph has diameter about
√
n [RS67]. This can be shown to imply that

for an unweighted random tree T̂ , LG 6≺
√
nLT̂ . But once we scale up every edge of the tree

by a factor Θ(n), the diameter bound no longer directly implies a spectral gap of the form

LG 6≺ αLT for some α. In a ring graph, we get LG 6≺ (n− 2)LT and LT 6≺ LG.

We can also show in general that LT 6≺ 10 log n ·LG, but with a much smaller proba-

bility.
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Theorem 8.1.5 (Lower bound for the concentration of one random spanning tree). For any

n ≥ 4, there is an unweighted graph G with n nodes, s.t. if we sample an inverse leverage

score weighted random spanning tree T , then with probability at least 2−150 logn log logn,

LT 6≺ 10 log n · LG.

And we show a lower bound for ε-spectral sparsifiers for random spanning trees.

Theorem 8.1.6 (Lower bound for the concentration of multiple random spanning trees).

For any n ≥ 2100, there is an unweighted graph G with n nodes, s.t. for any accuracy

parameter ε ∈ (5n−0.1, 1/2), if we sample t = 0.05ε−2 log n independent random spanning

trees with edges weighted by inverse leverage score, then with probability at least 1− e−n.39,

(1− ε)LG 6≺
1

t

t∑

i=1

LTi and
1

t

t∑

i=1

LTi 6≺ (1 + ε)LG.

Our lower bound is incomparable with that of Fung et al.[FHHP11], who showed that

for any constant c, there exists a graph for obtaining a factor c-cut sparsifier by averaging

trees requires using at least Ω(log n) trees to succeed with constant probability. Where Fung

et. al [FHHP11] used triangles in their lower bound construction, our bad examples are

based on collections of small cliques, which lets us ensure cut differences in even a single

tree, by giving longer-tailed degree distributions. All of our lower bounds are based on

simple constructions from collections of edge disjoint cliques, and use the fact that the exact

distribution of degrees of a fixed vertex in a random spanning tree of the complete graph is

known. Note that a lower bound for cut approximation implies a lower-bound for spectral

approximation, because the contrapositive statement is true: spectral approximation implies

cut approximation.
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Remark 8.1.3. In fact, all our lower bounds also directly apply for cut approximation, which

is a strictly stronger result. For example, there is an unweighted graph G, s.t. if we sample

an inverse leverage score weighted random spanning tree T , then with probability at least

1− e−n.4 , T has a cut which is larger than the corresponding cut in G by a factor logn
8 log logn

.

Connection to Spectrally Thin Trees Using their MSS-type existence proof for “small

norm outcomes” of homogeneous Strongly Rayleigh distributions, [AG15] showed that in an

unweighted k-edge connected graph G where every edge has leverage score at most ε, there

exists an unweighted spanning tree T̂ s.t. LT̂ � O( 1
k

+ ε) ·LG. This is referred to a spectrally

thin tree with parameter O( 1
k

+ ε).

In contrast, applying our k-homogeneous Strongly Rayleigh Matrix Chernoff bound

to an unweighted graph G where every edge has leverage score at most ε, we can show

that an unweighted random spanning tree satisfies LT � O(ε log n)LG with high probability.

This follows immediately from our Theorem 8.1.3, because if we let T denote the unweighted

spanning tree and T̂ corresponding spanning tree with edges weighted by inverse leverage

scores, then

LT̂ =
∑

e∈T

w(e)beb
ᵀ
e

� ε
∑

e∈T

1

l(e)
w(e)beb

ᵀ
e

= εLT̂

� O(ε log n)LG

whp.
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The proof in [AG15] is based on an adaptation of the [MSS15b] proof, and does not

have clear parallels with our approach. Whereas the key properties of Strongly Rayleigh

distributions that we use are stochastic covering (a property that limits change in a dis-

tribution under conditioning) and conditional negative dependence, the central element of

their approach is a proof that certain mixed characteristic polynomials associated with k-

homogeneous distributions are real stable when the original distribution is Strongly Rayleigh.

The following Lemma captures a simple but crucial property of Strongly Rayleigh

distributions.

Lemma 8.1.7 (Shrinking Marginals). Suppose (ξ1, . . . , ξm) ∈ {0, 1}m is a random vector

of {0, 1} variables whose distribution is k-homogeneous and Strongly Rayleigh, then any set

S ⊆ [m] with |S| ≤ k for all j ∈ [m] \ S

Pr[ξj = 1|ξS = 1S] ≤ Pr[ξj = 1].

We provide a proof in Section 8.7.
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8.2 Notation

We use [n] to denote set {1, 2, · · · , n}. Given a vector x, we use ‖x‖0 to denote the

number of non-zero entries in the vector.

Matrix and norms. For a matrix A, we use A> to denote the transpose of A. We say

matrix A is positive semi-definite (PSD) if A = A> and x>Ax ≥ 0 for all x ∈ Rn. We use

�,� to denote the semidefinite ordering, e.g. A � 0 denotes that A is PSD, and A � B

means A− B � 0. We say matrix A is positive definite (PD) if A = A> and x>Ax > 0 for

all x ∈ Rn − {0}. A � B means A−B is PD.

For matrix A ∈ Rn×n, we define ‖A‖ to be the spectral norm of A, i.e.,

‖A‖ = max
‖x‖2=1,x∈Rn

x>Ax.

Let tr(A) denote the trace of a square matrix A. We use λmax(A) to denote the largest

eigenvalue of matrix A. For symmetric matrix A ∈ Rn×n, λmax(A) = ‖A‖ and tr(A) ≤ n‖A‖.

The Laplacian matrix-related definitions. Let G = (V,E,w) be a connected weighted

undirected graph with n vertices and m edges and edge weights we > 0. If we orient the

edges of G arbitrarily, we can write its Laplacian as L = B>WB, where B ∈ Rm×n is the

signed edge-vertex incidence matrix and defined as follows

B(e, v) =





1, if v is e’s head;

−1, if v is e’s tail;
0, otherwise.

and W ∈ Rm×m is the diagonal matrix with W (e, e) = we.
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8.3 Preliminaries
8.3.1 Useful facts and tools

This section, we provide some useful tools.

Fact 8.3.1. For any two square matrices A and B, we have

1

2
(A+B)2 +

1

2
(A−B)2 = A2 +B2

Proof.

1

2
(A+B)2 +

1

2
(A−B)2 =

1

2
(A+B)(A+B) +

1

2
(A−B)(A−B)

=
1

2
(A2 +BA+ AB +B2) +

1

2
(A2 −BA− AB +B2)

= A2 +B2,

which completes the proof.

Fact 8.3.2. For any two symmetric matrices

(A−B)2 � 2A2 + 2B2.

Proof. Using Fact 8.3.1, we have

(A+B)2 + (A−B)2 = 2A2 + 2B2.

Because A and B are symmetric matrices, then (A+B)2 � 0. It implies that

(A−B)2 � 2A2 + 2B2,

which completes the proof.
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8.3.2 Strongly Rayleigh distributions

This section provides definitions related to Strongly Rayleigh distributions. For more

details, we refer the readers to [BBL09, PP14].

Let µ : 2[n] → R≥0 denote a probability distribution over 2[n], and
∑

S⊆[n] µ(S) = 1.

Let x1, x2, · · · , xn denote n variables, we use x to denote (x1, x2, · · · , xn). For each

set S ⊆ [n], we define xS =
∏

i∈S xi. We define the generating polynomial for µ as follows

fµ(x) =
∑

S⊆[n]

µ(S) · xS.

We say distribution µ is k-homogeneous if the polynomial fµ is a homogeneous poly-

nomial of degree k. In other words, for each S ∈ supp(µ), |S| = k.

We say a polynomial p(x1, x2, · · · , xn) is stable, if Im(xi) > 0, ∀i ∈ [n], then p(x1, · · · , xn) 6=

0. We say polynomial p is real stable, it is stable and all of its coefficients are real. We say

µ is a Strongly Rayleigh distribution if fµ is a real stable polynomial.

Fact 8.3.3 (Conditioning on subset of coordinates). Consider a random vector (ξ1, . . . , ξm) ∈

{0, 1}m whose distribution is k-homogeneous Strongly Rayleigh. Suppose we get a binary

vector b = (b1, . . . , bt) ∈ {0, 1}t with ‖b‖0 = l ≤ k, and we get a set S ⊂ [m] with |S| =

t. Then conditional on ξS = b, the distribution of ξ[m]\S is (k − l)-homogeneous Strongly

Rayleigh.

This fact tells us that if we condition on the value of some entries in the vector, the

remaining coordinates still have a Strongly Rayleigh distribution.
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Fact 8.3.4 (Stochastic Covering Property). Consider a random vector (ξ1, . . . , ξm) ∈ {0, 1}m

whose distribution is k-homogeneous Strongly Rayleigh. Suppose we are given an index i ∈

[m]. Let ξ′ = ξ[m]\{i} be the distribution on entries of ξ except i. Let ξ′′ be the distribution of

ξ[m]\{i} conditional on ξi = 1. Then, there exists a coupling between ξ′ and ξ′′ (i.e. a joint

distribution the two vectors), s.t. in every outcome of the coupling the value of ξ′ can be

obtained from the value of ξ′′ by either changing a single from 0 to 1 or by leaving all entries

unchanged.

This fact is known as the Stochastic Covering Property (see [PP14]). It gives us a

convenient tool for relating the conditional distribution of a subset of the coordinates of the

vector to the unconditional distribution.

Note that by Fact 8.3.3, the distribution of ξ′′ used in Fact 8.3.4 is k−1 homogeneous.

In contrast, the outcomes of ξ′ may have k or k − 1 ones. Fact 8.3.4 tells us that we can

pair up all the outcomes of the conditional distribution ξ′′ with outcome of the unconditional

distribution ξ′ s.t. only a small change is required to make them equal. This tells us that

the distribution is in some sense not changing too quickly under conditioning.

8.3.3 Random spanning trees

We provide the formal definition of random spanning tree in this section.

We use the same definitions about spanning trees as [DKP+17]. Let TG denote the

set of all spanning subtrees of G. We now define a probability distribution on these trees.

Definition 8.3.1 (w-uniform distribution on trees). Let DG be a probability distribution
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on TG such that

Pr
X∼DG

[X = T ] ∝
∏

e∈T

we.

We refer to DG as the w-uniform distribution on TG. When the graph G is un-

weighted, this corresponds to the uniform distribution on TG. Crucially, random spanning

tree distributions are Strongly Rayleigh, as shown in [BBL09].

Fact 8.3.5 (Spanning Trees are Strongly Rayleigh). In a connected weighted graph G, the

w-uniform distribution on spanning trees is (n− 1)-homogeneous Strongly Rayleigh.

Definition 8.3.2 (Effective Resistance). The effective resistance of a pair of vertices u, v ∈

VG is defined as

Reff(u, v) = b>u,vL
†bu,v,

where bu,v is an all zero vector corresponding to VG, except for entries of 1 at u and −1 at v.

The a reference for following standard fact about random spanning trees can be found

in [DKP+17].

Definition 8.3.3 (Leverage Score). The statistical leverage score, which we will abbreviate

to leverage score, of an edge e = (u, v) ∈ EG is defined as

le = weReff(u, v).

Fact 8.3.6 (Spanning Tree Marginals). The probability Pr[e] that an edge e ∈ EG appears

in a tree sampled w-uniformly randomly from TG is given by

Pr[e] = le,

where le is the leverage score of the edge e.
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8.4 A Matrix Chernoff Bound for Strongly Rayleigh Distributions

We first define a mapping which maps an element into a psd matrix.

Definition 8.4.1 (Y -operator). We use Γ to denote [m], we define a mapping Y : Γ→ Rn×n

such that Ye is a psd matrix and ‖Ye‖ ≤ R.

Throughout this section, we will use ξ ∈ {0, 1}m to denote a random lengthm boolean

vector whose distribution is k-homogeneous Strongly Rayleigh. For any set S ⊆ [m], we use

ξS to denote the length |S| vector that only chooses the entry from indices in S.

We will frequently need to work with a different representation of the random variable

ξ. We use γ to denote this second representation. The random variable γ is composed of a

sequence of k random indices γ1, γ2, · · · , γk, each of which takes a value e1, e2, · · · , ek ∈ [m].

The indices give the locations of the ones in ξ, i.e. in an outcome of the two variables (ξ, γ),

we always have ξ{γ1,γ2,··· ,γk} = 1 and ξ[m]\{γ1,γ2,··· ,γk} = 0. Additionally, we want to ensure that

the distribution of γ is invariant under permutation: This can clearly be achieved by starting

with any distribution for γ that satisfies the coupling with ξ and the applying a uniformly

random permutation to reorder the k indices of γ (see [PP14] for a further discussion).

For convenience, for each i ∈ [k], we define γ≤i and γ≥i as abbreviated notation for

γ1, γ2, · · · , γi and γi, γi+1, · · · , γk

respectively. Let S = {e1, e2, · · · , ei} ⊂ [m] be one possible assignment for indices of a subset

of the ones in ξ, (we require i ≤ k). Then the distribution of ξ[m]\S conditional on ξS = 1 is

the same as the the distribution of ξ[m]\S conditional on (γ1, γ2, · · · , γi) = (e1, e2, · · · , ei). In
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other words, in terms of the resulting distribution of ξ[m]\S, it is equivalent to condition on

either γ≤i or ξγ≤i = 1. We define matrix Z ∈ Rn×n as follows.

Definition 8.4.2 (Z). Let Z denote
∑

e∈Γ ξe · Ye where ‖ξ‖0 = k. Due to the relationship

between ξ and γ, we can also write Z as

Z =
k∑

i=1

Yγi .

For simplicity, for each i ∈ [k], we define Z≤i and Z≥i as follows,

Z≤i =
i∑

j=1

Yγj and Z≥i =
k∑

j=i

Yγj .

We define a series of matrices Mi ∈ Rn×n as follows

Definition 8.4.3 (Mi, martingale). We define M0 = E[Z]. For each i ∈ {1, 2, · · · , k − 1},

we define Mi as follows

Mi = E
γ≥i+1

[Z | γ1, · · · , γi].

It is easy to see that

E
γi+1

[Mi+1] = Mi,

which implies

E
γi+1

[Mi+1 −Mi | γ1, · · · , γi] = 0. (8.1)

Note that we can split Z up as

Z =
k∑

j=i+2

Yγj + Yγi+1
+

i∑

j=1

Yγj

= Z≥i+2 + Yγi+1
+ Z≤i (8.2)
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And similarly Z = Z≥i+1 + Z≤i.

In order to relateMi andMi+1, we will consider a fresh copy of γ≥i+1 which we denote

by γ̂≥i+1. We denote the corresponding fresh copy of Z≥i+1, by Ẑ≥i+1. We can now give an

equivalent definition of Mi in terms of the expectation over γ̂≥i+1, while Mi+1 is still defined

in terms of the expectation over γ≥i+2, so that

Mi = E
γ̂≥i+1

[Ẑ≥i+1 + Z≤i | γ1, · · · , γi] and Mi+1 = E
γ≥i+2

[Z≥i+2 + Yγi+1
+ Z≤i | γ1, · · · , γi, γi+1]

(8.3)

Note that both still depend on the same γ≤i vector, and Mi+1 depends on γi+1, but Mi

does not. So far, we have simply introduced a sligtly different notation for Mi, since the

expectation operation ensures that the value of Mi is unchanged.

We let ξ ∈ {0, 1}m denote the binary vector indicating the positions of indices

γ1, · · · , γi, γi+1, · · · , γk. while letting ξ̂ ∈ {0, 1}m indicate the positions of indices of γ1, · · · , γi,

γ̂i+1, · · · , γ̂k.

Note that k-homogeneous Strongly Rayleigh implies the stochastic covering property.

By Fact 8.3.4, the stochastic covering property implies that a coupling exists s.t. adding

either one or no extra “ones” to the vector ξ[m]\γi+1
results in the vector ξ̂[m]\γi+1

. But, since

ξ[m]\γi+1
is k − 1 homogenous and ξ̂[m] is k-homogenous, we can conclude that ξ̂[m]\γi+1

is

obtained from ξ[m]\γi+1
by adding no ones, if and only ξ̂[m] has a one at index γi+1. From this

we conclude a more helpful form of stochastic covering: we can construct an index γ̃i+1 and

a coupling s.t. conditional on γi+1, the indices γ̃i+1, γi+2, · · · , γk have the same distribution

as γ̂i+1, γ̂i+2, · · · , γ̂k. Thus

Z≥i+2 + Yγ̃i+1
= Ẑ≥i+1. (8.4)
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We define Xi+1 = Mi+1 −Mi and then by Eq. (8.1)

E
γi+1

[Xi+1 | γ1, · · · , γi] = 0. (8.5)

Then we can rewrite Xi+1 in the following way,

Claim 8.4.1. Let Dγ≤i+1
denote the coupling distribution between Z≥i+2 and Yγ̃i+1

such that

Eq. (8.4) holds. Then

Xi+1 = Yγi+1
− E

(Z≥i+2,Yγ̃i+1
)∼Dγ≤i+1

[Yγ̃i+1
| γ≤i+1].

Proof. Note that in the following proof, we should think of γ≤i+1 as fixed.

Xi+1 = Mi+1 −Mi

= E
γ≥i+2

[Z | γ≤i+1]− E
γ≥i+1

[Z | γ≤i]

= E
γ≥i+2

[
Z≥i+2 + Yγi+1

+ Z≤i

∣∣∣∣ γ≤i+1

]
− E

γ̂≥i+1

[
Ẑ≥i+1 + Z≤i

∣∣∣∣ γ≤i
]

= E
γ≥i+2

[
Z≥i+2 + Yγi+1

+ Z≤i

∣∣∣∣ γ≤i+1

]
− E

(Z≥i+2,Yγ̃i+1
)∼Dγ≤i+1

[
Z≥i+2 + Yγ̃i+1

+ Z≤i

∣∣∣∣ γ≤i+1

]

= E
(Z≥i+2,Yγ̃i+1

)∼Dγ≤i+1

[
Yγi+1

− Yγ̃i+1
| γ≤i+1

]
(8.6)

where the first equality follows by definition of Xi+1, the second equality follows by Defini-

tion 8.4.3, the third equality follows by Eq. (8.3), the fourth equality follows by Eq. (8.4),

and the fifth equality is by linearity of expectation and cancellation of terms that agree.

Once we condition on γ≤i and γi+1 being fixed, then Yγi+1
is also fixed. Thus in

Eq. (8.6), we can move Yγi+1
out of Expectation, so that the right hand side of Eq. (8.6)

becomes

E
(Z≥i+2,Yγ̃i+1

)∼Dγ≤i+1

[
Yγi+1

− Yγ̃i+1
| γ≤i+1

]
= Yγi+1

− E
(Z≥i+2,Yγ̃i+1

)∼Dγ≤i+1

[Yγ̃i+1
| γ≤i+1]. (8.7)
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Fact 8.4.2. We condition on γ≤i+1. Let Dγ≤i+1
denote the coupling distribution such that

Z≥i+2 + Yγ̃i+1
= Ẑ≥i+1 holds. We define Uγi+1

as follows

Uγi+1
= E

(Z≥i+2,Yγ̃i+1
)∼Dγ≤i+1

[Yγ̃i+1
| γ≤i+1].

Then, we have the following four properties,

(I) E
γi+1

[Uγi+1
| γ≤i] = E

γi+1

[Yγi+1
| γ≤i],

(II) ‖Yγi+1
‖ ≤ R, ‖Uγi+1

‖ ≤ R,

(III) ‖Yγi+1
− Uγi+1

‖ ≤ R,

(IV) Y 2
γi+1
� R · Yγi+1

, U2
γi+1
� R · Uγi+1

.

Proof. Proof of (I). We have

E
γi+1

[Uγi+1
| γ≤i] = E

γi+1

[
E

(Z≥i+2,Yγ̃i+1
)∼Dγ≤i+1

[
Yγ̃i+1

∣∣ γ≤i+1

] ∣∣∣∣ γ≤i
]

= E
γi+1

[
E

(Z≥i+2,Yγ̃i+1
)∼Dγ≤i+1

[
Yγ̃i+1

∣∣ γ≤i+1

]
− Yγi+1

+ Yγi+1

∣∣∣∣ γ≤i
]

= E
γi+1

[
−Xi+1 + Yγi+1

∣∣ γ≤i
]

= E
γi+1

[
−Xi+1

∣∣ γ≤i
]

+ E
γi+1

[
Yγi+1

∣∣ γ≤i
]

= E
γi+1

[
Yγi+1

∣∣ γ≤i
]
,

where the third step follows by Eq. (8.7) and Eq. (8.6), the fourth step follows by linearity

of expectation, and the last step follows by Eγi+1
[−Xi+1 | γ≤i] = 0.

Proof of (II).
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By definition of Y , we have ‖Yγi+1
‖ ≤ R.

‖Uγi+1
‖ =

∥∥∥∥∥ E
(Z≥i+2,Yγ̃i+1

)∼Dγ≤i+1

[Yγ̃i+1
| γ≤i+1]

∥∥∥∥∥
≤ E

(Z≥i+2,Yγ̃i+1
)∼Dγ≤i+1

[∥∥Yγ̃i+1

∥∥ | γ≤i+1

]

≤ R.

Proof of (III). For any two PSD matrices A andB, we have ‖A−B‖ ≤ max(‖A‖, ‖B‖).

Because both Yγi+1
and Uγi+1

are PSD matrices and max(‖Yγi+1
‖, ‖Uγi+1

‖) ≤ R, we get the

desired property.

Proof of (IV).

It follows by (II) and that Yγi+1
and Uγi+1

are both PSD matrices.

We can show

Claim 8.4.3.

E
γi+1

[
(Yγi+1

− Uγi+1
)2 | γ≤i

]
� 4R · E

γi+1

[Yγi+1
|γ≤i]

Proof.

E
γi+1

[
(Yγi+1

− Uγi+1
)2 | γ≤i

]

� E
γi+1

[
2Y 2

γi+1
+ 2U2

γi+1
| γ≤i

]

� E
γi+1

[
2R · Yγi+1

+ 2R · Uγi+1
| γ≤i

]

� E
γi+1

[
4R · Yγi+1

| γ≤i
]
,
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where the first step follows by Fact 8.3.2, and the second step follows by U2
γi+1
� R · Uγi+1

and Y 2
γi+1
� R · Yγi+1

.

Lemma 8.4.4. Let E[
∑

e∈Γ ξeYe] � µI. For each i ∈ {1, 2, · · · , k}, we have

E
γi

[Yγi | γ≤i−1] � 1

k + 1− iµI.

Proof. We use 1 to denote a length i−1 vector where each entry is one. We can think of γ≤i−1

as having its values already set to some edges in Γ, for example γ1 = e1, · · · , γi−1 = ei−1. Note

that all of the e1, · · · , ei−1 must be distinct. Then we use Γ\γ≤i−1 to denote Γ\{e1, · · · , ei−1}.

E [Yγi | γ≤i−1] =
∑

e∈Γ\γ≤i−1

Pr[γi = e | γ≤i−1] · Ye

=
∑

e∈Γ\γ≤i−1

Pr[ξe = 1 | γ≤i−1]

k − (i− 1)
· Ye

=
∑

e∈Γ\γ≤i−1

Pr[ξe = 1 | ξγ≤i−1
= 1]

k − (i− 1)
· Ye

�
∑

e∈Γ\γ≤i−1

Pr[ξe = 1]

k − (i− 1)
· Ye

�
∑

e∈Γ

Pr[ξe = 1]

k − (i− 1)
· Ye

=
1

k − (i− 1)
E

[∑

e

ξeYe

]

� 1

k + 1− iµI

where the first step follows by definition of expectation, the second step follows by Pr[γi =

e | γ≤i−1] = Pr[ξe = 1 | γ≤i−1]/(k − (i − 1)), the third step follows because [·|γ≤i−1] is

equivalent to [·|ξγ≤i−1 = 1], the fourth step follows by (Pr[ξe = 1 | ξγ≥i−1 = 1] ≤ Pr[ξe = 1])
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from the Shrinking Marginals Lemma 8.1.7, the fifth step follows by relaxing Γ\γ≤i−1, the

sixth step follows by Pr[ξe = 1] = E[ξe] and linearity of expectation, and the last step follows

by E[
∑

e∈Γ ξeYe] � µI.

Lemma 8.4.5. For each i ∈ {1, 2, · · · , k}

E
γi

[
X2
i | γ≤i−1

]
� 4µR

1

k + 1− iI.

Proof. It follows by combining Claim 8.4.3 and Lemma 8.4.4 directly.

The above lemma implies this corollary directly

Corollary 8.4.6.

k∑

i=1

E
γi

[
X2
i | γ≤i−1

]
� 10µR log k · I.

8.4.1 Main result

To prove our main theorem 8.1.1, we need a useful tool for random matrices: Freed-

man’s inequality for matrices (Lemma A.2.1).

Proof. of Theorem 8.1.1.

We use Y to denote A and Γ to denote [m].

In order to use Lemma A.2.1, we first we define Wi as follows

Wi =
i∑

j=1

E
γi

[
X2
i | γ≤i−1

]
.
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According to definition ofMi, {M0,M1,M2 · · · } is a matrix martingale andMk−M0 =
∑

e ξeAe − E[
∑

e ξeAe].

We have proved the following facts,

The first one is, Eγi [Xi|γ≤i−1] = 0. It follows by Eq. (8.5)

The second one is

λmax(Xi) ≤ R

It follows by combining Property (III) of Fact 8.4.2 and Claim 8.4.1.

The third one is

‖Wi‖ ≤ σ2,∀i ∈ [k]

where σ2 = 10µR log k. It follows by Corollary 8.4.6.

Thus,

Pr [λmax(Mk −M0) ≥ εµ] ≤ n exp

(
− (εµ)2/2

σ2 +R(εµ)/3

)
.

We have

t2/2

σ2 +Rt/3
=

ε2µ2/2

10µR log k +Rεµ/3
by choosing t = εµ

=
3ε2µ

(60 log k + 2ε)R
.

Thus we prove one side of the bound. Since Eγi [−Xi|γ≤i−1] = 0 and Eγi [(−Xi)
2|γ≤i−1] =

Eγi [X2
i |γ≤i−1], then following the similar procedure as proving λmax, we have bound for λmin

Pr[λmin(Mk −M0) ≤ −εµ] ≤ n exp

(
− 3ε2µ

(60 log k + 2ε)R

)
.

Putting two sides of the bound together, we complete the proof.
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8.5 Applications to Random Spanning Trees

In this section, we show how to use Theorem 8.1.1 to prove the bound for one random

spanning and also summation of random spanning trees.

Proof. of Theorem 8.1.3.

Let G = (V,E,w) be a undirected weighted graph, w : E → R, which is connected.

The Laplacian of G is LG =
∑

e∈E w(e)beb
ᵀ
e .

Let T ⊆ E be a random spanning tree of G in the sense of Definition 8.3.1. Let

the weights of the edges in T be given by w′ : T → R where w′(e) = w(e)/le, where le

is the leverage score of e in G. Thus the Laplacian of the tree is LT =
∑

e∈T w
′(e)beb

ᵀ
e =

∑
e∈T

w(e)
le
beb
ᵀ
e . Then by Fact 8.3.6, Pr[e ∈ T ] = le, and hence E[LT ] = LG.

Note also that for all e ∈ E, ||(L†G)1/2w(e)beb
ᵀ
e(L

†
G)1/2|| = le. Consider the random

matrix (L†G)1/2LT (L†G)1/2. The distribution of edge in the spanning tree can be seen as an

n− 1 homogeneous vector in {0, 1}m where m = |E|. To apply Theorem 8.1.1, let ξe be the

eth entry of this random vector, and

Ae = (L†G)1/2w′(e)beb
ᵀ
e(L

†
G)1/2

Note Ae � 0. Now ||Ae|| = 1 and E [
∑

e ξeAe] = E[(L†G)1/2LT (L†G)1/2] = (L†G)1/2LG(L†G)1/2 =

Π = I − 1
n
11ᵀ, where we used in the last equality that the null space of the Laplacian of a

connected graph is the span of the all ones vector. Thus, as each we get ||E [
∑

e ξeAe] || = 1

This means we can apply Theorem 8.1.1 with R = 1, µ = 1 and ε = 100 log n to whp.

||(L†G)1/2LT (L†G)1/2 − Π|| ≤ 100 log n.
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As LT is a Laplacian, it has 1 in the null space, so can conclude that (L†G)1/2LT (L†G)1/2 �

100 log nΠ. Hence LT � log nLG.

Proof. of Theorem 8.1.2.

The proof is similar to the proof of Theorem 8.1.3. Now we view the edges of

t = O(ε−2 log2 n) independent random spanning trees as a t(n − 1)-homogeneous Strongly

Rayleigh Distribution a vector in {0, 1}t|E| . Note that the product of independent Strongly

Rayleigh distributions is Strongly Rayleigh [BBL09]. Again we get ||E [
∑

e ξeAe] || = 1, but

now we can take R = 1
t
, and hence we obtain the desired result by plugging into Theo-

rem 8.1.1.
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8.6 Lower bounds
8.6.1 Single spanning tree, low probability

The goal of this section is to prove Theorem 8.1.5. First, we recall a helpful fact

estbliashed by Prüfer [Prü18].

Fact 8.6.1. If T is a uniformly random spanning tree of the complete graph G on n vertices,

the degree distribution of a fixed node v in T is 1 + Binomial(n− 2, 1/n).

We now prove two claims that will serve as helpful tools, Claims 8.6.2 and 8.6.3.

Claim 8.6.2. Let G be complete graph Kn with n ≥ 4, let T denote a random spanning

tree, the probability that at least one node of the T has degree at least b log n is at least

2−b logn log(b logn)−3.

Proof. By Fact 8.6.1, the degree distribution of a fixed node in T is, 1+Binomial(n−2, 1/n).

For a random variable x sampled from Binomial(n− 2, 1/n), we use qi to denote the

probability that x = i.

580



Let p = 1/n. We consider qb logn, which is

qb logn =

(
n− 2

b log n

)
· pb logn · (1− p)n−2−b logn

=

(
n− 2

b log n

)
· (1/n)b logn · (1− 1/n)n−2−b logn by p = 1/n

≥ ((n− 2)/(b log n))b logn · (1/n)b logn · (1− 1/n)n−2−b logn

= (b log n)−b logn · ((n− 2)/n)b logn · (1− 1/n)n−2−b logn

≥ (b log n)−b logn · (1− 2/n)b logn · (1− 2/n)n−2−b logn

= (b log n)−b logn · (1− 2/n)n−2

≥ (b log n)−b logn · 1

e2

≥ 2−b logn·log(b logn)−3.

where the seventh step follows by (1− 2/n)n−2 ≥ 1/e2 when n ≥ 4.Then the desired proba-

bility is
n∑

i=b logn

qi ≥ 2−b logn·log(b logn)−3.

Claim 8.6.3. Let G be a complete graph Kn, let T denote a random spanning tree, if T has

a node with degree at least d, then the inverse leverage score weighted Laplacian of the tree

satisfies

LT 6� (d/2) · LG.

Proof. There are n(n− 1)/2 edges in the graph G. Let le denote the leverage of each e ∈ G.

The the sum of the leverage scores is
∑

e∈G le = n− 1, e.g. see [SS11]. Since all the edges in

the graph G are symmetric, we have le = 2/n for all edge e in G.
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Let v denote a fixed node in graph G and let d be the degree of v. Let Lv denote

the Laplacian matrix of the subgraph of T consisting of edges incident on v, i.e. the star of

d+ 1 nodes with v at the center, and with edge weights as in T (which differ from those in

G). We should think of Lv as a n× n matrix with only d+ 1 nonzeros on the diagonal.

Observe that λmax(Lv) ≤ n
2
λmax(LKd+1

) ≤ n
2
(d+ 1). We can also exhibit a unit vector

x = 1√
d2+d

(d,−1, · · · ,−1), for which x>Lvx = n
2
(d + 1) which implies that λmax(Lv) ≥

n
2
(d+ 1). Therefore λmax(Lv) = n

2
(d+ 1).

We can split the LT into two parts,

LT = Lv + LT\v

and both parts are PSD matrices. We also know that λmax(LG) = n. Thus,

LT 6� (d/2) · LG.

Proof. of Theorem 8.1.5.

The proof is a direct combination of Claim 8.6.2 and Claim 8.6.3.

The approximation ratio is

d

2
=
b log n

2
= 10 log n,

where the last step follows by choosing b = 20.
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Then the probability is

2−b logn log(b logn)−3 = 2−b logn log logn−b logn log b−3

≥ 2−20 logn log logn−20 logn log 20−3

≥ 2−150 logn log logn

where the last step follows by log log n ≥ 1 when n ≥ 4.

8.6.2 Single spanning tree, high probability

Proof. of Theorem 8.1.4.

Let C = 4, and let δ = 1/(C log log n). Note we have assumed n ≥ 226 , which ensures

that δ < 0.05.

We constuct a graph of size n as a union of n1−δ cliques of size n1−δ that are disjoint

except they all share one central vertex. Applying Claim 8.6.2 with n replaced by nδ, and

b = 1, and assuming nδ ≥ 8, we get that for each clique, the probability that at least one

node has degree at least log nδ in T is at least

2−δc0 logn·log(δ logn)

where c0 = 2. We can lower bound this probability:

2−δc0 logn·log(δ logn) = 2−
c0 logn
C log logn

log( 1
C log logn

logn)

≥ 2−
c0 logn
C log logn

log logn

= 2−(c0 logn)/C

= n−c0/C ,
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where the first step follows by δ = 1/(C log log n).

The probability that at least one node in G has degree at least log nδ in T is at least

1− (1− 2−δc0 logn log(δ logn))n
1−δ

= 1−
(

1− 1

nc0/C

)n1−δ

= 1−
(

1− 1

nc0/C

)nc0/C · n1−δ

nc0/C

≥ 1− (1/e)n
1−δ−c0/C

≥ 1− (1/e)n
0.4

,

where the last step follows by δ ≤ 0.05, c0 = 2 and C = 4. Thus, we have the desired

probability.

Using Claim 8.6.3, we have the approximation ratio

d

2
=

log(nδ)

2
=
δ log n

2
=

log n

2C log log n
=

log n

8 log log n
.

Note that we still need to make sure nδ ≥ 8, which is implied by 2logn/4 log logn ≥ 23

which is equivalent to log n ≥ 12 log log n. This holds for all n ≥ 226 : At n = 226 , log n =

26 > 60 = 12 · 5 = 12 log log n, and as n grows, the left hand side grows faster than the right

hand side.

8.6.3 Sum of a batch of spanning trees

Proof. of Theorem 8.1.6.

We constuct a graph of size n as a union of n1−δ cliques of size n1−δ that are disjoint

except they all share one central vertex. The parameter δ ∈ (0, 1) will be decided later.
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We use H to denote the graph formed by a collection of trees T1, T2, · · · , Tt. Let LH
denote the Laplacian matrix of new graph H.

We use deg(v) to denote the degree of a vertex v. We use wdeg(v) to denote weighted

degree (after re-weighting). In the original graph G and the new graph H, we have for each

vertex v, that

wdegH(v) =
d

2t
degH(v), and wdegG(v) = degG(v).

By our construction of the graph, it is easy to see that degG(v) = nδ for all vertices v except

the special central vertex that appears in all the cliques. Let d = nδ. Let ξ1 denote the event

that there exists a vertex x ∈ V such that

wdegH(x) > (1 + ε) wdegG(x),

and let ξ2 denote that there exists a vertex y ∈ V , such that

wdegH(y) < (1− ε) wdegG(y).

We want to show that events ξ1 and ξ2 both occur simultaneously with probability at least

1 − e−n
0.39 , which implies absence of spectral (1 ± ε) approximation, as desired. We first

bound the probability of ξ1. Note that

Pr[wdegH(v) ≥ (1 + ε) wdegG(v)] = Pr

[
d

2t
degH(v) ≥ (1 + ε) degG(v)

]

≥ Pr

[
d

2t
degH(v) ≥ (1 + ε)d

]

= Pr[degH(v) ≥ 2t(1 + ε)]

= Pr[degH(v)− t ≥ t(1 + 2ε)].
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By Fact 8.6.1, the degree of a fixed node in Ti is distributed as 1+Binomial(d−2, 1/d).

Then as H is a union of independent spanning trees, the degree in H of a fixed node is

distributed as t+ Binomial(t(d− 2), 1/d).

For a random variable x sampled from Binomial(t(d− 2), 1/d), we know that E[x] =

t(1− 2/d). For ε > 5/d

t(1 + 2ε) = t(1− 2/d) + (2t/d− 2εt+ 8εt/d) + 4εt(1− 2/d)

≤ t(1− 2/d) + (10t/d− 2εt) + 4εt(1− 2/d) by ε ≤ 1

≤ t(1− 2/d) + 4εt(1− 2/d) by ε > 5/d.

So it suffices to calculate the probability that

x ≥ t(1− 2/d) + 4εt(1− 2/d). (8.8)

For any k ≥ 10, p ∈ (0, 1/2), ε ∈ (0, 1/2) with ε2pk ≥ 3, using Lemma A.1.8, we

can prove the probability that Eq. (8.8) holds is at least 2−cε
2kp, where c = 9. We choose

k = t(d − 2) and p = 1/d, and get that this probability is at least 2−cε
2t(d−2)/d. Now, the

probability that event ξ1 holds is at least

1− (1− 2−cε
2t(1−2/d))n

1−δ

We have

2−cε
2t(1−2/d) ≥ 2−cε

2t

≥ 1/n0.5

where the last step follows by t ≤ 0.5 log n/(cε2).
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Thus, we have

1− (1− 2−cε
2t(1−2/d))n

1−δ ≥ 1− (1− 1/n0.5)n
1−δ

≥ 1− e−n1−δ−0.5

= 1− e−n0.4

by δ = 0.1

We summarize the conditions for ε:

ε ≥ max(5/d, 3/
√
pn)

= max(5/n0.1, 3/
√
pn) by d = n0.1

≥ max(5/n0.1, 5/
√
t)

Since we choose t = 0.05ε−2 log n, then as long as log n ≥ 100 we have ε ≥ 5/
√
t.

Similarly, we can control the probability of event ξ2 similarly, completing the proof.
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8.7 Shrinking Marginals Lemma

Lemma 8.7.1 (Restatement of Lemma 8.1.7, Shrinking Marginals). Suppose (ξ1, . . . , ξm) ∈

{0, 1}m is a random vector of {0, 1} variables whose distribution is k-homogeneous and

Strongly Rayleigh, then any set S ⊆ [m] with |S| ≤ k for all j ∈ [m] \ S

Pr[ξj = 1|ξS = 1S] ≤ Pr[ξj = 1]

Proof. Note that by an immediate consequence of negative association, for any pair i, j ∈ [m],

with i 6= j,

Pr[ξj = 1 | ξi = 1] ≤ Pr[ξj = 1 | ξi = 0].

Hence

Pr[ξj = 1 | ξi = 1] ≤ Pr[ξj = 1|ξi = 1] · Pr[ξi = 1] + Pr[ξj = 1|ξi = 0] · (1− Pr[ξi = 1])

= Pr[ξj = 1]

By [BBL09], the distribution of ξ[m]\{i} ∈ {0, 1}m−1 conditional on ξi = 1 is Strongly Rayleigh.

With loss of generality, let us order the indices s.t. S = {1, . . . , s}, where s ≤ k. We

use [i] to denote {1, 2, · · · , i}. Using the above observations, we can now prove the lemma

by induction. The induction hypothesis at the i-th step (where i ≤ k), is that the following

two statements are true.

1. ∀j ∈ {i+ 1, . . . ,m}.Pr[ξj = 1 | ξ[i] = 1] ≤ Pr[ξj = 1]

2. The distribution of the vector of random variables ξm\[i] ∈ {0, 1}m−i conditional on

ξ[i] = 1 is Strongly Rayleigh.
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Chapter 9

Four Derivation Suffice for Rank 1 Matrix

We prove a matrix discrepancy bound that strengthens the famous Kadison-Singer

result of Marcus, Spielman, and Srivastava. Consider any independent scalar random vari-

ables ξ1, . . . , ξn with finite support, e.g. {±1} or {0, 1}-valued random variables, or some

combination thereof. Let u1, . . . , un ∈ Cm and

σ2 =

∥∥∥∥∥
n∑

i=1

V[ξi](uiu
∗
i )

2

∥∥∥∥∥ .

Then there exists a choice of outcomes ε1, . . . , εn in the support of ξ1, . . . , ξn s.t.
∥∥∥∥∥

n∑

i=1

E[ξi]uiu
∗
i −

n∑

i=1

εiuiu
∗
i

∥∥∥∥∥ ≤ 4σ.

A simple consequence of our result is an improvement of a Lyapunov-type theorem of Ake-

mann and Weaver.
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9.1 Introduction

Discrepancy theory is an area of combinatorics that studies how well continuous

objects can be approximated by discrete ones. It lies at the heart of numerous problems

in mathematics and computer science [Cha00]. Although closely tied to probability theory,

direct randomized approaches rarely yield the best bounds. In a classical formulation in

discrepancy theory, we have n sets on n elements, and would like to two-color the elements

so that each set has roughly the same number of elements of each color. Using a simple

random coloring, it is an easy consequence of Chernoff’s bound that there exists a coloring

such that the discrepancy in all n sets is O(
√
n log n) [AS16]. However, in a celebrated result,

Spencer showed that in fact there is a coloring with discrepancy at most 6
√
n [Spe85].

Recently, there has been significant success in generalizing Chernoff [Che52], Ho-

effding, Bernstein, and Bennett-type concentration bounds for scalar random variables to

matrix-valued random variables [Rud99, AW02, Tro12]. Consider the following matrix con-

centration bound, which is a direct consequence of a matrix Hoeffding bound.

Theorem 9.1.1 ([Tro12]). Let ξi ∈ {±1} be independent, symmetric random signs and

A1, . . . , An ∈ Cm×m be positive semi-definite matrices. Suppose maxi∈[n] ‖Ai‖ ≤ ε and

‖∑n
i=1Ai‖ ≤ 1. Then,

Pr

[∥∥∥∥∥
n∑

i=1

ξiAi

∥∥∥∥∥ ≥ t
√
ε

]
≤ 2m exp(−t2/2).

A consequence of this theorem is that with high probability

∥∥∥∥∥
n∑

i=1

ξiAi

∥∥∥∥∥ = O(
√

logm)
√
ε. (9.1)
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The Kadison-Singer theorem of [MSS15b] is essentially equivalent to the following statement

(which can readily be derived from the bipartition statement in [MSS15b]).

Theorem 9.1.2 ([MSS15b]). Let u1, . . . , un ∈ Cm and suppose maxi∈[n] ‖uiu∗i ‖ ≤ ε and
∑n

i=1 uiu
∗
i = I. Then, there exists signs ξi ∈ {±1} s.t.

∥∥∥∥∥
n∑

i=1

εiuiu
∗
i

∥∥∥∥∥ ≤ O(
√
ε).

Thus, for rank 1 matrices the theorem improves on the norm bound in Equation (9.1),

by a factor
√

logm, in a manner analogous to the improvement of Spencer’s theorem over

the bound based on the scalar Chernoff bound.

For random signings of matrices one can establish bounds in some cases that are much

stronger than Theorem 9.1.1.

Theorem 9.1.3 ([Tro12]). Let ξi ∈ {±1} be independent random signs, and let A1, . . . , An ∈

Cm×m be Hermitian matrices. Let σ2 = ‖∑n
i=1 V[ξi]A

2
i ‖ . Then,

Pr

[∥∥∥∥∥
n∑

i=1

E[ξi]Ai −
n∑

i=1

ξiAi

∥∥∥∥∥ ≥ t · σ
]
≤ 2m exp(−t2/2).

From this theorem we deduce that with high probability
∥∥∥∥∥

n∑

i=1

E[ξi]Ai −
n∑

i=1

ξiAi

∥∥∥∥∥ = O(
√

logm)σ. (9.2)

Of course, this implies that there exists a choice of signs ε1, . . . , εn ∈ {±1} such that
∥∥∥∥∥

n∑

i=1

E[ξi]Ai −
n∑

i=1

εiAi

∥∥∥∥∥ = O(
√

logm)σ.

Our main result demonstrates that for rank-1 matrices, there exists a choice of signs with a

stronger guarantee.
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Theorem 9.1.4 (Main Theorem). Consider any independent scalar random variables ξ1, . . . , ξn

with finite support. Let u1, . . . , un ∈ Cm and

σ2 =

∥∥∥∥∥
n∑

i=1

V[ξi](uiu
∗
i )

2

∥∥∥∥∥ .

Then there exists a choice of outcomes ε1, . . . , εn in the support of ξ1, . . . , ξn
∥∥∥∥∥

n∑

i=1

E[ξi]uiu
∗
i −

n∑

i=1

εiuiu
∗
i

∥∥∥∥∥ ≤ 4σ.

For rank 1 matrices our theorem improves on the norm bound in Equation (9.2), by

a factor
√

logm. Note for example, if ξi is {±1}-valued, then V[ξi] = 1− E[ξi]
2.

Specializing to centered random variables, we obtain the following corollary, which

in a simple way generalizes the Kadison-Singer theorem, although with a slightly worse

constant.

Corollary 9.1.5. Let u1, . . . , un ∈ Cm and

σ2 =

∥∥∥∥∥
n∑

i=1

(uiu
∗
i )

2

∥∥∥∥∥ .

There exists a choice of signs εi ∈ {±1} such that
∥∥∥∥∥

n∑

i=1

εiuiu
∗
i

∥∥∥∥∥ ≤ 4σ.

Notice that if maxi ‖uiu∗i ‖ ≤ ε and
∑n

i=1 uiu
∗
i = I, then σ2 ≤ ε, and we obtain

Theorem 9.1.2 as consequence of the corollary.

Our Theorem 9.1.4 has multiple advantages over Theorem 9.1.2. It allows us to show

existence of solutions close to the mean of arbitrarily biased ±1 random variables, instead
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of only zero mean distributions. If some variable ξi is extremely biased, its variance is

correspondingly low, as V[ξi] = 1− E[ξi]
2.

If only a small subset of the rank 1 matrices obtain the ε norm bound, and the rest

are significantly smaller in norm, then we can have σ2 ≈ ε2, so we prove a bound of O(ε)

instead of the O(
√
ε) bound of the Kadison-Singer theorem. On the other hand, when the

problem is appropriately scaled, we always have σ ≥ ε2, so the gap between the two results

can never be more than a square root. Additionally, note that although the Kadison-Singer

theorem requires
∑n

i=1 uiu
∗
i = I, a multi-paving argument1 can be used to instead relax this

to ‖∑n
i=1 uiu

∗
i ‖ ≤ 1.

Approximate Lyapunov Theorems. Marcus, Spielman and Srivastava resolved the

Kadison-Singer problem by proving Weaver’s conjecture [Wea04], which was shown to imply

the Kadison-Singer conjecture. In [AW14], Akemann and Weaver prove a generalization of

Weaver’s conjecture [Wea04].

Theorem 9.1.6 ([AW14]). Let u1, . . . , un ∈ Cm such that ‖∑n
i=1 uiu

∗
i ‖ ≤ 1 and maxi ‖uiu∗i ‖ ≤

ε. For any ti ∈ [0, 1] and 1 ≤ i ≤ n, there exists a set of indices S ⊂ {1, 2, . . . , n} such that
∥∥∥∥∥
∑

i∈S

uiu
∗
i −

n∑

i=1

tiuiu
∗
i

∥∥∥∥∥ = O(ε1/8).

Due to the classical Lyapunov theorem [Lya40] and its equivalent versions [Lin66],

in their study of operator algebras, Akemann and Anderson [AA91] refer to a result as a

Lyapunov theorem if the result states that for a convex set C, the image of C under an affine

1This was pointed out to us by Tarun Kathuria.
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map is equal to the image of the extreme points of C. Theorem 9.1.6 is an approximate

Lyapunov theorem as it can be interpreted as saying that the image of [0, 1]n under the map

f : (t1, . . . , tn)→
n∑

i=1

tiuiu
∗
i ,

can be approximated by the image of one of the vertices of the hypercube [0, 1]n. A corollary

of our main result, Theorem 9.1.4, is the following strengthening of Theorem 9.1.6. This

result greatly improves the ε dependence of the original Lyapunov-type theorem and provides

a small explicit constant.

Corollary 9.1.7. Let u1, . . . , un ∈ Cm such that ‖∑n
i=1 uiu

∗
i ‖ ≤ 1 and maxi ‖uiu∗i ‖ ≤ ε. For

any ti ∈ [0, 1] and 1 ≤ i ≤ n, there exists a set of indices S ⊂ {1, 2, . . . , n} such that
∥∥∥∥∥
∑

i∈S

uiu
∗
i −

n∑

i=1

tiuiu
∗
i

∥∥∥∥∥ = 2 ε1/2.

The corollary follows immediately from Theorem 9.1.4 by choosing as the ξi a set of

independent {0, 1}-valued random variables with means ti ∈ [0, 1]. Note then that V[ξi] =

ti(1 − ti) ≤ 1/4, and so by the assumptions maxi ‖uiu∗i ‖ ≤ ε and
∑n

i=1 uiu
∗
i � I, we have

σ2 ≤ ε/4, and we obtain Theorem 9.1.2 as consequence of the corollary.

9.1.1 Related work and open questions

Our work is an extension of the the Kadison-Singer theorem of [MSS15b]. This

result has a rich history of connections with theoretical computer science, and, we hope,

may represent a step toward getting polynomial time algorithms for finding Kadison-Singer

partitions.
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Expanders are sparse graphs that exhibit good connectivity. One view on this is

that an expander graph approximates a complete graph in some sense, e.g. the spectrum

of the adjacency matrix or Laplacian matrix associated with the graph resembles that of

the complete graph. Ramanujan graphs [Mar73, LPS88] are sparse d-regular graphs whose

adjacency matrix eigenvalues essentially optimally approximates those of a complete graph

among all d-regular graphs for a given degree d. These initial constructions of Ramanujan

graphs relied on number-theoretic techniques and could not show existence of Ramanujan

for all degrees and sizes.

Using the method of interlacing families of polynomials, [MSS15a, MSS18], finally

showed the existence of bipartite2 Ramanujan graphs of all degrees and of all sizes. The

existential result of [MSS15a] was turned into a polynomial time algorithm in [Coh16b].

The restriction to bipartite Ramanujan graphs in these papers arose from the fact that

interlacing families most naturally control only the largest eigenvalue of a matrix, while

Ramanujan graphs require both the largest and the smallest eigenvalue to be controlled.

[MSS15a] overcame this obstacle by studying only bipartite graphs, whose adjacency matrix

eigenvalues are symmetric around zero and hence controlling the largest eigenvalue3 implies

also controlling the smallest. Our techniques for simultaneously controlling the smallest

and largest eigenvalues of a matrix are very different from earlier interlacing family-based

methods, and an intriguing open question is whether similar ideas can be used to construct

non-bipartite Ramanujan graphs of all degrees and sizes.

2Which approximates the complete bipartite graph.
3More precisely, it is the largest non-trivial eigenvalue that is being controlled. The largest eigenvalue of

the adjacency matrix of a d-regular graph is the trivial eigenvalue of d.
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[ST04] gave nearly-linear time algorithms for producing sparse graphs (with non-

uniform weights) that closely approximate a given input graph, in the sense that the spectral

behavior of the Laplacian matrices associated with the graphs is very similar. A greatly

simplified and stronger result was given in [SS11], still with a nearly linear time algorithm.

When used to construct a sparse graph that spectrally approximates a complete graph of

size n, the result of [SS11] has a worse average degree than a corresponding Ramanujan

graph by a factor Θ(log n). Later, this was improved to within a factor O(1), still with a

polynomial time algorithm, in [BSS12]. Finally, a series of papers turned this latter result into

a nearly-linear time algorithm [LS18, LS17]. The resolution of the Kadison-Singer theorem

was motivated by [BSS12]4. A major open question in the area is whether a polynomial time

algorithm for finding explicit solutions to the Kadison-Singer problem exists, and we hope

that our strengthened form of the result may make the problem more tractable.

The Kadison-Singer theorem and our result can be interpreted as analogous to Spencer’s

theorem in a matrix setting, in recent years that has been tremendous progress in obtaining

polynomial time algorithms for Spencer’s theorem and related problems in other settings

[Bou10, LM15, Rot17, BDG16, BG17, BDGL18, NDTTJ18]. Techniques developed in these

papers have also found algorithmic uses in approximation algorithms beyond typical dis-

crepancy statements [Rot13]. While interlacing families have notably been used to to bound

integrality gaps for ATSP [AG14] algorithmic results based on these have been limited, with

[Coh16b] providing the most notable example of a polynomial time algorithm based on inter-

lacing families. It seems likely, however, that a deeper understanding of the limits of matrix

rounding could have many applications in approximation algorithms.

4Gil Kalai suggested the connection between that result and the Kadison-Singer problem.
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9.1.2 Our techniques

Our proof is based on the method of interlacing polynomials introduced in [MSS15a,

MSS15b]. One difficulty in applying the method of interlacing polynomials is the inability to

control both the largest and smallest eigenvalues of a matrix simultaneously. Various tech-

niques and restrictions are used to overcome this problem in [MSS15a, MSS15b] (studying

bipartite graphs, assuming isotropic position). We develop a seemingly more natural ap-

proach for simultaneously controlling both the largest and smallest roots of the matrices we

consider. We study polynomials that can be viewed as expected characteristic polynomials,

but are more easily understood as the expectation of a product of multiple determinants.

The using a product of two determinants helps us bound the upper and lower eigenvalues

both at the same time.

We introduce an analytic expression for the expected polynomials in terms of linear

operators that use second order derivatives. This has the advantage of allowing us to gain

stronger control over the movement of roots of polynomials under the linear operators we

apply than those used by [MSS15b]. This is because movement of the roots now depends on

the curvature of our polynomials in favorable way. Interestingly, linear operators containing

second order derivatives also appear in the work of [AG14] but for different reasons. This lets

us reuse one of their lemmas for bounding position of the roots of a real stable polynomial.
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9.2 Preliminaries

We gather several basic linear algebraic and analytic facts in the following sections.

9.2.1 Linear Algebra

Lemma 9.2.1. Let x ∈ Rn. Then

det(I − txx∗) = 1− tx∗x.

Fact 9.2.2 (Jacobi’s Formula). For A(t) ∈ Rn×n a function of t,

d

dt
det(A(t)) = det(A(t)) tr

[
A−1(t)

d

dt
A(t)

]
.

9.2.2 Real Stability

Definition 9.2.1. A multivariate polynomial p(z1, . . . , zn) ∈ C[z1, . . . , zn] is stable if it has

no zeros in the region {(z1, . . . , zn) : =(zi) > 0 for all 1 ≤ i ≤ n}. p is real stable if p is stable

and the coefficients of p are real.

Lemma 9.2.3 (Corollary 2.8, [AOGSS18]). If p ∈ R[z1, . . . , zn] is real stable, then for any

c > 0, so is

(1− c∂2
zi

)p(z1, . . . , zn)

for all 1 ≤ i ≤ n.

Lemma 9.2.4 (Proposition 2.4, [BB08]). If A1, . . . , An are positive semidefinite symmetric

matrices, then the polynomial

det

(
n∑

i=1

ziAi

)

is real stable.
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We also need that real stability is preserved under fixing variables to real values (see

[Wag11, Lemma 2.4(d)]).

Proposition 9.2.5. If p ∈ R[z1, . . . , zm] is real stable and a ∈ R, then p|z1=a = p(a, z2, . . . , zm) ∈

R[z2, . . . , zm] is real stable.

9.2.3 Interlacing Families

We recall the definition and consequences of interlacing families from [MSS15a].

Definition 9.2.2. We say a real rooted polynomial g(x) = C
∏n−1

i=1 (x − αi) interlaces the

real rooted polynomial f(x) = C ′
∏n

i=1(x− βi) if

β1 ≤ α1 ≤ · · · ≤ αn−1 ≤ βn.

Polynomials f1, . . . , fk have a common interlacing if there is a polynomial g that interlaces

each of the fi.

The following lemma relates the roots of a sum of polynomials to those of a common

interlacer.

Lemma 9.2.6 (Lemma 4.2, [MSS15a]). Let f1, . . . , fk be degree d real rooted polynomials

with positive leading coefficients. Define

f∅ :=
k∑

i=1

fi.

If f1, . . . , fk have a common interlacing then there exists an i for which the largest root of fi

is upper bounded by the largest root of f∅.

599



Definition 9.2.3. Let S1, . . . , Sn be finite sets. For every S ∈ F, we let fS(x) be a real

rooted polynomial of degree d with positive leading coefficient. For a choice of assignment

s1, . . . , sn ∈ S1 × · · · × Sn, let fs1,...,sn(x) be a real rooted degree d polynomial with positive

leading coefficient. For a partial assignment s1, . . . , sk ∈ S1 × · · · × Sk for k < n, we define

fs1,...,sk :=
∑

sk+1∈Sk+1,...,sn∈Sn

fs1,...,sk,sk+1,...,sn . (9.3)

Note that this is compatible with our definition of f∅ from Definition 9.2.2. We say that

the polynomials {fs1,...,sn} form an interlacing family if for all k = 0, . . . , n − 1 and all

s1, . . . , sk ∈ S1 × · · · × Sk, the polynomials have a common interlacing.

The following lemma relates the roots of the interlacing family to those of f∅.

Lemma 9.2.7 (Theorem 4.4, [MSS15a]). Let S1, . . . , Sn be finite sets and let {fs1,...,sn} be

an interlacing family. Then there exists some s1, . . . , sn ∈ S1 × · · · × Sn so that the largest

root of fs1,...,sn is upper bounded by the largest root of f∅.

Finally, we recall a relationship between real-rootedness and common interlacings

which has been discovered independently several times [DG94, Fel80, CS07].

Lemma 9.2.8. Let f1, . . . , fk be univariate polynomials of the same degree with positive

leading coefficient. Then f1, . . . , fk have a common interlacing if and only if
∑k

i=1 αifi is

real rooted for all nonnegative αi such that
∑

i αi = 1.
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9.3 Expected Characteristic Polynomial

Instead of working with the random polynomial det(xI −∑n
i=1 ξiuiu

∗
i ), we consider

det

(
x2I −

( n∑

i=1

ξiuiu
∗
i

)2
)

= det

(
xI −

n∑

i=1

ξiuiu
∗
i

)
det

(
xI +

n∑

i=1

ξiuiu
∗
i

)
.

Observe that the largest root λmax of this polynomial is

λmax

(
det

(
x2I −

( n∑

i=1

ξiuiu
∗
i

)2
))

=

∥∥∥∥∥
n∑

i=1

ξiuiu
∗
i

∥∥∥∥∥ . (9.4)

We gather some results that will allow us to extract an analytic expression for the

expected characteristic polynomial.

Lemma 9.3.1. For positive semidefinite (PSD) matrices M,N ∈ Rm×m, v ∈ Rm and ξ a

random variable with zero mean and variance τ 2,

E
ξ

[det(M − ξvv∗) det(N + ξvv∗)] =

(
1− 1

2

d2

dt2

) ∣∣∣∣∣
t=0

det(M + tτvv∗) det(N + tτvv∗). (9.5)

Proof. We can assume that both M and N are positive definitive and hence invertible. The

argument for the the positive semi-definite case follows by a continuity argument (using

Hurwitz’s theorem from complex analysis, see also [MSS15b]).

We show that the two sides of (9.5) are equivalent to the same expression. Beginning

on the left hand side,

E[det(M − ξvv∗) det(N + ξvv∗)]

= det(M) det(N)E[det(I − ξM−1/2vv∗M−1/2) det(I + ξN−1/2vv∗N−1/2)]

= det(M) det(N)E[1 + ξb∗b− ξa∗a− ξ2a∗ab∗b]

= det(M) det(N)(1− τ 2a∗ab∗b)
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where a := M−1/2v and b := N−1/2v. For the right hand side of (9.5),

(
1− 1

2

d2

dt2

) ∣∣∣∣∣
t=0

det(M + tτvv∗) det(N + tτvv∗)

= det(M) det(N)

(
1− 1

2

d2

dt2

) ∣∣∣∣∣
t=0

det(I + tτaa∗) det(I + tτbb∗)

= det(M) det(N)(1− τ 2a∗ab∗b)

where the last line follows from Lemma 9.2.1.

Centering our random variables and applying the previous lemma leads to the follow-

ing corollary for non-centered random variables.

Corollary 9.3.2. Let M,N ∈ Rm×m be arbitrary PSD matrices, v ∈ Rm and ξ a random

variable with expectation µ and variance τ 2.

E
ξ
[det(M−(ξ−µ)vv∗) det(N+(ξ−µ)vv∗)] =

(
1− 1

2

d2

dt2

) ∣∣∣∣∣
t=0

det(M+tτvv∗) det(N+tτvv∗).

We can now derive an expression for the expected characteristic polynomial.

Proposition 9.3.3. Let u1, . . . , un ∈ Rm. Consider independent random variables ξi with

means µi and variances τ 2
i . Let Q ∈ Rm×m be a symmetric matrix.

E
ξ

[
det

(
x2I −

(
Q+

n∑

i=1

(ξi − µi)uiu∗i
)2
)]

=
n∏

i=1

(
1− ∂2

zi

2

) ∣∣∣∣∣
zi=0

det
(
xI −Q+

n∑

i=1

ziτiuiu
∗
i

)

× det
(
xI +Q+

n∑

i=1

ziτiuiu
∗
i

)
,

and this is a real rooted polynomial in x.
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Proof. For each i, let βi denote the maximum value of |ξi| among outcomes in the (fi-

nite) support of ξi. We begin by restricting the domain of our polynomials to x > ‖Q‖ +

2
∑n

i=1 βi‖uiu∗i ‖. We then proceed by induction. Our induction hypothesis will be that for

0 ≤ k ≤ n

E

[
det

(
x2I −

(
Q+

n∑

i=1

(ξi − µi)uiu∗i
)2
)]

= E
ξk+1,...,ξn

k∏

i=1

(
1− ∂2

zi

2

) ∣∣∣∣∣
zi=0

det

(
xI −Q−

n∑

i=k+1

(ξi − µi)uiu∗i +
k∑

j=1

zjτjuju
∗
j

)

× det

(
xI +Q+

n∑

i=k+1

(ξi − µi)uiu∗i +
k∑

j=1

zjτjuju
∗
j

)
(9.6)

The base case, k = 0 is trivially true as we get the same formula on both sides after recalling

that for any matrix Y

det
(
x2I − Y 2

)
= det(xI − Y ) det(xI + Y ).

By our assumption that x > ‖Q‖+ 2
∑n

i=1 βi‖uiu∗i ‖,

xI −
n∑

i=k+2

(ξi − µi)uiu∗i +
k∑

j=1

zjτjuju
∗
j

is PSD for any realization of ξk+2, . . . , ξn and in a neighborhood of zero for each zj. Applying

Corollary 9.3.2 to the right hand side of (9.6), yields

E

[
det

(
x2I −

(
Q+

n∑

i=1

(ξi − µi)uiu∗i
)2
)]

= E
ξk+2,...,ξn

k+1∏

i=1

(
1− ∂2

zi

2

) ∣∣∣∣∣
zi=0

det

(
xI −Q−

n∑

i=k+2

(ξi − µi)uiu∗i +
k+1∑

j=1

zjτjuju
∗
j

)

× det

(
xI +Q+

n∑

i=k+2

(ξi − µi)uiu∗i +
k+1∑

j=1

zjτjuju
∗
j

)
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which completes the induction. To extend the proof to all x, we remark that we have shown

the equivalence of two polynomials in the interval x > ‖Q‖ + 2
∑n

i=1 βi‖uiu∗i ‖, and two

polynomials that agree on an interval are identical.

Real-rootedness of the right hand side follows by Lemma 9.2.4, Lemma 9.2.3, and

that by Proposition 9.2.5 restriction to z = 0 preserves real-stability, and a univariate real

stable polynomial is real rooted.
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9.4 Defining the Interlacing Family

The next proposition establishes that it suffices to bound the largest root of q∅.

Proposition 9.4.1. There exists a choice of outcomes ε1, . . . , εn in the finite support of

ξ1, . . . , ξn, s.t. ∥∥∥∥∥
n∑

i=1

εiuiu
∗
i −

n∑

i=1

µiuiu
∗
i

∥∥∥∥∥
is less than the largest root of

E
ξ1,··· ,ξn

[
det

(
x2I −

( n∑

i=1

(ξi − µi)uiu∗i
)2
)]

.

where E[ξi] = µi,∀i ∈ [n].

Proof. For a vector of independent random variables (ξ1, . . . , ξn) with finite support, let pi,x

be the probability that ξi = x. For s = (ε1, . . . , εn) in the support of ξ1, . . . , ξn, we define

qs(x) :=
n∏

i=1

pi,εi det

(
x2I −

( n∑

i=1

(εi − µi)uiu∗i
)2
)
.

Let t be a vector of k outcomes in the support of ξ1, . . . , ξk, i.e. a partial assignment of

assignment of outcomes. Then we consider the conditional expected polynomial

qt(x) :=

(
k∏

i=1

pi,ti

)
E

ξk+1,...,ξn


det


x2I −

(
k∑

i=1

(ti − µi)uiu∗i +
n∑

j=k+1

(ξj − µj)uju∗j

)2





which coincides with (9.3). We show that qs is an interlacing family. Let r(1)
k+1 . . . r

(l)
k+1 be the

outcomes in the support of ξk+1. For a given t and r ∈ {r(1)
k+1, . . . , r

(l)
k+1}, let (t, r) denote the

vector (t1, . . . , tk, r). By Lemma 9.2.8, it suffices to show that for any choice of non-negative

numbers α1, . . . , αl such that
∑

j αj = 1, the polynomial

∑

j

αjqt,r(j)
k+1

(x)
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is real rooted. We can consider these α’s as a probability distribution and define p
k+1,r

(j)
k+1

=

αj. Therefore,

qt(x) =

(
k∏

i=1

pi,ti

)
E

ξk+1,...,ξn


det


x2I −

(
k∑

i=1

(ti − µi)uiu∗i +
n∑

j=k+1

(ξj − µj)uju∗j

)2





=
∑

j

(
k∏

i=1

pi,ti

)
p
k+1,r

(j)
k+1

× E
ξk+2,...,ξn


det


x2I −

(
k∑

i=1

(ti − µi)uiu∗i − (r
(j)
k+1 − µk+1)uk+1u

∗
k+1 −

n∑

j=k+2

(ξj − µj)uju∗j

)2





=
∑

j

αjqt,r(j)
k+1

(x).

By Proposition 9.3.3, qt is real rooted, which completes the proof that qs is an inter-

lacing family. Finally, by Lemma 9.2.7, there exists a choice of t so that the largest root of

qt is upperbounded by q∅.

606



9.5 Largest Root of the Expected Characteristic Polynomial

We use the barrier method approach to control the largest root [MSS15b].

Definition 9.5.1. For a multivariate polynomial p(z1, . . . , zn), we say z ∈ Rn is above all

the roots of p if for all t ∈ Rn
+,

p(z + t) > 0.

We use Abp to denote the set of points that are above all the roots of p.

We use the same barrier function as in [BSS12, MSS15b].

Definition 9.5.2. For a real stable polynomial p and z ∈ Abp, the barrier function of p in

direction i at z is

Φi
p(z) :=

∂zip(z)

p(z)
.

We will also make use of the following lemma that controls the deviation of the roots

after applying a second order differential operator. The lemma is a slight variation of Lemma

4.8 in [AG14].

Lemma 9.5.1. Suppose that p is real stable and z ∈ Abp.

If Φj
p(z) <

√
2, then z ∈ Ab(1− 1

2
∂2
zj

)p. If additionally for δ > 0,

1

δ
Φj
p(z) +

1

2
Φj
p(z)2 ≤ 1,

then and for all i,

Φi
(1− 1

2
∂2
zj

)p
(z + δ · 1j) ≤ Φi

p(z).
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We provide a proof in the Appendix 9.6 for completeness.

We can now bound the largest root of the expected characteristic polynomial for

subisotropic vectors.

Proposition 9.5.2. Let ξ1, . . . , ξn be independent scalar random variables with finite support,

with E[ξi] = µi, and let τ 2
i = E[(ξi − µi)2].

Let v1, . . . , vn ∈ Rn such that
∑n

i=1 τ
2
i (viv

∗
i )

2 � I. Then the largest root of

p(x) := E
ξ1,··· ,ξn

[
det

(
x2I −

( n∑

i=1

(ξi − µi)viv∗i
)2
)]

is at most 4.

Proof. Note that we must have

max
i∈[n]

τiv
∗
i vi ≤ 1, (9.7)

since otherwise
∑n

i=1 τ
2
i (viv

∗
i )

2 � I is false.

Let

Q(x, z) =

(
det
(
xI +

n∑

i=1

ziτiviv
∗
i

))2

.

For t > 0, define δi = tτiv
∗
i vi. For t < α(t) a parameter to be chosen later, we evaluate

608



our polynomial to find that

Q(α,−δ1, . . . ,−δn) =

(
det
(
αI −

n∑

i=1

δiτiviv
∗
i

))2

=

(
det
(
αI − t

n∑

i=1

τ 2
i (v∗i vi)viv

∗
i

))2

=

(
det
(
αI − t

n∑

i=1

τ 2
i (viv

∗
i )viv

∗
i

))2

≥
(

det
(

(α− t)I
))2

> 0.

where the second last step follows by
∑n

i=1 τ
2
i (viv

∗
i )viv

∗
i � I.

This implies that (α,−δ) ∈ Rn+1 is above the roots of Q(x, z). We can upper bound

Φi
Q(α,−δ) via Fact 9.2.2 as follows

Φi
Q(α,−δ) =

∂ziQ

Q

∣∣∣∣∣
x=α,z=−δ

=
2 det

(
xI +

∑n
i=1 ziτiviv

∗
i

)
∂zi det

(
xI +

∑n
i=1 ziτiviv

∗
i

)

(
det
(
xI +

∑n
i=1 ziτiviv

∗
i

))2

∣∣∣∣∣
x=α,z=−δ

= 2 tr

[(
xI +

n∑

i=1

ziτiviv
∗
i

)−1

τiviv
∗
i

] ∣∣∣∣∣
x=α,z=−δ

= 2 tr

[(
αI − t

n∑

i=1

τ 2
i (viv

∗
i )

2
)−1

τiviv
∗
i

]

≤ 2 tr

[(
α− t

)−1

τiviv
∗
i

]

=
2τiv

∗
i vi

α− t ,

609



where the fifth step follows by
∑n

i=1 τ
2
i (viv

∗
i )viv

∗
i � I.

Choosing α = 2t and t = 2, and recalling Condition (9.7) we get

Φi
Q(α,−δ) ≤ 2τiv

∗
i vi

α− t ≤ 1 <
√

2.

By Lemma 9.2.3, (1− 1
2
∂2
zi

)Q is real stable. By Lemma 9.5.1, and (4, z) ∈ Ab(1− 1
2
∂2
zi

)Q and

hence (4, z + δi1i) ∈ Ab(1− 1
2
∂2
zi

)Q. Also

1

δi
Φi
Q(α,−δ) +

1

2
Φi
Q(α,−δ)2 ≤ 1

tτiv∗i vi

2τiv
∗
i vi
t

+
1

2

(
2τiv

∗
i vi
t

)2

≤ 4

t2

= 1.

Therefore, by Lemma 9.5.1, for all j

Φj

(1− 1
2
∂2
zi

)Q
(4, z + δi1i) ≤ Φj

Q(4, z).

Repeating this argument for each i ∈ [n] demonstrates that (4, 0, . . . , 0) lies above the roots

of
n∏

i=1

(
1− ∂2

zi

2

)(
det
(
xI +

n∑

i=1

ziτiuiu
∗
i

))(
det
(
xI +

n∑

i=1

ziτiuiu
∗
i

))
.

After restricting to zi = 0 for all i, we then conclude by Proposition 9.3.3 is equivalent to a

bound on the largest root of the expected characteristic polynomial.

Having developed the necessary machinery, we now prove our main theorem.

Proof of Theorem 9.1.4. Define vi = ui√
σ
. Then, ‖∑n

i=1 τ
2
i (viv

∗
i )

2‖ = 1. Applying Proposi-

tion 9.5.2 and Proposition 9.4.1, we conclude that there exists a choice of outcomes εi such
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that ∥∥∥∥∥
n∑

i=1

(εi − µi)viv∗i

∥∥∥∥∥ ≤ 4.

From this, we conclude that ∥∥∥∥∥
n∑

i=1

(εi − µi)uiu∗i

∥∥∥∥∥ ≤ 4σ.
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9.6 Omitted Proofs
9.6.1 Proof of Lemma 9.5.1

Choosing c = 1/2 in Lemma 9.6.1 gives a proof of Lemma 9.5.1.

Lemma 9.6.1 (Generalization of Lemma 4.8 in [AG14]). Suppose that p(z1, · · · , zm) is real

stable and z ∈ Abp. For any c ∈ [0, 1].

If Φj
p(z) <

√
1/c, then z ∈ Ab(1−c∂2

zj
)p. If additionally for δ > 0,

c ·
(

2

δ
Φj
p(z) + (Φj

p(z))2

)
≤ 1,

then, for all i ∈ [m],

Φi
(1−c∂2

j )p(z + δ1j) ≤ Φi
p(z).

Proof. We write ∂i instead of ∂zi for ease of notation. By Lemma 9.2.3, (1 − c∂2
j )p is real

stable. Recall the definitions of Φj
p(z) and Ψj

p(z)

Φj
p(z) =

∂zj det(M)

det(M)
=
∂jp

p
and Ψj

p(z) =
∂2
j det(M)

det(M)
=
∂2
j p

p
.

Consider a non-negative vector t. By Lemmas 4.6 and 4.5 in [AG14], we have

Φj
p(z + t) ≤ Φj

p(z), Ψj
p(z + t) ≤ Φj

p(z + t)2 ≤ Φj
p(z)2. (9.8)

Thus, Ψj
p(z + t) ≤ Φj

p(z)2 < 1/c so c · ∂2
j p(z + t) < p(z + t), i.e. (1− c∂2

j )p(z + t) > 0. Thus

z ∈ Ab(1−c∂2
zj

)p.
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Next, we write Φi
p−c·∂2

j p
in terms of Φi

p and Ψj
p and ∂iΨj

p.

Φi
p−c·∂2

j p
=
∂i(p− c · ∂2

j p)

p− c · ∂2
j p

=
∂i((1− c ·Ψj

p)p)

(1− c ·Ψj
p)p

=
(1− c ·Ψj

p)(∂ip)

(1− c ·Ψj
p)p

+
(∂i(1− c ·Ψj

p))p

(1− c ·Ψj
p)p

= Φi
p −

c · ∂iΨj
p

1− c ·Ψj
p

.

We would like to show that Φi
p−c·∂2

j p
(z + δ1j) ≤ Φi

p(z). Equivalently, it is enough to show

that

− c · ∂iΨj
p(z + δ1j)

1− c ·Ψj
p(z + δ1j)

≤ Φi
p(z)− Φi

p(z + δ1j).

By convexity, it is enough to show that

− c · ∂iΨj
p(z + δ1j)

1− c ·Ψj
p(z + δ1j)

≤ δ · (−∂jΦi
p(z + δ1j)).

By monotonicity, δ ·(−∂jΦi
p(z+δ1j)) > 0 so we may divide both sides of the above inequality

by this term and obtain that the above is equivalent to

−c · ∂iΨj
p(z + δ1j)

−δ · ∂iΦj
p(z + δ1j)

· 1

1− cΨj
p(z + δ1j)

≤ 1,

where we also used ∂jΦi
p = ∂iΦ

j
p. By Lemma 4.10 in [AG14], ∂iΨ

j
p

∂iΦ
j
p
≤ 2Φj

p. So, we can write,

2c

δ
Φj
p(z + δ1j) ·

1

1− c ·Ψj
p(z + δ1j)

≤ 1.

By Equation (9.8), with t = δ1j,

Φj
p(z + δ1j) ≤ Φj

p(z), Ψj
p(z + δ1j) ≤ Φj

p(z + δ1j)
2 ≤ Φj

p(z)2.
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So, it is enough to show that

2c

δ
Φj
p(z) · 1

1− c · Φj
p(z)2

≤ 1.

Using Φj
p(z) < 1 and c ∈ [0, 1] we know that 1− c · Φj

p(z)2 < 1. We can multiply both sides

with 1− c · Φj
p(z)2 and we obtain that it suffices to have

c ·
(

2

δ
Φj
p(z) + Φj

p(z)2

)
≤ 1,

which is true by assumption.
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Part III

Compressive Sensing and Sparse Fourier
Transform
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Chapter 10

Compressive Sensing

We consider the extensively studied problem of `2/`2 compressed sensing. The main

contribution of our work is an improvement over [Gilbert, Li, Porat and Strauss, STOC

2010] with faster decoding time and significantly smaller column sparsity, answering two

open questions of the aforementioned work.

Previous work on sublinear-time compressed sensing employed an iterative procedure,

recovering the heavy coordinates in phases. We completely depart from that framework, and

give the first sublinear-time `2/`2 scheme which achieves the optimal number of measure-

ments without iterating; this new approach is the key step to our progress. Towards that,

we satisfy the `2/`2 guarantee by exploiting the heaviness of coordinates in a way that was

not exploited in previous work. Via our techniques we obtain improved results for various

sparse recovery tasks, and indicate possible further applications to problems in the field, to

which the aforementioned iterative procedure creates significant obstructions.
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10.1 Introduction

Compressed Sensing, or sparse recovery, is a powerful mathematical framework the

goal of which is to reconstruct an approximately k-sparse vector x ∈ Rn from linear mea-

surements y = Φx, where Φ ∈ Rm×n. The most important goal is to reduce the number

of measurements m needed to approximate the vector x, avoiding the linear dependence on

n. In discrete signal processing, where this framework was initiated [CRT06b, Don06], the

core principle that the sparsity of a signal can be exploited to recover it using much fewer

samples than the Shannon-Nyquist Theorem. We refer to the matrix Φ as the sketching or

sensing matrix, and y = Φx as the sketch of vector x.

Sparse recovery is the primary task of interest in a number of applications, such

as image processing [TLW+06, LDP07a, DDT+08], design pooling schemes for biological

tests [ECG+09, DWG+13], pattern matching [CEPR07], combinatorial group testing [SAZ09,

ESAZ09, KBG+10], localizing sources in sensor networks [ZBSG05, ZPB06], as well as neu-

roscience [GS12]. Furthermore, not surprisingly, tracking heavy hitters in data streams, also

known as frequent items, can be captured by the sparse recovery framework [Mut05a, CH09,

KSZC03, Ind07]. In practice, streaming algorithms for detecting heavy hitters have been

used to find popular destination addresses and heavy bandwidth users by AT&T [CJK+04]

or answer “iceberg queries” in databases [FSGM+99].

Sparse recovery attracts researchers from different communities, from both theoret-

ical and practical perspective. During the last ten years, hundreds of papers have been

published by theoretical computer scientists, applied mathematicians and electrical engi-

neers that specialize in compressed sensing. While numerous algorithms using space linear

in the universe size n are known, [Don06, CRT06b, IR08a, NT09a, BIR08a, BD09a, SV16]
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to name a few, our goal is to obtain algorithms that are sublinear, something that is crucial

in many applications.

The desirable quantities we want to optimize may vary depending on the application.

For example, in network management, xi could denote the total number of packets with

destination i passing through a network router. In such an application, storing the sketching

matrix explicitly is typically not a tenable solution, since this would lead to an enormous

space consumption; the number of possible IP addresses is 232. Moreover, both the query and

the update time should be very fast, in order to avoid congestion on the network. Incremental

updates to x come rapidly, and the changes to the sketch should also be implemented very

fast; we note that in this case, even poly-logarithmic factors might be prohibitive. Interested

readers can refer to [KSZC03, EV03] for more information about streaming algorithms for

network management applications.

“The goal of that research is to obtain encoding and recovery schemes with good com-

pression rate (i.e., short sketch lengths) as well as good algorithmic properties (i.e., low

encoding, update and recovery times).” – Anna Gilbert and Piotr Indyk [GI10]

Sparse recovery schemes that are optimal across all axis are a challenge and an impor-

tant theoretical and practical problem. For most sparse recovery tasks, we have algorithms

that achieve different trade-offs for the various parameters of interest. One exception is the

`∞/`2 guarantee, for which the breakthrough work of Larsen, Nelson, Nguyên and Thorup

[LNNT16] shows that this trade-off is unnecessary.
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10.1.1 Previous work

Since compressed sensing has been extensively studied in the literature for more than

a decade, different guarantees of interest have been suggested (x−k is the vector that occurs

after zeroing out every i that does not belong among the largest k coordinates). In what

follows x ∈ Rn is the vector we want to sketch, x′ is the approximation to x, k is the sparsity

and ε is the fineness of the approximation.

There are two different guarantees researchers consider in compressed sensing, one is

the for-all guarantee and the other is the for-each guarantee. In the for-all guarantee, one

wants to design a sketch that gives the desired result for all vectors x ∈ Rn. In the for-each

guarantee, one wants to design a distribution over sketches that gives the desired result for

a fixed vector x ∈ Rn. We note that `∞/`2, `2/`2 are impossible in the for-all model, unless

Ω(n) measurements are used [CDD09]. The standard approach for the for-all guarantee is

via RIP matrices, satisfying the so-called Restricted Isometry Property. In what follows, we

will refer to the for-each model, unless stated otherwise.

• `2/`2 : ‖x− x′‖2 ≤ (1 + ε)‖x−k‖2.

• `∞/`2 : ‖x− x′‖∞ ≤ (1 + ε) 1√
k
‖x−k‖2.

• `1/`1 : ‖x− x′‖1 ≤ (1 + ε)‖x−k‖1.

• `2/`1 : ‖x− x′‖2 ≤ (1 + ε) 1√
k
‖x−k‖1.

The first set of schemes that initiated the research on compressed sensing are given

in [CRT06b, Don06]. There the authors show, for any x ∈ Rn, given y = Φx, it is possible

to satisfy the `2/`1 guarantee for all vectors, if Φ is a Gaussian matrix with O(k log(n/k))

rows. The schemes in [CM06, CCF02] achieve the `∞/`2 guarantee with O(k log n) mea-

surementz, matching known lower bounds [JST11], O(n log n) decoding time and O(log n)
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update time. The state of the art for `∞/`2 is [LNNT16], which gives optimal number of

measurements, sublinear decoding time, O(log n) update time and 1/ poly(n) failure prob-

ability. Price and Woodruff [PW11] show that in order to get `2/`2 with constant failure

probability< 1/2 with the output being exactly k-sparse output requires Ω(ε−2k) measure-

ments. They also showed non-k-sparse output requires Ω(ε−1k log(n/k)) measurements in the

regime ε >
√
k log n/n, and gave an upper bound of O(ε−1k log n) measurements, showing

thus a separation in the measurement complexity between k-sparse and O(k)-sparse output.

Later, in the breakthrough work of Gilbert, Li, Porat and Strauss [GLPS10] an algorithm

that runs in sublinear time, and has O(log(n/k) log2 k) column sparsity, was devised. On

generic norms, nearly optimal bounds have been given by Backurs, Indyk, Razenshteyn and

Woodruff [BIRW16]. We note, however, that their schemes are not computationally efficient:

they have exponential running time, except in the case of Earth-Mover-Distance, which has

time polynomial in n and logk n.

Measurements. The number of measurements corresponds to physical resources: memory

in monitoring devices of data streams, number of screens in biological applications, or number

of filters in dynamic spectrum access (DSA) of radio signal [HMT+13].

In applications such as medical imaging, it is crucial to reduce the number of mea-

surements, since the radiation used in CT scans could potentially increase cancer risks for

patients. For instance, [PSL+12] showed that a positive association between radiation expo-

sure from CT scans in childhood and subsequent risk of leukemia and brain tumors.

For more applications, we refer the readers to [QBI+13].
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Encoding Time. Designing algorithms with fast update/encoding time is a well-motivated

task for streaming algorithms, since the packets arrive at an extremely fast rate [TZ12];

even logarithmic factors are crucial in these applications. Also in digital signal processing

applications, in the design of cameras or satellites which demand rapid imaging, when we

observe a sequence of images that are close to each other, we may not need to encode the new

signal from the beginning, rather than encode only that part which differs from the current

signal; the delay is then defined by the update time of our scheme. Moreover, in Magnetic

Resonance Imaging (MRI) update time or encoding time defines the time the patient waits

for the scan to happen. Improvement of the runtime has benefits both for patients and for

healthcare economics [LDSP08].

A natural question is the following: what are the time limitations of our data struc-

tures, regarding update time? Regarding the streaming setting, the first lower bounds are

given in [LNN15] for non-adaptive algorithms. An algorithm is called non-adaptive if, during

updates, the memory cells are written and read depend only on the index being updated

and the random coins tossed before the stream is started to being processed. The lower

bounds given concern both randomized and deterministic algorithms; the relevant bounds

to sparse recovery are for `p/`q estimation. However, for constant failure probability their

results do not give anything useful, since their lower bounds start to kick in when the failure

probability becomes very small, namely o(2−
√
m·logn).

For the column sparsity (which could be smaller than update time, and hence the

lower bounds in [LNN15] might not apply1), the only known lower bounds are known for

1the lower bounds in [LNN15] also depend heavily on the streaming model, so they do not transfer
necessarily to all scenarios where sparse recovery finds application.
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RIP matrices, which are used in the for-all setting. To the best of our knowledge, the first

non-trivial lower bounds were given by Nachin [Nac10], and then extended by Indyk and

Razenshteyn in [IR13] for RIP-1 model-based compressed sensing matrices. Lower bounds for

the column sparsity of RIP-2 matrices were given in Nelson and Nguyên [NN13b], and then

to RIP-p matrices in Allen-Zhu, Gelashvili and Razenshteyn [AGR16]. Roughly speaking,

the lower bounds for `2 indicate that if one aims for optimal measurements, m = k log(n/k),

in the regime k < n/ log3 n, one cannot obtain column sparsity better than Ω(m). This

indicates that the for-all case should be significantly worse, in terms of column sparsity, than

the for-each case.

Decoding Time. Another very important quantity we want to minimize is the time needed

to reconstruct the approximation of x from its compressed version. This quantity is of

enormous significance in cases where the universe size is huge and we cannot afford to

iterate over it. This is often the case in networking applications, where the universe size is

the number of distinct IP addresses. In MRI applications the decoding time corresponds to

the time needed to reconstruct the image after the scan has been performed. Decoding time

is highly important also in satellite systems, modern radars and airspace surveillance, where

compressed sensing have found extensive application [End10].

The sparse Fourier transform can be regarded as another variant of the sparse recovery

problem, the results developed along that line being incomparable with traditional sparse re-

covery results, where we have freedom over the design of the sketching matrix. Sparse Fourier

transforms can be divided into two categories, one being sparse discrete Fourier transform,

and the other being sparse continuous Fourier transform [BCG+12, Moi15, PS15, CKPS16].
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The sparse discrete Fourier transform also can be split into two lines, the first category of re-

sults [GGI+02, GMS05, HIKP12a, HIKP12b, Iwe13, IKP14, IK14, Kap16, CKSZ17, Kap17,

KVZ19] carefully choose measurements that allow for sublinear recovery time, and the sec-

ond category of results [CRT06a, RV08, Bou14, HR16] focus proving Restricted Isometry

Property. The techniques used in sparse Fourier transforms are related to standard com-

pressed sensing, since the main approaches try to implement arbitrary linear measurements

via sampling Fourier coefficients.

10.1.2 Our result

Our main result is a novel scheme for `2/`2 sparse recovery. Our contribution lies in

obtaining better decoding time, and O(log(n/k)) column sparsity via new techniques. The

problem of improving the column sparsity to O(log(n/k)) was explicitly stated in [GLPS10]

as an open problem. We completely resolve the open problem. Moreover, as an impor-

tant technical contribution, we introduce a different approach for sublinear-time optimal-

measurement sparse recovery tasks. Since this iterative loop is a crucial component of al-

most all algorithms in sublinear-time compressed sensing [IPW11, PS12, HIKP12a, GNP+13,

IKP14, Kap16, GLPS17, CKSZ17, Kap17, LNW18, NSWZ18], we believe our new approach

and ideas will appear useful in the relevant literature, as well as be a starting point for

re-examining sparse recovery tasks under a different lens, and obtaining improved bounds.

10.1.3 Notation

For x ∈ Rn we let H(x, k) to be the set of the largest k in magnitude coordinates of x.

We also write xS for the vector obtained after zeroing out every xi, /∈ S, and x−k = x[n]\H(x,k).
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Reference Measurements Decoding Time Encoding Time
[Don06, CRT06b] k log(n/k) LP k log(n/k)
[CCF02, CM06] ε−2k log n ε−1n log n log n
[NT09a] k log(n/k) nk log(n/k) log(n/k)

[CM04] ε−2k log2 n ε−1k logc n log2 n

[CCF02, CM06] ε−2k logc n ε−1k log2 n logc n

[GLPS10] ε−1k log(n/k) ε−1k logc n log(n/k) · log2 k

Our result ε−1k log(n/k) ε−1k log2(n/k) log(n/k)

Table 10.1: (A list of `2/`2-sparse recovery results). We ignore the “O” for simplicity. LP
denotes the time of solving Linear Programs [CLS19], and the state-of-the-art algorithm
takes nω time where ω is the exponent of matrix multiplication. The results in [Don06,
CRT06b, NT09a] do not explicitly state the `2/`2 guarantee, but their approach obtains it
by an application of the Johnson-Lindenstrauss Lemma; they also cannot facilitate ε < 1,
obtaining thus only a 2-approximation. The c in previous work is a sufficiently large constant,
not explicitly stated, which is defined by probabilistically picking an error-correcting code of
short length and iterating over all codewords. We estimate c ≥ 4. We note that our runtime
is (almost) achieved

We use ‖ · ‖p to denote the `p norm of a vector, i.e. ‖x‖p = (
∑n

i=1 |xi|p)
1/p.

10.1.4 Technical statements

We proceed with the definition of the `2/`2 sparse recovery problem.

Problem 10.1.1 (`2/`2 sparse recovery). Given parameters ε, k, n, and a vector x ∈ Rn.

The goal is to design some matrix Φ ∈ Rm×n and a recovery algorithm A such that we can

output a vector x′ based on measurements y = Φx,

‖x′ − x‖2 ≤ (1 + ε) min
k- sparse z∈Rn

‖z − x‖2.

We primarily want to minimize m (which is the number of measurements), the running time

of A (which is the decoding time) and column sparsity of Φ.
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In table 10.1, we provide a list of the previous results and compare with ours. Here,

we formally present our main result.

Theorem 10.1.2 (stronger `2/`2 sparse recovery). There exists a randomized construction

of a linear sketch Φ ∈ Rm×n with m = O(ε−1k log(n/k)) and column sparsity O(log(n/k)),

such that given y = Φx, we can find an O(k)-sparse vector x′ ∈ Rn in O(m · log(n/k)) time

such that

‖x′ − x‖2 ≤ (1 + ε) min
k- sparse z∈Rn

‖z − x‖2.

holds with 9/10 probability.

Remark 10.1.1. In the regime where k is very close to n, for example k = n/poly(log n), we

get an exponential improvement on the column sparsity over [GLPS10]. In many applications

of compressed sensing, this is the desired regime of interest, check for example Figure 8 from

[BI08]: n = 71, 542 while m ≥ 10, 000, which corresponds to k being very close to n.

Remark 10.1.2. As can be inferred from the proof, our algorithms runs in timeO((k/ε) log2(εn/k)+

(k/ε) log(1/ε)), which is slightly better than the one stated in Theorem 10.1. The algorithm

in [HIKP12a] achieves also the slightly worse running time of O((k/ε) log n log(n/k)). That

algorithm was the first algorithm that achieved running time O(n log n) for all values of

k, ε for which the measurement complexity remained sublinear, smaller than γn, for some

absolute constant γ. A careful inspection shows that our algorithm achieves running time

that is always sublinear, as long as the measurement complexity remains smaller than γn.
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10.1.5 Overview of techniques and difference with previous work

This subsection is devoted to highlighting the difference between our approach and

the approach of [GLPS10]. We first give a brief high-level description of the state of the

art algorithm before our work, then discuss our techniques, and try to highlight why the

previous approach could not obtain the stronger result we present in this paper. Lastly, we

show how our ideas can be possibly applied to other contexts.

10.1.5.1 Summary of [GLPS10].

The algorithm of [GLPS10] consists of O(log k) rounds: in the r-th round the algo-

rithm finds a constant fraction of the remaining heavy hitters. Beyond this iterative loop lies

the following idea about achieving the `2/`2 guarantee: in order to achieve it, you can find

all but k
3r

heavy hitters i such that |xi|2 = Ω(2rε
k
‖x−k‖2

2). This means that the algorithm is

allowed to “miss” a small fraction of the heavy hitters, depending on their magnitude. For

example, if all heavy hitters are as small as Θ(
√
ε/k‖x−k‖2), a correct algorithm may even

not find any of them. This crucial observation leads naturally to the main iterative loop of

combinatorial compressed sensing, which, as said before, loop proceeds in O(log k) rounds.

Every round consists of an identification and an estimation step: in the identification step

most heavy hitters are recognized, while in the estimation step most of them are estimated

correctly. Although in the estimation step some coordinates might have completely incorrect

estimates, this is guaranteed (with some probability) be fixed in a later round. The reason

why this will be fixed is the following. If a coordinate i is badly estimated, then it will

appear very large in the residual signal and hence will be identified in later rounds, till it is

estimated correctly. One can observe that the correct estimation of that round for coordinate
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i cancels out (remedies) the mistakes of previous rounds on coordinate i. Thus, the identifi-

cation and estimation procedure, which are interleaved, work complementary to each other.

The authors of [GLPS10] were the first that carefully managed to argue that identifying and

estimating a constant fraction of heavy hitters per iteration, gives the optimal number of

measurements.

More formally, the authors prove the following iterative loop invariant, where kr =

k3−r, εr = εr2
−r for r ∈ [R] with R = log k: Given x ∈ Rn there exists a sequence of vectors

{x(r)}r∈[R], such that x(r+1) = x(r) − x̂(r) and

‖(x− x̂)−kr‖2
2 ≤ (1 + εr)‖x−kr‖2

2. (10.1)

In the end, one can apply the above inequality inductively to show that

‖x−
R∑

r=1

x̂(r)‖2
2 ≤ (1 + ε)‖x−k‖2

2.

We now proceed by briefly describing the implementations of the identification and

the estimation part of [GLPS10]. In the identification part, in which lies the main technical

contribution of that work, every coordinate i ∈ [n] is hashed to O(k/ε) buckets and in

each bucket O(log(εn/k))-measurement scheme based on error-correcting codes is used to

identify a heavy hitter; the authors carefully use a random error-correcting code of length

O(log log(εn/k)), so they afford to iterate over all codewords and employ a more sophisticated

approach and use nearest-neighbor decoding. This difference is one of the main technical

ideas that allow them to obtain O(ε−1k log(n/k)) measurements, beating previous work,

but it is also the main reason why they obtain k · poly(log n) decoding time2: performing

2The authors do not specifically address the exponent in the poly(log n), but we estimate it to be ≥ 4.
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nearest neighbor decoding and storing the code per bucket incurs additional poly(log n)

factors. Moreover, for every iteration r they need to repeat the identification scheme r

times in order to bring down the failure probability to 2−r, so that they afford a union-

bound over all iterations. This leads to an additional O(log2 k) factor in the update time.

The estimation step consists of hashing to O(k/ε) buckets and repeating O(log(1/ε)) times.

Since the identification step returns O(k/ε) coordinates, the O(log(1/ε)) repetitions of the

estimation step ensure that at most k/3 coordinates out of the O(k/ε) will not be estimated

correctly. This is a desired property, since it allows the algorithm to keep the 2k coordinates

with the largest estimates, subtract them from x and iterate.

In the next section, we will lay out our approach which improves the decoding time

and the column sparsity of [GLPS10]. The iterative procedure of [GLPS10] lies in the heart

of most compressed sensing schemes, so we believe that this new approach could be applied

elsewhere in the sparse recovery literature.

10.1.5.2 Our approach

As we mentioned before, our approach is totally different from previous work, avoiding

the iterative loop that all algorithms before applied. Our algorithm consists of four steps,

each one being a different matrix responsible for a different task. The first matrix, with a

constant number of rows allows us to approximate the tail of the vector x, an approximation

that will appear useful in the next step. The second matrix along with its decoding procedure,

which should be regarded as the identification step, enables us to find a list L of size O(k/ε)
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that contains k coordinates3, which are sufficient for the `2/`2 guarantee. This matrix has

O(ε−1k · log(εn/k))) rows. The third matrix with its decoding procedure, which should be

regarded as the pruning step, takes the aforementioned list L, and prunes it down to O(k)

coordinates, which are sufficient for the `2/`2 guarantee. This matrix again has O(ε−1k ·

log(1/ε)) rows, for a total of O(ε−1k log(n/k)) rows. The last matrix is a standard set-query

sketch.

Step 1: Tail Estimation

Lemma 10.1.3 (tail estimation). Let c1 ≥ 1 denote some fixed constant. There is an

oblivious construction of matrix Φ ∈ Rm×n with m = O(log(1/δ)) and column sparsity

O(log(1/δ)) such that, given Φx, there is an algorithm that outputs a value V ∈ R in time

O(m) such that

1

10k
‖x−c1·k‖2

2 ≤ V ≤ 1

k
‖x−k‖2

2

holds with probability 1− δ.

Our first step towards the way for stronger sparse recovery is the design a routine that

estimates the `2 norm of the tail of a vector x ∈ Rn, which we believe might be interesting in

its own right. More generally, our algorithm obtains a value V such that 1
10k
‖x−c1·k‖pp ≤ V ≤

1
k
‖x−k‖pp, using O(1) measurements. Here c1 is some absolute constant. To obtain this result

we subsample the vector at rate Θ(1/k) and then use a p-stable distribution to approximate

the subsampled vector. While the upper bound is immediate, the Paley-Zygmund inequality

3We note that this term is exactly k, not O(k). Although not important for our main result, it will be
crucial for some of our applications of our techniques.
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does not give a sufficient result for the lower bound, so more careful arguments are needed

to prove the desired result. We obtain our result by employing a random walk argument.

One additional possible application in sparse recovery applications where a two-stage

scheme is allowed, e.g. [DLTY06, DDT+08], would be to first use the above routine to

roughly estimate how many heavy coordinates exist, before setting up the measurements.

For example, we could first run the above routine for k = 1, 2, 22, . . . , 2logn, obtaining values

V1, V2, V4, . . . , Vlogn, and then use these values to estimate the size of the tail of the vector

is, or equivalently approximate the size of the set of the heavy coordinates by a number

k′. We can then run a sparse recovery algorithm with sparsity k′. Details can be found in

Section 10.4.

Step 2: The Identification Step The goal of this step is to output a list L of size O(k/ε)

that contains a set of k coordinates that are sufficient to satisfy the `2/`2 guarantee. The

column sparsity we are shooting for at this point is O(log(εn/k)) , and the decoding time

should be O(m log(εn/k)).

Lemma 10.1.4 (identification sketch). There exists a randomized construction of a matrix

Φ ∈ Rm×n, with m = O(ε−1k · log(εn/k)) and column sparsity O(log(εn/k)), such that given

y = Φx, one can find a set L of size O(k/ε) in O(m log(εn/k)) time, such that

∃T ⊂ S, |T | ≤ k : ‖x− xT‖2 ≤ (1 + ε)‖x−k‖2,

holds with probability at least 9/10.

For this routine, we will set up a hierarchical separation of [n] to trees. We will call

this separation interval forest. we set τ = k/ε. Then we partition [n] into τ intervals of
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length q = n/τ , and set up an interval tree for each interval in the following way: every

interval tree has branching factor

log q

log log q

with the same height (this is consistent with the fact that every tree contains q nodes). At

the leaves of every interval tree there are the nodes of the corresponding interval.

Our approach consists is now the following. For each level of the interval forest

we hash everyone to k/ε buckets in the following way: if two coordinates i, i′ are in the

same interval (node of the interval forest) they are hashed to the same bucket. The above

property can be regarded as “hashing interval to buckets”. Moreover, every xi is multiplied

by a Gaussian random variable. We repeat this process for log log(εn/k) per level.

The decoding algorithm is the following. First, we obtain a value V using the routine

in Step 1, Lemma 10.1.3. Then we proceed in a breadth-first (or depth-first, it will make

no difference) search manner and find an estimate for every interval, similarly to [LNNT16,

CH09], by taking the median of the log log(εn/k) buckets it participates to. There are two

technical things one needs to show: First, we should bound the decoding time, as well as

the size of the output list L. Second, we need to show that there exists a set T ′ of size

at most k that satisfies the guarantee of the Lemma 10.1.4. For the first part, we show

that the branching process defined by the execution of the algorithm is bounded due to the

log log(εn/k) repetitions per level. For the second part, we show that for every coordinate

i ∈ H(x, k) the probability that i ∈ L is proportional to k|xi|2/(ε‖x−k‖2
2). Then we show

that the expected `2
2 mass of coordinates i ∈ L \H(x, k) is ε‖x−k‖2

2. This suffices to give the

desired guarantee for Lemma 10.1.4. We provide details in Section 10.2.
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Step 3: The Pruning Step

Lemma 10.1.5 (pruning sketch). Let c2, c3 > 1 denote two fixed constants. There exists a

randomized construction of a matrix Φ ∈ Rm×n, with m = O(ε−1k · log(1/ε)), with column

sparsity O(log(1/ε)) such that the following holds :

Suppose that one is given a (fixed) set L ⊆ [n] such that

|L| = O(k/ε), ∃T ⊂ L, |T | ≤ k : ‖x− xT‖2 ≤ (1 + ε)‖x−k‖2.

Then one can find a set S of size c2 · k in time O(m), such that

‖x− xS‖2 ≤ (1 + c3 · ε)‖x−k‖2

holds with probability 9/10.

We will now prune the list L obtained from the previous step, to O(k) coordinates. We

are going to use O(ε−1k · log(1/ε)) measurements. We hash every coordinate to k/ε buckets,

combining with Gaussians, and repeating O(log(1/ε)) times. A similar matrix was also

used in [GLPS10], but there the functionality and the analysis were very different; moreover,

the authors used random signs instead of Gaussians. We will heavily exploit the fact that

a standard normal g satisfies Pr[|g| < x] = O(x). The reasons why we need Gaussians is

the following: if we have a lot of large coordinates which are equal and much larger than
√
ε‖x−k‖2, we want to find all of them, but due to the use of random signs, they might

cancel each other in a measurement. Switching to Gaussians is the easiest way of avoiding

this undesirable case.

Our algorithm computes, for every i ∈ L, an estimate x̂i by taking the median of

the O(log(1/ε)) buckets it participates to, and then keeps the largest O(k) coordinates in
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magnitude to form a set S. We then show that these coordinates satisfy the `2/`2 guarantee.

We will say that a coordinate is well-estimated if |x̂i| = Θ(|xi|) ±
√
εk−1‖x−k‖2. For the

analysis, we define a threshold τ = ‖x−k‖2/
√
k, and classify coordinates based on whether

|xi| ≥ τ or not.

• In the case |xi| ≥ τ the expected mass of these coordinates i /∈ S is small;

• In the other case the number of coordinates i with |xi| < τ are O(k). This allows us to

employ an exchange argument, similar to previous work, e.g. [PW11], but more tricky

due to the use of Gaussians instead of random signs.

We note that the way we compute the estimates x̂i is different from previous work: one

would expect to divide the content of a bucket that i hashed to by the coefficient assigned to

xi, in order to get an unbiased estimator, but this will not work. The details can be found

in Section 10.3.

In the end, this step gives us a set S suitable for our goal, but does not give good

estimations of the coordinates inside that set. For that we need another, standard step.

Step 4: Set Query We estimate every coordinate in S using a set query algorithm of

Price [Pri11], obtaining the desired guarantee. This matrix needs only O(k/ε) measurements,

and runs in O(k) time, while having constant column sparsity.

Lemma 10.1.6 (set query, [Pri11]). For any ε ∈ (0, 1/10]. There exists a randomized

construction of a matrix Φ ∈ Rm×n, with m = O(k/ε) and column sparsity O(1), such that

given y = Φx and a set S ⊆ [n] of size at most k, one can find a k-sparse vector x̂S, supported
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on S in O(m) time, such that

‖x̂S − xS‖2
2 ≤ ε‖x[n]\S‖2

2.

holds with probability at least 1− 1/ poly(k).

Our Theorem 10.1.2 follows from the above four steps by feeding the output of each

step to the next one. In the end, we rescale ε. More specifically, by the identification step

we obtain a set L of size O(k/ε) which contains a subset of size k that satisfies the `2/`2

guarantee. Then, the conditions for applying the pruning step are satisfied, and hence we

can prune the set L down to O(k) coordinates, which satisfy the `2/`2 guarantee. Then we

apply the set-query sketch to obtain estimates of these coordinates.

In what follows we ignore constant terms. The number of measurements in total is

1︸︷︷︸
tail estimation

+ (k/ε) log(εn/k)︸ ︷︷ ︸
identification step

+ (k/ε) log(1/ε)︸ ︷︷ ︸
pruning step

+ (k/ε)︸ ︷︷ ︸
set query

.

The decoding time equals

1︸︷︷︸
tail estimation

+ (k/ε) log(εn/k) log(εn/k)︸ ︷︷ ︸
identification step

+ (k/ε) log(1/ε)︸ ︷︷ ︸
pruning step

+ k︸︷︷︸
set query

.

The column sparsity equals

1︸︷︷︸
tail estimation

+ log(εn/k)︸ ︷︷ ︸
identification step

+ log(1/ε)︸ ︷︷ ︸
pruning step

+ 1︸︷︷︸
set query

.

10.1.6 Possible applications of our approach to other problems

Exactly k-sparse signals. When the vector we have to output has to be k-sparse, and

not O(k)-sparse, the dependence on ε has to be quadratic [PW11]. Our algorithm yields a
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state of the art result for this case, too. One can observe that the analysis of the algorithm

in the Identification Linear Sketch outputs a O(k/ε)-sized set which contains a set T of size

k that allows `2/`2 sparse recovery. Performing a CountSketch with O(k/ε2) columns and

O(log(k/ε) rows, and following a standard analysis, one can obtain a sublinear algorithm

with measurement complexity O(ε−1k log(εn/k)+ ε−2k log(k/ε)). This is an improvemnet on

both the runtime and measurement complexity over previous work [CCF02].

Block-Sparse Signals. Our algorithm easily extends to block-sparse signals. For a signal

of block size b we obtain sample complexity O(k/(εb) log(bn/k)+(k/ε)), with a running time

nearly linear in k. This matches the sample complexity of previous super-linear algorithms

[BCDH10, CIHB09], which also could not facilitate ε < 1.

Phaseless Compressed Sensing. In Phaseless Compressed Sensing, one wants to design

a matrix Φ with m rows, such that given y = Φx, one can find a vector x̂ such that

minθ∈[0,2π]‖x− eiθx̂‖2 ≤ (1 + ε)‖x−k‖2. This problem has received a fair amount of attention

[OYDS11, LV13, CBJC14, YLPR15, PYLR17, Nak17a, LN18], and the state of the art

algorithm has O(k log n) measurement complexity [Nak17a, LN18]. One of the problems

is that the iterative loop approach cannot be used here, since it is heavily based on the

linearity of the sketch. However, our identification and pruning step do not use the linearity

of the sketch, and work also with phaseless measurements. Previous algorithms such as

[Nak17a, LN18] suffered a k log n factor in the number of measurements already from the

first step, but this is avoidablue using our new approach. We hope to see an extension down

this avenue that gives O(k log(n/k)) measurements.
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One-Bit Compressed Sensing. Another important subfield of Sparse Recovery is one-bit

compressed sensing, where one has access only to one-bit measurements, i.e. y = sign(Ax),

where the sign function on vectors should be understood as pointwise application of the sign

function on each entry. Sublinear algorithms appear in [Nak17b, Nak19], but they both do

not obtain the optimal number of measurements in terms of k and n, which is k log(n/k),

but rather the slightly suboptimal k log n. One of the most important reasons is that the

iterative loop cannot be implemented in such a scenario. It is a natural question whether our

new approach can give the optimal number of measurements. The thresholding step, namely

the part where we take use V to filter out non-heavy intervals cannot be implemented here,

but perhaps there is still a way to make a similar argument. One first approach should be

to show that sublinear decoding with optimal measurements is achieved using non-adaptive

threshold measurements, such as in [KSW16] and [BFN+17] (note that the latter one uses

adaptive measurements though).

Sparse Fourier Transform. The standard approach to discrete sparse Fourier transform,

is to implement linear measurements by using Fourier measurements [GGI+02, GMS05,

HIKP12a, HIKP12b, Iwe13, IKP14, IK14, Kap16, CKSZ17, Kap17]. The idea is to hash

the spectrum to B buckets by carefully multiplying in the time-domain the vector x with a

sparse vector z. In the frequency domain this corresponds to convolving the spectrum of the

x with an approximation of the filter of an indicator function of an interval of length roughly

B. Due to the Uncertainty Principle, however, one has to exchange measurement complexity

and decoding time with the quality of the filter. For example, implementing hashing to buck-

ets using “crude” filters leads to leakage in subsequent buckets, giving additional error terms.
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When iterating as usual, these errors accumulate and make identification much harder. The

sophisticated approach of [Kap17] manages to design an iterative algorithm, in the same vein

with previous algorithms, which takes O(ε−1k log n) measurements. It would be interesting

to see if the approach we suggest avoids some of the problems created by this iterative loop,

and can give simpler and faster sparse Fourier transform schemes. It would be interesting

to obtain such a result even using adaptive measurements. The work [CKSZ17] has some

interesting ideas in the context of block-sparse vectors that could be relevant.
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10.2 The Identification Linear Sketch

The goal of this section is to prove the following result,

Theorem 10.2.1 (Restatement of Lemma 10.1.4). Let CL > 1 be a fixed constant. There

exists a randomized construction of a matrix Φ ∈ Rm×n, with

m = O(ε−1k log(εn/k)),

with column sparsity O(log(εn/k)) such that given y = Φx, one can find in time O(m log(n/k))

a set L of size CL · k/ε, such that

∃T ⊂ L, |T | ≤ k : ‖x− xT‖2 ≤ (1 + ε)‖x−k‖2,

with probability 9/10.

In Section 10.2.1, we provide the definition of sketching matrix Φ and present the

decoding algorithm. We proved some concentration result in Section 10.2.2. We analyzed

the running time of algorithm in Section 10.2.3. We proved the guarantees of the algorithm

in Section 10.2.4. Finally, we bound the number of measurements in Section 10.2.5.

10.2.1 Design of the sketch and decoding algorithm

We are going to use a hierarchical separation of [n] into intervals. We will call this

separation an interval forest.

Before discussing the matrix, we need the following definitions. We define

Definition 10.2.1 (size of the each tree in the forest). Let

τ = k/ε,
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Notation Choice Statement Parameter
CH 4 Definition 10.2.2 H
CR 100 Definition 10.2.3 R
CB 105 Definition 10.2.4 B
C0 103 Lemma 10.4.3 Blow up on tail size
CL 104 Lemma 10.2.5 L
η 1/9 Lemma 10.2.2,10.2.3 Shrinking factor on V
ζ 1/4000 Lemma 10.2.2,10.2.3 ζ ≤ η/400

Table 10.2: Summary of constants in Section 10.2, the column “Parameter” indicates which
parameter is depending on that constant. Note that constants CH , CR, CB, C0, η are used in
both algorithm and analysis, but constants CL and ζ are only being used in analysis. CL is
the related to the guarantee of the output of the algorithm.

assuming that k/ε ≤ n/16. The size of each tree in the forest is

q = n/τ = nε/k

Definition 10.2.2 (degree and height of the interval forest). Let CH > 1 be a sufficiently

large constant such that

(log q/ log log q)CH log q/ log log q ≥ q.

Let D denote the degree of the tree, and let H denote the height of the tree. We set D and

H, D = dlog q/ log log qe, and H = dCH log q/ log log qe.

Definition 10.2.3 (number of repetitions per level). Let R denote the number of repetitions

in each level. Let CR > 1 denote some sufficiently large constant. We set R = CR log log q.

For ` ∈ {0, 1, . . . , H} we define I`, which is a family of sets. Every set I` is a decom-

position of [n] to τD` intervals of (roughly) the same length. The set I0 is a decomposition
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of [n] to τ intervals of (roughly) the same length length q. If needed, we can round q to a

power of 2. This means that

I0 = {I0,1, I0,2, . . .}

where

I0,1 = [1, τ ], I0,2 = [τ + 1, 2τ ], . . .

We can conceptualize these sets as a forest consisting of τ trees, each of branching

factor D and height H, where the `-th level partitions [n] into disjoint τD` intervals of

length n/(τ ·D`) = q ·D−`. For ` ∈ {0, . . . , H}, interval I`,j is decomposed to D disjoint and

continuous intervals

I`+1,j·D+1, . . . , I`+1,(j+1)·D

of the same length, except possibly the last interval.

We say that an interval I`+1,j is a child of interval I`,j′ if j′ = dj/De.

Definition 10.2.4 (sketching matrix Φ). Let CB > 1 be a sufficiently large constant. Let

B = CBk/ε. Let matrices Φ(1), . . . ,Φ(H), where every matrix Φ(`) consists of R submatrices

{Φ(`)
r }r∈[R]. For every ` ∈ [H] and r ∈ [R], we pick 2-wise independent hash functions

h`,r : [τD`]→ [B].

We define measurement y`,r,b = (Φ
(`)
r x)b as:

y`,r,b =
∑

j∈h−1
`,r (b)

∑

i∈I`,j

gi,`,rxj,

640



where gi,`,r ∼ N(0, 1), i.e. independent standard Gaussians.

We slightly abuse notation and treat y as matrix the mapping to vector should be

clear.

Note that CB should be chosen such that CB � C0, where C0 appears in tail estima-

tion in Lemma 10.4.3.

10.2.2 Concentration of estimation

In the following lemmata, ζ, η ∈ (0, 1) are absolute constants with 1 > η > 1/10 > ζ

(See a choice for our application in Table 10.2). The exact values of the constants will be

chosen below.

The following lemma handles the probability of detecting a heavy interval at level `.

Lemma 10.2.2 (handling the probability of catching a heavy hitter). Let V be the value

in Line 8 of Algorithm 10.1. Let V = εV be the value in Line 9 of Algorithm 10.1. Let

j′ ∈ T`−1, and let j be one of its children. Let zj be defined as follows,

zj = median
r∈[R]

∣∣y`,r,h`,r(j)
∣∣2 .

If ‖xI`,j‖2
2 ≥ Cj

ε
k
‖x−k‖2

2, where Cj ≥ 2, then with probability 1−C−R/6j (over the randomness

of h`,r and gi,`,r for r ∈ [R], i ∈ [n] in Definition 10.2.4), we have that

zj ≥ ηV.

Proof. Fix r ∈ [R]. Let b = h`,r(j), and define J = ∪t∈h−1
`,r (b)I`,t. We observe that

|y`,r,b|2 = ‖xJ‖2
2g

2, where g ∼ N(0, 1).
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Algorithm 10.1 Interval-forest Sparse Recovery
1: procedure IntervalForestSparseRecovery(x, n, k, ε) . Theorem 10.2.1
2: Choose constants CH , CR, η, C0 . According to Table 10.2
3: τ ← (k/ε) . Definition 10.2.1
4: q ← n/τ . Definition 10.2.1
5: H ← dCH log q/ log log qe . Definition 10.2.2
6: D ← dlog q/ log log qe . Definition 10.2.2
7: R← dCR log log qe . Definition 10.2.3
8: V ← LpLpTailEstimation(x, k, 2, C0, 1/100) . Algorithm 10.3
9: V ← εV . Lemma 10.2.2
10: T0 ← {I0,1, . . . , I0,τ}
11: for ` = 1→ H do
12: T` ← RecursiveBTree(`, R,D, η, T`−1, V ) . Lemma 10.2.5
13: end for
14: L← TH
15: return L . Lemma 10.2.6
16: end procedure
17: procedure RecursiveBTree(`, R,D, η, T, V )
18: T ′ ← ∅
19: for t ∈ T do
20: Let I`,j1 , I`,j2 , . . . , I`,jD denote the child intervals of I`−1,t

21: for p ∈ [D] do
22: zjp ← medianr∈[R]|y`,r,h`,r(jp)|2 . Definition 10.2.4
23: end for
24: if zjp ≥ ηV then
25: T ′ ← T ′ ∪ {jp}
26: end if
27: end for
28: return T ′

29: end procedure

By property of Gaussian distribution, we have

Pr
[
|y`,r,b|2 ≤ (η/Cj)‖xJ‖2

2

]
≤ 2√

2π

√
η

Cj
≤
√

2η

πCj
,
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It implies, since ‖xJ‖2
2 ≥ ‖xI`,j‖2

2 ≥ Cj
ε
k
‖x−k‖2

2, that

Pr
[
|y`,r,b|2 ≤ η

ε

k
‖x−k‖2

2

]
≤
√

2η

πCj
.

Since Lemma 10.4.3, we have V ≤ 1
k
‖x−k‖2

2. Because V = εV ,

Pr
[
|y`,r,b|2 ≤ ηV

]
≤
√

2η

πCj
.

The R repetitions ensure that the failure probability can be driven down to C−R/6j ,

because

Pr[zj ≤ ηV ] ≤
(
R

R/2

)
·
(√

2η

πCj

)R/2

≤ 2R · (2η/π)R/4 · C−R/4j

≤ (2R · (2η/π)R/4 · 2−R/12) · C−R/6j

≤
(
211 · (2/9π)3

)R/12 · C−R/6j

≤ C
−R/6
j ,

where the first step follows from a union bound, the third step follows from Cj ≥ 2,

and the forth step follows from η ≤ 1/9.

The following lemma handles the probability of a non-heavy interval being considered

“heavy” by the algorithm at level `.

Lemma 10.2.3 (handling the probability of false positives). Let V be the value in Line 9

of Algorithm 10.1. Let j′ be an index in T`−1, and let j be one of its children. If ‖xI`,j‖2
2 ≤
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ζ ε
k
‖x−C0k‖2

2, then with probability 1 − 2−R/3 (over the randomness of h`,r and gi,`,r for r ∈

[R], i ∈ [n] in Definition 10.2.4) we have that

zj < ηV.

Proof. Fix ` ∈ [H] and consider the set H` that contains the C0k coordinates j′′ with the

largest ‖xI`,j′′‖2
2 values. Define H(j)

` = H` \ {j}. Fix r ∈ [R] and observe that by a union-

bound we get that

Pr
[
∃j′′ ∈ H(j)

`

∣∣ h`,r(j) = h`,r(j
′′)
]
≤ C0k ·

1

CBk/ε
=
C0ε

CB
≤ 1

20
,

because CB ≥ 20C0.

We condition on the event ∀j′′ ∈ H(j)
` : h`,r(j) 6= h`,r(j

′′). A standard calculation now

shows that

E
[
|y`,r,hr,`(j)|2

]
≤ ‖xI`,j‖2

2 +
1

CB

ε

k
‖x−C0k‖2

2

≤ ζ
ε

k
‖x−C0k‖2

2 +
1

CB

ε

k
‖x−C0k‖2

2

≤ 2ζε

k
‖x−C0k‖2

2,

where the last step follows from 1
CB

< ζ.

We now apply Markov’s inequality to obtain

Pr
[
|y`,r,h`,r(j)|2 ≥ ηV

]
≤ Pr

[
|y`,r,h`,r(j)|2 ≥

ηε

10k
‖x−C0k‖2

2

]

≤
2ζε
k
‖x−C0k‖2

2
ηε

10k
‖x−C0k‖2

2

=
20ζ

η

≤ 1

20
, by ζ ≤ η/400.
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By a union bound, the unconditional probability Pr
[
|y`,r,h`,r(j)|2 ≥ ηV

]
≤ 1

10
. Finally,

we can upper bound the probability that zj = medianr∈[R]|y`,r,h`,r(j)|2 is greater than ηV ,

Pr[zj ≥ ηV ] ≤
(
R

R/2

)
(1/10)R/2

< 2R · 2− 3
2
R

= 2−
R
2

< 2−
R
3 .

10.2.3 Analysis of running time

Lemma 10.2.4 (bounds of D,H with respect to R). Let D,H as in Definition 10.2.2. It

holds that D ≤ 2
R
6
−10, and H ≤ 2

R
6
−10.

Proof. Since H ≥ D, it suffices to prove the claim only for H.

H = CH
log q

log log q
< CH log q = CH log (εn/k) = CH2log log(εn/k) ≤ 2

R
6
−10,

where the third step follows from q = εn/k, and the last step follows from log log(εn/k) +

logCH ≤ (CR/6) log log(εn/k) − 10 and note that log log(εn/k) ≥ 2 because we assume

k/ε ≤ n/16.

Lemma 10.2.5 (running time). Let R as in Definition 10.2.3 and D, H as in Definition

10.2.2. Let TH be the set obtained by applying procedure RecursiveBTree H times (lines
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11-13) of Algorithm 10.1, and let CL > 1 be some sufficiently large absolute constant. With

probability 1−H · 2−R/6+1 we have that:

• |TH | ≤ CL · k/ε,

• The running time of BTreeSparseRecovery is

O
(
ε−1k · log(εn/k) ·D

)
.

Proof. Let CL = 2(C0 + 1/ζ).

First, it is easy to see that |T0| is bounded by

|T0| = τ = k/ε < CLk/ε.

We claim that if we condition on the event that |T`−1| ≤ CLk/ε, then with probability

1− 2−R/6+1, |T`| ≤ CLk/ε. The proof of both bullets will then follow by a union-bound over

all H levels. Indeed, consider the set Q` containing the |T`−1|D ≤ CL · (k/ε) ·D coordinates

j that are children of some j′ ∈ T`−1. Define

B` =

{
j ∈ Q`

∣∣∣∣ ‖xI`,j‖2
2 ≤ ζ

ε

k
‖x−C0k‖2

2

}
.

By definition of B` and Q`, we have

|B`| ≤ |Q`| ≤ CL · (k/ε) ·D.

Moreover, Lemma 10.2.3 gives

∀j ∈ B`,Pr [zj ≥ ηV ] ≤ 2−R/3
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Define random variables Wj to be 1 if zj ≥ ηV , and 0 otherwise. Then

E

[∑

j∈B`

Wj

]
≤ CLk

ε
D · 2−R/3

An application of Markov’s inequality gives

Pr

[∑

j∈B`

Wj ≥
CLk

2ε
D · 2−R/6

]
≤ 2−R/6+1.

Conditioning on
∑

j∈B`Wj ≤ CLk
2ε
D · 2−R/6 we will upper bound the size of T`.

First, observe that there exist at most (C0k + k/(ζε)) j ∈ I` for which ‖xI`,j‖2
2 >

ζ ε
k
‖x−C0k‖2

2. This gives

|T`| ≤
(
C0k +

k

ζε

)
+
CLk

2ε
D2−R/6. (10.2)

If CL ≥ 2(C0 + 1/ζ), then we can upper bound the first term in Eq. (10.2),

C0k +
k

ζε
≤
(
C0 +

1

ζ

)
k

ε
≤ 1

2

CLk

ε
.

For the second term in Eq. (10.2), we can show that

CLk

2ε
·D2−R/6 ≤ 1

2

CLk

ε
,

or equivalently D ≤ 2R/6, which holds by Lemma 10.2.4.

We have D levels, and at each level ` we have |T`| = O(k/ε), conditioned on the

aforementioned events happening. The children of T` is then O(k/ε · D). Since we have R

repetitions the total running time per level is O((k/ε) ·D ·R), and the total running time is

O((k/ε) ·D ·R ·H) = O

(
(k/ε) ·D · log log q · log q

log log q

)
= O ((k/ε) ·D · log(εn/k)) ,
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where the first step follows from definition of R and H, and the last step follows from

definition of q.

Therefore, it gives the desired result.

10.2.4 Guarantees of the algorithm

Lemma 10.2.6 (guarantees). Let L = TH be the set obtained by applying procedure Recur-

siveBTree R times (lines 11-13) of Algorithm 10.1, we have that, with probability 9/10,

there exist T ′ ⊆ L of size at most k, such that

‖x− xT ′‖2
2 ≤ (1 + ε)‖x−k‖2

2.

Proof. Define

H =

{
j ∈ H(x, k)

∣∣∣∣ ∃Cj ≥ 2, |xj|2 ≥ Cj
ε

k
‖x−k‖2

2

}
.

Moreover, associate every j ∈ H with its corresponding Cj =
|xj |2

ε
k
‖x−k‖22

.

Pick j ∈ H. Let also j1, j2, . . . , jH , be numbers such that

j ∈ I1,j1 , j ∈ I2,j2 , . . . , j ∈ IR,jH .

For any t ∈ {1, . . . , H − 1}, if It,jt ∈ Tt, then It+1,jt+1 ∈ Tt+1 with probability 1 − C−R/6j ,

by Lemma 10.2.2. Since Cj ≥ 2, this allows us to take a union bound over all H levels and

claim that with probablity 1−HC−R/6j , j ∈ TR. For j ∈ H define random variable to δj to
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be 1 if j /∈ TH .

E
[
δjx

2
j

]
≤ H · C−R/6j x2

j

≤ H · C−R/6j Cj
ε

k
‖x−k‖2

2

= H · C−R/6+1
j

ε

k
‖x−k‖2

2

≤ ε

80k
‖x−k‖2

2,

where the first step follows by definition of δj, the second step follows by the fact that j ∈ H,

and the last step follows by Lemma 10.2.4. Since |H| ≤ k, we have that

E

[∑

j∈H

δjx
2
j

]
≤ |H| · ε

80k
‖x−k‖2

2 ≤
ε

80
‖x−k‖2

2.

Then applying Markov’s inequality, we have

Pr

[∑

j∈H

δjx
2
j >

ε

2
‖x−k‖2

2

]
≤ 1

40
.

We condition on the event
∑

j∈H δjx
2
j ≤ ε

2
‖x−k‖2

2. Setting T ′ = H ∩ TH we observe

that

‖x− xT ′‖2
2 =

∑

j∈H∩H(x,k)

δjx
2
j + ‖xH(x,k)\H‖2

2 + ‖x[n]\H(x,k)‖2
2

≤ ε

2
‖x−k‖2

2 + k · 2ε

k
‖x−k‖2

2 + ‖x−k‖2
2

≤ (1 + 3ε)‖x−k‖2
2.

where the second step follows by the bound on
∑

j∈T δjx
2
j and the fact that every j /∈ T

satisfies |xj|2 ≤ (2ε/k)‖x−k‖2
2.

Rescaling for ε we get the desired result.
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10.2.5 Bounding the number of measurements

In this subsection, we prove that

Claim 10.2.7 (#measurements). The number of measurements is O(ε−1k · log(εn/k)).

Proof. Recall the definition of τ and q,

τ = k/ε, q = n/τ.

We thus have the following bound on the number of measurements:

B ·H ·R = CB(k/ε) · CH
log(εn/k)

log log(εn/k)
· CR log log(εn/k) = O ((k/ε) log(εn/k)) .
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10.3 The Pruning Linear Sketch

The goal of this section is to prove Theorem 10.3.1.

Theorem 10.3.1 (Restatement of Lemma 10.1.5). Let CL, α, β > 1 be three fixed constants.

There exists a randomized construction of a matrix Φ ∈ Rm×n, with m = O((k/ε) · log(1/ε)),

with column sparsity O(log(1/ε)) such that the following holds :

Suppose that one is given a set L ⊆ [n] such that

|L| = CL · k/ε, ∃T ⊂ L, |T | ≤ k : ‖x− xT‖2 ≤ (1 + ε)‖x−k‖2.

Then procedure Prune (Algorithm 10.2) can find a set S of size β · k in time O(m), such

that

‖x− xS‖2 ≤ (1 + α · ε)‖x−k‖2

holds with probability 9/10.

In Section 10.3.1, we provide some basic definitions and description of our algorithm.

We analyze the coordinates from several perspectives in Section 10.3.2. We prove the correct-

ness of our algorithm in Section 10.3.3 and analyze time, number of measurements column

sparsity, success probability of algorithm in Section 10.3.4.

10.3.1 Design of the sketching matrix, and helpful definitions

Definition 10.3.1 (sketching matrix Φ). Let CR, CB > 1 be absolute constants. Let R =

CR log(1/ε). Let B = CBk/ε. For r ∈ [R], we pick 2-wise independent hash function

hr : [n]→ [B], as well as normal random variables {gi,r}i∈[n],r∈[R] and take measurements

yr,b =
∑

i∈h−1
r (b)

xigi,r.
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Notation Choice Statement Parameter
CR 104 + 500CL Definition 10.3.1 R
CB 5× 105 Definition 10.3.1 B
Cg 4/5 Fact 10.3.2 Gaussian variable
CL 104 Theorem 10.3.1 L
α 5 Theorem 10.3.1 Blow up on ε
β 100 Theorem 10.3.1 Blow up on k

Table 10.3: Summary of constants in Section 10.3, the column “Parameter” indicates which
parameter is depending on that constant. Note that set L is the input of the algorithm in
Section 10.3 and the output of the algorithm in Section 10.2.

Given the set L, for every i ∈ L we calculate

zi = median
r∈[R]

|yr,hr(i)|,

and keep the indices i with the βk largest zi values to form a set S of indices, for some

absolute constant β sufficiently large. We describe this pruning step in Algorithm 10.2. For

the analysis, we define the threshold

τ = ‖x−k‖2/
√
k. (10.3)

We will need the following standard fact about the Gaussian distribution. Then we proceed

with a series of definitions and lemmata.

Fact 10.3.2 (property of Gaussian). Suppose x ∼ N(0, σ2) is a Gaussian random variable.

For any t ∈ (0, σ] we have

Pr[x ≥ t] ∈
[

1

2
(1− 4

5

t

σ
),

1

2
(1− 2

3

t

σ
)

]
.

Similarly, if x ∼ N(µ, σ2), for any t ∈ (0, σ], we have

Pr[|x| ≥ t] ∈
[
1− 4

5

t

σ
, 1− 2

3

t

σ

]
.
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Algorithm 10.2 The Prune Procedure
1: procedure Prune(x, n, k, ε, L) . Theorem 10.3.1
2: R← CR log(1/ε)
3: B ← CBk/ε
4: for r = 1→ R do
5: Sample hr : [n]→ [B] ∼ 2-wise independent family
6: for i = 1→ n do
7: Sample gi,r ∼ N(0, 1)
8: end for
9: end for
10: for r = 1→ R do
11: for b = 1→ B do
12: yr,b ←

∑
i∈h−1

r (b) xigi,r
13: end for
14: end for
15: for i ∈ L do
16: zi ← medianr∈[R] |yr,hr(i)|
17: end for
18: S ← {i ∈ L : zi is in the top βk largest coordinates in vector z}
19: return S
20: end procedure

The form we will need is the following:

Pr
g∼N(0,1)

[|g| ≤ t] ≤ 4

5
t.

Thought the analysis, for convenience we will set Cg = 4/5. Another form we will

need is:

Pr
g∼N(0,1)

[
|g| ∈

[ 1

3Cg
, 2
]]
≥ 0.63

Proof. The first form is true by simple calculation. The second form is holding due to
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numerical values of cdf for normal distribution,

Pr

[
|gi,r| ∈

[ 1

3Cg
, 2
]]

= 2(f(2)− f(1/3Cg)) = 2(f(2)− f(5/12)) ≥ 2(0.977− 0.662) = 0.63,

where f(x) =
∫ x
−∞

e−x
2/2

√
2π

dx is the cdf of normal distribution.

Stochastic dominance is a partial order between random variables and it is a classi-

cal concept in decision theory and decision analysis [HR69, Baw75]. We give the simplest

definition below and it is sufficient for our application.

Definition 10.3.2 (stochastic domination of Gaussian random variables). Let σ1 < σ2 and

random variablesX ∼ N(0, σ2
1), Y ∼ N(0, σ2

2). Then we say that |Y | stochastically dominates

|X|, and it holds that

Pr [|Y | ≥ λ] ≥ Pr [|X| ≥ λ] , ∀λ ≥ 0.

We formally define the set L as follows:

Definition 10.3.3 (set L, input of the algorithm). Let CL > 1 be a fixed constant, and let

set L ⊆ [n] be defined as:

|L| = CL · k/ε, ∃T ⊂ |T | ≤ k : ‖x− xT‖2 ≤ (1 + ε)‖x−k‖2.

We provide a definition called “badly-estimated coordinate”,

Definition 10.3.4 (badly-estimated coordinate). We will say a coordinate i ∈ [n] is badly-

estimated if

zi /∈
[

1

3Cg
|xi| −

1

100

√
ε√
k
‖x−k‖2, 2|xi|+

1

100

√
ε√
k
‖x−k‖2

]
,
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Then, we can define “badly-estimated set”,

Definition 10.3.5 (badly-estimated set B). Let set L be defined as Definition 10.3.3. We

say B ⊆ L is a badly-estimated set if for all i ∈ B, zi is a badly estimated coordinate (see

Definition 10.3.4).

We define a set of large coordinates in head,

Definition 10.3.6 (large coordinates in head). Let τ be defined in (10.3). Let L be defined

in Definition 10.3.3. Let Cg be the constant from Fact 10.3.2. Define set

M = {i ∈ L ∩H(x, k) : |xi| ≥ 3Cgτ},

which contains the head coordinates of x that are in L and are larger in magnitude than

3Cgτ .

10.3.2 Analyzing head and badly-estimated coordinates

Lemma 10.3.3 (expected error from coordinates above τ). We have that

E

[∑

i∈M

x2
i · 1zi<τ

]
≤ ε

100
‖x−k‖2

2.

Proof. Fix i ∈M. Observe that for r ∈ [R]

|y′r,hr(i)| ∼ ‖xh−1
r (i)‖2|N(0, 1)|.

Since

‖xh−1
r (i)‖2 ≥ |xi|
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we have that the random variable |y′r,hr(i)| stochastically dominates the random variable

|xi| · |N(0, 1)|.

By Fact 10.3.2, we have that

Pr
[
|y′r,hr(i)| ≤ τ

]
≤ Cg

τ

|xi|
.

Because of the R = CR log(1/ε) repetitions, a standard argument gives that

Pr [1zi<τ = 1] ≤
(
Cg

τ

|xi|

)C′ log(1/ε)

,

for some absolute constant C ′ > CR/3.

We now bound

E

[∑

i∈M

x2
i · 1zi<τ

]
≤
∑

i∈M

x2
i

(
Cg

τ

|xi|

)C′ log(1/ε)

=
∑

i∈M

C2
g τ

2

(
Cg

τ

|xi|

)C′ log(1/ε)−2

≤ k · τ 2 · ε

100

=
ε

100
‖x−k‖2

2,

where the first step follows by the bound on E [1zi<τ ] = Pr [1zi<τ = 1], and the third

step by choosing by choosing CR > 1 to be some sufficiently large constant and the facts

C ′ > CR/3 and (Cgτ)/|xi| ≤ 1/3.
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Lemma 10.3.4 (probability of a fixed coordinate is badly-estimated). A coordinate i is

badly-estimated (as in Definition 10.3.4) probability at most

ε3

1002CL
.

Proof. Fix r and set set b = hr(i). Recall the definition of yr,b =
∑

i∈h−1
r (b) xigi,r in Defini-

tion 10.3.1. We have that
∣∣∣∣∣∣
|gi,rxi| −

∣∣∣∣∣∣
∑

j∈h−1
r (b)\{i}

gj,rxj

∣∣∣∣∣∣

∣∣∣∣∣∣
≤ |yr,b| ≤ |gi,rxi|+

∣∣∣∣∣∣
∑

j∈h−1
r (b)\{i}

gj,rxj

∣∣∣∣∣∣
,

Now, |gi,rxi| will be at in [(1/3Cg)|xi|, 2|xi|] with probability at least 0.63 (due to Fact 10.3.2).

Moreover, for any j ∈ H(x, k) \ {i}, hr(j) 6= b with probability 1 − 1/B = 1 −

ε/(CBk) ≥ 1 − 1/(CBk). By a union bound, we get with probability at least 1 − 1/CB, for

all j ∈ H(x, k) \ {i}, hr(j) 6= b. Conditioning on this event, we have,

E




 ∑

j∈h−1
r (b)\{i}

gj,rxj




2
 =

ε

CBk
‖x−k‖2

2.

We then apply Markov’s inequality to get that with probability at least 1− 104/CB,

 ∑

j∈h−1
r (b)\{i}

gj,rxj




2

≤ ε

104k
‖x−k‖2

2.

Therefore, by a union bound,

Pr

[
|yr,b| ∈

[
1

3Cg
|xi| −

1

100

√
ε√
k
, 2|xi|+

1

100

√
ε√
k

]]
≥ 0.63− 1

CB
− 104

CB

≥ 0.6,
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where the last step follows by CB ≥ 5× 105.

Note that zi is obtained by taking median of R copies of i.i.d. |yr,b|. For each r ∈ [R],

we define Zr = 1 if |yr,b| falls into that region, and 0 otherwise. We have E[
∑R

r=1 Zr] ≥ 0.6R.

Using Chernoff bound, we have

Pr

[
R∑

r=1

Zr < 0.9 · 0.6R
]
≤ Pr

[
R∑

r=1

Zr < 0.9E[
R∑

r=1

Zr]

]

≤ e−
1
3

0.12 E[
∑R
r=1 Zr]

≤ e−
1
3

0.12·0.6R

Thus,

Pr

[
zi 6∈

[
1

3Cg
|xi| −

1

100

√
ε√
k
, 2|xi|+

1

100

√
ε√
k

]]
≤ e−

1
3

0.12·0.6R

≤ 2−0.002R

= 2−0.002CR log(1/ε)

≤ 2−0.002(10000+500CL) log(1/ε)

≤ ε3

1002CL
,

where the third step follows from choice of CR.

10.3.3 Guarantees of the algorithm

We now proceed with the proof of Theorem 10.3.1.

Proof. By Lemma 10.3.3 and an application of Markov’s inequality we have that
∑

i∈M

x2
i · 1zi<τ ≤ ε‖x−k‖2

2,
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with probability 99/100. Let this event be E1.

Moreover, by Lemma 10.3.4,

E[|B|] ≤ ε3|L|
1002CL

,

so, by Markov’s inequality, we have

Pr

[
|B| ≤ ε2|L|

100CL

]
≥ 1− ε/100 ≥ 99/100

Let this event be E2.

By taking a union bound, E1 and E2 both hold with probability 98/100. Plugging

size of |L| (≤ CL · k/ε) into equation of event E2, we get

|B| ≤ ε2|L|
100CL

≤ εk

100
. (10.4)

It means there are at most εk/100 coordinates that badly-estimated.

We remind that our goal is to bound

‖x− xS‖2
2 = ‖xS̄‖2

2

= ‖xS̄∩M‖2
2 + ‖xS̄\M‖2

2

= ‖xS̄∩M‖2
2 + ‖x(S̄\M)∩B‖2

2 + ‖x(S̄\M)\B‖2
2

1. Bounding ‖xM∩S̄‖2
2. Consider the set

I = {i ∈ L \M : |xi| ≥ τ/3},

which contains the coordinates in L with magnitude in the range [1
3
τ, 3Cgτ). By the definition

of τ , clearly, |I| ≤ 3k + k = 4k, because we can have at most k such elements in H(x, k),
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and at most 3k such elements in the tail [n] \H(x, k). Since the number of badly estimated

coordinates is at most εk/100 and the size of S is βk for sufficiently large β, we can have at

most 4k + εk/100 < βk coordinates i ∈ L which are not in M and are larger than τ . This

means that all coordinates in M with estimate zi ≥ τ will belong to S. This implies that

M ∩ S̄ = {i ∈M : zi < τ},

and hence

‖xM∩S̄‖2
2 =

∑

i∈M

x2
i · 1zi<τ ≤ ε‖x−k‖2

2,

since we conditioned on event E1.

2. Bounding ‖x(S̄\M)∩B‖2
2. For every i ∈ (S̄ \M)∩B) we have the trivial bound |xi| ≤ τ .

Since (S̄ \M) ∩B) ⊆ B, because the event E2 we get that

‖x(S̄\M)∩B‖2
2 ≤ |B| · τ 2 ≤ εk

100
· ‖x−k‖

2
2

k
=

ε

100
‖x−k‖2

2,

where the second step follows from (10.4) and (10.3).

3. Bounding ‖x(S̄\M)\B‖2
2. Observe that set (S̄ \M) \B consists of well-estimated coordi-

nates that are less than τ in magnitude, and their estimates do not belong to the largest βk

estimates. For convenience, set Q = (S̄ \M) \B, then it is obvious that Q = S\(M ∪B).

We define three sets H1, H2, H3 as follows,

H1 = Q ∩ T, H2 = Q ∩ T̄, and H3 = (T\(M ∪B))\S.
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Using the definition of Q, we can rewrite H1, H2, and H3 as follows

H1 = (S\(M ∪B)) ∩ T = S ∩M ∪B ∩ T,

H2 = (S\(M ∪B)) ∩ T = S ∩M ∪B ∩ T ,

H3 = (T\(M ∪B))\S = S ∩M ∪B ∩ T .

We can show that

H2 ∩H3 = (S ∩M ∪B ∩ T ) ∪ (S ∩M ∪B ∩ T )

= ∅, (10.5)

and

H2 ∪H3 = (S ∩M ∪B ∩ T ) ∩ (S ∩M ∪B ∩ T )

= M ∪B ∩ T

= T\(M ∪B). (10.6)

Then,

‖xQ‖2
2 = ‖xH1‖2

2 + ‖xH2‖2
2

= ‖xH1‖2
2 + (‖xT̄\(M∪B)‖2

2 − ‖xH3‖2
2)

≤ ‖xH1‖2
2 + ‖xT‖2

2 − ‖xH3‖2
2

≤ ‖xH1‖2
2 + (1 + ε)‖x−k‖2

2 − ‖xH3‖2
2,

where first step follows from H1 ∩ H2 = ∅ and H1 ∪ H2 = Q, the second step follows from

Eq. (10.5) and (10.6), the third step follows from ‖xT̄\(M∪B)‖2
2 ≤ ‖xT‖2

2 and the last step

follows from ‖xT‖2
2 ≤ (1 + ε)‖x−k‖2

2.
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We define d,E, a, b as follows

d = |H1|, E =
1

4

√
ε/k‖x−k‖2, a = max

i∈H1

|xi|, b = min
i∈H3

|xi|. (10.7)

Let i∗ and j∗ be defined as follows:

i∗ = arg max
i∈H1

|xi|, and j∗ = arg min
j∈H3

|xj|. (10.8)

Recall the definitions of H1 and H3, we know H3 is a subset of S and H1 is a subset of S.

Since the set S contains the largest βk coordinates, thus we have

zj ≥ zi,∀i ∈ H1, j ∈ H3.

It further implies zj∗ ≥ zi∗ .

By Definition 10.3.4, we have

zi∗ ≥
1

3Cg
|xi∗ | −

1

100

√
ε√
k
‖x−k‖2, (10.9)

and

zj∗ ≤ 2|xj∗|+
1

100

√
ε√
k
‖x−k‖2. (10.10)

Then, we can show that a ≤ 6Cgb+ E in the following sense:

a = |xi∗| by def. of i∗, a, (10.8), (10.7)

≤ 3Cgzi∗ +
3Cg
100

√
ε/k‖x−k‖2 by (10.9)

≤ 3Cgzj∗ +
3Cg
200

√
ε/k‖x−k‖2 by zi∗ ≤ zj∗

≤ 6Cg|xj∗|+
6Cg
200

√
ε/k‖x−k‖2 by (10.10)

= 6Cgb+
6Cg
200

√
ε/k‖x−k‖2 by def. of j∗, b, (10.8), (10.7)

≤ 6Cgb+ E by def. of E, (10.7)
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Note that H3 = (T̄ \ (M ∪B)) \ S = S \ (T ∪M ∪B). Therefore,

|H3| ≥ |S| − |T | − |M| − |B|

≥ βk − k − k − k

= (β − 3)k.

Finally, we can have

‖xH1‖2
2 − ‖xH3‖2

2 ≤ da2 − (β − 3)kb2

≤ d(6Cgb+ E)2 − (β − 3)kb2 by a ≤ 6Cgb+ E

= (36C2
gd− (β − 3)k)b2 + 12CgbdE + dE2

≤ (36C2
gk − (β − 3)k)b2 + 12CgbkE + kE2 by d ≤ k

≤ (36C2
gk − (β − 5C2

g )k)b2 + 12CgbkE + kE2 by Cg ≥ 4/5

≤ − 36kC2
g b

2 + 12CgbkE + kE2 by β ≥ 77C2
g

= − k(6Cgb− E)2 + 2kE2

≤ 2kE2

≤ ε‖x−k‖2
2.

where the last step follows from definition of E.

Thus, we have

‖xQ‖2
2 ≤ (1 + 2ε)‖x−k‖2

2.
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Putting it all together. We have

‖x− xS‖2
2 = ‖xS∩M‖2

2 + ‖x(S\M)∩B‖2
2 + ‖x(S\M)\B‖2

2

≤ ε‖x−k‖2
2 +

ε

100
‖x−k‖2

2 + (1 + 2ε)‖x−k‖2
2

≤ (1 + 4ε)‖x−k‖2
2

Finally, we can conclude α = 5 and β = 100.

10.3.4 Time, measurements, column sparsity, and probability

In this section, we will bound the decoding time, the number of measurements, column

sparsity and success probability of algorithm.

Decoding time. For each i ∈ L, we compute zi to be the median of R values. For this

part, we spend O(|L| · R) = O((k/ε) · log(1/ε)) time. Moreover, calculating the top βk

estimates in L only takes O(|L|) time. Therefore, the decoding time is O((k/ε) · log(1/ε)).

The number of measurements. The number of measurements is the bucket size B times

the number of repetitions R, which is O(BR) = O((k/ε) · log(1/ε)).

Column sparsity. Each i ∈ [n] goes to one bucket for each hash function, and we repeat

R times, so the column sparsity is O(R) = O(log(1/ε)).

Success probability. By analysis in Section 10.3.3, the success probability is at least 0.98.
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10.4 Tail Estimation

In Section 10.4.1, we present a standard result on random walks. In Section 10.4.2,

we present some results on p-stable distribution. In what follows we asssume that 0 < p ≤ 2.

We show an algorithm for `p tail estimation in Section 10.4.3.

10.4.1 Random walks

Theorem 10.4.1. We consider the following random walk. We go right if Bi = 1 and we go

left if Bi = 0. The probability of Bi = 1 is at least 9/10 and the probability of Bi = 0 is at

most 1/10. With at least some constant probability bounded away from 1
2
, for all the possible

length of the random walk, it will never return to the origin.

This is a standard claim, that can be proved in numerous ways, such as martingales

etc. For the completeness, we still provide a folklore proof here.

Proof. Let p > 1/2 be the probability of stepping to the right, and let q = 1− p. For integer

m ≥ 1, let Pm be the probability of first hitting 0 in exactly m steps. It is obvious that

Pm = 0 if n is even, and P1 = q. In order to hit 0 for the first time on the third step you

must Right-Left-Left, so P3 = pq2. To hit 0 for the first time in exactly 2k + 1 steps, you

must go right k times and left k + 1 times, your last step must be to the left, and through

the first 2k steps you must always have made at least many right steps as left steps. It is

well known that the number o such path is Ck, which is the k-th Catalan number. Thus,

P2k+1 = Ckq
kqk+1 = Ck · q(pq)k =

q(pq)k

k + 1

(
2k

k

)
,
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since

Ck =
1

k + 1

(
2k

k

)

By [Wil05], the generating function for the Catalan numbers is

c(x) =
∑

k≥0

Ckx
k =

1−
√

1− 4x

2x
,

so the probability that the random walk will hit 0 is

∑

k≥0

P2k+1 = q
∑

k≥0

Ck(pq)
k

= q · c(pq)

= q · 1−√1− 4pq

2pq
by definition of c(x)

=
1−

√
1− 4q(1− q)

2p

=
1−

√
1− 4q + 4q2

2p

=
1− (1− 2q)

2p

= q/p

≤ 1/9.

Thus, we complete the proof.

10.4.2 p-stable distributions

We first provide the definition of p-stable distribution. For the more details, we refer

the readers to [Ind06].
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Figure 10.1: This is a visualization of part of the proof in Claim 10.4.7. We consider an
example where there are l = 10 blocks, B1 = 1, B2 = 1, B1 = 1, B3 = 0, B4 = 0,
B5 = 1, B6 = 1, B7 = 0, B8 = 0, B9 = 1 and B10 = 0. Recall the two important
conditions in the proof of Claim 10.4.7, the first one is B1 = 1 and the second one is, for
all j ∈ [l],

∑j
j′=2Bj′ > (j − 1)/2. The number on the green arrow is

∑j
j′=2Bj′ . It is to see

that the example we provided here is satisfying those two conditions. Recall the definition
of set S1 and S0. Here S1 = {2, 3, 5, 6, 9} and S0 = {4, 7, 8, 10}. Then S ′1 = {2, 3, 5, 6}. The
mapping π satisfies that π(4) = 2, π(7) = 3, π(8) = 5 and π(10) = 6.

Definition 10.4.1 (p-stable distribution). A distribution D over R is called p-stable, if there

exists p ≥ 0 such that for any n real numbers a1, a2, · · · , an and i.i.d. variables x1, x2, · · · , xn
from distribution D, the random variable

∑n
i=1 aixi has the same distribution as the variable

‖a‖py, where y is a random variable from distribution D.

Theorem 10.4.2 ([Zol86]). For any p ∈ (0, 2], there exists a p-stable distribution.

Gaussian distribution defined by the density function f(x) = 1√
2π
e−x

2/2, is 2-stable.

Cauchy distribution defined by density function f(x) = 1
π

1
1+x2 is 1-stable. Let Dp denote the
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p-stable distribution. For p = 2, Dp is N(0, 1) and for p = 1, Dp is C(0, 1).

10.4.3 `p-tail estimation algorithm

The goal of this Section is prove Lemma 10.4.3.

Algorithm 10.3 `p-tail Estimation Algorithm

1: procedure LpLpTailEstimation(x, k, p, C0, δ) . Lemma 10.4.3
2: . Requires C0 ≥ 1000
3: m← O(log(1/δ))
4: Choose gi,t to be random variable that sampled i.i.d. from distribution Dp, ∀i, t ∈

[n]× [m]
5: Choose δi,t to be Bernoulli random variable with E[δi,t] = 1/(100k), ∀i, t ∈ [n]× [m]
6: . Matrix A is implicitly constructed based on gi,t and δi,t
7: for t ∈ [m] do
8: yt ←

∑n
i=1 δi,t · gi,t · xi

9: end for
10: V ← mediant∈[m] |yt|2
11: return V . 1

10k
‖x−C0k‖pp ≤ V ≤ 1

k
‖x−k‖pp

12: end procedure

One can try to prove such a claim for p = 2 with random signs, instead of Gaussians,

by applying the Paley-Zygmund inequality to obtain the lower bound. A straightforward

calculation indicates that this approach does not give the desired result, hence we need a

new argument to deal with the lower bound.

Lemma 10.4.3 (Restatement of Lemma 10.1.3). Let C0 ≥ 1000 denote some fixed constant.

There is an oblivious construction of matrix A ∈ Rm×n with m = O(log(1/δ)) along with

a decoding procedure LpLpTailEstimation(x, k, p, C0, δ) (Algorithm 10.3) such that, given

Ax, it is possible to output a value V in time O(m) such that

1

10k
‖x−C0k‖pp ≤ V ≤ 1

k
‖x−k‖pp,
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holds with probability 1− δ.

Proof. Let m = O(log(1/δ)). For each i ∈ [n], t ∈ [m], we use gi,t to denote a random

variable that sample from distribution Dp.

For each i ∈ [n], t ∈ [m], we use δi,t to denote a Bernoulli random variable such that

δi,t =

{
1, with prob. 1

100k
;

0, otherwise.

Then we have

E[δi,t] =
1

100k
.

For each t ∈ [m], we define yt as follows

yt =
n∑

i=1

δi,tgi,txi. (10.11)

For each t ∈ [m], we define ∆t as follows

∆t =

(
n∑

i=1

δpi,tx
p
i

)1/p

. (10.12)

Using Claim 10.4.4 and Claim 10.4.7

Pr
g,δ

[
|yt| < α

1

(2C0k)1/p
‖x−C0k‖p

]
≤ 1/5.

Using Claim 10.4.5 and Claim 10.4.6

Pr
g,δ

[
|yt| > β

1

k1/p
‖x−k‖p

]
≤ 1/5.

Finally, we just take the median over m different independent repeats. Since m =

O(log(1/δ)), thus, we can boost the failure probability to δ.
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It is a standard fact, due to p-stability, that yt follows the p-stable distribution :

∆t · Dp. Since p-stable distributions are continuous functions, we have the following two

Claims:

Claim 10.4.4 (upper bound on |yt|). Let yt be defined in Eq. (10.11), let ∆t be defined in

Eq. (10.12). There is some sufficiently small constant α ∈ (0, 1) such that

Pr
g

[|yt| < α ·∆t] ≤ 1/10.

Claim 10.4.5 (lower bound on |yt|). Let yt be defined in Eq. (10.11), let ∆t be defined in

Eq. (10.12). There is some sufficiently large constant β > 1 such that

Pr
g

[|yt| > β ·∆t] ≤ 1/10.

It remains to prove Claim 10.4.6 and Claim 10.4.7.

Claim 10.4.6 (lower bound on ∆t). Let ∆t be defined in Eq. (10.12). Then we have

Pr
δ

[
∆t >

1

k1/p
‖x−k‖p

]
≤ 1/10.

Proof. The proof mainly includes three steps,

First, for a fixed coordinate i ∈ [n], with probability at most 1/(100k), it got sampled.

Taking a union bound over all k largest coordinates. We can show that with probability at

least 1− 1/100, none of k largest coordinates is sampled. Let ξ be that event.

Second, conditioning on event ξ, we can show that

E[∆t] ≤
1

(100k)1/p
‖x−k‖p.
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Third, applying Markov’s inequality, we have

Pr[∆t ≥ a] ≤ E[∆t]/a.

Choosing a = 1
k1/p‖x−k‖p, we have

Pr

[
∆t ≥

1

k1/p
‖x−k‖p

]
≤ 1/10.

Claim 10.4.7 (upper bound on ∆t). Let ∆t be defined in Eq. (10.12). For any C0 ≥ 1000,

we have

Pr
δ

[
∆t <

1

(2C0k)1/p
‖x−C0k‖p

]
≤ 1/10.

Proof. Without loss of generality, we can assume that all coordinates of xi are sorted, i.e.

x1 ≥ x2 ≥ · · · ≥ xn. Then we split length n vector into l blocks where each block has length

s = C0k. Note that it is obvious l · s = n.

For each j ∈ [l], we use boolean variable Bj to denote that if at least one coordinate

in j-th block has been sampled. For a fixed block j ∈ [l], the probability of sampling at least

one coordinate from that block is at least

1−
(

1− 1

100k

)s
= 1−

(
1− 1

100k

)C0k

≥ 9/10.

Thus, we know 1 ≥ E[Bj] ≥ 9/10.

Warm-up. Note the probability is not allowed to take a union over all the blocks.

However, if we conditioned on that each block has been sampled at least one coordinate,
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then we have

∆p
t =

n∑

i=1

δi,tx
p
i

≥
l−1∑

j=1

xpjs

≥
l−1∑

j=1

1

s

(
xpjs+1 + xpjs+2 + · · ·+ xpjs+s

)

=
1

s
‖xs‖pp.

Fixed. For simplicity, for each j ∈ [l], we use set Tj to denote {(j − 1)s + 1, (j −

1)s+ 2, · · · , (j − 1)s+ s}.

Using random walk Lemma 10.4.1, with probability at least 99/100, we have : for all

j ∈ {2, · · · , l},
j∑

j′=2

Bj′ > (j − 1)/2.

We know that with probability at least 99/100, B1 = 1. Then with probability at least

99/100, we have

B1 = 1, and
j∑

j′=2

Bj′ > (j − 1)/2, ∀j ∈ [l].

We conditioned on the above event holds. Let set S1 ⊂ [n] denote the set of indices j such

that Bj = 1, i.e.,

S1 =
{
j
∣∣ Bj = 1, j ∈ [n]\{1}

}
.
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Let set S0 ⊂ [n] denote the set of indices j such that Bj = 0, i.e.,

S0 =
{
j
∣∣ Bj = 0, j ∈ [n]\{1}

}
.

Due to
∑j

j′=2Bj′ > (j − 1)/2,∀j ∈ [l], then it is easy to see S1 > S0 and there exists a

one-to-one mapping π : S0 → S ′1 where S ′1 ⊆ S1 such that for each coordinate j ∈ S0,

π(j) < j. Since we are the coordinates are being sorted already, thus

∑

j∈S1

‖xTj‖pp =
∑

j∈S′1

‖xTj‖pp

=
∑

j∈S′1

‖xTπ−1(j)
‖pp

≥
∑

j∈S0

‖xTj‖pp

which implies that

∆p
t =

n∑

i=1

δpi x
p
i =

∑

j∈S1

‖xTj‖pp ≥
1

2s
‖x−s‖pp.

Thus, with probability at least 9/10, we have

∆t ≥
1

(2s)1/p
‖x−s‖p.

673



10.5 Putting It All Together

Our full algorithm first applies interval forest sparse recovery algorithm in Algo-

rithm 10.1 with precision parameter ε
10

to obtain a set L of size O(k/ε). By Theorem 10.2.1,

with probability 9
10
, L contains a subset T of size at most k so that ‖x−xT‖2 ≤ (1+ ε

10
)‖x−k‖2.

Then the algorithm feeds L into the pruning procedure in Algorithm 10.2 also with precision

parameter ε
10

to get S. By Theorem 10.3.1, with probability 9
10
, |S| = O(k) and ‖x−xS‖2 ≤

(1+ ε
2
)‖x−x−k‖2. Finally, the algorithm uses set query data structure in Lemma 10.1.6 to give

x̂S as approximation to xS. With probability at least 1−1/ poly(k), ‖x̂S−xS‖2
2 ≤ ε

2
‖x−xS‖2

2.

Therefore, ‖x−x̂S‖2
2 = ‖x−xS‖2

2+‖xS−x̂S‖2
2 ≤ (1+ ε

4
)(1+ ε

2
)2‖x−x−k‖2

2 ≤ (1+ε)2‖x−x−k‖2
2.

By union bound, the overall failure probability is at most 1/4.

Algorithm 10.4 Stronger `2/`2 Algorithm
1: procedure Main(x, n, k, ε) . Theorem 10.1.2
2: L← IntervalForestSparseRecovery(x, n, k, ε

10
) . Algorithm 10.1

3: S ← Prune(x, n, k, ε
10
, L) . Algorithm 10.2

4: x̂S ← SetQuery(x, n, ε
4
, S) . Lemma 10.1.6

5: return x̂S
6: end procedure
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Chapter 11

Continuous Fourier Transform I

In recent years, a number of works have studied methods for computing the Fourier

transform in sublinear time if the output is sparse. Most of these have focused on the

discrete setting, even though in many applications the input signal is continuous and naive

discretization significantly worsens the sparsity level.

We present an algorithm for robustly computing sparse Fourier transforms in the

continuous setting. Let x(t) = x∗(t) + g(t), where x∗ has a k-sparse Fourier transform and g

is an arbitrary noise term. Given sample access to x(t) for some duration T , we show how

to find a k-Fourier-sparse reconstruction x′(t) with

1

T

∫ T

0

|x′(t)− x(t)|2dt . 1

T

∫ T

0

|g(t)|2dt.

The sample complexity is linear in k and logarithmic in the signal-to-noise ratio and the

frequency resolution. Previous results with similar sample complexities could not tolerate

an infinitesimal amount of i.i.d. Gaussian noise, and even algorithms with higher sample

complexities increased the noise by a polynomial factor. We also give new results for how

precisely the individual frequencies of x∗ can be recovered.
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11.1 Introduction

The Fourier transform is ubiquitous in digital signal processing of a diverse set of sig-

nals, including sound, image, and video. Much of this is enabled by the Fast Fourier Trans-

form (FFT) [CT65], which computes the n-point discrete Fourier transform in O(n log n)

time. But can we do better?

In many situations, much of the reason for using Fourier transforms is because the

transformed signal is sparse—i.e., the energy is concentrated in a small set of k locations. In

such situations, one could hope for a dependency that depends nearly linearly on k rather

than n. Moreover, one may be able to find these frequencies while only sampling the signal for

some period of time. This idea has led to a number of results on sparse Fourier transforms,

including [GGI+02, GMS05, HIKP12a, IK14], that can achieve O(k log(n/k) log n) running

time and O(k log(n/k)) sample complexity (although not quite both at the same time) in a

robust setting.

These works apply to the discrete Fourier transform, but lots of signals including

audio or radio originally come from a continuous domain. The standard way to convert a

continuous Fourier transform into a discrete one is to apply a window function then subsam-

ple. Unfortunately, doing so “smears out” the frequencies, blowing up the sparsity. Thus,

one can hope for significant efficiency gains by directly solving the sparse Fourier transform

problem in the continuous setting. This has led researchers to adapt techniques from the

discrete setting to the continuous both in theory [BCG+12, TBSR13, CF14, DB13] and in

practice [SAH+13]. However, these results are not robust to noise: if the signal is sampled

with a tiny amount of Gaussian noise or decays very slightly over time, no method has

been known for computing a sparse Fourier transform in the continuous setting with sample
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complexity linear in k and logarithmic in other factors. That is what we present in this

paper.

Formally, a vector x∗(t) has a k-sparse Fourier transform if it can be written as

x∗(t) =
k∑

i=1

vie
2πifit

for some tones {(vi, fi)}. We consider the problem where we can sample some signal

x(t) = x∗(t) + g(t)

at any t we choose in some interval [0, T ], where x∗(t) has a k-sparse Fourier transform and

g(t) is arbitrary noise. As long as g is “small enough,” one would like to recover a good

approximation to x (or to x∗, or to {(vi, fi)}) using relatively few samples t ∈ [0, T ] and fast

running time. Our algorithm achieves several results of this form, but a simple one is an

`2/`2 guarantee: we reconstruct an x′(t) with k-sparse Fourier transform such that

1

T

∫ T

0

|x′(t)− x(t)|2dt . 1

T

∫ T

0

|g(t)|2dt

using a number of samples that is k times logarithmic factors1. To the best of our knowledge,

this is the first algorithm achieving such a constant factor approximation with a sample

complexity sublinear in T and the signal-to-noise ratio.

Our algorithm also gives fairly precise estimates of the individual tones (vi, fi) of the

signal x∗. To demonstrate what factors are important, it is helpful to think about a concrete

setting. Let us consider sound from a simplified model of a piano.

1We use f . g to denote that f ≤ Cg for some universal constant C.
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Thought experiment: piano tuning In a simplified model of a piano, we have keys

corresponding to frequencies over some range [−F, F ]. The noise g(t) comes from ambient

noise and the signals not being pure tones (because, for example, the notes might decay

slowly over time). For concrete numbers, a modern piano has 88 keys spaced from about

27.5 Hz to F = 4200Hz. The space between keys ranges from a few Hz to a few hundred Hz,

but most chords will have an η = 30Hz or more gap between the frequencies being played.

One typically would like to tune the keys to within about ±ν = 1Hz. And piano music

typically has k around 5.

Now, suppose you would like to build a piano tuner that can listen to a chord and

tell you what notes are played and how they are tuned. For such a system, how long must

we wait for the tuner to identify the frequencies? How many samples must the tuner take?

And how robust is it to the noise?

If you have a constant signal-to-noise ratio, you need to sample for a time T of at

least order 1/ν = 1 second in order to get 1Hz precision—frequencies within 1Hz of each

other will behave very similarly over small fractions of a second, which noise can make

indistinguishable. You also need at least Ω(k log F
kν

) ≈ 50 samples, because the support of

the signal contains that many bits of information and you only get a constant number per

measurement (at constant SNR). At higher signal-to-noise ratios ρ, these results extend to

Ω( 1
νρ

) duration and Ω(k logρ
F
kν

) samples. But as the signal-to-noise ratio gets very high, there

is another constraint on the duration: for T < 1
η
≈ 33 milliseconds the different frequencies

start becoming hard to distinguish, which causes the robustness to degrade exponentially

in k [Moi15] (though the lower bound there only directly applies to a somewhat restricted

version of our setting).
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This suggests the form of a result: with a duration T > 1
η
, one can hope to recover

the frequencies to within 1
ρT

using O(k logρ
FT
k

) samples. We give an algorithm that is

within logarithmic factors of this ideal: with a duration T > O(log(k/δ))
η

, we recover the

frequencies to within O( 1
ρT

) using O(k logρ(FT )·log(k/δ) log k) samples, where ρ and 1/δ are

(roughly speaking) the minimum and maximum signal-to-noise ratios that you can tolerate,

respectively.

Instead of trying to tune the piano by recovering the frequencies precisely, one may

simply wish to record the sound for future playback with relatively few samples. Our algo-

rithm works for this as well: the combination x′(t) of our recovered frequencies satisfies

1

T

∫ T

0

|x′(t)− x(t)|2dt . 1

T

∫ T

0

|g(t)|2dt.

Let us now state our main theorems. The first shows how well we can estimate the

frequencies fi and their weights vi; we refer to this (vi, fi) pair as a tone.

Theorem 11.1.1 (Tone estimation). Consider any signal x(t) : [0, T ]→ C of the form

x(t) = x∗(t) + g(t),

for arbitrary “noise” g(t) and an exactly k-sparse x∗ =
∑

i∈[k] vie
2πifit with frequencies fi ∈

[−F, F ] and frequency separation η = mini 6=j |fi− fj|. For some parameter δ > 0, define the

“noise level”

N2 :=
1

T

∫ T

0

|g(t)|2dt+ δ

k∑

i=1

|vi|2.

We give an algorithm that takes samples from x(t) over any duration T > O( log(k/δ)
η

) and

returns a set of k tones {(v′i, f ′i)} that approximates x∗ with error proportional to N. In
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particular, every large tone is recovered: for any vi with |vi| & N, we have for an appropriate

permutation of the indices that

|f ′i − fi| .
N

T |vi|
and |v′i − vi| . N. (11.1)

In fact, we satisfy a stronger guarantee that the total error is bounded:
k∑

i=1

1

T

∫ T

0

|v′ie2πif ′it − vie2πifit|2dt . N2. (11.2)

The algorithm takes O(k log(FT ) log(k
δ
) log(k)) samples and O(k log(FT ) log(FT

δ
) log(k))

running time, and succeeds with probability at least 1−1/kc for an arbitrarily large constant

c.

We then show that the above approximation of the individual tones is good enough

to estimate the overall signal x(t) to within constant factors:

Theorem 11.1.2 (Signal estimation). In the same setting as Theorem 11.1.1, if the duration

is slightly longer at T > O( log(1/δ)+log2 k
η

), the reconstructed signal x′(t) =
∑k

i=1 v
′
ie

2πif ′it

achieves a constant factor approximation to the complete signal x:

1

T

∫ T

0

|x′(t)− x(t)|2dt . N2. (11.3)

The algorithm takesO(k log(FT ) log(k
δ
) log(k)) samples andO(k log(FT ) log(FT

δ
) log(k))

running time, and succeeds with probability at least 1−1/kc for an arbitrarily large constant

c.

The above theorems give three different error guarantees, which are all in terms of a

“noise level” N2 that is the variance of the noise g(t) plus δ times the energy of the signal.

The algorithm depends logarithmically on δ, so one should think of N2 as being the variance

of the noise, e.g. σ2 if samples have error N(0, σ2).
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Error guarantees. Our algorithm does a good job of estimating the signal, but how ex-

actly should we quantify this? Because very few previous results have shown robust recovery

in the continuous setting, there is no standard error measure to use. We therefore bound the

error in three different ways: the maximum error in the estimation of any tone; the weighted

total error in the estimation of all tones; and the difference between the reconstructed signal

and the true signal over the sampled interval. The first measure has been studied before,

while the other two are to the best of our knowledge new but useful to fully explain the

robustness we achieve.

The error guarantee (11.1) says that we achieve good recovery of any tones with

magnitude larger than CN for some constant C. Note that such a requirement is necessary:

for tones with |vi| ≤ N, one could have g(t) = −vie2πifit, completely removing the tone

(vi, fi) from the observed x(t) and making it impossible to find. For the tones of sufficiently

large magnitude, we find them to within N
T |vi| . This is always less than 1/T , and converges

to 0 as the noise level decreases. This is known as superresolution–one can achieve very high

frequency resolution in sparse, nearly noiseless settings. Moreover, by Lemma 11.3.15 our

“superresolution” precision |f ′i − fi| . N
T |vi| is optimal.

While the guarantee of (11.1) is simple and optimal given its form, it is somewhat

unsatisfying. It shows that the maximum error over all k tones is N, while one can hope to

bound the total error over all k tones by N. This is precisely what Equation (11.2) does.

The guarantee (11.1) is the precision necessary to recover the tone to within O(N) average

error in time, that is (11.1) is equivalent to

1

T

∫ T

0

|v′ie2πif ′it − vie2πifit|2dt . N2 ∀i ∈ [k].
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In (11.2), we show that this bound holds even if we sum the left hand side over all i ∈ [k], so

the average error is a factor k better than would be implied by (11.1). It also means that the

total mass of all tones that are not recovered to within ±1/T is O(N), not just that every

tone larger than O(N) is recovered to within ±1/T .

The stronger bound (11.2) can be converted to the guarantee (11.3), which is anal-

ogous to the `2/`2 recovery guarantee standard in compressive sensing. It bounds the er-

ror of our estimate in terms of the input noise, on average over the sampled duration.

The standard form of the `2/`2 guarantee in the discrete sparse Fourier transform set-

ting [GGI+02, GMS05, HIKP12a, IKP14, IK14] compares the energy in frequency domain

rather than time domain. This cannot be achieved directly in the continuous setting, since

frequencies infinitesimally close to each other are indistinguishable over a bounded time in-

terval T . But if the signal is periodic with period T (the case where a discrete sparse Fourier

transform applies directly), then (11.3) is equivalent to the standard guarantee by Parseval’s

identity. So (11.3) seems like the right generalization of `2/`2 recovery to our setting.

Other factors. Our algorithm succeeds with high probability in k, which could of course

be amplified by repetition (but increasing the sample complexity and running time). Our

running time, at O(k log(FT ) log(FT/δ) log k), is (after translating between the discrete

and continuous setting) basically a log k factor larger than the fastest known algorithm for

discrete sparse Fourier transforms ([HIKP12a]). But since that result only succeeds with

constant probability, and repetition would also increase that by a log k factor, our running

time is actually equivalent to the fastest known results that succeed with high probability

in k.
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Our sample complexity is O(log(k/δ) log k) worse than the presumptive optimal,

which is known to be achievable in the discrete setting ([IK14]). However, the techniques

that [IK14] uses to avoid the log(k/δ) factor seem hard to adapt to the continuous setting

without losing some of the robustness/precision guarantees.

Another useful property of our method, not explicitly stated in the theorem, is that

the sampling method is relatively simple: it chooses O(log(FT ) log k) different random arith-

metic sequences of points, where each sequence has O(k log(k/δ)) points spread out over a

constant fraction of the time domain T . Thus one could implement this in hardware using

a relatively small number of samplers, each of which performs regular sampling at a rate of
k log(k/δ)

T
. This is in contrast to the Nyquist rate for non-sparse signals of 2F — in the piano

example, each sampler has a rate on the order of 50Hz rather than 8000Hz.

The superresolution frequency is optimal because two signals of magnitude vi and

frequency separation ν < 1/T will differ by O(ν2T 2|vi|2) over the duration T , so for ν below

our threshold the difference is just N2. Hence if the observed signal x(t) looks identical to

(vi, fi), it might actually be (vi, f
′
i) with noise equaling the difference between the two.

The only previous result known in the form of (11.1) was [Moi15], which lost a

poly(k, max |vi|
min |vi| , η) factor in noise tolerance and also did not optimize for sample complexity.

11.1.1 Comparison to Naive Methods

This section compares our result to some naive ways one could try to solve this

problem by applying algorithms not designed for a continuous, sparse Fourier transform

setting. The next section will compare our result to algorithms that are designed for such a

setting.
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Nyquist Sampling. The traditional theory of band-limited signals from discrete samples

says that, from samples taken at the Nyquist rate 2F , one can reconstruct an F -band-limited

signal exactly. The Whittaker-Shannon interpolation formula then says that

x∗(t) =
∞∑

i=−∞

x∗(2Fi) sinc(2Ft− i) (11.4)

where sinc(t) is the normalized sinc function sin(πt)
πt

. This is for the band-limited “pure”

signal x∗, but one could then get a relationship for samples of the actual signal x(t). This

has no direct implications for learning the tones (e.g. our (11.1) or (11.2)), but for learning

the signal (our (11.3)) there is also an issue. Even in the absence of noise and for k = 1,

this method will have error polynomially rather than exponentially small in the number of

samples.

That is, if there is no noise the method has zero error given infinitely many samples.

But we only receive samples over the interval [0, T ], leading to error. Consider the trivial

setting of x(t) = 1. The partial sum of (11.4) at a given t will be missing terms for i > 2Ft

and i < 0, which (for a random t in [0, T/2]) have magnitude at most 1/(Ft). The terms

alternate in sign, so the sum has error approximately 1/(Ft)2. This means that the error over

the first 1/F time is a constant, leading to average error of 1
FT

. This is with an algorithm

that uses FT samples and time. By contrast, our algorithm in the noiseless setting has error

exponentially small in the samples and running time.

Discrete Sparse Fourier Transforms. An option related to the previous would be to

discretize very finely, then apply a discrete sparse Fourier transform algorithm to keep the

sample complexity and runtime small. The trouble here is that sparse Fourier transforms
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require sparsity, and this process decreases the sparsity. In particular, this process supposes

that the signal is periodic with period T , so one can analyze this process as first convert-

ing the signal to one, equivalent over [0, T ], but with frequency spectrum only containing

integer multiples of 1/T . This is done by convolving each frequency fi with a sinc function

(corresponding to windowing to [0, T ]) then restricting to multiples of 1/T (corresponding to

aliasing). The result is that a one-sparse signal e2πifit is viewed as having Fourier spectrum

x̂′′[j] = sinc(fiT − j)

for j ∈ Z. When fi is not a multiple of 1/T , this means the signal is not a perfectly

sparse signal. And this is true regardless of the discretization level, which only affects the

subsequent error from aliasing j ∈ Z down to Zn. To have error proportional to δ ‖x̂∗‖2, one

would need to run such methods for a sparsity level of k/δ. Thus, as with Nyquist sampling,

the sample and runtime will be polynomial, rather than logarithmic, in δ.

The above discussion refers to methods for learning the signal (our (11.3)). In terms of

learning the tones, one could run the algorithm for sparsity O(k) so that δ is a small constant,

which would let one learn roughly where the peaks are and get most of the frequencies to the

nearest 1/T . This would give a similar bound to our (11.1), but without the superresolution

effect as the noise becomes small. On the plus side, the duration could be just O(1/η)—

which is sufficient for the different peaks to be distinguishable—rather than O( log k
η

) as our

method would require, and the time and sample complexities could save a log k factor (if

one did not want to recover all the tones, just most of them).

Essentially, this algorithm tries to round each frequency to the nearest multiple of

1/T , which introduces noise that is a constant fraction of the signal. If the signal-to-noise
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ratio is already low, this does not increase the noise level by that much so such an algorithm

will work reasonably well. If the signal-to-noise ratio is fairly high, however, then the added

noise leads to much worse performance. Getting a constant factor approximation to the

whole signal is only nontrivial for high SNR, so such a method does badly in that setting.

For approximating the tones, it is comparable to our method in the low SNR setting but

does not improve much as SNR increases.

11.1.2 Previous Work In Similar Settings

There have been several works that recover continuous frequencies from samples in the

time domain. Some of these are in our setting where the samples can be taken at arbitrary

positions over [0, T ] and others are in the discrete-time (DTFT) setting where the samples

must be taken at multiples of the Nyquist frequency 1
2F

.

The results of [TBSR13, CF14, YX15, DB13] show that a convex program can solve

the problem in the DTFT setting using O(k log k log(FT )) samples if the duration is T >

O( 1
η
), in the setting where g(t) = 0 and the coefficients of x∗ have random phases. The

sample complexity can be one log factor better than ours, which one would expect for the

noiseless setting. None of these results show robustness to noise, and some additionally

require a running time polynomial in FT rather than k.

The result of [BCG+12] is in a similar setting to our paper, using techniques of the

same lineage. It achieves very similar sample complexity and running time to our algorithm,

and a guarantee similar in spirit to (11.1) with some notion of robustness. However, the

robustness is weaker than ours in significant ways. They consider the noise g(t) in frequency

space (i.e. ĝ(f)), then require that ĝ(f) is zero at any frequency within η of the signal
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frequencies fi, and bound the error in terms of N′ = ‖ĝ‖1 /k instead of ‖g‖2. This fails

to cover simple examples of noise, including i.i.d. Gaussian noise g(t) ∼ N(0, σ2) and the

noise one would get from slow decay of the signal over time (e.g. x(t) = x∗(t)e−
t

100T .). Both

types of noise violate both assumptions on the noise: ĝ(f) will be nonzero arbitrarily close

to each fi and ‖ĝ‖1 will be unbounded. Their result also requires a longer duration than our

algorithm and has worse precision for any fixed duration.

The result of [Moi15] studies noise tolerance in the DTFT setting, ignoring sample

complexity and running time. It shows that the matrix pencil method [HS90], using FT

samples, achieves a guarantee of the form (11.1), except that the bounds are an additional

poly(FT, k, δ) factor larger. Furthermore, it shows a sharp characterization of the minimal

T for which this is possible by any algorithm: T = (1 ± o(1)) 2
η
is necessary and sufficient.

It is an interesting question whether the lower bound generalizes to our non-DTFT setting,

where the samples are not necessarily taken from an even grid.

Lastly, [SAH+13] tries to apply sparse Fourier transforms to a domain with continuous

signals. They first apply a discrete sparse Fourier transform then use hill-climbing to optimize

their solution into a decent set of continuous frequencies. They have interesting empirical

results but no theoretical ones.
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11.2 Algorithm Overview

At a high level, our algorithm is an adaptation of the framework used by [HIKP12a]

to the continuous setting. However, getting our result requires a number of subtle changes

to the algorithm. This section will describe the most significant ones. We assume some

familiarity with previous work in the area [GGI+02, CCF02, GMS05, GLPS10, HIKP12a].

First we describe a high-level overview of the structure. The algorithm proceeds in

log k stages, where each stage attempts to recover each tone with a large constant probability

(e.g. 9/10). In each stage, we choose a parameter σ ≈ T
k log(k/δ)

that we think of as “hashing”

the frequencies into random positions. For this σ, we will choose about log(FT ) different

random “start times” t0 and sample an arithmetic sequence starting at t0, i.e. observe

x(t0), x(t0 + σ), x(t0 + 2σ), . . . , x(t0 + (k log(k/δ))σ)

We then scale these observations by a “window function,” which has specific properties but

among other things scales down the values near the ends of the sequence, giving a smoother

transition between the time before and after we start/end sampling. We alias this down to

B = O(k) terms (i.e. add together terms 1, B+ 1, 2B+ 1, . . . to get a B-dimensional vector)

and take the B-dimensional DFT. This gives a set of B values ûi. The observation made

in previous papers is that û is effectively a hashing of the tones of x̂ into B buckets, where

σ defines a permutation on the frequencies that affects whether two different tones land in

the same bucket, and ûj approximately equals the sum of all the tones that land in bucket

j, each scaled by a phase shift depending on t0.

Because of this phase shift, for each choice of t0 the value of ûj is effectively a sample

from the Fourier transform of a signal that contains only the tones of x̂∗ that land in bucket
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j, with zeros elsewhere. And since there are k tones and O(k) buckets, most tones are alone

in their bucket. Therefore this sampling strategy reduces the original problem of k-sparse

recovery to one of 1-sparse recovery—we simply choose t0 according to some strategy that

lets us achieve 1-sparse recovery, and recover a tone for each bin.

One-sparse recovery. The algorithm for one-sparse recovery in [HIKP12a] is a good

choice for adaptation to the continuous setting. It narrows down to the frequency in a

locality-aware way, maintaining an interval of frequencies that decreases in size at each stage

(in contrast to the method in [GMS05], which starts from the least significant bit rather

than most significant bit).

If a frequency is perturbed slightly in time (e.g., by multiplying by a very slow decay

over time) this will blur the frequency slightly into a narrow band. The one-sparse recovery

algorithm of [HIKP12a] will proceed normally until it gets to the narrow scale, at which

point it will behave semi-arbitrarily and return something near that band. This gives a

desired level of robustness—the error in the recovered frequency will be proportional to the

perturbation.

Still, to achieve our result we need a few changes to the one-sparse algorithm. One

is related to the duration T : in the very last stage of the algorithm, when the interval

is stretched at the maximal amount, we can only afford one “fold” rather than the typical

O(log n). The only cost to this is in failure probability, and doing it for one stage is fine—but

showing this requires a different proof. Another difference is that we need the final interval

to have precision 1
Tρ

if the signal-to-noise ratio is ρ—the previous analysis showed 1
T
√
ρ
and

needed to be told ρ, but (as we shall see) to achieve an `2/`2 guarantee we need the optimal
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ρ-dependence and for the algorithm to be oblivious to the value of ρ. Doing so requires a

modification to the algorithm and slightly more clever analysis.

k-sparse recovery. The changes to the k-sparse recovery structure are broader. First, to

make the algorithm simpler we drop the [GLPS10]-style recursion with smaller k, and just

repeat an O(k)-size hashing O(log k) times. This loses a log k factor in time and sample

complexity, but because of the other changes it is not easy to avoid, and at the same time

improves our success probability.

The most significant changes come because we can no longer measure the noise in fre-

quency space or rely on the hash function to randomize the energy that collides with a given

heavy hitter. Because we only look at a bounded time window T , Parseval’s identity does not

hold and the energy of the noise in frequency space may be unrelated to its observed energy.

Moreover, if the noise consists of frequencies infinitesimally close to a true frequency, then

because σ is bounded the true frequency will always hash to the same bin as the noise. These

two issues are what drive the restrictions on noise in the previous work [BCG+12]—assuming

the noise is bounded in `1 norm in frequency domain and is zero in a neighborhood of the true

frequencies fixes both issues. But we want a guarantee in terms of the average `2 noise level

N2 in time domain over the observed duration. If the noise level is N2, because we cannot

hash the noise independently of the signal, we can only hope to guarantee reliable recovery

of tones with magnitude larger than N2. This is in contrast to the N2/k that is possible in

the discrete setting, and would naively lose a factor of k in the `2/`2 approximation.

The insight here is that, even though the noise is not distributed randomly across

bins, the total amount of noise is still bounded. If a heavy hitter of magnitude v2 is not
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recovered due to noise, that requires Ω(v2) noise mass in the bin that is not in any other bin.

Thus the total amount of signal mass not recovered due to noise is O(N2), which allows for

`2/`2 recovery.

This difference is why our algorithm only gets a constant factor approximation rather

than the 1 + ε guarantee that hashing techniques for sparse recovery can achieve in other

settings. These techniques hash into B = O(k/ε) bins so the average noise per bin is O( ε
k
N2).

In our setting, where the noise is not hashed independently of the signal, this would give no

benefit.

Another difference arises in the choice of the parameter σ, which is the separation be-

tween samples in the arithmetic sequence used for a single hashing, and gives the permutation

during hashing. In the discrete setting, one chooses σ uniformly over n, which in our setting

would correspond to a scale of σ ≈ 1
η
. Since the arithmetic sequences have O(k log(k/δ)) sam-

ples, the duration would then become at least k log(k/δ)
η

(which is why [BCG+12] has this dura-

tion). What we observe is that σ can actually be chosen at the scale of 1
kη
, giving the desired

O( log(k/δ)
η

) duration. This causes frequencies at the minimum separation η to always land in

bins that are a constant separation apart. This is sufficient because we use [HIKP12a]-style

window functions with strong isolation properties (and, in fact, [HIKP12a] could have chosen

σ ≈ n/B); it would be an issue if we were using the window functions of [GMS05, IK14]

that have smaller supports but less isolation.

Getting an `2 bound Lastly, converting the guarantee (11.2) into (11.3) is a nontrivial

task that is trivial in the discrete setting. In the discrete setting, it follows immediately

from the different frequencies being orthogonal to each other. In our setting, we use that
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the recovered frequencies should themselves have Ω(η) separation, and that well-separated

frequencies are nearly orthogonal over long enough time scales T � 1/η.

This bears some similarity to issues that arise in sparse recovery with overcomplete

dictionaries. It would be interesting to see whether further connections can be made between

the problems.
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11.3 Proof outline

In this section we present the key lemmas along the path to producing the algorithm.

The full proof are presented later.

Notation. First we define the notation necessary to understand the lemmas. The full

notation as used in the proofs appears in Section 11.4.

The algorithm proceeds in stages, each of which hashes the frequencies to B bins. The

hash function depends on two parameters σ and b, and so we define it as hσ,b(f) : [−F, F ]→

[B].

A tone with a given frequency f can have two “bad events” Ecoll(f) or Eoff (f) hold

for a given hashing. These correspond to colliding with another frequency of x∗ or landing

within an α fraction of the edge, respectively; they each will occur with small constant

probability.

For a given hashing, we will choose a number of different offsets a that let us perform

recovery of the tones that have neither bad event in this stage.

We use f . g to denote that there exists a constant C such that f ≤ Cg, and f h g

to denote f . g . f .

Key Lemmas First, we need to be able to compare the distance between two pure tone

signals in time domain to their differences in parameters. The relation is as follows:

Lemma 11.3.1. Let (v, f) and (v′, f ′) denote any two tones, i.e., (magnitude, frequency)
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pairs. Then for

dist ((v, f), (v′, f ′))
2

:=
1

T

∫ T

0

∣∣∣ve2πfti − v′e2πf ′ti
∣∣∣
2

dt,

we have

dist ((v, f), (v′, f ′))
2 h (|v|2 + |v′|2) ·min(1, T 2|f − f ′|2) + |v − v′|2,

and

dist ((v, f), (v′, f ′)) h |v| ·min(1, T |f − f ′|) + |v − v′|.

The basic building block for our algorithm is a function HashToBins, which is very

similar to one of the same name in [HIKP12a].

The key property of HashToBins is that, if neither “bad” event holds for a frequency

f (i.e. it does not collide or land near the boundary of the bin), then for the bin j = hσ,b(f)

we have that |ûj| ≈ |x̂∗(f)| with a phase depending on a.

How good is the approximation? In the discrete setting, one can show that each tone

has error about N2/B in expectation. Here, because the hash function cannot randomize

the noise, we instead show that the total error over all tones is about N2:

Lemma 11.3.2. Let σ ∈ [ 1
Bη
, 2
Bη

] uniformly at random, then b ∈ [0, dF/ηe
σB

], a ∈ [0, cT
σ

] be

sampled uniformly at random for some constant c > 0. Let the other parameters be arbitrary

in û = HashToBins(x, Pσ,a,b, B, δ, α), and consider

H = {f ∈ supp(x̂∗) | neither Ecoll(f) nor Eoff (f) holds}

and I = [B] \ hσ,b(supp(x̂∗)) to be the bins that have no frequencies hashed to them. Then

E
σ,b,a

[∑

f∈H

∣∣ûhσ,b(f) − x̂∗(f)eaσ2πf i
∣∣2 +

∑

j∈I

û2
j

]
. N2
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We prove Lemma 11.3.2 by considering the cases of x∗ = 0 and g = 0 separately;

linearity then gives the result. Both follow from properties of our window functions.

Lemma 11.3.3. If x∗(t) = 0,∀t ∈ [0, T ], then

E
σ,a,b

[
B∑

j=1

|ûj|2
]
. 1

T

∫ T

0

|g(t)|2dt.

Lemma 11.3.4. If g(t) = 0,∀t ∈ [0, T ]. Let H denote a set of frequencies, H = {f ∈

supp(x̂∗) | neither Ecoll(f) nor Eoff (f) holds}. Then,

E
σ,a,b

[∑

f∈H

∣∣ûhσ,b(f) − x̂∗(f)eaσ2πf i
∣∣2
]
≤ δ‖x̂∗‖2

1.

Lemma 11.3.2 is essentially what we need for 1-sparse recovery. We first show a

lemma about the inner call, which narrows the frequency from a range of size ∆l to one of

size ∆l
ρst

for some parameters ρst. This gives improved performance (superresolution) when

the signal-to-noise ratio ρ within the bucket is high. The parameter s and t provide a tradeoff

between success probability, performance, running time, and duration.

Lemma 11.3.5. Consider any B, δ, α. Algorithm HashToBins takes O(B log(k/δ)) sam-

ples and runs in O(B
α

log(k/δ) +B logB) time.

Lemma 11.3.6. Given σ and b, consider any frequency f for which neither Ecoll(f) nor Eoff (f)

holds, and let j = hσ,b(f). Let µ2(f) = Ea[|ûj − x̂∗(f)eaσ2πf i|2] and ρ2 = |x̂∗(f)|2/µ2(f).

For sufficiently large ρ, and ∀0 < s < 1, t ≥ 4, consider any run of LocateInner with

f ∈ [lj − ∆l
2
, lj + ∆l

2
]. It takes O(Rloc) random (γ, β) ∈ [1

2
, 1] × [ st

4σ∆l
, st

2σ∆l
] samples over

duration βσ = Θ( st
∆l

), runs in O(stRloc) time, to learn f within a region that has length

Θ(∆l
t

) with failure probability at most ( 4
sρ

)Rloc + t · (60s)Rloc/2.
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By repeating this inner loop, we can recover the tones in almost every bin that does

not have the “bad” events happen, so we recover a large fraction of the heavy hitters in each

stage.

Lemma 11.3.7. Algorithm LocateKSignal takesO(k logC(FT ) log(k/δ)) samples overO( log(k/δ)
η

)

duration, runs in O(k logC(FT ) log(FT/δ)) time, and outputs a set L ⊂ [−F, F ] of O(k) fre-

quencies with minimum separation Ω(η).

Given σ and b, consider any frequency f for which neither of Ecoll(f) or Eoff (f) hold.

Let j = hσ,b(f), µ2(f) = Ea[|ûj − x̂∗(f)eaσ2πf i|2], and ρ2 = |x̂∗(f)|2/µ2(f). If ρ > C, then

with an arbitrarily large constant probability there exists an f ′ ∈ L with

|f − f ′| . 1

Tρ
.

Combining this with estimation of the magnitudes of recovered frequencies, we can

show that the total error over all bins without “bad” events—that is, bins with either one

well placed frequency or zero frequencies—is small. At this point we give no guarantee for

the (relatively few) bins with bad events; the recovered values there may be arbitrarily large.

Lemma 11.3.8. Algorithm OneStage takes O(k logC(FT ) log(k/δ)) samples over O( log(k/δ)
η

)

duration, runs in O(k(logC(FT ) log(FT/δ))) time, and outputs a set of {(v′i, f ′i)} of size

O(k) with mini 6=j |f ′i − f ′j| & η. Moreover, one can imagine a subset S ⊆ [k] of “successful”

recoveries, where Pr[i ∈ S] ≥ 9
10
∀i ∈ [k] and for which there exists an injective function

π : [k]→ [O(k)] so that

E
σ,b

[∑

i∈S

1

T

∫ T

0

∣∣∣v′ie2πf ′iti − vπ(i)e
2πfπ(i)ti

∣∣∣
2

dt

]
. C2N2.

with 1− 1/kc probability for an arbitrarily large constant c.
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We can repeat the procedure for O(log k) stages and merge the results, getting a list

of O(k) tones that includes k tones that match up well to the true tones. However, we

give no guarantee for the rest of the recovered tones at this point—as far as the analysis is

concerned, mistakes from bins with collisions may cause arbitrarily large spurious tones.

Lemma 11.3.9. Repeating algorithm OneStage O(log k) times, MergedStages returns a

set {(v′i, f ′i)} of size O(k) with mini 6=j |f ′i − f ′j| & η that can be indexed by π such that

k∑

i=1

1

T

∫ T

0

∣∣∣v′ie2πf ′iti − vπ(i)e
2πfπ(i)ti

∣∣∣
2

dt . C2N2.

with probability 1− 1/kc for an arbitrarily large constant c.

To address the issue of spurious tones, we run the above algorithm twice and only

take the tones that are recovered in both stages. We show that the resulting O(k) tones are

together a good approximation to the vector.

Lemma 11.3.10. If we run MergedStages twice and take the tones {(v′i, f ′i)} from the first

result that have f ′i within cη for small c of some frequency in the second result, we get a set

of k′′ = O(k) tones that can be indexed by some permutation π such that

k∑

i=1

1

T

∫ T

0

∣∣∣v′ie2πf ′iti − vπ(i)e
2πfπ(i)ti

∣∣∣
2

dt+
k′′∑

i=k+1

|v′i|2 . C2N2. (11.5)

Simply picking out the largest k recovered tones then gives the result (11.2).

Theorem 11.3.11. Algorithm ContinuousFourierSparseRecovery returns a set {(v′i, f ′i)}

of size k with mini 6=j |f ′i − f ′j| & η for which

k∑

i=1

1

T

∫ T

0

∣∣∣v′ie2πf ′iti − vπ(i)e
2πfπ(i)ti

∣∣∣
2

dt . C2N2

with probability 1− 1/kc for an arbitrarily large constant c.
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By only considering the term in the sum corresponding to tone i and applying

Lemma 11.3.1, we get result (11.1):

Corollary 11.3.12. With probability 1− 1/kc for an arbitrarily large constant c, we recover

a set of tones {(v′i, f ′i)} such that, for any vi with |vi| & N, we have for an appropriate

permutation of the indices that

|f ′i − fi| .
N

T |vi|
and |v′i − vi| . N. (11.6)

We then show that (11.2) implies (11.3) for sufficiently long durations T . A long

duration helps because it decreases the correlation between η-separated frequencies.

Lemma 11.3.13. Let {(vi, fi)} and {(v′i, f ′i)} be two sets of k tones for which mini 6=j |fi−fj| ≥

η and mini 6=j |f ′i − f ′j| & η for some η > 0. Suppose that T > O( log2 k
η

). Then these sets can

be indexed such that

1

T

∫ T

0

∣∣∣
k∑

i=1

(v′ie
2πif ′it − vie2πifit)

∣∣∣
2

dt .
k∑

i=1

1

T

∫ T

0

∣∣∣v′ie2πif ′it − vie2πifit
∣∣∣
2

dt. (11.7)

Combining Theorem 11.3.11 and Lemma 11.3.13 immediately implies

Theorem 11.3.14. Suppose we sample for a duration T > O( log(1/δ)+log2 k
η

). Then the

reconstructed signal x′(t) =
∑k

i=1 v
′
ie

2πif ′it achieves a constant factor approximation to the

complete signal x:
1

T

∫ T

0

|x′(t)− x(t)|2dt . C2N2. (11.8)

The algorithm takes O(k log F
η

log(k
δ
) log(k)) samples, runs in O(k log F

η
log(FT

δ
) log(k)) time,

and succeeds with probability at least 1− 1/kc for an arbitrarily large constant c.
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That finishes the proof of our main theorem. We also show that our “superresolution”

precision from (11.1) is optimal, which is a simple corollary of Lemma 11.3.1.

Lemma 11.3.15. There exists a constant c > 0 such that, for a given sample duration T , one

cannot recover the frequency f to within

c
N

T |x̂∗(f)|

with 3/4 probability, for all δ > 0, even if k = 1.
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11.4 Notation and Definitions: Permutation, Hashing, Filters

This section gives definitions about the permutation, hashing, and filters that are

used throughout the proofs. Let [n] denote the set {1, 2, · · · , n − 1, n}. R denotes the

real numbers, Z denotes the integer numbers and C denotes the complex numbers. The

convolution of two continuous functions f and g is written as f ∗ g,

(f ∗ g)(t) :=

∫ +∞

−∞
f(τ)g(t− τ)dτ

and the discrete convolution of f and g is given by,

(f ∗ g)[n] :=
+∞∑

m=−∞

f [m]g[n−m]

Let i denote
√
−1, and eiθ = cos(θ) + i sin(θ). For any complex number z ∈ C, we have

z = a + ib, where a, b ∈ R. Define z = a− ib, |z|2 = zz = a2 + b2 and let φ(z) be the phase

of z. Let supp(f) denote the support of function/vector f , and ‖f‖0 = | supp(f)|. For any

p ∈ [1,∞], the `p norm of a vector of x is ‖x‖p = (
∑

i |xi|p)
1
p , defined to be maxi |xi| for

p = ∞. Let k denote the sparsity of frequency domain. All the frequencies {f1, f2, · · · , fk}

are from [−F, F ]. Let B = O(k) denote the number of hash bins in our algorithm.

We translate the “permutation” Pσ,a,b of [HIKP12a] from the DFT setting to the

DTFT setting.

Definition 11.4.1. (Pσ,a,bx
∗)(t) = x∗(σ(t− a))e−2πiσbt.

Lemma 11.4.1. P̂σ,a,bx∗(σ(f − b)) = e−2πfσaix̂∗(f)
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Proof. The time domain representation of the given Fourier definition would be

x′(t) =
∑

f∈supp(x̂∗)

e−2πiσaf x̂∗(f)e2πiσ(f−b)t

=
∑

f∈supp(x̂∗)

e−2πiσbtx̂∗(f)e2πiσ(t−a)f

= e−2πiσbtx∗(σ(t− a))

which matches, so the formula is right.

We also extend the flat window function for the DFT setting [HIKP12a], [HIKP12b]

to the DTFT setting:

Definition 11.4.2. Let M = O(B log k
δ
). We say that (G, Ĝ′) = (GB,δ,α, Ĝ′B,δ,α) ∈ RM ×

R[−F,F ] is a flat window function with parameters B ≥ 1, δ > 0, and α > 0. For simplicity,

let’s say B is a function of α. Define |supp(G)| = M and Ĝ′ satisfies

• Gi =
sin(i 1

B
)

i
· e− i2

2σ2 , where σ = Θ(B
√

log(k/δ)).

• Ĝ(f) =
M∑
i=1

Gie
f · i
M

2πi.

• supp(Ĝ′) ⊂ [− 2π
2B
, 2π

2B
].

• Ĝ′(f) = 1 for all f ∈ [− (1−α)2π
2B

, (1−α)2π
2B

].

• Ĝ′(f) = 0 for all |f | ≥ 2π
2B

.

• Ĝ′(f) ∈ [0, 1] for all f .

• ‖Ĝ′ − Ĝ‖2
∞ < δ/k.
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Claim 11.4.2.
M∑
i=1

G2
i h 1

B
, where M = O(B log k/δ).

Proof. By definition of Gi, we have
M∑

i=1

G2
i = 2

M/2∑

i=1

sin2(i 1
B

)

(i)2
(e−

(i)2

2σ2 )2.

There exists some constant c ∈ [0, 2π), such that sin(i/B)
i

h 1
B

if i/B < cπ.

M∑

i=1

G2
i = 2

bBcπc∑

i=1

sin2(i 1
B

)

(i)2
(e−

(i)2

2σ2 )2 + 2

M/2∑

i=dBcπe

sin2(i 1
B

)

(i)2
(e−

(i)2

2σ2 )2

≤ 2

bBcπc∑

i=1

sin2(i 1
B

)

(i)2
· 1 + 2

M/2∑

i=dBcπe

sin2(i 1
B

)

(i)2
· 1

.
bBcπc∑

i=1

1

B2
+

M/2∑

i=dBcπe

1

i2

. 1

B
.

Thus, we show an upper bound. It remains to prove the lower bound.
M∑

i=1

G2
i ≥ 2

bBcπc∑

i=1

sin2(i 1
B

)

(i)2
(e−

(i)2

2σ2 )2

≥ 2

bBcπc∑

i=1

sin2(i 1
B

)

(i)2
(e−

(Bcπ)2

2σ2 )2

& 2

bBcπc∑

i=1

1

B2
(e−

(Bcπ)2

2σ2 )2

& 1

B
(e−

(Bcπ)2

2σ2 )2

& 1

B
(e−c0)2.

The last inequality follows by there exists some universal constant c0 > 0 such that− 1
log(k/δ)

&

−c0. Thus, we show
∑M

i=1 G
2
i & 1

B
.
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− (1−α)π
B

(1−α)π
B

− π
B

π
B

Figure 11.1: Filter Ĝ′(f)

To analyze the details of our algorithm, we explain some lower-level definitions and

claims first. Here we give the definition of three notations that related to hash function.

Definition 11.4.3. πσ,b(f) = 2πσ(f − b) (mod 2π). We maps frequency to a circle [0, 2π),

since our observation of sample is the phase of some complex number, which also belongs to

[0, 2π).

Definition 11.4.4. hσ,b(f) = round(πσ,b(f) · B
2π

). hσ,b(f) is a “hash function” that hashes

frequency f into one of the B bins. The motivation is, it is very likely that each bin only

has 1 heavy hitters if we choose large enough B. Then, for each bin, we can run a 1-sparse

algorithm to recover the frequency.

Definition 11.4.5. oσ,b(f) = πσ,b(f)− 2π
B
· hσ,b(f). Offset oσ,b(f) denotes the distance from

πσ,b(f) to the center of the corresponding bin that frequency f was hashed into.

Then we define some events that might happen after applying hash function to the

entire frequency domain.
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Definition 11.4.6. “Collision” event Ecoll(f): holds iff hσ,b(f) ∈ hσ,b(supp(x̂∗)\{f}). The

“collision” event happening means there exists some other frequency f ′ such that both f and

f ′ are hashed into the same bin. Once two frequencies are colliding in one bin, the algorithm

will not be able to recover them.

Definition 11.4.7. “Large offset” event Eoff (f): holds iff |oσ,b(f)| ≥ (1 − α) 2π
2B

. The event

holds if frequency f is not within factor 1− α of the radius close to the center of that hash

bin. It causes the frequency to be in the intermediate regime of filter and not recoverable,

see Figure 11.1.

Definition 11.4.8. We sample σ uniformly at random from [ 1
Bη
, 2
Bη

]. Conditioning on σ is

chosen first, we sample b uniformly at random from [0, dF/ηe
Bσ

]. Then we sample γ uniformly at

random from [1
2
, 1] and β uniformly at random from [β̂, 2β̂], where β̂ is dynamically changing

during our algorithm(The details of setting β̂ are explained in Lemma 11.3.6). For Pσ,γ,b and

Pσ,γ+β,b, we take the following two sets of samples over time domain,

x(σ(1− γ)), x(σ(2− γ)), x(σ(3− γ)), · · · , x(σ(B log(k/δ)− γ))

x(σ(1− γ − β)), x(σ(2− γ − β)), x(σ(3− γ − β)), · · · , x(σ(B log(k/δ)− γ − β))

Conditioning on drawing σ, b from some distribution, we are able to show that the

probability of “Collision” and “Large offset” event holding are small.

Lemma 11.4.3. For any T̃ , and 0 ≤ ε̃, δ̃ ≤ T̃ , if we sample σ̃ uniformly at random from

[A, 2A], then
2ε̃

T̃
− 2ε̃

A
≤ Pr

[
σ̃ (mod T̃ ) ∈ [δ̃ − ε̃, δ̃ + ε̃ ]

]
≤ 2ε̃

T̃
+

4ε̃

A
. (11.9)
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Proof. Since we sample σ̃ uniformly at random from [A, 2A], let I denote a set of candidate

integers, then the smallest one is bAc and the largest one is d2Ae. Thus, the original

probability equation is equivalent to

Pr
[
σ̃ ∈ [s · T̃ + δ̃ − ε̃, s · T̃ + δ̃ + ε̃ ] ∃s ∈ I

]
, (11.10)

where I = {bA/T̃ c, · · · , d2A/T̃ e}.

Consider any s ∈ I, the probability of σ̃ belonging to the interval [s·T̃+δ̃−ε̃, s·T̃+δ̃+ε̃]

is

Pr
[
σ̃ ∈ [s · T̃ + δ̃ − ε̃, s · T̃ + δ̃ + ε̃ ]

]
=

2ε̃

A
.

Taking the summation over all s ∈ I, we obtain

Pr
[
σ̃ ∈ [s · T̃ + δ̃ − ε̃, s · T̃ + δ̃ + ε̃ ] ∃s ∈ I

]

=
∑

s∈I

Pr
[
σ̃ ∈ [s · T̃ + δ̃ − ε̃, s · T̃ + δ̃ + ε̃ ]

]

=
∑

s∈I

2ε̃

A

=
2ε̃|I|
A

.

It remains to bound 2ε̃|I|
A

. Since |I| = d2A/T̃ e − bA/T̃ c + 1, then we have an upper bound

for I,

|I| ≤ A/T̃ + 2.

On the other side, we have an lower bound,

|I| ≥ A/T̃ − 1.
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Plugging upper bound of I into 2ε̃|I|
A

,

2ε̃|I|
A
≤ 2ε̃

A
(A/T̃ + 2) =

2ε̃

T̃
+

4ε̃

A
.

Using the lower bound of |I|, we have

2ε̃|I|
A
≥ 2ε̃

A
(A/T̃ − 1) =

2ε̃

T̃
− 2ε̃

A
.

Thus, we complete the proof.

The following corollary will be used many times in this paper. The proof directly

follows by Lemma 11.4.3.

Corollary 11.4.4. For any T̃ , ∆f , and 0 ≤ ε̃, δ̃ ≤ T̃ , if we sample σ̃ uniformly at random

from [A, 2A], then

2ε̃

T̃
− 2ε̃

A∆f
≤ Pr

[
σ̃∆f (mod T̃ ) ∈ [δ̃ − ε̃, δ̃ + ε̃ ]

]
≤ 2ε̃

T̃
+

4ε̃

A∆f
. (11.11)

Proof. Since σ̃ is sampled uniformly at random from [A, 2A], then σ̃∆f is sampled uniformly

at random from [A∆f, 2A∆f ]. Now applying Lemma 11.4.3 by only replacing A∆f by A.

Claim 11.4.5. Let σ be sampled uniformly at random from [ 1
Bη
, 2
Bη

] and min
i 6=j
|fi − fj| > η.

∀i, j ∈ [k], if i 6= j, then Pr[hσ,b(fi) = hσ,b(fj)] . 1
B
.

Proof. To simplify the proof, define ∆f = |fi−fj|. We consider two cases: (I) η ≤ |fi−fj| <
(B−1)η

2
, (II) (B−1)η

2
≤ |fi − fj|.

(I) If ∆f = η, then 2πσ∆f is at least 2π
ηB
· η = 2π

B
, which means two frequencies have

to go to different bins after hashing. If ∆f = (B−1)η
2

, then 2πσ∆f is at most 4π
Bη
· (B−1)η

2
=
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(1 − 1/B)2π. In order to make two frequencies collide, 2πσ∆f should belong to [(1 −

1/B)2π, (1+1/B)2π). Since for any ∆f ∈ [η, (B−1)η
2

), we have 2πσ∆f ∈ [ 1
B

2π, (1−1/B)2π),

which does not intersect interval [(1− 1/B)2π, (1 + 1/B)2π). Thus,

Pr
σ,b

[hσ,b(fi) = hσ,b(fj)] = 0.

(II) We apply Corollary 11.4.4 by setting T̃ = 2π, σ̃ = 2πσ, δ̃ = 0, ε̃ = 2π
2B

, A = 2π 1
Bη

.

Then we have

Pr
σ,b

[hσ,b(fi) = hσ,b(fj)] = Pr
σ,b

[
2πσ∆f ∈

[
s · 2π − 2π

2B
, s · 2π +

2π

2B

]
∃ s ∈ I

]
,(11.12)

where

I =

{
b 1

Bη
∆fc, · · · , d 2

Bη
∆fe

}
.

By upper bound of Corollary 11.4.4, Equation (11.12) is at most

1
2π
Bη

∆f
· 2π

B
· ( 1

Bη
∆f + 2) =

1

B
+

2η

∆f
≤ 1

B
+

4

B − 1
. 1

B
,

where the first inequality follows by (B−1)η
2
≤ |fi − fj| which is the assumption of part (II).

Claim 11.4.6. ∀f , ∀ 0 < α < 1, Pr
σ,b

[
|oσ,b(f)| ≤ (1− α) 2π

2B

]
≥ 1−O(α).

Proof. Since we draw σ uniformly at random from [ 1
Bη
, 2
Bη

], then 2πσ(f − b) ∈ [ 2π
Bη

(f −

b), 4π
Bη

(f − b)] uniformly at random. The probability is equal to

Pr
σ,b

[
2πσ(f − b) ∈

[
s · 2π

B
− (1− α)

2π

2B
, s · 2π

B
+ (1− α)

2π

2B

]
∃s ∈ I

]
,

707



where

I =

{
b 2π

Bη
(f − b) B

2π
− 1− α

2
c, · · · , d 4π

Bη
(f − b) B

2π
+

1− α
2
e
}
.

We apply Corollary 11.4.4 by setting T̃ = 2π
B
, σ̃ = 2πσ, δ̃ = 0, ε̃ = (1 − α) 2π

2B
, A = 2π 1

Bη
,

∆f = |f − b|.

By lower bound of Corollary 11.4.4, we have

Pr

[
|oσ,b(f)| ≤ (1− α)

2π

2B

]
≥ (1− α)− (1− α) · η

|f − b| .

Since α · η
|f−b| > 0, then

Pr

[
|oσ,b(f)| ≤ (1− α)

2π

2B

]
≥ (1− α)− η

|f − b| .

Recall that we sample σ uniformly at random from [ 1
Bη
, 2
Bη

] and sample b uniformly

at random from [0, dF/ηe
Bσ

]. Since f ∈ [−F, F ] and b is uniformly chosen from range (0, dF/ηe
Bσ

],

thus for any C > 0, Pr
b

[|f − b| ≤ Cη] . Cη
F
. Replacing C by 1/α, we have Pr[ η

|f−b| ≤ α] ≥

1−Θ( η
αF

). Compared to η
F
, α is just a constant. Thus, we finish the proof.
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11.5 Proofs of basic hashing-related lemmas

Lemma 11.3.1. Let (v, f) and (v′, f ′) denote any two tones, i.e., (magnitude, frequency)

pairs. Then for

dist ((v, f), (v′, f ′))
2

:=
1

T

∫ T

0

∣∣∣ve2πfti − v′e2πf ′ti
∣∣∣
2

dt,

we have

dist ((v, f), (v′, f ′))
2 h (|v|2 + |v′|2) ·min(1, T 2|f − f ′|2) + |v − v′|2,

and

dist ((v, f), (v′, f ′)) h |v| ·min(1, T |f − f ′|) + |v − v′|.

Proof. Define ν = |f − f ′|. First, let’s show the first upper bound. We have that

LHS =
1

T

∫ T

0

∣∣∣ve2πfti − v′e2πf ′ti
∣∣∣
2

dt

≤ 2 · 1

T

∫ T

0

∣∣∣ve2πfti − ve2πf ′ti
∣∣∣
2

+
∣∣∣ve2πf ′ti − v′e2πf ′ti

∣∣∣
2

dt

= 2|v|2 · 1

T

∫ T

0

∣∣e2πνti − 1
∣∣2 dt+ 2|v − v′|2

≤ 2|v|2 · 1

T

∫ T

0

min(2, 2πνt)2dt+ 2|v − v′|2

≤ 2|v|2 ·min(4,
4π2

3
ν2T 2) + 2|v − v′|2,

as desired.

Now consider the lower bound. First we show this in the setting where |v| = |v′|.
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Suppose v′ = ve−θi. Then we want to bound

LHS =
1

T

∫ T

0

∣∣∣ve2πfti − ve(2πf ′t−θ)i
∣∣∣
2

dt

= |v|2 1

T

∫ T

0

∣∣e(2πνt+θ)i − 1
∣∣2 dt,

as being at least Ω(|v|2(min(1, ν2T 2) + θ2)). In the case that νT < 1/10, then

∣∣e(2πνt+θ)i − 1
∣∣ & |2πνt+ θ|,

and

E
t
[(2πνt+ θ)2] ≥ (θ − 2πνT

2
)2 + E[(2πν(t− T/2))2] & ν2T 2 + (θ − 2πνT

2
)2 & ν2T 2 + θ2.

On the other hand, if νT > 1/10, then 2πνt − θ is Ω(1) for at least a constant fraction of

the t, giving that
∣∣e(2πνt+θ)i − 1

∣∣ & 1.

Hence the lower bound holds whenever |v| = |v′|.

Finally, consider the lower bound for |v| 6= |v′|. Without loss of generality assume

|v′| ≥ |v|, and define v∗ = |v|
|v′|v

′′. For any two angles θ, θ′ we have that

|veθi − v′eθ′i|2 ≥ |veθi − v∗eθ′i|2 + |v∗ − v′|2,

because the angle ∠vv∗v′ is obtuse. Therefore

LHS ≥ 1

T

∫ T

0

∣∣∣ve2πfti − v∗e2πf ′ti
∣∣∣
2

+ |v∗ − v′|2dt

& |v|2 min(1, ν2T 2) + |v − v∗|2 + |v∗ − v′|2

& |v|2 min(1, ν2T 2) + |v − v′|2.
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Now, if |v′|2 ≤ 2|v|2, this gives the desired bound. But otherwise, it also gives the desired

bound because |v − v′|2 & |v′|2. So we get the bound in all settings.

The second equation follows from the first, using that (a+ b)2 h a2 + b2 for positive

a, b to show

dist ((v, f), (v′, f ′)) h (|v|+ |v′|) ·min(1, T |f − f ′|) + |v − v′|.

We can then replace |v|+ |v′| with |v| because either they are equivalent up to constants or

|v − v′| is within a constant factor of |v|+ |v′|.

Lemma 11.3.3. If x∗(t) = 0,∀t ∈ [0, T ], then

E
σ,a,b

[
B∑

j=1

|ûj|2
]
. 1

T

∫ T

0

|g(t)|2dt.

Proof. Since ûj = FFT(uj), then
∑B

j=1 |ûj|2 = B
∑B

j=1 |uj|2. Recall that (Pσ,a,bx)(t) =

x(σ(t− a))e2πσbti, uj =
∑log(k/δ)

i=1 yj+Bi and yj = Gj · (Pσ,a,bg)j = Gj · g(σ(j− a))e2πiσbj. Then

E
σ,a,b

[
B∑

j=1

|uj|2
]

= E
σ,a,b




B∑

j=1

∣∣∣∣∣∣

log(k/δ)∑

i=1

yj+Bi

∣∣∣∣∣∣

2


= E
σ,a




B∑

j=1

E
b

∣∣∣∣∣∣

log(k/δ)∑

i=1

yj+Bi

∣∣∣∣∣∣

2


= E
σ,a




B∑

j=1

E
b



( log(k/δ)∑

i=1

yj+Bi

)( log(k/δ)∑

i′=1

yj+Bi′
)





= E
σ,a




B∑

j=1

E
b




log(k/δ)∑

i=1

yj+Biyj+Bi +

log(k/δ)∑

i 6=i′
yj+Biyj+Bi′




 .
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For any (i, j) ∈ [log(k/δ)]× [B], let Si,j = Gj+Big(σ(j +Bi− a)) = yj+Bie
−2πiσb(j+Bi), then

E
σ,a,b

[
B∑

j=1

|uj|2
]

= E
σ,a




B∑

j=1

E
b




log(k/δ)∑

i=1

|Si,j|2

︸ ︷︷ ︸
C1

+

log(k/δ)∑

i 6=i′
Si,jSi′,je

2πiσbB(i−i′)

︸ ︷︷ ︸
C2






.

Consider the expectation of C2:

E
b
[C2] = E

b




log(k/δ)∑

i 6=i′
Si,jSi′,je

2πiσbB(i−i′)




=

log(k/δ)∑

i 6=i′
Si,jSi′,jE

b

[
e2πiσbB(i−i′)

]

= 0 by Definition 11.4.8 (11.13)

Note that term C1 is independent of b which means E
b
C1 = C1. Thus, we can remove

the expectation over b. Then,

E
σ,a,b

[
B∑

j=1

|uj|2
]

= E
σ,a




B∑

j=1

log(k/δ)∑

i=1

|Gj+Bi|2 · |g(σ(j +Bi− a))|2



= E
σ,a



B log(k/δ)∑

i=1

|Gi|2 · |g(σ(i− a))|2

 .

Now, the idea is to replace the expectation term Ea by an integral term
∫
a∈A(?)da.

Then, replace it by another integral term
∫ T

0
(?)dt. Let A denote a set of intervals that we

will sample a from. It is easy to verify that |A| . T/σ, since (σ(i − a)) is sampled from

[0, T ]. If we choose T to be a constant factor larger than σ| supp(G)|, then we also have

|A| & T/σ.
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E
σ


E
a



B log(k/δ)∑

i=1

|Gi|2 · |g(σ(i− a))|2



 = E

σ


 1

|A|

∫

a∈A

B log(k/δ)∑

i=1

|Gi|2 · |g(σ(i− a))|2da




= E
σ



B log(k/δ)∑

i=1

|Gi|2 ·
1

|A|

∫

a∈A
|g(σ(i− a))|2da




= E
σ



B log(k/δ)∑

i=1

|Gi|2 ·
1

σ|A|

∫

a∈A
|g(σ(i− a))|2dσa




. E
σ

[
‖G‖2

2 ·
1

T

∫ T

0

|g(t)|2dt

]
.

By Claim 11.4.2, we know that ‖G‖2
2 h 1

B
. Combining

∑B
j=1 |ûj|2 = B

∑B
j=1 |uj|2 and

‖G‖2
2 h 1

B
gives the desired result.

Lemma 11.3.4. If g(t) = 0,∀t ∈ [0, T ]. Let H denote a set of frequencies, H = {f ∈

supp(x̂∗) | neither Ecoll(f) nor Eoff (f) holds}. Then,

E
σ,a,b

[∑

f∈H

∣∣ûhσ,b(f) − x̂∗(f)eaσ2πf i
∣∣2
]
≤ δ‖x̂∗‖2

1.

Proof. For simplicity, let G = GB,δ,α and Ĝ′ = Ĝ′B,δ,α. we have

ŷ = ̂G · Pσ,a,bx

= Ĝ ∗ P̂σ,a,bx

= Ĝ′ ∗ P̂σ,a,bx+ (Ĝ− Ĝ′) ∗ P̂σ,a,bx.

The `∞ norm of second term can be bounded :

‖(Ĝ− Ĝ′) ∗ P̂σ,a,bx‖∞ ≤ ‖Ĝ− Ĝ′‖∞‖P̂σ,a,bx‖1 ≤
√
δ/k‖x̂∗‖1.
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Thus, consider the jth term of û,

ûj = ŷjF/B

=
∑

|l|<F/(2B)

Ĝ′−l(P̂σ,a,bx)jF/B+l ±
√
δ/k‖x̂∗‖1

=
∑

|πσ,b(f)−jF/B|<F/(2B)

Ĝ′jF/B−πσ,b(f)P̂σ,a,bxπσ,b(f) ±
√
δ/k‖x̂∗‖1

=
∑

hσ,b(f)=j

Ĝ′−oσ,b(f)x̂∗(f)e2πfσai ±
√
δ/k‖x̂∗‖1.

If neither Ecoll(f) nor Eoff (f) happens, then we know that frequency f is the only

heavy hitter hashed into bin j and Ĝ′−oσ,b(f) = 1 for frequency f . Thus,

E
σ,a,b

[∣∣ûhσ,b(f) − x̂∗(f)eaσ2πf i
∣∣2
]
≤ δ/k‖x̂∗‖2

1.

Since the above equation holds for all f ∈ H, we get

∑

f∈H

E
σ,a,b

[∣∣ûhσ,b(f) − x̂∗(f)eaσ2πf i
∣∣2
]
≤ kδ/k‖x̂∗‖2

1 = δ‖x̂∗‖2
1.
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11.6 Proofs for one stage of recovery

Binary search of one-sparse algorithm We first explain a simple, clean, but not

optimal one-sparse algorithm, then we try to optimize the algorithm step by step. Let

“heavy” frequency f ∈ [−F, F ], we can split the frequency interval into two regions: left

region [−F, 0) and right region [0, F ]. We can observe θ ≡ 2πβf (mod 2π) by checking the

phase difference between using P1,a,b and P1,a+β,b, where β is uniformly at random sampled

from some suitable range [β̂, 2β̂]. For each observation θ, we can guessm different possibilities

for f , say θ1, θ2, · · · , θm, if θi belong to the left region, we add a vote to that, otherwise we

add a vote to the right region. After taking enough samples, we choose the region that

has the largest vote. This decision will let us narrow down the searching range of the true

frequency by half with some good probability. Suppose we decide to choose the right region

[0, F ], then we can just repeat the above binary search over [0, F ] again to get into a region

that has size F/2. Repeating it D times, we can learn the frequency with a region that has

size at most 2F/2D. But the binary search is not the best approach, actually, we can do

much better with using t-ary search.

k-sparse To locate those k heavy signals in the frequency domain, we need to consider

the “bins” computed by HashToBins with Pσ,a,b. One of the main difference from previous

work [HIKP12a] is, instead of permuting the discrete coordinates according to Pσ,a,b and

partitioning the coordinates into B = O(k) bins, we permute the continuous frequency

domain and partition the frequency domain into B = O(k) bins. With a large constant

probability, we can obtain for each heavy signal f that neither Ecoll nor Eoff happens. After

splitting those k frequencies into different bins, then we can run the one-sparse algorithm
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for all the bins simultaneously.

t-ary search To argue the final succeed probability of our algorithm, we need to take the

union bound for each array/region in each round and also take the union bound over each

round. There are several benefits of changing binary search to t-ary search, (1) to reach

the same accuracy, the number of rounds D for t-ary search is smaller than the number of

rounds for binary search; (2) our searching procedure is a “noisy” searching problem, for the

noiseless version of the searching problem, we do not need to take care of the union bound

argument. Having a parameter for the number of arrays/regions is important to optimize

the entire procedure.

Recall the traditional binary search problem(noiseless version), given a list of sorted

numbers a[1, 2 · · · , n] in increasing order. We want to determine if some number x belongs

to a[1, 2, · · · , n]. When we compare some a[i] with x, we will know the true answer.

But the noisy binary search problem is slightly harder. a[1, 2, · · · , n] is still a list

of sorted numbers in increasing order, we want to determine if some number x belongs to

a[1, 2, · · · , n]. But when we compare the a[i] with x, we will know the true answer with 9/10

probability, and get the false answer with 1/10 probability. In this case, we can not finish

the task by following the procedure of traditional binary search algorithm, e.g. making the

decision by just comparing a[i] with x once. The reason is after taking the union bound

of log n rounds, the failure probability can be arbitrarily large. One idea to fix this issue

is independently comparing a[i] with x multiple times, e.g. log log n times. Then we can

amplify the succeed probability of each round from 9/10 to 1 − 1
poly(logn)

, after taking the

union bound over log n rounds, we still have 1− 1
poly(logn)

succeed probability.
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Our problem is still more complicated than the above noisy binary search problem.

In each round of algorithm LocateInner, we do a t-array search by splitting the candidate

frequency region(that has length ∆l) into t consecutive regions, Q1, Q2, · · · , Qt, each of them

has the equal size ∆l
t
. By using the hash values of Pσ,a,b and Pσ,a+β,b (Line 26-27 in Algorithm

11.2), we can have an observation over [0, 2π). For each such observation over [0, 2π), it was

in fact scaled by 2πσβ and rounded over [0, 2π). Thus the corresponding frequency location

of this observation might belong to m = Θ(σβ∆l) different possible regions. Since we do

not know which one, we just add a vote to all of the possible regions. To understand t-ary

search, let’s consider this example. Suppose we split the frequency into 20 regions, the true

frequency belongs to region 9 and each observation is correct with probability 4/5. For each

observation, we will add a vote to a batch of roughly evenly spaced regions.

1. For the observation 1, we add a vote to region 1, 5, 9, 13, 17.

2. For the observation 2, we add a vote to region 3, 9, 15.

3. For the observation 3, we add a vote to region 2, 9, 16.

4. For the observation 4, we add a vote to region 4, 9, 14, 19.

5. For the observation 5, we add a vote to region 2, 6, 10, 14, 20.

where the first four observations are the correct observations and the last one is wrong. Then

the true region will have more than half of the Rloc = 5 votes with some good probability.

Details of adding vote In previous description, to let people have a better understanding

of t-ary search, we simplify the step of adding vote. In fact, adding a vote to each of the m
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candidate region is not enough. The right thing to do is, not only adding a vote to those m

regions, but also adding a vote to a constant number cn of neighbors of each possible region

(e.g. two neighbors nearby that region, line 33 in Algorithm 11.2). The reason for doing this

is, if the frequency f is located very close to the boundary of two regions, then neither of

them will get more than Rloc/2 votes. After we already have Rloc independent observations,

we just choose any region that contains more than Rloc/2 votes and enlarge it by the same

constant factor cn to be the next candidate frequency region for t-array search, and plugging

the new parameters into algorithm LocateInner and running it again.

The slightly different last round Recall that, in the previous description of each round

of t-ary search, we’re able to decrease the searching range of frequency geometrically. To

achieve this progress, we have to increase the sample duration of β is geometrically. At some

point, the sample duration will reach T . Suppose the sample duration of β is geometrically

increasing during the first D − 1 rounds (Line 13-15 in Algorithm 11.2) and it becomes T

after D−1 rounds. If we want to use the same duration T to perform one more round again,

can we get some benefit for learning the frequency by doing some tricks? (1) Suppose in all

the first D − 1 rounds, we use Rloc(D − 1) samples. Then we can use Rloc(D − 1) for the

last round, since it does not increase the sample complexity. This way allows us to learn

frequency within 1
CT

. But can we do better than that? (2) Using more samples is a nice

observation, another right thing to do is changing the algorithm from reporting region to

reporting frequency. In the previous D − 1 rounds, as the description of t-ary search, we

just report the region that has more than Rloc/2 votes. But, we can take the median over

all the values that were assigned to any region that has votes more than Rloc/2. This way
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can actually allow us to learn frequency location more accurately ( h 1
ρT
) without increasing

the resolution for β! Another question people might ask is, if we take median in the last

round, why not just do it in every round? The answer is, in the first D− 1 rounds, our goal

is just narrowing down the search range of frequency location and we do not need to report

a frequency location. Another reason is reporting a candidate region needs less samples and

has higher succeed probability, but taking the median is more expensive than reporting a

candidate region. We cannot pay for taking the median in every round.

To prove main Lemma 11.3.6 for one stage recovery, we introduce Lemma 11.6.1.

Before explaining the proof, we give some definitions. Consider a frequency f , and define

j = hσ,b(f) to be the bin that frequency f was hashed into. Define θ = f − b (mod F ).

Define

û = HashToBins(x, Pσ,γ,b, B, δ, α) and û′ = HashToBins(x, Pσ,γ+β,b, B, δ, α).

Note that “bin” and “region” are representing different things in this paper. “bin” is related

to hash function hσ,b(f). “region” is only used in the algorithm of one stage recovery in this

section. Define “true” region to be the region that contains frequency f . Define “wrong”

region to be the region that is not within a constant number cn of neighbors of the “true”

region. Part (I) of Lemma 11.6.1 shows that for each observation generated by a batch of

samples drawn from time domain, the counter vj,q′ corresponding to the true region will

increase by one, with some “good” probability. On the other side, Part (II) of Lemma 11.6.1

shows that the counter vj,q corresponding to wrong region will not increase by one, with

some “good” probability. Note that, [HIKP12a] proved the case when cn = 6 under discrete

setting, we translate it into continuous setting, here.
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Lemma 11.6.1. Given σ and b. Assume f ∈ region(j, q′) and E
γ
[
∣∣ûj − e2πγσθix̂(θ)

∣∣2] ≤
1
ρ2 |x̂(θ)|2. ∀0 < s < 1, for each two samples (γ, 0) and (γ, β), where γ is sampled from [1

2
, 1]

uniformly at random and β is sampled from [ st
4σ∆l

, st
2σ∆l

] uniformly at random, we have

(I) for the q′, with probability at least 1− ( 2
ρs

)2, vj,q′ will increase by one.

(II) for any q such that |q − q′| > 3, with probability at least 1 − 15s, vj,q will not

increase.

Proof. Part (I) of Lemma 11.6.1. We have,

E
γ
[
∣∣ûj − e2πγσθix̂(θ)

∣∣2] ≤ 1

ρ2
|x̂(θ)|2.

By Chebyshev’s Inequality, we have ∀ g > 0, with probability 1− g we have

∣∣ûj − e2πγσθix̂(θ)
∣∣ ≤ 1

ρ

√
1

g
|x̂(θ)|

‖φ(ûj)− (φ(x̂(θ))− 2πγσθ)‖© ≤ sin−1(
1

ρ

√
1

g
),

where ‖x−y‖© = min
z∈Z
|x−y+2πz| denote the “circular distance” between x and y. Similarly,

replacing γ by γ + β, with probability 1− g, we also have that

‖φ(û′j)− (φ(x̂(θ))− 2π(γ + β)σθ)‖© ≤ sin−1(
1

ρ

√
1

g
).

Define cj = φ(ûj/û
′
j). Combining the above two results, with probability 1− 2g we have

‖cj − 2πβσθ‖© = ‖φ(ûj)− φ(û′j)− 2πβσθ‖©

= ‖(φ(ûj)− (φ(x̂(θ))− 2πγσθ)))− (φ(û′j)− (φ(x̂(θ))− 2π(γ + β)σθ)))‖©

≤ ‖φ(ûj)− (φ(x̂(θ))− 2πγσθ)‖© + ‖φ(û′j)− (φ(x̂(θ))− 2π(γ + β)σθ)‖©

≤ 2 sin−1(
1

ρ

√
1

g
).
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Here, we want to set g = ( 4
sπρ

)2, thus, with probability at least 1− ( 2
sρ

)2

‖cj − 2πβσθ‖© < sπ/2. (11.14)

The above equation shows that cj is a good estimate for 2πβσθ with good probability. We

will now show that this means the true region Qq′ gets a vote with large probability.

For each q′ with f ∈ [lj − ∆l
2

+ q′−1
t

∆l, lj − ∆l
2

+ q′

t
∆l] ⊂ [−F, F ], we have that

mj,q′ = lj − ∆l
2

+ q′−0.5
t

∆l and θj,q′ = mj,q′ − b (mod F ) satisfies

|f −mj,q′| ≤
∆l

2t
and |θ − θj,q′| ≤

∆l

2t
.

Since we sample β uniformly at random from [ st
4σ∆l

, st
2σ∆l

], then β ≤ st
2σ∆l

, which

implies that 2πβσ∆l
2t
≤ sπ

2
. Thus, we can show the observation cj is close to the true region

in the following sense,

‖cj − 2πβσθj,q′‖©

≤‖cj − 2πβσθ‖© + ‖2πβσθ − 2πβσθj,q′‖© by triangle inequality

<
sπ

2
+ 2π‖βσθ − βσθj,q′‖© by Equation (11.14)

≤sπ
2

+ 2πβσ
∆l

2t

=
sπ

2
+
sπ

2

≤sπ.

Thus, vj,q′ will increase in each round with probability at least 1− ( 2
ρs

)2.

Proof. Part (II) of Lemma 11.6.1.

Consider q with |q− q′| > 3. Then |f −mj,q| ≥ 7∆l
2t

, and (assuming β ≥ st
4σ∆l

) we have

2πβσ|f −mj,q| ≥ 2π
st

4σ∆l
σ|f −mj,q| =

sπt

2∆l
|f −mj,q| ≥

7sπ

4
>

3sπ

2
. (11.15)
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There are two cases: |f −mj,q| ≤ ∆l
st

and |f −mj,q| > ∆l
st
.

First, if |f −mj,q| ≤ ∆l
st
. In this case, from the definition of β it follows that

2πβσ|f −mj,q| ≤
sπt

σ∆l
σ|f −mj,q| ≤ π. (11.16)

Combining equations (11.15) and (11.16) implies that

Pr[2πβσ(f −mj,q) mod 2π ∈ [−3s

4
2π,

3s

4
2π]] = 0.

Second, if |f−mj,q| > ∆l
st
. We show this claim is true: Pr[2πβσ(f−mj,q) (mod 2π) ∈

[−3s
4

2π, 3s
4

2π]] . s. To prove it, we apply Corollary 11.4.4 by setting T̃ = 2π, σ̃ = 2πσβ,

δ̃ = 0, ε̃ = 3s
4

2π, A = 2πσβ̂, ∆f = |f − mj,q|. By upper bound of Corollary 11.4.4, the

probability is at most

2ε̃

T̃
+

4ε̃

A∆f
=

3s

2
+

3s

σβ̂∆f
≤ 3s

2
+

3s

σ st
4σ∆l

∆l
st

< 15s.

Then in either case, with probability at least 1− 15s, we have

‖2πβσmj,q − 2πβσf‖© >
3s

4
2π.

which implies that vj,q will not increase.

Lemma 11.3.6. Given σ and b, consider any frequency f for which neither Ecoll(f) nor Eoff (f)

holds, and let j = hσ,b(f). Let µ2(f) = Ea[|ûj − x̂∗(f)eaσ2πf i|2] and ρ2 = |x̂∗(f)|2/µ2(f).

For sufficiently large ρ, and ∀0 < s < 1, t ≥ 4, consider any run of LocateInner with

f ∈ [lj − ∆l
2
, lj + ∆l

2
]. It takes O(Rloc) random (γ, β) ∈ [1

2
, 1] × [ st

4σ∆l
, st

2σ∆l
] samples over

duration βσ = Θ( st
∆l

), runs in O(stRloc) time, to learn f within a region that has length

Θ(∆l
t

) with failure probability at most ( 4
sρ

)Rloc + t · (60s)Rloc/2.
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[−F, F ] ⊇

2πσβ(lj − ∆l
2 )

2πσβ(lj +
∆l
2 )

lj − ∆l
2 lj +

∆l
2

lj

scaling by 2πσβ

wrapping on a circle

#folds

cj ≈ 2πβσθ ± 1
ρ

θ

Figure 11.2: For an arbitrary frequency interval [lj − ∆l
2
, lj + ∆l

2
], we scale it by 2πσβ to

get a longer interval [2πσβ(lj + ∆l
2

), 2πσβ(lj − ∆l
2

)]. Then, we wrap the longer interval on a
circle [0, 2π). The number of folds after wrapping is dσβ∆le. For any random sample, the
observation cj is close to the true answer within 1/ρ with some “good” probability.

Proof. Let t denote the number of regions, and [lj − ∆l
2
, lj + ∆l

2
] be the interval that contains

frequency f . Let Qq denote a region that is [lj − ∆l
2

+ (q− 1)∆l
t
, lj − ∆l

2
+ q∆l

t
]. Let θ = f − b

(mod F ). Recall that we sample σ uniformly at random from [ 1
Bη
, 2
Bη

]. Then we sample γ

uniformly at random from [1
2
, 1] and sample β uniformly at random from [ st

4σ∆l
, st

2σ∆l
]. Define

cj = φ(ûj/û
′
j). Let m denote the number of folds, which is equal to dσβ∆le. Let vj,q denote

the vote of region(j, q).

We hope to show that in any round r, each observed cj is close to 2πσβθ with good

probability. On the other hand, for each observed cj, we need to assign it to some regions

and increase the vote of the corresponding region. The straightforward way is just checking

all possible t regions, which takes O(t) time. In fact, there are only Θ(m) regions close

enough to the observation cj, where m = Θ(2πσβ∆l
2π

) = Θ(st). The reason is 2πσβ will scale
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the original length ∆l interval to a new interval that has length 2πσβ∆l. This new interval

can only wrap around circle [0, 2π) at most dσβ∆le times. The running time is O(stRloc),

since we take Rloc independent observations.

For each observed cj: Part (I) of Lemma 11.6.1 says, we assign it to the true region

with some good probability; Part (II) of Lemma 11.6.1 says, we do not assign it to the

wrong region with some good probability. Thus taking Rloc independent cj, we can analyze

the failure probability of this algorithm based on these three cases.

(I) What’s the probability of true fold fails?

Pr[True fold fails]

= Pr[True region fails ≥ Rloc/2 times]

≤ 2 ·
(
Rloc

Rloc/2

)
· (Pr[True region fails once])Rloc/2

≤ 2 ·
(
Rloc

Rloc/2

)
· ( 2

sρ
)2Rloc/2 by Lemma 11.6.1

≤ (
4

sρ
)Rloc .

(II) What if the region that is “near”(within cn neighbors) true region becomes true?

Any of those region gets a vote only if true region also gets a vote. Since our al-

gorithm choosing any region that has more than Rloc/2 votes and enlarging the region size

by containing cn nearby neighbors of that chosen region, then the new larger region must

contain the “real” true region.

(III) What if the region that is “far away”(not within cn neighbors) from true region

becomes true?
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By Part (II) of Lemma 11.6.1, the probability of one such wrong region gets a vote is

at most 15s. Thus, one of the wrong region gets more than Rloc/2 votes is at most (60s)Rloc/2.

By taking the union bound over all t regions, we have the probability of existing one wrong

region getting more than Rloc/2 vote is at most t · (60s)Rloc/2.

Thus, if we first find any region Qq that has more than Rloc/2 votes, and report a

slightly larger region [lj − ∆l
2

+ (q − 1)∆l
t
− cn

2
∆l
t
, lj − ∆l

2
+ q∆l

t
+ cn

2
∆l
t

], it is very likely this

large region contains the frequency f . Finally, the failure probability of this algorithm is at

most Θ(( 4
sρ

)Rloc + t · (60s)Rloc/2).

Lemma 11.6.2. Taking the median of values belong to any region getting at least 1
2
Rloc

votes, then we can learn frequency f within Θ( ∆l
ρst

) with probability 1− exp(−Ω(Rloc)).

Proof. Let region(j, q′) be the region that getting at least 1
2
Rloc votes. Let R = |region(j, q′)|

denote the number of observations/votes assigned to region(j, q′). Since this region getting

at least 1
2
Rloc votes, then 1

2
Rloc ≤ R ≤ Rloc. Using Equation (11.14) in Lemma 11.6.1,

∀g > 0, we have

‖cj − 2πβσθ‖© ≤ 2 · sin−1

(
1

ρ

√
1

g

)
,

holds with probability 1−2g. Choosing g = Θ(1), we have with constant success probability

p > 1
2
,

‖cj − 2πβσθ‖© .
1

ρ
,

holds.

Taking the median over all the observations that belong to region(j, q′) gives
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Pr

[∣∣∣∣ median
r∈region(j,q′)

crj − 2πβrσθ

∣∣∣∣ &
1

ρ

]

<

Rloc∑

i=R/2

(
Rloc

i

)
(1− p)ipRloc−i

=

Rloc∑

i=Rloc/2

(
Rloc

i

)
(1− p)ipRloc−i +

Rloc/2∑

i=R/2

(
Rloc

i

)
(1− p)ipRloc−i

<

Rloc∑

i=Rloc/2

(
Rloc

Rloc/2

)
(1− p)i +

Rloc/2∑

i=R/2

(
Rloc

Rloc/2

)
(1− p)i

< 2

(
Rloc

Rloc/2

)
(1− p)R/2

≤ 2(2e)Rloc/2(1− p)Rloc/4

≤ e−cRloc , (11.17)

where the the second inequality follows by
(
R
i

)
≤
(
R
R/2

)
and pRloc−i < 1, ∀i ; the fourth

inequality follows by
(
n
k

)
≤ (ne/k)k; the last inequality follows by choosing some p such that

1
2

log2e
1

1−p − 1 > 2c where c > 0 is some constant. Equation (11.17) implies that

Pr

(∣∣∣∣ median
r∈region(j,q′)

θr − θ
∣∣∣∣ <

1

ρ2πσβ̂

)
> 1− exp(−Ω(Rloc)),

where ∀r ∈ [Rloc], βr is sampled uniformly at random from [β̂, 2β̂] = [ st
4σ∆l

, st
2σ∆l

]. Thus, we

can learn f within Θ( 1

ρ2πσβ̂
) = Θ( ∆l

ρst
).

Lemma 11.3.7. Algorithm LocateKSignal takesO(k logC(FT ) log(k/δ)) samples overO( log(k/δ)
η

)

duration, runs in O(k logC(FT ) log(FT/δ)) time, and outputs a set L ⊂ [−F, F ] of O(k) fre-

quencies with minimum separation Ω(η).
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lj − ∆l
2 lj +

∆l
2

lj

lj − ∆l
2 + (q′ − 1)∆l

t

lj − ∆l
2 + q′ ∆l

t

region(j, t)

vj,t

region(j, 1)

vj,1vj,2

region(j, q′)

vj,q′

Figure 11.3: The number of “blue” regions is equal to the number of folds m. The number of
total regions is t. For each observed cj, instead of checking all the t regions, we only assign
vote to the these “blue” regions. Since only these m “blue” regions can be the candidate
region that contains frequency f .

Given σ and b, consider any frequency f for which neither of Ecoll(f) or Eoff (f) hold.

Let j = hσ,b(f), µ2(f) = Ea[|ûj − x̂∗(f)eaσ2πf i|2], and ρ2 = |x̂∗(f)|2/µ2(f). If ρ > C, then

with an arbitrarily large constant probability there exists an f ′ ∈ L with

|f − f ′| . 1

Tρ
.

Proof. Algorithm LocateKSignal rerun procedure LocateInner D times. For the first

D− 1 rounds, the sampling range for β is increased by t every time. For the last round, the

sampling range for β is not increasing any more. On the other hand, the sampling range for

β for D − 1 round and the last round are the same.

Recall that, we sample σ uniformly at random from [ 1
Bη
, 2
Bη

]. Then we sample γ

uniformly at random from [1
2
, 1] and β uniformly at random from [ st

4σ∆l
, st

2σ∆l
]. cn is some

constant for the number of neighbor regions nearby “true” region. In the firstD−1 rounds, we

set s = 1/
√
C, ∆l = F/(t′)i−1

0 ,∀i ∈ [D − 1], t h log(FT ), and t′ = t
cn+1

. For the last round,

we set s h 1/C , ∆l h st/T and t h log(FT )/s. C is known as “approximation” factor.
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Finally, we need to choose depth D = logt′(FT/st) h logt′(FT ) and set Rloc = O(logC(tC))

for all the rounds. Define DR =
∑D

i=1R
i
loc, which is (D − 1)Rloc +RD

loc = O(logC(FT )).

After setting all the parameters for the first D − 1 rounds and the last round, we

explain some intuitions and motivations for setting the last round in a different way of the

first D − 1 rounds. For the first D − 1 rounds, it is not acceptable to have constant failure

probability for each round, since we need to take the union bound over D − 1 rounds. But,

for the last round, it is acceptable to allow just constant failure probability, since it is just a

single round. That’s the reason for setting C in a different way.

We have the following reason for choosing the number of regions(= t) in the last

round larger than that of first D − 1 rounds. For the first D − 1 rounds, we do not need

to learn frequency within h 1
Tρ
. It is enough to know which region does frequency belong

to, although the diameter of the region is large at the beginning. The algorithm is making

progress round by round, since the diameter of each region is geometrically decreasing while

β̂ is geometrically increasing. For the last round, by Lemma 11.6.2, we can learn f within

Θ( ∆l
ρst

). Since after the last round, we hope to learn frequency within 1
Tρ
, thus we need to

choose some s, t and ∆l such that 1
T
h ∆l

st
. To get more accuracy result in the last round,

we’d like to choose a larger t. But there is no reason to increase β̂ again, since the β̂ of the

(D − 1)th rounds can tolerance the t we choose at the last round.

To show the constant succeed probability of this Lemma, we separately consider about

the failure probability of the first D − 1 rounds and the last round. By the union bound,
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the probability of existing one of the first D − 1 rounds is failing is,

(D − 1)

(
(

4

sρ
)Rloc + t · (60s)Rloc/2

)

≤ D

(
(

4

sρ
)Rloc + t · (60s)Rloc/2

)

≤ D

(
(

4

sC
)Rloc + t · (60s)Rloc/2

)
by ρ > C > 1

= D

(
(

4√
C

)Rloc + t · ( 60√
C

)Rloc/2
)

by setting s h 1/
√
C

≤ D · 1

(Ct)c
by setting Rloc = O(logC(tC)),

where c is some arbitrarily large constant. Using t > D, we can show that failure happening

in any of the first D− 1 rounds is small. Then, we still need to show that the probability of

the last round is failing is also small,

(
4

sρ
)Rloc + t · (60s)Rloc/2 + e−Θ(Rloc)

≤ (Θ(
C

ρ
))Rloc + t · (Θ(

1

C
))Rloc/2 + e−Θ(Rloc) by setting s h 1/C

≤ 1

c1

+
1

(tC)c2
+ e−Θ(Rloc) by setting Rloc = O(logC(tC))

≤ 1

c1

+
1

(tC)c2
+

1

c3

,

where in the first line, the first two terms are from Lemma 11.3.6 and the third term comes

from Lemma 11.6.2; in the last line c1, c2 and c3 are some arbitrarily large constants.

The expected running time includes the following part: Running HashtoBins algo-

rithm O(DR) times, each run takes O(B
α

log k
δ

+ B logB). Updating the counter v, which
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takes O(DR ·Bt) time. The total running time should be

O(DR(
B

α
log

k

δ
+B logB) + (DRlocBt))

= O(DRB log(k/δ ·B · FT ))

= O(B logC(FT ) log(
k

δ
BFT ))

= O(B logC(FT ) log(FT/δ)) by FT � F
1

η
� k.

The total number of samples is

O

(
DR ·B log(

k

δ
)

)
= O(B logC(FT ) log(k/δ)).

The sample duration of Algorithm LocateKSignal is O(
log k

δ

η
).

In conclusion, we can show that for frequency where neither Ecoll nor Eoff holds,

we recover an f ′ with |f − f ′| . 1
Tρ

as long as ρ > C, with an arbitrarily large constant

probability.

Lemma 11.3.8. Algorithm OneStage takes O(k logC(FT ) log(k/δ)) samples over O( log(k/δ)
η

)

duration, runs in O(k(logC(FT ) log(FT/δ))) time, and outputs a set of {(v′i, f ′i)} of size

O(k) with mini 6=j |f ′i − f ′j| & η. Moreover, one can imagine a subset S ⊆ [k] of “successful”

recoveries, where Pr[i ∈ S] ≥ 9
10
∀i ∈ [k] and for which there exists an injective function

π : [k]→ [O(k)] so that

E
σ,b

[∑

i∈S

1

T

∫ T

0

∣∣∣v′ie2πf ′iti − vπ(i)e
2πfπ(i)ti

∣∣∣
2

dt

]
. C2N2.

with 1− 1/kc probability for an arbitrarily large constant c.
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Proof. Let H denote the set of frequencies f for which neither Ecoll(f) nor Eoff (f) holds.

For each such f , let v = x̂∗(f) and denote

µ2(f) = E
a
[|ûj − veaσ2πf i|2] (11.18)

and ρ2(f) = |v|2/µ2(f), as in Lemma 11.3.7. We have that, if ρ2(f) > C2, then with an

arbitrarily large constant probability one of the recovered f ′ ∈ L has |f ′ − f | . 1
Tρ
. If this

happens, then OneStage will estimate v using v′ = ûje
−aσ2πf ′i. By triangle inequality,

|v′ − v|2 . |v|2|ea2πσ(f ′−f)i − 1|2 + |ûj − veaσ2πf i|2. (11.19)

Since aσ ≤ T and |f ′ − f | . 1
Tρ
, then the first term of RHS of Equation (11.19) have

|v|2|ea2πσ(f ′−f)i − 1|2 . |v|2|aσ(f ′ − f)|2.

For the second term of RHS of Equation (11.19). Using Equation (11.18), we have

|ûj − veaσ2πf i|2 . µ2(f),

with arbitrarily large constant probability. Combining the bounds for those two terms gives

|v′ − v|2 . |v|2|aσ(f ′ − f)|2 + µ2(f),

with arbitrarily large constant probability. Since aσ ≤ T , the first term is |v|2/ρ2 = µ2, for

|v′ − v|2 . µ2(f).

On the other hand, if ρ2(f) < C2, then |v| = ρ(f)µ(f) . Cµ(f) so regardless of the

frequency f ′ recovered, the estimate v′ will have

|v′ − v|2 . C2µ2(f).
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with arbitrarily large constant probability.

Combining with Lemma 11.3.1, we get for any f ∈ H that the recovered f ′, v′ will

have
1

T

∫ T

0

∣∣∣v′e2πf ′ti − ve2πfti
∣∣∣
2

dt . C2µ2(f).

with arbitrarily large constant probability. Let S ⊂ H be the set of frequencies for which

this happens. We can choose our permutation π to match frequencies in S to their nearest

approximation. By Lemma 11.3.2, this means that

E
σ,b

[∑

i∈S

1

T

∫ T

0

∣∣∣v′ie2πf ′iti − vπ(i)e
2πfπ(i)ti

∣∣∣
2

dt

]
. C2N2.

as desired.
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11.7 Proofs for combining multiple stages

We first prove that the median of a bunch of estimates of a frequency has small error

if most of the estimates have small error.

Lemma 11.7.1. Let (vi, fi) be a set of tones for i ∈ S. Define v′ and f ′ to be the (coordinate-

wise) median of the (vi, fi). Then for any (v∗, f ∗) we have

1

T

∫ T

0

∣∣∣v∗e2πf∗ti − v′e2πf ′ti
∣∣∣
2

dt . median
i

1

T

∫ T

0

∣∣v∗e2πf∗ti − vie2πfiti
∣∣2 dt.

Proof. By Lemma 11.3.1 we have that

1

T

∫ T

0

∣∣∣v∗e2πf∗ti − v′e2πf ′ti
∣∣∣
2

dt h |v∗|2 min(1, T 2|f ∗ − f ′|2) + |v∗ − v′|2.

Using that v′ is taken as a two dimensional median, it suffices to show: if x(1), x(2), . . . ∈ R3

then x′ = median
i

x(i) has

‖x′‖2
2 . median

i

∥∥x(i)
∥∥2

2
. (11.20)

This follows because in each of the three coordinates j, we have

(x′j)
2 = (median

i
x

(i)
j )2 ≤ median

i
(x

(i)
j )2 ≤ median

i

∥∥x(i)
∥∥2

2
.

so summing over the three coordinates gives (11.20), as desired.

Therefore, for two dimensional median and one dimension median, we have

|v∗ − v′|2 . median
i
|v∗ − vi|2 (11.21)

and

|f ∗ − f ′|2 . median
i
|f ∗ − fi|2.
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0 F

OneStage

0 Fcη & η cη cη & η cη

Figure 11.4: We demonstrate the algorithm for merging various stages(R = O(log k)) on
2-dimensional data. Note that the true data should be 3-dimensional, since for each tone
(vi, fi), vi ∈ C and fi ∈ R. The x-axis represents the frequency and the y-axis represents
the real part of magnitude.

Moreover,

|v∗|2 ·min(1, T 2|f ∗ − f ′|2) . |v∗|2 ·min(1, T 2 median
i
|f ∗ − fi|2)

= |v∗|2 ·min(1,median
i

T 2|f ∗ − fi|2)

= |v∗|2 ·median
i

min(1, T 2|f ∗ − fi|2) (11.22)

Combining Equation (11.21) and (11.22), we have

|v∗ − v′|2 + |v∗|2 ·min(1, T 2|f ∗ − f ′|2)

. median
i
|v∗ − vi|2 + median

i
|v∗|2 ·min(1, T 2|f ∗ − fi|2)

= median
i
|v∗ − vi|2 + |v∗|2 ·min(1, T 2|f ∗ − fi|2).

Thus, we complete the proof.

Lemma 11.3.9. Repeating algorithm OneStage O(log k) times, MergedStages returns a

set {(v′i, f ′i)} of size O(k) with mini 6=j |f ′i − f ′j| & η that can be indexed by π such that

k∑

i=1

1

T

∫ T

0

∣∣∣v′ie2πf ′iti − vπ(i)e
2πfπ(i)ti

∣∣∣
2

dt . C2N2.
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with probability 1− 1/kc for an arbitrarily large constant c.

Proof. Our only goal here is to recover the actual tones well, not to worry about spurious

tones.

Suppose the number of stages we perform is R = O(log k). The algorithm for merging

the various stages is to scan over a cη size region for small c, and take the median (in both

frequency and magnitude) over 3cη region around that cη if there are at least 6
10
R results in

that cη region. If so, the algorithm will jump to the first right point that is at least η far

away from current region and look for the next cη region. Because the minimum separation

between frequencies for a given stage is Ω(η), this will have minimum separation η in the

output, and because there are O(k) tones output at each stage so will this method. What

remains is to show that the total error is small.
We say a stage is “good” if the term inside the expectation of Lemma 11.3.8 is less

than 10 times its expectation, as happens with 9/10 probability:

Pr

[∑

i∈S

1

T

∫ T

0

∣∣∣v′ie2πf ′iti − vπ(i)e
2πfπ(i)ti

∣∣∣
2

dt ≤ 10E
σ,b

[∑

i∈S

1

T

∫ T

0

∣∣∣v′ie2πf ′iti − vπ(i)e
2πfπ(i)ti

∣∣∣
2

dt

]]
≥ 9/10.

We say a frequency fi is “successful” in a given stage if the stage is good and i lies in S for

that stage. Therefore a frequency is successful in each stage with at least 8/10 probability.

For sufficiently large R = O(log k), this will cause all k frequencies to be successful more

than 7
10
R times with high probability. Suppose this happens.

Let µ2(fi) denote the error of (vi, fi). By Lemma 11.3.8, the total error over all good

stages and every successful recovery of a tone in a good stage is O(C2N2R). We define µ2(f)

to be the 6/10R worst amount of error in the recovery of f over all stages. Because there

are R/10 worse successful recoveries for each f , we have that
∑

i µ
2(fi) . C2N2.
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We will match each fi with a recovered frequency f ′i with cost at most µ2(fi). If

µ2(fi) & |vi|2, then we can set an arbitrary f ′i with v′i = 0. Otherwise, more that 6
10
R

successful recoveries of fi also yield f ′ that are within O( 1
T

)� cη of fi. Thus the algorithm

for merging tones will find enough tones to report something. What it reports will be

the median of at most R values, 6/10 of which have less error than µ2(f). Therefore by

Lemma 11.7.1 the reported frequency and magnitude will have error O(µ2(f)). This suffices

to get the result.

Lemma 11.3.10. If we run MergedStages twice and take the tones {(v′i, f ′i)} from the first

result that have f ′i within cη for small c of some frequency in the second result, we get a set

of k′′ = O(k) tones that can be indexed by some permutation π such that

k∑

i=1

1

T

∫ T

0

∣∣∣v′ie2πf ′iti − vπ(i)e
2πfπ(i)ti

∣∣∣
2

dt+
k′′∑

i=k+1

|v′i|2 . C2N2. (11.5)

Proof. By Lemma 11.3.9 and Lemma 11.3.1, the first run gives us a set of k′ = O(k) pairs

{(v′i, f ′i)} such that they may be indexed by using permutation π such that the first k are a

good approximation to {(vi, fi)} in the sense that

k∑

i=1

(|vπ(i)|2 + |v′i|2) ·min(1, T 2|fπ(i) − f ′i |2) + |vπ(i) − v′i|2 . C2N2.

We may as well index to match tones to their nearest match in frequency (because the

separation for both f ′i and fi is at least Ω(η) > 1/T ). That is, we may index such that

|f ′j − fi| & η for any j 6= i.

Now, for indices where |f ′i − fπ(i)| > 1/T , one would do better by setting the corre-

sponding vi to zero. In particular, suppose you knew the true frequencies fπ(i) and only took
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the (v′i, f
′
i) where f ′i is close to fπ(i). That is, there exists some permutation π, for the subset

S ⊆ [k] containing {i : |fπ(i) − f ′i | ≤ c/T} for any c & 1, we have

∑

i∈S

((|vπ(i)|2 + |v′i|2) ·min(1, T 2|fπ(i) − f ′i |2) + |vπ(i) − v′i|2) +
∑

i∈[k]\S

(|vπ(i)|2 + |v′i|2) . C2N2.

(11.23)

The problem is that we do not know the set S, so we can not throw out the other frequencies.

However, we can fake it by running the algorithm again on the signal. In particular, we apply

Lemma 11.3.9 again to sparse recovery of the signal defined by

{(vi, fi) | i ∈ [k]} ∪ {(0, f ′i) | i ∈ {k + 1, . . . , k′}}.

That is, we pretend the “signal” has terms at the other f ′i for k < i ≤ k′, but with magnitude

zero. This is an identical signal in time domain, so it’s really just an analytical tool; for

the analysis, it has k′ = O(k) sparsity and Ω(η) separation, so Lemma 11.3.9 applies again

and gets a set of k′′ = O(k) pairs {(v′′j , f ′′j )} such that, for the subset S∗ ⊂ [k′] containing

the indices i where |f ′′j − f ′i | ≤ c/T for some j ∈ [k′′]. In other words, there exists some

permutation τ such that for the subset S∗ ⊂ [k′] containing {i : |f ′′τ(i)− f ′i | ≤ c/T}. We have
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by analogy to (11.23) that

C2N2 &
∑

i∈S∗∩[k]

((|vπ(i)|2 + |v′′τ(i)|2) ·min(1, T 2|fπ(i) − f ′′τ(i)|2) + |vπ(i) − v′′τ(i)|2)

+
∑

i∈S∗\[k]

((|0|2 + |v′′τ(i)|2) ·min(1, T 2|f ′i − f ′′τ(i)|2) + |v′′τ(i) − 0|2)

+
∑

i∈[k]\S∗
(|vπ(i)|2 + |v′′τ(i)|2) +

∑

i∈[k′]\S∗\[k]

(|v′′τ(i)|2)

&
∑

i∈S∗∩[k]

((|vπ(i)|2 + |v′′τ(i)|2) ·min(1, T 2|fπ(i) − f ′′τ(i)|2) + |vπ(i) − v′′τ(i)|2)

+
∑

i∈S∗\[k]

|v′′τ(i)|2 +
∑

i∈[k]\S∗
|vπ(i)|2,

where π and τ are two permutations and |S∗| = k∗ = O(k). This last term is precisely the

desired total error for the set of tones {(v′′τ(i), f
′′
τ(i)) : i ∈ S∗}, giving the result.

To prove Theorem 11.3.11, we still need the following “local” Lemma.

Lemma 11.7.2. For any three tones (vπ(i), fπ(i)), (v∗i , f
∗
i ) and (v′i, f

′
i), if |v′i| ≥ |v∗i | then,

(|v′i|2 + |vπ(i)|2) ·min(1, T 2|f ′i − fπ(i)|2) + |v′i − vπ(i)|2

. (|v∗i |2 + |vπ(i)|2) ·min(1, T 2|f ∗i − fπ(i)|2) + |v∗i − vπ(i)|2 + |v′i|2.

Proof. First, we can show an upper bound for LHS. Using inequality min(1, T 2|f ′i−fπ(i)|2) ≤

1,

LHS ≤ |v′i|2 + |vπ(i)|2 + |v′i − vπ(i)|2.
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By triangle inequality,

|v′i − vπ(i)|2 ≤ 2|v′i|2 + 2|vπ(i)|2.

Thus, we obtain,

LHS . |v′i|2 + |vπ(i)|2.

Second, we can show a lower bound for RHS. Since first term of RHS is nonnegative, then

RHS ≥ |v∗i − vπ(i)|2 + |v′i|2.

Using |v′i| ≥ |v∗i |, we have

RHS & |v′i|2 + 2|v∗i |2 + 2|v∗i − vπ(i)|2.

By triangle inequality,

2|v∗i |2 + 2|v∗i − vπ(i)|2 ≥ |vπ(i)|2.

Then, we prove the lower bound for RHS,

RHS & |v′i|2 + |vπ(i)|2.

Combining the lower bound of RHS and the upper bound of LHS completes the proof.

By plugging Lemma 11.3.1 into Lemma 11.7.2, we have

Corollary 11.7.3. For any three tones (vπ(i), fπ(i)), (v∗i , f
∗
i ) and (v′i, f

′
i), if |v′i| ≥ |v∗i |, then

1

T

∫ T

0

∣∣∣v′ie2πf ′iti − vπ(i)e
2πfπ(i)ti

∣∣∣
2

dt . 1

T

∫ T

0

∣∣v∗i e2πf∗i ti − vπ(i)e
2πfπ(i)ti

∣∣2 dt+ |v′i|2.

We use Corollary 11.7.3 to present the proof of Theorem 11.3.11,
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Theorem 11.3.11. Algorithm ContinuousFourierSparseRecovery returns a set {(v′i, f ′i)}

of size k with mini 6=j |f ′i − f ′j| & η for which

k∑

i=1

1

T

∫ T

0

∣∣∣v′ie2πf ′iti − vπ(i)e
2πfπ(i)ti

∣∣∣
2

dt . C2N2

with probability 1− 1/kc for an arbitrarily large constant c.

Proof. Let {(v∗i , f ∗i )}i=1,2,··· ,k′′ denote the set of tones returned by Lemma 11.3.10, where

k′′ = O(k) and k′′ > k. For any i ∈ [k], tone (v∗i , f
∗
i ) was mapped to tone (vπ(i), fπ(i)) in

Lemma 11.3.10. Let {(v′i, f ′i)}i=1,2,··· ,k denote a subset of {(v∗i , f ∗i )}i=1,2,··· ,k′′ that satisfies the

following two conditions (1) for any i ∈ [k], |v′i| is one of the top-k largest magnitude tones;

(2) for any i ∈ [k], |v′i| ≥ |v∗i |. By Lemma 11.3.10, we also know that mini 6=j |f ′i − f ′j| & η.

For any i ∈ [k], we consider these three tones (vπ(i), fπ(i)), (v
∗
i , f

∗
i ), (v′i, f

′
i). If (v∗i , f

∗
i ) 6=

(v′i, f
′
i), then applying Corollary 11.7.3 we have

1

T

∫ T

0

∣∣∣v′ie2πf ′iti − vπ(i)e
2πfπ(i)ti

∣∣∣
2

dt . 1

T

∫ T

0

∣∣v∗i e2πf∗i ti − vπ(i)e
2πfπ(i)ti

∣∣2 dt+ |v′i|2.

Otherwise (v∗i , f
∗
i ) = (v′i, f

′
i), we also have

1

T

∫ T

0

∣∣∣v′ie2πf ′iti − vπ(i)e
2πfπ(i)ti

∣∣∣
2

dt =
1

T

∫ T

0

∣∣v∗i e2πf∗i ti − vπ(i)e
2πfπ(i)ti

∣∣2 dt,

which means there exists some universal constant α such that ∀i ∈ [k], if (v∗i , f
∗
i ) = (v′i, f

′
i)

then

1

T

∫ T

0

∣∣∣v′ie2πf ′iti − vπ(i)e
2πfπ(i)ti

∣∣∣
2

dt ≤ α ·
(

1

T

∫ T

0

∣∣v∗i e2πf∗i ti − vπ(i)e
2πfπ(i)ti

∣∣2 dt+ |v′i|2
)

740



holds. Otherwise (v∗i , f
∗
i ) 6= (v′i, f

′
i), then

1

T

∫ T

0

∣∣∣v′ie2πf ′iti − vπ(i)e
2πfπ(i)ti

∣∣∣
2

dt = α
1

T

∫ T

0

∣∣v∗i e2πf∗i ti − vπ(i)e
2πfπ(i)ti

∣∣2 dt

holds. Let S denote the set of indices i such that (v∗i , f
∗
i ) 6= (v′i, f

′
i). Taking the summation

from i = 1 to i = k,

k∑

i=1

1

T

∫ T

0

∣∣∣v′ie2πf ′iti − vπ(i)e
2πfπ(i)ti

∣∣∣
2

dt

≤
∑

i∈S

α ·
(

1

T

∫ T

0

∣∣v∗i e2πf∗i ti − vπ(i)e
2πfπ(i)ti

∣∣2 dt+ |v′i|2
)

+
∑

i∈[k]\S

α ·
(

1

T

∫ T

0

∣∣v∗i e2πf∗i ti − vπ(i)e
2πfπ(i)ti

∣∣2 dt

)
,

furthermore, we have

k∑

i=1

1

T

∫ T

0

∣∣∣v′ie2πf ′iti − vπ(i)e
2πfπ(i)ti

∣∣∣
2

dt ≤ α
k∑

i=1

(
1

T

∫ T

0

∣∣v∗i e2πf∗i ti − vπ(i)e
2πfπ(i)ti

∣∣2 dt

)

+ α
∑

i∈S

|v′i|2.

To finish the proof, we need to show that
∑

i∈S |v′i|2 ≤
∑k′′

i=k+1 |v∗i |2. The point is, for any

i ∈ S, we know that (v′i, f
′
i) 6= (v∗i , f

∗
i ) which implies that (v′i, f

′
i) /∈ {(v∗i , f ∗i )}ki=1. Thus,

k∑

i=1

1

T

∫ T

0

∣∣∣v′ie2πf ′iti − vπ(i)e
2πfπ(i)ti

∣∣∣
2

dt

≤ α
k∑

i=1

(
1

T

∫ T

0

∣∣v∗i e2πf∗i ti − vπ(i)e
2πfπ(i)ti

∣∣2 dt

)
+ α

k′′∑

i=k+1

|v∗i |2

.
k∑

i=1

(
1

T

∫ T

0

∣∣v∗i e2πf∗i ti − vπ(i)e
2πfπ(i)ti

∣∣2 dt

)
+

k′′∑

i=k+1

|v∗i |2

. C2N2,
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where k′′ = O(k) is defined in Lemma 11.3.10 and the last inequality follows by using

Equation (11.5) in Lemma 11.3.10.
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11.8 Proofs for converting (11.2) into (11.3)

In this section, we show that as long as the sample duration T is sufficiently large,

it is possible to convert Equation (11.2) to Equation (11.3). First, we show an auxiliary

lemma, Lemma 11.8.3, which bounds an integral that will appear in the analysis.

We will show that

∫ +∞

−∞
min(T,

1

|fi − θ|
) ·min(T,

1

|fj − θ|
)dθ . log(T |fi − fj|)

|fi − fj|
.

for fj − fi ≥ 2/T . We split this into two pieces.

Claim 11.8.1. Given two frequencies fi, fj and fj − fi ≥ 2
T
, we have

∫ fi

fi− 1
T

min(T,
1

|fi − θ|
) · 1

|fj − θ|
dθ . 1

fj − fi
.

Proof. By fi − 1
T
< θ < fi, we have

LHS =

∫ fi

fi− 1
T

T · 1

fj − θ
dθ.

Since 1
fj−θ h

1
fj−fi for all θ ∈ [fi − 1

T
, fi],

LHS .
∫ fi

fi− 1
T

T

fj − fi
dθ =

1

fj − fi
.

Claim 11.8.2. Given two frequencies fi, fj and fj − fi ≥ 2
T
, we have

∫ fi− 1
T

−∞
min(T,

1

|fi − θ|
) · 1

|fj − θ|
dθ . log(T |fj − fi|)

fj − fi
.
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Proof. By θ < fi − 1
T
< fj, we have that

LHS =

∫ fi− 1
T

−∞

1

fi − θ
· 1

fj − θ
dθ

=
1

fj − fi

∫ fi− 1
T

−∞

fj − fi
(fi − θ)(fj − θ)

dθ

=
1

fj − fi

∫ fi− 1
T

−∞

1

fi − θ
− 1

fj − θ
dθ

= − 1

fj − fi
log

fi − fi + 1
T

fj − fi + 1
T

= − 1

fj − fi
log

1

T (fj − fi) + 1

. log(T (fj − fi))
fj − fi

.

Lemma 11.8.3. Given two frequencies fi, fj and fj − fi ≥ 2
T
, we have

∫ +∞

−∞
min(T,

1

|fi − θ|
) ·min(T,

1

|fj − θ|
)dθ . log(T |fi − fj|)

|fi − fj|
.

Proof. By symmetry, we have

LHS = 2

∫ fi+fj
2

−∞
min(T,

1

|fi − θ|
) ·min(T,

1

|fj − θ|
)dθ.

Since T > 1
fj−θ when θ < fi+fj

2
,

LHS ≤ 2

∫ fi+fj
2

−∞
min(T,

1

|fi − θ|
) · 1

|fj − θ|
dθ.
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F (θ)

−∞ +∞

F ′(θ)

−∞ +∞

Figure 11.5: F (θ) is a sinc function and has derivate function F ′(θ).

We also observe that 1
|fj−θ| h

1
|fj−fi| for all θ ∈ [fi − fj−fi

2
, fi +

fj−fi
2

],

∫ fj+fi
2

fi−
fj−fi

2

min(T,
1

|fi − θ|
) · 1

|fj − θ|
dθ h

∫ fi

fi−
fj−fi

2

min(T,
1

|fi − θ|
) · 1

|fj − θ|
dθ.

Thus, we get

LHS .
∫ fi

−∞
min(T,

1

|fi − θ|
) · 1

|fj − θ|
dθ.

Plugging Claim 11.8.1 and 11.8.2 into the above formula completes the proof.

Lemma 11.8.4. For any i, let ai(t) = vie
2πfiti − v′ie2πf ′iti, then for i 6= j,

1

T

∫ T

0

ai(t)aj(t)dt .
log(∆fi,jT )

∆fi,jT
·
(

1

T

∫ T

0

|ai(t)|2dt · 1

T

∫ T

0

|aj(t)|2dt

) 1
2

, (11.24)

where ∆fi,j = min(|fi − fj|, |fi − f ′j|, |f ′i − fj|, |fi − f ′j|).
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Proof. Let νi = |fi − f ′i | and νj = |fj − f ′j|. Define ‖ai‖ =
(

1
T

∫ T
0
|ai(t)|2dt

)1/2

. We define

f(t) and F (θ) to be a rectangle and sinc function respectively:

f(t) =

{
1 if 0 ≤ t ≤ T
0 otherwise

F (θ) =
sin(2πθT )

2πθ

where F = f̂ .

F (θ) has the derivative,

F ′(θ) =
2πθT cos(2πθT )− sin(2πθT )

2πθ2
,

which means that

|F ′(θ)| .
{
T 2 if θ ≤ 1/T
T/|θ| otherwise

Let yi(t) = ai(t) · f(t), then

ŷi(θ) = âi(θ) ∗ f̂(θ)

= âi(θ) ∗ F (θ) by F = f̂

= viF (fi − θ)− v′iF (f ′i − θ)

= (vi − v′i)F (fi − θ) + v′i(fi − f ′i) · F ′(x− θ) some x ∈ [fi, f
′
i ].

We split into two cases. First, if νi ≤ 1
T
, then

|ŷi(θ)| . (|vi − v′i|+ νiT |v′i|) ·min(T,
1

|fi − θ|
)

. ‖ai‖ ·min(T,
1

|fi − θ|
) by Lemma 11.3.1, (11.25)
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−∞ +∞fi fj
fj +

1
Tfj − 1

Tfi +
1
Tfi − 1

T

min(T, 1
|θ−fi| ) min(T, 1

|θ−fj | )

Figure 11.6:
∫ +∞
−∞ min(T, 1

|θ−fi|) ·min(T, 1
|θ−fj |)dθ

where the first step holds for both fi > f ′i and fi ≤ f ′i since the triangle inequality.

Therefore

1

T

∫ T

0

ai(t)aj(t)dt =
1

T

∫ ∞

−∞
yi(t)yj(t)dt

=
1

T

∫ ∞

−∞
ŷi(θ)ŷj(θ)dθ

. 1

T
‖ai‖‖aj‖

∫ +∞

−∞
min(T,

1

|fi − θ|
) ·min(T,

1

|fj − θ|
)dθ

︸ ︷︷ ︸
C

, (11.26)

where the first step follows from yi(t) = ai(t) · f(t) and f(t) = 1 if t ∈ [0, T ], the second

step follows from the property of Fourier transform, and the last step follows from Equa-

tion (11.25).

Using Lemma 11.8.3, we have following bound for term C,

∫ +∞

−∞
min(T,

1

|fi − θ|
) ·min(T,

1

|fj − θ|
)dθ . log T |fj − fi|

|fj − fi|
.
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This gives the result for νi ≤ 1
T
. In the alternate case, we have νi > 1

T
, then

|ŷi(θ)| . vi ·min(T,
1

|fi − θ|
) + v′i ·min(T,

1

|f ′i − θ|
)

. ‖ai‖ ·
(

min(T,
1

|fi − θ|
) + min(T,

1

|f ′i − θ|
)

)
by Lemma 11.3.1.

By similar reason for Equation (11.26), we have

1

T

∫ T

0

ai(t)aj(t)dt

. 1

T
‖ai‖‖aj‖

∫ +∞

−∞
min(T,

1

|fi − θ|
) ·min(T,

1

|fj − θ|
)dθ

︸ ︷︷ ︸
C1

+
1

T
‖ai‖‖aj‖

∫ +∞

−∞
min(T,

1

|fi − θ|
) ·min(T,

1

|f ′j − θ|
)dθ

︸ ︷︷ ︸
C2

+
1

T
‖ai‖‖aj‖

∫ +∞

−∞
min(T,

1

|f ′i − θ|
) ·min(T,

1

|fj − θ|
)dθ

︸ ︷︷ ︸
C3

+
1

T
‖ai‖‖aj‖

∫ +∞

−∞
min(T,

1

|f ′i − θ|
) ·min(T,

1

|f ′j − θ|
)dθ

︸ ︷︷ ︸
C4

.

Applying Lemma 11.8.3 on the term C1, C2, C3 and C4 respectively,

1

T

∫ T

0

ai(t)aj(t) . ‖ai‖‖aj‖
log(T∆fi,j)

∆fi,j
,

where ∆fi,j = min(|fi − fj|, |fi − f ′j|, |f ′i − fj|, |f ′i − f ′j|).
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Lemma 11.8.5. Let {(vi, fi)} and {(v′i, f ′i)} be two sets of k tones for which mini 6=j |fi−fj| ≥

η and mini 6=j |f ′i − f ′j| ≥ η for some η > 0. Suppose that T > C/η for a sufficiently large

constant C. Then these sets can be indexed such that

1

T

∫ T

0

∣∣∣
k∑

i=1

(v′ie
2πif ′it − vie2πifit)

∣∣∣
2

dt ≤ α ·
k∑

i=1

1

T

∫ T

0

∣∣∣v′ie2πif ′it − vie2πifit
∣∣∣
2

dt, (11.27)

where

α =

(
1 +O

(
log(kηT ) log(k)

ηT

))
.

Proof. For simplicity, let ai(t) = vie
2πfiti − v′ie2πf ′iti. Let’s express the square of summations

by diagonal term and off-diagonal term, and then bound them separately.

∫ T

0

∣∣∣∣∣
k∑

i=1

ai(t)

∣∣∣∣∣

2

dt

=

∫ T

0

(
k∑

i=1

ai(t)

)(
k∑

i=1

ai(t)

)
dt

=

∫ T

0

k∑

i=1

ai(t)ai(t)︸ ︷︷ ︸
diagonal

+
k∑

i 6=j

ai(t)aj(t)︸ ︷︷ ︸
off-diagonal

dt. (11.28)

Using the result of Lemma 11.8.4 and a2 + b2 ≥ 2ab, we can upper bound the off-

diagonal term,

∫ T

0

ai(t)aj(t)dt

. log(∆fi,jT )

∆fi,jT
·
(∫ T

0

|ai(t)|2dt

∫ T

0

|aj(t)|2dt

)1/2

by Lemma 11.8.4

. log(∆fi,jT )

∆fi,jT
·
(∫ T

0

|ai(t)|2dt+

∫ T

0

|aj(t)|2dt

)
. by 2ab ≤ a2 + b2
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where ∆fi,j = min(|fi − fj|, |fi − f ′j|, |f ′i − fj|, |f ′i − f ′j|). If we index such that any fi is

matched with any f ′j with |fi − f ′j| < η/3 – which is possible, since at most one such f ′j will

exist by the separation among the f ′j, and that f ′j will be within η/3 of at most on fi – then

we have ∆fi,j & |fi− fj|. If we order the fi in increasing order, then in fact ∆fi,j & η|i− j|.

If T > C/η for a sufficiently large constant C, this means that ∆fi,jT & |i−j|ηT ≥ e.

Since log x
x

is decreasing on the region, this implies

log(∆fi,jT )

∆fi,jT
. log(|i− j|ηT )

|i− j|ηT .

Thus, we have

∫ T

0

ai(t)aj(t)dt .
log(|i− j|ηT )

|i− j|ηT ·
(∫ T

0

|ai(t)|2dt+

∫ T

0

|aj(t)|2dt

)
. (11.29)
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Finally, we have

∫ T

0

∣∣∣∣∣
k∑

i=1

ai(t)

∣∣∣∣∣

2

dt−
k∑

i=1

∫ T

0

|ai(t)|2dt

=
k∑

i 6=j

∫ T

0

ai(t)aj(t)dt by Equation (11.28)

.
k∑

i 6=j

log(|i− j|ηT )

|i− j|ηT ·
(∫ T

0

|ai(t)|2dt+

∫ T

0

|aj(t)|2dt

)
by Equation (11.29)

≤ log(kηT )

ηT

k∑

i=1

k∑

j 6=i

1

|i− j| ·
(∫ T

0

|ai(t)|2dt+

∫ T

0

|aj(t)|2dt

)

= 2
log(kηT )

ηT

k∑

i=1

k∑

j 6=i

1

|i− j|

∫ T

0

|ai(t)|2dt by symmetry

. log(kηT )

ηT

k∑

i=1

∫ T

0

|ai(t)|2dt
k∑

j 6=i

1

|i− j|

. log(kηT ) log(k)

ηT

k∑

i=1

∫ T

0

|ai(t)|2dt by
k∑

i=1

1

i
h log(k) .

Thus, we complete the proof.

Lemma 11.3.13. Let {(vi, fi)} and {(v′i, f ′i)} be two sets of k tones for which mini 6=j |fi−fj| ≥

η and mini 6=j |f ′i − f ′j| & η for some η > 0. Suppose that T > O( log2 k
η

). Then these sets can

be indexed such that

1

T

∫ T

0

∣∣∣
k∑

i=1

(v′ie
2πif ′it − vie2πifit)

∣∣∣
2

dt .
k∑

i=1

1

T

∫ T

0

∣∣∣v′ie2πif ′it − vie2πifit
∣∣∣
2

dt. (11.30)

Proof. Directly follows by Lemma 11.8.5.
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11.9 Lower Bound

Lemma 11.3.15. There exists a constant c > 0 such that, for a given sample duration T , one

cannot recover the frequency f to within

c
N

T |x̂∗(f)|

with 3/4 probability, for all δ > 0, even if k = 1.

Proof. Suppose this were possible, and consider two one-sparse signals y and y′ containing

tones (v, f) and (v, f ′), respectively. By Lemma 11.3.1,

∫ T

0

|y(t)− y(t)|2dt . |v|2T 2|f − f ′|2.

Consider recovery of the signal x(t) = y(t), and suppose it outputs some frequency f ∗.

This must simultaneously be a good recovery for the decomposition (x∗, g) = (y, 0) and

(x∗, g) = (y′, y−y′). These have noise levelsN2 bounded by δ|v|2 and δ|v|2+O(|v|2T 2|f−f ′|2),

respectively. By the assumption of good recovery, and the triangle inequality, we require

c · 2
√
δ|v|2 +

√
O(|v|2T 2|f − f ′|2)

Tv
& |f − f ′|

or

c ·O
(( δ

T |f − f ′|
)1/2

+ 1

)
≥ 1.

Because δ may be chosen arbitrarily small, we can choose a small constant c such that this

is a contradiction.
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Algorithm 11.1 Continuous Fourier Sparse Recovery - Part 1
1: procedure ContinuousFourierSparseRecovery(x, k, δ, α, C, F, T, η ) —– The

Main Algorithm
2: F is the upper bound of frequency, T is the sample duration, C is the approximation

factor.
3: δ, α are the parameters associated with Hash function.
4: c = 1/10 and b = 8/10
5: R1 ← NoisyKSparseCFFT(x, k, δ, α, C, F )
6: S1 ←MergedStages(R1, O(k log k), η, c, b)
7: R2 ← NoisyKSparseCFFT(x,O(k), δ, α, C, F, T )
8: S2 ←MergedStages(R2, O(k log k),Ω(η), c, b)
9: S ← S1 ∩ S2, which means only keeping the tones that S1 agrees with S2 by Lemma

11.3.10.
10: S∗ ← Prune(S, k), which means only keeping the top-k largest magnitude tones.
11: return S∗

12: end procedure
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Algorithm 11.2 Continuous Fourier Sparse Recovery - Part 2
1: procedure NoisyKSparseCFFT(x, k, δ, α, C, F, T )
2: Let B = k/ε.
3: for c = 1→ log(k) do
4: Choose σ uniformly at random from [ 1

Bη
, 2
Bη

].
5: Choose b uniformly at random from [0, 2πdF/ηe

σB
].

6: Rc ← OneStage(x,B, δ, α, σ, b, C, F, T )
7: end for
8: return (R1, R2, · · · , Rlog(k)).
9: end procedure
10: procedure MergedStages(R,m, η, c, b)
11: R is a list of m tones (v′i, f

′
i)

12: c is some constant < 1.
13: b is some constant < 1.
14: Sort list R based on f ′i .
15: Building the 1D range search Tree based on m points by regarding each frequency

f ′i as a 1D point on a line where xi = f ′i .
16: S ← ∅, i← 0
17: while i < m do
18: if Tree.Count(f ′i , f

′
i + cη) ≥ b log k then

19: f ← median { f ′j | f ′j ∈ [f ′i − cη, f ′i + 2cη]}
20: v ← median { v′j | f ′j ∈ [f ′i − cη, f ′i + 2cη]}
21: S ← S ∪ (f, v)
22: i← Tree.Search(f ′i + 2cη + η/2), which means walk to the first point that

is on the right of f ′i + 2cη + η/2
23: else
24: i← i+ 1
25: end if
26: end while
27: return S
28: end procedure
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Algorithm 11.3 Continuous Fourier Sparse Recovery - Part 3
1: procedure HashToBins(x, Pσ,a,b, B, δ, α)
2: Compute ŷjF/B for j ∈ [B], where y = GB,α,δ · (Pσ,a,bx)
3: return û given by ûj = ŷjF/B
4: end procedure
5: procedure OneStage(x,B, δ, α, σ, b, C, F, T )
6: L← LocateKSignal(x,B, δ, α, σ, b, C, F, T )
7: Choose a ∈ [0, 1] uniformly at random.
8: û← HashToBins(x, Pσ,a,b, B, δ, α)
9: return {(ûhσ,b(f ′)e−2πσaf ′i, f ′) for f ′ ∈ L if not Eoff (f ′)}.
10: end procedure
11: procedure LocateKSignal(x,B, δ, α, σ, b, C, F, T )
12: Set t h log(FT ), t′ = t/(cn + 1), D h logt′(FT ) , Rloc h logC(tC), l(1) = F/2.
13: for i ∈ [D − 1] do
14: ∆l h F/(t′)i−1, s = 1√

C
, β̂ = ts

2σ∆l

15: l(i+1) ← LocateInner(x,B, δ, α, σ, b, β̂, l(i),∆l, t, Rloc, false).
16: end for
17: Set s = 1/C, t h log(FT )/s, ∆l h st/T , β̂ = ts

2σ∆l
, Rloc h logC(tC)

18: l(∗) ← LocateInner(x,B, δ, α, σ, b, β̂, l(D),∆l, t, Rloc, true).
19: return l(∗).
20: end procedure
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Algorithm 11.4 Continuous Fourier Sparse Recovery - Part 4

1: procedure LocateInner(x,B, δ, σ, b, β̂, l,∆l, t, Rloc, last) . Lemma 11.3.6
2: Let vj,q = 0 for (j, q) ∈ [B]× [t].
3: for r ∈ [Rloc] do
4: Choose γ ∈ [1

2
, 1] uniformly at random.

5: Choose β ∈ [1
2
β̂, 1β̂] uniformly at random.

6: û← HashToBins(x, Pσ,γ,b, B, δ, α).
7: û′ ← HashToBins(x, Pσ,γ+β,b, B, δ, α).
8: for j ∈ [B] do
9: for i ∈ [m] do
10: θrj,i = 1

2πσβ
(φ(ûj/û′j) + 2πsi), si ∈ [σβ(lj −∆l/2), σβ(lj + ∆l/2)] ∩ Z+

11: f rj,i = θrj,i + b (mod F )
12: suppose f rj,i belongs to region(j, q),
13: add a vote to both region(j, q) and two neighbors nearby that region, e.g.

region(j, q − 1) and region(j, q + 1)
14: end for
15: end for
16: end for
17: for j ∈ [B] do
18: q∗j ← {q|vj,q > Rloc

2
}

19: if last = true then
20: l∗j ← median{f rj,i|f rj,i ∈ region(j, q∗j ), i ∈ [f ], r ∈ [Rloc]}
21: else
22: l∗j ← center of region(j, q∗j )
23: end if
24: end for
25: return l∗

26: end procedure
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Chapter 12

Continuous Fourier Transform II

We consider the problem of estimating a Fourier-sparse signal from noisy samples,

where the sampling is done over some interval [0, T ] and the frequencies can be “off-grid”.

Previous methods for this problem required the gap between frequencies to be above 1/T ,

the threshold required to robustly identify individual frequencies. We show the frequency

gap is not necessary to estimate the signal as a whole: for arbitrary k-Fourier-sparse signals

under `2 bounded noise, we show how to estimate the signal with a constant factor growth

of the noise and sample complexity polynomial in k and logarithmic in the bandwidth and

signal-to-noise ratio.

As a special case, we get an algorithm to interpolate degree d polynomials from noisy

measurements, using O(d) samples and increasing the noise by a constant factor in `2.
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12.1 Introduction

In an interpolation problem, one can observe x(t) = x∗(t) + g(t), where x∗(t) is a

structured signal and g(t) denotes noise, at points ti of one’s choice in some interval [0, T ].

The goal is to recover an estimate x̃ of x∗ (or of x). Because we can sample over a particular

interval, we would like our approximation to be good on that interval, so for any function

y(t) we define

‖y‖2
T =

1

T

∫ T

0

|y(t)|2dt.

to be the `2 error on the sample interval. For some parameters C and δ, we would then like

to get

‖x̃− x∗‖T ≤ C ‖g‖T + δ ‖x∗‖T (12.1)

while minimizing the number of samples and running time. Typically, we would like C to

be O(1) and to have δ be very small (either zero, or exponentially small). Note that, if we

do not care about changing C by O(1), then by the triangle inequality it doesn’t matter

whether we want to estimate x∗ or x (i.e. we could replace the LHS of (12.1) by ‖x̃− x‖T ).

Of course, to solve an interpolation problem one also needs x∗ to have structure. One

common form of structure is that x∗ have a sparse Fourier representation. We say that a

function x∗ is k-Fourier-sparse if it can be expressed as a sum of k complex exponentials:

x∗(t) =
k∑

j=1

vje
2πifjt.

for some vj ∈ C and fj ∈ [−F, F ], where F is the “bandlimit”. Given F , T , and k, how many

samples must we take for the interpolation (12.1)?
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If we ignore sparsity and just use the bandlimit, then Nyquist sampling and Shannon-

Whittaker interpolation uses FT + 1/δ samples to achieve (12.1). Alternatively, in the

absence of noise, x∗ can be found from O(k) samples by a variety of methods, including

Prony’s method from 1795 or Reed-Solomon syndrome decoding [Mas69], but these methods

are not robust to noise.

If the signal is periodic with period T—i.e., the frequencies are multiples of 1/T—then

we can use sparse discrete Fourier transform methods, which take O(k logc(FT/δ)) time and

samples (e.g. [GGI+02, HIKP12a, IKP14]). If the frequencies are not multiples of 1/T (are

“off the grid”), then the discrete approximation is only k/δ sparse, making the interpolation

less efficient; and even this requires that the frequencies be well separated.

A variety of algorithms have been designed to recover off-grid frequencies directly,

but they require the minimum gap among the frequencies to be above some threshold.

With frequency gap at least 1/T , we can achieve a kc approximation factor using O(FT )

samples [Moi15], and with gap above O(log2 k)/T we can get a constant approximation using

O(k logc(FT/δ)) samples and time [PS15].

Having a dependence on the frequency gap is natural. If two frequencies are very

close together—significantly below 1/T—then the corresponding complex exponentials will

be close on [0, T ], and hard to distinguish in the presence of noise. In fact, from a lower

bound in [Moi15], below 1/T frequency gap one cannot recover the frequencies in the presence

of noise as small as 2−Ω(k). The lower bound proceeds by constructing two signals using

significantly different frequencies that are exponentially close over [0, T ].

But if two signals are so close, do we need to distinguish them? Such a lower bound
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doesn’t apply to the interpolation problem, it just says that you can’t solve it by finding the

frequencies. Our question becomes: can we benefit from Fourier sparsity in a regime where

we can’t recover the individual frequencies?

We answer in the affirmative, giving an algorithm for the interpolation using

poly(k log(FT/δ))

samples. Our main theorem is the following:

Theorem 12.1.1. Let x(t) = x∗(t) + g(t), where x∗ is k-Fourier-sparse signal with frequencies

in [−F, F ]. Given samples of x over [0, T ] we can output x̃(t) such that with probability at

least 1− 2−Ω(k),

‖x̃− x∗‖T . ‖g‖T + δ ‖x∗‖T .

Our algorithm uses poly(k, log(1/δ)) · log(FT ) samples and poly(k, log(1/δ)) · log2(FT ) time.

The output x̃ is poly(k, log(1/δ))-Fourier-sparse signal.

Relative to previous work, this result avoids the need for a frequency gap, but loses

a polynomial factor in the sample complexity and time. We lose polynomial factors in a

number of places; some of these are for ease of exposition, but others are challenging to

avoid.

Degree d polynomials are the special case of d-Fourier-sparse functions in the limit of

fj → 0, by a Taylor expansion. This is a regime with no frequency gap, so previous sparse

Fourier results would not apply but Theorem 12.1.1 shows that poly(d log(1/δ)) samples

suffices. In fact, in this special case we can get a better polynomial bound:
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Theorem 12.1.2. For any degree d polynomial P (t) and an arbitrary function g(t), Proce-

dure RobustPolynomialLearning in Algorithm 12.5 takes O(d) samples from x(t) =

P (t) + g(t) over [0, T ] and reports a degree d polynomial Q(t) in time O(dω) such that, with

probability at least 99/100,

‖P (t)−Q(t)‖2
T . ‖g(t)‖2

T .

where ω < 2.373 is matrix multiplication exponent [Str69],[CW87],[Wil12].

We also show how to reduce the failure probability to an arbitrary p > 0 with

O(log(1/p)) independent repetitions, in Theorem 12.4.5.

Although we have not seen such a result stated in the literature, our method is quite

similar to one used in [CDL13]. Since d samples are necessary to interpolate a polynomial

without noise, the result is within constant factors of optimal.

One could apply Theorem 12.1.2 to approximate other functions that are well ap-

proximated by polynomials or piecewise polynomials. For example, a Gaussian of standard

deviation at least σ can be approximated by a polynomial of degree O(
(
T
σ

)2
+ log(1/δ));

hence the same bound applies as the sample complexity of improper interpolation of a posi-

tive mixture of Gaussians.
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12.1.1 Related work

Sparse discrete Fourier transforms. There is a large literature on sparse discrete

Fourier transforms. Results generally are divided into two categories: one category of

results that carefully choose measurements that allow for sublinear recovery time, includ-

ing [GGI+02, GMS05, HIKP12b, Iwe13, HIKP12a, IK14, IKP14, Kap16]. The other category

of results expect randomly chosen measurements and show that a generic recovery algorithm

such as `1 minimization will work with high probability; these results often focus on proving

the Restricted Isometry Property [CRT06b, RV08, Bou14, HR16]. At the moment, the first

category of results have better theoretical sample complexity and running time, while results

in the second category have better failure probabilities and empirical performance. Our re-

sult falls in the first category. The best results here can achieve O(k log n) samples [IK14],

O(k log2 n) time [HIKP12b], or within log log n factors of both [IKP14].

For signals that are not periodic, the discrete Fourier transform will not be sparse: it

takes k/δ frequencies to capture a 1− δ fraction of the energy. To get a better dependence

on δ, one has to consider frequencies “off the grid”, i.e. that are not multiples of 1/T .

Off the grid. Finding the frequencies of a signal with sparse Fourier transform off the grid

has been a question of extensive study. The first algorithm was by Prony in 1795, which

worked in the noiseless setting. This was refined by classical algorithms like MUSIC [Sch81]

and ESPRIT [RPK86], which empirically work better with noise. Matrix pencil [BM86] is

a method for computing the maximum likelihood signal under Gaussian noise and evenly

spaced samples. The question remained how accurate the maximum likelihood estimate

is; [Moi15] showed that it has an O(kc) approximation factor if the frequency gap is at least
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1/T .

Now, the above results all use FT samples, which is analogous to n in the discrete

setting. This can be decreased down till O(k) by only looking at a subset of time, i.e.

decreasing T ; but doing so increases the frequency gap needed for decent robustness results.

A variety of works have studied how to adapt sparse Fourier techniques from the

discrete setting to get sublinear sample complexity; they all rely on the minimum separation

among the frequencies to be at least c/T for c ≥ 1. [TBSR13] showed that a convex program

can recover the frequencies exactly in the noiseless setting, for c ≥ 4. This was improved in

[CF14] to c ≥ 2 for complex signals and c ≥ 1.87 for real signals. [CF14] also gave a result for

c ≥ 2 that was stable to noise, but this required the signal frequencies to be placed on a finely

spaced grid. [YX15] gave a different convex relaxation that empirically requires smaller c in

the noiseless setting. [DB13] used model-based compressed sensing when c = Ω(1), again

without theoretical noise stability. Note that, in the noiseless setting, exact recovery can

be achieved without any frequency separation using Prony’s method or Berlekamp-Massey

syndrome decoding [Mas69]; the benefit of the above results is that a convex program might

be robust to noise, even if it has not been proven to be so.

In the noisy setting, [FL12] gave an extension of Orthogonal Matching Pursuit (OMP)

that can recover signals when c = Ω(k), with an approximation factor O(k), and a few other

assumptions. Similarly, [BCG+12] gave a method that required c = Ω(k) and was robust to

certain kinds of noise. [HK15] got the threshold down to c = O(1), in multiple dimensions,

but with approximation factor O(FTkO(1)).

[TBR15] shows that, under Gaussian noise and with separation c ≥ 4, a semidefinite
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program can optimally estimate x∗(ti) at evenly spaced sample points ti from observations

x∗(ti) + g(ti). This is somewhat analogous to our setting, the differences being that (a)

we want to estimate the signal over the entire interval, not just the sampled points, (b) our

noise g is adversarial, so we cannot hope to reduce it—if g is also k-Fourier-sparse, we cannot

distinguish x∗ and g, and of course (c) we want to avoid requiring frequency separation.

In [PS15], we gave the first algorithm with O(1) approximation factor, finding the

frequencies when c & log(1/δ), and the signal when c & log(1/δ) + log2 k.

Now, all of the above results algorithms are designed to recover the frequencies; some

of the ones in the noisy setting then show that this yields a good approximation to the overall

signal (in the noiseless setting this is trivial). Such an approach necessitates c ≥ 1: [Moi15]

gave a lower bound, showing that any algorithm finding the frequencies with approximation

factor 2o(k) must require c ≥ 1.

Thus, in the current literature, we go from not knowing how to get any approximation

for c < 1, to getting a polynomial approximation at c = 1 and a constant approximation at

c & log2 k. In this work, we show how to get a constant factor approximation to the signal

regardless of c.

Polynomial interpolation. Our result is a generalization of robust polynomial interpo-

lation, and in Theorem 12.1.2 we construct an optimal method for polynomial interpolation

as a first step toward interpolating Fourier-sparse signals.

Our result here can be seen as essentially an extension of a technique shown in [CDL13].

The focus of [CDL13] is on the setting where sample points xi are chosen independently, so
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Θ(d log d) samples are necessary. One of their examples, however, shows essentially the same

thing as our Corollary 12.4.2. From this, getting our theorem is not difficult.

The recent work [GZ16] looks at robust polynomial interpolation in a different noise

model, featuring `∞ bounded noise with some outliers. In this setting they can get a stronger

`∞ guarantee on the output than is possible in our setting.

Nyquist sampling. The classical method for learning bandlimited signals uses Nyquist

sampling—i.e., samples at rate 1/F , for FT points—and interpolates them using Shannon-

Nyquist interpolation. This doesn’t require any frequency gap, but also doesn’t benefit

from sparsity like sparse Fourier transform-based techniques. As discussed in [PS15], on the

signal x(t) = 1 it takes FT + O(1/δ) samples to get δ error on average. Our dependence is

logarithmic on both those terms.
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12.1.2 Our techniques

Previous results on sparse Fourier transforms with robust recovery all required a fre-

quency gap. So consider the opposite situation, where all the frequencies converge to zero

and the coefficients are adjusted to keep the overall energy fixed. If we take a Taylor expan-

sion of each complex exponential, then the signal will converge to a degree k polynomial. So

robust polynomial interpolation is a necessary subproblem for our algorithm.

Polynomial interpolation. Let P (x) be a degree d polynomial, and suppose that we can

query f(x) = P (x) + g(x) over the interval [−1, 1], where g represents adversarial noise.

We would like to query f at O(d) points and output a degree d polynomial Q(x) such that

‖P −Q‖ . ‖g‖, where we define ‖h‖2 :=
∫ 1

−1
|h(x)|2dx.

One way to do this would be to sample points S ⊂ [−1, 1] uniformly, then output the

degree d polynomial Q with the smallest empirical error

‖P + g −Q‖2
S :=

1

|S|
∑

x∈S

|(P + g −Q)(x)|2

on the observed points. If ‖R‖S ≈ ‖R‖ for all degree d polynomials R, in particular for

P −Q, then since usually ‖g‖S . ‖g‖ by Markov’s inequality, the result follows.

This has two problems: first, uniform sampling is poor because polynomials like

Chebyshev polynomials can have most of their energy within O(1/d2) of the edges of the

interval. This necessitates Ω(d2) uniform samples before ‖R‖S ≈ ‖R‖ with good probability

on a single polynomial. Second, the easiest method to extend from approximating one

polynomial to approximating all polynomials uses a union bound over a net exponential in

d, which would give an O(d3) bound.
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To fix this, we need to bias our sampling toward the edges of the interval and we

need our sampling to not be iid. We partition [−1, 1] into O(d) intervals I1, . . . , In so that

the interval containing each x has width at most O(
√

1− x2), except for the O(1/d2) size

regions at the edges. For any degree d polynomial R and any choice of n points xi ∈ Ii, the

appropriately weighted empirical energy is close to ‖R‖. This takes care of both issues with

uniform sampling. If the points are chosen uniformly at random from within their intervals,

then ‖g‖ is probably bounded as well, and the empirically closest degree d polynomial Q will

satisfy our requirements.

This result is shown in Section 12.4.

Clusters. Many previous sparse Fourier transform algorithms start with a one-sparse re-

covery algorithm, then show how to separate frequencies to get a k-sparse algorithm by

reducing to the one-sparse case. Without a frequency gap, we cannot hope to reduce to the

one-sparse case; instead, we reduce to individual clusters of nearby frequencies.

Essentially the problem is that one cannot determine all of the high-energy frequencies

of a function x only by sampling it on a bounded interval, as some of the frequencies might

cancel each other out on this interval. We also cannot afford to work merely with the

frequencies of the truncation of x to the interval [0, T ], as the truncation operation will

spread the frequencies of x over too wide a range. To fix this problem, we must do something

in between the two. In particular, we instead study x ·H for a judiciously chosen function

H. We want H to approximate the indicator function of the interval [0, T ] and have small

Fourier-support, supp(Ĥ) ⊂ [−kc/T, kc/T ]. By using some non-trivial lemmas about the

growth rate of x∗, we can show that the difference between x ·H on R and the truncation of
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x to [0, T ] has small L2 mass, so that we can use the former as a substitute for the latter.

On the other hand, the Fourier transform of x · H is the convolution x̂ ∗ Ĥ, which

has most of its mass within poly(k)/T of the frequencies of x∗. Although it is impossible

to determine the individual frequencies of x∗, we can hope to identify O(k) intervals each of

length poly(k)/T so that all but a small fraction of the energy of x̂ is contained within these

intervals.

Note that many of these intervals will represent not individual frequencies of x∗, but

small clusters of such frequencies. Furthermore, some frequencies of x∗ might not show up in

these intervals either because they are too small, or because they cancel out other frequencies

when convolved with Ĥ.

One-cluster recovery. Given our notion of clusters, we start looking at Fourier-sparse

interpolation in the special case of one-cluster recovery. This is a generalization of one-

sparse recovery where we can have multiple frequencies, but they all lie in [f −∆, f + ∆] for

some base frequency f and bandwidth ∆ = kc/T . Because all the frequencies are close to

each other, values x(a) and x(a + β) will tend to have ratio close to e2πifβ when β is small

enough. We find that β < 1
∆
√
T∆

is sufficient, which lets us figure out a frequency f̃ with

|f̃ − f | ≤ ∆
√
T∆ = kO(1)/T .

Once we have the frequency f̃ , we can consider x′(t) = x(t)e−2πif̃ . This signal is

k-Fourier-sparse with frequencies bounded by kO(1)/T . By taking a Taylor approximation

to each complex exponential1, can show x∗ is δ-close to P (t)e2πif̃ for a degree d = O(kc +

1There is a catch here, that the coefficients of the exponentials are potentially unbounded, if the frequen-
cies are arbitrarily close together. We first use Gram determinants to show that the signal is δ-close to one
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k log(1/δ)) polynomial P . Thus we could apply our polynomial interpolation algorithm to

recover the signal.

k-cluster frequency estimation. Reminiscent of algorithms such as [HIKP12a, PS15],

we choose random variables σ ≈ T/kc, a ∈ [0, 1], and b ∈ [0, 1/σ] and look at v ∈ Ckc given

by

vi = (x ·H)(σ(i− a))e−2πiσbiG(i)

where G is a filter function. That is, G has compact support (supp(G) ⊂ [−kc, kc]), and Ĝ

approximates an interval of length Θ(2π
k

). In other words, G is the same as Ĥ with different

parameters: an interval convolved with itself kc times, multiplied by a sinc function.

We alias v down to O(k) dimensions and take the discrete Fourier transform, getting

û. It has been implicit in previous work—and we make it explicit—that ûj is equal to zσa

for a vector z defined by

ẑ = (x̂ ∗ Ĥ) · Ĝ(j)
σ,b

where Ĝ(j)
σ,b is a particular permutation of Ĝ. In particular, Ĝ(j)

σ,b has period 1/σ, and approx-

imates an interval of size 1
σB

within each period.

In previous work, when σ and b were chosen randomly, each individual frequency

would have a good chance of being the only frequency preserved in ẑ, and we could apply

one-sparse recovery by choosing a variety of a. Without a frequency gap we can’t quite

say that: we pick 1/σ � ∆ so that the entire cluster usually lands in the same bin, but

then nearby clusters can also often land in the same bin. Fortunately, it is still usually true

with frequency gap δ2−k, and coefficients at most 2k/δ.
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that only nearby clusters will collide. Since our 1-cluster algorithm works when the signal

frequencies are nearby, we apply it to find a frequency approximation within
√
T/σ

σ
= kO(1)/T

of the cluster.

The above algorithm recovers each individual frequency with constant probability.

By repeating it O(log k) times, with high probability we find a list L of O(k) frequencies

within kO(1)/T of each significant cluster.

k-sparse recovery. Because different clusters aren’t anywhere close to orthogonal, we

can’t simply approximate each cluster separately and add them up. Instead, given the list

L of candidate frequencies, we consider the O(kd)-dimensional space of functions

x̃(t) :=
∑

f̃∈L

d∑

i=0

αf̃ ,it
ie2πif̃ t

where d = O(kO(1) + log(1/δ)). We then take a bunch of random samples of x, and choose

the x̃(t) minimizing the empirical error using linear regression. This regression can be made

slightly faster using oblivious subspace embeddings [CW13], [NN13a], [Woo14b],[CNW15].

Our argument to show this works is analogous to the naive method we considered for

polynomial recovery. Similarly to the one-cluster setting, using Taylor approximations and

Gram determinants, we can show that this space includes a sufficiently close approximation

to x. Since polynomials are the limit of sparse Fourier as frequencies tend to zero, these

functions are arbitrarily close to O(kd)-Fourier-sparse functions. Hence we know that the

maximum of |x̃(t)| is at most a poly(kd) factor larger than its average over [0, T ]. Using a

net argument, this shows poly(kd) samples are sufficient to find a good approximation to

the nearest function in our space.
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Growth rate of Fourier-sparse signals. We need that 1√
T
‖x∗ ·H‖2 ≈ ‖x∗‖T , where H

approximates the interval 1[0,T ]. Because H has support size kc/T , it has a transition region

of size T/kc′ at the edges, and it decays as (t/T )−k
c′′ for t � T . The difference between

1√
T
‖x∗ ·H‖2 and ‖x∗‖T involves two main components: mass in the transition region that is

lost, and mass outside the sampling interval that is gained. To show the approximation, we

need that |x∗(t)| . Õ(k2) ‖x∗‖T within the interval and |x∗(t)| . (kt/T )O(k) ‖x∗‖T outside.

We outline the bound of max
t∈[0,T ]

|x∗(t)| in terms of its average ‖x∗‖T to bound |x∗(t)|

within the interval. Notice that we can assume |x∗(0)| = max
t∈[0,T ]

|x∗(t)|: if t∗ = arg max
t∈[0,T ]

|x∗(t)|2

is not 0 or T , we can rescale the two intervals [0, t∗] and [t∗, T ] to [0, T ] separately. Then

we show that for any t′, there exist m = Õ(k2) and constants C1, · · · , Cm such that x∗(0) =
∑

j∈[m] Cj ·x∗(j · t′). Then we take the integration of t′ over [0, T/m] to bound |x∗(0)|2 by its

average. For any outside t > T , we follow this approach to show x∗(t) =
∑

j∈[k] Cj · x∗(tj)

where tj ∈ [0, T ] and |Cj| ≤ poly(k) · (kt/T )O(k) for each j ∈ [k]. These results are shown in

Section 12.5.
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12.1.3 Organization

This paper is organized as follows. We provide a brief overview about signal recovery

in Section 12.2. We introduce some notations and tools in Section 12.3. Then we show

our main Theorem 12.1.2 about polynomial interpolation in Section 12.4. For signals with

k-sparse Fourier transform, we show two bounds on their growth rate in Section 12.5 and

describe the hash functions and filter functions in Section 12.6. We provide the algorithm

for frequency estimation and its proof in Section 12.7. In Section 12.8, we describe the

algorithm for one-cluster recovery. In Section 12.9, we show the proof of Theorem 12.1.1.

We defer several technical proofs in Section 12.10. Section 12.11 gives a summary of several

well-known facts are existing in literature. We provide the analysis of hash functions and

filter functions in Section 12.12.
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12.2 Proof Sketch

We first consider one-cluster recovery centered at zero, i.e., x∗(t) =
k∑
j=1

vj · e2πifjt

where every fj is in [−∆,∆] for some small ∆ > 0. The road map is to replace x∗ by a low

degree polynomial P such that ‖x∗(t) − P (t)‖2
T . δ‖x∗‖2

T then recover a polynomial Q to

approximate P through the observation x(t) = P (t)+g′(t) where g′(t) = g(t)+
(
x∗(t)−P (t)

)
.

A natural way to replace x∗(t) =
k∑
j=1

vje
2πifjt by a low degree polynomial P (t) is the

Taylor expansion. To bound the error after taking the low degree terms in the expansion by

δ‖x∗‖T , we show the existence of x′(t) =
k∑
j=1

v′je
2πif ′jt approximating x∗ on [0, T ] with an extra

property—any coefficient v′j in x′(t) has an upper bound in terms of ‖x′‖2
T = 1

T

∫ T
0
|x′(t)|2dt.

We prove the existence of x′(t) via two more steps, both of which rely on the estimation of

some Gram matrix constituted by these k signals.

The first step is to show the existence of a k-Fourier-sparse signal x′(t) with frequency

gap η ≥ exp(− poly(k))·δ
T

that is sufficiently close to x∗(t).

Lemma 12.2.1. There is a universal constant C1 > 0 such that, for any x∗(t) =
k∑
j=1

vje
2πifjt

and any δ > 0 , there always exist η ≥ δ
T
· k−C1k2 and x′(t) =

k∑
j=1

v′je
2πif ′jt satisfying

‖x′(t)− x∗(t)‖T ≤ δ‖x∗(t)‖T

with min
i 6=j
|f ′i − f ′j| ≥ η and max

j∈[k]
{|f ′j − fj|} ≤ kη.

We outline our approach and defer the proof to Section 12.8. We focus on the re-

placement of one frequency fk in x∗ =
∑

j∈[k] vje
2πifjt by a new frequency fk+1 6= fk and its

error. The idea is to consider every signal e2πifjt as a vector and prove that for any vector
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x∗ in the linear subspace span{e2πifjt|j ∈ [k]}, there exists a vector in the linear subspace

span{e2πifk+1t, e2πifjt|j ∈ [k− 1]} with distance at most exp(k2) · (|fk − fk+1|T ) · ‖x∗‖T to x∗.

The second step is to lower bound ‖x′‖2
T by its coefficients through the frequency gap

η in x′.

Lemma 12.2.2. There exists a universal constant c > 0 such that for any x(t) =
k∑
j=1

vje
2πifjt

with frequency gap η = min
i 6=j
|fi − fj|,

‖x(t)‖2
T ≥ k−ck

2

min
(
(ηT )2k, 1

) k∑

j=1

|vj|2.

Combining Lemma 12.2.1 and Lemma 12.2.2, we bound |v′j| by exp(poly(k)) · δ−O(k) ·

‖x′‖T for any coefficient v′j in x′. Now we apply the Taylor expansion on x′(t) and keep

the first d = O(∆T + poly(k) + k log 1
δ
) terms of every signal v′j · e2πif ′jt in the expansion

to obtain a polynomial P (t) of degree at most d. To bound the distance between P (t) and

x′(t), we observe that the error of every point t ∈ [0, T ] is at most (2π∆·T
d

)d
∑

j |v′j|, which

can be upper bounded by δ‖x′(t)‖T via the above connection. We summarize all discussion

above as follows.

Lemma 12.2.3. For any ∆ > 0 and any δ > 0, let x∗(t) =
∑

j∈[k] vje
2πifjt where |fj| ≤ ∆ for

each j ∈ [k]. There exists a polynomial P (t) of degree at most

d = O(T∆ + k3 log k + k log 1/δ)

such that

‖P (t)− x∗(t)‖2
T ≤ δ‖x∗‖2

T .
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To recover x∗(t), we observe x(t) as a degree d polynomial P (t) with noise. We use

properties of the Legendre polynomials to design a method of random sampling such that

we only need O(d) random samples to find a polynomial Q(t) approximating P (t).

Theorem 12.1.2. For any degree d polynomial P (t) and an arbitrary function g(t), Proce-

dure RobustPolynomialLearning in Algorithm 12.5 takes O(d) samples from x(t) =

P (t) + g(t) over [0, T ] and reports a degree d polynomial Q(t) in time O(dω) such that, with

probability at least 99/100,

‖P (t)−Q(t)‖2
T . ‖g(t)‖2

T .

where ω < 2.373 is matrix multiplication exponent [Str69],[CW87],[Wil12].

We can either report the polynomial Q(t) or transfer Q(t) to a signal with d-sparse

Fourier transform. We defer the technical proofs and the formal statements to Section 12.8

and discuss the recovery of k clusters from now on.

As mentioned before, we apply the filter function (H(t), Ĥ(f)) on x∗ such that x̂∗ ·H

has at most k clusters given x̂∗ with k-sparse Fourier transform. First, we show that all

frequencies in the “heavy” clusters of x̂∗ ·H constitute a good approximation of x∗ in Section

12.9.

Definition 12.2.4. Given x∗(t) =
k∑
j=1

vje
2πifjt, any N > 0, and a filter function (H, Ĥ) with

bounded support in frequency domain. Let Lj denote the interval of supp( ̂e2πifjt ·H) for

each j ∈ [k].

Define an equivalence relation ∼ on the frequencies fi by the transitive closure of the

relation fi ∼ fj if Li ∩ Lj 6= ∅. Let S1, . . . , Sn be the equivalence classes under this relation.
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Define Ci = ∪
f∈Si

Li for each i ∈ [n]. We say Ci is a “heavy” cluster iff
∫
Ci
|Ĥ · x∗(f)|2df ≥

T ·N2/k.

Claim 12.2.5. Given x∗(t) =
k∑
j=1

vje
2πifjt and any N > 0, let H be the filter function defined

in Section 12.12.1 and C1, · · · , Cl be the heavy clusters from Definition 12.2.4. For

S =

{
j ∈ [k]

∣∣∣∣fj ∈ C1 ∪ · · ·Cl
}
,

we have x(S)(t) =
∑
j∈S
vje

2πifjt approximating x∗ within distance ‖x(S)(t)− x∗(t)‖2
T . N2.

Hence it is enough to recover x(S) for the recovery of x∗. Let ∆h denote the bandwidth

of Ĥ. In Section 12.7, we choose ∆ > k ·∆h such that for any j ∈ S,
∫ fj+∆

fj−∆
|Ĥ · x∗(f)|2df ≥

T ·N2/k from the fact |Ci| ≤ k ·∆h. Then we prove Theorem 12.2.6 in Section 12.7, which

finds O(k) frequencies to cover all heavy clusters of x̂∗ ·H.

Theorem 12.2.6. Let x∗(t) =
k∑
j=1

vje
2πifjt and x(t) = x∗(t) + g(t) be our observable signal

where ‖g(t)‖2
T ≤ c‖x∗(t)‖2

T for a sufficiently small constant c. Then Procedure Frequen-

cyRecoveryKCluster returns a set L of O(k) frequencies that covers all heavy clusters

of x∗, which uses poly(k, log(1/δ)) log(FT ) samples and poly(k, log(1/δ)) log2(FT ) time. In

particular, for ∆ = poly(k, log(1/δ))/T and N2 := ‖g(t)‖2
T + δ‖x∗(t)‖2

T , with probability

1− 2−Ω(k), for any f ∗ with
∫ f∗+∆

f∗−∆

|x̂ ·H(f)|2df ≥ TN2/k, (12.2)

there exists an f̃ ∈ L satisfying

|f ∗ − f̃ | . ∆
√

∆T .

Let L = {f̃1, · · · , f̃l} be the list of frequencies from the output of Procedure Fre-

quencyRecoveryKCluster in Theorem 12.2.6. The guarantee is that, for any fj in
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x(S), there exists some pj ∈ [l] such that |f̃pj − fj| . ∆
√

∆T for ∆ = poly(k, log(1/δ))/T .

Hence we rewrite x(S)(t) =
∑

i∈[l] e
2πif̃it(

∑
j∈S:pj=i

e2πi(fj−f̃i)t). For each i ∈ [l], we apply

Lemma 12.2.3 of one-cluster recovery on
∑

j∈S:pj=i
e2πi(fj−f̃i)t to approximate it by a degree d

polynomial Pi(t).

Now we consider x(t) =
∑

i∈[l] e
2πif̃it · Pi(t) + g′′(t) where ‖g′′(t)‖T . ‖g(t)‖T +

δ‖x∗(t)‖T . To recover
∑

i∈[l] e
2πif̃it · Pi(t), we treat it as a vector in the linear subspace

V = span

{
e2πif̃it · tj

∣∣∣∣j ∈ {0, · · · , d}, i ∈ [l]

}

with dimension at most l(d+ 1) and find a vector in this linear subspace approximating it.

We show that for any v ∈ V , the average of poly(kd) random samples on v is enough

to estimate ‖v‖2
T . In particular, any vector in this linear subspace satisfies that the maximum

of it in [0, T ] has an upper bound in terms of its average in [0, T ]. Then we apply the Chernoff

bound to prove that poly(kd) random samples are enough for the estimation of one vector

v ∈ V .

Claim 12.2.7. For any ~u ∈ span

{
e2πif̃it · tj

∣∣∣∣j ∈ {0, · · · , d}, i ∈ [l]

}
, there exists some univer-

sal constants C1 ≤ 4 and C2 ≤ 3 such that

max
t∈[0,T ]

{|~u(t)|2} . (ld)C1 logC2(ld) · ‖~u‖2
T

At last we use an ε-net to argue that poly(kd) random samples from [0, T ] are enough

to interpolate x(t) by a vector v ∈ V . Because the dimension of this linear subspace is at

most l(d + 1) = O(kd), there exists an ε-net in this linear subspace for unit vectors with

size at most exp(kd). Combining the Chernoff bound on all vectors in the ε-net and Claim

12.2.7, we know that poly(kd) samples are sufficient to estimate ‖v‖2
T for any vector v ∈ V .
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In Section 12.9, we show that a vector v ∈ V minimizing the distance on poly(kd) random

samples is a good approximation for
∑

i∈[l] e
2πif̃it · Pi(t), which is a good approximation for

x∗(t) from all discussion above.

Theorem 12.1.1. Let x(t) = x∗(t) + g(t), where x∗ is k-Fourier-sparse signal with frequencies

in [−F, F ]. Given samples of x over [0, T ] we can output x̃(t) such that with probability at

least 1− 2−Ω(k),

‖x̃− x∗‖T . ‖g‖T + δ ‖x∗‖T .

Our algorithm uses poly(k, log(1/δ)) · log(FT ) samples and poly(k, log(1/δ)) · log2(FT ) time.

The output x̃ is poly(k, log(1/δ))-Fourier-sparse signal.
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12.3 Preliminaries

We first provide some notations in Section 12.3.1 and basic Fourier facts in Section

12.3.2. Then we review some probability inequalities in Section 12.3.3. At last, we introduce

Legendre polynomials in Section 12.3.4 and review some basic properties of Gram matrix

and its determinant in Section 12.3.5.
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12.3.1 Notation

For any function f , we define Õ(f) to be f · logO(1)(f). We use [n] to denote

{1, 2, · · · , n}. Let i denote
√
−1. For any Complex number z = a + ib ∈ C, where

a, b ∈ R. We define z to be a − ib and |z| =
√
a2 + b2 such that |z|2 = zz. For any

function f(t) : R→ C, we use supp(f) to denote the support of f .

For convenience, we define the sinc function and the Gaussian distribution Gaussianµ,σ

on R with expectation µ and variance σ2 as follows:

sinc(t) =
sin(πt)

πt
, Gaussianµ,σ(t) =

1

σ
√

2π
e−

(t−µ)2

2σ2 .

For a fixed T > 0, we define the inner product of two functions x, y : [0, T ]→ C as

〈x, y〉T =
1

T

∫ T

0

x(t)y(t)dt.

We define the ‖ · ‖T norm as

‖x(t)‖T =
√
〈x(t), x(t)〉T =

√
1

T

∫ T

0

|x(t)|2dt.
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12.3.2 Facts about the Fourier transform

In this work, we always use x(t) to denote a signal from R→ C. The Fourier transform

x̂(f) of an integrable function x : R→ C is defined as

x̂(f) =

∫ +∞

−∞
x(t)e−2πiftdt, for any real number f.

Similarly, x(t) is determined from x̂(f) by the inverse transform:

x(t) =

∫ +∞

−∞
x̂(f)e2πiftdf, for any real number t.

Let CFT denote the continuous Fourier transform, DTFT denote the discrete-time

Fourier transform, DFT denote the discrete Fourier transform, and FFT denote the fast

Fourier transform.

For any signal x(t) and n ∈ N+, we define x∗n(t) = x(t) ∗ · · · ∗ x(t)︸ ︷︷ ︸
n

and x̂·n(f) =

x̂(f) · · · · · x̂(f)︸ ︷︷ ︸
n

.

Fact 12.3.1. Let δ∆(f) denote the Dirac delta at ∆. Then

δ̂∆(t) =

∫ +∞

−∞
δ∆(f)e2πiftdf = e2πit∆.

Fact 12.3.2. For any s > 0, let Combs(t) =
∑
j∈Z
δjs(t). Then the Fourier transform of

Combs(t) is

Ĉombs(f) =
1

s
Comb1/s(f).

The following fact says the the Fourier transform of a rectangle function is a sinc

function.
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Combs

0−s−2s s 2s

rects

− s2 s
2

sincs

− 1
s

1
s

Gaussianµ,σ

µ

Figure 12.1: A picture of a Combs, rects, sincs, Gaussianµ,σ .

Fact 12.3.3. We use

rects(t) =

{
1 if |t| ≤ s

2
,

0 otherwise.

Then the Fourier transform of rects(t) is r̂ects(f) = sin(πfs)
πfs

= sinc(fs).

The Fourier transform of a Gaussian function is another Gaussian function.

Fact 12.3.4. For Gaussianµ,σ(t) = 1
σ
√

2π
e−

(t−µ)2

2σ2 . Then the Fourier transform is

̂Gaussianµ,σ(f) = e−2πifu 1

σ
√

2π
Gaussian0,σ′(f) for σ′ = 1/(2πσ).
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Proof. From the definition of the Fourier transform,

̂Gaussianµ,σ(f) =

∫ +∞

−∞

1

σ
√

2π
e−

(t−µ)2

2σ2 e−2πiftdt

= e−2πifu

∫ +∞

−∞

1

σ
√

2π
e−

t2

2σ2 e−2πiftdt

= e−2πifu

∫ +∞

−∞

1

σ
√

2π
e−

(t+2πiσ2f)2

2σ2 −2π2f2σ2

dt

= e−2πifue−
f2

2σ′2

where σ′ = 1/(2σπ), which is e−2πifu · σ′
√

2π ·Gaussian0,σ′(f).
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12.3.3 Tools and inequalities

From the Chernoff Bound (Lemma A.1.1), we show that if the maximum of a signal

is bounded by d times its energy over some fixed interval, then taking more than d samples

(each sample is drawn i.i.d. over that interval) suffices to approximate the energy of the

signal on the interval with high probability.

Lemma 12.3.5. Given any function x(t) : R→ C with max
t∈[0,T ]

|x(t)|2 ≤ d‖x(t)‖2
T . Let S denote

a set of points from 0 to T . If each point of S is chosen uniformly at random from [0, T ], we

have

Pr

[∣∣∣∣∣
1

|S|
∑

i∈S

|x(ti)|2 − ‖x(t)‖2
T ]

∣∣∣∣∣ ≥ ε‖x(t)‖2
T

]
≤ e−Ω(ε2|S|/d)

We provide a proof in Section 12.10.5.

Because d · 1
2d

+ 1
2
· (1− 1

2d
) ≤ 1, we have the following inequality when the maximum

of |x(t)|2 is at most d times its average.

Lemma 12.3.6. Given any function x(t) : R → C with max
t∈[0,T ]

|x(t)|2 ≤ d‖x(t)‖2
T . Let S

denote a set of points from 0 to T . For any point a is sampled uniformly at random from

[0, T ], we have,

Pr
a∼[0,T ]

[
|x(a)|2 ≥ 1

2
‖x(t)‖2

T

]
≥ 1

2d
.
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12.3.4 Legendre polynomials

We provide an brief introduction to Legendre polynomials (please see [Dun10] for a

complete introduction). For convenience, we fix ‖f(t)‖2
T = 1

2

∫ 1

−1
|f(t)|2dt in this section.

Definition 12.3.1. Let Ln(x) denote the Legendre polynomials of degree n, the solution to

Legendre’s differential equation:

d

dx

[
(1− x2)

d

dx
Ln(x)

]
+ n(n+ 1)Ln(x) = 0 (12.3)

We will the following two facts about the Legendre polynomials in this work.

Fact 12.3.7. Ln(1) = 1 for any n ≥ 0 in the Legendre polynomials.

Fact 12.3.8. The Legendre polynomials constitute an orthogonal basis with respect to the

inner product on interval [−1, 1]:
∫ 1

−1

Lm(x)Ln(x)dx =
2

2n+ 1
δmn

where δmn denotes the Kronecker delta, i.e., it equals to 1 if m = n and to 0 otherwise.

For any polynomial P (x) of degree at most d with complex coefficients, there exists

a set of coefficients from the above properties such that

P (x) =
d∑

i=0

αi · Li(x), where αi ∈ C,∀i ∈ {0, 1, 2, · · · , d}.

Lemma 12.3.9. For any polynomial P (t) of degree at most d from R to C, for any interval

[S, T ],

max
t∈[S,T ]

|P (t)|2 ≤ (d+ 1)2 · 1

T − S

∫ T

S

|P (t)|2dx.

We provide a proof in Section 12.10.6.
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12.3.5 Gram matrix and its determinant

We provide an brief introduction to Gramian matrices (please see [Haz01] for a com-

plete introduction). We use 〈x, y〉 to denote the inner product between vector x and vector

y.

Let ~v1, · · · , ~vn be n vectors in an inner product space and span{~v1, · · · , ~vn} be the

linear subspace spanned by these n vectors with coefficients in C, i.e.,



∑

i∈[n]

αi~vi

∣∣∣ ∀i ∈ [n], αi ∈ C



 .

The Gram matrix Gramn of ~v1, · · · , ~vn is an n × n matrix defined as Gramn(i, j) = 〈~vi, ~vj〉

for any i ∈ [n] and j ∈ [n].

Fact 12.3.10. det(Gramn) is the square of the volume of the parallelotope formed by ~v1, · · · , ~vn.

Let Gramn−1 be the Gram matrix of ~v1, · · · , ~vn−1. Let ~v
‖
n be the projection of vn onto

the linear subspace span{~v1, · · · , ~vn−1} and ~v⊥n = ~vn − ~v‖n. We use ‖~v‖ to denote the length

of ~v in the inner product space, which is
√
〈~v,~v〉.

Claim 12.3.11.

‖~v⊥n ‖2 =
det(Gramn−1)

det(Gramn)
.

Proof.

det(Gramn) = volume2(~v1, · · · , ~vn) = volume2(~v1, · · · , ~vn−1) · ‖~v⊥n ‖2 = det(Gramn) · ‖~v⊥n ‖2.
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12.4 Robust Polynomial Interpolation Algorithm

In Section 12.4.1, we show how to learn a low degree polynomial by using linear

number of samples, running polynomial time, and achieving constant success probability. In

Section 12.4.2, we show to how boost the success probability by rerunning previous algorithm

several times.
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12.4.1 Constant success probability

We show how to learn a degree-d polynomial P with n = O(d) samples and prove

Theorem 12.1.2 in this section. For convenience, we first fix the interval to be [−1, 1] and

use ‖f‖2
[−1,1] = 1

2

∫ 1

−1
|f(t)|2dt.

Lemma 12.4.1. Let d ∈ N and ε ∈ R+, there exists an efficient algorithm to compute a

partition of [−1, 1] to n = O(d/ε) intervals I1, · · · , In such that for any degree d polynomial

P (t) : R→ C and any n points x1, · · · , xn in the intervals I1, · · · , In respectively, the function

Q(t) defined by

Q(t) = P (xj) if t ∈ Ij

approximates P by

‖Q− P‖[−1,1] ≤ ε‖P‖[−1,1]. (12.4)

One direct corollary from the above lemma is that observing n = O(d/ε) points each

from I1, · · · , In provides a good approximation for all degree d polynomials. For any set

S = {t1, · · · , tm} where each ti ∈ [−1, 1] and a distribution with support {w1, · · · , wm} on

S where
m∑
i=1

wi = 1 and wi ≥ 0 for each i ∈ [m], we define ‖x‖S,w = (
∑m

i=1 wi · |x(ti)|2)1/2.

Corollary 12.4.2. Let I1, · · · , In be the intervals in the above lemma and wj = |Ij|/2 for

each j ∈ [n]. For any x1, · · · , xn in the intervals I1, · · · , In respectively, we consider S =

{x1, · · · , xn} with the distribution w1, · · · , wn. Then for any degree d polynomial P , we have

‖P‖S,w ∈
[
(1− ε)‖P‖[−1,1], (1 + ε)‖P‖[−1,1]

]
.

We first state the main technical lemma and finish the proof of the above lemma (we

defer the proof of Lemma 12.4.3 to Section 12.10.3).
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Lemma 12.4.3. For any degree d polynomial P (t) : R→ C with derivative P ′(t), we have,

∫ 1

−1

(1− t2)|P ′(t)|2dt ≤ 2d2

∫ 1

−1

|P (t)|2dt. (12.5)

Proof of Lemma 12.4.1. We set m = 10d/ε and show a partition of [−1, 1] into n ≤ 20m

intervals. We define g(t) =
√

1−t2
m

and y0 = 0. Then we choose yi = yi−1 + g(yi−1) for i ∈ N+.

Let l be the first index of y such that yl ≥ 1− 9
m2 . We show l . m.

Let jk be the first index in the sequence such that yjk ≥ 1− 2−k. Notice that

j2 ≤
3/4√

1−(3/4)2

m

≤ 1.5m

and

yi − yi−1 = g(yi−1) =

√
1− y2

i−1

m
≥
√

1− yi−1

m
.

Then for all k > 2, we have

jk − jk−1 ≤
2−k√

1−y(jk−1)

m

≤ 2−k/2m.

Therefore jk ≤
(
1.5 + (2−3/2 + · · · 2−k/2)

)
m and l ≤ 10m.

Because yl−1 ≤ 1 − 9
m2 , for any j ∈ [l] and any x ∈ [yi−1, yi], we have the following

property:
1− x2

m2
≥ 1

2
· (1− y2

i−1)

m2
= (yi − yi−1)2/2. (12.6)

Now we set n and partition [−1, 1] into I1, · · · , In as follows:

1. n = 2(l + 1).
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2. For j ∈ [l], I2j−1 = [yj−1, yj] and I2j = [−yj,−yj−1].

3. I2l+1 = [yl, 1] and I2l+2 = [−1,−yl].

For any x1, · · · , xn where xj ∈ Ij for each j ∈ [n], we rewrite the LHS of (12.4) as follows:

n−2∑

j=1

∫

Ij

|P (xj)− P (t)|2 dt

︸ ︷︷ ︸
A

+

∫

In−1

|P (xn−1)− P (t)|2 dt+

∫

In

|P (xn)− P (t)|2 dt

︸ ︷︷ ︸
B

. (12.7)

For A in Equation (12.7), from the Cauchy-Schwarz inequality, we have

n−2∑

j=1

∫

Ij

|P (xj)− P (t)|2 dt =
n−2∑

j=1

∫

Ij

∣∣∣∣∣

∫ t

xj

P ′(y)dy

∣∣∣∣∣

2

dt ≤
n−2∑

j=1

∫

Ij

|t− xj|
∫ t

xj

|P ′(y)|2dydt.

Then we swap dt with dy and use Equation (12.6):

n−2∑

j=1

∫

Ij

|P ′(y)|2
∫

t/∈(xj ,y)

|t− xj|dtdy ≤
n−2∑

j=1

∫

Ij

|P ′(t)|2 · |Ij|2dt ≤
n−2∑

j=1

∫

Ij

|P ′(t)|2 2(1− t2)

m2
dt.

We use Lemma 12.4.3 to simplify it by

n−2∑

j=1

∫

Ij

|P (xj)− P (t)|2 dt ≤
∫ 1

−1

|P ′(t)|2 2(1− t2)

m2
dt ≤ 2d2

m2

∫ 1

−1

|P (t)|2dt.

For B in Equation (12.7), notice that |In−1| = |In| = 1 − yl ≤ 9m−2 and for j ∈

{n− 1, n}

|P (t)− P (xj)|2 ≤ 4 max
t∈[−1,1]

|P (t)|2 ≤ 4(d+ 1)2‖P‖2
[−1,1]

from the properties of degree-d polynomials, i.e., Lemma 12.3.9. Therefore B in Equation

(12.7) is upper bounded by 2 · 4(d+ 1)2(9m−2)‖P (t)‖2
[−1,1].

From all discussion above, ‖Q(t)− P (t)‖2
[−1,1] ≤ 99d2

m2 ≤ ε2.
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Now we use the above lemma to provide a faster learning algorithm for polynomials

on interval [−1, 1] with noise instead of using the ε-nets argument. Algorithm Robust-

PolynomialLearningFixedInterval works as follows:

1. Let ε = 1/20 and I1, · · · , In be the intervals for d and ε in Lemma 12.4.1.

2. Random choose xj ∈ Ij for every j ∈ [n] and define S = {x1, · · · , xn} with weight

w1 = |I1|
2
, · · · , wn = |In|

2
.

3. Find the degree d polynomial Q(t) that minimizes ‖P (t)−Q(t)‖S,w using Fact 12.11.1.

Lemma 12.4.4. For any degree d polynomial P (t) and an arbitrary function g(t), Algo-

rithm RobustPolynomialLearningFixedInterval takes O(d) samples from x(t) =

P (t) + g(t) over [−1, 1] and reports a degree d polynomial Q(t) in time O(dω) such that,

with probability at least 99/100,

‖P (t)−Q(t)‖2
[−1,1] . ‖g(t)‖2

[−1,1].

Proof. Notice that n = O(d/ε) = O(d) and the running time depends on solving a linear

regression problem( Fact 12.11.1 ), which takes O(dω) time. It is enough to bound the
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distance between P and Q:

‖P −Q‖[−1,1]

≤ 1.09‖P −Q‖S,w by Corollary 12.4.2

= 1.09‖x− g −Q‖S,w by x = P + g

≤ 1.09‖g‖S,w + 1.09‖x−Q‖S,w by triangle inequality

≤ 1.09‖g‖S,w + 1.09‖x− P‖S,w Q = arg min
degree-d R

‖R− x‖S,w

≤ 2.2‖g‖S,w

Because E
S

[‖g‖2
S,w] = ‖g‖2

[−1,1], we know that ‖P − Q‖[−1,1] ≤ 2200‖g‖[−1,1] with probability

≥ .999 by using Markov’s inequality.

For any function f : [0, T ] → C, let f̃(t) = f(2t−T
T

). Then ‖f̃‖[−1,1] = ‖f‖T from the

definition. Hence we can switch any interval [0, T ] to [−1, 1] and use Lemma 12.4.4.

Theorem 12.1.2. For any degree d polynomial P (t) and an arbitrary function g(t), Proce-

dure RobustPolynomialLearning in Algorithm 12.5 takes O(d) samples from x(t) =

P (t) + g(t) over [0, T ] and reports a degree d polynomial Q(t) in time O(dω) such that, with

probability at least 99/100,

‖P (t)−Q(t)‖2
T . ‖g(t)‖2

T .

where ω < 2.373 is matrix multiplication exponent [Str69],[CW87],[Wil12].
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12.4.2 Boosting success probability

Notice that the success probability of Theorem 12.1.2 is only constant, and the proof

technique of obtaining that result cannot be modified to 1− 1/ poly(d) or 1− 2−Ω(d) success

probability due to using Markov’s inequality. However, we can use that algorithm as a black

box, and rerun it O(log(1/p)) (for any p > 0) times on fresh samples. Using the careful

median analysis from [MP14] gives

Theorem 12.4.5. For any degree d polynomial P (t), an arbitrary function g(t), and any

p > 0, Procedure RobustPolynomialLearning+ in Algorithm 12.5 takes O(d log(1/p))

samples from x(t) = P (t) + g(t) over [0, T ] and reports a degree d polynomial Q(t) in time

O(dω log(1/p)) such that, with probability at least 1− p,

‖P (t)−Q(t)‖2
T . ‖g(t)‖2

T .

where ω < 2.373 is matrix multiplication exponent.

Proof. We run algorithm RobustPolynomialLearning R rounds with O(d) independent

and fresh samples per round. We will obtain R degree-d polynomials Q1(t), Q2(t), · · · , QR(t).

We say a polynomial Qi(t) is good if ‖Qi(t)−P (t)‖2
T . ‖g(t)‖2

T . Using the Chernoff bound,

with probability at least 1 − 2−Ω(R), at least a 3/4 fraction of the polynomials are “good”.

We output polynomial Q(t) = Qj∗(t) such that

j∗ = arg min
j∈[R]

(median{‖Qj(t)−Q1(t)‖2
T , ‖Qj(t)−Q2(t)‖2

T , · · · , ‖Qj(t)−QR(t)‖2
T}) (12.8)

The Equation (12.8) can be solved in following straightforward way. For i 6= j, it takes O(d)

time to compute ‖Qj(t) − Qi(t)‖2
T . Because of the number of pairs is O(R2), thus it takes
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O(R2d) time write down a R × R matrix. For each column, we run linear time 1-median

algorithm. This step takes O(R2) time. At the end, j∗ is index of the column that has the

smallest median value. Thus, polynomial Q(t) = Qj∗(t) 1 the 0 with probability at least

1− p by choosing R = O(log(1/p)). The running time is not optimized yet.

To improve the dependence on R for running time, we replace the step of solving

Equation (12.8) by an approach that is similar to [MP14]. We choose a new set of samples

S, say S = {t1, t2, · · · , tn} and n = O(d). Using Fact 12.11.2, we can compute Qi(tj) for all

i, j ∈ [R]× [n] in O(Rd poly(log(d))) time. Define

Q̃j = median
i∈[R]

Qi(tj),∀j ∈ [n]. (12.9)

Our algorithm will output a degree-d polynomial Q which is the optimal solution of this

problem, min
degree-d Q′

‖Q′− Q̃‖S,w.2 In the rest of the proof, we will show that ‖Q−P‖T . ‖g‖T
with probability at least 1− 2−Ω(R).

Notice that Equation (12.9) implies that Q̃j −P (tj) = median
i∈[R]

(Qi(tj)−P (tj)). Fix a

coordinate j and applying the proof argument of Lemma 6.1 in [MP14], we have

(Q̃j − P (tj))
2 . mean

good i
(Qi(tj)− P (tj))

2

Taking the weighted summation over all the coordinates j, we have

‖Q̃− P‖2
S,w . mean

good i
‖Qi − P‖2

S,w

Using Corollary 12.4.2, for each good i,

‖Qi − P‖2
S,w . ‖Qi − P‖2

T

2Outputting Q = arg min
degree-d Q′

‖Q′ − x‖S,w is not good enough, because it only gives constant success prob-

ability.
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Combining the above two inequalities gives

‖Q̃− P‖2
S,w . mean

good i
‖Qi − P‖2

T . ‖g‖2
T (12.10)

Because Q is the optimal solution for Q̃, then

‖Q̃−Q‖2
S,w ≤ ‖Q̃− P‖2

S,w . ‖g‖2
T (12.11)

Using Corollary 12.4.2 and for any good i, i′, ‖Qi −Qi′‖T . ‖g‖T , we can replace P by Qi′

in the Equation (12.10). Thus, for any Qi′ where i′ is good,

‖Q̃−Qi′‖2
S,w . ‖g‖2

T (12.12)

For any good i′,

‖Qi′ −Q‖T

. ‖Qi′ −Q‖S,w by Corollary 12.4.2

≤ ‖Qi′ − Q̃‖S,w + ‖Q̃−Q‖S,w by triangle inequality

. ‖g‖T by Equation (12.11) and (12.12)

Thus, our algorithm takes O(dR) samples from x(t) = P (t) + g(t) over [0, T ] and reports

a polynomial Q(t) in time O(Rdω) such that, with probability at least 1 − 2−Ω(R), ‖P (t) −

Q(t)‖2
T . ‖g(t)‖2

T . Choosing R = O(log(1/p)) completes the proof.
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12.5 Bounding the Magnitude of a Fourier-sparse Signal in Terms
of Its Average Norm

The main results in this section are two upper bounds, Lemma 12.5.1 on max
t∈[0,T ]

|x(t)|2

and Lemma 12.5.5 on |x(t)|2 for t > T , in terms of the typical signal value ‖x‖2
T =

1
T

∫ T
0
|x(t)|2dt. We prove Lemma 12.5.1 in Section 12.5.1 and Lemma 12.5.5 in Section

12.5.2
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12.5.1 Bounding the maximum inside the interval

The goal of this section is to prove Lemma 12.5.1.

Lemma 12.5.1. For any k-Fourier-sparse signal x(t) : R→ C and any duration T , we have

max
t∈[0,T ]

|x(t)|2 . k4 log3 k · ‖x‖2
T

Proof. Without loss of generality, we fix T = 1. Then ‖x‖2
T =

∫ 1

0
|x(t)|2dt. Because ‖x‖2

T is

the average over the interval [0, T ], if t∗ = arg max
t∈[0,T ]

|x(t)|2 is not 0 or T = 1, we can rescale

the two intervals [0, t∗] and [t∗, T ] to [0, 1] and prove the desired property separately. Hence

we assume |x(0)|2 = max
t∈[0,T ]

|x(t)|2 in this proof.

Claim 12.5.2. For any k, there exists m = O(k2 log k) such that for any k-Fourier-sparse

signal x(t), any t0 ≥ 0 and τ > 0, there always exist C1, · · · , Cm ∈ C such that the following

properties hold,

Property I |Cj| ≤ 11 for all j ∈ [m],

Property II x(t0) =
∑

j∈[m]

Cj · x(t0 + j · τ).

We first use this claim to finish the proof of Lemma 12.5.1. We choose t0 = 0 such

that ∀τ > 0, there always exist C1, · · · , Cm ∈ C, and

x(0) =
∑

j∈[m]

Cj · x(j · τ).

By the Cauchy-Schwarz inequality, it implies that for any τ ,

|x(0)|2 ≤ m
∑

j∈[m]

|Cj|2|x(j · τ)|2

. m
∑

j∈[m]

|x(j · τ)|2. (12.13)
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At last, we obtain

|x(0)|2 = m

∫ 1/m

0

|x(0)|2dτ

. m ·
∫ 1/m

0

(m
m∑

j=1

|x(j · τ)|2)dτ

= m2 ·
m∑

j=1

∫ 1/m

0

|x(j · τ)|2dτ

= m2 ·
m∑

j=1

1

j

∫ j/m

0

|x(τ)|2dτ

≤ m2 ·
m∑

j=1

1

j
·
∫ 1

0

|x(τ)|2dτ

. m2 logm · ‖x‖2
T

where the first inequality follows by Equation (12.13), the second inequality follows by j/m ≤

1 and the last step follows by
∑m

i=1
1
i

= O(logm). Fromm = O(k2 log k), we obtain |x(0)|2 =

O(k4 log3 k‖x‖2
T ).

To prove Claim 12.5.2, we use the following lemmas about polynomials. We defer

their proofs to Section 12.10.2.

Lemma 12.5.3. Let Q(z) be a degree k polynomial, all of whose roots are complex numbers

with absolute value 1. For any integer n, let rn,k(z) =
∑k−1

l=0 r
(l)
n,k · zl denote the residual

polynomial of

rn,k(z) ≡ zn (mod Q(z)).

Then, each coefficient of rn,k is bounded: |r(l)
n,k| ≤ 2knk−1 for any l.
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Lemma 12.5.4. For any k ∈ Z and any z1, · · · , zk on the unit circle of C, there always exists

a degree m = O(k2 log k) polynomial P (z) =
m∑
j=0

cjz
j with the following properties:

Property I P (zi) = 0,∀i ∈ {1, · · · , k},

Property II c0 = 1,

Property III |cj| ≤ 11, ∀j ∈ {1, · · · ,m}.

Proof of Claim 12.5.2. For x(t) =
k∑
i=1

vie
2πifit, we fix t0 and τ then rewrite x(t0 + j · τ) as

a polynomial of bi = vi · e2πifit0 and zi = e2πifiτ for each i ∈ [k].

x(t0 + j · τ) =
k∑

i=1

vie
2πifi·(t0+j·τ)

=
k∑

i=1

vie
2πifit0 · e2πifi·jτ

=
k∑

i=1

bi · zji .

Given k and z1, · · · , zk, let P (z) =
∑m

j=0 cjz
j be the degree m polynomial in Lemma 12.5.4.

m∑

j=0

cjx(t0 + jτ) =
m∑

j=0

cj

k∑

i=1

bi · zji

=
k∑

i=1

bi

m∑

j=0

cj · zji

=
k∑

i=1

biP (zi)

= 0, (12.14)

where the last step follows by Property I of P (z) in Lemma 12.5.4. From the Property II

and III of P (z), we obtain x(t0) = −∑m
j=1 cjx(t0 + jτ).
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12.5.2 Bounding growth outside the interval

Here we show signals with sparse Fourier transform cannot grow too quickly outside

the interval.

Lemma 12.5.5. Let x(t) be a k-Fourier-sparse signal. For any T > 0 and any t > T ,

|x(t)|2 ≤ k7 · (2kt/T )2.5k · ‖x‖2
T .

Proof. For any t > T , let t = t0 + n · τ such that t0 ∈ [0, T/k], τ ∈ [0, T/k] and n ≤ 2kt
T
. We

define bi = vie
2πifit0 , and zi = e2πifiτ such that x(t0 + n · τ) =

∑
j∈[k] bjz

n
j .

By Lemma 12.5.3, we have for any z1, z2, · · · , zk and any n,

zn ≡
k−1∑

i=0

aiz
i (mod

k∏

i=1

(z − zi)),

where |ai| ≤ 2k · nk,∀i ∈ {0, 1, · · · , k − 1}. Thus, we obtain

x(t0 + nτ) =
k∑

j=1

bjz
n
j =

k∑

j=1

bj(
k−1∑

i=0

aiz
i
j).

From the fact that x(t0 + i · τ) =
∑

j∈[k] bjz
i
j, we simplify it to be

x(t0 + nτ) =
k−1∑

i=0

ai

k∑

j=1

bjz
i
j =

k−1∑

i=0

aix(t0 + i · τ).

Because (t0 + i · τ) ∈ [0, T ] for any i = 0, · · · , k − 1, we have

|x(t0 + iτ)|2 ≤ max
t∈[0,T ]

|x(t)|2 . k4 log3 k‖x‖2
T

from Lemma 12.5.1.
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Hence

|x(t0 + n · τ)|2 ≤ k
k−1∑

i=0

|ai|2 · |x(t0 + i · τ)|2

≤ k
k−1∑

i=0

n2.2k · max
t∈[0,T ]

|x(t)|2

≤ k7 · (2kt/T )2.2k‖x‖2
T .

Thus, we complete the proof.
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12.6 Hash Functions and Filter Functions
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12.6.1 Permutation function and hash function

We first review the permutation function Pσ,a,b and the hash function hσ,b in [PS15],

which translates discrete settings to the continuous setting.

Definition 12.6.1. For any signal x(t) : R → C and a, b, σ ∈ R, let (Pσ,a,bx)(t) = x
(
σ(t −

a)
)
e−2πiσbt.

Lemma 12.6.1. P̂σ,a,bx(σ(f − b)) = 1
σ
e−2πiσaf x̂(f) and P̂σ,a,bx(f) = 1

σ
e−2πiσa(f/σ+b)x̂(f/σ + b)

For completeness, we provide a proof of Lemma 12.6.1 in Section 12.10.4.

Definition 12.6.2. [PS15] Let πσ,b(f) = 2πσ(f − b) (mod 2π) and hσ,b(f) = round(πσ,b(f) ·
B
2π

) be the hash function that maps frequency f ∈ [−F, F ] into bins {0, · · · , B − 1}.

Claim 12.6.2. [PS15] For any ∆ > 0, let σ be a sample uniformly at random from [ 1
B∆
, 2
B∆

].

(I) If ∆ ≤ |f+ − f−| < (B−1)∆
2

, then Pr[hσ,b(f
+) = hσ,b(f

−)] = 0

(II) If (B−1)∆
2
≤ |f+ − f−|, then Pr[hσ,b(f

+) = hσ,b(f
−)] . 1

B

From previous work [HIKP12b, HIKP12a, PS15], uniformly sampling from [A, 2A] for

some large A ≥ T̃ provides an almost uniform sample on [0, T̃ ] when taken modulo over T̃ .

Lemma 12.6.3. For any T̃ , and 0 ≤ ε̃, δ̃ ≤ T̃ , if we sample σ̃ uniformly at random from

[A, 2A], then
2ε̃

T̃
− 2ε̃

A
≤ Pr

[
σ̃ (mod T̃ ) ∈ [δ̃ − ε̃, δ̃ + ε̃ ]

]
≤ 2ε̃

T̃
+

4ε̃

A
. (12.15)
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12.6.2 Filter function

We state the properties of filter function (H(t), Ĥ(f)) and (G(t), Ĝ(f)), the details

of proofs are presented in Section 12.12.1 and 12.12.2.

Lemma 12.6.4. Given s0, s1, 0 < s3 < 1, ` > 1, 0 < δ < 1, where ` = Θ(k log(k/δ)).The filter

function (H(t), Ĥ(f)) has the following properties,

Property I : H(t) ∈ [1− δ, 1], when |t| ≤ (
1

2
− 2

s1

)s3.

Property II : H(t) ∈ [0, 1], when (
1

2
− 2

s1

)s3 ≤ |t| ≤
1

2
s3.

Property III : H(t) ≤ s0 · (s1(
|t|
s3

− 1

2
) + 2)−`,∀|t| > 1

2
s3.

Property IV : supp(Ĥ(f)) ⊆ [− s1`

2s3

,
s1`

2s3

].

For any exact k-Fourier-sparse signal x∗(t), we shift the interval from [0, T ] to [−1/2, 1/2]

and consider x∗(t) for t ∈ [−1/2, 1/2] to be our observation, which is also x∗(t) · rect1(t).

Property V :

∫ +∞

−∞

∣∣x∗(t) ·H(t) · (1− rect1(t))
∣∣2dt < δ

∫ +∞

−∞
|x∗(t) · rect1(t)|2dt.

Property VI :

∫ +∞

−∞
|x∗(t) ·H(t) · rect1(t)|2dt ∈ [1− ε, 1] ·

∫ +∞

−∞
|x∗(t) · rect1(t)|2dt.

for arbitrarily small constant ε.

Lemma 12.6.5. Given B > 1, δ > 0, α > 0, we set l = Ω(log(δ/k)). The filter function
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Figure 12.2: The filter function (H(t), Ĥ(f)) with a k-Fourier-sparse signal. The property
I, II and III are presented in the bottom one, the property IV is presented in the top one.

(G(t), Ĝ(f))[B, δ, α, l] satisfies the following properties,

Property I : Ĝ(f) ∈ [1− δ/k, 1], if |f | ≤ (1− α)
2π

2B
.

Property II : Ĝ(f) ∈ [0, 1], if (1− α)
2π

2B
≤ |f | ≤ 2π

2B
.

Property III : Ĝ(f) ∈ [−δ/k, δ/k], if |f | > 2π

2B
.

Property IV : supp(G(t)) ⊂
[ l

2
· −B
πα

,
l

2
· B
πα

]
.

Property V : max
t
|G(t)| . poly(B, l).
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Figure 12.3: G and Ĝ. [PS15]

12.6.3 HashToBins

We first define two functions G(j)
σ,b(t) and Ĝ

(j)
σ,b(f), then show the result returned by

Procedure HashToBins in Algorithm 12.6 satisfying some nice properties. The details of

proofs are presented in Section 12.12.4.

Definition 12.6.6. ∀σ > 0, b and j ∈ [B]. Define,

G
(j)
σ,b(t) =

1

σ
G(t/σ)e2πit(j/B−σb)/σ

Ĝ
(j)
σ,b(f) = Ĝdis(

j

B
− σf − σb) =

∑

i∈Z

Ĝ(i+
j

B
− σf − σb)

Lemma 12.6.7. Let u ∈ CB be the result of HashToBins under permutation Pσ,a,b, and let

j ∈ [B]. Define

ẑ = x̂ ·H · Ĝ(j)
σ,b,

so

z = (x ·H) ∗G(j)
σ,b.
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Let vector û ∈ CB denote the B-dimensional DFT of u, then ∀j ∈ [B],

û[j] = zσa.
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12.7 Frequency Recovery

The goal of this section is to prove Theorem 12.2.6, which is able to recover the

frequencies of a signal x∗ has k-sparse Fourier transform under noise.

Theorem 12.2.6. Let x∗(t) =
k∑
j=1

vje
2πifjt and x(t) = x∗(t) + g(t) be our observable signal

where ‖g(t)‖2
T ≤ c‖x∗(t)‖2

T for a sufficiently small constant c. Then Procedure Frequen-

cyRecoveryKCluster returns a set L of O(k) frequencies that covers all heavy clusters

of x∗, which uses poly(k, log(1/δ)) log(FT ) samples and poly(k, log(1/δ)) log2(FT ) time. In

particular, for ∆ = poly(k, log(1/δ))/T and N2 := ‖g(t)‖2
T + δ‖x∗(t)‖2

T , with probability

1− 2−Ω(k), for any f ∗ with

∫ f∗+∆

f∗−∆

|x̂ ·H(f)|2df ≥ TN2/k, (12.16)

there exists an f̃ ∈ L satisfying

|f ∗ − f̃ | . ∆
√

∆T .
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12.7.1 Overview

We give an overview of proving Theorem 12.2.6. Instead of starting with k-cluster

recovery, we first show how to achieve one-cluster recovery.

One-cluster recovery. we start with x∗(t) =
∑k

j=1 vje
2πifjt where there exists f0 and ∆

such that fj is in [f0 −∆, f0 + ∆] for each j ∈ [k] and consider its properties for frequency

recovery.

Definition 12.7.1 ((ε,∆)-one-cluster signal). We say that a signal z(t) is an (ε,∆)-one-

cluster signal around f0 iff z(t) and ẑ(f) satisfy the following two properties:

Property I :

∫ f0+∆

f0−∆

|ẑ(f)|2df ≥ (1− ε)
∫ +∞

−∞
|ẑ(f)|2df

Property II :

∫ T

0

|z(t)|2dt ≥ (1− ε)
∫ +∞

−∞
|z(t)|2dt.

The main result of one-cluster recovery is to prove that the two properties in Definition

12.7.1 with a sufficiently small constant ε are sufficient to return f̃0 close to f0 with high

probability, which provides a black-box for k-cluster recovery algorithm.

We first prove that the pair of conditions, Property I and Property II in Definition

12.7.1, are sufficient to obtain an estimation of e2πif0 in Section 12.7.2. We also provide the

proof of the correctness of Procedures GetLegal1Sample and GetEmpirical1Engergy

in Section 12.7.2.

Lemma 12.7.1. For a sufficiently small constant ε > 0, any f0 ∈ [−F, F ], and ∆ > 0, given

β̂ h 1
∆
√

∆T
and an (ε,∆)-one-cluster signal z(t) around f0, Procedure GetLegal1Sample

809



in Algorithm 12.3 with any β ≤ 2β̂ takes O((T∆)3) samples to output α ∈ R satisfying

|z(α + β)− z(α)e2πif0β| ≤ 0.08(|z(α)|+ |z(α + β)|),

with probability at least 0.6.

The following lemma shows that for any (ε,∆)-one-cluster signal z(t) around f0, we

could use the above procedure to find a frequency f̃0 approximating f0 with high probability.

Lemma 12.7.2. For a sufficiently small constant ε > 0, any f0 ∈ [−F, F ], and ∆ > 0, given

an (ε,∆)-one-cluster signal z(t) around f0 , Procedure FrequencyRecovery1Cluster

in Algorithm 12.4 returns f̃0 with |f̃0 − f0| . ∆ ·
√

∆T with probability at least 1− 2−Ω(k).

We provide a proof of Lemma 12.7.2 in Section 12.7.4. We show z(t) = (x∗(t)+g(t)) ·

H(t) satisfy Properties I and II (Definition 12.7.1) when all frequencies in x̂∗ are in a small

range in Section 12.7.3.

Lemma 12.7.3. For any f0 ∈ [−F, F ], ∆′ > 0, and x∗(t) =
∑k

j=1 vje
2πift with |fj−f0| ≤ ∆′

for all j ∈ [k], let x(t) = x∗(t) + g(t) be our observable signal whose noise ‖g‖2
T ≤ c‖x∗‖2

T

for a sufficiently small constant c and H(t) be the filter function defined in Section 12.6 with

| supp(Ĥ)| = ∆h. Then z = H · x is an (O(
√
c),∆h + ∆′)-one-cluster signal around f0.

From all discussion above, we summarize the result of frequency recovery when x̂∗ is

in one cluster.

Theorem 12.7.4. For any f0 ∈ [−F, F ], ∆′ > 0, and x∗(t) =
∑k

j=1 vje
2πifjt with |fj−f0| ≤ ∆′

for all j ∈ [k], let x(t) = x∗(t) + g(t) be our observable signal whose noise ‖g‖2
T ≤ c‖x∗‖2

T

for a sufficiently small constant c and H(t) be the filter function defined in Section 12.6
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with | supp(Ĥ)| = ∆h. Then Procedure FrequencyRecovery1Cluster in Algorithm

12.4 with ∆ = ∆′ + ∆h takes poly(k, log(1/δ)) · log(FT ) samples, runs in poly(k, log(1/δ)) ·

log2(FT ) time, returns a frequency f̃0 satisfying |f̃0− f0| . ∆
√

∆T with probability at least

1− 2−Ω(k).

k-cluster recovery. Given any x∗(t) =
∑k

j=1 vje
2πifjt, we plan to convolve the filter func-

tion G(t) on x(t) · H(t) and use Lemma 12.7.2 as a black box to find a list of frequencies

that covers {f1, · · · , fk}.

We fix ∆ = poly(k, log(1/δ))/T , B = Θ(k) and sample σ uniformly at random from

[ 1
B∆
, 2
B∆

] for k-cluster recovery. We will cover all f ∗ ∈ [−F, F ] with the following property :
∫ f∗+∆

f∗−∆

|x̂ ·H(f)|2df ≥ TN2/k, (12.17)

We consider one frequency f ∗ ∈ [−F, F ] satisfying (12.17) and use j = hσ,b(f
∗) to denote its

index in [B] after hashing (σ, b). Recall that for j ∈ [B], any σ > 0 and any b,

G
(j)
σ,b(t) =

1

σ
G(t/σ)e2πit(j/B−σb)/σ such that Ĝ(j)

σ,b(f) =
∑

i∈Z

Ĝ(i+
j

B
− σf − σb).

We set ẑ = x̂ ·H · Ĝ(j)
σ,b and z = (x · H) ∗ G(j)

σ,b for f ∗ and j = hσ,b(f
∗). In Section 12.7.5,

we show that with high probability over the hashing (σ, b), (z, ẑ) satisfies Property I with

[f ∗ −∆, f ∗ + ∆] and Property II in Definition 12.7.1 such that we could use Lemma 12.7.2

on z to recover f ∗.

Lemma 12.7.5. Let f ∗ ∈ [−F, F ] satisfy (12.17). For a random hashing (σ, b), let j =

hσ,b(f
∗) be the bucket that f ∗ maps to under the hash such that z = (x · H) ∗ G(j)

σ,b and

ẑ = x̂ ·H · Ĝ(j)
σ,b. With probability at least 0.9, z(t) is an (ε,∆)-one-cluster signal around f ∗ .
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Combining Lemma 12.7.5 and Lemma 12.7.2, we could recover any heavy frequency f ∗

satisfying (12.17) with probability at least 0.8. Then we repeat this procedure to guarantee

that we cover all heavy frequencies and finish the proof of the main frequency recovery

Theorem 12.2.6 in Section 12.7.6.
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12.7.2 Analysis of GetLegal1Sample and GetEmpirical1Energy

Let I = [f0−∆, f0 +∆] and I = (−∞,+∞)\I in this proof. We define
(
zI(t), ẑI(f)

)

and
(
zI(t), ẑI(f)

)
as follows:

ẑI(f) =

{
ẑ(f) if f ∈ I
0 if f ∈ I , ẑI(f) =

{
0 if f ∈ I
ẑ(f) if f ∈ I

We consider zI(t) as the “signal” to recover f0 and treat zI(t) as the “noise”. We first

show some basic properties of zI(t).

Claim 12.7.6. For zI(t), we have
∫ T

0
|zI(t)|2dt ≤ ε

∫ +∞
−∞ |z(t)|2dt. For zI(t), we have

∫ T

0

|zI(t)|2dt ≥ (1− 5
√
ε)

∫ +∞

−∞
|z(t)|2dt and

∫ T

0

|zI(t)|2dt ≥ (1− 6
√
ε)

∫ +∞

−∞
|zI(t)|2dt.

Proof. From the definition and Property I in Definition 12.7.1, we know

z(t) = zI(t) + zI(t) and
∫ +∞

−∞
|ẑI(f)|2df ≤ ε

∫ +∞

−∞
|ẑ(f)|2df.

Notice that Property I(in Definition 12.7.1) indicates that
∫ T

0

|zI(t)|2dt ≤
∫ +∞

−∞
|zI(t)|2dt =

∫ +∞

−∞
|ẑI(f)|2df ≤ ε

∫ +∞

−∞
|ẑ(f)|2df.

On the other hand, from Property II(in Definition 12.7.1), we know

(1− ε)
∫ +∞

−∞
|z(t)|2dt ≤

∫ T

0

|zI(t) + zI(t)|2dt

≤
∫ T

0

|zI(t)|2dt+ 2

∫ T

0

|zI(t)| · |zI(t)|dt+

∫ T

0

|zI(t)|2dt.

We have
∫ T

0
|zI(t)|2dt ≤ 2

∫ +∞
−∞ |z(t)|2dt from the above inequality. From

∫ T
0
|zI(t)|2dt ≤

ε
∫ +∞
−∞ |ẑ(f)|2df , we bound

∫ T

0

|zI(t)| · |zI(t)|dt ≤
√

2ε

∫ +∞

−∞
|z(t)|2dt
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by the Cauchy-Schwartz inequality and have
∫ T

0

|zI(t)|2dt ≥ (1− 5
√
ε)

∫ +∞

−∞
|z(t)|2dt. (12.18)

Because
∫ +∞
−∞ |zI(t)|2dt ≤ ε

∫ +∞
−∞ |z(t)|2dt, inequality (12.18) also indicates that

∫ T

0

|zI(t)|2dt ≥ (1− 6
√
ε)

∫ +∞

−∞
|zI(t)|2dt.

One useful property of zI(t) is that its maximum can be bounded by its average on

[0, T ].

Claim 12.7.7. ∀t ∈ [0, T ], |zI(t)| ≤ 2
√

∆T · ‖zI‖T .

Proof. From the definition |zI(t)|, it is upper bounded by
∫ f0+∆

f0−∆
|ẑI(f)|df for any t ∈ [0, T ].

On the other hand,
∫ f0+∆

f0−∆

|ẑI(f)|df ≤
√

2∆(

∫ f0+∆

f0−∆

|ẑI(f)|2df)1/2

=
√

2∆(

∫ +∞

−∞
|zI(t)|2dt)1/2

≤ 2
√

∆(

∫ T

0

|zI(t)|2dt)1/2

= 2
√

∆T‖zI‖T .

Claim 12.7.8. Given β̂ =
Cβ

∆·
√

∆T
with a sufficiently small constant Cβ, for any two β̂-close

samples in zI(t), we have that

∀α ∈ [0, T ], ∀β ∈ [β̂, 2β̂], |zI(α)e2πif0β − zI(α + β)| ≤ 0.01 · ‖zI‖T .
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Proof. From the definition of the Fourier transform, we have

|zI(a+ β)− zI(a)e2πif0β| =
∣∣∣∣
∫ f0+∆

f0−∆

ẑI(f)e2πi(fa+f0β)(e2πi(f−f0)β − 1)df

∣∣∣∣

≤ 2 · (2π∆β) ·
∫ f0+∆

f0−∆

|ẑI(f)|df by Taylor expansion

≤ 4πβ∆ ·
√

2∆

(∫ f0+∆

f0−∆

|ẑI(f)|2df

) 1
2

by Hölder inequality

≤ 10πβ̂∆ ·
√

2∆

(∫ T

0

|zI(t)|2dt

) 1
2

by inequality (12.18)

≤ 10−2‖zI‖T .

We consider how to output an α such that e2πif0β ≈ z(α + β)/z(α) with high proba-

bility in the rest of this section.

If we can sample from zI(t), we already know |zI(α)e2πif0β − zI(α+ β)| ≤ 0.01‖zI‖T
from Claim 12.7.8. Then it is enough to find any α such that |zI(α)| ≥ 0.5‖zI‖T . From

Claim 12.7.7, we can take O(
√

∆T ) samples
(
zI(α), zI(α + β)

)
where each α is uniformly

sampled from [0, T ] such that with high probability, the sample zI(α) with the largest norm

|zI(α)| satisfies |zI(α)| ≥ 0.5‖zI‖T . Then we have e2πif0β ≈ zI(α + β)/zI(α).

Next, we move to z(t) = zI(t) + zI(t) and plan to output α ∈ [0, T ] with probability

at least 0.5 such that |zI(α)| ≤ 0.1|zI(α)| and |zI(α + β)| ≤ 0.1|zI(α + β)|. Because the

“noise” zI(t) has ‖zI(t)‖2
T ≥ ε‖zI(t)‖2

T for a constant ε and the bound
√

∆T in Claim 12.7.7

is a polynomial in k, the approach for zI(t) cannot guarantee that z(α + β)/z(α) ≈ e2πif0β

with probability more than 1/2.

The key observation is as follows:
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Observation 12.7.9. For a sufficiently small ε and ‖zI‖2
T ≤ ε‖z‖2

T , let DT be the weighted

distribution on [0, T ] according to |z(t)|2, i.e., DT (t) = |z(t)|2
T‖z‖2T

. If we sample α ∈ [0, T ] from

the distribution DT instead of the uniform distribution on [0, T ], |zI(α)| ≤ 0.01|zI(α)| with

probability 0.9.

It follows from the fact that

E
α∼DT

|zI(α)|2
|z(α)|2 =

∫ T

0

|zI(α)|2
|z(α)|2 ·

|z(α)|2
T‖z‖2

T

dα =

∫ T
0
|zI(α)|2dα

T‖z‖2
T

≤ ε.

In Procedure GetLegal1Sample, we collect (∆T )2 samples (in expectation)
(
z(α), z(α+

β)
)
in Sheavy with |z(α)| ≥ 0.49‖z‖T and resample one α from these samples according to

their norm |z(α)|2 + |z(α + β)|2. We show its correctness as follows.

Because we do not know 0.5‖z‖T , we use zemp to approximate it.

Claim 12.7.10. Procedure GetEmpirical1Energy in Algorithm 12.3 takes O((T∆)2)

samples to output zemp such that zemp ∈ [0.8‖z‖T , 1.2‖z‖T ] with prob. 0.9.

Proof. We know z2
emp = Ei∈[Rest][|z(αi)|2] = Ei∈[Rest][|zI(αi) + zI(αi)|2].

Notice that Ei∈[Rest][|zI(αi)|2] is in [0.99‖zI‖T , 1.01‖zI‖T ] with prob. 0.99 from the

Chernoff bound and Claim 12.7.7.

At the same time, Eαi [|zI(αi)|2] = ‖zI‖2
T . With prob. 0.92, Ei∈[Rest][|zI(αi)|2] ≤

13‖zI‖2
T . For a sufficiently small ε and ‖zI‖2

T ≤ ε‖zI‖2
T , Ei∈[Rest][|zI(αi)|2] ≤ 13ε‖zI‖2

T .

At last, we bound the cross terms of |zI(αi) + zI(αi)|2 by the Cauchy-Schwartz in-
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equality,

E
i∈Rest

[|zI(αi)zI(αi)|+ |zI(αi)zI(αi)|]

≤ 2 E
i∈Rest

[|zI(αi)| · |zI(αi)|]

≤ 2

(
E

i∈[Rest]
[|zI(αi)|2] · E

i∈[Rest]
[|zI(αi)|2]

)1/2

≤ 10
√
ε‖zI‖2

T .

For a sufficiently small ε, we have Ei∈[Rest][|z(αi)|2]1/2 is in [0.9‖zI‖T , 1.1‖zI‖T ], which is also

in [0.8‖z‖T , 1.2‖z‖T ] because of Property II.

We assume zemp ∈ [0.8‖z‖T , 1.2‖z‖T ] and focus on U = {t ∈ [0, T ]
∣∣|z(t)| ≥ 0.5zemp}.

Notice that

∫

U

|z(t)|2dt =

∫ T

0

|z(t)|2dt−
∫

[0,T ]\U
|z(t)|2dt ≥ (1− 0.62)

∫ T

0

|z(t)|2dt.

Let Rheavy = |Sheavy|. From Claim 12.7.7 and ε, E[Rheavy] ≥ Rrepeat/(T∆). So we

assume Rheavy ≥ 0.01Rrepeat/(T∆) = 0.01(T∆)2 in the rest of this section and think each

αi ∈ Sheavy is a uniform sample from U over the randomness on Sheavy.

Claim 12.7.11. With probability 0.95,
∑

i∈Sheavy
(|zI(αi)|2+|zI(αi+β)|2) ≤ 10−4

∑
i∈Sheavy

(|z(αi)|2+

|z(αi + β)|2) for a sufficiently small ε and ‖zI‖2
T ≤ ε‖z‖2

T .

Proof. At first,

E
Sheavy


 ∑

i∈Sheavy

(|z(αi)|2 + |z(αi + β)|2)


 ≥ Rheavy · E

t∼U
[|z(t)|2] = Rheavy ·

∫
U
|z(t)|2dt

|U | .
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At the same time,

E
Sheavy


 ∑

i∈Sheavy

[|zI(αi)|2 + |zI(αi + β)|2]


 = Rheavy · E

t∼U
[|zI(t)|2 + |zI(t+β)|2] ≤ 2

∫ 0

T
|zI(t)|2dt

|U | .

From
∫
U
|z(t)|2dt ≥ 0.64

∫ T
0
|z(t)|2dt and

∫ 0

T
|zI(t)|2dt ≤ ε

∫ T
0
|z(t)|2dt, we get the

conclusion.

We assume all results in the above claims hold and prove that the sample from Sheavy

is a good sample such that zI(α) is small.

Claim 12.7.12. If we sample i ∈ Sheavy according to the weight |z(αi)|2 + |z(αi + β)|2, with

prob. at least 0.9, |zI(αi)|+ |zI(αi + β)| ≤ 0.05(|z(αi)|+ |z(αi + β)|).

Proof. Similar to the proof of the key observation, we compute the expectation of |z
I(αi)|2+|zI(αi+β)|2
|z(αi)|2+|z(αi+β)|2

over the sampling in Sheavy:

∑

i∈Sheavy

|z(αi)|2 + |z(αi + β)|2∑
j∈Sheavy

|z(αj)|2 + |z(αj + β)|2 ·
|zI(αi)|2 + |zI(αi + β)|2
|z(αi)|2 + |z(αi + β)|2

=

∑
i∈Sheavy

|zI(αi)|2 + |zI(αi + β)|2
∑

i∈Sheavy

|z(αi)|2 + |z(αi + β)|2

≤ 10−4.

By Markov’s inequality, when we sample i ∈ Sheavy according to the weight |z(αi)|2 + |z(αi+

β)|2, |zI(αi)|2+|zI(αi+β)|2
|z(αi)|2+|z(αi+β)|2 ≤ 10−3 with probability 0.9. We have that with prob. at least 0.9,

|zI(αi)|+ |zI(αi + β)| ≤ 0.05(|z(αi)|+ |z(αi + β)|).
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We assume all above claims hold and finish the proof by setting α = αi. From Claim

12.7.8, we know that

|zI(α)e2πif0β − zI(α + β)| ≤ 0.01 · E
t∈[0,T ]

[|zI(α)|2]1/2 ≤ 0.03|zI(α)|.

Now we add back the noise zI(α) and zI(α + β) to get

|z(α)e2πif0β − z(α + β)| ≤ |zI(α)e2πif0β − zI(α + β)|+ |zI(α)|+ |zI(α + β)|

≤ 0.08(|z(α)|+ |z(α + β)|).
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12.7.3 A cluster of frequencies, times H, is a one-cluster signal per Defini-
tion 12.7.1

The goal of this section is to prove Lemma 12.7.3. Without loss of generality, we

assume g(t) = 0 for any t /∈ [0, T ] and notice that supp(Ĥ∗x̂∗) ⊆ f0+[−∆,∆] for ∆ = ∆′+∆h

from the definition of Ĥ. From the Property VI (presented in Lemma 12.6.4) of (H, Ĥ),

∫ T

0

|x∗(t)|2dt = (1± c)
∫ +∞

−∞
|H(t) · x∗(t)|2dt.

From the first two properties of (H, Ĥ), we bound the energy of g ·H:

∫ +∞

−∞
|H(t) · g(t)|2dt ≤ (1 + c)

∫ T

0

|g(t)|2dt.

Let z(t) = (x∗(t) + g(t))H(t). We use the triangle inequality on the above two inequalities:

∫ T

0

|z(t)|2dt

≥
∫ T

0

|H(t) · x∗(t)|2dt−
∫ T

0

|H(t) · g(t)|2dt− 2

∫ T

0

|H(t) · x∗(t)| · |H(t) · g(t)|dt

≥ (1− c)
∫ T

0

|x∗(t)|2dt− (1 + c)

∫ T

0

|g(t)|2dt− 2

∫ T

0

|H(t) · x∗(t)| · |H(t) · g(t)|dt

≥ (1− c)
∫ T

0

|x∗(t)|2dt− (1 + c)

∫ T

0

|g(t)|2dt− 2

(
(1 + c)2

∫ T

0

|g(t)|2dt

∫ T

0

|x∗(t)|2dt·
)1/2

≥ (1− c)
∫ T

0

|x∗(t)|2dt− (1 + c)c

∫ T

0

|x∗(t)|2dt− 2
√
c(1 + c)

∫ T

0

|x∗(t)|2dt

≥
(
1− 5

√
c
) ∫ T

0

|x∗(t)|2dt,

where the third step follows from Cauchy-Schwarz inequality, the fourth step follows from
∫ T

0
|g(t)|2dt ≤ c

∫ T
0
|x∗(t)|2dt, and the last step follows from choosing c ∈ (0, 1) sufficiently

small.
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Similarly,

∫ +∞

−∞
|z(t)|2dt

≤ (1 + c)

∫ T

0

|x∗(t)|2dt+ (1 + c)

∫ T

0

|g(t)|2dt+ 2

(
(1 + c)2

∫ T

0

|x∗(t)|2dt

∫ T

0

|g(t)|2dt

)1/2

≤ (1 + 5
√
c)

∫ T

0

|x∗(t)|2dt.

Hence we obtain Property II(in Definition 12.7.1) when c ∈ (0, 1) is sufficiently small.

Then we observe that

∫ f0+∆h

f0−∆h

|ẑ(f)|2df

≥
∫ f0+∆h

f0−∆h

| ̂H · (x∗ + g)|2df

≥
∫ f0+∆h

f0−∆h

|Ĥ · x∗|2 − |Ĥ · g|2 − 2|Ĥ · x∗| · |Ĥ · g|df

≥
∫ f0+∆h

f0−∆h

|Ĥ · x∗|2df −
∫ +∞

−∞
|Ĥ · g|2df − 2

(∫ f0+∆h

f0−∆h

|Ĥ · x∗|2df

∫ +∞

−∞
|Ĥ · g|2df

)1/2

=

∫ +∞

−∞
|H · x∗|2dt−

∫ +∞

−∞
|H · g|2dt− 2

(∫ f0+∆h

f0−∆h

|H · x∗|2dt

∫ +∞

−∞
|H · g|2dt

)1/2

≥ (1− c)− c(1 + c)− 3
√
c

1 + 5
√
c

∫ +∞

−∞
|z(t)|2dt.

Thus we have Property I(in Definition 12.7.1) for z.
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12.7.4 Frequency recovery of one-cluster signals

The goal of this section is prove Theorem 12.7.4. We first show the correctness of

Procedure Locate1Inner. Second, we analyze the Procedure Locate1Signal. At end,

we rerun Procedure Locate1Signal and use median analysis to boost the constant success

probability.3

Lemma 12.7.13. Let f0 ∈ region(q′). Let β is sampled from [ st
4∆
, st

2∆l
] and let γ denote the

output of Procedure GetLegal1Sample in Algorithm 12.4. Then using the pair of samples

z(γ + β) and z(γ), we have

I. for the q′ with probability at least 1− s, vq′ will increase by one.

II. for any q such that |q−q′| > 3, with probability at least 1−15s, vq will not increase.

Proof. We replace f0 by θ in the rest of the proof. By Lemma 12.7.1, we have that for any

β̂ ≤ β ≤ 2β̂, Procedure GetLegal1Sample outputs a γ ∈ [0, T ] satisfying

|z(γ + β)− z(γ)e2πif0β| ≤ 0.1(|z(γ)|+ |z(γ + β)|)

with probability at least 0.6.

Furthermore, there exists such some constant g ∈ (0, 1) such that with probability

1− g,

‖φ(z(γ + β))− (φ(z(γ))− 2πβθ)‖© . sin−1(
1

g
),

where ‖x− y‖© = min
z∈Z
|x− y+ 2πz| denote the “circular distance” between x and y. We can

set s = Θ(g−1). There exists some constant p = Θ(s), with probability at least 1− p,

‖o− 2πβθ‖© < sπ/2

3The proofs in this section are identical to [HIKP12a] and [PS15].
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where o := φ(z(γ + β)/z(γ)). The above equation shows that o is a good estimate for 2πβθ

with good probability. We will now show that this means the true region Qq′ gets a vote

with large probability.

For each q′ with θ ∈ [l − ∆l
2

+ q′−1
t

∆l, l − ∆l
2

+ q′

t
∆l] ⊂ [−F, F ], we have that θq′ =

l − ∆l
2

+ q′−0.5
t

∆l satisfies that

θ − θq′ ≤
∆l

2t
.

Note that we sample β uniformly at random from [β̂, 2β̂], then 2β̂ = st
2∆l
≤ cT

10A
3
2
(Note that

A is some constant > 1), which implies that 2πβ∆l
2t
≤ sπ

2
. Thus, we can show the observation

o is close to the true region in the following sense,

‖o− 2πβθq′‖©

≤ ‖o− 2πβθ‖© + ‖2πβθ − 2πβθq′‖© by triangle inequality

≤ sπ

2
+ 2π‖βθ − βθq′‖©

≤ sπ.

Thus, vq′ will increase in each round with probability at least 1− s.

On the other side, consider q with |q − q′| > 3. Then |θ − θq| ≥ 7∆l
2t

, and (assuming

β ≥ st
4∆l

) we have

2πβ|θ − θq| ≥ 2π
st

4∆l
|θ − θq| =

sπt

2∆l
|θ − θq| ≥

7sπ

4
>

3sπ

2
.

There are two cases: |θ − θq| ≤ ∆l
st

and |θ − θq| > ∆l
st
.

First, if |θ − θq| ≤ ∆l
st
. In this case, from the definition of β it follows that

2πβ|θ − θq| ≤
sπt

∆l
|θ − θq| ≤ π
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Combining the above equations implies that

Pr
[
2πβ(θ − θq) (mod 2π) ∈ [−3s

4
2π,

3s

4
2π]
]

= 0

Second, if |θ−θq| > ∆l
st
. We show this claim is true : Pr[2πβ(θ−θq) (mod 2π) ∈ [−3s

4
2π, 3s

4
2π]] .

s. To prove it, we apply Lemma 12.6.3 by setting T̃ = 2π, σ̃ = 2πβ, δ̃ = 0, ε = 3s
4

2π,

A = 2πβ̂, ∆f = |θ − θq|. By upper bound of Lemma 12.6.3, the probability is at most

2ε̃

T̃
+

4ε̃

A∆f
=

3s

2
+

3s

β̂∆f
≤ 3s

2
+

3s
st

4∆l
∆l
st

< 15s

Then in either case, with probability at least 1− 15s, we have

‖2πβθq − 2πβθ‖© >
3s

4
2π

which implies that vq will not increase.

Lemma 12.7.14. Procedure Locate1Inner in Algorithm 12.4 uses Rloc “legal” samples,

and then after Procedure Locate1Signal in Algorithm 12.4 running Procedure Locate1Inner

Dmax times, it outputs a frequency f̃0 such that

|f̃0 − f0| . ∆ ·
√
T∆

with arbitrarily large constant probability.

Proof. For each observation, vq′ incremented with probability at least 1− p and vq is incre-

mented with probability at most 15s + p for |q − q′| > 3. The probabilities corresponding

to different observations are independent. Then after Rloc observations, there exists some
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constant c < 1
2
, for any q such that |q − q′| > 3,

Pr[False region gets more than half votes]

= Pr[vj,q > Rloc/2]

≤
(
Rloc

Rloc/2

)
(15s+ p)Rloc/2

≤ cΩ(Rloc)

Similarly, on the other side,

Pr[True region gets less than half votes]

= Pr[vj,q′ < Rloc/2]

≤
(
Rloc

Rloc/2

)
(p)Rloc/2

≤ cΩ(Rloc)

Taking the union bound over all the t regions, it gives with probability at least 1− tfΩ(Rloc)

we can find some region q such that |q − q′| < 3.

If we repeat the above procedure Dmax rounds, each round we choose the “False”

region with probability at most 1− tcΩ(Rloc). Thus, taking the union bound over all the Dmax

rounds, we will report a region has size h ∆
√

∆T and contains f0 with probability at least

1−Dmaxtc
Ω(Rloc).

The reason for not ending up with region that has size h ∆ is, the upper bound of

the sample range of β force us to choose β is at most . T

(∆T )
3
2
by Claim 12.7.8

It remains to explain how to set Dmax, t, and Rloc. At the beginning of the first round,

we start with frequency interval of length 2F , at the beginning of the last round, we start
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with frequency interval of length t ·∆
√
T∆. Each round we do a t-ary search, thus

Dmax = logt(
2F

t∆
√
T∆

) ≤ logt(F/∆).

We can set Rloc h log1/c(t/c) and t > Dmax, e.g. t = log(F/∆). Thus, the probability

becomes,

1−Dmaxtc
Ω(Rloc) ≥ 1− t2cΩ(Rloc) ≥ 1− poly(1/t, c)

which is larger than any constant probability.

Using the same parameters setting in the proof of Lemma 12.7.14, we show the running

time and sample complexity of Procedure Locate1Signal,

Lemma 12.7.15. Procedure Locate1Signal in Algorithm 12.4 uses

O(poly(k, log(1/δ))) · log(FT ) samples and runs in O(poly(k, log(1/δ))) · log2(FT ) time.

Proof. The number of “legal” observations is

DmaxRloc = O(logt(F/∆) log1/c(t/c)) = O(log(F/∆))

The total number of samples is

Rest +RrepeatDmaxRloc = O(T∆h)
2 + (T∆h)

3 · log(FT ) = poly(k, log(1/δ)) · log(FT )

where the first step follows by Claim 12.7.10 and Lemma 12.7.1 and the last step follows by

the setting of ∆h in Section 12.12.3.

The running time includes two parts, one is approximately computing H(t) for all the

samples, each sample takes poly(k, log(1/δ)) time according to Lemma 12.12.5; the other is

for each legal sample we need to assign vote to some regions.

poly(k, log(1/δ)) · (Rest +RrepeatDmaxRloc) +DmaxRloct = poly(k, log(1/δ)) log2(FT )
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Lemma 12.7.16 only achieves constant success probability, using median analysis we

can boost the success probability,

Lemma 12.7.16. Let f̃0 denote the frequency output by Procedure FrequencyRecov-

ery1Cluster in Algorithm 12.5, then with probability at least 1− 2−Ω(k),

|f̃0 − f0| . ∆
√
T∆

Proof. Because of Procedure FrequencyRecovery1Cluster taking the median of O(k)

independent results by repeating algorithm Locate1Signal O(k) times. Each sample Lr

is close to f̃0 with sufficiently large probability. Thus, using the Chernoff bound will output

f̃0 with probability 1− 2−Ω(k) such that

|f̃0 − f0| . ∆
√
T∆.

Combining Lemma 12.7.16 with the sample complexity and running time in Lemma

12.7.14, we are able to finish the proof of Theorem 12.7.4.
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12.7.5 The full signal, after multiplying by H and convolving with G, is one-
clustered.

The goal of this section is to prove Lemma 12.7.5. We fix f ∗ ∈ [−F, F ] satisfying

(12.17) in this section. We first define a good hashing (σ, b) of f ∗ as follows.

Definition 12.7.2. We say that a frequency f ∗ is well-isolated under the hashing (σ, b) if,

for j = hσ,b(f
∗), we have that the signal

ẑ(j) = x̂ ·H · Ĝ(j)
σ,b

satisfies, over the interval If∗ = (−∞,∞) \ (f ∗ −∆, f ∗ + ∆),

∫

If∗

|ẑ(j)(f)|2df . ε · TN2/k.

For convenience, we simplify z(j) by using z in the rest of this section.

Lemma 12.7.17. Let f ∗ be any frequency. Then f ∗ is well-isolated by a hashing (σ, b) with

probability ≥ 0.9 given B = Θ(k) and σ ∈ [ 1
B∆
, 2
B∆

] chosen uniformly at random.

Proof. For any other frequency f ′ in x∗, its contribution in ẑ depends on how far it is from

f ∗. Either it is:

• Within ∆ of f ∗, f ′ and f ∗ will be mapped into the same bucket with probability at

least 0.99.

• Between ∆ and 1/σ far, from Claim 12.6.2, f ′ and f ∗ will always mapped into different

buckets. Hence f ′ always contributes in the εδ
k
region of Property III in Lemma 12.6.5
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about filter function (G(t), Ĝ(f)), i.e., it contributes at most εδ
k
·
∫ f ′+∆

f ′−∆
|x̂ ·H|2df .

Overall it will contribute

εδ

k
·
∫
|x̂ ·H|2df =

εδ

k

∫
|x ·H|2dt.

• More than 1/σ far, in which case they contribute in the same region with probability

at most 3/B. By a union bound, it is at most 3k/B ≤ 0.01

Without loss of generality, we assume supp(ĝ ·H) ∩ supp(x̂∗ ·H) = ∅, otherwise we

treat it as a part of x∗ ·H. We first consider frequency f ∗ ∈ x̂∗ ·H under G(j)
σ,b.

Lemma 12.7.18. Let f ∗ satisfying
∫ f∗+∆

f∗−∆
|x̂∗ ·H(f)|2df ≥ TN2/k and ẑ = x̂∗ ·H · Ĝ(j)

σ,b

where j = hσ,b(f
∗). If f ∗ is well-isolated, then z and ẑ satisfying Property I(in Definition

12.7.1), i.e., ∫ T

0

|z(t)|2dt ≥ (1− ε)
∫ +∞

−∞
|z(t)|2dt.

Proof. We first notice that z(t) = x∗(t) · H(t) ∗ G(j)
σ,b(t) and lower bound

∫ +∞
−∞ |z(t)|2dt as
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follows :

∫ +∞

−∞
|x∗(t) ·H(t) ∗G(j)

σ,b(t)|2dt

=

∫ +∞

−∞
|x̂∗ ·H(f) · Ĝ(j)

σ,b(f)|2df by FT

≥
∫ f0+∆

f0−∆

|x̂∗ ·H(f) · Ĝ(j)
σ,b(f)|2df

≥ (1− δ)2

∫ f0+∆

f0−∆

|x̂∗ ·H(f) |2df

≥ (1− δ)2TN2/k

≥ 0.9
δ

k

∫ T

0

|x∗(t)|2dt (12.19)

We give an upper bound
∫ 0

−∞ |z(t)|2dt +
∫ +∞
T
|z(t)|2dt . ε δ

k

∫ T
0
|x∗(t)H(t)|2dt in the rest of

this proof.

Consider the case t < 0, by definition of Convolution,

z(j)(t) = x∗(t) ·H(t) ∗G(j)
σ,b(t) =

∫ +∞

−∞
G

(j)
σ,b(t− τ) · (x∗ ·H)(τ)dτ

Without loss of generality, we can shift the original signal and H(t) from [0, T ] to

[−T/2, T/2], by Property of H(t), we know that if s3T/2 ≤ |t| ≤ T/2, then H(t) ≤ 2−OΘ(`).

Note that G(t) is compact and has support DB, we also assume its compact region is

[−DB/2, DB/2] (Recall that D = l
απ

).
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Thus, by definition of convolution,

z(t)

=

∫ DBσ/2

−DBσ/2
G

(j)
σ,b(s) · (x ·H)(t− τ)dτ

=
1

σ

∫ DBσ/2

−DBσ/2
G(s/σ)e2πis(j/B−σb)/σ · (x ·H)(t− τ)dτ

≤ 1

σ

∫ DBσ/2

−DBσ/2
|G(τ/σ)| · |(x ·H)(t− τ)|dτ

≤
(

1

σ

∫ DBσ/2

−DBσ/2
|G(τ/σ)|dτ

)
·
(

max
|τ |≤DBσ/2

|(x ·H)(t− τ)|
)

So, if t /∈ [−T/2, T/2], then t − s /∈ [−T/2 + DBσ/2, T/2 − DBσ/2]. By Property V

of G(t), |G(t)| ≤ poly(k, log(1/δ)). Because of the parameter setting4, we have the fact

[−Ts3/2, T s3/2] ⊆ [−T/2 + DBσ/2, T/2 − DBσ/2] ⊆ [−T/2, T/2]. Thus, we know T (1 −

s3)/2 > DBσ/2, then for any t − τ ∈ [−T/2,−T/2 + DBσ/2] ∪ [T/2 −DBσ/2, T/2] = S,

then

|z(t)|2 .
(
DBσ· 1

σ
·poly(k, log(1/δ))

)2·2−Θ(`)·k4·‖x∗(t)‖2
T . poly(k, log(1/δ))·2−Θ(`)·‖x∗(t)‖2

T .

Thus, taking the integral over S,

∫

S

|z(t)|2dt . |S| · 2−Θ(`) poly(k, log(1/δ)) · ‖x∗(t)‖2 . 2−Θ(`)T‖x∗(t) ·H(t)‖2
T

By property of filter function H(t), Ĥ(f), we have

|(x ·H)(t)|2 ≤ (
t

T
)−`‖x∗(t) ·H(t)‖2

T if t ≥ 3T

4We will set B to be O(k), D to be poly(k) and σ to be T/ poly(k).
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Thus for any constant ε,

∫ −T/2

−∞
|z(t)|2dt+

∫ +∞

T/2

|z(t)|2dt . 2−`T‖x∗(t) ·H(t)‖2
T ≤ 0.9ε · δ

k

∫ T/2

−T/2
|x∗(t)|2dt (12.20)

where the last inequality follows by ` & k log(k/δ). Shifting the interval from [−T/2, T/2]

to [0, T ], the same result is still holding. Combining Equation (12.19) and (12.20) completes

the proof of Property II.

We consider frequency f ∗ ∈ ĝ ·H under G(j)
σ,b and show the energy of noise g(t) is

evenly distributed over B bins on expectation.

Lemma 12.7.19. Given any noise g(t) : [0, T ] → C and g(t) = 0, ∀t /∈ [0, T ]. We have,

∀j ∈ [B],

E
σ,b

[∫ +∞

−∞
|g(t)H(t) ∗G(j)

σ,b(t)|2dt

]
. 1

B

∫ +∞

−∞
|g(t)H(t)|2dt

Proof. Because of Fourier Transform preserves `2 norm, it suffices to prove

E
σ,b

[∫ +∞

−∞
|ĝ ·H(f) · Ĝ(j)

σ,b(f)|2df

]
. 1

B

∫ +∞

−∞
|ĝ ·H(f)|2df

Since Ĝ(j)
σ,b(f) is a periodic function and outputs at most 1 on O(1/B) fraction of the period,

and outputs ≤ δ on other part. Thus, for any frequency f , we have

E
σ,b

[
|Ĝ(j)

σ,b(f)|2
]
. 1

B
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Thus, we have

E
σ,b

[∫ +∞

−∞
|ĝ ·H(f) · Ĝ(j)

σ,b(f)|2df

]

≤ E
σ,b

[∫ +∞

−∞
|ĝ ·H(f)|2 · |Ĝ(j)

σ,b(f)|2df

]

=

∫ +∞

−∞
|ĝ ·H(f)|2 · E

σ,b
[|Ĝ(j)

σ,b(f)|2]df

≤
∫ +∞

−∞
|ĝ ·H(f)|2df ·max

f

[
E
σ,b

∣∣∣Ĝ(j)
σ,b(f)

∣∣∣
2
]

. 1

B

∫ +∞

−∞
|ĝ ·H(f)|2df,

which completes the proof.

Proof of Lemma 12.7.5. Let j = hσ,b(f
∗), signal

ẑ = x̂ ·H · Ĝ(j)
σ,b, (12.21)

and region If∗ = (f ∗ −∆, f ∗ + ∆) with complement If∗ = (−∞,∞) \ If∗ . From Property I

of G in Lemma 12.6.5, we have that

Ĝ
(l)
σ,b(f) & 1

for all f ∈ If∗ , so by (12.17) ∫

If∗

|ẑ(f)|2df ≥ TN2/k.

On the other hand, f ∗ is will-isolated with probability 0.9:

∫

If∗

|ẑ(f)|2df . εTN2/k.
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Hence, ẑ satisfies the Property I(in Definition 12.7.1) of one-mountain recovery. Combining

Lemma 12.7.18 and Lemma 12.7.19, we know that (x∗ ·H) ∗ G(j)
σ,b always satisfies Property

II(in Definition 12.7.1) and
∫ +∞
−∞ |g(t)H(t)∗G(j)

σ,b(t)|2dt is less than 20TN2/B ≤ εTN2/k with

probability at least 0.95, which indicates that z = (x∗ + g) ·H ∗G(j)
σ,b satisfies Property II(in

Definition 12.7.1) with probability 0.95.
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12.7.6 Frequency recovery of k-clustered signals

The goal of this section is to prove that the frequencies found by Procedure Fre-

quencyRecoveryKCluster in Algorithm 12.8 have some reasonable guarantee.

We first notice that Lemma 12.7.5 and Lemma 12.7.2 imply the following lemma by

a union bound.

Lemma 12.7.20. Let x∗(t) =
k∑
j=1

vje
2πifjt. We observe x(t) = x∗(t) + g(t), where ‖g(t)‖2

T ≤

c‖x∗(t)‖2
T for a sufficiently small constant c and define N2 := ‖g(t)‖2

T + δ‖x∗(t)‖2
T . Then

Procedure OneStage returns a set L of O(k) frequencies that covers the heavy frequencies

of x∗. In particular, for any f ∗ with

∫ f∗+∆

f∗−∆

|x̂ ·H(f)|2df ≥ TN2/k, (12.22)

there will exist an f̃ ∈ L satisfying |f ∗ − f̃ | .
√
T∆ ·∆T with probability 0.99.

Lemma 12.7.21. Let x∗(t) =
k∑
j=1

vje
2πifjt and R = O(k). We observe x(t) = x∗(t) + g(t),

where ‖g(t)‖2
T ≤ c‖x∗(t)‖2

T for a sufficiently small constant c and choose N2 := ‖g(t)‖2
T +

δ‖x∗(t)‖2
T . Then Algorithm MultipleStages returns a set L of O(k) frequencies that

approximates the heavy frequencies of x∗. In particular, with probability 1− 2−Ω(k), for any

f ∗ such that ∫ f∗+∆

f∗−∆

|x̂ ·H(f)|2df ≥ TN2/k, (12.23)

there will exist an f̃ ∈ L satisfying |f ∗ − f̃ | .
√
T∆∆.

Proof. Let A ⊂ [−F, F ] denote the set of frequencies f ∗ satisfying Equation (12.22). Let

A′ ⊂ [−F, F ] denote a net of A of distance 2∆, so the intervals used in Equation (12.22) for
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each f ∗ ∈ A′ are disjoint. Then

|A′| ≤ 2k + k = 3k

because each frequency in x∗ contributes to at most two of the intervals, and the total mass

of ĝ is at most k times the threshold TN2.

Let L1, . . . , LR be the results of R rounds of Algorithm OneStage. We say that a

frequency f ∈ A′ is successfully recovered in round r if there exists an f̃ ∈ Lr such that

|f − f̃ | ≤ ∆a, where

∆a = ∆
√
T∆ .

√
T∆∆.

By Lemma 12.7.20, each frequency is successfully recovered with 0.8 probability in each

round. Then by the Chernoff bound, with 1 − 2−Ω(k) probability, every f ∈ A′ will be

successfully recovered in at least 0.6R rounds.

Then, by Lemma 12.7.22, we output a set L of O(B) frequencies such that every

f ∈ A′ is within ∆a of some f̃ ∈ L. Hence every f ∈ A is within 2∆a of some f̃ ∈ L.

Lemma 12.7.22. Let L1, . . . , LR by sets of frequencies and f ∗ be any frequency. Then

L = MergedStages(L1, . . . , LR) is a set of 2
∑
|Lr|
R

frequencies satisfying

min
f̃∈L
|f ∗ − f̃ | ≤ median

r∈[R]
min
f∈Lr
|f ∗ − f |.

Proof. The algorithm is to take the union, sort, and take every R
2
th entry of the sorted list.

Let ∆ = medianr∈[R] minf∈Lr |f ∗ − f |. We have that at least R/2 different f ∈ ⋃r Lr

lie within ∆ of f ∗. This set forms a sequential subsequence of the sorted list of frequencies,

so our output will include one.
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12.7.7 Time and sample complexity of frequency recovery of k-clustered signals

The goal of this section is to show that Procedure FrequencyRecoveryKCluster

takes

poly(k, log(1/δ)) log(FT ) samples, and runs in poly(k, log(1/δ)) log2(FT ) time.

In order to analyze the running time and sample complexity. We need to extend the

one-cluster version Procedure GetLegal1Sample and GetEmpirical1Energy (in Al-

gorithm 12.3) to k-cluster version GetLegalKSample and GetEmpiricalKEnergy(in

Algorithm 12.7)5,

Lemma 12.7.23. Procedure GetLegalKSample in Algorithm 12.7 runs Procedure Hash-

ToBins Rrepeat = O((T∆)3) times to output two vectors v̂, v̂′ ∈ CB such that, for each

j ∈ [B],

|v̂j − v̂′je2πifjβ| ≤ 0.08(|v̂j|+ |v̂′j|),

holds with probability at least 0.6.

Using the definition of z in Definition 12.7.2.

Claim 12.7.24. Procedure GetEmpiricalKEnergy in Algorithm 12.7 runs Procedure

HashTobins RestO((T∆)2) times to output a vector zemp ∈ RB such that, for each j ∈ [B],

zjemp ∈ [0.8‖z(j)‖T , 1.2‖z(j)‖T ],

holds with probability at least 0.9.

5We omitted the proofs here, because the proofs are identical to the one-cluster situation.
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Claim 12.7.25. Algorithm LocateKSignal in Algorithm 12.6 uses O(poly(k, log(1/δ)) ·

log(FT )), and runs in O(poly(k, log(1/δ)) · log2(FT )).

Proof. We first calculate the number of samples. All the samples is basically all the Fourier

samples, each time needs B log(k/δ). In total it calls HashToBins O(Rest+RrepeatDmaxRloc)

times where DmaxRloc = Θ(log(FT )) by similar analysis as one-cluster frequency recovery.

Thus, the total number of samples is

(Rest +RrepeatDmaxRloc)B log(k/δ) = poly(k, log(1/δ)) · log(FT ).

Then, we analyze the running time.

The expected running time includes the following parts: the first part is running

Procedure HashToBins O(Rest + RrepeatDmaxRloc) times, each run takes O(B log(k/δ) +

B logB) samples. For each such sample we need poly(k, log(1/δ)) time to compute H(t)

according to Lemma 12.12.5 and there are poly(k, log(1/δ)) log(FT )) many samples; the

second part is updating the counter v,which takes O(DmaxRlocBt) time. Thus, in total

poly(k, log(1/δ)) ·O(Rest +RrepeatDmaxRloc) ·O(B log(k/δ) +B logB) +O(DmaxRlocBt)

= poly(k, log(1/δ)) · log2(FT ),

where by similar analysis as one-cluster recovery, t = Θ(log(FT )) andDmaxRloc = Θ(log(FT )).

To boost the success probability, Procedure MultipleStages reruns Procedure Lo-

cateKSignal O(k) times. At the end, Procedure FrequencyRecoveryKCluster com-

bining Procedure MultipleStages and MergedStages directly, and the running time
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and sample complexity of MultipleStages are dominating MergedStages. Thus we

have

Lemma 12.7.26. Procedure FrequencyRecoveryKCluster in Algorithm 12.8 uses

poly(k, log(1/δ)) · log(FT )

samples and runs in poly(k, log(1/δ)) · log2(FT ) time.
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12.8 One-cluster Signal Recovery
12.8.1 Overview

In this section, we consider x∗ whose frequencies in x̂∗ are in the range [f0 −∆′, f0 +

∆′] for some frequency f0 and ∆′ > 0 and provide an algorithm to approximate it by a

polynomial.

We fix T in this section and recall that 〈f(t), g(t)〉T := 1
T

∫ T
0
f(t)g(t)dt such that

‖e2πifit‖T =
√
〈e2πifit, e2πifit〉T = 1. For convenience, given

k∑
j=1

vje
2πifjt, we say the frequency

gap of this signal is min
i 6=j
|fi − fj|.

For simplicity, we first consider frequencies clustered around 0. The main technical

lemma in this section is that any signal x∗ with bounded frequencies in x̂∗ can be approxi-

mated by a low-degree polynomial on [0, T ].

Lemma 12.2.3. For any ∆ > 0 and any δ > 0, let x∗(t) =
∑

j∈[k] vje
2πifjt where |fj| ≤ ∆ for

each j ∈ [k]. There exists a polynomial P (t) of degree at most

d = O(T∆ + k3 log k + k log 1/δ)

such that

‖P (t)− x∗(t)‖2
T ≤ δ‖x∗‖2

T .

One direct corollary is that when x̂∗ are in the range [f0 + ∆′, f0 + ∆′], we can

approximate x∗ by P (t) · e2πif0t for some low degree polynomial P .

We give an overview of this section first. We first show some technical tools in Section

12.8.2, 12.8.3. In Section 12.8.4, using those tools, we can show for any k-Fourier-sparse

signal, there exists another k-Fourier-sparse signal with bounded frequency gap close to the
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original signal. In Section 12.8.5, we show that for any k-Fourier-sparse signal with bounded

frequency gap, then there exists a low degree polynomial close to it. In Section 12.8.6, we

show how to transfer low degree polynomial back to a Fourier-sparse signal. Combining all

the above steps finishes the proof of Lemma 12.2.3.

We apply Theorem 12.7.4 of frequency estimation on x∗ to obtain an estimation f̃0

of f0 and use Theorem 12.4.5 on the approximation Q(t)e2πif̃0t of x∗ to recover the signal.

We summarize this result as follows.

Theorem 12.8.1 (One-cluster Signal Recovery). Let x∗(t) =
k∑
j=1

vje
2πifjt where ∀j ∈ [k], |fj−

f0| ≤ ∆ and x(t) = x∗(t) + g(t) be our observable signal. For any δ > 0 and any T > 0, let

N2 := ‖g‖2
T + δ‖x∗‖2

T . Procedure CFT1Culster in Algorithm 12.5 finds a polynomial P (t)

of degree at most d = O ((T∆h + T∆)1.5 + k3 log k + k log 1/δ) and a frequency f̃0 such that

‖P (t) · e2πif̃0t − x∗(t)‖2
T . N2 (12.24)

The algorithm uses O(kd)+poly(k, log(1/δ)) log(FT ) samples, run in O(kdω)+poly(k, log(1/δ)) log2(FT )

time, and succeeds with probability at least 1− 2−Ω(k).

Proof. We apply the algorithm in Theorem 12.7.4 to obtain an estimation f̃0 with poly(k) log(FT )

samples and poly(k) log2(FT ) running time such that |f̃0−f0| . (∆h+∆)
√
T (∆h + ∆) holds

with probability at least 1−2−Ω(k). Notice that |fj−f̃0| ≤ |fj−f0|+|f̃0−f0| . (T (∆h+∆))1.5.

We consider x′(t) = e−2πif̃0tx(t) =
k∑
j=1

vje
2πi(fj−f̃0)t . By Lemma 12.2.3, there exists a

polynomial P (t) of degree at most

d = O
(
(T∆h + T∆)1.5 + k3 log k + k log 1/δ

)
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such that it approximates x′ by

‖P (t)− x′(t)‖T ≤
δ

4
‖x′(t)‖T =

δ

4
‖x∗(t)‖T .

which indicates ‖Q(t)− e−2πif̃0t · x∗(t)‖T ≤ δ
4
‖x∗(t)‖T .

Because we can sample x(t), we can also sample e−2πif̃0t · x(t) = Q(t) + g′(t) for

g′(t) = e−2πif̃0t ·g(t)+(e−2πif̃0t ·x∗(t)−Q(t)). Hence we apply the algorithm in Theorem 12.4.5

and choose R = O(k) in that proof. Then Procedure RobustPolynomialLearning+

takes O(kd) samples and O(kdω) time to find a degree d polynomial P (t) approximating

Q(t) such that

‖P (t)−Q(t)‖T . ‖g′(t)‖T ,

holds with probability at least 1− 2−Ω(k). It indicates

‖P (t)− e−2πif̃0t · x∗(t)‖T . ‖P (t)−Q(t)‖T + ‖Q(t)− x∗(t)‖ . δ‖x∗(t)‖T + ‖g(t)‖T h N.

Therefore we know ‖e2πif̃0t · P (t)− x∗(t)‖2
T . N2.
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12.8.2 Bounding the Gram matrix determinant

We define Gram matrix for e2πif1t, e2πif2t, · · · , e2πifkt and provide lower/upper bounds

for its determinant.

Definition 12.8.1 (Gram matrix). We define Gramf1,··· ,fk to be



〈e2πif1t, e2πif1t〉T 〈e2πif1t, e2πif2t〉T · · · 〈e2πif1t, e2πifkt〉T
〈e2πif2t, e2πif1t〉T 〈e2πif2t, e2πif2t〉T · · · 〈e2πif2t, e2πifkt〉T

· · · · · · · · · · · ·
〈e2πifkt, e2πif1t〉T 〈e2πifkt, e2πif2t〉T · · · 〈e2πifkt, e2πifkt〉T




Note that the above matrix is a Hermitian matrix with complex entries, thus both its deter-

minant and all eigenvalues are in R.

We defer the proof of the following Theorem to Section 12.10.1.

Theorem 12.8.2. For real numbers ξ1, . . . , ξk, let Gξ1,...,ξk be the matrix whose (i, j)-entry is
∫ 1

−1

e2πi(ξi−ξj)tdt.

Then

det(Gξ1,...,ξk) = 2Õ(k2)
∏

i<j

min(|ξi − ξj|2, 1).

We use the following corollary in this section.

Corollary 12.8.3. There exists a universal constant α > 0 such that, for any T > 0 and

real numbers f1, · · · , fk, the k×k Gram matrix of e2πif1t, e2πif2t, · · · , e2πifkt whose (i, j)-entry

is

Gramf1,··· ,fk(i, j) = 〈e2πifit, e2πifjt〉T =
1

T

∫ T

0

e2πi(fi−fj)tdt.

satisfies

k−αk
2
∏

i<j

min((|fi − fj|T )2, 1) ≤ det (Gramf1,··· ,fk) ≤ kαk
2
∏

i<j

min((|fi − fj|T )2, 1).
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Based on Corollary 12.8.3, we show the coefficients of a k-Fourier-sparse signal can

be upper bounded by the energy ‖x‖2
T .

Lemma 12.2.2. There exists a universal constant c > 0 such that for any x(t) =
k∑
j=1

vje
2πifjt

with frequency gap η = min
i 6=j
|fi − fj|,

‖x(t)‖2
T ≥ k−ck

2

min
(
(ηT )2k, 1

) k∑

j=1

|vj|2.

Proof. Let ~vi denote the vector e2πifit and V = {~v1, · · · , ~vk}. Notice that ‖~vi‖2
T = 〈~vi, ~vi〉 = 1.

For each ~vi, we define ~v‖i to be the projection of ~vi into the linear subspace span{V \ ~vi} =

span{~v1, · · · , ~vi−1, ~vi+1, · · · , ~vk} and ~v⊥i = ~vi−~v‖i which is orthogonal to span{V \ ~vi} by the

definition.

Therefore from the orthogonality,

‖x(t)‖2
T ≥ max

j∈[k]
{|vj|2 · ‖~v⊥j ‖2

T} ≥
1

k

k∑

j=1

|vj|2 · ‖~v⊥j ‖2
T .

It is enough to estimate ‖~v⊥j ‖2
T from Claim 12.3.11:

‖~v⊥j ‖2
T =

det(Gram(V ))

det(Gram(V \ ~vi))
≥ k−2αk2

∏

j 6=i

min ((fj − fi)T, 1)2 ≥ k−2αk2

(ηT )2k−2,

where we use Corollary 12.8.3 to lower bound it in the last step.
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12.8.3 Perturbing the frequencies does not change the subspace much

We show that for a k-Fourier-sparse signal with unboundedly close frequency gap,

there always exists another k-Fourier-sparse signal with slightly separated gap.

Lemma 12.8.4 (Slightly Shifting one Frequency). There is a universal constant C0 > 0

such that for any x(t) =
k∑
j=1

vje
2πifjt and any frequency fk+1, there always exists

x′(t) =
k−1∑

j=1

v′je
2πifjt + v′k+1e

2πifk+1t

with k coefficients v′1, v′2, · · · , v′k−1, v
′
k+1 satisfying

‖x′(t)− x(t)‖T ≤ kC0k2 · (|fk − fk+1|T ) · ‖x(t)‖T

Proof. We abuse the notation e2πifjt to denote a vector in the linear subspace. We plan to

shift fk to fk+1 and define

V = {e2πif1t, · · · , e2πifk−1t, e2πifkt}

V ′ = {e2πif1t, · · · , e2πifk−1t, e2πifk+1t}

U = {e2πif1t, · · · , e2πifk−1t}

W = {e2πif1t, · · · , e2πifk−1t, e2πifkt, e2πifk+1t}

where f1, f2, · · · , fk are original frequencies in x. The idea is to show that any vector in the

linear subspace span{V } is close to some vector in the linear subspace span{V ′}.

For convenience, we use ~u‖ to denote the projection of vector e2πifkt to the linear sub-

space span{U} = span{e2πif1t, · · · , e2πifk−1t} and ~w‖ denote the projection of vector e2πifk+1t
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to this linear subspace span{U}. Let ~u⊥ = e2πifkt − ~u‖ and ~w⊥ = e2πifk+1t − ~w‖ be their

orthogonal part to span{U}.

From the definition e2πifkt = ~u‖+~u⊥ and ~u‖ ∈ span{U} = span{e2πif1t, · · · , e2πifk−1t},

we rewrite the linear combination

x(t) =
k∑

j=1

vje
2πifjt =

k−1∑

j=1

αje
2πifjt + vk · ~u⊥

for some scalars α1, · · · , αk−1.

We will substitute ~u⊥ by ~w⊥ in the above linear combination and find a set of new coef-

ficients. Let ~w⊥ = ~w1 + ~w2 where ~w1 = 〈~u⊥, ~w⊥〉
‖~u⊥‖2T

~u⊥ is the projection of ~w⊥ to ~u⊥. Therefore ~w2

is the orthogonal part of the vector e2πifk+1t to span{V } = span{e2πif1t, · · · , e2πifk−1t, e2πifkt}.

We use δ = ‖~w2‖T
‖~w⊥‖T

for convenience.

Notice that the min
β∈C

‖~u⊥−β·~w⊥‖T
‖~u⊥‖T

= δ and β∗ = 〈~u⊥, ~w⊥〉
‖~w⊥‖2T

is the optimal choice. Therefore

we set

x′(t) =
k−1∑

j=1

βje
2πifjt + vk · β∗ · ~w⊥ ∈ span{e2πif1t, · · · , e2πifk−1t, e2πifk+1t}

where the coefficients β1, · · · , βk−1 guarantee that the projection of x′ onto span{U} is as

same as the projection of x onto span{U}. From the choice of β∗ and the definition of x′,

‖x(t)− x′(t)‖2
T = δ2 · |vk|2 · ‖~u⊥‖2

T ≤ δ2 · ‖x(t)‖2
T .
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Eventually, we show an upper bound for δ2 from Claim 12.3.11.

δ2 =
‖~w2‖2

T

‖~w⊥‖2
T

=
det(GramW )

det(GramV )
/

det(GramV ′)

det(GramU)
by Claim 12.3.11

=
det(GramW )

det(GramV )
· det(GramU)

det(GramV ′)
by Corollary 12.8.3

≤ k4αk2 ·

k+1∏
i=1

k+1∏
j=1
j 6=i

min(|fi − fj|T, 1)

k∏
i=1

k∏
j=1
j 6=i

min(|fi − fj|T, 1)

·

k−1∏
i=1

k−1∏
j=1
j 6=i

min(|fi − fj|T, 1)

k−1∏
i=1

k−1∏
j=1
j 6=i

min(|fi − fj|T, 1) ·
k−1∏
i=1

min(|fi − fk+1|2T 2, 1)

= k4αk2|fk − fk+1|2T 2

Lemma 12.8.5. For any k frequencies f1 < f2 < · · · < fk, there exists k frequencies

f ′1, · · · , f ′k such that min
i∈[k−1]

f ′i+1 − f ′i ≥ η and for all i ∈ [k], |f ′i − fi| ≤ kη.

Proof. We define the new frequencies f ′i as follows: f ′1 = f1 and f ′i = max{f ′i−1 + η, fi} for

i ∈ {2, 3, · · · , k}.
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12.8.4 Existence of nearby k-Fourier-sparse signal with frequency gap bounded
away from zero

We combine the results in the above section to finish the proof of Lemma 12.2.3.

We first prove that for any x∗(t) =
k∑
j=1

vje
2πifjt, there always exists another k-Fourier-sparse

signal x′ close to x∗(t) =
k∑
j=1

vje
2πifjt such that the frequency gap in x′ is at least η ≥ 2− poly(k).

Then we show how to find a low degree polynomial P (t) approximating x′(t).

Lemma 12.2.1. There is a universal constant C1 > 0 such that, for any x∗(t) =
k∑
j=1

vje
2πifjt

and any δ > 0 , there always exist η ≥ δ
T
· k−C1k2 and x′(t) =

k∑
j=1

v′je
2πif ′jt satisfying

‖x′(t)− x∗(t)‖T ≤ δ‖x∗(t)‖T

with min
i 6=j
|f ′i − f ′j| ≥ η and max

j∈[k]
{|f ′j − fj|} ≤ kη.

Proof. Using Lemma 12.8.5 on frequencies f1, · · · , fk, we obtain k new frequencies f ′1, · · · , f ′k
such that their gap is at least η and maxi |fi − f ′i | ≤ kη. Next we use the hybrid argument

to find x′.

Let x(0)(t) = x∗(t). For i = 1, · · · , t, we apply Lemma 12.8.4 to shift fi to f ′i and

obtain

x(i)(t) =
k∑

j=i+1

v
(i)
j e

2πifjt +
i∑

j=1

v
(i)
j e

2πif ′jt.

From Lemma 12.8.4, we know ‖x(i)(t) − x(i−1)(t)‖T ≤ kC0k2
(|fi − f ′i |T )‖x(i−1)‖T . Thus we

obtain

(
1− kC0k2

(kηT )
)i
‖x(0)(t)‖T ≤ ‖x(i)(t)‖T ≤

(
1 + kC0k2

(kηT )
)i
‖x(0)(t)‖T ,
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which is between
[(

1− i · kC0k2
(kηT )

)
‖x(0)(t)‖T ,

(
1 + 2i · kC0k2

(kηT )
)
‖x(0)(t)‖T

]
for η ≤

1
5T
· k−C1k2 with some C1 > C0.

At last, we set x′(t) = x(k)(t) and bound the distance between x′(t) and x∗(t) by

‖x(k)(t)− x(0)(t)‖T ≤
k∑

i=1

‖x(i)(t)− x(i−1)(t)‖T by triangle inequality

≤
k∑

i=1

kC0k2

(|fi − f ′i |T )‖x(i−1)(t)‖T by Lemma 12.8.4

≤
k∑

i=1

2kC0k2

(kηT )‖x(i−1)(t)‖T by max
i
|fi − f ′i | ≤ kη

≤ k · 2kC0k2

(kηT )‖x∗(t)‖T

≤ δ‖x∗(t)‖T

where the last inequality follows by the sufficiently small η.
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12.8.5 Approximating k-Fourier-sparse signals by polynomials

For any k-Fourier-sparse signal with frequency gap bounded away from zero, we show

that there exists a low degree polynomial which is close to the original k-Fourier-sparse signal

in ‖ · ‖T distance.

Lemma 12.8.6 (Existence of low degree polynomial). Let x∗(t) =
k∑
j=1

vje
2πifjt, where ∀j ∈

[k], |fj| ≤ ∆ and min
i 6=j
|fi − fj| ≥ η. There exists a polynomial Q(t) of degree

d = O
(
T∆ + k log 1/(ηT ) + k2 log k + k log(1/δ)

)

such that,

‖Q(t)− x∗(t)‖2
T ≤ δ‖x∗(t)‖2

T (12.25)

Proof. For each frequency fj, let Qj(t) =
d−1∑
k=0

(2πifjt)
k

k!
be the first d terms in the Taylor

Expansion of e2πifjt. For any t ∈ [0, T ], we know the difference between Qj(t) and e2πifjt is

at most

|Qj(t)− e2πifjt| ≤ |(2πifjT )d

d!
| ≤ (

2πT∆ · e
d

)d.

We define

Q(t) =
k∑

j=1

vjQj(t)
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and bound the distance between Q and x∗ from the above estimation:

‖Q(t)− x∗(t)‖2
T =

1

T

∫ T

0

|Q(t)− x∗(t)|2dt

=
1

T

∫ T

0

|
k∑

j=1

vj(Qj(t)− e2πifjt)|2dt

≤ 2k
k∑

j=1

1

T

∫ T

0

|vj|2 · |Qj(t)− e2πifjt|2dt by triangle inequality

≤ k
k∑

j=1

|vj|2 · (
2πT∆ · e

d
)2d by Taylor expansion

On the other hand, from Lemma 12.2.2, we know

‖x∗(t)‖2
T ≥ (ηT )2k · k−ck2

∑

j

|vj|2.

Because d = 10 · πe(T∆ + k log 1/(ηT ) + k2 log k + k log(1/δ)) is large enough, we have

k(2πT∆·e
d

)2d ≤ δ(ηT )2k · k−ck2 , which indicates that ‖Q(t) − x∗(t)‖2
T ≤ δ‖x∗‖2

T from all dis-

cussion above.
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12.8.6 Transferring degree-d polynomial to (d+1)-Fourier-sparse signal

In this section, we show how to transfer a degree-d polynomial to (d+1)-Fourier-sparse

signal.

Lemma 12.8.7. For any degree-d polynomial Q(t) =
d∑
j=0

cjt
j, any T > 0 and any ε > 0,

there always exist γ > 0 and

x∗(t) =
d+1∑

i=1

αie
2πi(γi)t

with some coefficients α0, · · · , αd such that

∀t ∈ [0, T ], |x∗(t)−Q(t)| ≤ ε.

Proof. We can rewrite x∗(t),

x∗(t) =
d+1∑

i=1

αie
2πiγit

=
d+1∑

i=1

αi

∞∑

j=0

(2πiγit)j

j!

=
∞∑

j=0

(2πiγt)j

j!

d+1∑

i=1

αi · ij

=
d∑

j=0

(2πiγt)j

j!

d+1∑

i=1

αi · ij +
∞∑

j=d+1

(2πiγt)j

j!

d+1∑

i=1

αi · ij

= Q(t) +

(
d∑

j=0

(2πiγt)j

j!

d+1∑

i=1

αi · ij −Q(t)

)

︸ ︷︷ ︸
C1

+

(
∞∑

j=d+1

(2πiγt)j

j!

d+1∑

i=1

αi · ij
)

︸ ︷︷ ︸
C2

.

Our goal is to show there exists some parameter γ and coefficients {α0, α1, · · · , αd} such that
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the term C1 = 0 and |C2| ≤ ε. Let’s consider C1,

C1 =
d∑

j=0

(
t

T
)j

(
(2πiγT )j

j!

d+1∑

i=1

αii
j − cj

)

To guarantee C1 = 0, we need to solve a linear system with d + 1 unknown variables and

d+ 1 constraints,

Find α1, α2, · · ·αd+1

s.t.
(2πiγT )j

j!

d+1∑

i=1

αii
j − cj = 0,∀j ∈ {0, 1, · · · , d}

Define c′j = cjj!/(2πiγ)j, let α and c′ be the length-(d+1) column vectors with αi and c′j. Let

A ∈ Rd+1×d+1 denote the Vandermonde matrix where Ai,j = ij,∀i, j ∈ [d+ 1]×{0, 1, · · · , d}.

Then we need to guarantee Aα = c′. Using the definition of determinant, det(A) =
∏
i<j

|i−j| ≤

2O(d2 log d). Thus σmax(A) ≤ 2O(d2 log d) and then

σmin(A) =
det(A)∏d−1
i=1 σi

≥ 2−O(d3 log d).

We show how to upper bound |αi|,

max
i∈[d+1]

|αi| ≤ ‖α‖2 = ‖A†c′‖2 ≤ ‖A†‖2 · ‖c′‖2 ≤
1

σmin(A)

√
d+ 1 max

0≤j≤d

|cj|j!
(2πγT )j
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Plugging the above equation into C2, we have

|C2| =

∣∣∣∣∣
∞∑

j=d+1

(2πiγt)j

j!

d+1∑

i=1

αi · ij
∣∣∣∣∣

≤
∞∑

j=d+1

(2πγt)j

j!

d+1∑

i=1

|αi| · ij

≤
∞∑

j=d+1

(2πγt)j

j!
(d+ 1)d+1 max

i∈[d+1]
|αi|

≤
∞∑

j=d+1

(2πγt)j

j!
(d+ 1)d+2 1

σmin(A)

d!

(2πγT )d
max
0≤j≤d

|cj|

≤ ε

where the last step follows by choosing sufficiently small

γ . ε/

(
T2Θ(d3 log d) max

0≤j≤d
|cj|
)
.
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12.9 k-cluster Signal Recovery
12.9.1 Overview

In this section, we prove Lemma 12.9.1 as the main technical lemma to finish the

proof of main Theorem 12.1.1, which shows how to learn x∗(t) =
∑k

j=1 vje
2πifjt with noise.

Lemma 12.9.1. Let x∗(t) =
∑k

j=1 vje
2πifjt and x(t) = x∗(t) + g(t) be our observation.

For any δ > 0 and T > 0, let N2 := 1
T

∫ T
0
|g(t)|2dt + δ · 1

T

∫ T
0
|x∗(t)|2dt. For ∆ =

poly(k, log(1/δ))/T , Procedure SignalRecoveryKCluster+ in Algorithm 12.8 takes l =

O(k) frequencies f̃1, · · · , f̃l as input and finds l polynomials Q1, · · · , Ql of degree d = O((T∆)1.5+

k3 log k + k log 1/δ) such that

x̃(t) =
∑

j∈[l]

Qj(t)e
2πif̃jt satisfies ‖x̃(t)− x∗(t)‖2

T . N2. (12.26)

The procedure succeeds with probability at least 1 − 2−Ω(k), uses poly(k, log(1/δ)) · log(FT )

samples, and runs in poly(k, log(1/δ)) · log2(FT ) time.

For any set W = {t1, · · · , tm} where each ti ∈ [0, T ], we use

‖~v‖W =

√∑
i∈W |~v(ti)|2
|W | for any ~v : [0, T ]→ C

in this section. We first show that Procedure SignalRecoveryKCluster succeeds with

constant probability, then prove that Procedure SignalRecoveryKCluster+ succeeds

with probability at least 1− 2−Ω(k).
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12.9.2 Heavy clusters separation

Recall the definition of “heavy” clusters.

Definition 12.2.4. Given x∗(t) =
k∑
j=1

vje
2πifjt, any N > 0, and a filter function (H, Ĥ) with

bounded support in frequency domain. Let Lj denote the interval of supp( ̂e2πifjt ·H) for

each j ∈ [k].

Define an equivalence relation ∼ on the frequencies fi by the transitive closure of the

relation fi ∼ fj if Li ∩ Lj 6= ∅. Let S1, . . . , Sn be the equivalence classes under this relation.

Define Ci = ∪
f∈Si

Li for each i ∈ [n]. We say Ci is a “heavy” cluster iff
∫
Ci
|Ĥ · x∗(f)|2df ≥

T ·N2/k.

By reordering Ci, we can assume {C1, C2, · · · , Cl} are heavy clusters, where l ≤ n ≤ k.

Claim 12.2.5. Given x∗(t) =
k∑
j=1

vje
2πifjt and any N > 0, let H be the filter function defined

in Section 12.12.1 and C1, · · · , Cl be the heavy clusters from Definition 12.2.4. For

S =

{
j ∈ [k]

∣∣∣∣fj ∈ C1 ∪ · · ·Cl
}
,

we have x(S)(t) =
∑
j∈S
vje

2πifjt approximating x∗ within distance ‖x(S)(t)− x∗(t)‖2
T . N2.

Proof. Let x(S)(t) =
∑

j∈[k]\S
vje

2πifjt. Notice that ‖x∗ − x(S)‖2
T = ‖x(S)‖2

T .

From the property VI of filter function (H, Ĥ) in Section 12.12.1, we have

∫ +∞

−∞
|x(S)(t) ·H(t)|2dt ≥ 0.9

∫ T

0

|x(S)(t)|2dt = 0.9 · T‖xS‖2
T .
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From Definition 12.2.4, we have

∫ +∞

−∞
|x(S)(t) ·H(t)|2dt =

∫ +∞

−∞
|x̂(S) ·H(f)|2df

=

∫

[−∞,+∞]\C1∪···∪Cl
|x̂∗ ·H(f)|2df

≤ k · TN2/k.

Overall, we have ‖x(S)‖2
T . N2.

From the guarantee of Theorem 12.2.6, for any j ∈ S, min
i∈[l]
|fj − f̃i| ≤ ∆

√
∆T . From

now on, we focus on the recovery of x(S), which is enough to approximate x∗ from the above

claim. Because we are looking for x̃ approximating x(S) within distance O(N2), from Lemma

12.2.1, we can assume there is a frequency gap η ≥ δ
10T

k−O(k2) among x(S).
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12.9.3 Approximating clusters by polynomials

In this section, we show how to approximate x(S) by x′(t) =
∑

i∈[l] e
2πif̃itPi(t) where

P1, · · · , Pl are low degree polynomials.

Claim 12.9.2. For any x(S)(t) =
∑

j∈S vje
2πifjt with a frequency gap η = min

i 6=j
|fi − fj| and l

frequencies f̃1, · · · , f̃l with the property ∀j ∈ S,mini∈[l] |fj − f̃i| ≤ ∆
√

∆T , let

d = 5π
(
(T∆)1.5 + k3 log k + log 1/δ

)
and V =

{
tje2πif̃it|i ∈ [l], j ∈ {0, · · · , d}

}
.

There exists x′(t) ∈ span{V } that approximates x(S)(t) as follows:

∀t ∈ [0, T ], |x′(t)− x(S)(t)| ≤ δ‖x(S)‖T .

Proof. From Lemma 12.2.2, we know

‖x(S)‖2
T ≥ (ηT )2k · k−ck2

∑

j∈S

|vj|2.

For each frequency fj, we use pj to denote the index in [l] such that |fj − f̃pj | ≤ ∆
√

∆T .

We rewrite

x(S)(t) =
l∑

i=1

e2πif̃i


 ∑

j∈S:pj=i

vje
2πi(fj−f̃i)t


 .

For d = 5π((T∆)1.5 + k3 log k+ log 1/δ) and each e2πi(fj−f̃pj )t, let Qj(t) =
∑d−1

i=0

(2πi(fj−f̃pj )t)
i

i!

be the first d terms in the Taylor Expansion of e2πi(fj−f̃pj )t. For any t ∈ [0, T ], we know the

difference between Qj(t) and e2πi(fj−f̃pj )t is at most

∀t ∈ [0, T ], |Qj(t)− e2πi(fj−f̃pj )t| ≤ |(2πi(fj − f̃pj)T )d

d!
| ≤ (

8π(∆T )1.5

d
)d.
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Let x′ =
∑l

i=1 e
2πif̃it

(∑
j∈S:pj=i

vjQj(t)
)
. From all discussion above, we know for any

t ∈ [0, T ],

|x′(t)− x(S)(t)|2 ≤
(∑

j∈S

|vj|(
8π(T∆)1.5

d
)d

)2

≤ k(
8π(T∆)1.5

d
)2d
∑

j

|vj|2

≤ k(8π(T∆)1.5

d
)2d

(ηT )2k · k−ck2 ‖x(S)‖2
T

≤ δ2‖x(S)‖2
T .

We provide a property of functions in span{V } such that we can use the Chernoff

bound and the ε-net argument on vectors in span{V }.

Claim 12.2.7. For any ~u ∈ span

{
e2πif̃it · tj

∣∣∣∣j ∈ {0, · · · , d}, i ∈ [l]

}
, there exists some univer-

sal constants C1 ≤ 4 and C2 ≤ 3 such that

max
t∈[0,T ]

{|~u(t)|2} . (ld)C1 logC2(ld) · ‖~u‖2
T

Proof. From Lemma 12.8.7, we can approximate each polynomial in ~u by a linear combina-

tion of {1, e2πi·γt, · · · , e2πi·(γd)t} such that we obtain u∗ ∈ span
{
e2πi·(γj)t · e2πif̃it|i ∈ [l], j ∈ {0, · · · , d+ 1}

}

for some small γ such that ∀t ∈ [0, T ], |~u(t)− u∗(t)| ≤ 0.01‖~u‖T .

From Lemma 12.5.1, we know

max
t∈[0,T ]

|u∗(t)|2 ≤ C ·
(
(ld+ 1)4 · log3(ld+ 1)

)
‖u∗‖2

T .
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For some constant C ′, we have

max
t∈[0,T ]

|~u(t)|2 ≤ C ′
(
(kd)C1 logC2 d

)
‖~u‖2

T .
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12.9.4 Main result, with constant success probability

In this section, we show that the output x̃ is close to x′ with high probability using

the ε-net argument, which is enough to prove ‖x̃ − x‖T . N2 from all discussion above.

Because we can prove Lemma 12.9.6(which is the main goal of this section), then combining

‖x′ − x∗‖T ≤ ‖x′ − x(S)‖T + ‖x(S) − x∗‖T . δ‖x∗‖T and Lemma 12.9.6, we have ‖x∗ −

x̃‖T . ‖g‖T + δ‖x∗‖T , which finishes the proof of Procedure SignalRecoveryKCluster

in Algorithm 12.8 achieving the Equation (12.26) with constant success probability but not

1− 2−Ω(k). We will boost the success probability in Section 12.9.5.

We first provide an ε-net P for the unit vectors Q = {~u ∈ span{V }
∣∣‖~u‖2

T = 1} in

the linear subspace span{V } where V =
{
tj · e2πif̃it

∣∣j ∈ {0, 1, · · · , d}, i ∈ [l]
}
from the above

discussion. Notice that the dimension of span{V } is at most l(d+ 1).

Claim 12.9.3. There exists an ε-net P ⊂ span{V } such that

1. ∀~u ∈ Q,∃~w ∈ P, ‖~u− ~w‖T ≤ ε.

2. |P| ≤
(

5 l(d+1)
ε

)2l(d+1)

.

Proof. Let P′ be an ε
l(d+1)

-net in the unit circle of C with size at most (4 l(d+1)
ε

+ 1)2, i.e.,

P′ =

{
ε

2l(d+ 1)
j1 + i

ε

2l(d+ 1)
j2

∣∣∣∣j1, j2 ∈ Z, |j1| ≤
2l(d+ 1)

ε
, |j2| ≤

2l(d+ 1)

ε

}
.

Observe that the dimension of span{V } is at most l(d + 1). Then we take an orthogonal

basis ~w1, · · · , ~wl(d+1) in span{V } and set

P = {
l(d+1)∑

i=1

αi ~wi
∣∣∀i ∈ [l(d+ 1)], αi ∈ P′}.
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Therefore P is an ε-net for Q and |P| ≤
(

5 l(d+1)
ε

)2l(d+1)

.

We first prove that W is a good estimation for all functions in the ε-net P.

Claim 12.9.4. For any ε > 0, there exists a universal constant C3 ≤ 5 such that for a set

S of i.i.d. samples chosen uniformly at random over [0, T ] of size |S| ≥ 3(kd)C3 logC3 d/ε
ε2

,then

with probability at least 1− k−k, for all ~w ∈ P, we have

‖~w‖W ∈ [(1− ε)‖~w‖T , (1 + ε)‖~w‖T ] .

Proof. From Claim 12.2.7 and Lemma 12.3.5, for each ~w ∈ P,

Pr
[
‖~w(t)‖W /∈

[
(1− ε)‖~w‖T , (1 + ε)‖~w‖T

]]
≤ 2

− |W |ε2

3(kd)C1 logC2+0.5 d ≤ 2−kd log1.5 d
ε .

From the union bound, ‖~w‖W ∈ [(1 − ε)‖~w‖T , (1 + ε)‖~w‖T ] for any ~w ∈ P with

probability at least 1− (d
ε
)−kd log0.5 d · |P| ≥ 1− d−d.

Then We prove that W is a good estimation for all functions in span{V } using the

property of ε-nets.

Claim 12.9.5. For any ε > 0, there exists a universal constant C3 ≤ 5 such that for a set

W of i.i.d. samples chosen uniformly at random over [0, T ] of size |W | ≥ 3(kd)C3 logC3 d/ε
ε2

,then

with probability at least 1− d−d, for all u ∈ span{V }, we have

‖~u‖W ∈ [(1− 3ε)‖~u‖T , (1 + 3ε)‖~u‖T ]

Proof. We assume that the above claim is true for any ~w ∈ P. Without loss of generality,

we consider ~u ∈ Q such that ‖~u‖T = 1.
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Let ~w0 be the vector in P that minimizes ‖~w−~u‖T for all ~w ∈ P, i.e., ~w0 = arg min
~w∈P

‖~w−

~u‖T . Define ~u1 = ~u − ~w0 and notice that ‖~u1‖T ≤ ε because P is a ε-net. If ‖~u1‖T = 0,

then we skip the rest of this procedure. Otherwise, we define α1 = ‖~u1‖T and normalize

ũ1 = ~u1/α1.

Then we choose ~w1 to be the vector in P that minimizes ‖~w − ũ1‖T for all ~w ∈ P.

Similarly, we set ~u2 = ũ1 − ~w1 and α2 = ‖~u2‖T . Next we repeat this process for ũ2 = ~u2/α2

and so on. The recursive definition can be summarized in the following sense,

initial : ũ0 = ~u and m = 10 log1/ε(ld) + 1,

For i ∈ {0, 1, 2, · · · ,m} : ~wi = arg min
~w∈P

‖~w − ũi‖T ,

~ui+1 = ũi − ~wi and αi+1 = ‖~ui+1‖T ,

if αi+1 = 0, stop.

if αi+1 6= 0, ũi+1 = ~ui+1/αi+1 and continue,

Eventually, we have ~u = ~w0 + α1 ~w1 + α1α2 ~w2 + · · · + ∏m
j=1 αj(~wm + ~um+1) where

each |αi| ≤ ε and each ~wi is in the ε-net P. Notice that ‖~um+1‖T ≤ 1 and ‖~um+1‖W ≤

(ld+ 1)3 · ‖~um+1‖T from Claim 12.2.7. We prove a lower bound for ‖~u‖W ,

‖~u‖W = ‖~w0 + α1 ~w1 + α1α2 ~w2 + · · ·+
m∏

j=1

αj(~wm + ~um+1)‖W

≥ ‖~w0‖W − ‖α1 ~w1‖W − ‖α1α2 ~w2‖W − · · · − ‖
m∏

j=1

αj ~wm‖W − ‖
m∏

j=1

αj~um+1‖W

≥ (1− ε)− ε(1 + ε)− ε2(1 + ε)− · · · − εm(1 + ε)− εm‖~um+1‖W

≥ 1− ε− (1 + ε)ε

1− ε − ε
m · (ld+ 1)3 ≥ 1− 3ε.

Similarly, we have ‖~u‖W ≤ 1 + 3ε.
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Lemma 12.9.6. With probability at least 0.99 over the m i.i.d samples in W ,

‖x′(t)− x̃(t)‖T ≤ 2200
(
‖g(t)‖T + ‖x(S)(t)− x′(t)‖T

)
.

Proof. Let g′(t) = g(t) +x∗(t)−x′(t) such that x(t) = x′(t) + g′(t). Then we choose ε = 0.03

and bound:

‖x′(t)− x̃(t)‖T

≤ (1 + 3ε)‖x′(t)− x̃(t)‖W with prob. 1− 2−Ω(d log d) by Claim 12.9.5

= 1.09‖x′(t)− x̃(t)‖W by ε = 0.03

= 1.09‖x(t)− g′(t)− x̃(t)‖W by x′(t) = x(t)− g′(t)

≤ 1.09‖x(t)− x̃(t)‖W + 1.09‖g′(t)‖W by triangle inequality

≤ 1.09‖x(t)− x′(t)‖W + 1.09‖g′(t)‖W by x̃ = arg min
y∈span{V }

‖x− y‖W

= 2.18‖g′(t)‖W . by x(t)− x′(t) = g(t)

From the fact that EW [‖g′‖W ] = ‖g′‖T , ‖g′‖W ≤ 1000‖g′‖T with probability at least .999.

It indicates ‖x′(t) − x̃(t)‖T ≤ 2200‖g′‖T with probability at least 0.99 from all discussion

above.
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12.9.5 Boosting the success probability

In order to achieve 1 − 2−Ω(k) for the main theorem, we cannot combine Procedure

SignalRecoveryKCluster with FrequencyRecoveryKCluster directly. However,

using the similar proof technique in Theorem 12.4.5, we are able to boost the success prob-

ability by using Procedure SignalRecoveryKCluster+ in Algorithm 12.8. It runs Pro-

cedure SignalRecoveryKCluster R = O(k) times in parallel for independent fresh

samples and report R different d-Fourier-sparse signals x̃i(t). Then, taking m = poly(k)

new locations {t1, t2, · · · , tm}, and computing Ã as before and b̃j by taking the median of

{x̃1(tj), · · · , x̃R(tj)}. At the end, solving the linear regression for matrix Ã and vector b̃.

Thus, we complete the proof of Lemma 12.9.1.

Because we can transfer a degree-d polynomial to a d-Fourier-sparse signal by Lemma

12.8.7, the output of Procedure CFTKCluster in Algorithm 12.8 matches the main theo-

rem,

Theorem 12.1.1. Let x(t) = x∗(t) + g(t), where x∗ is k-Fourier-sparse signal with frequencies

in [−F, F ]. Given samples of x over [0, T ] we can output x̃(t) such that with probability at

least 1− 2−Ω(k),

‖x̃− x∗‖T . ‖g‖T + δ ‖x∗‖T .

Our algorithm uses poly(k, log(1/δ)) · log(FT ) samples and poly(k, log(1/δ)) · log2(FT ) time.

The output x̃ is poly(k, log(1/δ))-Fourier-sparse signal.
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12.10 Technical Proofs
12.10.1 Proof of Theorem 12.8.2

We prove the following Theorem

Theorem 12.8.2. For real numbers ξ1, . . . , ξk, let Gξ1,...,ξk be the matrix whose (i, j)-entry is

∫ 1

−1

e2πi(ξi−ξj)tdt.

Then

det(Gξ1,...,ξk) = 2Õ(k2)
∏

i<j

min(|ξi − ξj|2, 1).

First, we note by the Cauchy-Binet formula that the determinant in question is equal

to ∫ 1

−1

∫ 1

−1

. . .

∫ 1

−1

∣∣det([e2πiξitj ]i,j)
∣∣2 dt1dt2 . . . dtk. (12.27)

We next need to consider the integrand in the special case when
∑ |ξi| ≤ 1/8.

Lemma 12.10.1. If ξi ∈ R and tj ∈ R,
∑

i |ξi|(maxi |ti|) ≤ 1/8 then

| det([e2πiξitj ]i,j)| = Θ


(2π)(

k
2)
∏

i<j |ti − tj||ξi − ξj|
1!2! · · · k!


 .

Proof. Firstly, by adding a constant to all the tj we can make them non-negative. This

multiplies the determinant by a root of unity, and at most doubles
∑

i |ξi|(maxi |ti|).

By continuity, it suffices to consider the ti to all be multiples of 1/N for some large

integer N . By multiplying all the tj by N and all ξi by 1/N , we may assume that all of the

tj are non-negative integers with t1 ≤ t2 ≤ . . . ≤ tk.
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Let zi = exp(2πiξi). Then our determinant is

det

([
z
tj
i

]
i,j

)
,

which is equal to the Vandermonde determinant times the Schur polynomial sλ(zi) where λ

is the partition λj = tj − (j − 1).

Therefore, this determinant equals

∏

i<j

(zi − zj)sλ(z1, z2, . . . , zk).

The absolute value of
∏

i<j

(zi − zj)

is approximately
∏

i<j(2πi)(ξi− ξj), which has absolute value (2π)(
k
2)
∏

i<j |ξi− ξj|. We have

left to evaluate the size of the Schur polynomial.

By standard results, sλ is a polynomial in the zi with non-negative coefficients, and

all exponents at most maxj |tj| in each variable. Therefore, the monomials with non-zero

coefficients will all have real part at least 1/2 and absolute value 1 when evaluated at the zi.

Therefore,

|sλ(z1, . . . , zk)| = Θ(|sλ(1, 1, . . . , 1)|).

On the other hand, by the Weyl character formula

sλ(1, 1, . . . , 1) =
∏

i<j

tj − ti
j − i =

∏
i<j |ti − tj|
1!2! . . . k!

.

This completes the proof.

Next we prove our Theorem when the ξ have small total variation.
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Lemma 12.10.2. If there exists a ξ0 so that
∑ |ξi − ξ0| < 1/8, then

det(Gξ1,...,ξk) = Θ

(
23k(k−1)/2πk(k−1)

∏
i<j |ξi − ξj|2

(k!)3
∏k−1

n=0(2n)!

)
.

Proof. By translating the ξi we can assume that ξ0 = 0.

By the above we have

Θ(
(2π)k(k−1)

∏
i<j |ξi − ξj|2

(1!2! · · · k!)2
)

∫ 1

−1

. . .

∫ 1

−1

∏

i<j

|ti − tj|2dt1 . . . dtk.

We note that by the Cauchy-Binet formula the latter term is the determinant of the matrix

M with Mi,j =
∫ 1

−1
ti+jdt. This is the Graham matrix associated to the polynomials ti for

0 ≤ i ≤ k − 1. Applying Graham-Schmidt (without the renormalization step) to this set

yields the basis Pnαn where αn = 2n(n!)2

(2n)!
is the inverse of the leading term of Pn. This

polynomial has norm α2
n2/(2n+ 1). Therefore, the integral over the ti yields

k−1∏

n=0

2n+1(n!)2

(n+ 1)(2n)!
.

This completes the proof.

Next we extend this result to the case that all the ξ are within poly(k) of each other.

Proposition 12.10.3. If there exists a ξ0 so that |ξi − ξ0| = poly(k) for all i, then

det(Gξ1,...,ξk) = 2Õ(k2)
∏

i<j

min(|ξi − ξj|2, 1).

Proof. We begin by proving the lower bound. We note that for 0 < x < 1,

det(Gξ1,...,ξk) ≥
∫ x

−x

∫ x

−x
. . .

∫ 1

−1

∣∣det([e2πiξitj ]i,j)
∣∣2 dt1dt2 . . . dtk = xk det(Gξ1/x,ξ2/x,...,ξk/k).
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Taking x = 1/ poly(k), we may apply the above Lemma to compute the determinant on the

right hand side, yielding an appropriate lower bound.

To prove the lower bound, we note that we can divide our ξi into clusters, Ci, where for

any i, j in the same cluster |ξi−ξj| < 1/k and for i and j in different clusters |ξi−ξj| ≥ 1/k2.

We then note as a property of Graham matrices that

det(Gξ1,...,ξk) ≤
∏

Ci

det(G{ξj∈Ci}) = 2Õ(k2)
∏

i<j, in same cluster

|ξi − ξj|2 = 2Õ(k2)
∏

i<j

|ξi − ξj|2.

This completes the proof.

Finally, we are ready to prove our Theorem.

Proof. Let I(t) be the indicator function of the interval [−1, 1].

Recall that there is a function h(t) so that for any function f that is a linear combi-

nation of at most k complex exponentials that |h(t)f(t)|2 = Θ(|I(t)f(t)|2) and so that ĥ is

supported on an interval of length poly(k) < kC about the origin.

Note that we can divide our ξi into clusters, C, so that for i and j in a cluster

|ξi − ξj| < kC+1 and for i and j in different clusters |ξi − ξj| > kC .

Let G̃ξ1,ξ2,...,ξ′k
be the matrix with (i, j)-entry

∫
R |h(t)|2e(2πi)(ξi−ξj)tdt.

We claim that for any k′ ≤ k that

det(G̃ξ1,ξ2,...,ξ′k
) = 2O(k′) det(Gξ1,ξ2,...,ξ′k

).

This is because both are Graham determinants, one for the set of functions I(t) exp((2πi)ξjt)

and the other for h(t) exp((2πi)ξjt). However since any linear combination of the former has
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L2 norm a constant multiple of that the same linear combination of the latter, we have that

G̃ξ1,ξ2,...,ξ′k
= Θ(Gξ1,ξ2,...,ξ′k

)

as self-adjoint matrices. This implies the appropriate bound.

Therefore, we have that

det(Gξ1,...,ξk) = 2O(k) det(G̃ξ1,...,ξk).

However, note that by the Fourier support of h that

∫

R
|h(t)|2e(2πi)(ξi−ξj)tdt = 0

if |ξi − ξj| > kC , which happens if i and j are in different clusters. Therefore G̃ is block

diagonal and hence its determinant equals

det(G̃ξ1,...,ξk) =
∏

C

det(G̃{ξj∈Ci}) = 2O(k)
∏

C

det(G{ξj∈Ci}).

However the Proposition above shows that

∏

C

det(G{ξj∈Ci}) = 2Õ(k2)
∏

i<j

min(1, |ξi − ξj|2).

This completes the proof.
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12.10.2 Proofs of Lemma 12.5.3 and Lemma 12.5.4

We fix z1, · · · , zk to be complex numbers on the unit circle and use Q(z) to denote

the degree-k polynomial
k∏
i=1

(z − zi).

Lemma 12.5.3. Let Q(z) be a degree k polynomial, all of whose roots are complex numbers

with absolute value 1. For any integer n, let rn,k(z) =
∑k−1

l=0 r
(l)
n,k · zl denote the residual

polynomial of

rn,k(z) ≡ zn (mod Q(z)).

Then, each coefficient of rn,k is bounded: |r(l)
n,k| ≤ 2knk−1 for any l.

Proof. By definition, rn,k(zi) = zni . From the polynomial interpolation, we have

rn,k(z) =
k∑

i=1

∏
j∈[k]\i

(z − zj)zni
∏

j∈[k]\i
(zi − zj)

.

Let SymS,i be the symmetry polynomial of z1, · · · , zk with degree i among subset S ⊆ [k],

i.e., SymS,i =
∑

S′⊆(Si)

∏
j∈S′

zj. Then

r
(l)
n,k = (−1)k−1−l

k∑

i=1

Sym[k]\i,k−1−l ·zni∏
j∈[k]\i

(zi − zj)
.

We omit (−1)k−1−l in the rest of proof and use induction on n, k, and l to prove |r(l)
n,k| ≤

(
k−1
l

)(
n
k−1

)
.

Base Case of n: For any n < k, from the definition, r(z) = zn and |r(l)
n,k| ≤ 1.

Suppose it is true for any n < n0. We consider rln0,k
from now on. When k = 1,

rn,0 = zn1 is bounded by 1 because z1 is on the unit circle of C.
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Given n0, suppose the induction hypothesis is true for any k < k0 and any l < k.

For k = k0, we first prove that |r(k0−1)
n0,k0

| ≤
(
n0

k0−1

)
then prove that |r(l)

n0,k0
| ≤

(
k0−1
l

)(
n0

k0−1

)
for

l = k0 − 2, · · · , 0.

r
(k0−1)
n0,k0

=

k0∑

i=1

zn0
i∏

j∈[k0]\i
(zi − zj)

=

k0−1∑

i=1

zn0
i∏

j∈[k0]\i
(zi − zj)

+
zn0
k0∏

j∈[k0]\k0

(zk0 − zj)

=

k0−1∑

i=1

zn0
i − zn0−1

i zk0 + zn0−1
i zk0∏

j∈[k0]\i
(zi − zj)

+
zn0
k0∏

j∈k0\k0

(zk0 − zj)

=

k0−1∑

i=1


 zn0−1

i∏
j∈[k0−1]\i

(zi − zj)
+

zn0−1
i zk0∏

j∈k0\i
(zi − zj)


+

zn0
k0∏

j∈k0\k0

(zk0 − zj)

=



k0−1∑

i=1

zn0−1
i∏

j∈[k0−1]\i
(zi − zj)


+


zk0

k0∑

i=1

zn0−1
i∏

j∈k0\i
(zi − zj)




= r
(k0−2)
n0−1,k0−1 + zk0 · r(k0−1)

n0−1,k0
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Hence |r(k0−1)
n0,k0

| ≤ |r(k0−2)
n0−1,[k0−1]|+ |r

(k0−1)
n0−1,k0

| ≤
(
n0−2
k0−2

)
+
(
n0−2
k0−1

)
=
(
n0−1
k0−1

)
. For l < k0− 1, we have

r
(l)
n0,k0

=

k0∑

i=1

Sym[k0]\i,k0−1−l ·zn0
i∏

j∈[k0]\i
(zi − zj)

let l′ = k0 − 1− l

=

k0−1∑

i=1

(
Sym[k0−1]\i,l′ + Sym[k0−1]\i,l′−1 ·zk0

)
zn0
i∏

j∈[k0]\i
(zi − zj)

+
Sym[k0−1],l′ ·zn0

k0∏
j<k0

(zk0 − zj)

=

k0−1∑

i=1

Sym[k0−1]\i,l′ ·(zi − zk0)zn0−1
i + Sym[k0−1]\i,l′ ·zk0z

n0−1
i + Sym[k0−1]\i,l′−1 ·zk0z

n0
i∏

j∈[k0]\i
(zi − zj)

+
Sym[k0−1],l′ ·zn0

k0∏
j<k0

(zk0 − zj)

=

k0−1∑

i=1

Sym[k0−1]\i,l′ ·(zi − zk0)zn0−1
i + Sym[k0−1],l′ ·zk0z

n0−1
i∏

j∈[k0]\i
(zi − zj)

+
Sym[k0−1],l′ ·zn0

k0∏
j<k0

(zk0 − zj)

=

k0−1∑

i=1

Sym[k0−1]\i,l′ z
n0−1
i∏

j∈[k0−1]\i
(zi − zj)

+

k0−1∑

i=1

Sym[k0−1],l′ ·zk0z
n0−1
i∏

j∈[k0]\i
(zi − zj)

+
Sym[k0−1],l′ ·zn0

k0∏
j<k0

(zk0 − zj)

= r
(l−1)
n0−1,k0−1 + Sym[k0−1],k0−1−l ·zk0 · r(k0−1)

n0−1,k0

By induction hypothesis, |r(l)
n0,k0
| ≤

(
k0−2
l−1

)(
n0−1
k0−2

)
+
(
k0−1
l

)(
n0−1
k0−1

)
≤
(
k0−1
l

)(
n0

k0−1

)
.

Now we finish the proof of Lemma 12.5.4.

Lemma 12.5.4. For any k ∈ Z and any z1, · · · , zk on the unit circle of C, there always exists

a degree m = O(k2 log k) polynomial P (z) =
m∑
j=0

cjz
j with the following properties:

Property I P (zi) = 0,∀i ∈ {1, · · · , k},

Property II c0 = 1,

Property III |cj| ≤ 11, ∀j ∈ {1, · · · ,m}.
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Let m = 10k2 log k and P denote a set of polynomials that has degree at most m, and

all the coefficients are integers chosen from {−5, · · · ,−1, 0, 1, · · · , 5}, i.e.,

P :=

{
P (z) =

m∑

i=0

αiz
i | ∀i ∈ {0, 1, · · · ,m}, |αi| ≤ 2

}
.

Claim 12.10.4. There exists P ∗(z) =
m∑
i=0

αiz
i with coefficient |αi| ≤ 10 for any i ∈ {0, 1, · · · ,m},

such that every coefficient of P ∗(z) mod Q(z) is bounded by 2−m.

Proof. For P (z) =
m∑
i=0

αiz
i ∈ P, P (z) mod Q(z) ≡

m∑
i=0

αirn,k(z) from the definition rn,k(z).

Hence

P (z) mod Q(z) =
m∑

i=0

αi

k−1∑

l=0

r
(l)
i,kz

l =
k−1∑

l=0

zl
m∑

i=0

αir
(l)
i,k.

Each coefficient in P (z) mod Q(z) is bounded by |
m∑
i=0

αir
(l)
i,k| ≤ 5

m∑
i=0

2kik−1 ≤ 2kmk.

At the same time, |P| = 11m. From the pigeonhole principle and
(

2kmk

(2−m)2

)k
< 11m,

there exists P1, P2 ∈ P such that for P ∗(z) = P1(z) − P2(z), P ∗(z) mod Q(z) =
k−1∑
i=0

γiz
i

where each coefficient |γi| ≤ 2−m.

Let r(z) =
k−1∑
i=0

γiz
i = P ∗(z) mod Q(z) for convenience. If P ∗(0) (the constant term of

P ∗) is nonzero, then |P ∗(0)− r(0)| ≥ 0.99 from the above lemma. Therefore the polynomial
P ∗(z)−r(z)
P ∗(0)−r(0)

satisfies the three properties in Lemma 12.5.4.

Otherwise, we assume zl is the first term in P ∗(z) with a non-zero coefficient. Let

r−l,k(z) = z−l mod Q(z) =
k∑

i=1

∏
j∈[k]\i

(z − zj)z−li
∏

j∈[k]\i
(zi − zj)

.
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For convenience, we use zS =
∏
i∈S
zi for any subset S ⊆ [k]. Notice that z−li =

zl
[k]\i
zl
[k]

. Hence

r−l,k(z) = r′l,k(z)/zl[k] where r
′ is the polynomial for k units roots z[k]\1, · · · , z[k]\k. So each

coefficients of r is still bounded by 2klk, which is less than 2−m/2.

Eventually we choose P ∗(z)/zl− r(z) · r−l,k(z) and renormalize it to satisfy the three

properties in Lemma 12.5.4.
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12.10.3 Proof of Lemma 12.4.3

Lemma 12.4.3. For any degree d polynomial P (t) : R→ C with derivative P ′(t), we have,
∫ 1

−1

(1− t2)|P ′(t)|2dt ≤ 2d2

∫ 1

−1

|P (t)|2dt. (12.28)

Given a degree d polynomial P (x), we rewrite P (x) as a linear combination of the

Legendre polynomials:

P (x) =
d∑

i=0

αiLi(x).

We use Fi(x) = (1− x2)L′i(x) for convenience. From the definition of the Legendre polyno-

mials in the Equation (12.3), F ′i (x) = −i(i+ 1) · Li(x) and F ′′i (x) = −i(i+ 1) · L′i(x).

Hence we have
∫ −1

1

(1− x2)|P ′(x)|2dx =

∫ −1

1

(1− x2)P ′(x) · P ′(x)dx

=

∫ −1

1


∑

i∈[d]

αiFi(x)


 ·


∑

i∈[d]

αi
−F ′′i (x)

i(i+ 1)


 dx

=


∑

i∈[d]

αiFi(x)


 ·


∑

i∈[d]

αi
−F ′i (x)

i(i+ 1)



∣∣∣∣
1

−1

+

∫ −1

1


∑

i∈[d]

αiF
′
i (x)


 ·


∑

i∈[d]

αi
F ′i (x)

i(i+ 1)


 dx

=

∫ −1

1


∑

i∈[d]

αi · i(i+ 1) · Li(x)


 ·


∑

i∈[d]

αi
i(i+ 1) · Li(x)

i(i+ 1)


 dx

=
∑

i∈[d]

|αi|2i(i+ 1)‖Li‖2
T

≤ d(d+ 1)‖P‖2
T
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12.10.4 Proof of Lemma 12.6.1

Lemma 12.6.1. P̂σ,a,bx(σ(f − b)) = 1
σ
e−2πiσaf x̂(f) and P̂σ,a,bx(f) = 1

σ
e−2πiσa(f/σ+b)x̂(f/σ + b)

Proof. Let’s compute the Fourier Transform of (Pσ,a,bx)(t),

P̂σ,a,bx(f)

=

∫ +∞

−∞
(Pσ,a,b(x))(t)e−2πiftdt

=

∫ +∞

−∞
x(σ(t− a))e−2πiσbte−2πiftdt

=e−2πi(σab+fa)

∫ +∞

−∞
x(σ(t− a))e−2πiσb(t−a)e−2πif(t−a)dt by shifting t by a

=e−2πi(σab+fa)

∫ +∞

−∞
x(σt)e−2πiσbte−2πiftdt by replacing t− a by t

=
1

σ
e−2πi(σab+fa)

∫ +∞

−∞
x(σt)e−2πibσte−2πifσt/σdσt

=
1

σ
e−2πi(σab+fa)

∫ +∞

−∞
x(t)e−2πi(b+f/σ)tdt by replacing tσ by t

=
1

σ
e−2πiaσ(f/σ+b)x̂(f/σ + b) by definition of FT

The first result follows immediately by replacing f/σ + b by f ′, which gives

P̂σ,a,bx(σ(f ′ − b)) =
1

σ
e−2πiaσf ′x̂(f ′).

Thus, we complete the proof of this Lemma.
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12.10.5 Proof of Lemma 12.3.5

Lemma 12.3.5. Given any function x(t) : R→ C with max
t∈[0,T ]

|x(t)|2 ≤ d‖x(t)‖2
T . Let S denote

a set of points from 0 to T . If each point of S is chosen uniformly at random from [0, T ], we

have

Pr

[∣∣∣∣∣
1

|S|
∑

i∈S

|x(ti)|2 − ‖x(t)‖2
T ]

∣∣∣∣∣ ≥ ε‖x(t)‖2
T

]
≤ e−Ω(ε2|S|/d)

Proof. Let M denote max
t∈[0,T ]

|x(t)|2. Replacing Xi by |x(ti)|2
M

and n by |S| in Lemma A.1.1, we

obtain that

Pr[|X − µ| > εµ] ≤ 2 exp(−ε
2

3
µ)

=⇒ Pr

[∣∣∣∣∣
∑

i∈S

|x(ti)|2
M

− |S|‖x(t)‖2
T

M

∣∣∣∣∣ > ε|S|‖x(t)‖2
T

M

]
≤ 2 exp(−ε

2

3
µ)

=⇒ Pr

[∣∣∣∣∣
1

|S|
∑

i∈S

|x(ti)|2 − ‖x(t)‖2
T

∣∣∣∣∣ ≥ ε‖x(t)‖2
T

]
≤ 2 exp(−ε

2

3
µ)

=⇒ Pr

[∣∣∣∣∣
1

|S|
∑

i∈S

|x(ti)|2 − ‖x(t)‖2
T

∣∣∣∣∣ ≥ ε‖x(t)‖2
T

]
≤ 2 exp(−ε

2

3
|S|‖x(t)‖2

T

M
)

which is less than 2 exp(− ε2

3
|S|/d), thus completes the proof.
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12.10.6 Proof of Lemma 12.3.9

Lemma 12.3.9. For any polynomial P (t) of degree at most d from R to C, for any interval

[S, T ],

max
t∈[S,T ]

|P (t)|2 ≤ (d+ 1)2 · 1

T − S

∫ T

S

|P (t)|2dx.

Proof. Let t∗ = arg max
t∈[S,T ]

|P (t)|2. If t∗ ∈ (S, T ), then it is enough to prove that

|P (t∗)|2 ≤ (d+ 1)2 1

t∗ − S

∫ t∗

S

|P (x)|2dx and |P (t∗)|2 ≤ (d+ 1)2 1

T − t∗
∫ T

t∗
|P (x)|2dx

on the two intervals [S, t∗] and [t∗, T ] separately.

Without loss of generality, we will prove the inequality for S = −1 and t∗ = T = 1.

We find the minimum ‖P (x)‖2
T assuming |P (1)|2 = 1. Because the first (d + 1) Legendre

polynomials provide a basis of polynomials of degree at most d and their evaluation Ln(1) = 1

for any n, we consider:

min
α0,α1,··· ,αd∈C

∫ 1

−1

|P (x)|2dx

s.t. P (x) =
d∑

i=0

αiLi(x)

|P (1)| = |
d∑

i=0

αi| = 1.

We simplify the integration of P (x)2 over [−1, 1] by the orthogonality of Legendre polyno-

879



mials:

∫ 1

−1

|P (x)|2dx =

∫ 1

−1

(
d∑

i=0

αiLi(x)

)
·
(

d∑

j=0

αjLj(x)

)
dx

=

∫ 1

−1

d∑

i=0

|αi|2Li(x)2 +
∑

i 6=j

αiαjLi(x)Lj(x)dx

=
d∑

i=0

|αi|2
2

2i+ 1
by Fact 12.3.8

Using
∫ 1

−1
|P (x)|2dx =

d∑
i=0

|αi|2 2
2i+1

, we simplify the optimization problem to

min
α0,α1,··· ,αd∈C

d∑

i=0

|αi|2
2

2i+ 1

s.t.

∣∣∣∣∣
d∑

i=0

αi

∣∣∣∣∣ = 1

From the Cauchy-Schwarz inequality, we have
∣∣∣∣∣
d∑

i=0

αi

∣∣∣∣∣

2

≤
(

d∑

i=0

|αi|2
2

2i+ 1

)(
d∑

i=0

2i+ 1

2

)
.

Therefore
d∑
i=0

|αi|2 2
2i+1
≥ 2

(d+1)2 and |P (1)|2 ≤ (d+ 1)2 · 1
2

∫ 1

−1
|P (x)|2dx.
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Algorithm 12.1 Linear Regression Algorithms
1: procedure LinearRegression(A, b,) — Fact 12.11.1
2: x′ ← arg min

x
‖Ax− b‖2.

3: return x′

4: end procedure
5: procedure LinearRegressionW(A, b, w) — Fact 12.11.1

6: x′ ← arg min
x

d∑
i=1

wi|(Ax)i − bi|2.
7: return x′

8: end procedure

12.11 Known Facts

This section provides a list of well-known facts existing in literature.

12.11.1 Linear regression

Given a linear subspace span{~v1, · · · , ~vd} and n points, we always use `2-regression

to find a vector as the linear combination of ~v1, · · · , ~vd that minimizes the distance of this

vector to those n points.

Fact 12.11.1. Given an n× d matrix A and an n× 1 column vector b , it takes O(ndω−1)

time to output an x′ such that

x′ = arg min
x
‖Ax− b‖2.

where ω is the exponent of matrix multiplication[Wil12].

Notice that weighted linear regression can be solved by linear regression solver as a

black-box.
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Algorithm 12.2 Multipoint Evaluation of a Polynomial
1: procedure MultipointEvaluation(P, {t1, t2, · · · , td}) — Fact 12.11.2
2: return P (t1), P (t2), · · · , P (td)
3: end procedure

12.11.2 Multipoint evaluation of a polynomial

Given a degree-d polynomial, and n locations. The naive algorithm of computing the

evaluations at those n locations takes O(nd). However, the running time can be improved

to O(n poly(log d)) by using this well-known result,

Fact 12.11.2 ([BS12]). Let c > 1 denote some fixed constant. Given a degree-d polynomial

P (t), and a set of d locations {t1, t2, · · · , td}. There exists an algorithm that takes O(d logc d)

time to output the evaluations

{P (t1), P (t2), · · · , P (td)}.
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12.12 Analysis of Hash Functions and Filter Functions
12.12.1 Analysis of filter function (H(t), Ĥ(f))

We construct the Filter function (H(t), Ĥ(f)) in this section.

We fix the interval to be supp(rect1) = [−1/2, 1/2] instead of [0, T ] for convenience.

We first define the filter function H1(t) which preserves the energy of a k-Fourier-sparse

signal x∗ on [−1/2, 1/2] to the signal H1 · x∗ on [−∞,+∞].

Definition 12.12.1. Let s1 = Θ(k4 log4 k), ` = Ω(k log k/δ) be a even number, and s0 =

C0s1

√
` for some constant C0 that will normalize H1(0) = 1. Recall that rects(t) = 1 iff

|t| ≤ s/2 and ̂rects(f) = sinc(fs) = sin(πfs)
πfs

.

We define the filter function H1(t) and its Fourier transform Ĥ1(f) as follows:

Ĥ1(f) = s0 · (rects1(f))∗` · sinc (fs2) ,

= s0 ·
( 1

−s1/2 s1/2

)∗` ·
1

−1/s2 1/s2

H1(t) = s0 · (sinc(s1t))
·` ∗ rects2(t)

= s0 ·
( 1

−1/s1 1/s1

)·` ∗
1

−s2/2 s2/2

where s0 is a fixed parameter s.t. H1(0) = 1.

We provide some basic properties about our filter function. Notice that sinc(t) =

sin(πt)
πt

( sinc(0) is defined to be 1 ) has the following properties (shown in Figure 12.4):

1. ∀t ∈ R, 1− (πt)2

3!
≤ sinc(t) ≤ 1.
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1

−1 1

sinc(t)

1− t2

8
1
π|t|

Figure 12.4: The Property of sinc(t).

2. ∀|t| ≤ 1.2/π, sinc(t) ≤ 1− t2

8
.

3. ∀|t| > 1.2/π, | sinc(t)| ≤ 1
π|t| .

Claim 12.12.1.
∫ 1.2
πs1

− 1.2
πs1

(sinc(s1t))
`dt h 1

s1
√
`
.

Proof. We use the above properties for the sinc function to prove the upper bound:

∫ + 1.2
πs1

− 1.2
πs1

(sinc(s1t))
`dt =

1

s1

∫ +1.2/π

−1.2/π

(sinc(t))`dt

=
2

s1

(∫ √8/`

0

(sinc t)`dt+

∫ 1.2/π

√
8/`

(sinc(t))`dt

)

≤ 2

s1



√

8/`+

1.2/π√
8/`
−1

∑

i=1

∫ (i+1)
√

8/`

i
√

8/`

(1− x2/8)`dx




≤ 2

s1



√

8/`+

1.2/π√
8/`
−1

∑

i=1

√
8/` · 2−i2




. 1

s1

√
`
.
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We prove the lower bound:

∫ 1.2
πs1

− 1.2
πs1

(sinc(s1t))
`dt =

2

s1

(∫ √8/`

0

(sinc t)`dt+

∫ 1.2/π

√
8/`

(sinc(t))`dt

)

≥ 2

s1

(∫ √8/`

0

(1− π2t2

6
)`dt

)

& 1

s1

√
`
.

We bound the integration outside [− 1.2
πs1
, 1.2
πs1

] from the last property of the sinc func-

tion.

Claim 12.12.2.
∫ +∞

1.2
πs1

(sinc(s1t))
`dt = O(1.2−`).

From these two claims, we have the existence of s0.

Claim 12.12.3. There exists a universal constant C0 and s0 = C0s1

√
` such that H1(0) = 1.

Proof. Because ` is a large even number,
∫

rect1−2/s1

sinc(s1t)
`dt h 1

s1
√
`
from all discussion

above.

We show several useful properties about the Filter functions
(
H1(t), Ĥ1(f)

)
.

Lemma 12.12.4. Given s0, s1, s2, `, where s2
2

+ 1
s1
≤ 1/2 and s0 = C0s1

√
` for some constant
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(sinc(t))`
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0.0

0.2

0.4

0.6

0.8

1.0
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Figure 12.5: The light red area represents
∫ (1/2−2/s1)−t

(1/2−2/s1)
s0 · sinc (s1(τ))` dτ and the light green

area represents
∫ 1/2−2/s1+t

1/2−2/s1
s0 · sinc (s1(τ))` dτ .

C0. The filter function (H1(t), Ĥ1(f))[s0, s1, s2, `] has the following properties,

Property I : H1(t) ∈ [1− s0

s1

· 2π−`

`− 1
, 1], if |t| ≤ s2

2
− 1

s1

.

Property II : H1(t) ∈ [0, 1], if
s2

2
− 1

s1

≤ |t| ≤ 1

2

Property III : H1(t) ≤ s0s2

(
(s1|t| − s1 + 2)2 + 1

)−`
,∀|t| > 1

2

Property IV : supp(Ĥ1(f)) ⊆ [−s1`

2
,
s1`

2
]
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Proof of Property I. First, H1(0) = 1 follows by definition of s0, then we can prove the

upper bound for H1(t) by showing for any t > 0, H1(0)−H1(t) > 0 always holds ,

By definition of sinc function, we know that sinc(s1t)
` reaches 0 at all the points

{ 1
s1

+ i 2
s1
|i ∈ N}. By definition of s1, we know that 1

s1
� 1

2
− 1

s1
. For any t > 0,

H1(0)−H1(t)

=

∫
s0 · sinc (s1(τ))` · rect1−2/s1(0− τ)dτ −

∫
s0 · sinc (s1(τ))` · rect1−2/s1(t− τ)dτ

=

∫ 1/2−2/s1

−(1/2−2/s1)

s0 · sinc (s1(τ))` dτ −
∫ 1/2−2/s1+t

−(1/2−2/s1)+t

s0 · sinc (s1(τ))` dτ

=

∫ −(1/2−2/s1)+t

−(1/2−2/s1)

s0 · sinc (s1(τ))` dτ −
∫ 1/2−2/s1+t

1/2−2/s1

s0 · sinc (s1(τ))` dτ

≥ 0,

where the third step can be observed in Figure 12.5, and the last inequality follows by

choosing s1 to be an integer. Thus, we prove an upper bound for H1(t). Third, we show the

lower bound for H1(t),

H1(t) =

∫ +∞

−∞
s0 · sinc(s1τ)·` rects2(t− τ)dτ

=

∫ t+
s2
2

t− s2
2

s0 · sinc(s1τ)·`dτ

= 1−
∫ +∞

t+
s2
2

s0 · sinc(s1τ)·`dτ

︸ ︷︷ ︸
A

−
∫ t− s2

2

−∞
s0 · sinc(s1τ)·`dτ

︸ ︷︷ ︸
B

Thus, as long as we can upper bound the term A and B, then we will have a lower bound
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for the H1(t), for any |t| ≤ s2
2
− 1

s1
.

A =

∫ +∞

t+
s2
2

s0 · sinc(s1τ)·`dτ

≤
∫ +∞

1
s1

s0 · sinc(s1τ)·`dτ

≤
∫ +∞

1
s1

s0 · (s1πτ)−`dτ

= s0 · (s1π)−`
1

`− 1
(1/s1)−`+1

=
s0

s1

· (π)−`
1

`− 1

Similarly, we can bound the term B in the same way.

Proof of Property II. In the proof of Property I, we already show that ∀t, H1(t) ≤ 1. Thus,

the upper bound of Property II is also holding. The lower bound follows by both sinc(s1t)
·`

and rects2(t) are always nonnegative, thus the convolution of these two functions has to be

nonnegative.

Proof of Property III. Let’s prove the case when t > 1, since H1(t) is symmetric, then the

case t < −1 will also hold. By definition of (H1(t), Ĥ1(f)), we have

H1(t) = s0 ·
∫ +∞

−∞
sinc(s1(t− τ))·` rects2(τ)dτ

= s0 ·
∫ s2

2

− s2
2

sinc(s1(t− τ))·`dτ

= s0 ·
∫ s2

2

− s2
2

sinc(s1(τ − t))·`dτ
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We’d like to choose a middle point τ0, and then separated the interval into two parts, one

is [− s2
2
, τ0] and the other is [τ0,

s2
2

]. To choose a reasonable τ0, we need to use the following

simple facts,

(
sin(x)

x
)` ≤ x−` if x ≥ 1.2

(
sin(x)

x
)` ≤ (1− x2

8
)` if x < 1.2

Thus, |πs1(τ0 − t)| = 1.2, which implies that τ+
0 = t + 1.2

πs1
or τ−0 = t− 1.2

πs1
. By relationship

between s1 and s2, we know τ−0 > 1
2
− 1.2

πs1
> 1

2
− 1

s1
≥ s2

2
. Thus, we can use the case x < 1.2

to upper bound the H1(t),

H1(t)

≤ s0 · s2 · max
τ∈[−s2/2,s2/2]

sinc(s1(τ − t))·`

≤ s0 · s2 max
τ∈[−s2/2,s2/2]

(1− (s1π(τ − t))2

8
)`

= s0 · s2(1− (s1π( s2
2
− t))2

8
)`

≤ s0 · s2 · (e−
(s1π(

s2
2 −t))

2

8 )` by 1− x ≤ e−x

≤ s0 · s2 · (e(s1(t−s2/2))2

)−` by 1 < π2/8

≤ s0 · s2 · (1 + (s1(t− s2/2))2)−` by 1 + x ≤ ex

≤ s0 · (1 + (s1(t− s2/2))2)−` by s1 ≤ 1.

Thus, we complete the proof.

Proof of Property IV. Because of the support of rects1(f) is s1, then the support of
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(rects1(f))∗` = s1`. Since Ĥ1(f) is defined to be the (rects1(f))∗` multiplied by sinc(fs2),

thus supp(Ĥ1(f)) ⊆ [− s1`
2
, s1`

2
].

Definition 12.12.2. Given any 0 < s3 < 1, 0 < δ < 1, we define (H(t), Ĥ(f)) to be the

filter function (H1(t), Ĥ1(f)) by doing the following operations

• Setting ` = Θ(k log(k/δ)),

• Setting s2 = 1− 2
s1
,

• Shrinking by a factor s3 in time domain,

H(t) = H1(t/s3) (12.29)

Ĥ(f) = s3Ĥ1(s3f) (12.30)

We call the “heavy cluster" around a frequency f0 to be the support of δf0(f) ∗ Ĥ(f) in the

frequency domain and use

∆h = | supp(Ĥ(f))| = s1 · `
s3

(12.31)

to denote the width of the cluster.

We show several useful properties about the Filter functions
(
H(t), Ĥ(f)

)
.

Lemma 12.6.4. Given s0, s1, 0 < s3 < 1, ` > 1, 0 < δ < 1, where ` = Θ(k log(k/δ)).The filter
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function (H(t), Ĥ(f)) has the following properties,

Property I : H(t) ∈ [1− δ, 1], when |t| ≤ (
1

2
− 2

s1

)s3.

Property II : H(t) ∈ [0, 1], when (
1

2
− 2

s1

)s3 ≤ |t| ≤
1

2
s3.

Property III : H(t) ≤ s0 · (s1(
|t|
s3

− 1

2
) + 2)−`,∀|t| > 1

2
s3.

Property IV : supp(Ĥ(f)) ⊆ [− s1`

2s3

,
s1`

2s3

].

For any exact k-Fourier-sparse signal x∗(t), we shift the interval from [0, T ] to [−1/2, 1/2]

and consider x∗(t) for t ∈ [−1/2, 1/2] to be our observation, which is also x∗(t) · rect1(t).

Property V :

∫ +∞

−∞

∣∣x∗(t) ·H(t) · (1− rect1(t))
∣∣2dt < δ

∫ +∞

−∞
|x∗(t) · rect1(t)|2dt.

Property VI :

∫ +∞

−∞
|x∗(t) ·H(t) · rect1(t)|2dt ∈ [1− ε, 1] ·

∫ +∞

−∞
|x∗(t) · rect1(t)|2dt.

for arbitrarily small constant ε.

The Property I, II, III and IV follow by filter functionH(t), Ĥ(f) inheritingH1(t), Ĥ1(f).

Proof of Property V. ∀t /∈ [−1/2, 1/2], we have,

|x∗(t) ·H(t)|2

≤ |x∗(t)|2 · |H(t)|2

≤ |x∗(t)|2 · (s1(|t| − 1/2) + 2)−` by Property III of H1(t)

≤ k7 · (2kt)2.5k ·
∫ +∞

−∞
|x∗(t) · rect1(t)|2dt · (s1(

|t|
s3

− 1

2
) + 2)−` by Lemma 12.5.5

≤ tO(k log k) ·
∫ +∞

−∞
|x∗(t) · rect1(t)|2dt · (s1(

|t|
s3

− 1

2
) + 2)−`/2. (12.32)
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t= ±(0.5−2/s1 )s3

Figure 12.6: Ĥ · x∗(f) and H · x∗(t).

Thus taking the integral finishes the proof because ` & k log(k/δ).

Proof of Property VI. First, because of for any t, |H1(t)| ≤ 1, thus we prove the upper

bound for LHS,
∫ +∞

−∞
|x∗(t) ·H(t) · rect1(t)|2dt ≤

∫ +∞

−∞
|x∗(t) · 1 · rect1(t)|2dt.

Second, as mentioned early, we need to prove the general case when s3 = 1 − 1/ poly(k).

Define interval S = [−s3(1
2
− 1

s1
), s3(1

2
− 1

s1
)], by definition, S ⊂ [−1/2, 1/2]. Then define
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S = [−1/2, 1/2] \S, which is [−1/2,−s3(1
2
− 1

s1
))∪ (s3(1

2
− 1

s1
), 1/2]. By Property I, we have

∫

S

|x∗(t) ·H(t)|2dt ≥ (1− δ)2

∫

S

|x∗(t)|2dt (12.33)

Then we can show

∫

S

|x∗(t)|2dt

≤ |S| · max
t∈[−1/2,1/2]

|x∗(t)|2

≤ (1− s3(1− 2

s1

)) · Õ(k4)

∫ 1
2

− 1
2

|x∗(t)|2dt by Lemma 12.5.1

.
∫ 1

2

− 1
2

|x∗(t)|2dt by min(
1

1− s3

, s1) ≥ Õ(k4) (12.34)

Combining Equations (12.33) and (12.34) gives a lower bound for LHS,

∫ +∞

−∞
|x∗(t) ·H(t) · rect1(t)|2dt

≥
∫

S

|x∗(t)H(t)|2dt

≥ (1− 2δ)

∫

S

|x∗(t)|2dt by Equation (12.33)

≥ (1− 2δ)

∫

S∪S
|x∗(t)|2dt− (1− 2δ)

∫

S

|x∗(t)|2dt

≥ (1− 2δ)

∫

S∪S
|x∗(t)|2dt− (1− 2δ)ε

∫

S∪S
|x∗(t)|2dt by Equation (12.34)

≥ (1− 2δ − ε)
∫ 1

2

− 1
2

|x∗(t)|2dt

≥ (1− 2ε)

∫ +∞

−∞
|x∗(t) · rect1(t)|2dt by ε� δ
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Figure 12.7: Property VI of filter function H(t), first two figures of four figures. The light
green area represents RHS(without scalar) of Property VI of filter H.

Remark 12.12.1. To match (H(t), Ĥ(f)) on [−1/2, 1/2] with signal x(t) on [0, T ], we will

scale the time domain from [−1/2, 1/2] to [−T/2, T/2] and shift it to [0, T ]. For example,

the rectangle function in Property V and VI will be replaced by rectT (t − T/2). For the

parameters s0, s1, s3, δ, ` in the definition of H, we always treat them as numbers. We assume

T has seconds as unit and ∆h has Hz as unit . For example, in time domain, the Property I

becomes that given T > 0,

H(t) ∈ [1− δ, 1] if |t− T

2
| ≤ (

1

2
− 1

s1

)s3 · T
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Fourier transform (Time domain)
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Fourier transform (Time domain)
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x ∗ (t)

H ·x ∗ (t)

t= ±0.5

Figure 12.8: Property VI of filter function H(t), last two figures of four figures. The light red
area represents LHS of Property VI of filter H, the light yellow area represents the difference.
Property VI says the light yellow area is only a small constant fraction of the light green
area.

In frequency domain, the Property IV becomes

supp(Ĥ(f)) ⊆ [−∆h

2
,
∆h

2
], where ∆h =

s1`

s3T
. (12.35)

Lemma 12.12.5. Let H(t) denote the function defined in Definition 12.12.2. For any

t ∈ [−1
2
, 1

2
], there exists an algorithm that takes O(s1 + ` log(s1) + log(1/ε)) time to output a
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value H̃(t) such that

(1− ε)H(t) ≤ H̃(t) ≤ (1 + ε)H(t).

Proof. We will show that using a low degree polynomial with sufficiently large degree is able

to approximate the sinc function. By definition of filter function,

H(t) = s0 ·
∫ +∞

−∞
sinc(s1τ)·` rects2(t− τ)dτ

= s0 ·
∫ t+

s2
2

t− s2
2

(
sin(πs1τ)

πs1τ
)`dτ

=
s0

πs1

∫ (t+
s2
2

)πs1

(t− s2
2

)πs1

(
sin(τ)

τ
)`dτ

=
s0

πs1

∫ (t+
s2
2

)πs1

(t− s2
2

)πs1

(
∞∑

i=0

(−1)i
τ 2i

(2i+ 1)!

)`

dτ by Taylor expansion

=
s0

πs1

∫ (t+
s2
2

)πs1

(t− s2
2

)πs1

(A+B)`dτ

where the last step follows by setting A =
∑d

i=0(−1)i τ2i

(2i+1)!
, and B =

∑∞
i=d+1(−1)i τ2i

(2i+1)!
.

Denote I+ = (t + s2
2

)πs1 and I− = (t − s2
2

)πs1. Because of t ∈ [−1/2, 1/2], then

max(|I+|, |I−|) = O(s1). The goal is to show that

(1− ε)
∫ I+

I−
(A+B)`dτ ≤

∫ I+

I−
A`dτ ≤ (1 + ε)

∫ I+

I−
(A+B)`dτ
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Let’s prove an upper first,
∫ I+

I−
(A+B −B)`dτ

=

∫ I+

I−
(A+B)`dτ +

∑̀

j=1

∫ I+

I−

(
`

j

)
(A+B)`−j(−B)jdτ

≤
∫ I+

I−
(A+B)`dτ +

∑̀

j=1

∫ I+

I−

(
`

j

)
|A+B|`−j|B|jdτ

≤
∫ I+

I−
(A+B)`dτ +

∑̀

j=1

∫ I+

I−

(
`

j

)
|A+B|`−jdτ · max

τ∈[I−,I+]
|B|j

≤
∫ I+

I−
(A+B)`dτ + `2` · max

τ∈[I−,I+]
|B| by |H(t)| ≤ 1 and |B|j ≤ |B|

≤
∫ I+

I−
(A+B)`dτ + ε · (s1)−Θ(`) by Claim 12.12.6

≤(1 + ε)

∫ I+

I−
(A+B)`dτ by Claim 12.12.7

where all the steps by setting d & s1 + ` log(s1) + log(1/ε). Similarly, we can prove a lower

bound.

Claim 12.12.6. Let B(τ) =
∑+∞

i=d+1(−1) τ2i

(2i+1)!
, if d & τ + ` log(s1) + log(1/ε) then |B(τ)| ≤

ε(1/s1)O(`).

Proof. We first show, for any i ≥ d+ 1,

τ 2i

(2i+ 1)!

≤ τ 2i

e((2i+ 1)/e)2i+1
by e(n/e)n ≤ n!

≤ 2−2i by i & τ

≤ ε(1/s1)O(`) by i & ` log(s1) + log(1/ε)
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Second, we can show that

+∞∑

i=d+1

(−1)
τ 2i

(2i+ 1)!
. τ 2(d+1)

(2(d+ 1) + 1)!
≤ ε(1/s1)O(`)

Thus, we complete the proof.

Claim 12.12.7. mint∈[−1/2,1/2] |H(t)| ≥ (s1)−Ω(`).

Proof. By the property of H(t),

min
1
2
s3<|t|≤ 1

2

H(t) = min
|t|≤ 1

2

H(t)

Thus, it suffices to prove a lower bound on H(t) for any t such that 1
2
s3 < |t| ≤ 1

2
. Because

of symmetric property, we only need to prove a lower bound for one side. Let’s consider

t ∈ [1
2
s3, 1/2],

H(t) ≥ s0

πs1

∫ (t+
s2
2

)πs1

(t− s2
2

)πs1

(
sin(τ)

τ
)`dτ

≥ s0

πs1

∫ (t+
s2
2

)πs1

(t+
s2
4

)πs1

(
sin(τ)

τ
)`dτ

≥ s0

πs1

·Θ((t+
s2

2
)s1) · 1

2
· π ·Θ((t+

s2

2
)πs1)−`

≥ (s1)−Ω(`)
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12.12.2 Analysis of filter function (G(t), Ĝ(f))

We construct (G(t), Ĝ(f)) in a similar way of (H1(t), Ĥ1(f)) by switching the time

domain and the frequency domain of (H1(t), Ĥ1(f)) and modify the parameters for the

permutation hashing Pσ,a,b.

Definition 12.12.3. Given B > 1, δ > 0, α > 0, we construct G(t), Ĝ(f) by doing the

following operations,

• s2 = π
2B

,

• s1 = B
απ

,

• ` = l = Θ(log(k/δ)).

Then G(t), Ĝ(f) becomes

G(t) = b0 · (rects1(t))∗l · sinc(ts2)

= b0 · (rect B
(απ)

(t))∗l · sinc(t
π

2B
),

Ĝ(f) = b0 · (sinc(s1f))·l ∗ rects2(f)

= b0 · (sinc(
B

απ
f))·l ∗ rect π

2B
(f).

where the scalar b0 = Θ(s1

√
l) = Θ(B

√
l/α) satisfying Ĝ(0) = 1.

Lemma 12.6.5. Given B > 1, δ > 0, α > 0, we set l = Ω(log(δ/k)). The filter function
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(G(t), Ĝ(f))[B, δ, α, l] satisfies the following properties,

Property I : Ĝ(f) ∈ [1− δ/k, 1], if |f | ≤ (1− α)
2π

2B
.

Property II : Ĝ(f) ∈ [0, 1], if (1− α)
2π

2B
≤ |f | ≤ 2π

2B
.

Property III : Ĝ(f) ∈ [−δ/k, δ/k], if |f | > 2π

2B
.

Property IV : supp(G(t)) ⊂
[ l

2
· −B
πα

,
l

2
· B
πα

]
.

Property V : max
t
|G(t)| . poly(B, l).

Proof. The first five Properties follows from Lemma 12.6.4 directly.
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Figure 12.9: Parameters for s1, s3 and `.

12.12.3 Parameters setting for filters

One-cluster Recovery. In one-cluster, we donot need filter function (G(t), Ĝ(f)).

In section 12.12.1, by Equation (12.34) in the proof of Property VI of filter function

(H(t), Ĥ(f)), we need min( 1
1−s3 , s1) ≥ Õ(k4).

In section 12.12.1, by Equation (12.32) in the proof of Property V of filter function

(H(t), Ĥ(f)), we set ` & k log(k/δ).

∆h is determined by the parameters of filter (H(t), Ĥ(f)) in Equation (12.35): ∆h h
s1`
s3T

in section 12.12.1. Combining the setting of s1, s3 `, we should set ∆h ≥ Õ(k5 log(1/δ))/T .

k-cluster Recovery. Note that in the k-cluster recovery, we need to use filter function

(G(t), Ĝ(f)). We choose l = log(k/δ), α h 1, B h k , and D = l/α.

By proof of Property II of z in Lemma 12.7.18 from section 12.7.6, we need T (1−s3) >

901



σBl. By the same reason in one-cluster recovery, 1−s3 ≤ 1

Õ(k4)
. Combining T (1−s3) > σBl

and 1− s3 ≤ 1

Õ(k4)
, we obtain

T

Õ(k4)
> σBl (12.36)

Because in our algorithm, we will sample σ from [ 1
B∆h

, 2
B∆h

]. Thus, plugging σ = Θ( 1
B∆h

) in

Equation (12.36) we have
T

Õ(k4)
>

l

∆h

which implies another lower bound for ∆h,

∆h ≥ Õ(k4)l/T

Combining the above bound with previous lower bound in one-cluster recovery, we get

∆h ≥ Õ(k4 log(1/δ))/T + Õ(k5 log(1/δ))/T = Õ(k5 log(1/δ))/T

For s1 and `, we still choose the same setting as before, s1 h Õ(k4) and ` h O(k log(k/δ)).
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12.12.4 Analysis of HashToBins

In this section, we explain the correctness of Procedure HashToBins in Algorithm

12.6. Before giving the proof of that algorithm, we show how to connect CFT, DTFT and

DFT.

Lemma 12.12.8. For any signal W : R→ C, let A : Z→ C and B : [n]→ C be defined as

follows:

A[i] = W (i),∀i ∈ Z and B[i] =
∑

j∈Z

A[i+ jn],∀i ∈ [n].

Then we consider the Fourier transform on W,A, and B:

CFT Ŵ : R→ C,

DTFT Â : [0, 1]→ C,

DFT B̂ : [n]→ C.

We have:

∀f ∈ [0, 1), Â(f) =
∑

j∈Z

Ŵ (f + j); ∀i ∈ [n], B̂[i] =
∑

j∈Z

Ŵ (i/n+ j).

Proof. Recall that Combs(t) =
∑

j∈Z δjs(t). First, we show Â(f) =
∑

j∈Z e
2πijfA[j] equals
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to
∑
j∈Z
Ŵ (f + j):

Â(f) =
∑

j∈Z

e2πijfW [j] by A[j] = W (j)

=

∫ +∞

−∞
e2πifjW (j) · Comb1(j)dj

= ̂W · Comb1(f)

= (Ŵ ∗ Ĉomb1)(f)

=
∑

j∈Z

Ŵ (f + j). (12.37)

Next, we prove that ∀i ∈ [n], B̂[i] = Â(i/n),

B̂[i] =
n∑

j=1

B[j]e
2πi
n
ij by DFT

=
n∑

j=1

(
∑

k∈Z

A[j + kn])e
2πi
n
ij by B[j] =

∑

k∈Z

A[j + kn]

=
n∑

j=1

∑

k∈Z

A[j + kn]e
2πi
n
i(j+kn) by e

2πi
n
·ikn = 1

=
∑

j∈Z

A[j]e2πij i
n = Â(i/n) by DTFT. (12.38)

Combining Equation (12.38) and Equation (12.37), we obtain that B̂[j] = Â(j/n) =
∑

i∈Z Ŵ (j/n+

i) for all j ∈ [n].

Claim 12.12.9. Let u ∈ CB and V ∈ CBD such that for any j ∈ B, u[j] =
∑
i∈[D]

V [j+(i−1)B].

Then

û[j] = V̂ [jD],∀j ∈ [B].
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Proof. We prove it through the definition of the Fourier transform:

V̂ [jD] =
BD∑

i=1

V [i] · e 2πi
BD
·i·(jD) by definition of DFT

=
B∑

i=1

D∑

k=1

V [i+ kB]e
2πi
B
·(i+kB)·j by replacing i by i+ kB

=
B∑

i=1

e
2πi
B
·j·i

D∑

k=1

V [i+ (k − 1)B] by e2πijk = 1

=
B∑

i=1

e
2πi
B
·j·iu[i] = û[j] by definition of DFT on u

We use Definition 12.6.1 and Lemma 12.6.1 to generalize Lemma 12.12.8,

Corollary 12.12.10. If for all j ∈ [n], B[j] =
∑
i∈Z
W
(
(j + in)σ − σa

)
, then ∀j ∈ [n],

B̂[j] =
∑

i∈Z

Ŵ

(
(
j

n
+ i)/σ

)
· 1

σ
e−2πi( j

n
+i)a.

If for all j ∈ [n], B[j] =
∑
i∈Z
W
(
(j + in)σ − σa

)
e−2πiσb(j+in), then ∀j ∈ [n],

B̂[j] =
∑

i∈Z

Ŵ

(
(
j

n
+ i)/σ + b

)
· 1

σ
e−2πi( j

n
+i)a−2πiσab.

Remark 12.12.2 (Samples of HashToBins). Procedure HashToBins in Algorithm 12.6

takes BD samples in x(t):

x(σ(1− a)), x(σ(2− a)), · · · , x(σ(BD − a)).

To analyze our algorithm, we use filter function (G(t), Ĝ(f)) and Combs(t) =
∑
j∈Z
δsj(t)

to define the discretization of G.
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Ĝ
(0)
σ,b(f)

A−2,0

B−2,0

A−1,0

B−1,0

A0,0

B0,0

A1,0

B1,0

A2,0

B2,0

1/σ1/(Bσ)

Ĝ
(1)
σ,b(f)

A−2,1

B−2,1

A−1,1

B−1,1

A0,1

B0,1

A1,1

B1,1

A2,1

B2,1

1/σ1/(Bσ)

Figure 12.10: Ĝ
(j)
σ,b(f) where the top one is j = 0 and the bottom one is j = 1, Ai,j =

[ 1
σ
(2π(i+ j

B
)− 2π

2B
), 1
σ
(2π(i+ j

B
) + 2π

2B
)], Bi,j = [ 1

σ
(2π(i+ j

B
)− 2π(1−α)

2B
), 1
σ
(2π(i+ j

B
) + 2π(1−α)

2B
)]

Definition 12.12.4. Define the discretization of G(t) and Ĝ(f),

Gdis(t) = G(t) · Combs(t)

Ĝdis(f) =
1

s
(Ĝ ∗ Comb1/s)(f)

= (Ĝ ∗ Comb1)(f)

=
(

− (1−α)π
B

(1−α)π
B

− π
B

π
B

)
∗

0−1−2 1 2

where | supp(G(t))| = lB
πα

, D = l
πα

, s = | supp(G(t))|/(BD) = l/(παD) = 1.
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Definition 12.6.6. ∀σ > 0, b and j ∈ [B]. Define,

G
(j)
σ,b(t) =

1

σ
G(t/σ)e2πit(j/B−σb)/σ

Ĝ
(j)
σ,b(f) = Ĝdis(

j

B
− σf − σb) =

∑

i∈Z

Ĝ(i+
j

B
− σf − σb)

Lemma 12.6.7. Let u ∈ CB be the result of HashToBins under permutation Pσ,a,b, and let

j ∈ [B]. Define

ẑ = x̂ ·H · Ĝ(j)
σ,b,

so

z = (x ·H) ∗G(j)
σ,b.

Let vector û ∈ CB denote the B-dimensional DFT of u, then ∀j ∈ [B],

û[j] = zσa.

Proof. Recall B is the number of hash bins. B ·D is the number of samples in time signal.

Let W (t) = x ·H(t), define vector y ∈ CBD, then ∀j ∈ [BD], define

y[j] = W (σ(j − a))e2πiσbj

Recall G(t) denote the rect∗lB/α(t) · sinc(t/B), then | supp(G(t))| = lB
α
. Let vector

G′ ∈ CBD is the discretization of G(t), where G′[i] = G(i). Then, ∀j ∈ [B],

u[j] =
∑

i∈[D]

V [j + iB]

where V [j] = y[j] ·G′[j] and G′[j] is the value at the jth nonzero point of Gdis(t). Applying

Claim 12.12.9 with the definition of u[j] and V [j + iB], gives û[j] = V̂ [jD],∀j ∈ [B].
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Because of u is the result of HashToBins(x·H,Pσ,a,b, G) and | supp(G(t))| = BD(choosing

D = l/α), then

u[j] =
∑

i∈Z

W (σ(j + iB − a))e−2πiσb(j+iB)G(j + iB)

Then we define G′′(t) = G(t/σ + a)e−2πibσ(t/σ+a) and Y (t) = W (t) · G′′(t), then

immediately, we have

Ĝ′′(f) = σĜ(σ(f − b))e2πiaσf and Ŷ (f) = Ŵ (f) ∗ Ĝ′′(f)

Thus, we can rewrite u[j] in the following sense,

u[j]

=
∑

i∈Z

W (σ(j + iB − a))e−2πiσb(j+iB)G(j + iB)

=
∑

i∈Z

W (σ(j + iB − a))G′′(σ(j + iB − a)) by G′′(t) = G(t/σ + a)e−2πibσ(t/σ+a)

=
∑

i∈Z

Y (σ(j + iB − a)) by Y (t) = W (t) ·G′′(t)
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Then

û[j]

=
∑

i∈Z

Ŷ ((
j

B
+ i)/σ) · 1

σ
· e−2πi( j

B
+i)a by Corollary 12.12.10

=
∑

i∈Z

∫ +∞

−∞
Ŵ (s) · Ĝ′′(j/B + i

σ
− s) · 1

σ
· e−2πi·(j/B+i)ads by Ŷ (f) = Ŵ (f) ∗ Ĝ′′(f)

=
∑

i∈Z

∫ +∞

−∞
Ŵ (s) · Ĝ(j/B + i− σs− σb) · e−2πi·(−σs)ads by Ĝ′′(f) = σĜ(σ(f − b))e2πiaσf

=

∫ +∞

−∞
Ŵ (s) ·

∑

i∈Z

Ĝ((j/B + i)− σs− σb)e2πiaσsds

=

∫ +∞

−∞
Ŵ (s) · Ĝdis(

j

B
− σs− σb)e−2πiaσsds by Ĝdis(f) =

∑

i∈Z

Ĝ(f + i)

By definition 12.12.4,

Ĝ
(j)
σ,b = Ĝdis(

j

B
− σs− σb) =

∑

i∈Z

Ĝ(i+
j

B
− σs− σb)

By definition of ẑ, we have

ẑ(s) = x̂ ·H(s) · Ĝ(j)(s) = Ŵ (s) · Ĝ(j)(s)

Then û[j] is the (aσ)th inverse Fourier coefficients of ẑ, basically,

û[j] = zaσ = z(aσ)

Thus, we can conclude first computing vector u ∈ CB. Getting vector û ∈ CB by using

the Discrete Fourier transform û = DFT(u). This procedure allows us to sample from time

domain to implicitly access the time signal’s Fourier transform ẑ. If z is one-cluster in

frequency domain, then apply one-cluster recovery algorithm.
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12.13 Algorithm

This section lists the pseudocode of our algorithms.

Algorithm 12.3 Get Empirical One Energy and Get Legal One Sample
1: procedure GetEmpirical1Energy(z, T,∆) — Claim 12.7.10
2: Rest ← (T∆)2

3: for i = 1→ Rest do
4: Choose αi ∈ [0, T ] uniformly at random
5: zemp ← zemp + |z(αi)|2
6: end for
7: zemp ←

√
zemp/Rest

8: return zemp

9: end procedure
10: procedure GetLegal1Sample(z,∆, T, β, zemp) — Lemma 12.7.1
11: Rrepeat ← (T∆)3, Sheavy ← ∅
12: for i = 1→ Rrepeat do
13: Choose αi ∈ [0, T ] uniformly at random
14: if |z(αi)| ≥ 0.5 · zemp then
15: Sheavy ← Sheavy ∪ i
16: end if
17: end for
18: for i ∈ Sheavy do
19: w(i)← |z(αi)|2 + |z(αi + β)|2
20: end for
21: α← αi with probability w(i)/

∑
j∈Sheavy

w(j) for i ∈ Sheavy

22: return α
23: end procedure

910



Algorithm 12.4 Locate One Signal, Locate One Inner, and Frequency Recovery One Cluster
1: procedure Locate1Signal(z, T, F,∆, zemp) — Lemma 12.7.14
2: Set t h log(FT ), t′ = t/4, Dmax h logt′(FT ), Rloc h log1/c(tc), L(1) = 2F
3: for i ∈ [Dmax] do
4: l h 2F/(t′)i−1∆, s h c, β̂ = ts

2∆l

5: if β̂ & T/(T∆)3/2 then
6: break
7: else
8: L(i) ← Locate1Inner(z,∆, T, β̂, zemp, L

(i−1))
9: end if
10: end for
11: return L(i)

12: end procedure
13: procedure Locate1Inner(z,∆, T, β̂, zemp, L̃)
14: Let vq ← 0 for q ∈ [t]
15: while r = 1→ Rloc do
16: Choose β ∈ [1

2
β̂, β̂] uniformly at random

17: γ ← GetLegal1Sample(z,∆, T, β, zemp)
18: for i ∈ [m] do
19: si ∈ [β(L̃−∆l/2), β(L̃+ ∆l/2)] ∩ Z+, θi = 1

2πσβ
(φ(x(γ)/x(γ + β)) + 2πsi)

20: Let θi belong to region(q)
21: Then add a vote to region(q) and its two neighbors, i.e., region(q − 1) and

region(q + 1)
22: end for
23: end while
24: q∗j ← {q|vq > Rloc

2
}

25: return L← center of region(q∗j )
26: end procedure
27: procedure FrequencyRecovery1Cluster(z, T, F,∆) — Theorem 12.7.4
28: zemp ← GetEmpirical1Energy(z, T,∆)
29: for r = 1→ O(k) do
30: Lr ← Locate1Signal(z, T, F,∆, zemp)
31: end for
32: return L∗ ← median

r∈[O(k)]
Lr

33: end procedure
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Algorithm 12.5 Main Algorithm for One-cluster Recovery
1: procedure CFT1Culster(x,H, T, F ) — Theorem 12.8.1
2: f̃0 ← FrequencyRecovery1Cluster(x,H, T, F )
3: x̃← SignalRecovery1Cluster(f̃0, poly(k)∆h)
4: return x̃
5: end procedure
6: procedure GenerateIntervals(d)
7: n← y0 ← i← 0, m← Θ(d)
8: while yi ≤ 1− 9

m2 do

9: yi+1 ← yi +

√
1−y2

i

m
, In+1 ← [yi, yi+1], In+2 ← [−yi+1,−yi]

10: i← i+ 1, n← n+ 2
11: end while
12: In+1 ← [yi, 1], In+2 ← [−yi,−1], n← n+ 2
13: return n, I
14: end procedure
15: procedure RobustPolynomialLearning(x, d, T ) — Theorem 12.1.2
16: (n, I)← GenerateIntervals(d)
17: for j = 1→ n do
18: wj ← |Ij|/2
19: Choose tj from Ij uniformly at random
20: zj ← x(T · tj+1

2
)

21: end for
22: Ãj,i ← tij, for each (j, i) ∈ [n]× {0, 1, · · · , d}
23: α← LinearRegressionW(Ã, b̃ = z, w)
24: Q(t)←∑d

i=0 αit
i

25: return Q̃(t) = Q(T · t+1
2

)
26: end procedure
27: procedure RobustPolynomialLearning+(x, d, T ) — Theorem 12.4.5 — a.k.a. Sig-

nalRecovery1Cluster
28: R← Θ(d)
29: (n, I)← GenerateIntervals(d)
30: wj ← |Ij|/2, for each j ∈ [n]
31: for i = 1→ R do
32: Qi ← RobustPolynomialLearning(x, d, T )
33: end for
34: Choose tj from Ij uniformly at random, for each j ∈ [n]
35: for i = 1→ R do
36: Qi(t1), Qi(t2), · · · , Qi(tn)← MultipointEvaluation(Qi, {t1, t2, · · · , tn})
37: end for
38: Q̃j ← median

i∈[R]
Qi(tj), for each j ∈ [n]

39: Ãj,i ← tij, for each (j, i) ∈ [n]× {0, 1, · · · , d}
40: α← LinearRegressionW(Ã, b̃ = Q̃, w)
41: return Q(t)←∑d

i=0 αit
i

42: end procedure
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Algorithm 12.6 Locate k Signal, Locate k Inner, Hash To Bins
1: procedure LocateKSignal(x,H,G, T,∆, σ, b, zemp) — Clain 12.7.25
2: Set t h log(FT ), t′ = t/4, Dmax h logt′(FT ), Rloc h log1/c(tc), L(1) = 2F
3: for i ∈ [Dmax] do
4: ∆l h 2F/(t′)i−1, s h c, β̂ = ts

2σ∆l

5: if σβ̂ & T/(T∆)3/2 then
6: break
7: else
8: L(i) ← LocateKInner(x,H,G, T,∆, σ, b, zempβ̂, U, L

(i−1))
9: end if
10: end for
11: return L(i)

12: end procedure
13: procedure LocateKInner(x,H,G, T,∆, σ, b, zempβ̂, U, L̃)
14: Let vj,q ← 0 for (j, q) ∈ [B]× [t]
15: for r = 1→ Rloc do
16: Choose β ∈ [1

2
β̂, β̂] uniformly at random

17: û, û′ ← GetLegalKSample(x,H,G, T,∆, σ, β, zemp)
18: for j ∈ [B] do
19: for i ∈ [m] do
20: θj,i = 1

2πσβ
(φ(û[j]/û′[j]) + 2πsi), si ∈ [σβ(L̃j −∆l/2), σβ(L̃j + ∆l/2)] ∩ Z+

21: fj,i = θj,i + b (mod F )
22: suppose fj,i belongs to region(j, q),
23: add a vote to both region(j, q) and two neighbors nearby that region, e.g.

region(j, q − 1) and region(j, q + 1)
24: end for
25: end for
26: end for
27: for j ∈ [B] do
28: q∗j ← {q|vj,q > Rloc

2
}

29: Lj ← center of region(j, q∗j )
30: end for
31: return L
32: end procedure
33: procedure HashToBins(x,H,G, Pσ,a,b) — Lemma 12.6.7
34: Compute u[j] =

∑
i∈D v[j + iB]

35: û← FFT(u)
36: return û
37: end procedure 913



Algorithm 12.7 Get Empirical k Energy, Get Legal k Sample, and Onestage
1: procedure GetEmpiricalKEnergy(x,H,G, T,∆, σ, b) — Claim 12.7.24
2: Rest ← (T∆)2

3: for i = 1→ Rest do
4: Choose α ∈ [0, T ] uniformly at random
5: û← HashToBins(x,H,G, Pσ,α,b)
6: for j = 1→ B do
7: zjemp ← zjemp + |ûj|2
8: end for
9: end for
10: for j = 1→ B do

11: zjemp ←
√
zjemp/Rest

12: end for
13: return zemp.
14: end procedure
15: procedure GetLegalKSample(x,H,G, T,∆, β, zemp) — Lemma 12.7.23
16: Rrepeat ← (T∆)3.
17: Sjheavy ← ∅,∀j ∈ [B]
18: for i = 1→ Rrepeat do
19: Choose α ∈ [0, T ] uniformly at random
20: ûi ← HashToBins(x,H,G, Pσ,α,b)
21: û

′i ← HashToBins(x,H,G, Pσ,α+β,b)
22: for j = 1→ B do
23: if |ûij| ≥ 0.5 · zjemp then
24: Sheavy,j ← Sjheavy ∪ i
25: end if
26: end for
27: end for
28: for j = 1→ B do
29: for i ∈ Sjheavy do
30: w(i)← |ûij|2 + |û′ij |2
31: end for
32: (v̂j, v̂

′
j)← (ûij, û

′i
j ) with probability w(i)/

∑
i′∈Sjheavy

w(i′) for i ∈ Sjheavy

33: end for
34: return v̂, v̂′ ∈ CB

35: end procedure
36: procedure OneStage(x,H,G, σ, b) — Lemma 12.7.20
37: zemp ← GetEmpiricalKEnergy(x,H,G, T,∆, σ, b)
38: L← LocateKSignal(x,H,G, T,∆, σ, b, zemp)
39: end procedure
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Algorithm 12.8 Main Algorithm for k-cluster Recovery
1: procedure CFTKCluster(x,H,G, T, F )
2: {f̃1, · · · , f̃l} ← FrequencyRecoveryKCluster(x,H,G, T, F )
3: x̃← SignalRecoveryKCluster+(f̃1, · · · , f̃l,∆ = poly(k, log(1/δ))/T, T )
4: return x̃ as our hypothesis
5: end procedure
6: procedure FrequencyRecoveryKCluster(x,H,G) — Theorem 12.2.6
7: for r ∈ [R] do
8: Choose σ ∈ [ 1

B∆h
, 2
B∆h

] uniformly at random
9: Choose b ∈ [0, 2πbF/∆hc]

(σB)
] uniformly at random

10: Lr ← OneStage(x,H,G, σ, b)
11: end for
12: L∗ ←MergedStages(L1, L2, · · · , LR)
13: end procedure
14: procedure SignalRecoveryKCluster(f̃1, · · · , f̃l,∆, T )
15: d← 5π((∆T )1.5 + k3 log k + k log 1/δ)
16: m← O((kd)C3 · logC3 d) for a constant C3 = 5
17: for j = 1→ m do
18: Sample tj from [0, T ] uniformly at random
19: Ãj,i1·l+i2 ← ti1j · e2πif̃i2 tj for each (i1, i2) ∈ {0, · · · , d} × [l]

20: b̃j ← x(tj)
21: end for
22: α← LinearRegression(Ã, b̃)

23: return x̃(t)←
d∑

i1=0

l∑
i2=1

αi1·l+i2t
i1 · e2πif̃i2 t

24: end procedure
25: procedure SignalRecoveryKCluster+(f̃1, · · · , f̃l,∆, T ) — Theorem 12.9.1
26: R← Θ(k)
27: d← 5π((∆T )1.5 + k3 log k + k log 1/δ)
28: m← O((kd)C3 · logC3 d) for a constant C3 = 5
29: for i = 1→ R do
30: x̃i(t)← SignalRecoveryKCluster(f̃1, · · · , f̃l,∆, T )
31: end for
32: for j = 1→ m do
33: Sample tj from [0, T ] uniformly at random
34: Ãj,i1·l+i2 ← ti1j · e2πif̃i2 tj for each (i1, i2) ∈ {0, · · · , d} × [l]

35: b̃j ← median
i∈[R]

x̃i(tj)

36: end for
37: α← LinearRegression(Ã, b̃)

38: return x̃(t)←
d∑

i1=0

l∑
i2=1

αi1·l+i2t
i1 · e2πif̃i2 t

39: end procedure
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Chapter 13

High Dimensional Fourier Transform

We consider the extensively studied problem of computing a k-sparse approxima-

tion to the d-dimensional Fourier transform of a length n signal. Our algorithm uses

O(k log k log n) samples, is dimension-free, operates for any universe size, and achieves the

strongest `∞/`2 guarantee, while running in time comparable to the Fast Fourier Transform.

All previous algorithms proceed either via the Restricted Isometry Property or via filter

functions. Our approach totally departs from the aforementioned techniques, and we believe

is a fresh look to the sparse Fourier transform problem.
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13.1 Introduction

Initiated in discrete signal processing, compressed sensing/sparse recovery is an ex-

tensively studied branch of mathematics and algorithms, which postulates that a number of

small linear measurements suffice to approximately reconstruct the best k-sparse approxima-

tion of a vector x ∈ Cn [CT06, CRT06b, Don06]. The literature on the subject is enormous,

and has found applications in imaging, astronomy, seismology etc. One of the initial papers

in the field, due to Candes, Romberg and Tao [CRT06a], counts almost 15, 000 references.

Probably the most important subtopic is the sparse Fourier transform, where one

desires to reconstruct a k-sparse vector from Fourier measurements. In other words, mea-

surements are not allowed to be generic, but have to belong to the so-called Fourier ensemble.

In Optics imaging [Goo05, Voe11] and Magnetic resonance imaging (MRI) [ASSN08], the

physics [Rey89] of the underlying device restricts us to the Fourier ensemble, where the

sparse Fourier problem becomes highly relevant. In fact, one of the initial motivations of

Candes, Romberg and Tao came out due to the aforementioned applications. The number of

samples plays a crucial role: they determine the amount of radiation a patient receives in CT

scans, and taking fewer samples can reduce the amount of time the patient needs to stay in

the machine. The framework has found its way in practical life-changing applications. Soft-

ware includes the Compressed Sensing GRAB-VIBE, CS SPACE, CS SEMAC and CS

TOF by Siemens [Sie], as well as Compressed Sense by Phillips [Phi]. Its incorporation in

the MRI technology allows faster acquisition rates, depiction of dynamic processes or moving

organs, as well as acceleration of MRI scanning up to a factor of 40. On the webpage of

SIEMENS Healthineers, for example, one can see the following, as well as numerous similar

statements.
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This allows bringing the advantages of Compressed Sensing GRASP-VIBE to daily

clinical routine.

• Perform push-button, free-breathing liver dynamics.

• Overcome timing challenges in dynamic imaging and respiratory artifacts.

• Expand the patient population eligible for abdominal MRI.

The Fourier transform is in fact ubiquitous: image processing, audio processing,

telecommunications, seismology, polynomial multiplication, Subset Sum and other text-

book algorithms are a few of the examples where the Fast Fourier Transform finds appli-

cations. The Fast Fourier Transform by Cooley and Tukey [CT65] runs in O(n log n) time,

and has far-reaching applications in all of the aforementioned cases. It is thus expected that

algorithms which exploit sparsity assumptions about the input, and can outperform FFT in

applications are of high practical value. Generally, the two most important parameters one

would like to optimize are the sample complexity, i.e. the numbers needed to obtain from

the time domain, as well as time needed to approximate the Fourier Transform.

Two different lines of research exist for the problem: the one focuses solely on sample

complexity, while the other tries to achieve sublinear time while keeping the sample complex-

ity as low as possible. The first line of research operates via the renowned Restricted Isometry

Property (RIP), which proceeds by taking random samples and solving a linear/convex pro-

gram, or an iterative thresholding procedure [CT06, DDTS06, TG07, BD08, DM08, RV08,

BD09b, BD09a, NT09b, NV09, GK09, BD10, NV10, Fou11, Bou14, HR16]. The analysis

of the algorithms is performed in the following way, in two steps. The first step ensures
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that, after sampling an appropriate number of points from the time domain, the inverse

DFT matrix restricted on the rows indexed by those points acts as a near isometry on the

space of k-sparse vectors. All of the state of the art results [CT06, RV08, Bou14, HR16]

employ chaining arguments to make the analysis of this sampling procedure as tight as

possible. The second part is how to exploit the aforementioned near-isometry property to

find the best k-sparse approximation to the signal. There the approaches either follow an

iterative procedure which gradually denoise the signal [BD08, NT09b, NV09], or perform `1

minimization [CT06], a method that promotes sparsity of solutions.

The second line of research tries to implement arbitrary linear measurements via

sampling Fourier coefficients [GL89, Man92, KM93, GGI+02, AGS03, GMS05, Iwe08, Iwe10,

HIKP12a, HIKP12b, LWC13, Iwe13, PR14, IKP14, IK14, Kap16, Kap17, CI17, BZI17,

MZIC17, LN19] and use sparse functions (in the time domain) which behave like bandpass

filters in the frequency domain. The seminal work of Kapralov [Kap17] achieves O(k log n)

samples and running time that is some log factors away from the sample complexity. This

would be the end of the story, apart from the fact that this algorithm does not scale well with

dimension, since it has an exponential dependence on d. Indeed, in many applications, one

is interested in higher dimensions, rather than the one-dimensional case. The main reason1

why this curse of dimensionality appears is due to the lack of dimension-independent ways

to construct functions that approximate the `∞ ball and are sufficiently sparse in the time

domain. A very nice work of Kapralov, Velingker and Zandieh [KVZ19] tries to remedy

that by combining the standard execution of FFT with careful aliasing, but their algorithm

1But not the only one: pseudorandom permutations for sparse FT in high dimensions also incur an
exponential loss, and it is not known whether this can be avoided.
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works in a noiseless setting, and has a polynomial, rather than linear, dependence on k; the

running time is polynomial in k, log n and the exponential dependence is avoided. It is an

important and challenging question whether a robust and more efficient algorithm can be

found.

We note that in many applications, such as MRI or computed tomography (CT), the

main focus is the sample complexity; the algorithms that have found their way to industry

are, to the best of our knowledge, not concerned with sublinear running time, but with

the number of measurements, which determine the acquisition time, or in CT the radiation

dose the patient receives. Lastly, we bring to the readers’ attention the recent work on

sparse Fourier transform in the continuous setting, see [Iwe10, Iwe13, Iwe13, BCG+12, PS15,

CKPS16, AKM+19].

Our Contribution. We give a new algorithm for the sparse Fourier transform problem,

which has O(k log n log k) sample complexity for any dimension, and achieves the `∞/`2

guarantee2, while running in time Õ(n). The previous state of the art algorithm that

achieved such a guarantee is the work of Indyk and Kapralov [IK14], which has 2O(d log d)k log n

sample complexity; an exponentially worse dependence on d. The work of [HR16] obtains

O(k log n log2 k) samples in any dimension, but has a much weaker guarantee, while their

approach requires Ω(k log n log k) samples in high dimensions [Rao19]. Moreover, the algo-

rithm in [IK14] operates when the universe size in each dimension is a power of 2, whereas

there is no restriction in our work. To obtain our result, we introduce a set of new tech-

2This is the strongest guarantee in the sparse recovery literature. See also the caption of the table in
Section 1.2
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niques, deviating from previous work, which used the Restricted Isometry Property and/or

filter functions.

13.1.1 Preliminaries

For any positive integer n, we use [n] to denote {1, 2, · · · , n}.

We assume that the universe size n = pd for any positive integer p. Our algorithm

facilitates n = Πd
j=1pj for any positive integers p1, . . . , pd, but we decide to present the

case n = pd for ease of exposition; the proof is exactly the same in the more general case.

Let ω = e2πi/p where i =
√
−1. We will work with the normalized d-dimensional Fourier

transform

x̂f =
1√
n

∑

t∈[p]d

xt · ωf
>t, ∀f ∈ [p]d

and the inverse Fourier transform is

xt =
1√
n

∑

f∈[p]d

x̂f · ω−f
>t, ∀t ∈ [p]d.

For any vector x and integer k, we denote x−k to be the vector obtained by zeroing

out the largest (in absolute value) k coordinates from x.

13.1.2 Our result

Apart from being dimension-independent and working for any universe size, our al-

gorithm satisfies `∞/`2, which is the strongest guarantee out of the standard guarantees

considered in compressed sensing tasks. A guarantee G1 is stronger than guarantee G2 if

for any k-sparse recovery algorithm that satisfies G1 we can obtain a Ω(k)-sparse recovery
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algorithm that satisfies G2. See also below for a comparison between `∞/`2 and `2/`2, the

second stronger guarantee.

Previous work is summarized in Table 13.1. Our result is the following.

Theorem 13.1.1 (main result, informal version). Let n = pd where both p and d are positive

integers. Let x ∈ C[p]d. Let k ∈ {1, . . . , n}. Assume that R∗ ≥ ‖x̂‖∞/‖x̂−k‖2 where logR∗ =

O(log n) (signal-to-noise ratio). There is an algorithm that takes O(k log k log n) samples

from x, runs in Õ(n) time, and outputs a O(k)-sparse vector y such that

‖x̂− y‖∞ ≤
1√
k
‖x̂−k‖2

holds with probability at least 1− 1/ poly(n).

Comparison between `∞/`2 and `2/`2 (or `2/`1). For the sake of argument, we will

consider only the `2/`2 guarantee which is stronger than `2/`1. The `2/`2 guarantee is the

following: for x̂ ∈ Cn one should output a z such that ‖x̂− z‖2 ≤ C‖x̂−k‖2, where C > 1 is

the approximation factor. Consider C = 1.1 3, and think of the following signal: for a set S

of size 0.05k we have |x̂i| = 2√
k
‖x̂S̄‖2. Then the all zeros vectors is a valid solution for the

`2/`2 guarantee, since

‖~0− x̂‖2
2 = ‖x̂S‖2

2 + ‖x̂S̄‖2
2 = 0.05k · 4

k
‖x̂S̄‖2

2 + ‖x̂S̄‖2
2 = 1.2‖x̂S̄‖2

2 < 1.12‖x̂S̄‖2
2.

3This is the case with the RIP based approaches, which obtain `2/`1. In fact many filter-based algorithms
facilitate (1 + ε) on the right hand side, with the number of measurements being multiplied by ε−1. By
enabling the same dependence on ε−1 our algorithm facilitates a multiplicative ε factor on right hand side
of the `∞/`2, which makes it much stronger. Thus, a similar argument can go through.
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Reference Samples Time Filter RIP Guarantee
[GMS05] k logO(d) n k logO(d) n Yes No `2/`2

[CT06] k log6 n poly(n) No Yes `2/`1

[RV08] k log2 k log(k log n) log n Õ(n) No Yes `2/`1

[HIKP12a] k logd n log(n/k) k logd n log(n/k) Yes No `2/`2

[CGV13] k log3 k log n Õ(n) No Yes `2/`1

[IK14] 2d log dk log n Õ(n) Yes No `∞/`2

[Bou14] k log k log2 n Õ(n) No Yes `2/`1

[HR16] k log2 k log n Õ(n) No Yes `2/`1

[Kap16] 2d
2
k log n log log n 2d

2
k logd+3 n Yes No `2/`2

[KVZ19] k3 log2 k log2 n k3 log2 k log2 n Yes Yes Exactly k-sparse
Theorem 13.1.1 k log k log n Õ(n) No No `∞/`2

Table 13.1: n = pd. We ignore the O for simplicity. The `∞/`2 is the strongest possi-
ble guarantee, with `2/`2 coming second, `2/`1 third and exactly k-sparse being the less
strong. We note that [CT06, RV08, CGV13, Bou14, HR16] obtain a uniform guarantee,
i.e. with 1 − 1/poly(n) they allow reconstruction of all vectors; `∞/`2 and `2/`2 are im-
possible in the uniform case [CDD09]. We also note that [RV08, CGV13, Bou14, HR16]
give improved analysis of the Restricted Isometry property; the algorithm is suggested and
analyzed (modulo the RIP property) in [BD08]. The work in [HIKP12a] does not explicitly
state the extension to the d-dimensional case, but can easily be inferred from the argu-
ments. [HIKP12a, IK14, Kap16, KVZ19] work when the universe size in each dimension
are powers of 2. We also assume that the signal-to-noise ratio is bounded by a poly-
nomial of n, which is a standard assumption in the sparse Fourier transform literature
[HIKP12a, IK14, Kap16, Kap17, LN19].

It is clear that since ~0 is a possible output, we may not recover any of the coordinates

in S, which is the set of “interesting” coordinates. On the other hand, the `∞/`2 guarantee

does allow the recovery of every coordinate in S. This is a difference of recovering all 0.05k

versus 0 coordinates. From the above discussion, one can conclude in the case where there

is too much noise, `2/`2 becomes much weaker than `∞/`2, and can be even meaningless.

Thus, `∞/`2 is highly desirable, whenever it is possible. The same exact argument holds for
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`2/`1.

13.1.3 Summary of previous Filter function based technique

One of the two ways to perform Fourier sparse recovery is by trying to implement

arbitrary linear measurements, with algorithms similar to the ubiquitous CountSketch

[CCF02]. In the general setting CountSketch hashes every coordinate to one of the O(k)

buckets, and repeats O(log n) times with fresh randomness. Then, it is guaranteed that

every heavy coordinate will be isolated, and the contribution from non-heavy elements is

small. To implement this in the Fourier setting becomes a highly non-trivial task however:

one gets access only to the time-domain but not the frequency domain. One natural way to

do this is to exploit the convolution theorem and find a function which is sparse in the time

domain and approximates the indicator of an interval (rectangular pulse) in the frequency

domain; these functions are called (bandpass) filters. Appropriate filters were designed in

[HIKP12a, HIKP12b]: they were very good approximations of the rectangular pulse, i.e. the

contribution from elements outside the passband zone contributed only by 1/ poly(n) their

mass. These filters had an additional log n factor (in one dimension) in the sparsity of the

time domain and they are sufficient for the purposes of [HIKP12a], but in high dimensions

this factor becomes logd n. Filters based on the Dirichlet kernel give a better dependence

in terms of sparsity and dimension (although still an exponential dependence on the latter),

but the leak to subsequent buckets, i.e. coordinates outside the passband zone contribute

a constant fraction of their mass, in contrast to the filter used in [HIKP12a]. Thus one

should perform additional denoising, which is a non-trivial task. The seminal work of Indyk

and Kapralov [IK14] was the first that showed how to perform sparse recovery with these
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filters, and then Kapralov [Kap16, Kap17] extended this result to run in sublinear time.

We note, that any filter-based approach with filters which approximate the `∞ box, suffers

from the curse of dimensionality. [KVZ19] devised an algorithm which avoids the curse of

dimensionality by using careful aliasing, but it works in the noiseless case and has a cubic

dependence on k.

13.1.4 RIP property-based algorithms: a quick overview

We say the matrix A ∈ Cm×n satisfies RIP (Restricted Isometry Property [CT05])

of order k if for all k-sparse vectors x ∈ Cn we have ‖Ax‖2
2 ≈ ‖x‖2

2. A celebrated result

of Candes and Tao [CT06] shows that Basis Pursuit (`1 minimization) suffices for sparse

recovery, as long as the samples from the time domain satisfy RIP. In [CT06] it was also

proved using generic chaining that random sampling with oversampling factor O(log6 n)

gives RIP property for any orthonormal matrix with bounded entries by 1/
√
n. Then [RV08]

improved the bound to O(k·log2 k·log(k log n)·log n) and [CGV13] improved it to O(k·log3 k·

log n). Subsequent improvement by Bourgain [Bou14] has lead to O(k log k · log2 n) samples,

improved by Haviv and Regev to O(k log2 k · log n)[HR16]. The fastest set of algorithms are

iterative ones: for example Iterative Hard Thresholding [BD09a] or CoSaMP [NT09b] run

O(log n) iterations4 and each iteration takes Õ(n) time.

We note the very recent lower bound of [Rao19]: a subsampled Fourier matrix that

satisfies the RIP properties should have Ω(k log k ·d) rows5. This bound is particularly useful

in high dimensions, since it deteriorates to a trivial bound in low dimensions. We still believe

4To be precise, their running time is logarithmic in the signal-to-noise ratio, but we assumed throughout
the paper that this quantity is polynomial in n.

5[BLLM19] independently gives a similar bound for d = log n.
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though that a bound of Ω(k log k log n) should hold in all dimensions. Thus, what remains is

to obtain the `2/`2 guarantee by giving a tighter analysis, and removing the one log k factor

to match the lower bound, but our algorithm already allows Fourier sparse recovery with

these number of samples, even with a stronger guarantee.

13.1.5 Overview of our technique

Let x ∈ C[p]d denote our input signal in the time domain. In the following we assume

the knowledge of µ = 1√
k
‖x̂−k‖2 and R∗ which is an upper bound of ‖x̂‖∞/µ, and bounded

by poly(n). These are standard assumption [HIKP12a, IK14, Kap16, Kap17, LN19] in the

sparse Fourier transform literature. The bound on R∗ is useful for bounding the running

time (or the number of measurements in [HIKP12a]) and in any of [HIKP12a, IK14, Kap16,

Kap17, LN19] a log n can be substituted by logR∗ in the general case, which is also the case

for our algorithm. We note that our algorithm will be correct with probability 1−1/ poly(n)

whenever R∗ < 2n
100 ; this is fine for every reasonable application. We assumed the rounding

errors in FFT computation to be negligible, similarly to Remark 3.4 in [IK14].

Consider the simplest scenario: d = 1, p is a prime number and a 1-sparse signal x̂

which is 1 on some frequency f ∗. From a sample xt in the time-domain what would be the

most reasonable way to find f ∗? For every f ∈ [p] we would compute

√
nωftxt =

√
nωft · 1√

n

∑

f ′∈[p]

ω−f
′tx̂f ′ = ω(f−f∗)t,

and keep, for t 6= 0, the frequency that gives a real number. Since (f − f ∗)t will be zero only

for f = f ∗, we are guaranteed correct recovery. In the noisy and multi-dimensional case or

p is an arbitrary integer, however, this argument will not work, because of the presence of
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contribution from other elements and the fact that (f−f ∗)>t can be zero modulo p for other

frequencies apart from f . However, we can take a number of samples t and average
√
nωf

>t,

and hope that this will make the contribution from other frequencies small enough, so that

we can infer whether f corresponds to a heavy coordinate or not. More specifically, we pick

a list T of size O(k) uniformly at random from [p]d and compute
√
n

|T |
∑

t∈T

ωf
>txt

for all frequencies f . We show that if |T | = O(k) our estimator is good on average (and

later we will maintain O(log n) independent instances and take the median to make sure with

probability 1−1/ poly(n) the estimators for all the frequencies are good), and in fact behaves

like a crude filter, similarly to the ones used in [IK14], in the sense that every coordinate

contributes a non-trivial amount to every other coordinate. However, these estimators do

not suffer from the curse of dimensionality and our case is a little bit different, requiring a

quite different handling. The main reason is that in contrast to the filters used in [IK14],

there is not an easy way to formulate an isolation argument from heavy elements that would

allow easy measurement re-use, like Definition 5.2 and Lemma 5.4 from [IK14]. Buckets

induced by filter functions have a property of locality, since they correspond to approximate

`∞ boxes (with a polynomial decay outside of the box) in [p]d: the closer two buckets are

the more contribute the elements of one into the other. Our estimators on the other side do

not enjoy such a property. Thus, one has to go via a different route.

In what follows, we will discuss how to combine the above estimators with an iterative

loop that performs denoising, i.e. removes the contribution of every heavy element to other

heavy elements.
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We first implement a procedure which takes O(k log n) uniform random measurements

from x and has the guarantee that for any ν ≥ µ any y ∈ C[p]d where ‖x̂−y‖∞ ≤ 2ν and y is

independent from the randomness of the measurements, the procedure outputs a O(k)-sparse

z ∈ C[p]d such that ‖x̂− y − z‖∞ ≤ ν with probability 1− 1/ poly(n).

Lemma 13.1.2 (LinfinityReduce procedure/data structure, informal). Let µ = 1√
k
‖x̂−k‖2,

and ν ≥ µ. Let T(0) be a list of O(k log n) i.i.d. elements in [p]d. Let S be top O(k) coordi-

nates in x̂. There is a procedure that takes {xt}t∈T, y ∈ C[p]d and ν as input, runs in Õ(n)

time, and outputs z ∈ C[p]d so that if ‖x̂ − y‖∞ ≤ 2ν, supp(y) ⊆ S and y is independent

from the randomness of T(0), then ‖x̂ − y − z‖∞ ≤ ν and supp(z) ⊆ S with probability

1− 1/ poly(n) under the randomness of T(0).

Namely, we can take O(k log n) measurements and run the procedure in Lemma 13.1.2

to reduce (the upper bound of) the `∞ norm of the residual signal by half. We call the

procedure in Lemma 13.1.2 LinfinityReduce procedure. More generally, we can take

O(H · k log n) measurements and run the LinfinityReduce procedure H times to reduce

the `∞ norm of the residual signal to 1/2H of its original magnitude, with failure probability

at most 1/ poly(n). This is because if ν ≥ 2Hµ and ‖x̂−y‖∞ ≤ ν, then we can proceed in H

iterations where in the h-th iteration (h ∈ [H]) we can take O(k log n) fresh measurements

from x and run the LinfinityReduce procedure to make the `∞ norm of the residual signal

at most 2−hν. Note that if we set H = logR∗, we have already obtained a recovery algorithm

taking O(k log n logR∗) measurements, because we can drive down (the upper bound of) the

`∞ norm of the residual signal from ‖x̂‖∞ to µ in logR∗ iterations.
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13.1.5.1 O(k log n) measurements for k = O(log n)

We first discuss a measurement reuse idea that leads us to a sparse recovery algorithm

(Algorithm 13.1) taking O(k log n) measurements for k = O(log n). We set H = 5, and let

T = {T(1), . . . ,T(H)}, where each T(h) is a list of O(k log n) i.i.d. elements in [p]d. Note that

T(1), . . . ,T(H) are independent. In our sparse Fourier recovery algorithm, we will measure xt

for all t ∈ T.

In a nutshell, our approach finely discretizes the space of possible trajectories the al-

gorithm could evolve, and carefully argues about the correctness of the algorithm by avoiding

the intractable union-bound over all trajectories.

Recovery algorithm. The recovery algorithm proceeds in logR∗−H+1 iterations, where

each iteration (except the last iteration) the goal is to reduce the upper bound of `∞ norm

of the residual signal by half. Initially, the upper bound is R∗. It is important to note that

we use the same measurements T = {T(1), . . . ,T(H)} in all of these logR∗−H + 1 iterations.

In the following, we will describe one iteration of the recovery algorithm. Let y ∈ C[p]d

denote the sparse vector recovered so far, and let the upper bound of ‖x̂−y‖∞ be 2ν. Running

the LinfinityReduce procedure H times where in the h-th time we use measurements in

T(h), we obtain a O(k)-sparse z such that with probability 1 − 1/ poly(n), ‖x̂ − y − z‖∞ ≤

21−Hν ≤ 0.1ν (we call such z a desirable output by the LinfinityReduce procedure).

Instead of taking y + z as our newly recovered sparse signal, for each f ∈ supp(y + z), we

project yf + zf to the nearst points in G0.6ν := {0.6ν(x + yi) : x, y ∈ Z} and assign to y′f ,

where y′ denotes our newly recovered sparse signal. For all f 6∈ supp(y + z), we let y′f = 0.
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Algorithm 13.1 Fourier Sparse Recovery by Projection, O(k log n) Measurements When
k = O(log n)

1: procedure FourierSparseRecoveryByProjection(x, n, k, µ,R∗) .
Section 13.1.5.1

2: Require that µ = 1√
k
‖x̂−k‖2 and R∗ ≥ ‖x̂‖∞ /µ

3: H ← 5, ν ← µR∗/2, y ← ~0 . y ∈ C[p]d refers to the sparse vector recovered so far
4: Let T = {T(1), · · · ,T(H)} where each T(h) is a list of i.i.d. uniform samples in [p]d

5: while true do
6: ν ′ ← 21−Hν
7: Use {xt}t∈T to run the LinfinityReduce procedure (in Lemma 13.1.2) H times

(use samples in T(h) for each h ∈ [H] ), and finally it finds z so that ‖x̂− y − z‖∞ ≤ ν ′

8: if ν ′ ≤ µ then return y + z . We found the solution
9: y′ ← ~0
10: for f ∈ supp(y + z) do
11: y′f ← Π0.6ν(yf + zf ) . We want ‖x̂− y′‖∞ ≤ ν and the depend-
12: end for . ence between y′ and T is under control
13: y ← y′, ν ← ν/2
14: end while
15: end procedure

To simplify our exposition, here we introduce some notations. We call G0.6ν a grid of

side length 0.6ν, and we generalize the definition to any side length. Namely, for any rg > 0,

let grid Grg := {rg(x+ yi) : x, y ∈ Z}. Moreover, we define Πrg : C→ Grg to be the mapping

that maps any element in C to the nearest element in Grg . Now we can write y′ as

y′f =

{
Π0.6ν(yf + zf ), if f ∈ supp(y + z);

0, if f 6∈ supp(y + z).

At the end of each iteration, we assign y′ to y, and shrink ν by half. In the last

iteration, we will not compute y′, instead we output y + z. We present the algorithm in

Algorithm 13.1.
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Analysis. We analyze y′ conditioned on the event that ‖x̂ − y − z‖∞ ≤ 0.1ν (i.e. z is

a desirable output by the LinfinityReduce procedure, which happens with probability

1 − 1/ poly(n)). We will prove that y′ has two desirable properties: (1) ‖x̂ − y′‖∞ ≤ ν; (2)

the dependence between y′ and our measurements T is under control so that after taking y′

as newly recovered sparse signal, subsequent executions of the LinfinityReduce procedure

with measurements T still work with good probability. Property (1) follows from triangle

inequality and the fact that ‖x̂ − (y + z)‖∞ ≤ 0.1ν and ‖(y + z) − y′‖∞ ≤ 0.6ν. We now

elaborate on property (2). We can prove that for any f ∈ [p]d,

y′f ∈
{

Π0.6ν(x̂f + 0.1ν(α + βi)) : α, β ∈ {−1, 1}
}
.

Let S denote top 26k coordinates (in absolute value) of x̂. We can further prove that for any

f ∈ S, y′f = 0. Therefore, the total number of possible y′ is upper bounded by 4|S| = 4O(k).

If k = O(log n), we can afford union bounding all 4O(k) = poly(n) possible y′, and prove

that with probability 1 − 1/ poly(n) for all possible value of y′ if we take y′ as our newly

recovered sparse signal then in the next iteration the LinfinityReduce procedure with

measurements T gives us a desirable output.

Sufficient event. More rigorously, we formulate the event that guarantees successful ex-

ecution of Algorithm 13.1. Let E1 be the event that for all O(logR∗) possible values

of ν ∈ {µR∗
2
, µR

∗

4
, . . . , µ2H−1}, for all possible vector y where yf = 0 for f ∈ S and

yf ∈ {Π0.6ν(x̂f + 0.1ν(α + βi)) : α, β ∈ {−1, 1}} for f ∈ S (we also need to include the

case that y = ~0 for the success of the first iteration), running the LinfinityReduce proce-

dure (in Lemma 13.1.2) H times (where in the h-th time measurements {xt}t∈T(h) are used
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to reduce the error from 22−hν to 21−hν) finally gives z so that ‖x̂− y − z‖∞ ≤ 21−Hν. The

randomness of E1 comes from T = {T(1), . . . ,T(H)}.

First, event E1 happens with probability 1 − 1/ poly(n). This is because there are

4O(k) logR∗ possible combinations of ν and y to union bound, and each has failure probability

at most 1/ poly(n). For k = O(log n), and any R∗ < 2n
100 this gives the desired result.

Second, conditioned on event E1 happens, Algorithm 13.1 gives correct output. This can

be proved by a mathematical induction that in the t-th iteration of the while-true loop in

Algorithm 13.1, ‖x̂− y‖∞ ≤ 2−tµR∗.

13.1.5.2 O(k log k log n) measurements for arbitrary k

Using random shift to reduce projection size. We remark that in the analysis of the

previous recovery algorithm, if we can make sure that every yf + zf has only one possible

outcome when projecting to the grid G0.6ν , then we no longer need to union bound 4O(k)

events. However, if x̂f is very close to a grid point in G0.6ν (or x̂f ∈ G0.6ν), then no matter

how close yf + zf and x̂f are, Π0.6ν(yf + zf ) will have 4 possible values.

To address this, we introduce random shift, whose property is captured by Lemma 13.1.3.

To simplify notation, for any rb > 0 and c ∈ C we define box B∞(c, rb) := {c + rb(x + yi) :

x, y ∈ [−1, 1]}. For any S ⊆ C, let Πrg(S) = {Πrg(c) : c ∈ S}.

Lemma 13.1.3 (property of a randomly shifted box, informal). If we take a box of side

length 2rb and shift it randomly by an offset in B∞(0, rs) (or equivalently, [−rs, rs]×[−rs, rs])

where rs ≥ rb, and next we round every point inside that shifted box to the closest point in

Grg where rg ≥ 2rs, then with probability at least (1− rb/rs)2 everyone will be rounded to the

same point.
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In the following, we present a sparse Fourier recovery algorithm that incorporates the

random shift idea. The algorithm takes O(k log k log n) measurements. We set H = O(log k)

and take measurements of T = {T(1), . . . ,T(H)} , where T(h) is a list of O(k log n) i.i.d

elements in [p]d. Note that T(1), . . . ,T(H) are independent, and the choice of H is different

from Section 13.1.5.1.

In a nutshell, our approach finely discretizes the space of possible trajectories the

algorithm could evolve; in contrast to the case of k = O(log n), the number of trajectories

becomes much larger. For that, we perform random shifting after the samples are taken,

such that the number of trajectories is pruned, and we need to argue for a much smaller

collection of events. We note that we make the decoding algorithm be randomized: the

randomness in previous algorithms was present only when taking samples, and the rest of

the algorithm was deterministic. However, here we need randomness in both cases, and that

helps us prune the number of possible trajectories. To the best of our knowledge, this is a

novel argument and approach, and might be helpful for future progress in the field.

Recovery algorithm. Similar to the k = O(log n) case (Section 13.1.5.1), we assume

that we have already obtained a O(k)-sparse y ∈ C[p]d such that ‖x̂ − y‖∞ ≤ 2ν and y is

“almost” independent from T. We show how to obtain y′ ∈ C[p]d such that ‖x̂ − y′‖∞ ≤ ν

with probability 1− 1/ poly(n) and y′ is “almost” independent from T. The main idea is we

first run LinfinityReduce procedure H = O(log k) times to get an O(k)-sparse z ∈ C[p]d

such that ‖x̂− y − z‖∞ ≤ 1
220k

ν. Then we repeatedly sample a uniform random shift s ∈ C

(where ‖s‖∞ ≤ 10−3ν; here we consider complex numbers as 2D vectors) until for every

f ∈ supp(y + z), all the points (or complex numbers) of the form yf + zf + s+ a+ bi where
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Algorithm 13.2 Fourier Sparse Recovery by Random Shift and Projection (Informal Ver-
sion)

1: procedure FourierSparseRecovery(x, n, k, µ,R∗) . Theorem 13.1.1, n = pd

2: Require that µ = 1√
k
‖x̂−k‖2 and R∗ ≥ ‖x̂‖∞ /µ

3: H ← O(log k), ν ← µR∗/2, y ← ~0 . y ∈ C[p]d refers to the sparse vector recovered
so far

4: Let T = {T(1), · · · ,T(H)} where each T(h) is a list of i.i.d. uniform samples in [p]d

5: while true do
6: ν ′ ← 1

220k
ν

7: Use {xt}t∈T to run the LinfinityReduce procedure (in Lemma 13.1.2) H times
(use samples in Th for each h ∈ [H] ), and finally it finds z so that ‖x̂− y − z‖∞ ≤ ν ′

8: if ν ′ ≤ µ then return y + z . We found the solution
9: repeat
10: Pick s ∈ B∞(0, 10−3ν) uniformly at random
11: until ∀f ∈ supp(y + z), |Π0.04ν(B∞(yf + zf + s, ν ′))| = 1
12: y′ ← ~0
13: for f ∈ supp(y + z) do
14: y′f ← Π0.04ν(yf + zf + s) . We want ‖x̂− y′‖∞ ≤ ν and the depend-
15: end for . ence between y′ and T is under control
16: y ← y′, ν ← ν/2
17: end while
18: end procedure

a, b ∈ [− ν
220k

, ν
220k

] round to the same grid point in G0.04ν . Finally, for every f ∈ supp(y+ z),

we assign Π0.04ν(yf + zf + s) to y′f ; all remaining coordinates in y′ will be assigned to 0. We

present an informal version of our algorithm in Algorithm 13.2, and defer its formal version

to the appendix.

Analysis. Now we analyze the above approach. First, we have the guarantee that ‖x̂ −

y′‖∞ ≤ ν. Moreover, note that by our choice of s, for every f ∈ supp(y + z), yf + zf + s

and x̂f + s round to the same grid point in G0.04ν . Therefore, for the new vector y′ we
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have recovered, we “hide” the randomness in T, and the randomness only leaks from failed

attempts of the shifts. In the following, we show that each attempt of shift succeeds with

probability 1
2
.

We can restate the procedure of choosing s to be:

repeatedly sample s ∼ B∞(0, 10−3ν),

until for all f ∈ supp(y + z),
∣∣∣Π0.04ν

(
B∞
(
yf + zf + s,

ν

220k

))∣∣∣ = 1.

Note that | supp(y+z)| = O(k). Let us say that we can always guarantee that | supp(y+z)| ≤

50k. By Lemma 13.1.3 where we let rb = ν
220k

, rs = 10−3ν and rg = 0.04ν, for f ∈ supp(y+z),

Pr

[∣∣∣Π0.04ν

(
B∞
(
yf + zf + s,

ν

220k

)) ∣∣∣ = 1

]
≥ (1− rb

rs
)2 ≥ 1− 1

100k
.

By a union bound over f ∈ supp(y + z), the probability is at least 1
2
that for all f ∈

supp(y + z), |Π0.04ν(B∞(yf + zf + s, ν
220k

))| = 1.

Therefore, with probability 1−1/ poly(n), we will only try O(log n) shifts. We can ap-

ply a union bound over O(log n) possible shifts, and prove that with probability 1−1/ poly(n)

if taking y′ as our new y, and shrinking ν by half, the LinfinityReduce procedure will

work as desired as if there is no dependence issue.

Sufficient event. Let S be top O(k) coordinates in x̂. Let L = O(logR∗) denote the

number of iterations in Algorithm 13.2. For ` ∈ [L], let ν` = 2−`µR∗. For ` ∈ [L − 1], let

s
(a)
` be the a-th uniform randomly sampled from B∞(0, 10−3ν`) as appeared on Line 10 in

Algorithm 13.2. For the sake of analysis, we assume that Algorithm 13.2 actually produces

an infinite sequence of shifts s(1)
` , s

(2)
` , . . .. We formulate the event that guarantees successful
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execution of Algorithm 13.2. We define event E2 to be all of the following events hold.

1. For all ` ∈ [L− 1], there exists a ∈ [10 log n] so that for all f ∈ S,
∣∣∣∣Π0.04ν`

(
B∞(x̂f + s

(a)
` ,

1

100k
ν`)

)∣∣∣∣ = 1.

2. For ` = 1, if we run the LinfinityReduce procedure H times with y = ~0 and measure-

ments in T, we get z such that ‖x̂− z‖∞ ≤ 21−Hν1 and supp(z) ⊆ S.

3. For all ` ∈ {2, . . . , L}, for all a ∈ [10 log n], if we run the LinfinityReduce procedure

H times with y = ξ where

ξf =

{
Π0.04ν`(x̂f + s

(a)
`−1), if f ∈ S;

0, if f ∈ S.

then we get z such that ‖x̂− y − z‖∞ ≤ 21−Hν` and supp(y + z) ⊆ S.

We can prove that event E2 happens with probability 1 − 1/ poly(n). Moreover, we

can prove that conditioned on event E2 Algorithm 13.2 gives correct output. We defer both

proofs in the appendix.
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13.2 Algorithm for d-dimensional Sparse Fourier Transform

In this section, we will give a Fourier sparse recovery algorithm that takesO(k log k log n)

measurements with “`∞/`2” guarantee. We assume the knowledge of µ = 1√
k
‖x̂−k‖2. In fact,

a constant factor approximation suffices, but we prefer to assume exact knowledge of it in

order to simplify exposition. All of the arguments go through in the other case, with minor

changes in constants. We also assume we know R∗ so that R∗ ≥ ‖x̂‖∞ /µ. We assume that

logR∗ = O(log n). For larger logR∗ = O(poly(n)), our algorithm will still work, but the

decoding time will be worse by a factor of logR∗

logn
. Note that our assumptions on µ and R∗ are

standard. For example, [IK14] make the same assumption. We assume that we can measure

the signal x in the time domain, and we want to recover the signal x̂ in the frequency domain.

In our algorithm, we will use µ as a threshold for noise, and we will perform logR∗

iterations, where in each iteration the upper bound of `∞ norm of the residual signal (in

the frequency domain) shrinks by half. In Section 13.2.1, we give some definitions that

will be used in the algorithm. Then we present our new algorithm for d-dimension Fourier

sparse recovery in Section 13.2.2. In Section 13.2.3, we prove the correctness of the proposed

algorithm.

13.2.1 Notations

For a subset of samples (or measurements) {xt}t∈T from the time domain, where T

is a list of elements in [p]d, we define x̂[T ] in Definition 13.2.1 as our estimation to x̂.

Definition 13.2.1 (Fourier transform of a subset of samples). Let x ∈ C[p]d . For any T
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which is a list of elements in [p]d, for any f ∈ [p]d, we define

x̂
[T ]
f =

√
n

|T |
∑

t∈T

ωf
>txt.

In order to reuse samples across different iterations where we drive down the upper

bound of the residual signal by half, in each iteration after we obtain estimations to heavy

hitters (or equivalently large coordinates), instead of subtracting the estimates directly, we

need to “hide” the randomness leaked by the samples. We interpret each estimate (which is

a complex number) as a point on a 2-dimension plane, and hide the randomness by rounding

the estimate to the nearest grid point (where the side length of the grid is chosen to be a

small constant fraction of the target `∞ norm of the residual signal in the frequency domain),

which we call “projection onto grid”. In Definition 13.2.2, we formally define box and grid,

and in Definition 13.2.3 we define projection to grid. We illustrate these two definitions in

Figure 13.1.

Definition 13.2.2 (box and grid). For any c ∈ C and r ≥ 0, we define box B∞(c, r) ⊆ C as

B∞(c, r) = {c+ x+ yi : x, y ∈ [−r, r]}.

Namely, if we consider complex numbers as points on 2D plane, box B∞(c, r) refers

to `∞ ball with radius r centered at c.

For any r > 0, we define grid Gr ⊆ C as

Gr = {xr + yri : x, y ∈ Z}.
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O x

y

rg

rc

B∞(c, r)A1 A2

A4 A3

A0

Figure 13.1: Illustration of box B∞(c, r) and grid Grg . Box B∞(c, r) refers to all the points
in the square centered at c with side length 2r. Grid Grg refers to all the solid round points,
and the distance between origin O and A0 is rg. Note that the dashed lines are decision
boundaries of the projection Πrg , and all the points inside a minimum cell separated by the
dashed lines are mapped (by Πrg) to the same grid point in Grg (which is the center of the
cell). We have Πrg(c) = A1 and Πrg(B∞(c, r)) = {A1, A2, A3, A4}.

Definition 13.2.3 (projection onto grid). For any r > 0, we define Πr to be a maping from

C to Gr, so that for any c ∈ C,

Πr(c) = arg min
c′∈Gr
|c− c′|,

where we break the tie by choosing the one with minimum |c′|. As a natural generalization,

For C ⊆ C, we define

Πr(C) = {Πr(c) : c ∈ C}.
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13.2.2 Algorithm

We present our new sparse Fourier recovery algorithm in Algorithm 13.3. Its auxiliary

function LinfinityReduce is in Algorithm 13.4. Important constants are summarized in

Table 13.2.

In Algorithm 13.3, we define “bucket size” B = O(k) and number of repetitions

R = O(log n). For each r ∈ [R], we choose Tr to be a list of B independent and uniformly

random elements in [p]d. We will measure xt for all t ∈ ∪r∈[R]Tr, and use LinfinityReduce

in Algorithm 13.4 to locate and estimate all the “heavy hitters” of the residual signal so that if

we substract them then the `∞ norm of the new residual signal shrinks by half. The input to

LinfinityReduce is a signal x ∈ C[p]d in the time domain (but we can only get access to xt

where t ∈ ∪r∈[R]Tr), a sparse vector y ∈ C[p]d in the frequency domain that we have recovered

so far, and ν ≥ µ such that ‖x̂−y‖∞ ≤ 2ν where we will refer x̂−y as the currect residual sig-

nal (in the frequency domain). It is guaranteed that LinfinityReduce(x, n, y, {Tr}Rr=1, ν)

returns a O(k)-sparse z so that ‖x̂− y − z‖ ≤ ν with probability 1− 1/ poly(n).

Algorithm 13.3 in total maintains H = O(log k) independent copies of such error-

reduce data structures, where in the h-th copy it measures T(h) = {T(h)
r }r∈[R] for h ∈ [H].

We denote T = {T(h)}r∈[R]. If logR∗ ≤ H, then we can simply use different T(h) in different

iterations. In that case L = 1 and H = logR∗ in Algorithm 13.3. We will get z(1) on Line 20

such that ‖x̂ − y(0) − z(1)‖∞ ≤ µ (we will prove in the analysis this holds with probability

1− 1/ poly(n)) where y(0) = 0, and return z(1) + y(0) on Line 22.

If logR∗ > H, we have to reuse the samples. We proceed in L iterations (in the loop

between Line 14 and Line 33 in Algorithm 13.3), where L = logR∗ − H + 1. For ` ∈ [L],
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· · ·

(a) h = 0 (b) h = 1 (c) h = H

Figure 13.2: Illustration of the behavior of Line 16 to Line 20 in Algorithm 13.3. For any f ∈
[p]d, we draw box B∞(y

(`−1)
f +zf , 2

1−hν`) after h iterations of the for loop between Line 17 and
Line 19 in Algorithm 13.3, where h ∈ {0, 1, . . . , H}. Conditioned on LinfinityReduce is
correct, for every h ∈ {0, 1, . . . , H}, after h-th iteration we have x̂f ∈ B∞(y

(`−1)
f +zf , 2

1−hν`).
When h = 0, i.e. before the loop between Line 17 and Line 19 starts, we know that
x̂f ∈ B∞(y

(`−1)
f , 2ν`) as depicted by (a). After each iteration in h, the radius of the box

shrinks by half (and its center might change). Finally after H iterations, as depicted by (c),
we obtain z(`−1) such that x̂f ∈ B∞(y

(`−1)
f + z

(`)
f , 21−Hν`).

as defined in Line 15, ν` = 2−`µR∗ refers to the target `∞ of the residual signal in the `-th

iteration (namely, for ` ∈ [L − 1] we want to obtain y(`) so that ‖x̂ − y(`)‖∞ ≤ ν`). In the

`-th iteration where ` ∈ [L], by using the samples in T = {T(h)}h∈H (Line 16 to Line 20),

the algorithm tries to get z(`) so that ‖x̂ − y(`−1) − z(`)‖∞ ≤ 21−Hν`. The intuition on the

behavior of Line 16 to Line 20 is depicted in Figure 13.2.

If ` = L the algorithm will return y(L−1) +z(L) as in Line 22; otherwise, the algorithm

will try to compute y(`) based on y(`−1) +z(`). In Line 25 to Line 28, the algorithm repeatedly

samples a uniform random shift s` ∈ B∞(0, αν`) (where α ∈ (0, 1) is a small constant

chosen in Table 13.2) until the shift is good, where shift s` is good if and only if for each

f ∈ supp(y(`−1)+z(`)), all the points in B∞(y(`−1)+z(`)+s`, 2
1−Hν`) (i.e. the box obtained by
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· · ·

(a) a failed attempt (b) another failed attempt (c) a successful attempt

Figure 13.3: Illustration of the iteration between Line 25 and Line 28 in Algorithm 13.3.
The round solid points represent grid points in Gβν , and the dashed lines represent decision
boundaries of Πβν` . In this example we have | supp(y(`−1) +z(`))| = 3, and the dotted squares
represent boxes B∞(y

(`−1)
f +z

(`)
f , 21−Hν`) for f ∈ supp(y(`−1)+z(`)). The algorithm repeatedly

samples a random shift s ∼ B∞(0, αν`), until all the shifted boxes {B∞(y
(`−1)
f +z

(`)
f , 21−Hν`)+

s}f∈supp(y(`−1)+z(`)) do not intersect with the dashed lines (i.e. decision boundaries of Πβν`).
In the figure, we color a shifted box in green if it does not intersect with dashed lines, and
color in red otherwise. After a series of failed attempts from (a) to (b), we finally have a
successful attempt in (c).

applying shift s` to the box B∞(y(`−1) + z(`), 21−Hν`)) project to the same grid point in Gβν` .

We depict the process of obtaining the shift s` in Figure 13.3. It is crucial to note that if the

shift s` is good and the vector z(`) we get is desirable (namely ‖x̂−y(`−1)−z(`)‖∞ ≤ 21−Hν`),

then for each f ∈ supp(y(`−1) + z(`)), Πβν`(y
(`−1)
f + z

(`)
f + s`) = Πβν`(x̂f + s`).

On Line 31, we assign Πβν`(y
(`−1)
f +z

(`)
f +s`) to y

(`)
f . Because β is a small constant, we

still have the guarantee that ‖x̂−y(`)‖∞ ≤ ν`. Moreover, by assigning Πβν`(y
(`−1)
f +z

(`)
f +s`) =

Πβν`(x̂f + s`) to y(`)
f , we “hide” the randomness in T = {T(h)}h∈[H]. Now the randomness

in T only leaks from failed attempts of the shifts. For analysis purpose, we maintain a

counter a` for ` ∈ [L − 1] recording the number of attempts until we have sampled a good
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one. By our choice of parameters, we can prove that with high probability a` ≤ 10 log n

for each ` ∈ [L − 1]. Thus intuitively the leaked randomness is under control, and we can

formally apply a union bound to prove that with good probability all possible invocations of

LinfinityReduce by our FourierSparseRecovery produce desirable output.

13.2.3 Analysis

In order to analyze the algorithm, let S ⊆ [n] be top CSk coordinates of x̂ where

CS = 26, and let S = [n] \ S. In order to analyze the performance of LinfinityReduce in

Algorithm 13.4, we need the following definition.

Definition 13.2.4 (uniform sample). We say t is sampled from [p]d uniformly at random if

for each i ∈ [d], we independently sample ti from [p] uniformly at random. We use t ∼ [p]d

to denote it.

Fact 13.2.1. Let ω = e2πi/p where p is any positive integer. For a fixed f ∈ [p]d \ {~0},

Et∼[p]d [ω
f>t] = 0.

Proof. Note that Et∼[p]d [ω
f>t] =

∏
i∈[d] Eti∼[p][ω

fiti ] by the fact that t1, . . . , td are independent.

Because f 6= ~0, there exists i ∈ [d] so that fi 6= 0. We have

E
ti∼[p]

[ωfiti ] =
1

p

p−1∑

j=0

(ωfi)j

=
1

p
· (ωfi)0(1− (ωfi)p)

1− ωfi
= 0,

where the second step follows from the sum of geometry series where ωfi 6= 1, adn the third

step follow from (ωfi)p = e2πifi = 1. Therefore, Et∼[p]d [ω
f>t] = 0.

943



Algorithm 13.3 Fourier Sparse Recovery by Random Shift and Projection

1: procedure FourierSparseRecovery(x, n, k, µ,R∗) . Theorem 13.2.9, n = pd

2: Require that µ = 1√
k
‖x̂−k‖2 and R∗ ≥ ‖x̂‖∞ /µ . R∗ is a power of 2

3: B ← CB · k . CB is a constant defined in Table 13.2
4: R← CR · log n . CR is a constant defined in Table 13.2
5: H ← min{log k + CH , logR∗} . CH is a constant defined in Table 13.2
6: for h = 1→ H do
7: for r = 1→ R do
8: T

(h)
r ←a list of B i.i.d elements in [p]d

9: end for
10: T(h) ← {T(h)

r }Rr=1

11: end for . We will measure xt for t ∈ ∪h∈[H],r∈[R]T
(h)
r

12: y(0) ← ~0 . y(0) ∈ Cn

13: L← logR∗ −H + 1
14: for ` = 1→ L do
15: ν` ← 2−`µR∗ . Target `∞ of the residual signal in iteration t
16: z ← ~0 . z is a temporary variable used to compute z(`)

17: for h = 1→ H do
18: z ← z + LinfinityReduce(x, n, y(`−1) + z,T(h), 21−hν`)
19: end for
20: z(`) ← z . We want ‖x̂− y(`−1) − z(`)‖∞ ≤ 21−Hν`
21: if ` = L then
22: return y(L−1) + z(L)

23: end if
24: a← 0 . A temporary counter maintained for analysis purpose only
25: repeat
26: Pick s` ∈ B∞(0, αν`) uniformly at random . α ∈ (0, 1) is a small constant
27: a← a+ 1 . β in the next line is a small constant where α < β < 0.1
28: until ∀f ∈ supp(y(`−1) + z(`)), |Πβν`(B∞(y

(`−1)
f + z

(`)
f + s`, 2

1−Hν`))| = 1
29: a` ← a
30: for f ∈ supp(y(`−1) + z(`)) do
31: y

(`)
f ← Πβν`(y

(`−1)
f + z

(`)
f + s`) . We want ‖x̂− y(`)‖∞ ≤ ν`

32: end for
33: end for
34: end procedure
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We define measurement coefficient as follows:

Definition 13.2.5 (measurement coefficient). For any f ∈ [p]d and any T which is a list of

elements in [p]d, we define

c
[T ]
f =

1

|T |
∑

t∈T

ωf
>t.

By definition of c[T ]
f and d-dimension Fourier transform, we can decompose x̂[T ]

f as

follows.

Lemma 13.2.2 (measurement decomposition). For any f ∈ [p]d and any T which is a list

of elements in [p]d,

x̂
[T ]
f =

∑

f ′∈[p]d

c
[T ]
f−f ′x̂f ′ .

Proof. We have

x̂
[T ]
f =

√
n

|T |
∑

t∈T

ωf
>txt

=

√
n

|T |
∑

t∈T

ωf
>t 1√

n

∑

f ′∈[p]d

ω−f
′>tx̂f ′

=

√
n

|T |
∑

t∈T

1√
n

∑

f ′∈[p]d

ω(f−f ′)>tx̂f ′

=
∑

f ′∈[p]d

(
1

|T |
∑

t∈T

ω(f−f ′)>t

)
x̂f ′

=
∑

f ′∈[p]d

c
[T ]
f−f ′x̂f ′ ,

945



Notation Choice Statement Parameter
CB 106 Lemma 13.2.8 B
CR 103 Lemma 13.2.7 R
CH 20 Algorithm 13.3 H
α 10−3 Algorithm 13.3 Line 26 shift range
β 0.04 Algorithm 13.3 Line 28 grid size
CS 26 Lemma 13.2.7, Lemma 13.2.8 |S|

Table 13.2: Summary of important constants.

Lemma Meaning
Lemma 13.2.2 measurement decomposition
Lemma 13.2.3 properties of coefficient
Lemma 13.2.4 noise bound
Lemma 13.2.5 guarantee of LinfinityReduce
Lemma 13.2.6 property of a randomly shifted box
Lemma 13.2.7 event E happens
Lemma 13.2.8 correctness of our algorithm

Table 13.3: Summary of Lemmas.

where the first step follow by the definition of x̂[T ]
f in Definition 13.2.1, second step follows

by the definition of inverse d-dimensional Fourier transform (see Section 13.1.1), third and

forth step follow by rearranging terms, last step follows by the definition of measurement

coefficients c in Definition 13.2.5.

Let T be a list of i.i.d. samples from [p]d, then the coeffcients c[T ]
f defined in Defini-

tion 13.2.5 have the following property.

Lemma 13.2.3 (properties of coeffcient c). Let T be a list of B independent and uniform

random elements in [p]d. Then we have

1. c[T ]
0 = 1.
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2. For any f ∈ [p]d \ {0}, ET
[
|c[T ]
f |2

]
= 1

B
.

3. For any f, f ′ ∈ [p]d, f 6= f ′, ET
[
c

[T ]
f · c

[T ]
f ′

]
= 0.

Proof. Part 1. By definition of c[T ]
0 ,

c
[T ]
0 =

1

|T |
∑

t∈T

ω0·t = 1.

Part 2. Let T = {t1, . . . , tB}, where ti is independently and uniformly chosen from

[p]d. For any f ∈ [p]d \ {0},

E
T

[
|c[T ]
f |2

]
= E

T

[
c

[T ]
f · c

[T ]
f

]

=
1

|T |2 ET


 ∑

i,j∈[B]

ωf
>(ti−tj)




=
1

|T |2


|T |+ E

T


 ∑

i,j∈[B],i 6=j

ωf
>(ti−tj)






=
1

|T | +
1

|T |2
∑

i,j∈[B],i 6=j

E
T

[
ωf
>(ti−tj)

]

=
1

|T | −
1

|T |2 · 0

=
1

|T | =
1

B
,

where the forth step follows by ET [ωf
>(ti−tj)] = Et∼[p]d [ω

f>t] = 0, in which ET [ωf
>(ti−tj)] =

Et∼[p]d [ω
f>t] because i 6= j, ti, tj are independent and uniformly random distributed in [p]d,

ti − tj ∼ [p]d; Et∼[p]d [ω
f>t] = 0 follows by by Fact 13.2.1 and f is not a zero vector.
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Part 3. For any f, f ′ ∈ [p]d, f 6= f ′,

E
T

[
c

[T ]
f · c

[T ]
f ′

]
=

1

|T |2 ET


 ∑

i,j∈[B]

ωf
>ti−f ′>tj




=
1

|T |2


 ∑

i,j∈[B],i 6=j

E
T

[
ωf
>ti−f ′>tj

]
+
∑

i∈[B]

E
T

[
ω(f−f ′)>ti

]



=
1

|T |2


 ∑

i,j∈[B],i 6=j

E
ti∼[p]d

[
ωf
>ti
]

E
tj∼[p]d

[
ω−f

′>tj
]

+
∑

i∈[B]

E
ti∼[p]d

[
ω(f−f ′)>ti

]



= 0,

where the second step follows from separating diagonal term and off-diagonal terms, the

third step follows from ti and tj are independent, the last step follows from Fact 13.2.1

where f − f ′ 6= ~0, and at least one of f and f ′ is not ~0.

Let T be a list of independent and uniformly random elements from [p]d. We are

going to measure xt for t ∈ T , and take x̂[T ]
f (recall its definition in Definition 13.2.1) as

estimate to x̂f . By Lemma 13.2.2, x̂[T ]
f =

∑
f ′∈[p]d c

[T ]
f−f ′x̂f ′ . The following lemma bounds the

contribution of coordinates from V where V ⊆ [p]d \ {f}, namely |∑f ′∈V c
[T ]
f−f ′x̂f ′ |. When

analyzing the quality of x̂[T ]
f as an approximation to x̂f , we consider coordinates in V as

noise, and we usually set V = [p]d \ {f}.

Lemma 13.2.4 (noise bound). For any f ∈ [p]d, T which is a list of B i.i.d. samples from

[p]d and V ⊆ [n] such that f 6∈ V ,

Pr
T

[∣∣∣∣∣
∑

f ′∈V

c
[T ]
f−f ′x̂f ′

∣∣∣∣∣ ≥
10√
B
‖x̂V ‖2

]
≤ 1

100
.
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Proof. First, we can prove that ET
[∣∣∣
∑

f ′∈V c
[T ]
f−f ′x̂f ′

∣∣∣
2
]

= 1
B
‖x̂V ‖2

2, because

E
T



∣∣∣∣∣
∑

f ′∈V

c
[T ]
f−f ′x̂f ′

∣∣∣∣∣

2

 = E

T

[ ∑

f1,f2∈V

(c
[T ]
f−f1

x̂f1)(c
[T ]
f−f2

x̂f2)

]

=
∑

f1,f2∈V

E
T

[
c

[T ]
f−f1

c
[T ]
f−f2

]
x̂f1x̂f2

=
∑

f ′∈V

E
T

[∣∣∣c[T ]
f−f ′

∣∣∣
2
]
|x̂f ′|2

=
1

B
‖x̂V ‖2

2,

where the third step follows from Lemma 13.2.3 that for f−f1 6= f−f2, ET
[
c

[T ]
f−f1

c
[T ]
f−f2

]
= 0,

and the last step follows from ET
[∣∣∣c[T ]

f−f ′

∣∣∣
2
]

= 1/B in Lemma 13.2.3.

Then the lemma follows from Chebyshev Inequality and the fact that

V
T

[∣∣∣∣∣
∑

f ′∈V

c
[T ]
f−f ′x̂f ′

∣∣∣∣∣

]
≤ E

T



∣∣∣∣∣
∑

f ′∈V

c
[T ]
f−f ′x̂f ′

∣∣∣∣∣

2

 =

1

B
‖x̂V ‖2

2.

In the next lemma, we show the guarantee of LinfinityReduce in Algorithm 13.4.

Lemma 13.2.5 (guarantee of LinfinityReduce in Algorithm 13.4). Let x ∈ C[p]d, and

n = pd. Let R = CR log n, and B = CBk. Let CB ≥ 106 and CR ≥ 103. Let µ = 1√
k
‖x̂−k‖2,

and ν ≥ µ. For r ∈ [R], let Tr be a list of B i.i.d. elements in [p]d. Let z ∈ Cn denote the

output of

LinfinityReduce(x, n, y, {Tr}Rr=1, ν).
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Algorithm 13.4 Procedure for Reducing `∞-norm of the Residual Signal
1: procedure LinfinityReduce(x, n, y, {Tr}Rr=1, ν) . Lemma 13.2.5
2: Require that ‖x̂− y‖∞ ≤ 2ν
3: Let w be inverse Fourier transform of y . We have ŵ = y
4: for r = 1→ R do
5: for f = 1→ n do . Implemented by FFT which takes O(n log n) time

6: uf,r ←
√
n
|Tr|
∑

t∈Tr ω
f>t(xt − wt) . ω = e2πi/p, uf,r = ̂(x− w)

[Tr]

f

7: end for
8: end for
9: for f = 1→ n do
10: η = medianr∈[R]{uf,r} . Take the median coordinate-wise
11: if |η| ≤ ν/2 then
12: zf ← η
13: else
14: zf ← 0
15: end if
16: end for
17: return z . Guarantee ‖x̂− y − z‖∞ ≤ ν
18: end procedure

Let S be top CSk coordinates in x̂, where CS = 26. If ‖x̂− y‖∞ ≤ 2ν, supp(y) ⊆ S and y is

independent from the randomness of {Tr}Rr=1, then with probability 1− 1/ poly(n) under the

randomness of {Tr}Rr=1, ‖x̂− y − z‖∞ ≤ ν and supp(z) ⊆ S. Moreover, the running time of

LinfinityReduce is O(n log2 n).

Proof. Note that ∀f ∈ S,

|x̂f | ≤
√
‖x̂−k‖2

2

CSk − k
=

1

5
µ,

where the last step follows from choice of CS.

Let w denote the inverse Fourier transform of y. Note that on Line 6 in Algo-
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rithm 13.4, for any f ∈ [p]d and r ∈ [R],

uf,r =

√
n

|Tr|
∑

t∈Tr

ωf
>t(xt − wt)

= ̂(x− w)
[Tr]

f

=
∑

f ′∈[n]

c
[Tr]
f−f ′(x̂f ′ − yf ′),

where the second step follows by the notation in Definition 13.2.1, and the third step follows

by Lemma 13.2.2. Therefore,

x̂f − yf = uf,r −
∑

f ′∈[p]d\{f}

c
[Tr]
f−f ′(x̂f ′ − yf ′), (13.1)

By Lemma 13.2.4,

Pr
Tr



∣∣∣∣∣∣
∑

f ′∈[p]d\{f}

c
[Tr]
f−f ′(x̂f ′ − yf ′)

∣∣∣∣∣∣
≥ 10√

B
‖(x̂− y)[p]d\{f}‖2


 ≤ 1

100
. (13.2)

We have

10√
B
‖(x̂− y)[p]d\{f}‖2 ≤

10√
B

(
‖(x̂− y)S\{f}‖2 + ‖(x̂− y)S\{f}‖2

)

≤ 10√
B

(
‖x̂− y‖∞ ·

√
|S|+ ‖x̂S\{f}‖2

)

≤ 10√
B

(
2ν ·
√

26k +
√
kµ
)

≤ 1

100
√
k

(
2ν ·
√

26k +
√
kµ
)

< 0.12ν, (13.3)

where the first step following by triangle inequality, the second step follows by the assumption

that supp(y) ⊆ S, the forth step follows by CB ≥ 106, the last step follows by µ ≤ ν.
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Therefore,

Pr
Tr

[|uf,r − (x̂f − yf )| ≤ 0.12ν] = Pr
Tr



∣∣∣∣∣∣
∑

f ′∈[p]d\{f}

c
[Tr]
f−f ′(x̂f ′ − yf ′)

∣∣∣∣∣∣
≤ 0.12ν




= 1− Pr
Tr



∣∣∣∣∣∣
∑

f ′∈[p]d\{f}

c
[Tr]
f−f ′(x̂f ′ − yf ′)

∣∣∣∣∣∣
> 0.12ν




≥ 1− Pr
Tr



∣∣∣∣∣∣
∑

f ′∈[p]d\{f}

c
[Tr]
f−f ′(x̂f ′ − yf ′)

∣∣∣∣∣∣
≥ 10√

B
‖(x̂− y)[p]d\{f}‖2




≥ 1− 1

100
,

where the first step follows by (13.1), the third step follows by (13.3), and the last step

follows by (13.2).

Thus we have

Pr
Tr

[uf,r ∈ B∞(x̂f − yf , 0.12ν)] ≥ Pr
Tr

[|uf,r − (x̂f − yf )| ≤ 0.12ν] ≥ 1− 1

100
.

Let ηf = medianr∈[R]uf,r as on Line 10 in Algorithm 13.4. By Chernoff bound, with probabil-

ity 1−1/ poly(n), more than 1
2
R elements in {uf,r}Rr=1 are contained in boxB∞(x̂f−yf , 0.12ν),

so that ηf ∈ B∞(x̂f − yf , 0.12ν).

Therefore, we have

Pr[|ηf − (x̂f − yf )| ≤ 0.17ν] ≥ Pr[|ηf − (x̂f − yf )| ≤
√

2 · 0.12ν] ≥ 1− 1/ poly(n).

Let E be the event that for all f ∈ [p]d, |ηf − (x̂f − yf )| ≤ 0.17ν. By a union bound over

f ∈ [p]d, event E happens with probability 1 − 1/ poly(n). In the rest of the proof, we

condition on event E.
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(Case 1) For f ∈ S, note that

|ηf | ≤ 0.17ν + |x̂f − yf | = 0.17ν + |x̂f | ≤ 0.17ν + 0.2ν = 0.37ν.

According to the if statement between Line 11 and Line 15 in Algorithm 13.4, zf will

be assigned to 0. Thus supp(z) ⊆ S. In addition, |x̂f − yf − zf | = |x̂f | ≤ µ ≤ ν.

(Case 2) For f ∈ S, we have two cases. We prove that |(x̂f − yf )− zf | ≤ ν for both

cases.

(Case 2.1) |ηf | ≤ 0.5ν. zf is assigned as 0. Because

|ηf − (x̂f − yf )| ≤ 0.17ν, |x̂f − yf | ≤ |ηf |+ 0.17ν ≤ 0.67ν.

Therefore,

|(x̂f − yf )− zf | ≤ 0.67ν ≤ ν.

(Case 2.2) |ηf | > 0.5ν. zf is assigned as ηf . We have

|(x̂f − yf )− zf | = |(x̂f − yf )− ηf | ≤ 0.17ν ≤ ν.

We thus have obtained that with probability 1− 1/ poly(n), ‖(x̂− y)− z‖∞ ≤ ν and

supp(z) ⊆ S.

The running time of LinfinityReduce is dominated by the loop between Line 4

and Line 8, which takes O(R · n log n) = O(n log2 n) by FFT.

For a given box B∞(c, r) and grid Grg , we say a shift s ∈ C is good if after applying

the shift, all the points in the shifted box B∞(c, r) + s are mapped to the same point by
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(a) a box and grid (b) a good shift (c) a bad shift

Figure 13.4: Illustration of good and bad shifts in Definition 13.2.6. In (a), the small square
represents box B∞(c, rb), and the dashed lines represent the decision boundary of Πrg . The
arrows in (b) and (c) represent two different shifts, where the shift in (b) is an example of
good shift, since the shifted box does not intersect with the decision boundaries of Πrg , while
the shift in (c) is an example of bad shift, since the shifted box intersects with the decision
boundaries of Πrg .

Πrg (recall that Πrg projects any point to the nearst grid point in Grg). We formulate the

notation of a good shift in the following definition, and illustrate in Figure 13.4.

Definition 13.2.6 (good shift). For any rg, rb, and any c ∈ C, we say shift s ∈ C is a good

shift if

∣∣Πrg(B∞(c, rb) + s)
∣∣ = 1.

The following lemma intuitively states that if we take a box of radius rb (or equiv-

alently, side length 2rb) and shift it randomly by an offset in B∞(0, rs) (or equivalently,

[−rs, rs] × [−rs, rs]) where rs ≥ rb, and next we round everyone inside that shifted box to

the closest point in Grg where rg ≥ 2rs, then with probability at least (1− rb/rs)2 everyone

will be rounded to the same point. In other words, let s ∼ B∞(0, rs), for box B∞(c, rb) and
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2rb
2rs

rg
(a) rg ≥ 2rs ≥ 2rb (b) partition of good and bad shifts

Figure 13.5: Illustration of Lemma 13.2.6. In (a) the smallest square represents box
B∞(c, rb), the medium-sized square represents B∞(c, rs), and the dashed lines represent deci-
sion boundaries of Πrg . Note that for s ∼ B∞(0, rs), the center of the shifted box s+B∞(c, rb)
is s + c ∼ B∞(c, rs). Shift s is good (recall in Definition 13.2.6) for box B∞(c, rb) and grid
Grg if and only if the distance between s+c and decision boundaries of Πrg is greater than rb.
In (b), we draw in red the set of points which are within distance at most rb to the decision
boundaries of Πrg . Then in (b) the red part inside B∞(c, rs) corresponds to bad shifts (plus
c), and the green part corresponds to good shifts (plus c). Intuitively, the fraction of the
green part is at least (1− rb/rs)2 because the vertical red strips can cover a width of at most
2rb on the x-axis of B∞(c, rs) (whose side length is 2rs), and the horizontal red strips can
cover a width of at most 2rb on the y-axis.

grid Grg , s is a good shift with probability at least (1− rb/rs)2. We illustrate the lemma in

Figure 13.5.

Lemma 13.2.6 (property of a randomly shifted box). For any rg, rs, rb so that rg/2 ≥ rs ≥

rb > 0 and any c ∈ C, let s ∈ C be uniform randomly chosen in B∞(0, rs), then

Pr
s∼B∞(0,rs)

[∣∣∣∣Πrg(B∞(c, rb) + s)

∣∣∣∣ = 1

]
≥
(

1− rb
rs

)2

,

where we refer rg, rs, rb as the radius of grid, shift and box respectively, and we use notation

C + s to refer to {c+ s : c ∈ C}.
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Proof. We consider complex numbers as points in 2D plane, where the real part is the coor-

dinate on x-axis, and the imaginary part is the coordinate on y-axis. Note that the “decision

boundary” of projection Πrg from C onto grid Grg consists of verticle lines of form x =

(m+ 1
2
)rg and horizontal lines of form y = (m+ 1

2
)rg, where m ∈ Z.

∣∣Πrg(B∞(c, rb) + s)
∣∣ = 1

if and only if the shifted box B∞(c, rb) + s does not intersect with the “decision boundary”.

Let s = sx + syi and c = cx + cyi. Then the shifted box does not intersect with the

“decision boundary” if and only if both the interval

[cx − rb + sx, cx + rb + sx] and [cy − rb + sy, cy + rb + sy]

do not intersect with {(m + 1
2
)rg : m ∈ Z}. The probability of each one is at least 1 − rb

rs
,

and two events are independent. Therefore, we get the claimed result.

In the following, we define event E, which is a sufficient condition for the correctness

of Algorithm 13.3. Event E consists of three parts. Part 1 of E is used to prove that

a` ≤ 10 log n for ` ∈ [L− 1] on Line 29 in Algorithm 13.3. Part 2 and Part 3 of E are used

to prove that Line 15 to Line 20 in Algorithm 13.3 give a desirable z(`) for ` ∈ [L].

Definition 13.2.7 (sufficient condition for the correctness of Algorithm 13.3). For input

signal x ∈ Cn, let µ = 1√
k
‖x̂−k‖2 and R∗ is an upper bound of ‖x̂‖∞/µ. Let S be top

CSk coordinates in x̂. Let H = min{log k + CH , logR∗}, and L = logR∗ − H + 1. For

` ∈ [L], let ν` = 2−`µR∗. For ` ∈ [L − 1], let s(a)
` be the a-th uniform randomly sampled

from B∞(0, αν`) as appeared on Line 26 in Algorithm 13.3 (i.e. s(1)
` , . . . , s

(a`)
` are sampled,

and s
(a`)
` is the first that satisfies the condition on Line 28). For the sake of analysis, we

assume that Algorithm 13.3 actually produces an infinite sequence of shifts s(1)
` , s

(2)
` , . . ., and
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chooses the smallest a` so that s(a`)
` satisfies ∀f ∈ supp(y(`−1) + z(`)), |Πβν`(B∞(y

(`−1)
f + z

(`)
f +

s
(a`)
` , 21−Hν`))| = 1 on Line 28.

For ` ∈ [L − 1], we define random variable a′` to be the smallest a′ such that for all

f ∈ S,
∣∣∣Πβν`

(
B∞(x̂f + s

(a′)
` , 23−Hν`)

)∣∣∣ = 1.

We define event E to be all of the following events hold.

1. For all ` ∈ [L− 1], a′` ≤ 10 log n.

2. For ` = 1, if we execute Line 15 to Line 20 in Algorithm 13.3 with y(0) = 0, we get z(1)

such that ‖x̂− z(1)‖∞ ≤ 21−Hν1 and supp(z(1)) ⊆ S.

3. For all ` ∈ {2, . . . , L}, for all a ∈ [10 log n], if we execute Line 15 to Line 20 in Algo-

rithm 13.3 with y(`−1) = ξ where

ξf =

{
Πβν`(x̂f + s

(a)
`−1), if f ∈ S;

0, if f ∈ S.

then we get z(`) such that ‖x̂− y(`−1) − z(`)‖∞ ≤ 21−Hν` and supp(y(`−1) + z(`)) ⊆ S.

In the following, we will prove that for fixed x, under the randomness of {s(a)
` }`∈[L−1],a∈{1,...}

and T = {T(h)}h∈[H], event E (defined in Definition 13.2.7) happens with probability at least

1− 1/ poly(n). Moreover, we will prove that event E is a sufficient condition for the correct-

ness of Algorithm 13.3. Namely, conditioned on event E, Algorithm 13.3 gives a desirable

output.

Lemma 13.2.7 (event E happens with high probability). Let E in Definition 13.2.7. For

any fixed x ∈ Cn, under the randomness of shifts {s(a)
` }`∈[L−1],a∈{1,...} and T = {T(h)}h∈[H],

Pr[E] ≥ 1− 1/ poly(n).

957



Proof. We bound the failure probability of each parts in event E respectively as follows, and

Pr[E] ≥ 1− 1/ poly(n) follows by a union bound.

Part 1. If H = logR∗, then L = 1 and it is trivially true that “for all ` ∈ [L−1], a′` ≤

10 log n”. Otherwise, we have H = log k + CH . By Lemma 13.2.6, for any ` ∈ [L − 1], for

any f ∈ S,

Pr
s∼B∞(0,αν`)

[∣∣∣∣Πβν`

(
B∞

(
x̂f , 2

3−Hν`
)

+ s
) ∣∣∣∣ = 1

]
≥
(

1− 23−Hν`
αν`

)2

=

(
1− 23−H

α

)2

,

where (1−23−H/α)2 ≥ 1−24−CH−log k/α ≥ 1− 1
100k

by our choice of α and CH in Table 13.2.

For each ` ∈ [L − 1], by a union bound over all f in S, the probability is at least

1 − CSk
100k

= 1 − 26k
100k

≥ 1
2
that for all f ∈ S, |Πβν`(B∞(x̂f + s, 23−Hν`))| = 1 where s ∼

B∞(0, αν`). Formally, we get

Pr
s∼B∞(0,αν`)

[∣∣∣∣Πβν`

(
B∞

(
x̂f , 2

3−Hν`
)

+ s
) ∣∣∣∣ = 1,∀f ∈ S

]
≥ 1/2.

Therefore, by definition of a′` in Definition 13.2.7,

Pr[a′` ≤ 10 log n] ≥ 1− (1/2)10 logn = 1− 1/n10.

By a union bound over all ` ∈ [L− 1], the probability is at least 1−L/n10 = 1− 1/ poly(n)

that for all ` ∈ [L− 1], a′` ≤ 10 log n.

Part 2. By Lemma 13.2.5 and a union bound over all h ∈ [H], the failure probability

is at mostH/ poly(n) = 1/ poly(n), whereH = O(log k) and soH/ poly(n) is still 1/ poly(n).

Part 3. For each ` ∈ {2, . . . , L} and a ∈ [10 log n], similar to the above argument,

each has failure probability at most 1/ poly(n). By a union bound, the failure probability is
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at most

(L− 1) · (10 log n)/ poly(n) = 1/ poly(n).

In the following lemma, we show that if event E (defined in Definition 13.2.7) happens,

then Algorithm 13.3 gives a desirable output.

Lemma 13.2.8 (correctness of Algorithm 13.3 conditioned on E). Let n = pd, and let

k ∈ [n]. Let x ∈ Cn be input signal. Let µ = 1√
k
‖x̂−k‖2. Let R∗ ≥ ‖x̂‖∞ /µ and R∗

is a power of 2. Let H = min{log k + CH , logR∗}. Let L = logR∗ − H + 1. For ` ∈

[L − 1], let y(`) be the vector obtained on Line 31 of Algorithm 13.3. For ` ∈ [L], let z(`)

be the vector obtained on Line 20. Note that y(0) = 0, and y(L−1) + z(L) is the output of

FourierSparseRecovery(x, n, k, R∗, µ) in Algorithm 13.3. Conditioned on the event E

(defined in Definition 13.2.7) happens, we have

‖x̂− y(L−1) − z(L)‖∞ ≤
1√
k
‖x̂−k‖2.

Proof. We first discuss the case that H = logR∗. In that case, L = 1. Conditioned on the

event E (Part 2 of E), z(1) obtained through Line 15 to Line 20 in Algorithm 13.3 satisfies

‖x̂− z(1)‖∞ ≤ 21−Hν1 = 21−H(2−1µR∗) = µ.

In the rest of the proof, we discuss the case that H > logR∗. For ` ∈ [L], let

ν` = 2−`µR∗. For ` ∈ [L − 1], let s(a`)
` ∈ B∞(0, αν`) denote the first s(a)

` on Line 26 in

Algorithm 13.3 such that for all f ∈ supp(y(`−1) + z(`)),
∣∣∣Πβν`

(
B∞

(
y

(`−1)
f + z

(`)
f + s

(a)
` , 21−Hν`

))∣∣∣ = 1.
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For ` ∈ [L− 1], we define ξ(`) ∈ C[p]d as follows

ξ
(`)
f =

{
Πβν`(x̂f + s

(a`)
` ), if f ∈ S;

0, if f ∈ S.

We also define ξ(0) = 0, s(a)
0 = 0 for a ∈ {1, . . .} and a0 = 1.

(Goal: Inductive Hypothesis) We are going to prove that conditioned on event E

(defined in Definition 13.2.7), for all ` ∈ {0, . . . , L− 1},

y(`) = ξ(`) and a` ≤ 10 log n.

(Base case) Note that y(0) = ξ(0) = 0 and a0 = 1 ≤ 10 log n.

(Inductive step) We will prove that conditioned on event E, if y(`−1) = ξ(`−1) and

a`−1 ≤ 10 log n for ` ∈ [L− 1], then y(`) = ξ(`) and a` ≤ 10 log n.

(Proving a` ≤ 10 log n) Conditioned on event E (if L = 1 then from Part 2 of E,

otherwise from Part 3 of E and by the fact that a`−1 ≤ 10 log n), z(`) obtained through Line 15

to Line 20 in Algorithm 13.3 satisfies ‖x̂ − ξ(`−1) − z(`)‖∞ ≤ 21−Hν` and supp(z(`)) ⊆ S.

Namely, for all f ∈ [p]d, ξ(`−1)
f + z

(`)
f ∈ B∞(x̂f , 2

1−Hν`). Recall the definition of a′` in

Definition 13.2.7. We can prove that a` ≤ a′` because if for all f ∈ S,
∣∣∣Πβν`

(
B∞

(
x̂f + s

(a′`)

` , 23−Hν`

))∣∣∣ = 1,

then for all f ∈ supp(y(`−1) + z(`)),
∣∣∣Πβν`

(
B∞

(
y

(`−1)
f + z

(`)
f + s

(a′`)

` , 21−Hν`

))∣∣∣ = 1

where

B∞

(
y

(`−1)
f + z

(`)
f + s

(a′`)

` , 21−Hν`

)
⊆ B∞

(
x̂f + s

(a′`)

` , 23−Hν`

)
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which follows by ξ(`−1)
f + z

(`)
f ∈ B∞(x̂f , 2

1−Hν`). Therefore, conditioned on E (Part 1 of E),

a` ≤ a′` ≤ 10 log n.

(Proving y
(`)
f = ξ

(`)
f ) For f ∈ [p]d, we will prove that y(`)

f = ξ
(`)
f in two cases.

(Case 1) If f ∈ supp(y(`−1) + z(`)) ⊆ S. We have

y
(`)
f = Πβν`

(
y

(`−1)
f + z

(`)
f + s

(a`)
`

)

= Πβν`

(
ξ

(`−1)
f + z

(`)
f + s

(a`)
`

)
.

Because ξ(`−1)
f + z

(`)
f ∈ B∞(x̂f , 2

1−Hν`), we have ξ(`−1)
f + z

(`)
f + s

(a`)
` ∈ B∞(x̂f + s

(a`)
` , 21−Hν`).

By the choice of s(a`)
` , Πβν`(ξ

(`−1)
f + z

(`)
f + s

(a`)
` ) = Πβν`(x̂f + s

(a`)
` ). Thus y(`)

f = ξ
(`)
f .

(Case 2) If f 6∈ supp(y(`−1) + z(`)). We have y(`)
f = 0. Because ξ(`−1)

f + z
(`)
f ∈

B∞(x̂f , 2
1−Hν`), we have |x̂f | < 22−Hν` < 0.1βν` by our choice of H. We can easily prove

that ξ(`)
f = 0 = y

(`)
f in the following two cases:

(Case 2.1) If f ∈ S, we have ξ(`)
f = Πβν`(x̂f + s

(a`)
` ) = 0 because

|x̂f |+ |s(a`)
` | < 0.1βν` + 2αν` < 0.5βν`.

(Case 2.2) If f ∈ S, ξ(`)
f = 0 by definition of ξ(`).

Therefore, for all ` ∈ [L−1], y(`) = ξ(`) and a` ≤ 10 log n. Again conditioned on event

E (Part 3 of E), z(L) obtained through Line 15 to Line 20 in Algorithm 13.3 satisfies

‖x̂− y(L−1) − z(L)‖∞ ≤ 21−HνL = 21−H(2−(logR∗−H+1)µR∗) = µ.

Therefore, y(L−1) + z(L) on Line 22 gives a desirable output.
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Now we present our main theorem, which proves the correctness of Algorithm 13.3,

and shows its sample complexity and time complexity.

Theorem 13.2.9 (main result, formal version). Let n = pd where both p and d are positive

integers. Let x ∈ C[p]d. Let k ∈ {1, . . . , n}. Assume we know µ = 1
k
‖x̂−k‖2 and R∗ ≥ ‖x̂‖∞/µ

where logR∗ = O(log n). There is an algorithm (Algorithm 13.3) that takes O(k log k log n)

samples from x, runs in O(n log3 n log k) time, and outputs a O(k)-sparse vector y such that

‖x̂− y‖∞ ≤
1√
k

min
k−sparse x′

‖x̂− x′‖2

holds with probability at least 1− 1/ poly(n).

Proof. The correctness of Algorithm 13.3 follows directly from Lemma 13.2.7 and Lemma 13.2.8.

The number of samples from x is

B ·R ·H = O(k · log n · log k) = O(k log k log n).

Its running time is dominated by L·H = O(log k log n) invocations of LinfinityReduce (in

Algorithm 13.4). By Lemma 13.2.5, the running time of LinfinityReduce is O(n log2 n).

Therefore, the running time of Algorithm 13.3 is

O(L ·H · n log2 n) = O(log k · log n · n log2 n) = O(n log3 n log k).
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Chapter 14

Set Query
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14.1 Introduction

This result presented in this section is based on a un-published manuscript, and is a

joint work Vasileios Nakos and Zhengyu Wang [NSW18].

Our first result is on the set-query problem. We show that O(k/ε) measurements,

O(log k) update time and O(k log k) query time are possible. Our hash functions are only

2-wise independent, and the amount of space to store the matrix Φ is only O(log k) words.

The previous work of [Pri11] needed Ω(n) time to store the matrix, since the columns had

to be fully independent, something that makes the particular sketch not applicable in the

streaming model. The problem of whether the matrix can be stored in less space was

explicitly stated in that paper as an open problem:

“Our analysis assumes that the columns of A are fully independent. It would be

valuable to reduce the independence needed, and hence the space required to store A.”

Theorem 14.1.1 (Classical set query). There exists a randomized construction of a linear

sketch Φ ∈ Rm×n with m = O(k/ε), such that given y = Φx and a set S ⊂ [n] of cardinality

at most k, we can find in O(k log k) time a k-sparse vector such that

‖x′ − xS‖2
2 ≤ ε‖x[n]\S‖2

2

holds with probability 9/10. The time to update the linear sketch is O(log k) and the space

to store the matrix is O(log k) words.

Our second main result concerns the ubiquitous problem of frequency estimation

from Fourier measurements. For any vector x ∈ Cn, let x̂ ∈ Cn denote the discrete Fourier

transform of x. The only previous known result by the breakthrough work of [Kap17] achieves
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Space Measurements Decoding Time Update Time
[Pri11] n k/ε k 1
Theorem 14.1.1 log k k/ε k log k log k

Table 14.1: Results on set query. We ignore the “O” for simplicity. “Space” means the space
to store matrix, which doesn’t include number of measurements. We note that the decoding
time of the set query algorithms do not depend on ε.

Measurements Running Time
[Kap17] k/ε k/ε · log3.001 n
Theorem 14.1.2 k/ε · log n k/ε · log n

Table 14.2: Results on Fourier set query. We ignore the “O” for simplicity. We assume signal
is bounded by poly(n). In Fourier set query, there is no update time concept.

sample complexity O(k/ε) and running time O(ε−1k log2.001 n logR∗) for `2/`2 Fourier set

query. Here, R∗ is an upper bound on the ‖ · ‖∞ norm of the vector, in most applications

being considered poly(n). We indicate how our approach immediately gives an algorithm

with O(ε−1k log n) running time. The result we get has no dependence on the running time

on logR∗, but does not achieve the optimal sample complexity.

Theorem 14.1.2 (Fourier set query). Given a vector x ∈ Cn, for every ε ∈ (0, 1) and

k ≥ 1, any S ⊆ [n], |S| = k, there exists an algorithm that takes O(ε−1k log(n/δ)) samples,

runs in O(ε−1k log(n/δ)) time, and outputs a vector x′ ∈ Cn such that ‖(x′ − x̂)S‖2
2 ≤

ε‖x̂[n]\S‖2
2 + δ‖x̂‖2

1 holds with probability at least 9/10.

Note that δ dependence is standard in Fourier transform setting, see e.g. [HIKP12a,

PS15, CKPS16].
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14.2 Classical set query

In this section, we present our set query data structure. We first give the construction

of sketching matrix in Section 14.2.1. Then we show our new set query data structure in

Section 14.2.2. We give an analysis of the data structure in Section 14.2.4, whose correctness

relies on a technical lemma on iterative loop, which is proved in Section 14.2.3.

14.2.1 Construction of sketching matrix

The sketching matrix used in our set query data structure consists of log k parts,

where the i-th part (i ∈ [log k]) of the sketching matrix corresponds to a count sketch data

structure that hashes n elements into Bi bins. We defer the choice of Bi to Section 14.2.2.

We present the sketching matrix Φ below.

Definition 14.2.1 (Sketching matrix Φ). For each i ∈ [log k], we choose hi : [n] → [Bi] to

be a pairwise independent hash function, and choose σi : [n] → {−1,+1} to be a pairwise

independent hash function.

For each i ∈ [log k], we define Count-Sketch matrix Φ(i) ∈ RBi×n as follows

Φ
(i)
j,l =

{
σi(l) if hi(l) = j

0 otherwise.

Let m =
∑log k

i=1 Bi. We define matrix Φ ∈ Rm×n as follows

Φ =




Φ(1)

Φ(2)

· · ·
Φ(log k)


 .
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14.2.2 Algorithm

Let C be a sufficiently large constant, and γ be a sufficiently small constant. For

i ∈ [log k], let ki = kγi and εi = ε(10γ)i. Let Bi = Cki/εi. The set query algorithm

maintains the measurement y = Φx.

On update operation, the algorithm follows directly through the definition of sketching

matrix Φ. Namely, on Update(i,∆), the algorithm finds the non-zero elements of the i-th

column of Φ, and update the measurement y accordingly.

On query operation Query(x, S), the recovery procedure uses x′ to record the current

best approximation of x, and initially set x′ ← 0. The procedure consists of log k iterations.

In the i-th iteration, let Si ⊆ S denote the set of coordinates in x that are yet to be recovered.

Initially S1 = S. Remind that sketching matrix Φ in Definition 14.2.1 consists of log k parts,

and the i-th part corresponds to a count sketch data structure with pair-wise independent

hash function hi and random sign function σi. In the i-th iteration of the set query algorithm,

Ti ←
{
j ∈ Si

∣∣ h−1
i (j) ∩ Si = ∅

}
.

Intuitively the hash function hi maps n elements into Bi bins, for any j ∈ Si, we have j ∈ Ti
if and only if j does not collide with any other elements in Si (in that case, we say j is

isolated).

The procedure also maintains y(i), which is the measurement of the residual vector

x − x′ (before the start of i-th iteration). After obtaining Ti, the procedure uses y(i) to

estimate xj for every j ∈ Ti. Then the procedure updates Si and x′ accordingly. Finally, the

algorithm outputs x′. Our iterative set query algorithm is presented in Algorithm 14.1.
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Algorithm 14.1 Iterative Set Query
1: procedure IterativeSetQuery(ε, k) . Theorem 14.2.2
2: C ← 20, γ ← 1/600
3: for i = 1→ log k do
4: ki ← kγi, εi ← ε(10γ)i

5: Bi ← Cki/εi
6: end for
7: m←∑log k

i=1 Bi . m is the number of measurement
8: Construct matrix Φ according to Definition 14.2.1 . Φ ∈ Rm×n

9: y ← 0 . y ∈ Rm

10: procedure Update(i,∆)
11: y ← y + ∆ · (Φ · ei)
12: end procedure
13: procedure Query(x, S)
14: S1 ← S
15: y(1) ← y
16: x′ ← 0 . x′ ∈ Rn records an estimation of x
17: for i = 1→ log k do
18: Find Ti ⊆ Si such that for each j ∈ Ti, it is isolated from other coordinates in

Si
19: l←∑i−1

i′=1Bi′

20: For each j ∈ Ti, compute x̂j ← y
(i)
l+hi(j)

21: Si+1 ← Si\Ti
22: y(i+1) ← y(i) − Φx̂Ti
23: x′ ← x′ + x̂Ti
24: end for
25: return x′

26: end procedure
27: end procedure

14.2.3 Iterative loop analysis

In this subsection, we characterize and prove two properties of the iterative loop in

Algorithm 14.1. The first property states that with good probability, as i increases, the

size of Si shrinks by a factor of at least 1 − γ, and otherwise its size does not increase.
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This property is guaranteed by identification property of count sketch and our choice of

parameters. The second property states that with good probability, the estimation error

in each round is small. This is guaranteed by estimation property of count sketch and our

choice of parameters. We formalize both properties in Lemma 14.2.1 as follows.

Lemma 14.2.1. Given parameters ε ∈ (0, 1), k ≥ 1, for each i ∈ [log k], we define

ki = kγi, εi = ε(10γ)i, Bi = C · ki/εi.

For each i ∈ [log k], if

∀j ∈ [i− 1], |Sj+1| ≤ γ|Sj|,

and

∀j ∈ [i− 1],
∑

t∈Tj

|xt − x̂t|2 ≤ ε · 2−j‖xS‖2
2.

Then we have :

Property (I) : With probability at least 1− 1
Cγ

(10γ)i,

|Si+1| ≤ γ|Si|,

and otherwise |Si+1| ≤ |Si|.

Property (II) : With probability at least 1− 2
C

(20γ)i,

∑

t∈Ti

|xt − x̂t|2 ≤ ε · 2−i‖xS‖2
2.

Proof. Proof of Property (I).
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For each i ∈ [log k], for each j ∈ Si, we use Zi,j to denote the boolean random variable

where Zi,j = 1 if there exists a j′ ∈ Si\{j} such that hi(j) = hi(j
′) and Zi,j = 0 otherwise.

By the randomness of hash function hi,

Pr
hi

[Zi,j = 1] = Pr
hi

[j is not isolated from Si] ≤ |Si|/Bi.

By the statement of the lemma, we know that |Si| ≤ γik and Bi = Ckγi/εi, thus

Pr
hi

[Zi,j = 1] ≤ γik/Bi ≤ εi/C.

We define Zi =
∑

j∈Si Zi,j. Next, we can show

E
hi

[Zi] = E
hi

[|{j ∈ Si | j is not isolated from Si}|] = E
hi

[∑

j∈Si

Zi,j

]
=
∑

j∈Si

E
hi

[Zi,j] ≤ |Si|εi/C,

where the third step follows by linearity of expectation. Therefore,

Pr
hi

[Zi ≥ γ|Si|] ≤ E
hi

[Zi]/(γ|Si|) ≤ |Si|εi/(Cγ|Si|) = εi/(Cγ),

where the first step follows by Markov’s inequality, and second step follows by Ehi [Zi] ≤

|Si|εi/C. This implies

Pr[|Si+1| ≥ γ|Si|] ≤ ε(10γ)i/(Cγ) ≤ 1

Cγ
(10γ)i.

Proof of Property (II).

We first define random variable Vi to be

Vi =
∑

l∈(∪j∈Sih
−1
i (j))\Si

|x(i)
l |2.
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That is, x(i) is the residual signal in the i-th round, and Vi refers to the noise coordi-

nates that are hashed to the same bins as coordinates in Si.

We can compute the expectation of Vi,

E
hi

[Vi] = E
hi




∑

l∈(∪j∈Sih
−1
i (j))\Si

|x(i)
l |2



≤ ki‖x(i)

Si
‖2

2/Bi

=
εi
C
‖x(i)

Si
‖2

2

=
(10γ)iε

C
‖x(i)

Si
‖2

2,

where the first step follows by the fact that for each l ∈ Si, the probability that

l ∈
(
∪j∈Sih−1

i (j)
)
\Si under the randomness of hi is |Si|/Bi ≤ ki/Bi, the second and third

step follow by definitions of Bi and εi, respectively.

By Markov’s inequality, we have

Pr
hi

[
Vi ≥

1

2
· 10−iε

∥∥∥x(i)

Si

∥∥∥
2

2

]
≤ 2

(100γ)i

C
. (14.1)

In the following, we argue conditioned on the event that all elements in Ti are isolated

under hi and Vi ≤ 10−iε‖x(i)

Si
‖2

2/2.

Recall the definition of x(i) ∈ Rn,

x(i) = x−
∑

t∈S\Si

x̂t = x−
i∑

j=1

∑

t∈Tj

x̂t. (14.2)
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For any fixed t ∈ Ti, let b = hi(t). We have

E
σi

[
|xt − x̂t|2

]
= E

σi



∣∣∣∣∣∣
xt − σi(t) ·

∑

l:hi(l)=b

σi(l)x
(i)
l

∣∣∣∣∣∣

2


= E
σi



∣∣∣∣∣∣

∑

l∈h−1
i (b)\{t}

σi(l)x
(i)
l

∣∣∣∣∣∣

2


=
∑

l∈h−1
i (b)\{t}

|x(i)
l |22, (14.3)

where the first step follows by definition of x̂t in Algorithm 14.1 and construction

of sketching matrix Φ in Definition 14.2.1, the third step follows by pairwise independence

property of random sign function σi.

We can upper bound Eσi [
∑

t∈Ti |xt − x̂t|2] in the following way,

E
σi

[∑

t∈Ti

|xt − x̂t|2
]

=
∑

t∈Ti

∑

l∈h−1
i (t)\{t}

|x(i)
l |22 by Eq. (14.3)

≤
∑

l∈∪t∈Sih
−1
i (t)\{t}

|x(i)
l |22 by definition of Ti

≤ ε10−i‖x(i)

Si
‖2

2/2 by Eq. (14.1)

≤ ε10−i‖xS‖2
2 by Eq. (14.5) (14.4)
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Second, we show how to upper bound ‖x(i)

Si
‖2

2,

‖x(i)

Si
‖2

2 = ‖x(i)

S∪S\Si
‖2

2 by Si = S ∪ S\Si

= ‖x(i)

S
‖2

2 + ‖x(i)
S\Si‖

2
2 by S ∩ (S\Si) = ∅

= ‖xS‖2
2 + ‖x(i)

S\Si‖
2
2 by x(i)

S
= xS

= ‖xS‖2
2 +

i−1∑

j=1

‖x(i)
Tj
‖2

2 by S\Si = T1 ∪ T2 ∪ · · · ∪ Ti−1

= ‖xS‖2
2 +

i−1∑

j=1

∑

t∈Tj

|xt − x̂t|2 by Eq. (14.2)

≤ ‖xS‖2
2 +

i−1∑

j=1

ε2−j‖xS‖2
2 by statement of Lemma

≤ 2‖xS‖2
2. by geometric sum (14.5)

Using Markov’s inequality Pr[X ≥ a] ≤ E[X]/a, we have

Pr

[∑

t∈Ti

|xt − x̂t|2 ≥ ε2−i‖xS‖2
2

]
≤ 5−i.

Therefore, we complete the proof.

14.2.4 Main result

In this section, we prove the correctness of our iterative set query algorithm, as well as

justify the claimed space complexity, update time and query time. At the core of correctness

is an analysis of the iterative loop, which is given as Lemma 14.2.1 in Section 14.2.3.

Theorem 14.2.2. Let m = O(k/ε). We can give a randomized construction of a matrix

Φ ∈ Rm×n (Definition 14.2.1) such that for each set S ⊆ [n], |S| ≤ k, and for each vector
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x ∈ Rn, there is an algorithm (Algorithm 14.1) that takes Φx as its input, and finds x′ ∈ Rk

such that

‖x′ − xS‖2
2 ≤ ε‖x[n]\S‖2

2

holds with probability 9/10. The space to store matrix Φ is O(log k) words. The columns

of matrix Φ are 2-wise independent. The update time is O(log k). The decoding time is

O(k log k).

Proof. Our proof is based on properties of the iterative loop in Algorithm 14.1. The prop-

erties are formulated as Lemma 14.2.1 in Section 14.2.3. In summary, property (I) in

Lemma 14.2.1 shows that with good probability, as i increases, the size of Si (i.e. the

set of coordinates in S that yet to be recovered at the beginning of i-th round) shrinks by

a constant factor, and otherwise its size does not increase. Property (II) in Lemma 14.2.1

shows that with good probability, the estimation error in each round is small.

Proof of success probability. It follows by recursively applying Lemma 14.2.1. By

union bound, the failure probability is bounded by
log k∑

i=1

(
1

Cγ
(10γ)i +

2

C
(20γ)i

)
< 1/10,

which follows from geometric sum and the choice of parameters.

Proof of estimation error.

‖x′ − xS‖2
2 ≤

log k∑

i=1

∑

t∈Ti

|xt − x̂t|2 ≤
log k∑

i=1

ε · 2−i‖xS‖2
2 ≤ ε‖xS‖2

2.

Proof of space to store Φ. Since for each i ∈ [log k], Φ(i) only uses 2 pairwise

independent hash functions, the space to store matrix Φ is O(log k) words.
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Proof of update time. Upon update (j,∆), for each Φ(i), the algorithm only needs

to update one measurement (located at hi(j)). Therefore, the update time is O(log k). Since

every element of the matrix can be computed in O(1) time.

Proof of query time. First of all, we note that the step in Line 18 can be performed

in O(|Si|) time upon query, since we can check every j ∈ Si, and mark the buckets that have

more than one j hashed to them; in the next step we just keep only those coordinates j that

are hashed to exactly one bucket. Recursively applying Lemma 14.2.1, we have with constant

probability, such that for all i ∈ [log k], |Si+1| ≤ γ|Si|. It implies that for all i ∈ [log k],

|Si| ≤ γi−1|S1| ≤ γi−1k. Note that in iteration i ∈ [log k], we need O(|Si|) update time.

Therefore, overall the iterations, the time of this part is

log k∑

i=1

O(|Si|) ≤ O

(
log k∑

i=1

γi−1k

)
= O(k),

where the last step follows by the choice of γ.

We know that ‖z‖0 = O(k) and |Ti| = O(k). Thus, in each iteration, the time of doing

step y(i+1) ← y(i)−ΦZTi requires O(k) time. Thus the subtraction time over all iterations is

O(k log k), since there are O(log k) iterations. Putting it together, we get O(k log k) query

time.
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14.3 Fourier set query

We present some definitions and backgrounds of Fourier transform in Section 14.3.1.

Then we introduce spectrum permutations and filter functions in Section 14.3.2. They are

used as hashing schemes in Fourier transform literatures. In Section 14.3.3, we introduce col-

lision events. large offset events, and large noise events. We give a new algorithm and provide

iterative loop analysis in Section 14.3.4. Finally, we present main result in Section 14.3.5.

14.3.1 Definitions and some backgrounds of Fourier transform

We use i to denote
√
−1. Note that eiθ = cos(θ) + i sin(θ). For any complex number

z ∈ C, we have z = a+ ib, where a, b ∈ R. We define the complement of z as z = a− ib. We

define |z| =
√
zz =

√
a2 + b2. For any complex vector x ∈ Cn, we use supp(x) to denote the

support of x, and then ‖x‖0 = | supp(x)|.

The discrete convolution of functions f and g is given by,

(f ∗ g)[n] =
+∞∑

m=−∞

f [m]g[n−m]

For a complex vector x ∈ Cn, we use x̂ ∈ Cn to denote its Fourier spectrum,

x̂i =
1√
n

n∑

j=1

e−2πiij/nxj,∀i ∈ [n].

Then the inverse transform is

xj =
1√
n

n∑

i=1

e2πiij/nx̂i,∀j ∈ [n].

We define

Err(x, k) = min
k−sparse y

‖x− y‖2.
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14.3.2 Permutation and filter function

We use the same (pseudorandom) spectrum permutation as [HIKP12a],

Definition 14.3.1. Suppose σ−1 exists mod n. We define the permutation Pσ,a,b by

(Pσ,a,bx)i = xσ(i−a)e
−2πiσbi/n.

We also define πσ,b = σ(i− b) (mod n). Then we have

Claim 14.3.1. P̂σ,a,bxπσ,b(i) = x̂ie
−2πiσai/n.

hσ,b(i) = round(πσ,b(i)B/n) and oσ,b(i) = πσ,b(i) − hσ,b(i)n/B. We say hσ,b(i) is the

“bin” that frequency i is mapped into, and oσ,b(i) is the “offset”.

We use the same filter function as [HIKP12a, PS15, CKPS16],

Definition 14.3.2. Given parameters B ≥ 1, δ > 0, α > 0. We say that (G, Ĝ′) =

(GB,δ,α, Ĝ
′
B,δ,α) ∈ Rn is a filter function(Figure 14.1) if it satisfies the following properties

(I) | supp(G)| = O(α−1B log(n/δ)),

(I) Ĝ′i = 1, if |i| ≤ (1− α)n/(2B),

(II) Ĝ′i = 0, if |i| ≥ n/(2B),

(III) Ĝ′i ∈ [0, 1], for all i,

(IV)
∥∥∥Ĝ′ − Ĝ

∥∥∥
∞
<∞.
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− (1−α)n
2B

(1−α)n
2B

− n
2B

n
2B

Figure 14.1: Filter Ĝ′

14.3.3 Collision event, large offset event, and large noise event

We use three types of events defined in [HIKP12a] as basic building blocks for analyz-

ing Fourier set query algorithms. For any i ∈ S, we define three types of events associated

with i and S and defined over the probability space induced by σ and b:

Definition 14.3.3 (Collision, large offset, large noise). “Collision” event Ecoll(i) : holds iff

hσ,b(i) ∈ hσ,b(S\{i}).

“Large offset” event Eoff(i) : holds iff |oσ,b(i)| ≥ (1− α)n/(2B).

“Large noise” event Enoise(i) : holds iff

E
[∥∥∥x̂′h−1

σ,b(hσ,b(i))\S

∥∥∥
2

2

]
≥ Err2(x̂′, k)/(αB).

Claim 14.3.2 (Claim 3.1 in [HIKP12a]). For any i ∈ S, the event Ecoll(i) holds with prob-

ability at most 4|S|/B.
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Claim 14.3.3 (Claim 3.2 in [HIKP12a]). For any i ∈ S, the event Eoff(i) holds with proba-

bility at most α.

Claim 14.3.4 (Claim 4.1 in [HIKP12a]). For any i ∈ S, Pr[Enoise(i)] ≤ 4α.

Lemma 14.3.5 (Lemma 4.2 in [HIKP12a]). Let a ∈ [n] uniformly at random, B divide n,

and the other parameters be arbitrary in

û = HashToBins(x, ẑ, Pσ,a,b, B, δ, α).

Then for any i ∈ [n] with j = hσ,b(i) and none of Ecoll(i), Eoff(i) or Enoise(i) holding,

E
[∣∣∣ûj − x̂′ie−

2πi
n
aσi
∣∣∣
2
]
≤ 2

ρ2

αB
.

Lemma 14.3.6. Suppose B divides n. The output û of HashToBins satisfies

ûj =
∑

hσ,b(i)=j

̂(x− z)i(Ĝ
′
B,δ,α)−oσ,b(i)ω

aσi ± δ‖x̂‖1.

Let ζ = |{i ∈ supp(ẑ) | Eoff(i)}|. The running time of HashToBins is O(B
α

log(n/δ) +

‖ẑ‖0 + ζ log(n/δ)).

14.3.4 Iterative loop analysis

Iterative loop analysis for Fourier set query is more tricky than the classic set query,

because in the Fourier case, hashing is not perfect, in the sense that by using spectrum per-

mutation and filter function (as the counterpart of hashing techniques), one coordinate can

non-trivially contribute to multiple bins. We give iterative loop induction in Lemma 14.3.7.
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Lemma 14.3.7. Given parameters C ≥ 1000, γ ≤ 1/1000. For any k ≥ 1, ε ∈ (0, 1), R ≥ 1.

For each i ∈ [R], we define

ki = kγi, εi = ε(10γ)i, αi = 1/(200i3), Bi = C · ki/(α2
i εi).

For each i ∈ [R]:

If for all j ≤ [i− 1] we have

supp(ŵ(j)) ⊆ Sj, |Sj+1| ≤ kj+1, ẑ(j+1) = ẑ(j) + ŵ(j), x̂(j+1) = x̂− ẑ(j+1),

and

‖x̂(j+1)

Sj+1
‖2

2 ≤ (1 + εj)‖x̂(j)

Sj
‖2

2 + εjδ
2n‖x̂‖2

1.

Then, with probability 1− 10αi/γ, we have

supp(ŵ(i)) ⊆ Si, |Si+1| ≤ ki+1, ẑ(i+1) = ẑ(i) + ŵ(i), x̂(i+1) = x̂− ẑ(i+1),

and

‖x̂(i+1)

Si+1
‖2

2 ≤ (1 + εi)‖x̂(i)

Si
‖2

2 + εiδ
2n‖x̂‖2

1.

Proof. We consider a particular step i. We can condition on |Si| ≤ ki.

Collision. Using Claim 14.3.2, for any t ∈ Si, the event Ecoll(t) holds with probability

at most

4|Si|/Bi ≤
4ki

Cki/(α2
i εi)

= 4α2
i εi/C ≤ αi.

It means

Pr
σ,b

[Ecoll(t)] ≤ αi.
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Large offset. Using Claim 14.3.3, for any t ∈ Si, the event Eoff(t) holds with

probability at most αi, i.e.

Pr
σ,b

[Eoff(t)] ≤ αi.

Large noise. Using Claim 14.3.4, for any t ∈ Si,

Pr
σ,b

[Enoise(t)] ≤ 4αi.

We say a coordinate t is “well isolated” if none of the above three events holding. By

a union bound over the above three events, we have t is “well isolated” with probability at

least 1− 6αi.

Therefore, each t ∈ Si lies in Ti with probability at least 1− 6αi. Then by Markov’s

inequality, we have |Si\Ti| ≤ γki with probability 1 − 6αi/γ. By definition Si+1 = Si\Ti,

then we know that

|Si+1| = |Si\Ti| ≤ γki ≤ ki+1.

Upper bound ‖x̂(i)

Si
‖2

2. By Lemma statement we have

‖x̂(i)

Si
‖2

2 ≤ (1 + εi)‖x̂(i)

Si
‖2

2 + εiδ
2n‖x̂‖2

1

≤ (1 + εi)(1 + εi−1)‖x̂(i−1)

Si−1
‖2

2 + ((1 + εi)εi−1 + εi)δ
2n‖x̂‖2

1

≤ · · ·

≤
i∏

j=1

(1 + εj)‖x̂S‖2
2 +

i∑

j=1

εjδ
2n‖x̂‖2

1

i∏

l=j+1

(1 + εl)

≤ 8(‖x̂S‖2
2 + δ2n‖x̂‖2

1), (14.6)
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where the third step refers to recursively apply the second step, the last step follows

by a geometric sum.

For a fixed t ∈ Si, let j = hσ,b(t). By Lemma 3.3, we have

ûj − x̂(i)
t ω

aσt =
∑

t′∈Ti

Ĝ′−oσ(i′)x̂
(i)
t′ ω

aσt′ ± δ‖x̂‖1

For each t ∈ Si, we define set Qi,t = h−1
σ,b(j)\{t}. Let Ti be the set of coordinates

t ∈ Si such that Qi,t ∩ Si = ∅. Then it is easy to observe that

∑

t∈Ti

∣∣∣∣∣∣
∑

t′∈Qi,t

Ĝ′−oσ(t)x̂
(i)
t′ ω

aσt′

∣∣∣∣∣∣

2

=
∑

t∈T

∣∣∣∣∣∣
∑

t′∈Qi,t\S

Ĝ′−oσ(t′)x̂
(i)
t′ ω

aσt′

∣∣∣∣∣∣

2

≤
∑

t∈S

∣∣∣∣∣∣
∑

t′∈Qi,t\S

Ĝ′−oσ(t′)x̂
(i)
t′ ω

aσt′

∣∣∣∣∣∣

2

We can calculate the expectation of ‖x̂(i)
Ti
− ŵ(i)‖2

2,

E
σ,a,b

[∥∥∥x̂(i)
Ti
− ŵ(i)

∥∥∥
2

2

]
= E

σ,a,b

[∑

t∈Ti

∥∥∥x̂(i)
t − ŵ(i)

t

∥∥∥
2

2

]

≤
∑

i∈S

2 E
σ,a,b



∣∣∣∣∣∣
∑

i′∈Qi\S

Ĝ′−oσ(i)ω
aσi

∣∣∣∣∣∣

2
+ δ2‖x̂‖2

1

≤
∑

t∈Si

(
1

Bi

‖x̂(i)

Si
‖2

2 + δ2‖x̂‖2
1)

≤ |Si|
Bi

‖x̂(i)

Si
‖2

2 + δ2|Si| · ‖x̂‖2
1

≤ εiα
2
i

C
‖x̂(i)

Si
‖2

2 + δ2|Si| · ‖x̂‖2
1,

where the last step follows from |Si| ≤ ki and Bi = C · ki/(α2
i εi).
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Then, using Markov’s inequality, we have,

Pr

[∥∥∥x̂(i)
Ti
− ŵ(i)

∥∥∥
2

2
≥ εiαi

C
‖x̂(i)

Si
‖2

2 + δ2 |Si|
αi
‖x̂‖2

1

]
≤ αi.

Note that

εiαi
C
‖x̂(i)

Si
‖2

2 + δ2 |Si|
αi
‖x̂‖2

1 ≤
εi
C
‖x̂(i)

Si
‖2

2 + δ2 |Si|
αi
‖x̂‖2

1

≤ εi
C
‖x̂(i)

Si
‖2

2 +
εi
C
δ2Bi‖x̂‖2

1

≤ εi
C
‖x̂(i)

Si
‖2

2 +
εi
C
δ2n‖x̂‖2

1

≤ εi
20

(‖x̂(i)

Si
‖2

2 + δ2n‖x̂‖2
1),

where the first step follows by αi ≤ 1, the second step follows by |Si| ≤ ki = εiBiα
2
i /C,

the third step follows by Bi ≤ n, the last step follows by C ≥ 1000.

Thus, we have

Pr

[∥∥∥x̂(i)
Ti
− ŵ(i)

∥∥∥
2

2
≤ εi

20
(‖x̂(i)

Si
‖2

2 + δ2n‖x̂‖2
1)

]
≥ 1− αi. (14.7)

Recall that ŵ(i) = ẑ(i+1) − ẑ(i) = x̂(i) − x̂(i+1). It is obvious that supp(ŵ(i)) ⊆ Ti.
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Conditioning on all coordinates in Ti are well isolated and Eq. (14.7) holds, we have

‖x̂(i+1)

Si+1
‖2

2 = ‖(x̂(i) − ŵ(i))Si+1
‖2

2

= ‖x̂(i)

Si+1
− ŵ(i)

Si+1
‖2

2

= ‖x̂(i)

Si+1
− ŵ(i)‖2

2

= ‖x̂(i)

Si∪Ti
− ŵ(i)‖2

2 by Si = Ti ∪ Si+1

= ‖x̂(i)

Si
‖2

2 + ‖x̂(i)
Ti
− ŵ(i)‖2

2 by Si ∩ Ti = ∅

≤ ‖x̂(i)

Si
‖2

2 + εi(‖x̂(i)

Si
‖2

2 + δ2n‖x̂‖2
1) by Eq. (14.7)

= (1 + εi)‖x̂(i)

Si
‖2

2 + εiδ
2n‖x̂‖2

1. by definition µ(i)

14.3.5 Main result

In this subsection, we give the main result as the following theorem.

Theorem 14.3.8 (Main result). Given a vector x ∈ Cn, for every ε ∈ (0, 1) and k ≥ 1, any

S ⊆ [n], |S| = k, there exists an algorithm (Algorithm 14.2) that takes

O(ε−1k log(n/δ))

samples, runs in

O(ε−1k log(n/δ))

time, and outputs a vector x′ ∈ Cn such that

‖(x′ − x̂)S‖2
2 ≤ ε‖x̂[n]\S‖2

2 + δ‖x̂‖2
1,

holds with probability at least 9/10.
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Proof. Proof of Sample Complexity. The sample complexity of Estimation is

R∑

i=1

(Bi/αi) log(n/δ) = ε−1k log(n/δ).

Proof of Success Probability.

The failure probability is

R∑

i=1

10αi/γ < 1/10.

Proof of Final Error

‖x̂S − ẑ(R+1)‖2
2 =

R∑

i=1

‖x̂(i)
Ti
− ŵ(i)‖2

2

≤
R∑

i=1

kiµ
(i)/20 by Eq. (14.7)

≤
R∑

i=1

εi(‖x̂(i)

Si
‖2

2 + δ2n‖x̂‖2
1)/20 by Definition of µ(i)

≤
R∑

i=1

εi · 10(‖x̂S‖2
2 + δ2n‖x̂‖2

1)/20 by Eq. (14.6)

≤ ε(‖x̂S‖2
2 + δ2n‖x̂‖2

1). by geometric sum
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Algorithm 14.2 Fourier Set Query Algorithm
1: procedure FourierSetQuery(x, S, ε, k) . Theorem 14.3.8
2: γ ← 1/1000, C ← 1000, ẑ(1) ← 0, S1 ← S
3: for i = 1→ R do
4: ki ← kγi, εi ← ε(10γ)i, αi ← 1/(100i3), Bi ← C · ki/(α2

i εi)
5: ŵ(i), Ti ← EstiamteValues(x, ẑ(i), Si, Bi, δ, αi) . ŵ(i) is |Ti|-sparse
6: Si+1 ← Si\Ti
7: ẑ(i+1) ← z(i) + ŵ(i)

8: end for
9: return ẑ(R+1)

10: end procedure
11: procedure EstimateValues(x, ẑ, S, B, δ, α) . Lemma 14.3.7
12: Choose a, b ∈ [n] uniformly at random
13: Choose σ uniformly at random from the set of odd numbers in [n]
14: û← HashToBins(x, ẑ, Pσ,a,b, B, δ, α)
15: ŵ ← 0, T ← ∅
16: for t ∈ S do
17: if t is isolated from other coordinates of S then . hσ,b(t) /∈ hσ,b(S\{t})
18: if no large offset then . |oσ,b(t)| < (1− α)n/(2B)

19: ŵt ← ûhσ,b(t)e
2πi
n
σat

20: T ← T ∪ {t}
21: end if
22: end if
23: end for
24: return ŵ, T
25: end procedure
26: procedure HashToBins(x, ẑ, Pσ,a,b, B, δ, α)
27: Compute ŷjn/B for j ∈ [B], where y = GB,α,δ · (Pσ,a,bx)

28: Compute ŷ′jn/B = ŷjn/B − (Ĝ′B,α,δ ∗ P̂σ,a,bz)jn/B
29: return ûj = ŷ′jn/B
30: end procedure
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Chapter 15

Robust Sparse Recovery via M-estimators

We consider the extensively studied problem of sparse recovery, where the error is

measured with respect to M -estimators, such as the Huber or the Tukey loss functions. All

previous works have studied the problem under the `p norms. Thus, our work is the first to

explore the more robust error measures ofM -estimators, which are very popular in statistics.

In specific, given linear measurements y = Ax, we want to output a k-sparse vector x′ ∈ Rn

such that

‖x′ − x‖M ≤ (1 + ε) min
k−sparse y

‖y − x‖M ,

where ‖x‖M is corresponds to some M -estimator of x. We show that the measurement

complexity of different versions of the sparse recovery problem under these more sophisticated

error measures does not change, igniting thus an interesting new line of research.
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15.1 Introduction

The mathematical framework of compressed sensing, or sparse recovery, aims to re-

construct an approximately k-sparse vector x ∈ Rn from linear measurements y = Ax. This

model can capture many significant problems, which appear in a variety of fields, such as

Discrete Signal Processing[LDP07b], Machine Learning [LDW+18], Statistics [Rip04] etc.

Depending on the application, the measurement matrix A is drawn from some random ma-

trix ensemble, or can be designed without constraints.

What is important and interesting about this framework, is that it enables us to by-

pass the Shannon/Nyquist sampling theorem in the case of x being k-sparse or approximately

k-sparse. The Shannon/Nyquist theorem tells us that in order to preserve information when

uniformly sampling a signal, we must sample at least two times faster than its bandwidth,

thus putting a lower bound on the number of measurements we need to obtain.

The applications of sparse recovery to Machine Learning are numerous, see [CDHB09,

VGT12, DPFJ16, CMM11, SH11]. Moreover, deep learning approaches combined with sparse

recovery techniques in [MPB15, ABEZ16, KLT+16, LDW+18, ZLSD18, BJPD17, BPD18]

are proposed, in order to more finely reconstruct signals that are approximately k-sparse,

with focus on images. In [VGT12], the authors employ compressed sensing techniques to

develop routines for brain mapping situations in neuroscience, where the goal is to solve a

support-recovery type of problem for functional MRI (fMRI) data. In [DPFJ16], the authors

extend compressed sensing to signals that are represented via a graphical model.

On a high-level, the reason why machine learning applications benefit from sparse

recovery is because in such applications we aim to find a mapping between sensory data and
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data semantics (the label). In order to do that, a standard approach is to exploit a set of

features which captures important data characteristics, and is a closely associated to data

labels. We thus transform the raw data into a feature space, where the similarity between

data points corresponds to the similarity between features.

The work on compressed sensing is vast, initiated with the seminal paper of Candes

and Tao [CRT06b]. The authors show that `1 minimization satisfies the so-called `2/`1 guar-

antee, when the matrix A is chosen from a Gaussian ensemble. Other important guarantees,

such as `1/`1 and `2/`2 have been extensively studied. The authors in [BIR08b, IR08b]

showed that O(ε−1k log(n/k)) measurements suffice for a uniform (1 + ε) `1/`1 guarantee. It

is known that uniform reconstruction (i.e. deterministic algorithms) is not possible under

`2/`2, so one has to resort to randomized algorithm. In [PW11] Price and Woodruff give

a variety of interesting results for the randomized cases of `2/`2 and `1/`1 sparse recovery,

where they also show a difference between the exactly k-sparse and the O(k)-sparse case.

More precisely, they show that if one is allowed to output a 2k-sparse vector, the dependence

on ε is strictly better than if one is allowed to output an exactly k-sparse vector. This fact,

apart from being an interesting phenomenon, is useful in applications such as imaging, where

we are not constrained to output an exactly k-spare vector. The state of the art for `2/`2 is

[GLPS10], where the authors show that O((k/ε) log(n/k)) measurements are sufficient, and

also give a sub-linear time recovery procedure.

All previous work was focused on `p/`p, where the error is measured with respect to

some `p norm. In applications, sometimes these error measurements might be insufficient.

For example, in the presence of outliers the strongest of the above `2/`2 guarantees, behaves

poorly. For that, the Huber norm is introduced [Hub64], which combines an `2 norm for
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small x with an `1 norm for large x. As mentioned in [CKY97, GS+99] the Huber norm is of

particular interest, because it is “recommended for almost all situations”, and because it is

“most robust” with respect to the presence of outliers and to the number of iterations than

the `2 norm. The aforementioned facts, along with its smoothness properties, have made the

Huber norm useful in Machine learning applications. Moreover, while some measures, such

as `1 , treat small residuals with the same importance as large residuals, it is often more

appropriate to use Huber norm, since relatively small noise insensitive misfit measures can

yield far more stable estimates in several cases, such as in geophysics applications [GS+99].

Recently, [SK18] studies a formulation of robust sparse recovery, where the noise is

sparse but adversarial.

Roadmap. Section 15.1.1 provides a summary of our techniques. We present our

main result in Section 15.1.2. We provide a complete proof for Huber set query and a short

proof sketch for Huber sparse recovery in Section 15.2. We made a conclusion in Section 15.3.

We deferred the complete proof for Huber, Tukey and other results into later sections.

Notations. We use [n] to denote {1, 2, · · · , n}. For a vector x ∈ Rn, we use ‖x‖1

to denote its entry-wise `1 norm. We use ‖x‖2 to denote its entry-wise `2 norm. We use

supp(x) ⊆ [n] to denote a set of non-zero indices. We use ‖x‖0 to denote the number of

non-zero entries in x. (‖x‖0 = | supp(x)|) Let x−k denote the vector obtained by zeroing

out largest k coordinates (in absolute) of x. We will sometimes refer to x−k as the tail of x,

whereas we will refer to x− x−k as the head of x.
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15.1.1 Our techniques

All of our results are based on the ubiquitous CountSketch data structure, which

hashes every coordinate i ∈ [n] to one of O(k) buckets, and repeats O(log n) times. This data

structure can be used to solve the `p heavy hitters problems, as well as the sparse recovery

under the `2/`2 guarantee [PW11]. It is not hard to see that `1/`1 can also be achieved via

the same data structure. Interestingly, our theorems indicate that the Huber and Tukey

guarantees can also be obtained via CountSketch.

In specific, we use the CountSketch to obtain estimates for all i ∈ [n], and then

form the set S of the k coordinates with the largest estimates, as in previous work. Now, it

might be the case that some elements in the head are not included in S, which means that

they have been displaced by some other elements in the tail. In the case that the threshold

τ for the Huber function is “small” enough, i.e. less than every |xj|, for every j ∈ S and

j ∈ head(k), we can bound the error similarly to the `1/`1 case. An analogous thing happens

in the case that τ , is large enough, i.e. τ ≥ ‖x‖∞, where can bound the error similarly to

the `2/`2 case. Things are more complicated in the case that τ falls somewhere in between

S and head(k), where our guarantee needs to bound the `1 norm on the left-hand side, by

the `2 norm on the right-hand side. This at first glance seems to be something impossible to

do, but a careful glance reveals an interesting property: in the case of τ = 1, if we estimate

every |xi| up to ∆ and if ∆ is, then every displaced element in the head should should be

1 + ∆ = (1 + Θ(∆))2, so we can hope to employ a similar argument to the `2/`2, as this

property implicitly allows us to reduce the problem to the case where the right-hand side

and the left-hand side are measured with respect to the `2 norm. If ∆ is large enough then

intuitively the mass of coordinates displaced “does not matter”. because they were small
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compared to the noise, and we can charge them to the tail. Of course, a careful combination

of arguments and techniques needs to be addressed for the analysis to work out.

We note that the algorithm we suggest is not novel per se, but we rather indicate

that the classic CountSketch data structure gives also the stronger Huber guarantee.

15.1.2 Our results

In the field of sparse recovery / compressive sensing, researchers usually consider `p

norms as error estimates. Two well-known problems, arise when setting p = 2, giving birth

to `2/`2 and `1/`1 problems.

`2/`2 : ‖x− x′‖2 ≤ (1 + ε)‖x−k‖2,

`1/`1 : ‖x− x′‖1 ≤ (1 + ε)‖x−k‖1,

where x is the ground-truth vector, x−k is the vector that is obtained after zeroing out the

largest k coordinates (in absolute) of x, x′ is the k-sparse we output and ε ∈ (0, 1) is the

accuracy parameter.

We consider the problem of sparse recovery, when the error is measured with respect

to an M -estimators. M -estimators are specified by a function H : R → R≥0 where H(x) =

H(−x), H(0) = 0, and H() is non-decreasing |x|. We use ‖ · ‖H to denote a new “norm”

(However, it might not be true norms in fact, because it doesn’t satisfies triangle inequality).

For a vector x ∈ Rn, we use ‖x‖H to denote
∑n

i=1 H(xi).

Huber function [Hub64] and Tukey function [Tuk60] have been two well-known M -

estimators, which have been proven useful to researchers for more than 50 years. In this
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work, we will mainly focus on these two estimators, which are also the most common ones.

We first provide the definition of Huber function and Tukey function.

Definition 15.1.1 (Huber function). Given parameter τ > 0,

H(x) =

{
|x|2/τ if |x| ≤ τ ;

|x| if |x| > τ.

Note that an alternative definition of Huber is |x|2/2τ if |x| ≤ τ and |x| − τ/2 if

|x| > τ . Our techniques work for both of those definitions. This is also being observed in

some other problems, e.g. regression [CW15b] and low-rank approximation [CW15a].

We define Tukey function [Tuk60] as follows

Definition 15.1.2 (Tukey function). Given parameter τ > 0,

H(x) =

{
1− (1− (x/τ)2)3, if |x| ≤ τ ;

1, if |x| > τ.

It is not hard to observe that both the Huber and Tukey function satisfy three basic

properties: they vanish at zero, i.e., H(0) = 0, are symmetric and non-decreasing.

15.1.2.1 Set-query

We start by presenting a problem called “set query” which plays a crucial role in

solving sparse recovery problem. Set query problem is first formally defined by Price [Pri11]

and recently got studied in the context of Sparse Fourier transform[Kap17].

Definition 15.1.3 (Set-query). Let A ∈ Rm×n be some implicit matrix we want to design.

For any accuracy parameter ε and set S with |S| = k, our goal is to read Ax and output
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Figure 15.1: (a) Huber function (top) (b) Tukey function (bottom)

vector x′ ∈ Rk such that

‖x′ − xS‖H ≤ ε · ‖x[n]\S‖H ,

where ‖x‖H =
∑

iH(xi) and H is some function.

We give some formal definitions of what we are able to achieve in terms of measure-

ments, column sparsity and decoding time.

Definition 15.1.4 (Measurements, column sparsity, decoding time). There are several

things we want to optimize,

1. The number of measurements, is the number of rows of A.

2. Column sparsity is, for any u · ei, the time we need to compute A ·u · ei, where u ∈ R and

ei ∈ Rn has 1 in the i-th coordinate and 0 everywhere else.

3. Decoding time means once Ax is given, the time we need to output x′.

Note that the decoding time is not necessarily larger than the number of measure-

ments.
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Our set-query results on M -estimators are given in the following theorem.

Theorem 15.1.1 (Set-query). Let function H : R→ R≥0 be either Huber function or Tukey

function. There is an implicit matrix A ∈ Rm×n with m = O(ε−1k log k) and O(log k) column

sparsity. For any S ⊆ [n] such that |S| = k, there is an algorithm which given Ax, runs in

O(k log k) decoding time, and outputs a vector x′ ∈ Rk such that

‖x′ − xS‖H ≤ ε · ‖x[n]\S‖H

holds with probability 9/10.

Remark 15.1.1. Although the matrix has m = O(ε−1k log k), but our algorithm doesn’t need

to use all the measurements for the set-query algorithm. The way our algorithm is designed

implies that the decoding time is independent of accuracy parameter ε.

For a vector x ∈ Cn, we define its Fourier transform x̂ ∈ Cn where ∀i ∈ [n], x̂i =
∑n

j=1
1√
n
xje
−2πiij/n. Similarly, we define the inverse Fourier transform of x̂ ∈ Cn to be x

where ∀j ∈ [n], xj =
∑n

i=1
1√
n
x̂ie

2πiij/n. Now, we’re ready to present our Fourier set query

result,

Theorem 15.1.2 (Fourier set query). Given a vector x ∈ Cn, for every ε ∈ (0, 1) and k ≥ 1,

any S ⊆ [n], |S| ≤ k, there exists an algorithm (Algorithm 15.3) that takes O(ε−1k log k ·

log(n/δ)) samples, runs in O(ε−1k log k · log(n/δ)) time, and outputs a vector x′ ∈ Cn such

that

‖(x′ − x̂)S‖H ≤ ε‖x̂[n]\S‖H + δ‖x̂‖H

holds with probability at least 1− 1/ poly(k).
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We can think of ‖x̂‖H being bounded by poly(n). Then we can set δ = 1/ poly(n).

This assumption, along with the additional δ factor is common in Fourier literature, e.g.

[HIKP12a, PS15, CKPS16].

15.1.2.2 Sparse Recovery

We first present k-sparse recovery results under Huber/Tukey function. Our algorithm

achieves O(ε−2k log n) measurements which matches the state-of-the-art `2/`2 algorithm (see

[PW11]).

Theorem 15.1.3 (Main result, Sparse recovery, Optimal measurements). Let H denote

either Huber function (see Def. 15.1.1) or Tukey function (see Def. 15.1.2). There exists

a distribution of Φ ∈ Rm×n with m = O(ε−2k log n) and O(log n) column sparsity, and a

recovery algorithm, such that for each x ∈ Rn, k ∈ [n] and ε ∈ (0, 1), the recovery algorithm

takes Φx as its input, runs in O(n log n) time, and outputs k-sparse vector x′ ∈ Rn so that

with probability 1− 1/ poly(n),

‖x′ − x‖H ≤ (1 + ε) min
k−sparse y

‖y − x‖H .

15.2 Algorithm and Analysis

We start by defining a well-known tool called Count-Sketch [CCF02].

Definition 15.2.1 (Count-Sketch [CCF02]). A count sketch data structure with bucket

size B and replicates R corresponds to a measurement matrix Φ ∈ RBR×n. Matrix Φ is a

concatenation of Φ(1), . . . ,Φ(R), where each Φ(r) ∈ RB×n (r ∈ [R]) is defined by a pariwise

hash function hi : [n] → [B] and a pairwise sign function σi : [n] → {−1, 1}, such that for
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each j ∈ [B] and i ∈ [n],

Φ
(r)
j,i =

{
σr(i) if hr(i) = j,

0 otherwise.

The data structure maintains the value of Φx and for each i ∈ [n], it gives

x′i = median
(
σ1(i) · (Φ(1)x)h1(i), . . . , σR(i) · (Φ(R)x)hR(i)

)

as estimation to xi.

15.2.1 Set query algorithm for Huber

Our set query algorithm for Huber loss function is presented in Algorithm 15.1. The

algorithm uses count-sketch data structure with bucket number B = O(ε−1k) and replicate

number R = O(log k).

Algorithm 15.1 Set Query Algorithm
1: procedure SetQuery(n, k, ε, S, x) . Theorem 15.2.1
2: B ← O(ε−1k)
3: R← O(log k)
4: Construct count sketch with bucket size B and replicates R according to Defini-

tion 15.2.1
5: y ← Φx . In streaming setting we maintain y when receiving updates to x
6: for i ∈ S do
7: x′i ← medianr∈[R] σr(i)y

(r)
hr(i)

. y = (y(1), . . . , y(R))
8: end for
9: return x′S
10: end procedure

Now we provide a correctness proof for the set-query algorithm under Huber function.

For simplicity we let τ = 1, but our proof extends to arbitrary τ . In order to express ‖x[n]\S‖H
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in a handy form, we first partition the coordinates in [n]\S into P and Q, where P contains

small coordinates whose absolute values are less than τ and Q contains those who are larger

than τ . By guarantee of the count-sketch, we can bound the error of each estimate for

coordinates in S. We then bound the error in Huber loss function by discussing the absolute

error is either less than or greater than τ .

Theorem 15.2.1 (Set-query, Huber case of Theorem 15.1.1). Let function H be defined

as Definition 15.1.1. There is an algorithm (Algorithm 15.1) that takes O(ε−1k log k) sam-

ples/times and outputs a vector x′ ∈ Rn such that

‖x′S − xS‖H ≤ ε · ‖x[n]\S‖H

holds with probability 1− 1/ poly(k).

Proof. We choose B = ε−1k. We define set P,Q ⊂ [n]\S as follows

P = {i | |xi| ≤ 1, i ∈ [n]\S}, Q = {i | |xi| ≥ 1, i ∈ [n]\S}.

We define PB/6 to be top B/6 coordinates in P , and define P ′ = P\PB/6. Similarly we define

QB/6 to be top B/6 coordinates in Q, and define Q′ = Q\QB/6.

Let R = O(log k). For each i ∈ S, we estimate xi as x′i = medianj∈[R]{y(j)
hj(i)
}. We can

prove that with probability 1− 1/ poly(k),

|x′i − xi| ≤
√

(‖xP ′‖2
2 + ‖xQ′‖2

2)/B.

Note that ‖xS‖H = ‖xP‖2
2 + ‖xQ‖1.
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We prove the final result by considering two cases:

Case (1)

√
(‖xP ′‖2

2 + ‖xQ′‖2
2)/B ≤ 1;

Case (2)

√
(‖xP ′‖2

2 + ‖xQ′‖2
2)/B > 1.

Case (1)
√

(‖xP ′‖2
2 + ‖xQ′‖2

2)/B ≤ 1.

In the following, we prove that ‖xQ′‖2
2 ≤ ‖xQ′‖1. First, note that

‖xQ′‖2 ≤
√
‖xP ′‖2

2 + ‖xQ′‖2
2 ≤
√
B.

By Lemma 15.5.2, we can also bound ‖xQ′‖2 to be

‖xQ′‖2 ≤
1√
B
‖xQ‖1.

Combining these two inequality on ‖xQ′‖2, we get

‖xQ′‖2
2 ≤
√
B · 1√

B
‖xQ‖1 ≤ ‖xQ‖1.

By definition of Huber norm,

‖x′S − xS‖H ≤
k

B
(‖xP ′‖2

2 + ‖xQ′‖2
2)

≤ k

B
(‖xP‖2

2 + ‖xQ‖1)

= ε‖xS‖H .

Case (2)
√
‖xP ′‖22+‖xQ′‖22

B
> 1.
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Figure 15.2: ‖xS∩T‖H − ‖xT∩S‖H is the displacement error

The error is ‖x′S − xS‖H ≤ k√
B

(‖xP ′‖2 + ‖xQ′‖2). We can bound ‖xQ′‖2 ≤ 1√
B
‖xQ‖1

by Lemma 15.5.2. Now trying to bound ‖xP ′‖2. If ‖xP ′‖2 ≤ ‖xQ′‖2 we are done. Otherwise

we have ‖xP ′‖2 ≥
√
B/2 and so ‖xP ′‖2 ≤ ‖xP ′‖2√

B/2
‖xP ′‖2 ≤

√
2/B‖xP‖2

2. Either case we can

finally bound ‖x′S − xS‖H by 2ε‖xS‖H .

15.2.2 Proof of Theorem 15.1.3

Algorithm 15.2 Sparse Recovery Algorithm
1: procedure SparseRecovery(n, k, ε, x)
2: B ← O(ε−2k)
3: R← O(log n)
4: Construct count sketch with bucket size B and replicates R according to Defini-

tion 15.2.1
5: y ← Φx . In streaming setting we maintain y when receiving updates to x
6: for i = 1→ n do
7: x′i ← medianr∈[R] σr(i)y

(r)
hr(i)

. y = (y(1), . . . , y(R))
8: end for
9: Let T denote the set of coordinates that are k largest (in absolute) of x′
10: return x′T
11: end procedure

The high-level idea. Let S denote the top-k largest coordinates in absolute. Let
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T denote the set coordinates the algorithm outputs. Then we can rewrite ‖x− x′T‖H as

‖x− x′T‖H

= ‖(x− x′)T‖H + ‖xT‖H

= ‖(x− x′)T‖H + (‖xT‖H − ‖xS‖H) + ‖xS‖H

= ‖(x− x′)T‖H︸ ︷︷ ︸
set-query

+ (‖xS∩T‖H − ‖xT∩S‖H)︸ ︷︷ ︸
displacement

+‖xS‖H .

Using Set-query, we know that ‖(x − x′)T‖H ≤ (ε/2)‖xS‖H . Now the question is how to

bound “displacement” by (ε/2)‖xS‖H and we explain the formal proof in next a few pages.

Proof. of Theorem 15.1.3. Our algorithm is presented in Algorithm 15.2. Let x−k denotes

the vector x with absolute largest k coordinates removed. We use count sketch to give each

xi (where i ∈ [n]) an estimate. In particular, we choose the number of buckets B = O(ε−2k)

and the number of duplicates R = O(log n) for the count sketch data structure. Let x′i denote

the estimate obtained by the count sketch for xi. Let T denote the largest k coordinates in

absolute value in x′. The recovery algorithm outputs x′T as a k-sparse approximation to x.

Note that the count sketch data structure takes B ·R = O(ε−2k log n) measurements.

Its update time is O(R) = O(log n) time, and the time to obtain x′ is O(n ·R) = O(n log n).

Taking largest k coordinates from x′ requires O(n log n) time. Thus the total query time is

O(n log n). In the following, we show that ‖x− x′T‖H ≤ (1 + ε)‖x−k‖H .

By Lemma 15.5.1, for each i ∈ [n], with probability 1− 1/ poly(n),

(xi − x′i)2 ≤ ε2

4k
‖x−4k/ε2‖2

2 ≤
ε2

4k
‖x−4k‖2

2. (15.1)
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Let S denote the largest k coordinates in absolute value in x. Recall that S = [n]\S,

T = [n]\T , and x−k = xS. The recovery error is

‖x− x′T‖H = ‖(x− x′)T‖H + ‖xT‖H . (15.2)

By point estimation guarantee given in Eq. (15.5) and results from Huber set query.

‖(x− x′)T‖H =
∑

i∈T

H(xi − x′i)

≤ |T | ·H(
ε

2
√
k
‖x−4k‖2)

≤ ε

2
‖x−k‖H .

Note that

‖xT‖H = (‖xT‖H − ‖xS‖H) + ‖xS‖H

= (‖xS∩T‖H − ‖xS∩T‖H) + ‖x−k‖H

where the second step follows by canceling out the coordinates in S ∩ T . In the following,

our goal is to show that
∑

i∈S∩T H(xi)−
∑

i∈S∩T H(xi) ≤ ε
2
‖x−k‖H .

If S ∩ T = ∅, then S = T and
∑

i∈S∩T H(xi) −
∑

i∈S∩T H(xi) = 0. In the following,

we assume that S ∩ T 6= ∅. Let b = maxi∈S∩T |xi|, and a = mini∈S∩T |xi|. Because Huber

function H(t) is monotonically increasing as |t| increases,

‖xS∩T‖H − ‖xS∩T‖H ≤ |S ∩ T | · (H(b)−H(a)).

By Lemma 15.2.5, we have

b− a ≤ ε√
k
‖x−4k‖2. (15.3)
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Moreover, by definition that a = mini∈S∩T |xi| and let r = |S ∩ T |,

a ≤ ‖xS∩T‖2√
r
≤ ‖x−k‖2√

r
. (15.4)

We are going to prove that H(b) − H(a) ≤ ε
2

‖x−k‖H
|S∩T | . We discuss in three cases: case (1)

τ ≤ a, case (2) a < τ < b, case (3) b ≤ τ . We analyze these three cases in Claim 15.2.2,

Claim 15.2.3 and Claim 15.2.4.

Claim 15.2.2. Let r = |S ∩ T |. If τ ≤ a, then H(b)−H(a) ≤ ε
2

‖x−k‖H
r

.

Proof. For simplicity, we use r to denote |S∩T |. By definition of T , we know that 1 ≤ r ≤ k.

Let P,Q be a partition of S where

P = {i | |xi| ≤ τ, i ∈ S}, Q = {i | |xi| > τ, i ∈ S}.

By triangle inequality ‖x−5k‖2 ≤ ‖xP‖2 + ‖(xQ)−4k‖2. By definition of Huber function

‖x−k‖H = 1
τ
‖xP‖2

2 +‖xQ‖1. Because τ ≤ a, S∩T ⊆ Q. Thus ‖xQ‖1 ≥ ‖xS∩T‖1 ≥ τ |S∩T | =

τ · r. Therefore,

‖x−k‖H ≥
1

τ
‖xP‖2

2 + τr ≥ 2

√
1

τ
‖xP‖2

2 · τr = 2
√
r · ‖xP‖2.

So we have ‖xP‖2 ≤ 1
2
√
r
‖x−k‖H . By Lemma 15.5.2,

‖(xQ)−4k‖2 ≤
1

2
√
k
‖xQ‖1 ≤

1

2
√
r
‖xQ‖1 ≤

1

2
√
r
‖x−k‖H .
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Therefore,

H(b)−H(a) = b− a ≤ ε√
r
‖x−5k‖2

≤ ε√
r

(‖xP‖2 + ‖(xQ)−4k‖2)

≤ ε√
r

(
1

2
√
r
‖x−k‖H +

1

2
√
r
‖x−k‖H

)

≤ ε‖x−k‖H
r

.

Claim 15.2.3. If a < τ < b, then H(b)−H(a) ≤ ε
2

‖x−k‖H
|S∩T | .

Claim 15.2.4. If b ≤ τ , then H(b)−H(a) ≤ ε
2

‖x−k‖H
|S∩T | .

We provide the proofs of the above two Claims in Section 15.7.

Lemma 15.2.5. Let vector u, v ∈ Rn such that ‖u − v‖∞ ≤ ∆. Let S be the largest k

coordinates in u, and let T be the largest k coordinates in v. Let b = maxi∈S∩T ui and

a = mini∈S∩T ui. Then b− a ≤ 2∆.

Proof. Let λ = maxi∈T vi. We have

b = max
i∈S∩T

ui ≤ max
i∈T

ui ≤ ∆ + max
i∈T

vi = ∆ + λ.

On the other hand,

a = min
i∈S∩T

ui ≥ min
i∈T

ui ≥ −∆ + min
i∈T

vi ≥ −∆ + λ.
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Therefore,

b− a ≤ (∆ + λ)− (−∆ + λ) ≤ 2∆.
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15.3 Conclusion

In this work, we gave the first set of sparse recovery algorithms when the error is

measured with respect to Huber and Tukey functions. Because of the usefulness of these M -

estimators, we believe that this will be proved to be an important line of research, demanding

new ideas and techniques, and offering fruitful results both in theory and in practice.
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15.4 Preliminaries

In this section, we give definitions of Huber function, reverse Huber function and

Tukey function. All these functions have a parameter τ > 0 such that the function is defined

as one “simple” function on domain {x : |x| ≤ τ} and another “simple” function on domain

{x : |x| > τ}. In particular, Huber function is defined to be a quadratic function for |x| ≤ τ

and a linear function for |x| > τ . Inverse Huber function is opposite. Tukey function is

defined approximately to be a quadratic function for |x| ≤ τ , and a constant function for

|x| > τ .

When measuring errors in terms of these functions, we are more robust to outliers.

Because these functions in domain {x : |x| > τ} grow slower than domain {x : |x| ≤ τ}.

15.4.1 Huber estimator

Given parameter τ > 0, Huber function [Hub64] is defined as follows.

Definition 15.4.1 (Huber function).

H(x) =

{
|x|2/τ if |x| ≤ τ ;

|x| if |x| > τ.

In addition, as appeared in [SWZ18], one can also define reverse Huber function with

parameter τ as

H(x) =

{
|x| if |x| ≤ τ ;

|x|2/τ if |x| > τ.

15.4.2 Tukey estimator

Tukey function [Tuk60] is defined as follows.
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Definition 15.4.2 (Tukey function).

H(x) =

{
1− (1− (x/τ)2)3, if |x| ≤ τ ;

1, if |x| > τ.

It is easy to observe that for |x| ≤ τ ,

H(x) = 1− (1− 3(x/τ)2 + 3(x/τ)4 − (x/τ)6)

= 3(x/τ)2 − 3(x/τ)4 + (x/τ)6

=
3

4
(x/τ)2 +

9

4
(x/τ)2 − 3(x/τ)4 + (x/τ)6

=
3

4
(x/τ)2 + (x/τ)2(

3

2
− (x/τ)2)2

≥ 3

4
(x/τ)2.

Similarly, we can also give an upper bound of H(x),

H(x) = 3(x/τ)2 − 3(x/τ)4 + (x/τ)6

≤ 3(x/τ)2 + (x/τ)6

≤ 4(x/τ)2.

Therefore, we have the following fact, i.e. Tukey function is within a constant factor of the

quadratic function for |x| ≤ τ . Therefore, in our analysis in later sections, we approximate

Tukey function as a quadratic function for |x| ≤ τ .

Fact 15.4.1. If |x| ≤ τ , H(x) ∈ [3
4
(x/τ)2, 4(x/τ)2]; Otherwise H(x) = 1.
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15.5 Set Query

In this section, we present our set query results on reverse Huber function and Tukey

function. The results on Huber function is presented in the main text. We summarize

our results on set query in Table 15.1. Since we extensively apply the count-sketch data

structure, we present as follows.

Definition 15.5.1 (Count Sketch). A count sketch data structure with bucket size B and

replicates R corresponds to a measurement matrix Φ ∈ RBR×n. Matrix Φ is a concatenation

of Φ(1), . . . ,Φ(R), where each Φ(r) ∈ RB×n (r ∈ [R]) is defined by a pariwise hash function

hi : [n]→ [B] and a pairwise sign function σi : [n]→ {−1, 1}, such that for each j ∈ [B] and

i ∈ [n],

Φ
(r)
j,i =

{
σr(i) if hr(i) = j,

0 otherwise.

The data structure maintains the value of Φx and for each i ∈ [n], it gives

x′i = median
(
σ1(i) · (Φ(1)x)h1(i), . . . , σR(i) · (Φ(R)x)hR(i)

)

as esimation to xi.

Let x′ ∈ Rn denote the approximation given by the count sketch data structure. We

have the following guarantee for count sketch with bucket size B and replicates R.

Lemma 15.5.1 ([CCF02]). Let x ∈ Rn, and let x′ ∈ Rn be the output of a count sketch

data structure (Definition 15.5.1) with bucket size B and replicate R. For each i ∈ [n], with

probability at least 1− 2−Ω(R),

(xi − x′i)2 ≤ 2

B
‖x−B/2‖2

2.
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Table 15.1: Set Query

Measurements Running time Column sparsity
Theorem 15.2.1, Huber ε−1k log k k log k log k
Theorem 15.5.3, Reverse Huber ε−1k log k k log k log k
Theorem 15.5.4, Tukey ε−1k log k k log k log k

The following is a standard lemma in compressive sensing literatures that bounds the

`2 norm of a vector with largest (in absolute value) k coordinates removed in terms of `1

norm of its original vector. We also include its proof for completeness.

Lemma 15.5.2. For any x ∈ Rn and any k ∈ [n], ‖x−k‖2 ≤ 1√
k
‖x‖1, where x−k denotes the

vector obtained by zeroing out largest k coordinates (in absolute) of x.

Proof. We partition the coordinates of x to be B1, B2, . . . where B1 contains largest k coor-

dinates, and B2 contains the next largest k coordinates, and so on. We have

‖x−k‖2 ≤
n/k∑

i=2

‖xBi‖2

≤
n/k∑

i=2

√
k · (‖xBi−1

‖1/k)2

=
1√
k

n/k−1∑

i=1

‖xBi‖1

≤ 1

k
‖x‖1.

where the second step follows by Cauchy-Schwarz inequality.
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15.5.1 ε-approximation for reverse Huber function

We present our set query result for reverse Huber functions. The result is quite

symmetric to our result for Huber function.

Theorem 15.5.3 (Reverse Huber set-query). Let function H be defined as Definition 15.4.1.

There is an algorithm that takes O(ε−1k log k) samples/times and outputs a vector x′ ∈ Rn

such that

‖x′S − xS‖H ≤ ε · ‖x[n]\S‖H

holds with probability 1− 1/ poly(k).

Proof. We choose B = O(ε−1k) and R = O(log k), and use the count-sketch data structure

with bucket size O(B) and replicate number O(R). Let x′ ∈ Rn denote the estimate given

by the count-sketch data structure. By Lemma 15.5.1, we have the guarantee that with

probability 1− 1/ poly(k),

|x′i − xi| ≤
√
‖x−B‖2

2

B
.

We define set P,Q ⊂ [n]\S as follows

P = {i | |xi| ≤ 1, i ∈ [n]\S}, Q = {i | |xi| ≥ 1, i ∈ [n]\S}.

We define PB/6 to be top B/6 coordinates in P , and define P ′ = P\PB/6. Similarly we

define QB/6 to be top B/6 coordinates in Q, and define Q′ = Q\QB/6. We have
√
‖x−B‖22

B
≤√

‖xP ′‖22+‖xQ′‖22
B

.
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Note that

‖xS‖H = ‖xP‖1 + ‖xQ‖2
2.

We prove the final result by considering two cases: case (1)
√
‖xP ′‖22+‖xQ′‖22

B
≤ 1; Case

(2)
√
‖xP ′‖22+‖xQ′‖22

B
> 1.

Case (1)
√
‖xP ′‖22+‖xQ′‖22

B
≤ 1.

The error is

‖x′S − xS‖H ≤ k

√
‖xP ′‖2

2 + ‖xQ′‖2
2

B

≤ k√
B

(‖xP ′‖2 + ‖xQ′‖2).

By Lemma 15.5.2, we have ‖xP ′‖2 ≤ 1√
B
‖xP‖1. Now we are trying to upper bound ‖xQ′‖2.

If ‖xQ′‖2 ≤ ‖xP ′‖2 we are done. Otherwise we have ‖xQ′‖2 ≥
√
B/2 and so ‖xQ′‖2 ≤

‖xQ′‖2√
B/2
‖xQ′‖2 ≤

√
2/B‖xQ‖2

2. Either case we can finally bound ‖x′S − xS‖H by 2ε‖xS‖H .

Case (2)
√
‖xP ′‖22+‖xQ′‖22

B
> 1.

We have

‖x′S − xS‖H ≤
k

B
(‖xP ′‖2

2 + ‖xQ′‖2
2)

≤ k

B
(‖xP ′‖1 + ‖xQ′‖2

2)

≤ k

B
(‖xP‖1 + ‖xQ‖2

2)

= ε‖xS‖H ,

where the second step follows by the fact that each coordinate in P ′ is less than 1.
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15.5.2 ε-approximation for Tukey function

Theorem 15.5.4 (Tukey set-query). Let function H be defined as Definition 15.4.2. There

is an algorithm that takes O(ε−1k log k) samples, O(k log k) decoding times, O(log k) update

time, and outputs a vector x′ ∈ Rn such that

‖x′S − xS‖H ≤ ε · ‖x[n]\S‖H

holds with probability 9/10.

Proof. Without loss of generality, we assume that τ = 1. We approximate Tukey function

to be H(x) = 1 for |x| > 1 and H(x) = x2 for |x| ≤ 1.

Let B = O(ε−1k) and R = O(log k), and use the count-sketch data structure with

bucket size O(B) and replicate number O(R). Let x′ ∈ Rn denote the estimate given by the

count-sketch data structure.

We define P,Q ⊆ [n]\S as follows

P = {i | |xi| ≤ 1, i ∈ [n]\S}, Q = {i | |xi| > 1, i ∈ [n]\S}.

We consider the following two cases.

Case 1. |Q| > B/4.

We have

‖x′S − xS‖H ≤ k =
k

|Q| · |Q| ≤
k

B/4
|Q| ≤ 4k

B
‖x−k‖H ≤ ε‖x−k‖H .

Case 2. |Q| ≤ B/4.
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By Lemma 15.5.1, for each i ∈ S, with probability at least 1− 1/ poly(k), we have

|x′i − xi| ≤
√
‖x−2B‖2

2

2B
≤
√
‖xP‖2

2

2B
.

Applying a union bound to coordinates in S, we have with probability at least 1− poly(k),

‖x′S − xS‖H ≤ kH(

√
‖xP‖2

2

2B
).

Then Case 2(a)
√
‖xP‖2

2/2B ≥ 1. We have

‖x′S − xS‖H ≤ k ≤ k

2B
‖xP‖2

2 ≤
k

2B
‖x−k‖H ≤ ε‖x−k‖H .

Case 2(b)
√
‖xP‖2

2/2B < 1. We have

‖x′S − xS‖H ≤
k

2B
‖xP‖2

2 ≤
k

2B
‖x−k‖H ≤ ε‖x−k‖H .
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15.6 Fourier set query

In this section, we give set query algorithms from Fourier measurements, when the

error is measured with respect to Huber norm and Tukey norm. All of the results in this

section follow from the fact that we can simulate the count sketch data structure in Fourier

case, by losing a factor of log n on the number of measurements (we also lose a log n factor

in update time and query time).

This simulation is standard (as in for example [HIKP12a]) by using (pseudo)random

spectral permutation and filtering functions. Let B denote bucket size. Let P = {i ∈

[n] | |x̂i| < τ} and Q = {i ∈ [n] | |x̂i| ≥ τ}. Let P ′ denote the set after removing top O(k)

coordinates from P , and similarly let Q′ denote the set after removing top O(k) coordinates

from Q. We can guarantee that with high probability for each coordinate i ∈ S, the error for

our estimation to x̂i is bounded by
√
‖x̂P ′‖22+‖x̂Q′‖22

B
. Following the proof on set query results

in Section 15.5, this yields to `H/`H ≤ ε guarantee for function H being Huber function or

Tukey function.

Theorem 15.6.1 (Fourier point estimation guarantee). Given a vector x ∈ Cn, for every

ε ∈ (0, 1) and k ≥ 1, any S ⊆ [n], |S| ≤ k, there exists an algorithm (Algorithm 15.3) that

takes

O(ε−1k log k · log n)

samples, runs in

O(ε−1k log k · log n)
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time, and outputs a vector x′ ∈ Cn such that for each i ∈ S,

|x′i − x̂i| ≤
√
‖x̂P ′‖2

2 + ‖x̂Q′‖2
2

B
,

holds with probability at least 1− 1/ poly(k).

Before showing the proof to Theorem 15.6.1, we first present some basic definitions

and basic building blocks for Fourier sparse recovery. Readers can refer to [HIKP12a] for

more details.

For a complex vector x ∈ Cn, we use x̂ ∈ Cn to denote its Fourier spectrum,

x̂i =
1√
n

n∑

j=1

e−2πiij/nxj,∀i ∈ [n].

Then the inverse transform is

xj =
1√
n

n∑

i=1

e2πiij/nx̂i,∀j ∈ [n].

The discrete convolution of functions f and g is given by,

(f ∗ g)[n] =
+∞∑

m=−∞

f [m]g[n−m]

We use the same (pseudorandom) spectrum permutation as [HIKP12a],

Definition 15.6.1. Suppose σ−1 exists mod n. We define the permutation Pσ,a,b by

(Pσ,a,bx)i = xσ(i−a)e
−2πiσbi/n.

We also define πσ,b = σ(i− b) (mod n). Let hσ,b(i) = round(πσ,b(i)B/n) and oσ,b(i) =

πσ,b(i)− hσ,b(i)n/B. We say hσ,b(i) is the “bin” that frequency i is mapped into, and oσ,b(i)

is the “offset”.

We use the same filter function as [HIKP12a, PS15, CKPS16],
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Definition 15.6.2. Given parameters B ≥ 1, δ > 0, α > 0. We say that (G, Ĝ′) =

(GB,δ,α, Ĝ
′
B,δ,α) ∈ Rn is a filter function if it satisfies the following properties

(I) | supp(G)| = O(α−1B log(n/δ)),

(I) Ĝ′i = 1, if |i| ≤ (1− α)n/(2B),

(II) Ĝ′i = 0, if |i| ≥ n/(2B),

(III) Ĝ′i ∈ [0, 1], for all i,

(IV)
∥∥∥Ĝ′ − Ĝ

∥∥∥
∞
<∞.

We present our Fourier set query algorithm in Algorithm 15.3. We choose bucket

size B = O(k/ε) and number of repetitions R = O(log k). For the filter function, we choose

δ = 1/ poly(n) so that the noise introduced by the filter is negligible. Let α be a very small

constant. We use procedure EstimateValues in r-th repetition where r ∈ [R] to obtain

an unbiased estimator for x̂S (up to error δ‖x̂‖1), denoted by w(r). Finally, for each i ∈ S,

we estimate x̂i by x′i ← medianr∈[R]w
(r)
i . By taking the median of a set of complex numbers,

we mean that we take the median of real part and imaginary part separately, and then add

these two parts together.

We use three types of events defined in [HIKP12a] as basic building blocks for analyz-

ing Fourier set query algorithms. For any i ∈ S, we define three types of events associated

with i and S and defined over the probability space induced by σ and b:

Definition 15.6.3 (Collision, large offset, large noise). “Collision” event Ecoll(i) : holds iff

hσ,b(i) ∈ hσ,b(S\{i}).
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“Large offset” event Eoff(i) : holds iff |oσ,b(i)| ≥ (1− α)n/(2B).

“Large noise” event Enoise(i) : holds iff

E
[∥∥∥x̂′h−1

σ,b(hσ,b(i))\S

∥∥∥
2

2

]
≥ Err2(x̂′, k)/(αB).

Claim 15.6.2 (Claim 3.1 in [HIKP12a]). For any i ∈ S, the event Ecoll(i) holds with prob-

ability at most 4|S|/B.

Claim 15.6.3 (Claim 3.2 in [HIKP12a]). For any i ∈ S, the event Eoff(i) holds with proba-

bility at most α.

Claim 15.6.4 (Claim 4.1 in [HIKP12a]). For any i ∈ S, Pr[Enoise(i)] ≤ 4α.

Lemma 15.6.5 (Lemma 4.2 in [HIKP12a]). Let a ∈ [n] uniformly at random, B divide n,

and the other parameters be arbitrary in

û = HashToBins(x, Pσ,a,b, B, δ, α).

Then for any i ∈ [n] with j = hσ,b(i) and none of Ecoll(i), Eoff(i) or Enoise(i) holding,

E
[∣∣∣ûj − x̂′ie−

2πi
n
aσi
∣∣∣
2
]
> 2

ρ2

αB
.

Lemma 15.6.6. Suppose B divides n. The output û of HashToBins satisfies

ûj =
∑

hσ,b(i)=j

x̂i(Ĝ′B,δ,α)−oσ,b(i)ω
aσi ± δ‖x̂‖1.

The running time of HashToBins is O(B
α

log(n/δ)).

Proof of Theorem 15.6.1. We give Fourier set query algorithm in Algorithm 15.3. The total

number of measurements and decoding time is O(R) ·O(B log n
α

) = O(ε−1k log k log n).
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For each repetition r, for each i ∈ S, we can union bound the probability that none

of three bad events (collision, large offset, large noise) happens by 1
10
. Conditioned on

no bad events happened, by Lemma 15.6.5, w(r)
i is a good estimation for x̂i in the sense

that E[|x̂i − w(r)
i |2] = O(

‖xP ‖22+‖xQ‖22
B

). By Markov inequality with only very small constant

probability that |x̂i − w
(r)
i | ≥ 1

2

√
‖xP ‖22+‖xQ‖22

B
. By applying Chernoff bound, we can prove

that with probability 2−Ω(R), |x̂i −medianr∈[R]w
(r)
i | ≥ 1

2

√
‖xP ‖22+‖xQ‖22

B
.

Corollary 15.6.7 (Fourier set query). Given a vector x ∈ Cn, for every ε ∈ (0, 1) and

k ≥ 1, any S ⊆ [n], |S| ≤ k, there exists an algorithm (Algorithm 15.3) that takes

O(ε−1k log k · log n)

samples, runs in

O(ε−1k log k · log n)

time, and outputs a vector x′ ∈ Cn such that

‖(x′ − x̂)S‖H ≤ ε‖x̂S‖H ,

holds with probability at least 1− 1/ poly(k). The corollary holds when function H is Huber

function or Tukey function.
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Algorithm 15.3 Fourier set query algorithm
1: procedure FourierCountSketch(x, S, ε, k) . Theorem 15.6.1
2: B ← O(k/ε), R← O(log k), δ ← 1/ poly(n), α← 1/100
3: for r = 1→ R do
4: ŵ(r) ← EstiamteValues(x, S,B, δ, α)
5: end for
6: for i ∈ S do
7: x′i ← medianr∈[R]ŵ

(r)
i

8: end for
9: return x′S
10: end procedure
11: procedure EstimateValues(x, S,B, δ, α)
12: Choose a, b ∈ [n] uniformly at random
13: Choose σ uniformly at random from the set of odd numbers in [n]
14: û← HashToBins(x, Pσ,a,b, B, δ, α)
15: ŵ ← 0
16: for t ∈ S do
17: ŵt ← ûhσ,b(t)e

2πi
n
σat

18: end for
19: return ŵ
20: end procedure
21: procedure HashToBins(x, Pσ,a,b, B, δ, α)
22: Compute ŷjn/B for j ∈ [B], where y = GB,α,δ · (Pσ,a,bx)
23: return ûj = ŷjn/B
24: end procedure

15.7 Sparse recovery
15.7.1 k-sparse recovery for Huber function

In this subsection, we present our k-sparse recovery results for Huber function.

Theorem 15.7.1. Let H denote Huber function defined in Definition 15.4.1. There exists

a distribution of Φ ∈ Rm×n with m = O(ε−2k log n) and a recovery algorithm, such that for

each x ∈ Rn, k ∈ [n] and ε ∈ (0, 1), the recovery algorithm takes Φx as its input and outputs
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S ∩ T S ∩ T T ∩ S [n]\(S ∪ T )

b a

Figure 15.3: ‖xS∩T‖H − ‖xT∩S‖H is the displacement error

k-sparse vector x′ ∈ Rn so that with probability 1− 1/ poly(n),

‖x′ − x‖H ≤ (1 + ε) min
k−sparse y

‖y − x‖H .

The update time is O(log n) and the recovery time is O(n log n).

Proof. Let x−k denotes the vector x with the largest k coordinates in magnitude zeroed out.

We use count sketch to give each xi (where i ∈ [n]) an estimate. In particular,

we choose the number of buckets to be B = O(ε−2k) and the number of repetitions to be

R = O(log n). Let x′i denote the estimate obtained by the count sketch for xi. Let T denote

the largest k coordinates in absolute value in x′. The recovery algorithm outputs x′T as a

k-sparse approximation to x.

Note that the count sketch data structure takes B ·R = O(ε−2k log n) measurements.

Its update time is O(R) = O(log n) time, and the time to obtain x′ is O(n ·R) = O(n log n).

Taking largest k coordinates from x′ requires O(n log n) time. Thus the total query time is

O(n log n). In the following, we show that ‖x− x′‖H ≤ (1 + ε)‖x−k‖H .

By Lemma 15.5.1, for each i ∈ [n], with probability 1− 1/ poly(n),

(xi − x′i)2 ≤ ε2

64k
‖x−64k/ε2‖2

2 ≤
ε2

64k
‖x−64k‖2

2. (15.5)
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Let S denote the largest k coordinates of x in magnitude. The error is

‖x− x′‖H =
∑

i∈T

H(xi − x′i) +
∑

i∈T

H(xi). (15.6)

By point estimation guarantee given in Eq. (15.5) and results from Huber set query,

∑

i∈T

H(xi − x′i) ≤ |T | ·H(
ε

8
√
k
‖x−64k‖2)

≤ ε

8
‖x−k‖H .

Note that

∑

i∈T

H(xi) =


∑

i∈T

H(xi)−
∑

i∈S

H(xi)


+

∑

i∈S

H(xi)

=


 ∑

i∈S∩T

H(xi)−
∑

i∈S∩T

H(xi)


+ ‖x−k‖H ,

where the second step follows by canceling out the coordinates in S ∩ T . In the following,

our goal is to show that
∑

i∈S∩T H(xi)−
∑

i∈S∩T H(xi) ≤ 7
8
ε‖x−k‖H .

If S ∩ T = ∅, then S = T and
∑

i∈S∩T H(xi) −
∑

i∈S∩T H(xi) = 0. In the following,

we assume that S ∩ T 6= ∅. Let b = maxi∈S∩T |xi|, and a = mini∈S∩T |xi|. Because Huber

function H(t) is monotonically increasing as |t| increases,
∑

i∈S∩T

H(xi)−
∑

i∈S∩T

H(xi) ≤ |S ∩ T | · (H(b)−H(a)).

Our final goal is to prove that H(b)−H(a) ≤ 7ε‖x−k‖H
8|S∩T | . We discuss in three cases: case (1)

τ ≤ a, case (2) a < τ < b, case (3) b ≤ τ . We analyze these three cases in Claim 15.7.2,

Claim 15.7.3 and Claim 15.7.4.
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Before diving into case analysis, we first prove two inequalities: one is an upper bound

of b − a, and the other is an upper b ound of a. They will be used repeatedly in the case

analysis.

By Eq. (15.5), any i ∈ [n], |xi − x′i| ≤ ε
8
√
k
‖x−64k‖2. That is, ‖x − x′‖∞ ≤ ∆ where

∆ = ε
8
√
k
‖x−64k‖2. By Lemma 15.7.5,

b− a ≤ ε

4
√
k
‖x−64k‖2. (15.7)

Moreover, by definition that a = mini∈S∩T |xi|,

a ≤ ‖xS∩T‖2√
|S ∩ T |

≤ ‖x−k‖2√
|S ∩ T |

. (15.8)

Claim 15.7.2. If τ ≤ a, then H(b)−H(a) ≤ 7ε
8

‖x−k‖H
|S∩T | .

Proof. Let P,Q be a partition of S where

P = {i | |xi| ≤ τ, i ∈ S}, Q = {i | |xi| > τ, i ∈ S}.

Note that the coordinates in x−64k, which equals to S = P ∪ Q with largest (in absolute

value) 63k coordinates removed, are fully contained in P union Q with largest (in absolute

value) 63k coordinates removed. By triangle inequality,

‖x−64k‖2 ≤ ‖xP‖2 + ‖(xQ)−63k‖2. (15.9)

In the following, we are going to bound both ‖xP‖2 and ‖(xQ)−63k‖2 in terms of ‖x−k‖H .
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By definition of Huber function ‖x−k‖H = 1
τ
‖xP‖2

2+‖xQ‖1. Because τ ≤ a, S∩T ⊆ Q.

Thus ‖xQ‖1 ≥ ‖xS∩T‖1 ≥ τ |S ∩ T |. Therefore,

‖x−k‖H ≥
1

τ
‖xP‖2

2 + τ |S ∩ T |

≥ 2

√
1

τ
‖xP‖2

2 · τ |S ∩ T | = 2

√
|S ∩ T | · ‖xP‖2.

So we have

‖xP‖2 ≤
1

2
√
|S ∩ T |

‖x−k‖H .

In order to bound ‖(xQ)−63k‖2, by Lemma 15.5.2,

‖(xQ)−63k‖2 ≤
1√
63k
‖xQ‖1 ≤

1

7
√
|S ∩ T |

‖xQ‖1

≤ 1

7
√
|S ∩ T |

‖x−k‖H .

Therefore,

H(b)−H(a)

= b− a

≤ ε

4
√
|S ∩ T |

‖x−64k‖2

≤ ε

4
√
|S ∩ T |

(‖xP‖2 + ‖(xQ)−63k‖2)

≤ ε

4
√
|S ∩ T |


 1

2
√
|S ∩ T |

‖x−k‖H +
1

7
√
|S ∩ T |

‖x−k‖H




≤ ε‖x−k‖H
4|S ∩ T | ,
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where the first line follows from definition of Huber function and a ≥ τ , the second line

follows by Eq. (15.7), the third follows by Eq. (15.9), the forth line follows by the bounds of

‖xP‖2 and ‖(xQ)−63k‖2 we just obtained.

Claim 15.7.3. If a < τ < b, then H(b)−H(a) ≤ 7ε
8

‖x−k‖H
|S∩T | .

Proof. Let P = {i | |xi| ≤ τ, i ∈ S}, Q = {i | |xi| > τ, i ∈ S}. We discuss in two cases

depending on whether the size of Q is greater than 9k or not.

(1) If |Q| ≤ 9k. We first bound H(b)−H(a) as follows

H(b)−H(a)

= b− a2/τ

≤ b2/τ − a2/τ

=
1

τ
(b− a)(b+ a)

≤ ε‖x−10k‖2

4τ
√
k

(
ε‖x−10k‖2

4
√
k

+ 2a)

≤ ε‖x−10k‖2

4τ
√
k

(
ε‖x−10k‖2

4
√
k

+ 2
‖xP‖2√
|S ∩ T |

)

=
ε2‖x−10k‖2

2

16τk
+
ε‖x−10k‖2‖xP‖2

2
√
k
√
|S ∩ T |

≤ ε

τ |S ∩ T |(
1

16
‖x−10k‖2

2 +
1

2
‖x−10k‖2 · ‖xP‖2),

where the forth step follows by Eq.(15.7), and the fifth step follows by Eq.(15.8).

Because |Q| ≤ 9k, ‖x−10k‖2 ≤ ‖xP‖2, and thus

H(b)−H(a) ≤ ε

τ |S ∩ T | ·
9

16
‖xP‖2

2 ≤
9ε‖x−k‖H
16|S ∩ T | .

1025



(2) If |Q| > 9k. First note that

b− a2/τ ≤ 2(b− a),

because

b+ a2/τ ≥ 2
√
b · a2/τ ≥ 2a.

Furthermore, b− a ≤ ε‖x−64‖2
4
√
k
≤ ε‖x−10‖2

4
√
k

, where

‖x−10k‖2 ≤ ‖(xQ)−9k‖2 + ‖xP‖2 ≤
1√
9k
‖xQ‖1 + ‖xP‖2.

Also note that ‖x−k‖H = ‖xQ‖1 + 1
τ
‖xP‖2

2 ≥ 2
√
‖xQ‖1 · ‖xP‖2

2/τ ≥ 6
√
k‖xP‖2. Therefore,

H(b)−H(a) = b− a2/τ

≤ 2ε

4
√
k
‖x−10‖2

≤ 2ε

4
√
k

(
1√
9k
‖x−k‖H +

1

6
√
k
‖x−k‖H)

=
ε‖x−k‖H

4k
≤ ε‖x−k‖H

4|S ∩ T | .

Claim 15.7.4. If b ≤ τ , then H(b)−H(a) ≤ 7ε
8

‖x−k‖H
|S∩T | .

1026



Proof. The analysis is similar to classical `2/`2 sparse recovery case. We have

H(b)−H(a)

=
b2

τ
− a2

τ

=
1

τ
(b− a)(b+ a)

=
1

τ
(b− a)(b− a+ 2a)

≤ 1

τ
· ε

4
√
k
‖x−k‖2 · (

ε

4
√
k
‖x−k‖2 + 2

‖x−k‖2√
|S ∩ T |

)

≤ 1

τ
· ε‖x−k‖2

4
√
|S ∩ T |

· ( ‖x−k‖2

4
√
|S ∩ T |

+ 2
‖x−k‖2√
|S ∩ T |

)

=
1

τ
· 9ε‖x−k‖2

2

16|S ∩ T |

=
9ε‖x−k‖H
16|S ∩ T | ,

where the first step follows by definition of Huber function, the forth step follows by Eq. (15.7)

and Eq.(15.8), the fifth step follows by |S ∩ T | ≤ |T | = k and ε ≤ 1, the last step follows

because by definition of b = maxi∈S∩T |xi|, for any j ∈ [n]\S, |xj| ≤ mini∈S |xi| ≤ b ≤ τ and

then by definition of Huber function ‖x−k‖H = 1
τ
‖x−k‖2

2.

Lemma 15.7.5. Let vector u, v ∈ Rn such that ‖u − v‖∞ ≤ ∆. Let S be the largest k

coordinates in u, and let T be the largest k coordinates in v. Let b = maxi∈S∩T ui and

a = mini∈S∩T ui. Then b− a ≤ 2∆.

Proof. Let λ = maxi∈T vi. We have

b = max
i∈S∩T

ui ≤ max
i∈T

ui ≤ ∆ + max
i∈T

vi = ∆ + λ.
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On the other hand,

a = min
i∈S∩T

ui ≥ min
i∈T

ui ≥ −∆ + min
i∈T

vi ≥ −∆ + λ.

Therefore

b− a ≤ (∆ + λ)− (−∆ + λ) ≤ 2∆.

15.7.2 k-sparse recovery for Tukey function

In this subsection, we present our k-sparse recovery results for Tukey function. Similar

to results for Huber function, we use count-sketch to estimate each coordinate and then find

the top k ones. Moreover, our proof for Tukey function has a similar structure, where we first

decompose estimation error into set query error and displacement error, and then discuss

the displacement error in several cases.

Theorem 15.7.6. Let H denote Tukey function defined in Definition 15.4.2. There exists

a distribution of Φ ∈ Rm×n with m = O(ε−2k log n) and a recovery algorithm, such that for

each x ∈ Rn, k ∈ [n] and ε ∈ (0, 1), the recovery algorithm takes Φx as its input and outputs

k-sparse vector x′ ∈ Rn so that with probability 1− 1/ poly(n),

‖x′ − x‖H ≤ (1 + ε) min
k−sparse y

‖y − x‖H ,

The update time is O(log n) and the recovery time is O(n log n).

Proof. Let x−k denotes the vector x with absolute largest k coordinates removed.

1028



We use count sketch to give each xi (where i ∈ [n]) an estimate. In particular, we

choose the number of buckets B = O(ε−2k) and the number of duplicates R = O(log n) for

the count sketch data structure. Let x′i denote the estimate obtained by the count sketch for

xi. Let T denote the largest k coordinates in absolute value in x′. The recovery algorithm

outputs x′T as a k-sparse approximation to x.

Note that the count sketch data structure takes B ·R = O(ε−2k log n) measurements.

Its update time is O(R) = O(log n) time, and the time to obtain x′ is O(n ·R) = O(n log n).

Taking largest k coordinates from x′ requires O(n log n) time. Thus the total query time is

O(n log n). In the following, we show that ‖x− x′T‖H ≤ (1 + ε)‖x−k‖H .

By Lemma 15.5.1, for each i ∈ [n], with probability 1− 1/ poly(n),

(xi − x′i)2 ≤ ε2

10k
‖x−10k/ε2‖2

2.

Let S denote the largest k coordinates in absolute value in x. The recovery error is

‖x− x′T‖H =
∑

i∈T

H(xi − x′i) +
∑

i∈T

H(xi).

By point estimation guarantee and results from Tukey set query in Theorem 15.2.1,

∑

i∈T

H(xi − x′i) ≤ |T | ·H(
ε√
10k
‖x−4k‖2) ≤ ε

3
‖x−k‖H .

Note that

∑

i∈T

H(xi) =


∑

i∈T

H(xi)−
∑

i∈S

H(xi)


+

∑

i∈S

H(xi)

=


 ∑

i∈S∩T

H(xi)−
∑

i∈S∩T

H(xi)


+ ‖x−k‖H ,
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where the second step follows by canceling out the coordinates in S ∩ T . In the following,

our goal is to show that
∑

i∈S∩T H(xi)−
∑

i∈S∩T H(xi) ≤ 2
3
ε‖x−k‖H .

If S ∩ T = ∅, then S = T and
∑

i∈S∩T H(xi) −
∑

i∈S∩T H(xi) = 0. In the following,

we assume that S ∩ T 6= ∅. Let b = maxi∈S∩T |xi|, and a = mini∈S∩T |xi|. Because Huber

function H(t) is monotonically increasing as |t| increases,

∑

i∈S∩T

H(xi)−
∑

i∈S∩T

H(xi) ≤ |S ∩ T | · (H(b)−H(a)).

By Lemma 15.7.5

b− a ≤ ε√
10k
‖x−10k/ε2‖2.

In the following, we are going to prove that H(b) − H(a) ≤ ε
2

‖x−k‖H
|S∩T | . We discuss in three

cases: case (1) τ ≤ a, case (2) a < τ < b, case (3) b ≤ τ .

Case (1) τ ≤ a.

In this case H(a) = H(b) = 1 and H(b)−H(a) = 0.

Case (2) a < τ < b.

Let P = {i ∈ S | |xi| < τ}, and Q = {i ∈ S | |xi| ≥ τ}. We have

‖x−k‖H = |Q|+ ‖xP‖2
2

and

H(b)−H(a) = 1− a2 = (1− a)(1 + a)

≤ ε‖x−10k/ε2‖2√
k

· (1 + a) ≤ 2ε‖x−10k/ε2‖2√
k

.
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If |Q| > ε−2k, then we have H(b) − H(a) ≤ 1 while ‖x−k‖H ≥ |Q| > ε−2k. Thus H(b) −

H(a) ≤ ε
k
‖x−k‖H ≤ ε

|S∩T |‖x−k‖H .

If |Q| ≤ ε−2k and ‖x−10k/ε2‖2 >
√
k, then ‖xP‖2 ≥ ‖x−10k/ε2‖2 >

√
k, and so

‖x−10k/ε2‖2 ≤ ‖xP ‖2√
k
· ‖xP‖2 =

‖xP ‖22√
k
≤ 1√

k
‖x−k‖H . Thus H(b) − H(a) ≤ 2ε

k
‖x−k‖H ≤

2ε
|S∩T |‖x−k‖H .

If |Q| ≤ ε−2k and ‖x−10k/ε2‖2 ≤
√
k. We have ‖xP‖2 ≥ ‖x−10k/ε2‖2. By definition

that a = mini∈S∩T |xi|, a ≤
‖xS∩T ‖2√
|S∩T |

≤ ‖xP ‖2√
|S∩T |

. Therefore,

H(b)−H(a) ≤ ε‖x−10k/ε2‖2√
k

· (ε‖x−10k/ε2‖2√
k

+ 2
‖xP‖2√
|S ∩ T |

)

≤ ε‖xP‖2√
|S ∩ T |

· 3 ‖xP‖2√
|S ∩ T |

≤ 3ε

|S ∩ T |‖xP‖
2
2

≤ 3ε

|S ∩ T |‖x−k‖H .

Case (3) b ≤ τ .
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The analysis is similar to classical `2/`2 sparse recovery case. We have

H(b)−H(a) =
b2

τ
− a2

τ

=
1

τ
(b− a)(b+ a)

=
1

τ
(b− a)(b− a+ 2a)

≤ 1

τ
· ε√

k
‖x−k‖2 · (

ε√
k
‖x−k‖2 + 2

‖x−k‖2√
|S ∩ T |

)

≤ 1

τ
· ε‖x−k‖2√
|S ∩ T |

· ( ‖x−k‖2√
|S ∩ T |

+ 2
‖x−k‖2√
|S ∩ T |

)

=
1

τ
· 3ε‖x−k‖2

2

|S ∩ T |

=
3ε‖x−k‖H
|S ∩ T | ,

where the first step follows by definition of Huber function, the forth step follows by Eq. (15.7)

and Eq.(15.8), the fifth step follows by |S ∩ T | ≤ |T | = k and ε ≤ 1, the last step follows

because by definition of b = maxi∈S∩T |xi|, for any j ∈ [n]\S, |xj| ≤ mini∈S |xi| ≤ b ≤ τ and

then by definition of Huber function ‖x−k‖H = 1
τ
‖x−k‖2

2.
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Part IV

Matrix Factorizations
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Chapter 16

Weighted Low Rank Approximation

The classical low rank approximation problem is: given a matrix A, find a rank-k

matrix B such that the Frobenius norm of A− B is minimized. It can be solved efficiently

using, for instance, the Singular Value Decomposition (SVD). If one allows randomization

and approximation, it can be solved in time proportional to the number of non-zero entries

of A with high probability.

Inspired by practical applications, we consider a weighted version of low rank approx-

imation: for a non-negative weight matrix W we seek to minimize
∑

i,j(Wi,j · (Ai,j −Bi,j))
2.

The classical problem is a special case of this problem when all weights are 1. Weighted

low rank approximation is known to be NP-hard, so we are interested in a meaningful

parametrization that would allow efficient algorithms.

In this paper we present several efficient algorithms for the case of small k and under

the assumption that the weight matrix W is of low rank, or has a small number of distinct

columns. An important feature of our algorithms is that they do not assume anything about

the matrix A. We also obtain lower bounds that show that our algorithms are nearly optimal

in these parameters. We give several applications in which these parameters are small. To

the best of our knowledge, the present paper is the first to provide algorithms for the weighted

low rank approximation problem with provable guarantees.

1034



Perhaps even more importantly, our algorithms proceed via a new technique, which

we call “guess the sketch”. The technique turns out to be general enough to give solutions to

several other fundamental problems: adversarial matrix completion, weighted non-negative

matrix factorization and tensor completion.
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16.1 Introduction

Low rank approximation is arguably one of the most well-studied problems in ran-

domized numerical linear algebra, with diverse applications to clustering [DFK+04, FSS13,

LBKW14, CEM+15], data mining [AFK+01], distance matrix completion [Cha12], informa-

tion retrieval [PRTV00], learning mixtures of distributions [AM05, KSV08], recommendation

systems [DKR02], and web search [AFKM01, Kle99]. In practice one often has a low rank

matrix which has been corrupted with noise of bounded norm, and low rank approximation

allows one to approximately recover the original matrix. Low rank approximation may also

help explain a dataset, revealing low dimensional structure in high dimensional data. Given

a low rank approximation, one can store a matrix and compute a matrix-vector product

much more efficiently by storing the corresponding factorization. It can also be used as a

preprocessing step in applications, that is, by first projecting data onto a lower-dimensional

subspace one preserves important properties of the input, but can now run subsequent algo-

rithms in the lower-dimensional space. For example, it has been proposed to reduce the data

dimension in Non-Negative Matrix Factorization [LS00] (more on this below), and Latent

Dirichlet Allocation (LDA) [BNJ01].

The basic low rank approximation problem is: given an n × n matrix A, find a

matrix Â of rank at most k for which ‖A − Â‖F is minimized, where for a matrix B,

‖B‖F =
(∑

i,j B
2
i,j

)1/2

is its Frobenius norm. This formulation intuitively corresponds to

the matrix Â capturing as much of the variance of A as possible. It is well-known that the

optimal solution is given by Ak, which if UΣV > is the singular value decomposition (SVD)

of A, where U and V are orthogonal matrices and Σ is a non-negative diagonal matrix

with Σ1,1 ≥ Σ2,2 ≥ · · · ≥ Σn,n, then Ak = UΣkV
>, where Σk agrees with Σ on its first k
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diagonal entries and is 0 otherwise. Although the SVD is computable in polynomial time, it

is often acceptable to output a matrix Â for which ‖A− Â‖F ≤ (1 + ε)‖A−Ak‖F with high

probability. In the latter case, much more efficient algorithms are known, and it is possible

to compute such an Â in nnz(A) + n · poly(k/ε) time, where nnz(A) denotes the number of

non-zero entries of A [CW13, MM13, NN13a]. We note that for typical applications k and

1/ε are assumed to be much smaller than n, e.g., in [Har14] they are treated as absolute

constants.

Despite the large body of work on low rank approximation, the weighted case is not

well understood. In this case one is given an n× n matrix A and an n× n matrix W with

Wi,j ≥ 0, and one seeks to solve:

min
rank-k matrices Â

‖W ◦ (A− Â)‖2
F = min

rank-k matrices Â

∑

i,j

W 2
i,j(Ai,j − Âi,j)2.

The classical low rank approximation is a special case in whichWi,j = 1 for all i and j. How-

ever, in general there may not be a good reason to weight all elements of the approximation

error A− Â equally, especially if one is given prior knowledge about the distribution of the

errors. For example, suppose the columns of A each come from a low-dimensional subspace

but one of the columns is then shifted by a fixed large vector so that its mean is differ-

ent. One may first want to recenter the data by subtracting off the mean from each of the

columns. While this is possible without weighted low rank approximation, suppose instead

that each of the columns of A comes from a perturbation of columns in a low dimensional

subspace but one of the columns has a much larger variance. Then if all weights were equal,

it would be enough for Â to fit this one single large variance column, which fails to capture

the entire low-dimensional subspace. One way of fixing this is to reweight each entry of A
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by the inverse of its variance. This is a common technique used in gene expression analysis,

where the error model for microarray measurements provides entry-specific noise estimates,

or when entries of A represent aggregates of many samples such as in word co-occurrence

matrices and non-uniform weights are needed to appropriately capture any differences in the

sample sizes; see [SJ03] for a discussion, and also the Wikipedia entry on weighted low rank

approximation for a brief introduction.

While the extension of low rank approximation to the weighted case goes back to work

of Young in 1940 [You40], its complexity is not well-understood, partly because the weighted

case does not admit a solution via the SVD and may have many local minima [SJ03]. Early

work by Shpak [Shp90] looked at gradient-based approaches while Lu et al. [LPW97, LA03]

looked at alternating minimization methods. These were significantly sped up in practice by

the work of Srebro and Jaakkola [SJ03], with success in various applications such as color

image restoration [MES08], though there are no provable time bounds and in the worst case

the running times could be exponential or worse. In fact, weighted low rank approximation

is known to be NP-hard to approximate up to a (1±1/ poly(n)) factor [GG11]. We note that

this also follows from the fact that matrix completion, arguably one of the most important

special cases of weighted low rank approximation in which case all weights are 0 or 1, which

we discuss more below, is also known to be NP-hard [Pee96, HMRW14]. Typically, though,

assumptions such as incoherence and randomly sampled entries allow one to circumvent this

hardness [CR09, LLR16]. There is some debate as to whether these assumptions are valid,

for instance in [SW15] an argument is made why randomly missing entries may not hold for

real-world datasets.

Many natural questions are left open from previous work. In particular the main
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question as we see it is the following:

• For which weight matrices W is the problem tractable? More generally, is it possible

to identify a natural parameter of W and to obtain parameterized complexity bounds

in terms of that parameter?
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16.1.1 Our Results

In this work we provide an answer to the above questions by parameterizing the

complexity of the problem in terms of the rank of the weight matrix W and the number

of distinct columns of the weight matrix. Note that we make no assumptions about the

input matrix A. Let OPT denote the quantity minrank-k matrices Â ‖W ◦ (Â−A)‖2
F . Our main

theorems are the following. For a function f , define f̃ = f · poly(log(f)).

Theorem 16.1.1 (Algorithm for Weighted Low Rank Approximation). Let r be the rank of

W . There is an algorithm running in time nO(k2r/ε) which outputs a factorization (into an

n× k and a k × n matrix) of a rank-k matrix Â for which

‖W ◦ (A− Â)‖2
F ≤ (1 + ε) OPT,

with probability at least 9/10.

We also have the following theorem.

Theorem 16.1.2 (Algorithm for Weighted Distinct Columns). Let r be the number of dis-

tinct columns of W . For every ε > 0 and for an arbitrarily small constant γ > 0, there

is an algorithm running in time O((nnz(A) + nnz(W )) · nγ) + n · 2Õ(k2r2/ε) which outputs a

factorization (into an n× k and a k × n matrix) of a rank-k matrix Â for which

‖W ◦ (A− Â)‖2
F ≤ (1 + ε) OPT,

with probability at least 9/10.

Note that Theorem 16.1.2 does not make any assumptions on the number of distinct

rows, which is important for the applications described below.
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Let us point out two things here:

• Before only the case of W having rank 1 was known to be provably solvable in poly-

nomial time by a direct reduction to the SVD1;

• The result for at most r distinct columns implies that, with respect to this parametriza-

tion, the weighted low rank approximation problem is fixed-parameter tractable.

We complement the above positive results by proving a lower bound, which assumes the

Exponential Time Hypothesis for the average case hardness of random 4-SAT. We state the

assumption as follows.

Assumption 16.1.3 (“Random Exponential Time Hypothesis”). Let c > ln 2 be a constant.

Consider a random 4-SAT formula on n variables in which each clause has 4 literals, and

in which each of the 16n4 clauses is picked independently with probability c/n3. Then any

algorithm which always outputs 1 when the random formula is satisfiable, and outputs 0 with

probability at least 1/2 when the random formula is unsatisfiable, must run in 2c
′n time on

some input, where c′ > 0 is an absolute constant.

We are not aware of prior work using this form of the Exponential Time Hypothesis,

though both the Exponential Time Hypothesis and Feige’s original assumption [Fei02] that

there is no polynomial time algorithm for the problem in Assumption 16.1.3 are commonly

1Namely, in that case, we can rewrite the problem as min
rank-k matrices Â

‖D(Â−A)E‖2F for diagonal matrices

D and E, from which we can replace A with DAE and solve the unweighted low rank approximation,
obtaining an Â for which we can then output D−1ÂE−1 if the diagonal entries of D and E are non-zero. If
they are zero we can first remove rows and columns from A
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used. We do not know of any better algorithm for the problem in Assumption 16.1.3 and

have consulted several experts2 about the assumption who do not know a counterexample

to it. Instead of calling it “Random-ETH”, some experts3 suggest other names, e.g. average

case ETH or Feige-ETH.

Theorem 16.1.4 (Weighted Low Rank Approximation Hardness). Let r be an upper bound

on the number of distinct columns of W . Under Assumption 16.1.3, there is an absolute

constant ε0 ∈ (0, 1) for which any algorithm for solving the weighted low rank approximation

algorithm with ε ≤ ε0 and for any k ≥ 1, with constant probability, requires 2Ω(r) time.

Further, this holds even if W also only has r distinct rows.

Note that for constant k and ε, and r ≥ C log n for a constant C > 0, our upper

bound assuming at most r distinct columns is 2Õ(r2), which nearly matches our lower bound

in Theorem 16.1.4 of 2Ω(r).

There are naturally arising applications in which the rank of the weight matrix or the

number of distinct columns is small. Consider a matrix in which the rows correspond to users

and the columns correspond to ratings of a movie, such as in the Netflix matrix. Further,

suppose for each movie, there are r columns, indicating different aspects of the movie to be

rated, such as acting, plot, sound effects, visual effects, etc. For a given user, one can look at

the distribution of scores across movies along one of these aspects. These distributions may

have different variances for that user and one can renormalize the scores by the reciprocal

of their variance. In this case, the weight matrix consists of r distinct columns, one for each

2Personal communication with Russell Impagliazzo and Ryan Williams.
3Personal communication with Lijie Chen and Aviad Rubinstein.

1042



aspect, each copied n/r times, where n/r is the total number of movies. Each entry of a

column is a variance for a certain user for that aspect. This naturally generalizes to other

applications for which the columns can be clustered into r groups, such as in stochastic block

models or more general latent space models [Cha12]. Also, in some of these applications,

one would want a low rank nonnegative factorization, and we remark that we can achieve

this below.

Suppose now that A has constant rank k. A consequence of Theorem 16.1.1, which

we elaborate on more below, is that even if an adversary deletes up to O(1) entries in each

column of A in an arbitrary way, one can still recover a matrix Â of rank at most k which

agrees with A on all of the remaining entries in poly(n) time. This is a form of adversarial

matrix completion, which was studied in [HKZ11, SW15]. In these works the authors had

to make an incoherence assumption on the entries of A, which may not always hold, e.g.,

in the presence of outliers. Without this assumption the prior results would not be able to

recover such an Â even if a single adversarially chosen entry was deleted in each column.
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16.1.2 Other Results

Our techniques can be applied to weighted non-negative factorization, a problem

that has been extensively studied both in the unweighted (see, e.g., [AGKM12, Moi13]) and

weighted cases (see, e.g., [GVS03, GZD10, KG12, ZZGM15, YC09]). In this problem, one

seeks non-negative matrices U ∈ Rn×k and V ∈ Rk×n for which

∀i, j such that Wi,j > 0, Ai,j = (U · V )i,j,

where the unweighted case corresponds to Wi,j = 1 for all i and j. This problem naturally

arises in applications such as topic modeling in which negative entries do not make sense.

In a beautiful line of work [AGKM12, Moi13], an upper bound of nO(k2) was established for

the unweighted case. By combining their techniques with ours, we obtain the first results

for the weighted case when the weight matrix W has rank at most r. We defer the details

to the full version of the paper.

Finally, there is a simple bi-criteria approximation algorithm for weighted low rank

approximation when the weight matrix has entries that are all either 0 or 1. In this case it

is possible to obtain a rank-rk approximation to A in nnz(A) + nnz(W ) +n ·poly(rk/ε) time

with cost at most (1 + ε) times the cost of the best rank-k approximation. Here r denotes

the rank of the weight matrix. This has a better dependence on r and could be useful when

one does not need to output a matrix of rank exactly k. This is given in the full version of

the paper.
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16.1.3 Our Techniques

To prove Theorem 16.1.1, we first prove a structural theorem about regression. Then

our main new theme is what we call “guessing a sketched matrix”.

Structural Regression Theorem Given any number t of multiple response regression in-

stances, i.e., instances of the form min
X1,X2,··· ,Xt

‖AiX i−Bi‖2
F , where A1, . . . , At and B1, . . . , Bt

are matrices and each Ai has rank at most k, if one is interested in simultaneously min-

imizing the sum of their costs, i.e., the objective function is min
X1,X2,··· ,Xt

t∑
i=1

‖AiX i − Bi‖2
F ,

then one can choose a Gaussian matrix S with O(k/ε) rows and if one solves the problem

min
Y 1,Y 2,··· ,Y t

t∑
i=1

‖SAiY i − SBi‖2
F , then the minimizers Y 1, Y 2, · · · , Y t for this latter problem

satisfy
t∑
i=1

‖AiY i − Bi‖2
F ≤ (1 + ε) min

X1,X2,··· ,Xt

t∑
i=1

‖AiX i − Bi‖2
F with high constant probabil-

ity. Interestingly, the number of rows of S does not depend on the number t of regression

instances, and is optimal already for t = 1 and when B1 only has a single column [CW09].

This also generalizes affine embeddings in [CW13] in which t = 1 and B1 may have multiple

columns; we stress that the design matrices Ai may be different. The proof uses a novel

observation that a Gaussian S is a subspace embedding on average over i. This part uses a

tail bound from [CD05] for the condition number for a Gaussian matrix. Having this, we

bootstrap the approximation to (1± ε) using the approximate matrix product property of a

Gaussian matrix.

Guessing a Sketched Matrix Given our structural result, the main new theme of this

paper is to “guess a sketched matrix”. Suppose one is given an optimization problem of the
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form

p1(x1, . . . , xv) ≥ 0, p2(x1, . . . , xv) ≥ 0, . . . , pm(x1, . . . , xv) ≥ 0,

where each pi is a polynomial of degree at most d, the x1, . . . , xv are indeterminates over

the reals, and we are are interested in an assignment to x1, . . . , xv which simultaneously

satisfies these c polynomial inequalities. Then this can be solved in time (md)O(v) using

generic solvers [Ren92d, Ren92b, Ren92a, BPR96], and such techniques have been used in the

context of database theory [EFW10], non-negative matrix factorization [AGKM12, Moi13],

learning mixtures of Gaussians [LS15], computing approximate PSD factorizations [BDL16],

and solving small-scale mixed-norm low rank approximation instances [CW15a]. There are

two kinds of algorithms for semi-algebraic sets: the ones from [Ren92a, Ren92b, BPR96] are

able to determine if a given sem-algebraic set is empty or not. The one from [Ren92d] is able

to return a δ-approximate solution to a given semi-algebraic formulae by paying an extra

factor of log(1
δ
) in the running time. For weighted low-rank approximation, there are two

ways to output the matrices. One is using the algorithm from [Ren92d] directly. Another

option is to perform binary search using the algorithm from [Ren92a, Ren92b, BPR96] for

the entries of Âij one by one.

Our main idea here is to use polynomial optimization for large-scale non-convex op-

timization by combining it directly with sketching. For example, suppose one is given the

multiple response regression problem min
V
‖UV −A‖2

F in which the number of columns of U

is small. The twist though, is that both U and V are unknown! Then UV is just a low rank

approximation to A, and if we knew U we could solve the sketched optimization problem

min
X
‖SUV − SA‖2

F , for a random oblivious sketching matrix S, and our solution V would
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be a good solution to the original problem. Since we do not know U , we instead choose a

random S and create variables for S · U , which is small, and also compute S · A, which we

know. We then solve a regression problem for V in terms of the variables that we created

for S · U . Given V , we can then plug it into the original regression problem and solve for U

in terms of V which is in turn in terms of our variables for S · U . Finally we can verify the

solution by requiring that ‖UV −A‖2
F is small, which is now a system in a small number of

variables. This verification step is essential because our S only has a probabilistic guarantee

that it works for a fixed U with good probability, but crucially, we know there exists a U for

which it works, and so by doing the verification step we will find such a U . We note there

are several issues with this approach which we discuss below.

While this may seem like an unnecessarily complicated way of doing standard low

rank approximation, this idea proves crucial for weighted low rank approximation. In this

case, using say, the rank constraint on the weight matrix W , and using our structural result

on multiple instances of regression, we are able to choose a single sketching matrix S and

create variables for only r regression problems, SDW1U, . . . , SDWrU , whereDW1 , . . . , DWr are

diagonal matrices with independent columns ofW on each diagonal, and U is a fixed optimal

solution. We can then try to express all regression solutions min
Xi
‖DWi

UX i − DWi
Ai‖2

2, for

i = 1, . . . , n and where X i and Ai are the i-th columns of X and A respectively, in terms of

these variables, and hope to carry out the procedure above.

Dealing with Linear Dependencies At this point another obstacle arises which is that

when the columns of a givenDWi
U are not linearly independent, there is no way to write down

the pseudoinverse of DWi
U in terms of the variables we have created. We also cannot afford
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to create more than r · poly(k/ε) variables, since our optimization procedure is exponential

in this quantity, and so we cannot create new variables for each i = 1, . . . , n. To get around

this, we observe that there is a solution U ·V for which for all i, the first min(|supp(DWi
)|, k)

columns of U are linearly independent, where supp(DWi
) denotes the set of non-zero entries

of Wi, and further the solution cost of U · V is an arbitrarily small amount larger than that

of the optimal cost. This follows by a simple perturbation argument applied to the optimal

solution. This immediately gives an algorithm with additive error when we parameterize W

by its rank.

In order to turn it into a relative error algorithm, we need a lower bound on the cost

assuming that the cost is non-zero. The main idea here is that if we correctly guess which

subsets of columns are linearly independent for the different matrices DWi
, then we can set

up a non-negative polynomial system and provided this system has non-zero cost, we can

apply known lower bounds on the cost of polynomial optimazation problems as a function of

the degrees, number of variables, number of constraints, and coefficient sizes [Bas14]. While

this is not an algorithmic procedure, since we cannot afford to make guess for each DWi

without spending exponential in n time, it suffices for lower bounding the cost. Given such

a lower bound, the above perturbation argument can then be used to argue that we achieve

relative error.

While this leads to our time bound in the case in which we parameterize the weight

matrix by its rank, in the case in which we parameterize by the number of distinct columns

of W , this is too slow. The issue is that we have at least n constraints to enforce, namely,

that the first min(supp(Wi), k) columns of SDWi
U are linearly independent. This would

lead to a running time of npoly(rk/ε) as opposed to the poly(n) · 2poly(kr/ε) that we desire. We
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notice though that when we have r distinct columns, there are only r constraints to enforce,

one for each distinct column. These are “not equal” constraints but can be transformed to

a single equality constraint of degree poly(rk/ε) by introducing a single auxiliary variable.

While this ultimately enables us to write down all the entries of V using only a poly(rk/ε)

number of variables, we are then faced with the task of writing down U in terms of such a

V . Here a priori we could have many distinct rows in W , and may have n constraints to

enforce. We observe though that since the entries of W are integers in {1, 2, . . . , poly(n)},

if we round them to the nearest power of 1 + ε, the solution cost changes only by a (1 + ε)-

factor. Moreover, given that we have r distinct columns, for any row it is entirely specified

on these r columns and after rounding, there are only O((log n)/ε)r choices for entries on

these r columns, which upper bounds the number of distinct rows. This ultimately allows us

to write down U in terms of V with only O((log n)/ε)r not equal constraints. This ultimately

yields our improved running time when parameterizingW by its number of distinct columns.

Dealing with Rational Functions There is a subtle problem with the above arguments.

When one solves for the i-th column V i of V in terms of SDWi
U , the entries of V i are

rational functions rather than polynomials, and we cannot afford to clear the denominators

of V i for every i without blowing up the degree of the polynomials to Ω(n), which would give

a running time of npoly(kr/ε). While this is not a problem when we parameterize the problem

by the rank of W , since we anyway spend this amount of time, this is a problem when we

parameterize by the number of distinct columns ofW , in which we seek polynomial time even

for super-constant r (and constant k/ε). Instead, we write V as V ′ ·D, where V ′ has entries

which are polynomials, and D is a diagonal matrix whose entries are 1
det(U>DWiS

>SDWiU)
,
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given by Cramer’s rule. The entries of D are rational functions, and we would like to make

them polynomials. Since W has at most r distinct columns, D has at most r distinct entries

and we can create r new variables for the entries of D. However, when we try to solve for

U in terms of V we face the same problem again: we can write U as E · U ′, where U ′ only

has polynomial entries, but since we do not assume a small number of distinct rows of W , it

follows that E could have n distinct entries 1
det(U>DWiS>SDWiU)

for i = 1, . . . , n, where DW i

is the diagonal matrix with the i-th row of W on the diagonal. As mentioned above, we fix

this problem by rounding the entries of W to powers of 1 + ε, and then observing that the

number of distinct rows of W can only be O((log n)/ε)r after rounding.

Other Methods Our techniques for weighted non-negative matrix factorization and tensor

completion largely follow these ideas as well, where we combine our “guessing a sketched ma-

trix” approach with techniques of Arora, Ge, Kannan and Moitra [AGKM12] and Moitra [Moi13].

Our bi-criteria solution directly follows from known sketching results.
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16.2 Preliminaries

Notation Let R denote the real numbers, and R≥0 denote the nonnegative real numbers.

Let ‖A‖ (and sometimes ‖A‖2) denote the spectral norm of matrix A. Let ‖A‖2
F =

∑
i,j A

2
i,j

denote the Frobenius norm of A. LetW ◦A denote the entry-wise product of matricesW and

A. Let ‖A‖2
W =

∑
i,jW

2
i,jA

2
i,j denote the weighted Frobenius norm of A. Let nnz(A) denote

the number of nonzero entries of A. Let det(A) denote the determinant of a square matrix

A. Let A> denote the transpose of A. Let A† denote the Moore-Penrose pseudoinverse of

A. Let A−1 denote the inverse of a full rank square matrix A.

For the weight matrix W , we always use Wj to denote the j-th column vector of W ,

and W i to denote the i-th row of W . Let DWj
denote the diagonal matrix with entries from

the column vector Wj and DW i denote the diagonal matrix with entries from the row vector

W i.

The following real algebraic geometry definitions are needed when proving a lower

bound for the minimum nonzero cost of our problem. For a full discussion, we refer the

reader to Bochnak et al. [BCR87]. Here we use the brief summary by Basu et al.[BPR05].

Definition 16.2.1 ([BPR05]). Let R be a real closed field.

Given x = (x1, · · · , xv) ∈ Rv, r ∈ R, r > 0, we denote

Bv(x, r) = {y ∈ Rv | ‖y − x‖2 < r2} (open ball),

B̄v(x, r) = {y ∈ Rv | ‖y − x‖2 ≤ r2} (closed ball).

A set S ⊂ Rv is open if it is the union of open balls, i.e., if every point of U is

contained in an open ball contained in U .
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A set S ⊂ Rv is closed if its complement is open. Clearly, the arbitrary union of open

sets is open and the arbitrary intersection of closed sets is closed.

Semi-algebraic sets are defined by a finite number of polynomial inequalities and

equalities.

A semi-algebraic set has a finite number of connected components, each of which is

semi-algebraic. Here, we use the topological definition of a connected component, which is

a maximal connected subset (ordered by inclusion), where connected means it cannot be

divided into two disjoint nonempty closed sets.

A closed and bounded semi-algebraic set is compact.

A semi-algebraic set S ⊂ Rv is semi-algebraically connected if S is not the disjoint

union of two non-empty semi-algebraic sets that are both closed in S. Or, equivalently, S

does not contain a non-empty semi-algebraic strict subset which is both open and closed in

S.

A semi-algebraically connected component of a semi-algebraic set S is a maximal

semi-algebraically connected subset of S.

Renegar [Ren92a, Ren92b] and Basu et al. [BPR96] independently provided an algo-

rithm for the decision problem for the existential theory of the reals is to decide the truth or

falsity of a sentence (x1, · · · , xv)F (f1, · · · , fm) where F is a quantifier-free Boolean formula

with atoms of the form sign(fi) = σ with σ ∈ {0, 1,−1}. Note that this problem is equiv-

alent to deciding if a given semi-algebraic set is empty or not. Here we formally state that

theorem. For a full discussion of algorithms in real algebraic geometry, we refer reader to

[BPR05] and [Bas14].
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Theorem 16.2.1 (Decision Problem [Ren92a, Ren92b, BPR96]). Given a real polynomial

system P (x1, x2, · · · , xv) having v variables and m polynomial constraints

fi(x1, x2, · · · , xv)∆i0,∀i ∈ [m],

where ∆i is any of the “standard relations”: {>,≥,=, 6=,≤, <}, let d denote the maximum

degree of all the polynomial constraints and let H denote the maximum bitsize of the coeffi-

cients of all the polynomial constraints. Then in

(md)O(v) poly(H)

time one can determine if there exists a solution to the polynomial system P .

The key result we used for proving lower bound is the following bound on the minimum

value attained by an integer polynomial restricted to a compact connected component of a

basic closed semi-algebraic subset of Rv defined by polynomials with integer coefficients in

terms of the degrees and the bitsizes of the coefficients of the polynomials involved.

Theorem 16.2.2 (Jeronimo, Perrucci and Tsigaridas [JPT13]). Let T = {x ∈ Rv | f1(x) ≥

0, · · · , f`(x) ≥ 0, f`+1(x) = 0, · · · , fm(x) = 0} be defined by polynomials f1, · · · , fm ∈

Z[x1, · · · , xv] with n ≥ 2, degrees bounded by an even integer d and coefficients of absolute

value at most H, and let C be a compact connected component of T . Let g ∈ Z[x1, · · · , xv]

be a polynomial of degree at most d and coefficients of absolute value bounded by H. Then,

the minimum value that g takes over C is satisfies that if it is not zero, then its absolute

value is greater than or equal to

(24−v/2H̃dv)−v2vdv ,

where H̃ = max{H, 2v + 2m}.
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While the above theorem involves notions from topology, we shall apply it in an ele-

mentary way. Namely, in our setting T will be bounded and so every connected component,

which is by definition closed, will also be bounded and therefore compact. As the connected

components partition T the theorem will just be applied to give a global minimum value of

g on T provided that it is non-zero.
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16.3 Multiple Regression Sketch

Theorem 16.3.1. Let A1, . . . , Am ∈ Rn×k be m matrices of size n×k. Let b1, . . . , bm ∈ Rn×1

be m column vectors of dimension n.

For 1 ≤ i ≤ m denote:

xi = argmin
x∈Rk×1

∥∥∥Aix− bi
∥∥∥

2

2

the solution of the i-th regression problem.

Let S ∈ Rt×n be a random matrix with i.i.d. Gaussian entries with zero mean and

standard deviation 1/
√
t. For 1 ≤ i ≤ m denote:

yi = argmin
y∈Rk×1

∥∥∥SAiy − Sbi
∥∥∥

2

2

the solution of the i-th regression problem in the sketch space.

We claim that for every 0 < ε < 1/2 one can set t = O(k/ε) such that:

m∑

i=1

∥∥∥Aiyi − bi
∥∥∥

2

2
≤ (1 + ε) ·

m∑

i=1

∥∥∥Aixi − bi
∥∥∥

2

2
.

The rest of this section is devoted to the proof of this theorem.

For 1 ≤ i ≤ m we let Di ≥ 1 denote the smallest number such that for every x ∈ Rk×1

and λ ∈ R one has:

∥∥∥S
(
Aix+ λbi

)∥∥∥
2

2
∈
[

1

Di
;Di

]
·
∥∥∥Aix+ λbi

∥∥∥
2

2
.

Claim 16.3.2. For every i

∥∥∥Aiyi − bi
∥∥∥

2

2
≤
(
Di
)2 ·
∥∥∥Aixi − bi

∥∥∥
2

2
.
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Proof. This follows from the definition of Di.

Claim 16.3.3. One can set t = O(k/ε) such that for every i

Pr
S

[
Di ≥ 1.01

]
≤ 2−Ω(1/ε).

Proof. This follows from Theorem 2.1 from [Woo14b].

Claim 16.3.4. One can set t = O(k/ε) such that for every i

E
S

[∥∥∥Aiyi − bi
∥∥∥

2

2
−
∥∥∥Aixi − bi

∥∥∥
2

2

∣∣∣∣ Di ≤ 1.01

]
≤ ε ·

∥∥∥Aixi − bi
∥∥∥

2

2
.

Proof. This follows from the proofs of Theorem 2.8 and Theorem 2.16 from [Woo14b]

(adapted to Gaussian matrices).

Claim 16.3.5. One can set t = O(k/ε) such that for every i

E
S

[(
Di
)2
∣∣∣ Di ≥ 1.01

]
= O(1).

Proof. One can see that Di is polynomially related to the condition number of a random

O(k/ε)× (k + 1) matrix with i.i.d. Gaussian entries; indeed it corresponds to the maximum

distortion of S applied to the vectors in the column span of an n × (k + 1) orthonormal

matrix U whose columns span the space spanned by the columns of Ai together with bi. By

rotational invariance, S · U also has i.i.d. Gaussian entries. To understand the condition

number one can invoke the main result from [CD05] which gives for all sufficiently large t:

PrS [Di ≥ t] = 1
tΘ(k/ε) . Thus,

E
S

[(
Di
)2
∣∣∣ Di ≥ 1.01

]
≤ O(1) +

∫ ∞

1.01

t2

tΘ(k/ε)
dt = O(1).
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Having these Claims, let us complete the proof. We have for every 1 ≤ i ≤ m:

E
S

[∥∥∥Aiyi − bi
∥∥∥

2

2
−
∥∥∥Aixi − bi

∥∥∥
2

2

]

= Pr
S

[
Di ≥ 1.01

]
· E
S

[∥∥∥Aiyi − bi
∥∥∥

2

2
−
∥∥∥Aixi − bi

∥∥∥
2

2

∣∣∣∣ Di ≥ 1.01

]

+ Pr
S

[
Di ≤ 1.01

]
· E
S

[∥∥∥Aiyi − bi
∥∥∥

2

2
−
∥∥∥Aixi − bi

∥∥∥
2

2

∣∣∣∣ Di ≤ 1.01

]

≤ 2−Ω(1/ε) · E
S

[(
Di
)2 − 1

∣∣∣ Di ≥ 1.01
]
·
∥∥∥Aixi − bi

∥∥∥
2

2

+ Pr
S

[
Di ≤ 1.01

]
· E
S

[∥∥∥Aiyi − bi
∥∥∥

2

2
−
∥∥∥Aixi − bi

∥∥∥
2

2

∣∣∣∣ Di ≤ 1.01

]

≤ 2−Ω(1/ε) · E
S

[(
Di
)2 − 1

∣∣∣ Di ≥ 1.01
]
·
∥∥∥Aixi − bi

∥∥∥
2

2

+ ε ·
∥∥∥Aixi − bi

∥∥∥
2

2

≤ O(ε) ·
∥∥∥Aixi − bi

∥∥∥
2

2
,

where the second step is by Claim 16.3.2 and Claim 16.3.3, the third step is by Claim 16.3.4,

and the fourth step is by Claim 16.3.5.

Summing over i and applying the Markov’s inequality, we are done.

While the above result is for Gaussian sketching matrices, one can also combine a

Gaussian random matrix with a Count-Sketch matrix [CW13]. This way we are still getting

O(k/ε) rows, but now one can perform a matrix-vector multiplication in time proportional

to the sparsity of the vector plus poly(kr̃/ε), where r̃ is the dimension of the union of column

spaces of Ai (which is at most km in the worst case, but is much smaller for our applications).
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16.4 Additive Approximation

In this Section, to demonstrate the new technique, we prove the following theorem.

Theorem 16.4.1. Given A,W ∈ Rn, 1 ≤ k ≤ n and 0 < ε, τ < 0.1 such that:

• rank(W ) = r;

• all the non-zero entries of A and W are multiples of δ > 0;

• all the entries of A and W are at most ∆ > 0 in absolute value,

one can output a number Λ in time nO(k2r/ε)·logO(1)( ∆
δτ

) such that OPT ≤ Λ ≤ (1+ε) OPT +τ,

where

OPT = min
U∈Rn×k,V ∈Rk×n

‖(UV − A) ◦W‖2
F .

We first assume that W has no zero entries; later, we will remove this assumption by

being slightly more careful.

Lemma 16.4.2.

OPT ≤ poly(n,∆)

Proof. Set U and V to be the zero matrices.

Let us expand the objective function in two ways. On the one hand:

∥∥∥(UV − A) ◦W
∥∥∥

2

F
=

n∑

i=1

∥∥∥U iV DW i − AiDW i

∥∥∥
2

2
. (16.1)
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On the other hand:

∥∥∥(UV − A) ◦W
∥∥∥

2

F
=

n∑

j=1

∥∥∥DWj
UVj −DWj

Aj

∥∥∥
2

2
. (16.2)

We can sketch (16.1) and (16.2) using Gaussian matrices S ′ ∈ Rn×t and S ′′ ∈ Rt×n

as follows:
n∑

i=1

∥∥∥U iV DW iS ′ − AiDW iS ′
∥∥∥

2

2
.

and
n∑

j=1

∥∥∥S ′′DWj
UVj − S ′′DWj

Aj

∥∥∥
2

2
.

Denote, for 1 ≤ i ≤ n, P i := V DW iS ′ and for 1 ≤ j ≤ n denote Qj := S ′′DWj
U .

The crucial observation is that we can encode all P i’s and Qj’s using linear functions

of 2krt variables, since W has rank r, and we can represent its rows/columns as linear

combinations of r fixed rows/columns.

For fixed P i’s we define:

Û := argmin
U∈Rn×k

n∑

i=1

∥∥∥U iP i − AiDW iS ′
∥∥∥

2

2
.

Similarly, for fixed Qj’s we define:

V̂ := argmin
V ∈Rk×n

n∑

j=1

∥∥∥QjVj − S ′′DWj
Aj

∥∥∥
2

2
.

Let us use
∥∥∥
(
Û V̂ − A

)
◦W

∥∥∥
2

F
as a proxy for the objective function. We need to argue

that we can, in fact, minimize the new objective function efficiently, and that it gives a good

approximation to the original objective function, if t = Θ(k/ε), with high probability.
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Optimization We assume that all P i’s and Qj’s have the maximum rank k. Later we will

show that, since W has no zero entries, this does not affect the quality of the solution found

under this non-degeneracy constraint.

Assuming non-degeneracy of P i’s and Qj’s, we can express Û and V̂ as follows:

Û i = AiDW iS ′(P i)>
(
P i(P i)>

)−1

and

V̂j =
(
Q>j Qj

)−1
Q>j S

′′DWj
Aj. (16.3)

Since the entries of P i’s and Qj’s are linear functions of 2krt variables, we can represent

the entries of Û and V̂ as rational functions over 2krt variables and of degree O(k) (we use

Cramer’s formula for that).

Finally, we can represent
∥∥∥
(
Û V̂ − A

)
◦W

∥∥∥
2

F
as a rational function over 2krt variables

of degree O(kn).

We can minimize the objective function using the algorithm for checking the feasibility

of a system of polynomial inequalities from Theorem 16.2.1, together with a binary search

over the value of the objective function. Each iteration of the binary search takes time

(#degree of the polynomials)O(#variables) · poly(input size).

Since the degree is O(nk), the number of variables is O(rkt) = O(k2r/ε), and the

input size is poly(n, log(∆/δ)), the running time of a single iteration of the binary search is

nO(k2r/ε) · logO(1)(∆/δ).
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Finally, to perform the binary search, we need O(log(n∆/τ)/ε) iterations to check for

the existence of a solution with cost at most (1 + ε) OPT +τ (assuming that sketching and

non-degeneracy constraints on P i’s and Qj’s increase the cost to at most (1 + ε) OPT +τ ,

which we will show later), since, by Lemma 16.4.2, OPT ≤ poly(n,∆). The overall running

time is thus: nO(k2r/ε) · logO(1)( ∆
δτ

).

Near-optimality Here we show that one can set t = O(k/ε) so that, with high probability,

min
P i,Qj

∥∥∥
(
Û V̂ − A

)
◦W

∥∥∥
2

F
≤ (1 + ε) ·min

U,V

∥∥∥(UV − A) ◦W
∥∥∥

2

F
+ τ ′. (16.4)

for every τ ′ > 0. This, together with the above discussion about the optimization procedure,

concludes the analysis of the algorithm.

As such, (16.4) follows from Theorem 16.3.1. Indeed, if the optimal solution is U∗V ∗,

then set Qj := S ′′DWj
U∗. Qj may be degenerate, but, since W has no zero entries, we can

perturb U∗ by an arbitrarily small amount to make Qj non-degenerate (with probability one

over S ′′). Then, with high probability over S ′′, we have

∥∥∥
(
U∗V̂ − A

)
◦W

∥∥∥
2

F
≤ (1 + ε) ·

∥∥∥(U∗V ∗ − A) ◦W
∥∥∥

2

F
+ τ ′ (16.5)

for an arbitrarily small τ ′ > 0. Similarly, we can set P i = V̂ DW iS ′ (again, it can be degen-

erate, but the same argument as above for Qj applies), which gives, with high probability

over S ′,
∥∥∥
(
Û V̂ − A

)
◦W

∥∥∥
2

F
≤ (1 + ε) ·

∥∥∥
(
U∗V̂ − A

)
◦W

∥∥∥
2

F
+ τ ′ (16.6)

for an arbitrarily small τ ′ > 0.

Combining (16.5) and (16.6), we are done.
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16.4.1 Handling Weight Matrices With Zero Entries

Here we prove the version of Theorem 16.4.1 for the case when W is allowed to have

zero entries. Let us first see what breaks in the previous argument.

What does not work anymore is that (after a small perturbation) Qj = S ′′DWj
U and

P i = V DW iS ′ can be assumed to have the maximum possible rank k. Nevertheless, we can

assume that every Qj has rank equal to

tj = min(k, the number of non-zero entries of Wj).

Moreover, we can assume that the first tj columns of Qj are linearly-independent. A similar

argument applies to P i’s as well.

The above argument allows us to express Û and V̂ as before, but instead of Qj we

use the first tj columns of Qj (and, similarly for the P i’s).
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16.5 Multiplicative Approximation

In order to get a genuine multiplicative (1+ε)-approximation, we need to lower bound

OPT–provided that it is not equal to zero–which would allow us to set τ ≤ ε · OPT in the

algorithm from the previous section.

We do this for the following optimization problem:

min
U,V :

‖UV ‖2F≤(∆/δ)poly(n)

‖(UV − A) ◦W‖2
F .

Note that we assume ‖UV ‖F has an upper bound, as otherwise we cannot write down U

and V using poly(n) bits.

Using the approach outlined above, one can write down a rational function

p(x1, . . . , xl)/q(x1, . . . , xl) such that:

• l = O(k2r/ε);

• for every x such that q(x) 6= 0, one has p(x)/q(x) ≥ OPT;

• for every τ ′ > 0, there exists x∗ such that p(x∗)/q(x∗) ≤ (1 + ε) OPT +τ ′;

• both p and q are homogeneous, and their degrees are O(kn);

• the coefficients of p and q are integers with absolute values at most (∆/δ)poly(n);

• q(x) =
2n∏
i=1

g2
i (x), where every gi(x) is the determinant polynomial.

Only the fifth item needs an explanation. If sketch matrices S ′ and S ′′ were integer,

then the last item would hold automatically (by scaling up all the coefficients). But, in
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reality, S ′ and S ′′ are Gaussian matrices. Fortunately, one can show that it is possible to

discretize them up to ±1/ poly(n) so that the multiple regression theorem (Theorem 16.3.1)

still goes through. Indeed, this just follows from the fact that discretization to ±1/ poly(n)

preserves condition number and subspace embeddings (since one argues about preserving

lengths of unit vectors), and approximate matrix product properties used in that theorem.

Lower Bound We use the same way explained in section 16.4 to create variables, write

down the system in a small number of variables, and also create some “ 6= 0” constraints. It

will generate 2n determinant polynomials, which are defined in the following way,

gi(x) = det((SDWi
U)>Pi(SDWi

U)Pi), ∀i ∈ [n]

gi+n(x) = det((V DW iS)Qi((V DW iS)Qi))>), ∀i ∈ [n]

where Pi and Qi are maximal linearly indepdent subsets. Then we can write down the

following optimization problem,

min
x∈Rl

p(x)/q(x)

s.t. g2
i (x) 6= 0, ∀i ∈ [2n],

q(x) =
2n∏

i=1

g2
i (x)

To lower bound p(x)/q(x), let us introduce a new variable y. Lower bounding

p(x)/q(x) is equivalent to lower bounding p(x)y subject to q(x)y − 1 = 0. By assump-

tion ‖U‖2
F , ‖V ‖2

F ≤ (∆/δ)poly(n)4, we know the upper bound of all the variables we created

4A priori, we know only that ‖UV ‖2F is bounded. But we can get that each of the matrices is bounded
by taking an optimal solution and orthonormalizing one of the matrices.
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except for y. In order to give an upper bound for y, it suffices to show a lower bound for

q(x). By definition, q(x) is the square of the product of all the determinant polynomials.

Thus, for every determinant polynomial gi(x), we need to show that if g2
i (x) is nonzero, then

it is at least something.

Define B to be an `2-ball with bounded radius, e.g.,

B =

{
x ∈ Rl

∣∣∣
l∑

i=1

x2
i ≤ (∆/δ)poly(n)

}
.

By [BPR05], we know that B is a closed and bounded semi-algebraic set. Thus B is also

compact. Let x∗ denote the optimal solution of the original problem min
x∈Rl

g2
i (x) when all

variables are bounded. Because the radius of the ball B is large enough, x∗ ∈ B. Define

T1 = {x ∈ Rl|gi(x) ≥ 0} and let T = T1∩B. By definition (see [BPR05]), T1 is a basic closed

semi-algebraic set. Thus, the intersection of T1 and B is a semi-algebraic set with a finite

number of connected components. Because B is compact and T1 is closed, each of these

connected components is compact. There must exist one compact connected component C

which contains the optimal soltuion x∗. Applying Theorem 16.2.2 on system {T,C, g2
i (x)},

we conclude that if g2
i (x) is not zero, then it is at least

(
(∆/δ)poly(n)

)−kO(l)

= (∆/δ)− poly(n)2Õ(l)

= (∆/δ)− poly(n)

which immediately gives us an upper bound for y,

y ≤ ((∆/δ)poly(n))n = (∆/δ)poly(n).

Now, we are able to show a lower bound for p(x)y. Define

T1 =

{
x ∈ Rl, y ∈ R

∣∣∣
m∏

i=1

g2
i (x)y − 1 = 0

}
.
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Define B to be a bounded ball over l + 1 variables,

B =

{
(x, y) ∈ Rl+1

∣∣∣
l∑

i=1

x2
i + y2 ≤ (∆/δ)poly(n)

}
.

By [BPR05], B is a closed and bounded semi-algebraic set. Thus B is also compact. Define

T = T1 ∩B. Let (x∗, y∗) denote the optimal solution of min
(x,y)∈T1

p(x)y, then (x∗, y∗) is also the

optimal solution of min
(x,y)∈T

p(x)y, because all variables are bounded and the radius of the ball

is large enough.

By definition (see [BPR05]), T1 is a basic closed semi-algebraic set. Thus, the inter-

section of T1 and B is a semi-algebraic set with a finite number of connected components.

Because B is compact and T1 is closed, each of the connected components is compact.

There must exist a compact connected component that contains the optimal solution

(x∗, y∗). Let C denote that component. Applying Theorem 16.2.2 on system {T,C, p(x)y},

where the number of constraints is bounded by O(1), the maximum coefficient of absolute

value is bounded by (∆/δ)poly(n), the maximum degree is bounded by O(nk), the number

of variables is bounded by l = O(rk2/ε), we conclude that if the minimum cost is not zero,

then it is at least

((∆/δ)poly(n))−n
O(rk2/ε)

= exp
(
−nO(k2r/ε) logO(1) (∆/δ)

)
. (16.7)

Hence, OPT is at least (16.7) as well.

Plugging τ � ε· (16.7) ≤ εOPT into the algorithm from the previous section with an

additional constraint ‖Û V̂ ‖2
F ≤ (∆/δ)poly(n), we do binary search to narrow down the range

of [Λ−,Λ+] until we reach Λ. During the jth step of binary search, we use Theorem 16.2.1
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to check if the following semi-algebraic set is empty or not,

S = {x ∈ Rl | p(x) ≤ Λ+
j q(x), p(x) ≥ Λ−j q(x), q(x) 6= 0}

where Λ−1 is initialized to be τ and Λ+
1 is initialized to be poly(n,∆). We obtain the following

theorem.

Theorem 16.5.1. Given A,W ∈ Rn, 1 ≤ k ≤ n and 0 < ε, τ < 0.1 such that:

• rank(W ) = r;

• all the non-zero entries of A and W are multiples of δ > 0;

• all the entries of A and W are at most ∆ > 0 in absolute value,

one can output a number Λ in time nO(k2r/ε) · logO(1) ∆
δτ

such that OPT ≤ Λ ≤ (1 + ε) OPT,

where

OPT = min
U∈Rn×k,V ∈Rk×n

‖UV ‖2F≤(∆
δ )

poly(n)

‖(UV − A) ◦W‖2
F .
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16.6 Recovering the Solution Itself

Here we show how to recover an approximate solution, not only the value of OPT.

The idea is to recover the entries of U and V one by one and use the algorithm from

the previous section for the corresponding decision problem. We initialize the semi-algebraic

set to be

S = {x ∈ Rl | q(x) 6= 0, p(x) ≤ Λq(x)}

We start by recovering the first entry of U . We perform the binary search to localize

the entry within an interval of length δ′, which takes poly(n) · log
(

∆
δδ′

)
invocations of the

decision algorithm. For each step of binary search, we use 16.2.1 to determine if the following

semi-algebraic set S is empty or not,

S ∩ {U1,1(x) ≥ Û−1,1, U1,1(x) ≤ Û+
1,1}

After that, we declare the first entry of U to be any point in this interval. This

changes the cost of the solution by at most δ′ ·
(

∆
δ

)poly(n). Then, we add an equality constraint

that fixes the entry of Û to this value, and add a new constraint into S permanently, e.g.

S ← S ∩ {U1,1(x) = Û1,1}. Next, we repeat the same with the second entry of U and so on.

This allows us to recover a solution of cost at most (1 + ε) OPT +τ in time

nO(k2r/ε) · logO(1)(∆/(δτ)).
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16.7 Adversarial Matrix Completion

Here we prove the following theorem.

Theorem 16.7.1. Let B ∈ Rn×n be a rank-k matrix with entries that are multiples of δ > 0

bounded by ∆ > 0.

Let 1 ≤ r ≤ n be an integer parameter.

Let C be an n× n matrix, where in every column there are at most r question marks

and other entries are equal to the corresponding entries of B.

Then, there is an algorithm that:

• receives C as an input;

• outputs a rank-k matrix that is τ -close to C in Frobenius norm (restricted to the entries

that are not replaced with a question mark);

• has running time nO(k2r) · logO(1)
(

∆
δτ

)
.

A naive attempt is to use the algorithm from the previous section with W equal to

0 for the missing entries and to 1 for the “surviving” entries. Unfortunately, setting W like

this does not work, since W may not have small rank.

We fix it by proving the following lemma.

Lemma 16.7.2. For every set system z1, z2, . . . , zn ⊆ [n] with |zj| ≤ r there exists a rank-

(2r + 1) integer matrix W such that, for every 1 ≤ i ≤ n, the entry in the i-th column and

j-th row,

W j
i

{
= 0 if j ∈ zi
> 0 if j ∈ [n]\zi
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Moreover, all the entries of W are bounded by nO(r) in absolute value.

Recall that for the i-th column of W , zi denotes the set of row indices that have zero

entry. For the i-th column of W , define a polynomial pi(x) such that

pi(x) =
∏

`∈zi

(x− j)2 =

2|zi|+1∑

`=1

ai`x
`−1

where all ai` are integers. Since 2|zi| + 1 is at most 2r + 1, we can also think of pi(x) as a

degree 2r polynomial,

pi(x) =
2r+1∑

`=1

ai`x
`−1

Then, we can use ai` to create a basis T ∈ Rn×(2r+1) which has rank at most 2r + 1. Let T i`

denote the entry of the i-th row and `-th column, then set T i` = ai`,∀i ∈ [n],∀` ∈ [2r + 1].

Let T` denote the `-th column of matrix T , ∀` ∈ [2r+ 1]. To guarantee a linear combination

of those 2r+ 1 columns always outputs a nonnegative vector, we can just choose coefficients

1, x, x2, · · · , x2r. Let S denote a set of all possible vectors formed by the following linear

combination,

T (x) =
2r+1∑

`=1

x`−1T` ∈ Rn×1

Moreover, we have

T (x) =
2r+1∑

`=1

x`−1T` =
2r+1∑

`=1

x`−1
[
a1` a2` · · · an`

]>

=

[
2r+1∑
`=1

x`−1a1`

2r+1∑
`=1

x`−1a2` · · ·
2r+1∑
`=1

x`−1an`

]>

=
[
p1(x) p2(x) · · · pn(x)

]>
,

where the second equality follows by the definition of T` and the last equality follows by the

definition of pi(x). Let T j(x) denote the jth entry of column vector T (x) ∈ Rn×1. For any
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column vector Wi, we assign T (i) to it,

Wi ← T (i)

which has the following property: for every 1 ≤ i ≤ n, the entry at the i-th column and

j−th row satisfies

W j
i =

{
T j(i) = pi(j) = 0 if j ∈ zi,
T j(i) = pi(j) > 0 if j ∈ [n]\zi.

Note that for any column vector Wi, we know that Wi ∈ S and rank(S) = 2r + 1. Thus,

rank(W ) = 2r + 1.
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16.8 Few distinct columns

In this section we show how to improve the running time from npoly(k,r,1/ε) to poly(n) ·

2poly(k,r,1/ε) under the following assumptions: (1) ∆ = poly(n)δ; and (2) ‖UV ‖2
F ≤ (∆/δ)n

γ ,

for an arbitrarily small constant γ > 0. In Section 16.8.1, as a warmup we assume that W

has r distinct columns and r distinct rows, while in Section 16.8.2 and 16.8.3 we give our

main result assuming only that W has r distinct columns.

A crucial observation is that the term npoly(k,r,1/ε) shows up in the “rank-r” algorithm

due to the fact that the degree of polynomials we optimize is Ω(n). The reason for this is

that entries of Û and V̂ are rational functions with Ω(n) potentially different denominators.

When we combine them in a single rational function that corresponds to ‖(Û V̂ −A) ◦W‖2
F ,

we get a denominator of degree Ω(n).
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16.8.1 Few Distinct Rows and Columns

In this subsection, as a warmup we assume that W has r distinct rows and r distinct

columns. Then, we get rid of the dependence on n in the degree. Indeed, now we have only

2r distinct denominators (w.l.o.g., assume the first r columns are distinct and the first r

rows are distinct),

gi(x) = det((SDWi
U)>Pi(SDWi

U)Pi),∀i ∈ [r]

fi(x) = det((V DW iS)Qi((V DW iS)Qi))>),∀i ∈ [r]

where Pi and Qi are maximal linearly independent subsets. Then we can write down the

following optimization problem,

min
x∈Rl

p(x)/q(x)

s.t. g2
i (x) 6= 0, f 2

i (x) 6= 0,∀i ∈ [r],

q(x) =
r∏

i=1

g2
i (x)f 2

i (x)

where q(x) has degree O(rk), the maximum coefficient in absolute value is (∆/δ)O(rknγ), and

the number of variables O(rk2/ε). Using the same argument as in the rank-r case and apply-

ing Theorem 16.2.2, we can achieve the following minimum nonzero cost: (∆/δ)−n
γ2Õ(rk2/ε) .

Now, using the approach described in section 16.6, we can find the solution in time

(nnz(A) + nnz(W ))nγ + n2Õ(rk2/ε) logO(1)(∆/(δτ))

within a multiplicative factor of 1 + ε and additive factor of τ .

One can adjust the lower bound on OPT accordingly, and conclude that an algorithm

for approximating OPT within a multiplicative factor of 1 + ε can be done in time

(nnz(A) + nnz(W ))nγ + n2Õ(rk2/ε) logO(1)(∆/δ)
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where

OPT = min
U,V

‖UV ‖2F≤(∆/δ)n
γ

‖(UV − A) ◦W‖2
F .
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16.8.2 Few Distinct Columns When OPT = 0

This section, we explain how to find the solution to the weighted low rank approxi-

mation problem when W has at most r distinct columns and OPT = 0.

The key observation is that for any matrix A andW ∈ Rn×n
≥0 , if there exists a solution

of an n× k matrix U and a k × n matrix V such that,

‖W ◦ (UV − A)‖2
F = OPT,

then there exists another matrix W ′ ∈ {0, 1}n×n such that

‖W ′ ◦ (UV − A)‖2
F = OPT

where W ′
i,j = 0 if Wi,j = 0 and W ′

i,j = 1 if Wi,j > 0.

The above observation states that modifying the weight matrix to be Boolean does

not change the optimal cost. Since W has r distinct columns, now that it is Boolean it has

at most 2r distinct rows. Indeed, each row of W is completely determined after fixing its

values on the r distinct columns, and there are only 2r possibly fixings. W.l.o.g. we assume

that the first r columns are distinct. Instead of having at most 2r distinct denominators as

in Section 16.8.1, we have at most r + 2r distinct denominators. We create l variables for

{SDW1U, · · · , SDWrU}. Then we can write down V̂ in the following way,

V̂j = (SDWj
U)† · SDWj

Aj =
(
((SDWj

U)Pi)
> · (SDWj

U)Pi
)−1 · ((SDWj

U)Pi)
>SDWj

Aj

where Pi denotes a subset of rows. For all DWj
s in the group Zi, they share the same Pi,

where for any j ∈ Zi, DWj
= DWi

.
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Thus to express V̂ , there are only r distinct denominators gi(x) which are the de-

terminants of ((SDWj
U)Pi)

> · (SDWj
U)Pi . In order to remove these denominators, we can

create a new variable xl+i and add a new equality constaint gi(x)xl+i− 1 = 0. Therefore, we

do not have any denominators in V̂ .

W.l.o.g., we assume that the first 2r rows of W are distinct. Using V̂ we can write

down Û in the following way,

Û j = AjDW j(V̂ DW j)†

= AjDW j((V̂ DW j)Qi)>
(

(V̂ DW j)Qi((V̂ DW j)Qi)>
)−1

where Qi denotes a subset of columns, where all DW js in the group Z ′i can share the same

Qi, and for any j ∈ Z ′i, DW j = DW i .

Thus, to express Û , there are only 2r distinct denominators fj(x) which are the

determinants of the matrices (V̂ DW j)Qi((V̂ DW j)Qi)>.

Finally, we can use a small number of variables to represent all the entries of Û and

V̂ . It allows us to write the following optmization problem,

min
x∈Rl+r

p(x)/q(x)

s.t. gi(x)xl+i − 1 = 0,∀i ∈ [r]

f 2
j (x) 6= 0,∀j ∈ [2r]

q(x) =
2r∏

j=1

f 2
j (x)

where q(x) has degreeO(2rk2), maximum coefficients bounded in absolute value by (∆/δ)O(2rknγ),

l = O(rk2/ε) and the number of variables O(rk2/ε). Using the same argument as for the
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rank-r case and applying Theorem 16.2.2, we have the following minimum nonzero cost:

(∆/δ)−n
γ2Õ(r2k2/ε)

.

Using the approach described in section 16.6, we can find the solution achieving zero

cost in time

(nnz(A) + nnz(W ))nγ + n2Õ(r2k2/ε) logO(1)(∆/δ)
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16.8.3 Few Distinct Columns When OPT 6= 0

Lower Bound Let U, V denote the optimal solution A,W , which gives nonzero cost. We

can modify W to a new matrix W ′ in the following sense, W ′
i,j = δ if Wi,j 6= 0 and W ′

i,j = 0

if Wi,j = 0. Then we know that

‖W ′ ◦ (UV − A)‖2
F ≤ ‖W ◦ (UV − A)‖2

F 6= 0

Note that if problem A,W ′ has a zero cost solution, then problem A,W also has a zero cost

solution, which contradicts our assumption in this section. Thus problem A,W ′ does not

have a zero cost solution. It follows from previous sections that the minimum nonzero cost

of min
U,V
‖W ′ ◦ (UV −A)‖2

F is at least (∆/δ)−n
γ2Õ(r2k2/ε) . Let U ′, V ′ denote the optimal solution

of problem A,W ′. Thus we have

‖W ◦ (UV − A)‖2
F ≥ ‖W ′ ◦ (UV − A)‖2

F ≥ ‖W ′ ◦ (U ′V ′ − A)‖2
F

which is at least (∆/δ)−n
γ2Õ(r2k2/ε) .

Algorithm For notational convenience, let δ = 1. Then each entry of the input weight

matrix W ′ is in {0, 1, 2, · · · , poly(n)}. For each entry W ′
i,j, we round it to the smallest

(1 + ε)x such that W ′
i,j ≤ (1 + ε)x where x is an integer. Because W ′ is bounded, the total

number of choices for the power x is O(log(n)/ε). Define W to be the matrix after rounding.

Define OPT to be minU,V ‖W ′ ◦ (UV − A)‖2
F . Then W has the following properties

1. W has r distinct columns,

2. W has R := (log(n)/ε)O(r) distinct rows,

3. OPT ≤ min
U,V
‖W ◦ (UV − A)‖2

F ≤ (1 + ε)2 OPT .
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We prove the above three properties one by one.

The rounding is a deterministic procedure: if two values are the same in W ′, then

they are the same in W . Hence, Property 1 holds.

To prove Property 2, take the r distinct columns i1, ..., ir. Then every other column

can be labeled j in {i1, ..., ir}. If you fix the values on entries i1, ..., ir in a row, this fixes

the values on every other column. So the number of distinct rows is the number of fixings

to the values on i1, ..., ir. Each entry has log1+ε poly(n) = O((log n)/ε) possibilities, so there

are O((log n)/ε)r distinct rows.

Because of the rounding procedure, each W ′
i,j satisifies that W ′

i,j ≤ Wi,j ≤ (1+ ε)W ′
i,j,

which implies Property 3.

We use the same approach as in Section 16.8.2 to create variables, write down the

polynomial systems and add not equal constraints. Instead of having r + 2r distinct de-

nominators, we have r + R, where R = O((log n)/ε)r. We create l = O(rk2/ε) variables for

{SDW1U, · · · , SDWrU}, then we can write down V̂ with r distinct denominators gi(x). Each

gi(x) is non-zero in an optimal solution using the perturbation argument in Section 16.4. We

create new variables xi+l to remove the denominators gi(x). Then the entries of V̂ are poly-

nomials as opposed to rational functions. Using V̂ we can express Û with R = (log(n)/ε)O(r)

distinct denominators fi(x), which are also non-zero by using the perturbation argument in

16.4, and using that W has at most this number of distinct rows. Finally we can write the
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following optimization problem,

min
x∈Rl+r

p(x)/q(x)

s.t. gi(x)xl+i − 1 = 0,∀i ∈ [r]

f 2
j (x) 6= 0,∀j ∈ [R]

q(x) =
R∏

j=1

f 2
j (x)

We then determine if there exists a solution to the above semi-algebraic set in time (k2R)O(rk2/ε) =

(log(n)/ε)O(r2k2/ε). Combining the binary search explained in section 16.5 and 16.6 with the

lower bound we obtained, we can find the solution for the original problem in time

(nnz(A) + nnz(W ))nγ + n2Õ(r2k2/ε) logO(1)(∆/δ).

Note that there is no log log n in the exponent 2Õ(r2k2/ε) since either r2k2/ε = o(log n/ log log n),

in which case this term is dominated by n1+γ, or log(r2k2/ε) = Ω(log log n).
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16.9 Hardness

The Maximum Edge Biclique problem [AMS11] is defined as:

Input: An n by n bipartite graph G.

Output: A k1 by k2 complete bipartite subgraph of G.

Objective Function: Maximize k1 · k2.

We use the Maximum Edge Biclique problem under the R4SAT assumption in [GL04],

which extends the previous work done by Feige [Fei02] under the R3SAT assumption. That

hardness result [GL04] shows under the R4SAT assumption there exist two constants ε1 >

ε2 > 0 such that no efficient algorithm is able to distinguish between bipartite graphs

G(U, V,E) with |U | = |V | = n which have a clique of size ≥ (n/16)2(1 + ε1) and those

in which all bipartite cliques are of size ≤ (n/16)2(1 + ε2). Using the reduction of [GL04],

one can show there exists a constant c such that for any instance of R4SAT with ñ variables

and cñ clauses, the corresponding bipartite graph G created in [GL04] has at least tn2 edges

with large probability, for a constant t, e.g. t = 9/10.

To construct a weighted low-rank appoximation problem from a given bipartite graph,

for a given bipartite graph G(U, V,E), we generate the matrix A andW as in [GG11]: Aij = 1

if edge (Ui, Vj) ∈ E, Aij = 0 if edge (Ui, Vj) /∈ E. Wij = 1 if edge (Ui, Vj) ∈ E,Wij = poly(n)

if edge (Ui, Vj) /∈ E. One can then show if there exists a biclique in G such the number of

remaining edges is at most tn2− (n/16)2(1 + ε1), then the solution to min ‖W ◦ Â−W ◦A‖2
F

has cost at most tn2 − (n/16)2(1 + ε1). On the other hand, if there does not exist a biclique

that has more than (n/16)2(1 + ε2) edges, which leads to the number of remaining edges

being at least tn2− (n/16)2(1 + ε2), then any solution to min ‖W ◦ Â−W ◦A‖2
F has cost at
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least tn2 − (n/16)2(1 + ε2).
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16.10 Bicriteria Approximation
16.10.1 Rank r and Binary Weights W

This section, we explain how to get a polynomial time bicriteria algorithm when

weighted matrix is boolean.

Lemma 16.10.1. Given matrix A ∈ Rn×n and rank-r weighted matrix W ∈ Rn×n
≥0 . We can

find some rank-rk matrix B ∈ Rn×n such that

‖B −W ◦ A‖2
F ≤ (1 + ε) min

rank(B′)=rk
‖B′ −W ◦ A‖2

F .

in O(nnz(A) + nnz(W ) + n · poly(rk/ε)) time.

Proof. It directly follows by the input sparsity low-rank approximation result in [CW13].

Lemma 16.10.2. For any matrix W,A ∈ Rn×n and rank(W ) = r, we have

min
rank(B′)=rk

‖B′ −W ◦ A‖2
F ≤ min

rank(C′)=k
‖W ◦ C ′ −W ◦ A‖2

F .

Proof. For any rank-k matrix C ′, matrix W ◦C ′ has rank at most rk. Then, for any rank-k

matrix C ′, there must exists a rank-rk matrix B′ such that

‖B′ −W ◦ A‖2
F ≤ ‖W ◦ C ′ −W ◦ A‖2

F

Theorem 16.10.3. Given two matrices W ∈ Fn×n2 and A ∈ Rn×n, where rank(W ) = r.

Define A∗k = arg min
rank(A′)=k

‖A′ − A‖W . We can find a matrix B that has rank rk and such that

‖B − A‖2
W ≤ (1 + ε)‖A∗k − A‖2

W

in O(nnz(A) + nnz(W ) + n · poly(kr/ε)) time.

1083



Proof. Let matrix B denote the output of Lemma 16.10.1, let Ω denote the support set of

weighted matrix W , Ω = {(i, j)|Wi,j > 0}.

‖B − A‖2
W

= ‖W ◦B −W ◦ A‖2
F

=
∑

(i,j)∈Ω

W 2
ij(Bij − Aij)2 +

∑

(i,j)∈[n]2\Ω

W 2
ij(Bij − Aij)2

=
∑

(i,j)∈Ω

1 · (Bij − Aij)2 +
∑

(i,j)∈[n]2\Ω

0 · (Bij − Aij)2

≤
∑

(i,j)∈Ω

1 · (Bij − Aij)2 +
∑

(i,j)∈[n]2\Ω

1 · (Bij)
2

= ‖B −W ◦ A‖2
F

≤ (1 + ε) min
rank(B′)=rk

‖B′ −W ◦ A‖2
F by Lemma 16.10.1

≤ (1 + ε) min
rank(C′)=k

‖W ◦ C ′ −W ◦ A‖2
F by Lemma 16.10.2
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16.10.2 Modulo p Integer Weights W

Theorem 16.10.4. Given two matrices W ∈ Fn×np and A ∈ Rn×n, where rank(W ) = r.

Define A∗k = arg min
rank(A′)=k

‖A′ − A‖W . We can find a matrix A′ that has rank pr · k and satisfies

the following

‖A′ − A‖2
W ≤ (1 + ε)‖A∗k − A‖2

W

in O(nnz(A) + nnz(W ) + pr · n · poly(k/ε)) time.

Proof. Since each entry of weight matrix W is chosen from {0, 1, · · · , p− 1} and has rank r.

Thus, for any given r linearly independent basis, weight matrix W has at most pr distinct

columns. For any column vector Aj in AZi , its weighted column vector Wj is equal to Wi.

Then we can reduce the original problem to
g∑

i=1

min
rank(A′i)=k

‖DWi
A′i −DWi

AZi‖2
F (16.8)

where g ≤ pr, AZi ∈ Rn×|Zi|,
∑g

i=1 |Zi| = n. Since these g problems are independent, we can

just solve them in parallel. Let Ωi denote the support set of rows of DWi
, ignoring the zero

rows of DWi
AZi , we can have a new matrix Bi ∈ R|Ωi|×|Zi|. Consider the following low rank

approximation problem

min
rank(B′i)=k

‖B′i −Bi‖2
F

By the input sparsity low-rank approximation result in [CW13], in timeO(nnz(B)+max(|Ωi|, |Zi|)·

poly(k/ε)), we can find some rank-k matrix B′i ∈ R|Ωi|×|Zi| such that

‖B′i −B‖2
F ≤ (1 + ε) min

rank(B∗i )=k
‖B∗i −Bi‖2

F

Since DWi
is diagonal matrix, we can recover a rank-k matrix A′i ∈ Rn×|Zi| by using matrix

B′i and DWi
in the follwoing way, for jth row of n×|Zi| matrix A′i, if jth entry of Wi is zero,
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then make jth row matrix A′i zero everywhere; otherwise, copy the corresponding row from

B′i and rescale it by 1 / ( jth entry of Wi). Then the n× |Zi| matrix A′i we obtained has the

following property

‖DWi
A′i −DWi

AZi‖2
F

= ‖B′i −Bi‖2
F

≤ (1 + ε) min
rank(B∗i )=k

‖B∗i −Bi‖2
F

≤ (1 + ε) min
rank(A∗i )=k

‖DWi
A∗i −DWi

AZi‖2
F by Lemma 16.10.2

Since all the g subproblems are independent, then we can solve them separately and merge

all the A′i to a matrix A′ that has rank-prk. The entire procedure takes O(nnz(A)+nnz(W )+

pr · n · poly(k/ε)).
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16.10.3 r Distinct Columns Weights W

Theorem 16.10.5. Given two matricesW ∈ Rn×n
≥0 and A ∈ Rn×n,W has r distinct columns.

Define A∗k = arg min
rank(A′)=k

‖A′ − A‖W . We can find a matrix A′ ∈ Rn×n that has rank r · k and

satisfies the following

‖A′ − A‖2
W ≤ (1 + ε)‖A∗k − A‖2

W

in O(nnz(A) + nnz(W ) + nr · poly(k/ε)) time.

Proof. In previous proof, we have pr distinct columns inW . But now, we only have r distinct

columns in W . We still use the same algorithm to solve each subproblem. Since the total

numbe of subproblems is r, thus the running time doesn’t have exponential dependence for

r any more.
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16.11 Weighted Nonnegative Matrix Factorization Problem

Arora, Ge, Moitra and Kannan [AGKM12] provided the first provably result for

nonnegative matrix factorization. Later, Moitra [Mad13] improved it to almost optimal.

This section explains the details of getting an algorithm for weighted nonnegative matrix

factorization. We combine our new technique “guess the sketch” with previous work done

by Moitra [Mad13] to write down a low degree polynomial system with some number of

inequalities in terms of small number of variables. Next, we can use polynomial solver

[Ren92a, Ren92b, Ren92c] to determine if there exists a nonnegative factorization of target

matrix A under weighted matrixW . The slover takes (md)O(v) time to run, ifm is the number

of inequality constraints, d is the maximum degree of polynomials and v is the number of

variables. We first show an algorithm that needs try 2k
O(r) guesses, the running time of which

has double exponential dependence in r. Then we expalin how to write down a slightly bigger

polynomial systems without 2k
O(r) guesses, which reduces the double exponential of r down

to single exponential dependence.

Notations Let W ∈ Rn×n
≥0 denote the nonnegative weight matrix, let A denote the

target n×n matrix, our goal is to factorize A into two low-dimensional nonnegative matrices

B ∈ Rn×k
≥0 and C ∈ Rk×n

≥0 . Let Ai denote the ith column of matrix A and Aj denote the jth

row of matrix A. Let A◦W denote the entry-wise product of two matrices A and W , and let

u ◦ v denote the entry-wise product of two vectors A and W . Let Dlev denote the leverage

score matrix. Let DWi
denote the diagonal matrix, where each entry on diagonal is from the

vector Wi, similarly for DW j .

Definition 16.11.1. The nonnegative weighted rank rank+(A) is defined to be the smallest
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k such that A can be written as

Aij =

{
BiCj = (BC)ij if Wij > 0

arbitrary otherwise
(16.9)

where B and C are nonnegative and have dimension n × k and k × n respectively, W has

rank r.

We use the notations aff(A) and lexicographic ordering from [Mad13] directly, and

extend the stable definition and addmissible definition into weighted version. The standard

lexicographic ordering is usually for the subsets that have the same size, additionally, we

assume the smaller size subset has early order than larger size subset.

Definition 16.11.2 (Affine Hull). Given n× n matrix A and let S ⊆ [n]. Define

aff(AS) = {
∑

i∈S

αiAi|∀i, αi ≥ 0}.

Definition 16.11.3 (Weighted Stable). ∀i ∈ [n], let Si ⊆ [k] be the lexicographically first

admissible subset ( of columns of B ∈ Rn×k ) for Ai. ∀j ∈ [n], , let T j ⊆ [k] be the

lexicographically first admissible subset ( of rows of C ∈ Rk×n ) for Aj. We call W ◦ A =

W ◦ (BC) weighted stable if:

1. ∀i ∈ [n], Ci is supported in Si ⊆ [k]

2. ∀j ∈ [n], Bj is supported in T j ⊆ [k]

Definition 16.11.4 (Weighted Admissible). Given a weighted vector w ∈ Rn
≥0 and a vector

v ∈ Rn, let S denote a subset of columns of A, S is weighted admissible if there exists

some u ∈ aff(AS) such that w ◦ v = w ◦ u.
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Another interpretation of weighted admissible is thinking of we have ∗ entry in vector

v instead of thinking there is antoher weighted vector. Given a vector v ∈ {R, ∗}n, let

q ⊆ [n] denote the subset of coordinates that contain ∗, we will call a subset S of columns

of A admissible if there exists some u ∈ aff(AS) such that, ∀i /∈ q, vi = ui.

Lemma 16.11.1. Given matrices A ∈ Rn×n and W ∈ Rn×n
≥0 . If there exist some nonnegative

inner-dimension k matrices B and C such that W ◦ A = W ◦ (BC), then there exist B̃ and

C̃ such that:

1. W ◦ A = W ◦ (B̃C̃), B̃ and C̃ are nonnegative and have inner-dimension k;

2. W ◦ A = W ◦ (B̃C̃) is weighted stable.

Proof. In this proof, we modify the matrix A according to the zero position of matrix W ,

Aij = ∗ if Wij = 0. At the beginning, we have some B and C such that A and BC are entry-

wise consistent except the ∗ positions. Then each update phase will alternately switching

between B-updating phase and C-updating phase. In the C-updating phase, for each column

vector Ai ∈ {R, ∗}n×1, let Si be the lexicographically first subset of columns of B that is

admissible for Ai. If Si ⊆ [k] is lexicographically (strictly) earlier than the support of column

vector Ci ∈ Rk×1, then we can find a column vector C̃i ∈ Rk×1
≥0 , supp(C̃i) ⊆ Si satisfies that

Ai is entry-wise consistent with BC̃i except ∗ position. Otherwise, we choose C̃i = Ci.

Since, we don’t change anything for matrix B and C[n]\i, then A is still entry-wise consistent

with BC̃ except the ∗ positions. The last step of this C-updating phase is updating C by

C̃. Similarly, we can define the B-updating phase. During the overall updating, (1) the

lexicographically order of support monotonically decrease, if Bj or Ci got updated. (2) the
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matrices B and C always satisfy that A is entry-wise consistent with BC except ∗ position,

in other words. Thus, the overall updating phases will terminate withW ◦A = W ◦(BC).
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16.11.1 Combining with Our Techniques

Here we explain how to adapt our technique for solving the exact case to weighted non-

negative matrix factorization. (Note that there exists a low-rank matrix A′ to make the opti-

mal cost 0, but it doesn’t meanA is low-rank.) We first do leverage score sampling on the LHS

of the problem, there exists some diagonal matrixDlev respect to span(DW1B,DW2B, · · · , DWnB)

such that

min
B,C

n∑

i=1

‖DlevDWi
BCi‖2

2 ≤ (1 + ε)min
B,C

n∑

i=1

‖DWi
BCi‖2

2

If we know matrix B, then we can compute the leverage sampling matrix deterministically

and exactly. Here, we don’t know the B, thus, we have to either guess those nonzero

probabilities or creat variables for nonzero probabilities. Let t denote the number of nonzero

probabilities in leverage score sampling matrix, then

Claim 16.11.2. There are O(nt) leverage score sampling matrix we need to guess.

Since Dlev is the leverage score sampling matrix that has t = (kr/ε2) nonzero proba-

bility on diagonal. Thus, the nonzero position of Dlev will determine the set of rows of B.

We create variables for the rows of B which are chosen by Dlev. There are t such rows, thus

we need tr variables in total. To write down DlevDWi
B by a small number of variables, we

also need to create t variables for the nonzero probability of Dlev. Thus,

Claim 16.11.3. ∀i ∈ [n], t × k matrix DlevDWi
B can expressed as O(tr) variables, where

each entry of that matrix is single monomial that has degree at most 2.

In order to write down Ci by these O(tr) small number of variables, we need to

group Ci by looking at the zero-pattern of DlevDWi
. Let g denote the number of different
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zero-patterns, let zi denote the set of indices belong to the same group,

min
B,C

n∑

i=1

‖DlevDWi
BCi‖2

2 = min
B,C

g∑

`=1

∑

i∈z`

‖DlevDWi
BCi‖2

2

By the similar result from previous section, there are only
(
t
r

)
= kr different zero-

patterns. LetDlevDW ′`
denote the zero-pattern of group z`, ∀` ∈ [g]. Let rank(DlevDW ′`

) = s`.

For each group, we first guess s` which is the size of maximal linearly independent of rows of

DlevDW ′`
B, it has k possibilities. Second we need to guess the maximal linearly independent

set of rows of DlevDW ′`
B, let U` denote the subset of rows of DlevDW ′`

B. Then we define

S1, S2, · · · , Sp to be the full list of sets of s` linearly independent columns of DlevDW ′`
B in

lexicographic order, where p ≤
(
k
s`

)
≤ 2k. By the definition of U` and Si, we have the

property that each s` × s` submatrix (DlevDW ′`
B)U`Si is full rank and invertible.

Claim 16.11.4. If DlevDWi
and DlevDWj

belong to the same zero pattern group z`, then they

must have the same rank. There are k possibilities for the rank of DlevDW ′`
B, ∀` ∈ [kr]. In

total, there are O(kk
r
) guesses need to try.

Claim 16.11.5. If DlevDWi1
and DlevDWi2

belong to the same zero pattern group z`, then

they must have the same U`. There are rO(k) possibilities for row subset U` of DlevDW ′`
B, ∀` ∈

[kr]. In total, there are 2k
O(r) guesses need to try. Fix a guess of U`, there are at most 2k

possibilities for column subset Sj of DlevDW ′`
B, ∀` ∈ [kr]. In total, there are 2k

O(r) guesses

need to try.
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16.11.2 Few Entries Determine B and C

We extend Lemma 2.7 in [Mad13] to the the following weighted version.

Lemma 16.11.6. For each column vector Ai ∈ Rn×1, let DlevDWi
belong to the group z`,

then among the set of vectors

S =
{
B̂i,`

1 (DlevDWi
Ai)

U` , B̂i,`
2 (DlevDWi

Ai)
U` , · · · , B̂i,`

p (DlevDWi
Ai)

U`
}

column vector Ci ∈ Rk×1 is the unique vector with lexicographically minimal support among

all nonnegative vectors in the above set. Note that (DlevDWi
B)U`Sj ∈ Rs`×s`, ((DlevDWi

B)U`Sj )
† ∈

Rs`×s` , B̂i,`
j ∈ Rk×s` ,∀j ∈ [p],

B̂i,`
j = Pπ:[s`]→[k]︸ ︷︷ ︸

k×s`

·((DlevDWi
B)U`Sj )

†,∀i ∈ [n]

Pπ:[s]→[k] denotes a permutation matrix that has exact one 1 in each column, and there are s

out of k rows has exact one 1, everywhere else are all 0.

Proof. We already shown that the weighted stable Ci belongs to the set S. Thus, there

must exist some j∗ ∈ [p] such that Ci = B̂i,`
j∗ (DlevDWi

Ai)
U` . Then, for any j 6= j∗, consider

the nonnegative vector B̂i,`
j (DlevDWi

Ai)
U` = v. We need to show that the support of v is

lexicographically later than the support of Ci.

First, we claim that if v 6= Ci then the support of Ci is not the same as the support of

v. Let’s prove it by getting a contradiction. Suppose v 6= Ci and both of them have support

Ri. Indeed Ri must correspond to a linearly independent set of columns of DWi
B. By Claim

16.11.8, we obtain that (DWi
B(v − Ci))Ωi = (

−→
0 )Ωi . By v − Ci 6=

−→
0 and support of v − Ci

contained in Ri, we get (DWi
B(v − Ci))Ωi 6= (

−→
0 )Ωi . Thus, we get a contradiction.
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So the support Ci and v are not identical and one of these must be lexicographically

earlier. Suppose (for contradiction) that the support of v is earlier. By Claim 16.11.7,

we have that the support of Ci is a weighted admissible set of columns of B for Ai. This

contradicts stability (because we could update Ci to v), and so we can conclude that the

support of Ci is lexicographically earlier.

It remains to prove Claim 16.11.7 and Claim 16.11.8, which are the weighted version

of Lemma 2.8 and Lemma 2.9 in [Mad13].

Claim 16.11.7. For each column vector Ci ∈ Rk×1, it is contained in the set S.

Proof. Let Ri denote the support of column vector Ci ∈ Rk×1. Then Ri must correspond to

a linearly independent set of columns of B - otherwise we could find a nonnegative C̃i whose

support is a strict subset of Ri such that Wi ◦ (BC̃i) = Wi ◦ Ai, but this would violate the

condition of stability.

Suppose DlevDWi
belongs to zero pattern z`, let U` denote maximal linearly indepe-

dent set of rows of DlevDW ′`
B and s` is the rank. Because the sets of linearly independent

columns of DlevDWi
B ∈ Rn×k are a matroid, there is a set Sj ⊂ [k] of s` linearly independent

columns of DlevDWi
B for which Ri ⊂ Sj, hence

B̂i,`
j (DlevDWi

Ai)
U`

= B̂i,`
j (DlevDWi

BCi)
U` by Ai = BCi

= B̂i,`
j (DlevDWi

B)U`Ci

= Pπ:[s`]→[k] · ((DlevDWi
B)U`Sj )

† · (DlevDWi
B)U`Sj · Ci

= v
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Note that B̂i,`
j is zero on rows outside the set Sj and support Ci is contained in Sj, then we

have Ci = v

Claim 16.11.8. For each column vector B̂i,`
j (DlevDWi

Ai)
U` ∈ Rk×1, we have

Wi ◦ (BB̂i,`
j (DlevDWi

Ai)
U`) = Wi ◦ Ai

or equivalently

DWi
(BB̂i,`

j (DlevDWi
Ai)

U`) = DWi
Ai

Proof. Let Ωi denote the support of Wi. Define v = BB̂i,`
j (DlevDWi

Ai)
U`,Ωi ∈ Rn×1. First,

we prove that vU`,Ωi = AU`,Ωii . Since B̂i,`
j ∈ Rk×|U`∩Ωi| is zero on rows outside the set Sj, we

have

B︸︷︷︸
n×k

B̂i,`
j︸︷︷︸

k×|U∩Ωi|

= BSj(B̂
i,`
j )Sj = BSj((DlevDWi

B)U`Sj )
†

Thus

vU`,Ωi = (BB̂i,`
j (DlevDWi

Ai)
U`,Ωi)U`,Ωi

= (BB̂i,`
j )U`,Ωi(DlevDWi

Ai)
U`,Ωi

= BU`,ΩiB̂i,`
j (DlevDWi

Ai)
U`,Ωi

= BU`,Ωi
Sj

((DlevDWi
B)U`Sj )

†(DlevDWi
Ai)

U`,Ωi

= AU`,Ωii

Second, we prove that vU`,Ωi = AU`,Ωii . Since U` is the maximal linearly independent set of

rows of DlevDWi
B and Dlev preserves the rank of DWi

B. For any t ∈ U` ∩Ωi, the row vector

Bt ∈ R1×k can be written as a linear combination of rows in B in the set U` ∩ Ωi:

Bt =
∑

t′∈U`∩Ωi

αt,t′B
t′
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Note that Wi ◦ (BCi) = Wi ◦ Ai implies (BCi)
Ωi = (Ai)

Ωi . Then we have for t ∈ U` ∩ Ωi,

Ati = BtCi =
∑

t′∈U`∩Ωi

αt,t′B
t′Ci =

∑
t′∈U`∩Ωi

αt,t′A
t′
i and hence:

vt = (BB̂i,`
j (DlevDWi

Ai)
U`,Ωi)t

= BtB̂i,`
j (DlevDWi

Ai)
U`,Ωi

=
∑

t′∈U`∩Ωi

αt,t′B
t′B̂i,`

j (DlevDWi
Ai)

U`,Ωi

=
∑

t′∈U`∩Ωi

αt,t′v
t′

=
∑

t′∈U`∩Ωi

αt,t′A
t′

i

= Ati

We still need to show that leverage score sampling matrix doesn’t destroy first lexi-

cographically order property.

Claim 16.11.9. If C̃ ∈ Rk×n is the first lexicographically order solution of the original

problem A = BC under W , then it is also a solution to the problem DlevA = DlevBC under

W .

Proof. Subspace embedding preserves the equality. For each i ∈ [n], DWi
Ai = DWi

BC̃i

implies that DlevDWi
Ai = DlevDWi

BC̃i.

Claim 16.11.10. If C ′ ∈ Rk×n is the first lexicographically order solution of the new problem

DlevA = DlevBC under W , then the C ′ has to be equal to C̃.
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Proof. Let’s prove it by contradiction. Suppose the order of C ′ is early than C̃. For each

i ∈ [n], we know that DlevDWi
Ai = DlevDWi

BC ′i. Since we also know that DlevDWi
Ai =

DlevDWi
BC̃i. Combing the above equation gives that DlevDWi

BC ′i = DlevDWi
BC̃i, since

C ′ 6= C̃, then there must exist one i such that C ′i 6= C̃i, which means DWi
BC ′i 6= DWi

BC̃i.

By leverage score sampling, if DWi
BC ′i 6= DWi

BC̃i, then DlevDWi
BC ′i 6= DlevDWi

BC̃i
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16.11.3 A Semi-Algebraic Set with Double Exponential Depence in r

Here, we explain the details of constraints should be added into the polynomials

system solver.

Constraints 1 Define first(S) to be the function that takes a collection of vectors as

input and outputs the vector with lexicographically minimal support among all nonnegative

vectors in S. For each k-dimensional column vector Ci, i ∈ [n], we need to add nonnegative

constraints to it,

Ci ≥
−→
0 ,∀i ∈ [n]

where Ci = first({B̂i,`
1 (DlevDWi

Ai)
U` , B̂i,`

2 (DlevDWi
Ai)

U` , · · · , B̂i,`
p (DlevDWi

Ai)
U`}) andDlevDWi

belong to the zero-pattern z`.

Similarly, we can choose a leverage score sampling matrix Dlev′ on the RHS of the

original problem and create variables for Csupp(Dlev′ ). Thus, for each k-dimensional row vector

Bj, j ∈ [n], we also need to add nonnegative constraints to it,

Bj ≥ −→0 ,∀j ∈ [n]

where Bj = first({(AjDW jDlev′)
U`Ĉj,`

1 , (AjDW jDlev′)
U`Ĉj,`

2 , · · · , (AjDW jDlev′)
U`Ĉj,`

p }) and

DW jDlev′ belong to the zero-pattern z`.

Constraints 2 Since we know the representation of Ci, Bj and the exact value of Aji , then

we need to add n2 equality constraints,

BjCi = Aji , if W
j
i 6= 0,∀i ∈ [n],∀j ∈ [n]

where we need to clean up the denominator of Bj and Ci when writing down this constraint.

1099



Constraints 3 We also need to write down the inequality constraints for the denominators

of every B̂i,`
j , by definition, the denominator is from ((DlevDWi

B)U`Sj )
†. To guarantee the

denominator is nonzero, we need to add this constraint,

the denominator of ((DlevDWi
B)U`Sj )

† 6= 0.

where the number of such constraints is

#DWi
·#Sj ≤ n · 2k

which is same for the other side C.

Polynomial system Claim 2.12 in [Mad13] is able to write the explicit Boolean fucntion

P for the unweighted case of nonnegative matrix factorization problem. Note that P is a

function of sign constraints on polynomials. Here, we extend that the Boolean function to a

weighted case of nonnegative matrix factorization.

∧
`∈[g]

∧
`′∈[g′]


 ∧
i∈[z`]

∧
j∈[z`′ ]


 ∨
i1∈[( ks`)]

∨
j1∈[( k

ω`′
)]

(f1 ∧ f2 ∧ f3 ∧ f4 ∧ f5 ∧ f6 ∧ f7)






where

f1 :
(

(AjDW jDlev′)V`′ Ĉ
j,`′

j1
· B̂i,`

i1
(DlevDWi

Ai)
U`, − Aij

)
= 0

f2 :=
(
B̂i,`
i1

(DlevDWi
Ai)

U`
)
≥ 0

f3 :=
(

(AjDW jDlev′)V`′ Ĉ
j,`′

j1

)
≥ 0
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f4 :=
(
B̂i,`
i1

(DlevDWi
Ai)

U` is the first out of Si
)

f5 :=
(

(AjDW jDlev′)V`′ Ĉ
j,`′

j1
is the first out of Tj

)

f6 :=
(
denominator polynomial of B̂i,`

i1

)
6= 0

f7 :=
(
denominator polynomial of Ĉj,`′

j1

)
6= 0

where the sign of the polynomial in each constraint can be recovered as a Boolean function

of signs of degree at most poly(kr).

Theorem 16.11.11. Given matrix A ∈ Rn×n and rank-r weighted matrix W ∈ Rn×n
≥0 . It

takes nO(rk2)22O(r log k) time to determine if there exists some matrices B ∈ Rn×k
≥0 and C ∈

Rk×n
≥0 such that W ◦ (BC) = W ◦ A, which means existing a weighted nonnegative matrix

factorization.

Proof. The final running time comes from two parts, (1) solving the polynomial system, it

is known that the running time is

(degree ·#constraints)#variables

The number of variables is O(tk) = O(rk2). The degree is increasing by using Cramer rule to

compute the inverse of full rank square matrix, the degree is at most poly(kr). The number

of constraints is at most n2 · 2poly(kr). Thus, running time of polynomial system solver is

at most nO(rk2)2poly(kr). (2) The number of guesses for leverage score sampling matrix is

nO(t) and the number of guesses for each group’s maximum linearly independent rows in B

is 2k
O(r) . Thus, we need to rerun the solver for nO(t)2k

O(r) different polynomial systems. In

summary, the entire running is nO(rk2)2k
O(r) by plugging t = O(kr).
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16.11.4 A Semi-Algebraic Set with Single Exponential Dependence in r

The intuition of improving double exponential dependence to single exponential de-

pendence is, instead of guessing a possibility of rank and maximum linearly independent

rows for each group at a time, we can write down all the possibilities into a slightly bigger

polynomial system.

We define

Si,s`,ps` =

{B̂i,`
1,1(DlevDWi

Ai)
Us`,1 , · · · , B̂i,`

1,( ks`)
(DlevDWi

Ai)
Us`,1

B̂i,`
2,1(DlevDWi

Ai)
Us`,2 , · · · , B̂i,`

2,( ks`)
(DlevDWi

Ai)
Us`,2 ,

· · · ,

B̂i,`
ps` ,1

(DlevDWi
Ai)

Us`,ps` , · · · , B̂i,`

ps` ,(
k
s`

)
(DlevDWi

Ai)
Us`,ps` }

where z` is corresponding to the zero-pattern of DlevDWi
, s` is the rank of DlevDW ′`

,

Us`,i,∀i ∈ [ps` ] is a set of indices of s` rows of submatrix DlevDW ′`
, ps` =

(
t
s`

)
≤
(
t
k

)
= O(rk).

Then we define

Si =
k∪

s`=1
Si,s`,ps`

where the number of entries in set Si is at most k · rk · 2k.

Then the Constraints 3 is slightly changing to the following,

Constraints 3’ We also need to write down the inequality constraints for the denominators

of every B̂i,`
i1,i2

, by definition, the denominator is from ((DlevDWi
B)

Us`,i1
Si2

)†. To guarantee the
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denominator is nonzero, we need to add this constraint,

the denominator of ((DlevDWi
B)

Us`,i1
Si2

)† 6= 0.

where the number of such constraints is

#DWi
·#s` ·#i1 ·#Si2 ≤ n · k · rO(k) · 2k = n · 2O(k log r)

which is same for the other side C.

Polynomial System Finally, we can write down the boolean function P over the polyno-

mial inequality constraints,

∧
`∈[g]

∧
`′∈[g′]


 ∨
s`∈[k]

∨
ω`′∈[k]

∨
i1∈[ps` ]

∨
j1∈[qω`′ ]


 ∧
i∈[z`]

∧
j∈[z`′ ]


 ∨
i2∈[( ks`)]

∨
j2∈[( k

ω`′
)]

(f1 ∧ f2 ∧ · · · ∧ f6 ∧ f7)








where

f1 :=
(

(AjDW jDlev′)Vω`′ ,j1
Ĉj,`′

j1,j2
· B̂i,`

i1,i2
(DlevDWi

Ai)
Us` ,i1 − Aij

)
= 0

f2 :=
(
B̂i,`
i1,i2

(DlevDWi
Ai)

Us` ,i1
)
≥ 0

f3 :=
(

(AjDW jDlev′)Vω`′ ,j1
Ĉj,`′

j1,j2

)
≥ 0

f4 :=
(
B̂i,`
i1,i2

(DlevDWi
Ai)

Us` ,i1 is the first out of Si
)

f5 :=
(

(AjDW jDlev′)Vω`′ ,j1
Ĉj,`′

j1,j2
is the first out of Tj

)
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f6 :=
(
denominator polynomial of B̂i,`

i1,i2

)
6= 0

f7 :=
(
denominator polynomial of Ĉj,`′

j1,j2

)
6= 0

Note that we only need to adding the functions f1, f2, f3, f4, f5 into the this big

polynomial system when Wji 6= 0.

Theorem 16.11.12. Given matrix A ∈ Rn×n and rank-r weighted matrix W ∈ Rn×n
≥0 . It

takes nO(rk2)2Õ(rk3) time to determine if there exists some matrices B ∈ Rn×k
≥0 and C ∈

Rk×n
≥0 such that W ◦ (BC) = W ◦ A, which means existing a weighted nonnegative matrix

factorization.
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Algorithm 16.1 Bicriteria Approximation Algorithm — Section 16.10
1: procedure LowRankApproximation(A, n, k, ε)
2: Use [CW13] to find rank-k matrix A′ such that:
3: ‖A′ − A‖2

F ≤ (1 + ε) min
rank(B)=k

‖B − A‖2
F .

4: return A′.
5: end procedure
6: procedure BicriteriaLowRankBooleanW(A,W, n, r, k, ε) — Section 16.10.1
7: Comment rank(W ) = r and W ∈ Fn×n2 .
8: B ← LowRankApproximation(A ◦W,n, rk, ε).
9: return B.
10: end procedure
11: procedure BicriteriaLowRankFiniteFieldW(A,W, n, r, k, p, ε) — Section 16.10.2
12: Comment rank(W ) = r and W ∈ Fn×np .
13: g ← # distinct columns of W .
14: for i = 1→ g do
15: Let Zi denote the subset of columns of A such that, all the columns have the same

weight column vector.
16: Ωi ← supp(DWi

).
17: Bi ← (DWi

AZi)
Ωi .

18: B′i ← LowRankApproximation(Bi, (|Ωi|, |Zi|), k, ε).
19: end for
20: Reconstruct rank k · pr matrix B by merging all B′i.
21: return B.
22: end procedure
23: procedure BicriteriaRDistinctColumnsW(A,W, n, r, k, ε) — Section 16.10.3
24: Comment W has r distinct columns and W ∈ Rn×n

≥0

25: for i = 1→ r do
26: Let Zi denote the subset of columns of A such that, all the columns have the same

weight column vector.
27: Ωi ← supp(DWi

).
28: Bi ← (DWi

AZi)
Ωi .

29: B′i ← LowRankApproximation(Bi, (|Ωi|, |Zi|), k, ε).
30: end for
31: Reconstruct rank rk matrix B by merging all B′i.
32: return B
33: end procedure
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Algorithm 16.2 Weighted Nonnegative Matrix Factorization
1: procedure WeightedNonnegativeMatrixFactorization(A,W, n, r, k)
2: t← O(kr/ε2)
3: Guess leverage sampling matrix Dlev and Dlev′

4: Create t variables for the nonzero probablities on diagonal of Dlev.
5: Create t variables for the nonzero probablities on diagonal of Dlev′ .
6: Create tr variables for r rows of B based on the nonzero rows of Dlev.
7: Create rt variables for r columns of C based on the nonzero columns of Dlev′ .
8: for i ∈ [n] do
9: Write down DlevDWi

B and CDW iDlev′ .
10: end for
11: g ← # zero-patterns of {DlevDWi

}i∈[n]

12: g′ ← # zero-patterns of {DW iDlev′}i∈[n]

13: for ` ∈ [g], `′ ∈ [g′] do
14: Guess a rank s` ∈ [k] for zero-pattern DlevDW ′`
15: Guess a maximal linearly independent set of rows U` for DlevDW ′`

B, |U`| = s`
16: Guess a rank s`′ ∈ [k] for zero-pattern DlevDW `′

′

17: Guess a maximal linearly independent set of columns V`′ for CDW `′
′
Dlev′ , |U`| = s`

18: end for
19: for i ∈ [n], j ∈ [p] do
20: Write down B̂i,`

j in terms of O(rt) variables created early
21: Write down Ĉi,`′

j in terms of O(rt) variables created early
22: end for
23: Write down semi-algebraic set
24: Run an algorithm for deciding if the semi-algebraic set is non-empty.
25: end procedure
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Algorithm 16.3 Weighted Nonnegative Matrix Factorization
1: procedure FasterWeightedNonnegativeMatrixFactorization(A,W, n, r, k)
2: t← O(kr/ε2)
3: Guess leverage sampling matrix Dlev and Dlev′

4: Create t variables for the nonzero probablities on diagonal of Dlev.
5: Create t variables for the nonzero probablities on diagonal of Dlev′ .
6: Create tr variables for r rows of B based on the nonzero rows of Dlev.
7: Create rt variables for r columns of C based on the nonzero columns of Dlev′ .
8: for i ∈ [n] do
9: Write down DlevDWi

B and CDW iDlev′ .
10: end for
11: g ← # zero-patterns of {DlevDWi

}i∈[n]

12: g′ ← # zero-patterns of {DW iDlev′}i∈[n]

13: for ` ∈ [g] do
14: for s` ∈ [k] do
15: rank← s`, ps` ← # size s` subset rows of DlevDW ′`

B
16: for i1 ∈ [ps` ] do
17: for i ∈ [z`] do
18: for i2 ∈ [

(
k
s`

)
] do

19: Write down B̂i,`
i1,i2

in terms of O(rt) variables created early, by
Cramer rule

20: end for
21: end for
22: end for
23: end for
24: end for
25: for `′ ∈ [g′] do
26: for ω`′ ∈ [k] do
27: rank← ω`′ , qω`′ ← # size ω`′ subset columns of CDW `′

′
Dlev′

28: for j1 ∈ [qω` ] do
29: for j ∈ [z`′ ] do
30: for j2 ∈ [

(
k
ω`′

)
] do

31: Write down Ĉj,`
j1,j2

in terms of O(rt) variables created early, by
Cramer rule

32: end for
33: end for
34: end for
35: end for
36: end for
37: Write down semi-algebraic set
38: Run an algorithm for deciding if the semi-algebraic set is non-empty.
39: end procedure
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Chapter 17

Entry-wise L1 Low Rank Approximation

We study the `1-low rank approximation problem, where for a given n× d matrix A

and approximation factor α ≥ 1, the goal is to output a rank-k matrix Â for which

‖A− Â‖1 ≤ α · min
rank-k matrices A′

‖A− A′‖1,

where for an n× d matrix C, we let ‖C‖1 =
∑n

i=1

∑d
j=1 |Ci,j|. This error measure is known

to be more robust than the Frobenius norm in the presence of outliers and is indicated in

models where Gaussian assumptions on the noise may not apply. The problem was shown

to be NP-hard by Gillis and Vavasis and a number of heuristics have been proposed. It was

asked in multiple places if there are any approximation algorithms.

We give the first provable approximation algorithms for `1-low rank approxima-

tion, showing that it is possible to achieve approximation factor α = (log d) · poly(k) in

nnz(A) + (n + d) poly(k) time, where nnz(A) denotes the number of non-zero entries of A.

If k is constant, we further improve the approximation ratio to O(1) with a poly(nd)-time

algorithm. Under the Exponential Time Hypothesis, we show there is no poly(nd)-time al-

gorithm achieving a (1 + 1
log1+γ(nd)

)-approximation, for γ > 0 an arbitrarily small constant,

even when k = 1.
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17.1 Introduction

Two well-studied problems in numerical linear algebra are regression and low rank

approximation. In regression, one is given an n × d matrix A, and an n × 1 vector b,

and one seeks an x ∈ Rd which minimizes ‖Ax − b‖ under some norm. For example,

for least squares regression one minimizes ‖Ax − b‖2. In low rank approximation, one is

given an n × d matrix A, and one seeks a rank-k matrix Â which minimizes ‖A − Â‖

under some norm. For example, in Frobenius norm low rank approximation, one minimizes

‖A− Â‖F =
(∑

i,j(Ai,j − Âi,j)2
)1/2

. Algorithms for regression are often used as subroutines

for low rank approximation. Indeed, one of the main insights of [DMM06c, DMM06b, Sar06,

DMM08, CW09] was to use results for generalized least squares regression for Frobenius norm

low rank approximation. Algorithms for `1-regression, in which one minimizes ‖Ax− b‖1 =
∑

i |(Ax)i − bi|, were also used [BD13, SW11] to fit a set of points to a hyperplane, which

is a special case of entrywise `1-low rank approximation, the more general problem being to

find a rank-k matrix Â minimizing
∑

i,j |Ai,j − Âi,j|.

Randomization and approximation were introduced to significantly speed up algo-

rithms for these problems, resulting in algorithms achieving relative error approximation

with high probability. Such algorithms are based on sketching and sampling techniques;

we refer to [Woo14b] for a survey. For least squares regression, a sequence of work [Sar06,

CW13, MM13, NN13a, LMP13, BDN15, Coh16a] shows how to achieve algorithms running

in nnz(A) + poly(d) time. For Frobenius norm low rank approximation, using the advances

for regression this resulted in nnz(A) + (n + d) poly(k) time algorithms. For `1-regression,

sketching and sampling-based methods [Cla05, SW11, CDMI+13, CW13, MM13, LMP13,

WZ13, CW15b, CP15] led to an nnz(A) + poly(d) time algorithm.
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Just like Frobenius norm low rank approximation is the analogue of least squares

regression, entrywise `1-low rank approximation is the analogue of `1-regression. Despite

this analogy, no non-trivial upper bounds with provable guarantees are known for `1-low rank

approximation. Unlike Frobenius norm low rank approximation, which can be solved exactly

using the singular value decomposition, no such algorithm or closed-form solution is known

for `1-low rank approximation. Moreover, the problem was recently shown to be NP-hard

[GV15]. A major open question is whether there exist approximation algorithms, sketching-

based or otherwise, for `1-low rank approximation. Indeed, the question of obtaining betters

algorithms was posed in section 6 of [GV15], in [Exc13], and as the second part of open

question 2 in [Woo14b], among other places. The earlier question of NP-hardness was posed

in Section 1.4 of [KV09], for which the question of obtaining approximation algorithms is a

natural followup. The goal of our work is to answer this question.

We now formally define the `1-low rank approximation problem: we are given an

n × d matrix A and approximation factor α ≥ 1, and we would like, with large constant

probability, to output a rank-k matrix Â for which

‖A− Â‖1 ≤ α · min
rank-k matrices A′

‖A− A′‖1,

where for an n × d matrix C, we let ‖C‖1 =
∑n

i=1

∑d
j=1 |Ci,j|. This notion of low rank

approximation has been proposed as a more robust alternative to Frobenius norm low rank

approximation [KK03, KK05, KLC+15, Kwa08, ZLS+12, BJ12, BD13, BDB13, MXZZ13,

MKP13, MKP14, MKCP16, PK16], and is sometimes referred to as `1-matrix factorization or

robust PCA. `1-low rank approximation gives improved results over Frobenius norm low rank

approximation since outliers are less exaggerated, as one does not square their contribution
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in the objective. The outlier values are often erroneous values that are far away from the

nominal data, appear only a few times in the data matrix, and would not appear again under

normal system operation. These works also argue `1-low rank approximation can better

handle missing data, is appropriate in noise models for which the noise is not Gaussian, e.g.,

it produces the maximum likelihood estimator for Laplacian noise [Gao08, KAC+08, VT01],

and can be used in image processing to prevent image occlusion [YZD12].

To see that `1-low rank approximation and Frobenius norm low rank approximation

can give very different results, consider the n × n matrix A = [ n 0
0 B ], where B is any (n −

1) × (n − 1) matrix with ‖B‖F < n. The best rank-1 approximation with Frobenius norm

error is given by Â = n · e1e
>
1 , where e1 is the first standard unit vector. Here Â ignores all

but the first row and column of A, which may be undesirable in the case that this row and

column represent an outlier. Note ‖A− Â‖1 = ‖B‖1. If, for example, B is the all 1s matrix,

then Â = [0, 0; 0, B] is a rank-1 approximation for which ‖A − Â‖1 = n, and therefore this

solution is a much better solution to the `1-low rank approximation problem than n · e1e
>
1 ,

for which ‖A− n · e1e
>
1 ‖1 = (n− 1)2.

Despite the advantages of `1-low rank approximation, its main disadvantage is its

computationally intractability. It is not rotationally invariant and most tools for Frobenius

low rank approximation do not apply. To the best of our knowledge, all previous works

only provide heuristics. Using that for an n × d matrix C, ‖C‖F ≤ ‖C‖1 ≤
√
nd‖C‖F ,

a Frobenius norm low rank approximation gives a
√
nd approximation for `1-low rank ap-

proximation. A bit better is to use algorithms for low rank approximation with respect to

the sum of distances, i.e., to find a rank-k matrix Â minimizing ‖A − Â‖1,2, where for an

n × d matrix C, ‖C‖1,2 =
∑n

i=1 ‖Ci‖2, where Ci is the i-th row of C. A sequence of work
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[DV07, FMSW10, FL11, SV12a, CW15a] shows how to obtain an O(1)-approximation to this

problem in nnz(A)+(n+d) poly(k)+exp(k) time, and using that ‖C‖1,2 ≤ ‖C‖1 ≤
√
d‖C‖1,2

results in an O(
√
d)-approximation.
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17.1.1 Our Results

We give the first efficient algorithms for `1-low rank approximation with provable

approximation guarantees. By symmetry of the problem, we can assume d ≤ n. We first

give an algorithm which runs in O(nnz(A)) + n · poly(k) time and solves the `1-low rank

approximation problem with approximation factor (log d) · poly(k). This is an exponential

improvement over the previous approximation factor of O(
√
d), provided k is not too large,

and is polynomial time for every k. Moreover, provided nnz(A) ≥ n · poly(k), our time is

optimal up to a constant factor as any relative error algorithm must spend nnz(A) time.

We also give a hard instance for our algorithm ruling out log d
k log k

+ k1/2−γ approximation for

arbitrarily small constant γ > 0, and hard instances for a general class of algorithms based

on linear sketches, ruling out k1/2−γ approximation.

Via a different algorithm, we show how to achieve an Õ(k)-approximation factor in

poly(n)dÕ(k)2Õ(k2) time. This is useful for constant k, for which it gives anO(1)-approximation

in poly(n) time, improving the O(log d)-approximation for constant k of our earlier algo-

rithm. The approximation ratio of this algorithm, although O(1) for constant k, depends

on k. We also show one can find a rank-2k matrix Â in poly(n) time for constant k for

which ‖A − Â‖1 ≤ C minrank-k matrices A′ ‖A − A′‖1, where C > 1 is an absolute constant in-

dependent of k. We refer to this as a bicriteria algorithm. Finally, one can output a rank-k

matrix Â, instead of a rank-2k matrix Â, in poly(n) time with the same absolute constant

C approximation factor, under an additional assumption that the entries of Â are integers

in the range {−b,−b+ 1, . . . , b} for an integer b ≤ poly(n). Unlike our previous algorithms,

this very last algorithm has a bit complexity assumption, and runs in poly(b) time instead

of poly(log(b)) time.
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We also give a number of results for variants of `1-low rank approximation which are

studied for Frobenius norm low rank approximation; prior to our work nothing was known

about these problems.

Column Subset Selection and CUR Decomposition: In the column subset

selection problem, one seeks a small subset C of columns of A for which there is a matrix

X for which ‖CX − A‖ is small, under some norm. The matrix CX provides a low rank

approximation to A which is often more interpretable, since it stores actual columns of A,

preserves sparsity, etc. These have been extensively studied when the norm is the Frobenius

or operator norm (see, e.g., [BMD09, DR10, BDM11] and the references therein). We initiate

the study of this problem with respect to the `1-norm. We first prove an existence result,

namely, that there exist matrices A for which any subset C of poly(k) columns satisfies

minX ‖CX − A‖1 ≥ k1/2−γ · minrank-k matrices A′ ‖A − A′‖1, where γ > 0 is an arbitrarily

small constant. This result is in stark contrast to the Frobenius norm for which for every

matrix there exist O(k
ε
) columns for which the approximation factor is 1 + ε. We also show

that our bound is nearly optimal in this regime, by showing for every matrix there exists

a subset of O(k log k) columns providing an O(
√
k log k)-approximation. One can find such

columns in poly(n)dO(k log k) time by enumerating and evaluating the cost of each subset.

Although this is exponential in k, we show it is possible to find O(k log k) columns providing

an O(
√
k log k log d)-approximation in polynomial time for every k.

We extend these results to the CUR decomposition problem (see, e.g., [DMM08,

BW14]), in which one seeks a factorization CUR for which C is a subset of columns of A, R

is a subset of rows of A, and ‖CUR−A‖ is as small as possible. In the case of Frobenius norm,

one can choose O(k/ε) columns and rows, have rank(U) = k, have ‖CUR−A‖F be at most
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(1+ε) times the optimal cost, and find the factorization in nnz(A) log n+n ·poly((log n)k/ε)

time [BW14]. Using our column subset selection results, we give an nnz(A) + n · poly(k)

time algorithm choosing O(k log k) columns and rows, for which rank(U) = k, and for which

‖CUR− A‖1 is poly(k) log d times the cost of any rank-k approximation to A.
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17.1.2 Technical Overview

Initial Algorithm and Optimizations: Let A∗ be a rank-k matrix for which

‖A − A∗‖1 = minrank-k matrices A′ ‖A − A′‖1. Let A∗ = U∗V ∗ be a factorization for which U∗

is n × k and V ∗ is k × d. Suppose we somehow knew U∗ and consider the multi-response

`1-regression problem minV ‖U∗V −A‖1 = minV
∑d

i=1 ‖U∗Vi−Ai‖1, where Vi, Ai denote the

i-th columns of V and A, respectively. We could solve this with linear programming though

this is not helpful for our argument here.

Instead, inspired by recent advances in sketching for linear algebra (see, e.g., [Woo14b]

for a survey), we could choose a random matrix S and solve minV ‖SU∗V − SA‖1 =

minV
∑d

i=1 ‖(SU∗)Vi − SAi‖1. If V is an approximate minimizer of the latter problem,

we could hope V is an approximate minimizer of the former problem. If also S has a small

number t of rows, then we could instead solve minV
∑d

i=1 ‖(SU∗)Vi−SAi‖2, that is, minimize

the sum of Euclidean norms rather than the sum of `1-norms. Since t−1/2‖(SU∗)Vi−SAi‖1 ≤

‖(SU∗)Vi−SAi‖2 ≤ ‖(SU∗)Vi−SAi‖1, we would obtain a
√
t-approximation to the problem

minV ‖SU∗V − SA‖1. A crucial observation is that the solution to minV
∑d

i=1 ‖(SU∗)Vi −

SAi‖2 is given by V = (SU∗)†SA, which implies that V is in the row span of SA. If also

S were oblivious to U∗, then we could compute SA without ever knowing U∗. Having a

low-dimensional space containing a good solution in its span is our starting point.

For this to work, we need a distribution on oblivious matrices S with a small number

of rows, for which an approximate minimizer V to minV ‖SU∗V −SA‖1 is also an approximate

minimizer to minV ‖U∗V − A‖1. It is unknown if there exists a distribution on S with this

property. What is known is that if S has O(d log d) rows, then the Lewis weights (see, e.g.,

[CP15] and references therein) of the concatenated matrix [U∗, A] give a distribution for
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which the optimal V for the latter problem is a (1+ε)-approximation to the former problem;

see also earlier work on `1-leverage scores [Cla05, DDH+09] which have poly(d) rows and the

same (1 + ε)-approximation guarantee. Such distributions are not helpful here as (1) they

are not oblivious, and (2) the number O(d log d) of rows gives an O(
√
d log d) approximation

factor, which is much larger than what we want.

There are a few oblivious distributions S which are useful for single-response `1-

regression min ‖U∗v − a‖1 for column vectors v, a ∈ Rk [SW11, CDMI+13, WZ13]. In

particular, if S is an O(k log k) × n matrix of i.i.d. Cauchy random variables, then the

solution v to min ‖SU∗v−Sa‖1 is anO(k log k)-approximation to min ‖U∗v−a‖1 [SW11]. The

important property of Cauchy random variables is that if X and Y are independent Cauchy

random variables, then αX +βY is distributed as a Cauchy random variable times |α|+ |β|,

for any scalars α, β ∈ R. The O(k log k) approximation arises because all possible regression

solutions are in the column span of [U∗, a] which is (k + 1)-dimensional, and the sketch S

gives an approximation factor of O(k log k) to preserve every vector norm in this subspace.

If we instead had a multi-response regression problem min ‖SU∗V ∗ − SA‖1 the dimension

of the column span of [U∗, A] would be d + k, and this approach would give an O(d log d)-

approximation. Unlike Frobenius norm multi-response regression min ‖SU∗V ∗−SA‖F , which

can be bounded if S is a subspace embedding for U∗ and satisfies an approximate matrix

product theorem [Sar06], there is no convenient linear-algebraic analogue for the `1-norm.

We first note that since regression is a minimization problem, to obtain an O(α)-

approximation by solving the sketched version of the problem, it suffices that (1) for the

optimal V ∗, we have ‖SU∗V ∗ − SA‖1 ≤ O(α)‖U∗V ∗ − A‖1, and (2) for all V , we have

‖SU∗V − SA‖1 ≥ Ω(1) · ‖U∗V − A‖1.
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We show (1) holds for α = O(log d) and any number of rows of S. Our analysis

follows by truncating the Cauchy random variables (SU∗V ∗j − SAj)i for i ∈ [O(k log k)] and

j ∈ [d], so that their expectation exists, and applying linearity of expectation across the d

columns. This is inspired from an argument of Indyk [Ind06] for embedding a vector into

a lower-dimensional vector while preserving its `1-norm; for single-response regression this

is the statement that ‖SU∗v∗ − Sa‖1 = Θ(1)‖U∗v − a‖1, implied by [Ind06]. However, for

multi-response regression we have to work entirely with expectations, rather than the tail

bounds in [Ind06], since the Cauchy random variables (SU∗Vj − SAj)i, while independent

across i, are dependent across j. Moreover, our O(log d)-approximation factor is not an

artifact of our analysis - we show in Section 17.6 that there is an n × d input matrix A for

which with probability 1 − 1/ poly(k), there is no k-dimensional space in the span of SA

achieving a
(

log d
t log t

+ k1/2−γ
)
-approximation, for S a Cauchy matrix with t rows, where γ > 0

is an arbitrarily small constant. This shows (k log d)Ω(1)-inapproximability. Thus, the fact

that we achieve O(log d)-approximation instead of O(1) is fundamental for a matrix S of

Cauchy random variables or any scaling of it.

While we cannot show (2), we instead show for all V , ‖SU∗V − SA‖1 ≥ ‖U∗V −

A‖1/2−O(log d)‖U∗V ∗−A‖1 if S has O(k log k) rows. This suffices for regression, since the

only matrices V for which the cost is much smaller in the sketch space are those providing

an O(log d) approximation in the original space. The guarantee follows from the triangle

inequality: ‖SU∗V − SA‖1 ≥ ‖SU∗V − SU∗V ∗‖1 − ‖SU∗V ∗ − SA‖1 and the fact that S is

known to not contract any vector in the column span of U∗ if S has O(k log k) rows [SW11].

Because of this, we have ‖SU∗V − SU∗V ∗‖1 = Ω(1)‖U∗V − U∗V ∗‖1 = Ω(1)(‖U∗V − A‖1 −

‖U∗V ∗−A‖1), where we again use the triangle inequality. We also bound the additive term
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‖SU∗V ∗ − SA‖1 by O(log d)‖U∗V ∗ − A‖1 using (1) above.

Given that SA contains a good rank-k approximation in its row span, our algorithm

with a slightly worse poly(n) time and poly(k log(n))-approximation can be completely de-

scribed here. Let S and T1 be independent O(k log k)× n matrices of i.i.d. Cauchy random

variables, and let R and T2 be independent d×O(k log k) matrices of i.i.d. Cauchy random

variables. Let

X = (T1AR)†((T1AR)(T1AR)†(T1AT2)(SAT2)(SAT2)†)k(SAT2)†,

which is the rank-k matrix minimizing ‖T1ARXSAT2 − T1AT2‖F , where for a matrix C,

Ck is its best rank-k approximation in Frobenius norm. Output Â = ARXSA as the

solution to `1-low rank approximation of A. We show with constant probability that Â is a

poly(k log(n))-approximation.

To improve the approximation factor, after computing SA, we `1-project each of the

rows of A onto SA using linear programming or fast algorithms for `1-regression [CW13,

MM13], obtaining an n × d matrix B of rank O(k log k). We then apply the algorithm in

the previous paragraph with A replaced by B. This ultimately leads to a log d · poly(k)-

approximation.

To improve the running time from poly(n) to nnz(A) + n · poly(k), we show a simi-

lar analysis holds for the sparse Cauchy matrices of [MM13]; see also the matrices in [WZ13].

CUR Decompositions: To obtain a CUR decomposition, we first find a log d · poly(k)-

approximate rank-k approximation Â as above. Let B1 be an n × k matrix whose columns

span those of Â, and consider the regression minV ‖B1V−A‖1. Unlike the problem minV ‖U∗V−
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A‖1 where U∗ was unknown, we know B1 so can compute its Lewis weights efficiently, sample

by them, and obtain a regression problem minV ‖D1(B1V − A)‖1 where D1 is a sampling

and rescaling matrix. Since

‖D1(B1V − A)‖1 ≤ ‖D1(B1V −B1V
∗)‖1 + ‖D1(B1V

∗ − A)‖1,

where V ∗ = argminV ‖B1V − A‖1, we can bound the first term by O(‖B1V − B1V
∗‖1)

using that D1 is a subspace embedding if it has O(k log k) rows, while the second term is

O(1)‖B1V
∗ − A‖1 by a Markov bound. Note that

‖B1V
∗ − A‖1 ≤ (log d) · poly(k) min

rank-k matrices A′
‖A− A′‖1.

By switching to `2 as before, we see that V̂ = (D1B1)†D1A contains a (log d) poly(k)-

approximation in its span. Here D1A is an actual subset of rows of A, as required in a CUR

decomposition. Moreover the subset size is O(k log k). We can sample by the Lewis weights

of V̂ to obtain a subset C of O(k log k) rescaled columns of A, together with a rank-k matrix

U for which

‖CUR− A‖1 ≤ (log d) poly(k) min
rank-k matrices A′

‖A− A′‖1.

Algorithm for Small k: Our CUR decomposition shows how we might obtain an O(1)-

approximation for constant k in poly(n) time. If we knew the Lewis weights of U∗, an α-

approximate solution to the problem minV ‖D1(U∗V −A)‖1 would be an O(α)-approximate

solution to the problem minV ‖U∗V − A‖1, where D1 is a sampling and rescaling matrix of

O(k log k) rows of A. Moreover, an O(
√
k log k)-approximate solution to minV ‖D1(U∗V −
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A)‖1 is given by V = (D1U
∗)†D1A, which implies the O(k log k) rows of D1A contain an

O(
√
k log k)-approximation. For small k, we can guess every subset of O(k log k) rows of A

in nO(k log k) time (if d� n, by taking transposes at the beginning one can replace this with

dO(k log k) time). For each guess, we set up the problem minrank-k U ‖U(D1A)−A‖1. If D2 is a

sampling and rescaling matrix according to the Lewis weights of D1A, then by a similar tri-

angle inequality argument as for our CUR decomposition, minimizing ‖U(D1A)D2−AD2‖1

gives an O(
√
k log k) approximation. By switching to `2, this implies there is an O(k log k)-

approximation of the form AD2WD1A, whereW is an O(k log2 k)×O(k log k) matrix of rank

k. By setting up the problem minrank-k W ‖AD2WD1A − A‖1, one can sample from Lewis

weights on the left and right to reduce this to a problem independent of n and d, after which

one can use polynomial optimization to solve it in exp(poly(k)) time. One of our guesses

D1A will be correct, and for this guess we obtain an Õ(k)-approximation. For each guess

we can compute its cost and take the best one found. This gives an O(1)-approximation

for constant k, removing the O(log d)-factor from the approximation of our earlier algorithm.

Existential Results for Subset Selection: In our algorithm for small k, the first step

was to show there exist O(k log k) rows of A which contain a rank-k space which is an

O(
√
k log k)-approximation.

While for Frobenius norm one can find O(k) rows with an O(1)-approximation in

their span, one of our main negative results for `1-low rank approximation is that this is

impossible, showing that the best approximation one can obtain with poly(k) rows is k1/2−γ

for an arbitrarily small constant γ > 0. Our hard instance is an r × (r + k) matrix A in

which the first k columns are i.i.d. Gaussian, and the remaining r columns are an identity
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matrix. Here, r can be twice the number of rows one is choosing. The optimal `1-low rank

approximation has cost at most r, obtained by choosing the first k columns.

Let R ∈ Rr/2×k denote the first k entries of the r/2 chosen rows, and let y denote

the first k entries of an unchosen row. For r/2 > k, there exist many solutions x ∈ Rr/2 for

which x>R = y. However, we can show the following tradeoff:

whenever ‖x>R− y‖1 <
√
k

poly(log k)
, then ‖x‖1 >

√
k

poly(log k)
.

Then no matter which linear combination x> of the rows of R one chooses to approximate

y by, either one incurs a
√
k

poly(log k)
cost on the first k coordinates, or since A contains an

identity matrix, one incurs cost ‖x‖1 >
√
k

poly(log k)
on the last r coordinates of x>R.

To show the tradeoff, consider an x ∈ Rr/2. We decompose x = x0 +
∑

j≥1 x
j, where

xj agrees with x on coordinates which have absolute value in the range 1√
k logc k

· [2−j, 2−j+1],

and is zero otherwise. Here, c > 0 is a constant, and x0 denotes the restriction of x to all

coordinates of absolute value at least 1√
k logc k

. Then ‖x‖1 <
√
k

logc k
, as otherwise we are done.

Hence, x0 has small support. Thus, one can build a small net for all x0 vectors by choosing

the support, then placing a net on it. For xj for j > 0, the support sizes are increasing so the

net size needed for all xj vectors is larger. However, since xj has all coordinates of roughly the

same magnitude on its support, its `2-norm is decreasing in j. Since (xj)>R ∼ N(0, ‖xj‖2
2Ik),

this makes it much less likely that individual coordinates of (xj)>R can be large. Since this

probability goes down rapidly, we can afford to union bound over the larger net size. What

we show is that for any sum of the form
∑

j≥1 x
j, at most k

10
of its coordinates are at least

1
log k

in magnitude.
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For ‖x>R − y‖1 to be at most
√
k

logc k
, for at least k

2
coordinates i, we must have

|(x>R − y)i| < 2√
k logc k

. With probability 1 − 2−Ω(k), |yi| ≥ 1
100

on at least 2k
3

coordinates.

From the previous paragraph, it follows there are at least k
2
− k

10
− k

3
= Ω(k) coordinates

i of x for which (1) |(x>R − y)i| < 2√
k logc k

, (2) |∑j≥1 x
j
i | < 1

log k
, and (3) |yi| ≥ 1

100
. On

these i, (x0)>Ri must be in an interval of width 1
log k

at distance at least 1
100

from the origin.

Since (x0)>R ∼ N(0, ‖x0‖2
2Ik), for any value of ‖x0‖2

2 the probability this happens on Ω(k)

coordinates is at most 2−Θ(k). Since the net size for x0 is small, we can union bound over

every sequence x0, x1, . . . , coming from our nets.

Some care is needed to union bound over all possible subsets R of rows which can be

chosen. We handle this by conditioning on a few events of A itself, which imply corresponding

events for every subset of rows. These events are such that if R is the chosen set of half the

rows, and S the remaining set of rows of A, then the event that a constant fraction of rows

in S are close to the row span of R is 2−Θ(kr), which is small enough to union bound over all

choices of R.

Curiously, we also show there are some matrices A ∈ Rn×d for which any `1 rank-k

approximation in the entire row span of A cannot achieve better than a (2 − Θ(1/d))-

approximation.

Bicriteria Algorithm: Our algorithm for small k gives an O(1)-approximation in poly(n)

time for constant k, but the approximation factor depends on k. We show how one can

find a rank-2k matrix Â for which ‖A − Â‖1 ≤ C · OPT, where C is an absolute con-

stant, and OPT = minrank-k matrices A′ ‖A− A′‖1. We first find a rank-k matrix B1 for which

‖A−B1‖1 ≤ p ·OPT for a factor 1 ≤ p ≤ poly(n). We can use any of our algorithms above
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for this.

Next consider the problem minV ∈R2k×d ‖U∗V − (A − B1)‖1, and let U∗V ∗ be a best

`1-low rank-2k approximation to A−B1; we later explain why we look at this problem. We

can assume V ∗ is an `1 well-conditioned basis [Cla05, DDH+09], since we can replace U∗

with U∗R−1 and V ∗ with RV ∗ for any invertible linear transformation R. For any vector x

we then have ‖x‖1
f
≤ ‖x>V ∗‖1 ≤ e‖x‖1, where 1 ≤ e, f ≤ poly(k). This implies all entries

of U∗ are at most 2f‖A − B‖1, as otherwise one could replace U∗ with 0n×2k and reduce

the cost. Also, any entry of U∗ smaller than ‖A−B‖1
100enkp

can be replaced with 0 as this incurs

additive error OPT
100

. If we round the entries of U∗ to integer multiples of ‖A−B‖1
100enkp

, then we only

have O(enkpf) possibilities for each entry of U∗, and still obtain an O(1)-approximation.

We refer to the rounded U∗ as U∗, abusing notation.

Let D be a sampling and rescaling matrix with O(k log k) non-zero diagonal entries,

corresponding to sampling by the Lewis weights of U∗. We do not know D, but handle this

below. By the triangle inequality, for any V ,

‖D(U∗V − (A−B1))‖1 = ‖D(U∗V − U∗V ∗)‖1 ± ‖D(U∗V ∗ − (A−B1))‖1

= Θ(1)‖U∗V − U∗V ∗‖1 ±O(1)‖U∗V ∗ − (A−B1)‖1,

where the Lewis weights give ‖D(U∗V −U∗V ∗)‖1 = Θ(1)‖U∗V −U∗V ∗‖1 and a Markov bound

gives ‖D(U∗V ∗ − (A − B1))‖1 = O(1)‖U∗V ∗ − (A − B1)‖1. Thus, minimizing ‖DU∗V −

D(A−B1)‖1 gives a fixed constant factor approximation to the problem minV ∈R2k×d ‖U∗V −

(A − B1)‖1. The non-zero diagonal entries of D can be assumed to be integers between 1

and n2.

We guess the entries of DU∗ and note for each entry there are only O(enkpf log(n2))
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possibilities. One of our guesses corresponds to Lewis weight sampling by U∗. We solve

for V and by the guarantees of Lewis weights, the row span of this V provides an O(1)-

approximation. We can find the corresponding U via linear programming. As mentioned

above, we do not know D, but can enumerate over all D and all possible DU∗. The total

time is npoly(k).

After finding U , which has 2k columns, we output the rank-3k space formed by the

column span of [U,B1]. By including the column span of B1, we ensure our original transfor-

mation of the problem minV ∈Rk×d ‖U∗ ·V −A‖1 to the problem minV ∈R2k×d ‖U∗ ·V −(A−B1)‖1

is valid, since we can first use the column span of B1 to replace A with A− B1. Replacing

A with A − B1 ultimately results in a rank-3k output. Had we used A instead of A − B1

our output would have been rank k but would have additive error ‖A‖1
poly(k/ε)

. If we assume the

entries of A are in {−b,−b+ 1, . . . , b}, then we can lower bound the cost ‖U∗V −A‖1, given

that it is non-zero, by (ndb)−O(k) (if it is zero then we output A) using Lemma 4.1 in [CW09]

and relating entrywise `1-norm to Frobenius norm. We can go through the same arguments

above with A−B replaced by A and our running time will now be (ndb)poly(k).

Hard Instances for Cauchy Matrices and More General Sketches: We consider

a d × d matrix A = Id + (log d)e>1 e, where e1 = (1, 0, . . . , 0) and e = (1, 1, . . . , 1) and Id

is the d × d identity. For an O(k log k) × d matrix S of i.i.d. Cauchy random variables,

SA = S + (log d)S>1 e, where S1 is the first column of S. For a typical column of SA,

all entries are at most poly(k) log d in magnitude. Thus, in order to approximate the first

row of A, which is (log d)e, by x>SA for an x ∈ Rk log k, we need ‖x‖1 ≥ 1
poly(k)

. Also

‖x>S‖1 = Ω(‖x‖1d log d) with 1− exp(−k log k) probability, for d large enough, so by a net
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argument ‖x‖1 ≤ poly(k) for all x.

However, there are entries of SA that are very large, i.e., about one which is r =

Θ(dk log k) in magnitude, and in general about 2i entries about r2−i in magnitude. These

entries typically occur in columns Cj of SA for which all other entries in the column are

bounded by poly(k) in magnitude. Thus, |x>Cj| ≈ r2−i for about 2i columns j. For each

such column, if r2−i � log d, then we incur cost r2−i

poly(k)
in approximating the first row of A.

In total the cost is r log r
poly(k)

= d log d
poly(k)

, but the optimal cost is at most d, giving a log d
poly(k)

lower

bound. We optimize this to a log d
k log2 k

lower bound.

When k is large this bound deteriorates, but we also show a k1/2−γ lower bound for

arbitrarily small constant γ > 0. This bound applies to any oblivious sketching matrix.

The idea is similar to our row subset selection lower bound. Let A be as in our row subset

selection lower bound, consider SA, and write S = UΣV > in its full SVD. Then SA is in the

row span of the top O(k log k) rows of V >A, since Σ only has O(k log k) non-zero singular

values. Since the first k columns of A are rotationally invariant, V >A has first k columns

i.i.d. Gaussian and remaining columns equal to V >. Call the first O(k log k) rows of V >A

the matrix B. We now try to approximate a row of A by a vector in the row span of B.

There are two issues that make this setting different from row subset selection: (1) B no

longer contains an identity submatrix, and (2) the rows of B depend on the rows of A. We

handle the first issue by building nets for subsets of coordinates of x>V > rather than x as

before; since ‖x>V >‖2 = ‖x‖2 similar arguments can be applied. We handle the second issue

by observing that if the number of rows of B is considerably smaller than that of A, then

the distribution of B had we replaced a random row of A with zeros would be statistically

close to i.i.d. Gaussian. Hence, typical rows of A can be regarded as being independent of
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17.1.3 Several Theorem Statements, an Algorithm, and a Roadmap

Algorithm 17.1 Main Meta-Algorithm
1: procedure L1LowRankApprox(A, n, d, k) . Theorem 17.1.1
2: Choose sketching matrix S (a Cauchy matrix or a sparse Cauchy matrix.)
3: Compute SA, form C by Ci ← arg minx ‖xSA− Ai‖1. Form B = C · SA.
4: Choose sketching matrices T1, R,D, T2 (Cauchy matrices or sparse Cauchy matrices.)
5: Solve minX,Y ‖T1BRXYDBT2 − T1BT2‖F .
6: return BRX,Y DB.
7: end procedure

Theorem 17.1.1 (Informal Version of Theorem 17.4.6). Given A ∈ Rn×d, there is an algo-

rithm which in nnz(A) + (n+ d) · poly(k) time, outputs a (factorization of a) rank-k matrix

A′ such that with probability 9/10, ‖A′ − A‖1 ≤ (log d) poly(k) min
U∈Rn×k,V ∈Rk×d

‖UV − A‖1.

Theorem 17.1.2 (Informal Version of Theorem 17.4.7). Given A ∈ Rn×d, there is an al-

gorithm that takes poly(n)dÕ(k)2Õ(k2) time and outputs a rank-k matrix A′ such that, with

probability 9/10, ‖A′ − A‖1 ≤ Õ(k) min
U∈Rn×k,V ∈Rk×d

‖UV − A‖1. In addition, A′ is a CUR de-

composition.

Theorem 17.1.3 (Informal Version of Theorem 17.6.26). For any k ≥ 1, and any constant

c ≥ 1, let n = kc. There exists a matrix A such that for any matrix A′ in the span of n/2

rows of A, ‖A′ − A‖1 = Ω(k0.5−α) min
U∈Rn×k,V ∈Rk×d

‖UV − A‖1, where α > 0 is an arbitrarily

small constant.

Road map Section 17.2 introduces some notation and definitions. Section 17.3 includes

several useful tools. We provide several `1-low rank approximation algorithms in Section 17.4.

Section 17.5 contains the no contraction and no dilation analysis for our main algorithm.
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We provide our existential hardness results for Cauchy matrices, row subset selection and

oblivious subspace embeddings in Section 17.6.
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17.2 Notation

Let N+ denote the set of positive integers. For any n ∈ N+, let [n] denote the set

{1, 2, · · · , n}. For any p ∈ [1, 2], the `p-norm of a vector x ∈ Rd is defined as

‖x‖p =
( d∑

i=1

|xi|p
)1/p

.

For any p ∈ [1, 2), the `p-norm of a matrix A ∈ Rn×d is defined as

‖A‖p =
( n∑

i=1

d∑

j=1

|Aij|p
)1/p

.

Let ‖A‖F denote the Frobenius norm of matrix A. Let nnz(A) denote the number of nonzero

entries of A. Let det(A) denote the determinant of a square matrix A. Let A> denote the

transpose of A. Let A† denote the Moore-Penrose pseudoinverse of A. Let A−1 denote the

inverse of a full rank square matrix. We use Aj to denote the jth column of A, and Ai to

denote the ith row of A. For an n× d matrix A, for S a subset of [n] and T a subset of [d],

we let AS denote the |S| × d submatrix of A with rows indexed by S, while AT denotes the

n× |T | submatrix of A with columns indexed by T , and AST denote the |S| × |T | submatrix

A with rows in S and columns in T .

For any function f , we define Õ(f) to be f · logO(1)(f). In addition to O(·) notation,

for two functions f, g, we use the shorthand f . g (resp. &) to indicate that f ≤ Cg (resp.

≥) for an absolute constant C. We use f h g to mean cf ≤ g ≤ Cf for constants c, C. We

use OPT to denote minrank−k Ak ‖Ak − A‖1, unless otherwise specified.
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17.3 Preliminaries
17.3.1 Polynomial system verifier

Renegar [Ren92a, Ren92b] and Basu et al. [BPR96] independently provided an algo-

rithm for the decision problem for the existential theory of the reals, which is to decide the

truth or falsity of a sentence (x1, · · · , xv)F (f1, · · · , fm) where F is a quantifier-free Boolean

formula with atoms of the form sign(fi) = σ with σ ∈ {0, 1,−1}. Note that this problem is

equivalent to deciding if a given semi-algebraic set is empty or not. Here we formally state

that theorem. For a full discussion of algorithms in real algebraic geometry, we refer the

reader to [BPR05] and [Bas14].

Theorem 17.3.1 (Decision Problem [Ren92a, Ren92b, BPR96]). Given a real polynomial

system P (x1, x2, · · · , xv) having v variables and m polynomial constraints

fi(x1, x2, · · · , xv)∆i0,∀i ∈ [m],

where ∆i is any of the “standard relations”: {>,≥,=, 6=,≤, <}, let d denote the maximum

degree of all the polynomial constraints and let H denote the maximum bitsize of the coeffi-

cients of all the polynomial constraints. Then in

(md)O(v) poly(H),

time one can determine if there exists a solution to the polynomial system P .

Recently, this technique has been used to solve a number of low-rank approximation

and matrix factorization problems [AGKM12, Mad13, CW15a, BDL16, RSW16].
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17.3.2 Cauchy and p-stable transform

Definition 17.3.1 (Dense Cauchy transform). Let S = σ · C ∈ Rm×n where σ is a scalar,

and each entry of C ∈ Rm×n is chosen independently from the standard Cauchy distribution.

For any matrix A ∈ Rn×d, SA can be computed in O(m · nnz(A)) time.

Definition 17.3.2 (Sparse Cauchy transform). Let Π = σ ·SC ∈ Rm×n, where σ is a scalar,

S ∈ Rm×n has each column chosen independently and uniformly from the m standard basis

vectors of Rm, and C ∈ Rn×n is a diagonal matrix with diagonals chosen independently

from the standard Cauchy distribution. For any matrix A ∈ Rn×d, ΠA can be computed in

O(nnz(A)) time.

Definition 17.3.3 (Dense p-stable transform). Let p ∈ (1, 2). Let S = σ ·C ∈ Rm×n where

σ is a scalar, and each entry of C ∈ Rm×n is chosen independently from the standard p-stable

distribution. For any matrix A ∈ Rn×d, SA can be computed in O(m nnz(A)) time.

Definition 17.3.4 (Sparse p-stable transform). Let p ∈ (1, 2). Let Π = σ · SC ∈ Rm×n,

where σ is a scalar, S ∈ Rm×n has each column chosen independently and uniformly from the

m standard basis vectors of Rm, and C ∈ Rn×n is a diagonal matrix with diagonals chosen

independently from the standard p-stable distribution. For any matrix A ∈ Rn×d, ΠA can

be computed in O(nnz(A)) time.
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17.3.3 Lewis weights

We follow the exposition of Lewis weights from [CP15].

Definition 17.3.5. For a matrix A, let ai denote ith row of A, and ai(= (Ai)>) is a column

vector. The statistical leverage score of a row ai is

τi(A)
def
= a>i (A>A)−1ai = ‖(A>A)−1/2ai‖2

2.

For a matrix A and norm p, the `p Lewis weights w are the unique weights such that for

each row i we have

wi = τi(W
1/2−1/pA).

or equivalently

a>i (A>W 1−2/pA)−1ai = w
2/p
i .

Lemma 17.3.2 (Lemma 2.4 of [CP15] and Lemma 7 of [CLM+15]). Given a matrix A ∈

Rn×d, n ≥ d, for any constant C > 0, 4 > p ≥ 1, there is an algorithm which can compute

C-approximate `p Lewis weights for every row i of A in O((nnz(A) + dω log d) log n) time,

where ω < 2.373 is the matrix multiplication exponent[Str69, CW87, Wil12].

Lemma 17.3.3 (Theorem 7.1 of [CP15]). Given matrix A ∈ Rn×d (n ≥ d) with `p (4 > p ≥

1) Lewis weights w, for any set of sampling probabilities pi,
∑

i pi = N ,

pi ≥ f(d, p)wi,

if S ∈ RN×n has each row chosen independently as the ith standard basis vector, times 1/p
1/p
i ,

with probability pi/N , then with probability at least 0.999,

∀x ∈ Rd,
1

2
‖Ax‖pp ≤ ‖SAx‖pp ≤ 2‖Ax‖pp
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Furthermore, if p = 1, N = O(d log d). If 1 < p < 2, N = O(d log d log log d). If 2 ≤ p < 4,

N = O(dp/2 log d).

Given a matrix A ∈ Rn×d (n ≥ d), by Lemma 17.3.3 and Lemma 17.3.2, we are able

to compute a sampling/rescaling matrix S in O((nnz(A)+dω log d) log n) with Õ(d) nonzero

entries such that

∀x ∈ Rd,
1

2
‖Ax‖pp ≤ ‖SAx‖pp ≤ 2‖Ax‖pp.

Sometimes, poly(d) is much smaller than log n. In this case, we are able to compute the

such sampling/rescaling matrix S in n poly(d) time in the following way: basically we can

run one of the input sparsity `p embedding algorithm (see e.g. [MM13]) to compute a well

conditioned basis U of column span of A in n poly(d) time. By sampling according to the well

conditioned basis (see e.g. [Cla05, DDH+09, Woo14b]), we can compute a sampling/rescaling

matrix S1 such that (1− ε)‖Ax‖pp ≤ ‖S1Ax‖pp ≤ (1 + ε)‖Ax‖pp where ε ∈ (0, 1) is an arbitrary

constant. Notice that S1 has poly(d) nonzero entries, thus S1A has size poly(d). Now, we

apply Lewis weights sampling according to S1A, we can get a sampling/rescaling matrix S

such that

∀x ∈ Rd, (1− 1

3
)‖S1Ax‖pp ≤ ‖SS1Ax‖pp ≤ (1 +

1

3
)‖S1Ax‖pp.

It means that

∀x ∈ Rd,
1

2
‖Ax‖pp ≤ ‖SS1Ax‖pp ≤ 2‖Ax‖pp.

Note that SS1 is still a sampling/rescaling matrix according to A, and the number of non-zero

entries is Õ(d). And the total running time is thus n poly(d).

1134



17.3.4 Frobenius norm and `2 relaxation

Theorem 17.3.4 (Generalized rank-constrained matrix approximations, Theorem 2 in [FT07]).

Given matrices A ∈ Rn×d, B ∈ Rn×p, and C ∈ Rq×d, let the SVD of B be B = UBΣBV
>
B

and the SVD of C be C = UCΣCV
>
C . Then,

B†(UBU
>
BAVCC

>
C )kC

† = arg min
rank−k X∈Rp×q

‖A−BXC‖F ,

where (UBU
>
BAVCV

>
C )k ∈ Rp×q is of rank at most k and denotes the best rank-k approxima-

tion to UBU>BAVCV >C ∈ Rp×d in Frobenius norm.

Claim 17.3.5 (`2 relaxation of `p-regression). Let p ∈ [1, 2). For any A ∈ Rn×d and b ∈ Rn,

define x∗ = arg min
x∈Rd

‖Ax− b‖p and x′ = arg min
x∈Rd

‖Ax− b‖2. Then,

‖Ax∗ − b‖p ≤ ‖Ax′ − b‖p ≤ n1/p−1/2 · ‖Ax∗ − b‖p.

Proof. The lower bound trivially holds by definition; we will focus on proving the upper

bound. Because Ax− b is an n-dimensional vector, ∀x,

1

n1/p−1/2
‖Ax− b‖p ≤ ‖Ax− b‖2 ≤ ‖Ax− b‖p. (17.1)

Then,

‖Ax′ − b‖p

≤ √n‖Ax′ − b‖2 by LHS of Equation (17.1)

≤ √n‖Ax∗ − b‖2 by x′ = arg min
x
‖Ax− b‖2

≤ √n‖Ax∗ − b‖p by RHS of Equation (17.1)

This completes the proof.
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Claim 17.3.6 (Frobenius norm relaxation of `p-low rank approximation). Let p ∈ [1, 2) and

for any matrix A ∈ Rn×d, define A∗ = arg min
rank−k B∈Rn×d

‖B − A‖p and A′ = arg min
rank−k B∈Rn×d

‖B −

A‖F . Then

‖A∗ − A‖p ≤ ‖A′ − A‖p ≤ (nd)1/p−1/2‖A∗ − A‖p. (17.2)

Proof. The lower bound of ‖A′−A‖p trivially holds by definition. We show an upper bound

of ‖A′ − A‖p in the rest of the proof. For any A′ − A ∈ Rn×d, we have

1

(nd)1/p−1/2
‖A′ − A‖p ≤ ‖A′ − A‖F ≤ ‖A′ − A‖p. (17.3)

Then,

‖A′ − A‖p

≤ (nd)1/p−1/2‖A′ − A‖F by LHS of Equation (17.3)

≤ (nd)1/p−1/2‖A∗ − A‖F by A′ = arg min
rank−k B

‖B − A‖p

≤ (nd)1/p−1/2‖A∗ − A‖p. by RHS of Equation (17.3)
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17.3.5 Converting entry-wise `1 and `p objective functions into polynomials

Claim 17.3.7 (Converting absolute value constraints into variables). Given m polynomials

f1(x), f2(x), · · · , fm(x) where x ∈ Rv, solving the problem

min
x∈Rv

m∑

i=1

|fi(x)|, (17.4)

is equivalent to solving another minimization problem with O(m) extra constraints and m

extra variables,

min
x∈Rv ,σ∈Rm

m∑

i=1

σifi(x)

s.t. σ2
i = 1,∀i ∈ [m]

fi(x)σi ≥ 0,∀i ∈ [m].

Claim 17.3.8. (Handling `p) Given m polynomials f1(x), f2(x), · · · , fm(x) where x ∈ Rv

and p = a/b for positive integers a and b, solving the problem

min
x∈Rv

m∑

i=1

|fi(x)|p, (17.5)

is equivalent to solving another minimization problem with O(m) extra constraints and O(m)

extra variables,

min
x∈Rv ,σ∈Rm

m∑

i=1

yi

s.t. σ2
i = 1,∀i ∈ [m]

fi(x)σi ≥ 0,∀i ∈ [m]

(σifi(x))a = ybi , ∀i ∈ [m]

yi ≥ 0,∀i ∈ [m].
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17.3.6 Converting entry-wise `1 objective function into a linear program

Claim 17.3.9. Given any matrix A ∈ Rn×d and matrix B ∈ Rk×d, the problem minU∈Rn×k ‖UB−

A‖1 can be solved by solving the following linear program,

min
U∈Rn×k,x∈Rn×d

n∑

i=1

m∑

j=1

xi,j

UiB
j − Ai,j ≤ xi,j,∀i ∈ [n], j ∈ [d]

UiB
j − Ai,j ≥ −xi,j, ∀i ∈ [n], j ∈ [d]

xi,j ≥ 0,∀i ∈ [n], j ∈ [d],

where the number of constraints is O(nd) and the number of variables is O(nd).
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17.4 `1-Low Rank Approximation

This section presents our main `1-low rank approximation algorithms. Section 17.4.1

provides our three existence results. Section 17.4.2 shows an input sparsity algorithm with

poly(k) log2 d log n-approximation ratio. Section 17.4.3 improves the approximation ratio to

poly(k) log d. Section 17.4.4 explains how to obtain Õ(k) approximation ratio. Section 17.4.5

improves the approximation ratio to O(1) by outputting a rank-3k solution. Section 17.4.6

presents our algorithm for CUR decomposition. Section 17.4.7 includes some useful proper-

ties. Our `1-low rank approximation algorithm for a rank-r (where k ≤ r ≤ (n, d) ) matrix

is used as a black box (by setting r = poly(k)) in several other algorithms.
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17.4.1 Existence results via dense Cauchy transforms, sparse Cauchy trans-
forms, Lewis weights

The goal of this section is to present the existence results in Corollary 17.4.2. We first

provide some bicriteria algorithms in Theorem 17.4.1 which can be viewed as a “warmup”.

Then the proof of our bicriteria algorithm actually implies the existence results.

Theorem 17.4.1. Given matrix A ∈ Rn×d, for any k ≥ 1, there exist bicriteria algorithms

with running time T (specified below), which output two matrices U ∈ Rn×m, V ∈ Rm×d such

that, with probability 9/10,

‖UV − A‖1 ≤ α min
rank−k Ak

‖Ak − A‖1.

(I). Using a dense Cauchy transform,

T = poly(n, d, k), m = O(k log k), α = O(
√
k log k log d).

(II). Using a sparse Cauchy transform,

T = poly(n, d, k),m = O(k5 log5 k), α = O(k4.5 log4.5 k log d).

(III). Sampling by Lewis weights,

T = (nd)Õ(k), m = O(k log k), α = O(
√
k log k).

The matrices in (I), (II), (III) here, are the same as those in (I), (II), (III), (IV) of

Lemma 17.5.5. Thus, they have the properties shown in Section 17.5.2.

Proof. We define

OPT := min
rank−k Ak

‖Ak − A‖1.
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We define U∗ ∈ Rn×k, V ∗ ∈ Rk×d to be the optimal solution such that ‖U∗V ∗−A‖1 = OPT .

Part (I). Apply the dense Cauchy transform S ∈ Rm×n with m = O(k log k) rows,

and β = O(log d).

Part (II). Apply the sparse Cauchy transform S(= Π ∈ Rm×n) with m = O(k5 log5 k)

rows, and β = O(σ log d) = O(k2 log2 k log d).

Part (III). Use S (= D ∈ Rn×k) to denote an n× n matrix which is a sampling and

rescaling diagonal matrix according to the Lewis weights of matrix U∗. It hasm = O(k log k)

rows, and β = O(1). Sometimes we abuse notation, and should regard D as a matrix which

has size m× n, where m = O(k log k).

We can just replace M in Lemma 17.5.5 with U∗V ∗ −A, replace U in Lemma 17.5.5

with U∗, and replace c1c2 with O(β). So, we can apply Lemma 17.5.5 for S. Then we can

plug it in Lemma 17.5.2, we have: with constant probability, for any c ≥ 1, for any V ′ ∈ Rk×d

which satisfies

‖SU∗V ′ − SA‖1 ≤ c · min
V ∈Rk×d

‖SU∗V − SA‖1, (17.6)

it has

‖U∗V ′ − A‖1 ≤ c ·O(β)‖U∗V ∗ − A‖1. (17.7)

Define V̂i = arg min
Vi∈Rk

‖SU∗Vi − SAi‖2 for each i ∈ [d]. By using Claim 17.3.5 with
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n = m and d = k, it shows

‖SU∗V̂ − SA‖1 =
d∑

i=1

‖SU∗V̂i − SAi‖1

≤
d∑

i=1

√
m‖SU∗Ṽi − SAi‖1

=
√
m min

V ∈Rk×d
‖SU∗V − SA‖1.

which means V̂ is a
√
m-approximation solution to problem, min

V ∈Rk×d
‖SU∗V − SA‖1.

Now, let us look into Equation (17.6) and Equation (17.7), we can obtain that

‖U∗V̂ − A‖1 ≤
√
mO(β) OPT .

Because V̂i is the optimal solution of the `2 regression problem, we have

V̂i = (SU∗)†SAi ∈ Rk,∀i ∈ [d], which means V̂ = (SU∗)†SA ∈ Rk×d.

Plugging V̂ into original problem, we obtain

‖U∗(SU∗)† · SA− A‖1 ≤
√
mO(β) OPT .

It means

min
rank−k X∈Rn×m

‖XSA− A‖1 ≤
√
mO(β) OPT . (17.8)

If we ignore the constraint on the rank of X, we can get a bicriteria solution:

For part (I), notice that X is an n×m matrix which can be found by using a linear

program, because matrices SA ∈ Rm×d and A ∈ Rn×d are known.

1142



For part (II), notice that X is an n×m matrix which can be found by using a linear

program, because matrices SA ∈ Rm×d and A ∈ Rn×d are known.

For part (III), notice that X is an n×m matrix which can be found by using a linear

program, when the span of rows of DA ∈ Rm×d is known. We assume that D is known in

all the above discussions. But D is actually unknown. So we need to try all the possible

choices of the row span of DA. Since D samples at most m = O(k log k) rows of A, then the

total number of choices of selecting m rows from n rows is
(
n
m

)
= nO(k log k). This completes

the proof.

Equation (17.8) in the proof of our bicriteria solution implies the following result,

Corollary 17.4.2. Given A ∈ Rn×d, there exists a rank-k matrix A′ ∈ Rn×d such that

A′ ∈ rowspan(S ′A) ⊆ rowspan(A) and ‖A′−A‖1 ≤ α · min
rank−k Ak

‖A−Ak‖1, where S ′ ∈ Rm×n

is a sketching matrix. If S ′

(I). indicates the dense Cauchy transform, then α = O(
√
k log k log d).

(II). indicates the sparse Cauchy transform, then α = O(k4.5 log4.5 k log d).

(III). indicates sampling by Lewis weights, then α = O(
√
k log k).

Proof. Define OPT = min
U∈Rn×k,V ∈Rk×d

‖UV − A‖1.

Proof of (I). Choose S to be a dense Cauchy transform matrix with m rows, then

min
U∈Rn×k,Z∈Rk×m

‖UZSA− A‖1 ≤ O(
√
m log d) OPT,

where m = O(k log k). Choosing A′ = UZSA completes the proof.
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Proof of (II). Choose Π = SD ∈ Rm×n where S ∈ Rm×n has each column chosen

independently and uniformly from the m standard basis vectors of Rm, and where D is a

diagonal matrix with diagonals chosen independently from the standard Cauchy distribution,

then

min
U∈Rn×k,Z∈Rk×m

‖UZΠA− A‖1 ≤ O(
√
mσ log d) OPT,

where m = O(k5 log5 k) and σ = O(k2 log2 k). Choosing A′ = UZΠA completes the proof.

Proof of (III).

Choose D to be the sampling and rescaling matrix corresponding to the Lewis weights

of U∗, and let it have m = O(k log k) nonzero entries on the diagonal, then

min
U∈Rn×k,Z∈Rk×m

‖UZDA− A‖1 ≤ O(
√
m) OPT .

Choosing A′ = UZDA completes the proof.
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17.4.2 Input sparsity time, poly(k, log n, log d)-approximation for an arbitrary
matrix A

The algorithm described in this section is actually worse than the algorithm described

in the next section. But this algorithm is easy to extend to the distributed and streaming

settings (See full version of [SWZ17]).

Algorithm 17.2 Input Sparsity Time Algorithm
1: procedure L1LowRankApproxInputSparsity(A, n, d, k) . Theorem 17.4.3
2: Set s← r ← t1 ← Õ(k5), t2 ← Õ(k).
3: Choose sparse Cauchy matrices S ∈ Rs×n, R ∈ Rd×r, T1 ∈ Rt1×n.
4: Choose dense Cauchy matrices T2 ∈ Rd×t2 .
5: Compute S · A, A ·R and T1 · A · T2.
6: Compute XY = arg minX,Y ‖T1ARXY SAT2 − T1AT2‖F .
7: return ARX, Y SA.
8: end procedure

Theorem 17.4.3. Given matrix A ∈ Rn×d, for any k ≥ 1, there exists an algorithm which

takes O(nnz(A)) + (n+d) ·poly(k) time and outputs two matrices U ∈ Rn×k, V ∈ Rk×d such

that

‖UV − A‖1 ≤ O(poly(k) log n log2 d) min
rank−k Ak

‖Ak − A‖1

holds with probability 9/10.

Proof. Choose a Cauchy matrix S ∈ Rs×n (notice that S can be either a dense Cauchy

transform matrix or a sparse Cauchy transform matrix). Using Corollary 17.4.2, we have

min
U∈Rn×k,Z∈Rk×s

‖UZSA− A‖1 ≤ αs OPT,
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where αs is the approximation by using matrix S. If S is a dense Cauchy transform matrix,

then due to Part (I) of Corollary 17.4.2, αs = O(
√
k log k log d), s = O(k log k), and comput-

ing SA takes O(s nnz(A)) time. If S is a sparse Cauchy transform matrix, then due to Part

II of Corollary 17.4.2, αs = Õ(k4.5 log d), s = Õ(k5), and computing SA takes nnz(A) time.

We define U∗, Z∗ = arg minU,Z ‖UZSA − A‖1. For the fixed Z∗ ∈ Rk×s, choose a

Cauchy matrix R ∈ Rd×r (note that R can be either a dense Cauchy transform matrix

or a sparse Cauchy transform matrix) and sketch on the right of (UZSA − A). If R is a

dense Cauchy transform matrix, then αr = O(log n), r = O(k log k), computing AR takes

O(r · nnz(A)) time. If R is a sparse Cauchy transform matrix, then αr = Õ(k2) log n,

r = Õ(k5), computing AR takes O(nnz(A)) time.

Define a row vector Û j = AjR((Z∗SA)R)† ∈ Rk. Then

∀j ∈ [n], ‖Û jZ∗SAR− AjR‖2 = min
x∈Rk
‖x>Z∗SAR− AjR‖2.

Recall that r is the number of columns of R. Due to Claim 17.3.5,

n∑

j=1

‖AjR((Z∗SA)R)†Z∗SAR− AjR‖1 ≤ O(
√
r)

n∑

j=1

min
Uj∈Rk

‖U jZ∗SAR− AjR‖1,

which is equivalent to

‖AR((Z∗SA)R)†Z∗SAR− AR‖1 ≤ O(
√
r) min

U∈Rn×k
‖UZ∗SAR− AR‖1,

where AR is an n× r matrix and SA is an s× d matrix.

Using Lemma 17.5.2, we obtain,

‖AR((Z∗SA)R)†Z∗SA− A‖1 ≤ O(
√
rαr) min

U∈Rn×k
‖UZ∗SA− A‖1.
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We define X∗ ∈ Rr×k, Y ∗ ∈ Rk×s,

X∗, Y ∗ = arg min
X∈Rr×k,Y ∈Rk×s

‖ARXY SA− A‖1.

Then,

‖ARX∗Y ∗SA− A‖1 ≤ ‖AR((Z∗SA)R)†Z∗SA− A‖1

≤ O(
√
rαr) min

U∈Rn×k
‖UZ∗SA− A‖1

= O(
√
rαr) min

U∈Rn×k,Z∈Rk×s
‖UZSA− A‖1

≤ O(
√
rαrαs) OPT .

It means that ARX∗, Y ∗SA gives an O(αrαs
√
r)-approximation to the original problem.

Thus it suffices to use Lemma 17.4.4 to solve

min
X∈Rr×k,Y ∈Rk×s

‖ARXY SA− A‖1,

by losing an extra poly(k) log d factor in the approximation ratio.

By using a sparse Cauchy transform (for the place discussing the two options), com-

bining the approximation ratios and running times all together, we can get poly(k) log(n) log2(d)-

approximation ratio with O(nnz(A)) + (n + d) poly(k) running time. This completes the

proof.

Lemma 17.4.4. Given matrices A ∈ Rn×d, SA ∈ Rs×n,RA ∈ Rr×d where S ∈ Rs×n,

R ∈ Rd×r with min(n, d) ≥ max(r, s). For any 1 ≤ k ≤ min(r, s), there exists an algorithm

that takes O(nnz(A))+(n+d) poly(s, r, k) time to output two matrices X ′ ∈ Rr×k, Y ′ ∈ Rk×s

such that

‖ARX ′ · Y ′SA− A‖1 ≤ poly(r, s) log(d) min
X∈Rr×k,Y ∈Rk×s

‖ARXY SA− A‖1
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holds with probability at least .999.

Proof. Choose sketching matrices T1 ∈ Rt1×n to sketch on the left of (ARXY SA−A) (note

that S can be either a dense Cauchy transform matrix or a sparse Cauchy transform matrix).

If T1 is a dense Cauchy transform matrix, then t1 = O(r log r), αt1 = O(log d), and computing

T1A takes O(t1 · nnz(A)) time. If T1 is a sparse Cauchy transform matrix, then t1 = Õ(r5),

αt1 = Õ(r2) log d, and computing T1A takes nnz(A) time.

Choose dense Cauchy matrices T>2 ∈ Rt2×d to sketch on the right of T1(ARXY SA−A)

with t2 = O((t1 + s) log(t1 + s)). We get the following minimization problem,

min
X∈Rr×k,Y ∈Rk×s

‖T1ARXY SAT2 − T1AT2‖1. (17.9)

Define X ′, Y ′ to be the optimal solution of

min
X∈Rr×k,Y ∈Rk×s

‖T1ARXY SAT2 − T1AT2‖F .

Due to Claim 17.3.6,

‖T1ARX
′Y ′SAT2 − T1AT2‖1 ≤

√
t1t2 min

X∈Rr×k,Y ∈Rk×s
‖T1ARXY SAT2 − T1AT2‖1.

Due to Lemma 17.5.4

‖ARX ′Y ′SA− A‖1 ≤
√
t1t2αt1 log t1 min

X∈Rr×k,Y ∈Rk×s
‖ARXY SA− A‖1.

It remains to solve

min
X∈Rr×k,Y ∈Rk×s

‖T1ARXY SAT2 − T1AT2‖F .
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By using Theorem 17.3.4 and choosing T1 to be a sparse Cauchy transform matrix, we

have that the optimal rank-k solution X ′Y ′ is (T1AR)†(UBU
>
B (T1AT2)VCV

>
C )k(SAT2) which

can be computed in O(nnz(A)) + (n + d) poly(s, r, k) time. Here, UB are the left singular

vectors of T1AR. VC are the right singular vectors of SAT2.

An alternative way of solving Equation (17.9) is using a polynomial system verifier.

Note that a polynomial system verifier does not allow absolute value constraints. Using

Claim 17.3.7, we are able to remove these absolute value constraints by introducing new

constraints and variables. Thus, we can get a better approximation ratio but by spending

exponential running time in k. In the previous step, we should always use a dense Cauchy

transform to optimize the approximation ratio.

Corollary 17.4.5. Given A ∈ Rn×d, there exists an algorithm which takes nd · poly(k) +

(n+ d) · 2Õ(k2) time and outputs two matrices U ∈ Rn×k, V ∈ Rk×d such that

‖UV − A‖1 ≤ O(poly(k) log n log2 d) min
rank−k Ak

‖Ak − A‖1

holds with probability 9/10.

The poly(k) factor in the above corollary is much smaller than that in Theorem 17.4.3.
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17.4.3 poly(k, log d)-approximation for an arbitrary matrix A

In this section, we explain how to get an O(log d) · poly(k) approximation.

Algorithm 17.3 poly(k) log d-approximation Algorithm
1: procedure L1LowRankApproxPolykLogd(A, n, d, k) . Theorem 17.4.6
2: Set s← Õ(k5).
3: Choose sparse Cauchy matrices S ∈ Rs×n and compute S · A.
4: Implicitly obtain B = UBVB by finding VB = SA ∈ Rs×d and UB ∈ Rn×s where
∀i ∈ [n], row vector (UB)i gives an O(1) approximation to minx∈R1×s ‖xSA− Ai‖1.

5: U, V ←L1LowRankApproxB(UB, VB, n, d, k, s). . Theorem 17.4.19
6: return U, V .
7: end procedure

Intuitively, our algorithm has two stages. In the first stage, we just want to find a

low rank matrix B which is a good approximation to A. Then, we can try to find a rank-k

approximation to B. Since now B is a low rank matrix, it is much easier to find a rank-k

approximation to B. The procedure L1LowRankApproxB(UB, VB, n, d, k, s) corresponds

to Theorem 17.4.19.

Theorem 17.4.6. Given matrix A ∈ Rn×d, for any k ≥ 1, there exists an algorithm which

takes nnz(A) + (n+ d) · poly(k) time to output two matrices U ∈ Rn×k, V ∈ Rk×d such that

‖UV − A‖1 ≤ poly(k) log d min
rank−k Ak

‖Ak − A‖1

holds with probability 9/10.

Proof. We define

OPT := min
rank−k Ak

‖Ak − A‖1.
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The main idea is to replace the given n×d matrix A with another low rank matrix B

which also has size n× d. Choose S ∈ Rs×n to be a Cauchy matrix, where s ≤ poly(k) (note

that, if S is a dense Cauchy transform matrix, computing SA takes O(s nnz(A)) time, while

if S is a sparse Cauchy transform matrix, computing SA takes O(nnz(A)) time). Then B is

obtained by taking each row of A and replacing it with its closest point (in `1-distance) in

the row span of SA. By using Part II of Corollary 17.4.2, we have,

min
U∈Rn×k,Z∈Rk×s

‖UZSA− A‖1 ≤ O(
√
s poly(k) log d) OPT .

We define B to be the product of two matrices UB ∈ Rn×s and VB ∈ Rs×d. We define VB to

be SA and UB to be such that for any i ∈ [n], (UB)i gives an O(1)-approximation to problem

min
x∈R1×s

‖xSA− Ai‖1, i.e.,

‖(UB)iSA− Ai‖1 ≤ O(1) min
x∈R1×s

‖xSA− Ai‖1,∀i ∈ [n],

which means

‖UBSA− A‖1 ≤ O(1) min
X∈Rn×s

‖XSA− A‖1.

For a fixed SA ∈ Rs×d, we can compute D ∈ Rd×d, which is a sampling and rescaling

matrix corresponding to Lewis weights of (SA)>, and let m = O(s log s) be the number of

nonzero entries on the diagonal of D.

Define X̂ = arg min
X∈Rn×s

‖XSAD − AD‖1, thus by Lemma 17.5.5 and Lemma 17.5.2, we

have

‖X̂SA− A‖1 ≤ O(1) min
X∈Rn×s

‖XSA− A‖1.
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Notice that computing Lewis weights takes d poly(s) time. We can use `1-regression solver

and linear programming to find X̂ ∈ Rn×s in (n+ d) poly(s) time. Thus UB can be found in

O(nnz(A)) + (n+ d) poly(s) time.

By the definition of B, it is an n × d matrix. Naïvely we can write down B after

finding UB and VB. The time for writing down B is O(nd). To avoid this, we can just keep a

factorization UB and VB. We are still able to run algorithm L1LowRankApproxB. Because

s = poly(k), the running time of algorithm L1LowRankApproxB is still O(nnz(A))+(n+

d) poly(k).

By the definition of B, we have that B has rank at most s. Suppose we then solve

`1-low rank approximation problem for rank-s matrix B, finding a rank-k g-approximation

matrix UV . Due to Lemma 17.4.15, we have that if B is an f -approximation solution to A,

then UV is also an O(fg)-approximation solution to A,

‖UV − A‖1 ≤ O(log d) · poly(k) · gOPT .

Using Theorem 17.4.19 we have that g = poly(s), which completes the proof.
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17.4.4 Õ(k)-approximation for an arbitrary matrix A

Algorithm 17.4 Õ(k)-approximation Algorithm
1: procedure L1LowRankApproxK(A, n, d, k) . Theorem 17.4.7
2: r ← O(k log k),m← t1 ← O(r log r), t2 ← O(m logm).
3: Guess a diagonal matrix R ∈ Rd×d with only r 1s. . R selects r columns of
A ∈ Rn×d.

4: Compute a sampling and rescaling matrix D ∈ Rn×n, T1 ∈ Rn×n corresponding to
the Lewis weights of AR, and let them have m, t1 nonzero entries on the diagonals,
respectively.

5: Compute a sampling and rescaling matrix T>2 ∈ Rd×d according to the Lewis weights
of (DA)>, and let it have t2 nonzero entries on the diagonal.

6: Solve minX,Y ‖T1ARXYDAT2 − T1AT2‖1.
7: Take the best solution X, Y over all guesses of R.
8: return ARX, Y DA.
9: end procedure

Theorem 17.4.7. Given matrix A ∈ Rn×d, there exists an algorithm that takes poly(n) ·

dÕ(k) · 2Õ(k2) time and outputs two matrices U ∈ Rn×k, V ∈ Rk×d such that

‖UV − A‖1 ≤ Õ(k) min
rank−k Ak

‖Ak − A‖1

holds with probability 9/10.

Proof. We define

OPT := min
rank−k Ak

‖Ak − A‖1.

Let U∗ ∈ Rn×k, V ∗ ∈ Rk×d satisfy

‖U∗V ∗ − A‖1 = OPT .
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Let S> ∈ Rd×d denote the sampling and rescaling matrix corresponding to the Lewis

weights of (V ∗)>, where the number of nonzero entries on the diagonal of S is s = r =

O(k log k). Let R> ∈ Rd×d denote a diagonal matrix such that ∀i ∈ [d], if Si,i 6= 0, then

Ri,i = 1, and if Si,i = 0, then Ri,i = 0. Since rowspan(R>A>) = rowspan(S>A>),

min
Z∈Rm×k,V ∈Rk×d

‖ASZV − A‖1 = min
Z∈Rm×k,V ∈Rk×d

‖ARZV − A‖1.

Combining with Part III of Corollary 17.4.2, there exists a rank-k solution in the column

span of AR, which means,

min
Z∈Rm×k,V ∈Rk×d

‖ARZV − A‖1 ≤ O(
√
r) OPT . (17.10)

Because the number of 1s of R is r, and the size of the matrix is d× d, there are
(
d
r

)
= dÕ(k)

different choices for locations of 1s on the diagonal of R. We cannot compute R directly,

but we can guess all the choices of locations of 1s. Regarding R as selecting r columns of

A, then there are dÕ(k) choices. There must exist a “correct” way of selecting a subset of

columns over all all choices. After trying all of them, we will have chosen the right one.

For a fixed guess R, we can compute D ∈ Rn×n, which is a sampling and rescaling

matrix corresponding to the Lewis weights of AR, and let m = O(k log2 k) be the number of

nonzero entries on the diagonal of D.

By Equation (17.10), there exists a W ∈ Rr×k such that,

min
V ∈Rk×d

‖ARWV − A‖1 ≤ O(
√
r) OPT . (17.11)

We define V̂i = arg min
Vi∈Rk×d

‖DARWVi−DAi‖2, ∀i ∈ [d], which means V̂i = (DARW )†DAi ∈ Rk.

Then V̂ = (DARW )†DA ∈ Rk×d. We define V ∗ = arg min
V ∈Rk×d

‖ARWV − A‖1. Then, by
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Claim 17.3.5, it has

‖DARWV̂ −DA‖1 ≤ O(
√
m) min

V ∈Rk×d
‖DARWV −DA‖1.

By applying Lemma 17.5.5, Lemma 17.5.2 and Equation (17.11), we can show

‖ARWV̂ − A‖1 ≤ O(
√
m)‖ARWV ∗ − A‖1 ≤ O(

√
mr) OPT ≤ Õ(k) OPT .

Plugging V̂ = (DARW )†DA into ‖ARWV̂ − A‖1, we obtain that

‖ARW (DARW )†DA− A‖1 ≤ Õ(k) OPT .

and it is clear that,

min
X∈Rr×k,Y ∈Rk×m

‖ARXYDA− A‖1 ≤ ‖ARW (DARW )†DA− A‖1 ≤ Õ(k) OPT .

Recall that we guessed R, so it is known. We can compute T1 ∈ Rn×n, which is

a sampling and rescaling diagonal matrix corresponding to the Lewis weights of AR, and

t1 = O(r log r) is the number of nonzero entries on the diagonal of T1.

Also, DA is known, and the number of nonzero entries in D is m = O(k log2 k).

We can compute T>2 ∈ Rd×d, which is a sampling and rescaling matrix corresponding to

the Lewis weights of (DA)>, and t2 = O(m logm) is the number of nonzero entries on the

diagonal of T2.

DefineX∗, Y ∗ = arg min
X∈Rr×k,Y ∈Rk×m

‖T1(AR)XY (DA)T2−T1AT2‖1. Thus, using Lemma 17.5.4,

we have

‖(AR)X∗Y ∗(DA)− A‖1 ≤ Õ(k) OPT .
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To find X∗, Y ∗, we need to solve this minimization problem

min
X∈Rr×k,Y ∈Rk×m

‖T1(AR)XY (DA)T2 − T1AT2‖1,

which can be solved by a polynomial system verifier (see more discussion in Section 17.3.1

and 17.3.5).

In the next paragraphs, we explain how to solve the above problem by using a poly-

nomial system verifier. Notice that T1(AR) is known and (DA)T2 is also known. First, we

create r × k variables for the matrix X, i.e., one variable for each entry of X. Second, we

create k × m variables for matrix Y , i.e., one variable for each entry of Y . Putting it all

together and creating t1 × t2 variables σi,j,∀i ∈ [t1], j ∈ [t2] for handling the unknown signs,

we write down the following optimization problem

min
X,Y

t1∑

i=1

t2∑

j=1

σi,j(T1(AR)XY (DA)T2)i,j

s.t σ2
i,j = 1,∀i ∈ [t1], j ∈ [t2]

σi,j · (T1(AR)XY (DA)T2)i,j ≥ 0,∀i ∈ [t1], j ∈ [t2].

Notice that the number of constraints is O(t1t2) = Õ(k2), the maximum degree is O(1), and

the number of variables O(t1t2 + km+ rk) = Õ(k2). Thus the running time is,

(# constraints ·#degree)O(# variables) = 2Õ(k2).

To use a polynomial system verifier, we need to discuss the bit complexity. Suppose that all

entries are multiples of δ, and the maximum is ∆, i.e., each entry

∈ {−∆, · · · ,−2δ,−δ, 0, δ, 2δ, · · · ,∆},
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and ∆/δ = 2poly(nd). Then the running time is O(poly(∆/δ)) · 2Õ(k2) = poly(nd)2Õ(k2).

Also, a polynomial system verifier is able to tell us whether there exists a solution in

a semi-algebraic set. In order to find the solution, we need to do a binary search over the

cost C. In each step of the binary search we use a polynomial system verifier to determine

if there exists a solution in,

t1∑

i=1

t2∑

j=1

σi,j(T1(AR)XY (DA)T2)i,j ≤ C

σ2
i,j = 1,∀i ∈ [t1], j ∈ [t2]

σi,j · (T1(AR)XY (DA)T2)i,j ≥ 0,∀i ∈ [t1], j ∈ [t2].

In order to do binary search over the cost, we need to know an upper bound on the

cost and also a lower bound on the minimum nonzero cost. The upper bound on the cost

is Cmax = O(nd∆), and the minimum nonzero cost is Cmin = 2−Ω(poly(nd)). Thus, the total

number of steps for binary search is O(log(Cmax/Cmin)). Overall, the running time is

ndÕ(k) · 2Õ(k2) · log(∆/δ) · log(Cmax/Cmin) = poly(n)dÕ(k)2Õ(k2).

This completes the proof.

Instead of solving an `1 problem at the last step of L1LowRankApproxK by using

a polynomial system verifier, we can just solve a Frobenius norm minimization problem. This

slightly improves the running time and pays an extra poly(k) factor in the approximation

ratio. Thus, we obtain the following corollary,
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Corollary 17.4.8. Given matrix A ∈ Rn×d, there exists an algorithm that takes poly(n)·dÕ(k)

time which outputs two matrices U ∈ Rn×k, V ∈ Rk×d such that

|UV − A‖1 ≤ poly(k) min
rank−k Ak

‖Ak − A‖1

holds with probability 9/10.
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17.4.5 Rank-3k and O(1)-approximation algorithm for an arbitrary matrix A

In this section, we show how to output a rank-3k solution that is able to achieve an

O(1)-approximation.

Algorithm 17.5 Bicriteria O(1)-approximation Algorithm
1: procedure L1LowRankApproxBicriteria(A, n, d, k) . Theorem 17.4.9
2: UB, VB ← min

U∈Rn×k,V ∈Rk×d
‖UV − A‖F .

3: r ← O(k log k).
4: Guess a diagonal matrix D ∈ Rn×n with r nonzero entries.
5: Guess matrix DU ∈ Rr×2k.
6: Find VA by solving minV ‖DUV −D(A−B)‖1.
7: Find UA by solving minU ‖UVA − (A−B)‖1.

8: Take the best solution
[
UA UB

]
,
[
VA
VB

]
over all guesses.

9: return
[
UA UB

]
,
[
VA
VB

]
.

10: end procedure

Theorem 17.4.9. Given matrix A ∈ Rn×d, for any k ≥ 1, there exists an algorithm which

takes (nd)Õ(k2) time to output two matrices U ∈ Rn×3k, V ∈ R3k×d,

‖UV − A‖1 . min
rank−k Ak

‖Ak − A‖1,

holds with probability 9/10.

Proof. We define OPT to be

arg min
U∈Rn×k,V ∈Rk×d

‖UV − A‖1

Solving the Frobenius norm problem, we can find a factorization of a rank-k matrix

B = UBVB where UB ∈ Rn×k, VB ∈ Rk×d, and B satisfies ‖A − B‖1 ≤ αB OPT for an

αB =
√
nd.
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We define U∗ ∈ Rn×2k, V ∗ ∈ R2k×d to be the optimal solution, i.e.,

U∗V ∗ = arg min
U∈Rn×2k,V ∈R2k×d

‖UV − (A−B)‖1.

LetD be a sampling and rescaling diagonal matrix corresponding to the Lewis weights

of U∗, and let the number of nonzero entries on the diagonal be t = O(k log k).

By Lemma 17.5.5 and Lemma 17.5.2, the solution of min
V ∈Rk×d

‖DU∗V − D(A − B)‖1

together with U∗ gives an O(1)-approximation to A − B. In order to compute D we need

to know U∗. Although we do not know U∗, there still exists a way to figure out the Lewis

weights. The idea is the same as in the previous discussion Lemma 17.4.10 “Guessing Lewis

weights”. By Claim 17.4.11 and Claim 17.4.12, the total number of possible D is nO(t).

Lemma 17.4.10 tries to find a rank-k solution when all the entries in A are integers

at most poly(nd). Here we focus on a bicriteria algorithm that outputs a rank-3k matrix

without such a strong bit complexity assumption. We can show a better claim 17.4.13,

which is that the total number of possible DU∗ is N Õ(k2) where N = poly(n) is the number

of choices for a single entry in U∗.

We explain how to obtain an upper bound on N . Consider the optimum ‖U∗V ∗ −

(A − B)‖1. We can always change the basis so assume V ∗ is an Auerbach basis (i.e., an

`1-well-conditioned basis discussed in Section 17.1), so e‖x‖1 ≥ ‖xV ∗‖1 ≥ ‖x‖1/f , where

e, f = poly(k). Then no entry of U∗ is larger than 2f‖A− B‖1, otherwise we could replace

U∗ with 0 and get a better solution. Also any entry smaller than ‖A − B‖1/(enkαB100)

can be replaced with 0 as this will incur additive error at most OPT /100. So if we round

to integer multiples of ‖A−B‖1/(enkαB100) we only have O(enkαBf) possibilities for each
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entry of U∗ and still have an O(1)-approximation. We will just refer to this rounded U∗ as

U∗, abusing notation.

Let U denote the set of all the matrices U that we guess. From the above discussion,

we conclude that, there exists a U ∈ U such that ‖UV ∗ − (A−B)‖1 ≤ O(OPT).

For each guess of DU∗ and D, we find VA, UA in the following way. We find VA by

using a linear program to solve,

min
V ∈Rk×d

‖DU∗V −D(A−B)‖1.

Given VA and A, we write down a linear program to solve this problem,

min
U∈Rn×k

‖UVA − (A−B)‖1,

which takes poly(ndk) time. Then we obtain UA.

Recall that VB, UB are the two factors of B and it is a rank-k, αB-approximation

solution to min
U,V
‖UV − A‖1. Then we have

∥∥∥∥
[
UA UB

] [VA
VB

]
− A

∥∥∥∥
1

=

∥∥∥∥UAVA − (A− UBVB)

∥∥∥∥
1

=

∥∥∥∥UAVA − (A−B)

∥∥∥∥
1

.

Because there must exist a pair UA, VA satisfying ‖UAVA − (A − B)‖1 ≤ O(OPT), it fol-

lows that by taking the best solution
[
UA UB

] [VA
VB

]
over all guesses, we obtain an O(1)-

approximation solution.

Overall, the running time is (nd)Õ(k2).

Lemma 17.4.10. Given an n×d matrix A with integers bounded by poly(n), for any k ≥ 1,

there exists an algorithm which takes (nd)Õ(k3) time to output two matrices U ∈ Rn×k,
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V ∈ Rk×d, such that

‖UV − A‖1 . min
rank−k Ak

‖Ak − A‖1,

Proof. We define U∗ ∈ Rn×k, V ∗ ∈ Rk×d to be the optimal solution, i.e.,

U∗, V ∗ = arg min
U∈Rn×k,V ∈Rk×d

‖UV − A‖1,

and define OPT = ‖U∗V ∗ − A‖1.

Let D denote a sampling and rescaling diagonal matrix corresponding to the Lewis

weights of U∗, and let the number of nonzero entries on the diagonal be t = O(k log k).

By Lemma 17.5.5 and Lemma 17.5.2, the solution to min
V ∈R2k×d

‖DU∗V −DA‖1 together

with U∗ gives an O(1)-approximation to A. In order to compute D, we need to know U∗.

Although we do not know U∗, there still exists a way to figure out the Lewis weights. We

call the idea “Guessing Lewis weights”. We will explain this idea in the next few paragraphs.

First, we can guess the nonzero entries on the diagonal, because the number of choices

is small.

Claim 17.4.11. The number of possible choice of supp(D) is at most nO(t).

Proof. The matrix has dimension n × n and the number of nonzero entries is t. Thus the

number of possible choices is at most
∑t

i=1

(
n
t

)
= nO(t).

Second, we can guess the value of each probability. For each probability, it is trivially

at most 1. If the probability is less than 1/(poly(n)k log k), then we will never sample that

row with high probability. It means that we can truncate the probability if it is below that
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threshold. We can also round each probability to 2−i which only loses another constant

factor in the approximation ratio. Thus, we have:

Claim 17.4.12. The total number of possible D is nO(t) = nÕ(k).

Since ∆/δ ≤ poly(n) and the entries of A are in

{−∆,−∆ + δ, . . . ,−2δ,−δ, 0, δ, 2δ, · · · ,∆− δ,∆},

we can lower bound the cost of ‖U∗V −A‖1 given that it is non-zero by (nd∆/δ)−O(k) (if it is

zero then A has rank at most k and we output A) using Lemma 4.1 in [CW09] and relating

entrywise `1-norm to Frobenius norm. We can assume V is an `1 well-conditioned basis,

since we can replace U∗ with U∗R−1 and V with RV for any invertible linear transformation

R. By properties of such basis, we can discretize the entries of U∗ to integer multiples of

(nd∆/δ)−O(k) while preserving relative error. Hence we can correctly guess each entry of

DU∗ in
(
nO(k)

)
time.

Claim 17.4.13. The total number of possible DU∗ is nÕ(k3).

In the following, let DU denote a guess of DU∗. Now the problem remaining is to

solve min
V ∈Rk×d

‖DUV − DA‖1. Since we already know DA can be computed, and we know

DU , we can solve this multiple regression problem by running linear programming. Thus

the running time of this step is in poly(nd). After we get such a solution V , we use a linear

program to solve min
U∈Rn×k

‖DUV −DA‖1. Then we can get U .

After we guess all the choices of D and DU∗, we must find a solution U, V which gives

an O(1) approximation. The total running time is nÕ(k) · nÕ(k3) · poly(nd) = (nd)Õ(k3).
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17.4.6 CUR decomposition for an arbitrary matrix A

Algorithm 17.6 CUR Decomposition Algorithm
1: procedure L1LowRankApproxCUR(A, n, d, k) . Theorem 17.4.14
2: UB, VB ←L1LowRankApproxPolykLogd(A, n, d, k).
3: Let D1 ∈ Rn×n be the sampling and rescaling diagonal matrix corresponding to the

Lewis weights of B1 = UB ∈ Rn×k, and let D1 have d1 = O(k log k) nonzero entries.
4: Let D>2 ∈ Rd×d be the sampling and rescaling diagonal matrix corresponding to the

Lewis weights of B>2 =
(
(D1B1)†D1A

)> ∈ Rd×k, and let D2 have d2 = O(k log k) nonzero
entries.

5: C ← AD2, U ← (B2D2)†(D1B1)†, and R← D1A.
6: return C,U,R.
7: end procedure

Theorem 17.4.14. Given matrix A ∈ Rn×d, for any k ≥ 1, there exists an algorithm which

takes O(nnz(A))+(n+d) poly(k) time to output three matrices C ∈ Rn×c with columns from

A, U ∈ Rc×r, and R ∈ Rr×d with rows from A, such that rank(CUR) = k, c = O(k log k),

r = O(k log k), and

‖CUR− A‖1 ≤ poly(k) log d min
rank−k Ak

‖Ak − A‖1,

holds with probability 9/10.

Proof. We define

OPT := min
rank−k Ak

‖Ak − A‖1.

Due to Theorem 17.4.6, we can output two matrices UB ∈ Rn×k, VB ∈ Rk×d such that UBVB

gives a rank-k, and poly(k) log d-approximation solution to A, i.e.,

‖UBVB − A‖1 ≤ poly(k) log dOPT . (17.12)
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By Section 17.3.3, we can compute D1 ∈ Rn×n which is a sampling and rescaling matrix

corresponding to the Lewis weights of B1 = UB in O(n poly(k)) time, and there are d1 =

O(k log k) nonzero entries on the diagonal of D1.

Define V ∗ ∈ Rk×d to be the optimal solution of min
V ∈Rk×d

‖B1V−A‖1, V̂ = (D1B1)†D1A ∈

Rk×d, U1 ∈ Rn×k to be the optimal solution of min
U∈Rn×k

‖UV̂ − A‖1, and V ′ to be the optimal

solution of min
V ∈Rk×d

‖D1A−D1B1V ‖1.

By Claim 17.3.5, we have

‖D1B1V̂ −D1A‖1 ≤
√
d1‖D1B1V

′ −D1A‖1.

Due to Lemma 17.5.5 and Lemma 17.5.2, with constant probability, we have

‖B1V̂ − A‖1 ≤
√
d1αD1‖B1V

∗ − A‖1,

where αD1 = O(1).

Now, we can show,

‖U1V̂ − A‖1 ≤ ‖B1V̂ − A‖1 by U1 = arg min
U∈Rn×k

‖UV̂ − A‖1

.
√
d1‖B1V

∗ − A‖1

≤
√
d1‖UBVB − A‖1

≤ poly(k) log dOPT . by Equation (17.12) (17.13)

We define B2 = V̂ , then we replace V̂ by B2 ∈ Rk×d and look at this objective

function,

min
U∈Rn×k

‖UB2 − A‖1,
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where U∗ denotes the optimal solution. We use a sketching matrix to sketch the RHS of

matrix UB2 − A ∈ Rn×d. Let D>2 ∈ Rd×d denote a sampling and rescaling diagonal matrix

corresponding to the Lewis weights of B>2 ∈ Rd×k, and let the number of nonzero entries on

the diagonal of D2 be d2 = O(k log k). We define Û = AD2(B2D2)† ∈ Rn×k, U ′ ∈ Rn×k to

be the optimal solution of min
U∈Rn×k

‖(UB2 − A)D2‖1. Recall that U1 ∈ Rn×k is the optimal of

min
U∈Rn×k

‖UB2 − A‖1.

By Claim 17.3.5, we have

‖ÛB2D2 − AD2‖1 ≤
√
d2‖U ′B2D2 − AD2‖1.

According to Lemma 17.5.2 and Lemma 17.5.5, with constant probability,

‖ÛB2 − A‖1 ≤ αD2

√
d2‖U1B2 − A‖1,

where αB2 = O(1).

We have

‖ÛB2 − A‖1

≤
√
d2αD2‖U1B2 − A‖1

=
√
d2αD2‖U1V̂ − A‖1 by B2 = V̂

≤ poly(k) log(d) OPT . by Equation (17.13)

Notice that ÛB2 = AD2(B2D2)†(D1B1)†D1A. Setting

C = AD2 ∈ Rn×d2 , U = (B2D2)†(D1B1)† ∈ Rd2×d1 , and R = D1A ∈ Rd1×d,
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we get the desired CUR decomposition,

‖AD2︸︷︷︸
C

· (B2D2)†(D1B1)†︸ ︷︷ ︸
U

·D1A︸︷︷︸
R

−A‖1 ≤ poly(k) log(d) OPT .

with rank(CUR) = k. Overall, the running time is O(nnz(A)) + (n+ d) poly(k).
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17.4.7 Rank-r matrix B

17.4.7.1 Properties

Lemma 17.4.15. Given matrix A ∈ Rn×d, let OPT = min
rank−k Ak

‖A− Ak‖1. For any r ≥ k,

if rank-r matrix B ∈ Rn×d is an f -approximation to A, i.e.,

‖B − A‖1 ≤ f ·OPT,

and U ∈ Rn×k, V ∈ Rk×d is a g-approximation to B, i.e.,

‖UV −B‖1 ≤ g · min
rank−k Bk

‖Bk −B‖1,

then,

‖UV − A‖1 . gf ·OPT .

Proof. We define Ũ ∈ Rn×k, Ṽ ∈ Rk×d to be two matrices, such that

‖Ũ Ṽ −B‖1 ≤ g min
rank−k Bk

‖Bk −B‖1,

and also define,

Û , V̂ = arg min
U∈Rn×k,V ∈Rk×d

‖UV −B‖1 and U∗, V ∗ = arg min
U∈Rn×k,V ∈Rk×d

‖UV − A‖1,
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Then,

‖Ũ Ṽ − A‖1 ≤ ‖Ũ Ṽ −B‖1 + ‖B − A‖1 by triangle inequality

≤ g‖Û V̂ −B‖1 + ‖B − A‖1 by definition

≤ g‖U∗V ∗ −B‖1 + ‖B − A‖1 by ‖Û V̂ −B‖1 ≤ ‖U∗V ∗ −B‖1

≤ g‖U∗V ∗ − A‖1 + g‖B − A‖1 + ‖B − A‖1 by triangle inequality

= gOPT +(g + 1)‖B − A‖1 by definition of OPT

≤ gOPT +(g + 1)f ·OPT by B is f -approximation to A

. gf OPT .

This completes the proof.

Lemma 17.4.16. Given a matrix B ∈ Rn×d with rank r, for any 1 ≤ k < r, for any fixed

U∗ ∈ Rn×k, choose a Cauchy matrix S with m = O(r log r) rows and rescaled by Θ(1/m).

With probability .999 for all V ∈ Rk×d, we have

‖SU∗V − SB‖1 ≥ ‖U∗V −B‖1.

Proof. This follows by definitions in Section 17.5 and Lemma 17.5.15.

Lemma 17.4.17. Given a matrix B ∈ Rn×d with rank r, for any 1 ≤ k < r, for any fixed

U∗ ∈ Rn×k, V ∗ ∈ Rk×d, choose a Cauchy matrix S with m rows and rescaled by Θ(1/m). We

have

‖SU∗V ∗ − SB‖1 ≤ O(r log r)‖U∗V ∗ −B‖1,

with probability .999.
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Proof. Let U denote a well-conditioned basis of [U∗V ∗, B], then U has d̃ = O(r) columns.

We have

‖SU‖1 =
d̃∑

i=1

m∑

j=1

|(SUi)j|

=
d̃∑

i=1

m∑

j=1

| 1
m

n∑

l=1

Sj,lUl,i| by Sj,l ∼ C(0, 1)

=
1

m

d̃∑

i=1

m∑

j=1

|ci,j| by ci,j ∼ C(0, ‖Ui‖1)

=
1

m

d̃∑

i=1

m∑

j=1

‖Ui‖1 · wi+(j−1)d, by wi,j ∼ |C(0, 1)|

where the last step follows since each wi can be thought of as a clipped half-Cauchy random

variable. Define d′ = md̃. Define event ξi to be the situation when wi < D (we will choose

D later), and define event ξ = ξ1 ∩ ξ2 ∩ · · · ∩ ξd′ . Using a similar proof as Lemma 17.5.6,

which is also similar to previous work [Ind06, SW11, CDMI+13], we obtain that

Pr

[ m∑

i=1

‖SUi‖1 ≥
m∑

i=1

‖Ui‖1t

]
. log d′

t
+
d′

D
.

Choosing t = Θ(log d′) and D = Θ(d′), we have

Pr

[ m∑

i=1

‖SUi‖1 ≥
m∑

i=1

‖Ui‖1O(log d′)

]
≤ 1

C
,

for a constant C. Condition on the above event. Let y = Ux, for some x ∈ Rd. Then for
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any y,

‖Sy‖1 = ‖SUx‖1

≤
d′∑

j=1

‖SUjxj‖1 by triangle inequality

=
d′∑

j=1

|xj| · ‖SUj‖1

. ‖x‖∞ log(d′)
d′∑

j=1

‖Uj‖1

. r log r‖y‖1,

where the last step follows by
∑d′

j=1 ‖Uj‖1 ≤ d′ and ‖x‖∞ ≤ ‖Ux‖1 = ‖y‖1. Choosing

C = 1000 completes the proof.

Lemma 17.4.18. Given a matrix M ∈ Rn×d with rank O(r), choose a random matrix

S ∈ Rm×n with each entry drawn from a standard Cauchy distribution and scaled by Θ(1/m).

We have that

‖SM‖1 ≤ O(r log r)‖M‖1,

holds with probability .999.

Proof. Let U ∈ RO(r) be the well-conditioned basis of M . Then each column of M can be

expressed by Ux for some x. We then follow the same proof as that of Lemma 17.4.17.

17.4.7.2 poly(k, r)-approximation for rank-r matrix B

Theorem 17.4.19. Given a factorization of a rank-r matrix B = UBVB ∈ Rn×d, where UB ∈

Rn×r, VB ∈ Rr×d, for any 1 ≤ k ≤ r there exists an algorithm which takes (n + d) · poly(k)
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Algorithm 17.7 poly(r, k)-approximation Algorithm for Rank-r matrix B
1: procedure L1LowRankApproxB(UB, VB, n, d, k, r) . Theorem 17.4.19
2: Set s← Õ(r), r′ ← Õ(r), t1 ← Õ(r), t2 ← Õ(r).
3: Choose dense Cauchy matrices S ∈ Rs×n, R ∈ Rd×r′ , T1 ∈ Rt1×n, T2 ∈ Rd×t2 .
4: Compute S · UB · VB, UB · VB ·R and T1 · UB · VB · T2.
5: Compute XY = arg minX,Y ‖T1UBVBRXY SUBVBT2 − T1UBVBT2‖F .
6: return UBVBRX, Y SUBVB.
7: end procedure

time to output two matrices U ∈ Rn×k, V ∈ Rk×d such that

‖UV −B‖1 ≤ poly(r) min
rank−k Bk

‖Bk −B‖1,

holds with probability 9/10.

Proof. We define

OPT = min
rank−k Bk

‖Bk −B‖1.

Choose S ∈ Rs×n to be a dense Cauchy transform matrix with s = O(r log r). Using

Lemma 17.4.18, Lemma 17.5.15, and combining with Equation (17.8), we have

min
U∈Rn×k,Z∈Rk×s

‖UZSB −B‖1 ≤
√
sO(r log r) OPT = O(r1.5 log1.5 r) OPT .

Let αs = O(r1.5 log1.5 r).

We define U∗, Z∗ = arg min
U∈Rn×k,Z∈Rk×d

‖UZSB − B‖1. For the fixed Z∗ ∈ Rk×s, choose a

dense Cauchy transform matrix R ∈ Rd×r′ with r′ = O(r log r) and sketch on the right of

(UZSB −B). We obtain the minimization problem, min
U∈Rn×k

‖UZ∗SBR−BR‖1.
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Define Û j = BjR((Z∗SB)R)† ∈ Rk,∀j ∈ [n]. Then Û = BR((Z∗SB)R)† ∈ Rn×k.

Due to Claim 17.3.5,

n∑

j=1

‖BjR((Z∗SB)R)†Z∗SBR−BjR‖1 ≤ O(
√
r′)

n∑

j=1

min
Uj∈Rk

‖U jZ∗SBR−BjR‖1,

which is equivalent to

‖BR((Z∗SB)R)†Z∗SBR−BR‖1 ≤ O(
√
r′) min

U∈Rn×k
‖UZ∗SBR−BR‖1,

where BR is an n× r′ matrix and SB is an s× d matrix. Both of them can be computed in

(n+ d) poly(r) time.

Using Lemma 17.5.2, Lemma 17.5.15, Lemma 17.4.18, we obtain,

‖BR((Z∗SB)R)†Z∗SB −B‖1 ≤ O(
√
r′αr′) min

U∈Rn×k
‖UZ∗SB −B‖1

where αr′ = Õ(r).

We define X∗ ∈ Rr×k, Y ∗ ∈ Rk×s,

X∗, Y ∗ = arg min
X∈Rr′×k,Y ∈Rk×s

‖BRXY SB −B‖1.

Then,

‖BRX∗Y ∗SB −B‖1 ≤ ‖BR((Z∗SB)R)†Z∗SB −B‖1

≤ O(
√
r′αr′) min

U∈Rn×k
‖UZ∗SB −B‖1

= O(
√
r′αr′) min

U∈Rn×k,Z∈Rk×s
‖UZSB −B‖1

≤ O(
√
r′αr′αs) OPT .

It means that BRX, Y SB gives an O(αr′αs
√
r′)-approximation to the original problem.
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Thus it suffices to use Lemma 17.4.20 to solve

min
X∈Rr×k,Y ∈Rk×s

‖BRXY SB −B‖1,

by losing an extra poly(r) approximation ratio. Therefore, we finish the proof.

Lemma 17.4.20. Suppose we are given S ∈ Rs×n, R ∈ Rd×r′, and a factorization of a

rank-r matrix B = UBVB ∈ Rn×d, where UB ∈ Rn×r, VB ∈ Rr×d. Then for any 1 ≤ k ≤ r,

there exists an algorithm which takes (n+ d) poly(r, r′, s) time to output two matrices X ′ ∈

Rr′×k, Y ′ ∈ Rk×s such that

‖BRX ′ · Y ′SB −B‖1 ≤ poly(r) min
X∈Rr′×k,Y ∈Rk×s

‖BRXY SB −B‖1

holds with probability at least .999.

Proof. Choosing dense Cauchy matrices T1 ∈ Rt1×n, T>2 ∈ Rt2×d to sketch on both sides, we

get the problem

min
X∈Rr′×k,Y ∈Rk×s

‖T1BRXY SBT2 − T1BT2‖1, (17.14)

where t1 = Õ(r) and t2 = Õ(r).

Define X ′, Y ′ to be the optimal solution of

min
X∈Rr′×k,Y ∈Rk×s

‖T1BRXY SBT2 − T1BT2‖F .

Define X̃, Ỹ to the be the optimal solution of

min
X∈Rr′×k,Y ∈Rk×s

‖BRXY SB −B‖1.
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By Claim 17.3.6,

‖T1BRX
′Y ′SBT2 − T1BT2‖1 ≤

√
t1t2 min

X∈Rr′×k,Y ∈Rk×s
‖T1BRXY SBT2 − T1BT2‖1.

By Lemma 17.5.4, Lemma 17.4.18 and Lemma 17.5.15, we have

‖BRX ′ · Y ′SB −B‖1 ≤
√
t1t2 · Õ(r2)‖BRX̃ · Ỹ SB −B‖1.

This completes the proof.
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17.5 Contraction and Dilation Bound for `1

This section presents the essential lemmas for `1-low rank approximation. Sec-

tion 17.5.1 gives some basic definitions. Section 17.5.2 shows some properties implied by

contraction and dilation bounds. Section 17.5.3 presents the no dilation lemma for a dense

Cauchy transform. Section 17.5.4 and 17.5.5 presents the no contraction lemma for dense

Cauchy transforms. Section 17.5.6 and 17.5.7 contains the results for sparse Cauchy trans-

forms and Lewis weights.
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17.5.1 Definitions

Definition 17.5.1. Given a matrix M ∈ Rn×d, if matrix S ∈ Rm×n satisfies

‖SM‖1 ≤ c1‖M‖1,

then S has at most c1-dilation on M .

Definition 17.5.2. Given a matrix U ∈ Rn×k, if matrix S ∈ Rm×n satisfies

∀x ∈ Rk, ‖SUx‖1 ≥
1

c2

‖Ux‖1,

then S has at most c2-contraction on U .

Definition 17.5.3. Given matrices U ∈ Rn×k, A ∈ Rn×d, let V ∗ = arg minV ∈Rk×d ‖UV −A‖1.

If matrix S ∈ Rm×n satisfies

∀V ∈ Rk×d, ‖SUV − SA‖1 ≥
1

c3

‖UV − A‖1 − c4‖UV ∗ − A‖1,

then S has at most (c3, c4)-contraction on (U,A).

Definition 17.5.4. A (c5, c6) `1-subspace embedding for the column space of an n×k matrix

U is a matrix S ∈ Rm×n for which all x ∈ Rk

1

c5

‖Ux‖1 ≤ ‖SUx‖1 ≤ c6‖Ux‖1.

Definition 17.5.5. Given matrices U ∈ Rn×k, A ∈ Rn×d, let V ∗ = arg minV ∈Rk×d ‖UV −A‖1.

Let S ∈ Rm×n. If for all c ≥ 1, and if for any V̂ ∈ Rk×d which satisfies

‖SUV̂ − SA‖1 ≤ c · min
V ∈Rk×d

‖SUV − SA‖1,
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it holds that

‖UV̂ − A‖1 ≤ c · c7 · ‖UV ∗ − A‖1,

then S provides a c7-multiple-regression-cost preserving sketch of (U,A).

Definition 17.5.6. Given matrices L ∈ Rn×m1 , N ∈ Rm2×d, A ∈ Rn×d, k ≥ 1, let

X∗ = arg min
rank−k X

‖LXN − A‖1.

Let S ∈ Rm×n. If for all c ≥ 1, and if for any rank−k X̂ ∈ Rm1×m2 which satisfies

‖SLX̂N − SA‖1 ≤ c · min
rank−k X

‖SLXN − SA‖1,

it holds that

‖LX̂N − A‖1 ≤ c · c8 · ‖LX∗N − A‖1,

then S provides a c8-restricted-multiple-regression-cost preserving sketch of (L,N,A, k).
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17.5.2 Properties

Lemma 17.5.1. Given matrices A ∈ Rn×d, U ∈ Rn×k, let V ∗ = arg minV ∈Rk×d ‖UV − A‖1.

If S ∈ Rm×n has at most c1-dilation on UV ∗ − A, i.e.,

‖S(UV ∗ − A)‖1 ≤ c1‖UV ∗ − A‖1,

and it has at most c2-contraction on U , i.e.,

∀x ∈ Rk, ‖SUx‖1 ≥
1

c2

‖Ux‖1,

then S has at most (c2, c1 + 1
c2

)-contraction on (U,A), i.e.,

∀V ∈ Rk×d, ‖SUV − SA‖1 ≥
1

c2

‖UV − A‖1 − (c1 +
1

c2

)‖UV ∗ − A‖1,

Proof. Let A ∈ Rn×d, U ∈ Rn×k, S ∈ Rm×n be the same as that described in the lemma.

Then ∀V ∈ Rk×d

‖SUV − SA‖1 ≥ ‖SUV − SUV ∗‖1 − ‖SUV ∗ − SA‖1

≥ ‖SUV − SUV ∗‖1 − c1‖UV ∗ − A‖1

= ‖SU(V − V ∗)‖1 − c1‖UV ∗ − A‖1

=
d∑

j=1

‖SU(V − V ∗)j‖1 − c1‖UV ∗ − A‖1

≥
d∑

j=1

1

c2

‖U(V − V ∗)j‖1 − c1‖UV ∗ − A‖1

=
1

c2

‖UV − UV ∗‖1 − c1‖UV ∗ − A‖1

≥ 1

c2

‖UV − A‖1 −
1

c2

‖UV ∗ − A‖1 − c1‖UV ∗ − A‖1

=
1

c2

‖UV − A‖1 −
(

(
1

c2

+ c1)‖UV ∗ − A‖1

)
.
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The first inequality follows by the triangle inequality. The second inequality follows since

S has at most c1 dilation on UV ∗ − A. The third inequality follows since S has at most c2

contraction on U . The fourth inequality follows by the triangle inequality.

Lemma 17.5.2. Given matrices A ∈ Rn×d, U ∈ Rn×k, let V ∗ = arg minV ∈Rk×d ‖UV − A‖1.

If S ∈ Rm×n has at most c1-dilation on UV ∗ − A, i.e.,

‖S(UV ∗ − A)‖1 ≤ c1‖UV ∗ − A‖1,

and has at most c2-contraction on U , i.e.,

∀x ∈ Rk, ‖SUx‖1 ≥
1

c2

‖Ux‖1,

then S provides a (2c1c2 + 1)-multiple-regression-cost preserving sketch of (U,A), i.e., for all

c ≥ 1, for any V̂ ∈ Rk×d which satisfies

‖SUV̂ − SA‖1 ≤ c · min
V ∈Rk×d

‖SUV − SA‖1,

it has

‖UV̂ − A‖1 ≤ c · (2c1c2 + 1) · ‖UV ∗ − A‖1,

Proof. Let S ∈ Rm×n, A ∈ Rn×d, U ∈ Rn×k, V ∗, V̂ ∈ Rk×d, and c be the same as stated in

the lemma.

‖UV̂ − A‖1 ≤ c2‖SUV̂ − SA‖1 + (1 + c1c2)‖UV ∗ − A‖1

≤ c2c min
V ∈Rk×d

‖SUV − SA‖1 + (1 + c1c2)‖UV ∗ − A‖1

≤ c2c‖SUV ∗ − SA‖1 + (1 + c1c2)‖UV ∗ − A‖1

≤ c1c2c‖UV ∗ − A‖1 + (1 + c1c2)‖UV ∗ − A‖1

≤ c · (1 + 2c1c2)‖UV ∗ − A‖1.
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The first inequality follows by Lemma 17.5.1. The second inequality follows by the guarantee

of V̂ . The fourth inequality follows since S has at most c1-dilation on UV ∗ − A. The fifth

inequality follows since c ≥ 1.

Lemma 17.5.3. Given matrices L ∈ Rn×m1 , N ∈ Rm2×d, A ∈ Rn×d, k ≥ 1, let

X∗ = arg min
rank−k X

‖LXN − A‖1.

If S ∈ Rm×n has at most c1-dilation on LX∗N − A, i.e.,

‖S(LX∗N − A)‖1 ≤ c1‖LX∗N − A‖1,

and has at most c2-contraction on L, i.e.,

∀x ∈ Rm1‖SLx‖1 ≥ ‖Lx‖1,

then S provides a (2c1c2+1)-restricted-multiple-regression-cost preserving sketch of (L,N,A, k),

i.e., for all c ≥ 1, for any rank−k X̂ ∈ Rm1×m2 which satisfies

‖SLX̂N − SA‖1 ≤ c · min
rank−k X

‖SLXN − SA‖1,

it holds that

‖LX̂N − A‖1 ≤ c · (2c1c2 + 1) · ‖LX∗N − A‖1.

Proof. Let S ∈ Rm×n, L ∈ Rn×m1 , X̂ ∈ Rm1×m2 , X∗ ∈ Rm1×m2 , N ∈ Rm2×d, A ∈ Rn×d, and
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c ≥ 1 be the same as stated in the lemma.

‖SLX̂N − SA‖1 ≥ ‖SLX̂N − SLX∗N‖1 − ‖SLX∗N − SA‖1

≥ 1

c2

‖L(X̂N −X∗N)‖1 − c1‖LX∗N − A‖1

≥ 1

c2

‖LX̂N − A‖1 −
1

c2

‖LX∗N − A‖1 − c1‖LX∗N − A‖1

=
1

c2

‖LX̂N − A‖1 − (
1

c2

+ c1)‖LX∗N − A‖1.

The inequality follows by the triangle inequality. The second inequality follows since S has at

most c2-contraction on L, and it has at most c1-dilation on LX∗N −A. The third inequality

follows by the triangle inequality.

It follows that

‖LX̂N − A‖1 ≤ c2‖SLX̂N − SA‖1 + (1 + c1c2)‖LX∗N − A‖1

≤ c2c · min
rank−k X

‖SLXN − SA‖1 + (1 + c1c2)‖LX∗N − A‖1

≤ c2c · ‖SLX∗N − SA‖1 + (1 + c1c2)‖LX∗N − A‖1

≤ cc1c2 · ‖LX∗N − A‖1 + (1 + c1c2)‖LX∗N − A‖1

≤ c · (1 + 2c1c2)‖LX∗N − A‖1.

The first inequality directly follows from the previous one. The second inequality follows

from the guarantee of X̂. The fourth inequality follows since S has at most c1 dilation on

LX∗N − A. The fifth inequality follows since c ≥ 1.

Lemma 17.5.4. Given matrices L ∈ Rn×m1 , N ∈ Rm2×d, A ∈ Rn×d, k ≥ 1, let

X∗ = arg min
rank−k X

‖LXN − A‖1.
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Let T1 ∈ Rt1×n have at most c1-dilation on LX∗N −A, and at most c2-contraction on L. Let

X̃ = arg min
rank−k X

‖T1LXN − T1A‖1.

Let T>2 ∈ Rt2×d have at most c′1-dilation on (T1LX̃N − T1A)>, and at most c′2-contraction

on N>. Then, for all c ≥ 1, for any rank−k X̂ ∈ Rm1×m2 which satisfies

‖T1(LX̂N − SA)T2‖1 ≤ c · min
rank−k X

‖T1(LXN − A)T2‖1,

it has

‖LX̂N − A‖1 ≤ c · (2c1c2 + 1)(2c′1c
′
2 + 1) · ‖LX∗N − A‖1.

Proof. Apply Lemma 17.5.3 for sketch matrix T2. Then for any c ≥ 1, any rank−k X̂ ∈

Rm1×m2 which satisfies

‖T1(LX̂N − A)T2‖1 ≤ c · min
rank−k X

‖T1(LXN − A)T2‖1,

has

‖T1(LX̂N − A)‖1 ≤ c · (2c′1c′2 + 1) · ‖T1(LX̃N − A)‖1.

Apply Lemma 17.5.3 for sketch matrix T1. Then for any c ≥ 1, any rank−k X̂ ∈

Rm1×m2 which satisfies

‖T1(LX̂N − A)‖1 ≤ c(2c′1c
′
2 + 1) · min

rank−k X
‖T1(LX̃N − A)‖1,

has

‖LX̂N − A‖1 ≤ c · (2c1c2 + 1)(2c′1c
′
2 + 1) · ‖LX∗N − A‖1.
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Lemma 17.5.5. Given matrices M ∈ Rn×d, U ∈ Rn×t, d ≥ t = rank(U), n ≥ d ≥ r =

rank(M), if sketching matrix S ∈ Rm×n is drawn from any of the following probability dis-

tributions of matrices, with .99 probability S has at most c1-dilation on M , i.e.,

‖SM‖1 ≤ c1‖M‖1,

and S has at most c2-contraction on U , i.e.,

∀x ∈ Rt, ‖SUx‖1 ≥
1

c2

‖Ux‖1,

where c1, c2 are parameters depend on the distribution over S.

(I) S ∈ Rm×n is a dense Cauchy matrix: a matrix with i.i.d. entries from the standard

Cauchy distribution. If m = O(t log t), then c1c2 = O(log d). If m = O((t + r) log(t +

r)), then c1c2 = O(min(log d, r log r)).

(II) S ∈ Rm×n is a sparse Cauchy matrix: S = TD, where T ∈ Rm×n has each column

i.i.d. from the uniform distribution on standard basis vectors of Rm, and D ∈ Rn×n is

a diagonal matrix with i.i.d. diagonal entries following a standard Cauchy distribution.

If m = O(t5 log5 t), then c1c2 = O(t2 log2 t log d). If m = O((t + r)5 log5(t + r)), then

c1c2 = O(min(t2 log2 t log d, r3 log3 r)).

(III) S ∈ Rm×n is a sampling and rescaling matrix (notation S ∈ Rn×n denotes a diagonal

sampling and rescaling matrix with m non-zero entries): If S samples and reweights

m = O(t log t) rows of U , selecting each with probability proportional to the ith row’s

`1 Lewis weight and reweighting by the inverse probability, then c1c2 = O(1).
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In the above, if we replace S with σ · S where σ ∈ R\{0} is any scalar, then the relation

between m and c1c2 can be preserved.

For (I), if m = O(t log t), then c1c2 = O(log d) is implied by Lemma 17.5.15 and

Lemma 17.5.7. If m = O((t+ r) log(t+ r)), c1c2 = O(r log r) is implied by [SW11].

For (II), if m = O(t5 log5 t), then c1c2 = O(t2 log2 t log d) is implied by Corol-

lary 17.5.19 and Lemma 17.5.17. If m = O((t + r)5 log5(t + r)), c1c2 = O(r3 log3 r) is

implied by [MM13].

For (III), it is implied by [CP15] and Lemma 17.5.21.
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17.5.3 Cauchy embeddings, no dilation

Lemma 17.5.6. Define U∗ ∈ Rn×k, V ∗ ∈ Rk×d to be the optimal solution of min
U∈Rn×k,V ∈Rk×d

‖UV−

A‖1. Choose a Cauchy matrix S with m rows and rescaled by Θ(1/m). We have that

‖SU∗V ∗ − SA‖1 ≤ O(log d)‖U∗V ∗ − A‖1

holds with probability at least 99/100.

Proof. The proof technique has been used in [Ind06] and [CDMI+13]. Fix the optimal U∗

and V ∗, then

‖SU∗V ∗ − SA‖1 =
d∑

i=1

‖S(U∗V ∗i − Ai)‖1

=
d∑

i=1

m∑

j=1

|
n∑

l=1

1

m
Sj,l · (U∗V ∗i − Ai)l| where Sj,l ∼ C(0, 1)

=
d∑

i=1

m∑

j=1

1

m
|ci,j| where ci,j ∼ C(0, ‖U∗V ∗i − Ai‖1)

=
1

m

d∑

i=1

m∑

j=1

‖U∗V ∗i − Ai‖1 · wi+d(j−1). where wi+d(j−1) ∼ |C(0, 1)|

(17.15)

where the last step follows since each wi can be thought of as a clipped half-Cauchy random

variable. Define d′ = md. Define event ξi to be the situation in which wi < D (we will decide

upon D later), and define event ξ = ξ1∩ξ2∩· · ·∩ξd′ . Then it is clear that ξ∩ξi = ξ, ∀i ∈ [d′].

Using the probability density function (pdf) of a Cauchy and because tan−1 x ≤ x,

we can lower bound Pr[event ξi holds] in the following sense,

Pr[ξi] =
2

π
tan−1(D) = 1− 2

π
tan−1(1/D) ≥ 1− 2

πD
.
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By a union bound over all i ∈ [d′], we can lower bound Pr[event ξ holds],

Pr[ξ] ≥ 1−
d′∑

i=1

Pr[ξi] ≥ 1− 2d′

πD
. (17.16)

By Bayes rule and ξ = ξ∩ξi, Pr[ξ|ξi] Pr[ξi] = Pr[ξ∩ξi] = Pr[ξ], which implies that Pr[ξ|ξi] =

Pr[ξ]/Pr[ξi]. First, we can lower bound E[wi|ξi],

E[wi|ξi] = E[wi|ξi ∩ ξ] Pr[ξ|ξi] + E[wi|ξ ∩ ξ] Pr[ξ|ξi]

≥ E[wi|ξi ∩ ξ] Pr[ξ|ξi] by wi ≥ 0 and Pr[] ≥ 0

= E[wi|ξ] Pr[ξ|ξi] by ξ = ξ ∩ ξi.

The above equation implies that

E[wi|ξ] ≤
E[wi|ξi]
Pr[ξ|ξi]

=
E[wi|ξi] Pr[ξi]

Pr[ξ ∩ ξi]
by Bayes rule Pr[ξ|ξi] Pr[ξi] = Pr[ξ ∩ ξi]

=
E[wi|ξi] Pr[ξi]

Pr[ξ]
by ξ = ξ ∩ ξi.

Using the pdf of a Cauchy, E[wi|ξi] = 1
π

log(1 + D2)/Pr[ξi] and plugging it into the

lower bound of E[wi|ξ],

E[wi|ξ] ≤
E[wi|ξi] Pr[ξi]

Pr[ξ]
=

1
π

log(1 +D2)

Pr[ξ]
≤

1
π

log(1 +D2)

1− 2d
πD

. log(D),

where the third step follows since Pr[ξ] ≥ 1 − 2d′

πD
and the last step follows by choosing

D = Θ(d′).

We can conclude

E[‖SU∗V ∗ − SA‖1|ξ] =
1

m

d∑

i=1

m∑

j=1

‖U∗V ∗i − Ai‖1 · E[wi+d(j−1)|ξ]

. (log d′) · ‖U∗V ∗ − A‖1. (17.17)
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For simplicity, define X = ‖SU∗V ∗ − SA‖1 and γ = ‖U∗V ∗ − A‖1. By Markov’s inequality

and because Pr[X ≥ γt|ξ] ≤ 1, we have

Pr[X ≥ γt]

= Pr[X ≥ γt|ξ] Pr[ξ] + Pr[X ≥ γt|ξ] Pr[ξ]

≤ Pr[X ≥ γt|ξ] + Pr[ξ]

≤ E[X|ξ]
γt

+ Pr[ξ] by Markov’s inequality

≤ E[X|ξ]
γt

+
2d′

πD
by Equation (17.16)

. log d′

t
+

2d′

πD
by Equation (17.17)

≤ .01,

where choosing t = Θ(log d′) and D = Θ(d′). Since k ≤ d and m = poly(k), we have

t = Θ(log d), which completes the proof.

Lemma 17.5.7. Given any matrix M ∈ Rn×d, if matrix S ∈ Rm×n has each entry drawn

from an i.i.d. standard Cauchy distribution and is rescaled by Θ(1/m), then

‖SM‖1 ≤ O(log d)‖M‖1

holds with probability at least 99/100.

Proof. Just replace the matrix U∗V ∗ − A in the proof of Lemma 17.5.6 with M . Then we

can get the result directly.
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17.5.4 Cauchy embeddings, no contraction

We prove that if we choose a Cauchy matrix S, then for a fixed optimal solution U∗

of minU,V ‖UV − A‖1, and for all V , we have that with high probability ‖SU∗V − SA‖1 is

lower bounded by ‖U∗V − A‖1 up to some constant.

Lemma 17.5.8. Define U∗ ∈ Rn×k, V ∗ ∈ Rk×d to be the optimal solution of min
U∈Rn×kV ∈Rk×d

‖UV−

A‖1, where A ∈ Rn×d. Let m = O(k log k), S ∈ Rm×n be a random matrix with each entry

an i.i.d. standard Cauchy random variable, scaled by Θ(1/m). Then with probability at least

0.95,

∀V ∈ Rk×d, ‖U∗V − A‖1 . ‖SU∗V − SA‖1 +O(log(d))‖U∗V ∗ − A‖1.

Proof. This follows by Lemmas 17.5.6, 17.5.15, 17.5.1.
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17.5.5 Cauchy embeddings, k-dimensional subspace

The goal of this section is to prove Lemma 17.5.15.

Before getting into the details, we first give the formal definition of an (α, β) `1

well-conditioned basis and ε-net.

Definition 17.5.7 (`1 Well-conditioned basis). [DDH+09] A basis U for the range of A is

(α, β)-conditioned if ‖U‖1 ≤ α and for all x ∈ Rk, ‖x‖∞ ≤ β‖Ux‖1. We will say U is

well-conditioned if α and β are low-degree polynomials in k, independent of n.

Note that a well-conditioned basis implies the following result.

Fact 17.5.9. There exist α, β ≥ 1 such that,

∀x ∈ Rk,
1

kβ
‖x‖1 ≤ ‖Ux‖1 ≤ α‖x‖1.

Proof. The lower bound can be proved in the following sense,

‖Ux‖1 ≥
1

β
‖x‖∞ ≥

1

β

1

k
‖x‖1,

where the first step follows by the properties of a well-conditioned basis, and the second step

follows since k‖x‖∞ ≥ ‖x‖1. Then we can show an upper bound,

‖Ux‖1 ≤ ‖U‖1 · ‖x‖1 ≤ α‖x‖1,

where the first step follows by ‖Ux‖1 ≤ ‖U‖1‖x‖1, and the second step follows using ‖U‖1 ≤

α.
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Definition 17.5.8 (ε-net). Define N to an ε-net where, for all the x ∈ Rk that ‖x‖1 = 1,

for any vectors two x, x′ ∈ N, ‖x − x′‖1 ≥ ε, for any vector y /∈ N, there exists an x ∈ N

such that ‖x− y‖1 ≤ ε. Then the size of N is (1
ε
)O(k) = 2O(k log(1/ε)).

Lemma 17.5.10 (Lemma 6 in [SW11]). There is a constant c0 > 0 such that for any t ≥ 1

and any constant c > c0, if S is a t × n matrix whose entries are i.i.d. standard Cauchy

random variables scaled by c/t, then, for any fixed y ∈ Rn,

Pr[‖Sy‖1 < ‖y‖1] ≤ 1/2t

Lemma 17.5.11. Suppose we are given a well-conditioned basis U ∈ Rn×k. If S is a t× n

matrix whose entries are i.i.d. standard Cauchy random variables scaled by Θ(1/t), then

with probability 1− 2−Ω(t), for all vectors x ∈ N we have that ‖SUx‖1 ≥ ‖Ux‖1.

Proof. First, using Lemma 17.5.10, we have for any fixed vector y ∈ Rn, Pr[‖Sy‖ < ‖y‖1] ≤

1/2t. Second, we can rewrite y = Ux. Then for any fixed x ∈ N, Pr[‖SUx‖ < ‖Ux‖1] ≤ 1/2t.

Third, choosing t & k log(1/ε) and taking a union bound over all the vectors in the ε-net N

completes the proof.

Lemma 17.5.12 (Lemma 7 in [SW11]). Let S be a t × n matrix whose entries are i.i.d

standard Cauchy random variables, scaled by c/t for a constant c, and t ≥ 1. Then there

is a constant c′ = c′(c) > 0 such that for any fixed set of {y1, y2, · · · , yk} of d vectors in

{y ∈ Rn : x ∈ Rk, Ux = y},

Pr

[
k∑

i=1

‖Syi‖1 ≥ c′ log(tk)
k∑

i=1

‖yi‖1

]
≤ 1

1000
.

Using Lemma 17.5.12 and the definition of an (α, β) well-conditioned basis, we can

show the following corollary.
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Corollary 17.5.13. Suppose we are given an (α, β) `1 well-conditioned basis U ∈ Rn×k.

Choose S to be an i.i.d. Cauchy matrix with t = O(k log k) rows, and rescale each entry by

Θ(1/t). Then with probability 99/100, for all vectors x ∈ Rk,

‖SUx‖1 ≤ O(αβ log(k)) · ‖Ux‖1,

Proof. Define event E to be the situation when

k∑

i=1

‖SUi‖1 < c′ log(tk)
k∑

i=1

‖Ui‖1

holds, and U is a well-conditioned basis. Using Lemma 17.5.12, we can show that event E

holds with probability 999/1000. We condition on Event E holding. Then for any y = Ux

for an x ∈ Rk, we have

‖Sy‖1 = ‖SUx‖1

≤
k∑

j=1

‖SUjxj‖1 by triangle inequality

=
k∑

j=1

|xj| · ‖SUj‖1

≤ ‖x‖∞c′ log(tk)
k∑

j=1

‖Uj‖1 by Lemma 17.5.12

= ‖x‖∞c′ log(tk)α by ‖U‖1 =
k∑

j=1

‖Uj‖1 ≤ α

≤ β‖Ux‖1c
′ log(tk)α by ‖x‖∞ ≤ β‖Ux‖1

≤ β‖y‖1c
′ log(tk)α by Ux = y.

This completes the proof.
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Lemma 17.5.14. Given an (α, β) `1 well-conditioned basis, condition on the following two

events,

1. For all x ∈ N, ‖SUx‖1 ≥ ‖Ux‖1. (Lemma 17.5.10)

2. For all x ∈ Rk, ‖SUx‖1 ≤ O(αβ log k)‖Ux‖1. (Corollary 17.5.13)

Then, for all w ∈ Rk, ‖SUw‖1 & ‖Uw‖1.

Proof. For any w ∈ Rk we can write it as w = ` ·z where ` is some scalar and z has ‖z‖1 = 1.

Define y = arg min
y′∈N

‖y′ − z‖1.

We first show that if U is an (α, β) well-conditioned basis for `1, then ‖U(y− z)‖1 ≤

αβkε‖Uy‖1,

‖U(y − z)‖1

≤ α‖y − z‖1 by ‖U(y − z)‖1 ≤ α‖y − z‖1

≤ αε by ‖y − z‖1 ≤ ε

= αε‖y‖1 by ‖y‖1 = 1

≤ αε‖Uy‖1βk by ‖Uy‖1 ≥
1

βk
‖y‖1.

Because ε < 1/(αβkc+1), we have

‖U(y − z)‖1 ≤
1

kc
‖Uy‖1. (17.18)

Using the triangle inequality, we can lower bound ‖Uy‖1 by ‖Uz‖1 up to some constant,

‖Uy‖1 ≥ ‖Uz‖1 − ‖U(y − z)‖1 ≥ ‖Uz‖1 −
1

kc
‖Uy‖1, (17.19)
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which implies

‖Uy‖1 ≥ .99‖Uz‖1. (17.20)

Thus,

‖SUz‖1

≥ ‖SUy‖1 − ‖SU(z − y)‖1 by triangle inequality

≥ ‖Uy‖1 − ‖SU(z − y)‖1 by Lemma 17.5.10

≥ ‖Uy‖1 − αβ log(k) · ‖U(z − y)‖1 by Corollary 17.5.13

≥ ‖Uy‖1 − αβ log(k) · 1

kc
‖Uy‖1 by Equation (17.18)

& ‖Uy‖1 by kc & αβ log(k)

& ‖Uz‖1, by Equation (17.20)

by rescaling z to w, we complete the proof.

Lemma 17.5.15. Given matrix U ∈ Rn×k, let t = O(k log k), and let S ∈ Rt×n be a random

matrix with entries drawn i.i.d. from a standard Cauchy distribution, where each entry is

rescaled by Θ(1/t). With probability .99,

∀x ∈ Rk, ‖SUx‖1 & ‖Ux‖1.

Proof. We can compute a well-conditioned basis for U , and denote it U ′. Then, ∀x ∈ Rk,

there exists y ∈ Rk such that Ux = U ′y. Due to Lemma 17.5.14, with probability .99, we

have

∀y ∈ Rk, ‖SU ′y‖1 & ‖U ′y‖1.
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17.5.6 Sparse Cauchy transform

This section presents the proof of two lemmas related to the sparse Cauchy transform.

We first prove the no dilation result in Lemma 17.5.16. Then we show how to get the no

contraction result in Lemma 17.5.18.

Lemma 17.5.16. Given matrix A ∈ Rn×d, let U∗, V ∗ be the optimal solutions of minU,V ‖UV−

A‖1. Let Π = σ ·SC ∈ Rm×n, where S ∈ Rm×n has each column vector chosen independently

and uniformly from the m standard basis vectors of Rm, where C is a diagonal matrix with

diagonals chosen independently from the standard Cauchy distribution, and σ is a scalar.

Then

‖ΠU∗V ∗ − ΠA‖1 . σ · log(md) · ‖U∗V ∗ − A‖1

holds with probability at least .999.
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Proof. We define Π = σ · SC ∈ Rm×n, as in the statement of the lemma. Then,

‖Π(U∗V ∗ − A)‖1

=
d∑

i=1

‖SD(U∗V ∗i − Ai)‖1

=
d∑

i=1

∥∥∥∥




S11 S12 · · · S1n

S21 S22 · · · S2n

· · · · · · · · · · · ·
Sm1 Sm2 · · · Smn


 ·




c1 0 0 0
0 c2 0 0
0 0 · · · 0
0 0 0 cn


 · (U

∗V ∗i − Ai)
∥∥∥∥

1

=
d∑

i=1

∥∥∥∥




c1S11 c2S12 · · · cnS1n

c1S21 c2S22 · · · cnS2n

· · · · · · · · · · · ·
c1Sm1 c2Sm2 · · · cnSmn


 · (U

∗V ∗i − Ai)
∥∥∥∥

1

=
d∑

i=1

∥∥∥∥
n∑

l=1

clS1l · (U∗V ∗i − Ai)l,
n∑

l=1

clS2l · (U∗V ∗i − Ai)l, · · · ,
n∑

l=1

clSml · (U∗V ∗i − Ai)l
∥∥∥∥

1

=
d∑

i=1

m∑

j=1

|
n∑

l=1

clSjl · (U∗V ∗i − Ai)l|

=
d∑

i=1

m∑

j=1

|w̃ij ·
n∑

l=1

|Sjl(U∗V ∗i − Ai)l|| where w̃ij ∼ C(0, 1)

=
d∑

i=1

m∑

j=1

n∑

l=1

|Sjl(U∗V ∗i − Ai)l| · |w̃ij|

=
d∑

i=1

m∑

j=1

n∑

l=1

|Sjl(U∗V ∗i − Ai)l| · wi+(j−1)d where wi+(j−1)d ∼ |C(0, 1)|,

where the last step follows since each wi can be thought of as a clipped half-Cauchy random

variable. Define d′ = md. Define event ξi to be the situation when wi < D (we will decide

upon D later). Define event ξ = ξ1 ∩ ξ2 ∩ · · · ∩ ξd′ . By choosing D = Θ(d′), we can conclude

1196



that,

E[‖ΠU∗V ∗ − ΠA‖1|ξ] =
d∑

i=1

m∑

j=1

n∑

l=1

|Sjl(U∗V ∗i − Ai)l| · E[wi+(j−1)d|ξ]

.
d∑

i=1

m∑

j=1

n∑

l=1

|Sjl(U∗V ∗i − Ai)l| · log(d′)

=
d∑

i=1

n∑

l=1

|(U∗V ∗i − Ai)l|1 · log(d′)

= log(d′) · ‖U∗V ∗ − A‖1.

where the third step follows from
∑m

j=1 |Sjl| = 1, ∀l ∈ [n].

Thus, we can show that

Pr[‖ΠU∗V ∗ − ΠA‖1 . log(d′)‖U∗V ∗ − A‖1] ≥ 0.999.

Lemma 17.5.17. Given any matrix M ∈ Rn×d. Let Π = σ · SC ∈ Rm×n, where S ∈ Rm×n

has each column vector chosen independently and uniformly from the m standard basis vectors

of Rm, where C is a diagonal matrix with diagonals chosen independently from the standard

Cauchy distribution, and σ is a scalar. Then

‖ΠM‖1 . σ · log(md) · ‖M‖1

holds with probability at least .999.

Proof. Just replace the matrix U∗V ∗ − A in the proof of Lemma 17.5.16 with M . Then we

can get the result directly.
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We already provided the proof of Lemma 17.5.16. It remains to prove Lemma 17.5.18.

Lemma 17.5.18. Given matrix A ∈ Rn×d, let U∗, V ∗ be the optimal solution of minU,V ‖UV−

A‖1. Let Π = σ · SC ∈ Rm×n, where S ∈ Rm×n has each column vector chosen indepen-

dently and uniformly from the m standard basis vectors of Rm, and where C is a diagonal

matrix with diagonals chosen independently from the standard Cauchy distribution. Then

with probability at least .999, for all V ∈ Rk×d,

‖ΠU∗V − ΠA‖1 ≥ ‖U∗V − A‖1 −O(σ · log(md))‖U∗V ∗ − A‖1.

Notice that m = O(k5 log5 k) and σ = O(k2 log2 k) according to Theorem 2 in [MM13].

We start by using Theorem 2 in [MM13] to generate the following Corollary.

Corollary 17.5.19. Given U ∈ Rn×k with full column rank, let Π = σ · SC ∈ Rm×n where

S ∈ Rm×n has each column chosen independently and uniformly from the m standard basis

vectors of Rm, and where C ∈ Rn×n is a diagonal matrix with diagonals chosen independently

from the standard Cauchy distribution. Then with probability .999, for all x ∈ Rk, we have

‖ΠUx‖1 ≥ ‖Ux‖1.

Notice that m = O(k5 log5 k) and σ = O(k2 log2 k) according to Theorem 2 in [MM13].

We give the proof of Lemma 17.5.18.

Proof. Follows by Corollary 17.5.19, Lemma 17.5.16, Lemma 17.5.1.
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17.5.7 `1-Lewis weights

In this section we show how to use Lewis weights to get a better dilation bound.

The goal of this section is to prove Lemma 17.5.24 and Lemma 17.5.23. Notice that our

algorithms in Section 17.4 use Lewis weights in several different ways. The first way is

using Lewis weights to show an existence result, which means we only need an existential

result for Lewis weights. The second way is only guessing the nonzero locations on the

diagonal of a sampling and rescaling matrix according to the Lewis weights. The third way

is guessing the values on the diagonal of a sampling and rescaling matrix according to the

Lewis weights. The fourth way is computing the Lewis weights for a known low dimensional

matrix(n× poly(k) or poly(k)× d). We usually do not need to optimize the running time of

computing Lewis weights for a low-rank matrix to have input-sparsity time.

Claim 17.5.20. Given matrix A ∈ Rn×d, let B = U∗V ∗ − A. For any distribution p =

(p1, p2, . . . , pn) define random variable X such that X = ‖Bi‖1/pi with probability pi. Then

take any m independent samples X1, X2, . . . , Xm, let Y = 1
m

∑m
j=1 X

j. We have

Pr[Y ≤ 1000‖B‖1] ≥ .999

Proof. We can compute the expectation of Xj, for any j ∈ [m]

E[Xj] =
n∑

i=1

‖Bi‖1

pi
· pi = ‖B‖1.

Then, E[Y ] = 1
m

∑m
j=1 E[Xj] = ‖B‖1. Using Markov’s inequality, we have

Pr[Y ≥ 1000‖B‖1] ≤ .001
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Lemma 17.5.21. Given matrix M ∈ Rn×d, let S ∈ Rn×n be any sampling and rescaling

diagonal matrix. Then with probability at least .999,

‖SM‖1 . ‖M‖1.

Proof. Just replace the matrix B in the proof of Claim 17.5.20 with M . Then we can get

the result directly.

Using Theorem 1.1 of [CP15], we have the following result,

Claim 17.5.22. Given matrix A ∈ Rn×d, for any fixed U∗ ∈ Rn×k and V ∗ ∈ Rk×d, choose

D ∈ Rn×n to be the sampling and rescaling diagonal matrix with m = O(k log k) nonzeros

according to the Lewis weights of U∗. Then with probability .999, for all V ,

‖U∗V ∗ − U∗V ‖1 ≤ ‖DU∗V ∗ −DU∗V ‖1 . ‖U∗V ∗ − U∗V ‖1.

Lemma 17.5.23. Given matrix A ∈ Rn×d, U∗ ∈ Rn×k, define V ∗ ∈ Rk×d to be the optimal

solution of min
V ∈Rk×d

‖U∗V − A‖1. Choose a sampling and rescaling diagonal matrix D ∈ Rn×n

with m = O(k log k) non-zero entries according to the Lewis weights of U∗. Then with

probability at least .99, we have: for all V ∈ Rk×d,

‖DU∗V −DA‖1 . ‖U∗V ∗ − U∗V ‖1 +O(1)‖U∗V ∗ − A‖1 . ‖U∗V − A‖1,

holds with probability at least .99.
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Proof. Using the above two claims, we have with probability at least .99, for all V ∈ Rk×d,

‖DU∗V −DA‖1 ≤ ‖DU∗V −DU∗V ∗‖1 + ‖DU∗V ∗ −DA‖1

. ‖DU∗V −DU∗V ∗‖1 +O(1)‖U∗V ∗ − A‖1

. ‖U∗V − U∗V ∗‖1 +O(1)‖U∗V ∗ − A‖1

≤ ‖U∗V − A‖1 + ‖U∗V ∗ − A‖1 +O(1)‖U∗V ∗ − A‖1

. ‖U∗V − A‖1,

where the first step follows from triangle inequality, the second step follows from Claim 17.5.20,

the third step follows from Claim 17.5.22, the forth step follows from triangle inequality.

Lemma 17.5.24. Given matrix A ∈ Rn×d, define U∗ ∈ Rn×k, V ∗ ∈ Rk×d to be the optimal

solution of min
U∈Rn×k,V ∈Rk×d

‖UV −A‖1. Choose a sampling and rescaling diagonal matrix D ∈

Rn×n with m = O(k log k) non-zero entries according to the Lewis weights of U∗. For all

V ∈ Rk×d we have

‖U∗V − A‖1 . ‖DU∗V −DA‖1 +O(1)‖U∗V ∗ − A‖1,

holds with probability at least .99.

Proof. Follows by Claim 17.5.20, Lemma 17.5.23, Lemma 17.5.1.
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17.6 Hardness Results for Cauchy Matrices, Row Subset Selection,
OSE

Section 17.6.1 presents some inapproximability results by using random Cauchy ma-

trices. Section 17.6.2 is a warmup for inapproximability results for row subset selection

problems. Section 17.6.3 shows the inapproximability results by using any linear oblivious

subspace embedding(OSE), and also shows inapproximability results for row subset selection.
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17.6.1 Hard instance for Cauchy matrices

The goal of this section is to prove Theorem 17.6.2. Before stating the result, we first

introduce some useful tools in our analysis.

Lemma 17.6.1 (Cauchy Upper Tail Inequality, Lemma 3 of [CDMI+13]). For i ∈ [m], let

Ci be m random Cauchy variables from C(0, 1) (not necessarily independent), and γi > 0

with γ =
∑

i∈[m] γi. Let X =
∑

i∈[m] γi|Ci|. Then, for any t ≥ 1,

Pr[X > γt] ≤ O(log(mt)/t).

Theorem 17.6.2. Let k ≥ 1. There exist matrices A ∈ Rd×d such that for any o(log d) ≥

t ≥ 1, where c can be any constant smaller than 1/3, for random Cauchy matrices S ∈ Rt×d

where each entry is sampled from an i.i.d. Cauchy distribution C(0, γ) where γ is an arbitrary

real number, with probability .99 we have

min
U∈Rd×t

‖USA− A‖1 ≥ Ω(log d/(t log t)) min
rank−k A′

‖A′ − A‖1.

Proof. We define matrix A ∈ Rd×d

A = B + I = α ·




1 1 1 · · · 1
0 0 0 · · · 0
0 0 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 0




+




1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1



,

where α = Θ(log d).So, if we only fit the first row of A, we can get approximation cost at

most O(d).

For t > 0, let S ∈ Rt×d denote a random Cauchy matrix where Si,j denotes the entry

1203



in the ith row and jth column. Then SA is

SA = SB + SI = α ·




S1,1 S1,1 S1,1 · · · S1,1

S2,1 S2,1 S2,1 · · · S2,1

S3,1 S3,1 S3,1 · · · S3,1

· · · · · · · · · · · · · · ·
St,1 St,1 St,1 · · · St,1




+




S1,1 S1,2 S1,3 · · · S1,d

S2,1 S2,2 S2,3 · · · S2,d

S3,1 S3,2 S3,3 · · · S3,d

· · · · · · · · · · · · · · ·
St,1 St,2 St,3 · · · St,d



.

Since ∀γ,

min
U∈Rd×t

‖USA− A‖1 = min
U∈Rd×t

‖γUSA− A‖1,

without loss of generality, we can let Si,j ∼ C(0, 1). Then we want to argue that, if we want

to use SA to fit the first row of A, with high probability, the cost will be Ω(d log d).

Let b ∈ Rd denote the first row of A. Then, we want to use SA to fit the first row of

A, which is a d-dimensional vector that has entry Θ(log d) on each position. The problem is

equivalent to

min
x∈Rt
‖(SA)>x− b‖1.

First, we want to show that for any x in Rt, if x>SA fits the first row of A very well, then

the `1 and `2 norm of vector x must have reasonable size.

Claim 17.6.3. Define A1 to be the first row of matrix A. With probability .999, for any

column vector x ∈ Rt×1, if ‖x>SA− A1‖1 ≤ o(d log d), then

Property (I) : ‖x‖2 ≥ Ω(1/t log t);

Property (II) : ‖x‖1 ≤ O(log d).
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Proof. Consider the absolute value of the i-th coordinate of x>SA. We can rewrite |〈(SA)i, x〉|

in the following sense,

|〈(SA)i, x〉| = |〈(SB)i, x〉+ 〈(SI)i, x〉|

= |〈(SB)1, x〉+ 〈(SI)i, x〉|

= |〈(SB)1, x〉+ 〈Si, x〉|, (17.21)

where the second step follows because (SB)i = (SB)1,∀i ∈ [n], and the last step follows

because (SI)i = Si,∀i ∈ [n].

We start by proving Property I. Using the triangle inequality and Equation (17.21),

|〈(SA)i, x〉|

≤ |〈(SB)1, x〉|+ |〈Si, x〉|

≤ ‖(SB)1‖2‖x‖2 + ‖Si‖2‖x‖2 by Cauchy-Schwarz inequality

≤ ‖(SB)1‖1‖x‖2 + ‖Si‖1‖x‖2. by ‖ · ‖2 ≤ ‖ · ‖1

Then, according to Lemma 17.6.1, with probability .99999, we have ‖(SB)1‖1 ≤

O(t log t log d) and for a fixed i ∈ [d], ‖Si‖1 ≤ O(t log t). Applying the Chernoff bound,

with probability 1 − 2−Ω(d), there are a constant fraction of i such that ‖Si‖1 = O(t log t).

Taking the union bound, with probability .9999, there exists a constant fraction of i such

that |〈(SA)i, x〉| ≤ O(t log t log d)‖x‖2. Because A1,i ≥ α, ∀i ∈ [d] where α = Θ(log d), we

need ‖x‖2 ≥ Ω(1/t log t). Otherwise, the total cost on this constant fraction of coordinates

will be at least Ω(d log d).
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For Property II, for a fixed x ∈ Rt, we have

|〈(SA)i, x〉|

=|〈(SB)1, x〉+ 〈Si, x〉| by Equation (17.21)

=

∣∣∣∣Θ(log d)‖x‖1w
′
1(x) + ‖x‖1w

′
i(x)

∣∣∣∣.

where w′i(x) ∼ C(0, 1), and for different x, w′i(x) are different. Then for a fixed x ∈ Rt with

probability at least 0.9, |w′i(x)| = Ω(1), and with probability 0.5, w′1(x) and w′i(x) have the

same sign. Since these two events are independent, with probability at least 0.45, we have

|〈(SA)i, x〉| ≥ ‖x‖1 · Ω(1).

Applying the Chernoff bound, with probability at least 1−2Θ(d), there exists a 3/10 fraction

of i such that |〈(SA)i, x〉| ≥ ‖x‖1Ω(1).

We build an ε-net N for x ∈ Rt on an `1-norm unit ball, where ε = 1/(t2 log2 d). Thus

the size of the net is |N| = 2Θ̃(t). Consider y to be an arbitrary vector, let y/‖y‖1 = x + δ,

where x is the closest point to y/‖y‖1 and x ∈ N. For any δ ∈ Rt,

|〈(SA)i, δ〉| = |〈(SB)1, δ〉+ 〈(SI)i, δ〉|

≤ |〈(SB)1, δ〉|+ |〈(SI)i, δ〉| by triangle inequality

≤ ‖(SB)1‖2‖δ‖2 + ‖Si‖2‖δ‖2 by Cauchy-Schwarz inequality

≤ ‖(SB)1‖2‖δ‖1 + ‖Si‖2‖δ‖1. by ‖ · ‖2 ≤ ‖ · ‖1

As we argued before, With probability .99999, we have

‖(SB)1‖2 ≤ ‖(SB)1‖1 ≤ O(t log t log d), (17.22)
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and with probability 1−2−Θ(d), there is a 9/10 fraction of i ∈ [d], ‖Si‖2 ≤ ‖Si‖1 = O(t log t).

Therefore, with probability .999, for any δ ∈ Rt, there exists a 9/10 fraction of i such that

|〈(SA)i, δ〉| ≤ Θ(t log t log d)‖δ‖1.

Therefore, with probability .99, ∀y ∈ Rt, due to the pigeonhole principle, there is a

3/10 + 9/10− 1 = 1/5 fraction of i such that

|〈(SA)i, y〉|

= ‖y‖1 · |〈(SA)i, y/‖y‖1〉|

= ‖y‖1 · |〈(SA)i, x+ δ〉| by y/‖y‖1 = x+ δ

≥ ‖y‖1 ·
(
|〈(SB)i, x〉+ 〈(SI)i, x〉| − |〈(SB)1, δ〉+ 〈(SI)i, δ〉|

)
by triangle inequality

≥ ‖y‖1

(
Ω(1)− εO(t log t log d)

)

≥ ‖y‖1Ω(1).

So ‖y‖1 should be O(log d). Otherwise, the total cost on this 1/5 fraction of coordi-

nates is at least Ω(d log d).

Combining Property (I) and (II) completes the proof.

Next, we need to show the following claim is true,

Claim 17.6.4. For any d independent Cauchy random variables x1, x2, · · · , xd from C(0, 1),

with probability 1 − 1/ poly(t log d), for any j ∈ [1, 2, · · · , log d − Θ(log log(t log d))], there

are Ω(d/2j) variables belonging to (2j, 2j+1].

Proof. For each Cauchy random variable xi, we have for any j ∈ [1, 2, · · · ,Θ(log d)],

Pr

[
|xi| ∈ (2j, 2j+1]

]
= Θ(1/2j).
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We define the indicator random variable zi,j

zi,j =

{
1 if |xi| ∈ (2j, 2j+1],

0 otherwise.

We define zj =
∑d

i=1 zi,j. It is clear that E[zi,j] = Θ(1/2j). We use a Chernoff bound,

Pr[X < (1− δ)µ] <

(
e−δ

(1− δ)1−δ

)µ
,

and set X = zj, δ = 1/2, µ = E[zj]. Then, this probability is at most 2−Ω(µ) = 2−Ω(E[zj ]). For

any j ∈ [1, log d − Θ(log log(t log d))], we have E[zj] = dE[zij] = Ω(d/2j) = Ω(log(t log d)).

Thus, this probability is at most 1/ poly(t log d). Overall, we have

Pr

[
zj & d/2j

]
≥ 1− 1/ poly(t log d).

Taking a union bound over Θ(log d) such j, we complete the proof.

Claim 17.6.5. Let 1 > c1 > c2 > 1/3 > 0 be three arbitrary constants. We fix the first

column of (SI)> ∈ Rd×t. All the rows are grouped together according to the value in the first

column. Let Rj be the set of rows for which the entry in the first column is ∈ (2j, 2j+1]. With

probability at least 1−O(1/ poly(t log(d))), for any j ∈ [c2 log d, c1 log d], the following event

holds. There exist Ω(d/2j) rows such that the first coordinate ∈ (2j, 2j+1] and all the other

coordinates are at most O(d1/3).

Proof. Let Rj be a subset of rows of S>, such that for any row in Rj, the first coordinate

is ∈ (2j, 2j+1]. By Claim 17.6.4, we have that with probability 1 − 1/ poly(t log d), for any

j ∈ [c2 log d, c1 log d], |Rj| ≥ Ω(d/2j). We want to show that for any j ∈ [c2 log d, c1 log d],
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there exists a constant fraction of rows in Rj such that, the remaining coordinates are at

most O(d1/3).

For a fixed row in Rj and a fixed coordinate in that row, the probability that the

absolute value of this entry is at least Ω(d1/3) is at most O(1/d1/3). By taking a union bound,

with probability at least 1 − O(t/d1/3), the row has every coordinate of absolute value at

most O(d1/3).

By applying a Chernoff bound, for a fixed subset Rj of rows, the probability that there

is a constant fraction of these rows for which every coordinate except the first one in absolute

value is at most O(d1/3), is at least 1− 2−Θ(|Rj |) ≥ 1− 2−Θ(d1−c1 ) ≥ 1−O(1/ poly(t log(d))).

After taking a union over all the j, we complete the proof.

Claim 17.6.6. With probability at least 1−O(1/t), the absolute value of any coordinate in

column vector (SB)1 ∈ Rt×1 is at most O(t2 log d).

Proof. Because each entry is sampled from a Cauchy distribution C(0, 1) scaled by O(log d),

then with probability at most O(1/t2), the absolute value of one coordinate is at least

Ω(t2 log d). Taking a union over all the coordinates, we complete the proof.

Because ‖x‖1 ≤ O(log d), ‖x‖2 ≥ Ω(1/t log t), there exists one coordinate i such that

the absolute value of it is at least Ω(1/t log t) and all the other coordinates are most O(log d).

We can assume that i = 1 for now. (To remove this assumption, we can take a union bound

over all the possibilities for i ∈ [t].) According to Claim 17.6.5 and 17.6.6, let R̂j denote

a subset of Rj, which is a “good” constant fraction of Rj. Considering the `1-norm of all
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coordinates l ∈ R̂j ⊂ Rj ⊂ [d], we have
∑

l∈R̂j

|((SA)>x)l −O(log d)|

≥
∑

l∈R̂j

|〈(SA)l, x〉 −O(log d)|

≥
∑

l∈R̂j

(
|(SI)1,l · x1| −

t∑

j=2

|(SI)j,l · xj| − |〈(SB)l, x〉| −O(log d)

)

≥
∑

l∈R̂j

(
Ω(

2j

t log t
)−O(td1/3 log d)− |〈(SB)1, x〉| −O(log d)

)

≥
∑

l∈R̂j

(
Ω(

2j

t log t
)−O(td1/3 log d)− ‖(SB)1‖1‖x‖1 −O(log d)

)

≥
∑

l∈R̂j

(
Ω(

2j

t log t
)−O(td1/3 log d)−O(t log t log2 d)−O(log d)

)

&
∑

l∈R̂j

2j/(t log t)

& d/2j · 2j/(t log t)

& d/(t log t).

The second inequality follows by the triangle inequality. The third inequality follows by

(SB)1 = (SB)l, |x1| = Ω(1/t log t), (SI)1,l ∈ [2j, 2j+1), and ∀j 6= 1, |xj| < O(log d), (SI)j,l ≤

O(d1/3). The fourth inequality follows by Cauchy-Schwarz and ‖ · ‖2 ≤ ‖ · ‖1. The fifth

inequality follows by Equation (17.22) and Claim 17.6.3. The sixth inequality follows by

t = o(log d) where c is a constant smaller than 1/3 and 2j ≥ dc2 > poly(t). The seventh

inequality follows from |R̂j| ≥ Ω(d/2j).

Since there are c1− c2 different j, the total cost is Ω(d log d/(t log t)). The gap then

is Ω(log d/(t log t)). This completes the proof of Theorem 17.6.2.
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17.6.2 Hard instance for row subset selection

Theorem 17.6.7. Let ε ∈ (0, 1). There exists a value k ≥ 1 and matrix A ∈ R(d−1)×d such

that, for any subset R of rows of A, letting B be the `1-projection of each row of A onto R,

we have

‖A−B‖1 > (2− ε) min
rank−k A′

‖A′ − A‖1,

unless |R| & εd.

Proof. We construct the (d − 1) × d matrix A in the following way. The first column is all

1s, and then the remaining (d− 1)× (d− 1) matrix is the identity matrix.

A =




1 1 0 0 · · · 0
1 0 1 0 · · · 0
1 0 0 1 · · · 0
· · · · · · · · · · · · · · · · · ·
1 0 0 0 · · · 1



.

Note that min
rank−1 A′

‖A − A′‖1 = OPT ≤ d − 1, since one could choose A′ to have the first

column all 1s and remaining entries 0. On the other hand, consider any subset of r rows.

We can permute the columns and preserve the entrywise `1-norm so w.l.o.g., we can take

the first r rows for R.

Because we are taking the first r rows, we do not pay any cost on the first rows. To

minimize the cost on the i-th row, where i ∈ {r+1, r+2, . . . , d}, let vi denote the row vector

we use for the i-th row. Then vi can be written as a linear combination of the first r rows

{A1, A2, . . . , Ar},

vi =
r∑

j=1

αi,jA
j.
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Then the cost of using vi to approximate the i-th row of A is:

‖vi − Ai‖1 = (cost in 1st col) + ( cost in 2nd,3rd, . . . , r + 1th cols) + ( cost in i+ 1th col)

= |
r∑

j=1

αi,j − 1|+
r∑

j=1

|αi,j|+ 1

≥ |
r∑

j=1

αi,j − 1−
r∑

j=1

αi,j|+ 1 by triangle inequality

= 2.

Hence, the cost of using vi to approximate the i-th row of A is at least 2. So in total, across

these (d − 1 − r) rows, the algorithm pays at least 2(d − 1 − r) cost, which needs to be at

most C(d− 1), and therefore r ≥ (d− 1)(1− C/2) = Ω(εd). Choosing C = 2− ε completes

the proof.

Theorem 17.6.8. There exists a value k ≥ 1 and matrix A ∈ R(d−1)×d such that, there is

no algorithm that is able to output a rank−k matrix B in the row span of A satisfying

‖A−B‖1 < 2(1−Θ(
1

d
)) min

rank−k A′
‖A′ − A‖1.

Proof. We use the same matrix A as in the previous theorem.

A =




1 1 0 0 · · · 0
1 0 1 0 · · · 0
1 0 0 1 · · · 0
· · · · · · · · · · · · · · · · · ·
1 0 0 0 · · · 1



.

Let vector v be (
∑d−1

i=1 βi, β1, . . . , βd−1). For the i-th row of A, we use αj · v to cancel

the cost of that row, where αj is a scalar. Then for any β1, . . . , βd−1, α1, . . . , αd−1, we can
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compute the entire residual cost,

f(α, β) =
d−1∑

j=1

‖Aj − vαj‖1

=
d−1∑

j=1

(
|1− αj(

d−1∑

i=1

βi)|+ |1− αjβj|+
∑

i 6=j

|αjβi|
)
.

In the next few paragraphs, we will show that optimizing f(α, β) over some extra constraints

for α, β does not change the optimality. Without loss of generality, we can assume that
∑d−1

i=1 βi = 1. If not we can just rescale all the αi. Consider a fixed index j. All the terms

related to αj and βj are,

∣∣∣1− αj(
d−1∑

i=1

βi)
∣∣∣+ |1− αjβj|+

∑

i 6=j

|αjβi|+ |αiβj|.

We first show a simple proof by assuming βj ≥ 0. Later, we will prove the general version

which does not have any assumptions.

Handling a special case We can optimize f(α, β) in the following sense,

min f(α, β)

s.t.
d−1∑

j=1

βj = 1

αj ≥ 0, βj ≥ 0,∀j ∈ [d− 1].

For each j, we consider three cases. Case I, if αj ≥ 1
βj
, then

|1− αj|+ |1− αjβj|+
∑

i 6=j

αjβi = αj − 1 + αjβj − 1 +
∑

i 6=j

αjβi

= 2αj − 2 ≥ 2(1/βj − 1) ≥ 2(1− βj),
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where the last step follows by βj + 1/βj ≥ 2. Case II, if 1 ≤ αj < 1/βj, then

|1− αj|+ |1− αjβj|+
∑

i 6=j

αjβi = αj − 1 + 1− αjβj +
∑

i 6=j

αjβi

= 2αj(1− βj) ≥ 2(1− βj).

Case III, if αj < 1, then

|1− αj|+ |1− αjβj|+
∑

i 6=j

αjβi = 1− αj + 1− αjβj +
∑

i 6=j

αjβi

= 2(1− αjβj) ≥ 2(1− βj).

Putting it all together, we have

f(α, β) ≥
d−1∑

j=1

2(1− βj) = 2(d− 1)− 2
d−1∑

j=1

βj = 2(d− 2).

To handle the case where βi can be negative Without loss of generality, we can

assume that
∑d−1

i=1 βi = 1. Notice that we can also assume βi 6= 0, otherwise it means we do

not choose that row. We split all βi into two disjoint sets S and S. For any i ∈ S, βi > 0

and for any i ∈ S, βi < 0.

As a first step, we discuss the case when all the j are in set S. Case I, if 1 −

αj
∑d−1

i=1 βi < 0 and 1−αjβj < 0, then it means αj ≥ max( 1∑d−1
i=1 βi

, 1
β j

). The cost of that row

is,

= αj

d−1∑

i=1

βi − 1 + αjβj − 1 +
∑

i 6=j

|αjβi|

= 2αjβj + 2αj
∑

i∈S\j

βi − 2.
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If βj ≥ 1, then αj ≥ 1. The cost is at least 2
∑

i∈S\j βi. If βj < 1, then αj ≥ 1/βj, and the

cost is at least 2 1
βj

∑
i∈S\j βi. If there are C such j in Case I, then the total cost of Case I is

at least 0 if C = 1, and 2(C − 1) if C ≥ 2.

Case II, if 1 − αj
∑d−1

i=1 βi < 0 and 1 − αjβj > 0, then it means 1 < αj < 1/βj. The

cost of that row is,

= αj

d−1∑

i=1

βi − 1 + 1− αjβj + |αj|
∑

i 6=j

|βj|

= 2αj
∑

i∈S\j

βi

≥ 2
∑

i∈S\j

βi.

Similarly to before, if there are C such j in Case II, then the total cost of Case II is at least

0 if C = 1, and 2(C − 1) if C ≥ 2.

Case III, if 1− αj
∑d−1

i=1 βi > 0 and 1− αjβj < 0, then it means 1/βj < αj <
1∑d−1

i=1 βi
.

The cost of the row is,

= 1− αj
d−1∑

i=1

βi + αjβj − 1 + |αj|
∑

i 6=j

|βj|

= 2|αj|
∑

i∈S

|βi|

= 2|αj|(
∑

i∈S

|βi| − 1)

≥ 2
1

βj

∑

i∈S\j

βi.

If there are C such j in Case III, then the total cost of Case III is at least 0 if C = 1, and

2(C · (C − 1)) if C ≥ 2.
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Case IV, if 1−αj
∑d−1

i=1 βi > 0 and 1−αjβj > 0, then it means αj ≤ min(1/βj,
1∑d−1

i=1 βi
).

The cost for the case αj < 0 is larger than the cost for case α > 0. Thus we can ignore the

case αj < 0. The cost of the row is,

= 1− αj
d−1∑

i=1

βi + 1− αjβj + |αj|
∑

i 6=j

|βj|

= 2− 2αjβj + 2αj
∑

i∈S

|βi|.

If βj <
∑

i∈S |βi|, we know that the cost is at least 2. Otherwise, using αj ≤ 1, we have the

cost is at least 2 − 2βj +
∑

i∈S |βi|. Let T denote the set of those j with βj ≥
∑

i∈S |βi|. If

|T | = 1, we know that cost is at least 0. If |T | ≥ 2, then the cost is at least

=
∑

j∈T

(2− 2βj + 2
∑

i∈S

|βi|)

≥ 2|T | − 2
∑

j∈S

βj + 2|T |
∑

i∈S

|βi|

≥ 2|T | − 2 + 2(|T | − 1)
∑

i∈S

|βi|

≥ 2(C − 1).

Now we discuss the case where j ∈ S, which means βj < 0.

Case V if 1 − αj
∑d−1

i=1 βi < 0 and 1 − αjβj < 0, then it means αj > 1/
∑d−1

i=1 βi and

αj < 1/βj. Notice that this case will never happen, because
∑d−1

i=1 βi = 1 and αj < 0.

Case VI if 1−αj
∑d−1

i=1 βi < 0 and 1−αjβj < 0, then it means αj ≥ max(1/
∑d−1

i=1 βi, 1/βj).
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Because of βj < 0, then αj ≥ 1. The cost of that is,

= αj

d−1∑

i=1

βi − 1 + 1− αjβj + |αj|
∑

i 6=j

|βi|

= 2αj
∑

i∈S

|βi|

≥ 2. by αj ≥ 1 and
∑

i∈S

|βi| ≥ 1.

Case VII if 1−αj
∑d−1

i=1 βi > 0 and 1−αjβj < 0, then it means αj < min(1/βj, 1/
∑d−1

i=1 βi).

Because βj < 0 and
∑d−1

i=1 βi = 1, thus αj < 1/βj. The cost of that row is,

= 1− αj
d−1∑

i=1

βi + αjβj − 1 + |αj|
∑

i 6=j

|βi|

= 2|αj|
∑

i∈S\j

|βi|

≥ 2
1

|βj|
∑

i∈S\j

|βi|.

If there are C such j in Case VII, then the total cost of Case VII is at least 0 if C = 1, and

2(C · (C − 1)) if C ≥ 2.

Case VIII if 1 − αj
∑d−1

i=1 βi > 0 and 1 − αjβj > 0, then it means 1/βj < αj <

1/
∑d−1

i=1 βi. The cost of that row,

= 1− αj
d−1∑

i=1

βi + 1− αjβj + |αj|
∑

i 6=j

|βi|

= 2− 2αjβj + 2|αj|
∑

i∈S\j

|βi|.

If αj > 0, then the cost is always at least 2. If αj < 0, the cost is at least,

2− 2|αjβj|+ 2|αj|
∑

i∈S\j

|βi|.
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If
∑

i∈S\j |βi| > |βj|, we also have cost at least 2. Otherwise, we have

2− 2|αj|(|βj| −
∑

i∈S\j

|βi|) =

{
2− 2|βj|+ 2

∑
i∈S\j |βi| if 1/|βj| ≤ 1,

2 1
|βj |
∑

i∈S\j |βi| if 1/|βj| > 1.

Let C denote the number of such j with 1/|βj| ≤ 1. If C = 1, the cost is at least 0. If C ≥ 2,

the cost is at least 2C. Let C ′ denote the number of such j with 1/|βj| > 1. If C ′ = 1, the

cost is at least 0, if C ′ ≥ 2, the cost is at least 2(C ′(C ′ − 1)). Overall, putting all the eight

cases together, we complete the proof.
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17.6.3 Hard instance for oblivious subspace embedding and more row subset
selection

The goal in this section is to prove Theorem 17.6.28. By applying Yao’s minmax

principle, it suffices to prove Theorem 17.6.25.

17.6.3.1 Definitions

We first give the definition of total variation distance and Kullback-Leibler divergence.

Definition 17.6.1. [LPW09, Ver14] The total variation distance between two probability

measures P and Q on the measurable space (X, F) is defined as,

DTV(P,Q) = sup
A∈F
|P (A)−Q(A)|.

The Kullback-Leibler( KL) divergence of P and Q is defined as,

DKL(P ||Q) = E
P

(
log

dP

dQ

)
=

∫

X

(
log

dP

dQ

)
dP.

Lemma 17.6.9. [Pin60, Tsy09, CK11] Pinsker’s inequality states that, if P and Q are two

probability distributions on a measurable (X, F), then

DTV(P,Q) ≤
√

1

2
DKL(P ||Q).

Lemma 17.6.10. For any Gaussian random variable x ∼ N(0, σ2), we have, for any a > 0

Pr[|x| < a] . a

σ
.
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Proof.

Pr[|x| < a] = erf(
a

σ
√

2
)

≤ (1− e−−4a2

2σ2π )
1
2 by 1− exp(−4x2/π) ≥ erf(x)2

≤ (
4a2

2σ2π
)

1
2 by 1− e−x ≤ x

. a

σ
.

Lemma 17.6.11. Let V ∈ Rn×m be a matrix with orthonormal columns. Let H′ be a

distribution over V >A, where A ∈ Rn×k is a random matrix with each entry i.i.d. Gaussian

N(0, 1). Denote H as a distribution over H ∈ Rm×k, where each entry of H is drawn from

i.i.d. Gaussian N(0, 1). Then, H and H′ are the same distribution.

Proof. It is clear that each entry of V >A is a random Gaussian variable from N(0, 1), so our

goal is to prove the entries of V >A are fully independent. Since the the jth column of V >A

only depends on Aj, the variables from different columns are fully independent. Now, we

look at one column of x = V >Aj. The density function is

f(x) =
1√

(2π)m|V >V |
exp

(
−1

2
x>V >V x

)
=

1√
(2π)m

exp

(
−1

2
x>x

)
,

which is exactly the density function of N(0, Im). Thus x ∈ N(0, Im). Therefore, all the

entries of V >A are fully independent.

Lemma 17.6.12 (Matrix Determinant Lemma). Suppose A ∈ Rn×n is an invertible matrix,

and u, v ∈ Rn. Then,

|A+ uv>| = (1 + v>A−1u)|A|.
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Lemma 17.6.13 (KL divergence between two multivariate Gaussians [PP+08]1). Given two

d-dimensional multivariate Gaussian distribution N(µ1,Σ1) and N(µ2,Σ2), then

DKL(N(µ1||Σ1), N(µ2,Σ2)) =
1

2

(
log
|Σ2|
|Σ1|
− d+ tr(Σ−1

2 Σ1) + (µ2 − µ1)>Σ−1
2 (µ2 − µ1)

)
.

Lemma 17.6.14 (Sherman-Morrison formula). Suppose A ∈ Rn×n is an invertible matrix

and u, v ∈ Rn. Suppose furthermore that 1 + v>A−1u 6= 0. Then the Sherman-Morrison

formula states that

(A+ uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
. (17.23)

17.6.3.2 Main results

Lemma 17.6.15. Let V ∈ Rn×m be a matrix with orthonormal columns, and let A ∈ Rn×k

be a random matrix with each entry drawn from i.i.d. Gaussian N(0, 1). We denote the

distribution Di over Di ∈ R(m+1)×k where

Di =

[
V >A
Ai

]
.

If ‖(V >)i‖2
2 <

1
2
, then

DTV(Di,G) ≤ O(k‖V i‖2) + 2−Θ(k),

where G is a distribution over G ∈ R(m+1)×k, where each entry of G is drawn from the i.i.d.

Gaussian N(0, 1).

1http://stats.stackexchange.com/questions/60680/kl-divergence-between-two-multivariate-gaussians
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Proof. Let H be a distribution over H ∈ Rm×k, where each entry of H is an i.i.d. Gaussian

N(0, 1). Let H′ be a distribution over V >A. According to Lemma 17.6.11, H and H′ are

the same distribution.

We define matrix V ¬i ∈ Rn×m as

V ¬i =
[
(V 1)> (V 2)> · · · (V i−1)> 0 (V i+1)> · · · (V n)>

]>
,

where V i denotes the ith row of V ∈ Rn×m, ∀i ∈ [n].

Let G be a distribution over G ∈ R(m+1)×k, where each entry of G is an i.i.d. Gaussian

N(0, 1). Let Pi be a distribution over Pi ∈ R(m+1)×k, where

Pi =

[
(V ¬i)>A

Ai

]
.

Let P̂i be a distribution over P̂i ∈ Rm×k, where P̂i = (V ¬i)>A. Then we have:

DTV(Pi,G) = DTV(P̂i,H
′) = DTV(P̂i,H). (17.24)

The first equality is because (V ¬i)>A is independent from Ai. The second equality follows

the Lemma 17.6.11.

Claim 17.6.16. If ‖V i‖2
2 ≤ 1

2
,

DKL(P̂i||H) = −k
2

(
log(1− ‖V i‖2

2) + ‖V i‖2
2

)
≤ k‖V i‖2

2.

Proof. Let P̂i ∼ P̂i, H ∼ H. Notice that different columns of P̂i are i.i.d, and all entries of

H are fully independent. We can look at one column of P̂i and H. Since P̂i = (V ¬i)>A, it

is easy to see that its column is drawn from N(0,Σ1) where Σ1 = Im − (V i)>V i. Since H

is fully independent, each column of H is drawn from N(0,Σ2) where Σ2 = Im. Let p(x)
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be the pdf of the column of P̂i, and let q(x) be the pdf of the column of H. We have the

following calculation [PP+08]2,

DKL(P̂i||H) =
k

2

(
log
|Σ2|
|Σ1|
−m+ tr(Σ−1

2 Σ1)

)

=
k

2

(
log

|Im|
|Im − (V i)>V i| −m+ tr(Im − (V i)>V i)

)

=
k

2

(
− log |Im − (V i)>V i| −m+m− ‖V i‖2

2

)

=
k

2

(
− log(1− ‖V i‖2

2)−m+m− ‖V i‖2
2

)

= −k
2

(
log(1− ‖V i‖2

2) + ‖V i‖2
2

)

≤ −k
2
· 2‖V i‖2

2

= k‖V i‖2
2.

The first equality is due to Lemma 17.6.13. The sixth equality follows by Σ2 = Im and

Σ1 = Im − (V i)>V i. The eighth equality follows by Lemma 17.6.12. The first inequality

follows by log(1− x) + x ≥ −2x, when 0 < x < 1/2.

According to Lemma 17.6.9, we have

DTV(P̂i,H) ≤
√

1

2
DKL(P̂i||H) ≤

√
k‖V i‖2. (17.25)

Now, we want to argue that DTV(Di,Pi) is small, where Di is a distribution over Di ∈

R(m+1)×k that

Di =

[
V >A
Ai

]
.

2http://stats.stackexchange.com/questions/60680/kl-divergence-between-two-multivariate-gaussians
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For a fixed x ∈ Rk, let D̂i(x) be a distribution over D̂i(x) ∈ Rm×k, where D̂i(x) = (V ¬i)>A+

(V i)>x. Let p(x) be the pdf of (Ai)>, then

DTV(Di,Pi) =

∫
DTV

(
D̂i(x), P̂i

)
p(x)dx. (17.26)

Now we look at the jth column of D̂i(x) and the jth column of P̂i. The distribution

of the previous one is over N((V i)>xj,Σ2), and the latter distribution as we said before is

N(0,Σ2), where Σ2 = Im − (V i)>V i. Now we can argue that the KL divergence between

them is bounded:

DKL(N((V i)>xj,Σ2)||N(0,Σ2))

=
1

2

(
log
|Σ2|
|Σ2|
−m+ tr(Σ−1

2 Σ2) + x2
jV

iΣ−1
2 (V i)>

)

=
1

2

(
−m+ tr(Im) + x2

jV
iΣ−1

2 (V i)>
)

=
1

2
x2
jV

iΣ−1
2 (V i)>

=
1

2
x2
jV

i(Im − (V i)>V i)−1(V i)>

=
1

2
x2
jV

i

(
Im +

(V i)>V i

1− V i(V i)>

)
(V i)>

=
1

2
x2
j

(
‖V i‖2

2 +
‖V i‖2

2

1− ‖V i‖2
2

)

=
1

2
x2
j

‖V i‖2
2

1− ‖V i‖2
2

.

The first equality is due to Lemma 17.6.13. The fourth equality follows by Σ2 = Im−(V i)>V i.

The fifth equality follows by Lemma 17.6.14.

By summing the KL divergence on all the columns up,

DKL(D̂i(x)||P̂i) =
1

2
‖x‖2

2

‖V i‖2
2

1− ‖V i‖2
2

.
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Applying Lemma 17.6.9 again, we get

DTV(D̂i(x), P̂i) ≤
√

1

2
DKL(D̂i(x)||P̂i) =

‖x‖2‖V i‖2

2
√

1− ‖V i‖2
2

.

Plugging it into Equation (17.26), we get

DTV(Di,Pi) =

∫
DTV

(
D̂i(x), P̂i

)
p(x)dx

=

∫

‖x‖2≤10k

DTV

(
D̂i(x), P̂i

)
p(x)dx+

∫

‖x‖2>10k

DTV

(
D̂i(x), P̂i

)
p(x)dx

≤
∫

‖x‖2≤10k

DTV

(
D̂i(x), P̂i

)
p(x)dx+

∫

‖x‖2>10k

p(x)dx

≤
∫

‖x‖2≤10k

‖x‖2‖V i‖2

2
√

1− ‖V i‖2
2

p(x)dx+

∫

‖x‖2>10k

p(x)dx

≤ 10k‖V i‖2

2
√

1− ‖V i‖2
2

+

∫

‖x‖2>10k

p(x)dx

≤ 10k‖V i‖2

2
√

1− ‖V i‖2
2

+ 2−Θ(k).

The first inequality just follows from the fact that total variation distance is smaller than 1.

The second inequality is what we plugged in. The last inequality follows from the fact that

x ∼ N(0, Ik) and from the tail bounds of a Gaussian.

Together with Equation (17.24) and Equation (17.25), we can get

DTV(Di,G) ≤ DTV(Di,Pi) +DTV(G,Pi)

= DTV(Di,Pi) +DTV(P̂i,H)

≤ 10k‖V i‖2

2
√

1− ‖V i‖2
2

+ 2−Θ(k) +
√
k‖V i‖2

≤ 10k‖V i‖2 + 2−Θ(k) +
√
k‖V i‖2.

The last inequality follows by ‖V i‖2
2 ≤ 1

2
. Then, we have completed the proof.
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Lemma 17.6.17. A ∈ Rr×k (r ≥ k) is a random matrix for which each entry is i.i.d.

N(0, 1). With probability at least 1 − e−Θ(r), the maximum singular value ‖A‖2 is at most

O(
√
r).

Proof. Since A ∈ Rk×r is a random matrix with each entry i.i.d. N(0, 1), this follows by

standard arguments (Proposition 2.4 in [RV10]). Since r ≥ k, with probability at least

1− e−Θ(r), ‖A‖2 is at most O(
√
r).

Definition 17.6.2. Let V ∈ Rn×r be a matrix with orthonormal columns, and let each

entry of A ∈ Rk×r be a random variable drawn from an i.i.d. Gaussian N(0, 1). Define event

Ê(A, V, β, γ) to be: ∀y ∈ Rn, ‖y‖1 ≤ O(kγ) and each coordinate of y has absolute value at

most 1/kβ, and also AV >y has at most O(k/ log k) coordinates with absolute value at least

Ω(1/ log k), and ‖A‖2 ≤ O(
√
r).

Lemma 17.6.18. For any k ≥ 1, and any constants c2 ≥ c1 ≥ 1, let k ≤ r = O(kc1), r ≤

n = O(kc2), let V ∈ Rn×r be a matrix with orthonormal columns, and let each entry of

A ∈ Rk×r be a random variable drawn from i.i.d. Gaussian N(0, 1). Furthermore, if β and

γ are two constants which satisfy β > γ > 0 and β + γ < 1,

Pr

[
Ê(A, V, β, γ)

]
≥ 1− 2−Θ(k).

Proof. Due to Lemma 17.6.17, with probability at least 1 − 2−Θ(r), ‖A‖2 ≤ O(
√
r), so we

can restrict attention to ‖A‖2 ≤ O(
√
r) in the following proof.

Take any y ∈ Rn which has each non-zero coordinate with absolute value at most

1/kβ, and write it as y =
∑+∞

j=j0
yj, where the coordinates in yj have absolute value in the
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range [2−j−1, 2−j), and the supports of different yj are disjoint. Since each coordinate of y

is at most 1/kβ, 2−j0 = 1/kβ. Since ‖y‖1 ≤ O(kγ), the support size of yj ∈ Rn is at most

sj ≤ O(2j+1kγ), so it follows that

‖yj‖2 ≤
√
sj · 2−2j ≤

√
2−j+1kγ.

We also know ‖yj‖2 ≥
√
sj · 2−2j−2. Then we can conclude that yj has 2-norm Θ(2−j

√
sj).

Now we state an ε-net for all the possible yj: let ε = O(1/(nrk3)) = O(1/(kc1+c2+3)). Let

Nj ⊂ Rn be the following:

Nj =
{
p ∈ Rn | ∃q ∈ Zn, s.t. p = εq, ‖p‖1 ≤ O(kγ),∀i ∈ [n], either |pi| ∈ [2−j−1, 2−j) or pi = 0

}
.

Obviously, for any yj, there exists p ∈ Nj such that ‖yj − p‖∞ ≤ ε = O(1/(kc1+c2+3)), since

n ≤ O(kc2), ‖yj − p‖2 ≤ ‖yj − p‖1 ≤ n‖yj − p‖∞ ≤ O(1/kc1+3). Now let us consider the size

of Nj. If p ∈ Nj, the choice of one coordinate of p is at most 2/ε+1. And since ‖p‖1 ≤ O(kγ)

and each coordinate of p has absolute value at least 2−j−1, the number of supports of p is at

most O(2j+1kγ). Therefore,

|Nj| ≤ (n+ 1)O(2j+1kγ) · (2/ε+ 1)O(2j+1kγ)

≤ 2O(2j+1kγ(logn+log(2/ε+1))

≤ 2O(2j+1kγ log k).

The last inequality follows from n ≤ O(kc2), r ≤ O(kc1), ε = O(1/(rnk3)).

We define an event E(yj) to be: AV >yj has k/ log2 k coordinates which are each at

least 2/ log2 k in absolute value. Now, we want to show,
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Claim 17.6.19. For any j ≥ j0, for a fixed yj ∈ Rn,

Pr

[
E(yj) happens

]
≤ 2ke−Θ(k/(‖yj‖22 log6 k)) ≤ e−Θ(2j−1k1−γ/ log6 k).

Proof. We let p be the probability that the absolute value of a single coordinate of AV >yj

is at least 1/ log2 k. Notice that each coordinate of AV >yj is i.i.d. Gaussian N(0, ‖V >yj‖2
2)

and because for any Gaussian random variable g, Pr[|g| ≥ t] ≤ exp(−Θ(t2/σ2)), then p ≤

exp(−1/(‖V >yj‖2
2 log4 k)), by plugging σ2 = ‖V >yj‖2

2 and t = 1/ log2 k. So the probability

AV >yj has k/ log2 k coordinates which are each at least 1/ log2 k in absolute value is,

k∑

i=k/ log2 k

pi(1− p)k−i
(
k

i

)
≤

k∑

i=k/ log2 k

pi
(
k

k/2

)
≤ 2pk/ log2 k2k

≤ e−Θ(kt2/(σ2 log2 k))2k

≤ e−Θ(k/(‖V >yj‖22 log6 k))2k

≤ e−Θ(k/(‖yj‖22 log6 k))2k

≤ e−Θ(k/(2−2jsj log6 k))2k

≤ e−Θ(k/(2−j+1kγ log6 k))2k

= e−Θ(k/(2−j+1kγ log6 k))

≤ e−Θ(2j−1k1−γ/ log6 k),

where the second step follows from p ≤ exp(−Θ(t2/σ2)), the forth step follows from ‖V >yj‖2
2 ≤

‖V ‖2
2‖yj‖2

2 ≤ ‖yj‖2
2, the fifth step follows from ‖yj‖2

2 ≤ 2−2jsj, the sixth step follows

from sj ≤ O(2j+1kγ), the seventh step follows from 2−j+1kγ log6 k ≤ 2−j0+1kγ log6 k ≤

2kγ−β log6 k = o(1).
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For j1 = d100(c1+c2+1) log ke = Θ(log k), consider j ∈ [j1,∞). We have ‖∑∞j=j1 yj‖2

is at most Θ(2−j1
√
n) ≤ 1/k100(1+c1), and so

‖AV >
∞∑

j=j1

yj‖1 ≤
√
k‖AV >

∞∑

j=j1

yj‖2

≤
√
k‖A‖2‖V ‖2‖

∞∑

j=j1

yj‖2

≤
√
k · √r · 1/k100(1+c1) ≤ 1/k50.

The last inequality follows from r = O(kc1). So the contribution of yj to ‖AV >yj‖1 for all

j ≥ j1 is at most 1/k50. Thus, if we only consider those j which contribute, i.e., j0 ≤ j ≤ j1,

we have O(log k) values of j. Then we can only construct O(log k) nets Nj0 ,Nj0+1, · · · ,Nj1 .

Since the size of net Nj is 2Θ(2j+1kγ log k), by combining Claim 17.6.19 and taking a union

bound, we have

Pr

[
∃yj ∈

j1⋃

j=j0

Nj, E(yj) happens

]
≤

j1∑

j=j0

2Θ(2j+1kγ log k) · e−Θ(2j−1k1−γ/ log6 k)

≤ e−Θ(2j0−1k1−γ/ log6 k)

≤ e−Θ(k1+β−γ/ log6 k)

≤ 2−Θ(k).

The second inequality follows since kγ = o(k1−γ). The third inequality follows since 2j0 ≥ kβ.

The fourth inequality follows since 1 + β − γ > 1.

Then, ∀j0 ≤ j ≤ j1,∀ỹj 6∈ Nj, there exists a vector ŷj in Nj, such that ‖ŷj − ỹj‖2 ≤
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1/k3+c1 . We can upper bound the `∞ norm of AV >ŷj − AV >ỹj in the following sense,

‖AV >ŷj − AV >ỹj‖∞ ≤ ‖AV >ŷj − AV >ỹj‖2 by ‖ · ‖∞ ≤ ‖ · ‖2

≤ ‖A‖2 · ‖ŷj − ỹj‖2

≤ √r/k3+c1 by Claim 17.6.17 and ‖ŷj − ỹj‖2 ≤ 1/k3+c1

= 1/k2. by r ≤ O(kc1)

We let Y = {y ∈ Rn | ‖y‖1 ≤ O(kγ) and each coordinate of y ≤ 1/kβ}. Since 1/k2 <

1/ log2 k we can conclude that,

Pr

[
∃y ∈ Y, j ≥ j0,E(yj) happens

]
≤ 2−Θ(k). (17.27)

Recalling y =
∑

j y
j, by Equation (17.27), for any y, with probability at most 2−Θ(k),

there are at most O(log k) · k/ log2 k ≤ O(k/ log k) coordinates for which AV >
∑j1

j=j0
yj (the

same statement also holds for AV >
∑∞

j=j0
yj = AV >y since we argued that there is negligible

“contribution” for those j > j1) is at least O(log k)/ log2 k = O(1/ log k) on that coordinate.

Summarizing,

Pr

[
Ê(A, V, β, γ)

]
≥ 1− 2−Θ(k).

Lemma 17.6.20. For any t, k ≥ 1, and any constants c2 ≥ c1 ≥ 1, let k ≤ r = O(kc1), r ≤

n = O(kc2), let V ∈ Rn×r be a matrix with orthonormal columns, and let each entry of

A ∈ Rk×r, v1, v2, · · · , vt ∈ Rk be an i.i.d. Gaussian N(0, 1) random variable. For a constant

α ∈ (0, 0.5) which can be arbitrarily small, if Ê(A, V, 0.5 + α/2, 0.5 − α) happens, then with

probability at least 1 − 2−Θ(tk), there are at least dt/10e such j ∈ [t] that ∀x ∈ Rr either

‖Ax− vj‖1 ≥ Ω(k0.5−α) or ‖V x‖1 ≥ Ω(k0.5−α) holds.
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Proof. For convenience, we define γ = 0.5−α which can be an arbitrary constant in (0, 0.5).

We let constant β = 0.5 +α/2. Then we have β+γ < 1 and β > γ. Let v ∈ Rk be a random

vector with each entry drawn from i.i.d. Gaussian N(0, 1). Suppose Ê(A, V, β, γ) happens.

For any x ∈ Rr, we can find a y ∈ Rn such that y = V x. Since V ∈ Rn×r has or-

thonormal columns, x = V >V x = V >y. Then our goal is to argue that with high probability

if ‖AV >y − v‖1 ≤ O(kγ), then ‖y‖1 > Ω(kγ). Take any y ∈ Rn which can be expressed as

V x, and decompose it as y = y0 + y1, where y0 ∈ Rn and y1 ∈ Rn have disjoint supports, y0

has each coordinate with absolute value greater than 1/kβ, and y1 has each coordinate with

absolute value at most 1/kβ.

Now we create an ε-net for y0: let ε = O(1/(rnk3)) = O(1/kc1+c2+3), we denote

N ⊂ Rn as follows:

N =
{
p ∈ Rn | ∃q ∈ Zn, s.t. p = εq, ‖p‖1 ≤ O(kγ),∀i ∈ [n], either |pi| > 1/kβ or pi = 0

}
.

Obviously, for any y0, there exists p ∈ N such that ‖y0 − p‖∞ ≤ ε = O(1/(kc1+c2+3)), since

n ≤ O(kc2), ‖y0 − p‖2 ≤ ‖y0 − p‖1 ≤ n‖y0 − p‖∞ ≤ O(1/kc1+3). Now let us consider the

size of N. If p ∈ N, the number of choices of one coordinate of p is at most O(kγ/ε). And

since ‖p‖1 ≤ O(kγ) and each coordinate of p has absolute value at least 1/kβ, the number

of supports of p is at most O(kγ+β). Therefore,

|N| ≤ (n+ 1)O(kγ+β) ·O(kγ/ε)O(kγ+β)

≤ 2O(kγ+β log k).

The last inequality follows from n ≤ O(kc2), r ≤ O(kc1), ε = O(1/(rnk3)).

For y0 ∈ Rn, we define event E1(y0) as: ∃ valid y1 ∈ Rn, ‖AV >y−v‖1 ≤ O(kγ), where

y = y0 + y1 is the decomposition of a possible y ∈ Rn. Here y1 is valid means that there
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exists y ∈ Rn such that ‖y‖1 ≤ O(kγ) and the decomposition of y is y = y0 + y1. We define

event E2(y0) as: ∃ valid y1, the absolute value of AV >y − v is at most O(1/kγ) for at least

k−O(k2γ) coordinates i in [k] . We define event E3(y0) as: at least k−O(k2γ)−O(k/ log k)

coordinates of Ay0 − v have absolute value at most O(1/ log k).

Claim 17.6.21. For y0 ∈ Rn,

Pr[E3(y0) happens ] ≥ Pr[E2(y0) happens ] ≥ Pr[E1(y0) happens ].

Proof. If E1(y0) happens, then there exists a valid y1 ∈ Rn such that y = y0 + y1 and

‖AV >y − v‖1 ≤ O(kγ). For this y, there are at least k −O(1/k2γ) coordinates of AV >y − v

with absolute value at most O(1/kγ). Otherwise, ‖AV >y − v‖1 > Ω(kγ). Thus, E1(y0)

implies E2(y0).

Now we want to show E2(y0) implies E3(y0). We suppose E2(y0) happens. Then there

is a valid y1 such that there are at least k−O(1/k2γ) coordinates of AV >y− v with absolute

value at most O(1/kγ), where y = y0 + y1. Recall that the event Ê(A, V, β, γ) happens, for

any valid y1 there are at most O(k/ log k) coordinates of AV >y1 are at least Ω(1/ log k).

Therefore,

AV >y0 − v = AV >y − v︸ ︷︷ ︸
≥k−O(k2γ) coordinates

each ≤O(1/kγ)

− AV >y1︸ ︷︷ ︸
≤O(k/ log k) coordinates

each≥Ω(1/ log k)

.

Therefore, at least k − O(k2γ) − O(k/ log k) coordinates of Ay0 − v in absolute value is at

most O(1/ log k) +O(1/kγ) = O(1/ log k)

Claim 17.6.22. Define event F1 to be the situation for which there exists 1/2 of the co-

ordinates of v ∈ Rk that are at least 1/100. The probability this event F1 holds is at least

1− 2−Θ(k).
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Proof. Note that F1 means there exist k/2 of the coordinates of v ∈ Rk which are at most

1/100. Using Lemma 17.6.10, for each single coordinate the probability it is smaller than

1/100 is 1/200. Then the probability more than half the coordinates are no more than 1/100

is

k∑

i=k/2

pi(1− p)k−i
(
k

i

)
≤

k∑

i=k/2

pi
(
k

k/2

)
≤ 2pk/22k ≤ (1/200)Θ(k) = 2−Θ(k).

Conditioned on F1 happening, if E3(y0) happens, then due to the pigeonhole principle,

there are at least k
2
− O(k2γ) − O(k/ log k) coordinates of AV >y0 − v that are at most

O(1/ log k) and the corresponding coordinate of v is larger than 1/100. Now, let us look at

the probability on a single coordinate of AV >y0 − v.

Claim 17.6.23. If the ith coordinate of v ∈ Rk is at least 1/100. Then Pr[|(AV >y0)i−(v)i| ≤

O(1/ log k)] ≤ O(1/ log k).

Proof. Since |(v)i| > 1/100 and v is independent from A ∈ Rk×r, for 0 < η < 1/100,

Pr[|(AV >y0)i − (v)i| ≤ η] is always upper bounded by Pr[(Ax0)i ∈ [1/100 − η, 1/100 + η].

Thus, it suffices to prove an upper bound for Pr[(AV >x0)i ∈ [1/100−η, 1/100+η]. Let f(x)
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be the pdf of N(0, σ2), where σ2 = ‖V >y0‖2
2, V ∈ Rn×r, y0 ∈ Rn. Then

Pr[(AV >y0)i ∈ [1/100− η, 1/100 + η]]

=

∫ 1/100+η

1/100−η
f(x)dx

≤ f(1/200)

∫ 1/100+η

1/100−η
dx

≤O(η).

where the last step follows since f(1/200) ≤ 200. We set η = O(1/ log k), then we get the

statement.

Claim 17.6.24. Conditioned on F1, for a fixed y0 ∈ Rn, with probability at most 2−Θ(k),

there are at least k
10

coordinates of AV >y0 − v ∈ Rk which are at most O(1/ log k) and the

corresponding coordinate of v is larger than 1/100.

Proof. We look at the coordinate i ∈ [k] which has |(v)i| > 1/100. The probability

‖(AV >y0)i − (v)i‖ ≤ O(1/ log k) is at most O(1/ log k). Due to the independence between

different coordinates of v, since there are at least k/2 coordinates of v satisfying that they

have absolute value greater than 1/100, with probability at most 2−Θ(k), there are at least
1
5
· k

2
= k/10 coordinates of AV >y0 − v which are at most O(1/ log k).

Because E3(y0) implies the event described in the above claim when conditioning on

F1, for a fixed y0, the probability that E3(y0) holds is at most 2−Θ(k). Since γ + β < 1, the

|N| ≤ 2k
o(1) , we can take a union bound over the N:

Pr[∃y0 ∈ N,E1(y0) happens ] ≤ 2−Θ(k).
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It means that with probability at least 1 − 2−Θ(k), for any y = y0 + y1 with y0 ∈ N,

‖AV >y − v‖1 > Ω(kγ). Let ỹ = ỹ0 +
∑
ỹj, where ỹ0 6∈ N. We can find ŷ0 ∈ N which is the

closest to ỹ0. Denote ŷ = ŷ +
∑
ỹj. Then,

‖AV >ŷ − v‖1 ≤ ‖AV >ỹ − v‖1 + ‖AV >ỹ − AV >ŷ‖1 by triangle inequality

≤ ‖AV >ỹ − v‖1 +
√
k‖AV >ỹ − AV >ŷ‖2 by ‖ · ‖1 ≤

√
dim‖ · ‖2

≤ ‖AV >ỹ − v‖1 +
√
k‖A‖2‖ỹ − ŷ‖2

≤ ‖AV >ỹ − v‖1 +
√
k · √r · ‖ỹ0 − ŷ0‖2 by ‖A‖2 ≤

√
r

≤ ‖AV >ỹ − v‖1 +
√
k · √r · ε by ‖ỹ0 − ŷ0‖2 ≤ ε

= ‖AV >ỹ − v‖1 +
√
k · √r · 1/kc1+3 by ε′ = 1/kc1+3

= ‖AV >ỹ − v‖1 + 1/k. by r = O(kc1)

and so if ‖AV >ỹ − v‖1 is at most O(kγ) then ‖Aŷ − v‖1 is at most O(kγ).

For j ∈ [t], we now use notation E4(vj) to denote the event: ∃y0 ∈ Rn with ‖y0‖1 ≤

O(kγ) and each non-zero coordinate of y0 is greater than 1/kβ, at least k−O(k2γ)−O(k/ log k)

coordinates of AV >y0 − vj in absolute value are at most O(1/ log k). Based on the previous

argument, conditioned on Ê(A, V, β, γ),

Pr[E4(vj)] ≤ 2−Θ(k).

Also notice that, conditioned on Ê(A, V, β, γ), ∀j ∈ [t], E4(vj) are independent. Thus,

conditioned on Ê(A, V, β, γ), due to the Chernoff bound, the probability that there are dt/10e

such j that E4(vj) happens is at most 2−Θ(kt). We define E5(vj) to be the event: ∃y ∈

Rn, ‖AV >y − vj‖ ≤ O(kγ) with ‖y‖1 ≤ O(kγ). Similar to the proof of Claim 17.6.21,

conditioned on Ê(A, V, β, γ), E5(vj) implies E4(vj). Thus, conditioned on Ê(A, V, β, γ), the
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probability that there are dt/10e such j that E5(vj) happens is at most 2−Θ(tk). Then, we

complete the proof.

Theorem 17.6.25. For any k ≥ 1, and any constants c1, c2 which satisfy c2 − 2 > c1 > 1,

let r = Θ(kc1), n = Θ(kc2), and let A(k, n) denote a distribution over n × (k + n) matrices

where each entry of the first n×k matrix is i.i.d. Gaussian N(0, 1) and the next n×n matrix

is an identity matrix. For any fixed r× n matrix S and a random matrix Â ∼ A(k, n), with

probability at least 1 − O(k1+
c1−c2

2 ) − 2−Θ(k), there is no algorithm that is able to output a

matrix B ∈ Rn×r such that

‖BSÂ− Â‖1 ≤ O(k0.5−ε) min
rank−k A′

‖A′ − Â‖1,

where ε > 0 is a constant which can be arbitrarily small.

Proof. For convenience, we let γ = 0.5 − ε be a constant which can be arbitrarily close to

0.5. Since the last n columns of Â is an identity matrix, we can fit the first k columns of Â,

so we have

min
rank−k A′

‖A′ − Â‖1 ≤ n.

Now, we want to argue that, for a fixed S, with high probability, for any rank-k n×r matrix

B, the cost

‖BSÂ− Â‖1 ≥ Ω(n · kγ).

Thus, the approximation gap will be at least Ω(kγ).
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We denote the SVD of S = USΣSV
>
S where US ∈ Rr×r,ΣS ∈ Rr×r, VS ∈ Rn×r. Then,

we can rewrite

‖BSÂ− Â‖1 = ‖BUSΣSV
>
S Â− Â‖1

=
n∑

l=1

‖(BUSΣS)l(V >S Â)− Âl‖1

≥
∑

l:‖V lS‖
2
2≤2r/n

‖(BUSΣS)l(V >S Â)− Âl‖1. (17.28)

The first equality follows from the SVD of S. The second equality follows from the fact that

the `1-norm of a matrix is the sum of `1-norms of rows. The third inequality follows since

we just look at the cost on a part of the rows.

We use βl to denote (BUSΣS)l. We look at a fixed row l, then the cost on this row is:

‖βl(V >S Â)− Âl‖1

=‖βl(V >S Â)[1:k] − (Âl)[1:k]‖1 + ‖βl(V >S Â)[k+1:k+n] − (Âl)[k+1:n+k]‖1

≥‖βl(V >S Â)[1:k] − (Âl)[1:k]‖1 + ‖βl(V >S Â)[k+1:k+n]‖1 − ‖(Âl)[k+1:n+k]‖1

≥‖βl(V >S Â)[1:k] − (Âl)[1:k]‖1 + ‖βl(V >S Â)[k+1:k+n]‖1 − 1

≥‖βl(V >S Â)[1:k] − (Âl)[1:k]‖1 + ‖βlV >S ‖1 − 1.

(17.29)

where (V >S Â)[1:k] denotes the first k columns of (V >S Â), and similarly, (V >S Â)[k+1:k+n] denotes

the last n columns of (V >S Â). The first equality is because we can compute the sum of `1

norms on the first k coordinates and `1 norm on the last n coordinates. The first inequality

follows from the triangle inequality. The second inequality follows since the last n columns

of Â form an identity, so there is exactly one 1 on the last n columns in each row. The third
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inequality follows since the last n columns of Â form an identity. Let Dl be a distribution

over Dl ∈ R(r+1)×k, where

Dl =

[
(V >S Â)[1:k]

(Âl)[1:k]

]
.

Let G be a distribution over G ∈ R(r+1)×k where each entry of G is drawn from i.i.d. N(0, 1).

According to Lemma 17.6.15, we have

DTV(Dl,G) ≤ O(k‖(VS)l‖2) + 2−Θ(k). (17.30)

Let A = G[1:r], v = Gr+1. Due to Lemma 17.6.18, with probability at least 1 − 2−Θ(k),

Ê(A>, VS, 0.75 − γ/2, γ) happens. Then conditioned on Ê(A>, VS, 0.75 − γ/2, γ), due to

Lemma 17.6.20, with probability at most 2−Θ(k), there exists βl such that

‖βlA− v‖1 + ‖βlV >S ‖1 = o(kγ).

Combined with Equation (17.30), we can get that for a fixed l, with probability at most

O(k‖(VS)l‖2) + 2−Θ(k), there exists βl such that

‖βl(V >S Â)[1:k] − (Âl)[1:k]‖1 + ‖βlV >S ‖1 = o(kγ).

When ‖(VS)l‖2
2 ≤ 2r/n = Θ(kc1−c2), this probability is at most Θ(k1+(c1−c2)/2)+2−Θ(k). Since

∑n
l=1 ‖(VS)l‖2

2 = r, there are at most n/2 such l that ‖(VS)l‖2
2 > 2r/n which means that

there are at least n/2 such l that ‖(VS)l‖2
2 ≤ 2r/n. Let s be the number of l such that

‖(VS)l‖2
2 ≤ 2r/n, then s > n/2. Let t be a random variable which denotes that the number

of l which satisfies ‖(VS)l‖2
2 ≤ 2r/n and achieve

‖βl(V >S Â)[1:k] − (Âl)[1:k]‖1 + ‖βlV >S ‖1 = o(kγ),
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at the same time. Then,

E[t] ≤ (O(k‖(VS)l‖2) + 2−Θ(k))s = (O(k
√

2r/n) + 2−Θ(k))s.

Due to a Markov inequality,

Pr[t > s/2 > n/4] ≤ O(k
√

2r/n) + 2−Θ(k) = O(k1+(c1−c2)/2) + 2−Θ(k).

The equality follows since r = Θ(kc1), n = Θ(kc2). Plugging it into Equation (17.28), now

we can conclude, with probability at least 1−O(k1+(c1−c2)/2)− 2−Θ(k), ∀B ∈ Rn×r

‖BSÂ− Â‖1 ≥
∑

l:‖V lS‖
2
2≤2r/n

‖(BUSΣS)l(V >S Â)− Âl‖1 ≥ n/4 · Ω(kγ) = Ω(n · kγ).

Theorem 17.6.26 (Hardness for row subset selection). For any k ≥ 1, any constant c ≥ 1,

let n = O(kc), and let A(k, n) denote the same distribution stated in Theorem 17.6.25. For

matrix Â ∼ A(k, n), with positive probability, there is no algorithm that is able to output

B ∈ Rn×(n+k) in the row span of any r = n/2 rows of Â such that

‖Â−B‖1 ≤ O(k0.5−α) min
rank−k A′

‖A′ − Â‖1,

where α ∈ (0, 0.5) is a constant which can be arbitrarily small.

Proof. For convenience, we define γ = 0.5−α which can be an arbitrary constant in (0, 0.5).

Since the last n columns of Â is an identity matrix, we can fit the first k columns of Â, so

we have

min
rank−k A′

‖A′ − Â‖1 ≤ n.
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We want to argue that ∀B ∈ Rn×(k+n) in the row span of any r = n/2 rows of Â,

‖Â−B‖1 ≥ Ω(n · kγ).

Let A> ∈ Rn×k be the first k columns of Â, and let S ⊂ [n] be a set of indices of chosen rows

of Â with k ≤ |S| ≤ r. Let MS ∈ Rk×n with the ith column MS
i = Ai if i ∈ S and MS

i = 0

otherwise. We use M̂S ∈ Rk×r to be MS without those columns of zeros, so it is a random

matrix with each entry i.i.d. Gaussian N(0, 1). Then the minimum cost of using a matrix

in the span of rows of Â with index in S to fit Â is at least:

∑

l 6∈S

min
xl∈Rn

(
‖MSxl − Al‖1 + ‖xl‖1 − 1

)
.

The part of ‖MSxl−Al‖1 is just the cost on the lth row of the first k columns of Â, and the

part of ‖xl‖1 − 1 is just the lower bound of the cost on the lth row of the last n columns of

Â.

Claim 17.6.27. A, M̂S ∈ Rk×n, γ ∈ (0, 0.5),

Pr

[
Ê(M̂S, Ir, 0.75− γ/2, γ)

∣∣∣∣ Ê(A, In, 0.75− γ/2, γ)

]
= 1.

Proof. Suppose Ê(A, In, 0.75 − γ/2, γ) happens. Since MS has just a subset of columns of

A, ‖MS‖2 ≤ ‖A‖2 ≤
√
n. Notice that ∀x ∈ Rn with ‖x‖1 ≤ O(kγ) and each non-zero

coordinate of x is at most O(1/k0.75−γ/2), MSx ≡MSxS ≡ AxS, where xS ∈ Rn has xSi = xi

if i ∈ S and xSi = 0 otherwise. Because ‖xS‖1 ≤ O(kγ) and xS has each coordinate in

absolute value at most O(1/k0.75−γ/2), AxS has at most O(k/ log k) coordinates in absolute

value at least Ω(1/ log k). So, MSx = AxS has at most O(k/ log k) coordinates in absolute

value at least Ω(1/ log k).
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We denote cost(S, l) = minxl∈Rn
(
‖MSxl − Al‖1 + ‖xl‖1 − 1

)
. Since ∀l 6∈ S, Al are

independent, and they are independent from MS, due to Lemma 17.6.20,

Pr

[∑

l 6∈S

cost(S, l) ≤ O(n · kγ)
∣∣∣∣ Ê(M̂S, Ir, 0.75− γ/2, γ)

]
≤ 2−Θ(rk). (17.31)

Now we just want to upper bound the following:

Pr

[
∃S ⊂ [n], |S| ≤ r,

∑

l 6∈S

cost(S, l) ≤ O(n · kγ)
]

≤ Pr

[
∃S ⊂ [n], |S| ≤ r,

∑

l 6∈S

cost(S, l) ≤ O(n · kγ)
∣∣∣∣ Ê(A, In, 0.75− γ/2, γ)

]

+ Pr
[
¬Ê(A, In, 0.75− γ/2, γ)

]

≤
∑

S⊂[n],|S|≤r

Pr

[∑

l 6∈S

cost(S, l) ≤ O(n · kγ)
∣∣∣∣ Ê(A, In, 0.75− γ/2, γ)

]

+ Pr
[
¬Ê(A, In, 0.75− γ/2, γ)

]

≤
∑

S⊂[n],|S|≤r

Pr

[∑

l 6∈S

cost(S, l) ≤ O(n · kγ)
∣∣∣∣ Ê(A, In, 0.75− γ/2, γ)

]
+ 2−Θ(k)

≤
∑

S⊂[n],|S|≤r

Pr

[∑

l 6∈S

cost(S, l) ≤ O(n · kγ)
∣∣∣∣ Ê(M̂S, Ir, 0.75− γ/2, γ)

]
+ 2−Θ(k)

≤ (n+ 1)r2−Θ(rk) + 2−Θ(k)

≤ 2−Θ(rk) + 2−Θ(k)

≤ 2−Θ(k).

The second inequality follows by a union bound. The third inequality follows by Lemma 17.6.18.

The fourth inequality follows by Claim 17.6.27. The fifth inequality is due to Equation (17.31).

The sixth inequality follows by n ≤ O(kc), r = n/2. Thus, with probability at least 1−2−Θ(k),
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∀B ∈ Rn×(n+k) which is in the span of any r ≤ n/2 rows of Â,

‖B − Â‖1 ≥ Ω(n · kγ).

Then, we have completed the proof.

Definition 17.6.3. Given a matrix A ∈ Rn×d, a matrix S ∈ Rr×n, k ≥ 1 and γ ∈ (0, 1
2
), we

say that an algorithm M(A, S, k, γ) which outputs a matrix B ∈ Rn×r “succeeds”, if

‖BSA− A‖1 ≤ kγ · min
rank−k A′

‖A′ − A‖1,

holds.

Theorem 17.6.28 (Hardness for oblivious embedding). Let Π denote a distribution over

matrices S ∈ Rr×n. For any k ≥ 1, any constant γ ∈ (0, 1
2
), arbitrary constants c1, c2 > 0

and min(n, d) ≥ Ω(kc2), if for all A ∈ Rn×d, it holds that

Pr
S∼Π

[M(A, S, k, γ) succeeds ] ≥ Ω(1/kc1).

Then r must be at least Ω(kc2−2c1−2).

Proof. We borrow the idea from [NN14, PSW17]. We use Yao’s minimax principle [Yao77]

here. Let D be an arbitrary distribution over Rn×d, then

Pr
A∼D,S∼Π

[M(A, S, k, γ)] ≥ 1− δ.

It means that there is a fixed S0 such that

Pr
A∼D

[M(A, S0, k, γ)] ≥ 1− δ.
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Therefore, we want to find a hard distribution Dhard that if

Pr
A∼Dhard

[M(A, S0, k, γ)] ≥ 1− δ,

S0 must have at least some larger poly(k) rows.

Here, we just use the distribution A(k,Ω(kc2)) described in Theorem 17.6.25 as our

hard distribution. We can just fill zeros to expand the size of matrix to n × d. We can

complete the proof by using Theorem 17.6.25.

Remark 17.6.1. Actually, in Lemma 17.6.18 and Lemma 17.6.20, the reason we need β > γ >

0 is that we want kβ−γ = ω(poly(log k)), and the reason we need β + γ < 1 is that we want

kβ+γ poly(log k) = o(k). Thus we can replace all the kγ by
√
k/ poly(log k), e.g.,

√
k/ log20 k,

and replace all the kβ by
√
k poly(log k) with a smaller poly(log k), e.g.,

√
k log10 k. Our

proofs still work. Therefore, if we replace the approximation ratio in Theorem 17.6.25, The-

orem 17.6.26, and Theorem 17.6.28 to be
√
k/ logc k where c is a sufficiently large constant,

the statements are still correct.
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17.7 `p-Low Rank Approximation

This section presents some fundamental lemmas for `p-low rank approximation prob-

lems. Using these lemmas, all the algorithms described for `1-low rank approximation prob-

lems can be extended to `p-low rank approximation directly. We only state the important

Lemmas in this section, due to most of the proofs in this section being identical to the proofs

in Section 17.5.
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17.7.1 Definitions

This section is just a generalization of Section 17.5.1 to the `p setting when 1 < p < 2.

Definition 17.7.1. Given a matrix M ∈ Rn×d, if matrix S ∈ Rm×n satisfies

‖SM‖pp ≤ c1‖M‖pp,

then S has at most c1-dilation on M .

Definition 17.7.2. Given a matrix U ∈ Rn×k, if matrix S ∈ Rm×n satisfies

∀x ∈ Rk, ‖SUx‖pp ≥
1

c2

‖Ux‖pp,

then S has at most c2-contraction on U .

Definition 17.7.3. Given matrices U ∈ Rn×k, A ∈ Rn×d, denote V ∗ = arg minV ∈Rk×d ‖UV −

A‖pp. If matrix S ∈ Rm×n satisfies

∀V ∈ Rk×d, ‖SUV − SA‖pp ≥
1

c3

‖UV − A‖pp − c4‖UV ∗ − A‖pp,

then S has at most (c3, c4)-contraction on (U,A).

Definition 17.7.4. A (c5, c6) `p-subspace embedding for the column space of an n×k matrix

U is a matrix S ∈ Rm×n for which all x ∈ Rk

1

c5

‖Ux‖pp ≤ ‖SUx‖pp ≤ c6‖Ux‖pp.

Definition 17.7.5. Given matrices U ∈ Rn×k, A ∈ Rn×d, denote V ∗ = arg minV ∈Rk×d ‖UV −

A‖pp. Let S ∈ Rm×n. If for all c ≥ 1, and if for any V̂ ∈ Rk×d which satisfies

‖SUV̂ − SA‖pp ≤ c · min
V ∈Rk×d

‖SUV − SA‖pp,
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it holds that

‖UV̂ − A‖pp ≤ c · c7 · ‖UV ∗ − A‖pp,

then S provides a c7-multiple-regression-cost preserving sketch of (U,A).

Definition 17.7.6. Given matrices L ∈ Rn×m1 , N ∈ Rm2×d, A ∈ Rn×d, k ≥ 1, let

X∗ = arg min
rank−k X

‖LXN − A‖pp.

Let S ∈ Rm×n. If for all c ≥ 1, and if for any rank−k X̂ ∈ Rm1×m2 which satisfies

‖SLX̂N − SA‖pp ≤ c · min
rank−k X

‖SLXN − SA‖pp,

it holds that

‖LX̂N − A‖pp ≤ c · c8 · ‖LX∗N − A‖pp,

then S provides a c8-restricted-multiple-regression-cost preserving sketch of (L,N,A, k).
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17.7.2 Properties

Lemma 17.7.1. Given matrices A ∈ Rn×d, U ∈ Rn×k, let V ∗ = arg minV ∈Rk×d ‖UV − A‖pp.

If S ∈ Rm×n has at most c1-dilation on UV ∗ − A, i.e.,

‖S(UV ∗ − A)‖pp ≤ c1‖UV ∗ − A‖pp,

and it has at most c2-contraction on U , i.e.,

∀x ∈ Rk, ‖SUx‖pp ≥
1

c2

‖Ux‖pp,

then S has at most (22p−2c2, c1 + 21−p 1
c2

)-contraction on (U,A), i.e.,

∀V ∈ Rk×d, ‖SUV − SA‖pp ≥
1

c2

‖UV − A‖pp − (c1 +
1

c2

)‖UV ∗ − A‖pp,

Proof. Let A ∈ Rn×d, U ∈ Rn×k, and S ∈ Rm×n be the same as that described in the lemma.

Then ∀V ∈ Rk×d

‖SUV − SA‖pp ≥ 21−p‖SUV − SUV ∗‖pp − ‖SUV ∗ − SA‖pp

≥ 21−p‖SUV − SUV ∗‖pp − c1‖UV ∗ − A‖pp

= 21−p‖SU(V − V ∗)‖pp − c1‖UV ∗ − A‖pp

= 21−p
d∑

j=1

‖SU(V − V ∗)j‖pp − c1‖UV ∗ − A‖pp

≥ 21−p
d∑

j=1

1

c2

‖U(V − V ∗)j‖pp − c1‖UV ∗ − A‖pp

= 21−p 1

c2

‖UV − UV ∗‖pp − c1‖UV ∗ − A‖pp

≥ 22−2p 1

c2

‖UV − A‖pp − 21−p 1

c2

‖UV ∗ − A‖pp − c1‖UV ∗ − A‖pp

= 22−2p 1

c2

‖UV − A‖pp −
(

(21−p 1

c2

+ c1)‖UV ∗ − A‖pp
)
.
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The first inequality follows by Fact 17.7.8. The second inequality follows since S has at most

c1 dilation on UV ∗ − A. The third inequality follows since S has at most c2 contraction on

U . The fourth inequality follows by Fact 17.7.8.

Lemma 17.7.2. Given matrices A ∈ Rn×d, U ∈ Rn×k, let V ∗ = arg minV ∈Rk×d ‖UV − A‖pp.

If S ∈ Rm×n has at most c1-dilation on UV ∗ − A, i.e.,

‖S(UV ∗ − A)‖pp ≤ c1‖UV ∗ − A‖pp,

and has at most c2-contraction on U , i.e.,

∀x ∈ Rk, ‖SUx‖pp ≥
1

c2

‖Ux‖pp,

then S provides a 2p−1(2c1c2 + 1)-multiple-regression-cost preserving sketch of (U,A), i.e.,

for all c ≥ 1, for any V̂ ∈ Rk×d which satisfies

‖SUV̂ − SA‖pp ≤ c · min
V ∈Rk×d

‖SUV − SA‖pp,

it has

‖UV̂ − A‖pp ≤ c · 2p−1(2c1c2 + 1) · ‖UV ∗ − A‖pp,

Proof. Let S ∈ Rm×n, A ∈ Rn×d, U ∈ Rn×k, V ∗, V̂ ∈ Rk×d, and c be the same as stated in

the lemma.

‖UV̂ − A‖pp ≤ 22p−2c2‖SUV̂ − SA‖pp + (2p−1 + 22p−2c1c2)‖UV ∗ − A‖pp

≤ 22p−2c2c min
V ∈Rk×d

‖SUV − SA‖pp + (2p−1 + 22p−2c1c2)‖UV ∗ − A‖pp

≤ 22p−2c2c‖SUV ∗ − SA‖pp + (2p−1 + 22p−2c1c2)‖UV ∗ − A‖pp

≤ 22p−2c1c2c‖UV ∗ − A‖pp + (2p−1 + 22p−2c1c2)‖UV ∗ − A‖pp

≤ c · 2p−1(1 + 2c1c2)‖UV ∗ − A‖pp.
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The first inequality follows by Lemma 17.7.1. The second inequality follows by the guarantee

of V̂ . The fourth inequality follows since S has at most c1-dilation on UV ∗ − A. The fifth

inequality follows since c ≥ 1.

Lemma 17.7.3. Given matrices L ∈ Rn×m1 , N ∈ Rm2×d, A ∈ Rn×d, k ≥ 1, let

X∗ = arg min
rank−k X

‖LXN − A‖pp.

If S ∈ Rm×n has at most c1-dilation on LX∗N − A, i.e.,

‖S(LX∗N − A)‖pp ≤ c1‖LX∗N − A‖pp,

and has at most c2-contraction on L, i.e.,

∀x ∈ Rm1‖SLx‖pp ≥ ‖Lx‖pp,

then S provides a 2p−1(2c1c2+1)-restricted-multiple-regression-cost preserving sketch of (L,N,A, k),

i.e., for all c ≥ 1, for any rank−k X̂ ∈ Rm1×m2 which satisfies

‖SLX̂N − SA‖pp ≤ c · min
rank−k X

‖SLXN − SA‖pp,

it has

‖LX̂N − A‖pp ≤ c · 2p−1(2c1c2 + 1) · ‖LX∗N − A‖pp.

Proof. Let S ∈ Rm×n, L ∈ Rn×m1 , X̂ ∈ Rm1×m2 , X∗ ∈ Rm1×m2 , N ∈ Rm2×d, A ∈ Rn×d and
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c ≥ 1 be the same as stated in the lemma.

‖SLX̂N − SA‖pp ≥ 21−p‖SLX̂N − SLX∗N‖pp − ‖SLX∗N − SA‖pp

≥ 21−p 1

c2

‖L(X̂N −X∗N)‖pp − c1‖LX∗N − A‖pp

≥ 22−2p 1

c2

‖LX̂N − A‖pp − 21−p 1

c2

‖LX∗N − A‖1 − c1‖LX∗N − A‖pp

= 22−2p 1

c2

‖LX̂N − A‖pp − (21−p 1

c2

+ c1)‖LX∗N − A‖pp.

The inequality follows from the Fact 17.7.8. The second inequality follows since S has at

most c2-contraction on L, and it has at most c1-dilation on LX∗N −A. The third inequality

follows by Fact 17.7.8.

It follows that

‖LX̂N − A‖pp ≤ 22p−2c2‖SLX̂N − SA‖pp + (2p−1 + 22p−2c1c2)‖LX∗N − A‖pp

≤ 22p−2c2c · min
rank−k X

‖SLXN − SA‖pp + (2p−1 + 22p−2c1c2)‖LX∗N − A‖pp

≤ 22p−2c2c · ‖SLX∗N − SA‖pp + (2p−1 + 22p−2c1c2)‖LX∗N − A‖pp

≤ 22p−2cc1c2 · ‖LX∗N − A‖pp + (2p−1 + 22p−2c1c2)‖LX∗N − A‖pp

≤ c · 2p−1(1 + 2c1c2)‖LX∗N − A‖pp.

The first inequality directly follows from the previous one. The second inequality follows

from the guarantee of X̂. The fourth inequality follows since S has at most c1 dilation on

LX∗N − A. The fifth inequality follows since c ≥ 1.

Lemma 17.7.4. Given matrices L ∈ Rn×m1 , N ∈ Rm2×d, A ∈ Rn×d, k ≥ 1, let

X∗ = arg min
rank−k X

‖LXN − A‖pp.
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Let T1 ∈ Rt1×n have at most c1-dilation on LX∗N − A, and have at most c2-contraction on

L. Let

X̃ = arg min
rank−k X

‖T1LXN − T1A‖pp.

Let T>2 ∈ Rt2×d have at most c′1-dilation on (T1LX̃N − T1A)>, and at most c′2-contraction

on N>. Then, for all c ≥ 1, for any rank−k X̂ ∈ Rm1×m2 which satisfies

‖T1(LX̂N − SA)T2‖pp ≤ c · min
rank−k X

‖T1(LXN − A)T2‖pp,

it holds that

‖LX̂N − A‖pp ≤ c · 22p−2(2c1c2 + 1)(2c′1c
′
2 + 1) · ‖LX∗N − A‖pp.

Proof. Apply Lemma 17.5.3 for sketching matrix T2. Then for any c ≥ 1, any rank−k X̂ ∈

Rm1×m2 which satisfies

‖T1(LX̂N − A)T2‖pp ≤ c · min
rank−k X

‖T1(LXN − A)T2‖pp,

it has

‖T1(LX̂N − A)‖pp ≤ c · 2p−1(2c′1c
′
2 + 1) · ‖T1(LX̃N − A)‖pp.

Apply Lemma 17.5.3 for sketch matrix T1. Then for any c ≥ 1, any rank−k X̂ ∈

Rm1×m2 which satisfies

‖T1(LX̂N − A)‖pp ≤ c2p−1(2c′1c
′
2 + 1) · min

rank−k X
‖T1(LX̃N − A)‖pp,

it has

‖LX̂N − A‖pp ≤ c · 22p−2(2c1c2 + 1)(2c′1c
′
2 + 1) · ‖LX∗N − A‖pp.
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Lemma 17.7.5. Given matrices M ∈ Rn×d, U ∈ Rn×t, d ≥ t = rank(U), n ≥ d ≥ r =

rank(M). If sketching matrix S ∈ Rm×n is drawn from any of the following probability

distributions on matrices, with .99 probability, S has at most c1-dilation on M , i.e.,

‖SM‖pp ≤ c1‖M‖pp,

and S has at most c2-contraction on U , i.e.,

∀x ∈ Rt, ‖SUx‖pp ≥
1

c2

‖Ux‖pp,

where c1, c2 are parameters depend on the distribution over S.

(I) S ∈ Rm×n is a dense matrix with entries drawn from a p-stable distribution: a matrix

with i.i.d. standard p-stable random variables. If m = O(t log t), then c1c2 = O(log d).

(II) S ∈ Rm×n is a sparse matrix with some entries drawn from a p-stable distribution: S =

TD, where T ∈ Rm×n has each column drawn i.i.d. from the uniform distribution over

standard basis vectors of Rm, and D ∈ Rn×n is a diagonal matrix with each diagonal

entry drawn from i.i.d. from the standard p-stable distribution. If m = O(t5 log5 t),

then c1c2 = O(t2/p log2/p t log d). If m = O((t+ r)5 log5(t+ r)), then

c1c2 = O(min(t2/p log2/p t log d, r3/p log3/p r)).

(III) S ∈ Rm×n is a sampling and rescaling matrix (notation S ∈ Rn×n denotes a diagonal

sampling and rescaling matrix with m non-zero entries): If S samples and reweights

m = O(t log t log log t) rows of U , selecting each with probability proportional to the ith

row’s `p Lewis weight and reweighting by the inverse probability, then c1c2 = O(1).
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In the above, if we replace S with σ · S where σ ∈ R\{0} is any scalar, then the relation

between m and c1c2 can be preserved.

For (I), it is implied by Lemma E.17, Lemma E.19. Also see from [SW11]3.

For (II), if m = O(t5 log5 t), then c1c2 = O(t2/p log2/p t log d) is implied by Corol-

lary 17.5.19 and Lemma 17.7.13 and Theorem 4 in [MM13]. If m = O((t + r)5 log5(t + r)),

c1c2 = O(r3/p log3/p r) is implied by [MM13].

For (III), it is implied by [CP15] and Lemma 17.5.21.

3Full version.
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17.7.3 Tools and inequalities

Lemma 17.7.6 (Lemma 9 in [MM13], Upper Tail Inequality for p-stable Distributions). Let

p ∈ (1, 2) and m ≥ 3. ∀i ∈ [m], let Xi be m(not necessarily independent) random variables

sampled from Dp, and let γi > 0 with γ =
∑m

i=1 γi. Let X =
∑m

i=1 γi|Xi|p. Then for any

t ≥ 1,

Pr[X ≥ tαpγ] ≤ 2 log(mt)

t
.

We first review some facts about the p-norm and q-norm,

Fact 17.7.7. For any p ≥ q > 0 and any x ∈ Rk,

‖x‖p ≤ ‖x‖q ≤ k
1
q
− 1
p‖x‖p.

We provide the triangle inequality for the p-norm,

Fact 17.7.8. For any p ∈ (1, 2), for any x, y ∈ Rk,

‖x+ y‖p ≤ ‖x‖p + ‖y‖p, and ‖x+ y‖pp ≤ 2p−1(‖x‖pp + ‖y‖pp).

Fact 17.7.9 (Hölder’s inequality). For any x, y ∈ Rk, if 1
p

+ 1
q

= 1, then |x>y| ≤ ‖x‖p‖y‖q.

We give the definition of a well-conditioned basis for `p,

Definition 17.7.7. Let p ∈ (1, 2). A basis U for the range of A is (α, β, p)-conditioned if

‖U‖p ≤ α and for all x ∈ Rk, ‖x‖q ≤ β‖Ux‖p. We will say U is well-conditioned if α and β

are low-degree polynomials in k, independent of n.
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Proof. We first show an upper bound,

‖Ux‖p ≤ ‖U‖p · ‖x‖p ≤ α‖x‖p

Then we show a lower bound,

‖Ux‖p ≥
1

β
‖x‖q

For any p and q with 1/p+ 1/q = 1, by Hölder’s inequality we have

|x>y| ≤ ‖x‖p · ‖y‖q

choosing y to be the vector that has 1 everywhere, ‖x‖1 ≤ ‖x‖pk1/q
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17.7.4 Dense p-stable transform

This section states the main tools for the dense p-stable transform. The proof is

identical to that for the dense Cauchy transform.

Lemma 17.7.10. Given matrix A ∈ Rn×d and p ∈ (1, 2), define U∗ ∈ Rn×k, V ∗ ∈ Rk×d

to be an optimal solution of min
U∈Rn×k,V ∈Rk×d

‖UV −A‖p. Choose a p-stable distribution matrix

S ∈ Rm×n, rescaled by Θ(1/m1/p). Then we have

‖SU∗V ∗ − SA‖pp . log(md)‖U∗V ∗ − A‖pp

with probability at least 99/100.

Proof. Let P (0, 1) denote the p-stable distribution. Then,

‖SU∗V ∗ − SA‖pp ≤
d∑

i=1

‖S(U∗V ∗i − Ai)‖pp

=
d∑

i=1

m∑

j=1

|
n∑

l=1

1

m
Sj,l(U

∗V ∗i − Ai)l|p where Sj,l ∼ P (0, 1)

=
1

m

d∑

i=1

m∑

j=1

|w̃ij(
n∑

l=1

|(U∗V ∗i − Ai)l|p)1/p|p where w̃ij ∼ P (0, 1)

=
1

m

d∑

i=1

m∑

j=1

n∑

l=1

|(U∗V ∗i − Ai)l|p · |w̃ij|p

=
1

m

d∑

i=1

m∑

j=1

‖U∗V ∗i − Ai‖pp · wpi+(j−1)d, where wi+(j−1)d ∼ |P (0, 1)|

where the last step follows since each wi can be thought of as a clipped half-p-stable random

variable. Define X to be
∑d

i=1

∑m
j=1 ‖U∗V ∗i −Ai‖pp ·wpi+(j−1)d and γ to be

∑d
i=1

∑m
j=1 ‖U∗V ∗i −
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Ai‖pp. Then applying Lemma 17.7.6,

Pr[X ≥ tαpγ] ≤ 2 log(mdt)

t
.

Choosing t = Θ(log(md)), we have with probability .999,

X . log(md)αpγ = log(md)αp

d∑

i=1

‖U∗V ∗i − Ai‖pp,

where the last step follows by definition of γ. Thus, we can conclude that with probability

.999, ‖Π(U∗V ∗ − A)‖pp . log(md)‖U∗V ∗ − A‖pp.

Lemma 17.7.11. Given matrix A ∈ Rn×d and p ∈ (1, 2), define U∗ ∈ Rn×k to be the

optimal solution of min
U∈Rn×k,V ∈Rk×d

‖UV − A‖p. Choose a matrix of i.i.d. p-stable random

variables S ∈ Rm×n. Then for all V ∈ Rk×n, we have

‖SU∗V − SA‖pp & ‖U∗V − A‖pp −O(log(md))‖U∗V ∗ − A‖pp.

Lemma 17.7.12. Let p ∈ (1, 2). Given an (α, β) `p well-conditioned basis, condition on the

following two events,

1. For all x ∈ N, ‖SUx‖p & ‖Ux‖p.

2. For all x ∈ Rk, ‖SUx‖p ≤ poly(k)‖Ux‖p.

Then for all x ∈ Rk, ‖SUx‖p & ‖Ux‖p.

Proof. The proof is identical to Lemma 17.5.14 in Section 17.5.
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17.7.5 Sparse p-stable transform

This section states the main tools for the sparse p-stable transform. The proof is

identical to that of the sparse Cauchy transform.

Lemma 17.7.13. Let p ∈ (1, 2). Given matrix A ∈ Rn×d with U∗, V ∗ an optimal solution of

minU,V ‖UV −A‖p, let Π = σ ·SC ∈ Rm×n, where S ∈ Rm×n has each column vector chosen

independently and uniformly from the m standard basis vectors of Rm, where C is a diagonal

matrix with diagonals chosen independently from the standard p-stable distribution, and σ is

a scalar. Then

‖ΠU∗V ∗ − ΠA‖pp . σ · log(md) · ‖U∗V ∗ − A‖pp

holds with probability at least .999.

Proof. We define Π = σ · SC ∈ Rm×n as in the statement of the lemma. Then by the
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definition of Π, we have,

‖Π(U∗V ∗ − A)‖pp

=
d∑

i=1

‖SC(U∗V ∗i − Ai)‖pp

=
d∑

i=1

∥∥∥∥




S11 S12 · · · S1n

S21 S22 · · · S2n

· · · · · · · · · · · ·
Sm1 Sm2 · · · Smn


 ·




c1 0 0 0
0 c2 0 0
0 0 · · · 0
0 0 0 cn


 · (U

∗V ∗i − Ai)
∥∥∥∥
p

p

=
d∑

i=1

∥∥∥∥




c1S11 c2S12 · · · cnS1n

c1S21 c2S22 · · · cnS2n

· · · · · · · · · · · ·
c1Sm1 c2Sm2 · · · cnSmn


 · (U

∗V ∗i − Ai)
∥∥∥∥
p

p

=
d∑

i=1

∥∥∥∥
n∑

l=1

clS1l · (U∗V ∗i − Ai)l,
n∑

l=1

clS2l · (U∗V ∗i − Ai)l, · · · ,
n∑

l=1

clSml · (U∗V ∗i − Ai)l
∥∥∥∥
p

p

=
d∑

i=1

m∑

j=1

∣∣∣∣
n∑

l=1

clSjl · (U∗V ∗i − Ai)l
∣∣∣∣
p

by aX + bY and (|a|p + |b|p)1/pZ are identically distributed

=
d∑

i=1

m∑

j=1

∣∣∣∣w̃ij · (
n∑

l=1

|Sjl(U∗V ∗i − Ai)l|p)1/p

∣∣∣∣
p

where w̃ij ∼ P (0, 1)

=
d∑

i=1

m∑

j=1

n∑

l=1

|Sjl(U∗V ∗i − Ai)l|p · |w̃ij|p

=
d∑

i=1

m∑

j=1

n∑

l=1

|Sjl(U∗V ∗i − Ai)l|p · wpi+(j−1)d, where wi+(j−1)d ∼ |P (0, 1)|

where the last step follows since each wi can be thought of as a clipped half-p-stable ran-

dom variable. Define X to be
∑d

i=1

∑m
j=1

∑n
l=1 |Sjl(U∗V ∗i − Ai)l|p · wpi+(j−1)d and γ to be

∑d
i=1

∑m
j=1

∑n
l=1 |Sjl(U∗V ∗i − Ai)l|p. Then applying Lemma 17.7.6,

Pr[X ≥ tαpγ] ≤ 2 log(mdt)

t
.
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Choosing t = Θ(log(md)), we have with probability .999,

X . log(md)αpγ = log(md)αp

d∑

i=1

n∑

l=1

|(U∗V ∗i − Ai)l|p,

where the last steps follows by

γ =
d∑

i=1

m∑

j=1

n∑

l=1

|Sjl(U∗V ∗i − Ai)l|p

=
d∑

i=1

m∑

j=1

n∑

l=1

|Sjl|p|(U∗V ∗i − Ai)l|p

=
d∑

i=1

n∑

l=1

|(U∗V ∗i − Ai)l|p.

Thus, we can conclude that with probability .999,

‖Π(U∗V ∗ − A)‖pp . log(md)‖U∗V ∗ − A‖pp.

Lemma 17.7.14. Given matrix A ∈ Rn×d with U∗, V ∗ an optimal solution of minU,V ‖UV −

A‖p, let Π = σ · SC ∈ Rm×n, where S ∈ Rm×n has each column vector chosen independently

and uniformly from them standard basis vectors of Rm, and where C is a diagonal matrix with

diagonals chosen independently from the standard p-stable distribution. Then with probability

at least .999, for all V ∈ Rk×d,

‖ΠU∗V − ΠA‖pp ≥ ‖U∗V − A‖pp −O(σ log(md))‖U∗V ∗ − A‖pp.

Notice that m = O(k5 log5 k) and σ = O((k log k)2/p) according to Theorem 4 in [MM13].
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17.7.6 `p-Lewis weights

This section states the main tools for `p-Lewis weights. The proof is identical to

`1-Lewis weights.

Lemma 17.7.15. For any p ∈ (1, 2). Given matrix A ∈ Rn×d, define U∗ ∈ Rn×k, V ∗ ∈ Rk×d

to be an optimal solution of min
U∈Rn×k,V ∈Rk×d

‖UV − A‖p. Choose a diagonal matrix D ∈ Rn×n

according to the Lewis weights of U∗. We have that

‖DU∗V ∗ −DA‖pp . ‖U∗V ∗ − A‖pp,

holds with probability at least .99.

Lemma 17.7.16. Let p ∈ (1, 2). Given matrix A ∈ Rn×d, define U∗ ∈ Rn×k, V ∗ ∈ Rk×d to

be an optimal solution of min
U∈Rn×k,V ∈Rk×d

‖UV −A‖p. Choose a sampling and rescaling matrix

D ∈ Rn×n according to the Lewis weights of U∗. For all V ∈ Rk×d we have

‖DU∗V −DA‖pp & ‖U∗V − A‖pp −O(1)‖U∗V ∗ − A‖pp,

holds with probability at least .99.

1261



17.8 EMD-Low Rank Approximation

In this section we explain how to embed EMD to `1. For more detailed background

on the Earth-Mover Distance(EMD) problem, we refer the reader to [IT03, AIK08, ABIW09,

IP11, BIRW16] and [SL09, LOG16]. Section 17.8.1 introduces some necessary notation and

definitions for Earth-Mover Distance. Section 17.8.2 presents the main result for the Earth-

Mover distance low rank approximation problem.
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17.8.1 Definitions

Consider any two non-negative vectors x, y ∈ R[∆]2

+ such that ‖x‖1 = ‖y‖1. Let

Γ(x, y) be the set of functions γ : [∆]2 × [∆]2 → R+, such that for any i, j ∈ [∆]2 we have
∑

l γ(i, l) = xi and
∑

l γ(l, j) = yj; that is, Γ is the set of possible “flows” from x to y. Then

we define

EMD(x, y) = min
γ∈Γ

∑

i,j∈[∆]2

γ(i, j)‖i− j‖1

to be the min cost flow from x to y, where the cost of an edge is its `1 distance.

Using the EMD(·, ·) metric, for general vectors w, we define ‖ ·‖EEMD distance (which

is the same as [SL09]),

‖w‖EEMD = min
x−y+z=w
‖x‖1=‖y‖1
x,y≥0

EMD(x, y) + 2∆‖z‖1.

Using ‖ · ‖EEMD distance, for general matrices X ∈ Rn×d, we define the ‖ · ‖1,EEMD distance,

‖X‖1,EEMD =
d∑

i=1

‖Xi‖EEMD,

where Xi denotes the j-th column of matrix X.

1263



17.8.2 Analysis of no contraction and no dilation bound

Lemma 17.8.1. Given matrix A ∈ Rn×d and U∗, V ∗ = arg min
U∈Rn×k,V ∈Rk×d

‖UV −A‖1,EEMD, there

exist sketching matrices S ∈ Rm×n such that, with probability .999, for all V ∈ Rk×d,

‖S(U∗V − A)‖1 ≥ ‖U∗V − A‖1,EEMD

holds.

Proof. Using Lemma 1 in [IT03], there exists a constant C > 0 such that for all i ∈ [d],

C‖SU∗Vi − SAi‖1 ≥ ‖U∗Vi − Ai‖EEMD. (17.32)

Then taking a summation over all d terms and rescaling the matrix S, we obtain,

d∑

i=1

‖S(U∗Vi − Ai)‖1 ≥ ‖U∗Vi − Ai‖EEMD

which completes the proof.

Lemma 17.8.2. Given matrix A ∈ Rn×d and U∗, V ∗ = arg min
U∈Rn×k,V ∈Rk×d

‖UV −A‖1,EEMD, there

exist sketching matrices S ∈ Rm×n such that

‖S(U∗V ∗ − A)‖1 ≤ O(log n)‖U∗V ∗ − A‖1,EEMD

holds with probability at least .999.

Proof. Using Lemma 2 in [IT03], we have for any i ∈ [d],

E[‖SU∗V ∗i − SAi‖1] ≤ O(log n)‖U∗V ∗i − Ai‖EEMD. (17.33)
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Then using that the expectation is linear, we have

E[‖SU∗V ∗ − SA‖1] = E[
d∑

i=1

‖SU∗V ∗i − SAi‖1]

=
d∑

i=1

E[‖SU∗V ∗i − SAi‖1]

≤
d∑

i=1

O(log n)‖U∗V ∗i − Ai‖EEMD by Equation (17.33)

= O(log n)‖U∗V ∗ − A‖1,EEMD.

Using Markov’s inequality, we can complete the proof.

Theorem 17.8.3. Given a matrix A ∈ Rn×d, there exists an algorithm running in poly(k, n, d)

time that is able to output U ∈ Rn×k and V ∈ Rk×d such that

‖UV − A‖1,EEMD ≤ poly(k) · log d · log n min
rank−k Ak

‖Ak − A‖1,EEMD

holds with probability .99.

Proof. First using Lemma 17.8.1 and Lemma 17.8.2, we can reduce the original problem

into an `1-low rank approximation problem by choosing m = poly(n). Second, we can use

our `1-low rank approximation algorithm to solve it. Notice that all of our `1-low rank

approximation algorithms can be applied here. If we apply Theorem 17.4.6, we complete the

proof.

Our current ‖ · ‖1,EEMD is column-based. We can also define it to be row-based. Then

we get a slightly better result by applying the `1-low rank algorithm.
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Corollary 17.8.4. Given a matrix A ∈ Rn×d, there exists an algorithm running in poly(k, n, d)

time that is able to output U ∈ Rn×k and V ∈ Rk×d such that

‖UV − A‖1,EEMD ≤ poly(k) · log2 d min
rank−k Ak

‖Ak − A‖1,EEMD

holds with probability .99.
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17.9 Hardness

This section presents our hardness results. Section 17.9.1 states several useful tools

from literature. Section 17.9.2 shows that, it is NP-hard to get some multiplicative error.

Assuming ETH is true, we provide a stronger hardness result in Section 17.9.3. Section 17.9.4

extends the result from the rank-1 case to the rank-k case.
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17.9.1 Previous results

Definition 17.9.1 (‖A‖∞→1,[GV15]). Given matrix A ∈ Rn×d,

‖A‖∞→1 = min
x∈{−1,+1}n,y∈{−1,+1}d

x>Ay.

The following lemma says that computing ‖A‖∞→1 for matrix A with entries in

{−1,+1} is equivalent to computing a best {−1,+1} matrix which is an `1 norm rank-1

approximation to A.

Lemma 17.9.1 (Lemma 3 of [GV15]). Given matrix A ∈ {−1,+1}n×d,

‖A‖∞→1 + min
x∈{−1,+1}n,y∈{−1,+1}d

‖A− xy>‖1 = nd.

Lemma 17.9.2 (Theorem 2 of [GV15]). Given A ∈ {−1,+1}n×d, we have

min
x∈{−1,+1}n,y∈{−1,+1}d

‖A− xy>‖1 = min
x∈Rn,y∈Rd

‖A− xy>‖1.

Combining with Lemma 17.9.1 and Lemma 17.9.2, it implies that computing ‖A‖∞→1

for A ∈ {−1,+1}n×d is equivalent to computing the best `1 norm rank-1 approximation to

the matrix A:

‖A‖∞→1 + min
x∈Rn,y∈Rd

‖A− xy>‖1 = nd.

Theorem 17.9.3 (NP-hard result, Theorem 1 of [GV15]). Computing ‖A‖∞→1 for matrix

A ∈ {−1,+1}n×d is NP-hard.

The proof of the above theorem in [GV15] is based on the reduction from MAX-

CUT problem. The above theorem implies that computing minx∈Rn,y∈Rd ‖A − xy>‖1 is also

NP-hard.
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17.9.2 Extension to multiplicative error `1-low rank approximation

The previous result only shows that solving the exact problem is NP-hard. This

section presents a stronger hardness result, which says that, it is still NP-hard even if the

goal is to find a solution that is able to achieve some multiplicative error. The proof in this

section and the next section are based on the reduction from the MAX-CUT problem. For

recent progress on MAX-CUT problem, we refer the readers to [GW95, BGS98, TSSW00,

Hås01, KKMO07, FLP15].

Theorem 17.9.4. Given A ∈ {−1,+1}n×d, computing an x̂ ∈ Rn, ŷ ∈ Rd s.t.

‖A− x̂>ŷ‖1 ≤ (1 +
1

nd
) min
x∈Rn,y∈Rd

‖A− x>y‖1

is NP-hard.

MAX-CUT decision problem: Given a positive integer c∗ and an unweighted graph

G = (V,E) where V is the set of vertices of G and E is the set of edges of G, the goal is to

determine whether there is a cut of G has at least c∗ edges.

Lemma 17.9.5. MAX-CUT decision problem is NP-hard.

We give the definition for the Hadamard matrix,

Definition 17.9.2. The Hadamard matrixHp of size p×p is defined recursively :
[
Hp/2 Hp/2

Hp/2 −Hp/2

]

with H2 =

[
+1 +1
+1 −1

]
.

For simplicity, we use H to denote Hp in the rest of the proof.
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Recall the reduction shown in [GV15] which is from MAX-CUT to computing ‖ ·‖∞→1

for {−1,+1} matrices. We do the same thing: for a given graph G = (V,E), we construct a

matrix A ∈ {−1,+1}n×d where n = p|E| and d = p|V |. Notice that p = poly(|E|, |V |) is a

parameter which will be determined later, and also p is a power of 2.

We divide the matrix A into |E| × |V | blocks, and each block has size p × p. For

e ∈ [|E|], if the eth edge has endpoints i ∈ [|V |], j ∈ [|V |] and i < j, let all the p× p elements

of (e, i) block of A be 1, all the p × p elements of (e, j) block of A be −1, and all the (e, l)

block of A be p× p Hadamard matrix H for l 6= i, j.

Claim 17.9.6 (Lower bound of ‖A‖∞→1, proof of Theorem 1 of [GV15]). If there is a cut

of G with cut size at least c,

‖A‖∞→1 ≥ 2p2c− |E||V |p3/2.

Claim 17.9.7 (Upper bound of ‖A‖∞→1, proof of Theorem 1 of [GV15]). If the max cut of

G has fewer than c edges,

‖A‖∞→1 ≤ 2p2(c− 1) + |E||V |p3/2.

Remark 17.9.1. In [GV15], they set p as a power of 2 and p > |E|2|V |2. This implies

∀c ∈ [|E|], 2p2(c− 1) + |E||V |p3/2 < 2p2c− |E||V |p3/2.

Therefore, according to Claim 17.9.6 and Claim 17.9.7, if we can know the precise value of

‖A‖∞→1, we can decide whether G has a cut with cut size at least c∗.

For convenience, we use T ∗ to denote ‖A‖∞→1 and use L∗ to denote

min
x∈Rn,y∈Rd

‖A− x>y‖1.
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Also, we use L to denote a (1 + 1
nd

) relative error approximation to L∗, which means:

L∗ ≤ L ≤ (1 +
1

nd
)L∗.

We denote T as nd− L.

Proof of Theorem 17.9.4. Because L∗ ≤ L ≤ (1 + 1
nd

)L∗, we have:

nd− L∗ ≥ nd− L ≥ nd− (1 +
1

nd
)L∗.

Due to Lemma 17.9.1 and the definition of T , it has:

T ∗ ≥ T ≥ T ∗ − 1

nd
L∗.

Notice that A is a {−1,+1} matrix, we have

L∗ ≤ ‖A‖1 ≤ 2nd.

Thus,

T ∗ ≥ T ≥ T ∗ − 2.

It means

T + 2 ≥ T ∗ ≥ T.

According to Claim 17.9.11, if G has a cut with cut size at least c, we have:

T + 2 ≥ T ∗ ≥ 2p2c− |E||V |p3/2.

That is

T ≥ 2p2c− |E||V |p3/2 − 2.
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According to Claim 17.9.12, if the max cut of G has fewer than c edges,

T ≤ T ∗ ≤ 2p2(c− 1) + |E||V |p3/2.

Let p be a power of 2 and p > |E|3|V |3, we have

2p2(c− 1) + |E||V |p3/2 < 2p2c− |E||V |p3/2 − 2.

Therefore, we can decide whether G has a cut with size at least c based on the value of T .

Thus, if we can compute x̂ ∈ Rn, ŷ ∈ Rd s.t.

‖A− x̂>ŷ‖1 ≤ (1 +
1

nd
) min
x∈Rn,y∈Rd

‖A− x>y‖1,

in polynomial time, it means we can compute L and T in polynomial time, and we can solve

MAX-CUT decision problem via the value of T , which leads to a contradiction.
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17.9.3 Using the ETH assumption

The goal of this section is to prove Theorem 17.9.9. We first introduce the defini-

tion of 3SAT and Exponential Time Hypothesis(ETH). For the details and background of

3SAT problem, we refer the readers to [AB09].

Definition 17.9.3 (3SAT problem). Given an r variables and m clauses conjunctive normal

form CNF formula with size of each clause at most 3, the goal is to decide whether there

exists an assignment for the r boolean variables to make the CNF formula be satisfied.

Hypothesis 17.9.8 (Exponential Time Hypothesis (ETH) [IPZ98]). There is a δ > 0 such

that 3SAT problem defined in Definition 17.9.3 cannot be solved in O(2δr) running time.

The main lower bound is stated as follows:

Theorem 17.9.9. Unless ETH (see Hypothesis 17.9.8) fails, for arbitrarily small constant

γ > 0, given some matrix A ∈ {−1,+1}n×d, there is no algorithm can compute x̂ ∈ Rn, ŷ ∈

Rd s.t.

‖A− x̂>ŷ‖1 ≤ (1 +
1

log1+γ nd
) min
x∈Rn,y∈Rd

‖A− x>y‖1,

in (nd)O(1) running time.

Before we prove our lower bound, we introduce the following theorem which is used

in our proof.

Definition 17.9.4 (MAX-CUT decision problem). Given a positive integer c∗ and an un-

weighted graph G = (V,E) where V is the set of vertices of G and E is the set of edges of

G, the goal is to determine whether there is a cut of G has at least c∗ edges.
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Theorem 17.9.10 (Theorem 6.1 in [FLP15]). There exist constants a, b ∈ (0, 1) and a > b,

such that, for a given MAX-CUT (see Definition 17.9.4) instance graph G = (E, V ) which is

an n-vertices 5-regular graph, if there is an algorithm in time 2o(n) which can distinguish the

following two cases:

1. At least one cut of the instance has at least a|E| edges,

2. All cuts of the instance have at most b|E| edges,

then ETH (see Hypothesis 17.9.8) fails.

Proof of Theorem 17.9.9. We prove it by contradiction. We assume, for any given A ∈

{−1,+1}n×d, there is an algorithm can compute x̂ ∈ Rn, ŷ ∈ Rd s.t.

‖A− x̂>ŷ‖1 ≤ (1 +
1

W
) min
x∈Rn,y∈Rd

‖A− x>y‖1,

in time poly(nd), where W = log1+γ d for arbitrarily small constant γ > 0. Then, we show

the following. There exist constants a, b ∈ [0, 1], a > b, for a given MAX-CUT instance

G = (V,E) with |E| = O(|V |), such that we can distinguish whether G has a cut with size

at least a|E| or all the cuts of G have size at most b|E| in 2o(|V |) time, which leads to a

contradiction to Theorem 17.9.10.

Recall the reduction shown in [GV15] which is from MAX-CUT to computing ‖ ·‖∞→1

for {−1,+1} matrices. We do similar things here: for a given graph G = (V,E) where

|E| = O(|V |), we construct a matrix A ∈ {−1,+1}n×d where n = p|E| and d = p|V |. Notice

that p is a parameter which will be determined later, and also p is a power of 2.
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We divide the matrix A into |E| × |V | blocks, and each block has size p × p. For

e ∈ [|E|], if the eth edge has endpoints i ∈ [|V |], j ∈ [|V |] and i < j, let all the p× p elements

of (e, i) block of A be 1, all the p × p elements of (e, j) block of A be −1, and all the (e, l)

block of A be p× p Hadamard matrix H for l 6= i, j.

We can construct the matrix in nd time, which is p2|E||V |. We choose p to be the

smallest number of power of 2 which is larger than 2
2
a−b |V |

1− γ
10 for some γ > 0. Thus, the

time for construction of the matrix A is O(nd) = 2O(|V |1−
γ
10 ).

We will show, if we can compute a (1 + 1/W )-approximation to A, we can decide

whether G has a cut with size at least a|E| or has no cut with size larger than b|E|. For

convenience, we use T ∗ to denote ‖A‖∞→1 and use L∗ to denote

min
x∈Rn,y∈Rd

‖A− x>y‖1.

Also, we use L to denote a (1 + 1
W

) relative error approximation to L∗, which means:

L∗ ≤ L ≤ (1 +
1

W
)L∗.

We denote T as nd− L.

Because L∗ ≤ L ≤ (1 + 1
W

)L∗, we have:

nd− L∗ ≥ nd− L ≥ nd− (1 +
1

W
)L∗.

Due to Lemma 17.9.1 and the definition of T , it has:

T ∗ ≥ T ≥ T ∗ − 1

W
L∗.

Notice that A is a {−1,+1} matrix, we have

L∗ ≤ ‖A‖1 ≤ 2nd.
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Thus,

T ∗ ≥ T ≥ T ∗ − 2nd/W.

It means

T + 2nd/W ≥ T ∗ ≥ T.

Claim 17.9.11 (Lower bound of ‖A‖∞→1, proof of Theorem 1 of [GV15]). If there is a cut

of G with cut size at least c,

‖A‖∞→1 ≥ 2p2c− |E||V |p3/2.

Claim 17.9.12 (Upper bound of ‖A‖∞→1, proof of Theorem 1 of [GV15]). If the max cut

of G has fewer than c edges,

‖A‖∞→1 ≤ 2p2(c− 1) + |E||V |p3/2.

According to Claim 17.9.11, if G has a cut with cut size at least a|E|, we have:

T + 2nd/W ≥ T ∗ ≥ 2p2a|E| − |E||V |p3/2.

That is

T ≥ 2p2a|E| − |E||V |p3/2 − 2nd/W. (17.34)

According to Claim 17.9.12, if the max cut of G has fewer than b|E| edges,

T ≤ T ∗ ≤ 2p2b|E|+ |E||V |p3/2. (17.35)

1276



Using these conditions p ≥ 2
2
a−b |V |

1− γ
10
, d = p|V |,W ≥ log1+γ d, we can lower bound

|W | by |V | up to some constant,

W ≥ log1+γ d by W ≥ log1+γ d

= log1+γ(p|V |) by d = p|V |

= (log |V |+ log p)1+γ

≥ (log |V |+ 2

a− b |V |
1− γ

10 )1+γ by p ≥ 2
2
a−b |V |

1− γ
10

≥ 2

a− b |V |. by (1− γ/10)(1 + γ) > 1 for γ small enough (17.36)

Thus, we can upper bound 1/W in the following sense,

1

W
≤ a− b

2|V | ≤
a− b
|V | − p

− 1
2 , (17.37)

where the first inequality follows by Equation (17.36) and the second inequality follows by

p ≥ 2
2
a−b |V |

1− γ
10 , γ is sufficient small, and |V | is large enough.

Now, we can conclude,

1

W
≤ a− b
|V | − p

− 1
2

⇐⇒ p2|E||V |/W ≤ (a− b)p2|E| − |E||V |p 3
2

by multiplying p2|E||V | on both sides

⇐⇒ 2nd/W ≤ 2(a− b)p2|E| − 2|E||V |p 3
2

by multiplying 2 on both sides and p2|E||V | = nd

⇐⇒ 2p2b|E|+ |E||V |p3/2 < 2p2a|E| − |E||V |p3/2 − 2nd/W, (17.38)

by adding 2p2b|E|+ |E||V |p3/2 − 2nd/W on both sides
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which implies that Equation (17.38) is equivalent to Equation (17.37). Notice that the LHS

of (17.38) is exactly the RHS of (17.35) and the RHS of (17.38) is exactly the RHS of (17.34).

Therefore, we can decide whether G has a cut with size larger than a|E| or has no cut with

size larger than b|E|.

Thus, if we can compute x̂ ∈ Rn, ŷ ∈ Rd s.t.

‖A− x̂>ŷ‖1 ≤ (1 +
1

log1+γ d
) min
x∈Rn,y∈Rd

‖A− x>y‖1,

in poly(nd) time, which means we can compute L and T in poly(nd) time. Notice that

nd = p2|E||V |, |E| = O(|V |), p ≥ 2
2
a−b |V |

1− γ
10 , it means poly(nd) = 2O(|V |1−

γ
10 ). Because we

decide whether G has a cut with size larger than a|E| or has no cut with size larger than

b|E| via the value of T , we can solve it in 2O(|V |1−
γ
10 ) time which leads to a contradiction to

Theorem 17.9.10.
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17.9.4 Extension to the rank-k case

This section presents a way of reducing the rank-k case to the rank-1 case. Thus, we

can obtain a lower bound for general k ≥ 1 under ETH.

Theorem 17.9.13. For any constants c1 > 0, c2 > 0 and c3 > 0, and any constant c4 ≥

10(c1 + c2 + c3 + 1), given any matrix A ∈ Rn×n with absolute value of each entry bounded

by nc1, we define a block diagonal matrix Ã ∈ R(n+k−1)×(n+k−1) as

Ã =




A 0 0 · · · 0
0 B 0 · · · 0
0 0 B · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · B



,

where B = nc4. If Â is an `1-norm rank-k C-approximation solution to Ã, i.e.,

‖Â− Ã‖1 ≤ C · min
rank−k Â′

‖Â′ − Ã‖1,

where C ∈ [1, nc3 ], then there must exist j∗ ∈ [n] such that

min
v∈Rn
‖Â[1:n]

j∗ v> − A‖1 ≤ C · min
u,v∈Rn

‖uv> − A‖1 + 1/nc2 ,

i.e., the first n coordinates of the column j∗ of Â can give an `1-norm rank-1 C-approximation

to A.

Proof. The first observation is that because we can use a rank-1 matrix to fit A and use a

rank-(k − 1) matrix to fit other Bs, we have

min
rank−k Â′

‖Â′ − Ã‖1 ≤ min
u,v∈Rn

‖uv> − A‖1 ≤ ‖A‖1. (17.39)
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Claim 17.9.14. Let Â denote the rank-k C-approximate solution to Ã. Let Z ∈ R(n+k−1)×(k−1)

denote the rightmost k − 1 columns of Â, then, rank(Z) = k − 1.

Proof. Consider the (k − 1) × (k − 1) submatrix Z [n+1:n+k−1] of Z. Each element on the

diagonal of this submatrix should be at least B − C‖A‖1, and each element not on the

diagonal of the submatrix should be at most C‖A‖1. Otherwise ‖Â − Ã‖1 > C‖A‖1 which

will lead to a contradiction. Since B = nc4 is sufficiently large, Z [n+1:n+k−1] is diagonally

dominant. Thus rank(Z) ≥ rank(Z [n+1:n+k−1]) = k − 1. Because Z only has k − 1 columns,

rank(Z) = k − 1.

Claim 17.9.15. ∀x ∈ Rk−1, i ∈ [n],∃j ∈ {n+ 1, n+ 2, · · · , n+ k − 1} such that,

|(Zx)j|
|(Zx)i|

≥ B

2(k − 1)C‖A‖1

.

Proof. Without loss of generality, we can let ‖x‖1 = 1. Thus, there exists j such that

|xj| ≥ 1
k−1

. So we have

|(Zx)n+j| = |
k−1∑

i=1

Zn+j,ixi|

≥ |Zn+j,jxj| −
∑

i 6=j

|Zn+j,ixi|

≥ (B − C‖A‖1)|xj| −
∑

i 6=j

|xi|C‖A‖1

≥ (B − C‖A‖1)/(k − 1)− C‖A‖1

≥ B

2(k − 1)
.

The second inequality follows because |Zn+j,j| ≥ B − C‖A‖1 and ∀i 6= j, |Zn+j,i| ≤ C‖A‖1

(otherwise ‖Â− Ã‖1 > C‖A‖1 which leads to a contradiction.) The third inequality follows
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from |xj| > 1/(k − 1) and ‖x‖1 = 1. The fourth inequality follows since B is large enough

such that B
2(k−1)

≥ C‖A‖1
k−1

+ C‖A‖1.

Now we consider any q ∈ [n]. We have

|(Zx)q| =
k−1∑

i=1

|Zq,ixi| ≤ max
i∈[k−1]

|Zq,i| ·
k−1∑

i=1

|xi| ≤ C‖A‖1.

The last inequality follows that ‖x‖1 = 1 and ∀i ∈ [k − 1], Zq,i ≤ C‖A‖1. Otherwise,

‖Â− Ã‖1 > C‖A‖1 which will lead to a contradiction.

Look at |(Zx)n+j|/|(Zx)q|, it is greater than B
2(k−1)C‖A‖1 .

We now look at the submatrix Â[1:n]
[1:n], we choose i∗, j∗ ∈ [n] such that

|Âi∗,j∗| ≥ 1/nc2−2.

If there is no such (i∗, j∗), it means that we already found a good rank-1 approximation to

A

‖0− A‖1 ≤ ‖0− Â[1:n]
[1:n]‖1 + ‖Â[1:n]

[1:n] − A‖1

≤ ‖0− Â[1:n]
[1:n]‖1 + ‖Â− Ã‖1

≤ 1/nc2 + ‖Â− Ã‖1

≤ 1/nc2 + C min
rank−k Â′

‖Â′ − Ã‖1

≤ 1/nc2 + C min
u,v∈Rn

‖uv> − A‖1,

where 0 is an n × n all zeros matrix. The second inequality follows since Â[1:n]
[1:n] − A is

a submatrix of Â − Ã. The third inequality follows since each entry of Â[1:n]
[1:n] should be
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no greater than 1/nc2−2 (otherwise, we can find (i∗, j∗)). The last inequality follows from

equation 17.39.

Claim 17.9.16. Âj∗ is not in the column span of Z, i.e.,

∀x ∈ Rk−1, Âj∗ 6= Zx.

Proof. If there is an x such that Âj∗ = Zx, it means (Zx)i∗ = Âi∗,j∗ ≥ 1/nc2−2. Due

to Claim 17.9.15, there must exist i′ ∈ {n + 1, n + 2, · · · , n + k − 1} such that (Zx)i′ ≥
B

2(k−1)C‖A‖1nc2−2 . Since B is sufficiently large, Âi′,j∗ = (Zx)i′ > C‖A‖1 which implies that

‖Â− Ã‖1 > C‖A‖1, and so leads to a contradiction.

Due to Claim 17.9.14 and Claim 17.9.16, the dimension of the subspace spanned by

Âj∗ and the column space of Z is k. Since Â has rank at most k, it means that each column

of Â can be written as a linear combination of Âj∗ and the columns of Z.

Now consider the jth column Âj of Â for j ∈ [n]. We write it as

Âj = αj · Âj∗ + Zxj.

Claim 17.9.17. ∀j ∈ [n], αj ≤ 2C‖A‖1n
c2+2.

Proof. Otherwise, suppose αj > 2C‖A‖1n
c2+2. We have

|(Zxj)i∗ | ≥ αj · |Âi∗,j∗| − |Âi∗,j|

≥ αj ·
1

nc2−2
− |Âi∗,j|

≥ 1

2
αj ·

1

nc2−2
.

1282



The second inequality follows from |Âi∗,j∗| ≥ 1/nc2−2. The third inequality follows from

|Âi∗,j| ≤ ‖A‖1 and 1
2
αj · 1

nc2−2 ≥ C‖A‖1 ≥ ‖A‖1.

Due to Claim 17.9.15, there exists i ∈ {n+1, n+2, · · · , n+k−1} such that |(Zxj)i| ≥
B

2(k−1)C‖A‖1 ·
1
2
αj · 1

nc2−2 . For sufficiently large B, we can have |(Zxj)i| ≥ αjB
1/2. Then we

look at

|Âi,j| ≥ |(Zxj)i| − αj|Âi,j∗ |

≥ αj(B
1/2 − C‖A‖1)

≥ αj
1

2
B1/2.

The second inequality follows by |Âi,j∗| ≤ C‖A‖1, otherwise ‖Â − Ã‖1 > C‖A‖1 which

will lead to a contradiction. The third inequality follows that B is sufficient large that
1
2
B1/2 > C‖A‖1.

Since |Âi,j| ≥ αj
1
2
B1/2 > C‖A‖1, it contradicts to the fact ‖Â− Ã‖1 ≤ C‖A‖1.

Therefore, ∀j ∈ [n], αj ≤ 2C‖A‖1n
c2+2.

Claim 17.9.18. ∀j ∈ [n], i ∈ {n+ 1, n+ 2, · · · , n+ k − 1}, |(Zxj)i| ≤ 4C2‖A‖2
1n

c2+2

Proof. Consider j ∈ [n], i ∈ {n+ 1, n+ 2, · · · , n+ k − 1}, we have

|(Zxj)i| ≤ |Âi,j|+ αj|Âi,j∗|

≤ C‖A‖1 + αj · C‖A‖1

≤ 4C2‖A‖2
1n

c2+2.

The second inequality follows by |Âi,j| ≤ C‖A‖1 and |Âi,j∗| ≤ C‖A‖1, otherwise the ‖Â−Ã‖1

will be too large and leads to a contradiction. The third inequality is due to αj + 1 ≤

4C‖A‖1n
c2+2 via Claim 17.9.17.
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Claim 17.9.19. ∀j ∈ [n], ‖Â[1:n]
j − αj · Â1:n

j∗ ‖∞ ≤ 1/nc2−2

Proof. Due to Claim 17.9.18 and Claim 17.9.15, ∀i, j ∈ [n], we have

|(Zxj)i| ≤
4C2‖A‖2

1n
c2+2

B/(2(k − 1)C‖A‖1)
≤ 1/B1/2.

The second inequality follows for a large enough B.

Therefore, ∀i, j ∈ [n],

|Âi,j − αj · Âi,j∗| ≤ |(Zxj)i| ≤ 1/B1/2 ≤ 1/nc2−2.

The last inequality follows since B is large enough.

Now, let us show that Â1:n
j∗ can provide a good rank-1 approximation to A:

‖Â1:n
j∗ α

> − A‖1 ≤ ‖Â1:n
j∗ α

> − Â[1:n]
[1:n]‖1 + ‖Â[1:n]

[1:n] − A‖1

=
n∑

j=1

‖αjÂj∗ − Â[1:n]
j ‖1 + ‖Â[1:n]

[1:n] − A‖1

≤ n2 · 1/nc2−2 + ‖Â[1:n]
[1:n] − A‖1

≤ 1/nc2 + ‖Â− Ã‖1

≤ 1/nc2 + C min
u,v∈Rn

‖uv> − A‖1.

The first inequality follows by triangle inequality. The first equality is due to the linearity of

`1 norm. The second inequality is due to Claim 17.9.19. The third inequality follows since

Â
[1:n]
[1:n] − A is a submatrix of Â− Ã. The fourth inequality is due to the equation 17.39.
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17.10 Experiments and Discussions

In this section, we provide some counterexamples for the other heuristic algorithms

such that, for those examples, the heuristic algorithms can output a solution with a very

“bad” approximation ratio, i.e., nc, where c > 0 and the input matrix has size n × n. We

not only observe that heuristic algorithms sometimes have very bad performance in practice,

but also give a proof in theory.
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17.10.1 Setup

We provide some details of our experimental setup. We obtained the R package of

[KK05, Kwa08, BDB13] from https://cran.r-project.org/web/packages/pcaL1/index.

html. We also implemented our algorithm and the r1-pca algorithm [DZHZ06] using the R

language. The version of the R language is 3.0.2. We ran experiments on a machine with

Intel X5550@2.67GHz CPU and 24G memory. The operating system of that machine is

Linux Ubuntu 14.04.5 LTS. All the experiments were done in single-threaded mode.
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Figure 17.1: The x-axis is n where A ∈ Rn×n, and the y-axis is ‖A′−A‖1 where rank(A′) = k.
This figure shows the performance of both our algorithm and [DZHZ06] on input matrix A
defined as Equation (17.40).

17.10.2 Counterexample for [DZHZ06]

The goal is to find a rank k = 1 approximation for matrix A. For any ε ∈ [0, 0.5), we

define A ∈ Rn×n as

A =

[
n1.5+ε 0

0 0

]
+

[
0 0
0 B

]
, (17.40)

where B ∈ R(n−1)×(n−1) is all 1s matrix. It is immediate that the optimal cost is at most

n1.5+ε. However, using the algorithm in [DZHZ06], the cost is at least Ω(n2). Thus, we
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can conclude, using algorithm [DZHZ06] to solve `1 low rank approximation problem on A

cannot achieve an approximation ratio better than n0.5−ε.
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Figure 17.2: The x-axis is n where A ∈ Rn×n, and the y-axis is ‖A′−A‖1 where rank(A′) = k.
This figure shows the performance of both our algorithm and [BDB13] on input matrix A
defined as Equation (17.41).

17.10.3 Counterexample for [BDB13]

The goal is to find a rank k = 1 approximation for matrix A. The input matrix

A ∈ Rd×d for algorithm [BDB13] is defined to be,

A =

[
n1.5 0
0 0

]
+

[
0 0
0 B

]
, (17.41)

where B ∈ R(n−1)×(n−1) is an all 1s matrix. It is immediate that the optimal cost is at

most n1.5. Now, let us look at the procedure of [BDB13]. Basically, the algorithm described
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in [BDB13] is that they first find a rank n − 1 approximation via a best `1-fit hyperplane

algorithm, then they rotate it based on the right singular vectors of the rank n− 1 approx-

imation matrix, and next they recursively do the same thing for the rotated matrix which

has only n− 1 columns.

When running their algorithm on A, they will fit an arbitrary column except the first

column of A. Without loss of generality, it just fits the last column of A. After the rotation,

the matrix will be an n× (n− 1) matrix:



n1.5 0 0 · · · 0
0
√
n− 2 0 · · · 0

0
√
n− 2 0 · · · 0

· · · · · · · · · · · · · · ·
0
√
n− 2 0 · · · 0



.

Then, after the tth iteration for t < (n− 1), they will get an n× (n− t) matrix:



n1.5 0 0 · · · 0
0
√
n− 2 0 · · · 0

0
√
n− 2 0 · · · 0

· · · · · · · · · · · · · · ·
0
√
n− 2 0 · · · 0



.

This means that their algorithm will run on an n× 2 matrix:



n1.5 0
0
√
n− 2

0
√
n− 2

· · · · · ·
0
√
n− 2



,

in the last iteration. Notice that n ×
√
n− 2 < n1.5. This means that their algorithm will

fit the first column which implies that their algorithm will output a rank-1 approximation

to A by just fitting the first column of A. But the cost of this rank-1 solution is (n − 1)2.

Since the optimal cost is at most n1.5, their algorithm cannot achieve an approximation ratio

better than n0.5.
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Figure 17.3: The x-axis is n where A ∈ Rn×n, and the y-axis is ‖A′−A‖1 where rank(A′) = k.
This figure shows the performance of both our algorithm and [Kwa08] on input matrix A
defined as Equation (17.42). Algorithm [Kwa08] has two ways of initialization, which have
similar performance on matrix A.

17.10.4 Counterexample for [Kwa08]

We show that the algorithm [Kwa08] cannot achieve an approximation ratio better

than Θ(n) on the matrix A ∈ R(2n+1)×(2n+1) defined as,

A =



n1.5 0 0
0 B 0
0 0 B


 , (17.42)

where B is an n × n matrix that contains all 1s. We consider the rank-2 approximation

problem for this input matrix A. The optimal cost is at most n1.5.
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We run their algorithm. Let x0 denote the initial random unit vector. Consider the

sign vector s ∈ {±1}2n+1 where each entry is the sign of the inner product between x0 and

each column of A. There are only three possibilities,

s =





(1, {1}n, {1}n)

(1, {1}n, {−1}n)

(1, {−1}n, {1}n)

.

Case I, s = (1, {1}n, {1}n). Define û =
∑2n+1

i=1 si · Ai = (n1.5, n, · · · , n). Let u = û/‖u‖2 =

û/(
√

3n1.5) = (1/
√

3, 1/
√

3n, · · · , 1/
√

3n). Define matrix D to be A− uu>A. Then, we can

compute D,

D = A− uu>A

= A−




1/3 1
3
√
n
1> 1

3
√
n
1>

1
3
√
n
1 1

3n
B 1

3n
B

1
3
√
n
1 1

3n
B 1

3n
B


A

=



n1.5 0 0
0 B 0
0 0 B


−



n1.5

3

√
n

3
1>

√
n

3
1>

n
3
1 1

3
B 1

3
B

n
3
1 1

3
B 1

3
B




=




2n1.5/3 −
√
n

3
1> −

√
n

3
1>

−n
3
1 2

3
B −1

3
B

−n
3
1 −1

3
B 2

3
B


 .

Now we need to take the linear combination of columns D = A − uu>A. Let w denote

another sign vector {−1,+1}2n+1. Then let v denote the basis vector, v =
∑2n+1

i=1 Di. There

are three possibilities, Case I(a), if w = (1, {1}n, {1}n), then v is the all 0 vector. Using

vector v to interpolate each column of D, the cost we obtain is at least 2n2. Case I(b), if

w = (1, {1}n, {−1}n), then v = (2n1.5/3, {2/3}n, {−4/3}n). We also obtain at least 2n2 cost

if we use that v to interpolate each column of D. Case I(c), if w = (1, {−1}n, {−1}n), then

v = (0, {−2/3}n, {−2/3}n). The cost is also at least 2n2.
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Case II, s = (1, {1}n, {−1}n). Define 1 to be a length n all 1s column vector. Define

û =
∑2n+1

i=1 si · Ai = (n1.5, {n}n, {−n}n). Let

u = û/‖u‖2 = û/(
√

3n1.5) = (1/
√

3, {1/
√

3n}n, {−1/
√

3n}n).

Define (2n+ 1)× (2n+ 1) matrix D to be A− uu>A. Then, we can compute D,

D = A− uu>A

= A−




1/3 1
3
√
n
1> − 1

3
√
n
1>

1
3
√
n
1 1

3n
B − 1

3n
B

− 1
3
√
n
1 − 1

3n
B 1

3n
B


A

=



n1.5 0 0
0 B 0
0 0 B


−



n1.5/3

√
n

3
1> −

√
n

3
1>

n
3
1 1

3
B −1

3
B

−n
3
1 −1

3
B 1

3
B




=




2n1.5/3 −
√
n

3
1>

√
n

3
1>

−n
3
1 2

3
B 1

3
B

n
3
1 1

3
B 2

3
B


 .

Similarly to the previous case, we can also discuss three cases.

Case III, s = (1, {1}n, {−1}n). Define 1 to be a length n all 1s column vector.

Define û =
∑2n+1

i=1 si · Ai = (n1.5, {−n}n, {−n}n). Let u = û/‖u‖2 = û/(
√

3n1.5) =

(1/
√

3, {−1/
√

3n}n, {−1/
√

3n}n). Define matrix D to be A−uu>A. Then, we can compute

D,
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D = A− uu>A

= A−




1/3 − 1
3
√
n
)1> − 1

3
√
n
1>

− 1
3
√
n
1 1

3n
B 1

3n
B

− 1
3
√
n
1 1

3n
B 1

3n
B


A

=



n1.5 0 0
0 B 0
0 0 B


−



n1.5/3 −

√
n

3
1> −

√
n

3
1>

−n
3
1 1

3
B 1

3
B

−n
3
1 1

3
B 1

3
B




=




2n1.5/3
√
n

3
1>

√
n

3
1>

n
3
1 2

3
B 1

3
B

n
3
1 1

3
B 2

3
B


 .

Similarly to the previous case, we can also discuss three cases.
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17.10.5 Counterexample for [KK05]

We show that there exist matrices such that the algorithm of [KK05] cannot achieve

an approximation ratio better than Θ(n). Their algorithm has two different ways of initial-

ization. We provide counterexamples for each of the initialization separately.

Random vector initialization We provide a counterexample matrix A ∈ Rn×n defined

as,

A =




nc 0 · · · 0
0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 0


+ I, (17.43)

where c ≥ 2. Consider the rank-1 approximation problem for this matrix A. The optimal

cost is at most n− 1.

Run their algorithm. The starting vectors are u(0) ∼ N(0, I) and v(0) ∼ N(0, 1).

We define two properties for a given vector y ∈ Rn. Property I is for all i ∈ [n], |yi| ≤ n/8,

and Property II is there exist half of the i such that |yi| ≥ 1/2. We can show that with

probability 1−2−Ω(n), both u(0) and v(0) satisfy Property I and II. After 1 iteration, we can

show that u(1)1 = v(1)1 = 0

Now let us use column vector u(0) ∈ Rn to interpolate the first column of matrix A.

We simplify u(0) to be u. Let ui denote the i-th coordinate of vector u, ∀i ∈ [n]. Let A1

denote the first column of matrix A. We define α = v(1)1 = arg minα ‖αu(0) − A1‖1. For

any scalar α, the cost we pay on the first column of matrix A is,

|α · u1 − nc|+
n∑

i=2

|αui| ≥ |α · u1 − nc|+
n

2
|α · 1

2
| ≥ |α · u1 − nc|+

n

4
|α|. (17.44)
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Figure 17.4: The x-axis is n where A ∈ Rn×n, and the y-axis is ‖A′−A‖1 where rank(A′) = k.
Algorithm [KK05] has two ways of initialization. The left figure shows the performance of
both our algorithm and [KK05] with random vector initialization on input matrix A defined
as Equation (17.43). The right figure shows the performance of both our algorithm and
[KK05] with top singular vector initialization on input matrix A defined as Equation (17.45).
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Notice that c ≥ 2. Then |α · u1 − nc|+ n
4
|α| ≥ |α · n

8
− nc|+ n

4
|α|. If α ≤ 0, then the cost is

minimized when α = 0. If α ∈ [0, 8nc−1], the cost is minimized when α = 0. If α ≥ 8nc−1,

the cost is minimized when α = 8nc−1. Putting it all together, to achieve the minimum cost,

there is only one choice for α, which is α = 0. The optimal cost is at least nc.

Then after T iterations(for any T ≥ 1), u(T )1 = v(T )1 = 0. Thus, we always pay at

least nc cost on the first entry.

Therefore, their algorithm cannot achieve any approximation ratio better than nc−1.

Because c ≥ 2, we complete the proof.

Top singular vector initialization The counterexample input matrix A ∈ Rn×n is de-

fined as,

A =

[
n 0
0 B

]
, (17.45)

where matrix B ∈ R(n−1)×(n−1) contains all 1s. Consider the rank-1 approximation problem

for this matrix A. The optimal cost is at most n. Run their algorithm. The starting

vectors u(0) and v(0) will be set to (1, 0, · · · , 0) ∈ Rn. After T iterations(for any T > 0),

the support of u(T )(resp. v(T )) is the same as u(0)(resp. v(T )). Thus, the cost is at

least ‖B‖1 = (n− 1)2. Therefore, we can conclude that their algorithm cannot achieve any

approximation ratio better than (n− 1)2/n = Θ(n).

1297



17.10.6 Counterexample for all
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Figure 17.5: Let A be (2n + 2) × (2n + 2) input matirx. (a) shows the performance of all
the algorithms when the matrix dimension is growing. The x-axis is n, and the y-axis is
‖A′ − A‖1 where A′ is the rank-3 solution output by all the heuristic algorithms and also
ours. The `1 residual cost of all the other algorithms is growing much faster than ours, which
is consistent with our theoretical results. (b) shows the running time (in seconds) of all the
algorithms when the matrix dimension n is growing. The x-axis is n and the y-axis is time
(seconds). The running time of some of the algorithms is longer than 3 seconds. For most
of the algorithms (including ours), the running time is always less than 3 seconds.

For any ε ∈ (0, 0.5) and γ > 0, we construct the input matrix A ∈ R(2n+2)×(2n+2) as

follows

A =




n2+γ 0 0 0
0 n1.5+ε 0 0
0 0 B 0
0 0 0 B


 ,

where B is n×n all 1s matrix. We want to find a rank k = 3 solution for A. Then any of those

four heuristic algorithms [KK05, DZHZ06, Kwa08, BDB13] is not able to achieve better than

nmin(γ,0.5−ε) approximation ratio. We present our main experimental results in Figure 17.5.
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Both [KK05] and [Kwa08] have two different ways of initialization. In Figure 17.5 we use

KK05r(resp. Kwak08r) to denote the way that uses random vector as initialization, and

use KK05s(resp. Kwak08s) to denote the way that uses top singular vector as initialization.

Figure 17.5(a) shows the performance of all the algorithms and Figure 17.5(b) presents the

running time. The `1 residual cost of all the other algorithm is growing much faster than

our algorithm. Most of the algorithms (including ours) are pretty efficient, i.e., the running

time is always below 3 seconds. The running time of [BDB13, KK05] is increasing very fast

when the matrix dimension n is growing.

In Figure 17.5(a), the cost of KK05r at {82, · · · , 142} is in [105, 106], at {162, · · · , 302}

is in [106, 107], and at {322, · · · , 402} is in [107, 108]. In Figure 17.5(b), the time of KK05r

at {382, 482} is 64s and 160s. The running time of BDB13 at {82, · · · , 222} is between 1

minute and 1 hour. The running time of BDB13 at {242, · · · , 322} is between 1 hour and

20 hours. The running time of BDB13 at {342, · · · , 402} is more than 20 hours.
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17.10.7 Discussion for Robust PCA [CLMW11]

A popular method is robust PCA [CLMW11], which given a matrix A, tries to find a

matrix L for which λ‖A− L‖1 + ‖L‖∗ is minimized, where λ > 0 is a tuning parameter and

‖L‖∗ is the nuclear norm of L. This is a convex program, but it need not return a low rank

matrix L with relative error. As a simple example, suppose λ = 1, and the n× n matrix A

is a block-diagonal matrix of rank k and n = k
2
(b+ 1). Further, the first k/2 blocks are b× b

matrices of all 1s, while the next k/2 blocks are just a single value b on the diagonal.

Then the solution to the above problem may return L to be the first k/2 blocks of A.

The total cost of λ‖A− L‖1 + ‖L‖∗is (k/2)b+ (k/2)b = kb.

Also, the solution to the above problem may return L to be A, which has cost 0 +

‖A‖∗ = kb. Because this solution has the same cost, it means that their algorithm might

output a rank-k solution, and also might output a rank-k/2 solution.

Therefore, the relative error of the output matrix may be arbitrarily bad for `1-low

rank approximation.

We also consider the following example. Suppose λ = 1/
√
n, and let n × n matrix

A denote the Hadamard matrix Hn. Recall that the Hadamard matrix Hp of size p × p is

defined recursively :
[
Hp/2 Hp/2

Hp/2 −Hp/2

]
with H2 =

[
+1 +1
+1 −1

]
. Notice that every singular values

of A is
√
n. We consider the objective function λ‖A− L‖1 + ‖L‖∗.

Then the solution to the above problem may return L to be the first n/2 rows of A.

The total cost of λ‖A− L‖1 + ‖L‖∗ is (1/
√
n)n2/2 + (n/2)

√
n = n1.5. Also, the solution to

the above problem may return L to be A, which has cost 0 + ‖A‖∗ = n
√
n = n1.5. For any

i, if the solution takes i rows of A, the cost is (1/
√
n)(n − i)n + i

√
n = n1.5. Because this
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solution has the same cost, it means that their algorithm might output a rank-n solution,

and also might output a rank-n/2 solution. Therefore, the relative error of the output matrix

may be arbitrarily bad for `1-low rank approximation.
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17.11 Limited Independent Cauchy Random Variables

This section presents the fundamental lemmas with limited independent Cauchy vari-

ables, which will be used in Section 17.12 and 17.13. In Section 17.11.1, we provide some

notation, definitions and tools from previous work. Section 17.11.2 includes the main result.
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17.11.1 Notations and tools

For a function f : R → R and nonnegative integer `, f (`) denotes the `th derivative

of f , with f (0) = f . We also often use x ≈ε y to state that |x − y| = O(ε). We use I[a,b] to

denote the indicator function of the interval [a, b].

To optimize the communication complexity of our distributed algorithm, we show

that instead of using fully independent Cauchy variables, poly(k, d)-wise independent Cauchy

variables suffice.

We start by stating two useful Lemmas from previous work [KNW10a].

Lemma 17.11.1 (Lemma 2.2 in [KNW10a]). There exists an ε0 > 0 such that the following

holds. Let n be a positive integer and 0 < ε < ε0, 0 < p < 2 be given. Let f : R→ R satisfy

‖f (`)‖∞ = O(α`) for all ` ≥ 0, for some α satisfying αp ≥ log(1/ε). Let k = αp. Let a ∈ Rn

satisfy ‖a‖p = O(1). Let Xi be a 3Ck-independent family of p-stable random variables. Let

X =
∑

i aiXi and Y =
∑

i aiYi. Then E[f(x)] = E[f(Y )] +O(ε).

Lemma 17.11.2 (Lemma 2.5 in [KNW10a]). There exist constants c′, ε0 > 0 such that for

all c > 0 and 0 < ε < ε0, and for all [a, b] ⊆ R, there exists a function J c[a,b] : R → R

satisfying:

i. ‖(J c[a,b])(`)‖∞ = O(c`) for all ` ≥ 0.

ii. For all x such that a, b /∈ [x − ε, x + ε], and as long as c > c′ε−1 log3(1/ε),

|J c[a,b](x)− I[a,b](x)| < ε.
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17.11.2 Analysis of limited independent random Cauchy variables

Lemma 17.11.3. Given a vector y ∈ Rn, choose Z to be the t×n random Cauchy matrices

with 1/t rescaling and t = O(k log k). The variables from different rows are fully independent,

and the variables from the same rows are O(1)-wise independent. Then, we have

‖Zy‖1 & ‖y‖1

holds with probability at least 1− 2−Ω(t).

Proof. Let S denote the original fully independent matrix and Z denote the matrix for which

the entries in the same row are w-wise independent, and the entries from different rows are

fully independent. Notice we define the random matrices without rescaling by 1/t and it will

be added back at the end. (We will decide w later)

We define random variable X such that X = 1 if |(Zy)i| ≤ 1
50

and X = 0 otherwise.

We also define random variable Y such that Y = 1 if |(Sy)i| ≤ 1
50

and Y = 0 otherwise.

Then, we have

E[X] = Pr

[
|(Zy)i| ≤

1

50

]
= E

[
I[− 1

50
, 1
50

]((Zy)i)

]

E[Y ] = Pr

[
|(Sy)i| ≤

1

50

]
= E

[
I[− 1

50
, 1
50

]((Sy)i)

]

The goal is to show that E[X] ≈ε E[Y ]. Following the same idea from [KNW10a], we need

to argue this chain of inequalities,

E[I[a,b](X)] ≈ε E[J c[a,b](X)] ≈ε E[J c[a,b](Y )] ≈ε E[I[a,b](Y )]
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Using Lemma 2.2 and Lemma 2.5 from [KNW10a], choosing sufficiently small constant

ε(which implies w = O(1)), it follows that for each i ∈ [t], we still have

Pr

[
|(Zy)i| >

1

50
‖y‖1

]
& Pr

[
|(Sy)i| >

1

50
‖y‖1

]
≥ 0.9

Because all rows of Z are fully independent, using the Chernoff bound we can get that

Pr

[
‖Zy‖1 . t‖y‖1

]
≤ exp(−Ω(t))

as we needed for the “no contraction” part of the net argument.

For the no dilation, we need to argue that

Lemma 17.11.4. Given a set of vectors {y1, y2, . . . , yd} where yi ∈ Rn,∀i ∈ [d], choose Z

to be the t × n random Cauchy matrices with 1/t rescaling and t = O(k log k), where the

variables from different rows are fully independent, and the variables from the same rows are

w-wise independent.

I. If w = Õ(dk), we have

d∑

i=1

‖Zyi‖1 ≤ O(log d)
d∑

i=1

‖yi‖1

holds with probability at least .999.

II. If If w = Õ(d), we have

d∑

i=1

‖Zyi‖1 ≤ O(k log d)
d∑

i=1

‖yi‖1

holds with probability at least .999.
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Proof. Let m = t. Let S ∈ Rm×n denote the original fully independent matrix and Z denote

the matrix that for each entry in the same row are w-wise independent, where the entries

from different rows are fully independent. (We will decide onw later)

Applying matrix S to those fixed set of vectors, we have

d∑

i=1

‖Syi‖1 =
d∑

i=1

m∑

j=1

|
n∑

l=1

1

m
Sj,l · (yi)l| =

1

m

d∑

i=1

m∑

j=1

|
n∑

l=1

Sj,l · (yi)l|

Applying matrix Z to those fixed set of vectors, we have a similar thing,

d∑

i=1

‖Zyi‖1 =
d∑

i=1

m∑

j=1

|
n∑

l=1

1

m
Zj,l · (yi)l| =

1

m

d∑

i=1

m∑

j=1

|
n∑

l=1

Zj,l · (yi)l|

The goal is to argue that, for any i ∈ [d], j ∈ [m],

E
[
|

n∑

l=1

Zj,l · (yi)l|
∣∣∣∣ξ
]
. E

[
|

n∑

l=1

Sj,l · (yi)l|
∣∣∣∣ξ
]

+ δ

As long as δ is small enough, we are in a good shape.

Let X = 1
‖yi‖1

∑n
l=1 Zj,l(yi)l, and Y = 1

‖yi‖1

∑m
l=1 Sj,l(yi)l. Let D be the truncating

threshold of each Cauchy random variable. Define T = O(logD). On one hand, we have

E[|X||ξ] ≤ 2

(
Pr[X ∈ [0, 1]|ξ] · 1 +

T∑

j=0

Pr[X ∈ (2j, 2j+1]|ξ] · 2j+1

)

≤ 2

(
1 +

T∑

j=0

Pr[I(2j ,2j+1)(X) = 1|ξ] · 2j+1

)

= 2

(
1 +

T∑

j=0

E[I(2j ,2j+1)(X)|ξ] · 2j+1

)
(17.46)
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On the other hand, we can show

E[|Y ||ξ] ≥ 2

(
Pr[X ∈ [0, 1]|ξ] · 0 +

T∑

j=0

Pr[Y ∈ (2j, 2j+1]|ξ] · 2j
)

≥ 2
T∑

j=0

Pr[I(2j ,2j+1](Y ) = 1|ξ] · 2j

≥ 2
T∑

j=0

E[I(2j ,2j+1](Y )|ξ] · 2j (17.47)

Thus, we need to show that, for each j,

E[I(2j ,2j+1)(X)|ξ] ≈ε E[I(2j ,2j+1](Y )|ξ] (17.48)

Following the same idea from [KNW10a], we need to argue this chain of inequalities,

E[I[a,b](X)] ≈ε E[J c[a,b](X)] ≈ε E[J c[a,b](Y )] ≈ε E[I[a,b](Y )]

We first show E[I[a,b](X)] ≈ε E[J c[a,b](X)]. Notice that I[a,b] and J[a,b] are within ε everywhere

except for two intervals of length O(ε). Also the Cauchy distribution is anticoncentrated

(any length-O(ε) interval contains O(ε) probability mass) and ‖I[a,b]‖∞, ‖J c[a,b]‖∞ = O(1),

these intervals contribute O(ε) to the difference.

Second, we show E[J c[a,b](X)] ≈ε E[J c[a,b](Y )]. This directly follows by Lemma 17.11.1

by choosing α = O(ε−1 log3(1/ε)).

Third, we show E[J c[a,b](Y )] ≈ε E[I[a,b](Y )]. The argument is similar as the first step,

but we need to show anticoncentration of Y . Suppose for any t ∈ R we had a nonnegative
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function fε,t : R→ R symmetric about t satisfying:

I. ‖f (`)
t,ε ‖∞ = O(α`) for all ` ≥ 0, with α = O(1/ε)

II. E[ft,ε(z)] = O(ε) for z ∼ D1

III. ft,ε(t+ ε) = Ω(1)

IV. ft,ε(x) is strictly decreasing as |x− t| → ∞

By I, II and Lemma 17.11.1 we could have E[fε,t(Y )] ≈ε E[ft,ε(z)] = O(ε). Then, E[ft,ε(Y )] ≥

ft,ε(t + ε) · Pr[Y ∈ [t − ε, t + ε]] = Ω(Pr[Y ∈ [t − ε, t + ε]]) by III and IV, implying anticon-

centration in [t− ε, t + ε] as desired. For the details of function ft,ε, we refer the readers to

Section A.4 in [KNW10a].

Now, combining Equation (17.46), (17.47) and (17.48) gives

E
[
|

n∑

l=1

Zj,l · (yi)l|
∣∣∣∣ξ
]
. E

[
|

n∑

l=1

Sj,l · (yi)l|
∣∣∣∣ξ
]

+
T∑

j=0

2j · ε · ‖yi‖1

. E
[
|

n∑

l=1

Sj,l · (yi)l|
∣∣∣∣ξ
]

+D · ε · ‖yi‖1

Overall, for the fixed j, Sj,l is Õ(1/ε)-independent family of Cauchy random variable.

Choosing D = O(dk) and ε = O(1/D), we can show

1

m

d∑

i=1

m∑

j=1

E
[
|

n∑

l=1

Sj,l · (yi)l|
∣∣∣∣ξ
]
≤ O(log d)

d∑

i=1

‖yi‖1

as before. Notice that Dε‖yi‖1 = O(‖yi‖1). Thus, we complete the proof of the first result.

Choosing D = O(dk) and ε = O(1/d), the dominant term becomes Dε‖yi‖1 =

O(k‖yi‖1). Thus, we complete the proof of second result.
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Corollary 17.11.5. Given U ∈ Rn×k, let Z ∈ Rt×n be the same as the matrix stated in the

Lemma 17.11.3, then with probability at least .95,

∀x ∈ Rk, ‖ZUx‖1 & ‖Ux‖1.

The proof is very similar to the proof of Lemma 17.5.14. Without loss of generality,

we can suppose U is a well-conditioned basis. Due to Lemma 17.11.4, with arbitrarily high

constant probability ‖ZU‖1 is bounded by poly(t, k). By simply applying the net argument

and using Lemma 17.11.3 to take a union bound over net points, we can get the above

corollary.
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17.12 Streaming Setting

Section 17.12.1 provides some notation and definitions about row-update streaming

model and the turnstile streaming model. For some recent developments of row-update

streaming and turnstile streaming models, we refer the readers to [CW09, KL11, GP14,

Lib13, KLM+14a, BWZ16] and the references therein. Section 17.12.2 presents our turnstile

streaming algorithm. Section 17.12.3 presents our row-update streaming algorithm.
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17.12.1 Definitions

Definition 17.12.1 (Row-update model). Let matrix A ∈ Rn×d be a set of rows A1, · · · , An.

In the row-update streaming model, each row of A will occur in the stream exactly once.

But the rows can be in arbitrary order. An algorithm in this model is only allowed a single

pass over these rows. At the end of the stream, the algorithm stores some information of A.

The space of the algorithm is the total number of words required to store this information

during the stream. Here, each word is O(log(nd)) bits.

Definition 17.12.2 (Turnstile model). At the beginning, let matrix A ∈ Rn×d be a zero

matrix. In the turnstile streaming model, there is a stream of update operations, and the

ith operation has the form (xi, yi, ci) which means that Axi,yi should be incremented by ci.

An algorithm in this model is only allowed a single pass over the stream. At the end of the

stream, the algorithm stores some information of A. The space complexity of the algorithm

is the total number of words required to store this information during the stream. Here,

each word is O(log(nd)) bits.
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17.12.2 Turnstile model, poly(k, log(d), log(n)) approximation

Definition 17.12.3 (Turnstile model `1-low rank approximation - rank-k subspace version).

Given matrix A ∈ Rn×d and k ∈ N+, the goal is to propose an algorithm in the streaming

model of Definition 17.12.2 such that

1. Upon termination, the algorithm outputs a matrix V ∗ ∈ Rk×d.

2. V ∗ satisfies that

min
U∈Rn×k

‖A− UV ∗‖1 ≤ poly(k, log(d), log(n)) · min
U∈Rn×k,V ∈Rk×d

‖A− UV ‖1.

3. The space complexity is as small as possible

Theorem 17.12.1. Suppose A ∈ Rn×d is given in the turnstile streaming model (See Defi-

nition 17.12.2), there is an algorithm(in Algorithm 17.8 without decomposition) which solves

the problem in Definition 17.12.3 with constant probability. Further, the space complexity of

the algorithm is poly(k) + Õ(kd) words.

Proof. Correctness. The correctness is implied by (IV) of Lemma 17.5.5, and the proof of

Theorem 17.4.3. Notice that L = T1AR,N = SAT2,M = T1AT2, so X̂ ∈ RO(k log k)×O(k log k)

minimizes

min
rank−k X

‖T1ARXSAT2 − T1AT2‖F .

According to the proof of Theorem 17.4.3, ARX̂SA gives a `1 rank-k poly(k, log(d), log(n))-

approximation to A. Because X̂ = ÛΣ̂V̂ >, V ∗ = Σ̂V̂ >SA satisfies:

min
U∈Rn×k

‖A− UV ∗‖1 ≤ poly(k, log(d), log(n)) · min
U∈Rn×k,V ∈Rk×d

‖A− UV ‖1.
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Space complexity. Generating Õ(kd)-wise independent random Cauchy variables

needs Õ(kd) bits. The size of L,N and M are k2 log2 k, k2 log3 k and k2 log3 k words sepa-

rately. So the space of maintaining them is O(k2 log3 k) words. The size ofD is O(k log k)×d,

so maintaining it needs O(kd log k) words. Therefore, the total space complexity of the al-

gorithm is poly(k) + Õ(kd) words.

It is easy to extend our algorithm to output a decomposition. The formal definition

of the decomposition problem is as the following:

Definition 17.12.4 (Turnstile model `1-low rank approximation - rank-k decomposition

version). Given matrix A ∈ Rn×d and k ∈ N+, the goal is to propose an algorithm in the

streaming model of Definition 17.12.2 such that

1. Upon termination, the algorithm outputs a matrix U∗ ∈ Rn×k, V ∗ ∈ Rk×d.

2. U∗, V ∗ satisfies

‖A− U∗V ∗‖1 ≤ poly(k, log(d), log(n)) · min
U∈Rn×k,V ∈Rk×d

‖A− UV ‖1.

3. The space complexity is as small as possible

Theorem 17.12.2. Suppose A ∈ Rn×d is given by the turnstile streaming model (See Defi-

nition 17.12.2). There is an algorithm( in Algorithm 17.8 with decomposition) which solves

the problem in Definition 17.12.4 with constant probability. Further, the space complexity of

the algorithm is poly(k) + Õ(k(d+ n)) words.
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Proof. Correctness. The only difference from the Algorithm 17.8 (without decomposi-

tion) is that the algorithm maintains C. Thus, finally it can compute U∗ = ARÛ . Notice

that U∗V ∗ = ARX̂SA, according to the proof of Theorem 17.4.3, U∗V ∗ gives a `1 rank-k

poly(k, log(d), log(n))-approximation to A.

Space complexity. Since the size of C is O(nk log k) words, the total space is

poly(k) + Õ(k(d+ n)) words.
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17.12.3 Row-update model, poly(k) log d approximation

Definition 17.12.5 (Row-update model `1-low rank approximation - rank-k subspace ver-

sion). Given matrix A ∈ Rn×d and k ∈ N+, the goal is to propose an algorithm in the

streaming model of Definition 17.12.1 such that

1. Upon termination, the algorithm outputs a matrix V ∗ ∈ Rk×d.

2. V ∗ satisfies that

min
U∈Rn×k

‖A− UV ∗‖1 ≤ poly(k) log(d) · min
U∈Rn×k,V ∈Rk×d

‖A− UV ‖1.

3. The space complexity is as small as possible

Theorem 17.12.3. Suppose A ∈ Rn×d is given by the row-update streaming model (See

Definition 17.12.1), there is an algorithm( in Algorithm 17.9 without decomposition ) which

solves the problem in Definition 17.12.5 with constant probability. Further, the space com-

plexity of the algorithm is poly(k) + Õ(kd) words.

Proof. Correctness. Notice that L = T1BR,N = SBT2,M = T1BT2. Thus, X̂ ∈

RO(k log k)×O(k log k) actually minimizes

min
rank−k X

‖T1BRXSBT2 − T1BT2‖F .

Also notice that B is just taking each row of A and replacing it with its nearest point in

the row span of S ′A. According to the proof of Theorem 17.4.6 and (IV) of Lemma 17.5.5

BRX̂SB gives a poly(k) log d `1 norm rank-k approximation to A. Since X̂ = ÛΣ̂V̂ >,

V ∗ = Σ̂V̂ >SB satisfies:

min
U∈Rn×k

‖A− UV ∗‖1 ≤ poly(k, log(d), log(n)) · min
U∈Rn×k,V ∈Rk×d

‖A− UV ‖1.
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Space complexity. Constructing sketching matrices needs Õ(kd) bits to store ran-

dom seeds. Maintaining L,N,M needs O(k2 log3 k) words. The cost of storing X̂ is also

O(k2 log2 k) words. Maintaining D needs O(kd log k) words. Therefore, the total space cost

of the algorithm is poly(k) + Õ(kd) words.

It is easy to extend our algorithm to output a decomposition. The formal definition

of the decomposition problem is as the following:

Definition 17.12.6 (Row-update model `1-low rank approximation - rank-k decomposition

version). Given matrix A ∈ Rn×d and k ∈ N+, the goal is to propose an algorithm in the

streaming model of Definition 17.12.1 such that

1. Upon termination, the algorithm outputs matrices U∗ ∈ Rn×k, V ∗ ∈ Rk×d.

2. U∗, V ∗ satisfies that

‖A− U∗V ∗‖1 ≤ poly(k) log d · min
U∈Rn×k,V ∈Rk×d

‖A− UV ‖1.

3. The space complexity is as small as possible.

Theorem 17.12.4. Suppose A ∈ Rn×d is given by the row-update streaming model (See Def-

inition 17.12.1), there is an algorithm(in Algorithm 17.9 with decomposition ) which solves

the problem in Definition 17.12.6 with constant probability. Further, the space complexity of

the algorithm is poly(k) + Õ(k(n+ d)) words.

Proof. Correctness. The only difference is that the above algorithm maintains C. Thus,

We can compute U∗ = CÛ in the end. Notice that U∗V ∗ = BRX̂SB, according to the proof

of Theorem 17.4.6, U∗V ∗ gives a poly(k) log d `1 norm rank-k approximation to A.

1316



Space complexity. Since the size of C is nk log k words, the total space is poly(k)+

Õ(k(n+ d)) words.
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17.13 Distributed Setting

Section 17.13.1 provides some notation and definitions for the Row-partition dis-

tributed model and the Arbitrary-partition model. These two models were recently studied

in a line of works such as [TD99, QOSG02, BCL05, BRB08, MBZ10, FEGK13, PMvdG+13,

KVW14, BKLW14, BLS+16b, BWZ16, WZ16]. Section 17.13.2 and 17.13.3 presents our dis-

tributed protocols for the Arbitrary-partition distributed model. Section 17.13.4 and 17.13.5

presents our distributed protocols for the Row-partition distributed model.
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17.13.1 Definitions

Definition 17.13.1 (Row-partition model [BWZ16]). There are s machines, and the ith

machine has a matrix Ai ∈ Rni×d as input. Suppose n =
∑s

i=1 ni, and the global data

matrix A ∈ Rn×d is denoted as 


A1

A2

· · ·
As


 ,

we say A is row-partitioned into these s matrices distributed in s machines respectively.

Furthermore, there is a machine which is a coordinator. The model only allows communi-

cation between the machines and the coordinator. The communication cost in this model is

the total number of words transferred between machines and the coordinator. Each word is

O(log(snd)) bits.

Definition 17.13.2 (Arbitrary-partition model [BWZ16]). There are s machines, and the

ith machine has a matrix Ai ∈ Rn×d as input. Suppose the global data matrix A ∈ Rn×d is

denoted as A =
∑s

i=1Ai. We say A is arbitrarily partitioned into these s matrices distributed

in s machines respectively. Furthermore, there is a machine which is a coordinator. The

model only allows communication between the machines and the coordinator. The commu-

nication cost in this model is the total number of words transferred between machines and

the coordinator. Each word is O(log(snd)) bits.
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17.13.2 Arbitrary-partition model, subspace, poly(k, log(d), log(n)) approxima-
tion

Definition 17.13.3 (Arbitrary-partition model `1-low rank approximation - rank-k subspace

version). Given matrix A ∈ Rn×d arbitrarily partitioned into s matrices A1, A2, · · · , As dis-

tributed in s machines respectively, and k ∈ N+, the goal is to propose a protocol in the

model of Definition 17.13.2 such that

1. Upon termination, the protocol leaves a matrix V ∗ ∈ Rk×d on the coordinator.

2. V ∗ satisfies that

min
U∈Rn×k

‖A− UV ∗‖1 ≤ poly(k, log(d), log(n)) · min
U∈Rn×k,V ∈Rk×d

‖A− UV ‖1.

3. The communication cost is as small as possible

Theorem 17.13.1. Suppose A ∈ Rn×d is partitioned in the arbitrary partition model (See

Definition 17.13.2). There is a protocol(in Algorithm 17.10) which solves the problem in

Definition 17.13.3 with constant probability. Further, the communication complexity of the

protocol is s(poly(k) + Õ(kd)) words.

Proof. Correctness. The correctness is shown by the proof of Theorem 17.4.3 and (IV) of

Lemma 17.5.5. Notice that X̂ ∈ RO(k log k)×O(k log k) minimizes

min
rank−k X

‖LXN −M‖F .

which is

min
rank−k X

‖T1ARXSAT2 − T1AT2‖F .
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According to the proof of Theorem 17.4.3, ARX̂SA gives an `1 rank-k poly(k, log(d), log(n))-

approximation to A. Because X̂ = ÛΣ̂V̂ >, V ∗ = Σ̂V̂ >SA satisfies:

min
U∈Rn×k

‖A− UV ∗‖1 ≤ poly(k, log(d), log(n)) · min
U∈Rn×k,V ∈Rk×d

‖A− UV ‖1.

Communication complexity. Since the random seed generates Õ(kd)-wise inde-

pendent random Cauchy variables, the cost of line 5 is Õ(skd) bits. The size of Li, Ni andMi

are k2 log2 k, k2 log3 k and k2 log3 k words separately. So the cost of line 15 is O(sk2 log3 k)

words. Because the size of X̂ is O(k2 log2 k), the cost of line 22 is O(sk2 log2 k) words. line 30

needs skd words of communication. Therefore, the total communication of the protocol is

s(poly(k) + Õ(kd)) words.
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17.13.3 Arbitrary-partition model, decomposition, poly(k, log(d), log(n)) approx-
imation

Definition 17.13.4 (Arbitrary-partition model `1-low rank approximation - rank-k decom-

position version). Given matrixA ∈ Rn×d arbitrarily partitioned into smatricesA1, A2, · · · , As
distributed in s machines respectively, and k ∈ N+, the goal is to propose a protocol in the

model of Definition 17.13.2 such that

1. Upon termination, the protocol leave matrices U∗ ∈ Rn×k, V ∗ ∈ Rk×d on the coordina-

tor.

2. U∗, V ∗ satisfies that

‖A− U∗V ∗‖1 ≤ poly(k, log(d), log(n)) · min
U∈Rn×k,V ∈Rk×d

‖A− UV ‖1.

3. The communication cost is as small as possible.

Theorem 17.13.2. Suppose A ∈ Rn×d is partitioned in the arbitrary partition model (See

Definition 17.13.2). There is a protocol(in Algorithm 17.10 with decomposition) which solves

the problem in Definition 17.13.4 with constant probability. Further, the communication

complexity of the protocol is s(poly(k) + Õ(k(d+ n))) words.

Proof. Correctness. The only difference from the protocol (without decomposition) in

Section 17.13.2 is that the protocol sends Ui. Thus, the coordinator can compute U∗ = ARÛ .

Notice that U∗V ∗ = ARX̂SA. According to the proof of Theorem 17.4.3, U∗V ∗ gives a `1

rank-k poly(k, log(d), log(n))-approximation to A.

Communication complexity. Since the size of Ui is kn words, the total communi-

cation is s(poly(k) + Õ(k(d+ n))) words.

1322



1323



17.13.4 Row-partition model, subspace, poly(k) log d approximation

Definition 17.13.5 (Row-partition model `1-low rank approximation - rank-k subspace

version). Given matrix A ∈ Rn×d row-partitioned into s matrices A1, A2, · · · , As distributed

in s machines respectively, and k ∈ N+, the goal is to propose a protocol in the model of

Definition 17.13.1 such that

1. Upon termination, the protocol leaves a matrix V ∗ ∈ Rk×d on the coordinator.

2. V ∗ satisfies that

min
U∈Rn×k

‖A− UV ∗‖1 ≤ poly(k) log d · min
U∈Rn×k,V ∈Rk×d

‖A− UV ‖1.

3. The communication cost is as small as possible

Theorem 17.13.3. Suppose A ∈ Rn×d is partitioned in the row partition model (See Defi-

nition 17.13.1). There is a protocol(in Algorithm 17.11 without decomposition) which solves

the problem in Definition 17.13.5 with constant probability. Further, the communication

complexity of the protocol is s(poly(k) + Õ(kd)) words.

Proof. Correctness. For convenience, we denote matrices B ∈ Rn×d, S ∈ RO(k log2 k)×n and

T1 ∈ RO(k log2 k)×n as

B =




B1

B2

· · ·
Bs


 S =

(
S1 S2 · · · Ss

)
T1 =

(
T11 T12 · · · T1s

)
.

Notice that L = T1BR,N = SBT2,M = T1BT2. Thus, X̂ ∈ RO(k log k)×O(k log k) actually

minimizes

min
rank−k X

‖T1BRXSBT2 − T1BT2‖F .
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Also notice that B is just taking each row of A and replacing it with its nearest point in the

row span of S ′A. According to the proof of Theorem 17.4.6, BRX̂SB gives a poly(k) log d

`1 norm rank-k approximation to A. Since X̂ = ÛΣ̂V̂ >, V ∗ = Σ̂V̂ >SB satisfies:

min
U∈Rn×k

‖A− UV ∗‖1 ≤ poly(k, log(d), log(n)) · min
U∈Rn×k,V ∈Rk×d

‖A− UV ‖1.

Communication complexity. Since the R and T2 are Õ(kd)-wise independent,

line 6 needs O(sW ) bits of communication. Line 16 needs O(sk2 log3 k) words. The cost of

line 23 is O(sk2 log2 k) words. Line 32 needs skd words of communication. Therefore, the

total communication of the protocol is s(poly(k) + Õ(kd)) words.
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17.13.5 Row-partition model, decomposition, poly(k) log d approximation

Definition 17.13.6 (Row-partition model `1-low rank approximation - rank-k decomposi-

tion version). Given matrix A ∈ Rn×d row partitioned into s matrices A1, A2, · · · , As dis-

tributed in s machines respectively, and a positive integer k < rank(A), the goal is to propose

a protocol in the model of Definition 17.13.1 such that

1. Upon termination, the protocol leaves matrices U∗ ∈ Rn×k, V ∗ ∈ Rk×d on the coordi-

nator.

2. U∗, V ∗ satisfies that

‖A− U∗V ∗‖1 ≤ poly(k) log d · min
U∈Rn×k,V ∈Rk×d

‖A− UV ‖1.

3. The communication cost is as small as possible.

Theorem 17.13.4. Suppose A ∈ Rn×d is partitioned in the row partition model (See Def-

inition 17.13.1). There is a protocol(in Algorithm 17.11 with decomposition) which solves

the problem in Definition 17.13.6 with constant probability. Further, the communication

complexity of the protocol is s(poly(k) + Õ(k(n+ d))) words.

Proof. Correctness. The only difference is that the above protocol sends Ui. Thus, the

coordinator can compute U∗ = BRÛ . Notice that U∗V ∗ = BRX̂SB, according to the proof

of Theorem 17.4.6, U∗V ∗ gives a poly(k) log d `1 norm rank-k approximation to A.

Communication complexity. Since the size of Ui is kn words, the total communi-

cation is s(poly(k) + Õ(k(n+ d))) words.
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Algorithm 17.8 Turnstile Streaming Algorithm
1: procedure TurnstileStreaming(k,S)
2: Construct sketching matrices S ∈ RO(k log k)×n, R ∈ Rd×O(k log k), T1 ∈ RO(k log k)×n, T2 ∈

Rd×O(k log2 k) where R, T2 are fully independent random Cauchy matrices, and S, T1 are
random Cauchy matrices with fully independent variables across different rows and Õ(d)-
wise independent variables from the same row.

3: Initialize matrices:
4: L← {0}O(k log k)×O(k log k), N ← {0}O(k log k)×O(k log2 k).
5: M ← {0}O(k log k)×O(k log2 k), D ← {0}O(k log k)×d.
6: if need decomposition then
7: C ← {0}n×O(k log k).
8: end if
9: for i ∈ [l] do
10: Receive update operation (xi, yi, ci) from the data stream S.
11: for r = 1→ O(k log k), s = 1→ O(k log k) do
12: Lr,s ← Lr,s + T1r,xi · ci ·Ryi,s.
13: end for
14: for r = 1→ O(k log k), s = 1→ O(k log2 k) do
15: Nr,s ← Nr,s + Sr,xi · ci · T2yi,s.
16: end for
17: for r = 1→ O(k log k), s = 1→ O(k log2 k) do
18: Mr,s ←Mr,s + T1r,xi · ci · T2yi,s.
19: end for
20: for r = 1→ O(k log k) do
21: Dr,yi ← Dr,s + Sr,xi · ci.
22: end for
23: if need decomposition then
24: for s = 1→ O(k log k) do
25: Cxi,s ← Cxi,s + ci ·Ryi,s.
26: end for
27: end if
28: end for
29: Compute the SVD of L = ULΣLV

>
L .

30: Compute the SVD of N = UNΣNV
>
N .

31: Compute X̂ = L†(ULU
>
LMVNV

>
N )kN

†.
32: Compute the SVD of X̂ = ÛΣ̂V̂ >.
33: if need decomposition then
34: return V ∗ = Σ̂V̂ >D,U∗ = CÛ .
35: else
36: return V ∗ = Σ̂V̂ >D.
37: end if
38: end procedure
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Algorithm 17.9 Row Update Streaming Algorithm
1: procedure RowUpdateStreaming(k, S)
2: Construct sketching matrices S ′ ∈ RO(k log k)×n, S ∈ RO(k log k)×n, R ∈ Rd×O(k log k), T1 ∈

RO(k log k)×n, T2 ∈ Rd×O(k log2 k) where R, T2 are fully independent random Cauchy vari-
ables, and S , S ′ , T1 are random Cauchy matrices with fully independent random vari-
ables from different rows and Õ(d)-wise independent in the same row.

3: Initialize matrices:
4: L← {0}O(k log k)×O(k log k), N ← {0}O(k log k)×O(k log2 k).
5: M ← {0}O(k log k)×O(k log2 k), D ← {0}O(k log k)×d.
6: if need decomposition then
7: C ← {0}n×O(k log k).
8: end if
9: for i ∈ [n] do
10: Receive a row update (i, Ai) from the data stream S.
11: Compute Y ∗i ∈ R1×O(k log k) which minimizes minY ∈R1×O(k log k) ‖Y S ′:,iAi − Ai‖1.
12: Compute Bi = Y ∗i S

′
:,iAi.

13: for r = 1→ O(k log k), s = 1→ O(k log k), j = 1→ d do
14: Lr,s ← Lr,s + T1r,i ·Bi,j ·Rj,s.
15: end for
16: for r = 1→ O(k log k), s = 1→ O(k log2 k), j = 1→ d do
17: Nr,s ← Nr,s + Sr,i ·Bi,j · T2j,s.
18: end for
19: for r = 1→ O(k log k), s = 1→ O(k log2 k), j = 1→ d do
20: Mr,s ←Mr,s + T1r,i ·Bi,j · T2j,s.
21: end for
22: for r = 1→ O(k log k), j = 1→ d do
23: Dr,j ← Dr,j + Sr,i ·Bi,j.
24: end for
25: if need decomposition then
26: for s = 1→ O(k log k), j = 1→ d do
27: Ci,s := Ci,s +Bi,j ·Rj,s.
28: end for
29: end if
30: end for
31: Compute the SVD of L = ULΣLV

>
L .

32: Compute the SVD of N = UNΣNV
>
N .

33: Compute X̂ = L†(ULU
>
LMVNV

>
N )kN

†.
34: Compute the SVD of X̂ = ÛΣ̂V̂ >.
35: if need decomposition then
36: return V ∗ = Σ̂V̂ >D,U∗ = CÛ .
37: else
38: return V ∗ = Σ̂V̂ >D.
39: end if
40: end procedure
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Algorithm 17.10 Arbitrary Partition Distributed Protocol
1: procedure ArbitraryPartitionDistributedProtocol(k,s,A)
2: A ∈ Rn×d was arbitrarily partitioned into s matrices A1, · · · , As ∈ Rn×d distributed

in s machines.
3: Coordinator Machines i
4: Chooses a random seed.
5: Sends it to all machines.
6: −−−−−−−−− >
7: Agrees on R, T2 which are fully
8: independent random Cauchy matrices.
9: Agrees on S, T1 which are random

Cauchy
10: matrices with fully independent entries
11: from different rows, and Õ(d)-wise

indepen-
12: dent variables from the same row.
13: Computes Li = T1AiR,Ni = SAiT2.
14: Computes Mi = T1AiT2.
15: Sends Li, Ni,Mi to the coordinator.
16: < −−−−−−−−−
17: Computes L =

s∑
i=1

Li, N =
s∑
i=1

Ni.

18: Computes M =
s∑
i=1

Mi.

19: Computes the SVD of L = ULΣLV
>
L .

20: Computes the SVD of N = UNΣNV
>
N .

21: Computes X̂ = L†(ULU
>
LMVNV

>
N )kN

†.
22: Sends X̂ to machines.
23: −−−−−−−−− >
24: Computes the SVD of X̂ = ÛΣ̂V̂ >.
25: Computes V ∗i = Σ̂V̂ >SAi.
26: If need decomposition
27: U∗i = AiRÛ .
28: Sends U∗i , V ∗i to the coordinator.
29: Else
30: Sends V ∗i to the coordinator.
31: Endif
32: < −−−−−−−−−
33: If need decomposition,
34: return V ∗ =

∑s
i=1 V

∗
i , U∗ =

∑s
i=1 U

∗
i .

35: Else
36: return V ∗ =

∑s
i=1 V

∗
i .

37: Endif
38: end procedure
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Algorithm 17.11 Row Partition Distributed Protocol
1: procedure RowPartitionDistributedProtocol(k,s,A)
2: A ∈ Rn×d was row partitioned into smatricesA1 ∈ Rn1×d, · · · , As ∈ Rns×d distributed

in s machines.
3: Coordinator Machines i
4: Chooses a random seed.
5: Sends it to all machines.
6: −−−−−−−−− >
7: Agrees on R, T2 which are fully
8: independent random Cauchy variables.
9: Generates random Cauchy matrices
10: S ′i ∈ RO(k log k)×ni , Si, T1i ∈

RO(k log2 k)×ni .
11: Computes

Y ∗i = arg min
Y ∈Rni×O(k log k)

‖Y S ′iAi − Ai‖1.

12: Computes Bi = Y ∗i S
′
iAi.

13: Computes Li = T1iBiR,Ni = SiBiT2.
14: Computes Mi = T1iBiT2.
15: Sends Li, Ni,Mi to the coordinator.
16: < −−−−−−−−−
17: Computes L =

∑s
i=1 Li, N =

∑s
i=1Ni.

18: Computes M =
∑s

i=1Mi.
19: Computes the SVD of L = ULΣLV

>
L .

20: Computes the SVD of N = UNΣNV
>
N .

21: Computes X̂ = L†(ULU
>
LMVNV

>
N )kN

†.
22: Sends X̂ to machines.
23: −−−−−−−−− >
24: Computes the SVD of X̂ = ÛΣ̂V̂ >.
25: Computes V ∗i = Σ̂V̂ >SiBi.
26: If need decomposition
27: Computes U∗i = BiRÛ .
28: Sends U∗i , V ∗i to the coordinator.
29: Else
30: Sends V ∗i to the coordinator.
31: Endif
32: < −−−−−−−−−
33: If need decomposition
34: return V ∗ =

∑s
i=1 V

∗
i , U∗ =

∑s
i=1 U

∗
i .

35: Else
36: return V ∗ =

∑s
i=1 V

∗
i .

37: Endif
38: end procedure
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Chapter 18

L1 Low Rank Approximation with Regularization

Low rank matrix approximation with respect to the entrywise `1 norm error is a

fundamental problem in both theoretical computer science and machine learning community.

At the same time, `1 regularization (a.k.a. the LASSO) has been used for many statistical

learning techniques on finding solutions with good performance and interpretability. In this

paper, we consider how to combine the two techniques and study the `1 regularized version

of `1-low rank approximation problem. In particular, given matrix A ∈ Rn×n, parameter

k ≥ 1, λ > 0, the problem we interested in is

min
U∈Rn×k,V ∈Rk×n

‖UV − A‖1 + λ(‖U‖1 + ‖V ‖1),

where ‖B‖1 :=
∑n

i=1

∑n
j=1 |Bi,j| for any matrix B.

We introduce the first algorithm for solving this problem with probable guarantee.

Precisely, we compute two matrices U ∈ Rn×k and V ∈ Rk×n such that

‖UV − A‖1 + λ(‖U‖1 + ‖V ‖1) ≤ αOPT

holds with probability at least 9/10, where OPT is the cost of the optimal solution, and α

is approximation ratio.

In addition, our algorithm shows a trade-off between running time and approximation

ratio:
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• O(nnz(A)) + n poly(log n, k) time with α = poly(k, log n).

• Õ(k) nnz(A) + n poly(log n, k) time with α = Õ(k2) log3 n.

where nnz(A) denotes the number of non-zero entries in A.
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18.1 Introduction

The low-rank matrix approximation is a core problem in machine learning and data

mining. It approximating a matrix by one whose rank is less than that of the original matrix.

The goal of low-rank approximation is to obtain more condensed representations of the data

with limited loss of information. Given a matrix A ∈ Rm×n and a desired rank k, the

low-rank matrix approximation problem can be stated as

min
Â∈Rm×n

‖Â− A‖ subject to rank(Â) ≤ k, (18.1)

where ‖ · ‖ is a matrix norm measuring the approximation error.

Generally speaking, a rank-k matrix Â ∈ Rn×n can be expressed by the matrix product

of two matrices U, V , where U ∈ Rn×k, V ∈ Rk×n. The above equation can be rewritten as

min
U∈Rn×k,V ∈Rk×n

‖UV − A‖. (18.2)

The key point in low-rank approximation problem is how to choose the matrix norm

‖ · ‖. The most widely used norm is the Frobenius norm, which is defined as ‖B‖F =

(
∑n

i=1

∑n
j=1B

2
i,j)

1
2 for matrix B ∈ Rn×n, The analytical optimal solution for Frobenius norm

can be obtained by using the singular value decomposition (SVD) of B.

The Frobenius norm fits well with Gaussian noise, but it is sensitive to sparse outliers.

Thus, an interesting extension for solving (18.2) is when the noise is sparse. This problem

can be written as

min
U∈Rn×k,V ∈Rk×n

‖UV − A‖0, (18.3)

where ‖ · ‖0 is `0 norm which measures the sparsity of the matrix.
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Nevertheless, solving `0 low-rank approximation has been proven to be NP-hard

[GG11]. In practice, instead of solving (18.3), a more feasible way is to solve

min
U∈Rn×k,V ∈Rk×n

‖UV − A‖1, (18.4)

where we replace the `0 by `1, and ‖B‖1 :=
∑n

i=1

∑n
j=1 |Bi,j| for matrix B ∈ Rn×n. This

problem sometimes is referred to as robust PCA [CLMW11]. Finding solution to (18.4)

has been widely studied by machine learning and theoretical computer science community

for a long time. It has been validated both empirically and theoretically that `1-norm is

usually more robust than `2-norm and tends to preserve the sparsity of the original matrix

[CLMW11, XCS10, WY13, XCS11]. Also, `1 norm has been extensively studied in many

other problems such as sparse recovery [PW11], Fourier transform [BCG+12], furthest pair

[Yao82, GBT84], closest pair [PS85, DHKP97] and so on.

Although solving (18.4) has been proven to be NP-hard [GV15], there are a lot of

efforts for the `1 low-rank approximation problem in a heuristic way. [KK05] introduced

a method based on alternating convex minimization. [WYWY12] devise a parallelizable

expectation-maximization (EM) algorithm which can potentially be applied to large-scale

applications. [BDB13] exploit the efficient calculation of the optimal solution of the `1-norm

best-fit hyperplane problem. Unfortunately, those heuristic method do not come with any

performance guarantees. Recently, [SWZ17, CGK+17b] introduce efficient algorithms for

`1-low rank approximation with provable approximation guarantees.

`1 regularization can be very effective for many statistical learning techniques [LZWW16,

Tib96]. However, none of the previous `1 low rank approximation algorithms can handle the

regularized version of `1 low rank approximation problem. Though [LZWW16] studies `1
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principal component analysis problem with `1 regularization, their algorithm does not have

any provable guarantee. [ACW17] studied regularized low rank approximation problem,

but they can only deal with the regularized Frobenious norm low rank approximation, i.e.

minU∈Rn×k,V ∈Rk×n ‖UV −A‖2
F +λ(‖U‖2

F +‖V ‖2
F ), and their techniques cannot be extended to

regularized `1 low rank approximation case. It is natural to ask whether there is an efficient

algorithm for solving `1-regularized `1 low-rank approximation with a good approximation

ratio.

In this work, we study the `1 regularized version of `1 low rank approximation problem.

The problem can be formulated as

min
U∈Rn×k,V ∈Rk×n

‖UV − A‖1 + λ(‖U‖1 + ‖V ‖1), (18.5)

where λ is a non-negative tunable parameter which controls the weight between approxima-

tion error and the sparsity of U ,V . When λ = 0, (18.5) degenerates to (18.4). By solving

(18.5), our model provides the flexibility that can find the balance between the reconstruc-

tion error and the sparsity of each low-rank component. Notably, when λ = 0, our results

exactly match the results shown in [SWZ17].

18.1.1 Our results

We give the first efficient algorithms for `1 low-rank approximation with `1 regular-

ization problem with both provable running time and approximation ratio guarantees. A

crucial tool in our algorithms is sketching, i.e. compressing the large input data into a

small size summary which is enough to provide a good solution to the original input. In

particular, we use the Cauchy transformation as our sketching tool. The Cauchy transfor-

mation is widely used in `1 numerical linear algebra problems such as subspace embedding
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and linear regression (see e.g. [SW11, MM13]). However, people did not know how to use

the Cauchy transformation technique to solve low-rank matrix approximation problem un-

til recent work [SWZ17]. In our work, we show how to extend this technique to handle

`1 regularization. But the analysis of the algorithms is very different from the previous

works [SWZ17, SW11, MM13]. Algorithm 18.1 shows the framework of our algorithms.

There are different kind of the Cauchy transformations given by previous works [SW11,

MM13, CDMI+13]. They have different trade-offs between distortion ratio and the running

time of applying the transformation. By using different Cauchy transformation, we show

algorithms with different running time/approximation ratio tradeoffs.

By using sparse Cauchy transform [MM13] (see Section 18.2.2), we can get the fol-

lowing result,

Theorem 18.1.1 (Input sparsity time algorithm). Given matrix A ∈ Rn×n, parameters

k ≥ 1, λ > 0, let OPT denote minU ′∈Rn×k,V ′∈Rk×n ‖U ′V ′−A‖1 +λ(‖U ′‖1 +‖V ′‖1), there is an

algorithm that runs in O(nnz(A) + n poly(k, log n)) time to output two matrices U ∈ Rn×k,

V ∈ Rk×n such that,

‖UV − A‖1 + λ(‖U‖1 + ‖V ‖1) ≤ poly(k, log n) ·OPT

holds with probability at least 9/10, where nnz(A) is the number of nonzeros in matrix A.

By using dense Cauchy transform [SW11] (see Section 18.2.2), we can get a different

trade-off between approximation ration and running time. Theorem 18.1.1 provides a nnz(A)

running time with poly(k, log n)-approximation. Here we provide a better approximation

ratio under polynomial running time.

1336



Theorem 18.1.2 (Õ(k2) poly(log n)-approximation). Given matrix A ∈ Rn×n, parameters

k ≥ 1, λ > 0, let OPT denote minU ′∈Rn×k,V ′∈Rk×n ‖U ′V ′ − A‖1 + λ(‖U ′‖1 + ‖V ′‖1), there

is an algorithm that runs in Õ(k) · nnz(A) + n · poly(k, log n) time to output two matrices

U ∈ Rn×k, V ∈ Rk×n such that,

‖UV − A‖1 + λ(‖U‖1 + ‖V ‖1) ≤ Õ(k2) log3 n ·OPT

holds with probability at least 9/10.

Notice that when λ = 0, all of our results exactly match the `1 low-rank approxima-

tion results shown by [SWZ17]. Since [SWZ17] also showed kΩ(1) factor is necessary in the

approximation ratio, our results are almost tight.

Algorithm 18.1 A Meta Algorithm
1: procedure L1RegularizedL1LowRankApprox(A,n,k,λ) . Theorem 18.1.1 and

18.1.2
2: Choose sketching matrices S ∈ Rs×n, R ∈ Rn×r, T1 ∈ Rt1×n, T2 ∈ Rn×t2 to be random

Cauchy transformation matrices
3: Compute SA and AR
4: Compute SAT2, T1AR
5: Compute T1AT2

6: Solve minX,Y ‖T1ARXY SAT2 − T1AT2‖2
F + λ2(‖T1ARX‖2

F + ‖Y SAT2‖2
F )

7: U ← ARX, V ← Y SA
8: return U, V
9: end procedure

18.1.2 Technique overview

Sketching is used widely in many important numerical linear algebra problems such

as overconstrained regression [CW13, DMMS11, MM13, NN13a, Sar06], low rank matrix
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approximation [AM07, CW13, DV06, DKM06, MM13, NN13a, Sar06, CW15b, SWZ17,

BWZ16] computation of leverage scores [CW13, DMIMW12, MM13, NN13a], regularized

data fitting [ACW17]. Roughly speaking, the main idea of sketching is to highly compress

the original data into a small size summary, and then to recover properties of the original

data from the such small summary.

[SWZ17] proposed the first sketching based algorithm for solving `1 norm low rank

matrix approximation problem. In that paper, they focused on the problem that given

A ∈ Rn×n, k > 0, the goal is to solve

min
U∈Rn×k,V ∈Rk×n

‖UV − A‖1.

This problem is `1 norm low rank approximation problem, and it is a special case of our

problem, i.e. when λ = 0. The main idea of [SWZ17] is as the following: for a given matrix

A ∈ Rn×n, and a rank parameter k, they firstly chose two small random sketching matrices

S ∈ Rs×n and R ∈ Rn×r and argued that there is a rank-k matrix B in the both small

column span of AR and small row span of SA, and ‖B−A‖1 has a very good approximation

ratio to the optimal cost, i.e. poly(k, log n). Notice that B is in the both column space of

AR and the row space of SA, it means that

min
X∈Rr×k,Y ∈Rk×s

‖ARX · Y SA− A‖1

is a good approximation of minrank−k UV ‖UV −A‖1, and since the dimension of the column

space of AR and the row space of SA are very small, then they further sketched down

the problem by using oblivious `1 subspace embedding [MM13, SW11] or Lewis weights

sampling [CP15]. Precisely, they chose additional two small random sketching matrices
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T1 ∈ Rt1×n, T2 ∈ Rn×t2 , (t1, t2 ≤ poly(k)) and further sketched down the optimization

problem to get a new minimization problem i.e.,

min
X∈Rr×k,Y ∈Rk×s

‖T1AR ·X · Y · SAT2 − T1AT2‖1.

Since the new optimization problem is very small, then it can be solved by relaxing to `2

minimization problem with losing mild additional poly(k) factors in approximation ratio

or solved by using exponential running time optimizer with losing mild additional 2poly(k)

running time, e.g. polynomial system verifier [Ren92a, Ren92b, BPR96, RSW16, SWZ17].

Now come back to our regularized `1 norm low rank approximation problem. We can find

that we cannot extend the technique of [SWZ17] directly. Because our objective function is

min
rank−k UV

‖UV − A‖1 + λ(‖U‖1 + ‖V ‖1),

if λ is large, then the cost induced by ‖U‖1 + ‖V ‖1 may dominate the cost induced by

‖UV −A‖1. Thus, the main issue we are facing is that it is not clear whether there is still a

Û in the column space of AR such that

min
rank−k V

‖ÛV − A‖1 + λ(‖Û‖1 + ‖V ‖1)

has a good approximation ratio to the optimal cost (same issue appears for V , i.e. we are not

sure whether there is a good V̂ in the row space of SA.) If we want to sketch ‖UV −A‖1, ‖U‖1

and ‖V ‖1 separately, we can not get a poly(k) size sketch, since the freedom of U and V

itself is too large, i.e. we cannot restrict them on any small subspace. Thus, it motivated us

to look at the cost induced by ‖UV −A‖1, ‖U‖1 and ‖V ‖1 at the same time. Suppose U∗ is

the optimal solution of

min
rank−k UV

‖UV − A‖1 + λ(‖U‖1 + ‖V ‖1).
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Then we have minrank−k V ‖U∗V −A‖1 +λ(‖U∗‖1 +‖V ‖1) = OPT . Notice that it is actually

an `1 regression problem:

min
rank−k V

∥∥∥∥
[
U∗

λI

]
V −

[
A
0

]∥∥∥∥
1

+ λ‖U∗‖1.

We choose a small random sketching matrix S, and we proved that a good approximation

for

min
rank−k V

∥∥∥∥
[
SU∗

λI

]
V −

[
SA
0

]∥∥∥∥
1

(18.6)

is a good approximation for

min
rank−k V

∥∥∥∥
[
U∗

λI

]
V −

[
A
0

]∥∥∥∥
1

.

Notice that since S has only poly(k) number of rows, the number of rows of
[
SU∗

λI

]
V −

[
SA
0

]

is at most poly(k). Thus, we can relax optimization problem (18.6) to

min
rank−k V

n∑

i=1

∥∥∥∥
[
SU∗

λI

]
Vi −

[
SA
0

]

i

∥∥∥∥
2

with at most poly(k) factor loss in approximation ratio. For the above optimization problem,

we can get the optimal solution which has form

V̂ =

[
SU∗

λI

]†
·
[
SA
0

]
=

[
SU∗

λI

]†
·
[
I
0

]
· SA.

Thus, we can prove that

min
rank−k U

‖UV̂ − A‖1 + λ(‖U‖1 + ‖V̂ ‖1).
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is a good approximation to OPT . Then, we choose a small random sketching matrix R, we

can apply the “iterative existential proof” [SWZ19b] argument to show that there is a matrix

Û in the column space of AR such that

‖Û V̂ − A‖1 + λ(‖Û‖1 + ‖V̂ ‖1)

is also a good approximation to OPT . Since Û is in the column space of AR and V̂ is in the

row space of SA, we can get that

min
rank−k XY

‖ARXY SA− A‖1 + λ(‖ARX‖1 + ‖Y SA‖1)

is a good approximation to OPT . Because we shrink the solution space to a very small sub-

space, then we can use the oblivious subspace embedding [MM13, SW11] or Lewis weights

sampling [CP15] to further choose two random sketching T1, T2 to sketch down the optimiza-

tion problem to get

min
rank−k XY

‖T1ARXY SAT2 − T1AT2‖1 + λ(‖T1ARX‖1 + ‖Y SAT2‖1).

It is equivalent to solve

min
rank−k XY

∥∥∥∥
[
T1ARX
λI

] [
Y SAT2 λI

]
−
[
T1AT2 0

0 λ2I

]∥∥∥∥
1

.

To solve the above small problem, we can relax it into `2 version by losing poly(k) approxi-

mation factor or use some powerful optimizers by losing 2poly(k) running time. If we relax it

into `2 version, then we need to solve

min
rank−k XY

∥∥∥∥
[
T1ARX
λI

] [
Y SAT2 λI

]
−
[
T1AT2 0

0 λ2I

]∥∥∥∥
2

F
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which is

min
rank−k XY

‖T1ARXY SAT2 − T1AT2‖2
F + λ2(‖T1ARX‖2

F + ‖Y SAT2‖2
F ).

It is exactly a generalized version of the Frobenius norm ridge low rank matrix approximation

problem (see Section 18.2.1 for more details), and we can directly get the closed form of the

optimal solution of this problem [ACW17, UHZ+16].

Surprisingly, we further showed that all the sketching matrices T1, S, R, T2 used in [SWZ17]

satisfy the property we needed our problem. It means that we can actually fully generalize

almost all the algorithms1 in [SWZ17] to the `1 regularizer version.

1We can also generalize its CUR decomposition algorithms by using our techniques, but it is not the main
focus in this work.
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18.2 Preliminaries

In this Section, we mainly introduce the notations and some background knowledge.

For an n ∈ N≥0, let [n] denote the set {1, 2, · · · , n}.

For any function f , we define Õ(f) to be f · logO(1)(f). In addition to O(·) notation,

for two functions f, g, we use the shorthand f . g (resp. &) to indicate that f ≤ Cg (resp.

≥) for an absolute constant C. We use f h g to mean cf ≤ g ≤ Cf for constants c, C.

Given a matrix A ∈ Rn×d, we say the set {y | x ∈ Rd, y = Ax} is the column space of

A. Similarly, we say the set {y | x ∈ Rn, y = x>A} is the row space of A.

Let nnz(A) denote the number of nonzero entries of A. Let det(A) denote the de-

terminant of a square matrix A. Let A> denote the transpose of A. Let A† denote the

Moore-Penrose pseudoinverse of A. Let A−1 denote the inverse of a full rank square matrix.

Let ‖A‖F denote the Frobenius norm of matrix A and ‖A‖1 denote the entry-wise

1-norm of matrix A.

18.2.1 Frobenius norm ridge low-rank approximation and `2 relaxation

In this Section, we introduce a highly related problem called Frobenius norm ridge

low rank approximation problem. It is just an `2 variation of the problem we studied in this

work:

min
U∈Rn×k,V ∈Rk×n

‖UV − A‖2
F + λ(‖U‖2

F + ‖V ‖2
F ). (18.7)

In [ACW17], they have an efficient algorithm for more generalized problem:
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Theorem 18.2.1 (Lemma 27 in [ACW17]). For T1 ∈ Rt1×n, T2 ∈ Rn×t2, B ∈ Rt1×t2, the

problem of finding

min
X̂∈Rn×k,Ŷ ∈Rk×n

‖T1X̂Ŷ T2 −B‖2
F + λ(‖T1X̂‖2

F + ‖Ŷ T2‖2
F )

and the minimizing T1X̂ ∈ Rt1×k and Ŷ T2 ∈ Rk×t2, can be solved in O(t1n rank(T1) +

t2n rank(T2) + rank(T2)t1(t2 + rank(T1))) time.

The following Claim shows the relation between the solution of `2 regression and the

solution of `1 regression.

Claim 18.2.2 (`2 relaxation). Let A ∈ Rn×d. We have ‖A‖F ≤ ‖A‖1 ≤
√
nd‖A‖F .

Roughly speaking, our algorithms firstly sketch down the size of the input, and then

relax the original problem to `2 case. The above lemma and the claim are fundamental

building blocks in the reduction from the original problem to the `2 relaxation.

18.2.2 Cauchy transforms

In this section, we introduce the main sketching tool used in this work: the Cauchy

transformation. We mainly introduce two kinds of Cauchy transformations: Dense Cauchy

transform and Sparse Cauchy transform where each of them is introduced by [SW11] and [MM13]

separately.

Definition 18.2.1 (Dense Cauchy transform [SW11]). Let S = σ · C ∈ Rm×n where σ is

a scalar, and each entry of C ∈ Rm×n is chosen independently from the standard Cauchy

distribution. S is called Dense Cauchy transform matrix.
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It is easy to see that for any A ∈ Rn×d, SA can be computed in O(m · nnz(A))

time [SW11].

Definition 18.2.2 (Sparse Cauchy transform [MM13]). Let Π = σ · SC ∈ Rm×n, where

σ is a scalar, S ∈ Rm×n has each column chosen independently and uniformly from the m

standard basis vectors of Rm, and C ∈ Rn×n is a diagonal matrix with diagonals chosen

independently from the standard Cauchy distribution. Π is called Sparse Cauchy transform

matrix.

For any matrix A ∈ Rn×d, ΠA can be computed in O(nnz(A)) time. For any matrix

A ∈ Rn×d1×d2 , ΠA can be computed in O(nnz(A)) time [MM13].

The properties of Cauchy transformation needed in this work is the following Lemma:

Lemma 18.2.3 (Lemma D.11 in [SWZ17]). GivenM ∈ Rn×d, U ∈ Rn×t, d ≥ t = rank(U), n ≥

d ≥ r = rank(M), if sketching matrix S ∈ Rm×n is drawn from any of the following proba-

bility distributions of matrices, with .99 probability S satisfies the following properties:

1. ‖SM‖1 ≤ c1‖M‖1,

2. ∀x ∈ Rt, ‖SUx‖1 ≥ 1
c2
‖Ux‖1,

where c1, c2 are parameters which depend on the distribution over S.

• S ∈ Rm×n is a dense Cauchy transform matrix: a matrix with i.i.d. entries drawn

from the standard Cauchy distribution. If m = O(t log t), then c1c2 = O(log d). If

m = O((t+ r) log(t+ r)), then c1c2 = O(min(log d, r log r)).
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• S ∈ Rm×n is a sparse Cauchy transform matrix: S = TD, where T ∈ Rm×n has

each column i.i.d. from the uniform distribution on standard basis vector of Rm, and

D ∈ Rn×n is a diagonal matrix with i.i.d. diagonal entries from standard Cauchy

distribution. If m = O(t5 log5 t), then c1c2 = O(t2 log2 t log d). If m = O((t+r)5 log5(t+

r)), then c1c2 = O(t2 log2 t log d, r3 log3 r).

In the above, if we replace S with σ · S where σ ∈ R \ {0} is any scalar, then the relation

between m and c1c2 is still preserved.
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18.3 The Algorithm

Our algorithm is shown in Algorithm 18.1. If we choose all the sketching matrices

S,R, T1, T2 as dense Cauchy transformation matrices (see Definition 18.2.1), then we are

able to finally get Theorem 18.1.2. If we choose all the sketching matrices S,R, T1, T2 as

sparse Cauchy transformation matrices (see Definition 18.2.2), then we are able to finally

get Theorem 18.1.1.

For convenience, we define OPT(A, k, λ) as follows

OPT(A, k, λ) = min
U∈Rn×k,V ∈Rk×n

‖UV − A‖1 + λ(‖U‖1 + ‖V ‖1).

If A, k, λ is clear from the context, we just use OPT to denote OPT(A, k, λ).

Then we present the analysis of our algorithm in the following way:

1. In Section 18.3.1, we show how to reduce the original problem to the following problem,

min
X∈Rr×k,Y ∈Rk×s

‖ARXY SA− A‖1 + λ(‖ARX‖1 + ‖Y SA‖1).

2. In Section 18.3.2, we show how to further reduce the above problem to:

min
X∈Rr×k,Y ∈Rk×s

‖T1ARXY SAT2 − T1AT2‖1

+ λ(‖T1ARX‖1 + ‖Y SAT2‖1).

3. Finally, in Section 18.3.3, we show how to solve the above problem with a small ap-

proximation ratio.
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18.3.1 Sketching Lemmas

In this section, we show how to use sketching techniques to prove Corollary 18.3.2

which means that there is a good approximate solution whose columns are in the column

space of AR and rows are in the row space of SA where S,A are two sketching matri-

ces (shown in the algorithm 18.1) which satisfy desired properties. Before proving Corol-

lary 18.3.2, we first prove the following lemma which is a “one-side” version of the corollary:

it shows that there is a good approximate solution in the row space of SA.

Lemma 18.3.1. (Existence of a good solution in a small column subspace). Given matrix

A ∈ Rn×n, α ≥ 1, β ≥ 1, γ ≥ 1, λ > 0 and k ≥ 1. Let Û ∈ Rn×k satisfy

min
V ∈Rk×n

‖ÛV − A‖1 + λ(‖Û‖1 + ‖V ‖1) ≤ γOPT .

Let V ∗ ∈ Rk×n denote the optimal solution of

min
V ∈Rk×n

‖ÛV − A‖1 + λ(‖Û‖1 + ‖V ‖1).

Let matrix S ∈ Rm×n satisfy:

‖SÛx‖1 ≥
1

α
‖Ûx‖1 for all x ∈ Rk,

and ‖SÛV ∗ − SA‖1 ≤ β‖ÛV ∗ − A‖1.

Let V̂ ∈ Rk×n denote
[
SÛ
λI

]†
·
[
I
0

]
· SA. Then

‖Û V̂ − A‖1 + λ(‖Û‖1 + ‖V̂ ‖1) ≤ αβγ(
√
m+ k + 2) OPT .

Proof. Due to the space limitation, we provide the proofs in Appendix 18.4.
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Corollary 18.3.2 (Existence of a good solution in both row and column subspace). Given

matrix A ∈ Rn×n, α1, β1, α2, β2 ≥ 1, λ > 0 and k ≥ 1. Let U∗ ∈ Rn×k, V ∗ ∈ Rk×n denote the

optimal solution of the problem,

min
U,V
‖UV − A‖1 + λ(‖U‖1 + ‖V ‖1).

Let matrix S ∈ Rs×n satisfy :

‖SU∗x‖1 ≥
1

α1

‖U∗x‖1 for all x ∈ Rk

and ‖SU∗V ∗ − SA‖1 ≤ β1‖U∗V ∗ − A‖1.

Let V̂ ∈ Rk×n denote
[
SU∗

λI

]†
·
[
I
0

]
· SA. Let Ũ ∈ Rn×k denote the optimal solution of

min
U∈Rn×k

‖UV̂ − A‖1 + λ(‖U‖1 + ‖V̂ ‖1).

Let R> ∈ Rr×n satisfy:

‖R>V̂ >x‖1 ≥
1

α2

‖V̂ >x‖1 for all x ∈ Rk,

and ‖R>V̂ >Ũ> −R>A>‖1 ≤ β2‖V̂ >Ũ> − A>‖1.

Let Û> ∈ Rk×n denote
[
R>V̂ >

λI

]†
·
[
I
0

]
·R>A>. Then

‖Û V̂ − A‖1 + λ(‖Û‖1 + ‖V̂ ‖1)

≤ 4(α1β1α2β2)(
√
s+ k + 2)(

√
r + k + 2) OPT,

and there exists X ∈ Rr×k, Y ∈ Rk×s such that

‖ARXY SA− A‖1 + λ(‖ARX‖1 + ‖Y SA‖1) ≤ ‖Û V̂ − A‖1 + λ(‖Û‖1 + ‖V̂ ‖1).
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Proof. It is actually applying Lemma 18.3.1 twice. Due to the property of sketching matrix

S, we can apply Lemma 18.3.1 to get

min
U∈Rn×k

‖UV̂ − A‖1 + λ(‖U‖1 + ‖V̂ ‖1)

≤ ‖U∗V̂ − A‖1 + λ(‖U∗‖1 + ‖V̂ ‖1)

≤ 2α1β1(
√
s+ k + 2) OPT .

We set γ = 2α1β1(
√
s+ k + 2). Due to the property of sketching matrix R, we can apply

Lemma 18.3.1 again to get

‖Û V̂ − A‖1 + λ(‖Û‖1 + ‖V̂ ‖1)

≤ 2α2β2γ(
√
r + k + 2) OPT

= 4α1β1α2β2(
√
s+ k + 2)(

√
r + k + 2) OPT .

Notice that Û is in the column space of AR, V̂ is in the row space of SA, thus,

min
X∈Rr×k,Y ∈Rk×s

‖ARXY SA− A‖1

+ λ(‖ARX‖1 + ‖Y SA‖1)

≤ ‖Û V̂ − A‖1 + λ(‖Û‖1 + ‖V̂ ‖1)

≤ 4α1β1α2β2(
√
s+ k + 2)(

√
r + k + 2) OPT .

The above corollary shows that if we can find a good approximate solution X̂, Ŷ to

min
X∈Rr×k,Y ∈Rk×s

‖ARXY SA− A‖1 + λ(‖ARX‖1 + ‖Y SA‖1),

then we can have a good approximation U = ARX̂, V = Ŷ SA to the original problem.
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18.3.2 Reducing to small problems

In the last section, we already restrict the solution in a low dimensional column space

and in a low dimensional row space. But the problem size is till too large since the size

of A is still n-by-n. In this section, we further sketch down the size of the input. The

Corollary 18.3.4 shows how to further reduce the problem to solving

min
X∈Rr×k,Y ∈Rk×s

‖T1ARXY SAT2 − T1AT2‖1

+ λ(‖T1ARX‖1 + ‖Y SAT2‖1)

where T1, T2 are two sketching matrices with some desired properties. Before proving Corol-

lary 18.3.4, let us look at the following lemma which provides a “one-side” sketch version of

that corollary:

Lemma 18.3.3. (Reducing the problem size by sketching on one side). Given three matrices

L ∈ Rd1×l1 , M> ∈ Rd2×l2 , N ∈ Rd1×d2 and α ≥ 1, β ≥ 1, γ ≥ 1, λ > 0. Let OPT =

minX,Y ‖LXYM −N‖1 + λ(‖LX‖1 + ‖YM‖1). Let X∗, Y ∗ denote the optimal solution of

min
X,Y
‖LXYM −N‖1 + λ(‖LX‖1 + ‖YM‖1).

Let T ∈ Rt×d1 satisfy :

‖TLx‖1 ≥
1

α
‖Lx‖1, for all x ∈ Rl1

and

‖TLX∗Y ∗M − TN‖1 + λ · ‖TLX∗‖1

≤ β(‖LX∗Y ∗M −N‖1 + λ · ‖LX∗‖1)
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Let X̂, Ŷ satisfy

‖TLX̂Ŷ M − TN‖1 + λ · (‖TLX̂‖1 + ‖Ŷ M‖1)

≤ γmin
X,Y
‖TLXYM − TN‖1 + λ · (‖TLX‖1 + ‖YM‖1)

Then

‖LX̂Ŷ M −N‖1 + λ(‖LX̂‖1 + ‖Ŷ M‖1)

≤ (αβγ + αβ + 1) OPT .

Proof. Due to space limitation, we provide the proofs in Appendix 18.5.

Corollary 18.3.4 (Reducing the problem size by sketching on both sides). Given three

matrices L ∈ Rd1×l1, M> ∈ Rd2×l2, N ∈ Rd1×d2 and α1 ≥ 1, α2 ≥ 1, β1 ≥ 1, β2 ≥ 1, γ ≥

1, λ > 0. Let OPT = minX,Y ‖LXYM −N‖1 + λ(‖LX‖1 + ‖YM‖1). Let X∗, Y ∗ denote the

optimal solution of

min
X,Y
‖LXYM −N‖1 + λ(‖LX‖1 + ‖YM‖1).

Let T1 ∈ Rt1×d1 satisfy : for all x ∈ Rl1

‖T1Lx‖1 ≥
1

α1

‖Lx‖1

and

‖T1LX
∗Y ∗M − T1N‖1 + λ · ‖T1LX

∗‖1

≤ β1(‖LX∗Y ∗M −N‖1 + λ · ‖LX∗‖1)
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Let X̂, Ŷ the optimal solution

min
X,Y
‖T1LXYM − T1N‖1 + λ · (‖T1LX‖1 + ‖YM‖1).

Let T>2 ∈ Rt2×d2 satisfy : for all x ∈ Rl2

‖T>2 M>x‖1 ≥
1

α2

‖M>x‖1

and

‖T1LX̂Ŷ MT2 − T1NT2‖1 + λ · ‖Ŷ MT2‖1

≤ β2(‖T1LX̂Ŷ M − T1N‖1 + λ · ‖Ŷ M‖1)

Let X̃, Ỹ satisfy

‖T1LX̃Ỹ ML2 − T1NT2‖1 + λ(‖T1LX̃‖1 + ‖MỸ T2‖1)

≤ γmin
X,Y
‖T1LXYML2 − T1NT2‖1 + λ(‖T1LX‖1 + ‖MY T2‖1)

Then

‖LX̃Ỹ M −N‖1 + λ(‖LX̃‖1 + ‖MỸ ‖1)

≤ 9α1α2β1β2γOPT .

Proof. This follows by applying Lemma 18.3.3 twice. Due to the property of T2 and the

definition of X̃, Ỹ , by applying Lemma 18.3.3, we have that

‖T1LX̃Ỹ M − T1N‖1 + λ · (‖T1LX̃‖1 + ‖Ỹ M‖1)

≤ (α2β2γ + α2β2 + 1)

(
‖T1LX̂Ŷ M − T1N‖1 + λ · (‖T1LX̂‖1 + ‖Ŷ M‖1)

)
.
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Now we set the new γ′ = (α2β2γ + α2β2 + 1). Then, due to the property of T1 and the

definition of X̂, Ŷ , we can apply Lemma 18.3.3 again, we then have

‖LX̃Ỹ M −N‖1 + λ(‖LX̃‖1 + ‖MỸ ‖1)

≤ (α1β1γ
′ + α1β1 + 1) OPT .

Since α1, α2, β1, β2 ≥ 1, we then have (α1β1γ
′ + α1β1 + 1) ≤ 3α1β1γ

′ ≤ 9α1β1α2β2γ.

Let us set L = AR,M = SA,N = A, then due to the above corollary, we show that

once we get a good approximation X̃, Ỹ to minX,Y ‖T1ARXY SAT2−T1AT2‖1+λ(‖T1ARX‖1+

‖Y SAT2‖1), we get a good approximation to minX,Y ‖ARXY SA − A‖1 + λ(‖ARX‖1 +

‖Y SA‖1). Since the number of rows of T1 is small and the number of columns of T2 is also

small, the problem size becomes very small. In the next section, we will see how to use the

`2 relaxation to solve the small problem.

18.3.3 Solving small problems

In this section, we focus on solving

min
X,Y
‖T1ARXY SAT2 − T1AT2‖1 + λ(‖T1ARX‖1 + ‖Y SAT2‖1).

Firstly, we have the following easy fact.

Fact 18.3.5. Given five matrices L,X, Y,M and N with matching dimensions, we have

‖LXYM −N‖1 + λ(‖LX‖1 + ‖YM‖1)

=

∥∥∥∥
[
LX
λI

]
·
[
YM λI

]
−
[
N 0
0 λ2I

]∥∥∥∥
1

.
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We define f(X, Y ) as follows

f(X, Y ) =

[
T1ARX
λI

]
·
[
Y SAT2 λI

]
−
[
T1AT2 0

0 λ2I

]
. (18.8)

Due to the above fact, we can relax the `1-norm minimization problem

min
X∈Rr×k,Y ∈Rk×s

‖f(X, Y )‖1 (18.9)

to Frobenius norm minimization problem

min
X∈Rr×k,Y ∈Rk×s

‖f(X, Y )‖F ,

which is equivalent to

min
X∈Rr×k,Y ∈Rk×s

‖f(X, Y )‖2
F . (18.10)

Lemma 18.3.6 (Relaxing `1 norm to Frobenius norm). Given A ∈ Rn×n, T1 ∈ Rt1×n,

T2 ∈ Rn×t2, R ∈ Rn×r and S ∈ Rs×n. Let fT1,T2,R,S,A,λ(X, Y ) ∈ R(t1+k)×(t2+k) be defined in

Eq. (18.8), if X ′, Y ′ satisfies that

‖f(X ′, Y ′)‖2
F ≤ (1 + ε) min

X,Y
‖f(X, Y )‖2

F

for some ε > 0, then we have

‖f(X ′, Y ′)‖1 ≤
√
t1 + k ·

√
t2 + k ·

√
1 + εmin

X,Y
‖f(X, Y )‖1.
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Proof. Let X∗, Y ∗ satisfy ‖f(X∗, Y ∗)‖1 = minX,Y ‖f(X, Y )‖1. We have:

‖f(X ′, Y ′)‖1

≤
√
t1 + k ·

√
t2 + k · ‖f(X ′, Y ′)‖F

≤
√
t1 + k ·

√
t2 + k ·

√
1 + ε ·min

X,Y
‖f(X, Y )‖F

≤
√
t1 + k ·

√
t2 + k ·

√
1 + ε · ‖f(X∗, Y ∗)‖F

≤
√
t1 + k ·

√
t2 + k ·

√
1 + ε · ‖f(X∗, Y ∗)‖1

where the first inequality and the last inequality follow the Claim 18.2.2.

Therefore, we can reduce the entry-wise `1 problem (18.9) to Frobenius norm problem

(18.10).

Using the Theorem 18.2.1, we can solve the Frobenius norm problem (18.10). Now,

we are ready to present our main results.

Theorem 18.3.7 (Restatement of Theorem 18.1.1). Given matrix A ∈ Rn×n, parameters

k ≥ 1, λ > 0, let OPT denote minU ′∈Rn×k,V ′∈Rk×n ‖U ′V ′−A‖1 +λ(‖U ′‖1 +‖V ′‖1), there is an

algorithm that runs in O(nnz(A) + n poly(k, log n)) time to output two matrices U ∈ Rn×k,

V ∈ Rk×n such that,

‖UV − A‖1 + λ(‖U‖1 + ‖V ‖1) ≤ poly(k, log n) ·OPT,

holds with probability at least 9/10.

Proof. Due to the space limits, we put the whole proof into Appendix 18.6.

1356



Theorem 18.3.8 (Restatement of Theorem 18.1.2). Given matrix A ∈ Rn×n, parameters

k ≥ 1, λ > 0, let OPT denote minU ′∈Rn×k,V ′∈Rk×n ‖U ′V ′ − A‖1 + λ(‖U ′‖1 + ‖V ′‖1), there

is an algorithm that runs in Õ(k) · nnz(A) + n · poly(k, log n) time to output two matrices

U ∈ Rn×k, V ∈ Rk×n such that,

‖UV − A‖1 + λ(‖U‖1 + ‖V ‖1) ≤ Õ(k2) log3 n ·OPT,

holds with probability at least 9/10.

Proof. Due to the space limits, we put the whole proof into Appendix 18.7.

Remark 18.3.1. Combining our new technique with p-stable transform (e.g. Section E of

[SWZ17] and [SWZ19b]), all of our results can be extended to `p-norm, where 1 < p < 2.
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18.4 Proof of Lemma 18.3.1

Lemma 18.3.1. (Existence of a good solution in a small column subspace). Given matrix

A ∈ Rn×n, α ≥ 1, β ≥ 1, γ ≥ 1, λ > 0 and k ≥ 1. Let Û ∈ Rn×k satisfy

min
V ∈Rk×n

‖ÛV − A‖1 + λ(‖Û‖1 + ‖V ‖1) ≤ γOPT .

Let V ∗ ∈ Rk×n denote the optimal solution of

min
V ∈Rk×n

‖ÛV − A‖1 + λ(‖Û‖1 + ‖V ‖1).

Let matrix S ∈ Rm×n satisfy:

‖SÛx‖1 ≥
1

α
‖Ûx‖1 for all x ∈ Rk,

and ‖SÛV ∗ − SA‖1 ≤ β‖ÛV ∗ − A‖1.

Let V̂ ∈ Rk×n denote
[
SÛ
λI

]†
·
[
I
0

]
· SA. Then

‖Û V̂ − A‖1 + λ(‖Û‖1 + ‖V̂ ‖1) ≤ αβγ(
√
m+ k + 2) OPT .

Proof. We can show the following Claim,

Claim 18.4.1.

‖Û V̂ − A‖1 + λ(‖Û‖1 + ‖V̂ ‖1) ≤ α

∥∥∥∥
[
SÛ
λI

]
V̂ −

[
SA
0

]∥∥∥∥
1

+ α

∥∥∥∥
[
SÛ
λI

]
V ∗ −

[
SA
0

]∥∥∥∥
1

+ γOPT .
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Proof.

‖Û V̂ − A‖1 + λ(‖Û‖1 + ‖V̂ ‖1)

=

∥∥∥∥
[
Û
λI

]
V̂ −

[
A
0

]∥∥∥∥
1

+ λ‖Û‖1

≤
∥∥∥∥
[
Û
λI

]
(V̂ − V ∗)

∥∥∥∥
1

+

∥∥∥∥
[
Û
λI

]
V ∗ −

[
A
0

]∥∥∥∥
1

+ λ‖Û‖1

≤
∥∥∥∥
[
Û
λI

]
(V̂ − V ∗)

∥∥∥∥
1

+ γOPT

= ‖Û(V̂ − V ∗)‖1 + λ‖V̂ − V ∗‖1 + γOPT

≤ α‖SÛ(V̂ − V ∗)‖1 + λ‖V̂ − V ∗‖1 + γOPT

≤ α‖SÛ(V̂ − V ∗)‖1 + λα‖V̂ − V ∗‖1 + γOPT

= α

∥∥∥∥
[
SÛ
λI

]
(V̂ − V ∗)

∥∥∥∥
1

+ γOPT

≤ α

∥∥∥∥
[
SÛ
λI

]
V̂ −

[
SA
0

]∥∥∥∥
1

+ α

∥∥∥∥
[
SÛ
λI

]
V ∗ −

[
SA
0

]∥∥∥∥
1

+ γOPT

where the second step follows by triangle inequality, the third step follows by
∥∥∥∥
[
Û
λI

]
V ∗ −

[
A
0

]∥∥∥∥
1

+ λ‖Û‖1 ≤ γOPT,

the fifth step follows by ‖Û(V̂ − V ∗)‖1 ≤ α‖SÛ(V̂ − V ∗)‖1, the sixth step follows by α ≥ 1,

the eighth step follows by triangle inequality.

We now show how to bound the second term on RHS of the equation shown in

Claim 18.4.1.
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Claim 18.4.2.

α

∥∥∥∥
[
SÛ
λI

]
V ∗ −

[
SA
0

]∥∥∥∥
1

≤ αβγOPT .

Proof. We have

α

∥∥∥∥
[
SÛ
λI

]
V ∗ −

[
SA
0

]∥∥∥∥
1

= α‖S(ÛV ∗ − A)‖1 + αλ‖V ∗‖1

≤ αβ‖ÛV ∗ − A‖1 + αλ‖V ∗‖1

≤ αβ‖ÛV ∗ − A‖1 + αβλ‖V ∗‖1 + αβλ‖Û‖1

≤ αβγOPT,

the second step follows by ‖S(ÛV ∗ − A)‖1 ≤ β‖ÛV ∗ − A‖1.

We show how to bound the first term on RHS of Claim 18.4.1,

Claim 18.4.3.

α

∥∥∥∥
[
SÛ
λI

]
V̂ −

[
SA
0

]∥∥∥∥
1

≤ αβ
√
m+ kOPT .

Proof. We have
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α

∥∥∥∥
[
SÛ
λI

]
V̂ −

[
SA
0

]∥∥∥∥
1

= α
n∑

i=1

∥∥∥∥
[
SÛ
λI

]
V̂i −

[
SAi

0

]∥∥∥∥
1

≤ α
√
m+ k

n∑

i=1

∥∥∥∥
[
SÛ
λI

]
V̂i −

[
SAi

0

]∥∥∥∥
2

≤ α
√
m+ k

n∑

i=1

∥∥∥∥
[
SÛ
λI

]
V ∗i −

[
SAi

0

]∥∥∥∥
2

≤ α
√
m+ k

n∑

i=1

∥∥∥∥
[
SÛ
λI

]
V ∗i −

[
SAi

0

]∥∥∥∥
1

= α
√
m+ k

∥∥∥∥
[
SÛ
λI

]
V ∗ −

[
SA
0

]∥∥∥∥
1

= α
√
m+ k(‖SÛV ∗ − SA‖1 + λ‖V ∗‖1)

≤ α
√
m+ k(β‖ÛV ∗ − A‖1 + λ‖V ∗‖1)

≤ αβ
√
m+ kOPT

where the second step follows by ∀d ∈ Z>0, x ∈ Rd, ‖x‖1 ≤
√
d‖x‖2, the third step follows by

definition of V̂ , the fourth step follows by ∀d ∈ Z>0, x ∈ Rd ‖x‖2 ≤ ‖x‖1, the seventh step

follows by ‖SÛV ∗−SA‖1 ≤ β‖ÛV ∗−A‖1, and the last step follows by β ≥ 1, λ‖Û‖1 ≥ 0.

Putting it all together, we

‖Û V̂ − A‖1 + λ(‖Û‖1 + ‖V̂ ‖1)

≤ αβ
√
m+ kOPT +αβγOPT +γOPT

≤ αβ
√
m+ kOPT +2αβγOPT

≤ αβγ(
√
m+ k + 2) OPT,
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where the first step follows by Claim 18.4.1, Claim 18.4.2 and Claim 18.4.3, the second step

follows by αβ ≥ 1, the last step follows by γ ≥ 1.

Thus, we complete the proof.
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18.5 Proof of Lemma 18.3.3

Lemma 18.3.3. (Reducing the problem size by sketching on one side). Given three matrices

L ∈ Rd1×l1 , M> ∈ Rd2×l2 , N ∈ Rd1×d2 and α ≥ 1, β ≥ 1, γ ≥ 1, λ > 0. Let OPT =

minX,Y ‖LXYM −N‖1 + λ(‖LX‖1 + ‖YM‖1). Let X∗, Y ∗ denote the optimal solution of

min
X,Y
‖LXYM −N‖1 + λ(‖LX‖1 + ‖YM‖1).

Let T ∈ Rt×d1 satisfy :

‖TLx‖1 ≥
1

α
‖Lx‖1, for all x ∈ Rl1

and

‖TLX∗Y ∗M − TN‖1 + λ · ‖TLX∗‖1

≤ β(‖LX∗Y ∗M −N‖1 + λ · ‖LX∗‖1)

Let X̂, Ŷ satisfy

‖TLX̂Ŷ M − TN‖1 + λ · (‖TLX̂‖1 + ‖Ŷ M‖1)

≤ γmin
X,Y
‖TLXYM − TN‖1 + λ · (‖TLX‖1 + ‖YM‖1)

Then

‖LX̂Ŷ M −N‖1 + λ(‖LX̂‖1 + ‖Ŷ M‖1)

≤ (αβγ + αβ + 1) OPT .
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Proof.

‖LX̂Ŷ M −N‖1 + λ(‖LX̂‖1 + ‖Ŷ M‖1)

≤ ‖L(X̂Ŷ −X∗Y ∗)M‖1 + ‖LX∗Y ∗M −N‖1 + λ(‖LX̂‖1 + ‖Ŷ M‖1)

≤ ‖L(X̂Ŷ −X∗Y ∗)M‖1 + OPT +λ(‖LX̂‖1 + ‖Ŷ M‖1)

≤ α‖TL(X̂Ŷ −X∗Y ∗)M‖1 + OPT +λ(α‖TLX̂‖1 + ‖Ŷ M‖1)

≤ α‖TLX̂Ŷ M − TN‖1 + α‖TLX∗Y ∗M − TN‖1 + λ(α‖TLX̂‖1 + ‖Ŷ M‖1) + OPT

≤ α(‖TLX̂Ŷ M − TN‖1 + λ(‖TLX̂‖1 + ‖Ŷ M‖1)) + α‖TLX∗Y ∗M − TN‖1 + OPT

≤ αγ(‖TLX∗Y ∗M − TN‖1 + λ(‖TLX∗‖1 + ‖Y ∗M‖1)) + α‖TLX∗Y ∗M − TN‖1 + OPT

≤ αβγOPT +α‖TLX∗Y ∗M − TN‖1 + OPT

≤ αβγOPT +αβ‖LX∗Y ∗M −N‖1 + OPT

=(αβγ + αβ + 1) OPT,

where the first step follows by triangle inequality, the second step follows by ‖LX∗Y ∗M −

N‖1 ≤ OPT, the third step follows by the property of T , the forth step follows by triangle

inequality, the fifth step follows by α ≥ 1, the sixth step follows by the definition of X̂, Ŷ ,

the seventh step follows by the property of T , the eighth step follows by the property of

T .
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18.6 Proof of Theorem 18.3.7

Proof. We choose all the matrices S ∈ Rs×n, R ∈ Rn×r, T1 ∈ Rt1×n, T2 ∈ Rn×t2 in Al-

gorithm 18.1 as sparse Cauchy transformation matrices (see Definition 18.2.2) which have

the same scalar σ = 1. We set s = O(k5 log5 k), r = O(k5 log5 k), t1 = O(r5 log5 r), t2 =

O(s5 log5 s).

Since computing T1A,AT2 can be done in nnz(A) time, and the size of T1A,AT2 is

at most n · poly(k), the total running time of computing T1AR, SAT2, T1AT2 is at most

nnz(A) + n · poly(k). Since the size of the final small Frobenius norm ridge low-rank ma-

trix approximation problem is poly(k), the running time of the whole algorithm is at most

nnz(A) + n · poly(k).

Now let us consider the correctness of the algorithm.

Let U∗ ∈ Rn×k, V ∗ ∈ Rk×n satisfy ‖U∗V ∗ − A‖1 + λ(‖U∗‖1 + ‖V ∗‖1) = OPT . Then

due to Lemma 18.2.3, with probability at least 0.99, S satisfies

‖SU∗x‖1 ≥
1

α1

‖U∗x‖1 for all x ∈ Rk and ‖SU∗V ∗ − SA‖1 ≤ β1‖U∗V ∗ − A‖1

where α1β1 = O(k2 log2 k log n). Let V̂ ∈ Rk×n denote
[
SU∗

λI

]†
·
[
I
0

]
· SA. Let Ũ ∈ Rn×k

denote the optimal solution of

min
U∈Rn×k

‖UV̂ − A‖1 + λ(‖U‖1 + ‖V̂ ‖1).

Due to Lemma 18.2.3, with probability at least 0.99, R> ∈ Rr×n satisfies:

‖R>V̂ >x‖1 ≥
1

α2

‖V̂ >x‖1 for all x ∈ Rk, and

‖R>V̂ >Ũ> −R>A>‖1 ≤ β2‖V̂ >Ũ> − A>‖1
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where α2β2 = O(k2 log2 k log n). Then, by applying Corollary 18.3.2, we have that

min
X∈Rr×k,Y ∈Rk×s

‖ARXY SA− A‖1 + λ(‖ARX‖1 + ‖Y SA‖1) ≤ poly(k, log n) OPT .

Let X∗ ∈ Rr×k, Y ∗ ∈ Rk×s denote the optimal solution of

min
X,Y
‖ARXY SA− A‖1 + λ(‖ARX‖1 + ‖Y SA‖1).

Due to Lemma 18.2.3, with probability at least 0.99, T1 satisfies that ∀x ∈ Rr, ‖T1ARx‖1 ≥
1
α′1
‖ARx‖1, and ‖T1

([
ARX∗Y ∗SA− A λARX∗

])
‖1 ≤ β′1‖

[
ARX∗Y ∗SA− A λARX∗

]
‖1

where α′1β′1 = O(r2 log2 r log n). Due to Lemma 18.2.3, with probability at least 0.99, T2

satisfies that ∀x ∈ Rs, ‖T>2 A>S>x‖1 ≥ 1
α′2
‖A>S>x‖1 and

‖T>2
([
A>S>(Y ∗)>(X∗)>R>A>T>1 − A>T>1 λA>S>(Y ∗)>

])
‖1

≤ β′2‖
[
A>S>(Y ∗)>(X∗)>R>A>T>1 − A>T>1 λA>S>(Y ∗)>

]
‖1

where α′2β′2 ≤ O(s2 log2 s log n). Thus, by Corollary 18.3.4, for any γ ≥ 1, if X̃, Ỹ can achieve

‖T1ARX̃Ỹ SAT2 − T1AT2‖1 + λ(‖T1ARX̃‖1 + ‖Ỹ SAT2‖1)

≤ γmin
X,Y

(‖T1ARXY SAT2 − T1AT2‖1 + λ(‖T1ARX‖1 + ‖Y SAT2‖1)) ,

then

‖ARX̃Ỹ SA− A‖1 + λ(‖ARX̃‖1 + ‖Ỹ SA‖1)

≤ poly(k, log n)γmin
X,Y

(‖ARXY SA− A‖1 + λ(‖ARX‖1 + ‖Y SA‖1)) .

Finally, due to Lemma 18.3.6, we can find such X̃Ỹ with γ = O(
√
t1 + k

√
t2 + k).

Thus, we can conclude that ‖ARX̃Ỹ SA−A‖1+λ(‖ARX̃‖1+‖Ỹ SA‖1) ≤ poly(k, log n)·OPT .

By taking union bound over all the success event of S,R, T1, T2, the algorithm will

succeed with probability at least 9/10.
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18.7 Proof of Theorem 18.3.8

Proof. We choose all the matrices S ∈ Rs×n, R ∈ Rn×r, T1 ∈ Rt1×n, T2 ∈ Rn×t2 in Algo-

rithm 18.1 as dense Cauchy transformation matrices (see Definition 18.2.1) which have the

same scalar σ = 1. We set s = O(k log k), r = O(k log k), t1 = O(r log r), t2 = O(s log s).

Since computing T1A,AT2 can be done in t1 nnz(A), t2 nnz(A) time respectiviely, and

the size of T1A,AT2 is at most n · poly(k), the total running time of computing

T1AR, SAT2, T1AT2

is at most Õ(k) · nnz(A) + n · poly(k). Since the size of the final small Frobenius norm ridge

low-rank matrix approximation problem is poly(k), the running time of the whole algorithm

is at most Õ(k) · nnz(A) + n · poly(k).

Now let us consider the correctness of the algorithm.

Let U∗ ∈ Rn×k, V ∗ ∈ Rk×n satisfy ‖U∗V ∗ − A‖1 + λ(‖U∗‖1 + ‖V ∗‖1) = OPT . Then

due to Lemma 18.2.3, with probability at least 0.99, S satisfies

‖SU∗x‖1 ≥
1

α1

‖U∗x‖1 for all x ∈ Rk and ‖SU∗V ∗ − SA‖1 ≤ β1‖U∗V ∗ − A‖1

where α1β1 = O(log n). Let V̂ ∈ Rk×n denote
[
SU∗

λI

]†
·
[
I
0

]
· SA. Let Ũ ∈ Rn×k denote

the optimal solution of minU∈Rn×k ‖UV̂ − A‖1 + λ(‖U‖1 + ‖V̂ ‖1). Due to Lemma 18.2.3,

with probability at least 0.99, R> ∈ Rr×n satisfies: ‖R>V̂ >x‖1 ≥ 1
α2
‖V̂ >x‖1 for all x ∈

Rk, and ‖R>V̂ >Ũ>−R>A>‖1 ≤ β2‖V̂ >Ũ>−A>‖1 where α2β2 = O(log n). Then, by apply-

ing Corollary 18.3.2, we have that

min
X∈Rr×k,Y ∈Rk×s

‖ARXY SA− A‖1 + λ(‖ARX‖1 + ‖Y SA‖1) ≤ Õ(k) poly(log n) OPT .

1367



Let X∗ ∈ Rr×k, Y ∗ ∈ Rk×s denote the optimal solution of minX,Y ‖ARXY SA −

A‖1 + λ(‖ARX‖1 + ‖Y SA‖1). Due to Lemma 18.2.3, with probability at least 0.99, T1

satisfies that ∀x ∈ Rr, ‖T1ARx‖1 ≥ 1
α′1
‖ARx‖1, and ‖T1

([
ARX∗Y ∗SA− A λARX∗

])
‖1 ≤

β′1‖
[
ARX∗Y ∗SA− A λARX∗

]
‖1 where α′1β′1 = O(log n).Due to Lemma 18.2.3, with prob-

ability at least 0.99, T2 satisfies that

∀x ∈ Rs, ‖T>2 A>S>x‖1 ≥
1

α′2
‖A>S>x‖1

and

‖T>2
([
A>S>(Y ∗)>(X∗)>R>A>T>1 − A>T>1 λA>S>(Y ∗)>

])
‖1

≤ β′2‖
[
A>S>(Y ∗)>(X∗)>R>A>T>1 − A>T>1 λA>S>(Y ∗)>

]
‖1

where α′2β′2 ≤ O(log n). Thus, by Corollary 18.3.4, for any γ ≥ 1, if X̃, Ỹ can achieve

‖T1ARX̃Ỹ SAT2 − T1AT2‖1 + λ(‖T1ARX̃‖1 + ‖Ỹ SAT2‖1)

≤ γmin
X,Y

(‖T1ARXY SAT2 − T1AT2‖1 + λ(‖T1ARX‖1 + ‖Y SAT2‖1)) ,

then

‖ARX̃Ỹ SA− A‖1 + λ(‖ARX̃‖1 + ‖Ỹ SA‖1)

≤ Õ(k) · poly(log n)γmin
X,Y

(‖ARXY SA− A‖1 + λ(‖ARX‖1 + ‖Y SA‖1)) .

Finally, due to Lemma 18.3.6, we can find such X̃Ỹ with γ = O(
√
t1 + k

√
t2 + k).

Thus, we can conclude that

‖ARX̃Ỹ SA− A‖1 + λ(‖ARX̃‖1 + ‖Ỹ SA‖1) ≤ Õ(k2) poly(log n) ·OPT .

By taking union bound over all the success event of S,R, T1, T2, the algorithm will

succeed with probability at least 9/10.
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Chapter 19

Average Case L1 Low Rank Approximation

We study the column subset selection problem with respect to the entrywise `1-norm

loss. It is known that in the worst case, to obtain a good rank-k approximation to a matrix,

one needs an arbitrarily large nΩ(1) number of columns to obtain a (1 + ε)-approximation

to the best entrywise `1-norm low rank approximation of an n × n matrix. Nevertheless,

we show that under certain minimal and realistic distributional settings, it is possible to

obtain a (1 + ε)-approximation with a nearly linear running time and poly(k/ε) +O(k log n)

columns. Namely, we show that if the input matrix A has the form A = B + E, where B is

an arbitrary rank-k matrix, and E is a matrix with i.i.d. entries drawn from any distribution

µ for which the (1 + γ)-th moment exists, for an arbitrarily small constant γ > 0, then it is

possible to obtain a (1 + ε)-approximate column subset selection to the entrywise `1-norm in

nearly linear time. Conversely we show that if the first moment does not exist, then it is not

possible to obtain a (1 + ε)-approximate subset selection algorithm even if one chooses any

no(1) columns. This is the first algorithm of any kind for achieving a (1 + ε)-approximation

for entrywise `1-norm loss low rank approximation.
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19.1 Introduction

Numerical linear algebra algorithms are fundamental building blocks in many machine

learning and data mining tasks. A well-studied problem is low rank matrix approximation.

The most common version of the problem is also known as Principal Component Analysis

(PCA), in which the goal is to find a low rank matrix to approximate a given matrix such

that the Frobenius norm of the error is minimized. The optimal solution of this objective

can be obtained via the singular value decomposition (SVD). Hence, the problem can be

solved in polynomial time. If approximate solutions are allowed, then the running time can

be made almost linear in the number of non-zero entries of the given matrix [Sar06, CW13,

MM13, NN13a, BDN15, Coh16a].

An important variant of the PCA problem is the entrywise `1-norm low rank matrix

approximation problem. In this problem, instead of minimizing the Frobenius norm of the

error, we seek to minimize the `1-norm of the error. In particular, given an n × n input

matrix A, and a rank parameter k, we want to find a matrix B with rank at most k such

that ‖A− B‖1 is minimized, where for a matrix C, ‖C‖1 is defined to be
∑

i,j |Ci,j|. There

are several reasons for using the `1-norm as the error measure. For example, solutions with

respect to the `1-norm loss are usually more robust than solutions with Frobenius norm loss

[Hub64, CLMW11]. Further, the `1-norm loss is often used as a relaxation of the `0-loss,

which has wide applications including sparse recovery, matrix completion, and robust PCA;

see e.g., [XCS10, CLMW11]. Although a number of algorithms have been proposed for

the `1-norm loss [KK03, KK05, KLC+15, Kwa08, ZLS+12, BJ12, BD13, BDB13, MXZZ13,

MKP13, MKP14, MKCP16, PK16], the problem is known to be NP-hard [GV15]. The first

`1-low rank approximation with provable guarantees was proposed by [SWZ17]. To cope
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with NP-hardness, the authors gave a solution with a poly(k log n)-approximation ratio, i.e.,

their algorithm outputs a rank-k matrix B′ ∈ Rn×n for which

‖A−B′‖1 ≤ α · min
rank−k B

‖A−B‖1

for α = poly(k log n). The approximation ratio α was further improved to O(k log k) by

allowing B′ to have a slightly larger k′ = O(k log n) rank [CGK+17a]. Such B′ with larger

rank is referred to as a bicriteria solution. However, in high precision applications, such

approximation factors are too large. A natural question is if one can compute a (1 + ε)-

approximate solution efficiently for `1-norm low rank approximation. In fact, a (1 + ε)-

approximation algorithm was given in [BBB+19a], but the running time of their algorithm

is a prohibitive npoly(k/ε). Unfortunately, [BBB+19a] shows in the worst case that a 2k
Ω(1)

running time is necessary for any constant approximation given a standard conjecture in

complexity theory.

19.1.1 Notation

To describe our results, let us first introduce some notation. We will use [n] to denote

the set {1, 2, · · · , n}. We use Ai to denote the ith column of A. We use Aj to denote the

jth row of A. Let Q ⊆ [n]. We use AQ to denote the matrix which is comprised of the

columns of A with column indices in Q. Similarly, we use AQ to denote the matrix which

is comprised of the rows of A with row indices in Q. We use
(

[n]
t

)
to denote the set of all

the size-t subsets of [n]. Let ‖A‖F denote the Frobenius norm of a matrix A, i.e., ‖A‖F is

the square root of the sum of squares of all the entries in A. For 1 ≤ p < 2, we use ‖A‖p to

denote the entry-wise `p-norm of a matrix A, i.e., ‖A‖p is the p-th root of the sum of p-th

powers of the absolute values of the entries of A. ‖A‖1 is an important special case of ‖A‖p,
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which corresponds to the sum of absolute values of the entries in A. A random variable X

has the Cauchy distribution if its probability density function is f(z) = 1
π(1+z2)

.

19.1.2 Our Results

We propose an efficient bicriteria (1 + ε)-approximate column subset selection algo-

rithm for the `1-norm. We bypass the running time lower bound mentioned above by making

a mild assumption on the input data, and also show that our assumption is necessary in a

certain sense.

Our main algorithmic result is described as follows.

Theorem 19.1.1 (Informal version of Theorem 19.2.9). Suppose we are given a matrix A =

A∗ + ∆ ∈ Rn×n, where rank(A∗) = k for k = no(1), and ∆ is a random matrix for which the

∆i,j are i.i.d. symmetric random variables with E[|∆i,j|p] = O(E[|∆i,j|]p) for some constant

p > 1. Let ε ∈ (0, 1/2) satisfy 1/ε = no(1). There is an Õ(n2 + n poly(k/ε))1 time algorithm

(Algorithm 19.1) which can output a subset S ⊆ [n] with |S| ≤ poly(k/ε) + O(k log n) for

which

min
X∈R|S|×n

‖ASX − A‖1 ≤ (1 + ε)‖∆‖1,

holds with probability at least 99/100.

Note the running time in Theorem 19.1.1 is nearly linear in the number of non-

zero entries of A, since for an n × n matrix with i.i.d. noise drawn from any continuous

distribution, the number of non-zero entries of A will be n2 with probability 1. We also show

the moment assumption of Theorem 19.1.1 is necessary in the following precise sense.

1We use the notation Õ(f) := O(f · logO(1) f).
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Theorem 19.1.2 (Hardness, informal version of Theorem 19.4.17). Let n > 0 be sufficiently

large. Let A = η · 1 · 1> + ∆ ∈ Rn×n be a random matrix where η = nc0 for some suf-

ficiently large constant c0, 1 ∈ Rn is the all-ones vector, and ∀i, j ∈ [n],∆i,j ∼ C(0, 1)

are i.i.d. standard Cauchy random variables. Let r = no(1). Then with probability at least

1−O(1/ log log n), ∀S ⊆ [n] with |S| = r,

min
X∈Rr×n

‖ASX − A‖1 ≥ 1.002‖∆‖1.

19.1.3 Our Techniques

For an overview of our hardness result, we refer readers to the supplementary material,

namely, Appendix 19.4. In the following, we will outline the main techniques used in our

algorithm.

(1 + ε)-Approximate `1-Low Rank Approximation. We make the following distribu-

tional assumption on the input matrix A ∈ Rn×n: namely, A = A∗ + ∆ where A∗ is an

arbitrary rank-k matrix and the entries of ∆ are i.i.d. from any symmetric distribution

with E[|∆i,j|] = 1 and E[|∆i,j|p] = O(1) for any real number p strictly greater than 1, e.g.,

p = 1.000001 would suffice. Note that such an assumption is mild compared to typical noise

models which require the noise be Gaussian or have bounded variance; in our case the ran-

dom variables may even be heavy-tailed with infinite variance. In this setting we show it is

possible to obtain a subset of poly(k(ε−1 +log n)) columns spanning a (1+ε)-approximation.

This provably overcomes the column subset selection lower bound of [SWZ17] which shows

for entrywise `1-low rank approximation that there are matrices for which any subset of

poly(k) columns spans at best a kΩ(1)-approximation.
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Consider the following algorithm: sample poly(k/ε) columns of A, and try to cover

as many of the remaining columns as possible. Here, by covering a column i, we mean that

if AI is the subset of columns sampled, then miny ‖AIy−Ai‖1 ≤ (1+O(ε))n. The reason for

this notion of covering is that we are able to show in Lemma 19.2.1 that in this noise model,

‖∆‖1 ≥ (1− ε)n2 w.h.p., and so if we could cover every column i, our overall cost would be

(1 +O(ε))n2, which would give a (1 +O(ε))-approximation to the overall cost.

We will not be able to cover all columns, unfortunately, with our initial sample of

poly(k/ε) columns of A. Instead, though, we will show that we will be able to cover all

but a set T of εn/(k log k) of the columns. Fortunately, we show in Lemma 19.2.4 another

property of the noise matrix ∆ is that all subsets S of columns of size at most n/r, for

r ≥ (1/γ)1+1/(p−1) satisfy
∑

j∈S ‖∆j‖1 = O(γn2). Thus, for the above set T that we do

not cover, we can apply this lemma to it with γ = ε/(k log k), and then we know that
∑

j∈T ‖∆j‖1 = O(εn2/(k log k)), which then enables us to run a previous Õ(k)-approximate

`1 low rank approximation algorithm [CGK+17a] on the set T , which will only incur total

cost O(εn2), and since by Lemma 19.2.1 above the overall cost is at least (1− ε)n2, we can

still obtain a (1 +O(ε))-approximation overall.

The main missing piece of the algorithm to describe is why we are able to cover all

but a small fraction of the columns. One thing to note is that our noise distribution may

not have a finite variance, and consequently, there can be very large entries ∆i,j in some

columns. In Lemma 19.2.3, we show the number of columns in ∆ for which there exists an

entry larger than n1/2+1/(2p) in magnitude is O(n(2−p)/2), which since p > 1 is a constant

bounded away from 1, is sublinear. Let us call this set with entries larger than n1/2+1/(2p)

in magnitude the set H of “heavy" columns; we will not make any guarantees about H,
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rather, we will stuff it into the small set T of columns above on which we will run our earlier

O(k log k)-approximation.

For the remaining, non-heavy columns, which constitute almost all of our columns, we

show in Lemma 19.2.5 that ‖∆i‖1 ≤ (1+ε)n w.h.p. The reason this is important is that recall

to cover some column i by a sample set I of columns, we need miny ‖AIy−Ai‖1 ≤ (1+O(ε))n.

It turns out, as we now explain, that we will get

min
y
‖AIy − Ai‖1 ≤ ‖∆i‖1 + ei,

where ei is a quantity which we can control and make O(εn) by increasing our sample size I.

Consequently, since ‖∆i‖1 ≤ (1 + ε)n, overall we will have miny ‖AIy −Ai‖1 ≤ (1 +O(ε))n,

which means that i will be covered. We now explain what ei is, and why miny ‖AIy−Ai‖1 ≤

‖∆i‖1 + ei.

Towards this end, we first explain a key insight in this model. Since the p-th moment

exists for some real number p > 1 (e.g., p = 1.000001 suffices), averaging helps reduce the

noise of fitting a column Ai by subsets of other columns. Namely, we show in Lemma 19.2.2

that for any t non-heavy column ∆i1 , . . . ,∆it of ∆, and any coefficients α1, α2, . . . , αt ∈

[−1, 1], ‖∑t
j=1 αj∆ij‖1 = O(t1/pn), that is, since the individual coordinates of the ∆ij are

zero-mean random variables, their sum concentrates as we add up more columns. We do not

need bounded variance for this property.

How can we use this averaging property for subset selection? The idea is, instead of

sampling a single subset I of O(k) columns and trying to cover each remaining column with

this subset as shown in [CGK+17a], we will sample multiple independent subsets I1, I2, . . . , It.

By a similar argument of [CGK+17a], for any given column index i ∈ [n], for most of these
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subset Ij, we have that A∗i /‖∆i‖1 can be expressed as a linear combination of columns

A∗`/‖∆`‖1, ` ∈ Ij, via coefficients of absolute value at most 1. Note that this is only true for

most i and most j; we develop terminology for this in Definitions 19.2.1, 19.2.2, 19.2.3, and

19.2.4, referring to what we call a good core. We quantify what we mean by most i and most

j having this property in Lemma 19.2.7 and Lemma 19.2.8.

The key though, that drives the analysis, is Lemma 19.2.6, which shows that miny ‖Aiy−

Ai‖1 ≤ ‖∆i‖1 + ei, where ei = O(q1/p/t1−1/pn), where q is the size of each Ij, and t is the

number of different Ij. We need q to be at least k, just as before, so that we can be guar-

anteed that when we adjoin a column index i to Ij, there is some positive probability that

A∗i /‖∆i‖1 can be expressed as a linear combination of columns A∗`/‖∆`‖1, ` ∈ Ij, with coeffi-

cients of absolute value at most 1. What is different in our noise model though is the division

by t1−1/p. Since p > 1, if we set t to be a large enough poly(k/ε), then ei = O(εn), and

then we will have covered Ai, as desired. This captures the main property that averaging

the linear combinations for expression A∗i /‖∆i‖1 using different subsets Ij gives us better

and better approximations to A∗i /‖∆i‖1. Of course we need to ensure several properties

such as not sampling a heavy column (the averaging in Lemma 19.2.2 does not apply when

this happens), we need to ensure most of the Ij have small-coefficient linear combinations

expressing A∗i /‖∆i‖1, etc. This is handled in our main theorem, Theorem 19.2.9.
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19.2 `1-Norm Column Subset Selection

We first present two subroutines.

Linear regression with `1 loss. The first subroutine needed is an approximate `1

linear regression solver. In particular, given a matrixM ∈ Rn×d, n vectors b1, b2, · · · , bn ∈ Rn,

and an error parameter ε ∈ (0, 1), we want to compute x1, x2, · · · , xn ∈ Rd for which ∀i ∈ [n],

we have

‖Mxi − bi‖1 ≤ (1 + ε) · min
x∈Rd
‖Mx− bi‖1.

Furthermore, we also need an estimate vi of the regression cost ‖Mxi − bi‖1 for each i ∈ [n]

such that ‖Mxi−bi‖1 ≤ vi ≤ (1+ε)‖Mxi−bi‖1. Such an `1-regression problem can be solved

efficiently (see [Woo14b] for a survey). The total running time to solve these n regression

problems simultaneously is at most Õ(n2) + n · poly(d log n), and the success probability is

at least 0.999.

`1 Column subset selection for general matrices. The second subroutine needed

is an `1-low rank approximation solver for general input matrices, though we allow a large

approximation ratio. We use the algorithm proposed by [CGK+17a] for this purpose. In

particular, given an n × d (d ≤ n) matrix M and a rank parameter k, the algorithm can

output a small set S ⊂ [n] with size at most O(k log n), such that

min
X∈R|S|×d

‖MSX −M‖1 ≤ O(k log k) · min
rank−k B

‖M −B‖1.

Furthermore, the running time is at most Õ(n2)+n·poly(k log n), and the success probability

is at least 0.999. Now we can present our algorithm, Algorithm 19.1.
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Algorithm 19.1 `1-Low Rank Approximation with Input Assumption
1: procedure L1NoisyLowRankApprox(A ∈ Rn×n, k, ε) . Theorem 19.2.9
2: Sample a set I from

(
[n]
s

)
uniformly at random, where s = poly(k/ε).

3: Solve the approximate `1-regression problem minx∈R|I| ‖AIx − Ai‖1 for each i ∈ [n],
and let vi be the estimated regression cost.

4: Compute the set T = {i ∈ [n] | vi is one of the top l largest values among v1, v2, · · · , vn},
where l = n/ poly(k/ε).

5: Solve `1-column subset selection for AT . Let the solution be AQ.
6: Solve the approximate `1-regression problem minX∈R(|I|+|Q|)×n ‖A(I∪S)X−A‖1, and let
X̂ be the solution. Return A(I∪S) and X̂. . A(I∪S)X̂ is a good low rank approximation
to A

7: end procedure

Running time. Uniformly sampling a set I can be done in poly(k/ε) time. According

to our `1-regression subroutine, solving minx ‖AIx − Ai‖1 for all i ∈ [n] can be finished

in Õ(n2) + n · poly(k log(n)/ε) time. We only need sorting to compute the set T which

takes O(n log n) time. By our second subroutine, the `1-column subset selection for AT will

take Õ(n2) + n · poly(k log n). The last step only needs an `1-regression solver, which takes

Õ(n2)+n·poly(k log(n)/ε) time. Thus, the overall running time is Õ(n2)+n·poly(k log(n)/ε).

The remaining parts in this section will focus on analyzing the correctness of the

algorithm.

19.2.1 Properties of the Noise Matrix

Recall that the input matrix A ∈ Rn×n can be decomposed as A∗ + ∆, where A∗

is the ground truth, and ∆ is a random noise matrix. In particular, A∗ is an arbitrary

rank-k matrix, and ∆ is a random matrix where each entry is an i.i.d. sample drawn from

an unknown symmetric distribution. The only assumption on ∆ is that each entry ∆i,j
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satisfies E[|∆i,j|p] = O(E[|∆i,j|p]) for some constant p > 1, i.e., the p-th moment of the

noise distribution is bounded. Without loss of generality, we will suppose E[|∆i,j|] = 1,

E[|∆i,j|p] = O(1), and p ∈ (1, 2) throughout the paper. In this section, we will present some

key properties of the noise matrix.

The following lemma provides a lower bound on ‖∆‖1. Once we have the such lower

bound, we can focus on finding a solution for which the approximation cost is at most that

lower bound.

Lemma 19.2.1 (Lower bound on the noise matrix). Let ∆ ∈ Rn×n be a random matrix

where ∆i,j are i.i.d. samples drawn from a symmetric distribution. Suppose E[|∆i,j|] = 1 and

E[|∆i,j|p] = O(1) for some constant p ∈ (1, 2). Then, ∀ε ∈ (0, 1) which satisfies 1/ε = no(1),

we have

Pr
[
‖∆‖1 ≥ (1− ε)n2

]
≥ 1− e−Θ(n).

The next lemma shows the main reason why we are able to get a small fitting cost

when running regression. Consider a toy example. Suppose we have a target number a ∈ R,

and another t numbers a+ g1, a+ g2, · · · , a+ gt ∈ R, where gi are i.i.d. samples drawn from

the standard Gaussian distribution N(0, 1). If we use a+ gi to fit a, then the expected cost

is E[|a+gi−a|] = E[|gi|] =
√

2/π. However, if we use the average of a+g1, a+g2, · · · , a+gt

to fit a, then the expected cost is E[|∑t
i=1 gi|/t]. Since the gi are independent,

∑t
i=1 gi

is a random Gaussian variable with variance t, which means that the above expected cost

is
√

2/π/
√
t. Thus the fitting cost is reduced by a factor

√
t. By generalizing the above

argument, we obtain the following lemma.
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Lemma 19.2.2 (Averaging reduces the noise). Let ∆1,∆2, · · · ,∆t ∈ Rn be t random vectors.

The ∆i,j are i.i.d. symmetric random variables with E[|∆i,j|] = 1 and E[|∆i,j|p] = O(1) for

some constant p ∈ (1, 2). Let α1, α2, · · · , αt ∈ [−1, 1] be t real numbers. Conditioned on

∀i ∈ [n], j ∈ [t], |∆i,j| ≤ n1/2+1/(2p), with probability at least 1− 2−n
Θ(1)

,

∥∥∥∥∥
t∑

i=1

αi∆i

∥∥∥∥∥
1

≤ O(t1/pn).

The above lemma needs a condition that each entry in the noise column should not

be too large. Fortunately, we can show that most of the (noise) columns do not have any

large entry.

Lemma 19.2.3 (Only a small number of columns have large entries). Let ∆ ∈ Rn×n be a

random matrix where the ∆i,j are i.i.d. symmetric random variables with E[|∆i,j|] = 1 and

E[|∆i,j|p] = O(1) for some constant p ∈ (1, 2). Let

H = {j ∈ [n]
∣∣ ∃i ∈ [n], |∆i,j| > n1/2+1/(2p)}.

Then with probability at least 0.999,

|H| ≤ O(n1−(p−1)/2).

The following lemma shows that any small subset of the columns of the noise matrix

∆ cannot contribute too much to the overall error. By combining with the previous lemma,

the entrywise `1 cost of all columns containing large entries can be bounded.

Lemma 19.2.4. Let ∆ ∈ Rn×n be a random matrix where ∆i,j are i.i.d. symmetric random

variables with E[|∆i,j|] = 1 and E[|∆i,j|p] = O(1) for some constant p ∈ (1, 2). Let ε ∈ (0, 1)
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satisfy 1/ε = no(1). Let r ≥ (1/ε)1+1/(p−1). Then, with probability at least .999, ∀S ⊂ [n] with

|S| ≤ n/r,

∑

j∈S

‖∆j‖1 = O(εn2).

We say a (noise) column is good if it does not have a large entry. We can show that,

with high probability, the entry-wise `1 cost of a good (noise) column is small.

Lemma 19.2.5 (Cost of good noise columns). Let ∆ ∈ Rn be a random vector where ∆i are

i.i.d. symmetric random variables with E[|∆i|] = 1 and E[|∆i|p] = O(1) for some constant

p ∈ (1, 2). Let ε ∈ (0, 1) satisfy 1/ε = no(1). If ∀i ∈ [n], |∆i| ≤ n1/2+1/(2p), then with probability

at least 1− 2−n
Θ(1)

,

‖∆‖1 ≤ (1 + ε)n.

19.2.2 Definition of Tuples and Cores

In this section, we provide some basic definitions, e.g., of a tuple, a good tuple, the

core of a tuple, and a coefficients tuple. These definitions will be heavily used later when we

analyze the correctness of our algorithm.

Before we present the definitions, we introduce a notion RA∗(S). Given a matrix

A∗ ∈ Rn1×n2 , for a set S ⊆ [n2], we define

RA∗(S) := arg max
P :P⊆S

{∣∣∣det
(

(A∗)QP

)∣∣∣
∣∣∣∣ |P | = |Q| = rank(A∗S), Q ⊆ [n1]

}
,

where for a squared matrix C, det(C) denotes the determinant of C. Roughly speaking, by

Cramer’s rule, if we use the columns of A∗ with index in the set RA∗(S) to fit any column
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of A∗ with index in the set S, the absolute value of any fitting coefficient will be at most 1.

Small fitting coefficients are good since they will not increase the noise by too much. For

example, suppose A∗i = A∗Sx and ‖x‖∞ ≤ 1, i.e., the i-th column can be fit by the columns

with indices in the set S and the fitting coefficients x ∈ R|S| are small. If we use the noisy

columns of A∗S + ∆S to fit the noisy column A∗i + ∆i, then the fitting cost is at most

‖(A∗S + ∆S)x− (A∗i + ∆i)‖1 ≤ ‖∆i‖1 + ‖∆Sx‖1.

Since ‖x‖∞ ≤ 1, it is possible to give a good upper bound for ‖∆Sx‖1.

Definition 19.2.1 (Tuple). A (q, t, n)−tuple is defined to be (S1, S2, · · · , St, i), where ∀j ∈

[t], Sj ⊂ [n] with |Sj| = q. Let S =
⋃t
j=1 Sj. Then |S| = qt, i.e., S1, S2, · · · , St are disjoint.

Furthermore, i ∈ [n] and i 6∈ S. For simplicity, we use (S[t], i) to denote (S1, S2, · · · , St, i).

We next provide the definition of a good tuple.

Definition 19.2.2 (Good tuple). Given a rank-k matrix A∗ ∈ Rn×n, an (A∗, q, t, α)-good

tuple is a (q, t, n)-tuple (S[t], i) which satisfies

|{j ∈ [t] | i 6∈ RA∗(Sj ∪ {i})}| ≥ α · t.

We need the definition of the core of a tuple.

Definition 19.2.3 (Core of a tuple). The core of (S[t], i) is defined to be the set

{j ∈ [t] | i 6∈ RA∗(Sj ∪ {i})}.

We define a coefficients tuple as follows.
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Definition 19.2.4 (Coefficients tuple). Given a rank-k matrix A∗ ∈ Rn×n, let (S[t], i) be an

(A∗, q, t, α)-good tuple. Let C be the core of (S[t], i). A coefficients tuple corresponding to

(S[t], i) is defined to be (x1, x2, · · · , xt) where ∀j ∈ [t], xj ∈ Rq. The vector xj ∈ Rq satisfies:

xj = 0 if j ∈ [t]\C, while A∗Sjxj = A∗i and ‖xj‖∞ ≤ 1, if j ∈ C. To guarantee the coefficients

tuple is unique, we restrict each vector xj ∈ Rq to be one that has the minimum lexicographic

order.

19.2.3 Properties of a Good Tuple and a Coefficients Tuple

Consider a good tuple (S1, S2, · · · , St, i). By the definition of a good tuple, the size

of the core C of the tuple is large. For each j ∈ C, the coefficients xj of using A∗Sj to fit A∗i

should have absolute value at most 1. Now consider the noisy setting. As discussed in the

previous section, using ASj to fit Ai has cost at most ‖∆i‖1 + ‖∆Sjxj‖1. Although ‖∆Sjxj‖1

has a good upper bound, it is not small enough. To further reduce the `1 fitting cost, we can

now apply the averaging argument (Lemma 19.2.2) over all the fitting choices corresponding

to C. Formally, we have the following lemma.

Lemma 19.2.6 (Good tuples imply low fitting cost). Suppose we are given a matrix A ∈

Rn×n which satisfies A = A∗ + ∆, where A∗ ∈ Rn×n has rank k. Here ∆ ∈ Rn×n is a

random matrix where ∆i,j are i.i.d. symmetric random variables with E[|∆i,j|] = 1 and

E[|∆i,j|p] = O(1) for some constant p ∈ (1, 2). Let H ⊂ [n] be defined as follows:

H =

{
j ∈ [n]

∣∣∣∣ ∃i ∈ [n], |∆i,j| > n1/2+1/(2p)

}
.

Let q, t ≤ no(1). Then, with probability at least 1 − 2−n
Θ(1)

, for all (A∗, q, t, 1/2)-good tuples
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(S1, S2, · · · , St, i) which satisfy H ∩
(⋃t

j=1 Sj

)
= ∅, we have

min
y∈Rqt

∥∥∥A{⋃tj=1 Sj}
y − Ai

∥∥∥
1
≤
∥∥∥∥∥

1

|C|
t∑

j=1

ASjxj − Ai
∥∥∥∥∥

1

≤ ‖∆i‖1 +O(q1/p/t1−1/pn),

where C is the core of (S1, S2, · · · , St, i), and (x1, x2, · · · , xt) is the coefficients tuple corre-

sponding to (S1, S2, · · · , St, i).

We next show that if we choose columns randomly, it is easy to find a good tuple.

Lemma 19.2.7. Given a rank-k matrix A∗ ∈ Rn×n, let q > 10k, t > 0. Let I = {i1, i2, · · · , iqt+1}

be a subset drawn uniformly at random from
(

[n]
qt+1

)
. Let π : I → I be a random permutation

of qt+ 1 elements. ∀j ∈ [t], let

Sj =
{
iπ((j−1)q+1), iπ((j−1)q+2), · · · , iπ((j−1)q+q)

}
.

We use i to denote iπ(qt+1). With probability ≥ 1−2k/q, (S1, S2, · · · , St, i) is an (A∗, q, t, 1/2)−good

tuple.

Lemma 19.2.7 implies that if we randomly choose S1, S2, · · · , St, then with high proba-

bility, there are many choices of i ∈ [n], such that (S1, S2, · · · , St, i) is a good tuple. Precisely,

we can show the following.

Lemma 19.2.8. Given a rank-k matrix A∗ ∈ Rn×n, let q > 10k, t > 0. Let I = {i1, i2, · · · , iqt}

be a random subset uniformly drawn from
(

[n]
qt

)
. Let π be a random permutation of qt ele-

ments. ∀j ∈ [t], we define Sj as follows:

Sj =
{
iπ((j−1)q+1), iπ((j−1)q+2), · · · , iπ((j−1)q+q)

}
.

Then with probability at least 2k/q,

∣∣{i ∈ [n] \ I
∣∣ (S1, S2, · · · , St, i) is an (A∗, q, t, 1/2)−good tuple

}∣∣ ≥ (1− 4k/q)(n− qt).
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19.2.4 Main Result

Now we are able to put all ingredients together to prove our main theorem, Theo-

rem 19.2.9.

Theorem 19.2.9 (Formal version of Theorem 19.1.1). Suppose we are given a matrix A =

A∗ + ∆ ∈ Rn×n, where rank(A∗) = k for k = no(1), and ∆ is a random matrix for which the

∆i,j are i.i.d. symmetric random variables with E[|∆i,j|] = 1 and E[|∆i,j|p] = O(1) for some

constant p ∈ (1, 2). Let ε ∈ (0, 1/2) satisfy 1/ε = no(1). There is an Õ(n2 + n poly(k/ε))

time algorithm (Algorithm 19.1) which can output a subset S ∈ [n] with |S| ≤ poly(k/ε) +

O(k log n) for which

min
X∈R|S|×n

‖ASX − A‖1 ≤ (1 + ε)‖∆‖1,

holds with probability at least 99/100.

Proof. We discussed the running time at the beginning of Section 19.2. Next, we turn to

correctness. Let

q = Ω

(
k(k log k)1+ 1

p−1

ε1+ 1
p−1

)
, t =

q
1
p−1

ε1+ 1
p−1

.

Let r = Θ(q/k). Let

I1 =
{
i
(1)
1 , i

(1)
2 , · · · , i(1)

qt

}
, I2 =

{
i
(2)
1 , i

(2)
2 , · · · , i(2)

qt

}
, · · · , Ir =

{
i
(r)
1 , i

(r)
2 , · · · , i(r)qt

}
,

be r independent subsets drawn uniformly at random from
(

[n]
qt

)
. Let I =

⋃
s∈[r] Is, which is

the same as that in Algorithm 19.1. Let π1, π2, · · · , πr be r independent random permutations
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of qt elements. Due to Lemma 19.2.8 and a Chernoff bound, with probability at least .999,

∃s ∈ [r],

∣∣{i ∈ [n] \ Is
∣∣ (S1, S2, · · · , St, i) is an (A∗, q, t, 1/2)−good tuple

}∣∣ ≥ (1− 4k/q)(n− qt)

where

Sj =
{
i
(s)
πs((j−1)q+1), i

(s)
πs((j−1)q+2), · · · , i

(s)
πs((j−1)q+q)

}
,∀j ∈ [t].

Let set H ⊂ [n] be defined as follows:

H = {j ∈ [n] | ∃i ∈ [n], |∆i,j| > n1/2+1/(2p)}.

Then due to Lemma 19.2.3, with probability at least 0.999, |H| ≤ O(n1−(p−1)/2). Thus, for

j ∈ [r], the probability that H ∩ Ij 6= ∅ is at most O(qt · n1−(p−1)/2/(n− qt)) = 1/nΩ(1). By

taking a union bound over all j ∈ [r], with probability at least 1−1/nΩ(1), ∀j ∈ [r], Ij∩H = ∅.

Thus, we can condition on Is ∩H = ∅. Due to Lemma 19.2.6 and q1/p/t1−1/p = ε,

∣∣∣∣
{
i ∈ [n] \ Is

∣∣∣∣ min
y∈Rqt

‖AIsy − Ai‖1 ≤ ‖∆i‖1 +O(εn)

}∣∣∣∣ ≥ (1− 4k/q)(n− qt).

Due to Lemma 19.2.5 and a union bound over all i ∈ [n] \H, with probability at least .999,

∀i 6∈ H, ‖∆i‖ ≤ (1 + ε)n. Thus,
∣∣∣∣
{
i ∈ [n] \ Is

∣∣∣∣ min
y∈Rqt

‖AIsy − Ai‖1 ≤ (1 +O(ε))n

}∣∣∣∣ ≥ (1− 4k/q)(n− qt)− |H|.

Let

T ′ = [n] \
{
i ∈ [n]

∣∣∣∣ min
y∈Rqt

‖AIsy − Ai‖1 ≤ (1 +O(ε))n

}
.
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Then |T ′| ≤ O(kn/q + n1−(p−1)/2) = O(kn/q) = O((ε/(k log k))1+1/(p−1)n). By our selection

of T in algorithm 19.1, T ′ should be a subset of T . Due to Lemma 19.2.4, with probability at

least .999, ‖∆T‖1 ≤ O(εn2/(k log k)). By our second subroutine mentioned at the beginning

of Section 19.2 it can find a set Q ⊂ [n] with |Q| = O(k log n) such that

min
X∈R|Q|×|T |

‖AQX − AT‖1 ≤ O(k log k)‖∆T‖1 ≤ O(εn2).

Thus, we have

min
X∈R(|Q|+q·t·r)×n

‖A(Q∪I)X − A‖1 ≤ min
X1∈R(q·t·r)×n

‖AIX1 − A[n]\T‖1 + min
X2∈R|Q|×n

‖AQX2 − AT‖1

≤ (1 +O(ε))n2.

Due to Lemma 19.2.1, with probability at least .999, ‖∆‖1 ≥ (1− ε)n2, and thus

min
X∈R(|Q|+q·t·r)×n

‖A(Q∪I)X − A‖1 ≤ (1 +O(ε))‖∆‖1.
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19.3 Missing Proofs in Section 19.2
19.3.1 Proof of Lemma 19.2.1

Proof. Let Z ∈ Rn×n be a random matrix. For each i, j ∈ [n], define random variable Zi,j as

Zi,j =

{
|∆i,j|, if |∆i,j| ≤ n;
n, otherwise.

For i, j ∈ [n], by Markov’s inequality, we have

Pr[|∆i,j| ≥ n] = Pr[|∆i,j|p ≥ np] ≤ E[|∆i,j|p]/np = O(1/np). (19.1)

Notice that

E[|∆i,j|p] =

∫ n

0

xpf(x)dx+

∫ ∞

n

xpf(x)dx = O(1)

where f(x) is the probability density function of |∆i,j|. Thus we have

∫ ∞

n

xf(x)dx ≤
∫ ∞

n

xp/np−1 · f(x)dx = O(1/np−1).

Because E[|∆i,j|] = 1, we have

∫ ∞

0

xf(x)dx = E[|∆i,j|]−
∫ ∞

n

xf(x)dx ≥ 1−O(1/np−1). (19.2)

By Equation (19.2), we have

E[Zi,j] =

∫ n

0

xf(x)dx+ n · Pr[|∆i,j| ≥ n] ≥
∫ n

0

xf(x)dx ≥ 1−O(1/np−1).

By Equation (19.1) and E[|∆i,j|p] ≤ O(1), we have

E[Z2
i,j] =

∫ n

0

x2f(x)dx+ n2 Pr[|∆i,j| ≥ n] ≤ O(n2−p) +O(n2−p) = O(n2−p).
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By the inequality of [Mau03],

Pr[E[‖Z‖1]− ‖Z‖1 ≥ εE[‖Z‖1]/2] ≤ exp

(
−ε2 E[‖Z‖1]2/4

2
∑

i,j E[Z2
i,j]

)

≤ exp

(−ε2(n2 −O(n3−p))2/4

2n2 ·O(n2−p)

)

≤ e−Θ(n)

Thus with probability at least 1 − e−Θ(n), ‖Z‖1 ≥ (1 − ε/2)E[‖Z‖1] ≥ (1 − ε)n2 where the

last inequality follows by E[‖Z‖1 ≥ n2 − O(n3−p)] and 1/ε = no(1). Since ‖∆‖1 ≥ ‖Z‖1, we

complete the proof.

19.3.2 Proof of Lemma 19.2.2

Proof. Let Z ∈ Rn×t be a random matrix where Zi,j are i.i.d. random variables with proba-

bility density function:

g(x) =

{
f(x)/Pr[|∆1,1| ≤ n1/2+1/(2p)], if |x| ≤ n1/2+1/(2p);
0, otherwise.

where f(x) is the probability density function of ∆1,1. (Note that in the above equation,

Pr[|∆1,1| ≤ n1/2+1/(2p)] > 0.) Now, we have ∀a ≥ 0,

Pr



∥∥∥∥∥

t∑

j=1

αj∆j

∥∥∥∥∥
1

≤ a

∣∣∣∣ ∀i ∈ [n], j ∈ [t], |∆i,j| ≤ n1/2+1/(2p)


 = Pr



∥∥∥∥∥

t∑

j=1

αjZj

∥∥∥∥∥
1

≤ a


 .
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Now we look at the i-th row of
∑t

j=1 αjZj. We have

E

[∣∣∣∣∣
t∑

j=1

αjZi,j

∣∣∣∣∣

]
=

(
E

[∣∣∣∣∣
t∑

j=1

αjZi,j

∣∣∣∣∣

]p)1/p

≤ E

[∣∣∣∣∣
t∑

j=1

αjZi,j

∣∣∣∣∣

p]1/p

≤ E





(

t∑

j=1

α2
jZ

2
i,j

)1/2


p


1/p

≤ E

[
t∑

j=1

|αjZi,j|p
]1/p

≤
(

t∑

j=1

E[|αjZi,j|p]
)1/p

≤
(

t∑

j=1

E[|Zi,j|p]
)1/p

≤ O(t1/p), (19.3)

where the first inequality follows by Jensen’s inequality, the second inequality follows by

Remark 3 of [Lat97], the third inequality follows by ‖x‖2 ≤ ‖x‖p for p < 2, the fourth

inequality follows by |αj| ≤ 1, the fifth inequality follows by E[|Zi,j|p] = E[|∆i,j|p | |∆1,1| ≤
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n1/2+1/(2p)] ≤ E[|∆i,j|p] = O(1). For the second moment, we have

E



∣∣∣∣∣

t∑

j=1

αjZi,j

∣∣∣∣∣

2

 =

t∑

j=1

E
[
α2
jZ

2
i,j

]
+
∑

j 6=k

E[αjαkZi,jZi,k]

=
t∑

j=1

α2
j E
[
Z2
i,j

]
+
∑

j 6=k

αjαk E[Zi,j]E[Zi,k]

≤
t∑

j=1

E
[
Z2
i,j

]

= t · 2
∫ n1/2+1/(2p)

0

x2f(x)/Pr
[
|∆i,j| ≤ n1/2+1/(2p)

]
dx

≤ 2t/Pr
[
|∆i,j| ≤ n1/2+1/(2p)

]
· (n1/2+1/(2p))2−p

∫ n1/2+1/(2p)

0

xpf(x)dx

≤ O(tn2−p), (19.4)

where the second inequality follows by independence of Zi,j and Zi,k. The first inequality

follows by |αj| ≤ 1 and E[Zi,j] = E[Zi,k] = 0. The third equality follows by the probability

density function of Zi,j. The second inequality follows by x2−p ≤ (n1/2+1/(2p))2−p when 0 ≤

x ≤ n1/2+1/(2p). The last inequality follows by E[|∆i,j|p] = O(1), p > 1 and Pr[|∆i,j| ≤

n1/2+1/(2p)] ≥ 1− E[|∆i,j|p]/(n1/2+1/(2p))p = 1−O(1/np/2+1/2) ≥ 1/2.

For i ∈ [n], define Xi = |∑t
j=1 αjZi,j|. Then, by Bernstein’s inequality

Pr



∥∥∥∥∥

t∑

j=1

αjZj

∥∥∥∥∥
1

− E



∥∥∥∥∥

t∑

j=1

αjZj

∥∥∥∥∥
1


 ≥ 0.5t1/pn




= Pr

[
n∑

i=1

Xi − E

[
n∑

i=1

Xi

]
≥ 0.5t1/pn

]

≤ exp

(
− 0.5 · 0.52t2/pn2

∑n
i=1 E[X2

i ] + 1
3
n1/2+1/(2p) · 0.5t1/pn

)

≤ e−n
Θ(1)

.
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The last inequality follows by Equation (19.4). According to Equation (19.3), with proba-

bility at least 1− e−nΘ(1)
,

∥∥∥∥∥
t∑

j=1

αjZj

∥∥∥∥∥
1

≤ E



∥∥∥∥∥

t∑

j=1

αjZj

∥∥∥∥∥
1


+ 0.5t1/pn ≤ O(t1/pn).

19.3.3 Proof of Lemma 19.2.3

Proof. For i, j ∈ [n], we have

Pr
[
|∆i,j| > n1/2+1/(2p)

]
= Pr

[
|∆i,j|p > np/2+1/2

]

≤ E [|∆i,j|p] /np/2+1/2

≤ O(1/np/2+1/2).

For column j, by taking a union bound,

Pr[j ∈ H] = Pr
[
∃i ∈ [n], |∆i,j| > n1/2+1/(2p)

]
≤ O(1/np/2−1/2).

Thus, E[|H|] ≤ O(n1−(p−1)/2). By applying Markov’s inequality, we complete the proof.
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19.3.4 Proof of Lemma 19.2.4

Proof. For l ∈ N≥0, define Gl = {j | ‖∆j‖1 ∈ (n · 2l, n · 2l+1]}. We have

E[|Gl|] ≤
n∑

j=1

Pr
[
‖∆j‖1 ≥ n · 2l

]

= nPr
[
‖∆1‖1 ≥ n · 2l

]

≤ nPr
[
n1−1/p‖∆1‖p ≥ n · 2l

]

= nPr
[
np−1‖∆1‖pp ≥ np · 2lp

]

≤ nE
[
np−1‖∆1‖pp

]
/(np · 2lp)

≤ O(n/2lp).

The first inequality follows by the definition of Gl. The second inequality follows since

∀x ∈ Rn, ‖x‖1 ≤ n1−1/p‖x‖p. The third inequality follows by Markov’s inequality. The last

inequality follows since ∀i, j ∈ [n],E[|∆i,j|p] = O(1).
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Let l∗ ∈ N≥0 satisfy 2l
∗
< εr and 2l

∗+1 ≥ εr. We have

E


 ∑

j:‖∆j‖1≥n2l∗

‖∆j‖1


 ≤ E

[
∞∑

l=l∗

|Gl| · n2l+1

]

=
∞∑

l=l∗

E[|Gl|] · n2l+1

≤
∞∑

l=l∗

O(n/2lp) · n2l+1

=
∞∑

l=l∗

O(n2/2l(p−1))

= O(n2/2l
∗(p−1))

= O(n2/(εr)p−1)

= O(εn2).

By Markov’s inequality, with probability at least .999,
∑

j:‖∆j‖1≥n2l∗ ‖∆j‖1 ≤ O(εn2). Con-

ditioned on
∑

j:‖∆j‖1≥n2l∗ ‖∆j‖1 ≤ O(εn2), for any S ⊂ [n] with |S| ≤ n/r, we have

∑

j∈S

‖∆j‖1 ≤ |S| · n2l
∗

+
∑

j:‖∆j‖1≥n2l∗

‖∆j‖1 ≤ εn2 +O(εn2) = O(εn2).

The second inequality follows because |S| ≤ n/r, 2l
∗ ≤ εr and

∑
j:‖∆j‖1≥n2l∗ ‖∆j‖1 ≤ O(εn2).

19.3.5 Proof of Lemma 19.2.5

Proof. Let M = n1/2+1/(2p). Let Z ∈ Rn be a random vector where Zi are i.i.d. random

variables with probability density function

g(x) =

{
f(x)/Pr[|∆1| ≤M ] if 0 ≤ x ≤M ;
0 otherwise.
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where f(x) is the probability density function of |∆1|. Then ∀a > 0

Pr [‖∆‖1 ≤ a | ∀i ∈ [n], |∆i| ≤M ] = Pr [‖Z‖1 ≤ a] .

For i ∈ [n], because E[|∆i|] = 1, it holds that E[Zi] ≤ 1. We have E[
∑n

i=1 Zi] ≤ n. For the

second moment, we have

E[Z2
i ] =

∫ M

0

x2f(x)/Pr[|∆1| ≤M ]dx

≤M2−p/Pr[|∆1| ≤M ]

∫ M

0

xpf(x)dx

≤ O(M2−p)

≤ O(n2−p)

where the second inequality follows by E[|∆1|p] = O(1), and

Pr[|∆1| ≤M ] ≥ 1− E[|∆1|p]/Mp ≥ 1/2.

Then by Bernstein’s inequality, we have

Pr

[
n∑

i=1

Zi − E
[

n∑

i=1

Zi

]
≥ εn

]

≤ exp

( −0.5ε2n2

∑n
i=1 E[Z2

i ] + 1
3
M · εn

)

≤ e−n
Θ(1)

.

Thus,

Pr [‖∆‖1 ≤ (1 + ε)n | ∀i ∈ [n], |∆i| ≤M ] = Pr [‖Z‖1 ≤ (1 + ε)n] ≥ 1− e−nΘ(1)

.
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19.3.6 Proof of Lemma 19.2.6

Proof. Recall that (S1, S2, · · · , St, i) is equivalent to (S[t], i). Let (S[t], i) be an (A∗, q, t, 1/2)-

good tuple which satisfiesH∩
(⋃t

j=1 Sj

)
= ∅. Let C be the core of (S[t], i). Let (x1, x2, · · · , xt)

be the coefficients tuple corresponding to (S[t], i). Then we have that
∥∥∥∥∥

1

|C|
t∑

j=1

ASjxj − Ai
∥∥∥∥∥

1

=

∥∥∥∥∥
1

|C|
t∑

j=1

(
A∗Sj + ∆Sj

)
xj − (A∗i + ∆i)

∥∥∥∥∥
1

≤
∥∥∥∥∥

1

|C|
t∑

j=1

A∗Sjxj − A∗i

∥∥∥∥∥
1

+ ‖∆i‖1 +
1

|C|

∥∥∥∥∥
t∑

j=1

∆Sjxj

∥∥∥∥∥
1

= ‖∆i‖1 +
1

|C|

∥∥∥∥∥
t∑

j=1

∆Sjxj

∥∥∥∥∥
1

≤ ‖∆i‖1 +
2

t

∥∥∥∥∥
t∑

j=1

∆Sjxj

∥∥∥∥∥
1

≤ ‖∆i‖1 +O

(
1

t
· (qt)1/pn

)

= ‖∆i‖1 +O
(
q1/p/t1−1/pn

)

holds with probability at least 1 − 2−n
Θ(1)

. The first equality follows using A = A∗ + ∆.

The first inequality follows using the triangle inequality. The second equality follows us-

ing the definition of the core and the coefficients tuple (see Definition 19.2.2 and Defini-

tion 19.2.4). The second inequality follows using Definition 19.2.2. The third inequality

follows by Lemma 19.2.2 and the condition that H ∩
(⋃t

j=1 Sj

)
= ∅.

Since the size of
∣∣∣{i} ∪

(⋃t
j=1 Sj

)∣∣∣ = qt+ 1, the total number of (A∗, q, t, 1/2)−good

tuples is upper bounded by nqt+1 ≤ 2n
o(1)
. By taking a union bound, we complete the
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proof.

19.3.7 Proof of Lemma 19.2.7

Proof. For j ∈ [t], by symmetry of the choices of Sj and i, we have Pr[i ∈ RA∗(Sj ∪ {i})] ≤

k/(q + 1). Thus, by Markov’s inequality,

Pr[|{j ∈ [t] | i ∈ RA∗(Sj ∪ {i})}| > 0.5t]

≤ E[|{j ∈ [t] | i ∈ RA∗(Sj ∪ {i})}|]/(0.5t)

≤ 2k/q.

Thus,

Pr[|{j ∈ [t] | i 6∈ RA∗(Sj ∪ {i})}| ≥ 0.5t] ≥ 1− 2k/q.

19.3.8 Proof of Lemma 19.2.8

Proof. For S1, S2, · · · , St ∈
(

[n]
q

)
with

∑t
j=1 |Sj| = qt, define

P(S1,S2,··· ,St) = Pr
i∈[n]\(

⋃t
j=1 Sj)

[(S1, S2, · · · , St, i) is an (A∗, q, t, 1/2)−good tuple ].

Let set T be defined as follows:
{

(S1, S2, · · · , St)
∣∣∣∣ S1, S2, · · · , St ∈

(
[n]

q

)
with

t∑

j=1

|Sj| = qt

}
.

1397



Let G be the set of all the (A∗, q, t, 1/2)−good tuples. Then, we have

Pr
(S1,S2,··· ,St)∼T

[∣∣{i ∈ [n] \
(
∪tj=1Sj

)
| (S1, S2, · · · , St, i) ∈ G

}∣∣ ≥ (1− 4k/q)(n− qt)
]

=
1

|T |
∣∣{(S1, S2, · · · , St) | (S1, S2, · · · , St) ∈ T and P(S1,S2,··· ,St) ≥ 1− 4k/q

}∣∣

=
1

|T |
∑

(S1,S2,··· ,St)∈T
P(S1,S2,··· ,St)≥1−4k/q

1

≥ 1

|T |
∑

(S1,S2,··· ,St)∈T
P(S1,S2,··· ,St)≥1−4k/q

P(S1,S2,··· ,St)

≥ 1− 2k/q − 1

|T |
∑

(S1,S2,··· ,St)∈T
P(S1,S2,··· ,St)<1−4k/q

P(S1,S2,··· ,St)

≥ 1− 2k/q − (1− 4k/q)

≥ 2k/q.

The second inequality follows from Lemma 19.2.7

1

|T |
∑

(S1,S2,··· ,St)∈T
P(S1,S2,··· ,St)<1−4k/q

P(S1,S2,··· ,St) +
1

|T |
∑

(S1,S2,··· ,St)∈T
P(S1,S2,··· ,St)≥1−4k/q

P(S1,S2,··· ,St) ≥ 1− 2k/q.
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19.4 Hardness Result

An overview of the hardness result. Recall that we overcame the column subset selec-

tion lower bound of [SWZ17], which shows for entrywise `1-low rank approximation that there

are matrices for which any subset of poly(k) columns spans at best a kΩ(1)-approximation.

Indeed, we came up with a column subset of size poly(k(ε−1 + log n)) spanning a (1 + ε)-

approximation. To do this, we assumed A = A∗+∆, where A∗ is an arbitrary rank-k matrix,

and the entries are i.i.d. from a distribution with E[|∆i,j|] = 1 and E[|∆i,j|p] = O(1) for any

real number p strictly greater than 1.

Here we show an assumption on the moments is necessary, by showing if instead ∆

were drawn from a matrix of i.i.d. Cauchy random variables, for which the p-th moment is

undefined or infinite for all p ≥ 1, then for any subset of no(1) columns, it spans at best a

1.002 approximation. The input matrix A = nC1 ·1>+ ∆, where C > 0 is a constant and we

show that nΩ(1) columns need to be chosen to obtain a 1.001-approximation, even for k = 1.

Note that this result is stronger than that in [SWZ17] in that it rules out column subset

selection even if one were to choose no(1) columns; the result in [SWZ17] requires at most

poly(k) columns, which for k = 1, would just rule out O(1) columns. Our main goal here

is to show that a moment assumption on our distribution is necessary, and our result also

applies to a symmetric noise distribution which is i.i.d. on all entries, whereas the result of

[SWZ17] requires a specific deterministic pattern (namely, the identity matrix) on certain

entries.

Our main theorem is given in Theorem 19.4.17. The outline of the proof is as follows.

We first condition on the event that ‖∆‖1 ≤ 4.0002
π

n2 lnn, which is shown in Lemma 19.4.2

and follows form standard analysis of sums of absolute values of Cauchy random variables.
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Thus, it is sufficient to show if we choose any subset S of r = no(1) columns, denoted by the

submatrix AS, then minX∈Rr×n ‖ASX−A‖1 ≥ 4.01
π
·n2 lnn, as indeed then minX∈Rr×n ‖ASX−

A‖1 ≥ 1.002‖∆‖1 and we rule out a (1 + ε)-approximation for ε a sufficiently small constant.

To this end, we instead show for a fixed S, that minX∈Rr×n ‖ASX −A‖1 ≥ 4.01
π
· n2 lnn with

probability 1− 2−n
Θ(1) , and then apply a union bound over all S. To prove this for a single

subset S, we argue that for every “coefficient matrix” X, that ‖ASX − A‖1 ≥ 4.01
π
· n2 lnn.

We show in Lemma 19.4.5, that with probability 1−(1/n)Θ(n) over ∆, simultaneously

for all X, if X has a column Xj with ‖Xj‖1 ≥ nc for a constant c > 0, then ‖ASXj−Aj‖1 ≥

.9n3, which is already too large to provide an O(1)-approximation. Note that we need such

a high probability bound to later union bound over all S. Lemma 19.4.5 is in turn shown via

a net argument on all Xj (it suffices to prove this for a single j ∈ [n], since there are only n

different j, so we can union bound over all j). The net bounds are given in Definition 19.4.1

and Definition 19.4.4, and the high probability bound for a given coefficient vector Xj is

shown in Lemma 19.4.3, where we use properties of the Cauchy distribution. Thus, we can

assume ‖Xj‖1 < nc for all j ∈ [n]. We also show in Fact 19.4.1, conditioned on the fact that

‖∆‖1 ≤ 4.002
π
n2 lnn, it holds that for any vector Xj, if ‖Xj‖1 < nc and |1−1>Xj| > 1−10−20,

then ‖ASX −A‖1 ≥ ‖ASXj −Aj‖1 > n3. The intuition here is A = nc01 ·1>+ ∆ for a large

constant c0, and Xj does not have enough norm (‖Xj‖1 ≤ nc) or correlation with the vector

1 (|1− 1>Xj| > 1− 10−20) to make ‖ASXj − Aj‖1 small.

Given the above, we can assume both that ‖Xj‖1 ≤ nc and |1−1>Xj| ≤ 1−10−20 for

all columns j of our coefficient matrix X. We can also assume that ‖ASX −A‖1 ≤ 4n2 lnn,

as otherwise such an X already satisfies ‖ASX − A‖1 ≥ 4.01
π
· n2 lnn and we are done. To

analyze ‖ASX−A‖1 =
∑

i,j |(ASX−A[n]\S)i,j| in Theorem 19.4.17, we then split the sum over
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“large coordinates” (i, j) for which |∆i,j| > n1.0002, and “small coordinates” (i, j) for which

|∆i,j| < n.9999, and since we seek to lower bound ‖ASX − A[n]\S‖1, we drop the remaining

coordinates (i, j). To handle large coordinates, we observe that since the column span of

AS is only r = no(1)-dimensional, as one ranges over all vectors y in its span of 1-norm,

say, O(n2 lnn), there is only a small subset T , of size at most n.99999 of coordinates i ∈ [n]

for which we could ever have |yi| ≥ n1.0001. We show this in Lemma 19.4.7. This uses the

property of vectors in low-dimensional subspaces, and has been exploited in earlier works in

the context of designing so-called subspace embeddings [CW13, MM13]. We call T the “bad

region” for AS. While the column span of AS depends on ∆S, it is independent of ∆[n]\S, and

thus it is extremely unlikely that the large coordinate of ∆S “match up” with the bad region

of AS. This is captured in Lemma 19.4.10, where we show that if ‖ASX−A[n]\S‖1 ≤ 4n2 lnn

(as we said we could assume above), then
∑

large coordinates i,j |(ASX − A[n]\S)i,j| is at least
1.996
π
n2 lnn. Intuitively, the heavy coordinates make up about 2

π
n2 lnn of the total mass of

‖∆‖1, by tail bounds of the Cauchy distribution, and for any set S of size no(1), AS fits at

most a small portion of this, still leaving us left with 1.996
π
n2 lnn in cost. Our goal is to show

that ‖ASX − A[n]\S‖1 ≥ 4.01
π
· n2 lnn, so we still have a way to go.

We next analyze
∑

small coordinates i,j |(ASX − A[n]\S)i,j|. Via Bernstein’s inequality, in

Lemma 19.4.11 we argue that for any fixed vector y and random vector ∆j of i.i.d. Cauchy

entries, roughly half of the contribution of coordinates to ‖∆j‖1 will come from coordinates j

for which sign(yj) =sign(∆j) and |∆j| ≤ n.9999, giving us a contribution of roughly .9998
π
n lnn

to the cost. The situation we will actually be in, when analyzing a column of ASX −A[n]\S,

is that of taking the sum of two independent Cauchy vectors, shifted by a multiple of 1>. We

analyze this setting in Lemma 19.4.13, after first conditioning on certain level sets having
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typical behavior in Lemma 19.4.12. This roughly doubles the contribution, gives us roughly

a contribution of 1.996
π
n2 lnn from coordinates j for which (i, j) is a small coordinate and we

look at coordinates i on which the sum of two independent Cauchy vectors have the same

sign. Combined with the contribution from the heavy coordinates, this gives us a cost of

roughly 3.992
π
n2 lnn, which still falls short of the 4.01

π
· n2 lnn total cost we are aiming for.

Finally, if we sum up two independent Cauchy vectors and look at the contribution to the

sum from coordinates which disagree in sign, due to the anti-concentration of the Cauchy

distribution we can still “gain a little bit of cost” since the values, although differing in sign,

are still likely not to be very close in magnitude. We formalize this in Lemma 19.4.14.

We combine all of the costs from small coordinates in Lemma 19.4.15, where we show we

obtain a contribution of at least 2.025
π
n lnn. This is enough, when combined with our earlier

1.996
π
n2 lnn contribution from the heavy coordinates, to obtain an overall 4.01

π
· n2 lnn lower

bound on the cost, and conclude the proof of our main theorem in Theorem 19.4.17.

In the remaining sections, we will present detailed proofs.

19.4.1 A Useful Fact

Fact 19.4.1. Let c0 > 0 be a sufficiently large constant. Let u = nc0 · 1 ∈ Rn and ∆ ∈

Rn×(d+1). If
∑d+1

i=1 ‖∆i‖1 ≤ n3 and if α ∈ Rd satisfies |1 − 1>α| > 1/nc1 and ‖α‖1 ≤ nc,

where 0 < c < c0 − 10 is a constant and c1 > 3 is another constant depending on c0, c, then

‖u− u1>α + ∆d+1 −∆[d]α‖1 > n3.
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Proof.

‖u− u1>α + ∆d+1 −∆[d]α‖1

≥ |1− 1>α| · ‖u‖1 − ‖∆d+1‖1 − ‖∆[d]α‖1

≥ |1− 1>α| · n · nc0 − n3 − n4‖α‖1

≥ |1− 1>α| · n · nc0 − n5+c

≥ nc0+1−c1 − n5+c

≥ n3.

The first inequality follows by the triangle inequality. The second inequality follows since

u = nc0 · 1 ∈ Rn and
∑d+1

i=1 ‖∆i‖1 ≤ n3. The third inequality follows since ‖α‖1 ≤ nc.

The fourth inequality follows since |1 − 1>α| > 1/nc1 . The last inequality follows since

c0 − c1 > c+ 5.

19.4.2 One-Sided Error Concentration Bound for a Random Cauchy Matrix

Lemma 19.4.2 (Lower bound on the cost). If n is sufficiently large, then

Pr
∆∼{C(0,1)}n×n

[
‖∆‖1 ≤

4.0002

π
n2 lnn

]
≥ 1−O(1/ log log n).

Proof. Let ∆ ∈ Rn×n be a random matrix such that each entry is an i.i.d. C(0, 1) random

Cauchy variable. Let B = n2 ln lnn. Let Z ∈ Rn×n and ∀i, j ∈ [n],

Zi,j =

{
|∆i,j| |∆i,j| < B
B Otherwise .
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For fixed i, j ∈ [n], we have

E[Zi,j] =
2

π

∫ B

0

x

1 + x2
dx+ Pr[|∆i,j| ≥ B] ·B

=
1

π
ln(B2 + 1) + Pr[|∆i,j| ≥ B] ·B

≤ 1

π
ln(B2 + 1) + 1

where the first inequality follows by the cumulative distribution function of a half Cauchy

random variable. We also have E[Zi,j] ≥ 1
π

ln(B2 + 1). For the second moment, we have

E[Z2
i,j] =

2

π

∫ B

0

x2

1 + x2
dx+ Pr[|∆i,j| ≥ B] ·B2

=
2

π
(B − tan−1B) + Pr[|∆i,j| ≥ B] ·B2

≤ 2

π
B +B

≤ 2B

where the first inequality follows by the cumulative distribution function of a half Cauchy

random variable. By applying Bernstein’s inequality, we have

Pr [‖Z‖1 − E[‖Z‖1] > 0.0001E[‖Z‖1]]

≤ exp

(
− 0.5 · 0.00012 E[‖Z‖1]2

n2 · 2B + 1
3
B · 0.0001E[‖Z‖1]

)

≤ exp(−Ω(lnn/ ln lnn))

≤ O(1/ lnn). (19.5)

The first inequality follows by the definition of Z and the second moment of Zi,j. The second
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inequality follows from E[‖Z‖1] = Θ(n2 lnn) and B = Θ(n2 ln lnn). Notice that

Pr

[
‖∆‖1 >

4.0002

π
n2 lnn

]

= Pr

[
‖∆‖1 >

4.0002

π
n2 lnn | ∀i, j, |∆i,j| < B

]
Pr [∀i, j, |∆i,j| < B]

+ Pr

[
‖∆‖1 >

4.0002

π
n2 lnn | ∃i, j, |∆i,j| ≥ B

]
Pr [∃i, j, |∆i,j| ≥ B]

≤ Pr

[
‖∆‖1 >

4.0002

π
n2 lnn | ∀i, j, |∆i,j| < B

]
+ Pr [∃i, j, |∆i,j| ≥ B]

≤ Pr

[
‖Z‖1 >

4.0002

π
n2 lnn

]
+ Pr [∃i, j, |∆i,j| ≥ B]

≤ Pr

[
‖Z‖1 >

4.0002

π
n2 lnn

]
+ n2 · 1/B

≤ Pr [‖Z‖1 > 1.0001E[‖Z‖1]] + n2 · 1/B

≤ O(1/ log(n)) +O(1/ log log n)

≤ O(1/ log log n)

The second inequality follows by the definition of Z. The third inequality follows by the

union bound and the cumulative distribution function of a half Cauchy random variable.

The fourth inequality follows from E[‖Z‖1] ≤ n2(1/π · ln(B2 + 1) + 1) ≤ 4.0000001/π ·n2 lnn

when n is sufficiently large.

19.4.3 “For Each” Guarantee

In the following Lemma, we show that, for each fixed coefficient vector α, if the entry

of α is too large, the fitting cost cannot be small.

Lemma 19.4.3 (For each fixed α, the entry cannot be too large). Let c > 0 be a sufficiently
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large constant, n ≥ d ≥ 1, u ∈ Rn be any fixed vector and ∆ ∈ Rn×d be a random matrix

where ∀i ∈ [n], j ∈ [d],∆i,j ∼ C(0, 1) independently. For any fixed α ∈ Rd with ‖α‖1 = nc,

Pr
∆∼{C(0,1)}n×d

[‖(u · 1> + ∆)α‖1 > n3] > 1− (1/n)Θ(n).

Proof. Let c be a sufficiently large constant. Let α ∈ Rd with ‖α‖1 = nc. Let u ∈ Rn be any

fixed vector. Let ∆ ∈ Rn×d be a random matrix where ∀i ∈ [n], j ∈ [d],∆i,j ∼ C(0, 1). Then

∆α ∈ Rn is a random vector with each entry drawn independently from C(0, ‖α‖1). Due to

the probability density function of standard Cauchy random variables,

Pr[‖∆α‖1 < n3] ≥ Pr[‖∆α + u · 1>α‖1 < n3].

It suffices to upper bound Pr[‖∆α‖1 < n3]. If c > 10, then due to the cumulative distribution

function of Cauchy random variables, for a fixed i ∈ [n], Pr[|(∆α)i| < n3] < 1/n. Thus,

Pr[‖∆α‖1 < n3] < ( 1
n
)n. Thus,

Pr
∆∼{C(0,1)}n×d

[‖(u · 1> + ∆)α‖1 > n3] > 1− (1/n)n.

19.4.4 From “For Each” to “For All” via an ε-Net

Definition 19.4.1 (ε-net for the `1-norm ball). Let A ∈ Rn×d have rank d, and let L =

{y ∈ Rn | y = Ax, x ∈ Rd} be the column space of A. An ε-net of the `1-unit sphere

Sd−1 = {y | ‖y‖1 = 1, y ∈ L} ⊂ L is a set N ⊂ Sd−1 of points for which ∀y ∈ Sd−1,∃y′ ∈ N

for which ‖y − y′‖ ≤ ε.

[DDH+09] proved an upper bound on the size of an ε-net.
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Lemma 19.4.4 (See, e.g., the ball B on page 2068 of [DDH+09]). Let A ∈ Rn×d have rank

d, and let L = {y ∈ Rn | y = Ax, x ∈ Rd} be the column space of A. For ε ∈ (0, 1), an

ε-net (Definition 19.4.1) N of the `1-unit sphere Sd−1 = {y | ‖y‖1 = 1, y ∈ L} ⊂ L exists.

Furthermore, the size of N is at most (3/ε)d.

Lemma 19.4.5 (For all possible α, the entry cannot be too large). Let n ≥ 1, d = no(1). Let

u = nc0 · 1 ∈ Rn denote a fixed vector where c0 is a constant. Let ∆ ∈ Rn×d be a random

matrix where ∀i ∈ [n], j ∈ [d],∆i,j ∼ C(0, 1) independently. Let c > 0 be a sufficiently large

constant. Conditioned on ‖∆‖1 ≤ n3, with probability at least 1 − (1/n)Θ(n), for all α ∈ Rd

with ‖α‖1 ≥ nc, we have ‖(u · 1> + ∆)α‖1 > 0.9n3.

Proof. Due to Lemma 19.4.4, there is a set N ⊂ {α ∈ Rd | ‖α‖1 = nc} ⊂ Rd with |N | ≤

2Θ(d logn) such that ∀α ∈ Rd with ‖α‖1 = nc, ∃α′ ∈ N such that ‖α − α′‖1 ≤ 1/nc
′ where

c′ > c0 + 100 is a constant. By applying Lemma 19.4.3 and union bounding over all the

points in N, with probability at least 1 − (1/n)n · |N | ≥ 1 − (1/n)n · 2no(1)
= 1 − (1/n)Θ(n),

∀α′ ∈ N, ‖(u · 1> + ∆)α′‖1 > n3. ∀α ∈ Rd with ‖α‖1 = nc, we can find α′ ∈ N such that
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‖α− α′‖1 ≤ 1/nc
′
. Let γ = α− α′. Then,

‖(u · 1> + ∆)α‖1

= ‖(u · 1> + ∆)(α′ + γ)‖1

≥ ‖(u · 1> + ∆)α′‖1 − ‖(u · 1> + ∆)γ‖1

≥ n3 −√n‖(u · 1> + ∆)γ‖2

≥ n3 −√n(‖u · 1>‖2 + ‖∆‖2)‖γ‖2

≥ n3 − nc0+50/nc
′

≥ 0.9n3.

The first equality follows from α = α′ + γ. The first inequality follows by the triangle

inequality. The second inequality follows by the relaxation from the `1 norm to the `2 norm.

The third inequality follows from the operator norm and the triangle inequality. The fourth

inequality follows using ‖∆‖2 ≤ ‖∆‖1 ≤ n3, ‖u‖2 ≤ nc0+10, ‖γ‖2 ≤ ‖γ‖1 ≤ (1/n)c
′
. The last

inequality follows since c′ > c0 + 100.

For α ∈ Rn with ‖α‖1 > nc, let α′ = α/‖α‖1 · nc. Then

‖(u · 1> + ∆)α‖1 ≥ ‖(u · 1> + ∆)α′‖1 ≥ 0.9n3.

19.4.5 Bounding the Cost from the Large-Entry Part via “Bad” Regions

In this section, we will use the concept of well-conditioned basis in our analysis.

Definition 19.4.2 (Well-conditioned basis [DDH+09]). Let A ∈ Rn×m have rank d. Let

p ∈ [1,∞), and let ‖ · ‖q be the dual norm of ‖ · ‖p, i.e., 1/p+ 1/q = 1. If U ∈ Rn×d satisfies
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1. ‖U‖p ≤ α,

2. ∀z ∈ Rd, ‖z‖q ≤ β‖Uz‖p,

then U is an (α, β, p) well-conditioned basis for the column space of A.

The following theorem gives an existence result of a well-conditioned basis.

Theorem 19.4.6 (`1 well-conditioned basis [DDH+09]). Let A ∈ Rn×m have rank d. There

exists U ∈ Rn×d such that U is a (d, 1, 1) well-conditioned basis for the column space of A.

In the following lemma, we consider vectors from low-dimensional subspaces. For a

coordinate, if there is a vector from the subspace for which this entry is large, but the norm

of the vector is small, then this kind of coordinate is pretty “rare”. More formally,

Lemma 19.4.7. Given a matrix U ∈ Rn×r for a sufficiently large n ≥ 1, let r = no(1). Let

S = {y|y = Ux, x ∈ Rr}. Let the set T denote {i ∈ [n] | ∃y ∈ S, |yi| ≥ n1.0001 and ‖y‖1 <

8n2 lnn}. Then we have

|T | ≤ n0.99999.

Proof. Due to Theorem 19.4.6, let U ∈ Rn×r be the (r, 1, 1) well-conditioned basis of the

column space of U . If i ∈ T, then ∃x ∈ Rr such that |(Ux)i| ≥ n1.0001 and ‖Ux‖1 < 8n2 lnn.

Thus, we have

n1.0001 ≤ |(Ux)i| ≤ ‖U i‖1‖x‖∞ ≤ ‖U i‖1‖Ux‖1 ≤ ‖U i‖1 · 8n2 lnn.
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The first inequality follows using n1.0001 ≤ |(Ux)i|. The second inequality follows by Hölder’s

inequality. The third inequality follows by the second property of the well-conditioned basis.

The fourth inequality follows using ‖Ux‖1 < 8n2 lnn. Thus, we have

‖U i‖1 ≥ n1.0001/n2+o(1) ≥ 1/n0.9999−o(1).

Notice that
∑n

j=1 ‖U j‖1 = ‖U‖1 ≤ r. Thus,

|T | ≤ r/(1/n0.9999−o(1)) = n0.9999+o(1) ≤ n0.99999.

Definition 19.4.3 (Bad region). Given a matrix U ∈ Rn×r, we say B(U) = {i ∈ [n] | ∃y ∈

colspan(U) ⊂ Rn s.t. yi ≥ n1.0001 and ‖y‖1 ≤ 8n2 lnn} is a bad region for U .

Next we state a lower and an upper bound on the probability that a Cauchy random

variable is in a certain range,

Claim 19.4.8. Let X ∼ C(0, 1) be a standard Cauchy random variable. Then for any

x > 1549,

2

π
· ln(1.001)

x
≥ Pr[|X| ∈ (x, 1.001x]] ≥ 1.999

π
· ln(1.001)

x
.

Proof. When x > 1549, 2
π
· ln(1.001)

x
≥ 2

π
· (tan−1(1.001x)− tan−1(x)) ≥ 1.999

π
· ln(1.001)

x
.

We build a level set for the “large” noise values, and we show the bad region cannot

cover much of the large noise. The reason is that the bad region is small, and for each row,

there is always some large noise.
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Lemma 19.4.9. Given a matrix U ∈ Rn×r with n sufficiently large, let r = no(1), and

consider a random matrix ∆ ∈ Rn×(n−r) with ∆i,j ∼ C(0, 1) independently. Let Lt =

{(i, j) | (i, j) ∈ [n]× [n− r], |∆i,j| ∈ (1.001t, 1.001t+1]}. With probability at least 1− 1/2n
Θ(1),

for all t ∈ (1.0002 lnn
ln 1.001

, 1.9999 lnn
ln 1.001

) ∩ N,

|Lt \ (B(U)× [n− r])| ≥ n(n− r) · 1.998 · ln(1.001)/(π · 1.001t).

Proof. Let N = n · (n − r). Then according to Claim 19.4.8, ∀t ∈ (1.0002 lnn
ln 1.001

, 1.9999 lnn
ln 1.001

) ∩ N,

E(|Lt|) ≥ N · 1.999 · ln(1.001)/(π · 1.001t) ≥ nΘ(1). For a fixed t, by a Chernoff bound, with

probability at least 1−1/2n
Θ(1) , |Lt| ≥ N ·1.9989·ln(1.001)/(π ·1.001t). Due to Lemma 19.4.7,

|B(U)× [n− r]| ≤ n0.99999(n− r) = N/n0.00001. Due to the Chernoff bound, with probability

at least 1−1/2n
Θ(1)

, |Lt∩ (B(U)× [n− r])| < N/n0.00001 ·2.0001 · ln(1.001)/(π ·1.001t). Thus,

with probability at least 1−1/2n
Θ(1)

, |Lt \ (B(U)× [n−r])| ≥ N ·1.998 · ln(1.001)/(π ·1.001t).

By taking a union bound over all t ∈ (1.0002 lnn
ln 1.001

, 1.9999 lnn
ln 1.001

) ∩ N, we complete the proof.

Lemma 19.4.10 (The cost of the large noise part). Let n ≥ 1 be sufficiently large, and let

r = no(1). Given a matrix U ∈ Rn×r, and a random matrix ∆ ∈ Rn×(n−r) with ∆i,j ∼ C(0, 1)

independently, let I = {(i, j) ∈ [n]× [n− r] | |∆i,j| ≥ n1.0002}. If ‖∆‖1 ≤ 4n2 lnn, then with

probability at least 1− 1/2n
Θ(1), for all X ∈ Rr×n, either

∑

(i,j)∈I

|(UX −∆)i,j| >
1.996

π
n2 lnn,

or

‖UX −∆‖1 > 4n2 lnn
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Proof.

∑

(i,j)∈I

|(UX −∆)i,j|

≥
∑

(i,j)∈I\B(U)

|(UX −∆)i,j|

≥
∑

(i,j)∈I\B(U)

|(∆)i,j| −
∑

(i,j)∈I\B(U)

|(UX)i,j| (19.6)

Let N = n(n − r). By a Chernoff bound and the cumulative distribution function of a

Cauchy random variable, with probability at least 1 − 1/2n
Θ(1)

, |I| ≤ 1.1 · N/n1.0002. If

∃(i, j) ∈ I \ B(U) which has |(UX)i,j| > n1.0001, then according to the definition of B(U),

‖UX‖1 ≥ ‖(UX)j‖1 ≥ 8n2 lnn. Due to the triangle inequality, ‖UX − ∆‖1 ≥ ‖UX‖1 −

‖∆‖1 ≥ 4n2 lnn. If ∀(i, j) ∈ I \B(U) we have |(UX)i,j| ≤ n1.0001, then

∑

(i,j)∈I\B(U)

|(UX)i,j| ≤ |I| · n1.0001 ≤ 1.1 ·N/n0.0001. (19.7)

Due to Lemma 19.4.9, with probability at least 1− 1/2n
Θ(1)

,

∑

(i,j)∈I\B(U)

|(∆)i,j|

≥
∑

t∈( 1.0002 lnn
ln 1.001

, 1.9999 lnn
ln 1.001

)∩N

1.001t ·N · 1.998 · ln(1.001)/(π · 1.001t)

≥ 1.997

π
·N lnn. (19.8)

We plug (19.7) and (19.8) into (19.6), from which we have

∑

(i,j)∈I

|(UX −∆)i,j| ≥
1.996

π
n2 lnn.
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19.4.6 Cost from the Sign-Agreement Part of the Small-Entry Part

We use −y to fit ∆ (we think of ASα = A∗Sα− y, and want to minimize ‖− y−∆‖1).

If the sign of yj is the same as the sign of ∆j, then both coordinate values will collectively

contribute.

Lemma 19.4.11 (The contribution from ∆i when ∆i and yi have the same sign). Suppose

we are given a vector y ∈ Rn and a random vector ∆ ∈ Rn with ∆j ∼ C(0, 1) independently.

Then with probability at least 1− 1/2n
Θ(1)

,

∑

j : sign(yj)=sign(∆j) and |∆j |≤n0.9999

|∆j| >
0.9998

π
n lnn.

Proof. For j ∈ [n], define the random variable

Zj =

{
∆j 0 < ∆j ≤ n0.9999

0 otherwise .

Then, we have

Pr


 ∑

j : sign(yj)=sign(∆i,j) and |∆j |≤n0.9999

|∆j| >
0.9998

π
n lnn


 = Pr

[
n∑

j=1

Zj >
0.9998

π
n lnn

]
.

Let B = n0.9999. For j ∈ [n],

E[Zj] =
1

π

∫ B

0

x

1 + x2
dx =

1

2π
ln(B2 + 1).

Also,

E[Z2
j ] =

1

π

∫ B

0

x2

1 + x2
dx =

B − tan−1(B)

π
≤ B.
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By Bernstein’s inequality,

Pr

[
E

[
n∑

j=1

Zj

]
−

n∑

j=1

Zj > 10−5 E

[
n∑

j=1

Zj

]]

≤ exp


−

0.5 ·
(

10−5 E
[∑n

j=1 Zj

])2

∑n
j=1 E[Z2

j ] + 1
3
B · 10−5 E

[∑n
j=1 Zj

]




≤ exp

(
− 5 · 10−11n2 ln2(B2 + 1)/(4π2)

nB + 1
3
B · 10−5n ln(B2 + 1)/(2π)

)

≤ e−n
Θ(1)

.

The last inequality follows since B = n0.9999. Thus, we have

Pr

[
n∑

j=1

Zj < 0.9998/π · n lnn

]
≤ Pr

[
n∑

j=1

Zj < 0.99999n ln(B2 + 1)/(2π)

]
≤ e−n

Θ(1)

.

Lemma 19.4.12 (Bound on level sets of a Cauchy vector). Suppose we are given a random

vector y ∈ Rn with yi ∼ C(0, 1) chosen independently. Let

L−t = {i ∈ [n] | − yi ∈ (1.001t, 1.001t+1]} and L+
t = {i ∈ [n] | yi ∈ (1.001t, 1.001t+1]}.

With probability at least 1− 1/2n
Θ(1), for all t ∈ ( ln 1549

ln 1.001
, 0.9999 lnn

ln 1.001
) ∩ N,

min(|L−t |, |L+
t |) ≥ 0.999n · 1

π

ln 1.001

1.001t
.

Proof. For i ∈ [n], t ≥ ln 1549
ln 1.001

, according to Claim 19.4.8, Pr[yi ∈ (1.001t, 1.001t+1]] ≥

0.9995/π · ln(1.0001)/1.001t. Thus, E[|L+
t |] = E[|L−t |] = n · 0.9995/π · ln(1.0001)/1.001t.
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Since t ≤ 0.9999 lnn
ln 1.001

, 1.001t ≤ n0.9999, we have E[|L+
t |] = E[|L−t |] ≥ nΘ(1). By applying a

Chernoff bound,

Pr[|L+
t | > 0.999n/π · ln(1.0001)/1.001t] ≥ 1− 1/2n

Θ(1)

.

Similarly, we have

Pr[|L−t | > 0.999n/π · ln(1.0001)/1.001t] ≥ 1− 1/2n
Θ(1)

.

By taking a union bound over all the L+
t and L−t , we complete the proof.

Lemma 19.4.13 (The contribution from yi when ∆i and yi have the same sign). Let u =

η · 1 ∈ Rn where η ∈ R is an arbitrary real number. Let y ∈ Rn be a random vector with

yi ∼ C(0, β) independently for some β > 0. Let ∆ ∈ Rn be a random vector with ∆i ∼ C(0, 1)

independently. With probability at least 1− 1/2n
Θ(1)

,

∑

i : sign((u+y)i)=sign(∆i) and |∆i|≤n0.9999

|(u+ y)i| ≥ β · 0.997

π
n lnn.

Proof. For all t ∈ ( ln 1549
ln 1.001

, 0.9999 lnn
ln 1.001

) ∩ N, define

L−t = {i ∈ [n] | − yi ∈ (β · 1.001t, β · 1.001t+1]},

L+
t = {i ∈ [n] | + yi ∈ (β · 1.001t, β · 1.001t+1]}.

Define

G = {i ∈ [n] | sign((u+ y)i) = sign(∆i) and |∆i| ≤ n0.9999}.

Then ∀i ∈ [n],Pr[i ∈ G] ≥ 0.5− 1/n0.9999 ≥ 0.4999999999. Due to Lemma 19.4.12,

min(|L−t |, |L+
t |) ≥ 0.999n · 1

π

ln 1.001

1.001t
≥ nΘ(1).
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By the Chernoff bound and a union bound, with probability at least 1 − 1/2n
Θ(1)

, ∀t ∈

( ln 1549
ln 1.001

, 0.9999 lnn
ln 1.001

) ∩ N,

min(|L−t ∩G|, |L+
t ∩G|) ≥ 0.499n · 1

π

ln 1.001

1.001t
. (19.9)

Then we have

∑

i∈G

|(u+ y)i|

≥
∑

t∈( ln 1549
ln 1.001

, 0.9999 lnn
ln 1.001

)∩N


 ∑

i∈L+
t ,i∈G

|yi + η|+
∑

i∈L−t ,i∈G

| − yi − η|




≥
∑

t∈( ln 1549
ln 1.001

, 0.9999 lnn
ln 1.001

)∩N

0.499n · 1

π

ln 1.001

1.001t
· 2 · 1.001t · β

≥ β · 0.997

π
n lnn

The second inequality follows by Equation (19.9) and the triangle inequality, i.e., ∀a, b, c ∈

R, |a+ c|+ |b− c| ≥ |a+ b|.

19.4.7 Cost from the Sign-Disagreement Part of the Small-Entry Part

Lemma 19.4.14. Given a vector y ∈ Rn and a random vector ∆ ∈ Rn with ∆i ∼ C(0, 1)

independently, with probability at least 1− 1/2n
Θ(1),

∑

i : sign(yi)6=sign(∆i) and |∆i|<n0.9999

|yi + ∆i| >
0.03

π
n lnn.

Proof. For t ∈ [0, 0.9999 lnn
ln 4

) ∩ N define

Lt = {i ∈ [n] | sign(yi) 6= sign(∆i), |∆i| ∈ (4t, 4t+1], |∆i| 6∈ [|yi| − 4t, |yi|+ 4t]}.
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∀x ≥ 1, y > 0, we have

Pr
X∼C(0,1)

[|X| ∈ (x, 4x], |X| 6∈ [y − x, y + x]]

≥ Pr
X∼C(0,1)

[|X| ∈ (3x, 4x]]

=
2

π
· (tan−1(4x)− tan−1(3x))

≥ 0.1

π
· ln(4)

x

Thus, ∀i ∈ [n], t ∈ [0, 0.9999 lnn
ln 4

) ∩ N,

Pr[i ∈ Lt] ≥
0.05

π
· ln(4)

4t
.

Thus, ∀t ∈ [0, 0.9999 lnn
ln 4

) ∩ N,

E[|Lt|] ≥ 0.05n/π · ln(4)/4t ≥ nΘ(1).

By a Chernoff bound and a union bound, with probability at least 1− 1/2n
Θ(1) ∀t ∈

[0, 0.9999 lnn
ln 4

) ∩ N,

|Lt| ≥ 0.04n/π · ln(4)/4t.

Thus, we have, with probability at least 1− 1/2n
Θ(1)

,

∑

i : sign(yi)6=sign(∆i) and |∆i|<n0.9999

|yi + ∆i|

≥
∑

t∈[0, 0.9999 lnn
ln 4

)∩N

|Lt| · 4t

≥ 0.03

π
n lnn.
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19.4.8 Overall Cost of the Small-Entry Part

Lemma 19.4.15 (For each). Let u = η ·1 ∈ Rn where η ∈ R is an arbitrary real number. Let

α ∈ Rd where ‖α‖1 ≥ 1− 10−20. Let ∆ ∈ Rn×(d+1) and ∀(i, j) ∈ [n]× [d + 1],∆i,j ∼ C(0, 1)

are i.i.d. standard Cauchy random variables. Then with probability at least 1− 1/2n
Θ(1)

,

∑

j∈[n],|∆j,d+1|<n0.9999

|(u+ ∆d+1 − (u1> + ∆[d])α)j| ≥
2.025

π
n lnn.

Proof. Let G1 and G2 be defined as

G1 = {j ∈ [n] | |∆j,d+1| < n0.9999, sign((u(1− 1>α)−∆[d]α)j) = sign(∆d+1)j)},

G2 = {j ∈ [n] | |∆j,d+1| < n0.9999, sign((u(1− 1>α)−∆[d]α)j) 6= sign(∆d+1)j)}.

Notice that ∆[d]α is a random vector with each entry independently drawn from C(0, ‖α‖1).

Then with probability at least 1− 1/2n
Θ(1)

,

∑

j∈[n],|∆j,d+1|<n0.9999

|(u+ ∆d+1 − (u1> + ∆[d])α)j|

=
∑

j∈[n],|∆j,d+1|<n0.9999

|(u(1− 1>α)−∆[d]α + ∆d+1)j|

=
∑

j∈G1

|(u(1− 1>α)−∆[d]α + ∆d+1)j|+
∑

j∈G2

|(u(1− 1>α)−∆[d]α + ∆d+1)j|

=
∑

j∈G1

|(u(1− 1>α)−∆[d]α)j|+
∑

j∈G1

|(∆d+1)j|+
∑

j∈G2

|(u(1− 1>α)−∆[d]α + ∆d+1)j|

≥ ‖α‖1 ·
0.997

π
· n lnn+

0.9998

π
n lnn+

0.03

π
n lnn

≥ 2.025

π
n lnn

The first inequality follows by Lemma 19.4.13, Lemma 19.4.11 and Lemma 19.4.14. The

second inequality follows by ‖α‖1 ≥ 1− 10−20.
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Lemma 19.4.16 (For all). Let c > 0, c0 > 0 be two arbitrary constants. Let u = η · 1 ∈ Rn

where η ∈ R satisfies |η| ≤ nc0. Consider a random matrix ∆ ∈ Rn×(d+1) with d = no(1) and

∀(i, j) ∈ [n]×[d+1],∆i,j ∼ C(0, 1) are i.i.d. standard Cauchy random variables. Conditioned

on ‖∆‖1 ≤ n3, with probability at least 1− 1/2n
Θ(1)

, ∀α ∈ Rd with 1− 10−20 ≤ ‖α‖1 ≤ nc,

∑

j∈[n],|∆j,d+1|<n0.9999

|(u+ ∆d+1 − (u1> + ∆[d])α)j| ≥
2.024

π
n lnn.

Proof. Let N be a set of points:

N =
{
α ∈ Rd | 1− 10−20 ≤ ‖α‖1 ≤ nc and ∃q ∈ Zd, such that α = q/nc+c0+1000

}
.

Since d = no(1), we have |N| ≤ (n2c+c0+2000)d = 2n
o(1)
. By Lemma 19.4.15 and a union bound,

with probability at least 1− 1/2n
Θ(1) · |N| ≥ 1− 1/2n

Θ(1)
, ∀α ∈ N, we have

∑

j∈[n],|∆j,d+1|<n0.9999

|(u+ ∆d+1 − (u1> + ∆[d])α)j| ≥
2.025

π
n lnn.

Due to the construction of N, we have ∀α ∈ Rd with 1 − 10−20 ≤ ‖α‖1 ≤ nc, ∃α′ ∈ N such

that ‖α− α′‖∞ ≤ 1/nc+c0+1000. Let γ = α− α′. Then
∑

j∈[n],|∆j,d+1|<n0.9999

|(u+ ∆d+1 − (u1> + ∆[d])α)j|

=
∑

j∈[n],|∆j,d+1|<n0.9999

|(u+ ∆d+1 − (u1> + ∆[d])(α
′ + γ))j|

≥
∑

j∈[n],|∆j,d+1|<n0.9999

|(u+ ∆d+1 − (u1> + ∆[d])α
′)j| −

∑

j∈[n],|∆j,d+1|<n0.9999

|((u1> + ∆[d])γ)j|

≥
∑

j∈[n],|∆j,d+1|<n0.9999

|(u+ ∆d+1 − (u1> + ∆[d])α
′)j| − ‖(u1> + ∆[d])γ‖1

≥ 2.025

π
n lnn− 1/n500

≥ 2.024

π
n lnn
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The first equality follows from α = α′ + γ. The first inequality follows by the triangle

inequality. The third inequality follows from ‖γ‖1 ≤ 1/nc+c0+800, ‖u1>‖1 ≤ nc0+10, ‖∆‖1 ≤

n3, and ∀α′ ∈ N,

∑

j∈[n],|∆j,d+1|<n0.9999

|(u+ ∆d+1 − (u1> + ∆[d])α
′)j| ≥

2.025

π
n lnn.

19.4.9 Main result

Theorem 19.4.17 (Formal version of Theorem 19.1.2). Let n > 0 be sufficiently large. Let

A = η · 1 · 1> + ∆ ∈ Rn×n be a random matrix where η = nc0 for some sufficiently large

constant c0, and ∀i, j ∈ [n],∆i,j ∼ C(0, 1) are i.i.d. standard Cauchy random variables. Let

r = no(1). Then with probability at least 1−O(1/ log log n), ∀S ⊂ [n] with |S| = r,

min
X∈Rr×n

‖ASX − A‖1 ≥ 1.002‖∆‖1

Proof. We first argue that for a fixed set S, conditioned on ‖∆‖1 ≤ 100n2 lnn, with proba-

bility at least 1− 1/2n
Θ(1)

,

min
X∈Rr×n

‖ASX − A‖1 ≥ 1.002‖∆‖1.

Then we can take a union bound over the at most nr = 2n
o(1) possible choices of S. It suffices

to show for a fixed set S, minX∈Rr×n ‖ASX − A‖1 is not small.

Without loss of generality, let S = [r], and we want to argue the cost

min
X∈Rr×n

‖ASX − A‖1 ≥ min
X∈Rr×n

‖ASX[n]\S − A[n]\S‖1 ≥ 1.002‖∆‖1.
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Due to Lemma 19.4.2, with probability at least 1−O(1/ log log n),

‖∆‖1 ≤ 4.0002/π · n2 lnn.

Now, we can condition on ‖∆‖1 ≤ 4.0002/π · n2 lnn.

Consider j ∈ [n] \ S. Due to Lemma 19.4.5, with probability at least 1 − (1/n)Θ(n),

for all Xj ∈ Rr with ‖Xj‖1 ≥ nc for some constant c > 0, we have

‖ASXj − Aj‖1 = ‖(η · 1 · 1> + [∆S ∆j])[X
>
j − 1]>‖1 ≥ 0.9n3.

By taking a union bound over all j ∈ [n] \ S, with probability at least 1− (1/n)Θ(n),

for all X ∈ Rr×n with ∃j ∈ [n] \ S, ‖Xj‖1 ≥ nc, we have

‖ASX − A‖1 ≥ 0.9n3.

Thus, we only need to consider the case ∀j ∈ [n] \ S, ‖Xj‖1 ≤ nc. Notice that we condition

on ‖∆‖1 ≤ 4.0002/π · n2 lnn. By Fact 19.4.1, we have that if ‖Xj‖1 ≤ nc and |1− 1>Xj| >

1− 10−20, then

‖ASX − A‖1 ≥ ‖ASXj − Aj‖1 > n3.

Thus, we only need to consider the case ∀j ∈ [n]\S, ‖Xj‖1 ≤ nc, |1−1>Xj| ≤ 1−10−20.

∀X ∈ Rr×n with ∀j ∈ [n] \ S, ‖Xj‖1 ≤ nc, |1− 1>Xj| ≤ 1− 10−20, if ‖ASX[n]\S −A[n]\S‖1 ≤
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4n2 lnn, then

‖ASX[n]\S − A[n]\S‖1

= ‖(η · 1 · 1> + ∆S)X[n]\S − (η · 1 · 1> + ∆[n]\S)‖1

≥
∑

i∈[n],j∈[n]\S,|∆i,j |≥n1.0002

|(((η · 1 · 1> + ∆S)X[n]\S − η · 1 · 1>)−∆[n]\S)i,j|

+
∑

i∈[n],j∈[n]\S,|∆i,j |<n0.9999

|((η · 1 · 1> + ∆S)X[n]\S − (η · 1 · 1> + ∆[n]\S))i,j|

≥ 1.996

π
· n2 lnn+

∑

i∈[n],j∈[n]\S,|∆i,j |<n0.9999

|((η · 1 · 1> + ∆S)X[n]\S − (η · 1 · 1> + ∆[n]\S))i,j|

=
1.996

π
· n2 lnn+

∑

j∈[n]\S

∑

i∈[n],|∆i,j |<n0.9999

|((η · 1 · 1> + ∆S)Xj − η · 1−∆j)i|

≥ 1.996

π
· n2 lnn+

∑

j∈[n]\S

2.024

π
n lnn

≥ 1.996

π
· n2 lnn+

2.023

π
n2 lnn

≥ 4.01

π
· n2 lnn

holds with probability at least 1− 1/2n
Θ(1). The first equality follows by the definition of A.

The first inequality follows by the partition by |∆i,j|. Notice that [1 ∆S] has rank at most

r+1 = no(1). Then, due to Lemma 19.4.10, and the condition ‖ASX[n]\S−A[n]\S‖1 ≤ 4n2 lnn,

the second inequality holds with probability at least 1−1/2n
Θ(1)

. The second equality follows

by grouping the cost by each column. The third inequality holds with probability at least

1−1/2n
Θ(1) by Lemma 19.4.16, and a union bound over all the columns in [n]\S. The fourth

inequality follows by n− r = n− no(1) ≥ (1− 10−100)n.

Thus, conditioned on ‖∆‖1 ≤ 4.0002/π ·n2 lnn, with probability at least 1− 1/2n
Θ(1)

,
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we have

min
X∈Rr×n

‖ASX − A‖1 ≥
4.02

π
· n2 lnn.

By taking a union bound over all the
(
n
r

)
= 2n

o(1) choices of S, we have that conditioned on

‖∆‖1 ≤ 4.0002
π

n2 lnn, with probability at least 1 − 1/2n
Θ(1)

, ∀S ⊂ [n] with |S| = r = no(1),

minX∈Rr×n ‖ASX − A‖1 ≥ 4.02
π
· n2 lnn. Since 4.01/4.0002 > 1.002,

min
X∈Rr×n

‖ASX − A‖1 ≥ 1.002‖∆‖1.

Since ‖∆‖1 ≤ 4.0002
π

n2 lnn happens with probability at least 1−O(1/ log log n), this completes

the proof.
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Chapter 20

Towards a Zero-One Law for Low Rank Approximation

There are a number of approximation algorithms for NP-hard versions of low rank

approximation, such as finding a rank-k matrix B minimizing the sum of absolute values of

differences to a given n-by-n matrix A, minrank-k B ‖A − B‖1, or more generally finding a

rank-k matrix B which minimizes the sum of p-th powers of absolute values of differences,

minrank-k B ‖A − B‖pp. Many of these algorithms are linear time columns subset selection

algorithms, returning a subset of poly(k log n) columns whose cost is no more than a poly(k)

factor larger than the cost of the best rank-k matrix. The above error measures are special

cases of the following general entrywise low rank approximation problem: given an arbitrary

function g : R→ R≥0, find a rank-k matrix B which minimizes ‖A−B‖g =
∑

i,j g(Ai,j−Bi,j).

A natural question is which functions g admit efficient approximation algorithms? Indeed,

this is a central question of recent work studying generalized low rank models. In this work

we give approximation algorithms for every function g which is approximately monotone

and satisfies an approximate triangle inequality, and we show both of these conditions are

necessary. Further, our algorithm is efficient if the function g admits an efficient approximate

regression algorithm. Our approximation algorithms handle functions which are not even

scale-invariant, such as the Huber loss function, which we show have very different structural

properties than `p-norms, e.g., one can show the lack of scale-invariance causes any column

subset selection algorithm to provably require a
√

log n factor larger number of columns
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than `p-norms; nevertheless we design the first efficient column subset selection algorithms

for such error measures.
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20.1 Introduction

A well-studied problem in machine learning and numerical linear algebra, with appli-

cations to recommendation systems, text mining, and computer vision, is that of computing a

low-rank approximation of a matrix. Such approximations reveal low-dimensional structure,

provide a compact way of storing a matrix, and can quickly be applied to a vector.

A commonly used version of the problem is to compute a near optimal low-rank

approximation with respect to the Frobenius norm. That is, given an n × n input matrix

A and an accuracy parameter ε > 0, output a rank-k matrix B with large probability so

that ‖A− B‖2
F ≤ (1 + ε)‖A− Ak‖2

F , where for a matrix C, ‖C‖2
F =

∑
i,j C

2
i,j is its squared

Frobenius norm, and Ak = argminrank-k B‖A−B‖F . Ak can be computed exactly using the

singular value decomposition (SVD), but takes O(n3) time in practice and nω time in theory,

where ω ≈ 2.373 is the exponent of matrix multiplication [Str69, CW87, Wil12, LG14].

Sárlos [Sar06] showed how to achieve the above guarantee with constant probability

in Õ(nnz(A) ·k/ε)+n ·poly(k/ε) time, where nnz(A) denotes the number of non-zero entries

of A. This was improved in [CW13, MM13, NN13a, BDN15, Coh16a] using sparse random

projections in O(nnz(A))+n ·poly(k/ε) time. Large sparse datasets in recommendation sys-

tems are common, such as the Bookcrossing (100K×300K with 106 observations) [ZMKL05]

and Yelp datasets (40K × 10K with 105 observations) [Yel14], and this is a substantial im-

provement over the SVD.

Robust Low Rank Approximation. To understand the role of the Frobenius norm

in the algorithms above, we recall a standard motivation for this error measure. Suppose one

has n data points in a k-dimensional subspace of Rd, where k � d. We can write these points
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as the rows of an n×d matrix A∗ which has rank k. The matrix A∗ is often called the ground

truth matrix. In a number of settings, due to measurement noise or other kinds of noise,

we only observe the matrix A = A∗ + ∆, where each entry of the noise matrix ∆ ∈ Rn×n

is an i.i.d. random variable from a certain mean-zero noise distribution D. One method for

approximately recovering A∗ from A is maximum likelihood estimation. Here one tries to

find a matrix B maximizing the log-likelihood: maxrank-k B

∑
i,j log p(Ai,j −Bi,j), where p(·)

is the probability density function of the underlying noise distribution D. For example, when

the noise distribution is Gaussian with mean zero and variance σ2, denoted by N(0, σ2), then

the optimization problem is maxrank-k B

∑
i,j

(
log(1/

√
2πσ2)− (Ai,j −Bi,j)

2/(2σ2)
)
, which

is equivalent to solving the Frobenius norm loss low rank approximation problem defined

above.

The Frobenius norm loss, while having nice statistical properties for Gaussian noise,

is well-known to be sensitive to outliers. Applying the same maximum likelihood framework

above to other kinds of noise distributions results in minimizing other kinds of loss functions.

In general, if the density function of the underlying noise D is p(z) = c · e−g(z), where

c is a normalization constant, then the maximum likelihood estimation problem for this

noise distribution becomes the following generalized entry-wise loss low rank approximation

problem: minrank-k B

∑
i,j g(Ai,j − Bi,j) = minrank-k B ‖A − B‖g, which is a central topic

of recent work on generalized low-rank models [UHZ+16]. For example, when the noise is

Laplacian, the entrywise `1 loss is the maximum likelihood estimation, which is also robust

to sparse outliers. A natural setting is when the noise is a mixture of small Gaussian noise

and sparse outliers; this noise distribution is referred to as the Huber density. In this case

the Huber loss function gives the maximum likelihood estimate [UHZ+16], where the Huber
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function [Hub64] is defined to be: g(x) = x2/(2τ) if |x| < τ/2, and g(x) = |x|−τ/2 if |x| ≥ τ .

Another nice property of the Huber error measure is that it is differentiable everywhere,

unlike the `1-norm, yet still enjoys the robustness properties as one moves away from the

origin, making it less sensitive to outliers than the `2-norm. There are many other kinds of

loss functions, known as M -estimators [Zha97], which are widely used as loss functions in

robust statistics [HRRS11].

Although several specific cases have been studied, such as entry-wise `p loss [CLMW11,

SWZ17, CGK+17a, BKW17, BBB+19a], weighted entry-wise `2 loss [RSW16], and cascaded

`p(`2) loss [DVTV09, CW15a], the landscape of general entry-wise loss functions remains

elusive. There are no results known for any loss function which is not scale-invariant, much

less any kind of characterization of which loss functions admit efficient algorithms. This is

despite the importance of these loss functions; we refer the reader to [UHZ+16] for a survey

of generalized low rank models. This motivates the main question in our work:

Question 20.1.1 (General Loss Functions). For a given approximation factor α > 1, which

functions g allow for efficient low-rank approximation algorithms? Formally, given an n× d

matrix A, can we find a rank-k matrix B for which ‖A − B‖g ≤ αminrank−k B′ ‖A − B′‖g,

where for a matrix C, ‖C‖g =
∑

i∈[n],j∈[d] g(Ci,j)? What if we also allow B to have rank

poly(k log n)?

For Question 20.1.1, one has g(x) = |x|p for p-norms, and note the Huber loss function

also fits into this framework. Allowing B to have slightly larger rank than k, namely,

poly(k log n), is often sufficient for applications as it still allows for the space savings and

computational gains outlined above. These are referred to as bicriteria approximations and

are the focus of our work.
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Notation. Before we present our results, let us briefly introduce the notation. For

n ∈ Z≥0, let [n] denote the set {1, 2, · · · , n}. Let A ∈ Rn×m. Ai and Aj denote the ith

column and the jth row of A respectively. Let P ⊆ [m], Q ⊆ [n]. AP denotes the matrix

which is composed by the columns of A with column indices in P . Similarly, AQ denotes the

matrix composed by the rows of A with row indices in Q. Let S be a set and s ∈ Z≥0. We

use
(
S
s

)
to denote the set of all the size-s subsets of S.

20.1.1 Our Results

We give necessary and sufficient conditions for low rank approximation with respect

to general error measures. Our algorithm is a column subset selection algorithm, returning

a small subset of columns which span a good low rank approximation. Column subset

selection has the benefit of preserving sparsity and interpretability, as described above. We

describe two properties on the function g that we need to obtain our low rank approximation

algorithms, and show that if g does not have either property, then there are matrices for

which no small subset of columns spanning a good low rank approximation with respect to

the error measure g exists. We make these terms precise in the theorem statements below.

Since we obtain column subset selection algorithms for a wide class of functions, our

algorithms must necessarily be bicriteria and have approximation factor at least poly(k).

Indeed, a special case of our class of functions includes entrywise `1-low rank approximation,

for which it was shown in Theorem G.27 of [SWZ17] that any subset of poly(k) columns

incurs an approximation error of at least kΩ(1). We also show that for the entrywise Huber-

low rank approximation, already for k = 1,
√

log n columns are needed to obtain any constant

factor approximation, thus showing that for some of the functions we consider, a dependence
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on n in our column subset size is necessary.

We note that previously for almost all such functions, it was not known how to obtain

any non-trivial approximation factor with any sublinear number of columns.

20.1.1.1 A Zero-One Law

We first state three general properties, the first two of which are structural properties

and are necessary and sufficient for obtaining a good approximation from a small subset of

columns. The third property is needed for efficient running time.

Approximate triangle inequality. For t ∈ Z>0, we say a function g(x) : R→ R≥0

satisfies the atig,t-approximate triangle inequality if for any x1, x2, · · · , xt ∈ R, g (
∑
xi) ≤

atig,t ·
∑
g(xi).

Monotone property. For any parameter mong ≥ 1, we say function g(x) : R→ R≥0

is mong-monotone if for any x, y ∈ R with 0 ≤ |x| ≤ |y|, we have g(x) ≤ mong ·g(y).

Many functions including mostM -estimators [Zha97] and the quantile function [KBJ78]

satisfy the above two properties. See Table 20.1 for several examples. We refer the reader

to the later sections for the necessity of these two properties. Our next property is not

structural, but rather states that if the loss function has an efficient regression algorithm,

then that suffices to efficiently find a small subset of columns spanning a good low rank

approximation.

Regression property. We say function g(x) : R→ R≥0 has the (regg,d,Treg,g,n,d,m)-

regression property if the following holds: given two matrices A ∈ Rn×d and B ∈ Rn×m,

for each i ∈ [m], let OPTi denote minx∈Rd ‖Ax − Bi‖g. There is an algorithm that runs in
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Table 20.1: Example functions satisfying both structural properties.

g(x) atig,t mong

Huber
{
x2/2 |x| ≤ τ
τ(|x| − τ/2) |x| > τ

O(t) 1

`p (p ≥ 1) |x|p/p O(tp−1) 1

`1 − `2 2(
√

1 + x2/2− 1) O(t) 1

Geman-McClure x2/(2 + 2x2) O(t) 1

“Fair" τ2 (|x|/τ − log(1 + |x|/τ)) O(t) 1

Tukey
{
τ2/6 · (1− (1− (x/τ)2)3) |x| ≤ τ
τ2/6 |x| > τ

O(t) 1

Cauchy τ2/2 · log(1 + (x/τ)2) O(t) 1

Quantile (τ ∈ (0, 1))

{
τx x ≥ 0
(τ − 1)x x < 0

1 max
(

τ
1−τ ,

1−τ
τ

)

Treg,g,n,d,m time and outputs a matrix X ′ ∈ Rd×m such that ‖AX ′i−Bi‖g ≤ regg,d ·OPTi,∀i ∈

[m] and outputs a vector of estimated regression costs v ∈ Rd such that OPTi ≤ vi ≤

regg,d ·OPTi,∀i ∈ [m]. The success probability is at least 1− 1/ poly(nm).

Some functions for which regression itself is non-trivial are e.g., the `0-loss function

and Tukey function. The `0-loss function corresponds to the nearest codeword problem

over the reals and has slightly better than an O(d)-approximation ([BK02, APY09], see also

[BKW17]). For the Tukey function, [CWW19] shows that Tukey regression is NP-hard, and

it also gives approximation algorithms. For discussion on regression solvers, we refer the

reader to Appendix 20.5.

For any function, as long as the above general three properties hold, we can provide

an efficient algorithm, as our following main theorem shows.

Theorem 20.1.2. Given a matrix A ∈ Rn×n, let k ≥ 1, k′ = 2k + 1. Let g : R → R≥0
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denote a function satisfying the atig,k′-approximate triangle inequality, the mong-monotone

property , and the (regg,k′ ,Treg,g,n,k′,n)-regression property. Let OPT = minrank−k A′ ‖A′−A‖g.

There is an algorithm that runs in Õ(n + Treg,g,n,k′,n) time and outputs a set S ⊆ [n] with

|S| = O(k log n) such that with probability at least 0.99,

min
X∈R|S|×n

‖ASX − A‖g ≤ atig,k′ ·mong · regg,k′ ·O(k log k) ·OPT .

Although the input matrix A in the above statement is a square matrix, it is straight-

forward to extend the result to the rectangular case. By the above theorem, we can obtain

a good subset of columns. To further get a low rank matrix B which is a good low rank ap-

proximation to A, it is sufficient to take an additional Treg,g,n,|S|,n time to solve the regression

problem.

20.1.1.2 Lower Bound on the Number of Columns

One may wonder if the log n blowup in rank is necessary in our theorem. We show

some dependence on n is necessary by showing that for the important Huber loss function,

at least
√

log n columns are required in order to obtain a constant factor approximation for

k = 1:

Theorem 20.1.3. Let H(x) denote the following function: H(x) =

{
x2, if |x| < 1;

|x|, if |x| ≥ 1.

For any n ≥ 1, there is a matrix A ∈ Rn×n such that, if we select o(
√

log n) columns

to fit the entire matrix, there is no O(1)-approximation, i.e., for any subset S ⊆ [n] with

|S| = o(
√

log n),

min
X∈R|S|×n

‖ASX − A‖H ≥ ω(1) · min
rank−1 A′

‖A′ − A‖H .
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Notice that the above function H(x) is always a constant approximation to the Huber

function (see Table 20.1) with τ = 1. Thus, the hardness also holds for the Huber function.

For more discussion on our lower bound, we refer the reader to Appendix 20.6.

20.1.2 Overview of our Approach and Related Work

Low Rank Approximation for General Functions. A natural approach to low rank

approximation is “column subset selection”, which has been extensively studied in numerical

linear algebra [DMM06c, DMM06b, DMM08, BMD09, BDM11, FEGK13, BW14, WS15,

SWZ17, SWZ19b]. One can take the column subset selection algorithm for `p-low rank

approximation in [CGK+17a] and try to adapt it to general loss functions. Namely, their

argument shows that for any matrix A ∈ Rn×n there exists a subset S of k columns of A,

denoted by AS ∈ Rn×k, for which there exists a k × n matrix V for which ‖ASV − A‖pp ≤

(k + 1)p minrank-k B′ ‖A− B′‖pp; we refer the reader to Theorem 3 of [CGK+17a]. Given the

existence of such a subset S, a natural next idea is to then sample a set T of k columns of

A uniformly at random. It is then likely the case that if we look at a random column Ai,

(1) with probability 1/(k + 1), i is not among the subset S of k columns out of the k + 1

columns T ∪ {i} defining the optimal rank-k approximation to the submatrix AT∪{i}, and

(2) with probability at least 1/2, the best rank-k approximation to AT∪{i} has cost at most

(2(k + 1)/n) · min
rank-k B′

‖A−B′‖pp. (20.1)

Indeed, (1) follows from T ∪ {i} being a uniformly random subset of k + 1 columns, while

(2) follows from a Markov bound. The argument in Theorem 7 of [CGK+17a] is then able

to “prune” a 1/(k + 1) fraction of columns (this can be optimized to a constant fraction) in

expectation, by “covering” them with the random set T . Recursing on the remaining columns,
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this procedure stops after k log n iterations, giving a column subset of size O(k2 log n) (which

can be optimized to O(k log n)) and an O(k)-approximation.

The proof in [CGK+17a] of the existence of a subset S of k columns of A spanning

a (k + 1)-approximation above is quite general, and one might suspect it generalizes to a

large class of error functions. Suppose, for example, that k = 1. The idea there is to write

A = A∗ + ∆, where A∗ = U · V is the optimal rank-1 `p-low rank approximation to A.

One then “normalizes” by the error, defining Ã∗i = A∗i /‖∆i‖p and letting s be such that

‖Ã∗s‖p is largest. The rank-1 subset S is then just As. Note that since Ã∗ has rank-1 and

‖Ã∗s‖p is largest, one can write Ã∗j for every j 6= s as αj · Ã∗s for |αj| ≤ 1. The fact that

|αj| ≤ 1 is crucial; indeed, consider what happens when we try to “approximate” Aj by

As · αj‖∆j‖p
‖∆s‖p . Then ‖Aj − Asαj‖∆j‖p/‖∆s‖p‖p ≤ ‖Aj −A∗j‖p +

∥∥A∗j − Asαj‖∆j‖p/‖∆s‖p
∥∥
p

=

‖∆j‖p +
∥∥A∗j − (A∗s + ∆s)αj‖∆j‖p/‖∆s‖p

∥∥
p

= ‖∆j‖p + ‖∆sαj‖∆j‖p/‖∆s‖p‖p , and since the

p-norm is monotonically increasing and αj ≤ 1, the latter is at most ‖∆j‖p + ‖∆s
‖∆j‖p
‖∆s‖p‖p.

So far, all we have used about the p-norm is the monotone increasing property, so one could

hope that the argument could be generalized to a much wider class of functions.

However, at this point the proof uses that the p-norm has scale-invariance, and so

‖∆s
‖∆j‖p
‖∆s‖p‖p = ‖∆j‖p · ‖ ∆s

‖∆s‖p‖p = ‖∆j‖p, and it follows that ‖Aj − As αj‖∆j‖p
‖∆s‖p ‖p ≤ 2‖∆j‖p,

giving an overall 2-approximation (recall k = 1). But what would happen for a general, not

necessarily scale-invariant function g? We need to bound ‖∆s
‖∆j‖g
‖∆s‖g ‖g. If we could bound

this by O(‖∆j‖g), we would obtain the same conclusion as before, up to constant factors.

Consider, though, the “reverse Huber function”: g(x) = x2 if x ≥ 1 and g(x) = |x| for

x ≤ 1. Suppose that ∆s and ∆j were just 1-dimensional vectors, i.e., real numbers, so we

need to bound g(∆sg(∆j)/g(∆s)) by O(g(∆j)). Suppose ∆s = 1. Then g(∆s) = 1 and
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g(∆sg(∆j)/g(∆s)) = g(g(∆j)) and if ∆j = n, then g(g(∆j)) = n4 = g(∆j)
2, much larger

than the O(g(∆j)) we were aiming for.

Maybe the analysis can be slightly changed to correct for these normalization issues?

This is not the case, as we show that unlike for `p-low rank approximation, for the reverse Hu-

ber function there is no subset of 2 columns of A obtaining better than an n1/4-approximation

factor. (See Section 20.6.2 for more details). Further, the lack of scale invariance not only

breaks the argument in [CGK+17a], it shows that combinatorially such functions g behave

very differently than `p-norms. We show more generally there exist functions, in particular

the Huber function, for which one needs to choose Ω(
√

log n) columns to obtain a constant

factor approximation; we describe this more below. Perhaps more surprisingly, we show a

subset of O(log n) columns suffice to obtain a constant factor approximation to the best

rank-1 approximation for any function g(x) which is approximately monotone and has the

approximate triangle inequality, the latter implying for any constant C > 0 and any x ∈ R≥0,

g(Cx) = O(g(x)). For k > 1, these conditions become: (1) g(x) is monotone non-decreasing

in x, (2) g(x) is within a poly(k) factor of g(−x), and (3) for any real number x ∈ R≥0,

g(O(kx)) ≤ poly(k) · g(x). We show it is possible to obtain an O(k2 log k) approximation

with O(k log n) columns. We give the intuition and main lemma statements for our result

in Section 20.2, deferring proofs to the supplementary material.

Even for `p-low rank approximation, our algorithms slightly improve and correct a

minor error in [CGK+17a] which claims in Theorem 7 an O(k)-approximation with O(k log n)

columns for `p-low rank approximation. However, their algorithm actually gives anO(k log n)-

approximation with O(k log n) columns. In [CGK+17a] it was argued that one expects to pay

a cost of O(k/n)·minrank-k B′ ‖A−B′‖pp per column as in (20.1), and since each column is only
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counted in one iteration, summing over the columns gives O(k) ·minrank-k B′ ‖A−B′‖p total

cost. The issue is that the value of n is changing in each iteration, so if in the i-th iteration

it is ni, then we could pay ni ·O(k/ni) ·minrank-k B′ ‖A−B′‖p = O(k) ·minrank-k B′ ‖A−B′‖p
in each of O(log n) iterations, giving O(k log n) approximation ratio. In contrast, our algo-

rithm achieves an O(k log k) approximation ratio for `p-low rank approximation as a special

case, which gives the first O(1) approximation in nearly linear time for any constant k for

`p norms. Our analysis is finer in that we show not only do we expect to pay a cost of

O(k/ni) · minrank-k B′ ‖A − B′‖pp per column in iteration i, we pay O(k/ni) times the cost

of the best rank-k approximation to A after the most costly n/k columns have been re-

moved; thus we pay O(k/ni) times a residual cost with the top n/k columns removed. This

ultimately implies any column’s cost can contribute in at most O(log k) of O(log n) recur-

sive calls, replacing an O(log n) factor with an O(log k) factor in the approximation ratio.

This also gives the first poly(k)-approximation for `0-low rank approximation, studied in

[BKW17], improving the O(k2 log(n/k))-approximation there to O(k2 log k) and giving the

first constant approximation for constant k.
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Algorithm 20.1 Low Rank Approximation Algorithm for General Functions
1: procedure GeneralFunctionLowRankApprox(A ∈ Rn×n, k ∈ Z≥1, g : R→ R≥0)
2: Initialization: r ← O(log n), T0 ← [n]
3: for i = 1→ r do
4: for j = 1→ log n do
5: Sample S(j)

i from
(
Ti−1

2k

)
uniformly at random

6: Solve the regg,2k-approximate regression minx∈R2k ‖A
S

(j)
i
x − At‖g for each t ∈

Ti−1 \ S(j)
i , and let v(j)

i,t be the regg,2k-estimated regression cost . See Section 20.1.1.1 for
regression property

7: R
(j)
i ← {t | v(j)

i,t is the bottom |Ti−1 \S(j)
i |/20 largest value in {v(j)

i,t′ | t′ ∈ Ti−1 \
S

(j)
i }}

8: c
(j)
i ←

∑
t∈R(j)

i
v

(j)
i,t

9: end for
10: j∗ ← arg minj∈[logn]

{
c

(j)
i

}

11: Si ← S
(j∗)
i , Ri ← R

(j∗)
i , Ti ← Ti−1\ (Si ∪Ri)

12: end for
13: return S = Tr ∪

⋃
i∈[r] Si

14: end procedure

20.2 Algorithm for General Loss Low Rank Approximation

Our algorithm is presented in Algorithm 20.1. First, let us briefly analyze the running

time. Consider fixed i ∈ [r], j ∈ [log n]. Sampling S(j)
i takes O(k) time. Solving regg,2k-

approximate regression minx ‖AS(j)
i
x− At‖g for all t ∈ Ti−1 \ S(j)

i takes T
reg,g,n,2k,|Ti−1\S

(j)
i |
≤

Treg,g,n,2k+1,n time. Since finding |Ti−1 \ S(j)
i |/20 smallest element can be done in O(n) time,

R
(j)
i can be computed in O(n) time. Thus the inner loop takes O(n + Treg,g,n,2k+1,n) time.

Since r = O(log n), the total running time over all i, j is O((n+Treg,g,n,2k+1,n) log2 n). In the

remainder of the section, we will sketch the proof of the correctness. For the missing proofs,

we refer the reader to Appendix 20.3.
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20.2.1 Properties of Uniform Column Sampling

Let us first introduce some useful notation. Consider a rank-k matrix M∗ ∈ Rn×m.

For a set H ⊆ [m], let RM∗(H) ⊆ H be a set such that

RM∗(H) = arg max
P :P⊆H

{
det
(

(M∗)QP

) ∣∣∣∣ |P | = |Q| = rank(M∗
H), Q ⊆ [n]

}
,

where det(C) denotes the determinant of a square matrix C. By Cramer’s rule, if we use a

linear combination of the columns of M∗
RM∗ (H) to express any column of M∗

H , the absolute

value of every fitting coefficient will be at most 1.

Consider an arbitrary matrix M ∈ Rn×m. We can write M = M∗ + N, where

M∗ ∈ Rn×m is an arbitrary rank-k matrix, and N ∈ Rn×m is the residual matrix. The

following lemma shows that, if we randomly choose a subset H ⊆ [m] of 2k columns, and

we randomly look at another column i, then with constant probability, the absolute values

of all the coefficients of using a linear combination of the columns of M∗
H to express M∗

i are

at most 1, and furthermore, if we use the same coefficients to use columns of MH to fit Mi,

then the fitting cost is proportional to ‖NH‖g + ‖Ni‖g.

Lemma 20.2.1. Given a matrix M ∈ Rn×m and a parameter k ≥ 1, let M∗ ∈ Rn×m

be an arbitrary rank-k matrix. Let N = M − M∗. Let H ⊆ [m] be a uniformly ran-

dom subset of [m], and let i denote a uniformly random index sampled from [m]\H. Then

(I) Pr [i /∈ RM∗(H ∪ {i})] ≥ 1/2; (II) If i /∈ RM∗(H ∪ {i}), then there exist |H| coefficients

α1, α2, · · · , α|H| for which M∗
i =

∑|H|
j=1 αj(M

∗
H)j,∀j ∈ [|H|], |αj| ≤ 1, and minx∈R|H| ‖MHx−

Mi‖g ≤ atig,|H|+1 ·mong ·
(
‖Ni‖g +

∑|H|
j=1 ‖(NH)j‖g

)
.

Notice that part (II) of the above lemma does not depend on any randomness of H

or i. By applying part (I) of the above lemma, it is enough to prove that if we randomly
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choose a subset H of 2k columns, there is a constant fraction of columns that each column

M∗
i can be expressed by a linear combination of columns in M∗

H , and the absolute values of

all the fitting coefficients are at most 1. Because of Cramer’s rule, it thus suffices to prove

the following lemma.

Lemma 20.2.2.

Pr
H∼([m]

2k )

[∣∣∣∣
{
i

∣∣∣∣ i ∈ [m] \H, i 6∈ RM∗(H ∪ {i})
}∣∣∣∣ ≥ (m− 2k)/4

]
≥ 1/4.

20.2.2 Correctness of the Algorithm

We write the input matrix A as A∗ + ∆, where A∗ ∈ Rn×n is the best rank-k

approximation to A, and ∆ ∈ Rn×n is the residual matrix with respect to A∗. Then

‖∆‖g =
∑n

i=1 ‖∆i‖g is the optimal cost. As shown in Algorithm 20.1, our approach it-

eratively eliminates all the columns. In each iteration, we sample a subset of columns, and

use these columns to fit other columns. We drop a constant fraction of columns which

have a good fitting cost. Suppose the indices of the columns surviving after the i-th outer

iteration are Ti = {ti,1, ti,2, · · · , ti,mi} ⊆ [n]. Without loss of generality, we can assume

‖∆ti,1‖g ≥ ‖∆ti,2‖g ≥ · · · ≥ ‖∆ti,mi
‖g. The following claim shows that if we randomly sample

2k column indices H from Ti, then the cost of ∆H will not be large.

Claim 20.2.3. If |Ti| = mi ≥ 1000k,

Pr
H∼(Ti2k)


∑

j∈H

‖∆j‖g ≤ 400
k

mi

mi∑

j=
mi

100k

‖∆ti,j‖g


 ≥ 19

20
.

By an averaging argument, in the following claim, we can show that there is a constant

fraction of columns in Ti whose optimal cost is also small.
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Claim 20.2.4. If |Ti| = mi ≥ 1000k,
∣∣∣∣∣∣



ti,j

∣∣∣∣ ti,j ∈ Ti, ‖∆ti,j‖g ≥
20

mi

mi∑

j′=
mi

100k

‖∆ti,j′
‖g





∣∣∣∣∣∣
≤ 1

5
mi.

By combining Lemma 20.2.2, part (II) of Lemma 20.2.1 with the above two claims, it

is sufficient to prove the following core lemma. It says that if we randomly choose a subset

of 2k columns from Ti, then we can fit a constant fraction of the columns from Ti with a

small cost.

Lemma 20.2.5. If |Ti| = mi ≥ 1000k,

Pr
H∼(Ti2k)



∣∣∣∣∣∣



j

∣∣∣∣ j ∈ Ti, min
x∈R|H|

‖AHx− Aj‖g ≤ C1 ·
1

mi

·
mi∑

j′=
mi

100k

‖∆ti,j′
‖g





∣∣∣∣∣∣
≥ 1

20
mi


 ≥ 1

5
,

where C1 = 500 · k · atig,|S|+1 ·mong .

Let us briefly explain why the above lemma is enough to prove the correctness of our

algorithm. For each column j ∈ [m], either the column j is in Tr and is selected by the end

of the algorithm, or ∃i < r such that j ∈ Ti \Ti+1. If j ∈ Ti \Ti+1, then by the above lemma,

we can show that with high probability, minx ‖ASi+1
x − Aj‖g ≤ O(C1‖∆‖1/|Ti|). Thus,

minX ‖ASi+1
X −ATi\Ti+1

‖g ≤ O(C1‖∆‖1). It directly gives a O(rC1) = O(C1 log n) approxi-

mation. For the detailed proof of Theorem 20.1.2, we refer the reader to Appendix 20.3.
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20.3 Missing Proofs in Section 20.2
20.3.1 Proof of Lemma 20.2.1

Proof. (I) Since rank(M∗
H∪{i}) ≤ rank(M∗) = k, |RM∗(H ∪ {i})| ≤ k. Note that H is

sampled from
(

[m]
2k

)
uniformly at random, i is sampled from [m]\H uniformly at random, and

|H ∪ {i}| = 2k + 1. By symmetry we have

Pr
H∼([m]

2k ),i∼[m]\H
[i /∈ RM∗(H ∪ {i})] ≥ 1− k

2k + 1
≥ 1/2.

(II) Since i 6∈ RM∗(H ∪ {i}), by Cramer’s rule, there exist α1, α2, · · · , α|H| such that

M∗
i =

∑|H|
j=1 αj · (M∗

H)j and ∀j ∈ [|H|], |αj| ≤ 1. Then we have

min
x∈R|H|

‖MHx−Mi‖g ≤

∥∥∥∥∥∥

|H|∑

j=1

(MH)jαj −Mi

∥∥∥∥∥∥
g

=

∥∥∥∥∥∥

|H|∑

j=1

(M∗
H)jαj −M∗

i +

|H|∑

j=1

(NH)jαj −Ni

∥∥∥∥∥∥
g

=

∥∥∥∥∥∥

|H|∑

j=1

(NH)jαj −Ni

∥∥∥∥∥∥
g

≤ atig,|H|+1 ·


‖ −Ni‖g +

|H|∑

j=1

‖(NH)jαj‖g




≤ atig,|H|+1 ·


‖ −Ni‖g + mong ·

|H|∑

j=1

‖(NH)j‖g




≤ atig,|H|+1 ·


mong ·‖Ni‖g + mong ·

|H|∑

j=1

‖(NH)j‖g




≤ atig,|H|+1 ·mong ·


‖Ni‖g +

|H|∑

j=1

‖(NH)j‖g


 ,
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where the second step follows fromM = M∗+N , the third step follows from
∑|H|

j=1(M∗
H)jαj−

M∗
i = 0, the fourth step follows from the approximate triangle inequality, the fifth step follows

from the fact that |αj| ≤ 1 and g is mong-monotone, and the sixth step follows from that g

is mong-monotone.

20.3.2 Proof of Lemma 20.2.2

Proof. Using Part (I) of Lemma 20.2.1, we have

Pr
H∼([m]

2k ),i∼[m]\H
[i 6∈ RM∗(H ∪ {i})] ≥ 1/2.

For each set H, we define PH = Pri∼[m]\H [i 6∈ RM∗(H ∪ {i})]. We have

1 ≥ 1(
m
2k

)
∑

H∈([m]
2k )

PH ≥ 1/2. (20.2)
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We can show

1(
m
2k

)
∣∣∣∣
{
H

∣∣∣∣ H ∈
(

[m]

2k

)
, PH ≥ 1/4

}∣∣∣∣

=
1(
m
2k

)
∑

H∈([m]
2k ),PH≥1/4

1

≥ 1(
m
2k

)
∑

H∈([m]
2k ),PH≥1/4

PH

≥ 1

2
− 1(

m
2k

)
∑

H∈([m]
2k ),PH<1/4

PH

≥ 1

2
− 1(

m
2k

)
∑

H∈([m]
2k ),PH<1/4

1

4

≥ 1

2
− 1(

m
2k

)
(
m

2k

)
1

4

=
1

4
,

where the second step follows since 1 ≥ PH , the third step follows since Eq. (20.2), the fourth

step follows since PH < 1/4.

Thus, we have
∣∣∣∣
{
H

∣∣∣∣ H ∈
(

[m]

2k

)
, PH ≥ 1/4

}∣∣∣∣ ≥
(
m

2k

)
/4.

Recall the definition of PH , we have
∣∣∣∣
{
H

∣∣∣∣ H ∈
(

[m]

2k

)
, Pr
i∼[m]\H

[i /∈ RM∗(H ∪ {i})] ≥ 1/4

}∣∣∣∣ ≥
(
m

2k

)
/4,

which implies

Pr
H∼([m]

2k )

[∣∣∣∣
{
i

∣∣∣∣ i ∈ [m] \H, i 6∈ RM∗(H ∪ {i})
}∣∣∣∣ ≥ (m− 2k)/4

]
≥ 1/4.
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20.3.3 Proof of Claim 20.2.3

Proof. For simplicity, we omit i in all the subscripts in this proof.

Pr
H∼(T2k)


∑

j∈H

‖∆j‖g ≤ 400
k

m

m∑

j= m
100k

‖∆tj‖g




= Pr
H∼(T2k)


∑

j∈H

‖∆j‖g ≤ 400
k

m

m∑

j= m
100k

‖∆tj‖g
∣∣∣∣ ∃j ≤

m

100k
, tj ∈ H


 · Pr

H∼(T2k)

[
∃j ≤ m

100k
, tj ∈ H

]

+ Pr
H∼(T2k)


∑

j∈H

‖∆j‖g ≤ 400
k

m

m∑

j= m
100k

‖∆tj‖g
∣∣∣∣ ∀j ≤

m

100k
, tj /∈ H


 · Pr

H∼(T2k)

[
∀j ≤ m

100k
, tj /∈ H

]

≤ Pr
H∼(T2k)

[
∃j ≤ m

100k
, tj ∈ H

]

︸ ︷︷ ︸
C1

+ Pr
H∼(T2k)


∑

j∈H

‖∆j‖g ≤ 400
k

m

m∑

j= m
100k

‖∆tj‖g
∣∣∣∣ ∀j ≤

m

100k
, tj /∈ H




︸ ︷︷ ︸
C2

It remains to upper bound the terms C1 and C2. We can upper bound C1:

C1 = 1− (1− m/100k

m
) · (1− m/100k

m− 1
) · · · · · (1− m/100k

m− 2k + 1
)

≤ 1− (1− m/100k

m/2
)2k

≤ 1− (1− 1

25
)

=
1

25
,

where the second step follows since m ≥ 1000k.
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Using Markov’s inequality,

C2 ≤
E

H∼(T2k)

[
∑

j∈H ‖∆j‖g ≤ 400 k
m

m∑
j= m

100k

‖∆tj‖g
∣∣∣∣ ∀j ≤ m

100k
, tj /∈ H

]

400 k
m

m∑
j= m

100k

‖∆tj‖g
≤ 1/100,

where the second step follows since

E
H∼(T2k)


∑

j∈H

‖∆j‖g ≤ 400
k

m

m∑

j= m
100k

‖∆tj‖g
∣∣∣∣ ∀j ≤

m

100k
, tj /∈ H




≤ 2k

m−m/100k

m∑

j= m
100k

‖∆tj‖g

≤ 4
k

m

m∑

j= m
100k

‖∆tj‖g

20.3.4 Proof of Claim 20.2.4

Proof. For simplicity, we omit i in all the subscripts in this proof.
∣∣∣∣∣∣



tj

∣∣∣∣ tj ∈ T, ‖∆tj‖g ≥
20

m

m∑

j′= m
100k

‖∆tj′
‖g





∣∣∣∣∣∣

≤
∣∣∣∣
{
tj

∣∣∣∣ tj ∈ T, j ≤
m

100k

}∣∣∣∣+

∣∣∣∣∣∣



tj

∣∣∣∣ tj ∈ T, j >
m

100k
, ‖∆tj‖g ≥

20

m

m∑

j′= m
100k

‖∆tj′
‖g





∣∣∣∣∣∣

≤
∣∣∣∣
{
tj

∣∣∣∣ tj ∈ T, j ≤
m

100k

}∣∣∣∣+

∣∣∣∣∣∣



tj

∣∣∣∣ tj ∈ T, j >
m

100k
, ‖∆tj‖g ≥

10

m− m
100k

m∑

j′= m
100k

‖∆tj′
‖g





∣∣∣∣∣∣

≤ m

100k
+

1

10
(m− m

100k
)

≤ 1

5
m,
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where the second step follows since 20
m
≥ 10

m−m/100k

20.3.5 Proof of Lemma 20.2.5

Proof. For simplicity, we omit i in all the subscirptis in this proof.

Let M = AT , M∗ = A∗T and N = ∆T . Then we can apply Lemma 20.2.2 and part

(II) of Lemma 20.2.1:

Pr
H∼(T2k)



∣∣∣∣∣∣



j ∈ T

∣∣∣∣ min
x∈R|H|

‖AHx− Aj‖g ≤ atig,|H|+1 ·mong ·


‖∆j‖g +

|H|∑

j′=1

‖(∆H)j′‖g







∣∣∣∣∣∣
≥ m

4


 ≥ 1

4

(20.3)

By Claim 20.2.3, we have

Pr
H∼(T2k)



|H|∑

j=1

‖(∆H)j‖g ≤ 400
k

m

m∑

j= m
100k

‖∆tj‖g


 ≥ 19

20
(20.4)

Due to Claim 20.2.4,
∣∣∣∣∣∣



tj

∣∣∣∣ tj ∈ T, ‖∆tj‖g ≥
20

m

m∑

j′= m
100k

‖∆tj′
‖g





∣∣∣∣∣∣
≤ 1

5
m

Combining the above equation with the pigeonhole principle, for any I ⊆ T with |I| ≥ m/4,

we have
∣∣∣∣∣∣



tj

∣∣∣∣ tj ∈ I, ‖∆tj‖g <
20

m

m∑

j′= m
100k

‖∆tj′
‖g





∣∣∣∣∣∣
≥ 1

4
m− 1

5
m =

1

20
m (20.5)

Consider the quantity ‖∆j‖g+
∑|H|

j=1 ‖(∆H)j′‖g in Eq. (20.3). We use Eq. (20.4) and Eq. (20.5)

to provide an upper bound,

‖∆j‖g +

|H|∑

j′=1

‖(∆H)j′‖g ≤
(

20

m
+

400k

m

) m∑

j′= m
100k

‖∆tj′
‖g.
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Eq. (20.4) will decrease the final probability by (1 − 19/20) (from 1/4 to 1/4 − 1/20).

Eq. (20.5) will decrease the size of this set of j by 1
5
m (from 1

4
m to 1

4
m− 1

5
m).

Putting it all together, we can update Eq. (20.3) in the following sense,

Pr
H∼(T2k)



∣∣∣∣∣∣



j

∣∣∣∣ j ∈ T, min
x∈R|H|

‖AHx− Aj‖g ≤ C · 1

m
·

m∑

j′= m
100k

‖∆tj′
‖g





∣∣∣∣∣∣
≥ (

1

4
− 1

5
)m


 ≥ 1

4
− 1

20
.

where

C = (400 + 20) · k · atig,|H|+1 ·mong .

20.3.6 Proof of Theorem 20.1.2

Proof. The running time is discussed at the beginning of Section 20.2. In the remaining of

the proof, we will focus on the correctness of Algorithm 20.1.

Firstly, let us consider the size of the output S. For i ∈ {0} ∪ [r], let mi = |Ti|. We

set number of rounds r to be the smallest value such that mr < 1000k. By the algorithm,

we have mi = mi−1 − 2k − (mi−1 − 2k)/20 ≤ 19/20 · mi−1. Thus, r = O(log n). In each

round i, the size of Si is 2k. Then |S| = |Tr|+
∑r

i=1 |Si| ≤ 1000k + r · 2k ≤ O(k log n).

Next, let us consider the quality of S. Since each regression call has 1 − 1/ poly(n)

success probability, all the regression calls succeed with probability at least 1 − 1/ poly(n).

In the remaining of the proof, we condition on that all the regression calls succeed.

Let us fix i ∈ [r], j ∈ [log n]. Recall that Ti = {ti,1, ti,2, · · · , ti,mi} and ‖∆ti,1‖g ≥

‖∆ti,2‖g ≥ · · · ≥ ‖∆ti,mi
‖g. By regression property and Lemma 20.2.5, with probability at
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least 1/4,

∑

q∈R(j)
i

min
x∈R2k

‖A
S

(j)
i
x− Aq‖g

≤
∑

q∈R(j)
i

v
(j)
i,q

≤ regg,2k ·(mi − 2k) · 500 · k · atig,2k+1 ·mong /mi ·
mi∑

j′=
mi

100k

‖∆ti,j′
‖g

≤ regg,2k+1 · atig,2k+1 ·mong ·O(k) ·
mi∑

j′=
mi

100k

‖∆ti,j′
‖g.

For each i ∈ [r], since we repeat log(n) times, the success probability can be boosted to at

least 1− 1/ poly(r), i.e., with probability at least 1− 1/ poly(r), we have

∑

q∈Ri

min
x∈R2k

‖ASix− Aq‖g ≤ regg,2k+1 · atig,2k+1 ·mong ·O(k) ·
mi∑

j′=
mi

100k

‖∆ti,j′
‖g. (20.6)

In the remaining of the proof, we condition on above inequality for every i ∈ [r]. Without
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loss of generality, we suppose ‖∆1‖g ≥ ‖∆2‖g ≥ · · · ≥ ‖∆n‖g. We have

n∑

q=1

min
x∈R|S|

‖ASx− Aq‖g

≤
(∑

q∈Tr

min
x∈R|Tr |

‖ATrx− Aq‖g
)

+




r∑

i=1

∑

q∈Ti−1\Ti

min
x∈R2k

‖ASix− Aq‖g




=
r∑

i=1

∑

q∈Ti−1\Ti

min
x∈R2k

‖ASix− Aq‖g

≤
r∑

i=1

regg,2k+1 · atig,2k+1 ·mong ·O(k) ·
mi∑

j′=
mi

100k

‖∆ti,j′
‖g

≤
r∑

i=1

regg,2k+1 · atig,2k+1 ·mong ·O(k) ·
mi∑

j′=
mi

100k

‖∆j′‖g

= regg,2k+1 · atig,2k+1 ·mong ·O(k) ·
n∑

j′=1

‖∆j′‖g
(

argmin
i∈[r]

{mi < j′} − argmin
i∈[r]

{ mi

100k
< j′

}
+O(1)

)

≤ regg,2k+1 · atig,2k+1 ·mong ·O(k log k) · ‖∆‖g,

where the third step follows from Ti−1 \ Ti = Si ∪ Ri and Equation (20.6), the forth step

follows from ‖∆j′‖g ≥ ‖∆ti,j′
‖g, and the last step follows from

(
argmin
i∈[r]

{mi < j′} − argmin
i∈[r]

{ mi

100k
< j′

}
+O(1)

)
≤ O(log k).

1449



20.4 Necessity of the Properties of g

We note that an approximate triangle inequality is necessary to obtain a column

subset selection algorithm. An example function not satisfying this is the “jumping function”:

gτ (x) = |x| if |x| ≥ τ , and gτ (x) = 0 otherwise. For the identity matrix I and any k =

Ω(log n), the Johnson-Lindenstrauss lemma implies one can find a rank-k matrix B for

which ‖I − B‖∞ < 1/2, that is, all entries of I − B are at most 1/2. If we set τ = 1/2,

then ‖I − B‖gτ = 0, but for any subset IS of columns of the identity matrix we choose,

necessarily ‖I − ISX‖∞ ≥ 1, so ‖I − B‖gτ > 0. Consequently, there is no subset of a small

number of columns which obtains a poly(k log n)-approximation with the jumping function

loss measure.

While the jumping function does not satisfy the Approximate triangle inequality, it

does satisfy our only other required structural property, the Monotone property.

There are interesting examples of functions g which are only approximately monotone

in the above sense, such as the quantile function ρτ (x), studied in [YMM14] in the context

of regression, where for a given parameter τ , ρτ (x) = τx if x ≥ 0, and ρτ (x) = (τ − 1)x

if x < 0. Only when τ = 1/2 is this a monotone function with mong = 1 in the above

definition, in which case it coincides with the absolute value function up to a factor of 1/2.

For other constant τ ∈ (0, 1), mong is a constant. The loss function ρτ (x) is also sometimes

called the scalene loss, and studied in the context of low rank approximation in [UHZ+16].

When τ = 1 this is the so-called Rectified Linear Unit (ReLU) function in machine

learning, i.e., ρ1(x) = x if x ≥ 0 and ρ1(x) = 0 if x < 0. In this case mong = ∞. and the

optimal rank-k approximation for any matrix A is 0, since ‖A−λ11>‖ρ1 = 0 if one sets λ to
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be a large enough positive number, thereby making all entries of A−λ11> negative and their

corresponding cost equal to 0. Notice though, that there are no good column subset selection

algorithms for some matrices A, such as the n× n identity matrix. Indeed, for the identity,

if we choose any subset AS of at most n− 1 columns of A, then for any matrix X there will

be an entry of A − ASX which is positive, causing the cost to be positive. Since we will

restrict ourselves to column subset selection, being approximately monotone with a small

value of mong in the above definition is in fact necessary to obtain a good approximation

with a small number of columns, as the ReLU function illustrates (see also related functions

such as the leaky ReLU and squared ReLU [ZSJ+17, BHL18, GKM18]).

Note that the ReLU function is an example which satisfies the triangle inequality,

showing that our additional assumption of approximate monotonicity is required.

Thus, if either property fails to hold, there need not be a small subset of columns

spanning a relative error approximation. These examples are stated in more detail below.

20.4.1 Functions without Approximate Triangle Inequality

In this section, we show how to construct a function f such that it is not possible to

obtain a good entrywise-f low rank approximation by selecting a small subset of columns.

Furthermore, f is monotone but does not have the approximate triangle inequality. Theo-

rem 20.4.3 shows this result.

First, we show that a small subset of columns cannot give a good low rank approxima-

tion in `∞ norm. Then we reduce the `∞ column subset selection problem to the entrywise-f

column subset selection problem.

The following is the Johnson-Lindenstrauss lemma.
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Lemma 20.4.1 (JL Lemma). For any n ≥ 1, ε ∈ (1/
√
n, 1/2), there exists U ∈ Rn×k with

k = O(ε−2 log(n)) such that ‖UU> − In‖∞ ≤ O(ε), where In ∈ Rn×n is an identity matrix.

Theorem 20.4.2. For n ≥ 1, there is a matrix A ∈ Rn×n with the following properties. Let

k = Θ(ε−2 log(n)) for an arbitrary ε ∈ (1/
√
n, 1/2). Let D ∈ Rn×n denote a diagonal matrix

with n− 1 nonzeros on the diagonal. We have

min
X∈Rn×n

‖XDA− A‖∞ ≥ 1

and

min
rank−k A′

‖A′ − A‖∞ < O(ε).

Proof. We choose A to be the identity matrix. By Lemma 20.4.1, we can find a rank-k

matrix B for which

‖A−B‖∞ ≤ O(ε).

Since A is an n× n identity matrix, even if we can use n− 1 columns to fit the other

columns, the cost is still at least 1.

In the following, we state the construction of our function f .

Definition 20.4.1. We define function f(x) to be f(x) = c if |x| > τ and f(x) = 0 if

|x| ≤ τ . Given matrix A, we define ‖A‖f =
∑n

i=1

∑n
j=1 f(Ai,j).

Theorem 20.4.3 (No good subset of columns). For any n ≥ 1, there is a matrix A ∈ Rn×n

with the following property. Let k ≥ c log n for a sufficiently large constant c > 0. Let
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D ∈ Rn×n denote an arbitrary diagonal matrix with n − 1 nonzeros on the diagonal. For f

with parameter τ = 1/4, we have

min
X∈Rn×n

‖XDA− A‖f > 0

and

min
rank−k A′

‖A′ − A‖f = 0.

Proof. We can set A to be the identity matrix. Due to Theorem 20.4.2, there exists A′ for

which minrank−k A′ ‖A′ − A‖∞ < 1/4, which implies that minrank−k A′ ‖A′ − A‖f = 0. Also

due to Theorem 20.4.2, we have minX∈Rn×n ‖XDA−A‖∞ = 1, and thus, minX∈Rn×n ‖XDA−

A‖f > 0.

20.4.2 ReLU Function Low Rank Approximation

In this section, we discuss a function which has the approximate triangle inequality

but is not symmetric. The specific function we discuss in this section is ReLU . The definition

of ReLU is defined in Definition 20.4.2. First, we show that ReLU low rank approximation

has a trivial best rank-k approximation. Second, we show that for some matrices, there is

no small subset of columns which can give a good low rank approximation.

Definition 20.4.2. We define function ReLU(x) to be ReLU(x) = max(0, x). Given matrix

A, we define ‖A‖ReLU =
∑n

i=1

∑n
j=1 ReLU(Ai,j).

In the rank-k approximation problem, given an input matrix A, the goal is to find a

rank-k matrix B for which ‖A−B‖ReLU is minimized. A simple observation is that if we set
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B to be a matrix with each entry of value ‖A‖∞, then the value of each entry of A−B is at

most 0. Thus, ‖A−B‖ReLU = 0. Furthermore, the rank of B is 1.

Now, consider the column subset selection problem, let input matrix A ∈ Rn×n be an

identity matrix. Then even if we can choose n− 1 columns, they can never fit the remaining

column. Thus, the cost is at least 1. But as discussed, the best rank-k cost is always 0. This

implies that any subset of columns cannot give a good rank-k approximation.
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20.5 Regression Solvers

In this section, we discuss several regression solvers.

20.5.1 Regression for Convex g

Notice that when the function g is convex, the regression problem minX∈Rd×m ‖AX −

B‖g for any given matrices A ∈ Rn×d, B ∈ Rn×m is a convex optimization problem. Thus, it

can be solved exactly by convex optimization algorithms.

Fact 20.5.1. Let g be a convex function. Given A ∈ Rn×d, B ∈ Rn×m, the regression problem

minX∈Rd×m ‖AX −B‖g can be solved exactly by convex optimization in poly(n, d,m) time.

If a function g has additional properties, i.e. g is symmetric, monotone and grows

subquadratically, then there is a better running time constant approximation algorithm

shown in [CW15b]. Here “grows quadratically” means that there is an α ∈ [1, 2] and cg > 0

so that for a, a′ with |a| > |a′| > 0,

∣∣∣ a
a′

∣∣∣
α

≥ g(a)

g(a′)
≥ cg

∣∣∣ a
a′

∣∣∣ .

This kind of function g is also called a “sketchable” function. Notice that the Huber function

satisfies the above properties.

Theorem 20.5.2 (Modified version of Theorem 3.1 of [CW15b]). Function g is symmetric,

monotone and grows subquadratically (g is a G-function defined by [CW15b]). Given a

matrix A ∈ Rn×d and a matrix B ∈ Rn×m, there is an algorithm which can output a matrix

X̂ ∈ Rd×m and a fitting cost vector y ∈ Rm such that with probability at least 1−1/ poly(nm),

∀i ∈ [m], ‖AX̂i−Bi‖g ≤ O(1) ·minx∈Rd ‖Ax−Bi‖g, and yi = Θ(‖AX̂i−Bi‖g). Furthermore,

the running time is at most Õ(nnz(A) + nnz(B) +m · poly(d log n)).
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Proof. We run O(log(nm)) repetitions of the single column regression algorithm shown in

Theorem 3.1 of [CW15b] for all columns Bi for i ∈ [m]. For each regression problem ‖Ax−

Bi‖g, we take the solution whose estimated cost is the median among these O(log(nm)

repetitions as X̂i. Then by the Chernoff bound, we can boost the success probability of each

column to 1 − 1/ poly(nm). By taking a union bound over all columns, we complete the

proof.

20.5.2 `p Regression

One of the most important cases in regression and low rank approximation problems

is when the error measure is `p. For `p regression, though it can be solved by convex

optimization/linear programming exactly, we can get a much faster running time if we allow

some approximation ratios. In the following theorem, we show that there is an algorithm

which can be used to solve `p regression for any p ≥ 1.

Theorem 20.5.3 (Modified version of [WZ13]). Let p ≥ 1, ε ∈ (0, 1). Given a matrix

A ∈ Rn×d and a matrix B ∈ Rn×m, there is an algorithm which can output a matrix X̂ ∈

Rd×m and a fitting cost vector y ∈ Rm such that with probability at least 1 − 1/ poly(nm),

∀i ∈ [m], ‖AX̂i−Bi‖pp ≤ (1+ε) ·minx∈Rd ‖Ax−Bi‖pp, and yi = Θ(‖AX̂i−Bi‖pp). Furthermore,

the running time is at most Õ(nnz(A) + nnz(B) +mnmax(1−2/p,0) · poly(d)).

Proof. As in the proof of Theorem 20.5.2, we only need to run O(log(nm)) repetitions of the

single column regression algorithm shown in [WZ13].
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20.5.3 `0 Regression

Definition 20.5.1 (Regular partition). Given a matrix A ∈ Rn×k, we say {S1, S2, · · · , Sh}

is a regular partition for [n] with respect to the matrix A if, for each i ∈ [h],

rank(ASi) = |Si|, and rowspan(ASi) = rowspan
(
A∪

h
j=iSj

)
,

where ASi ∈ R|Si|×k denotes the matrix that selects a subset Si of rows of the matrix A.

Algorithm 20.2 `0 regression [APY09]
1: procedure L0Regression(A, b, n, k, c) . Theorem 20.5.4
2: x′ ← 0k

3: {S1, S2, · · · , Sh} ← GenerateRegularPartition(A, n, k)
4: x′ ← 0k

5: for i = 1→ h do
6: Find a x̃ such that ASix̃ = bSi
7: if ‖Ax̃− b‖0 < ‖Ax′ − b‖0 then
8: x′ ← x̃
9: end if
10: end for
11: return x′

12: end procedure

[APY09] studied the Nearest Codeword problem over finite fields F2. Their proof can

be extended to the real field and generalized to Theorem 20.5.4. For completeness, we still

provide the proof of the following result.

Theorem 20.5.4 (Generalization of [APY09]). Given matrix A ∈ Rn×k and vector Rn, for

any c ∈ [1, k], there is an algorithm (Algorithm 20.2) that runs in nO(1) time and outputs a

vector x′ ∈ Rk such that

‖Ax′ − b‖0 ≤ k min
x∈Rk
‖Ax− b‖0.
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Proof. Let x∗ ∈ Rk denote the optimal solution to minx∈Rk ‖Ax − b‖0. We define set E as

follows

E = {i ∈ [n] | (Ax∗)i 6= bi}.

We create a regular partition {S1, S2, · · · , Sh} for [n] with respect to A.

Let i denote the smallest index such that |Si ∩ E| = 0, i.e.,

i = min{j | |Sj ∩ E| = 0}.

The linear equation we want to solve is ASix = bSi . Let x̃ ∈ Rk denote a solution to

ASix̃ = ASix∗ (Note that, by our choice of i, bSi = ASix∗). Then we can rewrite ‖Ax̃ − b‖0

in the following sense,

‖Ax̃− b‖0 =
i−1∑

j=1

∥∥ASj x̃− bSj
∥∥

0
+

h∑

j=i

∥∥ASj x̃− bSj
∥∥

0
. (20.7)

For each j ∈ {1, 2, · · · , i− 1}, we have

‖ASj x̃− bSj‖0 ≤ k

≤ ‖ASjx∗ − bSj‖0 · dke, (20.8)

where the first step follows from |S0| ≤ k, and the last step follows from ‖ASjx∗− bSj‖0 ≥ 1,

∀j ∈ [i− 1].

Note that, by our choice of i, we have ASix̃ = ASix∗. Then for each j ∈ {i, i +

1, · · · , n}, using the regular partition property, there always exists a matrix P(j) such that

ASj = P(j)A
Si . Then we have

ASj x̃ = P(j)A
Six̃ = P(j)A

Six∗ = ASjx∗. (20.9)
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Plugging Eq. (20.8) and (20.9) into Eq. (20.7), we have

‖Ax̃− b‖0 =
i−1∑

j=1

∥∥ASj x̃− bSj
∥∥

0
+

h∑

j=i

∥∥ASj x̃− bSj
∥∥

0

≤ k

i−1∑

j=1

∥∥ASjx∗ − bSj
∥∥

0
+

h∑

j=i

∥∥ASjx∗ − bSj
∥∥

0

≤ k‖Ax∗ − b‖0.

This completes the proof.
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20.6 Hardness
20.6.1 Column Subset Selection for the Huber Function

The rough idea here is to define k = Ω(
√

log n) groups of columns, where we carefully

choose the i-th group to have n1−2iε columns, ε = .2/(1.5k), and in the i-th group each

column has the form

n1.5iε · 1n + [±n−.2+iε, . . . ,±n−.2+iε,±n.5+2iε, . . . ,±n.5+2iε],

where there are n − n.1 coordinates where the perturbation is randomly either +n−.2+iε or

−n−.2+iε, and the remaining n.1 coordinates are randomly either +n.5+2iε or −n.5+2iε. We

call the former type of coordinates “small noise”, and the latter “large noise”. All remaining

columns in the matrix are set to 0. Because of the random signs, it is very hard to fit

the noise in one column to that of another column. One can show, that to approximate

a column in the j-th group by a column in the i-th group, i < j, one needs to scale by

roughly n1.5(j−i)ε, just to cancel out the “mean” n1.5jε · 1n. But when doing so, since the

Huber function is quadratic for small values, the scaled small noise is now magnified more

than linearly compared to what it was before, and this causes a column in the i-th group not

to be a good approximation of a column in the j-th group. On the other hand, if you want

to approximate a column in the j-th group by a column in the i-th group, i > j, one again

needs to scale by roughly n1.5(j−i)ε just to cancel out the “mean”, but now one can show the

large noise from the column in the i-th group is too large and remains in the linear regime,

causing a poor approximation. The details of this construction are given in the following

theorem.
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Theorem 20.6.1. Let H(x) denote the modified Huber function with τ = 1, i.e.,

H(x) =

{
x2/τ, if |x| < τ ;

|x|, if |x| ≥ τ.

For any n ≥ 1, there is a matrix A ∈ Rn×n such that, if we select o(
√

log n) columns

to fit the entire matrix, there is no O(1)-approximation, i.e., for any subset S ⊆ [n] with

|S| = o(
√

log n),

min
X∈R|S|×n

‖ASX − A‖H ≥ ω(1) · min
rank−1 A′

‖A′ − A‖H .

Proof. Suppose there is an algorithm which only finds a subset with size k/2 = o(
√

log n).

We want to prove a lower bound on its approximation ratio.

Let ε = 0.2/(1.5k). Let A denote a matrix with k + 1 groups of columns.

For each group i ∈ [k], Ii has n1−2iε columns which are



n1.5iε

n1.5iε

n1.5iε

...
n1.5iε

n1.5iε

n1.5iε

n1.5iε




+




±n−0.2+iε

±n−0.2+iε

...
±n−0.2+iε

±n0.5+2iε

±n0.5+2iε

...
±n0.5+2iε




∈ Rn,

where ± indicates i.i.d. random signs. For the error column, the first n − n0.1 rows are

n−0.2+iε, and the last n0.1 rows are n0.5+2iε.
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The last group of n−∑k
i=1 n

1−2iε columns are



0
0
...
0
0



∈ Rn.

The optimal cost is at most

k∑

i=1

n1−2iε · ((n− n0.1)H(n−0.2+iε) + n0.1H(n0.5+2iε)) ≤
k∑

i=1

n1−2iε(n · n−0.4+2iε + n0.6+2iε)

≤ O(kn1.6),

where the second step follows since n−0.2+iε < 1 and n0.5+2iε ≥ 1. Thus, it implies

min
rank−1 A′

‖A′ − A‖H ≤ O(kn1.6).

Now let us consider the lower bound for using a subset of columns to fit the matrix.

First, we fix a set S = {j1, j2, · · · , jk/2} of k/2 columns. Since there are k groups, and

|S| ≤ k/2, the number of groups Ii for i ∈ [k] with S ∩ Ii = ∅ is at least k/2. It means that

there are at least k/2 groups for which S does not have any column from them. Notice that

the optimal cost is at most O(kn1.6), so it suffices to prove that ∀i ∈ [k] with Ii ∩ S = ∅,

each column j ∈ Ii will contribute a cost of ω(n0.6+2iε).

For notation, we use group(j) to denote the index of the group which contains the

column j. For each column j, we use ∆j to denote the noise part, and use A∗j to denote the

rank-1 “ground truth” part. Notice that Aj = A∗j + ∆j.

Claim 20.6.2 (Noise cannot be used to fit other vectors). Let x1, x2, · · · , xs ∈ Rm be s

random sign vectors. Then with probability at least 1 − 2s · 2−Θ(m/2s), ∀α1, α2, · · · , αs ∈ R,
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the size of Zα1,α2,··· ,αs = {i ∈ [m] | sign((α1x1)i) = sign((α2x2)i) = · · · = sign((αsxs)i) =

sign(+1)} is at least Ω(m/2s).

Proof. For a set of fixed α1, α2, · · · , αs, the claim follows from the Chernoff bound. Since

there are 2s different possibilities of signs of α1, · · · , αs, taking a union bound over them

completes the proof.

Now we consider a specific column j ∈ Ii for some i ∈ [k], where Ii ∩ S = ∅. Suppose

the fitting coefficients are α1, α2, · · · , αk/2. Consider the following term

(α1Aj1 + α2Aj2 + · · ·+ αk/2Ak/2)− Aj

= (α1A
∗
j1

+ α2A
∗
j2

+ · · ·+ αk/2A
∗
k/2 − A∗j) + (α1∆j1 + α2∆j2 + · · ·+ αk/2∆k/2 −∆j)

Let u∗ = (α1A
∗
j1

+ α2A
∗
j2

+ · · · + αk/2A
∗
k/2 − A∗j). By Claim 20.6.2, with probability at least

1− (k/2) · 2−Θ(n/2k/2),

|{t ∈ [n] | sign(u∗t ) = sign(α1∆j1,t) = · · · = sign(αk/2∆jk/2,t) = sign(−∆j,t)}| = Ω(n/2k/2).

Observe that all the coordinates of u∗ are the same, and the absolute value of each entry of u∗

should be at most O(n1.5iε). Otherwise the column already has ω(n/2k/2 ·n1.5iε) = ω(n0.6+2iε)

cost. Thus, the magnitude of each entry of α1A
∗
j1

+ α2A
∗
j2

+ · · · + αk/2A
∗
k/2 is Θ(n1.5iε).

Thus, there exists t ∈ [k/2], such that the absolute value of each entry of αtA∗jt is at least

Ω(n1.5iε/k). Then there are two cases.

The first case is group(t) < group(j). Let group(t) = i′. Then |αt| = Ω(n1.5(i−i′)ε/k).

By Claim 20.6.2 again, with probability at least 1− (k/2) · 2−Θ(n/2k/2), the size of

{z ∈ [n− n0.1] | sign(u∗z) = sign(α1∆j1,z) = · · · = sign(αk/2∆jk/2,z) = sign(−∆j,z)}
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τ = 0.8 τ = 1 τ = 2

H(x) =

{
x2/2τ if |x| ≤ τ ;
|x| − τ/2 otherwise.

H̃(x) =

{
|x|/2 if |x| ≤ τ ;
x2/4τ + τ/4 otherwise.

Figure 20.1: The blue curve is the Huber function which combines an `2-like measure for
small x with an `1-like measure for large x. The red curve is the “reverse” Huber function
which combines an `1-like measure for small x with an `2-like measure for large x.

is at least Ω(n/2k/2). Thus, the cost to fit is at least Ω(n/2k/2) · (n−0.2+i′εn1.5(i−i′)ε/k)2 =

ω(n0.6+2iε).

The second case is group(t) > group(j). Let group(t) = i′. Then |αt| = Ω(n1.5(i−i′)ε/k).

By Claim 20.6.2 again, with probability at least 1− (k/2) · 2−Θ(n0.1/2k/2), the size of

{z ∈ {n− n0.1 + 1, · · · , n} | sign(u∗z) = sign(α1∆j1,z) = · · · = sign(αk/2∆jk/2,z) = sign(−∆j,z)}

is at least Ω(n0.1/2k/2). Thus, the fitting cost is at least Ω(n0.1/2k/2) · (n0.5+2i′εn1.5(i−i′)ε/k) =

ω(n0.6+2iε).

By taking a union bound over all columns j, we have with probability at least 1−2n
Θ(1)

,

the total cost to fit by a column subset S is at least ω(kn1.6).

Then, by taking a union bound over all the
(
n
k

)
number of sets S, we complete the

proof.
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20.6.2 Column Subset Selection for the Reverse Huber Function

In this section, we consider a “reverse Huber function”: g(x) = x2 if x ≥ 1 and

g(x) = |x| for x ≤ 1.

Theorem 20.6.3. Let g(x) denote the “reverse Huber function” with τ = 1, i.e.,

H(x) =

{
x2/τ, if |x| > τ ;

|x|, if |x| ≤ τ.

For any n ≥ 1, there is a matrix A ∈ Rn×n such that, if we select only 1 column to fit the

entire matrix, there is no no(1)-approximation to the best rank-1 approximation, i.e., for any

subset S ⊆ [n] with |S| = 1,

min
X∈R|S|×n

‖ASX − A‖g ≥ nΩ(1) · min
rank−1 A′

‖A′ − A‖g.

Proof. Let A ∈ Rn×n have one column that is a = (n1/2, 0, . . . , 0)> and n − 1 columns that

are each equal to b = (0, 1/n, 1/n, . . . , 1/n)>. If we choose one column which has the form

as a to fit the other columns, the cost is at least (n−1)2/n = Θ(n). If we choose one column

which has the form as b to fit the other columns, the cost is at least (n1/2)2 = Θ(n).

Now we consider using a vector c = (1/n1/4, 1/n, 1/n, . . . , 1/n)> to fit all the columns.

One can use c to approximate a with cost at most (n−1) ·n3/4/n = Θ(n3/4) by matching the

first coordinate, while one can use c to approximate b with cost at most 1/n1/4 by matching

the last n − 1 coordinates, and since there are n − 1 columns equal to b, the overall total

cost of using c to approximate matrix A is Θ(n3/4).
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Chapter 21

Tensor Low Rank Approximation

We consider relative error low rank approximation of tensors with respect to the

Frobenius norm. Namely, given an order-q tensor A ∈ R
∏q
i=1 ni , output a rank-k tensor B

for which ‖A − B‖2
F ≤ (1 + ε) OPT, where OPT = infrank-k A′ ‖A − A′‖2

F . Despite much

success on obtaining relative error low rank approximations for matrices, no such results

were known for tensors for arbitrary (1 + ε)-approximations. One structural issue is that

there may be no rank-k tensor Ak achieving the above infinum. Another, computational

issue, is that an efficient relative error low rank approximation algorithm for tensors would

allow one to compute the rank of a tensor, which is NP-hard. We bypass these two issues

via (1) bicriteria and (2) parameterized complexity solutions:

1. We give an algorithm which outputs a rank k′ = O((k/ε)q−1) tensor B for which

‖A − B‖2
F ≤ (1 + ε) OPT in nnz(A) + n · poly(k/ε) time in the real RAM model,

whenever either Ak exists or OPT > 0. Here nnz(A) denotes the number of non-

zero entries in A. If both Ak does not exist and OPT = 0, then B instead satisfies

‖A−B‖2
F < γ, where γ is any positive, arbitrarily small function of n.

2. We give an algorithm for any δ > 0 which outputs a rank k tensor B for which

‖A− B‖2
F ≤ (1 + ε) OPT and runs in (nnz(A) + n poly(k/ε) + exp(k2/ε)) · nδ time in

the unit cost RAM model, whenever OPT > 2−O(nδ) and there is a rank-k tensor B =
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∑k
i=1 ui⊗vi⊗wi for which ‖A−B‖2

F ≤ (1+ ε/2) OPT and ‖ui‖2, ‖vi‖2, ‖wi‖2 ≤ 2O(nδ).

If OPT ≤ 2−Ω(nδ), then B instead satisfies ‖A−B‖2
F ≤ 2−Ω(nδ).

Our first result is polynomial time, and in fact input sparsity time, in n, k, and 1/ε, for

any k ≥ 1 and any 0 < ε < 1, while our second result is fixed parameter tractable in k

and 1/ε. For outputting a rank-k tensor, or even a bicriteria solution with rank-Ck for a

certain constant C > 1, we show a 2Ω(k1−o(1)) time lower bound under the Exponential Time

Hypothesis.

Our results are based on an “iterative existential argument”, and also give the first rel-

ative error low rank approximations for tensors for a large number of error measures for which

nothing was known. In particular, we give the first relative error approximation algorithms

on tensors for: column row and tube subset selection, entrywise `p-low rank approximation

for 1 ≤ p < 2, low rank approximation with respect to sum of Euclidean norms of faces

or tubes, weighted low rank approximation, and low rank approximation in distributed and

streaming models. We also obtain several new results for matrices, such as nnz(A)-time CUR

decompositions, improving the previous nnz(A) log n-time CUR decompositions, which may

be of independent interest.
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21.1 Introduction

Low rank approximation of matrices is one of the most well-studied problems in

randomized numerical linear algebra. Given an n × d matrix A with real-valued entries,

we want to output a rank-k matrix B for which ‖A − B‖ is small, under a given norm.

While this problem can be solved exactly using the singular value decomposition for some

norms like the spectral and Frobenius norms, the time complexity is still min(ndω−1, dnω−1),

where ω ≈ 2.373 is the exponent of matrix multiplication [Str69, CW87, Wil12, LG14].

This time complexity is prohibitive when n and d are large. By now there are a number

of approximation algorithms for this problem, with the Frobenius norm 1 being one of the

most common error measures. Initial solutions [FKV04, AM07] to this problem were based

on sampling and achieved additive error in terms of ε‖A‖F , where ε > 0 is an approximation

parameter, which can be arbitrarily larger than the optimal cost OPT = minrank-k B ‖A −

B‖2
F . Since then a number of solutions based on the technique of oblivious sketching [Sar06,

CW13, MM13, NN13a] as well as sampling based on non-uniform distributions [DMM06c,

DMM06b, DMM08, DMIMW12], have been proposed which achieve the stronger notion of

relative error, namely, which output a rank-k matrix B for which ‖A−B‖2
F ≤ (1 + ε) OPT

with high probability. It is now known how to output a factorization of such a B = U · V ,

where U is n× k and V is k× d, in nnz(A) + (n+ d) poly(k/ε) time [CW13, MM13, NN13a].

Such an algorithm is optimal, up to the poly(k/ε) factor, as any algorithm achieving relative

error must read almost all of the entries.

Tensors are often more useful than matrices for capturing higher order relations

1Recall the Frobenius norm ‖A‖F of a matrix A is (
∑n
i=1

∑d
j=1A

2
i,j)

1/2.
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in data. Computing low rank factorizations of approximations of tensors is the primary

task of interest in a number of applications, such as in psychology[Kro83], chemometrics

[Paa00, SBG04], neuroscience [AAB+07, KB09, CLK+15], computational biology [CV15,

SC15], natural language processing [CYYM14, LZBJ14, LZMB15, BNR+15], computer vi-

sion [VT02, WA03, SH05, HPS05, HD08, AFdLGTL09, PLY10, LFC+16, CLZ17], com-

puter graphics [VT04, WWS+05, Vas09], security [AÇKY05, ACY06, KB06], cryptography

[FS99, Sch12, KYFD15, SHW+16] data mining [KS08, RST10, KABO10, Mør11], machine

learning applications such as learning hidden Markov models, reinforcement learning, com-

munity detection, multi-armed bandit, ranking models, neural network, Gaussian mixture

models and Latent Dirichlet allocation [MR05, AFH+12, HK13, ALB13, ABSV14, AGH+14,

AGHK14, BCV14, JO14a, GHK15, PBLJ15, JSA15, ALA16, AGMR16, ZSJ+17], program-

ming languages [RTP16], signal processing [Wes94, DLDM98, Com09, CMDL+15], and other

applications [YCS11, LMWY13, OS14, ZCZJ14, STLS14, YCS16, RNSS16].

Despite the success for matrices, the situation for order-q tensors for q > 2 is much

less understood. There are a number of works based on alternating minimization [CC70,

Har70, FMPS13, FT15, ZG01, BS15] gradient descent or Newton methods [ES09, ZG01],

methods based on the Higher-order SVD (HOSVD) [LMV00a] which provably incur Ω(
√
n)-

inapproximability for Frobenius norm error [LMV00b], the power method or orthogonal

iteration method [LMV00b], additive error guarantees in terms of the flattened (unfolded)

tensor rather than the original tensor [MMD08], tensor trains [Ose11], the tree Tucker de-

composition [OT09], or methods specialized to orthogonal tensors [KM11, AGH+14, MHG15,

WTSA15, WA16, SWZ16]. There are also a number of works on the problem of tensor

completion, that is, recovering a low rank tensor from missing entries [WM01, AKDM10,
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TSHK11, LMWY13, MHWG14, JO14b, BM16]. There is also another line of work using

the sum of squares (SOS) technique to study tensor problems [BKS15a, GM15, HSS15,

HSSS16, MSS16, PS17, SS17], other recent work on tensor PCA [All12b, All12a, RM14,

JMZ15, ADGM16, ZX17], and work applying smoothed analysis to tensor decomposition

[BCMV14]. Several previous works also consider more robust norms than the Frobenius

norm for tensors, e.g., the R1 norm (`1-`2-`2 norm in our work) [HD08], `1-PCA [PLY10],

entry-wise `1 regularization [GGH14], M-estimator loss [YFS16], weighted approximation

[Paa97, TK11, LRHG13], tensor-CUR [OST08, MMD08, CC10, FMMN11, FT15], or robust

tensor PCA [GQ14, LFC+16, CLZ17].

Some of the above works, such as ones based on the tensor power method or alternat-

ing minimization, require incoherence or orthogonality assumptions. Others, such as those

based on the simultaneous SVD, require an assumption on the minimum singular value. See

the monograph of Moitra [Moi14a] for further discussion. Unlike the situation for matri-

ces, there is no work for tensors that is able to achieve the following natural relative error

guarantee: given a q-th order tensor A ∈ Rn⊗q and an arbitrary accuracy parameter ε > 0,

output a rank-k tensor B for which

‖A−B‖2
F ≤ (1 + ε) OPT, (21.1)

where OPT = infrank-k B′ ‖A−B′‖2
F , and where recall the rank of a tensor B is the minimal

integer k for which B can be expressed as
∑k

i=1 U
i
1⊗U i

2⊗ · · ·⊗U i
q. General speaking, a q-th

order tensor can have rank at most nq−1. A third order tensor, for example, has rank which

is an integer in {0, 1, 2, . . . , n2}. We note that [BCV14] is able to achieve a relative error

5-approximation for third order tensors, and an O(q)-approximation for q-th order tensors,

1470



though it cannot achieve a (1 + ε)-approximation. We compare our work to [BCV14] in

Section 21.1.4 below.

For notational simplicity, we will start by assuming third order tensors with all di-

mensions of equal size, but we extend all of our main theorems below to tensors of any

constant order q > 3 and dimensions of different sizes.

The first caveat regarding (21.1) for tensors is that an optimal rank-k solution may

not even exist! This is a well-known problem for tensors (see, e.g., [KHL89, Paa00, KDS08,

Ste06, Ste08] and more details in section 4 of [DSL08]), for which for any rank-k tensor B,

there always exists another rank-k tensor B′ for which ‖A−B′‖2
F < ‖A−B‖2

F . If OPT = 0,

then in this case for any rank-k tensor B, necessarily ‖A − B‖2
F > 0, and so (21.1) cannot

be satisfied. This fact was known to algebraic geometers as early as the 19th century, which

they refer to as the fact that the locus of r-th secant planes to a Segre variety may not define

a (closed) algebraic variety [DSL08, Lan12]. It is also known as the phenomenon underlying

the concept of border rank2[Bin80, Bin86, BCS97, Knu98, Lan06]. In this case it is natural

to allow the algorithm to output an arbitrarily small γ > 0 amount of additive error. Note

that unlike several additive error algorithms for matrices, the additive error here can in fact

be an arbitrarily small positive function of n. If, however, OPT > 0, then for any ε > 0,

there exists a rank-k tensor B for which ‖A−B‖2
F ≤ (1+ ε) OPT, and in this case we should

still require the algorithm to output a relative-error solution. If an optimal rank-k solution

B exists, then as for matrices, it is natural to require the algorithm to output a relative-error

solution.

2https://en.wikipedia.org/wiki/Tensor_rank_decomposition#Border_rank
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Besides the above definitional issue, a central reason that (21.1) has not been achieved

is that computing the rank of a third order tensor is well-known to be NP-hard [Hås90, HL13].

Thus, if one had such a polynomial time procedure for solving the problem above, one could

determine the rank of A by running the procedure on each k ∈ {0, 1, 2, . . . , n2}, and check

for the first value of k for which ‖A − B‖2
F = 0, thus determining the rank of A. However,

it is unclear if approximating the tensor rank is hard. This question will also be answered

in this work.

The main question which we address is how to define a meaningful notion of (21.1)

for the case of tensors and whether it is possible to obtain provably efficient algorithms

which achieve this guarantee, without any assumptions on the tensor itself. Besides (21.1),

there are many other notions of relative error for low rank approximation of matrices for

which provable guarantees for tensors are unknown, such as tensor CURT, R1 norm, and

the weighted and `1 norms mentioned above. Our goal is to provide a general technique to

obtain algorithms for many of these variants as well.
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21.1.1 Our Results

To state our results, we first consider the case when a rank-k solution Ak exists, that

is, there exists a rank-k tensor Ak for which ‖A− Ak‖2
F = OPT.

We first give a poly(n, k, 1/ε)-time (1 + ε)-relative error approximation algorithm for

any 0 < ε < 1 and any k ≥ 1, but allow the output tensor B to be of rank O((k/ε)2)

(for general q-order tensors, the output rank is O((k/ε)q−1), whereas we measure the cost

of B with respect to rank-k tensors. Formally, ‖A − B‖2
F ≤ (1 + ε)‖A − Ak‖2

F . In fact,

our algorithm can be implemented in nnz(A) + n · poly(k/ε) time in the real-RAM model,

where nnz(A) is the number of non-zero entries of A. Since it is necessary to use nnz(A)

time to avoid missing any (large) entry, such an algorithm is optimal (for running time) for

any relative error algorithm, even bicriteria ones.

If Ak does not exist, then our output B instead satisfies ‖A−B‖2
F ≤ (1 + ε) OPT +γ,

where γ is an arbitrarily small additive error. Since γ is arbitrarily small, (1 + ε) OPT +γ is

still a relative error whenever OPT > 0. Our theorem is as follows.

Theorem 21.1.1 (A Version of Theorem 21.4.9, bicriteria). Given a 3rd order tensor A ∈

Rn×n×n, if Ak exists then there is a randomized algorithm running in nnz(A) + n · poly(k/ε)

time which outputs a (factorization of a) rank-O(k2/ε2) tensor B for which ‖A − B‖2
F ≤

(1 + ε)‖A−Ak‖2
F . If Ak does not exist, then the algorithm outputs a rank-O(k2/ε2) tensor B

for which ‖A−B‖2
F ≤ (1 + ε) OPT +γ, where γ > 0 is an arbitrarily small positive function

of n. In both cases, the success probability is at least 2/3.

One of the main applications of matrix low rank approximation is parameter reduc-

tion, as one can store the matrix using fewer parameters in factored form or more quickly
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multiply by the matrix if given in factored form, as well as remove directions that correspond

to noise. In such applications, it is not essential that the low rank approximation have rank

exactly k, since one still has a significant parameter reduction with a matrix of slightly

larger rank. This same motivation applies to tensor low rank approximation; we obtain both

space and time savings by representing a tensor in factored form, and in such applications

bicriteria applications suffice. Moreover, the extremely efficient nnz(A) + n · poly(k/ε) time

algorithm we obtain may outweigh the need for outputting a tensor of rank exactly k. Bicri-

teria algorithms are common for coping with hardness; see e.g., results on robust low rank

approximation of matrices [DV07, FFSS07, CW15a], sparse recovery [CKPS16], clustering

[MMSW15, HT16], and approximation algorithms more generally.

We note that there are other applications, such as unique tensor decomposition in

the method of moments, see, e.g., [BCV14], where one may have a hard rank constraint of

k for the output. However, in such applications the so-called Tucker decomposition is still a

useful dimensionality-reduction analogue of the SVD and our techniques for proving

We next consider the case when the rank parameter k is small, and we try to obtain

rank-k solutions which are efficient for small values of k. As before, we first suppose that Ak

exists.

If Ak =
∑k

i=1 ui⊗vi⊗wi and the norms ‖ui‖2, ‖vi‖2, and ‖wi‖2 are bounded by 2poly(n),

we can return a rank-k solution B for which ‖A − B‖2
F ≤ (1 + ε)‖A − Ak‖2

F + 2− poly(n), in

f(k, 1/ε)·poly(n) time in the standard unit cost RAM model with words of size O(log n) bits.

Thus, our algorithm is fixed parameter tractable in k and 1/ε, and in fact remains polynomial

time for any values of k and 1/ε for which k2/ε = O(log n). This is motivated by a number

of low rank approximation applications in which k is typically small. The additive error of
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2− poly(n) is only needed in order to write down our solution B in the unit cost RAM model,

since in general the entries of B may be irrational, even if the entries of A are specified by

poly(n) bits. If instead we only want to output an approximation to the value ‖A − Ak‖2
F ,

then we can output a number Z for which OPT ≤ Z ≤ (1 + ε) OPT, that is, we do not incur

additive error.

When Ak does not exist, there still exists a rank-k tensor Ã for which ‖A − Ã‖2
F ≤

OPT +γ, for arbitrary γ > 0. We require there exists such a Ã for which if Ã =
∑k

i=1 ui ⊗

vi ⊗ wi, then the norms ‖ui‖2, ‖vi‖2, and ‖wi‖2 are bounded by 2poly(n).

The assumption in the previous two paragraphs that the factors of Ak and of Ã have

norm bounded by 2poly(n) is necessary in certain cases, e.g., if OPT = 0 and we are to write

down the factors in poly(n) time. An abridged version of our theorem is as follows.

Theorem 21.1.2 (Combination of Theorem 21.4.1 and 21.4.2, rank-k). Given a 3rd order

tensor A ∈ Rn×n×n, for any δ > 0, if Ak =
∑k

i=1 ui ⊗ vi ⊗wi exists and each of ‖ui‖2, ‖vi‖2,

and ‖wi‖2 is bounded by 2O(nδ), then there is a randomized algorithm running in O(nnz(A)+

n poly(k, 1/ε) + 2O(k2/ε)) · nδ time in the unit cost RAM model with words of size O(log n)

bits3, which outputs a (factorization of a) rank-k tensor B for which ‖A−B‖2
F ≤ (1+ε)‖A−

Ak‖2
F + 2−O(nδ). Further, we can output a number Z for which OPT ≤ Z ≤ (1 + ε) OPT

in the same amount of time. When Ak does not exist, if there exists a rank-k tensor Ã for

which ‖A− Ã‖2
F ≤ OPT +2−O(nδ) and Ã =

∑k
i=1 ui ⊗ vi ⊗ wi is such that the norms ‖ui‖2,

‖vi‖2, and ‖wi‖2 are bounded by 2O(nδ), then we can output a (factorization of a) rank-k

tensor Ã for which ‖A− Ã‖2
F ≤ (1 + ε) OPT +2−O(nδ).

3The entries of A are assumed to fit in nδ words.
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Our techniques for proving Theorem 21.1.1 and Theorem 21.1.2 open up avenues for

many other problems in linear algebra on tensors. We now define the problems and state

our results for them.

There is a long line of research on matrix column subset selection and CUR de-

composition [DMM08, BMD09, DR10, BDM11, FEGK13, BW14, WS15, ABF+16, SWZ17]

under operator, Frobenius, and entry-wise `1 norm. It is natural to consider tensor column

subset selection or tensor-CURT4, however most previous works either give error bounds

in terms of the tensor flattenings [DMM08], assume the original tensor has certain proper-

ties [OST08, FT15, TM17], consider the exact case which assumes the tensor has low rank

[CC10], or only fit a high dimensional cross-shape to the tensor rather than to all of its

entries [FMMN11]. Such works are not able to provide a (1 + ε)-approximation guarantee as

in the matrix case without assumptions. We consider tensor column, row, and tube subset

selection, with the goal being to find three matrices: a subset C ∈ Rn×c of columns of A, a

subset R ∈ Rn×r of rows of A, and a subset T ∈ Rn×t of tubes of A, such that there exists a

tensor U ∈ Rc×r×t for which

‖U(C,R, T )− A‖ξ ≤ α‖Ak − A‖ξ + γ, (21.2)

where γ = 0 if Ak exists and γ = 2− poly(n) otherwise, α > 1 is the approximation ratio, ξ is

either Frobenius norm or Entry-wise `1 norm, and U(C,R, T ) =
∑c

i=1

∑r
j=1

∑t
l=1 Ui,j,l ·Ci⊗

Rj ⊗ Tl. In tensor CURT decomposition, we also want to output U .

We provide a (nearly) input sparsity time algorithm for this, together with an alter-

native input sparsity time algorithm which chooses slightly larger factors C,R, and T .

4T denotes the tube which is the column in 3rd dimension of tensor.
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To do this, we combine Theorem 21.1.1 with the following theorem which, given a

factorization of a rank-k tensor B, obtains C, U , R, and T in terms of it:

Theorem 21.1.3 (Combination of Theorem 21.4.39 and 21.4.40, ‖‖F -norm, CURT decom-

position). Given a 3rd order tensor A ∈ Rn×n×n, let k ≥ 1, and let UB, VB,WB ∈ Rn×k

be given. There is an algorithm running in O(nnz(A) log n) + Õ(n2) poly(k, 1/ε) time (re-

spectively, O(nnz(A)) + n poly(k, 1/ε) time) which outputs a subset C ∈ Rn×c of columns

of A, a subset R ∈ Rn×r of rows of A, a subset T ∈ Rn×t of tubes of A, together with

a tensor U ∈ Rc×r×t with rank(U) = k such that c = r = t = O(k/ε) (respectively,

c = r = t = O(k log k+ k/ε)), and ‖U(C,R, T )−A‖2
F ≤ (1 + ε)‖UB ⊗ VB ⊗WB −A‖2

F holds

with probability at least 9/10.

Combining Theorems 21.1.2 and 21.1.3 (with B being a (1 +O(ε))-approximation to

A) we achieve Equation (21.2) with α = (1 + ε) and ξ = F with the optimal number of

columns, rows, tubes, and rank of U (we mention our matching lower bound later), though

the running time has an 2O(k2/ε) term in it. We note that instead combining Theorem 21.1.1

and Theorem 21.1.3 gives a bicriteria result for CURT without a 2O(k2/ε) term in the running

time, though it is suboptimal in the number of columns, rows, tubes, and rank of U .

As a side result worth stating, our analysis improves the best matrix CUR decom-

position algorithm under Frobenius norm [BW14], providing the first optimal nnz(A)-time

algorithm:

Theorem 21.1.4 (Informal Version of Theorem 21.6.1, Matrix CUR decomposition). There

is an algorithm, which given a matrix A ∈ Rn×d and an integer k ≥ 1, runs in O(nnz(A)) +

(n + d) poly(k, 1/ε) time and outputs three matrices: C ∈ Rn×c containing c columns of A,

1477



R ∈ Rr×d containing r rows of A, and U ∈ Rc×r with rank(U) = k for which r = c = O(k/ε)

and ‖CUR− A‖2
F ≤ (1 + ε) minrank−k Ak ‖Ak − A‖2

F , holds with probability at least 9/10.
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21.1.2 Our Techniques

Many of our proofs, in particular those for Theorem 21.1.1 and Theorem 21.1.2, are

based on what we call an “iterative existential proof”, which we then turn into an algorithm

in two different ways depending if we are proving Theorem 21.1.1 or Theorem 21.1.2.

Henceforth, we assume Ak exists; otherwise replace Ak with a suitably good tensor Ã

in what follows. Since Ak =
∑k

i=1 U
∗
i ⊗ V ∗i ⊗W ∗

i
5, we can create three n × k matrices U∗,

V ∗, and W ∗ whose columns are the vectors U∗i , V ∗i , and W ∗
i , respectively. Now we consider

the three different flattenings (or unfoldings) of Ak, which express Ak as an n × n2 matrix.

Namely, by thinking of Ak as the sum of outer products, we can write the three flattenings of

Ak as U∗ ·Z1, V ∗ ·Z2, and W ∗ ·Z3, where the rows of Z1 are vec(V ∗i ⊗W ∗
i ) 6 ( For simplicity,

we write Z1 = (V ∗> �W ∗>). 7 ), the rows of Z2 are vec(U∗i ⊗W ∗
i ), and the rows of Z3

are vec(U∗i ⊗ V ∗i ), for i ∈ [k]
def
= {1, 2, . . . , k}. Letting the three corresponding flattenings

of the input tensor A be A1, A2, and A3, by the symmetry of the Frobenius norm, we have

‖A−B‖2
F = ‖A1 − U∗Z1‖2

F = ‖A2 − V ∗Z2‖2
F = ‖A3 −W ∗Z3‖2

F .

Let us consider the hypothetical regression problem minU ‖A1−UZ1‖2
F . Note that we

do not know Z1, but we will not need to. Let r = O(k/ε), and suppose S1 is an n2×r matrix

of i.i.d. normal random variables with mean 0 and variance 1/r, denoted N(0, 1/r). Then

by standard results for regression (see, e.g., [Woo14b] for a survey), if Û is the minimizer to

5For simplicity, we define U ⊗ V ⊗W =
∑k
i=1 Ui ⊗ Vi ⊗Wi, where Ui is the i-th column of U .

6vec(V ∗i ⊗W ∗i ) denotes a row vector that has length n1n2 where V ∗i has length n1 and W ∗i has length n2.
7(V ∗> �W ∗>) denotes a k × n1n2 matrix where the i-th row is vec(V ∗i ⊗W ∗i ), where length n1 vector

V ∗i is the i-th column of n1 × k matrix V ∗, and length n2 vector W ∗i is the i-th column of n2 × k matrix
W ∗, ∀i ∈ [k].
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the smaller regression problem Û = argminU‖UZ1S1 − A1S1‖2
F , then

‖A1 − ÛZ1‖2
F ≤ (1 + ε)minU‖A1 − UZ1‖2

F . (21.3)

Moreover,Û = A1S1(Z1S1)†. Although we do not know know Z1, this implies Û is in the

column span of A1S1, which we do know, since we can flatten A to compute A1 and then

compute A1S1. Thus, this hypothetical regression argument gives us an existential statement

- there exists a good rank-k matrix Û in the column span of A1S1. We could similarly

define V̂ = A2S2(Z2S2)† and Ŵ = A3S3(Z3S3)† as solutions to the analogous regression

problems for the other two flattenings of A, which are in the column spans of A2S2 and

A3S3, respectively. Given A1S1, A2S2, and A3S3, which we know, we could hope there is a

good rank-k tensor in the span of the rank-1 tensors

{(A1S1)a ⊗ (A2S2)b ⊗ (A3S3)c}a,b,c∈[r]. (21.4)

However, an immediate issue arises. First, note that our hypothetical regression problem

guarantees that ‖A1− ÛZ1‖2
F ≤ (1 + ε)‖A−Ak‖2

F , and therefore since the rows of Z1 are of

the special form vec(V ∗i ⊗W ∗
i ), we can perform a “retensorization” to create a rank-k tensor

B =
∑

i Ûi⊗V ∗i ⊗W ∗
i from the matrix ÛZ1 for which ‖A−B‖2

F ≤ (1 + ε)‖A−Ak‖2
F . While

we do not know Û , since it is in the column span of A1S1, it implies that B is in the span

of the rank-1 tensors {(A1S1)a ⊗ V ∗b ⊗W ∗
c }a∈[r],b,c∈[k]. Analogously, we have that there is a

good rank-k tensor B in the span of the rank-1 tensors {U∗a ⊗ (A2S2)b ⊗W ∗
c }a,c∈[k],b∈[r], and

a good rank-k tensor B in the span of the rank-1 tensors {U∗a ⊗ V ∗b ⊗ (A3S3)c}a,b∈[k],c∈[r].

However, we do not know U∗ or V ∗, and it is not clear there is a rank-k tensor B for which

simultaneously its first factors are in the column span of A1S1, its second factors are in the
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column span of A2S2, and its third factors are in the column span of A3S3, i.e., whether

there is a good rank-k tensor B in the span of rank-1 tensors in (21.4).

We fix this by an iterative argument. Namely, we first compute A1S1, and write

Û = A1S1(Z1S1)†. We now redefine Z2 with respect to Û , so the rows of Z2 are vec(Ûi⊗W ∗
i )

for i ∈ [k], and consider the regression problem minV ‖A2 − V Z2‖2
F . While we do not

know Z2, if S2 is an n2 × r matrix of i.i.d. Gaussians, we again have the statement that

V̂ = A2S2(Z2S2)† satisfies

‖A2 − V̂ Z2‖2
F ≤ (1 + ε)minV ‖A2 − V Z2‖2

F by the regression guarantee with Gaussians

≤ (1 + ε)‖A2 − V ∗Z2‖2
F since V ∗ is no better than the minimizer V

= (1 + ε)‖A1 − ÛZ1‖2
F by retensorizing and flattening along a different dimension

≤ (1 + ε)2minU‖A1 − UZ1‖2
F by (21.3)

= (1 + ε)2‖A− Ak‖2
F by definition of Z1 .

Now we can retensorize V̂ Z2 to obtain a rank-k tensor B for which ‖A − B‖2
F = ‖A2 −

V̂ Z2‖2
F ≤ (1 + ε)2‖A−Ak‖2

F . Note that since the columns of V̂ are in the span of A2S2, and

the rows of Z2 are vec(Ûi⊗W ∗
i ) for i ∈ [k], where the columns of Û are in the span of A1S1,

it follows that B is in the span of rank-1 tensors {(A1S1)a ⊗ (A2S2)b ⊗ V̂c}a,b∈[r],c∈[k].

Suppose we now redefine Z3 so that it is now an r2×n2 matrix with rows vec((A1S1)a⊗

(A2S2)b) for all pairs a, b ∈ [r], and consider the regression problem minW ‖A3 −WZ3‖2
F .

Now observe that since we know Z3, and since we can form A3 by flattening A, we can

solve for W ∈ Rn×r2 in polynomial time by solving a regression problem. Retensorizing

WZ3 to a tensor B, it follows that we have found a rank-r2 = O(k2/ε2) tensor B for which
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‖A−B‖2
F ≤ (1 + ε)2‖A−Ak‖2

F = (1 +O(ε))‖A−Ak‖2
F , and the result follows by adjusting

ε by a constant factor.

To obtain the nnz(A) +n poly(k/ε) running time guarantee of Theorem 21.1.1, while

we can replace S1 and S2 with compositions of a sparse CountSketch matrix and a Gaussian

matrix (see chapter 2 of [Woo14b] for a survey), enabling us to compute A1S1 and A2S2 in

nnz(A) +n poly(k/ε) time, we still need to solve the regression problem minW ‖A3−WZ3‖2
F

quickly, and note that we cannot even write down Z3 without spending r2n2 time. Here we use

a different random matrix S3 called TensorSketch, which was introduced in [Pag13, PP13],

but for which we will need the stronger properties of a subspace embedding and approximate

matrix product shown to hold for it in [ANW14]. Given the latter properties, we can instead

solve the regression problem minW ‖A3S3 −WZ3S3‖2
F , and importantly A3S3 and Z3S3 can

be computed in nnz(A) + n poly(k/ε) time. Finally, this small problem can be solved in

n poly(k/ε) time.

If we want to output a rank-k solution as in Theorem 21.1.2, then we need to introduce

indeterminates at several places in the preceding argument and run a generic polynomial

optimization procedure which runs in time exponential in the number of indeterminates.

Namely, we write Û as A1S1X1, where X1 is an r × k matrix of indeterminates, we write V̂

as A2S2X2, where X2 is an r×k matrix of indeterminates, and we write Ŵ as A3S3X3, where

X3 is an r × k matrix of indeterminates. When executing the above iterative argument, we

let the rows of Z1 be the vectors vec(V ∗i ⊗W ∗
i ), the rows of Z2 be the vectors vec(Ûi⊗W ∗

i ),

and the rows of Z3 be the vectors vec(Ûi ⊗ Vi). Then Û is a (1 + ε)-approximate minimizer

to minU ‖A1 − UZ1‖F , while V̂ is a (1 + ε)-approximate minimizer to minV ‖A2 − V Z2‖F ,

while Ŵ is a (1 + ε)-approximate minimizer to minW ‖A3−WZ3‖F . Note that by assigning
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X1 = (Z1S1)†, X2 = (Z2S2)†, and X3 = (Z3S3)†, it follows that the rank-k tensor B =
∑k

i=1(A1S1X1)i⊗(A2S2X2)i⊗(A3S3X3)i satisfies ‖A−B‖2
F ≤ (1+ε)3‖A−Ak‖2

F , as desired.

Note that here the rows of Z2 are a function of X1, while the rows of Z3 are a function of

both X1 and X2. What is important for us though is that it suffices to minimize the degree-6

polynomial
∑

a,b,c∈[n](
∑k

i=1(A1S1X1)a,i · (A2S2X2)b,i · (A3S3X3)c,i − Aa,b,c)2, over the 3rk =

O(k2/ε) indeterminates X1, X2, X3, since we know there exists an assignment to X1, X2, and

X3 providing a (1 + O(ε))-approximate solution, and any solution X1, X2, and X3 found

by minimizing the above polynomial will be no worse than that solution. This polynomial

can be minimized up to additive 2− poly(n) additive error in poly(n) time [Ren92a, BPR96]

assuming the entries of U∗, V ∗, and W ∗ are bounded by 2poly(n), as assumed in Theorem

21.1.2. Similar arguments can be made for obtaining a relative error approximation to the

OPT as well as handling the case when Ak does not exist.

To optimize the running time to nnz(A), we can choose CountSketch matrices T1, T2, T3

of t = poly(k, 1/ε)×n dimensions and reapply the above iterative argument. Then it suffices

to minimize this small size degree-6 polynomial
∑

a,b,c∈[t](
∑k

i=1(T1A1S1X1)a,i ·(T2A2S2X2)b,i ·

(T3A3S3X3)c,i − (A(T1, T2, T3))a,b,c)
2, over the 3rk = O(k2/ε) indeterminates X1, X2, X3.

Outputting A1S1X1, A2S2X2, A3S3X3 then provides a (1 + ε)-approximate solution.

Our iterative existential argument provides a general framework for obtaining low

rank approximation results for tensors for many other error measures as well.
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21.1.3 Other Low Rank Approximation Algorithms Following Our Framework.

Column, row, tube subset selection, and CURT decomposition. In tensor column,

row, tube subset selection, the goal is to find three matrices: a subset C of columns of A, a

subset R of rows of A, and a subset T of tubes of A, such that there exists a small tensor

U for which ‖U(C,R, T ) − A‖2
F ≤ (1 + ε) OPT. We first choose two Gaussian matrices S1

and S2 with s1 = s2 = O(k/ε) columns, and form a matrix Z ′3 ∈ R(s1s2)×n2 with (i, j)-th

row equal to the vectorization of (A1S1)i ⊗ (A2S2)j. Motivated by the regression problem

minW ‖A3 − WZ ′3‖F , we sample d3 = O(s1s2/ε) columns from A3 and let D3 denote this

selection matrix. There are a few ways to do the sampling depending on the tradeoff between

the number of columns and running time, which we describe below. Proceeding iteratively, we

write down Z ′2 by setting its (i, j)-th row to the vectorization of (A1S1)i⊗ (A3D3)j. We then

sample d2 = O(s1d3/ε) columns from A2 and let D2 denote that selection matrix. Finally, we

define Z ′1 by setting its (i, j)-th row to be the vectorization of (A2D2)i⊗ (A3D3)j. We obtain

C = A1D1, R = A2D2 and T = A3D3. For the sampling steps, we can use a generalized

matrix column subset selection technique, which extends a column subset selection technique

of [BW14] in the context of CUR decompositions to the case when C is not necessarily a

subset of the input. This gives O(nnz(A) log n) + Õ(n2) poly(k, 1/ε) time. Alternatively,

we can use a technique we develop called tensor leverage score sampling described below,

yielding O(nnz(A)) + n poly(k, 1/ε) time.

A body of work in the matrix case has focused on finding the best possible number of

columns and rows of a CUR decomposition, and we can ask the same question for tensors.

It turns out that if one is given the factorization
∑k

i=1(UB)i ⊗ (VB)i ⊗ (WB)i of a rank-k

tensor B ∈ Rn×n×n with UB, VB,WB ∈ Rn×k, then one can find a set C of O(k/ε) columns,
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a set R of O(k/ε) rows, and a set T of O(k/ε) tubes of A, together with a rank-k tensor U

for which ‖U(C,R, T ) − A‖2
F ≤ (1 + ε)‖A − B‖2

F . This is based on an iterative argument,

where the initial sampling (which needs to be our generalized matrix column subset selection

rather than tensor leverage score sampling to achieve optimal bounds) is done with respect

to V >B �W>
B , and then an iterative argument is carried out. Since we show a matching lower

bound on the number of columns, rows, tubes and rank of U , these parameters are tight. The

algorithm is efficient if one is given a rank-k tensor B which is a (1 + O(ε))-approximation

to A; if not then one can use Theorem 21.1.2 and and this step will be exponential time

in k. If one just wants O(k log k + k/ε) columns, rows, and tubes, then one can achieve

O(nnz(A)) + n poly(k, 1/ε) time, if one is given B.

Column-row, row-tube, tube-column face subset selection, and CURT decompo-

sition. In tensor column-row, row-tube, tube-column face subset selection, the goal is to

find three tensors: a subset C ∈ Rc×n×n of row-tube faces of A, a subset R ∈ Rn×r×n of tube-

column faces of A, and a subset T ∈ Rn×n×t of column-row faces of A, such that there exists

a tensor U ∈ Rtn×cn×rn with small rank for which ‖U(T1, C2, R3) − A‖2
F ≤ (1 + ε) OPT,

where T1 ∈ Rn×tn denotes the matrix obtained by flattening the tensor T along the first

dimension, C2 ∈ Rn×cn denotes the matrix obtained by flattening the tensor C along the

second dimension, and R3 ∈ Rn×rn denotes the matrix obtained by flattening the tensor T

along the third dimension.

We solve this problem by first choosing two Gaussian matrices S1 and S2 with s1 =

s2 = O(k/ε) columns, and then forming matrix U3 ∈ Rn×s1s2 with (i, j)-th column equal to

(A1S1)i, as well as matrix V3 ∈ Rn×s1s2 with (i, j)-th column equal to (A2S2)j. Inspired by
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the regression problem minW∈Rn×s1s2 ‖V3 · (W> � U>3 ) − A2‖F , we sample d3 = O(s1s2/ε)

rows from A2 and let D3 ∈ Rn×n denote this selection matrix. In other words, D3 selects d3

tube-column faces from the original tensor A. Thus, we obtain a small regression problem:

minW ‖D3V3 · (W>�U>3 )−D3A2‖F . By retensorizing the objective function, we obtain the

problem minW ‖U3 ⊗ (D3V3) ⊗W − A(I,D3, I)‖F . Flattening the objective function along

the third dimension, we obtain minW ‖W · (U>3 � (D3V3)>) − (A(I,D3, I))3‖F which has

optimal solution (A(I,D3, I))3(U>3 � (D3V3)>)†. Let W ′ denote A(I,D3, I))3. In the next

step, we fix W2 = W ′(U>3 � (D3V3)>)† and U2 = U3, and consider the objective function

minV ‖U2 · (V > �W>
2 )−A1‖F . Applying a similar argument, we obtain V ′ = (A(D2, I, I))2

and U ′ = (A(I, I,D1)1). Let C denote A(D2, I, I), R denote A(I,D3, I), and T denote

A(I, I,D1). Overall, this algorithm selects poly(k, 1/ε) faces from each dimension.

Similar to our column-based CURT decomposition, our face-based CURT decompo-

sition has the property that if one is given the factorization
∑k

i=1(UB)i⊗ (VB)i⊗ (WB)i of a

rank-k tensor B ∈ Rn×n×n with UB, VB,WB ∈ Rn×k which is a (1 + O(ε))-approximation to

A, then one can find a set C of O(k/ε) row-tube faces, a set R of O(k/ε) tube-column faces,

and a set T of O(k/ε) column-row faces of A, together with a rank-k tensor U for which

‖U(T1, C2, R3)− A‖2
F ≤ (1 + ε) OPT.

Tensor multiple regression and tensor leverage score sampling. In the above we

need to consider standard problems for matrices in the context of tensors. Suppose we are

given a matrix A ∈ Rn1×n2n3 and a matrix B = (V >�W>) ∈ Rk×n2n3 with rows (Vi⊗Wi) for

an n2×k matrix V and n3×k matrixW . Using TensorSketch [Pag13, PP13, ANW14] one

can solve multiple regression minU ‖UB−A‖F without forming B in O(n2 +n3) poly(k, 1/ε)
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time, rather than the naïve O(n2n3) poly(k, 1/ε) time. However, this does not immediately

help us if we would like to sample columns of such a matrix B proportional to its leverage

scores. Even if we apply TensorSketch to compute a k × k change of basis matrix R in

O(n2 + n3) poly(k, log(n2n3)) time, for which the leverage scores of B are (up to a constant

factor) the squared column norms of R−1B, there are still n2n3 leverage scores and we

cannot write them all down! Nevertheless, we show we can still sample by them by using

that the matrix of interest is formed via a tensor product, which can be rewritten as a matrix

multiplication which we never need to explicily materialize. In more detail, for the i-th row

eiR
−1 of R−1, we create a matrix V ′i by scaling each of the columns of V > entrywise by the

entries of z. The squared norms of eiR−1B are exactly the squared entries of (V
′i)W>. We

cannot compute this matrix product, but we can first sample a column of it proportional to

its squared norm and then sample an entry in that column proportional to its square. To

sample a column, we compute G(V
′i)W> for a Gaussian matrix G with O(log n3) rows by

computing G ·V ′i, then computing (G ·V ′i) ·W>, which is O(n2 +n3) poly(k, log(n2n3)) total

time. After sampling a column, we compute the column exactly and sample a squared entry.

We do this for each i ∈ [k], first sampling an i proportional to ‖GV ′iW>‖2
F , then running

the above scheme on that i. The poly(log n) factor in the running time can be replaced by

poly(k) if one wants to avoid a poly(log n) dependence in the running time.

Entry-wise `1 low-rank approximation. We consider the problem of entrywise `1-low

rank approximation of an n×n×n tensor A, namely, the problem of finding a rank-k tensor

B for which ‖A−B‖1 ≤ poly(k, log n) OPT, where OPT = infrank-k B ‖A−B‖1, and where

for a tensor A, ‖A‖1 =
∑

i,j,k |Ai,j,k|. Our iterative existential argument can be applied in
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much the same way as for the Frobenius norm. We iteratively flatten A along each of its

three dimensions, obtaining A1, A2, and A3 as above, and iteratively build a good rank-k

solution B of the form (A1S1X1)⊗ (A2S2X2)⊗ (A3S3X3), where now the Si are matrices of

i.i.d. Cauchy random variables or sparse matrices of Cauchy random variables and the Xi

are O(k log k)×k matrices of indeterminates. For a matrix C and a matrix S of i.i.d. Cauchy

random variables with k columns, it is known [SWZ17] that the column span of CS contains

a poly(k log n)-approximate rank-k space with respect to the entrywise `1-norm for C. In

the case of tensors, we must perform an iterative flattening and retensorizing argument to

guarantee there exists a tensor B of the form above. Also, if we insist on outputting a rank-k

solution as opposed to a bicriteria solution, ‖(A1S1X1)⊗ (A2S2X2)⊗ (A3S3X3)−A‖1 is not

a polynomial of the Xi, and if we introduce sign variables for the n3 absolute values, the

running time of the polynomial solver will be 2# of variables = 2Ω(n3). We perform additional

dimensionality reduction by Lewis weight sampling [CP15] from the flattenings to reduce

the problem size to poly(k). This small problem still has Õ(k3) sign variables, and to obtain

a 2Õ(k2) running time we relax the reduced problem to a Frobenius norm problem, mildly

increasing the approximation factor by another poly(k) factor.

Combining the iterative existential argument with techniques in [SWZ17], we also

obtain an `1 CURT decomposition algorithm (which is similar to the Frobenius norm result

in Theorem 21.1.3), which can find Õ(k) columns, Õ(k) rows, Õ(k) tubes, and a tensor U .

Our algorithm starts from a given factorization of a rank-k tensor B = UB⊗VB⊗WB found

above. We compute a sampling and rescaling diagonal matrix D1 according to the Lewis

weights of matrix B1 = (V >B �W>
B ), where D1 has Õ(k) nonzero entries. Then we iteratively

construct B2, D2, B3 and D3. Finally we have C = A1D1 (selecting Õ(k) columns from
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Algorithm 21.1 Main Meta-Algorithm
1: procedure TensorLowRankApproxBicriteria(A, n, k, ε) . Theorem 21.1.1
2: Choose sketching matrices S2,S3(Composition of Gaussian and CountSketch.)
3: Choose sketching matrices T2,T3(CountSketch.)
4: Compute T2A2S2, T3A3S3.
5: Construct V̂ by setting (i, j)-th column to be (A2S2)i.
6: Construct Ŵ by setting (i, j)-th column to be (A3S3)j.
7: Construct matrix B by setting (i, j)-th row of B is vectorization of (T2A2S2)i ⊗

(T3A3S3)j.
8: Solve minU ‖UB − (A(I, T2, T3))1‖2

F .
9: return Û , V̂ , and Ŵ .
10: end procedure
11: procedure TensorLowRankApprox(A, n, k, ε) . Theorem 21.1.2
12: Choose sketching matrices S1,S2,S3(Composition of Gaussian and CountSketch.)
13: Choose sketching matrices T1,T2,T3(CountSketch.)
14: Compute T1A1S1, T2A2S2, T3A3S3.
15: Solve minX1,X2,X3 ‖(T1A1S1X1)⊗ (T2A2S2X2)⊗ (T3A3S3X3)− A(T1, T2, T3)‖2

F .
16: return A1S1X1, A2S2X2, and A3S3X3.
17: end procedure

A), R = A2D2 (selecting Õ(k) rows from A), T = A3D3 (selecting Õ(k) tubes from A) and

tensor U = ((B1D1)†)⊗ ((B2D2)†)⊗ ((B3D3)†).

Optimal matrix CUR decomposition. We also improve the nnz(A) log n+(n+d) poly(log n, k,

1/ε) running time of [BW14] for CUR decomposition of A ∈ Rn×d to nnz(A) + (n +

d) poly(k, 1/ε), while selecting the optimal number of columns, rows, and a rank-k ma-

trix U . Using [CW13, MM13, NN13a], we find a matrix Û with k orthonormal columns in

nnz(A) +n poly(k/ε) time for which minV ‖ÛV −A‖2
F ≤ (1 + ε)‖A−Ak‖2

F . Let s1 = Õ(k/ε2)

and S1 ∈ Rs1×n be a sampling/rescaling matrix by the leverage scores of Û . By strengthen-

ing the affine embedding analysis of [CW13] to leverage score sampling (the analysis of
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[CW13] gives a weaker analysis for affine embeddings using leverage scores which does

not allow approximation in the sketch space to translate to approximation in the origi-

nal space), with probability at least 0.99, for all X ′ which satisfy ‖S1ÛX
′ − S1A‖2

F ≤

(1 + ε′) minX ‖S1ÛX − S1A‖2
F , we have ‖ÛX ′ − A‖2

F ≤ (1 + ε) minX ‖ÛX − A‖2
F , where

ε′ = 0.0001ε. Applying our generalized row subset selection procedure, we can find Y,R for

which ‖S1ÛY R−S1A‖2
F ≤ (1+ε′) minX ‖S1ÛX−S1A‖2

F , where R contains O(k/ε′) = O(k/ε)

rescaled rows of S1A. A key point is that rescaled rows of S1A are also rescaled rows of A.

Then, ‖ÛY R−A‖2
F ≤ (1 + ε) minX ‖ÛX−A‖2

F . Finding Y,R can be done in d poly(s1/ε) =

d poly(k/ε) time. Now set V̂ = Y R. We can choose S2 to be a sampling/rescaling matrix,

and then find C,Z for which ‖CZV̂ S2−AS2‖2
F ≤ (1 + ε′) minX ‖XV̂ S2−AS2‖2

F in a similar

way, where C contains O(k/ε) rescaled columns of AS2, and thus also of A. We thus have

‖CZY R− A‖2
F ≤ (1 +O(ε))‖A− Ak‖2

F .
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21.1.4 Comparison to [BCV14]

[BCV14] shows for a third order n1 × n2 × n3 tensor A how to find a rank-k ten-

sor B for which ‖A − B‖2
F ≤ 5 OPT in poly(n1n2n3) exp(poly(k)) time. They generalize

this to q-th order tensors to find a rank-k tensor B for which ‖A − B‖2
F = O(q) OPT in

poly(n1n2 · · ·nq) exp(poly(qk)) time.

In contrast, we obtain a rank-k tensor B for which ‖A − B‖2
F ≤ (1 + ε) OPT in

nnz(A) +n ·poly(k/ε) + exp((k2/ε) poly(q)) time for every order q. Thus, we obtain a (1 + ε)

instead of an O(q) approximation. The O(q) approximation in [BCV14] seems inherent since

the authors apply triangle inequality q times, each time losing a constant factor. This seems

necessary since their argument is based on the span of the top k principal components in

the SVD in each flattening separately containing a good space to project onto for a given

mode. In contrast, our iterative existential argument chooses the space to project onto in

successive modes adaptively as a function of spaces chosen for previous modes, and thus we

obtain a (1 + ε)O(q) = (1 + O(εq))-approximation, which becomes a (1 + ε)-approximation

after replacing ε with ε/q. Also, importantly, our algorithm runs in nnz(A) +n · poly(k/ε) +

exp((k2/ε) poly(q)) time and there are multiple hurdles we overcome to achieve this, as

described in Section 21.1.2 above.

1491



21.1.5 A Roadmap

Roadmap Section 21.2 introduces notation and definitions. Section 21.3 includes several

tools. Our Frobenius norm low rank approximation algorithms are in Section 21.4. Sec-

tion 21.5 extends our results to general q-th order tensors.
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Figure 21.1: A 3rd order tensor with size 8× 8× 8.

21.2 Notation

For an n ∈ N+, let [n] denote the set {1, 2, · · · , n}.

For any function f , we define Õ(f) to be f · logO(1)(f). In addition to O(·) notation,

for two functions f, g, we use the shorthand f . g (resp. &) to indicate that f ≤ Cg (resp.

≥) for an absolute constant C. We use f h g to mean cf ≤ g ≤ Cf for constants c, C.

For a matrix A, we use ‖A‖2 to denote the spectral norm of A. For a tensor A, let

‖A‖ and ‖A‖2 (which we sometimes use interchangeably) denote the spectral norm of tensor

A,

‖A‖ = sup
x,y,z 6=0

|A(x, y, z)|
‖x‖ · ‖y‖ · ‖z‖ .

Let ‖A‖F denote the Frobenius norm of a matrix/tensor A, i.e., ‖A‖F is the square root of
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sum of squares of all the entries of A. For 1 ≤ p < 2, we use ‖A‖p to denote the entry-wise

`p-norm of a matrix/tensor A, i.e., ‖A‖p is the p-th root of the sum of p-th powers of the

absolute values of the entries of A. ‖A‖1 will be an important special case of ‖A‖p, which

corresponds to the sum of absolute values of all of the entries.

Let nnz(A) denote the number of nonzero entries of A. Let det(A) denote the de-

terminant of a square matrix A. Let A> denote the transpose of A. Let A† denote the

Moore-Penrose pseudoinverse of A. Let A−1 denote the inverse of a full rank square matrix.

For a 3rd order tensor A ∈ Rn×n×n, its x-mode fibers are called column fibers (x = 1),

row fibers (x = 2) and tube fibers (x = 3). For tensor A, we use A∗,j,l to denote its (j, l)-th

column, we use Ai,∗,l to denote its (i, l)-th row, and we use Ai,j,∗ to denote its (i, j)-th tube.

A tensor A is symmetric if and only if for any i, j, k, Ai,j,k = Ai,k,j = Aj,i,k = Aj,k,i =

Ak,i,j = Ak,j,i.

For a tensor A ∈ Rn1×n2×n3 , we use > to denote rotation (3 dimensional transpose)

so that A> ∈ Rn3×n1×n2 . For a tensor A ∈ Rn1×n2×n3 and matrix B ∈ Rn3×k, we define the

tensor-matrix dot product to be A ·B ∈ Rn1×n2×k.

We use ⊗ to denote outer product, ◦ to denote entrywise product, and · to denote

dot product. Given two column vectors u, v ∈ Rn, let u⊗ v ∈ Rn×n and (u⊗ v)i,j = ui · vj,

u>v =
∑n

i=1 uivi ∈ R and (u ◦ v)i = uivi.

Definition 21.2.1 (⊗ product for vectors). Given q vectors u1 ∈ Rn1 , u2 ∈ Rn2 , · · · ,

uq ∈ Rnq , we use u1⊗u2⊗ · · ·⊗uq to denote an n1×n2× · · ·×nq tensor such that, for each

(j1, j2, · · · , jq) ∈ [n1]× [n2]× · · · × [nq],

(u1 ⊗ u2 ⊗ · · · ⊗ uq)j1,j2,··· ,jq = (u1)j1(u2)j2 · · · (uq)jq ,
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Figure 21.2: Flattening. We flatten a third order 4 × 4 × 4 tensor along the 1st dimension
to obtain a 4× 16 matrix. The red blocks correspond to a column in the original third order
tensor, the blue blocks correspond to a row in the original third order tensor, and the green
blocks correspond to a tube in the original third order tensor.

where (ui)ji denotes the ji-th entry of vector ui.

Definition 21.2.2 (vec(), convert tensor into a vector). Given a tensor A ∈ Rn1×n2×···×nq ,

let vec(A) ∈ R1×
∏q
i=1 ni be a row vector, such that the t-th entry of vec(A) is Aj1,j2,··· ,jq where

t = (j1 − 1)
∏q

i=2 ni + (j2 − 1)
∏q

i=3 ni + · · ·+ (jq−1 − 1)nq + jq.

For example if u =

[
1
2

]
, v =




3
4
5


 then vec(u⊗ v) =

[
3 4 5 6 8 10

]
.

Definition 21.2.3 (⊗ product for matrices). Given q matrices U1 ∈ Rn1×k, U2 ∈ Rn2×k,

· · · , Uq ∈ Rnq×k, we use U1⊗U2⊗ · · · ⊗Uq to denote an n1× n2× · · · × nq tensor which can

be written as,

U1 ⊗ U2 ⊗ · · · ⊗ Uq =
k∑

i=1

(U1)i ⊗ (U2)i ⊗ · · · ⊗ (Uq)i ∈ Rn1×n2×···×nq ,

where (Uj)i denotes the i-th column of matrix Uj ∈ Rnj×k.

Definition 21.2.4 (� product for matrices). Given q matrices U1 ∈ Rk×n1 , U2 ∈ Rk×n2 ,

· · · , Uq ∈ Rk×nq , we use U1 � U2 � · · · � Uq to denote a k ×∏q
j=1 nj matrix where the i-th
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row of U1 � U2 � · · · � Uq is the vectorization of (U1)i ⊗ (U2)i ⊗ · · · ⊗ (Uq)
i, i.e.,

U1 � U2 � · · · � Uq =




vec((U1)1 ⊗ (U2)1 ⊗ · · · ⊗ (Uq)
1)

vec((U1)2 ⊗ (U2)2 ⊗ · · · ⊗ (Uq)
2)

· · ·
vec((U1)k ⊗ (U2)k ⊗ · · · ⊗ (Uq)

k)


 ∈ Rk×

∏q
j=1 nj .

where (Uj)
i ∈ Rnj denotes the i-th row of matrix Uj ∈ Rk×nj .

Definition 21.2.5 (Flattening vs unflattening/retensorizing). Suppose we are given three

matrices U ∈ Rn1×k, V ∈ Rn2×k, W ∈ Rn3×k. Let tensor A ∈ Rn1×n2×n3 denote U ⊗ V ⊗W .

Let A1 ∈ Rn1×n2n3 denote a matrix obtained by flattening tensor A along the 1st dimension.

Then A1 = U · B, where B = V > �W> ∈ Rk×n2n3 denotes the matrix for which the i-th

row is vec(Vi ⊗Wi),∀i ∈ [k]. We let the “flattening” be the operation that obtains A1 by

A. Given A1 = U · B, we can obtain tensor A by unflattening/retensorizing A1. We let

“retensorization” be the operation that obtains A from A1. Similarly, let A2 ∈ Rn2×n1n3

denote a matrix obtained by flattening tensor A along the 2nd dimension, so A2 = V · C,

where C = W>�U> ∈ Rk×n1n3 denotes the matrix for which the i-th row is vec(Wi⊗Ui),∀i ∈

[k]. Let A3 ∈ Rn3×n1n2 denote a matrix obtained by flattening tensor A along the 3rd

dimension. Then, A3 = W ·D, where D = U>�V > ∈ Rk×n1n2 denotes the matrix for which

the i-th row is vec(Ui ⊗ Vi),∀i ∈ [k].

Definition 21.2.6 ( (·, ·, ·) operator for tensors and matrices). Given tensor A ∈ Rn1×n2×n3

and three matrices B1 ∈ Rn1×d1 , B2 ∈ Rn2×d2 , B3 ∈ Rn3×d3 , we define tensors A(B1, I, I) ∈

Rd1×n2×n3 , A(I, B2, I) ∈ Rn1×d2×n3 , A(I, I, B3) ∈ Rn1×n2×d3 , A(B1, B2, I) ∈ Rd1×d2×n3 ,
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A(B1, B2, B3) ∈ Rd1×d2×d3 as follows,

A(B1, I, I)i,j,l =

n1∑

i′=1

Ai′,j,l(B1)i′,i, ∀(i, j, l) ∈ [d1]× [n2]× [n3]

A(I, B2, I)i,j,l =

n2∑

j′=1

Ai,j′,l(B2)j′,j, ∀(i, j, l) ∈ [n1]× [d2]× [n3]

A(I, I, B3)i,j,l =

n3∑

l′=1

Ai,j,l′(B3)l′,l, ∀(i, j, l) ∈ [n1]× [n2]× [d3]

A(B1, B2, I)i,j,l =

n1∑

i′=1

n2∑

j′=1

Ai′,j′,l(B1)i′,i(B2)j′,j, ∀(i, j, l) ∈ [d1]× [d2]× [n3]

A(B1, B2, B3)i,j,l =

n1∑

i′=1

n2∑

j′=1

n3∑

l′=1

Ai′,j′,l′(B1)i′,i(B2)j′,j(B3)l′,l, ∀(i, j, l) ∈ [d1]× [d2]× [d3]

Note that B>1 A = A(B1, I, I), AB3 = A(I, I, B3) and B>1 AB3 = A(B1, I, B3). In our

paper, if ∀i ∈ [3], Bi is either a rectangular matrix or a symmetric matrix, then we sometimes

use A(B1, B2, B3) to denote A(B>1 , B
>
2 , B

>
3 ) for simplicity. Similar to the (·, ·, ·) operator on

3rd order tensors, we can define the (·, ·, · · · , ·) operator on higher order tensors.

For the matrix case, min
rank−k A′

‖A − A′‖2
F always exists. However, this is not true for

tensors [DSL08]. For convenience, we redefine the notation of OPT and min.

Definition 21.2.7. Given tensor A ∈ Rn1×n2×n3 , k > 0, if min
rank−k A′

‖A − A′‖2
F does not

exist, then we define OPT = inf
rank−k A′

‖A− A′‖2
F + γ for sufficiently small γ > 0, which can

be an arbitrarily small positive function of n. We let min
rank−k A′

‖A − A′‖2
F be the value of

OPT, and we let arg min
rank−k A′

‖A − A′‖2
F be a rank−k tensor Ak ∈ Rn1×n2×n3 which satisfies

‖A− Ak‖2
F = OPT .
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Tensor Column Row Tube

Figure 21.3: A 3rd order tensor contains n2 columns, n2 rows, and n2 tubes.

21.3 Preliminaries

Section 21.3.1 provides the definitions for Subspace Embeddings and Approximate

Matrix Product. We introduce the definition for Tensor-CURT decomposition in Section 21.3.2.

Section 21.3.3 presents a tool which we call a “polynomial system verifier”. Section 21.3.4

introduces a tool which is able to determine the minimum nonzero value of the absolute

value of a polynomial evaluated on a set, provided the polynomial is never equal to 0 on

that set. Section 21.3.5 shows how to relax an `p problem to an `2 problem. We provide

definitions for CountSketch and Gaussian transforms in Section 21.3.6. We present Cauchy

and p-stable transforms in Section 21.3.7. We introduce leverage scores and Lewis weights

in Section 21.3.8 and Section 21.3.9. Finally, we explain an extension of CountSketch, which

is called TensorSketch in Section 21.3.10.
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21.3.1 Subspace Embeddings and Approximate Matrix Product

Definition 21.3.1 (Subspace Embedding). A (1± ε) `2-subspace embedding for the column

space of an n× d matrix A is a matrix S for which for all x ∈ Rd, ‖SAx‖2
2 = (1± ε)‖Ax‖2

2.

Definition 21.3.2 (Approximate Matrix Product). Let 0 < ε < 1 be a given approximation

parameter. Given matrices A and B, where A and B each have n rows, the goal is to output

a matrix C so that ‖A>B − C‖F ≤ ε‖A‖F‖B‖F . Typically C has the form A>S>SB, for a

random matrix S with a small number of rows. See, e.g., Lemma 32 of [CW13] for a number

of example matrices S with O(ε−2) rows for which this property holds.
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Tensor A column-row face

.

Tensor A column-tube face

.

Tensor A row-tube face

.

Figure 21.4: A third order tensor has three types of faces: the column-row faces, the column-
tube faces, and the row-tube faces
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21.3.2 Tensor CURT decomposition

We first review matrix CUR decompositions:

Definition 21.3.3 (Matrix CUR, exact). Given a matrix A ∈ Rn×d, we choose C ∈ Rn×c

to be a subset of columns of A and R ∈ Rr×n to be a subset of rows of A. If there exists a

matrix U ∈ Rc×r such that A can be written as,

CUR = A,

then we say C,U,R is matrix A’s CUR decomposition.

Definition 21.3.4 (Matrix CUR, approximate). Given a matrix A ∈ Rn×d, a parameter

k ≥ 1, an approximation ratio α > 1, and a norm ‖‖ξ, we choose C ∈ Rn×c to be a subset

of columns of A and R ∈ Rr×n to be a subset of rows of A. Then if there exists a matrix

U ∈ Rc×r such that,

‖CUR− A‖ξ ≤ α min
rank−k Ak

‖Ak − A‖ξ,

where ‖‖ξ can be operator norm, Frobenius norm or Entry-wise `1 norm, we say that C,U,R

is matrix A’s approximate CUR decomposition, and sometimes just refer to this as a CUR

decomposition.

Definition 21.3.5 ([Bou11]). Given matrix A ∈ Rm×n, integer k, and matrix C ∈ Rm×r

with r > k, we define the matrix Πξ
C,k(A) ∈ Rm×n to be the best approximation to A (under

the ξ-norm) within the column space of C of rank at most k; so, Πξ
C,k(A) ∈ Rm×n minimizes

the residual ‖A− Â‖ξ, over all Â ∈ Rm×n in the column space of C of rank at most k.

We define the following notion of tensor-CURT decomposition.
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Definition 21.3.6 (Tensor CURT, exact). Given a tensor A ∈ Rn1×n2×n3 , we choose three

sets of pair of coordinates S1 ⊆ [n2] × [n3], S2 ⊆ [n1] × [n3], S3 ⊆ [n1] × [n2]. We define

c = |S1|, r = |S2| and t = |S3|. Let C ∈ Rn1×c denote a subset of columns of A, R ∈ Rn2×r

denote a subset of rows of A, and T ∈ Rn3×t denote a subset of tubes of A. If there exists a

tensor U ∈ Rc×r×t such that A can be written as

(((U · T>)> ·R>)> · C>)> = A,

or equivalently,

U(C,R, T ) = A,

or equivalently,

∀(i, j, l) ∈ [n1]× [n2]× [n3], Ai,j,l =
c∑

u1=1

r∑

u2=1

t∑

u3=1

Uu1,u2,u3Ci,u1Rj,u2Tl,u3 ,

then we say C,U,R, T is tensor A’s CURT decomposition.

Definition 21.3.7 (Tensor CURT, approximate). Given a tensor A ∈ Rn1×n2×n3 , for some

k ≥ 1, for some approximation α > 1, for some norm ‖‖ξ, we choose three sets of pair of

coordinates S1 ⊆ [n2] × [n3], S2 ⊆ [n1] × [n3], S3 ⊆ [n1] × [n2]. We define c = |S1|, r = |S2|

and t = |S3|. Let C ∈ Rn1×c denote a subset of columns of A, R ∈ Rn2×r denote a subset of

rows of A, and T ∈ Rn3×t denote a subset of tubes of A. If there exists a tensor U ∈ Rc×r×t

such that

‖U(C,R, T )− A‖ξ ≤ α min
rank−k Ak

‖Ak − A‖ξ,

where ‖‖ξ is operator norm, Frobenius norm or Entry-wise `1 norm, then we refer to C,U,R, T

as an approximate CUR decomposition of A, and sometimes just refer to this as a CURT

decomposition of A.
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Tensor Selecting a subset of columns

.

Tensor Selecting a subset of rows

.

Tensor Selecting a subset of tubes

.

Figure 21.5: Column subset selection, row subset selection and tube subset selection.
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Recently, [TM17] studied a very different face-based tensor-CUR decomposition,

which selects faces from tensors rather than columns. To achieve their results, [TM17] need

to make several incoherence assumptions on the original tensor. Their sample complexity

depends on log n, and they only sample two of the three dimensions. We will provide more

general face-based tensor CURT decompositions.

Definition 21.3.8 (Tensor (face-based) CURT, exact). Given a tensor A ∈ Rn1×n2×n3 , we

choose three sets of coordinates S1 ⊆ [n1], S2 ⊆ [n2], S3 ⊆ [n3]. We define c = |S1|, r = |S2|

and t = |S3|. Let C ∈ Rc×n2×n3 denote a subset of row-tube faces of A, R ∈ Rn1×r×n3 denote

a subset of column-tube faces of A, and T ∈ Rn1×n2×t denote a subset of column-row faces

of A. Let C2 ∈ Rn2×cn3 denote the matrix obtained by flattening the tensor C along the

second dimension. Let R3 ∈ Rn3×rn1 denote the matrix obtained by flattening the tensor R

along the third dimension. Let T1 ∈ Rn1×tn2 denote the matrix obtained by flattening the

tensor T along the first dimension. If there exists a tensor U ∈ Rtn2×cn3×rn1 such that A can

be written as

tn2∑

i=1

cn3∑

j=1

rn1∑

l=1

Ui,j,l(T1)l ⊗ (C2)i ⊗ (R3)j = A,

U(T1, C2, R3) = A,

or equivalently,

∀(i′, j′, l′) ∈ [n1]× [n2]× [n3], Ai,j,l =

tn1∑

i=1

cn3∑

j=1

rn2∑

l=1

Ui,j,l(T1)i′,i(C2)j′,j(R3)l′,l,

then we say C,U,R, T is tensor A’s (face-based) CURT decomposition.
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Definition 21.3.9 (Tensor (face-based) CURT, approximate). Given a tensorA ∈ Rn1×n2×n3 ,

for some k ≥ 1, for some approximation α > 1, for some norm ‖‖ξ,we choose three sets of

coordinates S1 ⊆ [n1], S2 ⊆ [n2], S3 ⊆ [n3]. We define c = |S1|, r = |S2| and t = |S3|.

Let C ∈ Rc×n2×n3 denote a subset of row-tube faces of A, R ∈ Rn1×r×n3 denote a subset

of column-tube faces of A, and T ∈ Rn1×n2×t denote a subset of column-row faces of A.

Let C2 ∈ Rn2×cn3 denote the matrix obtained by flattening the tensor C along the second

dimension. Let R3 ∈ Rn3×rn1 denote the matrix obtained by flattening the tensor R along

the third dimension. Let T1 ∈ Rn1×tn2 denote the matrix obtained by flattening the tensor

T along the first dimension. If there exists a tensor U ∈ Rtn2×cn3×rn1 such that

‖U(T1, C2, R3)− A‖ξ ≤ α min
rank−k Ak

‖Ak − A‖ξ,

where ‖‖ξ is operator norm, Frobenius norm or Entry-wise `1 norm, then we refer to C,U,R, T

as an approximate CUR decomposition of A, and sometimes just refer to this as a (face-

based) CURT decomposition of A.
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Tensor A subset of columns

C

A subset of rows

R

A subset of tubes

T
U

Figure 21.6: An example tensor CURT decomposition.

21.3.3 Polynomial system verifier

We use the polynomial system verifiers independently developed by Renegar [Ren92a,

Ren92b] and Basu et al. [BPR96].

Theorem 21.3.1 (Decision Problem [Ren92a, Ren92b, BPR96]). Given a real polynomial

system P (x1, x2, · · · , xv) having v variables andm polynomial constraints fi(x1, x2, · · · , xv)∆i0,∀i ∈

[m], where ∆i is any of the “standard relations”: {>,≥,=, 6=,≤, <}, let d denote the maxi-

mum degree of all the polynomial constraints and let H denote the maximum bitsize of the

coefficients of all the polynomial constraints. Then in

(md)O(v) poly(H),

time one can determine if there exists a solution to the polynomial system P .

Recently, this technique has been used to solve a number of low-rank approximation

and matrix factorization problems [AGKM12, Mad13, CW15a, BDL16, RSW16, SWZ17].
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21.3.4 Lower bound on the cost of a polynomial system

An important result we use is the following lower bound on the minimum value

attained by a polynomial restricted to a compact connected component of a basic closed

semi-algebraic subset of Rv.

Theorem 21.3.2 ([JPT13]). Let T = {x ∈ Rv|f1(x) ≥ 0, · · · , f`(x) ≥ 0, f`+1(x) =

0, · · · , fm(x) = 0} be defined by polynomials f1, · · · , fm ∈ Z[x1, · · · , xv] with n ≥ 2, de-

grees bounded by an even integer d, and coefficients of absolute value at most H, and let C

be a compact connected (in the topological sense) component of T . Let g ∈ Z[x1, · · · , xv] be

a polynomial of degree at most d and coefficients of absolute value bounded by H. Then, the

minimum value that g takes over C satisfies that if it is not zero, then its absolute value is

greater than or equal to

(24−v/2H̃dv)−v2vdv ,

where H̃ = max{H, 2v + 2m}.

While the above theorem involves notions from topology, we shall apply it in an ele-

mentary way. Namely, in our setting T will be bounded and so every connected component,

which is by definition closed, will also be bounded and therefore compact. As the connected

components partition T the theorem will just be applied to give a global minimum value of

g on T provided that it is non-zero.
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21.3.5 Frobenius norm and `2 relaxation

Theorem 21.3.3 (Generalized rank-constrained matrix approximations, Theorem 2 in [FT07]).

Given matrices A ∈ Rn×d, B ∈ Rn×p, and C ∈ Rq×d, let the SVD of B be B = UBΣBV
>
B

and the SVD of C be C = UCΣCV
>
C . Then,

B†(UBU
>
BAVCC

>
C )kC

† = arg min
rank−k X∈Rp×q

‖A−BXC‖F ,

where (UBU
>
BAVCV

>
C )k ∈ Rp×q is of rank at most k and denotes the best rank-k approxima-

tion to UBU>BAVCV >C ∈ Rp×d in Frobenius norm.

Claim 21.3.4 (`2 relaxation of `p-regression). Let p ∈ [1, 2). For any A ∈ Rn×d and b ∈ Rn,

define x∗ = arg min
x∈Rd

‖Ax− b‖p and x′ = arg min
x∈Rd

‖Ax− b‖2. Then,

‖Ax∗ − b‖p ≤ ‖Ax′ − b‖p ≤ n1/p−1/2 · ‖Ax∗ − b‖p.

Claim 21.3.5 ((Matrix) Frobenius norm relaxation of `p-low rank approximation). Let

p ∈ [1, 2) and for any matrix A ∈ Rn×d, define A∗ = arg min
rank−k B∈Rn×d

‖B − A‖p and A′ =

arg min
rank−k B∈Rn×d

‖B − A‖F . Then

‖A∗ − A‖p ≤ ‖A′ − A‖p ≤ (nd)1/p−1/2‖A∗ − A‖p.

Claim 21.3.6 ((Tensor) Frobenius norm relaxation of `p-low rank approximation). Let p ∈

[1, 2) and for any matrix A ∈ Rn1×n2×n3, define

A∗ = arg min
rank−k B∈Rn1×n2×n3

‖B − A‖p

and

A′ = arg min
rank−k B∈Rn1×n2×n3

‖B − A‖F .
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Then

‖A∗ − A‖p ≤ ‖A′ − A‖p ≤ (n1n2n3)1/p−1/2‖A∗ − A‖p.
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21.3.6 CountSketch and Gaussian transforms

Definition 21.3.10 (Sparse embedding matrix or CountSketch transform). A CountSketch

transform is defined to be Π = σ · ΦD ∈ Rm×n. Here, σ is a scalar, D is an n × n random

diagonal matrix with each diagonal entry independently chosen to be +1 or −1 with equal

probability, and Φ ∈ {0, 1}m×n is an m× n binary matrix with Φh(i),i = 1 and all remaining

entries 0, where h : [n] → [m] is a random map such that for each i ∈ [n], h(i) = j

with probability 1/m for each j ∈ [m]. For any matrix A ∈ Rn×d, ΠA can be computed

in O(nnz(A)) time. For any tensor A ∈ Rn×d1×d2 , ΠA can be computed in O(nnz(A))

time. Let Π1,Π2,Π3 denote three CountSktech transforms. For any tensor A ∈ Rn1×n2×n3 ,

A(Π1,Π2,Π3) can be computed in O(nnz(A)) time.

If the above scalar σ is not specified in the context, we assume the scalar σ to be 1.

Definition 21.3.11 (Gaussian matrix or Gaussian transform). Let S = σ · G ∈ Rm×n

where σ is a scalar, and each entry of G ∈ Rm×n is chosen independently from the standard

Gaussian distribution. For any matrix A ∈ Rn×d, SA can be computed in O(m · nnz(A))

time. For any tensor A ∈ Rn×d1×d2 , SA can be computed in O(m · nnz(A)) time.

If the above scalar σ is not specified in the context, we assume the scalar σ to be

1/
√
m. In most places, we can combine CountSketch and Gaussian transforms to achieve

the following:

Definition 21.3.12 (CountSketch + Gaussian transform). Let S ′ = SΠ, where Π ∈ Rt×n

is the CountSketch transform (defined in Definition 21.3.10) and S ∈ Rm×t is the Gaussian

transform (defined in Definition 21.3.11). For any matrix A ∈ Rn×d, S ′A can be computed

in O(nnz(A) + dtmω−2) time, where ω is the matrix multiplication exponent.
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Lemma 21.3.7 (Affine Embedding - Theorem 39 in [CW13]). Given matrices A ∈ Rn×r, B ∈

Rn×d, and rank(A) = k, let m = poly(k/ε), S ∈ Rm×n be a sparse embedding matrix

(Definition 21.3.10) with scalar σ = 1. Then with probability at least 0.999, ∀X ∈ Rr×d, we

have

(1− ε) · ‖AX −B‖2
F ≤ ‖S(AX −B)‖2

F ≤ (1 + ε)‖AX −B‖2
F .

Lemma 21.3.8 (see, e.g., Lemma 10 in version 1 of [BWZ16]8). Let m = Ω(k/ε), S = 1√
m
·G,

where G ∈ Rm×n is a random matrix where each entry is an i.i.d Gaussian N(0, 1). Then

with probability at least 0.998, S satisfies (1± 1/8) Subspace Embedding (Definition 21.3.1)

for any fixed matrix C ∈ Rn×k, and it also satisfies O(
√
ε/k) Approximate Matrix Product

(Definition 21.3.2) for any fixed matrix A and B which has the same number of rows.

Lemma 21.3.9 (see, e.g., Lemma 11 in version 1 of [BWZ16]). Let m = Ω(k2 + k/ε),

Π ∈ Rm×n, where Π is a sparse embedding matrix (Definition 21.3.10) with scalar σ = 1, then

with probability at least 0.998, S satisfies (1± 1/8) Subspace Embedding (Definition 21.3.1)

for any fixed matrix C ∈ Rn×k, and it also satisfies O(
√
ε/k) Approximate Matrix Product

(Definition 21.3.2) for any fixed matrix A and B which has the same number of rows.

Lemma 21.3.10 (see, e.g., Lemma 12 in version 1 of [BWZ16]). Let m2 = Ω(k2 + k/ε),

Π ∈ Rm2×n, where Π is a sparse embedding matrix (Definition 21.3.10) with scalar σ = 1.

Let m1 = Ω(k/ε), S = 1√
m1
·G, where G ∈ Rm1×m2 is a random matrix where each entry is

an i.i.d Gaussian N(0, 1). Let S ′ = SΠ. Then with probability at least 0.99, S ′ is a (1±1/3)

Subspace Embedding (Definition 21.3.1) for any fixed matrix C ∈ Rn×k, and it also satisfies

8 https://arxiv.org/pdf/1504.06729v1.pdf
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O(
√
ε/k) Approximate Matrix Product (Definition 21.3.2) for any fixed matrix A and B

which have the same number of rows.

Theorem 21.3.11 (Theorem 36 in [CW13]). Given A ∈ Rn×k, B ∈ Rn×d, suppose S ∈ Rm×n

is such that S is a (1± 1√
2
) Subspace Embedding for A, and satisfies O(

√
ε/k) Approximate

Matrix Product for matrices A and C where C with n rows, where C depends on A and B.

If

X̂ = arg min
X∈Rk×d

‖SAX − SB‖2
F ,

then

‖AX̂ −B‖2
F ≤ (1 + ε) min

X∈Rk×d
‖AX −B‖2

F .
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21.3.7 Cauchy and p-stable transforms

Definition 21.3.13 (Dense Cauchy transform). Let S = σ · C ∈ Rm×n where σ is a scalar,

and each entry of C ∈ Rm×n is chosen independently from the standard Cauchy distribution.

For any matrix A ∈ Rn×d, SA can be computed in O(m · nnz(A)) time.

Definition 21.3.14 (Sparse Cauchy transform). Let Π = σ · SC ∈ Rm×n, where σ is a

scalar, S ∈ Rm×n has each column chosen independently and uniformly from the m standard

basis vectors of Rm, and C ∈ Rn×n is a diagonal matrix with diagonals chosen independently

from the standard Cauchy distribution. For any matrix A ∈ Rn×d, ΠA can be computed in

O(nnz(A)) time. For any tensor A ∈ Rn×d1×d2 , ΠA can be computed in O(nnz(A)) time.

Let Π1 ∈ Rm1×n1 ,Π2 ∈ Rm2×n2 ,Π3 ∈ Rm3×n3 denote three sparse Cauchy transforms. For

any tensor A ∈ Rn1×n2×n3 , A(Π1,Π2,Π3) ∈ Rm1×m2×m3 can be computed in O(nnz(A)) time.

Definition 21.3.15 (Dense p-stable transform). Let p ∈ (1, 2). Let S = σ · C ∈ Rm×n,

where σ is a scalar, and each entry of C ∈ Rm×n is chosen independently from the standard

p-stable distribution. For any matrix A ∈ Rn×d, SA can be computed in O(m nnz(A)) time.

Definition 21.3.16 (Sparse p-stable transform). Let p ∈ (1, 2). Let Π = σ · SC ∈ Rm×n,

where σ is a scalar, S ∈ Rm×n has each column chosen independently and uniformly from the

m standard basis vectors of Rm, and C ∈ Rn×n is a diagonal matrix with diagonals chosen

independently from the standard p-stable distribution. For any matrix A ∈ Rn×d, ΠA can

be computed in O(nnz(A)) time. For any tensor A ∈ Rn×d1×d2 , ΠA can be computed in

O(nnz(A)) time. Let Π1 ∈ Rm1×n1 ,Π2 ∈ Rm2×n2 ,Π3 ∈ Rm3×n3 denote three sparse p-stable

transforms. For any tensor A ∈ Rn1×n2×n3 , A(Π1,Π2,Π3) ∈ Rm1×m2×m3 can be computed in

O(nnz(A)) time.
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21.3.8 Leverage scores

Definition 21.3.17 (Leverage scores). Let U ∈ Rn×k have orthonormal columns, and let

pi = u2
i /k, where u2

i = ‖e>i U‖2
2 is the i-th leverage score of U .

Definition 21.3.18 (Leverage score sampling). Given A ∈ Rn×d with rank k, let U ∈ Rn×k

be an orthonormal basis of the column space of A, and for each i let pi be the squared row

norm of the i-th row of U , i.e., the i-th leverage score. Let k · pi denote the i-th leverage

score of U scaled by k. Let β > 0 be a constant and q = (q1, · · · , qn) denote a distribution

such that, for each i ∈ [n], qi ≥ βpi. Let s be a parameter. Construct an n × s sampling

matrix B and an s× s rescaling matrix D as follows. Initially, B = 0n×s and D = 0s×s. For

each column j of B, D, independently, and with replacement, pick a row index i ∈ [n] with

probability qi, and set Bi,j = 1 and Dj,j = 1/
√
qis. We denote this procedure Leverage

score sampling according to the matrix A.
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21.3.9 Lewis weights

We follow the exposition of Lewis weights from [CP15].

Definition 21.3.19. For a matrix A, let ai denote the ith row of A, where ai(= (Ai)>) is a

column vector. The statistical leverage score of a row ai is

τi(A)
def
= a>i (A>A)−1ai = ‖(A>A)−1/2ai‖2

2.

For a matrix A and norm p, the `p Lewis weights w are the unique weights such that for

each row i we have

wi = τi(W
1/2−1/pA).

or equivalently,

a>i (A>W 1−2/pA)−1ai = w
2/p
i .

Lemma 21.3.12 (Lemma 2.4 of [CP15] and Lemma 7 of [CLM+15]). Given a matrix A ∈

Rn×d, n ≥ d, for any constant C > 0, 4 > p ≥ 1, there is an algorithm which can compute

C-approximate `p Lewis weights for every row i of A in O((nnz(A) + dω log d) log n) time,

where ω < 2.373 is the matrix multiplication exponent[Str69, CW87, Wil12].

Lemma 21.3.13 (Theorem 7.1 of [CP15]). Given matrix A ∈ Rn×d (n ≥ d) with `p (4 >

p ≥ 1) Lewis weights w, for any set of sampling probabilities pi,
∑

i pi = N ,

pi ≥ f(d, p)wi,

if S ∈ RN×n has each row chosen independently as the ith standard basis vector, multiplied

by 1/p
1/p
i , with probability pi/N . Then, overall with probability at least 0.999,

∀x ∈ Rd,
1

2
‖Ax‖pp ≤ ‖SAx‖pp ≤ 2‖Ax‖pp.
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Furthermore, if p = 1, N = O(d log d). If 1 < p < 2, N = O(d log d log log d). If 2 ≤ p < 4,

N = O(dp/2 log d).

Lemma 21.3.14. Given matrix A ∈ Rn×d (n ≥ d), there is an algorithm to compute a

diagonal matrix D = SS1 with N nonzero entries in O(n poly(d)) time such that, with

probability at least 0.999, for all x ∈ Rd

1

10
‖DAx‖pp ≤ ‖Ax‖pp ≤ 10‖DAx‖pp,

where S, S1 are two sampling/rescaling matrices. Furthermore, if p = 1, then N = O(d log d).

If 1 < p < 2, then N = O(d log d log log d). If 2 ≤ p < 4, then N = O(dp/2 log d).

Given a matrix A ∈ Rn×d (n ≥ d), by Lemma 21.3.13 and Lemma 21.3.12, we

can compute a sampling/rescaling matrix S in O((nnz(A) + dω log d) log n) time with Õ(d)

nonzero entries such that

∀x ∈ Rd,
1

2
‖Ax‖pp ≤ ‖SAx‖pp ≤ 2‖Ax‖pp.

Sometimes, poly(d) is much smaller than log n. In this case, we are also able to compute

such a sampling/rescaling matrix S in n poly(d) time in an alternative way.

To do so, we run one of the input sparsity `p embedding algorithms (see e.g., [MM13])

to compute a well conditioned basis U of the column span of A in n poly(d/ε) time. By

sampling according to the well conditioned basis (see e.g. [Cla05, DDH+09, Woo14b]), we can

compute a sampling/rescaling matrix S1 such that (1− ε)‖Ax‖pp ≤ ‖S1Ax‖pp ≤ (1 + ε)‖Ax‖pp
where ε ∈ (0, 1) is an arbitrary constant. Notice that S1 has poly(d/ε) nonzero entries, and

thus S1A has size poly(d/ε). Next, we apply Lewis weight sampling according to S1A, and

1516



we obtain a sampling/rescaling matrix S for which

∀x ∈ Rd, (1− 1

3
)‖S1Ax‖pp ≤ ‖SS1Ax‖pp ≤ (1 +

1

3
)‖S1Ax‖pp.

This implies that

∀x ∈ Rd,
1

2
‖Ax‖pp ≤ ‖SS1Ax‖pp ≤ 2‖Ax‖pp.

Note that SS1 is still a sampling/rescaling matrix according to A, and the number of non-zero

entries is Õ(d). The total running time is thus n poly(d/ε), as desired.
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21.3.10 TensorSketch

Let φ(v1, v2, · · · , vq) denote the function that maps q vectors(ui ∈ Rni) to the
∏q

i=1 ni-

dimensional vector formed by v1 ⊗ v2 ⊗ · · · ⊗ uq.

We first give the definition of TensorSketch. Similar definitions can be found in

previous work [Pag13, PP13, ANW14, WTSA15].

Definition 21.3.20 (TensorSketch [Pag13]). Given q points v1, v2, · · · , vq where for each

i ∈ [q], vi ∈ Rni , let m be the target dimension. The TensorSketch transform is specified

using q 3-wise independent hash functions, h1, · · · , hq, where for each i ∈ [q], hi : [ni]→ [m],

as well as q 4-wise independent sign functions s1, · · · , sq, where for each i ∈ [q], si : [ni] →

{−1,+1}.

TensorSketch applied to v1, · · · , vq is then CountSketch applied to φ(v1, · · · , vq)

with hash function H : [
∏q

i=1 ni]→ [m] and sign functions S : [
∏q

i=1 ni]→ {−1,+1} defined

as follows:

H(i1, · · · , iq) = h1(i1) + h2(s2) + · · ·+ hq(iq) (mod m),

and

S(i1, · · · , iq) = s1(i1) · s2(i2) · · · · · sq(iq).

Using the Fast Fourier Transform, TensorSketch(v1, · · · , vq) can be computed inO(
∑q

i=1(nnz(vi)+

m logm)) time.

Note that Theorem 1 in [ANW14] only defines φ(v) = v ⊗ v ⊗ · · · ⊗ v. Here we state

a stronger version of Theorem 1 than in [ANW14], though the proofs are identical; a formal

derivation can be found in [DW17].
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Theorem 21.3.15 (Generalized version of Theorem 1 in [ANW14]). Let S be the (
∏q

i=1 ni)×

m matrix such that TensorSketch (v1, v2, · · · , vq) is φ(v1, v2, · · · , vq)S for a randomly

selected TensorSketch. The matrix S satisfies the following two properties.

Property I (Approximate Matrix Product). Let A and B be matrices with
∏q

i=1 ni

rows. For m ≥ (2 + 3q)/(ε2δ), we have

Pr[‖A>SS>B − A>B‖2
F ≤ ε2‖A‖2

F‖B‖2
F ] ≥ 1− δ.

Property II (Subspace Embedding). Consider a fixed k-dimensional subspace V . If

m ≥ k2(2+3q)/(ε2δ), then with probability at least 1−δ, ‖xS‖2 = (1±ε)‖x‖2 simultaneously

for all x ∈ V .
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21.4 Frobenius Norm for Arbitrary Tensors

Section 21.4.1 presents a Frobenius norm tensor low-rank approximation algorithm

with (1+ ε)-approximation ratio. Section 21.4.2 introduces a tool which is able to reduce the

size of the objective function from n3 to poly(k, 1/ε). Section 21.4.3 introduces a new prob-

lem called tensor multiple regression. Section 21.4.4 presents several bicriteria algorithms.

Section 21.4.5 introduces a powerful tool which we call generalized matrix row subset selec-

tion. Section 21.4.6 presents an algorithm that is able to select a batch of columns, rows

and tubes from a given tensor, and those samples are also able to form a low-rank solu-

tion. Section 21.4.7 presents several useful tools for tensor problems, and also two (1 + ε)-

approximation CURT decomposition algorithms: one has the optimal sample complexity,

and the other has the optimal running time. Section 21.4.9 shows how to solve the problem

if the size of the objective function is small. Section 21.5 extends several techniques from

3rd order tensors to general q-th order tensors, for any q ≥ 3. Finally, in Section 21.6 we

also provide a new matrix CUR decomposition algorithm, which is faster than [BW14].

For simplicity of presentation, we assume Ak exists in theorems (e.g., Theorem 21.4.1)

which concern outputting a rank-k solution, as well as the theorems (e.g., Theorem 21.4.7,

Theorem 21.4.8, Theorem 21.4.13) which concern outputting a bicriteria solution (the output

rank is larger than k). For each of the bicriteria theorems, we can obtain a more detailed

version when Ak does not exist, like Theorem 21.1.1 in Section 21.1 (by instead considering

a tensor sufficiently close to Ak in objective function value). Note that the theorems for

column, row, tube subset selection Theorem 21.4.20 and Theorem 21.4.21 also belong to

this first category. In the second category, for each of the rank-k theorems we can obtain a

more detailed version handling all cases, even when Ak does not exist, like Theorem 21.1.2
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in Section 21.1 (by instead considering a tensor sufficiently close to Ak in objective function

value).

Several other tensor results or tools (e.g., Theorem 21.4.4, Lemma 21.4.3, Theo-

rem 21.4.39, Theorem 21.4.40, Theorem 21.4.14, Theorem 21.5.1) that we build in this

section do not belong to the above two categories. It means those results do not depend on

whether Ak exists or not and whether OPT is zero or not.
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21.4.1 (1 + ε)-approximate low-rank approximation

Algorithm 21.2 Frobenius Norm Low-rank Approximation
1: procedure FLowRankApprox(A, n, k, ε) . Theorem 21.4.1
2: s1 ← s2 ← s3 ← O(k/ε).
3: Choose sketching matrices S1 ∈ Rn2×s1 , S2 ∈ Rn2×s2 , S3 ∈ Rn2×s3 . . Definition

21.3.12
4: Compute AiSi,∀i ∈ [3].
5: Y1, Y2, Y3, C ←FInputSparsityReduction(A,A1S1, A2S2, A3S3, n, s1, s2, s3, k, ε).

. Algorithm 21.3
6: Create variables for Xi ∈ Rsi×k,∀i ∈ [3].
7: Run polynomial system verifier for ‖(Y1X1)⊗ (Y2X2)⊗ (Y3X3)− C‖2

F .
8: return A1S1X1, A2S2X2, and A3S3X3.
9: end procedure

Theorem 21.4.1. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), there

exists an algorithm which takes O(nnz(A)) + n poly(k, 1/ε) + 2O(k2/ε) time and outputs three

matrices U ∈ Rn×k, V ∈ Rn×k, W ∈ Rn×k such that
∥∥∥∥∥

k∑

i=1

Ui ⊗ Vi ⊗Wi − A
∥∥∥∥∥

2

F

≤ (1 + ε) min
rank−k Ak

‖Ak − A‖2
F

holds with probability 9/10.

Proof. Given any tensor A ∈ Rn1×n2×n3 , we define three matrices A1 ∈ Rn1×n2n3 , A2 ∈

Rn2×n3n1 , A3 ∈ Rn3×n1n2 such that, for any i ∈ [n1], j ∈ [n2], l ∈ [n3],

Ai,j,l = (A1)i,(j−1)·n3+l = (A2)j,(l−1)·n1+i = (A3)l,(i−1)·n2+j.

We define OPT as

OPT = min
rank−k A′

‖A′ − A‖2
F .
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Suppose the optimal Ak = U∗⊗V ∗⊗W ∗. We fix V ∗ ∈ Rn×k and W ∗ ∈ Rn×k. We use

V ∗1 , V
∗

2 , · · · , V ∗k to denote the columns of V ∗ and W ∗
1 ,W

∗
2 , · · · ,W ∗

k to denote the columns of

W ∗.

We consider the following optimization problem,

min
U1,··· ,Uk∈Rn

∥∥∥∥∥
k∑

i=1

Ui ⊗ V ∗i ⊗W ∗
i − A

∥∥∥∥∥

2

F

,

which is equivalent to

min
U1,··· ,Uk∈Rn

∥∥∥∥∥∥∥∥

[
U1 U2 · · · Uk

]



V ∗1 ⊗W ∗
1

V ∗2 ⊗W ∗
2

· · ·
V ∗k ⊗W ∗

k


− A

∥∥∥∥∥∥∥∥

2

F

.

We use matrix Z1 to denote




vec(V ∗1 ⊗W ∗
1 )

vec(V ∗2 ⊗W ∗
2 )

· · ·
vec(V ∗k ⊗W ∗

k )


 ∈ Rk×n2 and matrix U to denote

[
U1 U2 · · · Uk

]
. Then we can obtain the following equivalent objective function,

min
U∈Rn×k

‖UZ1 − A1‖2
F .

Notice that minU∈Rn×k ‖UZ1 − A1‖2
F = OPT, since Ak = U∗Z1.

Let S>1 ∈ Rs1×n2 be a sketching matrix defined in Definition 21.3.12, where s1 =

O(k/ε). We obtain the following optimization problem,

min
U∈Rn×k

‖UZ1S1 − A1S1‖2
F .

Let Û ∈ Rn×k denote the optimal solution to the above optimization problem. Then Û =

A1S1(Z1S1)†. By Lemma 21.3.10 and Theorem 21.3.11, we have
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‖ÛZ1 − A1‖2
F ≤ (1 + ε) min

U∈Rn×k
‖UZ1 − A1‖2

F = (1 + ε) OPT,

which implies
∥∥∥∥∥

k∑

i=1

Ûi ⊗ V ∗i ⊗W ∗
i − A

∥∥∥∥∥

2

F

≤ (1 + ε) OPT .

To write down Û1, · · · , Ûk, we use the given matrix A1, and we create s1 × k variables for

matrix (Z1S1)†.

As our second step, we fix Û ∈ Rn×k and W ∗ ∈ Rn×k, and we convert tensor A into

matrix A2. Let matrix Z2 denote




vec(Û1 ⊗W ∗
1 )

vec(Û2 ⊗W ∗
2 )

· · ·
vec(Ûk ⊗W ∗

k )


. We consider the following objective

function,

min
V ∈Rn×k

‖V Z2 − A2‖2
F ,

for which the optimal cost is at most (1 + ε) OPT.

Let S>2 ∈ Rs2×n2 be a sketching matrix defined in Definition 21.3.12, where s2 =

O(k/ε). We sketch S2 on the right of the objective function to obtain the new objective

function,

min
V ∈Rn×k

‖V Z2S2 − A2S2‖2
F .

Let V̂ ∈ Rn×k denote the optimal solution of the above problem. Then V̂ = A2S2(Z2S2)†.

By Lemma 21.3.10 and Theorem 21.3.11, we have,

‖V̂ Z2 − A2‖2
F ≤ (1 + ε) min

V ∈Rn×k
‖V Z2 − A2‖2

F ≤ (1 + ε)2 OPT,
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which implies
∥∥∥∥∥

k∑

i=1

Ûi ⊗ V̂i ⊗W ∗
i − A

∥∥∥∥∥

2

F

≤ (1 + ε)2 OPT .

To write down V̂1, · · · , V̂k, we need to use the given matrix A2 ∈ Rn2×n, and we need to

create s2 × k variables for matrix (Z2S2)†.

As our third step, we fix the matrices Û ∈ Rn×k and V̂ ∈ Rn×k. We convert tensor

A ∈ Rn×n×n into matrix A3 ∈ Rn2×n. Let matrix Z3 denote




vec(Û1 ⊗ V̂1)

vec(Û2 ⊗ V̂2)
· · ·

vec(Ûk ⊗ V̂k)


. We consider

the following objective function,

min
W∈Rn×k

‖WZ3 − A3‖2
F ,

which has optimal cost at most (1 + ε)2 OPT.

Let S>3 ∈ Rs3×n2 be a sketching matrix defined in Definition 21.3.12, where s3 =

O(k/ε). We sketch S3 on the right of the objective function to obtain a new objective

function,

min
W∈Rn×k

‖WZ3S3 − A3S3‖2
F .

Let Ŵ ∈ Rn×k denote the optimal solution of the above problem. Then Ŵ = A3S3(Z3S3)†.

By Lemma 21.3.10 and Theorem 21.3.11, we have,

‖ŴZ3 − A3‖2
F ≤ (1 + ε) min

W∈Rn×k
‖WZ3 − A3‖2

F ≤ (1 + ε)3 OPT .

Thus, we have

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(A1S1X1)i ⊗ (A2S2X2)i ⊗ (A3S3X3)i − A
∥∥∥∥∥

2

F

≤ (1 + ε)3 OPT .
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Let V1 = A1S1, V2 = A2S2, V3 = A3S3, we then apply Lemma 21.4.3, and we obtain

V̂1, V̂2, V̂3, C. We then apply Theorem 21.4.44. Correctness follows by rescaling ε by a

constant factor.

Running time. Due to Definition 21.3.12, the running time of line 4 is O(nnz(A)) +

n poly(k). The running time of line 5 is shown by Lemma 21.4.3, and the running time of

line 7 is shown by Theorem 21.4.44.

Theorem 21.4.2. Suppose we are given a 3rd order n × n × n tensor A such that each

entry can be written using nδ bits, where δ > 0 is a given, value which can be arbitrarily

small (e.g., we could have nδ being O(log n)). Define OPT = infrank−k Ak‖Ak − A‖2
F . For

any k ≥ 1, and for any 0 < ε < 1, define nδ′ = O(nδ2O(k2/ε)). (I) If OPT > 0, and there

exists a rank-k Ak = U∗ ⊗ V ∗ ⊗W ∗ tensor, with size n × n × n, such that ‖Ak − A‖2
F =

OPT, and max(‖U∗‖F , ‖V ∗‖F , ‖W ∗‖F ) ≤ 2O(nδ
′
), then there exists an algorithm that takes

(nnz(A)+n poly(k, 1/ε)+2O(k2/ε))nδ time in the unit cost RAM model with word size O(log n)

bits9 and outputs three n× k matrices U, V,W such that

‖U ⊗ V ⊗W − A‖2
F ≤ (1 + ε) OPT (21.5)

holds with probability 9/10, and each entry of each of U, V,W fits in nδ′ bits.

(II) If OPT > 0, and Ak does not exist, and there exist three n×k matrices U ′, V ′,W ′

for which max(‖U ′‖F , ‖V ′‖F , ‖W ′‖F ) ≤ 2O(nδ
′
) and ‖U ′ ⊗ V ′ ⊗W ′ − A‖2

F ≤ (1 + ε/2) OPT,

then we can find U, V,W such that (21.5) holds.

9The entries of A are assumed to fit in nδ words.
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(III) If OPT = 0 and Ak does exist, and there exists a solution U∗, V ∗,W ∗ such that

each entry can be written by nδ′ bits, then we can obtain (21.5).

(IV) If OPT = 0, and there exist three n× k matrices U, V,W such that

max(‖U‖F , ‖V ‖F , ‖W‖F ) ≤ 2O(nδ
′
)

and

‖U ⊗ V ⊗W − A‖2
F ≤ (1 + ε) OPT +2−Ω(nδ

′
) = 2−Ω(nδ

′
), (21.6)

then we can output U, V,W such that (21.6) holds.

Further if Ak exists, we can output a number Z for which OPT ≤ Z ≤ (1 + ε) OPT.

For all the cases above, the algorithm runs in the same time as (I) and succeeds with proba-

bility at least 9/10.

Proof. This follows by the discussion in Section 21.1, Theorem 21.4.1 and Theorem 21.4.44

in Section 21.4.9.

Part (I) Suppose δ > 0 and Ak = U∗ ⊗ V ∗ ⊗W ∗ exists and each of ‖U∗‖F , ‖V ∗‖F ,

and ‖W ∗‖F is bounded by 2O(nδ
′
). We assume the computation model is the unit cost RAM

model with words of size O(log n) bits, and allow each number of the input tensor A to be

written using nδ bits. For the case when OPT is nonzero, using the proof of Theorem 21.4.1

and Theorems 21.4.44, 21.3.2, there exists a lower bound on the cost OPT, which is at least

2−O(nδ)2O(k2/ε) . We can round each entry of matrices U∗, V ∗,W ∗ to be an integer expressed

using O(nδ
′
) bits to obtain U ′, V ′,W ′. Using the triangle inequality and our lower bound on

OPT, it follows that U ′, V ′,W ′ provide a (1 + ε)-approximation.
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Thus, applying Theorem 21.4.1 by fixing U ′, V ′,W ′ and using Theorem 21.4.44 at the

end, we can output three matrices U, V,W , where each entry can be written using nδ′ bits,

so that we satisfy ‖U ⊗ V ⊗W − A‖2
F ≤ (1 + ε) OPT.

For the running time, since each entry of the input is bounded by nδ bits, due to

Theorem 21.4.1, we need (nnz(A) + n poly(k/ε)) · nδ time to reduce the size of the problem

to poly(k/ε) size (with each number represented using O(nδ) bits). According to Theo-

rem 21.4.44, the running time of using a polynomial system verifier to get the solution is

2O(k2/ε)nO(δ′) = 2O(k2/ε)nO(δ) time. Thus the total running time is (nnz(A)+n poly(k/ε))nδ +

2O(k2/ε) · nO(δ).

Part (II) is similar to Part (I). Part (III) is trivial to prove since there exists a solution

which can be written down in the bit model, so we obtain a (1 + ε)-approximation. Part

(IV) is also very similar to Part (II).
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21.4.2 Input sparsity reduction

Algorithm 21.3 Reducing the Size of the Objective Function from poly(n) to poly(k)

1: procedure FInputSparsityReduction(A, V1, V2, V3, n, b1, b2, b3, k, ε) . Lemma
21.4.3

2: c1 ← c2 ← c3 ← poly(k, 1/ε).
3: Choose sparse embedding matrices T1 ∈ Rc1×n, T2 ∈ Rc2×n, T3 ∈ Rc3×n. .

Definition 21.3.10
4: V̂i ← TiVi ∈ Rci×bi ,∀i ∈ [3].
5: C ← A(T1, T2, T3) ∈ Rc1×c2×c3 .
6: return V̂1, V̂2, V̂3 and C.
7: end procedure

Lemma 21.4.3. Let poly(k, 1/ε) ≥ b1b2b3 ≥ k. Given a tensor A ∈ Rn×n×n and three
matrices V1 ∈ Rn×b1, V2 ∈ Rn×b2, and V3 ∈ Rn×b3, there exists an algorithm that takes
O(nnz(A) + nnz(V1) + nnz(V2) + nnz(V3)) = O(nnz(A) + n poly(k/ε)) time and outputs a
tensor C ∈ Rc1×c2×c3 and three matrices V̂1 ∈ Rc1×b1, V̂2 ∈ Rc2×b2 and V̂3 ∈ Rc3×b3 with
c1 = c2 = c3 = poly(k, 1/ε), such that with probability at least 0.99, for all α > 0, X1, X

′
1 ∈

Rb1×k, X2, X
′
2 ∈ Rb2×k, X3, X

′
3 ∈ Rb3×k satisfy that,

∥∥∥∥∥
k∑

i=1

(V̂1X
′
1)i ⊗ (V̂2X

′
2)i ⊗ (V̂3X

′
3)i − C

∥∥∥∥∥

2

F

≤ α
∥∥∥∥∥

k∑

i=1

(V̂1X1)i ⊗ (V̂2X2)i ⊗ (V̂3X3)i − C
∥∥∥∥∥

2

F

,

then,
∥∥∥∥∥

k∑

i=1

(V1X
′
1)i ⊗ (V2X

′
2)i ⊗ (V3X

′
3)i −A

∥∥∥∥∥

2

F

≤ (1 + ε)α

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A
∥∥∥∥∥

2

F

.

Proof. LetX1 ∈ Rb1×k, X2 ∈ Rb2×k, X3 ∈ Rb3×k. First, we define Z1 = ((V2X2)>�(V3X3)>) ∈

Rk×n2 . (Note that, for each i ∈ [k], the i-th row of matrix Z1 is vec((V2X2)i ⊗ (V3X3)i).)

Then, by flattening we have
∥∥∥∥∥

k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i − A
∥∥∥∥∥

2

F

= ‖V1X1 · Z1 − A1‖2
F .
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We choose a sparse embedding matrix (Definition 21.3.10) T1 ∈ Rc1×n with c1 = poly(k, 1/ε)

rows. Since V1 has b1 ≤ poly(k/ε) columns, according to Lemma 21.3.7 with probability

0.999, for all X1 ∈ Rb1×k, Z ∈ Rk×n2 ,

(1− ε)‖V1X1Z − A1‖2
F ≤ ‖T1V1X1Z − T1A1‖2

F ≤ (1 + ε)‖V1X1Z − A1‖2
F .

Therefore, we have

‖T1V1X1 · Z1 − T1A1‖2
F = (1± ε)

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i − A
∥∥∥∥∥

2

F

.

Second, we unflatten matrix T1A1 ∈ Rc1×n2 to obtain a tensor A′ ∈ Rc1×n×n. Then

we flatten A′ along the second direction to obtain A2 ∈ Rn×c1n. We define Z2 = (T1V1X1)>�

(V3X3)> ∈ Rk×c1n. Then, by flattening,

‖V2X2 · Z2 − A2‖2
F = ‖T1V1X1 · Z1 − T1A1‖2

F

= (1± ε)
∥∥∥∥∥

k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i − A
∥∥∥∥∥

2

F

.

We choose a sparse embedding matrix (Definition 21.3.10) T2 ∈ Rc2×n with c2 = poly(k, 1/ε)

rows. Then according to Lemma 21.3.7 with probability 0.999, for all X2 ∈ Rb2×k, Z ∈

Rk×c1n,

(1− ε)‖V2X2Z − A2‖2
F ≤ ‖T2V2X2Z − T2A2‖2

F ≤ (1 + ε)‖V2X2Z − A2‖2
F .

Therefore, we have

‖T2V2X2 · Z2 − T2A2‖2
F = (1± ε)‖V2X2 · Z2 − A2‖2

F

= (1± ε)2

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i − A
∥∥∥∥∥

2

F

.
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Third, we unflatten matrix T2A2 ∈ Rc2×c1n to obtain a tensor A′′(= A(T1, T2, I)) ∈

Rc1×c2×n. Then we flatten tensor A′′ along the last direction (the third direction) to obtain

matrix A3 ∈ Rn×c1c2 . We define Z3 = (T1V1X1)>�(T2V2X2)> ∈ Rk×c1c2 . Then, by flattening,

we have

‖V3X3 · Z3 − A3‖2
F = ‖T2V2X2 · Z2 − T2A2‖2

F

= (1± ε)2

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i − A
∥∥∥∥∥

2

F

.

We choose a sparse embedding matrix (Definition 21.3.10) T3 ∈ Rc3×n with c3 = poly(k, 1/ε)

rows. Then according to Lemma 21.3.7 with probability 0.999, for all X3 ∈ Rb3×k, Z ∈

Rk×c1c2 ,

(1− ε)‖V3X3Z − A3‖2
F ≤ ‖T3V3X3Z − T3A3‖2

F ≤ (1 + ε)‖V3X3Z − A3‖2
F .

Therefore, we have

‖T3V3X3 · Z3 − T3A3‖2
F = (1± ε)3

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i − A
∥∥∥∥∥

2

F

.

Note that

‖T3V3X3 · Z3 − T3A3‖2
F =

∥∥∥∥∥
k∑

i=1

(T1V1X1)i ⊗ (T2V2X2)i ⊗ (T3V3X3)i − A(T1, T2, T3)

∥∥∥∥∥

2

F

,

and thus, we have ∀X1 ∈ Rb1×k, X2 ∈ Rb2×k, X3 ∈ Rb3×k

∥∥∥∥∥
k∑

i=1

(T1V1X1)i ⊗ (T2V2X2)i ⊗ (T3V3X3)i − A(T1, T2, T3)

∥∥∥∥∥

2

F

=(1± ε)3

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i − A
∥∥∥∥∥

2

F

.
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Let V̂i denote TiVi, for each i ∈ [3]. Let C ∈ Rc1×c2×c3 denote A(T1, T2, T3). For α > 1, if
∥∥∥∥∥

k∑

i=1

(V̂1X
′
1)i ⊗ (V̂2X

′
2)i ⊗ (V̂3X

′
3)i − C

∥∥∥∥∥

2

F

≤ α

∥∥∥∥∥
k∑

i=1

(V̂1X1)i ⊗ (V̂2X2)i ⊗ (V̂3X3)i − C
∥∥∥∥∥

2

F

,

then
∥∥∥∥∥

k∑

i=1

(V1X
′
1)i ⊗ (V2X

′
2)i ⊗ (V3X

′
3)i − C

∥∥∥∥∥

2

F

≤ 1

(1− ε)3

∥∥∥∥∥
k∑

i=1

(V̂1X
′
1)i ⊗ (V̂2X

′
2)i ⊗ (V̂3X

′
3)i − C

∥∥∥∥∥

2

F

≤ 1

(1− ε)3
α

∥∥∥∥∥
k∑

i=1

(V̂1X1)i ⊗ (V̂2X2)i ⊗ (V̂3X3)i − C
∥∥∥∥∥

2

F

≤ (1 + ε)3

(1− ε)3
α

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i − C
∥∥∥∥∥

2

F

By rescaling ε by a constant, we complete the proof of correctness.

Running time. According to Section 21.3.6, for each i ∈ [3], TiVi can be computed in

O(nnz(Vi)) time, and A(T1, T2, T3) can be computed in O(nnz(A)) time.

By the analysis above, the proof is complete.
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21.4.3 Tensor multiple regression

Algorithm 21.4 Frobenius Norm Tensor Multiple Regression
1: procedure FTensorMultipleRegression(A,U, V, d, n, k) . Theorem 21.4.4
2: s← O(k2 + k/ε).
3: Choose S ∈ Rn2×s to be a TensorSketch. . Definition 21.3.20
4: Compute A · S.
5: Compute B · S. . B = U> � V >
6: W ← (AS)(BS)†

7: return W .
8: end procedure

Theorem 21.4.4. Given matrices A ∈ Rd×n2, U, V ∈ Rn×k, let B ∈ Rk×n2 denote U>�V >.

There exists an algorithm that takes O(nnz(A) + nnz(U) + nnz(V ) +d poly(k, 1/ε)) time and

outputs a matrix W ′ ∈ Rd×k such that,

‖W ′B − A‖2
F ≤ (1 + ε) min

W∈Rd×k
‖WB − A‖2

F .

Proof. We choose a TensorSketch (Definition 21.3.20) S ∈ Rn2×s to reduce the problem

to a smaller problem,

min
W∈Rd×k

‖WBS − AS‖2
F .

Let W ′ denote the optimal solution to the above problem. Following a similar proof to that

in Section 21.4.7.3, if S is a (1± 1/2)-subspace embedding and satisfies
√
ε/k-approximate

matrix product, then W ′ provides a (1 + ε)-approximation to the original problem. By

Theorem 21.3.15, we have s = O(k2 + k/ε).
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Running time. According to Definition 21.3.20, BS can be computed in O(nnz(U) +

nnz(V )) + poly(k/ε) time. Notice that each row of S has exactly 1 nonzero entry, thus AS

can be computed in O(nnz(A)) time. Since BS ∈ Rk×s and AS ∈ Rd×s, minW∈Rd×k ‖WBS−

AS‖2
F can be solved in d poly(sk) = d poly(k/ε) time.
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21.4.4 Bicriteria algorithms

21.4.4.1 Solving a small regression problem

Lemma 21.4.5. Given tensor A ∈ Rn×n×n and three matrices U ∈ Rn×s1 , V ∈ Rn×s2 and

W ∈ Rn×s3, there exists an algorithm that takes O(nnz(A) + n poly(s1, s2, s3, 1/ε)) time and

outputs α′ ∈ Rs1×s2×s3 such that
∥∥∥∥∥

s1∑

i=1

s2∑

j=1

s3∑

l=1

α′i,j,l · Ui ⊗ Vj ⊗Wl − A
∥∥∥∥∥

2

F

≤ (1 + ε) min
α∈Rs1×s2×s3

∥∥∥∥∥
s1∑

i=1

s2∑

j=1

s3∑

l=1

αi,j,l · Ui ⊗ Vj ⊗Wl − A
∥∥∥∥∥

2

F

.

holds with probability at least .99.

Proof. We define b̃ ∈ Rn3 to be the vector where the i+ (j − 1)n+ (l− 1)n2-th entry of b̃ is

Ai,j,l. We define Ã ∈ Rn3×s1s2s3 to be the matrix where the (i+ (j− 1)n+ (l− 1)n2, i′+ (j′−

1)s2 + (l′− 1)s2s3) entry is Ui′,i · Vj′,j ·Wl′,l. This problem is equivalent to a linear regression

problem,

min
x∈Rs1s2s3

‖Ãx− b̃‖2
2,

where Ã ∈ Rn3×s1s2s3 , b̃ ∈ Rn3 . Thus, it can be solved fairly quickly using recent work

[CW13, MM13, NN13a]. However, the running time of this naïvely is Ω(n3), since we have

to write down each entry of Ã. In the next few paragraphs, we show how to improve the

running time to nnz(A) + n poly(s1, s2, s3).

Since α ∈ Rs1×s2×s3 , α can be always written as α = X1 ⊗ X2 ⊗ X3, where X1 ∈
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Rs1×s1s2s3 , X2 ∈ Rs2×s1s2s3 , X3 ∈ Rs3×s1s2s3 , we have

min
α∈Rs1×s2×s3

∥∥∥∥∥
s1∑

i=1

s2∑

j=1

s3∑

l=1

αi,j,l · Ui ⊗ Vj ⊗Wl − A
∥∥∥∥∥

2

F

= min
X1∈Rs1×s1s2s3
X2∈Rs2×s1s2s3
X3∈Rs3×s1s2s3

‖(UX1)⊗ (V X2)⊗ (WX3)− A‖2
F .

By Lemma 21.4.3, we can reduce the problem size n× n× n to a smaller problem that has

size t1 × t2 × t3,

min
X1,X2,X3

∥∥∥∥∥
s1s2s3∑

i=1

(T1UX1)i ⊗ (T2V X2)i ⊗ (T3WX3)i − A(T1, T2, T3)

∥∥∥∥∥

2

F

where T1 ∈ Rt1×n, T2 ∈ Rt2×n, T3 ∈ Rt3×n, t1 = t2 = t3 = poly(s1s2s3/ε). Notice that

min
X1,X2,X3

∥∥∥∥∥
s1s2s3∑

i=1

(T1UX1)i ⊗ (T2V X2)i ⊗ (T3WX3)i − A(T1, T2, T3)

∥∥∥∥∥

2

F

= min
α∈Rs1×s2×s3

∥∥∥∥∥
s1∑

i=1

s2∑

j=1

s3∑

l=1

αi,j,l · (T1U)i ⊗ (T2V )j ⊗ (T3W )l − A(T1, T2, T3)

∥∥∥∥∥

2

F

.

Let

α′ = arg min
α∈Rs1×s2×s3

∥∥∥∥∥
s1∑

i=1

s2∑

j=1

s3∑

l=1

αi,j,l · (T1U)i ⊗ (T2V )j ⊗ (T3W )l − A(T1, T2, T3)

∥∥∥∥∥

2

F

,

then we have
∥∥∥∥∥

s1∑

i=1

s2∑

j=1

s3∑

l=1

α′i,j,l · Ui ⊗ Vj ⊗Wl − A
∥∥∥∥∥

2

F

≤ (1 + ε) min
α∈Rs1×s2×s3

∥∥∥∥∥
s1∑

i=1

s2∑

j=1

s3∑

l=1

αi,j,l · Ui ⊗ Vj ⊗Wl − A
∥∥∥∥∥

2

F

.
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Again, according to Lemma 21.4.3, the total running time is thenO(nnz(A)+n poly(s1, s2, s3, 1/ε)).

Lemma 21.4.6. Given tensor A ∈ Rn×n×n, and two matrices U ∈ Rn×s, V ∈ Rn×s with

rank(U) = r1, rank(V ) = r2, let T1 ∈ Rt1×n, T2 ∈ Rt2×n be two sparse embedding matrices

(Definition 21.3.10) with t1 = poly(r1/ε), t2 = poly(r2/ε). Then with probability at least

0.99, ∀X ∈ Rn×s,

(1− ε)‖U ⊗ V ⊗X − A‖2
F ≤ ‖T1U ⊗ T2V ⊗X − A(T1, T2, I)‖2

F ≤ (1 + ε)‖U ⊗ V ⊗X − A‖2
F .

Proof. Let X ∈ Rn×s. We define Z1 = (V > �X>) ∈ Rs×n2 . We choose a sparse embedding

matrix (Definition 21.3.10) T1 ∈ Rt1×n with t1 = poly(r1/ε) rows. According to Lemma 21.3.7

with probability 0.999, for all Z ∈ Rs×n2 ,

(1− ε)‖UZ − A1‖2
F ≤ ‖T1UZ − T1A1‖2

F ≤ (1 + ε)‖T1UZ − A1‖2
F .

It means that

(1− ε)‖UZ1 − A1‖2
F ≤ ‖T1UZ1 − T1A1‖2

F ≤ (1 + ε)‖T1UZ1 − A1‖2
F .

Second, we unflatten matrix T1A1 ∈ Rt1×n2 to obtain a tensor A′ ∈ Rt1×n×n. Then we flatten

A′ along the second direction to obtain A′2 ∈ Rn×t1n. We define Z2 = ((T1U)>�X>) ∈ Rs×t1n.

Then, by flattening,

‖V · Z2 − A′2‖2
F = ‖T1U · Z1 − T1A1‖2

F = (1± ε)‖U ⊗ V ⊗X − A‖2
F .

We choose a sparse embedding matrix (Definition 21.3.10) T2 ∈ Rt2×n with t2 = poly(r2/ε)

rows. Then according to Lemma 21.3.7 with probability 0.999, for all Z ∈ Rs×t1n,

(1− ε)‖V Z − A′2‖2
F ≤ ‖T2V Z − T2A

′
2‖2
F ≤ (1 + ε)‖V Z − A′2‖2

F .
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Thus,

‖T2V · Z2 − T2A
′
2‖2
F = (1± ε)2‖U ⊗ V ⊗X − A‖2

F .

After rescaling ε by a constant, with probability at least 0.99, ∀X ∈ Rn×s,

(1− ε)‖U ⊗ V ⊗X − A‖2
F ≤ ‖T1U ⊗ T2V ⊗X − A(T1, T2, I)‖2

F ≤ (1 + ε)‖U ⊗ V ⊗X − A‖2
F .

21.4.4.2 Algorithm I

We start with a slightly unoptimized bicriteria low rank approximation algorithm.

Algorithm 21.5 Frobenius Norm Bicriteria Low Rank Approximation Algorithm, rank-
O(k3/ε3)

1: procedure FTensorLowRankBicriteriaCubicRank(A, n, k) . Theorem 21.4.7
2: s1 ← s2 ← s3 ← O(k/ε).
3: t1 ← t2 ← t3 ← poly(k/ε).
4: Choose Si ∈ Rn2×si to be a Sketching matrix, ∀i ∈ [3]. . Definition 21.3.12
5: Choose Ti ∈ Rti×n to be a Sketching matrix, ∀i ∈ [3]. . Definition 21.3.10
6: Compute U ← T1 · (A1 · S1), V ← T2 · (A2 · S2), W ← T3 · (A3 · S3).
7: Compute C ← A(T1, T2, T3).
8: X ←FTensorRegression(C,U, V,W, t1, s1, t2, s2, t3, s3). . Linear regression
9: return X(A1S1, A2S2, A3S3).
10: end procedure

Theorem 21.4.7. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), let

r = O(k3/ε3). There exists an algorithm that takes O(nnz(A) + n poly(k, 1/ε)) time and

outputs three matrices U ∈ Rn×r, V ∈ Rn×r, W ∈ Rn×r such that
∥∥∥∥∥

r∑

i=1

Ui ⊗ Vi ⊗Wi − A
∥∥∥∥∥

2

F

≤ (1 + ε) min
rank−k Ak

‖Ak − A‖2
F

holds with probability 9/10.
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Proof. At the end of Theorem 21.4.1, we need to run a polynomial system verifier. This is

why we obtain exponential in k running time. Instead of running the polynomial system

verifier, we can use Lemma 21.4.5. This reduces the running time to be polynomial in all

parameters: n, k, 1/ε. However, the output tensor has rank (k/ε)3 (Here we mean that we

do not obtain a better decomposition than (k/ε)3 components). According to Section 21.3.6,

for each i, AiSi can be computed in O(nnz(A)) + n poly(k/ε) time. Then Ti(AiSi) can be

computed in n poly(k, 1/ε) time and A(T1, T2, T3) also can be computed in O(nnz(A)) time.

The running time for the regression is poly(k/ε).

Now we present an optimized bicriteria algorithm.

Theorem 21.4.8. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), let

r = O(k2/ε2). There exists an algorithm that takes O(nnz(A) + n poly(k, 1/ε)) time and

outputs three matrices U ∈ Rn×r, V ∈ Rn×r, W ∈ Rn×r such that
∥∥∥∥∥

r∑

i=1

Ui ⊗ Vi ⊗Wi − A
∥∥∥∥∥

2

F

≤ (1 + ε) min
rank−k Ak

‖Ak − A‖2
F

holds with probability 9/10.

Note that there are two different ways to implement algorithm FTensorLowRankBi-

criteriaQuadraticRank. We present the proofs for both of them here.

Approach I.

Proof. Let OPT = min
rank−k Ak

‖Ak − A‖2
F . According to Theorem 21.4.1, we know that there

exists a sketching matrix S3 ∈ Rn2×s3 where s3 = O(k/ε), such that

min
X1∈Rs1×k,X2∈Rs2×k,X3∈Rs3×k

∥∥∥∥∥
k∑

l=1

(A1S1X1)l ⊗ (A2S2X2)l ⊗ (A3S3X3)l − A
∥∥∥∥∥

2

F

≤ (1 + ε) OPT
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Algorithm 21.6 Frobenius Norm Low Rank Approximation Algorithm, rank-O(k2/ε2)

1: procedure FTensorLowRankBicriteriaQuadraticRank(A, n, k) .
Theorem 21.4.8

2: s1 ← s2 ← O(k/ε).
3: Choose Si ∈ Rn2×si to be a sketching matrix, ∀i ∈ [3]. . Definition 21.3.12
4: Compute A1 · S1, A2 · S2.
5: Form Û by using A1S1 according to Equation (21.9).
6: Form V̂ by using A2S2 according to Equation (21.10).
7: Ŵ ←FTensorMultipleRegression(A, Û , V̂ , n, n, s1s2). . Algorithm 21.4
8: return Û , V̂ , Ŵ .
9: end procedure
10: procedure FTensorLowRankBicriteriaQuadraticRank(A, n, k) .

Theorem 21.4.8
11: s1 ← s2 ← O(k/ε).
12: t1 ← t2 ← poly(k/ε).
13: Choose Si ∈ Rn2×si to be a Sketching matrix, ∀i ∈ [2]. . Definition 21.3.12
14: Choose Ti ∈ Rti×n to be a Sketching matrix, ∀i ∈ [2]. . Definition 21.3.10
15: Form Û by using A1S1 according to Equation (21.9).
16: Form V̂ by using A2S2 according to Equation (21.10).
17: Compute C ← A(T1, T2, I). . C ∈ Rt1×t2×n

18: Compute B ← (T1Û)> � (T2V̂ )>.
19: Ŵ ← arg min

X∈Rn×s1s2
‖XB − C3‖2

F .

20: return Û , V̂ , Ŵ .
21: end procedure

Now we fix an l and we have:

(A1S1X1)l ⊗ (A2S2X2)l ⊗ (A3S3X3)l

=

(
s1∑

i=1

(A1S1)i(X1)i,l

)
⊗
(

s2∑

j=1

(A2S2)j(X2)j,l

)
⊗ (A3S3X3)l

=

s1∑

i=1

s2∑

j=1

(A1S1)i ⊗ (A2S2)j ⊗ (A3S3X3)l(X1)i,l(X2)j,l
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Thus, we have

min
X1,X2,X3

∥∥∥∥∥
s1∑

i=1

s2∑

j=1

(A1S1)i ⊗ (A2S2)j ⊗
(

k∑

l=1

(A3S3X3)l(X1)i,l(X2)j,l

)
− A

∥∥∥∥∥

2

F

≤ (1 + ε) OPT .

(21.7)

We use matrices A1S1 ∈ Rn×s1 and A2S2 ∈ Rn×s2 to construct a matrix B ∈ Rs1s2×n2

in the following way: each row of B is the vector corresponding to the matrix generated by

the ⊗ product between one column vector in A1S1 and the other column vector in A2S2, i.e.,

Bi+(j−1)s1 = vec((A1S1)i ⊗ (A2S2)j),∀i ∈ [s1], j ∈ [s2], (21.8)

where (A1S1)i denotes the i-th column of A1S1 and (A2S2)j denote the j-th column of A2S2.

We create matrix Û ∈ Rn×s1s2 by copying matrix A1S1 s2 times, i.e.,

Û =
[
A1S1 A1S1 · · · A1S1

]
. (21.9)

We create matrix V̂ ∈ Rn×s1s2 by copying the i-th column of A2S2 a total of s1 times, into

columns (i− 1)s1, · · · , is1 of V̂ , for each i ∈ [s2], i.e.,

V̂ =
[
(A2S2)1 · · · (A2S2)1 (A2S2)2 · · · (A2S2)2 · · · (A2S2)s2 · · · (A2S2)s2

]
.

(21.10)

Thus, we can use Û and V̂ to represent B,

B = (Û> � V̂ >) ∈ Rs1s2×n2

.

According to Equation (21.7), we have:

min
W∈Rn×s1s2

‖WB − A3‖2
F ≤ (1 + ε) OPT .
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Next, we want to find matrix W ∈ Rn×s1s2 by solving the following optimization

problem,

min
W∈Rn×s1s2

‖WB − A3‖2
F .

Note that B has size s1s2 × n2. Naïvely writing down B already requires Ω(n2) time. In

order to achieve nearly linear time in n, we cannot write down B. We choose S3 ∈ Rn1n2×s3

to be a TensorSketch (Definition 21.3.20). In order to solve multiple regression, we need

to set s3 = O((s1s2)2 + (s1s2)/ε). Let Ŵ denote the optimal solution to ‖WBS3 − A3S3‖2
F .

Then Ŵ = (A3S3)(BS3)†. Since each row of S3 has exactly 1 nonzero entry, A3S3 can be

computed in O(nnz(A)) time. Since B = (Û> � V̂ >), according to Definition 21.3.20, BS3

can be computed in n poly(s1s2/ε) = n poly(k/ε) time. By Theorem 21.4.4, we have

‖ŴB − A3‖2
F ≤ (1 + ε) min

W∈Rn×s1s2
‖WB − A3‖2

F .

Thus, we have

‖Û ⊗ V̂ ⊗ Ŵ − A‖2
F ≤ (1 + ε) OPT .

According to Definition 21.3.12, A1S1, A2S2 can be computed in O(nnz(A)+poly(k/ε)) time.

Te total running time is thus O(nnz(A) + poly(k/ε)).

Approach II.

Proof. Let OPT = min
rank−k Ak

‖Ak−A‖2
F . Choose sketching matrices (Definition 21.3.12) S1 ∈

Rn2×s1 , S2 ∈ Rn2×s2 , S3 ∈ Rn2×s3 , and sketching matrices (Definition 21.3.10) T1 ∈ Rt1×n and
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T2 ∈ Rt2×n with s1 = s2 = s3 = O(k/ε), t1 = t2 = poly(k/ε). We create matrix Û ∈ Rn×s1s2

by copying matrix A1S1 s2 times, i.e.,

Û =
[
A1S1 A1S1 · · · A1S1

]
.

We create matrix V̂ ∈ Rn×s1s2 by copying the i-th column of A2S2 a total of s1 times, into

columns (i− 1)s1, · · · , is1 of V̂ , for each i ∈ [s2], i.e.,

V̂ =
[
(A2S2)1 · · · (A2S2)1 (A2S2)2 · · · (A2S2)2 · · · (A2S2)s2 · · · (A2S2)s2

]
.

As we proved in Approach I, we have

min
X∈Rn×s1s2

‖Û ⊗ V̂ ⊗X − A‖2
F ≤ (1 + ε) OPT .

Let B = ((T1Û)> � (T2V̂ )>) ∈ Rs1s2×t1t2 , and flatten A(T1, T2, I) along the third direction

to obtain C3 ∈ Rn×t1t2 . Let

Ŵ = arg min
X∈Rn×s1s2

‖T1Û ⊗ T2V̂ ⊗X − A(T1, T2, I)‖2
F = arg min

X∈Rn×s1s2
‖XB − C3‖2

F .

Let

W ∗ = arg min
X∈Rn×s1s2

‖Û ⊗ V̂ ⊗X − A‖2
F .

According to Lemma 21.4.6,

‖Û ⊗ V̂ ⊗ Ŵ − A‖2
F

≤ 1

1− ε‖T1Û ⊗ T2V̂ ⊗ Ŵ − A(T1, T2, I)‖2
F

≤ 1

1− ε‖T1Û ⊗ T2V̂ ⊗W ∗ − A(T1, T2, I)‖2
F

≤1 + ε

1− ε‖Û ⊗ V̂ ⊗W
∗ − A‖2

F

≤(1 + ε)2

1− ε OPT .
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According to Definition 21.3.12, A1S1, A2S2 can be computed inO(nnz(A)+poly(k/ε))

time. The total running time is thus O(nnz(A) + poly(k/ε)). Since T1, T2 are sparse embed-

ding matrices, T1Û , T2V̂ can be computed in O(nnz(A)+poly(k/ε)) time. The total running

time is in O(nnz(A) + poly(k/ε)).

Theorem 21.4.9. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1 and any 0 < ε < 1,

if Ak exists then there is a randomized algorithm running in nnz(A) + n · poly(k/ε) time

which outputs a rank-O(k2/ε2) tensor B for which ‖A − B‖2
F ≤ (1 + ε)‖A − Ak‖2

F . If Ak

does not exist, then the algorithm outputs a rank-O(k2/ε2) tensor B for which ‖A− B‖2
F ≤

(1 + ε) OPT +γ, where γ is an arbitrarily small positive function of n. In both cases, the

algorithm succeeds with probability at least 9/10.

Proof. If Ak exists, then the proof directly follows the proof of Theorem 21.4.1 and Theo-

rem 21.4.8. If Ak does not exist, then for any γ > 0, there exist U∗ ∈ Rn×k, V ∗ ∈ Rn×k,W ∗ ∈

Rn×k such that

‖U∗ ⊗ V ∗ ⊗W ∗ − A‖2
F ≤ inf

rank−k A′
‖A− A′‖2

F +
1

10
γ.

Then we just regard U∗⊗ V ∗⊗W ∗ as the “best” rank k approximation to A, and follow the

same argument as in the proof of Theorem 21.4.1 and the proof of Theorem 21.4.8. We can

finally output a tensor B ∈ Rn×n×n with rank-O(k2/ε2) such that

‖B − A‖2
F ≤ (1 + ε)‖U∗ ⊗ V ∗ ⊗W ∗ − A‖2

F

≤ (1 + ε)

(
inf

rank−k A′
‖A− A′‖2

F +
1

10
γ

)

≤ (1 + ε) inf
rank−k A′

‖A− A′‖2
F + γ
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where the first inequality follows by the proof of Theorem 21.4.1 and the proof of theo-

rem 21.4.8. The second inequality follows by our choice of U∗, V ∗,W ∗. The third inequality

follows since 1 + ε < 2 and γ > 0.

21.4.4.3 poly(k)-approximation to multiple regression

Lemma 21.4.10 ((1.4) and (1.9) in [RV09]). Let s ≥ k. Let U ∈ Rn×k denote a matrix

that has orthonormal columns, and S ∈ Rs×n denote an i.i.d. N(0, 1/s) Gaussian matrix.

Then SU is also an s× k i.i.d. Gaussian matrix with each entry draw from N(0, 1/s), and

furthermore, we have with arbitrarily large constant probability,

σmax(SU) = O(1) and σmin(SU) = Ω(1/
√
s).

Proof. Note that
√
s−
√
k − 1 = s−k−1√

s+
√
k−1

= Ω(1/
√
s).

Lemma 21.4.11. Given matrices A ∈ Rn×k, B ∈ Rn×d, let S ∈ Rs×n denote a standard

Gaussian N(0, 1) matrix with s = k. Let X∗ = min
X∈Rk×d

‖AX−B‖F . Let X ′ = min
X∈Rk×d

‖SAX−

SB‖F . Then, we have that

‖AX ′ −B‖F ≤ O(
√
k)‖AX∗ −B‖F ,

holds with probability at least 0.99.

Proof. Let X∗ ∈ Rk×d denote the optimal solution such that

‖AX∗ −B‖F = min
X∈Rk×d

‖AX −B‖F .
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Consider a standard Gaussian matrix S ∈ Rk×n scaled by 1/
√
k with exactly k rows.

Then for any X ∈ Rk×d, by the triangle inequality, we have

‖SAX − SB‖F ≤ ‖SAX − SAX∗‖F + ‖SAX∗ − SB‖F ,

and

‖SAX − SB‖F ≥ ‖SAX − SAX∗‖F − ‖SAX∗ − SB‖F .

We first show how to bound ‖SAX−SAX∗‖F , and then show how to bound ‖SAX∗−SB‖F .

Note that Lemma 21.4.10 implies the following result,

Claim 21.4.12. For any X ∈ Rk×d, with probability 0.999, we have

1√
k
‖AX − AX∗‖F . ‖SAX − SAX∗‖F . ‖AX − AX∗‖F .

Proof. First, we can write A = UR ∈ Rn×k where U ∈ Rn×k has orthonormal columns and

R ∈ Rk×k. It gives,

‖SAX − SAX∗‖F = ‖SU(RX −RX∗)‖F .

Second, applying Lemma 21.4.10 to SU ∈ Rs×k completes the proof.

Using Markov’s inequality, for any fixed matrix AX∗−B, choosing a Gaussian matrix

S, we have that

‖SAX∗ − SB‖2
F = O(‖AX∗ −B‖2

F )

holds with probability at least 0.999. This is equivalent to

‖SAX∗ − SB‖F = O(‖AX∗ −B‖F ), (21.11)
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holding with probability at least 0.999.

Let X ′ = arg min
X∈Rk×d

‖SAX − SB‖F . Putting it all together, we have

‖AX ′ −B‖F

≤ ‖AX ′ − AX∗‖F + ‖AX∗ −B‖F by triangle inequality

≤ O(
√
k)‖SAX ′ − SAX∗‖F + ‖AX∗ −B‖F by Claim 21.4.12

≤ O(
√
k)‖SAX ′ − SB‖F +O(

√
k)‖SAX∗ − SB‖F + ‖AX∗ −B‖F by triangle inequality

≤ O(
√
k)‖SAX∗ − SB‖F +O(

√
k)‖SAX∗ − SB‖F + ‖AX∗ −B‖F by definition of X ′

≤ O(
√
k)‖AX∗ −B‖F . by Equation (21.11)

21.4.4.4 Algorithm II

Theorem 21.4.13. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, let r = k2. There

exists an algorithm which takes O(nnz(A)k) + n poly(k) time and outputs three matrices

U, V,W ∈ Rn×r such that,
∥∥∥∥∥

r∑

i=1

Ui ⊗ Vi ⊗Wi − A
∥∥∥∥∥
F

≤ poly(k) min
rank−k A′

‖A′ − A‖F

holds with probability 9/10.

Proof. Let OPT = min
rank−k A′

‖A′ − A‖F , we fix V ∗ ∈ Rn×k,W ∗ ∈ Rn×k to be the optimal

solution of the original problem. We use Z1 = (V ∗> �W ∗>) ∈ Rk×n2 to denote the matrix

where the i-th row is the vectorization of V ∗i ⊗ W ∗
i . Let A1 ∈ Rn×n2 denote the matrix
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obtained by flattening tensor A ∈ Rn×n×n along the first direction. Then, we have

min
U
‖UZ1 − A1‖F ≤ OPT .

Choosing an N(0, 1/k) Gaussian sketching matrix S1 ∈ Rn2×s1 with s1 = k, we can obtain

the smaller problem,

min
U∈Rn×k

‖UZ1S1 − A1S1‖F .

Define Û = A1S1(Z1S1)†. Define α = O(
√
k). By Lemma 21.4.11, we have

‖ÛZ1 − A1‖F ≤ αOPT .

Second, we fix Û andW ∗. Define Z2, A2 similarly as above. Choosing an N(0, 1/k) Gaussian

sketching matrix S2 ∈ Rn2×s2 with s2 = k, we can obtain another smaller problem,

min
V ∈Rn×k

‖V Z2S2 − A2S2‖F .

Define V̂ = A2S2(Z2S2)†. By Lemma 21.4.11 again, we have

‖V̂ Z2 − A2‖F ≤ α2 OPT .

Thus, we now have

min
X1,X2,W

‖A1S1X1 ⊗ A2S2X2 ⊗W − A‖F ≤ α2 OPT

We use a similar idea as in the proof of Theorem 21.4.8. We create matrix Ũ ∈ Rn×s1s2

by copying matrix A1S1 s2 times, i.e.,

Ũ =
[
A1S1 A1S1 · · · A1S1

]
.
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We create matrix Ṽ ∈ Rn×s1s2 by copying the i-th column of A2S2 a total of s1 times, into

columns (i− 1)s1, · · · , is1 of Ṽ , for each i ∈ [s2], i.e.,

Ṽ =
[
(A2S2)1 · · · (A2S2)1 (A2S2)2 · · · (A2S2)2 · · · (A2S2)s2 · · · (A2S2)s2

]
.

We have

min
X∈Rn×s1s2

‖Ũ ⊗ Ṽ ⊗X − A‖F ≤ α2 OPT .

Choose Ti ∈ Rti×n to be a sparse embedding matrix (Definition 21.3.10) with ti =

poly(k/ε), for each i ∈ [2]. By applying Lemma 21.4.6, we have, if W ′ satisfies,

‖T1Ũ ⊗ T2Ṽ ⊗W ′ − A(T1, T2, I)‖F = min
X∈Rn×s1s2

‖T1Ũ ⊗ T2Ṽ ⊗X − A(T1, T2, I)‖F

then,

‖Ũ ⊗ Ṽ ⊗W ′ − A‖F ≤ (1 + ε) min
X∈Rn×s1s2

‖Ũ ⊗ Ṽ ⊗X − A‖F ≤ (1 + ε)α2 OPT .

Thus, we only need to solve

min
X∈Rn×s1s2

‖T1Ũ ⊗ T2Ṽ ⊗X − A(T1, T2, I)‖F .

which is similar to the proof of Theorem 21.4.8. Therefore, we complete the proof of correct-

ness. For the running time, A1S1, A2S2 can be computed in O(nnz(A)k) time, T1Ũ , T2Ṽ can

be computed in n poly(k) time. The final regression problem can be computed in n poly(k)

running time.
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21.4.5 Generalized matrix row subset selection

Note that in this section, the notation Πξ
C,k is given in Definition 21.3.5.

Algorithm 21.7 Generalized Matrix Row Subset Selection: Constructing R with r = O(k+
k/ε) Rows and a rank-k U ∈ Rk×r

1: procedure GeneralizedMatrixRowSubsetSelection(A,C, n,m, k, ε) .
Theorem 21.4.14

2: Y,Φ,∆← ApproxSubspaceSVD(A,C, k). . Claim 21.4.16 and Lemma 3.12 in
[BW14]

3: B ← Y∆.
4: Z2, D ← QR(B). . Z2 ∈ Rm×k, Z>2 Z2 = Ik, D ∈ Rk×k

5: h2 ← 8k ln(20k).
6: Ω2, D2 ← RandSampling(Z2, h2, 1) . Definition 3.6 in [BW14]
7: M2 ← Z>2 Ω2D2 ∈ Rk×h2 .
8: UM2 ,ΣM2 , V

>
M2
← SVD(M2). . rank(M2) = k and VM2 ∈ Rh2×k

9: r1 ← 4k.
10: S2 ← BSSSamplingSparse(VM2 , ((A

> − A>Z2Z
>
2 )Ω2D2)>, r1, 0.5) . Lemma 4.3 in

[BW14]
11: R1 ← (A>Ω2D2S2)> ∈ Rr1×n containing rescaled rows from A.
12: r2 ← 4820k/ε.
13: R2 ← AdaptiveRowsSparse(A,Z2, R1, r2) . Lemma 4.5 in [BW14]
14: R← [R>1 , R

>
2 ]>. . R ∈ R(r1+r2)×n containing r = 4k + 4820k/ε rescaled rows of A.

15: Choose W ∈ Rξ×m to be a randomly chosen sparse subspace embedding with ξ =
Ω(k2ε−2).

16: U ← Φ−1∆D−1(WCΦ−1∆D−1)†WAR† = Φ−1∆∆>(WC)†WAR†.
17: return R, U .
18: end procedure

Theorem 21.4.14. Given matrices A ∈ Rn×m and C ∈ Rn×k, there exists an algorithm

which takes O(nnz(A) log n) + (m+ n) poly(k, 1/ε) time and outputs a diagonal matrix D ∈

Rn×n with d = O(k/ε) nonzeros (or equivalently a matrix R that contains d = O(k/ε) rescaled
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rows of A) and a matrix U ∈ Rk×d such that

‖CUDA− A‖2
F ≤ (1 + ε) min

X∈Rk×m
‖CX − A‖2

F

holds with probability .99.

Proof. This follows by combining Lemma 21.4.17 and 21.4.18. Let U,R denote the output

of procedure GeneralizedMatrixRowSubsetSelection,

‖A− CUR‖2
F ≤ (1 + ε)‖A− Z2Z

>
2 AR

†R‖2
F

≤ (1 + ε)(1 + 60ε)‖A− ΠF
C,k(A)‖2

F

≤ (1 + 130ε)‖A− ΠF
C,k(A)‖2

F .

Because R is a subset of rows of A and R has size O(k/ε)×m, there must exist a diagonal

matrix D ∈ Rn×n with O(k/ε) nonzeros such that R = DA. This completes the proof.

Corollary 21.4.15 (A slightly different version of Theorem 21.4.14, faster running time, and

small input matrix). Given matrices A ∈ Rn×m and C ∈ Rn×k, if min(m,n) = poly(k, 1/ε),

then there exists an algorithm which takes O(nnz(A))+(m+n) poly(k, 1/ε) time and outputs

a diagonal matrix D ∈ Rn×n with d = O(k/ε) nonzeros (or equivalently a matrix R that

contains d = O(k/ε) rescaled rows of A) and a matrix U ∈ Rk×d such that

‖CUDA− A‖2
F ≤ (1 + ε) min

X∈Rk×m
‖CX − A‖2

F

holds with probability .99.

Proof. The log n factor comes from the adaptive sampling where we need to choose a Gaus-

sian matrix with O(log n) rows and compute SA. If A has poly(k, 1/ε) columns, it is sufficient
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to choose S to be a CountSketch matrix with poly(k, 1/ε) rows. Then, we do not need a

log n factor in the running time. If S has poly(k, 1/ε) rows, then we no longer need the

matrix S.

Claim 21.4.16. Given matrices A ∈ Rm×n and C ∈ Rm×c, let Y ∈ Rm×c,Φ ∈ Rc×c and

∆ ∈ Rc×k denote the output of procedure ApproxSubspaceSVD(A,C, k, ε). Then with

probability .99, we have,

‖A− Y∆∆>Y >A‖2
F ≤ (1 + 30ε)‖A− ΠF

C,k(A)‖2
F .

Proof. This follows by Lemma 3.12 in [BW14].

Lemma 21.4.17. The matrices R and Z2 in procedure GeneralizedMatrixRowSub-

setSelection (Algorithm 21.7) satisfy with probability at least 0.17− 2/n,

‖A− Z2Z
>
2 AR

†R‖2
F ≤ ‖A− ΠF

C,k(A)‖2
F + 60ε‖A− ΠF

C,k(A)‖2
F .

Proof. We can show,

‖A− Z2Z
>
2 A‖2

F +
30ε

4820
‖A− AR†1R1‖2

F

= ‖A−BB†A‖2
F +

30ε

4820
‖A− AR†1R1‖2

F

≤ ‖A−BB†A‖2
F + 30ε‖A− Ak‖2

F

≤ ‖A− Y∆∆>Y A‖2
F + 30ε‖A− ΠF

C,k(A)‖2
F

≤ (1 + 30ε)‖A− ΠF
C,k(A)‖2

F + 30ε‖A− ΠF
C,k(A)‖2

F ,

where the first step follows by the fact that Z2Z
>
2 = Z2DD

−1Z>2 = (Z2D)(Z2D)† = BB†, the

second step follows by ‖A−AR†1R1‖2
F ≤ 4820‖A−Ak‖2

F , the third step follows by B = Y∆

and B† = (Y∆)† = ∆†Y † = ∆>Y >, and the last step follows by Claim 21.4.16.
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Lemma 21.4.18. The matrices C,U and R in procedure GeneralizedMatrixRowSub-

setSelection (Algorithm 21.7) satisfy that

‖A− CUR‖2
F ≤ (1 + ε)‖A− Z2Z

>
2 AR

†R‖2
F

with probability at least .99.

Proof. Let UR,ΣR, VR denote the SVD of R. Then VRV >R = R†R.

We define Y ∗ to be the optimal solution of

min
X∈Rk×r

‖WAVRV
>
R −WCΦ−1∆D−1Y R‖2

F .

We define X̂∗ to be Y ∗R ∈ Rk×n, which is also equivalent to defining X̂∗ to be the optimal

solution of

min
X∈Rk×n

‖WAVRV
>
R −WCΦ−1∆D−1X‖2

F .

Furthermore, it implies X̂∗ = (WCΦ−1∆D−1)†WAVRV
†
R.

We also define X∗ to be the optimal solution of

min
X∈Rk×n

‖AVRV †R − CΦ−1∆D−1X‖2
F ,

which implies that,

X∗ = (CΦ−1∆D−1)†AVRV
>
R = Z>2 AVRV

>
R .
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Now, we start to prove an upper bound on ‖A− CUR‖2
F ,

‖A− CUR‖2
F = ‖A− CΦ−1∆D−1Y ∗R‖2

F by definition of U

= ‖A− CΦ−1∆D−1X̂∗‖2
F by X̂∗ = Y ∗R

= ‖AVRV >R − CΦ−1∆D−1X̂∗ + A− AVRV >R ‖2
F

= ‖AVRV >R − CΦ−1∆D−1X̂∗‖2
F︸ ︷︷ ︸

α

+ ‖A− AVRV >R ‖2
F︸ ︷︷ ︸

β

, (21.12)

where the last step follows by X̂∗ = MV >R , A−AVRV >R = A(I−VRV >R ) and the Pythagorean

theorem. We show how to upper bound the term α,

α ≤ (1 + ε)‖AVRV >R − CΦ−1∆D−1X∗‖2
F by Lemma 21.4.19

= ε‖AVRV >R − CΦ−1∆D−1X∗‖2
F + ‖AVRV >R − CΦ−1∆D−1X∗‖2

F

= ε‖AVRV >R − CΦ−1∆D−1X∗‖2
F + ‖AVRV >R − CΦ−1∆D−1(Z>2 AR

†R)‖2
F . (21.13)

By the Pythagorean theorem and the definition of Z2 (which means Z2 = CΦ−1∆D−1), we

have,

‖AVRV >R − CΦ−1∆D−1(Z>2 AR
†R)‖2

F + β

= ‖AVRV >R − CΦ−1∆D−1(Z>2 AR
†R)‖2

F + ‖A− AVRV >R ‖2
F

= ‖A− CΦ−1∆D−1(Z>2 AR
†R)‖2

F

= ‖A− Z2Z
>
2 AR

†R‖2
F . (21.14)

Combining Equations (21.12), (21.13) and (21.14) together, we obtain,

‖A− CUR‖2
F ≤ ε‖AVRV >R − CΦ−1∆D−1X∗‖2

F + ‖A− Z2Z
>
2 AR

†R‖2
F .
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We want to show ‖AVRV >R − CΦ−1∆D−1X∗‖2
F ≤ ‖A− Z2Z

>
2 AR

†R‖2
F ,

‖AVRV >R − CΦ−1∆D−1X∗‖2
F

= ‖AVRV >R − CΦ−1∆D−1Z>2 AVRV
>
R ‖2

F by X∗ = Z>2 AVRV
>
R

≤ ‖A− CΦ−1∆D−1Z>2 A‖2
F by properties of projections

≤ ‖A− CΦ−1∆D−1Z>2 AR
†R‖2

F by properties of projections

= ‖A− Z2Z
>
2 AR

†R‖2
F . by Z2 = CΦ−1∆D−1

This completes the proof.

Lemma 21.4.19 ([CW13]). Let A ∈ Rn×d have rank ρ and B ∈ Rn×r. Let W ∈ Rr×n be a

randomly chosen sparse subspace embedding with r = Ω(ρ2ε−2). Let X̂∗ = arg min
X∈Rd×r

‖WAX −

WB‖2
F and let X∗ = arg min

X∈Rd×r
‖AX −B‖2

F . Then with probability at least .99,

‖AX̃∗ −B‖2
F ≤ (1 + ε)‖AX∗ −B‖2

F .
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21.4.6 Column, row, and tube subset selection, (1 + ε)-approximation

Algorithm 21.8 Frobenius Norm Tensor Column, Row and Tube Subset Selection, Poly-
nomial Time
1: procedure FCRTSelection(A, n, k, ε) . Theorem 21.4.20
2: s1 ← s2 ← O(k/ε).
3: Choose a Gaussian matrix S1 with s1 columns. . Definition 21.3.12
4: Choose a Gaussian matrix S2 with s2 columns. . Definition 21.3.12
5: Form matrix Z ′3 by setting the (i, j)-th row to be the vectorization of (A1S1)i ⊗

(A2S2)j.
6: D3 ←GeneralizedMatrixRowSubsetSelection(A>3 , (Z ′3)>,n2,n,s1s2,ε). .

Algorithm 21.7
7: Let d3 denote the number of nonzero entries in D3. . d3 = O(s1s2/ε)
8: Form matrix Z ′2 by setting the (i, j)-th row to be the vectorization of (A1S1)i ⊗

(A3S
′
3)j.

9: D2 ←GeneralizedMatrixRowSubsetSelection(A>2 , (Z ′2)>,n2,n,s1d3,ε).
10: Let d2 denote the number of nonzero entries in D2. . d2 = O(s1d3/ε)
11: Form matrix Z ′1 by setting the (i, j)-th row to be the vectorization of (A2D2)i ⊗

(A3D3)j.
12: D1 ←GeneralizedMatrixRowSubsetSelection(A>1 , (Z ′1)>,n2,n,d2d3,ε).
13: Let d1 denote the number of nonzero entries in D1. . d1 = O(d2d3/ε)
14: C ← A1D1, R← A2D2 and T ← A3D3.
15: return C, R and T .
16: end procedure

We provide two bicriteria CURT results in this Section. We first present a warm-up

result. That result (Theorem 21.4.20) does not output tensor U and only guarantees that

there is a rank-poly(k/ε) tensor U . Then we show the second result (Theorem 21.4.21), our

second result is able to output tensor U . The U has rank poly(k/ε), but not k.

Theorem 21.4.20. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an

algorithm which takes O(nnz(A))+n poly(k, 1/ε) time and outputs three matrices: C ∈ Rn×c,

a subset of columns of A, R ∈ Rn×r a subset of rows of A, and T ∈ Rn×t, a subset of tubes
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of A where c = r = t = poly(k, 1/ε), and there exists a tensor U ∈ Rc×r×t such that

‖(((U · T>)> ·R>)> · C>)> − A‖2
F ≤ (1 + ε) min

rank−k Ak
‖Ak − A‖2

F ,

or equivalently,
∥∥∥∥∥

c∑

i=1

r∑

j=1

t∑

l=1

Ui,j,l · Ci ⊗Rj ⊗ Tl − A
∥∥∥∥∥

2

F

≤ (1 + ε) min
rank−k Ak

‖Ak − A‖2
F

holds with probability 9/10.

Proof. We mainly analyze Algorithm 21.8 and it is easy to extend to Algorithm 21.9.

We fix V ∗ ∈ Rn×k and W ∗ ∈ Rn×k. We define Z1 ∈ Rk×n2 where the i-th row of Z1

is the vector Vi ⊗Wi. Choose sketching (Gaussian) matrix S1 ∈ Rn2×s1 (Definition 21.3.12),

and let Û = A1S1(Z1S1)† ∈ Rn×k. Following a similar argument as in the previous theorem,

we have

‖ÛZ1 − A1‖2
F ≤ (1 + ε) OPT .

We fix Û and W ∗. We define Z2 ∈ Rk×n2 where the i-th row of Z2 is the vector Ûi ⊗

W ∗
i . Choose sketching (Gaussian) matrix S2 ∈ Rn2×s2 (Definition 21.3.12), and let V̂ =

A2S2(Z2S2)† ∈ Rn×k. Following a similar argument as in the previous theorem, we have

‖V̂ Z2 − A2‖2
F ≤ (1 + ε)2 OPT .

We fix Û and V̂ . Note that Û = A1S1(Z1S1)† and V̂ = A2S2(Z2S2)†. We define

Z3 ∈ Rk×n2 such that the i-th row of Z3 is the vector Ûi ⊗ V̂i. Let z3 = s1 · s2. We define
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Z ′3 ∈ Rz3×n2 such that, ∀i ∈ [s1], ∀j ∈ [s2], the i + (j − 1)s1-th row of Z ′3 is the vector

(A1S1)i ⊗ (A2S2)j. We consider the following objective function,

min
W∈Rn×k,X∈Rk×z3

‖WXZ ′3 − A3‖2
F ≤ min

W∈Rn×k
‖WZ3 − A3‖2

F ≤ (1 + ε)2 OPT .

Using Theorem 21.4.14, we can find a diagonal matrix D3 ∈ Rn2×n2 with d3 =

O(z3/ε) = O(k2/ε3) nonzero entries such that

min
X∈Rd3×z3

‖A3D3XZ
′
3 − A3‖2

F ≤ (1 + ε)3 OPT .

In the following, we abuse notation and let A3D3 ∈ Rn×d3 by deleting zero columns. Let W ′

denote A3D3 ∈ Rn×d3 . Then,

min
X∈Rd3×z3

‖W ′XZ ′3 − A3‖2
F ≤ (1 + ε)3 OPT .

We fix Û andW ′. Let z2 = s1·d3. We define Z ′2 ∈ Rz2×n2 such that, ∀i ∈ [s1],∀j ∈ [d3],

the i+ (j − 1)s1-th row of Z ′2 is the vector (A1S1)i ⊗ (A3D3)j.

Using Theorem 21.4.14, we can find a diagonal matrix D2 ∈ Rn2×n2 with d2 =

O(z2/ε) = O(s1d3/ε) = O(k3/ε5) nonzero entries such that

min
X∈Rd2×z2

‖A2D2XZ
′
2 − A2‖2

F ≤ (1 + ε)4 OPT .

Let V ′ denote A2D2. Then,

min
X∈Rd2×z2

‖V ′XZ ′2 − A2‖2
F ≤ (1 + ε)4 OPT .

We fix V ′ and W ′. Let z1 = d2 · d3. We define Z ′1 ∈ Rz1×n2 such that, ∀i ∈ [d2],∀j ∈

[d3], the i+ (j − 1)s1-th row of Z ′1 is the vector (A2D2)i ⊗ (A3D3)j.
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Using Theorem 21.4.14, we can find a diagonal matrix D1 ∈ Rn2×n2 with d1 =

O(z1/ε) = O(d2d3/ε) = O(k5/ε9) nonzero entries such that

min
X∈Rd1×z1

‖A1D1XZ
′
1 − A1‖2

F ≤ (1 + ε)5 OPT .

Let U ′ denote A1D1. Then,

min
X∈Rd1×z1

‖U ′XZ ′1 − A1‖2
F ≤ (1 + ε)5 OPT .

Putting U ′, V ′,W ′ all together, we complete the proof.

All the above analysis gives the running time O(nnz(A)) log n+n2 poly(log n, k, 1/ε).

To improve the running time, we need to use Algorithm 21.9, the similar analysis will go

through, the running time will be improved to O(nnz(A) + n poly(k, 1/ε)), but the sample

complexity of c, r, k will be slightly worse (poly log factors).

Theorem 21.4.21. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an

algorithm which takes O(nnz(A)+n poly(k, 1/ε)) time and outputs three matrices: C ∈ Rn×c,

a subset of columns of A, R ∈ Rn×r a subset of rows of A, and T ∈ Rn×t, a subset of tubes

of A, together with a tensor U ∈ Rc×r×t with rank(U) = k′ where c = r = t = poly(k, 1/ε)

and k′ = poly(k, 1/ε) such that

‖U(C,R, T )− A‖2
F ≤ (1 + ε) min

rank−k Ak
‖Ak − A‖2

F ,

or equivalently,
∥∥∥∥∥

c∑

i=1

r∑

j=1

t∑

l=1

Ui,j,l · Ci ⊗Rj ⊗ Tl − A
∥∥∥∥∥

2

F

≤ (1 + ε) min
rank−k Ak

‖Ak − A‖2
F

holds with probability 9/10.

Proof. The proof follows by combining Theorem 21.1.1 and Theorem 21.1.3 directly.
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Algorithm 21.9 Frobenius Norm Tensor Column, Row and Tube Subset Selection, Input
Sparsity Time
1: procedure FCRTSelection(A, n, k, ε) . Theorem 21.4.20
2: s1 ← s2 ← O(k/ε).
3: ε0 ← 0.001.
4: Choose a Gaussian matrix S1 with s1 columns. . Definition 21.3.12
5: Choose a Gaussian matrix S2 with s2 columns. . Definition 21.3.12
6: Form matrix B1 by setting (i, j)-th column to be (A1S1)i.
7: Form matrix B2 by setting (i, j)-th column to be (A2S2)j. . Z ′3 = B>1 �B>2
8: d3 ← O(s1s2 log(s1s2) + (s1s2/ε)).
9: D3 ←FastTensorLeverageScoreGeneralOrder(B>1 , B>2 , n, n, s1s2, ε0, d1). .

Algorithm 21.15
10: Form matrix B1 by setting (i, j)-th column to be (A1S1)i.
11: Form matrix B3 by setting (i, j)-th column to be (A3D3)j. . Z ′2 = B>1 �B>3
12: d2 ← O(s1d3 log(s1d3) + (s1d3/ε)).
13: D2 ←FastTensorLeverageScoreGeneralOrder(B>1 , B>3 , n, n, s1d3, ε0, d2).
14: Form matrix B2 by setting (i, j)-th column to be (A2D2)i.
15: Form matrix B3 by setting (i, j)-th column to be (A3D3)j. . Z ′1 = B>2 �B>3
16: d1 ← O(d2d3 log(d2d3) + (d2d3/ε)).
17: D1 ←FastTensorLeverageScoreGeneralOrder(B>2 , B>3 , n, n, d2d3, ε0, d1).
18: C ← A1D1, R← A2D2 and T ← A3D3.
19: return C, R and T .
20: end procedure

21.4.7 CURT decomposition, (1 + ε)-approximation

21.4.7.1 Properties of leverage score sampling and BSS sampling

Notice that, the BSS algorithm is a deterministic procedure developed in [BSS12] for

selecting rows from a matrix A ∈ Rn×d (with ‖A‖2 ≤ 1 and ‖A‖2
F ≤ k) using a selection

matrix S so that

‖A>S>SA− A>A‖2 ≤ ε.
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The algorithm runs in poly(n, d, 1/ε) time. Using the ideas from [BW14] and [CEM+15], we

are able to reduce the number of nonzero entries from O(ε−2k log k) to O(ε−2k), and also

improve the running time to input sparsity.

Lemma 21.4.22 (Leverage score preserves subspace embedding - Theorem 2.11 in [Woo14b]).

Given a rank-k matrix A ∈ Rn×d, via leverage score sampling, we can obtain a diagonal ma-

trix D with m nonzero entries such that, letting B = DA, if m = O(ε−2k log k), then, with

probability at least 0.999, for all x ∈ Rd,

(1− ε)‖Ax‖2 ≤ ‖Bx‖2 ≤ (1 + ε)‖Ax‖2

Lemma 21.4.23. Given a rank-k matrix A ∈ Rn×d, there exists an algorithm that runs in

O(nnz(A)+n poly(k, 1/ε)) time and outputs a matrix B containing O(ε−2k log k) re-weighted

rows of A, such that with probability at least 0.999, for all x ∈ Rd,

(1− ε)‖Ax‖2 ≤ ‖Bx‖2 ≤ (1 + ε)‖Ax‖2

Proof. We choose a sparse embedding matrix (Definition 21.3.10) Π ∈ Rd×s with s =

poly(k/ε). With probability at least 0.999, Π> is a subspace embedding of A>. Thus,

rank(AΠ) = rank(A). Also, the leverage scores of AΠ are the same as those of A. Thus, we

can compute the leverage scores of AΠ. The running time of computing AΠ is O(nnz(A)).

Thus the total running time is O(nnz(A) + n poly(k, 1/ε)).

Lemma 21.4.24. Let B denote a matrix which contains O(ε−2k log k) rows of A ∈ Rn×d.

Choosing Π to be a sparse subspace embedding matrix of size d × O(ε−6(k log k)2), with

probability at least 0.999,

‖BΠΠ>B> −BB>‖2 ≤ ε‖B‖2
2.
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Combining Lemma 21.4.23, 21.4.24 and the BSS algorithm, we obtain:

Lemma 21.4.25. Given a rank-k matrix A ∈ Rn×d, there exists an algorithm that runs in

O(nnz(A)+n poly(k, 1/ε)) time and outputs a sampling and rescaling diagonal matrix S that

selects O(ε−2k) re-weighted rows of A, such that, with probability at least 0.999,

‖A>S>SA− A>A‖2 ≤ ε‖A‖2
2.

or equivalently, for all x ∈ Rd,

(1− ε)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + ε)‖Ax‖2.

Proof. Using Lemma 21.4.23, we can obtain B. Then we apply a sparse subspace embedding

matrix Π on the right of B. At the end, we run the BSS algorithm on BΠ and we are able to

output O(ε−2k) re-weighted rows of BΠ. Using these rows, we are able to determine O(ε−2k)

re-weighted rows of A.

21.4.7.2 Row sampling for linear regression

Theorem 21.4.26 (Theorem 5 in [CNW15]). We are given A ∈ Rn×d with ‖A‖2
2 ≤ 1 and

‖A‖2
F ≤ k, and an ε ∈ (0, 1). There exists a diagonal matrix S with O(k/ε2) nonzero entries

such that

‖(SA)>SA− A>A‖2 ≤ ε.

Corollary 21.4.27. Given a rank-k matrix A ∈ Rn×d, vector b ∈ Rn, and parameter ε > 0,

let U ∈ Rn×(k+1) denote an orthonormal basis of [A, b]. Let S ∈ Rn×n denote a sampling and

rescaling diagonal matrix according to Leverage score sampling and sparse BSS sampling of
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U with m nonzero entries. If m = O(k), then S is a (1± 1/2) subspace embedding for U ; if

m = O(k/ε), then S satisfies
√
ε-operator norm approximate matrix product for U .

Proof. This follows by Lemma 21.4.22, Lemma 21.4.24 and Theorem 21.4.26.

Lemma 21.4.28 ([NW14]). Given A ∈ Rn×d and b ∈ Rn, let S ∈ Rn×n denote a sampling

and rescaling diagonal matrix. Let x∗ denote arg minx ‖Ax−b‖2
2 and x′ denote arg minx ‖SAx−

Sb‖2
2. If S is a (1±1/2) subspace embedding for the column span of A, and ε′ (=

√
ε)-operator

norm approximate matrix product for U adjoined with b−Ax∗, then, with probability at least

.999,

‖Ax′ − b‖2
2 ≤ (1 + ε)‖Ax∗ − b‖2

2.

Proof. We define OPT = min
x
‖Ax − b‖2. We define x′ = arg min

x
‖SAx − Sb‖2

2 and x∗ =

arg min
x
‖Ax− b‖2

2. Let w = b−Ax∗. Let U denote an orthonormal basis of A. We can write

Ax′ − Ax∗ = Uβ. Then, we have,

‖Ax′ − b‖2
2 = ‖Ax′ − Ax∗ + AA†b− b‖2

2 by x∗ = A†b

= ‖Uβ + (UU> − I)b‖2
2

= ‖Ax∗ − Ax′‖2
2 + ‖Ax∗ − b‖2

2 by Pythagorean Theorem

= ‖Uβ‖2
2 + OPT2

= ‖β‖2
2 + OPT2 .

If S is a (1± 1/2) subspace embedding for U , then we can show
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‖β‖2 − ‖U>S>SUβ‖2

≤ ‖β − U>S>SUβ‖2 by triangle inequality

= ‖(I − U>S>SU)β‖2

≤ ‖I − U>S>SU‖2 · ‖β‖2

≤ 1

2
‖β‖2.

Thus, we obtain

‖U>S>SUβ‖2 ≥ ‖β‖2/2.

Next, we can show

‖U>S>SUβ‖2 = ‖U>S>S(Ax′ − Ax∗)‖2
2

= ‖U>S>S(A(SA)†Sb− Ax∗)‖2 by x′ = (SA)†Sb

= ‖U>S>S(b− Ax∗)‖2 by SA(SA)† = I

= ‖U>S>Sw‖2. by w = b− Ax∗

We define U ′ =
[
U w/‖w‖2

]
. We define X and y to satisfy U = U ′X and w = U ′y. Then,
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we have

‖U>S>Sw‖2

= ‖U>S>Sw − U>w‖2 by U>w = 0

= ‖X>U ′>S>SU ′y −X>U ′>U ′y‖2

= ‖X>(U ′>S>SU ′ − I)y‖2

≤ ‖X‖2 · ‖U ′>S>SU ′ − I‖2 · ‖y‖2

≤ ε′‖X‖2‖y‖2

= ε′‖U‖2‖w‖2

= ε′OPT, by ‖U‖2 = 1 and ‖w‖2 = OPT

where the fifth inequality follows since S satisfies ε′-operator norm approximate matrix prod-

uct for the column span of U adjoined with w.

Putting it all together, we have

‖Ax′ − b‖2
2 = ‖Ax∗ − b‖2

2 + ‖Ax∗ − Ax′‖2
2

= OPT2 +‖β‖2
2

≤ OPT2 +4‖U>S>Sw‖2
2

≤ OPT2 +4(ε′OPT)2

≤ (1 + ε) OPT2 . by ε′ =
1

2

√
ε.

Finally, note that S satisfies ε′-operator norm approximate matrix product for U

adjoined with w if it is a (1 ± ε′)-subspace embedding for U adjoined with w, which holds

using BSS sampling by Theorem 5 of [CNW15] with O(d/ε) samples.
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21.4.7.3 Leverage scores for multiple regression

Lemma 21.4.29 (see, e.g., Lemma 32 in [CW13] among other places). Given matrix A ∈

Rn×d with orthonormal columns, and parameter ε > 0, if S ∈ Rn×n is a sampling and

rescaling diagonal matrix according to the leverage scores of A where the number of nonzero

entries is t = O(1/ε2), then, for any B ∈ Rn×m, we have

‖A>S>SB − A>B‖2
F < ε2‖A‖2

F‖B‖2
F ,

holds with probability at least 0.9999.

Corollary 21.4.30. Given matrix A ∈ Rn×d with orthonormal columns, and parameter

ε > 0, if S ∈ Rn×n is a sampling and rescaling diagonal matrix according to the leverage

scores of A with m nonzero entries, then if m = O(d log d), then S is a (1 ± 1/2) subspace

embedding for A. If m = O(d/ε), then S satisfies
√
ε/d-Frobenius norm approximate matrix

product for A.

Proof. This follows by Lemma 21.4.22 and Lemma 21.4.29.

Lemma 21.4.31 ([NW14]). Given A ∈ Rn×d and B ∈ Rn×m, let S ∈ Rn×n denote a

sampling and rescaling matrix according to A. Let X∗ denote arg minX ‖AX − B‖2
F and

X ′ denote arg minX ‖SAX − SB‖2
F . Let U denote an orthonormal basis for A. If S is a

(1 ± 1/2) subspace embedding for U , and satisfies ε′(=
√
ε/d)-Frobenius norm approximate

matrix product for U , then, we have that

‖AX ′ −B‖2
F ≤ (1 + ε)‖AX∗ −B‖2

F

holds with probability at least 0.999.
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Proof. We define OPT = minX ‖AX −B‖F . Let A = UΣV > denote the SVD of A. Since A

has rank k, U and V have k columns. We can write A(X ′ −X∗) = Uβ. Then, we have

‖AX ′ −B‖2
F = ‖AX ′ − AX∗ + AA†B −B‖2

F by X∗ = A†B

= ‖Uβ + (UU> − I)B‖2
F

= ‖AX∗ − AX ′‖2
F + ‖AX∗ −B‖2

F by Pythagorean Theorem

= ‖Uβ‖2
F + OPT2

= ‖β‖2
F + OPT2 . (21.15)

If S is a (1± 1/2) subspace embedding for U , then we can show,

‖β‖F − ‖U>S>SSUβ‖F

≤ ‖β − U>S>SUβ‖F by triangle inequality

= ‖(I − U>S>SU)β‖F

≤ ‖(I − U>S>SU)‖2 · ‖β‖F by ‖AB‖F ≤ ‖A‖2‖B‖F

≤ 1

2
‖β‖F . by ‖(I − U>S>SU)‖2 ≤ 1/2

Thus, we obtain

‖U>S>SUβ‖F ≥ ‖β‖F/2. (21.16)

Next, we can show

‖U>S>SUβ‖F = ‖U>S>S(AX ′ − AX∗)‖F

= ‖U>S>S(A(SA)†Sb− AX∗)‖F by X ′ = (SA)†SB

= ‖U>S>S(B − AX∗)‖F . by SA(SA)† = I
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Then, we can show

‖U>S>S(B − AX∗)‖F ≤ ε′‖U>‖F‖B − AX∗‖F

= ε′
√
dOPT, (21.17)

where the first step follows from Lemma 21.4.29, the second step follows from ‖U‖F =
√
d and ‖B − AX∗‖F = OPT.

Putting it all together, we have

‖AX ′ −B‖2
F = ‖AX∗ −B‖2

F + ‖AX∗ − AX ′‖2
F

= OPT2 +‖β‖2
F by Equation (21.15)

≤ OPT2 +4‖U>S>Sw‖2
F by Equation (21.16)

≤ OPT2 +4(ε′
√
dOPT)2 by Equation (21.17)

≤ (1 + ε) OPT2 . by ε′ =
1

2

√
ε/d

21.4.7.4 Sampling columns according to leverage scores implicitly, improving
polynomial running time to nearly linear running time

This section explains an algorithm that is able to sample from the leverage scores

from the � product of two matrices U, V without explicitly writing down U � V . To build

this algorithm we combine TensorSketch, some ideas from [DMIMW12] and some ideas

from [AKO11, MW10]. Finally, we are able to improve the running time of sampling columns

according to leverage scores from Ω(n2) to Õ(n). Given two matrices U, V ∈ Rk×n, we define

A ∈ Rk×n1n2 to be the matrix where the i-th row of A is the vectorization of U i⊗V i, ∀i ∈ [k].
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Naïvely, in order to sample O(poly(k, 1/ε)) rows from A> according to leverage scores, we

need to write down n2 leverage scores. This approach will take at least Ω(n2) running

time. In the rest of this section, we will explain how to do it in O(n · poly(log n, k, 1/ε))

time. In Section 21.5.1, we will explain how to extend this idea from 3rd order tensors to

general q-th order tensors and remove the poly(log n) factor from running time, i.e., obtain

O(n · poly(k, 1/ε)) time.

Lemma 21.4.32. Given two matrices U ∈ Rk×n1 and V ∈ Rk×n2, there exists an algorithm

that takes O((n1 + n2) · poly(log(n1n2), k) · Rsamples) time and samples Rsamples columns of

U � V ∈ Rk×n1n2 according to the leverage scores of R−1(U � V ), where R is the R of a QR

factorization.

Proof. We choose Π ∈ Rn1n2×s1 to be a TensorSketch. Then, according to Section 21.3.10,

we can compute R−1 in n · poly(log n, k, 1/ε) time, where R is the R in a QR-factorization.

We want to sample columns from U � V according to the square of the `2-norms of each

column of R−1(U � V ). However, explicitly writing down the matrix R−1(U � V ) takes

kn1n2 time, and the number of columns is already n1n2. The goal is to sample columns from

R−1(U � V ) without explicitly computing the square of the `2-norm of each column.

The first simple observation is that the following two sampling procedures are equiva-

lent in terms of the column samples of a matrix that they take. (1) We sample a single entry

from the matrix R−1(U � V ) proportional to its squared value. (2) We sample a column

from the matrix R−1(U � V ) proportional to its squared `2-norm. Let the (i, j1, j2)-th entry

denote the entry in the i-th row and the (j1 − 1)n2 + j2-th column. We can show, for a
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Algorithm 21.10 Fast Tensor Leverage Score Sampling
1: procedure FastTensorLeverageScore(U, V, n1, n2, k, ε, Rsamples) . Lemma 21.4.32
2: s1 ← poly(k, 1/ε).
3: g1 ← g2 ← g3 ← O(ε−2 log(n1n2)).
4: Choose Π ∈ Rn1n2×s1 to be a TensorSketch. . Definition 21.3.20
5: Compute R−1 ∈ Rk×k by using (U � V )Π. . U ∈ Rk×n1 , V ∈ Rk×n2

6: Choose G1 ∈ Rg1×k to be a Gaussian sketching matrix.
7: for i = 1→ g1 do
8: w ← (GiR−1)> . Gi denotes the i-th row of G
9: for j = 1→ [n1] do . Form matrix U ′i ∈ Rk×n1

10: U ′ij ← w ◦ Uj,∀j ∈ [n1]. . Uj denotes the j-th column of U ∈ Rk×n1

11: end for
12: end for
13: Choose G2,i ∈ Rg2×n1 to be a Gaussian sketching matrix.
14: for i = 1→ g1 do
15: αi ← ‖(G2,iU

′i>)V ‖2
F .

16: Choose G3,i ∈ Rg3×n1 to be a Gaussian sketching matrix.
17: for j2 = 1→ n2 do
18: βi,j ← ‖G3,i(U

′i>)Vj2‖2
2.

19: end for
20: end for
21: S← ∅.
22: for r = 1→ Rsamples do
23: Sample i from [g1] with probability αi/

∑g1

i′=1 αi′ .
24: Sample j2 from [n2] with probability βi,j2/

∑n2

j′2=1 βi,j′2 .
25: for j1 = 1→ n1 do
26: γj1 ← ((U ′i>)j1Vj2)2.
27: end for
28: Sample j1 from [n1] with probability γj1/

∑n1

j′1=1 γj′1 .
29: S← S ∪ (j1, j2).
30: end for
31: Convert S into a diagonal matrix D with at most Rsamples nonzero entries.
32: return D. . Diagonal matrix D ∈ Rn1n2×n1n2

33: end procedure
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particular column (j1 − 1)n2 + j2,

Pr[sample an entry from the (j1 − 1)n2 + j2 th column of a matrix]

=
k∑

i=1

Pr[sample the (i, j1, j2)-th entry of matrix]

=
k∑

i=1

|(R−1(U � V ))i,(j1−1)n2+j2|2
‖R−1(U � V )‖2

F

=
‖(R−1(U � V ))(j1−1)n2+j2‖2

‖R−1(U � V )‖2
F

= Pr[sample the (j1 − 1)n2 + j2 th column of matrix]. (21.18)

Thus, it is sufficient to show how to sample a single entry from matrix R−1(U � V ) propor-

tional to its squared value without writing down all of the entries of a k × n1n2 matrix.

We choose a Gaussian matrixG1 ∈ Rg1×k with g1 = O(ε−2 log(n1n2)). By Claim 21.4.33

we can reduce the length of each column vector of matrix R−1U � V from k to g1 while pre-

serving the squared `2-norm of all columns simultaneously. Thus, we obtain a new matrix

GR−1(U �V ) ∈ Rg1×n1n2 , and sampling from this new matrix is equivalent to sampling from

the original matrix R−1(U � V ).

In the following paragraphs, we explain a sampling procedure (also described in Pro-

cedure FastTensorLeverageScore in Algorithm 21.10) which contains three sampling

steps. The first step is sampling i from [g1], the second step is sampling j2 from [n2], and

the last step is sampling j1 from [n1].

For each j1 ∈ [n1], let Uj1 denote the j1-th column of U . For each i ∈ [g1], letGi
1 denote

the i-th row of matrix G1 ∈ Rg1×k, let U ′i ∈ Rk×n1 denote a matrix where the j1-th column is

(GiR−1)> ◦Uj1 ∈ Rk, ∀j ∈ [n1]. Then, using Claim 21.4.37, we have that (GiR−1) · (U�V ) ∈
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Rn1n2 is a row vector where the entry in the (j1−1)n2+j2-th coordinate is the entry in the j1-

th row and j2-th column of matrix (U ′i>V ) ∈ Rn1×n2 . Further, the squared `2-norm of vector

(GiR−1) · (U�V ) is equal to the squared Frobenius norm of matrix (U ′i>V ). Thus, sampling

i proportional to the squared `2-norm of vector (GiR−1) · (U � V ) is equivalent to sampling

i proportional to the squared Frobenius norm of matrix (U ′i>V ). Naïvely, computing the

Frobenius norm of an n1 × n2 matrix requires O(n1n2) time. However, we can choose a

Gaussian matrix G2,i ∈ Rg2×n1 to sample according to the value ‖(G2,iU
′i>)V ‖2

F , which can

be computed in O((n1 +n2)g2k) time. By claim 21.4.35, ‖(G2,iU
′i>)V ‖2

F ≈ ‖(U ′i>)V ‖2
F with

high probability. So far, we have finished the first step of the sampling procedure.

For the second step of the sampling procedure, we need to sample j2 from [n2]. To

do that, we need to compute the squared `2-norm of each column of U ′i>V ∈ Rn1×n2 . This

can be done by choosing another Gaussian matrix G3,i ∈ Rg3×n1 . For all j2 ∈ [n2], by

Claim 21.4.36, we have ‖G3,iU
′i>Vj2‖2

2 ≈ ‖U ′i>Vj2‖2
2. Also, for j2 ∈ [n2], ‖G3,iU

′i>Vj2‖2
2 can

be computed in nearly linear in n1 + n2 time.

For the third step of the sampling procedure, we need to sample j1 from [n1]. Since

we already have i and j2 from the previous two steps, we can directly compute |(U ′i>)j1Vj2|2,

for all j1. This only takes O(n1k) time.

Overall, the running time is O((n1 + n2) · poly(log(n1n2), k, 1/ε)). Because our esti-

mates are accurate enough, our sampling probabilities are also good approximations to the

leverage score sampling probabilities. Putting it all together, we complete the proof.

Claim 21.4.33. Given matrix R−1(U � V ) ∈ Rk×n1n2, let G1 ∈ Rg1×k denote a Gaussian

matrix with g1 = (ε−2 log(n1n2)). Then with probability at least 1− 1/ poly(n1n2), we have:

1572



for all j ∈ [n1n2],

(1− ε)‖R−1(U � V )j‖2
2 ≤ ‖G1R

−1(U � V )j‖2
2 ≤ (1 + ε)‖R−1(U � V )j‖2

2.

Proof. This follows by the Johnson-Lindenstrauss Lemma.

Claim 21.4.34. For a fixed i ∈ [g1], let G2,i ∈ Rg2×n1 denote a Gaussian matrix with

g2 = O(ε−2 log(n1n2)). Then with probability at least 1 − 1/ poly(n1n2), we have: for all

j2 ∈ [n2],

(1− ε)‖U ′i>Vj2‖2
2 ≤ ‖(G2,iU

′i>)Vj2‖2 ≤ (1 + ε)‖U ′i>Vj2‖2
2.

By taking the union bound over all i ∈ [g1], we obtain a stronger claim,

Claim 21.4.35. With probability at least 1 − 1/ poly(n1n2), we have : for all i ∈ [g1], for

all j2 ∈ [n2],

(1− ε)‖U ′i>Vj2‖2
2 ≤ ‖(G2,iU

′i>)Vj2‖2 ≤ (1 + ε)‖U ′i>Vj2‖2
2.

Similarly, if we choose G3,i to be a Gaussian matrix, we can obtain the same result

as for G2,i:

Claim 21.4.36. With probability at least 1 − 1/ poly(n1n2), we have : for all i ∈ [g1], for

all j2 ∈ [n2],

(1− ε)‖U ′i>Vj2‖2
2 ≤ ‖(G3,iU

′i>)Vj2‖2 ≤ (1 + ε)‖U ′i>Vj2‖2
2.

Claim 21.4.37. For any i ∈ [g1], j1 ∈ [n1], j2 ∈ [n2], let Gi
1 denote the i-th row of matrix

G1 ∈ Rg1×k. Let (U � V )(j1−1)n2+j2 denote the (j1 − 1)n2 + j2-th column of matrix Rk×n1n2.
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Let (U ′i>)j1 denote the j1-th row of matrix (U ′i>) ∈ Rn1×k. Let Vj2 denote the j2-th column

of matrix V ∈ Rk×n2. Then, we have

Gi
1R
−1(U � V )(j1−1)n2+j2 = (U ′i>)j1Vj2 .

Proof. This follows by,

Gi
1R
−1(U � V )(j1−1)n2+j2 = Gi

1R
−1(Uj1 ◦ Vj2) = (Gi

1R
−1 ◦ (Uj1)>)Vj2 = (U ′i>)j1Vj2 .

Lemma 21.4.38. Given A ∈ Rn×n2, V,W ∈ Rk×n, for any ε > 0, there exists an algorithm

that runs in O(n · poly(k, 1/ε)) time and outputs a diagonal matrix D ∈ Rn2×n2 with m =

O(k log k + k/ε) nonzero entries such that,

‖Û(V �W )− A‖2
F ≤ (1 + ε) min

U∈Rn×k
‖U(V �W )− A‖2

F ,

holds with probability at least 0.999, where Û denotes the optimal solution to minU ‖U(V �

W )D − AD‖2
F .

Proof. This follows by combining Theorem 21.5.1, Corollary 21.4.30, and Lemma 21.4.31.

Remark 21.4.1. Replacing Theorem 21.5.1 (Algorithm 21.15) by Lemma 21.4.32 (Algo-

rithm 21.10), we can obtain a slightly different version of Lemma 21.4.38 with n poly(log n, k, 1/ε)

running time, where the dependence on k is better.
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Algorithm 21.11 Frobenius Norm CURT Decomposition Algorithm, Input Sparsity Time
and Nearly Optimal Number of Samples
1: procedure FCURTInputSparsity(A,UB, VB,WB, n, k, ε) . Theorem 21.4.39
2: d1 ← d2 ← d3 ← O(k log k + k/ε).
3: ε0 ← 0.01.
4: Form B1 = V >B �W>

B ∈ Rk×n2 .
5: D1 ←FastTensorLeverageScoreGeneralOrder(V >B ,W>

B , n, n, k, ε0, d1). .
Algorithm 21.15

6: Form Û = A1D1(B1D1)† ∈ Rn×k.
7: Form B2 = Û> �W>

B ∈ Rk×n2 .
8: D2 ←FastTensorLeverageScoreGeneralOrder(Û>,W>

B , n, n, k, ε0, d2).
9: Form V̂ = A2D2(B2D2)† ∈ Rn×k.
10: Form B3 = Û> � V̂ > ∈ Rk×n2 .
11: D3 ←FastTensorLeverageScoreGeneralOrder(Û>, V̂ >, n, n, k, ε0, d3).
12: C ← A1D1, R← A2D2, T ← A3D3.
13: U ←∑k

i=1((B1D1)†)i ⊗ ((B2D2)†)i ⊗ ((B3D3)†)i.
14: return C, R, T and U .
15: end procedure

21.4.7.5 Input sparsity time algorithm

Theorem 21.4.39. Given a 3rd order tensor A ∈ Rn×n×n, let k ≥ 1, and let UB, VB,WB ∈

Rn×k denote a rank-k, α-approximation to A. Then there exists an algorithm which takes

O(nnz(A) + n poly(k, 1/ε)) time and outputs three matrices C ∈ Rn×c with columns from A,

R ∈ Rn×r with rows from A, T ∈ Rn×t with tubes from A, and a tensor U ∈ Rc×r×t with

rank(U) = k such that c = r = t = O(k log k + k/ε), and
∥∥∥∥∥

c∑

i=1

r∑

j=1

t∑

l=1

Ui,j,l · Ci ⊗Rj ⊗ Tl − A
∥∥∥∥∥

2

F

≤ (1 + ε)α min
rank−k A′

‖A′ − A‖2
F

holds with probability 9/10.
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Proof. We define

OPT := min
rank−k A′

‖A′ − A‖2
F .

We already have three matrices UB ∈ Rn×k, VB ∈ Rn×k and WB ∈ Rn×k and these three

matrices provide a rank-k, α-approximation to A, i.e.,
∥∥∥∥∥

k∑

i=1

(UB)i ⊗ (VB)i ⊗ (WB)i − A
∥∥∥∥∥

2

F

≤ αOPT . (21.19)

Let B1 = V >B � W>
B ∈ Rk×n2 denote the matrix where the i-th row is the vectorization

of (VB)i ⊗ (WB)i. Let D1 ∈ Rn2×n2 be a sampling and rescaling matrix corresponding to

sampling by the leverage scores of B>1 ; there are d1 nonzero entries on the diagonal of D1.

Let Ai ∈ Rn×n2 denote the matrix obtained by flattening A along the i-th direction, for each

i ∈ [3].

Define U∗ ∈ Rn×k to be the optimal solution to min
U∈Rn×k

‖UB1−A1‖2
F , Û = A1D1(B1D1)† ∈

Rn×k, and V0 ∈ Rn×k to be the optimal solution to min
V ∈Rn×k

‖V · (Û> �W>
B )− A2‖2

F . Due to

Lemma 21.4.38, if d1 = O(k log k + k/ε) then with constant probability, we have

‖ÛB1 − A1‖2
F ≤ αD1‖U∗B1 − A1‖2

F . (21.20)

Recall that (Û>�W>
B ) ∈ Rk×n2 denotes the matrix where the i-th row is the vector-
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ization of Ûi ⊗ (WB)i, ∀i ∈ [k]. Now, we can show,

‖V0 · (Û> �W>
B )− A2‖2

F

≤ ‖ÛB1 − A1‖2
F by V0 = arg min

V ∈Rn×k
‖V · (Û> �W>

B )− A2‖2
F

≤ αD1‖U∗B1 − A1‖2
F by Equation (21.20)

≤ αD1‖UBB1 − A1‖2
F by U∗ = arg min

U∈Rn×k
‖UB1 − A1‖2

F

≤ αD1αOPT . by Equation (21.19) (21.21)

We define B2 = Û> � W>
B . Let D2 ∈ Rn2×n2 be a sampling and rescaling matrix

corresponding to the leverage scores of B>2 . Suppose there are d2 nonzero entries on the

diagonal of D2.

Define V ∗ ∈ Rn×k to be the optimal solution to minV ∈Rn×k ‖V B2 − A2‖2
F , V̂ =

A2D2(B2D2)† ∈ Rn×k,W0 ∈ Rn×k to be the optimal solution to min
W∈Rn×k

‖W ·(Û>�V̂ >)−A3‖2
F ,

and V ′ to be the optimal solution to min
V ∈Rn×k

‖V B2D2 − A2D2‖2
F .

Due to Lemma 21.4.38, with constant probability, we have

‖V̂ B2 − A2‖2
F ≤ αD2‖V ∗B2 − A2‖2

F . (21.22)

Recall that (Û> � V̂ >) ∈ Rk×n2 denotes the matrix where the i-th row is the vector-
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ization of Ûi ⊗ V̂i, ∀i ∈ [k]. Now, we can show,

‖W0 · (Û> � V̂ >)− A3‖2
F

≤ ‖V̂ B2 − A2‖2
F by W0 = arg min

W∈Rn×k
‖W · (Û> � V̂ >)− A3‖2

F

≤ αD2‖V ∗B2 − A2‖2
F by Equation (21.22)

≤ αD2‖V0B2 − A2‖2
F by V ∗ = arg min

V ∈Rn×k
‖V B2 − A2‖2

F

≤ αD2αD1αOPT . by Equation (21.21) (21.23)

We define B3 = Û> � V̂ >. Let D3 ∈ Rn2×n2 denote a sampling and rescaling matrix

corresponding to sampling by the leverage scores of B>3 . Suppose there are d3 nonzero entries

on the diagonal of D3.

Define W ∗ ∈ Rn×k to be the optimal solution to minW∈Rn×k ‖WB3 − A3‖2
F , Ŵ =

A3D3(B3D3)† ∈ Rn×k, and W ′ to be the optimal solution to min
W∈Rn×k

‖WB3D3 − A3D3‖2
F .

Due to Lemma 21.4.38 with constant probability, we have

‖ŴB3 − A3‖2
F ≤ αD3‖W ∗B3 − A3‖2

F . (21.24)

Now we can show,

‖ŴB3 − A3‖2
F ≤ αD3‖W ∗B3 − A3‖2

F , by Equation (21.24)

≤ αD3‖W0B3 − A3‖2
F , by W ∗ = arg min

W∈Rn×k
‖WB3 − A3‖2

F

≤ αD3αD2αD1αOPT . by Equation (21.23)

This implies,
∥∥∥∥∥

k∑

i=1

Ûi ⊗ V̂i ⊗ Ŵi − A
∥∥∥∥∥

2

F

≤ O(1)αOPT2 .
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where Û = A1D1(B1D1)†, V̂ = A2D2(B2D2)†, Ŵ = A3D3(B3D3)†.

By Lemma 21.4.38, we need to set d1 = d2 = d3 = O(k log k + k/ε). Note that

B1 = (V >B �W>
B ). Thus D1 can be found in n · poly(k, 1/ε) time. Because D1 has a small

number of nonzero entries on the diagonal, we can compute B1D1 quickly without explicitly

writing down B1. Also A1D1 can be computed in nnz(A) time. Using (A1D1) and (B1D1),

we can compute Û in n poly(k, 1/ε) time. In a similar way, we can compute B2, D2, B3,

and D3. Since tensor U is constructed based on three poly(k, 1/ε) size matrices, (B1D1)†,

(B2D2)†, and (B3D3)†, the overall running time is O(nnz(A) + n poly(k, 1/ε))

21.4.7.6 Optimal sample complexity algorithm

Theorem 21.4.40. Given a 3rd order tensor A ∈ Rn×n×n, let k ≥ 1, and let UB, VB,WB ∈

Rn×k denote a rank-k, α-approximation to A. Then there exists an algorithm which takes

O(nnz(A) log n + n2 poly(log n, k, 1/ε)) time and outputs three matrices: C ∈ Rn×c with

columns from A, R ∈ Rn×r with rows from A, T ∈ Rn×t with tubes from A, and a tensor

U ∈ Rc×r×t with rank(U) = k such that c = r = t = O(k/ε), and
∥∥∥∥∥

c∑

i=1

r∑

j=1

t∑

l=1

Ui,j,l · Ci ⊗Rj ⊗ Tl − A
∥∥∥∥∥

2

F

≤ (1 + ε)α min
rank−k A′

‖A′ − A‖2
F

holds with probability 9/10.

Proof. The proof is almost the same as the proof of Theorem 21.4.39. The only difference is

that instead of using Theorem 21.4.38, we use Theorem 21.4.14.
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Algorithm 21.12 Frobenius Norm CURT Decomposition Algorithm, Optimal Sample Com-
plexity
1: procedure FCURTOptimalSamples(A,UB, VB,WB, n, k) . Theorem 21.4.40
2: d1 ← d2 ← d3 ← O(k/ε).
3: Form B1 = V >B �W>

B ∈ Rk×n2 .
4: D1 ←GeneralizedMatrixRowSubsetSelection(A>1 , B>1 , n2, n, k, ε). .

Algorithm 21.7
5: Let d1 denote the number of nonzero entries in D1. . d1 = O(k/ε)

6: Form Û = A1D1(B1D1)† ∈ Rn×k.
7: Form B2 = Û> �W>

B ∈ Rk×n2 .
8: D2 ←GeneralizedMatrixRowSubsetSelection(A>2 , B>2 , n2, n, k, ε). .

Algorithm 21.7
9: Let d2 denote the number of nonzero entries in D2. . d2 = O(k/ε)

10: Form V̂ = A2D2(B2D2)† ∈ Rn×k.
11: Form B3 = Û> � V̂ > ∈ Rk×n2 .
12: D3 ←GeneralizedMatrixRowSubsetSelection(A>3 , B>3 , n2, n, k, ε). .

Algorithm 21.7
13: d3 denote the number of nonzero entries in D3. . d3 = O(k/ε)
14: C ← A1D1, R← A2D2, T ← A3D3.
15: U ←∑k

i=1((B1D1)†)i ⊗ ((B2D2)†)i ⊗ ((B3D3)†)i.
16: return C, R, T and U .
17: end procedure

21.4.8 Face-based selection and decomposition

Previously we provided column-based tensor CURT algorithms, which are algorithms

that can select a subset of columns from each of the three dimensions. Here we provide two

face-based tensor CURT decomposition algorithms. The first algorithm runs in polynomial

time and is a bicriteria algorithm (the number of samples is poly(k/ε)). The second algorithm

needs to start with a rank-k (1 + O(ε))-approximate solution, which we then show how to

combine with our previous algorithm. Both of our algorithms are able to select a subset of

column-row faces, a subset of row-tube faces and a subset of column-tube faces. The second
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algorithm is able to output U , but the first algorithm is not.

21.4.8.1 Column-row, column-tube, row-tube face subset selection

Algorithm 21.13 Frobenius Norm Tensor Column-row, Row-tube and Tube-column Face
Subset Selection
1: procedure FFaceCRTSelection(A, n, k, ε) . Theorem 21.4.41
2: s1 ← s2 ← O(k/ε).
3: Choose a Gaussian matrix S1 with s1 columns. . Definition 21.3.12
4: Choose a Gaussian matrix S2 with s2 columns. . Definition 21.3.12
5: Form matrix V3 by setting the (i, j)-th column to be (A2S2)j.
6: D3 ←GeneralizedMatrixRowSubsetSelection(A2,V3,n,n2,s1s2,ε). .

Algorithm 21.7
7: Let d3 denote the number of nonzero entries in D3. . d3 = O(s1s2/ε)
8: Form matrix U2 by setting the (i, j)-th column to be (A1S1)i.
9: D2 ←GeneralizedMatrixRowSubsetSelection(A1,U2,n,n2,s1s2,ε).
10: Let d2 denote the number of nonzero entries in D2. . d2 = O(s1s2/ε)
11: Form matrix W1 by setting the (i, j)-th column to be (A(I,D3, I)3)j.
12: D1 ←GeneralizedMatrixRowSubsetSelection(A3,W1,n,n2,s1s2,ε).
13: Let d1 denote the number of nonzero entries in D1. . d1 = O(s1s2/ε)
14: T ← A(I, I,D1), C ← A(D2, I, I), and R← A(I,D3, I).
15: return C, R and T .
16: end procedure

Theorem 21.4.41. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an

algorithm which takes O(nnz(A)) log n+n2 poly(log n, k, 1/ε) time and outputs three tensors

: a subset C ∈ Rc×n×n of row-tube faces of A, a subset R ∈ Rn×r×n of column-tube faces of

A, and a subset T ∈ Rn×n×t of column-row faces of A, where c = r = t = poly(k, 1/ε), and

for which there exists a tensor U ∈ Rtn×cn×rn for which

‖U(T1, C2, R3)− A‖2
F ≤ (1 + ε) min

rank−k A′
‖A′ − A‖2

F ,
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or equivalently,
∥∥∥∥∥

tn∑

i=1

cn∑

j=1

rn∑

l=1

Ui,j,l · (T1)i ⊗ (C2)j ⊗ (R3)l − A
∥∥∥∥∥

2

F

≤ (1 + ε) min
rank−k A′

‖A′ − A‖2
F .

Proof. We fix V ∗ ∈ Rn×k and W ∗ ∈ Rn×k. We define Z1 ∈ Rk×n2 where the i-th row of Z1 is

the vector Vi ⊗Wi. Choose a sketching (Gaussian) matrix S1 ∈ Rn2×s1 (Definition 21.3.12),

and let Û = A1S1(Z1S1)† ∈ Rn×k. Following a similar argument as in the previous theorem,

we have

‖ÛZ1 − A1‖2
F ≤ (1 + ε) OPT .

We fix Û and W ∗. We define Z2 ∈ Rk×n2 where the i-th row of Z2 is the vector Ûi ⊗

W ∗
i . Choose a sketching (Gaussian) matrix S2 ∈ Rn2×s2 (Definition 21.3.12), and let V̂ =

A2S2(Z2S2)† ∈ Rn×k. Following a similar argument as in the previous theorem, we have

‖V̂ Z2 − A2‖2
F ≤ (1 + ε)2 OPT .

We fix Û and V̂ . Note that Û = A1S1(Z1S1)† and V̂ = A2S2(Z2S2)†. We define

Z3 ∈ Rk×n2 such that the i-th row of Z3 is the vector Ûi ⊗ V̂i. Let z3 = s1 · s2. We define

Z ′3 ∈ Rz3×n2 such that, ∀i ∈ [s1], ∀j ∈ [s2], the i + (j − 1)s1-th row of Z ′3 is the vector

(A1S1)i ⊗ (A2S2)j.

We define U3 ∈ Rn×z3 to be the matrix where the i + (j − 1)s1-th column is (A1S1)i

and V3 ∈ Rn×z3 to be the matrix where the i + (j − 1)s1-th column is (A2S2)j. Then

Z ′3 = (U>3 � V >3 ).

We first have,

min
W∈Rn×k,X∈Rk×z3

‖WXZ ′3 − A3‖2
F ≤ min

W∈Rn×k
‖WZ3 − A3‖2

F ≤ (1 + ε)2 OPT .
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Now consider the following objective function,

min
W∈Rn×z3

‖V3 · (W> � U>3 )− A2‖2
F .

Let D3 denote a sampling and rescaling diagonal matrix according to V1 ∈ Rn×z3 , let d3

denote the number of nonzero entries of D3. Then we have

min
W∈Rn×z3

‖D3V3 · (W> � U>3 )−D3A2‖2
F

= min
W∈Rn×z3

‖U3 ⊗ (D3V3)⊗W − A(I,D3, I)‖2
F

= min
W∈Rn×z3

‖W · (U>3 � (D3V3)>)− (A(I,D3, I))3‖2
F ,

where the first equality follows by retensorizing the objective function, and the second equal-

ity follows by flattening the tensor along the third dimension.

Let Z3 denote (U>3 � (D3V3)>) ∈ Rz3×nd3 and W ′ = (A(I,D3, I))3 ∈ Rn×nd3 . Using

Theorem 21.4.14, we can find a diagonal matrix D3 ∈ Rn2×n2 with d3 = O(z3/ε) = O(k2/ε3)

nonzero entries such that

‖U3 ⊗ V3 ⊗ (W ′Z†3)− A‖2
F ≤ (1 + ε)3 OPT .

We define U2 = U3 ∈ Rn×z2 with z2 = z3. We define W2 = W ′Z
†
3 ∈ Rn×z2 with

z2 = z3. We consider,

min
V ∈Rn×z2

‖U2 · (V > �W>
2 )− A1‖2

F .

Let D2 denote a sampling and rescaling matrix according to U2, and let d2 denote the number
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of nonzero entries of D2. Then, we have

min
V ∈Rn×z2

‖D2U2 · (V > �W>
2 )−D2A1‖2

F

= min
V ∈Rn×z2

‖D2U2 ⊗ V ⊗W2 − A(D2, I, I)‖2
F

= min
V ∈Rn×z2

‖V · (W>
2 � (D2U2)>)− (A(D2, I, I))2‖2

F ,

where the first equality follows by retensorizing the objective function, and the second equal-

ity follows by flattening the tensor along the second dimension.

Let Z2 denote (W>
2 � (D2U2)>) ∈ Rz2×nd2 and V ′ = (A(D2, I, I))2 ∈ Rn×nd2 . Using

Theorem 21.4.14, we can find a diagonal matrix D2 ∈ Rn2×n2 with d2 = O(z2/ε) nonzero

entries such that

‖U2 ⊗ (V ′Z
†
2)⊗W2 − A‖2

F ≤ (1 + ε)4 OPT .

We define W1 = W2 ∈ Rn×z1 with z1 = z2, and define V1 = (V ′Z
†
2) ∈ Rn×z1 with

z1 = z2.

Let D1 denote a sampling and rescaling matrix according to W1, and let d1 denote

the number of nonzero entries of D1. Then we have

min
U∈Rn×z1

‖D1W1 · (U> � V >1 )−D1A3‖2
F

= min
U∈Rn×z1

‖U ⊗ V1 ⊗ (D1W1)− A(I, I,D1)‖2
F

= min
U∈Rn×z1

‖U · (V >1 � (D1W1)>)− A(I, I,D1)1‖2
F

where the first equality follows by unflattening the objective function, and second equality

follows by flattening the tensor along the first dimension.

1584



Let Z1 denote (V >1 � (D1W1)>) ∈ Rz1×nd1 , and U ′ = A(I, I,D1)1 ∈ Rn×nd1 . Using

Theorem 21.4.14, we can find a diagonal matrix D1 ∈ Rn2×n2 with d1 = O(z1/ε) nonzero

entries such that

‖(U ′Z†1)⊗ (V1)⊗W1 − A‖2
F ≤ (1 + ε)5 OPT,

which means,

‖(U ′Z†1)⊗ (V ′Z
†
2)⊗ (W ′Z

†
3)− A‖2

F ≤ (1 + ε)5 OPT .

Putting U ′, V ′,W ′ together completes the proof.

Corollary 21.4.42. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an

algorithm which takes O(nnz(A)) + n2 poly(k, 1/ε) time and outputs three tensors : a subset

C ∈ Rc×n×n of row-tube faces of A, a subset R ∈ Rn×r×n of column-tube faces of A, and a

subset T ∈ Rn×n×t of column-row faces of A, where c = r = t = poly(k, 1/ε), so that there

exists a tensor U ∈ Rtn×cn×rn for which

‖U(T1, C2, R3)− A‖2
F ≤ (1 + ε) min

rank−k A′
‖A′ − A‖2

F ,

or equivalently,
∥∥∥∥∥

tn∑

i=1

cn∑

j=1

rn∑

l=1

Ui,j,l · (T1)i ⊗ (C2)j ⊗ (R3)l − A
∥∥∥∥∥

2

F

≤ (1 + ε) min
rank−k A′

‖A′ − A‖2
F

Proof. If we allow a poly(k/ε) factor increase in running time and a poly(k/ε) factor increase

in the number of faces selected, then instead of using generalized row subset selection, which

has running time depending on log n, we can use the technique in Section 21.6 to avoid the

log n factor.
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Algorithm 21.14 Frobenius Norm (Face-based) CURT Decomposition Algorithm, Optimal
Sample Complexity
1: procedure FFaceCURTDecomposition(A,UB, VB,WB, n, k) . Theorem 21.4.43
2: D1 ←GeneralizedMatrixRowSubsetSelection(A3,WB, n, n

2, k, ε). .
Algorithm 21.7, the number of nonzero entries is d1 = O(k/ε)

3: Form Z1 = V >B � (D1WB)>.
4: Form Û = (A(I, I,D1))1Z

†
1 ∈ Rn×k.

5: D2 ←GeneralizedMatrixRowSubsetSelection(A1, Û , n, n
2, k, ε). . The

number of nonzero entries is d2 = O(k/ε)

6: Form Z2 = (W>
B � (D2Û)).

7: Form V̂ = (A(D2, I, I))2Z
†
2 ∈ Rn×k.

8: D3 ←GeneralizedMatrixRowSubsetSelection(A2, V̂ , n, n
2, k, ε). . The

number of nonzero entries is d3 = O(k/ε)

9: Form Z3 = Û> � (D3V̂ )>.
10: Form Ŵ = (A(I,D3, I))3(Z3)† ∈ Rn×k.
11: T ← A(I, I,D1), C ← A(D2, I, I), R← A(I,D3, I).
12: U ←∑k

i=1((Z1)†)i ⊗ ((Z2)†)i ⊗ ((Z3)†)i.
13: return C, R, T and U .
14: end procedure

21.4.8.2 CURT decomposition

Theorem 21.4.43. Given a 3rd order tensor A ∈ Rn×n×n, let k ≥ 1, and let UB, VB,WB ∈

Rn×k denote a rank-k, α-approximation to A. Then there exists an algorithm which takes

O(nnz(A)) log n+n2 poly(log n, k, 1/ε) time and outputs three tensors: C ∈ Rc×n×n with row-

tube faces from A, R ∈ Rn×r×n with colum-tube faces from A, T ∈ Rn×n×t with column-row

faces from A, and a (factorization of a) tensor U ∈ Rtn×cn×rn with rank(U) = k for which

c = r = t = O(k/ε) and

‖U(T1, C2, R3)− A‖2
F ≤ (1 + ε)α min

rank−k A′
‖A′ − A‖2

F ,
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or equivalently,
∥∥∥∥∥

tn∑

i=1

cn∑

j=1

rn∑

l=1

Ui,j,l · (T1)i ⊗ (C2)j ⊗ (R3)l − A
∥∥∥∥∥

2

F

≤ (1 + ε)α min
rank−k A′

‖A′ − A‖2
F

holds with probability 9/10.

Proof. We already have three matrices UB ∈ Rn×k, VB ∈ Rn×k and WB ∈ Rn×k and these

three matrices provide a rank-k, α-approximation to A, i.e.,

‖UB ⊗ VB ⊗WB − A‖2
F ≤ α min

rank−k A′
‖A′ − A‖2

F

︸ ︷︷ ︸
OPT

.

We can consider the following problem,

min
U∈Rn×k

‖WB · (U> � V >B )− A3‖2
F .

Let D1 denote a sampling and rescaling diagonal matrix according to WB, and let d1 denote

the number of nonzero entries of D1. Then we have

min
U∈Rn×k

‖(D1WB) · (U> � V >B )−D1A3‖2
F

= min
U∈Rn×k

‖U ⊗ VB ⊗D1WB − A(I, I,D1)‖2
F

= min
U∈Rn×k

‖U · (V >B � (D1WB)>)− (A(I, I,D1))1‖2
F ,

where the first equality follows by retensorizing the objective function, and the second equal-

ity follows by flattening the tensor along the first dimension. Let Z1 denote V >B �(D1WB)> ∈

Rk×nd1 , and define Û = (A(I, I,D1))1Z
†
1 ∈ Rn×k. Then we have

‖Û ⊗ VB ⊗WB − A‖2
F ≤ (1 + ε)αOPT .
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In the second step, we fix Û and WB, and consider the following objective function,

min
V ∈Rn×k

‖Û · (V > �WB)− A1‖2
F .

Let D2 denote a sampling and rescaling matrix according to Û , and let d2 denote the number

of nonzero entries of D2. Then we have,

min
V ∈Rn×k

‖(D2Û) · (V > �W>
B )−D2A1‖2

F

= min
V ∈Rn×k

‖(D2Û)⊗ V ⊗WB − A(D2, I, I)‖2
F

= min
V ∈Rn×k

‖V · (W>
B � (D2Û)>)− (A(D2, I, I))2‖2

F ,

where the first equality follows by unflattening the objective function, and the second equality

follows by flattening the tensor along the second dimension. Let Z2 denote (W>
B �(D2Û)>) ∈

Rk×nd2 , and define V̂ = (A(D2, I, I))2(Z2)† ∈ Rn×k. Then we have,

‖Û ⊗ V̂ ⊗WB − A‖2
F ≤ (1 + ε)2αOPT .

In the third step, we fix Û and V̂ , and consider the following objective function,

min
W∈Rn×k

‖V̂ · (W � Û)− A2‖2
F .

Let D3 denote a sampling and rescaling matrix according to V̂ , and let d3 denote the number

of nonzero entries of D3. Then we have,

min
W∈Rn×k

‖(D3V̂ ) · (W> � Û>)−D3A2‖2
F

= min
W∈Rn×k

‖Û ⊗ (D3V̂ )⊗W − A(I,D3, I)‖2
F

= min
W∈Rn×k

‖W · (Û> � (D3V̂ )>)− (A(I,D3, I))3‖2
F ,
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where the first equality follows by retensorizing the objective function, and the second equal-

ity follows by flattening the tensor along the third dimension. Let Z3 denote (Û>�(D3V̂ )>) ∈

Rk×nd3 , and define Ŵ = (A(I,D3, I))3(Z3)†. Putting it all together, we have,

‖Û ⊗ V̂ ⊗ Ŵ − A‖2
F ≤ (1 + ε)3αOPT .

This implies

‖(A(I, I,D1))1Z
†
1 ⊗ (A(D2, I, I))2Z

†
2 ⊗ (A(I,D3, I))3Z

†
3 − A‖2

F ≤ (1 + ε)3αOPT .
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21.4.9 Solving small problems

Theorem 21.4.44. Let maxi{ti, di} ≤ n. Given a t1 × t2 × t3 tensor A and three matrices:

a t1×d1 matrix T1, a t2×d2 matrix T2, and a t3×d3 matrix T3, if for any δ > 0 there exists

a solution to

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(T1X1)i ⊗ (T2X2)i ⊗ (T3X3)i − A
∥∥∥∥∥

2

F

:= OPT,

and each entry of Xi can be expressed using O(nδ) bits, then there exists an algorithm that

takes nO(δ) · 2O(d1k+d2k+d3k) time and outputs three matrices: X̂1, X̂2, and X̂3 such that

‖(T1X̂1)⊗ (T2X̂2)⊗ (T3X̂3)− A‖2
F = OPT.

Proof. For each i ∈ [3], we can create ti × di variables to represent matrix Xi. Let x denote

this list of variables. Let B denote tensor
∑k

i=1(T1X1)i ⊗ (T2X2)i ⊗ (T3X3)i and let Bi,j,l(x)

denote an entry of tensor B (which can be thought of as a polynomial written in terms of

x). Then we can write the following objective function,

min
x

t1∑

i=1

t2∑

j=1

t3∑

l=1

(Bi,j,l(x)− Ai,j,l)2.

We slightly modify the above objective function to obtain a new objective function,

min
x,σ

t1∑

i=1

t2∑

j=1

t3∑

l=1

(Bi,j,l(x)− Ai,j,l)2,

s.t. ‖x‖2
2 ≤ 2O(nδ),

where the last constraint is unharmful, because there exists a solution that can be written

using O(nδ) bits. Note that the number of inequality constraints in the above system is
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O(1), the degree is O(1), and the number of variables is v = (d1k + d2k + d3k). Thus by

Theorem 21.3.2, the minimum nonzero cost is at least

(2O(nδ))−2O(v)

.

It is clear that the upper bound on the cost is at most 2O(nδ). Thus the number of binary

search steps is at most log(2O(nδ))2O(v). In each step of the binary search, we need to choose

a cost C between the lower bound and the upper bound, and write down the polynomial

system,

t1∑

i=1

t2∑

j=1

t3∑

l=1

(Bi,j,l(x)− Ai,j,l)2 ≤ C,

‖x‖2
2 ≤ 2O(nδ).

Using Theorem 21.3.1, we can determine if there exists a solution to the above polynomial

system. Since the number of variables is v, and the degree is O(1), the number of inequality

constraints is O(1). Thus, the running time is

poly(bitsize) · (# constraints ·degree)# variables = nO(δ)2O(v).
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21.5 Extension to general q-th order tensors

This section provides the details for our extensions from 3rd order tensors to general

q-th order tensors. In most practical applications, the order q is a constant. Thus, to simplify

the analysis, we use Oq(·) to hide dependencies on q.
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21.5.1 Fast sampling of columns according to leverage scores, implicitly

This section explains an algorithm that is able to sample from the leverage scores

from the � product of q matrices U1, U2, · · · , Uq without explicitly writing down U1 � U2 �

· · ·Uq. To build this algorithm we combine TensorSketch, some ideas from [DMIMW12],

and some techniques from [AKO11, MW10]. Finally, we improve the running time for

sampling columns according to the leverage scores from poly(n) to Õ(n). Given q matrices

U1, U2, · · · , Uq, with each such matrix Ui having size k × ni, we define A ∈ Rk×
∏q
i=1 ni to

be the matrix where the i-th row of A is the vectorization of U i
1 ⊗ U i

2 ⊗ · · · ⊗ U i
q, ∀i ∈ [k].

Naïvely, in order to sample poly(k, 1/ε) rows from A according to the leverage scores, we

need to write down
∏q

i=1 ni leverage scores. This approach will take at least
∏q

i=1 ni running

time. In the remainder of this section, we will explain how to do it in Oq(n · poly(k, 1/ε))

time for any constant p, and maxi∈[q] ni ≤ n.

Theorem 21.5.1. Given q matrices U1 ∈ Rk×n1, U2 ∈ Rk×n2, · · · , Uq ∈ Rk×nq , let maxi ni ≤

n. There exists an algorithm that takes Oq(n·poly(k, 1/ε)·Rsamples) time and samples Rsamples

columns of U1�U2�· · ·�Uq ∈ Rk×
∏q
i=1 ni according to the leverage scores of U1�U2�· · ·�Uq.

Proof. Let maxi ni ≤ n. First, choosing Π0 to be a TensorSketch, we can compute R−1

in Oq(n poly(k, 1/ε)) time, where R is the R in a QR-factorization. We want to sample

columns from U1 � U2 � · · · � Uq according to the square of the `2-norm of each column of

R−1(U1�U2� · · ·Uq). The issue is the number of columns of this matrix is already
∏q

i=1 ni.

The goal is to sample columns from R−1(U1�U2� · · ·Uq) without explicitly computing the

square of the `2-norm of each column.

Similarly as in the proof of Lemma 21.4.32, we have the observation that the following
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Algorithm 21.15 Fast Tensor Leverage Score Sampling, for General q-th Order
1: procedure FastTensorLeverageScoreGeneralOrder({Ui}i∈[q], {ni}i∈[q], k, ε, Rsamples)
. Theorem 21.5.1

2: s1 ← poly(k, 1/ε).
3: Choose Π0,Π1 ∈ Rn1n2···nq×s1 to each be a TensorSketch. . Definition 21.3.20
4: Compute R−1 ∈ Rk×k by using (U1 � U2 � · · · � Uq)Π0. . Ui ∈ Rk×ni ,∀i ∈ [q]
5: V0 ← R−1, n0 ← k.
6: for i = 1→ [n0] do
7: αi ← ‖(V0)i((U1 � U2 � · · · � Uq)Π1)‖2

2.
8: end for
9: for r = 1→ Rsamples do
10: Sample ĵ0 from [n0] with probability αi/

∑n0

i′=1 αi′ .
11: for l = 1→ q − 1 do
12: sl+1 ← Oq(poly(k, 1/ε)).
13: Choose Πl+1 ∈ Rnl+1···nq×sl+1 to be a TensorSketch.
14: for jl = 1→ [nl] do . Form Vl ∈ Rnl×k

15: (Vl)
jl ← (Vl−1)ĵl−1 ◦ (Ul)

>
jl
.

16: end for
17: for i = 1→ nq do
18: βi ← ‖(Vl)i((Ul+1 � · · · � Uq)Πl+1)‖2

2.
19: end for
20: Sample ĵl from [nl] with probability βi/

∑nl
i′=1 βi′ .

21: end for
22: for i = 1→ nq do
23: βi ← |(Vq−1)ĵq−1(Uq)i|2.
24: end for
25: Sample ĵq from [nq] with probability βi/

∑nq
i′=1 βi′ .

26: S← S ∪ (ĵ1, · · · , ĵq).
27: end for
28: Convert S into a diagonal matrix D with at most Rsamples nonzero entries.
29: return D. . Diagonal matrix D ∈ Rn1n2···nq×n1n2···nq

30: end procedure

two sampling procedures are equivalent in terms of sampling a column of a matrix: (1) We

sample a single entry from matrix R−1(U1�U2�· · ·�Uq) proportional to its squared value,
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(2) We sample a column from matrix R−1(U1 � U2 � · · · � Uq) proportional to its squared

`2-norm. Let the (i, j1, j2, · · · , jq)-th entry denote the entry in the i-th row and the j-th

column, where

j =

q−1∑

l=1

(jl − 1)

q∏

t=l+1

nt + jq.

Similarly to Equation (21.18), we can show, for a particular column j,

Pr[we sample an entry from the j-th column of matrix] = Pr[we sample the j-th column of a matrix].

Thus, it is sufficient to show how to sample a single entry from matrix R−1(U1�U2�· · ·�Uq)

proportional to its squared value without writing down all the entries of the k × ∏q
i=1 ni

matrix.

Let V0 denote R−1. Let n0 denote the number of rows of V0.

In the next few paragraphs, we describe a sampling procedure (procedure FastTen-

sorLeverageScoreGeneralOrder in Algorithm 21.15) which first samples ĵ0 from [n0],

then samples ĵ1 from [n1], · · · , and at the end samples ĵq from [nq].

In the first step, we want to sample ĵ0 from [n0] proportional to the squared `2-norm of

that row. To do this efficiently, we choose Π1 ∈ R
∏q
i=1 ni×s1 to be a TensorSketch to sketch

on the right of V0(U1 � U2 � · · · � Uq). By Section 21.3.10, as long as s1 = Oq(poly(k, 1/ε)),

then Π1 is a (1 ± ε)-subspace embedding matrix. Thus with probability 1 − 1/Ω(q), for all

i ∈ [n0],

‖(V0)i((U1 � U2 � · · · � Uq)Π1)‖2
2 = (1± ε)‖(V0)i((U1 � U2 � · · · � Uq))‖2

2,

which means we can sample ĵ0 from [n0] in Oq(n poly(k, 1/ε)) time.
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In the second step, we have already obtained ĵ0. Using that row of V0 with U1, we

can form a new matrix V1 ∈ Rn1×k in the following sense,

(V1)i = (V0)ĵ0 ◦ (U1)>i , ∀i ∈ [n1],

where (V1)i denotes the i-th row of matrix V1, (V0)ĵ0 denotes the ĵ0-th row of V0 and (U1)i is

the i-th column of U1. Another important observation is, the entry in the (j1, j2, · · · , jq)-th

coordinate of vector (V0)ĵ0(U1�U2� · · · �Uq) is the same as the entry in the j1-th row and

(j2, · · · , jq)-th column of matrix V1(U2 � U3 � · · · � Uq). Thus, sampling j1 is equivalent to

sampling j1 from the new matrix V1(U2�U3�· · ·�Uq) proportional to the squared `2-norm

of that row. We still have the computational issue that the length of the row vector is very

long. To deal with this, we can choose Π2 ∈ R
∏q
i=2 ni×s2 to be a TensorSketch to multiply

on the right of V1(U2 � U3 � · · · � Uq).

By Section 21.3.10, as long as s2 = Oq(poly(k, 1/ε)), then Π2 is a (1 ± ε)-subspace

embedding matrix. Thus with probability 1− 1/Ω(q), for all i ∈ [n1],

‖(V1)i((U2 � · · · � Uq)Π2)‖2
2 = (1± ε)‖(V1)i((U2 � · · · � Uq))‖2

2,

which means we can sample ĵ1 from [n1] in Oq(n poly(k, 1/ε)) time.

We repeat the above procedure until we obtain each of ĵ0, ĵ1, · · · , ĵq. Note that the

last one, ĵq, is easier, since the length of the vector is already small enough, and so we do

not need to use TensorSketch for it.

By Section 21.3.10, the time for multiplying by TensorSketch is Oq(n poly(k, 1/ε)).

Setting ε to be a small constant, and taking a union bound over O(q) events completes the

proof.
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Lemma 21.5.2. Given A ∈ Rn0×
∏q
i=1 ni, U1, U2, · · · , Uq ∈ Rk×n, for any ε > 0, there

exists an algorithm that runs in O(n · poly(k, 1/ε)) time and outputs a diagonal matrix

D ∈ R
∏q
i=1 ni×

∏q
i=1 ni with m = O(k log k + k/ε) nonzero entries such that,

‖Û(U1 � U2 � · · · � Uq)− A‖2
F ≤ (1 + ε) min

U∈Rn×k
‖U(U1 � U2 � · · · � Uq)− A‖2

F ,

holds with probability at least 0.999, where Û denotes the optimal solution of

min
U∈Rn0×k

‖U(U1 � U2 � · · · � Uq)D − AD‖2
F .

Proof. This follows by combining Theorem 21.5.1, Corollary 21.4.30, and Lemma 21.4.31.
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21.5.2 General iterative existential proof

Algorithm 21.16 General q-th Order Iterative Existential Proof
1: procedure GeneralIterativeExistentialProof(A, n, k, q, ε) . Section 21.5.2
2: Fix U∗1 , U∗2 , · · · , U∗q ∈ Rn×k.
3: for i = 1→ q do
4: Choose sketching matrix Si ∈ Rnq−1×si with si = Oq(k/ε).
5: Define Zi ∈ Rk×nq−1 to be �

j<i
Û>j � �

j′>i
U∗>j′ .

6: Let Ai denote the matrix obtained by flattening tensor A along the i-th dimension.
7: Define Ûi to be AiSi(ZiSi)†.
8: end for
9: return Û1, Û2, · · · , Ûq.
10: end procedure

Given a q-th order tensor A ∈ Rn×n×···×n, we fix U∗1 , U
∗
2 , · · · , U∗q ∈ Rn×k to be the

best rank-k solution (if it does not exist, then we replace it by a good approximation, as

discussed). We define OPT = ‖U∗1 ⊗ U∗2 ⊗ · · · ⊗ U∗q − A‖2
F . Our iterative proof works as

follows. We first obtain the objective function,

min
U1∈Rn×k

‖U1 · Z1 − A1‖2
F ≤ OPT,

where A1 is a matrix obtained by flattening tensor A along the first dimension, Z1 = (U∗>2 �

U∗>3 � · · · � U∗>q ) denotes a k × nq−1 matrix. Choosing S1 ∈ Rnq−1×s1 to be a Gaussian

sketching matrix with s1 = O(k/ε), we obtain a smaller problem,

min
U1∈Rn×k

‖U1 · Z1S1 − A1S1‖2
F .

We define Û1 to be A1S1(Z1S1)† ∈ Rn×k, which gives,

‖Û1 · Z1 − A1‖2
F ≤ (1 + ε) OPT .
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After retensorizing the above, we have,

‖Û1 ⊗ U∗2 ⊗ · · · ⊗ U∗q − A‖2
F ≤ (1 + ε) OPT .

In the second round, we fix Û1, U∗3 , · · · , U∗q ∈ Rn×k, and choose S2 ∈ Rnq−1×s2 to be a

Gaussian sketching matrix with s2 = O(k/ε). We define Z2 ∈ Rk×nq−1 to be (Û>1 � U∗>3 �

· · · � U∗>q ). We define Û2 to be A2S2(Z2S2)† ∈ Rn×k. Then, we have

‖Û1 ⊗ Û2 ⊗ U∗3 ⊗ · · · ⊗ U∗q − A‖2
F ≤ (1 + ε)2 OPT .

We repeat the above process, where in the i-th round we fix Û1, · · · , Ûi−1, U∗i+1, · · · , U∗q ∈

Rn×k, and choose Si ∈ Rnq−1×si to be a Gaussian sketching matrix with si = O(k/ε). We

define Zi ∈ Rk×nq−1 to be (Û>1 � · · · � Û>i−1 � U∗>i+1 � · · · � U∗>q ). We define Ûi to be

AiSi(ZiSi)
† ∈ Rn×k. Then, we have

‖Û1 ⊗ · · · ⊗ Ûi−1 ⊗ Ûi ⊗ U∗i+1 ⊗ · · · ⊗ U∗q − A‖2
F ≤ (1 + ε)2 OPT .

At the end of the q-th round, we have

‖Û1 ⊗ · · · ⊗ Ûq − A‖2
F ≤ (1 + ε)q OPT .

Replacing ε = ε′/(2q), we obtain

‖Û1 ⊗ · · · ⊗ Ûq − A‖2
F ≤ (1 + ε′) OPT .

where for all i ∈ [q], si = O(kq/ε′) = Oq(k/ε
′) .
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21.5.3 General input sparsity reduction

This section shows how to extend the input sparsity reduction from third order tensors

to general q-th order tensors. Given a tensor A ∈ Rn×n×···×n and q matrices, for each i ∈ [q],

matrix Vi has size Vi ∈ Rn×bi , with bi ≤ poly(k, 1/ε). We choose a batch of sparse embedding

matrices Ti ∈ Rti×n. Define V̂i = TiVi, and C = A(T1, T2, · · · , Tq). Thus we have with

probability 99/100, for any α ≥ 0, for all {Xi, X
′
i ∈ Rbi×k}i∈[q], if

‖V̂1X
′
1 ⊗ V̂2X

′
2 ⊗ · · · ⊗ V̂qX ′q − C‖2

F ≤ α‖V̂1X1 ⊗ V̂2X2 ⊗ · · · ⊗ V̂qXq − C‖2
F ,

then

‖V1X
′
1 ⊗ V2X

′
2 ⊗ · · · ⊗ VqX ′q − A‖2

F ≤ (1 + ε)α‖V1X1 ⊗ V2X2 ⊗ · · · ⊗ VqXq − A‖2
F ,

where ti = Oq(poly(bi, 1/ε)).

Algorithm 21.17 General q-th Order Input Sparsity Reduction
1: procedure GeneralInputSparsityReduction(A, {Vi}i∈[q], n, k, q, ε) .

Section 21.5.3
2: for i = 1→ q do
3: Choose sketching matrix Ti ∈ Rti×n with ti = poly(k, q, 1/ε).
4: V̂i ← TiVi.
5: end for
6: C ← A(T1, T2, · · · , Tq).
7: return {V̂i}i∈[q], C.
8: end procedure
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21.5.4 Bicriteria algorithm

This section explains how to extend the bicriteria algorithm from third order tensors

(Section 21.4.4) to general q-th order tensors. Given any q-th order tensor A ∈ Rn×n×···×n,

we can output a rank-r tensor (or equivalently q matrices U1, U2, · · · , Uq ∈ Rn×r) such that,

‖U1 ⊗ U2 ⊗ · · · ⊗ Uq − A‖2
F ≤ (1 + ε) OPT,

where r = Oq((k/ε)
q−1) and the algorithm takes Oq(nnz(A) + n · poly(k, 1/ε)).

Algorithm 21.18 General q-th Order Bicriteria Algorithm
1: procedure GeneralBicriteriaAlgorithm(A, n, k, q, ε) . Section 21.5.4
2: for i = 2→ q do
3: Choose sketching matrix Si ∈ Rnq−1×si with si = O(kq/ε).
4: Choose sketching matrix Ti ∈ Rti×n with ti = poly(k, q, 1/ε).
5: Form matrix Ûi by setting (j2, j3, · · · , jq)-th column to be (AiSi)ji .
6: end for
7: Solve minU1 ‖U1B − (A(I, T2, · · · , Tq))1‖2

F .
8: return {Ûi}i∈[q].
9: end procedure
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21.5.5 CURT decomposition

This section extends the tensor CURT algorithm from 3rd order tensors (Section 21.4.7)

to general q-th order tensors. Given a q-th order tensor A ∈ Rn×n×···×n and a batch of

matrices U1, U2, · · · , Uq ∈ Rn×k, we iteratively apply the proof in Theorem 21.4.39 (or The-

orem 21.4.40) q times. Then for each i ∈ [q], we are able to select di columns from the i-th

dimension of tensor A (let Ci denote those columns) and also find a tensor U ∈ Rd1×d2×···×dq

such that,

‖U(C1, C2, · · · , Cq)− A‖2
F ≤ (1 + ε)‖U1 ⊗ U2 ⊗ · · · ⊗ Uq − A‖2

F ,

where either di = Oq(k log k + k/ε) (similar to Theorem 21.4.39) or di = Oq(k/ε) (similar to

Theorem 21.4.40).

1602



Algorithm 21.19 General q-th Order CURT Decomposition
1: procedure GeneralCURTDecomposition(A, {Ui}i∈[q], n, k, q, ε) . Section 21.5.5
2: for i = 1→ q do
3: Form Bi = �

j<i
Û>j � �

j>i
U>j ∈ Rk×nq−1 .

4: if fast = true then . Optimal running time
5: ε0 ← 0.01.
6: di ← Oq(k log k + k/ε).
7: Di ← FastTensorLeverageScoreGeneralOrder

({Ûj}j<i, {Uj}j>i, n, k, ε0, di). . Algorithm 21.15
8: else . Optimal sample complexity
9: ε0 ← Oq(ε).
10: Di ← GeneralizedMatrixRowSubsetSelection

(A>i , B
>
i , n

q−1, n, k, ε0). . Algorithm 21.4.5, di = Oq(k/ε).
11: end if
12: Ûi ← AiDi(BiDi)

†.
13: Ci ← AiDi.
14: end for
15: U ← (B1D1)† ⊗ (B2D2)† ⊗ · · · ⊗ (BqDq)

†.
16: return {Ci}i∈[q], U .
17: end procedure
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21.6 Matrix CUR decomposition

There is a long line of research on matrix CUR decomposition under operator, Frobe-

nius or recently, entry-wise `1 norm [DMM08, BMD09, DR10, BDM11, BW14, SWZ17].

We provide the first algorithm that runs in nnz(A) time, which improves the previous best

matrix CUR decomposition algorithm under Frobenius norm [BW14].
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21.6.1 Algorithm

Algorithm 21.20 Optimal Matrix CUR Decomposition Algorithm
1: procedure OptimalMatrixCUR(A, n, k, ε) . Theorem 21.6.1
2: ε′ ← 0.1ε. ε′′ ← 0.001ε′.
3: Û ←SparseSVD(A, k, ε′). . Û ∈ Rn×k

4: Choose S1 ∈ Rn×n to be a sampling and rescaling diagonal matrix according to the
leverage scores of Û with s1 = O(ε−2k log k) nonzero entries.

5: R, Y ←GeneralizedMatrixRowSubsetSelection(S1A, S1Û , s1, n, k, ε
′′). .

Algorithm 21.7, R ∈ Rr×n, Y ∈ Rk×r and r = O(k/ε)

6: V̂ ← Y R ∈ Rk×n.
7: Choose S>2 ∈ Rn×n to be a sampling and rescaling diagonal matrix according to the

leverage scores of V̂ > ∈ Rn×k with s2 = O(ε−2k log k) nonzero entries.
8: C>, Z> ← GeneralizedMatrixRowSubsetSelection

((AS2)>, (V̂ S2)>, s2, n, k, ε
′′). . Algorithm 21.7, C ∈ Rn×c, Z ∈ Rc×k, and c = O(k/ε)

9: U ← ZY . . U ∈ Rc×r and rank(U) = k
10: return C,U,R.
11: end procedure

Theorem 21.6.1. Given matrix A ∈ Rn×n, for any k ≥ 1 and ε ∈ (0, 1), there exists an

algorithm that takes O(nnz(A) + n poly(k, 1/ε)) time and outputs three matrices C ∈ Rn×c

with c columns from A, R ∈ Rr×n with r rows from A, and U ∈ Rc×r with rank(U) = k such

that r = c = O(k/ε) and,

‖CUR− A‖2
F ≤ (1 + ε) min

rank−k Ak
‖Ak − A‖2

F ,

holds with probability at least 9/10.

Proof. We define

OPT = min
rank−k Ak

‖Ak − A‖2
F .
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We first compute Û ∈ Rn×k by using the result of [CW13], so that Û satisfies:

min
X∈Rk×n

‖ÛX − A‖2
F ≤ (1 + ε) OPT . (21.25)

This step can be done in O(nnz(A) + n poly(k, 1/ε)) time.

We choose S1 ∈ Rn×n to be a sampling and rescaling diagonal matrix according to

the leverage scores of Û , where here s1 = O(ε−2k log k) is the number of samples. This step

also can be done in O(n poly(k, 1/ε)) time.

We run GeneralizedMatrixRowSubsetSelection(Algorithm 21.7) on matrices

S1A and S1Û . Then we obtain two new matrices R and Y , where R contains r = O(k/ε)

rows of S1A and Y has size k× r. According to Theorem 21.4.14 and Corollary 21.4.15, this

step takes n poly(k, 1/ε) time.

We construct V̂ = Y R, and choose S>2 to be another sampling and rescaling diagonal

matrix according to the leverage scores of V̂ > with s2 = O(ε−2k log k) nonzero entries. As

in the case of constructing S1, this step can be done in O(n poly(k, 1/ε)) time.

We run GeneralizedMatrixRowSubsetSelection(Algorithm 21.7) on matrices

(AS2)> and (V̂ S2)>. Then we can obtain two new matrices C> and Y >, where C> contains

c = O(k/ε) rows of (AS2)> and Z> has size k × c. According to Theorem 21.4.14 and

Corollary 21.4.15, this step takes n poly(k, 1/ε) time.

Thus, overall the running time is O(nnz(A) + n poly(k, 1/ε)).

Correctness. Let

X∗ = arg min
X∈Rn×k

‖XV̂ − A‖2
F .
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According to Corollary 21.4.15,

‖CZV̂ S2 − AS2‖2
F ≤ (1 + ε′′) min

X∈Rn×k
‖XV̂ S2 − AS2‖2

F ≤ (1 + ε′′)‖X∗V̂ S2 − AS2‖2
F .

According to Theorem 21.6.5, ε′′ = 0.001ε′,

‖CZV̂ − A‖2
F ≤ (1 + ε′)‖X∗V̂ − A‖2

F . (21.26)

Let

X̃ = arg min
X∈Rk×n

‖ÛX − A‖2
F .

According to Corollary 21.4.15,

‖S1ÛY R− S1A‖2
F ≤ (1 + ε′′) min

X∈Rk×n
‖S1ÛX − S1A‖2

F ≤ (1 + ε′′)‖S1ÛX̃ − S1A‖2
F .

According to Theorem 21.6.5, since ε′′ = 0.001ε′,

‖ÛY R− A‖2
F ≤ (1 + ε′)‖ÛX̃ − A‖2

F . (21.27)

Then, we can conclude

‖CUR− A‖2
F = ‖CZY R− A‖2

F

= ‖CZV̂ − A‖2
F

≤ (1 + ε′) min
X∈Rn×k

‖XV̂ − A‖2
F

≤ (1 + ε′)‖Û V̂ − A‖2
F

≤ (1 + ε′)2 min
X∈Rk×n

‖ÛX − A‖2
F

≤ (1 + ε′)3 OPT

≤ (1 + ε) OPT .
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The first equality follows since U = ZY . The second equality follows since Y R = V̂ . The

first inequality follows by Equation (21.26). The third inequality follows by Equation (21.27).

The fourth inequality follows by Equation (21.25). The last inequality follows since ε′ = 0.1ε.

Notice that C hasO(k/ε) reweighted columns ofAS2, andAS2 is a subset of reweighted

columns of A, so C has O(k/ε) reweighted columns of A. Similarly, we can prove that R has

O(k/ε) reweighted rows of A. Thus, CUR is a CUR decomposition of A.
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21.6.2 Stronger property achieved by leverage scores

Claim 21.6.2. Given matrix A ∈ Rn×m, for any distribution p = (p1, p2, · · · , pn) define

random variable X such that X = ‖Ai‖2
2/pi with probability pi, where Ai is the i-th row of

matrix A. Then take m independent samples X1, X2, · · · , Xm, and let Y = 1
m

∑m
j=1X

j. We

have

Pr[Y ≤ 100‖A‖2
F ] ≥ .99.

Proof. We can compute the expectation of Xj, for any j ∈ [m],

E[Xj] =
n∑

i=1

‖Ai‖2
2

pi
· pi = ‖A‖2

F .

Then E[Y ] = 1
m

∑m
j=1 E[Xj] = ‖A‖2

F . Using Markov’s inequality, we have

Pr[Y ≥ ‖A‖2
F ] ≤ .01.

Theorem 21.6.3 (The leverage score case of Theorem 39 in [CW13]). Let A ∈ Rn×k,

B ∈ Rn×d. Let S ∈ Rn×n denote a sampling and rescaling diagonal matrix according to the

leverage scores of A. If the event occurs that S satisfies (ε/
√
k)-Frobenius norm approximate

matrix product for A, and also S is a (1 + ε)-subspace embedding for A, then let X∗ be the

optimal solution of minX ‖AX −B‖2
F , and B̃ ≡ AX∗ −B. Then, for all X ∈ Rk×d,

(1− 2ε)‖AX −B‖2
F ≤ ‖S(AX −B)‖2

F + ‖B̃‖2
F − ‖SB̃‖2

F ≤ (1 + 2ε)‖AX −B‖2
F .

Furthermore, if S has m = O(ε−2k log(k)) nonzero entries, the above event happens with

probability at least 0.99.
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Note that Theorem 39 in [CW13] is stated in a way that holds for general sketching

matrices. However, we are only interested in the case when S is a sampling and rescaling

diagonal matrix according to the leverage scores. For completeness, we provide the full proof

of the leverage score case with certain parameters.

Proof. Suppose S is a sampling and rescaling diagonal matrix according to the leverage scores

of A, and it has m = O(ε−2k log k) nonzero entries. Then, according to Lemma 21.4.22, S

is a (1 + ε)-subspace embedding for A with probability at least 0.999, and according to

Lemma 21.4.29, S satisfies (ε/
√
k)-Frobenius norm approximate matrix product for A with

probability at least 0.999.

Let U ∈ Rn×k denote an orthonormal basis of the column span of A. Then the leverage

scores of U are the same as the leverage scores of A. Furthermore, for any X ∈ Rk×d, there is

a matrix Y such that AX = UY , and vice versa, so we can now assume A has k orthonormal

columns.

Then,

‖S(AX −B)‖2
F − ‖SB̃‖2

F

= ‖SA(X −X∗) + S(AX∗ −B)‖2
F − ‖SB̃‖2

F

= ‖SA(X −X∗)‖2
F + ‖S(AX∗ −B)‖2

F + 2 tr
(
(X −X∗)>A>S>S(AX∗ −B)

)
− ‖SB̃‖2

F

= ‖SA(X −X∗)‖2
F + 2 tr

(
(X −X∗)>A>S>SB̃

)

︸ ︷︷ ︸
α

. (21.28)

The second equality follows using ‖C+D‖2
F = ‖C‖2

F +‖D‖2
F +2 tr(C>D). The third equality
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follows from B̃ = AX∗ −B. Now, let us first upper bound the term α in Equation (21.28):

‖SA(X −X∗)‖2
F + 2 tr

(
(X −X∗)>A>S>SB̃

)

≤ (1 + ε)‖A(X −X∗)‖2
F + 2‖X −X∗‖F‖A>S>SB̃‖F

≤ (1 + ε)‖A(X −X∗)‖2
F + 2(ε/

√
k) · ‖X −X∗‖F‖A‖F‖B̃‖F

≤ (1 + ε)‖A(X −X∗)‖2
F + 2ε‖A(X −X∗)‖F‖B̃‖F .

The first inequality follows since S is a (1 + ε) subspace embedding of A, and tr(C>D) ≤

‖C‖F‖D‖F . The second inequality follows since S satisfies (ε/
√
k)-Frobenius norm approxi-

mate matrix product for A. The last inequality follows using that ‖A‖F ≤
√
k since A only

has k orthonormal columns. Now, let us lower bound the term α in Equation (21.28):

‖SA(X −X∗)‖2
F + 2 tr

(
(X −X∗)>A>S>SB̃

)

≥ (1− ε)‖A(X −X∗)‖2
F − 2‖X −X∗‖F‖A>S>SB̃‖F

≥ (1− ε)‖A(X −X∗)‖2
F − 2(ε/

√
k) · ‖X −X∗‖F‖A‖F‖B̃‖F

≥ (1− ε)‖A(X −X∗)‖2
F − 2ε‖A(X −X∗)‖F‖B̃‖F .

The first inequality follows since S is a (1 + ε) subspace embedding of A, and tr(C>D) ≥

−‖C‖F‖D‖F . The second inequality follows since S satisfies (ε/
√
k)-Frobenius norm ap-

proximate matrix product for A. The last inequality follows using that ‖A‖F ≤
√
k since A

only has k orthonormal columns.

Therefore,

(1− ε)‖A(X −X∗)‖2
F − 2ε‖A(X −X∗)‖F‖B̃‖F ≤ ‖S(AX −B)‖2

F − ‖SB̃‖2
F , (21.29)
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and

(1 + ε)‖A(X −X∗)‖2
F + 2ε‖A(X −X∗)‖F‖B̃‖F ≥ ‖S(AX −B)‖2

F − ‖SB̃‖2
F . (21.30)

Notice that B̃ = AX∗ − B = AA†B − B = (AA† − I)B, so according to the Pythagorean

theorem, we have

‖AX −B‖2
F = ‖A(X −X∗)‖2

F + ‖B̃‖2
F ,

which means that

‖A(X −X∗)‖2
F = ‖AX −B‖2

F − ‖B̃‖2
F . (21.31)

Using Equation (21.31), we can rewrite and lower bound the LHS of Equation (21.29),

(1− ε)‖A(X −X∗)‖2
F − 2ε‖A(X −X∗)‖F‖B̃‖F

= ‖A(X −X∗)‖2
F − ε

(
‖A(X −X∗)‖2

F + 2‖A(X −X∗)‖F‖B̃‖F
)

= ‖AX −B‖2
F − ‖B̃‖2

F − ε
(
‖A(X −X∗)‖2

F + 2‖A(X −X∗)‖F‖B̃‖F
)

≥ ‖AX −B‖2
F − ‖B̃‖2

F − ε
(
‖A(X −X∗)‖F + ‖B̃‖F

)2

≥ ‖AX −B‖2
F − ‖B̃‖2

F − 2ε
(
‖A(X −X∗)‖2

F + ‖B̃‖2
F

)

= (1− 2ε)‖AX −B‖2
F − ‖B̃‖2

F . (21.32)

The second step follows by Equation (21.31). The first inequality follows using a2 + 2ab <

(a+ b)2. The second inequality follows using (a+ b)2 ≤ 2(a2 + b2). The last equality follows

using ‖A(X − X∗)‖2
F + ‖B̃‖2

F = ‖AX − B‖2
F . Similarly, using Equation (21.31), we can

rewrite and upper bound the LHS of Equation (21.30)

(1 + ε)‖A(X −X∗)‖2
F + 2ε‖A(X −X∗)‖F‖B̃‖F ≤ (1 + 2ε)‖AX −B‖2

F − ‖B̃‖2
F . (21.33)
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Combining Equations (21.29),(21.32),(21.30),(21.33), we conclude that

(1− 2ε)‖AX −B‖2
F − ‖B̃‖2

F ≤ ‖S(AX −B)‖2
F − ‖SB̃‖2

F ≤ (1 + 2ε)‖AX −B‖2
F − ‖B̃‖2

F .

Theorem 21.6.4. Let A ∈ Rn×k, B ∈ Rn×d, and 1
2
> ε > 0. Let X∗ be the optimal solution

to minX ‖AX − B‖2
F , and B̃ ≡ AX∗ − B. Let S ∈ Rn×n denote a sketching matrix which

satisfies the following:

1. ‖SB̃‖2
F ≤ 100 · ‖B̃‖2

F ,

2. for all X ∈ Rk×d,

(1− ε)‖AX −B‖2
F ≤ ‖S(AX −B)‖2

F + ‖B̃‖2
F − ‖SB̃‖2

F ≤ (1 + ε)‖AX −B‖2
F .

Then, for all X1, X2 ∈ Rk×d satisfying

‖SAX1 − SB‖2
F ≤

(
1 +

ε

100

)
· ‖SAX2 − SB‖2

F ,

we have

‖AX1 −B‖2
F ≤ (1 + 5ε) · ‖AX2 −B‖2

F .

Proof. Let A,B, S, ε be the same as in the statement of the theorem, and suppose S satisfies

those two conditions. Let X1, X2 ∈ Rk×d satisfy

‖SAX1 − SB‖2
F ≤

(
1 +

ε

100

)
‖SAX2 − SB‖2

F .
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We have

‖AX1 −B‖2
F

≤ 1

1− ε
(
‖S(AX1 −B)‖2

F + ‖B̃‖2
F − ‖SB̃‖2

F

)

≤ 1

1− ε
((

1 +
ε

100

)
· ‖S(AX2 −B)‖2

F + ‖B̃‖2
F − ‖SB̃‖2

F

)

=
1

1− ε
((

1 +
ε

100

)
·
(
‖S(AX2 −B)‖2

F + ‖B̃‖2
F − ‖SB̃‖2

F

)
− ε

100
·
(
‖B̃‖2

F − ‖SB̃‖2
F

))

≤ 1

1− ε ·
(

1 +
ε

100

)
· ‖AX2 −B‖2

F −
1

1− ε ·
ε

100
·
(
‖B̃‖2

F − ‖SB̃‖2
F

)

≤ (1 + 3ε)‖AX2 −B‖2
F +

1

1− ε ·
ε

100
‖SB̃‖2

F

≤ (1 + 3ε)‖AX2 −B‖2
F + 2ε‖B̃‖2

F

≤ (1 + 5ε)‖AX2 −B‖2
F .

The first inequality follows since S satisfies the second condition. The second inequality

follows by the relationship between X1 and X2. The third inequality follows since S satisfies

the second condition. The fifth inequality follows using that ε < 1
2
and that S satisfies the first

condition. The last inequality follows using that ‖B̃‖2
F = ‖AX∗ −B‖2

F ≤ ‖AX2 −B‖2
F .

Theorem 21.6.5. Let A ∈ Rn×k, B ∈ Rn×d, and 1
2
> ε > 0. Let S ∈ Rn×n denote a

sampling and rescaling diagonal matrix according to the leverage scores of A. If S has at least

m = O(k log(k)/ε2) nonzero entries, then with probability at least 0.98, for all X1, X2 ∈ Rk×d

satisfying

‖SAX1 − SB‖2
F ≤ (1 +

ε

500
) · ‖SAX2 − SB‖2

F ,

we have

‖AX1 −B‖2
F ≤ (1 + ε) · ‖AX2 −B‖2

F .
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Proof. The proof directly follows by Claim 21.6.2, Theorem 21.6.3 and Theorem 21.6.4.

Because of Claim 21.6.2, S satisfies the first condition in the statement of Theorem 21.6.4

with probability at least 0.99. According to Theorem 21.6.3, S satisfies the second condition

in the statement of Theorem 21.6.4 with probability at least 0.99. Thus, with probability

0.98, by Theorem 21.6.4, we complete the proof.
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21.7 Entry-wise `1 Norm for Arbitrary Tensors

In this section, we provide several different algorithms for tensor `1-low rank approx-

imation. Section 21.7.1 provides some useful facts and definitions. Section 21.7.2 presents

several existence results. Section 21.7.3 describes a tool that is able to reduce the size of

the objective function from poly(n) to poly(k). Section 21.7.4 discusses the case when the

problem size is small. Section 21.7.5 provides several bicriteria algorithms. Section 21.7.6

summarizes a batch of algorithms. Section 21.7.7 provides an algorithm for `1 norm CURT

decomposition.

Notice that if the rank−k solution does not exist, then every bicriteria algorithm

in Section 21.7.5 can be stated in a form similar to Theorem 21.1.1, and every algorithm

which can output a rank−k solution in Section 21.7.6 can be stated in a form similar to

Theorem 21.1.2. See Section 21.1 for more details.
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21.7.1 Facts

We present a method that is able to reduce the entry-wise `1-norm objective function

to the Frobenius norm objective function.

Fact 21.7.1. Given a 3rd order tensor C ∈ Rc1×c2×c3, three matrices V1 ∈ Rc1×b1, V2 ∈

Rc2×b2, V3 ∈ Rc3×b3, for any k ∈ [1,mini bi], if X ′1 ∈ Rb1×k, X ′2 ∈ Rb2×k, X ′3 ∈ Rb3×k satisfies

that,

‖(V1X
′
1)⊗ (V2X

′
2)⊗ (V3X

′
3)− C‖F ≤ α min

X1,X2,X3

‖(V1X1)⊗ (V2X2)⊗ (V3X3)− C‖F ,

then

‖(V1X
′
1)⊗ (V2X

′
2)⊗ (V3X

′
3)− C‖1 ≤ α

√
c1c2c3 min

X1,X2,X3

‖(V1X1)⊗ (V2X2)⊗ (V3X3)− C‖1.

We extend Lemma C.15 in [SWZ17] to tensors:

Fact 21.7.2. Given tensor A ∈ Rn×n×n, let OPT = min
rank−k Ak

‖A− Ak‖1. For any r ≥ k, if

rank-r tensor B ∈ Rn×n×n is an f -approximation to A, i.e.,

‖B − A‖1 ≤ f ·OPT,

and U, V,W ∈ Rn×k is a g-approximation to B, i.e.,

‖U ⊗ V ⊗W −B‖1 ≤ g · min
rank−k Bk

‖Bk −B‖1,

then,

‖U ⊗ V ⊗W − A‖1 . gf ·OPT .
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Proof. We define Ũ , Ṽ , W̃ ∈ Rn×k to be three matrices, such that

‖Ũ ⊗ Ṽ ⊗ W̃ −B‖1 ≤ g min
rank−k Bk

‖Bk −B‖1,

and also define,

Û , V̂ , Ŵ = arg min
U,V,W∈Rn×k

‖U ⊗ V ⊗W −B‖1 and U∗, V ∗,W ∗ = arg min
U,V,W∈Rn×k

‖U ⊗ V ⊗W − A‖1.

It is obvious that,

‖Û ⊗ V̂ ⊗ Ŵ −B‖1 ≤ ‖U∗ ⊗ V ∗ ⊗W ∗ −B‖1. (21.34)

Then,

‖Ũ ⊗ Ṽ ⊗ W̃ − A‖1

≤ ‖Ũ ⊗ Ṽ ⊗ W̃ −B‖1 + ‖B − A‖1 by the triangle inequality

≤ g‖Û ⊗ V̂ ⊗ Ŵ −B‖1 + ‖B − A‖1 by definition

≤ g‖U∗ ⊗ V ∗ ⊗W ∗ −B‖1 + ‖B − A‖1 by Equation (21.34)

≤ g‖U∗ ⊗ V ∗ ⊗W ∗ − A‖1 + g‖B − A‖1 + ‖B − A‖1 by the triangle inequality

= gOPT +(g + 1)‖B − A‖1 by definition of OPT

≤ gOPT +(g + 1)f ·OPT since B is an f -approximation to A

. gf OPT .

This completes the proof.

Using the above fact, we are able to optimize our approximation ratio.
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21.7.2 Existence results

Definition 21.7.1 (`1 multiple regression cost preserving sketch - Definition D.5 in [SWZ17]).

Given matrices U ∈ Rn×r, A ∈ Rn×d, let S ∈ Rm×n. If ∀β ≥ 1, V̂ ∈ Rr×d which satisfy

‖SUV̂ − SA‖1 ≤ β · min
V ∈Rr×d

‖SUV − SA‖1,

it holds that

‖UV̂ − A‖1 ≤ β · c · min
V ∈Rr×d

‖UV − A‖1,

then S provides a c-`1-multiple-regression-cost-preserving-sketch for (U,A).

Theorem 21.7.3. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exist three

matrices S1 ∈ Rn2×s1, S2 ∈ Rn2×s2, S3 ∈ Rn2×s3 such that

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(A1S1X1)i ⊗ (A2S2X2)i ⊗ (A3S3X3)i − A
∥∥∥∥∥

1

≤ α min
rank−k Ak∈Rn×n×n

‖Ak − A‖1,

holds with probability 99/100.

(I). Using a dense Cauchy transform,

s1 = s2 = s3 = Õ(k), α = Õ(k1.5) log3 n.

(II). Using a sparse Cauchy transform,

s1 = s2 = s3 = Õ(k5), α = Õ(k13.5) log3 n.

(III). Guessing Lewis weights,

s1 = s2 = s3 = Õ(k), α = Õ(k1.5).

Proof. We use OPT to denote

OPT := min
rank−k Ak∈Rn×n×n

‖Ak − A‖1.
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Given a tensorA ∈ Rn1×n2×n3 , we define three matricesA1 ∈ Rn1×n2n3 , A2 ∈ Rn2×n3n1 , A3 ∈

Rn3×n1n2 such that, for any i ∈ [n1], j ∈ [n2], l ∈ [n3],

Ai,j,l = (A1)i,(j−1)·n3+l = (A2)j,(l−1)·n1+i = (A3)l,(i−1)·n2+j.

We fix V ∗ ∈ Rn×k and W ∗ ∈ Rn×k, and use V ∗1 , V ∗2 , · · · , V ∗k to denote the columns of

V ∗ and W ∗
1 ,W

∗
2 , · · · ,W ∗

k to denote the columns of W ∗.

We consider the following optimization problem,

min
U1,··· ,Uk∈Rn

∥∥∥∥∥
k∑

i=1

Ui ⊗ V ∗i ⊗W ∗
i − A

∥∥∥∥∥
1

,

which is equivalent to

min
U1,··· ,Uk∈Rn

∥∥∥∥∥∥∥∥

[
U1 U2 · · · Uk

]



V ∗1 ⊗W ∗
1

V ∗2 ⊗W ∗
2

· · ·
V ∗k ⊗W ∗

k


− A

∥∥∥∥∥∥∥∥
1

.

We use matrix Z1 to denote V ∗>�W ∗> ∈ Rk×n2 and matrix U to denote
[
U1 U2 · · · Uk

]
.

Then we can obtain the following equivalent objective function,

min
U∈Rn×k

‖UZ1 − A1‖1.

Choose an `1 multiple regression cost preserving sketch S1 ∈ Rn2×s1 for (Z>1 , A
>
1 ). We

can obtain the optimization problem,

min
U∈Rn×k

‖UZ1S1 − A1S1‖1 = min
U∈Rn×k

n∑

i=1

‖U iZ1S1 − (A1S1)i‖1,
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where U i denotes the i-th row of matrix U ∈ Rn×k and (A1S1)i denotes the i-th row of

matrix A1S1. Instead of solving it under the `1-norm, we consider the `2-norm relaxation,

min
U∈Rn×k

‖UZ1S1 − A1S1‖2
F = min

U∈Rn×k

n∑

i=1

‖U iZ1S1 − (A1S1)i‖2
2.

Let Û ∈ Rn×k denote the optimal solution of the above optimization problem. Then, Û =

A1S1(Z1S1)†. We plug Û into the objective function under the `1-norm. According to

Claim 21.3.4, we have,

‖ÛZ1S1 − A1S1‖1 =
n∑

i=1

‖Û iZ1S1 − (A1S1)i‖1 ≤
√
s1 min

U∈Rn×k
‖UZ1S1 − A1S1‖1.

Since S1 ∈ Rn2×s1 satisfies Definition 21.7.1, we have

‖ÛZ1 − A1‖1 ≤ α min
U∈Rn×k

‖UZ1 − A1‖1 = αOPT,

where α =
√
s1β and β (see Definition 21.7.1) is a parameter which depends on which kind

of sketching matrix we actually choose. It implies

‖Û ⊗ V ∗ ⊗W ∗ − A‖1 ≤ αOPT .

As a second step, we fix Û ∈ Rn×k and W ∗ ∈ Rn×k, and convert tensor A into matrix

A2. Let matrix Z2 denote Û> �W ∗>. We consider the following objective function,

min
V ∈Rn×k

‖V Z2 − A2‖1,

and the optimal cost of it is at most αOPT.

Choose an `1 multiple regression cost preserving sketch S2 ∈ Rn2×s2 for (Z>2 , A
>
2 ), and

sketch on the right of the objective function to obtain this new objective function,

min
V ∈Rn×k

‖V Z2S2 − A2S2‖1 = min
U∈Rn×k

n∑

i=1

‖V iZ2S2 − (A2S2)i‖1,
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where V i denotes the i-th row of matrix V and (A2S2)i denotes the i-th row of matrix A2S2.

Instead of solving this under the `1-norm, we consider the `2-norm relaxation,

min
U∈Rn×k

‖V Z2S2 − A2S2‖2
F = min

V ∈Rn×k
‖V i(Z2S2)− (A2S2)i‖2

2.

Let V̂ ∈ Rn×k denote the optimal solution of the above problem. Then V̂ =

A2S2(Z2S2)†. By properties of the sketching matrix S2 ∈ Rn2×s2 , we have,

‖V̂ Z2 − A2‖1 ≤ α min
V ∈Rn×k

‖V Z2 − A2‖1 ≤ α2 OPT,

which implies

‖Û ⊗ V̂ ⊗W ∗ − A‖1 ≤ α2 OPT .

As a third step, we fix the matrices Û ∈ Rn×k and V̂ ∈ Rn×k. We can convert tensor

A ∈ Rn×n×n into matrix A3 ∈ Rn2×n. Let matrix Z3 denote Û> � V̂ > ∈ Rk×n2 . We consider

the following objective function,

min
W∈Rn×k

‖WZ3 − A3‖1,

and the optimal cost of it is at most α2 OPT.

Choose an `1 multiple regression cost preserving sketch S3 ∈ Rn2×s3 for (Z>3 , A
>
3 ) and

sketch on the right of the objective function to obtain the new objective function,

min
W∈Rn×k

‖WZ3S3 − A3S3‖1.

Let Ŵ ∈ Rn×k denote the optimal solution of the above problem. Then Ŵ = A3S3(Z3S3)†.

By properties of sketching matrix S3 ∈ Rn2×s3 , we have,

‖ŴZ3 − A3‖1 ≤ α min
W∈Rn×k

‖WZ3 − A3‖1 ≤ α3 OPT .
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Thus, we obtain,

min
X1∈Rs1×k,X2∈Rs2×k,X3∈Rs3×k

∥∥∥∥∥
k∑

i=1

(A1S1X1)i ⊗ (A2S2X2)i ⊗ (A3S3X3)i − A
∥∥∥∥∥

1

≤ α3 OPT .

Proof of (I) By Theorem C.1 in [SWZ17], we can use dense Cauchy transforms for

S1, S2, S3, and then s1 = s2 = s3 = O(k log k) and α = O(
√
k log k log n).

Proof of (II) By Theorem C.1 in [SWZ17], we can use sparse Cauchy transforms

for S1, S2, S3, and then s1 = s2 = s3 = O(k5 log5 k) and α = O(k4.5 log4.5 k log n).

Proof of (III) By Theorem C.1 in [SWZ17], we can sample by Lewis weights. Then

S1, S2, S3 ∈ Rn2×n2 are diagonal matrices, and each of them has O(k log k) nonzero rows.

This gives α = O(
√
k log k).
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21.7.3 Polynomial in k size reduction

Definition 21.7.2 (Definition D.1 in [SWZ17]). Given a matrix M ∈ Rn×d, if matrix S ∈

Rm×n satisfies

‖SM‖1 ≤ β‖M‖1,

then S has at most β dilation on M .

Definition 21.7.3 (Definition D.2 in [SWZ17]). Given a matrix U ∈ Rn×k, if matrix S ∈

Rm×n satisfies

∀x ∈ Rk, ‖SUx‖1 ≥
1

β
‖Ux‖1,

then S has at most β contraction on U .

Theorem 21.7.4. Given a tensor A ∈ Rn1×n2×n3 and three matrices V1 ∈ Rn1×b1 , V2 ∈

Rn2×b2 , V3 ∈ Rn3×b3 , let X∗1 ∈ Rb1×k, X∗2 ∈ Rb2×k, X∗3 ∈ Rb3×k satisfies

X∗1 , X
∗
2 , X

∗
3 = arg min

X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k
‖V1X1 ⊗ V2X2 ⊗ V3X3 − A‖1.

Let S ∈ Rm×n have at most β1 ≥ 1 dilation on V1X
∗
1 · ((V2X

∗
2 )>� (V3X

∗
3 )>)−A1 and S have

at most β2 ≥ 1 contraction on V1. If X̂1 ∈ Rb1×k, X̂2 ∈ Rb2×k, X̂3 ∈ Rb3×k satisfies

‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SA‖1 ≤ β min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖SV1X1 ⊗ V2X2 ⊗ V3X3 − SA‖1,

where β ≥ 1, then

‖V1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − A‖1 . β1β2β min
X1,X2,X3

‖V1X1 ⊗ V2X2 ⊗ V3X3 − A‖1.

The proof idea is similar to [SWZ17].
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Proof. Let A, V1, V2, V3, S,X
∗
1 , X

∗
2 , X

∗
3 , β1, β2 be the same as stated in the theorem. Let X̂1 ∈

Rb1×k, X̂2 ∈ Rb2×k, X̂3 ∈ Rb3×k satisfy

‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SA‖1 ≤ β min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖SV1X1 ⊗ V2X2 ⊗ V3X3 − SA‖1.

We have,

‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SA‖1

≥ ‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SV1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3‖1 − ‖SV1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − SA‖1

≥ 1

β2

‖V1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − V1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3‖1 − β1‖V1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − A‖1

≥ 1

β2

‖V1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − A‖1 −
1

β2

‖V1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − A‖1

− β1‖V1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − A‖1

=
1

β2

‖V1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − A‖1 − (
1

β2

+ β1)‖V1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − A‖1. (21.35)

The first and the third inequality follow by the triangle inequalities. The second inequality

follows using that

‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SV1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3‖1

=
∥∥∥SV1(X̂1 −X∗1 ) ·

(
(V2(X̂2 −X∗2 ))> � (V3(X̂3 −X∗3 ))>

)∥∥∥
1

≥ 1

β2

∥∥∥V1(X̂1 −X∗1 ) ·
(

(V2(X̂2 −X∗2 ))> � (V3(X̂3 −X∗3 ))>
)∥∥∥

1

≥ 1

β2

‖V1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − V1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3‖1,
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and

‖SV1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − SA‖1

= ‖S(V1X
∗
1 · ((V2X

∗
2 )> � (V3X

∗
3 )>)− A1)‖1

≤ ‖V1X
∗
1 · ((V2X

∗
2 )> � (V3X

∗
3 )>)− A1‖1

= β1‖V1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − A‖1. (21.36)

Then, we have

‖V1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − A‖1

≤ β2‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SA‖1 + (1 + β1β2)‖V1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − A‖1

≤ β2β‖SV1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − SA‖1 + (1 + β1β2)‖V1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − A‖1

≤ β1β2β‖V1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − A‖1 + (1 + β1β2)‖V1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − A‖1

≤ β(1 + 2β1β2)‖V1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − A‖1.

The first inequality follows by Equation (21.35). The second inequality follows by

‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SA‖1 ≤ β min
X1,X2,X3

‖SV1X1 ⊗ V2X2 ⊗ V3X3 − SA‖1.

The third inequality follows by Equation (21.36). The final inequality follows using that

β ≥ 1.

Lemma 21.7.5. Let min(b1, b2, b3) ≥ k. Given three matrices V1 ∈ Rn×b1, V2 ∈ Rn×b2,

and V3 ∈ Rn×b3, there exists an algorithm that takes O(nnz(A)) + n poly(b1, b2, b3) time and

outputs a tensor C ∈ Rc1×c2×c3 and three matrices V̂1 ∈ Rc1×b1, V̂2 ∈ Rc2×b2 and V̂3 ∈ Rc3×b3
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Algorithm 21.21 Reducing the Size of the Objective Function to poly(k)

1: procedure L1PolyKSizeReduction(A, V1, V2, V3, n, b1, b2, b3, k) . Lemma 21.7.5
2: for i = 1→ 3 do
3: ci ← Õ(bi).
4: Choose sampling and rescaling matrices Ti ∈ Rci×n according to the Lewis weights

of Vi.
5: V̂i ← TiVi ∈ Rci×bi .
6: end for
7: C ← A(T1, T2, T3) ∈ Rc1×c2×c3 .
8: return V̂1, V̂2, V̂3 and C.
9: end procedure

with c1 = c2 = c3 = poly(b1, b2, b3), such that with probability 0.99, for any α ≥ 1, if

X ′1, X
′
2, X

′
3 satisfy that,

∥∥∥∥∥
k∑

i=1

(V̂1X
′
1)i ⊗ (V̂2X

′
2)i ⊗ (V̂3X

′
3)i − C

∥∥∥∥∥
1

≤ α min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(V̂1X1)i ⊗ (V̂2X2)i ⊗ (V̂3X3)i − C
∥∥∥∥∥

1

,

then,
∥∥∥∥∥

k∑

i=1

(V1X
′
1)i ⊗ (V2X

′
2)i ⊗ (V3X

′
3)i − A

∥∥∥∥∥
1

. α min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i − A
∥∥∥∥∥

1

.

Proof. For simplicity, we define OPT to be

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i − A
∥∥∥∥∥

1

.

Let T1 ∈ Rc1×n sample according to the Lewis weights of V1 ∈ Rn×b1 , where c1 = Õ(b1). Let

T2 ∈ Rc2×n sample according to the Lewis weights of V2 ∈ Rn×b2 , where c2 = Õ(b2). Let

T3 ∈ Rc3×n sample according to the Lewis weights of V3 ∈ Rn×b3 , where c3 = Õ(b3).
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For any α ≥ 1, let X ′1 ∈ Rb1×k, X ′2 ∈ Rb2×k, X ′3 ∈ Rb3×k satisfy

‖T1V1X
′
1 ⊗ T2V2X

′
2 ⊗ T3V3X

′
3 − A(T1, T2, T3)‖1

≤ α min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖T1V1X1 ⊗ T2V2X2 ⊗ T3V3X3 − A(T1, T2, T3)‖1.

First, we regard T1 as the sketching matrix for the remainder. Then by Lemma D.11 in

[SWZ17] and Theorem 21.7.4, we have

‖V1X
′
1 ⊗ T2V2X

′
2 ⊗ T3V3X

′
3 − A(I, T2, T3)‖1

. α min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖V1X1 ⊗ T2V2X2 ⊗ T3V3X3 − A(I, T2, T3)‖1.

Second, we regard T2 as a sketching matrix for V1X1 ⊗ V2X2 ⊗ T3V3X3 − A(I, I, T3). Then

by Lemma D.11 in [SWZ17] and Theorem 21.7.4, we have

‖V1X
′
1 ⊗ V2X

′
2 ⊗ T3V3X

′
3 − A(I, I, T3)‖1

. α min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖V1X1 ⊗ V2X2 ⊗ T3V3X3 − A(I, I, T3)‖1.

Third, we regard T3 as a sketching matrix for V1X1 ⊗ V2X2 ⊗ V3X3 − A. Then by Lemma

D.11 in [SWZ17] and Theorem 21.7.4, we have
∥∥∥∥∥

k∑

i=1

(V1X
′
1)i ⊗ (V2X

′
2)i ⊗ (V3X

′
3)i − A

∥∥∥∥∥
1

. α min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i − A
∥∥∥∥∥

1

.

Lemma 21.7.6. Given tensor A ∈ Rn1×n2×n3, and two matrices U ∈ Rn1×s, V ∈ Rn2×s with

rank(U) = r, let T ∈ Rt×n1 be a sampling/rescaling matrix according to the Lewis weights of

U with t = Õ(r). Then with probability at least 0.99, for all X ′ ∈ Rn3×s, α ≥ 1 which satisfy

‖T1U ⊗ V ⊗X ′ − T1A‖1 ≤ α · min
X∈Rn3×s

‖T1U ⊗ V ⊗X − T1A‖1,
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it holds that

‖U ⊗ V ⊗X ′ − A‖1 . α · min
X∈Rn3×s

‖U ⊗ V ⊗X − A‖1.

The proof is similar to the proof of Lemma 21.7.5.

Proof. Let X∗ = arg min
X∈Rn3×s

‖U ⊗ V ⊗X −A‖1. Then according to Lemma D.11 in [SWZ17], T

has at most constant dilation (Definition 21.7.2) on U · (V >� (X∗)>)−A1, and has at most

constant contraction (Definition 21.7.3) on U . We first look at

‖TU ⊗ V ⊗X ′ − TA‖1

= ‖TU · (V > � (X ′)>)− TA1‖1

≥ ‖TU · ((V > � (X ′)>)− (V > � (X∗)>))‖1 − ‖TU · (V > � (X∗)>)− TA1‖1

≥ 1

β2

‖U · ((V > � (X ′)>)− A1‖1 − (
1

β2

+ β1)‖U · (V > � (X∗)>)− A1‖1,

where β1 ≥ 1, β2 ≥ 1 are two constants. Then we have:

‖U ⊗ V ⊗X ′ − A‖1

≤ β2‖TU · (V > � (X ′)>)− TA1‖1 + (1 + β1β2)‖U · (V > � (X∗)>)− A1‖1

≤ αβ2‖TU · (V > � (X∗)>)− TA1‖1 + (1 + β1β2)‖U · (V > � (X∗)>)− A1‖1

≤ αβ1β2‖U · (V > � (X∗)>)− A1‖1 + (1 + β1β2)‖U · (V > � (X∗)>)− A1‖1

. α‖U ⊗ V ⊗X∗ − A‖1.

Corollary 21.7.7. Given tensor A ∈ Rn×n×n, and two matrices U ∈ Rn×s, V ∈ Rn×s with

rank(U) = r1, rank(V ) = r2, let T1 ∈ Rt1×n be a sampling/rescaling matrix according to
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the Lewis weights of U , and let T2 ∈ Rt2×n be a sampling/rescaling matrix according to the

Lewis weights of V with t1 = Õ(r1), t2 = Õ(r2). Then with probability at least 0.99, for all

X ′ ∈ Rn×s, α ≥ 1 which satisfy

‖T1U ⊗ T2V ⊗X ′ − A(T1, T2, I)‖1 ≤ α · min
X∈Rn×s

‖T1U ⊗ T2V ⊗X − A(T1, T2, I)‖1,

it holds that

‖U ⊗ V ⊗X ′ − A‖1 . α · min
X∈Rn×s

‖U ⊗ V ⊗X − A‖1.

Proof. We apply Lemma 21.7.6 twice: if

‖T1U ⊗ T2V ⊗X ′ − A(T1, T2, I)‖1 ≤ α · min
X∈Rn×s

‖T1U ⊗ T2V ⊗X − A(T1, T2, I)‖1,

then

‖U ⊗ T2V ⊗X ′ − A(I, T2, I)‖1 . α · min
X∈Rn×s

‖U ⊗ T2V ⊗X − A(I, T2, I)‖1.

Then, we have

‖U ⊗ V ⊗X ′ − A‖1 . α · min
X∈Rn×s

‖U ⊗ V ⊗X − A‖1.

1630



21.7.4 Solving small problems

Theorem 21.7.8. Let maxi{ti, di} ≤ n. Given a t1 × t2 × t3 tensor A and three matrices:

a t1 × d1 matrix T1, a t2 × d2 matrix T2, and a t3 × d3 matrix T3, if for δ > 0 there exists a

solution to

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(T1X1)i ⊗ (T2X2)i ⊗ (T3X3)i − A
∥∥∥∥∥

1

:= OPT,

such that each entry of Xi can be expressed using O(nδ) bits, then there exists an algorithm

that takes nO(δ) · 2O(d1k+d2k+d3k) time and outputs three matrices: X̂1, X̂2, and X̂3 such that

‖(T1X̂1)⊗ (T2X̂2)⊗ (T3X̂3)− A‖1 = OPT.

Proof. For each i ∈ [3], we can create ti × di variables to represent matrix Xi. Let x denote

the list of these variables. Let B denote tensor
∑k

i=1(T1X1)i ⊗ (T2X2)i ⊗ (T3X3)i. Then we

can write the following objective function,

min
x

t1∑

i=1

t2∑

j=1

t3∑

l=1

|Bi,j,l(x)− Ai,j,l|.

To remove the | · |, we create t1t2t3 extra variables σi,j,l. Then we obtain the objective

function:

min
x,σ

t1∑

i=1

t2∑

j=1

t3∑

l=1

σi,j,l(Bi,j,l(x)− Ai,j,l)

s.t. σ2
i,j,l = 1,

σi,j,l(Bi,j,l(x)− Ai,j,l) ≥ 0,

‖x‖2
2 + ‖σ‖2

2 ≤ 2O(nδ)

where the last constraint is unharmful, because there exists a solution that can be written

using O(nδ) bits. Note that the number of inequality constraints in the above system is
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O(t1t2t3), the degree is O(1), and the number of variables is v = (t1t2t3 + d1k + d2k + d3k).

Thus by Theorem 21.3.2, we know that the minimum nonzero cost is at least

(2O(nδ))−2Õ(v)

.

It is immediate that the upper bound on cost is at most 2O(nδ), and thus the number of

binary search steps is at most log(2O(nδ))2Õ(v). In each step of the binary search, we need

to choose a cost C between the lower bound and the upper bound, and write down the

polynomial system,

t1∑

i=1

t2∑

j=1

t3∑

l=1

σi,j,l(Bi,j,l(x)− Ai,j,l) ≤ C,

σ2
i,j,l = 1,

σi,j,l(Bi,j,l(x)− Ai,j,l) ≥ 0,

‖x‖2
2 + ‖σ‖2

2 ≤ 2O(nδ).

Using Theorem 21.3.1, we can determine if there exists a solution to the above polynomial

system. Since the number of variables is v, and the degree is O(1), the number of inequality

constraints is t1t2t2. Thus, the running time is

poly(bitsize) · (# constraints ·degree)# variables = nO(δ)2Õ(v)
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21.7.5 Bicriteria algorithms

We present several bicriteria algorithms with different tradeoffs. We first present

an algorithm that runs in nearly linear time and outputs a solution with rank Õ(k3) in

Theorem 21.7.9. Then we show an algorithm that runs in nnz(A) time but outputs a solution

with rank poly(k) in Theorem 21.7.10. Then we explain an idea which is able to decrease the

cubic rank to quadratic rank, and thus we can obtain Theorem 21.7.11 and Theorem 21.7.12.

21.7.5.1 Input sparsity time

Algorithm 21.22 `1-Low Rank Approximation, Bicriteria Algorithm, rank-Õ(k3), Nearly
Input Sparsity Time
1: procedure L1BicriteriaAlgorithm(A, n, k) . Theorem 21.7.9
2: s1 ← s2 ← s3 ← Õ(k).
3: For each i ∈ [3], choose Si ∈ Rn2×si to be a dense Cauchy transform. . Part (I) of

Theorem 21.7.2
4: Compute A1 · S1, A2 · S2, A3 · S3.
5: Y1, Y2, Y3, C ←L1PolyKSizeReduction(A,A1S1, A2S2, A3S3, n, s1, s2, s3, k) .

Algorithm 21.21
6: Form objective function

min
X∈Rs1×s2×s3

∥∥∥∥∥
s1∑

i=1

s2∑

j=1

s3∑

l=1

Xi,j,l(Y1)i ⊗ (Y2)j ⊗ (Y3)l − C
∥∥∥∥∥

1

.

7: Run `1-regression solver to find X.
8: return A1S1, A2S2, A3S3 and X.
9: end procedure

Theorem 21.7.9. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), let

r = Õ(k3). There exists an algorithm which takes nnz(A) · Õ(k) + O(n) poly(k) + poly(k)
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time and outputs three matrices U, V,W ∈ Rn×r such that
∥∥∥∥∥

r∑

i=1

Ui ⊗ Vi ⊗Wi − A
∥∥∥∥∥

1

≤ Õ(k3/2) log3 n min
rank−k Ak

‖Ak − A‖1

holds with probability 9/10.

Proof. We first choose three dense Cauchy transforms Si ∈ Rn2×si . According to Sec-

tion 21.3.7, for each i ∈ [3], AiSi can be computed in nnz(A) · Õ(k) time. Then we apply

Lemma 21.7.5 (Algorithm 21.21). We obtain three matrices Y1, Y2, Y3 and a tensor C. Note

that for each i ∈ [3], Yi can be computed in n poly(k) time. Because C = A(T1, T2, T3)

and T1, T2, T3 ∈ Rn×Õ(k) are three sampling and rescaling matrices, C can be computed in

nnz(A) + Õ(k3) time. At the end, we just need to run an `1-regression solver to find the

solution to the problem,

min
X∈Rs1×s2×s3

∥∥∥∥∥
s1∑

i=1

s2∑

j=1

s3∑

l=1

Xi,j,l(Y1)i ⊗ (Y2)j ⊗ (Y3)j

∥∥∥∥∥
1

,

where (Y1)i denotes the i-th column of matrix Y1. Since the size of the above problem is

only poly(k), this can be solved in poly(k) time.

Theorem 21.7.10. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), let

r = Õ(k15). There exists an algorithm that takes nnz(A) +O(n) poly(k) + poly(k) time and

outputs three matrices U, V,W ∈ Rn×r such that
∥∥∥∥∥

r∑

i=1

Ui ⊗ Vi ⊗Wi − A
∥∥∥∥∥

1

≤ poly(k, log n) min
rank−k Ak

‖Ak − A‖1

holds with probability 9/10.
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Algorithm 21.23 `1-Low Rank Approximation, Bicriteria Algorithm, rank-poly(k), Input
Sparsity Time
1: procedure L1BicriteriaAlgorithm(A, n, k) . Theorem 21.7.10
2: s1 ← s2 ← s3 ← Õ(k5).
3: For each i ∈ [3], choose Si ∈ Rn2×si to be a sparse Cauchy transform. . Part (II) of

Theorem 21.7.3
4: Compute A1 · S1, A2 · S2, A3 · S3.
5: Y1, Y2, Y3, C ←L1PolyKSizeReduction(A,A1S1, A2S2, A3, S3, n, s1, s2, s3, k) .

Algorithm 21.21
6: Form objective function

min
X∈Rs1×s2×s3

∥∥∥∥∥
s1∑

i=1

s2∑

j=1

s3∑

l=1

Xi,j,l(Y1)i ⊗ (Y2)j ⊗ (Y3)l − C
∥∥∥∥∥

1

.

7: Run `1-regression solver to find X.
8: return A1S1, A2S2, A3S3 and X.
9: end procedure

Proof. We first choose three dense Cauchy transforms Si ∈ Rn2×si . According to Sec-

tion 21.3.7, for each i ∈ [3], AiSi can be computed in O(nnz(A)) time. Then we ap-

ply Lemma 21.7.5 (Algorithm 21.21), and can obtain three matrices Y1, Y2, Y3 and a ten-

sor C. Note that for each i ∈ [3], Yi can be computed in O(n) poly(k) time. Because

C = A(T1, T2, T3) and T1, T2, T3 ∈ Rn×Õ(k) are three sampling and rescaling matrices, C can

be computed in nnz(A)+ Õ(k3) time. At the end, we just need to run an `1-regression solver

to find the solution to the problem,

min
X∈Rs1×s2×s3

∥∥∥∥∥
s1∑

i=1

s2∑

j=1

s3∑

l=1

Xi,j,l(Y1)i ⊗ (Y2)j ⊗ (Y3)l − C
∥∥∥∥∥

1

,

where (Y1)i denotes the i-th column of matrix Y1. Since the size of the above problem is

only poly(k), it can be solved in poly(k) time.
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21.7.5.2 Improving cubic rank to quadratic rank

Algorithm 21.24 `1-Low Rank Approximation, Bicriteria Algorithm, rank-Õ(k2), Nearly
Input Sparsity Time
1: procedure L1BicriteriaAlgorithm(A, n, k) . Theorem 21.7.11
2: s1 ← s2 ← s3 ← Õ(k).
3: For each i ∈ [3], choose Si ∈ Rn2×si to be a dense Cauchy transform. . Part (I) of

Theorem 21.7.2
4: Compute A1 · S1, A2 · S2.
5: For each i ∈ [2], choose Ti to be a sampling and rescaling diagonal matrix according

to the Lewis weights of AiSi, with ti = Õ(k) nonzero entries.
6: C ← A(T1, T2, I).
7: Bi+(j−1)s1 ← vec((T1A1S1)i ⊗ (T2A2S2)j),∀i ∈ [s1], j ∈ [s2].
8: Form objective function minW ‖WB − C3‖1

9: Run `1-regression solver to find Ŵ .
10: Construct Û by using A1S1 according to Equation (21.38).
11: Construct V̂ by using A2S2 according to Equation (21.39).
12: return Û , V̂ , Ŵ .
13: end procedure

Theorem 21.7.11. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), let

r = Õ(k2). There exists an algorithm which takes nnz(A) · Õ(k) + O(n) poly(k) + poly(k)

time and outputs three matrices U, V,W ∈ Rn×r such that
∥∥∥∥∥

r∑

i=1

Ui ⊗ Vi ⊗Wi − A
∥∥∥∥∥

1

≤ Õ(k3/2) log3 n min
rank−k Ak

‖Ak − A‖1

holds with probability 9/10.

Proof. Let OPT = min
Ak∈Rn×n×n

‖Ak − A‖1. We first choose three dense Cauchy transforms

Si ∈ Rn2×si , ∀i ∈ [3]. According to Section 21.3.7, for each i ∈ [3], AiSi can be computed

in nnz(A) · Õ(k) time. Then we choose Ti to be a sampling and rescaling diagonal matrix

according to the Lewis weights of AiSi, ∀i ∈ [2].
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According to Theorem 21.7.3, we have

min
X1∈Rs1×k,X2∈Rs2×k,X3∈Rs3×k

∥∥∥∥∥
k∑

l=1

(A1S1X1)l ⊗ (A2S2X2)l ⊗ (A3S3X3)l − A
∥∥∥∥∥

1

≤ Õ(k1.5) log3 nOPT

Now we fix an l and we have:

(A1S1X1)l ⊗ (A2S2X2)l ⊗ (A3S3X3)l

=

(
s1∑

i=1

(A1S1)i(X1)i,l

)
⊗
(

s2∑

j=1

(A2S2)j(X2)j,l

)
⊗ (A3S3X3)l

=

s1∑

i=1

s2∑

j=1

(A1S1)i ⊗ (A2S2)j ⊗ (A3S3X3)l(X1)i,l(X2)j,l

Thus, we have

min
X1,X2,X3

∥∥∥∥∥
s1∑

i=1

s2∑

j=1

(A1S1)i ⊗ (A2S2)j ⊗
(

k∑

l=1

(A3S3X3)l(X1)i,l(X2)j,l

)
− A

∥∥∥∥∥
1

≤ Õ(k1.5) log3 nOPT .

(21.37)

We create matrix Û ∈ Rn×s1s2 by copying matrix A1S1 s2 times, i.e.,

Û =
[
A1S1 A1S1 · · · A1S1

]
. (21.38)

We create matrix V̂ ∈ Rn×s1s2 by copying the i-th column of A2S2 a total of s1 times into

the columns (i− 1)s1, · · · , is1 of V̂ , for each i ∈ [s2], i.e.,

V̂ =
[
(A2S2)1 · · · (A2S2)1 (A2S2)2 · · · (A2S2)2 · · · (A2S2)s2 · · · (A2S2)s2 .

]
(21.39)

According to Equation (21.37), we have:

min
W∈Rn×s1s2

‖Û ⊗ V̂ ⊗W − A‖1 ≤ Õ(k1.5) log3 n ·OPT .
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Let

Ŵ = arg min
W∈Rn×s1s2

‖T1Û ⊗ T2V̂ ⊗W − A(T1, T2, I)‖1.

Due to Corollary 21.7.7, we have

‖Û ⊗ V̂ ⊗ Ŵ − A‖1 ≤ Õ(k1.5) log3 n ·OPT .

Putting it all together, we have that Û , V̂ , Ŵ gives a rank-Õ(k2) bicriteria algorithm to the

original problem.

Algorithm 21.25 `1-Low Rank Approximation, Bicriteria Algorithm, rank-poly(k), Input
Sparsity Time
1: procedure L1BicriteriaAlgorithm(A, n, k) . Theorem 21.7.12
2: s1 ← s2 ← s3 ← Õ(k5).
3: For each i ∈ [3], choose Si ∈ Rn2×si to be a sparse Cauchy transform. . Part (II) of

Theorem 21.7.2
4: Compute A1 · S1, A2 · S2.
5: For each i ∈ [2], choose Ti to be a sampling and rescaling diagonal matrix according

to the Lewis weights of AiSi, with ti = Õ(k) nonzero entries.
6: C ← A(T1, T2, I).
7: Bi+(j−1)s1 ← vec((T1A1S1)i ⊗ (T2A2S2)j),∀i ∈ [s1], j ∈ [s2].
8: Form objective function minW ‖WB − C3‖1.
9: Run `1-regression solver to find Ŵ .
10: Construct Û by using A1S1 according to Equation (21.38).
11: Construct V̂ by using A2S2 according to Equation (21.39).
12: return Û , V̂ , Ŵ .
13: end procedure

Theorem 21.7.12. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), let

r = Õ(k10). There exists an algorithm which takes nnz(A) + O(n) poly(k) + poly(k) time
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and outputs three matrices U, V,W ∈ Rn×r such that
∥∥∥∥∥

r∑

i=1

Ui ⊗ Vi ⊗Wi − A
∥∥∥∥∥

1

≤ poly(k, log n) min
rank−k Ak

‖Ak − A‖1

holds with probability 9/10.

Proof. The proof is similar to the proof of Theorem 21.7.11. The only difference is that

instead of choosing dense Cauchy matrices S1, S2, we choose sparse Cauchy matrices.

Notice that if we firstly apply a sparse Cauchy transform, we can reduce the rank of

the matrix to poly(k). Then we apply a dense Cauchy transform and can further reduce

the dimension while only incurring another poly(k) factor in the approximation ratio. By

combining a sparse Cauchy transform and a dense Cauchy transform, we can improve the

running time from nnz(A) · Õ(k) to nnz(A).

Corollary 21.7.13. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), let

r = Õ(k2). There exists an algorithm which takes nnz(A) +O(n) poly(k) + poly(k) time and

outputs three matrices U, V,W ∈ Rn×r such that
∥∥∥∥∥

r∑

i=1

Ui ⊗ Vi ⊗Wi − A
∥∥∥∥∥

1

≤ poly(k, log n) min
rank−k Ak

‖Ak − A‖1

holds with probability 9/10.
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Algorithm 21.26 `1-Low Rank Approximation, Bicriteria Algorithm, rank-Õ(k2), Input
Sparsity Time
1: procedure L1BicriteriaAlgorithm(A, n, k) . Corollary 21.7.13
2: s1 ← s2 ← s3 ← Õ(k).
3: For each i ∈ [3], choose Si ∈ Rn2×si to be the composition of a sparse Cauchy

transform and a dense Cauchy transform. . Part (I,II) of Theorem 21.7.2
4: Compute A1 · S1, A2 · S2.
5: For each i ∈ [2], choose Ti to be a sampling and rescaling diagonal matrix according

to the Lewis weights of AiSi, with ti = Õ(k) nonzero entries.
6: C ← A(T1, T2, I).
7: Bi+(j−1)s1 ← vec((T1A1S1)i ⊗ (T2A2S2)j),∀i ∈ [s1], j ∈ [s2].
8: Form objective function minW ‖WB − C3‖1.
9: Run `1-regression solver to find Ŵ .
10: Construct Û by using A1S1 according to Equation (21.38).
11: Construct V̂ by using A2S2 according to Equation (21.39).
12: return Û , V̂ , Ŵ .
13: end procedure

21.7.6 Algorithms

In this section, we show two different algorithms by using different kind of sketches.

One is shown in Theorem 21.7.14 which gives a fast running time. Another one is shown in

Theorem 21.7.16 which gives the best approximation ratio.

21.7.6.1 Input sparsity time algorithm

Theorem 21.7.14. Given a 3rd tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an algorithm

that takes nnz(A) · Õ(k) + O(n) poly(k) + 2Õ(k2) time and outputs three matrices U, V,W ∈

Rn×k such that,

‖U ⊗ V ⊗W − A‖1 ≤ poly(k, log n) min
rank−k A′

‖A′ − A‖1.
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Algorithm 21.27 `1-Low Rank Approximation, Input sparsity Time Algorithm
1: procedure L1TensorLowRankApproxInputSparsity(A, n, k) . Theorem 21.7.14
2: s1 ← s2 ← s3 ← Õ(k5).
3: Choose Si ∈ Rn2×si to be a dense Cauchy transform, ∀i ∈ [3]. . Part (I) of Theorem

21.7.3
4: Compute A1 · S1, A2 · S2, and A3 · S3.
5: Y1, Y2, Y3, C ←L1PolyKSizeReduction(A,A1S1, A2S2, A3S3, n, s1, s2, s3, k). .

Algorithm 21.21
6: Create variables s1 × k + s2 × k + s3 × k variables for each entry of X1, X2, X3.
7: Form objective function ‖(Y1X1)⊗ (Y2X2)⊗ (Y3X3)− C‖2

F .
8: Run polynomial system verifier.
9: return A1S1X1, A2S2X2, A3S3X3.
10: end procedure

holds with probability at least 9/10.

Proof. First, we apply part (II) of Theorem 21.7.3. Then AiSi can be computed in O(nnz(A))

time. Second, we use Lemma 21.7.5 to reduce the size of the objective function from O(n3)

to poly(k) in n poly(k) time by only losing a constant factor in approximation ratio. Third,

we use Claim 21.3.6 to relax the objective function from entry-wise `1-norm to Frobenius

norm, and this step causes us to lose some other poly(k) factors in approximation ratio. As

a last step, we use Theorem 21.4.44 to solve the Frobenius norm objective function.

Notice again that if we first apply a sparse Cauchy transform, we can reduce the rank

of the matrix to poly(k). Then as before we can apply a dense Cauchy transform to further

reduce the dimension while only incurring another poly(k) factor in the approximation ratio.

By combining a sparse Cauchy transform and a dense Cauchy transform, we can improve

the running time from nnz(A) · Õ(k) to nnz(A), while losing some additional poly(k) factors

in approximation ratio.
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Corollary 21.7.15. Given a 3rd tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an algorithm

that takes nnz(A) + O(n) poly(k) + 2Õ(k2) time and outputs three matrices U, V,W ∈ Rn×k

such that,

‖U ⊗ V ⊗W − A‖1 ≤ poly(k, log n) min
rank−k A′

‖A′ − A‖1.

holds with probability at least 9/10.

21.7.6.2 Õ(k3/2)-approximation algorithm

Algorithm 21.28 `1-Low Rank Approximation Algorithm, Õ(k3/2)-approximation
1: procedure L1TensorLowRankApproxK(A, n, k) . Theorem 21.7.16
2: s1 ← s2 ← s3 ← Õ(k).
3: Guess diagonal matrices Si ∈ Rn2×si with si nonzero entries, ∀i ∈ [3]. . Part (III) of

Theorem 21.7.3
4: Compute A1 · S1, A2 · S2, and A3 · S3.
5: Y1, Y2, Y3, C ←L1PolyKSizeReduction(A,A1S1, A2S2, A3S3, n, s1, s2, s3, k). .

Algorithm 21.21
6: Create s1 × k + s2 × k + s3 × k variables for each entry of X1, X2, X3.
7: Form objective function ‖(Y1X1)⊗ (Y2X2)⊗ (Y3X3)− C‖1.
8: Run polynomial system verifier.
9: return U, V,W .
10: end procedure

Theorem 21.7.16. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an

algorithm that takes nÕ(k)2Õ(k3) time and output three matrices U, V,W ∈ Rn×k such that,

‖U ⊗ V ⊗W − A‖1 ≤ Õ(k3/2) min
rank−k A′

‖A′ − A‖1.

holds with probability at least 9/10.
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Proof. First, we apply part (III) of Theorem 21.7.3. Then, guessing Si requires nÕ(k) time.

Second, we use Lemma 21.7.5 to reduce the size of the objective from O(n3) to poly(k) in

polynomial time while only losing a constant factor in approximation ratio. Third, we use

Theorem 21.7.8 to solve the entry-wise `1-norm objective function directly.
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21.7.7 CURT decomposition

Algorithm 21.29 `1-CURT Decomposition Algorithm
1: procedure L1CURT(A,UB, VB,WB, n, k) . Theorem 21.7.17
2: Form B1 = V >B �W>

B ∈ Rk×n2 .
3: Let D>1 ∈ Rn2×n2 be the sampling and rescaling diagonal matrix corresponding to

the Lewis weights of B>1 , and let D1 have d1 = O(k log k) nonzero entries.
4: Form Û = A1D1(B1D1)† ∈ Rn×k.
5: Form B2 = Û> �W>

B ∈ Rk×n2 .
6: Let D>2 ∈ Rn2×n2 be the sampling and rescaling diagonal matrix corresponding to

the Lewis weights of B>2 , and let D2 have d2 = O(k log k) nonzero entries.
7: Form V̂ = A2D2(B2D2)† ∈ Rn×k.
8: Form B3 = Û> � V̂ > ∈ Rk×n2 .
9: Let D>3 ∈ Rn2×n2 be the sampling and rescaling diagonal matrix corresponding to

the Lewis weights of B>3 , and let D3 have d3 = O(k log k) nonzero entries.
10: C ← A1D1, R← A2D2, T ← A3D3.
11: U ←∑k

i=1((B1D1)†)i ⊗ ((B2D2)†)i ⊗ ((B3D3)†)i.
12: return C, R, T and U .
13: end procedure

Theorem 21.7.17. Given a 3rd order tensor A ∈ Rn×n×n, let k ≥ 1, let UB, VB,WB ∈

Rn×k denote a rank-k, α-approximation to A. Then there exists an algorithm which takes

O(nnz(A)) + O(n2) poly(k) time and outputs three matrices: C ∈ Rn×c with columns from

A, R ∈ Rn×r with rows from A, T ∈ Rn×t with tubes from A, and a tensor U ∈ Rc×r×t with

rank(U) = k such that c = r = t = O(k log k), and
∥∥∥∥∥

c∑

i=1

r∑

j=1

t∑

l=1

Ui,j,l · Ci ⊗Rj ⊗ Tl − A
∥∥∥∥∥

1

≤ Õ(k1.5)α min
rank−k A′

‖A′ − A‖1

holds with probability 9/10.
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Proof. We define

OPT := min
rank−k A′

‖A′ − A‖1.

We already have three matrices UB ∈ Rn×k, VB ∈ Rn×k and WB ∈ Rn×k and these three

matrices provide a rank-k, α approximation to A, i.e.,
∥∥∥∥∥

k∑

i=1

(UB)i ⊗ (VB)i ⊗ (WB)i − A
∥∥∥∥∥

1

≤ αOPT (21.40)

Let B1 = V >B � W>
B ∈ Rk×n2 denote the matrix where the i-th row is the vectorization

of (VB)i ⊗ (WB)i. By Section B.3, we can compute D1 ∈ Rn2×n2 which is a sampling and

rescaling matrix corresponding to the Lewis weights of B>1 in O(n2 poly(k)) time, and there

are d1 = O(k log k) nonzero entries on the diagonal of D1. Let Ai ∈ Rn×n2 denote the matrix

obtained by flattening A along the i-th direction, for each i ∈ [3].

Define U∗ ∈ Rn×k to be the optimal solution to min
U∈Rn×k

‖UB1−A1‖1, Û = A1D1(B1D1)† ∈

Rn×k, V0 ∈ Rn×k to be the optimal solution to min
V ∈Rn×k

‖V · (Û> �W>
B )− A2‖1, and U ′ to be

the optimal solution to min
U∈Rn×k

‖UB1D1 − A1D1‖1.

By Claim 21.3.4, we have

‖ÛB1D1 − A1D1‖1 ≤
√
d1‖U ′B1D1 − A1D1‖1

Due to Lemma D.11 and Lemma D.8 (in [SWZ17]) with constant probability, we have

‖ÛB1 − A1‖1 ≤
√
d1αD1‖U∗B1 − A1‖1, (21.41)

where αD1 = O(1).
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Recall that (Û>�W>
B ) ∈ Rk×n2 denotes the matrix where the i-th row is the vector-

ization of Ûi ⊗ (WB)i, ∀i ∈ [k]. Now, we can show,

‖V0 · (Û> �W>
B )− A2‖1 ≤ ‖ÛB1 − A1‖1 by V0 = arg min

V ∈Rn×k
‖V · (Û> �W>

B )− A2‖1

.
√
d1‖U∗B1 − A1‖1 by Equation (21.41)

≤
√
d1‖UBB1 − A1‖1 by U∗ = arg min

U∈Rn×k
‖UB1 − A1‖1

≤ O(
√
d1)αOPT by Equation (21.40)

(21.42)

We define B2 = Û> �W>
B . We can compute D2 ∈ Rn2×n2 which is a sampling and

rescaling matrix corresponding to the Lewis weights of B>2 in O(n2 poly(k)) time, and there

are d2 = O(k log k) nonzero entries on the diagonal of D2.

Define V ∗ ∈ Rn×k to be the optimal solution of minV ∈Rn×k ‖V B2 − A2‖1, V̂ =

A2D2(B2D2)† ∈ Rn×k,W0 ∈ Rn×k to be the optimal solution of min
W∈Rn×k

‖W ·(Û>�V̂ >)−A3‖1,

and V ′ to be the optimal solution of min
V ∈Rn×k

‖V B2D2 − A2D2‖1.

By Claim 21.3.4, we have

‖V̂ B2D2 − A2D2‖1 ≤
√
d2‖V ′B2D2 − A2D2‖1.

Due to Lemma D.11 and Lemma D.8(in [SWZ17]) with constant probability, we have

‖V̂ B2 − A2‖1 ≤
√
d2αD2‖V ∗B2 − A2‖1, (21.43)

where αD2 = O(1).

Recall that (Û> � V̂ >) ∈ Rk×n2 denotes the matrix for which the i-th row is the
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vectorization of Ûi ⊗ V̂i, ∀i ∈ [k]. Now, we can show,

‖W0 · (Û> � V̂ >)− A3‖1 ≤ ‖V̂ B2 − A2‖1 by W0 = arg min
W∈Rn×k

‖W · (Û> � V̂ >)− A3‖1

.
√
d2‖V ∗B2 − A2‖1 by Equation (21.43)

≤
√
d2‖V0B2 − A2‖1 by V ∗ = arg min

V ∈Rn×k
‖V B2 − A2‖1

≤ O(
√
d1d2)αOPT by Equation (21.42)

(21.44)

We define B3 = Û> � V̂ >. We can compute D3 ∈ Rn2×n2 which is a sampling and

rescaling matrix corresponding to the Lewis weights of B>3 in O(n2 poly(k)) time, and there

are d3 = O(k log k) nonzero entries on the diagonal of D3.

Define W ∗ ∈ Rn×k to be the optimal solution to minW∈Rn×k ‖WB3 − A3‖1, Ŵ =

A3D3(B3D3)† ∈ Rn×k, and W ′ to be the optimal solution to min
W∈Rn×k

‖WB3D3 − A3D3‖1.

By Claim 21.3.4, we have

‖ŴB3D3 − A3D3‖1 ≤
√
d3‖W ′B3D3 − A3D3‖1.

Due to Lemma D.11 and Lemma D.8(in [SWZ17]) with constant probability, we have

‖ŴB3 − A3‖1 ≤
√
d3αD3‖W ∗B3 − A3‖1, (21.45)

where αD3 = O(1). Now we can show,

‖ŴB3 − A3‖1 .
√
d3‖W ∗B3 − A3‖1, by Equation (21.45)

≤
√
d3‖W0B3 − A3‖1, by W ∗ = arg min

W∈Rn×k
‖WB3 − A3‖1

≤ O(
√
d1d2d3)αOPT by Equation (21.44)
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Thus, it implies,
∥∥∥∥∥

k∑

i=1

Ûi ⊗ V̂i ⊗ Ŵi − A
∥∥∥∥∥

1

≤ poly(k, log n) OPT .

where Û = A1D1(B1D1)†, V̂ = A2D2(B2D2)†, Ŵ = A3D3(B3D3)†.

Algorithm 21.30 `1-CURT decomposition algorithm
1: procedure L1CURT+(A, n, k) . Theorem 21.7.18
2: UB, VB,WB ←L1LowRankApproximation(A, n, k). . Corollary 21.7.15
3: C,R, T, U ← L1CURT(A,UB, VB,WB, n, k). . Algorithm 21.29
4: return C, R, T and U .
5: end procedure

Theorem 21.7.18. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an

algorithm which takes O(nnz(A)) + O(n2) poly(k) + 2Õ(k2) time and outputs three matrices

C ∈ Rn×c with columns from A, R ∈ Rn×r with rows from A, T ∈ Rn×t with tubes from A,

and a tensor U ∈ Rc×r×t with rank(U) = k such that c = r = t = O(k log k), and
∥∥∥∥∥

c∑

i=1

r∑

j=1

t∑

l=1

Ui,j,l · Ci ⊗Rj ⊗ Tl − A
∥∥∥∥∥

1

≤ poly(k, log n) min
rank−k A′

‖A′ − A‖1,

holds with probability 9/10.

Proof. This follows by combining Corollary 21.7.15 and Theorem 21.7.17.

1648



21.8 Weighted Frobenius Norm for Arbitrary Tensors

This section presents several tensor algorithms for the weighted case. For notational

purposes, instead of using U, V,W to denote the ground truth factorization, we use U1, U2, U3

to denote the ground truth factorization. We use A to denote the input tensor, and W to

denote the tensor of weights. Combining our new tensor techniques with existing weighted

low rank approximation algorithms [RSW16] allows us to obtain several interesting new

results. We provide some necessary definitions and facts in Section 21.8.1. Section 21.8.2

provides an algorithm whenW has at most r distinct faces in each dimension. Section 21.8.3

studies relationships between r distinct faces and r distinct columns. Finally, we provides

an algorithm with a similar running time but weaker assumption, where W has at most

r distinct columns and r distinct rows in Section 21.8.4. The result in Theorem 21.8.2 is

fairly similar to Theorem 21.8.5, except for the running time. We only put a very detailed

discussion in the statement of Theorem 21.8.5. Note that Theorem 21.8.2 also has other

versions which are similar to the Frobnius norm rank-k algorithms described in Section 21.1.

For simplicity of presentation, we only present one clean and simple version (which assumes

Ak exists and has factor norms which are not too large).
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21.8.1 Definitions and Facts

For a matrix A ∈ Rn×m and a weight matrix W ∈ Rn×m, we define ‖W ◦ A‖F as

follows,

‖W ◦ A‖F =

(
n∑

i=1

m∑

j=1

W 2
i,jA

2
i,j

) 1
2

.

For a tensor A ∈ Rn×n×n and a weight tensor W ∈ Rn×n×n, we define ‖W ◦ A‖F as follows,

‖W ◦ A‖F =

(
n∑

i=1

n∑

j=1

n∑

l=1

W 2
i,j,lA

2
i,j,l

) 1
2

.

For three matrices A ∈ Rn×m, U ∈ Rn×k, V ∈ Rk×m and a weight matrix W , from one

perspective, we have

‖(UV − A) ◦W‖2
F =

n∑

i=1

‖(U iV − Ai) ◦W i‖2
2 =

n∑

i=1

‖(U iV − Ai)DW i‖2
2,

where W i denote the i-th row of matrix W , and DW i ∈ Rm×m denotes a diagonal matrix

where the j-th entry on diagonal is the j-th entry of vector W i. From another perspective,

we have

‖(UV − A) ◦W‖2
F =

m∑

j=1

‖(UVj − Aj) ◦Wj‖2
2 =

m∑

j=1

‖(UVj − Aj)DWj
‖2

2,

where Wj denotes the j-th column of matrix W , and DWj
∈ Rn×n denotes a diagonal matrix

where the i-th entry on the diagonal is the i-th entry of vector Wj.

One of the key tools we use in this section is,

Lemma 21.8.1 (Cramer’s rule). Let R be an n × n invertible matrix. Then, for each

i ∈ [n], j ∈ [n],

(R−1)ji = det(R¬i¬j)/ det(R),
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where R¬i¬j is the matrix R with the i-th row and the j-th column removed.
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21.8.2 r distinct faces in each dimension

Notice that in the matrix case, it is sufficient to assume that ‖A′‖F is upper bounded

[RSW16]. Once we have that ‖A′‖F is bounded, without loss of generality, we can assume

that U∗1 is an orthonormal basis[CW15a, RSW16]. If U∗1 is not an orthonormal basis, then

let U ′1R denote a QR factorization of U∗1 , and then write U ′2 = RU∗2 . However, in the case

of tensors we have to assume that each factor ‖U∗i ‖F is upper bounded due to border rank

issues (see, e.g., [DSL08]).

Algorithm 21.31 Weighted Tensor Low-rank Approximation Algorithm when the Weighted
Tensor has r Distinct Faces in Each of the Three Dimensions.
procedure WeightedRDistinctFacesIn3Dimensions(A,W, n, r, k, ε) .
Theorem 21.8.2

for j = 1→ 3 do
sj ← O(k/ε).
Choose a sketching matrix Sj ∈ Rn2×sj .
for i = 1→ r do

Create k × s1 variables for matrix Pi,j ∈ Rk×sj .
end for
for i = 1→ n do

Write down (Ûj)
i = AjiDW j

1
SjP

>
j,i(Pj,iP

>
j,i)
−1.

end for
end for
Form ‖W ◦ (Û1 ⊗ Û2 ⊗ Û3 − A)‖2

F .
Run polynomial system verifier.
return U1, U2, U3

end procedure

Theorem 21.8.2. Given a 3rd order n × n × n tensor A and an n × n × n tensor W of

weights with r distinct faces in each of the three dimensions for which each entry can be

written using O(nδ) bits, for δ > 0, define OPT = infrank−k Ak‖W ◦ (Ak − A)‖2
F . Let k ≥ 1

be an integer and let 0 < ε < 1.
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If OPT > 0, and there exists a rank-k Ak = U∗1 ⊗U∗2 ⊗U∗3 tensor (with size n×n×n)

such that ‖W ◦ (Ak − A)‖2
F = OPT, and maxi∈[3] ‖U∗i ‖F ≤ 2O(nδ), then there exists an

algorithm that takes (nnz(A) + nnz(W ) + n2Õ(rk2/ε))nO(δ) time in the unit cost RAM model

with words of size O(log n) bits10 and outputs three n× k matrices U1, U2, U3 such that

‖W ◦ (U1 ⊗ U2 ⊗ U3 − A)‖2
F ≤ (1 + ε) OPT (21.46)

holds with probability 9/10.

Proof. Note that W has r distinct columns, rows, and tubes. Hence, each of the matrices

W1,W2,W3 ∈ Rn×n2 has at most r distinct columns, and at most r distinct rows. Let

U∗1 , U
∗
2 , U

∗
3 ∈ Rn×k denote the matrices satisfying ‖W ◦ (U∗1 ⊗ U∗2 ⊗ U∗3 − A)‖2

F = OPT. We

fix U∗2 and U∗3 , and consider a flattening of the tensor along the first dimension,

min
U1∈Rn×k

‖(U1Z1 − A1) ◦W1‖2
F = OPT,

where matrix Z1 = U∗>2 � U∗>3 has size k × n2 and for each i ∈ [k] the i-th row of Z1 is

vec((U∗2 )i ⊗ (U∗3 )i). For each i ∈ [n], let W i
1 denote the i-th row of n × n2 matrix W1. For

each i ∈ [n], let DW i
1
denote the diagonal matrix of size n2 × n2, where each diagonal entry

is from the vector W i
1 ∈ Rn2 . Without loss of generality, we can assume the first r rows of

W1 are distinct. We can rewrite the objective function along the first dimension as a sum of

multiple regression problems. For any n× k matrix U1,

‖(U1Z1 − A1) ◦W1‖2
F =

n∑

i=1

‖U i
1Z1DW i

1
− Ai1DW i

1
‖2

2. (21.47)

10The entries of A and W are assumed to fit in nδ words.
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Based on the observation that W1 has r distinct rows, we can group the n rows of W 1 into

r groups. We use g1,1, g1,2, · · · , g1,r to denote r sets of indices such that, for each i ∈ g1,j,

W i
1 = W j

1 . Thus we can rewrite Equation (21.47),

‖(U1Z1 − A1) ◦W1‖2
F =

n∑

i=1

‖U i
1Z1DW i

1
− Ai1DW i

1
‖2

2

=
r∑

j=1

∑

i∈g1,j

‖U i
1Z1DW i

1
− Ai1DW i

1
‖2

2.

We can sketch the objective function by choosing Gaussian matrices S1 ∈ Rn2×s1 with

s1 = O(k/ε).

n∑

i=1

‖U i
1Z1DW i

1
S1 − Ai1DW i

1
S1‖2

2.

Let Û1 denote the optimal solution of the sketch problem,

Û1 = arg min
U1∈Rn×k

n∑

i=1

‖U i
1Z1DW i

1
S1 − Ai1DW i

1
S1‖2

2.

By properties of S1([RSW16]), plugging Û ∈ Rn×k into the original problem, we obtain,

n∑

i=1

‖Û i
1Z1DW i

1
− Ai1DW i

1
‖2

2 ≤ (1 + ε) OPT .

Note that Û1 ∈ Rn×k also has the following form. For each i ∈ [n],

Û i
1 = Ai1DW i

1
S1(Z1DW i

1
S1)†

= Ai1DW i
1
S1(Z1DW i

1
S1)>((Z1DW i

1
S1)(Z1DW i

1
S1)>)−1.

Note that W1 has r distinct rows. Thus, we only have r distinct DW i
1
. This implies that

there are r distinct matrices Z1DW i
1
S1 ∈ Rk×s1 . Using the definition of g1,j, for j ∈ [r], for
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each i ∈ g1,j ⊂ [n], we have

Û i
1 = Ai1DW i

1
S1(Z1DW i

1
S1)†

= Ai1DW j
1
S1(Z1DW j

1
S1)† by W i

1 = W j
1 ,

which means we only need to write down r different Z1DW j
1
S1. For each k × s1 matrix

Z1DW j
1
S1, we create k × s1 variables to represent it. Thus, we need to create rks1 variables

to represent r matrices,

{Z1DW 1
1
S1, Z1DW 2

1
S1, · · · , Z1DW r

1
S1}.

For simplicity, let P1,i ∈ Rk×s1 denote Z1DW i
1
S1. Then we can rewrite Û i ∈ Rk as follows,

Û i
1 = Ai1DW i

1
S1P

>
1,i(P1,iP

>
1,i)
−1.

If P1,iP
>
1,i ∈ Rk×k has rank k, then we can use Cramer’s rule (Lemma 21.8.1) to write down

the inverse of P1,iP
>
1,i. However, vector W i

1 could have many zero entries. Then the rank of

P1,iP
>
1,i can be smaller than k. There are two different ways to solve this issue.

One way is by using the argument from [RSW16], which allows us to assume that

P1,iP
>
1,i ∈ Rk×k has rank k.

The other way is straightforward: we can guess the rank. There are k possibilities.

Let ti ≤ k denote the rank of P1,i. Then we need to figure out a maximal linearly independent

subset of rows of P1,i. There are 2O(k) possibilities. Next, we need to figure out a maximal

linearly independent subset of columns of P1,i. We can also guess all the possibilities, which

is at most 2O(k). Because we have r different P1,i, the total number of guesses we have is at

most 2O(rk). Thus, we can write down (P1,iP
>
1,i)
−1 according to Cramer’s rule.
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After Û1 is obtained, we will fix Û1 and U∗3 in the next round. We consider the

flattening of the tensor along the second direction,

min
U2∈Rn×k

‖(U2Z2 − A2) ◦W2‖2
F ,

where n×n2 matrix A2 is obtained by flattening tensor A along the second dimension, k×n2

matrix Z2 denotes Û>1 �U∗>3 , and n×n2 matrixW2 is obtained by flattening tensorW along

the second dimension. For each i ∈ [n], let W i
2 denote the i-th row of n×n2 matrix W2. For

each i ∈ [n], let DW i
1
denote the diagonal matrix which has size n2 × n2 and for which each

entry is from vector W i
2 ∈ Rn2 . Without loss of generality, we can assume the first r rows of

W2 are distinct. We can rewrite the objective function along the second dimension as a sum

of multiple regression problems. For any n× k matrix U2,

‖(U2Z2 − A2) ◦W2‖2
F =

n∑

i=1

‖U i
2Z2DW i

2
− Ai2DW i

2
‖2

2. (21.48)

Based on the observation that W2 has r distinct rows, we can group the n rows of W 2 into

r groups. We use g2,1, g2,2, · · · , g2,r to denote r sets of indices such that, for each i ∈ g2,j,

W i
2 = W j

2 . Thus we obtain,

‖(U2Z2 − A2) ◦W2‖2
F =

n∑

i=1

‖U i
2Z2DW i

2
− Ai2DW i

2
‖2

2

=
r∑

j=1

∑

i∈g2,j

‖U i
2Z2DW i

2
− Ai2DW i

2
‖2

2.

We can sketch the objective function by choosing a Gaussian sketch S2 ∈ Rn2×s2 with

s2 = O(k/ε). Let Û2 denote the optimal solution to the sketch problem. Then Û2 has the

form, for each i ∈ [n],

Û i
2 = Ai2DW i

2
S2(Z2DW i

2
S2)†.
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Similarly as before, we only need to write down r different matrices Z2DW i
2
S1, and for each of

them, create k× s2 variables. Let P2,i ∈ Rk×s2 denote Z2DW i
2
S2. By our guessing argument,

we can obtain Û2.

In the last round, we fix Û1 and Û2. We then write down Û3. Overall, by creating

l = O(rk2/ε) variables, we have rational polynomials Û1(x), Û2(x), Û3(x). Putting it all

together, we can write this objective function,

min
x∈Rl
‖(Û1(x)⊗ Û2(x)⊗ Û3(x)− A) ◦W‖2

F .

s.t. h1,i(x) 6= 0,∀i ∈ [r].

h2,i(x) 6= 0,∀i ∈ [r].

h3,i(x) 6= 0,∀i ∈ [r].

where h1,i(x) denotes the denominator polynomial related to a full rank sub-block of P1,i(x).

By a perturbation argument in Section 4 in [RSW16], we know that the h1,i(x) are nonzero.

By a similar argument as in Section 5 in [RSW16], we can show a lower bound on the

cost of the denominator polynomial h1,i(x). Thus we can create new bounded variables

xl+1, · · · , x3r+l to rewrite the objective function,
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min
x∈Rl+3r

q(x)/p(x).

s.t. h1,i(x)xl+i = 0,∀i ∈ [r].

h2,i(x)xl+r+i = 0,∀i ∈ [r].

h3,i(x)xl+2r+i = 0,∀i ∈ [r].

p(x) =
r∏

i=1

h2
1,i(x)h2

2,i(x)h2
3,i(x)

Note that the degree of the above system is poly(kr) and all the equality constraints can be

merged into one single constraint. Thus, the number of constraints is O(1). The number of

variables is O(rk2/ε).

Using Theorem 21.3.2 and a similar argument from Section 5 of [RSW16], we have that

the minimum nonzero cost is at least 2−n
δ2Õ(rk2/ε) . Combining the binary search explained

in Section 21.4(similar techniques also can be found in Section 6 of [RSW16]) with the lower

bound we obtained, we can find the solution for the original problem in time,

(nnz(A) + nnz(W ) + n2Õ(rk2/ε))nO(δ).
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(W1)i,(j−1)n+l =Wi,j,l

(W2)j,(l−1)n+i =Wi,j,l

(W3)l,(i−1)n+j =Wi,j,l

Figure 21.7: Let W denote a tensor that has columns(red), rows(green) and tubes(blue).
For each i ∈ [3], let Wi denote the matrix obtained by flattening tensor W along the i-th
dimension.

21.8.3 r distinct columns, rows and tubes

Lemma 21.8.3. Let W ∈ Rn×n×n denote a tensor that has r distinct columns and r distinct

rows, then W has

(I) r distinct column-tube faces.

(II) r distinct row-tube faces.

1659



Proof. Proof of Part (I). Without loss of generality, we consider the first (which is the bottom

one) column-row face. Assume it has r distinct rows and r distinct columns. We can re-order

all the column-tube faces to make sure that all the n columns in the bottom face have been

split into r continuous disjoint groups Ci, e.g., {C1, C2, · · · , Cr} = [n]. Next, we can re-order

all the row-tube faces to make sure that all the n rows in the bottom face have been split

into r continuous disjoint groups Ri, e.g., {R1, R2, · · · , Rr} = [n]. Thus, the new bottom

face can be regarded as r × r groups, and the number in each position of the same group is

the same.

Suppose that the tensor has r + 1 distinct column-tube faces. By the pigeonhole

principle there exist two different column-tube faces belonging to the same group Ci, for

some i ∈ [r]. Note that these two column-tube faces are the same by looking at the bottom

(column-row) face. Since they are distinct faces, there must exist one row vector v which is

not in the bottom (column-row) face, and it has a different value in coordinates belong to

group Ci. Note that, considering the bottom face, for each row vector, it has the same value

over coordinates belonging to group Ci. But v has different values in coordinates belong to

group Ci. Also, note that the bottom (column-row) face also has r distinct rows, and v is

not one of them. This means there are at least r + 1 distinct rows, which contradicts that

there are r distinct rows in total. Thus, there are at most r distinct column-tube faces.

Proof of Part (II). It is similar to Part (I).

Corollary 21.8.4. Let W ∈ Rn×n×n denote a tensor that has r distinct columns, r distinct

rows, and r distinct rubes. Then W has r distinct column-tube faces, r distinct row-tube

faces, and r distinct column-row faces.
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C1 C2 C3

R1

R2

R3

W∗,∗,1 W∗,∗,2

· · · · · ·

W∗,∗,n

Figure 21.8: Each face W∗,∗,i is a column-row face. W∗,∗,1 is the bottom column-row face.
r = 3. The blue blocks represent column-tube faces, the red blocks represent column-tube
faces.

Proof. This follows by applying Lemma 21.8.3 twice.

Thus, we obtain the same result as in Theorem 21.8.2 by changing the assumption

from r distinct faces in each dimension to r distinct columns, r distinct rows and r distinct

tubes.
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21.8.4 r distinct columns and rows

The main difference between Theorem 21.8.2 and Theorem 21.8.5 is the running

time. The first one takes 2Õ(rk2/ε) time and the second one is slightly longer, 2Õ(r2k2/ε). By

Lemma 21.8.3, r distinct columns in two dimensions implies r distinct faces in two of the

three kinds of faces. Thus, the following theorem also holds for r distinct columns in two

dimensions.

Algorithm 21.32 Weighted Tensor Low-rank Approximation Algorithm when the Weighted
Tensor has r Distinct Faces in Each of the Two Dimensions.
procedure WeightedRDistinctFacesIn2Dimensions(A,W, n, r, k, ε) .
Theorem 21.8.5

for j = 1→ 3 do
sj ← O(k/ε).
Choose a sketching matrix Sj ∈ Rn2×sj .
if j 6= 3 then

for i = 1→ r do
Create k × s1 variables for matrix Pi,j ∈ Rk×sj .

end for
end if
for i = 1→ n do

Write down (Ûj)
i = AjiDW j

1
SjP

>
j,i(Pj,iP

>
j,i)
−1.

end for
end for
Form ‖W ◦ (Û1 ⊗ Û2 ⊗ Û3 − A)‖2

F .
Run polynomial system verifier.
return U1, U2, U3

end procedure

Theorem 21.8.5. Given a 3rd order n × n × n tensor A and an n × n × n tensor W of

weights with r distinct faces in two dimensions (out of three dimensions) such that each entry

can be written using O(nδ) bits for some δ > 0, define OPT = infrank−k Ak‖W ◦ (Ak−A)‖2
F .
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For any k ≥ 1 and any 0 < ε < 1.

(I) If OPT > 0, and there exists a rank-k Ak = U∗1 ⊗ U∗2 ⊗ U∗3 tensor (with size

n×n×n) such that ‖W ◦ (Ak−A)‖2
F = OPT, and maxi∈[3] ‖U∗i ‖F ≤ 2O(nδ), then there exists

an algorithm that takes (nnz(A) + nnz(W ) + n2Õ(r2k2/ε))nO(δ) time in the unit cost RAM

model with words of size O(log n) bits11 and outputs three n×k matrices U1, U2, U3 such that

‖W ◦ (U1 ⊗ U2 ⊗ U3 − A)‖2
F ≤ (1 + ε) OPT (21.49)

holds with probability 9/10.

(II) If OPT > 0, Ak does not exist, and there exist three n×k matrices U ′1, U ′2, U ′3 where

each entry can be written using O(nδ) bits and ‖W ◦ (U ′1⊗U ′2⊗U ′3−A)‖2
F ≤ (1 + ε/2) OPT,

then we can find U, V,W such that (21.49) holds.

(III) If OPT = 0, Ak exists, and there exists a solution U∗1 , U
∗
2 , U

∗
3 such that each

entry of the matrix can be written using O(nδ) bits, then we can obtain (21.49).

(IV) If OPT = 0, and there exist three n×k matrices U1, U2, U3 such that maxi∈[3] ‖U∗i ‖F ≤

2O(nδ) and

‖W ◦ (U1 ⊗ U2 ⊗ U3 − A)‖2
F ≤ (1 + ε) OPT +2−Ω(nδ), (21.50)

then we can output U1, U2, U3 such that (21.50) holds.

(V) Further if Ak exists, we can output a number Z for which OPT ≤ Z ≤ (1+ε) OPT.

For all the cases, the algorithm succeeds with probability at least 9/10.

11The entries of A and W are assumed to fit in nδ words.
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Proof. By Lemma 21.8.3, we haveW has r distinct column-tube faces and r distinct row-tube

faces. By Claim 21.8.6, we know that W has R = 2O(r log r) distinct column-row faces.

We use the same approach as in proof of Theorem 21.8.2 (which is also similar to Sec-

tion 8 of [RSW16]) to create variables, write down the polynomial systems and add not equal

constraints. Instead of having 3r distinct denominators as in the proof of Theorem 21.8.2,

we have 2r +R.

We create l = O(rk2/ε) variables for {Z1DW 1
1
S1, Z1DW 2

1
S1, · · · , Z1DW r

1
S1}. Then we

can write down Û1 with r distinct denominators gi(x). Each gi(x) is non-zero in an optimal

solution using the perturbation argument in Section 4 in [RSW16]. We create new variables

x2l+i to remove the denominators gi(x), ∀i ∈ [r]. Then the entries of Û1 are polynomials as

opposed to rational functions.

We create l = O(rk2/ε) variables for {Z2DW 1
2
S2, Z2DW 2

2
S2, · · · , Z2DW r

2
S2}. Then we

can write down Û2 with r distinct denominators gr+i(x). Each gr+i(x) is non-zero in an

optimal solution using the perturbation argument in Section 4 in [RSW16]. We create new

variables x2l+r+i to remove the denominators gr+i(x), ∀i ∈ [r]. Then the entries of Û2 are

polynomials as opposed to rational functions.

Using Û1 and Û2 we can express Û3 with R distinct denominators fi(x), which are

also non-zero by using the perturbation argument in Section 4 in [RSW16], and using that

W3 has at most this number of distinct rows. Finally we can write the following optimization

1664



problem,

min
x∈R2l+2r

p(x)/q(x)

s.t. gi(x)x2l+i − 1 = 0,∀i ∈ [r]

gr+i(x)x2l+r+i − 1 = 0,∀i ∈ [r]

f 2
j (x) 6= 0,∀j ∈ [R]

q(x) =
R∏

j=1

f 2
j (x)

We then determine if there exists a solution to the above semi-algebraic set in time

(poly(k, r)R)O(rk2/ε) = 2Õ(r2k2/ε).

Using similar techniques from Section 5 of [RSW16], we can show a lower bound on the cost

similar to Section 8.3 of [RSW16], namely, the minimum nonzero cost is at least

2−n
δ2Õ(r2k2/ε)

.

Combining the binary search explained in Section 21.4 (a similar techniques also can

be found in Section 6 of [RSW16]) with the lower bound we obtained, we can find a solution

for the original problem in time

(nnz(A) + nnz(W ) + n2Õ(r2k2/ε))nO(δ).

Remark 21.8.1. Note that the running time for the Frobenius norm and for the `1 norm are

of the form poly(n) + exp(poly(k/ε)) rather than poly(n) · exp(k/ε). The reason is, we can

use an input sparsity reduction to reduce the size of the objective function from poly(n) to

poly(k).
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C1 C2 C3

R1

R2

R3

C1 C2 C3

R1

R2

R3

C1 C2 C3

R1

R2

R3

W∗,∗,1 W∗,∗,2

· · · · · ·

W∗,∗,n

C1 C2 C3

R1

R2

R3

C1 C2 C3

R1

R2

R3

C1 C2 C3

R1

R2

R3

W∗,∗,1 W∗,∗,2

· · · · · ·

W∗,∗,n

C1 C2 C3

R1

R2

R3

C1 C2 C3

R1

R2

R3

C1 C2 C3

R1

R2

R3

W∗,∗,1 W∗,∗,2

· · · · · ·

W∗,∗,n

Figure 21.9: Each face W∗,∗,i is a column-row face. W∗,∗,1 is the bottom column-row face.
r = 3. The blue blocks represent |C3| column-tube faces. The green blocks represet |R3|
row-tube faces. In each column-row face, the intersection between blue faces and green faces
is a size |R3| × |C3| block, and all the entries in this block are the same.

Claim 21.8.6. Let W ∈ R denote a third order tensor that has r distinct columns and r

distinct rows. Then it has 2O(r log r) distinct column-row faces.
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Proof. By similar arguments as in the proof of Lemma 21.8.3, the bottom (column-row)

face can be split into r groups C1, C2, · · · , Cr based on r columns, and split into r groups

R1, R2, · · · , Rr based on rows. Thus, the bottom (column-row) face can be regarded as

having r × r groups, and the number in each position of the same group is the same.

We can assume that all the r2 blocks in the bottom column-row face have the same

size. Otherwise, we can expand the tensor to the situation that all the r2 blocks have the

same size. Because this small tensor is a sub-tensor of the big tensor, if the big tensor has

at most t distinct column-row faces, then the small tensor has at most t distinct column-row

faces.

By Lemma 21.8.3, we know that the tensor W has at most r distinct column-tube

faces and row-tube faces. Because it has r distinct column-tube faces, then all the faces

belonging to coordinates in Cr are the same. Thus, all the columns belonging to Cr and in

the second column-row face are the same. Similarly, we have that all the rows belonging to

Rr and in the second column-row face are the same. Thus we have that all the entries in

block CR ∪Rr and in the second column-row faces are the same. Further, we can conclude,

for every column-row face, for every Ci ∪Rj block, all the entries in the same block are the

same.

The next observation is, if there exist r2 + 1 different values in the tensor, then there

exist either r distinct columns or r distinct rows. Indeed, otherwise since we have r distinct

columns, each column has at most r distinct entries given our bound on the nunber of

distinct rows. Thus, the r distinct columns could have at most r2 distinct entries in total, a

contradiction.

1667



For each column-row face, there are at most r2 blocks, and the value in each block can

have at most r2 possibilities. Thus, overall we have at most (r2)r
2

= 2O(r2 log r) column-row

faces.

By using different argument, we can improve the above bound. Note that we already

show in each column-row face of a tensor, it has r2 blocks, and all the values in each block

have to be the same. Since we have r distinct rows, we can fix the those r distinct rows. If

we copy row v into one row of Ri, then we have to copy row v into every row of Ri. This

is because if Ri contains two distinct rows, then there must exist a block Cj for which the

entries in block Ri ∪ Cj are not all the same. Thus, for each row group, all the rows in that

group are the same.

Now, for each column-row face, consider the leftmost r blocks, R1 ∪ C1, R2 ∪ C1,

· · · , Rr ∪ C1. There are at most r possible values in each block, because we have r distinct

rows in total. Overall the total number of possibilities for the leftmost r blocks is at most

(r)r = 2O(r log r). Once the leftmost r blocks are determined, the remaining r(r − 1) are also

determined. This completes the proof.

Also, notice that there is an example that has 2Ω(r log r) distinct column-row faces. For

the bottom column-row faces, there are r × r blocks for which all the blocks have the same

size, the blocks on the diagonal have all 1s, and all the other blocks contain 0s everywhere.

For the later column-row faces, we can arbitrarily permute this block diagonal matrix, and

the total number of possibilities is Ω(r!) ≥ 2Ω(r log r).
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21.9 Hardness

We first provide definitions and results for some fundamental problems in Section 21.9.1.

Section 21.9.2 presents our hardness result for the symmetric tensor eigenvalue problem.

Section 21.9.3 presents our hardness results for symmetric tensor singular value problems,

computing tensor spectral norm, and rank-1 approximation. We improve Håstad’s NP-

hardness[Hås90] result for tensor rank in Section 21.9.4.
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21.9.1 Definitions

We first provide the definitions for 3SAT , ETH , MAX-3SAT , MAX-E3SAT and then

state some fundamental results related to those definitions.

Definition 21.9.1 (3SAT problem). Given n variables andm clauses in a conjunctive normal

form CNF formula with the size of each clause at most 3, the goal is to decide whether there

exists an assignment to the n Boolean variables to make the CNF formula be satisfied.

Hypothesis 21.9.1 (Exponential Time Hypothesis (ETH) [IPZ98]). There is a δ > 0 such

that the 3SAT problem defined in Definition 21.9.1 cannot be solved in O(2δn) time.

Definition 21.9.2 (MAX-3SAT). Given n variables and m clauses, a conjunctive normal

form CNF formula with the size of each clause at most 3, the goal is to find an assignment

that satisfies the largest number of clauses.

We use MAX-E3SAT to denote the version of MAX-3SAT where each clause contains

exactly 3 literals.

Theorem 21.9.2 ([Hås01]). For every δ > 0, it is NP-hard to distinguish a satisfiable

instance of MAX-E3SAT from an instance where at most a 7/8 + δ fraction of the clauses

can be simultaneously satisfied.

Theorem 21.9.3 ([Hås01, MR10]). Assume ETH holds. For every δ > 0, there is no

2o(n
1−o(1)) time algorithm to distinguish a satisfiable instance of MAX-E3SAT from an instance

where at most a fraction 7/8 + δ of the clauses can be simultaneously satisfied.

We use MAX-E3SAT(B) to denote the restricted special case of MAX-3SAT where

every variable occurs in at most B clauses. Håstad [Hås00] proved that the problem is
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approximable to within a factor 7/8 + 1/(64B) in polynomial time, and that it is hard to

approximate within a factor 7/8 + 1/(logB)Ω(1). In 2001, Trevisan improved the hardness

result,

Theorem 21.9.4 ([Tre01]). Unless RP=NP, there is no polynomial time (7/8 + 5/
√
B)-

approximate algorithm for MAX-E3SAT(B) .

Theorem 21.9.5 ([Hås01, Tre01, MR10]). Unless ETH fails, there is no 2o(n
1−o(1)) time

(7/8 + 5/
√
B)-approximate algorithm for MAX-E3SAT(B) .

Theorem 21.9.6 ([LMS11]). Unless ETH fails, there is no 2o(n) time algorithm for the

Independent Set problem.

Definition 21.9.3 (MAX-CUT decision problem). Given a positive integer c∗ and an un-

weighted graph G = (V,E) where V is the set of vertices of G and E is the set of edges of

G, the goal is to determine whether there is a cut of G that has at least c∗ edges.

Note that Feige’s original assumption[Fei02] states that there is no polynomial time

algorithm for the problem in Assumption 21.9.7. We do not know of any better algorithm for

the problem in Assumption 21.9.7 and have consulted several experts12 about the assumption

who do not know a counterexample to it.

Assumption 21.9.7 (Random Exponential Time Hypothesis). Let c > ln 2 be a constant.

Consider a random 3SAT formula on n variables in which each clause has 3 literals, and

in which each of the 8n3 clauses is picked independently with probability c/n2. Then any

12Personal communication with Russell Impagliazzo and Ryan Williams.
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algorithm which always outputs 1 when the random formula is satisfiable, and outputs 0 with

probability at least 1/2 when the random formula is unsatisfiable, must run in 2c
′n time on

some input, where c′ > 0 is an absolute constant.

The 4SAT-version of the above random-ETH assumption has been used in [GL04] and

[RSW16] (Assumption 1.3).
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21.9.2 Symmetric tensor eigenvalue

Definition 21.9.4 (Tensor Eigenvalue [HL13]). An eigenvector of a tensor A ∈ Rn×n×n is a

nonzero vector x ∈ Rn such that

n∑

i=1

n∑

j=1

Ai,j,kxixj = λxk, ∀k ∈ [n]

for some λ ∈ R, which is called an eigenvalue of A.

Theorem 21.9.8 ([N+03]). Let G = (V,E) on v vertices have stability number (the size of

a maximum independent set) α(G). Let n = v+ v(v−1)
2

and Sn−1 = {(x, y) ∈ Rv ×Rv(v−1)/2 :

‖x‖2
2 + ‖y‖2

2 = 1}. Then,
√

1− 1

α(G)
= 3
√

3/2 max
(x,y)∈Sn−1

∑

i<j,(i,j)/∈E

xixjyi,j.

For any graph G(V,E), we can construct a symmetric tensor A ∈ Rn×n×n. For any

1 ≤ i < j < k ≤ v, let

Ai,j,k =

{
1 1 ≤ i < j ≤ v, k = v + φ(i, j), (i, j) /∈ E,
0 otherwise,

where φ(i, j) = (i− 1)v− i(i− 1)/2 + j− i is a lexicographical enumeration of the v(v− 1)/2

pairs i < j. For the other cases i < k < j, · · · , k < j < i, we set

Ai,j,k = Ai,k,j = Aj,i,k = Aj,k,i = Ak,i,j = Ak,j,i.

If two or more indices are equal, we set Ai,j,k = 0. Thus tensor T has the following property,

A(z, z, z) = 6
∑

i<j,(i,j)/∈E

xixjyi,j,
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where z = (x, y) ∈ Rn.

Thus, we have

λ = max
z∈Sn−1

A(z, z, z) = max
(x,y)∈Sn−1

6
∑

i<j,(i,j)/∈E

xixjyi,j.

Furthermore, λ is the maximum eigenvalue of A.

Theorem 21.9.9. Unless ETH fails, there is no 2o(
√
n) time to approximate the largest eigen-

value of an n-dimensional symmetric tensor within (1±Θ(1/n)) relative error.

Proof. The additive error is at least

√
1− 1/v −

√
1− 1/(v − 1) =

1/(v − 1)− 1/v√
1− 1/v +

√
1− 1/(v − 1)

& 1/(v − 1)− 1/v ≥ 1/v2.

Thus, the relative error is (1±Θ(1/v2)). By the definition of n, we know n = Θ(v2). Assum-

ing ETH , there is no 2o(v) time algorithm to compute the clique number of G. Because the

clique number of G is α(G), there is no 2o(v) time algorithm to compute α(G). Furthermore,

there is no 2o(v) time algorithm to approximate the maximum eigenvalue within (1±Θ(1/v2))

relative error. Thus, we complete the proof.

Corollary 21.9.10. Unless ETH fails, there is no polynomial running time algorithm to

approximate the largest eigenvalue of an n-dimensional tensor within (1 ± Θ(1/ log2+γ(n)))

relative-error, where γ > 0 is an arbitrarily small constant.

Proof. We can apply a padding argument here. According to Theorem 21.9.9, there is a

d-dimensional tensor such that there is no 2o(
√
d) time algorithm that can give a (1+Θ(1/d))

relative error approximation. If we pad 0s everywhere to extend the size of the tensor
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to n = 2d
(1−γ′)/2 , where γ′ > 0 is a sufficiently small constant, then poly(n) = 2o(

√
d), so

d = log2+O(γ′)(n). Thus, it means that there is no polynomial running time algorithm which

can output a (1 + 1/(log2+γ))-relative approximation to the tensor which has size n.
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21.9.3 Symmetric tensor singular value, spectral norm and rank-1 approxima-
tion

[HL13] defines two kinds of singular values of a tensor. In this paper, we only consider

the following kind:

Definition 21.9.5 (`2 singular value in [HL13]). Given a 3rd order tensor A ∈ Rn1×n2×n3 ,

the number σ ∈ R is called a singular value and the nonzero u ∈ Rn1 ,v ∈ Rn2 ,w ∈ Rn3 are

called singular vectors of A if
n2∑

j=1

n3∑

k=1

Ai,j,kvjwk = σui,∀i ∈ [n1]

n1∑

i=1

n3∑

k=1

Ai,j,kuiwk = σvj,∀j ∈ [n2]

n1∑

i=1

n2∑

j=1

Ai,j,kuivj = σwk,∀k ∈ [n3].

Definition 21.9.6 (Spectral norm [HL13]). The spectral norm of a tensor A is:

‖A‖2 = sup
x,y,z 6=0

|A(x, y, z)|
‖x‖2‖y‖2‖z‖2

Notice that the spectral norm is the absolute value of either the maximum value of
A(x,y,z)

‖x‖2‖y‖2‖z‖2 or the minimum value of it. Thus, it is an `2-singular value of A. Furthermore,

it is the maximum `2-singular value of A.

Theorem 21.9.11 ([Ban38]). Let A ∈ Rn×n×n be a symmetric 3rd order tensor. Then,

‖A‖2 = sup
x,y,z 6=0

A(x, y, z)

‖x‖2‖y‖2‖z‖2

= sup
x 6=0

|A(x, x, x)|
‖x‖3

2

.

It means that if a tensor is symmetric, then its largest eigenvalue is the same as its

largest singular value and its spectral norm. Then, by combining with Theorem 21.9.9, we

have the following corollary:
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Corollary 21.9.12. Unless ETH fails,

1. There is no 2o(
√
n) time algorithm to approximate the largest singular value of an n-

dimensional symmetric tensor within (1 + Θ(1/n)) relative-error.

2. There is no 2o(
√
n) time algorithm to approximate the spectral norm of an n-dimensional

symmetric tensor within (1 + Θ(1/n)) relative-error.

By Corollary 21.9.10, we have:

Corollary 21.9.13. Unless ETH fails,

1. There is no polynomial time algorithm to approximate the largest singular value of an

n-dimensional tensor within (1 + Θ(1/ log2+γ(n))) relative-error, where γ > 0 is an

arbitrarily small constant.

2. There is no polynomial time algorithm to approximate the spectral norm of an n-

dimensional tensor within (1 + Θ(1/ log2+γ(n))) relative-error, where γ > 0 is an

arbitrarily small constant.

Now, let us consider Frobenius norm rank-1 approximation.

Theorem 21.9.14 ([Ban38]). Let A ∈ Rn×n×n be a symmetric 3rd order tensor. Then,

min
σ≥0,‖u‖2=‖v‖2=‖w‖2=1

‖A− σu⊗ v ⊗ w‖F = min
λ≥0,‖v‖2=1

‖A− λv ⊗ v ⊗ v‖F .

Furthermore, the optimal σ and λ may be chosen to be equal.
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Notice that

‖A− σu⊗ v ⊗ w‖2
F = ‖A‖2

F − 2σA(u, v, w) + σ2‖u⊗ v ⊗ w‖2
F .

Then, if ‖u‖2 = ‖v‖2 = ‖w‖2 = 1, we have:

‖A− σu⊗ v ⊗ w‖2
F = ‖A‖2

F − 2σA(u, v, w) + σ2.

When A(u, v, w) = σ, then the above is minimized.

Thus, we have:

min
σ≥0,‖u‖2=‖v‖2=‖w‖2=1

‖A− σu⊗ v ⊗ w‖2
F + ‖A‖2

2 = ‖A‖2
F .

It is sufficient to prove the following theorem:

Theorem 21.9.15. Given A ∈ Rn×n×n, unless ETH fails, there is no 2o(
√
n) time algorithm

to compute u′, v′, w′ ∈ Rn such that

‖A− u′ ⊗ v′ ⊗ w′‖2
F ≤ (1 + ε) min

u,v,w∈Rn
‖A− u⊗ v ⊗ w‖2

F ,

where ε = O(1/n2).

Proof. Let A ∈ Rn×n×n be the same hard instance mentioned in Theorem 21.9.8. Notice

that each entry of A is either 0 or 1. Thus, minu,v,w∈Rn ‖A − u ⊗ v ⊗ w‖2
F ≤ ‖A‖2

F . Notice

that Theorem 21.9.8 also implies that it is hard to distinguish the two cases ‖A‖2 ≤ 2
√

2/3 ·
√

1− 1/c or ‖A‖2 ≥ 2
√

2/3 ·
√

1− 1/(c+ 1) where c is an integer which is no greater than
√
n. So the difference between (2

√
2/3 ·

√
1− 1/c)2 and (2

√
2/3 ·

√
1− 1/(c+ 1))2 is at
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least Θ(1/n). Since ‖A‖2
F is at most n (see construction of A in the proof of Lemma 21.9.8),

Θ(1/n) is an ε = O(1/n2) fraction of minu,v,w∈Rn ‖A− u⊗ v ⊗ w‖2
F . Because

min
u,v,w∈Rn

‖A− u⊗ v ⊗ w‖2
F + ‖A‖2

2 = ‖A‖2
F ,

if we have a 2o(
√
n) time algorithm to compute u′, v′, w′ ∈ Rn such that

‖A− u′ ⊗ v′ ⊗ w′‖2
F ≤ (1 + ε) min

u,v,w∈Rn
‖A− u⊗ v ⊗ w‖2

F

for ε = O(1/n2), it will contradict the fact that we cannot distinguish whether ‖A‖2 ≤

2
√

2/3 ·
√

1− 1/c or ‖A‖2 ≥ 2
√

2/3 ·
√

1− 1/(c+ 1).

Corollary 21.9.16. Given A ∈ Rn×n×n, unless ETH fails, for any ε for which 1
2
≥ ε ≥ c/n2

where c is any constant, there is no 2o(ε
−1/4) time algorithm to compute u′, v′, w′ ∈ Rn such

that

‖A− u′ ⊗ v′ ⊗ w′‖2
F ≤ (1 + ε) min

u,v,w∈Rn
‖A− u⊗ v ⊗ w‖2

F .

Proof. If ε = Ω(1/n2), it means that n = Ω(1/
√
ε). Then, we can construct a hard instance

B with size m × m × m where m = Θ(1/
√
ε), and we can put B into A, and let A have

zero entries elsewhere. Since B is hard, i.e., there is no 2o(m
−1/2) = 2o(ε

−1/4) running time to

compute a rank-1 approximation to B, this means there is no 2o(ε
−1/4) running time algorithm

to find an approximate rank-1 approximation to A.

Corollary 21.9.17. Unless ETH fails, there is no polynomial time algorithm to approxi-

mate the best rank-1 approximation of an n-dimensional tensor within (1 + Θ(1/ log2+γ(n)))

relative-error, where γ > 0 is an arbitrarily small constant.
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Proof. We can apply a padding argument here. According to Theorem 21.9.15, there is a d-

dimensional tensor such that there is no 2o(
√
d) time algorithm which can give a (1+Θ(1/d4))

relative approximation. Then, if we pad with 0s everywhere to extend the size of the tensor

to n = 2d
(1−γ′)/2 where γ′ > 0 is a sufficiently small constant, then poly(n) = 2o(

√
d), and

d4 = log2+O(γ′)(n). Thus, it means that there is no polynomial time algorithm which can

output a (1 + 1/(log2+γ))-relative error approximation to the tensor which has size n.
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21.9.4 Tensor rank is hard to approximate

This section presents the hardness result for approximating tensor rank under ETH .

According to our new result, we notice that not only deciding the tensor rank is a hard prob-

lem, but also approximating the tensor rank is a hard problem. This therefore strengthens

Håstad’s NP-Hadness [Hås90] for computing tensor rank.

21.9.4.1 Cover number

Before getting into the details of the reduction, we provide a definition of an important

concept called the “cover number” and discuss the cover number for theMAX-E3SAT(B) prob-

lem.

Definition 21.9.7 (Cover number). For any 3SAT instance S with n variables andm clauses,

we are allowed to assign one of three values {0, 1, ∗} to each variable. For each clause,

if one of the literals outputs true, then the clause outputs true. For each clause, if the

corresponding variable of one of the literals is assigned to ∗, then the clause outputs true.

We say y ∈ {0, 1}n is a string, and z ∈ {0, 1, ∗}n is a star string. For an instance S, if

there exists a string y ∈ {0, 1}n that causes all the clauses to be true, then we say that S

is satisfiable, otherwise it is unsatisfiable. For an instance S, let ZS denote the set of star

strings which cause all of the clauses of S to be true. For each star string z ∈ {0, 1, ∗}n,

let star(z) denote the number of ∗s in the star-string z. We define the “cover number” of

instance S to be

cover-number(S) = min
z∈ZS

star(z).

Notice that for a satisfiable 3SAT instance S, the cover number p is 0. Also, for any
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Figure 21.10: Cover number. For a 3SAT instance with n variables and m clauses, we can
draw a bipartite graph which has n nodes on the left and m nodes on the right. Each node
(blue) on the left corresponds to a variable xi, each node (green) on the right corresponds to a
clause Cj. If either xi or xi belongs to clause Cj, then we draw a line between these two nodes.
Consider an input string y ∈ {0, 1}7. There exists some unsatisfied clauses with respect to
this input string y. For for example, let C1, C2 and C3 denote those unsatisfied clauses. We
want to pick a smallest set of nodes on the left partition of the graph to guarantee that for
each unsatisfied clause in the right partition, there exists a node on the left to cover it. The
cover number is defined to be the smallest such number over all possible input strings.

unsatisfiable 3SAT instance S, the cover number p is at least 1. This is because for any input

string, there exists at least one clause which cannot be satisfied. To fix that clause, we have

to assign ∗ to a variable belonging to that clause. (Assigning ∗ to a variable can be regarded

as assigning both 0 and 1 to a variable)

Lemma 21.9.18. Let S denote a MAX-E3SAT(B) instance with n variables and m clauses

and S suppose S is at most 7/8 + A satisfiable, where A ∈ (0, 1/8). Then the cover number
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of S is at least (1/8− A)m/B.

Proof. For any input string y ∈ {0, 1}n, there exists at least (1/8 − A)m clauses which are

not satisfied. Since each variable appears in at most B clauses, we need to assign ∗ to at

least (1/8− A)m/B variables. Thus, the cover number of S is at least (1/8− A)m/B.

We say x1, x2, · · · , xn are variables and x1, x1, x2, x2, · · · , xn, xn are literals.

Definition 21.9.8. For a list of clauses C and a set of variables P , if for each clause, there

exists at least one literal such that the corresponding variable of that literal belongs to P ,

then we say P covers L.

21.9.4.2 Properties of 3SAT instances

Fact 21.9.19. For any 3SAT instance S with n variables and m = Θ(n) clauses, let c > 0

denote a constant. If S is (1−c)m satisfiable, then let y ∈ {0, 1}n denote a string for which S

has the smallest number of unsatisfiable clauses. Let T denote the set of unsatisfiable clauses

and let b denote the number of variables in T . Then Ω((cm)1/3) ≤ b ≤ O(cm).

Proof. Note that in S, there is no duplicate clause. Let T denote the set of unsatisfiable

clauses by assigning string y to S. First, we can show that any two literals xi, xi cannot

belong to T at the same time. If xi and xi belong to the same clause, then that clause must

be an “always” satisfiable clause. If xi and xi belong to different clauses, then one of the

clauses must be satisfiable. This contradicts the fact that that clause belongs to T . Thus,

we can assume that literals x1, x2, · · · , xb belong to T .
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There are two extreme cases: one is that each clause only contains three literals and

each literal appears in exactly one clause in T . Then b = 3cm. The other case is that each

clause contains 3 literals, and each literal appears in as many clauses as possible. Then
(
b
3

)
= cm, which gives b = Θ((cm)1/3).

Lemma 21.9.20. For a random 3SAT instance, with probability 1− 2−Ω(logn log logn) there is

no literal appearing in at least log n clauses.

Proof. By the property of random 3SAT , for any literal x and any clause C, the probability

that x appears in C is 3
2n
, i.e., Pr[x ∈ C] = 3

2n
= Θ(1/n). Let p denote this probability. For

any literal x, the probability of x appearing in at least log n clauses (out of m clauses) is

Pr[ x appearing in ≥ log n clauses ]

=
m∑

i=logn

(
m

i

)
pi(1− p)m−i

=

m/2∑

i=logn

(
m

i

)
pi(1− p)m−i +

m∑

i=m/2

(
m

i

)
pi(1− p)m−i

≤
m/2∑

i=logn

(em/i)ipi +
m∑

i=m/2

(
m

i

)
pi by (1− p) ≤ 1,

(
m

i

)
≤ (em/i)i

≤ (Θ(1/ log n))logn + 2 · (2e)m/2 ·Θ(1/n)m/2

≤ 2−Ω(logn·log logn).

Taking a union bound over all the literals, we complete the proof,

Pr[ @ x appearing in ≥ log n clauses ] ≥ 1− 2−Ω(logn log logn).
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Lemma 21.9.21. For a sufficiently large constant c′ > 0 and a constant c > 0, for any

random 3SAT instance which has n variables and m = c′n clauses, suppose it is (1 − c)m

satisfiable. Then with probability 1 − 2−Ω(logn log logn), for all input strings y, among the

unsatisfied clauses, each literal appears in O(log n) places.

Proof. This follows by Lemma 21.9.20.

Next, we show how to reduce the O(log n) to O(1).

Lemma 21.9.22. For a sufficiently large constant c, for any random 3SAT instance that

has n variables and m = cn clauses, for any constant B ≥ 1, b ∈ (0, 1), with probability at

least 1− 9m
Bbn

, there exist at least (1− b)m clauses such that each variable (in these (1− b)m

clauses) only appears in at most B clauses (out of these (1− b)m clauses).

Proof. For each i ∈ [m], we use zi to denote the indicator variable such that it is 1, if for

each variable in the ith clause, it appears in at most a clauses. Let B ∈ [1,∞) denote a

sufficiently large constant, which we will decide upon later.

For each variable x, the probability of it appearing in the i-th clause is 3
n
. Then we

have

E[ # clauses that contain x] =
m∑

i=1

E[i-th clause contains x] =
3m

n

By Markov’s inequality,

Pr[ # clauses that contain x ≥ a] ≤ E[ # clauses that contain x]/B =
3m

Bn
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By a union bound, we can compute E[zi] ,

E[zi] = Pr[zi = 1]

≥ 1− 3 Pr[ one variable in i-th clause appearing ≥ B clauses ]

≥ 1− 9m

Bn
.

Furthermore, we have

E[z] = E[
m∑

i=1

zi] =
m∑

i=1

E[zi] ≥ (1− 9m

Bn
)m.

Note that z ≤ m. Thus E[z] ≤ m. Let b ∈ (0, 1) denote a sufficiently small constant. We

can show

Pr[m− z ≥ bm] ≤ E[m− z]

bm

=
m− E[z]

bm

≤ m− (1− 9m
Bn

)m

bm

=
9m

Bbn
.

This implies that with probability at least 1 − 9m
Bbn

, we have m − z ≤ bm. Notice that in

random-ETH , m = cn for a constant c. Thus, by choosing a sufficiently large constant B

(which is a function of c, b), we can obtain arbitrarily large constant success probability.

21.9.4.3 Reduction

We reduce 3SAT to tensor rank by following the same construction in [Hås90]. To

obtain a stronger hardness result, we use the property that each variable only appears in at

most B (some constant) clauses and that the cover number of an unsatisfiable 3SAT instance
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is large. Note that both MAX-E3SAT(B) instances and random-ETH instances have that

property. Also each MAX-E3SAT(B) is also a 3SAT instance. Thus if the reduction holds for

3SAT , it also holds for MAX-E3SAT(B) , and similarly for random-ETH .

Recall the definition of 3SAT : 3SAT is the problem of given a Boolean formula of

n variables in CNF form with at most 3 variables in each of the m clauses, is it possible

to find a satisfying assignment to the formula? We say x1, x2, · · · , xn are variables and

x1, x1, x2, x2, · · · , xn, xn are literals. We transform this to the problem of computing the

rank of a tensor of size n1 × n2 × n3 where n1 = 2 + n + 2m, n2 = 3n and n3 = 3n + m. T

has the following n3 column-row faces, where each of the faces is an m1 × n2 matrix,

• n variable matrices Vi ∈ Rn1×n2 . It has a 1 in positions (1, 2i− 1) and (2, 2i) while all

other elements are 0.

• n help matrices Si ∈ Rn1×n2 . It has a 1 position in (1, 2n+ i) and is 0 otherwise.

• n help matricesMi ∈ Rn1×n2 . It has a 1 in positions (1, 2i−1), (2+i, 2i) and (2+i, 2n+i)

and is 0 otherwise.

• m clause matrices Cl ∈ Rn1×n2 . Suppose the clause cl contains the literals ul,1, ul,2 and

ul,3. For each j ∈ [3], ul,j ∈ {x1, x2, · · · , xn, x1, x2, · · · , xn}. Note that xi, xi are the

literals of the 3SAT formula. We can also think of xi, xi as length 3n vectors. Let xi

denote the vector that has a 1 in position 2i − 1, i.e., xi = e2i−1. Let xi denote the

vector that has a 1 in positions 2i− 1 and 2i, xi = e2i−1 + e2i.

– Row 1 is the vector ul,1 ∈ R3n,

– Row 2 + n+ 2l − 1 is the vector ul,1 − ul,2 ∈ R3n,
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Figure 21.11: There are 3n + m column-row faces, Vi,∀i ∈ [n], Si,∀i ∈ [n], Mi,∀i ∈ [n],
Cl,∀l ∈ [m]. In face Cl, each ul,j is either xi or xi where xi = e2i−1 and xi = e2i−1 + e2i.
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– Row 2 + n+ 2l is the vector ul,1 − ul,3 ∈ R3n.

First, we can obtain Lemma 21.9.23 which follows by Lemma 2 in [Hås90]. For

completeness, we provide a proof.

Lemma 21.9.23. If the formula is satisfiable, then the constructed tensor has rank at most

4n+ 2m.

Proof. We will construct 4n+2m rank-1 matrices V (1)
i , V

(2)
i , S(1)

i ,M (1)
i , C(1)

l and C(2)
l . Then

the goal is to show that for each matrix in the set

{V1, V2, · · · , Vn, S1, S2, · · · , Sn,M1,M2, · · · ,Mn, C1, C2, · · · , Cm},

it can be written as a linear combination of these constructed matrices.

• Matrices V (1)
i and V (2)

i . V (1)
i has the first row equal to xi iff αi = 1 and otherwise xi.

All the other rows are 0. We set V (2)
i = Vi − V (1)

i .

• Matrices S(1)
i . S(1)

i = Si.

• Matrices M (1)
i .

M
(1)
i =

{
Mi − V (1)

i if αi = 1

Mi − V (1)
i − Si if αi = 0

• Matrices C(1)
l and C(2)

l . Let xi = αi be the assignment that makes the clause cl true.

Then Cl−V (1)
i has rank 2, since either it has just two nonzero rows (in the case where

xi is the first variable in the clause) or it has three nonzero rows of which two are equal.

In both cases we just need two additional rank 1 matrices.
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(1)
i xi = 12i 2n+ i

1 1

2n n

2

n

2m

V
(1)
i xi = 0

2i− 1
2i

1 1

2n n

2

n

2m

V
(2)
i xi = 02i

−1
1

2n n

2

n

2m

M
(1)
i xi = 02i 2n+ i

−1 −1

1 1

2n n

2

n

2m

Figure 21.12: Two possibilities for V (1)
i ,∀i ∈ [n], V (2),∀i ∈ [n], M (1)

i ,∀i ∈ [n].

Once the 3SAT instance S is unsatisfiable, then its cover number is at least 1. For

each unsatisfiable 3SAT instance S with cover number p, we can show that the constructed

tensor has rank at most 4n+ 2m+O(p) and also has rank at least 4n+ 2m+ Ω(p). We first

prove an upper bound,

Lemma 21.9.24. For a 3SAT instance S, let y ∈ {0, 1} denote a string such that S(y) has
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a set L that contains unsatisfiable clauses. Let p denote the smallest number of variables

that cover all clauses in L. Then the constructed tensor T has rank at most 4n+ 2m+ p.

Proof. Let y denote a length-n Boolean string (α1, α2, · · · , αn). Based on the assignment y,

all the clauses of S can be split into two sets: L contains all the unsatisfied clauses and L

contains all the satisfied clauses. We use set P to denote a set of variables that covers all

the clauses in set L. Let p = |P |. We will construct 4n+ 2m+ p rank-1 matrices V (1)
i , V

(2)
i ,

S
(1)
i , M (1)

i , ∀i ∈ [n], C(1)
l , C(2)

l , ∀l ∈ [m], and V (3)
j , ∀j ∈ P . Then the goal is to show that

the Vi, Si,Mi and Cl can be written as linear combinations of these constructed matrices.

• Matrices V (1)
i and V (2)

i . V (1)
i has first row equal to xi iff αi = 1 and otherwise xi. All

the other rows are 0. We set V (2)
i = Vi − V (1)

i .

• Matrices V (3)
j . For each j ∈ P , V (3)

j has the first row equal to xi iff αi = 0 and otherwise

xi.

• Matrices S(1)
i . S(1)

i = Si.

• Matrices M (1)
i .

M
(1)
i =

{
Mi − V (1)

i if αi = 1

Mi − V (1)
i − Si if αi = 0

• Matrices C(1)
l and C(2)

l .

– For each l /∈ L, clause cl is satisfied according to assignment y. Let xi = αi be

the assignment that makes the clause cl true. Then Cl − V (1)
i has rank 2, since

either it has just two nonzero rows (in the case where xi is the first variables in
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the clause) or it has three nonzero rows of which two are equal. In both cases we

just need two additional rank 1 matrices.

– For each l ∈ L. It means clause cl is unsatisfied according to assignment y. Let

xj1 = αj1 , xj2 = αj2 , xj3 = αj3 be an assignment that makes the clause cl false. In

other words, one of j1, j2, j3 must be P according to the definition that P covers

L. Then matrix Cl − V (3)
j1

has rank 2, since either it has just two nonzero rows

(in the case where xj1 is the first variables in the clause) or it has three nonzero

rows of which two are equal. In both cases we just need two additional rank 1

matrices.

We finish the proof by taking the P that has the smallest size.

Further, we have:

Corollary 21.9.25. For a 3SAT instance S, let p denote the cover number of S, then the

constructed tensor T has rank at most 4n+ 2m+ p.

Proof. This follows by applying Lemma 21.9.24 to all the input strings and the definition of

cover number (Definition 21.9.7).

We can split the tensor T ∈ R(2+n+3m)×3n×(3n+m) into two sub-tensors, one is T1 ∈

R2×3n×(3n+m) (that contains the first two row-tube faces of T and linear combination of the

remaining 2m row-tube faces of T ), and the other is T2 ∈ R(n+2m)×3n×(3n+m) (that contains

the next n+ 2m row-tube faces of T ). We first analyze the rank of T1 and then analyze the

rank of T2.
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Ṽi, i ∈ [n]

S̃i, i ∈ [n]

M̃i, i ∈ [n]

C̃l, l ∈ [m]

1

1

1

1 βi,1

βi,2

βi,1

βi,2

(1 + γl,1 + γl,2)ul,1 − γl,1ul,2 − γl,2ul,3
(γl,3 + γl,4)ul,1 − γl,3ul,2 − γl,4ul,3

2i-1 2i 2n+ i

2n n

Figure 21.13: Ṽi,S̃i,M̃i,C̃l.

Claim 21.9.26. The rank of T2 is n+ 2m.

Proof. According to Figure 21.11, the nonzero rows are distributed in n+m fully separated

sub-tensors. It is obvious that the rank of each one of those n sub-tensors is 1, and the rank

of each of those m sub-tensors is 2. Thus, overall, the rank T2 is n+ 2m.

To make sure rank(T ) = rank(T1)+rank(T2), the T1 ∈ R2×3n×(3n+m) can be described

as the following 3n+m column-row faces, and each of the faces is a 2× 3n matrix.

• Matrices Ṽi,∀i ∈ [n]. The two rows are from the first two rows of Vi in Figure 21.11,

i.e., the first row is e2i−1 and the second row is e2i.

• Matrices S̃i,∀i ∈ [n]. The two rows are from the first two rows of Si in Figure 21.11,

i.e., the first row is e2n+i and the second row is zero everywhere else.

• Matrices M̃i,∀i ∈ [n]. The first row is e2i−1 + βi,1(e2i + e2n+i), while the second row is

βi,2(e2i + e2n+i).
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Ai, i ∈ [n]

An+i, i ∈ [p]

1

1

unknown

1 βi,1

βi,2

unknown

βi,2

2i-1 2i 2n+ i

2n p

B2i−1, i ∈ [p]

B2i, i ∈ [p]

B2i−1, i ∈ [n]\[p]

B2i, i ∈ [n]\[p]

B2n+i, i ∈ [p]

1 1

1

βi,1

βi,2

1

1

unknown

βi,2

i(≤ p) i(> p) n+ i

n p

Figure 21.14: There are n + p matrices Ai ∈ R2×(2n+p), ∀i ∈ [n + p] and 2n + p matrices
Bi ∈ R2×(n+p),∀i ∈ [2n + p]. Tensor A and tensor B represet the same tensor, and for each
i ∈ [n+ p], j ∈ [2], l ∈ [2n+ p], (Ai)j,l = (Bl)j,i.

• Matrices C̃l,∀i ∈ [m]. The first row is (1 + γl,1 + γl,2)ul,1 − γl,1ul,2 − γl,2ul,3 and the

second is (γl,3 + γl,4)ul,1 − γl,3ul,2 − γl,4ul,3,

where for each i ∈ [3n], we use vector ei to denote a length 3n vector such that it only has

a 1 in position i and 0 otherwise. β, γ are variables. The goal is to show a lower bound for,

rank
β,γ

(T1).

Lemma 21.9.27. Let P denote the set {i | the second row of matrix M̃i is nonzero,∀i ∈

[n]}. Then the rank of T1 is at least 3n+ |P |.

Proof. We define p = |P |. Without loss of generality, we assume that for each i ∈ [p], the

second row of matrix M̃i is nonzero.
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Notice that matrices Ṽi, S̃i, M̃i have size 2× 3n, but we only focus on the first 2n+ p

columns. Thus, we have n+ p column-row faces (from the 3rd dimension) Aj ∈ R2×(2n+p),

• Aj, 1 ≤ j ≤ n, Aj is the first 2n + p columns of Ṽj −
∑n

i=1 αi,jS̃i ∈ R2×3n, where αi,j

are some coefficients.

• An+j, 1 ≤ j ≤ p, Aj is the first 2n+ p columns of M̃j −
∑n

i=1 αi,n+jS̃i ∈ R2×3n, where

αi,j are some coefficients.

Consider the first 2n+ p column-tube faces (from 2nd dimension), Bj, ∀j ∈ [2n+ p],

of T1. Notice that these matrices have size 2× (n+ p).

• B2i−1, 1 ≤ i ≤ p, it has a 1 in positions (1, i) and (1, n+ i).

• B2i, 1 ≤ i ≤ p, it has βi,1 in position (1, n + i), 1 in position (2, i) and βi,2 in position

(2, n+ i).

• B2i−1, p+ 1 ≤ i ≤ n, it has 1 in position (1, i).

• B2i, p+ 1 ≤ i ≤ n, it has 1 in position (2, i).

• B2n+i, 1 ≤ i ≤ p, the first row is unknown, the second row has βi,2 in position in

(2, n+ i).

It is obvious that the first 2n matrices are linearly independent, thus the rank is at least

2n. We choose the first 2n matrices as our basis. For B2n+1, we try to write it as a linear

combination of the first 2n matrices {Bi}i∈[2n]. Consider the second row of B2n+1. The first

n positions are all 0. The matrices B2i all have disjoint support for the second row of the
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first n columns. Thus, the matrices B2i should not be used. Consider the second row of

B2i−1,∀i ∈ [n]. None of them has a nonzero value in position n + 1. Thus B2n+1 cannot

be written as a linear combination of of the first 2n matrices. Thus, we can show for any

i ∈ [p], B2n+i cannot be written as a linear combination of matrices {Bi}i∈[2n]. Consider the

p matrices {B2n+i}i∈[p]. Each of them has a different nonzero position in the second row.

Thus these matrices are all linearly independent. Putting it all together, we know that the

rank of matrices {Bi}i∈[2n+p] is at least 2n+ p.

Next, we consider another special case when βi,2 = 0, for all i ∈ [n]. If we subtract

βi,1 times S̃i from M̃i and leave the other column-row faces (from the 3rd dimension) as they

are, and we make all column-tube faces(from the 2nd dimension) for j > 2n identically 0,

then all other choices do not change the first 2n column-tube faces (from the 2nd dimension)

and make some other column-tube faces (from the 2nd dimension) nonzero. Such a choice

could clearly only increase the rank of T . Thus, we obtain,

rank(T ) = 2n+ 2m+ min rank(T3),

where T3 is a tensor of size 2× 2n× (2n+m) given by the following column-row faces (from

3rd dimension) Ai,∀i ∈ [2n+m] and each matrix has size 2× 2n (shown in Figure 21.15).

• Ai, i ∈ [n], the first 2n columns of Ṽi.

• An+i, i ∈ [n], the first 2n columns of M̃i. The first row is e2i−1 +βi,1e2i, and the second

row is 0.

• A2n+l, l ∈ [m], the first 2n columns of C̃l. The first row is (1 +γl,1 +γl,2)ul,1−γl,1ul,2−

γl,2ul,3, and the second row is (γl,3 + γl,4)ul,1 − γl,3ul,2 − γl,4ul,3.
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We can show

Lemma 21.9.28. Let p denote the cover number of the 3SAT instance. T3 has rank at least

2n+ Ω(p).

Proof. First, we can show that all matrices An+i − Ai and An+i (for all i ∈ [n] ) are in the

expansion of tensor T3. Thus, the rank of T3 is at least 2n.

We need the following claim:

Claim 21.9.29. For any l ∈ [m], if A2n+l can be written as a linear combination of {An+i−

Ai}i∈[n] and {An+i}i∈[n], then the second row of A2n+l is 0, and the first row of one of the

An+i is ui where ui is one of the literals appearing in clause cl.

Proof. We prove this for the second row first. For each l ∈ [m], we consider the possibility

of using all matrices An+i−Ai and An+i to express matrix A2n+l. If the second row of A2n+l

is nonzero, then it must have a nonzero entry in an odd position. But there is no nonzero in

an odd position of the second row of any of matrices An+i − Ai and An+i.

For the first row. It is obvious that the first row of A2n+l must have at least one

nonzero position, for any γl,1, γl,2. Let uj be a literal belonging to the variable xi which

appears in the first row of A2n+l with a nonzero coefficient. Since only An+i of all the other

An+s,∀s ∈ [n] matrices has nonzero elements in either of the positions (1, 2i− 1) or (1, 2i),

then An+i must be used to cancel these elements. Thus, the first row of An+i must be a

multiple of uj and since the element in position (1, 2i − 1) of An+i is 1, this multiple must

be 1.
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Ai, i ∈ [n]

An+i, i ∈ [n]

A2n+l, l ∈ [m]

1

1

1 βi,1

(1 + γl,1 + γl,2)ul,1 − γl,1ul,2 − γl,2ul,3
(γl,3 + γl,4)ul,1 − γl,3ul,2 − γl,4ul,3

2i-1 2i

2n

Figure 21.15: For any i ∈ [n], βi,1 ∈ R, for any l ∈ [m], γl,1, γl,2 ∈ R, for any l ∈ [m], if the
first literal of clause l is xj, then row vector ul,1 = e2i−1 ∈ R2n; if the first literal of clause l
is xj, then row vector ul,1 = e2i−1 + e2i ∈ R2n.

Note that matricesAi,∀i ∈ [n] have the property that, for any matrix in {An+1, · · · , A2n+m},

it cannot be written as the linear combination of matrices Ai, ∀i ∈ [n]. Let Ã ∈ R(n+m)×2n

denote a matrix that consists of the first rows of {An+1, · · · , A2n+m}. According to the prop-

erty of matrices Ai,∀i ∈ [n], and that the rank of a tensor is always greater than or equal to

the rank of any sub-tensor, we know that

rank(T3) ≥ n+ min rank(Ã).

Claim 21.9.30. For a 3SAT instance S, for any input string y ∈ {0, 1}n, set β∗,1 to be the

entry-wise flipping of y, (I) if the clause l is satisfied, then the (n+l)-th row of Ã ∈ R(n+m)×2n

can be written as a linear combination of the first n rows of Ã. (II) if the clause l is

unsatisfied, then the (n+ l)-th row of Ã cannot be written as a linear combination of the first

n rows of Ã.

Proof. Part (I), consider a clause l which is satisfied with input string y. Then there must

exist a variable xi belonging to clause l (either literal xi or literal xi) and one of the following
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holds: if xi belongs to clause l, then αi = 1; if xi belongs to clause l, then αi = 0. Suppose

clause l contains literal xi. The other case can be proved in a similar way. We consider the

(n+ l)-th row. One of the following assignments (0, 0), (−1, 0), (0,−1) to γl,1, γl,1 is going to

set the (n + l)-th row of Ã to be vector e2i−1. We consider the i-th row of Ã. Since we set

αi = 1, then we set βi,1 = 0, it follows that the i-th row of A becomes e2i−1. Therefore, the

(n+ l)-th row of Ã can be written as a linear combination of Ã.

Part (II), consider a clause l which is unsatisfied with input string y. Suppose that

clause contains three literals xi1 , xi2 , xi3 (the other seven possibilities can be proved in a

similar way). Then for input string y, we have αi1 = 0, αi2 = 0 and αi3 = 0, otherwise

this clause l is satisfied. Consider i1-th row of Ã. It becomes e2i1−1 + e2i1 . Similarly for the

i2-th row and i3-th row. Consider the (n + l)-th row. We can observe that all of positions

2i1, 2i2, 2i3 must be 0. Any linear combination formed by the i1, i2, i3-th row of Ã must have

one nonzero in one of positions 2i1, 2i2, 2i3. However, if we consider the (n + l)-th row of

Ã, one of the positions 2i1, 2i2, 2i3 must be 0. Also, the remaining n− 3 of the first n rows

of Ã also have 0 in positions 2i1, 2i2, 2i3. Thus, we can show that the (n + l)-th row of Ã

cannot be written as a linear combination of the first n rows. Similarly, for the other seven

cases.

Note that in order to make sure as many as possible rows in n+ 1, · · · , n+m can be

written as linear combinations of the first n rows of Ã, the βi,1 should be set to either 0 or 1.

Also each possibility of input string y is corresponding to a choice of βi,1. According to the

above Claim 21.9.30, let l0 denote the smallest number of unsatisfied clauses over the choices

of all the 2n input strings. Then over all choices of β, γ, there must exist at least l0 rows of
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Ãn+1, · · · Ãn+m, such that each of those rows cannot be written as the linear combination of

the first n rows.

Claim 21.9.31. Let Ã ∈ R(n+m)×2n denote a matrix that consists of the first rows of

An+i,∀i ∈ [n] and An+l,∀l ∈ [m]. Let p denote the cover number of 3SAT instance. Then

min rank(Ã) ≥ n+ Ω(p).

Proof. For any choices of {βi,1}i∈[n], there must exist a set of rows out of the next m rows

such that, each of those rows cannot be written as a linear combination of the first n rows.

Let L denote the set of those rows. Let t denote the maximum size set of disjoint rows from

L. Since those t rows in L all have disjoint support, they are always linearly independent.

Thus the rank is at least n+ t.

Note that each row corresponds to a unique clause and each clause corresponds to a

unique row. We can just pick an arbitrary clause l in L, then remove the clauses that are

using the same literal as clause l from L. Because each variable occurs in at most B clauses,

we only need to remove at most 3B clauses from L. We repeat the procedure until there

is no clause L. The corresponding rows of all the clauses we picked have disjoint supports,

thus we can show a lower bound for t,

t ≥ |L|/(3B) ≥ l0/(3B) ≥ p/(9B) & p,

where the second step follows by |L| ≥ l0, the third step follows 3l0 ≥ p, and the last step

follows by B is some constant.

Thus, putting it all together, we complete the proof.
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Ai, i ∈ [n]

An+i, i ∈ [q]

An+i, i ∈ [n]\[q]

A2n+l, l ∈ [m]

1

1

1 βi,1

βi,2

1 βi,1

(1 + γl,1 + γl,2)ul,1 − γl,1ul,2 − γl,2ul,3
(γl,3 + γl,4)ul,1 − γl,3ul,2 − γl,4ul,3

2i-1 2i

2n

Figure 21.16: For any i ∈ [n], βi,1 ∈ R. For any i ∈ [q], βi,2 ∈ R. For any l ∈ [m], γl,1, γl,2 ∈ R.
For any l ∈ [m], if the first literal of clause l is xj, then row vector ul,1 = e2i−1 ∈ R2n; if the
first literal of clause l is xj, then row vector ul,1 = e2i−1 + e2i ∈ R2n.

Now, we consider a general case when there are q different i ∈ [n] satisfying that

βi,2 6= 0. Similar to tensor T3, we can obtain T4 such that,

rank(T ) = 2n+ 2m+ min rank(T4)

where T4 is a tensor of size 2× 2n× (2n+m) given by the following column-row faces (from

3rd dimension) Ai, ∀i ∈ [2n+m] and each matrix has size 2× 2n (shown in Figure 21.16).

• Ai, i ∈ [n], the first 2n columns of Ṽi.

• An+i, i ∈ [q], the first 2n columns of M̃i. The first row is e2i−1 +βi,1e2i, and the second

row is βi,2e2i.

• An+i, i ∈ {q + 1, · · · , n}, the first 2n columns of M̃i. The first row is e2i−1 + βi,1e2i,

and the second row is 0.
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• A2n+l, l ∈ [m], the first 2n columns of C̃l. The first row is (1 +γl,1 +γl,2)ul,1−γl,1ul,2−

γl,2ul,3, and the second row is (γl,3 + γl,4)ul,1 − γl,3ul,2 − γl,4ul,3.

Note that modifying q entries(from Figure 21.15 to Figure 21.16) of a tensor can only decrease

the rank by q, thus we obtain

Lemma 21.9.32. Let q denote the number of i such that βi,2 6= 0, and let p denote the cover

number of the 3SAT instance. Then T4 has rank at least 2n+ Ω(p)− q.

Combining the two perspectives we have

Lemma 21.9.33. Let p denote the cover number of an unsatisfiable 3SAT instance. Then

the tensor has rank at least 4n+ 2m+ Ω(p).

Proof. Let q denote the q in Figure 21.16. From one perspective, we know that the tensor

has rank at least 4n + 2m + Ω(p) − q. From another perspective, we know that the tensor

has rank at least 4n + 2m + q. Combining them together, we obtain the rank is at least

4n+ 2m+ Ω(p)/2, which is still 4n+ 2m+ Ω(p).

Theorem 21.9.34. Unless ETH fails, there is a δ > 0 and an absolute constant c0 > 1 such

that the following holds. For the problem of deciding if the rank of a q-th order tensor, q ≥ 3,

with each dimension n, is at most k or at least c0k, there is no 2δk
1−o(1) time algorithm.

Proof. The reduction can be split into three parts.13 The first part reduces the MAX-

3SAT problem to the MAX-E3SAT problem by [MR10]. For each MAX-3SAT instance with

13The first two parts are accomplished by personal communication with Dana Moshkovitz and Govind
Ramnarayan.
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size n, the corresponding MAX-E3SAT instance has size n1+o(1). The second part is by reduc-

ing the MAX-E3SAT problem to MAX-E3SAT(B) by [Tre01]. For each MAX-E3SAT instance

with size n, the corresponding MAX-E3SAT(B) instance has size Θ(n) when B is a constant.

The third part is by reducing the MAX-E3SAT(B) problem to the tensor problem. Combining

Theorem 21.9.5, Lemma 21.9.18 with this reduction, we complete the proof.

Theorem 21.9.35. Unless random-ETH fails, there is an absolute constant c0 > 1 for which

any deterministic algorithm for deciding if the rank of a q-th order tensor is at most k or at

least c0k, requires 2Ω(k) time.

Proof. This follows by combining the reduction with random-ETH and Lemma 21.9.22.

Note that, if BPP = P then it also holds for randomized algorithms which succeed

with probability 2/3.

Indeed, we know that any deterministic algorithm requires 2Ω(n) running time on

tensors that have size n×n×n. Let g(n) denote a fixed function of n, and g(n) = o(n). We

change the original tensor from size n× n× n to 2g(n) × 2g(n) × 2g(n) by adding zero entries.

Then the number of entries in the new tensor is 23g(n) and the deterministic algorithm still

requires 2Ω(n) running time on this new tensor. Assume there is a randomized algorithm

that runs in 2cg(n) time, for some constant c > 3. Then considering the size of this new

tensor, the deterministic algorithm is a super-polynomial time algorithm, but the randomized

algorithm is a polynomial time algorithm. Thus, by assuming BPP = P, we can rule out

randomized algorithms, which means Theorem 21.9.35 also holds for randomized algorithms

which succeed with probability 2/3.
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We provide some some motivation for the BPP = P assumption: this is a standard

conjecture in complexity theory, as it is implied by the existence of strong pseudorandom

generators or if any problem in deterministic exponential time has exponential size circuits

[IW97].
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21.10 Extension to Other Tensor Ranks

The tensor rank studied in the previous sections is also called the CP rank or canonical

rank. The tensor rank can be thought of as a direct extension of the matrix rank. We would

like to point out that there are other definitions of tensor rank, e.g., the tucker rank and

train rank. In this section we explain how to extend our proofs to other notions of tensor

rank. Section 21.10.1 provides the extension to tucker rank, and Section 21.10.2 provides

the extension to train rank.
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21.10.1 Tensor Tucker rank

Tensor Tucker rank has been studied in a number of works [KC07, PC08, MH09,

ZW13, YC14]. We provide the formal definition here:

21.10.1.1 Definitions

Definition 21.10.1 (Tucker rank). Given a third order tensor A ∈ Rn×n×n, we say A has

tucker rank k if k is the smallest integer such that there exist three matrices U, V,W ∈ Rn×k

and a (small) tensor C ∈ Rk×k×k satisfying

Ai,j,l =
k∑

i′=1

k∑

j′=1

k∑

l′=1

Ci′,j′,l′Ui,i′Vj,j′Wl,l′ ,∀i, j, l ∈ [n]× [n]× [n],

or equivalently,

A = C(U, V,W ).

21.10.1.2 Algorithm

Theorem 21.10.1. Given a third order tensor A ∈ Rn×n×n, for any k ≥ 1 and ε ∈ (0, 1),

there exists an algorithm which takes O(nnz(A))+n poly(k, 1/ε)+2O(k2/ε+k3) time and outputs

three matrices U, V,W ∈ Rn×k, and a tensor C ∈ Rk×k×k for which

‖C(U, V,W )− A‖2
F ≤ (1 + ε) min

tucker rank−k Ak
‖Ak − A‖2

F

holds with probability 9/10.

Proof. We define OPT to be

OPT = min
tucker rank−k A′

‖A′ − A‖2
F .
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Algorithm 21.33 Frobenius Norm Low (Tucker) Rank Approximation
1: procedure FLowTuckerRankApprox(A, n, k, ε) . Theorem 21.10.1
2: s1 ← s2 ← s3 ← O(k/ε).
3: t1 ← t2 ← t3 ← poly(k, 1/ε).
4: Choose sketching matrices S1 ∈ Rn2×s1 , S2 ∈ Rn2×s2 , S3 ∈ Rn2×s3 . . Definition

21.3.12
5: Choose sketching matrices T1 ∈ Rt1×n, T2 ∈ Rt2×n, T3 ∈ Rt3×n.
6: Compute AiSi, ∀i ∈ [3].
7: Compute TiAiSi, ∀i ∈ [3].
8: Compute B ← A(T1, T2, T3).
9: Create variables for Xi ∈ Rsi×k,∀i ∈ [3].
10: Create variables for C ∈ Rk×k×k.
11: Run a polynomial system verifier for ‖C((Y1X1), (Y2X2), (Y3X3))−B‖2

F .
12: return C,A1S1X1, A2S2X2, and A3S3X3.
13: end procedure

Suppose the optimal Ak = C∗(U∗, V ∗,W ∗). We fix C∗ ∈ Rk×k×k, V ∗ ∈ Rn×k and

W ∗ ∈ Rn×k. We use V ∗1 , V ∗2 , · · · , V ∗k to denote the columns of V ∗ and W ∗
1 ,W

∗
2 , · · · ,W ∗

k to

denote the columns of W ∗.

We consider the following optimization problem,

min
U1,··· ,Uk∈Rn

‖C∗(U, V ∗,W ∗)− A‖2
F ,

which is equivalent to

min
U1,··· ,Uk∈Rn

‖U · C∗(I, V ∗,W ∗)− A‖2
F ,

because C∗(U, V ∗,W ∗) = U · C∗(I, V ∗,W ∗) according to Definition 21.2.6.

Recall that C∗(I, V ∗,W ∗) denotes a k × n × n tensor. Let (C∗(I, V ∗,W ∗))1 denote

the matrix obtained by flattening C∗(I, V ∗,W ∗) along the first dimension. We use matrix Z1
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to denote (C∗(I, V ∗,W ∗))1 ∈ Rk×n2 . Then we can obtain the following equivalent objective

function,

min
U∈Rn×k

‖UZ1 − A1‖2
F .

Notice that minU∈Rn×k ‖UZ1 − A1‖2
F = OPT, since Ak = U∗Z1.

Let S>1 ∈ Rs1×n2 be the sketching matrix defined in Definition 21.3.12, where s1 =

O(k/ε). We obtain the following optimization problem,

min
U∈Rn×k

‖UZ1S1 − A1S1‖2
F .

Let Û ∈ Rn×k denote the optimal solution to the above optimization problem. Then Û =

A1S1(Z1S1)†. By Lemma 21.3.10 and Theorem 21.3.11, we have

‖ÛZ1 − A1‖2
F ≤ (1 + ε) min

U∈Rn×k
‖UZ1 − A1‖2

F = (1 + ε) OPT,

which implies
∥∥∥C∗(Û , V ∗,W ∗)− A

∥∥∥
2

F
≤ (1 + ε) OPT .

To write down Û1, · · · , Ûk, we use the given matrix A1, and we create s1 × k variables for

matrix (Z1S1)†.

As our second step, we fix Û ∈ Rn×k and W ∗ ∈ Rn×k, and we convert tensor A

into matrix A2. Let matrix Z2 denote (C∗(Û , I,W ∗))2 ∈ Rk×n2 . We consider the following

objective function,

min
V ∈Rn×k

‖V Z2 − A2‖2
F ,
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for which the optimal cost is at most (1 + ε) OPT.

Let S>2 ∈ Rs2×n2 be a sketching matrix defined in Definition 21.3.12, where s2 =

O(k/ε). We sketch S2 on the right of the objective function to obtain a new objective

function,

min
V ∈Rn×k

‖V Z2S2 − A2S2‖2
F .

Let V̂ ∈ Rn×k denote the optimal solution to the above problem. Then V̂ = A2S2(Z2S2)†.

By Lemma 21.3.10 and Theorem 21.3.11, we have,

‖V̂ Z2 − A2‖2
F ≤ (1 + ε) min

V ∈Rn×k
‖V Z2 − A2‖2

F ≤ (1 + ε)2 OPT,

which implies

∥∥∥C∗(Û , V̂ ,W ∗)− A
∥∥∥

2

F
≤ (1 + ε)2 OPT .

To write down V̂1, · · · , V̂k, we need to use the given matrix A2 ∈ Rn2×n, and we need to

create s2 × k variables for matrix (Z2S2)†.

As our third step, we fix the matrices Û ∈ Rn×k and V̂ ∈ Rn×k. We convert tensor

A ∈ Rn×n×n into matrix A3 ∈ Rn2×n. Let matrix Z3 denote (C∗(Û , V̂ , I))3 ∈ Rk×n2 . We

consider the following objective function,

min
W∈Rn×k

‖WZ3 − A3‖2
F ,

which has optimal cost at most (1 + ε)2 OPT.

Let S>3 ∈ Rs3×n2 be a sketching matrix defined in Definition 21.3.12, where s3 =

O(k/ε). We sketch S3 on the right of the objective function to obtain a new objective
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function,

min
W∈Rn×k

‖WZ3S3 − A3S3‖2
F .

Let Ŵ ∈ Rn×k denote the optimal solution of the above problem. Then Ŵ = A3S3(Z3S3)†.

By Lemma 21.3.10 and Theorem 21.3.11, we have,

‖ŴZ3 − A3‖2
F ≤ (1 + ε) min

W∈Rn×k
‖WZ3 − A3‖2

F ≤ (1 + ε)3 OPT .

Thus, we have

min
X1,X2,X3

‖C∗((A1S1X1), (A2S2X2), (A3S3X3))− A‖2
F ≤ (1 + ε)3 OPT .

Let V1 = A1S1, V2 = A2S2, and V3 = A3S3. We then apply Lemma 21.4.3, and we obtain

V̂1, V̂2, V̂3, B. We then apply Theorem 21.4.44. Correctness follows by rescaling ε by a

constant factor.

Running time. Due to Definition 21.3.12, the running time of line 7 (Algorithm 21.33) is

O(nnz(A)) +n poly(k, 1/ε). Due to Lemma 21.4.3, line 7 and 8 can be executed in nnz(A) +

n poly(k, 1/ε) time. The running time of line 11 is given by Theorem 21.4.44. (For simplicity,

we ignore the bit complexity in the running time.)

1710



21.10.2 Tensor Train rank

21.10.2.1 Definitions

The tensor train rank has been studied in several works [Ose11, OTZ11, ZWZ16,

PTBD16]. We provide the formal definition here.

Definition 21.10.2 (Tensor Train rank). Given a third order tensor A ∈ Rn×n×n, we say A

has train rank k if k is the smallest integer such that there exist three tensors U ∈ R1×n×k,

V ∈ Rk×n×k, W ∈ Rk×n×1 satisfying:

Ai,j,l =
1∑

i1=1

k∑

i2=1

k∑

i3=1

1∑

i4=1

Ui1,i,i2Vi2,j,i3Wi3,l,i4 ,∀i, j, l ∈ [n]× [n]× [n],

or equivalently,

Ai,j,l =
k∑

i2=1

k∑

i3=1

(U2)i,i2(V2)j,i2+k(i3−1)(W2)l,i3 ,

where V2 ∈ Rn×k2 denotes the matrix obtained by flattening the tensor U along the second

dimension, and (V2)i,i1+k(i2−1) denotes the entry in the i-th row and i1 + k(i2− 1)-th column

of V2. We similarly define U2,W2 ∈ Rn×k.

21.10.2.2 Algorithm

Theorem 21.10.2. Given a third order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), there

exists an algorithm which takes O(nnz(A)) + n poly(k, 1/ε) + 2O(k4/ε) time and outputs three

tensors U ∈ R1×n×k, V ∈ Rk×n×k, W ∈ Rk×n×1 such that
∥∥∥∥∥

k∑

i=1

k∑

j=1

(U2)i ⊗ (V2)i+k(j−1) ⊗ (W2)j − A
∥∥∥∥∥

2

F

≤ (1 + ε) min
train rank−k Ak

‖Ak − A‖2
F

holds with probability 9/10.
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Algorithm 21.34 Frobenius Norm Low (Train) rank Approximation
1: procedure FLowTrainRankApprox(A, n, k, ε) . Theorem 21.10.2
2: s1 ← s3 ← O(k/ε).
3: s2 ← O(k2/ε).
4: t1 ← t2 ← t3 ← poly(k, 1/ε).
5: Choose sketching matrices S1 ∈ Rn2×s1 , S2 ∈ Rn2×s2 , S3 ∈ Rn2×s3 . . Definition

21.3.12
6: Choose sketching matrices T1 ∈ Rt1×n, T2 ∈ Rt2×n, T3 ∈ Rt3×n.
7: Compute AiSi, ∀i ∈ [3].
8: Compute TiAiSi, ∀i ∈ [3].
9: Compute B ← A(T1, T2, T3).
10: Create variables for X1 ∈ Rs1×k.
11: Create variables for X3 ∈ Rs3×k.
12: Create variables for X2 ∈ Rs2×k2 .
13: Create variables for C ∈ Rk×k×k.
14: Run polynomial system verifier for ‖∑k

i2=1

∑k
i3=1(Y1X1)i2(Y2X2)i2+k(i3−1)(Y3X3)i3 −

B‖2
F .

15: return A1S1X1, A2S2X2, and A3S3X3.
16: end procedure
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Proof. We define OPT as

OPT = min
train rank−k A′

‖A′ − A‖2
F .

Suppose the optimal

Ak =
k∑

i=1

k∑

j=1

U∗i ⊗ V ∗i+k(j−1) ⊗W ∗
j .

We fix V ∗ ∈ Rn×k2 and W ∗ ∈ Rn×k. We use V ∗1 , V ∗2 , · · · , V ∗k2 to denote the columns of V ∗,

and W ∗
1 ,W

∗
2 , · · · ,W ∗

k to denote the columns of W ∗.

We consider the following optimization problem,

min
U∈Rn×k

∥∥∥∥∥
k∑

i=1

k∑

j=1

Ui ⊗ V ∗i+k(j−1) ⊗W ∗
j − A

∥∥∥∥∥

2

F

,

which is equivalent to

min
U∈Rn×k

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

U ·




k∑
j=1

V ∗1+k(j−1) ⊗W ∗
j

k∑
j=1

V ∗2+k(j−1) ⊗W ∗
j

· · ·
k∑
j=1

V ∗k+k(j−1) ⊗W ∗
j




− A

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

F

.

Let A1 ∈ Rn×n2 denote the matrix obtained by flattening the tensor A along the first

dimension. We use matrix Z1 ∈ Rk×n2 to denote



k∑
j=1

vec(V ∗1+k(j−1) ⊗W ∗
j )

k∑
j=1

vec(V ∗2+k(j−1) ⊗W ∗
j )

· · ·
k∑
j=1

vec(V ∗k+k(j−1) ⊗W ∗
j )




.
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Then we can obtain the following equivalent objective function,

min
U∈Rn×k

‖UZ1 − A1‖2
F .

Notice that minU∈Rn×k ‖UZ1 − A1‖2
F = OPT, since Ak = U∗Z1.

Let S>1 ∈ Rs1×n2 be a sketching matrix defined in Definition 21.3.12, where s1 =

O(k/ε). We obtain the following optimization problem,

min
U∈Rn×k

‖UZ1S1 − A1S1‖2
F .

Let Û ∈ Rn×k denote the optimal solution to the above optimization problem. Then Û =

A1S1(Z1S1)†. By Lemma 21.3.10 and Theorem 21.3.11, we have

‖ÛZ1 − A1‖2
F ≤ (1 + ε) min

U∈Rn×k
‖UZ1 − A1‖2

F = (1 + ε) OPT,

which implies
∥∥∥∥∥

k∑

i=1

k∑

j=1

Ûi ⊗ V ∗i+k(j−1) ⊗W ∗
j − A

∥∥∥∥∥

2

F

≤ (1 + ε) OPT .

To write down Û1, · · · , Ûk, we use the given matrix A1, and we create s1 × k variables for

matrix (Z1S1)†.

As our second step, we fix Û ∈ Rn×k and W ∗ ∈ Rn×k, and we convert the tensor A

into matrix A2. Let matrix Z2 ∈ Rk2×n2 denote the matrix where the (i, j)-th row is the

vectorization of Ûi ⊗W ∗
j . We consider the following objective function,

min
V ∈Rn×k

‖V Z2 − A2‖2
F ,

1714



for which the optimal cost is at most (1 + ε) OPT.

Let S>2 ∈ Rs2×n2 be a sketching matrix defined in Definition 21.3.12, where s2 =

O(k2/ε). We sketch S2 on the right of the objective function to obtain the new objective

function,

min
V ∈Rn×k

‖V Z2S2 − A2S2‖2
F .

Let V̂ ∈ Rn×k denote the optimal solution of the above problem. Then V̂ = A2S2(Z2S2)†.

By Lemma 21.3.10 and Theorem 21.3.11, we have,

‖V̂ Z2 − A2‖2
F ≤ (1 + ε) min

V ∈Rn×k
‖V Z2 − A2‖2

F ≤ (1 + ε)2 OPT,

which implies
∥∥∥∥∥

k∑

i=1

k∑

j=1

Ûi ⊗ V̂i+k(j−1) ⊗W ∗ − A
∥∥∥∥∥

2

F

≤ (1 + ε)2 OPT .

To write down V̂1, · · · , V̂k, we need to use the given matrix A2 ∈ Rn2×n, and we need to

create s2 × k variables for matrix (Z2S2)†.

As our third step, we fix the matrices Û ∈ Rn×k and V̂ ∈ Rn×k. We convert tensor

A ∈ Rn×n×n into matrix A3 ∈ Rn2×n. Let matrix Z3 ∈ Rk×n2 denote



∑k
i=1 vec(Ûi ⊗ V̂i+k·0)∑k
i=1 vec(Ûi ⊗ V̂i+k·1)

· · ·∑k
i=1 vec(Ûi ⊗ V̂i+k·(k−1))


 .

We consider the following objective function,

min
W∈Rn×k

‖WZ3 − A3‖2
F ,
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which has optimal cost at most (1 + ε)2 OPT.

Let S>3 ∈ Rs3×n2 be a sketching matrix defined in Definition 21.3.12, where s3 =

O(k/ε). We sketch S3 on the right of the objective function to obtain a new objective

function,

min
W∈Rn×k

‖WZ3S3 − A3S3‖2
F .

Let Ŵ ∈ Rn×k denote the optimal solution of the above problem. Then Ŵ = A3S3(Z3S3)†.

By Lemma 21.3.10 and Theorem 21.3.11, we have,

‖ŴZ3 − A3‖2
F ≤ (1 + ε) min

W∈Rn×k
‖WZ3 − A3‖2

F ≤ (1 + ε)3 OPT .

Thus, we have

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

k∑

j=1

(A1S1X1)i ⊗ (A2S2X2)i+k(j−1) ⊗ (A3S3X3)j − A
∥∥∥∥∥

2

F

≤ (1 + ε)3 OPT .

Let V1 = A1S1, V2 = A2S2, and V3 = A3S3. We then apply Lemma 21.4.3, and we obtain

V̂1, V̂2, V̂3, B. We then apply Theorem 21.4.44. Correctness follows by rescaling ε by a

constant factor.

Running time. Due to Definition 21.3.12, the running time of line 7 (Algorithm 21.34) is

O(nnz(A))+n poly(k, 1/ε). Due to Lemma 21.4.3, lines 8 and 9 can be executed in nnz(A)+

n poly(k, 1/ε) time. The running time of 2O(k4/ε) comes from running Theorem 21.4.44 (For

simplicity, we ignore the bit complexity in the running time.)
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21.11 Entry-wise `p Norm for Arbitrary Tensors, 1 < p < 2

There is a long line of research dealing with `p norm-related problems [DDH+09,

MM13, CDMI+13, CP15, BCKY16, YCRM16, BBC+17].

In this section, we provide several different algorithms for tensor `p-low rank ap-

proximation. Section 21.11.1 formally states the `p version of Theorem C.1 in [SWZ17].

Section 21.11.2 presents several existence results. Section 21.11.3 describes a tool that is

able to reduce the size of the objective function from poly(n) to poly(k). Section 21.11.4

discusses the case when the problem size is small. Section 21.11.5 provides several bicriteria

algorithms. Section 21.11.6 summarizes a batch of algorithms. Section 21.11.7 provides an

algorithm for `p norm CURT decomposition.

Notice that if the rank-k solution does not exist, then every bicriteria algorithm in

Section 21.11.5 can be stated in the form as Theorem 21.1.1, and every algorithm which can

output a rank-k solution in Section 21.11.6 can be stated in the form as Theorem 21.1.2. See

Section 21.1 for more details.
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21.11.1 Existence results for matrix case

Theorem 21.11.1 ([SWZ17]). Let 1 ≤ p < 2. Given V ∈ Rk×n, A ∈ Rd×n. Let S ∈ Rn×s

be a proper random sketching matrix. Let

Û = arg min
U∈Rd×k

‖UV S − AS‖2
F ,

i.e.,

Û = AS(V S)†.

Then with probability at least 0.999,

‖ÛV − A‖pp ≤ α · min
U∈Rd×k

‖UV − A‖pp.

(I). S denotes a dense p-stable transform,

s = Õ(k), α = Õ(k1−p/2) log d.

(II). S denotes a sparse p-stable transform,

s = Õ(k5), α = Õ(k5−5p/2+2/p) log d.

(III). S> denotes a sampling/rescaling matrix according to the `p Lewis weights of

V >,

s = Õ(k), α = Õ(k1−p/2).

We give the proof for completeness.

Proof. Let S ∈ Rn×s be a sketching matrix which satisfies the property (∗): ∀c ≥ 1, Ũ ∈ Rd×k

which satisfy

‖ŨV S − AS‖pp ≤ c · min
U∈Rd×k

‖UV S − AS‖pp,
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we have

‖ŨV − A‖pp ≤ cβS · min
U∈Rd×k

‖UV − A‖pp,

where βS ≥ 1 only depends on the sketching matrix S. Let

∀i ∈ [d], (Û i)> = arg min
x∈Rk
‖x>V S − AiS‖2

2,

i.e.,

Û = AS(V S)†.

Let

Ũ = arg min
U∈Rd×k

‖UV S − AS‖pp.

Then, we have:

‖ÛV S − AS‖pp

=
d∑

i=1

‖Û iV S − AiS‖pp

≤
d∑

i=1

(s1/p−1/2‖Û iV S − AiS‖2)p

≤
d∑

i=1

(s1/p−1/2‖Ũ iV S − AiS‖2)p

≤
d∑

i=1

(s1/p−1/2‖Ũ iV S − AiS‖p)p

≤ s1−p/2‖ŨV S − AS‖pp.
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The first inequality follows using ∀x ∈ Rs, ‖x‖p ≤ s1/p−1/2‖x‖2 since p < 2. The third

inequality follows using ∀x ∈ Rs, ‖x‖2 ≤ ‖x‖p since p < 2. Thus, according to the property

(∗) of S,

‖ÛV − A‖pp ≤ s1−p/2βS min
U∈Rd×k

‖UV − A‖pp.

Due to Lemma E.8 and Lemma E.11 of [SWZ17], we have:

for (I), s = Õ(k), βS = O(log d), α = s1−p/2βS = Õ(k1−p/2) log d,

for (II), s = Õ(k5), βS = Õ(k2/p log d), α = s1−p/2βS = Õ(k5−5p/2+2/p) log d,

for (III), s = Õ(k), βS = O(1), α = s1−p/2βS = Õ(k1−p/2).
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21.11.2 Existence results

Theorem 21.11.2. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exist three

matrices S1 ∈ Rn2×s1, S2 ∈ Rn2×s2, S3 ∈ Rn2×s3 such that

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(A1S1X1)i ⊗ (A2S2X2)i ⊗ (A3S3X3)i − A
∥∥∥∥∥

p

p

≤ α min
rank−k Ak∈Rn×n×n

‖Ak − A‖pp,

holds with probability 99/100.

(I). Using a dense p-stable transform,

s1 = s2 = s3 = Õ(k), α = Õ(k3−1.5p) log3 n.

(II). Using a sparse p-stable transform,

s1 = s2 = s3 = Õ(k5), α = Õ(k15−7.5p+6/p) log3 n.

(III). Guessing Lewis weights,

s1 = s2 = s3 = Õ(k), α = Õ(k3−1.5p).

Proof. We use OPT to denote

OPT := min
rank−k Ak∈Rn×n×n

‖Ak − A‖pp.

Given a tensorA ∈ Rn1×n2×n3 , we define three matricesA1 ∈ Rn1×n2n3 , A2 ∈ Rn2×n3n1 , A3 ∈

Rn3×n1n2 such that, for any i ∈ [n1], j ∈ [n2], l ∈ [n3]

Ai,j,l = (A1)i,(j−1)·n3+l = (A2)j,(l−1)·n1+i = (A3)l,(i−1)·n2+j.

We fix V ∗ ∈ Rn×k and W ∗ ∈ Rn×k, and use V ∗1 , V ∗2 , · · · , V ∗k to denote the columns of

V ∗ and W ∗
1 ,W

∗
2 , · · · ,W ∗

k to denote the columns of W ∗.
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We consider the following optimization problem,

min
U1,··· ,Uk∈Rn

∥∥∥∥∥
k∑

i=1

Ui ⊗ V ∗i ⊗W ∗
i − A

∥∥∥∥∥

p

p

,

which is equivalent to

min
U1,··· ,Uk∈Rn

∥∥∥∥∥∥∥∥

[
U1 U2 · · · Uk

]



V ∗1 ⊗W ∗
1

V ∗2 ⊗W ∗
2

· · ·
V ∗k ⊗W ∗

k


− A

∥∥∥∥∥∥∥∥

p

p

.

We use matrix Z1 to denote V ∗>�W ∗> ∈ Rk×n2 and matrix U to denote
[
U1 U2 · · · Uk

]
.

Then we can obtain the following equivalent objective function,

min
U∈Rn×k

‖UZ1 − A1‖pp.

Choose a sketching matrix (a dense p-stable, a sparse p-stable or an `p Lewis weight

sampling/rescaling matrix to Z1) S1 ∈ Rn2×s1 . We can obtain the optimization problem,

min
U∈Rn×k

‖UZ1S1 − A1S1‖pp = min
U∈Rn×k

n∑

i=1

‖U iZ1S1 − (A1S1)i‖pp,

where U i denotes the i-th row of matrix U ∈ Rn×k and (A1S1)i denotes the i-th row of

matrix A1S1. Instead of solving it under the `p-norm, we consider the `2-norm relaxation,

min
U∈Rn×k

‖UZ1S1 − A1S1‖2
F = min

U∈Rn×k

n∑

i=1

‖U iZ1S1 − (A1S1)i‖2
2.

Let Û ∈ Rn×k denote the optimal solution of the above optimization problem. Then, Û =

A1S1(Z1S1)†. We plug Û into the objective function under the `p-norm. By choosing s1 and

by the properties of sketching matrices (a dense p-stable, a sparse p-stable or an `p Lewis

weight sampling/rescaling matrix to Z1) S1 ∈ Rn2×s1 , we have

‖ÛZ1 − A1‖pp ≤ α min
U∈Rn×k

‖UZ1 − A1‖pp = αOPT .
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This implies

‖Û ⊗ V ∗ ⊗W ∗ − A‖pp ≤ αOPT .

As a second step, we fix Û ∈ Rn×k and W ∗ ∈ Rn×k, and convert tensor A into matrix

A2. Let matrix Z2 denote Û> �W ∗>. We consider the following objective function,

min
V ∈Rn×k

‖V Z2 − A2‖pp,

and the optimal cost of it is at most αOPT.

We choose a sketching matrix (a dense p-stable, a sparse p-stable or an `p Lewis

weight sampling/rescaling matrix to Z2) S2 ∈ Rn2×s2 and sketch on the right of the objective

function to obtain the new objective function,

min
V ∈Rn×k

‖V Z2S2 − A2S2‖pp = min
V ∈Rn×k

n∑

i=1

‖V iZ2S2 − (A2S2)i‖pp,

where V i denotes the i-th row of matrix V and (A2S2)i denotes the i-th row of matrix A2S2.

Instead of solving this under the `p-norm, we consider the `2-norm relaxation,

min
V ∈Rn×k

‖V Z2S2 − A2S2‖2
F = min

V ∈Rn×k

n∑

i=1

‖V i(Z2S2)− (A2S2)i‖2
2.

Let V̂ ∈ Rn×k denote the optimal solution of the above problem. Then V̂ =

A2S2(Z2S2)†. By properties of sketching matrix S2 ∈ Rn2×s2 , we have,

‖V̂ Z2 − A2‖pp ≤ α min
V ∈Rn×k

‖V Z2 − A2‖pp ≤ α2 OPT,

which implies

‖Û ⊗ V̂ ⊗W ∗ − A‖pp ≤ α2 OPT,
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As a third step, we fix the matrices Û ∈ Rn×k and V̂ ∈ Rn×k. We can convert tensor

A ∈ Rn×n×n into matrix A3 ∈ Rn2×n. Let matrix Z3 denote Û> � V̂ > ∈ Rk×n2 . We consider

the following objective function,

min
W∈Rn×k

‖WZ3 − A3‖pp,

and the optimal cost of it is at most α2 OPT.

We choose sketching matrix (a dense p-stable, a sparse p-stable or an `p Lewis weight

sampling/rescaling matrix to Z3) S3 ∈ Rn2×s3 and sketch on the right of the objective

function to obtain the new objective function,

min
W∈Rn×k

‖WZ3S3 − A3S3‖pp.

Instead of solving this under the `p-norm, we consider the `2-norm relaxation,

min
W∈Rn×k

‖WZ3S3 − A3S3‖2
F = min

W∈Rn×k

n∑

i=1

‖W i(Z3S3)− (A3S3)i‖2
2.

Let Ŵ ∈ Rn×k denote the optimal solution of the above problem. Then Ŵ = A3S3(Z3S3)†.

By properties of sketching matrix S3 ∈ Rn2×s3 , we have,

‖ŴZ3 − A3‖pp ≤ α min
W∈Rn×k

‖WZ3 − A3‖pp ≤ α3 OPT .

Thus, we obtain,

min
X1∈Rs1×k,X2∈Rs2×k,X3∈Rs3×k

∥∥∥∥∥
k∑

i=1

(A1S1X1)i ⊗ (A2S2X2)i ⊗ (A3S3X3)i − A
∥∥∥∥∥

p

p

≤ α3 OPT .

According to Theorem 21.11.1, we let s = s1 = s2 = s3 and take the corresponding

α. We can directly get the results for (I), (II) and (III).
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21.11.3 Polynomial in k size reduction

Definition 21.11.1 (Definition E.1 in [SWZ17]). Given a matrix M ∈ Rn×d, if matrix

S ∈ Rm×n satisfies

‖SM‖pp ≤ β‖M‖pp,

then S has at most β dilation on M in the `p case.

Definition 21.11.2 (Definition E.2 in [SWZ17]). Given a matrix U ∈ Rn×k, if matrix

S ∈ Rm×n satisfies

∀x ∈ Rk, ‖SUx‖pp ≥
1

β
‖Ux‖pp,

then S has at most β contraction on U in the `p case.

Theorem 21.11.3. Given a tensor A ∈ Rn1×n2×n3 and three matrices V1 ∈ Rn1×b1 , V2 ∈

Rn2×b2 , V3 ∈ Rn3×b3 , let X∗1 ∈ Rb1×k, X∗2 ∈ Rb2×k, X∗3 ∈ Rb3×k satisfy

X∗1 , X
∗
2 , X

∗
3 = arg min

X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k
‖V1X1 ⊗ V2X2 ⊗ V3X3 − A‖pp.

Let S ∈ Rm×n have at most β1 ≥ 1 dilation on V1X
∗
1 · ((V2X

∗
2 )>� (V3X

∗
3 )>)−A1 and S have

at most β2 ≥ 1 contraction on V1 in the `p case. If X̂1 ∈ Rb1×k, X̂2 ∈ Rb2×k, X̂3 ∈ Rb3×k

satisfy

‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SA‖pp ≤ β min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖SV1X1 ⊗ V2X2 ⊗ V3X3 − SA‖pp,

where β ≥ 1, then

‖V1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − A‖pp . β1β2β min
X1,X2,X3

‖V1X1 ⊗ V2X2 ⊗ V3X3 − A‖pp.
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The proof is essentially the same as the proof of Theorem 21.7.4:

Proof. LetA, V1, V2, V3, S,X
∗
1 , X

∗
2 , X

∗
3 , β1, β2 be as stated in the theorem. Let X̂1 ∈ Rb1×k, X̂2 ∈

Rb2×k, X̂3 ∈ Rb3×k satisfy

‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SA‖pp ≤ β min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖SV1X1 ⊗ V2X2 ⊗ V3X3 − SA‖pp.

Similar to the proof of Theorem 21.7.4, we have,

‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SA‖pp

= 22−2p 1

β2

‖V1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − A‖pp − (21−p 1

β2

+ β1)‖V1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − A‖pp

The only difference from the proof of Theorem 21.7.4 is that instead of using triangle in-

equality, we actually use ‖x+ y‖pp ≤ 2p−1‖x‖pp + ‖y‖pp. Then, we have

‖V1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − A‖pp

≤ 22p−2β2‖SV1X̂1 ⊗ V2X̂2 ⊗ V3X̂3 − SA‖pp + (2p−1 + 22p−2β1β2)‖V1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − A‖pp

≤ 22p−2β2β‖SV1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − SA‖pp + (2p−1 + 22p−2β1β2)‖V1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − A‖pp

≤ 22p−2β1β2β‖V1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − A‖pp + (2p−1 + 22p−2β1β2)‖V1X

∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − A‖pp

≤ 2p−1β(1 + 2β1β2)‖V1X
∗
1 ⊗ V2X

∗
2 ⊗ V3X

∗
3 − A‖pp.

Lemma 21.11.4. Let min(b1, b2, b3) ≥ k. Given three matrices V1 ∈ Rn×b1, V2 ∈ Rn×b2, and

V3 ∈ Rn×b3, there exists an algorithm which takes O(nnz(A)) + n poly(b1, b2, b3) time and

outputs a tensor C ∈ Rc1×c2×c3 and three matrices V̂1 ∈ Rc1×b1, V̂2 ∈ Rc2×b2 and V̂3 ∈ Rc3×b3
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with c1 = c2 = c3 = poly(b1, b2, b3), such that with probability 0.99, for any α ≥ 1, if

X ′1, X
′
2, X

′
3 satisfy that,

∥∥∥∥∥
k∑

i=1

(V̂1X
′
1)i ⊗ (V̂2X

′
2)i ⊗ (V̂3X

′
3)i − C

∥∥∥∥∥

p

p

≤ α min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(V̂1X1)i ⊗ (V̂2X2)i ⊗ (V̂3X3)i − C
∥∥∥∥∥

p

p

,

then,
∥∥∥∥∥

k∑

i=1

(V1X
′
1)i ⊗ (V2X

′
2)i ⊗ (V3X

′
3)i − A

∥∥∥∥∥

p

p

. α min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i − A
∥∥∥∥∥

p

p

.

Proof. For simplicity, we define OPT to be

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i − A
∥∥∥∥∥

p

p

.

Let T1 ∈ Rc1×n correspond to sampling according to the `p Lewis weights of V1 ∈ Rn×b1 ,

where c1 = b̃1. Let T2 ∈ Rc2×n be sampling according to the `p Lewis weights of V2 ∈ Rn×b2 ,

where c2 = b̃2. Let T3 ∈ Rc3×n be sampling according to the `p Lewis weights of V3 ∈ Rn×b3 ,

where c3 = b̃3.

For any α ≥ 1, let X ′1 ∈ Rb1×k, X ′2 ∈ Rb2×k, X ′3 ∈ Rb3×k satisfy

‖T1V1X
′
1 ⊗ T2V2X

′
2 ⊗ T3V3X

′
3 − A(T1, T2, T3)‖pp

≤ α min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖T1V1X1 ⊗ T2V2X2 ⊗ T3V3X3 − A(T1, T2, T3)‖pp.

First, we regard T1 as the sketching matrix for the remainder. Then by Lemma D.11 in

[SWZ17] and Theorem 21.7.4, we have

‖V1X
′
1 ⊗ T2V2X

′
2 ⊗ T3V3X

′
3 − A(I, T2, T3)‖pp

. α min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖V1X1 ⊗ T2V2X2 ⊗ T3V3X3 − A(I, T2, T3)‖pp.
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Second, we regard T2 as the sketching matrix for V1X1⊗ V2X2⊗T3V3X3−A(I, I, T3). Then

by Lemma D.11 in [SWZ17] and Theorem 21.7.4, we have

‖V1X
′
1 ⊗ V2X

′
2 ⊗ T3V3X

′
3 − A(I, I, T3)‖pp

. α min
X1∈Rb1×k,X2∈Rb2×k,X3∈Rb3×k

‖V1X1 ⊗ V2X2 ⊗ T3V3X3 − A(I, I, T3)‖pp.

Third, we regard T3 as the sketching matrix for V1X1 ⊗ V2X2 ⊗ V3X3 −A. Then by Lemma

D.11 in [SWZ17] and Theorem 21.7.4, we have
∥∥∥∥∥

k∑

i=1

(V1X
′
1)i ⊗ (V2X

′
2)i ⊗ (V3X

′
3)i − A

∥∥∥∥∥

p

p

. α min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i − A
∥∥∥∥∥

p

p

.
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21.11.4 Solving small problems

Combining Section B.5 in [SWZ17] and the proof of Theorem 21.7.4, for any p = a/b

with a, b are integers, we can obtain the `p version of Theorem 21.7.4.
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21.11.5 Bicriteria algorithm

We present several bicriteria algorithms with different tradeoffs. We first present

an algorithm that runs in nearly linear time and outputs a solution with rank Õ(k3) in

Theorem 21.11.5. Then we show an algorithm that runs in nnz(A) time but outputs a

solution with rank poly(k) in Theorem 21.11.6. Then we explain an idea which is able to

decrease the cubic rank to quadratic, and thus we can obtain Theorem 21.11.7.

Theorem 21.11.5. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, let r = Õ(k3).

There exists an algorithm which takes nnz(A) · Õ(k) + n poly(k) + poly(k) time and outputs

three matrices U, V,W ∈ Rn×r such that
∥∥∥∥∥

r∑

i=1

Ui ⊗ Vi ⊗Wi − A
∥∥∥∥∥

p

p

≤ Õ(k3−p/2) log3 n min
rank−k Ak

‖Ak − A‖pp

holds with probability 9/10.

Proof. We first choose three dense Cauchy transforms Si ∈ Rn2×si . According to Sec-

tion 21.3.7, for each i ∈ [3], AiSi can be computed in nnz(A) · Õ(k) time. Then we apply

Lemma 21.11.4. We obtain three matrices Y1 = T1A1S1, Y2 = T2A2S2, Y3 = T3A3S3 and

a tensor C = A(T1, T2, T3). Note that for each i ∈ [3], Yi can be computed in n poly(k)

time. Because C = A(T1, T2, T3) and T1, T2, T3 ∈ Rn×Õ(k) are three sampling and rescaling

matrices, C can be computed in nnz(A) + Õ(k3) time. At the end, we just need to run an

`p-regression solver to find the solution for the problem:

min
X∈Rs1×s2×s3

∥∥∥∥∥
s1∑

i=1

s2∑

j=1

s3∑

l=1

Xi,j,l(Y1)i ⊗ (Y2)j ⊗ (Y3)j

∥∥∥∥∥

p

p

,

where (Y1)i denotes the i-th column of matrix Y1. Since the size of the above problem is

only poly(k), this can be solved in poly(k) time.

1730



Theorem 21.11.6. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, let r = Õ(k15).

There exists an algorithm that takes nnz(A) + n poly(k) + poly(k) time and outputs three

matrices U, V,W ∈ Rn×r such that
∥∥∥∥∥

r∑

i=1

Ui ⊗ Vi ⊗Wi − A
∥∥∥∥∥

p

p

≤ poly(k, log n) min
rank−k Ak

‖Ak − A‖pp

holds with probability 9/10.

Proof. We first choose three sparse p-stable transforms Si ∈ Rn2×si . According to Sec-

tion 21.3.7, for each i ∈ [3], AiSi can be computed in O(nnz(A)) time. Then we apply

Lemma 21.11.4, and can obtain three matrices Y1 = T1A1S1, Y2 = T2A2S2, Y3 = T3A3S3 and

a tensor C = A(T1, T2, T3). Note that for each i ∈ [3], Yi can be computed in n poly(k)

time. Because C = A(T1, T2, T3) and T1, T2, T3 ∈ Rn×Õ(k) are three sampling and rescaling

matrices, C can be computed in nnz(A) + Õ(k3) time. At the end, we just need to run an

`p-regression solver to find the solution to the problem,

min
X∈Rs1×s2×s3

∥∥∥∥∥
s1∑

i=1

s2∑

j=1

s3∑

l=1

Xi,j,l(Y1)i ⊗ (Y2)j ⊗ (Y3)l − C
∥∥∥∥∥

p

p

,

where (Y1)i denotes the i-th column of matrix Y1. Since the size of the above problem is

only poly(k), it can be solved in poly(k) time.

Theorem 21.11.7. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), let

r = Õ(k2). There exists an algorithm which takes nnz(A) · Õ(k) + n poly(k) + poly(k) time

and outputs three matrices U, V,W ∈ Rn×r such that
∥∥∥∥∥

r∑

i=1

Ui ⊗ Vi ⊗Wi − A
∥∥∥∥∥

p

p

≤ Õ(k3−1.5p) log3 n min
rank−k Ak

‖Ak − A‖pp

holds with probability 9/10.
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Proof. The proof is similar to Theorem 21.7.11.

Algorithm 21.35 `p-Low Rank Approximation, Bicriteria Algorithm, rank-Õ(k2), Input
Sparsity Time
1: procedure LpBicriteriaAlgorithm(A, n, k) . Corollary 21.11.8
2: s1 ← s2 ← s3 ← Õ(k).
3: For each i ∈ [3], choose Si ∈ Rn2×si to be the composition of a sparse p-stable

transform and a dense p-stable transform. . Part (I,II) of Theorem 21.11.2
4: Compute A1 · S1, A2 · S2.
5: For each i ∈ [2], choose Ti to be a sampling and rescaling diagonal matrix according

to the Lewis weights of AiSi, with ti = Õ(k) nonzero entries.
6: C ← A(T1, T2, I).
7: Bi+(j−1)s1 ← vec((T1A1S1)i ⊗ (T2A2S2)j),∀i ∈ [s1], j ∈ [s2].
8: Form objective function minW ‖WB − C3‖1.
9: Run `p-regression solver to find Ŵ .
10: Construct Û by copying (A1S1)i to the (i, j)-th column of Û .
11: Construct V̂ by copying (A2S2)j to the (i, j)-th column of V̂ .
12: return Û , V̂ , Ŵ .
13: end procedure

As for `1, notice that if we first apply a sparse Cauchy transform, we can reduce the

rank of the matrix to poly(k). Theyn we can apply a dense Cauchy transform and further

reduce the dimension, while only incurring another poly(k) factor in the approximation

ratio. By combining sparse p-stable and dense p-stable transforms, we can improve the

running time from nnz(A) · Õ(k) to be nnz(A) by losing some additional poly(k) factors in

the approximation ratio.

Corollary 21.11.8. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ε ∈ (0, 1), let

r = Õ(k2). There exists an algorithm which takes nnz(A) + n poly(k) + poly(k) time and
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outputs three matrices U, V,W ∈ Rn×r such that
∥∥∥∥∥

r∑

i=1

Ui ⊗ Vi ⊗Wi − A
∥∥∥∥∥

p

p

≤ poly(k, log n) min
rank−k Ak

‖Ak − A‖pp

holds with probability 9/10.
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21.11.6 Algorithms

In this section, we show two different algorithms by using different kind of sketches.

One is shown in Theorem 21.11.9 which gives a fast running time. Another one is shown in

Theorem 21.11.10 which gives the best approximation ratio.

Theorem 21.11.9. Given a 3rd tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an algorithm

which takes O(nnz(A)) + n poly(k) + 2Õ(k2) time and outputs three matrices U, V,W ∈ Rn×k

such that,

‖U ⊗ V ⊗W − A‖pp ≤ poly(k, log n) min
rank−k A′

‖A′ − A‖pp.

holds with probability at least 9/10.

Proof. First, we apply part (II) of Theorem 21.11.2. ThenAiSi can be computed inO(nnz(A))

time. Second, we use Lemma 21.11.4 to reduce the size of the objective function from O(n3)

to poly(k) in n poly(k) time by only losing a constant factor in approximation ratio. Third,

we use Claim 21.3.6 to relax the objective function from entry-wise `p-norm to Frobenius

norm, and this step causes us to lose some other poly(k) factors in approximation ratio. As

a last step, we use Theorem 21.4.44 to solve the Frobenius norm objective function.

Theorem 21.11.10. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an

algorithm that takes nÕ(k)2Õ(k3) time and output three matrices U, V,W ∈ Rn×k such that,

‖U ⊗ V ⊗W − A‖pp ≤ Õ(k3−1.5p) min
rank−k A′

‖A′ − A‖pp.

holds with probability at least 9/10.
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Proof. First, we apply part (III) of Theorem 21.11.2. Then, guessing Si requires nÕ(k) time.

Second, we use Lemma 21.11.4 to reduce the size of the objective from O(n3) to poly(k) in

polynomial time while only losing a constant factor in approximation ratio. Third, we solve

the small optimization problem.
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21.11.7 CURT decomposition

Theorem 21.11.11. Given a 3rd order tensor A ∈ Rn×n×n, let k ≥ 1, and let UB, VB,WB ∈

Rn×k denote a rank-k, α-approximation to A. Then there exists an algorithm which takes

O(nnz(A)) +O(n2) poly(k) time and outputs three matrices C ∈ Rn×c with columns from A,

R ∈ Rn×r with rows from A, T ∈ Rn×t with tubes from A, and a tensor U ∈ Rc×r×t with

rank(U) = k such that c = r = t = O(k log k log log k), and
∥∥∥∥∥

c∑

i=1

r∑

j=1

t∑

l=1

Ui,j,l · Ci ⊗Rj ⊗ Tl − A
∥∥∥∥∥

p

p

≤ Õ(k3−1.5p)α min
rank−k A′

‖A′ − A‖pp

holds with probability 9/10.

Proof. We define

OPT := min
rank−k A′

‖A′ − A‖pp.

We already have three matrices UB ∈ Rn×k, VB ∈ Rn×k and WB ∈ Rn×k and these three

matrices provide a rank-k, α approximation to A, i.e.,
∥∥∥∥∥

k∑

i=1

(UB)i ⊗ (VB)i ⊗ (WB)i − A
∥∥∥∥∥

p

p

≤ αOPT . (21.51)

Let B1 = V >B �W>
B ∈ Rk×n2 denote the matrix where the i-th row is the vectorization of

(VB)i⊗(WB)i. By Section B.3 in [SWZ17], we can compute D1 ∈ Rn2×n2 which is a sampling

and rescaling matrix corresponding to the Lewis weights of B>1 in O(n2 poly(k)) time, and

there are d1 = O(k log k log log k) nonzero entries on the diagonal of D1. Let Ai ∈ Rn×n2

denote the matrix obtained by flattening A along the i-th direction, for each i ∈ [3].
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Define U∗ ∈ Rn×k to be the optimal solution to min
U∈Rn×k

‖UB1−A1‖pp, Û = A1D1(B1D1)† ∈

Rn×k, V0 ∈ Rn×k to be the optimal solution to min
V ∈Rn×k

‖V · (Û> �W>
B )− A2‖pp, and U ′ to be

the optimal solution to min
U∈Rn×k

‖UB1D1 − A1D1‖pp.

By Claim 21.3.4, we have

‖ÛB1D1 − A1D1‖pp ≤ d
1−p/2
1 ‖U ′B1D1 − A1D1‖pp.

Due to Lemma E.11 and Lemma E.8 in [SWZ17], with constant probability, we have

‖ÛB1 − A1‖pp ≤ d
1−p/2
1 αD1‖U∗B1 − A1‖pp, (21.52)

where αD1 = O(1).

Recall that (Û>�W>
B ) ∈ Rk×n2 denotes the matrix where the i-th row is the vector-

ization of Ûi ⊗ (WB)i, ∀i ∈ [k]. Now, we can show,

‖V0 · (Û> �W>
B )− A2‖pp ≤ ‖ÛB1 − A1‖pp by V0 = arg min

V ∈Rn×k
‖V · (Û> �W>

B )− A2‖pp

. d
1−p/2
1 ‖U∗B1 − A1‖pp by Equation (21.52)

≤ d
1−p/2
1 ‖UBB1 − A1‖pp by U∗ = arg min

U∈Rn×k
‖UB1 − A1‖pp

≤ O(d
1−p/2
1 )αOPT . by Equation (21.51)

(21.53)

We define B2 = Û> �W>
B . We can compute D2 ∈ Rn2×n2 which is a sampling and

rescaling matrix corresponding to the `p Lewis weights of B>2 in O(n2 poly(k)) time, and

there are d2 = O(k log k log log k) nonzero entries on the diagonal of D2.

Define V ∗ ∈ Rn×k to be the optimal solution of minV ∈Rn×k ‖V B2 − A2‖pp, V̂ =

A2D2(B2D2)† ∈ Rn×k,W0 ∈ Rn×k to be the optimal solution of min
W∈Rn×k

‖W ·(Û>�V̂ >)−A3‖pp,

and V ′ to be the optimal solution of min
V ∈Rn×k

‖V B2D2 − A2D2‖pp.

1737



By Claim 21.3.4, we have

‖V̂ B2D2 − A2D2‖pp ≤ d
1−p/2
2 ‖V ′B2D2 − A2D2‖pp.

Due to Lemma E.11 and Lemma E.8 in [SWZ17], with constant probability, we have

‖V̂ B2 − A2‖pp ≤ d
1−p/2
2 αD2‖V ∗B2 − A2‖pp, (21.54)

where αD2 = O(1).

Recall that (Û> � V̂ >) ∈ Rk×n2 denotes the matrix for which the i-th row is the

vectorization of Ûi ⊗ V̂i, ∀i ∈ [k]. Now, we can show,

‖W0 · (Û> � V̂ >)− A3‖pp

≤ ‖V̂ B2 − A2‖pp by W0 = arg min
W∈Rn×k

‖W · (Û> � V̂ >)− A3‖pp

. d
1−p/2
2 ‖V ∗B2 − A2‖pp by Equation (21.54)

≤ d
1−p/2
2 ‖V0B2 − A2‖pp by V ∗ = arg min

V ∈Rn×k
‖V B2 − A2‖pp

≤ O((d1d2)1−p/2)αOPT . by Equation (21.53) (21.55)

We define B3 = Û> � V̂ >. We can compute D3 ∈ Rn2×n2 which is a sampling and

rescaling matrix corresponding to the `p Lewis weights of B>3 in O(n2 poly(k)) time, and

there are d3 = O(k log k log log k) nonzero entries on the diagonal of D3.

Define W ∗ ∈ Rn×k to be the optimal solution to minW∈Rn×k ‖WB3 − A3‖pp, Ŵ =

A3D3(B3D3)† ∈ Rn×k, and W ′ to be the optimal solution to min
W∈Rn×k

‖WB3D3 − A3D3‖pp.

By Claim 21.3.4, we have

‖ŴB3D3 − A3D3‖pp ≤ d
1−p/2
3 ‖W ′B3D3 − A3D3‖pp.
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Due to Lemma E.11 and Lemma E.8 in [SWZ17], with constant probability, we have

‖ŴB3 − A3‖pp ≤ d
1−p/2
3 αD3‖W ∗B3 − A3‖pp, (21.56)

where αD3 = O(1). Now we can show,

‖ŴB3 − A3‖pp . d
1−p/2
3 ‖W ∗B3 − A3‖pp, by Equation (21.56)

≤ d
1−p/2
3 ‖W0B3 − A3‖pp, by W ∗ = arg min

W∈Rn×k
‖WB3 − A3‖pp

≤ O((d1d2d3)1−p/2)αOPT . by Equation (21.55)

Thus, it implies,
∥∥∥∥∥

k∑

i=1

Ûi ⊗ V̂i ⊗ Ŵi − A
∥∥∥∥∥

p

p

≤ poly(k, log n) OPT .

where Û = A1D1(B1D1)†, V̂ = A2D2(B2D2)†, Ŵ = A3D3(B3D3)†.
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21.12 Robust Subspace Approximation (Asymmetric Norms for Ar-
bitrary Tensors)

Recently, [CW15b] and [CW15a] study the linear regression problem and low-rank

approximation problem under M-Estimator loss functions. In this section, we extend the

matrix version of the low rank approximation problem to tensors, i.e., in particular focusing

on tensor low-rank approximation under M-Estimator norms. Note that M-Estimators are

very different from Frobenius norm and Entry-wise `1 norm, which are symmetric norms.

Namely, flattening the tensor objective function along any of the dimensions does not change

the cost if the norm is Frobenius or Entry-wise `1-norm. However, for M-Estimator norms,

we cannot flatten the tensor along all three dimensions. This property makes the tensor

low-rank approximation problem under M-Estimator norms more difficult. This section can

be split into two independent parts. Section 21.12.2 studies the `1-`2-`2 norm setting, and

Section 21.12.3 studies the `1-`1-`2 norm setting.
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21.12.1 Preliminaries

Definition 21.12.1 (Nice functions for M -Estimators, M2, Lp, [CW15a]). We say an M -

Estimator is nice if M(x) = M(−x), M(0) = 0, M is non-decreasing in |x|, there is a

constant CM > 0 and a constant p ≥ 1 so that for all a, b ∈ R>0 with a ≥ b, we have

Cm
|a|
|b| ≤

M(a)

M(b)
≤ (

a

b
)p,

and also that M(x)
1
p is subadditive, that is, M(x+ y)

1
p ≤M(x)

1
p +M(y)

1
p .

Let M2 denote the set of such nice M -estimators, for p = 2. Let Lp denote M -

Estimators with M(x) = |x|p and p ∈ [1, 2).
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21.12.2 `1-Frobenius (a.k.a `1-`2-`2) norm

Section 21.12.2.1 presents basic definitions and facts for the `1-`2-`2 norm setting.

Section 21.12.2.2 introduces some useful tools. Section 21.12.2.3 presents the “no dilation”

and “no contraction” bounds, which are the key ideas for reducing the problem to a “general-

ized” Frobenius norm low rank approximation problem. Finally, we provide our algorithms

in Section 21.12.2.6.

21.12.2.1 Definitions

We first give the definition for the v-norm of a tensor, and then give the definition of

the v-norm for a matrix and a weighted version of the v-norm for a matrix.

Definition 21.12.2 (Tensor v-norm). For an n × n × n tensor A, we define the v-norm of

A, denoted ‖A‖v, to be

(
n∑

i=1

M(‖Ai,∗,∗‖F )

)1/p

,

where Ai,∗,∗ is the i-th face of A (along the 1st direction), and p is a parameter associated

with the function M(), which defines a nice M -Estimator.

Definition 21.12.3 (Matrix v-norm). For an n × d matrix A, we define the v-norm of A,

denoted ‖A‖v, to be

n∑

i=1

M(‖Ai,∗‖2)1/p,

where Ai,∗ is the i-th row of A, and p is a parameter associated with the functionM(), which

defines a nice M -Estimator.
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Definition 21.12.4. Given matrix A ∈ Rn×d, let Ai,∗ denote the i-th row of A. Let TS ⊂ [n]

denote the indices i such that ei is chosen for S. Using a probability vector q and a sampling

and rescaling matrix S ∈ Rn×n from q, we will estimate ‖A‖v using S and a re-weighted

version, ‖S · ‖v,w′ of ‖ · ‖v, with

‖SA‖v,w′ =

(∑

i∈TS

w′iM(‖Ai,∗‖2)

)1/p

,

where w′i = wi/qi. Since w′ is generally understood, we will usually just write ‖SA‖v. We

will also need an “entrywise row-weighted” version :

|||SA||| =
(∑

i∈TS

wi
qi
‖Ai,∗‖pM

)1/p

=


 ∑

i∈TS ,j∈[d]

wi
qi
M(Ai,j)




1/p

,

where Ai,j denotes the entry in the i-th row and j-th column of A.

Fact 21.12.1. For p = 1, for any two matrices A and B, we have ‖A+B‖v ≤ ‖A‖v +‖B‖v.

For any two tensors A and B, we have ‖A+B‖v ≤ ‖A‖v + ‖B‖v.

21.12.2.2 Sampling and rescaling sketches

Note that Lemmas 42 and 44 in [CW15a] are stronger than stated. In particular, we

do not need to assume X is a square matrix. For any m ≥ z, if X ∈ Rd×m, then we have

the same result.

Lemma 21.12.2 (Lemma 42 in [CW15a]). Let ρ > 0 and integer z > 0. For sampling

matrix S, suppose for a given y ∈ Rd with failure probability δ it holds that ‖SAy‖M =

(1±1/10)‖Ay‖M . There is K1 = O(z2/CM) so that with failure probability δ(KN/CM)(1+p)d,

for a constant KN, any rank-z matrix X ∈ Rd×m has the property that if ‖AX‖v ≥ K1ρ,

then ‖SAX‖v ≥ ρ, and that if ‖AX‖v ≤ ρ/K1, then ‖SAX‖v ≤ ρ.

1743



Lemma 21.12.3 (Lemma 44 in [CW15a]). Let δ, ρ > 0 and integer z > 0. Given matrix A ∈

Rn×d, there exists a sampling and rescaling matrix S ∈ Rn×n with r = O(γ(A,M,w)ε−2dz2 log(z/ε) log(1/δ))

nonzero entries such that, with probability at least 1− δ, for any rank-z matrix X ∈ Rd×m,

we have either

‖SAX‖v ≥ ρ,

or

(1− ε)‖AX‖v − ερ ≤ ‖SAX‖v ≤ (1 + ε)‖AX‖v + ερ.

Lemma 21.12.4 (Lemma 43 in [CW15a]). For r > 0, let r̂ = r/γ(A,M,w), and let q ∈ Rn

have

qi = min{1, r̂γi(A,M,w)}.

Let S be a sampling and rescaling matrix generated using q, with weights as usual w′i = wi/qi.

Let W ∈ Rd×z, and δ > 0. There is an absolute constant C so that for r̂ ≥ Cz log(1/δ)/ε2,

with probability at least 1− δ, we have

(1− ε)‖AW‖v,w ≤ ‖SAW‖v,w′ ≤ (1 + ε)‖AW‖v,w.

21.12.2.3 No dilation and no contraction

Lemma 21.12.5. Given matrices A ∈ Rn×m, U ∈ Rn×d, let V ∗ = arg min
rank−k V ∈Rd×m

‖UV −A‖v.

If S ∈ Rs×n has at most c1-dilation on UV ∗ − A, i.e.,

‖S(UV ∗ − A)‖v ≤ c1‖UV ∗ − A‖v,
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and it has at most c2-contraction on U , i.e.,

∀x ∈ Rd, ‖SUx‖v ≥
1

c2

‖Ux‖v,

then S has at most (c2, c1 + 1
c2

)-contraction on (U,A), i.e.,

∀ rank−k V ∈ Rd×m, ‖SUV − SA‖v ≥
1

c2

‖UV − A‖v − (c1 +
1

c2

)‖UV ∗ − A‖v.

Proof. Let A ∈ Rn×m, U ∈ Rn×d and S ∈ Rs×n be the same as that described in the lemma.

Let (V − V ∗)j denote the j-th column of V − V ∗. Then ∀ rank−k V ∈ Rd×m,

‖SUV − SA‖v ≥ ‖SUV − SUV ∗‖v − ‖SUV ∗ − SA‖v

≥ ‖SUV − SUV ∗‖v − c1‖UV ∗ − A‖v

= ‖SU(V − V ∗)‖v − c1‖UV ∗ − A‖v

=
m∑

j=1

‖SU(V − V ∗)j‖v − c1‖UV ∗ − A‖v

≥
m∑

j=1

1

c2

‖U(V − V ∗)j‖v − c1‖UV ∗ − A‖v

=
1

c2

‖UV − UV ∗‖v − c1‖UV ∗ − A‖v

≥ 1

c2

‖UV − A‖v −
1

c2

‖UV ∗ − A‖v − c1‖UV ∗ − A‖v

=
1

c2

‖UV − A‖v −
(

(
1

c2

+ c2)‖UV ∗ − A‖v
)
,

where the first inequality follows by the triangle inequality, the second inequality follows

since S has at most c1 dilation on UV ∗−A, the third inequality follows since S has at most

c2 contraction on U , and the fourth inequality follows by the triangle inequality.
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Claim 21.12.6. Given matrix A ∈ Rn×m, for any distribution p = (p1, p2, · · · , pn) define

random variable X such that X = ‖Ai‖2/pi with probability pi where Ai is the i-th row of

matrix A. Then take m independent samples X1, X2, · · · , Xm, and let Y = 1
m

∑m
j=1X

j. We

have

Pr[Y ≤ 1000‖A‖v] ≥ .999.

Proof. We can compute the expectation of Xj, for any j ∈ [m],

E[Xj] =
n∑

i=1

‖Ai‖2

pi
· pi = ‖A‖v.

Then E[Y ] = 1
m

∑m
j=1 E[Xj] = ‖A‖v. Using Markov’s inequality, we have

Pr[Y ≥ ‖A‖v] ≤ .001.

Lemma 21.12.7. For any fixed U∗ ∈ Rn×d and rank-k V ∗ ∈ Rd×m with d = poly(k), there

exists an algorithm that takes poly(n, d) time to compute a sampling and rescaling diagonal

matrix S ∈ Rn×n with s = poly(k) nonzero entries such that, with probability at least .999,

we have: for all rank-k V ∈ Rd×m,

‖U∗V ∗ − U∗V ‖v . ‖SU∗V ∗ − SU∗V ‖v . ‖U∗V ∗ − U∗V ‖v.

Lemma 21.12.8 (No dilation). Given matrices A ∈ Rn×m, U∗ ∈ Rn×d with d = poly(k),

define V ∗ ∈ Rd×m to be the optimal solution min
rank−k V ∈Rd×m

‖U∗V − A‖v. Choose a sampling

and rescaling diagonal matrix S ∈ Rn×n with s = poly(k) according to Lemma 21.12.4. Then

with probability at least .99, we have: for all rank-k V ∈ Rd×m,

‖SU∗V − SA‖v . ‖U∗V ∗ − U∗V ‖v +O(1)‖U∗V ∗ − A‖v . ‖U∗V − A‖v.
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Proof. Using Claim 21.12.6 and Lemma 21.12.7, we have with probability at least .99, for

all rank-k V ∈ Rd×m,

‖SU∗V − SA‖v

≤ ‖SU∗V − SU∗V ∗‖v + ‖SU∗V ∗ − SA‖v by triangle inequality

. ‖SU∗V − SU∗V ∗‖v +O(1)‖U∗V ∗ − A‖v by Claim 21.12.6

. ‖U∗V − U∗V ∗‖v +O(1)‖U∗V ∗ − A‖v by Lemma 21.12.7

. ‖U∗V − A‖v + ‖U∗V ∗ − A‖v +O(1)‖U∗V ∗ − A‖v by triangle inequality

. ‖U∗V − A‖v.

Lemma 21.12.9 (No contraction). Given matrices A ∈ Rn×m, U∗ ∈ Rn×d with d = poly(k),

define V ∗ ∈ Rd×m to be the optimal solution min
rank−k V ∈Rd×m

‖U∗V − A‖v. Choose a sampling

and rescaling diagonal matrix S ∈ Rn×n with s = poly(k) according to Lemma 21.12.4. Then

with probability at least .99, we have: for all rank-k V ∈ Rd×m,

‖U∗V − A‖v . ‖SU∗V − SA‖v +O(1)‖U∗V ∗ − A‖v.

Proof. This follows by Lemma 21.12.5, Claim 21.12.6 and Lemma 21.12.8.

21.12.2.4 Oblivious sketches, MSketch

In this section, we recall a concept calledM -sketches forM -estimators which is defined

in [CW15b]. M -sketch is an oblivious sketch for matrices.
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Theorem 21.12.10 (Theorem 3.1 in [CW15b]). Let OPT denote minx∈Rd ‖Ax−b‖G. There

is an algorithm that in O(nnz(A))+poly(d log n) time, with constant probability finds x′ such

that ‖Ax′ − b‖G ≤ O(1) OPT.

Definition 21.12.5 (M-Estimator sketches or MSketch [CW15b]). Given parameters

N, n,m, b > 1, define hmax = blogb(n/m)c, β = (b− b−hmax)/(b−1) and s = Nhmax. For each

p ∈ [n], σp, gp, hp are generated (independently) in the following way,

σp ← ±1, chosen with equal probability,

gp ∈ [N ], chosen with equal probability,

hp ← t, chosen with probability 1/(βbt) for t ∈ {0, 1, · · ·hmax}.

For each p ∈ [n], we define jp = gp + Nhp. Let w ∈ Rs denote the scaling vector such that,

for each j ∈ [s],

wj =

{
βbhp , if there exists p ∈ [n] s.t.j = jp,

0 otherwise.

Let S ∈ RNhmax×n be such that, for each j ∈ [s],for each p ∈ [n],

Sj,p =

{
σp, if j = gp +N · hp,
0, otherwise.

Let Dw denote the diagonal matrix where the i-th entry on the diagonal is the i-th entry of

w. Let S = DwS. We say (S,w) or S is an MSketch.

Definition 21.12.6 (Tensor ‖‖v,w-norm). For a tensor A ∈ Rd×n1×n2 and a vector w ∈ , we

define

‖A‖v,w =
d∑

i=1

wi‖Ai,∗,∗‖F .
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Let (S,w) denote an MSketch, and let S = DwS. If v corresponds to a scale-

invariant M-Estimator, then for any three matrices U, V,W , we have the following,

‖(SU)⊗ V ⊗W‖v,w = ‖(DwSU)⊗ V ⊗W‖v = ‖(SU)⊗ V ⊗W‖v.

Fact 21.12.11. For a tensor A ∈ Rn×n×n, let S ∈ Rs×n denote an MSketch (defined in

21.12.5) with s = poly(k, log n). Then SA can be computed in O(nnz(A)) time.

Lemma 21.12.12. For any fixed U∗ ∈ Rn×d and rank-k V ∗ ∈ Rd×m with d = poly(k), let

S ∈ Rs×n denote an MSketch (defined in Definition 21.12.5) with s = poly(k, log n) rows.

Then with probability at least .999, we have: for all rank-k V ∈ Rd×m,

‖U∗V ∗ − U∗V ‖v . ‖SU∗V ∗ − SU∗V ‖v . ‖U∗V ∗ − U∗V ‖v.

Lemma 21.12.13 (No dilation, Theorem 3.4 in [CW15b]). Given matrices A ∈ Rn×m, U∗ ∈

Rn×d with d = poly(k), define V ∗ ∈ Rd×m to be the optimal solution to min
rank−k V ∈Rd×m

‖U∗V −

A‖v. Choose an MSketch S ∈ Rs×n with s = poly(k, log n) according to Definition 21.12.5.

Then with probability at least .99, we have: for all rank-k V ∈ Rd×m,

‖SU∗V − SA‖v . ‖U∗V ∗ − U∗V ‖v +O(1)‖U∗V ∗ − A‖v . ‖U∗V − A‖v.

Lemma 21.12.14 (No contraction). Given matrices A ∈ Rn×m, U∗ ∈ Rn×d with d =

poly(k), define V ∗ ∈ Rd×m to be the optimal solution to min
rank−k V ∈Rd×m

‖U∗V − A‖v. Choose

an MSketch S ∈ Rs×n with s = poly(k, log n) according to Definition 21.12.5. Then with

probability at least .99, we have: for all rank-k V ∈ Rd×m,

‖U∗V − A‖v . ‖SU∗V − SA‖v +O(1)‖U∗V ∗ − A‖v.
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21.12.2.5 Running time analysis

Lemma 21.12.15. Given a tensor A ∈ Rn×d×d, let S ∈ Rs×n denote an MSketch with s

rows. Let SA denote a tensor that has size s× d× d. For each i ∈ {2, 3}, let (SA)i ∈ Rd×ds

denote a matrix obtained by flattening tensor SA along the i-th dimension. For each i ∈

{2, 3}, let Si ∈ Rds×si denote a CountSketch transform with si columns. For each i ∈ {2, 3},

let Ti ∈ Rti×d denote a CountSketch transform with ti rows. Then

(I) For each i ∈ {2, 3}, (SA)iSi can be computed in O(nnz(A)) time.

(II) For each i ∈ {2, 3}, Ti(SA)iSi can be computed in O(nnz(A)) time.

Proof. Proof of Part (I). First note that (SA)2S2 has size n×S2. Thus for each i ∈ [d], j ∈ [s2],

we have,

((SA)2S2)i,j =
ds∑

x′=1

((SA)2)i,x′(S2)x′,j by (SA)2 ∈ Rd×ds, S2 ∈ Rds×s2

=
d∑

y=1

s∑

z=1

((SA)2)i,(y−1)s+z(S2)(y−1)s+z,j

=
d∑

y=1

s∑

z=1

(SA)z,i,y(S2)(y−1)s+z,j by unflattening

=
d∑

y=1

s∑

z=1

(
n∑

x=1

Sz,xAx,i,y

)
(S2)(y−1)s+z,j

=
d∑

y=1

s∑

z=1

n∑

x=1

Sz,x · Ax,i,y · (S2)(y−1)s+z,j.

For each nonzero entry Ax,i,y, there is only one z such that Sz,x is nonzero. Thus there

is only one j such that (S2)(y−1)s+z,j is nonzero. It means that Ax,i,y can only affect one

entry of ((SA)2S2)i,j. Thus, (SA)2S2 can be computed in O(nnz(A)) time. Similarly, we can

compute (SA)3S3 in O(nnz(A)) time.
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Proof of Part (II). Note that T2(SA)2S2 has size t2×s2. Thus for each i ∈ [t2], j ∈ [s2],

we have,

(T2(SA)2S2)i,j =
d∑

x=1

ds∑

y′=1

(T2)i,x((SA)2)x,y′(S2)y′,j by (SA)2 ∈ Rd×ds

=
d∑

x=1

d∑

y=1

s∑

z=1

(T2)i,x((SA)2)x,(y−1)s+z(S2)(y−1)s+z,j

=
d∑

x=1

d∑

y=1

s∑

z=1

(T2)i,x(SA)z,x,y(S2)(y−1)s+z,j by unflattening

=
d∑

x=1

d∑

y=1

s∑

z=1

(T2)i,x

(
n∑

w=1

Sz,wAw,x,y

)
(S2)(y−1)s+z,j

=
d∑

x=1

d∑

y=1

s∑

z=1

n∑

w=1

(T2)i,x · Sz,w · Aw,x,y · (S2)(y−1)s+z,j.

For each nonzero entry Aw,x,y, there is only one z such that Sz,w is nonzero. There is only one

i such that (T2)i,x is nonzero. Since there is only one z to make Sz,w nonzero, there is only

one j, such that (S2)(y−1)s+z,j is nonzero. Thus, T2(SA)2S2 can be computed in O(nnz(A))

time. Similarly, we can compute T3(SA)3S3 in O(nnz(A)) time.

21.12.2.6 Algorithms

We first give a “warm-up” algorithm in Theorem 21.12.16 by using a sampling and

rescaling matrix. Then we improve the running time to be polynomial in all the parameters

by using an oblivious sketch, and thus we obtain Theorem 21.12.17.

Theorem 21.12.16. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, let r = O(k2).

There exists an algorithm which takes npoly(k) time and outputs three matrices U, V,W ∈ Rn×r
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Algorithm 21.36 `1-Frobenius(`1-`2-`2) Low-rank Approximation Algorithm, poly(k) ap-
proximation
1: procedure L122TensorLowRankApprox(A, n, k) . Theorem 21.12.16
2: ε← 0.1.
3: s← poly(k, 1/ε).
4: Guess a sampling and rescaling matrix S ∈ Rs×n.
5: s2 ← s3 ← O(k/ε).
6: r ← s2s3.
7: Choose sketching matrices S2 ∈ Rns×s2 , S3 ∈ Rns×s3 .
8: Compute (SA)2S2, (SA)3S3.
9: Form Ṽ ∈ Rn×r by repeating (SA)2S2 s3 times according to Equation (21.64).
10: Form W̃ ∈ Rn×r by repeating (SA)3S3 s2 times according to Equation (21.65).
11: Form objective function minU∈Rn×r ‖U · (Ṽ > � W̃>)− A1‖F .
12: Use a linear regression solver to find a solution Ũ .
13: Take the best solution found over all guesses.
14: return Ũ , Ṽ , W̃ .
15: end procedure

such that

‖U ⊗ V ⊗W − A‖v ≤ poly(k) min
rank−k A′

‖A′ − A‖v,

holds with probability at least 9/10.

Proof. We define OPT as follows,

OPT = min
U,V,W∈Rn×k

‖U ⊗ V ⊗W − A‖v = min
U,V,W∈Rn×k

∥∥∥∥∥
k∑

i=1

Ui ⊗ Vi ⊗Wi − A
∥∥∥∥∥
v

.

Let A1 ∈ Rn×n2 denote the matrix obtained by flattening tensor A along the 1st dimension.

Let U∗ ∈ Rn×k denote the optimal solution. We fix U∗ ∈ Rn×k, and consider this objective

function,

min
V,W∈Rn×k

‖U∗ ⊗ V ⊗W − A‖v ≡ min
V,W∈Rn×k

∥∥U∗ · (V > �W>)− A1

∥∥
v
, (21.57)
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which has cost at most OPT, and where V > �W> ∈ Rk×n2 denotes the matrix for which

the i-th row is a vectorization of Vi ⊗Wi,∀i ∈ [k]. (Note that Vi ∈ Rn is the i-th column of

matrix V ∈ Rn×k). Choose a sampling and rescaling diagonal matrix S ∈ Rn×n according to

U∗, which has s = poly(k) non-zero entries. Using S to sketch on the left of the objective

function when U∗ is fixed (Equation (21.57)), we obtain a smaller problem,

min
V,W∈Rn×k

‖(SU∗)⊗ V ⊗W − SA‖v ≡ min
V,W∈Rn×k

∥∥SU∗ · (V > �W>)− SA1

∥∥
v
. (21.58)

Let V ′,W ′ denote the optimal solution to the above problem, i.e.,

V ′,W ′ = arg min
V,W∈Rn×k

‖(SU∗)⊗ V ⊗W − SA‖v .

Then using properties (no dilation Lemma 21.12.8 and no contraction Lemma 21.12.9) of S,

we have

‖U∗ ⊗ V ′ ⊗W ′ − A‖v ≤ αOPT .

where α is an approximation ratio determined by S.

By definition of ‖ · ‖v and ‖ · ‖2 ≤ ‖·‖1 ≤
√
dim‖ · ‖2, we can rewrite Equation (21.58)

in the following way,

‖(SU∗)⊗ V ⊗W − SA‖v

=
s∑

i=1

(
n∑

j=1

n∑

l=1

(
((SU∗)⊗ V ⊗W )i,j,l − (SA)i,j,l

)2
) 1

2

≤ √s
(

s∑

i=1

n∑

j=1

n∑

l=1

(
((SU∗)⊗ V ⊗W )i,j,l − (SA)i,j,l

)2
) 1

2

=
√
s ‖(SU∗)⊗ V ⊗W − SA‖F . (21.59)
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Given the above properties of S and Equation (21.59), for any β ≥ 1, let V ′′,W ′′ denote a

β-approximate solution of min
V,W∈Rn×k

‖(SU∗)⊗ V ⊗W − SA‖F , i.e.,

‖(SU∗)⊗ V ′′ ⊗W ′′ − SA‖F ≤ β · min
V,W∈Rn×k

‖(SU∗)⊗ V ⊗W − SA‖F . (21.60)

Then,

‖U∗ ⊗ V ′′ ⊗W ′′ − A‖v ≤
√
sαβ ·OPT . (21.61)

In the next few paragraphs we will focus on solving Equation (21.60). We start by fixing

W ∗ ∈ Rn×k to be the optimal solution of

min
V,W∈Rn×k

‖(SU∗)⊗ V ⊗W − SA‖F .

We use (SA)2 ∈ Rn×ns to denote the matrix obtained by flattening the tensor SA ∈ Rs×n×n

along the second direction. We use Z2 = (SU∗)> � (W ∗)> ∈ Rk×ns to denote the matrix

where the i-th row is the vectorization of (SU∗)i ⊗ W ∗
i . We can consider the following

objective function,

min
V ∈Rn×k

‖V Z2 − (SA)2‖F .

Choosing a sketching matrix S2 ∈ Rns×s2 with s2 = O(k/ε) gives a smaller problem,

min
V ∈Rn×k

‖V Z2S2 − (SA)2S2‖F .
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Letting V̂ = (SA)2S2(Z2S2)† ∈ Rn×k, then

‖V̂ Z2 − (SA)2‖F ≤ (1 + ε) min
V ∈Rn×k

‖V Z2 − (SA)2‖F

= (1 + ε) min
V ∈Rn×k

‖V ((SU∗)> � (W ∗)>)− (SA)2‖F

= (1 + ε) min
V ∈Rn×k

‖(SU∗)⊗ V ⊗W ∗ − SA‖F by unflattening

= (1 + ε) min
V,W∈Rn×k

‖(SU∗)⊗ V ⊗W − SA‖F . by definition of W ∗

(21.62)

We define D2 ∈ Rn2×n2 to be a diagonal matrix obrained by copying the n×n identity

matrix s times on n diagonal blocks of D2. Then it has ns nonzero entries. Thus, D2 also

can be thought of as a matrix that has size n2 × ns.

We can think of (SA)2S2 ∈ Rn×s2 as follows,

(SA)2S2 = (A(S, I, I))2S2

= A2︸︷︷︸
n×n2

· D2︸︷︷︸
n2×n2

· S2︸︷︷︸
ns×s2

by D2 can be thought of as having size n2 × ns

= A2 ·




c2,1In
c2,2In

. . .
c2,nIn


 · S2

where In is an n×n identity matrix, c2,i ≥ 0 for each i ∈ [n], and the number of nonzero c2,i

is s.

For the last step, we fix SU∗ and V̂ . We use (SA)3 ∈ Rn×ns to denote the matrix

obtained by flattening the tensor SA ∈ Rs×n×n along the third direction. We use Z3 =

(SU∗)> � V̂ > ∈ Rk×ns to denote the matrix where the i-th row is the vectorization of
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(SU∗)i ⊗ V̂i. We can consider the following objective function,

min
W∈Rn×k

‖WZ3 − (SA)3‖F .

Choosing a sketching matrix S3 ∈ Rns×s3 with s3 = O(k/ε) gives a smaller problem,

min
W∈Rn×k

‖WZ3S3 − (SA)3S3‖F .

Let Ŵ = (SA)3S3(Z3S3)† ∈ Rn×k. Then

‖ŴZ3 − (SA)3‖F ≤ (1 + ε) min
W∈Rn×k

‖WZ3 − (SA)3‖F by property of S3

= (1 + ε) min
W∈Rn×k

‖W ((SU∗)> � V̂ >)− (SA)3‖F by definition Z3

= (1 + ε) min
W∈Rn×k

‖(SU∗)⊗ V̂ ⊗W − SA‖F by unflattening

≤ (1 + ε)2 ‖(SU∗)⊗ V ⊗W − SA‖F . by Equation (21.62)

We define D3 ∈ Rn2×n2 to be a diagonal matrix formed by copying the n× n identity

matrix s times on n diagonal blocks of D3. Then it has ns nonzero entries. Thus, D3 also

can be thought of as a matrix that has size n2 × ns and D3 is uniquely determined by S.

Similarly as to the 2nd dimension, for the 3rd dimension, we can think of (SA)3S3 as

follows,

(SA)3S3 = (A(S, I, I))3S3

= A3︸︷︷︸
n×n2

· D3︸︷︷︸
n2×n2

· S3︸︷︷︸
ns×s3

by D3 can be thought of as having size n2 × ns

= A3 ·




c3,1In
c3,2In

. . .
c3,nIn


 · S3
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where In is an n× n identity matrix, c3,i ≥ 0 for each i ∈ [n] and the number of nonzero c3,i

is s.

Overall, we have proved that,

min
X2,X3

‖(SU∗)⊗ (A2D2S2X2)⊗ (A3D3S3X3)− SA‖F ≤ (1 + ε)2 ‖(SU∗)⊗ V ⊗W − SA‖F ,
(21.63)

where diagonal matrix D2 ∈ Rn2×n2 (with ns nonzero entries) and D3 ∈ Rn2×n2 (with ns

nonzero entries) are uniquely determined by diagonal matrix S ∈ Rn×n (s nonzero entries).

Let X ′2 and X ′3 denote the optimal solution to the above problem (Equation (21.63)). Let

V ′′ = (A2D2S2X
′
2) ∈ Rn×k and W ′′ = (A3D3S3X

′
3) ∈ Rn×k. Then we have

‖U∗ ⊗ V ′′ ⊗W ′′ − A‖v ≤
√
sαβOPT .

We construct matrix Ṽ ∈ Rn×s2s3 by copying matrix (SA)2S2 ∈ Rn×s2 s3 times,

Ṽ =
[
(SA)2S2 (SA)2S2 · · · (SA)2S2.

]
(21.64)

We construct matrix W̃ ∈ Rn×s2s3 by copying the i-th column of matrix (SA)3S3 ∈ Rn×s3

into (i− 1)s2 + 1, · · · , is2 columns of W̃ ,

W̃ =
[
((SA)3S3)1 · · · ((SA)3S3)1 ((SA)3S3)2 · · · ((SA)3S3)2 · · · ((SA)3S3)s3 · · · ((SA)3S3)s3 .

]

(21.65)

Although we don’t know S, we can guess all of the possibilities. For each possibility,
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we can find a solution Ũ ∈ Rn×s2s3 to the following problem,

min
U∈Rn×s2s3

∥∥∥∥∥
s2∑

i=1

s3∑

j=1

U(i−1)s3+j ⊗ ((SA)2S2)i ⊗ ((SA)3S3)j − A
∥∥∥∥∥
v

= min
U∈Rn×s2s3

∥∥∥∥∥
s2∑

i=1

s3∑

j=1

U(i−1)s3+j · vec(((SA)2S2)i ⊗ ((SA)3S3)j)− A1

∥∥∥∥∥
v

= min
U∈Rn×s2s3

∥∥∥∥∥
s2∑

i=1

s3∑

j=1

U(i−1)s3+j · (Ṽ > � W̃>)(i−1)s3+j − A1

∥∥∥∥∥
v

= min
U∈Rn×s2s3

∥∥∥U · (Ṽ > � W̃>)− A1

∥∥∥
v

= min
U∈Rn×s2s3

‖UZ − A1‖v

= min
U∈Rn×s2s3

s2s3∑

i=1

‖U iZ − Ai1‖2,

where the first step follows by flattening the tensor along the 1st dimension, U(i−1)s3+j denotes

the (i − 1)s3 + j-th column of U ∈ Rn×s2s3 , A1 ∈ Rn×n2 denotes the matrix obtained by

flattening tensor A along the 1st dimension, the second step follows since Ṽ >�W̃> ∈ Rs2s3∈n2

is defined to be the matrix where the (i − 1)s3 + j-th row is vectorization of ((SA)2S2)i ⊗

((SA)3S3)j, the fourth step follows by defining Z to be Ṽ > � W̃>, and the last step follows

by definition of ‖ · ‖v norm. Thus, we obtain a multiple regression problem and it can be

solved directly by using [CW13, NN13a].

Finally, we take the best Ũ , Ṽ , W̃ over all the guesses. The entire running time is

dominated by the number of guesses, which is npoly(k). This completes the proof.

Theorem 21.12.17. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, let r = O(k2).

There exists an algorithm which takes O(nnz(A)) + n poly(k, log n) time and outputs three
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Algorithm 21.37 `1-Frobenius(`1-`2-`2) Low-rank Approximation Algorithm, poly(k, log n)
approximation
1: procedure L122TensorLowRankApprox(A, n, k) . Theorem 21.12.17
2: ε← 0.1.
3: s← poly(k, log n).
4: Choose S ∈ Rs×n to be an MSketch. . Definition 21.12.5
5: s2 ← s3 ← O(k/ε).
6: t2 ← t3 ← poly(k/ε).
7: r ← s2s3.
8: Choose sketching matrices S2 ∈ Rns×s2 , S3 ∈ Rns×s3 .
9: Choose sketching matrices T2 ∈ Rt2×n, T3 ∈ Rt3×n.
10: Compute (SA)2S2, (SA)3S3.
11: Compute T2(SA)2S2, T3(SA)3S3.
12: Form Ṽ ∈ Rn×r by repeating (SA)2S2 s3 times according to Equation (21.74).
13: Form W̃ ∈ Rn×r by repeating (SA)3S3 s2 times according to Equation (21.75).
14: Form V ∈ Rt2×r by repeating T2(SA)2S2 s3 times according to Equation (21.72).
15: Form W ∈ Rt3×r by repeating T3(SA)3S3 s2 times according to Equation (21.73).
16: C ← A(I, T2, T3).
17: Form objective function minU∈Rn×r ‖U · (V

> �W>
)− C1‖F .

18: Use linear regression solver to find a solution Ũ .
19: return Ũ , Ṽ , W̃ .
20: end procedure

matrices U, V,W ∈ Rn×r such that

‖U ⊗ V ⊗W − A‖v ≤ poly(k, log n) min
rank−k A′

‖A′ − A‖v

holds with probability at least 9/10.

Proof. We define OPT as follows,

OPT = min
U,V,W∈Rn×k

‖U ⊗ V ⊗W − A‖v = min
U,V,W∈Rn×k

∥∥∥∥∥
k∑

i=1

Ui ⊗ Vi ⊗Wi − A
∥∥∥∥∥
v

.
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Let A1 ∈ Rn×n2 denote the matrix obtained by flattening tensor A along the 1st dimension.

Let U∗ ∈ Rn×k denote the optimal solution. We fix U∗ ∈ Rn×k, and consider the objective

function,

min
V,W∈Rn×k

‖U∗ ⊗ V ⊗W − A‖v ≡ min
V,W∈Rn×k

∥∥U∗ · (V > �W>)− A1

∥∥
v
, (21.66)

which has cost at most OPT, and where V > �W> ∈ Rk×n2 denotes the matrix for which

the i-th row is a vectorization of Vi ⊗Wi,∀i ∈ [k]. (Note that Vi ∈ Rn is the i-th column

of matrix V ∈ Rn×k). Choose an (oblivious) MSketch S ∈ Rs×n with s = poly(k, log n)

according to Definition 21.12.5. Using MSketch S,w to sketch on the left of the objective

function when U∗ is fixed (Equation (21.66)), we obtain a smaller problem,

min
V,W∈Rn×k

‖(SU∗)⊗ V ⊗W − SA‖v ≡ min
V,W∈Rn×k

∥∥SU∗ · (V > �W>)− SA1

∥∥
v
. (21.67)

Let V ′,W ′ denote the optimal solution to the above problem, i.e.,

V ′,W ′ = arg min
V,W∈Rn×k

‖(SU∗)⊗ V ⊗W − SA‖v .

Then using properties (no dilation Lemma 21.12.13 and no contraction Lemma 21.12.14) of

S, we have

‖U∗ ⊗ V ′ ⊗W ′ − A‖v ≤ αOPT .

where α is an approximation ratio determined by S.

By definition of ‖ · ‖v and ‖ · ‖2 ≤ ‖·‖1 ≤
√
dim‖ · ‖2, we can rewrite Equation (21.67)
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in the following way,

‖(SU∗)⊗ V ⊗W − SA‖v

=
s∑

i=1

(
n∑

j=1

n∑

l=1

(
((SU∗)⊗ V ⊗W )i,j,l − (SA)i,j,l

)2
) 1

2

≤ √s
(

s∑

i=1

n∑

j=1

n∑

l=1

(
((SU∗)⊗ V ⊗W )i,j,l − (SA)i,j,l

)2
) 1

2

=
√
s ‖(SU∗)⊗ V ⊗W − SA‖F (21.68)

Using the properties of S and Equation (21.68), for any β ≥ 1, let V ′′,W ′′ denote a β-

approximation solution of min
V,W∈Rn×k

‖(SU∗)⊗ V ⊗W − SA‖F , i.e.,

‖(SU∗)⊗ V ′′ ⊗W ′′ − SA‖F ≤ β · min
V,W∈Rn×k

‖(SU∗)⊗ V ⊗W − SA‖F . (21.69)

Then,

‖U∗ ⊗ V ′′ ⊗W ′′ − A‖v ≤
√
sαβ ·OPT . (21.70)

Let Â denote SA. Choose Si ∈ Rns×si to be Gaussian matrix with si = O(k/ε),

∀i{2, 3}. By a similar proof as in Theorem 21.12.16, we have if X ′2, X ′3 is a β-approximate

solution to

min
X2,X3

‖(SU∗)⊗ (Â2S2X2)⊗ (Â3S3X3)− SA‖F ,

then,

‖U∗ ⊗ (Â2S2X2)⊗ (Â3S3X3)− A‖v ≤
√
sαβ.
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To reduce the size of the objective function from poly(n) to poly(k/ε), we use perform

an “input sparsity reduction” (in Lemma 21.4.3). Note that, we do not need to use this idea

to optimize the running time in Theorem 21.12.16. The running time of Theorem 21.12.16 is

dominated by guessing sampling and rescaling matrices. (That running time is � nnz(A).)

Choose Ti ∈ Rti×n to be a sparse subspace embedding matrix (CountSketch transform) with

ti = poly(k, 1/ε), ∀i ∈ {2, 3}. Applying the proof of Lemma 21.4.3 here, we obtain, if X ′2, X ′3

is a β-approximate solution to

min
X2,X3

‖(SU∗)⊗ (T2(SA)2S2X2)⊗ (T3(SA)3S3X3)− SA‖F ,

then,

‖U∗ ⊗ ((SA)2S2X2)⊗ ((SA)3S3X3)− A‖v ≤
√
sαβ. (21.71)

Similar to the bicriteria results in Section 21.4.4, Equation (21.71) indicates that we

can construct a bicriteria solution by using two matrices (SA)2S2 and (SA)3S3. The next

question is how to obtain the final results Û , V̂ , Ŵ . We first show how to obtain Û . Then

we show to construct V̂ and Ŵ .

To obtain Û , we need to solve a regression problem related to two matrices V , Ŵ and a

tensor A(I, T2, T3). We construct matrix V ∈ Rt2×s2s3 by copying matrix T2(SA)2S2 ∈ Rt2×s2

s3 times,

V =
[
T2(SA)2S2 T2(SA)2S2 · · · T2(SA)2S2

]
. (21.72)

We construct matrix W ∈ Rt3×s2s3 by copying the i-th column of matrix T3(SA)3S3 ∈ Rt3×s3

into (i− 1)s2 + 1, · · · , is2 columns of W ,

W =
[
F1 · · ·F1 F2 · · ·F2 · · · Fs3 · · ·Fs3

]
, (21.73)
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where F = T3(SA)3S3.

Thus, to obtain Ũ ∈ Rs2s3 , we just need to use a linear regression solver to solve a

smaller problem,

min
U∈Rs2s3

‖U · (V > �W>
)− A(I, T2, T3)‖F ,

which can be solved in O(nnz(A)) + n poly(k, log n) time. We will show how to obtain Ṽ

and W̃ .

We construct matrix Ṽ ∈ Rn×s2s3 by copying matrix (SA)2S2 ∈ Rn×s2 s3 times,

Ṽ =
[
(SA)2S2 (SA)2S2 · · · (SA)2S2.

]
(21.74)

We construct matrix W̃ ∈ Rn×s2s3 by copying the i-th column of matrix (SA)3S3 ∈ Rn×s3

into (i− 1)s2 + 1, · · · , is2 columns of W̃ ,

W̃ =
[
F1 · · ·F1 F2 · · ·F2 · · · Fs3 · · ·Fs3

]
, (21.75)

where F = (SA)3S3.

1763



21.12.3 `1-`1-`2 norm

Section 21.12.3.1 presents some definitions and useful facts for the tensor `1-`1-`2

norm. We provide some tools in Section 21.12.3.2. Section 21.12.3.3 presents a key idea

which shows we are able to reduce the original problem to a new problem under entry-

wise `1 norm. Section 21.12.3.4 presents several existence results. Finally, Section 21.12.3.6

introduces several algorithms with different tradeoffs.

21.12.3.1 Definitions

Definition 21.12.7. (Tensor u-norm) For an n× n× n tensor A, we define the u-norm of

A, denoted ‖A‖u, to be
(

n∑

i=1

n∑

j=1

M(‖Ai,j,∗‖2)

)1/p

,

where Ai,j,∗ is the (i, j)-th tube of A, and p is a parameter associated with the function M(),

which defines a nice M -Estimator.

Definition 21.12.8. (Matrix u-norm) For an n×nmatrix A, we define u-norm of A, denoted

‖A‖u, to be
(

n∑

i=1

M(‖Ai,∗‖2)

)1/p

,

where Ai,∗ is the i-th row of A, and p is a parameter associated with the functionM(), which

defines a nice M -Estimator.

Fact 21.12.18. For p = 1, for any two matrices A and B, we have ‖A+B‖u ≤ ‖A‖u+‖B‖u.

For any two tensors A and B, we have ‖A+B‖u ≤ ‖A‖u + ‖B‖u.
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21.12.3.2 Projection via Gaussians

Definition 21.12.9. Let p ≥ 1. Let `Sn−1

p be an infinite dimensional `p metric which consists

of a coordinate for each vector r in the unit sphere Sn−1. Define function f : Sn−1 → R. The

`1-norm of any such f is defined as follows:

‖f‖1 =

(∫

r∈Sn−1

|f(r)|pdr
)1/p

.

Claim 21.12.19. Let fv(r) = 〈v, r〉. There exists a universal constant αp such that

‖fv‖p = αp‖v‖2.

Proof. We have,

‖fv‖p =

(∫

r∈Sn−1

|〈v, r〉|pdr
)1/p

=

(∫

θ∈Sn−1

‖v‖p2 · | cos θ|pdθ
)1/p

= ‖v‖2

(∫

θ∈Sn−1

| cos θ|pdθ
)1/p

= αp‖v‖2.

This completes the proof.

Lemma 21.12.20. Let G ∈ Rk×n denote i.i.d. random Gaussian matrices with rescaling.

Then for any v ∈ Rn, we have

Pr[(1− ε)‖v‖2 ≤ ‖Gv‖1 ≤ (1 + ε)‖v‖2] ≥ 1− 2−Ω(kε2).

Proof. For each i ∈ [k], we define Xi = 〈v, gi〉, where gi ∈ Rn is the i-th row of G. Then

Xi =
∑n

j=1 vjgi,j and E[|Xi|] = αp‖v‖2. Define Y =
∑k

i=1 |Xi|. We have E[Y ] = kα1‖v‖2 =

kα1.
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We can show

Pr[Y ≥ (1 + ε)α1k] = Pr[esY ≥ es(1+ε)α1k] for all s > 0

≤ E[esY ]/es(1+ε)α1k by Markov’s inequality

= e−s(1+ε)α1k · E[
k∏

i=1

es|Xi|] by Y =
k∑

i=1

|Xi|

= e−s(1+ε)α1k · (E[es|X1|])k

It remains to bound E[es|X1|]. Since X1 ∼ N(0, 1), we have that X1 has density function

e−t
2/2. Thus, we have,

E[es|X1|] =
1√
2π

∫ +∞

−∞
es|t| · e−t2/2dt

=
1√
2π

∫ +∞

−∞
es

2/2 · e−(|t|−s)2/2dt

= es
2/2(erf(s/

√
2) + 1)

≤ es
2/2((1− exp(−2s2/π))1/2 + 1) by 1− exp(−4x2/π) ≥ erf(x)2

≤ es
2/2(
√

2/πs+ 1). by 1− e−x ≤ x

Thus, we have

Pr[Y ≥ (1 + ε)α1k] ≤ e−s(1+ε)keks
2/2(1 + s

√
2/π)k

= e−s(1+ε)α1keks
2/2ek·log(1+s

√
2/π)

≤ e−s(1+ε)α1k+ks2/2+k·s
√

2/π

≤ e−Ω(kε2). by α1 ≥
√

2/π and setting s = ε
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Lemma 21.12.21. For any ε ∈ (0, 1), let k = O(n/ε2). Let G ∈ Rk×n denote i.i.d. random

Gaussian matrices with rescaling. Then for any v ∈ Rn, with probability at least 1−2−Ω(n/ε2),

we have : for all v ∈ Rn,

(1− ε)‖v‖2 ≤ ‖Gv‖1 ≤ (1 + ε)‖v‖2.

Proof. Let S denote {y ∈ Rn | ‖y‖2 = 1}. We construct a γ-net so that for all y ∈ S, there

exists a vector w ∈ N for which ‖y − w‖2 ≤ γ. We set γ = 1/2.

For any unit vector y, we can write

y = y0 + y1 + y2 + · · · ,

where ‖yi‖2 ≤ 1/2i and yi is a scalar multiple of a vector in N. Thus, we have

‖Gy‖1 = ‖G(y0 + y1 + y2 + · · · )‖1

≤
∞∑

i=0

‖Gyi‖1 by triangle inequality

≤
∞∑

i=0

(1 + ε)‖yi‖2

≤
∞∑

i=0

(1 + ε)
1

2i

≤ 1 + Θ(ε).

Similarly, we can lower bound ‖Gy‖1 by 1−Θ(ε). By Lemma 2.2 in [Woo14b], we know that

for any γ ∈ (0, 1), there exists a γ-net N of S for which |N| ≤ (1 + 4/γ)n.

21.12.3.3 Reduction, projection to high dimension

Lemma 21.12.22. Given a 3rd order tensor A ∈ Rn×n×n, let S ∈ Rn×s denote a Gaussian

matrix with s = O(n/ε2) columns. With probability at least 1− 2−Ω(n/ε2), for any U, V,W ∈
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Rn×k, we have

(1− ε) ‖U ⊗ V ⊗W − A‖u ≤ ‖(U ⊗ V ⊗W )S − AS‖1 ≤ (1 + ε) ‖U ⊗ V ⊗W − A‖u .

Proof. By definition of the ⊗ product between matrices and · product between a tensor and

a matrix, we have (U ⊗ V ⊗W )S = U ⊗ V ⊗ (SW ) ∈ Rn×n×s. We use Ai,j,∗ ∈ Rn to denote

the (i, j)-th tube (the column in the 3rd dimension) of tensor A. We first prove the upper

bound,

‖(U ⊗ V ⊗W )S − AS‖1 =
n∑

i=1

n∑

j=1

‖((U ⊗ V ⊗W )i,j,∗ − Ai,j,∗)S‖1

≤
n∑

i=1

n∑

j=1

(1 + ε) ‖(U ⊗ V ⊗W )i,j,∗ − Ai,j,∗‖2

= (1 + ε) ‖U ⊗ V ⊗W − A‖u ,

where the first step follows by definition of tensor ‖ · ‖u norm, the second step follows by

Lemma 21.12.21, and the last step follows by tensor entry-wise `1 norm. Similarly, we can

prove the lower bound,

‖(U ⊗ V ⊗W )S − AS‖1 ≥
n∑

i=1

n∑

j=1

(1− ε) ‖(U ⊗ V ⊗W )i,j,∗ − Ai,j,∗‖2

= (1− ε) ‖U ⊗ V ⊗W − A‖u .

This completes the proof.

Corollary 21.12.23. For any α ≥ 1, if U ′, V ′,W ′ satisfy

‖(U ′ ⊗ V ′ ⊗W ′ − A)S‖1 ≤ γ min
rank−k Ak

‖(Ak − A)S‖1,

then

‖U ′ ⊗ V ′ ⊗W ′ − A‖u ≤ γ
1 + ε

1− ε min
rank−k Ak

‖Ak − A‖u.
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Proof. Let Û , V̂ , Ŵ denote the optimal solution to minrank−k Ak ‖(Ak−A)S‖1. Let U∗, V ∗,W ∗

denote the optimal solution to minrank−k Ak ‖Ak − A‖u. Then,

‖U ′ ⊗ V ′ ⊗W ′ − A‖u ≤
1

1− ε‖(U
′ ⊗ V ′ ⊗W ′ − A)S‖1

≤ γ
1

1− ε‖(Û ⊗ V̂ ⊗ Ŵ − A)S‖1

≤ γ
1

1− ε‖(U
∗ ⊗ V ∗ ⊗W ∗ − A)S‖1

≤ γ
1 + ε

1− ε‖U
∗ ⊗ V ∗ ⊗W ∗ − A‖u,

which completes the proof.

21.12.3.4 Existence results

Theorem 21.12.24 (Existence results). Given a 3rd order tensor A ∈ Rn×n×n and a matrix

S ∈ Rn×n, let OPT denote minrank−k Ak∈Rn×n×n ‖(Ak − A)S‖1, let Â = AS ∈ Rn×n×n. For

any k ≥ 1, there exist three matrices S1 ∈ Rnn×s1, S2 ∈ Rnn×s2, S3 ∈ Rn2×s3 such that

min
X1∈Rs1×k,X2∈Rs2×k,X3∈Rs3×k

∥∥∥(Â1S1X1)⊗ (Â2S2X2)⊗ (Â3S3X3)− Â
∥∥∥

1
≤ αOPT,

or equivalently,

min
X1∈Rs1×k,X2∈Rs2×k,X3∈Rs3×k

∥∥∥
(

(Â1S1X1)⊗ (Â2S2X2)⊗ (A3S3X3)− A
)
S
∥∥∥

1
≤ αOPT,

holds with probability 99/100.

(I). Using a dense Cauchy transform,

s1 = s2 = s3 = Õ(k), α = Õ(k1.5) log3 n.

(II). Using a sparse Cauchy transform,

s1 = s2 = s3 = Õ(k5), α = Õ(k13.5) log3 n.
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(III). Guessing Lewis weights,

s1 = s2 = s3 = Õ(k), α = Õ(k1.5).

Proof. We use OPT to denote the optimal cost,

OPT := min
rank−k Ak∈Rn×n×n

‖(Ak − A)S‖1.

We fix V ∗ ∈ Rn×k and W ∗ ∈ Rn×k to be the optimal solution to

min
U,V,W

‖(U ⊗ V ⊗W − A)S‖1.

We define Z1 ∈ Rk×nn to be the matrix where the i-th row is the vectorization of V ∗i ⊗(SW ∗
i ).

We define tensor

Â = AS ∈ Rn×n×n.

Then we also have Â = A(I, I, S) according to the definition of the · product between a

tensor and a matrix.

Let Â1 ∈ Rn×nn denote the matrix obtained by flattening tensor Â along the first

direction. We can consider the following optimization problem,

min
U∈Rn×k

∥∥∥UZ1 − Â1

∥∥∥
1
.

Choosing S1 to be one of the following sketching matrices:

(I) a dense Cauchy transform,

(II) a sparse Cauchy transform,

(III) a sampling and rescaling diagonal matrix according to Lewis weights.

1770



Let αS1 denote the approximation ratio produced by the sketching matrix S1. We use

S1 ∈ Rnn×s1 to sketch on right of the above problem, and obtain the problem:

min
U∈Rn×k

‖UZ1S1 − Â1S1‖1 = min
U∈Rn×k

n∑

i=1

‖U iZ1S1 − (Â1S1)i‖1,

where U i denotes the i-th row of matrix U ∈ Rn×k and (Â1S1)i denotes the i-th row of

matrix Â1S1. Instead of solving it under `1-norm, we consider the `2-norm relaxation,

min
U∈Rn×k

‖UZ1S1 − Â1S1‖2
F = min

U∈Rn×k

n∑

i=1

‖U iZ1S1 − (Â1S1)i‖2
2.

Let Û ∈ Rn×k denote the optimal solution of the above optimization problem, so that

Û = Â1S1(Z1S1)†. We plug Û into the objective function under the `1-norm. By the

property of sketching matrix S1 ∈ Rnn×s1 , we have,

‖ÛZ1 − Â1‖1 ≤ αS1 min
U∈Rn×k

‖UZ1 − Â1‖1 = αS1 OPT,

which implies that,

‖Û ⊗ V ∗ ⊗ (SW ∗)− Â‖1 = ‖(Û ⊗ V ∗ ⊗W ∗)S − Â‖1 ≤ αS1 OPT .

In the second step, we fix Û ∈ Rn×k and W ∗ ∈ Rn×k. Let Â2 ∈ Rn×nn denote the

matrix obtained by flattening tensor Â ∈ Rn×n×n along the second direction. We choose a

sketching matrix S2 ∈ Rnn×s2 . Let Z2 = Û> � (SW ∗)> ∈ Rk×nn denote the matrix where

the i-th row is the vectorization of Ûi⊗ (SW ∗
i ). Define V̂ = Â2S2(Z2S2)†. By the properties

of sketching matrix S2, we have

‖V̂ Z2 − Â2‖1 ≤ αS2αS1 OPT,
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In the third step, we fix Û ∈ Rn×k and V̂ ∈ Rn×k. Let Â3 ∈ Rn×n2 denote the

matrix obtained by flattening tensor Â ∈ Rn×n×n along the third direction. We choose a

sketching matrix S3 ∈ Rn2×s3 . Let Z3 ∈ Rk×n2 denote the matrix where the i-th row is the

vectorization of Ûi ⊗ V̂i. Define W ′ = Â3S3(Z3S3)† ∈ Rn×k and Ŵ = A3S3(Z3S3)† ∈ Rn×k.

Then we have,

W ′ = Â3S3(Z3S3)†

= (A(I, I, S))3S3(Z3S3)†

= (S>A3)S3(Z3S3)†

= S>Ŵ

By properties of sketching matrix S3, we have

‖W ′Z3 − Â3‖1 ≤ αS3αS2αS1 OPT .

Replacing W ′ by S>Ŵ , we obtain,

‖W ′Z3 − Â3‖1 = ‖S>ŴZ3 − Â3‖1 = ‖S>ŴZ3 − S>A3‖1 = ‖(Û ⊗ V̂ ⊗ Ŵ − A)S‖1.

Thus, we have

min
X1∈Rs1×k,X2∈Rs2×k,X3∈Rs3×k

∥∥∥(Â1S1X1)⊗ (Â2S2X2)⊗ (Â3S3X3)− Â
∥∥∥

1
≤ αS1αS2αS3 OPT .

21.12.3.5 Running time analysis

Fact 21.12.25. Given tensor A ∈ Rn×n×n and a matrix B ∈ Rn×d with d = O(n), let AB

denote an n × n × d size tensor, For each i ∈ [3], let (AB)i denote a matrix obtained by
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flattening tensor AB along the i-th dimension, then

(AB)1 ∈ Rn×nd, (AB)2 ∈ Rn×nd, (AB)3 ∈ Rd×n2

.

For each i ∈ [3], let Si ∈ Rnd×si denote a sparse Cauchy transform, Ti ∈ Rti×n. Then we

have,

(I) If T1 denotes a sparse Cauchy transform or a sampling and rescaling matrix according

to the Lewis weights, T1(AB)1S1 can be computed in O(nnz(A)d) time. Otherwise, it can be

computed in O(nnz(A)d+ ns1t1).

(II) If T2 denotes a sparse Cauchy transform or a sampling and rescaling matrix according

to the Lewis weights, T2(AB)2S2 can be computed in O(nnz(A)d) time. Otherwise, it can be

computed in O(nnz(A)d+ ns2t2).

(III) If T3 denotes a sparse Cauchy transform or a sampling and rescaling matrix according

to the Lewis weights, T3(AB)3S3 can be computed in O(nnz(A)d) time. Otherwise, it can be

computed in O(nnz(A)d+ ds3t3).
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Proof. Part (I). Note that T1(AB)1S1 ∈ Rt1×s1 and (AB)1 ∈ Rn×nd, for each i ∈ [t1], j ∈ [s1],

(T1(AB)1S1)i,j =
n∑

x=1

nd∑

y′=1

(T1)i,x((AB)1)x,y′(S1)y′,j

=
n∑

x=1

n∑

y=1

d∑

z=1

(T1)i,x((AB)1)x,(y−1)d+z(S1)(y−1)d+z,j

=
n∑

x=1

n∑

y=1

d∑

z=1

(T1)i,x(AB)x,y,z(S1)(y−1)d+z,j

=
n∑

x=1

n∑

y=1

d∑

z=1

(T1)i,x

n∑

w=1

(Ax,y,wBw,z)(S1)(y−1)d+z,j

=
n∑

x=1

n∑

y=1

(T1)i,x

n∑

w=1

Ax,y,w

d∑

z=1

Bw,z(S1)(y−1)d+z,j.

We look at a non-zero entry Ax,y,w and the entry Bw,z. If T1 denotes a sparse Cauchy

transform or a sampling and rescaling matrix according to the Lewis weights, then there

is at most one pair (i, j) such that (T1)i,xAx,y,wBw,z(S1)(y−1)d+z,j is non-zero. Therefore,

computing T1(AB)1S1 only needs nnz(A)d time. If T1 is not in the above case, since S1 is

sparse, we can compute (AB)1S1 in nnz(A)d time by a similar argument. Then, we can

compute T1(AB)1S1 in nt1s1 time.

Part (II). It is as the same as Part (I).

Part (III). Note that T3(AB)3S3 ∈ Rt3×s3 and (AB)3 ∈ Rd×n2 . For each i ∈ [t3], j ∈
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[s3],

(T3(AB)3S3)i,j =
d∑

x=1

n2∑

y′=1

(T3)i,x((AB)3)x,y′(S3)y′,j

=
d∑

x=1

n∑

y=1

n∑

z=1

(T3)i,x((AB)3)x,(y−1)n+z(S3)(y−1)n+z,j

=
d∑

x=1

n∑

y=1

n∑

z=1

(T3)i,x(AB)y,z,x(S3)(y−1)n+z,j

=
d∑

x=1

n∑

y=1

n∑

z=1

(T3)i,x

n∑

w=1

Ay,z,wBw,x(S3)(y−1)n+z,j

Similar to Part (I), if T1 denotes a sparse Cauchy transform or a sampling and rescaling

matrix according to the Lewis weights, computing T3(AB)3S3 only needs nnz(A)d time.

Otherwise, it needs dt3s3 + nnz(A)d running time.

21.12.3.6 Algorithms

Theorem 21.12.26. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an

algorithm which takes O(nnz(A)n) + Õ(n) poly(k) + n2Õ(k2) time and outputs three matrices

U, V,W ∈ Rn×k such that,

‖U ⊗ V ⊗W − A‖u ≤ poly(k, log n) min
rank−k A′

‖A′ − A‖u,

holds with probability at least 9/10.

Proof. We first choose a Gaussian matrix S ∈ Rn×n with n = O(n). By applying Corol-

lary 21.12.23, we can reduce the original problem to a “generalized” `1 low rank approximation
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Algorithm 21.38 `1-`1-`2-Low Rank Approximation algorithm, input sparsity time
1: procedure L112TensorLowRankApproxInputSparsity(A, n, k) .

Theorem 21.12.26
2: n← O(n).
3: s1 ← s2 ← s3 ← Õ(k5).
4: Choose S ∈ Rn×n to be a Gaussian matrix.
5: Choose S1 ∈ Rnn×s1 to be a sparse Cauchy transform. . Part (II) of

Theorem 21.12.24
6: Choose S2 ∈ Rnn×s2 to be a sparse Cauchy transform.
7: Choose S3 ∈ Rn2×s3 to be a sparse Cauchy transform.
8: Form Â = AS.
9: Compute Â1S1, Â2S2, and Â3S3

10: Y1, Y2, Y3, C ←L1PolyKSizeReduction(Â, Â1S1, Â2S2, Â3S3, n, n, n, s1, s2, s3, k) .
Algorithm 21.21

11: Create s1k + s2k + s3k variables for each entry of X1, X2, X3.
12: Form objective function ‖(Y1X1)⊗ (Y2X2)⊗ (Y3X3)− C‖2

F .
13: Run polynomial system verifier.
14: return A1S1X1, A2S2X2, A3S3X3

15: end procedure

problem. Next, we use the existence results (Theorem 21.12.24) and polynomial in k size re-

duction (Lemma 21.7.5). At the end, we relax the `1-norm objective function to a Frobenius

norm objective function (Fact 21.7.1).

Theorem 21.12.27. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, there exists an

algorithm which takes nÕ(k)2Õ(k3) time and outputs three matrices U, V,W ∈ Rn×k such that,

‖U ⊗ V ⊗W − A‖u ≤ O(k3/2) min
rank−k A′

‖A′ − A‖u,

holds with probability at least 9/10.

Proof. We first choose a Gaussian matrix S ∈ Rn×n with n = O(n). By applying Corol-

lary 21.12.23, we can reduce the original problem to a “generalized” `1 low rank approximation
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Algorithm 21.39 `1-`1-`2-Low Rank Approximation Algorithm, Õ(k2/3)

1: procedure L112TensorLowRankApproxK(A, n, k) . Theorem 21.12.27
2: n← O(n).
3: s1 ← s2 ← s3 ← Õ(k).
4: Choose S ∈ Rn×n to be a Gaussian matrix.
5: Guess a diagonal matrix S1 ∈ Rnn×s1 with s1 nonzero entries. . Part (III) of

Theorem 21.12.24
6: Guess a diagonal matrix S2 ∈ Rnn×s2 with s2 nonzero entries.
7: Guess a diagonal matrix S3 ∈ Rn2×s3 with s3 nonzero entries.
8: Form Â = AS.
9: Compute Â1S1, Â2S2, and Â3S3

10: Y1, Y2, Y3, C ←L1PolyKSizeReduction(Â, Â1S1, Â2S2, Â3S3, n, n, n, s1, s2, s3, k) .
Algorithm 21.21

11: Create s1k + s2k + s3k variables for each entry of X1, X2, X3.
12: Form objective function ‖(Y1X1)⊗ (Y2X2)⊗ (Y3X3)− C‖1.
13: Run polynomial system verifier.
14: return A1S1X1, A2S2X2, A3S3X3

15: end procedure

problem. Next, we use the existence results (Theorem 21.12.24) and polynomial in k size

reduction (Lemma 21.7.5). At the end, we solve an entry-wise `1 norm objective function

directly.

Theorem 21.12.28. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, let r = Õ(k2).

There is an algorithm which takes O(nnz(A)n)+Õ(n) poly(k) time and outputs three matrices

U, V,W ∈ Rn×r such that

‖U ⊗ V ⊗W − A‖u ≤ poly(log n, k) min
rank−k Ak

‖Ak − A‖u,

holds with probability at least 9/10.
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Algorithm 21.40 `1-`1-`2-Low Rank Approximation Algorithm, Bicriteria Algorithm
1: procedure L112TensorLowRankApproxBicteriteria(A, n, k) .

Theorem 21.12.28
2: n← O(n).
3: s2 ← s3 ← Õ(k5).
4: t2 ← t3 ← Õ(k).
5: r ← s2s3.
6: Choose S ∈ Rn×n to be a Gaussian matrix.
7: Form Â = AS ∈ Rn×n×n.
8: Choose a sketching matrix S2 ∈ Rnn×s2 with s2 nonzero entries (Sparse Cauchy

transform), for each i ∈ {2, 3}. . Part (II) of Theorem 21.12.24
9: Choose a sampling and rescaling diagonal matrix Di according to the Lewis weights

of ÂiSi with ti nonzero entries, for each i ∈ {2, 3}.
10: Form V̂ ∈ Rn×r by setting the (i, j)-th column to be (Â2S2)i.
11: Form Ŵ ∈ Rn×r by setting the (i, j)-th column to be (A3S3)j.
12: Form matrix B ∈ Rr×t2t3 by setting the (i, j)-th column to be the vectorization of

(T2Â2S2)i ⊗ (T3Â3S3)j.
13: Solve minU ‖U ·B − (Â(I, T2, T3))1‖1.
14: return Û , V̂ , Ŵ
15: end procedure

Proof. We first choose a Gaussian matrix S ∈ Rn×n with n = O(n). By applying Corol-

lary 21.12.23, we can reduce the original problem to a “generalized” `1 low rank approximation

problem. Next, we use the existence results (Theorem 21.12.24) and polynomial in k size

reduction (Lemma 21.7.5). At the end, we solve an entry-wise `1 norm objective function

directly.
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21.13 Streaming Setting

One of the computation models which is closely related to the distributed model

of computation is the streaming model. There is a growing line of work in the streaming

model. Some problems are very fundamental in the streaming model such like Heavy Hit-

ters [LNNT16, BCI+16, BCIW16], and streaming numerical linear algebra problems [CW09].

Streaming low rank matrix approximation has been extensively studied by previous work like

[CW09, KL11, GP14, Lib13, KLM+14a, BWZ16, SWZ17]. In this section, we show that there

is a streaming algorithm which can compute a low rank tensor approximation.

In the following, we introduce the turnstile streaming model and the turnstile stream-

ing tensor Frobenius norm low rank approximation problem. The following gives a formal

definition of the computation model we study.

Definition 21.13.1 (Turnstile model). Initially, tensor A ∈ Rn×n×n is an all zero tensor.

In the turnstile streaming model, there is a stream of update operations, and the ith update

operation is in the form (xi, yi, zi, δi) where xi, yi, zi ∈ [n], and δi ∈ R has O(log n) bits.

Each (xi, yi, zi, δi) means that Axi,yi,zi should be incremented by δi. And each entry of A has

at most O(log n) bits at the end of the stream. An algorithm in this computation model

is only allowed one pass over the stream. At the end of the stream, the algorithm stores a

summary of A. The space complexity of the algorithm is the total number of words required

to compute and store this summary while scanning the stream. Here, each word has at most

O(log(n)) bits.

The following is the formal definition of the problem.
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Definition 21.13.2 (Turnstile model Frobenius norm rank-k tensor approximation). Given

tensor A ∈ Rn×n×n, k ∈ N+ and an error parameter 1 > ε > 0, the goal is to design an

algorithm in the streaming model of Definition 21.13.1 such that

1. Upon termination, the algorithm outputs three matrices U∗, V ∗,W ∗ ∈ Rn×k.

2. U∗, V ∗,W ∗ satisft that
∥∥∥∥∥

k∑

i=1

U∗i ⊗ V ∗i ⊗W ∗
i − A

∥∥∥∥∥

2

F

≤ (1 + ε) min
rank−k A′

‖A′ − A‖2
F .

3. The space complexity of the algorithm is as small as possible.

Theorem 21.13.1. Suppose tensor A ∈ Rn×n×n is given in the turnstile streaming model

(see Definition 21.13.1), there is an streaming algorithm (in Algorithm 21.41) which solves

the problem in Definition 21.13.2 with constant success probability. In addition, the space

complexity of the algorithm is poly(k/ε) +O(nk/ε) words.

Proof. Correctness. Similar to the distributed protocol, the correctness of this streaming

algorithm is also implied by Algorithm 21.2 and Algorithm 21.3 (Theorem 21.4.1.) Notice

that at the end of the stream V1 = A1S1 ∈ Rn×s1 , V2 = A2S2 ∈ Rn×s2 , V3 = A3S3 ∈

Rn×s3 , C = A(T1, T2, T3) ∈ Rt1×t2×t3 . It also means that

Y1 = T1A1S1, Y2 = T2A2S2, Y3 = T3A3S3.

According to line 26 of procedure TurnstileStreaming,

X∗1 , X
∗
2 , X

∗
3 = arg min

X1∈Rs1×k,X2∈Rs2×k,X3∈Rs3×k

∥∥∥∥∥
k∑

j=1

(Y1X1)j ⊗ (Y2X2)j ⊗ (Y3X3)j − C
∥∥∥∥∥
F
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According to Lemma 21.4.3, we have
∥∥∥∥∥

k∑

j=1

(Y1X1)j ⊗ (Y2X2)j ⊗ (Y3X3)j − C
∥∥∥∥∥

2

F

=

∥∥∥∥∥
k∑

j=1

(T1A1S1X
∗
1 )j ⊗ (T2A2S2X

∗
2 )j ⊗ (T3A3S3X

∗
3 )j − A(T1, T2, T3)

∥∥∥∥∥

2

F

≤ (1 +O(ε)) min
X1,X2,X3

∥∥∥∥∥
k∑

j=1

(A1S1X1)j ⊗ (A2S2X2)j ⊗ (A3Y3X3)j − A
∥∥∥∥∥

2

F

≤ (1 +O(ε)) min
U,V,W

∥∥∥∥∥
k∑

i=1

Ui ⊗ Vi ⊗Wi − A
∥∥∥∥∥

2

F

,

where the last inequality follows by the proof of Theorem 21.4.1. By scaling a constant of ε,

we complete the proof of correctness.

Space complexity. Since S1, S2, S3 are w1-wise independent, and T1, T2, T3 are w2-

wise independent, the space needed to construct these sketching matrices in line 3 and line 5

of procedure TurnstileStreaming is O(w1 + w2) words, where w1 = O(k), w2 = O(1)

(see [KVW14, CW13, Woo14b, KN14]). The cost to maintain V1, V2, V3 is O(nk/ε) words,

and the cost to maintain C is poly(k/ε) words.

Notice that, since each entry ofA has at mostO(log(sn)) bits, each entry of Y1, Y2, Y3, C

has at most O(log(sn)) bits. Due to Theorem 21.15.2, each entry of X∗1 , X∗2 , X∗3 has at most

O(log(sn)) bits, and the sizes of X∗1 , X∗2 , X∗3 are poly(k/ε) words. Thus the space cost in

line 26 is poly(k/ε) words.

The total space cost is poly(k/ε) +O(nk/ε) words.

Remark 21.13.1. In the Algorithm 21.41, for each update operation, we need O(k/ε) time

to maintain matrices V1, V2, V3, and we need poly(k/ε) time to maintain tensor C. Thus the
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Algorithm 21.41 Turnstile Frobenius Norm Low Rank Approximation Algorithm
1: procedure TurnstileStreaming(k,S)
2: s1 ← s2 ← s3 ← O(k/ε).
3: Construct sketching matrices Si ∈ Rn2×si ,∀i ∈ [3] where entries of S1, S2, S3 are
w1-wise independent random N(0, 1/si) Gaussian variables.

4: t1 ← t2 ← t3 ← poly(k/ε).
5: Construct sparse embedding matrices Ti ∈ Rti×n,∀i ∈ [3] where entries are w2-wise

independent.
6: Initialize matrices:
7: Vi ← {0}n×si , ∀i ∈ [3].
8: C ← {0}t1×t2×t3
9: for i ∈ [l] do
10: Receive update operation (xi, yi, zi, δi) from the data stream S.
11: for r = 1→ s1 do
12: (V1)xi,r ← (V1)xi,r + δi · (S1)(yi−1)n+zi,r

.
13: end for
14: for r = 1→ s2 do
15: (V2)yi,r ← (V2)yi,r + δi · (S2)(zi−1)n+xi,r

.
16: end for
17: for r = 1→ s3 do
18: (V3)zi,r ← (V3)zi,r + δi · (S3)(xi−1)n+yi,r

.
19: end for
20: for r = 1→ t1, p = 1→ t2, q = 1→ t3 do
21: Cr,p,q ← Cr,p,q + δi · (T1)r,xi(T2)p,yi(T3)q,zi .
22: end for
23: end for
24: Compute Y1 ← T1V1, Y2 ← T2V2, Y3 ← T3V3.
25: Compute X∗i ∈ Rsi×k, ∀i ∈ [3] by solving
26: min

X1,X2,X3

‖(Y1X1)⊗ (Y2X2)⊗ (Y3X3)− C‖F
27: Compute U∗ ← V1X

∗
1 , V

∗ ← V2X
∗
2 , W

∗ ← V3X
∗
3 .

28: return U∗, V ∗,W ∗

29: end procedure

update time is poly(k/ε). At the end of the stream, the time to compute

X∗1 , X
∗
2 , X

∗
3 = arg min

X1,X2,X3∈RO(k/ε)×k

∥∥∥∥∥
k∑

j=1

(Y1X1)j ⊗ (Y2X2)j ⊗ (Y3X3)j − C
∥∥∥∥∥
F

,
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is exponential in poly(k/ε) running time since it should use a polynomial system solver.

Instead of computing the rank-k solution, we can solve the following:

α∗ = arg min
α∈Rs1×s2×s3

∥∥∥∥∥
s1∑

i=1

s2∑

j=1

s3∑

l=1

αi,j,l · (Y1)i ⊗ (Y2)j ⊗ (Y3)l − C
∥∥∥∥∥
F

which will then give

s1∑

i=1

s2∑

j=1

s3∑

l=1

α∗i,j,l · (Y1)i ⊗ (Y2)j ⊗ (Y3)l

to be a rank-O(k3/ε3) bicriteria solution.

Further, similar to Theorem 21.4.8, we can solve

min
U∈Rn×s2s3

∥∥∥∥∥
s1∑

i=1

s2∑

j=1

Ui+s1(j−1) ⊗ (Y2)i ⊗ (Y3)j − C
∥∥∥∥∥
F

where C =
∑

iAi(I, T2, T3). Thus, we can obtain a rank-O(k2/ε2) in polynomial time.

Remark 21.13.2. If we choose S1, S2, S3, T1, T2, T3 to be random Cauchy matrices, then we

are able to apply the entry-wise `1 norm low rank tensor approximation algorithm (see

Theorem 21.7.14) in turnstile model.
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21.14 Distributed Setting

Input data to large-scale machine learning and data mining tasks may be distributed

across different machines. The communication cost becomes the major bottleneck of dis-

tributed protocols, and so there is a growing body of work on low rank matrix approximations

in the distributed model [TD99, QOSG02, BCL05, BRB08, MBZ10, FEGK13, PMvdG+13,

KVW14, BKLW14, BLS+16a, BWZ16, WZ16, SWZ17] and also many other machine learn-

ing problems such as clustering, boosting, and column subset selection [BBLM14, BLG+15,

ABW17]. Thus, it is natural to ask whether our algorithm can be applied in the distributed

setting. This section will discuss the distributed Frobenius norm low rank tensor approxi-

mation protocol in the so-called arbitrary-partition model (see, e.g. [KVW14, BWZ16]).

In the following, we extend the definition of the arbitrary-partition model [KVW14]

to fit our tensor setting.

Definition 21.14.1 (Arbitrary-partition model [KVW14]). There are s machines, and the

ith machine holds a tensor Ai ∈ Rn×n×n as its local data tensor. The global data tensor is

implicit and is denoted as A =
∑s

i=1 Ai. Then, we say that A is arbitrarily partitioned into

s matrices distributed in the s machines. In addition, there is also a coordinator. In this

model, the communication is only allowed between the machines and the coordinator. The

total communication cost is the total number of words delivered between machines and the

coordinator. Each word has O(log(sn)) bits.

Now, let us introduce the distributed Frobenius norm low rank tensor approximation

problem in the arbitrary partition model:
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Definition 21.14.2 (Arbitrary-partition model Frobenius norm rank-k tensor approxima-

tion). Tensor A ∈ Rn×n×n is arbitrarily partitioned into smatrices A1, A2, · · · , As distributed

in s machines respectively, and ∀i ∈ [s], each entry of Ai is at most O(log(sn)) bits. Given

tensor A, k ∈ N+ and an error parameter 0 < ε < 1, the goal is to find a distributed protocol

in the model of Definition 21.15.1 such that

1. Upon termination, the protocol leaves three matrices U∗, V ∗,W ∗ ∈ Rn×k on the coor-

dinator.

2. U∗, V ∗,W ∗ satisfies that
∥∥∥∥∥

k∑

i=1

U∗i ⊗ V ∗i ⊗W ∗
i − A

∥∥∥∥∥

2

F

≤ (1 + ε) min
rank−k A′

‖A′ − A‖2
F .

3. The communication cost is as small as possible.

Theorem 21.14.1. Suppose tensor A ∈ Rn×n×n is distributed in the arbitrary partition

model (See Definition 21.15.1). There is a protocol( in Algorithm 21.43) which solves the

problem in Definition 21.15.2 with constant success probability. In addition, the communi-

cation complexity of the protocol is s(poly(k/ε) +O(kn)) words.

Proof. Correctness. The correctness is implied by Algorithm 21.2 and Algorithm 21.3

(Theorem 21.4.1.) Notice that A1 =
∑s

i=1Ai,1, A2 =
∑s

i=1Ai,2, A3 =
∑s

i=1Ai,3, which

means that

Y1 = T1A1S1, Y2 = T2A2S2, Y3 = T3A3S3,

and

C = A(T1, T2, T3).
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According to line 23,

X∗1 , X
∗
2 , X

∗
3 = arg min

X1,X2,X3

∥∥∥∥∥
k∑

j=1

(Y1X1)j ⊗ (Y2X2)j ⊗ (Y3X3)j − C
∥∥∥∥∥
F

.

According to Lemma 21.4.3, we have
∥∥∥∥∥

k∑

j=1

(T1A1S1X
∗
1 )j ⊗ (T2A2S2X

∗
2 )j ⊗ (T3A3S3X

∗
3 )j − A(T1, T2, T3)

∥∥∥∥∥

2

F

≤(1 +O(ε)) min
X1,X2,X3

∥∥∥∥∥
k∑

j=1

(A1S1X1)j ⊗ (A2S2X2)j ⊗ (A3Y3X3)j − A
∥∥∥∥∥

2

F

≤(1 +O(ε)) min
U,V,W

∥∥∥∥∥
k∑

i=1

Ui ⊗ Vi ⊗Wi − A
∥∥∥∥∥

2

F

,

where the last inequality follows by the proof of Theorem 21.4.1. By scaling a constant of ε,

we complete the proof of correctness.

Communication complexity. Since S1, S2, S3 are w1-wise independent, and T1, T2, T3

are w2-wise independent, the communication cost of sending random seeds in line 5 is

O(s(w1 + w2)) words, where w1 = O(k), w2 = O(1) (see [KVW14, CW13, Woo14b, KN14]).

The communication cost in line 18 is s ·poly(k/ε) words due to T1Ai,1S1, T2Ai,2S2, T3Ai,3S3 ∈

Rpoly(k/ε)×O(k/ε) and Ci = Ai(T1, T2, T3) ∈ Rpoly(k/ε)×poly(k/ε)×poly(k/ε).

Notice that, since ∀i ∈ [s] each entry of Ai has at most O(log(sn)) bits, each entry of

Y1, Y2, Y3, C has at most O(log(sn)) bits. Due to Theorem 21.15.2, each entry of X∗1 , X∗2 , X∗3

has at most O(log(sn)) bits, and the sizes of X∗1 , X∗2 , X∗3 are poly(k/ε) words. Thus the

communication cost in line 24 is s · poly(k/ε) words.

Finally, since ∀i ∈ [s], U∗i , V
∗
i ,W

∗
i ∈ Rn×k, the communication here is at most O(skn)

words. The total communication cost is s(poly(k/ε) +O(kn)) words.
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Remark 21.14.1. If we slightly change the goal in Definition 21.15.2 to the following: the co-

ordinator does not need to output U∗, V ∗,W ∗, but each machine i holds U∗i , V ∗i ,W ∗
i such that

U∗ =
∑s

i=1 U
∗
i , V

∗ =
∑s

i=1 V
∗
i ,W

∗ =
∑s

i=1W
∗
i , then the protocol shown in Algorithm 21.43

does not have to do the line 28. Thus the total communication cost is at most s · poly(k/ε)

words in this setting.

Remark 21.14.2. Algorithm 21.43 needs exponential in poly(k/ε) running time since it solves

a polynomial solver in line 23. Instead of solving line 23, we can solve the following opti-

mization problem:

α∗ = arg min
α∈Rs1×s2×s3

∥∥∥∥∥
s1∑

i=1

s2∑

j=1

s3∑

l=1

αi,j,l · (Y1)i ⊗ (Y2)j ⊗ (Y3)l − C
∥∥∥∥∥
F

.

Since it is actually a regression problem, it only takes polynomial running time to get α∗.

And according to Lemma 21.4.5,
s1∑

i=1

s2∑

j=1

s3∑

l=1

α∗i,j,l · (Y1)i ⊗ (Y2)j ⊗ (Y3)l

gives a rank-O(k3/ε3) bicriteria solution.

Further, similar to Theorem 21.4.8, we can solve

min
U∈Rn×s2s3

∥∥∥∥∥
s1∑

i=1

s2∑

j=1

Ui+s1(j−1) ⊗ (Y2)i ⊗ (Y3)j − C
∥∥∥∥∥
F

,

where C =
∑

iAi(I, T2, T3). Thus, we can obtain a rank-O(k2/ε2) in polynomial time.

Remark 21.14.3. If we select sketching matrices S1, S2, S3, T1, T2, T3 to be random Cauchy

matrices, then we are able to compute distributed entry-wise `1 norm rank-k tensor approxi-

mation (see Theorem 21.7.14). The communication cost is still s(poly(k/ε) +O(kn)) words.

If we only require a bicriteria solution, then it only needs polynomial running time.
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Using similar techniques as in the proof of Theorem 21.4.44, we can obtain:

Theorem 21.14.2. Let maxi{ti, di} ≤ n. Given a t1 × t2 × t3 tensor A and three matrices:

a t1 × d1 matrix T1, a t2 × d2 matrix T2, and a t3 × d3 matrix T3. For any δ > 0, if there

exists a solution to

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(T1X1)i ⊗ (T2X2)i ⊗ (T3X3)i − A
∥∥∥∥∥

2

F

:= OPT,

and each entry of Xi can be expressed using O(log n) bits, then there exists an algorithm that

takes poly(log n) · 2O(d1k+d2k+d3k) time and outputs three matrices: X̂1, X̂2, and X̂3 such that

‖(T1X̂1)⊗ (T2X̂2)⊗ (T3X̂3)− A‖2
F = OPT.

21.15 Distributed Setting

Input data to large-scale machine learning and data mining tasks may be distributed

across different machines. The communication cost becomes the major bottleneck of dis-

tributed protocols, and so there is a growing body of work on low rank matrix approximations

in the distributed model [TD99, QOSG02, BCL05, BRB08, MBZ10, FEGK13, PMvdG+13,

KVW14, BKLW14, BLS+16a, BWZ16, WZ16, SWZ17] and also many other machine learn-

ing problems such as clustering, boosting, and column subset selection [BBLM14, BLG+15,

ABW17]. Thus, it is natural to ask whether our algorithm can be applied in the distributed

setting. This section will discuss the distributed Frobenius norm low rank tensor approxi-

mation protocol in the so-called arbitrary-partition model (see, e.g. [KVW14, BWZ16]).

In the following, we extend the definition of the arbitrary-partition model [KVW14]

to fit our tensor setting.
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Definition 21.15.1 (Arbitrary-partition model [KVW14]). There are s machines, and the

ith machine holds a tensor Ai ∈ Rn×n×n as its local data tensor. The global data tensor is

implicit and is denoted as A =
∑s

i=1 Ai. Then, we say that A is arbitrarily partitioned into

s matrices distributed in the s machines. In addition, there is also a coordinator. In this

model, the communication is only allowed between the machines and the coordinator. The

total communication cost is the total number of words delivered between machines and the

coordinator. Each word has O(log(sn)) bits.

Now, let us introduce the distributed Frobenius norm low rank tensor approximation

problem in the arbitrary partition model:

Definition 21.15.2 (Arbitrary-partition model Frobenius norm rank-k tensor approxima-

tion). Tensor A ∈ Rn×n×n is arbitrarily partitioned into smatrices A1, A2, · · · , As distributed

in s machines respectively, and ∀i ∈ [s], each entry of Ai is at most O(log(sn)) bits. Given

tensor A, k ∈ N+ and an error parameter 0 < ε < 1, the goal is to find a distributed protocol

in the model of Definition 21.15.1 such that

1. Upon termination, the protocol leaves three matrices U∗, V ∗,W ∗ ∈ Rn×k on the coor-

dinator.

2. U∗, V ∗,W ∗ satisfies that
∥∥∥∥∥

k∑

i=1

U∗i ⊗ V ∗i ⊗W ∗
i − A

∥∥∥∥∥

2

F

≤ (1 + ε) min
rank−k A′

‖A′ − A‖2
F .

3. The communication cost is as small as possible.
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Theorem 21.15.1. Suppose tensor A ∈ Rn×n×n is distributed in the arbitrary partition

model (See Definition 21.15.1). There is a protocol( in Algorithm 21.43) which solves the

problem in Definition 21.15.2 with constant success probability. In addition, the communi-

cation complexity of the protocol is s(poly(k/ε) +O(kn)) words.

Proof. Correctness. The correctness is implied by Algorithm 21.2 and Algorithm 21.3

(Theorem 21.4.1.) Notice that A1 =
∑s

i=1Ai,1, A2 =
∑s

i=1Ai,2, A3 =
∑s

i=1Ai,3, which

means that

Y1 = T1A1S1, Y2 = T2A2S2, Y3 = T3A3S3,

and

C = A(T1, T2, T3).

According to line 23,

X∗1 , X
∗
2 , X

∗
3 = arg min

X1,X2,X3

∥∥∥∥∥
k∑

j=1

(Y1X1)j ⊗ (Y2X2)j ⊗ (Y3X3)j − C
∥∥∥∥∥
F

.

According to Lemma 21.4.3, we have
∥∥∥∥∥

k∑

j=1

(T1A1S1X
∗
1 )j ⊗ (T2A2S2X

∗
2 )j ⊗ (T3A3S3X

∗
3 )j − A(T1, T2, T3)

∥∥∥∥∥

2

F

≤(1 +O(ε)) min
X1,X2,X3

∥∥∥∥∥
k∑

j=1

(A1S1X1)j ⊗ (A2S2X2)j ⊗ (A3Y3X3)j − A
∥∥∥∥∥

2

F

≤(1 +O(ε)) min
U,V,W

∥∥∥∥∥
k∑

i=1

Ui ⊗ Vi ⊗Wi − A
∥∥∥∥∥

2

F

,
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where the last inequality follows by the proof of Theorem 21.4.1. By scaling a constant of ε,

we complete the proof of correctness.

Communication complexity. Since S1, S2, S3 are w1-wise independent, and T1, T2, T3

are w2-wise independent, the communication cost of sending random seeds in line 5 is

O(s(w1 + w2)) words, where w1 = O(k), w2 = O(1) (see [KVW14, CW13, Woo14b, KN14]).

The communication cost in line 18 is s ·poly(k/ε) words due to T1Ai,1S1, T2Ai,2S2, T3Ai,3S3 ∈

Rpoly(k/ε)×O(k/ε) and Ci = Ai(T1, T2, T3) ∈ Rpoly(k/ε)×poly(k/ε)×poly(k/ε).

Notice that, since ∀i ∈ [s] each entry of Ai has at most O(log(sn)) bits, each entry of

Y1, Y2, Y3, C has at most O(log(sn)) bits. Due to Theorem 21.15.2, each entry of X∗1 , X∗2 , X∗3

has at most O(log(sn)) bits, and the sizes of X∗1 , X∗2 , X∗3 are poly(k/ε) words. Thus the

communication cost in line 24 is s · poly(k/ε) words.

Finally, since ∀i ∈ [s], U∗i , V
∗
i ,W

∗
i ∈ Rn×k, the communication here is at most O(skn)

words. The total communication cost is s(poly(k/ε) +O(kn)) words.

Remark 21.15.1. If we slightly change the goal in Definition 21.15.2 to the following: the co-

ordinator does not need to output U∗, V ∗,W ∗, but each machine i holds U∗i , V ∗i ,W ∗
i such that

U∗ =
∑s

i=1 U
∗
i , V

∗ =
∑s

i=1 V
∗
i ,W

∗ =
∑s

i=1W
∗
i , then the protocol shown in Algorithm 21.43

does not have to do the line 28. Thus the total communication cost is at most s · poly(k/ε)

words in this setting.

Remark 21.15.2. Algorithm 21.43 needs exponential in poly(k/ε) running time since it solves

a polynomial solver in line 23. Instead of solving line 23, we can solve the following opti-
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mization problem:

α∗ = arg min
α∈Rs1×s2×s3

∥∥∥∥∥
s1∑

i=1

s2∑

j=1

s3∑

l=1

αi,j,l · (Y1)i ⊗ (Y2)j ⊗ (Y3)l − C
∥∥∥∥∥
F

.

Since it is actually a regression problem, it only takes polynomial running time to get α∗.

And according to Lemma 21.4.5,

s1∑

i=1

s2∑

j=1

s3∑

l=1

α∗i,j,l · (Y1)i ⊗ (Y2)j ⊗ (Y3)l

gives a rank-O(k3/ε3) bicriteria solution.

Further, similar to Theorem 21.4.8, we can solve

min
U∈Rn×s2s3

∥∥∥∥∥
s1∑

i=1

s2∑

j=1

Ui+s1(j−1) ⊗ (Y2)i ⊗ (Y3)j − C
∥∥∥∥∥
F

,

where C =
∑

iAi(I, T2, T3). Thus, we can obtain a rank-O(k2/ε2) in polynomial time.

Remark 21.15.3. If we select sketching matrices S1, S2, S3, T1, T2, T3 to be random Cauchy

matrices, then we are able to compute distributed entry-wise `1 norm rank-k tensor approxi-

mation (see Theorem 21.7.14). The communication cost is still s(poly(k/ε) +O(kn)) words.

If we only require a bicriteria solution, then it only needs polynomial running time.

Using similar techniques as in the proof of Theorem 21.4.44, we can obtain:

Theorem 21.15.2. Let maxi{ti, di} ≤ n. Given a t1 × t2 × t3 tensor A and three matrices:

a t1 × d1 matrix T1, a t2 × d2 matrix T2, and a t3 × d3 matrix T3. For any δ > 0, if there

exists a solution to

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(T1X1)i ⊗ (T2X2)i ⊗ (T3X3)i − A
∥∥∥∥∥

2

F

:= OPT,
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and each entry of Xi can be expressed using O(log n) bits, then there exists an algorithm that

takes poly(log n) · 2O(d1k+d2k+d3k) time and outputs three matrices: X̂1, X̂2, and X̂3 such that

‖(T1X̂1)⊗ (T2X̂2)⊗ (T3X̂3)− A‖2
F = OPT.
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Algorithm 21.42 Distributed Frobenius Norm Low Rank Approximation Protocol
1: procedure DistributedFnormLowRankApproxProtocol(A,ε,k,s)
2: A ∈ Rn×n×n was arbitrarily partitioned into s matrices A1, · · · , As ∈ Rn×n×n on s

machines.
3: Coordinator Machines i
4: Chooses a random seed.
5: Sends it to all machines.
6: −−−−−−−−− >
7: si ← O(k/ε), ∀i ∈ [3].
8: Agree on Si ∈ Rn2×si , ∀i ∈ [3]
9: which are w1-wise independent random
10: N(0, 1/si) Gaussian matrices.
11: ti ← poly(k/ε), ∀i ∈ [3].
12: Agree on Ti ∈ Rti×n, ∀i ∈ [3]
13: which are w2-wise independent random
14: sparse embedding matrices.
15: Compute Yi,1 ← T1Ai,1S1,
16: Yi,2 ← T2Ai,2S2, Yi,3 ← T3Ai,3S3.
17: Send Yi,1, Yi,2, Yi,3 to the coordinator.
18: Send Ci ← Ai(T1, T2, T3) to the coordina-

tor.
19: < −−−−−−−−−
20: Compute Y1 ←

s∑
i=1

Yi,1, Y2 ←
s∑
i=1

Yi,2,

21: Y3 ←
s∑
i=1

Yi,3, C ←
s∑
i=1

Ci.

22: Compute X∗1 , X∗2 , X∗3 by solving
23: min

X1,X2,X3

‖(Y1X1)⊗ (Y2X2)⊗ (Y3X3)− C‖F
24: Send X∗1 , X∗2 , X∗3 to machines.
25: −−−−−−−−− >
26: Compute U∗i ← Ai,1S1X

∗
1 ,

27: V ∗i ← Ai,2S2X
∗
2 , W

∗
i ← Ai,3S3X

∗
3 .

28: Send U∗i , V ∗i ,W ∗
i to the coordinator.

29: < −−−−−−−−−
30: Compute U∗ ←∑s

i=1 U
∗
i .

31: Compute V ∗ ←∑s
i=1 V

∗
i .

32: Compute W ∗ ←∑s
i=1 W

∗
i .

33: return U∗, V ∗, W ∗.
34: end procedure
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Algorithm 21.43 Distributed Frobenius Norm Low Rank Approximation Protocol
1: procedure DistributedFnormLowRankApproxProtocol(A,ε,k,s)
2: A ∈ Rn×n×n was arbitrarily partitioned into s matrices A1, · · · , As ∈ Rn×n×n on s

machines.
3: Coordinator Machines i
4: Chooses a random seed.
5: Sends it to all machines.
6: −−−−−−−−− >
7: si ← O(k/ε), ∀i ∈ [3].
8: Agree on Si ∈ Rn2×si , ∀i ∈ [3]
9: which are w1-wise independent random
10: N(0, 1/si) Gaussian matrices.
11: ti ← poly(k/ε), ∀i ∈ [3].
12: Agree on Ti ∈ Rti×n, ∀i ∈ [3]
13: which are w2-wise independent random
14: sparse embedding matrices.
15: Compute Yi,1 ← T1Ai,1S1,
16: Yi,2 ← T2Ai,2S2, Yi,3 ← T3Ai,3S3.
17: Send Yi,1, Yi,2, Yi,3 to the coordinator.
18: Send Ci ← Ai(T1, T2, T3) to the coordina-

tor.
19: < −−−−−−−−−
20: Compute Y1 ←

s∑
i=1

Yi,1, Y2 ←
s∑
i=1

Yi,2,

21: Y3 ←
s∑
i=1

Yi,3, C ←
s∑
i=1

Ci.

22: Compute X∗1 , X∗2 , X∗3 by solving
23: min

X1,X2,X3

‖(Y1X1)⊗ (Y2X2)⊗ (Y3X3)− C‖F
24: Send X∗1 , X∗2 , X∗3 to machines.
25: −−−−−−−−− >
26: Compute U∗i ← Ai,1S1X

∗
1 ,

27: V ∗i ← Ai,2S2X
∗
2 , W

∗
i ← Ai,3S3X

∗
3 .

28: Send U∗i , V ∗i ,W ∗
i to the coordinator.

29: < −−−−−−−−−
30: Compute U∗ ←∑s

i=1 U
∗
i .

31: Compute V ∗ ←∑s
i=1 V

∗
i .

32: Compute W ∗ ←∑s
i=1 W

∗
i .

33: return U∗, V ∗, W ∗.
34: end procedure
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Chapter 22

Orthogonal Tensor Decomposition

A recent work [Wang, Tung, Smola, and Anandkumar, NIPS 2015] gives the fastest

known algorithms for orthogonal tensor decomposition with provable guarantees. Their

algorithm is based on computing sketches of the input tensor, which requires reading the

entire input. We show in a number of cases one can achieve the same theoretical guarantees

in sublinear time, i.e., even without reading most of the input tensor. Instead of using

sketches to estimate inner products in tensor decomposition algorithms, we use importance

sampling. To achieve sublinear time, we need to know the norms of tensor slices, and we

show how to do this in a number of important cases. For symmetric tensors A =
∑k

i=1 λiu
⊗p
i

with λi > 0 for all i, we estimate such norms in sublinear time whenever p is even. For

the important case of p = 3 and small values of k, we can also estimate such norms. For

asymmetric tensors sublinear time is not possible in general, but we show if the tensor slice

norms are just slightly below ‖A‖F then sublinear time is again possible. One of the main

strengths of our work is empirical - in a number of cases our algorithm is orders of magnitude

faster than existing methods with the same accuracy.
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22.1 Introduction

Tensors are a powerful tool for dealing with multi-modal and multi-relational data.

In recommendation systems, often using more than two attributes can lead to better rec-

ommendations. This could occur, for example, in Groupon where one could look at users,

activities, and time (season, time of day, weekday/weekend, etc.), as three attributes to

base predictions on (see [Moi14b] for a discussion). Similar to low rank matrix approxima-

tion, we seek a tensor decomposition to succinctly store the tensor and to apply it quickly.

A popular decomposition method is the canonical polyadic decomposition, i.e., the CAN-

DECOMP/PARAFAC (CP) decomposition, where the tensor is decomposed into a sum of

rank-1 components [Har70]. We refer the reader to [WTSA15], where applications of CP in-

cluding data mining, computational neuroscience, and statistical learning for latent variable

models are mentioned.

A natural question, given the emergence of large data sets, is whether such decom-

positions can be performed quickly. There are a number of works on this topic [Tso10,

PTC13, CV14, KPHF12, HNH+13, BS15, WLSH14]. Most related to ours are several recent

works of Wang et al. [WTSA15] and Tung et al. [TWZS15], in which it is shown how

to significantly speed up this decomposition for orthogonal tensor decomposition using the

randomized technique of linear sketching [PP13]. In this work we also focus on orthogonal

tensor decomposition. The idea in [WTSA15] is to create a succinct sketch of the input

tensor, from which one can then perform implicit tensor decomposition by approximating

inner products in existing decomposition methods.

Existing methods, like the power method, involve computing the inner product of

a vector, which is now a rank-1 matrix, with another vector, which is now a slice of a

1797



tensor. Such inner products can be approximated much faster by instead computing the

inner product of the sketched vectors, which have significantly lower dimension. One can

also replace the sketching with sampling to approximate inner products; we discuss some

sampling schemes [Tso10, BS15] below and compare them to our work.
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22.1.1 Our Contributions

We show in a number of important cases, one can achieve the same theoretical guar-

antees in the work of Wang et al. [WTSA15] (which was applied later by Tung et al.

[TWZS15]), in sublinear time, that is, without reading most of the input tensor. While

previous work needs to walk through the input at least once to create a sketch, we show one

can instead perform importance sampling of the tensor based on the current iterate, together

with reading a few entries of the tensor which help us learn the norms of tensor slices. We use

a version of `2-sampling for our importance sampling. One source of speedup in our work

and in Wang et al. [WTSA15] comes from approximating inner products in iterations in

the robust tensor power method (see below). To estimate 〈u, v〉 for n-dimensional vectors u

and v, their work computes sketches S(u) and S(v) and approximates 〈u, v〉 ≈ 〈S(u), S(v)〉.

Instead, if one has u, one can sample coordinates i proportional to u2
i , which is known as

`2-sampling [MW10, CHW12]. One estimates 〈u, v〉 as vi‖u‖22
ui

, which is unbiased and has

variance O(‖u‖2
2‖v‖2

2). These guarantees are similar to those using sketching, though the

constants are significantly smaller (see below), and unlike sketching, one does not need to

read the entire tensor to perform such sampling.

Symmetric Tensors. As in [WTSA15], we focus on orthogonal tensor decomposition of

symmetric tensors, though we explain the extension to the asymmetric case below. Symmet-

ric tensors arise in engineering applications, for example, to represent the symmetric tensor

field of stress, strain, and anisotropic conductivity. Another example is diffusion MRI in

which one uses symmetric tensors to describe diffusion in the brain or other parts of the

body. In spectral methods symmetric tensors are exactly those that come up in Latent
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Dirichlet Allocation problems. Although one can symmetrize a tensor using simple matrix

operations (see, e.g., [AGH+14]), we cannot do this in sublinear time.

In orthogonal tensor decompostion of a symmetric matrix, there is an underlying

n × n · · ·n tensor A∗ =
∑k

i=1 λiv
⊗p
i , and the input tensor is A = A∗ + E, where ‖E‖2 ≤ ε.

We have λ1 > λ2 > · · · > λk > 0 and that {vi}ki=1 is a set of orthonormal vectors. The

goal is to reconstruct approximations v̂i to the vectors vi, and approximations λ̂i to the λi.

Our results naturally generalize to tensors with different lengths in different dimensions. For

simplicity, we first focus on order p = 3.

In the robust tensor power method [AGH+14], one generates a random initial vector

u, and performs T update steps û = A(I, u, u)/‖A(I, u, u)‖2, where

A(I, u, u) =
[ n∑

j=1

n∑

`=1

A1,j,`uju`,
n∑

j=1

n∑

`=1

A2,j,`uju`, · · · ,
n∑

j=1

n∑

`=1

An,j,`uju`

]
.

The matrices A1,∗,∗, . . . , An,∗,∗ are referred to as the slices. The vector û typically converges

to the top eigenvector in a small number of iterations, and one often chooses a small number

L of random initial vectors to boost confidence. Successive eigenvectors can be found by

deflation. The algorithm and analysis immediately extend to higher order tensors.

We use `2-sampling to estimate A(I, u, u). To achieve the same guarantees as in

[WTSA15], for typical settings of parameters (constant k and several eigenvalue assumptions)

naïvely one needs to take O(n2) `2-samples from u for each slice in each iteration, resulting

in Ω(n3) time and destroying our sublinearity. We observe that if we additionally knew

the squared norms ‖A1,∗,∗‖2
F , . . . , ‖An,∗,∗‖2

F , then we could take O(n2) `2-samples in total,

where we take ‖Ai,∗,∗‖
2
F

‖A‖2F
·O(n2) `2-samples from the i-th slice in expectation. Perhaps in some
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applications such norms are known or cheap to compute in a single pass, but without further

assumptions, how can one obtain such norms in sublinear time?

If A is a symmetric tensor, then Aj,j,j =
∑k

i=1 λiv
3
i,j + Ej,j,j. Note that if there

were no noise, then we could read off approximations to the slice norms, since ‖Aj,∗,∗‖2
F =

∑k
i=1 λ

2
i v

2
i,j, and so A2/3

j,j,j is an approximation to ‖Aj,∗,∗‖2
F up to factors depending on k and

the eigenvalues. However, there is indeed noise. To obtain non-trivial guarantees, the robust

tensor power method assumes ‖E‖2 = O(1/n), where

‖E‖2 = sup
‖u‖2=‖v‖2=‖w‖2=1

E(u, v, w) = sup
‖u‖2=‖v‖2=‖w‖2=1

n∑

i=1

n∑

j=1

n∑

k=1

Ei,j,kuivjwk,

which in particular implies |Ej,j,j| = O(1/n). This assumption comes from the Θ(1/
√
n)-

correlation of the random initial vector to v1. This noise bound does not trivialize the

problem; indeed, Ej,j,j can be chosen adversarially subject to |Ej,j,j| = O(1/n), and if the

vi were random unit vectors and the λi and k were constant, then
∑k

i=1 λiv
3
i,j = O(1/n3/2),

which is small enough to be completely masked by the noise Ej,j,j. Nevertheless, there is a

lot of information about the slice norms. Indeed, suppose k = 1, λ1 = Θ(1), and ‖A‖F = 1.

Then Aj,j,j = Θ(v3
1,j) + Ej,j,j, and one can show ‖Aj,∗,∗‖2

F = λ2
1v

2
1,j ± O(1/n). Again using

that |Ej,j,j| = O(1/n), this implies ‖Aj,∗,∗‖2
F = ω(n−2/3) if and only if Aj,j,j = ω(1/n), and

therefore one would notice this by reading Aj,j,j. There can only be o(n2/3) slices j for which

‖Aj,∗,∗‖2
F = ω(n−2/3), since ‖A‖2

F = 1. Therefore, for each of them we can afford to take

O(n2) `2-samples and still have an O(n2+2/3) = o(n3) sublinear running time. The remaining

slices all have ‖Aj,∗,∗‖2
F = O(n−2/3), and therefore if we also take O(n1/3) `2-samples from

every slice, we will also estimate the contribution to A(I, u, u) from these slices well. This

is also a sublinear O(n2+1/3) number of samples.
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While the previous paragraph illustrates the idea for k = 1, for k = 2 we need to

read more than the Aj,j,j entries to decide how many `2-samples to take from a slice. The

analysis is more complicated because of sign cancellations. Even for k = 2 we could have

Aj,j,j = λ1v
3
1,j + λ2v

3
2,j + Ej,j,j, and if v1,j = −v2,j then we may not detect that ‖Aj,∗,∗‖2

F is

large. We fix this by also reading the entries Ai,j,j, Aj,i,j, and Aj,j,i for every i and j. This is

still only O(n2) entries and so we are still sublinear time. Without additional assumptions,

we only give a formal analysis of this for k ∈ {1, 2}.

More importantly, if instead of third-order symmetric tensors we consider p-th order

symmetric tensors for even p, we do not have such sign cancellations. In this case we do not

have any restrictions on k for estimating slice norms. One does need to show after deflation,

the slice norms can still be estimated; this holds because the eigenvectors and eigenvalues

are estimated sufficiently well.

We also give several per-iteration optimizations of our algorithm, based on careful

implementations of generating a sorted list of random numbers and random permutations.

We find empirically (see below) that we are much faster per iteration than previous sketching

algorithms, in addition to not having to read the entire input tensor in a preprocessing step.

Asymmetric Tensors: For asymmetric tensors, e.g., 3rd-order tensors of the form
∑k

i=1 λiui ⊗ vi ⊗ wi, it is impossible to achieve sublinear time in general, since it is hard

to distinguish A = ei ⊗ ej ⊗ ek for random i, j, k ∈ {1, 2, . . . , n} from A = 0⊗3. We make

a necessary and sufficient assumption that all the entries of the ui are less than n−γ for

an arbitrarily small constant γ > 0. In this case, all slice norms are o(n−γ) and by taking

O(n2−γ) samples from each slice we achieve sublinear time. We can also apply such an

assumption to symmetric tensors.
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Empirical Results. One of the main strengths of our work is our empirical results. In each

iteration we approximate A(I, u, u) a total of B times independently and take the median

to increase our confidence. In the notation of [WTSA15], B corresponds to the number of

independent sketches used. While the median works empirically, there are some theoretical

issues with it discussed in Remark 22.3.1. Also let b be the total number of `2-samples we

take per iteration, which corresponds to the sketch size in the notation of [WTSA15]. We

found that empirically we can set B and b to be much smaller than that in [WTSA15] and

achieve the same error guarantees. One explanation for this is that the variance bound we

obtain via importance sampling is a factor of 43 = 64 smaller than in [WTSA15], and for

p-th order tensors, a factor of 4p smaller.

To give an idea of how much smaller we can set b and B, to achieve roughly the same

squared residual norm error on the synthetic data sets of dimension 1200 for finding a good

rank-1 approximation, the algorithm of [WTSA15] would need to set parameters b = 216 and

B = 50, whereas we can set b = 10 × 1200 and B = 5. Our running time is 2.595 seconds

and we have no preprocessing time, whereas the algorithm of [WTSA15] has a running time

of 116.3 seconds and 55.34 seconds of preprocessing time. We refer the reader to Table 22.1

in Section 22.4. In total we are over 50 times faster.

We also demonstrate our algorithm in a real-world application using real datasets,

even when the datasets are sparse. Namely, we consider a spectral algorithm for Latent

Dirichlet Allocation [AGH+14, AFH+12] which uses tensor decomposition as its core com-

putational step. We show a significant speedup can be achieved on tensors occurring in

applications such as LDA, and we refer the reader to Table 22.2 in Section 22.4. For ex-

ample, on the wiki [WTSA15] dataset with a tensor dimension of 200, we run more than 5
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times faster than the sketching-based method.

Previous Sampling Algorithms. Previous sampling-based schemes of [Tso10, BS15] do

not achieve our guarantees, because [Tso10] uses uniform sampling, which does not work for

tensors with spiky elements, while the non-uniform sampling in [BS15] requires touching all

of the entries in the tensor and making two passes over it.
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22.2 Notation.

Let [n] denote {1, 2, . . . , n}. Let ⊗ denote the outer product, and u⊗3 = u ⊗ u ⊗ u.

Let A ∈ Rnp , where p is the order of tensor A and n is the dimension of tensor A. Let

〈A,B〉 denote the entry-wise inner product between two tensors A,B ∈ Rnp , e.g., 〈A,B〉 =
∑n

i1=1

∑n
i2=1 · · ·

∑n
ip=1Ai1,i2,··· ,ip ·Bi1,i2,··· ,ip . For a tensor A ∈ Rnp ,

‖A‖F =




n∑

i1=1

n∑

i2=1

· · ·
n∑

ip=1

A2
i1,··· ,ip




1
2

.

For random variable X let E[X] denote its expectation of X and V[X] its variance

(if these quantities exist).

For two functions f, g, we use the shorthand f . g (resp. &) to indicate that f ≤ Cg

(resp. ≥) for some absolute constant C.
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22.3 Main Results

We explain the details of our main results in this section. First, we state the im-

portance sampling lemmas for our tensor application. Second, we explain how to quickly

produce a list of random tuples according to a certain distribution needed by our algorithm.

Third, we combine the first and the second parts to get a fast way of approximating tensor

contractions, which are used as subroutines in each iteration of the robust tensor power

method. We then provide our main theoretical results, and how to estimate the slice norms

needed by our main algorithm.

Importance sampling lemmas. Approximating an inner product is a simple application

of importance sampling. Tensor contraction A(u, v, w) can be regarded as the inner product

between two n3-dimensional vectors, and thus importance sampling can be applied. Lemma

22.3.1 suggests that we can take a few samples according to their importance, e.g., we can

sample Ai,j,kuivjwk with probability |uivjwk|2/‖u‖2
2‖v‖2

2‖w‖2
2. As long as the number of sam-

ples is large enough, it will approximate the true tensor contraction
∑

i

∑
j

∑
k Ai,j,kuivjwk

with small variance after a final rescaling.

Lemma 22.3.1. Suppose random variable X = Ai1,··· ,ip
∏p

j=1 uj,ij/
∏p

j=1 qj,ij with probability
∏p

j=1 qj,ij where qj,ij = |uj,ij |2/‖uj‖2
2,∀j ∈ [n],∀ij ∈ [n], and we take L i.i.d. samples X,

denote X1, X2, · · · , XL. Let Y = 1
L

∑L
`=1 X`. Then 1. E[Y ] = 〈A, u1⊗ u2⊗ · · · ⊗ up〉, and 2.

V[Y ] ≤ 1
L
‖A‖2

F · ‖u1 ⊗ u2 ⊗ · · · ⊗ up‖2
F .

Similarly, we also have importance sampling for each slice Ai,∗,∗, i.e., “face” of A.

Lemma 22.3.2. For all i1 ∈ [n], suppose random variableX i1 = Ai1,i2,··· ,ip
∏p

j=2 uj,ij/
∏p

j=2 qj,ij

with probability
∏p

j=2 qj,ij where qj,ij = |uj,ij |2/‖uj‖2
2, ∀j ∈ {2, 3, · · · , n}, ∀ij ∈ [n] and we
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take Li1 i.i.d. samples of X i1 , say X i1
1 , X

i1
2 , · · · , X i1

L . Let Y i1 = 1
Li1

∑L
`=1X

i
`. Then 1.

E[Y i] = 〈Ai1,∗,··· ,∗, u2 ⊗ · · · ⊗ up〉, and 2. V[Y i1 ] ≤ 1
Li1
‖Ai,∗,··· ,∗‖2

F‖u2 ⊗ · · · ⊗ up‖2
F .

Generating importance samples in linear time. We need an efficient way to sample

indices of a vector based on their importance. We view this problem as follows: imagine [0, 1]

is divided into z “bins” with different lengths corresponding to the probability of selecting

each bin, where z is the number of indices in a probability vector. We generate m random

numbers uniformly from [0, 1] and see which bin each random number belongs to. If a random

number is in bin i, we sample the i-th index of a vector.

There are known algorithms [BP12, Wal77] to solve this problem in O(z+m) time. We

give an alternative algorithm GenRandTuples in Appendix 22.5. Our algorithm combines

Bentley and Saxe’s algorithm [BS80b] for efficiently generating m sorted random numbers in

O(m) time, and Knuth’s shuffling algorithm [Knu69] for generating a random permutation

of [m] in O(m) time. We use the notation CumProb(v, w) and CumProb(u, v, w) for the

algorithm creating the distributions on Rn2 and Rn3 of Lemma 22.3.2 and Lemma 22.3.1,

respectively. We note that naïvely applying previous algorithms would require z = O(n2)

and z = O(n3) time to form these two distributions, but we can take O(m) samples from

them implicitly in O(n+m) time.

Fast approximate tensor contractions. We propose a fast way to approximately com-

pute tensor contractions A(I, v, w) and A(u, v, w) with a sublinear number of samples of

A, as shown in Alogrithm 22.3 and Algorithm 22.4. Naïvely computing tensor contractions

using all of the entries of A gives an exact answer but could take n3 time. Also, to keep
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our algorithm sublinear time, we never explicitly compute the deflated tensor; rather we

represent it implicitly and sample from it.

The following theorem gives the error bounds of ApproxTIvw and ApproxTuvw

(in Algorithm 22.3 and 22.4). Let b̂i be the number samples we take from slice i ∈ [n] in

ApproxTIvw, and let b̂ denote the total number of samples in our algorithm.

Theorem 22.3.3. For any p ≥ 3, given tensor A ∈ Rnp , for any unit vector u, v ∈ Rn,

there is an algorithm that takes b̂i samples from i-th slice and it is able to output a

value A(u, · · · , u) ∈ R and a vector A(I, u, · · · , u) ∈ Rn such that for any b > 0 if

b̂i ≥ b‖Ai,∗,··· ,∗‖2
F/‖A‖2

F then the following bounds hold:

E[‖E(I, u, · · · , u)‖2
2] ≤ n‖A‖2

F/b, and E[|E(u, · · · , u)|2] ≤ ‖A‖2
F/b. (22.1)

and

E[|v>E(I, u, · · · , u)|2] ≤ ‖A‖2
F/b. (22.2)

where E := A− A.

Eq. (22.2) can be obtained by observing that each random variable [E(I, u, · · · , u)]i

is independent and so E[|v>E(I, u, · · · , u)|2] =
∑n

i=1 v
2
i
‖Ai,∗,··· ,∗‖2F

b̂i
≤ (
∑n

i=1 v
2
i )
‖A‖2F
b

=
‖A‖2F
b

.

Remark 22.3.1. In [WTSA15], the coordinate-wise median of B estimates to the A(I, v, w) is

used to boost the success probability. There appears to be a gap [Wan16] in their argument

as it is unclear how to achieve (22.2) after taking a coordinate-wise median, which is (7) in

Theorem 1 of [WTSA15]. To fix this, we instead pay a factor proportional to the number of

iterations in Algorithm 22.5 in the sample complexity b̂. Since we have expectation bounds

on the quantities in Theorem 22.3.3, we can apply a Markov bound and a union bound across
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Figure 22.1: Sketching v.s. importance sampling. Running time with growing dimension

all iterations. This suffices for our main theorem concerning sublinear time below. One can

obtain high probability bounds by running Algorithm 22.5 multiple times independently, and

taking coordinate-wise medians of the output eigenvectors. Empirically, our algorithm works

even if we take the median in each iteration, which is done in line 10 in Algorithm 22.3.

Replacing Theorem 1 in [WTSA15] by our Theorem 22.3.3, the rest of the analysis

in [WTSA15] is unchanged. Our Algorithm 22.5 is the same as the sketching-based robust

tensor power method in [WTSA15], except for lines 9, 11, 15, and 17, where the sketching-

based approximate tensor contraction is replaced by our importance sampling procedures

ApproxTuvw and ApproxTIvw. Rather than use Theorem 2 of Wang et al. [WTSA15],

the main theorem concerning the correctness of the robust tensor decomposition algorithm,

we use a recent improvement of it by Wang and Anandkumar in Theorems 4.1 and 4.2

of [WA16], which states general guarantees for any algorithm satisfying per iteration noise

guarantees. These theorems also remove many of the earlier eigenvalue assumptions in

Theorem 2 of [WTSA15].

1809



We combine techniques from [WTSA15], [WA16] and [AGH+14] and extend the robust

tensor power method analysis to any order p ≥ 3.

Theorem 22.3.4. (Main, Abitrary order robust tensor power method) For any p ≥ 3, k ≥ 1,

for any tensor A = A∗+E ∈ Rnp , where A∗ =
∑k

i=1 λiv
⊗p
i with λi > 0 and orthonormal basis

vectors {v1, . . . , vk} ⊆ Rn, n ≥ k. Let λ1, λk be the largest and smallest values in {λi}ki=1 and

{λ̂i, v̂i}ki=1 be outputs of the robust tensor power method. For any sufficiently large constant

c0 ≥ 100, there exists a sufficiently small constant c > 0, for any ε ∈ (0, cλk/(c0p
2kn(p−2)/2)

if E satisfies that

‖E‖2 ≤ ε/(c0

√
n) (22.3)

and T = Ω(log(λ1n/ε)), L = Ω(k log(k)), then with probability at least 9/10, there exists a

permutation π : [k]→ [k], such that ∀i ∈ [k],

|λi − λ̂π(i)| ≤ ε, ‖vi − v̂π(i)‖2 ≤ ε/λi. (22.4)

Combining the previous theorem with our importance sampling analysis, we obtain:

Theorem 22.3.5 (Main, Sublinear time importance sampling robust tensor power method).

Assume the notation of Theorem 22.3.4. For p = 3, there exists some sufficiently small

constant γ > 0 such that k ∈ [1, nγ] and λk ≥ 1/nγ, then there exists some sufficiently small

constant α ∈ (0, 1− 10γ), if E satisfies (22.3), there exists an algorithm takes O(n3−α) time

and uses O(nk) space such that with probability 9/10 the output λ̂i, v̂i satisfies (22.4).

Proof. For each j ∈ [k], suppose we take b̂(j) =
∑n

i=1 b̂
(j)
i samples during the power iterations
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for recovering λ̂j and v̂j, the number of samples for slice i is

b̂
(j)
i & b‖[A−

j−1∑

l=1

λ̂lv̂
⊗3
l ]i,∗,∗‖2

F/‖A−
j−1∑

l=1

λ̂lv̂
⊗3
l ‖2

F

where b & m · n‖A‖2
F/ε

2 and m ≥ k2LT . Then the output guarantees of Theorem 22.3.4

hold for Algorithm 22.5 with constant probability. Our total time is O(mb̂) and the space is

O(nk), where b̂ = maxj∈[k] b̂
(j).

In Theorem 22.3.3, if we require b̂i = b‖Ai,∗,··· ,∗‖2
F/‖A‖2

F , we need to scan the entire

tensor to compute ‖Ai,∗,··· ,∗‖2
F , making our algorithm not sublinear. With the following

mild assumption in Theorem 22.3.6, our algorithm is sublinear when sampling uniformly

(̂bi = b/n) without computing ‖Ai,∗,··· ,∗‖2
F :

Theorem 22.3.6 (Bounded slice norm). There exists a sufficiently small constant γ > 0

and a constant β ∈ (0, 1], there exists a constant α > 0(that depends on γ, β) such that

for any order-p tensor A = A∗ + E ∈ Rnp with rank(A∗) ≤ nγ, p ≤ nγ, λk ≥ 1/nγ,

‖Ai,∗,··· ,∗‖2
F ≤ 1

nβ
‖A‖2

F for all i ∈ [n], and E satisfies (22.3), Algorithm 22.5 takes O(np−α)

time.

The condition α ∈ (0, 1] is a practical one. When α = 1, all tensor slices have equal

Frobenius norm. The case α = 0 only occurs when ‖Ai,∗,··· ,∗‖F = ‖A‖F ; i.e., all except one

slice is zero. This theorem can also be applied to asymmetric tensors, since the analysis

in [WTSA15] can be extended to them.

For certain cases, we can remove the bounded slice norm assumption. The idea is

to take a sublinear number of samples from the tensor to obtain upper bounds on all slice
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norms. As outlined in Section 22.1, when p is even, because we do not have sign cancellations

we can show:

Theorem 22.3.7 (Even order, informal of Theorem 22.9.14). There is a constant α > 0 and

a sufficiently small constant γ > 0, such that, for any even order-p tensor A = A∗+E ∈ Rnp

with rank(A∗) ≤ nγ, p ≤ nγ and λk ≥ 1/nγ and E satisfying (22.3), Algorithm 22.5 runs in

O(np−α) time.

As outlined in Section 22.1, for p = 3 and small k we can take sign considerations

into account:

Theorem 22.3.8 (Low rank). There is a constant α > 0 such that for any symmetric tensor

A = A∗ + E ∈ Rn3 with E satisfying (22.3) and rank(A∗) ≤ 2 and λk ≥ 1/nγ, Algorithm

22.5 runs in O(n3−α) time.
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22.4 Experiments
22.4.1 Experiment Setup and Datasets

Our implementation shares the same code base 1 as the sketching-based robust tensor

power method proposed in [WTSA15]. We ran our experiments on an i7-5820k CPU with 64

GB of memory in single-threaded mode. We ran two versions of our algorithm: the version

with pre-scanning scans the full tensor to accurately measure per-slice Frobenius norms and

make samples for each slice in proportion to its Frobenius norm in ApproxTIvw; the

version without pre-scanning assumes that the Frobenius norm of each slice is bounded by
1
nα
‖A‖2

F , α ∈ (0, 1] and uses b/n samples per slice, where b is the total number of samples

our algorithm makes, analogous to the sketch length b in [WTSA15].

Synthetic datasets. We first generated an orthonormal basis {vi}ki=1 and then computed

the synthetic tensor as A∗ =
∑k

i=1 λivi
⊗3, with λ1 ≥ · · · ≥ λk. Then we normalized A∗ such

that ‖A∗‖F = 1, and added a symmetric Gaussian noise tensor E where Eijl ∼ N(0, σ
n1.5 )

for i ≤ j ≤ l. Then σ controls the noise-to-signal ratio and we kept it as 0.01 in all our

synthetic tensors. For the eigenvalues λi, we generated three different decays: inverse decay

λi = 1
i
, inverse square decay λi = 1

i2
, and linear decay λi = 1 − i−1

k
. We also set k = 100

when generating tensors, since higher rank eigenvalues were almost indistinguishable from

the added noise. To show the scalability of our algorithm, we generated tensors with different

dimensions: n = 200, 400, 600, 800, 1000, 1200.

1http://yining-wang.com/fftlda-code.zip
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Real-life datasets. Latent Dirichlet Allocation [BNJ01] (LDA) is a powerful generative

statistical model for topic modeling. A spectral method has been proposed to solve LDA

models [AGH+14, AFH+12] and the most critical step in spectral LDA is to decompose

a symmetric K × K × K tensor with orthogonal eigenvectors, where K is the number of

modeled topics. We followed the steps in [AGH+14, TWZS15] and built a K×K×K tensor

ALDA for each dataset, and then ran our algorithms directly on ALDA to see how it works on

those tensors in real applications. In our experiments we keep K = 200. We used the two

same datasets as the previous work [WTSA15]: Wiki and Enron, as well as four additional

real-life datasets. We refer the reader to our GitHub repository 2 for our code and full results.

2https://github.com/huanzhang12/sampling_tensor_decomp/
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22.4.2 Results

We considered running time and the squared residual norm to evaluate the per-

formance of our algorithms. Given a tensor A ∈ Rn3 , let ‖A − ∑k
i=1 λiui ⊗ vi ⊗ wi‖2

F

denote the squared residual norm where {(λ1, u1, v1, w1), · · · , (λk, uk, vk, wk)} are the eigen-

value/eigenvectors obtained by the robust power method. To reduce the experiment time we

looked only for the first eigenvalue and eigenvector, but our algorithm is capable of finding

any number of eigenvalues/eigenvectors. We list the pre-scanning time as preprocessing time

in tables. It only depends on the tensor dimension n and unlike the sketching based method,

it does not depend on b. Pre-scanning time is very short, because it only requires one pass

of sequential access to the tensor which is very efficient on hardware.

Sublinear time verification. Our theoretical result suggests the total number of samples

bno-prescan for our algorithm without pre-scanning is n1−α(α ∈ (0, 1]) times larger than bprescan

for our algorithm with pre-scanning. But in experiments we observe that when bno-prescan =

bprescan both algorithms achieve very similar accuracy, indicating that in practice α ≈ 1.

Synthetic datasets. We ran our algorithm on a large number of synthetic tensors with

different dimensions and different eigengaps. Table 22.1 shows results for a tensor with

1200 dimensions with 100 non-zero eigenvalues decaying as λi = 1
i2
. To reach roughly the

same residual norm, the running time of our algorithm is over 50 times faster than that of

the sketching-based robust tensor power method, thanks to the fact that we usually need a

relatively small B and b to get a good residual, and the hidden constant factor in running

time of sampling is much smaller than that of sketching.
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Our algorithm scales well on large tensors due to its sub-linear nature. In Fig-

ure 22.1(a), for the sketching-based method we kept b = 216, B = 30 for n ≤ 800 and

B = 50 for n > 800 (larger n requires more sketches to observe a reasonable recovery). For

our algorithm, we chose b and B such that for each n, our residual norm is on-par or better

than the sketching-based method. Our algorithm needs much less time than the sketching-

based one over all dimensions. Another advantage of our algorithm is that there are zero or

very minimal preprocessing steps. In Figure 22.1(b), we can see how the preprocessing time

grows to prepare sketches when the dimension increases. For applications where only the

first few eigenvectors are needed, the preprocessing time could be a large overhead.

Real-life datasets. Due to the small tensor dimension (200), our algorithm shows less

speedup than the sketching-based method. But it is still 2 ∼ 6 times faster in each of the six

real-life datasets, achieving the same squared residual norm. Table 22.2 reports results for

one of the datasets in many different settings of (b, B). Like in synthetic datasets, we also

empirically observe that the constant b in importance sampling is much smaller than the b

used in sketching to get the same error guarantee.
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Sketching based robust power method: n = 1200, λi = 1
i2

Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 50 10 30 50 10 30 50
210 1.010 1.014 0.5437 0.6114 2.423 4.374 5.361 15.85 26.08
212 1.020 0.2271 0.1549 1.344 4.563 8.022 5.978 17.23 28.31
214 0.1513 0.1097 0.1003 4.928 15.51 27.87 8.788 24.72 40.4
216 0.1065 0.09242 0.08936 22.28 69.7 116.3 13.76 34.74 55.34

Importance sampling based robust power method (without prescanning): n = 1200, λi = 1
i2

Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 50 10 30 50 10 30 50
5n 0.08684 0.08637 0.08639 2.595 8.3 15.46 0.0 0.0 0.0

10n 0.08784 0.08671 0.08627 4.42 13.68 25.84 0.0 0.0 0.0
20n 0.08704 0.08700 0.08618 8.02 24.51 46.37 0.0 0.0 0.0
30n 0.08697 0.08645 0.08625 11.63 35.35 66.71 0.0 0.0 0.0
40n 0.08653 0.08664 0.08611 15.19 46.12 87.24 0.0 0.0 0.0
Importance sampling based robust power method (with prescanning): n = 1200, λi = 1

i2

Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 50 10 30 50 10 30 50
5n 0.08657 0.08684 0.08636 3.1 10.47 18 2.234 2.236 2.234

10n 0.08741 0.08677 0.08668 5.427 17.43 30.26 2.232 2.233 2.233
20n 0.08648 0.08624 0.08634 9.843 31.42 54.49 2.226 2.226 2.226
30n 0.08635 0.08634 0.08615 14.33 45.4 63.85 2.226 2.224 2.227
40n 0.08622 0.08652 0.08619 18.68 59.32 82.83 2.225 2.225 2.225

Table 22.1: Synthetic tensor decomposition using the robust tensor power method. We use an
order-3 normalized dense tensor with dimension n = 1200 with σ = 0.01 noise added. We run
sketching-based and sampling-based methods to find the first eigenvalue and eigenvector by setting
L = 50, T = 30 and varying B and b.

22.5 Generate importance sampling indices

In the section we present the full algorithm to generate importance sampling indices.

We view this problem as follows: imagine [0, 1] is divided into n “bins” with different

lengths corresponding to the probability of selecting each bin. We generate m random

numbers uniformly from [0, 1] and see which bin each random number belongs to. If a random

number is in bin i, we sample the i-th index of a vector. There are two straightforward ways

to generate such indices, but neither of them gives us linear running time in m and n. The

first method is: (1) generate a list of random numbers (2) for each random number, choose
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Sketching based robust power method: dataset wiki, ‖T‖2F = 2.135e+07
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
210 2.091e+07 1.951e+07 0.2346 0.8749 0.1727 0.2535
211 1.971e+07 1.938e+07 0.4354 1.439 0.2408 0.3167
212 1.947e+07 1.930e+07 1.035 2.912 0.4226 0.4275
213 1.931e+07 1.927e+07 2.04 5.94 0.5783 0.6493
214 1.928e+07 1.926e+07 4.577 13.93 1.045 1.121

Importance sampling based robust power method (without prescanning): dataset wiki, ‖T‖2F = 2.135e+07
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
5n 1.931e+07 1.928e+07 0.3698 1.146 0.0 0.0

10n 1.931e+07 1.929e+07 0.5623 1.623 0.0 0.0
20n 1.935e+07 1.926e+07 0.9767 2.729 0.0 0.0
30n 1.929e+07 1.926e+07 1.286 3.699 0.0 0.0
40n 1.928e+07 1.925e+07 1.692 4.552 0.0 0.0

Importance sampling based robust power method (with prescanning): dataset wiki, ‖T‖2F = 2.135e+07
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
5n 1.931e+07 1.930e+07 0.4376 1.168 0.01038 0.01103

10n 1.928e+07 1.930e+07 0.6357 1.8 0.0104 0.01044
20n 1.931e+07 1.927e+07 1.083 2.962 0.01102 0.01042
30n 1.929e+07 1.925e+07 1.457 4.049 0.01102 0.01043
40n 1.929e+07 1.925e+07 1.905 5.246 0.01105 0.01105

Table 22.2: Tensor decomposition in LDA on the wiki dataset. The tensor is generated by spectral
LDA with dimension 200× 200× 200. It is symmetric but not normalized. We fix L = 50, T = 30
and vary B and b.

the correct bin for it. Step (1) takes O(m) time, but step (2) takes O(mn) time in the worst

case. The second method is: (1) generate a list of random numbers (2) sort these random

numbers (3) sequentially for each random number, choose the correct bin for it. Step (1)

takes O(m) time, step (2) takes O(m logm) time, and step (3) takes O(m + n) time as it

merges two sorted lists.

In Algorithm 22.1, we instead present an O(m+n) time algorithm which we call Gen-

RandTuples for generating such indices by combining existing algorithms. We use Bentley

and Saxe’s algorithm GenSortedRandN(m) [BS80b] to efficiently generate m sorted ran-

dom numbers( a ) in O(m) time. Then RandNToBins outputs a list of m indices( e ) such
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that for each random number in a, there is an index in q̃. The running time of this step is

O(m + n) . We use Knuth’s shuffling algorithm GenRandPerm(m) [Knu69] to generate

a random permutation of [m]( c ) in O(m) time. Finally, GenRandTuples generates m

tuples with two (resp. three) entries given n probabilities in array q̃ for computing A(I, v, w)

(resp. A(u, v, w)).

Claim 22.5.1. Function GenSortedRandN(m) uses Bentley and Saxe’s algorithm [BS80b]

and takes O(m) time to generate a list of random numbers between 0 and 1 in increasing

order.

Proof. For the correctness of this claim, we refer the reader to [BS80b].

Claim 22.5.2. Function RandNToBins(A,m,Q, n) takes O(m+ n) time.

Proof. The input of RandNToBins is two arrays, A and Q. The array A is a list of sorted

random numbers in [0, 1]. The array Q can be thought as a list of boundary values for

bins, e.g., if some entry x satisfies Q[j] < x ≤ Q[j + 1], then we should assign x to bin j.

This procedure is equivalent to merging two sorted lists. Thus, it takes linear time in the

summation of two lengths.

Claim 22.5.3. Function GenRandPerm(m) uses Knuth’s shuffle algorithm [Knu69] to

generate a random permutation of [m] in O(m) time.

Proof. For the correctness of this claim, we refer the reader to [Knu69] and [Wik16].
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Algorithm 22.1 Generate importance sampling indices
1: function GenRandTuples(m, q̃)
2: a[1...m]← GenSortedRandN(m)
3: e[1...m]← RandNToBins(a,m, q̃, n)
4: c[1...m]← GenRandPerm(m)
5: L← ∅
6: for i = 1→ m do
7: L← L ∪ e[c[i]]
8: end for
9: return L

10: end function
11: function RandNToBins(A,m,Q, n)
12: i← 1, j ← 1
13: while i ≤ m do
14: if A[i] < Q[j] then
15: C[i]← j, i← i+ 1
16: else
17: j ← j + 1
18: end if
19: end while
20: return C[1...m]
21: end function
22: function GenSortedRandN(m) [BS80b]
23: s← 0
24: for i = 1→ L do
25: s← s− log(uniform(0, 1))
26: A[i]← s
27: end for
28: s← s− log(uniform(0, 1))
29: for i = 1→ L do
30: A[i]← A[i]/s
31: end for
32: return A[1...m]
33: end function
34: function GenRandPerm(m) [Knu69]
35: for i = 1→ m do
36: C[i]← i
37: end for
38: for i = 1→ m do
39: t← uniform(i), C[i]← C[t], C[t]← i
40: end for
41: return C[1...m]
42: end function
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22.6 Importance sampling lemmas

In this section we state some useful facts and give proofs for some lemmas that are

not proved in the main text.

We shall make use of the following facts which follow from the definitions of a tensor.

The following facts hold immediately by the definition of a tensor’s `2-norm and Frobenius

norm.

Fact 22.6.1. For any p ≥ 3, for any tensor A ∈ Rnp and p unit vectors u1, u2, · · · , up ∈ Rn,

1. ‖u1 ⊗ u2 ⊗ · · · ⊗ up‖2
F =

∏p
j=1 ‖uj‖2

2.

2. 〈A, u1 ⊗ · · · ⊗ up〉 =
∑n

i1=1 · · ·
∑n

ip=1Ai1,··· ,ip
∏p

j=1 uj,ij .

3. 〈Ai,∗,··· ,∗, u2 ⊗ · · · ⊗ up〉 =
∑n

i2=1 · · ·
∑n

ip=1Ai,i2,··· ,ip
∏p

j=2 uj,ij .

We provide the proofs for Lemma 22.3.1 and 22.3.2.

Lemma 22.3.1. Suppose random variable X = Ai1,··· ,ip
∏p

j=1 uj,ij/
∏p

j=1 qj,ij with probability
∏p

j=1 qj,ij where qj,ij = |uj,ij |2/‖uj‖2
2,∀j ∈ [n],∀ij ∈ [n], and we take L i.i.d. samples X,

denote X1, X2, · · · , XL. Let Y = 1
L

∑L
`=1 X`. Then 1. E[Y ] = 〈A, u1⊗ u2⊗ · · · ⊗ up〉, and 2.

V[Y ] ≤ 1
L
‖A‖2

F · ‖u1 ⊗ u2 ⊗ · · · ⊗ up‖2
F .

Proof. Consider the expectation of Y ,

E[Y ] = E[
1

L

L∑

`=1

X`] = E[X`] =
n∑

i1=1

· · ·
n∑

ip=1

(
Ai1,··· ,ip

p∏

j=1

1

qj,ij
uj,ij

)
·
(

p∏

j=1

qj,ij

)
,
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Furthermore, we can obtain,

E[Y ] =
n∑

i1=1

· · ·
n∑

ip=1

Ai1,··· ,ip

p∏

j=1

uj,ij = 〈A, u1 ⊗ · · · ⊗ up〉.

It remains to upper bound the variance of Y ,

V[Y ] = E[Y 2]− (E[Y ])2 = E[
1

L2
(
L∑

`=1

X`)
2]− (E[

1

L

L∑

`=1

X`])
2 =

1

L2
(E[(

L∑

`=1

X`)
2]− L2(E[X`])

2).

Furthermore, we can obtain,

V[Y ] =
1

L2

(
LE[X2

` ] + L(L− 1)E[X`]
2 − L2E[X`]

2
)

≤ 1

L
E[X2

` ]

=
1

L




n∑

i1=1

· · ·
n∑

ip=1

A2
i1,··· ,ip

(
n∏

j=1

1

qj,ij
uj,ij

)2( p∏

j=1

qj,ij

)


=
1

L

n∑

i1=1

· · ·
n∑

ip=1

A2
i1,··· ,ip

p∏

j=1

‖uj‖2
2

≤ 1

L
‖A‖2

F · ‖u1 ⊗ · · · ⊗ up‖2
F .

Thus, we complete the proof.

Lemma 22.3.2. For all i1 ∈ [n], suppose random variableX i1 = Ai1,i2,··· ,ip
∏p

j=2 uj,ij/
∏p

j=2 qj,ij

with probability
∏p

j=2 qj,ij where qj,ij = |uj,ij |2/‖uj‖2
2, ∀j ∈ {2, 3, · · · , n}, ∀ij ∈ [n] and we

take Li1 i.i.d. samples of X i1 , say X i1
1 , X

i1
2 , · · · , X i1

L . Let Y i1 = 1
Li1

∑L
`=1X

i
`. Then 1.

E[Y i] = 〈Ai1,∗,··· ,∗, u2 ⊗ · · · ⊗ up〉, and 2. V[Y i1 ] ≤ 1
Li1
‖Ai,∗,··· ,∗‖2

F‖u2 ⊗ · · · ⊗ up‖2
F .

Proof. Consider the expectation of Y i1 ,

E[Y i1 ] = E[
1

L

L∑

`=1

X i1
` ] = E[X i1 ] =

n∑

i2=1

· · ·
n∑

ip=1

Ai,j,k

(
p∏

j=2

1

qj,ij
uj,ij

)(
p∏

j=2

qj,ij

)
,
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Furthermore, we can obtain,

E[Y i1 ] =
n∑

i2=1

· · ·
n∑

ip=1

Ai1,i2,··· ,ip

p∏

j=2

uj,ij = 〈Ai1,∗,··· ,∗, u2 ⊗ · · · ⊗ up〉.

Consider the variance of Y i1 ,

V[Y i1 ] = E[(Y i1)2]− (E[Y i1 ])2 =
1

L2
(LE[(X i1)2] + L(L− 1)(E[X i1 ])2)− (E[X i1 ])2.

Furthermore, we can obtain,

V[Y i1 ] =
1

L
(E[(X i1)2]− (E[X i1 ])2)

≤ 1

L
E[(X i1)2]

=
1

L

n∑

i2=1

· · ·
n∑

ip=1

A2
i1,i2,··· ,ip

(
p∏

j=2

1

qj,ij
uj,ij

)2( p∏

j=2

qj,ij

)

=
1

L

n∑

i2=1

· · ·
n∑

ip=1

A2
i1,i2,··· ,ip

n∏

j=2

‖uj‖2
2

=
1

L
‖Ai1,∗,··· ,∗‖2

F‖u2 ⊗ · · · ⊗ up‖2
F .

Thus, we complete the proof.
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22.7 Approximate Tensor Contractions

We need a slightly different version of Theorem 1 in [WTSA15]. Here we denote b̂i

as the samples we take for tensor slice i.

Theorem 22.3.3. For any p ≥ 3, given tensor A ∈ Rnp , for any unit vector u, v ∈ Rn,

there is an algorithm that takes b̂i samples from i-th slice and it is able to output a

value A(u, · · · , u) ∈ R and a vector A(I, u, · · · , u) ∈ Rn such that for any b > 0 if

b̂i ≥ b‖Ai,∗,··· ,∗‖2
F/‖A‖2

F then the following bounds hold:

E[‖E(I, u, · · · , u)‖2
2] ≤ n‖A‖2

F/b, and E[|E(u, · · · , u)|2] ≤ ‖A‖2
F/b. (22.1)

and

E[|v>E(I, u, · · · , u)|2] ≤ ‖A‖2
F/b. (22.2)

where E := A− A.

Proof. Part 1. of Equation 22.1

By combining Lemma (22.3.2) and b̂i ≥ b‖Ai,∗,··· ,∗‖2
F/‖A‖2

F , we know that

E
[
|E(I, u, · · · , u)i|2

]
=

‖Ai,∗,∗‖2

b‖Ai,∗,∗‖2
F/‖A‖2

F

= ‖A‖2
F/b.

Part 2 of Equation (22.1) It follows by Lemma 22.3.1.
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Equation (22.2) It follows by

E[|v>E|2] = E

[
n∑

i=1

v2
iE(I, u, · · · , u)2

i

]

≤
n∑

i=1

v2
i ‖Ai,∗,··· ,∗‖2

F/b̂i

≤
n∑

i=1

v2
i ‖A‖2

F/b = ‖A‖2
F/b.

Thus, we complete the proof.

Without loss of generality, we can assume that ‖A‖2
F = 1. By choosing sufficiently

large b, we can guarantee the error bounds of sketch noise E to be small.

Corollary 22.7.1. For any m ≥ 3, if b ≥ mnc2
0/ε

2, for any unit vector u, v ∈ Rn, then with

probability at least 1− 3/m such that,

1. ‖E(I, u, · · · , u)‖2 ≤ ε/c0.

2. |E(u, · · · , u)| ≤ ε/(c0

√
n).

3. |v>E(I, u, · · · , u)| ≤ ε/(c0

√
n).

Proof. Part 1. Using Markov’s inequality Pr[x ≥ a] ≤ E[x]/a, we have

Pr[‖E(I, u, · · · , u)‖2
2 ≥ (ε/c0)2] ≤ E[‖E(I, u, · · · , u)‖2

2]

(ε/c0)2
≤ n‖A‖2

F/b

(ε/c0)2
≤ 1

m
,

where the last step follows by choosing b ≥ mnc2
0/ε

2.

Part 2. Similarly, by Markov’s inequality, we have

Pr[|E(u, u, · · · , u)|2 ≥ (ε/(c0

√
n))2] ≤ E[‖E(u, u, · · · , u)‖2

2]

(ε/(c0

√
n))2

≤ ‖A‖2
F/b

(ε/(c0

√
n))2

≤ 1

m
,
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where the last step also follows by choosing b ≥ mnc2
0/ε

2.

Part 3. This part also can be proved by Markov’s inequality and it requires b ≥

mnc2
0/ε

2.

If we compare our Theorem 22.3.3 to the bounds obtained by sketching in [WTSA15],

we see that our expectation bounds for E(I, u, · · · , u) and E(u, · · · , u) are the same. As

long as the conditions for Theorem 22.3.3 holds, all analysis in [WTSA15, WA16] will follow.

To guarantee the noise introduced by sampling satisfies the bounds in Theorem 22.3.4, we

require b ≥ n‖A‖2
F/ε

2 = O(n2k).

However, as a condition of Theorem 22.3.3, we require that b̂i & b‖Ai,∗,∗‖2
F/‖A‖2

F .

Because ‖Ai,∗,∗‖2
F can be as large as ‖A‖2

F , if we made no assumptions, then b̂i & b; a

summation over all n slices is nb = O(n3k), making our algorithm not sublinear time.

We will discuss how to deal with the term ‖Ai,∗,∗‖2
F and make our algorithm run in

sublinear time in the following paragraphs.
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22.7.1 Case 1: sampling with known per-slice Frobenius norm

If we do not uniformly take b̂i & b samples per slice, but sample based the Frobenius

norm of each slice, in other words, the number of samples for slice i is exactly

b̂i = b
‖Ai,∗,∗‖2

F

‖A‖2
F

Then we will need only
∑n

i=1 b̂i = b = O(n2) samples. However, to compute ‖Ai,∗,∗‖2
F ,

we have to pre-scan the tensor in O(n3) time.

Sometimes during the data collection process we can store the tensor’s per-slice Frobe-

nius norms as meta data and use them for free. But if we don’t know the per-slice Frobenius

norms, we have to compute them. This is not ideal because we need to scan the entire tensor

before we start power iterations to compute per-slice Frobenius norms. Although in practice

computing per-slice Frobenius norms only needs sequential access and can be quite efficient

in memory or on storage device, it makes our algorithm depend on the full tensor and run

in linear time. However, after making a weak assumption on the per-slice Frobenius norm

which can be easily satisfied in practice, we can still obtain sublinear run time, as shown in

Case 2.
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22.7.2 Case 2: sampling without known per-slice Frobenius norm

Theorem 22.3.6 (Bounded slice norm). There exists a sufficiently small constant γ > 0

and a constant β ∈ (0, 1], there exists a constant α > 0(that depends on γ, β) such that

for any order-p tensor A = A∗ + E ∈ Rnp with rank(A∗) ≤ nγ, p ≤ nγ, λk ≥ 1/nγ,

‖Ai,∗,··· ,∗‖2
F ≤ 1

nβ
‖A‖2

F for all i ∈ [n], and E satisfies (22.3), Algorithm 22.5 takes O(np−α)

time.

Proof. Because we assume ‖Ai,∗,∗‖2
F ≤ 1

nα
‖A‖2

F , we can set b̂i = b
nα
& b‖Ai,∗,∗‖2

F/‖A‖2
F for

all i such that the conditions for Theorem 22.3.3 hold. Thus, the number of samples we need

is
∑n

i=1 b̂i = bn1−α = O(n3−α).

We should note that the condition 0 < α ≤ 1 is a very reasonable assumption. When

α = 1, all tensor slices have the equal Frobenius norm. The case where α = 0 only occurs

when ‖Ai,∗,∗‖F = ‖A‖F ; in other words, all except one slices are zero. Except for this extreme

case, our algorithm only needs to take o(n3) samples from the tensor.

Also, note that this proof does not make any assumption for the symmetry of the

tensor. Thus, theorem 22.3.6 also applies to asymmetric tensors, as long as the analysis

in [WTSA15] is extended to asymmetric case.
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22.7.3 Case 3: improve the bounds in case 2

We are still interested in improve the O(n3−α) running time bound of our algorithm.

We want to go one step further and remove the assumption on per-slice Frobenius norm.

The basic idea is to take a sublinear number of samples from the tensor to estimate per-slice

Frobenius norm. With some properties of the tensor (symmetry, low-rank, orthogonal, etc),

achieving a sub-linear runtime bound is possible, as we will discuss below.

It is worth noting that in our experiments we have seen that sampling with or without

known Frobenius norm (with or without pre-scanning) does not make a big difference for

most datasets. Because sampling with known per-slice Frobenius norm is the best case

(
∑n

i=1 b̂i = O(n2)), the algorithm described below with an improved bound on
∑n

i=1 b̂i =

ω(n2) is unlikely to outperform. Thus, we did not conduct experiments on this part, and

focus on theoretical discussions here.
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22.8 Estimating Slice Norms in Sublinear Time

We present the following facts before introducing our lemmas and theorems:

22.8.1 Definitions and Facts

Fact 22.8.1. For any symmetric matrix A ∈ Rn×n, ‖A‖2 = max
‖u‖2=1

|u>Au|.

Proof. Because A is symmetric, we choose S such that S>S = A,

‖A‖2 = ‖S‖2
2 = max

‖u‖2=1
‖Su‖2

2 = max
‖u‖2=1

|u>S>Su| = max
‖u‖2=1

|u>Au|.

The following technical lemmas give necessary bounds on norms that we will use in

proofs.

Lemma 22.8.2. For any E ∈ Rn3, if ‖E‖2 := max
‖u‖2=‖v‖2=‖w‖2=1

|E(u, v, w)| ≤ 1/n, then for

all i ∈ [n],

1. max
‖u‖2=1

‖E(I, u, u)‖2 ≤ ‖E‖2,

2. ‖Ei,∗,∗‖2 ≤ 1/n,

3. ‖Ei,∗,∗‖F ≤ 1/
√
n,

4. ∀j ∈ [n], |Ei,j,j| ≤ 1/n.
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Proof. Part 1.

‖E‖2
2 = max

‖u‖2=‖v‖2=‖w‖2=1
|E(u, v, w)|2

= max
‖u‖2=‖v‖2=‖w‖2=1

(
n∑

i=1

ui ·
n∑

j=1

n∑

k=1

Ei,j,kvjwk

)2

≥ max
‖v‖2=‖w‖2=1

n∑

i=1

u2
i ·

n∑

i=1

(
n∑

j=1

n∑

k=1

Ei,j,kvjwk

)2

= max
‖v‖2=‖w‖2=1

n∑

i=1

(
n∑

j=1

n∑

k=1

Ei,j,kvjwk

)2

≥ max
‖v‖2

n∑

i=1

(
n∑

j=1

n∑

k=1

Ei,j,kvjvk

)2

= max
‖v‖2
‖E(I, v, v)‖2

2

where the first inequality follows by setting ui = c ·∑n
j=1

∑n
k=1Ei,j,kvjvk, ∀i ∈ [n] and

∑n
i=1 u

2
i = 1, c is a normalizing constant.

Part 2. By definition of ‖ · ‖2 for a tensor E ∈ Rn3 , we have

max
‖u‖2=1

‖E(I, u, u)‖2 ≤ max
‖u‖2=‖v‖2=‖w‖2=1

|E(u, v, w)|

By definition of E(I, u, u) ∈ Rn, we have

E(I, u, u)i =
n∑

j=1

n∑

k=1

Ei,j,kujuk = u>Ei,∗,∗u
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Thus, we can upper bound the ‖ · ‖2 for matrix Ei,∗,∗ ∈ Rn2 in the following sense,

1/n ≥ ‖E‖2

≥ max
‖u‖2=1

‖E(I, u, u)‖2

= max
‖u‖2=1

(
n∑

i=1

(u>Ei,∗,∗u)2)1/2

≥ max
‖u‖2=1

|u>Ei,∗,∗u| for any i ∈ [n]

= ‖Ei,∗,∗‖2, by Fact 22.8.1

which completes the proof of Part 2.

Part 3. Since ‖Ei,∗,∗‖2 ≤ 1/n and the rank of n× n matrix is at most n, we have

‖Ei,∗,∗‖2
F = Tr(E>i,∗,∗Ei,∗,∗) =

n∑

j=1

λj ≤ n · ‖Ei,∗,∗‖2
2 ≤ n · (1/n)2 ≤ 1/n,

where λj are the eigenvalues of E>i,∗,∗Ei,∗,∗ and the largest one is ‖Ei,∗,∗‖2, by the definition

of ‖ · ‖2 norm. The inequality implies ‖Ei,∗,∗‖F ≤ 1/
√
n and finishes the proof of Part 3.

Part 4. For each slice i ∈ [n], by ‖Ei,∗,∗‖2 ≤ 1/n and definition of ‖ · ‖2 of a matrix,

we have max
‖u‖2=1

|u>Ei,∗,∗u| ≤ 1/n, choosing u = ej where ej is the vector that jth position is

1 and all the other positions are 0. Thus, we know for any j ∈ [n], |Ei,j,j| ≤ 1/n. Thus, we

complete the proof of Part 4.

Fact 22.8.3. Given p ≥ 3 and two vectors u, v ∈ Rn with ‖u‖2 = ‖v‖2 = 1, then

1. ‖u⊗p − v⊗p‖F ≤ √p‖u− v‖2.

2. |ui − ûi| ≤ ‖u− v‖2,∀i ∈ [n].
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3. ‖ui · u⊗p−1 − ûi · û⊗p−1‖F ≤
√

2p‖u− v‖2
2,∀i ∈ [n].

Proof. We have ‖u‖2 = ‖v‖2 = 1, and ‖u−v‖2
2 =

∑n
i=1 u

2
i +v2

i −2uivi = ‖u‖2
2+‖v‖2

2−2〈u, v〉,

putting it all together, we can get 〈u, v〉 = 1 − 1
2
‖u − v‖2

2. For any p ≥ 3, we consider

‖u⊗p − v⊗p‖2
F ,

‖u⊗p − v⊗p‖2
F =

n∑

i1=1

n∑

i2=1

· · ·
n∑

ip=1

(ui1ui2 · · ·uip − vi1vi2 · · · vip)2

=
n∑

i1=1

n∑

i2=1

· · ·
n∑

ip=1

u2
i1
u2
i2
· · ·u2

ip − 2ui1ui2 · · ·uipvi1vi2 · · · vip + v2
i1
v2
i2
· · · v2

ip

= (‖u‖2
2)p − 2(〈u, v〉)p + (‖v‖2

2)p

= 2− 2(〈u, v〉)p

= 2− 2

(
1− 1

2
‖u− v‖2

2

)p

≤ p‖u− v‖2
2

We can upper bound ‖ui · u⊗p−1 − ûi · û⊗p−1‖F ,

‖ui · u⊗p−1 − ûi · û⊗p−1‖F

≤ ‖ui · u⊗p−1 − ui · û⊗p−1‖F + ‖ui · û⊗p−1 − ûi · û⊗p−1‖F

= |ui| · ‖u⊗p−1 − û⊗p−1‖F + |ui − ûi| · ‖û⊗p−1‖F

≤ 1 ·
√
p− 1‖u− v‖2 + ‖u− v‖2 · 1

≤
√

2p‖u− v‖2.

Definition 22.8.1. For any p ≥ 3, for any tensor A ∈ Rnp , we say vector τ ∈ Rn is a “good”
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estimate of A if for any i ∈ [n],

‖Ai,∗,··· ,∗‖2
F ≤ τi. (22.5)

We say vector τ ∈ Rn is an “efficient” estimate of A, if there exists some constant α > 0 such

that,

n∑

i=1

min(np−1τi/‖A‖2
F , n

p−1) = O(np−α). (22.6)

Remark 22.8.1. For p = 3, Equation (22.6) implies
∑n

i=1 b̂i = o(n3) as long as we choose

b̂i = min(n2τi/‖A‖2
F , n

2). Note that in the most part of this section, we focus on order p = 3

tensor.
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22.8.2 Order p = 3, rank k = 1 tensor

We start by considering the simplest case, where the tensor A∗ is assumed to be

rank-1, A∗ = u⊗3. We can observe the true tensor plus some noise, i.e., A = A∗ + E. As

long as the noise E is sufficiently small, we can get a good bound on the tensor’s per-slice

Frobenius norm by just looking at its diagonals! The intuition is that Frobenious norm of

slice i (‖Ai,∗,∗‖2
F ) is in proportional to u2

i , and the diagonals of the tensor (|Ai,i,i|) is actually

|ui|3, giving us an accurate estimate. We can choose per-slice samples b̂i accordingly. For

those slices that potentially have ‖Ai,∗,∗‖F & 1/n1/3, to estimate the norm of that slice i, we

oversample them by choosing all the n2 samples of that n × n matrix Ai,∗,∗. Since we can

show there are only o(n) slices that have large estimates for ‖Ai,∗,∗‖F , then the total number

of samples is o(n3), which is sublinear in the size of tensor A.

Lemma 22.8.4 (rank-1 tensor). There exists some constant α > 0, for any tensor A =

E + u⊗3 ∈ Rn3 with ‖u‖2 = 1,‖E‖2 ≤ 1/n. There exists an algorithm that takes O(n3−α)

samples/time is able to output a vector τ ∈ Rn which is a good and efficient estimate of A,

i.e., τ, A satisfies (22.5) and (22.6).

Proof. For each slice i ∈ [n], we have ‖Ei,∗,∗‖F ≤ 1/
√
n (by part 3 of Lemma 22.8.2) and

‖Ai,∗,∗‖F = ‖Ei,∗,∗ + ui · uu>‖F , which implies

|ui| − 1/
√
n ≤ ‖Ai,∗,∗‖F ≤ |ui|+ 1/

√
n.

Also, observing the entries from main diagonal of tensor which is this form, |Ai,i,i| = |Ei,i,i +

u3
i |, using |Ei,i,i| ≤ 1/n (by part 4 of Lemma 22.8.2), we have

|ui|3 − 1/n ≤ |Ai,i,i| ≤ |ui|3 + 1/n.
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If there is no noise, the diagonal term is exactly u3
i , and we can get accurate ‖Ai,∗,∗‖F =

u2
i . However, consider the potential noise term, we have to discuss the following two cases:

Part 1. |Ai,i,i| ≥ 2/n. In this case, |ui|3 ≥ 1/n and ‖Ai,∗,∗‖F ≥ |ui| − 1/
√
n ≥

1/n1/3 − 1/
√
n ≥ 1/(2n1/3). For such slice i, we need to take b̂i = O(n2) examples to

guarantee that the bounds on |[ε2,A(u)]i| and 〈ω, ε2,A(u)〉2 are enough.

Let S denote a set of indices such that, for each i ∈ S, |Ai,i,i| ≥ 2/n. By triangle

inequality, it means |ui|3 ≥ 1/n and then |ui| ≥ 1/n1/3. We can show that |S| is at most n2/3,

because u is a unit vector and there are at most n2/3 coordinates i could have |ui| ≥ 1/n1/3.

Overall, the sample complexity for all these slices is n3−1/3.

Part 2. |Ai,i,i| < 2/n. In this case, ‖Ai,∗,∗‖F ≤ |ui|+1/
√
n ≤ 3/n1/3+1/

√
n ≤ 4/n1/3.

Thus, for such slice, we choose b̂i = O(b‖Ai,∗,∗‖2
F/‖A‖2

F ) = O(b/n2/3) samples is sufficient for

the error bounds. The number of such slice can be O(n), thus the total number of samples

for this part is O(n3−2/3).

We set τi = 1 for part 1 and τi = O(1/n2/3) for part 2.

Now we consider a further case with tensor rank k = 2. Because there are two

distinct eigenvectors, the way of estimating ‖Ai,∗,∗‖F becomes trickier. Besides the diagonal

terms of the tensor, we also need to look at the diagonal terms of each tensor slice, Ai,j,j.

Given parameters b, α ∈ (0, 1) and tensor A ∈ Rn3 , we use the sampling procedure in

Algorithm 22.2.
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22.8.3 Order p = 3, rank k = 2 tensor

Lemma 22.8.5 (rank-2 tensor). There exists some constant α > 0, for any tensor A =

E+u⊗3 +v⊗3 ∈ Rn3 with ‖u‖2 = ‖v‖2 = 1, u ·v = 0, ‖E‖2 ≤ 1/n. There exists an algorithm

that takes O(n3−α) samples/time is able to output a vector τ ∈ Rn which is a good and

efficient estimate of A with probability 1− 1/ poly(n), i.e., τ, A satisfies (22.5) and (22.6).

Proof. We assume that A = E + u⊗ u⊗ u+ v⊗ v⊗ v. Note that we ignore the eigenvalues

λ1 and λ2 because it will only be constants before u⊗ u⊗ u and v ⊗ v ⊗ v and our proof is

unaffected.

Because vector u ∈ Rn is orthogonal to vector v ∈ Rn, then

u> · v =
n∑

i=1

ui · vi = 0 (22.7)

Consider the absolute value on main diagonal of tensor,

|Ai,i,i| ≤ |Ei,i,i|+ |u3
i + v3

i | ≤ 1/n+ |u3
i + v3

i |

where the first step follows by triangle inequality and the second step follows by Part 3 of

Lemma 22.8.2 where |Ei,i,i| ≤ 1/n. Now we start to prove the 4 parts of our procedure.

Part 1. Following the same reasoning in Lemma 22.8.4, for |Ai,i,i| ≥ 3/n, either one of u3
i

and v3
i is large or both u3

i and v3
i is large and have the same sign, both of these two situations

imply that ‖Ai,∗,∗‖2
F is large. Then we need to set τi = 1 and take b̂i = O(n2) samples for

these slice. Also, the number of such slice is O(n2/3) by using the similar argument in part

1 of Lemma 22.8.4. But unlike the rank-1 case, even if |Ai,i,i| < 3/n, we cannot conclude

that ‖Ai,∗,∗‖2
F is small (i.e., ‖Ai,∗,∗‖2

F . 1/n2/3), because u3
i and v3

i can have opposite sign

and then cancel each other.
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Part 2. For each i ∈ [n], if |Ai,i,i| < 3/n, we take O(b/nα) samples for slice i. By doing

this, we can guarantee that the error bounds given by Equation (22.2) are sufficient for slice

i as long as ‖Ai,∗,∗‖2
F ≤ 5/nα.

Now we need to handle the slice i where ‖Ai,∗,∗‖2
F > 5/nα but |Ai,i,i| < 3/n in the

next part.

Part 3. Let us consider slice i ∈ [n] such that

‖Ai,∗,∗‖2
F = ‖Ei,∗,∗ + ui · uu> + vi · vv>‖2

F > 5/nα, and |Ai,i,i| = |Ei,i,i + u3
i + v3

i | < 3/n.
(22.8)

Using Part 3 and 4 of Lemma 22.8.2, we have

‖Ei,∗,∗‖2
F ≤ 1/n, and |Ei,i,i| ≤ 1/n. (22.9)

Combining Equation (22.8) and (22.9) with triangle inequality implies,

u2
i + v2

i > 4/nα, and |u3
i + v3

i | < 4/n.

Using u2
i + v2

i > 4/nα we can obtain the following result,

=⇒ either u2
i > 2/nα or v2

i > 2/nα

=⇒ either |ui| > 2/nα/2 or |vi| > 2/nα/2

=⇒ either |ui|3 > 2/n3α/2 or |vi|3 > 2/n3α/2.

Note that |u3
i + v3

i | < 4/n, 3α/2 < 1 and sign(ui) 6= sign(vi), without loss of generality,

assume |ui|3 > 2/n3α/2, then we have |vi|3 > |ui|3 − |u3
i + v3

i | > 2/n3α/2 − 4/n > 1/n3α/2.

Therefore, we can obtain that

both |ui|3 > 1/n3α/2 and |vi|3 > 1/(n3α/2).
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Thus, |uivi| > 1/nα. Recall that the i is the index we choose at the beginning, and u, v are

unit vectors, i.e.,‖u‖2 = ‖v‖2 = 1.

Define set S ⊆ [n], such that for any j ∈ S, sign(uj) = sign(vj). Define S = [n]\S.

By Equation (22.7),

0 =
∑

j∈S

ujvj +
∑

j′∈S

u′jv
′
j

It is obvious that the i satisfying Equation (22.8) belongs to S, then we can lower bound the

contribution from set S,
∣∣∣∣∣∣
∑

j′∈S

uj′vj′

∣∣∣∣∣∣
≥ |uivi|+

∣∣∣∣∣∣
∑

j′∈S\{i}

uj′vj′

∣∣∣∣∣∣
> 1/nα

where the first step follows by triangle inequality and the second step follows by |uivi| >

1/nα. Using triangle inequality again, we can also lower bound the contribution from set S,

|∑j∈S vjuj| > 1/nα.

For any j ∈ S, |u3
j + v3

j | < 4/n and sign(uj) = sign(vj). Then, |u3
j | < 4/n and |v3

j | <

4/n, which implies |uj| < 2/n1/3, |vj| < 2/n1/3. Furthermore, we can obtain |uj ·vj| < 4/n2/3,

so we can lower bound the number of entries in set S,

|S| ≥
∣∣∣∣∣
∑

j∈S

ujvj

∣∣∣∣∣ /
(

max
j∈S
|ujvj|

)
> (1/nα)/(4/n2/3) = n2/3−α/4.

If we take Θ(n1/3+α log n) samples out of [n] slices uniformly at random, then with

probability 1− 1/ poly(n), there exists at least one index j from set S. Since for all j′ ∈ S,

sign(uj′) = sign(vj′). Then uj and vj have the same sign. But set S is not good enough,

because there is no lower bound for |ujvj|, for all j ∈ S. To remove this issue, we can remove

the small entries from set S to obtain another set F .
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Let F ⊆ S denote the set of coordinates such that for any j ∈ F , |ujvj| ≥ 1/(2n1+α).

We can upper bound the contribution from set S\F ,
∣∣∣∣∣∣
∑

j∈S\F

ujvj

∣∣∣∣∣∣
=
∑

j∈S\F

|ujvj| ≤ |S\F | · 1/(2n1+α) ≤ n · 1/(2n1+α) = 1/(2nα).

Thus using triangle inequality, we can lower bound the contribution from set F ,
∣∣∣∣∣
∑

j∈F

ujvj

∣∣∣∣∣ ≥
∣∣∣∣∣
∑

j∈S

ujvj

∣∣∣∣∣−

∣∣∣∣∣∣
∑

j∈S\F

ujvj

∣∣∣∣∣∣
≥ 1/nα − 1/(2nα) = 1/(2nα),

which implies,

|F | ≥
∣∣∣∣∣
∑

j∈F

ujvj

∣∣∣∣∣ /
(

max
j∈F
|ujvj|

)
> (1/2nα)/(4/n2/3) = n2/3−α/8.

Notice that |F | & |S|, thus after taking Θ(n1/3+α log n) samples over [n], we still can hope

to see one j from F . Now the idea is, we use index j to find out the large entry on diagonal

of slice Aj,∗,∗. By doing this, we can recover some index l such that the norm of l-th slice is

large, but |Al,l,l| looks small.

For each j ∈ F , let us look at the diagonal entry of slice Aj,∗,∗, consider entry Aj,l,l,

|Aj,l,l| = |Ej,l,l + uju
2
l + vjv

2
l |.

Because both u2
l > 2/nα and v2

l > 2/nα, and either |uj| ≥ 1/(2n1/2+α/2) or |vj| ≥ 1/(2n1/2+α/2),

then we have

|Aj,l,l| ≥ |uju2
l + vjv

2
l | − |Ej,l,l| ≥ 1/n1/2+3α/2 − 1/n ≥ 1/(2n1/2+3α/2).

We need to show that ‖Aj,∗,∗‖2
F is small. Since uj and vj have the same sign and |Aj,j,j| ≤ 3/n,

then |uj|3 ≤ 4/n which implies |uj|2 ≤ 4/n2/3. Thus |u2
j + v2

j | ≤ 8/n2/3. Furthermore, we
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have

‖Aj,∗,∗‖2
F ≤ 2(‖Ej,∗,∗‖2

F + |u2
j + v2

j |) ≤ 2(1/n+ 8/n2/3) ≤ 18/n2/3.

Thus,

{#l such that |Aj,l,l|2 ≥ 1/(4n1+3α)} ≤ 18/n2/3

1/(4n1+3α)
= 72n1/3+3α,

which means number of |Aj,l,l|2 is at least Θ(1/n1+3α) is at most O(n1/3+3α).

Part 4. We consider the i such that

sign(ui) = sign(vi) and |Ai,i,i| = |Ei,i,i + u3
i + v3

i | ≥ 3/n.

Using |Ei,i,i| ≤ 1/n, then we have either |ui| ≥ 1/n1/3 or |vi| ≥ 1/n1/3. Let us consider the

jth diagonal entry of slice i (which is matrix Ai,∗,∗),

|Ai,j,j| = |Ei,j,j + uiu
2
j + viv

2
j |.

We want to recover the j such that

‖Aj,∗,∗‖2
F ≥ 5/nα.

Then either u2
j ≥ 1/nα or v2

j ≥ 1/nα. Then

|Ai,j,j| ≥ |uiu2
j + viv

2
j | − |Ei,j,j| ≥ 1/n1/3+α − 1/n ≥ 1/(2n1/3+α).

Thus, |Ai,j,j|2 ≥ 1/(4n2/3+2α). Because ‖A‖2
F = 1, the total number of such entries over

entire tensor is at most O(n2/3+2α).

Sample complexity. Overall the sample complexity over four parts is dominated

by n1−α and n2/3+4α. To minimize the sample complexity, we can set 1−α = 2/3+4α which

implies α = 1/15. Thus, the sample is O(n3−1/15), which is sublinear in tensor size.
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For the rank-2 case, we may also want to recover the second eigenvalue and eigenvec-

tor. Because the recovered first eigenvalue λ̂1 and eigenvector v̂1 contain noise, we need to

show that under this noise, the oversampling procedure still works.

Lemma 22.8.6 (Deflation for rank-2 tensor). Given tensor A = E+(u⊗3− û⊗3)+v⊗3 ∈ Rn3

where ‖u‖2 = ‖û‖2 = ‖v‖2 = 1, ‖u − û‖2 ≤ 1/
√
n, u · v = 0 and ‖E‖ ≤ 1/n. There exists

an algorithm that takes O(n3−α) samples/time is able to output a vector τ ∈ Rn which is a

good and efficient estimate of A with probability 1− 1/ poly(n), i.e., τ, A satisfies (22.5) and

(22.6).

Proof. We use ui to denote the i-th coordinate of vector u ∈ Rn. Because ‖u− û‖2 ≤ 1/
√
n,

then for all i ∈ [n], |ui − ûi| ≤ 1/
√
n. The proof sketch follows the proof of Lemma 22.8.4,

we need to use the information from |Ai,i,i| and |Ai,j,j| to figure out if i-th slice has large

Frobenius norm, for any i, j ∈ [n], we have,

|Ai,i,i| = |Ei,i,i + u3
i − û3

i + v3
i |, where |Ei,i,i| ≤ 1/n, |u3

i − û3
i | ≤ 4/

√
n;

|Ai,j,j| = |Ei,j,j + uiu
2
j − ûiû2

j + viv
2
j |, where |Ei,j,j| ≤ 1/n, |uiu2

j − ûiû2
j | ≤ 2/

√
n.

Consider the Frobenious norm of i-th slice, it can be written as

‖Ai,∗,∗‖F = ‖Ei,∗,∗ + (ui · uu> − ûi · ûû>) + vi · vv>‖F ,

where ‖Ei,∗,∗‖F ≤ 1/
√
n(by part 3 of Lemma 22.8.2) and ‖ui · uu> − ûi · ûû>‖F ≤ 3/

√
n(by

part 4 of Fact 22.8.3).

For any β ∈ (0, 1), we use R to denote a set of indices such that {i | |ui − ûi| >
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1/n1/2+β/2, i ∈ [n]}. Then we know that |R| ≤ nβ , otherwise

‖u− û‖2
2 =

∑

i∈[n]

|ui − ûi|2 ≥
∑

i∈R

|ui − ûi|2 > 1/n,

which is a contradiction to ‖u− û‖2 ≤ 1/
√
n.

Part 1. Follow the similar reason in Lemma 22.8.4 and 22.8.5, for |Ai,i,i| ≥ 4/n, then

at least one of u3
i − û3

i and v3
i has large absolute value or both of them are large and have

the same sign. Both of these two situations imply that ‖Ai,∗,∗‖2
F is large. Then we need to

set τi = 1 and take b̂i = O(n2) samples for each of these slices. Also, the number of such

slice could have

max(|ui|, |vi|, |ûi|) > 1/n1/3

is O(n2/3) by using the similar argument in part 1 of Lemma 22.8.4. Even if |Ai,i,i| < 4/n,

we cannot conclude that ‖Ai,∗,∗‖2
F is small, because u3

i − û3
i and v3

i can have opposite sign

and then cancel each other.

Part 2. For each i ∈ [n], if |Ai,i,i| < 4/n, we take O(b/nα) samples for slice i.

By doing this, we can guarantee that the error bounds are sufficient for slice i as long as

‖Ai,∗,∗‖2
F ≤ 5/nα.

Now we need to handle the slice where ‖Ai,∗,∗‖2
F > 5/nα but ‖Ai,i,i| < 4/n in the next

part.

Part 3.

Let us consider slice i ∈ [n] such that

‖Ai,∗,∗‖2
F = ‖Ei,∗,∗ + ui · uu> − ûi · ûû> + vi · vv>‖2

F > 5/nα, (22.10)

|Ai,i,i| = |Ei,i,i + u3
i − û3

i + v3
i | < 3/n. (22.11)
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Using Part 3 and 4 of Lemma 22.8.2, we have

‖Ei,∗,∗‖2
F ≤ 1/n, and |Ei,i,i| ≤ 1/n. (22.12)

Combining Equation (22.10), (22.11), (22.12) and Fact 22.8.3 with triangle inequality implies,

2v2
i ≥ 5/nα − 2‖Ei,∗,∗‖2

F − 2‖ui · uu> − ûi · ûû>‖2
F

≥ 5/nα − 2/n− 2 · 9/n

≥ 4/nα

and

|u3
i − û3

i + v3
i | < 6/n.

Combining α ∈ (0, 2/3) with the above two equations, we can conclude that sign(ui − ûi) 6=

sign(vi), |vi|3 > 1/n3α/2 and |u3
i − û3

i | ≥ 1/n3α/2. As long as we choose α ∈ (0, 1/3), then it

is impossible that

1/n3α/2 ≤ |u3
i − û3

i | ≤ 4/
√
n.

Thus, we know part 3 will never happen.
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22.8.4 Even order tensor

In this section, we prove the even order case.

Lemma 22.8.7. For any E ∈ Rn4 and any β > 0, if ‖E‖2 := max
‖u‖2=‖v‖2=‖w‖2=‖x‖2

|E(u, v, w, x)| ≤

1/n1+β, then for all i ∈ [n],

1. max
‖v‖2=‖w‖2=‖x‖2=1

‖E(I, v, w, x)‖2 ≤ ‖E‖2,

2. ‖Ei,∗,∗,∗‖2 ≤ 1/n1+β,

3. ‖Ei,∗,∗,∗‖F ≤ 1/
√
n,

4. ∀j ∈ [n], |Ei,j,j,j| ≤ 1/n1+β.

Proof. Part 1.

‖E‖2
2 = max

‖u‖2=‖v‖2=‖w‖2=‖x‖2=1
|E(u, v, w, x)|2

= max
‖u‖2=‖v‖2=‖w‖2=‖x‖2=1

(
n∑

i=1

ui ·
n∑

j=1

n∑

k=1

Ei,j,k,tvjwkxt

)2

≥ max
‖v‖2=‖w‖2=‖x‖2=1

n∑

i=1

u2
i ·

n∑

i=1

(
n∑

j=1

n∑

k=1

Ei,j,k,tvjwkxt

)2

= max
‖v‖2=‖w‖2=‖x‖2=1

n∑

i=1

(
n∑

j=1

n∑

k=1

Ei,j,k,tvjwkxt

)2

= max
‖v‖2=‖w‖2=‖x‖2=1

‖E(I, v, w, x)‖2
2,

where the first inequality follows by setting ui = c ·∑n
j=1

∑n
k=1

∑n
t=1 Ei,j,k,tvjvkvt, ∀i ∈ [n]

and
∑n

i=1 u
2
i = 1.
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Part 2. By definition of ‖ · ‖2 for a tensor E ∈ Rn4 , we have

max
‖u‖2=1

‖E(I, v, w, x)‖2 ≤ max
‖u‖2=‖v‖2=‖w‖2=‖x‖2=1

|E(u, v, w, x)|

By definition of E(I, v, w, x) ∈ Rn, we have

E(I, v, w, x)i =
n∑

j=1

n∑

k=1

n∑

t=1

Ei,j,k,tvjwkxt.

Thus, we can upper bound the ‖ · ‖2 for matrix Ei,∗,∗,∗ ∈ Rn3 in the following sense,

1/n1+β ≥ ‖E‖2

≥ max
‖v‖2=‖w‖2=‖x‖2=1

‖E(I, v, w, x)‖2 by Part 1.

= max
‖v‖2=‖w‖2=‖x‖2=1




n∑

i=1

(
n∑

j=1

n∑

k=1

n∑

t=1

Ei,j,k,tvjwkxt

)2



1/2

≥ max
‖v‖2=‖w‖2=‖x‖2=1

∣∣∣∣∣
n∑

j=1

n∑

k=1

n∑

t=1

Ei,j,k,tvjwkxt

∣∣∣∣∣
= ‖Ei,∗,∗,∗‖2, by Fact 22.8.1

which completes the proof of Part 2.

Part 3. By the proof of Lemma 22.8.2, ∀i, j ∈ [n] we have

‖Ei,j,∗,∗‖2 ≤ ‖Ei,∗,∗,∗‖2 ≤ 1/n1+β.

Since ‖Ei,j,∗,∗‖2 ≤ 1/n1+β and the rank of n× n matrix is at most n, thus,

‖Ei,∗,∗,∗‖2
F =

n∑

j=1

‖Ei,j,∗,∗‖2
F ≤

n∑

j=1

n · ‖Ei,j,∗,∗‖2
2 ≤ n · n · (1/n1+β)2 ≤ 1/n2β,

which implies ‖Ei,∗,∗,∗‖F ≤ 1/nβ and finishes the proof of Part 3.
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Part 4. For each slice i ∈ [n], by ‖Ei,∗,∗,∗‖2 ≤ 1/n1+β and definition of ‖ · ‖2 of a

matrix, we have

max
‖v‖2=‖w‖2=‖x‖2=1

∣∣∣∣∣
n∑

j=1

n∑

k=1

n∑

t=1

Ei,j,k,tvjwkxt

∣∣∣∣∣ ≤ 1/n,

choosing v = w = x = ej where ej is the vector that jth position is 1 and all the other

positions are 0. Thus, we know for any j ∈ [n], |Ei,j,j,j| ≤ 1/n1+β. Thus, we complete the

proof of Part 4.

Lemma 22.8.8 (Order p = 4). For sufficiently small constant γ > 0, for arbitrarily small

constant β > 0, for any k ≤ nγ, t < k, for any given tensor A = E+
∑k

i=1 u
⊗4
i −

∑t
i=1 û

⊗4
i ∈

Rn4 with ‖E‖2 ≤ 1/n1+β, ui · uj = 0,∀i, j ∈ [k], ‖ûi − ui‖2 ≤ 1/
√
n, ∀i ∈ [t]. There exists

an algorithm that takes O(n4−2β) samples/time is able to output a vector τ ∈ Rn which is a

good and efficient estimate of A, i.e., τ, A satisfies (22.5) and (22.6).

Proof. Let A = E +
∑k

i=1 u
⊗4
i −

∑t
i=1 û

⊗4
i . For any j ∈ [n], we use ui,j to denote the j-th

coordinate of vector ui ∈ Rn. We can observe the main diagonal of A,

|Aj,j,j,j| =
∣∣∣∣∣Ej,j,j,j +

t∑

i=1

(u4
i,j − û4

i,j) +
k∑

i=t+1

u4
i,j

∣∣∣∣∣ .

Since ∀i ∈ [t], ‖ui − ûi‖2 ≤ 1/
√
n, then ∀j ∈ [n], |ui,j − ûi,j| ≤ 1/

√
n. Furthermore, we have

|u4
i,j − û4

i,j| = |(ui,j − ûi,j)(ui,j + ûi,j)(u
2
i,j + û2

i,j)| ≤ 4/
√
n.

By part 4 of Lemma 22.8.7, we have |Ej,j,j,j| ≤ 1/n. Because there is no cancellation in

|Aj,j,j,j| and 1/
√
n� 1/n, we can use the same threshold 1/n as Lemma 22.8.4 again.
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Part 1, |Aj,j,j,j| ≥ 1/n. In this case, for i ∈ {t + 1, t + 2, · · · , k} one of |ui,j| is

large and ‖Aj,∗,∗,∗‖2
F is also large. Let S denote a set of indices such that, for each j ∈ S,

|Aj,j,j,j| ≥ 1/n. We can show an upper bound for |S|. For each j, there must exists one i > t

such that |ui,j| ≥ 1/(kn1/4) = 1/n1/4−γ. There are at most k different i, for each i we know

ui is a unit vector and then there are at most n1/2−2γ coordinates j of vector ui could have

|ui,j| ≥ 1/n1/4−γ. Thus |S| ≤ kn1/2−2γ ≤ n1/2−γ. For each i ∈ S, we take O(n3) samples

from slice j. Then the total number of samples is O(n3+1/2−γ).

Part 2, |Aj,j,j,j| < 1/n. In this case, we know there is no i > t such that |ui,j| ≥

2/n1/4. We can upper bound ‖Aj,∗,∗,∗‖F ,

‖Aj,∗,∗,∗‖F

≤ ‖Ej,∗,∗,∗‖F +

∥∥∥∥∥
t∑

i=1

ui,j · u⊗3
i − ûi,j · û⊗3

i

∥∥∥∥∥
F

+

∥∥∥∥∥
k∑

i=t+1

ui,j · u⊗3
i

∥∥∥∥∥
F

≤ ‖Ej,∗,∗,∗‖F +

∥∥∥∥∥
t∑

i=1

ui,j · u⊗3
i − ui,j · û⊗3

i

∥∥∥∥∥
F

+

∥∥∥∥∥
t∑

i=1

ui,j · û⊗3
i − ûi,j · û⊗3

i

∥∥∥∥∥
F

+

∥∥∥∥∥
k∑

i=t+1

ui,j · u⊗3
i

∥∥∥∥∥
F

≤ 1/nβ + k · 3/√n+ k · 1/√n+ k · 2/n1/4

≤ 3/nmin(β,1/4−γ)

where the bound of the second term in the third step follows by Fact 22.8.3.

Thus, as long as β < 1/4−γ, for each such slice i, we choose b̂i = O(b‖Aj,∗,∗,∗‖2
F/‖A‖2

F ) =

O(b/n2β) samples. Notice that b = O(n3) in order 4 tensor. The number of such i can be

O(n), thus the total sample complexity is n4−2β.

We can extend Lemma 22.8.8 to general case where order p is even,
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Theorem 22.8.9 (Even order). For sufficiently small constant γ > 0, there exists some

constant α > 0(depends on γ) for any k ∈ [1, nγ], p ∈ [3, nγ] r < k, for any given tensor

A = E +
∑k

i=1 λiu
⊗p
i −

∑t
i=1 λ̂iû

⊗p
i ∈ Rnp.

For any sufficiently large constant c0 ≥ 100, there exists a sufficiently small constant

c > 0, for any ε ∈ (0, cλk/(c0p
2kn(p−2)/2) if E satisfies that ‖E‖2 ≤ ε/(c0

√
n) and ∀i ∈ [t].

|λ̂i − λi| ≤ ε, and ‖ûi − ui‖2 ≤ ε/λi

There exists an algorithm that takes O(np−α) samples/time is able to output a vector τ ∈ Rn

which is a good and efficient estimate of A, i.e., τ, A satisfies (22.5) and (22.6).
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22.9 Robust Tensor Power Method Analysis for General Order p ≥
3

In Section 22.9.1, we extend several useful facts from 3rd order and 4th order to

arbitrary p-th order tensor when p ≥ 3. In Section 22.9.2, we extend analysis of the original

robust tensor power method [AGH+14] from 3rd to arbitrary order p ≥ 3, some of our proofs

also borrow the idea from a very recent work [WA16].

22.9.1 Useful facts

Fact 22.9.1. For any three unit vectors u, v, w ∈ Rn, for any 0 ≤ x ≤ 1, if 〈u,w〉 ≥ 1 − x

and 〈v, w〉 = 0, then 〈u, v〉 ≤
√

2x− x2.

Proof.

〈u, v〉 = cos θ(u, v)

≤ | cos θ(u,w) cos θ(v, w)|+ | sin θ(u,w) sin θ(v, w)|

≤ 0 +
√

1− (1− x)2

=
√

2x− x2.

Fact 22.9.2. For any E ∈ Rnp, u, v ∈ Rn, then |v>E(I, u, · · · , u)| = |E(v, u, · · · , u)|.
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Proof. It follows

|v>E(I, u, · · · , u)| =

∣∣∣∣∣∣

n∑

i1=1

vi1 ·




n∑

i2=1

· · ·
n∑

ip=1

Ei1,i2,··· ,ipui2 · · ·uip



∣∣∣∣∣∣

=

∣∣∣∣∣∣

n∑

i1=1

n∑

i2=1

· · ·
n∑

ip=1

Ei1,i2,··· ,ipvi1ui2 · · ·uip

∣∣∣∣∣∣
= |E(v, u, · · · , u)|.

Fact 22.9.3. For any p ≥ 3, given orthogonal tensor A∗ =
∑k

i=1 λjv
⊗p
j ∈ Rnp and vector

u ∈ Rn, for any j ∈ [k], we have |v>j A∗(I, u, · · · , u)| = λj|v>j u|p−1.

Proof. For any j ∈ [k], we have

|v>j A∗(I, u, · · · , u)| =

∣∣∣∣∣∣

n∑

i=1

vj,i

k∑

`=1

λ`v`,i

n∑

i2=1

· · ·
n∑

ip=1

v`,i2 · · · v`,ipui2 · · ·uip

∣∣∣∣∣∣

=

∣∣∣∣∣∣
λj

n∑

i2=1

· · ·
n∑

ip=1

vj,i2 · · · vj,ipui2 · · ·uip

∣∣∣∣∣∣
= |λj||v>j u|p−1.

Fact 22.9.4. For any tensor E ∈ Rnp, for any unit vectors u, v ∈ Rn,

1. |E(u, v, · · · , v)| ≤ ‖E‖2.

2. ‖E(I, v, . . . , v)‖2 ≤
√
n‖E‖2.
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Proof. The part 1 trivially follows by definition of ‖E‖2. For part 2, we define a unit vector

w to be (1/
√
n, · · · , 1/√n),

‖E(I, v, . . . , v)‖2
2

=
n∑

i1=1




n∑

i2=1

· · ·
n∑

ip=1

Ei1,i2,··· ,ipvi2 · · · vip




2

= n

n∑

i1=1




n∑

i2=1

· · ·
n∑

ip=1

Ei1,i2,··· ,ipwi1vi2 · · · vip




2

≤ n‖E‖2
2,

which implies ‖E(I, v, · · · , v)‖2 ≤
√
n‖E‖2.

Fact 22.9.5. For any p ≥ 3, for any unit vectors x, y, u, v ∈ Rn, we have

1. ‖[x⊗ v⊗(p−1)](I, u, · · · , u)− [y ⊗ v⊗(p−1)](I, u, · · · , u)‖2 = |〈u, v〉|p−1 · ‖x− y‖2.

2. ∀j ∈ {0, 1, · · · , p− 2},

‖[v⊗(1+j) ⊗ x⊗ v⊗(p−2−j)](I, u, · · · , u)− [v⊗(1+j) ⊗ y ⊗ v⊗(p−2−j)](I, u, · · · , u)‖2

≤ |〈u, v〉|p−2 · ‖x− y‖2.

Proof. Part 1. We consider the i-th coordinate of vector [x⊗ v⊗(p−1)](I, u, · · · , u) ∈ Rn, it

can be written as

xi

n∑

i2=1

· · ·
n∑

ip=1

vi2 · · · vipui2 · · ·uip = xi

n∑

i2=1

vi2ui2 · · ·
n∑

ip=1

vipuip = xi〈v, u〉p−1.
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Thus,

LHS2 =
n∑

i=1

(xi〈v, u〉p−1 − yi〈v, u〉p−1)2 = ‖x− y‖2
2 · |〈v, u〉|2(p−1).

Part 2. We consider the i-th coordinate of vector [v⊗(1+j)⊗x⊗v⊗(p−2−j)](I, u, · · · , u) ∈

Rn, it can be written as vi〈x, u〉 · 〈v, u〉p−2. Thus,

LHS2 =
n∑

i=1

(vi〈x, u〉〈v, u〉p−2 − vi〈y, u〉〈v, u〉p−2)2 = 〈x− y, u〉2〈v, u〉2(p−2) ≤ ‖x− y‖2
2〈v, u〉2(p−2).

Fact 22.9.6. For any two unit vectors u, v, if θ(u, v) ∈ (0, π/2), then ‖u−v‖2 ≤ tan θ(u, v).

Proof. Because θ(u, v) ∈ (0, π/2), we have cos θ(u, v) ∈ (0, 1). We use x to denote 〈u, v〉.

We want to show ‖u− v‖2
2 ≤ tan2 θ(u, v), which is equivalent to

2− 2x ≤ sin2 θ(u, v)/ cos2 θ(u, v)

⇐⇒ 2− 2x ≤ 1− x2/x2

⇐⇒ 0 ≤ (1− x)(1 + x− 2x2)

⇐⇒ 0 ≤ (1− x)2(1 + 2x)

which always holds. Thus we complete the proof.

Fact 22.9.7. Given an orthonormal basis, v1, v2, · · · , vn. Let V = (v2, · · · , vn) ∈ Rn×(n−1)

and A∗ =
∑k

i=1 λiv
⊗p
i . Then for any vector u ∈ Rn, we have ‖V >A∗(I, u, · · · , u)‖2

2 =
∑k

j=2 λ
2
j |v>j u|2(p−1).
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Proof.

‖V >A∗(I, u, · · · , u)‖2
2

=
n∑

j=2

|v>j A∗(I, u, · · · , u)|2

=
n∑

j=2

(
n∑

i=1

vj,iA
∗(I, u, · · · , u)i

)2

=
n∑

j=2




n∑

i=1

vj,i

n∑

i2=1

· · ·
n∑

ip=1

A∗i,i2,··· ,ipui2 · · ·uip




2

=
n∑

j=2




n∑

i=1

vj,i

n∑

i2=1

· · ·
n∑

ip=1

(
n∑

`=1

λ`v`,iv`,i2 · · · v`,ip)ui2 · · ·uip




2

by definition of A∗

=
n∑

j=2




k∑

`=1

λ`

n∑

i=1

vj,iv`,i

n∑

i2=1

· · ·
n∑

ip=1

(v`,i2 · · · v`,ip)ui2 · · ·uip




2

=
k∑

j=2


λj

n∑

i2=1

· · ·
n∑

ip=1

(vj,i2 · · · vj,ip)ui2 · · ·uip




2

=
k∑

j=2

λ2
j |v>j u|2(p−1)
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22.9.2 Convergence guarantee and deflation

Lemma 22.9.8 (Lemma C.1 and Corollary C.1 in [WA16]). For any t ∈ [k] and η ∈ (0, 1/2).

Let U denote a set of random Gaussian vectors in Rn. If |U| = Ω(k log(1/η)), then with

probability at least 1− η there exists a vector u ∈ U such that

max
j∈[k]\{t}

|v>j u| ≤
1

4
|v>t u| and |v>t u| ≥ 1/

√
n.

We generalize Lemma C.2 in [WA16] from p = 3 to arbitrary p ≥ 3,

Lemma 22.9.9. For sufficiently small constant c > 0, for any constant c0 ≥ 1, for any

p ≥ 3, for any tensor A = A∗ + Ẽ ∈ Rnp with A∗ =
∑k

i=1 λiv
⊗p
i , let

ut+1 = A(I, ut, · · · , ut)/‖A(I, ut, · · · , ut)‖2.

For any ε ≤ cλ1/(c0p
2kn(p−2)/2), and unit vector ut ∈ Rn, if

‖Ẽ(I, ut, · · · , ut)‖2 ≤
{

4pε if |v>1 ut| ≤ 1− 1/(c2
0p

2k2)

6ε/c0 otherwise

and

|Ẽ(v, ut, · · · , ut)| ≤
{

4ε/
√
n if |v>1 ut| ≤ 1− 1/(c2

0p
2k2)

6ε/(c0

√
n) otherwise

then for any t ∈ [T ],

1.

tan θ(v1, ut+1) ≤
{

0.8 tan θ(v1, ut) if |v>1 ut| ≤ 1− 1/(c2
0p

2k2)

0.8 tan θ(v1, ut) + 18ε/(c0λ1) otherwise

2. max
j∈[k]\{1}

λj|v>j ut|p−2 ≤ (1/4)λ1|v>1 ut|p−2.
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3. For any j ∈ {2, · · · , k},

|v>j ut+1|/|v>1 ut+1| ≤
{

0.8|v>j ut|/|v>1 ut| if |v>1 ut| ≤ 1− 1/(c2
0p

2k2)

0.8|v>j ut|/|v>1 ut|+ 18ε/(c0λ1

√
n) otherwise

Proof. Part 1. Let V ∈ Rn×(n−1) denote an orthonormal basis of the complement of v1, i.e.,

V is (v2, · · · , vk, · · · , vn) and let Ẽut = Ẽ(I, ut, · · · , ut) ∈ Rn. We can give an upper bound

for tan θ(v1, ut+1),

tan θ(v1, ut+1)

= tan θ(v1, A(I, ut, · · · , ut)/‖A(I, ut, · · · , ut)‖2) by definition of ut+1

= tan θ(v1, A(I, ut, · · · , ut)) by definition of angle

= tan θ(v1, A
∗(I, ut, · · · , ut) + Ẽ(I, ut, · · · , ut)) by A = A∗ + Ẽ ∈ Rnp

= tan θ(v1, A
∗(I, ut, · · · , ut) + Ẽut) by Ẽut := Ẽ(I, ut, · · · , ut) ∈ Rn

=
‖V >[A∗(I, ut, · · · , ut) + Ẽut ]‖2

|v>1 [A∗(I, ut, · · · , ut) + Ẽut ]|
by definition of tan θ

≤ ‖V
>A∗(I, ut, · · · , ut)‖2 + ‖V >Ẽut‖2

|v>1 A∗(I, ut, · · · , ut)| − |v>1 Ẽut |
. by triangle inequality

Using Fact 22.9.7, we have

‖V >A∗(I, ut, · · · , ut)‖2
2 =

k∑

j=2

λ2
j |v>j ut|2(p−1) (22.13)

≤
(

max
j∈[k]\{1}

|λj|2|v>j ut|2(p−2)

)
·
(

k∑

j=2

|v>j ut|2
)

(22.14)
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Putting it all together, we have

tan θ(v1, ut+1)

≤ ‖V
>A∗(I, ut, · · · , ut)‖2 + ‖V >Ẽut‖2

|v>1 A∗(I, ut, · · · , ut)| − |v>1 Ẽut |

≤ tan θ(v1, ut) ·
(‖V >A∗(I, ut, · · · , ut)‖2 + ‖V >Ẽut‖2)/‖V >ut‖2

|v>1 A∗(I, ut, · · · , ut)|/|v>1 ut| − |v>1 Ẽut|/|v>1 ut|

≤ tan θ(v1, ut) ·
max

j∈[k]\{1}
λj|v>j ut|p−2 + ‖V >Ẽut‖2/‖V >ut‖2

|v>1 A∗(I, ut, · · · , ut)|/|v>1 ut| − |v>1 Ẽut |/|v>1 ut|

≤ tan θ(v1, ut) ·
max

j∈[k]\{1}
λj|v>j ut|p−2 + ‖V >Ẽut‖2/‖V >ut‖2

λ1|v>1 ut|p−2 − |v>1 Ẽut |/|v>1 ut|

≤ tan θ(v1, ut) ·
(1/4)λ1|v>1 ut|p−2 + ‖V >Ẽut‖2/‖V >ut‖2

λ1|v>1 ut|p−2 − |v>1 Ẽut |/|v>1 ut|
≤ tan θ(v1, ut) · (1/4) · 1

1− |v>1 Ẽut |/(λ1|v>1 ut|p−1)︸ ︷︷ ︸
A

+
1

1− |v>1 Ẽut|/(λ1|v>1 ut|p−1)︸ ︷︷ ︸
A

· ‖V
>Ẽut‖2

λ1|v>1 ut|p−1

︸ ︷︷ ︸
B

= tan θ(v1, ut) · (1/4) · A+ A ·B

where the second step follows from tan θ(v1, ut) = ‖V >ut‖2
|v>1 ut|

, the third step follows from Equa-

tion (22.13), the forth step follows from Fact 22.9.3,

the fifth step follows from Part 2 of Lemma 22.9.9.

We show

Claim 22.9.10. For any t ∈ [T ], |v>1 u0| ≤ |v>1 ut|.

Proof. By induction hypothesis, we assume there exists some sufficiently small constant c > 0
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such that tan θ(v1, ut) ≤ 0.8 tan θ(v1, ut−1) + c. Thus, we can show

tan θ(v1, ut) ≤ 0.8(0.8 tan θ(v1, ut−1) + c) + c

≤ 0.8t tan θ(v1, u0) + c
t−1∑

j=0

0.8j

≤ 0.8t tan θ(v1, u0) + 5c

≤ tan θ(v1, u0) by tan θ(v1, u0) = ω(1)

which implies θ(v1, ut) ≤ θ(v1, u0) and hence |v>1 ut| = cos θ(v1, ut) ≥ cos θ(v1, u0) = |v>1 u0|.

Then we can upper bound A and B

Claim 22.9.11. A ≤ 1.1.

Proof. Note that |Ẽ(vj, ut, · · · , ut)| = |v>j Ẽ(I, ut, · · · , ut)| = |v>j Ẽut |. Because

|Ẽ(vj, ut, · · · , ut)| ≤ 4ε/
√
n

≤ 4cλ1/n
(p−1)/2 by ε ≤ cλ1/n

(p−2)/2

≤ 4cλ1|v>1 u0|p−1 by |v>1 u0| ≥ 1/
√
n.

Thus, if we choose sufficiently small c < 1/40, using |v>1 Ẽut| ≤ λ1|v>1 u0|p−1/10 and |v>1 u0| ≤

|v>1 ut|, we can show

|v>1 Ẽut | ≤ λ1|v>1 u0|p−1/10 ≤ λ1|v>1 ut|p−1/10

Thus, A ≤ 1
1−1/11

= 1.1
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It remains to bound B. We give a proof by considering two cases separately, one is

|v>1 ut| ≤ 1− 1
c20p

2k2 and the other is |v>1 ut| > 1− 1
c20p

2k2 . If |v>1 ut| ≤ (1− 1
c20p

2k2 ), we have

B =
‖V >Ẽut‖2

λ1|v>1 ut|p−1

=

√
1− |v>1 ut|2
|v>1 ut|

· ‖V >Ẽut‖2

λ1|v>1 ut|p−2
√

1− |v>1 ut|2

= tan θ(v1, ut) ·
‖V >Ẽut‖2

λ1|v>1 ut|p−2
√

1− |v>1 ut|2

≤ tan θ(v1, ut) ·
‖Ẽut‖2

λ1|v>1 ut|p−2
√

1− |v>1 ut|2
by ‖V >Ẽut‖2 ≤ ‖Ẽut‖2

≤ tan θ(v1, ut) ·
c0pk‖Ẽut‖2

λ1|v>1 ut|p−2
by 1/

√
1− |v>1 ut|2 ≤ c0pk

We need to bound c0pk‖Ẽut‖2
λ1|v>1 ut|p−2 . On one side, we can show

λ1|v>1 ut|p−2 ≥ λ1/(n
(p−2)/2).

On the other side, by Part 1 of Lemma 22.9.12 and assumption on E and E, we have ‖Ẽut‖2

c0pk‖Ẽut‖2 ≤ c0pk · 4pε.

Thus, as long as we choose sufficiently small ε such that ε ≤ λ1/(n
(p−2)/2 · 40 · c0p

2k), then

B ≤ 0.1 tan θ(v1, ut).
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If |v>1 ut| > 1− 1
c20k

2p2 , we have

B =
‖V >Ẽut‖2

λ1|v>1 ut|p−1

≤ ‖V >Ẽut‖2

λ1(1− 1
c20p

2k2 )p−1
by |v>1 ut| > 1− 1

c2
0p

2k2

≤ 3‖V >Ẽut‖2/λ1 by 1/(1− 1

c2
0p

2k2
)p−1 ≤ 3,∀p ≥ 3, k ≥ 1, c0 ≥ 1

≤ 3‖Ẽut‖2/λ1

By Part 1 of Corollary 22.9.13, we have ‖Êut‖2 ≤ 4ε/c0. By assumption on E and E, we

have ‖Eut‖2 ≤ ε/c0 and ‖Eut‖2 ≤ ε/c0. Thus, we complete the proof B ≤ 18ε/(c0λ1).

Part 2. For any j ∈ [k]\{1}, we have lower bound |v
>
1 ut+1|
|v>j ut+1|

,

|v>1 ut+1|
|v>j ut+1|

=
|v>1 [A∗(I, ut, · · · , ut) + Ẽut ]|
|v>j [A∗(I, ut, · · · , ut) + Ẽut ]|

by definition of ut+1

≥ |v
>
1 A
∗(I, ut, · · · , ut)| − |v>1 Ẽut |

|v>j A∗(I, ut, · · · , ut)|+ |v>j Ẽut |
by triangle inequality

≥ λ1|v>1 ut|p−1 − |v>1 Ẽut|
λj|v>j ut|p−1 + |v>j Ẽut|

by Fact 22.9.3

≥ λ1|v>1 ut|p−1 − 1
10
λ1|v>1 ut|p−1

λj|v>j ut|p−1 + 1
10
λ1|v>1 ut|p−1

by |v>j Ẽut| ≤
1

10
λ1|v>1 ut|p−1

≥ λ1|v>1 ut|p−1 − 1
10
λ1|v>1 ut|p−1

1
4
λ1|v>1 ut|p−2|v>j ut|+ 1

10
λ1|v>1 ut|p−1

by Part 1. λj|v>j ut|p−2 ≤ 1

4
λ1|v>1 ut|p−2

=
9
10
|v>1 ut|

1
4
|v>j ut|+ 1

10
|v>1 ut|

(22.15)
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If |v>j ut| < |v>1 ut|, then

λ1|v>1 ut+1|p−2

λj|v>j ut+1|p−2
≥ λ1

λj
2p−2,

where the last step follows by p ≥ 4. Note that for p = 3 we apply the better analysis like

the proof of Lemma C.2 in [WA16]. Thus, it works for any p ≥ 3.

If |v>j ut| ≥ |v>1 ut|, then

λ1|v>1 ut+1|p−2

λj|v>j ut+1|p−2
≥ λ1

λj

|v>1 ut|p−2

|v>j ut|p−2
2p−2 ≥ 4 · 2p−2.

Part 3. Similarly as Equation (22.15) and Part 1, we can also upper bound |v
>
j ut+1|
|v>1 ut+1|

,

|v>j ut+1|
|v>1 ut+1|

≤ λj|v>j ut|p−1 + |v>j Ẽut|
λ1|v>1 ut|p−1 − |v>1 Ẽut |

=
|v>j ut|
|v>1 ut|

· λj|v
>
j ut|p−2 + |v>j Ẽut |/|v>j ut|

λ1|v>1 ut|p−2 − |v>1 Ẽut |/|v>1 ut|

=
|v>j ut|
|v>1 ut|

· λj|v>j ut|p−2

λ1|v>1 ut|p−2 − |v>1 Ẽut |/|v>1 ut|
+

|v>j εt|
λ1|v>1 ut|p−1 − |v>1 Ẽut |

≤ |v
>
j ut|
|v>1 ut|

· 1

4
· 1

1− |v>1 Ẽut|/(λ1|v>1 ut|p−1)︸ ︷︷ ︸
A

+
1

1− |v>1 Ẽut |/(λ1|v>1 ut|p−1)︸ ︷︷ ︸
A

· |v
>
j Ẽut|

λ1|v>1 ut|p−1

︸ ︷︷ ︸
B

Similarly as before, we can show A ≤ 1.1 and if |v>1 ut| ≥ 1− 1
c20p

2k2 . It remains to bound B.

We give a proof by considering two cases separately, one is |v>1 ut| ≤ 1− 1
c20p

2k2 and the other
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is |v>1 ut| > 1− 1
c20p

2k2 . If |v>1 ut| ≤ (1− 1
c20p

2k2 ), we have

B =
|v>j Ẽut |

λ1|v>1 ut|p−1

=

√
1− |v>1 ut|2
|v>1 ut|

· |v>j Ẽut |
λ1|v>1 ut|p−2

√
1− |v>1 ut|2

= tan θ(v1, ut) ·
|v>j Ẽut |

λ1|v>1 ut|p−2
√

1− |v>1 ut|2

≤ tan θ(v1, ut) ·
c0pk|v>j Ẽut |
λ1|v>1 ut|p−2

by 1/
√

1− |v>1 ut|2 ≤ c0pk

We need to bound c0pk‖Ẽut‖2
λ1|v>1 ut|p−2 . On one side, we can show

λ1|v>1 ut|p−2 ≥ λ1/(n
(p−2)/2).

On the other side, by Part 2 of Lemma 22.9.12 and assumption on E and E, we have |v>j Ẽut |

c0pk|v>j Ẽut| ≤ c0pk · 4ε/
√
n.

Thus, as long as we choose sufficiently small ε such that ε ≤ λ1

√
n/(n(p−2)/2 · 40 · c0pk), then

B ≤ 0.1 tan θ(v1, ut).

If |v>1 ut| > 1− 1
c20k

2p2 , we have

B =
|v>j Ẽut|

λ1|v>1 ut|p−1

≤ |v>j Ẽut |
λ1(1− 1

c20p
2k2 )p−1

by |v>1 ut| > 1− 1

c2
0p

2k2

≤ 3|v>j Ẽut |/λ1 by 1/(1− 1

c2
0p

2k2
)p−1 ≤ 3,∀p ≥ 3, k ≥ 1, c0 ≥ 1

≤ 3|v>j Ẽut |/λ1
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By Part 1 of Corollary 22.9.13, we have |v>j Êut | ≤ 4ε/(c0

√
n). By assumption on E and

E, we have |v>j Eut| ≤ ε/(c0

√
n) and |v>j Eut | ≤ ε/(c0

√
n). Thus, we complete the proof

B ≤ 18ε/(c0λ1

√
n).

Definition 22.9.1. For any ε > 0, we say {λ̂i, v̂i}ki=1 is ε-close to {λi, vi}ki=1 if for all i ∈ [k],

1. |λ̂i − λi| ≤ ε.

2. ‖v̂i − vi‖2 ≤ tan θ(v̂i, vi) ≤ min(
√

2, ε/(λi)).

3. |v̂>i vj| ≤ ε/(
√
nλi), ∀j ∈ [k]\[i].

Lemma 22.9.12. Let Êi = λiv
⊗p
i − λ̂iv̂⊗pi ∈ Rnp , ∀i ∈ [k]. For any ε > 0, if {λ̂i, v̂i}ki=1 is

ε-close to {λi, vi}ki=1, then for all r ∈ [k], for any unit vector u ∈ Rn,

1.
∥∥∥∥

r∑
i=1

Êi(I, u, · · · , u)

∥∥∥∥
2

≤ 2pεκ1/2 + 2φε.

2. ∀j ∈ [k]\[i],
∣∣∣∣
r∑
i=1

Êj(vj, u, · · · , u)

∣∣∣∣ ≤ (2κε+ φε)/
√
n.

where κ =
r∑
i=1

|u>vi|2 and φ = 2k(ε/λk)
p−1.

Proof. Part 1. For each i ∈ [r], the error Êi is

Êi(I, u, · · · , u) = λi(u
>vi)

p−1vi − λ̂i(u>v̂i)p−1v̂i

lives in span{vi, v̂i}; this space is the same as span{vi, v̂⊥i }, where

v̂⊥i = v̂i − (v>i v̂i)vi

1863



is the projection of v̂i onto the subspace orthogonal to vi. Since ‖v̂i − v‖2
2 = 2(1− v>i v̂i), it

follows that

ci = v>i v̂i = 1− ‖v̂i − vi‖2
2/2 ≥ 0

(the inequality follows from the assumption ‖v̂i− vi‖2 ≤
√

2, which in turn implies 0 ≤ ci ≤

1). By the Pythagorean theorem and the above inequality for ci,

‖v̂⊥i ‖2
2 = 1− c2

i ≤ ‖v̂i − vi‖2
2.

We can obtain this bound, for any p ≥ 3,

|1− cpi | = |1− (1− ‖v̂i − vi‖2
2/2)p| ≤ p

2
‖v̂i − vi‖2

2

We first define ai, bi ∈ Rn such that ai = u>vi and bi = u>(v̂⊥i /‖v̂⊥i ‖2). We now rewrite

Êi(I, u, · · · , u) in terms of the coordinate system defined by vi and v̂⊥i ,

Êi(I, u, · · · , u)

= λi(u
>vi)

p−1vi − λ̂i(u>v̂i)p−1v̂i

= λia
p−1
i vi − λ̂i(aici + ‖v̂⊥i bi‖2)p−1(civi + v̂⊥i )

= (λia
p−1
i vi − λ̂i(aici + ‖v̂⊥i ‖2bi)

p−1ci)︸ ︷︷ ︸
Ai

·vi − λ̂i(aici + ‖v̂⊥i ‖2bi)
p−1‖v̂⊥i ‖2︸ ︷︷ ︸

Bi

·v̂⊥i /‖v̂⊥i ‖2

=Ai · vi −Bi · (v̂⊥i /‖v̂⊥i ‖2)
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The overall error can be written as
∥∥∥∥∥

r∑

i=1

Êi(I, u, · · · , u)

∥∥∥∥∥

2

2

=

∥∥∥∥∥
r∑

i=1

Aivi −
t∑

i=1

Bi(v̂
⊥
i /‖v̂⊥i ‖2)

∥∥∥∥∥

2

2

≤ 2

∥∥∥∥∥
r∑

i=1

Aivi

∥∥∥∥∥

2

2

+ 2

∥∥∥∥∥
r∑

i=1

Bi(v̂
⊥
i /‖v̂⊥i ‖2)

∥∥∥∥∥

2

2

≤ 2
r∑

i=1

A2
i + 2

(
r∑

i=1

|Bi|
)2

We first try to bound Ai by using |λi− λ̂i| ≤ ε, ‖v̂i− vi‖2 ≤ ε/λi, ‖v̂⊥i ‖2
2 ≤ ‖v̂i− vi‖2

2,

0 ≤ ci ≤ 1 and |bi| ≤ 1,

|Ai|

= |λiap−1
i − λ̂i(aici + ‖v̂⊥i ‖2bi)

p−1ci|

≤ |λiap−1
i − λ̂icpi ap−1

i |+
p−1∑

j=1

λ̂ici

(
(p− 1)

j

)
|aici|(p−1)−j‖v̂⊥i ‖j2

≤ |λiap−1
i − λ̂iap−1

i |+ |(1− cpi )λ̂iap−1
i |+

p−1∑

j=1

λ̂ici

(
(p− 1)

j

)
|aici|(p−1)−j(ε/λi)

j

≤ ε|ai|p−1 +
p

2
(ε/λi)

2λ̂i|ai|p−1 +

p−1∑

j=1

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ε/λi)

j

where the second term can be bounded as

p

2
(ε/λi)

2λ̂i|ai|p−1 ≤ p

2
(ε/λi)

2(|λ̂i − λi|+ |λi|)|ai|p−1

≤ p

2
(ε/λi)

2ε|ai|p−1 +
p

2
(ε/λi) · ε|ai|p−1

≤ 1

100k
ε|ai|p−1 by ε� λi/pk
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The third term can be divided into two parts j = 1, · · · , (p−1)/2 and j = (p−1)/2, · · · , (p−

1). For the first part,

(p−1)/2∑

j=1

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ε/λi)

j

= λ̂i(p− 1)|ai|p−2ε/λi +

(p−1)/2∑

j=2

λ̂i(p− 1)j|ai|(p−1)/2(ε/λi)
j

≤ (p− 1)ε|ai|p−2 +
1

100k
ε|ai|(p−1)/2

Similarly, we can bound the second part,

(p−1)/2∑

j=(p−1)

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ε/λi)

j

= λ̂i · 1 · 1 · (ε/λi)p−1 +

(p−1)/2∑

j=(p−1)−1

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ε/λi)

j

≤ 1

100k
ε+

1

100k
ε|ai|

Thus, putting it all together, we get

|Ai| ≤ ε|ai|+
1

10k
ε|ai|+ (p− 1)ε|ai|+

1

100k
ε

which implies that

|Ai|2 ≤ 2

(
(ε|ai|)2 + (

1

10k
ε|ai|)2 + ((p− 1)ε|ai|)2 + (

1

100k
ε)2

)
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It remains to bound Bi,

|Bi| = |λ̂i‖v̂⊥i ‖2(aici + ‖v̂⊥i ‖2bi)
p−1|

≤ λ̂i‖v̂⊥i ‖2

p−1∑

j=0

(
(p− 1)

j

)
|aici|p−1−j‖v̂⊥i ‖j2

≤ λ̂i(ε/λi)

p−1∑

j=0

(
(p− 1)

j

)
|ai|p−1−j(ε/λi)

j

= λ̂i(ε/λi)|ai|p−1 + λ̂i(ε/λi)

p−1∑

j=1

(
(p− 1)

j

)
|ai|p−1−j(ε/λi)

j

where the first term can be bounded as

λ̂i(ε/λi)|ai|p−1 ≤ (ε+ λi)(ε/λi)|ai|p−1 ≤ ε|ai|p−1 +
1

100k
ε|ai|p−1

The second term can be divided into two parts j = 1, · · · , (p−1)/2 and j = (p−1)/2, · · · , (p−

1). For the first part,

(ε/λi)

(p−1)/2∑

j=1

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ε/λi)

j

= (ε/λi)λ̂i(p− 1)|ai|p−2ε/λi + (ε/λi)

(p−1)/2∑

j=2

λ̂i(p− 1)j|ai|(p−1)/2(ε/λi)
j

≤ 1

100k
ε|ai|p−2 +

1

100k
ε|ai|(p−1)/2 by ε� λi/(kp)

Similarly, we can bound the second part,

(ε/λi)

(p−1)/2∑

j=(p−1)

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ε/λi)

j

= (ε/λi)λ̂i · 1 · 1 · (ε/λi)p−1 + (ε/λi)

(p−1)/2∑

j=(p−1)−1

λ̂i

(
(p− 1)

j

)
|ai|(p−1)−j(ε/λi)

j

≤ φ

k
ε+

1

100k
ε|ai| by ε� λi/kp
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where φ = 2k(ε/λk)
p−1. Putting it all together, we have

|Bi| ≤ ε|ai|2 +
1

100k2
ε|ai|+

φ

k
ε

=⇒
r∑

i=1

|Bi| ≤ εκ+
1

100k2
ε

t∑

i=1

|ai|+ φε

=⇒ (
r∑

i=1

|Bi|)2 ≤ 2

(
(εκ)2 + (

1

100k
ε

t∑

i=1

|ai|)2 + (φε)2

)

=⇒ (
r∑

i=1

|Bi|)2 ≤ 2

(
(εκ)2 + (

1

100k
ε)2κk + (φε)2

)

Recall that κ =
∑t

i=1 |ai|2 ≤ 1. Overall, we have
∥∥∥∥∥

r∑

i=1

Êi(I, u, · · · , u)

∥∥∥∥∥

2

2

= 2
r∑

i=1

|Ai|2 + 2(
r∑

i=1

|Bi|)2

≤ 4

(
ε2 · κ+ (

1

10k
ε)2κ+ (p− 1)2ε2κ+ (

1

100
√
k
ε)2

)

+ 4

(
(εκ)2 + (

1

100k
ε)2κk + (φε)2

)

≤ 4p2ε2κ+ 4φ2ε2

which gives the desired bound.
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Part 2. For any j ∈ [k]\[i], we have
∣∣∣∣∣
r∑

i=1

Êi(vj, u, · · · , u)

∣∣∣∣∣ ≤
r∑

i=1

|Êi(vj, u, · · · , u)|

=
r∑

i=1

λ̂i|v̂>i u|p−1|v̂>i vj|

≤
t∑

i=1

λ̂i|v̂>i u|p−1 ε√
nλi

,

where the first step follows by triangle inequality, the second step follows by vj · vi,∀i 6= j,

and the last step follows by part 3 of definition of ε-close. Let’s try to bound
∑r

i=1
λ̂i
λi
|v̂>i u|p−1,

r∑

i=1

λ̂i
λi
|v̂>i u|p−1

≤
r∑

i=1

λ̂i
λi

(|v>i u|+ |(vi − v̂i)>u|)p−1

≤
r∑

i=1

λ̂i
λi

(|v>i u|+ ‖vi − v̂i‖2)p−1

≤
r∑

i=1

(1 + ε/λi)(|v>i u|+ ε/λi)
p−1

≤ 2
r∑

i=1

|v>i u|2 + 2k(ε/λk)
p−1

= 2κ+ φ.

which gives the desired bound (2κ+ φ)ε/
√
n.

Corollary 22.9.13. Let Êi = λiv
⊗p
i − λ̂iv̂

⊗p
i ∈ Rnp ,∀i ∈ [k]. For any c0 ≥ 1, for any

ε ≤ λk/(2c0k), if {λ̂i, v̂i}ki=1 is ε-close to {λi, vi}ki=1, then for all r ∈ [k], for any unit vector

u ∈ Rn, |u>vr+1| ≥ 1− 1
c20p

2k
, then
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1.
∥∥∥∥

r∑
i=1

Êi(I, u, · · · , u)

∥∥∥∥
2

≤ 2pεκ1/2 + 2φε ≤ 4ε/c0.

2. ∀j ∈ [k]\[i],
∣∣∣∣
r∑
i=1

Êj(vj, u, · · · , u)

∣∣∣∣ ≤ (2κε+ φε)/
√
n ≤ 4ε/(c0

√
n).

where κ =
r∑
i=1

|u>vi|2 and φ = 2k(ε/λk)
p−1.

Proof. Using Fact 22.9.1, we have for any i ∈ [r],

κ =
r∑

i=1

|u>vi|2 ≤ k · 1/(c2
0p

2k) ≤ 1/c2
0p

2.

which implies 2pε
√
κ ≤ 2/c0. We also can bound φ,

φ = 2k(ε/λk)
p−1 ≤ 2k(1/(2c0k))2 ≤ 1/c0.
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22.9.3 Main result

We first extend the original robust tensor power method analysis to general order

p ≥ 3, i.e., Theorem 22.3.4. Second, we combine Theorem 22.3.4 with our importance

sampling techniques, i.e., Corollary 22.7.1 and Lemma 22.8.8.

Theorem 22.3.4. (Main, Abitrary order robust tensor power method) For any p ≥ 3, k ≥ 1,

for any tensor A = A∗+E ∈ Rnp , where A∗ =
∑k

i=1 λiv
⊗p
i with λi > 0 and orthonormal basis

vectors {v1, . . . , vk} ⊆ Rn, n ≥ k. Let λ1, λk be the largest and smallest values in {λi}ki=1 and

{λ̂i, v̂i}ki=1 be outputs of the robust tensor power method. For any sufficiently large constant

c0 ≥ 100, there exists a sufficiently small constant c > 0, for any ε ∈ (0, cλk/(c0p
2kn(p−2)/2)

if E satisfies that

‖E‖2 ≤ ε/(c0

√
n) (22.3)

and T = Ω(log(λ1n/ε)), L = Ω(k log(k)), then with probability at least 9/10, there exists a

permutation π : [k]→ [k], such that ∀i ∈ [k],

|λi − λ̂π(i)| ≤ ε, ‖vi − v̂π(i)‖2 ≤ ε/λi. (22.4)

Proof. We use E ∈ Rnp to denote the original noise, use Êi = λiv
⊗p
i − λ̂iv̂⊗pi ∈ Rnp to denote

the deflation noise, use E ∈ Rnp to denote the sketch noise and use Ẽ to denote the “true”

noise that contains both original noise, deflation noise and sketch noise. Thus, in t+ 1 step,

we actually observe tensor A∗ + Ẽ, where Ẽ = E +
∑t

i=1 Êi +E. To prove Theorem 22.3.4,

in fact we don’t need to worry about sketch noise E. Instead of assuming it is E = 0, we

prove a strong theorem by assuming sketch noise E is bounded, i.e., ‖E‖2 ≤ ε/(c0

√
n).
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Base case i = 1. Consider the first step, we get λ̂1 ∈ R, v̂1 ∈ Rn, we first show

‖v̂1−v1‖2 is bounded(as Part 2 of Definition 22.9.1) and then show |λ̂1−λ1| is bounded(as Part

1 of Definition 22.9.1). At the end, we show |v̂>i vj| is bounded(as Part 3 of Definition 22.9.1).

Bounding |v̂1 − v1|. So, applying Lemma 22.9.8, we have

tan θ(u0, v1) = sin θ(u0, v1)/ cos(θ(u0, v1)) ≤ √n.

Let t∗ denote the situation where |u>t∗v1| = 1− 1
c20p

2k2 . We know

‖ut∗ − v1‖2
2 = 2− 2|u>t∗v1| = 2/(c2

0p
2k2).

We can upper bound

‖ut∗ − v1‖2 ≤ tan θ(ut∗ , v1) ≤ 0.8 tan θ(ut∗−1, v1) ≤ · · · ≤ 0.8t
∗

tan θ(u0, v1) ≤ 0.8t
∗√
n

Thus, we need to set t∗ = Ω(log(nkpc0)) = Ω(log c0n).

Now, we need to analyze ‖uT − v1‖2,

‖uT − v1‖2 ≤ 0.8(tan θ(uT , v1) + 18ε/(c0λ1)) ≤ · · · ≤ 0.8T−t
∗

tan(ut∗ , v1) + 5 · 18ε/(c0λ1)

To guarantee ‖uT − v1‖2 ≤ ε/λ1, we need to choose T − t∗ = Ω(nλ1/ε) and c0 ≥ 100. Thus,

we get the desired property in Part 2 of Definition 22.9.1.
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Bounding |λ̂1 − λ1|. It remains to bound |λ̂1 − λ1|.

|λ̂1 − λ1| = |[A∗ + Ẽ](v̂1, · · · , v̂1)− λ1|

≤ |Ẽ(v̂1, · · · , v̂1)|+ |A∗(v̂1, · · · , v̂1)− λ1| by triangle inequality

= |Ẽ(v̂1, · · · , v̂1)|+
∣∣∣∣∣

[
k∑

i=1

λiv
⊗p
i

]
(v̂1, · · · , v̂1)− λ1

∣∣∣∣∣ by A∗ =
k∑

i=1

λiv
⊗p
i

≤ |Ẽ(v̂1, · · · , v̂1)|︸ ︷︷ ︸
A

+ |λ1|v>1 v̂1|p − λ1|︸ ︷︷ ︸
B

+
k∑

j=2

λj|v>j v̂1|p

︸ ︷︷ ︸
C

. by triangle inequality

For the term A, we have

A = |Ẽ(v̂1, · · · , v̂1)|

≤ |E(v̂1, · · · , v̂1)‖+ |E(v̂1, · · · , v̂1)|

≤ ‖E‖2 + |E(v̂1, · · · , v̂1)|

≤ ε/(c0

√
n) + ε/(c0

√
n)

≤ ε/12 by c0 ≥ 100, n ≥ 1

It remains to upper bound the second term B and the third term C.

B = λ1 − λ1(1− 1

2
‖v1 − v̂1‖2

2)p by v>1 v̂1 = 1− 1

2
‖v1 − v̂1‖2

2

≤ λ1p
1

2
‖v1 − v̂1‖2

2 by ‖v1 − v̂1‖2
2 � 1

≤ pε2/(2λ1) by ‖v1 − v̂1‖2 ≤ ε/λ1

≤ ε/12. by pε/(2λ1) ≤ 1/12

For the term C,

C =
k∑

j=2

λj|v>j v̂1|p ≤
k∑

j=2

λj(ε/(
√
nλj))

p = ε
k∑

j=2

(ε/(λj
√
n))p−1 ≤ ε/4.
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where the first inequality follows by Part 3 of Definition 22.9.1, and the last step follows by

(ε/λk)
p−1 ≤ 1/(4k). It suffices to set ε < 1

4
k1/(p−1)λk Thus, putting it all together, we have

|λ̂1 − λ1| ≤ A+B + C ≤ ε.

Bounding |v̂>1 vj|. We consider any j ∈ {2, · · · , k}. We choose t∗ to be smallest

integer such that |v>1 ut∗| ≥ 1− 1
c20p

2k2 . This implies |v>j ut∗| ≤ 1
c0pk

. By Part 3 of Lemma 22.9.9,

we have

|v>j ut∗|/|v>1 ut∗| ≤ 0.8|v>j ut∗−1|/|v>1 ut∗−1| ≤ · · · ≤ 0.8t
∗ · u0 ≤ 0.8t

∗ · 1/(1/√n)

Thus, we need to choose t∗ = Ω(log c0n).

Let analyze T > t∗,

|v>j uT |/|v>1 uT | ≤ 0.8T−t
∗|v>j ut∗|/|v>1 ut∗ |+ 5 · 18ε/(c0λ1

√
n).

Thus, we need to choose T = Ω(log(nλ1/ε)) and c0 ≥ 100 to guarantee that |v>j uT | ≤

ε/(λ1

√
n).

The case for i = r+1. Conditioned on all the first t cases are holding, let’s consider

t + 1 case, then the “true” noise Ẽ = E +
∑r

i=1Ei + E ∈ Rnp . Similarly as the base case

t = 1, we first show how to bound ‖v̂r+1 − vr+1‖2(as Part 2 of Definition 22.9.1), and then

we show how to bound |λ̂r+1−λr+1|(as Part 1 of Definition 22.9.1), at the end we show how

to bound |v>r+1vj|(as Part 3 of Definition 22.9.1).

Bounding ‖v̂r+1 − vr+1‖2. The proof is identical to the Base case, the difference is,

we need to choose T = Ω(log(nλt+1/ε)).
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Bounding |λ̂r+1 − λr+1|. We redefine A∗ and Ẽ to be A∗ =
∑k

i=t+1 λiv
⊗p
i and

Ẽ = E + E +
∑t

i=1 Êi. Then rewrite |λ̂t+1 − λt+1| as follows

|λ̂r+1 − λr+1|

= |[A∗ + Ẽ](v̂r+1, · · · , v̂r+1)− λr+1|

≤ |Ẽ(v̂r+1, · · · , v̂r+1)|+ |A∗(v̂r+1, · · · , v̂r+1)− λr+1| by triangle inequality

= |Ẽ(v̂r+1, · · · , v̂r+1)|+
∣∣∣∣∣

[
k∑

i=r+1

λiv
⊗p
i

]
(v̂r+1, · · · , v̂r+1)− λr+1

∣∣∣∣∣ by A∗ =
k∑

i=r+1

λiv
⊗p
i

≤ |Ẽ(v̂r+1, · · · , v̂r+1)|︸ ︷︷ ︸
A

+ |λr+1|v>r+1v̂r+1|p − λr+1|︸ ︷︷ ︸
B

+
k∑

j=r+2

λj|v>j v̂r+1|p

︸ ︷︷ ︸
C

. by triangle inequality

We need to analyze A,

A = |Ẽ(v̂r+1, · · · , v̂r+1)|

= |E(v̂r+1, · · · , v̂r+1)|+ |E(v̂r+1, · · · , v̂r+1)|+ |
r∑

i=1

Êi(v̂r+1, · · · , v̂r+1)|

≤ ε/(c0

√
n) + ε/(c0

√
n) + 4ε/(c0

√
n)

≤ ε/12. by c0 ≥ 100, n ≥ 1

Bounding |v̂>r+1vj|. We consider any j ∈ {r + 2, · · · , k}. The proof is identical to

the base.

Theorem 22.9.14 (Arbitrary even order sublinear time robust tensor power method). There

exists some sufficiently small constant γ ∈ (0, 1) such that any p ∈ [3, nγ], k ∈ [1, nγ].

There exists some sufficiently small constant α ∈ (0, 1 − 20γ) such that for any tensor

A = A∗ + E ∈ Rnp, where A∗ =
∑k

i=1 λiv
⊗p
i with λi > 0 and orthonormal basis vectors
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{v1, . . . , vk} ⊆ Rn. Let λ1, λk (≥ 1/nγ) be the largest and smallest values in {λi}ki=1 and

{λ̂i, v̂i}ki=1 be outputs of the “importance sampling” robust tensor power method. For any

sufficiently large constant c0 ≥ 100, there exists a sufficiently small constant c > 0, for any

ε ∈ (0, cλk/(c0p
2kn(p−2)/2) if E satisfies that ‖E‖2 ≤ ε/(c0

√
n) and if T = Ω(log(λ1n/ε)), L =

Ω(k log(k)),m = Ω(TLk2), b = Ω(mnc2
0/ε

2) then our algorithm uses O(nk) spaces, runs in

O(np−α) time and then with probability at least 9/10, there exists a permutation π : [k]→ [k],

such that ∀i ∈ [k],

|λi − λ̂π(i)| ≤ ε, ‖vi − v̂π(i)‖2 ≤ ε/λi.

Proof. It follows by combining Theorem 22.3.4, Corollary 22.7.1 and Theorem 22.8.9 . The

total number of iterations is m = Ω(TLk2), thus we need to take the union bound over

all the iterations. The total running time is O(mb) = np−α
′
(log λ1n)2/λ2

k, where α′ is some

sufficiently small constant.
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22.10 Algorithm

Algorithm 22.3 Subroutine for approximate tensor contraction A(I, v, w)

1: function ApproxTIvw(A, v, w, n,B, {b̂i})
2: q̃, r̃ ← CumProb(v, w)
3: for d = 1→ B do
4: L← GenRandTuples(

∑n
i=1 b̂i, q̃, r̃)

5: for i = 1→ n do
6: s

(d)
i ← 0

7: for ` = 1→ b̂i do
8: (j, k)← L(i−1)b+`

9: s
(d)
i ← s

(d)
i + 1

qjrk
Ai,j,k · uj · uk

10: end for
11: end for
12: end for
13: Â(I, v, w)i ← median

d∈[B]
s

(d)
i /b̂i, ∀i ∈ [n]

14: return Â(I, v, w)

Algorithm 22.4 Subroutine for approximate tensor contraction A(u, v, w)

1: function ApproxTuvw(A, u, v, w, n,B, b̂)
2: p̃, q̃, r̃ ← CumProb(u, v, w)
3: for d = 1→ B do
4: L← GenRandTuples(̂b, p̃, q̃, r̃).
5: s(d) ← 0
6: for (i, j, k) ∈ L do
7: s(d) ← s(d) + 1

piqjrk
Ai,j,k · ui · uj · uk

8: end for
9: s(d) ← s(d)/b̂
10: end for
11: Â(u, v, w)← median

d∈[B]
s(d)

12: return Â(u, v, w)
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Algorithm 22.5 Our main algorithm
1: function ImportanceSamplingRobustTensorPowerMethod(A, n,B, b)
2: if si are known, where ‖Ai,∗,∗‖2

F . si then
3: b̂i ← b · si/‖A‖2

F ,∀i ∈ [n]
4: else
5: b̂i ← b/n,∀i ∈ [n]
6: end if
7: b̂ =

∑n
i=1 b̂i

8: for ` = 1→ L do
9: for t = 1→ T do
10: u(`) ← ApproxTIvw(A, u(`), u(`), n, B, {b̂i})
11: u(`) ← u(`)/‖u(`)‖2

12: end for
13: λ(`) ← ApproxTuvw(A, u(`), u(`), u(`), n, B, b̂)
14: end for
15: `∗ ← arg max`∈[L] λ

(`)

16: u∗ ← u(`∗)

17: for t = 1→ T do
18: u∗ ← ApproxTIvw(A, u∗, u∗, n, B, {b̂i})
19: u∗ ← u∗/‖u∗‖2

20: end for
21: λ∗ ← ApproxTuvw(A, u∗, u∗, u∗, n, B, b̂)
22: return λ∗, u∗
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22.11 Additional Experiment Results

The following sections gather all of our experiment results we collected to compare

our sampling-based robust tensor power method to a sketching-based robust tensor power

method. Our algorithm has the following parameters to set:

1. T : Number of power iterations

2. L: The number of starting vectors of the robust tensor power method

3. B: The number of sketches used in sketching, or the number of repetitions of sampling

4. b: The size of the sketch, or the number of indices sampled

In all of our experiments, we fix T = 30, L = 50, and change B and b for each input

tensor. We observe the squared residual Frobenius norm to evaluate the performance of each

algorithm. We only compute the first eigenvalue and eigenvector (rank-1 recovery) of each

tensor. This enables us to run a large collection of tensors within a reasonable time.
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22.11.1 Synthetic tensors with inverse decaying eigenvalues

The tables shown in this section use synthetic tensors generated with eigenvalues

decaying as λi = 1
i
. All tensors have rank k = 100 and added noise with σ = 0.01.

Sketching based robust power method
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 50 10 30 50 10 30 50
210 1.011 0.9263 0.6358 0.6034 2.407 4.382 5.386 15.96 26.47
212 1.01 0.4912 0.4451 1.342 4.603 8.012 5.972 17.34 28.72
214 0.4394 0.4161 0.4085 4.921 15.64 27.93 8.877 24.81 40.87
216 0.4089 0.4029 0.4006 22.48 69.67 115.2 13.79 34.86 55.65

Table 22.3: Sketching based robust power method: n = 1200, inverse decay, ‖T‖2
F =1.01

Importance sampling based robust power method (without prescanning)
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 50 10 30 50 10 30 50
5n 0.4075 0.4021 0.4 2.611 8.325 16.34 0.0 0.0 0.0

10n 0.4031 0.4007 0.3997 4.764 13.79 27.56 0.0 0.0 0.0
20n 0.4046 0.3997 0.3995 8.519 24.61 49.8 0.0 0.0 0.0
30n 0.3999 0.3995 0.399 12.32 35.52 71.59 0.0 0.0 0.0
40n 0.4009 0.3994 0.3989 16.15 46.25 94.76 0.0 0.0 0.0

Table 22.4: Importance sampling based robust power method, without prescanning: n =
1200, inverse decay, ‖T‖2

F =1.01
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Importance sampling based robust power method (with prescanning)
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 50 10 30 50 10 30 50
5n 0.408 0.4025 0.4005 3.621 11.9 20.49 2.234 2.235 2.241

10n 0.4051 0.4003 0.3997 6.302 20.56 35.24 2.225 2.223 2.226
20n 0.4057 0.3991 0.3993 11.67 37.89 64.52 2.225 2.226 2.225
30n 0.4027 0.3993 0.399 16.99 54.83 93.14 2.225 2.225 2.226
40n 0.4024 0.399 0.3988 22.23 72.13 122.2 2.223 2.225 2.225

Table 22.5: Importance sampling based robust power method with prescanning: n = 1200,
inverse decay, ‖T‖2

F =1.01
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Algorithm 22.2 Sampling Procedure for Rank-2
1: procedure SamplingRank2(A, n, b, α) . Lemma 22.8.5
2: S← S1 ← S2 ← S3 ← S4 ← ∅
3: for i ∈ [n] do
4: if |Ai,i,i| ≥ 3/n then
5: S1 ← S1 ∪ i
6: else
7: S2 ← S2 ∪ i
8: end if
9: end for . |S1| = O(n1/3)
10: for i ∈ S1 do . Part 1.
11: Choose b i.i.d. samples from slice i, add to S

12: end for . # samples = O(bn1/3)
13: for i ∈ [n] do . Part 2.
14: Choose O(b/nα) i.i.d. samples from slice i, add to S

15: end for . # samples = O(bn1−α)
16: Randomly choose a set S3 ⊆ S2 such that |S3| = O(n1/3+α log n) . Part 3.
17: for i ∈ S3 do
18: for l ∈ [n] do
19: if |Ai,l,l|2 ≥ 1/(4n1+3α) then . # l = O(n1/3+3α)
20: Choose b i.i.d. samples from slice l, add to S

21: end if
22: end for
23: end for . # samples = O(bn2/3+4α)
24: for i ∈ [n] do . Part 4.
25: for j ∈ [n] do
26: if |Ai,j,j|2 ≥ 1/(4n2/3+2α) then
27: S4 ← S4 ∪ {i, j}
28: end if
29: end for
30: end for
31: for i ∈ S4 do . |S4| = O(n2/3+2α)
32: Choose b i.i.d samples from slice i, add to S

33: end for . # samples = O(bn2/3+2α)
34: return S

35: end procedure

1882



22.11.2 Synthetic tensors with inverse square decaying eigenvalues

The tables shown in this section use synthetic tensors generated with eigenvalues

decaying as λi = 1
i2
. All tensors have rank k = 100 and added noise with σ = 0.01.

Sketching based robust power method
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 50 10 30 50 10 30 50
210 1.01 1.014 0.5437 0.6114 2.423 4.374 5.361 15.85 26.08
212 1.02 0.2271 0.1549 1.344 4.563 8.022 5.978 17.23 28.31
214 0.1513 0.1097 0.1003 4.928 15.51 27.87 8.788 24.72 40.4
216 0.1065 0.09242 0.08936 22.28 69.7 116.3 13.76 34.74 55.34

Table 22.6: Sketching based robust power method: n = 1200, inverse-square decay,
‖T‖2

F =1.01

Importance sampling based robust power method (without prescanning)
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 50 10 30 50 10 30 50
5n 0.08684 0.08637 0.08639 2.595 8.3 15.46 0.0 0.0 0.0

10n 0.08784 0.08671 0.08627 4.42 13.68 25.84 0.0 0.0 0.0
20n 0.08704 0.087 0.08618 8.02 24.51 46.37 0.0 0.0 0.0
30n 0.08697 0.08645 0.08625 11.63 35.35 66.71 0.0 0.0 0.0
40n 0.08653 0.08664 0.08611 15.19 46.12 87.24 0.0 0.0 0.0

Table 22.7: Importance sampling based robust power method, without prescanning: n =
1200, inverse-square decay, ‖T‖2

F =1.01
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Importance sampling based robust power method (with prescanning)
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 50 10 30 50 10 30 50
5n 0.08657 0.08684 0.08636 3.1 10.47 18 2.234 2.236 2.234

10n 0.08741 0.08677 0.08668 5.427 17.43 30.26 2.232 2.233 2.233
20n 0.08648 0.08624 0.08634 9.843 31.42 54.49 2.226 2.226 2.226
30n 0.08635 0.08634 0.08615 14.33 45.4 63.85 2.226 2.224 2.227
40n 0.08622 0.08652 0.08619 18.68 59.32 82.83 2.225 2.225 2.225

Table 22.8: Importance sampling based robust power method with prescanning: n = 1200,
inverse-square decay, ‖T‖2

F =1.01
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22.11.3 Synthetic tensors with linearly decaying eigenvalues

The tables shown in this section use synthetic tensors generated with eigenvalues

decaying as λi = 1− i−1
k
. All tensors have rank k = 100 and added noise σ = 0.01. Due to the

slowly decaying eigenvalues, we expect to see large residual values of rank-1 decomposition,

and both algorithms have to work harder to get a better recovery. Our sampling based

method works better especially when the dimension is large.

Sketching based robust power method
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 50 10 30 50 10 30 50
210 1.01 1.01 1.01 0.6153 2.457 4.381 5.364 15.78 26.25
212 1.01 1.01 1.01 1.356 4.704 7.994 5.975 17.24 28.48
214 1.01 1.01 0.9829 4.942 15.84 27.82 8.851 24.62 40.5
216 0.9835 0.9813 0.9811 22.66 72.01 115.1 13.75 35.13 55.59

Table 22.9: Sketching based robust power method: n = 1200, linear decay, ‖T‖2
F =1.01

Importance sampling based robust power method (without prescanning)
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 50 10 30 50 10 30 50
5n 1.01 0.9884 0.9879 2.627 8.699 17.61 0.0 0.0 0.0

10n 1.005 0.9881 0.9865 4.419 14.43 29.98 0.0 0.0 0.0
20n 0.9924 0.9853 0.9847 8.05 25.88 53.99 0.0 0.0 0.0
30n 0.9899 0.984 0.982 11.67 37.32 77.92 0.0 0.0 0.0
40n 0.9878 0.9831 0.9822 15.26 48.55 102 0.0 0.0 0.0

Table 22.10: Importance sampling based robust power method, without prescanning: n =
1200, linear decay, ‖T‖2

F =1.01
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Importance sampling based robust power method (with prescanning)
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 50 10 30 50 10 30 50
5n 1.01 0.991 0.9882 3.668 11.64 19.48 2.234 2.234 2.234

10n 1.009 0.9883 0.9851 6.512 20.14 33.45 2.225 2.225 2.226
20n 0.9918 0.9852 0.9828 11.9 36.43 61.01 2.225 2.225 2.226
30n 0.9873 0.9849 0.9826 17.14 52.89 87.36 2.226 2.226 2.226
40n 0.9882 0.9829 0.9822 22.38 69.01 114.6 2.226 2.227 2.226

Table 22.11: Importance sampling based robust power method with prescanning: n = 1200,
linear decay, ‖T‖2

F =1.01
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22.11.4 Results from real-life datasets

Dataset # Documents # Vocabulary # Words Short Description
Wiki 114274 10000 58508288 Wikipedia articles, preprocessed

by authors of [WTSA15]
Enron 3 186501 10000 16971591 Enron Email Dataset, prepro-

cessed by authors of [WTSA15]
AP 4 2246 10473 435838 Associated Press [BNJ01]

NIPS 5 1500 12419 1900000 NIPS full papers, preprocessed by
UCI

KOS 6 3430 6906 467714 KOS blog, preprocessed by UCI
NSF 7 49078 22170 4406190 NSF research award abstracts

1990-2003

Table 22.12: List of six real-life datasets

We used the two same datasets as the previous work [WTSA15]: Wiki and Enron, as

well as four additional real-life datasets, shown in Table 22.12. We use the program from the

authors of [TWZS15] to build a K ×K ×K tensor ALDA for each dataset. Due to limited

time our experiments only use K = 200. We expect to gain more over the sketching-based

method on larger tensors.

Since these tensors comes from real-world applications and are not normalized, their

Frobenius norm is usually very large.

3http://www.cs.cmu.edu/~enron/
4http://www.cs.princeton.edu/~blei/lda-c/
5https://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words
6https://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words
7http://archive.ics.uci.edu/ml/datasets/NSF+Research+Award+Abstracts+1990-2003
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Sketching based robust power method: dataset Enron
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
210 4.733e+07 4.608e+07 0.3667 0.7942 0.2429 0.2378
211 4.677e+07 4.58e+07 0.4434 1.486 0.2468 0.3238
212 4.581e+07 4.559e+07 0.995 3.243 0.3647 0.6283
213 4.568e+07 4.546e+07 2.023 6.017 0.5745 0.6458
214 4.556e+07 4.542e+07 4.561 13.97 0.9698 1.061

Table 22.13: Sketching based robust power method: dataset Enron, ‖T‖2
F =4.96e+07

Importance sampling based robust power method (without prescanning): dataset Enron
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
5n 4.579e+07 4.557e+07 0.3784 1.139 0.0 0.0

10n 4.563e+07 4.559e+07 0.5689 1.603 0.0 0.0
20n 4.56e+07 4.545e+07 1.003 2.706 0.0 0.0
30n 4.555e+07 4.543e+07 1.362 3.717 0.0 0.0
40n 4.564e+07 4.544e+07 1.693 4.753 0.0 0.0

Table 22.14: Importance sampling based robust power method, without prescanning: dataset
Enron, ‖T‖2

F =4.96e+07

Importance sampling based robust power method (with prescanning): dataset Enron
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
5n 4.605e+07 4.545e+07 0.4014 1.176 0.0105 0.01043

10n 4.573e+07 4.55e+07 0.6255 1.773 0.01036 0.01044
20n 4.561e+07 4.545e+07 1.318 2.923 0.01041 0.01039
30n 4.563e+07 4.546e+07 1.459 4.041 0.01101 0.01104
40n 4.56e+07 4.544e+07 1.841 5.092 0.01039 0.01102

Table 22.15: Importance sampling based robust power method with prescanning: dataset
Enron, ‖T‖2

F =4.96e+07
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Sketching based robust power method: dataset AP
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
210 7.065e+06 6.703e+06 0.2316 0.8128 0.172 0.2472
211 6.674e+06 6.613e+06 0.4404 1.417 0.2419 0.3072
212 6.656e+06 6.57e+06 0.9689 2.936 0.3586 0.4257
213 6.585e+06 6.573e+06 2.058 6.172 0.5826 0.6592
214 6.57e+06 6.555e+06 4.558 13.99 0.9601 1.059

Table 22.16: Sketching based robust power method: dataset AP, ‖T‖2
F =6.905e+06

Importance sampling based robust power method (without prescanning): dataset AP
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
5n 6.859e+06 6.805e+06 0.3762 1.548 0.0 0.0

10n 6.631e+06 6.904e+06 0.5469 1.577 0.0 0.0
20n 6.572e+06 6.72e+06 0.9535 2.587 0.0 0.0
30n 6.64e+06 6.557e+06 1.263 3.53 0.0 0.0
40n 6.565e+06 6.564e+06 1.613 4.478 0.0 0.0

Table 22.17: Importance sampling based robust power method, without prescanning: dataset
AP, ‖T‖2

F =6.905e+06

Importance sampling based robust power method (with prescanning): dataset AP
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
5n 6.58e+06 6.893e+06 0.4007 1.233 0.01045 0.01103

10n 6.604e+06 6.567e+06 0.7035 2.011 0.01061 0.01051
20n 6.803e+06 6.563e+06 1.166 3.246 0.01042 0.01061
30n 6.58e+06 6.573e+06 1.588 4.815 0.01103 0.01122
40n 6.66e+06 6.555e+06 1.989 5.601 0.01084 0.01103

Table 22.18: Importance sampling based robust power method with prescanning: dataset
AP, ‖T‖2

F =6.905e+06
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Sketching based robust power method: dataset NSF
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
210 4.342e+06 3.983e+06 0.2329 1.118 0.1731 0.2938
211 4.183e+06 3.906e+06 0.4415 1.434 0.2439 0.3061
212 3.929e+06 3.869e+06 0.9758 2.952 0.3554 0.4268
213 3.885e+06 3.86e+06 2.045 6.015 0.6591 0.6489
214 3.865e+06 3.854e+06 4.591 13.89 1.081 1.047

Table 22.19: Sketching based robust power method: dataset NSF, ‖T‖2
F =4.765e+06

Importance sampling based robust power method (without prescanning): dataset NSF
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
5n 3.899e+06 3.885e+06 0.3701 1.166 0.0 0.0

10n 3.891e+06 3.862e+06 0.5678 1.698 0.0 0.0
20n 3.896e+06 3.861e+06 1.029 2.927 0.0 0.0
30n 3.889e+06 3.856e+06 1.415 3.941 0.0 0.0
40n 3.867e+06 3.857e+06 1.823 5.287 0.0 0.0

Table 22.20: Importance sampling based robust power method, without prescanning: dataset
NSF, ‖T‖2

F =4.765e+06

Importance sampling based robust power method (with prescanning): dataset NSF
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
5n 3.938e+06 3.902e+06 0.5219 1.566 0.01039 0.01108

10n 3.898e+06 3.867e+06 0.8981 2.568 0.01104 0.01043
20n 3.947e+06 3.864e+06 1.561 4.546 0.01097 0.01057
30n 3.889e+06 3.852e+06 2.207 6.477 0.011 0.01107
40n 3.891e+06 3.853e+06 2.827 8.446 0.01103 0.01065

Table 22.21: Importance sampling based robust power method with prescanning: dataset
NSF, ‖T‖2

F =4.765e+06
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Sketching based robust power method: dataset NIPS
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
210 5.649e+09 5.432e+09 0.2383 0.8686 0.1724 0.2625
211 5.522e+09 5.383e+09 0.45 1.52 0.2417 0.3247
212 5.394e+09 5.366e+09 1.264 3.304 0.5082 0.6358
213 5.375e+09 5.353e+09 2.07 6.068 0.5766 0.7604
214 5.36e+09 5.35e+09 4.591 13.84 0.9817 1.044

Table 22.22: Sketching based robust power method: dataset NIPS, ‖T‖2
F =6.058e+09

Importance sampling based robust power method (without prescanning): dataset NIPS
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
5n 5.648e+09 5.403e+09 0.3205 0.9938 0.0 0.0

10n 5.417e+09 5.347e+09 0.4739 1.753 0.0 0.0
20n 5.352e+09 5.349e+09 0.8345 2.464 0.0 0.0
30n 5.361e+09 5.35e+09 1.19 3.317 0.0 0.0
40n 5.352e+09 5.349e+09 1.532 4.153 0.0 0.0

Table 22.23: Importance sampling based robust power method, without prescanning: dataset
NIPS, ‖T‖2

F =6.058e+09

Importance sampling based robust power method (with prescanning): dataset NIPS
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
5n 6.019e+09 5.943e+09 0.4818 1.401 0.01039 0.01057

10n 5.352e+09 5.389e+09 0.797 2.197 0.01063 0.01105
20n 5.387e+09 5.349e+09 1.335 3.849 0.01042 0.01039
30n 5.363e+09 5.346e+09 1.895 5.491 0.0104 0.01042
40n 5.352e+09 5.382e+09 2.523 7.019 0.01064 0.011

Table 22.24: Importance sampling based robust power method with prescanning: dataset
NIPS, ‖T‖2

F =6.058e+09
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Sketching based robust power method: dataset KOS
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
210 5.015e+04 4.807e+04 0.2356 0.8581 0.1781 0.2507
211 4.858e+04 4.787e+04 0.4482 1.417 0.2411 0.3072
212 4.797e+04 4.773e+04 0.9652 2.947 0.3556 0.4265
213 4.776e+04 4.764e+04 2.046 5.985 0.5722 0.6517
214 4.771e+04 4.761e+04 4.453 13.87 0.968 1.052

Table 22.25: Sketching based robust power method: dataset KOS, ‖T‖2
F =5.016e+04

Importance sampling based robust power method (without prescanning): dataset KOS
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
5n 4.783e+04 4.766e+04 0.3968 1.181 0.0 0.0

10n 4.817e+04 4.767e+04 0.6259 1.704 0.0 0.0
20n 4.775e+04 4.766e+04 1.039 2.79 0.0 0.0
30n 4.771e+04 4.762e+04 1.357 3.57 0.0 0.0
40n 4.767e+04 4.762e+04 1.76 4.892 0.0 0.0

Table 22.26: Importance sampling based robust power method, without prescanning: dataset
KOS, ‖T‖2

F =5.016e+04

Importance sampling based robust power method (with prescanning): dataset KOS
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
5n 4.773e+04 4.766e+04 0.4808 1.35 0.01061 0.01099

10n 4.792e+04 4.765e+04 0.7363 2.024 0.01108 0.01044
20n 4.795e+04 4.766e+04 1.336 3.308 0.01056 0.01104
30n 4.785e+04 4.765e+04 1.728 4.631 0.01039 0.0104
40n 4.767e+04 4.764e+04 2.295 5.773 0.01063 0.01102

Table 22.27: Importance sampling based robust power method with prescanning: dataset
KOS, ‖T‖2

F =5.016e+04
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Part V

Open Problems
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Chapter 23

Open Problems

In this chapter we give a long list of open problems . Some of these problems have

appeared in other places and might be well-known to researchers in the community; never-

theless we include them since they are related to this thesis in some way.

To encourage people to solve these problems, we offer cash for each problem. The

reward of each problem is not decided by the importance of the problem, but rather deter-

mined by the time when it is solved. To decide the order of time, we will compare the arXiv

ID. For the i-th problem solved, we will pay 0.01× 2i−1 dollars.
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23.1 Linear Programs

Linear programs are among most important optimization problems from both theo-

retical and practical view. In a recent result, [CLS19] show how to solve linear programs in

the current matrix multiplication time. It would be interesting if this is still true if we are

in a world where n× n matrix multiplication can be done in O(n2) time.

Open Problem 1. Is it possible to solve linear programs in the matrix multiplication time?

Another question is whether we can solve linear programs faster on sparse input.

[LS14, LS15] show how to solve linear program in O(
√
d · nnz(A) + d2.5) time, where nnz(A)

is the number of non-zeros in A and d is the number of constraints.

Open Problem 2. Is it possible to solve linear programs in the input sparsity time?

There are other well-known open problems in the theory of linear programming. One

important question is whether there is a strongly polynomial time algorithm.

Open Problem 3. Does LP admit a strongly polynomial time algorithm?

We concluded open problems on linear programs with a problem originally proposed

by Seve Smale [Sma98] in 1998.

Open Problem 4 (Problem 9 in [Sma98]). Is there a polynomial-time algorithm over the

real numbers which decides the feasibility of the linear system of inequalities Ax ≥ b?
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23.2 Matrix Multiplication

Let ω denote the exponent of matrix multiplication. Let α denote the dual exponent

of the matrix multiplication.

Open Problem 5. Is it possible that ω ≥ 2.5− α/2?

For the current value of ω ∼ 2.38 and α ∼ 0.31, this is true. If ω = 2, then α = 1, it

is also true. For the motivation of this inequality, we refer readers to [CLS19, LSZ19].

We also state a very well-known problem about matrix multiplication

Open Problem 6. What is the right answer of ω?
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23.3 Ordinary Differential Equations

The following open problem is conjectured by Yin Tat Lee.

Open Problem 7. [LSV18] gives an algorithm for sampling logconcave densities under

m-strong convexity and M-smoothness. It takes κ1.5 iterations (where κ := M/m), O(1)

gradient evaluation per iteration, and the total time is κ1.5d. Is that possible to give an

algorithm that takes κ iterations, and O(1) gradient evaluation per iteration?
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23.4 Matrix Factorization

We discuss several open problems about matrix/tensor factorization in this section.

23.4.1 Weighted Factorization

Recall the definition of weighted low rank approximation

Definition 23.4.1. Given a matrix A ∈ Rn×n and a matrix W ∈ Rn×n. Let W denote a

rank-r weight matrix. For integer k ≥ 1 and approximation ratio α > 1, the goal is to find

a rank-k matrix B ∈ Rn×n such that

‖W ◦ (B − A)‖F ≤ α · min
rank−k A′

‖W ◦ (A′ − A)‖F .

We assume the entries of A and W are integers in the range {−M,−M + 1, · · · ,M}

for an integer M ≤ 2poly(n), i.e., that the entries of A and W can be specified with poly(n)

bits.

Open Problem 8. For k = O(1) and α = O(1), [RSW16] showed an nO(r) upper bound

and a 2Ω(r) lower bound under Feige-ETH. Is it possible to close the gap?

The above question was originally asked by David P. Woodruff (see Open Problem 9

in [CFHW17]).

Open Problem 9. If W has r distinct columns (which is a stronger assumption than W

has rank-r), [RSW16] showed 2Õ(r2) upper bound and 2Ω(r) lower bound under Feige-ETH, is

it possible to close the gap?
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23.4.2 Nonnegative Matrix Factorization

Nonnegative matrix factorization was theoretically studied by [AGKM12] and [Moi13].

The formal definition is

Definition 23.4.2 (NMF). Given an n × n matrix A and a parameter k, the goal is to

output two nonnegative n× k matrices U and V > such that UV = A.

Open Problem 10. There is an algorithm for NMF that takes nO(k2) time due to [Moi13].

Under ETH, any algorithm that solves NMF takes nΩ(k) time. The question is, can we close

the gap?

23.4.3 Tensor factorization

Tensor factorization/decomposition has many applications in computer science. We

give a formal problem definition.

Definition 23.4.3. Given a n × n × n tensor A and a parameter k, the goal is to output

three n× k matrices U, V,W such that

‖U ⊗ V ⊗W − A‖F ≤ O(1) min
rank−k Ak

‖Ak − A‖F .

Open Problem 11. [SWZ19b] propose an algorithm that takes nnz(A) +n ·poly(k) + 2O(k2)

time. From the other perspective, [SWZ19b] show that there is no algorithm that takes 2o(k)

time unless Feige-ETH is false. For the situation k = ω(log n), can we close the gap between

2O(k2) and 2Ω(k)?

In fact, all three open problems are equivalent in some sense. If someone can solve

one of them, then probably also can improve the remaining ones. From the lower bound
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side, all the current hardness results are based on ETH-type assumption. We don’t know

how to boost the current reduction. From the algorithmic side, all the current results are

based on polynomial system solver, which has exponential dependence on the number of

variables. For the target rank-k matrices, we don’t know how to write down a system that

only involves o(k2) variables.
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23.5 Continuous Fourier Transform
23.5.1 One dimensional

We say x(t) : R → C is a k-Fourier-sparse signal if x(t) can be written as x(t) =
∑k

j=1 vje
−2πifjt where vj ∈ C and fj ∈ R, ∀j ∈ [k]. Let ‖x‖T = ( 1

T

∫ T
0
|x(t)|2dt)1/2.

Open Problem 12. [CKPS16] showed that : for any k-Fourier-sparse signal x(t) : R→ C

and any duration T > 0, we have

max
t∈[0,T ]

|x(t)|2 ≤ O(k4 log3 k) · ‖x‖2
T .

[CKPS16] also showed that Ω(k2) is necessary. Can we close the gap?

23.5.2 High dimensional

We say x(t) : Rd → C is a d-dimensional k-Fourier-sparse signal if x(t) can be

written as x(t) =
∑k

j=1 vje
−2πif>j t where vj ∈ C and fj ∈ Rd, ∀j ∈ [k]. Let ‖x‖T =

( 1
T d

∫
[0,T ]d

|x(t)|2dt)1/2.

Open Problem 13. [Son17] showed that : for any d-dimensional k-Fourier-sparse signal

x(t) : Rd → C and any duration T > 0, we have

max
t∈[0,T ]d

|x(t)|2 ≤ kO(d) · ‖x‖2
T .

Is it possible to improve the upper bound kO(d), e.g. to poly(k, d)? Is it possible to prove a

lower bound of kΩ(d)?

We provide the details of [Son17] in the Chapter 31.

Currently, [PS15] and [CKPS16] are working for d = 1 case.

Open Problem 14. Can we generalize [PS15] and [CKPS16] to arbitrary dimension d?
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23.6 Discrete Fourier Transform
23.6.1 High dimensional

We introduce some notations for high dimensional Fourier transform. We assume

that the universe size n = pd for any positive integer p. Let ω = e2πi/p where i =
√
−1. We

define the normalized d-dimensional Fourier transform

x̂f =
1√
n

∑

t∈[p]d

xt · ωf
>t, ∀f ∈ [p]d

and the inverse Fourier transform is

xt =
1√
n

∑

f∈[p]d

x̂f · ω−f
>t, ∀t ∈ [p]d.

One important goal for high dimensional Fourier transform is to achieve dimension-

free results. We suggest some problems for any d ≥ 1.

Open Problem 15. For the noiseless setting, [KVZ19] give an algorithm that uses

O(k3 log2 log2 n)

samples and O(k3 log2 k log2 n) time. This is already dimension-free! If the running time has

to be poly(k log n), what is the best sample complexity we can achieve?

Open Problem 16. For the noisy setting, [NSW19a] give an algorithm that uses

O(k log k log n)

samples and Õ(n) running time. Is O(k log k log n) the right answer for sample complexity?

Open Problem 17. For the noisy setting, can we get poly(k log n) samples and poly(k log n)

running times?
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For d = O(1), the state-of-the-art result [Kap16] takes k log n · log log n samples and

k poly(log n) running times.

Open Problem 18. For the noisy setting, for d = O(1), what is the right answer for sample

complexity?
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23.7 Discrete time continuous frequency Fourier transform

There is a long line of work doing Fourier transform in the discrete setting [GMS05,

Iwe08, Iwe10, HIKP12a, HIKP12b, Iwe13, IKP14, IK14, Kap16, Kap17, CI17, NSW18, LN19,

NSW19a]. We provide the formal definition here. For ease of discussion, we call it discrete-

discrete setting.

Definition 23.7.1 (discrete time discrete frequency Fourier transform, [HIKP12a]). Given

a vector x̂ ∈ Cn, an integer k and an approximation ratio α > 1. design an algorithm that

takes samples from x ∈ Cn, and outputs a O(k)-sparse vector y ∈ Cn such that

‖y − x̂‖2 ≤ α · min
k−sparse z

‖z − x̂‖2.

In general, we hope the number of samples and running time are both k poly(log n).

To the best of our knowledge, [PS15] is the first work that defines the robust sparse

Fourier transform in the continuous setting. For ease of discussion, we call it continuous-

continuous setting.

Definition 23.7.2 (continuous time continuous frequency Fourier transform, [PS15]). Let x

be a function x(t) = x∗(t) + g(t) where x∗(t) =
∑k

j=1 vje
2πifjt (i.e. x∗(t) is a k-Fourier-sparse

signal) and fj ∈ [−F, F ]. Let T > 0. The goal is to design an algorithm that allows to take

samples from x(t) and outputs a O(k)-Fourier-sparse signal y(t) such that

1

T

∫ T

0

|y(t)− x(t)|2dt ≤ α · 1

T

∫ T

0

|g(t)|2dt.

In general, we hope the number of samples and running time are k poly(logFT ).
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For a function x(t), we define

‖x(t)‖T =

(
1

T

∫ T

0

|x(t)|2dt

)1/2

The following definition is suggested by Jerry Li.

Definition 23.7.3 (discrete time continuous frequency Fourier transform). Given k tones

(vj, fj) ∈ C×[0, 1], we can access x(t) =
∑k

j=1 vje
−2πifjt + g(t), ∀t ∈ [n]. The goal is to

output a poly(k log n)-sparse function y(t) such that

n∑

t=1

(y(t)− x(t))2 ≤ O(1) ·
n∑

t=1

g(t)2.

Some interesting questions are:

Open Problem 19. Can we generalize the continuous Fourier transform techniques in

[PS15] to the setting where we are only allowed to take restricted samples (i.e., from integers),

if we may assume a frequency gap? Are we still able to recover the continuous frequencies

up to some precision, and then reconstruct the signal?

Open Problem 20. Can we generalize the continuous Fourier transform techniques in

[CKPS16] to the setting where we are only allowed to take restricted samples and reconstruct

the signal with finding the true continuous frequencies?

The discrete time continuous frequency Fourier transform problem naturally arises in

the study of learning low-rank Toeplitz covariance matrices. This is a well-studied problem

in signal processing, for instance, in relationship to direction-of-arrival estimation. Here,

we are given samples X1, . . . , Xn drawn from a d-dimensional Gaussian with mean 0 and
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covariance Σ, which we assume to be Toeplitz, and the goal is to approximately recover Σ.

Moreover, we are allowed to access individual coordinates of each Xi one-by-one, and only

pay a cost of 1 in the sample complexity for every coordinate we access.

Classical algorithms (such as ruler-based methods, or matrix pencil-based methods),

either require a number of samples which is polynomial in the ambient dimension, or are

not very tolerant to noise. In [ELMM19], it was demonstrated that by solving the discrete

time continuous frequency Fourier transform problem, one can obtain an algorithm which is

both robust to noise, and which requires a number of samples which depends only polyloga-

rithmically in the ambient dimension, when Σ is low rank. The aforementioned paper gives

an algorithm for this problem which is sample-efficient, but has exponential running time.

By instead using hashing-based techniques, one could hope to obtain a polynomial-time al-

gorithm for this problem, which would in turn yield the first efficient algorithm for learning

low-rank Toeplitz covariance matrices using only poly log(d) samples.
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23.8 Applications of Fourier transform
23.8.1 Speeding up linear programs

It is known that Subsampled Randomized Hadamard Transform gives the subspace

embedding.

Theorem 23.8.1 ([AC06, Sar06, Tro11b, DMM06a, DMMS11, DMIMW12, LDFU13]). Let

S =
√
n√
r
PHnD, where D is an n×n diagonal matrix with i.i.d. diagonal entries Di,i in which

Di,i = 1 with probability 1/2, and Di,i = −1 with probability 1/2. Hn refers to the Hadamard

matrix of size n, which we assume is a power of 2. Here the (i, j)-th entry of Hn is given by

(−1)〈i,j〉/
√
n where 〈i, j〉 =

∑logn
z=1 iz · jz and (ilogn, · · · , i1) and (jlogn, · · · , j1) are the binary

representations of i and j respectively. Then r × n matrix P samples r coordinates of an

n-dimensional vector uniformly at random, where

r = Ω(ε−2 log d · (
√
d+

√
log n)2)

Then with probability at least .99, for any fixed n× d matrix U with orthonormal columns,

‖Id − U>S>SU‖2 ≤ ε.

Further, for any vector x ∈ Rn, Sx can be computed in O(n log r) time.

An interesting question is

Open Problem 21. If we don’t use diagonal matrix D, can we show subspace embedding

guarantee presented in Theorem 23.8.1, or the guarantee presented in Lemma 3.9.1?

If the above conjecture holds, then we have more power to design fast algorithm for

several fundamental problems, i.e. linear programs.
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23.8.2 Proving convergence result for deep neural network

Open Problem 22. Is the frequency gap assumption in continuous Fourier transform

([PS15]) somehow equivalent to data-separable assumption in deep learning theory ([AZLS18,

AZLS19, SY19])?

The above problem seems strange in some sense, since Fourier transform and deep

learning are completely different problems. The motivation of the stating that problem is :

1) Fourier transform seems to be related to kernel regression with random Fourier feature,

2) a recent work shows that an infinite width one-hidden-layer neural network is somehow

equivalent to Kernel regression [ADH+19].
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23.9 An Over-parameterization Theory of Neural Networks

Over-parameterization theory for deep neural networks becomes extremely popular

over the last few years. There is a long line (still growing very quickly) of work proving that

(stochastic) gradient descent algorithm is able to find the global minimum if the network is

wide enough [LL18, DZPS19, AZLS18, AZLS19, DLL+19, ZCZG18, SY19].

Formally speaking, the existing results show that as long as the width m is at least

polynomial of number of input data n, then (S)GD-type algorithm can work in the following

sense: first randomly pick a weight matrix to be the initialization point, update the weight

matrix according to gradient direction over each iteration, and eventually find the global

minimum.

Yin Tat Lee [Lee18] conjectured the following

Open Problem 23. If m is nearly in n (ignore the polylog factors), then we can prove

convergence result for one-hidden layer neural network.

Next, we want to ask the open questions for multiple layer neural networks. Let L

denote the number of layers of the neural network, let n denote the number of input data

points, let d denote the dimension of input data points, let δ denote the failure probability,

and let m denote the width of the neural network.

Open Problem 24. For a deep neural network with ReLU activation function, what is the

smallest m that suffices to show convergence?

Similarly, we are also curious about the right answer for RNNs,
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Open Problem 25. For a recurrent neural network with ReLU activation function, what

is the smallest m that suffices to show convergence?

[AZLS18] proved a large polynomial dependence on all the parameters, we believe it

is improvable. However, we are not sure about the right answer. Note that all the above

three open problems are about training error.
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23.10 Matrix Chernoff and Discrepancy
23.10.1 Matrix Chernoff

Open Problem 26. [KS18] show that O(ε−2 log2 n) spanning trees suffice to produce a

(1 ± ε)-spectral graph sparsifier, and that Ω(ε−2 log n) spanning trees are necessary. Which

one is tight? Can we prove matching upper and lower bound?

For more background on this problem, we refer the reader to [BSST13, KS18].

We consulted some experts1. They are not aware of any form of the following Chernoff-

type result for hyperbolic polynomials. They believed the following result is interesting.

Open Problem 27. Given vectors x1, · · · , xn ∈ Rd and a polynomial h with respect to e, let

us define the hyperbolic norm ‖x‖h = maxi∈[n] |λi(x)| where h(te−x) = h(e) ·∏n
i=1(t−λi(x)),

and suppose ‖xi‖h ≤ 1 for all i ∈ [n]. If we sample i.i.d. ε1, · · · , εn uniformly from {−1, 1},

then does
∥∥∥∥∥

n∑

i=1

εixi

∥∥∥∥∥
h

≤ O(
√
n log n)

hold with constant probability?

23.10.2 Discrepancy

Open Problem 28 (Matrix Spencer). For any symmetric matrices A1, · · · , An ∈ Rn×n with

‖Ai‖ ≤ 1, do there exist signs ε1, · · · , εn ∈ {−1, 1} such that
∥∥∥∥∥

n∑

i=1

εiAi

∥∥∥∥∥ = O(
√
n).

1Personal communication with James Renegar
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The above problem is called the Matrix Spencer conjecture, see e.g. [Mek04] and

[RR19].

[MSS15b] resolved the Kadison-Singer conjecture, a long-standing open problem, but

their proof is non-constructive. From the algorithmic perspective, a major open question is

the following:

Open Problem 29. Given positive semidefinite matrices A1, · · · , Am ∈ Rn×n and ε > 0

with
∑m

i=1Ai = In and tr[Ai] ≤ ε for all i ∈ [m], is there a polynomial time algorithm to find

signs x1, . . . , xm ∈ {−1, 1} such that
∥∥∥
∑m

i=1 xiAi

∥∥∥ ≤ O(
√
ε)?

In order to describe the next open problems, we provide some definitions:

Definition 23.10.1 ([Brä18]). Given a degree d polynomial h that is hyperbolic with respect

to e ∈ Rn, The open hyperbolicity cone of h with respect to e is the set

Γ++(h, e) = {x ∈ Rn : λi(x) > 0 ∀i ∈ [n]}.

We also define the closed hyperbolicity cone

Γ+(h, e) = {x ∈ Rn : λi(x) ≥ 0 ∀i ∈ [n]},

where h(te− x) = h(e) ·∏n
i=1(t− λi(x)).

The trace, rank and spectral radius (with respect to e) of x ∈ Rn are defined as for

matrices

tr[x] =
n∑

i=1

λi(x), rankh(x) = |{i ∈ [n] : λi(x) 6= 0}|, and ‖x‖h = max
i∈[n]

λi(x).
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Recently, [Brä18] generalized Kadison-Singer to hyperbolic polynomials and also

higher rank. Note that [MSS15b] can be viewed as the special case when h is the deter-

minant polynomial with rank-1 matrices. [KLS19] generalized [MSS15b] from a different

perspective. It would be interesting to combine [KLS19] and [Brä18] to show the following

result.

Open Problem 30. Let h be a polynomial that is hyperbolic with respect to e ∈ Rn. Let

v1, · · · , vm ∈ Γ+(h, e) with rankh(vi) ≤ 1, and

σ2 =

∥∥∥∥∥
m∑

i=1

tr[vi]vi

∥∥∥∥∥
h

.

Then there exists a choice of signs εi ∈ {−1, 1} and some constant c > 0 such that
∥∥∥∥∥

m∑

i=1

εivi

∥∥∥∥∥
h

≤ c · σ.

We also wonder if similar techniques can be used to sparsify hyperbolicity cones:

Open Problem 31. Given ε > 0, a polynomial h that is hyperbolic with respect to e ∈ Rn

and v1, · · · , vm ∈ Γ+(h, e) with v1 + · · · + vm = e, is it always possible to find coefficients

s ∈ Rm
≥0 such that | supp(s)| ≤ n/ε2 and ‖e−∑m

i=1 sivi‖h = O(ε)?

The above problem can be viewed as a generalization of [BSS12].
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23.11 Edit Distance and Longest Common Subsequence

In this section we consider two of the most ubiquitous measures of similarity between

a pair of strings: the longest common subsequence (LCS) and the edit distance. The LCS

of two n-character strings A and B is simply their longest (not necessarily contiguous)

common substring. Edit distance is the minimum number of character insertions, deletions,

and substitutions required to transform A and B. In fact, under a slightly more restricted

definition that does not allow substitutions, the two measures are complements to each other

and the problems of computing them are exactly equivalent.

Under plausible fine-grained complexity assumptions such as SETH, neither edit dis-

tance nor LCS can be computed much faster [AWW14, ABW15, BI15, BK15, AHWW16].

For edit distance, an Õ(n+ ∆2)-time algorithm of [LMS98] (where ∆ is the true edit

distance between the strings) implies a linear-time
√
n-approximation algorithm. The ap-

proximation factor has been significantly improved in a series of works toO(n3/7) [BYJKK04],

to O(n0.34) [BES06], to O(2Õ(
√

logn)) [AO09], and finally to polylogarithmic [AKO10]. A re-

cent work of Boroujeni, Ehsani, Ghodsi, HajiAghayi and Seddighin [BEG+18] obtains a

constant factor approximation quantum algorithm for edit distance that runs in truly sub-

quadratic time.

We state three open problems related to edit distance. Two of the problems were

originally posted by Aviad Rubinstein [Rub18].

Open Problem 32. Is there a constant-factor approximation to edit distance that runs in

near-linear time?

Currently, the best approximation ratio is (3 + ε) [RSSS19].
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Open Problem 33. Is there a (1 + ε)-approximation algorithm for edit distance in truly

subquadratic (or near-linear) time?

Note that there is a more concrete plan to make progress on approximation ratio of

edit distance problem. For more details, we refer the readers to [RSSS19].

Note that the current subquadratic time constant approximation edit distance algo-

rithm [CDG+18] is a randomized algorithm. It would be interesting to derandomize the

algorithm.

Open Problem 34. Is there a deterministic subquadratic time constant approximation edit

distance algorithm?

Now let us come to the LCS problem. The textbook dynamic programming algorithm

for computing LCS (or edit distance) runs in O(n2) time, and a slightly faster O(n2/ log2(n))-

time algorithm is known due to Masek and Paterson [MP80]. There is a trivial algorithm

that gives 2-approximation for binary strings. Finding faster algorithms is a central and long

standing open problem both in theory and in practice (e.g. Problem 35 of [Knu72]).

Rubinstein and Song [RS19b] proposed a truly subquadratic time (2−ε)-approximation

algorithm for binary strings. Let |Σ| be the alphabetical size. Then one natural question is

if we can generalize the algorithm for |Σ| = 3, 4 or some constants.

Open Problem 35. For any constant |Σ|, is there a truly subquadratic time algorithm that

gives (|Σ| − ε)-approximation for some constants ε > 0?

Another interesting question is about de-randomization.

Open Problem 36. Can we de-randomize the LCS algorithm in [RSSS19]?
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23.12 Map-Reduce

Many modern parallel systems, such as MapReduce, Hadoop, and Spark, can be

modeled well by the MPC model. The MPC model captures well coarse-grained computation

on large data - data is distributed to processors, each of which has a sublinear (in the input

data) amount of memory and we alternate between rounds of computation and rounds of

communication, where each machine can communicate an amount of data as large as the

size of its memory.

We consider one fundamental graph problem: connectivity. On an undirected graph

with n and m edges, O(log n) round connectivity algorithm has been known for over 35

years. In 2018, [ASS+18] proposed a new algorithm that only needs O(logD · log logm/n n)

where D is the diameter of the graph. Very recently, Behnezhad, Dhulipala, Esfandiari,

Lacki and Mirrokni [BDE+19] improved the number of rounds to O(logD + log logm/n n).

An interesting open question is

Open Problem 37. Is there an O(logD) rounds algorithm for graph connectivity?

The above problem was originally suggested by Peilin Zhong. In next a few para-

graphs, we discuss several other open problems which are proposed by Xiaorui Sun.

Roughgarden, Vassilvitskii and Wang [RVW18] showed that if there is an ω(1)-round

MPC lower bound for graph connectivity, then NC1 6= P. Since NC1 vs P is a well-known hard

problem, it is unlikely to prove an ω(1)-round unconditional lower bound for connectivity.

Hence, we ask if an conditional lower bound is possible.

Open Problem 38. Is there an ω(1)-round conditional lower bound for graph connectivity?
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Furthermore, people actually conjectured that any algorithm solve graph connectivity

problem requires Ω(log n) rounds. This conjecture has been use to show other graph problems

are unlikely to have constant round algorithms (Yaroslavtsev and Vadapalli [YV18], Ghaffari,

Kuhn and Uitto [GKU19]).

Open Problem 39. Is there an Ω(log n)-round conditional lower bound for graph connec-

tivity?

In a more broader setting, it will be interesting to understand the complexity of MPC.

In particular, if all the polynomial-time solvable problem have an efficient MPC algorithm.

Since linear programming is P-Complete, we ask

Open Problem 40. Is there an O(no(1)) rounds algorithm for linear programming?

Dynamic programming in MPC has been studied recently. Im, Moseley and Sun [IMS17a]

and Hajiaghayi, Seddighin and Sun [HSS19] showed that many classic dynamic programming

problems have constant rounds approximation algorithms. These problems include weighted

interval scheduling, longest increasing subsequence, edit distance and longest common sub-

sequence. But it is unclear if these problems can be solved exactly in constant rounds.

Open Problem 41. Can dynamic programming problems be solved exactly in O(1) rounds?
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Part VI

More Algorithms for Fundamental
Problems
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Chapter 24

`∞ Regression

Sketching has emerged as a powerful technique for speeding up problems in numerical

linear algebra, such as regression. In the overconstrained regression problem, one is given

an n× d matrix A, with n� d, as well as an n× 1 vector b, and one wants to find a vector

x̂ so as to minimize the residual error ‖Ax− b‖2. Using the sketch and solve paradigm, one

first computes S · A and S · b for a randomly chosen matrix S, then outputs x′ = (SA)†Sb

so as to minimize ‖SAx′ − Sb‖2.

The sketch-and-solve paradigm gives a bound on ‖x′ − x∗‖2 whenA is well-conditioned.

Our main result is that, when S is the subsampled randomized Fourier/Hadamard trans-

form, the error x′ − x∗ behaves as if it lies in a “random” direction within this bound: for

any fixed direction a ∈ Rd, we have with 1− d−c probability that

〈a, x′ − x∗〉 . ‖a‖2 ‖x′ − x∗‖2

d
1
2
−γ

, (24.1)

where c, γ > 0 are arbitrary constants. This implies ‖x′−x∗‖∞ is a factor d
1
2
−γ smaller than

‖x′ − x∗‖2. It also gives a better bound on the generalization of x′ to new examples: if rows

of A correspond to examples and columns to features, then our result gives a better bound

for the error introduced by sketch-and-solve when classifying fresh examples. We show that

not all oblivious subspace embeddings S satisfy these properties. In particular, we give
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counterexamples showing that matrices based on Count-Sketch or leverage score sampling

do not satisfy these properties.

We also provide lower bounds, both on how small ‖x′− x∗‖2 can be, and for our new

guarantee (24.1), showing that the subsampled randomized Fourier/Hadamard transform is

nearly optimal. Our lower bound on ‖x′ − x∗‖2 shows that there is an O(1/ε) separation in

the dimension of the optimal oblivious subspace embedding required for outputting an x′ for

which ‖x′− x∗‖2 ≤ ε‖Ax∗− b‖2 · ‖A†‖2, compared to the dimension of the optimal oblivious

subspace embedding required for outputting an x′ for which ‖Ax′− b‖2 ≤ (1 + ε)‖Ax∗− b‖2,

that is, the former problem requires dimension Ω(d/ε2) while the latter problem can be solved

with dimension O(d/ε). This explains the reason known upper bounds on the dimensions of

these two variants of regression have differed in prior work.

This part is based upon the following previous publication

• Eric Price, Zhao Song, David P. Woodruff

Fast Regression with an `∞ Guarantee.

ICALP 2017 [PSW17]

24.1 Introduction

Oblivious subspace embeddings (OSEs) were introduced by Sarlos [Sar06] to solve

linear algebra problems more quickly than traditional methods. An OSE is a distribution of

matrices S ∈ Rm×n with m � n such that, for any d-dimensional subspace U ⊂ Rn, with

“high” probability S preserves the norm of every vector in the subspace. OSEs are a gener-

alization of the classic Johnson-Lindenstrauss lemma from vectors to subspaces. Formally,
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we require that with probability 1− δ,

‖Sx‖2 = (1± ε) ‖x‖2

simultaneously for all x ∈ U , that is, (1− ε) ‖x‖2 ≤ ‖Sx‖2 ≤ (1 + ε) ‖x‖2.

A major application of OSEs is to regression. The regression problem is, given b ∈ Rn

and A ∈ Rn×d for n ≥ d, to solve for

x∗ = argmin
x∈Rd

‖Ax− b‖2 (24.2)

Because A is a “tall” matrix with more rows than columns, the system is overdetermined and

there is likely no solution to Ax = b, but regression will find the closest point to b in the space

spanned by A. The classic answer to regression is to use the Moore-Penrose pseudoinverse:

x∗ = A†b where

A† = (A>A)−1A>

is the “pseudoinverse” of A (assuming A has full column rank, which we will typically do for

simplicity). This classic solution takes O(ndω−1 + dω) time, where ω < 2.373 is the matrix

multiplication constant [CW90, Wil12, LG14]: ndω−1 time to compute A>A and dω time to

compute the inverse.

OSEs speed up the process by replacing (24.2) with

x′ = argmin
x∈Rd

‖SAx− Sb‖2

for an OSE S on d+ 1-dimensional spaces. This replaces the n× d regression problem with

an m × d problem, which can be solved more quickly since m � n. Because Ax − b lies in
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the d + 1-dimensional space spanned by b and the columns of A, with high probability S

preserves the norm of SAx− Sb to 1± ε for all x. Thus,

‖Ax′ − b‖2 ≤
1 + ε

1− ε ‖Ax
∗ − b‖2 .

That is, S produces a solution x′ which preserves the cost of the regression problem. The

running time for this method depends on (1) the reduced dimension m and (2) the time it

takes to multiply S by A. We can compute these for “standard” OSE types:

• If S has i.i.d. Gaussian entries, then m = O(d/ε2) is sufficient (and in fact, m ≥ d/ε2

is required [NN14]). However, computing SA takes O(mnd) = O(nd2/ε2) time, which

is worse than solving the original regression problem (one can speed this up using fast

matrix multiplication, though it is still worse than solving the original problem).

• If S is a subsampled randomized Hadamard transform (SRHT) matrix with random

sign flips (see Theorem 2.4 in [Woo14a] for a survey, and also see [AC06, Sar06,

DMM06c, DMMS11, KW11, Tro11b, DMIMW12, LDFU13, AL13, Bou14, HR16, CNW16]),

then m increases to Õ(d/ε2 · log n), where Õ(f) = f poly(log(f)). But now, we can

compute SA using the fast Hadamard transform in O(nd log n) time. This makes the

overall regression problem take O(nd log n+ dω/ε2) time.

• If S is a random sparse matrix with random signs (the “Count-Sketch” matrix), then

m = d1+γ/ε2 suffices for γ > 0 a decreasing function of the sparsity [CW13, MM13,

NN13a, BDN15, Coh16a]. (The definition of a Count-Sketch matrix is, for any s ≥ 1,

Si,j ∈ {0,−1/
√
s, 1/
√
s}, ∀i ∈ [m], j ∈ [n] and the column sparsity of matrix S is

s. Independently in each column s positions are chosen uniformly at random without
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replacement, and each chosen position is set to−1/
√
s with probability 1/2, and +1/

√
s

with probability 1/2.) Sparse OSEs can benefit from the sparsity of A, allowing for a

running time of Õ(nnz(A))+ Õ(dω/ε2), where nnz(A) denotes the number of non-zeros

in A.

When n is large, the latter two algorithms are substantially faster than the naïve ndω−1

method.

24.1.1 Our Contributions

Despite the success of using subspace embeddings to speed up regression, often what

practitioners are interested is not in preserving the cost of the regression problem, but rather

in the generalization or prediction error provided by the vector x′. Ideally, we would like for

any future (unseen) example a ∈ Rd, that 〈a, x′〉 ≈ 〈a, x∗〉 with high probability.

Ultimately one may want to use x′ to do classification, such as regularized least squares

classification (RLSC) [RYP03], which has been found in cases to do as well as support vector

machines but is much simpler [ZP04]. In this application, given a training set of examples

with multiple (non-binary) labels identified with the rows of an n×dmatrix A, one creates an

n×r matrix B, each column indicating the presence or absence of one of the r possible labels

in each example. One then solves the multiple response regression problem minX ‖AX−B‖F ,

and uses X to classify future examples. A commonly used method is for a future example

a, to compute 〈a, x1〉, . . . , 〈a, xr〉, where x1, . . . , xr are the columns of X. One then chooses

the label i for which 〈a, xi〉 is maximum.

For this to work, we would like the inner products 〈a, x′1〉, . . . , 〈a, x′r〉 to be close to
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〈a, x∗1〉, . . ., 〈a, x∗r〉, where X ′ is the solution to minX ‖SAX − SB‖F and X∗ is the solution

to minX ‖AX−B‖F . For any O(1)-accurate OSE on d+r dimensional spaces [Sar06], which

also satisfies so-called approximate matrix multiplication with error ε′ = ε/
√

(d+ r), we get

that

‖x′ − x∗‖2 ≤ O(ε) · ‖Ax∗ − b‖2 ·
∥∥A†

∥∥
2

(24.3)

where
∥∥A†

∥∥ is the spectral norm of A†, which equals the reciprocal of the smallest singular

value of A. To obtain a generalization error bound for an unseen example a, one has

|〈a, x∗〉 − 〈a, x′〉| = |〈a, x∗ − x′〉| ≤ ‖x∗ − x′‖2‖a‖2 = O(ε)‖a‖2 ‖Ax∗ − b‖2

∥∥A†
∥∥

2
, (24.4)

which could be tight if given only the guarantee in (24.3). However, if the difference vector

x′ − x∗ were distributed in a uniformly random direction subject to (24.3), then one would

expect an Õ(
√
d) factor improvement in the bound. This is what our main theorem shows:

Theorem 24.1.1 (Main Theorem, informal). Suppose n ≤ poly(d) and matrix A ∈ Rn×d

and vector b ∈ Rn are given. Let S ∈ Rm×n be a subsampled randomized Hadamard

transform matrix with m = d1+γ/ε2 rows for an arbitrarily small constant γ > 0. For

x′ = argminx∈Rd ‖SAx− Sb‖2 and x∗ = argminx∈Rd ‖Ax− b‖2, and any fixed a ∈ Rd,

|〈a, x∗〉 − 〈a, x′〉| ≤ ε√
d
‖a‖2 ‖Ax∗ − b‖2

∥∥A†
∥∥

2
. (24.5)

with probability 1− 1/dC for an arbitrarily large constant C > 0. This implies that

‖x∗ − x′‖∞ ≤
ε√
d
‖Ax∗ − b‖2

∥∥A†
∥∥

2
. (24.6)

with 1− 1/dC−1 probability.

If n > poly(d), then by first composing S with a Count-Sketch OSE with poly(d)

rows, one can achieve the same guarantee.
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(Here γ is a constant going to zero as n increases; see Theorem 24.3.3 for a formal

statement of Theorem 24.1.1.)

Notice that Theorem 24.1.1 is considerably stronger than that of (24.4) provided by

existing guarantees. Indeed, in order to achieve the guarantee (24.6) in Theorem 24.1.1, one

would need to set ε′ = ε/
√
d in existing OSEs, resulting in Ω(d2/ε2) rows. In contrast, we

achieve only d1+γ/ε2 rows. We can improve the bound in Theorem 24.1.1 to m = d/ε2 if S

is a matrix of i.i.d. Gaussians; however, as noted, computing S · A is slower in this case.

Note that Theorem 24.1.1 also makes no distributional assumptions on the data, and

thus the data could be heavy-tailed or even adversarially corrupted. This implies that our

bound is still useful when the rows of A are not sampled independently from a distribution

with bounded variance.

The `∞ bound (24.6) of Theorem 24.1.1 is achieved by applying (24.5) to the standard

basis vectors a = ei for each i ∈ [d] and applying a union bound. This `∞ guarantee often

has a more natural interpretation than the `2 guarantee—if we think of the regression as

attributing the observable as a sum of various factors, (24.6) says that the contribution

of each factor is estimated well. One may also see our contribution as giving a way for

estimating the pseudoinverse A† entrywise. Namely, we get that (SA)†S ≈ A† in the sense

that each entry is within additive O(ε
√

log d
d

∥∥A†
∥∥

2
). There is a lot of work on computing

entries of inverses of a matrix, see, e.g., [ADL+12, LAKD08].

Another benefit of the `∞ guarantee is when the regression vector x∗ is expected to

be k-sparse (e.g. [Lee12]). In such cases, thresholding to the top k entries will yield an `2

guarantee a factor
√

k
d
better than (24.3).
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One could ask if Theorem 24.1.1 also holds for sparse OSEs, such as the Count-Sketch.

Surprisingly, we show that one cannot achieve the generalization error guarantee in Theorem

24.1.1 with high probability, say, 1− 1/d, using such embeddings, despite the fact that such

embeddings do approximate the cost of the regression problem up to a 1 + ε factor with high

probability. This shows that the generalization error guarantee is achieved by some subspace

embeddings but not all.

Theorem 24.1.2 (Not all subspace embeddings give the `∞ guarantee; informal version

of Theorem 24.8.1). The Count-Sketch matrix with d1.5 rows and sparsity d.25—which is an

OSE with exponentially small failure probability—with constant probability will have a result

x′ that does not satisfy the `∞ guarantee (24.6).

We can show that Theorem 24.1.1 holds for S based on the Count-Sketch OSE T with

dO(C)/ε2 rows with 1− 1/dC probability. We can thus compose the Count-Sketch OSE with

the SRHT matrix and obtain an O(nnz(A)) + poly(d/ε) time algorithm to compute S · TA

achieving (24.6). We can also compute R ·S ·T ·A, where R is a matrix of Gaussians, which

is more efficient now that STA only has d1+γ/ε2 rows; this will reduce the number of rows

to d/ε2.

Another common method of dimensionality reduction for linear regression is lever-

age score sampling [DMIMW12, LMP13, PKB14, CMM15], which subsamples the rows

of A by choosing each row with probability proportional to its “leverage scores”. With

O(d log(d/δ)/ε2) rows taken, the result x′ will satisfy the `2 bound (24.3) with probability

1− δ. However, it does not give a good `∞ bound:

Theorem 24.1.3 (Leverage score sampling does not give the `∞ guarantee; informal version
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of Theorem 24.9.1). Leverage score sampling with d1.5 rows—which satisfies the `2 bound with

exponentially small failure probability—with constant probability will have a result x′ that does

not satisfy the `∞ guarantee (24.6).

Finally, we show that the d1+γ/ε2 rows that SRHT matrices use is roughly optimal:

Theorem 24.1.4 (Lower bounds for `2 and `∞ guarantees; informal versions of of Theorem

24.5.1 and Corollary 24.5.3). Any sketching matrix distribution over m×n matrices that sat-

isfies either the `2 guarantee (24.3) or the `∞ guarantee (24.6) must have m & min(n, d/ε2).

Notice that our result shows the necessity of the 1/ε separation between the results

originally defined in Equation (3) and (4) of Theorem 12 of [Sar06]. If we want to output

some vector x′ such that ‖Ax′ − b‖2 ≤ (1 + ε)‖Ax∗ − b‖2, then it is known that m = Θ(d/ε)

is necessary and sufficient. However, if we want to output a vector x′ such that ‖x′−x∗‖2 ≤

ε‖Ax∗ − b‖2 · ‖A†‖2, then we show that m = Θ(d/ε2) is necessary and sufficient.

Comparison to Gradient Descent While this work is primarily about sketching meth-

ods, one could instead apply iterative methods such as gradient descent, after appropriately

preconditioning the matrix, see, e.g., [AMT10, ZF13, CW13]. That is, one can use an OSE

with constant ε to construct a preconditioner for A and then run conjugate gradient using

the preconditioner. This gives an overall dependence of log(1/ε).

The main drawback of this approach is that one loses the ability to save on storage

space or number of passes when A appears in a stream, or to save on communication or

rounds when A is distributed. Given increasingly large data sets, such scenarios are now

quite common, see, e.g., [CW90] for regression algorithms in the data stream model. In
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situations where the entries of A appear sequentially, for example, a row at a time, one does

not need to store the full n× d matrix A but only the m× d matrix SA.

Also, iterative methods can be less efficient when solving multiple response regression,

where one wants to minimize ‖AX −B‖ for a d× t matrix X and an n× t matrix B. This is

the case when ε is constant and t is large, which can occur in some applications (though there

are also other applications for which ε is very small). For example, conjugate gradient with a

preconditioner will take Õ(ndt) time while using an OSE directly will take only Õ(nd+ d2t)

time (since one effectively replaces n with O (d) after computing S · A), separating t from

d. Multiple response regression, arises, for example, in the RLSC application above.

Proof Techniques Theorem 24.1.1. As noted in Theorem 24.1.2, there are some OSEs

for which our generalization error bound does not hold. This hints that our analysis is non-

standard and cannot use generic properties of OSEs as a black box. Indeed, in our analysis,

we have to consider matrix products of the form S>S(UU>S>S)k for our random sketching

matrix S and a fixed matrix U , where k is a positive integer. We stress that it is the same

matrix S appearing multiple times in this expression, which considerably complicates the

analysis, and does not allow us to appeal to standard results on approximate matrix product

(see, e.g., [Woo14a] for a survey). The key idea is to recursively reduce S>S(UU>S>S)k

using a property of S. We use properties that only hold for specifics OSEs S: first, that each

column of S is unit vector; and second, that for all pairs (i, j) and i 6= j, the inner product

between Si and Sj is at most
√

logn√
m

with probability 1− 1/ poly(n).

Theorems 24.8.1 and 24.9.1. To show that Count-Sketch does not give the `∞ guar-
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antee, we construct a matrix A and vector b as in Figure 24.1, which has optimal solution

x∗ with all coordinates 1/
√
d. We then show, for our setting of parameters, that there likely

exists an index j ∈ [d] satisfying the following property: the jth column of S has disjoint

support from the kth column of S for all k ∈ [d+α]\{j} except for a single k > d, for which

Sj and Sk share exactly one common entry in their support. In such cases we can compute

x′j explicitly, getting |x′j − x∗j | = 1
s
√
α
. By choosing suitable parameters in our construction,

this gives that ‖x′ − x∗‖∞ � 1√
d
. The lower bound for leverage score sampling follows a

similar construction.

Theorem 24.5.1 and Corollary 24.5.3. The lower bound proof for the `2 guarantee

uses Yao’s minimax principle. We are allowed to fix an m×n sketching matrix S and design

a distribution over [A b]. We first write the sketching matrix S = UΣV > in its singular

value decomposition (SVD). We choose the d+ 1 columns of the adjoined matrix [A, b] to be

random orthonormal vectors. Consider an n× n orthonormal matrix R which contains the

columns of V as its first m columns, and is completed on its remaining n −m columns to

an arbitrary orthonormal basis. Then S · [A, b] = V >RR> · [A, b] = [UΣIm, 0] · [R>A,R>b].

Notice that [R>A,R>b] is equal in distribution to [A, b], since R is fixed and [A, b] is a ran-

dom matrix with d+ 1 orthonormal columns. Therefore, S · [A, b] is equal in distribution to

[UΣG,UΣh] where [G, h] corresponds to the first m rows of an n× (d+1) uniformly random

matrix with orthonormal columns.

A key idea is that if n = Ω(max(m, d)2), then by a result of Jiang [Jia06], any

m × (d + 1) submatrix of a random n × n orthonormal matrix has o(1) total variation

distance to a d × d matrix of i.i.d. N(0, 1/n) random variables, and so any events that
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would have occurred had G and h been independent i.i.d. Gaussians, occur with the same

probability for our distribution up to an 1 − o(1) factor, so we can assume G and h are

independent i.i.d. Gaussians in the analysis.

The optimal solution x′ in the sketch space equals (SA)†Sb, and by using that SA

has the form UΣG, one can manipulate ‖(SA)†Sb‖ to be of the form ‖Σ̃†(ΣR)†Σh‖2, where

the SVD of G is RΣ̃T . We can upper bound ‖Σ̃‖2 by
√
r/n, since it is just the maximum

singular value of a Gaussian matrix, where r is the rank of S, which allows us to lower bound

‖Σ̃†(ΣR)†Σh‖2 by
√
n/r‖(ΣR)†Σh‖2. Then, since h is i.i.d. Gaussian, this quantity concen-

trates to 1√
r
‖(ΣR)†Σh‖, since ‖Ch‖2 ≈ ‖C‖2

F/n for a vector h of i.i.d. N(0, 1/n) random

variables. Finally, we can lower bound ‖(ΣR)†Σ‖2
F by ‖(ΣR)†ΣRR>‖2

F by the Pythagorean

theorem, and now we have that (ΣR)†ΣR is the identity, and so this expression is just equal

to the rank of ΣR, which we prove is at least d. Noting that x∗ = 0 for our instance, putting

these bounds together gives ‖x′ − x∗‖ ≥
√
d/r. The last ingredient is a way to ensure that

the rank of S is at least d. Here we choose another distribution on inputs A and b for

which it is trivial to show the rank of S is at least d with large probability. We require

S be good on the mixture. Since S is fixed and good on the mixture, it is good for both

distributions individually, which implies we can assume S has rank d in our analysis of the

first distribution above.

24.1.2 Notation

For a positive integer, let [n] = {1, 2, . . . , n}. For a vector x ∈ Rn, define ‖x‖2 =

(
∑n

i=1 x
2
i )

1
2 and ‖x‖∞ = maxi∈[n] |xi|. For a matrixA ∈ Rm×n, define ‖A‖2 = supx ‖Ax‖2/‖x‖2

to be the spectral norm of A and ‖A‖F = (
∑

i,j A
2
i,j)

1/2 to be the Frobenius norm of A. We
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use A† to denote the Moore-Penrose pseudoinverse of m×n matrix A, which if A = UΣV > is

its SVD (where U ∈ Rm×n, Σ ∈ Rn×n and V ∈ Rn× for m ≥ n), is given by A† = V Σ−1U>.

In addition to O(·) notation, for two functions f, g, we use the shorthand f . g (resp.

&) to indicate that f ≤ Cg (resp. ≥) for an absolute constant C. We use f h g to mean

cf ≤ g ≤ Cf for constants c, C.

Definition 24.1.1 (Subspace Embedding). A (1± ε) `2-subspace embedding for the column

space of an n× d matrix A is a matrix S for which for all x ∈ Rd, ‖SAx‖2
2 = (1± ε)‖Ax‖2

2.

Definition 24.1.2 (Approximate Matrix Product). Let 0 < ε < 1 be a given approximation

parameter. Given matrices A and B, where A and B each have n rows, the goal is to output

a matrix C so that ‖A>B − C‖F ≤ ε‖A‖F‖B‖F . Typically C has the form A>S>SB, for a

random matrix S with a small number of rows. In particular, this guarantee holds for the

subsampled randomized Hadamard transform S with O(ε−2) rows [DMMS11].

24.2 Warmup: Gaussians OSEs

We first show that if S is a Gaussian random matrix, then it satisfies the generalization

guarantee. This follows from the rotational invariance of the Gaussian distribution.

Theorem 24.2.1. Suppose A ∈ Rn×d has full column rank. If the entries of S ∈ Rm×n

are i.i.d. N(0, 1/m), m = O(d/ε2), then for any vectors a, b and x∗ = A†b, we have, with

probability 1− 1/ poly(d),

|a>(SA)†Sb− a>x∗| . ε
√

log d√
d
‖a‖2 ‖b− Ax∗‖2

∥∥A†
∥∥

2
.
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Figure 24.1: Our construction of A and b for the proof that Count-Sketch does not obey the
`∞ guarantee. α < d.

Because SA has full column rank with probability 1, (SA)†SA = I. Therefore

|a>(SA)†Sb− a>x∗| = |a>(SA)†S(b− Ax∗)| = |a>(SA)†S(b− AA†b)|.

Thus it suffices to only consider vectors b where A†b = 0, or equivalently U>b = 0. In such

cases, SU will be independent of Sb, which will give the result. The proof is in Appendix 24.6.
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24.3 SRHT Matrices

We first provide the definition of the subsampled randomized Hadamard transform

(SRHT): let S = 1√
rn
PHnD. Here, D is an n×n diagonal matrix with i.i.d. diagonal entries

Di,i, for which Di,i in uniform on {−1,+1}. The matrix Hn is the Hadamard matrix of size

n×n, and we assume n is a power of 2. Here, Hn = [Hn/2, Hn/2;Hn/2, −Hn/2] and H1 = [1].

The r× n matrix P samples r coordinates of an n dimensional vector uniformly at random.

For other subspace embeddings, we no longer have that SU and Sb are independent.

To analyze them, we start with a claim that allows us to relate the inverse of a matrix to a

power series.

Claim 24.3.1. Let S ∈ Rm×n, A ∈ Rn×d have SVD A = UΣV >, and define T ∈ Rd×d by

T = Id − U>S>SU.

Suppose SA has linearly independent columns and ‖T‖2 ≤ 1/2. Then

(SA)†S = V Σ−1

(
∞∑

k=0

T k

)
U>S>S. (24.7)

Proof.

(SA)†S = (A>S>SA)−1A>S>S

= (V ΣU>S>SUΣV >)−1V ΣU>S>S

= V Σ−1(U>S>SU)−1U>S>S

= V Σ−1(Id − T )−1U>S>S

= V Σ−1

(
∞∑

k=0

T k

)
U>S>S,

1933



where in the last equality, since ‖T‖2 < 1, the von Neumann series
∑∞

k=0 T
k converges

to (Id − T )−1.

We then bound the kth term of this sum:

Lemma 24.3.2. Let S ∈ Rr×n be the subsampled randomized Hadamard transform, and let

a be a unit vector. Then with probability 1− 1/poly(n), we have

|a>S>S(UU>S>S)kb|

= O(logk n) · (O(d(log n)/r) + 1)
k−1

2 · (
√
d‖b‖2(log n)/r + ‖b‖2(log

1
2 n)/r

1
2 )

Hence, for r at least d log2k+2 n log2(n/ε)/ε2, this is at most O(‖b‖2ε/
√
d) with probability

at least 1− 1/poly(n).

We defer the proof of this lemma to the next section, and now show how the lemma

lets us prove that SRHT matrices satisfy the generalization bound with high probability:

Theorem 24.3.3. Suppose A ∈ Rn×d has full column rank with log n = do(1). Let S ∈ Rm×n

be a subsampled randomized Hadamard transform with m = O(d1+α/ε2) for α = Θ(
√

log logn
log d

).

For any vectors a, b and x∗ = A†b, we have

|a>(SA)†Sb− a>x∗| . ε√
d
‖a‖2 ‖b− Ax∗‖2

∥∥Σ−1
∥∥

2

with probability 1− 1/poly(d).

Proof. Define ∆ = Θ
(

1√
m

)
(logc d) ‖a‖2 ‖b− Ax∗‖2 ‖Σ−1‖2 . For a constant c > 0, we have

that S is a (1± γ)-subspace embedding (Definition 24.1.1) for γ =
√

d logc n
m

with probability

1 − 1/poly(d) (see, e.g., Theorem 2.4 of [Woo14a] and references therein), so ‖SUx‖2 =
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(1 ± γ) ‖Ux‖2 for all x, which we condition on. Hence for T = Id − U>S>SU , we have

‖T‖2 ≤ (1 + γ)2 − 1 . γ. In particular, ‖T‖2 < 1/2 and we can apply Claim 24.3.1.

As in Section 24.2, SA has full column rank if S is a subspace embedding, so

(SA)†SA = I and we may assume x∗ = 0 without loss of generality.

By the approximate matrix product (Definition 24.1.2), we have for some c that

|a>V Σ−1U>S>Sb| ≤ logc d√
m
‖a‖2 ‖b‖2

∥∥Σ−1
∥∥

2
≤ ∆ (24.8)

with 1−1/poly(d) probability. Suppose this event occurs, bounding the k = 0 term of (24.7).

Hence it suffices to show that the k ≥ 1 terms of (24.7) are bounded by ∆.

By approximate matrix product (Definition 24.1.2), we also have with 1− 1/d2 prob-

ability that
∥∥U>S>Sb

∥∥
F
≤ logc d√

m

∥∥U>
∥∥
F
‖b‖2 ≤

logc d
√
d√

m
‖b‖2 .

Combining with ‖T‖2 . γ we have for any k that

|a>V Σ−1T kU>S>Sb| . γk(logc d)

√
d√
m
‖a‖2

∥∥Σ−1
∥∥

2
‖b‖2 .

Since this decays exponentially in k at a rate of γ < 1/2, the sum of all terms greater than

k is bounded by the kth term. As long as

m & 1

ε2
d1+ 1

k logc n, (24.9)

we have γ =
√

d logc n
m

< εd−1/(2k)/ logc n, so that

∑

k′≥k

|a>V Σ−1T k
′
U>S>Sb| . ε√

d
‖a‖2

∥∥Σ−1
∥∥

2
‖b‖2 .
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On the other hand, by Lemma 24.3.2, increasing m by a Ck factor, we have for all k

that

|a>V >Σ−1U>S>S(UU>S>S)kb| . 1

2k
ε√
d
‖a‖2 ‖b‖2

∥∥Σ−1
∥∥

2

with probability at least 1 − 1/ poly(d), as long as m & d log2k+2 n log2(d/ε)/ε2. Since the

T k term can be expanded as a sum of 2k terms of this form, we get that

k∑

k′=1

|a>V Σ−1T kU>S>Sb| . ε√
d
‖a‖2 ‖b‖2

∥∥Σ−1
∥∥

2

with probability at least 1 − 1/ poly(d), as long as m & d(C log n)2k+2 log2(d/ε)/ε2 for a

sufficiently large constant C. Combining with (24.9), the result holds as long as

m & d logc n

ε2
max((C log n)2k+2, d

1
k )

for any k. Setting k = Θ(
√

log d
log logn

) gives the result.

Combining Different Matrices. In some cases it can make sense to combine

different matrices that satisfy the generalization bound.

Theorem 24.3.4. Let A ∈ Rn×d, and let R ∈ Rm×r and S ∈ Rr×n be drawn from distributions

of matrices that are ε-approximate OSEs and satisfy the generalization bound (24.6). Then

RS satisfies the generalization bound with a constant factor loss in failure probability and

approximation factor.

We defer the details to Appendix 24.7.
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24.4 Proof of Lemma 24.3.2

Proof. Each column Si of the subsampled randomized Hadamard transform has the same

distribution as σiSi, where σi is a random sign. It also has 〈Si, Si〉 = 1 for all i and

|〈Si, Sj〉| .
√

log(1/δ)
√
r

with probability 1− δ, for any δ and i 6= j. See, e.g., [LDFU13].

By expanding the following product into a sum, and rearranging terms, we obtain

a>S>S(UU>S>S)kb

=
∑

i0,j0,i1,j1,··· ,ik,jk

ai0bjkσi0σi1 · · ·σikσj0σj1 · · ·σjk

·〈Si0 , Sj0〉(UU>)j0,i1〈Si1 , Sj1〉 · · · (UU>)jk−1,ik〈Sik , Sjk〉

=
∑

i0,jk

ai0bjkσi0σjk
∑

j0,i1,j1,··· ,ik

σi1 · · ·σikσj0σj1 · · ·σjk−1

· 〈Si0 , Sj0〉(UU>)j0,i1〈Si1 , Sj1〉 · · · (UU>)jk−1,ik〈Sik , Sjk〉

=
∑

i0,jk

σi0σjkZi0,jk

where Zi0,jk is defined to be

Zi0,jk = ai0bjk
∑

i1,···ik
j0,···jk−1

k∏

c=1

σic

k−1∏

c=0

σjc ·
k∏

c=0

〈Sic , Sjc〉
k∏

c=1

(UU>)ic−1,jc

Note that Zi0,jk is independent of σi0 and σjk . We observe that in the above expression if

i0 = j0, i1 = j1, · · · , ik = jk, then the sum over these indices equals a>(UU>) · · · (UU>)b = 0,

since 〈Sic , Sjc〉 = 1 in this case for all c. Moreover, the sum over all indices conditioned on

ik = jk is equal to 0. Indeed, in this case, the expression can be factored into the form

ζ · U>b, for some random variable ζ, but U>b = 0.

Let W be a matrix with Wi,j = σiσjZi,j. We need Khintchine’s inequality:
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Fact 24.4.1 (Khintchine’s Inequality). Let σ1, . . . , σn be i.i.d. sign random variables, and

let z1, . . . , zn be real numbers. Then there are constants C,C ′ > 0 so that

Pr

[∣∣∣∣∣
n∑

i=1

ziσi

∣∣∣∣∣ ≥ Ct‖z‖2

]
≤ e−C

′t2 .

We note that Khintchine’s inequality sometimes refers to bounds on the moment of

|∑i ziσi|, though the above inequality follows readily by applying a Markov bound to the

high moments.

We apply Fact 24.4.1 to each column ofW , so that ifWi is the i-th column, we have by

a union bound that with probability 1−1/poly(n), ‖Wi‖2 = O(‖Zi‖2

√
log n) simultaneously

for all columns i. It follows that with the same probability, ‖W‖2
F = O(‖Z‖2

F log n), that is,

‖W‖F = O(‖Z‖F
√

log n). We condition on this event in the remainder.

Thus, it remains to bound ‖Z‖F . By squaring Zi0,j0 and using that E[σiσj] = 1 if

i = j and 0 otherwise, we have,

E
σ

[Z2
i0,jk

] = a2
i0
b2
jk

∑

i1,···ik
j0,···jk−1

k∏

c=0

〈Sic , Sjc〉2
k∏

c=1

(UU>)2
ic−1,jc

(24.10)

We defer to Appendix 24.10 the proof that

E
S

[‖Z‖2
F ] ≤ (O(d(log n)/r) + 1)k−1 · (d‖b‖2

2(log2 n)/r2 + ‖b‖2
2(log n)/r)

Note that we also have the bound:

(O(d(log n)/r) + 1)k−1 ≤ (eO(d(logn)/r))k−1 ≤ eO(kd(logn)/r) ≤ O(1)

for any r = Ω(kd log n).
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Having computed the expectation of ‖Z‖2
F , we now would like to show concentration.

Consider a specific

Zi0,jk = ai0bjk
∑

ik

σik〈Sik , Sjk〉 · · ·
∑

j1

σj1(UU>)j1,i2
∑

i1

σi1〈Si1 , Sj1〉
∑

j0

σj0〈Si0 , Sj0〉(UU>)j0,i1 .

By Fact 24.4.1, for each fixing of i1, with probability 1− 1/poly(n), we have

∑

j0

σj0〈Si0 , Sj0〉(UU>)j0,i1 = O(
√

log n)

(∑

j0

〈Si0 , Sj0〉2(UU>)2
j0,i1

) 1
2

. (24.11)

Now, we can apply Khintchine’s inequality for each fixing of j1, and combine this with

(24.11). With probability 1− 1/poly(n), again we have

∑

i1

σi1〈Si1 , Sj1〉
∑

j0

σj0〈Si0 , Sj0〉(UU>)j0,i1

=
∑

i1

σi1〈Si1 , Sj1〉O(
√

log n)

(∑

j0

〈Si0 , Sj0〉2(UU>)2
j0,i1

) 1
2

= O(log n)

(∑

i1

〈Si1 , Sj1〉2
∑

j0

〈Si0 , Sj0〉2(UU>)2
j0,i1

) 1
2

Thus, we can apply Khintchine’s inequality recursively over all the 2k indexes j0, i1, j1, · · · , jk−1, ik,

from which it follows that with probability 1 − 1/poly(n), for each such i0, jk, we have

Z2
i0,jk

= O(logk n)E
S

[Z2
i0,jk

], using (24.18). We thus have with this probability, that ‖Z‖2
F =

O(logk n)E
S

[‖Z‖2
F ], completing the proof.

24.5 Lower bound for `2 and `∞ guarantee

We prove a lower bound for the `2 guarantee, which immediately implies a lower

bound for the `∞ guarantee.
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Definition 24.5.1. Given a matrix A ∈ Rn×d, vector b ∈ Rn and matrix S ∈ Rr×n, denote

x∗ = A†b. We say that an algorithm A(A, b, S) that outputs a vector x′ = (SA)†Sb “succeeds”

if the following property holds: ‖x′ − x∗‖2 . ε‖b‖2 · ‖A†‖2 · ‖Ax∗ − b‖2.

Theorem 24.5.1. Suppose Π is a distribution over Rm×n with the property that for any

A ∈ Rn×d and b ∈ Rn, Pr
S∼Π

[A(A, b, S) succeeds ] ≥ 19/20. Then m & min(n, d/ε2).

Proof. The proof uses Yao’s minimax principle. Let D be an arbitrary distribution over

Rn×(d+1), then E
(A,b)∼D

E
S∼Π

[A(A, b, S) succeeds ] ≥ 1− δ. Switching the order of probabilistic

quantifiers, an averaging argument implies the existence of a fixed matrix S0 ∈ Rm×n such

that

E
(A,b)∼D

[A(A, b, S0) succeeds ] ≥ 1− δ.

Thus, we must construct a distribution Dhard such that

E
(A,b)∼Dhard

[A(A, b, S0) succeeds ] ≥ 1− δ,

cannot hold for any Π0 ∈ Rm×n which does not satisfy m = Ω(d/ε2). The proof can be split

into three parts. First, we prove a useful property. Second, we prove a lower bound for the

case rank(S) ≥ d. Third, we show why rank(S) ≥ d is necessary.

(I) We show that [SA, Sb] are independent Gaussian, if both [A, b] and S are or-
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thonormal matrices. We can rewrite SA in the following sense,

S︸︷︷︸
m×n

· A︸︷︷︸
n×d

= S︸︷︷︸
m×n

R︸︷︷︸
n×n

R>︸︷︷︸
n×n

A︸︷︷︸
n×d

= S
[
S> S

>
] [S
S

]
A

=
[
Im 0

] [S
S

]
A

=
[
Im 0

]
Ã︸︷︷︸
n×d

= Ãm︸︷︷︸
m×d

(24.12)

where S is the complement of the orthonormal basis S, Im is a m×m identity matrix, and

Ãm is the left m× d submatrix of Ã. Thus, using [Jia06] as long as m = o(
√
n) (because of

n = Ω(d3)) the total variation distance between [SA, Sb] and a random Gaussian matrix is

small, i.e.,

DTV ([SA, Sb], H) ≤ 0.01 (24.13)

where each entry of H is i.i.d. Gaussian N(0, 1/n).

(II) Here we prove the theorem in the case when S has rank r ≥ d (we will prove this

is necessary in part III. Writing S = UΣV > in its SVD, we have

S︸︷︷︸
m×n

A = U︸︷︷︸
m×r

Σ︸︷︷︸
r×r

V >︸︷︷︸
r×n

RR>A = UΣG (24.14)

where R =
[
V V

]
. By a similar argument in Equation (24.12), as long as r = o(

√
n) we

have that G also can be approximated by a Gaussian matrix, where each entry is sampled

from i.i.d. N(0, 1/n). Similarly, Sb = UΣh, where h also can be approximated by a Gaussian

matrix, where each entry is sampled from i.i.d. N(0, 1/n).
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Since U has linearly independent columns, (UΣG)†UΣh = (ΣG)†U>UΣh = (ΣG)†Σh.

The r × d matrix G has SVD G = R︸︷︷︸
r×d

Σ̃︸︷︷︸
d×d

T︸︷︷︸
d×d

, and applying the pseudo-inverse

property again, we have

‖(SA)†Sb‖2 = ‖(ΣG)†Σh‖2

= ‖(ΣRΣ̃T )†Σh‖2

= ‖T †(ΣRΣ̃)†Σh‖2

= ‖(ΣRΣ̃)†Σh‖2

= ‖Σ̃†(ΣR)†Σh‖2,

where the the first equality follows by Equation (24.14), the second equality follows by the

SVD of G, the third and fifth equality follow by properties of the pseudo-inverse1 when T has

orthonormal rows and Σ̃ is a diagonal matrix, and the fourth equality follows since ‖T †‖2 = 1

and T is an orthonormal basis.

Because each entry of G = RΣ̃T ∈ Rr×d is sampled from an i.i.d. Gaussian N(0, 1),

using the result of [Ver10] we can give an upper bound for the maximum singular value of

G: ‖Σ̃‖ .√ r
n
with probability at least .99. Thus,

‖Σ̃†(ΣR)†Σh‖2 ≥ σmin(Σ̃†) · ‖(ΣR)†Σh‖2

=
1

σmax(Σ̃)
‖(ΣR)†Σh‖2

&
√
n/r‖(ΣR)†Σh‖2.

1https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse
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Because h is a random Gaussian vector which is independent of (ΣR)†Σ, by Claim 24.5.2,

Eh[‖(ΣR)†Σh‖2
2] = 1

n
· ‖(ΣR)†Σ‖2

F , where each entry of h is sampled from i.i.d. Gaussian

N(0, 1/n). Then, using the Pythagorean Theorem,

‖(ΣR)†Σ‖2
F = ‖(ΣR)†ΣRR>‖2

F + ‖(ΣR)†Σ(I −RR>)‖2
F

≥ ‖(ΣR)†ΣRR>‖2
F

= ‖(ΣR)†ΣR‖2
F

= rank(ΣR)

= rank(SA)

= d.

Thus, ‖x′ − x∗‖2 &
√
d/r ≥

√
d/m = ε.

(III) Now we show that we can assume that rank(S) ≥ d.

We sample A, b based on the following distribution Dhard: with probability 1/2, A, b

are sampled from D1; with probability 1/2, A, b are sampled from D2. In distribution D1,

A is a random orthonormal basis and d is always orthogonal to A. In distribution D2, A is

a d× d identity matrix in the top-d rows and 0s elsewhere, while b is a random unit vector.

Then, for any (A, b) sampled from D1, S needs to work with probability at least 9/10. Also

for any (A, b) sampled from D2, S needs to work with probability at least 9/10. The latter

two statements follow since overall S succeeds on Dhard with probability at least 19/20.

Consider the case where A, b are sampled from distribution D2. Then x∗ = b and

OPT = 0. Then consider x′ which is the optimal solution to minx ‖SAx − Sb‖2
2, so x′ =

(SA)†Sb = (SL)†SLb, where S can be decomposed into two matrices SL ∈ Rr×d and SR ∈

1943



Rr×(n−d), S =
[
SL SR

]
. Plugging x′ into the original regression problem, ‖Ax′ − b‖2

2 =

‖A(SL)†SLb − b‖2
2, which is at most (1 + ε) OPT = 0. Thus rank(SL) is d. Since SL is a

submatrix of S, the rank of S is also d.

It remains to define several tools which are used in the main proof of the lower bound.

Claim 24.5.2. For any matrix A ∈ Rn×d, if each entry of a vector g ∈ Rd is chosen from

an i.i.d Gaussian N(0, σ2), then E
g
[‖Ag‖2

2] = σ2‖A‖2
F .

Proof.

E
g
[‖Ag‖2

2] = E
g

[
n∑

i=1

(
d∑

j=1

Aijgj)
2

]

= E
g

[
n∑

i=1

(
d∑

j=1

A2
ijg

2
j +

∑

j 6=j′
AijAij′gjgj′)

]

=
n∑

i=1

d∑

j=1

A2
ijσ

2

= σ2‖A‖2
F .

Let g1, g2, · · · , gt be i.i.d. N(0, 1) random variables. The random variables
∑t

i=1 g
2
i

are X2 with t degree of freedom. Furthermore, the tail bounds are known (see Lemma A.1.6).

Definition 24.5.2. Given a matrix A ∈ Rn×d, vector b ∈ Rn and matrix S ∈ Rr×n, denote

x∗ = A†b. We say that an algorithm B(A, b, S) that outputs a vector x′ = (SA)†Sb “succeeds”

if the following property holds:

‖x′ − x∗‖∞ .
ε√
d
‖b‖2 · ‖A†‖2 · ‖Ax∗ − b‖2.
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Applying ‖x′−x‖∞ ≥ 1√
d
‖x′−x‖2 to Theorem 24.5.1 ,we obtain the `∞ lower bound

as a corollary,

Corollary 24.5.3. Suppose Π is a distribution over Rm×n with the property that for any

A ∈ Rn×d and b ∈ Rn,

Pr
S∼Π

[B(A, b, S) succeeds ] ≥ 9/10.

Then m & min(n, d/ε2).

24.6 Proof for Gaussian case

Lemma 24.6.1. If the entries of S ∈ Rm×n are i.i.d. N(0, 1/m), m = O(d/ε2), and

U>b = 0, then

|a>(SA)†Sb| . ε
√

log d√
d
‖a‖2 ‖b‖2

∥∥Σ−1
∥∥

2

for any vectors a, b with probability 1− 1/poly(d).

Proof. With probability 1, the matrix SA has linearly independent columns, and so (SA)†

is

= (A>S>SA)−1A>S>

= (V ΣU>S>SUΣV >)−1V ΣU>S>

= V Σ−1(U>S>SU)−1Σ−1V >V ΣU>S>

= V Σ−1(U>S>SU)−1U>S>.

Hence, we would like to bound

X = a>V Σ−1(U>S>SU)−1U>S>Sb.
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It is well-known (stated, for example, explicitly in Theorem 2.3 of [Woo14a]) that with

probability 1−exp(−d), the singular values of SU are (1±ε) for m = O(d/ε2). We condition

on this event. It follows that

‖V Σ−1(U>S>SU)−1U>S‖2

= ‖Σ−1(U>S>SU)−1U>S‖2

≤ ‖Σ−1‖2‖(U>S>SU)−1‖2‖U>S‖2

≤ ‖Σ−1‖2 ·
1

1− ε · (1 + ε)

= O(‖Σ−1‖2),

where the first equality uses that V is a rotation, the first inequality follows by sub-

multiplicativity, and the second inequality uses that the singular values of SU are in the

range [1− ε, 1 + ε]. Hence, with probability 1− exp(−d),

‖a>V Σ−1(U>S>SU)−1U>S>‖2 = O(‖Σ−1‖2‖a‖2). (24.15)

The main observation is that since U>b = 0, SU is statistically independent from Sb.

Hence, Sb is distributed asN(0, ‖b‖2
2Im), conditioned on the vector a>V Σ−1(U>S>SU)−1U>S>.

It follows that conditioned on the value of a>V Σ−1(U>S>SU)−1U>S>, X is distributed as

N(0, ‖b‖2
2‖a>V Σ−1(U>S>SU)−1U>S>‖2

2/m),

and so using (24.15) , with probability 1− 1/poly(d), we have

|X| = O(ε
√

log d‖a‖2‖b‖2‖Σ−1‖2/
√
d).
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24.7 Combining Different Matrices

In some cases it can make sense to combine different matrices that satisfy the gener-

alization bound.

Theorem 24.3.4. Let A ∈ Rn×d, and let R ∈ Rm×r and S ∈ Rr×n be drawn from distributions

of matrices that are ε-approximate OSEs and satisfy the generalization bound (24.6). Then

RS satisfies the generalization bound with a constant factor loss in failure probability and

approximation factor.

Proof. For any vectors a, b, and x∗ = A†b we want to show

|a>(RSA)†RSb− a>x∗| . ε√
d
‖a‖2 ‖b− Ax∗‖2

∥∥A†
∥∥

2

As before, it suffices to consider the x∗ = 0 case. We have with probability 1− δ that

|a>(SA)†Sb| . ε√
d
‖a‖2 ‖b‖2

∥∥A†
∥∥

2
;

suppose this happens. We also have by the properties of R, applied to SA and Sb, that

|a>(RSA)†RSb− a>(SA)†Sb| . ε√
d
‖a‖2 ‖Sb‖2

∥∥(SA)†
∥∥

2
.

Because S is an OSE, we have ‖Sb‖2 ≤ (1 + ε) and
∥∥(SA)†

∥∥
2
& (1− ε)

∥∥A†
∥∥

2
. Therefore

|a>(RSA)†RSb| . ε√
d
‖a‖2 ‖b‖2

∥∥A†
∥∥

2

We describe a few of the applications of combining sketches.
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24.7.1 Removing dependence on n via Count-Sketch

One of the limitations of the previous section is that the choice of k depends on n.

To prove that theorem, we have to assume that log d > log log n. Here, we show an approach

to remove that assumption.

The main idea is instead of applying matrix S ∈ Rm×n to matrix A ∈ Rn×d directly,

we pick two matrices S ∈ Rm×poly(d) and C ∈ Rpoly(d)×n, e.g. S is FastJL matrix and C

is Count-Sketch matrix with s = 1. We first compute C · A, then compute S · (CA). The

benefit of these operations is S only needs to multiply with a matrix (CA) that has poly(d)

rows, thus the assumption we need is log d > log log(poly(d)) which is always true. The

reason for choosing C as a Count-Sketch matrix with s = 1 is: (1) nnz(CA) ≤ nnz(A) (2)

The running time is O(poly(d) · d+ nnz(A)).

24.7.2 Combining Gaussians and SRHT

By combining Gaussians with SRHT matrices, we can embed into the optimal dimen-

sion O(d/ε2) with fast Õ(nd log n+ dω/ε4) embedding time.

24.7.3 Combining all three

By taking Gaussians times SRHT times Count-Sketch, we can embed into the optimal

dimension O(d/ε2) with fast O(nnz(A) + d4poly(1
ε
, log d)) embedding time.

24.8 Count-Sketch does not obey the `∞ guarantee

Here we demonstrate an A and a b such that Count-Sketch will not satisfy the `∞

guarantee with constant probability, so such matrices cannot satisfy the generalization guar-
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antee (24.6) with high probability.

Theorem 24.8.1. Let S ∈ Rm×n be drawn as a Count-Sketch matrix with s nonzeros per

column. There exists a matrix A ∈ Rn×d and b ∈ Rn such that, if s2d . m .
√
d3s, then the

“true” solution x∗ = A†b and the approximation x′ = (SA)†Sb have large `∞ distance with

constant probability:

‖x′ − x∗‖∞ &
√

d

ms
‖b‖2 .

Plugging in m = d1.5 and s = d0.25 we find that

‖x′ − x∗‖∞ & 1/d3/8 ‖b‖2 � 1/
√
d ‖b‖2 ,

even though such a matrix is an OSE with probability exponential in s. Therefore there

exists a constant c for which this matrix does not satisfy the generalization guarantee (24.6)

with 1− c
d
probability.

Proof. We choose the matrix A to be the identity on its top d rows: A =

[
Id
0

]
. Choose some

α ≥ 1, set the value of the first d coordinates of vector b to be 1√
d
and set the value to be

1/
√
α for the next α coordinates, with the remaining entries all zero. Note that ‖b‖2 =

√
2,

x∗ = (1/
√
d, . . . , 1/

√
d), and ‖Ax∗ − b‖2 = 1.

Let Sk denote the kth column vector of matrix S ∈ Rm×n. We define two events,

Event I, ∀k′ ∈ [d] and k′ 6= k, we have supp(Sk′) ∩ supp(Sk) = ∅; Event II, ∃ a unique

k′ ∈ {d + 1, d + 2, · · · , d + α} such that | supp(Sk′) ∩ supp(Sk)| = 1, and all other k′ have

supp(Sk′) ∩ supp(Sk) = ∅. Using Claim 24.8.2, with probability at least .99 there exists a k

for which both events hold.
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Given the constructions of A and b described early, it is obvious that

Ax− b =
[
x1 − 1√

d
, · · · , xd − 1√

d
,− 1√

α
, · · · ,− 1√

α
, 0, · · · , 0

]>
.

Conditioned on event I and II are holding, then denote supp(Sj) = {i1, i2, · · · , is}.

Consider the terms involving xj in the quadratic form

min
x
‖SAx− Sb‖2

2 .

it can be written as (s − 1)(xj − 1/
√
d)2 + (xj − 1/

√
d ± 1/

√
α)2. Hence the optimal x′

will have x′j = 1√
d
± 1

s
√
α
, which is different from the desired 1/

√
d by 1

s
√
α
. Plugging in our

requirement of α h m2/(s3d2), we have

‖x′ − x∗‖∞ ≥
1

s
√
α
& c

√
sd2

m2
& 1√

d

where the last inequality follows by m .
√
sd3. Thus, we get the result.

Claim 24.8.2. If m = Ω(s2d), m = o(d2), α < d, and α = O( m2

s3d2 ), with probability at least

.99 there exists a k ∈ [d] for which both event I and II hold.

Proof. If m = Ω(s2d), then for any i in {1, 2, ..., d}, let Xi be an indicator that the entries of

column i are disjoint from all i′ in [d]\{i}. Then E[Xi] ≥ .9999, so by Markov’s inequality,

with probability .99, we have .99d columns having this property (indeed, the expected value

of d − X is at most .0001d, so Pr[d − X ≥ .01d] ≤ E[d−X]
.01d

≤ .0001d
.01d

= .01). Define Event E

to be that .99d columns of first d columns have the property that the entries of that column
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Figure 24.2: Count Sketch matrix S ∈ Rm×n. Event I, for any k′ ∈ [d] and k′ 6= k,
supp(Sk)∩ supp(Sk′) = ∅. Event II, there exists a unique k′ ∈ {d+ 1, d+ 2, · · · , d+α} such
that Sk and Sk′ intersect at exactly one location(row index).

are disjoint from all the other d− 1 columns. Let S be the set of these .99d columns. Let N

be the union of supports of columns in S.

Each column i in {d+ 1, ..., d+α} chooses s non-zero entries. Define event F ( which

is similar as event E) to be that .99α columns of the next α columns have the property

that the entries of that column are disjoint from all the other α − 1 columns. By the same

argument, since α < d, with probability .99, we have .99α columns in {d+ 1, ..., d+α} being

disjoint from other columns in {d + 1, ..., d + α}. Condition on event F holding. Let L be

the multiset union of supports of all columns in {d+ 1, ..., d+α}. Then L has size α · s. Let
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M be the union of supports of all columns in {d+ 1, ..., d+ α}, that is, the set union rather

than the multiset union. Note that |M | ≥ .99α · s because of .99α columns are disjoint from

each other.

The intersection size x of N and M is hyper-geometrically distributed with expecta-

tion

E[x] =
s|S| · |M |

m
.

By a lower tail bound for the hypergeometric distribution 2 ,

Pr[x ≤ (p− t)n] ≤ exp(−2t2n),

where p = s · |S|/m and n = |M |, so

Pr[x ≤ E[x]− t · |M |] ≤ exp(−2t2 · |M |) ≤ 0.01,

where the last inequality follows by setting t = Θ(1/
√
|M |). Thus, we get with probability

.99, the intersection size is at least s|S|·|M |
m
−Θ(

√
|M |) .

Now let W be the distinct elements in L\M , so necessarily |W | ≤ .01α · s. By an

upper tail bound for the hypergeometric distribution, the intersection size y of W and N

satisfies

Pr[y ≥ (p+ t)n] ≤ exp(−2t2n),

where p = s · |S|/m and n = |W |, we again get

Pr[y ≥ E[y] + t · |W |] ≤ exp(−2t2 · |W |).

2https://en.wikipedia.org/wiki/Hypergeometric_distribution
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If |W | = 0, then y = 0. Otherwise, we can set t = Θ(1/
√
|W |) so that this probability is less

than .01, and we get with probability .99, the intersection size y is at most s · |S| · |W |/m+

Θ(
√
|W |). Note that we have that Θ(

√
|M |) and Θ(

√
|W |) are bounded by Θ(

√
s · α).

Setting α = O( m2

s3d2 ) suffices to ensure y is at most (1.01)s · |S| · |W |/m, and earlier that x is

at least .99 · s · |S| · |M |/m.

The probability one of the |S| blocks in N has two or more intersections with M is

less than
(
x
2

)
times the probability two random distinct items in the intersection land in the

block. This probability is
(
x
2

)
·
(
s
2

)
(
s·|S|

2

) = Θ(x2/|S|2) = Θ(x2/d2) = Θ(m2/(d4s2)).

So the expected number of such blocks is Θ(m2sd/(d4s2)) = Θ(m2/(d3s)) which is less than

(.99 · s · |S| · |M |)/(2m) ≤ X/2 if m = o(d2), which we have. So, there are at least x/2 blocks

which have intersection size exactly 1 with N . Note that the number of intersections of the

|S| blocks withW is at most y, which is at most (1.01)s·|S|·|W |/m ≤ (1.01)s·|S|· 1
99
·|M |/m <

x/2, and therefore there exists a block, that is, a column among the first d columns, which

intersects M in exactly one position and does not intersect W . This is our desired column.

Thus, we complete the proof.

24.9 Leverage score sampling does not obey the `∞ guarantee

Not only does Count-Sketch fail, but so does leverage score sampling, which is a

technique that takes a subsample of rows of A with rescaling. In this section we show an A

and a b such that leverage score sampling will not satisfy the `∞ guarantee. We start with

a formal definition of leverage scores.
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Definition 24.9.1 (Leverage Scores). Given an arbitrary n × d matrix A, with n > d, let

U denote the n× d matrix consisting of the d left singular vectors of A, let U(i) denote the

i−th row of the matrix U , so U(i) is a row vector. Then the leverage scores of the rows of A

are given by li = ‖U(i)‖2
2, for i ∈ [n].

The leverage score sampling matrix can be thought of as a square diagonal matrix

D ∈ Rn×n with diagonal entries chosen from some distribution. If Dii = 0, it means we do

not choose the i-th row of matrix A., If Dii > 0, it means we choose that row of the matrix A

and also rescale that row. We show that the leverage score sampling matrix cannot achieve

`∞ guarantee, nor can it achieve our notion of generalization error.

Theorem 24.9.1. Let D ∈ Rn×n be a leverage score sampling matrix with m nonzeros on the

diagonal. There exists a matrix A ∈ Rn×d and a vector b ∈ Rn such that, if m . d
√
d, then

the “true” solution x∗ = A†b and the approximation x′ = (DA)†Db have large `∞ distance

with constant probability:

‖x′ − x∗‖∞ &
1√
d
‖b‖2 .

Therefore there exists a constant c for which this matrix does not satisfy the generalization

guarantee (24.6) with 1− c
d
probability.

Proof. We choose the matrix A to be the identity on its top d rows, and L scaled identity

matrices 1√
αd
Id for the next dL rows, where L satisfies 1

d
+ 1

αd
L = 1 (to normalize each

column of A), which implies L = α(d− 1). Choose some β ∈ [1, d). Set the value of the first

d coordinates of vector b to be 1√
d
and set the value to be 1√

β
for the next β coordinates,

with the remaining entries all zero. Note that ‖b‖2 =
√

2.
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First, we compute ‖Ax− b‖2
2. Because β is less than d, there are two kinds of xj: one

involves the following term,

(
1√
d
xj −

1√
d

)2 + (L− 1)(
1√
αd
xj)

2, (24.16)

where the optimal xj should be set to 1/d. The other involves the term:

(
1√
d
xj −

1√
d

)2 + (
1√
αd
xj −

1√
β

)2 + (L− 1)(
1√
αd
xj)

2, (24.17)

where the optimal xj should be set to 1/d + 1/
√
αβd. Because we are able to choose α, β

such that αβ & d, then

xj = 1/d+ 1/
√
αβd . 1/d.

Second, we compute ‖DAx−Db‖2
2. With high probability, there exists a j satisfying

Equation (24.17), but after applying leverage score sampling, the middle term of Equation

(24.17) is removed. Let p1 = 1
d
denote the leverage score of each of the top d rows of A, and

let p2 = 1
αd

denote the leverage score of each of the next Ld rows of A. We need to discuss

the cases m > d and m ≤ d separately.

If m > d, then the following term involves xj,

(
1√
p1

1√
d
xj −

1√
p1

1√
d

)2 +
m− d
d
· ( 1√

p2

1√
αd
xj)

2

=
1

p1

(
1√
d
xj −

1√
d

)2 +
m− d
d
· 1

p2

(
1√
αd
xj)

2

= d

(
(

1√
d
xj −

1√
d

)2 +
m− d
d

α(
1√
αd
xj)

2

)
.
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where the optimal xj should be set to

xj =
1/d

1/d+ (m− d)α/(αd2)

=
1

1 + (m− d)/d

& 1

(m− d)/d

� 1√
d
. by m� d

√
d

If m ≤ d, then the term involving xj is ( 1√
p1

1√
d
xj − 1√

p1

1√
d
)2 where the optimal xj should be

set to be 1� 1/
√
d.

Third, we need to compute ‖Ax∗ − b‖2
2 and σmin(A). It is easy to see that σmin(A)

because A is an orthonormal matrix. The upper bound for ‖Ax∗ − b‖2
2 = 2, and the lower

bound is also a constant, which can be proved in the following way:

‖Ax∗ − b‖2
2 =

β∑

j=1

(24.16) +
d∑

j=β+1

(24.17) ≥ d(
1√
d

1

d
− 1√

d
)2 & d · 1

d
= 1.

24.10 Bounding E[‖Z‖2
F ]

Before getting into the proof details, we define the key property of S being used in

the rest of the proofs.

Definition 24.10.1 (All Inner Product Small(AIPS) Property). For any matrix S ∈ Rr×n,

if for all i, j ∈ [n] with i 6= j we have

|〈Si, Sj〉| = O(
√

log n/
√
r),

we say that S satisfies the “AIPS” property.
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Claim 24.10.1. If S ∈ Rr×n is a subsampled Hadamard transform matrix, then the AIPS

property holds with probability at least 1− 1/ poly(n).

Proof. From the structure of S, for any i 6= j, we have with probability 1− 1/ poly(n) such

that |〈Si, Sj〉| = O(
√

log n/
√
r). Applying a union bound over O(n2) pairs, we obtain that

Pr[ AIPS holds ] ≥ 1− 1/ poly(n).

The main idea for bounding E[‖Z‖2
F ] is to rewrite it as E[‖Z‖2

F ] = E[ ‖Z‖2
F |AIPS holds ]+

E[ ‖Z‖2
F | AIPS does not hold ]. Because Pr[ AIPS does not hold] is at most 1/ poly(n), the

first term dominates the second term, which means we only need to pay attention to the

first term. We repeatedly apply this idea until all the S are removed.

We start by boundinbg E[‖Z‖2
F ] by squaring Zi0,j0 and using that E[σiσj] = 1 if i = j

and 0 otherwise. Then, we obtain,

E
σ

[Z2
i0,jk

] = a2
i0
b2
jk

∑

i1,···ik,j0,···jk−1

k∏

c=0

〈Sic , Sjc〉2
k∏

c=1

(UU>)2
ic−1,jc

. (24.18)

We thus have,

∑

i0,jk,jk 6=ik

a2
i0
〈Si0 , Sj0〉2b2

jk
〈Sik , Sjk〉2 = a2

j0
‖b‖2

2O((log n)/r) + ‖a‖2
2‖b‖2

2O((log2 n)/r2)
def
= Cj0 ,

where the first equality is from our conditioning, and the second equality is the definition
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of Cj0 . Hence, E
S

[‖Z‖2
F ] is

=
∑

i1,···ik,j0,···jk−1

k−1∏

c=1

〈Sic , Sjc〉2
k∏

c=1

(UU>)2
jc−1,ic

·
∑

i0,jk,jk 6=ik

a2
i0
〈Si0 , Sj0〉2b2

jk
〈Sik , Sjk〉2

=
∑

i1,···ik,j0,···jk−1

k−1∏

c=1

〈Sic , Sjc〉2
k∏

c=1

(UU>)2
jc−1,ic

Cj0

=
∑

i1,···ik,j0,···jk−1

〈Sik−1
, Sjk−1

〉2(UU>)2
jk−1,ik

·
k−2∏

c=1

〈Sic , Sjc〉2
k−1∏

c=1

(UU>)2
jc−1,ic

Cj0 ,

where the first equality follows from (24.18), the second equality by definition of Cj0 , and

the final equality by factoring out c = k − 1 from one product and c = k − 2 from the other

product.

The way to bound the term 〈Sik−1
, Sjk−1

〉 is by separating the diagonal term where

ik−1 = jk−1 and the non-diagonal term where ik−1 6= jk−1. We now use the aforementioned

property of S, namely, that 〈Sik−1
, Sjk−1

〉 = 1, if ik−1 = jk−1, while for ik−1 6= jk−1, we have

with probability 1 − 1/poly(n) that |〈Sik−1
, Sjk−1

〉| = O(
√

log n/
√
r) conditioned on AIPS

holding.

Conditioned on AIPS holding, we can recursively reduce the number of terms in the
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product:

‖Z‖2
F

=
∑

i1,···ik,j0,···jk−1,ik−1 6=jk−1

O((log n)/r) · (UU>)2
jk−1,ik

·
k−2∏

c=1

〈Sic , Sjc〉2
k−1∏

c=1

(UU>)2
jc−1,ic

Cj0

+
∑

i1,···ik,j0,···jk−1,ik−1=jk−1

1 · (UU>)2
jk−1,ik

·
k−2∏

c=1

〈Sic , Sjc〉2
k−1∏

c=1

(UU>)2
jc−1,ic

Cj0

≤
∑

i1,···ik,j0,···jk−1

O((log n)/r) · (UU>)2
jk−1,ik

·
k−2∏

c=1

〈Sic , Sjc〉2
k−1∏

c=1

(UU>)2
jc−1,ic

Cj0

+
∑

i1,···ik,j0,···jk−1,ik−1=jk−1

1 · (UU>)2
jk−1,ik

·
k−2∏

c=1

〈Sic , Sjc〉2
k−1∏

c=1

(UU>)2
jc−1,ic

Cj0 ,

where the first equality follows from the property just mentioned, and the inequality follows

by including back the tuples of indices for which ik−1 = jk−1, using that each summand is

non-negative.
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Our next step will be to bound the term (UU>)2
jk−1,ik

. We have, ‖Z‖2
F is

≤
∑

ik,jk−1

(UU>)2
ik,jk−1

∑

i1,··· ,ik−1
j0,··· ,jk−2

O((log n)/r)

·
k−2∏

c=1

〈Sic , Sjc〉2
k−1∏

c=1

(UU>)2
jc−1,ic

Cj0

+
∑

i1,··· ,ik
j0,··· ,jk−1
ik−1=jk−1

1 · (UU>)2
jk−1,ik

k−2∏

c=1

〈Sic , Sjc〉2
k−1∏

c=1

(UU>)2
jc−1,ic

Cj0

= O(d(log n)/r)
∑

i1,··· ,ik−1
j0,··· ,jk−2

k−2∏

c=1

〈Sic , Sjc〉2
k−1∏

c=1

(UU>)2
jc−1,ic

Cj0

︸ ︷︷ ︸
A

+
∑

i1,··· ,ik
j0,··· ,jk−1
ik−1=jk−1

1 · (UU>)2
jk−1,ik

k−2∏

c=1

〈Sic , Sjc〉2
k−1∏

c=1

(UU>)2
jc−1,ic

Cj0

︸ ︷︷ ︸
B

,

where the equality uses that
∑

ik,jk−1
(UU>)2

ik,jk−1
= ‖UU>‖2

F = d. We first upper bound
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term B:

=
∑

i1,··· ,ik
j0,··· ,jk−1
ik−1=jk−1

1 · (UU>)2
jk−1,ik

k−2∏

c=1

〈Sic , Sjc〉2
k−1∏

c=1

(UU>)2
jc−1,ic

Cj0

=
∑

i1,··· ,ik−1
j0,j1,··· ,jk−1
ik−1=jk−1

Cj0

k−2∏

c=1

〈Sic , Sjc〉2
k−1∏

c=1

(UU>)2
jc−1,ic

∑

ik

(UU>)2
jk−1,ik

=
∑

i1,··· ,ik−1
j0,j1,··· ,jk−1
ik−1=jk−1

Cj0

k−2∏

c=1

〈Sic , Sjc〉2
k−1∏

c=1

(UU>)2
jc−1,ic

|ejk−1
UU>|2

≤
∑

i1,··· ,ik−1
j0,j1,··· ,jk−1
ik−1=jk−1

Cj0

k−2∏

c=1

〈Sic , Sjc〉2
k−1∏

c=1

(UU>)2
jc−1,ic

1

=
∑

i1,··· ,ik−1
j0,j1,··· ,jk−2

Cj0

k−2∏

c=1

〈Sic , Sjc〉2
k−1∏

c=1

(UU>)2
jc−1,ic

,

where the first equality is the definition of B, the second equality follows by separating

out the index ik, the third equality uses that
∑

ik
(UU>)2

jk−1,ik
= ‖ejk−1

UU>‖2
2, that is, the

squared norm of the jk−1-th row of UU>, the inequality follows since all rows of a projection

matrix UU> have norm at most 1, and the final equality uses that jk−1 no longer appears in

the expression.
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We now merge our bounds for the terms A and B in the following way:

‖Z‖2
F

≤ A+B

≤ O(d(log n)/r)
∑

i1,··· ,ik−1
j0,··· ,jk−2

k−2∏

c=1

〈Sic , Sjc〉2
k−1∏

c=1

(UU>)2
jc−1,ic

Cj0

+
∑

i1,··· ,ik−1
j0,j1,··· ,jk−2

Cj0

k−2∏

c=1

〈Sic , Sjc〉2
k−1∏

c=1

(UU>)2
jc−1,ic

= (O(d(log n)/r) + 1)
∑

i1,··· ,ik−1
j0,··· ,jk−2

k−2∏

c=1

〈Sic , Sjc〉2
k−1∏

c=1

(UU>)2
jc−1,ic

Cj0

≤ · · ·

≤ (O(d(log n)/r) + 1)2
∑

i1,··· ,ik−2
j0,··· ,jk−3

k−3∏

c=1

〈Sic , Sjc〉2
k−2∏

c=1

(UU>)2
jc−1,ic

Cj0

≤ · · ·

≤ (O(d(log n)/r) + 1)k−1
∑

i1,j0

1∏

c=1

(UU>)2
jc−1,ic

Cj0

≤ (O(d(log n)/r) + 1)k−1 (d‖b‖2
2(log2 n)/r2 + ‖b‖2

2(log n)/r),

where the first two inequalities and first equality are by definition of A and B above.

The first inequality follows by induction, since at this point we have replaced k with k − 1,

and can repeat the argument, incurring another multiplicative factor of O(d(log n)/r) +

1. Repeating the induction in this way we arrive at the last inequality. Finally, the last
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inequality follows by plugging in the definition of Cj0 , using that
∑

i1,j0
(UU>)2

j0,i1
= d, and

∑

j0,i1

(UU>)2
j0,i1

a2
j0

=
∑

j0

a2
j0

∑

i1

(UU>)2
j0,i1

=
∑

j0

a2
j0
‖ej0UU>‖2

2 ≤ 1,

where the inequality follows since each row of UU> has norm at most 1, and a is a unit

vector. The final result is that

‖Z‖2
F ≤ (O(d(log n)/r) + 1)k−1 (d‖b‖2

2(log2 n)/r2 + ‖b‖2
2(log n)/r).
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Chapter 25

Symmetric Norm Regression

We provide efficient algorithms for overconstrained linear regression problems with

size n×d when the loss function is a symmetric norm (a norm invariant under sign-flips and

coordinate-permutations). An important class of symmetric norms are Orlicz norms, where

for a function G and a vector y ∈ Rn, the corresponding Orlicz norm ‖y‖G is defined as the

unique value α such that
∑n

i=1 G(|yi|/α) = 1. When the loss function is an Orlicz norm, our

algorithm produces a (1 + ε)-approximate solution for an arbitrarily small constant ε > 0

in input-sparsity time, improving over the previously best-known algorithm which produces

a d · polylog n-approximate solution. When the loss function is a general symmetric norm,

our algorithm produces a
√
d · polylog n · mmc(`)-approximate solution in input-sparsity

time, where mmc(`) is a quantity related to the symmetric norm under consideration. To

the best of our knowledge, this is the first input-sparsity time algorithm with provable

guarantees for the general class of symmetric norm regression problem. Our results shed

light on resolving the universal sketching problem for linear regression, and the techniques

might be of independent interest to numerical linear algebra problems more broadly.

This part is based upon the following previous publication

• Zhao Song, Ruosong Wang, Lin F. Yang, Hongyang Zhang, Peilin Zhong

Efficient Symmetric Norm Regression via Linear Sketching.
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25.1 Introduction

Linear regression is a fundamental problem in machine learning. For a data matrix

A ∈ Rn×d and a response vector b ∈ Rn with n � d, the overconstrained linear regression

problem can be formulated as solving the following optimization problem:

min
x∈Rd

L(Ax− b), (25.1)

where L : Rn → R is a loss function. Via the technique of linear sketching, we have

witnessed many remarkable speedups for linear regression for a wide range of loss functions.

Such technique involves designing a sketching matrix S ∈ Rr×n, and showing that by solving

a linear regression instance on the data matrix SA and the response vector Sb, which is

usually much smaller in size, one can obtain an approximate solution to the original linear

regression instance in (25.1). Sarlós showed in [Sar06] that by taking S as a Fast Johnson-

Lindenstrauss Transform matrix [AC06], one can obtain (1+ ε)-approximate solutions to the

least square regression problem (L(y) = ‖y‖2
2) in O(nd log n+ poly(d/ε)) time. The running

time was later improved to O(nnz(A)+poly(d/ε)) [CW13, MM13, NN13a, LMP13, Coh16a].

Here nnz(A) is the number of non-zero entries in the data matrix A, which could be much

smaller than nd for sparse data matrices. This technique was later generalized to other

loss functions. By now, we have Õ(nnz(A) + poly(d/ε))1 time algorithms for `p norms

(L(y) = ‖y‖pp) [DDH+09, MM13, WZ13, CP15, WW19], the quantile loss function [YMM13],

and M -estimators [CW15b, CW15a].

Despite we have successfully applied the technique of linear sketching to many dif-

ferent loss functions, ideally, it would be more desirable to design algorithms that work

1Throughout the paper, we use Õ(f) to denote f polylog f .

1966



Table 25.1: M -estimators

Huber
{
x2/2 |x| ≤ c
c(|x| − c/2) |x| > c

`1 − `2 2(
√

1 + x2/2− 1)

“Fair" c2 (|x|/c− log(1 + |x|/c))

for a wide range of loss functions, instead of designing a new sketching algorithm for ev-

ery specific loss function. Naturally, this leads to the following problem, which is the lin-

ear regression version of the universal sketching problem2 studied in streaming algorithms

[BO10, BCWY16]. We note that similar problems are also asked and studied for various al-

gorithmic tasks, including principal component analysis [SWZ18], sparse recovery [NSW19b],

approximate nearest neighbor search [ANN+17, ANN+18] and mean estimation with statis-

tical queries [FGV17, LNRW19].

Question 25.1.1. Is that possible to design sketching algorithms for linear regression, that

work for a wide range of loss functions?

Prior to our work, [CW15b, CW15a] studied this problem in terms of M -estimators,

where the loss function employs the form L(y) =
∑n

i=1G(yi) for some function G. See

Table 25.1 for a list a M -estimators. However, much less is known for the case where

the loss function L(·) is a norm, except for `p norms. Recently, Andoni et al. [ALS+18]

tackle Problem 25.1.1 for Orlicz norms, which can be seen as a scale-invariant version of

M -estimators. For a function G and a vector y ∈ Rn with y 6= 0, the corresponding Orlicz

2https://sublinear.info/index.php?title=Open_Problems:30.
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norm ‖y‖G is defined as the unique value α such that

n∑

i=1

G(|yi|/α) = 1. (25.2)

When y = 0, we define ‖y‖G to be 0. Note that Orlicz norms include `p norms as special

cases, by taking G(z) = |z|p for some p ≥ 1. Under certain assumptions on the function G,

[ALS+18] obtains the first input-sparsity time algorithm for solving Orlicz norm regression.

More precisely, in Õ(nnz(A) + poly(d log n)) time, their algorithm obtains a solution x̂ ∈ Rd

such that ‖Ax̂− b‖G ≤ d · polylog n ·minx∈Rd ‖Ax− b‖G.

There are two natural problems left open by the work of [ALS+18]. First, the algo-

rithm in [ALS+18] has approximation ratio as large as d · polylog n. Although this result is

interesting from a theoretical point of view, such a large approximation ratio is prohibited

for machine learning applications in practice. Is it possible to obtain an algorithm that runs

in Õ(nnz(A)+poly(d/ε)) time, with approximation ratio 1+ε, for arbitrarily small ε, similar

to the case of `p norms? Moreover, although Orlicz norm includes a wide range of norms,

many other important norms, e.g., top-k norms (the sum of absolute values of the leading k

coordinates of a vector), max-mix of `p norms (e.g. max{‖x‖2, c‖x‖1} for some c > 0), and

sum-mix of `p norms (e.g. ‖x‖2 + c‖x‖1 for some c > 0), are not Orlicz norms. More com-

plicated examples include the k-support norm [AFS12] and the box-norm [MPS14], which

have found applications in sparse recovery. In light of Problem 25.1.1, it is natural to ask

whether it is possible to apply the technique of linear sketching to a broader class of norms.

In this paper, we obtain affirmative answers to both problems, and make progress towards

finally resolving Problem 25.1.1.
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Notations. For a matrix A ∈ Rn×d, we use Ai ∈ Rd to denote its i-th row, viewed as a

column vector. For n real numbers x1, x2, · · · , xn, we define diag(x1, x2, · · · , xn) ∈ Rn×n to

be the diagonal matrix where the i-th diagonal entry is xi. For a vector x ∈ Rn and p ≥ 1, we

use ‖x‖p to denote its `p norm, and ‖x‖0 to denote its `0 norm, i.e., the number of non-zero

entries in x. For two vectors x, y ∈ Rn, we use 〈x, y〉 to denote their inner product. For any

n ∈ N+, we use [n] to denote the set {1, 2, · · · , n}. For 0 ≤ p ≤ 1, we define Ber(p) to be

the Bernoulli distribution with parameter p. We use Sn−1 to denote the unit `2 sphere in

Rn, i.e., Sn−1 = {x ∈ Rn | ‖x‖2 = 1}. We use R≥0 to denote the set of all non-negative real

numbers, i.e., R≥0 = {x ∈ R | x ≥ 0}.

25.1.1 Our Contributions

Algorithm for Orlicz Norms. Our first contribution is a unified algorithm which pro-

duces (1 + ε)-approximate solutions to the linear regression problem in (25.1), when the loss

function L(·) is an Orlicz norm. Before introducing our results, we first give our assumptions

on the function G appeared in (25.2).

Assumption 25.1.2. We assume the function G : R → R≥0 satisfies the following proper-

ties:

1. G is a strictly increasing convex function on [0,∞);

2. G(0) = 0, and for all x ∈ R, G(x) = G(−x);

3. There exists some CG > 0, such that for all 0 < x < y, G(y)/G(x) ≤ CG(y/x)2.

The first two conditions in Assumption 25.1.2 are necessary to make sure the corre-

sponding Orlicz norm ‖·‖G is indeed a norm, and the third condition requires the function G

1969



to have at most quadratic growth, which can be satisfied by all M -estimators in Table 25.1

and is also required by prior work [ALS+18]. Notice that our assumptions are weaker than

those in [ALS+18]. In [ALS+18], it is further required that G(x) is a linear function when

x > 1, and G is twice differentiable on an interval (0, δG) for some δG > 0. Given our

assumptions on G, our main theorem is summarized as follow.

Theorem 25.1.3. For a function G that satisfies Assumption 25.1.2, there exists an al-

gorithm that, on any input A ∈ Rn×d and b ∈ Rn, finds a vector x∗ in time Õ(nnz(A) +

poly(d/ε)), such that with probability at least 0.9, ‖Ax∗ − b‖G ≤ (1 + ε) minx∈Rd ‖Ax− b‖G.

To the best of our knowledge, this is the first input-sparsity time algorithm with

(1 + ε)-approximation guarantee, that goes beyond `p norms, the quantile loss function, and

M -estimators. See Table 25.2 for a more comprehensive comparison with previous results.

Algorithm for Symmetric Norms. We further study the case when the loss function

L(·) is a symmetric norm. Symmetric norm is a more general class of norms, which includes

all norms that are invariant under sign-flips and coordinate-permutations. Formally, we

define symmetric norms as follow.

Definition 25.1.1. A norm ‖ · ‖` is called a symmetric norm, if

‖(y1, y2, . . . , yn)‖` = ‖(s1yσ1 , s2yσ2 , . . . , snyσn)‖`

for any permutation σ and any assignment of si ∈ {−1, 1}.

Symmetric norm includes `p norms and Orlicz norms as special cases. It also in-

cludes all examples provided in the introduction, i.e., top-k norms, max-mix of `p norms,
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Table 25.2: Comparison between input-sparsity time linear regression algorithms

Reference Loss Function Approximation Ratio
[DDH+09, MM13, WZ13, CP15, WW19] `p norms 1 + ε

[YMM13] Quantile loss function 1 + ε
[CW15b, CW15a] M -estimators 1 + ε

[ALS+18] Orlicz norms d · polylog n
Theorem 25.1.3 Orlicz norms 1 + ε

Theorem 25.1.4 Symmetric norms
√
d · polylog n ·mmc(`)

sum-mix of `p norms, the k-support norm [AFS12] and the box-norm [MPS14], as special

cases. Understanding this general set of loss functions can be seen as a preliminary step to

resolve Problem 25.1.1. Our main result for symmetric norm regression is summarized in

the following theorem.

Theorem 25.1.4. Given a symmetric norm ‖ · ‖`, there exists an algorithm that, on any

input A ∈ Rn×d and b ∈ Rn, finds a vector x∗ in time Õ(nnz(A) + poly(d)), such that with

probability at least 0.9, ‖Ax∗ − b‖` ≤
√
d · polylog n ·mmc(`) ·minx∈Rd ‖Ax− b‖`.

In the above theorem, mmc(`) is a characteristic of the symmetric norm ‖ · ‖`, which

has been proven to be essential in streaming algorithms for symmetric norms [BBC+17].

See Definition 25.3.3 for the formal definition of mmc(`), and Section 25.3 for more details

about mmc(`). In particular, for `p norms with p ≤ 2, top-k norms with k ≥ n/ polylog n,

max-mix of `2 norm and `1 norm (max{‖x‖2, c‖x‖1} for some c > 0), sum-mix of `2 norm

and `1 norm (‖x‖2 + c‖x‖1 for some c > 0), the k-support norm, and the box-norm, mmc(`)

can all be upper bounded by polylog n, which implies our algorithm has approximation ratio
√
d ·polylog n for all these norms. This clearly demonstrates the generality of our algorithm.
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25.1.2 Technical Overview

Similar to previous works on using linear sketching to speed up solving linear regres-

sion, our core technique is to provide efficient dimensionality reduction methods for Orlicz

norms and general symmetric norms. In this section, we discuss the techniques behind our

results.

Row Sampling Algorithm for Orlicz Norms. Compared to prior work on Orlicz norm

regression [ALS+18] which is based on random projection3, our new algorithm is based on

row sampling. For a given matrix A ∈ Rn×d, our goal is to output a sparse weight vector

w ∈ Rn with at most poly(d log n/ε) non-zero entries, such that with high probability, for

all x ∈ Rd,

(1− ε)‖Ax− b‖G ≤ ‖Ax− b‖G,w ≤ (1 + ε)‖Ax− b‖G. (25.3)

Here, for a weight vector w ∈ Rn and a vector y ∈ Rn, the weighted Orlicz norm ‖y‖G,w
is defined as the unique value α such that

∑n
i=1wiG(|yi|/α) = 1. See Definition 25.2.1 for

the formal definition of weighted Orlicz norm. To obtain a (1 + ε)-approximate solution to

Orlicz norm regression, by (25.3), it suffices to solve

min
x∈Rd
‖Ax− b‖G,w. (25.4)

Since the vector w ∈ Rn has at most poly(d log n/ε) non-zero entries, and we can

ignore all rows of A with zero weights, there are at most poly(d log n/ε) remaining rows in A

in the optimization problem in (25.4). Furthermore, as we show in Lemma 25.2.1, ‖ · ‖G,w is

3Even for `p norms with p < 2, embeddings based on random projections will necessarily induce a
distortion factor polynomial in d, as shown in [WW19].
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a seminorm, which implies we can solve the optimization problem in (25.4) in poly(d log n/ε)

time, by simply solving a convex program with size poly(d log n/ε). Thus, we focus on how

to obtain the weight vector w ∈ Rn in the remaining part. Furthermore, by taking Ab to

be a matrix whose first d columns are A and last column is b, to satisfy (25.3), it suffices to

find a weight vector w such that for all x ∈ Rd+1,

(1− ε)‖Abx‖G ≤ ‖Abx‖G,w ≤ (1 + ε)‖Abx‖G. (25.5)

Hence, we ignore the response vector b in the remaining part of the discussion.

We obtain the weight vector w via importance sampling. We compute a set of sam-

pling probabilities {pi}ni=1 for each row of the data matrix A, and sample the rows of A

according to these probabilities. The i-th entry of the weight vector w is then set to be

wi = 1/pi with probability pi and wi = 0 with probability 1− pi. However, unlike `p norms,

Orlicz norms are not “entry-wise” norms, and it is not even clear that such a sampling process

gives an unbiased estimation. Our key insight here is that for a vector Ax with unit Orlicz

norm, if for all x ∈ Rd,

(1− ε)
n∑

i=1

G((Ax)i) ≤
n∑

i=1

wiG((Ax)i) ≤ (1 + ε)
n∑

i=1

G((Ax)i), (25.6)

then (25.5) holds, which follows from the convexity of the function G. See Lemma 25.2.5

and its proof for more details. Therefore, it remains to develop a way to define and calculate

{pi}ni=1, such that the total number of sampled rows is small.

Our method for defining and computing sampling probabilities pi is inspired by row

sampling algorithms for `p norms [DDH+09]. Here, the key is to obtain an upper bound on

the contribution of each entry to the summation
∑n

i=1G((Ax)i). Indeed, suppose for some
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vector u ∈ Rn such that G(Ax)i ≤ ui for all x ∈ Rd with ‖Ax‖G = 1, we can then sample

each row of A with sampling probability proportional to ui. Now, by standard concentration

inequalities and a net argument, (25.6) holds with high probability. It remains to upper

bound the total number of sampled rows, which is proportional to
∑n

i=1 ui.

We use the case of `2 norm, i.e., G(x) = x2, as an example to illustrate our main

ideas for choosing the vector u ∈ Rn. Suppose U ∈ Rn×d is an orthonormal basis matrix

of the column space of A, then the leverage score4 is defined to be the squared `2 norm

of each row of U . Indeed, leverage score gives an upper bound on the contribution of

each row to ‖Ux‖2
2, since by Cauchy-Schwarz inequality, for each row Ui of U , we have

〈Ui, x〉2 ≤ ‖Ui‖2
2‖x‖2

2 = ‖Ui‖2
2‖Ux‖2

2, and thus we can set ui = ‖Ui‖2
2. It is also clear that

∑n
i=1 ui = d.

For general Orlicz norms, leverage scores are no longer upper bounds on G((Ux)i). In-

spired by the role of orthonormal bases in the case of `2 norm, we first define well-conditioned

basis for general Orlicz norms as follow.

Definition 25.1.2. Let ‖ · ‖G be an Orlicz norm induced by a function G which satisfies

Assumption 25.1.2. We say U ∈ Rn×d is a well-conditioned basis with condition number

κG = κG(U) if for all x ∈ Rd, ‖x‖2 ≤ ‖Ux‖G ≤ κG‖x‖2.

Given this definition, when ‖Ux‖G = 1, by Cauchy-Schwarz inequality and mono-

tonicity of G, we can show that G((Ux)i) ≤ G(‖Ui‖2‖x‖2) ≤ G(‖Ui‖2‖Ux‖G) ≤ G(‖Ui‖2).

This also leads to our definition of Orlicz norm leverage scores.

4See, e.g., [Mah11a], for a survey on leverage scores.
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Definition 25.1.3. Let ‖ · ‖G be an Orlicz norm induced by a function G which satisfies

Assumption 25.1.2. For a given matrix A ∈ Rn×d and a well-conditioned basis U of the

column space of A, the Orlicz norm leverage score of the i-th row of A is defined to be

G(‖Ui‖2).

It remains to give an upper bound on the summation of Orlicz norm leverage scores

of all rows. Unlike the `2 norm, it is not immediately clear how to use the definition of

well-conditioned basis to obtain such an upper bound for general Orlicz norms. To achieve

this goal, we use a novel probabilistic argument. Suppose one takes x to be a vector with

i.i.d. Gaussian random variables. Then each entry of Ux has the same distribution as

‖Ui‖2 ·gi, where {gi}ni=1 is a set of standard Gaussian random variables. Thus, with constant

probability,
∑n

i=1G((Ux)i) is an upper bound on the summation of Orlicz norm leverage

scores. Furthermore, by the growth condition of the function G, we have
∑n

i=1G((Ux)i) ≤

CG‖Ux‖2
G. Now by Definition 25.1.2, ‖Ux‖G ≤ κG‖x‖2, and ‖x‖2 ≤ O(

√
d) with constant

probability by tail inequalities of Gaussian random variables. This implies an upper bound

on the summation of Orlicz norm leverage scores. See Lemma 25.2.2 and its proof for more

details.

Our approach for constructing well-conditioned bases is inspired by [SW11]. In

Lemma 25.2.3, we show that given a subspace embedding Π which embeds the column

space of A with Orlicz norm ‖ ·‖G into the `2 space with distortion κ, then one can construct

a well-conditioned basis with condition number κG ≤ κ. The running time is dominated by

calculating ΠA and doing a QR-decomposition on ΠA. To this end, we can use the oblivi-
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ous subspace embedding for Orlicz norms in Corollary 25.3.45 to construct well-conditioned

bases. The embedding in Corollary 25.3.4 has O(d) rows and κ = poly(d log n), and calcu-

lating ΠA can be done in Õ(nnz(A) + poly(d)) time. Using such an embedding to construct

the well-conditioned basis, our row sampling algorithm produces a vector w that satisfies

(25.6) with ‖w‖0 ≤ poly(d log n/ε) in time Õ(nnz(A) + poly(d)).

Oblivious Subspace Embeddings for Symmetric Norms. To obtain a faster algo-

rithm for linear regression when the loss function is a general symmetric norm, we show

that there exists a distribution over embedding matrices, such that if S is a random matrix

drawn from that distribution, then for any n× d matrix A, with constant probability, for all

x ∈ Rd, ‖Ax‖` ≤ ‖SAx‖2 ≤ poly(d log n) ·mmc(`) · ‖Ax‖`. Moreover, the embedding matrix

S is sparse, and calculating SA requires only Õ(nnz(A) + poly(d)) time. Another favorable

property of S is that it is an oblivious subspace embeeding, meaning the distribution of S

does not depend on A. To achieve this goal, it is sufficient to construct a random diagonal

matrix D such that for any fixed vector x ∈ Rn,

Pr[‖Dx‖2 ≥ Ω(1/ poly(d log n)) · ‖x‖`] ≥ 1− exp(−Ω(d log n)), (25.7)

and

Pr[‖Dx‖2 ≤ poly(d log n) ·mmc(`) · ‖x‖`] ≥ 1−O(1/d). (25.8)

Our construction is inspired by the sub-sampling technique in [IW05], which was used

for sketching symmetric norms in data streams [BBC+17]. Throughout the discussion, we

5Alternatively, we can use the oblivious subspace embedding in [ALS+18] for this step. However, as
we have discussed, the oblivious subspace embedding in [ALS+18] requires stronger assumptions on the
function G : R → R≥0 than those in Assumption 25.1.2, which restricts the class of Orlicz norms to which
our algorithm can be applied.
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use ξ(q) ∈ Rn to denote a vector with q non-zero entries and each entry is 1/
√
q. Let us start

with a special case where the vector x ∈ Rn has s non-zero entries and each non-zero entry

is 1. It is easy to see ‖x‖` =
√
s‖ξ(s)‖`. Now consider a random diagonal matrix D which

corresponds to a sampling process, i.e., each diagonal entry is set to be 1 with probability

p and 0 with probability 1 − p. Our goal is to show that
√

1/p‖ξ(1/p)‖` · ‖Dx‖2 is a good

estimator of ‖x‖`. If p = Θ(d log n/s), then with probability at least 1− exp (−Ω(d log n)),

Dx will contain at least one non-zero entry from x, in which case (25.7) is satisfied. However,

we do not know s in advance. Thus, we use t = O(log n) different matrices D1, D2, · · · , Dt,

where Di has sampling probability 1/2i. Clearly at least one such Dj can establish (25.7).

For the upper bound part, if p is much smaller than 1/s, then Dx will never contain a

non-zero entry from x. Otherwise, in expectation Dx will contain ps non-zero entries, in

which case our estimation will be roughly
√
s‖ξ(1/p)‖`, which can be upper bounded by

O(log n · mmc(`) · √s‖ξ(s)‖`). At this point, (25.8) follows from Markov’s inequality. See

Section 25.7.5 for the formal argument, and Section 25.3 for a detailed discussion on mmc(`).

To generalize the above argument to general vectors, for a vector x ∈ Rn, we con-

ceptually partition its entries into Θ(log n) groups, where the i-th group contains entries

with magnitude in [2i, 2i+1). By averaging, at least one group of entries contributes at least

Ω(1/ log n) fraction to the value of ‖x‖`. To establish (25.7), we apply the lower bound part

of the argument in the previous paragraph to this “contributing” group. To establish (25.8),

we apply the upper bound part of the argument to all groups, which will only induce an

additional O(log n) factor in the approximation ratio, by triangle inequality.

Since our oblivious subspace embedding embeds a given symmetric norm into the `2

space, in order to obtain an approximate solution to symmetric norm regression, we only need
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to solve a least square regression instance with much smaller size. This is another advan-

tage of our subspace embedding, since the least square regression problem is a well-studied

problem in optimization and numerical linear algebra, for which many efficient algorithms

are known, both in theory and in practice.
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25.2 Linear Regression for Orlicz Norms

In this section, we introduce our results for Orlicz norm regression.

Weighted Orlicz Norm. We first give the definition of weighted Orlicz norm.

Definition 25.2.1. For a function G that satisfies Assumption 25.1.2 and a weight vector

w ∈ Rn such that wi ≥ 0 for all i ∈ [n], for a vector x ∈ Rn, if
∑n

i=1wi · |xi| = 0, then the

weighted Orlicz norm ‖x‖G,w is defined to be 0. Otherwise, the weighted Orlicz norm ‖x‖G,w
is defined as the unique value α > 0 such that

∑n
i=1wiG(|xi|/α) = 1.

When wi = 1 for all i ∈ [n], we have ‖x‖G,w = ‖x‖G where ‖x‖G is the (unweighted)

Orlicz norm. It is well known that ‖ · ‖G is a norm. We show in the following lemma that

‖ · ‖G,w is a seminorm.

Lemma 25.2.1. For a function G that satisfies Assumption 25.1.2 and a weight vector

w ∈ Rn such that wi ≥ 0 for all i ∈ [n], for all x, y ∈ Rn, we have (i) ‖x‖G,w ≥ 0, (ii)

‖x+ y‖G,w ≤ ‖x‖G,w + ‖y‖G,w, and (iii) ‖ax‖G,w = |a| · ‖x‖G,w for all a ∈ R.

Leverage Scores and Well-Conditioned Bases for Orlicz Norms. The following

lemma establishes an upper bound on the summation of Orlicz norm leverage scores defined

in Definition 25.1.3.

Lemma 25.2.2. Let ‖ · ‖G be an Orlicz norm induced by a function G which satisfies As-

sumption 25.1.2. Let U ∈ Rn×d be a well-conditioned basis with condition number κG as in

Definition 25.1.2. Then we have
∑n

i=1G(‖Ui‖2) ≤ O(CGdκ
2
G),
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Now we show that given a subspace embedding which embeds the column space of

A with Orlicz norm ‖ · ‖G into the `2 space with distortion κ, then one can construct a

well-conditioned basis with condition number κG ≤ κ.

Lemma 25.2.3. Let ‖ · ‖G be an Orlicz norm induced by a function G which satisfies As-

sumption 25.1.2. For a given matrix A ∈ Rn×d and an embedding matrix Π ∈ Rs×n, suppose

for all x ∈ Rd, ‖Ax‖G ≤ ‖ΠAx‖2 ≤ κ‖Ax‖G. Let Q · R = 1
κ
ΠA be a QR-decomposition of

1
κ
ΠA. Then AR−1 is a well-conditioned basis (see Definition 25.1.2) with κG(AR−1) ≤ κ.

The following lemma shows how to estimate Orlicz norm leverage scores given a

change of basis matrix R ∈ Rd×d, in Õ(nnz(A) + poly(d)) time.

Lemma 25.2.4. Let ‖ · ‖G be an Orlicz norm induced by a function G which satisfies As-

sumption 25.1.2. For a given matrix A ∈ Rn×d and R ∈ Rd×d, there exists an algorithm

that outputs {ui}ni=1 such that with probability at least 0.99, ui = Θ(G(‖(AR−1)i‖2)) for all

1 ≤ i ≤ n. The algorithm runs in Õ(nnz(A) + poly(d)) time.

The Row Sampling Algorithm. Based on the notion of Orlicz norm leverage scores and

well-conditioned bases, we design a row sampling algorithm for Orlicz norms.

Lemma 25.2.5. Let ‖·‖G be an Orlicz norm induced by a function G which satisfies Assump-

tion 25.1.2. Let U ∈ Rn×d be a well-conditioned basis with condition number κG = κG(U)

as in Definition 25.1.2. For sufficiently small ε and δ, and sufficiently large constant C, let

{pi}ni=1 be a set of sampling probabilities satisfying pi ≥ min {1, C (log(1/δ) + d log(1/ε)) ε−2G (‖Ui‖2)}.

Let w be a vector whose i-th entry is set to be wi = 1/pi with probability pi and wi = 0 with
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probability 1−pi, then with probability at least 1− δ, for all x ∈ Rd, we have (1− ε)‖Ux‖G ≤

‖Ux‖G,w ≤ (1 + ε)‖Ux‖G.

Solving Linear Regression for Orlicz Norms. Now we combine all ingredients to give

an algorithm for Orlicz norm regression. We use Ab ∈ Rn×(d+1) to denote a matrix whose

first d columns are A and the last column is b. The algorithm is described in Figure 25.1,

and we prove its running time and correctness in Theorem 25.2.6. We assume we are given

an embedding matrix Π, such that for all x ∈ Rd+1, ‖Abx‖G ≤ ‖ΠAbx‖2 ≤ κ‖Abx‖G. The

construction of Π and the value κ will be given in Corollary 25.3.4. In Appendix 25.8.1, we

use Theorem 25.2.6 and Corollary 25.3.4 to formally prove Theorem 25.1.3.

1. For the given embedding matrix Π, calculate ΠAb and invoke QR-decomposition on
ΠAb/κ to obtain Q ·R = ΠAb/κ.

2. Invoke Lemma 25.2.4 to obtain {ui}ni=1 such that ui = Θ(G(‖(AbR−1)i‖2)).

3. For a sufficiently large constant C, let {pi}ni=1 be a set of sampling probabilities with
pi ≥ min {1, C · d · ε−2 log(1/ε) ·G (‖(AbR−1)i‖2)} , and w be a vector whose i-th entry
wi = 1/pi with probability pi and wi = 0 with probability 1− pi.

4. Calculate x∗ = argminx∈Rd ‖Ax− b‖G,w. Return x∗.

Figure 25.1: Algorithm for Orlicz norm regression

Theorem 25.2.6. Let ‖ · ‖G be an Orlicz norm induced by a function G which satisfies

Assumption 25.1.2. Given an embedding matrix Π, such that for all x ∈ Rd, ‖Abx‖G ≤

‖ΠAbx‖2 ≤ κ‖Abx‖G, with probability at least 0.9, the algorithm in Figure 25.1 outputs

x∗ ∈ Rd in time poly(dκ/ε)+TQR(ΠAb), such that ‖Ax∗− b‖G ≤ (1+ ε) minx∈Rd ‖Ax− b‖G.

Here, TQR(ΠAb) is the running time for calculating ΠAb and invoking QR-decomposition
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on ΠAb.
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25.3 Linear Regression for Symmetric Norms

In this section, we introduce SymSketch, a subspace embedding for symmetric norms.

Definition of SymSketch. We first formally define SymSketch. Due to space limitation,

we give the definition of Gaussian embeddings, CountSketch embeddings and their composi-

tions in Appendix 25.7.1.1.

Definition 25.3.1 (Symmetric Norm Sketch (SymSketch)). Let t = Θ(log n). Let D̃ ∈

Rn(t+1)×n be a matrix defined as D̃ =




w0D0

w1D1
...

wtDt


, where for each i ∈ {0, 1, . . . , t}, Di =

diag(zi,1, zi,2, . . . , zi,n) ∈ Rn×n and zi,j ∼ Ber(1/2i) for each j ∈ [n]. Moreover, wi =

‖(1, 1, . . . , 1︸ ︷︷ ︸
2i ones

, 0, . . . , 0)‖`. Let Π ∈ RO(d)×n(t+1) be a composition of Gaussian embedding and

CountSketch embedding (Definition 25.7.4) with ε = 0.1, and S = ΠD̃. We say S ∈ RO(d)×n

is a SymSketch.

Modulus of Concentration. Now we give the definition of mmc(`) for a symmetric norm.

Definition 25.3.2 ([BBC+17]). Let X denote the uniform distribution over Sn−1. The

median of a symmetric norm ‖ · ‖` is the unique value M` such that Prx∼X[‖x‖` ≥M`] ≥ 1/2

and Prx∼X[‖x‖` ≤M`] ≥ 1/2.

Definition 25.3.3 ([BBC+17]). For a given symmetric norm ‖ · ‖`, we define the modulus

of concentration to be mc(`) = maxx∈Sn−1 ‖x‖`/M`, and define the maximum modulus of

concentration to be mmc(`) = maxk∈[n] mc(`(k)), where ‖ · ‖`(k) is a norm on Rk which is

defined to be ‖(x1, x2, · · · , xk)‖`(k) = ‖(x1, x2, · · · , xk, 0, · · · , 0)‖`.

1983



It has been shown in [BBC+17] that mmc(`) = Θ(n1/2−1/p) for `p norms when p > 2,

mmc(`) = Θ(1) for `p norms when p ≤ 2, mmc(`) = Θ̃(
√
n/k) for top-k norms, and

mmc(`) = O(log n) for the k-support norm [AFS12] and the box-norm [MPS14]. We show

that mmc(`) is upper bounded by O(1) for max-mix of `2 norm and `1 norm and sum-mix

of `2 norm and `1 norm.

Lemma 25.3.1. For a real number c > 0, let ‖x‖`a = ‖x‖2+c‖x‖1 and ‖x‖`b = max{‖x‖2, c‖x‖1}.

We have mmc(`a) = O(1) and mmc(`b) = O(1).

Moreover, we show that for an Orlicz norm ‖ · ‖G induced by a function G which

satisfies Assumption 25.1.2, mmc(`) is upper bounded by O(
√
CG log n).

Lemma 25.3.2. For an Orlicz norm ‖ · ‖G on Rn induced by a function G which satisfies

Assumption 25.1.2, mmc(`) is upper bounded by O(
√
CG log n).

Subspace Embedding. The following theorem shows that SymSketch is a subspace em-

bedding.

Theorem 25.3.3. Let S ∈ RO(d)×n be a SymSketch as defined in Definition 25.3.1. For a

given matrix A ∈ Rn×d, with probability at least 0.9, for all x ∈ Rd,

Ω

(
1√

d log3 n

)
· ‖Ax‖` ≤ ‖SAx‖2 ≤ O

(
d2 mmc(`) · log5/2 n

)
· ‖Ax‖`.

Furthermore, the running time of computing SA is Õ(nnz(A) + poly(d)).

Combine Theorem 25.3.3 with Lemma 25.3.2, we have the following corollary.
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Corollary 25.3.4. Let ‖ · ‖G be an Orlicz norm induced by a function G which satisfies

Assumption 25.1.2. Let S ∈ RO(d)×n be a SymSketch as defined in Definition 25.3.1. For a

given matrix A ∈ Rn×d, with probability at least 0.9, for all x ∈ Rd,

Ω

(
1√

d log3 n

)
· ‖Ax‖` ≤ ‖SAx‖2 ≤ O

(√
CGd

2 log7/2 n
)
· ‖Ax‖`.

Furthermore, the running time of computing SA is Õ(nnz(A) + poly(d)).
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25.4 Conclusion

In this paper, we give efficient algorithms for solving the overconstrained linear re-

gression problem, when the loss function is a symmetric norm. For the special case when

the loss function is an Orlicz norm, our algorithm produces a (1 + ε)-approximate solution

in Õ(nnz(A) + poly(d/ε)) time. When the loss function is a general symmetric norm, our

algorithm produces a
√
d · polylog n ·mmc(`)-approximate solution in Õ(nnz(A) + poly(d))

time.

In light of Problem 25.1.1, there are a few interesting problems that remain open. Is

that possible to design an algorithm that produces (1+ε)-approximate solutions to the linear

regression problem, when the loss function is a general symmetric norm? Furthermore, is

that possible to use the technique of linear sketching to speed up the overconstrained linear

regression problem, when the loss function is a general norm? Answering these problems

could lead to a better understanding of Problem 25.1.1.
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25.5 Preliminaries

Notations. For a matrix A ∈ Rn×d, we use Ai to denote its i-th row, Ai to denote its i-th

column, ‖A‖F to denote the Frobenius norm of A, and ‖A‖2 to denote the spectral norm of

A. For any n′ ≤ n, we define ξ(n′) ∈ Rn to be a vector ξ(n′) = 1√
n′

(1, 1, · · · , 1, 0, 0, · · · , 0).

ε-nets. We use the standard upper bound on size of ε-nets.

Definition 25.5.1. For a given set S and a norm ‖ · ‖, we say N ⊆ S is a ε-net of S if for

any s ∈ S, there exists some s ∈ N such that ‖s− s‖ ≤ ε.

Lemma 25.5.1 ([Woj96, II.E, 10]). Given a matrix A ∈ Rn×d and a norm ‖ · ‖, let S be

the unit ‖ · ‖-norm ball in the column space of A, i.e., S = {Ax | ‖Ax‖ = 1}. For ε ∈ (0, 1),

there exists an ε-net N of S with size |N| ≤ (1 + 1/ε)d.
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25.6 Missing Proofs in Section 25.2

In this section, we give missing proofs in Section 25.2.

We first show that if a function G satisfies Assumption 25.1.2, then G has at least

linear growth. We will use this fact in later proofs.

Lemma 25.6.1. Given a function G that satisfies property P, then for any 0 < x ≤ y,

y/x ≤ G(y)/G(x).

Proof. Due to the convexity of G and G(0) = 0, for any y > x > 0, we have

G(x) ≤ G(y)x/y +G(0)(1− x/y) = G(y)x/y.

25.6.1 Proof of Lemma 25.2.1

Proof. The first condition is clear from the definition of ‖x‖G,w.

Now we prove the second condition. When ‖x + y‖G,w = 0, the triangle inequality

clearly holds since ‖x‖G,w ≥ 0 and ‖y‖G,w ≥ 0. When ‖x‖G,w = 0 and ‖x + y‖G,w 6= 0, for

any α > 0, we have
n∑

i=1

wiG(|xi + yi|/α) =
∑

i|wi>0

wiG(|xi + yi|/α) =
∑

i|wi>0

wiG(|yi|/α) =
n∑

i=1

wiG(|yi|/α),

which implies ‖x+ y‖G,w = ‖y‖G,w. Similarly, the second condition also holds if ‖y‖G,w = 0

and ‖x+ y‖G,w 6= 0. If ‖x+ y‖G,w 6= 0, ‖x‖G,w 6= 0 and ‖y‖G,w 6= 0, by definition of ‖ · ‖G,w,

we have
n∑

i=1

wiG(xi/‖x‖G,w) = 1
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and
n∑

i=1

wiG(yi/‖y‖G,w) = 1.

Thus,
n∑

i=1

wiG

(
xi + yi

‖x‖G,w + ‖y‖G,w

)

≤
n∑

i=1

wiG

( |xi|+ |yi|
‖x‖G,w + ‖y‖G,w

)
(G is increasing)

≤
n∑

i=1

wi

( ‖x‖G,w
‖x‖G,w + ‖y‖G,w

·G(|xi|/‖x‖G,w) +
‖y‖G,w

‖x‖G,w + ‖y‖G,w
·G(|yi|/‖y‖G,w)

)

(G is convex)
=1,

which implies ‖x+ y‖G,w ≤ ‖x‖G,w + ‖y‖G,w.

For the third condition, for any a ∈ R and x ∈ Rn, if ‖x‖G,w = 0 then ‖ax‖G,w = 0.

If a = 0, we have ‖ax‖G,w = 0. Otherwise, we have
n∑

i=1

wiG(xi/‖x‖G,w) = 1,

which implies
n∑

i=1

wiG

(
a · xi
|a|‖x‖G,w

)
= 1,

and thus ‖ax‖G,w = |a|‖x‖G,w.

25.6.2 Proof of Lemma 25.2.2

Proof. Let g ∈ Rd be a vector whose entries are i.i.d. Gaussian random variables with zero

mean and standard deviation 102. We show that with probability at least 0.8,
n∑

i=1

G(‖Ui‖2) ≤ O

(
n∑

i=1

G(〈Ui, g〉)
)
≤ O

(
max{1, CG‖Ug‖2

G}
)
≤ O(CGdκ

2
G).
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We divide our proofs into three parts.

Part I We will show that with probability at least 0.9,
n∑

i=1

G(‖Ui‖2) ≤ O

(
n∑

i=1

G(〈Ui, g〉)
)
.

For each i ∈ [n], 〈Ui, g〉 has the same distribution as 102 · ‖Ui‖2 · N(0, 1). For each i ∈ [n],

we let Bi be the random variable such that

Bi =

{
1 |〈Ui, g〉| ≤ ‖Ui‖2

0 otherwise
.

By tail inequalities of standard Gaussian random variables, Pr[Bi = 1] ≤ 0.01. Thus,

E [Bi ·G(‖Ui‖2)] ≤ 0.01 ·G(‖Ui‖2),

which implies

E

[
n∑

i=1

Bi ·G(‖Ui‖2)

]
≤ 0.01 ·

n∑

i=1

G(‖Ui‖2),

By the monotonicity of G, since

G(〈Ui, g)〉 ≥ (1−Bi)G(‖Ui‖2),

we have
n∑

i=1

G(〈Ui, g〉) ≥
n∑

i=1

(1−Bi)G(‖Ui‖2).

By Markov’s inequality, with probability at least 0.9, we have
n∑

i=1

Bi ·G(‖Ui‖2) ≤ 0.1
n∑

i=1

G(‖Ui‖2),

which implies
n∑

i=1

G(〈Ui, g〉) ≥ 0.9
n∑

i=1

G(‖Ui‖2).
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Part II We will show that
n∑

i=1

G(〈Ui, g〉) ≤ max{1, CG · ‖Ug‖2
G}.

When ‖Ug‖G ≤ 1, by monotonicity of G, we must have
n∑

i=1

G(〈Ui, g〉) ≤ 1.

When ‖Ug‖G ≥ 1, we have
n∑

i=1

G(〈Ui, g〉/‖Ug‖G) = 1.

Since

G(〈Ui, g〉) ≤ G(〈Ui, g〉/‖Ug‖G) · CG‖Ug‖2
G

and
n∑

i=1

G(〈Ui, g〉/‖Ug‖G) = 1,

we must have
n∑

i=1

G(〈Ui, g〉) ≤
n∑

i=1

G(〈Ui, g〉/‖Ug‖G) · CG · ‖Ug‖2
G ≤ CG · ‖Ug‖2

G.

Part III We will show that ‖Ug‖2
G ≤ O(CGdκ

2
G). By definition of a well-conditioned basis

and tail inequalities of Gaussian random variables, with probability at least 0.9, we have

‖Ug‖G ≤ κG‖g‖2 ≤ O(κG
√
d).

Thus, applying a union bound over three parts of the proof, we have with probability

at least 0.8,
n∑

i=1

G(‖Ui‖2) ≤ O(CGdκ
2
G). (25.9)

However, the condition in (25.9) is deterministic. Thus, the condition in (25.9) always

holds.
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25.6.3 Proof of Lemma 25.2.3

Proof. Notice that for any x ∈ Rd,

‖AR−1x‖G ≤ ‖ΠAR−1x‖2 = κ‖Qx‖2 = κ‖x‖2

and

‖AR−1x‖G ≥
1

κ
‖ΠAR−1x‖2 = ‖Qx‖2 = ‖x‖2.

25.6.4 Proof of Lemma 25.2.4

Proof. In Theorem 2.13 of [Woo14b], it has been shown how to calculate {li}ni=1 such that

li = Θ(‖(AR−1)i‖2) in Õ(nnz(A) + poly(d)) time with probability at least 0.99. We simply

take ui = G(li). By Lemma 25.6.1 and the growth condition of G, we must have ui =

Θ(G(‖(AR−1)i‖2)).

25.6.5 Proof of Lemma 25.2.5

Proof. By homogeneity, we only need to prove that with probability 1 − δ, for all x which

satisfies ‖Ux‖G = 1,

(1− ε)‖Ux‖G ≤ ‖Ux‖G,w ≤ (1 + ε)‖Ux‖G.

We first prove that for any fixed x ∈ Rd such that ‖Ux‖G = 1, with probability

1− δ(1 + 4/ε)−d,

(1− ε/4)‖Ux‖G ≤ ‖Ux‖G,w ≤ (1 + ε/4)‖Ux‖G.
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Let x ∈ Rd that satisfies ‖Ux‖G = 1 and y = Ux. Let Zi be a random variable which

denotes the value of wiG(yi) and Z =
∑n

i=1 Zi.

We will first show that if Z ∈ [1− ε/4, 1+ ε/4], then ‖y‖G,w ∈ [1− ε/4, 1+ ε/4]. There

are three cases:

1. If ‖y‖G,w = 1, then ‖y‖G,w is already in [1− ε/4, 1 + ε/4].

2. If ‖y‖G,w > 1, then by Lemma 25.6.1, we have

n∑

i=1

wiG(yi) ≥
n∑

i=1

wi‖y‖G,w ·G(yi/‖y‖G,w).

Since
n∑

i=1

wi ·G(yi/‖y‖G,w) = 1,

we must have

‖y‖G,w ≤
n∑

i=1

wiG(yi) = Z ≤ 1 + ε/4.

3. If ‖y‖G,w < 1, then by Lemma 25.6.1, we have

1 =
n∑

i=1

wiG(yi/‖y‖G,w) ≥ 1/‖y‖G,w ·
n∑

i=1

wiG(yi),

which implies

‖y‖G,w ≥
n∑

i=1

wiG(yi) = Z ≥ 1− ε/4.

Thus, it suffices to prove that

Pr [Z ∈ [1− ε/4, 1 + ε/4]] ≥ 1− δ(1 + 4/ε)−d.
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Consider the expectation of Z, we have

E[Z] =
n∑

i=1

E[Zi]

=
n∑

i=1

E[wi] ·G((Ux)i)

=
n∑

i=1

G((Ux)i)

= 1,

where the last equality follows since ‖Ux‖G = 1.

Notice that |Zi − E(Zi)| is always upper bounded by

wiG(yi) = wiG((Ux)i)

≤ wiG(‖Ui‖2 · ‖x‖2)

≤ wiG (‖Ui‖2)

≤ G (‖Ui‖2) /pi

≤ ε2

C (log(1/δ) + d log(1/ε))
,

where the first inequality follows from Cauchy-Schwarz inequality, the second inequality

follows from the definition of well-conditioned basis in Definition 25.1.2 and monotonicity of

G, the third inequality follows from definition of wi and the last inequality follows from the

choice of pi.
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Consider the variance of Z, we have:

V(Z) =
∑

i|pi<1

V(Zi)

≤
∑

i|pi<1

E(Z2
i )

=
∑

i|pi<1

(G((Ux)i))
2 /pi

≤


∑

i|pi<1

G((Ux)i)


 · max

i|pi<1
G((Ux)i)/pi

≤ ε2

C (log(1/δ) + d log(1/ε))
,

where the second inequality follows from Hölder’s inequality and the last inequality follows

from the upper bound of G((Ux)i)/pi and ‖Ux‖G = 1.

Thus, by Bernstein inequality, we have:

Pr (|Z − 1| > ε/4) ≤ (1 + 4/ε)−dδ.

Thus, for a fixed x, with probability at least 1− (1 + 4/ε)−dδ, we have

(1− ε/4)‖Ux‖G ≤ ‖Ux‖G,w ≤ (1 + ε/4)‖Ux‖G.

Let S be the unit ‖·‖G-norm ball in the column space of U , i.e., S = {Ux | ‖Ux‖G = 1}.

According to Lemma 25.5.1, there exists an ε/4-net N of S with |N| ≤ (1 + 4/ε)d. We use E

to denote the event that for all y ∈ N, ‖y‖G,w ∈ [1 − ε/4, 1 + ε/4]. By taking union bound

over all vectors in N, we have Pr[E] ≥ 1− δ.

Conditioned on E, now we show that for all y ∈ S, ‖y‖G,w ∈ [1− ε, 1 + ε]. Consider a
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fixed vector y ∈ S, since N is an ε/4-net of S, we can choose a vector u(1) ∈ N such that

‖y − u(1)‖G ≤ ε/4.

Thus, we have that

‖y‖G,w ≤ ‖u(1)‖G,w + ‖y − u(1)‖G,w

≤ (1 + ε/4) + ‖y − u(1)‖G,w.

Let α(1) = 1/‖y − u(1)‖G. Then we have α(1)(y − u(1)) ∈ S. Thus, there exist u(2) ∈ N such

that

‖u(2) − α(1)(y − u(1))‖G ≤ ε/4.

It implies that

‖(y − u(1))− u(2)/α(1)‖G ≤ ε/(4α(1))

≤ (ε/4)2.

Thus,

‖y − u(1)‖G,w ≤ ‖u(2)‖G,w/α(1) + ‖y − u(1) − u(2)/α(1)‖G,w

≤ (1 + ε/4)ε/4 + ‖y − u(1) − u(2)/α(1)‖G,w.

Let α(2) = 1/‖y − u(1) − u(2)/α(1)‖G. Then we can repeat the above argument and get

‖y‖G,w ≤ (1 + ε/4) + (1 + ε/4)ε/4 + (1 + ε/4)(ε/4)2 + · · ·

= (1 + ε/4)/(1− ε/4)

≤ 1 + ε.
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By applying the above upper bound on ‖α(1)(u(1) − y)‖G,w, we can get

‖y‖G,w ≥ ‖u(1)‖G,w − ‖u(1) − y‖G,w

≥ (1− ε/4)− ‖u(1) − y‖G,w

≥ (1− ε/4)− 1 + ε

α(1)

≥ 1− ε/2− ε2/4

≥ 1− ε.

Thus, conditioned on E, which holds with probability 1− δ, we have ‖y‖G,w ∈ [1− ε, 1 + ε]

for all y = Ux with ‖y‖G = 1.

25.6.6 Proof of Theorem 25.2.6

Proof. We first analyze the running time of the algorithm. In Step 1, we calculate ΠAb

and invoke QR-decomposition on ΠAb. In Step 2, we apply the algorithm in Lemma 25.2.4,

which runs in Õ(nnz(A) + poly(d)) time. Obtaining the weight vector w ∈ Rn in Step 3

requires O(n) time.

Since for all x ∈ Rd,

‖Abx‖G ≤ ‖ΠAbx‖2 ≤ κ‖Abx‖G.

we have

E[‖w‖0] =
n∑

i=1

pi =
n∑

i=1

O
(
d log(1/ε)/ε2 ·G

(
‖(AbR−1)i‖2

))

≤ O
(
d log(1/ε)/ε2 · CGd

(
κG(AbR−1)

)2
)

(Lemma 25.2.2)

≤ O
(
CGd

2κ2 log(1/ε)/ε2
)
. (Lemma 25.2.3)
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By Markov’s inequality, with constant probability we have ‖w‖0 ≤ O (CGd
2κ2 log(1/ε)/ε2).

Moreover, in order to solve minx ‖Ax− b‖G,w, we can ignore all rows of A with zero weights,

and thus there are at most O (CGd
2κ2 log(1/ε)/ε2) remaining rows in A. Furthermore, as we

show in Lemma 25.2.1, ‖ · ‖G,w is a seminorm, which implies we can solve minx ‖Ax− b‖G,w
in poly(CGdκ/ε) time, by simply solve a convex program with size O (CGd

2κ2 log(1/ε)/ε2).

Now we prove the correctness of the algorithm. The algorithm in Lemma 25.2.4 suc-

ceeds with constant probability. By Lemma 25.2.5, with constant probability, simultaneously

for all x ∈ Rd+1,

(1− ε/3)‖AbR−1x‖G ≤ ‖AbR−1x‖G,w ≤ (1 + ε/3)‖AbR−1x‖G.

Equivalently, with constant probability, simultaneously for all x ∈ Rd+1,

(1− ε/3)‖Abx‖G ≤ ‖Abx‖G,w ≤ (1 + ε/3)‖Abx‖G.

Since x∗ = argminx ‖Ax− b‖G,w, for all x ∈ Rd, we have

‖Ax∗ − b‖G ≤ 1/(1− ε/3)‖Ax∗ − b‖G,w

≤ 1/(1− ε/3)‖Ax− b‖G,w

≤ (1 + ε/3)/(1− ε/3)‖Ax− b‖G

≤ (1 + ε)‖Ax− b‖G

for sufficiently small ε. Thus, x∗ is a (1 + ε)-approximate solution to minx ‖Ax− b‖G.

Note that the failure probability of the algorithm can be reduced to an arbitrarily

small constant by independent repetitions and taking the best solution found among all

repetitions.

1998



25.7 Missing Proofs in Section 25.3

In this section, we give missing proofs in Section 25.3.

Without loss of generality, throughout this section, for the symmetric norm ‖ · ‖`
under consideration, we assume ‖ξ(1)‖` = 1.

25.7.1 Background

25.7.1.1 Known `2 Oblivious Subspace Embeddings

In this section, we recall some known `2 subspace embeddings.

Definition 25.7.1. We say S ∈ Rt×n is an `2 subspace embedding for the column space of

A ∈ Rn×d, if for all x ∈ Rd,

(1− ε)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + ε)‖Ax‖2.

Definition 25.7.2. A CountSketch embedding is defined to be Π = ΦD ∈ Rm×n with

m = Θ(d2/ε2), where D is an n × n random diagonal matrix with each diagonal entry

independently chosen to be +1 or −1 with equal probability, and Φ ∈ {0, 1}m×n is an m×n

binary matrix with Φh(i),i = 1 and all remaining entries being 0, where h : [n] → [m] is a

random map such that for each i ∈ [n], h(i) = j with probability 1/m for each j ∈ [m].

Theorem 25.7.1 ([CW13]). For a given matrix A ∈ Rn×d and ε ∈ (0, 1/2). Let Π ∈

RΘ(d2/ε2)×n be a CountSketch embedding. With probability at least 0.9999, Π is an `2 subspace

embedding for the column space of A. Furthermore, ΠA can be computed in O(nnz(A)) time.

Definition 25.7.3. A Gaussian embedding S is defined to be 1√
m
· G ∈ Rm×n with m =

Θ(d/ε2), where each entry of G ∈ Rm×n is chosen independently from the standard Gaussian

distribution.
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Theorem 25.7.2 ([Woo14b]). For a given matrix A ∈ Rn×d and ε ∈ (0, 1/2). Let S ∈

RΘ(d/ε2)×n be a Gaussian embedding. With probability at least 0.9999, S is an `2 subspace

embedding for the column space of A.

Definition 25.7.4. A composition of Gaussian embedding and CountSketch embedding

is defined to be S ′ = SΠ, where Π ∈ RΘ(d2/ε2)×n is a CountSketch embedding and S ∈

RΘ(d/ε2)×Θ(d2/ε2) is a Gaussian embedding.

The following corollary directly follows from the above two theorems.

Corollary 25.7.3. For a given matrix A ∈ Rn×d and ε ∈ (0, 1/2). Let S ′ ∈ RΘ(d/ε2)×n be

a composition of Gaussian embedding and CountSketch embedding. With probability at least

0.9998, S ′ is an `2 subspace embedding for the column space of A. Furthermore, S ′A can be

computed in O(nnz(A) + d4/ε4) time.

We remark that all `2 subspace embeddings introduced in this section are oblivious,

meaning that the distribution of the embedding matrix does not depend on the matrix A.

25.7.1.2 Properties of Symmetric Norms

General Properties. We first introduce several general properties of symmetric norms.

Lemma 25.7.4 (Lemma 2.1 in [BBC+17]). For any symmetric norm ‖ · ‖` and x, y ∈ Rn

such that for all i ∈ [n] we have |xi| ≤ |yi|, then ‖x‖` ≤ ‖y‖`.

Lemma 25.7.5 (Fact 2.2 in [BBC+17]). Suppose ‖ξ(1)‖` = 1, for any vector x ∈ Rn,

‖x‖∞ ≤ ‖x‖` ≤ ‖x‖1.
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Lemma 25.7.6 (Lemma 3.12 in [BBC+17]). Let ‖ · ‖` be a symmetric norm. Then

Ω(M`/
√

log n) ≤ ‖ξ(n)‖` ≤ O(M`),

where M` is as defined in Definition 25.3.2.

Modulus of Approximation. We need the following quantity of a symmetric norm.

Definition 25.7.5. The maximum modulus of approximation of a symmetric norm ‖ · ‖` is

defined as

mma(`, r) = max
1≤a≤b≤ar≤n

M`(ar)

M`(b)
,

where ‖ · ‖`(k) is a norm on Rk which is defined to be

‖(x1, x2, · · · , xk)‖`(k) = ‖(x1, x2, · · · , xk, 0, · · · , 0)‖`,

and M`(k) is as defined in Definition 25.3.2.

Intuitively, mma(`, r) characterizes how well the original symmetric norm can be

approximated by a lower dimensional induced norm. We show in the following lemma that

mma(`, r) ≤ O(
√
r log n) for any symmetric norm.

Lemma 25.7.7. For any symmetric norm ‖ · ‖` and r ∈ [n], mma(`, r) ≤ O(
√
r log n).

Proof. By Lemma 25.7.6, for any i ∈ [n], Ω(M`(i)/
√

log n) ≤ ‖ξ(i)‖` ≤ O(M`(i)). Let ar =

c1b + c2, where c1, c2 are non-negative integers with c1 ≤ ar/b and c2 ≤ b. Observe that we

can rewrite ξ(ar) as

ξ(ar) =



√
b√
ar
·


ξ(b), ξ(b), ξ(b), . . . , ξ(b)

︸ ︷︷ ︸
c1 times


 ,

√
c2√
ar
ξ(c2), 0, . . . , 0


 .

2001



Therefore, by triangle inequality, we have

‖ξ(ar)‖` ≤
√
b√
ar
· c1 · ‖ξ(b)‖` +

√
c2√
ar
· ‖ξ(c2)‖`

≤
√

b

ar
· ar
b
· ‖ξ(b)‖` +

√
b√
ar
· ‖ξ(b)‖` (c1 ≤ ar/b and c2 ≤ b)

≤ √r · ‖ξ(b)‖` + ‖ξ(b)‖` (a ≤ b ≤ ar)

≤ 2
√
r · ‖ξ(b)‖`. (r ≥ 1)

Now we apply Lemma 25.7.6 on both sides, which implies

M`(ar)√
log n

≤ O(
√
r ·M`(b))

as desired.

Properties of SymSketch. Now we introduce several properties of SymSketch.

The following lemma shows that for a data matrix A ∈ Rd, calculating SA requires

Õ(nnz(A) + poly(d)) time for a SymSketch S.

Lemma 25.7.8. For a given matrix A ∈ Rn×d, let S ∈ RO(d)×n be a SymSketch as in

Definition 25.3.1. SA can be computed in O(nnz(A)) + poly(d) time in expectation, and in

O(nnz(A) log n) + poly(d) time in the worst case.

Proof. Since S is a SymSketch, S = ΠD̃ = Π ·




w0D0

w1D1
...

wtDt


, where Π ∈ RO(d)×O(n logn). Since

Di is a diagonal matrix, nnz(DiA) ≤ nnz(A), and thus nnz(D̃A) ≤ (t + 1) · nnz(A) =

O(nnz(A) log n), which implies D̃A can be computed in (t + 1) · nnz(A) = O(nnz(A) log n)

time.
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On the other hand, the expected number of nonzero entries ofDiA is 2−i nnz(A). Thus,

D̃A has O(nnz(A)) nonzero entries in expectation, which implies D̃A can be computed in

O(nnz(A)) time.

Finally, notice that Π is a composition of Gaussian embedding and CountSketch em-

bedding, which implies ΠD̃A can be computed in nnz(D̃A) + poly(d) time.

The following lemma shows that with constant probability, for all x ∈ Rn, ‖Sx‖2 ≤

poly(n)‖x‖2.

Lemma 25.7.9. Let S ∈ RO(d)×n be a SymSketch as defined in Definition 25.3.1, then with

probability at least 0.9999 ‖S‖2 ≤ poly(n).

Proof. Notice that S = ΠD̃, since ‖S‖2 ≤ ‖Π‖2 · ‖D̃‖2, it suffices to bound ‖Π‖2 and

‖D̃‖2. Since Π is a composition of Gaussian embedding and CountSketch embedding (Def-

inition 25.7.4), with probability at least 0.9999, ‖Π‖2 ≤ ‖Π‖F ≤ poly(n). Now consider

D̃ =




w0D0

w1D1
...

wtDt


. By Lemma 25.7.5, for all j ∈ [t], wj ≤ poly(n). Furthermore, ‖Dj‖2 ≤ 1

and t = Θ(log n), which implies ‖D̃‖2 ≤ poly(n).

Throughout this whole section we assume that for any non-zero vector x ∈ Rn, we

have 1 ≤ |xj| ≤ poly(n) for all j ∈ [n]. Notice that this assumption is without loss of

generality, as shown in the following lemma.
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Lemma 25.7.10. For any non-zero vector x ∈ Rn, let x ∈ Rn be a vector with x = poly(n)·x
‖x‖∞ ,

and x′ ∈ Rn where

x′i =

{
xi if xi ≥ 1

0 otherwise
.

For a symmetric norm ‖ · ‖`, suppose ‖S‖2 ≤ poly(n) and

α‖x′‖` ≤ ‖Sx′‖2 ≤ β‖x′‖`

for some α, β ∈ [1/ poly(n), poly(n)], then

Ω(α)‖x‖` ≤ ‖Sx‖2 ≤ O(β)‖x‖`.

Proof. By triangle inequality and Lemma 25.7.4, we have

‖x‖` − n ≤ ‖x′‖` ≤ ‖x‖`.

By Lemma 25.7.5,

‖x′‖` ≥ ‖x′‖∞ = ‖x‖∞ = poly(n),

we have

(1− 1/ poly(n))‖x‖` ≤ ‖x′‖` ≤ ‖x‖`.

Notice that ‖Sx‖2 = ‖Sx′ + S(x− x′)‖2. By triangle inequality we have

‖Sx′‖2 − ‖S‖2‖x− x′‖2 ≤ ‖Sx‖2 ≤ ‖Sx′‖2 + ‖S‖2‖x− x′‖2.

By the given conditions, we have

(1− 1/ poly(n))‖Sx′‖2 ≤ ‖Sx‖2 ≤ (1 + 1/ poly(n))‖Sx′‖2,
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which implies

Ω(α)‖x‖` ≤ ‖Sx‖2 ≤ O(β)‖x‖`.

Since x = poly(n)·x
‖x‖∞ , we have

Ω(α)‖x‖` ≤ ‖Sx‖2 ≤ O(β)‖x‖`.

By Lemma 25.7.10, we can focus on those non-zero vectors x ∈ Rn such that 1 ≤

|xj| ≤ poly(n) for all j ∈ [n].

Definition 25.7.6. For a given vector x ∈ Rn, suppose for all j ∈ [n],

1 ≤ |xj| ≤ poly(n).

Let g = Θ(log n). For each i ∈ {0, 1, . . . , g}, we define

Li(x) = {j | 2i ≤ |xj| < 2i+1}.

For each i ∈ {0, 1, . . . , g}, we define Vi(x) ∈ Rn to be the vector

Vi(x) = (2i, 2i, . . . , 2i︸ ︷︷ ︸
|Li(x)|

, 0, . . . , 0).

For each i ∈ {0, 1, . . . , g}, we say a level i to be contributing if

‖Vi(x)‖` ≥ Ω (1/g) · ‖x‖`.

Lemma 25.7.11. Let g = Θ(log n). For a given vector x ∈ Rn such that for all j ∈ [n], 1 ≤

|xj| ≤ 2g, there exists at least one level i ∈ {0, 1, · · · , g} which is contributing.

Proof. If none of i ∈ {0, 1, · · · , g} is contributing, then ‖x‖` ≤
∑g

i=0 ‖Vi(x)‖` ≤ 1/(2g) ·
∑g

i=0 ‖x‖` ≤ 1
2
‖x‖`, which leads to a contradiction.
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25.7.2 Proof of Lemma 25.3.1

Proof. Consider a fixed n′ ∈ [n]. By Lemma 25.7.6, we have

M
`
(n′)
a

= Ω
(
‖ξ(n′)‖

`
(n′)
a

)
= Ω

(
1 + c

√
n′
)

and

M
`
(n′)
b

= Ω
(
‖ξ(n′)‖

`
(n′)
b

)
= Ω

(
max

(
1, c
√
n′
))

.

It is also straightforward to verify that

max
x∈Sn′−1

‖x‖`a = 1 + c
√
n′

and

max
x∈Sn′−1

‖x‖`b = max
(

1, c
√
n′
)
.

Taking the ratio between maxx∈Sn′−1 ‖x‖` and M`(n
′) for ` ∈ {`a, `b}, we complete the proof.

25.7.3 Proof of Lemma 25.3.2

Proof. Let G(x) =
√
x · G−1(1/x), where G−1(1/x) is the unique value in [0,∞) such that

G(G−1(1/x)) = 1/x. We first show that G(x) is an approximately decreasing function

for x ∈ (0,∞). Let m,n be two real numbers with 0 < m ≤ n. We have 1/n ≤ 1/m,

which implies 0 < G−1(1/n) ≤ G−1(1/m) by monotonicity of G. By the third condition in

Assumption 25.1.2, we have

G(G−1(1/m))

G(G−1(1/n))
≤ CG ·

(
G−1(1/m)

G−1(1/n)

)2

,

which implies
√
n ·G−1(1/n) ≤

√
CG ·

√
m ·G−1(1/m).
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Hence G(n) ≤ √CG ·G(m).

We are now ready to prove the lemma. Recall that for the Orlicz norm ‖ · ‖` = ‖ · ‖G,

we have

mmc(`) = max
n′∈[n]

mc(`(n′)) = max
n′∈[n]

maxx∈Sn′−1 ‖x‖`(n′)
M`(n

′)
.

By Lemma 25.7.6, we have,

Ω(1) · ‖ξ(n′)‖`(n′) ≤M`(n
′) ≤ O(

√
log n) · ‖ξ(n′)‖`(n′) .

Thus ‖ξ(n′)‖`(n′) provides an approximation to M`(n
′) . By definition of ‖ · ‖G, we have

‖ξ(n′)‖`(n′) =
1√

n′ ·G−1(1/n′)
=

1

G(n′)
.

Hence

Ω(1) ≤M`(n
′) ·G(n′) ≤ O(

√
log n).

Next, we compute maxx∈Sn′−1 ‖x‖`(n′) . For an arbitrary unit vector x ∈ Sn′−1, we

denote

Bj = {i ∈ [n] : |xi| ∈ [1/2j, 1/2j−1)}

and bj = |Bj|. For each j, let xBj ∈ Rn be the vector such that

x
Bj
i =

{
xi if j ∈ Bj

0 otherwise
.

Note that non-zero coordinates in xBj have magnitude close to each other (within a factor
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of 2), we thus have

‖xBj‖` = ‖xBj‖2 ·
∥∥∥∥

xBj

‖xBj‖2

∥∥∥∥
`

≤
√
bj

2j−1
·
∥∥∥∥

xBj

‖xBj‖2

∥∥∥∥
`

≤
√
bj

2j−2
· ‖ξ(bj)‖

`(bj)

=

√
bj

2j−2
· 1

G(bj)
.

Similarly,

‖xBj‖` ≥
√
bj

2j+2
· ‖ξ(bj)‖

`(bj)

=

√
bj

2j+2
· 1

G(bj)

≥
√
bj

2j+2
· 1√

CG ·G(1)
.

We claim there exists an constant c > 0 such that

∑

j>c logn
bj>0

‖xBj‖` ≤
∑

j′≤c logn

‖xBj
′

‖`.

To show this, by Lemma 25.6.1, for any b ≥ 1,

b =
G(G−1(1))

G(G−1(1/b))
≥ G−1(1)

G−1(1/b)
,

which implies

G−1(1/b) ≥ G−1(1)

b
.

Next, since ‖x‖2 = 1, there exists an 0 ≤ j̃ ≤ 4 log n such that bj̃ ≥ 1. Therefore,

‖xBj̃‖` ≥
1

2j̃+2
· 1√

CG ·G(1)
.
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Thus, we have

∑

j>c logn
bj>0

‖xBj‖` =
∑

j>c logn
bj>0

‖xBj‖2 ·
∥∥∥∥

xBj

‖xBj‖2

∥∥∥∥
`

≤
∑

j>c logn
bj>0

√
n

2j−2
· ‖ξ(bj)‖

`(bj)

≤
∑

j>c logn
bj>0

√
n

2j−2
· 1√

bjG−1(1/bj)

≤ n ·
√
n

2c logn−2
· bj√

bjG−1(1)

≤ n · 2j̃+2 ·
√
n

2c logn−2
·
√
CGn · ‖xBj̃‖`

≤ ‖xBj̃‖`

≤
∑

j′≤c logn

‖xBj
′

‖`

for some sufficiently large constant c.

Let

j∗ = argmaxj≤c logn ‖xBj‖`,

we have

‖xBj∗‖` ≤ ‖x‖` ≤
∑

j≤c logn

‖xBj‖` +
∑

j>c logn
bj>0

‖xBj‖`

≤ 2
∑

j≤c logn

‖xBj‖`

≤ O(log n) · ‖xBj∗‖`.
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Thus,

max
x∈Sn′−1

‖x‖`(n′) ≤ O(log n′) max
x∈Sn′−1

‖xBj∗‖`

≤ O(log n′) max
x∈Sn′−1

‖xBj∗‖2 ·
∥∥∥∥

xBj∗

‖xBj∗‖2

∥∥∥∥
`

≤ O(log n′) max
x∈Sn′−1

∥∥∥∥
xBj

‖xBj‖2

∥∥∥∥
`

≤ O(log n′) max
bj∗≤n′

‖ξ(bj)‖
`(bj)

≤ O(log n′) max
bj∗≤n′

1

G(bj∗)

≤ O(
√
CG log n′)

G(n′)
.

Thus, we have

mmc(`) = max
n′∈[n]

maxx∈Sn′−1 ‖x‖`(n′)
M`(n

′)

≤ O(
√
CG log n).

25.7.4 Contraction Bound of SymSketch

In this section we give the contraction bound of SymSketch. We first show that for a

fixed vector x ∈ Rn, ‖D̃x‖2 ≥ 1/ poly(d log n) · ‖x‖` with probability 1− 2−Θ(d logn).

Lemma 25.7.12. Let D̃ be the matrix defined in Definition 25.3.1. For any fixed x ∈ Rn,

with probability 1− 2−Θ(d logn),

‖D̃x‖2 ≥ 1/α0 · ‖x‖`,

where α0 = O(mma(`, d) · log5/2 n) = O(
√
d log3 n).
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Proof. The lemma follows from the following two claims. Recall that t = Θ(log n).

Claim 25.7.13. For any fixed x ∈ Rn. If there is a contributing level i∗ ∈ {0, 1, 2, . . . , g}

such that |Li∗(x)| = Θ(d log n)·2j for some j ∈ [t], then with probability at least 1−2−Θ(d logn),

‖wjDjx‖2 ≥ Ω

(
1

mma(`, d) · log5/2 n

)
‖x‖`.

Proof. Let yh be a random variable such that

yh =

{
1 if the h-th diagonal entry of Dj is 1

0 otherwise
.

Let Y =
∑

h∈Li∗ (x) yh. By Chernoff bound, we have

Pr[Y ≥ Ω(d log n)] ≥ 1− 2−Θ(d logn).

Conditioned on Y ≥ Ω(d log n), we have

‖wjDjx‖2

‖x‖`
=
wj‖Djx‖2

‖x‖`

≥ 2i
∗
wj
√
d log n

‖x‖`

≥ 2i
∗√

2jM
`(2

j)

√
d log n

2i∗+1gM`(|Li∗ (x)|)
√

log n
√
|Li∗(x)|

≥ Ω(1/ log3/2 n) · M
`(2

j)

M`(|Li∗ (x)|)

= Ω(1/ log3/2 n) · M
`(2

j)

M`(|Li∗ (x)|/ logn)

· M`(|Li∗ (x)|/ logn)

M`(|Li∗ (x)|)

≥ Ω

(
1

mma(`, d) ·mma(`, log n) · log3/2 n

)

≥ Ω

(
1

mma(`, d) · log5/2 n

)
.
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Here the first inequality follows from the fact that there are at least Ω(d log n) coordinates

sampled from Li∗(x). The second inequality follows from Lemma 25.7.6 and the fact that

level i∗ is a contributing level. The third inequality follows from |Li∗(x)| = Θ(d log n) · 2j

and g = Θ(log n). The forth inequality follows from Definition 25.7.5. The last inequality

follows from Lemma 25.7.7.

Claim 25.7.14. For any fixed x ∈ Rn. If there is a contributing level i∗ ∈ {0, 1, 2, . . . , g}

such that |Li∗(x)| = O(d log n), then we have

‖w0D0x‖2 ≥ Ω

(
1

mma(`, d) · log5/2 n

)
‖x‖`.

Proof.

‖w0D0x‖2

‖x‖`
=
w0‖x‖2

‖x‖`

≥ 2i
∗
w0

√
|Li∗(x)|
‖x‖`

≥ 2i
∗
M`(1)

√
|Li∗(x)|

2i∗+1gM`(|Li∗ (x)|)
√

log n
√
|Li∗(x)|

≥ Ω(1/ log3/2 n) · M`(1)

M`(|Li∗ (x)|/ logn)

· M`(|Li∗ (x)|/ logn)

M`(|Li∗ (x)|)

≥ Ω

(
1

mma(`, d) · log5/2 n

)

The first inequality follows from the fact that we only consider the contribution of the

coordinates in Li∗(x). The second inequality follows from Lemma 25.7.6 and the fact that

level i∗ is a contributing level. The third inequality follows from g = Θ(log n). The last

inequality follows from Definition 25.7.5 and Lemma 25.7.7.
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By Claim 25.7.13 and Claim 25.7.14, since any vector x ∈ Rn contains at least one

contributing level, with probability at least 1−2−Θ(d logn) we have ‖D̃x‖2 ≥ Ω(1/(mma(`, d) ·

log5/2 n)) · ‖x‖`. We complete the proof by combining this with Lemma 25.7.7.

Now we show how to combine the contraction bound in Lemma 25.7.12 with a net

argument to give a contraction bound for all vectors in a subspace.

Lemma 25.7.15. Let S ∈ RO(d)×n be a random matrix. For any α0 = poly(n) and A ∈

Rn×d, if

1. ‖S‖2 ≤ poly(n) holds with probability at least 0.999;

2. for any fixed x ∈ Rn, ‖Sx‖2 ≥ 1/α0 · ‖x‖` holds with probability 1 − e−Cd logn for a

sufficiently large constant C,

then with probability at least 0.998, for all y ∈ Rn in the column space of A,

‖Sy‖2 ≥ Ω(1/α0)‖y‖`.

Proof. For the matrix A ∈ Rn×d, we define the set B = {y | y = Ax, ‖y‖2 = 1}. We

define N ⊂ Rn to be an ε-net of B as in Definition 25.5.1. By Lemma 25.5.1, we have

|N| ≤ (1 + 1/ε)d, and for all y ∈ B, there exists z ∈ N such that ‖y − z‖2 ≤ ε. We take

ε = 1/ poly(n) here.

Due to the second condition, since |N| ≤ eO(d logn), by taking union bound over all

vectors in N, we know that with probability 1−e−Θ(d logn), for all z ∈ N, ‖Sz‖2 ≥ 1/α0 ·‖z‖`.
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Now, for any vector y ∈ B, there exists z ∈ N such that ‖y − z‖2 ≤ 1/ poly(n), and

we define w = y − z.

‖Sy‖2 = ‖S(z + w)‖2

≥ ‖Sz‖2 − ‖Sw‖2 (triangle inequality)

≥ 1/α0 · ‖z‖` − ‖Sw‖2 (by the second condition)

≥ 1/α0 · ‖z‖` − ‖S‖2‖w‖2 (‖Sw‖2 ≤ ‖S‖2 · ‖w‖2)

≥ 1/α0 · ‖z‖` − poly(n) · ‖w‖2 (by the first condition)

≥ 1/α0 · ‖y − w‖` − poly(n) · ‖w‖2 (y = z + w)

≥ 1/α0 · ‖y‖` − 1/α0 · ‖w‖` − poly(n) · ‖w‖2 (triangle inequality)

≥ 1/α0 · ‖y‖` − 1/α0 ·
√
n‖w‖2 − poly(n) · ‖w‖2 (Lemma 25.7.5)

≥ 1/α0 · ‖y‖` − (1/α0 ·
√
n+ poly(n))ε (‖w‖2 ≤ ε)

≥ 0.5/α0 · ‖y‖`.

Lemma 25.7.16. For a given matrix A ∈ Rn×d. Let S ∈ RO(d)×n be a SymSketch as defined

in Definition 25.3.1. With probability at least 0.995, for all x ∈ Rd, ‖SAx‖2 ≥ 1/α0 · ‖Ax‖`
where α0 = O(

√
d log3 n).

Proof. By Lemma 25.7.12 and Lemma 25.7.9, the two conditions in Lemma 25.7.15 are

satisfied. By Lemma 25.7.15, with probability at least 0.998, for all x ∈ Rd, ‖D̃Ax‖2 ≥

Ω(1/α0)‖Ax‖`. Since Π ∈ RO(d)×n(t+1) is a composition of Gaussian embedding and CountS-

ketch embedding with ε = 0.1, by Corollary 25.7.3, with probability at least 0.999, for all
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x ∈ Rd, ‖ΠD̃Ax‖2 ≥ Ω(‖D̃Ax‖2). By a union bound, we know that with probability at least

0.995, for all x ∈ Rd, ‖SAx‖2 ≥ Ω(1/α0)‖Ax‖`.

25.7.5 Dilation Bound of SymSketch

In this section we give the dilation bound of SymSketch. We first show that for any

fixed x ∈ Rn, with high probability, ‖D̃x‖2 ≤ poly(d log n) ·mmc(`) · ‖x‖`.

Lemma 25.7.17. Let D̃ be the matrix defined in Definition 25.3.1. For any fixed vector

x ∈ Rn, with probability 1− δ, ‖D̃x‖2 ≤ α1/δ · ‖x‖`, where α1 = O(mmc(`) log5/2 n).

Proof. Consider a fixed vector x ∈ Rn. Recall that t = Θ(log n). Let c > 0 be a fixed

constant. We define the j-heavy level set Hj as

Hj =

{
i

∣∣∣∣ |Li(x)| ≥ c
δ2j

log2 n
, 0 ≤ i ≤ g

}
.

Let Hj be the j-light level set, i.e., Hj = {0, 1, . . . , g}\Hj. Notice that

∑

i∈Hj

|Li(x)| · 2−j ≤ g · cδ2j/ log2 n · 2−j ≤ O(δ/ log n).

By Markov’s inequality, with probability at least 1− δ/(2t), no element from a j-light level

is sampled by Dj, i.e., for all i ∈ Hj, k ∈ Li(x), the k-th diagonal entry of Dj is 0. By taking

union bound over all j ∈ [t], with probability at least 1− δ/2, for all j ∈ [t], no element from

a j-light level is sampled by Dj. Let ζ denote this event. We condition on this event in the

remaining part of the proof. In the following analysis, we show an upper bound of ‖wjDjx‖2
2

for each j ∈ [t]. Let Hj be the set of j-heavy levels.
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Consider a fixed j ∈ [t], we have

E
Dj

[
‖wjDjx‖2

2

∣∣∣∣ ζ
]

= w2
j E
Dj

[
‖Djx‖2

2

∣∣∣∣ζ
]

= w2
j E
Dj

[
n∑

h=1

(Dj(h, h))2x2
h

∣∣∣∣ ζ
]

= w2
j E
Dj




g∑

i=0

∑

h∈Li(x)

(Dj(h, h))2x2
h

∣∣∣∣ ζ




= w2
j

1

2j

∑

i∈Hj

∑

h∈Li(x)

x2
h

≤ w2
j

1

2j

∑

i∈Hj

|Li(x)| · (2i+1)2.

Claim 25.7.18. w2
j2
−j ≤ O((M

`(2
j))

2) .

Proof.

w2
j2
−j = (‖(1, 1, . . . , 1, 0, . . . , 0)‖`)2 · 2−j

=

(∥∥∥∥
1√
2j

(1, 1, . . . , 1, 0, . . . , 0)

∥∥∥∥
`

√
2j
)2

· 2−j

= (‖ξ(2j)‖`)2 · 2j · 2−j

= (‖ξ(2j)‖`)2

≤ O(M
`(2

j)),

where the third step follows from the definition of ξ(2j), and the last step follows from

Lemma 25.7.6.
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Using the above claim, we have

w2
j

∑

i∈Hj

|Li(x)| · 22i−j

=
∑

i∈Hj

w2
j2
−j

(M`(|Li(x)|))2
· |Li(x)| · (M`(|Li(x)|))2 · 22i

≤ O


∑

i∈Hj

(
M

`(2
j)

M`(|Li(x)|)

)2

· |Li(x)| · (M`(|Li(x)|))2 · 22i




≤ O


∑

i∈Hj

(
M

`(2
j)

M`(|Li(x)|)

)2

w2
log |Li(x)| log n · 22i




= log n ·
∑

i∈Hj ,|Li(x)|≤2j

(
M

`(2
j)

M`(|Li(x)|)

)2

· w2
log |Li(x)| · 22i

︸ ︷︷ ︸
♦

+ log n ·
∑

i∈Hj ,|Li(x)|>2j

(
M

`(2
j)

M`(|Li(x)|)

)2

· w2
log |Li(x)| · 22i

︸ ︷︷ ︸
♥

,

where the second step follows from w2
j2
−j ≤ O((M

`(2
j))

2) (Claim 25.7.18), and the third step

follows from |Li(x)| · (M`(|Li(x)|))2 ≤ O(w2
log |Li(x)| log n) (Lemma 25.7.6). It remains to upper

bound ♦ and ♥.
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To given an upper bound for ♦, we have

♦ ≤ O


 ∑

i∈Hj ,|Li(x)|≤2j

mma2(`, log2 n/δ) · w2
log |Li(x)| · 22i




≤ O


mma2(`, log2 n/δ)

(
g∑

i=0

wlog |Li(x)| · 2i
)2



≤ O
(
mma2(`, log2 n/δ)

)
‖x‖2

`

≤ O(log3 n/δ)‖x‖2
` ,

where the first step follows from the definition of mma, the second step follows fromMinkowski

inequality, the third step follows from the definition of Li(x), wlog |Li(x)| and triangle inequal-

ity, the last step follows from Lemma 25.7.7.

To give an upper bound for ♥, we have

♥ ≤ O


log n ·

∑

i∈Hj ,|Li(x)|>2j

mmc2(`)w2
log |Li(x)| · 22i




≤ O


log n ·mmc2(`) ·

(
g∑

i=0

wlog |Li(x)| · 2i
)2



≤ O
(
log n ·mmc2(`) · ‖x‖2

`

)
,

where the first step follows from (M
`(2

j)/M`(|Li(x)|))2 ≤ O(log n · mmc2(`)) (Lemma 3.14 in

[BBC+17]).

Putting it all together, we have

E
Dj

[‖wjDjx‖2
2|ζ] ≤ log n · (♦+♥) ≤ O(log4 n/δ + log2 n ·mmc2(`))‖x‖2

` .
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Thus,

Ẽ
D

[‖D̃x‖2
2|ζ] ≤

t∑

j=0

E
Dj

[‖wjDjx‖2
2|ζ] ≤ O(log5 n/δ + log3 n ·mmc2(`))‖x‖2

` .

By Markov’s inequality, conditioned on ζ, with probability at least 1− δ/2,

‖D̃x‖2
2 ≤ O(log5 n/δ + log3 n ·mmc2(`))‖x‖2

`/δ.

Since ζ holds with probability at least 1− δ/2, with probability at least 1− δ, we have

‖D̃x‖2 ≤ O(log5/2 n/δ ·mmc(`)) · ‖x‖`.

Now we show how to use the dilation bound for a fixed vector in Lemma 25.7.17 to

prove a dilation bound for all vectors in a subspace. We need the following existential result

in our proof.

Lemma 25.7.19 ([Aue30]). Given a matrix A ∈ Rn×m and a norm ‖ · ‖, there exists a basis

matrix U ∈ Rn×d of the column space of A, such that
d∑

i=1

‖U i‖ ≤ d,

and for all x ∈ Rd,

‖x‖∞ ≤ ‖Ux‖.

Lemma 25.7.20. Given a matrix A ∈ Rn×d. Let S ∈ RO(d)×n be a SymSketch as defined in

Definition 25.3.1. With probability at least 0.99, for all x ∈ Rd,

‖SAx‖2 ≤ O(α1d
2)‖Ax‖`,

where α1 = O(mmc(`) · log5/2 n).
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Proof. Recall that S = ΠD̃. Let U be a basis matrix of the column space of A as in Lemma

25.7.19. By Lemma 25.7.17, for a fixed i ∈ [d], with probability at least 1 − 1/(100d),

‖D̃U i‖2 ≤ O(α1d)‖U i‖`. By taking a union bound over i ∈ [d], with probability at least

0.999, for all i ∈ [d], ‖D̃U i‖2 ≤ α1d‖U i‖`. Thus, for any x ∈ Rd,

‖D̃Ux‖2 ≤
d∑

i=1

|xi| · ‖D̃U i‖2

≤ ‖x‖∞ ·
d∑

i=1

‖D̃U i‖2

≤ ‖Ux‖` ·
d∑

i=1

‖D̃U i‖2

≤ O(α1d) · ‖Ux‖` ·
d∑

i=1

‖U i‖`

≤ O(α1d
2) · ‖Ux‖`,

where the first step follows from triangle inequality, the second step follows from |xi| ≤ ‖x‖∞
for all i ∈ [d], the third step follows from ‖x‖∞ ≤ ‖Ux‖`, the fourth step follows from

‖D̃U i‖2 ≤ O(α1d)‖U i‖`, the last step follows from
∑d

i=1 ‖U i‖` ≤ d.

By Corollary 25.7.3, with probability at least 0.999, Π is an `2 subspace embedding

with ε = 0.1 for the column space of D̃U . Thus, with probability at least 0.99, for all x ∈ Rd,

‖SAx‖2 ≤ O(α1d
2)‖Ax‖`.

25.7.6 Proof of Theorem 25.3.3

Proof. It directly follows from Lemma 25.7.16, Lemma 25.7.20 and Lemma 25.7.8.
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25.8 Missing Proofs of Main Theorems
25.8.1 Proof of Theorem 25.1.3

Let S ∈ RO(d)×n be a SymSketch as defined in Definition 25.3.1, and Π = O(
√
d log3 n)·

S. By Corollary 25.3.4, for a given matrix A ∈ Rn×d, with probability at least 0.9, for all

x ∈ Rd,

‖Ax‖G ≤ ‖ΠAx‖2 ≤ κ‖Ax‖G,

where κ = O(
√
CGd

5/2 log13/2 n). We prove Theorem 25.1.3 by combining Theorem 25.2.6

with the embedding matrix Π constructed above.

25.8.2 Proof of Theorem 25.1.4

Let S ∈ RO(d)×n be a SymSketch as defined in Definition 25.3.1. For a given data

matrix A ∈ Rn×d and response vector b ∈ Rn, we calculate x∗ = argminx ‖SAx − Sb‖2 and

return x∗. The algorithm runs in O(nnz(A) + poly(d)) time, since by Lemma 25.7.8, the

expected running time for calculating SA is O(nnz(A) + poly(d)), and x∗ = (SA)+Sb can

be calculated in poly(d) time.

To see the correctness, let x = argminx ‖Ax− b‖`. With probability at least 0.99, we

have

‖Ax∗ − b‖` ≤ O(
√
d log3 n)‖SAx∗ − Sb‖2

≤ O(
√
d log3 n)‖SAx− Sb‖2

≤ O(
√
d log3 n)‖D̃Ax− D̃b‖`

= O(
√
d log11/2 n) ·mmc(`) · ‖Ax− b‖`.
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The first step follows by applying Lemma 25.7.16 on Ab, where we use Ab ∈ Rn×(d+1) to

denote a matrix whose first d columns are A and the last column is b. The second step follows

from the fact that x∗ = argminx ‖SAx − Sb‖2. The third step follows by Definition 25.3.1

and Corollary 25.7.3. The last step follows by applying Lemma 25.7.17 on Ax− b.
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Chapter 26

Kronecker Product Regression

We study Kronecker product regression, in which the design matrix to a regression

problem is a Kronecker product of two or more matrices. Formally, given Ai ∈ Rni×di for

i = 1, 2, . . . , q where ni � di for each i, and b ∈ Rn1n2···nq , let A = Ai ⊗ A2 ⊗ · · · ⊗ Aq.

Then for p ∈ [1, 2], the goal is to find x ∈ Rd1···dq that approximately minimizes ‖Ax− b‖p.

Recently, Diao, Song, Sun, and Woodruff (AISTATS, 2018) gave an algorithm which is faster

than forming the Kronecker product A ∈ Rn1···nq×d1···dq . Specifically, for p = 2 they achieve a

running time of O(
∑q

i=1 nnz(Ai) + nnz(b)), where nnz(Ai) is the number of non-zero entries

in Ai. Note that nnz(b) can be as large as Θ(n1 · · ·nq). For p = 1, q = 2 and n1 = n2, they

achieve a worse bound of O(n
3/2
1 poly(d1d2) + nnz(b)). In this work, we provide significantly

faster algorithms. For p = 2, our running time is O(
∑q

i=1 nnz(Ai)), which has no dependence

on nnz(b). For p < 2, our running time is O(
∑q

i=1 nnz(Ai)+nnz(b)), which matches the prior

best running time for p = 2. We also consider the related all-pairs regression problem, where

given A ∈ Rn×d, b ∈ Rn, we want to solve minx∈Rd ‖Āx − b̄‖p, where Ā ∈ Rn2×d, b̄ ∈ Rn2

consist of all pairwise differences of the rows of A, b. We give an O(nnz(A)) time algorithm

for p ∈ [1, 2], improving the Ω(n2) time required to form Ā. Finally, we initiate the study of

Kronecker product low rank approximation and low-trank approximation. For input A as

above, we give an O(
∑q

i=1 nnz(Ai)) time algorithm, which is much faster than computing A.

2023



This part is based upon the following previous publication

• Huaian Diao, Rajesh Jayaram, Zhao Song, Wen Sun, David P. Woodruff

Optimal Sketching for Kronecker Product Regression and Low Rank Approximation.

Manuscript 2019 [DJS+19]

26.1 Introduction

In the q-th order Kronecker product regression problem, one is given Ai ∈ Rni×di for

each i ∈ {1, 2, . . . , q}, together with b ∈ Rn1n2···nq , and the goal is to obtain a solution to the

optimization problem:

min
x∈Rd1d2···dq

‖(A1 ⊗ A2 · · · ⊗ Aq)x− b‖p,

where p ∈ [1, 2], and for a vector x ∈ Rn the `p norm is defined by ‖x‖p = (
∑n

i=1 |xi|p)1/p.

For p = 2, this is least squares regression, and for p = 1 this is least absolute deviation

regression.

Kronecker product regression is a special case of ordinary regression, in which the de-

sign matrix is highly structured. Namely, it is the Kronecker product of two or more matrices.

Kronecker product matrices naturally arise in applications such as spline regression, signal

processing, and multivariate data fitting. We refer the reader to [VL92, VLP93, GVL13]

for further background and applications of Kronecker product regression. As discussed

in [DSSW18], Kronecker product regression also arises in structured blind deconvolution

problems [OY05], and the bivariate problem of surface fitting and multidimensional density

smoothing [EM06].
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A recent work of Diao, Song, Sun, and Woodruff [DSSW18] utilizes sketching tech-

niques to output an x ∈ Rd1d2···dq with objective function at most (1 + ε)-times larger than

optimal, for both least squares and least absolute deviation Kronecker product regression.

Importantly, their time complexity is faster than the time needed to explicitly compute

A1 ⊗ · · · ⊗ Aq. We note that sketching itself is a powerful tool for compressing extremely

high dimensional data, and has been used in a number of tensor related problems, e.g.,

[SWZ16, LHW17, DSSW18, SWZ19b].

For least squares regression, [DSSW18] achieve O(
∑q

i=1 nnz(Ai)+nnz(b)+poly(d/ε))

time, where nnz(C) for a matrix C denotes the number of non-zero entries of C. Note that

the focus is on the over-constrained regression setting, when ni � di for each i, and so the

goal is to have a small running time dependence on the ni. We remark that over-constrained

regression has been the focus of a large body of work over the past decade, which primarily

attempts to design fast regression algorithms in the big data (large sample size) regime, see,

e.g., [Mah11b, Woo14b] for surveys.

Observe that explicitly computing A1⊗· · ·⊗Aq would take
∏q

i=1 nnz(Ai) time, which

can be as large as
∏q

i=1 nidi, and so the results of [DSSW18] offer a large computational

advantage. Unfortunately, since b ∈ Rn1n2···nq , we can have nnz(b) =
∏q

i=1 ni, and therefore

nnz(b) is likely to be the dominant term in the running time. This leaves open the question

of whether it is possible to solve this problem in time sub-linear in nnz(b), with a dominant

term of O(
∑q

i=1 nnz(Ai)).

For least absolute deviation regression, the bounds of [DSSW18] achieved are still an

improvement over computing A1⊗ · · · ⊗Aq, though worse than the bounds for least squares

regression. The authors focus on q = 2 and the special case n = n1 = n2. Here, they obtain
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a running time of O(n3/2 poly(d1d2/ε) + nnz(b))1. This leaves open the question of whether

an input-sparsity O(nnz(A1) + nnz(A2) + nnz(b) + poly(d1d2/ε)) time algorithm exists.

In this work, we also study the related all-pairs regression problem. Given A ∈

Rn×d, b ∈ Rn, the goal is to approximately solve the `p regression problem minx ‖Āx − b̄‖p,

where Ā ∈ Rn2×d is the matrix formed by taking all pairwise differences of the rows of A

(and b̄ is defined similarly). For p = 1, this is known as the rank regression estimator, which

has a long history in statistics. It is closely related to the renowned Wilconxon rank test

[WL09], and enjoys the desirable property of being robust with substantial efficiency gain

with respect to heavy-tailed random errors, while maintaining high efficiency for Gaussian

errors [WKL09, WL09, WPB+18, Wan19a]. In many ways, it has properties more desirable in

practice than that of the Huber M-estimator [WPB+18, Wan19b]. Recently, the all-pairs loss

function was also used by [WPB+18] as an alternative approach to overcoming the challenges

of tuning parameter selection for the Lasso algorithm. However, the rank regression estimator

is computationally intensive to compute, even for moderately sized data, since the standard

procedure (for p = 1) is to solve a linear program with O(n2) constraints. In this work, we

demonstrate the first highly efficient algorithm for this estimator.

Finally, in addition to regression, we extend our techniques to the Low Rank Ap-

proximation (LRA) problem. Here, given a large data matrix A, the goal is to find a low

rank matrix B which well-approximates A. LRA is useful in numerous applications, such as

1We remark that while the nnz(b) term is not written in the Theorem of [DSSW18], their approach of
leverage score sampling from a well-conditioned basis requires one to sample from a well conditioned basis
of [A1 ⊗ A2, b] for a subspace embedding. As stated, their algorithm only sampled from [A1 ⊗ A2]. To fix
this omission, their algorithm would require an additional nnz(b) time to leverage score sample from the
augmented matrix.
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compressing massive datasets to their primary components for storage, denoising, and fast

matrix-vector products. Thus, designing fast algorithms for approximate LRA has become a

large and highly active area of research; see [Woo14b] for a survey. For an incomplete list of

recent work using sketching techniques for LRA, see [CW13, MM13, NN13a, BW14, CW15b,

CW15a, RSW16, BWZ16, SWZ17, MW17, CGK+17c, LHW17, SWZ18, BW18, SWZ19b,

BBB+19b, IVWW19] and the references therein.

Motivated by the importance of LRA, we initiate the study of low-rank approximation

of Kronecker product matrices. Given q matrices A1, · · ·Aq where Ai ∈ Rni×di , ni � di, A =

⊗qi=1Ai, the goal is to output a rank-k matrix B ∈ Rn×d such that ‖B−A‖2
F ≤ (1+ ε) OPTk,

where OPTk is the cost of the best rank-k approximation, n = n1 · · ·nq, and d = d1 · · · dq.

Here ‖A‖2
F =

∑
i,j A

2
i,j. The fastest general purpose algorithms for this problem run in

time O(nnz(A) + poly(dk/ε)) [CW13]. However, as in regression, if A = ⊗qi=1Ai, we have

nnz(A) =
∏q

i=1 nnz(Ai), which grows very quickly. Instead, one might also hope to obtain a

running time of O(
∑q

i=1 nnz(Ai) + poly(dk/ε)).

26.1.1 Our Contributions

Our main contribution is an input sparsity time (1 + ε)-approximation algorithm to

Kronecker product regression for every p ∈ [1, 2], and q ≥ 2. Given Ai ∈ Rni×di , i = 1, . . . , q,

and b ∈ Rn where n =
∏q

i=1 ni, together with accuracy parameter ε ∈ (0, 1/2) and failure

probability δ > 0, the goal is to output a vector x′ ∈ Rd where d =
∏q

i=1 di such that

‖(A1 ⊗ · · · ⊗ Aq)x′ − b‖p ≤ (1 + ε) minx ‖(A1 ⊗ · · · ⊗ Aq)x − b‖p holds with probability at

least 1− δ. For p = 2, our algorithm runs in Õ(
∑q

i=1 nnz(Ai)) + poly(dδ−1/ε)) time2. Notice

2For a function f(n, d, ε, δ), Õ(f) = O(f · poly(log n)), where we assume n ≥ d, ε−1, δ−1
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that this is sub-linear in the input size, since it does not depend on nnz(b). For p < 2, the

running time is Õ((
∑q

i=1 nnz(Ai) + nnz(b) + poly(d/ε)) log(1/δ)).

Observe that in both cases, this running time is significantly faster than the time to

write down A1⊗· · ·⊗Aq. For p = 2, up to logarithmic factors, the running time is the same

as the time required to simply read each of the Ai. Moreover, in the setting p < 2, q = 2

and n1 = n2 considered in [DSSW18], our algorithm offers a substantial improvement over

their running time of O(n3/2 poly(d1d2/ε)).

We empirically evaluate our Kronecker product regression algorithm on exactly the

same datasets as those used in [DSSW18]. For p ∈ {1, 2}, the accuracy of our algorithm is

nearly the same as that of [DSSW18] while the running time is significantly faster.

For the all-pairs (or rank) regression problem, we first note that for A ∈ Rn×d, one can

rewrite Ā ∈ Rn2×d as the difference of Kronecker products Ā = A⊗1n−1n⊗A where 1n ∈ Rn

is the all ones vector. Since Ā is not a Kronecker product itself, our earlier techniques for

Kronecker product regression are not directly applicable. Therefore, we utilize new ideas, in

addition to careful sketching techniques, to obtain an Õ(nnz(A) + poly(d/ε)) time algorithm

for p ∈ [1, 2], which improves substantially on the O(n2d) time required to even compute Ā,

by a factor of at least n.

Our main technical contribution for both our `p regression algorithm and the rank

regression problem is a novel and highly efficient `p sampling algorithm. Specifically, for the

rank-regression problem we demonstrate, for a given x ∈ Rd, how to independently sample

s entries of a vector Āx = y ∈ Rn2 from the `p distribution (|y1|p/‖y‖pp, . . . , |yn2 |p/‖y‖pp) in

Õ(nd+ poly(ds)) time. For the `p regression problem, we demonstrate the same result when
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y = (A1 ⊗ · · · ⊗Aq)x− b ∈ Rn1···nq , and in time Õ(
∑q

i=1 nnz(Ai) + nnz(b) + poly(ds)). This

result allows us to sample a small number of rows of the input to use in our sketch. Our

algorithm draws from a large number of disparate sketching techniques, such as the dyadic

trick for quickly finding heavy hitters [CM04, KNPW11, LNNT16, NS19], and the precision

sampling framework from the streaming literature [AKO10].

For the Kronecker Product Low-Rank Approximation (LRA) problem, we give an

input sparsity O(
∑q

i=1 nnz(Ai) + poly(dk/ε))-time algorithm which computes a rank-k ma-

trix B such that ‖B − ⊗qi=1Ai‖2
F ≤ (1 + ε) minrank−k B′ ‖B′ − ⊗qi=1Ai‖2

F . Note again that

the dominant term
∑q

i=1 nnz(Ai) is substantially smaller than the nnz(A) =
∏q

i=1 nnz(Ai)

time required to write down the Kronecker Product A, which is also the running time of

state-of-the-art general purpose LRA algorithms [CW13, MM13, NN13a]. Thus, our results

demonstrate that substantially faster algorithms for approximate LRA are possible for in-

puts with a Kronecker product structure. Our technical contributions involve demonstrating

that useful properties of known sketching matrices hold also for the Kronecker product of

these matrices.

In addition, motivated by [VL00], we use our techniques to solve the low-trank ap-

proximation problem, where we are given an arbitrary matrix A ∈ Rnq×nq , and the goal is

to output a trank-k matrix B ∈ Rnq×nq such that ‖B − A‖F is minimized. Here, the trank

of a matrix B is the smallest integer k such that B can be written as a summation of k

matrices, where each matrix is the Kronecker product of q matrices with dimensions n× n.

Compressing a matrix A to a low-trank approximation yields many of the same benefits as

LRA, such as compact representation, fast matrix-vector product, and fast matrix multi-

plication, and thus is applicable in many of the settings where LRA is used. Using similar

2029



sketching ideas, we provide an O(
∑q

i=1 nnz(Ai) + poly(d1 · · · dq/ε)) time algorithm for this

problem under various loss functions. Our results for low-trank approximation can be found

in Section 26.11.

26.2 Preliminaries

Notation. For a tensor A ∈ Rn1×n2×n3 , we use ‖A‖p to denote the entry-wise `p

norm of A, i.e., ‖A‖p = (
∑

i1

∑
i2

∑
i3
|Ai1,i2,i3|p)1/p. For n ∈ N, let [n] = {1, 2, . . . , n}. For

a matrix A, let Ai,∗ denote the i-th row of A, and A∗,j the j-th column. For a, b ∈ R and

ε ∈ (0, 1), we write a = (1 ± ε)b to denote (1 − ε)b ≤ a ≤ (1 + ε)b. We now define various

sketching matrices used by our algorithms.

p-stable Transforms. We will utilize the well-known p-stable distribution, Dp (see

[Nol07, Ind06] for further discussion), which exist for p ∈ (0, 2]. For p ∈ (0, 2), X ∼ Dp is

defined by its characteristic function EX [exp(
√
−1tX)] = exp(−|t|p), and can be efficiently

generated to a fixed precision [Nol07, KNW10b]. For p = 2, D2 is just the standard Gaussian

distribution, and for p = 1, D1 is the Cauchy distribution. The distribution Dp has the

property that if z1, . . . , zn ∼ Dp are i.i.d., and a ∈ Rn, then
∑n

i=1 ziai ∼ z‖a‖p where

‖a‖p = (
∑n

i=1 |ai|p)1/p, and z ∼ Dp. This property will allow us to utilize sketches with

entries independently drawn from Dp to preserve the `p norm.

Definition 26.2.1 (Dense p-stable Transform, [CDMI+13]). Let p ∈ [1, 2]. Let S = σ ·C ∈

Rm×n, where σ is a scalar, and each entry of C ∈ Rm×n is chosen independently from Dp.

We will also need a sparse version of the above.

Definition 26.2.2 (Sparse p-Stable Transform, [MM13, CDMI+13]). Let p ∈ [1, 2]. Let

Π = σ · SC ∈ Rm×n, where σ is a scalar, S ∈ Rm×n has each column chosen independently
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and uniformly from the m standard basis vectors of Rm, and C ∈ Rn×n is a diagonal matrix

with diagonals chosen independently from the standard p-stable distribution. For any matrix

A ∈ Rn×d, ΠA can be computed in O(nnz(A)) time.

One nice property of p-stable transformations is that they provide low-distortion `p

embeddings.

Lemma 26.2.1 (Theorem 1.4 of [WW19]; see also Theorem 2 and 4 of [MM13] for earlier

work 3 ). Fix A ∈ Rn×d, and let S ∈ Rk×n be a sparse or dense p-stable transform for

p ∈ [1, 2), with k = Θ(d2/δ). Then with probability 1− δ, for all x ∈ Rd:

‖Ax‖p ≤ ‖SAx‖p ≤ O(d log d)‖Ax‖p

We simply call a matrix S ∈ Rk×n a low distortion `p embedding for A ∈ Rn×d if it

satisfies the above inequality for all x ∈ Rd.

Leverage Scores & Well Condition Bases. We now introduce the notions of `2 leverage

scores and well-conditioned bases for a matrix A ∈ Rn×d.

Definition 26.2.3 (`2-Leverage Scores, [Woo14b, BSS12]). Given a matrix A ∈ Rn×d, let

A = Q·R denote the QR factorization of matrix A. For each i ∈ [n], we define σi =
‖(AR−1)i‖22
‖AR−1‖2F

,

where (AR−1)i ∈ Rd is the i-th row of matrix (AR−1) ∈ Rn×d. We say that σ ∈ Rn is the `2

leverage score vector of A.

3In discussion with the authors of these works, the original O((d log d)1/p) distortion factors stated in
these papers should be replaced with O(d log d); as we do not optimize the poly(d) factors in our analysis,
this does not affect our bounds.
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Algorithm 26.1 Our `2 Kronecker Product Regression Algorithm
1: procedure `2 Kronecker Regression(({Ai, ni, di}i∈[q], b)) . Theorem 26.3.1
2: d←∏q

i=1 di, n←
∏q

i=1 ni, m← Θ(d/(δε2)).
3: Compute approximate leverage scores σ̃i(Aj) for all j ∈ [q], i ∈ [nj]. . Lemma 26.7.3
4: Construct diagonal leverage score sampling matrixD ∈ Rn×n, withm non-zero entries
. Proposition 26.7.4

5: Compute (via the psuedo-inverse)
6: x̂ = arg minx∈Rd ‖D(A1 ⊗ A2 ⊗ · · · ⊗ Aq)x−Db‖2

7: return x̂
8: end procedure

Definition 26.2.4 ((`p, α, β) Well-Conditioned Basis, [Cla05]). Given a matrix A ∈ Rn×d,

we say U ∈ Rn×d is an (`p, α, β) well-conditioned basis for the column span of A if the columns

of U span the columns of A, and if for any x ∈ Rd, we have α‖x‖p ≤ ‖Ux‖p ≤ β‖x‖p, where

α ≤ 1 ≤ β. If β/α = dO(1), then we simply say that U is an `p well conditioned basis for A.

Fact 26.2.2 ([WW19, MM13]). Let A ∈ Rn×d, and let SA ∈ Rk×d be a low distortion

`p embedding for A (see Lemma 26.2.1), where k = O(d2/δ). Let SA = QR be the QR

decomposition of SA. Then AR−1 is an `p well-conditioned basis with probability 1− δ.

26.3 Kronecker Product Regression

We first introduce our algorithm for p = 2. Our algorithm for 1 ≤ p < 2 is given

in Section 26.3.1. Our regression algorithm for p = 2 is formally stated in Algorithm 26.1.

Recall that our input design matrix is A = ⊗qi=1Ai, where Ai ∈ Rni×di , and we are also given

b ∈ Rn1···nq . Let n =
∏q

i=1 ni and d =
∏q

i=1 di. The crucial insight of the algorithm is that

one can approximately compute the leverage scores of A given only good approximations to

the leverage scores of each Ai. Applying this fact gives a efficent algorithm for sampling rows

of A with probability proportional to the leverage scores. Following standard arguments, we
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Algorithm 26.2 Our `p Kronecker Product Regression Algorithm, 1 ≤ p < 2

1: procedure O(1)-approximate `p Regression({Ai, ni, di}i∈[q]) . Theorem 26.3.2
2: d←∏q

i=1 di, n←
∏q

i=1 ni.
3: for i = 1, . . . , q do
4: si ← O(qd2

i )
5: Generate sparse p-stable transform Si ∈ Rsi×n (def 26.2.2) . Lemma 26.2.1
6: Take the QR factorization of SiAi = QiRi to obtain Ri ∈ Rdi×di . Fact 26.2.2
7: Let Z ∈ Rd×τ be a dense p-stable transform for τ = Θ(log(n)) . Definition 26.2.1
8: for j = 1, . . . , ni do
9: ai,j ← medianη∈[τ ]{(|(AiR−1

i Z)j,η|/θp)p}, where θp is the median of Dp.
10: end for
11: end for
12: Define a distribution D = {q′1, q′1, . . . , q′n} by q′∑q

i=1 ji
∏j−1
l=1 nl

=
∏q

i=1 ai,ji .

13: Let Π ∈ Rn×n denote a diagonal sampling matrix, where Πi,i = 1/q
1/p
i with probability

qi = min{1, r1q
′
i} and 0 otherwise, where r1 = Θ(d3/ε2). . [DDH+09]

14: Let x′ ∈ Rd denote the solution of
15: minx∈Rd ‖Π(A1 ⊗ A2 ⊗ · · · ⊗ Aq)x− Πb‖p
16: return x′ . x′ is an O(1) approx: Lemma 26.8.4
17: end procedure
18: procedure (1 + ε)-approximate `p Regression(x′ ∈ Rd)
19: Implicitly define ρ = (A1 ⊗ A2 ⊗ · · · ⊗ Aq)x′ − b ∈ Rn

20: Via Lemma 26.8.7, compute a diagonal sampling matrix Σ ∈ Rn×n such that Σi,i =

1/α
1/p
i with probability αi = min{1,max{qi, r2|ρi|p/‖ρ‖pp}} where r2 = Θ(d3/ε3).

21: Compute x̂ = arg minx∈Rd ‖Σ(A1 ⊗ A2 ⊗ · · · ⊗ Aq) − Σb‖p (via convex optimization
methods, e.g., [BCLL18])

22: return x̂
23: end procedure

will show that by restricting the regression problem to the sampled rows, we can obtain our

desired (1± ε)-approximate solution efficiently.

Our main theorem for this section is stated below. A full proof of the theorem can

be found in the supplementary, namely, Section 26.7.
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Theorem 26.3.1 (Kronecker product `2 regression). Let D ∈ Rn×n be the diagonal row

sampling matrix generated via Proposition 26.7.4, with m = Θ(1/(δε2)) non-zero entries,

and let A = ⊗qi=1Ai, where Ai ∈ Rni×di, and b ∈ Rn, where n =
∏q

i=1 ni and d =
∏q

i=1 di.

Then let x̂ = arg minx∈Rd ‖DAx − Db‖2, and let x∗ = arg minx′∈Rd ‖Ax − b‖2. Then with

probability 1− δ, we have

‖Ax̂− b‖2 ≤ (1 + ε)‖Ax∗ − b‖2.

Moreover, the total running time required to compute x̂ is Õ(
∑q

i=1 nnz(Ai) + (dq/(δε))O(1)).

26.3.1 Kronecker Product `p Regression

We now consider `p regression for 1 ≤ p < 2. Our algorithm is stated formally in

Algorithm 26.2. Below is our main theorem, which demonstrates that Algorithm 26.2

approximately solves the Kronecker `p regression problem with input sparsity running time.

Theorem 26.3.2 (Main result, `p (1 + ε)-approximate regression). Fix 1 ≤ p < 2. Then for

any constant q = O(1), given matrices A1, A2, · · · , Aq, where Ai ∈ Rni×di, let n =
∏q

i=1 ni,

d =
∏q

i=1 di. Let x̂ ∈ Rd be the output of Algorithm 26.2. Then

‖(A1 ⊗ A2 ⊗ · · · ⊗ Aq)x̂− b‖p ≤ (1 + ε) min
x∈Rn
‖(A1 ⊗ A2 ⊗ · · · ⊗ Aq)x− b‖p

holds with probability at least 1−δ. In addition, our algorithm takes Õ
((∑q

i=1 nnz(Ai) + nnz(b) + (d/ε)O(1)
)

log(1/δ)
)

time to output x̂ ∈ Rd.

We give a complete proof of the above theorem in the supplementary material, namely,

in Section 26.8. Our high level approach follows that of [DDH+09]. Namely, we first obtain
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a vector x′ which is an O(1)-approximate solution to the optimal solution. This is done

by first constructing (implicitly) a matrix U ∈ Rn×d that is a well-conditioned basis for

the design matrix A1 ⊗ · · · ⊗ Aq. We then efficiently sample rows of U with probability

proportional to their `p norm (which must be done without even explicitly computing most of

U). We then use the results of [DDH+09] to demonstrate that solving the regression problem

constrained to these sampled rows gives a solution x′ ∈ Rd such that ‖(A1⊗· · ·⊗Aq)x′−b‖p ≤

8 minx∈Rd ‖(A1 ⊗ · · · ⊗ Aq)x′ − b‖p.

We define the residual error ρ = (A1⊗· · ·⊗Aq)x′−b ∈ Rn of x′. Our goal is to sample

additional rows i ∈ [n] with probability proportional to their residual error |ρi|p/‖ρ‖pp, and

solve the regression problem restricted to the sampled rows. However, we cannot afford to

compute even a small fraction of the entries in ρ (even when b is dense, and certainly not

when b is sparse). So to carry out this sampling efficiently, we design an involved, multi-part

sketching and sampling routine (described in Section 26.8). This sampling technique is the

main technical contribution of this section, and relies on a number of techniques, such as

the Dyadic trick for quickly finding heavy hitters in the streaming literature, and a careful

pre-processing step to avoid a poly(d)-blow up in the runtime. Given these samples, we can

obtain the solution x̂ after solving the regression problem on the sampled rows, and the fact

that this gives a (1 + ε) approximate solution will follow from Theorem 6 of [DDH+09].

26.4 All-Pairs Regression

Given a matrix A ∈ Rn×d and b ∈ Rn, let Ā ∈ Rn2×d be the matrix such that

Āi+(j−1)n,∗ = Ai,∗ − Aj,∗, and let b̄ ∈ Rn2 be defined by b̄i+(j−1)n = bi − bj. Thus, Ā consists

of all pairwise differences of rows of A, and b̄ consists of all pairwise differences of rows of b,.
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The `p all pairs regression problem on the inputs A, b is to solve minx∈Rd ‖Āx− b̄‖p.

First note that this problem has a close connection to Kronecker product regression.

Namely, the matrix Ā can be written Ā = A ⊗ 1n − 1n ⊗ A, where 1n ∈ Rn is the all 1’s

vector. Similarly, b̄ = b⊗ 1n− 1n⊗ b. For simplicity, we now drop the superscript and write

1 = 1n.

Our algorithm is given formally in Figure 26.3. We generate sparse p-stable sketches

S1, S2 ∈ Rk×n, where k = (d/(εδ))O(1). We compute M = (S1 ⊗ S2)(F ⊗ 1 − 1 ⊗ F ) =

S1F ⊗ S21− S11⊗ S2F , where F = [A, b]. We then take the QR decomposition M = QR.

Finally, we sample rows of (F ⊗ 1 − 1 ⊗ F )R−1 with probability proportional to their `p

norms. This is done by an involved sampling procedure described in Lemma 26.4.2, which

is similar to the sampling procedure used in the proof of Theorem 26.3.2. Finally, we solve

the regression problem minx ‖Π(Āx − b̄)‖p, where Π is the diagonal row-sampling matrix

constructed by the sampling procedure. We summarize the guarantee of our algorithm in

the following theorem.

Theorem 26.4.1. Given A ∈ Rn×d and b ∈ Rn, for p ∈ [1, 2], let Ā = A⊗1−1⊗A ∈ Rn2×d

and b̄ = b⊗ 1− 1⊗ b ∈ Rn2. Then there is an algorithm for that outputs x̂ ∈ Rd such that

with probability 1− δ we have ‖Āx̂− b̄‖p ≤ (1 + ε) minx∈Rd ‖Āx− b̄‖p. The running time is

Õ(nnz(A) + (d/(εδ))O(1)).

The theorem crucially utilizes our fast `p sampling routine, which is described in

Figure 26.5 in the supplementary. A full discussion and proof of the lemma can be found in

the supplementary material 26.9.1.
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Algorithm 26.3 Our All-Pairs Regression Algorithm
1: procedure All-Pairs Regression(A, b)
2: F = [A, b] ∈ Rn×d+1. r ← poly(d/ε)
3: Generate S1, S2 ∈ Rk×n sparse p-stable transforms for k = poly(d/(εδ)).
4: Sketch (S1 ⊗ S2)(F ⊗ 1− 1⊗ F ).
5: Compute QR decomposition: (S1 ⊗ S2)(F ⊗ 1− 1⊗ F ) = QR.
6: Let M = (F ⊗ 1− 1⊗ F )R−1, and σi = ‖Mi,∗‖pp/‖M‖pp.
7: Obtain row sampling diagonal matrix Π ∈ Rn×n such that Πi,i = 1/q̃i

1/p indepen-
dently with probability qi ≥ min{1, rσi}, where q̃i = (1± ε2)qi. . Lemma
26.4.2

8: return x̂ , where x̂ = arg minx∈Rd ‖Π(Āx− b̄)‖p.
9: end procedure

Lemma 26.4.2 (Fast `p sampling). Given R ∈ Rd+1×d+1 and F = [A, b] ∈ Rn×d+1, there is

an algorithm that, with probability 1 − n−c for any constant c, produces a diagonal matrix

Π ∈ Rn2×n2 such that Πi,i = 1/q̃i
1/p with probability qi ≥ min{1, r‖Mi,∗‖pp/‖M‖pp} and Πi,i = 0

otherwise, where r = poly(d/ε) and M = (F ⊗ 1 − 1 ⊗ F )R−1, and q̃i = (1 ± ε2)qi for all

i ∈ [n2]. The total time required is Õ(nnzA+ poly(d/ε)).

26.5 Low Rank Approximation of Kronecker Product Matrices

We now consider low rank approximation of Kronecker product matrices. Given q

matrices A1, A2, . . . , Aq, where Ai ∈ Rni×di , the goal is to output a rank-k matrix B ∈

Rn×d, where n =
∏q

i=1 ni and d =
∏q

i=1 di, such that ‖B − A‖F ≤ (1 + ε) OPTk, where

OPTk = minrank−k A′ ‖A′−A‖F , and A = ⊗qi=1Ai. Our approach employs the Count-Sketch

distribution of matrices [CW13, Woo14b]. A count-sketch matrix S is generated as follows.

Each column of S contains exactly one non-zero entry. The non-zero entry is placed in a

uniformly random row, and the value of the non-zero entry is either 1 or −1 chosen uniformly
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at random.

Our algorithm is as follows. We sample q independent Count-Sketch matrices S1, . . . Sq,

with Si ∈ Rki×ni , where k1 = · · · = kq = Θ(qk2/ε2). We then compute M = (⊗qi=1Si)A, and

let U ∈ Rk×d be the top k right singular vectors of M . Finally, we output B = AU>U in

factored form (as q + 1 separate matrices, A1, A2, . . . , Aq, U), as the desired rank-k approxi-

mation to A. The following theorem demosntrates the correctness of this algorithm. A full

proof can be found in Section 26.10.

Theorem 26.5.1. For any constant q ≥ 2, there is an algorithm which runs in time

O(
∑q

i=1 nnz(Ai) + d poly(k/ε)) and outputs a rank k-matrix B in factored form such that

‖B − A‖F ≤ (1 + ε) OPTk with probability 9/10. 4

26.6 Numerical Simulations

In our numerical simulations, we compare our algorithms to two baselines: (1) brute

force, i.e., directly solving regression without sketching, and (2) the methods based sketching

developed in [DSSW18]. All methods were implemented in Matlab on a Linux machine. We

remark that in our implementation, we simplified some of the steps of our theoretical algo-

rithm, such as the residual sampling algorithm (Alg. 26.4). We found that in practice, even

with these simplifications, our algorithms already demonstrated substantial improvements

over prior work.

Following the experimental setup in [DSSW18], we generate matrices A1 ∈ R300×15,

4To amplify the probability, we can sketch A and AU>U with a sparse JL matrix (e.g., Lemma 26.10.1
with ki = Θ(qk2/(δε2)) for each i) in input sparsity time to estimate the cost of a given solution. We can
then repeat log(1/δ) times and take the minimum to get failure probability 1− δ.
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A2 ∈ R300×15, and b ∈ R3002 , such that all entries of A1, A2, b are sampled i.i.d. from a normal

distribution. Note that A1⊗A2 ∈ R90000×225. We define Tbf to be the time of the brute force

algorithm, Told to be the time of the algorithms from [DSSW18], and Tours to be the time of

our algorithms. We are interested in the time ratio with respect to the brute force algorithm

and the algorithms from [DSSW18], defined as, rt = Tours/Tbf , and r′t = Tours/Told. The goal

is to show that our methods are significantly faster than both baselines, i.e., both rt and r′t

are significantly less than 1.

We are also interested in the quality of the solutions computed from our algorithms,

compared to the brute force method and the method from [DSSW18]. Denote the solution

from our method as xour, the solution from the brute force method as xbf , and the solution

from the method in [DSSW18] as xold. We define the relative residual percentage reand r′e

to be:

re = 100
|‖Axours − b‖ − ‖Axbf − b‖|

‖Axbf − b‖
, r′e = 100

|‖Axold − b‖ − ‖Axbf − b‖|
‖Axbf − b‖

Where A = A1⊗A2. The goal is to show that re is close zero, i.e., our approximate solution

is comparable to the optimal solution in terms of minimizing the error ‖Ax− b‖.

Throughout the simulations, we use a moderate input matrix size so that we can

accommodate the brute force algorithm and to compare to the exact solution. We consider

varying values of m, where M denotes the size of the sketch (number of rows) used in either

the algorithms of [DSSW18] or the algorithms in this paper. We also include a column m/n

in the table, which is the ratio between the size of the sketch and the original matrix A1⊗A2.

Note in this case that n = 90000.
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Table 26.1: Results for `2 and `1-regression with respect to different sketch sizes m.

m m/n re r′e rt r′t

`2

8100 .09 2.48% 1.51% 0.05 0.22
12100 .13 1.55% 0.98% 0.06 0.24
16129 .18 1.20% 0.71% 0.07 0.08

`1

2000 .02 7.72% 9.10% 0.02 0.59
4000 .04 4.26% 4.00% 0.03 0.75
8000 .09 1.85% 1.6% 0.07 0.83
12000 .13 1.29% 0.99% 0.09 0.79
16000 .18 1.01% 0.70% 0.14 0.90

Simulation Results for `2 We first compare our algorithm, Alg. 26.1, to baselines under

the `2 norm. In our implementation, minx ‖Ax − b‖2 is solved by Matlab backslash A\b.

Table 26.1 summarizes the comparison between our approach and the two baselines. The

numbers are averaged over 5 random trials. First of all, we notice that our method in general

provides slightly less accurate solutions than the method in [DSSW18], i.e., re > r′e in this

case. However, comparing to the brute force algorithm, our method still generates relatively

accurate solutions, especially when m is large, e.g., the relative residual percentage w.r.t.

the optimal solution is around 1% when m ≈ 16000. On the other hand, as suggested by

our theoretical improvements for `2, our method is significantly faster than the method from

[DSSW18], consistently across all sketch sizes m. Note that when m ≈ 16000, our method is

around 10 times faster than the method in [DSSW18]. For small m, our approach is around

5 times faster than the method in [DSSW18].

Simulation Results for `1 We compare our algorithm, Alg. 26.2, to two baselines under

the `1-norm. The first is a brute-force solution, and the second is the algorithm for [DSSW18].
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For minx ‖Ax − b‖1, the brute for solution is obtained via a Linear Programming solver in

Gurobi [GO16]. Table 26.1 summarizes the comparison of our approach to the two baselines

under the `1-norm. The statistics are averaged over 5 random trials. Compared to the

Brute Force algorithm, our method is consistently around 10 times faster, while in general

we have relative residual percentage around 1%. Compared to the method from [DSSW18],

our approach is consistently faster (around 1.3 times faster). Note our method has slightly

higher accuracy than the one from [DSSW18] when the sketch size is small, but slightly

worse accuracy when the sketch size increases.

26.7 Missing Proofs from Section 26.3

In this section, we prove correctness of our `2 Kronecker product regression algorithm.

Specifically, we prove Theorem 26.3.1. To prove correctness, we need to establish several facts

about the leverage scores of a Kronecker product.

Proposition 26.7.1. Let Ui ∈ Rni×di be an orthonormal basis for Ai ∈ Rni×di. Then

U = ⊗qi=1Ui is an orthonormal basis for A = ⊗qi=1Ai.

Proof. Note that the column norm of each column of U is the product of column norms of

the Ui’s, which are all 1. Thus U has unit norm columns. It suffices then to show that all

the singular values of U are 1 or −1, but this follows from the fact that the singular values

of U are the product of singular values of the Ui’s, which completes the proof.

Corollary 26.7.2. Let A = ⊗qi=1Ai, where Ai ∈ Rni×di. Fix any ~i = (i1, . . . , iq) ∈ [n1] ×

[n2] × · · · × [nq], and let ~i index into a row of A in the natural way. Then the ~i-th leverage

score of A is equal to
∏q

j=1 σij(Aj), where σt(B) is the t-th leverage score of a matrix B.
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Proof. Note U = ⊗qi=1Ui is an orthonormal basis for A = ⊗qi=1Ai by the prior Proposition.

Now if U~i,∗ is the~i-th row of U , then by fundamental properties of Kronecker products [VL00],

we have ‖U~i,∗‖2 =
∏q

j=1 ‖(Uj)ij ,∗‖2, which completes the proof. Note here that we used the

fact that leverage scores are independent of the choice of orthonormal basis [Woo14b].

Proposition 26.7.3 (Theorem 29 of [CW13]). Given a matrix A ∈ Rn×d, let σ ∈ Rn be the

`2 leverage scores of A (see definition 26.2.3). Then there is an algorithm which computes

values σ̃1, σ̃2, . . . , σ̃n such that σ̃i = (1 ± ε)σi simultaneously for all i ∈ [n] with probability

1− 1/nc for any constant c ≥ 1. The runtime is Õ(nnz(A) + poly(d/ε)).

Proposition 26.7.4. Given A = ⊗qi=1Ai, where Ai ∈ Rni×di, there is an algorithm which,

with probability 1−1/nc for any constant c ≥ 1, outputs a diagonal matrix D ∈ Rn×n with m

non-zeros entries, such that Di,i = 1/(mσ̃i) is non-zero with probability σ̃i ∈ (1±1/10)σi(A).

The time required is Õ(
∑q

i=1 nnz(Ai) + poly(dq/ε) +mq).

Proof. By Proposition 26.7.3, we can compute approximate leverage scores of each Ai up to

error Θ(1/q) in time Õ(nnz(Ai) + poly(d/ε)) with high probability. To sample a leverage

score from A, it suffices to sample one leverage score from each of the Ai’s by Corollary

26.7.2. The probability that a given row ~i = (i1, . . . , iq) ∈ [n1] × [n2] × · · · × [nq] of A is

chosen is
∏q

j=1 σ̃(Aj)ij = (1 ± Θ(1/q))qσ~i(A) = (1 ± 1/10)σ~i(A) as needed. Obtaining a

sample takes Õ(1) time per Ai (since a random number needs to be generated to O(log(n))-

bits of precision in expectation and with high probability to obtain this sample), thus O(q)

time overall, so repeating the sampling M times gives the desired additive mq runtime.

The q = 1 version of the following result can be found in [CW13, SWZ19b].
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Proposition 26.7.5. Let D ∈ Rn×n be the diagonal row sampling matrix generated via

Proposition 26.7.4, with m = Θ(1/(δε2)) non-zero entries. Let A = ⊗qi=1Ai as above, and let

U ∈ Rn×r be an orthonormal basis for the column span of A, where r = rank(A). Then for

any matrix B with n rows, we have

Pr
[
‖U>D>DB − U>B‖F ≤ ε‖U‖F‖B‖F

]
≥ 1− δ

Proof. By definition of leverage scores and Proposition 26.7.4, D is a matrix which sample

each row Ui,∗ of U with probability at least (9/10)‖Ui,∗‖2/‖U‖F . Taking the average of m

such rows, we obtain the approximate matrix product result with error O(1/
√
δm) with

probability 1− δ by Theorem 2.1 of [KV17].

We our now ready to prove the main theorem of this section, Theorem 26.3.1

Theorem 26.3.1(Kronecker product `2 regression) Let D ∈ Rn×n be the diagonal row

sampling matrix generated via Proposition 26.7.4, with m = Θ(1/(δε2)) non-zero entries, and

let A = ⊗qi=1Ai, where Ai ∈ Rni×di, and b ∈ Rn, where n =
∏q

i=1 ni and d =
∏q

i=1 di. Then

we have let x̂ = arg minx∈Rd ‖DAx−Db‖2, and let x∗ = arg minx′∈Rd ‖Ax− b‖2. Then with

probability 1− δ, we have

‖Ax̂− b‖2 ≤ (1 + ε)‖Ax∗ − b‖2

Moreover, the total runtime requires to compute x̂ is

Õ

(
q∑

i=1

nnz(Ai) + (dq/(δε))O(1)

)
.
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Proof. Let U be an orthonormal basis for the column span of A. By Lemma 3.3 of [CW09],

we have ‖A(x̂−x∗)‖2 ≤ 2
√
ε‖Ax∗−b‖2. Note that while Lemma 3.3 of [CW09] uses a different

sketching matrix D than us, the only property required for the proof of Lemma 3.3 is that

|U>D>DB−U>B‖F ≤
√
ε/d‖A‖F‖B‖F with probability at least 1− δ for any fixed matrix

B, which we obtain by Proposition 26.7.5 by having O(d/(δε2)) non-zeros on the diagonal

of D). By the normal equations, we have A>(Ax∗− b) = 0, thus 〈A(x̂− x∗), (Ax∗− b)〉 = 0,

and so by the Pythagorean theorem we have

‖Ax̂− b‖2
2 = ‖Ax∗ − b‖2

2 + ‖A(x̂− x∗)‖2
2 ≤ (1 + 4ε)‖Ax∗ − b‖2

2

Which completes the proof after rescaling of ε. The runtime required to obtain the matrix

D is Õ(
∑q

i=1 nnz(Ai) + poly(dq/ε)) by Proposition 26.7.4, where we set D to have m =

Θ(d/(δε2)) non-zero entries on the diagonal. Once D is obtained, one can compute D(A+ b)

in time O(md), thus the required time is O(δ−1(d/ε)2). Finally, computing x̂ once DA,Db

are computed requires a single pseudo-inverse computation, which can be carried out in

O(δ−1d3/ε2) time (since DA now has only O(δ−1(d/ε)2) rows).

26.8 Missing Proofs from Section 26.3.1

We now give a complete proof of Theorem 26.3.2. Our high level approach follows that

of [DDH+09]. Namely, we first obtain a vector x′ which is a O(1) approximate solution to the

optimal, and then use the residual error ρ ∈ Rd of x′ to refine x′ to a (1± ε) approximation

x̂. The fact that x′ is a constant factor approximation follows from our Lemma 26.8.4.

Given x′, by Lemma 26.8.7 we can efficiently compute the matrix Σ which samples from
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the coordinates of the residual error ρ = (A1 ⊗ · · · ⊗ Aq)x′ − b in the desired runtime. The

sampling lemma is the main technical lemma, and requires a careful multi-part sketching

and sampling routine. Given this Σ, the fact that x̂ is a (1 + ε) approximate solution follows

directly from Theorem 6 of [DDH+09]. Our main theorem and its proof is stated below. The

proof will utilize the lemmas and sampling algorithm developed in the secitons which follow.

Theorem 26.3.2 (Main result, `p, 1 + ε-approximation). Fix 1 ≤ p < 2. Then for

any constant q = O(1), given matrices A1, A2, · · · , Aq, where Ai ∈ Rni×di, let n =
∏q

i=1 ni,

d =
∏q

i=1 di. Let x̂ ∈ Rd be the output of Algorithm 26.2. Then

‖(A1 ⊗ A2 ⊗ · · · ⊗ Aq)x̂− b‖p ≤ (1 + ε) min
x∈Rn
‖(A1 ⊗ A2 ⊗ · · · ⊗ Aq)x− b‖p

holds with probability at least 1− δ. In addition, our algorithm takes

Õ

((
q∑

i=1

nnz(Ai) + nnz(b) + (d/ε)O(1)

)
log(1/δ)

)

time to output x̂ ∈ Rd.

Proof. By Lemma 26.8.4, the output x′ in line 16 of algorithm 26.3.1 is an 8 approximation

of the optimal solution, and x′ is obtained in time Õ(
∑q

i=1 nnz(Ai) + (dq/ε)O(1)). We then

obtain the residual error ρ = (A1⊗ · · · ⊗Aq)x′− b (implicitly). By Theorem 6 of [DDH+09],

if we let Σ ∈ Rn×n be a row sampling matrix where Σi,i = 1/α
1/p
i with probability αi =

min{1,max{qi, r2
|ρi|p
‖ρ‖pp
}, where qi is the row sampling probability used in the sketch Π from

which x′ was obtained, andr2 = O(d3/ε2 log(1/ε)), then the solution to minx ‖Σ(A1 ⊗ · · · ⊗

Aq)x−Σb‖p will be a (1+ε) approximately optimal solution. By Lemma 26.8.7, we can obtain

such a matrix Σ in time Õ(
∑q

i=1 nnz(Ai) + q nnz(b) + (d log(n)/(εδ)O(q2)), which completes

the proof of correctness. Finally, note that we can solve the sketched regression problem
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minx ‖Σ(A1⊗· · ·⊗Aq)x−Σb‖p which has O((d log(n)/ε)O(q2)(1/δ)) constraints and d variables

in time O((d log(n)/ε)O(q2)(1/δ)) using linear programming for p = 1 (see [CLS19] for the

state of the art linear program solver), or more generally interior point methods for convex

programming for p > 1 (see [BCLL18] for the state of the art `p solver).

Now to boost the failure probability from a O(1/δ) to log(1/δ) dependency, we do

the following. We run the above algorithm with δ = 1/10, so that our output x̂ ∈ Rd is

a (1 + ε) approximation with probability 9/10. Now note that we actually have an (1 + ε)

estimate of the cost ‖(A1⊗A2⊗ · · · ⊗Aq)x̂− b‖p of the solution x̂, which is simply given by

‖Σ(A1 ⊗ A2 ⊗ · · · ⊗ Aq)x̂− Σb‖p where Σ is the sampling matrix used to compute x̂. Thus

we can simply repeat the above process O(log(1/δ)) times, and take the solution with the

minimal cost overall.

We start by defining a tensor operation which will be useful for our analysis.

Definition 26.8.1 ( ((·, . . . , ·), ·) operator for tensors and matrices). Given tensor A ∈

Rd1×d2×···×dq and matrices Bi ∈ Rni×di for i ∈ [q], we define the tensor ((B1, B2, . . . , Bq), A) ∈

Rn1×n2×···×nq :

((B1, B2, . . . , Bq), A)i1,...,iq =

d1∑

i′1=1

d2∑

i′2=1

· · ·
dq∑

i′q=1

Ai′1,i′2,...,i′q

q∏

`=1

(B`)i`,i′`

Observe for the case of q = 2, we just have ((B1, B2), A) = B1AB
>
2 ∈ Rn1×n2 .

Using the above notation, we first prove a result about reshaping tensors.

Lemma 26.8.1 (Reshaping). Given matrices A1, A2, · · · , Aq ∈ Rni×di and a tensor B ∈

Rn1×n2×···×nq , let n =
∏q

i=1 ni and let d =
∏d

i=1 di. Let b denote the vectorization of B.
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For any tensor X ∈ Rd1×d2×···×dq , we have ‖((A1, A2, · · · , Aq), X) − B‖ξ is equal to ‖(A1 ⊗

A2 ⊗ · · · ⊗ Aq)x − b‖ξ where ξ is any entry-wise norm (such as an `p-norm) and x is the

vectorization of X. See Definition 26.8.1 of the ((·, . . . , ·), ·) tensor operator.

Observe, for the case of q = 2, this is equivalent to the statement that ‖A1XA
>
2 −

B‖ξ = ‖(A1 ⊗ A2)x− b‖ξ.

Proof. For the pair x ∈ Rd, X ∈ Rd1×d2×···×dq , the connection is the following: ∀i1 ∈

[d1], . . . , iq ∈ [dq],

xi1+
∑q
l=2(il−1)·

∏l−1
t=1 dt

= Xi1,··· ,iq .

Similarly, for b ∈ Rn, B ∈ Rn1×n2×···×nq , for any j1,∈ [n1], . . . , jq ∈ [nq],

bj1+
∑q
l=2(jl−1)·

∏l−1
t=1 nt

= Bj1,j2,··· ,jq .

For simplicity, for any (i1, . . . , iq) ∈ [d1]× · · · × [dq] and (j1, . . . , jq) ∈ [n1]× · · · × [nq]

we define ~i = i1 +
∑q

l=2(il − 1) ·∏l−1
t=1 dt and similarly ~j = j1 +

∑q
l=2(jl − 1) ·∏l−1

t=1 nt. Then

we can simplify the above relation and write x~i = Xi1,i2,··· ,iq , and b~j = Bj1,j2,··· ,jq .

For a matrix Z, let Zi,∗ denote the i-th row of Z. We consider the ~j-th entry of

(A1 ⊗ A2 ⊗ · · · ⊗ Aq)x,

((A1 ⊗ A2 ⊗ · · · ⊗ Aq)x)~j =
〈

(A1 ⊗ A2 ⊗ · · · ⊗ Aq)~j,∗ · x
〉

=

d1∑

i1=1

d2∑

i2=1

· · ·
dq∑

iq=1

(
q∏

l=1

(Al)jl,il

)
· x~i

=

d1∑

i1=1

d2∑

i2=1

· · ·
dq∑

iq=1

(
q∏

l=1

(Al)jl,il

)
·Xi1,i2,··· ,iq

= ((A1, A2, · · · , Aq), X)j1,...,jq .
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Where the last equality is by Definition (26.8.1). Since we also have b~j = Bj1,...,jq , this

completes the proof of the Lemma.

26.8.1 Sampling from an `p-Well-Conditioned Base

In this Section, we discuss the first half of Algorithm 26.2 which computes x′ ∈ Rd,

which we will show is a O(1)-approximate solution to the optimal. First note that by Lemma

26.2.1 together with fact 26.2.2, we know that AiR−1
i is an `p well conditioned basis for Ai

(recall this means that AiR−1
i is a (α, β, p) well conditioned basis for A, and β/α = d

O(1)
i )

with probability 1−O(1/q), and we can then union bound over this occurring for all i ∈ [q].

Given this, we now prove that (A1R
−1
1 ⊗ A2R

−1
2 ⊗ · · · ⊗ AqR−1

q ) is a well conditioned basis

for (A1 ⊗ A2 ⊗ · · · ⊗ Aq).

Lemma 26.8.2. Let Ai ∈ Rni×di and Ri ∈ Rdi×di. Then if AiR−1
i is a (αi, βi, p) well-

conditioned basis for Ai for i = 1, 2, . . . , q, we have for all x ∈ Rd1···dq :

q∏

i=1

αi‖x‖p ≤ ‖(A1R
−1
1 ⊗ A2R

−1
2 ⊗ · · · ⊗ AqR−1

q )x‖p ≤
q∏

i=1

βi‖x‖p

Proof. We first consider the case of q = 2. We would like to prove

α1α2‖x‖p ≤ ‖(A1R
−1
1 ⊗ A2R

−1
2 )x‖p ≤ β1β2‖x‖p,

First note, by the reshaping Lemma 26.8.1, this is equivalent to

α1α2‖X‖p ≤ ‖A1R
−1
1 X(R−1

2 A2)>‖p ≤ β1β2‖X‖p.

Where X ∈ Rd1×d2 is the tensorization of x. We first prove one direction. Let U1 = A1R
−1
1
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and U2 = A2R
−1
2 . We have

‖U1XU
>
2 ‖pp =

n2∑

i2=1

‖U1(XU>2 )i2‖pp

≤
n2∑

i2=1

βp1‖(XU>2 )i2‖pp

= βp1‖XU>2 ‖pp

≤ βp1β
p
2‖X‖pp,

where the first step follows from rearranging, the second step follows from the well-conditioned

property of U1, the third step follows from rearranging again, the last step follows from the

well-conditioned property of U2. Similarly, we have

‖U1XU
>
2 ‖pp =

n2∑

i2=1

‖U1(XU>2 )i2‖pp

≥
n2∑

i2=1

αp1‖(XU>2 )i2‖pp

= αp1‖XU>2 ‖pp

≥ αp1α
p
2‖X‖pp,

where again the first step follows from rearranging, the second step follows from the well-

conditioned property of U1, the third step follows from rearranging again, the last step follows

from the well-conditioned property of U2.

In general, for arbitrary q ≥ 2, similarly using our reshaping lemma, we have

‖(⊗qi=1(AiR
−1
i ))x‖p ≥

q∏

i=1

αi‖x‖p,

‖(⊗qi=1(AiR
−1
i ))x‖p ≤

q∏

i=1

βi‖x‖p.
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Putting this together with fact 26.2.2, and noting d = d1 · · · dq, we have

Corollary 26.8.3. Let AiR−1
i be as in algorithm 26.2. Then we have for all x ∈ Rd1···dq :

(1/d)O(1)‖x‖p ≤ ‖(A1R
−1
1 ⊗ · · · ⊗ AqR−1

q )x‖p ≤ dO(1)‖x‖p,

In other words, (A1R
−1
1 ⊗ · · · ⊗ AqR−1

q ) is a well conditioned `p basis for (A1 ⊗ · · · ⊗ Aq)

From this, we can obtain the following result.

Lemma 26.8.4. Let x′ ∈ Rd be the output of the O(1)-Approximate `p Regression Procedure

in Algorithm 26.2. Then with probability 99/100 we have

‖(A1 ⊗ · · · ⊗ Aq)x′ − b‖p ≤ 8 min
x
‖(A1 ⊗ · · · ⊗ Aq)x− b‖p

Moreover, the time required to compute x′ is Õ(
∑q

i=1 nnz(Ai) + (dq/ε)O(1)).

Proof. By Theorem 6 of [DDH+09], if we let Π be a diagonal row sampling matrix such that

Πi,i = 1/q
1/p
i with probability qi ≥ min{1, r1

‖Ui,∗‖pp
‖U‖pp

}, where U is a `p well-conditioned basis

for (A1 ⊗ · · · ⊗ Aq) and r1 = O(d3), then the solution x′ to

min
x
‖Π((A1 ⊗ · · · ⊗ Aq)x− b‖

will be a 8-approximation. Note that we can solve the sketched regression problem minx ‖Π((A1⊗

· · · ⊗Aq)x′ − b‖ which has O(poly(d/ε)) constraints and d variables in time poly(d/ε) using

linear programming for p = 1 (see [CLS19] for the state of the art linear program solver), or
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more generally interior point methods for convex programming for p > 1 (see [BCLL18] for

the state of the art `p solver).

Then by Corollary 26.8.3, we know that setting U = (A1R
−1
1 ⊗· · ·⊗AqR−1

q ) suffices, so

now we must sample rows of U . To do this, we must approximately compute the norms of the

rows of U . Here, we use the fact that ‖·‖pp norm of a row of (A1R
−1
1 ⊗· · ·⊗AqR−1

q ) is the prod-

uct of the row norms of the AiR−1
i that correspond to that row. Thus it suffices to sample a

row ji from each of the AiR−1
i ’s with probability at least min{1, r1‖(AiR−1

i )ji,∗‖pp/‖AiR−1
i ‖pp}

for each i ∈ [q].

To do this, we must estimate all the row norms ‖(AiR−1
i )ji,∗‖pp to (1 ± 1/10) error.

This is done in steps 7− 10 of Algorithm 26.2, which uses dense p-stable sketches Z ∈ Rd×τ ,

and computes (AiR
−1
i Z), where τ = Θ(log(n)). Note that computing R−1

i Z ∈ Rd×τ requires

Õ(d2). Once computed, Ai(R−1
i Z) can be computed in Õ(nnz(Ai)) time. We then take the

median of the coordinates of (AiR
−1
i Z) (normalized by the median of the p-stable distribution

Dp, which can be efficiently approximated to (1± ε) in O(poly(1/ε)) time, see Appendix A.2

of [KNW10b] for details) as our estimates for the row norms. This is simply the Indyk median

estimator [Ind06], and gives a (1 ± 1/10) estimate ai,j of all the row norms ‖(AiR−1
i )j,∗‖pp

with probability 1 − 1/ poly(n). Then it follows by Theorem 6 of [DDH+09] that x′ is a

8-approximation of the optimal solution with probability 99/100 (note that we amplified

the probability by increasing the sketch sizes Si by a constant factor), which completes the

proof.
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26.8.2 `p Sampling From the residual of a O(1)-factor approximation

By Lemma 26.8.4 in the prior section, we know that the x′ first returned by the

in algorithm 26.2 is a 8-approximation. We now demonstrate how we can use this O(1)

approximation to obtain a (1 + ε) approximation. The approach is again to sample rows

of (A1 ⊗ · · · ⊗ Aq). But instead of sampling rows with the well-conditioned leverage scores

qi, we now sample the i-th row with probability αi = min{1,max{qi, r2|ρi|p/‖ρ‖pp}} , where

ρ = (A1 ⊗ · · · ⊗ Aq)x′ − b ∈ Rn is the residual error of the O(1)-approximation x′. Thus

we must now determine how to sample quickly from the residuals |ρi|p/‖ρ‖pp. Our sampling

algorithm will need a tool originally developed in the streaming literature.

Count-sketch for heavy hitters with the Dyadic Trick. We now introduce a sketch

S which finds the `2 heavy hitters in a vector x efficently. This sketch S is known as count-

sketch for heavy hitters with the Dyadic Trick. To build S we first stack Θ(log(n)) copies

of the count sketch matrix Si ∈ Rk′×n [CW13]. The matrix Si is constructed as follows. Si

has exactly one non-zero entry per column, which is placed in a uniformly random row, and

given the value 1 or −1 uniformly at random. For Si, let hi : [n]→ [k′] be such that hi(t) is

the row with the non-zero entry in the t-th column of Si, and let gi : [n]→ {1,−1} be such

that the value of that non-zero entry is gi(t). Note that the hi, gi can be implemented as

4-wise independent hash functions. Fix any x ∈ Rn. Then given S1x, S2x, · · · , SΘ(log(n))x,

we can estimate the value of any coordinate xj by mediani∈Θlog(n){gi(j)(Six)hi(j)}.

It is well-known that this gives an estimate of xj with additive error Θ(1/
√
k′)‖x‖2

with probability 1 − 1/ poly(n) for all j ∈ [n] [CCFC04]. However, naively, to find the

heaviest coordinates in x, that is all coordinates xj with |xj| ≥ Θ(1/
√
k′)‖x‖2, one would
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need to query O(n) estimates. This is where the Dyadic trick comes in [CM04]. We repeat

the above process Θ(log(n)) times, with matrices S(i,j), for i, j ∈ Θ(log(n)). Importantly,

however, in S(i,j), for all t, t′ ∈ [n] such that the first j most significant bits in their binary

identity representation are the same, we set h(i,j)(t) = h(i,j)(t
′), effectively collapsing these

identities to one. To find a heavy item, we can then query the values of the *two* identities

from S(1,1), S(2,1), · · · , S(Θ(log(n)),1), and recurse into all the portions which have size at least

Θ(1/
√
k′)‖x‖2. It is easy to see that we recurse into at most O(k′) such pieces in each of

the Θ(log(n)) levels, and it takes O(log(n)) time to query a single estimate, from which

the desired runtime of O(k′ log2(n)) is obtained. For a further improvement on size k of

the overall sketched required to quickly compute Q, see [LNNT16]. We summarize this

construction below in definition 26.8.2.

Definition 26.8.2 (Count-sketch for heavy hitters with Dyadic Trick [CCFC04, LNNT16]).

There is a randomized sketch S ∈ Rk×n with k = O(log2(n)/ε2) such that, for a fixed vector

x ∈ Rn, given Sx ∈ Rk, one can compute a set Q ⊂ [n] with |Q| = O(1/ε2) such that

{i ∈ [n] | |xi| ≥ ε‖x‖2} ⊆ Q with probability 1− 1/ poly(n). Moreover, Sx can be computed

in O(log2(n) nnz(x)) time. Given Sx, the set Q can be computed in time O(k).

We begin with some notation. For a vector y ∈ Rn, where n = n1 · · ·nq, one can index

any entry of yi via ~i = (i1, i2, · · · , iq) ∈ [n1]× · · · × [nq] via i = i1 +
∑q

j=2(ij − 1)
∏ij−1

l=1 nl. It

will useful to index into such a vector y interchangably via a vector y~i and an index yj with

j ∈ [n]. For any set of subsets Ti ⊂ [ni], we can define yT1×···Tq ∈ Rn as y restricted to the

~i ∈ T1 × · · · × Tq. Here, by restricted, we mean the coordinates in y that are not in this set

are set equal to 0. Similarly, for a y ∈ Rni and S ⊂ [ni], we can define yS as y restricted
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to the coordinates in S. Note that in Algorithm 26.4, In denotes the n× n identity matrix

for any integer n. We first prove a proposition on the behavior of Kronecker products of

p-stable vectors, which we will need in our analysis.

Proposition 26.8.5. Let Z1, Z2, · · · , Zq be independent vectors with entries drawn i.i.d.

from the p-stable distribution, with Zi ∈ Rni. Now fix any i ∈ [q], and any x ∈ Rn, where

n = n1n2 · · ·nq. Let ej ∈ Rni be the j-th standard basis column vector for any j ∈ [ni]. Let

Γ(i, j) = [n1]× [n2]× · · · × [ni−1]× {j} × [ni+1]× · · · × [nq]. Define the random variable

Xi,j(x) = |(Z1 ⊗ Z1 ⊗ · · · ⊗ Zi−1 ⊗ e>j ⊗ Zi+1 ⊗ · · · ⊗ Zq)x|p.

Then for any λ > 1, with probability at least 1−O(q/λ) we have

‖xΓ(i,j)‖pp/λq ≤ Xi,j(x) ≤ (λ log(n))q‖xΓ(i,j)‖pp

Proof. First observe that we can reshape y = xΓ ∈ Rm where m = n/ni, and re-write this

random variable as Xi,j(x) = |(Z1 ⊗ Z2 ⊗ · · · ⊗ Zq−1)y|p. By reshaping Lemma 26.8.1, we

can write this as |(Z1 ⊗ Z2 ⊗ · · · ⊗ Zq−2)Y Z>q−1|p, where Y ∈ Rm/nq−1×nq−1 . We first prove a

claim. In the following, for a matrix A, let ‖A‖pp =
∑

i,j |Ai,j|p.

Claim 26.8.6. Let Z be any p-stable vector and X a matrix. Then for any λ > 1, with

probability 1−O(1/λ), we have

λ−1‖X‖pp ≤ ‖XZ‖pp ≤ log(n)λ‖X‖pp.

Proof. By p-stability, each entry of |(XZ)i|p is distributed as |zi|p‖Xi,∗‖pp, where zi is again

p-stable (but the z′is are not independent). Now p-stables have tails that decay at the rate

Θ(1/xp) (see Chapter 1.5 of [Nol07]), thus Pr[|zi|p > x] = O(1/x) for any x > 0. We
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can condition on the fact that zi < λ · n10 for all i, which occurs with probability at least

1− n−9/λ by a union bound. Conditioned on this, we have E[|zi|p] = O(log(n)) (this can be

seen by integrating over the truncated tail O(1/x)), and the upper bound then follows from

a application of Markov’s inequality.

For the lower bound Let Yi be an indicator random variable indicating the event that

|zi|p < 2/λ. Now p-stables are anti-concentrated, namely, their pdf is upper bounded by a

constant everywhere. It follows that Pr[Yi] < c/λ for some constant c. By Markov’s inequal-

ity Pr[
∑

i Yi‖Xi,∗‖pp > ‖X‖pp/2] < O(1/λ). Conditioned on this, the remaining ‖X‖pp/2 of

the `p mass shrinks by less than a 2/λ factor, thus ‖XZ‖pp > (‖X‖pp/2)(2/λ) = ‖X‖pp/λ as

needed.

By the above claim, we have ‖Y ‖p/λ1/p ≤ ‖Y Z>q−1‖p ≤ (log(n)λ)1/p‖Y ‖p with prob-

ability 1 − O(1/λ). Given this, we have Xi,j(x) = |(Z1 ⊗ Z2 ⊗ · · · ⊗ Zq−2)y′|p, where

‖Y ‖p/λ1/p ≤ ‖y′‖p ≤ (log(n)λ)1/p‖Y ‖p. We can inductively apply the above argument,

each time getting a blow up of (log(n)λ)1/p in the upper bound and (1/λ)p in the lower

bound, and a failure probability of (1/λ). Union bounding over all q steps of the induction,

the proposition follows.

Lemma 26.8.7. Fix any r2 ≥ 1, and suppose that x′ = minx ‖Π(A1 ⊗ · · · ⊗ Aq)x − Πb‖p
and Π ∈ Rn×n is a row sampling matrix such that Πi,i = 1/q

1/p
i with probability qi. Define

the residual error ρ = (A1 ⊗ · · · ⊗ Aq)x′ − b ∈ Rn. Then Algorithm 26.4, with probability

1 − δ, succeeds in outputting a row sampling matrix Σ ∈ Rn×n such that Σi,i = 1/α
1/p
i with

probability αi = min{1,max{qi, r3|ρi|p/‖ρ‖pp}} for some r3 ≥ r2, and otherwise Σi,i = 0. The
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algorithm runs in time

Õ

(
q∑

i=1

nnz(Ai) + q nnz(b) + (r2 log(n)/δ)O(q2)

)
.

Proof. The algorithm is given formally in figure 26.4. We analyze the runtime and correctness

here.

Proof of Correctness. The approach of the sampling algorithm is as follows. Recall that

we can index into the coordinates of ρ ∈ Rn via ~a = (a1, . . . , aq) where ai ∈ [ni]. We build the

coordinates of ~a one by one. To sample a ~a ∈∏q
i=1[ni], we can first sample a1 ∈ [n1] from the

distribution Pr[a1 = j] =
∑

~u:u1=j |ρ~u|p/(
∑

~u |ρ~u|p). Once we fix a1, we can sample a2 from the

conditional distribution distribution Pr[a2 = j] =
∑

~u:u2=j,u1=a1
|ρ~u|p/(

∑
~u:u1=a1

|ρ~u|p), and so

on. For notation, given a vector ~a = (a1, . . . , ai−1), let ∆(~a) = {~u ∈ [n1] × · · · × [nq] | aj =

yj for all j = 1, 2, . . . , i− 1}. Then in general, when we have sampled ~a = (a1, . . . , ai−1) for

some i ≤ q, we need to sample ai ← j ∈ [nk] with probability

Pr[ai = j] =
∑

~u∈∆(~a):ui=j

|ρ~u|p/


 ∑

~u∈∆(~a)

|ρ~u|p

 .

We repeat this process to obtain the desired samples. Note that to sample efficiently, we

will have to compute these aforementioned sampling probabilities approximately. Because

of the error in approximating, instead of returning r2 samples, we over-sample and return

r3 = Θ(r2 logq
2

(n)) samples.

The first step is of the algorithm is to generate the p-stable vectors Zi,j ∈ Rni for

i ∈ [q] and j = 1, 2, . . . ,Θ(log(n)). We can pre-compute and store Zi,jAi for i ∈ [q], which

takes Õ(
∑q

i=1 nnz(Ai)) time. We set wj ←
(
(In1)⊗ (

⊗q
k=2 Z

k,j)ρ
)
∈ Rn1 and define w ∈ Rn1
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by wl = medianj∈[τ ]{|wjl |} for l ∈ [n1]. Observe that wjl is an estimate of
∑

~u:u1=l |ρ~u|p. By

Proposition 26.8.5, it is a (c log(n))q approximation with probability at least 3/4 for some

constant c. Taking the median of Θ(log(n)) repetitions, we have that

c−q ·
∑

~u:u1=l

|ρ~u|p ≤ |wl|p ≤ (c log(n))q ·
∑

~u:u1=l

|ρ~u|p

with probability 1− 1/ poly(n), and we can then union bound over all such estimates every

conducted over the course of the algorithm. We call the above estimate |wl|p a O((c log(n))q)-

error estimate of
∑

~u:u1=l |ρ~u|p. Given this, we can correctly and independently sample the

first coordinate of each of the Θ(r3) samples. We now describe how to sample the i-th

coordinate. So in general, suppose we have sampled (a1, ..., ai−1) so far, and we need to now

sample ai ∈ [ni] conditioned on (a1, ..., ai−1). We first consider

W i,k =

(
(
i−1⊗

k=1

e>ak)⊗ (Ini)⊗ (

q⊗

k=i+1

Zk,j)ρ

)
∈ Rni

Note that the j-th coordinate W i,k
j for W i,k is an estimate of

∑
~u∈∆(~a):ui=j

|ρ~u|p.

Again by By Proposition 26.8.5, with probability 1 − 1/ poly(n), we will have |W i,k
j |p is

a O((c log(n))q)-error estimate of
∑

~u∈∆(~a):ui=j
|ρ~u|p or at least one k ∈ [τ ]. Our goal will now

be to find all j ∈ [ni] such that
∑

~u∈∆(~a):ui=j
|ρ~u|p ≥ Θ((c log(n))q/r8

3)
∑

~u∈∆(~a) |ρ~u|p. We call

such a j a heavy hitter.

Let Qi ⊂ [ni] be the set of heavy hitters. To find all the heavy hitters, we use

the count-sketch for heavy hitters with the Dyadic trick of definition 26.8.2. We construct

this count-sketch of def 26.8.2 Si ∈ Rk′×ni where k′ = O(log2(n)r16
3 ). We then compute

SiW i,k, for k = 1, 2, . . . , τ , and obtain the set of heavy hitters h ∈ Hi,k ⊂ [ni] which satisfy

|W i,k
j |p ≥ Θ(1/r8

3)‖W i,k‖pp. By the above discussion, we know that for each j ∈ Qi, we
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will have |W i,k
j |p ≥ Θ(1/r16

3 )‖W i,k‖pp for at least one k ∈ [τ ] with high probability. Thus

Hi = ∪τk=1Hi,k ⊇ Qi.

We now will decide to either sample a heavy hitter ξ ∈ Hi, or a non-heavy hitter

ξ ∈ [ni] \ Hi. By Proposition 26.8.5, we can compute a O((c log(n))−q)-error estimate

βi = medianj∈τ
∣∣∣
(

(
⊗i−1

k=1 e
>
ak

)⊗ (
⊗q

k=i Z
k,j)ρ

)∣∣∣
p

of
∑

~u∈∆(~a) |ρ~u|p, meaning:

O(c−q)
∑

~u∈∆(~a)

|ρ~u|p ≤ βi ≤ O((c log n)q)
∑

~u∈∆(~a)

|ρ~u|p.

Again, by Proposition 26.8.5, we can compute aO((c log(n))−q)-error estimate γi ← medianj∈[τ ]

(
(
⊗i−1

k=1 e
>
ak

)⊗ Zi,j
[ni]\Hi ⊗ (

⊗q
k=i+1 Z

k,j)ρ
)

of
∑

h∈[ni]\Hi

∑
~u∈∆(~a):ui=j

|ρ~u|p. It follows that

O(c−2q)

∑
h∈[ni]\Hi

∑
~u∈∆(~a):ui=j

|ρ~u|p∑
~u∈∆(~a) |ρ~u|p

≤ γi
βi
≤ O((c log n)2q)

∑
h∈[ni]\Hi

∑
~u∈∆(~a):ui=j

|ρ~u|p∑
~u∈∆(~a) |ρ~u|p

In other words, γi/βi is a O((c log(n))2q)-error approximation of the true probability that

we should sample a non-heavy item. Thus with probability 1 − γi/βi, we choose to sample

a heavy item.

To sample a heavy item, for each ξ ∈ Hi, by Proposition 26.8.5, we can com-

pute an O((c log(n))−q)-error estimate medianj∈τ
∣∣∣
(

(
⊗i−1

k=1 e
>
ak

)⊗ (e>ξ )⊗ (
⊗q

k=i+1 Z
k,j)ρ

)∣∣∣
p

of
∑

~u∈∆(~a):ui=ξ
|ρ~u|p, meaning
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O(c−q)

∑

~u∈∆(~a):ui=ξ

|ρ~u|p

 ≤ medianj∈τ

∣∣∣∣∣

(
(
i−1⊗

k=1

e>ak)⊗ (e>ξ )⊗ (

q⊗

k=i+1

Zk,j)ρ

)∣∣∣∣∣

p

≤


O((c log n)q)

∑

~u∈∆(~a):ui=ξ

|ρ~u|p



Thus we can choose to sample a heavy item ξ ∈ Hi from the distribution given by

Pr [sample ai ← ξ] =
medianj∈τ

∣∣∣
(

(
⊗i−1

k=1 e
>
ak

)⊗ (e>ξ )⊗ (
⊗q

k=i+1 Z
k,j)ρ

)∣∣∣
p

∑
ξ′∈Hi medianj∈τ

∣∣∣
(

(
⊗i−1

k=1 e
>
ak

)⊗ (e>ξ′)⊗ (
⊗q

k=i+1 Z
k,j)ρ

)∣∣∣
p

Which gives a O((c log(n))2q)-error approximation to the correct sampling probability for a

heavy item.

In the second case, with probability γi/βi, we choose to not sample a heavy item. In

this case, we must now sample a item from [ni] \Hi. To do this, we partition [ni] randomly

into Ω1, . . . ,Ωη for η = 1/r2
3. Now there are two cases. First suppose that we have

∑
j∈[ni]\Hi

∑
~u∈∆(~a):ui=j

|ρ~u|p∑
~u∈∆(~a) |ρ~u|p

≤ Θ(1/r3
3)

Now recall that γi/βi was a O((c log(n))2q)-error estimate of the ratio on the left hand side

of the above equation, and γi/βi was the probability with which we choose to sample a

non-heavy hitter. Since we only repeat the sampling process r3 times, the probability that

we ever sample a non-heavy item in this case is at most Θ(q(c log(n))2q/r2
3) < Θ(q/r3),

taken over all possible repetitions of this sampling in the algorithm. Thus we can safely

ignore this case, and condition on the fact that we never sample a non-heavy item in this
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case. Otherwise,
∑

j∈[ni]\Hi

∑
~u∈∆(~a):ui=j

|ρ~u|p > Θ(1/r3
3)
∑

~u∈∆(~a) |ρ~u|p, and it follows that
∑

~u∈∆(~a):ui=j′
|ρ~u|p ≤ Θ(1/r5

3

∑
j∈[ni]\Hi)

∑
~u∈∆(~a):ui=j

|ρ~u|p for all j′ ∈ [ni] \ Hi, since we re-

moved all Θ(1/r8
3) heavy hitters from [ni] originally. Thus by Chernoff bounds, with high

probability we have that
∑

j∈Ωi\Hi(
∑

~u∈∆(~a):ui=j
|ρ~u|p) = Θ(1/η

∑
j∈[ni]\Hi

∑
~u∈∆(~a):ui=j

|ρ~u|p),

which we can union bound over all repetitions.

Given this, by choosing t ∼ [η] uniformly at random, and then choosing j ∈ Ωt \Hi

with probability proportional to its mass in Ωt \ Hi, we get a Θ(1) approximation of the

true sampling probability. Since we do not know its exact mass, we instead sample from the

distribution { θj∑
j′∈Ωt\Hi

θj′
}j∈Ωt\Hi , where

θj = median
l∈[τ ]

(∣∣∣∣∣(
i−1⊗

k=1

e>ak)⊗ (e>j )⊗ (

q⊗

k=i+1

Zk,l)ρ

∣∣∣∣∣

p)

Again by Proposition 26.8.5, this gives a O((c log(n))2q)-error approximation to the

correct sampling probability. Note that at each step of sampling a coorindate of ~a we

obtained at most O((c log(n))2q)-error in the sampling probability. Thus, by oversampling

by a O((c log(n))2q2
) factor, we can obtain the desired sampling probabilities. This completes

the proof of correctness. Note that to improve the failure probability to 1− δ, we can simply

scale r3 by a factor of 1/δ.

Proof of Runtime. We now analyze the runtime. At every step i = 1, 2, . . . , q of

the sampling, we compute vji ← Si
(

(
⊗i−1

k=1 e
>
ak

)⊗ (Ini)⊗ (
⊗q

k=i+1 Z
k,j)ρ

)
∈ Rni for j =

1, 2, . . .Θ(log(n)). This is equal to

Si

(
(
i−1⊗

k=1

(Ak)ak,∗)⊗ (Ai)⊗ (

q⊗

k=i+1

Zk,jAk)x
′ − (

i−1⊗

k=1

e>ak)⊗ (Ini)⊗ (

q⊗

k=i+1

Zk,j)b

)
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We first consider the term inside of the parenthesis (excluding Si). Note that the term

(
⊗q

k=i+1 Z
k,jAk) was already pre-computed, and is a vector of length at most d, this this

requires a total of Õ(
∑q

i=1 nnz(Ai) +d) time. Note that these same values are used for every

sample. Given this pre-computation, we can rearrage the first term to write (
⊗i−1

k=1(Ak)ak,∗)⊗

(Ai)X
′(
⊗q

k=i+1 Z
k,jAk)

> where X ′ is a matrix formed from x′ so that x′ is the vectorization

of X ′ (this is done via reshaping Lemma 26.8.1). The term y = X ′(
⊗q

k=i+1 Z
k,jAk)

> can now

be computed in O(d) time, and then we reshape again to write this as (
⊗i−1

k=1(Ak)ak,∗)Y A
>
i

where Y again is a matrix formed from y. Observe that ζ = vec(
⊗i−1

k=1(Ak)ak,∗Y ) ∈ Rdi

can be computed in time O(qd), since each entry is a dot product of a column Y∗,j ∈

Rd1·d2···di−1 of Y with the d1 · d2 · · · di−1 dimensional vector
⊗i−1

k=1(Ak)ak,∗, which can be

formed in O(d1 · d2 · · · di−1q) time, and there are a total of di columns of Y .

Given this, The first entire term Si(
⊗i−1

k=1(Ak)ak,∗)⊗ (Ai)⊗ (
⊗q

k=i+1 Z
k,jAk)x

′ can be

rewritten as SiAiζ, where ζ = ζ~a ∈ Rdi can be computed in O(dq) time for each sample ~a.

Thus if we recompute the value SiAi ∈ Rk×n, where k = Õ(r16
3 ), which can be done in time

Õ(nnzAi), then every time we are sampling the i-th coordinate of some ~a, computing the

value of SiAiζ~a can be done in time O(kd2
i ) = r

O(1)
3 .

We now consider the second term. We do a similar trick, reshaping b ∈ Rn into

B ∈ R(n1···ni)×(ni···nq) and writing this term as ((
⊗i−1

k=1 e
>
ak

) ⊗ (Ini))B(
⊗q

k=i+1 Z
k,j)> and

computing b′ = B(
⊗q

k=i+1 Z
k,j)> ∈ R(n1···ni) in nnz(B) = nnz(b) time. Let B′ ∈ R(n1···ni−1)×ni

be such that vec(B′) = b′, and we reshape again to obtain (
⊗i−1

k=1 e
>
ak

)B′(Ini) = (
⊗i−1

k=1 e
>
ak

)B′

Now note that so far, the value B′ did not depend on the sample ~a at all. Thus for each

i = 1, 2, . . . , q, B′ (which depends only on i) can be pre-computed in nnz(b) time. Given

this, the value (
⊗i−1

k=1 e
>
ak

)B′ is just a row B′(a1,...,ak),∗ of B′ (or a column of (B′)>). We
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first claim that nnz(B′) ≤ nnz(b) = nnz(B). To see this, note that each entry of B′ is a

dot product Bj,∗(
⊗q

k=i+1 Z
k,j)> for some row Bj,∗ of B, and moreover there is a bijection

between these dot products and entries of B′. Thus for every non-zero entry of B′, there

must be a unique non-zero row (and thus non-zero entry) of B. This gives a bijection

from the support of B′ to the support of B (and thus b) which completes the claim. Since

Si(B′(a1,...,ak),∗)
> can be computed in Õ(nnz(B′(a1,...,ak),∗)) time, it follows that Si(B′(a1,...,ak),∗)

>

can be computed for all rows (B′(a1,...,ak),∗) of B in Õ(nnz(b)) time. Given this precomputation,

we note that (Ini) ⊗ (
⊗q

k=i+1 Z
k,j)b is just Si(B′(a1,...,ak),∗)

> for some (a1, . . . , ak), which has

already been pre-computed, and thus requires no addition time per sample. Thus, given

a total of Õ(
∑q

i=1 nnz(Ai) + q nnz(b) + r
O(1)
3 ) pre-processing time, for each sample we can

compute vji for all i ∈ [q] and j ∈ [τ ] in Õ(r
O(1)
3 ) time, and thus Õ(r

O(1)
3 ) time over all r3

samples.

Given this, the procedure to compute the heavy hitters Hi,j takes Õ(r16
3 ) time by

Definition 26.8.2 for each sample and i ∈ [q], j ∈ [τ ]. By a identical pre-computation and

rearrangement argument as above, each βji (and thus βi) can be computed in Õ(r
O(1)
3 ) time

per sample after pre-computation. Now note that γi is simply equal to median j ∈ [τ ](βji −

(
⊗i−1

k=1 e
>
ak

)⊗ (Zk,j
Hi

)⊗ (
⊗q

k=i+1 Z
k,j)ρ). Since (Zk,j

Hi
) is sparse, the above can similar be com-

puted in O(d|Hi|) = Õ(r
O(1)
3 ) time per sample after pre-computation. To see this, note that

the b term of (
⊗i−1

k=1 e
>
ak

)⊗ (Zk,j
Hi

)⊗ (
⊗q

k=i+1 Z
k,j)ρ can be written as (

⊗i−1
k=1 e

>
ak

)B′′′(Zk,j
Hi

)>,

where B′′′ ∈ Rn1···ni−1×ni is a matrix that has already been pre-computed and does not

depend on the given sample. Then this quantity is just the dot product of a row of B′′′

with (Zk,j
Hi

)>, but since (Zk,j
Hi

) is |Hi|-sparse, so the claim for the b term follows. For the

(A1 ⊗ · · · ⊗ Aq) term, just as we demonstrated in the discussion of computing vji , note that
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this can be written as (
⊗i−1

k=1(Ak)ak,∗)Y ((Ai)Hi,∗)
> for some matrix Y ∈ Rd1···di×di−1 that

has already been precomputed. Since (Ai)Hi,∗ only has O(|Hi|) non-zero rows, this whole

product can be computed in time O(d|Hi|) as needed.

Similarly, we can compute the sampling probabilities

Pr [sample ai ← j] =
medianj∈τ

∣∣∣
(

(
⊗i−1

k=1 e
>
ak

)⊗ (e>ξ )⊗ (
⊗q

k=i+1 Z
k,j)ρ

)∣∣∣
p

∑
ξ′∈Hi medianj∈τ

∣∣∣
(

(
⊗i−1

k=1 e
>
ak

)⊗ (e>ξ′)⊗ (
⊗q

k=i+1 Z
k,j)ρ

)∣∣∣
p

for each every item ζ ∈ Hi in Õ(r
O(1)
3 ) time after pre-computation, and note |Hi| = Õ(r

O(1)
3 )

by definition 26.8.2. Thus the total time to sample a heavy hitter in a given coordinate

i ∈ [q] for each sample Õ(r
O(1)
3 ) per sample, for an overall time of Õ(qr

O(1)
3 ) over all samples

and i ∈ [q].

Finally, we consider the runtime for sampling a non-heavy item. Note that |Ωt| =

O(ni/η) with high probability for all t ∈ [η] by chernoff bounds. Computing each

θj = median
l∈[τ ]

(∣∣∣∣∣(
i−1⊗

k=1

e>ak)⊗ (e>j )⊗ (

q⊗

k=i+1

Zk,l)ρ

∣∣∣∣∣

p)

takes O(qd) time after pre-computation, and so we spend a total of O(qdni/η) time sampling

an item from Ωt \Hi. Since we only ever sample a total of r3 samples, and η = Θ(r2
3), the

total time for sampling non-heavy hitters over the course of the algorithm in coordinate i is

o(ni) = o(nnz(Ai)) as needed, which completes the proof of the runtime.

Computing the Sampling Probabilities αi The above arguments demonstrate how to

sample efficiently from the desired distribution. We now must describe how the sampling

probabilities αi can be computed. First note, for each sample that is sampled in the above
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way, at every step we compute exactly the probability with which we decide to sample a

coordinate to that sample. Thus we know exactly the probability that we choose a sample,

and moreover we can compute each qi in O(d) time as in Lemma 26.8.4. Thus we can

compute the maximum of qi and this probability exactly. For each item sampled as a result

of the leverage score sampling probabilities qi as in Lemma 26.8.4, we can also compute the

probability that this item was sampled in the above procedure, by using the same sketching

vectors Zi,k and count-sketches Si. This completes the proof of the Lemma.

26.9 Missing Proofs from Section 26.4

In this section, we prove the correctness of our all-pairs regression algorithm 26.3. Our

main theorem, Theorem 26.4.1, relies crucially on the sample routine developed in Section

26.9.1. We first prove the theorem which utilizes this routine, and defer the description and

proof of the routine to Section 26.9.1.

Recall first the high level description of our algorithm (given formally in Figure 26.3).

We pick S1, S2 ∈ Rk×nand S are sparse p-stable sketches. We then compute M = (S1 ⊗

S2)(F ⊗ 1 − 1 ⊗ F ) = S1F ⊗ S21 − S11 ⊗ S2F , where F = [A, b]. We then take the QR

decomposition M = QR. Finally, we sample rows of (F ⊗ 1 − 1 ⊗ F )R−1 with probability

proportional to their `p norms. This is done by the sampling procedure described in Section

26.9.1. Finally, we solve the regression problem minx ‖Π(Āx− b̄)‖p, where Π is the diagonal

row-sampling matrix constructed by the sampling procedure.

We begin by demonstrating that S1 ⊗ S2 is a poly(d) distortion embedding for the
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column span of [Ā, b̄].

Lemma 26.9.1. Let S1, S2 ∈ Rk×n be sparse p-stable transforms, where k = poly(d/(εδ)).

Then for all x ∈ Rd+1, with probability 1− δ we have

1/O(d4 log4 d)‖[Ā, b̄]x‖p ≤ ‖(S1 ⊗ S2)[Ā, b̄]x‖p ≤ O(d2 log2 d)‖[Ā, b̄]x‖p

Proof. Let F = [A, b]. Then a basis for the columns of [Ā, b̄] is given by F ⊗ 1− 1⊗ F . We

first condition on both S1, S2 being a low-distortion embedding for the d + 2 dimensional

column-span of [F,1]. Note that this holds with large constant probability by 26.2.1.

So for any x ∈ Rd+1, we first show the upper bound

‖(S1 ⊗ S2)(F ⊗ 1− 1⊗ F )x‖p = ‖(S1F ⊗ S21)x− (S11⊗ S2F )‖p

= ‖S1Fx1
>S>2 − S11x

>F>S>2 ‖p

= ‖S1(Fx1> − 1x>F>)S>2 ‖p

≤ O(d log d)‖(Fx1> − 1x>F>)S>2 ‖p

≤ O(d2 log2 d)‖Fx1> − 1x>F>‖p

= O(d2 log2 d)‖(F ⊗ 1− 1⊗ F )x‖p

Where the first equality follows by properties of the Kronecker product [VL00], the second

by reshaping Lemma 26.8.1. The first inequality follows from the fact that each column

of (Fx1> − 1x>F>)S>2 is a vector in the column span of [F,1], and then using that S1 is

a low distortion embedding. The second inequality follows from the fact that each row of

(Fx1>−1x>F>) is a vector in the column span of [F,1], and similarly using that S2 is a low
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distortion embedding. The final inequality follows from reshaping. Using a similar sequence

of inequalities, we get the matching lower bound as desired.

We now prove our main theorem.

Theorem 26.4.1 Given A ∈ Rn×d and b ∈ Rn, for p ∈ [1, 2] there is an algorithm for the

All-Pairs Regression problem that outputs x̂ ∈ Rd such that with probability 1− δ we have

‖Āx̂− b̄‖p ≤ (1 + ε) min
x∈Rd
‖Āx− b̄‖p

Where Ā = A ⊗ 1 − 1 ⊗ A ∈ Rn2×d and b̄ = b ⊗ 1 − 1 ⊗ b ∈ Rn2. For p < 2, the running

time is Õ(nd+ (d/(εδ))O(1)), and for p = 2 the running time is O(nnz(A) + (d/(εδ))O(1)).

Proof. We first consider the case of p = 2. Here, we can use the fact that the TensorSketch

random matirx S ∈ Rk×n is a subspace embedding for the column span of [Ā, b̄] when

k = Θ(d/ε2) [DSSW18], meaning that ‖S[Ā, b̄]‖2 = (1 ± ε)‖[Ā, b̄]x‖2 for all x ∈ Rd+1 with

probability 9/10. Moreover, SĀ and Sb̄ can be computed in O(nnz(A)+nnz(b)) = O(nnz(A))

by [DSSW18] since they are the difference of Kronecker products. As a result, we can simply

solve the regression problem x̂ = arg minx ‖SĀx−Sb̄‖2 in poly(kd) time to obtain the desired

x̂.

For p < 2, we use the algorithm in Figure 26.3, where the crucial leverage score

sampling procedure to obtain Π in step 7 of Figure 26.3 is described in Lemma 26.4.2.

Our high level approach follows the general `p sub-space embedding approach of [DDH+09].

Namely, we first compute a low-distortion embedding (S1⊗S2)(F ⊗ 1− 1⊗F ). By Lemma

26.9.1, using sparse-p stable transformations S1, S2, we obtain the desired poly(d) distortion
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embedding into Rk2 , where k = poly(d/ε). Note that computing (S1⊗S2)(F ⊗1−1⊗F ) can

be done in O(nnz(A)+nnz(b)+n) time using the fact that (S1⊗S2)(F ⊗1) = S1F ⊗S21. As

shown in [DDH+09], it follows thatM = (F⊗1−1⊗F )R−1 is an `p well-conditioned basis for

the column span of (F ⊗1−1⊗F ) (see definition 26.2.4). Then by Theorem 5 of [DDH+09],

if we let Π̂ be the diagonal row sampling matrix such that Π̂i,i = 1/q
1/p
i for each i with

probability qi ≥ min{1, r‖Mi,∗‖pp/‖M‖pp} (and Π̂i,i = 0 otherwise) for r = poly(d log(1/δ)/ε),

then with probability 1 − δ we have ‖Π̂(F ⊗ 1 − 1 ⊗ F )x‖p = (1 ± ε)‖(F ⊗ 1 − 1 ⊗ F )x‖p
for all x ∈ Rd+1. First assume that we had such a matrix.

Since (Āx− b̄) is in the column span of (F⊗1−1⊗F ) for any x ∈ Rd+1, it follows that

‖Π̂(Āx− b̄)‖p = (1± ε)‖(Āx− b̄)‖p for all x ∈ Rd, which completes the proof of correctness.

By Lemma 26.4.2, we can obtain a row sampling matrix Π in time Õ(nd+poly(d/ε)), except

that the entries of Π are instead equal to either 0 or 1/q̃
1/p
i where q̃i = (1± ε2)qi. Now let Π̂

be the idealized row sampling matrices from above, with entries either 0 or 1/q
1/p
i as needed

for Theorem 5 of [DDH+09]. Note that for any matrix Z each row of Π̂Zx is equal to ΠZx

times some constant 1− ε2 < c < 1+ ε2. It follows that ‖Π(Āx− b̄)‖p = (1± ε2)‖Π̂(Āx− b̄)‖p
for all x ∈ Rd, and thus the objective function is changed by at most a (1± ε2) term, which

is simply handled by a constant factor rescaling of ε.

Finally, we can solve the sketched regression problem ‖Π(Āx−b̄)‖p which has poly(d/ε)

constraints and d variables in time poly(d/ε) using linear programming for p = 1 (see [CLS19]

for the state of the art linear program sovler), or more generally interior point methods for

convex programming for p > 1 (see [BCLL18] for the state of the art `p solver. Finally,

the failure probability bound holds by union bounding over all the aforementioned results,

and noting that the lowest probability event was the even that S1 ⊗ S2 was a low distortion
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embedding via Lemma 26.9.1. This completes the proof of the theorem.

26.9.1 Proof of Fast Sampling Lemma 26.4.2

We now provide a full proof of the main technical lemma of Section 26.4. The sampling

algorithm is given formally in Algorithm 26.5. The following proof of Lemma 26.4.2 analyzes

each step in the process, demonstrating both correctness and the desired runtime bounds.

Lemma 26.4.2Given R ∈ R(d+1)×(d+1) and F = [A, b] ∈ Rn×(d+1), there is an algo-

rithm that, with probability 1 − δ for any δ > n−c for any constant c, produces a diagonal

matrix Π ∈ Rn2×n2 such that Πi,i = 1/q̃i
1/p with probability qi ≥ min{1, r‖Mi,∗‖pp/‖M‖pp} and

Πi,i = 0 otherwise, where r = poly(d/ε) and M = (F ⊗ 1− 1⊗ F )R−1, and q̃i = (1± ε2)qi

for all i ∈ [n2]. The total time required is Õ(nnzA+ poly(d/ε)).

Proof. Our proof proceeds in several steps. We analyze the runtime concurrently with out

analysis of correctness.

Reducing the number of Columns of R−1 We begin by generating a matrix G ∈

R(d+1)×ξ of i.i.d. N(0, 1/
√
ξ) Gaussian random variables. We then compute Y ← R−1G in

Õ(d2) time. We first claim that it suffices to instead `p sample rows of C = (F⊗1−1⊗F )Y =

MG. Note that each entry |Ci,j|p is distributed as gp‖Mi,∗‖p2 where G N(0, 1/
√
ξ) Gaussian,

which holds by the 2-stability of Gaussian random variables. Note that E[|g|p] = Θ(1/ξ),

so E[‖Ci,∗‖pp] = ‖Mi,∗‖p2, and by sub-exponential concentration (see Chapter 2 of [Wai19]),

we have that ‖Ci,∗‖pp = (1± 1/10)‖Mi,∗‖p2 with probability 1− 1/ poly(n), and we can union
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bound over this holding for all i ∈ [n2]. By relationships between the p norms, we have

‖Mi,∗‖pp/d < ‖Mi,∗‖p2 < ‖Mi,∗‖pp, thus this changes the overall sampling probabilities by a

factor between Θ(1/d2) and Θ(d2). Thus, we can safely oversample by this factor (absorbing

it into the value of r) to compensate for this change in sampling probabilities.

Sampling a row from C. To sample a row from C, the approach will be to sample

an entry Ci,j of C with probability proportional to ‖Ci,j‖pp/‖C‖pp. For every (i, j) sampled,

we sample the entire i-th row of j, so that the j-th row is indeed sampled with probability

proportional to its norm. Thus, it suffices to sample entries of C such that each Ci,j is

chosen with probability at least min{1, r‖Ci,j‖pp/‖C‖pp}. First note that the i-th column of

C = (F ⊗ 1 − 1 ⊗ F )Y can be rearranged into a n × n matrix via Lemma 26.8.1, given

by (FY∗,i1
> − 1Y >∗,iF

>). To `p sample a coordinate from C, it suffices to first `p sample a

column of one of the above matrices, and then `p sample an entry from that column.

To do this, we first compute FY ∈ Rn×ξ, which can be done in time Õ(nnzA) because

Y only has ξ = Θ(log(n)) columns. We then compute Z(FY∗,i1
> − 1Y >∗,iF

>) ∈ R1×n for all

i ∈ [d], where Z ∈ R1×n is a fixed vector of i.i.d. p-stable random variables. Once FY

has been computed, for each i ∈ [ξ] it takes O(n) time to compute this n-dimensional

vector, thus the total time required to compute all ξ vectors is Õ(n). We repeat this process

t = O(log(n)) times with different p-stable vectors Z1, . . . , Z>, and take the median of each

coordinate of Zj(FY∗,i1
> − 1Y >∗,iF

>) ∈ Rn, j ∈ [t], divided by the median of the p-stable

distribution (which can be approximated to (1 ± ε) error in poly(1/ε) time, see Appendix

A.2 of [KNW10b] for details of this). This is done in Step 7 of Algorithm 26.5. It is standard

this this gives a (1 ± 1/10) approximation the the norm ‖(FY∗,i1> − 1Y >∗,iF
>)∗,l‖p for each
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i ∈ [d], l ∈ [n] with probability 1− 1/ poly(n) (See the Indyk median estimator [Ind06]).

Now let σi,l be our estimate of the norm ‖(FY∗,i1> − 1Y >∗,iF
>)∗,l‖p, for all i ∈ [ξ] and

l ∈ [n]. We now sample a columns (i, l) ∈ [ξ]× [n], where each (i, l) is chosen with probability

σi,l/(
∑

i′,l′ σi′,l′). We repeat this process Θ(r) times, to obtain a multi-set T ⊂ [ξ] × [n] of

sampled columns (i, l). We stress that T is a multi-set, because the same column (i, l) may

have been chosen for multiple samples, and each time it is chosen we must independently

sample one of the entries of that column. For any (i, l) ∈ T , we define W (i,l) = (FY∗,i1
> −

1Y >∗,iF
>)∗,l = (FY∗,i − 1(FY )l,i).

`p Sampling an entry from W (i,l). Now fix any (i, l) ∈ T . We show how to `p sample

an entry from the vector W (i,l) ∈ Rn. In other words, for a given j ∈ [n], we want to sample

W
(i,l)
j ∈ [n] with probability at least r|W (i,l)

j |p/‖W (i,l)‖pp. We do this in two steps. First, let

S0 ∈ Rk×n be the count-sketch for heavy hitters of definition 26.8.2, where k = poly(r). Note

that we can compute S0FY and S01 in time Õ(n), since FY ∈ Rn×ξ. Once this is done, for

each (i, l) ∈ T we can compute S0W
(i,l) in O(k) time by computing (S01(FY )l,i) (note that

FY and S01 are already computed), and subtracting it off from the i-th column of S0FY , so

the total time is Õ(n+ poly(d/ε)) to compute S0W
(i,l) for all (i, l) ∈ |T |. Now we can obtain

the set Q(i,l)
0 ⊂ [n] containing all the Ω̃(1/

√
k) heavy hitters in W (i,l) with high probability.

We can then explicitly compute the value of W (i,l)
j for all j ∈ Q(i,l)

0 , and exactly compute the

set

H(i,l) =
{
j ∈ [n]

∣∣∣ |W (i,l)
j |p > β/r16‖W (i,l)‖pp

}
,

all in Õ(k) time via definition 26.8.2, where β > 0 is a sufficiently small constant (here we

use the fact that |x|p ≥ |x|2 for p ≤ 2). Note that we use the same sketch S0 to compute all
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sets Q(i,l)
0 , and union bound the event that we get the heavy hitters over all poly(d/ε) trails.

We are now ready to show how we sample an index from W (i,l). First, we estimate

the total `p norm of the items in [ni] \H(i,l) (again with the Indyk median estimator), and

call this α(i,l) as in Algorithm 26.5, which can be computed in O(|H(i,l)|) additional time

(by subtracting off the |H(i,l)| coordinates ZW (i,l)
ζ for all heavy hitters ζ ∈ H(i,l) from our

estimate σ(i,l)), and with probability α(i,l)/σ(i,l), we choose to sample one of the items of

H(i,l), which we can then sample from the distribution |W (i,l)
j |p/(∑j∈H(i,l) |W (i,l)

j |p). Since

all the σ(i,l), α(i,l)’s were constant factor approximations, it follows that we sampled such an

item with probability Ω(r|W (i,l)
j′ |p/‖C‖pp) as needed. Otherwise, we must sample an entry

from [n] \ H(i,l). To do this, we first randomly partition [n] into η = Θ(r4/ε4) subsets

Ω1,Ω2, . . . ,Ωη.

We now make the same argument made in the proof of Lemma 26.8.7, considering

two cases. In the first case, the `p mass of [n]\H(i,l) drops by a 1/r2 factor after removing the

heavy hitters. In this case, α(i,l)/σ(i,l) = O(1/r2), thus we will never not sample a heavy hitter

with probability 1−O(1/r), which we can safely ignore. Otherwise, the `p drops by less than

a 1/r2 factor, and it follows that all remaining items must be at most a β/r14 heavy hitter

over the remaining coordinates [n]\H(i,l) (since if they were any larger, they would be β/r16

heavy hitters in [n], and would have been removed in H(i,l)). Thus we can assume we are in

the second case. So by Chernoff bounds, we have
∑

j∈Ωt
|W (i,l)

j |p = Θ( 1
η

∑
j∈[n]\H(i,l) |W (i,l)

j |p)

with probability greater than 1 − exp(−Ω(r)). We can then union bound over this event

occurring for all t ∈ [η] and all (i, l) ∈ T . Given this, if we uniformly sample a t ∼ [η], and

then `p sample a coordinate j ∈ Ωt, we will have sampled this coordinate with the correct

probability up to a constant factor. We now sample such a t uniformly from η.
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To do this, we generate a diagonal matrix D ∈ Rn×n, where Di,i = 1/u
1/p
i , where

u1, . . . , un are i.i.d. exponential random variables. For any set Γ ⊂ [n], let DΓ be D with

all diagonal entries (j, j) such that j /∈ Γ set equal to 0. Now let S ∈ Rk′×n be a second

instance of count-sketch for heavy hitters of definition 26.8.2, where we set k′ = poly(k) from

above. It is known that returning j∗ = arg maxj∈Ωt\H(i,l) |(DW (i,l))j| is a perfect `p sample

from Ωt \ H(i,l) [JW18]. Namely, Pr[j∗ = j] = |W (i,l)
j |p/‖WΩt\H(i,`)‖pp for any j ∈ Ωt \ H(i,`)

. Thus it will suffice to find this j∗. To find j∗, we compute S(DW )Ωt\H(i,`) . Note that

since FY has already been computed, to do this we need only compute SDΩt\H(i,`)FY∗,i and

SDΩt\H(i,`)1(FY )`,i, which takes total time Õ(|Ωt \H(i,`)|) = Õ(n/η). We then obtain a set

Q(i,l) ⊂ Ωt \H(i,`) which contains all j with |(DW (i,l))j| ≥ Ω̃(1/
√
k′)‖(DW )Ωt\H(i,`)‖2.

As noted in [JW18], the value maxj∈Ωt\H(i,l) |(DW (i,l))j| is distributed identically

to ‖WΩt\H(i,`)‖p/u1/p where u is again an exponential random variable. Since exponen-

tial random variables have tails that decay like e−Ω(x), it follows that with probability

1 − exp(−Ω(r)) that we have maxj∈Ωt\H(i,l) |(DW (i,l))j| = Ω(‖WΩt\H(i,`)‖p/r), and we can

then union bound over the event that this occurs for all (i, l) ∈ T and Ωt. Given this it

follows that (DW (i,l))j∗ = Ω(‖WΩt\H(i,`)‖p/r). Next, for any constant c ≥ 2, by Proposi-

tion 1 of [JW18], we have ‖((DW )Ωt\H(i,`))tail(c log(n))‖2 = Õ(‖W (i,l)

Ωt\H(i,`)‖p) with probability

1− n−c, where for a vector x, x(
[t]

) is x but with the top t largest (in absolute value) entries

set equal to 0. Since there are at most c log(n) coordinates in (DW )Ωt\H(i,`) not counted in

((DW )Ωt\H(i,`))tail(c log(n)), and since (DW )j∗ is the largest coordinate in all of (DW )Ωt\H(i,`) ,

by putting together all of the above it follows that (DW )j∗ is a Ω̃(1/r)-heavy hitter in

(DW )Ωt\H(i,`) . Namely, that |(DW )j∗| ≥ Ω̃(‖(DW )Ωt\H(i,`)‖2/r). Thus, we conclude that

j∗ ∈ Q(i,l).
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Given that j∗ ∈ Q(i,l), we can then compute the value (DW (i,l))j = Dj,j(FYj,i−FYl,i)

in O(1) time to find the maximum coordinate j∗. Since |Q(i,l)| = O(k′) = O(poly(d/ε)), it

follows that the total time required to do this is Õ(n/η + poly(d/ε)). Since we repeat this

process for each (i, l) ∈ T , and |T | = Θ(r) whereas η = Θ(r4), it follows that the total

runtime for this step is Õ(n/r3 + poly(d/ε)). By [JW18], the result is a perfect `p sample

from (DW )Ωt\H(i,`) , which is the desired result. To complete the proof, we note that the

only complication that remains is that we utilize the same scaling matrix D to compute

the sampled used in each of the columns W (i,l) for each (i, l) ∈ T . However, note that

for t 6= t′, we have that DΩt and DΩt are independent random variables. Thus it suffices

to condition on the fact that the t ∈ [η] that is sampled for each of the |T | repetitions of

sampling a Ωt are distinct. But this occurs with probability at least 1/r, since |T | = Θ(r)

and η = Θ(r4). Conditioned on this, all |T | samples are independent, and each sample

is an entry Ci,j of C such that the probability that a given (i, j) is chosen is |Ci,j|p/‖C‖pp.

Repeating this sampling Θ(r) times, we get that each Ci,j is sampled with probability at least

min{1, r|Ci,j|p/‖C‖pp}, which completes the proof of correctness. Note that the dominant

runtime of the entire procedure was Õ(nnz(A) + poly(d/ε)) as stated, and the probability of

success was 1− exp(−r) + 1/ poly(n), which we can be amplified to any 1− δ for δ > 1/nc

for some constant c by increasing the value of r by log(1/δ) and the number of columns of

the sketch G to log(1/δ), which does not effect the Õ(nnz(A) + poly(d/ε)) runtime.

Computing approximations q̃i for qi. It remains now how to compute the approximate

sampling probabilities q̃i for Θ(r) rows of C that were sampled. Note that to sample an

entry, in C, we first sampled the n× 1 submatrix W (i,l) of C which contained it, where the
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probability that we sample this submatrix is known to us. Next, if the entry of C was a

heavy hitter in W (i,l), we exactly compute the probability that we sample this entry, and

sample it with this probability. If the entry j of W (i,l) is not a heavy hitter, we first sample

an Ωt uniformly with probability exactly 1/η. The last step is sampling a coordinate from

W
(i,l)

Ωt\H(i,l) via exponential scaling. However, we do not know the exact probability of this

sampling, since this will be equal to |W (i,l)
j |p/‖W (i,l)

Ωt\H(i,l)‖pp, and we do not know ‖W (i,l)

Ωt\H(i,l)‖pp
exactly. Instead, we compute it approximately to error (1±ε2) as follows. For each (i, l) ∈ T

and α = 1, 2, . . . ,Θ(log(n)/ε4), we compute Z(α)W
(i,l)

Ωt\H(i,l) , where Z ∈ R1×|Ωt\H(i,l)| is a vector

of p-stable random variables. Again, we use the Indyk median estimator [Ind06], taking the

median of these Θ(log(n)/ε4) repetitions, to obtain an estimate of ‖W (i,l)

Ωt\H(i,l)‖pp with high

probability to (1± ε2) relative error. Each repetition requires O(|Ωt \H(i,l)|) additional time,

and since |Ωt \H(i,l)||T | = o(ε4n/r3), it follows that the total computational time is at most

an additive o(n), thus computing the q̃i’s to error (1± ε2) does not effect the overall runtime.

26.10 Missing Proofs from Section 26.5

We first give the proof of the main theorem. The proof relies on Lemma 26.10.2,

which the rest of this section will be devoted to proving.

Theorem 26.5.1 For any constant q ≥ 2, there is an algorithm which runs in time

O(
∑q

i=1 nnz(Ai) + d poly(k/ε)) and outputs a rank k-matrix B in factored form such that

‖B − A‖F ≤ (1 + ε) OPTk with probability 9/10.
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Proof. By Lemma 26.10.2, we have (1−ε)‖A−AP‖2
F ≤ ‖M−MP‖2

F +c ≤ (1+ε)‖A−AP‖2
F

for all rank k projection matrices P . In particular, we have

min
P

(1 + ε)‖A− AP‖2
F + c = (1 + ε) OPT2

k

where the minimum is taken over all rank k projection matrices. The minimizer P on the

LHS is given by the projection onto the top k singular space of M . Namely, MP = MU>U

where U is the top k singular row vectors of M . Thus ‖M −MU>U‖2
F + c ≤ (1 + ε) OPT2

k.

Moreover, we have ‖A− AU>U‖2
F ≤ (1 + 2ε)(‖M −MU>U‖2

F + c) ≤ (1 + 4ε) OPT2
k. Thus

‖A− AU>U‖F ≤ (1 +O(ε)) OPTk as needed.

For runtime, note that we first must compute M = (⊗qi=1Si)(A1⊗A2) = S1A1⊗· · ·⊗

SqAq. Now SiAi can be computed in O(nnz(Ai)) time for each i [CW13]. One all SiAi are

computed, their Kronecker product can be computed in time O(qk1k2 · · · kqd) = poly(kd/ε).

Given M ∈ Rk1···kq×d, the top k singular vectors U can be computed by computing the

SVD of M , which is also done in time poly(kd/ε). Once U is obtained, the algorithm can

terminate, which yields the desired runtime.

To complete the proof of the main theorem, we will need to prove Lemma 26.10.2.

To do this, we begin by introducing two definitions.

Definition 26.10.1. A random matrix S is called a ε-subspace embedding for a rank k

subspace V we have simultaneously for all x ∈ V that ‖Sx‖2 = (1± ε)‖x‖2.

Definition 26.10.2. A random matrix S satisfies the ε-approximate matrix product prop-

erty if, for any fixed matrices A,B, of the appropriate dimensions, we have Pr[‖A>S>SB −

A>B‖F ≤ ε‖A‖F‖B‖F ] ≥ 9/10.
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We now show that S is both a subspace embedding and satisfies approximate matrix

product, where S = ⊗qi=1Si and Si ∈ Rki×ni are count-sketch matrices.

Lemma 26.10.1. If S = (⊗qi=1Si) with Si ∈ Rki×ni, k1 = k2 = · · · = kq = Θ(qk2/ε2), then

S is an ε-subspace embedding for any fixed k dimensional subspace V ⊂ Rn with probability

9/10, and also satisfies the (ε/k)-approximate matrix product property.

Proof. We first show that S satisfies the O(ε/k, 1/10, 2)-JL moment property. Here, the

(ε, δ, `)-JL moment property means that for any fixed x ∈ Rn with ‖x‖2 = 1, we have

E[(‖Sx‖2
2−1)2] ≤ ε`δ, which will imply approximate matrix product by the results of [KN14].

We prove this by induction on q. Let k̄ = k1. First suppose S = (Q⊗ T ), where Q ∈

Rk1×n1 is a count-sketch, and T ∈ Rk′×n′ is any random matrix which satisfies E[‖Tx‖2
2] =

‖x‖2
2 (T ∈ Rk′×n′ is unbiased), and E[(‖Tx‖2 − 1)2] ≤ 1 + c/k̄ for some value c < k̄. Note

that both of these properties are satisfied with c = 4 if T ∈ Rk2×n2 is itself a count-sketch

matrix [CW13]. Moreover, these are the only properties we will need about T , so we will.

We now prove that E[‖(S ⊗ T )x‖2
2] = 1 and E[‖(S ⊗ T )x‖4

2] ≤ 1 + (c + 4)/k̄ for any unit

vector x.

Fix any unit x ∈ Rn now (here n = n1n
′), and let xj ∈ Rn′ be the vector obtained

by restricted x to the coordinates jn1 + 1 to (j + 1)n1. For any i ∈ [k1], j ∈ [k′], let

ij = (i − 1)k′ + j. Let hQ(i) ∈ [k1] denote the row where the non-zero entry in the i-th

column is placed in Q. Let σQ(i) ∈ {1,−1} denote the sign of the entry QhQ(i),i. Let δQ(i, j)
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indicate the event that hQ(i) = j. First note that

E

[∑

i,j

((Q⊗ T )x)2
ij

]
= E




k1∑

i=1

k′∑

j=1

(
n1∑

τ=1

δQ(τ, i)σQ(τ)(Txτ )j

)2



= E

[
k1∑

i=1

k′∑

j=1

n1∑

τ=1

δQ(τ, i)(Txτ )2
j

]

= E

[
n1∑

τ=1

k1∑

i=1

k′∑

j=1

δQ(τ, i)(Txτ )2
j

]

= E

[
n1∑

τ=1

‖Txτ‖2
2

]

= ‖x‖2
2

Where the last equality follows because count-sketch T is unbiased for the base case, namely

that E[‖Tx‖2
2] = ‖x‖2

2 for any x [Woo14b], or by induction. We now compute the second

moment,

E



(∑

i,j

((Q⊗ T )x)2
ij

)2

 = E




∑

i,j

(
n1∑

τ=1

δQ(τ, i)σQ(τ)(Txτ )j

)2



2


= E



(∑

i,j

n1∑

τ1,τ2

δQ(τ1, i)σQ(τ1)(Txτ1)jδQ(τ2, i)σQ(τ2)(Txτ2)j

)2



=

n1∑

τ1,τ2,τ3,τ4

E

[(∑

i,j

δQ(τ1, i)σQ(τ1)(Txτ1)jδQ(τ2, i)σQ(τ2)(Txτ2)j

)

·
(∑

i,j

δQ(τ3, i)σQ(τ3)(Txτ3)jδQ(τ4, i)σQ(τ4)(Txτ4)j

)]
.

We now analyze the above expectation. There are several cases for the expectation of each
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term. First, we bound the sum of the expectations when t1 = t2 = t3 = t4 by
n1∑

τ=1

E

[(∑

i,j

δQ(τ, i)σQ(τ)(Txτ )jδQ(τ, i)σQ(τ)(Txτ )j

)

·
(∑

i,j

δQ(τ, i)σQ(τ)(Txτ )jδQ(τ, i)σQ(τ)(Txτ )j

)]

≤
n1∑

τ=1

E
[
‖Txτ‖4

2

]
= 1 + c/k̄

Where the last equation follows from the variance of count-sketch [CW13] for the base case,

or by induction for q ≥ 3. We now bound the sum of the expectations when t1 = t2 6= t3 = t4

by

∑

τ1 6=τ2

E

[(∑

i,j

δQ(τ1, i)σQ(τ1)(Txτ1)jδQ(τ1, i)σQ(τ1)(Txτ1)j

)

·
(∑

i,j

δQ(τ2, i)σQ(τ2)(Txτ2)jδQ(τ2, i)σQ(τ2)(Txτ2)j

)]

≤
∑

τ1 6=τ2

E[‖Txτ1‖2
2‖Txτ2‖2

2/k1]

≤ E[‖Tx‖4
2/k1] ≤ (1 + c/k̄)/k1.

We can similarly bound the sum of the terms with t1 = t3 6= t2 = t4 and t1 = t4 6= t3 = t2

by (1 + c/k̄)/k1, giving a total bound on the second moment of

E[‖(Q⊗ T )x‖4
2] ≤ 1 + c/k̄ + 3(1 + c/k̄)/k1) ≤ 1 + (4 + c)/k̄

since any term with a ti /∈ {t1, t2, t3, t4} \ {ti} immediately has expectation 0. By induction,

it follows that E[(⊗qi=1Si)x‖2
2] = 1 for any unit x, and E[(⊗qi=1Si)x‖4

2] ≤ 1 + (4q + c)/k̄,

where c is the constant from the original variance of count-sketch. Setting k̄ = k1 = · · · =

kq = Θ(qk2/ε2) with a large enough constant, this completes the proof that S = (⊗qi=1Si)
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has the O(ε/k, 1/10, 2)-JL moment property. Then by Theorem 21 of [KN14], we obtain the

approximate matrix product property:

Pr[‖A>S>SB − A>B‖F ≤ O(ε/k)‖A‖F‖B‖F ] ≥ 9/10

for any two matrices A,B. Letting A = B> = U where U ∈ Rn×k is a orthogonal basis for

any k-dimensional subspace V ⊂ Rn, it follows that

‖U>S>SU − Ik‖F ≤ O(ε/k)‖U‖2
F ≤ O(ε),

where the last step follows because U is orthonormal, so ‖U‖2
F = k. Since the Frobenius

norm upper bounds the spectral norm ‖ · ‖2, we have ‖U>S>SU − Ik‖2 ≤ O(ε), from which

it follows that all the eigenvalues of U>S>SU are in (1 − O(ε), 1 + O(ε)), which implies

‖SUx‖2 = (1 ± O(ε))‖x‖2 for all x ∈ Rn, so for any y ∈ V, let xy be such that y = Uxy,

and then ‖Sy‖2 = ‖SUxy‖2 = (1±O(ε))‖xy‖2 = (1±O(ε))‖Uxy‖2 = (1±O(ε))‖y‖2, which

proves that S is a subspace embedding for V (not the second to last inequality holds because

U is orthonormal).

Finally, we are ready to prove Lemma 26.10.2.

Lemma 26.10.2. Let S = (⊗qi=1Si) with Si ∈ Rki×ni, k1 = k2 = · · · = kq = Θ(qk2/ε2).

Then with probability 9/10 SA is a Projection Cost Preserving Sketch (PCP) for A, namely

for all rank k orthogonal projection matrix P ∈ Rd×d,

(1− ε)‖A− AP‖2
F ≤ ‖SA− SAP‖2

F + c ≤ (1 + ε)‖A− AP‖2
F

where c ≥ 0 is some fixed constant independent of P (but may depend on A and SA).
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Proof. To demonstrate that SA is a PCP, we show that the conditions of Lemma 10 of

[CEM+15] hold, which imply this result. Our result follows directly from Theorem 12 of

[CEM+15]. Note that all that is needed (as discussed below the theorem) for the proof is

that S is an ε-subspace embedding for a fixed k-dimensional subspaces, and that S satisfies

the (ε/
√
k) approximate matrix product property. By Lemma 26.10.1, we have both ε-

subspace embedding for S as well as a stronger (ε/k) approximate matrix product property.

Thus Theorem 12 holds for the random matrix S when k1 = k2 = · · · = kq = Θ(qk2/ε2),

which completes the proof.

26.11 Entry-wise Norm Low T-rank Approximation

We now demonstrate our results for low trank approximation of arbitrary input ma-

trices. Specifically, we study the following problem, defined in [VL00]: given A ∈ Rn2×n2 ,

the goal is to output a trank-k matrix B ∈ Rn2×n2 such that

‖B − A‖ξ ≤ α ·OPT . (26.1)

for some α ≥ 1, where OPT = mintrank−k A′ ‖A′ − A‖ξ,, where the trank of a matrix B is

defined as the smallest integer k such that B can be written as a summation of k matrices,

where each matrix is the Kronecker product of q matrices with dimensions n × n: B =
∑k

i=1 Ui ⊗ Vi, where Ui, Vi ∈ Rn×n.

Using Lemma 26.8.1, we can rearrange the entries in A ∈ Rn2×n2 to obtain A ∈ Rn2×n2 ,

where the (i+n(j− 1))’th row of Ā is equal to vec((A1)i,jA2), and also vectorize the matrix

Ui ∈ Rn×n and Vi ∈ Rn×n to obtain vectors ui ∈ Rn2
, vi ∈ Rn2 . Therefore, for any entry-wise
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norm ξ we have
∥∥∥∥∥

k∑

i=1

Ui ⊗ Vi − A
∥∥∥∥∥
ξ

=

∥∥∥∥∥
k∑

i=1

uiv
>
i − A

∥∥∥∥∥
ξ

Lemma 26.11.1 (Reshaping for Low Rank Approximation). There is a one-to-one mapping

π : [n] × [n] × [n] × [n] → [n2] × [n2] such that for any pairs (U, u) ∈ Rn×n × Rn2 and

(V, v) ∈ Rn×n×Rn2, if Ui1,j1 = ui1+n(j1−1) and Vi1,j1 = vi1+n(j1−1), then we have for i1, i2, j1, j2

(U ⊗ V )i1+n(i2−1),j1+n(j2−1) = (u · v>)π(i1,i2,j1,j2)

where U ⊗ V ∈ Rn2×n2 and uv> ∈ Rn2×n2.

Proof. We have

(U ⊗ V )i1+n(i2−1),j1+n(j2−1) = Ui1,j1Vi2,j2

= ui1+n(j1−1) · vi2+n(j2−1)

= (uv>)i1+n(j1−1),i2+n(j2−1)

where the first step follows from the definition of ⊗ product, the second step follows from

the connection between U, V and u, v, the last step follows from the outer product.

Therefore, instead of using trank to define low-rank approximation of the ⊗ product

of two matrices, we can just use the standard notion of rank to define it since both B and

A′ can be rearranged to have rank k.

Definition 26.11.1 (Based on Standard Notion of Rank). Given two matrices A1, A2×Rn×n,

let A ∈ Rn2×n2 denote the re-shaping of A1 ⊗ A2. The goal is to output a rank-k matrix B

such that

‖B − A‖ξ ≤ αOPTξ,k

where OPTξ,k = minrank−k A
′ ‖A′ − A‖ξ.
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In other words, B can be written as B =
∑k

i=1 uiv
>
i where ui, vi are length n2 vectors.

Combining the low-rank reshaping Lemma 26.11.1 with the main input-sparsity low-

rank approximation of [CW13], we obtain our Frobenius norm low rank approximation result.

Theorem 26.11.2 (Frobenius norm low rank approximation, p = 2). For any ε ∈ (0, 1/2),

there is an algorithm that runs in n2 poly(k/ε) and outputs a rank-k matrix B such that

‖B−A‖F ≤ (1 + ε) OPTF,k holds with probability at least 9/10, where OPTp is cost achieved

by best rank-k solution under the `p-norm.

Similarly, using the main `p low rank approximation algorithm of [SWZ17], we have

Theorem 26.11.3 (Entry-wise `p-norm low rank approximation, 1 ≤ p ≤ 2). There is an

algorithm that runs in n2 poly(k) and outputs a rank-k matrix B such that ‖B − A‖p ≤

poly(k log n) OPTp,k holds with probability at least 9/10, where OPTp is cost achieved by best

rank-k solution under the `p-norm.

Applying the bi-criteria algorithm of [CGK+17c] gives us:

Theorem 26.11.4 (General p > 1, bicriteria algorithm). There is an algorithm that runs in

poly(n, k) and outputs a rank-poly(k log n) matrix B such that ‖B−A‖p ≤ poly(k log n) OPTp

holds with probability at least 9/10, where OPTp,k is cost achieved by best rank-k solution

under the `p-norm.

Finally using the low-rank approximation algorithm for general loss functions given

in [SWZ18], we obtain a very general result. The parameters for the loss function described

in the following theorem are discussed in Section 26.12.
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Theorem 26.11.5 (General loss function g). For any function g that satisfies Defini-

tion 26.12.1, 26.12.2, 26.12.3, there is an algorithm that runs in O(n2 · Treg,g,n2,k,n2) time

and outputs a rank-O(k log n) matrix B ∈ Rn2×n2 such that

‖B − A‖g ≤ atig,k ·mong · regg,k ·O(k log k) ·OPTg,k,

holds with probability 1− 1/ poly(n).

Hence, overall, the strategy is to first reshape A = A1 ⊗ A2 into Ā, then compute

B̄ =
∑k

i=1 uiv
>
i using any of the above three theorems depending on the desired norm, and

finally reshape ui and vi back to Ui ∈ Rn×n and Vi ∈ Rn×n. It is easy to verify that the

guarantees from Theorems 26.11.5, 26.11.3, 26.11.2 are directly transferable to the guarantee

of the trank−k approximation shown in Eq 26.1.

26.12 Properties for General Loss Functions for Low trank Approx-
imation

We re-state three general properties (defined in [SWZ18]), the first two of which are

structural properties and are necessary and sufficient for obtaining a good approximation

from a small subset of columns. The third property is needed for efficient running time.

Definition 26.12.1 (Approximate triangle inequality). For any positive integer n, we say

a function g(x) : R → R≥0 satisfies the atig,n-approximate triangle inequality if for any

x1, x2, · · · , xn ∈ R we have

g

(
n∑

i=1

xi

)
≤ atig,n ·

n∑

i=1

g(xi).
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Definition 26.12.2 (Monotone property). For any parameter mong ≥ 1, we say function

g(x) : R → R≥0 is mong-monotone if for any x, y ∈ R with 0 ≤ |x| ≤ |y|, we have g(x) ≤

mong ·g(y).

Definition 26.12.3 (Regression property). We say function g(x) : R → R≥0 has the

(regg,d, Treg,g,n,d,m)-regression property if the following holds: given two matrices A ∈ Rn×d

and B ∈ Rn×m, for each i ∈ [m], let OPTi denote minx∈Rd ‖Ax−Bi‖g. There is an algorithm

that runs in Treg,g,n,d,m time and outputs a matrix X ′ ∈ Rd×m such that

‖AX ′i −B‖g ≤ regg,d ·OPTi,∀i ∈ [m]

and outputs a vector v ∈ Rd such that

OPTi ≤ vi ≤ regg,d ·OPTi,∀i ∈ [m].

The success probability is at least 1− 1/ poly(nm).
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Algorithm 26.4 Algorithm to `p sample Θ(r2) entires of ρ = (A1 ⊗ · · · ⊗ Aq)x′ − b
1: procedure Residual `p sample(ρ, r2)
2: r3 ← Θ(r2 logq

2

(n)/δ).
3: Generate i.i.d. p-stable vectors Z1,j, Z2,j, . . . , Zq,j ∈ Rn for j ∈ [τ ] for τ = Θ(log(n))
4: T ← ∅ . sample set to return
5: Pre-compute and store Zi,jAi ∈ R1×di for all i ∈ [q] and j ∈ [τ ]
6: Generate count-sketches for heavy hitters Si ∈ Rk×ni of Definition 26.8.2 for all
i ∈ [q], where k = O(log2(n)r

O(1)
3 ).

7: for t = 1, 2, . . . , r3 do
8: s = (s1, . . . , sq)← (∅, . . . , ∅) . next sample to return
9: wj ←

(
(In1)⊗ (

⊗q
k=2 Z

k,j)ρ
)
∈ Rn1 . In ∈ Rn×n is identity

10: Define w ∈ Rn1 by wl = medianj∈[τ ]{|wjl |} for l ∈ [n1]

11: Sample j∗ ∈ [n1] from the distribution
(
|w1|p
‖w‖pp

, |w2|p
‖w‖pp

, . . . ,
|wn1 |

p

‖w‖pp

)

12: s1 ← j∗

13: for i = 2, . . . , q do
14: for j ∈ [τ ] do
15: Write e>ak ∈ R1×nk as the standard basis vector

16: vji ← Si
(

(
⊗i−1

k=1 e
>
ak

)⊗ (Ini)⊗ (
⊗q

k=i+1 Z
k,j)ρ

)
∈ Rk

17: Compute heavy hitters Hi,j ⊂ [ni] from vji . Definition 26.8.2
18: βji ←

(
(
⊗i−1

k=1 e
>
ak

)⊗ (
⊗q

k=i Z
k,j)ρ

)
∈ R

19: end for
20: Define βi ∈ Rk′ by βi = medianj∈[τ ]{|βji |p}
21: Hi = ∪τj=1Hi,j

22: γi ← medianj∈[τ ]

(
(
⊗i−1

k=1 e
>
ak

)⊗ Zi,j
[ni]\Hi ⊗ (

⊗q
k=i+1 Z

k,j)ρ
)
∈ R

23: if with probability 1− γi/βi then
24: Draw ξ ∈ Hi with probability

medianj∈τ
∣∣∣
(

(
⊗i−1

k=1 e
>
ak

)⊗ (e>ξ )⊗ (
⊗q

k=i+1 Z
k,j)ρ

)∣∣∣
p

∑
ξ′∈Hi medianj∈τ

∣∣∣
(

(
⊗i−1

k=1 e
>
ak

)⊗ (e>ξ′)⊗ (
⊗q

k=i+1 Z
k,j)ρ

)∣∣∣
p

25: si ← ξ
26: else . si was not sampled as a heavy hitter
27: Randomly partition [ni] into Ωi

1,Ω
i
2, . . . ,Ω

i
η with η = Θ(r2

3)
28: Sample t ∼ [η] uniformly at random
29: for j ∈ Ωt \Hi do
30: θj = medianl∈[τ ]

(
|(⊗i−1

k=1 e
>
ak

)⊗ (e>j )⊗ (
⊗q

k=i+1 Z
k,l)ρ|p

)

31: end for
32: Sample si ← j∗ from the distribution { θj∑

j′∈Ωt\Hi
θj′
}j∈Ωt\Hi

33: end if
34: end for
35: T ← S ∪ s where s = (s1, . . . , sq)
36: end for
37: return sample set T
38: end procedure
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Algorithm 26.5 Algorithm to `p sample Θ(r) rows of M = (F ⊗ 1− 1⊗ F )R−1

1: procedure `p sample(F = [A, b] ∈ Rn×d, R−1 ∈ Rd+1×d+1, r)
2: Generate a matrix G ∈ Rd+1×ξ of i.i.d. N(0, 1/

√
ξ) Gaussian random variables, with

ξ = Θ(log(n))
3: Y ← R−1G ∈ Rd+1×ξ

4: C ← (F ⊗ 1− 1⊗ F )Y
5: Reshape i-th column C∗,i into (FY∗,i1

> − 1(Y∗,i)
>F>) ∈ Rn×n

6: Generate Z ∈ Rt×n i.i.d. p-stable for t = Θ(log(n)) . Definition 26.2.1
7: For all (i, l) ∈ [ξ]× [n], set

σi,l ← median
τ∈[t]

(∣∣(Z(FY∗,i1
> − 1(Y∗,i)

>F>)τ,l
∣∣p

(median(Dp))p

)

. Indyk Estimator [Ind06]
8: Set W (i,l) ← (FY∗,i1

> − 1Y >∗,iF
>)∗,l = FY∗,i − 1(FY )l,i ∈ Rn

9: for j = 1, . . . ,Θ(r) do
10: Sample (i, l) from distribution σi,l/

(∑
i′,l′ σi′,l′

)
.

11: end for
12: T ← multi-set of samples (i, l)
13: Generate S0 ∈ Rk×n S ∈ Rk′×n count-sketches for heavy hitters with k = rO(1), k′ =

kO(1). . Definition 26.8.2
14: Generate u1, . . . , un i.i.d. exponential variables.
15: D ← Diag(1/u

1/p
1 , . . . , 1/u

1/p
n ) ∈ Rn×n.

16: for each sample (i, l) ∈ T do
17: Compute S0W

(i,l) and obtain set of heavy hitters Q(i,l)
0 ⊂ [n]

18: Compute W (i,l)
j exactly for all j ∈ Q(i,l)

0 , to obtain true heavy hitters H(i,l).
19: Compute

αi,l ← median
τ∈[t]




∣∣∣Zτ,∗W (i,l) −∑ζ∈H(i,l) Zτ,ζW
(i,l)
ζ

∣∣∣
p

(median(Dp))p




20: if With prob 1− α(i,l)/σ(i,l), sample a heavy item j∗ ← j then
21: Sample a heavy item j∗ ← j from the distribution |W (i,l)

j |p/∑j∈H(i,l)
|W (i,l)

j |p.
22: return The row ((l − 1)n+ j∗) . Note that C(l−1)n+j∗,∗ contains W

(i,l)
j∗

23: else
24: Randomly partition [n] into Ω1,Ω2, . . . ,Ωη with η = Θ(r4/ε4).
25: Sample t ∼ [η] uniformly at random.
26: Compute S(DW (i,l))Ωt\H(i,l) , and set Q(i,l) ⊂ Ωt \H(i,l) of heavy hitters.
27: j∗ ← arg maxj∈Q(i,l)(DW (i,l))j

28: return The row ((l − 1)n+ j∗) . Note that C(l−1)n+j∗,∗ contains W
(i,l)
j∗

29: end if
30: end for
31: end procedure
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Chapter 27

Dynamic k-means Clustering

We consider the k-means clustering problem in the dynamic streaming setting, where

points from a discrete Euclidean space {1, 2, . . . ,∆}d can be dynamically inserted to or

deleted from the dataset. For this problem, we provide a one-pass coreset construction

algorithm using space Õ(k · poly(d, log ∆)), where k is the target number of centers. To

our knowledge, this is the first dynamic geometric data stream algorithm for k-means using

space polynomial in dimension and nearly optimal (linear) in k.

This part is based upon the following previous publication

• Wei Hu, Zhao Song, Lin F. Yang, Peilin Zhong

Nearly Optimal Dynamic k-Means Clustering for High-Dimensional Data.

Manuscript 2018 [HSYZ18]
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27.1 Introduction

Clustering is one of the central problems in unsupervised learning. The idea is to

partition data points into clusters in the hope that points in the same cluster are similar

to each other and points in different clusters are dissimilar. One of the most important

approaches to clustering is k-means, which has been extensively studied for more than 60

years and has a wide range of applications (see e.g. [Jai10] for a survey). Given a set of

points Q ⊂ Rd, the k-means problem asks for a set of k centers Z ⊂ Rd such that the sum

of squares of distances between data points to their closest centers is minimized, i.e., it tries

to solve min
Z⊂Rd,|Z|=k

cost(Q,Z), where cost(Q,Z) is a cost function defined as:

cost(Q,Z) :=
∑

q∈Q

min
z∈Z

dist2(q, z).

Here dist(·, ·) stands for the Euclidean distance.

A major challenge in dealing with massive datasets is that the entire input data can

be too large to be stored. A standard model of study in such settings is the streaming

model, where data points arrive and are processed one at a time, and only a small amount

of useful information (i.e., a sketch) about the data is maintained. See e.g. [Mut05b] for an

introduction to the streaming model.

In this paper we study the k-means problem over dynamic data streams [Ind04], where

data points from a discrete space {1, 2, . . . ,∆}d can be either inserted to or deleted from the

dataset. A standard approach to solving k-clustering problems like k-means and k-median

in the streaming setting is to maintain an ε-coreset, which is a small number of (weighted)

points whose cost with respect to any k centers is a (1 + ε)-approximation to the cost of

the entire dataset on the same k centers. As a consequence, at the end of the stream, we
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only need to find an approximate k-means solution on the coreset, which is automatically an

approximate solution on the entire dataset. Hence our goal is to design an efficient method

to maintain an ε-coreset over a dynamic data stream using as small space as possible.

27.1.1 Our Result

Theorem 27.1.1 (Main theorem, restatement of Theorem 27.6.22 in Section 27.6). Let

ε ∈ (0, 1/2), k,∆ ∈ N+, and L = log ∆. For dynamic data stream consisting of insertions

and deletions of points in [∆]d, there is an algorithm which uses a single pass over the stream

and on termination outputs a weighted set S with a positive weight for each point therein, such

that with probability at least 0.9, S is an ε-coreset for k-means of size O(kε−2d4L2 log(kdL)).

The algorithm uses Õ(k) · poly(d, L, ε−1) bits in the worst case.

To our knowledge, this is the first algorithm for k-means in dynamic data streams

that uses space polynomial in data dimension d and nearly optimal (linear)1 in the number

of clusters k. Previous algorithms for streaming k-means either require space exponential in

d or only work for insertion-only streams.2 See Section 27.1.3 and Section 27.7 for detailed

discussions of previous results.

27.1.2 Our Techniques

At a high level our algorithm is based on a framework called sensitivity sampling,

which was proposed by [FL11]. For a set Q ⊆ [∆]d, the sensitivity of every point q ∈ Q is

1It is easy to see that k points are needed in a coreset – when there are only k points in the dataset, the
optimal k-means cost is 0, so a coreset has to contain all k points.

2It is also possible to obtain an Õ(k2 · poly(d)) space algorithm for dynamic streams by combining the
techniques from [Che09] and [BFL+17].
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defined as

s(q) := max
Z⊂Rd,|Z|=k

dist2(q, Z)∑
p∈Q dist2(p, Z)

.

Namely, s(q) represents how “sensitive” the cost can be to the removal of point q. A crucial

result shown by [FL11, BFL16] is that once we know a good upper bound on each point’s sensi-

tivity, there is a sampling method to construct an ε-coreset. Specifically, if we know an upper

bound s′(q) ≥ s(q) for each q ∈ Q, we can sample q with probability s′(q)/(
∑

p∈Q s
′(p)). Let

R be a set of i.i.d. samples from this procedure with |R| ≥ Ω̃
(∑

q∈Q s
′(q)/ε2

)
, and each

sample q is assigned a weight
∑
p∈Q s

′(p)

|R|s′(q) . Then with high probability R is an ε-coreset for

Q. Note that if
∑

q∈Q s
′(q) = Õ(k · poly(d)), then an Õ(k · poly(d))-size ε-coreset can be

constructed in this way. The formal description of this result is given in Theorem 27.2.1.

We give an efficient method to obtain sensitivity upper bounds s′(·) such that: (i)
∑

q∈Q s
′(q) is small, (ii) we can implement the sensitivity sampling procedure in the dy-

namic streaming setting. Then we are able to construct a coreset according to the previous

paragraph.

The key intuition in our sensitivity estimation is the following. Imagine that there

is a small region that is very dense, i.e., it contains a lot of points. Then the sensitivity of

every point in that region must be low, because that point can be well represented by other

points in the same small region. Therefore, the problem of finding sensitivity upper bound

for a point boils down to figuring out the “right” region this point belongs to that can be

considered “dense.” Intuitively the sensitivity of this point depends on the size of this dense

region – the smaller the size, the smaller the sensitivity.

We make this intuition formal by using a hierarchical grid structure similar to [FS05,

BFL+17]. This structure is illustrated in Figure 27.1. The top-level (level 0) grid consists of
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Figure 27.1: The grid structure over the point set. From top to bottom, three levels of grids are
shown. Each cell splits into 2d cells in the next level.
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cells that are d-dimensional cubes of side-length ∆, and each cell in level i− 1 splits into 2d

cells in level i. Each cell in level i has side-length ∆/2i. For a cell in level i, we say that it

is heavy if it contains at least Ti = Θ
(
d2

k
· OPT

(∆/2i)2

)
points in Q, where OPT is the optimal

cost of the k-means problem.3 Since Ti > Ti−1, we know that if a cell in level i is heavy,

then its parent cell in level i − 1 is heavy as well. Therefore the set of all heavy cells in all

levels form a tree. Now for a point p ∈ Q, denote by ci(p) the cell in level i that contains

p, and then define j to be the smallest level index such that cj(p) is not heavy; then we

show an upper bound on the sensitivity s(p) solely based on this index number j, namely

s(p) ≤ s′(p) = Θ(d3/Tj). Furthermore, we prove that the sum of our sensitivity upper

bounds is small:
∑

p∈Q s
′(p) = O (kd3 log ∆), which satisfies our requirement. To establish

these bounds we need the total number of heavy cells to be small, for which we apply a

random shift of grid at the beginning, as illustrated in Figure 27.2.

To implement the above sensitivity sampling method in the dynamic streaming setting

when the dataset is updated by insertions and deletions of points, the key difficulties are: 1)

we do not know the value of OPT, and it changes when the underlying dataset is updated;

2) we need to compute the sensitivity upper bounds and to sample points at the same time

using limited space.

Let us first assume OPT is known and give an algorithm to implement our sensitivity

sampling procedure in the dynamic streaming setting. Our algorithm makes crucial use of

the k-set data structure in [Gan05] for counting distinct elements in a dynamic stream.

The k-set data structure ensures that if the number of distinct elements is at most some

3We assume for now that we know OPT. Our actual algorithm uses exponential search to guess the value
of OPT.
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predetermined parameter, it will return all distinct elements and their frequencies; otherwise

it will return FAIL. We summarize its guarantee in Lemma 27.6.1. Note that in order

to implement sensitivity sampling, we need to know which cells are heavy. Our algorithm

dynamically tracks all heavy cells, using the k-set structure as a building block. Then the

sensitivity sampling method has two stages: first sample a level i (with an appropriate

probability for each level), and then uniformly sample a point from all points associated

with level i, i.e., all points p such that ci(p) is not heavy and ci−1(p) is heavy. (Note that for

all points associated with level i, they have the same sensitivity upper bounds, which means

uniformly sampling a point from them is enough.) In order to do uniform sampling, we also

maintain for each level i a uniformly random subset of points associated with i. Therefore

it suffices to choose a point uniformly at random from this subset once i is chosen.

For the issue of not knowing OPT, we run in parallel multiple copies of our sampling

algorithm for different guesses of OPT: 1, 2, 4 . . . ,∆d · d∆. Our sampling algorithm ensures

that when the guessed value is less than OPT but not too far away, the required space is

small. For other guesses, the required space might be a lot, but since we have a space budget,

our algorithm can return FAIL when the space runs out. Since at least one guess is accurate,

at least one copy of the algorithm will succeed and output a small ε-coreset.

27.1.3 Related Work

It is well known that exactly solving k-means is NP-hard even for k = 2 or d = 2

[ADHP09, MNV09]. The most successful algorithm used in practice is Lloyd’s algorithm,

which is also known as “the k-means method” [Llo82]. Because of the NP-hardness, various

attempts were made on approximation algorithms. [KMN+02] proved that a very simple
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randomly shift heavy cell

only small number of cells

containing many points

Figure 27.2: Random shift of grid brings down the number of heavy cells. In the left panel, we
have a bad alignment of points and grids such that many cells contain lots of points. In the right
panel, after the random shift, only two cells contain many points.

local search heuristic achieves (9 + ε)-approximation in polynomial time for any fixed ε > 0.

When d is a constant [FRS16, CAKM16] or k is a constant [FMS07, KSS10, FL11], (1 + ε)-

approximation can be achieved in polynomial time.

There is a line of work studying k-means and k-median in insertion-only streams,

e.g., [BS80a, GMMO00, COP03, BDMO03, AHPV04, HPM04, HPK05, Che09, FL11, FS12,

AMR+12, BFL16]. There also have been a lot of interests in dynamic streaming algorithms

for other problems, e.g. [BYJK+02, FKM+05, Bas08, KL11, AGM12a, AGM12b, GKP12,

GKK12, AGM12b, BKS12a, CMS13, AGM13, Moi14a, BGS15, BHNT15, BS16, ACD+16,

ADK+16, BWZ16, KLM+17, SWZ17, SWZ19b]. In addition, k-means and k-median were

studied in various different settings, e.g., [CCGG98, IP11, BIRW16, BCMN14, SW18].

The most relevant papers are [FS05, FL11, BFL16, BFL+17]. [FS05] designed an

algorithm to maintain an ε-coreset of size kε−O(d) for k-means and k-median. [FL11] intro-

duced the sensitivity sampling framework for coreset construction, and their approach was

further improved by [BFL16], but both of them only work for insertion-only streams and do
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not apply to dynamic streams. [BFL+17] focused on the k-median problem and constructed

a coreset of size O(k · poly(d, log ∆)) in the dynamic streaming setting, but their technique

heavily relies on k-median and cannot be extended to k-means. In Section 27.7 we explain

in detail the limitations of previous approaches.

27.1.4 Roadmap

In Section 27.2, we introduce necessary notation and preliminaries. In Section 27.3, we

give the offline version of our algorithm. Due to the page limit, missing proofs in Section 27.3

are given in Section 27.5, and we present our dynamic streaming algorithm and its analysis

in Section 27.6.
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27.2 Preliminaries

Notation. For n ∈ N+, let [n] := {1, 2, . . . , n}. We define Õ(f) to be O
(
f · logO(1)(f)

)
.

For any x ∈ R≥0, ε ∈ (0, 1), we use (1± ε) · x to denote the interval ((1− ε) · x, (1 + ε) · x).

For any x ∈ R and a ∈ R>0, x± a denotes the interval (x− a, x+ a).

We denote by dist(·, ·) the Euclidean distance in Rd, i.e., for p, q ∈ Rd, dist(p, q) :=

‖p− q‖2. For sets P,Q ⊆ Rd and a point p ∈ Rd, we define dist(p,Q) = dist(Q, p) :=

minq∈Q dist(p, q) and dist(P,Q) := minp∈P,q∈Q dist(p, q). For any two sets Q,Z ⊆ Rd, we de-

fine cost(Q,Z) :=
∑

q∈Q dist2(q, Z). We define diam(Q) to be Q’s diameter, i.e., diam(Q) :=

maxp,q∈Q dist(p, q).

The dynamic streaming model. We consider the dynamic streaming model, defined

below.

Definition 27.2.1 (Dynamic streaming model). Let Q ⊆ [∆]d initially be an empty set.

In the dynamic streaming model, there is a stream of update operations such that the tth

operation has the form (pt,±) which indicates that a point pt ∈ [∆]d is inserted to or deleted

from the set Q, where + denotes insertion and − denotes deletion. There is no invalid

deletion during the stream.4 An algorithm is allowed a single pass over the stream. At the

end of the stream, the algorithm stores some information regarding Q. The space complexity

of an algorithm in this model is defined as the total number of bits used by the algorithm

during the stream.

4At any time during the stream, for any point p ∈ [∆]d, the number of deletions of p so far is always no
more than the number of insertions of p.
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The goal of an algorithm in this model is to store some information which can be used

for a certain computation task, while using as small space as possible. Although optimizing

the running time is not required in this model, the algorithm in the current paper is actually

efficient for each update.

In this paper we suppose that any two points in Q have different locations5, i.e., Q

is not a multiset. Our algorithm can be easily extended to allow multiple copies of a point

by blowing up the total space by an O(logM) factor, where M is an upper bound on the

number of copies.

k-means clustering. Now we introduce the k-means clustering problem and the notion

of coreset.

Definition 27.2.2 (k-means clustering). Given a point setQ ⊆ [∆]d and a parameter k ∈ N+

for the target number of centers, the goal of k-means clustering is to find a set of k points

Z ⊆ Rd such that the objective function, cost(Q,Z) :=
∑

q∈Q dist2(q, Z), is minimized. Each

point in Z is called a center. OPT is defined to be the optimal cost of the k-means clustering

problem.

However, solving the k-means problem exactly is NP-hard [ADHP09]. Oftentimes,

we only need a good approximation. For the purpose of finding an approximate solution,

an important concept is coreset, which is a small subset of (weighted) points whose k-means

solution is a good approximate solution for the entire dataset. The formal definition is the

following:

5At the end of the stream, for any point p ∈ [∆]d, the number of insertions of p is at most one more than
the number of deletions of p.
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Definition 27.2.3 (Coreset for k-means). Given Q ⊆ [∆]d, k ∈ N+ and ε > 0, a set of

point-weight pairs S = {(s1, w1), (s2, w2), . . . , (sm, wm)} ⊂ [∆]d × R>0 is an ε-coreset for Q,

where wi is the weight of si, if S satisfies

∀Z ⊂ Rd, |Z| = k :
∣∣ cost(S,Z)− cost(Q,Z)

∣∣ ≤ ε · cost(Q,Z),

where cost(S,Z) :=
∑m

i=1wi dist2(si, Z). The size of the coreset is |S|.

The main problem studied in this paper is how to construct a small coreset for k-

means over a dynamic data stream. The formal description is the following.

Definition 27.2.4 (Coreset for k-means over a dynamic stream). Given a point set Q ⊆ [∆]d

described by a dynamic stream of operations (Definition 27.2.1), a parameter k ∈ N+ for

the target number of centers, and an error parameter ε ∈ (0, 0.5). The goal is to design an

algorithm in the dynamic streaming model which can with probability at least 0.9 output a

small size k-means ε-coreset (Definition 27.2.3) for Q using as small space as possible.

Sensitivity sampling based coreset construction. Let us briefly review the coreset

construction framework proposed by [FL11, BFL16]. Given Q ⊆ [∆]d and k ∈ N+, the

sensitivity of a point p ∈ Q is defined as:

s(p) = max
Z∈Rd,|Z|=k

dist2(p, Z)∑
q∈Q dist2(q, Z)

.

The following theorem gives guarantee of a sensitivity sampling based coreset construction.

Theorem 27.2.1 ([FL11, BFL16]). Given a set of points Q ⊆ [∆]d and a parameter k,

let s(p) denote the sensitivity of each point p ∈ Q. For each p ∈ Q, let s′(p) be an upper
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bound on the sensitivity of p, i.e., s′(p) ≥ s(p), and let t′ =
∑

p∈Q s
′(p). Consider a multiset

S of m i.i.d. samples from Q, where each sample chooses p ∈ Q with probability s′(p)/t′.

For each sampled point p, a weight w(p) ∈ (1 ± ε/2) · t′/(ms′(p)) is associated with p. If

m ≥ Ω(t′ε−2(log |Q| log t′+log(1/δ))), then with probability at least 1− δ, {(p, w(p)) | p ∈ S}

is an ε-coreset (Definition 27.2.3) for Q.

According to the above theorem, if we can find a good sensitivity upper bound s′(p) for

each point p, then we are able to construct a coreset with size nearly linear in t′ =
∑

p s
′(p). In

section 27.3, we give an offline algorithm which can estimate a good sensitivity upper bound

for each point, which readily implies an efficient offline coreset construction algorithm. In

Section 27.6, we show how to implement this sensitivity sampling procedure over a dynamic

stream. Notice that [BFL16] gave a sensitivity sampling framework that works for clustering

with general loss functions, and our method can be extended to those problems as well.
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27.3 An Offline Sensitivity Sampling Procedure

In this section, we consider the offline setting in which all the data points are given.

In this setting, we design a coreset construction algorithm based on sensitivity sampling.

In Section 27.6, we will show how to implement this algorithm in the dynamic streaming

setting.

27.3.1 Randomly Shifted Grids

We consider data points from [∆]d and assume without loss of generality that ∆ = 2L

for some positive integer L. The space [∆]d is partitioned by a hierarchical grid structure as

follows. The first level (level 0) of the grid contains cells with side-length ∆ such that all

the data points are contained in a single cell. For each higher level, we refine the grid by

splitting each cell into 2d equal sized sub-cells. In the finest level, i.e., the L-th level, each

cell contains a single point. We further randomly shift the boundary of the grids to achieve

certain properties, which we will show later. Formally, our grid structure is defined as the

following.

Definition 27.3.1 (Grids and cells). Let g0 = ∆. Choose a vector v uniformly at random

from [0,∆]d. Partition the space Rd into a regular Cartesian grid G0 with side-length g0 and

translate G0 such that a vertex of this grid falls on v. The grid G0 can be regarded as an

infinite set of disjoint cells, where each cell C ∈ G0 can be expressed as

[v1 + n1g0, v1 + (n1 + 1)g0)× · · · × [vd + ndg0, vd + (nd + 1)g0) ⊂ Rd

for some (n1, n2, . . . , nd) ∈ Zd. (Note that each cell is a Cartesian product of intervals.)
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For i ≥ 1, we define the regular grid Gi as the grid with side-length gi = g0/2
i aligned

such that each cell in Gi−1 contains 2d cells in Gi. The finest grid is GL where L = log2 ∆.

A cell of GL has side-length 1 and thus contains at most one data point.

For convenience, we also define G−1 to be the regular grid with side-length g−1 = 2∆,

and each cell in G−1 is a union of 2d cells in G0. Since the data points are in [∆]d, there

must be a single cell in G−1 which contains all the data points. Consider two cells C ∈ Gi

and C ′ ∈ Gj for some i, j ∈ {−1, 0, 1, . . . , L}. If C ′ ⊂ C, then C is an ancestor of C ′.

Furthermore, if i = j − 1, then C is the parent of C ′ and C ′ is a child of C. Thus every

cell which is not from GL has exactly 2d children cells. For a point p (or a set P of points),

ci(p) (or ci(P )) denotes the cell C in grid Gi which contains p (or P ). If i is clear from the

context, we will just use c(p) (or c(P )) for short.

27.3.2 Sensitivity Estimation and Coreset Construction

In Algorithm 27.1 we describe how to assign a sensitivity upper bound for every point.

It needs an estimate o of the optimal k-means cost OPT. We will show how to enumerate the

guesses o later. According to Theorem 27.2.1, it directly gives an offline coreset construction

algorithm.

We also give an alternative sampling procedure in Algorithm 27.2 which is useful for

the dynamic streaming model.

Theorem 27.3.1. Suppose that for any i ∈ {0, 1, . . . , L} and for any cell C ∈ Gi with

C ∩ Q 6= ∅, the estimated value z in line 27.1 of Algorithm 27.1 satisfies either z ∈ |C ∩

Q| ± 0.1Ti(o) or z ∈ (1± 0.01) · |C ∩Q|, and for any Qi, the estimated value q̂i in line 27.2
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Algorithm 27.1 Sensitivity Estimation

1: predetermined: a guess o ∈ [1,∆d · d∆] of the optimal k-means cost OPT
2: input: a point set Q ⊆ [∆]d, a parameter k ∈ N+

3: Impose randomly shifted grids G−1, G0, G1, . . . , GL (Definition 27.3.1).
4: Let C ∈ G−1 be the cell which contains Q, i.e., C = c(Q). Mark C as heavy.
5: for i := 0→ L− 1 do
6: Set the threshold value Ti(o) = (d/gi)

2 · o/k · 1/100.
7: for C ∈ Gi with C ∩Q 6= ∅ do
8: Let z be an estimated value of |C ∩Q| up to some precision.
9: If z ≥ Ti(o), mark C as heavy.
10: Otherwise, if all the ancestors of C are marked as heavy, mark C as crucial.
11: end for
12: end for
13: For C ∈ GL, if all the ancestors of C are marked as heavy, mark C as crucial.
14: Initialize Q0 = Q1 = · · · = QL = ∅.
15: For p ∈ Q, if ci(p) is marked as crucial, add p into set Qi and set s′(p) = 10d3/Ti(o).
16: output: Q0, Q1, . . . , QL and s′(·)

of Algorithm 27.2 satisfies either q̂i ∈ |Qi| ± 0.1εγTi(o) or q̂i ∈ (1 ± 0.01ε) · |Qi|. Suppose

o ∈ (0,OPT]. Then the set S output by Algorithm 27.2 is an ε-coreset (Definition 27.2.3)

for Q. Furthermore, with probability at least 0.93, |S| is at most

O(kε−2d4L2 log(kdL) · (OPT /o+ 1)).

27.3.3 Analysis

Now we give the proof of Theorem 27.3.1. All the missing proofs in this section are

given in Section 27.5. Let us first state some simple facts.

Fact 27.3.2. The point sets Q0, Q1, . . . , QL obtained by Algorithm 27.1 form a partition of

Q, i.e., for all p ∈ Q, there is exactly one i ∈ {0, 1, . . . , L} such that p ∈ Qi.
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Algorithm 27.2 Sensitivity Sampling Based Coreset Construction
1: predetermined: a guess o of the optimal k-means cost OPT, an error parameter ε ∈

(0, 0.5)
2: input: a point set Q ⊂ [∆]d, a parameter k ∈ N+

3: Let Q0, Q1, . . . , QL and s′(·) be the output of Algorithm 27.1.
4: Let q̂0, q̂1, . . . , q̂L be the estimated values of |Q0|, |Q1|, . . . , |QL| respectively.
5: For i ∈ {0, 1, . . . , L}, set Ti(o) = (d/gi)

2 · o/k · 1/100 (same as in Algorithm 27.1).
6: Set γ = ε/(402Ld3).
7: Let I = {i | 0 ≤ i ≤ L, q̂i ≥ γTi(o)}.
8: Let QI =

⋃
i∈I Qi. . Only consider the levels with sufficient number of points.

9: Set t′ =
∑

i∈I q̂i · 10d3/Ti(o). . Total estimated sensitivities.
10: Set m = Θ(t′ε−2Ld log t′) and initialize S = ∅. . m is the total number of samples.
11: for j = 1→ m do
12: Choose a random level i ∈ I with probability (q̂i · 10d3/Ti(o))/t

′.
13: Uniformly sample a point p from Qi.
14: Add (p, t′/(ms′(p))) to set S.
15: end for
16: output: the set S

Fact 27.3.3. For C ∈ Gi, if C is marked as heavy, then |C ∩ Q| ≥ 0.9Ti(o); otherwise

|C ∩Q| ≤ 1.1Ti(o). Similarly, if i ∈ I, then |Qi| ≥ 0.9γTi(o); otherwise |Qi| ≤ 1.1γTi(o).

Fact 27.3.4. For Qi output by Algorithm 27.1, every point p ∈ Qi is assigned the same

sensitivity upper bound s′(p) = 10d3/Ti(o).

In line 27.2 of Algorithm 27.2, we set I to be the set of levels such that there are

sufficient number of points in the crucial cells in those levels. The following lemma shows

that the point set QI (line 27.2 of Algorithm 27.2) is a good representative of the point set

Q, i.e., for any set of k centers Z, the k-means cost cost(Q,Z) is close to the cost(QI , Z).

Lemma 27.3.5. Let QI and ε be the same as in Algorithm 27.2. If o ∈ (0,OPT], then for
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any Z ⊆ Rd with |Z| = k, we have:

cost(QI , Z) ≤ cost(Q,Z) ≤ (1 + ε/10) cost(QI , Z).

Next, instead of showing s′(p) (output by Algorithm 27.1) is a sensitivity upper bound

with respect ot Q, we show that s′(p) is also an sensitivity upper bound with respect to QI .

This is even stronger since QI is a subset of Q and we have:

∀Z ⊆ Rd : |Z| = k,
dist2(p, Z)∑
q∈Q dist2(q, Z)

≤ dist2(p, Z)∑
q∈QI dist2(q, Z)

.

Lemma 27.3.6. Let QI be the same as in Algorithm 27.2. If o ∈ (0,OPT], then for all

i ∈ {0, 1, 2, . . . , L} and p ∈ Qi, we have:

max
Z⊆Rd:|Z|=k

dist2(p, Z)∑
q∈QI dist2(q, Z)

≤ 10
d3

Ti(o)
= s′(p).

Now, we explain the reason of imposing randomly shifted grids. We fix an optimal

set Z∗ = {z∗1 , z∗2 , . . . , z∗k} ⊂ Rd of k centers for the point set Q, i.e., cost(Q,Z∗) = OPT. We

call a cell C ∈ Gi a center cell if it is close to a center in Z∗, namely dist(C,Z∗) ≤ gi/(2d).

We claim that there will not be too many center cells since we randomly shift the grids. In

other words, each center of Z∗ is far from the boundary of every gird.

Lemma 27.3.7. With probability at least 0.94, the total number of center cells is at most

100kL.
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This lemma is similar to Lemma 2.2 in [BFL+17]. For completeness, we also provide

a proof in Section 27.5.

Consider the total estimated sensitivities, i.e., the sum of the sensitivity upper bounds

over all the points. Due to Theorem 27.2.1, this sum determines the size of the coreset. We

show that if the estimate o of the optimal k-means cost is close to OPT, then the total

estimated sensitivities can not be too large.

Lemma 27.3.8. Suppose the number of center cells is at most 100kL. Let Q0, Q1, . . . , QL, s
′(·)

be the output of Algorithm 27.1. Then the total estimated sensitivities satisfies

∑

p∈Q

s′(p) ≤ 4000kLd3 · (OPT /o+ 1) .

Since QI is a subset of Q, according to the above lemma, we also have
∑

p∈QI s
′(p) ≤

4000d3Lk · (OPT /o+ 1). Now, we are ready to prove Theorem 27.3.1.

Proof of Theorem 27.3.1. By Lemma 27.3.7, with probability at least 0.94, the number of

center cells is at most 100kL. In the following, we condition on this event.

Algorithm 27.2 draws m i.i.d. samples. For each sample, a point p ∈ Qi ⊆ QI is

chosen with probability

q̂i/Ti(o)∑
j∈I q̂j/Tj(o)

· 1

|Qi|
=

q̂i
|Qi| · 20 d3

Ti(o)∑
j∈I
∑

p′∈Qj
q̂j
|Qj | · 20 d3

Tj(o)

.

Each sample p is given a weight

t′

ms′(p)
=

1

m
·
∑

j∈I
∑

p′∈Qj
q̂j
|Qj | · 20 d3

Tj(o)

q̂i
|Qi| · 20 d3

Ti(o)

· q̂i
|Qi|
∈ (1± ε/4) · 1

m
·
∑

j∈I
∑

p′∈Qj
q̂j
|Qj | · 20 d3

Tj(o)

q̂i
|Qi| · 20 d3

Ti(o)

.
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Let s′′(p) = q̂i
|Qi| · 20 d3

Ti(o)
. Since q̂i/|Qi| ≥ 1/2, we know that s′′(p) is still a sensitivity upper

bound of p with respect to QI by Lemma 27.3.6. According to Algorithm 27.2, we have

t′ = 1
2

∑
p∈QI s

′′(p). Therefore, if we set m to be a sufficiently large Ω(t′ε−2Ld log t′) =

Ω(t′ε−2(log(∆d) log t′ + log(1/0.01))), then according to Theorem 27.2.1, S output by Al-

gorithm 27.2 is an ε/2-coreset for QI with probability at least 0.99. By Lemma 27.3.5,

if S is an ε/2-coreset for QI , then S is also an ε-coreset for Q. Thus, the correctness

is proved, and the overall success probability is at least 0.93 obtained by a simple union

bound. Now let us analyze the size of the coreset S. Since ∀j ∈ I, q̂j/|Qj| ≤ 2, we have
∑

j∈I
∑

p′∈Qj s
′′(p′) ≤ 2t′ ≤ 4 · 4000d3Lk · (OPT /o + 1) by Lemma 27.3.8. Thus, the size of

S is m = O(kε−2d4L2 log(kdL) · (OPT /o+ 1)).
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27.4 Conclusion

This paper gives the first k-means coreset construction in the dynamic streaming

model using space polynomial in the dimension d and nearly optimal (linear) in k. The

algorithm is based on sensitivity sampling, which we believe is a powerful tool and can have

broader applications.
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27.5 Missing Details in Section 27.3

Proof of Fact 27.3.2. Consider an arbitrary point p ∈ Q. Let C−1, C0, . . . , CL be the cells

which contain p, where ∀i ∈ {−1, 0, 1, . . . , L}, the cell Ci is from the grid Gi. According to

Algorithm 27.1, C−1 is marked as heavy and CL cannot be marked as heavy. Let l be the

largest integer such that all the cells C−1, C0, . . . , Cl−1 are marked as heavy. Then the cell

Cl must be marked as crucial, and all the cells Cl+1, Cl+2, . . . , CL can not be crucial. Thus,

we have p ∈ Ql and ∀i ∈ {0, 1, . . . , L} \ {l}, p 6∈ Qi.

Facts 27.3.3 and 27.3.4 are obvious from the algorithms, so we omit the proofs.

The following claim is useful in the proofs.

Claim 27.5.1. Let QI and γ be the same as mentioned in Algorithm 27.2. For i ∈

{0, 1, . . . , L} and any heavy cell C ∈ Gi−1, if all the ancestors of C are marked as heavy,

then we have |C ∩QI | ≥ (1− 5(L− i)γ) · |C ∩Q|.

Proof. The proof is by induction. When i = L, consider a heavy cell C ∈ GL−1 whose

ancestors are also heavy. If there is no such cell C, then the claim holds directly for i = L.

Otherwise, according to the construction of Q0, Q1, . . . , QL, ∀j ∈ {0, 1, . . . , L− 1}, we have

Qj∩C = ∅ and (Q∩C) ⊆ QL. Since C is marked as heavy, we know that |QL∩C| = |Q∩C| ≥

0.9TL−1(o) ≥ 0.9TL(o)/4. It implies that q̂L ≥ min(|QL| − 0.1εγTL(o), (1 − 0.01ε)|QL|) ≥

min(|Q ∩ C| − 0.1εγTL(o), (1 − 0.01ε)|Q ∩ C|) ≥ γTL(o). Thus, we have QL ⊆ QI which

implies that |C ∩QI | = |C ∩QL| = |C ∩Q|.

Now assume the claim is true for i + 1, i + 2, . . . , L. Consider a heavy cell C ∈ Gi−1

whose ancestors are also marked as heavy. If there is no such cell C, the claim holds directly
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for i. Now consider the case when C exists. If level i ∈ I, i.e., Qi ⊆ QI , we have

|C ∩QI | =
∑

C′∈Gi:C′ is a heavy child of C

|C ′ ∩QI |+
∑

C′∈Gi:C′ is a crucial child of C

|C ′ ∩QI |

=
∑

C′∈Gi:C′ is a heavy child of C

|C ′ ∩QI |+ |C ∩Qi|

≥ (1− 5(L− i− 1)γ)
∑

C′∈Gi:C′ is a heavy child of C

|C ′ ∩Q|+ |C ∩Qi|

≥ (1− 5(L− i− 1)γ)|C ∩Q|

≥ (1− 5(L− i)γ)|C ∩Q|.

If level i 6∈ I, i.e., Qi 6⊆ QI , we have

∑

C′∈Gi:C′ is a heavy child of C

|C ′ ∩Q| ≥ |C ∩Q| − |Qi|

≥ |C ∩Q| − 1.1γTi(o)

≥ (1− 5γ)|C ∩Q|.

Thus,

|C ∩QI | ≥
∑

C′∈Gi:C′ is a heavy child of C

|C ′ ∩QI |

≥ (1− 5(L− i− 1)γ) ·
∑

C′∈Gi:C′ is a heavy child of C

|C ′ ∩Q|

≥ (1− 5(L− i− 1)γ)(1− 5γ)|C ∩Q|

≥ (1− 5(L− i)γ)|C ∩Q|.

Proof of Lemma 27.3.5. Since QI is a subset of Q, cost(QI , Z) ≤ cost(Q,Z) is trivial. In

the following, we are trying to prove cost(Q,Z) ≤ (1 + ε/10) cost(QI , Z).
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We consider an level i 6∈ I, i.e., Qi 6⊆ QI . For a point p ∈ Qi, all the ancestors of ci(p)

must be heavy. By averaging argument, there must exist a point q ∈ ci−1(p) ∩QI such that

dist2(p, Z) ≤ 2 dist2(p, q) + 2 dist2(q, Z)

≤ 2dg2
i−1 + 2 dist2(q, Z)

≤ 2dg2
i−1 + 2

1

|ci−1(p) ∩QI |
∑

q∈ci−1(p)∩QI
dist2(q, Z) (27.1)

where the first step follows from triangle inequality, the second step follows from definition

of the grids, the last step follows from an averaging argument.

According to Claim 27.5.1, we have

|ci−1(p) ∩QI | ≥ 1

2
Ti−1(o).
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Let QN = Q \QI . We can lower bound cost(Q,Z) in the following sense,

cost(Q,Z) = cost(QI , Z) + cost(QN , Z)

= cost(QI , Z) +
∑

i 6∈I

∑

p∈Qi

dist2(p, z)

≤ cost(QI , Z) + 2
∑

i 6∈I

∑

p∈Qi


dg2

i−1 +
1

|ci−1(p) ∩QI |
∑

q∈ci−1(p)∩QI
dist2(q, Z)




≤ cost(QI , Z) + 2
∑

i 6∈I

∑

p∈Qi


dg2

i−1 +
2

Ti−1(o)

∑

q∈ci−1(p)∩QI
dist2(q, Z)




≤ cost(QI , Z) + 2
∑

i 6∈I

∑

p∈Qi


dg2

i−1 +
2

Ti−1(o)

∑

q∈QI
dist2(q, Z)




≤ cost(QI , Z) + 2
∑

i 6∈I

1.1γTi(o) ·


dg2

i−1 +
2

Ti−1(o)

∑

q∈QI
dist2(q, Z)




≤ cost(QI , Z) + 5LγTi(o) ·


dg2

i−1 +
2

Ti−1(o)

∑

q∈QI
dist2(q, Z)




= cost(QI , Z) + 5LγTi(o) ·
(
dg2

i−1 +
2

Ti−1(o)
cost(QI , Z)

)

≤ cost(QI , Z) + 5Lγ(d3o/(25k) + 8 cost(QI , Z))

≤ cost(QI , Z) + 5Lγ(d3 cost(Q,Z)/(25k) + 8 cost(QI , Z)).

where the second step follows from the definition of the cost, the third step follows from

Eq. (27.1), the fourth step follows from |ci−1(p)∩QI | ≥ Ti−1(o)/2, the fifth step follows from

(ci−1(p) ∩ QI) ⊂ QI , the sixth step follows from |Qi| ≤ 1.1γTi(o), the seventh step follows

from L+ 1−|I| ≤ L+ 1 ≤ 2L and 2 ·2 ·1.1 ≤ 5, the ninth step follows from Ti(o) = 4Ti−1(o)

and Ti(o) = (d/gi)
2 · o/k · 1/100, and the last step follows from o ≤ OPT ≤ cost(Q,Z).
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It implies that

cost(Q,Z)

cost(QI , Z)
≤ 1 + 40Lγ

1− 5Lγd3/(25k)

≤ 1 + ε/40

1− ε/40

≤ 1 + ε/10,

where the second step follows from γ ≤ ε/(402Ld3), and the last step follows from ε < 1.

Proof of Lemma 27.3.6. Let Z ⊆ Rd be an arbitrary set of k centers. Fix a point p ∈ Q.

Suppose p is in Qi, i.e., p is in a crucial cell of Gi. Let C = ci−1(p), i.e., C is the parent cell

of the crucial cell that contains p. By Algorithm 27.1, C and all of its ancestors must be

heavy. By Claim 27.5.1, C ∩QI cannot be empty. Thus, by an averaging argument, there is

a point p′ ∈ C such that

dist2(p′, Z) ≤ 1

|C ∩QI |
∑

q∈C∩QI
dist2(q, Z). (27.2)
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We have

dist2(p, Z)∑
q∈QI dist2(q, Z)

≤ 2
dist2(p′, Z)∑
q∈QI dist2(q, Z)

+ 2
dist2(p, p′)∑
q∈QI dist2(q, Z)

≤ 2

∑
q∈C∩QI dist2(q, Z)

|C ∩QI |∑q∈QI dist2(q, Z)
+ 2

dg2
i−1∑

q∈QI dist2(q, Z)

≤ 2

∑
q∈QI dist2(q, Z)

|C ∩QI |∑q∈QI dist2(q, Z)
+ 2

dg2
i−1∑

q∈QI dist2(q, Z)

= 2
1

|C ∩QI | + 2
dg2

i−1∑
q∈QI dist2(q, Z)

≤ 2
1

|C ∩QI | + 4
dg2

i−1

OPT

≤ 2
1

|C ∩QI | + 16
dg2

i

OPT

≤ 2
1

|C ∩QI | +
d3o

Ti(o)kOPT

≤ 9
1

Ti(o)
+

d3o

Ti(o)kOPT

≤ 9
1

Ti(o)
+

d3

Ti(o)

≤ 10
d3

Ti(o)

where the first step follows from triangle inequality, the second step follows from Eq. (27.2)

and p′ ∈ ci−1(p), the fifth step follows from
∑

q∈QI dist2(q, Z) ≥ (1− ε) cost(Q,Z) ≥ OPT /2

(Lemma 27.3.5), the sixth step follows from g2
i−1 ≤ 4g2

i , the seventh step follows from Ti(o) =

d2

g2
i

o
100k

, the eighth step follows from Ti(o) = 4Ti−1(o) ≤ 4.5|C ∩ QI | (Claim 27.5.1 and

|C ∩Q| ≥ 0.9Ti−1(o)), the ninth step follows from 1/k ≤ 1, o ≤ OPT.

Proof of Lemma 27.3.7. Fix an i ∈ {0, 1, . . . , L} and consider the grid Gi. For each optimal

center z∗j , we use Xj,α to denote the indicator random variable for the event that the distance

2113



from z∗j to the boundary in dimension α of the grid Gi is at most gi/(2d). Since in each

dimension, if the center is close to a boundary, it contributes a factor at most 2 to the total

number of center cells. It follows that the number of cells that have distance at most gi/(2d)

to z∗j is at most

N = 2
∑d
α=1 Xj,α .

We denote Yj,α to be 2Xj,α , then

E[N ] = E

[
d∏

α=1

Yj,α

]
=

d∏

α=1

E[Yj,α].

By using Pr[Xj,α = 1] ≤ (2gi/(2d))/gi = 1/d, we obtain

E[Yj,α] ≤ E[1 +Xj,α] = 1 + E[Xj,α] ≤ 1 + 1/d.

Thus E[N ] =
∏d

α=1 E[Yj,α] ≤ (1 + 1/d)d ≤ e. The expected number of center cells in a single

grid is at most (1 + 1/d)dk ≤ ek ≤ 3k. By linearity of expectation, the expected number of

center cells in all grids is at most ek(L+ 1) ≤ 6kL. By Markov’s inequality, the probability

that we have more than 100kL center cells in all grids is at most 0.06.
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Proof of Lemma 27.3.8. We have

∑

p∈Q

s′(p) =
L∑

i=0

∑

p∈Qi

10
d3

Ti(o)

= 10d3

L∑

i=0

1

Ti(o)

( ∑

center cell C∈Gi

|C ∩Qi|+
∑

non-center cell C∈Gi

|C ∩Qi|
)

≤ 10d3

L∑

i=0

1

Ti(o)

( ∑

center cell C∈Gi

1.1Ti(o) +
OPT

g2
i /(2d)2

)

≤ 11d3 · (# of center cells) + 4000d3Lk · OPT

o

≤ 1100d3Lk + 4000d3Lk · OPT

o

≤ 4000d3Lk ·
(

OPT

o
+ 1

)
,

where the first step follows from the definition of s′(p), the third step follows from

1. if C ∈ Gi and C ∩Qi 6= ∅, then |C ∩Qi| = |C ∩Q| ≤ 1.1Ti(o);

2. if p is in a non-center cell C ∈ Gi, then dist2(p, Z∗) ≥ g2
i /(2d)2,

the forth step follows from g2
i /d

2 = o/(100kTi(o)), the fifth step follows from that the total

number of center cells is bounded by 100kL.
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27.6 Coreset Construction over a Dynamic Stream

In this section, we show how to implement Algorithms 27.1 and 27.2 in the dynamic

streaming setting.

First, we introduce a dynamic storage structure that allows us to insert and delete

points or cells. We then use this data structure combined with hash functions to estimate

the number of points falling into each cell. Lastly, we combine them with the sensitivity

sampling procedure to obtain our final algorithm.

Algorithm 27.3 Point-cell storing procedure
1: Storing(Gi, α, β, δ):
2: Input: {((p1, l1),±), ((p2, l2),±), . . .} . lt ∈ [m̂]. Only Algorithm 27.5 uses the case for
m̂ > 1.

3: Run Distinct(α, δ/4) on {(ci(p1),±), (ci(p2),±), . . .} in parallel.
4: Set r = dlog(4α/δ)e and h1, h2, . . . , hr, ∀j ∈ [r], hj : Gi → [2α]. . hj is pairwise

independent.
5: Run r · 2α copies of Distinct(β, δ/(2α)) in parallel.
6: . Each copy is indexed by a pair (j, b) ∈ [r]× [2α]. The (j, b)-th copy is run on the

sub-stream {((p′1, l′1),±), ((p′2, l
′
2),±), . . .}, where each ((p′t, l

′
t),±) satisfies hj(ci(p′t)) = b.

7: If line 27.3 returns FAIL, output FAIL; otherwise, let C, f : C → N+ be the output of
line 27.3.

8: . C ⊂ Gi contains all the cells found, and f(C) denotes the number of points in C.
9: Initialize S ← ∅.
10: for C ∈ C with f(C) ≤ β do
11: Find j ∈ [r] s.t. ∀C ′ ∈ C, hj(C) 6= hj(C

′) and the (j, hj(C))-th copy in line 27.3 does
not FAIL.

12: If such j does not exist, output FAIL; otherwise S ← S ∪ Sj,hj(C).
13: . Here Sj,hj(C) is the set of distinct points found by the (j, hj(C))-th copy in line 27.3.
14: end for
15: Output: C ⊂ Gi, f : C→ N+, S = {(p̃1, l̃1), (p̃2, l̃2), . . .}
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27.6.1 The Dynamic Point-Cell Storing Data Structure

We introduce an algorithm that maintains a set of points and cells in a dynamic data

stream. Before that, let us recall [Gan05]’s result for finding distinct elements, which we use

as a subroutine in our algorithm.

Lemma 27.6.1 (Distinct elements [Gan05]). Given parameters M ≥ 1, N ≥ 1, s ≥ 1, δ ∈

(0, 1/2), there is an algorithm Distinct(s, δ) that requires O(s(logM +logN) log(s/δ)) bits

to process a stream of insertion/deletion of data items. For each operation (i,±) (i ∈ [N ]),

the algorithm takes O(log(s/δ)) time. M is an upper bound of the total frequency of all items

during the stream. At the end of the stream, if the number of distinct elements is at most

s, with probability at least 1− δ it returns all the distinct elements and their frequencies. It

returns FAIL otherwise.

We use Distinct as our sub-routine. We set the parameterM andN to be sufficiently

large in our case, i.e., M = N = ∆2d. In Algorithm 27.3, we describe a method which can

with probability at least 1−δ output all the non-empty cells in grid Gi when the total number

of non-empty cells is not too large (at most α). Furthermore, if the number of points in a

particular cell is not too large (at most β), the algorithm can output all the points in that

cell. Notice that Algorithm 27.3 is only a subroutine of our final algorithm and will only

work on some sub-stream of the entire data stream.

The following lemma shows the guarantee of Algorithm 27.3.

Lemma 27.6.2. Given parameters i ∈ [L], α, β ∈ N+, δ ∈ (0, 0.5), Storing(Gi, α, β, δ) (Al-

gorithm 27.3) uses O(αβdL·log2(αβ/δ)) bits to process a stream {((p1, l1),±), ((p2, l2),±), . . .}

of insertion/deletion operations of data points. At the end of the stream, if the number of
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non-empty cells in Gi is at most α, then with probability at least 1 − δ it returns the set C

of all the non-empty cells, the number of points f(C) in each cell C ∈ C, and the set S of

points in all the non-empty cells that contain at most β points. It returns FAIL otherwise.

Proof. If the number of non-empty cells of Gi at the end of the stream is more than α, then

according to line 27.3 of Algorithm 27.3 and Lemma 27.6.1, Algorithm 27.3 must output

FAIL.

Now consider the case when the total number of non-empty cells is at most α. Ac-

cording to Lemma 27.6.1, with probability at least 1− δ/4, line 27.3 of Algorithm 27.3 will

return the set C of all the non-empty cells of Gi and the number of points f(C) for each cell

C ∈ C. For each C ∈ C with |C| ≤ β, since |C| ≤ α, the probability that ∃j ∈ [r] such that

∀C ′ ∈ C, hj(C
′) 6= hj(C) is at least 1 − 1/2r ≥ 1 − δ/(4α) and furthermore the probability

that the (j, hj(C))-th copy of Distinct(β, δ/(2α)) in line 27.3 of Algorithm 27.3 will output

all the points in C is at least 1−δ/(2α). By taking union bound, the overall probability that

Algorithm 27.3 does not output FAIL is at most 1− δ/4− (δ/(2α) + δ/(4α)) · α = 1− δ.

According to Lemma 27.6.1, the space needed by line 27.3 of Algorithm 27.3 is O(αdL·

log(α/δ)) bits and the space needed of each copy in line 27.3 of Algorithm 27.3 is O(βdL ·

log(αβ/δ)) bits. Thus, the total space needed is at most O(αβdL · log2(αβ/δ)).

27.6.2 Estimating the Number of Points in Each Cell

We use Algorithm 27.3 as a subroutine and design a dynamic streaming algorithm

(Algorithm 27.4) that can estimate the number of points in each cell up to some precision.

Furthermore, it also estimates the number of points |Qi| in crucial cells of each level i.
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Algorithm 27.4 Estimating the number of points in each cell and in each level
1: PointsEstimation(o, ε, δ):
2: Input: a point set Q ⊆ [∆]d described by a stream {(p1,±), (p2,±), . . .}
3: for i ∈ {0, 1, . . . , L}, in parallel, do
4: Ti(o)← (d/gi)

2 · o/(100k), α← 1011kLd log(1/δ), α′ ← 1016ε−3kL2d4.
5: . Ti(o): threshold for heaviness (Algortihm 27.1); α, α′: parameters for Storing.
6: Let hi : [∆]d → {0, 1} be a λ-wise independent hash function.
7: . λ = 10d(dL+ log(1/δ) + 1)e; ∀p ∈ [∆]d, hi(p) = 1 w.p. min(4 · 104λ/Ti(o), 1).
8: Run Storing(Gi, α, 1, 0.1δ/L) on a sub-stream {((p′1, 1),±), ((p′2, 1),±), . . .} in par-

allel.
9: . Storing is defined in Algorithm 27.3. Here p′j satisfies hi(p′j) = 1.
10: If Storing returns FAIL, output FAIL.
11: Let γ ← ε/(402Ld3). . Threshold for discarding levels
12: Let h′i : [∆]d → {0, 1} be a λ-wise independent hash function.
13: . ∀p ∈ [∆]d, h′i(p) = 1 w.p. min(4 · 104ε−2γ−1λ/Ti(o), 1).
14: Run Storing(Gi, α

′, 1, 0.1δ/L) on sub-stream {((p′′1, 1),±), ((p′′2, 1),±), . . .} in par-
allel.

15: . Storing is defined in Algorithm 27.3. Here p′′j satisfies h′i(p′′j ) = 1.
16: If Storing returns FAIL, output FAIL.
17: Let Ci, fi, Si ← Storing(Gi, α, 1, 0.1δ/L) in line 27.4. Let f̂(C) = fi(C) ·

min {Ti(o)/(4 · 104λ), 1}.
18: . Use f̂(C) as an estimator for
|C ∩ Q| and follow Algorithm 27.1 to determine whether C is marked as heavy, crucial
or nothing. (And conceptually compute Q0, . . . , QL for analysis.)

19: Let C′i, f ′i , S ′i ← Storing(Gi, α
′, 1, 0.1δ/L) in line 27.4.

20: Let q̂i = min
{
ε2γTi(o)/(4 · 104λ) ·∑C∈C′i:C is crucial f

′
i(C), 1

}
.

21: end for
22: Output: q̂0, q̂1, . . . , q̂L and f̂ :

⋃L
i=0 Gi → R+

Now let us analyze Algorithm 27.4. We need the following high concentration bound

in our analysis.

Theorem 27.6.3 ([BR94]). Let λ be an even integer, and let X be the sum of n λ-wise
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independent random variables taking values in [0, 1]. Let µ = E[X] and a > 0. Then we have

Pr

[
|X − µ| > a

]
≤ 8 ·

(
λµ+ λ2

a2

)λ/2
.

Lemma 27.6.4 (Samples from each cell). In PointsEstimation(o, ε, δ) (Algorithm 27.4),

with probability at least 1− δ/10, ∀i ∈ {0, 1, . . . , L} with Ti(o) ≥ 4 · 104λ, ∀C ∈ Gi, we have

either

∑

p∈C∩Q

hi(p) ∈ |C ∩Q| ·
4 · 104λ

Ti(o)
± 4 · 103λ

or

∑

p∈C∩Q

hi(p) ∈ |C ∩Q| ·
4 · 104λ

Ti(o)
· (1± 0.01).

Proof. Consider a cell C ∈ Gi. If |C ∩Q| ≤ Ti(o), then µ = E
[∑

p∈C∩Q hi(p)
]

= 4 ·104λ|C ∩

Q|/Ti(o) ≤ 4 · 104λ. According to Theorem 27.6.3, we have

Pr

[∣∣∣∣∣
∑

p∈C∩Q

hi(p)− µ
∣∣∣∣∣ > 4 · 103λ

]
≤ 8 ·

(
4 · 104λ2 + λ2

(4 · 103λ)2

)λ/2
≤ 8 · (1/2)λ/2 ≤ (δ/∆d)5.

If |C ∩Q| > Ti(o), then µ = E
[∑

p∈C∩Q hi(p)
]

= 4 · 104λ|C ∩Q|/Ti(o) > 4 · 104λ. According

to Theorem 27.6.3, we have

Pr

[∣∣∣∣∣
∑

p∈C∩Q

hi(p)− µ
∣∣∣∣∣ > 0.01µ

]
≤ 8 ·

(
λµ+ λ2

(0.01µ)2

)λ/2
≤ 8 · (1/2)λ/2 ≤ (δ/∆d)5.

By taking union bound over all i ∈ {0, 1, . . . , L} and all the cells in Gi, the claim is proved.

Lemma 27.6.5 (Estimating the number of points in each cell). If PointsEstimation(o, ε, δ)

(Algorithm 27.4) does not output FAIL, then with probability at least 1 − δ/10, ∀i ∈

{0, 1, . . . , L}, C ∈ Gi, either f̂(C) ∈ |C ∩Q| ± 0.1Ti(o) or f̂(C) ∈ (1± 0.01)|C ∩Q|.
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Proof. Suppose PointsEstimation(o, ε, δ) does not output FAIL. According to Lemma 27.6.2,

∀i ∈ {0, 1, . . . , L} and ∀C ∈ Gi, fi(C) =
∑

p∈C∩Q hi(p). If Ti(o) ≤ 4 · 104λ, then f̂(C) =

fi(C) =
∑

p∈C∩Q hi(p) = |C ∩Q|.

Due to Lemma 27.6.4, with probability at least 1 − δ/10, ∀i ∈ {0, 1, . . . , L} with

Ti(o) > 4 · 104λ and ∀C ∈ Gi, either fi(C) ∈ |C ∩ Q| · 4·104λ
Ti(o)

± 4 · 103λ or fi(C) ∈ |C ∩ Q| ·
4·104λ
Ti(o)

· (1± 0.01). Thus, either f̂(C) ∈ |C ∩Q| ± 0.1Ti(o) or f̂(C) ∈ (1± 0.01)|C ∩Q|.

Lemma 27.6.6 (Samples from each Qi). In PointsEstimation(o, ε, δ) (Algorithm 27.4),

with probability at least 1 − δ/10, ∀i ∈ {0, 1, . . . , L} with Ti(o) ≥ 4 · 104ε−2γ−1λ, ∀C ∈ Gi,

either

∑

p∈Qi

h′i(p) ∈ |Qi| ·
4 · 104ε−2γ−1λ

Ti(o)
± 4 · 103ε−1λ

or

∑

p∈Qi

h′i(p) ∈ |Qi| ·
4 · 104ε−2γ−1λ

Ti(o)
· (1± 0.01ε).

Proof. If |Qi| ≤ γTi(o), then µ = E
[∑

p∈Qi h
′
i(p)
]

= 4 · 104ε−2γ−1λ|Qi|/Ti(o) ≤ 4 · 104ε−2λ.

According to Theorem 27.6.3, we have

Pr

[∣∣∣∣∣
∑

p∈Qi

h′i(p)− µ
∣∣∣∣∣ > 4 · 103ε−1λ

]
≤ 8 ·

(
4 · 104ε−2λ2 + λ2

(4 · 103ε−1λ)2

)λ/2
≤ 8 · (1/2)λ/2 ≤ (δ/∆d)5.

If |Qi| > γTi(o), then µ = E
[∑

p∈Qi h
′
i(p)
]

= 4·104ε−2γ−1λ|Qi|/Ti(o) > 4·104ε−2λ. According

to Theorem 27.6.3, we have

Pr

[∣∣∣∣∣
∑

p∈Qi

h′i(p)− µ
∣∣∣∣∣ > 0.01εµ

]
≤ 8 ·

(
λµ+ λ2

(0.01εµ)2

)λ/2
≤ 8 · (1/2)λ/2 ≤ (δ/∆d)5.

By taking union bound over all i ∈ {0, 1, . . . , L}, the claim is proved.
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Lemma 27.6.7 (q̂i can estimate |Qi| well). If PointsEsitmation(o, ε, δ) (Algorithm 27.4)

does not output FAIL, then with probability at least 1 − δ/10, ∀i ∈ {0, 1, . . . , L}, either

q̂i ∈ |Qi| ± 0.1εγTi(o) or q̂i ∈ (1± 0.01ε)|Qi|.

Proof. Suppose PointsEstimation(o, ε, δ) does not output FAIL. According to Lemma 27.6.2,

∀i ∈ {0, 1, . . . , L}, f ′i(C) =
∑

p∈Qi h
′
i(p). If Ti(o) ≤ 4·104ε−2γ−1λ, then q̂i =

∑
C∈Gi:C is crucial f

′
i(C) =

∑
p∈Qi h

′
i(p) = |Qi|.

Due to Lemma 27.6.6, with probability at least 1 − δ/10, ∀i ∈ {0, 1, . . . , L} with

Ti(o) > 4 · 104ε−2γ−1λ, either

∑

C∈Gi:C is crucial

f ′i(C) ∈ |Qi| ·
4 · 104ε−2γ−1λ

Ti(o)
± 4 · 103ε−1λ

or
∑

C∈Gi:C is crucial

f ′i(C) ∈ |Qi| ·
4 · 104ε−2γ−1λ

Ti(o)
· (1± 0.01ε).

Thus, either q̂i ∈ |Qi| ± 0.1εγTi(o) or q̂i ∈ (1± 0.01ε)|Qi|.

Lemma 27.6.8 (Number of points sampled from non-center cells). In PointsEsitmation(o, ε, δ)

(Algorithm 27.4), with probability at least 1− δ/10, ∀i ∈ {0, 1, . . . , L}, we have

∑

non-center cell C∈Gi

∑

p∈C∩Q

hi(p) ≤ 4 · 103λ+ 1.01 · 4 · 104λ

Ti(o)

∑

non-center cell C∈Gi

|C ∩Q|

and

∑

non-center cell C∈Gi

∑

p∈C∩Q

h′i(p) ≤ 4 · 103ε−1λ+ 1.01 · 4 · 104ε−2γ−1λ

Ti(o)

∑

non-center cell C∈Gi

|C ∩Q|.

Proof. The proof is exactly the same as the proofs of Lemmas 27.6.4 and 27.6.6.
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Lemma 27.6.9. ∀i ∈ {0, 1, . . . , L},
∑

non-center cell C∈Gi

|C ∩Q|
Ti(o)

≤ 400k · (OPT /o).

Proof.

∑

non-center cell C∈Gi

|C ∩Q|

≤ OPT

(gi/(2d))2
= 400kTi(o) ·

OPT

o
.

Lemma 27.6.10 (The success probability). Condition on the number of center cells of

all the grids is at most 100kL. If o ∈ (OPT /16,OPT], then PointsEstimation(o, ε, δ)

(Algorithm 27.4) does not output FAIL with probability at least 1− 3δ/10.

Proof. Let o ≥ OPT /16, according to Lemma 27.6.9 and Lemma 27.6.8, with probability at

least 1− δ/10, ∀i ∈ {0, 1, . . . , L}, we have

∑

non-center cell C∈Gi

∑

p∈C∩Q

hi(p) ≤ 4 · 103λ+ 1.01 · 4 · 104λ · 6400k ≤ 1011kdL log(1/δ)

and

∑

non-center cell C∈Gi

∑

p∈C∩Q

h′i(p) ≤ 4 · 103ε−1λ+ 1.01 · 4 · 104ε−2γ−1λ · 6400k ≤ 1015 · ε−3kL2d4.

Since the number of center cells is at most 100kL, the total number of cells which contains

some p with hi(p) = 1 is at most 1012kdL log(1/δ) ≤ α, and the total number of cells which

contains some p with h′i(p) = 1 is at most 1016ε−3kL2d4 ≤ α′. According to Lemma 27.6.2,

with probability at least 1 − 2δ/10, none the call of Storing will return FAIL. Thus the

overall probability that Algorithm 27.4 does not output FAIL is at last 1− 3δ/10.
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Lemma 27.6.11 (Space of Algorithm 27.4). PointsEstimation(o, ε, δ) (Algorithm 27.4)

uses space at most O(kε−3L4d5 · log2(kLd/(εδ))) bits.

Proof. The total space used is dominated by the space needed to run L+ 1 copies of Stor-

ing(Gi, α
′, 1, 0.1δ/L) in line 27.4 of Algorithm 27.4. According to Lemma 27.6.2, the total

space needed is O(L · α′dL log2(Lα′/δ)) = O(kε−3L4d5 · log2(kLd/(εδ))) bits.

27.6.3 Sensitivity Sampling over a Dynamic Stream

Since using Algorithm 27.4 we can estimate the number of points in each cell and the

size of each Qi, the only remaining thing for simulating Algorithm 27.2 is to draw samples

based on their sensitivity upper bounds. In Algorithm 27.5, we show how to achieve this in

a dynamic stream.

Now we analyze Algorithm 27.5.

Fact 27.6.12. If Sampling(o, ε, δ) (Algorithm 27.5) does not output FAIL, then line 27.5

can be implemented, and p is a uniform sample drawn from Qi.

Proof. Although Qi cannot be stored explicitly, ∀p ∈ Q, we are able to determine whether

p ∈ Qi since we can use f̂ to find all the crucial cells and check whether p is in a crucial cell

of Gi.

Suppose Sampling(o, ε, δ) does not output FAIL. According to Lemma 27.6.2 and

the condition in line 27.5, ∀j ∈ [m̂], we have {(p, j) | p ∈ Qi, hi,j(p) = 1} ⊆ Si. Since

∀x, y ∈ Qi, Pr[hi,j(x) = 1] = Pr[hi,j(y) = 1], then the sample p in line 27.5 is drawn

uniformly from Qi.
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Algorithm 27.5 Sensitivity sampling over a dynamic stream
1: Sampling(o, ε, δ):
2: Input: a point set Q ⊆ [∆]d described by a stream {(p1,±), (p2,±), . . .}
3: Run PointsEstimation(o, ε, δ/2) in parallel on the input stream. If it returns FAIL, output

FAIL.
4: ∀i ∈ {0, 1, . . . , L}, Ti(o)← (d/gi)

2 · o/k · 1/100. . Threshold for heaviness (Algorithm 27.1).
5: m̂← Θ

(
kε−3L4d7 log

(
dLk
δ

)
· 1
δ

)
. . m̂ hash functions needed for m independent samples.

6: λ← 10d(dL+ log(1/δ) + 1)e. . λ is the independence parameter.
7: ∀i ∈ {0, 1, . . . , L}, choose hi,1, hi,2, . . . , hi,m̂ : [∆]d → {0, 1}.
8: . ∀j ∈ [m̂], hi,j is λ-wise independent, ∀p ∈ [∆]d, hi,j(p) = 1 w.p. min

{
1/(104kLTi(o)), 1

}
.

9: α← Θ(kε−3L3d7 log(dLk/δ)δ−1), β ← Θ(ε−3L3d7 log(dLk/δ)δ−1). . α, β: for Storing.
10: For i ∈ {0, 1, . . . , L}, run Storing(Gi, α, β, 0.1δ/L) (Algorithm 27.3) in parallel.
11: . Each instance is run on a new stream obtained by splitting each operation (pt,±) from the

original input stream into a set of new operations {((pt, j),±) | j ∈ [m̂], hi,j(pt) = 1}.
12: If any Storing returns FAIL, output FAIL.
13: q̂0, q̂1, . . . , q̂L, f̂ :

⋃L
i=0Gi → R+ ← PointsEstimation(o, ε, δ/2) in line 27.5.

14: Ci, fi, Si ← Storing(Gi, α, β, 0.1δ/L) in line 27.5.
15: For i ∈ {0, 1, . . . , L}, if ∃C ∈ Ci marked as crucial in line 27.5, and fi(C) > β, output FAIL.
16: γ ← ε/(402Ld3). . Threshold for discarding levels.
17: I ← {i | 0 ≤ i ≤ L, q̂i ≥ γTi(o)}.
18: t′ ←∑

i∈I q̂i · 10d3/Ti(o). . Total estimated sensitivities.
19: m← Θ(t′ε−2Ld log(t′/δ)), S ← ∅. . Total number of samples.
20: For i ∈ {0, 1, . . . , L}, set Ai = [m̂].
21: for j = 1→ m do
22: Choose a random level i ∈ I with probability (q̂i · 10d3/Ti(o))/t

′.
23: Choose the minimum j ∈ Ai s.t. ∃p ∈ Qi, (p, j) ∈ Si. If no such j, output FAIL.
24: Uniformly choose a point p from the set {q ∈ Qi | (q, j) ∈ Si}.
25: Update Ai ← {j + 1, j + 2, . . . , m̂}.
26: Add (p, t′/(ms′(p))) to set S. . s′(p) = 10d3/Ti(o).
27: end for
28: Output: the set S

Lemma 27.6.13 (Correctness of Algorithm 27.5). Suppose o ∈ (0,OPT]. If Sampling(o, ε, δ)

(Algorithm 27.5) does not output FAIL, then with probability at least 1 − δ/5, the out-

put S by Sampling(o, ε, δ) is an ε-coreset for Q. Furthermore, the size |S| is at most

O(kε−2L2d4 log(kLd) · (OPT /o+ 1)).
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Proof. Due to Lemma 27.6.5 and Lemma 27.6.7, with probability at least 1 − δ/10, ∀C ∈
⋃L
i=0Gi, either f̂(C) ∈ |C ∩Q|± 0.1Ti(o) or f̂(C) ∈ (1± 0.01)|C ∩Q| and ∀i ∈ {0, 1, . . . , L},

either q̂i ∈ |Qi| ± 0.1εγTi(o) or q̂i ∈ (1 ± 0.01ε)|Qi|, where Q0, Q1, . . . , QL are defined by

using the estimation f̂(·) (Algorithm 27.1 or Algorithm 27.4). According to Fact 27.6.12,

the sampling procedure can be implemented. Then by Theorem6 27.3.1, with probability

at least 1 − δ/10, the output set S is an ε-coreset for Q. By taking union bound, with

probability 1− δ/5, the set S is an ε-coreset for Q.

Now let us consider the success probability of Algorithm 27.5. Since we know the

success probability of PointsEstimation(o, ε, δ/2) in line 27.5 of Algortihm 27.5 and the

success probability of Storing(Gi, α, β, 0.1δ/L) in line 27.5, we only need to analyze the

success probability in line 27.5 of Algorithm 27.5. To make line 27.5 succeed, we need to find

enough samples from Qi, i.e., we hope that
∑m̂

j=1 1(|{p ∈ Qi | hi,j(p) = 1}| > 0) is large. In

the following analysis, we will show that
∑m̂

j=1 1(|{p ∈ Qi | hi,j(p) = 1}| > 0) is large. First,

we show that the number of samples drawn from level i is bounded.

Lemma 27.6.14 (Number of samples from each level). Let I be the set computed in Sampling(o, ε, δ)

(Algortihm 27.5). With probability at least 1 − δ/10, ∀i ∈ I, the number of times that i is

chosen in line 27.5 of Algorithm 27.5 is at most

O

(
ε−2Ld4 log(t′/δ) · L

δ
· q̂i
Ti(o)

)
.

Proof. For i ∈ I, the expected number of times that i is chosen is O(m · q̂i · d3/Ti(o)/t
′).

By Markov’s inequality, with probability at least 1 − δ/(20L), the number of times that i

6The proof is slightly different since Theorem 27.3.1 only claims a constant success probability. See
Section 27.3.3 for the detailed proof of Theorem 27.3.1.
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is chosen in line 27.5 of Algorithm 27.5 is at most O
(
ε−2Ld4 log(t′/δ) · L

δ
· q̂i
Ti(o)

)
. By taking

union bound over all i ∈ I, we complete the proof.

Lemma 27.6.15 (Bounding t′). Consider o ≥ OPT /16. Condition on f̂ :
⋃L
i=0Gi → R+

(in Algorithm 27.5) is good (Lemma 27.6.4), q̂0, q̂1, . . . , q̂L (in Algorithm 27.5) are good

(Lemma 27.6.6), and the number of center cells is at most 100kL, then we have t′ ≤ 106d3Lk.

Proof. We have

t′ =
∑

i∈I

q̂i · 10d3/Ti(o)

≤
∑

i∈I

|Qi| · 20d3/Ti(o)

≤
L∑

i=0

|Qi| · 20d3/Ti(o)

≤ 2 · 4000d3Lk · 20

≤ 106d3Lk,

where the first inequality follows by ∀i ∈ I, q̂i ≥ γTi(o) and either q̂i ∈ |Qi| ± 0.1εγTi(o) or

q̂i ∈ (1 ± 0.01ε)|Qi|, the second inequality follows by I ⊆ {0, 1, . . . , L}, the third inequality

follows by Lemma 27.3.8 and o ≥ OPT /16.

Lemma 27.6.16 (Number of crucial points in each level). Consider o ≥ OPT /16. Condi-

tioning on f̂ :
⋃L
i=0 Gi → R+ (in Algorithm 27.5) is good (Lemma 27.6.5) and the number

of center cells is at most 100kL, we have:

|Qi|
Ti(o)

≤ 7000kL.
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Proof. We have

|Qi|
Ti(o)

=
∑

center crucial cell C∈Gi

|C ∩Q|
Ti(o)

+
∑

non-center crucial cell C∈Gi

|C ∩Q|
Ti(o)

≤ 110kL+ 400k(OPT /o)

≤ 7000kL,

where the first inequality follows by that the number of center cells is at most 100kL, the

number points in a crucial cell is at most 1.1Ti(o) and Lemma 27.6.9.

Lemma 27.6.17 (The number of samples is large). Consider o ≥ OPT /16. Conditioning

on f̂ :
⋃L
i=0Gi → R+ (in Algorithm 27.5) is good (Lemma 27.6.4), q̂0, q̂1, . . . , q̂L (in Algo-

rithm 27.5) are good (Lemma 27.6.6), and the number of center cells is at most 100kL, with

probability at least 1− δ/10, ∀i ∈ I, we have:

m̂∑

j=1

1(|{p ∈ Qi | hi,j(p) = 1}| > 0) ≥ Ω

(
ε−2Ld4 log

(
dLk

δ

)
· L
δ
· q̂i
Ti(o)

)
.

Proof. Consider a fixed i ∈ I. ∀j ∈ [m̂], by union bound, we have

Pr
hi,j

[∃p ∈ Qi, hi,j(p) = 1] ≤ |Qi|
104kLTi(o)

< 1,

where the inequality follows by Lemma 27.6.16. Thus d104kLTi(o)/|Qi|e ≤ 2·104kLTi(o)/|Qi|.

Let b = 10 · d104kLTi(o)/|Qi|e. Let r = bm̂/bc ≥ m̂ · |Qi|/(2 · 105kLTi(o)) − 1. Since i ∈ I,

we have |Qi|/Ti(o) ≥ 1
2
γ. Since m̂ ≥ 109kL/γ, we have r ≥ m̂/(4 · 105kL) · |Qi|/Ti(o). For

s ∈ [r], we can define a random variable Ys,

Ys =
s·b∑

j=(s−1)·b+1

∑

p∈Qi

hi,j(p).
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We have E[Ys] = b · |Qi|/(104kLTi(o)). Thus, E[Ys] ∈ [10, 20]. Since Ys is a sum of several

(at least) pairwise independent unit random variables, V[Ys] ≤ 20. Thus, by Chebyshev’s

inequality, we have

Pr [|Ys − E[Ys]| ≥ 9] ≤ 20/81 ≤ 0.25.

Define Xs be the random variable such that Xs = 1(Ys ≥ 1). Then E
[∑

s∈[r] Xs

]
≥ 0.75r.

By Chernoff bound, we know that

Pr


∑

s∈[r]

Xs ≤ 0.5r


 ≤ 2−r/20 ≤ 0.01δ/L,

where the last inequality follows by r ≥ m̂/(4 · 105kL) · γ/2 ≥ 20 log(100L/δ).

Since m̂ is sufficiently large, i.e.,

m̂ ≥ Ω

(
kε−2L3d4 log

(
dLk

δ

)
· 1

δγ

)
≥ Ω

(
kε−3L4d7 log

(
dLk

δ

)
· 1

δ

)
,

we have

r ≥ m̂/(4 · 105kL) · |Qi|/Ti(o) ≥ Ω

(
ε−2Ld4 log

(
dLk

δ

)
· L
δ
· q̂i
Ti(o)

)
,

where the last inequality follows by q̂i = Θ(|Qi|). Notice that

Pr

[
m̂∑

j=1

1(|{p ∈ Qi | hi,j(p) = 1}| > 0) ≥ 0.5r

]
≥ Pr


∑

s∈[r]

Xs ≥ 0.5r


 ≥ 1− 0.01δ/L.

Thus, with probability at least 1− 0.01δ/L,

m̂∑

j=1

1(|{p ∈ Qi | hi,j(p) = 1}| > 0) ≥ Ω

(
ε−2Ld4 log

(
dLk

δ

)
· L
δ
· q̂i
Ti(o)

)
.

By taking the union bound over i ∈ I, we complete the proof.
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Lemma 27.6.18 (Sampling stage succeeds). Consider o ≥ OPT /16. Conditioning on

f̂ :
⋃L
i=0 Gi → R+ (in Algorithm 27.5) is good (Lemma 27.6.4), q̂0, q̂1, . . . , q̂L (in Algo-

rithm 27.5) are good (Lemma 27.6.6), and the number of center cells is at most 100kL,

if Sampling(o, ε, δ) does not output FAIL before line 27.5 of Algorithm 27.5, then with

probability at least 1− δ/5, it will not output FAIL.

Proof. According to Lemma 27.6.14 and Lemma 27.6.15, with probability at least 1− δ/10,

∀i ∈ I, the sampling procedure will not request too many samples from level i. According to

Lemma 27.6.17, with probability at least 1 − δ/10, the number of samples needed for each

level i ∈ I is enough. Thus, with probability at least 1− δ/5, the algorithm will not output

FAIL.

Lemma 27.6.19 (Samples can fit into the space). Suppose o ≥ OPT /16. Conditioning on

f̂ :
⋃L
i=0Gi → R+ (in Algorithm 27.5) is good (Lemma 27.6.4), if the total number of center

cells is at most 100kL, with probability at least 1− δ/5, Sampling(o, ε, δ) (Algorithm 27.5)

will not output FAIL in line 27.5 nor line 27.5.

Proof. Consider i ∈ {0, 1, . . . , L} and a cell C ∈ Gi which is marked as crucial by PointsEs-

timation(o, ε, δ/2).

E

[
m̂∑

j=1

∑

p∈C∩Q

hi,j(p)

]
= m̂ · |C ∩Q|/(104kLTi(o))

≤ O(ε−3L3d7 log(dLk/δ)δ−1).

By Theorem 27.6.3,

Pr

[
m̂∑

j=1

∑

p∈C∩Q

hi,j(p) > E

[
m̂∑

j=1

∑

p∈C∩Q

hi,j(p)

]
+ ε−3L3d7 log(dLk/δ)δ−1

]
≤ (δ/∆d)5.
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Thus, by taking union bound, with probability at last 1− δ/10, ∀i ∈ {0, 1, . . . , L}, any cell

C ∈ Gi which is marked as crucial, the total number of points sampled in C is at most β.

Thus, with probability at least 1− δ/20, Sampling(o, ε, δ) (Algorithm 27.5) will not output

FAIL in line 27.5.

Consider i ∈ {0, 1 . . . , L}. Let us analyze the number of cells in Gi which contain at

least 1 sample points. The number of points which are not in the center cell is at most

OPT

(gi/(2d))2
≤ 400kTi(o) ·OPT /o ≤ 6400kTi(o).

Thus, the expected number of sampled points in non-center cell is at mostO(kε−3L3d7 log(dLk/δ)·

1/δ). Since the number of center cells is at most 100kL, by Theorem 27.6.3, with probability

at least 1 − δ/(100L), the number of cells in Gi which contain at least 1 sample points is

O(kε−3L3d7 log(dLk/δ) · 1/δ). By taking union bound over all i ∈ {0, 1, . . . , L}, with prob-

ability at least 1 − δ/20, ∀i ∈ {0, 1, . . . , L}, the number of sampled cell in Gi is at most

α.

Due to Lemma 27.6.2, with probability at least 1−δ/10, none of the Storing(Gi, α, β, 0.1δ/L)

in line 27.5 of Algorithm 27.5 will output FAIL. By union bound over all the failure proba-

bilities, we complete the proof.

Lemma 27.6.20 (The overall success probability). Suppose o ≥ OPT /16 and the total

number of center cells is at most 100kL. With probability at least 1−4δ/5, Sampling(o, ε, δ)

(Algorithm 27.5) will not output FAIL.

Proof. Due to Lemma 27.6.10, PointsEstimation(o, ε, δ/2) in line 27.5 will not output

FAIL with probability at least 1 − 3δ/20. By Lemma 27.6.5 and Lemma 27.6.6, with
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probability at least 1 − δ/5, ∀i ∈ {0, 1, . . . , L}, either q̂i ∈ |Qi| ± 0.1εγTi(o) or q̂i ∈ (1 ±

0.01ε)|Qi|, and ∀C ∈ Gi, either f̂(C) ∈ |C ∩ Q| ± 0.1Ti(o) or f̂(C) ∈ (1 ± 0.01)|C ∩ Q|.

Then by Lemma 27.6.19, with probability at least 1−δ/5, Sampling(o, ε, δ) will not output

FAIL in line 27.5 nor line 27.5. Finally, according to Lemma 27.6.18, with probability at

least 1− δ/5, the algorithm does not output FAIL. By taking union bound over all the bad

events, with probability at least 1− 3δ/20− δ/5− δ/5− δ/5 ≥ 1− 4δ/5, Sampling(o, ε, δ)

(Algorithm 27.5) will not output FAIL.

Lemma 27.6.21 (Total space of Algorithm 27.5). Sampling(o, ε, δ) uses space at most

O(kε−6L8d15δ−2 · log4(kLd/(εδ))) bits.

Proof. According to Lemma 27.6.11, PointsEstimation(o, ε, δ/2) in line 27.5 of Algo-

rithm 27.5 takes the space O(kε−3L4d5 · log(kLd/(εδ))) bits. According to Lemma 27.6.2,

line 27.5 takes the total space:

O(L · αβdL · log2(αβ/δ)) = O(kε−6L8d15δ−2 · log4(kLd/(εδ))).

27.6.4 The Final Algorithm

Finally, we use exponential search to enumerate the guesses o. In Algorithm 27.6, we

show the details of how to run Algorithm 27.5 with different guesses in parallel. Our main

theorem is the following.

Theorem 27.6.22. Suppose a point set Q ⊆ [∆]d is given by a stream of insertion/deletion

operations in the dynamic streaming model (Definition 27.2.1). Let L = log ∆. For given
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Algorithm 27.6 Coreset construction over a dynamic stream
1: DynamicCoreset(ε):
2: input: a point set Q ⊆ [∆]d described by a stream {(p1,±), (p2,±), . . .}
3: Impose randomly shifted grids G−1, G0, G1, . . . , GL (Definition 27.3.1).
4: Run Distinct(10000k, 0.001) (Lemma 27.6.1) over the input stream in parallel.
5: If line 27.6 does not output FAIL, we output the entire point set Q.
6: For each u ∈ [2dL], let ou = 2u · 50k and run Sampling(ou, ε, 0.001/(dL)) (Algorithm 27.5)

over the input stream in parallel.
7: Set a threshold h = Θ(kε−2L2d4 log(kLd)).
8: Find the smallest u∗ such that Sampling(ou∗ , ε, 0.001/(dL)) in line 27.6 does not output FAIL,

and the returned set S∗ has size at most h, i.e., |S∗| ≤ h.
9: If no such u∗, output FAIL. Otherwise, output S∗ returned by Sampling(ou∗ , ε, 0.001/(dL)).

ε ∈ (0, 1/2), Algorithm 27.6 uses a single pass over the stream and on termination outputs a

k-means ε-coreset S (Definition 27.2.3) for Q with probability at least 0.9. Furthermore, the

size of the coreset is at most O(kε−2d4L2 log(kdL)). The total space used by the algorithm is

Õ(k) · poly(dL/ε) bits.

We divide the proof of Theorem 27.6.22 into the following two lemmas.

Lemma 27.6.23 (Correctness and success probability). With probability at least 0.9, DynamicCoreset(ε)

(Algorithm 27.6) outputs an ε-coreset for Q and the size of the coreset is at most O(kε−2L2d4 log(kLd)).

Proof. If |Q| ≤ 10000k, then according to Lemma 27.6.1, with probability at least 0.999, the

entire data set Q will be returned by line 27.6 in Algorithm 27.6.

Consider the case when |Q| ≥ 10000k. According to Lemma 27.3.7, with probability

at least 0.94, the total number of center cells is upper bounded by 100kL. Now, we con-

dition on this happens. Since |Q| ≥ 10000k, we know that OPT ≥ 1000k. There exists

u ∈ [2dL] such that ou ∈ [OPT /16,OPT]. According to Lemma 27.6.20, with probability

2133



at least 0.999, Sampling(ou, ε, 0.001/(dL)) will not output FAIL. By Lemma 27.6.13, with

probability at least 0.999, the set S returned by Sampling(ou, ε, 0.001/(dL)) is an ε-coreset

and |S| ≤ O(kε−2L2d4). Thus, with probability at least 0.998, DynamicCoreset(ε) (Algo-

rithm 27.6) will not output FAIL. Consider another u′ < u. If Sampling(ou′ , ε, 0.001/(dL))

does not output FAIL, and the set S ′ returned has size at most h, then according to

Lemma 27.6.13, with probability at least 1 − 0.001/(dL), S ′ is an ε-coreset for Q. By

taking union bound over all the such u′, then with probability at least 0.999, S∗ returned by

Sampling(ou∗ , ε, 0.001/(dL)) is an ε-coreset for Q. By taking union bound over all the bad

events, we complete the proof.

Lemma 27.6.24 (Total space needed for Algortihm 27.6). DynamicCoreset(ε) (Algo-

rithm 27.6) uses space at most O(kε−6L11d18 log4(kLd/ε)) bits.

Proof. DynamicCoreset(ε) (Algorithm 27.6) runs Θ(dL) copies of Sampling(ou, ε, 0.001/(dL)).

By Lemma 27.6.21, the total space needed is

O(dL · kε−6L8d15 · (dL)2 · log4(kLd/ε)) = O(kε−6L11d18 log4(kLd/ε))

bits.

Proof of Theorem 27.6.22. Lemma 27.6.23 shows the correctness and the success probability

of the algorithm. Lemma 27.6.24 shows the total space needed by the algorithm.
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27.7 Why Do Previous Techniques Fail?

In this section, we describe some previous techniques in more detail and explain why

they fail in our setting.

Uniform sampling method. [FIS05] is one of the early papers using sampling procedures

to solve dynamic streaming geometric problems. They showed that it is possible to use

point samples from a dynamic point set to solve several geometric problems, e.g., Euclidean

Minimum Spanning Tree. However, they only showed how to implement uniform sampling by

using counting distinct elements and subsampling procedure as subroutines. In our setting,

we require different sampling probabilities for different points. Although the bottom-level

uniform sampling scheme of ours is similar to theirs, our overall sampling method is more

complicated.

Estimating the cost. [Ind04] used a critical observation to estimate the cost of k-median,

that is: let Z be a set of centers and P be the point set, then cost(Z, P ) =
∫∞

0
|P −

B(Z, r)|dr, where B(Z, r) is the union of balls of radius r centered at all points in Z.

Then this integration is approximated by a summation with logarithmic levels, i.e.,
∫∞

0
|P −

B(Z, r)|dr ≈∑∞i=0

∣∣P − B(Z, r(i+1))
∣∣ ·
(
r(i+1) − r(i)

)
, where r(i) = O(ε(1 + ε)i). The critical

part is to estimate
∣∣P − B(Z, r(i))

∣∣. [Ind04] constructed a counting data structure based

on grids with side length O
(
r(i)
)
. Then every input point is snapped to a grid point. To

obtain sufficiently accurate estimates for all
∣∣P −B(Z, r(i))

∣∣, the data structure needs to

query |Z|/εO(d) many grid points per Z. Such a data structure is implemented using pair-

wise independent hash functions, and uses memory |Z|/εO(d). Notice that this method only
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gives an estimate of the cost, and does not construct a coreset. In order to obtain a k-

median solution, an exhaustive search is needed. Furthermore, this technique fails to extend

to k-means which does not have an integration formula for the cost function.

Exponential size coreset. [FS05] constructed an ε-coreset of size kε−O(d) for k-means and

k-median. They also used the same grid structure as we use. A cell is marked as “heavy” if

the cell contains enough points such that moving all points in the cell to the center of this

cell incurs too much error in the optimal cost of k-means/median. Since the side-lengths of

cells decrease as level increases, the number of points required to have this effect becomes

larger. Eventually, all cells are non-heavy after some level. As such we also have a tree of

heavy cells. The coreset is constructed by looking at each heavy cell and assigning each

point in its non-heavy children cells to its center. It turns out that if we want an ε-coreset,

the threshold of non-heavy cells is exponential in d, i.e., each non-heavy cell in level i cannot

contain more than Õ
(
εO(d) ·OPT /2i

)
points. This small threshold gives rise to Õ

(
1/εO(d)

)

many heavy cells.

Insertion-only streams. Many of the previous insertion-only streaming coreset construc-

tion algorithms (e.g., [FS12]) heavily depend on a “merge-reduce” technique, i.e. reading

some points in the stream, constructing a coreset, reading another part, constructing a new

coreset, and then merging the two coresets. This procedure is repeated until the stream

ends. This technique works well in the insertion-only streaming model, but it fails imme-

diately when deletions are allowed. Although [BFL16] gave a new framework other than

merge-reduce, their algorithm relies on a non-deleting structure of data streams as well.
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z

∆

k-median

telescope sum

d(p, z)= d(p , z)− d(c2p, z)

+d(c2p, z)− d(c1p, z)

+d(c1p, z)− d(c0p, z)

+d(c0p, z)

where |d(p , z)− d(c2p, z)| ≤ d(p , c2p)

where |d(c2p, z)− d(c1p, z)| ≤ d(c2p, c
1
p)

where |d(c1p, z)− d(c0p, z)| ≤ d(c1p, c
0
p)

k-means

telescope sum

d2(p, z) = d2(p , z)− d2(c2p, z)

+d2(c2p, z)− d2(c1p, z)

+d2(c1p, z)− d2(c0p, z)

+d2(c0p, z)

but |d2(p , z)− d2(c2p, z)| ≥ ∆

but |d2(c2p, z)− d2(c1p, z)| ≥ ∆

but |d2(c1p, z)− d2(c0p, z)| ≥ ∆

c0p

c1p

c2p
p

Figure 27.3: Telescope sum [BFL+17] fails for k-means. In the k-median problem, for a fixed set of
centers Z, the total cost can be written as a telescope sum

∑
p∈P (dist(cip, Z)−dist(ci−1

p , Z)). For each
piece, | dist(cip, Z) − dist(ci−1

p , Z)| is always upper bounded by dist(ci−1
p , cip) which is independent

from the choice of Z. However, in the k-means problem, the telescope sum of the total cost is∑
p∈P (dist(cip, Z)2−dist(ci−1

p , Z)2). For each piece, the upper bound of |dist(cip, Z)2−dist(ci−1
p , Z)2|

may depend on the location of Z, and it can be larger than ∆ in the worst case.

Algorithm for k-median only. Although some k-median coreset construction techniques

can be easily extended to k-means (see e.g. [FS12, BFL16]), those constructions can only

be implemented in the insertion-only streaming model. [BFL+17] gave a k-median coreset

construction in the dynamic streaming model, but their construction cannot be extended to

k-means directly, as we explain now. Their k-median algorithm heavily relies on writing the

cost of each point as a telescope sum. For example, we consider the 1-median problem. let z

be a candidate center point and p ∈ P be a point, then dist(p, z) = dist(p, z)−dist(cL−1
p , z)+

dist(cL−1
p , z) − dist(cL−2

p , z) + · · · − dist(c0
p, z), where each cip is the center of the cell in the

i-th level containing p. Therefore, the total 1-median cost
∑

p∈P dist(p, z) of point set P on

z can be split into L pieces, i.e.,
∑

p∈P (dist(cip, z)− dist(ci−1
p , z)) for each i ∈ [L]. [BFL+17]

estimated each of the L pieces by sampling points, i.e., let Si be the samples in the i-th level,

then the estimator of
∑

p∈P (dist(cip, z)− dist(ci−1
p , z)) is

∑
p∈Si(dist(cip, z)− dist(ci−1

p , z))/ζ ip

where ζ ip is the probability that point p is sampled. A crucial observation is that we have
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| dist(ci, z)−dist(ci−1, z)| ≤ ∆/2i – the cell size in level i which is independent of the location

of z. Using this nice upper bound on | dist(ci, z)− dist(ci−1, z)|, [BFL+17] applied Bernstein

inequality to get high concentration of the estimator
∑

p∈Si(dist(cip, z)−dist(ci−1
p , z))/ζ ip with

only Õ(1/ε2) samples per level. However, this framework does not work for 1-means even

though one can still write the telescope sum structure
∑

p(dist2(cip, z)−dist2(ci−1
p , z)) and can

still setup an estimator
∑

p∈Si(dist2(cip, z)−dist2(ci−1
p , z))/ζ ip. But | dist2(cip, z)−dist2(ci−1

p , z)|

is not upper bounded by the cell size anymore. Instead, it depends on the location of z. For

example, it can be as large as | dist2(cip, z)−dist2(ci−1
p , z)| ≥ ∆. See Figure 27.3. If we apply

Bernstein inequality here, we will need too many samples to save any space.
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Chapter 28

Convergence Result of one-hidden Layer Neural Network

We improve the over-parametrization size over the two beautiful results [Li and Liang’

2018] and [Du, Zhai, Poczos and Singh’ 2019] in deep learning theory.

This part is based upon the following previous publication

• Zhao Song, Xin Yang

Quadratic Suffices for Over-parametrization via Matrix Chernoff Bound.

Manuscript 2019 [SY19]
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28.1 Introduction

Over-parameterization theory for deep neural networks becomes extremely popular

over the last few years. There is a long line (still growing very quickly) of work proving that

(stochastic) gradient descent algorithm is able to find the global minimum if the network

is wide enough [LL18, DZPS19, AZLS18, AZLS19, DLL+19, ZCZG18]. One fundamental

question for over-parameterization is, how wide should the neural network be?

Formally speaking, the existing results show that as long as the width m is at least

polynomial of number of input data n, then (S)GD-type algorithm can work in the following

sense: first randomly pick a weight matrix to be the initialization point, update the weight

matrix according to gradient direction over each iteration, and eventually find the global

minimum. It is conjectured [Lee18] that m = Ω(n poly(log(n/δ))) is the right answer, where

δ is the failure probability. The randomness is from the random initialization and also

algorithm itself, but not from data. There are other work relied on input data to be random

[BG17, Tia17, ZSJ+17, Son17, LY17, ZSD17, DLT+18, GLM18, BJW19], however over-

parameterization theory does not allow that assumption and it only needs to make very mild

assumption on data, e.g. separable. The breakthrough result by Li and Liang [LL18] is the

first one that is able to explain why the greedy algorithm works very well in practice for ReLU

neural network from over-parameterization perspective. The state-of-the-art result for one-

hidden-layer neural network with ReLU activation function is due to Du, Zhai, Poczos and

Singh [DZPS19]. Their beautiful result proved that m = Ω(n6 poly(log n, 1/δ)) is sufficient.

We improve the result [DZPS19] from two perspectives : one is the dependence on failure

probability, and the other is the dependence on the number of input data. More precisely,

we show that m = Ω(n4 poly(log(n/δ))) is sufficient via a careful concentration analysis.
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More interestingly, when the input data have certain property, we can improve the bound to

m = Ω(n2 poly(log(n/δ))) via a more careful concentration analysis for random variables.

The study of concentration of sums of random variables dates back to Central Limit

Theorems, the first modern concentration bounds were probably proposed by Bernstein

[Ber24]. Chernoff bound is an extremely popular variant, which was introduced by Rubin

and published by Chernoff [Che52]. Chernoff bound is a fundamental tool in Theoretical

Computer Science and has been used in almost every randomized algorithm paper without

even stating it. One common statement is the following: given a list of independent random

variables x1, · · · , xm ∈ [0, 1] with mean µ, then

Pr

[∣∣∣∣∣
1

m

m∑

i=1

xi − µ
∣∣∣∣∣ > ε

]
≤ 2 exp(−Ω(mε2))

In many applications, we are not just dealing with scalar random variables. A natural

generalization of the Chernoff bound appeared in the works of Rudelson [Rud99], Ahlswede-

Winter [AW02], and Tropp [Tro12]. They proved that a similar concentration phenomenon

is true even for matrix random variables. Given a list of independent complex Hermitian

random matrices X1, · · · , Xm ∈ Cn×n with mean µ and ‖Xi‖ ≤ 1, ∀i ∈ [m], then

Pr

[∥∥∥∥∥
1

m

m∑

i=1

Xi − µ
∥∥∥∥∥ > ε

]
≤ 2n exp(−Ω(mε2))

For a more detailed survey and recent progress on the topic Matrix Chernoff bound. We

refer the readers to [Tro15, GLSS18, KS18].

In this work, we draw an interesting connection between deep learning theory and Ma-

trix Chernoff bound : we can view the width of neural network as the number of independent

random matrices.
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28.1.1 Our Result

We start with the definition of Gram matrix, which can be found in [DZPS19].

Definition 28.1.1 (Data-dependent function H). Given a collection of data {x1, · · · , xn} ⊂

Rd. For any vector w ∈ Rd, we define symmetric matrix H(w) ∈ Rn×n as follows

H(w)i,j = x>i xj1w>xi≥0,w>xj≥0,∀(i, j) ∈ [n]× [n].

Then we define continuous Gram matrix Hcts ∈ Rn×n in the following sense

Hcts = E
w∼N(0,I)

[H(w)].

Similarly, we define discrete Gram matrix Hdis ∈ Rn×n in the following sense

Hdis =
1

m

m∑

r=1

H(wr).

We use N(0, I) to denote Gaussian distribution. We use Ew to denote Ew∼N(0,I) and

Prw to denote Prw∼N(0,I). We introduce some mild data-dependent assumption. Without

loss of generality, we can assume that ‖xi‖2 ≤ 1, ∀i ∈ [n].

Assumption 28.1.1 (Data-dependent assumption). We made the following data-dependent

assumption:

1. Let λ = λmin(Ew[H(w)]) and λ ∈ (0, 1].

2. Let α ∈ [1, n] and γ ∈ [0, 1) be the parameter such that 1

Pr
w

[∥∥∥H(w)− E
w

[H]
∥∥∥ ≤ α

]
≥ 1− γ.

1For simplicity, let us assume γ = 0.
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3. Let β ∈ [1, n2] be the parameter such that
∥∥∥∥Ew

[(
H(w)− E

w
[H(w)]

)(
H(w)− E

w
[H(w)]

)>]∥∥∥∥ ≤ β.

4. Let θ ∈ [0,
√
n] be parameter such that

|x>i xj| ≤ θ/
√
n,∀i 6= j.

The first assumption is from [DZPS19]. For more detailed discussion about that

assumption, we refer the readers to [DZPS19]. The last assumption is similar to assumption

in [AZLS18, AZLS19], where they assumed that for i 6= j, ‖xi − xj‖2 ≥ θ′. If we think of

‖xi‖2 = 1,∀i ∈ [n], then we know that (θ′)2 ≤ 2 − 2x>i xj. It indicates (θ′)2 + 2θ/
√
n ≤ 2.

The second and the third assumption are motivated by Matrix Chernoff bound. The reason

for introducing these Matrix Chernoff-type assumption is, the goal is to bound the spectral

norm of the sums of random matrices in several parts of the proof. One way is to relax

the spectral norm to the Frobenious norm, and bound each entry of the matrix, and finally

union bound over all entries in the matrix. This could potentially lose a
√
n factor compared

to applying Matrix Chernoff bound. We feel these assumptions can indicate how the input

data affect the over-parameterization size m in a more clear way.

We state our result for the concentration of sums of independent random matrices:

Proposition 28.1.2 (Informal of Theorem 28.5.1). Assume Part 1,2 and 3 of Assump-

tion 28.1.1. If m = Ω((λ−2β + λ−1α) log(n/δ)), then

Pr
w1,··· ,wm∈N(0,I)

[‖Hdis −Hcts‖2 ≤ λ/4] ≥ 1− δ.
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Table 28.1: Summary of Convergence Result

Reference m λ α θ
[DZPS19] λ−4n6 poly(log n, 1/δ) Yes No No
Theorem 28.1.3 λ−4n4 log3(n/δ) Yes No No
Theorem 28.1.4 λ−4n3 log3(n/δ) · α Yes Yes No
Theorem 28.1.5 λ−4n2 log3(n/δ) · α(α + θ2) Yes Yes Yes

Proposition 28.1.2 is a direct improvement compared to Lemma 3.1 in [DZPS19],

which requires m = Ω(λ−2n2 log(n/δ)). Proposition 28.1.2 is better when input data points

have some good properties, e.g., β, α = o(n2). However the result in [DZPS19] always needs

to pay n2 factor, no matter what the input data points are.

We state our convergence result as follows:

Theorem 28.1.3 (Informal of Theorem 28.4.5). Assume Part 1 of Assumption 28.1.1. Let

m denote the width of neural network, let n denote the number of input data points. If

m = Ω(λ−4n4 poly(log(n/δ))), then gradient descent is able to find the global minimum from

a random initialization point with probability 1− δ.

Theorem 28.1.3 is a direct improvement compared to Theorem 4.1 in [DZPS19], which

requires m = Ω(λ−4n6 poly(log n, 1/δ)).

If we also allow Part 2 of Assumption 28.1.1, we can slightly improve Theorem 28.1.3

from n4 to n3,

Theorem 28.1.4 (Informal of Theorem 28.5.5). Assume Part 1 and 2 of Assumption 28.1.1.

If m = Ω(λ−4n3α poly(log(n/δ))), then gradient descent is able to find the global minimum

from a random initialization point with probability 1− δ.
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Except for m, Theorem 4.1 in [DZPS19] requires step size η to be Θ(λ/n2). Theo-

rem 28.1.4 only needs step size η to be Θ(λ/(αn)).

Further, if we also allow Part 4 of Assumption 28.1.1, we can slightly improve Theo-

rem 28.1.3 from n4 to n2,

Theorem 28.1.5 (Informal of Theorem 28.6.4). Assume Part 1, 2 and 4 of Assump-

tion 28.1.1. If m = Ω(λ−4n2α(θ2 + α) poly(log(n/δ))), the gradient descent is able to find

the global minimum from a random initialization point with probability 1− δ.
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28.1.2 Technical Overview

We follow the exact same optimization framework as Du, Zhai, Poczos and Singh

[DZPS19]. We improve the bound on m by doing a careful concentration analysis for random

variables without changing the high-level optimization framework.

We briefly summarize the optimization framework here: the minimal eigenvalue λ of

Hcts, as introduced in [DZPS19], turns out to be closely related with the convergence rate.

As time evolves, the weights w in the network may vary; however if w stay in a ball of radius

R that only depends on the number of data n and λ, and particularly does not depend on

the number of neurons m, then we are still able to lower bound the minimal eigenvalue of

H(w). On the other hand, we want to upper bound D, the actual move of w, with high

probability. It turns out D is proportional to 1√
m
. We require D < R in order to control the

convergence rate. In this way we derive a lower bound of m.

In order to bound ‖H‖, [DZPS19] relax it to Frobenius norm and then relax it to

entry-wise L1 norm,

‖H‖ ≤ ‖H‖F ≤ ‖H‖1.

Then they can bound each term of Hi,j individually via Markov inequality.

One key observation is that ‖H‖1 is a quite loose bound for ‖H‖F , in the sense that

‖H‖1 = ‖H‖F holds only if H contains at most 1 non-zero entry. This means we can work on

the Frobenius norm directly, and we shall be able to obtain a tighter estimation. By definition

of H, it can be written as a summation of m independent matrices A1, A2, · · · , Am ∈ Rn×n,

H =
1

m

m∑

r=1

Ar
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In order to bound ‖H‖F , for each i, j, we regard each Hij as summation of m independent

random variables, then apply Bernstein bound to obtain experiential tail bound on the

concentration of Hij. Finally, by taking a union bound over all the n2 pairs we obtain a

tighter bound for ‖H‖F .

We shall mention that ‖H‖F is also a loose upper bound of ‖H‖, i.e., ‖H‖F = ‖H‖

only if H is a rank-1 matrix. Hence, if the condition number of H is small, which may

happen as a property of the data, then we may benefit from bounding ‖H‖ directly. We

achieve this by apply matrix Chernoff bound, which states the spectral norm of summation

of m independent matrices concentrates under certain conditions.

We shall stress that mutually independence plays a very important role in our argu-

ment. Throughout the whole paper we are dealing with summations of the form
∑m

r=1 yr

where {ym}mr=1 are independent random variables. Previous argument mainly applies Markov

inequality, which pays a factor of 1/δ around the mean for error probability δ. But we can

obtain much tighter concentration bound by taking advantage of independence as in Bern-

stein inequality and Hoeffding inequality. This allows us to improve the dependency on δ

from 1/δ to log 1/δ.

We also make use of matrix spectral norm to deal with summation of the form

‖∑n
i=1 aixi‖2 where {ai}ni=1 are scalars and {xi}ni=1 are vectors. Naively applying triangle

inequality leads to an upper bound proportional to ‖a‖1, which can be as large as
√
n‖a‖2.

Instead, we observe that the matrix formed by
(
x1 · · · xn

)
:= X has good singular value

property, which allows us to obtain the bound ‖X‖2 · ‖a‖2. Therefore, this bound does not

rely on number of inputs explicitly.
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Roadmap We provide some basic definitions and probability tools in Section 28.2. We

define the optimization problem in Section 28.3. We present our quartic result in Section 28.4.

We improve it to cubic and quadratic in Section 28.5 and Section 28.6.
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28.2 Preliminaries
28.2.1 Notation

We use [n] to denote {1, 2, · · · , n}. We use φ to denote ReLU activation function,

i.e., φ(x) = max{x, 0}. For an event f(x), we define 1f(x) such that 1f(x) = 1 if f(x) holds

and 1f(x) = 0 otherwise. For a matrix A, we use ‖A‖ to denote the spectral norm of A. We

define ‖A‖F = (
∑

i

∑
j A

2
i,j)

1/2 and ‖A‖1 =
∑

i

∑
j |Ai,j|.
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28.3 Problem Formulation

Our problem formulation is the same as [DZPS19]. We consider a two-layer ReLU

activated neural network with m neurons in the hidden layer:

f(W,x, a) =
1√
m

m∑

r=1

arφ(w>r x),

where x ∈ Rd is the input, w1, · · · , wm ∈ Rd are weight vectors in the first layer, a1, · · · , am ∈

R are weights in the second layer. For simplicity, we only optimize W but not optimize a

and W at the same time.

Recall that the ReLU function φ(x) = max{x, 0}. Therefore for r ∈ [m], we have

f(W,x, a)

∂wr
=

1√
m
arx1w>r x≥0. (28.1)

We apply the gradient descent to optimize the weight matrix W in the following

standard way,

W (k + 1) = W (k)− η∂L(W (k))

∂W (k)
. (28.2)

We define objective function L as follows

L(W ) =
1

2

n∑

i=1

(yi − f(W,xi, a))2.

We can compute the gradient of L in terms of wr

∂L(W )

∂wr
=

1√
m

n∑

i=1

(f(W,xi, ar)− yi)arxi1w>r xi≥0. (28.3)

We consider the ordinary differential equation defined by

dwr(t)

dt
= −∂L(W )

∂wr
. (28.4)
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At time t, let u(t) = (u1(t), · · · , un(t)) ∈ Rn be the prediction vector where each ui(t)

is defined as

ui(t) = f(W (t), a, xi). (28.5)
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28.4 Quartic Suffices
28.4.1 Bounding the difference between continuous and discrete

Lemma 28.4.1 (Lemma 3.1 in [DZPS19]). We define Hcts, Hdis ∈ Rn×n as follows

Hcts
i,j = E

w∼N(0,I)

[
x>i xj1w>xi≥0,w>xj≥0

]
,

Hdis
i,j =

1

m

m∑

r=1

[
x>i xj1w>r xi≥0,w>r xj≥0

]
.

Let λ = λmin(Hcts). If m = Ω(λ−2n2 log(n/δ)), we have

‖Hdis −Hcts‖F ≤
λ

4
, and λmin(Hdis) ≥ 3

4
λ.

hold with probability at least 1− δ.

For the completeness, we still provide a proof here.

Proof. For every fixed pair (i, j), Hdis
i,j is an average of independent random variables, i.e.

Hdis
i,j =

1

m

m∑

r=1

x>i xj1w>r xi≥0,w>r xj≥0.

Then the expectation of Hdis
i,j is

E[Hdis
i,j ] =

1

m

m∑

r=1

E
wr∼N(0,Id)

[
x>i xj1w>r xi≥0,w>r xj≥0

]

= E
w∼N(0,Id)

[
x>i xj1w>xi≥0,w>xj≥0

]

= Hcts
i,j .

For r ∈ [m], let zr = 1
m
x>i xj1w>r xi≥0,w>r xj≥0. Then zr is a random function of wr, hence

{zr}r∈[m] are mutually independent. Moreover, − 1
m
≤ zr ≤ 1

m
. So by Hoeffding inequal-

ity(Lemma A.1.5) we have for all t > 0,

Pr
[
|Hdis

i,j −Hcts
i,j | ≥ t

]
≤ 2 exp

(
− 2t2

4/m

)
= 2 exp(−mt2/2)
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Setting t = ( 1
m

2 log(2n2/δ))1/2, we can apply union bound on all pairs (i, j) to get with

probability at least 1− δ, for all i, j ∈ [n],

|Hdis
i,j −Hcts

i,j | ≤
( 2

m
log(2n2/δ)

)1/2

≤ 4
( log(n/δ)

m

)1/2

.

Thus we have

‖Hdis −Hcts‖2 ≤ ‖Hdis −Hcts‖2
F =

n∑

i=1

n∑

j=1

|Hdis
i,j −Hcts

i,j |2 ≤
1

m
16n2 log(n/δ).

Hence if m = Ω(λ−2n2 log(n/δ)) we have the desired result.

We define the event

Ai,r =
{
∃u : ‖u− w̃r‖2 ≤ R,1x>i w̃r≥0 6= 1x>i u≥0

}
.

Note this event happens if and only if |w̃>r xi| < R. Recall that w̃r ∼ N(0, I). By anti-

concentration inequality of Gaussian (Lemma A.1.11), we have

Pr[Ai,r] = Pr
z∼N(0,1)

[|z| < R] ≤ 2R√
2π
. (28.6)
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28.4.2 Bounding changes of H when w is in a small ball

We improve the Lemma 3.2 in [DZPS19] from the two perspective : one is the prob-

ability, and the other is upper bound on spectral norm.

Lemma 28.4.2 (perturbed w). Let R ∈ (0, 1). If w̃1, · · · , w̃m are i.i.d. generated N(0, I).

For any set of weight vectors w1, · · · , wm ∈ Rd that satisfy for any r ∈ [m], ‖w̃r−wr‖2 ≤ R,

then the H : Rm×d → Rn×n defined

H(w)i,j =
1

m
x>i xj

m∑

r=1

1w>r xi≥0,w>r xj≥0.

Then we have

‖H(w)−H(w̃)‖F < 2nR,

holds with probability at least 1− n2 · exp(−mR/10).

Proof. The random variable we care is

n∑

i=1

n∑

j=1

|H(w̃)i,j −H(w)i,j|2 =
1

m2

n∑

i=1

n∑

j=1

∣∣∣∣∣x
>
i xj

m∑

r=1

(1w̃>r xi≥0,w̃>r xj≥0 − 1w>r xi≥0,w>r xj≥0)

∣∣∣∣∣

2

≤ 1

m2

n∑

i=1

n∑

j=1

(
m∑

r=1

1w̃>r xi≥0,w̃>r xj≥0 − 1w>r xi≥0,w>r xj≥0

)2

=
1

m2

n∑

i=1

n∑

j=1

( m∑

r=1

sr,i,j

)2

,

where the last step follows from for each r, i, j, we define

sr,i,j := 1w̃>r xi≥0,w̃>r xj≥0 − 1w>r xi≥0,w>r xj≥0.

We consider i, j are fixed. We simplify sr,i,j to sr.
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Then sr is a random variable that only depends on w̃r. Since {w̃r}mr=1 are independent,

{sr}mr=1 are also mutually independent.

If ¬Ai,r and ¬Aj,r happen, then
∣∣1w̃>r xi≥0,w̃>r xj≥0 − 1w>r xi≥0,w>r xj≥0

∣∣ = 0.

If Ai,r or Aj,r happen, then
∣∣1w̃>r xi≥0,w̃>r xj≥0 − 1w>r xi≥0,w>r xj≥0

∣∣ ≤ 1.

So we have

Ẽ
wr

[sr] ≤ Ẽ
wr

[
1Ai,r∨Aj,r

]
≤ Pr[Ai,r] + Pr[Aj,r] ≤

4R√
2π
≤ 2R,

and

Ẽ
wr

[(
sr − Ẽ

wr
[sr]

)2
]

= Ẽ
wr

[s2
r]− Ẽ

wr
[sr]

2 ≤ Ẽ
wr

[s2
r] ≤ Ẽ

wr

[(
1Ai,r∨Aj,r

)2
]
≤ 4R√

2π
≤ 2R.

We also have |sr| ≤ 1. So we can apply Bernstein inequality (Lemma A.1.2) to get for all

t > 0,

Pr

[
m∑

r=1

sr ≥ 2mR +mt

]
≤ Pr

[
m∑

r=1

(sr − E[sr]) ≥ mt

]

≤ exp

(
− m2t2/2

2mR +mt/3

)
.

Choosing t = R, we get

Pr

[
m∑

r=1

sr ≥ 3mR

]
≤ exp

(
− m2R2/2

2mR +mR/3

)
≤ exp (−mR/10) .

Thus, we can have

Pr

[
1

m

m∑

r=1

sr ≥ 2R

]
≤ exp(−mR/10).

Therefore, we complete the proof.
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Table 28.2: Table of Parameters for the m = Ω̃(n4) result in Section 28.4. Nt. stands for
notations.

Nt. Choice Place Comment
λ := λmin(Hcts) Ass. 28.1.1 Data-dependent
R λ/n Eq. (28.11) Maximal allowed movement of weight
Dcts

√
n‖y−u(0)‖2√

mλ
Lemma 28.4.3 Actual moving distance of weight, continuous case

D 4
√
n‖y−u(0)‖2√

mλ
Lemma 28.4.6 Actual moving distance of weight, discrete case

η λ/n2 Eq. (28.11) Step size of gradient descent
m λ−2n2 log(n/δ) Lemma 28.4.1 Bounding discrete and continuous
m λ−4n4 log3(n/δ) Lemma 28.4.4 D < R and ‖y − u(0)‖2

2 = Õ(n)
Claim 28.4.7

28.4.3 Loss is decreasing while weights are not changing much

For simplicity of notation, we provide the following definition.

Definition 28.4.1. For any s ∈ [0, t], we define matrix H(s) ∈ Rn×n as follows

H(s)i,j =
1

m

m∑

r=1

x>i xj1wr(s)>xi≥0,wr(s)>xj≥0.

With H defined, it becomes more convenient to write the dynamics of predictions.

2156



For each i ∈ [n], we have

d

dt
ui(t) =

m∑

r=1

〈
∂f(W (t), a, xi)

∂wr(t)
,
dwr(t)

dt

〉

=
m∑

r=1

〈
∂f(W (t), a, xi)

∂wr(t)
,−∂L(w(t), a)

∂wr(t)

〉

=
m∑

r=1

〈
∂f(W (t), a, xi)

∂wr(t)
,− 1√

m

n∑

i=1

(f(W,xi, ar)− yi)arxi1w>r xi≥0

〉

=
n∑

j=1

(yj − uj(t))
〈
∂f(W (t), a, xi)

∂wr(t)
,
∂f(W (t), a, xj)

∂wr(t)

〉

=
n∑

j=1

(yj − uj(t))H(t)i,j

where the first step follows from (28.5) and the chain rule of derivatives, the second step

uses (28.3), the third step uses (28.4), the fourth step uses (28.1) and (28.5), and the last

step uses the definition of the matrix H.

Hence, we have the following compact expression for d
dt
u(t) as a whole vector:

d

dt
u(t) = H(t) · (y − u(t)).

Lemma 28.4.3 (Lemma 3.3 in [DZPS19]). Suppose for 0 ≤ s ≤ t, λmin(H(w(s))) ≥ λ/2.

Let Dcts be defined as

Dcts :=

√
n‖y − u(0)‖2√

mλ
.

Then we have

‖y − u(t)‖2
2 ≤ exp(−λt) · ‖y − u(0)‖2

2,

and

‖wr(t)− wr(0)‖2 ≤ Dcts.
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For the completeness, we still provide a proof.

Proof. Recall we can write the dynamics of predictions as

d

dt
u(t) = H(t) · (y − u(t)).

We can calculate the loss function dynamics

d

dt
‖y − u(t)‖2

2 = − 2(y − u(t))> ·H(t) · (y − u(t))

≤ − λ‖y − u(t)‖2
2.

Thus we have d
dt

(exp(λt)‖y − u(t)‖2
2) ≤ 0 and exp(λt)‖y − u(t)‖2

2 is a decreasing

function with respect to t.

Using this fact we can bound the loss

‖y − u(t)‖2
2 ≤ exp(−λt)‖y − u(0)‖2

2. (28.7)

Now, we can bound the gradient norm. Recall for 0 ≤ s ≤ t,
∥∥∥∥

d

ds
wr(s)

∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

(yi − ui)
1√
m
arxi · 1wr(s)>xi≥0

∥∥∥∥∥
2

≤ 1√
m

n∑

i=1

|yi − ui(s)|

≤
√
n√
m
‖y − u(s)‖2 (28.8)

≤
√
n√
m

exp(−λs)‖y − u(0)‖2.

where the first step follows from (28.3), the second step follows from triangle inequality and

ar = ±1 for r ∈ [m] and ‖xi‖2 = 1 for i ∈ [n], the third step follows from Cauchy-Schwartz

inequality, and the last step follows from (28.7).
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Integrating the gradient, we can bound the distance from the initialization

‖wr(t)− wr(0)‖2 ≤
∫ t

0

∥∥∥∥
d

ds
wr(s)

∥∥∥∥
2

ds

≤
√
n‖y − u(0)‖2√

mλ
.

Lemma 28.4.4 (Lemma 3.4 in [DZPS19]). If Dcts < R. then for all t ≥ 0, λmin(H(t)) ≥ 1
2
λ.

Moreover, for all r ∈ [m],

‖wr(t)− wr(0)‖ ≤ Dcts,

and

‖y − u(t)‖2
2 ≤ exp(−λt) · ‖y − u(0)‖2

2.

For the completeness, we still provide a proof.

Proof. Assume the conclusion does not hold at time t. We argue there must be some s ≤ t

so that λmin(H(s)) < 1
2
λ.

If λmin(H(t)) < 1
2
λ, then we can simply take s = t.

Otherwise since the conclusion does not hold, there exists r so that

‖wr(t)− wr(0)‖ ≥ Dcts or ‖y − u(t)‖2
2 > exp(−λt)‖y − u(0)‖2

2.

Then by Lemma 28.4.3, there exists s ≤ t such that

λmin(H(s)) <
1

2
λ.
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By Lemma 28.4.2, there exists t0 > 0 defined as

t0 = inf

{
t > 0 : max

r∈[m]
‖wr(t)− wr(0)‖2

2 ≥ R

}
.

Thus at time t0, there exists r ∈ [m] satisfying ‖wr(t0)− wr(0)‖2
2 = R.

By Lemma 28.4.2,

λmin(H(t′)) ≥ 1

2
λ,∀t′ ≤ t0.

However, by Lemma 28.4.3, this implies

‖wr(t0)− wr(0)‖2 ≤ Dcts < R,

which is a contradiction.
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28.4.4 Convergence

Theorem 28.4.5. Recall that λ = λmin(Hcts) > 0. Let m = Ω(λ−4n4 log(n/δ)), we i.i.d.

initialize wr ∈ N(0, I), ar sampled from {−1,+1} uniformly at random for r ∈ [m], and we

set the step size η = O(λ/n2) then with probability at least 1−δ over the random initialization

we have for k = 0, 1, 2, · · ·

‖u(k)− y‖2
2 ≤ (1− ηλ/2)k · ‖u(0)− y‖2

2. (28.9)

Correctness We prove Theorem 28.4.5 by induction. The base case is i = 0 and it is

trivially true. Assume for i = 0, · · · , k we have proved (28.9) to be true. We want to show

(28.9) holds for i = k + 1.

From the induction hypothesis, we have the following Lemma stating that the weights

should not change too much.

Lemma 28.4.6 (Corollary 4.1 in [DZPS19]). If (28.9) holds for i = 0, · · · , k, then we have

for all r ∈ [m]

‖wr(k + 1)− wr(0)‖2 ≤
4
√
n‖y − u(0)‖2√

mλ
:= D

For the completeness, we still provide the proof
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Proof. We use the norm of gradient to bound this distance,

‖wr(k + 1)− wr(0)‖2 ≤ η
k∑

i=0

∥∥∥∥
∂L(W (i))

∂wr(i)

∥∥∥∥
2

≤ η
k∑

i=0

√
n‖y − u(i)‖2√

m

≤ η

k∑

i=0

√
n(1− ηλ/2)i/2√

m
‖y − u(0)‖2

≤ η

∞∑

i=0

√
n(1− ηλ/2)i/2√

m
‖y − u(0)‖2

=
4
√
n‖y − u(0)‖2√

mλ
,

where the first step follows from (28.2), the second step follows from (28.8), the third step

follows from the induction hypothesis, the fourth step relaxes the summation to an infinite

summation, and the last step follows from
∑∞

i=0(1− ηλ/2)i/2 = 2
ηλ
.

Thus, we complete the proof.

Next, we calculate the different of predictions between two consecutive iterations,

analogue to dui(t)
dt

term in Lemma 28.4.3. For each i ∈ [n], we have

ui(k + 1)− ui(k) =
1√
m

m∑

r=1

ar ·
(
φ(wr(k + 1)>xi)− φ(wr(k)>xi)

)

=
1√
m

∑

r=1

ar ·
(
φ

((
wr(k)− η∂L(W (k))

∂wr(k)

)>
xi

)
− φ(wr(k)>xi)

)
.

Here we divide the right hand side into two parts. v1,i represents the terms that the

pattern does not change and v2,i represents the term that pattern may changes. For each
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i ∈ [n], we define v1,i and v2,i as follows

v1,i :=
1√
m

∑

r∈Si

ar ·
(
φ

((
wr(k)− η∂L(W (k))

∂wr(k)

)>
xi

)
− φ(wr(k)>xi)

)
,

v2,i :=
1√
m

∑

r∈Si

ar ·
(
φ

((
wr(k)− η∂L(W (k))

∂wr(k)

)>
xi

)
− φ(wr(k)>xi)

)
.

Thus, we can rewrite u(k + 1)− u(k) ∈ Rn in the following sense

u(k + 1)− u(k) = v1 + v2.

In order to analyze v1 ∈ Rn, we provide definition of H and H⊥ ∈ Rn×n first,

H(k)i,j =
1

m

m∑

r=1

x>i xj1wr(k)>xi≥0,wr(k)>xj≥0,

H(k)⊥i,j =
1

m

∑

r∈Si

x>i xj1wr(k)>xi≥0,wr(k)>xj≥0.

Then, we can rewrite v1,i ∈ R

v1,i = − η

m

n∑

j=1

x>i xj(uj − yj)
∑

r∈Si

1wr(k)>xi≥0,wr(k)>xj≥0

= − η
n∑

j=1

(uj − yj)(Hi,j(k)−H⊥i,j(k)),

which means vector v1 ∈ Rn can be written as

v1 = η(y − u(k))>(H(k)−H⊥(k)). (28.10)

We are ready to prove the induction hypothesis. We can rewrite ‖y − u(k + 1)‖2
2 as

follows:

‖y − u(k + 1)‖2
2 = ‖y − u(k)− (u(k + 1)− u(k))‖2

2

= ‖y − u(k)‖2
2 − 2(y − u(k))>(u(k + 1)− u(k)) + ‖u(k + 1)− u(k)‖2

2.
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We can rewrite the second term in the above Equation in the following sense,

(y − u(k))>(u(k + 1)− u(k))

= (y − u(k))>(v1 + v2)

= (y − u(k))>v1 + (y − u(k))>v2

= η(y − u(k))>H(k)(y − u(k))− η(y − u(k))>H(k)⊥(y − u(k)) + (y − u(k))>v2,

where the third step follows from Eq. (28.10).

We define

C1 = − 2η(y − u(k))>H(k)(y − u(k)),

C2 = 2η(y − u(k))>H(k)⊥(y − u(k)),

C3 = − 2(y − u(k))>v2,

C4 = ‖u(k + 1)− u(k)‖2
2.

Thus, we have

‖y − u(k + 1)‖2
2 = ‖y − u(k)‖2

2 + C1 + C2 + C3 + C4

≤ ‖y − u(k)‖2
2(1− ηλ+ 8ηnR + 8ηnR + η2n2),

where the last step follows from Claim 28.4.8, 28.4.9, 28.4.10 and 28.4.11, which we will

prove given later.

Choice of η and R. Next, we want to choose η and R such that

(1− ηλ+ 8ηnR + 8ηnR + η2n2) ≤ (1− ηλ/2). (28.11)
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If we set η = λ
4n2 and R = λ

64n
, we have

8ηnR + 8ηnR = 16ηnR ≤ ηλ/4, and η2n2 ≤ ηλ/4.

This implies

‖y − u(k + 1)‖2
2 ≤ ‖y − u(k)‖2

2 · (1− ηλ/2)

holds with probability at least 1− 2n exp(−mR).

Over-parameterization size, lower bound on m. We require

D =
4
√
n‖y − u(0)‖2√

mλ
< R =

λ

64n
,

and

2n exp(−mR) ≤ δ.

By Claim 28.4.7, it is sufficient to choose m = Ω(λ−4n4 log(m/δ) log2(n/δ)).
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28.4.5 Technical claims

Claim 28.4.7. For 0 < δ < 1, with probability at least 1− δ,

‖y − u(0)‖2
2 = O(n log(m/δ) log2(n/δ)).

Proof.

‖y − u(0)‖2
2 =

n∑

i=1

(yi − f(W (0), a, xi))
2

=
n∑

i=1

(
yi −

1√
m

m∑

r=1

arφ(w>r xi)
)2

=
n∑

i=1

y2
i − 2

n∑

i=1

yi√
m

m∑

r=1

arφ(w>r xi) +
n∑

i=1

1

m

( m∑

r=1

arφ(w>r xi)
)2

.

Fix r ∈ [m] and i ∈ [n]. Since wr ∼ N(0, I) and ‖xi‖2 = 1, w>r xi follows distribution

N(0, 1). From concentration of Gaussian distribution, we have

Pr
wr

[w>r xi ≥
√

2 log(2mn/δ)] ≤ δ

2mn
.

Let E1 be the even that for all r ∈ [m] and i ∈ [n] we have

φ(w>r xi) ≤
√

2 log(2mn/δ).

Then by union bound, Pr[E1] ≥ 1− δ
2
,

Fix i ∈ [n]. For every r ∈ [m], we define random variable zi,r as

zi,r :=
1√
m
· ar · φ(w>r xi) · 1w>r xi≤

√
2 log(2mn/δ)

.
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Then zi,r only depends on ar ∈ {−1, 1} and wr ∼ N(0, I). Notice that Ear,wr [zi,r] = 0, and

|zi,r| ≤
√

2 log(2mn/δ). Moreover,

E
ar,wr

[z2
i,r] = E

ar,wr

[
1

m
a2
rφ

2(w>r xi)1
2

w>r xi≤
√

2 log(2mn/δ)

]

=
1

m
E
ar

[a2
r] · E

wr

[
φ2(w>r xi)1

2

w>r xi≤
√

2 log(2mn/δ)

]

≤ 1

m
· 1 · E

wr
[(w>r xi)

2]

=
1

m
,

where the second step uses independence between ar and wr, the third step uses ar ∈ {−1, 1}

and φ(t) = max{t, 0}, and the last step follows from w>r xi ∼ N(0, 1).

Now we are ready to apply Bernstein inequality (Lemma A.1.2) to get for all t > 0,

Pr

[
m∑

r=1

zi,r > t

]
≤ exp

(
− t2/2

m · 1
m

+
√

2 log(2mn/δ) · t/3

)
.

Setting t =
√

2 log(2mn/δ) · log(4n/δ), we have with probability at least 1− δ
4n
,

m∑

r=1

zi,r ≤
√

2 log(2mn/δ) · log(4n/δ).

Notice that we can also apply Bernstein inequality (Lemma A.1.2) on −zi,r to get

Pr

[
m∑

r=1

zi,r < −t
]
≤ exp

(
− t2/2

m · 1
m

+
√

2 log(2mn/δ) · t/3

)
.

Let E2 be the event that for all i ∈ [n],
∣∣∣∣∣
m∑

r=1

zi,r

∣∣∣∣∣ ≤
√

2 log(2mn/δ) · log(4n/δ).

By applying union bound on all i ∈ [n], we have Pr[E2] ≥ 1− δ
2
.
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If both E1 and E2 happen, we have

‖y − u(0)‖2
2 =

n∑

i=1

y2
i − 2

n∑

i=1

yi√
m

m∑

r=1

arφ(w>r xi) +
n∑

i=1

1

m

( m∑

r=1

arφ(w>r xi)
)2

=
n∑

i=1

y2
i − 2

n∑

i=1

yi

m∑

r=1

zi,r +
n∑

i=1

( m∑

r=1

zi,r

)2

≤
n∑

i=1

y2
i + 2

n∑

i=1

|yi|
√

2 log(2mn/δ) · log(4n/δ) +
n∑

i=1

(√
2 log(2mn/δ) · log(4n/δ)

)2

= O(n log(m/δ) log2(n/δ)),

where the second step uses E1, the third step uses E2, and the last step follows from |yi| =

O(1),∀i ∈ [n].

By union bound, this will happen with probability at least 1− δ.

Claim 28.4.8. Let C1 = −2η(y − u(k))>H(k)(y − u(k)) . We have

C1 ≤ −‖y − u(k)‖2
2 · ηλ.

Proof. By Lemma 28.4.2 and our choice of R < λ
8n
, We have ‖H(0)−H(k)‖F ≤ 2n · λ

8n
= λ

4
.

Recall that λ = λmin(H(0)). Therefore

λmin(H(k)) ≥ λmin(H(0))− ‖H(0)−H(k)‖ ≥ λ/2.

Then we have

(y − u(k))>H(k)(y − u(k)) ≥ ‖y − u(k)‖2
2 · λ/2.

Thus, we complete the proof.
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Claim 28.4.9. Let C2 = 2η(y − u(k))>H(k)⊥(y − u(k)). We have

C2 ≤ ‖y − u(k)‖2
2 · 8ηnR.

holds with probability 1− n exp(−mR).

Proof. Note that

C2 ≤ 2η‖y − u(k)‖2
2‖H(k)⊥‖.

It suffices to upper bound ‖H(k)⊥‖. Since ‖ · ‖ ≤ ‖ · ‖F , then it suffices to upper bound

‖ · ‖F .

For each i ∈ [n], we define yi as follows

yi =
m∑

r=1

1r∈Si .
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Then we have

‖H(k)⊥‖2
F =

n∑

i=1

n∑

j=1

(H(k)⊥i,j)
2

=
n∑

i=1

n∑

j=1

( 1

m

∑

r∈Si

x>i xj1wr(k)>xi≥0,wr(k)>xj≥0

)2

=
n∑

i=1

n∑

j=1

( 1

m

m∑

r=1

x>i xj1wr(k)>xi≥0,wr(k)>xj≥0 · 1r∈Si
)2

=
n∑

i=1

n∑

j=1

(
x>i xj
m

)2
( m∑

r=1

1wr(k)>xi≥0,wr(k)>xj≥0 · 1r∈Si
)2

≤ 1

m2

n∑

i=1

n∑

j=1

( m∑

r=1

1wr(k)>xi≥0,wr(k)>xj≥0 · 1r∈Si
)2

=
n

m2

n∑

i=1

( m∑

r=1

1r∈Si

)2

=
n

m2

n∑

i=1

y2
i .

Fix i ∈ [n]. The plan is to use Bernstein inequality to upper bound yi with high

probability.

First by Eq. (28.6) we have

E[1r∈Si ] ≤ R.

We also have

E
[
(1r∈Si − E[1r∈Si ])

2
]

= E[12
r∈Si ]− E[1r∈Si ]

2

≤ E[12
r∈Si ]

≤ R.
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Finally we have |1r∈Si − E[1r∈Si ]| ≤ 1.

Notice that {1r∈Si}mr=1 are mutually independent, since 1r∈Si only depends on wr(0).

Hence from Bernstein inequality (Lemma A.1.2) we have for all t > 0,

Pr [yi > m ·R + t] ≤ exp

(
− t2/2

m ·R + t/3

)
.

By setting t = 3mR, we have

Pr [yi > 4mR] ≤ exp(−mR).

Hence by union bound, with probability at least 1− n exp(−mR),

‖H(k)⊥‖2
F ≤

n

m2
· n · (4mR)2 = 16n2R2.

Putting all together we have

‖H(k)⊥‖ ≤ ‖H(k)⊥‖F ≤ 4nR

with probability at least 1− n exp(−mR).

Claim 28.4.10. Let C3 = −2(y − u(k))>v2. Then we have

C3 ≤ ‖y − u(k)‖2
2 · 8ηnR.

with probability at least 1− n exp(−mR).

Proof. We have

LHS ≤ 2‖y − u(k)‖2 · ‖v2‖2.
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We can upper bound ‖v2‖2 in the following sense

‖v2‖2
2 ≤

n∑

i=1


 η√

m

∑

r∈Si

∣∣∣∣(
∂L(W (k))

∂wr(k)
)>xi

∣∣∣∣




2

=
η2

m

n∑

i=1

(
m∑

r=1

1r∈Si

∣∣∣∣(
∂L(W (k))

∂wr(k)
)>xi

∣∣∣∣

)2

≤ η2

m
·max
r∈[m]

∣∣∣∣
∂L(W (k))

∂wr(k)

∣∣∣∣
2

·
n∑

i=1

(
m∑

r=1

1r∈Si

)2

≤ η2

m
· (
√
n√
m
‖u(k)− y‖2)2 ·

n∑

i=1

(
m∑

r=1

1r∈Si

)2

≤ η2

m
· (
√
n√
m
‖u(k)− y‖2)2 ·

n∑

i=1

(4mR)2

= 16n2R2η2‖u(k)− y‖2
2,

where the first step follows from definition of v2, the fourth step follows from maxr∈[m] |∂L(W (k))
∂wr(k)

| ≤
√
n√
m
· ‖u(k) − y‖2, the fifth step follows from

∑m
r=1 1r∈Si ≤ 4mR with probability at least

1− exp(−mR).

Claim 28.4.11. Let C4 = ‖u(k + 1)− u(k)‖2
2. Then we have

C4 ≤ η2n2‖y − u(k)‖2
2.

Proof. We have

LHS ≤ η2

n∑

i=1

1

m

(
m∑

r=1

∥∥∥∂L(W (k))

∂wr(k)

∥∥∥
2

)2

≤ η2n2‖y − u(k)‖2
2.
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28.5 Cubic Suffices

We prove a more general version of Lemma 28.4.1 in this section.

Theorem 28.5.1 (Data-dependent version, bounding the difference between discrete and

continuous). Let Hcts and Hdis be defined as Definition 28.1.1. Let λ, α, β be satisfied As-

sumption 28.1.1. If

m = Ω((λ−2β + λ−1α) log(n/δ)),

we have

‖Hdis −Hcts‖2 ≤ λ/4, and λmin(Hdis) ≥ 3

4
λ

holds with probability at least 1− exp(−Ω(log(n/δ))).

Proof. Recall the definition, we know

Hcts = E
w

[H(w)], and Hdis =
1

m

m∑

r=1

H(wr).

We define matrix Yr = H(wr)− Ew[H(w)]. We know that, Yr are all independent,

E[Yr] = 0, ‖Yr‖ ≤ α,
∥∥∥

m∑

r=1

E[YrY
>
r ]
∥∥∥ ≤ mβ.

Let Y =
∑m

r=1 Yr. We apply Matrix Bernstein inequality (Lemma A.2.2) with t =
√
mβ log(n/δ)+

α log(n/δ),

Pr[‖Y ‖ ≥ t] ≤ 2n exp
(
− t2/2

mβ + αt/3

)

≤ 2n exp(− log(n/δ))

≤ exp(−Ω(log(n/δ))).
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Thus, we have

Pr

[∥∥∥ 1

m

m∑

r=1

Yr

∥∥∥ ≥ 1

m
(
√
mβ log(n/δ) + α log(n/δ))

]
≤ exp(−Ω(log(n/δ))).

In order to guarantee that 1
m

(
√
mβ log(n/δ) + α log(n/δ)) ≤ λ, we need

√
m ≥ λ−1

√
β log(n/δ)

when the first term is the dominated one; we need

m ≥ λ−1α log(n/δ).

Overall, we need

m ≥ Ω((λ−2β + λ−1α) log(n/δ)).

Thus, we complete the proof.

Lemma 28.5.2 (Stronger version of Lemma 3.3 in [DZPS19]). Let Part 4 in Assumption

28.1.1 hold. Let Dcts =
√
α‖y−u(0)‖2√

mλ
. Suppose for 0 ≤ s ≤ t, λmin(H(s)) ≥ λ/2. Then we

have

‖y − u(t)‖2
2 ≤ exp(−λt) · ‖y − u(0)‖2

2,

and

‖wr(t)− wr(0)‖2 ≤ Dcts.

Proof. Recall we can write the dynamics of predictions as

d

dt
u(t) = H(t) · (y − u(t)).
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Table 28.3: Table of Parameters for the m = Ω̃(n3) result in Section 28.5. Nt. stands for
notations.

Nt. Choice Place Comment
λ := λmin(Hcts) Part 1 of Ass. 28.1.1 Data-dependent
α Absolute Part 2 of Ass. 28.1.1 Data-dependent
β Variance Part 3 of Ass. 28.1.1 Data-dependent
R λ/n Eq. (28.11) Maximal allowed movement of weight
Dcts

√
α‖y−u(0)‖2√

mλ
Lemma 28.5.2 Actual moving distance, continuous case

D 4
√
α‖y−u(0)‖2√

mλ
Theorem 28.5.5 Actual moving distance, discrete case

η λ/(αn) Eq. (28.11) Step size of gradient descent
m (λ−2β + λ−1α) log(n/δ) Theorem 28.5.1 Bounding discrete and continuous
m λ−4αn3 log3(n/δ) Lemma 28.4.4 D < R and ‖y − u(0)‖2

2 = Õ(n)
Claim 28.4.7

We can calculate the loss function dynamics

d

dt
‖y − u(t)‖2

2 = − 2(y − u(t))> ·H(t) · (y − u(t))

≤ − λ‖y − u(t)‖2
2.

Thus we have d
dt

(exp(λt)‖y − u(t)‖2
2) ≤ 0 and exp(λt)‖y − u(t)‖2

2 is a decreasing

function with respect to t.

Using this fact we can bound the loss

‖y − u(t)‖2
2 ≤ exp(−λt)‖y − u(0)‖2

2.

Therefore, u(t)→ y exponentially fast.

Now, we can bound the gradient norm. Recall for 0 ≤ s ≤ t,
∥∥∥∥

d

ds
wr(s)

∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

(yi − ui)
1√
m
arxi · 1wr(s)>xi≥0

∥∥∥∥∥
2

.

2175



Define matrix Xr ∈ Rd×n by setting the i-th column to be 1wr(s)>xi≥0 · xi, then X>r Xr =

H(wr(s)), where H(·) is the matrix defined in Definition 28.1.1. Then we have ‖X>r Xr‖2 ≤ α

by Part 4 in Assumption 28.1.1, which leads to ‖Xr‖2 ≤
√
α. So we have

∥∥∥∥
d

ds
wr(s)

∥∥∥∥
2

=
1√
m
‖Xr(y − u(s))‖2

≤ 1√
m
‖Xr‖2‖(y − u(s))‖2

≤
√
α√
m
‖y − u(s)‖2 (28.12)

≤
√
α√
m

exp(−λs)‖y − u(0)‖2.

Integrating the gradient, we can bound the distance from the initialization

‖wr(t)− wr(0)‖2 ≤
∫ t

0

∥∥∥∥
d

ds
wr(s)

∥∥∥∥
2

ds

≤
√
α‖y − u(0)‖2√

mλ
.
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28.5.1 Technical claims

Claim 28.5.3. Let C3 = −2(y − u(k))>v2. Then we have

C3 ≤ ‖y − u(k)‖2
2 · 8η(αn)1/2R.

with probability at least 1− n exp(−mR).

Proof. We have

LHS ≤ 2‖y − u(k)‖2 · ‖v2‖2.

We can upper bound ‖v2‖2 in the following sense

‖v2‖2
2 ≤

n∑

i=1


 η√

m

∑

r∈Si

∣∣∣∣
(∂L(W (k))

∂wr(k)

)>
xi

∣∣∣∣




2

=
η2

m

n∑

i=1

(
m∑

r=1

1r∈Si

∣∣∣∣
(∂L(W (k))

∂wr(k)

)>
xi

∣∣∣∣

)2

≤ η2

m
·max
r∈[m]

∣∣∣∣
∂L(W (k))

∂wr(k)

∣∣∣∣
2

·
n∑

i=1

(
m∑

r=1

1r∈Si

)2

≤ η2

m
·
(√α√

m
‖u(k)− y‖2

)2

·
n∑

i=1

(
m∑

r=1

1r∈Si

)2

≤ η2

m
·
(√α√

m
‖u(k)− y‖2

)2

·
n∑

i=1

(4mR)2

= 16αnR2η2‖u(k)− y‖2
2,

where the first step follows from definition of v2, the fourth step follows from (28.12) and

max
r∈[m]

∣∣∣∣
∂L(W (k))

∂wr(k)

∣∣∣∣ = max
r∈[m]

∣∣∣∣
dwr(k)

dk

∣∣∣∣

≤
√
α√
m
‖y − u(k)‖2,
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the fifth step follows from
∑m

r=1 1r∈Si ≤ 4mR with probability at least 1− exp(−mR).

Claim 28.5.4. Let C4 = ‖u(k + 1)− u(k)‖2
2. Then we have

C4 ≤ η2αn‖y − u(k)‖2
2.

Proof. We have

LHS ≤ η2

n∑

i=1

1

m

(
m∑

r=1

∥∥∥∂L(W (k))

∂wr(k)

∥∥∥
2

)2

≤ η2

n∑

i=1

1

m

(
m∑

r=1

√
α√
m
‖u(k)− y‖2

)2

≤ η2αn‖y − u(k)‖2
2.
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28.5.2 Main result

Theorem 28.5.5. Recall that λ = λmin(Hcts) > 0. Let m = Ω(λ−4n3α log3(n/δ)), we i.i.d.

initialize wr ∈ N(0, I), ar sampled from {−1,+1} uniformly at random for r ∈ [m], and

we set the step size η = O(λ/(αn)) then with probability at least 1 − δ over the random

initialization we have for k = 0, 1, 2, · · ·

‖u(k)− y‖2
2 ≤ (1− ηλ/2)k · ‖u(0)− y‖2

2. (28.13)

Proof. This proof, similar to the proof of Theorem 28.4.5, is again by induction. (28.13)

trivially holds when k = 0, which is the base case.

If (28.13) holds for k′ = 0, · · · , k, then we claim that for all r ∈ [m]

‖wr(k + 1)− wr(0)‖2 ≤
4
√
α‖y − u(0)‖2√

mλ
:= D (28.14)

To see this, we use the norm of gradient to bound this distance,

‖wr(k + 1)− wr(0)‖2 ≤ η
k∑

k′=0

∥∥∥∥
∂L(W (k′))

∂wr(k′)

∥∥∥∥
2

≤ η
k∑

k′=0

√
α‖y − u(k′)‖2√

m

≤ η
k∑

k′=0

√
α(1− ηλ/2)k

′/2

√
m

‖y − u(0)‖2

≤ η

∞∑

k′=0

√
α(1− ηλ/2)k

′/2

√
m

‖y − u(0)‖2

=
4
√
α‖y − u(0)‖2√

mλ
,
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where the first step follows from (28.2), the second step follows from (28.12), the third step

follows from the induction hypothesis, the fourth step relaxes the summation to an infinite

summation, and the last step follows from
∑∞

k′=0(1− ηλ/2)k
′/2 = 2

ηλ
.

Then from Claim 28.5.4, it is sufficient to choose η = λ
4αn

so that (28.13) holds for

k′ = k + 1. This completes the induction step.

Over-parameterization size, lower bound on m.

We require

D =
4
√
α‖y − u(0)‖2√

mλ
< R =

λ

64n
,

and

2n exp(−mR) ≤ δ.

This implies that

m = Ω(λ−4n2α‖y − u(0)‖2
2)

= Ω(λ−4n3α log(m/δ) log2(n/δ)),

where the last step follows from Claim 28.4.7.
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28.6 Quadratic Suffices

Lemma 28.6.1 (perturbed w). Let R ∈ (0, 1). Let Assumption 4 in 28.1.1 hold, i.e. for

all i 6= j, |x>i xj| ≤ θ/
√
n. If w̃1, · · · , w̃m are i.i.d. generated N(0, I). For any set of

weight vectors w1, · · · , wm ∈ Rd that satisfy for any r ∈ [m], ‖w̃r − wr‖2 ≤ R, then the

H : Rm×d → Rn×n defined

H(w)i,j =
1

m
x>i xj

m∑

r=1

1w>r xi≥0,w>r xj≥0.

Then we have

‖H(w)−H(w̃)‖F < 2
(
n(1 + θ2)

)1/2
R,

holds with probability at least 1− n2 · exp(−mR/10).

Proof. The random variable we care is

n∑

i=1

n∑

j=1

|H(w̃)i,j −H(w)i,j|2 =
1

m2

n∑

i=1

n∑

j=1

∣∣∣∣∣x
>
i xj

m∑

r=1

(1w̃>r xi≥0,w̃>r xj≥0 − 1w>r xi≥0,w>r xj≥0)

∣∣∣∣∣

2

= B1 +B2,

where B1, B2 are defined as

B1 =
1

m2

n∑

i=1

∣∣∣∣∣
m∑

r=1

(1w̃>r xi≥0 − 1w>r xi≥0)

∣∣∣∣∣

2

,

B2 =
1

m2

n∑

i=1

∑

j∈[n]\{i}

∣∣∣∣∣x
>
i xj

m∑

r=1

(1w̃>r xi≥0,w̃>r xj≥0 − 1w>r xi≥0,w>r xj≥0)

∣∣∣∣∣

2

.
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We can further bound B2 as

B2 ≤
1

m2

n∑

i=1

∑

j∈[n]\{i}

θ2

n

∣∣∣∣∣
m∑

r=1

(1w̃>r xi≥0,w̃>r xj≥0 − 1w>r xi≥0,w>r xj≥0)

∣∣∣∣∣

2

=
θ2

nm2

n∑

i=1

∑

j∈[n]\{i}

∣∣∣∣∣
m∑

r=1

(1w̃>r xi≥0,w̃>r xj≥0 − 1w>r xi≥0,w>r xj≥0)

∣∣∣∣∣

2

.

For each r, i, j, we define

sr,i,j := 1w̃>r xi≥0,w̃>r xj≥0 − 1w>r xi≥0,w>r xj≥0.

Then we can rewrite B1 and B2 as

B1 =
1

m2

n∑

i=1

( m∑

r=1

sr,i,i

)2

,

B2 =
θ2

nm2

n∑

i=1

∑

j∈[n]\{i}

( m∑

r=1

sr,i,j

)2

.

Therefore it is sufficient to bound
∑m

r=1 sr,i,j simutaneously for all pair i, j. Using same

technique in the proof of Theorem 28.4.2, we have

Pr

[
1

m

m∑

r=1

sr,i,j ≥ 2R

]
≤ exp(−mR/10).

By applying union bound on all i, j pairs, we get with probability at least 1−exp(−mR/10),

‖H(w)−H(w̃)‖2
F ≤ B1 +B2 ≤ 4nR2(1 + θ)2.

which is precisely what we need.
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Table 28.4: Table of Parameters for the m = Ω̃(n2) result in Section 28.6. Nt. stands for
notations.

Nt. Choice Place Comment
λ := λmin(Hcts) Part 1 of Ass. 28.1.1 Data-dependent
α Absolute Part 2 of Ass. 28.1.1 Data-dependent
β Variance Part 3 of Ass. 28.1.1 Data-dependent
θ Inner product Part 4 of Ass. 28.1.1 Data-dependent
R λ√

n
·min{ 1√

α
, 1√

1+θ2} Eq. (28.15) Maximal allowed movement of weight
D 4

√
α‖y−u(0)‖2√

mλ
Theorem 28.6.4 Actual moving distance, discrete case

η λ/(αn) Eq. (28.11) Step size of gradient descent
m (λ−2β + λ−1α) log(n/δ) Theorem 28.5.1 Bounding discrete and continuous
m λ−4α(α + θ2)n2 log3(n/δ) Lemma 28.4.4 D < R and ‖y − u(0)‖2

2 = Õ(n)
Claim 28.4.7

Claim 28.6.2. Assume R ≤ λ
64
√
n
· 1√

1+θ2 . Let C1 = −2η(y − u(k))>H(k)(y − u(k)) . We

have

C1 ≤ −‖y − u(k)‖2
2 · ηλ

Proof. By Lemma 28.6.1 and our choice of R ≤ λ
64
√
n
· 1√

1+θ2 , We have

‖H(0)−H(k)‖F ≤ 2
(
n(1 + θ2)

)1/2 · λ

64
√
n
· 1√

1 + θ2
≤ λ

4
.

Recall that λ = λmin(H(0)). Therefore

λmin(H(k)) ≥ λmin(H(0))− ‖H(0)−H(k)‖ ≥ λ/2.

Then we have

(y − u(k))>H(k)(y − u(k)) ≥ ‖y − u(k)‖2
2 · λ/2.

Thus, we complete the proof.
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Claim 28.6.3. Let C2 = 2η(y − u(k))>H(k)⊥(y − u(k)). We have

C2 ≤ ‖y − u(k)‖2
2 · 8ηR

(
n(1 + θ2)

)1/2
.

holds with probability 1− n exp(−mR).

Proof. Note that

C2 ≤ 2η · ‖y − u(k)‖2
2 · ‖H(k)⊥‖.

It suffices to upper bound ‖H(k)⊥‖. Since ‖ · ‖ ≤ ‖ · ‖F , then it suffices to upper bound

‖ · ‖F .

For each i ∈ [n], we define yi as follows

yi =
m∑

r=1

1r∈Si .

Then we have

‖H(k)⊥‖2
F =

n∑

i=1

n∑

j=1

(H(k)⊥i,j)
2

=
n∑

i=1

n∑

j=1

( 1

m

∑

r∈Si

x>i xj1wr(k)>xi≥0,wr(k)>xj≥0

)2

=
n∑

i=1

n∑

j=1

( 1

m

m∑

r=1

x>i xj1wr(k)>xi≥0,wr(k)>xj≥0 · 1r∈Si
)2

=
n∑

i=1

n∑

j=1

|x>i xj|2
m2

( m∑

r=1

1wr(k)>xi≥0,wr(k)>xj≥0 · 1r∈Si
)2

= B1 +B2,
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where B1 and B2 are defined as:

B1 :=
n∑

i=1

1

m2

( m∑

r=1

1wr(k)>xi≥0 · 1r∈Si
)2

,

B2 :=
n∑

i=1

∑

j∈[n]\{i}

|x>i xj|2
m2

( m∑

r=1

1wr(k)>xi≥0,wr(k)>xj≥0 · 1r∈Si
)2

.

We bound B1 and B2 separately.

We first bound B1.

B1 =
n∑

i=1

1

m2

( m∑

r=1

1wr(k)>xi≥0 · 1r∈Si
)2

≤ 1

m2

n∑

i=1

( m∑

r=1

1r∈Si

)2

=
1

m2

n∑

i=1

y2
i .

Fix i ∈ [n]. The plan is to use Bernstein inequality to upper bound yi with high

probability.

First by Eq. (28.6) we have

E
[
1r∈Si

]
≤ R.

We also have

E
[(
1r∈Si − E

[
1r∈Si

])2
]

= E
[
12
r∈Si

]
− E

[
1r∈Si

]2

≤ E
[
12
r∈Si

]

≤ R.

Finally we have |1r∈Si − E[1r∈Si ]| ≤ 1.
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Notice that {1r∈Si}mr=1 are mutually independent, since 1r∈Si only depends on wr(0).

Hence from Bernstein inequality (Lemma A.1.2) we have for all t > 0,

Pr [yi > m ·R + t] ≤ exp

(
− t2/2

m ·R + t/3

)
.

By setting t = 3mR, we have

Pr [yi > 4mR] ≤ exp(−mR).

Hence by union bound, with probability at least 1− n exp(−mR), for all i ∈ [n],

yi ≤ 4mR.

If this happens, we have

B1 ≤ 16nR2.

Next we bound B2. We have

B2 =
n∑

i=1

∑

j∈[n]\{i}

|x>i xj|2
m2

( m∑

r=1

1wr(k)>xi≥0,wr(k)>xj≥0 · 1r∈Si
)2

≤ 1

m2

n∑

i=1


 ∑

j∈[n]\{i}

(x>i xj)
4




1/2

·


 ∑

j∈[n]\{i}

( m∑

r=1

1wr(k)>xi≥0,wr(k)>xj≥0 · 1r∈Si
)4




1/2

≤ 1

m2

n∑

i=1


 ∑

j∈[n]\{i}

(x>i xj)
4




1/2
 ∑

j∈[n]\{i}

y4
i




1/2

=

√
n− 1

m2

n∑

i=1


 ∑

j∈[n]\{i}

(x>i xj)
4




1/2

y2
i

≤ 16R2
√
n

n∑

i=1


 ∑

j∈[n]\{i}

(x>i xj)
4




1/2

,
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where the last step happens when yi ≤ 4mR for all i ∈ [n].

Now, using the assumption x>i xj ≤ θ√
n
(Part 4 of Assumption 28.1.1), we have

B2 ≤ 16nR2θ2.

Putting things together, we have with probability at least 1− n exp(−mR),

‖H(k)⊥‖2
F ≤ B1 +B2

≤ 16nR2(1 + θ2).

This gives us ‖H(k)⊥‖ ≤ 4R (n(1 + θ2))
1/2, which is precisely what we need.
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28.6.1 Main result

Theorem 28.6.4. Let λ, α, β, θ be defined as Assumption 28.1.1. Let

m = Ω
(
λ−4n2αmax{1 + θ2, α} log3(n/δ)

)
.

We i.i.d. initialize wr ∈ N(0, I), ar sampled from {−1,+1} uniformly at random for r ∈ [m],

and we set the step size η = O(λ/(αn)) then with probability at least 1− δ over the random

initialization we have for k = 0, 1, 2, · · ·

‖u(k)− y‖2
2 ≤ (1− ηλ/2)k · ‖u(0)− y‖2

2.

Proof. Choice of η and R. We want to choose η and R such that

(1− ηλ+ 8ηR
(
n(1 + θ2)

)1/2
+ 8η(αn)1/2R + η2αn) ≤ (1− ηλ/2). (28.15)

Now, if we set η = λ
4αn

and R = λ
64
√
n
·min{ 1√

1+θ2 ,
1√
α
}, we have

8ηR
(
n(1 + θ2)

)1/2
+ 8η(αn)1/2R ≤ 1

4
ηλ,

and η2n2 ≤ 1
4
ηλ. This gives us

‖y − u(k + 1)‖2
2 ≤ ‖y − u(k)‖2

2(1− ηλ/2)

with probability at least 1− 2n exp(−mR).

Over-parameterization size, lower bound on m. By same analysis as in the

proof of Theorem 28.5.5, we still have

‖wr(k + 1)− wr(0)‖2 ≤
4
√
α‖y − u(0)‖2√

mλ
:= D
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We require

D =
4
√
α‖y − u(0)‖2√

mλ
< R =

λ

64
√
n
·min

{
1√

1 + θ2
,

1√
α

}

and

2n exp(−mR) ≤ δ.

This implies that

m = Ω(λ−4nα‖y − u(0)‖2
2 max{1 + θ2, α})

= Ω(λ−4n2α ·max{1 + θ2, α} · log(m/δ) log2(n/δ)),

where the last step follows from Claim 28.4.7.
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Chapter 29

Longest Common Subsequence I

Given a pair of n-character strings, the problems of computing their Longest Com-

mon Subsequence and Edit Distance have been extensively studied for decades. For exact

algorithms, LCS and Edit Distance (with character insertions and deletions) are equivalent;

the state of the art running time is (almost) quadratic in n, and this is tight under plausible

fine-grained complexity assumptions. But for approximation algorithms the picture is dif-

ferent: there is a long line of works with improved approximation factors for Edit Distance,

but for LCS (with binary strings) only a trivial 1/2-approximation was known. In this work

we give a reduction from approximate LCS to approximate Edit Distance, yielding the first

efficient (1/2 + ε)-approximation algorithm for LCS for some constant ε > 0.

This part is based on previous following publication

• Aviad Rubinstein, Zhao Song

Reducing approximate Longest Common Subsequence to approximate Edit Distance.

Manuscript 2019 [RS19b]
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29.1 Introduction

In this work we consider two of the most ubiquitous measures of similarity between

a pair of strings: the longest common subsequence (LCS) and the edit distance. The LCS

of two n-character strings A and B is simply their longest (not necessarily contiguous)

common substring. Edit distance is the minimum number of character insertions, deletions,

and substitutions required to transform A to B. In fact, under a slightly more restricted

definition that does not allow substitutions1, the two measures are complements and the

problems of computing them exactly are equivalent.

There is a textbook dynamic programming algorithm for computing LCS (or edit

distance) than runs in O(n2) time, and a slightly faster O(n2/ log2(n))-time algorithm due

to Masek and Paterson [MP80]. Finding faster algorithms is a central and long standing

open problem both in theory and in practice (e.g. Problem 35 of [Knu72]). Under plausible

fine-grained complexity assumptions such as SETH, neither problem can be computed much

faster [AWW14, ABW15, BI15, BK15, AHWW16].

For (multiplicative) approximation, the two problems are no longer equivalent. For

edit distance, there is a long sequence of approximation algorithms with improving fac-

tors [BYJKK04, BES06, AO12, AKO10, BEG+18]; in particular, [CDG+18] gives a constant

factor approximation in truly sub-quadratic time. For LCS with alphabet size |Σ|, in con-

trast, there is a trivial 1/|Σ|-approximation, and no better algorithms are known (for large

alphabet2 there are some hardness of approximation results [AB17, AR18, CGL+19] and also

1Since the definitions are equivalent up to a factor of 2 (each substitution is an insertion and a deletion),
this difference is irrelevant as we consider constant factor approximations of edit distance.

2One may also consider the case of intermediate alphabet size, e.g. Σ = {A,C,G, T}. It is plausible that
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approximation algorithms with non-trivial polynomial factors [HSSS19, RSSS19]).

In this work we focus on binary strings, where the trivial algorithm gives a (1/|Σ| =

1/2)-approximation. Breaking this 1/2 barrier is a well-known open problem in this area.

Our main result is a fine-grained reduction that implies obtaining a 1/2 + ε-approximation

for binary LCS (for some constant ε > 0) is no harder than approximating edit distance to

within some constant factor.

Theorem 29.1.1 (Reduction: approximate ED implies approximate LCS).

Suppose that there exists a constant c and an approximate edit distance algorithm

that runs in time T (n) and, given two binary strings A,B of length n, returns an es-

timate ẼD(A,B) ∈ [ED(A,B), c · ED(A,B) + o(n)]. Then there exists a fixed constant

ε = ε(c) ∈ (0, 1/2) and a deterministic approximation algorithm for longest common sub-

sequence that runs in deterministic T (n) + O(n) and approximates LCS(A,B) to within a

(1/2 + ε)-approximation factor.

Remark 29.1.1. We state the above theorem in terms of estimating the edit distance or length

of the LCS. If the edit distance algorithm can efficiently compute the transformation (this

assumption is almost wlog by [CGKK18]), then our algorithm can also efficiently compute

the common string.

As mentioned above, the recent breakthrough of [CDG+18] gives a constant factor

approximation of edit distance in truly-subquadratic (Õ(n2−2/7)) time. By plugging their

algorithm into our reduction, we would obtain (1/2 + ε)-approximation algorithm for binary

our framework can give a 1/|Σ| + ε-approximation in this case as well, but the proof may become more
complicated.
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LCS with the same running time. By applying our reduction to the even more recent

approximation algorithms for edit distance3 that run in near-linear time [KS19, BR19], we

obtain the following stronger corollary:

Corollary 29.1.2 (Approximate LCS). For every constant δ > 0 there exists a constant

ε > 0 such that, given two binary strings A,B ∈ {0, 1}n, there is an algorithm that runs in

O(n1+δ) time and LCS(A,B) to within a (1/2 + ε)-factor.

Technical preview

The crux of our algorithm is analyzing first order statistics (counts of 0s and 1s) of the

input strings (A,B) and their substrings. We begin with a few simple observations. Below,

we normalize ED and LCS so that they’re always between 0 and 1 (as opposed to 0 and n).

• If the strings are balanced, namely have the same number of 0s and 1s, we know

that LCS(A,B) ∈ [1/2, 1]. If the strings are very close, say LCS(A,B) ≥ (1 − δ) for

sufficiently small δ > 0, we can use the assumed edit distance algorithm as a black box

and find a common substring of length ≥ (1−O(δ)). On the converse if the substring

returned by the algorithm is shorter than (1−O(δ)), we know that LCS(A,B) < 1−δ,

and thus returning an all-1 string of length 1/2 is a (1/2 + 2δ)-approximation.

• If A is balanced and B has e.g. 10% 0s and 90% 1s, we know that LCS(A,B) ∈ [0.5, 0.6],

so simply returning the all-1 string of length 1/2 is a 5/6-approximation. The same

holds for most ways in which one or both strings are unbalanced.

3The near-linear time approximation algorithms for edit distance [KS19, BR19] also incur a sublinear
additive error term, but that is OK for our reduction.
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• However there is one difficult case when the string are perfectly unbalanced, e.g. A has

99% 0s and B has 99% 1s. Now the first order statistics over the entire strings only tell

us that LCS(A,B) ∈ [0.01, 0.02], so the trivial approximation doesn’t beat 1/2. On the

other hand, the edit distance is at least 0.98, so even a 1.1-approximation algorithm

for edit distance wouldn’t give us a non-trivial guarantee for this case.

Our main technical contribution is a careful analysis of this last case (and its many

sub-cases).
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29.2 Preliminaries

For strings x, y ∈ {0, 1}m for m ≤ n, we use 1(x) to denote the number of 1 in x, 0(x)

to denote the number of 0 in x, and LCS(x, y) to denote the length of their longest common

subsequence. All of these function are normalized w.r.t. the length of the original input to

our main algorithm, n; in particular we always have 0(x), 1(x),LCS(x, y) ∈ [0,m/n].

Fact 29.2.1.

LCS(A,B) ≤ min{0(A), 0(B)}+ min{1(A), 1(B)}.

Parameters α, β, γ, δ

In the proof we consider the following parameters:

α We define α := min{1(A), 1(B), 0(A), 0(B)}. Notice that α may be very small, and even

approaching 0 as a function of n. We assume wlog that this minimum is attained by

1(A) = α.

β The parameter β will represent a robustness parameter for some of our bounds. We take

β = Θ(α), but it may be smaller by an arbitrary constant factor.

γ The parameter γ ∈ (0, 1) is a constant that depends on the approximation factor c of the

approximation algorithm for edit distance that we assume. We choose β sufficiently

small such that γα� β.

δ The parameter δ represents the deviation from “perfectly unbalanced” case (see Lemma 29.3.1).

It is an arbitrary small constant. In particular, δα � β. It is sufficiently small
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that for succinctness of representation we’ll simply omit it (as if it were zero) after

Lemma 29.3.1.

Subroutines

Our reduction will assume the availability of an algorithm ApproxED which takes as

input two strings A,B of length n and outputs 1−ẼD(A,B) where ẼD(A,B) ∈ [ED(A,B), c·

ED(A,B) + o(1)].

In addition, we also define three trivial algorithms; they all run in time linear in

length of input string.

Definition 29.2.1 (Match). Given input string A and B, and a symbol σ ∈ Σ. The

algorithm Match(A,B, σ) will output a string C where every character is σ and the length

of C is min{σ(A), σ(B)}. This algorithm takes O(|A|+ |B|) time.

Definition 29.2.2 (BestMatch). Given input string A and B. The algorithm

BestMatch(A,B) will take the longest one of Match(A,B, 0) and Match(A,B, 1). This

algorithm also takes O(|A|+ |B|) time.

Definition 29.2.3 (Greedy). Given input string A1, A2 and B. The algorithm

Greedy(A1, A2, B) will find the optimal contiguous partition B = B1∪B2 so as to maximize

BestMatch(A1, B1) + BestMatch(A2, B2). This algorithm also takes O(|A|+ |B|) time.

Below, we slightly abuse notation and refer to the above algorithms (ApproxED,

Match, BestMatch, Greedy) both when we want their output to be the actual common

string, and the length. Which output we need will be clear from context.
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29.3 Reducing to perfectly unbalanced case

In this section we formalize the intuition from the introduction that BestMatch gives

a better-than-1/2-approximation unless 1(A) ≈ 0(B).

Lemma 29.3.1 (Reduction to perfectly unbalanced case).

If |1(A)− 0(B)| > δmin{0(A), 0(B), 1(A), 1(B)}, then

BestMatch(A,B) ≥ (1/2 + δ/6) LCS(A,B).

Proof. Assume wlog4 that 1(A) = min{0(A), 0(B), 1(A), 1(B)}. Then we have,

BestMatch(A,B)

= Match(A,B, 0)

= min{0(B), 0(A)}

= 0(B) (By assumption 1(A) ≤ 1(B))

> (1 + δ)1(A) (By premise of lemma)

= (1 + δ) min{1(A), 1(B)}

≥ (1 + δ)
(

LCS(A,B)−min{0(A), 0(B)}
)

(Fact 29.2.1)

= (1 + δ)
(

LCS(A,B)−BestMatch(A,B)
)
.

4This is wlog since |1(A)− 0(B)| = |0(A)− 1(B)|, so the premise of this lemma is symmetric.
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Therefore,

BestMatch(A,B) ≥ 1 + δ

2 + δ
LCS(A,B)

≥ (1/2 +
δ

4 + 2δ
) LCS(A,B)

≥ (1/2 + δ/6) LCS(A,B).

We henceforth assume wlog that

|0(A)− 1(B)| ≤ δmin{0(A), 0(B), 1(A), 1(B)}. (29.1)

For ease of presentation, we henceforth omit δ from our calculations, i.e. we’ll assume

that δ = 0. It will be evident that modifying any of our inequalities by factors in [±δα] will

not affect the proofs.

Eq. (29.1) is very important in our analysis, but it does not rule out the perfectly

balanced case, namely 0(A) ≈ 0(B) ≈ 1(A) ≈ 1(B) ≈ 1/2.

Lemma 29.3.2 (Ruling out the perfectly balanced case).

Let β′, γ > 0 be sufficiently small constants5. If 0(A) ∈ [1/2± β′], then

max{BestMatch(A,B),ApproxED(A,B)} ≥ (1/2 + γ) LCS(A,B). (29.2)

Proof. By Eq. (29.1), the premise implies that 1(B) ∈ [1/2 ± β′], and by symmetry also

1(A), 0(B) ∈ [1/2± β′]. Therefore, BestMatch(A,B) ≥ 1/2− β′.

5In particular, in Eq. (29.3) we require that β′ + γ < 1
4c+2 , where c is the approximation factor of the

edit distance algorithm.
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Suppose that BestMatch(A,B) isn’t big enough to satisfy Eq. (29.2) (otherwise

we’re done). Then,

LCS(A,B) > 2
(
BestMatch(A,B)− γ

)
≥ 2
(

1/2− (β′ + γ)
)

= 1− 2(β′ + γ).

Thus also

ED(A,B) = 1− LCS(A,B) ≤ 2(β′ + γ).

Therefore, by its approximation guarantee, we have that

ApproxED(A,B) ≥ 1− c · ED(A,B)− o(1) ≥ 1− 2c(β′ + γ)− o(1) ≥ 1/2 + γ. (29.3)

(The latter inequality follows by choosing β′ and γ sufficiently small.)

Setting β′ = 10β, we henceforth assume wlog that

0(A), 1(A), 0(B), 1(B) /∈ [1/2± 10β]. (29.4)
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29.4 Perfectly unbalanced strings

In this section we build on our assumptions from Eq. (29.1) and Eq. (29.4) from the

previous section to complete the proof of our reduction.

Recall that we define α := 1(A) < 1/2, and by Eq. (29.1), we also have 0(B) = α.

We partition each string into three contiguous substrings, where the extreme left and right

substring are each of length α:

A = LA ∪MA ∪RA

B = LB ∪MB ∪RB

|LA| = |RA| = |LB| = |RB| = α

|MA| = |MB| = 1− 2α.

A LA MA RA

α 1− 2α α

B LB MB RB

α 1− 2α α

Figure 29.1

We consider six cases for the proportions of 1’s and 0’s in RA, LA, RB, LB as in

Eq. (29.5). By Table 29.1, we know that those six cases cover all the possibilities.
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Our six cases can be summarized in the following equation,




1(RB) ≤ α/2 + 2β, 0(RA) ≤ α/2 + 2β Case 1
1(LB) ≤ α/2 + 2β, 0(LA) ≤ α/2 + 2β Case 2
1(RB) ≤ α/2 + β, 1(LB) ≤ α/2 + β, 0(LA) > α/2 + 2β, 0(RA) > α/2 + 2β Case 3
1(RB) > α/2 + 2β, 1(LB) > α/2 + 2β, 0(LA) ≤ α/2 + β, 0(RA) ≤ α/2 + β Case 4
1(RB) > α/2 + β, 0(LA) > α/2 + β Case 5
1(LB) > α/2 + β, 0(RA) > α/2 + β Case 6

(29.5)

Table 29.1: Fill all the six cases in Eq. (29.5) into the whole space. Note that 1 + 2 + 3
means the combination of 1, 2 and 3 covers it. 5, 6 means any one of them covers it.

0(RA) ≤
α/2 + β,
0(LA) ≤ α/2+β

0(RA) ≤
α/2 + β,
0(LA) > α/2+β

0(RA) >
α/2 + β,
0(LA) ≤ α/2+β

0(RA) >
α/2 + β,
0(LA) > α/2+β

1(RB) ≤ α/2 +
β, 1(LB) ≤
α/2 + β

1,2 1 2 1+2+3

1(RB) ≤
α/2 + β,
1(LB) > α/2+β

1 1 6 6

1(RB) > α/2 +
β, 1(LB) ≤
α/2 + β

2 5 2 5

1(RB) >
α/2 + β,
1(LB) > α/2+β

1+2+4 5 6 5,6
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Case 1: 1(RB) ≤ α/2 + 2β, 0(RA) ≤ α/2 + 2β

We split this case into three sub-cases, as follows:




1(RB) ∈ [α/2± 4β], 0(RA) ∈ [α/2± 4β] Case 1(a)
1(RB) < α/2− 4β, 0(RA) ≤ α/2 + 2β Case 1(b)
1(RB) ≤ α/2 + 2β, 0(RA) < α/2− 4β Case 1(c)

(29.6)

Case 1(a): 1(RB) ∈ [α/2± 4β], 0(RA) = [α/2± 4β]

At a high level, we want to split the original problem into two subproblems:

left-middle (LA ∪MA, LB ∪MB);

right (RA, RB).

Running BestMatch on the left-middle subproblem gives a (1/2)-approx; the right sub-

problem is (approximately) balanced so Lemma 29.3.2 (i.e. taking the better of Best-

Match and ApproxED) gives better-than-1/2. The visualization of this case is presented

in Figure 29.2.

We first want to upper bound LCS(A,B) as roughly the sum of LCSs of the two

subproblems, but in general this may not be the case. Fix an optimal matching µ corre-

sponding to a longest common substring between A and B. Assume wlog (by symmetry

w.r.t. switching A and B) that µ(RA) ⊆ RB, i.e. the LCS does not match any RA charac-

ters with characters from LB ∪MB. µ induces a new partition of B into two6 contiguous

6Note that we do not define a M̂B .
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substrings L̂B ∪ R̂B such that µ(RA) ⊆ R̂B ⊆ RB. By optimality of µ, we have

LCS(A,B) = LCS(LA ∪MA, L̂B) + LCS(RA, R̂B). (29.7)

Applying Fact 29.2.1 to both terms on the RHS, we have

LCS(A,B) ≤min{1(LA ∪MA), 1(L̂B)}+ min{0(LA ∪MA), 0(L̂B)}︸ ︷︷ ︸
=X

+ min{1(RA), 1(R̂B)}+ min{0(RA), 0(R̂B)}︸ ︷︷ ︸
=Y

. (29.8)

We henceforth denote the left and right contributions to the bound on the LCS by X and

Y respectively. (So LCS(A,B) ≤ X + Y .) We also define:

Z := max
{

min{1(LA ∪MA), 1(L̂B)},min{0(LA ∪MA), 0(L̂B)}
}
.

(Observe that Z ≥ X/2.)

We now prove a lower bound on the LCS that our algorithm can find.

Greedy(LA ∪MA, RA, B) ≥max
{

min{1(LA ∪MA), 1(L̂B)},min{0(LA ∪MA), 0(L̂B)}
}

+ max
{

min{1(RA), 1(R̂B)},min{0(RA), 0(R̂B)}
}

≥Z + Y/2. (29.9)

We break into sub-cases, depending on the value of Z.
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Case 1(a-i): Z > α/2 + 10β In this case, observe that

X − Z = min{1(LA ∪MA), 1(L̂B), 0(LA ∪MA), 0(L̂B)}

≤1(LA ∪MA)

=α− 1(RA) (α = 1(A))

≤α/2 + 4β (Case 1(a) assumption)

<Z − 6β (Case 1(a-i) assumption)

Therefore, Z > X/2 + 3β. Combining with Eq. (29.8) and (29.9), we have that

Greedy(LA ∪MA, RA, B) ≥ Z + Y/2 > X/2 + Y/2 + 3β ≥ LCS(A,B)/2 + 3β.

Case 1(a-ii): Z ≤ α/2 + 10β By Eq. (29.7), we have

LCS(A,B) ≤X + LCS(RA, R̂B)

≤2Z + LCS(RA, R̂B) (Z ≥ X/2)

≤α + 20β + LCS(RA, R̂B) (Case 1(a-ii) assumption)

≤α + 20β + LCS(RA, RB). (R̂B ⊆ RB) (29.10)

For our purposes, this is effectively as good as bounding LCS(A,B) by the sum of LCSs of

the left-middle and right subproblems.

We run BestMatch on the left-middle subproblem. We have that

BestMatch(LA ∪MA, LB ∪MB)

≥ min{0(LA ∪MA), 0(LB ∪MB)}

≥ α/2− 4β (Case 1(a) assumption).
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We run BestMatch and ApproxED on RA, RB and take the better of the two

outcomes. We apply Lemma 29.3.2 to strings RA, RB with β′ = 4β/α. (Notice that by Case

1(a) assumption, they are guaranteed to be approximately balanced to within ±4β, or a

relative ±4β/α.) We therefore have that

max{BestMatch(RA, RB),ApproxED(RA, RB)}

≥ (1/2 + γ) LCS(RA, RB) (Lemma 29.3.2)

≥ LCS(RA, RB)/2 + γα/2−O(βγ) (LCS(RA, RB) ≥ α/2−O(β))

≥ LCS(RA, RB)/2 + γα/2−O(β). (γ ≤ 1)

So in total, our algorithm finds a common substring of length at least

(
α + LCS(RA, RB)

)
/2 + γα−O(β)

≥ LCS(A,B)/2 + γα/2−O(β) (Eq. (29.10))

≥ LCS(A,B)/2 +
2

6
γα (γα� β)

≥ (1/2 + γ/6) LCS(A,B). (LCS(A,B) ≤ 2α)

Case 1(b): 1(RB) < α/2− 4β, 0(RA) ≤ α/2 + 2β

Fix an optimal matching µ. We further split this case into two sub-cases, depending

on whether µ(RA) ⊆ RB or RB ⊆ µ(RA). (In Case 1(a) we could assume the former wlog

by symmetry. Also notice that in general both may occur simultaneously.)
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A LA MA RA

α 1− 2α α

B LB MB RB

B L̂B R̂B

(a) Partition (L̂B , R̂B) created by Greedy(LA ∪MA, RA, B)

A LA MA RA

α 1− 2α α

0(RA) ∈ [α/2± 4β]

B LB MB RB

1(RB) ∈ [α/2± 4β]

BestMatch max(BestMatch,ApproxED)

(b) BestMatch(LA ∪MA, LB ∪MB) and max(BestMatch(RA, RB),ApproxED(RA, RB))

Figure 29.2: Visualization of Case 1(a) which is 0(RA) ∈ [α/2±4β] and 1(RB) ∈ [α/2±4β].
If 0(L̂B) > α/2 + 10β, we use Greedy result. If 0(L̂B) ≤ α/2 + 10β, we use the result
BestMatch+ max(BestMatch,ApproxED).

If µ(RA) ⊆ RB, define the partition L̂B, R̂B as in Case 1(a). We have

LCS(A,B) = LCS(LA ∪MA, L̂B) + LCS(RA, R̂B)

≤ 1(LA ∪MA)︸ ︷︷ ︸
≤α/2+2β

+ 0(L̂B) + 0(R̂B)︸ ︷︷ ︸
≤α

+ 1(R̂B)︸ ︷︷ ︸
≤α/2−4β

(Fact 29.2.1)

≤ 2α− 2β. (29.11)
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Similarly, if µ(RA) ⊇ RB, we can define an analogous partition of A into L̂A, R̂A:

LCS(A,B) = LCS(L̂A, LB ∪MB) + LCS(R̂A, RB)

≤ 0(LB ∪MB)︸ ︷︷ ︸
≤α/2−4β

+ 1(L̂A) + 1(R̂A)︸ ︷︷ ︸
≤α

+ 1(RB)︸ ︷︷ ︸
≤α/2−4β

(Fact 29.2.1)

≤ 2α− 8β. (29.12)

Either way, we have that LCS(A,B) ≤ 2α − 2β; therefore Match(A,B, 0) = α

guarantees a better-than-1/2-approximation.

Case 1(c): 1(RB) ≤ α/2 + 2β, 0(RA) < α/2− 4β

Follows analogously to Case 1(b).

Case 2: 1(LB) ≤ α/2 + β, 0(LA) ≤ α/2 + β

We reverse the order of string A and B, then the proof is the same as Case 1.

Case 3: 1(RB) ≤ α/2 + β, 1(LB) ≤ α/2 + β, 0(LA) > α/2 + 2β and 0(RA) > α/2 + 2β

We visualize this case in Figure 29.3a.

We show that simple applications of Match to the left, middle, and right substrings

can guarantee a common string of at least α + 2β ≥ LCS(A,B)/2 + 2β.

For the middle substrings, observe that 1(MA) = 1(A) − 1(RA) − 1(LA) > 4β. We
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can also lower bound 1(MB) by:

1(MB) = 1(B)− 1(LB)− 1(RB)

> α + 20β − 1(LB)− 1(RB) (Eq. (29.4))

≥ 18β (Premise of Case 3).

Therefore,

Match(MA,MB, 1) = min{1(MA), 1(MB)} ≥ 4β. (29.13)

For the left substrings, observe that 0(LB) = |LB| − 1(LB) > α/2− β. Therefore,

Match(LA, LB, 0) = min{0(LA), 0(LB)} ≥ α/2− β. (29.14)

Similarly,

Match(RA, RB, 0) = min{0(RA), 0(RB)} ≥ α/2− β. (29.15)

Summing up Eq. (29.13),(29.14),(29.15), our algorithm obtains a common string of

length at least α + 2β.

Case 4: 1(RB) > α/2 + 2β, 1(LB) > α/2 + 2β, 0(LA) ≤ α/2 + β and 0(RA) ≤ α/2 + β

We visualize this case in Figure 29.3b.

If we switch A and B, then the proof is the same as Case 3.

Case 5: 1(RB) > α/2 + β, and 0(LA) > α/2 + β

We visualize this case in Figure 29.3c.
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We apply Match to two subproblems to obtain a common substring of length greater

than α + 2β ≥ LCS(A,B)/2 + 2β.

Observe that 0(LB ∪MB) = 0(B)− 0(RB) > α/2 + β.

Match(LA, LB ∪MB, 0) = min{0(LA), 0(LB ∪MB)} > α/2 + β.

By an analogous argument,

Match(MA ∪RA, RB, 1) = min{1(MA ∪RA), 1(RB)} > α/2 + β.

Case 6: 1(LB) > α/2 + β, and 0(RA) > α/2 + β

We visualize this case in Figure 29.3d.

We reverse the oder of string A and B, then the proof is the same as Case 5.
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A LA MA RA

α 1− 2α α

0(LA) > α/2 + 2β 0(RA) > α/2 + 2β

B LB MB RB

1(LB) ≤ α/2 + β 1(RB) ≤ α/2 + β

Match 0 Match 1 Match 0Case 3

(a)

A LA MA RA

α 1− 2α α

0(LA) ≤ α/2 + β 0(RA) ≤ α/2 + β

B LB MB RB

1(LB) > α/2 + 2β 1(RB) > α/2 + 2β

Match 1 Match 0 Match 1Case 4

(b)

A LA MA RA

α 1− 2α α

0(LA) > α/2 + β

B LB MB RB

1(RB) > α/2 + β

Match 0Case 5 Match 1

(c)

A LA MA RA

α 1− 2α α

0(RA) > α/2 + β

B LB MB RB

1(LB) > α/2 + β

Match 1Case 6 Match 0

(d)

Figure 29.3: Case 3-6.
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Algorithm 29.1 Approximate LCS algorithm
1: procedure ApproxLCS(A,B, α)
2: Split A into three parts, LA, MA and RA such that |LA| = |RA| = α, similarly for B
3: Choose β to be sufficiently small constant
4: if 1(RB) ≤ α/2 + 2β 0(RA) ≤ α/2 + 2β then . Case 1
5: if 1(RB) ∈ [α/2± 4β], 0(RA) ∈ [α/2± 4β] then . Case 1(a)
6: C, L̂B, R̂B ← Greedy(LA ∪MA, RA, B)

7: Z ← max{min{1(LA ∪MA), 1(L̂B)},min{0(LA ∪MA), 0(L̂B)}}
8: if Z ≤ α/2 + 10β then
9: C ← BestMatch(LA ∪MA, LB ∪MB)
10: + max{BestMatch(RA, RB),ApproxED(RA, RB)}
11: end if
12: else if 1(RB) < α/2− 4β, 0(RA) ≤ α/2 + 2β then . Case 1(b)
13: C ←Match(A,B, 0)
14: else if 1(RB) ≤ α/2 + 2β, 0(RA) < α/2− 4β then . Case 1(c)
15: Similar to Case 1(b)
16: end if
17: else if 1(LB) ≤ α/2 + β 0(LA) ≤ α/2 + β then . Case 2
18: Similar to Case 1
19: else if 1(RB), 1(LB) ≤ α/2 + β, 0(LA), 0(RA) > α/2 + 2β then . Case 3
20: C ←Match(LA, LB, 0) + Match(MA,MB, 1) + Match(RA, RB, 0)
21: else if 1(RB), 1(LB) > α/2 + 2β, 0(LA), 0(RA) ≤ α/2 + β then . Case 4
22: Similar to Case 3
23: else if 1(RB) > α/2 + β, 0(LA) > α/2 + β then . Case 5
24: C ←Match(LA, LB ∪MB, 0) + Match(MA ∪RA, RB, 1)
25: else if 1(LB) > α/2 + β, 0(RA) > α/2 + β then . Case 6
26: C ←Match(LA ∪MA, LB, 1) + Match(RA,MB ∪RB, 0)
27: end if
28: return C
29: end procedure
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Chapter 30

Longest Common Subsequence II

Longest common subsequence (LCS) is a classic and central problem in combinatorial

optimization. While LCS admits a quadratic time solution, recent evidence suggests that

solving the problem may be impossible in truly subquadratic time. A special case of LCS

wherein each character appears at most once in every string is equivalent to the longest

increasing subsequence problem (LIS) which can be solved in quasilinear time. In this work,

we present novel algorithms for approximating LCS in truly subquadratic time and LIS in

truly sublinear time. Our approximation factors depend on the ratio of the optimal solution

size over the input size. We denote this ratio by λ and obtain the following results for LCS

and LIS without any prior knowledge of λ.

• A truly subquadratic time algorithm for LCS with approximation factor O(λ3).

• A truly sublinear time algorithm for LIS with approximation factor O(λ3).

Triangle inequality was recently used by Boroujeni et al. [BEG+18] and Chakraborty

et al. [CDG+18] to present new approximation algorithms for edit distance. Our techniques

for LCS extend the notion of triangle inequality to non-metric settings.

This part is based on previous following publication
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• Aviad Rubinstein, Saeed Seddighin, Zhao Song, Xiaorui Sun

Approximation Algorithms for LCS and LIS with Truly Improved Running Times.

FOCS 2019 [RSSS19]
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30.1 Introduction

In this paper, we consider three of the most classic problems in combinatorial opti-

mization: the longest common subsequence (LCS), the edit distance (ED), and the longest

increasing subsequence (LIS). The LCS of two strings A and B is simply their longest (not

necessarily contiguous) common subsequence. The edit distance is defined as the minimum

number of character deletions, insertions, and substitutions required to transform A into

B. For the purpose of our discussion, we consider a more restricted definition of edit dis-

tance where substitutions are not allowed1. Longest increasing subsequence is equivalent to

a special case of LCS where the input strings are permutations. All three problems are very

fundamental and have been subject to a plethora of studies in the past few decades and

specially in recent years [LMS98, BYJKK04, BES06, AO09, AKO10, SS10, BI15, ABW15,

AHWW16, AB17, AR18, CGL+19, BEG+18, CDG+18, HSSS19].

If the strings have length n, both LCS and ED can be solved in quadratic time (O(n2))

with dynamic programming. These running times are slightly improved to O(n2/ log2(n))

by Masek and Paterson [MP80], however, efforts to improve the running time to O(n2−Ω(1))

for either edit distance or LCS were all futile.

In recent years, our understanding of the source of complexity for these problems

tremendously improved thanks to a sequence of fine-grained complexity developments [ABW15,

AHWW16]. We now know that assuming the strong exponential time hypothesis (SETH) [ABW15],

or even weaker assumptions such as the orthogonal vectors conjecture (OVC) [ABW15] or

branching-program-SETH [AHWW16], there are no truly sub-quadratic2 time algorithms for

1Alternatively, the cost of a substitution is doubled as it requires a deletion and an insertion.
2By truly sub-quadratic we mean O(n2−ε), for any constant ε > 0
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LCS. Similar results also hold for edit distance [BI15].

Indeed, the classic approach to break the quadratic barrier for these problems is

approximation algorithms. Note that for (multiplicative) approximations, LCS and edit

distance are no longer equivalent (much like we have a 2-approximation algorithm for Vertex

Cover, but Independent Set is NP-hard to approximate within near-linear factors).

For edit distance, an Õ(n+ ∆2)-time algorithm of [LMS98] (where ∆ is the true edit

distance between the strings) implies a linear-time
√
n-approximation algorithm. The ap-

proximation factor has been significantly improved in a series of works toO(n3/7) [BYJKK04],

to O(n0.34) [BES06], to O(2Õ(
√

logn)) [AO09]3, and finally to polylogarithmic [AKO10]. A re-

cent work of Boroujeni et al. [BEG+18] obtains a constant factor approximation quantum

algorithm for edit distance that runs in truly subquadratic time. Finally, the breakthrough

of Chakraborty et al. [CDG+18] gave a classic (randomized) constant factor approximation

for edit distance in truly subquadratic time. A key component in both of the latest constant

factor approximation algorithms is the application of triangle inequality (for edit distance

between certain substrings of the input). A particular challenge in extending these ideas to

LCS is that LCS is not a metric and in particular does not satisfy the triangle inequality.

Our understanding of the complexity of approximate solutions for LCS is embar-

rassingly limited. For general strings, there are several linear-time 1/
√
n-approximation

algorithms based on sampling techniques. For alphabet size |Σ|, there is a trivial 1/|Σ|-

approximation algorithm that runs in linear time. Whether or not these approximation

factors can be improved by keeping the running time subquadratic is one of the central

3We define Õ(f) to be f · logO(1)(f).
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problems in fine-grained complexity. Very recently, both the general 1/
√
n-approximation

factor, and, for binary strings, the 1/2-approximation factor, have been slightly improved

([HSSS19] and [RS19b], respectively). There are a few fine-grained complexity results for

approximate LCS, but they only hold against deterministic algorithms, and rely on very

strong assumptions [AB17, AR18, CGL+19].

30.1.1 Our Results

For simplicity, we use lcs(A,B) to denote the size (not the whole sequence) of the

longest common subsequence for two strings A and B. Similarly, we use ED(A,B) to denote

the edit distance and lis(A) for the size of the longest common subsequence. We sometimes

normalize the solution by the length of the strings so that the size of the solution remains

in the interval [0, 1]. We refer to the normalized solutions by ‖lcs(A,B)‖ = lcs(A,B)/n

and ‖ED(A,B)‖ = ED(A,B)/2n (here both strings have equal length n), and ‖lis(A)‖ =

lis(A)/n. In this way, ‖ED(A,B)‖ + ‖lcs(A,B)‖ = 1 (assuming both strings have equal

length).

As mentioned earlier, recent developments for edit distance are based on a simple but

rather useful observation. Edit distance satisfies triangle inequality, or in other words, given

three strings A1, A2, A3 of length n such that ‖ED(A1, A2)‖ ≤ δ and ‖ED(A2, A3)‖ ≤ δ

hold, we can easily imply that ‖ED(A1, A3)‖ ≤ 2δ. While lcs does not satisfy the triangle

inequality in any meaningful way, it does, on average, satisfy the following birthday-paradox-

like property that we call birthday triangle inequality.

Property 30.1.1 (birthday triangle inequality). Consider three equal-length strings A1, A2,

and A3 such that ‖lcs(A1, A2)‖ ≥ λ and ‖lcs(A2, A3)‖ ≥ λ. If the common subsequences
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correspond to random indices of each string, we expect that ‖lcs(A1, A3)‖ ≥ λ2.

Of course, this is not necessarily the case in general. More precisely, it is easy to con-

struct examples4 in which ‖lcs(A1, A2)‖ = 1/2 and ‖lcs(A2, A3)‖ = 1/2, but ‖lcs(A1, A3)‖ =

0. Our first main result shows that while it only holds on average, we can algorithmically

replace the triangle inequality for edit distance with the birthday triangle inequality on worst

case inputs.

Theorem 30.1.2 (Main Theorem, formally stated as Theorem 30.2.1). Given strings A,B

both of length n such that ‖LCS(A,B)‖ = λ, we can approximate the length of the LCS

between the two strings within an O(λ3) factor in subquadratic time. The approximation

factor improves to (1− ε)λ2 when 1/λ is constant.

We remark that our algorithm is actually able to output the whole sequence of the

solution, but we only focus on estimating the size of the solution for simplicity. We begin

by comparing our main theorem to previous work on edit distance. In this case, 1/λ is

constant w.l.o.g.5 and therefore the approximation factor of our algorithm is (1 − ε)λ2. If

δ = ‖ED(A,B)‖, then our LCS algorithm outputs a transformation from A to B using at

most 2n(1− (1− ε)(1− δ)3) operations. Observe that when the strings are not overly close

and δ = Ω(1) by scaling ε, we already recover a (3 + ε′)-approximation for edit distance

in truly subquadratic time. For mildly far strings, say δ = 0.1, a more careful look at the

expansion of (1 − δ)3 reveals that we save an additive Θ(δ2) in the approximation factor.

For example, with δ = 0.1 our approximation factor for edit distance is 2.71 instead of 3.

4For example, A1 = 0n/20n/2, A2 = 0n/21n/2, A3 = 1n/21n/2.
5When we use our solution to approximate edit distance, we can safely assume that ‖lcs(A,B)‖ = Ω(1)

since otherwise the edit distance of the two strings is very close to 2n.
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An interesting implication of our main result is for LCS over a large alphabet Σ,

where the optimum ‖LCS(A,B)‖ may be much smaller than 1. This is believed to be the

hardest regime for approximation algorithms (and indeed the only one for which we have any

conditional hardness of approximation results [AB17, AR18, CGL+19]). Here, we consider

instances that satisfy a mild balance assumption: we assume that there is a character that

appears with frequency at least 1/|Σ| in both strings6. Then, our main theorem implies an

O(1/|Σ|3/4)-approximate solution in truly subquadratic time (the first improvement over the

trivial 1/|Σ| approximation in this regime).

Corollary 30.1.3 (LCS, formally stated as Corollary 30.2.3). Given a pair of strings (A,B)

of length n over alphabet Σ that satisfy the balance condition, we can approximate their LCS

within an O(|Σ|3/4) factor in truly subquadratic time.

Next, we show that a similar result can be obtained for LIS. Perhaps coincidentally, the

approximation factor of our algorithm is also O(λ3) which is same to LCS, but the technique

is completely different. Although LIS can be solved exactly in time O(n log n), there have

been several attempts to approximate the size of LIS and related problems in sublinear

time [Sch61, Fre75, DGL+99, EKK+00, Fis04, ACCL07, SS10]. The best known solution is

due to the work of Saks and Seshadhri [SS10] that obtains a (1+ε)-approximate algorithm for

LIS in polylogarithmic time, when the solution size is at least a constant fraction of the input

size 7. In other words, if ‖lis(A)‖ = λ and 1/λ is constant, their algorithm approximates

6Note that in every instance in each string there is a character that appears with frequency at least 1/|Σ|,
but in general that may not be the same character.

7Their algorithm obtains an additive error of δn in time 2Õ(1/δ). When the solution size is bounded by
λn, one needs to set δ < λ in order to guarantee a multiplicative factor approximation.

2218



lis(A) in polylogarithmic time. However, this only works if 1/λ is constant and even if 1/λ

is logarithmically large, their method fails to run in sublinear time8. We complement the

work of Saks and Seshadhri [SS10] by presenting a result for LIS similar to our result for

LCS. More precisely, we show that when ‖lis(A)‖ = λ, an O(λ3) approximation of LIS can

be obtained in truly sublinear time. Although our approximation factor is worse than that

of [SS10], our result works for any (not necessarily constant) λ.

Theorem 30.1.4 (LIS, formally stated as Theorem 30.4.8). Given an array A of n integer

numbers such that ‖lis(A)‖ = λ. We can approximate the length of the LIS for A in sublinear

time within a factor O(λ3).

If one favors the running time over the approximation factor, it is possible to improve

the exponent of n in the running time down to any constant κ > 0 at the expense of incurring

a larger multiplicative factor to the approximation.

30.1.2 Preliminaries

In LCS or edit distance, we are given two strings A and B as input. We assume for

simplicity that the two strings have equal length and refer to that by n. In LCS, the goal is

to find the largest subsequence of the characters which is shared between the two strings. In

edit distance, the goal is to remove as few characters as possible from the two strings such

that the remainders for the two strings are the same. We use lcs(A,B) and ED(A,B) to

denote the size of the longest common subsequence and the edit distance of two strings A

and B.

8There is a term (1/λ)1/λ in the running time.
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In LIS, the input contains an array A of n integer numbers and the goal is to find a

sequence of elements of A whose values (strictly) increase as their indices increase. For LIS,

we denote the solution size for an array A by lis(A). We also use lis[α,β](A) to denote the size

of the longest increasing subsequence subject to elements whose values lie in range [α, β].

Longest increasing subsequence is equivalent to LCS when the inputs are two permutations

of n distinct characters.

Finally, we define a notation to denote the normalized solution sizes. For LCS, we

denote the normalized solution size by ‖lcs(A,B)‖ = lcs(A,B)/
√
|A||B| for A and B and we

use ‖ED(A,B)‖ = ED(A,B)/(2
√
|A||B|) for edit distance. Note that, when the two strings

have equal length we have ‖ED(A,B)‖ + ‖lcs(A,B)‖ = 1. Similarly, for longest increasing

subsequence, we denote by ‖lis(A)‖ = lis(A)/|A| the normalized solution size. We usually

refer to the size of the input array by n.

Throughout this paper, we call an algorithm f(λ)-approximation for LCS if it is able

to distinguish the following two cases: i) ‖lcs(A,B)‖ ≥ λ or ii) ‖lcs(A,B)‖ < λf(λ). A

similar definition carries over to LIS. Once an f(λ)-approximation algorithm is provided

for either LCS or LIS, one can turn it into an algorithm that outputs a solution with size

f(λ)(1− ε)λn provided that the optimal solution has a size λn. The algorithm is not aware

of the value of λ but will start with λ0 = 1 and iteratively multiply λ0 by 1 − ε until a

solution is found.

30.1.3 Techniques Overview

Our algorithm for LCS is closely related to the recent developments for edit dis-

tance [BEG+18, CDG+18]. We begin by briefly explaining the previous ideas for approxi-
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mating edit distance and then we show how we use these techniques to obtain a solution for

LCS. Finally, in Section 30.1.3.2 we outline our algorithm for LIS.

30.1.3.1 Summary of Previous ED Techniques

Indeed, edit distance is hard only if the two strings are far (‖ED(A,B)‖ = δ and

δ = n−o(1)) otherwise the O(n + (nδ)2) algorithm of Landau et al. [LMS98] computes the

solution in truly subquadratic time. The algorithm of Chakraborty et al. [CDG+18] for edit

distance has three main steps that we briefly discuss in the following.

Step 0 (window-compatible solutions): In the first step, they construct a set of win-

dows WA for string A and a set of windows WB for string B. Each window is essentially

a substring of the given string. Let k denote the total number of windows of WA ∪ WB.

For simplicity, let all the windows have the same size d and n ' O(kd)9. The construction

features two key properties: 1) provided that the edit distances of the windows between

WA and WB are available, one can recover a 1 + ε approximation of edit distance in time

Õ(n+k2) via dynamic programming. 2) k2×d2 ' O(n2). That is, if we naively compute the

edit distance of every pair of windows, the overall running time would still asymptotically

be the same as that of the classic algorithm.

In order to obtain a solution for edit distance, it suffices to know the distances between

the windows. However, Chakraborty et al. [CDG+18] show that knowing the distances

between most of the window pairs is enough to obtain an approximately optimal solution

for edit distance. More precisely, if the distances are not correctly approximated for at

9The equality holds if we assume δ = Ω(1).
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most O(k2−Ω(1)) pairs, we can still obtain an approximate solution for edit distance. Step 1

provides estimates for the distances of the windows which is approximately correct except

for O(k2−Ω(1)) many pairs and Step 2 shows how this can be used to obtain a solution for

edit distance. Discretization simplifies the problem substantially. For a fixed 0 ≤ δ ≤ 1,

they introduce a graph Gδ where the nodes correspond to the windows and an edge between

window wi ∈ WA and window wj ∈ WB means that ‖ED(wi, wj)‖ ≤ δ. If we are able to

construct Gδ for logarithmically different choices of δ, we can as well estimate the distances

within a 1 + ε factor for the windows. Therefore the problem boils down to constructing Gδ

for a fixed given δ without computing the edit distance between all pairs of windows.

Step 1 (sparsification via triangle inequality): This step is the heart of the algorithm.

Suppose we choose a high-degree vertex v from Gδ and discover all its incident edges by

computing its edit distance to the rest of the windows. Triangle inequality implies that

every pair of windows in N(v) has a distance bounded by 2δ. Therefore by losing a factor 2

in the approximation, one can put all these edges in Gδ and not compute the edit distances

explicitly. Although this does save some running time, in order to make sure the running

time is truly subquadratic, we need to make a similar argument for paths of length 3 and

thereby lose a factor 3 in the approximation. This method sparsifies the graph and what

remains is to discover the edges of a sparse graph.

Step 2 (discovering the edges of the sparse graph): Step 1 uses triangle inequality

and discovers many edges between the vertices of Gδ. However, it may not discover all the

edges completely. When in the remainder graph, the degrees are small (and hence the graph
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is sparse) triangle inequality does not offer an improvement and thus a different approach

is required. Roughly speaking, Chakraborty et al. [CDG+18] subsample the windows of

WA into a smaller set S and discover all pairs of windows wi ∈ S and wj ∈ WB such that

edge (i, j) is not discovered in Step 1. Next, they compute the edit distance of each pair

of windows (wi, wj), wi ∈ WA, wj ∈ WB such that there exist two nearby windows (wa, wb)

satisfying wa ∈ S,wb ∈ WB and the edge between wa and wb was missed in Step 1. The

key observation is that even though this procedure does not discover all the edges, the

approximated distances lead to an approximate solution for edit distance.

30.1.3.2 LCS

Our algorithm for LCS mimics the same guideline. In addition to this, Steps 0 and 2

of our algorithm are LCS analogues of the ones used by Chakraborty et al. [CDG+18]. The

main novelty of our algorithm is Step 1 which is a replacement for triangle inequality. Recall

that unlike edit distance, triangle inequality does not hold for LCS.

Challenge 30.1.5. How can we introduce a notion similar to triangle inequality to a non-

metric setting such as LCS?

We introduce the notion of birthday triangle inequality to overcome the above diffi-

culty. Given windows w1, w2, and w3 of size d such that ‖lcs(w1, w2)‖ ≥ λ and ‖lcs(w2, w3)‖ ≥

λ hold, what can we say about the LCS of w1 and w3? In general, nothing! ‖lcs(w1, w3)‖

could be as small as 0. However, let us add some randomness to the setting. Think of the

LCS of w1 and w2 as a matching from the characters of w1 to w2 and similarly the LCS for

w2 and w3 as another matching between characters of w2 and w3. Assume (for the sake of

the thought experiment) that the characters of w2 appear randomly in each matching. Since
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w2

w1 w3

Figure 30.1: Birthday paradox for triangle inequality: let w1, w2, w3 be three windows of
length d = 8 and assume λ = 1/2. The LCS between w1 and w2 is λd = 4 and the LCS
between w2 and w3 is λd = 4. Finally due to birthday paradox, we expect that the LCS
between w1 and w3 is λ2d = 2.

‖lcs(w1, w2)‖ ≥ λ, each character of w2 appears with probability at least λ in the matching

between w1 and w2. A similar argument implies that each character of w2 appears with

probability λ in the matching of w2 and w3. Thus, (assuming independence), each character

of w2 appears in both matchings with probability λ2. This means that in expectation, there

are λ2d paths of length 2 between w1 and w3 which suggests ‖lcs(w1, w3)‖ ≥ λ2 as shown in

Figure 30.1. This is basically birthday paradox used for the sake of triangle inequality.

Replacing triangle inequality by birthday triangle inequality is particularly challeng-

ing since birthday triangle inequality only holds on average. In contrast, triangle inequality

holds for any tuple of arbitrary strings. Most of our technical discussions is dedicated to

proving that we can algorithmically use birthday triangle inequality to obtain a solution for

the worst-case scenarios. The most inconvenient step of our analysis is to show that our

algorithm estimates the LCS of most window pairs in the sparsification phase. While this

is straightforward for edit distance, birthday triangle inequality requires a deeper analysis
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of the underlying graph. In particular, we need to prove that if the undiscovered edges are

too many, then birthday triangle inequality can be applied to certain neighborhoods of the

graph.

There are two difficulties that we face here. On one hand, in order to apply birthday

triangle inequality to a subgraph, we need to have enough structure for that subgraph to

show the implication can be made. On the other hand, our assumptions cannot be too

strong, otherwise such neighborhoods may not cover the edges of the graph. Therefore,

the first challenge that we need to overcome is characterizing subgraphs in which birthday

triangle inequality is guaranteed to be applicable. Our suggestion is the bi-cliques structure.

Although combinatorial techniques seem unlikely to prove this, we use the Blakley-Roy

inequality to show that in a large enough bi-clique, we can use birthday triangle inequality

to imply a bound on the LCS of certain pairs. The second challenge is to prove that if the

underlying graph is dense enough, the graph contains many bi-cliques that cover almost all

the edges that we plan to discover. This is again a challenging graph theoretic problem. We

leverage extremal graph theory tools such as Turan’s theorem for cliques and bi-cliques to

obtain this bound.

Similar to edit distance, we construct a setW = WA∪WB of k windows in Step 0 and

aim to sparsify the edges of the lcs-graph in Step 1. Our construction ensures that kd ' Θ(n)

and that knowing the LCS of the window pairs suffices to approximate the LCS of the two

strings. For a threshold 0 ≤ λ ≤ 1, define a matrix O : [k]×[k]→ {0, 1} to be a matrix which

identifies whether ‖lcs(wi, wj)‖ ≥ λ. In other words, O[i][j] = 1 ⇐⇒ ‖lcs(wi, wj)‖ ≥ λ. For

an 0 < α ≤ 1, we call a matrix Oα an α approximation of O if it meets the following two

conditions:
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Oα[i][j] = 0 =⇒ ‖lcs(wi, wj)‖ < λ and Oα[i][j] = 1 =⇒ ‖lcs(wi, wj)‖ ≥ α · λ

Notice that Oα gives more flexibility than O for the cases that λα ≤ lcs(wi, wj) < λ. That

is, both 0 and 1 are acceptable in these cases. Indeed an α approximation algorithm for the

above problem is enough to obtain an α approximation algorithm for LCS. However, this is

not necessary as Step 2 allows for incorrect approximation for up to k2−Ω(1) many window

pairs. Therefore, the problem of approximating LCS essentially boils down to approximating

O for a given basket of windows W = Wa ∪Wb and a fixed λ by allowing sufficiently small

error in the output. A naive solution is to iterate over all pairs wi and wj and compute

lcs(wi, wj) in time O(d2) and determine O accordingly. However, this amounts to a total

running time of O(k2d2) which is quadratic and not desirable. In order to save time, we need

to compute the LCS of fewer than k2 pairs of windows. To make this possible, we allow our

algorithm to miss up to O(k2−Ω(1)) edges of the graph. Step 2 ensures that this does not

hurt the approximation factor significantly.

We construct a graph from the windows wherein each vertex corresponds to a window

and each edge identifies a pair with a large LCS (in terms of λ). Let us call this graph the

lcs-graph and denote it by Gλ. The goal is to detect the edges of the graph by allowing

false-positive. As we discussed earlier, the hard instances of the problem are the cases where

the lcs-graph is dense for which we need a sparsifier. Roughly speaking, in our sparsification

technique, our algorithm constructs another graph Ĝλ such that Ĝλ is valid in the sense that

the edges of Ĝλ correspond to pairs of windows with large enough LCS. In addition to this,

our algorithm guarantees that after the removal of the edges of Ĝλ from Gλ the remainder is
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sparse. In other words, |E(Gλ)\E(Ĝλ)| = O(|V (Gλ)|2−Ω(1)). Of course, if the overall running

time of the sparsification phase is truly subquadratic, the error of undiscovered edges can be

addressed by the techniques of [CDG+18] in Step 2.

Below, we bring a formal definition for sparsification.

sparsification
input: Windows w1, w2, . . . , wk, parameters λ, and α.
solution: A matrix Ôα ∈ {0, 1}k×k such that:

• Ôα[i][j] = 1 =⇒ ‖lcs(wi, wj)‖ ≥ α · λ

•
∣∣∣
{

(i, j) | ‖lcs(wi, wj)‖ ≥ λ and Ôα[i][j] = 0
}∣∣∣ = k2−Ω(1)

We present two sparsification techniques for LCS. The first one (Section 30.3.1), has

an approximation factor of (1 − ε) · λ2. In Section 30.3.2 we present another sparsifica-

tion technique that has a worse approximation factor O(λ3) but leaves fewer edges behind.

Although the second sparsification technique has a worse approximation factor, it has the

advantage that the number of edges that remain in the sparse graph is truly subquadratic

regardless of the value of λ and therefore it extends our solution to the case that λ = o(1)

(see Section 30.3.2 for a detailed discussion).

Let us note one last algorithmic challenge to keep in mind before we begin to describe

our sparsification techniques. For edit distance, if window pairs (w1, w2) and (w2, w3) are

close, we are guaranteed that w1 and w3 are also close; for longest common subsequence, we

will argue that (w1, w3) are likely to be have a long LCS (for a “random” choice of (w1, w3)).

Nonetheless, in order to add (w1, w3) as an edge to our graph we have to verify that their
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LCS is indeed long. If we were to verify an edge naively, we would need as much time as

computing the LCS between (w1, w3) from scratch!

Sparsification 1, (1− ε)λ2-approximation: Similar to edit distance, applying birthday

triangle inequality to paths of length 2 for LCS does not improve the running time signifi-

cantly. Therefore, we need to use birthday triangle inequality for paths of length 3. To this

end, we define the notion of constructive tuples as follows: a tuple 〈wi, wa, wb, wj〉 is an (ε, λ)-

constructive tuple, if we have ‖lcs(wi, wa)‖ ≥ λ, ‖lcs(wi, wj)‖ ≥ λ, ‖lcs(wb, wj)‖ ≥ λ and

by taking the intersection of the three LCS matchings, we are able to imply ‖lcs(wa, wb)‖ ≥

(1− ε)λ3 (see Figure 30.2 for an example). Taking the intersection of the matchings can be

done in linear time which is faster than computing the LCS.

Our sparsification technique here is simple but the analysis is very intricate. We

subsample a set S of windows and compute the LCS of every window in S and all other

windows. We set |S| = kγ log k, where γ ∈ (0, 1). At this point, for some pairs, we already

know their LCS. However, if neither wi nor wj is in S, we do not know if ‖lcs(wi, wj)‖ ≥ λ or

not. Therefore, for such pairs, we try to find windows wa, wb ∈ S such that 〈wi, wa, wb, wj〉

is constructive. If such a constructive tuple is found for a pair of windows, then we conclude

that their normalized LCS is at least (1− ε)λ3.

All that remains is to argue that this method discovers almost all the edges of the

lcs-graph Gλ and the number of undiscovered edges is k2−Ω(1). This is the most difficult

part of the analysis. We note that proving the existence of only one constructive tuple is

already non-trivial even when Gλ is complete. However, our goal is to show almost all the

edges are discovered via constructive tuples when Gλ is dense (and of course not necessarily
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wi

wa

wb

wj

Figure 30.2: Let wi, wa, wb and wj denote four windows and each of them has length d = 8.
This figure shows how the intersection of the edges of three windows are taken in order to
construct a solution for the LCS of wi and wj. If the size of the intersection is large, then
such a tuple is called constructive. The solid lines represent LCS between two strings, and
the dashed line represents the intersection of the three LCSs.

complete).

Define a pair of windows wi and wj to be well-connected, if there are at least k2−γ

different (wa, wb) pairs such that 〈wi, wa, wb, wj〉 is (ε, λ)-constructive. Since each window

appears in S with probability kγ−1 log k, for each well-connected pair we find one constructive

tuple via our algorithm with high probablity. Therefore, we need to prove that the total

number of pairs (wi, wj) such that (wi, wj) is not well-connected but ‖lcs(wi, wj)‖ ≥ λ is

subquadratic. Let us put these edges in a new graph NGλ whose vertices are all the windows.

We first leverage the Blakley-Roy inequality and a double counting technique to prove that

if NGλ has a large complete bipartite subgraph, then there is one constructive tuple which

includes only the vertices of this subgraph (Lemma 30.3.2). Next, we apply the Turan’s

theorem to show that if NGλ is dense, then it has a lot of large complete bipartite subgraphs.

Finally, we use a probabilistic method to conclude that NGλ cannot be too dense otherwise
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there are a lot of constructive tuples in the graph which implies that at least one edge (wi, wj)

in NGλ is well-connected. This is not possible since all the well-connected pairs are detected

in our sparsification algorithm with high probability.

The above argument proves that if we sparsify our graph using our sparsification

algorithm, the remainder graph would have a subquadratic number of edges. Therefore

after plugging Step 2 into the algorithm, the running time remains subquadratic. However,

since Turan theorem gives us a weak bound, the running time of the algorithm using this

sparsification is O(n2−Ω(λ)) and is only truly subquadratic when 1/λ is constant.

The above method also gives a nice insight into computing edit distance. As we show

in Section 30.3, if our lcs-graph or similarly ED-graph is very dense, it contains bipartite

complete subgraphs that lead to strong implications. For LCS, we obtain a bound of (1 −

ε)λ2 for the approximation factor of the sparsifier. For edit distance, this may lead to

an approximation factor better than 3. In particular, if one gives a positive answer to

Question 30.1.6 for some α, this technique improves the approximation factor of estimating

edit distance in subquadratic time to 2 + α + ε. The authors are not aware of any counter-

example for the question even when α = 0 and it is quite possible that this technique

improves the approximation factor for edit distance down to 2 + ε.

Question 30.1.6. Let X and Y be two sets of strings of length n such that for each string

A ∈ X and B ∈ Y we have ‖ED(A,B)‖ ≤ δ. If 1/δ is constant and the sizes of X and Y

are large enough constants (much larger than 1/δ) can we imply that there exist two strings

in X or two strings in Y whose normalized distance is bounded by (1 + α)δ?

We remark that birthday triangle inequality proves Question 30.1.6 for α = 1−O(δ)
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even when |X| = 1. While we do not provide a formal proof, we believe that this already

gives a 3− o(1) approximation algorithm for edit distance in truly subquadratic time which

slightly breaks the 3 + ε barrier suggested in previous work [BEG+18, CDG+18].

Sparsification 2, O(λ3)-approximation: In Section 30.3.1, we present another sparsifi-

cation method that although gives us a slightly worse approximation factor O(λ3) it always

leaves a truly subquadratic number of edges behind and therefore the running time of the

algorithm would be truly subquadratic regardless of the parameter λ. This sparsification is

based on a novel data structure.

Let opti,a denote the longest common subsequence of wi and wa (with some fixed tie-

breaking rule, e.g. lexicographically first). Define lcswa(wi, wj) to be the size of the longest

common subsequence between opti,a and wj. Notice that this definition is no longer symmet-

ric. Let ‖lcswa(wi, wj)‖ denote the relative value, i.e., ‖lcswa(wi, wj)‖ = lcswa(wi, wj)/
√
|wi| · |wj|.

The first ingredient of the algorithm is a data-structure, namely lcs-cmp. After a preprocess

of time O(|wa|
∑

i∈S |wi|), lcs-cmp is able to answer queries of the following type in time

O(|wi|+ |wj|):

• “for a 0 ≤ λ̃ ≤ 1 either certify that ‖lcswa(wi, wj)‖ ≥ Ω(λ̃2) or report that ‖lcswa(wi, wj)‖ <

O(λ̃)".

In our sparsification, we repeat the following procedure kγ times, where γ ∈ (0, 1).

We sample a window wa uniformly at random and construct lcs-cmp(wa, S) for S = {wi|i 6=

a and |wi| ≥ |wa|}. After the preprocessing step, we make a query for every pair of windows

(wi, wj) such that wi, wj ∈ S and determine if lcswa(wi, wj) is at least Ω(λ4) or upper bounded
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by O(λ2) (here λ̃ = λ2). If their LCS is at least Ω(λ4) we report this pair as an edge in our

lcs-graph. Finally, we use the Turan theorem to prove that the number of remaining edges

in our graph is small.

To be more precise, we first construct a graph NGλ that reflects the edges that are

not detected via our sparsification. We give directions to the edges based on the length of

the windows. If NGλ is dense enough, then there is one vertex v in NGλ with a large enough

outgoing degree. We use the neighbors of v to construct another graph NFλ with vertex set

N(v). An edge exists in NFλ if max{‖lcswv(wi,wj)‖, ‖lcswv(wj ,wi)‖} ≥ Ω(λ2). Edges of NFλ are

directed the same way as NGλ. We prove that NFλ has no large independent set. In other

words, if we select a large enough set of vertices in NFλ, then there is at least one edges

between them. Next, we apply the Turan theorem to prove that NFλ is dense. Finally, we

imply that since NFλ is dense, there is one vertex u in the neighbors of v such that there are

a lot of 2-paths between v and u. This implies that the edge (u, v) should have been detected

in our sparsification and therefore must not exist in NGλ. This contradiction implies that

NGλ is sparse in the first place.

30.1.3.3 LIS

In this section, we present our result for longest increasing subsequence. More pre-

cisely, we show that when the solution size is lower bounded by nλ (λ ∈ [0, 1]), one can

approximate the solution within a factor O(λ3) in time Õ(
√
n/λ7). This married with a

simple sampling algorithm for the cases that λ < n−Ω(1), provides an O(λ3)-approximate

algorithm with running time of Õ(n0.85) (without further dependence on λ). We further

extend this result to reduce the running time to Õ(nκ poly(1/λ)) for any κ > 0 by imposing
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a multiplicative factor of poly(1/λ) to the approximation.

Our algorithm heavily relies on sampling random elements of the array for which

longest increasing subsequence is desired. Denote the input sequence by A = 〈a1, a2, . . . , an〉.

A naive approach to approximate the solution is to randomly subsample the elements of A

to obtain a smaller array B and then compute the longest increasing subsequence of B to

estimate the solution size for A. Let us first show why this approach alone fails to provide

a decent approximation factor. First, consider an array A = 〈1, 2, . . . , n〉 which is strictly

increasing. Based on A, we construct two inputs A′ and A′′ in the following way:

• A′ is exactly equal to A except that a p fraction of the elements in A′ are replaced by

0.

• A′′ is exactly equal to A except that every block of length
√
n is reversed in A′′. In

other words, A′′ = 〈√n,√n − 1,
√
n − 2, . . . , 1, 2

√
n, 2
√
n − 1, . . . ,

√
n + 1, . . . , n, n −

1, n− 2, . . . , n−√n+ 1〉.

We subsample the two arrays A′ and A′′ with a rate of 1/
√
n to obtain two smaller

arrays B′ and B′′ of size roughly O(
√
n). It is easy to prove that lis(B′) = Ω(

√
n) and

lis(B′′) = Ω(
√
n) both hold even though lis(A′) = Ω(n) but lis(A′′) = O(

√
n). By setting

p = 1/e we can also make sure that lis(B′) and lis(B′′) are within a small multiplicative range

even though the gap between lis(A′) and lis(A′′) is substantial.

The above observation shows that the problem is very elusive when random sampling

is involved. We bring a remedy to this issue in the following. Divide the input array

into
√
n subarrays of size

√
n. We denote the subarrays by sa1, sa2, . . . , sa√n and fix an
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optimal solution opt for the longest increasing subsequence of A. Define sm(sai) to be the

smallest number in sai that contributes to opt and lg(sai) to be the largest number in sai

that contributes to opt. Moreover, define lis[`,r] to be the longest increasing subsequence of

an array subject to the elements whose values lie within the interval [`, r]. This immediately

implies

lis(A) =

√
n∑

i=1

lis[sm(sai),lg(sai)](sai).

Another observation that we make here is that since we assume ‖lis(A)‖ ≥ λ and the size of

each subarray is bounded by
√
n, then we have

lis(A)

maxi lis
[sm(sai),lg(sai)](sai)

≥ √nλ

which essentially means that in order to approximate lis(A) it suffices to compute lis[sm(sai),lg(sai)](sai)

for Õ(1/λ) many randomly sampled subarrays. This is quite helpful since this shows that

we only need to sample Õ(1/λ) many subarrays and solve the problem for them. However,

we do not know the values of sm(sai) and lg(sai) in advance. Therefore, the main challenge

is to predict the values of sm(sai) and lg(sai) before we sample the subarrays.

Indeed, one needs to read the entire array to correctly compute sm(sai) and lg(sai)

for each of the subarrays. However, we devise a method to approximately guess these values

without losing too much in the size of the solution. Roughly speaking, we show that if we

sample k = O(1/(λε)) different elements from a subarray sai for some constant ε and denote
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Figure 30.3: Red rectangles show the elements of sai that contribute to lis(A) and gray circles
show the elements of sa that are sampled via our algorithm.

them by aj1 , aj2 , . . . , ajk , then for at least one pair (α, β), [ajα , ajβ ] is approximately close to

[sm(sai), lg(sai)] up to a (1− ε) factor.

The above argument provides O((1/(λε))2) candidate domain intervals for each sai.

However, this does not provide a solution since we do not know which candidate domain inter-

val approximates [sm(sai), lg(sai)] for each sai. Of course, if we were to randomly choose one

candidate interval for every subarray, we would make a correct guess for at least O(
√
n(λε)2)

subarrays which provides an approximation guarantee of O(λ2) for our algorithm. However,

our assignments have to be monotone too. More precisely, let [s̃m(sai), l̃g(sai)] be the guesses

that our algorithm makes, then we should have

s̃m(sa1) ≤ l̃g(sa1) ≤ s̃m(sa2) ≤ l̃g(sa2) ≤ . . . ≤ s̃m(sa√n) ≤ l̃g(sa√n).

Random sampling does not guarantee that the sampled intervals are monotone. To

address this issue, we introduce the notion of pseudo-solutions. A pseudo-solution is an as-
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signment of monotone intervals to subarrays in order to approximate sm(sai) and lg(sai).

The quality of a pseudo solution with intervals [`1, r1], [`2, r2], . . . , [`√n, r√n] is equal to
∑

i lis
[`i,ri](sai). For a fixed pseudo-solution, this can be easily approximated via random

sampling. Thus, our goal is to construct a pseudo-solution whose quality is at least an O(λ3)

approximation of the size of the optimal solution. To this end, we present a greedy method

in Section 30.4.2 to construct the desired pseudo-solution.

Finally, in Section 30.4.4, we show how the above ideas can be generalized to improve

the running time down to Õ(nκ poly(1/λ)) for any arbitrarily small κ > 0 by imposing a

factor poly(1/λ) to the approximation guarantee.
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30.2 Organization of the Paper

Our algorithm for LCS is explained in Section 30.6 (Step 0), Section 30.3 (Step 1),

and Section 30.7 (Step 2). Since Steps 0 and 2 follow from previous work, we only bring

Step 1 in the main body of the paper and defer the rest to the appendices.

In both our results for LCS and LIS, we assume that the goal is to find approximate

solutions, provided that the solution size is at least λ0n. After the algorithms terminate, if

the output is smaller than what we expect, we realize that the solution is smaller than λ0n.

Therefore, we begin by setting λ0 = 1 and iteratively multiply λ0 by a 1 − ε factor until

we obtain a solution. This only adds a multiplicative factor of log 1/λ to the running time

and a multiplicative factor of 1 − ε to the approximation. Since we present two different

sparsification techniques, we obtain two theorems: one is Theorem 30.2.1 and the other is

Theorem 30.2.2.

Theorem 30.2.1. Given strings A,B of length |A| = |B| = n with ‖LCS(A,B)‖ = λ, we

can approximate the length of the LCS between the two strings within a factor O(λ3) in time

Õ(n39/20).

Proof. If λ ≤ n−20 we run the classic O(n2λ) time algorithm and get an exact solution in the

desired time. Otherwise, we begin by setting λ0 = 1 and iteratively multiply λ0 by a factor

1− ε until a solution is found with size at least Ω(λ3)n. This adds an overhead of O(log 1/λ)

to the running time. By Choosing d =
√
n we can bound the total running time of Steps 0,

1, and 2 by Õ(n13/10λ−13) ≤ Õ(n39/20).

Theorem 30.2.2. Given strings A,B of length |A| = |B| = n with ‖LCS(A,B)‖ = λ, we

can approximate the length of the LCS between the two strings within a factor (1 − ε)λ2 in
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n2−Ω(ελ) time for any ε > 0.

Proof. The proof is identical to Theorem 30.2.1, we omit the details here.

As an immediate corollary of Theorem 30.2.1, we present an algorithm that beats the

1/|Σ| approximation factor in truly subquadratic time, when the strings are balanced.

Corollary 30.2.3. Given a pair of strings (A,B) of length n over alphabet Σ that satisfy the

balance condition, we can approximate their LCS within an O(|Σ|3/4) factor in time O(n39/20).

Proof. Since A and B are balanced, there is a character σ ∈ Σ that appears at least n/|Σ|

times in both strings. Indeed, finding a solution of size n/|Σ| by restricting our attention to

only character σ can be done in time O(n). If lcs(A,B) ≤ n/|Σ|1/4 this already gives us an

O(|Σ|3/4) approximate solution. Otherwise, ‖lcs(A,B)‖ > 1/|Σ|1/4 and the approximation

factor of our O(λ3)-approximation algorithm would be bounded by O(|Σ|3/4).

Finally, we bring our results for LIS in Section 30.4. We show that

Theorem 30.2.4. Given a length-n sequence A with lis(A) = nλ. We can approximate the

length of the LIS within a factor of O(λ3) in time Õ(n17/20).

Proof. If λ < n−1/20 we sample the array with a rate of n−3/20 and compute the LIS for the

sampled array. The running time of the algorithm is Õ(n17/20). The approximation factor

is O(n−3/20) ≥ O(λ3). Otherwise, by Theorem 30.4.8, we estimate the size of LIS up to an

O(λ3) approximation factor in time Õ(λ−7
√
n) ≤ Õ(n17/20).
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30.3 LCS Step 1: Sparsification via Birthday Triangle Inequality

Recall that we are given two sets of windowsWA andWB for the strings and our goal is

to approximate the LCS of every pair of windows betweenWA andWB. For simplicity, we put

all the windows in the same basket W = W1∪W2 and denote the windows by w1, w2, . . . , wk

where k is the total number of windows. Since the windows have different lengths, we define

wmax = maxi∈[k] |wi| to be the maximum length of the windows. Similarly, we also define

wmin = mini∈[k] |wi| to be the minimum length of the windows. Let wgap = wmax/wmin. Let

wlayers denote the number of different window sizes. Notations wgap and wlayers will be used in

the later analysis.

In order to approximate the LCS’s we fix a λ ∈ {ελ0, (1+ε)ελ0, (1+ε)2ελ0, . . . , 1} and

sparsify graph Gλ. In Section 30.3.1, we present a sparsification algorithm (Algorithm 30.1)

which provides λ2-approximation when λ is constant. The formal guarantee of the algorithm

is provided in Theorem 30.3.6. In Section 30.3.2, we present a sparsification which provides

O(λ3)-approximation for any (potentially super-constant) λ.

30.3.1 Sparsification for Oλ2

In our solution, we fix an arbitrary LCS for every pair of windows and refer to that

as opti,j for two windows wi and wj. Note that we do not explicitly compute opti,j in our

algorithm. Let us for simplicity, think of each opti,j as a matching between the characters

of the two windows. Also, denote by
(
opti,a ∩ opta,b ∩ optb,j

)
a solution which is constructed

for windows wi and wj by taking the intersection of
(
opti,a ∩ opta,b ∩ optb,j

)
. More precisely,
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we have

(x, y) ∈
(
opti,a ∩ opta,b ∩ optb,j

)
⇐⇒∃α, β such that

(x, α) ∈ opti,a and

(α, β) ∈ opta,b and

(β, y) ∈ optb,j.

Let
∥∥(opti,a ∩ opta,b ∩ optb,j

)∥∥ =

∣∣∣∣(opti,a∩opta,b∩optb,j)∣∣∣∣√
|wi||wj |

.

Definition 30.3.1 ((ε, λ)-constructive). We call a tuple 〈wi, wa, wb, wj〉 (wi 6= wa 6= wb 6= wj)

a constructive tuple, if
∥∥(opti,a ∩ opta,b ∩ optb,j

)∥∥ ≥ (1− ε)λ3.

The advantage of a constructive tuple is that if opti,a, opta,b, and optb,j are provided,

one can construct a desirable solution for opti,j in linear time by taking the intersection of

the given matchings. Our algorithm is actually based on the above observation. We bring

our algorithm in the following:

We parameterize our algorithm by a value 0 < γ < 1 to be set later. One may

optimize the runtime of the algorithm by setting the value of γ in terms of the number of

windows and the length of the windows. We first sample a set S of O(kγ log k) windows.

Next, we compute opti,j of every window wi ∈ S and every other window wj (not necessarily

in S). Finally, we find all the constructive tuples 〈wi, wa, wb, wj〉 such that wa, wb ∈ S and

update Ôλ2 accordingly. This is shown in Algorithm 30.1.

The running time of our algorithm is equal to O(k|S|w2
max + k2|S|2wmax). The rest of

this section is dedicated to proving that what remains in the lcs-graph is sparse.

We first introduce the notion of well-connected pairs.
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Algorithm 30.1 Sparsification for Oλ2

1: procedure QuadraticSparsification(w1, w2, . . . , wk, λ, ε) . Theorem 30.3.6
2: γ ← 0.1
3: S ← 40kγ log k i.i.d. samples of [k]

4: Ôλ2 ← {0}k×k
5: for wi ∈ S do . Takes |S|kw2

max time
6: for j ← 1 to k do
7: opti,j, optj,i ← lcs(wi, wj)
8: end for
9: end for
10: for wi ∈ S do . Takes |S|kwmax time
11: for j ← 1 to k do
12: if |opti,j| > λ then
13: Ôλ2 [i][j]← 1
14: end if
15: end for
16: end for
17: for i← 1 to k do . Takes k2|S|2wmax time
18: for j ← 1 to k do
19: for wa ∈ S do
20: for wb ∈ S do
21: if

∥∥(opti,a ∩ opta,b ∩ optb,j
)∥∥ ≥ (1− ε)λ3 then

22: Ôλ2 [i][j]← 1
23: end if
24: end for
25: end for
26: end for
27: end for
28: return Ôλ2

29: end procedure

Definition 30.3.2 (well-connected pair). We say a pair of windows (wi, wj) is well-connected,

if there are at least k2−γ pairs of windows (wa, wb) such that 〈wi, wa, wb, wj〉 is (ε, λ)-

constructive.
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It follows from the definition that well-connected pairs are detected in our algorithm

with high probability.

Lemma 30.3.1. Let Ôλ2 ∈ {0, 1}k×k denote the output of Algorithm 30.1. With probability

at least 1 − 1/ poly(k), for all (i, j) ∈ [k] × [k] such that (wi, wj) is a well-connected pair

(Definition 30.3.2), we have Ôλ2 [i][j] = 1.

Proof. We consider a fixed (i, j) such that pair (wi, wj) is well-connected. Let

Qi,j =

{
(a, b)

∣∣∣∣
∥∥opti,a ∩ opta,b ∩ optb,j

∥∥ ≥ (1− ε)λ3

}
.

Conceptually, we divide the process of sampling S into two phases: we sample

20kγ log k windows in the first phase, and then we sample another 20kγ log k windows in

the second phase.

For each a ∈ [k], let Qi,j,a = {b : (a, b) ∈ Qi,j}. Since
∑

a∈[k] |Qi,j,a| = |Qi,j| ≥ k2−γ,

there are at least
k2−γ − k · k1−γ/2

k
=
k1−γ

2

different number a’s in [k] such that |Qi,j,a| ≥ k1−γ

2
. Hence, in the first phase, there is a

sampled number q such that |Qi,j,q| ≥ k1−γ/2 with probability at least

1−
(

1− k1−γ/2

k

)20kγ log k

<
1

k5
.

We fix such a q. In the second phase, there is a sampled number r such that r ∈ Qi,j,q

with probability at least

1−
(

1− k1−γ/2

k

)20kγ log k

<
1

k5
.

The lemma is obtained by a union bound on all the well-connected pairs (wi, wj).
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In what follows, we bound |{(i, j) | ‖lcs(wi, wj)‖ ≥ λ and Ôλ2 [i][j] = 0}|. In other

words, we prove an upper bound on the number of edges that remain in the graph.

Definition 30.3.3 (NGλ). Define a graph NGλ with k vertices and the following edges:

E(NGλ) =

{
(i, j)

∣∣∣∣ ‖lcs(wi, wj)‖ ≥ λ and Ôλ2 [i][j] = 0

}
.

We first prove that every KΩ(wgap/(ελ3)),Ω(wgap/(ελ3)) subgraph of NGλ corresponds to at

least one constructive tuple.

Lemma 30.3.2. Let X and Y be two sets of windows such that for every wi ∈ X and

wj ∈ Y there is an (i, j) edge in E(NGλ), for every wi, wi′ ∈ X, |wi| = |wi′ | and for every

wj, wj′ ∈ Y , |wj| = |wj′ |. If |X| ≥ Ω(wgap/(ελ
3)) and |Y | ≥ Ω(wgap/(ελ

3)), then there exist

wi, wa, wb, wj ∈ X ∪ Y such that 〈wi, wa, wb, wj〉 is (ε, λ)-constructive, i.e.,

∥∥opti,a ∩ opta,b ∩ optb,j
∥∥ ≥ (1− ε)λ3.

Proof. By assumption, we know that |X|, |Y | ≥ Ω(wgap/(ελ
3)). Let t1 denote the window

size for each window in X, and t2 denote the window size for each window in Y .

We carefully select X ′ ⊆ X and Y ′ ⊆ Y such that

1. |X ′| ≥ Ω(1/(ελ3)).

2. |Y ′| ≥ Ω(1/(ελ3)).

3. |X ′|t1 = (1±O(ε))|Y ′|t2.
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Figure 30.4: The graph on the left is an example of the string-based graph and the graph
on the right is an example of the character-based graph.

To do this, if |X|t1 > (1 + O(ε))|Y |t2, then we set Y ′ = Y and select X ′ as an arbitrary

subset of X with size
⌈
|Y |t2
t1

⌉
. if |X|t1 < (1− O(ε))|Y |t2, then we set X ′ = X and select Y ′

an arbitrary subset of Y with size
⌈
|X|t1
t2

⌉
.

We define a window-based (bipartite) graph GW = (VW , EW ) to be the subgraph

of δ on VW = X ′ ∪ Y ′ removing all the edges within X ′ and all the edges within Y ′. Let

l1 = |X ′| and l2 = |Y ′|. The total number of nodes in window-based graph is l1 + l2, and the

window-based graph is a bi-clique.

We also define a character-based (bipartite) graph GC = (VC , EC) as follows: Each

window of X ′ has t1 nodes in the character-based graph such that each node represents a

character of the window. Similarly, each window of Y ′ has t2 nodes in the character-based

graph. Two nodes x, y in the character-based graph are adjacent iff (x, y) ∈ opti,j where wi

is the window containing character x and wj is the window containing character y. Hence,

the total number of nodes in character-based graph is l1t1 + l2t2. The total number of edges

in character-based graph satisfy

l1l2λ
√
t1t2 ≤ |E(GC)| ≤ l1l2 min{t1, t2}.
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The average degree of the character-based graph is at least 2l1l2λ
√
t1t2/(l1t1 + l2t2).

By Blakley-Roy inequality (Lemma 30.5.3), the number of walks of length 3 in the character-

based graph is at least

|V (GC)| ·
(

2
l1l2λ
√
t1t2

l1t1 + l2t2

)3

= (l1t1 + l2t2) ·
(

2
l1l2λ
√
t1t2

l1t1 + l2t2

)3

= 8λ3 (l1l2
√
t1t2)3

(l1t1 + l2t2)2
.

But many of the 3-walks are degenerate. For the number of 2-walks, we can upper bound it

by

#2-walks ≤ (max degree of GW ) · 2|E(GC)| ≤ max{l1, l2} · 2(l1l2 min{t1, t2}) = 2(1 +O(ε))l21l2t1.

Note that the #1-walks is 2|E(GC)|. We have

#2-walks + #1-walks
#3-walks

≤2(1 +O(ε))l21l2t1 + 2l1l2 min{t1, t2}(
8λ3 (l1l2

√
t1t2)3

(l1t1+l2t2)2

)

<
(l1t1 + l2t2)2l21l2t1

2λ3l31l
3
2t

1.5
1 t1.52

≤(1 +O(ε))l41l2t
3
1

2λ3l4.51 l1.52 t31

=
1 +O(ε)

2λ3l0.51 l0.52

≤ O(ε),

where the second step and third step follow from l1t1 = (1 ± O(ε))l2t2, and the last step

follows from l1 = Ω(1/(ελ3)), l2 = Ω(1/(ελ3)). Hence, the total number of 3-paths (3-walks

that are not degenerate) is at least

8(1−O(ε))λ3 (l1l2
√
t1t2)3

(l1t1 + l2t2)2
.
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On the other hand, the number of 4-tuples in window-based graph is 8
(
l1
2

)(
l2
2

)
≤ 2l21l

2
2. Thus,

there must exist a 4-tuple containing 3-walks with size at least,

8(1−O(ε))λ3 (l1l2
√
t1t2)3

(l1t1 + l2t2)2
· 1

2l21l
2
2

= 4(1−O(ε))λ3
√
t1t2 ·

l1l2t1t2
(l1t1 + l2t2)2

= 4(1−O(ε))λ3
√
t1t2 ·

1
l1t1
l2t2

+ 2 + l2t2
l1t1

≥ 4(1−O(ε))λ3
√
t1t2 ·

1

4 +O(ε)

≥ (1−O(ε))λ3
√
t1t2,

where the third step follows from l1t1 = (1±O(ε))l2t2. Rescaling the factor of ε for |X| and

|Y | completes the proof.

Definition 30.3.4 (reconstructive tuple). We say a tuple 〈wi, wa, wb, wj〉 is reconstructive

if it is (ε, λ)-constructive and also (i, a), (a, b), (b, j), (i, j) ∈ E(NGλ).

Before proving Lemma 30.3.5, we need to define a new graph NFλ,

Definition 30.3.5 (NFλ). We construct a graph NFλ in the following way: for each node

v ∈ NGλ we keep v in NFλ with probability p = k−α/4 where α = 1 − γ/4. For each

u, v ∈ NFλ, if (u, v) ∈ NGλ then we also draw an edge u, v in NFλ.

It is obvious that V (NFλ) ⊆ V (NGλ) and E(NFλ) ⊆ E(NGλ).

Based on definition of NFλ, we are able to show that if NGλ is dense, so is NFλ.

Claim 30.3.3 (NFλ is a dense graph). Let wlayers be the number of different window sizes.

Let NGλ denote a graph such that |E(NGλ)| ≥ k2−β ·w2
layers for some β and NFλ be defined as

Definition 30.3.5. If γ/4− β = Ω(1), then with probability at least 0.98, we have

|E(NFλ)| = Ω(|V (NFλ)|2−4β/γ · w2
layers)
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Proof. Based on the sampling rate, we know that the following hold in expectation:

E[|V (NFλ)|] =
1

4kα
|V (NGλ)|, and E[|E(NFλ)|] =

1

42k2α
|E(NGλ)|.

Using standard Chernoff bound, we have with probability 0.99,

|V (NFλ)| ∈ [1/2, 2] · 1

4kα
|V (NGλ)| = [1/2, 2] · 1

4
k1−α = [1/2, 2] · 1

4
kγ/4,

To show the concentration of |E(NFλ)|, we define a random variable xu,v such that

xu,v = 1 if (u, v) ∈ E(NFλ), 0 otherwise. Then we have

E
[
|E(NFλ)|2

]

= E




 ∑

(u,v)∈E(NGλ)

xu,v




2


= E


 ∑

(u,v)∈E(NGλ)

x2
u,v


+ E


 ∑

(u,v),(u,v′)∈E(NGλ)

1v 6=v′xu,vxu,v′




+ E


 ∑

(u,v)∈E(NGλ)

∑

(u′,v′)∈E(NGλ)

1u6=v 6=u′ 6=v′xu,vxu′,v′




≤ p2|E(NGλ)|+ p3 ·#2-walks + p4 ·
(
|E(NGλ)|2 −#2-walks− |E(NGλ)|

)
.

Since E[|E(NFλ)|] = p2|E(NGλ)|. Thus,

V[|E(NFλ)|] = E
[
(|E(NFλ)|)2

]
− (E[|E(NFλ)|])2

≤ p2|E(NGλ)|+ p3 ·#2-walks

≤ p2|E(NGλ)|+ p3|V (NGλ)| · |E(NGλ)|

≤ 2p3|V (NGλ)| · |E(NGλ)|. by p|V (NGλ)| ≥ 1
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In order to use Chebyshev’s inequality, we need to make sure

p2|E(NGλ)| > 1, p2|E(NGλ)| ≥ 100(2p3|V (NGλ)||E(NGλ)|)1/2.

By p = kγ/4−1/4 and |E(NGλ)| ≥ k2−β, we need

kγ/2−β/16 > 1,

and the second condition is equivalent to

p|E(NGλ)| ≥ 20000|V (NGλ)|.

We just need kγ/4−β ≥ 80000.

Using Chebyshev’s inequality, we have

Pr

[∣∣∣∣|E(NFλ)| − E[|E(NFλ)|]
∣∣∣∣ ≥ τ

√
V[|E(NFλ)|]

]
≤ 1

τ 2

combining with
√
V[|E(NFλ)|] ≤ 1

100
E[|E(NFλ)|] together implies

Pr

[∣∣∣∣|E(NFλ)| − E[|E(NFλ)|]
∣∣∣∣ ≥ τ

1

100
E[|E(NFλ)|]

]
≤ 1

τ 2
.

Choosing τ = 10, we have with probability 0.99 that |E(NFλ)| > 0.9E[|E(NFλ)|], and

consequently

|E(NFλ)| > 0.9E[|E(NFλ)|]

≥ 0.9
1

42k2α
|E(NGλ)|

≥ 0.9
1

42
kγ/2−2k2−β · w2

layers

= 0.9
1

42
kγ/2−β · w2

layers

≥ 0.9
1

42
k
γ
4

(2−4β/γ) · w2
layers

≥ Ω(|V (NFλ)|2−4β/γ · w2
layers).
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Thus, we complete the proof.

Next, we show

Claim 30.3.4 (NFλ has no reconstructive tuple). Let NFλ be defined as Definition 30.3.5.

With probability at least 0.99, there is no reconstructive tuple in NFλ.

Proof. By Lemma 30.3.1 and the definition of NGλ, there is no pair of windows (wi, wj)

in NGλ such that pair (i, j) is well-connected. Formally speaking, for all pairs of windows

(wi, wj), there are at most k2−γ pairs of windows (wa, wb) such that 〈wi, wa, wb, wj〉 is (ε, λ)-

constructive.

For a fixed (i, a, b, j), the probability that we keep it in NFλ is (k−α/4)4. We can

compute the expected number of constructive tuples in NFλ,

E[#constructive tuple] ≤ k2k2−γ · (k−α/4)4 = k4−γ−4α/256 = 1/256

where the last step follows from α = 1− γ/4.

By Markov’s inequality, we have

Pr[#constructive tuple ≥ 1/2] ≤ E[#constructive tuple]
1/2

≤ 1/100.

Thus, with probability 0.99, there is no reconstructive tuple in NFλ.

Finally, we use Lemma 30.3.2 to prove an upper bound on the number of edges in

NGλ.

Lemma 30.3.5. Let NGλ be as defined in Definition 30.3.3. Then with probability at least

0.9, NGλ has at most k2−Ω(γλε/wgap) · w2
layers edges.
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Proof. We start with assuming

|E(NGλ)| ≥ k2−β · w2
layers,

and will get the contradiction at the end.

We construct a graph NFλ based on Definition 30.3.5. Using Claim 30.3.4, we know

that NFλ has no reconstructive tuple. Next, we are going to show two facts, and they are

contradicting to each other by some choice of β.

(Fact A). Note that NFλ does not satisfy the assumption in Lemma 30.3.2, thus we

cannot apply Lemma 30.3.2 to NFλ directly. Let wlayers denote the number of different window

sizes in total, we can decompose NFλ into w2
layers graphs such that NFi,jλ only involves size i

and j, ∀i, j ∈ [wlayers] × [wlayers]. Now, applying Lemma 30.3.2, for every i, j, we imply that

if NFi,jλ has no reconstructive tuple, then NFi,jλ has no bipartite graph of certain size, i.e.,

KΩ(wgap/(ελ3)),Ω(wgap/(ελ3)).

(Fact B). Using the Turán’s Theorem (Lemma 30.5.4), we know for any integer s ≥ 2,

a graph G with n vertices and Ω(n2−1/s) edges has at least one Ks,s subgraph. We consider

graph NFλ. Since

|E(NFλ)| = Ω(|V (NFλ)|2−4β/γ · w2
layers),

by Claim 30.3.3, |E(NFλ)| = Ω(|V (NFλ)|2−4β/γ · w2
layers). By the pigeonhole principle, there

exist i and j such that |E(NFi,jλ )| = Ω(|V (NFλ)|2−4β/γ). By Turán’s Theorem, such an NFi,jλ

contains a large complete bipartite subgraph Kγ/(4β),γ/(4β).

In order to get a contraction, we just need

γ/(4β) ≥ c · wgap/(ελ
3).
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for some sufficiently large constant c > 1 related to Lemma 30.3.2. Thus, we have

β ≤ γελ3/(4c · wgap).

Theorem 30.3.6 (quadratic sparsification for constant λ). Given k windows w1, · · · , wk.

Let wmax = maxi∈[k] |wi|, wmin = mini∈[k] |wi| and wgap = wmax/wmin. Let the number of

different window sizes be wlayers. For any λ ∈ (0, 1) and ε ∈ (0, 1/10), there is a randomized

algorithm (Algorithm 30.1) that runs in time

O(w2
maxk

1.1 log k + wmaxk
2.2 log2 k),

outputs a table Ôλ2 ∈ {0, 1}k×k such that

‖lcs(wi, wj)‖ ≥ (1− ε)λ3, if Ôλ2 [i][j] = 1

and
∣∣∣∣
{

(i, j)

∣∣∣∣ ‖lcs(wi, wj)‖ ≥ λ, and Ôλ2 [i][j] = 0

}∣∣∣∣ = O
(
k2−Ω(λε/wgap) · w2

layers

)
.

The algorithm has success probability 1/ poly(k).

Proof. The overall running time is

O(k|S|w2
max + k2|S|2wmax)

= O(k · kγ log k · w2
max + k2 · k2γ log2 k · wmax)

= O(k1.1 log k · w2
max + k2.2 log2 k · wmax)
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where the first step follows from |S| = O(kγ log k), the second step follows from γ = 0.1.

The guarantee of table Ôλ2 follows from properties of graph NGλ (Algorithm 30.1

provides the first property of table in Theorem statement, Lemma 30.3.5 provides the second

property of table in Theorem statement).

30.3.2 Sparsification for Oλ3

One shortcoming of Lemma 30.3.5 is that the number of remaining edges is only

truly subquadratic if λ is constant. As we discuss in Section 30.3.1, the overall running

time of the algorithm depends on the number of edges in the remaining graph and in order

for the running time to be truly subquadratic, we need to reduce the number of edges to

truly subquadratic. In this section, we show how one can obtain this bound even when λ is

super-constant. However, instead of losing a factor λ2 in the approximation, our technique

loses a factor of O(λ3).

Definition 30.3.6 (lcswa(wi, wj)). For two windows wi and wj, and a window wa, define

lcswa(wi, wj) as the length of LCS of opti,a and wj, where opti,a denotes the LCS of wi and

wa.

Notice that unlike lcs, this new definition is not symmetric. Similar to lcs, we also

normalize the size of lcss by the geometric mean of the lengths of the two windows. That

is, we divide the size of the common string by
√
|wi||wj|. In what follows, we first give an

algorithm for detecting close pairs of windows, and then prove that the number of remaining

pairs whose lcs is at least λ is truly subquadratic.

Our algorithm is based on a data structure which we call lcs-cmp(wa, S, λ̃). Roughly
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speaking, we will choose λ̃ = λ2 when we use it. Let us fix a threshold λ̃ and a win-

dow wa. lcs-cmp(wa, S, λ̃) receives a set S of windows as input such that the size of each

window of S is at least |wa|. Upon receiving the windows, it makes a preprocess in time

O(λ̃−2|wa|
∑

wi∈S |wi|). Next, lcs-cmp(wa, S, λ̃) would be able to answer each query of the

following form in almost linear time:

• For two windows wi, wj ∈ S, either certify that ‖lcswa(wi, wj)‖ < λ̃/2 or find a solution

for ‖lcswa(wi, wj)‖ with a size of at least λ̃2/8.

We first show in Section 30.3.2.1, how lcs-cmp gives us a sparsification in truly sub-

linear time and then discuss the algorithm for lcs-cmp in Section 30.3.2.2.

30.3.2.1 λ3 Sparsification using lcs-cmp

Similar to what we did in Section 30.3.1, we again use a parameter γ in our algorithm

and in the end, we adjust γ to minimize the total running time. In our algorithm, we

repeat the following procedure kγ log k times: sample a window wa uniformly at random and

let S be the set of all the other windows whose length is not smaller than |wa|. Next, we

obtain lcs-cmp(wa, S, λ̃) via running the preprocessing step. Finally, for each pair of windows

wi, wj ∈ S, we make a query to lcs-cmp to verify one of the following two possibilities:

• ‖lcswa(wi, wj)‖ < λ2/2;

• ‖lcswa(wi, wj)‖ ≥ λ4/8.

If the latter is verified we set Ôλ3/8[i][j] to 1 otherwise we take no action. In what follows,

we prove that after the above sparsification, the number of edges in the remaining graph is
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truly sublinear.

Algorithm 30.2 Sparsification for Oλ3

1: procedure CubicSparsification(w1, w2, . . . , wk, λ) . Theorem 30.3.10
2: γ ← 0.1
3: λ̃← λ2

4: for counter = 1→ kγ log k do
5: Sample a ∼ [k] uniformly at random
6: S ← ∅
7: for i = 1→ k do
8: if i 6= a and |wi| ≥ |wa| then
9: S ← S ∪ {wi}
10: end if
11: end for
12: lcs-cmp.Initial(wa, S, λ̃) . Algorithm 30.3, Lemma 30.3.11
13: for wi ∈ S do
14: for wj ∈ S do
15: if lcs-cmp.Query(wi, wj) outputs accept then . Algorithm 30.3,

Lemma 30.3.12
16: Ôλ3/8[i][j]← 1 . ‖lcswa(wi, wj)‖ ≥ λ̃2/8
17: end if
18: end for
19: end for
20: end for
21: return Ôλ3/8

22: end procedure

In the rest of this section, we bound |{(i, j) | ‖lcs(wi, wj)‖ ≥ λ and Ôλ3/8[i][j] = 0}|.

In other words, we prove an upper bound on the number of edges that remain in the graph.

Define a graph NGλ such that each vertex of NGλ corresponds to a window and an edge (i, j)

means that ‖lcs(wi, wj)‖ ≥ λ but Ôλ3/8[i][j] = 0. The goal is to prove an upper bound on

the number of edges of NGλ. We formally prove this in Lemma 30.3.9.

We define a notation called “close” which is similar to “well-connected” in Section 30.3.1.
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In order to avoid confusion, we use “close” instead of well-connected.

Definition 30.3.7 (close). Let γ ∈ (0, 1) and λ ∈ (0, 1). We say a pair (wi, wj) of win-

dows is close, if there are at least k1−γ windows wa such that |wa| ≤ min{|wi|, |wj|} and

‖lcswa(wi, wj)‖ ≥ λ2.

Our first observation is that Algorithm 30.2 detects all the close pairs with high

probability.

Lemma 30.3.7. Let Ôλ3/8 ∈ {0, 1}k×k be the output of Algorithm 30.2. For each (i, j) ∈

[k] × [k], if (wi, wj) is close (Definition 30.3.7) and ‖lcs(wi, wj)‖ ≥ λ, then Ôλ3/8[i][j] = 1

holds with probability at least 1− 1/ poly(k).

Proof. We consider a fixed (i, j) such that (wi, wj) is close. By Definition 30.3.7, there are at

least k1−γ wa such that |wa| ≤ min{|wi|, |wj|} and ‖lcswa(wi, wj)‖ ≥ λ2. Then the probability

that none of these windows is sampled is at most
(

1− k1−γ

k

)t
=

(
1− 1

kγ

)t
=

(
1− 1

kγ

)10kγ log k

≤ 1/ poly(k).

Taking a union over at most k2 pairs completes the proof.

Before we proceed to Lemma 30.3.9, we bring Lemma 30.3.8 as an auxiliary observa-

tion.

Lemma 30.3.8 (existence of a correlated pair). Let ε ∈ (0, 1), λ ∈ (0, 1). Given a window

wa and a set of windows T . Let wgap denote the maximum size of windows divided by the

minimum size of windows. Let T contain at most wlayers different sizes and |T | = Ω(wlayers ·

wgap/(ελ)). If for each wi ∈ T we have ‖lcs(wa, wi)‖ ≥ λ, then there exist two windows

wi, wj ∈ T such that ‖lcswa(wi, wj)‖ ≥ (1− ε)λ2.
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Proof. Since T has size Ω(wlayers·wgap/(ελ)) and the windows of T have at most wlayers different

sizes, there must exists a subset T ′ ⊆ T such that |T ′| = Ω(wgap/(ελ)) and all the windows

in T ′ have the same size. In the rest of the proof, we will focus on wa and T ′.

Let t0 be the size of wa and t be the size of all the windows in T ′. We consider a

window-based bipartite graph, on one side it has one node wa, and on the other side it has

|T ′| nodes. Then we can expand the window-based bipartite graph into a character-based

bipartite graph, on one side it has t0 nodes, and on the other side it has t|T ′| nodes. Two

nodes x, y in the character-based graph are adjacent iff (x, y) ∈ opta,i where wa is the window

containing character x and wi is the window containing character y. Since ‖lcs(wa, wi)‖ ≥ λ

for every wi ∈ T ′, the number of edges in character-based bipartite graph is at least λ|T ′|√t0t.

For i-th character in window wa, we use Di to denote the degree of the corresponding

node in the character-based bipartite graph. The number of 2-walks is at least
t0∑

i=1

Di(Di − 1) =

(
t0∑

i=1

D2
i −

t0∑

i=1

Di

)

≥
(

1

t0
(

t0∑

i=1

Di)
2 −

t0∑

i=1

Di

)
by Cauchy-Schwarz inequality

≥
(

1

t0
(λ|T ′|

√
t0t)

2 − (λ|T ′|
√
t0t)

)
by Eq. (30.1)

=
(
λ2t|T ′|2 − λ|T ′|

√
t0t
)

≥ (1− ε)λ2t|T ′|2 by |T ′| = Ω(wgap/(ελ))

It remains to show Eq. (30.1). Since the number of edges in the character-based

bipartite graph is at least λ|T ′|√t0t, we have
t0∑

i=1

Di ≥ λ|T ′|
√
t0t.
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By |T ′| = Ω(wgap/(ελ)), we have

λ|T ′|
√
t0t ≥ t0.

Due to a simple fact : x(x− z) > y(y − z) as long as x > y > z > 0, we have

1

t0
(

t0∑

i=1

Di)
2 −

t0∑

i=1

Di ≥
1

t0
(λ|T ′|

√
t0t)

2 − (λ|T ′|
√
t0t). (30.1)

The number of 3-tuple (wi, wa, wj) is at most |T ′|2. Thus, there must exists a pair

such that

‖lcswa(wi, wj)‖ ≥ (1− ε)λ2

We define graph NGλ and NFλ as follows:

Definition 30.3.8 (NGλ). We assume that the edges of NGλ are directed in the following

way: For an edge (i, j) if |wi| 6= |wj| the starting point of the edge would be the vertex

corresponding to the longer window and the ending point of the edge would be the one

corresponding to the shorter window. If both corresponding windows have the same lengths,

then we use an arbitrary direction for (i, j).

Definition 30.3.9 (NFλ). We construct graph NFλ in the following way : let a denote the

node in V (NGλ) that has the highest outgoing degree, let V (NFλ) = N(a). We add an edge

between vertices (i, j) in NFλ if ‖lcswa(wi, wj)‖ ≥ (1− ε)λ2. Give directions to the edges of

NFλ the same way we did it for NGλ.

Now, we are ready to prove the main observation of this section.
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Lemma 30.3.9 (upper bound on E(NGλ)). Let NGλ be defined as Definition 30.3.3. Then

|E(NGλ)| = O(k2−γ · wlayers · wgap/(ελ)).

holds with probability 1− 1/ poly(k).

Proof. We start with assuming

|E(NGλ)| ≥ Ω(k2−β · wlayers · wgap/(ελ)).

We construct a graph NFλ based on Definition 30.3.9. By Definition 30.3.9, we know that

|V (NFλ)| ≥ Ω(k1−β ·wlayers ·wgap/(ελ)). By choosing some β = γ we will make a contradiction.

Using Lemma 30.3.8, we have for each set T ⊆ V (NFλ) with |T | = Ω(wlayers·wgap/(ελ)),

there exist two nodes u and v in T such that edge (u, v) ∈ NFλ.

If we look at the complement of graph NFλ, we know there is no clique Kr+1 where

r = O(wlayers ·wgap/(ελ)). Using Turan’s theorem (Lemma 30.5.5) we know that complement

of graph NFλ has at most (1− 1
r
) q

2

2
edges, where q = |V (NFλ)|. Then we have

|E(NFλ)| ≥
q(q − 1)

2
− (1− 1

r
)
q2

2
=
q2

2r
− q

2
.

This implies that there is one vertex j whose outgoing degree in NFλ is at least at least

|V (NFλ)|
2r

− 1

2
≥ |V (NFλ)| · Ω

(
ελ

wlayers · wgap

)
≥ k1−β ≥ k1−γ.

Thus, there is a node in NGλ that has a lot of outgoing edges, which means NGλ has a close

pair.

On the other hand, Using definition of NGλ and Lemma 30.3.7, we know that NGλ

should not contain any close pair. Thus, we get a contradiction.
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Theorem 30.3.10 (cubic sparsification for arbitrary λ). Given k windows w1, · · · , wk. Let

wlayers denote the number of different sizes for windows. Let wmax = maxi∈[k] |wi|, wmin =

mini∈[k] |wi| and wgap = wmax/wmin. For any λ ∈ (0, 1), γ ∈ (0, 1), there is a randomized

algorithm (Algorithm 30.2) that runs in time

O(λ−4k1+γw2
max log k + k2+γwmax log k)

and outputs a table Ôλ3 ∈ {0, 1}k×k such that

‖lcs(wi, wj)‖ ≥ λ4/8, if Ôλ3 [i][j] = 1

and

∣∣∣
{

(i, j) | ‖lcs(wi, wj)‖ ≥ λ, and Ôλ3 [i][j] = 0
}∣∣∣ = O(k2−γwlayerswgap/λ).

The algorithm has success probability 1− 1/ poly(k).

Proof. The running time of each round of Algorithm 30.2 is

= O( constructing S time + lcs-cmp.Initial time + |S|2 · (lcs-cmp.Query time))

= O(k + λ̃−2|S|w2
max + |S|2wmax)

= O(λ−4kw2
max + k2wmax)

where the last step follows by λ̃ = λ2.

Since it repeats O(kγ log k) rounds, thus the overall running time is

O(kγ log k) ·O(λ−4kw2
max + k2wmax) = O(λ−4k1+γw2

max log k + k2+γwmax log k).
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Figure 30.5: computing a set of common subsequences between wa and wi for each i such
that every character of wa appears at most once among the sequences for a fixed i.

30.3.2.2 Implementation of lcs-cmp

Given λ̃, wa and w1, w2, . . . , ws, we present an O(λ̃−1|wa|
∑s

i=1 |wi|) time preprocess-

ing algorithm and O(|wa|) time query algorithm for lcs-cmp such that for any i, j ∈ [s]

1. if ‖lcswa(wi, wj)‖ > λ̃/2, then the query algorithm outputs accept;

2. if ‖lcswa(wi, wj)‖ ≤ λ̃2/8, then the query algorithm outputs reject.

Algorithm 30.3 is our lcs-cmp preprocessing and query algorithm. The high level

idea is to compute opta,i for every i ∈ [s] and a set of at most 2/λ common subsequences

between wa and wi for each i such that every character of wa appears at most once among

the sequences for a fixed i. lcswa(wi, wj) is approximated by taking the longest intersection

of opta,i and some sequence in the set of window wj. Also see Figure 30.5 for the intuition.
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Now we prove that Algorithm 30.3 implements lcs-cmp.

Lemma 30.3.11 (Initial). Given parameter λ̃, a window wa and a set of windows w1, · · · , ws.

The Initial of data structure lcs-cmp (Algorithm 30.3) takes O(λ̃−1|wa|
∑s

i=1 |wi|) time, and

outputs {Xa,i}i∈[s] and {Ya,i}i∈[s] such that

1. Xa,i corresponds to indices of a longest common subsequence between wa and wi for

every i ∈ [s].

2. Ya,i corresponds to indices of at most 2/λ̃ common subsequence between wa and wi for

every i ∈ [s].

3. If none of the element indices of a common subsequence between wa and wi is in Ya,i,

then the length of this common subsequence is less than λ̃|wa|.

Proof. The first property follows from the definition of the algorithm.

For the second and third property, if an opt′a,i obtained in Line 9 has length less than

λ̃|wa|/2, then the element indices of opt′a,i are not in Ya,i. Hence, the third property holds.

Also, it means that every time that Line 13 is executed, the size of Ya,i increases by at least

λ̃|wa|/2. For a fixed i ∈ [s], Line 13 is executed at most 2/λ̃ times. Thus, the second property

holds.

The running time is also obtained by the fact that Line 13 is executed at most 2/λ̃

times for every fixed i ∈ [s].

Lemma 30.3.12 (Query). For any (i, j) ∈ [s]× [s], the Query of data structure lcs-cmp

(Algorithm 30.3) runs in time O(|wa|) with the following properties:
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1. If ‖lcswa(wi, wj)‖ > λ̃/2, then it outputs accept.

2. If ‖lcswa(wi, wj)‖ ≤ λ̃2/8, then it outputs reject.

Proof. Let opta,i,j be the LCS between opta,i and wj. By the definition, we have

‖lcswa(wi, wj)‖ =
|opta,i,j|√
|wi| · |wj|

Consider the case of ‖lcswa(wi, wj)‖ ≥ λ̃/2. By the third property of Lemma 30.3.11,

there are less than λ̃|wa|/4 elements of opta,i,j with indices not in Ya,j. So we have

|Xa,i ∩ Ya,j| >
1

2
λ̃
√
|wi||wj| −

1

4
λ̃|wa| ≥

1

4
λ̃
√
|wi||wj|

where the last inequality follows from the fact that |wa| is smaller than or equal to |wi| for

every i ∈ [s]. Hence the algorithm accepts.

Consider the case of ‖lcswa(wi, wj)‖ ≤ λ̃2/8. By the second property of Lemma 30.3.11,

Ya,j corresponds to at most 2/λ̃ mutually non-overlapping common subsequence between wa

and wj. Since ‖lcswa(wi, wj)‖ ≤ λ̃2/8, the set of indices of every such a common subsequence

has an intersection with Xa,i of size at most λ̃2
√
|wi||wj|/8. Thus, we have

|Xa,i ∩ Ya,j| ≤
1

8
λ̃2
√
|wi||wj| ·

2

λ̃
≤ 1

4
λ̃
√
|wi||wj|.

Hence the algorithm rejects for this case.
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30.4 Longest Increasing Subsequence

We outlined the algorithm in Section 30.1.3.3. Here, we bring the details for each

step of the algorithm. In Section 30.4.1 we discuss the solution domains and show how

we construct them. Next, in Section 30.4.2 we discuss the details of constructing pseudo-

solutions and finally in Section 30.4.3 we show how we can obtain an approximate solution

from the pseudo-solutions. Also, in Section 30.4.4 we bring an improvement to the running

time at the expense of having a larger approximation factor for the algorithm.

30.4.1 Solution Domains

We assume from now on that lis(A) > nλ holds. As mentioned earlier, we divide

the input array into
√
n subarrays of size

√
n and denote them by sa1, sa2, . . . , sa√n. For a

fixed optimal solution opt, our goal is to approximate the smallest and the largest number

of each subarray that contributes to opt. Let us refer to these numbers as the domain of

each subarray. Let ε = 1/1000 be accuracy. For a subarray sai, we sample k (will be decided

later) different elements and refer to them by aj1 , aj2 , . . . , ajk .

We first prove that,

Lemma 30.4.1 (constructing candidate domains). Let λ ∈ (0, 1), ε ∈ (0, 1/2) and δ ∈

(0, 1/10). Let sai be a length-
√
n subarray whose contribution to the optimal solution is at

least ε
√
nλ, i.e., lis[sm(sai),lg(sai)](sai) ≥ ε

√
nλ. If we uniformly sample k = 20 log(1/δ)/(λε2)

elements aj1 , aj2 , . . . , ajk from sai, then with probability at least 1 − δ, there exists a pair

(α, β) ∈ [k]× [k] such that the following two conditions hold

2263



1. sm(sai) ≤ ajα ≤ ajβ ≤ lg(sai),

2. lis[ajα ,ajβ ](sai) ≥ (1− ε)lis[sm(sai),lg(sai)](sai).

Proof. At least ε
√
nλ elements of sai appear in opt. Let us put all these elements in an array

b in the same order that they appear in sai. Then it is obvious that b has at least ε
√
nλ

elements. To prove the lemma, we bound the probability that none of the first ε/2 fraction

of the elements of b is sampled in our algorithm.

Pr[none of the elements in the first ε/2 fraction of b is sampled]

≤
(

1− ε

2
· ε√nλ · 1√

n

)k

=

(
1− ε2λ

2

) 2
ε2λ
·10 log(1/δ)

≤ e−10 log(1/δ)

≤ δ/2,

where the first step follows from the fact that b contains at least ελ
√
n elements, the second

step follows from k = 20 log(1/δ)/(λε2), and the third step follows from the fact that the

(1 − 1/x)x ≤ 1/e for ∀x ≥ 4. Hence, with probability at least 1 − δ/2, at least one of the

elements in the first ε/2 fraction of b are sampled.

With the same analysis, one can prove that with probability at least 1− δ/2 at least

one of the elements in the last ε/2 fraction of b are also sampled.

Taking a union bound of two events, with probability at least 1 − δ, at least one of

the elements in the first and at least one of the elements in the last ε/2 fraction of b are

sampled.
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Therefore, the lis of sai subject to this interval is at least a 1−ε fraction of lis[sm(sai),lg(sai)](sai).

Notice that the average contribution of each subarray to opt is
√
nλ and Lemma

30.4.1 applies to a subarray if its contribution to opt is at least an ε fraction of this value.

Therefore Lemma 30.4.1 implies that a considerable fraction of the solution is covered by

the candidate domains.

Corollary 30.4.2 (existence of a desirable solution). Let λ ∈ (0, 1) such that lis(A) ≥ nλ and

ε ∈ (0, 1/4). If we run Algorithm 30.4 with parameter δ = ε on every subarray independently,

then with probability at least 1− exp(−Ω(ε2
√
nλ)), there exist a set T ⊆ [

√
n] and elements

αi and βi sampled from sai for each i ∈ T such that the following conditions hold:

1. For any i ∈ T , αi ≤ βi.

2. For any i, j ∈ T satisfying i < j, βi < αj.

3.
∑

i∈T lis
[αi,βi](sai) ≥ (1− 4ε)lis(A).

Proof. Lemma 30.4.1 holds for all subarrays whose contribution to opt is at least ε
√
nλ. Let

S ⊆ [
√
n] denote the set of coordinates such that for each i ∈ S

lis[sm(sai),lg(sai)](sai) ≥ ε
√
nλ.

Since
∑√n

i=1 lis
[sm(sai),lg(sai)](sai) ≥ nλ and lis[sm(sai),lg(sai)](sai) ≤

√
n, we have

∑

i∈S

lis[sm(sai),lg(sai)](sai) ≥
√
n∑

i=1

lis[sm(sai),lg(sai)](sai)−
√
n · ε√nλ ≥ lis(A)− εnλ. (30.2)
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Let T ⊆ S denote the set of coordinates such that for each i ∈ T ,

lis[αi,βi](sai) ≥ (1− ε)lis[sm(sai),lg(sai)](sai), and lis[sm(sai),lg(sai)](sai) ≥ ε
√
nλ.

Now we show that with probability at least 1− exp(−Ω(ε2
√
nλ)),

∑

i∈T

lis[sm(sai),lg(sai)](sai) ≥ (1− 2ε)
∑

i∈S

lis[sm(sai),lg(sai)](sai). (30.3)

For each i ∈ S, let Xi denote a random variable such that

Xi =

{
lis[sm(sai),lg(sai)](sai), with probability of i ∈ T ;

0, with probability of i /∈ T,

andX =
∑

i∈S Xi. By Lemma 30.4.1 (with δ = ε), We have E[X] ≥ (1−ε)∑i∈S lis
[sm(sai),lg(sai)](sai).

By Hoeffding bound (Theorem 30.5.2),

Pr[X − E[X] ≥ εE[X]] ≤ 2 exp


− 2ε2(E[X])2

∑
i∈S

(
lis[sm(sai),lg(sai)](sai)

)2




≤ 2 exp


−

2ε2(1− ε)2
(∑

i∈S lis
[sm(sai),lg(sai)](sai)

)2

n3/2




≤ 2 exp(−2ε2(1− ε)4
√
nλ)

≤ exp(−Ω(ε2
√
nλ)).

Hence, Equation (30.3) holds with probability at least 1− exp(−Ω(ε2
√
nλ)).
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Conditioned on Equation (30.3), we have
∑

i∈T

lis[αi,aβi ](sai)

≥
∑

i∈T

(1− ε)lis[sm(sai),lg(sai)](sai)

≥ (1− ε)(1− 2ε)
∑

i∈S

lis[sm(sai),lg(sai)](sai)

≥ (1− ε)(1− 2ε)(lis(A)− εnλ)

≥ (1− 4ε)lis(A)

(30.4)

where the first inequality follows from the definition of T , the second inequality follows from

Equation (30.3), the third inequality follows from Equation (30.2) and the last inequality

follows from lis(A) ≥ nλ.

Finally, by Equation (30.3) and (30.4), we have

Pr

[∑

i∈T

lis[αi,aβi ](sai) ≥ (1− 4ε)lis(A)

]
≥ 1− exp(−Ω(ε2

√
nλ)).

30.4.2 Constructing Approximately Optimal Pseudo-solutions

We call a sequence of
√
n intervals [`1, r1], [`2, r2], . . . , [`√n, r√n] a pseudo-solution if

all of the intervals are monotone. That is `1 ≤ r1 < `2 ≤ r2 < `3 ≤ r3 ≤ . . . ≤ `√n ≤ r√n.

These intervals denote solution-domains for the subarrays. We also may decide not assign

any solution domain to a subarray in which case we show the corresponding interval by ∅.

Indeed, ∅ does not break the monotonicity of a pseudo-solution. The quality of a pseudo-

solution is defined as
∑

i lis
[`i,ri](sai). We denote the quality of a pseudo-solution ps by q(ps).
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Another way to interpret Corollary 30.4.2 is that one can construct a pseudo-solution

using the sampled elements whose quality is at least a 1− ε fraction of lis(A). In this section,

we present an algorithm to construct a small set of pseudo-solutions with the promise that

at least one of them has a quality of at least lis(A)/t, where t is the number of pseudo-

solutions. Finally, in Section 30.4.3, we present a method to approximate the size of the

optimal solution using pseudo-solutions.

We construct the pseudo-solutions via Algorithm 30.5. The input of Algorithm 30.5

is the set of candidate domain intervals obtained by Algorithm 30.4 on every subarray. We

first find an assignment of candidate solution domains to the subarrays which is monotone

and has the largest number of candidate domain intervals. (This step can be implemented

by dynamic programming.) We make a pseudo-solution out of this assignment and update

the set of candidate intervals by removing the ones which are used in our pseudo-solution.

We then repeat the same procedure to construct the second pseudo-solution and update

the candidate solution domains accordingly. We continue on, until the number of solution

domains used in our pseudo-solution drops below ε
√
n in which case we stop.

We first prove in Lemma 30.4.3 that the number of pseudo-solutions constructed in

Algorithm 30.5 is bounded by O(k2/(λε)). Next, we show in Lemma 30.4.4 that at least one

of the pseudo-solutions constructed by Algorithm 30.5 has a quality of at least Ω(lis(A)/t)

where t is the number of pseudo-solutions. Finally we prove in Lemma 30.4.5 that the

running time of Algorithm 30.5 is O(tk2
√
n log n).

Lemma 30.4.3 (number of pseudo-solutions). For each i ∈ [
√
n], let cdii be a set of at most

k2 candidate domain intervals. Let t denote the number of pseudo-solutions constructed in

Algorithm 30.5. Then, we have t ≤ k2/(λε).
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Proof. Note that for each subarray we have at most k2 candidate domain intervals. Since

there are
√
n subarrays, then in total we have

√
nk2 candidate domain intervals. Each

time we construct a pseudo-solution, the total number of the candidate domain intervals

is decreased by at least ε
√
nλ. Thus, the total number of pseudo-solutions t can be upper

bounded,

t ≤
√
nk2

ε
√
nλ
≤ k2

λε
.

Lemma 30.4.4 (quality of pseudo-solutions). Let ps1, ps2, . . . , pst be the pseudo-solutions

constructed by Algorithm 30.5. If lis(A) ≥ nλ holds, then with probability at least 1 −

exp(−Ω(
√
nλ)), there exists an i ∈ [t] such that

q(psi) ≥
lis(A)

2t
.

Proof. Let us focus again on the actual solution domains

[sm(sa1), lg(sa1)], [sm(sa2), lg(sa2)], . . . , [sm(sa√n), lg(sa√n)].

We define set S ⊆ [
√
n] such that

lis[sm(sai),lg(sai)] ≥ ε
√
nλ,∀i ∈ S.

Using Corollary 30.4.2 with ε = 1/10, we know that there is a monotone pseudo-

solution [αi, βi]i∈T (T ⊆ S) such that [αi, βi] are candidate domain intervals and

∑

i∈T

lis[αi,βi](sai) ≥ (1− 4ε)lis(A).
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Denote this pseudo-solution as sol.

At the time we terminate Algorithm 30.5, there are at most ε
√
nλ candidate domain

intervals of sol does not belongs to any pseudo-solution of the pseudo-solution set. Also, since

each candidate domain interval contributes at most
√
n to the quality of the pseudo-solution

containing the interval, we have
t∑

i=1

q(psi) ≥ (1− 4ε)lis(A)− ε√nλ · √n ≥ (1− 4ε)lis(A)− εlis(A) = (1− 5ε)lis(A).

Thus, there exists an i ∈ [t] such that

q(psi) ≥ (1− 5ε)lis(A)/t = lis(A)/(2t).

Lemma 30.4.5 (running time). For each i ∈ [
√
n], let cdii be a set of at most k2 candi-

date domain intervals. Let t denote the number of pseudo-solutions. The running time of

Algorithm 30.5 is bounded by O(tk2
√
n log n).

Proof. Lemma 30.4.3 states that Algorithm 30.5 terminates after constructing t pseudo-

solutions.

Now we show that constructing each pseudo-solution takes time O(k2
√
n log n). Our

solution is based on a dynamic programming technique. Let D : [
√
n] × [k2] → N be an

array such that D[i][j] stores the size of the largest monotone pseudo-solution for the first i

subarrays which ends with the j’th candidate domain interval of sai. Using classic segment-

tree data structure (this data structure can be found in many textbooks, e.g. [CLRS09]),

one can compute the value of D[i][j] in time O(log n) from the previously computed elements

of the array.
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Thus, the total running is bounded by O(tk2
√
n log n).

30.4.3 Evaluating the Pseudo-solutions

We finally use a concentration bound to show that the quality of a pseudo-solution

can be approximated well by sampling a small number of subarrays. Since a pseudo-solution

specifies the range of the numbers used in every subarray, the quality of a pseudo-solution,

or in other words, the size of the corresponding increasing subsequence of a pseudo-solution

can be formulated as

q(ps) =

√
n∑

i=1

lis[`i,ri](sai)

where [`i, ri] denotes the corresponding solution domain of ps for sai.

In Lemma 30.4.6, we prove that by sampling O(logO(1) n/λ4) many subarrays and

computing lis[`i,ri](sai) for them, one can approximate the quality of a pseudo-solution pretty

accurately.

Lemma 30.4.6 (the quality of pseudo-solution). Let λ ∈ (0, 1) and ε be a constant in

(0, 1/100). Let ps1, ps2, · · · , pst be a set of t pseudo-solutions. With probability at least

1− exp(−Ω(log2 n)), Algorithm 30.6 runs in time O(t2
√
n logO(1) n/λ) such that ,

1. If there exists an i ∈ [t], q(psi) ≥ λn
2t
, then the algorithm outputs an estimation at least

λn
4t
.

2. If q(psi) <
λn
8t

for al the i ∈ [t], then the algorithm outputs an estimation smaller than
λn
4t
.
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Proof. By Chernoff bound, with probability 1 − exp(−Ω(log3 n)) most 2p
√
n = 2000t log4 n

ε4λ

subarrays are sampled. For each pseudo-solution, Algorithm 30.6 runs the algorithm for

longest increasing subsequence once for every sampled subarray. Hence, the running time of

the algorithm is O(t2
√
n logO(1) n/λ).

Consider an arbitrary pseudo-solution ps ∈ {ps1, . . . , pst} for now. We show that

Pr

[(
1− ε

4

)2
(
q(ps)− ελ4n

100t

)
q̃(ps) ≤

(
1 +

ε

4

)2

q(ps) +
ελ4n

100t

]
≤ 1− exp(−Ω(log3 n)).

Then the lemma holds by a union bound on all the pseudo-solutions.

Let T be the set of subarray indices such that i ∈ T iff there is a non-empty interval

[`i, ri] of ps corresponding to subarray sai. Let p = 1000t log4 n
ε4λ
√
n

be the probability of sampling

a subarray. For each i ∈ T , let Xi denote a random variable such that

Xi =

{
1, with prob. p;
0, with prob. 1− p.

and

X =
∑

i∈T

1

p
lis[`i,ri](sai)Xi.

We have

E[X] = E

[∑

i∈T

1

p
lis[`i,ri](sai)Xi

]
=
∑

i∈T

lis[`i,ri](sai) = q(ps).

Let

Tj =
{
i ∈ T : (1 + ε/4)j−1 ≤ lis[`i,ri](sai) < (1 + ε/4)j

}

for integer 1 ≤ j ∈
⌈
log1+ε

√
n
⌉
.
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Let ∆ = ε2λ
√
n

1000t logn
. Consider Tj’s such that |Tj| ≥ ∆. The contribution of q(ps) mostly

comes from Tj in the following sense

∑

j:|Tj |≥∆

∑

i∈Tj

lis[`i,ri](sai) ≤ q(ps) (30.5)

and
∑

j:|Tj |≥∆

∑

i∈Tj

lis[`i,ri](sai) =q(ps)−
∑

j:|Tj |<∆

∑

i∈Tj

lis[`i,ri](sai)

≥q(ps)−∆
√
n ·
⌈
log1+ε

√
n
⌉

≥q(ps)− ελn

100t
.

(30.6)

Now we bound the random variable
∑

j:|Tj |≥∆

∑
i∈Tj lis

[`i,ri](sai)Xi/p. By Chernoff bound, for

each j such that |Tj| ≥ ∆, we have

Pr



(

1− ε

4

)
p|Tj| ≤

∑

i∈Tj

Xi ≤
(

1 +
ε

4

)
p|Tj|


 ≥ 1−exp(−Ω(ε2p|Tj|)) = 1−exp(−Ω(log3 n)).

(30.7)

Notice that for set Tj,

(1 + ε/4)j−1

p

∑

i∈Tj

Xi ≤
∑

i∈Tj

1

p
lis[`i,ri](sai)Xi ≤

(1 + ε/4)j

p

∑

i∈Tj

Xi. (30.8)
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We have

Pr



(

1− ε

4

)2∑

i∈Tj

lis[`i,ri](sai) ≤
∑

i∈Tj

1

p
lis[`i,ri](sai)Xi ≤

(
1 +

ε

4

)2∑

i∈Tj

lis[`i,ri](sai)




≥Pr



(

1− ε

4

)2∑

i∈Tj

lis[`i,ri](sai) ≤
(1 + ε/4)j−1

p

∑

i∈Tj

Xi

∧ (1 + ε/4)j

p

∑

i∈Tj

Xi ≤
(

1 +
ε

4

)2∑

i∈Tj

lis[`i,ri](sai)




≥Pr



(

1− ε

4

)2 (
1 +

ε

4

)j
|Tj| ≤

(1 + ε/4)j−1

p

∑

i∈Tj

Xi

∧ (1 + ε/4)j

p

∑

i∈Tj

Xi ≤
(

1 +
ε

4

)j+1

|Tj|




≥Pr



(

1− ε

4

)
p|Tj| ≤

∑

i∈Tj

Xi

∧ ∑

i∈Tj

Xi ≤
(

1 +
ε

4

)
p|Tj|




=1− exp(−Ω(log3 n)),

(30.9)

where the first inequality follows from Equation (30.8), the second inequality follows from

the definition of Tj and the last inequality follows from Equation (30.7). By Equation (30.5),
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(30.6), (30.10) and union bound, we have

Pr



(

1− ε

4

)2
(
q(ps)− ελn

100t

)
≤

∑

j:|Tj |≥∆

∑

i∈Tj

1

p
lis[`i,ri](sai)Xi ≤

(
1 +

ε

4

)2

q(ps)




≥Pr



(

1− ε

4

)2 ∑

j:|Tj |≥∆

∑

i∈Tj

lis[`i,ri](sai) ≤
∑

j:|Tj |≥∆

∑

i∈Tj

1

p
lis[`i,ri](sai)Xi

≤
∑

j:|Tj |≥∆

(
1 +

ε

4

)2∑

i∈Tj

lis[`i,ri](sai)




≥1−O
(

log n

ε

)
exp(−Ω(log3 n))

=1− exp(−Ω(log3 n)).

(30.10)

Now we bound random variable
∑

j:|Tj |<∆

∑
i∈Tj lis

[`i,ri](sai)Xi/p. If |Tj| < ∆, then by

Chernoff bound we have

Pr


∑

i∈Tj

Xi ≤
2 log3 n

ε2


 ≥ 1− exp(−Ω(log3 n)).

By union bound we have

Pr


 ∑

j:|Tj |<∆

∑

i∈Tj

1

p
lis[`i,ri](sai)Xi ≤

2 log3 n

ε2
·
√
n

p
·
⌈
log1+ε

√
n
⌉
<

ελn

100t


 ≥ 1−exp(−Ω(log3 n))).

(30.11)

If q(ps) ≥ λn
2t
, then then by Equation (30.10)

Pr

[
X >

λn

4t

]

≥Pr



(

1− ε

4

)2
(
q(ps)− ελn

100t

)
≤

∑

j:|Tj |≥∆

∑

i∈Tj

1

p
lis[`i,ri](sai)Xi




≥1− exp(−Ω(log3 n)).
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If q(ps) < λn
8t
, then by Equation (30.10) and Equation (30.11),

Pr

[
X <

λn

4t

]

≥Pr


 ∑

j:|Tj |≥∆

∑

i∈Tj

1

p
lis[`i,ri](sai)Xi ≤

(
1 +

ε

4

)2

q(ps)
∧ ∑

j:|Tj |<∆

∑

i∈Tj

1

p
lis[`i,ri](sai)Xi ≤

ελn

100t




≥1− exp(−Ω(log3 n)).

Putting all the previous Lemmas together gives the following result:

Corollary 30.4.7 (algorithm for LIS decision problem). Given a length-n sequence A, let

λ ∈ [1/n, 1]. There is a randomized algorithm that runs in time O(λ−7
√
n logO(1) n) such

that with probability 1− 1/ poly(n)

• The algorithm accepts if lis(A) > nλ.

• The algorithm rejects if lis(A) = O(nλ4).

Proof. The correctness follows from Lemma 30.4.6, Lemma 30.4.4, and Lemma 30.4.5.

Running time: The running time is

time = O(tk2
√
n logO(1) n)︸ ︷︷ ︸

Lemma 30.4.5

+O(t2λ−1
√
n logO(1) n)︸ ︷︷ ︸

Lemma 30.4.6

= O(t2λ−1
√
n logO(1) n) by Lemma 30.4.3

= O(k4λ−3
√
n logO(1) n) by Lemma 30.4.3

= O(λ−7
√
n logO(1) n)

Thus, we complete the proof.
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Finally, by starting with λ = 1 and iteratively multiplying λ by a 1/(1 + ε) factor

until a solution is found, we can approximate lis(A) within an approximation factor of O(λ3).

Theorem 30.4.8 (polynomial approximation for LIS). Given a length-n sequence A such

that lis(A) = nλ where λ ∈ [1/n, 1] is unknown to the algorithm. There is an algorithm that

runs in time Õ(λ−7
√
n) and outputs a number est such that

Ω(lis(A)λ3) ≤ est ≤ O(lis(A)).

with probability at least 1− 1/ poly(n).

We remark that one can turn Theorem 30.4.8 into an algorithm with running time

Õ(n17/20) by considering two cases separately. If λ < n−1/20 we sample the array with a rate

of n−3/20 and compute the LIS for the sampled array. Otherwise, the running time of the

algorithm is already bounded by Õ(n17/20).

30.4.4 An O(nκ) Time Algorithm via Bootstrapping

Let us move a step backward and analyze the previous algorithm for obtaining an

O(λ3) approximate solution. We first divide the input array into
√
n subarrays of size

√
n

and after constructing the pseudo-solutions, we sample O(λ4) subarrays to estimate the size

of the solution for pseudo-solutions. The reason we set the size of the subarrays to
√
n is

that there is a trade-off between the first and the last steps of the algorithm. More precisely,

if we have more than
√
n subarrays then the number of samples we draw in the beginning

would exceed Oλ(
√
n). On the other hand, having fewer than

√
n subarrays results in larger

subarrays which would be costly in the last step.
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If one favors the running time over the approximation factor, the following improve-

ment can be applied to the algorithm: In the last step of the algorithm, instead of sampling

the entire subarrays and computing lis for every pseudo-solution, we recursively call the same

procedure to approximate the size of the solution for each subarray. This way, having large

subarrays would no longer be an issue and therefore we can have fewer subarrays to improve

the number of samples we draw in the first step of the algorithm.

More formally, in order to obtain a running time of O(poly(λ)nκ) we set the size of

each subarray to n1−κ and therefore after constructing the pseudo-solutions, the problem

boils down to approximating the solution for poly(λ) many subarrays of length n1−κ. By

running the same algorithm, we would have nκ subarrays of length n1−2κ in the second

iteration. After 1/κ − 1 iterations, the subarrays are small enough and we can access all

their elements in time O(poly(λ)nκ). Of course, this imposes a factor of poly(λ) to the

approximation.

By generalizing the ideas from previous subsections, we show that if there is an algo-

rithm for LIS with approximation factor f(λ), then we can get a
(
f
(
λ4

232

)
· λ4

233

)
-approximate

LIS algorithm with better running time using the f(λ)-approximate algorithm as a subrou-

tine.

Lemma 30.4.9. Assume we partition the sequence into ζ subarrays, where ζ is polynomially

related to the length of the input sequence. For parameter λ ∈ (0, 1), let Oracle be a f(λ)-

approximate LIS algorithm (with respect to a domain interval) with running time g(n, λ) and

success probability 1 − exp(−Ω(log2 n)) where n is the length of the input sequence. Then

Algorithm 30.7 using Oracle as a subroutine is a
(
f
(
λ4

232

)
· λ4

233

)
-approximate LIS algorithm
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Figure 30.6: The flowchart of the Oλ(n
ε) time algorithm is shown.

with

O

(
λ−4g

(
n

ζ
,
λ4

232

)
logO(1) n+ λ−7ζ logO(1) n

)

running time and success probability 1−exp(−Ω(log2 n)), where ζ is the number of subarrays.

Proof. We first prove the correctness of the algorithm. Let A be a sequence of length n, and

sa1, . . . , saζ be the subarrays.

Consider the case of lis[`,r](A) ≥ λn. By Corollary 30.4.2 and Lemma 30.4.4 with

ε = δ = 1/10, with probability 1 − exp(−Ω(ζλ)), there exists a pseudo-solution psj within

interval [`, r] satisfying

q(psj) ≥
lis[`,r](A)

2t
≥ lis[`,r](A)λε

2k2
≥ lis[`,r](A)λε

2 · 202 log2(1/δ)/(λ2ε4)
≥ ε5λ4

800 log2(1/δ)
n ≥ λ4

231
n.

Let α denote the number of subarrays sai such that lis[`i,ri](sai) ≥ λ0n/ζ where [`i, ri] is the
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interval for subarray sai in psj. We have

α ≥ q(psj)− λ4n/232

n/ζ
≥ λ4ζ

232
.

By Chernoff bound, Step 14 to Step 22 of Algorithm 30.7 accepts on psj with probability at

least 1− exp(−Ω(log2 n)).

Consider the case of

lis[`,r](A) ≤ f

(
λ4

232

)
λ4

233
n.

Then for any pseudo-solution psj, we have

q(psj) ≤ f

(
λ4

232

)
λ4

233
n.

Let β denote the number of subarrays sai such that lis[`i,ri](sai) ≥ f(λ4/232)n/ζ where [`i, ri]

is the interval for subarray sai in psj. We have

β ≤ q(psj)

f(λ4/232)n/ζ
≤ λ4

233
ζ.

By Chernoff bound, Step 14 to Step 22 of Algorithm 30.7 do not accept on psj with probability

at least 1 − exp(−Ω(log2 n)). By union bound, Algorithm 30.7 rejects with probability at

least 1− exp(−Ω(log2 n)).

Hence, Algorithm 30.7 is a
(
f
(
λ4

232

)
· λ4

233

)
-approximate algorithm for LIS of length n

with success probability at least 1− exp(−Ω(log2 n)).

Finally, we discuss the running time of Algorithm 30.7. By the definition of pro-

cedures ConstructCandidateDomains and ConstructPseudoSolutions, the run-

ning time of Step 5 to Step 9 of Algorithm 30.7 is O(λ−9ζ logO(1) n). By Lemma 30.4.3,

t = O(λ−3), and by Chernoff bound with probability 1 − exp(−Ω(log2 n)) the size of Q is
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at most O(λ−4 log4 n). Hence, the running time of Step 12 to Step 24 of Algorithm 30.7 is

O(λ−7g(n/ζ, λ4/232) log4 n).

By definition, we have the following basic fact about approximate ratio.

Fact 30.4.10. Let f and f ′ be two functions mapping (0, 1) to (0, 1) such that f(λ) ≥ f ′(λ)

for any λ ∈ (0, 1). If there is a f(λ)-approximate LIS algorithm, then the algorithm is also

f ′(λ)-approximate.

Now we present algorithm to approximate LIS using Õ(nκ poly(λ−1)) space by ap-

plying the pseudo-solution construction-evaluation framework recursively. In particular, we

use the same algorithm on subarrays as an oracle and apply Lemma 30.4.9 recursively to

approximate the entire sequence with slightly worse approximation ratio (compared with

approximation ratio of the oracle).

Lemma 30.4.11. Let κ be a constant of (0, 1) and λ ∈ (0, 1). Algorithm 30.8 approximates

LIS with approximation ratio
λ2·4(d1/κe−1)

2563·4(d1/κe−1)

and running time O(nκ · λ−4O(1/κ)
logO(1) n) and success probability 1− exp(−Ω(log3 n)).

Proof. We first prove the correctness of the algorithm by induction. Without loss of gener-

ality, we assume 1/κ is an integer.

For i ∈ {2, 3, . . . , 1/κ}, denote

hi(λ) =
λ2·4(i−1)−4

2562·4(i−1)+3·4(i−2)−7
.
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We show that if the length of the input sequence is ni·κ then Algorithm 30.8 is hi(λ)-

approximate.

If the length of input sequence is n2κ, then h2(λ) = λ4

232 . By Corollary 30.4.2,

Lemma 30.4.4, and Lemma 30.4.6, Algorithm 30.8 is h2(λ)-approximate.

In the induction step, for an integer 2 ≤ i < 1/κ, we assume Algorithm 30.8 is

hi(λ)-approximate for input instance of length ni·κ. By Lemma 30.4.9, Algorithm 30.8 is
(
hi

(
λ4

232

)
λ4

233

)
-approximate for input instance of length n(i+1)·κ. Since

hi

(
λ4

232

)
λ4

233
=

λ4·(2·4(i−1)−4) · λ4

2564·(2·4(i−1)−4) · 2562·4(i−1)+3·4(i−2)−7 · 233

=
λ2·4i−12

2562·4i+2·4(i−1)+3·4(i−2)−18.875

>
λ2·4i−4

2562·4i+3·4(i−1)−7

=hi+1(λ),

by Fact 30.4.10, Algorithm 30.8 is hi+1(λ)-approximate for input instance of length n(i+1)·κ.

Since

h1/κ(λ) >
λ2·4((1/κ)−1)

2563·4((1/κ)−1)
,

by Fact 30.4.10, Algorithm 30.8 is
(

λ2·4((1/κ)−1)

2563·4((1/κ)−1)

)
-approximate for input instance of length

n.

By Corollary 30.4.2, Lemma 30.4.4, Lemma 30.4.6 and Lemma 30.4.9, we have the

desired running time. The success probability is obtained by same corollaries/lemmas and

union bound.
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Finally, by starting with λ = 1 and iteratively multiplying λ by a 1/(1+ε) factor until

a solution is found, we can approximate lis(A) within an approximation factor of λO(41/κ).

Theorem 30.4.12. Let κ be a constant of (0, 1) and λ ∈ (0, 1). There exists a Õ(nκ ·

λ−4O(1/κ)
) time algorithm for lis with approximation factor λ4O(1/κ) and success probability

1− exp(−Ω(log3 n)) .
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30.5 Probability and Graph Tools

In this section, we restate probability and graph tools that we use throughout this

paper. All these theorems are proven in previous work.

Theorem 30.5.1 (Chernoff Bounds). Let X =
∑n

i=1Xi, where Xi = 1 with probability pi

and Xi = 0 with probability 1 − pi, and all Xi are independent. Let µ = E[X] =
∑n

i=1 pi.

Then

1. Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0 ;

2. Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/2), ∀0 < δ < 1.

Theorem 30.5.2 (Hoeffding bound). Let X1, · · · , Xn denote n independent bounded vari-

ables in [ai, bi]. Let X =
∑n

i=1Xi, then we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)

Theorem 30.5.3 (Blakley-Roy inequality, [BR65], see also Proposition 3.1 in [KSV13]). Let

G denote a graph that has n vertices and average degree d. The number of walks of length k

in graph G is at least ndk.

Theorem 30.5.4 (Turán theorem for bipartite graphs, [KST54], see also [BBK13]). For

a graph G the Turán number ex(G, n) is the maximum number of edges that a graph on

n vertices can have without containing a copy of G. For any s ≤ t, ex(Ks,t, n) ≤ 1
2
(t −

1)1/sn2−1/s + o(n2−1/s)

Theorem 30.5.5 (Turán theorem for cliques [Tur41]). Let G be any graph with n vertices,

such that G is Kr+1-free. Then the number of edges in G is at most

(1− 1

r
) · n

2

2
.
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Corollary 30.5.6 (of Theorem 30.5.5). Let G be any graph with n vertices, such that G has

no independent set of size r + 1. Then the number of edges in G is at least
(
n

2

)
− (1− 1

r
) · n

2

2
=
nr + n2

2r
.
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30.6 LCS Step 0: Window-compatible Solutions

The goal of this section is to show window-compatible solutions provide very accurate

estimates for LCS. Roughly speaking, in this section, we construct a set of windows for A

and a set of windows for B and we show that it suffices to only compute the LCS of the

windows. If that information is available, then we can estimate the LCS of two strings very

accurately.

We use the same definition of window-compatible transformation as [BEG+18], but

we will use a richer set of windows. Every window is essentially a substring of each string.

Notice that windows may not have the same length. We useWA to denote the set of windows

constructed for A and WB for the set of the windows that we construct for B.

Let us first state our definition of window-compatible solutions for LCS.

Definition 30.6.1 (Window-compatible LCS). Let S = 〈w1, w2, · · · , wα〉 and S ′ = 〈w′1, w′2, · · ·w′α〉

be two sequences of non-overlapping windows from W1 and W2, respectively.

• We call a common substring of (A,B) window-compatible with respect to S and S ′, if

it is a union of k common substrings of (w1, w
′
1), . . . , (wα, w

′
α)

We call a common substring window-compatible, if it is window-compatible with respect to

at least a pair of sequence of non-overlapping windows from W1 and W2, respectively.

30.6.1 Construction of the Windows

This section presents a definition (see Definition 30.6.2) of a multiple layers window

set for strings A and B. The construction is the same for both strings, therefore, we only
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state it for A. As mentioned earlier, each window is a substring of the strings. For clarity,

we use A(j,l) to denote a length-l substring of A which starts at index j and ends at index

j + l − 1. Our construction has multiple layers, each of which contains windows with equal

lengths.

Given two length n strings A,B, and two parameters 1 ≤ d ≤ n and ε0 ∈ (0, 1), we

define window set WA to be a set of continuous subsequence of string A. The sizes of the

windows depend on parameter d and the accuracy of our construction depends on parameter

ε. Setting d = nx leads to a truly subquadratic time solution for any 0 < x < 1, however,

one can play with the value of d to optimize the running time.

Our construction has multiple layers, where in each layer the lengths of the windows

are the same. Let f = Θ( 1
ε0

log 1
ε0

) and f+1 denote the number of different layers of windows

in WA.

For each i ∈ {0, 1, · · · , f}, we define di = d(1 + ε0)i, gi = ε0di, and ti = n/di. For

each i, let W i
A denote the set of all the windows in this layer. We consider window set W i

A,

in i-th layer, all the window have the same size which is di; gi is the shift size, it means for

each window (except the leftmost and rightmost one), if we shift either to the left or to the

right, it becomes another window in W i
A.

Formally speaking, we define W i
A as follows

Definition 30.6.2. Let WA be the set of windows we construct for string A. Then we have

W i
A =

{
A(left,len)

∣∣ left = x · gi + y · di, len = di,∀x ∈ {0, 1, · · · , di/gi − 1},∀y ∈ {0, 1, · · · , ti − 1}
}

where we use A(left,len) denotes a continuous subsequence of string A that starts at left and
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has length len. Finally WA is ∪i∈{0,1,··· ,f}W i
A. Similarly, for each i ∈ {0, 1, · · · , f}, we can

obtain W i
B and WB.

Indeed, the running time of constructing the windows is truly subquadratic.

Lemma 30.6.1 (Generating (d, ε0)-multiple layers window set). Given two strings A,B of n

symbols over Σ symbols, and parameters d ≥ 1, ε0 ∈ (0, 1). Let set WA and WB be generated

by procedure GenerateMultipleLevels (Algorithm 30.9). The algorithm takes n·Õ(1/ε20)

time and |WA| = |WB| = O(n/(dε20)).

Proof. Given two sets of blocks WA and WB, for each block A(j1,l1) ∈ WA, A(j1,l1) starts at j1

and has length l1. Similarly, for each block B(j2,l2) ∈ WB, B(j2,l2) starts at j2 and has length

l2.

We can compute
f∑

i=0

ti = n

f∑

i=0

1/di = (n/d)

f∑

i=0

(1 + ε0)−i ≤ 2n/(dε0). (30.12)

Then we calculate the size of window set WA,

|WA| =
f∑

i=0

(# shifts) · (# windows per shift)

=

f∑

i=0

(di/gi) · ti

=

f∑

i=0

1

ε0
· ti

=
1

ε0

f∑

i=0

ti

= 2n/(dε20),
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where the second step follows from definition of window set in each layer i, the third step

follows from di/gi = 1/ε0, and last step follows from Eq. (30.12).

The running time is

f∑

i=0

(di/gi) · ti · di = n

f∑

i=0

(di/gi) = n

f∑

i=0

1/ε0 = Õ(n/ε20).

Remark 30.6.1. In order to make sure the loss in the approximation is negligible, we use

ε0 = ελ and therefore we have

• The total number of windows is equal to k = |WA|+ |WB| = O((1/λ)2n/d).

• The maximum size of the windows is equal to wmax = O(d/λ).

• The minimum size of the windows is equal to wmin = d.

• The ratio of the maximum window size over the minimum window size is bounded by

wgap = wmax/wmin ≤ O(1/λ).

• The number of different layers which is equal to the number of different window sizes

is equal to wlayers = O((1/λ) log(1/λ)).

30.6.2 Optimality of the Windows

We present a structural lemma for the windows in the following. This essentially,

shows that the problem of computing LCS between the two strings reduces to the problem

of computing the LCS’s between the windows.
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Lemma 30.6.2 (Improved Structural Lemma). For any two strings A,B of length n:

• If ‖LCS(A,B)‖ ≥ λ, there exists a window-compatible common substring of A,B of

length at least λn− 8ε0n via (d, ε0)-Multiple layers window (Definition 30.6.2).

Proof. We fix d and ε0.

We pick the first block Ã1 to be length d, and consider the optimal matching. Suppose

the optimal matching block for Ã1 is B̃1, there are three possibilities.

First, B̃1 has length between [ε0d, d/ε0]. That’s good and we keep this pair.

Second, B̃1 has length at least d/ε0, then we throw out this pair. The characters we

throw out from 2n is at least d/ε0, and we decrease the entire LCS by at most d.

Third, the length of B̃1 has length at most dε0, then we also throw out this pair. The

characters we throw out from 2n is at least d, and we decrease the entire LCS by at most

ε0d.

The above procedure can be recursively applied until we found all the matching

blocks. Let’s say there are k matching pairs, (Ã1, B̃1), (Ã2, B̃2), · · · (Ãα, B̃α). Note that

Ã1, Ã2, · · · , Ãα is a partition of A. Similarly, B̃1, B̃2, · · · , B̃α is a partition of B. Let zi

denote the variable such that zi = 0 indicates we throw out the pair, and zi = 1 otherwise.

Since whenever we throw out a pair, the amount of LCS got decreased is always at most

ε0 fraction of the characters we throw out. Since there are 2n characters in total. Then we

LCS we decrease is at most 2ε0n, i.e.,

∑

i∈Z

LCS(Ãi, B̃i) ≥ LCS(A,B)− 2ε0n, (30.13)
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where Z = {i | zi = 1, i ∈ [k]}.

We consider a fixed i ∈ Z. For each pair Ãi, B̃i, let p and q denote the integer that

|Ãi| ∈ ((1 + ε0)p, (1 + ε0)p+1], and |B̃i| ∈ ((1 + ε0)q, (1 + ε0)q+1].

Let Âi and B̂i denote the two pairs from WA and WB that has the largest LCS and satisfies

the following

|Âi| = (1 + ε0)p−1, Âi ⊆ Ãi, |B̂i| = (1 + ε0)q−1, B̂i ⊆ B̃i.

Since |Ãi| − |Âi| ≥ (1 + ε0)p− (1 + ε0)p−1 = ε0(1 + ε0)p−1. Recall the construction of WA, we

places a length (1 + ε0)p−1 block for every ε0(1 + ε0)p−1 shifts. Thus, there must exist such

block Âi from WA and Âi ⊆ Ãi. Similarly, the same argument holds for B̂i.

According to the definition of WA and WB, we know that

|Ãi\Âi| ≤ (1 + ε0)p+1 − (1 + ε0)p−1

≤ (1 + ε0)p−13ε0

≤ 3ε0|Ãi|.

Similarly, |B̃i\B̂i| ≤ 3ε0|B̃i|. The characters we ignore is at most 3ε0 · max(|Ãi|, |B̃i|). Let

τi = 3ε0 ·max(|Ãi|, |B̃i|), then τi ≤ 3ε0(|Ãi|+ |B̃i|).

If we consider
∑

i∈Z |LCS(Âi, B̂i)|,
∑

i∈Z

|LCS(Âi, B̂i)| ≥
∑

i∈Z

(|LCS(Ãi, B̃i)| − τi)

≥
∑

i∈Z

|LCS(Ãi, B̃i)| − 6ε0n

≥ |LCS(A,B)| − 8ε0n,
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where the second step follows from
∑

i∈Z τi ≤ 6ε0n, the third step follows from Eq. (30.13).

30.6.3 Dynamic Programming for Block-based LCS

We showed in Section 30.6.2 that there always exists a window-compatible solution

whose size is very close to that of the optimal solution. In this section, we show how one

can find such a solution via dynamic programming. Therefore, we assume that a matrix M

is provided as input that stores the LCS of every pair of windows.

Lemma 30.6.3 (Dynamic Programming for Longest Common Sequence). Given two strings

A,B of length n. Let ε ∈ (0, 1), d ≥ 1. Let WA,WB be generated by procedure CreateMul-

tipleLevels (A,B, n, d,Θ(ελ)) (Algorithm 30.9). Let table M be generated by procedure

NonMetricEstimation (WA,WB).

Then there is an algorithm (Algorithm 30.10) that runs in (n/d)2 · poly(λ, 1/ε) time

to output a monotone matching between two sets WA and WB which gives a string C such

that

|C| ≥ (1− o(1)) · (1− ε) · |LCS(A,B)|.

Proof. We choose ε0 = Θ(ε/λ).

Using Lemma 30.6.2, we know there exits a batch of window-pairs (Âi1 , B̂j1), (Âi2 , B̂j2), · · ·

from WA,WB such that

∑

l

|LCS(Âil , B̂il)| ≥ |LCS(A,B)| − 8ε0n. (30.14)
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By assumption on M , we know that M gives a good estimation for every pair in

WA,WB :

δil,jldil,jl ≥Mil,jl ≥ (1− o(1))δ3
il,jl
· dil,jl .

where dil,jl = max{|Âil |, |B̂jl |}, δil,jl = |LCS(Âil , B̂jl)|/dil,jl . It implies that

|LCS(Âil , B̂jl)| ≥Mil,jl ≥ (1− o(1))δ2
il,jl
|LCS(Âil , B̂jl)|.

Now, if we consider this cost
∑

lMil,jl ,
∑

l

Mil,jl ≥ (1− o(1)) ·
∑

l

δ2
il,jl
|LCS(Âil , B̂jl)|

≥ (1− o(1)) · λ−2
∑

l

|LCS(Âil , B̂jl)|

≥ (1− o(1)) · (|LCS(A,B)| − 8ε0n)

= (1− o(1)) · (|LCS(A,B)| − εn/λ)

≥ (1− o(1))(1− ε)|LCS(A,B)|

where the second step follows from δil,jl ≥ λ−1, the third step follows from Eq. (30.14), the

fourth step follows from ε0 = Θ(ε/λ), the last step follows from LCS(A,B) ≥ λn.

Next, we prove the correctness of running time. Using Lemma 30.6.1, we know that

|WA| = |WB| = O(n/(dε20)). Then |S1| = |S2| = O(n/(dε20)). The running time of sorting

takes O(|S1| log |S1|).

The dominated part of the running time is three for-loops. For the third one, if we

consider a fixed i1 and i2, there are O(( 1
ε0

log(1/ε0))2) pairs could have right index at i1, i2.

Thus the running time of dynamic programming takes

(n/(dε20)) · (n/(dε20)) ·O
(
((1/ε0) log(1/ε0))2) = (n/d)2 · Õ(1/ε60).
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For the correctness of dynamic programming, it follows from three cases cover all the

possibilities. For each i1, i2, we define C[i1][i2] to be optimal solution that only uses blocks

from WA with ending index no later than i1 and blocks from WB with ending index no later

than i2. Suppose we are at i1, i2. There are three cases, the first case is, the last pair of

the optimal solution for C[i1][i2] is ending at i1, i2. The second case is, the last pair of the

optimal solution for C[i1][i2] is ending at prev(i1), i2. The third case is, the last pair of the

optimal solution for C[i1][i2] is ending at i1, prev(i2).

Remark 30.6.2. If in the above algorithm, M instead of the correct LCS’s has a (1− ε)λ2 or

O(λ3) approximation of the solutions, then the overall approximation factor of the algorithm

would be (1− ε)λ2 or O(λ3), respectively.
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30.7 LCS Step 2: Discovering the Sparse Graph

The arguments of this section follow from the work of [CDG+18]. However, for the

sake of completeness, we restate the overall ideas here. This section is dedicated to presenting

a method NonMetricEstimation(WA,WB) to be used for estimating the longest common

subsequence. The output of NonMetricEstimation(WA,WB) is a matrix M : [|WA|] ×

[|WB|]→ Z+ where M [i][j] estimates the LCS of windows wi ∈ WA and wj ∈ WB. We allow

for errors in a few elements of M but we prove at the end of this section that with high

probability, the error does not affect the solution significantly.

Similar to Section 30.3, we define W = WA ∪WB and denote the windows inside W

by w1, w2, . . . , wk. For a threshold λ the edges of graph Gλ reflect pairs of windows (wi, wj)

such that ‖lcs(wi, wj)‖ ≥ λ. In order to estimate M , we need to discover the edges of Gλ for

λ ∈ {ελ0, ελ0(1 + ε), ελ0(1 + ε)2, . . . , 1} and build M based on that. In other words, for each

wi and wj, we find the largest λ such that Gλ contains edge (i, j) and set M [i][j] = λ.

Let us for simplicity fix the approximation factor to be (1−ε)λ2. As mentioned earlier,

we represent the edges of Gλ by a matrix O : [k] × [k] → {0, 1} where O[i][j] = 1 implies

that edge (i, j) exists in Gλ. The (1 − ε)λ2 sparsification gives us an output Ô(1−ε)λ2 where

except for a few pairs the rest of the edges of Gλ are detected within an approximation factor

(1 − ε)λ2. If all the edges were detected with this algorithm, this would provide us with a

matrixM such that (1−ε)‖lcs(wi, wj)‖3 ≤M [i][j] ≤ ‖lcs(wi, wj)‖ holds if ‖lcs(wi, wj)‖ ≥ ελ.

If such a matrix is given to Algorithm 30.11, it would result in a solution with approximation

factor (1− ε)λ2.

However, not all the edges of Gλ are detected in Step 1. Therefore, if we use the
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discovered edges to construct a matrix M̂ for the LCS of the windows, M̂ may not meet the

guarantee of M for at most Õ(k2−Ω(1)) pairs. In what follows, we present an algorithm that

resolves this issue.

To simplify the notation, define a graph NG in which every window is a vertex and

there is an edge between pair (i, j) if the LCS of windows wi and wj is not estimated correctly

in the sparsification step. Our algorithm is not aware of the edges of NG but since the number

of remaining edges is truly subquadratic, we have |E(NG)| = Õ(k2−Ω(1)).

Let us assume that NG contains at most Õ(k2−η) edges. This implies that the average

degrees of the vertices of NG is upper bounded by Õ(k1−η). Although we are not given the

edges of NG explicitly, we can verify for each pair (i, j) whether there is an edge between

them in NG by computing the LCS of wi and wj and comparing it to the value that has been

obtained in M̂ .

Let wmax = maxi |wi| be the maximum length of the windows. Define two windows

(wi, wj) of WA or two windows (wi, wj) of WB to be nearby if their distance is bounded

by at most wmaxk
η/2. That is wi covers an index a and wj covers an index b such that

|a−b| ≤ wmaxk
η/2. We subsample a set S ofWA with a rate of ε−1k−η/2. That is, each window

ofWA appears in S independently, with probability ε−1k−η/2. Next, for each window wi ∈ S,

we discover all of its incident edges in NG by computing the LCS of wi and every window

wj ∈ WB. Every time we discover one edge of NG we add this edge to NG′. Notice that NG′

contains a subset of edges of NG however, the edges of NG′ are known to the algorithm and

are available. Finally, we update M by computing the LCS of pairs of windows (wi, wj) such

that there exist windows wi′ ∈ WA and Wj′ ∈ WB such that 1) wi and wi′ are nearby, 2) wj

and wj′ are nearby, and 3) vertices i and j are neighbors in NG′. This is shown in Algorithm
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30.12.

It follows from the analysis of [CDG+18] that if we use M as an estimation of the

windows, then Algorithm 30.11 finds the desired solution even though M does not correctly

estimate all the values.

Lemma 30.7.1 ([CDG+18]). Let M̂ be the output of the sparsification algorithm and M be

constructed by Algorithm 30.12 from M̂ . If NG has at most Õ(k2−η) edges, then the runtime

of Algorithm 30.12 is bounded by Õ
(
k2−η/2w2

max/λ
4
)
. Also using M as an estimate for the

LCS of the windows hurts the solution by a factor of at most 1 + ε.

Proof. The proof follow from the arguments of [CDG+18]. Here we just mention the intuition

and the overall ideas.

Runtime: Since every window of WA is sampled with probability k−η/2 the size of S is

bounded by O(k1−η/2) with high probability. In order to discover the incident edges of set

S in NG, we compute the LCS of every element in S and all other windows. Therefore, the

total running time at this point is Õ(k2−η/2w2
max).

NG contains at most k2−η edges and therefore the expected number of edges that

we put in NG′ is Õ(k2−3η/2). For every edge that we discover in NG′ we compute the LCS

of Õ((2kη/2/λ2)2) = Õ(kη/λ4) pairs of windows. Since computing the LCS of every pair of

windows takes time O(w2
max) then the expected overall running time is

Õ
(
k2−η/2w2

max + k2−3η/2 · kη/λ4 · w2
max

)
= Õ

(
k2−η/2w2

max/λ
4
)
.

Notice that k2w2
max ' n2 and thus the above running time is truly subquadratic.
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Sketch of the correctness: We refer the reader to [CDG+18] for a complete proof. The

high-level idea is based on the following: Originally, the window size is defined based on a

parameter d. Now, suppose we define some larger windows by setting d′ = dkη/2. LetW ′
A and

W ′
B be the two sets of windows we obtain by using d′ as the base parameter for constructing

windows. Our window-compatibility lemma holds for any window size and therefore there

is also a desired window-compatible solution when using W ′
A and W ′

B.

The intuition behind the proof of [CDG+18] is the following: Suppose we know a

window w′x of W ′
A is mapped to a window w′y of W ′

B in the optimal window-compatible

solution for W ′
A and W ′

B. There are at least kη/2 smaller windows of WA that lie inside w′x

and similarly w′y contains at least kη/2 windows of WB. Let the two sets be X and Y . There

is indeed a window-compatible solution for the windows of X and Y . Now, the question

that we need to answer, is how well such a window-compatible solution between w′x and w′y

is approximated via M̂ . If fewer than ε|X| pairs of this mapping are among the edges of NG

then we can be sure that the approximation factor does not hurt by much. On the other

hand, if more than ε|X| pairs are among the edges of NG then we can imply that one of such

edges is discovered via Algorithm 30.12 in NG′ and thus M would have the correct value of

LCS between all windows of X and all windows of Y . Thus, when we run Algorithm 30.10 on

M , the output has an error of at most ε even though M does not have the correct estimates

for all pairs.
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Algorithm 30.3 lcs-cmp data structure
1: data structure lcs-cmp
2:
3: members
4: Xa,1, · · · , Xa,s

5: Ya,1, · · · , Ya,s
6: λ̃ ∈ (0, 1)
7: end members
8:
9: procedure Initial(wa, {wi}i∈[s], λ̃) . Lemma 30.3.11
10: for i ∈ [s] do
11: compute opta,i, a LCS between wa and wi
12: let Xa,i be the set of indices of all the element of opta,i with respect to wa
13: end for
14: for i ∈ [s] do
15: let Ya,i be an empty set
16: while true do
17: compute opt′a,i, a LCS between wa removing the elements with index in Ya,i

and wi
18: if the length of opt′a,i is less than λ̃|wa|/2 then
19: break
20: else
21: put the indices of all the elements of opt′a,i with respect to wa into Ya,i
22: end if
23: end while
24: end for
25: return {Xa,i}i∈[s], {Ya,i}i∈[s]

26: end procedure
27:
28: procedure Query(wi, wj) . Lemma 30.3.12
29: if |Xa,i ∩ Ya,j| > λ̃

√
|wi| · |wj|/4 then

30: return accept
31: else
32: return reject
33: end if
34: end procedure
35:
36: end data structure
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Algorithm 30.4 Constructing the candidate domains
1: procedure ConstructCandidateDomains(sai) . Lemma 30.4.1
2: . Given random access to a subarray sai
3: k ← 20 log(1/δ)/(λε2)
4: Sample k elements from sai, and denote the sampled elements by aj1 , aj2 , . . . , ajk
5: for α in [k] do
6: for β in [k] do
7: If ajα ≤ ajβ , then construct a candidate domain [ajα , ajβ ]
8: end for
9: end for
10: return all the constructed candidate domains
11: end procedure

Algorithm 30.5 Constructing the pseudo solutions
1: procedure ConstructPseudoSolutions(cdi1, . . . , cdi√n) .

Lemma 30.4.3,30.4.4,30.4.5
2: . {cdii}i∈[

√
n] is
√
n sets of candidate domain intervals

3: pseudo-solutions← ∅
4: while true do
5: assg ← largest assigment of candidate domain intervals to subarrays which is

monotone
6: if assg contains less than ε

√
nλ non-empty candidate domain intervals then

7: break
8: else
9: Add assg to pseudo-solutions
10: for i← 1 to

√
n do

11: if assg contains a candidate domain interval for subarray sai then
12: remove the corresponding candidate domain interval from cdii
13: end if
14: end for
15: end if
16: end while
17: return pseudo-solutions ps1, ps2, . . . , pst
18: end procedure
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Algorithm 30.6 Evaluate the pseudo solutions
1: procedure EvaluatePseudoSolutions(ps1, . . . , pst) . Lemma 30.4.6
2: . {psi}i∈[t] is a set of pseudo solutions
3: p← 1000t log4 n

ε4λ
√
n

4: Randomly sample each i ∈ [
√
n] with probability p, and put all the samples in a set

W
5: for each psj do
6: q̃(psj)← 0
7: for each interval [`i, ri] in psj do
8: if i ∈ W then
9: q̃(psj)← q̃(psj) + lis[`i,ri](sai)/p
10: end if
11: end for
12: end for
13: return largest q̃(psj) for all j ∈ [t]
14: end procedure
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Algorithm 30.7 Recursive Estimate LIS with Oracle
1: procedure RecursiveEstimationWithOracle(Oracle, A, λ, `, r) .

Lemma 30.4.9
2: . input: sequence A, parameter λ, domain interval [`, r]
3: . assume sa1, sa2, . . . , sanκ are subarrays of A
4: . subroutine Oracle approximate LIS for subarrays with approximation factor f(λ)
5: for i ∈ [ζ] do
6: cdii ← ConstructCandidateDomains(sai)
7: discard all the intervals which are not in [`, r] from cdii
8: end for
9: {ps1, . . . , pst} ← ConstructPseudoSolutions(cdi1, . . . , cdiζ)

10: λ0 ←
(
λ
28

)4

11: p← 20 log4 n
λ0ζ

12: randomly sample each i ∈ [ζ] with probability p, and put all the samples in a set Q
13: for j ∈ [t] do
14: c← 0
15: for i ∈ W do
16: if ∃[`i, ri] ∈ psj and Oracle(sai, λ0, `i, ri) accepts then
17: c← c + 1
18: end if
19: end for
20: if c ≥ 3λ0pζ/4 then
21: return accept
22: end if
23: end for
24: return reject
25: end procedure
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Algorithm 30.8 Recursive Estimate LIS
1: procedure RecursiveLIS(A, λ, `, r) . Lemma 30.4.11
2: . input: sequence A, parameter λ, domain interval [`, r]
3: . assume sa1, sa2, . . . , sanκ are subarrays of A
4: if the length of A is greater than n2κ then
5: return RecursiveLISWithOracle(RecursiveLIS, A, λ, `, r) with ζ = nκ

6: else
7: for i ∈ [nκ] do
8: cdii ← ConstructCandidateDomains(sai)
9: discard all the intervals which are not in [`, r] from cdii
10: end for
11: {ps1, . . . , pst} ← ConstructPseudoSolutions(cdi1, . . . , cdinκ)
12: if EvaluatePseudoSolutions(ps1, . . . , pst) ≥ λ|A| then
13: return accept
14: else
15: return reject
16: end if
17: end if
18: end procedure
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Algorithm 30.9 An algorithm that is able to generate multiple layers
1: procedure GenerateMultipleLevels(A,B, n, d, ε0) . Lemma 30.6.1
2: f ← Θ( 1

ε0
log 1

ε0
) . d · (1 + ε0)f = d/ε0

3: WA ← ∅, WB ← ∅
4: for i = 0→ f do
5: W i

A ← ∅, W i
B ← ∅

6: di ← d(1 + ε0)i, ti ← n/di, gi ← ε0di . di is the length, gi is the shift
7: for x = 0→ di/gi − 1 do
8: for y = 0→ ti − 1 do
9: left← x · gi + y · di
10: len← di
11: W i

A ← W i
A ∪ A(left,len), W i

B ← W i
B ∪B(left,len)

12: end for
13: end for
14: WA ← WA ∪W i

A, WB ← WB ∪W i
B

15: end for
16: return WA,WB, f
17: end procedure
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Algorithm 30.10 Dynamic programming algorithm for block-based LCS problem
1: procedure DP-LCS(WA,WB,M) . Lemma 30.6.3
2: Note that M is table that for each Ak1 and Bk2 , M(Ak1 , Bk2) gives a cost
3: Note that WA and WB are sets produce by Algorithm 30.9
4: Let S1 denote the sorted list of the set(without duplicate) of right indices of each Ak1

5: Let S2 denote the sorted list of the set(without duplicate) of right indices of each Bk2

6: for i1 ∈ S1 do
7: for i2 ∈ S2 do
8: C[i1][i2]← 0
9: x1 ← 0
10: for Ak1 , Bk2 have right index i1, i2 do . Case 1
11: left1 ← left index of Ak1

12: left2 ← left index of Bk2

13: tmp← C[left1][left2] +M(Ak1 , Bk2)
14: if tmp > x1 then
15: x1 ← tmp
16: end if
17: end for
18: Let prev(i1) denote the first index ∈ S1 that is early than i1
19: Let prev(i2) denote the first index ∈ S2 that is early than i2
20: x2 ← C[prev(i1)][i2] . Case 2
21: x3 ← C[i1][prev(i2)] . Case 3
22: C[i1][i2]← max(x1, x2, x3)
23: end for
24: end for
25: end procedure
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Algorithm 30.11
1: procedure ApproxLCS(A,B, n, λ)
2: d← n0.2, β ← ε← Θ(1), ε0 ← Θ(ε/λ)
3: WA,WB, L← CreateMultipleLevels(A,B, n, d, ε0) . Lemma 30.6.1,

Algorithm 30.9
4: M ← NonMetricEstimation(WA,WB)
5: C ← DPLCS(WA,WB,M) . Lemma 30.6.3, Algorithm 30.10
6: return C
7: end procedure
8: procedure NonMetricEstimation(WA,WB) . Section 30.3 and Section 30.7
9: for i = 1→ L do
10: for j = 1→ L do
11: Make strings in W i

A and W j
B have the same length by appending ⊥ to the

short one
12: W i

A has ti blocks and each of it has length di
13: W j

B has tj blocks and each of it has length dj
14: d← max(di, dj), t← max(ti, tj)
15: Create S(i,j) by Step 1 (Section 30.3) and Step 2 (Section 30.7)
16: end for
17: end for
18: Form cost table M by putting all S(i,j) together
19: return M
20: end procedure
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Algorithm 30.12 Constructing M based on M̂
1: procedure NonMetricEstimation(WA,WB) . Lemma 30.7.1
2: S ← ∅
3: for wi ∈ WA do
4: Add wi to S with probability ε−1k−η/2

5: end for
6: for wi ∈ S do
7: for wj ∈ WB do
8: Compute lcs(wi, wj) and put an edge in NG′ if M̂ [i][j] does not correctly esti-

mate lcs(wi, wj).
9: end for
10: end for
11: M ← M̂
12: for wi ∈ Wa do
13: for wj ∈ WB do
14: if there exist nearby windows wi′ , wj′ such that (i′, j′) ∈ E(NG′) then
15: M [i][j]← lcs(wi, wj)
16: end if
17: end for
18: end for
19: return M
20: end procedure
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Chapter 31

Fourier Transform

31.1 One dimensional Fourier transform

The result in this section is based on the unpublished manuscript by Jerry Li, Ruoqi

Shen and Zhao Song [LSS19].

Lemma 31.1.1 (Claim 5.2 in [CKPS16]). For any k, there exists m = O(k2 log k) such that

for any k-Fourier-sparse signal x(t), any t0 ≥ 0 and τ > 0, there always exists C1, ..., Cm ∈ C

such that |Cj| ≤ 11 for all j ∈ [m] and

x(t0) =
∑

j∈[m]

Cj · x(t0 + j · τ).

Lemma 31.1.2 (Bounding absolute by discrete sum on grids). For any k-Fourier-sparse

signal x(t) =
∑k

j=1 vje
2πifjt, we have

max
t∈[0,T ]

|x(t)|2 ≤ O(k6 log3 k) · 1

T

T∑

t=0

|x(t)|2.

Proof. Without loss of generality, we fix T = 1 and assume |x(0)|2 = maxt∈[0,T ] |x(t)|2. If

t∗ = arg maxt∈[0,T ] |x(t)|2 is not 0 or T = 1, we can rescale the two intervals [0, t∗] and [t∗, T ]

to [0, 1]. By Lemma 31.1.1, we choose t0 = 0 such that ∀τ > 0, there exists C1, ..., Cm ∈ C

and

x(0) =
∑

j∈[m]

Cj · x(j · τ).
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By the Cauchy-Schwarz inequality, it implies that for any τ ,

|x(0)|2 ≤ m
∑

j∈[m]

|Cj|2|x(j · τ)|2

. m
∑

j∈[m]

|x(j · τ)|2.

Then,

|x(0)|2 =
1

bT/mc

bT/mc∑

τ=0

|x(0)|2

. m

T

bT/mc∑

τ=0


m

∑

j∈[m]

|x(j · τ)|2



=
m2

T

∑

j∈[m]

bT/mc∑

τ=0

|x(j · τ)|2

≤ m3

T

T∑

t=0

|x(t)|2.

From m = O(k2 log k), we obtain |x(0)|2 = O(k6 log3 k‖x‖[T ]).

31.2 High dimensional Fourier transform

The result in this section is based on the unpublished result by Zhao Song [Son17].

Lemma 31.2.1 (d dimensional version of Lemma 5.1 in [CKPS16]). For any d-dimensional

k-Fourier-sparse signal x(t) : Rd → C and any duration T , we have

max
t∈[0,T ]d

|x(t)|2 ≤ kO(d)‖x‖2
T ,

where ‖x‖2
T = 1

T d

∫
[0,T ]d

|x(t)|2dt.
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Proof. Without loss of generality, we fix T = 1. Then ‖x‖2
T =

∫
[0,1]d
|x(t)|dt. Because ‖x‖2

T

is the average over the interval [0, T ]d, if t∗ = arg maxt∈[0,T ]d |x(t)|2 is not 0d or T = 1, we can

rescale the two intervals [0d, t∗] and [t∗, T d] to [0, 1] and prove the desired property separately.

Hence we assume that |x(0)|2 = maxt∈[0,T ] |x(t)|2 in the proof.

The proof of the following Claim can be found in Section 31.3 (is similarly to the

proof of Claim 5.2 in [CKPS16])

Claim 31.2.2 (d-variables version of Claim 5.2 in [CKPS16]). For any k and d, there exists

m = O(k2 log k) such that for any d-dimensional k-Fourier-sparse signal x(t), any t0 ∈ Rd
≥0

and τ ∈ Rd
>0, there always exist C1, C2, · · · , Cm ∈ C such that the following properties hold,

Property I |Cj| ≤ 11 for all j ∈ [m],

Property II x(t0) =
∑

j∈[m]

Cj · x(t0 + j · τ).

In the next a few paragraph, we show how to use the above Claim to prove Lemma 31.2.1.

We use 0d to denote a length-d vector with 0 everywhere. We choose t0 = 0d such

that ∀τ ∈ Rd
>0 there always exist C1, · · · , Cm ∈ C, and

x(0d) =
∑

j∈[m]

Cj · x(j · τ).

By the Cauchy-Schwarz inequality, it implies that for any τ ,

|x(0d)|2 ≤ m
∑

j∈[m]

|Cj|2|x(j · τ)|2
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At last, we obtain

|x(0d)|2 = md

∫

[0,1/m]d
|x(0d)|2dτ

. md ·
∫

[0,1/m]d

(
m

m∑

j=1

|x(j · τ)|2
)

dτ

= md+1 ·
m∑

j=1

∫

[0,1/m]d
|x(j · τ)|2dτ

= md+1 ·
m∑

j=1

1

jd

∫

[0,j/m]d
|x(τ)|2dτ

= md+1 ·
m∑

j=1

1

jd

∫

[0,1]d
|x(τ)|2dτ

. md+1 logm · ‖x‖2
T

≤ kO(m)‖x‖2
T , (31.1)

where the third step follows by movingm outside of the integral and swapping the integration

and the summation, the fourth step follows by replacing jτ by τ , the fifth step follows by

j/m ≤ 1, the sixth step follows by
∑m

j=1 1/j = O(logm) and the definition of ‖x‖2
T , and the

last step follows by m = poly(k).

Thus, we have the desired bound.
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31.3 Proof of Claim 31.2.2

For x(t) =
∑k

i=1 vie
2πif>i t, where fi ∈ Rd and t ∈ Rd. We fix t0 ∈ Rd and τ ∈ Rd then

rewrite x(t0 + j · τ) as a polynomial of bi = vi · e2πif>i t0 and zi = e2πif>i τ for each i ∈ [k].

x(t0 + j · τ) =
k∑

i=1

vie
2πif>i (t0+jτ)

=
k∑

i=1

vie
2πif>i t0e2πif>i jτ

=
k∑

i=1

bi · zji .

Given k and z1, · · · , zk, let P (z) =
∑m

j=0 cjz
j be the degree m polynomial in Lemma 5.4

([CKPS16]).

m∑

j=0

cjx(t0 + jτ) =
m∑

j=0

cj

k∑

i=1

bi · zji

=
k∑

i=1

bi

m∑

j=0

cj · zji

=
k∑

i=1

biP (zi)

= 0,

where the last step follows by Property I of P(z) in Lemma 5.4 ([CKPS16]). From the

Property II and III of P (z) (Lemma 5.4 [CKPS16]), we obtain x(t0) = −∑m
j=1 cjx(t0 + jτ).
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Chapter 32

Map-Reduce

Many modern parallel systems, such as MapReduce, Hadoop and Spark, can be mod-

eled well by the MPC model. The MPC model captures well coarse-grained computation on

large data — data is distributed to processors, each of which has a sublinear (in the input

data) amount of memory and we alternate between rounds of computation and rounds of

communication, where each machine can communicate an amount of data as large as the

size of its memory. This model is stronger than the classical PRAM model, and it is an

intriguing question to design algorithms whose running time is smaller than in the PRAM

model.

One fundamental graph problem is connectivity. On an undirected graph with n nodes

and m edges, O(log n) round connectivity algorithms have been known for over 35 years.

However, no algorithms with better complexity bounds were known. In this work, we give

fully scalable, faster algorithms for the connectivity problem, by parameterizing

the time complexity as a function of the diameter of the graph. Our main result is a

O(logD log logm/n n) time connectivity algorithm for diameter-D graphs, using Θ(m) total

memory. If our algorithm can use more memory, it can terminate in fewer rounds, and there

is no lower bound on the memory per processor.

We extend our results to related graph problems such as spanning forest, finding a
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DFS sequence, exact/approximate minimum spanning forest, and bottleneck spanning forest.

We also show that achieving similar bounds for reachability in directed graphs would imply

faster boolean matrix multiplication algorithms.

We introduce several new algorithmic ideas. We describe a general technique called

double exponential speed problem size reduction which roughly means that if we can use total

memory N to reduce a problem from size n to n/k, for k = (N/n)Θ(1) in one phase, then we

can solve the problem in O(log logN/n n) phases. In order to achieve this fast reduction for

graph connectivity, we use a multistep algorithm. One key step is a carefully constructed

truncated broadcasting scheme where each node broadcasts neighbor sets to its neighbors in

a way that limits the size of the resulting neighbor sets. Another key step is random leader

contraction, where we choose a smaller set of leaders than many previous works do.

This part is based upon the following previous publication

• Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, Peilin Zhong

Parallel graph connectivity in log diameter rounds.

FOCS 2018 [ASS+18]
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32.1 Introduction

Recently, several parallel systems, including MapReduce [DG04, DG08], Hadoop

[Whi12], Dryad [IBY+07], Spark [ZCF+10], and others, have become successful in practice.

This success has sparked a renewed interest in algorithmic ideas for these parallel systems.

One important theoretical direction has been to develop good models of these modern

systems and to relate them to classic models such as PRAM. The work of [FMS+10, KSV10,

GSZ11, BKS13, ANOY14] have led to the model of Massive Parallel Computing (MPC)

that balances accurate modeling with theoretical elegance. MPC is a variant of the Bulk

Synchronous Parallel (BSP) model [Val90]. In particular, MPC allows N δ space per machine

(processor), where δ ∈ (0, 1) and N is the input size, with alternating rounds of unlimited

local computation, and communication of up to N δ data per processor. An MPC algorithm

can equivalently be seen as a small circuit, with arbitrary, N δ-fan-in gates; the depth of the

circuit is the parallel time. Any PRAM algorithm can be simulated on MPC in the same

parallel time [KSV10, GSZ11]. However, MPC is in fact more powerful than the PRAM: even

computing the XOR of N bits requires near-logarithmic parallel-time on the most powerful

CRCW PRAMs [BH89], whereas it takes constant, O(1/δ), parallel time on the MPC model.

The main algorithmic question of this area is then: for which problems can we design

MPC algorithms that are faster than the best PRAM algorithms? Indeed, this question

has been the focus of several recent papers, see, e.g., [KSV10, LMSV11, EIM11, ANOY14,

AG18, AK17, IMS17b, CLM+18]. Graph problems have been particularly well studied and

one fundamental problem is connectivity in a graph. While this problem has a standard

logarithmic time PRAM algorithm [SV82], we do not know whether we can solve it faster in

the MPC model.
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While we would like fully scalable algorithms—which work for any value of δ > 0—

there have been graph algorithms that use space close to the number of vertices n of the graph.

In particular, the result of [LMSV11] showed a faster algorithm for the setting when the space

per machine is polynomially larger than the number of vertices, i.e., s ≥ n1+Ω(1), and hence

the number of edges is necessarily m ≥ n1+Ω(1). In fact, similar space restrictions are per-

vasive for all known sub-logarithmic time graph algorithms, which require s = Ω( n

logO(1) n
)

[LMSV11, AG18, AK17, CLM+18] (the only exception is [ANOY14] who consider geomet-

ric graphs). We highlight the work of [CLM+18], who manage to obtain slightly sublinear

space of n/ logΩ(1) n in logO(1) log n parallel time, for the approximate matching problem and

[ABB+17] who obtain slightly sublinear space of n/ logΩ(1) n in O(log log n) parallel time. We

note that the space of ∼ n also coincides with the space barrier of the semi-streaming model:

essentially no graph problems are solvable in less than n space in the streaming model, unless

we have many more passes; see e.g. the survey [McG09].

It remains a major open question whether there exist fully scalable connectivity MPC

algorithms with sub-logarithmic time (e.g., for sparse graphs). There are strong indications

that such algorithms do not exist: [BKS13] show logarithmic lower bounds for restricted

algorithms. Alas, showing an unconditional lower bound may be hard to prove, as that

would imply circuit lower bounds [RVW16].

In this work, we show faster, fully scalable algorithms for the connectivity

problem, by parameterizing the time complexity as a function of the diameter of the graph.

The diameter of the graph is the largest diameter of its connected components. Our main

result is an O(logD log logm/n n) time connectivity algorithm for diameter-D graphs with

m edges. Parameterizing as a function of D is standard, say, in the distributed computing
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literature [PRS16, HHW18]. In fact, some previous MPC algorithms for connectivity in

the applied communities have been conjectured to obtain O(logD) time [RMCS13]; alas, we

show in Section 32.11 the algorithm of [RMCS13] has a lower bound of Ω(log n) time.

Our algorithms exhibit a tradeoff between the total amount of memory available and

the number of rounds of computation needed. For example, if the total space is Ω(n1+γ′) for

some constant γ′ > 0, then our algorithms run in O(logD) rounds only.
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32.1.1 The MPC model

Before stating our full results, we briefly recall the MPC model [BKS13]. A detailed

discussion appears in Section 32.7, along with some core primitives implementable in the

MPC model.

Definition 32.1.1 ((γ, δ)−MPC model). Fix parameters γ, δ > 0, and suppose N ≥ 1 is the

input size. There are p ≥ 1 machines (processors) each with local memory size s = Θ(N δ),

such that p · s = O(N1+γ). The space size is measured by words, each of Θ(log(s · p)) bits.

The input is distributed on the local memory of Θ(N/s) input machines. The computation

proceeds in rounds. In each round, each machine performs computation on the data in its

local memory, and sends messages to other machines at the end of the round. The total

size of messages sent or received by a machine in a round is bounded by s. In the next

round, each machine only holds the received messages in its local memory. At the end of

the computation, the output is distributed on the output machines. Input/output machines

and other machines are identical except that input/output machine can hold a part of the

input/output. The parallel time of an algorithm is the number of rounds needed to finish

the computation.

In this model, the space per machine is sublinear in N , and the total space is only

an O(Nγ) factor more than the input size N . In this paper, we consider the case when δ is

an arbitrary constant in (0, 1). Our results are for both the most restrictive case of γ = 0

(total space is linear in the input size), as well as γ > 0 (for which our algorithms are a bit

faster). The model from Definition 32.1.1 matches the model MPC(ε) from [BKS13] with

ε = γ/(1 + γ − δ) and the number of machines p = O(N1+γ−δ).
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32.1.2 Our Results

While our main result is a ∼ logD time connectivity MPC algorithm, our techniques

extend to related graph problems, such as spanning forest, finding a DFS sequence, and

exact/approximate minimum spanning forest. We also prove a lower bound showing that,

achieving similar bounds for reachability in directed graphs would imply faster boolean matrix

multiplication algorithms.

We now state our results formally. For all results below, consider an input graph

G = (V,E), with n = |V |, N = |V |+ |E|, and D being the upper bound on the diameter of

any connected component of G.

Connectivity: In the connectivity problem, the goal is to output the connected components

of an input graph G, i.e. at the end of the computation, ∀v ∈ V, there is a unique tuple

(x, y) with x = v stored on an output machine, where y is called the color of v. Any two

vertices u, v have the same color if and only if they are in the same connected component.

Theorem 32.1.1 (Connectivity in MPC, restatement of Theorem 32.8.4). For any γ ∈

[0, 2] and any constant δ ∈ (0, 1), there is a randomized (γ, δ) − MPC algorithm (see Al-

gorithm 32.3) which outputs the connected components of the graph G in O(min(logD ·

log logn
log(N1+γ/n)

, log n)) parallel time. The success probability is at least 0.98. In addition, if

the algorithm fails, then it returns FAIL.

Notice that in the most restrictive case of γ = 0 and m = n, we obtain O(min(logD ·

log log n, log n)) time. When the total space is slightly larger, or the graph is slightly denser—

i.e. γ > c or lognm > 1 + c, where c > 0 is an arbitrarily small constant—then we obtain

O(logD) time.
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Remark 32.1.1. We note the concurrent and independent work of [ASW18], who also give a

connectivity algorithm in the MPC model but with different guarantees. In particular, their

runtime is parameterized as a function of λ, which is a lower bound on the spectral gap1

of the connected components of G. For a graph G with n vertices and m = Õ(n) edges,

their algorithm runs in O(log log n + log(1/λ)) parallel time and uses Õ(n/λ2) total space.

In contrast, our algorithm has a runtime of O(logD · log logN/n n), where D is the largest

diameter of a connected component of G, and N = Ω(m) is the total space available. To

compare the two runtimes, we note that: 1) D ≤ O( logn
λ

) for any undirected graph G; and

2) there exist sparse graphs G2 with n vertices and O(n) edges such that 1
λ
≥ D · nΩ(1)

and D ≤ O(log n). Thus, our results subsume [ASW18] in the case when total space is

N = n1+Ω(1), but are incomparable otherwise.

Spanning forest problem: In the spanning forest problem, the goal is to output a subset

of edges of an input graph G such that the output edges together with the vertices of G form

a spanning forest of the graph G. In the rooted spanning forest problem, in addition to the

edges of the spanning forest, we are also required to orient the edge from child to parent, so

that the parent-child pairs form a rooted spanning forest of the input graph G.

Theorem 32.1.2 (Spanning Forest, restatement of Theorem 32.8.14). For any γ ∈ [0, 2] and

any constant δ ∈ (0, 1), there is a randomized (γ, δ)−MPC algorithm (see Algorithm 32.11

and Algorithm 32.12) which outputs the rooted spanning forest of the graph G in O(min(logD·

log logn
log(N1+γ/n)

, log n)) parallel time. The success probability is at least 0.98. In addition, if

1The spectral gap of a graph G is the second smallest eigenvalue of the normalized Laplacian of G.
2We can construct G as the following: a bridge connects two 3-regular expanders where each expander

has n/2 vertices.
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the algorithm fails, then it returns FAIL.

Our spanning forest algorithm can also output an approximation to the diameter, as

follows.

Theorem 32.1.3 (Diameter Estimator, restatement of Theorem 32.8.15). For any γ ∈ [0, 2]

and any constant δ ∈ (0, 1), there is a randomized (γ, δ) −MPC algorithm which outputs a

diameter estimator D′ of the input graph G in O(min(logD · log logn
log(N1+γ/n)

, log n)) parallel

time such that D ≤ D′ ≤ DO(log(1/γ′)), where γ′ = log(N1+γ/n)
logn

. The success probability is at

least 0.98. In addition, if the algorithm fails, then it returns FAIL.

Depth-First-Search sequence: If the input graph G is a tree, then we are able to output

a Depth-First-Search sequence of that tree in O(logD) +T parallel time, where T is parallel

time to compute a rooted tree (see Theorem 32.1.2 for our upper bound of T ) for G. (See

Section 32.7.2 for a discussion how to represent a sequence in the MPC model.)

Theorem 32.1.4 (DFS Sequence of a Tree, restatement of Theorem 32.8.21). Suppose the

graph G is a tree. For any γ ∈ [β, 2] and any constant δ ∈ (0, 1), there is a randomized

(γ, δ)−MPC algorithm (Algorithm 32.17) that outputs a Depth-First-Search sequence for the

input graph G in O(min(logD · log(1/γ), log n)) parallel time, where β = Θ(log log n/ log n).

The success probability is at least 0.98. In addition, if the algorithm fails, then it returns

FAIL.

Applications of DFS sequence of a tree include lowest common ancestor, tree distance

oracle, the size of every subtree, and others. See Section 32.6.4 for a more detailed discussion

of the DFS sequence of a tree.
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Minimum Spanning Forest: In the minimum spanning forest problem, the goal is to

compute the minimum spanning forest of a weighted graph G.

Theorem 32.1.5 (Minimum Spanning Forest, restatement of Theorem 32.9.3). Consider

a weighted graph G with weights w : E → Z such that ∀e ∈ E, |w(e)| ≤ poly(n). For any

γ ∈ [0, 2] and any constant δ ∈ (0, 1), there is a randomized (γ, δ) −MPC algorithm which

outputs a minimum spanning forest of G in O(min(logDMSF · log( logn
1+γ logn

), log n) · logn
1+γ logn

)

parallel time, where DMSF is the diameter (with respect to the number of edges/hops) of a

minimum spanning forest of G. The success probability is at least 0.98. In addition, if the

algorithm fails, then it returns FAIL.

We note that we require the bounded weights condition merely to ensure that each

weight is described by one word.

Theorem 32.1.6 (Approximate Minimum Spanning Forest, restatement of Theorem 32.9.4).

Consider a weighted graph G with weights w : E → Z≥0 such that ∀e ∈ E, |w(e)| ≤

poly(n). For any ε ∈ (0, 1), γ ∈ [β, 2] and any constant δ ∈ (0, 1), there is a random-

ized (γ, δ) − MPC algorithm which can output a (1 + ε) approximate minimum spanning

forest for G in O(min(logDMSF · log( logn
log(N1+γ/(ε−1n logn))

), log n)) parallel time, where β =

Θ(log(ε−1 log n)/ log n), and DMSF is the diameter (with respect to the number of edges/hops)

of a minimum spanning forest of G. The success probability is at least 0.98. In addition, if

the algorithm fails, then it returns FAIL.

Theorem 32.1.7 (Bottleneck Spanning Forest, restatement of Theorem 32.9.5). Consider

a weighted graph G with weights w : E → Z such that ∀e ∈ E, |w(e)| ≤ poly(n). For any γ ∈
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[0, 2] and any constant δ ∈ (0, 1), there is a randomized (γ, δ)−MPC algorithm which can out-

put a bottleneck spanning forest for G in O(min(logDMSF · log( logn
1+γ logn

), log n) · log( logn
1+γ logn

))

parallel time, where DMSF is the diameter (with respect to the number of edges/hops) of a

minimum spanning forest of G. The success probability is at least 0.98. In addition, if the

algorithm fails, then it returns FAIL.

Conditional hardness for directed reachability. We also consider the reachability

question in the directed graphs, for which we show similar to the above results are unlikely.

In particular, we show that if there is a fully scalable multi-query directed reachability

(0, δ) − MPC algorithm with no(1) parallel time and polynomial local running time, then

we can compute the Boolean Matrix Multiplication in n2+ε+o(1) time for arbitrarily small

constant ε > 0. We note that the equivalent problem for undirected graphs can be solved in

O(logD log log n) parallel time via Theorem 32.1.1.

Theorem 32.1.8 (Directed Reachability vs. Boolean Matrix Multiplication, restatement of

Theorem 32.10.1). Consider a directed graph G = (V,E). If there is a polynomial local run-

ning time, fully scalable (γ, δ)−MPC algorithm that can answer |V |+|E| pairs of reachability

queries simultaneously for G in O(|V |α) parallel time, then there is a sequential algorithm

which can compute the multiplication of two n× n boolean matrices in O(n2 · n2γ+α+ε) time,

where ε > 0 is a constant which can be arbitrarily small.

Finally, in Section 32.11 we show hard instances for the algorithm [RMCS13].
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32.1.3 Our Techniques

In this section, we give an overview of the various techniques that we use in our

algorithms. More details, as well as some of the low level details of the implementation in

the MPC model, are defered to later sections.

Before getting into our techniques, we mention two standard tools to help us build

our MPC subroutines. The first one is sorting: while in the PRAM model it takes ∼ logN

parallel time, sorting takes only constant parallel time in the MPC model [Goo99, GSZ11].

The second tool is indexing/predecessor search [GSZ11], which also has a constant parallel

time in MPC. Furthermore, these two tools are fully scalable, and hence all the subroutines

built on these two tools are also fully scalable. See Section 32.7 for how to use these two

tools to implement the MPC operations needed for our algorithms.

Graph Connectivity: A natural approach to the graph connectivity problem is via the

classic primitive of contracting to leaders: select a number of leader verteces, and contract

every vertex (or most vertices) to a leader from its connected component (this is usually

implemented by labeling the vertex by the corresponding leader). Indeed, many previous

works (see e.g. [KSV10, RMCS13, KLM+14b]) are based on this approach. There are two

general questions to address in this approach: 1) how to choose leader vertices, and 2)

how to label each vertex by its leader. For example, the algorithm in [KSV10] randomly

chooses half of the vertices as leaders, and then contracts each non-leader vertex to one of its

neighbor leader vertex. Thus, in each round of their algorithm, the number of vertices drops

by a constant fraction. At the same time, half of the vertices are leaders, and hence their

algorithm still needs at least Ω(log n) rounds to contract all the vertices to one leader. Note
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that a constant fraction of leaders is needed to ensure that there is a constant fraction of

non-leader vertices who are adjacent to at least one leader vertex and hence are contracted.

This leader selection method appears optimal for some graphs, e.g. path graphs.

To improve the runtime to� log n, one would have to choose a much smaller fraction

of the vertices to be leaders. Indeed, for a graph where every vertex has a large degree, say

at least d � log n, we can choose fewer leaders: namely, we can choose each vertex to be a

leader with probability p = Θ((log n)/d). Then the number of leaders will be about Õ(n/d),

while each non-leader vertex has at least one leader neighbor with high probability. After

contracting non-leader vertices to leader vertices, the number of remaining vertices is only a

1/d fraction of original number of vertices.

By the above discussion, the goal would now be to modify our input graph G so that

every vertex has a uniformly large degree, without affecting the connectivity of the graph.

An obvious such modification is to add edges between pairs of vertices that are already in

the same connected component. In particular, if a vertex v learns of a large number of

vertices which are in the same connected component as v, then we can add edges between

v and those vertices to increase the degree of v. A naïve way to implement the latter is via

broadcasting: each vertex v first initializes a set Sv which contains all the neighbors of v,

and then, in each round, every vertex v updates the set Sv by adding the union of the sets Su

over all neighbors u of v (old and new). This approach takes log-diameter number of rounds,

and each vertex learns all vertices which are in the same connected component at the end of

the procedure. However, in a single round, the total communication needed may be as huge

as Ω(n3) since each of n vertices may have Ω(n) neighbors, each with a set of size Ω(n).

Since our goal of each vertex v is to learn only d vertices in the same component (not
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necessarily the entire component), we can therefore implement a “truncated” version of the

above broadcasting procedure:

1. If Sv already had size d, then we do not need any further operation for Sv.

2. If u is in Sv, and Su already has d vertices, then we can just put all the elements from

Su into Sv and thus Sv becomes of size d.

3. If |Sv| < d, and for every u ∈ Sv, the set Su is also smaller than d, then we can

implement one step of the broadcasting — add the union of Su’s, for all neighbors

u ∈ Sv, to Sv.

In the above procedure, if the number of vertices in Sv is smaller than d after the ith round,

then we expect Sv to contain all the vertices whose distance to v is at most 2i. Thus, the above

procedure also takes at most log-diameter rounds. Furthermore, the total communication

needed is at most O(n · d2).

Our full graph connectivity algorithm implements the above “truncated broadcasting”

procedure iteratively, for values d that follow a certain “schedule”, depending on the available

space. At the beginning of the algorithm, we have an n vertex graph G with diameter D, and

a total of Ω(m) space. The algorithm proceeds in phases, where each phase takes O(logD)

rounds of communication. In the first phase, the starting number of vertices is n1 = n. We

implement a truncated broadcasting procedure where the target degree d is d1 = (m/n1)1/2,

using O(logD) rounds and O(m) total space. Then we can randomly select Õ(n1/d1) leaders,

and contract all the non-leader vertices to leader vertices. At the end of the first phase, the

total number of remaining vertices is at most n2 = Õ(n1/d1) = Õ(n1.5
1 /m0.5). In general,
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suppose, at the beginning of the ith phase, the number of remaining vertices is ni. Then we

use the truncated broadcasting procedure for value d set to di = (m/ni)
1/2, thus making each

vertex have degree at least di = (m/ni)
1/2 in O(logD) number of communication rounds and

O(m) total space. Then we choose Õ(ni/di) leaders, and, after contracting non-leaders, the

number ni+1 of remaining vertices is at most Õ(n1.5
i /m0.5). Let us look at the progress of the

value di. We have that di+1 = Ω̃((m/ni+1)1/2) = Ω̃((m1.5/n1.5
i )1/2) = Ω̃(d1.5

i ). Thus, we are

making double exponential progress on di, which implies that the total number of phases

needed is at most O(log logm/n n), and the total parallel time is thus O(logD · log logm/n n).

This technique of double-exponential progress is more general and extends to other

problems beyond connectivity. In particular, for a problem, suppose its size is characterized

by a parameter n (not necessarily the input size—e.g. in connectivity problem, n is the

number of vertices). When n is a constant, the problem can be solved in O(1) parallel time.

If there is a procedure that uses total space Θ(m) to reduce the problem size to at most n/k

for k = (m/n)c, c = Ω(1), then we can repeat the procedure O(log logm/n n) times to solve

the overall problem. In particular, after repeating the procedure i times, the problem size

is ni ≤ ni−1/(m/ni−1)c ≤ n · (n/m)(1+c)i−1. We call this technique double-exponential speed

problem size reduction.

Remark 32.1.2. For any problem characterized by a size parameter n, if we can use parallel

time T and total space Θ(m) to reduce the problem size such that the reduced problem

size is n/k for k = (m/n)Ω(1), then we can solve the problem in O(m) total space and

O(T · log logm/n n) parallel time.
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Spanning Forest and Diameter Estimator: Extending a connectivity algorithm to a

spanning forest algorithm is usually straightforward. For example, in [KSV10], they only

contract a non-leader vertex to an adjacent leader vertex, thus their algorithm can also give

a spanning forest, using the contracted edges. Here however, extending our connectivity

algorithm to a spanning forest algorithm requires several new ideas. In our connectivity

algorithm, because of the added edges, we only ensure that when a vertex u is contracted

to a vertex v, u and v must be in the same connected component; but u and v may not be

adjacent in the original graph. Thus, we need to record more information to help us build a

spanning forest.

We can represent a forest as a collection of parent pointers part(v), one for each

vertex v ∈ V . If v is a root in the forest, then we let part(v) = v. We use deppar(v) to denote

the depth of v in the forest, i.e. deppar(v) is the distance from v to its root. Let distG(u, v)

denote the distance between two vertices u and v in a graph G.

Our connectivity algorithm uses the “neighbor increment” procedure described above.

We observed that if the set Sv has fewer than d vertices after the ith round, then Sv should

contain all the vertices with distance at most 2i to v. This motivates us to maintain a shortest

path tree for Sv, with root v. In the ith round, if we need to update Sv to be
⋃
u∈Sv Su, then

we can update the shortest path tree of Sv in the following way:

1. For each x ∈ Su for some u ∈ Sv, we can create a tuple (x, u).

2. Then, for each x ∈
(⋃

u∈Sv Su
)
\Sv, we can sort all the tuples (x, u1), (x, u2), · · · , (x, uk)

such that u1 minimizes minu∈Sv distG(v, u) + distG(u, x). Since u is in Sv, x is in Su, it

is easy to get the value of distG(v, u), distG(u, x) by the information of shortest path
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tree for Sv and Su. Then we set the new parent of x in the shortest path tree for Sv to

be the parent of x in the shortest path tree for Su1 .

Since Sv before the update contains all the vertices which have distance to v at most 2i−1,

the union of the shortest path from x to u1 and the shortest path from u1 to v must be

the shortest path from x to v. Then by induction, we can show that the parent of x in

the shortest path tree for Su1 is also the parent of x in the shortest path tree for updated

Sv. Thus, this modified “neighbor increment” procedure can find n local shortest path trees

where there is a tree with root v for each vertex v. Furthermore, the procedure still takes

O(logD) rounds. And we can still use O(nd2) total space to make each shortest path tree

have size at least d. Next, we show how to use these n local shortest path trees to construct

a forest with the roots in the forest being the leaders.

As discussed in the connectivity algorithm, if every local shortest path tree has size

at least d, we can choose each vertex as a leader with probability p = Θ((log n)/d) and then

every tree will contain at least one leader with high probability. Let L be the set of sampled

leaders, and let distG(v, L) be defined as minu∈L distG(v, u). Let v be a non-leader vertex, i.e.

v ∈ V \L. According to the shortest path tree for Sv 3, since L∩Sv 6= ∅, we can find a child u

of the root v such that distG(v, L) > distG(u, L); in this case we set part(v) = u. For vertex

v ∈ L, we can set part(v) = v. We can see now that par denotes a rooted forest where the

roots are sampled leaders. Furthermore, since ∀v 6∈ L, (v, part(v)) is from the shortest path

tree for Sv, we know that v and part(v) are adjacent in the original graph G. After doing

3The construction of Sv for spanning forest algorithm is slightly different from that described in the
connectivity algorithm. Sv in spanning forest algorithm has a stronger property: ∀u ∈ V \ Sv, distG(u, v)
must be at least distG(u′, v) for any u′ ∈ Sv.
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the above for all nodes v, the forest denoted by the resulting vector par must be a subgraph

of the spanning forest of G. We then apply the standard doubling algorithm to contract all

the vertices to their leaders (roots), in O(logD) rounds. Therefore, the problem is reduced

to finding a spanning forest in the contracted graph. The number of vertices remaining in

the contracted graph is at most Õ(n/d), where d = (m/n)Θ(1). By Remark 32.1.2, we can

output a spanning forest in O(logD · log logm/n n) parallel time.

Although the above algorithm can output the edges of a spanning forest, it cannot

output a rooted spanning forest. To output a rooted spanning forest, we follow a top-down

construction. Suppose now we have a rooted spanning forest of the contracted graph. Since

we have all the information of how vertices were contracted, we know the contraction trees

in the original graph. To merge these contraction trees into the rooted spanning forest of the

contracted graph, we only need to change the root of each contraction tree to a proper vertex

in that tree. This changing root operation can be implemented by the doubling algorithm

via a divide-and-conquer approach.

Since the spanning forest algorithm needs O(log logm/n n) phases to contract all ver-

tices to a single vertex, the total parallel time to compute a rooted spanning forest is

O(logD · log logm/n n). Furthermore, the depth of the rooted spanning forest will be at

most O(DO(log logm/n n)). Thus, we can use the doubling algorithm to calculate the depth of

the tree, and output this depth as an estimator of the diameter of the input graph.

Depth-First-Search Sequence: Here, when the input graph G is a tree, our goal is to

output a DFS sequence for this tree. Once we have this sequence, it is easy to output a

rooted tree. Thus, computing a DFS sequence is at least as hard as computing a rooted tree,
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and all the previous algorithms need Ω(log n) parallel time to do so.

First of all, we use our spanning forest algorithm to compute a rooted tree, reducing

the problem to computing a DFS sequence for a rooted tree. The idea is motivated by

TeraSort [O’M08]. If the size of the tree is small enough such that it can be handled

by a single machine, then we can just use a single machine to generate its DFS sequence.

Otherwise, our algorithm can be roughly described as follows. (Recall that δ is the parameter

such that each machine has Θ(nδ) local memory.)

1. Sample nδ/2 leaves l1, l2, · · · , ls.

2. Determine the order of sampled leaves in the DFS sequence.

3. Compute the DFS sequence Ã of the tree which only consists of sampled leaves and

their ancestors.

4. Compute the DFS sequence Av of every root-v subtree which does not contain any

sampled leaf.

5. Merge Ã and all the Av.

The first and second steps go as follows. Since we only sample nδ/2 leaves, we can

send them to a single machine. We generate queries for every pair of sampled leaves where

each query (li, lj) queries the lowest common ancestor of (li, lj). We have nδ such queries in

total. Since the input tree is rooted, we can use a doubling algorithm to preprocess a data

structure in O(logD) parallel time and answer all the queries simultaneously in O(logD)

parallel time. Thus, we know the lowest common ancestor of any pair of sampled leaves,

2331



and we can store this all on a single machine. Based on the information of lowest common

ancestors of each pair of sampled leaves, we are able to determine the order of the leaves.

For the third step, suppose the sampled leaves have order l1, l2, · · · , ls. Let v be the

root of the tree. Then the DFS sequence Ã should be: the path from v to l1, the path from

l1 to the lowest common ancestor of (l1, l2), the path from the lowest common ancestor of

(l1, l2) to l2, the path from l2 to the lowest common ancestor of (l2, l3), ..., the path from

ls to v. We can find these paths simultaneously by a doubling algorithm together with a

divide-and-conquer algorithm in O(logD) parallel time.

In the fourth step, we apply the procedure recursively. Suppose the total number of

leaves in the tree is q ≤ n. Since we randomly sampled nδ/2 number of leaves, with high

probability, each subtree which does not contain a sampled leaf will have at most O(q/nδ/2)

number of leaves. Thus, the depth of the recursion will be at most a constant, O(1/δ).

Minimum Spanning Forest and Bottleneck Spanning Forest. Recall that the input

is a graph G = (V,E = (e1, e2, · · · , em)) together with a weight function w on E. Without

loss of generality, we only consider the case when all the weights of edges are different,

i.e. w(e1) < w(e2) < · · · < w(em). Since the weights of edges are different, the minimum

spanning forest of the graph is unique. By Kruskal’s algorithm, the diameter of the graph

induced by the first i edges for any i ∈ [m] is at most the depth of the minimum spanning

forest. Now, let us use D to denote the depth of the minimum spanning forest.

We first discuss the minimum spanning forest algorithm. A crucial observation of

Kruskal’s algorithm is: if we want to determine which edges in ei, ei+1, · · · , ej are in the

minimum spanning forest, we can always contract the first i− 1 edges to obtain a graph G′,
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run a minimum spanning forest algorithm on the contracted graph G′, and observe whether

an edge is included in the spanning forest of G′. Thus, if the total space is Θ(m1+γ), we can

have mγ copies of the graph, where the ith copy contracts the first (i−1) ·m1−γ edges. Thus,

we are able to divide the edges into mγ groups where each group has m1−γ number of edges.

We only need to solve the minimum spanning forest problem for each group. Then in the

second phase, we can divide the edges into m2γ groups where each group has m1−2γ number

of edges. Thus, the total number of phases needed is at most O(1/γ). In each phase, we just

need to run our connectivity algorithm to contract the graph.

For the approximate minimum spanning forest algorithm, we use a similar idea. If

we want a (1 + ε) approximation, then we round each weight to the closest value (1 + ε)i for

some integer i. After rounding, there are only O(1/ε · log n) edge groups. Since our total

space is at least Ω(m log(n)/ε), we can make O(1/ε · log n) copies of the graph. The ith copy

of the graph contracts all the edges in group 1, 2, · · · , i− 1. Then, we only need to run our

spanning forest algorithm on each copy to determine which edges should be chosen in each

group.

Another application of our double exponential speed problem size reduction technique is

bottleneck spanning forest. For the bottleneck spanning forest, suppose we have Θ(km) total

space. We can have k copies of the graph where the ith copy contracts the first (i− 1) ·m/k

number of edges. We can determine the group of O(m/k) edges which contains the bottleneck

edge. Thus, we reduce the problem to O(m/k). According to Remark 32.1.2, the number

of phases is at most O(log logkm), and each phase needs T parallel time, where T is the

parallel time for spanning forest.
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Directed Reachability vs. Boolean Matrix Multiplication If there is a fully scalable

multi-query directed reachability MPC algorithm with almost linear total space, we can sim-

ulate the algorithm in sequential model. Thus, it will imply a good sequential multi-query

directed reachability algorithm which implies a good sequential Boolean Matrix Multiplica-

tion algorithm.

32.1.4 Roadmap

The rest of the paper contains the technical details of our algorithms. In Section 32.2,

we described a simplified connectivity algorithm. In Section 32.3, we described the notations.

In Sections 32.4, 32.5, and 32.6, we give the details of our main algorithms for connectivity,

spanning forest and depth first search sequence. In these sections, we focus on the design of

the algorithms and the analysis of the number of rounds. In Section 32.7, we describe the

MPC model in detail and discuss some known primitives in that model. In Section 32.8, we

discuss how to implement the details of our algorithms in the MPC model to achieve the

bounds claimed in the previous sections. In Section 32.9, we show how to apply our connec-

tivity and spanning forest algorithm in minimum spanning forest and bottleneck spanning

forest problems. In Section 32.11, we show hard instances for the algorithm [RMCS13]. In

Section 32.12, we show an alternative approach for random leader selection.
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32.2 A Simplified Batch Algorithm for Connectivity

In this section, we show a simplified version of our connectivity algorithm.

Firstly, let us describe the simplified version of truncated broadcasting procedure in

the following. Since G′ is obtained by adding edges between the vertices in the same com-

ponent of G. G′ will preserve the connectivity of G. The parallel time needed is at most

O(logD) whereD is the diameter of G. The procedure takes at most O(nd2+m) total space.

Truncated Broadcasting for Neighbor Increment:

• Input:

– A graph G = (V,E) with n = |V | vertices and m = |E| number of edges.

– A parameter d.

• Output:

– A graph G′ = (V,E ′) such that ∀v ∈ V, |Γ(v)| ≥ d. . Γ(v) denotes the neighbors
of v.

• While ∃x ∈ V such that |Γ(x)| < d :

– For each v ∈ V with |Γ(v)| < d :

∗ If ∃u ∈ Γ(v) which has |Γ(u)| ≥ d, then Γ(v)← Γ(v) ∪ Γ(u).

∗ Otherwise, Γ(v)← Γ(v) ∪⋃u∈Γ(v) Γ(u).

We can apply the above procedure to make each vertex have a large degree. Next, let

us briefly describe how to choose the leaders and implement the contraction operation for

the graph where each vertex has a large degree. The following procedure just needs O(n+m)

total space and O(1) parallel time. If every vertex has degree at least d, then in the following
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procedure we can reduce the number of vertices to Õ(n/d) by contracting all the vertices to

Õ(n/d) number of leaders.

Random Leader Contraction:

• Input:

– A graph G = (V,E) with n = |V | vertices where each vertex has degree at least
d.

• Output:

– A graph G′ = (V ′, E ′) with Õ(n/d) vertices.

– A mapping par : V → V ′, such that part(v) is the vertex that v contracts to.

• Leader Selection:

– Let L denote the set of leaders.

– For each v ∈ V, with probability at least Ω̃(1/d), choose v as a leader, i.e. L ←
L ∪ {v}.

• Contraction:

– For each v ∈ L, let part(v) = v, and put v into V ′.

– For each v ∈ V \ L, choose u ∈ Γ(v) ∩ L, and set part(u) = v.

– For each (u, v) ∈ E, if part(u) 6= part(v), put the edge (part(u), part(v)) into E ′.

Finally, we describe the simplified version of our connectivity algorithm in the follow-

ing.
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Connectivity:

• Input:

– A graph G = (V,E) with n = |V | vertices and m = |E| edges.
– Total space N which is Θ(m).

• Output:

– A mapping col : V → V satisfies ∀u, v ∈ V, col(u) = col(v) if and only if u and v
are connected.

• Initialization:

– Let G0 ← G, n0 ← n.

• In phase i:

– Compute G′i−1 : Increase the degree of every vertex in Gi−1 to at least di =
Θ
(
(N/ni−1)1/2

)
.

– Compute Gi : Select ni = Õ(ni−1/di) leaders in G′i−1 and contract all the vertices
to the leaders.

– If v is contracted to u, record part(v) = u.

– If Gi does not have any edges, then for every vertex v in Gi, set part(v) = v, and
exit the loop.

• Finding the root leader:

– For each v ∈ V, find the root of v in par, i.e. find u = part(part(· · · part(v))) such
that part(u) = u.

– Set col(v) = u.

After phase i, the number of vertices survived is at most Õ(ni−1/(N/ni−1)1/2). By

Remark 32.1.2, there will be at most O(log logN/n n) phases. For phase i, we need O(logD)

parallel time to increase the neighbors of every vertex in Gi−1. The total parallel time is thus
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O(logD · log logN/n n). The total space used in phase i is at most O(m+(N/ni−1)1/2 ·ni−1) =

O(N).
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32.3 Notations

[n] denotes the set {1, 2, · · · , n}. Let G be an undirected graph with vertex set V and

edge set E. For v ∈ V, ΓG(v) denotes the set of neighbors of v in G, i.e. ΓG(v) = {u ∈ V |

(v, u) ∈ E}. For any u, v ∈ V, distG(u, v) denotes the distance between u, v in graph G. If

u, v are not in the same connected component, then distG(u, v) =∞. If u, v are in the same

connected component, then distG(u, v) < ∞. For v ∈ V, {u ∈ V | distG(u, v) < ∞} is the

set of all the vertices in the same connected component as v. The diameter diam(G) of G is

the largest diameter of its components, i.e. diam(G) = maxu,v∈V :distG(u,v)<∞ distG(u, v).
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32.4 Graph Connectivity
32.4.1 Neighbor Increment Operation

In this section, we describe a procedure which can increase the number of neighbors

of every vertex and preserve the connectivity at the same time. The input of the procedure

is an undirected graph G = (V,E) and a parameter m which is larger than |V |. The output

is a graph G′ = (V,E ′) such that for each vertex v, either the connected component which

contains v is a clique or v has at least d(m/|V |)1/2e−1 neighbors. Furthermore, |E ′| ≤ |E|+m.

We use ΓG(v) to denote the neighbors of v in graph G, i.e. ΓG(v) = {u ∈ V | (u, v) ∈ E}.

Similarly, we let ΓG′(v) be the neighbors of v in G′, i.e. ΓG′(v) = {u ∈ V | (u, v) ∈ E ′}.

Lemma 32.4.1. Let G = (V,E) be an undirected graph, m ∈ Z≥0 which has m ≥ 4|V |.

Let n = |V |. Let r be the value at the end of the procedure NeighborIncrement(m,G)

(Algorithm 32.1.) Then ∀i ∈ {0, 1, · · · , r}, v ∈ V, S(i)
v satisfies the following properties:

1. v ∈ S(i)
v .

2. ∀u ∈ S(i)
v , distG(u, v) <∞.

3. |S(i)
v | < d(m/n)1/2e ⇒ S

(i)
v = {u ∈ V | distG(u, v) ≤ 2i}.

4. |S(i)
v | ≤ m/n.

Proof. For property 1, we can prove it by induction. When i = 0, due to line 3, we know

v ∈ S(0)
v . Suppose property 1 holds for S(i−1)

v for all v ∈ V. If S(i)
v is updated by line 17, there

are two cases: 1. if u = v, then v ∈ S(i−1)
u , and the condition of line 17 does not hold, thus

v ∈ S(i)
v ; 2. if u 6= v, then after implementing line 17, v will not be removed, thus v ∈ S(i)

v .
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If S(i)
v is updated by line 20, then since v ∈ S(i−1)

v , v is also in the set S(i)
v . Thus, property 1

holds for every S(i)
v .

For property 2, we can prove it by induction. When i = 0, it is easy to see S(0)
v ⊆

ΓG(v)∪{v}, thus property 2 holds for it. Suppose property 2 holds for S(i−1)
v for all v ∈ V. If

S
(i)
v is updated by line 17, then since u ∈ S(i−1)

v and S(i)
v ⊆ S

(i−1)
u ∪ {v}, all the vertices from

S
(i)
v are in the same connected component as u and u is in the same connected component

as v. Thus, property 2 holds in this case. If S(i)
v is updated by the line 20, then ∀p ∈ S(i)

v ,

there exists u ∈ S(i−1)
v such that p ∈ S(i−1)

u . We have p is in the same connected component

as u, and u is in the same connected component as v. Thus, property 2 also holds in this

case.

For property 3, we can prove it by induction. When i = 0, due to line 7, we have

|S(0)
v | < d(m/n)1/2e → S

(0)
v = ΓG(v) ∪ {v} = {u ∈ V | distG(u, v) ≤ 1}. Suppose property 3

holds for S(i−1)
v for all v ∈ V. Since if |S(i)

v | < d(m/n)1/2e, then S
(i)
v can only be updated

by line 20, and ∀u ∈ S
(i−1)
v , it has |S(i−1)

u | < d(m/n)1/2e. Thus, S(i)
v =

⋃
u∈S(i−1)

v
S

(i−1)
u =

⋃
u∈V,distG(u,v)≤2i−1{p ∈ V | distG(p, u) ≤ 2i−1} = {u ∈ V | distG(u, v) ≤ 2i}. Thus, property 3

holds.

For property 4, we can prove it by induction. When i = 0, due to line 7, ∀v ∈ V, we

have |S(0)
v | ≤ d(m/n)1/2e ≤ m/n, where the last inequality follows by m/n ≥ 4. Now suppose

property 4 holds for S(i−1)
v for all v ∈ V. If S(i)

v is updated by line 17, then |S(i)
v | = |S(i−1)

u | ≤

m/n. If S(i)
v is updated by line 20, we know ∀u ∈ S

(i−1)
v , |S(i−1)

u | < d(m/n)1/2e. Notice

that by property 1, v ∈ S(i−1)
v , so |S(i−1)

v | < d(m/n)1/2e. Thus, |S(i)
v | = |⋃

u∈S(i−1)
v

S
(i−1)
u | ≤

(m/n)1/2 · (m/n)1/2 ≤ m/n.
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Algorithm 32.1 Neighbor Increment Operation
1: procedure NeighborIncrement(m,G = (V,E)) . Lemma 32.4.1, Lemma 32.4.2
2: . Output: G′ = (V,E ′)

3: Initially, n = |V |, E ′ = ∅ and let S(0)
v = {v} for all v ∈ V .

4: for v ∈ V do . Initially, let S(0)
v be the set (or subset) of direct neighbors

5: for u ∈ ΓG(v) do
6: if |S(0)

v | < d(m/n)1/2e then
7: S

(0)
v ← S

(0)
v ∪ {u}.

8: end if
9: end for
10: end for
11: r ← 1.
12: for true do
13: for v ∈ V do
14: if ∃u ∈ S(r−1)

v , |S(r−1)
u | ≥ d(m/n)1/2e then . neighbor u has many neighbors

15: S
(r)
v = S

(r−1)
u ∪ {v}.

16: if |S(r)
v | > |S(r−1)

u | then
17: S

(r)
v ← S

(r)
v \ {u}.

18: end if
19: else
20: S

(r)
v =

⋃
u∈S(r−1)

v
S

(r−1)
u . . neighbors of v’s neighbors are v’s new

neighbors.
21: end if
22: end for
23: . S

(r)
v is large or is a component

24: if ∀v ∈ V, either |S(r)
v | ≥ d(m/n)1/2e or |S(r)

v | = |S(r−1)
v | then

25: Let E ′ = E ∪⋃v∈V {(v, u) | v ∈ S(r)
u or u ∈ S(r)

v , u 6= v}.
26: return G′ = (V,E ′)
27: else
28: r ← r + 1.
29: end if
30: end for
31: end procedure
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The following definition defines the number of iterations of Algorithm 32.1.

Definition 32.4.1. Given an undirected graph G = (V,E) and a parameter m ∈ Z≥0,m ≥

4|V |, the number of iterations of NeighborIncrement(m,G) (Algorithm 32.1) is the value

of r at the end of the procedure.

In the following lemma, we characterize the properties of Algorithm 32.1.

Lemma 32.4.2. Let G = (V,E) be an undirected graph, m ∈ Z≥0 which has m ≥ 4|V |. Let

G′ = (V,E ′) be the output of NeighborIncrement(m,G). We have:

1. The number of iterations (Definition 32.4.1), r ≤ min(dlog(diam(G))e, dlog(m/n)e)+1.

2. For all u, v ∈ V, distG(u, v) <∞⇔ distG′(u, v) <∞.

3. ∀v ∈ V, if |ΓG′(v)| < d(m/n)1/2e − 1, then the connected component in G′ which

contains v is a clique. It also implies that ∀u, v ∈ V, if |ΓG′(v)| < d(m/n)1/2e − 1 and

|ΓG′(u)| ≥ d(m/n)1/2e − 1, then distG′(u, v) =∞.

4. E ⊆ E ′, |E ′| ≤ |E|+m.

Proof. For property 1, if r > dlog(diam(G))e+1, then let i = dlog(diam(G))e+1. Let v ∈ V.

By property 3 of Lemma 32.4.1, if |S(i)
v | < d(m/n)1/2e, then S(i)

v = {u ∈ V | distG(u, v) ≤

2i} = {u ∈ V | distG(u, v) ≤ 2 · 2dlog(diam(G))e} = {u ∈ V | distG(u, v) < ∞}. Furthermore,

if |S(i)
v | < d(m/n)1/2e, then |S(i−1)

v | < d(m/n)1/2e, which means that S(i−1)
v = {u ∈ V |

distG(u, v) ≤ 2i−1} = {u ∈ V | distG(u, v) ≤ 2dlog(diam(G))e} = {u ∈ V | distG(u, v) <
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∞} = S
(i)
v . Then due to the condition in line 24, it will end the procedure in this round,

which contradicts to r > dlog(diam(G))e + 1 = i. Similarly, if r > dlog(m/n)e + 1, then let

i = dlog(m/n)e + 1. Furthermore, if |S(i)
v | < d(m/n)1/2e, then |S(i−1)

v | < d(m/n)1/2e, which

means that S(i−1)
v = {u ∈ V | distG(u, v) ≤ 2i−1} 6= {u ∈ V | distG(u, v) ≤ 2i} = S

(i)
v . Thus,

there exists u ∈ S(i)
v such that |S(i)

v | > distG(u, v) > 2i−1 > m/n ≥ d(m/n)1/2e which leads

to a contradiction.

For property 2, if u, v are in the same connected component in G, then since E ⊆

E ′, u, v are in the same connected component in G′. If u, v are in the same connected

component in G′, then there should be a path u = u1 → u2 → · · · → up = v in G′, i.e.

∀j ∈ [p − 1], (uj, uj+1) ∈ E ′. (uj, uj+1) ∈ E ′ implies that either (uj, uj+1) ∈ E or uj ∈ S(r)
uj+1

or uj+1 ∈ S(r)
uj . By property 2 of Lemma 32.4.1, we know that ∀j ∈ [p−1], uj and uj+1 are in

the same connected component in G. Thus, u and v are in the same connected component

in G.

For property 3, due to line 25, if |ΓG′(v)| < d(m/n)1/2e − 1, then we have |S(r)
v | <

d(m/n)1/2e. By property 3 of Lemma 32.4.1, and the condition in line 24, we know {u ∈ V |

distG(u, v) ≤ 2r} = S
(r)
v = S

(r−1)
v = {u ∈ V | distG(u, v) ≤ 2r−1}. Thus, S(r)

v = {u ∈ V |

distG(u, v) < ∞}. Due to property 2, we have ΓG′(v) ∪ {v} ⊆ {u ∈ V | distG(u, v) < ∞}.

Notice that S(r)
v ⊆ ΓG′(v) ∪ {v}, thus, we have ΓG′(v) ∪ {v} = {u ∈ V | distG(u, v) < ∞}.

Let v′ ∈ {u ∈ V | distG(u, v) < ∞}, then due to property 2, ΓG′(v
′) ∪ {v′} ⊆ {u ∈ V |

distG(u, v′) <∞} = {u ∈ V | distG(u, v) <∞}, then we have |ΓG′(v′) ∪ {v′}| < d(m/n)1/2e.

Thus, |S(r)
v′ | < d(m/n)1/2e. By property 3 of Lemma 32.4.1, and the condition in line 24, we

know {u ∈ V | distG(u, v′) ≤ 2r} = S
(r)
v′ = S

(r−1)
v′ = {u ∈ V | distG(u, v′) ≤ 2r−1}. Thus,

S
(r)
v′ = {u ∈ V | distG(u, v′) < ∞}. Thus, ΓG′(v

′) ∪ {v′} = {u ∈ V | distG(u, v′) < ∞} =
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{u ∈ V | distG(u, v) < ∞}. Thus, ∀p, q ∈ {u ∈ V | distG(u, v) < ∞}, we have (p, q) ∈ E ′,

which means that {u ∈ V | distG(u, v) <∞} is a clique in G′.

Now consider two vertices u, v ∈ V. Suppose |ΓG′(v)| < d(m/n)1/2e− 1, then we have

that {p ∈ V | distG(p, v) < ∞} is a clique in G′. Thus, ∀q ∈ {p ∈ V | distG(p, v) < ∞}, we

have |ΓG′(q)| = |ΓG′(v)| < d(m/n)1/2e−1. If |ΓG′(u)| ≥ d(m/n)1/2e−1, then distG′(u, v) =∞.

For property 4, by line 25, we have E ⊆ E ′ and |E ′| ≤ |E|+∑v∈V |S
(r)
v | ≤ |E|+ n ·

m/n = |E|+m where the last inequality follows by the property 4 of Lemma 32.4.1.
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32.4.2 Random Leader Selection

Given an undirected graph G = (V,E), to design a connected component algorithm,

a natural way is constantly contracting the vertices in the same component. One way to do

the contraction is that we randomly choose some vertices as leaders, then contract non-leader

vertices to the neighbor leader vertices.

In this section, we show that if ∀v ∈ V, the number of neighbors of v is large enough,

then we can just sample a small number of leaders such that for each non-leader vertex

v ∈ V, there is at least one neighbor of v which is chosen as a leader. A more generalized

statement is stated in the following lemma.

Lemma 32.4.3. Let V be a vertex set with n vertices. Let 0 < γ ≤ n, δ ∈ (0, 1). For each

v ∈ V, let Sv be a subset of V \ {v} with size at least γ − 1. Let l : V → {0, 1} be a random

hash function such that ∀v ∈ V, l(v) are i.i.d. Bernoulli random variables, i.e.

l(v) =

{
1 with probability p;

0 otherwise.

If p ≥ min((10 log(2n/δ))/γ, 1), then, with probability at least 1− δ,

1.
∑

v∈V l(v) ≤ 3
2
pn;

2. ∀v ∈ V, ∃u ∈ Sv ∪ {v} such that l(u) = 1.
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Proof. For a fixed vertex v ∈ V, we have

Pr


 ∑

u∈Sv∪{v}

(E(l(u))− l(u)) >
1

2

∑

u∈Sv∪{v}

E(l(u))




≤ exp


−

1
2

(
1
2

∑
u∈Sv∪{v} E(l(u))

)2

∑
u∈Sv∪{v}V(l(u)) + 1

3
· 1 · 1

2

∑
u∈Sv∪{v} E(l(u))




≤ exp


−

1
2

(
1
2

∑
u∈Sv∪{v} E(l(u))

)2

∑
u∈Sv∪{v} E(l(u)) + 1

3
· 1 · 1

2

∑
u∈Sv∪{v} E(l(u))




= exp


− 3

28
·
∑

u∈Sv∪{v}

E(l(u))


 = exp

(
− 3

28
· p · |Sv ∪ {v}|

)
≤ δ

2n
,

where the first inequality follows by Bernstein inequality and |l(u) − E(l(u))| ≤ 1, the

second inequality follows by V(l(u)) ≤ E(l2(u)) = E(l(u)). The last inequality follows by

|Sv ∪ {v}| ≥ γ, and p ≥ min((10 log(2n/δ))/γ, 1). Since 1
2

∑
u∈Sv∪{v} E(l(u)) ≥ 1, with

probability at least 1− δ/(2n),
∑

u∈Sv∪{v} l(v) ≥ 1. By taking union bound over all Sv, with

probability at least 1− δ/2, ∀v ∈ V, ∃u ∈ Sv ∪ {v}, l(u) = 1.
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Similarly, we have

Pr

(∑

u∈V

(l(u)− E(l(u))) >
1

2

∑

u∈V

E(l(u))

)

≤ exp

(
−

1
2

(
1
2

∑
u∈V E(l(u))

)2

∑
u∈V V(l(u)) + 1

3
· 1 · 1

2

∑
u∈V E(l(u))

)

≤ exp

(
−

1
2

(
1
2

∑
u∈V E(l(u))

)2

∑
u∈V E(l(u)) + 1

3
· 1 · 1

2

∑
u∈V E(l(u))

)

= exp

(
− 3

28
·
∑

u∈V

E(l(u))

)

= exp

(
− 3

28
· p · |V |

)
≤ δ

2n
≤ δ

2
.

Since
∑

u∈V E(l(u)) = p · n, with probability at least 1− δ/2, ∑u∈V l(u) ≤ 1.5pn.

By taking union bound, with probability at least 1− δ,∑u∈V l(u) ≤ 1.5pn and ∀v ∈

V, ∃u ∈ Sv ∪ {v}, l(u) = 1.

If the number of neighbors of each vertex is not large, then we can still have a constant

fraction of vertices which can contract to a leader.

Lemma 32.4.4. Let V be a vertex set with n vertices. Let Sv be a subset of V \ {v} with

size at least 1. Let l : V → {0, 1} be a random hash function such that ∀v ∈ V, l(v) are i.i.d.

Bernoulli random variables, i.e.

l(v) =

{
1 with probability 1

2
;

0 otherwise.

Let L = {v ∈ V | l(v) = 1} ∪ {v ∈ V | ∀u ∈ Sv ∪ {v}, l(u) = 0}. E(L) ≤ 0.75n.

Proof. For v ∈ V, Pr(l(v) = 1) = 1
2
. Let u ∈ Sv. Then Pr(∀x ∈ Sv ∪ {v}, l(x) = 0) ≤

Pr(l(v) = 0, l(u) = 0) = 0.25. E(|L|) =
∑

v∈V Pr(v ∈ L) ≤ 0.75n.
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32.4.3 Tree Contraction Operation

In this section, we introduce the contraction operation. Firstly, let us introduce the

concept of the parent pointers which can define a rooted forest.

Definition 32.4.2. Given a set of vertices V, let par : V → V satisfy that ∀v ∈ V, ∃i > 0

such that par(i)(v) = par(i+1)(v), where ∀v ∈ V, j > 0, par(j)(v) is defined as part(par(j−1)(v)),

and par(0)(v) = v. Then, we call such par a set of parent pointers on V . For v ∈ V, if

part(v) = v, then we say v is a root of par . par can have more than one root. The depth

of v ∈ V, deppar(v) is the smallest i ∈ Z≥0 such that par(i)(v) = par(i+1)(v). The root

of v ∈ V, par(∞)(v) is defined as par(deppar(v))(v). The depth of par, dep(par) is defined as

maxv∈V deppar(v).

It is easy to see that a set of parent pointers par on V formed a rooted forest on V .

For a vertex v ∈ V, if part(v) = v, then v is a root in the forest. Otherwise part(v) is the

parent of v in the forest.

In the following, we define the union operation of several sets of parent pointers.

Definition 32.4.3. Let par1 : V1 → V1, par2 : V2 → V2, · · · , park : Vk → Vk be k sets of

parent pointers on vertex sets V1, V2, · · · , Vk respectively, where ∀i 6= j ∈ [k], Vi ∩ Vj = ∅.

Then par = par1 ∪ par2 ∪ · · ·∪park is a set of parent pointers on the vertex set V1∪V2∪· · ·∪Vk
such that ∀i ∈ [k], v ∈ Vi, part(v) = pari(v).

Now we focus on the parent pointers which can preserve the connectivity of the graph.

Definition 32.4.4. Given a graph G = (V,E) and a set of parent pointers par on V, if

∀v ∈ V, we have distG(v, part(v)) <∞, then par is compatible with G.
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It is easy to show the following fact:

Fact 32.4.5. Given a graph G = (V,E) and a set of parent pointers par which is compatible

with G, then ∀u, v ∈ V with par(∞)(u) = par(∞)(v), we have distG(u, v) <∞.

Proof. By the definition of compatible, ∀v ∈ V, distG(v, part(v)) < ∞. By induction, ∀l ∈

Z>0, v ∈ V, we have distG(v, par(l)(v)) ≤ distG(v, par(l−1)(v)) + distG(par(l−1)(v), par(l)(v)) <

∞. Thus, for any pair of vertices u, v ∈ V, if par(∞)(u) = par(∞)(v), then distG(u, v) ≤

distG(u, par(∞)(u)) + distG(par(∞)(v), v) <∞.

In this section, we describe a procedure which can be used to reduce the number of

vertices. The input of the procedure is an undirected graph G = (V,E) and a set of parent

pointers par : V → V , where par is compatible with G. The output of the procedure will be

the root of each vertex in V and an undirected graph G′ = (V ′, E ′) which satisfies V ′ = {v ∈

V | part(v) = v}, E ′ = {(u, v) ∈ V ′ × V ′ | u 6= v,∃(p, q) ∈ E, par(∞)(p) = u, par(∞)(q) = v}.

Notice that V ′ only contains all the roots in the forest induced by par, and |E ′| ≤ |E|.

Lemma 32.4.6. Let G = (V,E) be an undirected graph, par : V → V be a set of parent

pointers (See Definition 32.4.2). Then TreeContraction(G, par) (See Algorithm 32.2)

will output (G′, g(r)) with r ≤ dlog dep(par)e satisfies the following properties:

1. ∀v ∈ V, g(r)(v) = par(∞)(v).

2. V ′ = {v ∈ V | part(v) = v}.

3. E ′ = {(u, v) ∈ V ′ × V ′ | u 6= v,∃(p, q) ∈ E, par(∞)(p) = u, par(∞)(q) = v}.

Proof. One crucial observation is the following claim.
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Algorithm 32.2 Tree Contraction Operation
1: procedure TreeContraction(G = (V,E), par : V → V ) . Lemma 32.4.6,

Corollary 32.4.8
2: . Output: G′ = (V ′, E ′), par(∞)(v) for all v ∈ V
3: Initially, for each v ∈ V let g(0)(v)← part(v). Let V ′ = ∅, E ′ = ∅.
4: l← 0.
5: for ∃v ∈ V, part(g(l)(v)) 6= g(l)(v) do
6: l← l + 1.
7: For each v ∈ V, compute g(l)(v) = g(l−1)(g(l−1)(v)). . g(l) is par(2l)

8: end for
9: r ← l. . r is the number of iterations, and is used in the analysis.
10: For v ∈ V, if part(v) = v, let V ′ ← V ′ ∪ {v}.
11: For (u, v) ∈ E, if g(r)(u) 6= g(r)(v), let E ′ ← E ′ ∪ {(g(r)(u), g(r)(v))}.

. ∀v ∈ V, contract v to par(∞)(v)
12: return g(r)(v) as par(∞)(v) for all v ∈ V, and G′ = (V ′, E ′)
13: end procedure

Claim 32.4.7. ∀l ∈ {0, 1, · · · , r}, v ∈ V, we have g(l)(v) = par(2l)(v).

Proof. The proof is by induction. When l = 0, ∀v ∈ V, g(0)(v) = part(v) = par(1)(v), the

claim is true. Suppose for l−1, we have ∀v ∈ V, g(l−1)(v) = par(2l−1)(v), then ∀v ∈ V, g(l)(v) =

g(l−1)(g(l−1)(v)) = par(2l−1)(par(2l−1)(v)) = par(2l)(v). So the claim is true.

If r > dlog dep(par)e, then r − 1 ≥ dlog dep(par)e. Due to claim 32.4.7, we have

∀v ∈ V, g(r−1)(v) = par(2r−1)(v) = par(∞)(v). Due to the condition in line 5, the loop will

stop when l ≤ r − 1 which leads to a contradiction to line 9. Thus, at the end of the

algorithm, r should be at most dlog dep(par)e.

Since we have ∀v ∈ V, part(g(r)(v)) = g(r)(v) at the end of the Algorithm 32.2,

∀v ∈ V, g(r)(v) must be par(∞)(v). Then due to line 10 and line 11, we have V ′ = {v ∈ V |

part(v) = v}, E ′ = {(u, v) ∈ V ′ × V ′ | u 6= v,∃(p, q) ∈ E, par(∞)(p) = u, par(∞)(q) = v}.
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Definition 32.4.5. Let G = (V,E) be an undirected graph, par : V → V be a set of parent

pointers (See Definition 32.4.2). Then the number of iteration of TreeContraction(G, par)

is defined as the value of r at the end of the procedure.

Corollary 32.4.8 (Preserved connectivity and diameter). Let G = (V,E) be an undirected

graph, par : V → V be a set of parent pointers (See Definition 32.4.2) which is compatible

(See Definition 32.4.4) with G. Then at the end of the Algorithm 32.2, r ≤ dlog dep(par)e

and the output (G′, g(r)) will satisfy the following properties:

1. diam(G′) ≤ diam(G).

2. ∀u, v ∈ V, distG(u, v) <∞⇒ distG′(par(∞)(u), par(∞)(v)) <∞.

3. ∀u, v ∈ V, distG(u, v) <∞⇐ distG′(par(∞)(u), par(∞)(v)) <∞.

Proof. By Lemma 32.4.6, we have r ≤ dlog dep(par)e, V ′ = {v ∈ V | part(v) = v} and

E ′ = {(u, v) ∈ V ′ × V ′ | u 6= v,∃(p, q) ∈ E, par(∞)(p) = u, par(∞)(q) = v}.

For any two vertices u, v ∈ V which are in the same connected component in G, then

there should be a path u = u1 → u2 → · · · → up = v in graphG. So ∀i ∈ [p−1], (ui, ui+1) ∈ E

which means that either par(∞)(ui) = par(∞)(ui+1) or (par(∞)(ui), par(∞)(ui+1)) ∈ E ′. Thus,

par(∞)(u1) → par(∞)(u2) → · · · → par(∞)(up) is a valid path in G′, and the length of this

path in G′ is at most p. Thus, the properties 1 and 2 are true.

For any two vertices u, v ∈ V which are not in the same connected component in G,

but there is a path par(∞)(u) = u′1 → u′2 → · · · → u′p = par(∞)(v) in G′, then it means that

there exists vertices u1,1, u1,2, u2,1, u2,2, · · · , up,1, up,2 ∈ V which satisfies
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(a) ∀i ∈ [p− 1], (ui,2, ui+1,1) ∈ E, par(∞)(ui,2) = u′i, par(∞)(ui+1,1) = u′i+1.

(b) u1,1 = u, up,2 = v.

(c) ∀i ∈ [p], par(∞)(ui,1) = par(∞)(ui,2). By Fact 32.4.5, we have distG(ui,1, ui,2) <∞.

Thus, there exists a path from u to v. This contradicts to that u, v are not in the same

connected component. Therefore, property 3 is also true.
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32.4.4 Connectivity Algorithm

In this section, we described a batch algorithm for graph connectivity/connected

components problem. The input is an undirected graph G = (V,E), a space/rounds trade-

off parameter m, and the rounds parameter r ≤ |V |. The output is a function col : V → V

such that ∀u, v ∈ V, distG(u, v) <∞⇔ col(u) = col(v).

The algorithm is described in Algorithm 32.3. The following theorem shows the

correctness of Algorithm 32.3.

Theorem 32.4.9 (Correctness of Algorithm 32.3). Let G = (V,E) be an undirected graph,

m ≥ 4|V |, and r ≤ |V | be the rounds parameter. If Connectivity(G,m, r) (Algo-

rithm 32.3) does not output FAIL, then ∀u, v ∈ V, we have distG(u, v) < ∞ ⇔ col(u) =

col(v).

Proof. Firstly, we show that the input of line 18 is valid.

Claim 32.4.10. ∀i ∈ [r], pari is a set of parent pointers on V ′′i , (See Definition 32.4.2) and

is compatible (See Definition 32.4.4) with G′′i .

Proof. ∀v ∈ V ′′i , if v ∈ Li, then pari(v) = v. For v ∈ V ′′i \ Li, due to property 3 of

Lemma 32.4.2, we have pari(v) ∈ V ′′i . Since pari(v) ∈ Li, we have pari(pari(v)) = pari(v).

Thus, pari : V ′′i → V ′′i is a set of parent pointers on V ′′i . Due to property 2 of Lemma 32.4.2

and distG′i(pari(v), v) <∞, we know that distGi−1
(pari(v), v) <∞. Thus, distG′′i (pari(v), v) <

∞. It implies that pari is compatible with G′′i .

The following claim shows that the number of the remaining vertices cannot increase

after each round.
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Claim 32.4.11. If Connectivity(G,m, r) does not output FAIL, then ∀i ∈ [r], Vi ⊆ V ′′i ⊆

V ′i = Vi−1.

Proof. Let i ∈ [r]. Due to Claim 32.4.10, the input of line 18 is valid. Then, we can apply

property 2 of Lemma 32.4.6 to get Vi ⊆ V ′′i . By the construction of V ′′i we have V ′′i ⊆ V ′i .

Since the procedure NeighborIncrement(m,Gi−1) (Algorithm 32.1) does not change the

vertex set, we have V ′i = Vi−1.

Now, we show that ∀u, v ∈ Vi, distGi(u, v) <∞⇔ distG(u, v) <∞.

Claim 32.4.12. If Connectivity(G,m, r) does not output FAIL, then ∀i ∈ [r],∀u, v ∈ Vi,

we have distGi(u, v) <∞⇔ distG(u, v) <∞.

Proof. The proof is by induction. Suppose ∀u, v ∈ Vi−1, distGi−1
(u, v) < ∞ ⇔ distG(u, v) <

∞. ∀w, z ∈ Vi, according to Claim 32.4.11, w, z ∈ V ′′i . By property 2,3 of Lemma 32.4.8, and

property 2 of Lemma 32.4.6, distGi(w, z) < ∞ ⇔ distG′′i (w, z) < ∞. Due to property 2,3 of

Lemma 32.4.2, there is no edge in Ei−1 between V ′′i and V ′i \V ′′i . According to Claim 32.4.11,

w, z ∈ Vi−1. Thus, distG′′i (w, z) < ∞ ⇔ distGi−1
(w, z) < ∞. By induction hypothesis, we

have ∀w, z ∈ Vi, distGi(w, z) <∞⇔ distG(w, z).

The following claim states that once a vertex v ∈ V is contracted to an another

vertex, it will never be operated.

Claim 32.4.13. Suppose Connectivity(G,m, r) does not output FAIL. ∀i ∈ {0, 1, · · · , r},

v ∈ V, we have hi(v) = null ⇔ v ∈ Vi. Furthermore, ∀v ∈ V, ∃j ∈ [r] such that h0(v) =

h1(v) = · · · = hj−1(v) = null and hj(v) = hj+1(v) = · · · = hr(v) 6= null, distG(v, hr(v)) <∞.
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Proof. When i = 0, ∀v ∈ V, h0(v) = null, v ∈ V0 = V. Suppose it is true that ∀v ∈

V, hi−1(v) = null ⇔ v ∈ Vi−1. If v 6∈ Vi, according to Claim 32.4.11, there are three cases:

v ∈ V ′′i \ Vi, v ∈ V ′i \ V ′′i , v 6∈ Vi−1. In the first case, due to line 22, hi(v) 6= null. In the

second case, due to line 21, hi(v) 6= null, In the third case, due to line 23, hi(v) 6= null. If

hi(v) = null, then hi(v) cannot be updated by line 21, line 22 or line 23 which implies that

v ∈ Vi−1, v 6∈ V ′i \ V ′′i , v 6∈ V ′′i \ Vi. Thus, v ∈ Vi.

Since the procedure does not FAIL, we have nr = 0 which means that ∀v ∈ V, hr(v) 6=

null. Notice that by line 23, if hi−1(v) 6= null, then hi(v) = hi−1(v). Thus, ∀v ∈ V, ∃j ∈ [r]

such that h0(v) = h1(v) = · · · = hj−1(v) = null and hj(v) = hj+1(v) = · · · = hr(v) 6= null.

For v ∈ V, if hj(v) 6= null and hj−1(v) = null, then hj(v) can only be updated

by 21 or line 22. In both cases, distGj−1
(v, hj(v)) < ∞. By Claim 32.4.12, we have that

distG(v, hj(v)) <∞.

In the following, we show that hr is a rooted tree such that distG(u, v) < ∞ ⇔ u, v

have the same root. Due to Claim 32.4.13, if Connectivity(G,m, r) does not output FAIL,

then nr = 0 which implies that ∀v ∈ V, hr(v) 6= null. Thus, we can define h(k)
r (v) for k ∈ Z>0

as applying hr on v k times. ∀v ∈ V, by Claim 32.4.13, let j ∈ [r] satisfy that hj(v) 6= null

and hj−1(v) = null. If hj(v) is updated by line 22, then hj(hj(v)) = null. If hj(v) is updated

by line 21, then hj(hj(v)) = hj(v). In both cases, hj cannot create a cycle. Thus, we can

define h(∞)
r (v) = h

(k)
r (v) for some k which satisfies hr(h

(k)
r (v)) = h

(k)
r (v).

Claim 32.4.14. Suppose Connectivity(G,m, r) does not output FAIL. Then ∀u, v ∈ V,

we have distG(u, v) <∞⇔ h
(∞)
r (u) = h

(∞)
r (v).

Proof. Let u, v ∈ V. By Claim 32.4.13, if h∞r (u) = h∞r (v) we have distG(u, v) <∞.
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If distG(u, v) <∞, then let u′ = h
(∞)
r (u), v′ = h

(∞)
r (v). By Claim 32.4.13, distG(u′, v′) ≤

distG(u, u′) + distG(u, v) + distG(v, v′) < ∞, and we can find j ∈ [r] such that hj(u′) 6=

null, hj−1(u′) = null.Without loss of generality, we can assume hj−1(v′) = null (otherwise we

can swap u′ and v′). Due to Claim 32.4.13, u′, v′ ∈ Vi−1. Since hj(u′) = hr(u
′) = u′, hj(u

′)

can be only updated by line 21, and u′ ∈ V ′j \ V ′′j . Then due to property 3 of Lemma 32.4.6,

v′ should be in ΓG′i(u) ∪ {u}. Since hj(v′) = hr(v
′) = v′, we can conclude that u′ = v′.

If Connectivity(G,m, r) does not output FAIL, then in line 26, col is exactly h(∞)
r .

By Claim 32.4.14, we have ∀u, v ∈ V, distG(u, v) <∞⇔ col(u) = col(v).

Now let us consider the number of iterations of Algorithm 32.3 and the success prob-

ability.

Definition 32.4.6 (Total iterations). Let G = (V,E) be an undirected graph, poly(n) ≥

m > 4n, and r ≤ n be the rounds parameter where n is the number of vertices in G. The total

number of iterations of Connectivity(G,m, r) (Algorithm 32.3) is defined as
∑r

i=1(ki+r
′
i),

where ki denotes the number of iterations (See Definition 32.4.1) of NeighborIncrement(m,Gi−1)

(see line 9), and r′i denotes the number of iterations (See Definition 32.4.5) of TreeContraction(G′′i , pari)

(see line 18).

Theorem 32.4.15 (Success probability and total iterations). Let G = (V,E) be an undi-

rected graph, poly(n) ≥ m > 4n, and r ≤ n be the rounds parameter where n = |V |. Let

c > 0 be a sufficiently large constant. If r ≥ c log logm/n(n), then with probability at least 0.98,

Connectivity(G,m, r) (Algorithm 32.3) will not return FAIL. If Connectivity(G,m, r)
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succeeds, let ki denote the number of iterations (See Definition 32.4.1) of NeighborIncrement(m,Gi−1)

(see line 9), and let r′i denote the number of iterations of (See Definition 32.4.5) of TreeContraction(G′′i , pari)

(see line 18), then

1. ∀i ∈ [r], r′i = 0.

2. ∀i ∈ [r], ki is at most dlog(diam(G))e+ 1.

3. The number of iterations of line 26 is at most dlog re.

4.
∑r

i=1 ki ≤ O(r log(diam(G))).

Let c1 > 0 be a sufficiently large constant. If m ≥ c1n log4 n, then with probability at least

0.99,
∑r

i=1 ki ≤ O(log(diam(G)) log logdiam(G)(n)). If m < c1n log4 n, then with probability at

least 0.98,
∑r

i=1 ki ≤ O(log(diam(G)) log logdiam(G)(n) + (log log(n))2).

Proof. Suppose Connectivity(G,m, r) succeeds. Property 1 follows by ∀v ∈ V ′′i , pari(pari(v)) =

pari(v) and Lemma 32.4.6. Property 2 follows by diam(Gr) ≤ diam(G′′r) ≤ diam(G′r) ≤

diam(Gr−1) ≤ diam(G′′r−1) ≤ diam(G′r−1) ≤ · · · ≤ diam(G0) = diam(G) and property 1

of Lemma 32.4.2. Property 3 follows by the depth of hr is at most r and Lemma 32.4.6.

Property 4 follows by property 2.

Now let us prove the success probability. Let i ∈ [r]. If pi < 0.5, then we can apply

Lemma 32.4.3 on vertex set V ′′i , parameter γi, and hash function li. Notice that the set

Sv in the statement of Lemma 32.4.3 is ΓG′i(v) in the algorithm. Notice that |V ′′i | ≤ n.

Then in the ith round, if pi < 0.5, then with probability at most 1/(100n2), Li will be

{v ∈ V ′′i | li(v) = 1}, and ni = |Li| ≤ 1.5pini−1. By taking union bound over all i ∈ [r],
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we have that with probability at least 0.99, event E happens: for all i ∈ [r], if pi < 0.5,

then ni ≤ 1.5pini−1 ≤ 0.75ni−1. Suppose E happens. For i ∈ [r], pi = 0.5, if we apply

Lemma 32.4.4, then condition on ni−1, we have E(ni) ≤ 0.75ni−1. Thus, we know ∀i ∈

[r],E(ni) ≤ 0.75E(ni−1) ≤ 0.75in.

Next, we discuss the case for p0 = 0.5 and the case for p0 < 0.5 separately.

If p0 = 0.5, thenm ≤ n·(600 log n)4. ByMarkov’s inequality, when i∗ ≥ 4 log4/3(6000 log n),

with probability at least 0.99, ni∗ ≤ n/(600 log n)4 and thus pi∗ < 0.5. Condition on this

event and E, we have

nr ≤



(
n1.5
i∗

m0.5 (45 logn+150)

)1.5

m0.5 (45 log n+ 150)



···

· · · (Apply r′ = r − i∗ times)

=
n1.5r

′

i∗

m1.5r
′−1

(45 log n+ 150)2·(1.5r′−1)

= ni∗/(m/ni∗)
1.5r
′−1 · (45 log n+ 150)2·(1.5r′−1)

≤ n/
(
m/
(
ni∗(45 log n+ 150)2

))1.5r
′−1

≤ n/
(
m/
(
ni∗(45 log n+ 150)2

))1.5r
′/2

≤ n/ (m/n)1.5r
′/2 ≤ 1

2
,

where the second inequality follows by ni∗ ≤ n, the third inequality follows by r′ ≥ 5,

the forth inequality follows by ni∗ ≤ n/(600 log n)4, and the last inequality follows by

r′ ≥ 2
log 1.5

log logm/n(2n). Since 4n ≤ m ≤ n · (600 log n)4, log logm/n n = Θ(log log n).

Let c > 0 be a sufficiently large constant. Thus, when r ≥ c log logm/n n ≥ i∗ + r′ =

4 log(6000 log n)/ log(4/3)+ 2
log 1.5

log logm/n(2n), with probability at least 0.98,Connectivity(G,m, r)

will not fail.
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Since property 1 of Lemma 32.4.2, we have ki ≤ O(log(min(m/ni−1, diam(G)))).

Thus,

r∑

i=1

ki =
i∗∑

i=1

ki +
r∑

i=i∗+1

ki ≤ O
(
(log log n)2

)
+

r∑

i=i∗+1

ki

≤ O
(
(log log n)2

)
+

∑

i:i≥i∗+1,m/ni−1≤diam(G)

ki +
∑

i:i≤r,m/ni−1>diam(G)

ki

≤ O
(
(log log n)2

)
+O



dlog1.25 log2(diam(G))e∑

i=0

log(21.25i)


+O



dlog1.25 logdiam(G)(m)e∑

i=0

log(diam(G))




≤ O
(
(log log n)2

)
+O(log(diam(G))) +O(log(diam(G)) log logdiam(G)(n))

≤ O(log(diam(G)) log logdiam(G)(n) + (log log(n))2),

where the first inequality follows by i∗ = O(log log n) and ∀i ≤ [i∗],m/ni−1 ≤ poly(log n),

the third inequality follows by m/ni+1 ≥ (m/ni)
1.5/(45 log n+ 150) ≥ (m/ni)

1.25.

If m > n · (600 log n)4, then ∀i ∈ {0} ∪ [r − 1], we have pi < 0.5. Since E happens.

We have:

nr ≤

((
n1.5

m0.5 (45 logn+150)
)1.5

m0.5 (45 log n+ 150)

)···

· · · (Apply r times)

=
n1.5r

m1.5r−1
(45 log n+ 150)2·(1.5r−1)

= n/(m/n)1.5r−1 · (45 log n+ 150)2·(1.5r−1)

= n/
(
m/
(
n(45 log n+ 150)2

))1.5r−1

≤ n/
(
m/
(
n(45 log n+ 150)2

))1.5r/2

≤ n/
(
m/
(
n(200 log n)2

))1.5r/2

≤ 1

2
,
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where the second inequality follows by r ≥ 5, the third inequality follows by 45 log n+150 ≤

200 log n, and the last inequality follows by

r ≥ c log logm/n n ≥ 2 log1.5 log(m/n)1/2 2n ≥ 2 log1.5 logm/(n(200 logn)2) 2n

for a sufficiently large constant c > 0.

By property 1 of Lemma 32.4.2, we have ki ≤ O(log(min(m/ni−1, diam(G)))). Thus,

r∑

i=1

ki ≤
∑

m/ni−1≤diam(G)

ki +
∑

m/ni−1>diam(G)

ki

≤ O



dlog1.25 log2(diam(G))e∑

i=0

log(21.25i)


+O



dlog1.25 logdiam(G)(m)e∑

i=0

log(diam(G))




≤ O(log(diam(G))) +O(log(diam(G)) log logdiam(G)(n)),

where the first inequality follows by m/ni+1 ≥ (m/ni)
1.5/(45 log n+ 150) ≥ (m/ni)

1.25.

Since nr is an integer, nr must be 0 when nr ≤ 1/2. Let c > 0 be a sufficiently large

constant. For all m ≥ 4n, if r ≥ c log logm/n n then Connectivity(G,m, r) will succeed

with probability at least 0.98.
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32.5 Spanning Forest
32.5.1 Local Shortest Path Tree

In this section, we introduce an important procedure which will be used in the span-

ning tree algorithm. Roughly speaking, our procedure can merge several local shortest path

trees into a larger local shortest path tree. Before we describe the details of the procedure,

let us look at some concepts.

Definition 32.5.1 (Local shortest path tree (LSPT)). Let V ′ be a set of vertices, v be a

vertex in V ′, and par : V ′ → V ′ be a set of parent pointers (See Definition 32.4.2) on V ′

which satisfies that v is the only root of par . Let T = (V ′, par). Given an undirected graph

G = (V,E), if V ′ ⊆ V and ∀u ∈ V ′ \ {v}, (u, part(u)) ∈ E, deppar(u) = distG(u, v), then we

say T is a local shortest path tree (LSPT) in G, and T has root v. The vertex set (V ′ in the

above) in T is denoted as VT . The set of parent pointers (par in the above) in T is denoted

as parT . For short, depparT
is denoted as depT , and dep(part(T )) is denoted as dep(T ).

Definition 32.5.2. Given an undirected graph G = (V,E), a vertex v ∈ V, and s ∈ Z≥0,

we define the ball centered at v with radius s as the set BG,s(v) = {u ∈ V | distG(u, v) ≤ s}.

If in the context graph G is clear, then we use Bs(v) to denote BG,s(v).

Definition 32.5.3 (Local complete shortest path tree (LCSPT)). Given an undirected graph

G = (V,E), s ∈ Z≥0 and a local shortest path tree T = (VT , parT ) in G where T has root

v ∈ V . If VT = BG,s(v), then we call T a local complete shortest path tree (LCSPT) in G.

The root of T is v. The radius of T is s.

Let T̃ = (VT̃ , parT̃ ) with radius s1 ∈ Z≥0 and root v be a local complete shortest path

tree in some graph G = (V,E). For s2 ∈ Z≥0, if for every u ∈ VT̃ , we have a local complete
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shortest path tree T (u) = (VT (u), parT (u)) with root u and radius s2, then we can compute a

larger local complete shortest path tree T̂ with root v and radius s1 + s2. The procedure is

described in Algorithm 32.4.

Lemma 32.5.1. Let G = (V,E) be an undirected graph, s1, s2 ∈ Z≥0, and v ∈ V. Let

T̃ = (VT̃ , parT̃ ) with root v and radius s1 be a local complete shortest path tree in G, and

depT̃ : VT̃ → Z≥0 be the depth of every vertex in T̃ . ∀u ∈ VT̃ , let T (u) with root u and radius

s2 be a local complete shortest path tree in G, and depT (u) : VT (u) → Z≥0 be the depth of

every vertex in T (u). Let (T̂ = (VT̂ , parT̂ ), depT̂ ) = TreeExpansion(T̃ , depT̃ , {T (u) | u ∈

VT̃}, {depT (u) | u ∈ VT̃}) (Algorithm 32.4), then T̂ is a local complete shortest path tree with

root v and radius s1 + s2 in G. In addition, depT̂ records the depth of every vertex in T̂ .

Proof. If x ∈ Bs1+s2(v), then there must exist u ∈ V such that distG(v, u) ≤ s1 and

distG(u, x) ≤ s2. Thus, VT̂ =
⋃
u∈T̃ VT (u) =

⋃
u∈Bs1 (v) Bs2(u) = Bs1+s2(v).

Now we want to prove that parT̂ : VT̂ → VT̂ also satisfies the condition that T̂ is a local

shortest path tree. We can prove it by induction. If distG(u, v) = 0, then it means u = v.

In this case, parT̂ (u) = parT̃ (u) = v, and h(u) = depT̃ (u) = 0. Let s ∈ [s1 + s2]. Suppose

∀x ∈ Bs−1(v), we have h(x) = depT̂ (x) = distG(x, v). If Bs(v) = Bs−1(v), then we are already

done. Otherwise, let x be the vertex which has distG(x, v) = s. If x ∈ Bs1(v), then h(x) =

depT̃ (x) = distG(x, v). Additionally, we have parT̂ (x) = parT̃ (x). Therefore, depT̂ (x) =

depT̂ (parT̃ (x)) + 1 = distG(v, parT̃ (x)) + 1 = distG(v, x). If x ∈ Bs2(v) \Bs1(v), then h(x) =

minu:distG(v,u)≤s1,distG(u,x)≤s2 depT̃ (u) + depT (u)(x) = minu:distG(v,u)≤s1,distG(u,x)≤s2 distG(v, u) +

distG(u, x) = distG(v, x) = s. And we have distG(v, x) = distG(v, ux) + distG(ux, x). Notice

that distG(v, parT (ux)(x)) = distG(v, ux) + distG(ux, parT (ux)(x)) = distG(v, x) − 1 = s − 1.
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Thus,

depT̂ (x) = depT̂ (parT̂ (x)) + 1 = depT̂ (parT (ux)(x)) + 1 = s.

To conclude, T̂ is a local complete shortest path tree with root v and radius s1 + s2

in G. In addition, depT̂ records the depth of every vertex in T̂ .
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32.5.2 Multiple Local Shortest Path Trees

In this section, we show a procedure which is a generalization of neighbor increment

procedure shown in Section 32.4.1. The input of the procedure is an undirected graph

G = (V,E) and a parameter m which is larger than |V | = n. The output will be n local

shortest path trees (See Definition 32.5.1) such that ∀v ∈ V, there is a shortest path tree

with root v. Furthermore, the size of each shortest path tree is at least
⌈
(m/|V |)1/4

⌉
and

at most
⌈
(m/|V |)1/2

⌉
. The algorithm is described in Algorithm 32.6. The high level idea

is that we firstly use doubling technique and the algorithm described in Section 32.5.1 to

get local complete shortest path trees rooted at every vertex with multiple radius, and then

use these LCSPTs to find large enough local shortest path trees rooted at every vertex. The

doubling algorithm is described in Algorithm 32.5.

Definition 32.5.4. Given a graph G = (V,E) and a parameter m ∈ Z≥0,m ≥ |V |, the

number of iterations of MultiRadiusLCSPT(G,m) (Algorithm 32.5) is the value of r at

the end of the procedure.

Lemma 32.5.2. Let G = (V,E) be an undirected graph, and m be a parameter which is at

least |V |. Let (r, {Ti(v) | i ∈ {0}∪ [r], v ∈ V }, {depTi(v) | i ∈ {0}∪ [r], v ∈ V, Ti(v) 6= null}) =

MultiRadiusLCSPT(G,m) (Algorithm 32.5).We have following properties.

1. ∀i ∈ {0} ∪ [r], v ∈ V, if Ti(v) 6= null, then Ti(v) is a LCSPT (See Definition 32.5.3)

with root v and radius 2i in G. Furthermore, depTi(v) records the depth of every vertex

in Ti(v).

2. ∀i ∈ {0} ∪ [r], v ∈ V, |BG,2i(v)| ≥ d(m/n)1/4e ⇔ Ti(v) = null.
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3. For v ∈ V, if Tr(v) 6= null, then VTr(v) = {u ∈ V | distG(u, v) <∞}.

4. The number of iterations (see Definition 32.5.4) r ≤ min(dlog(diam(G))e, dlog(m/n)e)+

1.

Proof. For property 1, we can prove it by induction. If i = 0, the property holds by line 4,

line 5 and line 7. Now suppose ∀v ∈ V, if Ti−1(v) is not null, then Ti−1(v) is a LCSPT with

root v and radius 2i−1 in G, and depTi(v) records the depth of every vertex in Ti(v). For v ∈ V,

notice that the only place that will make Ti(v) not null is line 15, and if the procedure run

line 15, any of Ti−1(v) and Ti−1(u) with u ∈ VTi−1(v) cannot be null. By Lemma 32.5.1, since

the radius of Ti−1(v) is 2i−1, and ∀u ∈ VTi−1(v), Ti−1(u) has radius 2i−1, Ti(v) is a LCSPT

with root v and radius 2i. Furthermore depTi(v) records the depth of every vertex in Ti(v).

For property 2, if i = 0, then this property holds by line 4 to line 7. For i ∈ [r], our

proof is by induction. Suppose the property holds for i − 1. Now consider Ti(v) for v ∈ V .

The only way to make Ti(v) not null is line 15. If the procedure invokes line 15, then any of

Ti−1(v) and Ti−1(u) with u ∈ VTi−1(v) cannot be null. By property 1 and Lemma 32.5.1, Ti(v)

will be a LCSPT with root v and radius 2i in line 15. If |BG,2i(v)| ≥ d(m/n)1/4e, then Ti(v)

is set to be null in line 16. Thus, we already got |BG,2i(v)| ≥ d(m/n)1/4e ⇒ Ti(v) = null.

Now we want to show |BG,2i(v)| ≥ d(m/n)1/4e ⇐ Ti(v) = null. If Ti(v) = null, then there

are three cases. The first case is that Ti(v) is set at line 12. In this case, Ti−1(v) = null

implies |BG,2i(v)| ≥ |BG,2i−1(v)| ≥ d(m/n)1/4e. The second case is that Ti(v) is set at line 13.

In this case, ∃u ∈ VTi−1(v) = BG,2i−1(v) such that |BG,2i−1(u)| ≥ d(m/n)1/4e which implies

|BG,2i(v)| ≥ d(m/n)1/4e. In the final case, Ti(v) is set at line 16, and thus, |BG,2i(v)| ≥

d(m/n)1/4e.
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For property 3, if Tr(v) 6= null, then by property 1, we know VTr(v) = BG,2r(v). By the

condition in line 19, we know VTr(v) = VTr−1(v) which implies BG,2r(v) = BG,2r−1(v). Thus,

VTr(v) = {u ∈ V | distG(u, v) <∞}.

For property 4, we can prove it by contradiction. If r > dlog(diam(G))e + 1, then

let i = dlog(diam(G))e + 1. By the condition in line 19, we know there is a vertex v ∈

V such that Ti(v) 6= null and VTi(v) 6= VTi−1(v). It means that BG,2i(v) 6= BG,2i−1(v), i.e.

∃u ∈ V, distG(v, u) > 2i−1. But this contradicts to i = dlog(diam(G))e + 1. Similarly, if

r > dlog(m/n)e + 1, then let i = dlog(m/n)e + 1. By the condition in line 19, we know

there is a vertex v ∈ V such that Ti(v) 6= null and VTi(v) 6= VTi−1(v). If 2i−1 ≤ diam(G),

then we have VTi(v) 6= VTi−1(v) which leads to a contradiction. If 2i−1 ≥ diam(G), then

|BG,2i−1(v)| ≥ 2i−1 ≥ m/n ≥ d(m/n)1/4e which contradicts to property 2.

Next, we show how to use Algorithm 32.5 to design an algorithm which can output

|V | number of local shortest path trees rooted at every vertex in V . The details of the

algorithm is described in Algorithm 32.6, and the guarantees of the algorithm is stated in

the following lemma.

Lemma 32.5.3. Let G = (V,E) be an undirected graph, and m be a parameter which is

at least 16|V |. Let
(
{T̃ (v) | v ∈ V }, {depT̃ (v) | v ∈ V }

)
= MultipleLargeTrees(G,m).

(Algorithm 32.6) Then, the output satisfies the following properties.

1. ∀v ∈ V, T̃ (v) is a LSPT (See Definition 32.5.1) with root v, and depT̃ (v) records the

depth of every vertex in T̃ (v).

2. ∀v ∈ V, u ∈ VT̃ (v), w ∈ V \ VT̃ (v), it satisfies distG(v, u) ≤ distG(v, w).
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3. ∀v ∈ V, either |VT̃ (v)| ≥ d(m/n)1/4e or VT̃ (v) = {u ∈ V | distG(u, v) <∞}.

4. ∀v ∈ V, |VT̃ (v)| ≤ b(m/n)1/2c.

Proof. Before we prove above properties, we first show some crucial observations.

Claim 32.5.4. ∀v ∈ V, i ∈ {0} ∪ [r], if Ti(v) 6= null, then Ti(v) is a LCSPT with root v and

radius 2i in graph G. Furthermore, depTi(v) : VTi(v) → Z≥0 records the depth of every vertex

in Ti(v). If Ti(v) = null, then |BG,2i(v)| ≥ d(m/n)1/4e.

Proof. Follows by property 1 and property 2 of Lemma 32.5.2 directly.

Claim 32.5.5. Let v ∈ V be a vertex with Tr(v) = null. Then, ∀i ∈ {0} ∪ [r], T̃i(v) is a LC-

SPT (See Definition 32.5.3) with root v and radius si(v) in G, and depT̃i(v) records the depth

of every vertex in T̃i(v). Furthermore, we have |BG,si(v)(v)| < d(m/n)1/4e, |BG,si(v)+2r−i(v)| ≥

d(m/n)1/4e.

Proof. Let v ∈ V be a vertex with Tr(v) = null. When i = 0, then due to line 5 and line 6,

T̃0(v) is a LCSPT (See Definition 32.5.3) with root v and radius 0 = s0(v) in G. According

to property 2 of Lemma 32.5.2, since Tr(v) = null, we know |BG,0+2r(v)| ≥ d(m/n)1/4e.

For i ∈ [r], we prove it by induction. Suppose the claim is true for i − 1. By

Claim 32.5.4, Lemma 32.5.1 and the condition in line 9, if the procedure executes line 10,

then we know T̃i(v) is a LCSPT with root v and radius si−1(v) + 2r−i in G at the end

of the execution of line 10, and depT̃i(v) records the depth of every vertex in T̃i(v). If

|VT̃i(v)| < d(m/n)1/4e, then |BG,si−1(v)+2r−i(v)| < d(m/n)1/4e. The procedure will execute

line 11, and thus si(v) is the radius of T̃i(v). In addition, since si(v) = si−1(v) + 2r−i and
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|BG,si−1(v)+2r−i+1(v)| ≥ d(m/n)1/4e, we have |BG,si(v)+2r−i(v)| ≥ d(m/n)1/4e. If at the end

of line 10, |VT̃i(v)| ≥ d(m/n)1/4e, then we know |BG,si−1(v)+2r−i(v)| ≥ d(m/n)1/4e. In this

case, T̃i(v), si(v) and depT̃i(v) will be set to be T̃i−1(v), si−1(v) and depT̃i(v) respectively, and

thus |BG,si(v)(v)| < d(m/n)1/4e. If the condition in line 9 does not hold, then we know

|BG,si−1(v)+2r−i(v)| ≥ d(m/n)1/4e by claim 32.5.4. In this case, T̃i(v), si(v) and depT̃i(v)

will also be set to be T̃i−1(v), si−1(v) and depT̃i(v) respectively, and thus |BG,si(v)(v)| <

d(m/n)1/4e.

Claim 32.5.5 shows that for each vertex v ∈ V , we know T̃r(v) is a LCSPT with root v

and radius sr(v) in G such that |BG,sr(v)(v)| < d(m/n)1/4e and |BG,sr(v)+1(v)| ≥ d(m/n)1/4e.

Now, let us prove property 1 and property 2. For v ∈ V, if Tr(v) 6= null, then

T̃ (v), depT̃ (v) will be set to be Tr(v), depTr(v) respectively. By Claim 32.5.4, the properties

holds. Let v be a vertex in V with Tr(v) = null. If T̃ (v) is assigned at line 22, then by

Lemma 32.5.1, we know T̃ (v) is a LCSPT with root v, and depT̃ (v) records the depth of

every vertex in T̃ (v). Thus, both properties hold. If T̃ (v) is assigned at line 28, then there

are two cases for the vertices in VT̃ (v) :

1. If x is in VT̃r(v), then since Claim 32.5.5 shows T̃r(v) is a LCSPT with root v, it is easy

to show depT̃ (v)(x) = depT̃r(v)(x) = distG(v, x), and parT̃ (v)(x) = parT̃r(v)(x) ∈ E.

2. if x is in N(uv) but not in VT̃r(v), then since T̃r(v) is a LCSPT with root v and radius

sr(v), distG(v, x) ≥ sr(v)+1. Also notice that distG(v, x) ≤ distG(v, uv)+distG(uv, x) ≤

sr(v)+1. Therefore, distG(v, x) = sr(v)+1, depT̃ (v)(x) = depT̃ (v)(uv)+1 = distG(v, x) =

sr(v) + 1. Since x ∈ N(uv), (parT̃ (v)(x), x) = (uv, x) ∈ E.
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Thus, T̃ is a LSPT with root v, and it proves property 1. Due to above both cases, we know

BG,sr(v)(v) ⊆ VT̃ , and ∀x ∈ VT̃ (v), distG(v, x) ≤ sr(v) + 1. Thus, property 2 holds.

For property 3 and property 4, we have two cases. The first case is when v satisfies

Tr(v) 6= null. In this case T̃ (v) = Tr(v), due to property 3, 4 of Lemma 32.5.2, we have

VT̃ (v) = {u ∈ V | distG(v, u) < ∞}, and |VT̃ (v)| < d(m/n)1/4e ≤ b(m/n)1/2c. The second

case is Tr(v) = null. In this case, if T̃ (v) is assigned at line 22, then VT̃ (v) = BG,sr(v)+1(v).

Then by Claim 32.5.5, we can get |VT̃ (v)| ≥ d(m/n)1/4e. Because |VT̃r(v)| < d(m/n)1/4e and

∀u ∈ VT̃r(v), |VT0(u)| < d(m/n)1/4e, we know |VT̃ (v)| ≤ b(m/n)1/2c. If T̃ (v) is assigned at line 28,

then |VT̃ (v)| ≥ |N(uv)| ≥ d(m/n)1/4e, and |VT̃ (v)| ≤ |VT̃r(v)| + |N(uv)| < 2 · d(m/n)1/4e ≤

b(m/n)1/2c.

Definition 32.5.5. Let graph G = (V,E), and let m be a parameter which is at least 16|V |.

The number of iterations of
(
{T̃ (v) | v ∈ V }, {depT̃ (v) | v ∈ V }

)
= MultipleLargeTrees(G,m)

(Algorithm 32.6) is defined as the value of r in the procedure.

Lemma 32.5.6 (Number of iterations of Algorithm 32.6). Let G = (V,E) be an undirected

graph, and let m be a parameter which is at least 16|V |. The number of iterations (see

Definition 32.5.5) of
(
{T̃ (v) | v ∈ V }, {depT̃ (v) | v ∈ V }

)
= MultipleLargeTrees(G,m)

(Algorithm 32.6) is at most min(dlog(diam(G))e, dlog(m/n)e) + 1.

Proof. It follows by property 4 of Lemma 32.5.2 directly.
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32.5.3 Path Generation and Root Changing

In this section, we show a procedure which can output a path from a certain vertex

to the root in a rooted tree. Then we show how to use the procedure to change the root

of a rooted tree to a certain vertex in the tree. To output the vertex-root path, we have

two stages. The first stage is using doubling method to compute the depth and the 2ith

(for all i ∈ {0, 1, · · · , log(dep)}) ancestor of each vertex. The second stage is using divide-

and-conquer technique to split the path into segments, and recursively find the path for

each segment. Once we have the procedure to find the vertex-root path, then we can use

it to implement root-changing. The idea is very simple, if we want to change the root to

a certain vertex, we just need to find the path from that vertex to the root, and reverse

the parent pointers of every vertex on the path. The path finding procedure is described in

Algorithm 32.8. The root changing procedure is described in Algorithm 32.9.

Definition 32.5.6. Let par : V → V be a set of parent pointers (See Definition 32.4.2) on

a vertex set V. The number of iterations of FindAncestors(par) is defined as the value of

r at the end of the procedure.

Lemma 32.5.7. Let par : V → V be a set of parent pointers (See Definition 32.4.2) on a

vertex set V. Let (r, deppar, {gi | i ∈ {0} ∪ [r]}) = FindAncestors(par) (Algorithm 32.7).

Then the number of iterations (see Definition 32.5.6) r should be at most dlog(dep(par)+1)e,

deppar : V → Z≥0 records the depth of every vertex in V, and ∀i ∈ {0} ∪ [r], v ∈ V gi(v) =

par(2i)(v).

Proof. hl and gl will satisfies the properties in the following claim.
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Claim 32.5.8. ∀i ∈ {0} ∪ [r], v ∈ V gi(v) = par(2i)(v), and if deppar(v) ≤ 2i − 1 then

hi(v) = deppar(v). Otherwise deppar(v) = null.

Proof. The proof is by induction. The claim is obviously true when i = 0. Suppose the

claim is true for i− 1. We have gi(v) = gi−1(gi−1(v)) = par(2i−1)(par(2i−1)(v)) = par(2i)(v). If

hi(v) 6= null, then there are two cases. In the first case, we have hi(v) = hi−1(v). By induction

we know hi(v) = deppar(v). In the second case, we have hi(v) = hi−1(gi−1(v)) + 2i−1 =

deppar(par(2i−1)(v)) + 2i−1. Notice that in this case hi−1(v) = null, thus by the induction,

deppar(v) ≥ 2i−1. Therefore, deppar(v) = deppar(par(2i−1)(v)) + 2i−1 = hi(v). If hi(v) = null,

then it means that hi−1(par(2i−1)(v)) = null which implies that deppar(v) ≥ 2i.

Due to the above claim, we know that if i ≥ dlog(deppar(v) + 1)e then hi(v) 6= null.

Thus, we have r ≤ dlog(dep(par)+1)e. Since the procedure returns hr as deppar, the returned

deppar is correct.

Lemma 32.5.9. Let par : V → V be a set of parent pointers (See Definition 32.4.2) on a

vertex set V. Let q be a vertex in V . Let (deppar, P, w) = FindPath(par, q) (Algorithm 32.8).

Then deppar : V → Z≥0 records the depth of every vertex in V and P ⊆ V is the set of all

vertices on the path from q to the root of q, i.e. P = {v ∈ V | ∃k ≥ 0, v = par(k)(q)}. If

deppar(q) ≥ 1, then w = par(deppar(q)−1)(q). Furthermore, k should be at most dlog(dep(par))e.

Proof. By Lemma 32.5.7, since (r, deppar, {gi | i ∈ {0} ∪ [r]}) = FindAncestors(par),

we know r should be at most dlog(dep(par) + 1)e, deppar : V → Z≥0 records the depth of

every vertex in V, and ∀i ∈ {0} ∪ [r], v ∈ V gi(v) = par(2i)(v). Thus k = dlog(deppar(q))e ≤

dlog(dep(par) + 1)e
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Now let us prove that P is the vertex set of all the vertices on the path from q to the

root of q. We use divide-and-conquer to get P . The following claim shows that Si is a set of

segments which is a partition of the path, and each segment has length at most 2k−i.

Claim 32.5.10. ∀i ∈ {0} ∪ [k], Si satisfies the following properties:

1. ∃(x, y) ∈ Si such that x = q.

2. ∃(x, y) ∈ Si such that y = gr(q).

3. ∀(x, y) ∈ Si, deppar(y)− deppar(x) ≤ 2k−i.

4. ∀(x, y) ∈ Si, if y 6= gr(q), then ∃(x′, y′) ∈ Si, x′ = y.

5. ∀(x, y) ∈ Si, ∃j ∈ Z≥0, par(j)(x) = y.

Proof. Our proof is by induction. According to line 4, all the properties hold when i = 0.

Suppose all the properties hold for i− 1. For property 1, by induction we know there exists

(x, y) ∈ Si−1 such that x = q. Then by line 8 and line 9, there must be an (x, y′) in Si.

For property 2, by induction we know there exists (x, y) ∈ Si−1 such that y = gr(q). Thus,

there must be an (x′, y) in Si. For property 3, if (x, y) is added into Si by line 9, then

deppar(x) − deppar(y) ≤ 2k−i. Otherwise, in line 8, we have deppar(x) − deppar(gk−i(x)) ≤

2k−i, deppar(gk−i(x))−deppar(y) ≤ 2k−i+1−2k−i = 2k−i. For property 4, if (x, y) is added into

Si by line 9, then by induction there is (y, y′) ∈ Si−1, and thus by line 9 and line 8, there

must be (y, y′′) ∈ Si. Otherwise, in line 8 will generate two pairs (x, gk−i(x)), (gk−i(x), y). For

(x, gk−i(x)), the property holds. For (gk−i(x), y), there must be (y, y′) ∈ Si−1 and thus there

should be (y, y′′) ∈ Si. For property 5, since gk−i(x) = par(k−i)(x), for all pairs generated by

line 8 and line 9, the property holds.
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By Claim 32.5.10, we know

Sk = {(q, part(q)), (part(q), par(2)(q)), (par(2)(q), par(3)(q)), · · · , (par(deppar(q)−1)(q), par(deppar(q))(q))}.

Thus, P is the set of all the vertices on the path from q to the root of q. And w =

par(deppar(q)−1)(q) when deppar(q) ≥ 1.

Lemma 32.5.11. Let par : V → V be a set of parent pointers (See Definition 32.4.2) on

a vertex set V. Let q be a vertex in V . Let p̂ar = RootChange(par, q) (Algorithm 32.9).

Then p̂ar : V → V is still a set of parent pointers (See Definition 32.4.2) on V. ∀v ∈ V,

if par(∞)(v) = par(∞)(q) then p̂ar(∞)(v) = q. Otherwise p̂ar(∞)(v) = par(∞)(v). ∀u 6= v ∈

V, part(v) = u⇔ either p̂ar(v) = u or p̂ar(u) = v. Furthermore, dep(p̂ar) ≤ 2dep(par).

Proof. For a vertex v ∈ V, if {u | i ∈ Z≥0, u = par(i)(v)} ∩ P = ∅, then we have ∀i ∈

Z≥0, par(i)(v) = p̂ar(i)(v). According to Lemma 32.5.9, P = {u ∈ V | i ∈ Z≥0, par(i)(q) = u}.

Then for all v ∈ P \ {q}, if part(u) = v then p̂ar(v) = u. Thus, ∀u ∈ P, p̂ar(∞)(u) = q. Let

i∗ be the smallest number such that par(i∗)(v) ∈ P. Then p̂ar(i∗)(v) ∈ P. Thus, p̂ar(∞)(v) =

p̂ar(∞)(p̂ar(i∗)(v)) = q. Furthermore, we have ∀v ∈ V, dep(p̂ar) ≤ dep(par) + deppar(q) ≤

2dep(par).
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32.5.4 Spanning Forest Expansion

In this section, we give the definition of spanning forest. If we are given a spanning

forest of a contracted graph and spanning trees of each contracted component, then we show

a procedure which can merge them to get a spanning forest of the original graph. Before go

to the details, let us formally define the spanning forest.

Definition 32.5.7 (Rooted Spanning Forest). Let G = (V,E) be an undirected graph.

Let par : V → V be a set of parent pointers which is compatible (Definition 32.4.4) with

G. If ∀u, v ∈ V, distG(u, v) < ∞ ⇒ par(∞)(u) = par(∞)(v), and ∀v ∈ V, part(v) 6= v ⇒

(v, part(v)) ∈ E, then we call par a rooted spanning forest of G.

The Algorithm 32.10 shows how to combine the spanning forest in the contracted

graph with local spanning trees to get a spanning forest in the graph before contraction.

Figure 32.1 shows an example.

Lemma 32.5.12. Let G2 = (V2, E2) be an undirected graph. Let p̃ar : V2 → V2 be a set

of parent pointers (See Definition 32.4.2) which satisfies that ∀v ∈ V2 with p̃ar(v) 6= v,

(v, p̃ar(v)) must be in E2. Let G1 = (V1, E1) be an undirected graph satisfies V1 = {v ∈ V2 |

p̃ar(v) = v}, E1 = {(u, v) ∈ V1 × V1 | u 6= v,∃(x, y) ∈ E2, p̃ar(∞)(x) = u, p̃ar(∞)(y) = v}. Let

par : V1 → V1 be a rooted spanning forest (See Definition 32.5.7) of G1. Let f : V1 × V1 →

{null} ∪ (V2 × V2) satisfy the following property: for u 6= v ∈ V1, if part(u) = v, then

f(u, v) ∈ {(x, y) ∈ E2 | p̃ar(∞)(x) = u, p̃ar(∞)(y) = v}, and f(v, u) ∈ {(x, y) ∈ E2 |

p̃ar(∞)(x) = v, p̃ar(∞)(y) = u}. Let p̂ar = ForestExpansion(par, p̃ar, f). Then p̂ar : V2 →

V2 is a rooted spanning forest of G2. In addition, dep(p̂ar) ≤ (2 ·dep(p̃ar)+1)(dep(par)+1).
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Proof. Let x, y ∈ V2, u = p̃ar(∞)(x), v = p̃ar(∞)(y) ∈ V1 if distG2(x, y) < ∞, then since

E1 = {(u′, v′) ∈ V1 × V1 | u′ 6= v′,∃(x′, y′) ∈ E2, p̃ar(∞)(x′) = u′, p̃ar(∞)(y′) = v′}, it must

be true that distG1(u, v) < ∞. Since par is a spanning forest of G1, we have par(∞)(u) =

par(∞)(v). It suffices to say ∀x ∈ V2, p̂ar(∞)(x) = par(∞)(p̃ar(∞)(x)). We can prove it by

induction on deppar(p̃ar(∞)(x)). Let u = p̃ar(∞)(x). If deppar(u) = 0, then par(∞)(u) = u. In

this case, we have p̂ar(∞)(x) = p̃ar(∞)(x) = u = par(∞)(u) = par(∞)(p̃ar(∞)(x)), and also we

have depp̂ar(x) = depp̃ar(x). Now suppose for all x ∈ V2 with deppar(p̃ar(∞)(x)) ≤ i − 1, it

has p̂ar(∞)(x) = par(∞)(p̃ar(∞)(x)) and depp̂ar(x) ≤ i · (2dep(p̃ar) + 1). Let y ∈ V2 satisfy

deppar(p̃ar(∞)(y)) = i. Let v = p̃ar(∞)(y). By line 8 and the properties of f , we know

p̃ar(∞)(xv) = v, and p̃ar(∞)(yv) = part(v). By line 9, line 10 and Lemma 32.5.11, we have

p̂ar(∞)
v (y) = xv, p̂ar(xv) = yv. Thus, there must be k ≤ 2depp̃ar(y) such that p̂ar(k)(y) = xv.

Since p̂ar(∞)(yv) = par(∞)(v) and depp̂ar(yv) ≤ i · (2dep(p̃ar) + 1), we have p̂ar(∞)(y) =

par(∞)(v) = par(∞)(p̃ar(∞)(y)) and depp̂ar(y) ≤ (i+ 1) · (2dep(p̃ar) + 1).

In addition, by the properties of f and Lemma 32.5.11, ∀v ∈ V2 with p̂ar(v) 6= v,

we have (v, p̂ar(v)) ∈ E2. To conclude, p̂ar : V2 → V2 is a spanning forest of G2, and

dep(p̂ar) ≤ (dep(par) + 1)(2dep(p̃ar) + 1).
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32.5.5 Spanning Forest Algorithm

In this section, we show how to apply the ideas shown in connectivity algorithm to

get an spanning forest algorithm. Algorithm 32.11 can output a spanning forest of a graph

G, but the edges are not orientated. Then in the Algorithm 32.12, we assign each forest edge

an direction thus it is a rooted spanning forest.

Before we prove the correctness of the algorithms, let us briefly introduce the meaning

of each variables appeared in the algorithms.

In Algorithm 32.11, G0 is the original input graph, for i ∈ {0} ∪ [r − 1], G′i is

obtained by deleting all the small size connected components in Gi, and Gi+1 is obtained by

contracting some vertices of G′i. For a vertex v in graph Gi, if hi(v) = null, then it means

that the connected component which contains v is deleted when obtaining G′i. If hi(v) 6= null,

it means that the vertex v is contracted to the vertex hi(v) when obtaining Gi+1. pari is a

rooted forest (may not be spanning) in graph Gi, if a tree from the forest is spanning in Gi,

then all the vertex in that tree will be deleted when obtaining G′i. Otherwise all the vertices

in that tree will be contracted to the root, and the root will be one of the vertex in Gi+1.

Since each connected component in Gi+1 is obtained by contraction of some vertices in a

connected component in Gi, each edge in Gi+1 must correspond to an edge in Gi where the

end vertices of the edge are contracted to different vertices. Thus, each edge in Gi should

correspond to an edge in G, and gi : Ei → E records the such correspondence. Di records

the edges added to the spanning forest F in the ith round. For each vertex v in graph Gi,

T̃i(v) is a local shortest path tree (See definition 32.5.1) which is either with a large size or is

a spanning tree in the component of v. Li is a set of random leaders in G′i such that in each

local shortest path tree T̃i(v), there is at least one leader shown in the tree. The following
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lemmas formally state the properties of the algorithm.

Lemma 32.5.13. Let G = (V,E) be an undirected graph, m be a parameter which is at least

16|V |, and r be a rounds parameter. If SpanningForest(G,m, r) (Algorithm 32.11) does

not return FAIL, then diam(G) = diam(G0) ≥ diam(G′0) ≥ diam(G1) ≥ diam(G′1) ≥ · · · ≥

diam(Gr).

Proof. By property 3 of Lemma 32.5.3, ∀[i] ∈ {0} ∪ [r− 1], there is no edge between Vi \ V ′i
and V ′i . Thus, diam(G′i) ≤ diam(Gi). Then due to property 1 of Corollary 32.4.8, we have

diam(Gi+1) ≤ diam(G′i).

Lemma 32.5.14. Let G = (V,E) be an undirected graph, m be a parameter which is at least

16|V |, and r be a rounds parameter. If SpanningForest(G,m, r) (Algorithm 32.11) does

not return FAIL, then ∀i ∈ {0} ∪ [r − 1], dep(pari) ≤ min(diam(G), b(m/ni)1/2c).

Proof. Let v ∈ Vi. If v ∈ Vi \ V ′i , then due to property 3 of Lemma 32.5.3, we have VT̃i(v) =

VT̃i(uv). Due to Lemma 32.5.13 and Lemma 32.5.3, we have deppari
(v) ≤ dep(T̃i(uv)) ≤

min(diam(G), b(m/ni)1/2c). For v ∈ Vi, we define distGi(v, Li) = minu∈Li distGi(v, u). By

Lemma 32.5.3, we know distGi(v, Li) = distGi(v, zi(v)). Since T̃i(v) is a LSPT (See Defini-

tion 32.5.1), by applying Lemma 32.5.9, we know distGi(v, Li) = distGi(wi(v), Li) + 1, and

(v, wi(v)) ∈ Ei. Thus, by induction on distGi(v, Li), we can get deppari
(v) ≤ distGi(v, Li). By

Lemma 32.5.13 and Lemma 32.5.3, we can conclude dep(pari)(v) ≤ min(diam(G), b(m/ni)1/2c).

Lemma 32.5.15. Let G = (V,E) be an undirected graph, m be a parameter which is at least

16|V |, and r be a rounds parameter. If SpanningForest(G,m, r) (Algorithm 32.11) does
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not return FAIL, then ∀i ∈ {−1, 0} ∪ [r − 1], we can define

∀v ∈ V, h(i)(v) =





v i = −1;

hi(h
(i−1)(v)) h(i−1)(v) 6= null;

null otherwise .

Then we have following properties:

1. If h(i)(v) 6= null, then h(i)(v) ∈ Vi+1.

2. ∀u, v ∈ V, h(i)(u) 6= h(i)(v), (u, v) ∈ E, we have (h(i)(u), h(i)(v)) ∈ Ei+1.

3. ∀(x, y) ∈ Ei+1, (u, v) = gi+1(x, y), we have (u, v) ∈ E, h(i)(u) = x, h(i)(v) = y.

Proof. For property 1, we can prove it by induction. It is true for i = −1. If h0(v) 6= null,

we know h0(v) must be assigned at line 19. Due to property 2 of Lemma 32.4.6, h0(v) ∈ V1.

Suppose ∀v ∈ V, h(i−1)(v) 6= null, we have h(i−1)(v) ∈ Vi. For a vertex v with h(i)(v) 6= null,

according to the definition of h(i)(v), we know h(i−1)(v) 6= null. Let u = h(i−1)(v). u must

be a vertex in Gi by the induction hypothesis. Since h(i)(v) 6= null, we know hi(u) 6= null.

Thus, hi(u) must be assigned at line 19. Due to property 2 of Lemma 32.4.6, hi(u) must be

in Gi+1, which implies h(i)(v) ∈ Vi+1.

For property 2, we can also prove it by induction. It is true for i = −1. If (u, v) ∈ E,

then due to property 3 of Lemma 32.5.3, either both u, v are in V ′0 or both u, v are in V0 \V ′0 .

If both u, v are in V0 \ V ′0 , then h0(u) = h0(v) = null. Otherwise, if h0(u) 6= h0(v), then

due to property 3 of Lemma 32.4.6, (h0(u), h0(v)) ∈ E1. Now suppose we have ∀u, v ∈ V,

if h(i−1)(u) 6= h(i−1)(v), (u, v) ∈ E, then (h(i−1)(u), h(i−1)(v)) ∈ Ei. Let (u, v) ∈ E, h(i)(u) 6=

h(i)(v). Let x = h(i−1)(u), y = h(i−1)(v). Due to property 3 of Lemma 32.5.3, either both x, y
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are in V ′i or both are in Vi \ V ′i . If x, y ∈ Vi \ V ′i , then hi(x) = hi(y) = null which contradicts

to h(i)(u) 6= h(i)(v). Thus, both of x, y ∈ V ′i . Then due to property 3 of Lemma 32.4.6,

(hi(x), hi(v)) ∈ Ei+1. Thus, (h(i)(u), h(i)(v)) ∈ Ei+1.

For property 3, we can prove it by induction. It is true for i = −1. Let us consider

the case when i = 0. Due to property 3 of Lemma 32.4.6 and the definition of g0, g1, we have

∀(x, y) ∈ E1, (u, v) = g1(x, y), h0(u) = x, h0(v) = y, (u, v) ∈ E. Now suppose the property

holds for i− 1. Let (x, y) ∈ Ei+1. Then gi+1(x, y) = gi(x
′, y′) for some (x′, y′) ∈ Ei, hi(x′) =

x, hi(y
′) = y. Let (u, v) = gi(x

′, y′). By the induction hypothesis (u, v) ∈ E, h(i−1)(u) =

x′, h(i−1)(v) = y′. Thus, h(i)(u) = x, h(i)(v) = y.

Lemma 32.5.16. Let G = (V,E) be an undirected graph, m be a parameter which is at least

16|V |, and r be a rounds parameter. If SpanningForest(G,m, r) (Algorithm 32.11) does

not return FAIL, then ∀i ∈ {−1, 0} ∪ [r − 1], we can define

∀v ∈ V, h(i)(v) =





v i = −1

hi(h
(i−1)(v)) h(i−1)(v) 6= null

null otherwise.

Let ∀i ∈ {0} ∪ [r], Ĝi = (Vi, Êi = {(x, y) | (u, v) ∈ ⋃r−1
j=i Dj, h

(j−1)(u) = x, h(j−1)(v) = y}).

Then Ĝi is a spanning forest of Gi.

Proof. The proof is by induction. When i = r, since Vr = ∅, Ĝr = (∅, ∅) is a spanning

forest of Gr. Now suppose Ĝi+1 is a spanning forest of Gi+1. Let u, v ∈ Vi. By property 2, 3

of Lemma 32.5.15, we have Êi ⊆ Ei. Thus, if distGi(u, v) = ∞, then distĜi(u, v) = ∞. If

distGi(u, v) <∞, there are several cases:
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1. If hi(u) = hi(v) = null, then due to line 10, we know uu = uv, and T̃i(uv) is a

spanning tree of the component which contains u, v. Thus, Ĝi has a spanning tree of

the component which contains u, v.

2. If hi(u) = hi(v) 6= null, then pari : {x ∈ Vi | hi(x) = hi(v)} → {x ∈ Vi | hi(x) = hi(v)}

is a tree, and ∀y ∈ {x ∈ Vi | hi(x) = hi(v)}, if pari(y) 6= y, then (y, pari(y)) ∈ Êi.

Since Ĝi+1 does not have any cycle, there is a unique path from u to v in Ĝi.

3. If hi(u) 6= hi(v), then neither of them can be null. Since Ĝi+1 is a spanning forest on

Gi+1, there must be a unique path from hi(u) to hi(v) in Ĝi+1. Suppose the path in

Ĝi+1 is hi(u) = p1 − p2 − · · · − pt = hi(v). Then there must be a sequence of vertices

in Gi, u = p1,1, p1,2, p2,1, p2,2, · · · , pt,1, pt,2 = v such that hi(pj,1) = hi(pj,2) = pj and

(pj−1,2, pj,1) ∈ Êi. Thus, there is a unique path from u to v.

Thus, Ĝi is a spanning forest of Gi.

Corollary 32.5.17 (Correctness of Algorithm 32.11). Let G = (V,E) be an undirected graph,

m be a parameter which is at least 16|V |, and r be a rounds parameter. If SpanningForest(G,m, r)

(Algorithm 32.11) does not return FAIL, then Ĝ0 = (V, F ) is a spanning forest of G.

Proof. Just apply Lemma 32.5.16 for i = 0 case.

Lemma 32.5.18. Let G = (V,E) be an undirected graph, m be a parameter which is at least

16|V |, and r be a rounds parameter. If SpanningForest(G,m, r) (Algorithm 32.11) does
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not return FAIL, then ∀i ∈ {−1, 0} ∪ [r − 1], we can define

∀v ∈ V, h(i)(v) =





v i = −1

hi(h
(i−1)(v)) h(i−1)(v) 6= null

null otherwise.

∀i ∈ {0} ∪ [r − 1], v ∈ Vi with pari(v) 6= v, there exists (x, y) ∈ F such that h(i−1)(x) =

v, h(i−1)(y) = pari(v).

Proof. By line 11, line 19, ∀i ∈ {0}∪[r−1], v ∈ Vi, pari(v) 6= v, we have gi(v, pari(v)), gi(pari(v), v) ∈

Di ⊆ F. Since (pari(v), v) ∈ Ei, by property 3 of Lemma 32.5.15, (x, y) = gi(v, pari(v)) sat-

isfies h(i−1)(x) = v, h(i−1)(y) = pari(v).

Theorem 32.5.19 (Correctness of Algorithm 32.12). Let G = (V,E) be an undirected graph,

m be a parameter which is at least 16|V |, and r be a rounds parameter. If SpanningForest(G,m, r)

(Algorithm 32.11) does not return FAIL, then let the output be the input of Orientate(·),

(Algorithm 32.12) and the output par : V → V of Orientate(·) will be a rooted spanning

forest (See Definition 32.5.7) of G. Furthermore, dep(par) ≤ O(diam(G))r.

Proof. The proof is by induction. We want to show p̂ari is a rooted spanning forest of Gi.

When i = r, since Vr = ∅, the claim is true. Now suppose we have p̂ari+1 is a spanning

forest of Gi+1. Let G̃i+1 = (Ṽi+1, Ei+1). It is easy to see p̃ari+1 : Ṽi+1 → Ṽi+1 is a spanning

forest of G̃i+1. An observation is Ṽi+1 = {v ∈ Vi | pari(v) = v}. Thus, p̃ari+1, pari satisfies

the condition in Lemma 32.5.12 when invoking ForestExpansion(p̃ari+1, pari, fi+1). By

Lemma 32.5.18, we know fi+1 also satisfies the condition in Lemma 32.5.12 when we invoke

ForestExpansion(p̃ari+1, pari, fi+1). Thus, p̂ari is a rooted spanning forest of Gi due to

Lemma 32.5.12.
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By Lemma 32.5.12, we have dep(p̂ari) ≤ 16dep(p̂ari+1) diam(G). By induction, we

have dep(par) ≤ O(diam(G))r.

Lemma 32.5.20. Let G = (V,E) be an undirected graph, m be a parameter which is at least

16|V |, and r ≤ n be a round parameter. If SpanningForest(G,m, r) (Algorithm 32.11)

does not return FAIL, then with probability at least 0.89,
∑r

i=0 ni ≤ 40n.

Proof. Since Vr ⊆ Vr−1 ⊆ · · · ⊆ V0 = V, we have nr ≤ nr−1 ≤ nr−2 ≤ · · · ≤ n. Due

to line 14, line 15 and line 17, we know ∀i ∈ {0} ∪ [r − 1], Vi+1 = Li. If pi < 1/2, we

know pi = (30 log(n) + 100)/γi. Since |VT̃i(v)| ≥ γi, we can apply Lemma 32.4.3 to get

Pr(|Li| ≤ 1.5pini) ≥ Pr(|Li| ≤ 0.75ni) ≥ 1 − 1/(100n). By taking union bound over all

i ∈ {0} ∪ [r − 1], with probability at least 0.99, if pi < 0.5, then ni+1 ≤ 0.75ni. By applying

Lemma 32.4.4, condition on ni and pi = 1
2
, we have E(ni+1) ≤ 0.75ni. By Markov’s inequality,

with probability at 0.89, we have
∑r

i=0 ni ≤ 40n.

Now let us define the total iterations of Algorithm 32.11 as the following:

Definition 32.5.8 (Total iterations). Let graph G = (V,E), m ≤ poly(|V |) be a pa-

rameter which is at least 16|V |, and r be a rounds parameter. The total number of

iterations of SpanningForest(G,m, r) (Algorithm 32.11) is defined as
∑r−1

i=0 (ki + k′i),

where ∀i ∈ {0} ∪ [r − 1], ki denotes the number of iterations (See Definition 32.5.5) of

MultipleLargeTrees(Gi,m) (see line 8), and k′i denotes the number of iterations (See

Definition 32.4.5) of TreeContraction(G′i, pari) (see line 17).

Theorem 32.5.21 (Success probability of Algorithm 32.11). Let G = (V,E) be an undi-

rected graph. Let m ≤ poly(n) and m ≥ 16|V |. Let r be a rounds parameter. Let c > 0
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be a sufficiently large constant. If r ≥ c log logm/n n, then with probability at least 0.79,

SpanningForest(G,m, r) (Algorithm 32.11) does not return FAIL. Furthermore, let ∀i ∈

{0}∪[r−1], ki be the number of iterations (See Definition 32.5.5) of MultipleLargeTrees(Gi,m)

and k′i be the number of iterations (See Definition 32.4.5) of TreeContraction(G′i, pari :

V ′i → V ′i ). Let c1 > 0 be a sufficiently large constant. If m ≥ c1n log8 n, then with proba-

bility at least 0.99,
∑r−1

i=0 ki + k′i ≤ O(min(log(diam(G)) log logdiam(G)(n), r log(diam(G)))).

If m < c1n log8 n, then with probability at least 0.98,
∑r−1

i=0 k
′
i + ki ≤ O(min(log(diam(G))

log logdiam(G)(n) + (log log n)2, r log(diam(G)))).

Proof. Due to Lemma 32.5.20, with probability at last 0.89, we have ∀i ∈ [r], n′i ≤ 40n.

Thus, we can condition on that SpanningForest(G,m, r) will not fail on line 21.

Due to Lemma 32.5.6, ki ≤ O(log(diam(Gi))) ≤ O(log(diam(G))). Due to Corol-

lary 32.4.8 and Lemma 32.5.14, k′i ≤ O(log(diam(G))). Thus,
∑

i∈{0}∪[r−1] k
′
i+ki ≤ O(r log(diam(G))).

Since Vr ⊆ Vr−1 ⊆ Vr−2 ⊆ · · · ⊆ V0 = V, we have nr ≤ nr−1 ≤ nr−2 ≤ · · · ≤ n.

Due to line 14, line 15 and line 17, we know ∀i ∈ {0} ∪ [r − 1], Vi+1 = Li. If pi < 1/2,

we know pi = (30 log(n) + 100)/γi. Since |VT̃i(v)| ≥ γi, we can apply Lemma 32.4.3 to get

Pr(|Li| ≤ 1.5pini) ≥ 1 − 1/(100n). By taking union bound over all i ∈ {0} ∪ [r − 1], with

probability at least 0.99, if pi < 0.5, then ni+1 ≤ 1.5pini ≤ 0.75ni. Let E be the event that

∀i ∈ {0} ∪ [r − 1], if pi < 0.5, then ni+1 ≤ 1.5pini. Now, we suppose E happens.

If p0 = 0.5, then m ≤ n ·(600 log n)8. By applying Lemma 32.4.4, E(ni+1) = E(|Li|) ≤

0.75E(ni) ≤ · · · ≤ 0.75i+1n. By Markov’s inequality, when i∗ ≥ 8 log(6000 log n)/ log(4/3),

with probability at least 0.99, ni∗ ≤ n/(600 log n)8 and thus pi∗ < 0.5. Condition on this
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event and E, we have

nr ≤



(
n1.25
i∗

m0.25 (45 logn+150)

)1.25

m0.25 (45 log n+ 150)



···

· · · (Apply r′ = r − i∗ times)

= ni∗/(m/ni∗)
1.25r

′−1 · (45 log n+ 150)4·(1.25r
′−1)

≤ n/
(
m/
(
ni∗(45 log n+ 150)4

))1.25r
′−1

≤ n/
(
m/
(
ni∗(45 log n+ 150)4

))1.25r
′/2
≤ n/ (m/n)1.25r

′/2 ≤ 1/2,

where the second inequality follows by ni∗ ≤ n, the third inequality follows by r′ ≥ 5,

the forth inequality follows by ni∗ ≤ n/(600 log n)8, and the last inequality follows by

r′ ≥ 2
log 1.25

log logm/n(2n). Since 16n ≤ m ≤ n · (600 log n)8, log logm/n n = Θ(log log n).

Let c > 0 be a sufficiently large constant. Thus, when r ≥ c log logm/n n ≥ i∗ + r′ =

8 log(6000 log n)/ log(4/3) + 2
log 1.25

log logm/n(2n), with probability at least 0.98, nr = 0 im-

plies that SpanningForest(G,m, r) will not fail. Due to Lemma 32.5.6, we have ki ≤
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O(min(log(m/ni), log(diam(G)))). Thus,

r−1∑

i=0

ki

=
i∗∑

i=0

ki +
r−1∑

i=i∗+1

ki

≤ O
(
(log log n)2

)
+

r−1∑

i=i∗+1

ki

≤ O
(
(log log n)2

)
+

∑

i:i≥i∗+1,m/ni≤diam(G)

ki +
∑

i:i≤r,m/ni>diam(G)

ki

≤ O
(
(log log n)2

)
+O



dlog1.25 log2(diam(G))e∑

i=0

log(21.25i)


+O



dlog1.25 logdiam(G)(m)e∑

i=0

log(diam(G))




≤ O
(
(log log n)2

)
+O(log(diam(G))) +O(log(diam(G)) log logdiam(G)(n))

≤ O(log(diam(G)) log logdiam(G)(n) + (log log(n))2),

where the first inequality follows by i∗ = O(log log n) and ∀i ≤ [i∗],m/ni ≤ poly(log n), the

third inequality follows by m/ni+1 ≥ (m/ni)
1.25/(45 log n+100) ≥ (m/ni)

1.125. Due to Corol-

lary 32.4.8 and Lemma 32.5.14, we also have k′i ≤ O(min(log(m/ni), log(diam(G)))). Then,

by the same argument, we have
∑r−1

i=0 k
′
i = O(log(diam(G)) log logdiam(G)(n) + (log log(n))2).

If m > n · (600 log n)8, then ∀i ∈ {0} ∪ [r − 1], we have pi < 0.5. Since E happens.
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We have:

nr ≤

((
n1.25

m0.25 (45 logn+150)
)1.25

m0.25 (45 log n+ 150)

)···

· · · (Apply r times)

=
n1.25r

m1.25r−1
(45 log n+ 150)4·(1.25r−1)

= n/(m/n)1.25r−1 · (45 log n+ 150)4·(1.25r−1)

= n/
(
m/
(
n(45 log n+ 150)4

))1.25r−1

≤ n/
(
m/
(
n(45 log n+ 150)4

))1.25r/2

≤ n/
(
m/
(
n(200 log n)4

))1.25r/2

≤ 1

2
,

where the second inequality follows by r ≥ 5, the third inequality follows by 45 log n+ 150 ≤

200 log n, and the last inequality follows by

r ≥ c log logm/n n ≥ 2 log1.25 log(m/n)1/2 2n ≥ 2 log1.25 logm/(n(200 logn)4) 2n,

for a sufficiently large constant c > 0. Since nr is an integer, nr must be 0 when nr ≤ 1/2.

SpanningForest(G,m, r) will succeed with probability at least 0.99. Due to Lemma 32.5.6,

we have ki ≤ O(min(log(m/ni), log(diam(G)))). Thus,

r−1∑

i=0

ki ≤
∑

m/ni≤diam(G)

ki +
∑

m/ni>diam(G)

ki

≤ O



dlog1.25 log2(diam(G))e∑

i=0

log(21.25i)


+O



dlog1.25 logdiam(G)(m)e∑

i=0

log(diam(G))




≤ O(log(diam(G))) +O(log(diam(G)) log logdiam(G)(n)),
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where the second inequality follows by m/ni+1 ≥ (m/ni)
1.25/(45 log n + 100) ≥ (m/ni)

1.125.

Due to Corollary 32.4.8 and Lemma 32.5.14, we also have k′i ≤ O(min(log(m/ni), log(diam(G)))).

Then, by the same argument, we have
∑r−1

i=0 k
′
i = O(log(diam(G)))+O(log(diam(G)) log logdiam(G)(n)).
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32.6 Depth-First-Search Sequence for Tree and Applications
32.6.1 Lowest Common Ancestor and Multi-Paths Generation

Given a rooted forest induced by par : V → V which is a set of parent pointers (See

Definition 32.4.2) on V, and a set of q queries Q = {(u1, v1), (u2, v2), · · · , (uq, vq) | ui, vi ∈ V },

we show an algorithm which can return a mapping lca : Q→ (V ∪ {null})× (V ∪ {null})×

(V ∪{null}) such that ∀(ui, vi) ∈ Q, (p, pui , pvi) = lca(ui, vi) satisfies the following properties:

1. If par(∞)(ui) = par(∞)(vi), then p is the lowest ancestor of ui and vi. Otherwise

p = pui = pvi = null.

2. Suppose p 6= null. If p 6= ui, then pui is an ancestor of ui and part(pui) = p. Otherwise,

pui = null.

3. Suppose p 6= null. If p 6= vi, then pvi is an ancestor of vi and part(pvi) = p. Otherwise,

pvi = null.

Before we describe the algorithms, let us formally define ancestor and the lowest common

ancestor.

Definition 32.6.1 (Ancestor). Let par : V → V be a set of parent pointers (See Defini-

tion 32.4.2) on a vertex set V . For u, v ∈ V, if ∃k ∈ Z≥0 such that u = par(k)(v), then u is

an ancestor of v.

Definition 32.6.2 (Common ancestor and the lowest common ancestor). par : V → V be

a set of parent pointers (See Definition 32.4.2) on a vertex set V . For u, v ∈ V, if w is an

ancestor of u and is also an ancestor of v, then w is a common ancestor of (u, v). If a common
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ancestor w of (u, v) satisfies deppar(w) ≥ deppar(x) for any common ancestor x of (u, v), then

w is the lowest common ancestor (LCA) of (u, v).

Definition 32.6.3 (Path between two vertices). par : V → V be a set of parent pointers

(See Definition 32.4.2) on a vertex set V . For u, v ∈ V, if par(∞)(u) = par(∞)(v), then the

path from u to v is a sequence (x1, x2, · · · , xj, xj+1, · · ·xk) such that ∀i 6= i′ ∈ [k], xi 6=

xi′ , x1 = u, xk = v, xj is the lowest common ancestor of (u, v), ∀i ∈ [j − 1], part(xi) = xi+1,

and ∀i ∈ {j + 1, j + 2, · · · , k}, part(xi) = xi−1.

The algorithm which can compute the lowest common ancestor is described in Algo-

rithm 32.13.

Lemma 32.6.1. Let par : V → V be a set of parent pointers (See Definition 32.4.2) on

a vertex set V . Let Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} be a set of q pairs of vertices, and

∀i ∈ [q], ui 6= vi. Let lca = LCA(par, Q) (Algorithm 32.13). Then for any (u, v) ∈ Q,

(p, pu, pv) = lca(u, v) satisfies the following properties:

1. If par(∞)(u) 6= par(∞)(v), then p = pu = pv = null.

2. If u (or v) is the lowest common ancestor of (u, v), then p = u, pu = null, pv 6= u is an

ancestor of v such that part(pv) = u (or p = v, pv = null, pu 6= v is an ancestor of u

such that part(pu) = v.)

3. If neither u nor v is the lowest common ancestor of (u, v) and par(∞)(u) = par(∞)(v),

then p is the lowest common ancestor of (u, v), pu 6= p is an ancestor of u, pv 6= p is

an ancestor of v, and part(pu) = part(pv) = p.
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Proof. According to Lemma 32.5.7, r should be at most dlog(dep(par)+1)e, deppar : V → Z≥0

records the depth of every vertex in V, and ∀i ∈ {0} ∪ [r], v ∈ V gi(v) = par(2i)(v). Then

property 1 follows by line 5 directly.

Then for all (u, v) ∈ Q with par(∞)(u) = par(∞)(v), either (u, v) ∈ Q′ or (v, u) ∈ Q′.

For each (u, v) ∈ Q′, we have deppar(u) ≥ deppar(v). For all (u, v) ∈ Q′, with deppar(u) >

deppar(v), by induction we can prove that ∀i ∈ {0} ∪ [r − 1], (x, y) = hi(u, v) satisfies

that x is an ancestor of u, y = v, deppar(x) > deppar(v) and par(2i)(x) is an ancestor of

v. Thus, for (p, pu, pv) = lca(u, v), if v is the lowest common ancestor of u, then we have

p = v, pu = h0(u), pv = null. In this case, h0(u) is an ancestor of u, and deppar(u) =

deppar(v) + 1, part(h0(u)) = v. Thus, property 2 holds.

For all (u, v) ∈ Q with par(∞)(u) = par(∞)(v), if neither u nor v is the lowest common

ancestor of (u, v), then we know either (u, v) or (v, u) is in Q′′. Now let (u, v) ∈ Q′′. We have

deppar(h
′
r(u)) = deppar(h

′
r(v)), h′r(u) 6= h′r(v), and h′r(u), h′r(v) are ancestors of u, v respec-

tively. We can prove by induction to get ∀i ∈ {0} ∪ [r], h′i(u) 6= h′i(v) and par(2i)(h′i(u)) =

par(2i)(h′i(v)) is a common ancestor of (u, v). Thus, p = part(h′0(u)) = part(h′0(v)) is the

lowest common ancestor of (u, v), and deppar(h
′
0(u)) = deppar(h

′
0(v)) = deppar(p) + 1. Since

pu = h′0(u), pv = h′0(v), property 3 holds.

In Algorithm 32.14, we show a generalization of Algorithm 32.8 such that we can find

multiple vertex-to-ancestor paths simultaneously.

The following lemma claims the properties of the outputs of Algorithm 32.14. And

the proof is similar to the proof of Lemma 32.5.9.
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Lemma 32.6.2. Let par : V → V be a set of parent pointers (See Definition 32.4.2) on a

vertex set V. Let Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} ⊆ V ×V satisfy ∀j ∈ [q], vj is an ances-

tor (See Definition 32.6.1) of uj in par. Let (deppar, {Pj | j ∈ [q]}) = MultiPath(par, Q)

(Algorithm 32.14). Then deppar : V → Z≥0 records the depth of every vertex in V and

∀j ∈ [q], Pj ⊆ V is the set of all vertices on the path from uj to vj, i.e. Pj = {v ∈

V | ∃k1, k2 ∈ Z≥0, v = par(k1)(uj), vj = par(k2)(v)}. Furthermore, r should be at most

dlog(dep(par) + 1)e.

Proof. By Lemma 32.5.7, since (r, deppar, {gi | i ∈ {0} ∪ [r]}) = FindAncestors(par), we

know r should be at most dlog(dep(par) + 1)e, deppar : V → Z≥0 records the depth of every

vertex in V, and ∀i ∈ {0} ∪ [r], v ∈ V gi(v) = par(2i)(v).

For j ∈ [q], let us prove that Pj is the vertex set of all the vertices on the path from

uj to its ancestor vj. We use divide-and-conquer to get Pj. The following claim shows that

S
(i)
j is a set of segments which is a partition of the path from uj to vj, and each segment has

length at most 2r−i.

Claim 32.6.3. ∀i ∈ {0} ∪ [r], j ∈ [q] S
(i)
j satisfies the following properties:

1. ∃(x, y) ∈ S(i)
j such that x = uj.

2. ∃(x, y) ∈ S(i)
j such that y = vj.

3. ∀(x, y) ∈ S(i)
j , deppar(y)− deppar(x) ≤ 2r−i.

4. ∀(x, y) ∈ S(i)
j , if y 6= vj, then ∃(x′, y′) ∈ S(i)

j , x
′ = y.

5. ∀(x, y) ∈ S(i)
j , ∃k ∈ Z≥0, par(k)(x) = y.
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Proof. We fix a j ∈ [q]. Our proof is by induction. According to line 4, all the properties hold

when i = 0. Suppose all the properties hold for i− 1. For property 1, by induction we know

there exists (x, y) ∈ S(i−1)
j such that x = uj. Then by line 9 and line 10, there must be an

(x, y′) in S(i)
j . For property 2, by induction we know there exists (x, y) ∈ S(i−1)

j such that y =

vj. Thus, there must be an (x′, y) in S(i)
j . For property 3, if (x, y) is added into S(i)

j by line 10,

then deppar(x)−deppar(y) ≤ 2r−i. Otherwise, in line 9, we have deppar(x)−deppar(gr−i(x)) ≤

2r−i, deppar(gr−i(x))−deppar(y) ≤ 2r−i+1− 2r−i = 2r−i. For property 4, if (x, y) is added into

S
(i)
j by line 10, then by induction there is (y, y′) ∈ S(i−1)

j , and thus by line 10 and line 9, there

must be (y, y′′) ∈ S(i)
j . Otherwise, in line 9 will generate two pairs (x, gr−i(x)), (gr−i(x), y). For

(x, gr−i(x)), the property holds. For (gr−i(x), y), there must be (y, y′) ∈ Si−1 and thus there

should be (y, y′′) ∈ S(i). For property 5, since gr−i(x) = par(r−i)(x), for all pairs generated

by line 9 and line 10, the property holds.

By Claim 32.6.3, we know

S
(r)
j = {

(uj, part(uj)),

(
part(uj), par(2)(uj)

)
,

(
par(2)(uj), par(3)(uj)

)
,

· · · ,
(
par(deppar(uj)−deppar(vj)−1)(uj), par(deppar(uj)−deppar(vj))(uj)

)

} .

Thus, Pj is the set of all the vertices on the path from uj to an ancestor vj.
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32.6.2 Depth-First-Search Sequence for a Tree

Since we can use our spanning tree algorithm to get a rooted tree, in this section, we

only consider how to get a Depth-First-Search (DFS) sequence for a rooted tree. Before we

go to the details, let us firstly give formal definitions of some useful concepts.

Definition 32.6.4 (Children in the forest). Given a set of parent pointers (See Defini-

tion 32.4.2) par : V → V on a vertex set V . ∀u, v ∈ V, u 6= v if part(u) = v, then we

say u is a child of v. ∀v ∈ V, we can define childpar(v) as the set of all children of v, i.e.

childpar(v) = {u ∈ V | u 6= v, part(u) = v}. Furthermore, if u is the kth smallest vertex in the

children set childpar(v), then we say rankpar(u) = k, or u is the kth child of v. If part(v) = v,

then rankpar(v) = 1. We use childpar(v, k) to denote the kth child of v.

For simplicity of the notation, if par : V → V is clear in the context, we just use

child(v), rank(v) and child(v, k) to denote childpar(v), rankpar(v) and childpar(v, k) respec-

tively.

Definition 32.6.5 (Leaves in the forest). Given a set of parent pointers (See Definition 32.4.2)

par : V → V on a vertex set V . If childpar(v) = ∅, then v is called a leaf. The set of all the

leaves of par is defined as leaves(par) = {v | childpar(v) = ∅}.

Definition 32.6.6 (Subtree). Let par : V → V be a set of parent pointers (See Defini-

tion 32.4.2) on a vertex set V. Let v ∈ V, V ′ = {u ∈ V | v is an ancestor (Definition 32.6.1) of u}.

Let par′ : V ′ → V ′ be a set of parent pointers on V ′. If ∀u ∈ V ′ \ {v}, par′(u) = part(u),

and par′(v) = v, then we say par′ is the subtree of v in par. For u ∈ V ′, we say u is in the

subtree of v.
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Definition 32.6.7 (Depth-First-Search (DFS) sequence). Let par : V → V be a set of

parent pointers (See Definition 32.4.2) on a vertex set V. Let v be a vertex in V . If v is a leaf

(See Definition 32.6.5) in par, then the DFS sequence of the subtree (See Definition 32.6.6)

of v is (v). Otherwise the DFS sequence of the subtree of v in par is recursively defined as

(v, a1,1, a1,2, · · · , a1,n1 , v, a2,1, a2,2, · · · , a2,n2 , v, · · · , ak,1, ak,2, · · · , ak,nk , v),

where k = | child(v)| is the number of children (See Definition 32.6.4) of v, and ∀i ∈

[k], (ai,1, · · · , ai,ni) is the DFS sequence of the subtree of child(v, i), i.e. the ith child of

v.

If ∀u ∈ V, par(∞)(u) = v, then the subtree of v is exactly par, and thus the DFS

sequence of the subtree of v is also called the DFS sequence of par .

Here are some useful facts of the above defined DFS sequence.

Fact 32.6.4. Let par : V → V be a set of parent pointers (See Definition 32.4.2) on a

vertex set V , and par has a unique root. Let A = (a1, a2, · · · , am) be the DFS sequence (See

Definition 32.6.7) of par . Then, A satisfies the following properties:

1. ∀v ∈ V, v appears exactly | child(v)|+ 1 times in A.

2. If ai is the kth time that v appears, and aj is the (k + 1)th time that v appears. Then

(ai+1, ai+2, · · · , aj−1) is the DFS sequence of the subtree of child(v, k) (See Defini-

tion 32.6.4), the kth child of v. Furthermore, ai+1 is the first time that child(v, k)

appears, and aj−1 is the last time of child(v, k) appears.

3. If ai is the first time that v appears, and aj is the last time that v appears. Then

(ai, ai+1, · · · , aj) is the DFS sequence of the subtree of v.
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4. m = 2|V | − 1.

Proof. The property 1, 2, 3 directly follows by Definition 32.6.7.

For property 4, notice that ∀u ∈ V, part(u) 6= u, u can only be a child of part(u).

Thus,
∑

v∈V (| child(v)|+ 1) = |V | − 1 + |V | = 2|V | − 1.

Due to the above fact, if v is a leaf in par, then it will only once in the DFS sequence.

Thus, we are able to determine the order of all the leaves.

Definition 32.6.8 (The order of the leaves). Let par : V → V be a set of parent pointers (See

Definition 32.4.2) on a vertex set V , and par has a unique root. Let A = (a1, a2, · · · , am) be

the DFS sequence (See Definition 32.6.7) of par . Let u, v be two leaves (See definition 32.6.5)

of par . If u appears before v in A, then we say u <par v.

32.6.2.1 Leaf Sampling

Given a set of rooted trees, our goal is to sample a set of leaves for each tree, and to

give an order of those sampled leaves. The algorithm is shown in Algorithm 32.15.

Lemma 32.6.5. Let par : V → V be a set of parent pointers (See Definition 32.4.2) on

a vertex set V , and par has a unique root. Let m > 0, δ ∈ (0, 1) be parameters, and let

|V | ≤ m1/δ. Let (a1, a2, · · · , as) = LeafSampling(par,m, δ) (Algorithm 32.15). Then it

has following properties:

1. a1 <par a2 <par · · · <par as.

2. If |V | ≤ m or | leaves(par)| ≤ 8dm1/3e, then {a1, a2, · · · , as} = leaves(par). Otherwise,

with probability at least 1 − 1/(100m5/δ), ∀v ∈ leaves(par) \ {a1}, there is a vertex
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w ∈ {a1, a2, · · · , as} such that w <par v and the number of leaves between w and

v is at most | leaves(par)|/dm1/3e, i.e. |{u ∈ leaves(par) | w <par u <par v}| ≤

| leaves(par)|/dm1/3e.

3. If |V | > m and | leaves(par)| > 8dm1/3e, then with probability at least 1− 1/(100m5/δ),

s = |S| = |{a1, a2, · · · , as}| ≤ 960dm1/3e(1 + log(m)/δ).

Proof. Firstly, let us focus on property 1. According to line 11 to line 13 and Lemma 32.5.7,

we know ∀k ∈ Z≥0 rankpar(par(k)(a1)) = 1, and par′(a1) = a1 which implies that a1 is a

leaf. Due to the definition of 32.6.7, we know that a1 must be the first leaf appeared in the

DFS sequence of par . We can prove the property by induction. Suppose we already have

a1 <par a2 <par · · · <par ai−1. According to line 19 and Lemma 32.6.1, pai−1,ai is the LCA

of (ai−1, ai). pai−1ai,ai−1
is a child of pai−1,ai and is an ancestor of ai−1. pai−1ai,ai is a child of

pai−1,ai and is an ancestor of ai. By Fact 32.6.4, since rank(pai−1ai,ai−1
) < rank(pai−1ai,ai), we

have ai−1 <par ai. To conclude, we have a1 <par a2 <par · · · <par as.

For property 2, if |V | ≤ m or | leaves(par)| ≤ 8dm1/3e, then by line 6 and line 7, we

know {a1, a2, · · · , as} = leaves(par).

Now consider the case when |V | > m and | leaves(par)| > 8dm1/3e. Let t = dm1/3e. Let

leaves(par) = {u1, u2, · · · , uq}, and let u1 <par u2 <par · · · <par uq. Let us partition u1, · · · , uq
into 4·t groupsG1 = {u1, u2, · · · , ubq/(4t)c}, G2 = {ubq/(4t)c+1, ubq/(4t)c+2, · · · , u2·bq/(4t)c}, · · · , G4t =

{u(4t−1)bq/(4t)c+1, u(4t−1)bq/(4t)c+2, · · · , uq}. Then each group has size at least q/(8t) and at most
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q/(2t). For a certain Gi, by Chernoff bound, we have

Pr

(
|Gi ∩ S| ≤

1

2
· q

8t
· p
)

≤ exp

(
−1

8
· q

8t
· p
)

≤ 1/(100m10/δ)

where the last inequality follows by p = min(1, (10 + 10 log(m)/δ) · 64t/q). Notice that

q ≤ |V | ≤ m1/δ. We can take union bound over all Gi. Then with probability at least

1 − 1/(100m5/δ), ∀i ∈ [4t], Gi ∩ S 6= ∅. Thus, ∀v ∈ leaves(par), there is a vertex w ∈

{a1, a2, · · · , as} such that w <par v and the number of leaves between w and v is at most

| leaves(par)|/dm1/3e, i.e. |{u ∈ leaves(par) | w <par u <par v}| ≤ | leaves(par)|/dm1/3e.

For property 3, by applying Chernoff bound, we have

Pr

(
|S ∩ leaves(par)| ≥ 3

2
| leaves(par)| · p

)

≤ exp

(
− 1

12
· | leaves(par)| · p

)

≤ 1/(100m10/δ)

where the last inequality follows by p = min(1, (10 + 10 log(m)/δ) · 64t/| leaves(par)|).

Since 3
2
| leaves(par)| · p ≤ 960dm1/3e(1 + log(m)/δ), we complete the proof.

32.6.2.2 DFS Subsequence

Let par : V → V be a set of parent pointers on a vertex set V , and par has a unique

root v. Let {u1, u2, · · · , uq} = leaves(par), and u1 <par u2 <par · · · <par uq. One observation

is that the DFS sequence of par can be generated in the following way:
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1. The first part of the DFS sequence is the path from v to u1.

2. Then it follows by the path from part(u1) to the LCA of (u1, u2), the path from one of

the child of the LCA of (u1, u2) to u2, the path from part(u2) to the LCA of (u2, u3),

the path from one of the child of the LCA of (u2, u3) to u3, · · · , the path from one of

the child of the LCA of (uq−1, uq) to uq.

3. The last part of the DFS sequence is a path from part(uq) to v.

Fact 32.6.6. Let par : V → V be a set of parent pointers (See Definition 32.4.2) on a

vertex set V , and par has a unique root v. Let {u1, u2, · · · , uq} = leaves(par) (See Defini-

tion 32.6.5), and u1 <par u2 <par · · · <par uq. Let A = (a1, a2, · · · , am) be the DFS sequence

(See Definition 32.6.7) of par. Then,

1. If u1 appears at ai, then (a1, a2, · · · , ai) is the path from v to u1.

2. ∀i ∈ [q − 1], if ui appears at aj, and ui+1 appears at ak, then ∃j < t < k such that at

is the LCA of (ui, ui+1). In addition, (aj, aj+1, · · · , at) is the path from aj to at, and

(at, at+1, · · · , ak) is the path from at to ak.

3. If uq appears at ai, then (ai, ai+1, · · · , am) is the path from uq to v.

Proof. Property 1, 3 follows by the definition of DFS sequence (See Definition 32.6.7) and a

simple induction.

Now consider property 2. Since A is a DFS sequence, ∀l ∈ {j, j+1, · · · , k−1}, either

part(al) = al+1 or part(al+1) = al. Thus, the path between ui and ui+1 is a subsequence of
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(aj, aj+1, · · · , ak). If part(al+1) = al but al+1 is not on the path between ui and ui+1, then

there must be a leaf x in the subtree of al+1 which implies ui <par x <par ui+1, and thus

leads to a contradiction. If part(al) = al+1 but al+1 is not on the path between ui and ui+1,

then both ui and ui+1 should be in the subtree of al, and both of ui and ui+1 should be in

the DFS sequence of the subtree of al. But we know al+1 cannot be in the DFS sequence of

the subtree of al. This leads to a contradiction.

Lemma 32.6.7. Let par : V → V be a set of parent pointers (See Definition 32.4.2) on a ver-

tex set V , with a unique root. Let v ∈ V . Let V ′ = V \{u ∈ V | v is an ancestor (See Definition 32.6.1) of u}.

Let par′ : V ′ → V ′ satisfy ∀u ∈ V ′, par′(u) = part(u). Then the DFS sequence (See Defini-

tion 32.6.7) of par′ is a subsequence of the DFS sequence of par .

Proof. The proof follows by the property 3 of Fact 32.6.4 directly.

Corollary 32.6.8. Let par : V → V be a set of parent pointers (See Definition 32.4.2) on a

vertex set V , and par has a unique root. Let v1, v2, · · · , vt be t vertices in V . Let V ′ = V \{u ∈

V | ∃v ∈ {v1, · · · , vt}, v is an ancestor (See Definition 32.6.1) of u}. Let par′ : V ′ → V ′

satisfy ∀u ∈ V ′, par′(u) = part(u). Then the DFS sequence (See Definition 32.6.7) of par′ is

a subsequence of the DFS sequence of par .

Proof. The proof is by induction on t. When t = 1, then the statement is true by Lemma 32.6.7.

Suppose the statement is true for t−1. Let V ′′ = V \{u ∈ V | ∃v ∈ {v1, · · · , vt−1}, v is an ancestor of u},

and let par′′ : V ′′ → V ′′ satisfy ∀v ∈ V ′′, par′′(v) = part(v). By induction hypothesis, the

DFS sequence of par′′ is a subsequence of the DFS sequence of par. If one of the v1, · · · , vt−1

is an ancestor of vt, then par′ = par′′, thus, the DFS sequence of par′ is a subsequence of
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the DFS sequence of par. Otherwise, we have V ′ = V ′′ \ {u ∈ V ′′ | vt is an ancestor of u}.

By Lemma 32.6.7, the DFS sequence of par′ is a subsequence of the DFS sequence of par′′ .

Thus, the DFS sequence of par′ is a subsequence of the DFS sequence of par.

Lemma 32.6.9 (Removing several subtrees). Let par : V → V be a set of parent pointers

(See Definition 32.4.2) on a vertex set V , and par has a unique root. Let m > 0, δ ∈ (0, 1)

be parameters, and let |V | ≤ m1/δ. Let (V ′, A) = SubDFS(par,m, δ) (Algorithm 32.16).

Then ∀u ∈ V ′, we have part(u) ∈ V ′. Furthermore, with probability at least 1− 1/(100m5/δ),

∀u ∈ V \V ′, the number of leaves (See Definition 32.6.5) in the subtree (See Definition 32.6.6)

of u is at most b| leaves(par)|/dm1/3ec.

Proof. By Lemma 32.6.5, we know L ⊆ leaves(par), and l1 <par l2 <par · · · <par lt.

We first prove ∀u ∈ V ′, part(u) ∈ V ′. Our proof is by induction on the leaf li. By

Lemma 32.6.1, we have that ∀i ∈ [t−1], pli,li+1
is the LCA of (li, li+1), pi,li+1

is an ancestor of

li+1, and pi,li+1
6= pli,li+1

, part(pi,li+1
) = pli,li+1

. By Lemma 32.14, P1 contains all the vertices

on the path from l1 to the root v. P1 is the set of all the ancestors of l1. Thus, every ancestor

u of l1 is in P1 and satisfies part(u) ∈ V ′. P2 contains all the vertices on the path from

l1 to an ancestor of l1. Thus, P2 ⊆ P1. Suppose now P1 ∪ P2 ∪ · · · ∪ P2i−2 = {u ∈ V |

∃j ∈ [i − 1], u is an ancestor of lj}. Notice that P2i−1 contains all the vertices on the path

from li to the ancestor pi−1,li . Since part(pi−1,li) = pli−1,li is also an ancestor of li−1, we have

P1 ∪P2 ∪ · · · ∪P2i−2 ∪P2i−1 = {u ∈ V | ∃j ∈ [i], u is an ancestor of lj}. Since P2i contains all

the vertices on the path from li to an ancestor of li, we have P2i ⊆ P1∪P2∪· · ·∪P2i−2∪P2i−1.

To conclude, we have V ′ = P1 ∪ P2 ∪ · · · ∪ P2t = {u ∈ V | ∃j ∈ [t], u is an ancestor of lj}.

Thus, ∀u ∈ V ′, we have part(u) ∈ V ′.
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By Lemma 32.6.5, with probability at least 1 − 1/(100m5/δ), ∀u ∈ leaves(par) \

L, there exists w ∈ L,w <par u such that |{x ∈ leaves(par) | w <par x <par u}| ≤

b| leaves(par)|/dm1/3ec. In the following, we condition on the above event happens. Let

u ∈ V \ V ′. Due to Fact 32.6.4, the DFS sequence of the subtree of u in par must be a

consecutive subsequence of the DFS sequence of par . Thus, ∃x, y ∈ leaves(par), the leaves

in the subtree of u in par is the set {z ∈ leaves(par) | x <par z <par y} ∪ {x} ∪ {y}. If the

number of leaves in the subtree of u is more than b| leaves(par)|/dm1/3ec, then ∃li ∈ L, u is

an ancestor of leaf li. But li ∈ V ′ contradicts to u 6∈ V ′. Thus, the number of leaves in the

subtree of u is at most b| leaves(par)|/dm1/3ec.

Lemma 32.6.10 (A is a subsequence). Let par : V → V be a set of parent pointers (See

Definition 32.4.2) on a vertex set V , and par has a unique root. Let m > 0, δ ∈ (0, 1) be

parameters, and let |V | ≤ m1/δ. Let (V ′, A) = SubDFS(par,m, δ) (Algorithm 32.16). Then

A is a subsequence of the DFS sequence of par . Furthermore, ∀u ∈ V ′, u appears in A exactly

| childpar(u) + 1| times, and ∀u 6∈ V ′, u does not appear in A.

Proof. We first show that A′ is the DFS sequence of par′ .

Claim 32.6.11. A′ is the DFS sequence of par′ : V ′ → V ′.

Proof. By Lemma 32.6.5, we know {l1, l2, · · · , lt} = L ⊆ leaves(par), and l1 <par l2 <par

· · · <par lt. By Lemma 32.6.1, we have that ∀i ∈ [t− 1], pli,li+1
is the LCA of (li, li+1), pi,li+1

is an ancestor of li+1, and pi,li+1
6= pli,li+1

, part(pi,li+1
) = pli,li+1

. By Lemma 32.14, ∀i ∈ [t],

P2i−1 and P2i only contains some ancestors of li. Thus, leaves(par′) = L.

According to Lemma 32.6.9 and Corollary 32.6.8, the DFS sequence of par′ is a

subsequence of the DFS sequence of par . Thus, we still have l1 <par′ l2 <par′<par′ · · · <par′ lt.
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Due to Lemma 32.14, P1 contains all the vertices on the path from l1 to the root v, P2t

contains all the vertices on the path from lt to the root v, ∀i ∈ [t − 1], P2i contains all the

vertices on the path from par′(li) to the LCA of (li, li+1), and P2i+1 contains all the vertices

on the path from li+1 to pi,li+1
. Thus, A′1 is the path from the root v to leaf l1, A′2t is the

path from lt to the root v, ∀i ∈ [t − 1], A′2iA
′
2i+1 is the path from par′(li) to li+1. Due to

Fact 32.6.6, A′ = A′1A
′
2 · · ·A′2t is the DFS sequence of par′ .

Let us define some notations. Let Ã = {ã1, ã2, · · · , ãs̃} be the DFS sequence of par .

∀u ∈ V, let stÃ(u) = j such that ãj is the first time that u appears in Ã. We define edÃ(u)

be the position such that ãed
Ã

(u) is the last time that u appears in Ã. Similarly, ∀u ∈ V ′, we

can define stA′(u), stA(u), edA′(u), edA(u) to be the positions of the first time u appears in

A′, the first time u appears in A, the last time u appears in A′, and the last time u appears

in A respectively.

Since v is the root (in both par and par′), it suffices to prove that (astA(v), astA(v)+1, · · · , aedA(v))

is a subsequence of (ãst
Ã

(v), ãst
Ã

(v)+1, · · · , ãed
Ã

(v)). Our proof is by induction on deppar(u) for

u ∈ V ′. If deppar(u) = dep(par), then u must be a leaf in par′ (or par, since par′ and par are

the same on V ′). In this case, stA(u) = edA(u), stÃ(u) = edÃ(u), and (astA(u)) = (ãst
Ã

(u)) =

(u). Suppose for all u ∈ V ′ with deppar(u) > d, we have that (astA(u), · · · , aedA(u)) is a subse-

quence of (ãst
Ã

(u), · · · , ãed
Ã

(u)). Let u be a vertex in V ′ with deppar(u) = d. If u is a leaf, then

it is the same as the previous argument. Now let us consider the case when u is not a leaf.

According to Claim 32.6.11, A′ is the DFS sequence of par′ . Due to line 30, A is obtained by

duplicating each element of A′ several times. Let w1, w2, · · · , wk be the children of u in par′,

and rankpar′(w1) = 1, rankpar′(w2) = 2, · · · , rankpar′(wk) = | childpar′(u)|. Then, according to
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Fact 32.6.4, (astA(u), · · · , aedA(u)) should look like:

(u, · · · , u, astA(w1), · · · , aedA(w1), u, · · · , u, astA(w2), · · · , aedA(w2), · · · , astA(wk), · · · , aedA(wk), u, · · · , u)

where the number of u before astA(w1) is rankpar(w1) (see line 26), the number of u before

astA(wi) for i ∈ [k] \ {1} is rankpar(wi) − rankpar(wi−1) (see line 28), and the number of u

after aedA(wk) is | childpar(u)| − rankpar(wk) + 1 (see line 27). Since Ã is the DFS sequence

of par, according to Fact 32.6.4, the number of u in Ã before ãst
Ã

(w1) is rankpar(w1). By our

induction hypothesis, (astA(w1), · · · , aedA(w1)) is a subsequence of (ãst
Ã

(w1), · · · , ãed
Ã

(w1)). Thus,

(astA(u), · · · , aedA(w1)) is a subsequence of (ãst
Ã

(u), · · · , ãed
Ã(w1)

). According to Fact 32.6.4, ∀i ∈

[k] \ {1}, the number of u in Ã between ãed
Ã

(wi−1) and ãst
Ã

(wi) is rankpar(wi)− rankpar(wi−1).

By our induction hypothesis, for all i ∈ [k] \ {1}, (astA(wi), · · · , aedA(wi)) is a subsequence of

(ãst
Ã

(wi), · · · , ãed
Ã

(wi)). Thus, (astA(u), · · · , aedA(wk)) is a subsequence of (ãst
Ã

(u), · · · , ãed
Ã(wk)

).

According to Fact 32.6.4, the number of u in Ã after ãed
Ã

(wk) is | childpar(u)|−rankpar(wk)+1.

Thus, (astA(u), · · · , aedA(u)) is a subsequence of (ãst
Ã

(u), · · · , ãed
Ã(u)

). Furthermore, the number

of u appears in A is | childpar(u)| − rankpar(wk) + 1 + rankpar(w1) +
∑k

i=2 rankpar(wi) −

rankpar(wi−1) = | childpar(u)|+ 1.

Since A′ is the DFS sequence of par′, ∀u 6∈ V ′, u does not appear in A′. Thus, ∀u 6∈ V ′,

u does not appear in A.

32.6.2.3 DFS Sequence

In this section, we show how to use Algorithm 32.16 as a subroutine to output a DFS

sequence. The high level idea is that we use Algorithm 32.16 to generate subsequences of
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the DFS sequence in each iteration, and we ensure that the miss part of the DFS sequence

must be the DFS sequences of many subtrees. After the ith iteration, we should ensure

that the number of leaves of each subtree which has missing DFS sequence is at most n/mi,

where m is some parameter depends on some computational resources (e.g. memory size

of a machine). The description of the algorithm is shown in Algorithm 32.17. Figure 32.2

shows one step in our algorithm.

Theorem 32.6.12 (Correctness of DFS sequence). Let par : V → V be a set of parent

pointers (See Definition 32.4.2) on a vertex set V , and par has a unique root. Let n =

|V |,m = nδ for some constant δ ∈ (0, 1). If A = DFS(par,m) (Algorithm 32.17) does not

output FAIL, then A is the DFS sequence of par .

Proof. It suffices to prove the following claim.

Claim 32.6.13. Let i ∈ {0} ∪ [r]. Ai is a subsequence of the DFS sequence of par . ∀v ∈ Vi,

part(v) ∈ Vi. Furthermore, ∀v ∈ Vi, v appears in Ai exactly | childpar(v)| + 1 times, and

∀v 6∈ Vi, v does not appear in Ai.

Proof. Our proof is by induction on i. If i = 0, then by Lemma 32.6.10, A0 is a subsequence

of the DFS sequence of par, ∀v ∈ V0, v appears in A0 exactly | childpar(v)| + 1 times, and

∀v 6∈ V0, v does not appear in A0. By Lemma 32.6.9, we have ∀v ∈ V0, part(v) ∈ V0.

Suppose the claim is true for i− 1. Let u ∈ Vi.

If u ∈ Vi−1, then since Vi−1 ⊆ Vi, part(u) ∈ Vi. Otherwise u ∈ Vi,v for some v with

pari(v) = v. If u = v, then part(v) ∈ Vi−1 ⊆ Vi. Otherwise, by Lemma 32.6.9, part(u) ∈

Vi,v ⊆ Vi.
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Now consider the property of Ai. If u ∈ Vi−1, then since Ai−1 is a subsequence

of Ai, and by Lemma 32.6.10 u cannot appear in any Ai,v, u must appear in Ai exactly

| childpar(u)|+ 1 times. Otherwise u ∈ Vi,v for some v with pari(v) = v. By Lemma 32.6.10,

u must appear in Ai,v | childpari,v(u)| + 1 = | childpar(u)| + 1 times. Since u cannot appear

in Ai−1, u must appear in Ai exactly | childpar(u)| + 1 times. For v ∈ V ′i with pari(v) = v,

according to Fact 32.6.4 and ∀w ∈ {x ∈ V | v is an ancestor of x}, w cannot be in Vi−1, the

rankpar(v)th time appearance of v and the (rankpar(v) + 1)th time appearance of v should be

adjacent in Ai−1. Due to Lemma 32.6.10, Ai,v is a subsequence of the DFS sequence of the

subtree of v in par . Due to Fact 32.6.4, Ai is still a subsequence of the DFS sequence of par

after insertion of the sequence Ai,v.

For any x 6∈ Vi, by Lemma 32.6.10, x cannot be in any Ai,v. By our induction hy-

pothesis, x cannot be in Ai−1. Thus, x cannot be in Ai.

If the procedure does not output FAIL, then according to the above Claim 32.6.13,

∀v ∈ Vr = V, v appears in Ar = A exactly | childpar(v)|+1 times, and Ar = A is a subsequence

of the DFS sequence of par. Due to Fact 32.6.4, A = Ar is the DFS sequence of par.

The following lemma claims the success probability of Algorithm 32.17.

Theorem 32.6.14 (Success probability). Let par : V → V be a set of parent pointers (See

Definition 32.4.2) on a vertex set V , and par has a unique root. Let n = |V |,m = nδ

for some constant δ ∈ (0, 1). With probability at least 1 − 1/(100n4), A = DFS(par,m)

(Algorithm 32.17) does not output FAIL.
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Proof. ∀i ∈ [r], v ∈ V ′i with pari(v) = v, let Ei,v be the event that ∀u ∈ V ′i (v) \ Vi,v, the

number of leaves in the subtree of u in par is at most | leaves(pari,v)|/nδ/3. Notice that due

to Lemma 32.6.9, if pari(v) = v, then v will be in Vi. Thus, we use Ev to denote the event

Ei,v. By Lemma 32.6.9, Ev happens with probability at least 1− 1/(100n5). By taking union

bound over all v, with probability at least 1− 1/(100n4), all the events Ev will happen.

Claim 32.6.15. Condition on all the events Ev happen. ∀i ∈ [r], v ∈ V ′i with pari(v) = v,

we have | leaves(pari,v)| ≤ n/n(i−1)δ/3.

Proof. When i = 1, the claim is obviously true, since | leaves(pari,v)| ≤ n. Suppose the claim

holds for i − 1. Let v ∈ V ′i with pari(v) = v. There must be v′ ∈ V ′i−1 with pari−1(v′) = v′,

and v ∈ V ′i−1(v′) \ Vi−1,v′ . Since Ev′ happens, the number of leaves in the subtree of v in par

is at most | leaves(pari−1,v′)|/nδ/3 ≤ n/n(i−1)δ/3.

If V ′r 6= ∅, then ∃v ∈ V ′r with pari(v) = v and | leaves(pari,v)| ≥ 1. If all the events Ev

happens, it will contradict to Claim 32.6.15. Thus, if all the events Ev happens, V ′r must be

∅, and thus Vr = V which implies that the procedure will not fail.
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32.6.3 Range Minimum Query

Range Minimum Query (RMQ) problem is defined as following: given a sequence of n

numbers a1, a2, · · · , an, the goal is to preprocess the sequence a to get a data structure such

that for any query (p, q), (p < q) we can efficiently find the element which is the minimum

in ap, ap+1, · · · , aq. A classic method is to preprocess a sparse table f in log(n) number of

iterations such that ∀i ∈ [n], j ∈ [dlog ne] ∪ {0}, fi,j = arg mini≤i′≤min(n,i+2j−1) ai. To answer

query for (p, q), it just needs to return arg mini∈{fp,j∗ ,fq−2j
∗

+1,j∗} ai for j∗ = blog(q − p +

1)c. In this section, we firstly show a modified data structure. We will compute f̂i,j =

arg mini≤i′≤min(n,i+dnδej−1) ai′ The Algorithm is shown in Algorithm 32.18. Then we show

how to use f̂ to compute f in Algorithm 32.19.

Lemma 32.6.16. Let a1, a2, · · · , an be a sequence of numbers, and δ ∈ (0, 1). Let {f̂p,q}

be the output of SparseTable+(a1, a2, · · · , an, δ) (Algorithm 32.18). Then ∀p ∈ [n], q ∈

{0} ∪ [d1/δe], f̂p,q = arg minp≤p′≤min(n,i+dnδeq−1) ap′ .

Proof. The proof is by induction on q. When q = 0, the statement obviously holds for

all f̂p,0. Suppose all p ∈ [n], f̂p,0, f̂p,1, · · · , f̂p,q−1 satisfy the property. The first observa-

tion is that the value of f̂p,q will be assigned in the procedure when l = q, j = b(p −

1)/mc, i′ = (p − 1) mod m. Then by line 8, z∗j,l will be the position of the minimum value

in aj·m+m, aj·m+m+2, · · · , aj·m+ml−1 by our induction hypothesis. Then by line 11, f̂i+i′,l

will be the position of the minimum value in aj·m+i′+1, aj·m+i′+2, · · · , aj·m+i′+ml . Thus, Since

j ·m+ i′ + 1 = p, f̂p,q satisfies the property.
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Lemma 32.6.17. Let a1, a2, · · · , an be a sequence of numbers, and δ ∈ (0, 1). Let {fp,q}

be the output of SparseTable(a1, a2, · · · , an, δ) (Algorithm 32.19). Then ∀p ∈ [n], q ∈

{0} ∪ [dlog ne], fp,q = arg minp≤p′≤min(n,i+2q−1) ap′ .

Proof. Letm = dnδe. By Lemma 32.6.16, ∀x ∈ [n], y ∈ {0}∪[d1/δe], f̂x,y = arg minx≤x′≤min(n,i+my−1) ax′ .

Thus, by the definition of St, we know z∗j,t = arg minj·m+m+1≤z≤j·m+2t az. An observation is

that the value of fp,q will be assigned in the procedure when t = q, j = b(p−1)/mc, i′ = (p−1)

mod m. By line 23, we know

fp,q = fi+i′,t = arg min
z:i+i′+1≤z≤i+i′+2t

az = arg min
p≤p′≤min(n,i+2q−1)

ap′ .
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32.6.4 Applications of DFS Sequence

In this section, we briefly discuss some applications of the DFS sequence of a tree.

Since the DFS sequence of a subtree should be a continuous subsequence of the DFS

sequence of the tree, one direct application of the DFS sequence is to compute the size of

each subtree, i.e. for each subtree with root v, we can find the first place v appeared and

the last place v appeared, and then calculate the vertices between those two appearances.

Another application of the DFS sequence and the range minimum query is to output

a data structure which can answer any LCA query in O(1) time (for both sequential and

parallel). This is better than the data structure provided by Section 32.6.1 which needs

O(logD) time (for both sequential and parallel) to answer the query.

Since it is easy to output a data structure which can answer the depth of each vertex

in O(1) time (in both sequential and parallel), together with the lowest common ancestor

data structure, we can answer the query of the tree distance between any two vertices in

O(1) time (for both sequential and parallel).
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32.7 The MPC Model

In this section, let us introduce the computational model studied in this paper. Sup-

pose we have p machines indexed from 1 to p each with memory size s words, where n is the

number of words of the input and p · s = O(n1+γ), s = Θ(nδ). Here δ ∈ (0, 1) is a constant,

γ ∈ R≥0, and a word has Θ(log(s ·p)) bits. Thus, the total space in the system is only O(nγ)

factor more than the input size n, and each machine has local memory size sublinear in n.

When 0 ≤ γ ≤ O(1/ log n), the total space is just linear in the input size. The computation

proceeds in rounds. At the beginning of the computation, the input is distributed on the

local memory of Θ(n/s) input machines. Input machines and other machines are identical

except that input machine can hold a part of the input in its local memory at the beginning

of the computation while each of other machines initially holds nothing. In each round, each

machine performs computation on the data in its local memory, and sends messages to other

machines (including the sender itself when it wants to keep the data) at the end of the round.

Although any two machines can communicate directly in any round, the total size of mes-

sages (including the self-sent messages) sent or received of a machine in a round is bounded

by s, its local memory size. In the next round, each machine only holds the received messages

in its local memory. At the end of the computation, the output is distributed on the output

machines. Output machines and other machines are identical except that output machine

can hold a part of the output in its local memory at the end of the computation while each

of other machines holds nothing. We call the above model (γ, δ)−MPC model. The model

is exactly the same as the model MPC(ε) defined by [BKS13] with ε = γ/(1 + γ − δ) and

the number of machines p = O(n1+γ−δ). Since we care more about the total space used by

the algorithm, we use (γ, δ) to characterize the model, while in [BKS13] they use parameter
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ε to characterize the repetition of the data. The main complexity measure is the number of

rounds R required to solve the problem.
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32.7.1 Basic MPC Algorithms

Sorting One of the most important algorithms in MPC model is sorting. The following

theorem shows that there is an efficient sorting algorithm.

Theorem 32.7.1 ([GSZ11, Goo99]). Sorting can be solved in c/δ rounds in (0, δ) −MPC

model for any constant δ ∈ (0, 1), where c ≥ 0 is a universal constant. Precisely, there is

an algorithm A in (0, δ)−MPC model such that for any set S of n comparable items stored

O(nδ) per machine on input machines, A can run in c/δ rounds and leave the n items sorted

on the output machines, i.e. the ouput machine with smaller index holds a smaller part of

O(nδ) items.

Notice that for any δ′ ≥ δ, O(1) number of machines with Θ(nδ
′
) memory can always

simulate the computation of O(nδ
′−δ) number of machines with Θ(nδ) memory. Thus, if an

algorithm A can solve a problem in (γ, δ) − MPC model in R(n) rounds, then A can be

simulated in (γ′, δ′)−MPC model still in R(n) rounds with all γ′ ≥ γ, δ′ ≥ δ.

Indexing In the indexing problem, a set S = {x1, x2, · · · , xn} of n items are stored O(nδ)

per machine on input machines. The output is

S ′ = {(x, y) | x ∈ S, y − 1 is the number of items before x}

of n pairs stored O(nδ) per machine on output machines. Here, “an item x′ ∈ S is before

x ∈ S” means that x′ is held by a input machine with a smaller index, or x′, x are stored in

the same input machine but x′ has a smaller local memory address.
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Prefix sum In the prefix sum problem, a set S = {(x1, y1), (x2, y2), · · · , (xn, yn)} of n

(item, number) pairs are stored O(nδ) per machine on input machines. The output is

S ′ =



(x, y′)

∣∣∣∣ (x, y) ∈ S, y′ − y =
∑

(x̃,ỹ) is before (x,y)

ỹ





of n pairs stored O(nδ) per machine on output machines. Here, “an pair (x̃, ỹ) ∈ S is before

(x, y) ∈ S” means that (x̃, ỹ) is held by a input machine with a smaller index, or (x̃, ỹ), (x, y)

are stored in the same input machine but (x̃, ỹ) has a smaller local memory address. Notice

that indexing problem is a special case of prefix sum problem.

Theorem 32.7.2 ([GSZ11]). Indexing/prefix sum problem can be solved in c/δ rounds in

(0, δ)−MPC model for any constant δ ∈ (0, 1), where c ≥ 0 is a universal constant.

Once each item has an index, it is able to reallocate them onto the machines.

Load balance Sometimes, local computations of a machine may generate new data. When

some machines are not able to keep the new data generated, we need to do loading balance.

Fortunately, this operation can be done in constant number of rounds of computations.

For arbitrary constant δ ∈ (0, 1), we are able to spend constant number of rounds to

reallocate the data in (0, δ)−MPC model such that if a machine is not empty, the size of its

local data is at least nδ/k and is at most 2nδ/k where k > 1 is an arbitrary constant. The

method is very simple, we can use the algorithm mentioned in Theorem 32.7.2 to index each

data item, and then send them to the corresponding machine.
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Predecessor In the predecessor problem, a set S = {(x1, y1), (x2, y2), · · · , (xn, yn)} of n

(item, 0/1) pairs are stored O(nδ) per machine on input machines. The output machines

are all input machines. If an input (also output) machine holds a tuple (xi, yi) ∈ S at the

beginning of the computation, then at the end of the computation, that machine should still

hold the tuple (xi, yi). In addition, if an input (also output) machine holds a tuple (x, 0) ∈ S

at the beginning of the computation, then at the end of the computation, that machine

should hold a tuple (x, x′) such that (x′, 1) ∈ S, and (x′, 1) is the last tuple occurred before

(x, 0). Here, “(x′, 1) is before (x, 0)” means that (x′, 1) is held by a input machine with a

smaller index, or (x′, 1), (x, 0) are stored in the same input machine but (x′, 1) has a smaller

local memory address.

Theorem 32.7.3 ([GSZ11]). Predecessor problem can be solved in c/δ rounds in (0, δ)−MPC

model for any constant δ ∈ (0, 1), where c ≥ 0 is a universal constant.

Roughly speaking the algorithm is as the following: firstly, build a Θ(nδ) branching

tree on the machines, then follows by bottom-up stages to collect the last (xl, 1) tuple in

each large interval and then follows by top-down stages to compute the predecessors of every

prefix. For completeness, we describe the algorithm for predecessor problem in the following:
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Predecessor Algorithm:

• Setups:

– There are 2p = Θ(nδ) machines indexed from 1 to 2p each with local memory size
s = Θ(nδ). The machine with index from p+ 1 to 2p are input/output machines.

– (x1, y1), · · · (xn, yn) are stored on input/output machine p + 1 to 2p, where ∀i ∈
[n], yi ∈ {0, 1}.

– The goal: If an input machine holds a tuple (x, y) with y = 0, then it will create
a tuple (x, x′) at the end of the computation, where (x′, y′) is the last tuple with
y′ = 1 stored before (x, y).

• Bottom-up stage (O(1/δ) constant rounds):

– Let d = s/10 be the branching factor.

– In the ith round, each machine j with j in the range bp/di−1c + 1 to b(2p −
1)/di−1c+1 sends the last (xl, yl) tuple with yl = 1 in its local memory to machine
b(j − 1)/dc + 1. If machine j does not have any tuple with yl = 1, it just sends
an arbitrary tuple to machine b(j − 1)/dc+ 1.

– Until the end of the computation, machine j sends itself messages to keep the
data. The stage ends when machine 1 receives messages.

• Top-down stage (O(1/δ) constant rounds):

– Let d = s/10 be the branching factor.

– In the ith round, each machine j with j in the range bdi−2c + 1 to min(di−1, p)
sends to each machine h in the range (j − 1)d+ 1 to min(j · d, 2p) a tuple (xl, yl)
which is the last tuple with yl = 1 appeared before machine h.

– The stage ends when machine 2p receives messages.

• The last round:

– Machine i ∈ {p + 1, · · · , 2p} scans its local memory, for each tuple (x, y) with
y = 0, create a tuple (x, x′) where (x′, y′) is the last tuple stored before (x, y) with
y′ = 1.
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32.7.2 Data Organization

In this section, we introduce the method to organize the data in the system.

Set Let S = {x1, x2, · · · , xm} be a set of m items, and each item xi can be described by

O(1) number of words. If x ∈ S is equivalent to that there is a unique machine which holds

a pair (“S”, x) in its local memory, then we say that S is stored in the system. Here “S” is

the name of the set S and can be described by O(1) number of words.

Let S = {S1, S2, · · · , Sm} be a set of m sets, where ∀i ∈ [m], Si is stored in the

system, and the name “Si” of each set Si can be described by O(1) number of words. If

S ∈ S is equivalent to that there is a unique machine which holds a pair (“S”, “S”) in its

local memory, then we say S is stored in the system. Here “S” is the name of S and can be

described by O(1) number of words.

Let S be a set stored in the system. If machine i has a pair (“S”, x), then we say

that the element x of S is held by the machine i. If every element of S is held by a machine

with index in {i, i+ 1, · · · , j}, then we say S is stored on the machine i to the machine j.

The total space needed to store S is Θ(m).

Mapping Let f : U → H be a mapping from a finite set U to a set H. In the following,

we show how to use a set to represent a mapping.

Definition 32.7.1 (Set representation of a mapping). Let f : U → H be a mapping from

a finite set U to a set H. Let S = {(x, y) | x ∈ U, y = f(x)}. then the set S is a set

representation of the mapping f.
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Let U be a finite set where each element of U can be described by O(1) number of

words. Let S be a set representation of the mapping f : U → H. If S is stored in the system,

then we say f is stored in the system. If S is stored on the machine i to the machine j,

then f is stored on the machine i to the machine j. At any time of the system, there can be

at most one set representation S of f stored in the system. Furthermore, the name of S is

“f” which is the same as the name of mapping f , and can be described by O(1) number of

words.

The total space needed to store f is the total space needed to store S, and thus is

Θ(|U |).

Sequence Let A = (a1, a2, · · · , am) be a sequence of m elements. In the following, we

show how to use a set to represent a sequence.

Definition 32.7.2 (Set representation of a sequence). LetA = (a1, a2, · · · , am) be a sequence

of n elements. If a set S = {(x1, y1), (x2, y2), · · · , (xm, ym)} ⊆ R × {a1, a2, · · · , am} satisfies

x1 < x2 < · · · < xm, y1 = a1, y2 = a2, · · · , ym = am, then the set S is a set representation

of the sequence A. Furthermore, if x1 = 1, x2 = 2, · · · , xm = m, then S is a standard set

representation of A.

Let A be a sequence of elements where each element can be described by O(1) number

of words. Let S be a set representation of the sequence A. If S is stored in the system, then

we say A is stored in the system. If S is stored on the machine i to the machine j, then

A is stored on the machine i to the machine j. At any time of the system, there can be

at most one set representation S of A stored in the system. Furthermore, the name of S is
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“A” which is the same as the name of sequence A, and can be described by O(1) number of

words.

The total space needed to store A is the total space needed to store S, and thus is

Θ(m).
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32.7.3 Set Operations

In this section, we introduce some MPC model operations for sets.

Duplicates removing There are n tuples stored in the machines. But there are some

duplicates of them. The goal is to remove all the duplicates. To achieve this, we can just

sort all the tuples. After sorting, if a tuple is different from its previous tuple, then we keep

it. Otherwise, we remove the tuple.

Sizes of sets Suppose we have k sets S1, S2, · · · , Sk stored in the system. Our goal is to get

the sizes of all the sets. We can firstly sort all the tuples such that the tuples from the same

set are consecutive. Then we can calculate the index of each tuple. Every machine can scan

all the tuples in its local memory, if x is an element of set Si and has the smallest/largest

index y, then create a pair (“boundary of ‘Si’ ” , y). Then we sort all the created pairs, then

for each set Si, there are two pairs (“boundary of ‘Si’ ” , y1), (“boundary of ‘Si’ ” , y2) stored

on the same machine. Each machine can store its local memory. For each pair of tuples

(“boundary of ‘Si’ ” , y1), (“boundary of ‘Si’ ” , y2) with y1 < y2, the machine can generate a

new tuple (“f”, (“Si”, y2− y1 + 1)). Finally, there will be a mapping f stored in the system,

where f(Si) = |Si|. Thus, the total number of rounds is a constant.

Copies of sets Suppose we have k sets S1, S2, · · · , Sk stored in the system. Let s1, s2, · · · , sk ∈

Z≥1. If a machine holds an element x ∈ Si, then the machine knows the value of si. Our

goal is to create sets S1,1, S1,2, · · · , S1,s1 , S2,1, S2,2, · · · , S2,s2 , · · · , Sk,sk and make them stored

in the system, where Si,j is a copy of Si.
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The idea is very simple: for an element x ∈ Si, we need to make si copies (“Si,1”, x), (“Si,2”, x),

· · · , (“Si,si”, x) of tuple (“Si”, x). But the issue is that si may be very large such that it

is not able to generate all the copies of a tuple on a single machine. For the above reason,

we implement it in three steps: firstly we compute the new “position” of each original tuple

among all the copies, then send the original tuples to their new “positions”, and finally filling

the gap by generating copies between any two adjacent original tuples. Precisely, each ma-

chine can scan its local memory, and assign each tuple (“Si”, x) a weight si. Then we can use

prefix sum algorithm (See Theorem 32.7.2) to compute the prefix sum of each tuple (“Si”, x).

The prefix sum pos(“Si”, x) of a tuple (“Si”, x) denotes the new “position” of the last copy

of this tuple when all the copies are generated. Let n =
∑k

i=1 si · |Si|. Let machine 1 to t be

t empty machines each maintains s/10 “positions”, i.e. machine 1 has “positions” 1 to s/10,

machine 2 has “positions” s/10 + 1 to 2s/10, and so on. Let t · s/10 = Θ(n). The machine

which holds tuple (“Si”, x) sends the tuple (“Si”, x) to the “position” pos(“Si”, x) − si + 1,

and sends the tuple (“Si,si”, x) to the “position” pos(“Si”, x). Then each machine i ∈ [t]

scans its “positions”. If a “position” received a tuple, the machine marks that “position” as

“1”. Otherwise, the machine marks that position as “0”. Now we can apply the predecessor

algorithm (See Theorem 32.7.3) such that each empty “position” learns its predecessor tuple.

If the predecessor tuple of an empty “position” l is (“Si”, x), and the predecessor tuple is at

“position” l′, then create a tuple (“Si,l−l′”, x) at this empty position. Thus, at the end of all

the computations, S1,1, S1,2, · · · , S1,s1 , S2,1, S2,2, · · · , S2,s2 , · · · , Sk,sk are stored on the system.

Indexing elements in sets Suppose we have k sets S1, S2, · · · , Sk stored in the system.

The goal is to compute a mapping f such that ∀i ∈ [k], x ∈ Si, x is the f(Si, x)th element of
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Si.

To achieve this goal, we can sort (See Theorem 32.7.1) all the tuples such that the

elements from the same set are stored consecutively on several machines. Then we can run

indexing algorithm (See Theorem 32.7.2) to compute the global index of each tuple. In the

next, each machine scans its local data. If (“Si”, x) is in the local memory, and x is the

first element of Si, then the machine marks this tuple as “1”. For other tuples in the local

memory, the machine marks them as “0”. Then we can invoke predecessor algorithm (See

Theorem 32.7.3) on all the tuples. At the end of the computation, each machine scans its

all tuples. For a tuple (“Si”, x) with global index l, the machine determine the index of x in

Si based on the global index l′ of its predecessor (“Si”, x). Precisely, the machine creates a

tuple (“f”, ((“Si”, x), l− l′+ 1)) stored in the memory. Thus at the end of the computation,

the desired mapping f is stored in the system.

Set merging Suppose we need to merge several sets S1, S2, · · · , Sk stored on the system,

i.e. create a new set S =
⋃k
i=1 Si. To implement this operation, each machine scans its local

memory. If there is a tuple (“Si”, x) in its memory, then it creates a tuple (“S”, x). Finally,

we just need to remove all the duplicates.

Set membership Suppose we have k sets S1, S2, · · · , Sk stored in the system. There is an

another set Q = {(x1, y1), · · · , (xq, yq)} also stored in the system where xi is the name of a

set S, and yi is an item. The goal is to answer whether yi is in S.

To achieve this, we can firstly sort all the tuples. For tuple with form (“Si”, x), the

first key is Si, the second key is x, and the third key is −∞ which has the highest priority.
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For tuple with form (“Q”, (x, y)), the first key is x, the second key is y, and the third key is

∞ which has the lowest priority. The comparison in the sorting procedure firstly compare

the first key, then the second key, and finally the third key. After sorting, for each tuple

with form (“Si”, x), we mark it as “1”. For each tuple with form (“Q”, (x, y)), we mark it

as “0”. Now we can apply the predecessor algorithm (See Theorem 32.7.3). For each tuple

(“Q”, (x, y)), if its predecessor is (“S”, y) where x is the name of “S”, then we create a

tuple (“f”, ((x, y), 1)); Otherwise, we create a tuple (“f”, ((x, y), 0)). Thus, at the end of the

computation, there is a mapping f stored on the system such that for each (x, y) ∈ Q, if x

is the name of some set Si, and y ∈ Si, then f(x, y) = 1; Otherwise f(x, y) = 0.
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32.7.4 Mapping Operations

In this section, we introduce some MPC model operations for mapping. The most

important operation is called Multiple queries.

Multiple queries We have k sets S1, S2, · · · , Sk stored in the system. Without loss of

generality, S1, S2, · · · , St (t ≤ k) are sets representations of mappings (See Definition 32.7.1)

f1 : U1 → H1, f2 : U2 → H2, · · · , ft : Ut → Ht respectively. When a machine does local

computation, it may need to query some values which are in the form fi(u) for some u ∈ Ui.

The following lemma shows that we can answer all the such queries simultaneously in constant

number of rounds in (0, δ) −MPC model for all constant δ ∈ (0, 1). It means that we can

use constant number of rounds to simulate concurrent read operations on a shared memory

where S1, · · · , Sk are stored in the shared memory.

Lemma 32.7.4 (Multiple queries). Let δ ∈ (0, 1) be an arbitrary constant. There is a

constant number of rounds algorithm A in (0, δ)−MPC model which satisfies the following

properties. The input of A contains two parts. The first part are k sets S1, S2, · · · , Sk stored

(See Section 32.7.2 for data organization of sets) on the input machines, where S1, S2, · · · , St
(t ≤ k) are sets representations of mappings (See Definition 32.7.1) f1 : U1 → H1, f2 : U2 →

H2, · · · , ft : Ut → Ht respectively. The second part is a set

Q = {(x1, y1, z1), (x2, y2, z2), · · · , (xq, yq, zq)}

stored on the input machines, where ∀(x, y, z) ∈ Q, x is the name “fi” of the mapping fi

for some i ∈ [t], y is an element in Ui, and z is the index of the input machine which holds

the element (x, y, z) of Q. The total input size n = |Q| +∑k
i=1 |Si|. The output machines
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are all the input machines. ∀i ∈ [k], x ∈ Si, if the element x of Si is held by the input (also

output) machine j, then at the end of the computation, the element x of Si should still be

held by the output (also input) machine j. Let Q′ be the set {(x, y, z, w) | ∃(x, y, z) ∈ Q,w =

fi(y),where x is the name of fi}. At the end of the computation, Q′ is stored on the output

(also input) machines such that ∀(x, y, z, w) ∈ Q′, the element (x, y, z, w) of Q′ is held by

the machine z.

Proof. The idea is that we can firstly use sorting (See Theorem 32.7.1) to make queries and

the corresponding values be stored consecutively in several machines. The issue remaining

is that there may be many queries queried the same position such that some queries may

not be stored in the machine which holds the corresponding value. In this case, we need to

find the predecessor by invoking the algorithm shown in Theorem 32.7.3.

The Multiple queries algorithm is shown as the following:

2425



Multiple Queries Algorithm:

• Setups:

– There are 3p = Θ(nδ) machines indexed from 1 to 3p each with local memory size
s = Θ(nδ).

– The machine with index from 2p+ 1 to 3p are input/output machines.

– Sets S1, S2, · · · , Sk, Q are stored on machine 2p+ 1 to 3p. . Corresponding to
Lemma 32.7.4

• The first round:

– Machine i ∈ {2p+ 1, · · · , 3p} scans its local memory, and send all the tuples with
form (“fj”, (x, y)) or (“Q”, (x, y, z)) to machine i− p, where “fj” is the name of
fj (also Sj) for j ∈ [t]. Until the end of the computation, machine i sends itself
messages to keep its local data.

• Using constant number (O(1/δ)) of rounds to sort:

– Use machine 1 to 2p to sort all the tuples stored on machine p + 1 to 2p, and
thus at the end of this stage, machine p + 1 to 2p holds sorted tuples. For tuple
with the form (“fj”, (x, y)), the first key value is “fj”, the second key value is x
and the third key value is −∞ which is the highest priority. For tuple with form
(“Q”, (x, y, z)), the first key value is x, the second key value is y, and the third
key value is ∞ which is the lowest priority. The comparison in the sorting is:
Firstly compare the first key. If they are the same, then compare the second key.
If they are still the same, compare the third key.

• Using constant number (O(1/δ)) of rounds to find predecessors:

– Machine p+ 1 to 2p scans its local memory. For a tuple in the form (“fj”, (x, y)),
the machine marked it as “1”. For a tuple in the form (“Q”, (x, y, z)), the machine
marked it as “0”.

– Machine 1 to 2p together invoke the Predecessor algorithm (Theorem 32.7.3),
where the input is on machine p+ 1 to machine 2p.

• The last round:

– Machine p + 1 to 2p scans its local memory. For each tuple with form
(“Q”, (x, y, z)), it sends machine z a tuple (“Q′”, (x, y, z, w)), where x is the name
of fj, and w = fj(y).
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32.7.5 Sequence Operations

In this section, we introduce some MPC model operations for sequence.

Sequence standardizing Suppose there is a sequence A, and one of its set representation

(see Definition 32.7.2) S is stored in the system. The goal is to modify the set S such that

S is a standard set representation of A.

We can compute the index (see Indexing elements in sets in Section 32.7.3) of

elements in S. Then for each element (x, y) ∈ S, we can query (see Multiple queries

in Section 32.7.4) the index of (x, y) in S. Suppose the index is i, we modify the tuple

(“S”, (x, y)) to (“S”, (i, y)).

Sequence duplicating Suppose there is a sequence A = (a1, a2, · · · , as), and one of its

set representation (see Definition 32.7.2) S is stored in the system. Furthermore, there is a

mapping f : [s]→ Z≥0 which is also stored in the system. The goal is to get a set S ′ stored

in the system such that S ′ is a set representation of the sequence:

(a1, a1, · · · , a1︸ ︷︷ ︸
f(1) times

, a2, a2, · · · , a2︸ ︷︷ ︸
f(2) times

, · · · , as, as, · · · , as︸ ︷︷ ︸
f(s) times

).

Firstly, we can standardize (see the above paragraph Sequence standardizing)

the set S. Then for each tuple (“S”, (i, ai)), we create a tuple (“Si”, ai), and we can query

(see Multiple queries in Section 32.7.4) the value of f(i). Then we can copy (see Copies

of sets in Section 32.7.3) set Si f(i) times. For each tuple (“Si,j”, ai), we create a tu-

ple (“S ′”, ((i, j), ai)). Then we can compute the index (see Indexing elements in sets

in Section 32.7.3) of each element in S ′. For each tuple (“S ′”, ((i, j), ai)), we can query
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(see Multiple queries in Section 32.7.4) the index i′ of it, and then modify the tuple as

(“S ′”, (i′, ai)).

Sequence insertion Suppose there are k + 1 sequences A = (a1, a2, · · · , as), A1, · · · , Ak
which have sets representations (see Definition 32.7.2) S, S1, · · · , Sk respectively and stored

on the system. There is also a mapping f : [k] → {0} ∪ [s] stored on the system where

∀i 6= j ∈ [k], f(i) 6= f(j). The goal is to insert each sequence Ai into the sequence A, and Ai

should be between the element af(i) and af(i)+1.

Firstly, we can standardize (see Sequence standardizing in Section 32.7.3) S. Then

we can compute the total size (see Sizes of sets in Section 32.7.3)N = |S|+|S1|+· · ·+|Sk|+1.

For each tuple (“S”, (i, ai)), we can modify it as (“S”, (i·N, ai)). For each tuple (“Si”, (j, aij)),

we query (see Multiple queries in Section 32.7.4) the value of f(i), then create a tuple

(“S”, (f(i) ·N + j, aij)).
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32.7.6 Multiple Tasks

In this section, we show that if the entire computational tasks consist of some inde-

pendent small computational tasks, then we are able to schedule the machines such that the

small computational tasks can be computed simultaneously.

Task and multiple tasks problem A computational task here is running a specific

algorithm on specific input data.

There are k sets S1, S2, · · · , Sk stored in the system. Let n =
∑k

i=1 |Si| be the

total input size. There are h independent computational tasks T1, T2, · · · , Th. Each task Ti

needs to take some sets Si ⊆ {S1, S2, · · · , Sk} as its input, and is running a (γi, δi) −MPC

algorithm in ri rounds where γi ∈ R≥0, constant δi ∈ (0, 1). ∀i ∈ [h], let ni =
∑

S∈Si |S|

be the input size of task Ti. Without loss of generality, we can assume that the input of

different tasks are disjoint. Otherwise we can use sets copying technique (See Section 32.7.3)

to generate different copies of input sets for the tasks shared the same input set. The goal

here is to use the small number of rounds to finish all the tasks. Since we can always

use sorting and indexing to extract the desired input data. The most naive way is to

compute the tasks one-by-one. This can be trivially done in r = O(
∑h

i=1 ri) rounds in

(γ, δ) − MPC model for γ = logn(h) + maxi∈[h] γi, δ = maxi∈[h] δi. Here we show how to

compute all the tasks simultaneously in r = O(maxi∈[h] ri) rounds in (γ, δ)−MPC model for

γ = logn(m)− 1, δ = maxi∈[h] δi, where m = Θ(n+
∑h

i=1 n
1+γi
i ).

Each machine scans its local memory. If the machine holds a tuple (“Si”, x), and Si

is a part of input of task Tj, then it creates a tuple (“Wj”, (“Si”, x)). Thus, at the end of

this step, there are additional h sets W1,W2, · · · ,Wh stored in the system. Here Wi, i ∈ [h]
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contains all the information of input data of task Ti. Then we can compute a mapping

f such that ∀i ∈ [h], f(Wi) = |Wi| (see Section 32.7.3). Thus, we know the input size

of each task. Then each machine scans its local memory. If the machine holds a tuple

(“f”, (“Wi”, |Wi|)), then it creates a tuple (“Hi”, |Wi|), i.e. a set Hi = {|Wi|}. Then for

each set Hi = {|Wi|}, i ∈ [h], we can copy (see Section 32.7.3) it si = c · |Wi|1+γi times

for a sufficiently large c to get sets Hi,1 = Hi,2 = · · · = Hi,si = |Wi|. Each set Hi,j is just

a placeholder of one unit working space of the task Ti. Thus, the number of copies of the

set Hi is the total space needed for the task Ti. We can sort all the tuples (“Hi,j”, |Wi|) on

machines with index in I = {2, 5, 8, 11, · · · , 3p − 1}, where local memory s = Θ(nδ), total

required memory m = Θ(n +
∑h

i=1 n
1+γi
i ), and p = Θ(m/s) For each machine with index

q ∈ I, the tuples on that machine must be in the following form

(“Hi,j”, |Wi|), (“Hi,j+1”, |Wi|), · · · , (“Hi,si”, |Wi|), (“Hi+1,1”, |Wi+1|), · · · , (“Hi+1,si+1
”, |Wi+1|),

(“Hi+2,1”, |Wi+2|), · · · , (“Hi+2,si+2
”, |Wi+2|), · · · , (“Hi′,1”, |Wi′ |), · · · (“Hi′,j′”, |Wi′|).

Then machine q just sends all the tuples (“Hi,j”, |Wi|), (“Hi,j+1”, |Wi|), · · · , (“Hi,si”, |Wi|) to

machine q − 1, and sends all the tuples (“Hi′,1”, |Wi′|), (“Hi′,2”, |Wi′|), · · · (“Hi′,j′”, |Wi′|) to

machine q + 1. Thus, ∀i ∈ [h],

1. either all the Hi,1, Hi,2, · · · , Hi,si are stored on consecutive machines, machine q to

machine q′, and any of machine q to machine q′ does not hold other tuples,

2. or there is a unique machine q which holds all the sets Hi,1, Hi,2, · · · , Hi,si .

For each machine q ∈ [3p], ifHi,1 is held by machine q, then it creates a tuple (“ st ”, (“Ti”, q)).

If Hi,si is held by machine q, then it creates a tuple (“ ed ”, (“Ti”, q)). The mapping st, ed
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then are stored in the system, where st(Ti) is the index of the first machine assigned to

task Ti, and ed(Ti) is the index of the last machine assigned to task Ti. Recall that Wi

contains all the information of the input data to task Ti. The remaining task is to move

the input data of task Ti to the machines with index from st(Ti) to ed(Ti). According to

Section 32.7.3, we can compute a mapping f ′, such that f ′(Wi, x) records the index of x ∈ Wi

in set Wi. Now, each machine scans its local memory. For each tuple (“Wj”, (“Si”, x)), the

machine needs to query the value of f ′(Wj, (“Si”, x)), the value of st(Tj) and the value of

ed(Tj). By Lemma 32.7.4, these queries can be handled simultaneously in constant number

of rounds. Then the machine can send the tuple (“Si”, x) to the corresponding machine

based on the value of f ′(Wj, (“Si”, x)), st(Tj), and ed(Tj). Finally, ∀i ∈ [h], since δ ≥ δi

and (ed(Ti) − st(Ti) + 1) · s = Θ(n1+γi
i ), the machines with index from st(Ti) to ed(Ti) can

simulate task Ti in ri number of rounds.
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32.8 Implementations in MPC Model

In this section, we show how to implement all the previous batch algorithms in MPC

model.

32.8.1 Neighbor Increment Operation

Lemma 32.8.1. Let graph G = (V,E), n = |V |, N = |V | + |E| and m = Θ(Nγ) for some

arbitrary γ ∈ [0, 2]. NeighborIncrement(m,G) (Algorithm 32.1) can be implemented in

(γ, δ) −MPC model for any constant δ ∈ (0, 1). Furthermore, the parallel running time is

O(r), where r is the number of iterations (see Definition 32.4.1) of NeighborIncrement(m,G).

Proof. To implement line 7, we can create a tuple (“S
(0)
v ”, u) for each tuple (“E”, (v, u)).

Then for each (“S
(0)
v ”, u) we can compute the index (see Indexing elements in sets and

Multiple queries) of u in set S(0)
v . If the index of u in set S(0)

v is at least d(m/n)1/2e, then

delete u from S
(0)
v , i.e. delete the tuple (“S

(0)
v ”, u).

Now let us discuss how to implement line 14 and line 17 in the ith iteration. Firstly,

we can compute the size of every set stored in the system (see Sizes of sets). Then for each

tuple (“S
(i−1)
v ”, u), the corresponding machine queries (see Multiple queries) the size of

S
(i−1)
u . If |S(i−1)

u | ≥ d(m/n)1/2e, then create a tuple (“tempiv”, u).We can index (see Indexing

elements in sets) all the elements in set tempiv, and only keep the element with index 1.

Thus, tempiv has a only element u, and we need to create a set S(i)
v = S

(i−1)
u . Notice that

there may be many v ∈ V which needs need to implement S(i)
v = S

(i−1)
u . Thus, for each

tuple (“tempiv”, u), we create a tuple (“targetiu”, v). v ∈ targetiu means that S(i)
v needs a copy

of S(i−1)
u . Thus, |targetiu| means that S(i−1)

u needs to copy |targetiu| times. For each tuple
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(“S
(i−1)
u ”, x), the machine queries (see Multiple queries) the size of targetiu. Then each

set S(i−1)
u can be copied (see Copies of sets) |targetiu| times. For each tuple (“targetiu”, v),

we query (see Multiple queries) the index (see Indexing elements in sets) of v in

set targetiu, and then create a tuple (“f i”, ((“targetiu”, x), v)), where x is the index of v in

targetiu. Thus f i is a mapping such that f i(targetiu, x) is the xth element in targetiu. For

each tuple (“S
(i−1)
u,j ”, x), we query (see Multiple queries) the value v = f i(targetiu, j), and

then create a tuple (“S
(i)
v ”, x), and a tuple (“S

(i)
v ”, v). We then remove the duplicates (see

Duplicates removing) of elements of for every set S(i)
v . For each tuple (“tempiv”, u), query

(seeMultiple queries) the size (see Sizes of sets) of S(i)
v and S(i−1)

u . If |S(i)
v | > |S(i−1)

u |, then

we create a tuple (“gi”, (v, (u, “delete”))); Otherwise, create a tuple (“gi”, (v, (u, “keep”))).

Finally, for each tuple (S
(i)
v , x), we query (see Multiple queries) (u, o) = gi(v), if u = x

and o = “delete", the machine deletes the tuple (S
(i)
v , x).

Next, let us discuss how to implement line 20. Similar as before, we can compute the

size of every set stored in the system (see Sizes of sets). Then for each tuple (“S
(i−1)
v ”, u),

the corresponding machine queries (see Multiple queries) the size of S(i−1)
u . If |S(i−1)

u | ≥

d(m/n)1/2e, then create a tuple (“tempiv”, u). For each tuple (“V ”, v), we can create a tuple

(“tempiv”, null). Then for each tuple (“V ”, v) we can query (see Multiple queries) the size

(see Sizes of sets) of tempiv. If |tempiv| = 1, then we create a tuple (“f ′i”, 1); Otherwise, we

create a tuple (“f ′i”, 0). Thus, mapping f ′i is stored in the system, and f ′i(v) = 1 if and only

if ∀u ∈ S
(i−1)
v , |S(i−1)

u | < d(m/n)1/2e. For each tuple (“S
(i−1)
v ”, u), we query (see Multiple

queries) the value f ′i(v). If f ′i(v) = 1, we create a tuple (“targetiu”, v). Thus, v ∈ targetiu

means that S(i−1)
u should be a part of S(i)

v . |targetiu| means that S(i−1)
u needs to copy |targetiu|

times. For each tuple (“S
(i−1)
u ”, v), we query (see Multiple queries) the size (see Sizes of
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sets) of targetiu. Then we can copy (see Copies of sets) each set S(i−1)
u |targetiu| times. Then

for each tuple (“targetiu”, v), we can query (seeMultiple queries) the index x (see Indexing

elements in sets) of v in set targetiu, and then create a tuple (“f i”, ((“targetiu”, x), v)) which

means that the xth element of targetiu is f i(targetiu, x) = v. For each tuple (“S
(i−1)
u,j ”, x), we

query (seeMultiple queries) the value v = f i(targetiu, j), and then create a tuple (“S
(i)
v ”, x).

We then remove the duplicates (see Duplicates removing) of elements of for every set S(i)
v .

Finally, let us consider how to implement line 24. It is very simple, we only need

to query the sizes of sets. For each tuple (“V ”, v), query (see Multiple queries) the size

(see Sizes of sets) of S(i)
v and S(i−1)

v , if v satisfies the condition, create a tuple (“Done”, v).

Every machine queries (see Multiple queries) the size (see Sizes of sets) of Done. If it is

|V |, then all the machines know that they finish the loop. In the end, for each tuple (S
(r)
v , u)

we create tuples (“E ′”, (u, v)), (“E ′”, (v, u)), and for each tuple (“E”, (u, v)) we create tuple

(“E ′”, (u, v)). Then we then remove the duplicates (see Duplicates removing) of elements

of E.

In the ith iteration, we only need to maintain sets V,E, S(i−1)
v . Since all the copy

operation will create at most n · (m/n)1/2 · (m/n)1/2 = m tuples, the total space needed

is Θ(m) plus the space needed to maintain V,E, S
(i)
v . By Property 4 of Lemma 32.4.1,

|S(i)
v | ≤ m/n. Thus, the total space is Θ(m) + |V |+ |E|+∑v∈V |S

(i)
v | = Θ(m) +N = Θ(m).

The above implementation shows that the parallel time is O(r), where r is the number

of iterations (see Definition 32.4.1).
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32.8.2 Tree Contraction Operation

In this section, we show how to implement Algorithm 32.2 in MPC model.

Lemma 32.8.2. Let graph G = (V,E) and par : V → V be a set of parent points (see

Definition 32.4.2) on the vertex set V . TreeContraction(G, par) (Algorithm 32.2) can

be implemented in (0, δ) − MPC model for any constant δ ∈ (0, 1). Furthermore, the par-

allel running time is O(r), where r is the number of iterations (see Definition 32.4.5) of

TreeContraction(G, par).

Proof. Let N = |V |+ |E|. Then the total space is Θ(N).

Initially, each machine scans its local memory. If there is a tuple (“V ”, v), then it

queries the value of part(v). It needs O(1) parallel time to answer all the queries (see Multiple

queries in Lemma 32.7.4). Then the machine creates a tuple (“g(0)”, (v, part(v))). Thus, in

the initialization stage, mapping g(0), par, set V,E are stored in the system.

In the lth iteration, Each machine scans its local memory. If there is a tuple (“V ”, v),

then it queries the value of g(l−1)(v). This can be done by Multiple queries. Then it queries

the value of part(g(l−1)(v)). This can also be done by Multiple queries. If part(g(l−1)(v)) =

g(l−1)(v), it creates a tuple (“Done”, v). Then the machines can compute the sizes (see Sec-

tion 32.7.3) of V and Done. Each machine queries the size of V and Done. This can be done

by Multiple queries. Then if |V | = |Done|, every machine knows that the iterations are fin-

ished. Otherwise, the machine which holds (“V ”, v) queries the value of g(l−1)(g(l−1))(v). This

can be done by Multiple queries. And then it creates a tuple (“g(l)”, (v, g(l−1)(g(l−1))(v))).

At the end, if a machine holds a tuple (“V ”, v), then the queries part(v). If v =

2435



part(v), it creates a tuple (“V ′”, v). If a machine holds a tuple (“E”, (u, v)), then it queries

g(r)(u), g(r)(v), and creates a tuple (“E ′”, (g(r)(u), g(r)(v))).

Since at the end of each iteration l, the system only stores mappings par : V → V, g(r) :

V → V, and sets V,E, the total space used is at most O(N). Thus, we can implement the

algorithm in (0, δ)−MPC model.

The total parallel time is O(r). By Corollary 32.4.8, r = O(dep(par)). Thus, the total

parallel time is O(dep(par)).
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32.8.3 Graph Connectivity

Theorem 32.8.3. Let graph G = (V,E), n = |V |, N = |V | + |E| and m = Θ(Nγ) for

some arbitrary γ ∈ [0, 2]. Let r > 0 be a round parameter. Connectivity(G,m, r) (Al-

gorithm 32.3) can be implemented in (γ, δ) −MPC model for any constant δ ∈ (0, 1). Fur-

thermore, the parallel running time is O(R), where R is the total number of iterations (see

Definition 32.4.6) of Connectivity(G,m, r).

Proof. Initially, we store sets V0, E0, V, E and mapping h0 in the system. Now consider

the ith round. Due to Lemma 32.8.1, line 9 can be implemented in total space Θ(m) and

with O(ki) parallel time, where ki is the number of iterations (See Definition 32.4.1) of

NeighborIncrement(m,Gi−1). To store V ′i and E ′i, we need total space Θ(m). Line 10

can be implemented by operations described in Sizes of sets and Multiple queries (see

Section 32.7). Line 11 can be implemented by the operations described in Set membership

andMultiple queries. To implement line 14, for each tuple (“V ′′i ”, v), we can create a tuple

(“li”, (v, x)) where x = 1 with probability pi, x = 0 with probability 1 − pi. To calculate

pi, the machine only needs to know ni−1. This can be done by the operations described in

Sizes of sets andMultiple queries. Line 15 and line 16 can be implemented by operations

described in Set membership and Multiple queries. For line 17, set Li ∩ (ΓG′i(v) ∪ {v})

can be computed by operations described in Set membership and Multiple queries.

Then, by operations in Indexing elements in sets and Multiple queries, we can get

minu∈Li∩(ΓG′
i
(v)∪{v}) u. Finally, by operation described in Multiple queries, ∀v ∈ V ′′i with

v 6∈ Li, the tuple (“ pari ”, (v, x)) can be created, where x = minu∈Li∩(ΓG′
i
(v)∪{v}) u. Due to

Lemma 32.8.2, line 18 can be implemented in total Θ(m) space and O(r′i) parallel running
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time, where r′i is the number of iterations (see Definition 32.4.5) of TreeContraction(G′′i , pari).

Line 21 can be implemented by operations in Set membership, Indexing elements in

sets andMultiple queries. Line 22 can be implemented by operations in Set membership

andMultiple queries. Line 23 can be implemented by Multiple queries. For other v ∈ V

with hi(v) = null assigned by line 8, we can use the operations in Set membership and

Multiple queries to find those v, and create a tuple (“hi”, v, null).

Thus, in the ith round, the parallel time needed is O(ki + r′i). At the end of the ith

round, we only need to keep sets Vi, Ei, V, E and mapping hi in the system. It will take total

space at most O(m).

Due to Lemma 32.8.2, line 26 can be implemented in at most O(m) total space and

O(log r) parallel time.

Thus, the total parallel time is O(log r +
∑r

i=1(ki + r′i)) = O(
∑r

i=1(ki + r′i)). By

definition 32.4.6, the total parallel time is O(R), where R is the total number of iterations of

Connectivity(G,m, r). The total space in the computation is always at most Θ(m).

Here, we are able to conclude the following theorem for graph connectivity problem.

Theorem 32.8.4. For any γ ∈ [0, 2] and any constant δ ∈ (0, 1), there is a randomized

(γ, δ) − MPC algorithm (see Algorithm 32.3) which can output the connected components

for any graph G = (V,E) in O(min(logD · log(1/γ′), log n)) parallel time, where D is the

diameter of G, n = |V |, N = |V |+ |E| and γ′ = (1 + γ) logn
2N

n1/(1+γ) . The success probability

is at least 0.98. In addition, if the algorithm fails, then it will return FAIL.

Proof. The implementation of Algorithm 32.3 in MPC model is shown by Theorem 32.8.3.

2438



The correctness of Algorithm 32.3 is proved by Theorem 32.4.9. The total parallel time of

Algorithm 32.3 is proved by Theorem 32.4.15.
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32.8.4 Algorithms for Local Shortest Path Trees

In this section, we mainly explained how to implement local shortest path tree algo-

rithms described in Section 32.5.1 and Section 32.5.2.

Lemma 32.8.5. Let G = (V,E) be an undirected graph, s1, s2 ∈ Z≥0, and v ∈ V. Let

T̃ = (VT̃ , parT̃ ) with root v and radius s1 be a local complete shortest path tree (see Defini-

tion 32.5.3) in G, and depT̃ : VT̃ → Z≥0 be the depth of every vertex in T̃ . ∀u ∈ VT̃ , let

T (u) with root u and radius s2 be a local complete shortest path tree in G, and depT (u) :

VT (u) → Z≥0 be the depth of every vertex in T (u). Then TreeExpansion(T̃ , depT̃ , {T (u) |

u ∈ VT̃}, {depT (u) | u ∈ VT̃}) (Algorithm 32.4) can be implemented in (0, δ) −MPC model

for any constant δ ∈ (0, 1) in O(1) parallel time.

Proof. For line 3, we apply operation shown in Copies of sets to copy each VT (u), then

we can merge (see Set merging) all the copies to get VT̂ . To implement line 4 and line 5,

we only need to apply the operation shown in Multiple queries. To implement line 6, for

each tuple (“VT (u)”, x), we can firstly check whether x ∈ VT̂ \ VT̃ by operations described in

Set membership and Multiple queries. If x ∈ VT̂ \ VT̃ , then we can query the values

of depT̃ (u) and depT (u)(x) by operations shown in Multiple queries. Then we create a

tuple (“tempx”, (depT̃ (u) + depT (u)(x), u)). By Indexing elements in sets and Multiple

queries, we can find the element with the smallest index in set tempx, and thus that element

is (depT̃ (ux) + depT (ux)(x), ux). Finally, the remaining things in line 6 and line 7 can be done

by the operations described by Multiple queries.

For all the operations, the total space is always linear. The parallel time needed for

the above operations is also a constant.
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Lemma 32.8.6. Let graph G = (V,E), n = |V |, N = |V | + |E| and m = Θ(Nγ) for some

arbitrary γ ∈ [0, 2]. MultiRadiusLCSPT(G,m) (Algorithm 32.5) can be implemented in

(γ, δ) −MPC model for any constant δ ∈ (0, 1). Furthermore, the parallel running time is

O(r), where r is the number of iterations (see Definition 32.5.4) of MultiRadiusLCSPT(G,m).

Proof. To implement line 4 to line 6, we can scan all the tuples (“E”, (u, v)), then query

the size of {v} ∪ ΓG(v) and the size of {u} ∪ ΓG(u), where these operations are described in

Sizes of sets and Multiple queries. Then based on the sizes, we decide whether we need

to create the corresponding tuples for VT0(v), VT0(u), parT0(u), part(T0(v)).

Now consider the main loop. We focus on the ith round. Line 12 can be implemented

by the operation described in Multiple queries. To implement line 13, for each tuple

(“VTi−1(v)”, u), we can query (see Multiple queries) whether Ti−1(u) is null. If Ti−1(u) is

null, then we create a tuple (“tempv”, u). Then for each tuple (“V ”, v), we can query the

size of tempv by operations described in Sizes of sets and Multiple queries. If the size

is not 0, then Ti(v) must be null. Line 15 can be implemented by coping input for different

tasks and running tasks in parallel, where it only needs operations shown in Copies of sets,

Multiple queries and Multiple Tasks (see Section 32.7.6). According to Lemma 32.8.5,

it only needs O(1) parallel time. Line 16 and line 19 only need the operation shown in

Multiple queries.

Thus, the total parallel time is O(r) where r is the number of iterations (see Defini-

tion 32.5.4) of MultiRadiusLCSPT(G,m). For the total space, we stored the sets VTi(v)

for all i ∈ [r], v ∈ V and mappings parTi(v), depTi(v) for all i ∈ [r], v ∈ V . By Lemma 32.5.2,

the total space to store all of them is at most O(r ·n · (m/n)1/4) = O(m). In the ith round of
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the main loop, line 15 may make copies of the set. By Lemma 32.5.2, the input size of each

task will be at most O((m/n)1/4 · (m/n)1/4). Since the there are at most n tasks, the total

space needed is at most O(m).

Lemma 32.8.7. Let graph G = (V,E), n = |V |, N = |V | + |E| and m = Θ(Nγ) for some

arbitrary γ ∈ [0, 2]. MultipleLargeTrees(G,m) (Algorithm 32.6) can be implemented in

(γ, δ) −MPC model for any constant δ ∈ (0, 1). Furthermore, the parallel running time is

O(r), where r is the number of iterations (see Definition 32.5.5) of MultipleLargeTrees(G,m).

Proof. By Lemma 32.8.6, line 3 can be implemented in total space m and O(r) parallel time

where r is the number of iterations (see Definition 32.5.4) of MultiRadiusLCSPT(G,m).

Line 4 to line 6 can be implemented by the operation described by Multiple queries. The

implementation of line 7 to line 17 is similar as the implementation of the main loop of

Algorithm 32.5 (See Lemma 32.8.6 for details of the implementation). The implementation

of line 18 and line 19 only needs the operation described in Indexing elements in sets and

Multiple queries. Line 22 can be implemented by copying input sets for different tasks and

running multiple tasks in parallel, where the operations needed are described in Copies of

sets, Multiple queries and Multiple Tasks (see Section 32.7.6). Line 24 to line 28 can be

implemented by the operations described in Copies of sets, Set membership, Indexing

elements in sets, and Multiple queries.

The total parallel time of the first loop is O(r) since it has r rounds. The second loop

can be done in one round. Thus the parallel time of the second loop is O(1). Then the total

parallel time is O(r). Due to Lemma 32.8.6 and Lemma 32.5.6, r is the number of iterations

(see Definition 32.5.5) of MultipleLargeTrees(G,m).
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We stored all the VTi(v), VT̃i(v), parTi(v), parT̃i(v), depTi(v), depT̃i(v) in the system. By

Lemma 32.5.3 and Lemma 32.5.2, the total space needed to store them is at most O(m).

Furthermore, at any round, the size of all the input copies for multiple tasks is at most

n · (m/n)1/4 · (m/n)1/4 = O(m). Thus, the total space needed is O(m).
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32.8.5 Path Generation and Root Changing

Lemma 32.8.8. Let par : V → V be a set of parent pointers (See Definition 32.4.2) on a

vertex set V. Let n = |V |. FindAncestors(par) (Algorithm 32.7) can be implemented in

(γ, δ)−MPC model for any γ ≥ logn
log logn

and any constant δ ∈ (0, 1). The parallel running time

is O(r), where r is the number of iterations (see Definition 32.5.6) of FindAncestors(par).

Proof. The structure of the whole algorithm is the same as the Algorithm 32.2 (see Lemma 32.8.2).

All the steps can be done by operation described in Multiple queries.

Since the number of rounds needed is r, the parallel time is O(r). For the total

space, we need to store all the mappings g1, · · · , gr. At the end of the ith round, we need

to store mapping hi. According to Lemma 32.5.7, r = O(log n) Thus, the total space is

O(rn) = O(n log n).

Lemma 32.8.9. Let par : V → V be a set of parent pointers (See Definition 32.4.2) on a

vertex set V. Let q be a vertex in V , and n = |V |. FindPath(par, q) (Algorithm 32.8) can

be implemented in (γ, δ)−MPC model for any γ ≥ logn
log logn

and any constant δ ∈ (0, 1). The

parallel running time is O(r), where r is the number of iterations (see Definition 32.5.6) of

FindAncestors(par) (Algorithm 32.7).

Proof. By Lemma 32.8.8, FindAncestors(par) can be implemented in (γ, δ)−MPC model

for γ ≥ logn
log logn

and any constant δ ∈ (0, 1). All the other other steps in the algorithm can be

done by operation described in Multiple queries. Notice that, after each round, we need

to do load balancing which can be done by operation described in Load balance.
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The number of rounds must be smaller than O(r), where r should be the number of

iterations of FindAncestors(par) according to Lemma 32.8.8.

We store all the mappings gi, deppar in the system. They need O(n log n) total space.

In the ith round, we only need to additionally store set Si which has size at most O(n). Thus,

the total space needed is at most O(n log n).

Lemma 32.8.10. Let par : V → V be a set of parent pointers (See Definition 32.4.2)

on a vertex set V. Let q be a vertex in V . RootChange(par, q) (Algorithm 32.9) can be

implemented in (γ, δ) −MPC model for any γ ≥ logn
log logn

and any constant δ ∈ (0, 1). The

parallel running time is O(r), where r is the number of iterations (see Definition 32.5.6) of

FindAncestors(par) (Algorithm 32.7).

Proof. By Lemma 32.8.9, FindPath(par, q) can be implemented in (γ, δ) − MPC model.

The remaining steps in the procedure can be implemented by the operation described by

Multiple queries, and has O(1) parallel running time.

The total space needed is the total space needed for FindPath(par, q) plus the

space needed to store mapping h, p̂ar. Thus the total space needed is O(n log n) + O(n) =

O(n log n).

The parallel running time is linear in the parallel running time of FindPath(par, q).

Then, by Lemma 32.8.9, the parallel running time is O(r) where r is the number of iterations

(see Definition 32.5.6) of FindAncestors(par).
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32.8.6 Spanning Forest Algorithm

Lemma 32.8.11. Let G2 = (V2, E2) be an undirected graph. Let p̃ar : V2 → V2 be a set

of parent pointers (See Definition 32.4.2) which satisfies that ∀v ∈ V2 with p̃ar(v) 6= v,

(v, p̃ar(v)) must be in E2. Let G1 = (V1, E1) be an undirected graph satisfies V1 = {v ∈ V2 |

p̃ar(v) = v}, E1 = {(u, v) ∈ V1 × V1 | u 6= v,∃(x, y) ∈ E2, p̃ar(∞)(x) = u, p̃ar(∞)(y) = v}.

Let par : V1 → V1 be a rooted spanning forest (See Definition 32.5.7) of G1. Let f : V1 ×

V1 → {null} ∪ (V2 × V2) satisfy the following property: for u 6= v ∈ V1, if part(u) = v,

then f(u, v) ∈ {(x, y) ∈ E2 | p̃ar(∞)(x) = u, p̃ar(∞)(y) = v}, and f(v, u) ∈ {(x, y) ∈

E2 | p̃ar(∞)(x) = v, p̃ar(∞)(y) = u}. Let n = |V2|. Then ForestExpansion(par, p̃ar, f)

(Algorithm 32.10) can be implemented in (γ, δ) −MPC model for any γ ≥ log n/ log log n

and any constant δ ∈ (0, 1) in parallel running time O(R), where R = log(dep(p̃ar)).

Proof. Due to Lemma 32.8.2, line 3 can be done in O(R) parallel time for R = log(dep(p̃ar)).

Line 9 corresponds to multiple tasks, we can implement them parallelly by operations de-

scribed inMultiple queries, andMultiple Tasks (see Section 32.7.6). By Lemma 32.8.10,

the total space needed is at most O(n log n) and the parallel running time is at most O(R)

where R = log(dep(p̃ar)).

Theorem 32.8.12. Let graph G = (V,E), n = |V |, N = |V | + |E| and m = Θ(Nγ) for

some arbitrary γ ∈ [0, 2]. Let r > 0 be a round parameter. SpanningForest(G,m, r)

(Algorithm 32.11) can be implemented in (γ, δ) −MPC model for any constant δ ∈ (0, 1).

Furthermore, the parallel running time is O(R), where R is the total number of iterations

(see Definition 32.5.8) of SpanningForest(G,m, r).
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Proof. At the beginning of the algorithm, we just store sets V,E, V0, E0 and mapping g0 in

the system.

Consider the ith round of the loop. By Lemma 32.8.7, line 8 can be implemented in

total space Θ(m) and in parallel running time O(ki) where ki is the number of iterations (see

Definition 32.5.5) of MultipleLargeTrees(Gi,m). Line 9 can be implemented by opera-

tions described in Sizes of sets, Set membership, and Multiple queries. Line 10 can be

implemented by operations described in Indexing elements in sets, Set membership,

and Multiple queries. In line 12, to calculate γi, we need to query ni, this can be done

by operations described in Sizes of sets and Multiple queries. In line 14, to compute Li,

we only need operations described in Set membership and Multiple queries. Line 15

can be implemented by operations shown in Set membership, Indexing elements in

sets and Multiple queries. By Lemma 32.8.9, for line 16, there are multiple tasks each

can be implemented in O(|VT̃i(v)| log |VT̃i(v)|) total space, and O(ki) parallel time. We can

schedule these multiple tasks (see Section 32.7.6) such that we can finish them in parallel

in O(ki) parallel time. According to Lemma 32.8.2, for line 17, we can implement it in

O(ni) = O(n) total space, and in O(k′i) parallel time, where k′i is the number of iterations

(see Definition 32.4.5) of TreeContraction(G′i, pari). Line 19 can be done by the oper-

ation described in Multiple queries. Line 20 can be done by the operation described in

Indexing elements in sets and Multiple queries.

Thus, the parallel time is O(R), where R =
∑r−1

i=0 (ki + k′i). By definition of the total

number of iterations (see Definition 32.5.8) of SpanningForest(G,m, r). R is the total

number of iterations of SpanningForest(G,m, r).

For the space, we store all the sets V,E, Vi, Di and mappings pari, hi in all the rounds.
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Notice that
∑r

i=0 |Vi| ≤ 40|V |. Thus this part takes only O(N) space. In the ith round, we

additionally store all the sets VT̃i(v), V
′
i , E

′
i, Li and all the mappings parT̃i(v), depT̃i(v), li, zi. The

total space for this part is at most O(m). For line 16, it creates multiple tasks. The input of

each task is at most |VT̃i(v)| ≤ (m/ni)
1/2. There are at most ni tasks, and by Lemma 32.8.9,

each task will need space at most O(|VT̃i(v)| log |VT̃i(v)|). Thus, the space for this part is at

most O(m). To conclude, the total space needed is at most O(m).

Theorem 32.8.13. Let graph G = (V,E), n = |V |, N = |V | + |E| and m = Θ(Nγ) for

some arbitrary γ ∈ [0, 2]. Let r > 0 be a round parameter. If SpanningForest(G,m, r)

(Algorithm 32.11) does not return FAIL, then let the output be the input of Orientate(·)

(Algorithm 32.12), and Orientate(·) can be implemented in (γ, δ) −MPC model for any

constant δ ∈ (0, 1). Furthermore, the parallel running time is O(R), where R is the total

number of iterations (see Definition 32.5.8) of SpanningForest(G,m, r).

Proof. Line 4 to line 7 can be implemented by operations described in Multiple queries.

Notice that there is a trick here, if fi(u, v) = null, we do not need to store the tuple

(“fi”, ((u, v), null)) in the system. The total space needed to store all the mappings fi

and all the sets Fi for i ∈ {0} ∪ [r] is at most
∑r

i=0 |Vi| = O(m).

Line 10 and line 11 can be implemented by operations described in Set membership

and Multiple queries.

We now look at the second loop, and focus on round i. Line 12 can be implemented by

Lemma 32.8.11. The total space needed is at most O(|Vi| · (m/|Vi|)1/2 · log(m/|Vi|)) = O(m).

The parallel running time needed is at most O(ki), where ki is the number of iterations (see

2448



Definition 32.5.5) of MultipleLargeTrees(Gi,m), Gi is the intermediate graph in the

procedure SpanningForest(G,m, r).

Thus, the parallel running time is O(R), where R is the total number of iterations

(see Definition 32.5.8) of SpanningForest(G,m, r). The total space needed is O(m).

Now, we are able to conclude the following theorem for spanning forest problem.

Theorem 32.8.14. For any γ ∈ [0, 2] and any constant δ ∈ (0, 1), there is a randomized

(γ, δ) − MPC algorithm (see Algorithm 32.11 and Algorithm 32.12) which can output the

rooted spanning forest for any graph G = (V,E) in O(min(logD · log 1
γ′
, log n)) parallel time,

where D is the diameter of G, n = |V |, N = |V | + |E| and γ′ = (1 + γ) logn
2N

n1/(1+γ) . The

success probability is at least 0.98. In addition, if the algorithm fails, then it will return FAIL.

Proof. Algorithm 32.11 outputs all the edges in the spanning forest and all the contraction

information. Algorithm 32.12 takes the output of Algorithm 32.11 as its input, and outputs

a rooted spanning forest.

The implementation of Algorithm 32.11 and Algorithm 32.12 in MPC model is shown

by Theorem 32.8.12 and Theorem 32.8.13 respectively. The correctness of Algorithm 32.11

and Algorithm 32.12 is proved by Corollary 32.5.17 and Theorem 32.5.19 respectively. The

parallel time of Algorithm 32.11 and Algorithm 32.12 is proved by Theorem 32.5.21.

A byproduct of our spanning forest algorithm is an estimator of the diameter of the

graph.
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Theorem 32.8.15. For any γ ∈ [0, 2] and any constant δ ∈ (0, 1), there is a randomized

(γ, δ)−MPC algorithm which can output an diameter estimator D′ for any graph G = (V,E)

in O(min(logD · log(1/γ′), log n)) parallel time such that D ≤ D′ ≤ DO(log(1/γ′)), where D

is the diameter of G, n = |V |, N = |V | + |E| and γ′ = (1 + γ) logn
2N

n1/(1+γ) . The success

probability is at least 0.98. In addition, if the algorithm fails, then it will return FAIL.

Proof. By Theorem 32.8.14, we can find a rooted spanning forest. By Theorem 32.5.19,

the depth of that rooted spanning forest is at most DO(log(1/γ′)). Then we can implement

a doubling algorithm (e.g. Modified Lemma 32.8.8, Algorithm 32.7 without maintaining

useless gl) with log in depth parallel time to output the depth of that spanning forest.
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32.8.7 Lowest Common Ancestor and Multi-Paths Generation

Lemma 32.8.16. Let par : V → V be a set of parent pointers (See Definition 32.4.2)

on a vertex set V . Let Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} be a set of q pairs of vertices,

and ∀i ∈ [q], ui 6= vi. Let n = |V |, N = n + q. LCA(par, Q) (Algorithm 32.13) can be

implemented in (γ, δ)−MPC model for any γ ≥ log logN/ logN and any constant δ ∈ (0, 1)

in O(log(dep(par))) parallel running time.

Proof. By Lemma 32.8.8, line 3 can be implemented in spaceO(N logN) andO(log(dep(par)))

parallel running time. It is easy to see that all the other steps in the procedure can be done

by the operations shown in Multiple queries.

Thus, the total space needed isO(N logN) and the parallel running time isO(log(dep(par))).

Lemma 32.8.17. Let par : V → V be a set of parent pointers (See Definition 32.4.2) on

a vertex set V. Let Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} ⊆ V × V satisfy ∀j ∈ [q], vj is an

ancestor (See Definition 32.6.1) of uj in par. Let n = |V |, N = n + q. MultiPath(par, Q)

(Algorithm 32.14) can be implemented in (γ, δ) − MPC model for any γ with N logN +
∑q

i=1(deppar(ui) − deppar(vi) + 1) = O(Nγ) and any constant δ ∈ (0, 1) in O(dep(par))

parallel running time.

Proof. By Lemma 32.8.8, line 3 can be implemented in spaceO(N logN) andO(log(dep(par)))

parallel running time. It is easy to see that all the other steps in the procedure can be done

by the operations shown in Multiple queries. Notice that after each round, we need to do

load balancing (see Load balance) to make each machine have large enough available local
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memory. The total space needed is to store all the pathes and the output of line 3. Notice

that in round i, we do not need to keep S(i′)
j for i′ < i − 1, thus, the space to keep S(i)

j for

all j ∈ [q] only needs O(
∑q

j=1(deppar(uj)− deppar(vj) + 1)) space.

Thus, the total space needed is at most O(N logN +
∑q

i=1(deppar(ui)− deppar(vi) +

1)) = O(Nγ). The parallel running time is then O(dep(par)).
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32.8.8 Leaf Sampling

Lemma 32.8.18. Let par : V → V be a set of parent pointers (See Definition 32.4.2) on a

vertex set V , and par has a unique root. Let n = |V |. Let δ be an arbitrary constant in (0, 1),

and let m = dnδe. Then LeafSampling(par,m, δ) (Algorithm 32.15) can be implemented

in (γ, δ) −MPC model for any γ ≥ log log n/ log n. Furthermore, with probability at least

1− 1/(100m5/δ), the parallel running time is at most O(log dep(par)).

Proof. To implement line 4, for each v ∈ V, we can add part(v) to a temporary set X. Then

each v can check whether v is a leaf by checking whether v is in X, and this can be done by

the operations shown in Set membership and Multiple queries.

To implement line 5, for each v ∈ V, we can add v to the set childpar(part(v)).

Then rank can be computed by the operations shown in Indexing elements in sets and

Multiple queries. For line 6, we can implement it on a single machine, since a single

machine has local memory Θ(m). For line 7 to line 9, for each x ∈ L, we add x into S

with probability p, where p can be computed by querying the size of L (see Sizes of sets

and Multiple queries). Line 10 can be implemented by operation described in Indexing

elements in sets, Set membership, andMultiple queries. By Lemma 32.8.2, line 11 can

be implemented in total space O(N logN) and O(log dep(par)) parallel time. By Property 3

of Lemma 32.6.5, with probability at least 1 − 1/(100m5/δ), |S|2 = O(m). Thus, Q can be

stored on a single machine. By Lemma 32.8.16, line 15 can be implemented in total space

O(n log n+ |Q|) = O(n log n) and in O(log dep(par)) parallel time. By Lemma 32.8.8, line 17

can be implemented in total space O(n log n) and in O(log dep(par)) parallel time. Then

line 18 to line 22 can be implemented on a single machine.

2453



Thus, the total space needed is at most O(n log n). The parallel time is at most

O(log dep(par))
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32.8.9 DFS Sequence

Lemma 32.8.19. Let par : V → V be a set of parent pointers (See Definition 32.4.2) on a

vertex set V , and par has a unique root. Let n = |V |. Let δ be an arbitrary constant in (0, 1),

and let m = dnδe. SubDFS(par,m, δ) (Algorithm 32.16) can be implemented in (γ, δ)−MPC

model for any γ ≥ log log n/ log n. Furthermore, with probability at least 1 − 1/(100m5/δ),

the parallel running time is at most O(log dep(par)).

Proof. By Lemma 32.8.18, line 5 can be implemented in total space O(n log n) and with prob-

ability at least 1−1/(100m5/δ) has parallel running time O(log dep(par)). By Lemma 32.8.16,

line 7 can be implemented in total spaceO(n log n) and in parallel running timeO(log dep(par)).

Line 9 can be implemented by operation shown in Multiple queries. By Lemma 32.8.17,

since all the pathes are disjoint (except the first path and the last path intersecting on the

root) and V has n vertices, line 10 can be implemented in O(n log n) total space and in

O(log dep(par)) parallel running time. Loop in line 13 and Loop in line 16 can be imple-

mented in parallel, and can be implemented by operations shown in Indexing elements

in sets and Multiple queries. Line 20 can be implemented by operations shown in In-

dexing elements in sets and Multiple queries. Now we describe the implementation of

line 21. Firstly, we can standardize (see Sequence standardizing) the sequence A′. For

each tuple (“A′”, (j, u)), create a tuple (“tempu”, j). Thus, “tempu” is a set which contains

all the positions that u appeared. For each tuple (“tempu”, j), we query (see Multiple

queries) the index i (see Indexing elements in sets) of j in set (“tempu”, j), and create

a tuple (“ pos ”, ((u, i), j)). Thus, the desired mapping pos is stored in the system. The loop

in line 24 is implemented in parallel. Line 25 can be implemented by the operations shown
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in Set membership and Multiple queries. Line 26 to line 28 can be implemented by the

operation shown in Multiple queries. Finally, line 30 can be implemented by Multiple

queries and Sequence duplicating.

The total space used in the procedure is at most O(n log n). The parallel running

time is O(log dep(par)).

Theorem 32.8.20. Let par : V → V be a set of parent pointers (See Definition 32.4.2)

on a vertex set V , and par has a unique root. Let n = |V |,m = nδ for some arbitrary

constant δ ∈ (0, 1). DFS(par,m) (Algorithm 32.17) can be implemented in (γ, δ) − MPC

model for any γ ≥ log log n/ log n. With probability at least 0.99, the parallel running time is

O(log(dep(par))).

Proof. By Lemma 32.8.19, line 5 can be implemented in total space O(n log n). With proba-

bility at least 1− 1/(100n5), the parallel running time is O(log(dep(par))). Line 8 to line 10

can be implemented by operations shown in Set membership and Multiple queries. By

Lemma 32.8.2, line 11 can be implemented in O(n) total space, and O(log dep(par)) paral-

lel running time. The loop in line 14 contains multiple tasks (see Section 32.7.6 Multiple

Tasks), thus we can implement those tasks in parallel. By Lemma 32.8.19, line 17 can

be implemented in total space O(|V ′i (v)| log |V ′i (v)|). Furthermore, with probability at least

1 − 1/(100n5), the parallel running time is O(log(dep(par))). Thus, the total space needed

for those tasks is at most O(n log n). Line 19 can be implemented by operations shown in

Indexing elements in sets, Sequence insertion and Multiple queries.

Thus, the total space needed is O(n log n). By taking union bound over all the task

SubDFS, with probability at least 0.99, the parallel running time is O(log dep(par)).
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Now we are able to conclude the following theorem.

Theorem 32.8.21. For any γ ∈ [β, 2] and any constant δ ∈ (0, 1), there is a randomized

(γ, δ)−MPC algorithm (Algorithm 32.17) which can output a Depth-First-Search sequence for

any tree graph G = (V,E) in O(min(logD · log(1/γ′), log n)) parallel time, where n = |V |,

β = Θ(log log n/ log n), D is the diameter of G, and γ′ = γ + Θ(1/ log n). The success

probability is at least 0.98. In addition, if the algorithm fails, then it will return FAIL.

Proof. Firstly, by Theorem 32.8.14, we can find a rooted tree. Algorithm 32.17 can output

the DFS sequence for a rooted tree.

The implementation and parallel time of Algorithm 32.17 is shown by Theorem 32.8.20.

The correctness of Algorithm 32.17 is proved by Theorem 32.6.12. The success probability

of Algorithm 32.17 is proved by Theorem 32.6.14.
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32.8.10 Range Minimum Query

Lemma 32.8.22. Let A = (a1, a2, · · · , an) be a sequence of numbers. Let δ be an arbitrary

constant in (0, 1). SparseTable+(a1, a2, · · · , an, δ) (Algorithm 32.18) can be implemented

in (0, δ)−MPC model with O(1) parallel running time.

Proof. Let A be the sequence (a1, a2, · · · , an). The algorithm takes O(1/δ) rounds. m is

the local space of a machine. There are Θ(n/m) machines each holds a consecutive Θ(m)

elements of sequence A. Now consider the round l. Machine j ∈ {0} ∪ [dn/me] needs to

compute f̂j·m+1,l, f̂j·m+2,l, · · · , f̂j·m+m−1,l. The number of queries machine j made in line 8

and line 11 is at most
∑d1/δe

t=1 |St| + 2m ≤ O(m/δ) = O(m). Thus, there are total O(n)

queries. These queries can be answered simultaneously by operation shown in Multiple

queries.

Thus, the total space needed is O(n), and the parallel running time is O(1).

Lemma 32.8.23. Let a1, a2, · · · , an be a sequence of numbers. Let δ be an arbitrary constant

in (0, 1). SparseTable(a1, a2, · · · , an, δ) (Algorithm 32.19) can be implemented in (γ, δ)−

MPC model for any γ ≥ log log n/ log n in O(1) parallel time.

Proof. By Lemma 32.8.22, line 4 can be implemented in O(n) total space and O(1) parallel

time. The loop in line 15 is similar to Algorithm 32.18. Each machine j needs to compute

fj·m+1,t, · · · , fj·m+m−1,t for all t ∈ [dlog ne]∪{0}. The difference from Algorithm 32.18 is that,

it can compute for all t at the same time since it only depends on the value of f̂ . The number

of queries made by each machine is O(m log n). Thus, the total number of queries is at most

O(n log n). These queries can be answered simultaneously by operation shown in Multiple

queries.
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Thus, the total space needed is O(n log n), and the parallel running time is O(1).
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32.9 Minimum Spanning Forest

In this section, we discuss how to apply our connectivity/spanning forest algorithm

to the Minimum Spanning Forest (MSF) and Bottleneck Spanning Forest (BSF) problem.

The input of MSF/BSF problem is an undirected graph G = (V,E) together with a

weight function w : E → Z, where E contains m edges e1, e2, · · · , em with w(e1) ≤ w(e2) ≤

· · · ≤ w(em). The goal of MSF is to output a spanning forest such that the sum of weights

of the edges in the forest is minimized. The goal of BSF is to output a spanning forest such

that the maximum weight of the edges in the forest is minimized. D is the diameter of the

minimum spanning forest. If there are multiple choices of the minimum spanning forest,

then let D be the minimum diameter among all the minimum spanning forests.

For simplicity, in all of our proofs, we only discuss the case when all the edges have

different weights, i.e. w(e1) < w(e2) < · · · < w(em). In this case, the minimum spanning

forest is unique. It is easy to extend our algorithms to the case when there are edges with

the same weight. We omit the proof for this fact.

Firstly, we show that D is an upper bound of the diameter of G′ where the vertex

set of G′ is the vertex set of G, and the edge set of G′ is {e1, e2, · · · , ei} for some arbitrary

i ∈ [m].

Lemma 32.9.1. Given a graph G = (V,E) for E = {e1, e2, · · · , em} together with a weight

function w which satisfies w(e1) < w(e2) < · · · < w(em), then the diameter of G′ = (V,E ′)

is at most D, where D is the diameter of the minimum spanning forest of G, and E ′ only

contains the first i edges of E, i.e. e1, e2, · · · , ei for some arbitrary i ∈ [m].

Proof. The proof follows by Kruskal’s algorithm directly.
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Our algorithms is based on the following simple but useful Lemma.

Lemma 32.9.2. Given a graph G = (V,E) for E = {e1, e2, · · · , em} together with a weight

function w which satisfies w(e1) ≤ w(e2) ≤ · · · ≤ w(em), ∀1 ≤ i < j ≤ m, an edge

e from {ei, ei+1, · · · , ej} is in the minimum spanning forest of G if and only if e′ from

{e′i, e′i+1, · · · , e′j} is in the minimum spanning forest of G′, where the vertices of G′ is obtained

by contracting all the edges e1, e2, · · · , ei−1 of G, and e′, e′i, e
′
i+1, · · · , e′j are the edges (or

vertices) in G′ which corresponds to the edges e, ei, ei+1, · · · , ej before contraction.

Proof. The proof follows by Kruskal’s algorithm directly.

A natural way to apply Lemma 32.9.2 to parallel minimum spanning forest algorithm

is that we can divide the edges into several groups, and recursively solve the minimum span-

ning forest for each group of edges. More precisely, suppose we have total space Θ(km), we

can divide E into k groups E1, E2, · · · , Ek, where Ei = {e(i−1)·m/k+1, e(i−1)·m/k+2, · · · , ei·m/k}.

We can compute graph G1, G2, · · · , Gk where the vertices of Gi is obtained by contracting

all the edges from e1 to e(i−1)·m/k, the edges of Gi are corresponding to the edges in Ei. Then

by Lemma 32.9.2, we can obtain the whole minimum spanning forest by solving these k size

O(m/k) minimum spanning forest problems. For each sub-problem, we can assign it Θ(m)

working space, thus each sub-problem still has Θ(k) factor more total space. Therefore, we

can recursively apply the above argument.

Theorem 32.9.3. For any γ ∈ [0, 2] and any constant δ ∈ (0, 1), there is a randomized

(γ, δ)−MPC algorithm which can output a minimum spanning forest for any weighted graph

G = (V,E) with weights w : E → Z in O(min(logD · log(1/γ′), log n) · 1/γ′) parallel time,
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where n = |V |, ∀e ∈ E, |w(e)| ≤ poly(n), D is the diameter of a minimum spanning forest

of G, and γ′ = γ/2 + Θ(1/ log n). The success probability is at least 0.98. In addition, if the

algorithm fails, then it will return FAIL.

Proof. Let n = |V |,m = |E|. Let E = {e1, · · · , em} with w(e1) ≤ w(e2) ≤ · · · ≤ w(em). The

total space in the system is Θ(m1+γ). Let k = Θ(mγ/2). By our previous discussion, we can

divide E into k groups E1, E2, · · · , Ek, where Ei = {e(i−1)·m/k+1, e(i−1)·m/k+2, · · · , ei·m/k}. By

Lemma 32.9.1 and Theorem 32.8.4, we can use O(min(logD · log(1/γ′), log n)) parallel time

and Θ(km1+γ/2) total space to compute graph G1, G2, · · · , Gk where the vertices of Gi is

obtained by contracting all the edges from e1 to e(i−1)·m/k, the edges of Gi are corresponding

to the edges in Ei after contraction.

By Lemma 32.9.2, it suffices to recursively solve the minimum spanning forest problem

for each group Gi. Since each time, we split the edges into k groups, the recursion will have

at most O(1/γ′) levels. At the end of the recursion, we are able to determine for every edge

e whether e is in the minimum spanning forest.

Now let us consider the success probability. Although Theorem 32.8.4 is a randomized

algorithm, the parallel time is always bounded by min(logD·log(1/γ′), log n). If we repeat the

algorithm until it succeeds, the expectation of number of trials is a constant. Furthermore,

for each level of the recursion, we can regard the graphs in all the tasks composed one large

graph. Thus, in real implementation, in each level of the recursion, we will only invoke

one connectivity procedure. Thus in expectation, the total parallel time is O(min(logD ·

log(1/γ′), log n) · 1/γ′). By applying Markov’s inequality, we complete the proof.
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In the following theorem, we show that Lemma 32.9.2 can also be applied in approx-

imate minimum spanning forest problem.

Theorem 32.9.4. For any γ ∈ [β, 2] and any constant δ ∈ (0, 1), there is a random-

ized (γ, δ) − MPC algorithm which can output a (1 + ε) approximate minimum spanning

forest for any weighted graph G = (V,E) with weights w : E → Z≥0 in O(min(logD ·

log(1/γ′), log n)) parallel time, where n = |V |, N = |V | + |E|, β = Θ(log(ε−1 log n)/ log n),

∀e ∈ E, |w(e)| ≤ poly(n), D is the diameter of a minimum spanning forest of G, and

γ′ = (1 + γ − β) logn
2N

n1/(1+γ−β) . The success probability is at least 0.98. In addition, if the

algorithm fails, then it will return FAIL.

Proof. For each edge e ∈ E, we can round w(e) to w′(e) such that w′(e) = 0 when w(e) = 0,

and w′(e) = (1 + ε)i when w(e) 6= 0, and i is the smallest integer such that w(e) ≤ (1 + ε)i.

Since |w(e)| ≤ poly(n) for all e ∈ E, there are only k = O(log(n)/ε) different values

of w′(e). We can divide E into k groups, where the ith group Ei contains all edges with the

ith largest weight in w′. By Lemma 32.9.1 and Theorem 32.8.4, we can use O(min(logD ·

log(1/γ′), log n)) parallel time and Θ(kN1+γ−β) = Θ(N1+γ) total space to compute graph

G1, G2, · · · , Gk where the vertices of Gi is obtained by contracting all the edges from E1 to

Ei−1, the edges of Gi are corresponding to the edges in Ei after contraction.

Then, for each Gi, since all the edges have the same w′ weight, any spanning forest

of Gi is a minimum spanning forest of Gi. By Theorem 32.8.14, we can use O(min(logD ·

log(1/γ′), log n)) parallel time and Θ(kN1+γ−β) = Θ(N1+γ) total space to compute the

spanning forest for each graph G1, G2, ·, Gk. By Lemma 32.9.2, the union of all the minimum

spanning forest with respect to w′ must be the minimum spanning forest of G with respect

2463



to w′. Since all the weights w are nonnegative integers, w′ is a (1 + ε) approximation to w.

Therefore, our output minimum spanning forest with respect to w′ is a (1+ε) approximation

to the minimum spanning forest with respect to w.

For the success probability, we can apply the similar argument made in the proof of

Theorem 32.9.3 to prove that the success probability is at least 0.98.

In the following, we show that if we only need to find the largest edge in the minimum

spanning tree, then we are able to get a better parallel time. It is an another application of

our

Theorem 32.9.5. For any γ ∈ [0, 2] and any constant δ ∈ (0, 1), there is a randomized

(γ, δ)−MPC algorithm which can output a bottleneck spanning forest for any weighted graph

G = (V,E) with weights w : E → Z in O(min(logD · log(1/γ′), log n) · log(1/γ′)) parallel

time, where n = |V |, ∀e ∈ E, |w(e)| ≤ poly(n), D is the diameter of a minimum spanning

forest of G, and γ′ = γ/2 + Θ(1/ log n). The success probability is at least 0.98. In addition,

if the algorithm fails, then it will return FAIL.

Proof. Let n = |V |,m = |E|. Let E = {e1, · · · , em} with w(e1) ≤ w(e2) ≤ · · · ≤ w(em). The

total space in the system is Θ(m1+γ). Let k = Θ(mγ/2). By our previous discussion, we can

divide E into k groups E1, E2, · · · , Ek, where Ei = {e(i−1)·m/k+1, e(i−1)·m/k+2, · · · , ei·m/k}. By

Lemma 32.9.1 and Theorem 32.8.4, we can use O(min(logD · log(1/γ′), log n)) parallel time

and Θ(km1+γ/2) total space to compute graph G1, G2, · · · , Gk where the vertices of Gi is

obtained by contracting all the edges from e1 to e(i−1)·m/k, the edges of Gi are corresponding

to the edges in Ei after contraction.
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By Lemma 32.9.2, the edge with largest weight must be in the group Ei for some i

with Gi+1 = Gi+2. Thus, we reduce the problem size to m/k. By Remark 32.1.2, we can

finish the recursion in O(log(1/γ′)) phases.

Suppose the bottleneck is ei, then by Theorem 32.8.14, we can find a spanning forest

by only using edges from {e1, · · · , ei} in O(min(logD · log(1/γ′), log n)) parallel time and in

Θ(m1+γ/2) total space. Thus, the resulting spanning forest is a bottleneck spanning forest.

For the success probability, we can apply the similar argument made in the proof of

Theorem 32.9.3 to prove that the success probability is at least 0.98.
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32.10 Directed Reachability vs. Boolean Matrix Multiplication

In this section, we discuss the directed graph reachability problem which is a di-

rected graph problem highly related to the undirected graph connectivity. In the all-pair

directed graph reachability problem, we are given a directed graph G = (V,E), the goal

is to answer for every pair (u, v) ∈ V × V whether there is a directed path from u to

v. There is a simple standard way to reduce Boolean Matrix Multiplication to all-pair di-

rected graph reachability problem. In the Boolean Matrix Multiplication problem, we are

given two boolean matrices A,B ∈ {0, 1}n×n, the goal is to compute C = A · B, where

∀i, j ∈ [n], Ci,j =
∨
k∈[n] Ai,k ∧Bk,j. The reduction is as the following. We create 3n vertices

u1, u2, · · · , un, v1, v2, · · · , vn, w1, w2, · · · , wn. For every i, j ∈ [n], if Ai,j = 1, then we add an

edge from ui to vj, and if Bi,j = 1, then we add an edge from vi to wj. Thus, Ci,j = 1 is

equivalent to there is a path from ui to wj. Thus, if we can solve all-pair directed graph

reachability problem in O(T ) sequential time, then we can solve Boolean Matrix Multipli-

cation in O(T ) time. For the current status of sequential running time of Boolean Matrix

Multiplication problem, we refer readers to [LG14] and the references therein.

Now, consider the multi-query directed graph reachability problem. In this problem,

we are given a directed graph G = (V,E) together with |V |+ |E| queries where each query

queries the reachability from vertex u to vertex v. The goal is to answer all these queries. A

similar problem in the undirected graph is called multi-query undirected graph connectivity

problem. In this problem, we are given an undirected graph G = (V,E) together with

|V |+ |E| queries where each query queries the connectivity between vertex u and vertex v.

According to Theorem 32.8.4 and Lemma 32.7.4, there is a polynomial local running

time fully scalable ∼ logD parallel time (0, δ)−MPC algorithm for multi-query undirected
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graph connectivity problem. Here polynomial local running time means that there is a

constant c > 0 (independent from δ) such that every machine in one round can only have

O((nδ)c) local computation.

For multi-query directed graph reachability problem, we show that if there is a poly-

nomial local running time fully scalable (γ, δ)−MPC algorithm which can solve multi-query

reachability problem in O(nα) parallel time, then we can solve all-pair directed graph reach-

ability problem in O(n2 · n2γ+α+ε) sequential running time for any arbitrarily small constant

ε > 0. Especially, if the algorithm is in (0, δ) −MPC model, and the parallel time is no(1),

then we will have an O(n2+ε+o(1)) sequential running time algorithm for Boolean Matrix

Multiplication which implies a break through in this field.

Suppose we have a such MPC algorithm. Let the input size be Θ(m), i.e. the number

of edges is Θ(m), and the number of queries is also Θ(m). Then the total space is Θ(m1+γ).

Let δ = ε/(c − 2). Then the number of machines is Θ(m1+γ−δ). Now we just simulate this

(γ, δ)−MPC algorithm sequentially, the total running time is O(m1+γ−δ ·mcδ · nα) = O(m ·

n2γ+ε+α). To answer reachability for all pairs, we need total O(n2 ·m · n2γ+ε+α/m) = O(n2 ·

n2γ+α+ε) time. Therefore, we can use this algorithm to solve Boolean Matrix Multiplication

in O(n2 · n2γ+α+ε) time.

Theorem 32.10.1. If there is a polynomial local running time fully scalable (γ, δ) −MPC

algorithm which can answer |V | + |E| pairs of reachability queries simultaneously for any

directed graph G = (V,E) in O(|V |α) parallel time, then there is a sequential algorithm

which can compute the multiplication of two n× n boolean matrices in O(n2 · n2γ+α+ε) time,

where ε > 0 is a constant which can be arbitrarily small.
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Proof. See above discussions.
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32.11 Discussion on a Previous Conjectured Fast Algorithm

In this section, we discuss the hard example for the algorithm described by [RMCS13].

In [RMCS13], they conjectured that their Hash-to-Min connectivity algorithm can finish in

O(logD) rounds. The description of their algorithm is as the following:

1. The input graph is G = (V,E).

2. For each vertex v ∈ V, initialize a set S(0)
v = v.

3. in round i:

(a) Each vertex v find u ∈ S(i−1)
v which has the minimum label, i.e. u = min

x∈S(i−1)
v

x.

(b) v sends u the all the vertices in S(i−1)
v .

(c) v sends every x ∈ S((i−1))
v \ {u} the vertex u.

(d) Let S(i)
v be {v} union the set of all the vertices received.

(e) If for all v, S(i)
v is the same as S(i−1)

v , then finish the procedure.

The above procedure can be seen as the modification of the graph: in each round, all the

vertices together create a new graph. For each vertex v, let u be the neighbor of v with

the minimum label, and if x is a neighbor of v, then add an edge between x and u in the

new graph. So in each round, each vertex just communicates with its neighbors to update

the new minimum neighbor it learned. At the end of the algorithm, it is obvious that the

minimum vertex in each component will have all the other vertices in that component, and

for each non minimum vertex, it will have the minimum vertex in the same component.
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A hard example for this algorithm is shown by Figure 32.3. The example is a thin

and tall grid graph with a vertex connected to all the vertices in the first column. The total

number of vertices is n. The grid graph has D = 1
2

log n columns and n/D rows. We index

each column from left to right by 1 to D. We index each row from top to down by 1 to

n/D. The single large degree vertex has label 0. The ith row has the vertices with label

(i − 1) ·D + 1 to i ·D from the first column to the Dth column. We claim that if vertex v

is the ith row and jth column, then before round k for 2k < i, k < j, the neighbors of v will

only in column j − 1, column j and column j + 1. Furthermore, the minimum neighbor of v

in column j − 1 will be v − (2k−1 − 1) ·D − 1. The minimum neighbor of v in column j will

be v − 2k−1 ·D. The minimum neighbor of v in column j + 1 will be v −D · (2k−1 − 1) + 1.

This claim is true when k = 1. Then by induction, we can prove the claim. Thus, it will

take at least Θ(D) rounds to finish the procedure where D = Θ(log n).

If we randomly label the vertices at the beginning, then consider the case we copy that

hard structure at least nn+2 times, then with high probability, there is a component which

has the labels with the order as the same as described above. In this case, the procedure

needs Ω(log logN) rounds, where N = nn+3 is the total number of the vertices.

Also notice that, even we give more total space to this algorithm, this algorithm will

not preform better. In our connectivity algorithm, if we have Ω(n1+ε) total space for some

arbitrary constant ε > 0, then our parallel running time is O(logD).
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32.12 Alternative Approach for Leader Selection

In this section, we show that there is a different way to select leaders (see Sec-

tion 32.4.2). The number of leaders selected by this approach will depend on the sum of

inverse degrees of all the vertices. Let us first introduce the concept of Min Parent Forest.

32.12.1 Min Parent Forest

Let G = (V,E) be an undirected graph where V denotes the vertex set of G, and

E denotes the edge set of G. Each vertex v ∈ V has a weight w(v) ∈ R, and it also has

a unique label from Z. For convenience, for each vertex v ∈ V, we also use v to denote its

label. Let ΓG(v) denote the set of neighbors of v, i.e. ΓG(v) = {u ∈ V | (u, v) ∈ E}. If G is

clear in the context, we just use Γ(v) to denote ΓG(v). The size of Γ(v), |Γ(v)|, is called the

degree of v. Let fG,w : V → V be the “min-weight-parent” function defined as the following:

1. If w(v) = minu∈Γ(v)∪{v}w(u), then fG,w(v) = v.

2. Otherwise, let u∗ ∈ Γ(v) be the vertex which has the smallest weight, i.e. w(u∗) =

minu∈Γ(v) w(u). If there is more than one choice of u∗, let u∗ be the one with the smallest

label. And fG,w(v) is defined to be u∗.

We call (V, fG,w) the min-parent-forest of graph G with vertex weights w. We can then define

i-step “min-weight-parent” function. For v ∈ V, we define f (0)
G,w(v) = v. For i ∈ Z>0, we can

define f (i)
G,w as the following:

∀v ∈ V, f (i)
G,w(v) = fG,w(f

(i−1)
G,w (v)).

In the following, we define the concept of roots in the min-parent-forest.
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Definition 32.12.1 (Roots in the forest). Let v ∈ V, and let (V, fG,w) be the min-parent-

forest of graph G = (V,E) with vertex weights w. If fG,w(v) = v, then v is a root in the

forest (V, fG,w).

The depth of a vertex v is defined as the distance on the tree between v and the

corresponding root in the forest.

Definition 32.12.2 (The depth of v). Let v ∈ V, and let (V, fG,w) be the min-parent-forest

of graph G = (V,E) with vertex weights w. The depth of v in the forest (V, fG,w) is the

smallest i ∈ Z≥0 such that f (i)
G,w(v) = f

(i+1)
G,w (v). We use depG,w(v) to denote the depth of v

in (V, fG,w). We call f (depG,w(v))

G,w (v) the root of v. For the simplicity of the notation, we also

use f (∞)
G,w (v) to denote the root of v.

The above definition is well defined since if f (i+1)
G,w (v) 6= f

(i)
G,w(v) then w(f

(i+1)
G,w (v))

should be strictly smaller than w(f
(i)
G,w(v)) by the definition of fG,w and f (j)

G,w for all j ∈ Z≥0.

Therefore, there must exist i such that f (i)
G,w(v) = f

(i+1)
G,w (v).

The depth of the forest is the largest depth among all the vertices.

Definition 32.12.3 (The depth of the min-parent-forest). The depth dep(G,w) of the forest

(V, fG,w) is defined as:

dep(G,w) = max
v∈V

depG,w(v).

If the weights w of vertices of G are some i.i.d. random variables, then with high

probability, the depth of (V, fG,w) is only O(log |V |). Precisely, we have the following Lemma.
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Lemma 32.12.1 (The depth of the random min-parent-forest). Let G = (V,E) be an

undirected graph with n vertices where V = {v1, v2, · · · , vn}, and the labels satisfies v1 <

v2 < · · · < vn. Let w(v1), w(v2), · · · , w(vn) be n i.i.d. random variables drawn uniformly

from [N ]. If N > n2/δ for some δ ∈ (0, 1), then for any t ≥ 60 log n,

Pr
w∼[N ]n

(dep(G,w) ≤ t) ≥ 1− δ − e− 1
2
t.

Proof. Let w(v1), w(v2), · · · , w(vn) be n i.i.d. random variables drawn uniformly from [N ].

Let (V, fG,w) be the min-parent-forest of (G,w). For a fixed s ∈ V, we create a set of random

variables z1, z2, · · · , zn by the following deterministic procedure:

1. Let z1 = w(s), k = 0, Sk = {s}, uk = s, i = 2, pos(s)← 1.

2. Let Sk+1 = Sk.

3. For j = 1→ n,

if vj ∈ Γ(uk) and vj 6∈ Sk then let pos(vj) ← i, Sk+1 ← Sk+1 ∪ {vj}, zi = w(vj),

i← i+ 1.

4. If fG,w(uk) 6= uk, then let uk+1 = fG,w(uk), k ← k + 1 and go to step 2.

5. Otherwise, for j = 1→ n,

if vj 6∈ Sk+1 then let pos(vj)← i, zi = w(vj), i← i+ 1.

It is easy to observe that k is exactly depG,w(s) at the end of the above procedure.

The reason is that u0 = s = f
(0)
G,w(s), ∀j ∈ [k], uj = fG,w(uj−1) = f

(j)
G,w(s) and fG,w(uk) = uk.

Fact 32.12.2. ∀v ∈ V , w(v) = zpos(v), where pos : [V ]→ [n] and pos−1 : [n]→ [V ].
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Claim 32.12.3. ∀j ∈ {0, 1, · · · , k + 1}, Sj = {u0} ∪
⋃j−1
p=0 Γ(up).

Proof. We can prove this by induction. The statement is obviously true for S0 since S0 =

{u0}. Now suppose the claim is true for Sj−1. Then according to the step 3 of the procedure

Sj = Sj−1 ∪ (Γ(uj−1) \ Sj−1) = Sj−1 ∪ Γ(uj−1) = {u0} ∪
⋃j−1
p=0 Γ(up).

Claim 32.12.4. ∀j ∈ {0, 1, · · · , k}, w(uj) = minv∈Sj w(v).

Proof. Since ∀j ∈ [k], uj = fG,w(uj−1), we have w(uj) = minv∈Γ(uj−1)∪{uj−1}w(v). Then we

have w(uj) = minv∈{u0}∪
⋃j−1
p=0 Γ(up) w(v) = minv∈Sj w(v), where the last equality follows by

Claim 32.12.3.

We use pos−1(i) to denote vertex v which satisfies pos(v) = i. According to the step

3, it is easy to see ∀j ∈ {0, 1, · · · , k + 1}, we have {pos−1(i) | i ∈ [|Sj|]} = Sj.

Claim 32.12.5. ∀j ∈ {0, 1, · · · , k}, zpos(uj) = minp∈[pos(uj)] zp.

Proof. zpos(uj) = w(uj) = minv∈Sj w(v) = minv∈Sj zpos(v) = minp∈[|Sj |] zp = minp∈[pos(uj)] zp,

where the second equality follows by Claim 32.12.4, and the last equality follows by uj ∈ Sj,

so pos(uj) ≤ |Sj|.

Now we define an another set of random variables y1, y2, · · · , yn, where ∀i ∈ [n], yi ∈

{0, 1} and yi = 1 if and only if zi = minj∈[i] zj. According to Claim 32.12.5, we have that

∀i ∈ {0, 1, · · · , k}, ypos(ui) = 1. Thus, depG,w(s) = k ≤ ∑n
i=1 yi. To upper bound depG,w(s),

it suffices to upper bound
∑n

i=1 yi.

Before we look at y1, · · · , yn, we firstly focus on the properties of z1, · · · , zn :
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Claim 32.12.6. z1, z2, · · · , zn are n i.i.d random variables drawn uniformly from [N ].

Proof. A key observation is that if z1, z2, · · · , zn are given, then we can recover w(v1), w(v2), · · · , w(vn)

exactly by the following deterministic procedure:

1. Let w(s) = z1, k = 0, Sk = {s}, uk = s, i = 2.

2. Let Sk+1 = Sk.

3. For j = 1→ n,

if vj ∈ Γ(uk) and vj 6∈ Sk then let Sk+1 ← Sk+1 ∪ {vj}, w(vj) = zi, i← i+ 1.

4. If fG,w(uk) 6= uk, then let uk+1 = fG,w(uk), k ← k + 1 and go to step 2.

5. Otherwise, for j = 1→ n,

if vj 6∈ Sk+1 then let pos(vj)← i, w(vj) = zi, i← i+ 1.

Notice that after step 3, ∀v ∈ Γ(uk)∪{uk}, w(v) is already recovered, thus we can implement

step 4. Thus, the above procedure is a valid procedure. Since z1, · · · , zn are generated by

w(v1), · · · , w(vn), we can also know z1, · · · , zn by given w(v1), · · · , w(vn). This means that

H(z1, z2, · · · , zn | w(v1), w(v2), · · · , w(vn)) = H(w(v1), w(v2), · · · , w(vn) | z1, z2, · · · , zn) = 0,

where H(·) is the information entropy. Notice that

I(z1, z2, · · · , zn;w(v1), w(v2), · · · , w(vn))

= H(z1, z2, · · · , zn)−H(z1, z2, · · · , zn | w(v1), w(v2), · · · , w(vn))

= H(w(v1), w(v2), · · · , w(vn))−H(w(v1), w(v2), · · · , w(vn) | z1, z2, · · · , zn),
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where I(·) is the mutual information. Thus,H(z1, z2, · · · , zn) = H(w(v1), w(v2), · · · , w(vn)) =

n logN. For i ∈ [n], since the size of the support of zi is at most N, H(zi) ≤ logN

where the equality holds if and only if zi is uniformly distributed on [N ]. Also notice that

H(z1, z2, · · · , zn) ≤ ∑n
i=1H(zi), where the equality holds if and only if zi are independent.

Since
∑n

i=1H(zi) ≤ n logN, we have H(z1, z2, · · · , zn) =
∑n

i=1H(zi), and for each i ∈ [n],

H(zi) = logN. Thus, z1, z2, · · · , zn are i.i.d. random variables drawn uniformly from [N ].

Claim 32.12.7. If N > n2/δ for some δ ∈ (0, 1), then with probability at least 1 − δ,

∀i 6= j ∈ [n], we have w(vi) 6= w(vj).

Proof. Recall that w(v1), w(v2), · · · , w(vn) are n i.i.d. random variables drawn uniformly

from N . For any i 6= j ∈ [n], the Pr(w(vi) 6= w(vj)) = 1/N, thus E(|{(i, j) ∈ [n] × [n] | i 6=

j, w(vi) 6= w(vj)}|) ≤ n2/N. By Markov’s inequality,

Pr(|{(i, j) ∈ [n]× [n] | i 6= j, w(vi) 6= w(vj)}| ≥ 1) ≤ n2/N ≤ δ.

Thus,

Pr(∀i 6= j ∈ [n], zi 6= zj) ≥ 1− δ.

Claim 32.12.8. Let E be the event that ∀i 6= j ∈ [n], w(vi) 6= w(vj). Then, for any t ≥

3
∑n

i=1
1
i
, we have

Pr
w∼[N ]n

(
n∑

i=1

yi ≥ t+
n∑

i=1

1

i

∣∣∣∣ E
)
≤ e−

3
4
t.
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Proof. Note that E happened if and only if we have ∀i 6= j ∈ [n], zi 6= zj.Due to Claim 32.12.6,

z1, z2, · · · , zn are i.i.d. random variables drawn uniformly from [N ], then conditioned on E,

y1, y2, · · · , yn are independent, and the probability that yi = 1 is 1/i. Thus, we have:

Pr

(
n∑

i=1

yi ≥
n∑

i=1

1

i
+ t

∣∣∣∣ E
)

= Pr

(
n∑

i=1

(yi − E (yi | E)) ≥ t

∣∣∣∣ E
)

≤ exp

(
−

1
2
t2∑n

i=1 V(yi | E) + 1
3
t

)

≤ exp

(
−

1
2
t2∑n

i=1
1
i

+ 1
3
t

)

≤ exp

(
−

1
2
t2

2
3
t

)

= exp

(
−3

4
t

)
,

where the first equality follows by E(yi|E) = 1/i. The first inequality follows by Berinstein

inequality. The second inequality follows by

n∑

i=1

V(yi | E) ≤
n∑

i=1

E(y2
i | E) =

n∑

i=1

E(yi | E) =
n∑

i=1

1

i
.

The third inequality follows by
∑n

i=1
1
i
≤ 1

3
t.

For a fixed vertex s ∈ V, due to Claim 32.12.8, for any t ≥ 3
∑n

i=1 1/i, we have

Pr

(
depG,w(s) ≥

n∑

i=1

1/i+ t

∣∣∣∣ E
)
≤ e−

3
4
t. (32.1)
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Thus, for any t ≥ 60 log n,

Pr
w∼[N ]n

(
∃s ∈ V s.t. depG,w(s) ≥ t

)

≤ Pr

(
∃s ∈ V s.t. depG,w(s) ≥ 5t/6 +

n∑

i=1

1/i

)

= Pr

(
∃s ∈ V s.t. depG,w(s) ≥ 5t/6 +

n∑

i=1

1/i

∣∣∣∣ E
)

Pr(E)

+ Pr

(
∃s ∈ V s.t. depG,w(s) ≥ 5t/6 +

n∑

i=1

1/i

∣∣∣∣ ¬E
)

Pr(¬E)

≤ Pr

(
∃s ∈ V s.t. depG,w(s) ≥ 5t/6 +

n∑

i=1

1/i

∣∣∣∣ E
)

+ Pr(¬E)

≤ Pr

(
∃s ∈ V s.t. depG,w(s) ≥ 5t/6 +

n∑

i=1

1/i

∣∣∣∣ E
)

+ δ

≤
∑

s∈V

Pr

(
depG,w(s) ≥ 5t/6 +

n∑

i=1

1/i

∣∣∣∣ E
)

+ δ

≤ ne−
5
8
t + δ

≤ e−
1
2
t + δ

where the first inequality follows by 1
6
t ≥ 10 log n ≥ ∑n

i=1 1/i. The third inequality follows

by Claim 32.12.7. The forth inequality follows by union bound. The fifth inequality follows

by Equation (32.1). The sixth inequality follows by e−
1
8
t ≤ 1

n
.

Thus, we can conclude that for any t ≥ 60 log n, we have Pr(dep(G,w) ≤ t) ≥

1− δ − e− 1
2
t.

Lemma 32.12.9 (The number of roots of the random min-parent-forest). Let G = (V,E)

be an undirected graph with n vertices where V = {v1, v2, · · · , vn}, and the labels satisfies
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v1 < v2 < · · · < vn. Let w(v1), w(v2), · · · , w(vn) be n i.i.d. random variables drawn uniformly

from [N ]. Let δ ∈ (0, 1). If N > n3, then

Pr
w∼[N ]n

(
|{v ∈ V | fG,w(v) = v}| ≥ 2

δ

∑

v∈V

1

|Γ(v)|+ 1

)
≤ δ.

Proof. Let w(v1), w(v2), · · · , w(vn) be n i.i.d. random variables drawn uniformly from [N ].

Let E be the event that ∀i 6= j ∈ [n], w(vi) 6= w(vj). Notice that for i 6= j, the probability

that w(vi) = w(vj) is 1/N. Thus, E(|{(i, j) ∈ [n]×[n] | i 6= j, w(vi) = w(vj)}|) ≤ n2/N. Thus,

if N > n2, then Pr(¬E) = Pr (|{(i, j) ∈ [n]× [n] | i 6= j, w(vi) = w(vj)}| ≥ 1) ≤ n2/N ≤ 1
n
.

Now, we fix a vertex v ∈ V,

Pr (fG,w(v) = v)

= Pr (fG,w(v) = v | E) Pr(E) + Pr (fG,w(v) = v | ¬E) Pr(¬E)

≤ Pr (fG,w(v) = v | E) + Pr(¬E)

≤ Pr

(
w(v) = min

u∈{v}∪Γ(v)
w(u) | E

)
+

1

n

≤ 1

|Γ(v)|+ 1
+

1

n

≤ 2

|Γ(v)|+ 1

where the third inequality follows by the symmetry of all the variables w(u) for u ∈ {v}∪Γ(v)

so condition on all the w are different, with probability 1
1+|Γ(v)| , w(v) is the smallest one.

The last inequality follows by |Γ(v)|+ 1 ≤ |V | = n.

Thus, E(|{v ∈ V | fG,w(v) = v}|) ≤ ∑v∈V
2

|Γ(v)|+1
. Let δ ∈ (0, 1), then by Markov’s

inequality,

Pr

(
|{v ∈ V | fG,w(v) = v}| ≥ 2

δ

∑

v∈V

1

|Γ(v)|+ 1

)
≤ δ.
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32.12.2 Leader Selection via Min Parent Forest

Given a graph, we can randomly assign each vertex a weight, thus we have a min-

parent-forest, then we select those roots in the min-parent-forest as leaders, and try to

contract all the vertices to the leaders. If we replace line 13 to line 17 of Algorithm 32.3 by

Algorithm 32.20. We can get a new algorithm with the following guarantees.

Theorem 32.12.10. Suppose we replace line 13 to line 17 of Algorithm 32.3 by Algo-

rithm 32.20.

Let G = (V,E) be an undirected graph, m = Ω(n), and r ≤ n be the rounds param-

eter where n is the number of vertices in G. Let c > 0 be a sufficiently large constant. If

r ≥ c log logm/n(n), then with probability at least 2/3, the modified Connectivity(G,m, r)

(Algorithm 32.3) will not return FAIL, and the total number of iterations (see Defini-

tion 32.4.6) of the modified Connectivity(G,m, r) is at most O(r · (logD + log log n)),

where D = diam(G).

Proof. Let ki denote the number of iterations (see Definition 32.4.1) of NeighborIncrement(m,Gi−1).

By Lemma 32.4.2, we have ki ≤ O(logD). Thus,
∑r

i=1 ki = O(r · logD).

According to Lemma 32.12.1, with probability at least 1− 2
100r

, dep(G′′i , wi) ≤ O(log n).

By Lemma 32.4.6, with probability at least 1− 2
100r

, the number of iteration of TreeContraction(G′′i , pari)

(see Definition 32.4.5) r′i ≤ O(log log n) By taking union bound over all i ∈ [r], then with

probability at least 1− 1
50
,
∑r

i=1 r
′
i ≤ O(r · log log n).

Due to the Property 3 of Lemma 32.4.2, ∀i ∈ [r], ∀v ∈ V ′′i , u ∈ ΓG′i(v), we have

u ∈ V ′′i which means that u ∈ ΓG′′i (v). Thus, |ΓG′′i (v)| ≥ d(m/ni−1)1/2e − 1. Then due
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to Lemma 32.12.9, we have that with probability at most 1
8
, ni ≥ 16n

3/2
i−1/m

1/2. Since

m/n ≥ m/ni ≥ 1024, we have that with probability at most 1
8
, ni ≥ n

11/10
i−1 /m1/10. Let

y1, y2, · · · , yr be r random variables. If ni ≥ n
11/10
i−1 /m1/10, then yi = 1, otherwise yi = 0.

We have E(
∑r

i=1 yi) ≤ r
8
. By Markov’s inequality, we have Pr(

∑r
i=1 yi ≥ r

2
) ≤ 1

4
. Thus, with

probability at least 3
4
,
∑r

i=1 yi ≤ r
2
. Notice that when yi = 0, then ni ≤ n

11/10
i−1 /m1/10, and

when yi = 1, we have ni ≤ ni−1. So if there are at least r
2
number of yis which are 0, then

nr ≤

((
n1.1

m0.1

)1.1

m0.1

)···

· · · (Apply r/2 times)

=
n1.1r/2

m1.1r/2−1

= n/(m/n)1.1r/2−1

≤ n/(m/n)1.1r/4

≤ 1

2

where the last inequality follows by r ≥ 4
log 1.1

(log logm/n(2n)). Since nr is an integer, when

nr ≤ 1
2
, nr = 0. Thus, we can conclude that if r ≥ c · log logm/n n for a sufficiently large con-

stant c > 0, then with probability at least 3
4
− 1

50
≥ 2

3
, the modified Connectivity(G,m, r)

will not output FAIL.

Notice that though the theoretical guarantees of the min-parent-forest leader selection

method is worse than the random leader sampling, the merit of min-parent-forest leader

selection method is that it can have an “early start”.

Consider the case when the total space size m is Θ(n). In this case, random leader

sampling will always sample a half of the vertices as the leaders until the total space m is
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poly(log n) larger than the number of vertices. However, min-parent-forest leader selection

method can make a large progress at the beginning, it will choose the number of leaders

to be about the sum of inverse degrees. Furthermore, the depth of the min-parent-forest

may not always have log n depth. Thus, it is an interesting question which leader selection

approach has better performance in practice.
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Algorithm 32.3 Graph Connectivity
1: procedure Connectivity(G = (V,E),m, r) . Theorem 32.4.9, Theorem 32.4.15
2: Output: FAIL or col : V → V.
3: n← |V |
4: ∀v ∈ V, h0(v)← null.
5: G0 = (V0, E0) = G, i.e. V0 = V,E0 = E.
6: n0 = n.
7: for i = 1→ r do
8: ∀v ∈ V, hi(v)← null. . hi(v) is the vertex that v contracts to
9: G′i = (V ′i , E

′
i) = NeighborIncrement(m,Gi−1). . Algorithm 32.1

10: Compute V ′′i = {v ∈ V ′i | |ΓG′i(v)| ≥ d(m/ni−1)1/2e − 1}.
11: Compute E ′′i = {(u, v) ∈ Ei−1 | u ∈ V ′′i , v ∈ V ′′i }.
12: G′′i = (V ′′i , E

′′
i ). . G′′i is obtained by removing all the small components of Gi

13: Let γi = d(m/ni−1)1/2e, pi = min((30 log(n) + 100)/γi, 1/2).
14: Let li : V ′′i → {0, 1} be a random hash function such that ∀v ∈ V ′′i , li(v) are i.i.d.

Bernoulli random variables, and Pr(li(v) = 1) = pi.
15: Let Li = {v ∈ V ′′i | li(v) = 1} ∪ {v ∈ V ′′i | ∀u ∈ ΓG′i(v) ∪ {v}, li(u) = 0}. . Li are

leaders
16: ∀v ∈ V ′′i with v ∈ Li, let pari(v) = v.
17: ∀v ∈ V ′′i with v 6∈ Li, let pari(v) = minu∈Li∩(ΓG′

i
(v)∪{v}) u. . Non-leader finds a

leader.
18: Let ((Vi, Ei), g

(r′i)
i ) = TreeContraction(G′′i , pari). . Algorithm 32.2

19: Gi = (Vi, Ei).
20: ni = |Vi|.
21: For each v ∈ V ′i \ V ′′i , let hi(v)← minu∈ΓG′

i
(v)∪{v} u. . Contract small component

to one vertex
22: For each v ∈ V ′′i \ Vi, let hi(v)← g

(r′i)
i (v). . Contract non-leader to leader

23: For each v ∈ V, if hi−1(v) 6= null, then let hi(v) = hi−1(v).
24: end for
25: If nr 6= 0, return FAIL.
26: ((V̂ , Ê), col) = TreeContraction(G, hr). . Algorithm 32.2
27: return col .
28: end procedure
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Algorithm 32.4 Local Complete Shortest Path Tree Expansion

1: procedure TreeExpansion(T̃ , depT̃ , {T (u) | u ∈ VT̃}, {depT (u) | u ∈ VT̃}) .
Lemma 32.5.1

. T̃ = (VT̃ , parT̃ ) with root v and radius s1 is a LCSPT in graph G = (V,E).

. depT̃ : VT̃ → Z≥0 records the depth of every vertex in T̃ .
. ∀u ∈ VT̃ , T (u) = (VT (u), parT (u)) with root u and radius s2 is a LCSPT in G.

. ∀u ∈ VT̃ , depT (u) : VT (u) → Z≥0 records the depth of every vertex in T (u).

2: Output: T̂ = (VT̂ , parT̂ ), depT̂ .
3: Let VT̂ =

⋃
u∈T̃ VT (u).

4: ∀x ∈ VT̃ , parT̂ (x)← parT̃ (x).
5: ∀x ∈ VT̃ , h(x)← depT̃ (x).
6: ∀x ∈ VT̂ \ VT̃ , ux ← arg min

u:u∈V
T̃
,x∈VT (u)

depT̃ (u) + depT (u)(x), parT̂ (x)← parT (ux)(x).

. ux is on the shortest path from x to v.
7: ∀x ∈ VT̂ \ VT̃ , h(x)← depT̃ (ux) + depT (ux)(x).

8: return T̂ = (VT̂ , parT̂ ), and return h : VT̂ :→ Z≥0 as depT̂ .
9: end procedure
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Algorithm 32.5 Doubling Algorithm for Local Complete Shortest Path Trees
1: procedure MultiRadiusLCSPT(G = (V,E),m) . Lemma 32.5.2
2: Output: r, {Ti(v) | i ∈ {0} ∪ [r], v ∈ V }, {depTi(v) | i ∈ {0} ∪ [r], v ∈ V, Ti(v) 6= null}
3: Initialization:
4: ∀v ∈ V, if |{v} ∪ ΓG(v)| < d(m/n)1/4e, then let T0(v)← ({v} ∪ ΓG(v), parT0(v)),
5: where parT0(v) : {v} ∪ ΓG(v)→ {v} ∪ ΓG(v), and ∀u ∈ {v} ∪ ΓG(v), parT0(v)(u) = v.

6: ∀v ∈ V, if |{v} ∪ ΓG(v)| ≥ d(m/n)1/4e, then let T0(v)← null.
7: ∀v ∈ V, if T0(v) 6= null, let depT0(v) : VT0(v) → Z≥0 s.t. depT0(v)(v) = 0, ∀u ∈

ΓG(v), depT0(v)(u) = 1.
8: r = 1.
9: Main Loop:
10: for true do
11: for v ∈ V do . If Tr(v) 6= null, Tr(v) is a local complete shortest path tree with

radius 2r.
12: if Tr−1(v) is null then Tr(v)← null.
13: else if ∃u ∈ VTr−1(v), Tr−1(u) is null then Tr(v)← null.
14: else
15:

(
Tr(v), depTr(v)

)
= TreeExpansion

Tr−1(v), depTr−1(v),
⋃

u∈VTr−1(v)

{
Tr−1(u)

}
,

⋃
u∈VTr−1(v)

{
depTr−1(u)

} .

. Algorithm 32.4
16: If |VTr(v)| ≥ d(m/n)1/4e, let Tr(v)← null.

17: end if
18: end for
19: if ∀v ∈ V either Tr(v) = null or |VTr(v)| = |VTr−1(v)| then
20: return r, {Ti(v) | i ∈ {0} ∪ [r], v ∈ V }, {depTi(v) | i ∈ {0} ∪ [r], v ∈ V, Ti(v) 6=

null}
21: end if
22: r ← r + 1.
23: end for
24: end procedure
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Algorithm 32.6 Large Local Shortest Path Trees
1: procedure MultipleLargeTrees(G = (V,E),m) . Lemma 32.5.3, Lemma 32.5.6
2: Output: {T̃ (v) | v ∈ V }, {depT̃ (v) | v ∈ V }.
3:

(
r, {Ti(v) | i ∈ {0} ∪ [r], v ∈ V }, {depTi(v)

| i ∈ {0} ∪ [r], v ∈ V, Ti(v) 6= null}
)

= MultiRadiusLCSPT(G,m). .
Algorithm 32.5

4: ∀v ∈ V with Tr(v) 6= null let T̃ (v) = Tr(v) and depT̃ (v) ← depTr(v).

5: ∀v ∈ V with Tr(v) = null, let T̃0(v) = ({v}, parT̃0(v)), s0(v) = 0, and depT̃0(v) : {v} →
Z≥0,

6: where parT̃0(v) : {v} → {v} satisfies parT̃0(v)(v) = v, and depT̃0(v)(v) = 0.
7: for i = 1→ r do
8: for v ∈ {u ∈ V | Tr(u) = null} do
9: if ∀u ∈ VT̃i−1(v), Tr−i(u) 6= null then

10:
(
T̃i(v), dep

T̃i(v)

)
= TreeExpansion

T̃i−1(v), dep
T̃i−1(v)

,
⋃

u∈V
T̃i−1(v)

{
Tr−i(u)

}
,

⋃
u∈V

T̃i−1(v)

{
depTr−i(u)

} .
. Algorithm 32.4

11: If |VT̃i(v)| < d(m/n)1/4e, then let si(v) = si−1(v) + 2r−i.

12: Otherwise, let si(v) = si−1(v), T̃i(v)← T̃i−1(v), depT̃i(v) ← depT̃i−1(v).
13: else
14: Let si(v) = si−1(v), T̃i(v) = T̃i−1(v), depT̃i(v) ← depT̃i−1(v).
15: end if
16: end for
17: end for . T̃r(v) is a LCSPT with root v and the largest radius s.t.
|VT̃r(v)| < d(m/n)1/4e.

18: ∀v ∈ V, if |ΓG(v) ∪ {v}| ≤ d(m/n)1/4e, then let N(v) = ΓG(v) ∪ {v}.
19: Otherwise arbitrarily choose N(v) ⊆ ΓG(v) ∪ {v} with |N(v)| = d(m/n)1/4e.
20: for v ∈ {u ∈ V | Tr(u) = null} do . Expand T̃r(v) a little bit to get large enough T̃ .
21: if ∀u ∈ VT̃r(v), T0(u) 6= null then

22:
(
T̃ (v), dep

T̃ (v)

)
= TreeExpansion

T̃r(v), dep
T̃r(v)

,
⋃

u∈V
T̃r(v)

{T0(u)} ,
⋃

u∈V
T̃r(v)

{
depT0(u)

} . .

Algorithm 32.4
23: else
24: Select an arbitrary uv ∈ VT̃r(v) with T0(uv) = null.

25: Let VT̃ (v) = N(uv) ∪ VT̃r(v).

26: ∀x ∈ VT̃r(v), let parT̃ (v)(x) = parT̃r(v)(x), depT̃ (v)(x) = depT̃r(v)(x).

27: ∀x ∈ N(uv), x 6∈ VT̃r(v), let parT̃ (v)(x) = uv, depT̃ (v)(x) = depT̃r(v)(uv) + 1.

28: Let T̃ (v) = (VT̃ (v), parT̃ (v)).
29: end if
30: end for
31: return {T̃ (v) | v ∈ V }, {depT̃ (v) | v ∈ V }.
32: end procedure
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Algorithm 32.7 Depth and Ancestors of Every Vertex
1: procedure FindAncestors (par : V → V ) . Lemma 32.5.7
2: For v ∈ V let g0(v) = part(v). If part(v) = v, let h0(v) = 0. Otherwise, let h0(v) =

null.
3: Let l = 0.
4: for ∃v ∈ V, hl(v) = null do
5: l← l + 1.
6: for v ∈ V do
7: Let gl(v) = gl−1(gl−1(v)). . gl is par(2l).
8: if hl−1(v) 6= null then hl(v) = hl−1(v).
9: else if hl−1(gl−1(v)) 6= null then hl(v) = hl−1(gl−1(v)) + 2l−1.
10: else hl(v) = null.
11: end if
12: end for
13: end for
14: Let r = l, deppar ← hr.
15: return r, deppar, {gi : V → V | i ∈ {0} ∪ [r]}. . deppar : V → Z≥0

16: end procedure
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Algorithm 32.8 Path in a Tree
1: procedure FindPath (par : V → V, q ∈ V ) . Lemma 32.5.9
2: Output: deppar : V → Z≥0, P ⊆ V,w ∈ V ∪ {null}.
3: (r, deppar, {gi | i ∈ {0} ∪ [r]}) = FindAncestors(par) . Algorithm 32.7
4: Let S0 = {(q, gr(q))}, k = dlog(deppar(q))e. . S0 contains (q, the root of q)
5: for i = 1→ k do . Si is a set of segments partitioned the path from q to the root of
q

6: Let Si ← ∅.
7: for (x, y) ∈ Si−1 do
8: if deppar(x)− deppar(y) > 2k−i then Si ← Si ∪ {(x, gk−i(x)), (gk−i(x), y)}.
9: else Si ← Si ∪ {(x, y)}.
10: end if
11: end for
12: end for . Sk only contains segments with length at most 1
13: Let P ← {q}
14: for (x, y) ∈ Sk do
15: Let P ← P ∪ {y}
16: end for
17: Find w ∈ P with deppar(w) = 1. If w does not exist, let w ← null.
18: return (deppar, P, w)
19: end procedure

Algorithm 32.9 Root Changing
1: procedure RootChange(par : V → V, q ∈ V ) . Lemma 32.5.11
2: Output: p̂ar : V → V.
3: (deppar, P, w) = FindPath(par, q). . Algorithm 32.8
4: ∀v ∈ V \ P, let p̂ar(v) = part(v).
5: Let p̂ar(q) = q.
6: Let h : {0} ∪ [deppar(q)] → P such that ∀i ∈ {0} ∪ [deppar(q)], h(i) = x where

deppar(x) = i.
7: for v ∈ P \ {q} do . Reverse par of all the vertices on the path from q to the root

of q.
8: Let p̂ar(v) = h(deppar(v) + 1).
9: end for
10: return p̂ar.
11: end procedure
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Figure 32.1: Each tree with green edges on the top-left is a rooted tree of each con-
tracted component. For example, there are five components {1, 2, 3}, {4, 5, 6, 7}, {8, 9,
10, 11, 12}, {13, 14, 15}, {16, 17}. The dashed edges in the bottom-left figure is a root span-
ning tree of five components. The red edges in the top-right figure correspond to the dashed
edges in the bottom-left figure before contraction. In bottom-right figure, by changing (see
blue edges) the root of each contracted tree, we get a rooted spanning tree in the original
graph
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Algorithm 32.10 Spanning Forest Expansion
1: procedure ForestExpansion(par : V1 → V1, p̃ar : V2 → V2, f : V1 × V1 → {null} ∪

(V2 × V2))
. Lemma 32.5.12

2: Output: p̂ar : V2 → V2.
3: ((V ′2 , ∅), p̃ar(∞)) = TreeContraction((V2, ∅), p̃ar). . Algorithm 32.2
4: for v ∈ V1 do
5: Let V2(v) = {u ∈ V2 | p̃ar(∞)(u) = v}.
6: Let p̃arv : V2(v)→ V2(v) such that ∀u ∈ V2(v), p̃arv(u) = p̃ar(u).
7: if part(v) 6= v then
8: Let (xv, yv) = f(v, part(v)).
9: p̂arv = RootChange(p̃arv, xv). . Algorithm 32.9
10: Let p̂ar(xv) = yv, and ∀u ∈ V2(v) \ {xv}, p̂ar(u) = p̂arv(u).
11: else ∀u ∈ V2(v) let p̂ar(u) = p̃arv(u).
12: end if
13: end for
14: return p̂ar.
15: end procedure
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Algorithm 32.11 Undirected Graph Spanning Forest
1: procedure SpanningForest(G = (V,E),m, r) . Corollary 32.5.17, Theorem 32.5.21
2: Output: FAIL or {Vi ⊆ V | i ∈ {0} ∪ [r]}, {pari : Vi → Vi | i ∈ {0} ∪ [r − 1]}, {hi :
Vi → Vi+1 ∪ {null} | i ∈ {0} ∪ [r − 1]}, F ⊆ E.

3: n0 = n = |V |, G0 = (V0, E0) = (V,E).
4: Let g0 : E0 → E be an identity map.
5: Let n′0 = n0.
6: for i = 0→ r − 1 do
7: Di ← ∅.
8:

(
{T̃i(v) | v ∈ Vi}, {depT̃i(v) | v ∈ Vi}

)
= MultipleLargeTrees(Gi,m). .

Algorithm 32.6
9: Let V ′i = {v ∈ Vi | |VT̃i(v)| ≥ d(m/ni)1/4e}, E ′i = {(u, v) ∈ Ei | u, v ∈ V ′i }, G′i =

(V ′i , E
′
i).

10: ∀v ∈ Vi \ V ′i , let hi(v) = null, uv = minu∈V
T̃i(v)

u. Let pari(v) = parT̃i(uv)(v).

11: ∀v ∈ Vi \ V ′i , if pari(v) 6= v, then Di ← Di ∪ {gi(pari(v), v), gi(v, pari(v))}.
12: Let γi = d(m/ni)1/4e, pi = min((30 log(n) + 100)/γi, 1/2).
13: Let li : V ′i → {0, 1} be chosen randomly s.t. ∀v ∈ V ′i , li(v) are i.i.d. Bernoulli

random variables with Pr(li(v) = 1) = pi.
14: Let Li = {v ∈ V ′i | li(v) = 1} ∪ {v ∈ V ′i | ∀u ∈ VT̃i(v), li(u) = 0}.
15: For v ∈ V ′i , let zi(v) = arg minu∈Li∩VT̃i(v)

depT̃i(v)(u). If zi(v) = v, let pari(v) = v.

16: Otherwise, (depT̃i(v), Pi(v), wi(v)) = FindPath(parT̃i(v), zi(v)), and let pari(v) =

wi(v).
. Algorithm 32.8

17: Let ((Vi+1, Ei+1), par
(∞)
i ) = TreeContraction(G′i, pari : V ′i → V ′i ). .

Algorithm 32.2
18: Gi+1 = (Vi+1, Ei+1), ni+1 = |Vi+1|.
19: ∀v ∈ V ′i , hi(v) = par

(∞)
i (v). If pari(v) 6= v, then Di ← Di ∪

{gi(pari(v), v), gi(v, pari(v))}.
20: Let gi+1 : Ei+1 → E satisfy gi+1(u, v) = min(x,y)∈Ei,hi(x)=u,hi(y)=v gi(x, y).
21: Let n′i+1 = n′i + ni+1. If n′i+1 > 40n, then return FAIL.
22: end for
23: If nr 6= 0, return FAIL.
24: Let F =

⋃
i∈{0}∪[r−1]Di.

25: return {Vi | i ∈ {0} ∪ [r]}, {pari | i ∈ {0} ∪ [r − 1]}, {hi | i ∈ {0} ∪ [r − 1]}, F.
26: end procedure

2492



Algorithm 32.12 Rooted Spanning Forest
1: procedure Orientate({Vi | i ∈ {0}∪ [r]}, {pari | i ∈ {0}∪ [r− 1]}, {hi | i ∈ {0}∪ [r−

1]}, F )
. Takes the output of Algorithm 32.11 as input.

. Theorem 32.5.19
2: Output: par : V0 → V0.
3: Let F0 = F.
4: for i = 0→ r − 1 do
5: Initialize Fi+1 ← ∅, fi+1 : Vi+1 × Vi+1 → {null}.
6: ∀(u, v) ∈ Fi, hi(u) 6= hi(v), let Fi+1 ← Fi+1 ∪ {(hi(u), hi(v))}, fi+1(hi(u), hi(v))←

(u, v).
7: end for
8: p̂arr : ∅ → ∅.
9: for i = r → 1 do . p̂ari is the spanning forest of Gi.

10: Let Ṽi = Vi ∪ {v ∈ Vi−1 | hi−1(v) = null, pari−1(v) = v}.
11: Let p̃ari : Ṽi → Ṽi satisfy ∀v ∈ Vi, p̃ari(v) = p̂ari(v), and ∀v ∈ Ṽi \Vi, p̃ari(v) = v.
12: Let p̂ari−1 = ForestExpansion(p̃ari, pari−1, fi). . Algorithm 32.10
13: end for
14: Return p̂ar0 as par .
15: end procedure
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Algorithm 32.13 Lowest Common Ancestor
1: procedure LCA(par : V → V,Q = {(u1, v1), (u2, v2), · · · , (uq, vq)}) . Lemma 32.6.1
2: Output: lca : Q→ (V ∪ {null})× (V ∪ {null})× (V ∪ {null})
3: (r, deppar, {gi | i ∈ {0} ∪ [r]}) = FindAncestors(par). . Algorithm 32.7
4: ∀(u, v) ∈ Q, if u = v then let lca(u, v) = (u, null, null), Q← Q \ {(u, v)}.
5: ∀(u, v) ∈ Q, gr(u) 6= gr(v), let lca(u, v) = (null, null, null).
6: Let Q′ = ∅.
7: ∀(u, v) ∈ Q, gr(u) = gr(v), if deppar(u) ≥ deppar(v), then let Q′ ← Q′ ∪ {(u, v)};

Otherwise let Q′ ← Q′ ∪ {(v, u)}.
8: Let hr : Q′ → Q′ be an identity mapping.
9: for i = r − 1→ 0 do . Move u to the almost same depth as v.
10: For each (u, v) ∈ Q′, let (x, v) = hi+1(u, v). If deppar(x)− 2i > deppar(y), then let

hi(u, v) = (gi(x), v); Otherwise let hi(u, v) = (x, v).
11: end for
12: For each (u, v) ∈ Q′ with part(h0(u)) = v, if (u, v) ∈ Q, then let lca(u, v) =

(v, h0(u), null); Otherwise lca(v, u) = (v, null, h0(u)).
13: Let Q′′ = ∅.
14: For each (u, v) ∈ Q′ with part(h0(u)) 6= v, deppar(h0(u)) > deppar(v) let Q′′ ←

Q′′ ∪ {(u, v)}, h′r(u, v)← (part(h0(u)), v).
15: For each (u, v) ∈ Q′ with deppar(u) = deppar(v) let Q′′ ← Q′′ ∪ {(u, v)}, h′r(u, v) ←

(u, v).
16: for i = r − 1→ 0 do . Move u, v to the lowest common ancestor.
17: For each (u, v) ∈ Q′′, let (x, y) = h′i+1(u, v). If gi(x) 6= gi(y), then let h′i(u, v) =

(gi(x), gi(y)); Otherwise let h′i(u, v) = (x, y).
18: end for
19: For each (u, v) ∈ Q′′, if (u, v) ∈ Q, then let lca(u, v) = (part(h′0(u)), h′0(u), h′0(v));

Otherwise lca(v, u) = (part(h′0(v)), h′0(v), h′0(u)).
20: return lca .
21: end procedure
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Algorithm 32.14 Multiple Paths
1: procedure MultiPath(par : V → V,Q = {(u1, v1), (u2, v2), · · · , (uq, vq)}) .

Lemma 32.6.2
2: Output: deppar : V → Z≥0, {Pi ⊆ V | i ∈ [q]}.
3: (r, deppar, {gi | i ∈ {0} ∪ [r]}) = FindAncestors(par). . Algorithm 32.7
4: ∀j ∈ [q], let S(0)

j = {(uj, vj) | (uj, vj) ∈ Q}.
5: for i = 1→ r do
6: for j = 1→ q do . S

(i)
j is a set of segments partitioned the path from uj to vj.

7: Let S(i)
j ← ∅.

8: for (x, y) ∈ S(i−1)
j do

9: if deppar(x)−deppar(y) > 2r−i then S(i)
j ← S

(i)
j ∪{(x, gr−i(x)), (gr−i(x), y)}.

10: else S(i)
j ← S

(i)
j ∪ {(x, y)}.

11: end if
12: end for
13: end for
14: end for . S

(r)
j only contains segments with length 1

15: Let ∀j ∈ [q], Pj ← {uj}.
16: for j = 1→ q do
17: for (x, y) ∈ S(r)

j do
18: Let Pj ← Pj ∪ {y}.
19: end for
20: end for
21: end procedure
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Algorithm 32.15 Leaf Sampling
1: procedure LeafSampling(par : V → V,m, δ) . Lemma 32.6.5
2: Output: A = (a1, a2, · · · , as).
3: Let t = dm1/3e.
4: Compute L = leaves(par).
5: Compute rank : V → Z≥0 such that ∀v ∈ V, rank(v) = rankpar(v). . Definition 32.6.4
6: If |V | ≤ m, let {a1, a2, · · · , as} = L, and return A = (a1, a2, · · · , as) which satisfies
a1 <par a2 <par · · · <par as. . <par follows Definition 32.6.8

7: If |L| ≤ 8t, let S = L.
8: Let p = min(1, 640(1 + log(m)/δ)t/|L|).
9: If |L| > t, sample each v ∈ L with probability p independently. let S be the set of

samples.
10: Compute par′ : V → V such that ∀v ∈ V, if childpar(v) 6= ∅, then par′(v) =

childpar(v, 1); Otherwise let par′(v) = v. . par′(v) points to v’s first child in par.
11: (r′, deppar′ : V → Z≥0, {g′i : V → V | i ∈ {0} ∪ [r′]}) = FindAncestors(par′).
12: Find w ∈ V with part(w) = w. . Find the root.
13: Let a1 = g′r′(w), S ← S ∪ {a1}. . Find the first leaf.
14: Let Q = {(u, v) | (u, v) ∈ S × S, u 6= v}.
15: Let lca = LCA(par, Q). . Algorithm 32.13
16: Let s = |S|.
17: (r, deppar : V → Z≥0, {gi : V → V | i ∈ {0} ∪ [r]}) = FindAncestors(par).
18: for i = 2→ s do . Determine the order of sampled leaves.
19: For all x, y ∈ S \ {a1, a2, · · · , ai−1}, let (px,y, pxy,x, pxy,y) = lca(x, y).
20: Find x∗ ∈ S \{a1, a2, · · · , ai−1} s.t. ∀y ∈ S \{a1, a2, · · · , ai−1, x

∗}, rank(px∗y,x∗) <
rank(px∗y,y).

21: Let ai = x∗.
22: end for
23: return A = (a1, a2, · · · , as).
24: end procedure
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Algorithm 32.16 DFS subsequence
1: procedure SubDFS(par : V → V,m, δ) . Lemma 32.6.9, Lemma 32.6.10
2: Output: V ′ ⊆ V,A = (a1, a2, · · · , as).
3: If V = {v}, return V ′ = V,A = (v).
4: Let v be the root in par, i.e. part(v) = v.
5: L = (l1, l2, · · · , lt) = LeafSampling(par,m, δ). . Algorithm 32.15
6: Q = {(li, li+1) | i ∈ [t− 1]}.
7: lca = LCA(par, Q). . Algorithm 32.13
8: ∀i ∈ [t− 1], (pli,li+1

, pi,li , pi,li+1
) = lca(li, li+1).

9: Q′ = {(l1, v), (part(l1), pl1,l2), (l2, p1,l2), (part(l2), pl2,l3), (l3, p2,l3), · · · , (lt, pt−1,lt), (part(lt), v)}.
10: (deppar, {Pi | i ∈ [2t]}) = MultiPath(par, Q′). . Algorithm 32.14
11: V ′ =

⋃2t
i=1 Pi.

12: Let par′ : V ′ → V ′ satisfy ∀v ∈ V ′, par′(v) = part(v).
13: for i ∈ {1, 3, 5, · · · , 2t− 1} do
14: Compute A′i = (u1, u2, · · · , u|Pi|) such that {u1, u2, · · · , u|Pi|} = Pi and

deppar(u1) < deppar(u2) < · · · < deppar(u|Pi|)
15: end for
16: for i ∈ {2, 4, 6, · · · , 2t} do
17: Compute A′i = (u1, u2, · · · , u|Pi|) such that {u1, u2, · · · , u|Pi|} = Pi and

deppar(u1) > deppar(u2) > · · · > deppar(u|Pi|)
18: end for
19: Let A′ = A′1A

′
2 · · ·A′2t. . A′ is the concatenation of A′1, A′2, · · · , A′2t.

20: ∀u ∈ V ′, compute rankpar(u) and rankpar′(u).
21: ∀u ∈ V ′, i ∈ [| childpar′ |+ 1] compute pos(u, i) = j such that the jth element in A′ is

the ith time that u appears.
22: Let b be the length of A′.
23: Initialize c : [b]→ Z≥0. . c determine the number of copies needed for each element

in A′
24: for u ∈ V ′ \ {v} do
25: If u ∈ leaves(par′), let c(pos(u, 1)) = 1. . A leaf should only have one copy.
26: If rankpar′(u) = 1, let c(pos(par′(u), 1)) = rankpar(u).
27: If rankpar′(u) = | childpar′(par′(u))|, let c(pos(par′(u), rankpar′(u) + 1)) =
| childpar(part(u))|+ 1− rankpar(u).

28: If 1 ≤ rankpar′(u) < | childpar′(par′(u))|, let c(pos(par′(u), rankpar′(u) + 1)) =
rankpar(childpar′(par′(u), rankpar′(u) + 1))− rankpar(u).

29: end for
30: For each j ∈ [b], duplicate the jth element of A′ c(j) times. Let A be the obtained

sequence.
31: return V ′, A.
32: end procedure 2497
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Figure 32.2: Given a tree that has 42 vertices (top-left), we label all the vertices from 1
to 42. Firstly, we sample some leaves (red vertices, i.e. {5, 13, 24, 30, 32, 34, 36, 37, 40, 42})
in the tree (top-right tree). Then we find a DFS sequence of the tree (the tree formed by
all the blue and red vertices in the bottom-left tree) which only contains all the sampled
leaves and their ancestors. Finally, we recursively find the DFS sequences of remaining
subtrees(bottom-right).
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Algorithm 32.17 DFS sequence
1: procedure DFS(par : V → V,m) . Theorem 32.6.12, Theorem 32.6.14
2: Output: FAIL or A = (a1, a2, · · · , a2|V |−1).
3: n = |V |, δ = 1/ logm n.
4: Let par0 = par .
5: (V0, A0) = SubDFS(par0,m, δ). . Algorithm 32.16
6: Let r = d3/δe+ 2.
7: for i = 1→ r do . v ∈ Vi ⇔ v appears in Ai

. If v ∈ Vi, then v appears | childpar(v)|+ 1 times in Ai
8: Let V ′i = V \ Vi−1.
9: Initialize pari : V ′i → V ′i .
10: For v ∈ V ′i , if part(v) ∈ Vi−1, let pari(v) = v; Otherwise, let pari(v) = part(v).

11: ((V ′′i , ∅), par
(∞)
i ) = TreeContraction((V ′i , ∅), pari). . Algorithm 32.2

12: Vi ← Vi−1.
13: Ai ← Ai−1.
14: for v ∈ V ′i , pari(v) = v do . The DFS sequence of the subtree of v in par is

missing.
15: Let V ′i (v) = {u ∈ V ′i | par

(∞)
i (u) = v}.

16: Let pari,v : V ′i (v)→ V ′i (v) satisfy ∀u ∈ V ′i (v), pari,v(u) = pari(u).
17: Let (Vi,v, Ai,v) = SubDFS(pari,v,m, δ). . Algorithm 32.16
18: Vi ← Vi ∪ Vi,v.
19: Insert Ai,v after the rankpar(v)th time appearance of v in Ai.
20: end for
21: end for
22: If Vr = V, return Ar as A. Otherwise, return FAIL.
23: end procedure
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Algorithm 32.18 A Sparser Table for RMQ
1: procedure SparseTable+(a1, a2, · · · , an, δ) . Lemma 32.6.16
2: . Output: f̂i,j for i ∈ [n], j ∈ {0} ∪ [d1/δe]
3: Initially, for all i ∈ [n] let f̂i,0 = i. ∀i > n, j ∈ Z, let f̂i,j = 0, and let a0 = ∞. Let
m = dnδe.

4: For t ∈ [d1/δe], let St = {x | ∃y ∈ [m− 1], x = y ·mt}.
5: for l = 1→ d1/δe do
6: for j = 0→ dn/me do
7: i← j ·m+ 1.
8: z∗j,l ← arg minz:t∈[l−1],x∈St,z=f̂j·m+1+x,t

az.

9: for i′ = 0→ min(m− 1, n− i) do
10: T ← {x ∈ Z | i + i′ ≤ x ≤ i + m − 1} ∪ {x ∈ Z | i + ml ≤ x ≤

i+ml + i′ − 1} ∪ {z∗j,l}
11: f̂i+i′,l = arg minz∈T az.
12: end for
13: end for
14: l← l + 1.
15: end for
16: return f̂i,j for i ∈ [n], j ∈ {0} ∪ [d1/δe].
17: end procedure
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Algorithm 32.19 A Sparse Table for RMQ
1: procedure SparseTable(a1, a2, · · · , an, δ) . Lemma 32.6.17
2: . Output: fi,j for i ∈ [n], j ∈ {0} ∪ [dlog ne].
3: Initially, for all i ∈ [n] let fi,0 = i. ∀i > n, j ∈ Z, let fi,j = 0, and let a0 = ∞. Let
m = dnδe.

4: Let {f̂p,q | p ∈ [n], q ∈ {0} ∪ d1/δe} = SparseTable+(a1, a2, · · · , an, δ). .
Algorithm 32.18

5: Let all undefined f̂p,q be 0.
6: for t ∈ [dlog ne] do
7: if 2t ≤ m then
8: kt ← −1
9: St ← ∅
10: else
11: kt ← blogm(2t −m)c
12: St ← {x | x ∈ [2t − m − mkt + 1] s.t. x ≡ 1 (mod mkt) or (2t − m − x) ≡ −1

(mod mkt)}
13: end if
14: end for
15: for j = 0→ dn/me do
16: for t = 0→ dlog ne do
17: i← j ·m+ 1.
18: z∗j,t ← arg minz:x∈St,z=f̂j·m+m+x,kt

az.

19: for i′ = 0→ min(m− 1, n− i) do
20: T1 ← {x ∈ Z | i+ i′ ≤ x ≤ min(i+m− 1, i+ i′ + 2t − 1)}
21: T2 ← {x ∈ Z | max(i+ 2t, i+ i′) ≤ x ≤ i+ 2t + i′ − 1}
22: T ← T1 ∪ T2 ∪ {z∗j,t}
23: fi+i′,t = arg minz∈T az.
24: end for
25: end for
26: end for
27: return fi,j for i ∈ [n], j ∈ {0} ∪ [dlog ne].
28: end procedure
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Figure 32.3: A hard example for [RMCS13]. For each i ∈ {2, 3, · · · , n/D − 1} and j ∈
{1, 2, · · · , D − 1}, node (i− 1) ·D + j has degree 4. For node D and n, they have degree 2.
Node 0 has degree D. All the other nodes have degree 3.

Algorithm 32.20 Leader Selection via Min Parent Forest
1: Let N = 100rn10.
2: ∀v ∈ V ′i , let wi(v) be i.i.d. random variables drawn uniformly from [N ].
3: ∀v ∈ V ′′i , let pari(v) = fG′i,wi(v). . (V ′i , fG′i,wi) is a min-parent-forest of G′i with wi.
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Figure 32.4: An example where #roots ≈ ∑20
i=1 1/(d(vi) + 1). For each node, it has two

numbers, the first number is the ID, and the second number is weight.
∑20

i=1 1/(d(vi) + 1) =
1/4 + 1/3 + 1/3 + 1/6 + 1/5 +1/5 + 1/5 + 1/5 + 1/5 + 1/6 +1/4 + 1/6 + 1/8 + 1/7 + 1/6
+1/9 + 1/8 + 1/7 + 1/6 + 1/4 ≈ 3.89 and #roots= 4.
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Appendix A

Probability and Inequality Tools

A.1 Scalar version probability tools

Lemma A.1.1 (Chernoff bounds [Che52]). Let x1, · · · , xn be independent random variables.

Assume that xi ∈ [0, 1] always, for each i ∈ [n]. Let x =
∑n

i=1 and µ = E[x] =
∑n

i=1 E[xi].

Then for any ε > 0

Pr[x ≥ (1 + ε)µ] ≤ exp

(
− ε2

2 + ε
µ

)
, and Pr[x ≤ (1− ε)µ] ≤ exp

(
−ε

2

2
µ

)
.

Lemma A.1.2 (Bernstein inequality [Ber24]). Let x1, · · · , xn be independent zero-mean vari-

ables. Suppose |xi| ≤M almost surely, for all i ∈ [n]. Then for all positive t,

Pr

[
n∑

i=1

xi > t

]
≤ exp

(
− t2/2∑n

i=1 E[x2
i ] +Mt/3

)
.

Lemma A.1.3 (Hanson-Wright inequality [HW71, Wri73]). Let x = (x1, · · · , xn) ∈ Rn be

a random vector with independent components xi which satisfy E[xi] = 0 and ‖xi‖ψ2 ≤ K

(where ‖xi‖ψ2 := supp≥1 p
−1/2(E[|xi|p])1/p). Let A be an n×n matrix. Then, for every t ≥ 0,

Pr
[∣∣∣x>Ax− E[x>Ax]

∣∣∣ > t
]
≤ 2 exp

(
−c ·min

(
t2

K4‖A‖2
F

,
t

K2‖A‖

))
.

Lemma A.1.4 (Khintchine’s inequality [Haa81]). Let σ1, · · · , σn be i.i.d. sign random vari-

ables, and let z1, · · · , zn be real numbers. Then there are constants C,C ′ > 0 so that

Pr

[∣∣∣∣∣
n∑

i=1

ziσi

∣∣∣∣∣ ≥ Ct‖z‖2

]
≤ exp(−C ′t2).
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Lemma A.1.5 (Hoeffding inequality [Hoe63]). Let xi ∈ [ai, bi] denote independent random

variables, let x = 1
n

∑n
i=1 xi then

Pr[|x− E[x]| ≥ t] ≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
.

Lemma A.1.6 (Lemma 1 on page 1325 of [LM00]). Let x ∼ X2
k be a chi-squared distributed

random variable with k degrees of freedom. Each one has zero mean and σ2 variance. Then

Pr[x− kσ2 ≥ (2
√
kt+ 2t)σ2] ≤ exp(−t)

Pr[kσ2 − x ≥ 2
√
ktσ2] ≤ exp(−t)

A.1.1 Reverse Chernoff bound

In this Section, we prove that the classical Chernoff bound is tight in some regimes.

There are several different proofs, e.g. [Mou10, Slu77, AB09, YZD12]. For completeness, we

provide a proof from [YZD12].

Fact A.1.7. If 1 ≤ l ≤ k − 1, then
(
k

l

)
≥ 1

e
√

2πl
(
k

l
)l(

k

k − l )
k−l.

Proof. By Stirling’s approximation, i! =
√

2πi(i/e)ieλ for some λ ∈ [1/(12i+ 1), 1/(12i)].
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Thus,
(
k

l

)
=

k!

l!(k − l)!

≥
√

2πk(k
e
)k√

2πl( l
e
)l
√

2π(k − l)(k−l
e

)k−l
exp(

1

12k + 1
− 1

12l
− 1

12(k − l))

≥
√

2πk(k
e
)k√

2πl( l
e
)l
√

2π(k − l)(k−l
e

)k−l
e−1

≥ 1√
2πl

(
k

l
)l(

k

k − l )
k−le−1.

where the first step follows by definition, the second step follows by Stirling’s approximation,

the third step follows by 1
1+a+b

+ 1 ≥ 1
a

+ 1
b
for a ≥ 12, b ≥ 12.

Now, we are ready to prove the following result

Lemma A.1.8 ([Mou10, Slu77, AB09, YZD12]). Let X be the average of k independent,

Bernoulli random variables with mean p. For any ε ∈ (0, 1/2] and p ∈ (0, 1/2], assuming

ε2pk ≥ 3, we have

Pr[X ≤ (1− ε)p] ≥ exp(−9ε2pk),

and

Pr[X ≥ (1 + ε)p] ≥ exp(−9ε2pk).

Proof. Note that Pr[X ≤ (1−ε)p] equals the sum∑b(1−ε)pkci=0 Pr[X = i/k], and Pr[X = i/k] =
(
k
i

)
pi(1− p)k−i.
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Fix l = b(1 − 2ε)pkc + 1. The terms in the sum are increasing, so the terms with

index i ≥ ` each have value at least Pr[X = l/k], so their sum has total value at least

(εpk − 2) Pr[X = l/k]. To complete the proof, we show that

(εpk − 2) Pr[X = l/k] ≥ exp(−9ε2pk).

The assumptions ε2pk ≥ 3 and ε ≤ 1/2 give εpk ≥ 6, so we have

(εpk − 2) Pr[X = l/k] ≥ 2

3
εpk

(
k

l

)
pl(1− p)k−l

≥ 2

3
εpk

1√
2πl︸ ︷︷ ︸

A

· (k
l
)l(

k

k − l )
k−lpl(1− p)k−l

︸ ︷︷ ︸
B

Below, we will show that A ≥ exp(−ε2pk) and B ≥ exp(−8ε2pk).

Claim A.1.9. A ≥ exp(−ε2pk).

Proof. The assumptions ε2pk ≥ 3 and ε ≤ 1/2 imply that pk ≥ 12.

By l ≤ pk + 1 (from definition), and pk ≥ 12, thus l ≤ 1.1pk.

Therefore, we have

A ≥ 2

3e
ε
√
pk/(2.2π)

≥ 2

3e

√
3/(2.2π) by ε

√
pk ≥

√
3

≥ 0.1

≥ exp(−3)

≥ exp(−ε2pk).

This completes the proof of the claim.
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Claim A.1.10. B ≥ exp(−8ε2pk).

Proof. Fix δ such that l = (1− δ)pk. The choice of l implies δ ≤ 2ε, so the claim will hold

as long as B ≥ exp(−2δ2pk). Manipulting this latter inequality, we get

B−1/l ≤ exp(
2δ2pk

l
)

⇐⇒ l

pk
(
k − l

(1− p)k )k/l−1 ≤ exp(
2δ2pk

l
).

Substituting l = (1− δ)pk and simplifying, it is equivalent to

(1− δ)(1 +
δp

1− p)
1

(1−δ)p−1 ≤ exp(
2δ2

1− δ ).

Taking the logarithm of both sides, we have

ln(1− δ) + (
1

(1− δ)p − 1)(ln(1 +
δp

1− p)) ≤ 2δ2

1− δ

Since ln(1 + z) ≤ z, it suffices to prove

− δ + (
1

(1− δ)p − 1)(
δp

1− p) ≤ 2δ2

1− δ

⇐⇒ δ2

(1− p)(1− δ) ≤
2δ2

1− δ .

Since p ≤ 1/2, this finishes the proof of the claim.

Combining the above two claims, we obtain the desired probability lower bound for

the (1− ε) side. We can prove it for the (1 + ε) side similarly.

Lemma A.1.11 (Anti-concentration of Gaussian distribution). Let X ∼ N(0, σ2), that is,

the probability density function of X is given by φ(x) = 1√
2πσ2

e−
x2

2σ2 . Then

Pr[|X| ≤ t] ∈
(

2

3

t

σ
,
4

5

t

σ

)
.
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A.2 Matrix version probability tools

We state a version from [Tro11c], and there is also another version can be found in

[OT09].

Lemma A.2.1 (Matrix Freedman). Consider a matrix martingale {Yi : i = 0, 1, 2, · · · }

whose values are self-adjoint matrices with dimension n, and let {Xi : i = 1, 2, 3, · · · } be the

difference sequence. Assume that the difference sequence is uniformly bounded in the sense

that

λmax(Xi) ≤ R, almost surely for i = 1, 2, 3, · · · .

Define the predictable quadratic variation process of the martingale :

Wi =
i∑

j=1

E
j−1

[X2
j ], for i = 1, 2, 3, · · · .

Then, for all t ≥ 0 and σ2 > 0,

Pr
[
∃i ≥ 0 : λmax(Yi) ≥ t and ‖Wi‖ ≤ σ2

]
≤ n · exp

(
− t2/2

σ2 +Rt/3

)
.

Lemma A.2.2 (Matrix Bernstein, Theorem 6.1.1 in [Tro15]). Consider a finite sequence

{X1, · · · , Xm} ⊂ Rn1×n2 of independent, random matrices with common dimension n1 × n2.

Assume that

E[Xi] = 0,∀i ∈ [m] and ‖Xi‖ ≤M,∀i ∈ [m].

Let Z =
∑m

i=1Xi. Let Var[Z] be the matrix variance statistic of sum:

Var[Z] = max

{∥∥∥
m∑

i=1

E[XiX
>
i ]
∥∥∥,
∥∥∥

m∑

i=1

E[X>i Xi]
∥∥∥
}
.
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Then

E[‖Z‖] ≤ (2Var[Z] · log(n1 + n2))1/2 +M · log(n1 + n2)/3.

Furthermore, for all t ≥ 0,

Pr[‖Z‖ ≥ t] ≤ (n1 + n2) · exp

(
− t2/2

Var[Z] +Mt/3

)
.

A.3 Inequalities

We state the Hölder’s inequality for complex numbers. We will use the corresponding

version p = q = 2 of Cauchy-Schwarz inequality for complex numbers.

Lemma A.3.1 (Hölder’s inequality). If S is a measurable subset of Rn with the Lebesgue

measure, and f and g are measurable complex-valued functions on S, then

∫

S

|f(x)g(x)|dx ≤
(∫

S

|f(x)|pdx
) 1

p
(∫

S

|g(x)|qdx
) 1

q

Fact A.3.2. For any vector x ∈ Rn, we have

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2.

For any matrix A ∈ Rn×d, we have

‖A‖F ≤ ‖A‖1 ≤
√
nd‖A‖F ,

and

‖A‖ ≤ ‖A‖F ≤
√
d · ‖A‖.

2511



Appendix B

Coauthors Index

B.1 Coauthors Index

We provide a summary of all the coauthors related to this thesis. I would like to thank

all of my coauthors x times, where x is the number of pages of this thesis. The purpose of

writing my Ph.D. thesis is to thank and memorize helps from all the coauthors.

• Part I

– Zeyuan Allen-Zhu

∗ [AZLS18, AZLS19]

– Michael B. Cohen

∗ [CLS19]

– Yin Tat Lee

∗ [CLS19, LSZ19, LSV18]

– Yuanzhi Li

∗ [AZLS18, AZLS19]

– Santosh S. Vempala

∗ [LSV18]

2512



– Qiuyi Zhang

∗ [LSZ19]

• Part II

– Ankit Garg

∗ [GLSS18]

– Rasmus Kyng

∗ [KS18, KLS19]

– Yin Tat Lee

∗ [GLSS18]

– Kyle Luh

∗ [KLS19]

– Nikhil Srivastava

∗ [GLSS18]

• Part III

– Xue Chen

∗ [CKPS16]

– Danial Kane

∗ [CKPS16]

– Eric Price

2513



∗ [PS15, CKPS16]

– Vasileios Nakos

∗ [NS19, NSW18, NSW19a, NSW19b]

– Zhengyu Wang

∗ [NSW18, NSW19a, NSW19b]

• Part IV

– Ilya Razenshteyn

∗ [RSW16]

– David P. Woodruff

∗ [RSW16, SWZ16, SWZ17, SWZ18, SWZ19b, SWZ19a]

– Huan Zhang

∗ [SWZ16]

– Peilin Zhong

∗ [SWZ17, SWZ18, SWZ19b, SWZ19a]

• Part VI

– Alexandr Andoni

∗ [ASS+18]

– Huaian Diao

∗ [DJS+19]

2514



– Rajesh Jayaram

∗ [DJS+19]

– Jerry Li

∗ [LSS19]

– Eric Price

∗ [PSW17]

– Aviad Rubinstein

∗ [RS19b, RSSS19]

– Saeed Seddighin

∗ [RSSS19]

– Ruoqi Shen

∗ [LSS19]

– Clifford Stein

∗ [ASS+18]

– Wen Sun

∗ [DJS+19]

– Xiaorui Sun

∗ [RSSS19]

– Ruosong Wang

∗ [SWY+19]

2515



– Zhengyu Wang

∗ [ASS+18]

– David P. Woodruff

∗ [PSW17, DJS+19]

– Lin F. Yang

∗ [SWY+19]

– Xin Yang

∗ [SY19]

– Hongyang Zhang

∗ [SWY+19]

– Peilin Zhong

∗ [ASS+18, SWY+19]

2516



Bibliography

[AA91] Charles A. Akemann and Joel Anderson. Lyapunov theorems for operator

algebras. Mem. Amer. Math. Soc., 94(458):iv+88, 1991. 593

[AAA+16] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang

Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang

Cheng, Guoliang Chen, et al. Deep speech 2: End-to-end speech recognition

in English and Mandarin. In International Conference on Machine Learning

(ICML), pages 173–182, 2016. 20, 250, 351

[AAB+07] Evrim Acar, Canan Aykut-Bingöl, Haluk Bingol, Rasmus Bro, and Bülent

Yener. Multiway analysis of epilepsy tensors. In Proceedings 15th Interna-

tional Conference on Intelligent Systems for Molecular Biology (ISMB) & 6th

European Conference on Computational Biology (ECCB), Vienna, Austria,

July 21-25, 2007, pages 10–18, 2007. 57, 1469

[AAMM18] Atiye Alaeddini, Siavash Alemzadeh, Afshin Mesbahi, and Mehran Mesbahi.

Linear model regression on time-series data: Non-asymptotic error bounds

and applications. arXiv preprint arXiv:1807.06611, 2018. 257

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern ap-

proach. Cambridge University Press, 2009. 1273, 2506, 2507

2517



[AB17] Amir Abboud and Arturs Backurs. Towards hardness of approximation for

polynomial time problems. In LIPIcs-Leibniz International Proceedings in

Informatics, volume 67. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,

2017. 2191, 2214, 2216, 2218

[ABB+17] Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mir-

rokni, and Cliff Stein. Coresets meet EDCS: algorithms for matching and

vertex cover on massive graphs. In arXiv preprint. http://arxiv.org/pdf/

1711.03076, 2017. 2316

[ABEZ16] Amir Adler, David Boublil, Michael Elad, and Michael Zibulevsky. A

deep learning approach to block-based compressed sensing of images. arXiv

preprint arXiv:1606.01519, 2016. 988

[ABF+16] Jason Altschuler, Aditya Bhaskara, Gang Fu, Vahab Mirrokni, Afshin Ros-

tamizadeh, and Morteza Zadimoghaddam. Greedy column subset selection:

New bounds and distributed algorithms. In International Conference on Ma-

chine Learning (ICML). https://arxiv.org/pdf/1605.08795, 2016. 1476

[ABGM14] Sanjeev Arora, Aditya Bhaskara, Rong Ge, and Tengyu Ma. Provable bounds

for learning some deep representations. In International Conference on Ma-

chine Learning (ICML), pages 584–592, 2014. 358

[ABIW09] Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David P Woodruff. Ef-

ficient sketches for earth-mover distance, with applications. In 50th Annual

IEEE Symposium on Foundations of Computer Science, pages 324–330, 2009.

1262

2518

http://arxiv.org/pdf/1711.03076
http://arxiv.org/pdf/1711.03076
https://arxiv.org/pdf/1605.08795


[ABSV14] Pranjal Awasthi, Avrim Blum, Or Sheffet, and Aravindan Vijayaraghavan.

Learning mixtures of ranking models. In Advances in Neural Information

Processing Systems (NIPS). https://arxiv.org/pdf/1410.8750, 2014. 57,

1469

[ABW15] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight

hardness results for LCS and other sequence similarity measures. In IEEE

56th Annual Symposium on Foundations of Computer Science, FOCS 2015,

Berkeley, CA, USA, 17-20 October, 2015, pages 59–78, 2015. 1914, 2191,

2214

[ABW17] Pranjal Awasthi, Maria-Florina Balcan, and Colin White. General and ro-

bust communication-efficient algorithms for distributed clustering. In arXiv

preprint. https://arxiv.org/pdf/1703.00830, 2017. 1784, 1788

[AC06] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast

johnson-lindenstrauss transform. In Proceedings of the thirty-eighth annual

ACM symposium on Theory of computing (STOC), pages 557–563. ACM,

2006. 1907, 1922, 1966

[ACCL07] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimat-

ing the distance to a monotone function. Random Structures & Algorithms,

31(3):371–383, 2007. 2218

[ACD+16] Ittai Abraham, Shiri Chechik, Daniel Delling, Andrew V Goldberg, and Re-

nato F Werneck. On dynamic approximate shortest paths for planar graphs

2519

https://arxiv.org/pdf/1410.8750
https://arxiv.org/pdf/1703.00830


with worst-case costs. In Proceedings of the Twenty-Seventh Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA), pages 740–753. Society

for Industrial and Applied Mathematics, 2016. 2094

[ACGH18] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence

analysis of gradient descent for deep linear neural networks. arXiv preprint

arXiv:1810.02281, 2018. 21, 251, 257, 351

[AÇKY05] Evrim Acar, Seyit A Çamtepe, Mukkai S Krishnamoorthy, and Bülent Yener.

Modeling and multiway analysis of chatroom tensors. In International Con-

ference on Intelligence and Security Informatics, pages 256–268. Springer,

2005. 57, 1469

[ACW17] Haim Avron, Kenneth L Clarkson, and David P Woodruff. Sharper bounds

for regression and low-rank approximation with regularization. ., 2017.

manuscript. 1335, 1338, 1342, 1343, 1344

[ACY06] Evrim Acar, Seyit A Camtepe, and Bülent Yener. Collective sampling and

analysis of high order tensors for chatroom communications. In Interna-

tional Conference on Intelligence and Security Informatics, pages 213–224.

Springer, 2006. 57, 1469

[ADGM16] Anima Anandkumar, Yuan Deng, Rong Ge, and Hossein Mobahi. Homotopy

analysis for tensor pca. In arXiv preprint. https://arxiv.org/pdf/1610.

09322, 2016. 58, 1470

2520

https://arxiv.org/pdf/1610.09322
https://arxiv.org/pdf/1610.09322


[ADH+19] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and

Ruosong Wang. On exact computation with an infinitely wide neural net.

arXiv preprint arXiv:1904.11955, 2019. 1908

[ADHP09] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. Np-

hardness of euclidean sum-of-squares clustering. Machine learning, 75(2):245–

248, 2009. 2093, 2097

[ADK+16] Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger, and

Richard Peng. On fully dynamic graph sparsifiers. In 2016 IEEE 57th Annual

Symposium on Foundations of Computer Science (FOCS), pages 335–344.

IEEE, 2016. 2094

[ADL+12] Patrick Amestoy, Iain S. Duff, Jean-Yves L’Excellent, Yves Robert, François-

Henry Rouet, and Bora Uçar. On computing inverse entries of a sparse matrix

in an out-of-core environment. SIAM J. Scientific Computing, 34(4), 2012.

1925

[AFdLGTL09] Santiago Aja-Fernández, Rodrigo de Luis Garcia, Dacheng Tao, and Xuelong

Li. Tensors in image processing and computer vision. Springer Science &

Business Media, 2009. 57, 1469

[AFH+12] Anima Anandkumar, Dean P Foster, Daniel J Hsu, Sham M Kakade, and

Yi-Kai Liu. A spectral algorithm for latent dirichlet allocation. In Advances

in Neural Information Processing Systems(NIPS), pages 917–925. https://

arxiv.org/pdf/1204.6703, 2012. 57, 1469, 1803, 1814

2521

https://arxiv.org/pdf/1204.6703
https://arxiv.org/pdf/1204.6703


[AFK+01] Yossi Azar, Amos Fiat, Anna R. Karlin, Frank McSherry, and Jared Saia.

Spectral analysis of data. In STOC, 2001. 48, 1036

[AFKM01] Dimitris Achlioptas, Amos Fiat, Anna R. Karlin, and Frank McSherry. Web

search via hub synthesis. In FOCS, 2001. 48, 1036

[AFLG15] Andris Ambainis, Yuval Filmus, and François Le Gall. Fast matrix multipli-

cation: limitations of the coppersmith-winograd method. In Proceedings of

the forty-seventh annual ACM symposium on Theory of computing(STOC),

pages 585–593. ACM, 2015. 12, 4

[AFS12] Andreas Argyriou, Rina Foygel, and Nathan Srebro. Sparse prediction with

the k-support norm. In Advances in Neural Information Processing Systems

(NIPS), pages 1457–1465, 2012. 1968, 1971, 1984

[AG09] Kook Jin Ahn and Sudipto Guha. Graph sparsification in the semi-streaming

model. In International Colloquium on Automata, Languages, and Program-

ming (ICALP), pages 328–338. Springer, 2009. 26, 549

[AG14] Nima Anari and Shayan Oveis Gharan. The kadison-singer problem for

strongly rayleigh measures and applications to asymmetric tsp. arXiv preprint

arXiv:1412.1143, 2014. 596, 597, 607, 612, 613

[AG15] Nima Anari and Shayan Oveis Gharan. Effective-resistance-reducing flows,

spectrally thin trees, and asymmetric tsp. In Foundations of Computer Sci-

ence (FOCS), 2015 IEEE 56th Annual Symposium on, pages 20–39. IEEE,

2015. 554, 562, 563

2522



[AG18] Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations:

Dual primal algorithms for maximum matching under resource constraints.

ACM Transactions on Parallel Computing (TOPC), 4(4):17, 2018. 2315, 2316

[AGH+14] Animashree Anandkumar, Rong Ge, Daniel J. Hsu, Sham M. Kakade, and

Matus Telgarsky. Tensor decompositions for learning latent variable models.

In Journal of Machine Learning Research, volume 15(1), pages 2773–2832.

https://arxiv.org/pdf/1210.7559, 2014. 57, 58, 1469, 1800, 1803, 1810,

1814, 1850

[AGHK14] Animashree Anandkumar, Rong Ge, Daniel J Hsu, and Sham M Kakade.

A tensor approach to learning mixed membership community models. In

Journal of Machine Learning Research, volume 15(1), pages 2239–2312.

https://arxiv.org/pdf/1302.2684, 2014. 57, 1469

[AGKM12] Sanjeev Arora, Rong Ge, Ravindran Kannan, and Ankur Moitra. Computing

a nonnegative matrix factorization - provably. In Proceedings of the 44th

Symposium on Theory of Computing Conference (STOC), New York, NY,

USA, May 19 - 22, 2012, pages 145–162. https://arxiv.org/pdf/1111.

0952, 2012. 1044, 1046, 1050, 1088, 1131, 1506, 1899

[AGM+10] Arash Asadpour, Michel X. Goemans, Aleksander Mądry, Shayan Oveis Gha-

ran, and Amin Saberi. An O(log n/ log log n)-approximation algorithm for

the asymmetric traveling salesman problem. In Proceedings of the Twenty-

first Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

2523

https://arxiv.org/pdf/1210.7559
https://arxiv.org/pdf/1302.2684
https://arxiv.org/pdf/1111.0952
https://arxiv.org/pdf/1111.0952


379–389, Philadelphia, PA, USA, 2010. Society for Industrial and Applied

Mathematics. 550, 555

[AGM12a] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph

structure via linear measurements. In Proceedings of the twenty-third annual

ACM-SIAM symposium on Discrete Algorithms, pages 459–467. Society for

Industrial and Applied Mathematics, 2012. 2094

[AGM12b] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches:

sparsification, spanners, and subgraphs. In Proceedings of the 31st ACM

SIGMOD-SIGACT-SIGAI symposium on Principles of Database Systems,

pages 5–14. ACM, 2012. 2094

[AGM13] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Spectral sparsification

in dynamic graph streams. In Approximation, Randomization, and Combina-

torial Optimization. Algorithms and Techniques, pages 1–10. Springer, 2013.

2094

[AGMR16] Sanjeev Arora, Rong Ge, Tengyu Ma, and Andrej Risteski. Provable learn-

ing of noisy-or networks. In Proceedings of the 49th Annual Symposium on

the Theory of Computing (STOC). ACM, https://arxiv.org/pdf/1612.

08795, 2016. 57, 1469

[AGR16] Nima Anari, Shayan Oveis Gharan, and Alireza Rezaei. Monte carlo markov

chain algorithms for sampling strongly rayleigh distributions and determi-

nantal point processes. In Conference on Learning Theory (COLT), pages

103–115, 2016. 555, 622

2524

https://arxiv.org/pdf/1612.08795
https://arxiv.org/pdf/1612.08795


[AGS03] Adi Akavia, Shafi Goldwasser, and Shmuel Safra. Proving hard-core pred-

icates using list decoding. In FOCS, volume 44, pages 146–159, 2003. 38,

919

[AH16] Zeyuan Allen-Zhu and Elad Hazan. Variance Reduction for Faster Non-

Convex Optimization. In Proceedings of the 33rd International Conference

on Machine Learning, ICML ’16, 2016. Full version available at http://

arxiv.org/abs/1603.05643. 15, 77

[AHL+18] Sanjeev Arora, Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, and

Yi Zhang. Towards provable control for unknown linear dynamical systems.

In ICLR workshop, 2018. 257

[AHPV04] Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Approxi-

mating extent measures of points. Journal of the ACM (JACM), 51(4):606–

635, 2004. 2094

[AHWW16] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams,

and Ryan Williams. Simulating branching programs with edit distance and

friends: or: a polylog shaved is a lower bound made. In Proceedings of the

48th Annual ACM SIGACT Symposium on Theory of Computing, STOC

2016, Cambridge, MA, USA, June 18-21, 2016, pages 375–388, 2016. 1914,

2191, 2214

[AIK08] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Earth mover dis-

tance over high-dimensional spaces. In Proceedings of the nineteenth annual

2525

http://arxiv.org/abs/1603.05643
http://arxiv.org/abs/1603.05643


ACM-SIAM symposium on Discrete algorithms, pages 343–352. Society for

Industrial and Applied Mathematics, 2008. 1262

[AK17] Sepehr Assadi and Sanjeev Khanna. Randomized composable coresets for

matching and vertex cover. In SPAA. https://arxiv.org/pdf/1705.08242,

2017. 2315, 2316

[AKDM10] E. Acar, T. G. Kolda, D. M. Dunlavy, and M. Morup. Scalable Tensor

Factorizations for Incomplete Data. In arXiv preprint. https://arxiv.org/

pdf/1005.2197, 2010. 58, 1469

[AKK+17] Naman Agarwal, Sham Kakade, Rahul Kidambi, Yin Tat Lee, Praneeth Ne-

trapalli, and Aaron Sidford. Leverage score sampling for faster accelerated

regression and erm. arXiv preprint arXiv:1711.08426, 2017. 13, 74

[AKM+19] Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya

Velingker, and Amir Zandieh. A universal sampling method for reconstructing

signals with simple fourier transforms. In STOC, 2019. 920

[AKO10] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarith-

mic approximation for edit distance and the asymmetric query complexity.

In Proceedings of the Fifty-First IEEE Annual Symposium on Foundations of

Computer Science, 2010. 1914, 2029, 2191, 2214, 2215

[AKO11] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming

algorithms via precision sampling. In Foundations of Computer Science

2526

https://arxiv.org/pdf/1705.08242
https://arxiv.org/pdf/1005.2197
https://arxiv.org/pdf/1005.2197


(FOCS), 2011 IEEE 52nd Annual Symposium on, pages 363–372. IEEE,

https://arxiv.org/pdf/1011.1263, 2011. 1568, 1593

[AKPS19] Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Iterative

refinement for `p-norm regression. In Proceedings of the Thirtieth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1405–1424.

SIAM, 2019. 14, 16, 74, 78

[AL13] Nir Ailon and Edo Liberty. An almost optimal unrestricted fast johnson-

lindenstrauss transform. ACM Transactions on Algorithms (TALG), 9(3):21,

2013. 1922

[AL17] Zeyuan Allen-Zhu and Yuanzhi Li. Follow the Compressed Leader: Faster

Online Learning of Eigenvectors and Faster MMWU. In ICML, 2017. Full

version available at http://arxiv.org/abs/1701.01722. lxxi, 265

[AL18] Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding Local Minima via First-

Order Oracles. In NeurIPS, 2018. Full version available at http://arxiv.

org/abs/1711.06673. lxxi, 265

[AL19a] Zeyuan Allen-Zhu and Yuanzhi Li. Can SGD Learn Recurrent Neural Net-

works with Provable Generalization? ArXiv e-prints, abs/1902.01028, Febru-

ary 2019. Full version available at http://arxiv.org/abs/1902.01028. 357,

366

[AL19b] Zeyuan Allen-Zhu and Yuanzhi Li. What Can ResNet Learn Efficiently,

Going Beyond Kernels? ArXiv e-prints, abs/1905.10337, May 2019. 256

2527

https://arxiv.org/pdf/1011.1263
http://arxiv.org/abs/1701.01722
http://arxiv.org/abs/1711.06673
http://arxiv.org/abs/1711.06673
http://arxiv.org/abs/1902.01028


[ALA16] Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar.

Reinforcement learning of POMDPs using spectral methods. In 29th Annual

Conference on Learning Theory (COLT), pages 193–256. https://arxiv.

org/pdf/1602.07764, 2016. 57, 1469

[ALB13] Mohammad Gheshlaghi Azar, Alessandro Lazaric, and Emma Brunskill. Se-

quential transfer in multi-armed bandit with finite set of models. In Ad-

vances in Neural Information Processing Systems(NIPS), pages 2220–2228.

https://arxiv.org/pdf/1307.6887, 2013. 57, 1469

[Ald90] David Aldous. The random walk construction of uniform spanning trees and

uniform labelled trees. In SIAM Journal on Discrete Mathematics, pages

450–465, 1990. 29, 550

[All12a] Genevera Allen. Sparse higher-order principal components analysis. In AIS-

TATS, volume 15, 2012. 58, 1470

[All12b] Genevera I Allen. Regularized tensor factorizations and higher-order princi-

pal components analysis. In arXiv preprint. https://arxiv.org/pdf/1202.

2476, 2012. 58, 1470

[All17a] Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gra-

dient methods. In Proceedings of the 49th Annual ACM SIGACT Symposium

on Theory of Computing, pages 1200–1205. ACM, 2017. 15, 77

[All17b] Zeyuan Allen-Zhu. Natasha: Faster Non-Convex Stochastic Optimization via

Strongly Non-Convex Parameter. In Proceedings of the 34th International

2528

https://arxiv.org/pdf/1602.07764
https://arxiv.org/pdf/1602.07764
https://arxiv.org/pdf/1307.6887
https://arxiv.org/pdf/1202.2476
https://arxiv.org/pdf/1202.2476


Conference on Machine Learning, ICML ’17, 2017. Full version available at

http://arxiv.org/abs/1702.00763. 15, 77

[All18a] Zeyuan Allen-Zhu. Katyusha X: Practical Momentum Method for Stochastic

Sum-of-Nonconvex Optimization. In Proceedings of the 35th International

Conference on Machine Learning, ICML ’18, 2018. Full version available at

http://arxiv.org/abs/1802.03866. 15, 77

[All18b] Zeyuan Allen-Zhu. Natasha 2: Faster Non-Convex Optimization Than SGD.

In Proceedings of the 32nd Conference on Neural Information Processing Sys-

tems, NIPS ’18, 2018. Full version available at http://arxiv.org/abs/

1708.08694. 15, 77

[ALL18c] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and General-

ization in Overparameterized Neural Networks, Going Beyond Two Layers.

arXiv preprint arXiv:1811.04918, November 2018. 256, 270, 357, 366

[Alm19] Josh Alman. Limits on the universal method for matrix multiplication. In

CCC (Best Student Paper). arXiv preprint arXiv:1812.08731, 2019. 16, 78

[ALS+18] A. Andoni, C. Lin, Y. Sheng, P. Zhong, and R. Zhong. Subspace embedding

and linear regression with Orlicz norm. In ICML, pages 224–233, 2018. 1967,

1968, 1970, 1971, 1972, 1976

[AM05] Dimitris Achlioptas and Frank McSherry. On spectral learning of mixtures

of distributions. In COLT, 2005. 48, 1036

2529

http://arxiv.org/abs/1702.00763
http://arxiv.org/abs/1802.03866
http://arxiv.org/abs/1708.08694
http://arxiv.org/abs/1708.08694


[AM07] Dimitris Achlioptas and Frank McSherry. Fast computation of low-rank ma-

trix approximations. J. ACM, 54(2):9, 2007. 1338, 1468

[AMR+12] Marcel R Ackermann, Marcus Märtens, Christoph Raupach, Kamil Swierkot,

Christiane Lammersen, and Christian Sohler. Streamkm++: A clustering

algorithm for data streams. Journal of Experimental Algorithmics (JEA),

17:2–4, 2012. 2094

[AMS11] Christoph Ambühl, Monaldo Mastrolilli, and Ola Svensson. Inapproxima-

bility results for maximum edge biclique, minimum linear arrangement, and

sparsest cut. SIAM Journal on Computing, 40(2):567–596, 2011. 1081

[AMT10] Haim Avron, Petar Maymounkov, and Sivan Toledo. Blendenpik: Su-

percharging lapack’s least-squares solver. SIAM J. Scientific Computing,

32(3):1217–1236, 2010. 1927

[ANN+17] A. Andoni, H. L. Nguyen, A. Nikolov, I. Razenshteyn, and E. Waingarten.

Approximate near neighbors for general symmetric norms. In STOC, pages

902–913, 2017. 1967

[ANN+18] A. Andoni, A. Naor, A. Nikolov, I. Razenshteyn, and E. Waingarten. Hölder

homeomorphisms and approximate nearest neighbors. In FOCS, pages 159–

169, 2018. 1967

[ANOY14] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory

Yaroslavtsev. Parallel algorithms for geometric graph problems. In STOC.

http://arxiv.org/pdf/1401.0042, 2014. 2315, 2316

2530

http://arxiv.org/pdf/1401.0042


[ANW14] Haim Avron, Huy Nguyen, and David Woodruff. Subspace embeddings for

the polynomial kernel. In Advances in Neural Information Processing Sys-

tems(NIPS), pages 2258–2266, 2014. 1482, 1486, 1518, 1519

[AO09] Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-

linear time. In Proceedings of the Forty-First Annual ACM Symposium on

Theory of Computing, 2009. 1914, 2214, 2215

[AO12] Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-

linear time. SIAM Journal on Computing, 41(6):1635–1648, 2012. 2191

[AOGSS18] Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Nikhil Srivastava. Ap-

proximating the largest root and applications to interlacing families. In Pro-

ceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 1015–1028. SIAM, Philadelphia, PA, 2018. 598

[APY09] Noga Alon, Rina Panigrahy, and Sergey Yekhanin. Deterministic approxima-

tion algorithms for the nearest codeword problem. In Algebraic Methods in

Computational Complexity, 2009. lxxxi, 1431, 1457

[AR18] Amir Abboud and Aviad Rubinstein. Fast and deterministic constant fac-

tor approximation algorithms for lcs imply new circuit lower bounds. In

LIPIcs-Leibniz International Proceedings in Informatics, volume 94. Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. 2191, 2214, 2216, 2218

[AS16] Noga Alon and Joel H. Spencer. The probabilistic method. Wiley Series in

2531



Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken,

NJ, fourth edition, 2016. 30, 590

[ASS+18] Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin

Zhong. Parallel graph connectivity in log diameter rounds. In 2018 IEEE

59th Annual Symposium on Foundations of Computer Science (FOCS), pages

674–685. IEEE, 2018. xxviii, 1916, 2314, 2514, 2515, 2516

[ASS19] Josh Alman, Aaron Schild, and Zhao Song. Fast sparsification and linear

algebra for geometric graphs. Manuscript, 2019. xxix

[ASSN08] Abiodun M Aibinu, Momoh JE Salami, Amir A Shafie, and Athaur Rahman

Najeeb. MRI reconstruction using discrete Fourier transform: a tutorial.

World Academy of Science, Engineering and Technology, 42:179, 2008. 36,

917

[ASW18] Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Massively parallel algo-

rithms for finding well-connected components in sparse graphs. In ArXiv

preprint. https://arxiv.org/pdf/1805.02974, 2018. 2320

[Aue30] H. Auerbach. On the area of convex curves with conjugate diameters. PhD

thesis, University of Lwów, 1930. 2019

[AW02] Rudolf Ahlswede and Andreas Winter. Strong converse for identification via

quantum channels. IEEE Transactions on Information Theory, 48(3):569–

579, 2002. 25, 26, 30, 503, 506, 548, 553, 590, 2141

2532

https://arxiv.org/pdf/1805.02974


[AW14] Charles Akemann and Nik Weaver. A Lyapunov-type theorem from Kadison-

Singer. Bull. Lond. Math. Soc., 46(3):517–524, 2014. 593

[AW18a] Josh Alman and Virginia Vassilevska Williams. Further limitations of

the known approaches for matrix multiplication. In ITCS. arXiv preprint

arXiv:1712.07246, 2018. 16, 78

[AW18b] Josh Alman and Virginia Vassilevska Williams. Limits on all known (and

some unknown) approaches to matrix multiplication. In 2018 IEEE 59th An-

nual Symposium on Foundations of Computer Science (FOCS). IEEE, 2018.

12, 16, 4, 78

[AWW14] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Con-

sequences of faster alignment of sequences. In Automata, Languages, and

Programming - 41st International Colloquium, ICALP 2014, Copenhagen,

Denmark, July 8-11, 2014, Proceedings, Part I, pages 39–51, 2014. 1914,

2191

[AY16] Zeyuan Allen-Zhu and Yang Yuan. Improved SVRG for Non-Strongly-Convex

or Sum-of-Non-Convex Objectives. In Proceedings of the 33rd International

Conference on Machine Learning, ICML ’16, 2016. Full version available at

http://arxiv.org/abs/1506.01972. 15, 77

[AZLS18] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of

training recurrent neural networks. In arXiv preprint. https://arxiv.org/

pdf/1810.12065, 2018. xxv, 8, 24, 255, 272, 294, 311, 1908, 1909, 1910,

2140, 2143, 2512

2533

http://arxiv.org/abs/1506.01972
https://arxiv.org/pdf/1810.12065
https://arxiv.org/pdf/1810.12065


[AZLS19] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for

deep learning via over-parameterization. In ICML. https://arxiv.org/

pdf/1811.03962, 2019. xxv, 7, 24, 352, 355, 357, 363, 366, 395, 495, 1908,

1909, 2140, 2143, 2512

[Ban38] Stefan Banach. Über homogene polynome in (l2). Studia Mathematica,

7(1):36–44, 1938. 1676, 1677

[Bas08] Surender Baswana. Streaming algorithm for graph spanners-single pass

and constant processing time per edge. Information Processing Letters,

106(3):110–114, 2008. 2094

[Bas14] Saugata Basu. Algorithms in real algebraic geometry: a survey. arXiv

preprint arXiv:1409.1534, 2014. 1048, 1052, 1131

[Baw75] Vijay S Bawa. Optimal rules for ordering uncertain prospects. Journal of

Financial Economics, 2(1):95–121, 1975. 654

[BB08] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In

Advances in neural information processing systems, pages 161–168, 2008. 13,

74, 598

[BBB+19a] Frank Ban, Vijay Bhattiprolu, Karl Bringmann, Pavel Kolev, Euiwoong Lee,

and David P. Woodruff. A PTAS for `p-low rank approximation. In SODA,

2019. 56, 1371, 1428

[BBB+19b] Frank Ban, Vijay Bhattiprolu, Karl Bringmann, Pavel Kolev, Euiwoong Lee,

and David P Woodruff. A ptas for `p-low rank approximation. In Proceed-

2534

https://arxiv.org/pdf/1811.03962
https://arxiv.org/pdf/1811.03962


ings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 747–766. SIAM, 2019. 2027

[BBC+17] Jaroslaw Blasiok, Vladimir Braverman, Stephen R Chestnut, Robert

Krauthgamer, and Lin F Yang. Streaming symmetric norms via measure

concentration. In Proceedings of the 49th Annual Symposium on the Theory

of Computing(STOC). ACM, https://arxiv.org/pdf/1511.01111, 2017.

1717, 1971, 1976, 1983, 1984, 2000, 2001, 2018

[BBD+16] Aritra Banik, Binay K. Bhattacharya, Sandip Das, Tsunehiko Kameda, and

Zhao Song. The p-center problem in tree networks revisited. In SWAT, pages

6:1–6:15, 2016. xxix

[BBD+18] Sergey Bereg, Binay Bhattacharya, Sandip Das, Tsunehiko Kameda, Priya

Ranjan Sinha Mahapatra, and Zhao Song. Optimizing squares covering a set

of points. Theoretical Computer Science, 729:68–83, 2018. xxix

[BBK13] Pavle VM Blagojević, Boris Bukh, and Roman Karasev. Turán numbers for

ks,t-free graphs: Topological obstructions and algebraic constructions. Israel

Journal of Mathematics, 197(1):199–214, 2013. 2284

[BBL09] Julius Borcea, Petter Brändén, and Thomas Liggett. Negative dependence

and the geometry of polynomials. Journal of the American Mathematical

Society, 22(2):521–567, 2009. 28, 549, 557, 558, 566, 568, 579, 588

[BBLM14] MohammadHossein Bateni, Aditya Bhaskara, Silvio Lattanzi, and Vahab

Mirrokni. Distributed balanced clustering via mapping coresets. In Advances

2535

https://arxiv.org/pdf/1511.01111


in Neural Information Processing Systems (NIPS), pages 2591–2599, 2014.

1784, 1788

[BBM05] Peter L Bartlett, Olivier Bousquet, and Shahar Mendelson. Local rademacher

complexities. The Annals of Statistics, 33(4):1497–1537, 2005. 13, 74

[BCDH10] Richard G Baraniuk, Volkan Cevher, Marco F Duarte, and Chinmay Hegde.

Model-based compressive sensing. IEEE Transactions on Information The-

ory, 56(4):1982–2001, 2010. 635

[BCG+12] Petros Boufounos, Volkan Cevher, Anna C Gilbert, Yi Li, and Martin J

Strauss. What’s the frequency, Kenneth?: Sublinear Fourier sampling off

the grid. In Algorithmica(A preliminary version of this paper appeared in

the Proceedings of RANDOM/APPROX 2012, LNCS 7408, pp.61–72), pages

1–28. Springer, 2012. 40, 41, 622, 676, 686, 690, 691, 763, 920, 1334

[BCI+16] Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, Jelani Nelson,

Zhengyu Wang, and David P Woodruff. Bptree: an `2 heavy hitters al-

gorithm using constant memory. In Proceedings of the 35th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems (PODS).

https://arxiv.org/pdf/1603.00759, 2016. 1779

[BCIW16] Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, and David P

Woodruff. Beating countsketch for heavy hitters in insertion streams. In Pro-

ceedings of the 48th Annual Symposium on the Theory of Computing (STOC).

https://arxiv.org/pdf/1511.00661, 2016. 1779

2536

https://arxiv.org/pdf/1603.00759
https://arxiv.org/pdf/1511.00661


[BCKY16] Vladimir Braverman, Stephen R Chestnut, Robert Krauthgamer, and Lin F

Yang. Sketches for matrix norms: Faster, smaller and more general. In arXiv

preprint. https://arxiv.org/pdf/1609.05885, 2016. 1717

[BCL05] Zheng-Jian Bai, Raymond H Chan, and Franklin T Luk. Principal compo-

nent analysis for distributed data sets with updating. In Advanced Parallel

Processing Technologies, pages 471–483. Springer, 2005. 1318, 1784, 1788

[BCLL18] Sébastien Bubeck, Michael B Cohen, Yin Tat Lee, and Yuanzhi Li. An

homotopy method for `p regression provably beyond self-concordance and

in input-sparsity time. In Proceedings of the 50th Annual ACM SIGACT

Symposium on Theory of Computing (STOC), pages 1130–1137. ACM, 2018.

11, 14, 16, 3, 74, 78, 2033, 2046, 2051, 2067

[BCMN14] Sayan Bhattacharya, Parinya Chalermsook, Kurt Mehlhorn, and Adrian Neu-

mann. New approximability results for the robust k-median problem. In

Scandinavian Workshop on Algorithm Theory, pages 50–61. Springer, 2014.

2094

[BCMV14] Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Aravindan Vija-

yaraghavan. Smoothed analysis of tensor decompositions. In Proceedings of

the 46th Annual ACM Symposium on Theory of Computing, pages 594–603.

ACM, https://arxiv.org/pdf/1311.3651, 2014. 58, 1470

[BCR87] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Géométrie al-

gébrique réelle, volume 12. Springer Science & Business Media, 1987. 1051

2537

https://arxiv.org/pdf/1609.05885
https://arxiv.org/pdf/1311.3651


[BCS97] Peter Bürgisser, Michael Clausen, and Amin Shokrollahi. Algebraic com-

plexity theory, volume 315. Springer Science & Business Media, 1997. 59,

1471

[BCS18] Mitali Bafna, Chi-Ning Chou, and Zhao Song. An exposition of dinur-khot-

kindler-minzer-safra’s proof for the 2-to-2 games conjecture. In Notes from

Boaz Barak’s Feb 23rd and March 2nd 2018 talks at CMSA, 2018. xxix

[BCV14] Aditya Bhaskara, Moses Charikar, and Aravindan Vijayaraghavan. Unique-

ness of tensor decompositions with applications to polynomial identifiabil-

ity. In 27th Annual Conference on Learning Theory (COLT), pages 742–778.

https://arxiv.org/pdf/1304.8087, 2014. liii, 57, 1469, 1470, 1471, 1474,

1491

[BCWY16] V. Braverman, S. R. Chestnut, David P. Woodruff, and Lin F. Yang. Stream-

ing space complexity of nearly all functions of one variable on frequency vec-

tors. In PODS, pages 261–276, 2016. 1967

[BD08] Thomas Blumensath and Mike E Davies. Iterative thresholding for sparse

approximations. Journal of Fourier analysis and Applications, 14(5-6):629–

654, 2008. lxvii, lxviii, 37, 38, 918, 919, 923

[BD09a] Thomas Blumensath and Mike E Davies. Iterative hard thresholding for com-

pressed sensing. Applied and computational harmonic analysis, 27(3):265–

274, 2009. 34, 38, 617, 918, 925

2538

https://arxiv.org/pdf/1304.8087


[BD09b] Thomas Blumensath and Mike E Davies. A simple, efficient and near optimal

algorithm for compressed sensing. 2009 IEEE International Conference on

Acoustics, Speech and Signal Processing, 2009. 38, 918

[BD10] Thomas Blumensath and Mike E Davies. Normalized iterative hard thresh-

olding: Guaranteed stability and performance. IEEE Journal of selected

topics in signal processing, 4(2):298–309, 2010. 38, 918

[BD13] J. Paul Brooks and José H. Dulá. The `1-norm best-fit hyperplane problem.

Appl. Math. Lett., 26(1):51–55, 2013. 52, 53, 1109, 1110, 1370

[BDB13] J. Paul Brooks, José H. Dulá, and Edward L Boone. A pure `1-norm princi-

pal component analysis. Computational statistics & data analysis, 61:83–98,

2013. l, lxxv, 53, 1110, 1286, 1289, 1290, 1298, 1299, 1334, 1370

[BDE+19] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, and

Vahab Mirrokni. Near-optimal massively parallel graph connectivity. In 2019

IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

IEEE, 2019. 1916

[BDG16] Nikhil Bansal, Daniel Dadush, and Shashwat Garg. An algorithm for komlós

conjecture matching banaszczyk’s bound. In 2016 IEEE 57th Annual Sym-

posium on Foundations of Computer Science (FOCS), pages 788–799. IEEE,

2016. 596

[BDGL18] Nikhil Bansal, Daniel Dadush, Shashwat Garg, and Shachar Lovett. The

2539



gram-schmidt walk: A cure for the banaszczyk blues. In STOC. https:

//arxiv.org/pdf/1708.01079, 2018. 596

[BDK+14] Binay K. Bhattacharya, Minati De, Tsunehiko Kameda, Sasanka

Roy, Vladyslav Sokol, and Zhao Song. Back-up 2-center on a

path/tree/cycle/unicycle. In COCOON, pages 417–428, 2014. xxix

[BDL16] Amitabh Basu, Michael Dinitz, and Xin Li. Computing approximate PSD fac-

torizations. In arXiv preprint. https://arxiv.org/pdf/1602.07351, 2016.

1046, 1131, 1506

[BDM11] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near optimal

column-based matrix reconstruction. In IEEE 52nd Annual Symposium on

Foundations of Computer Science (FOCS), 2011, Palm Springs, CA, USA,

October 22-25, 2011, pages 305–314. https://arxiv.org/pdf/1103.0995,

2011. 1114, 1433, 1476, 1604

[BDMO03] Brain Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan.

Maintaining variance and k-medians over data stream windows. In Proceed-

ings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems, pages 234–243. ACM, 2003. 2094

[BDN15] Jean Bourgain, Sjoerd Dirksen, and Jelani Nelson. Toward a unified theory

of sparse dimensionality reduction in euclidean space. In Proceedings of the

Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC

2015, Portland, OR, USA, June 14-17, 2015, pages 499–508, 2015. 52, 1109,

1370, 1426, 1922

2540

https://arxiv.org/pdf/1708.01079
https://arxiv.org/pdf/1708.01079
https://arxiv.org/pdf/1602.07351
https://arxiv.org/pdf/1103.0995


[BEG+18] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, MohammadTaghi Ha-

jiAghayi, and Saeed Seddighin. Approximating edit distance in truly sub-

quadratic time: Quantum and mapreduce. In Proceedings of the Twenty-

Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, 2018. 62,

1914, 2191, 2212, 2214, 2215, 2220, 2231, 2286

[Ber24] Sergei Bernstein. On a modification of chebyshev’s inequality and of the error

formula of laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math, 1(4):38–49, 1924.

25, 548, 2141, 2505

[Ber44] Joseph Berkson. Application of the logistic function to bio-assay. Journal of

the American Statistical Association, 39(227):357–365, 1944. 16, 171

[BES06] Tuğkan Batu, Funda Ergun, and Cenk Sahinalp. Oblivious string embeddings

and edit distance approximations. In Proceedings of the Seventeenth Annual

ACM-SIAM Symposium on Discrete Algorithm, 2006. 1914, 2191, 2214, 2215

[BFFN17] Jack Baker, Paul Fearnhead, Emily B Fox, and Christopher Nemeth. Control

variates for stochastic gradient mcmc. arXiv preprint arXiv:1706.05439, 2017.

181

[BFL16] Vladimir Braverman, Dan Feldman, and Harry Lang. New frameworks for

offline and streaming coreset constructions. arXiv preprint arXiv:1612.00889,

2016. 246, 2090, 2094, 2098, 2099, 2136, 2137

[BFL+17] Vladimir Braverman, Gereon Frahling, Harry Lang, Christian Sohler, and

Lin F Yang. Clustering high dimensional dynamic data streams. In ICML.

2541



https://arxiv.org/pdf/1706.03887, 2017. lxxvii, 2089, 2090, 2094, 2095,

2105, 2137, 2138

[BFN+17] Richard G Baraniuk, Simon Foucart, Deanna Needell, Yaniv Plan, and

Mary Wootters. Exponential decay of reconstruction error from binary mea-

surements of sparse signals. IEEE Transactions on Information Theory,

63(6):3368–3385, 2017. 636

[BFR16] Joris Bierkens, Paul Fearnhead, and Gareth Roberts. The zig-zag process

and super-efficient sampling for bayesian analysis of big data. arXiv preprint

arXiv:1607.03188, 2016. 181

[BG17] Nikhil Bansal and Shashwat Garg. Algorithmic discrepancy beyond partial

coloring. In Proceedings of the 49th Annual ACM SIGACT Symposium on

Theory of Computing, pages 914–926. ACM, 2017. 21, 250, 257, 351, 596,

2140

[BGMSS18] Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz.

SGD learns over-parameterized networks that provably generalize on linearly

separable data. In ICLR, 2018. 351, 358

[BGS98] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, pcps, and

nonapproximability—towards tight results. SIAM Journal on Computing,

27(3):804–915, 1998. 1269

[BGS15] Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal

2542

https://arxiv.org/pdf/1706.03887


matching in o(log n) update time. SIAM Journal on Computing, 44(1):88–

113, 2015. 2094

[BH89] Paul Beame and Johan Håstad. Optimal bounds for decision problems on

the CRCW PRAM. J. ACM, 36(3):643–670, 1989. 2315

[Bha97] Rajendra Bhatia. Matrix analysis, volume 169. Springer Science & Business

Media, 1997. 517

[BHL18] Peter Bartlett, Dave Helmbold, and Phil Long. Gradient descent with iden-

tity initialization efficiently learns positive definite linear transformations. In

International Conference on Machine Learning, pages 520–529, 2018. 21,

251, 257, 351, 1451

[BHNT15] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Char-

alampos Tsourakakis. Space-and time-efficient algorithm for maintaining

dense subgraphs on one-pass dynamic streams. In Proceedings of the forty-

seventh annual ACM symposium on Theory of computing, pages 173–182.

ACM, 2015. 2094

[BI08] Radu Berinde and Piotr Indyk. Sparse recovery using sparse random matri-

ces. preprint, 2008. 625

[BI15] Arturs Backurs and Piotr Indyk. Edit Distance Cannot Be Computed in

Strongly Subquadratic Time (unless SETH is false). In Proc. of the 47th

Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages

51–58, 2015. 1914, 2191, 2214, 2215

2543



[Bin80] Dario Bini. Border rank of a p × q × 2 tensor and the optimal approximation

of a pair of bilinear forms. Automata, languages and programming, pages 98–

108, 1980. 59, 1471

[Bin86] Dario Bini. Border rank of m × n × (mn-q) tensors. Linear Algebra and Its

Applications, 79:45–51, 1986. 59, 1471

[BIR08a] Radu Berinde, Piotr Indyk, and Milan Ruzic. Practical near-optimal sparse

recovery in the `1 norm. In Communication, Control, and Computing, 2008

46th Annual Allerton Conference on, pages 198–205. IEEE, 2008. 34, 617

[BIR08b] Radu Berinde, Piotr Indyk, and Milan Ruzic. Practical near-optimal sparse

recovery in the l1 norm. In Communication, Control, and Computing, 2008

46th Annual Allerton Conference on, pages 198–205. IEEE, 2008. 989

[BIRW16] Arturs Backurs, Piotr Indyk, Ilya Razenshteyn, and David P Woodruff.

Nearly-optimal bounds for sparse recovery in generic norms, with applica-

tions to k-median sketching. In Proceedings of the Twenty-Seventh Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 318–337. SIAM, 2016.

620, 1262, 2094

[BJ12] J. Paul Brooks and Sapan Jot. Pcal1: An implementation in r of three meth-

ods for `1-norm principal component analysis. Optimization Online preprint,

2012. 53, 1110, 1370

[BJPD17] Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed

2544



sensing using generative models. In ICML. https://arxiv.org/pdf/1703.

03208, 2017. 988

[BJW19] Ainesh Bakshi, Rajesh Jayaram, and David P Woodruff. Learning two layer

rectified neural networks in polynomial time. In COLT. http://arxiv.org/

pdf/:1811.01885, 2019. 2140

[BK96] András A. Benczúr and David R. Karger. Approximating s-t minimum cuts
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Khudanpur. Extensions of recurrent neural network language model. In

Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International

Conference on, pages 5528–5531. IEEE, 2011. 22, 352

[MKCP16] P. P. Markopoulos, S. Kundu, S. Chamadia, and D. A. Pados. Efficient `1-

Norm Principal-Component Analysis via Bit Flipping. ArXiv e-prints, 2016.

53, 1110, 1370

[MKP13] Panos P. Markopoulos, George N. Karystinos, and Dimitrios A. Pados. Some

options for `1-subspace signal processing. In ISWCS 2013, The Tenth In-

ternational Symposium on Wireless Communication Systems, Ilmenau, TU

Ilmenau, Germany, August 27-30, 2013, pages 1–5, 2013. 53, 1110, 1370

[MKP14] Panos P. Markopoulos, George N. Karystinos, and Dimitrios A. Pados. Op-

timal algorithms for `1-subspace signal processing. IEEE Trans. Signal Pro-

cessing, 62(19):5046–5058, 2014. 53, 1110, 1370

2633

https://arxiv.org/pdf/1307.5870
https://arxiv.org/pdf/1307.5870


[MLF15] Zhuang Ma, Yichao Lu, and Dean Foster. Finding linear structure in large

datasets with scalable canonical correlation analysis. In International Con-

ference on Machine Learning, pages 169–178, 2015. 15, 77

[MM13] Xiangrui Meng and Michael W Mahoney. Low-distortion subspace embed-

dings in input-sparsity time and applications to robust linear regression. In

Proceedings of the forty-fifth annual ACM symposium on Theory of comput-

ing, pages 91–100. ACM, https://arxiv.org/pdf/1210.3135, 2013. 49, 52,

1037, 1109, 1119, 1134, 1185, 1198, 1253, 1254, 1260, 1336, 1337, 1338, 1341,

1344, 1345, 1370, 1401, 1426, 1468, 1489, 1516, 1535, 1717, 1922, 1966, 1971,

2027, 2029, 2030, 2031, 2032

[MMD08] Michael W Mahoney, Mauro Maggioni, and Petros Drineas. Tensor-cur de-

compositions for tensor-based data. SIAM Journal on Matrix Analysis and

Applications, 30(3):957–987, 2008. 58, 1469, 1470

[MMN18] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view

of the landscape of two-layer neural networks. Proceedings of the National

Academy of Sciences, 115(33):E7665–E7671, 2018. 358

[MMSW15] Konstantin Makarychev, Yury Makarychev, Maxim Sviridenko, and Justin

Ward. A bi-criteria approximation algorithm for k means. arXiv preprint

arXiv:1507.04227, 2015. 1474

[MNV09] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar

k-means problem is np-hard. In International Workshop on Algorithms and

Computation, pages 274–285. Springer, 2009. 2093

2634

https://arxiv.org/pdf/1210.3135


[Moi13] Ankur Moitra. An almost optimal algorithm for computing nonnegative rank.

In SODA, 2013. 1044, 1046, 1050, 1899

[Moi14a] Ankur Moitra. Algorithmic Aspects of Machine Learning. Cambridge Uni-

versity Press, 2014. 58, 1470, 2094

[Moi14b] Ankur Moitra. Tensor decompositions and their applications, 2014. 1797

[Moi15] Ankur Moitra. The threshold for super-resolution via extremal functions. In

STOC, 2015. lxxi, 9, 40, 44, 46, 47, 622, 678, 683, 687, 759, 762, 764

[Mør11] Morten Mørup. Applications of tensor (multiway array) factorizations and

decompositions in data mining. Wiley Interdisciplinary Reviews: Data Min-

ing and Knowledge Discovery, 1(1):24–40, 2011. 57, 1469

[Mou10] Nima Mousavi. How tight is chernoff bound, 2010. 2506, 2507

[MP80] William J. Masek and Mike Paterson. A faster algorithm computing string

edit distances. J. Comput. Syst. Sci., 20(1):18–31, 1980. 1915, 2191, 2214

[MP14] Gregory T Minton and Eric Price. Improved concentration bounds for count-

sketch. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 669–686. Society for Industrial and Applied

Mathematics, 2014. 793, 794

[MPB15] Ali Mousavi, Ankit B Patel, and Richard G Baraniuk. A deep learning ap-

proach to structured signal recovery. In Communication, Control, and Com-

puting (Allerton), 2015 53rd Annual Allerton Conference on, pages 1336–

1343. IEEE, 2015. 988

2635



[MPS14] Andrew M McDonald, Massimiliano Pontil, and Dimitris Stamos. Spectral k-

support norm regularization. In Advances in Neural Information Processing

Systems, pages 3644–3652, 2014. 1968, 1971, 1984

[MR05] Elchanan Mossel and Sébastien Roch. Learning nonsingular phylogenies and

hidden markov models. In Proceedings of the thirty-seventh annual ACM

symposium on Theory of computing (STOC), pages 366–375. ACM, https:

//arxiv.org/pdf/cs/0502076, 2005. 57, 1469

[MR10] Dana Moshkovitz and Ran Raz. Two-query pcp with subconstant er-

ror. In Journal of the ACM (JACM), volume 57(5), page 29. A pre-

liminary version appeared in the Proceedings of The 49th Annual IEEE

Symposium on Foundations of Computer Science (FOCS 08), FOCS 08

Best paper award, https://eccc.weizmann.ac.il/eccc-reports/2008/

TR08-071/, 2010. 1670, 1671, 1702

[MR18] Pasin Manurangsi and Daniel Reichman. The computational complexity of

training ReLU(s). arXiv preprint arXiv:1810.04207, 2018. 258

[MS17] Tomoya Murata and Taiji Suzuki. Doubly accelerated stochastic variance

reduced dual averaging method for regularized empirical risk minimization.

In Advances in Neural Information Processing Systems, pages 608–617, 2017.

13, 15, 18, 19, 74, 77, 173, 174

[MSS15a] Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing

families I: Bipartite Ramanujan graphs of all degrees. Ann. of Math. (2),

182(1):307–325, 2015. 595, 597, 599, 600

2636

https://arxiv.org/pdf/cs/0502076
https://arxiv.org/pdf/cs/0502076
https://eccc.weizmann.ac.il/eccc-reports/2008/TR08-071/
https://eccc.weizmann.ac.il/eccc-reports/2008/TR08-071/


[MSS15b] Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing

families II: Mixed characteristic polynomials and the Kadison-Singer prob-

lem. Ann. of Math. (2), 182(1):327–350, 2015. 31, 554, 563, 591, 594, 597,

601, 607, 1912, 1913

[MSS16] Tengyu Ma, Jonathan Shi, and David Steurer. Polynomial-time tensor de-

compositions with sum-of-squares. In Foundations of Computer Science

(FOCS), 2016 IEEE 57th Annual Symposium on, pages 438–446. IEEE,

https://arxiv.org/pdf/1610.01980, 2016. 58, 1470

[MSS18] A. Marcus, D. Spielman, and N. Srivastava. Interlacing families IV: Bipartite

ramanujan graphs of all sizes. SIAM Journal on Computing, 47(6):2488–2509,

2018. 595

[MST15] Aleksander Madry, Damian Straszak, and Jakub Tarnawski. Fast gen-

eration of random spanning trees and the effective resistance met-

ric. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 2019–2036, 2015. Available at

http://arxiv.org/pdf/1501.00267v1.pdf. 29, 550

[MT18] Jakub Marecek and Tigran Tchrakian. Robust spectral filtering and anomaly

detection. arXiv preprint arXiv:1808.01181, 2018. 257

[Mut05a] S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations

and Trends in Theoretical Computer Science, 1(2):117–236, 2005. 33, 617

2637

https://arxiv.org/pdf/1610.01980


[Mut05b] Shanmugavelayutham Muthukrishnan. Data streams: Algorithms and ap-

plications. Foundations and Trends R© in Theoretical Computer Science,

1(2):117–236, 2005. 2088

[MV18] Oren Mangoubi and Nisheeth K Vishnoi. Dimensionally tight running

time bounds for second-order hamiltonian monte carlo. arXiv preprint

arXiv:1802.08898, 2018. 18, 19, 173, 174

[MW10] Morteza Monemizadeh and David P Woodruff. 1-pass relative-error lp-

sampling with applications. In Proceedings of the twenty-first annual ACM-

SIAM symposium on Discrete Algorithms, pages 1143–1160. SIAM, 2010.

1568, 1593, 1799

[MW17] Cameron Musco and David P Woodruff. Sublinear time low-rank approxima-

tion of positive semidefinite matrices. In 2017 IEEE 58th Annual Symposium

on Foundations of Computer Science (FOCS), pages 672–683. IEEE, 2017.

2027

[MXZZ13] Deyu Meng, Zongben Xu, Lei Zhang, and Ji Zhao. A cyclic weighted median

method for `1 low-rank matrix factorization with missing entries. In AAAI,

volume 4, page 6, 2013. 53, 1110, 1370

[MZIC17] Sami Merhi, Ruochuan Zhang, Mark A Iwen, and Andrew Christlieb. A new

class of fully discrete sparse Fourier transforms: Faster stable implementa-

tions with guarantees. Journal of Fourier Analysis and Applications, pages

1–34, 2017. 38, 919

2638



[N+03] Yurii Nesterov et al. Random walk in a simplex and quadratic optimization

over convex polytopes. CORE, 2003. 1673

[Nac10] Mergen Nachin. Lower bounds on the column sparsity of sparse recovery

matrices. UAP: MIT Undergraduate Thesis, 2010. 622

[Nad64] Elizbar A Nadaraya. On estimating regression. Theory of Probability & Its

Applications, 9(1):141–142, 1964. 14, 74

[Nak94] A.M. Nakhushev. Cauchy-kovaleskaya theorem. Hazewinkel, Michiel, Ency-

clopedia of Mathematics, 1994. 233

[Nak17a] Vasileios Nakos. Almost optimal phaseless compressed sensing with sublin-

ear decoding time. In 2017 IEEE International Symposium on Information

Theory, ISIT 2017, Aachen, Germany, June 25-30, 2017, pages 1142–1146,

2017. 635

[Nak17b] Vasileios Nakos. On fast decoding of high-dimensional signals from one-bit

measurements. In 44th International Colloquium on Automata, Languages,

and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages

61:1–61:14, 2017. 636

[Nak19] Vasileios Nakos. One-bit expandersketch for one-bit compressed sensing. In

ISIT. arXiv preprint arXiv:1711.04049, 2019. 636

[NDH+17] Tigran Nagapetyan, Andrew B Duncan, Leonard Hasenclever, Sebastian J

Vollmer, Lukasz Szpruch, and Konstantinos Zygalakis. The true cost of

2639



stochastic gradient langevin dynamics. arXiv preprint arXiv:1706.02692,

2017. 181

[NDTTJ18] Aleksandar Sasho Nikolov, Daniel Dadush, Kunal Talwar, and Nicole

Tomczak-Jaegermann. Balancing vectors in any norm. FOCS, 2018. 596

[Nes83] Yurii E Nesterov. A method for solving the convex programming problem

with convergence rate O(1/k2). In Dokl. Akad. Nauk SSSR, volume 269,

pages 543–547, 1983. 13, 74

[Nes98] Yurii Nesterov. Introductory lectures on convex programming volume i: Basic

course. Lecture notes, 1998. 15, 77, 81, 82, 160

[Nes04] Yurii Nesterov. Introductory lectures on convex optimization: A basic course,

volume 87. Springer Science & Business Media, 2004. 13, 74, 267, 332

[NJ02] Andrew Y Ng and Michael I Jordan. On discriminative vs. generative clas-

sifiers: A comparison of logistic regression and naive bayes. In Advances in

neural information processing systems, pages 841–848, 2002. 16, 171

[NJLS09] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro.

Robust stochastic approximation approach to stochastic programming. SIAM

Journal on optimization, 19(4):1574–1609, 2009. 13, 74

[NN89] Yu Nesterov and Arkadi Nemirovsky. Self-concordant functions and

polynomial-time methods in convex programming. Report, Central Economic

and Mathematic Institute, USSR Acad. Sci, 1989. 10, 3

2640



[NN91] Yu Nesterov and Arkadi Nemirovsky. Acceleration and parallelization of

the path-following interior point method for a linearly constrained convex

quadratic problem. SIAM Journal on Optimization, 1(4):548–564, 1991. 15

[NN94] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms

in convex programming, volume 13. Siam, 1994. 13, 15

[NN13a] Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra

algorithms via sparser subspace embeddings. In 2013 IEEE 54th Annual

Symposium on Foundations of Computer Science (FOCS), pages 117–126.

IEEE, https://arxiv.org/pdf/1211.1002, 2013. 49, 52, 13, 770, 1037,

1109, 1337, 1338, 1370, 1426, 1468, 1489, 1535, 1758, 1922, 1966, 2027, 2029

[NN13b] Jelani Nelson and Huy L Nguyên. Sparsity lower bounds for dimensionality

reducing maps. In Proceedings of the forty-fifth annual ACM symposium on

Theory of computing, pages 101–110. ACM, 2013. 622

[NN14] Jelani Nelson and Huy L Nguyên. Lower bounds for oblivious subspace em-

beddings. In International Colloquium on Automata, Languages, and Pro-

gramming, pages 883–894. Springer, 2014. 1242, 1922

[Nol07] John P Nolan. Stable distributions. 2007. 2030, 2054

[NPSS06] Assaf Naor, Yuval Peres, Oded Schramm, and Scott Sheffield. Markov chains

in smooth banach spaces and gromov-hyperbolic metric spaces. Duke Math-

ematical Journal, 134(1):165–197, 2006. 509

2641

https://arxiv.org/pdf/1211.1002


[NS17] Yurii Nesterov and Sebastian U Stich. Efficiency of the accelerated coordi-

nate descent method on structured optimization problems. SIAM Journal on

Optimization, 27(1):110–123, 2017. 13, 74

[NS19] Vasileios Nakos and Zhao Song. Stronger L2/L2 compressed sensing; without

iterating. In Proceedings of the 51st Annual ACM Symposium on Theory of

Computing (STOC), 2019. xxvi, 9, 35, 48, 2029, 2514

[NSW18] Vasileios Nakos, Zhao Song, and Zhengyu Wang. The power of (careful)

iterative loop analysis in compressed sensing. In manuscript, 2018. xxvii, 48,

964, 1904, 2514

[NSW19a] Vasileios Nakos, Zhao Song, and Zhengyu Wang. (Nearly) sample-optimal

sparse Fourier transform in any dimension; RIPless and Filterless. In FOCS,

2019. xxvii, 9, 37, 48, 164, 246, 1902, 1904, 2514

[NSW19b] Vasileios Nakos, Zhao Song, and Zhengyu Wang. Robust sparse recovery via

m-estimators. Manuscript, 2019. 1967, 2514

[NSWZ18] Vasileios Nakos, Xiaofei Shi, David P. Woodruff, and Hongyang Zhang. Im-

proved algorithms for adaptive compressed sensing. In 45th International

Colloquium on Automata, Languages, and Programming, ICALP 2018, July

9-13, 2018, Prague, Czech Republic, pages 90:1–90:14, 2018. 623

[NT09a] Deanna Needell and Joel A Tropp. Cosamp: Iterative signal recovery from

incomplete and inaccurate samples. Applied and computational harmonic

analysis, 26(3):301–321, 2009. lxvi, lxviii, 34, 35, 617, 624

2642



[NT09b] Deanna Needell and Joel A Tropp. CoSaMP: Iterative signal recovery from

incomplete and inaccurate samples. Applied and computational harmonic

analysis, 26(3):301–321, 2009. 38, 918, 919, 925

[NV09] Deanna Needell and Roman Vershynin. Uniform uncertainty principle and

signal recovery via regularized orthogonal matching pursuit. Foundations of

computational mathematics, 9(3):317–334, 2009. 38, 918, 919

[NV10] D Needel and R Vershynin. Signal recovery from inaccurate and incomplete

measurements via regularized orthogonal matching pursuit. IEEE Journal of

Selected Topics in Signal Processing, pages 310–316, 2010. 38, 918

[NW14] Jelani Nelson and David P. Woodruff. Personal communication. ., 2014.

1563, 1566

[O’M08] Owen O’Malley. Terabyte sort on apache hadoop. Yahoo Tech. Rep, 2008.

2331

[OO18] Samet Oymak and Necmiye Ozay. Non-asymptotic identification of LTI sys-

tems from a single trajectory. arXiv preprint arXiv:1806.05722, 2018. 257

[OPS17] Junier B Oliva, Barnabás Póczos, and Jeff Schneider. The statistical recurrent

unit. In International Conference on Machine Learning (ICML), pages 2671–

2680, 2017. 353

[OS14] Sewoong Oh and Devavrat Shah. Learning mixed multinomial logit model

from ordinal data. In Advances in Neural Information Processing Systems

(NIPS), pages 595–603. https://arxiv.org/pdf/1411.0073, 2014. 57, 1469

2643

https://arxiv.org/pdf/1411.0073


[Ose11] Ivan V. Oseledets. Tensor-train decomposition. SIAM J. Scientific Comput-

ing, 33(5):2295–2317, 2011. 58, 1469, 1711

[OST08] Ivan V Oseledets, DV Savostianov, and Eugene E Tyrtyshnikov. Tucker

dimensionality reduction of three-dimensional arrays in linear time. SIAM

Journal on Matrix Analysis and Applications, 30(3):939–956, 2008. 58, 1470,

1476

[OT09] Ivan V Oseledets and Eugene E Tyrtyshnikov. Breaking the curse of dimen-

sionality, or how to use svd in many dimensions. SIAM Journal on Scientific

Computing, 31(5):3744–3759, 2009. 58, 1469, 2510

[OTZ11] Ivan Oseledets, Eugene Tyrtyshnikov, and Nickolai Zamarashkin. Tensor-

train ranks for matrices and their inverses. Computational Methods in Applied

Mathematics Comput. Methods Appl. Math., 11(3):394–403, 2011. 1711

[OY05] S. Oh, S. Kwon and J. Yun. A method for structured linear total least

norm on blind deconvolution problem. Applied Mathematics and Computing,

19:151–164, 2005. 2024

[OYDS11] Henrik Ohlsson, Allen Y Yang, Roy Dong, and S Shankar Sastry. Com-

pressive phase retrieval from squared output measurements via semidefinite

programming. arXiv preprint arXiv:1111.6323, pages 1–27, 2011. 635

[Oym18] Samet Oymak. Learning compact neural networks with regularization. arXiv

preprint arXiv:1802.01223, 2018. 257

2644



[Paa97] Pentti Paatero. A weighted non-negative least squares algorithm for three-

way “parafac” factor analysis. Chemometrics and Intelligent Laboratory Sys-

tems, 38(2):223–242, 1997. 58, 1470

[Paa00] Pentti Paatero. Construction and analysis of degenerate parafac models.

Journal of chemometrics, 14(3):285–299, 2000. 16, 57, 59, 171, 1469, 1471

[Pag13] Rasmus Pagh. Compressed matrix multiplication. ACM Transactions on

Computation Theory (TOCT), 5(3):9, 2013. 1482, 1486, 1518

[PB17] Jeffrey Pennington and Yasaman Bahri. Geometry of neural network loss

surfaces via random matrix theory. In International Conference on Machine

Learning (ICML), International Convention Centre, Sydney, Australia, 2017.

358

[PBLJ15] Anastasia Podosinnikova, Francis Bach, and Simon Lacoste-Julien. Rethink-

ing lda: moment matching for discrete ica. In Advances in Neural Information

Processing Systems(NIPS), pages 514–522. https://arxiv.org/pdf/1507.

01784, 2015. 57, 1469

[PC08] Anh Phan and Andrzej Cichocki. Fast and efficient algorithms for nonnega-

tive tucker decomposition. Advances in Neural Networks-ISNN 2008, pages

772–782, 2008. 1706

[Pee96] René Peeters. Orthogonal representations over finite fields and the chromatic

number of graphs. Combinatorica, 16(3):417–431, 1996. 51, 1038

2645

https://arxiv.org/pdf/1507.01784
https://arxiv.org/pdf/1507.01784


[Phi] Phillips. Compressed sense. https://www.philips.com/healthcare/

resources/landing/compressed-sense. 36, 917

[Pin60] Mark S Pinsker. Information and information stability of random variables

and processes. San Francisco: Holden-Day, 1964, originally published in

Russian in 1960, 1960. 1219

[PJ92] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approxi-

mation by averaging. SIAM Journal on Control and Optimization, 30(4):838–

855, 1992. 13, 74

[PK16] Young Woong Park and Diego Klabjan. Iteratively reweighted least

squares algorithms for `1-norm principal component analysis. arXiv preprint

arXiv:1609.02997, 2016. 53, 1110, 1370

[PKB14] Dimitris Papailiopoulos, Anastasios Kyrillidis, and Christos Boutsidis. Prov-

able deterministic leverage score sampling. In Proceedings of the 20th ACM

SIGKDD international conference on Knowledge discovery and data mining,

pages 997–1006. ACM, 2014. 1926

[PLR+16] Ben Poole, Subhaneil Lahiri, Maithreyi Raghu, Jascha Sohl-Dickstein, and

Surya Ganguli. Exponential expressivity in deep neural networks through

transient chaos. In Advances In Neural Information Processing Systems,

pages 3360–3368, 2016. 00047. 358

[PLY10] Yanwei Pang, Xuelong Li, and Yuan Yuan. Robust tensor analysis with l1-

2646

https://www.philips.com/healthcare/resources/landing/compressed-sense
https://www.philips.com/healthcare/resources/landing/compressed-sense


norm. IEEE Transactions on Circuits and Systems for Video Technology,

20(2):172–178, 2010. 57, 58, 1469, 1470

[PMvdG+13] Jack Poulson, Bryan Marker, Robert A van de Geijn, Jeff R Hammond, and

Nichols A Romero. Elemental: A new framework for distributed memory

dense matrix computations. ACM Transactions on Mathematical Software

(TOMS), 39(2):13, 2013. 1318, 1784, 1788

[Pol63] Boris Teodorovich Polyak. Gradient methods for minimizing functionals.

Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 3(4):643–653,

1963. 364

[PP+08] Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cook-

book. Technical University of Denmark, 7:15, 2008. 1221, 1223

[PP13] Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via

explicit feature maps. In Proceedings of the 19th ACM SIGKDD international

conference on Knowledge discovery and data mining(KDD), pages 239–247.

ACM, 2013. 1482, 1486, 1518, 1797

[PP14] Robin Pemantle and Yuval Peres. Concentration of lipschitz functionals of

determinantal and other strong rayleigh measures. Combinatorics, Probability

and Computing, 23(1):140–160, 2014. 28, 29, 549, 557, 566, 567, 569

[PR14] Sameer Pawar and Kannan Ramchandran. A robust R-FFAST framework for

computing a k-sparse n-length DFT in O(k log n) sample complexity using

2647



sparse-graph codes. In Information Theory (ISIT), 2014 IEEE International

Symposium on, pages 1852–1856. IEEE, 2014. 38, 919

[Pri11] Eric Price. Efficient sketches for the set query problem. In Proceedings of the

twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pages

41–56. Society for Industrial and Applied Mathematics, 2011. 633, 964, 965,

993

[Pri13] Eric C. Price. Sparse recovery and Fourier sampling. PhD thesis, Mas-

sachusetts Institute of Technology, 2013. 164

[PRS16] Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. Fast dis-

tributed algorithms for connectivity and mst in large graphs. In Proceedings

of the 28th ACM Symposium on Parallelism in Algorithms and Architectures,

pages 429–438. ACM, 2016. 2317

[PRSZ18] Rina Panigrahy, Ali Rahimi, Sushant Sachdeva, and Qiuyi Zhang. Conver-

gence results for neural networks via electrodynamics. In ITCS, 2018. 21,

251, 351

[PRT02] Jiming Peng, Cornelis Roos, and Tamás Terlaky. Self-regular functions and

new search directions for linear and semidefinite optimization. Mathematical

Programming, 93(1):129–171, 2002. 12, 4

[PRTV00] Christos H. Papadimitriou, Prabhakar Raghavan, Hisao Tamaki, and Santosh

Vempala. Latent semantic indexing: A probabilistic analysis. J. Comput.

Syst. Sci., 61(2):217–235, 2000. 48, 1036

2648



[Prü18] Heinz Prüfer. Neuer beweis eines satzes uber permutationen. Arch. Math.

Phys., 27:742–744, 1918. 580

[PS85] Franco P Preparata and Michael Ian Shamos. Computational geometry: an

introduction. Springer Science & Business Media, 1985. 1334

[PS12] Ely Porat and Martin J Strauss. Sublinear time, measurement-optimal,

sparse recovery for all. In Proceedings of the twenty-third annual ACM-SIAM

symposium on Discrete Algorithms, pages 1215–1227. Society for Industrial

and Applied Mathematics, 2012. 623

[PS15] Eric Price and Zhao Song. A robust sparse Fourier transform in the contin-

uous setting. In Foundations of Computer Science (FOCS), 2015 IEEE 56th

Annual Symposium on, pages 583–600. IEEE, 2015. xxvi, lxxiii, 9, 10, 40,

46, 47, 164, 622, 759, 764, 765, 769, 803, 806, 822, 920, 965, 977, 996, 1016,

1901, 1904, 1905, 1908, 2514

[PS17] Aaron Potechin and David Steurer. Exact tensor completion with sum-of-

squares. In arXiv preprint. https://arxiv.org/pdf/1702.06237, 2017. 58,

1470

[PSG17] Jeffrey Pennington, Samuel S. Schoenholz, and Surya Ganguli. Resurrect-

ing the sigmoid in deep learning through dynamical isometry: theory and

practice. arXiv:1711.04735, November 2017. 358

[PSL+12] Mark S Pearce, Jane A Salotti, Mark P Little, Kieran McHugh, Choonsik Lee,

Kwang Pyo Kim, Nicola L Howe, Cecile M Ronckers, Preetha Rajaraman,

2649

https://arxiv.org/pdf/1702.06237


Alan W Craft, et al. Radiation exposure from ct scans in childhood and

subsequent risk of leukaemia and brain tumours: a retrospective cohort study.

The Lancet, 380(9840):499–505, 2012. 620

[PSW17] Eric Price, Zhao Song, and David P. Woodruff. Fast regression with an

`∞ guarantee. In International Colloquium on Automata, Languages, and

Programming (ICALP), 2017. xxix, 164, 1242, 1920, 2515, 2516

[PTBD16] Ho N Phien, Hoang D Tuan, Johann A Bengua, and Minh N Do. Effi-

cient tensor completion: Low-rank tensor train. In arXiv preprint. https:

//arxiv.org/pdf/1601.01083, 2016. 1711

[PTC13] Anh Huy Phan, Petr Tichavský, and Andrzej Cichocki. Fast alternating LS

algorithms for high order CANDECOMP/PARAFAC tensor factorizations.

IEEE Transactions on Signal Processing, 61(19):4834–4846, 2013. 1797

[PW11] Eric Price and David P Woodruff. (1+ eps)-approximate sparse recovery. In

Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Sympo-

sium on, pages 295–304. IEEE, 2011. 620, 633, 634, 989, 991, 996, 1334

[PW16] Mert Pilanci and Martin J Wainwright. Iterative hessian sketch: Fast and

accurate solution approximation for constrained least-squares. The Journal

of Machine Learning Research, 17(1):1842–1879, 2016. 86

[PW17] Mert Pilanci and Martin J Wainwright. Newton sketch: A near linear-time

optimization algorithm with linear-quadratic convergence. SIAM Journal on

Optimization, 27(1):205–245, 2017. 86, 358

2650

https://arxiv.org/pdf/1601.01083
https://arxiv.org/pdf/1601.01083


[PYLR17] Ramtin Pedarsani, Dong Yin, Kangwook Lee, and Kannan Ramchandran.

Phasecode: Fast and efficient compressive phase retrieval based on sparse-

graph codes. IEEE Transactions on Information Theory, 63(6):3663–3691,

2017. 635

[QBI+13] Saad Qaisar, Rana Muhammad Bilal, Wafa Iqbal, Muqaddas Naureen, and

Sungyoung Lee. Compressive sensing: From theory to applications, a survey.

Journal of Communications and networks, 15(5):443–456, 2013. 620

[QOSG02] Yongming Qu, George Ostrouchov, Nagiza Samatova, and Al Geist. Principal

component analysis for dimension reduction in massive distributed data sets.

In Proceedings of IEEE International Conference on Data Mining (ICDM),

2002. 1318, 1784, 1788

[Rao19] Sharavas Rao. Improved lower bounds for the restricted isometry property of

subsampled fourier matrices. In arXiv preprint. https://arxiv.org/pdf/

1903.12146.pdf, 2019. 920, 925

[Ren88] James Renegar. A polynomial-time algorithm, based on newton’s method,

for linear programming. Mathematical Programming, 40(1-3):59–93, 1988.

10, 12, 13, 3, 4, 7

[Ren92a] James Renegar. On the computational complexity and geometry of the first-

order theory of the reals, part I: introduction. preliminaries. the geometry

of semi-algebraic sets. the decision problem for the existential theory of the

reals. J. Symb. Comput., 13(3):255–300, 1992. 1046, 1052, 1053, 1088, 1131,

1339, 1483, 1506

2651

https://arxiv.org/pdf/1903.12146.pdf
https://arxiv.org/pdf/1903.12146.pdf


[Ren92b] James Renegar. On the computational complexity and geometry of the first-

order theory of the reals, part II: the general decision problem. preliminaries

for quantifier elimination. J. Symb. Comput., 13(3):301–328, 1992. 1046,

1052, 1053, 1088, 1131, 1339, 1506

[Ren92c] James Renegar. On the computational complexity and geometry of the first-

order theory of the reals. part iii: quantifier elimination. Journal of Symbolic

Computation, 13(3):329–352, 1992. 1088

[Ren92d] James Renegar. On the computational complexity of approximating solutions

for real algebraic formulae. SIAM J. Comput., 21(6):1008–1025, 1992. 1046

[Ren01] James Renegar. A mathematical view of interior-point methods in convex

optimization, volume 3. Siam, 2001. 6

[Rey89] George O Reynolds. The New Physical Optics Notebook: Tutorials in Fourier

Optics. ERIC, 1989. 36, 917

[RHS+16] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex

Smola. Stochastic variance reduction for nonconvex optimization. In Inter-

national conference on machine learning, pages 314–323, 2016. 15, 77

[Rip04] BD Ripley. Robust statistics. Course notes, 2004. 988

[RM14] Emile Richard and Andrea Montanari. A statistical model for tensor pca.

In Advances in Neural Information Processing Systems, pages 2897–2905.

https://arxiv.org/pdf/1411.1076, 2014. 58, 1470

2652

https://arxiv.org/pdf/1411.1076


[RMCS13] Vibhor Rastogi, Ashwin Machanavajjhala, Laukik Chitnis, and Anish Das

Sarma. Finding connected components in map-reduce in logarithmic rounds.

In Data Engineering (ICDE), 2013 IEEE 29th International Conference on,

pages 50–61. IEEE, 2013. lxxviii, 2317, 2323, 2324, 2334, 2469, 2502

[RNSS16] Avik Ray, Joe Neeman, Sujay Sanghavi, and Sanjay Shakkottai. The search

problem in mixture models. In arXiv preprint. https://arxiv.org/pdf/

1610.00843, 2016. 57, 1469

[Rot13] Thomas Rothvoß. Approximating bin packing within O(logOPTloglogOPT)

bins. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual

Symposium on, pages 20–29. IEEE, https://arxiv.org/pdf/1301.4010,

2013. 596

[Rot17] Thomas Rothvoss. Constructive discrepancy minimization for convex sets.

SIAM Journal on Computing (A preliminary of version of this paper appeared

in FOCS 2014), 46(1):224–234, 2017. 596

[RPK86] Robert Roy, Arogyaswami Paulraj, and Thomas Kailath. Esprit–a subspace

rotation approach to estimation of parameters of cisoids in noise. Acoustics,

Speech and Signal Processing, IEEE Transactions on, 34(5):1340–1342, 1986.

762

[RR17] Shravas Rao and Oded Regev. A sharp tail bound for the expander random

sampler. arXiv preprint arXiv:1703.10205, 2017. 26, 502

2653

https://arxiv.org/pdf/1610.00843
https://arxiv.org/pdf/1610.00843
https://arxiv.org/pdf/1301.4010


[RR19] Victor Reis and Thomas Rothvoss. Linear size sparsifier and the geometry

of the operator norm ball. arXiv preprint arXiv:1907.02145, 2019. 1912

[RRT17] Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex

learning via stochastic gradient langevin dynamics: a nonasymptotic analy-

sis. In COLT. arXiv preprint arXiv:1702.03849, 2017. 17, 172

[RS67] A Rényi and G Szekeres. On the height of trees. J. Austral. Math. Soc,

7(4):497–5, 1967. 560

[RS19a] Victor Reis and Zhao Song. Tbd. Manuscript, 2019. xxix

[RS19b] Aviad Rubinstein and Zhao Song. Reducing approximate longest common

subsequence to approximate edit distance. arXiv preprint arXiv:1904.05451,

2019. xxix, 1915, 2190, 2216, 2515

[RSSS19] Aviad Rubinstein, Saeed Seddighin, Zhao Song, and Xiaorui Sun. Approx-

imation algorithms for lcs and lis with truly improved running times. In

FOCS, 2019. xxix, 1914, 1915, 2192, 2213, 2515

[RST10] Steffen Rendle and Lars Schmidt-Thieme. Pairwise interaction tensor factor-

ization for personalized tag recommendation. In Proceedings of the third ACM

international conference on Web search and data mining(WSDM), pages 81–

90. ACM, 2010. 57, 1469

[RSW16] Ilya Razenshteyn, Zhao Song, and David P Woodruff. Weighted low rank

approximations with provable guarantees. In Proceedings of the 48th Annual

2654



Symposium on the Theory of Computing (STOC), 2016. xxvii, 6, 56, 60,

1131, 1339, 1428, 1506, 1649, 1652, 1654, 1655, 1657, 1658, 1664, 1665, 1672,

1898, 2027, 2514

[RTP16] Thomas Reps, Emma Turetsky, and Prathmesh Prabhu. Newtonian pro-

gram analysis via tensor product. In Proceedings of the 43rd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages(POPL), volume 51:1, pages 663–677. ACM, 2016. 57, 1469

[RTV05] Cornelis Roos, Tamás Terlaky, and J-Ph Vial. Interior point methods for

linear optimization. Springer Science & Business Media, 2005. 6

[Rub18] Aviad Rubinstein. Approximating edit distance.

https://theorydish.blog/2018/07/20/approximating-edit-distance/, 2018.

1914

[Rud99] Mark Rudelson. Random vectors in the isotropic position. Journal of Func-

tional Analysis, 164(1):60–72, 1999. 25, 26, 30, 503, 548, 553, 590, 2141

[RV08] Mark Rudelson and Roman Vershynin. On sparse reconstruction from Fourier

and gaussian measurements. Communications on Pure and Applied Mathe-

matics, 61(8):1025–1045, 2008. lxvii, lxviii, 37, 38, 623, 762, 918, 919, 923,

925

[RV09] Mark Rudelson and Roman Vershynin. Smallest singular value of a ran-

dom rectangular matrix. Communications on Pure and Applied Mathematics,

62(12):1707–1739, 2009. 1545

2655



[RV10] Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random

matrices: extreme singular values. arXiv preprint arXiv:1003.2990, 2010.

1226

[RVW00] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag

graph product, and new constant-degree expanders and extractors. In Foun-

dations of Computer Science, 2000. Proceedings. 41st Annual Symposium on,

pages 3–13. IEEE, 2000. 27, 503

[RVW16] Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and

circuits: (on lower bounds for modern parallel computation). In Proceedings

of the 28th ACM Symposium on Parallelism in Algorithms and Architectures,

SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, July 11-13,

2016, pages 1–12, 2016. 2316

[RVW18] Tim Roughgarden, Sergei Vassilvitskii, and Joshua R Wang. Shuffles and

circuits (on lower bounds for modern parallel computation). Journal of the

ACM (JACM), 65(6):41, 2018. 1916

[RYP03] Ryan Rifkin, Gene Yeo, and Tomaso Poggio. Regularized least-squares classi-

fication. Nato Science Series Sub Series III Computer and Systems Sciences,

190:131–154, 2003. 1923

[SA96] Emilio Salinas and Laurence F. Abbott. A model of multiplicative neural

responses in parietal cortex. Proceedings of the National Academy of Sciences,

93(21):11956–11961, 1996. 23, 353

2656



[SA15] Hanie Sedghi and Anima Anandkumar. Provable methods for training neural

networks with sparse connectivity. In ICLR. arXiv preprint arXiv:1412.2693,

2015. 358

[SAH+13] Lixin Shi, O Andronesi, Haitham Hassanieh, Badih Ghazi, Dina Katabi,

and Elfar Adalsteinsson. Mrs sparse-FFT: Reducing acquisition time and

artifacts for in vivo 2d correlation spectroscopy. In ISMRM’13, Int. Society

for Magnetic Resonance in Medicine Annual Meeting and Exhibition, 2013.

41, 676, 687

[Sar06] Tamás Sarlós. Improved approximation algorithms for large matrices via

random projections. In 47th Annual IEEE Symposium on Foundations of

Computer Science (FOCS) , 21-24 October 2006, Berkeley, California, USA,

Proceedings, pages 143–152, 2006. 52, 13, 1109, 1117, 1337, 1338, 1370, 1426,

1468, 1907, 1920, 1922, 1924, 1927, 1966

[SAZ09] Noam Shental, Amnon Amir, and Or Zuk. Rare-allele detection using com-

pressed se (que) nsing. arXiv preprint arXiv:0909.0400, 2009. 33, 617

[SBG04] Age K. Smilde, Rasmus Bro, and Paul Geladi. Multi-way Analysis with

Applications in the Chemical Sciences. Wiley, 2004. 57, 1469

[SBS+17] Hojjat Salehinejad, Julianne Baarbe, Sharan Sankar, Joseph Barfett, Errol

Colak, and Shahrokh Valaee. Recent advances in recurrent neural networks.

arXiv preprint arXiv:1801.01078, 2017. 23, 353, 357

2657



[SBT17] David Sutter, Mario Berta, and Marco Tomamichel. Multivariate trace in-

equalities. Communications in Mathematical Physics, 352(1):37–58, 2017.

arXiv:1604.03023. 501, 507, 508, 517, 518, 522, 524

[SC15] Jimin Song and Kevin C Chen. Spectacle: fast chromatin state annotation

using spectral learning. Genome biology, 16(1):33, 2015. 57, 1469

[SC16] Daniel Soudry and Yair Carmon. No bad local minima: Data indepen-

dent training error guarantees for multilayer neural networks. arXiv preprint

arXiv:1605.08361, 2016. 21, 251

[Sch61] Craige Schensted. Longest increasing and decreasing subsequences. Canadian

Journal of Mathematics, 13:179–191, 1961. 2218

[Sch81] Ralph Otto Schmidt. A signal subspace approach to multiple emitter location

spectral estimation. Ph. D. Thesis, Stanford University, 1981. 762

[Sch12] Leonard J Schulman. Cryptography from tensor problems. In IACR Cryp-

tology ePrint Archive, volume 2012, page 244. https://eprint.iacr.org/

2012/244, 2012. 57, 1469

[Sch18] Aaron Schild. An almost-linear time algorithm for uniform random spanning

tree generation. In Proceedings of the 50th Annual ACM SIGACT Symposium

on Theory of Computing (STOC), 2018. 29, 550, 555

[SGGSD17] Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-

Dickstein. Deep information propagation. In ICLR, 2017. 358

2658

https://eprint.iacr.org/2012/244
https://eprint.iacr.org/2012/244


[SGS15] Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training

very deep networks. In Advances in neural information processing systems

(NeurIPS), pages 2377–2385, 2015. 255

[SH05] Amnon Shashua and Tamir Hazan. Non-negative tensor factorization with

applications to statistics and computer vision. In Proceedings of the 22nd

international conference on Machine learning(ICML), pages 792–799. ACM,

2005. 57, 1469

[SH11] Martin Slawski and Matthias Hein. Sparse recovery by thresholded non-

negative least squares. In Advances in Neural Information Processing Sys-

tems, pages 1926–1934, 2011. 988

[Sha11] Ohad Shamir. A variant of azuma’s inequality for martingales with subgaus-

sian tails. ArXiv e-prints, abs/1110.2392, 10 2011. 283

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,

George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda

Panneershelvam, Marc Lanctot, et al. Mastering the game of Go with deep

neural networks and tree search. Nature, 529(7587):484–489, 2016. 20, 250,

351

[Shp90] D. Shpak. A weighted-least-squares matrix decomposition method with ap-

plications to the design of two-dimensional digital filters. In IEEE Thirty

Third Midwest Symposium on Circuits and Systems, 1990. 51, 1038

2659



[SHW+16] Mao Shaowu, Zhang Huanguo, Wu Wanqing, Zhang Pei, Song Jun, and Liu

Jinhui. Key exchange protocol based on tensor decomposition problem. China

Communications, 13(3):174–183, 2016. 57, 1469

[Sie] Siemens. Compressed sensing beyond speed. https://www.healthcare.

siemens.com/magnetic-resonance-imaging/clinical-specialities/

compressed-sensing. 36, 917

[SJ03] Nathan Srebro and Tommi S. Jaakkola. Weighted low-rank approximations.

In ICML, 2003. 50, 51, 1038

[SK18] Eric Price Sushrut Karmalkar. Compressed sensing with adversarial sparse

noise via l1 regression. arXiv preprint arXiv:1809.08055, 2018. 990

[SL09] Roman Sandler and Michael Lindenbaum. Nonnegative matrix factorization

with earth mover’s distance metric. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 1873–1880. IEEE, 2009. 1262, 1263

[SLC+17] Fanhua Shang, Yuanyuan Liu, James Cheng, KW Ng, and Yuichi Yoshida.

Variance reduced stochastic gradient descent with sufficient decrease. arXiv

preprint arXiv:1703.06807, 2017. 13, 74

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-

binovich. Going deeper with convolutions. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages 1–9, 2015. 22, 251

2660

https://www.healthcare.siemens.com/magnetic-resonance-imaging/clinical-specialities/compressed-sensing
https://www.healthcare.siemens.com/magnetic-resonance-imaging/clinical-specialities/compressed-sensing
https://www.healthcare.siemens.com/magnetic-resonance-imaging/clinical-specialities/compressed-sensing


[SLRB17] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums

with the stochastic average gradient. Mathematical Programming, 162(1-

2):83–112, 2017. 15, 77

[Slu77] Eric V Slud. Distribution inequalities for the binomial law. The Annals of

Probability, 5(3):404–412, 1977. 2506, 2507

[Sma98] Steve Smale. Mathematical problems for the next century. The mathematical

intelligencer, 20(2):7–15, 1998. 1895

[SMH11] Ilya Sutskever, James Martens, and Geoffrey Hinton. Generating text with

recurrent neural networks. In International Conference on Machine Learning

(ICML), pages 1017–1024, 2011. 23, 353

[SMT+18] Max Simchowitz, Horia Mania, Stephen Tu, Michael I Jordan, and Benjamin

Recht. Learning without mixing: Towards a sharp analysis of linear system

identification. In Conference on Learning Theory (COLT). arXiv preprint

arXiv:1802.08334, 2018. 257

[Son17] Zhao Song. High dimensional Fourier transform in the continuous setting.

In Manuscript, 2017. 21, 250, 351, 1901, 2140, 2309

[SP97] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks.

IEEE Transactions on Signal Processing, 45(11):2673–2681, 1997. 353

[Spe85] Joel Spencer. Six standard deviations suffice. Trans. Amer. Math. Soc.,

289(2):679–706, 1985. 30, 590

2661



[SS91] Hava T Siegelmann and Eduardo D Sontag. Turing computability with neural

nets. Applied Mathematics Letters, 4(6):77–80, 1991. 354

[SS10] Michael Saks and C Seshadhri. Estimating the longest increasing sequence

in polylogarithmic time. In Proceedings of the Fifty-First Annual IEEE Sym-

posium on Foundations of Computer Science, 2010. 2214, 2218, 2219

[SS11] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective

resistances. SIAM Journal on Computing, 40(6):1913–1926, 2011. 25, 29, 13,

548, 551, 552, 559, 581, 596

[SS14] Zhao Song and Wen Sun. Probabilistic recharging model in uncertain envi-

ronments. In AAMAS, pages 1343–1344, 2014. xxix

[SS16] Shai Shalev-Shwartz. SDCA without duality, regularization, and individual

convexity. In International Conference on Machine Learning, pages 747–754,

2016. 15, 77

[SS17] Tselil Schramm and David Steurer. Fast and robust tensor decomposition

with applications to dictionary learning. manuscript, 2017. 58, 1470

[SS18] Itay Safran and Ohad Shamir. Spurious local minima are common in two-

layer ReLU neural networks. In International Conference on Machine Learn-

ing (ICML). http://arxiv.org/abs/1712.08968, 2018. 21, 251, 351

[SS19] Zhao Song andWen Sun. Efficient model-free reinforcement learning in metric

spaces. arXiv preprint arXiv:1905.00475, 2019. xxix

2662



[SSB14] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term mem-

ory recurrent neural network architectures for large scale acoustic modeling.

In Fifteenth annual conference of the international speech communication as-

sociation, 2014. 22, 352

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning:

From theory to algorithms. Cambridge university press, 2014. 14, 74

[SSN12] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm neural networks

for language modeling. In Thirteenth annual conference of the international

speech communication association, 2012. 22, 352

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian

Bolton, et al. Mastering the game of Go without human knowledge. Nature,

550(7676):354, 2017. 20, 250, 351

[SSV12] Zhao Song, Seyed Abbas Sadat, and Richard T. Vaughan. Mo-lost: Adap-

tive ant trail untangling in multi-objective multi-colony robot foraging. In

Eleventh International Conference on Autonomous Agents and Multiagent

Systems(AAMAS2012), June 4-8 2012, Universitat Politecnica de Valencia,

Valencia, Spain., 2012. xxix

[SSZ13] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent

methods for regularized loss minimization. Journal of Machine Learning

Research, 14(Feb):567–599, 2013. 13, 74

2663



[SSZ14] Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual

coordinate ascent for regularized loss minimization. In International Confer-

ence on Machine Learning, pages 64–72, 2014. 15, 22, 77, 251

[ST04] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms

for graph partitioning, graph sparsification, and solving linear systems. In

Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Com-

puting (STOC), pages 81–90, New York, NY, USA, 2004. ACM. 25, 6, 372,

381, 464, 548, 551, 596

[ST11] Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs.

SIAM Journal on Computing, 40(4):981–1025, 2011. 29

[Ste06] Alwin Stegeman. Degeneracy in candecomp/parafac explained for p × p × 2

arrays of rank p+1 or higher. Psychometrika, 71(3):483–501, 2006. 59, 1471

[Ste08] Alwin Stegeman. Low-rank approximation of generic p × q × 2 arrays and

diverging components in the candecomp/parafac model. SIAM Journal on

Matrix Analysis and Applications, 30(3):988–1007, 2008. 59, 1471

[STLS14] Marco Signoretto, Dinh Quoc Tran, Lieven De Lathauwer, and Johan A. K.

Suykens. Learning with tensors: a framework based on convex optimization

and spectral regularization. Machine Learning, 94(3):303–351, 2014. 57, 1469

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathe-

matik, 13(4):354–356, 1969. 89, 761, 775, 792, 1133, 1426, 1468, 1515

2664



[SV82] Yossi Shiloach and Uzi Vishkin. An O(log n) parallel connectivity algorithm.

J. Algorithms, 3(1):57–67, 1982. 2315

[SV12a] Nariankadu D. Shyamalkumar and Kasturi R. Varadarajan. Efficient sub-

space approximation algorithms. Discrete & Computational Geometry,

47(1):44–63, 2012. 54, 1112

[SV12b] Zhao Song and Richard T. Vaughan. Multi-robot, multi-patch foraging with

maximum sustainable yield. In Artificial Life(ALIFE XIII), July 19–22,

2012, Michigan State University, East Lansing, Michigan, USA, 2012. xxix

[SV13] Zhao Song and Richard T. Vaughan. Sustainable robot foraging: Adaptive

fine-grained multi-robot task allocation for maximum sustainable yield of

biological resources. In IROS, pages 3309–3316, 2013. xxix

[SV16] Damian Straszak and Nisheeth K Vishnoi. Irls and slime mold: Equivalence

and convergence. arXiv preprint arXiv:1601.02712, 2016. 34, 617

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning

with neural networks. In Advances in neural information processing systems

(NeurIPS), pages 3104–3112, 2014. 22, 352

[SVWX17] Le Song, Santosh Vempala, John Wilmes, and Bo Xie. On the complexity

of learning neural networks. In Advances in Neural Information Processing

Systems (NeurIPS), pages 5514–5522, 2017. 258

[SW11] Christian Sohler and David P Woodruff. Subspace embeddings for the `1-

norm with applications. In Proceedings of the forty-third annual ACM sym-

2665



posium on Theory of computing, pages 755–764. ACM, 2011. 52, 1109, 1117,

1118, 1170, 1185, 1191, 1253, 1336, 1338, 1341, 1344, 1345, 1975

[SW15] Tselil Schramm and Benjamin Weitz. Low-rank matrix completion with ad-

versarial missing entries. CoRR, abs/1506.03137, 2015. 51, 1038, 1043

[SW18] Christian Sohler and David P. Woodruff. Strong coresets for k-median and

subspace approximation, goodbye dimension. In FOCS. IEEE, 2018. 2094

[SWY+19] Zhao Song, Ruosong Wang, Lin F. Yang, Hongyang Zhang, and Peilin Zhong.

Efficient symmetric norm regression via linear sketching. Manuscript, 2019.

xxix, 1965, 2515, 2516

[SWZ16] Zhao Song, David P. Woodruff, and Huan Zhang. Sublinear time orthogonal

tensor decomposition. In Advances in Neural Information Processing Systems

29: Annual Conference on Neural Information Processing Systems (NIPS)

2016, December 5-10, 2016, Barcelona, Spain, pages 793–801, 2016. xxviii,

3, 4, 58, 61, 1469, 2025, 2514

[SWZ17] Zhao Song, David P Woodruff, and Peilin Zhong. Low rank approximation

with entrywise `1-norm error. In Proceedings of the 49th Annual Sympo-

sium on the Theory of Computing (STOC). ACM, https://arxiv.org/pdf/

1611.00898, 2017. xxvii, 3, 6, 56, 60, 1145, 1334, 1335, 1336, 1337, 1338,

1339, 1342, 1345, 1357, 1370, 1373, 1399, 1428, 1429, 1433, 1476, 1488, 1506,

1604, 1617, 1619, 1623, 1624, 1628, 1629, 1645, 1646, 1647, 1717, 1718, 1720,

1725, 1727, 1728, 1729, 1736, 1737, 1738, 1739, 1779, 1784, 1788, 2027, 2082,

2094, 2514

2666

https://arxiv.org/pdf/1611.00898
https://arxiv.org/pdf/1611.00898


[SWZ18] Zhao Song, David P Woodruff, and Peilin Zhong. Towards a zero-one law for

entrywise low rank approximation. arXiv preprint arXiv:1811.01442, 2018.

xxviii, 60, 1007, 1967, 2027, 2082, 2083, 2514

[SWZ19a] Zhao Song, David P Woodruff, and Peilin Zhong. Average case column subset

selection for entrywise `1-norm loss. Manuscript, 2019. 2514

[SWZ19b] Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low

rank approximation. In SODA. arXiv preprint arXiv:1704.08246, 2019. xxviii,

3, 6, 7, 60, 246, 1341, 1357, 1433, 1899, 2025, 2027, 2042, 2094, 2514

[SY19] Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via

matrix chernoff bound. arXiv preprint arXiv:1906.03593, 2019. xxix, 25,

548, 1908, 1909, 2139, 2516

[SZ13] Zhao Song and Yuke Zhu. Graphical model-based learning in high dimen-

sional feature spaces. In Twenty-Seventh AAAI Conference on Artificial In-

telligence, 2013. xxix

[TBR15] Gongguo Tang, Badri Narayan Bhaskar, and Benjamin Recht. Near mini-

max line spectral estimation. Information Theory, IEEE Transactions on,

61(1):499–512, 2015. 763

[TBSR13] Gongguo Tang, Badri Narayan Bhaskar, Parikshit Shah, and Benjamin

Recht. Compressed sensing off the grid. Information Theory, IEEE Trans-

actions on, 59(11):7465–7490, 2013. 41, 676, 686, 763

2667



[TD99] Françoise Tisseur and Jack Dongarra. A parallel divide and conquer algo-

rithm for the symmetric eigenvalue problem on distributed memory architec-

tures. SIAM Journal on Scientific Computing, 20(6):2223–2236, 1999. 1318,

1784, 1788

[Ter13] Tamás Terlaky. Interior point methods of mathematical programming, vol-

ume 5. Springer Science & Business Media, 2013. 6

[TG07] Joel Tropp and Anna C Gilbert. Signal recovery from partial information

via orthogonal matching pursuit. IEEE Trans. Inform. Theory, 53(12):4655–

4666, 2007. 38, 918

[Tho65] Colin J Thompson. Inequality with applications in statistical mechanics.

Journal of Mathematical Physics, 6(11):1812–1813, 1965. 28, 506

[Tia17] Yuandong Tian. An analytical formula of population gradient for two-

layered ReLU network and its applications in convergence and critical

point analysis. In International Conference on Machine Learning (ICML).

http://arxiv.org/abs/1703.00560, 2017. 21, 250, 351, 358, 2140

[Tib96] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal

of the Royal Statistical Society. Series B (Methodological), pages 267–288,

1996. 14, 74, 1334

[Tij] H Tijms. Understanding probability: Chance rules in everyday life. 2004. 25,

548

2668



[TK11] Petr Tichavsky and Zbyněk Koldovsky. Weight adjusted tensor method for

blind separation of underdetermined mixtures of nonstationary sources. IEEE

Transactions on Signal Processing, 59(3):1037–1047, 2011. 58, 1470

[TLW+06] Dharmpal Takhar, Jason N Laska, Michael B Wakin, Marco F Duarte, Dror

Baron, Shriram Sarvotham, Kevin F Kelly, and Richard G Baraniuk. A new

compressive imaging camera architecture using optical-domain compression.

In Computational Imaging IV, volume 6065, page 606509. International So-

ciety for Optics and Photonics, 2006. 33, 617

[TM17] Davoud Ataee Tarzanagh and George Michailidis. Fast monte carlo algo-

rithms for tensor operations. In arXiv preprint. https://arxiv.org/pdf/

1704.04362, 2017. 1476, 1504

[Tre01] Luca Trevisan. Non-approximability results for optimization problems on

bounded degree instances. In Proceedings of the thirty-third annual ACM

symposium on Theory of computing (STOC), pages 453–461. ACM, 2001.

1671, 1703

[Tro11a] Joel A Tropp. Freedman’s inequality for matrix martingales. Electronic

Communications in Probability, 16:262–270, 2011. 25, 548

[Tro11b] Joel A Tropp. Improved analysis of the subsampled randomized hadamard

transform. Advances in Adaptive Data Analysis, 3(01n02):115–126, 2011.

1907, 1922

2669

https://arxiv.org/pdf/1704.04362
https://arxiv.org/pdf/1704.04362


[Tro11c] Joel A Tropp. User-friendly tail bounds for matrix martingales. Technical

report, CALIFORNIA INST OF TECH PASADENA, 2011. 553, 558, 2510

[Tro12] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foun-

dations of computational mathematics, 12(4):389–434, 2012. 25, 26, 30, 31,

503, 511, 548, 551, 553, 557, 559, 590, 591, 2141

[Tro15] Joel A. Tropp. An introduction to matrix concentration inequalities. Foun-

dations and Trends R© in Machine Learning, 8(1-2):1–230, 2015. 504, 2141,

2510

[TS19] Ewin Tang and Zhao Song. Tbd. Manuscript, 2019. xxix

[TSHK11] Ryota Tomioka, Taiji Suzuki, Kohei Hayashi, and Hisashi Kashima. Statis-

tical performance of convex tensor decomposition. In Advances in Neural

Information Processing Systems 24: 25th Annual Conference on Neural In-

formation Processing Systems (NIPS). Proceedings of a meeting held 12-14

December 2011, Granada, Spain., pages 972–980, 2011. 58, 1470

[Tso10] Charalampos E. Tsourakakis. MACH: fast randomized tensor decomposi-

tions. In SDM, pages 689–700, 2010. 1797, 1798, 1804

[TSSW00] Luca Trevisan, Gregory B Sorkin, Madhu Sudan, and David P Williamson.

Gadgets, approximation, and linear programming. SIAM Journal on Com-

puting, 29(6):2074–2097, 2000. 1269

2670



[Tsy09] Alexandre B Tsybakov. Introduction to nonparametric estimation. revised

and extended from the 2004 french original. translated by vladimir zaiats,

2009. 1219

[Tuk60] John W Tukey. A survey of sampling from contaminated distributions. Con-

tributions to probability and statistics, pages 448–485, 1960. 992, 993, 1007

[Tur41] Paul Turán. On an external problem in graph theory. Mat. Fiz. Lapok,

48:436–452, 1941. 2284

[TWZS15] Hsiao-Yu Fish Tung, Chao-Yuan Wu, Manzil Zaheer, and Alexander J Smola.

Spectral methods for the hierarchical dirichlet process. 2015. 1797, 1799,

1814, 1887

[TZ12] Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hashing with

applications to linear probing and second moment estimation. SIAM Journal

on Computing, 41(2):293–331, 2012. 621

[UHZ+16] Madeleine Udell, Corinne Horn, Reza Zadeh, Stephen Boyd, et al. Gener-

alized low rank models. Foundations and Trends R© in Machine Learning,

9(1):1–118, 2016. 55, 56, 1342, 1427, 1428, 1450

[Vai87] Pravin M Vaidya. An algorithm for linear programming which requires

O(((m+ n)n2 + (m+ n)1.5n)L)arithmetic operations. In FOCS. IEEE, 1987.

10, 3, 11

2671



[Vai89a] Pravin M Vaidya. A new algorithm for minimizing convex functions over

convex sets. In 30th Annual Symposium on Foundations of Computer Sci-

ence(FOCS), pages 338–343. IEEE, 1989. 10, 3

[Vai89b] Pravin M Vaidya. Speeding-up linear programming using fast matrix multi-

plication. In FOCS. IEEE, 1989. 10, 13, 15, 3, 20, 66, 77

[Val90] Leslie G. Valiant. A bridging model for parallel computation. Commun.

ACM, 33(8):103–111, 1990. 2315

[Vap92] Vladimir Vapnik. Principles of risk minimization for learning theory. In

Advances in neural information processing systems, pages 831–838, 1992. 13,

14, 74

[Vap13] Vladimir Vapnik. The nature of statistical learning theory. Springer science

& business media, 2013. 13, 74

[Vas09] M Alex O Vasilescu. A multilinear (tensor) algebraic framework for computer

graphics, computer vision, and machine learning. PhD thesis, Citeseer, 2009.

57, 1469

[vdBLSS19] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Tbd.

Manuscript, 2019. xxix

[vdH03] Joris van der Hoeven. Majorants for formal power series. Citeseer, 2003. 232

[Ver10] Roman Vershynin. Introduction to the non-asymptotic analysis of random

matrices. arXiv preprint arXiv:1011.3027, 2010. 1942

2672



[Ver14] Sergio Verdú. Total variation distance and the distribution of relative infor-

mation. In ITA, pages 1–3. Citeseer, 2014. 1219

[VGT12] Gaël Varoquaux, Alexandre Gramfort, and Bertrand Thirion. Small-sample

brain mapping: sparse recovery on spatially correlated designs with random-

ization and clustering. arXiv preprint arXiv:1206.6447, 2012. 988

[VL92] Charles F Van Loan. Computational frameworks for the fast Fourier trans-

form, volume 10 of Frontiers in Applied Mathematics. Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, PA, 1992. 2024

[VL00] Charles F Van Loan. The ubiquitous kronecker product. Journal of compu-

tational and applied mathematics, 123(1-2):85–100, 2000. 2029, 2042, 2065,

2080

[VLP93] Charles F Van Loan and N. Pitsianis. Approximation with Kronecker prod-

ucts. In Linear algebra for large scale and real-time applications (Leuven,

1992), volume 232 of NATO Adv. Sci. Inst. Ser. E Appl. Sci., pages 293–314.

Kluwer Acad. Publ., Dordrecht, 1993. 2024

[Voe11] David G Voelz. Computational Fourier Optics: A MATLAB Tutorial (SPIE

Tutorial Texts Vol. TT89). SPIE press, 2011. 36, 917

[VT01] H. L. Van Trees. Detection, estimation, and modulation theory. Wiley, 1

edition, September 2001. 53, 1111

2673



[VT02] M Alex O Vasilescu and Demetri Terzopoulos. Multilinear analysis of image

ensembles: Tensorfaces. In European Conference on Computer Vision, pages

447–460. Springer, 2002. 57, 1469

[VT04] M Alex O Vasilescu and Demetri Terzopoulos. Tensortextures: Multilinear

image-based rendering. In ACM Transactions on Graphics (TOG), volume

23:3, pages 336–342. ACM, 2004. 57, 1469

[VW18] Santosh Vempala and John Wilmes. Polynomial convergence of gradi-

ent descent for training one-hidden-layer neural networks. arXiv preprint

arXiv:1805.02677, 2018. 351

[WA03] Hongcheng Wang and Narendra Ahuja. Facial expression decomposition. In

Computer Vision, 2003. Proceedings. Ninth IEEE International Conference

on, pages 958–965. IEEE, 2003. 57, 1469

[WA16] Yining Wang and Animashree Anandkumar. Online and differentially-private

tensor decomposition. In Advances in Neural Information Processing Systems

29: Annual Conference on Neural Information Processing Systems (NIPS)

2016, December 5-10, 2016, Barcelona, Spain. https://arxiv.org/pdf/

1606.06237, 2016. 58, 1469, 1809, 1810, 1826, 1850, 1855, 1861

[Wag08] R. Wagner. Tail estimates for sums of variables sampled by a random walk.

Combinatorics, Probability and Computing, 17(2), 2008. 26, 502

[Wag11] David Wagner. Multivariate stable polynomials: theory and applications.

Bulletin of the American Mathematical Society, 48(1):53–84, 2011. 599

2674

https://arxiv.org/pdf/1606.06237
https://arxiv.org/pdf/1606.06237


[Wai19] M.J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic View-

point. Cambridge Series in Statistical and Probabilistic Mathematics. Cam-

bridge University Press, 2019. 2068

[Wal77] Alastair J Walker. An efficient method for generating discrete random vari-

ables with general distributions. ACM Transactions on Mathematical Soft-

ware (TOMS), 3(3):253–256, 1977. 1807

[Wan16] Yining Wang. Personal communication. 2016. 1808

[Wan19a] Lan Wang. A new tuning-free approach to high-dimensional regression. .,

2019. 2026

[Wan19b] Lan Wang. Personal communication. ., 2019. 2026

[Wat64] Geoffrey SWatson. Smooth regression analysis. Sankhyā: The Indian Journal
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