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As autonomous AI agents proliferate in the real world, they will in-

creasingly need to cooperate with each other to achieve complex goals without

always being able to coordinate in advance. This kind of cooperation, in which

agents have to learn to cooperate on the fly, is called ad hoc teamwork. Many

previous works investigating this setting assumed that teammates behave ac-

cording to one of many predefined types that is fixed throughout the task.

This assumption of stationarity in behaviors, is a strong assumption which

cannot be guaranteed in many real-world settings. In this work, I relax this

assumption and investigate settings in which teammates can change their types

during the course of the task. This adds complexity to the planning problem

as now an agent needs to recognize that a change has occurred in addition

to figuring out what is the new type of the teammate it is interacting with.

In this thesis, I present a novel Convolutional-Neural-Network-based Change

Point Detection (CPD) algorithm for ad hoc teamwork. When evaluating our

algorithm on the modified predator prey domain, I show that it outperforms

existing Bayesian CPD algorithms.
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Chapter 1

Introduction

Autonomous agents, both in software and robotics, are becoming in-

creasingly capable of solving complex tasks. However, if these agents are to

perform day to day activities as a part of society, they will need to be able

to cooperate with other agents. Often in studies of cooperative agents, the

coordination strategy is either learned or decided a priori while assuming full

knowledge of the teammates and the task at hand. However, as agents be-

come more robust and diverse, it will become progressively more difficult to

ensure that all the agents share the same communication and coordination

protocols. Thus, these agents will need to be able to cooperate on the fly.

For example, in case of a disaster, it might not be possible (due to lack of

time or resources), to reprogram the existing heterogeneous robots deployed

in the area and provide them with the knowledge of each other’s capabilities

to assist the search and rescue operations. The Drop-in Player competition at

RoboCup [25] is another setting that necessitates ad hoc cooperation. In this

variant of robot soccer, new robot teams are formed by mixing robot players

from different teams. They have to cooperate and play together to win. Such

challenging tasks can only be accomplished if these robots are able to work

together without the need to be explicitly provided with strategies in advance.
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This problem, in which a team of agents is formed ad hoc, for a partic-

ular purpose, and the team strategies cannot be developed a priori, is called

the “ad hoc teamwork“ problem [33]. Several works approach this setting by

assuming that every agent behaves according to one out of a set of predefined

behaviors [22, 25, 2, 1, 6, 8, 7]. These, behaviors (also called types), are of-

ten assumed to be defined in the form of probability distributions mapping

states to actions. Cooperation then is effectively split into reasoning and plan-

ning, where the ad hoc agent first reasons about the teammates’ capabilities

and behaviors and then plans actions to optimally finish the task at hand. If

the types are sufficiently descriptive and the planning algorithms are capa-

ble enough, the agent’s beliefs regarding the other agents’ type will rapidly

converge leading to a successful completion of the task.

Common to all past work is the assumption that teammates maintain

the same type throughout the entire task. Real world teammates, however,

may not be static in terms of agent behaviors. If the ad hoc agent doesn’t

swiftly recognize such changes and adapt accordingly, teamwork will surely

degrade. Search and rescue tasks are an important class of such examples.

In this work, I relax the assumption of the agents’ types being fixed

through the task and consider the more realistic problem of agents dynamically

switching between types through the course of the task. I formulate this

problem as a Change Point Detection (CPD) problem in which ad hoc agents

are required to identify throughout the task, whether a change in the type of

the other agents has occurred and if so, what the new type is. I investigate
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the use of existing CPD algorithms and propose a new CNN (Convolutional

Neural Network)-based CPD algorithm. Finally, using a modified version of

the predator prey domain I find that our algorithm outperforms other CPD

algorithms in detecting and adapting to changes in agent types.

1.1 Related Work

In this section I discuss the current state of the art in the area of ad hoc

teamwork, specifically in the type-based approach. Next, I discuss the change

point detection problem and its connection to our research.

1.1.1 Type-Based Ad Hoc TeamWork

Approaches in ad hoc teamwork broadly fall into two categories based

on how the ad hoc agent models the rest of the team [4] . The well-studied first

category involves modeling agents individually with distributions over action

probabilities at each timestep [18, 11]. The second approach involves modeling

the group as a whole and its joint action/planning dynamics [34, 36]

Type-based reasoning falls into the first category. In the last decade,

multiple works have studied this problem in various contexts and experimental

domains. Several works have concentrated on investigating likelihood methods

for efficient inference of type given the predefined behavior/type set, using

mcts (Monte Carlo Tree Search) for planning actions accordingly [7, 33, 1, 3].

Going one step further, a number of works have investigated algorithms that

can build this set of behaviors while performing the task instead of assuming
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that it is given beforehand [29, 28, 10].

All of the above works assume however, that the teammates’ types

remains fixed and do not account for type switches. The only work that does

consider non-stationary teammates [21] focuses on detecting drift between a

learned set of types and the agent’s current behavior to help decide when

the current type set isn’t expressive enough of the behavior. This helps the

learning algorithm decide when it is time to start modeling the teammate’s

behavior as a new type instead of updating the probabilities of the current

types.

1.1.2 Change Point Detection

Change points are abrupt variations in time series data. Such abrupt

changes may represent transitions that occur between states. Change Point

Detection (CPD) has been investigated in many application areas such as cli-

mate change detection [31], speech and image analysis, human activity anal-

ysis, and robotics [5]. Various algorithms have been proposed to detect and

track these changes, both offline and online. Algorithms like the cumsum [30],

kliep [35] and spll [23], that work with repeated hypothesis tests fall under

the category of Likelihood based statistical methods and are strongly tailored

to numerical time series sampled from parametric probability distributions.

Bayesian Methods ([38, 12, 27]) involve priors on change point locations and

can work on arbitrary, non-parametric model specifications. Both the on-

line and offline versions of Bayesian CPD algorithms often grow in O(T 2) in
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complexity as the total number of timesteps increases. Finally, recent work

on LSTM-RNN based change point detection [26, 39, 13] has been promising

due to the representational power afforded by the neural networks as well as

the long range time dependencies captured by the LSTM architectures. These

methods first learn a predictive model of the time-series data distributions and

then measure the drift from the predicted value to the true value to identify

changes.

All of the aforementioned algorithms assume that the time-series data

at any given timestep within a segment is generated from a stationary random

processes. This assumption proves detrimental when we want to infer switches

in types solely based on observing an agent’s actions. Since an agent’s proba-

bility distribution over actions is conditionally dependent on its state at every

timestep, this assumption of stationarity is invalid and as will be shown, af-

fects the performance of current CPD algorithms. The algorithm presented in

this work however, does not make this assumption and is specifically tailored

to work with non-stationary agent models.

1.2 Preliminaries

This thesis’s terminology and notation follows that of Albrecht and

Stone [2017].
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1.2.1 Model

I consider a multi-agent model where agents interact with each other in

order to achieve a common goal. The process starts at time t = 0. At time t,

each agent i receives a signal sti and independently chooses an action ati from

some countable set of actions Ai. I do not put any limitations on sti’s structure

and dynamics. This process continues indefinitely or until some termination

criterion is satisfied (i.e., a goal is achieved).

I will use P (ati|H t
i , θi) to denote the probability with which the action

ati is chosen where H t
i = (s0

i , ..., s
t
i) is agent i’s history of observations, θi is i’s

type. Since this work mainly focuses on detecting type changing points and

since the work of Albrecht et al. provided a method for reasoning about the

values of any bounded continuous parameters within types, I will assume that

the types are characterized without the need of parameters.

To simplify the exposition, I assume that I control a single agent, i,

which reasons about the behavior of another agent, j. I also assume that i

knows j’s action space Aj and that it can observe j’s past actions, i.e. at−1
j ∈ sti

for t > 0. The true type of j, denoted θ∗j is unknown to i. However, i has

access to a finite set of hypothetical types θj ∈ Θj, with θ∗j ∈ Θj. I furthermore

assume that all agents share the same global state and by extension, i has all

information relevant to j’s decision making, so that H t
j is a function of H t

i .

Finally, I assume that agent j will change its type during the process at a

number of chosen time points Λ = {λ1, ..., λk} set extraneously.
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Our goal is two fold. First, I aim to devise a method which allows

agent i to be able both to identify the specific time point in which the change

in agent j’s type has occurred and to identify its new type, based only on

agent j’s observed actions. Second, I aim to adapt the planning method to

cope with these changes.

1.2.2 Reasoning in the Absence of Change points

Without considering the option that agents are allowed (or able) to

change their type during the task to be accomplished, our agent will use the

MAP type estimation method as suggested in the work of [3] in order to iden-

tify the other agents’ type and plan accordingly. According to the MAP type

estimation method, our agent maintains individual probability for each pos-

sible type in Θj and updates them after each observation. This process is

formally described in 1.

1.2.3 Planning

Given an assumption of teammate types, the agent can then plan a

sequence of actions that, in conjunction with the predicted actions of team-

mates, will lead to the best team utility. Previous work for planning [15] has

used Monte Carlo Tree Search (MCTS) as it has relatively few restrictions on

the domain and often works quite well for short-term planning. To reduce

computational complexity and simplify exposition and since planning itself is

not the focus of our work, I use a simple, domain-specific planning algorithm

7



Algorithm 1 MAP Type Estimation

Given type space Θ, initial belief P (θi|H t
i )

Output: Type estimates at each timestep, θ̂t
1: for each timestep t > 0 do

2: Observe action atm of mth agent

3: for each type θi in type space Θj do

4: P (θi|H t
i )← P (atm|θi) ∗ P (θi|H t

i − 1)

5: end for

6: set θ̂t ← argmaxθi(P (θi|H t
i ))

7: end for

that is described in Section 5.4.
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Chapter 2

Proposed Methods

2.1 Proposed Methodology

Algorithm 1 does not explicitly consider the possibility of teammates

changing types. Since the belief is propagated from the beginning, it often

takes many timesteps of lag for the posterior P (θi|H t
i ) to reflect the changed

type, owing to drift in belief. An example from a simple Gaussian time-series

model is demonstrated in Figure 2.1.

Hence, identifying change points in this way can be detrimental to fast

inference of the new type after a change occurs. We aim to integrate this idea

into the original inference framework by incorporating a change point detection

phase where the ad-hoc agent inspects the history to identify possible switches

in its teammates’ types. If any such switches are found, then the reasoning

algorithm resets its recent history to begin just after the change point and

uses only the resetted history for inference. Specifically, we reset the evidence

P (θi|H t
i ) immediately after a change point is observed. This modification in

reasoning strategy helps rapid convergence of the type-inference procedure

to the new type after a change point and consequently aids in minimizing

planning lag. This strategy is termed CP-Adjusted Inference as illustrated in

9



Figure 2.1: Illustration of difference between CP-Aware Inference and Naive
(CP-Unaware) Inference. The data is sampled from x ∼ N(4, 0.1) and x ∼
N(12, 0.1) later on. The green and read lines illustrate running estimates of
means computed from Maximum Likelihood Estimation with and without the
awareness of the change point. The second estimate catches up to the true
value at the 450th timestep.

10



Figure 2.1.

Since the choice of the change point algorithm is not obvious, we com-

pare existing algorithms with a newly proposed CNN-based change point de-

tection method. This new algorithm is described in detail in the following

section, while the existing algorithms are described in Section 5.3.

2.1.1 Convolutional CPD Network

Convolutional Neural Networks [24] have shown remarkable perfor-

mance on many image-related tasks. Effective composition of convolutions

coupled with non-linear transformations give CNNs the power to learn and

distinguish spatial patterns accurately. We aim to leverage this power by rep-

resenting our change point detection problem as a 2D image classification like

problem. This is illustrated in figure 2.2. The figure illustrates how different

the likelihood matrices P (aT |θi), called L|Θ|×nt are, for a given timestep T and

observed action aT . In the ideal case, when the types are radically different

from each other, an observed action should have a high likelihood only from

the actual type that generated it and near zero likelihood from all others 1.

And when a change point occurs, the likelihood mass must also shift towards

the new type. Such a shift in likelihood will show up as a break in the highest

likelihood line (colored yellow), as illustrated in the figure. Thus, recognizing

this break in the image-like representation can help us detect change points.

1In the extreme-ideal case, the types would be sufficiently different to not have similar
likelihoods for the same action, since each type is different enough to generate a different
action.
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Since detecting such a pattern requires both horizontal (time) and ver-

tical (type) related analysis, Convolutional Neural Networks are a natural

fit. Thus, we can pose the change point detection problem as an image-

classification problem, where each likelihood-matrix when interpreted as an

image can be classified into one of nclasses, given by equation 2.2.

nclasses = |Θ|P 2 + 1 (2.1)

nclasses = |Θ| × (|Θ| − 1) + 1 (2.2)

labels based on the presence/absence of a change point and the pre-

change-point type, post-change-point type.

The architecture we used to solve this classification problem is illus-

trated in Figure ??. The network takes as input the matrix L|Θ|×nt . The first

layer has multiple 40 2d-convolutional filters followed by a max-pooling layer.

This is passed through the ReLU non linearity into a series of fully-connected

(FC) layers. Finally, the output is soft-maxed to get the probability of each

of nclasses happening in the last T-timesteps. Here, the width nt of L|Θ|×nt is

considered a hyper-parameter and is chosen to facilitate the best accuracy for

a particular task and type-set at hand. Larger widths translate to access to

increased length of history and hence better accuracy. This tradeoff is also

discussed further in the experiments section.

12



At each timestep, we pass the last nt timesteps’ likelihood information

to the matrix and retrieve the output probabilities for all possible switches at

T − nt

2
. This is similar to a sliding-window approach, where we are sliding

over likelihood matrices. If the network outputs the highest probability for a

change-point at timestep T, then a change-point is marked at timestep T − nt

2
.

The network is trained using the likelihood matrices derived from sim-

ulation. Inside each simulation run, we infuse changepoints randomly in a

teammate and collect likelihood matrices pertaining to its actions centered

around the change-point. The changepoints are sufficiently spaced apart so

that the likelihood matrices collected only contain information about a single

changepoint. This set of matrices is augmented with another set of matrices

which collected without changepoints so as to have a balanced dataset. The

details are further described in Section 5.

Algorithm 2 Convolutional Changepoint Detection (ConvCPD) for each
agent

Output: pm,nc = Probability of a type change from m

to n occurring within the last hl timesteps).

1: out1← ConvCP1.forward(Lt)

2: pm,nc ← Softmax(out1)

return pm,nc

13



Figure 2.2: Image-like representation of P (aT |θi) ∀{θi ∈ Θ , |Θ| = 5} where
aT is the action observed at timestep T . The image-like patterns are starkly
different for change points vs no change point.
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Figure 2.3: Architecture of the CPD Network used in our experiments. The
choice of layer sizes are specific to our experiments and can be changed/resized
accordingly for other applications.
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Chapter 3

Experiments

3.1 Experimental Evaluation

I provide a detailed experimental evaluation of the algorithm in two do-

mains; the modified predator prey domain and a multi-agent collision avoid-

ance navigation setting. The first domain has types guided by the simple

A∗ navigation algorithm with very limited, discrete action space. The sec-

ond domain has a more complex ORCA collision avoidance algorithm with a

continuous action space, making the domain more realistic and natural. [9].

3.1.1 Setting 1 - Modified Predator Prey Domain

We modified the classic Predator Prey Domain to demonstrate a task

which requires tracking type switches and adapting swiftly.

3.1.1.1 Domain Description

The first experimental domain models the environment as a square grid

in which two agents (predators) are acting and n ∈ N preys are present. A

prey is stationary, i.e., can not change position on the grid during the task.

A predator however, can change position during the game by executing one

out of the following actions: U for moving up, D for moving down, R for

16



moving right, and L for moving left. Predators can also stay put by executing

the action N. At each timestep, both predators decide separately upon an

action they are interested in performing. A conflict can occur if both agents

chose actions that move them to the same position on the grid. In case of such

conflicts, ties are resolved randomly and the losing predator chooses a different

action. Otherwise, they simply proceed by performing their chosen actions.

We denote the amount of timesteps that the task is allowed to continue by

NMAX . Other than moving across the grid, the predator can capture a prey

by performing the C (for capture) action. This can be done only when

the predator neighbors the prey (no matter from which direction). Once an

agent performs a C action, it remains locked onto the target and can no longer

execute any other action, i.e., remains in its current position in a capturing

mode for the rest of the time left. If both agents perform the C action on

the same prey, the prey is captured. If the predators were able to capture one

of the preys, then the task terminates successfully. However, if a prey is not

captured within NMAX timesteps, the task is terminated as a failure. Figure

3.1 depicts an example grid configuration of our domain where n = 3. Finally,

we note that in our experiments, only one agent is an ad hoc agent trying to

track the other agents’ type. The other agent’s type is randomly chosen at the

beginning of simulation episode.

17



Figure 3.1: An example state in the modified predator prey domain with 3
preys (yellow squares) and 2 predators (blue circles). Here, the predators have
successfully finished the task by executing capture action on the same prey.

18



3.1.1.2 Agent Types

We consider the pre-planned predator agent’s type characterized by the

prey it currently is in pursuit of, i.e., its type is θi if it pursues prey number

i.1 At each timestep the agent calculates a path to its prey using the A∗

algorithm. It then assigns a high-probability (0.9), to the action suggested

by the path-planning algorithm and a low-probability (0.1 evenly distributed

over the rest) to all other valid actions. This distribution is passed through a

softmax() function to infuse randomness in actions. Finally, the agent samples

an action from this distribution and executes it if there are no conflicts with

other agents. Conflicts in actions are handled randomly at each timestep by

the simulation controller. The full algorithm for the predator agent’s type is

described in Algorithm 3.

Both pre-planned and ad hoc agents navigate to their target prey using

the A∗ algorithm.

If the adhoc agent doesn’t correctly infer the type of its teammate, the

simulation can result in failed termination because both agents perform the

capture action on different preys.

1The ad hoc agent does not have a type since its goal is to identify the other agent’s
type and to best cooperate with it, i.e., choose the prey it will pursuit based on the prey
the pre-planned agent chose.
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Algorithm 3 Template for Agent Types

Type θi
Output: (pa, a

t
i) = P (ati|H t

i , θi), a
t
i

1: Target← Objects[θi]

2: initialize the probability vector to 0s.

3: if Agent is a neighbor of Target then

4: Assign probability 1 to C - capture action;

5: break

6: else

7: Use A∗ to estimate path to Target

8: Assign probability 0.9 to first move from the path

9: Get all other valid moves

10: Split probability of 0.1 over all the valid moves ob-

tained from above

11: Perform softmax(pi) =
eα∗pi∑
eα∗pi

with temperature

α = 2 over non-zero probabilities pi to derive final

action probabilities.

12: end if

13: ati ← sample(pa)

14: return (pa, a
t
i)
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3.1.1.3 Bayesian Change Point Detection Algorithm

The widely used Bayesian model-based change point detection algo-

rithm was first presented by Fearnhead and Liu [12]. Their model assumes

time-series observations y1:n = (y1, y2, ..., yn) and a set of candidate models Q.

The goal is to infer the number of changepoints m and their MAP (Maximum

A-Posteriori) times c1, c2, ..., cm, where c0 = 0 and cm+1 = n (i.e., there ex-

ist m + 1 segments). The observations yci+1:ci+1
forming the ith segment are

assumed to be produced by the associated model qi ∈ Q with parameters θi.

The basic assumption in this model is that data after a change point

is independent of data prior to that change point. Thus, we can model the

change point positions as a Markov chain in which the transition probabilities

are defined by the time since the last change point in the following way:

Pr(ci + 1 = t|ci = s) = g(t− s) (3.1)

where g(x) is a probability distribution over time and G(x) is its cumulative

distribution function.

The model evidence for a model q and a given segment starting from a

time point s and ending at a time point t is defined by:

L(s, t, q) = Pr(ys+1:t|q) =

∫
Pr(ys+1:t|q,Θ)Pr(θ)dθ (3.2)

We will denote the event that a change point will occur at time j by ψj

and the event that given a change point at time j, the MAP choice of change

21



points has occurred prior to time-j by ωj. We can now use the following

notations:

Prt(j, q) = Pr(FCt = j, q, ωj, y1:t) (3.3)

PMAP
t = Pr(ψj, ωj, y1:t) (3.4)

Where FCt is the distribution over the position of the first change point

prior to time t which can be efficiently estimated using the standard Bayesian

filtering recursions and an on-line Viterbi algorithm [14].

A development of the above equation will result in:

Prt(j, q) = (1−G(t− j − 1))L(j, t, q)Pr(q)PMAP
j (3.5)

PMAP
t = max

j,q

[ g(t− j)
1−G(t− j − 1)

Prt(j, q)
]

(3.6)

Finally, the Viterbi path can be recovered by finding the j and q values

that maximize (3.6) at time t. We then can repeat the process again in order

to find the values which maximize (3.6) at time j or any time point before-

hand until reaching zero. The algorithm is fully on-line, but requires O(n2)

computation at each timestep.
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3.1.1.4 Results

In our experiments we simulate agents’ behaviors at every timestep.

The ad hoc agent runs Algorithm 2. The CNN in ConvCPD algorithm is

trained with 10,000 samples (batch size = 64, learning rate = 0.01, decay = 0.1,

optimizer = SGD) involving equal proportions of all classes. After passing the

matrix through the CNN, we retrieve the probabilities of all possible sequences

of types before and after the center-point in the matrix, i.e at time T − nt

2
.

Using these probabilities, we compute the location and nature of the change

point as the class with the maximum probability output by the CNN. The ad

hoc agent plans simply by moving to the prey that it infers as the target of the

other agents’ type. Since the task at hand is simple, this planning algorithm

works well.

Influence of nt on accuracy Table 3.1 displays the influence of nt (the

width of L) on both the change point detection accuracy and the mean squared

error (MSE) of change point time estimation. From looking at the table, one

can see that as nt increases, the accuracy of the detection increases and the

MSE decreases. This makes sense, since the more timesteps the agent has for

using as an input to the CNN, the more information it has on which to base

its prediction.
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nt = 20 nt = 16 nt = 14 nt = 10

Accuracy 88% 72% 53% 22%

MSE 1.2 2.4 3.5 4.2

Table 3.1: Change point detection accuracy and the mean squared error (MSE)
of change point time estimation for different values of nt.

Task performance in presence of CP For evaluating the overall improve-

ment in the teamwork performance where agents’ types are dynamic, we tested

the average number of timesteps it took the agents to successfully finish the

task where there are 6 preys on the grid, i.e., |Θ| = 6. Figure 3.2 depicts the

number of time-steps the team required to successfully complete the task us-

ing different change point detection algorithms both for the case where agents

are stationary (left) and dynamic (right). We note that for the dynamic case,

if the ad hoc agent knows the pre-planned agent’s type in any timestep, i.e.,

has perfect information, the number of timesteps needed for successfully com-

pleting the task, as can be seen from the figure, is expected to be the lowest

possible. Thus, we consider this case to be our lower bound.

As mentioned above, when using the Conv-CPD algorithm, the network

performs with highest accuracy when nt is 20. This is also observed from the

right graph appearing in the figure. As the value of nt decreases the number

of timesteps it takes the team to complete the task increases. Moreover, in

the case where nt = 14 or 10 it takes the team longer to complete the task

than it would have taken them to complete it in the case of no information,
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Figure 3.2: The number of timesteps required for completing the task using the
different change point detection algorithms for both stationary and dynamic
types.

i.e., without any awareness to the fact that agents are changing their types

throughout the task.2 If using the BCPD however, the number of timesteps

it takes the team to complete the task is the highest observed. This happens

because if for some reason, the last few timesteps assign high probability to

a type that is not the true type, and the ad hoc agent recently reset the

probabilities, then it would believe the actual type to be other than the right

one. As a result, the ad hoc agent will plan according to the wrong type and

move to the wrong prey, which will lead to a delay in completing the task.

Task performance in the absence of CP Finally, in many real life situ-

ations, agents may not know in advance whether their teammates will change

2In the no information case, the ad hoc agent uses CP-unaware reasoning for figuring
out the agent’s type.
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their type throughout the task or not. Therefore we want to make sure that

applying a change point detection algorithm even if the types are fixed will not

lead to falsely detecting of change points and decrease in performance. The

left graph in Figure 3.2 illustrates the number of timesteps it takes the team

to complete the task under the different algorithms when agents do not change

their types throughout the task. Here again, using ConvCPD with nt = 20

the team achieves the best results. In the case where nt = 16 it takes the team

a bit longer to finish but still no more than the case of no information. When

nt is 14 or 10, or when using the BCPD, however, the number of timesteps it

takes the team to complete the task is higher than the no information case.

Overall, our results indicate that with proper window length our novel CNN-

based CP-detection algorithm performs better than the existing alternatives

and can be used without any prior knowledge regarding whether agents’ types

are stationary or not.
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3.1.2 Setting 2 - Ad hoc Multi-Agent Navigation

This domain is inspired by work from [17], where the authors aim to

solve the problem of ad hoc navigation in multi-agent systems. In this set-

ting, each agent has a goal position to navigate to, and does so by employing

one of a subset of navigation algorithms. The paper considers two popular

navigation algorithms - Optimal Reciprocal Collision Avoidance (ORCA) [37],

Social Force Model [20] - and their variants. The combination of goal posi-

tion and navigation algorithm together define and agent’s type in this setting

while co-operation is enforced by rewarding the agents to reach their goal po-

sitions as soon as possible with the least number of collisions. This problem

is very similar to our ad hoc teamwork problem, and is even solved in with

the paradigm of differentiating type estimation and planning. For type esti-

mation, the authors use a slightly modified version of the Bayesian inference

in Algorithm 1. For planning, the authors use the Hindsight Optimization [16]

to pick a velocity at each time-step. Hindsight Optimization is a technique

to solve MDP type planning problems by determinizing transition functions

first, followed by solving these deterministic MDPs and then approximating

the current Q-Value using these solutions.

The authors test their methodology on different arrangements of agents’

beginning and target goal positions. The experiments show that the ad hoc

agent performs better than naively dodging obstacles or simply reacting to its

neighbors. We keep the assumption about ad hoc agent’s full observability of

other agents.
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3.1.2.1 Domain Description

For the sake of our experiments, we pick their Circle setting since most

other settings provide a very narrow set of indistinguishable types to chose

from. In this arrangement, agents start off at equally spaced interest points

on the circumference of a circle and navigate to goal of choice within the

interest points. Figure 3.3 illustrates this setting, with 32 interest points. For

the experiments, I fix the number of interest points to 6, with 5 non-adhoc

agents and 1 ad hoc agent. The task is said to be completed successfully if

each agent reaches a unique interest point with no two agents ending up at

the same interest point at the end of the run. This is possible if the adhoc

agent successfully reasons about the types of all other agents, identifies the

un-targeted interest point and navigates accordingly. If an agent changes its

type midway (by extension, the goal is also changed), the ad hoc agent must

successfully identify the switch and navigate to the new goal accordingly so it

doesn’t end up at an interest point already occupied by another agent.

The task performance is measured with the help of two metrics apart

from simple Success/Failure. The first metric is the total simulation run-time

which measures the group’s performance as a whole. Since sometimes group

delays could be caused by non ad-hoc agents, a second metric is used to judge

the performance of the ad hoc agent. This metric is simply the length of the

path the adhoc agent takes while navigating to the goal. If the ad hoc agent

had perfect information, it would take the shortest route, while any kind of

mistakes in inference increase the path length.

28



Figure 3.3: The Circle Setting
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3.1.2.2 Agent Types

Each non-adhoc agent uses ORCA [37] to navigate to its goal position.

ORCA is a local collision-avoidance navigation algorithm, that guarantees a

collision-free path independently without explicit communication with other

agents (assuming other agents use ORCA too). It does so by formulating the

collision avoidance problem in terms of velocity obstacles and solves a linear

program to find the velocity closest to the desired velocity avoiding velocity

obstacles as much as possible. ORCA works under the assumption that any

incoming agent takes half of the responsibility of avoiding pairwise collisions.

Note, however, that ORCA is a local navigation algorithm, which means

it is responsible solely for avoiding collisions in the very near future for each

time-step. The global navigation plan has to be derived with the help of a

separate global planner. The ORCA algorithm requires a preferred velocity as

a parameter at every time-step from the global planner. The preferred velocity

must be chosen such that the overall path results in reaching the desired goal.

Each agent’s type in our modified setting is solely decided by the goal

interest point, just like in the previous experimental section (3.1). The timing

and nature of type switching is similar to Experiment 1 - the type can be

switched at any time throughout the task, and any number of times within a

task.
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3.1.2.3 Ad Hoc Agent

The Ad Hoc agent can observe all of the agents with noisy sensors

reading position and velocity.

p̂ai ∼ N(pai , σ
2
p) (3.7)

v̂ai ∼ N(vai , σ
2
v) (3.8)

where pai , vai are the true position and velocity of agent i (ai) while

p̂ai , v̂ai are the observed position and velocity of ai by the ad hoc agent. σ2
p

and σ2
v denote the variance in position and velocity measurements respectively.

The ad hoc agent plans using the same Hindsight Optimization [17]

method as in the reference paper.

3.1.2.4 Results

The experimental configuration parameters are provided in table 3.2.

The data-set collection procedure and the network architecture are the

same as in Experiment 1 (Section 3.1.1). The only modification is in the way

the network is trained. Instead of training the network from scratch using the

data collected, we adopt a neural network distillation procedure, to learn from

a bigger network. For this purpose, we use the VGG16 image classification

network [32], which is a deep convolution neural network to classify natural

images into one of 1000 common object classes. The network has 13 convolu-

tional layers and 3 fully connected (FC) layers. The architecture is illustrated
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Property Value
Number of non ad hoc agents 5

Grid Size 100m x 100m
ORCA - Max Speed for the Agent 2 m/sec

ORCA - Time Step Length 0.5 sec
ORCA - Agent Radius 1m

Variance in position obsv. noise pai 2× AgentRadius
Variance in velocity obsv. noise vai 2× AgentMaxSpeed

Table 3.2: Values of agent properties set in the experiments

in 3.4. We fine-tune the network on the change-point detection data-set, and

then use the final layer’s outputs to train our CPD network 2.3. This way,

we make use of the representational ability of the VGG16 network to improve

accuracy of our smaller network.

To train the VGG16 network, the likelihood arrays were up-sampled

and resized to match the expected input size (224x224x3). A final fully con-

nected layer (FC9) was added on top of FC8 to decrease the number of output

class labels from 1000 to 30, since we only have 30 (Equation 2.2) possible type

change pairs. Only the last two fully connected layers were fine-tuned. Once

the training is completed, the last layer’s (FC9) outputs were extracted as tar-

gets for the ConvCPD network (2.3) using the exact same training procedure

as in the previous experiment.

I fixed the size of the time window (nt) to be 20 since that performed the

best in the previous experiments. Further, lower (nt)s are not very amenable

to up-sampling which is necessary to fine-tune the VGG16 network.
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Figure 3.4: Classic VGG16 Architecture

33



Accuracy Table 3.3 compares the accuracy of ConvCPD vs BCPD in this

setting.

ConvCPD BayesianCPD

Accuracy 95% 90%

MSE 1.5 3.5

Table 3.3: Comparison of change point detection accuracy and the mean
squared error (MSE) of change point time estimation.

As we can see, ConvCPD performs better than Bayesian CPD in terms

of accuracy.

Task performance in absence of CP To compare task performance, let

us first consider the case of stationary types. Figure 3.5 compares the average

time taken to finish the task when agents don’t switch types. The run time

is the lowest when the ad hoc agent doesn’t mistakenly wander around due to

false-positive inference of change points.
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Figure 3.5: Run Time for Stationary Types

Figure 3.6: Path Length for Stationary Types
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In this case, the No Information case performs the best, and the Con-

vCPD and BCPD trail closely behind. ConvCPD performs slightly better than

BCPD due to the improved accuracy in measurement of change-points.

The path length shows a similar trend in Figure 3.6. The path length is

again lowest in the case of No Information, with the CPD algorithms trailing

behind. This order is explained similarly to the above result: The ad-hoc

agent covers more distance while running a CPD detection algorithm due to

the occasional false-positive inference of change-points causing it to change

course.

Task performance in presence of CP In the second case, I consider task

performance in the presence of change points. I compare the No Information

case with ConvCPD, BCPD as well as the Perfect Information case. As ex-

pected, the Perfect Information performs best in both the run time and path

length (3.7,3.8). This performance ranking is expected since with perfect in-

formation, the agent can always take the shortest path thus completing the

task in the shortest time. Here too, ConvCPD performs slightly better than

BCPD for both metrics.
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Figure 3.7: Run Time for Non Stationary Types
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Figure 3.8: Path Length for Non Stationary Types

Comparing Experiment 2 to Experiment 1, it can be noticed that the

disparity in performance between BCPD and ConvCPD is reduced for Exper-

iment 2. This decrease in disparity could be explained by the fact that the

probability distributions for type definitions in Experiment 2 originate from

observational noise which is a simple normal distribution. BCPD is well-suited

to work on such models which shows in its performance gains. Despite this

advantage, ConvCPD still performs slightly better than BCPD.
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3.1.3 Summary of Experiments

The experimental domains introduce ad hoc team work tasks that re-

quire active detection of change-points and adapting quickly, as described in

our hypothesis. In these settings, the results verify that the proposed Con-

vCPD algorithm performs better than BCPD algorithm and could also be used

in absence of change points. Thus, the initial hypothesis that resetting pos-

teriors on correct detection of changepoints is verified by comparing methods

that accurately detect changepoints with the No Information case, which has

the worst performance.
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Chapter 4

Conclusion

4.1 Conclusions

This work considered an extended version of the ad hoc teamwork prob-

lem in which agents can change their behavior types through the task. I

approached the resulting problem by treating it as a change-point detection

problem and solved it efficiently by proposing a new change-point detection

algorithm based on convolutional neural networks. The proposed algorithm’s

efficacy over classical bayesian changepoint detection algorithms was verified

by experiments on a modified predator-prey domain,as well as a multi agent

social navigation setting. The experiments reveal that the algorithm improves

performance even when there are no changepoints and hence can be added as

an additional layer on current reasoning algorithms.

This work opens several interesting possibilities for future research. We

wish to investigate the problem of detecting changepoints in parameterized

types by the proposed ConvCPD, and hope to solve this problem in more

interesting domains/settings like the Pursuit Domain [2] and Half Field Offense

in robot soccer [19]. Further, we also wish to study how existing generic

planning algorithms could be improved to help agents handle the changes in

agent behaviors.
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