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Human-Aware Controllers for Human-Centered Robots
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Supervisor: Luis Sentis

For robots to successfully be deployed as human assistants in a variety of

applications, it is critical that the robots’ controllers and planners are designed with

the considerations of both the robots’ and humans’ abilities and needs. In space

applications, where energy is a finite and limiting resource in missions, it may prove

necessary to exploit the energy storing-component of series elastic actuators to meet

the efficiency needs, while operating in harsh and varied environments. In human-

occupied workplaces, robots can only provide the needed support to humans if the

robot controller can properly reason about and react to humans’ requirements and

capabilities. This thesis presents and assesses strategies to address these kinds of

scenarios.

In Chapter 2, we present a trajectory optimization scheme based on sequen-
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tial linear programming to leverage the energy-storing capabilities of series elastic

actuators for high-performance tasks. We discuss the current limitations in op-

timization strategies for series elastic actuated robots. One of the difficulties of

this planning problem is respecting all relevant, low-level actuator constraints and

handling system nonlinearities in a computationally efficient manner. Our simula-

tion and hardware experiments demonstrate the leveraging of compliance for faster

motions as compared to those that are achieved by the compliant systems’ rigid

counterparts.

Chapter 3 addresses the need for reactive synthesis to be employed to auto-

matically devise human-aware robot controllers for scenarios in which humans and

robots continuously collaborate. Through this approach, it is possible to synthesize

high-level control policies that are formally guaranteed to meet human requirements.

We present a case study in which a robot seeks to deliver work to a human so that

the human is productive, but not stressed by her work backlog. We demonstrate

the achievement of a human productivity-informed controller using a mobile ma-

nipulator robot that picks up and delivers work based on work backlog. One of the

challenges of this problem is devising human productivity models that are practical

and accurate. We explore a toy scenario in the hope that this research will introduce

methodologies that can be generalized for more practical cases.
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Chapter 1

Introduction

The potential benefits of future robotic assistants and caretakers are un-

bounded. However, these gains can only be maximized through low-level and high-

level planners and controllers that are aligned with their desired purposes, from

duties like strenuous, manual tasks to delivering work to humans at appropriate

times. This thesis explores two facets of robot operation: (1) generating optimal

trajectories to exploit the robot’s low-level, energy storing components, and (2) au-

tomatically synthesizing high-level robot controllers that are formally guaranteed to

meet a human’s productivity needs.

In Chapter 2, we consider that series elastic robots are best able to follow

trajectories that obey the limitations of their actuators, since they cannot instantly

change their joint forces. In fact, the performance of series elastic actuators can

surpass that of ideal force source actuators by storing and releasing energy. In this

chapter, we formulate the trajectory optimization problem for series elastic robots

in a novel way, based on sequential linear programming. Our framework is unique

in the separation of the actuator dynamics from the rest of the dynamics, and in the

use of a tunable pseudo-mass parameter that improves the discretization accuracy

of our approach. The actuator dynamics are truly linear, which allows them to be
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excluded from trust-region mechanics. This causes our algorithm to have similar run

times with and without the actuator dynamics. We demonstrate our optimization

algorithm by tuning high performance behaviors for a single-leg robot in simulation

and on hardware for a single degree-of-freedom actuator testbed. The results show

that compliance allows for faster motions and takes a similar amount of computation

time.

Chapter 3 focuses on the human-centered ingredient of robot operation. With

the primary objective of human-robot interaction being to support humans’ goals,

there exists a need to formally synthesize robot controllers that can provide the de-

sired service. Synthesis techniques have the benefit of providing formal guarantees

to meet specifications. There is potential to apply these techniques for devising

robot controllers whose specifications are coupled with human needs. This chapter

explores the use of formal methods to construct human-aware robot controllers to

support the productivity requirements of humans. We tackle these types of scenarios

via human workload-informed models and reactive synthesis. This strategy allows

us to synthesize controllers that fulfill formal specifications that are expressed as

linear temporal logic formulas. We present a case study in which we reason about

a work delivery and pickup task such that the robot increases worker productiv-

ity, but not stress induced by high work backlog. We demonstrate our controller

using the Toyota Human Support Robot (HSR), a mobile manipulator robot. The

results demonstrate the realization of a robust robot controller that is guaranteed

to properly reason and react in collaborative tasks with human partners.

1.0.1 Thesis Contributions

The contributions of this thesis are twofold:

1. A computationally efficient trajectory optimization scheme that respects all

low-level state and input constraints while leveraging the natural dynamics of

2



series elastic actuators.

2. An investigation on employing reactive synthesis to devise a human-aware

robot controller that supports a human and robot’s collaborative work.

Through exploring low-level, mechanical and high-level, behavioral considerations,

we make strides toward the ultimate goal of devising robots that fulfill human desires

and needs.
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Chapter 2

Exploiting the Natural

Dynamics of Series Elastic

Robots by Actuator-Centered

Sequential Linear Programming

2.1 Introduction

Since its inception [1], a primary drawback of series elastic actuation has been

the additional challenge for the control system. Human-centered robots commonly

make use of series elastic actuators (SEAs), which offer the benefits of compliance—

for safe interaction with humans—increased robustness, and force sensing [2]. The

compliant element is able to store and release energy, like human muscles, presenting

an opportunity for increased efficiency and agility as compared to rigid actuators

[3].1 Both feedback controllers and trajectory planners are faced with a more com-

1This chapter contains material from [4]. My main contributions include simulation development,
system identification execution, and hardware implementation and experimentation.
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plex challenge when interfacing with these systems, yet modern control systems for

human-centered robots (e.g., [5]) rely on a force-control planning abstraction which

specifies an unmeetable goal for the low level feedback controller and provides those

controllers with planned trajectories that do not respect their dynamic limitations.

Our work addresses some of these issues.

2.1.1 Related Works

Interest in modified series elastic actuators with clutches and variable stiffness

compliant elements has driven many groups to derive bang-bang style and cyclic

optimal behaviors to illustrate improved mechanical performance [6]. Few groups,

however, have investigated more general behaviors that allow for nonlinearities in

the system. In [7], a convex optimization problem is formulated to maximize joint

velocity by computing the switching times between rigid and compliant actuator

behavior via the use of a clutch, but the actuator dynamics are linear except at

switching times. One of the contributions of our work is the ability to handle the

nonlinearities that are introduced at all time steps through a nonlinear transmission,

while still leveraging compliance.

Iterative regulator-based optimal control has been successful in handling non-

linearities in these systems and achieving rapid motions in compliant robots, but

is restricted in capturing state and input constraints, e.g., transmission speed or

spring deflection limits. The iLQR indirect method has been modified to allow in-

put constraints [8], [9]—but not state constraints directly. In [9], iLQR is used in

combination with variable stiffness actuators to leverage the energy storing capa-

bility of the compliant element to throw a ball, but the motor position constraint

can only be captured indirectly through the input constraint. Inequality state con-

straints in [10] are reformulated as canonical input constraints, yet the number of

constraints possible with this strategy is at most the number of inputs. In contrast,

5



our work captures all linear state and input constraints, which are upheld by the

linear program.

A review of trajectory optimization techniques for series elastic walking pro-

vides insight into additional strategies that allow compliance while upholding con-

straints. Hybrid zero dynamics strategies have employed virtual, holonomic, and

actuator constraints while implementing nonlinear programming (NLP) [11], [12] to

minimize the energy consumption during each step. Another strategy, employed in

the COMAN robot, mimicked human center of mass trajectories and tuned stepping

frequency to best use the compliant elements [13]. Our work offers the benefit of

exploring problem structure at a lower level to efficiently handle nonlinearities and

leverage compliance. We do so via sequential linear optimization, which allows us

to leverage the speed of solving linear subproblems.

Spline-parameterized, nonlinear programming (NLP) and collocation ap-

proaches, based on general purpose large-scale NLP libraries, have been successfully

applied to series elastic robots. In [14], optimal walking trajectories are produced

via NLP to be consistent with compliant dynamics subject to all relevant constraints

with pre-defined contact transition times. [15] adds a collocation method to auto-

matically select contacts, to automatically generate multiple steps of walking, and

to jump, at the cost of approximating some actuator constraints. This approach

leverages powerful and highly general NLP libraries, however, these general solvers

result in long run-times on the order of an hour, even for problems that have roughly

the same number of trajectory parameters as ours2.

2.1.2 Sequential Linear Optimization

Linear optimization allows for the minimization of a linear cost function,

h(x), subject to m linear inequality constraints, g(x), and n linear equality con-

21,782 parameters in “less than an hour” [15] versus our 1,176 parameters in 28.5 seconds for a
two-link leg—iterating an LP 19 times.
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straints, r(x), related to the states and input constraints:

minimize
x

h(x)

subject to gi(x) ≤ bi, i = 1, . . . ,m.

ri(x) = ci, i = 1, . . . , n

where h(x), g(x), r(x), b, and c are scalars [16], [17]. As an extension, sequential

linear optimization allows for local optimization problems to be solved such that the

nonlinearities in a system can be considered [17]. A linear program can be used to

perform optimization on our nonlinear robot model by formulating a robot model

that is locally linear over a single time step. Sequential linear optimization can then

iteratively develop a trajectory for the time-varying linear system. The strategy

also offers the advantage of upholding all state and input constraints, which indirect

optimization methods can only approximate.

2.1.3 Overview

In this chapter, we propose a direct optimization algorithm which efficiently

considers the nonlinear effects of the transmission linkages, robot dynamics, input

and state constraints, and the energy storing capabilities of the series elastic ele-

ments. The algorithm uses sequential linear optimization to minimize a final velocity

objective (with a 1-norm input penalty) to demonstrate its ability to produce high

performance behaviors while satisfying system constraints. We formulate the prob-

lem as input selection for a time-varying discrete time linear system approximation

that is updated iteratively. We formulate the system dynamics to connect the actu-

ator space to the joint space. One of the key, novel features of our approach is the

use of a fictitious pseudo-mass to improve discretization accuracy for the actuator

component at large time steps. We find the pseudo-mass’ value must be close to the

reflected robot inertia to minimize simulation error and eigenvalue approximation
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error. A pseudo-mass of 0 kg results in unacceptable discretization inaccuracy. By

exploiting problem structure via separating the linear and nonlinear components

of our model, we typically achieve convergence within 20 iterations for a two-link

system. Convergence is achieved more quickly when we test our approach on hard-

ware for a single degree-of-freedom testbed. Our experiments demonstrate a greater

degree of dynamic consistency and the leveraging of compliance when the spring

dynamics are considered for trajectory generation.

2.2 Modeling

2.2.1 Actuator Dynamics

Our model considers internal actuator dynamics, which are common for con-

trol design, but rare for trajectory design due to computational complexity. We

follow the advice of [18] and [19], and connect three second-order systems through

a differential to develop an unlumped model of the SEA.

The actuator model, shown in Fig. 2.1, comprises the spring system; the

motor system with input current, u; and the load system. The states considered

are spring displacement, δ; spring velocity, δ̇; motor displacement, y; and motor

velocity, ẏ. The variables z and ż correspond to total actuator length and velocity,

respectively. The motor subsystem is reflected to prismatic motion through the

transmission—hence, all parameters of the subsystems are in linear units. The

three systems are connected through a three-way mechanical differential, D, which

enforces the relationship:

z = δ + y. (2.1)

The dynamics of the three subsystems are:

Msδ̈ + βsδ̇ + kδ = −f, (2.2)
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Figure 2.1: Internal dynamics of the SEA for the three-mass, differential constraint
model. While there are no fluids in the physical SEA system, a fluid differential is
used as a metaphor for the real mechanical differential, to easily visualize that the
back forces are equal and that the motions of the spring and motor subsystems are
in series. A pseudo-mass term, Mp, is introduced to allow discretization with longer
time steps.

(ML +Mp)z̈ + βLż = f − (F −Mpz̈), (2.3)

Mmÿ + βmẏ = kmu− f. (2.4)

Ms, ML, and Mm are the masses of the spring, load, and motor systems,

respectively; βs, βL, and βm are these systems’ respective damping coefficients; k is

the spring constant; and km is the reflected motor constant. The second input, F ,

is the force output from the actuator, which is used to link with the robot dynamics

and the nonlinearities in the system. Mp is a fictitious pseudo-mass, which will be

used to tune the eigenvalues of the linear actuator system before discretization, as

discussed in Section 2.3. We define F ′ as:

F ′ , F −Mpz̈. (2.5)

The variable f is equal to the back forces from the differential and, equiva-

lently, the Lagrange multiplier which enforces the differential constraint. Substitu-

tion for f reveals that this model is ultimately fourth order:
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Eoẋ = Aox+Bo,uu+Bo,FF
′, (2.6)

where state vector x ,
[
δ δ̇ y ẏ

]T
and

Eo ,


1 0 0 0

0 Ms +ML +Mp 0 ML +Mp

0 0 1 0

0 ML +Mp 0 Mm +ML +Mp



Ao ,


0 1 0 0

−k −(βs + βL) 0 −βL
0 0 0 1

0 −βL 0 −(βL + βm)



Bo,u ,
[
0 0 0 km

]T
, Bo,F ,

[
0 −1 0 −1

]T
.

Rearranging (2.6),

ẋ = A∗x+B∗,uu+B∗,FF
′, (2.7)

where

A∗ , E
−1
0 A0, B∗,u , E

−1
0 Bo,u, and

B∗,F , E
−1
0 B0,F .

From the construction of A0, it is clear that the eigenvalues of A∗ will vary

with Mp. As we proceed, we will discuss the application of this formulation for the

general case of p joints. Our state vector will be extended to:

x = [xT1 , x
T
2 , . . . , x

T
p ]T , (2.8)
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where each xi captures the four states described in (2.6) for their respective actuator

system. Equation (2.6) is extended (using the Kronecker product ⊗) to a p-link

system with:

Eo,p = Ip ⊗ Eo, Ao,p = Ip ⊗Ao, (2.9)

Bo,u,p = Ip ⊗Bo,u, and Bo,F,p = Ip ⊗Bo,F , (2.10)

where Ip is the pxp identity matrix. Equation (2.7) can then be reformulated using

(2.9) and (2.10) to obtain A1, B1,u, and B1,F for p joints:

ẋ = A1x+B1,uu+B1,FF
′. (2.11)

2.2.2 Robot Dynamics

The force F connects the actuator to the robot dynamics. In general, for a

multi-link system, the dynamics are:

M(q)q̈ + C(q, q̇) +G(q) = τ = L(q)TF, (2.12)

where M , C, and G represent inertia, Coriolis and centrifugal, and gravitational

forces, respectively, and q is the generalized joint angle vector.

The angle-dependent moment arm between the actuator and the joint, L(q)

abbreviated L, serves as the Jacobian between the joint space and the actuator space:

Lq̇ = ż. We solve for F ′ by projecting it into the actuator-position–actuator-force

space and manipulating (2.12):

F ′ = F −Mpz̈ = (L−TM(q)L−1 −Mp)z̈ + b(q, q̇), (2.13)

where

b(q, q̇) , L−T (C(q, q̇) +G(q)−M(q)L−1L̇q̇). (2.14)
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This is an expression for the impedance of the robot at the {ż, F ′} port.

2.2.3 Discretization

To prepare for discrete time u optimization, the state space model is dis-

cretized into N time steps of length ∆T . By the continuous state space model in

(2.11), acceleration at the actuator output can be computed as:

z̈ = S(A1x+B1

 u
F ′

), (2.15)

where B1 is the concatenation of B1,u and B1,F . This is actuator admittance at

the {ż, F ′} port. S is formulated to capture the acceleration terms for the p-link

system:

S = Ip ⊗
[
0 1 0 1

]
. (2.16)

F ′ is expressed in terms of the states by substituting (2.15) into (2.13):

F ′ =[I − (L−TM(q)L−1 −Mp)SB1,F ]−1[b(q, q̇)+

+ (L−TM(q)L−1 −Mp)(SA1x+ SB1,uu)].
(2.17)

We discretize the linear actuator admittance model under the zero-order hold as-

sumption for both u and F ′. The discrete state space model is then:

xn+1 = Axn +B

un
F ′n

 , (2.18)

where

A , eA1∆T , B ,
∫ ∆T

0
eA1(∆T−τ)B1dτ. (2.19)

We combine discrete time admittance and impedance at the {ż, F ′} interface

by grouping terms which are linear in x and u. The discretized (time-varying)
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update equation is:

xn+1 = Alin,nxn +Blin,nun + biasn, (2.20)

where Alin and Blin capture the linear dynamics associated with the actuator states

and input current, respectively, and bias captures the nonlinear robot impedance,

including gravity, Coriolis effects, and nonlinear transmissions. The Mp parameter

is used to minimize the error introduced by discretizing the actuator admittance in

the absence of the reflected inertia of the robot links. The x and u vectors at each

time step are concatenated to form the trajectory matrices X , [x1, x2, ..., xN ] and

U , [u1, u2, ..., uN−1], respectively. This locally-linear model forms the foundation

from which our algorithm is developed.

2.3 Iterative Linear Programming

For trajectory optimization of a p-link system, our approach follows a strat-

egy that culminates in a linear programming subproblem. Our local optimization

approach requires a baseline trajectory, Zbase, the concatenation of zbase over all

time steps, to initialize the nonlinear parts of the dynamics. A slow trajectory or

a static position both serve as good choices. There is no need for a similar base-

line trajectory for the actuator states due to our exploitation of their linear problem

structure. The Zbase trajectory allows us to compute the time-varying matrices used

in (2.17) to compute F ′. We can then compute the linearization components, Alin,

Blin, and bias, for each time step (effectively saving our solver from eliminating the

F ′ variable itself).

The linear problem structure can then be exploited. New displacement and

velocity trajectories for the spring and motor subsystems are computed via a lin-

ear program and are captured in the optimal trajectory, X∗. The optimal control

parameters over all time steps, captured in U∗, are also produced. The resulting
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Z trajectory becomes the new Zbase, and X∗ is used to compute the new F ′, Alin,

Blin, and bias matrices for the next iteration. Trust region constraints will keep the

next Z trajectory close to this updated Zbase trajectory. The algorithm continues to

run until the 2-norm of the difference between the current and previous trajectories

stops changing.

A key benefit of our approach is that all relevant actuator state and input

constraints can be included in the formulation. The constraints are associated with

the upper and lower bounds of the allowable spring deflections, δ, joint limits, ac-

tuator ballscrew velocity, ẏ, and input currents, u. The parameter ∆z defines the

trust region, which can be used to aid convergence of the iteration scheme. We

note that the dimension of this trust region is small relative to the full dimension of

X—again due to separation of the linear and nonlinear dynamics. The final state

can be subject to partial end point constraints. Our linear subproblem minimizes a

problem-specific, linear cost function, h(X,U), which is a function of, and is subject

to linear constraints on, the discretized states and inputs:

minimize
X,U,Uabs

h(X,U) (2.21)

subject to dynamics: (2.20) ∀ n ∈ N/N

a trust region:

|zi,n − zi,n,base| ≤ ∆z ∀ i ∈ P, n ∈ N

state and input constraints:

|δi,n| ≤ δ ∀ i ∈ P, n ∈ N

zmin,i ≤ zi,n ≤ zmax,i ∀ i ∈ P, n ∈ N

|ẏi,n| ≤ ẏ ∀ i ∈ P, n ∈ N

|ui,n| ≤ u ∀ i ∈ P, n ∈ N/N
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and problem-specific constraints, in two our studies:

x1 = xinit., zN = zfin.

|udev,i,n| ≤ uabs,i,n ∀ i ∈ P, n ∈ N/N

and in our single-leg simulation only:

Jcom x velocityżN = 0

Φi,n ≥ 0 ∀ i ∈ 4, n ∈ N/N

where |a| ≤ b is shorthand for two linear inequalities, −b ≤ a ≤ b; ∀ n ∈ N means

n = 1, . . . , N ; ∀ i ∈ P means i = 1, . . . , p; and / means omitting an element from the

set. The parameter Φ refers to the foot contact constraints, which will be discussed

in Section 2.4.2. The variables udev and uabs are used to minimize deviations from

an equilibrium input trajectory, as discussed in Section 2.4.3. The specific cost

functions used in our studies and problem-specific constraints are described further

in the Simulation and Experiments sections.

2.3.1 Algorithm Tuning and Robustness

To achieve convergence, we choose ∆z to limit planning to the region where

our linearized dynamics are not too inaccurate. Our novel approach is to select Mp

so that the fastest eigenvalue over the entire trajectory (which corresponds to the

spring oscillation mode in the systems we studied) of Alin and A1 approximates the

fastest eigenvalue of the continuous system, ensuring an accurate approximation of

the system dynamics. When Mp = 0, the spring dynamics settle faster than one

time step and cannot be leveraged.

Each iteration of our algorithm relies on the optimal trajectory from the

previous iteration, X∗j−1, to generate F ′, Alin, Blin, bias, and X∗j . Hence, without

attention to robustness, an infeasible solution will lead to algorithmic failure. We

use Algorithm 1 to resolve this issue. Essentially, if the program becomes infeasible,
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Algorithm 1: Trajectory Feasibility Check

1 if Status == ‘Feasible’ then
2 Xlast success input = X∗j−1

3 Xlast success output = X∗j
4 X∗j = Xlast success output

5 else
6 X∗j = 0.5 ∗ (Xlast success input + X∗j )

7 end

we reduce the step size to maintain problem feasibility in order to handle the more

nonlinear regions of the trajectory space.

2.4 Simulation

2.4.1 ApptronikTM Draco-Inspired System

The formulation in the previous section is applied to the two-link Draco

robot (Fig. 2.2) in simulation. The Draco humanoid robot leg prototype is driven by

viscoelastic actuators at its ankle and knee joints. Because the viscoelastic actuators

used in the Draco system are very stiff, approximately 8e6 N/m, these elements offer

minimal energy-storing capabilities. For this study, we explore the advantages of

implementing softer springs in this system for a high-performance task.

The state space model in (2.20) is used with p = 2. The two actuators

have equivalent spring, motor, and load dynamics. The Draco leg, excluding the

actuation linkages, is essentially a two-link manipulator. The process to develop the

dynamic equations of the robot to include the actuator states follows that described

in Section 2.2. The variables F ′1 and F ′2 are obtained from Lagrangian dynamics with

M(q) ∈ R2x2, and C(q, q̈), G(q) ∈ R2. Due to space limitations, the coefficients of

M(q), C(q, q̇), and G(q) for this two-link robot can be found in [20] and the code is

available in my public repository [21].
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Figure 2.2: (a) Draco leg prototype. Our simulation-only experiments are modeled
after this robot, with significantly reduced spring rates, performing the liftoff phase
of a jump. (b) Schematics emphasize the nonlinear transmissions between actuator
length, z, and joint angle, q, for the ankle and knee. These nonlinear transmissions
motivate our choice to represent the robot impedance in actuator-length–actuator-
force space rather than the standard joint-angle–joint-torque space.

To use (2.17), the moment arms, L1(q1) and L2(q2), of the ankle and knee

joints, respectively, must be considered as:

L ,

L1(q1) 0

0 L2(q2)

 . (2.22)

We chose to demonstrate our algorithm for the goal of maximizing velocity at

the center of mass (COM) of the robot, to obtain an optimal trajectory for a jumping

motion. The parameters used for the simulation were guided by system identification

of our lab’s SEA and the parameters of the Draco leg. Select parameters are included
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in Table 2.1. In the table, the parameters I1 and I2, m1 and m2, and l1 and l2 equal

the moments of inertia, masses, and lengths of the lower and upper legs, respectively.

Table 2.1: Dynamics

MS (kg) 1.7
kS (N/m) 250k
βS (Ns/m) 0
Mm (kg) 293

βm (Ns/m) 1680
ML (kg) 0
Mp (kg) 580

βL (Ns/m) 0
I1 (kg-m2) 0.077
I2 (kg-m2) 0.050

m1(kg) 3.77
m2 (kg) 15
l1 (m) 0.5
l2 (m) 0.5

Table 2.2: Transmissions
(Fig. 2.2.b)

a1 (m) 0.21
b1 (m) 0.04
c1 (m) 0.02
ζ1 (rad) .464
a2 (m) 0.2
b2 (m) 0.05
c2 (m) 0.04
d (m) 0.04
e (m) 0.03
f (m) 0.03
g (m) 0.01

ζ2 (rad) .524

Table 2.3: Constraints

δ (m) 0.012
zmin,1 (m) .1700
zmin,2 (m) .1563
zmax,1 (m) .2351
zmax,2 (m) .2304
ẏ (m/s) 0.3
u (A) 15

∆z (m) 0.1
q1N (rad) 1.96
q2N (rad) 5.30

N 85
∆T (s) .0095

2.4.2 Ground Contacts

Ground contact wrenches are considered in the Draco model in the styles

of [22]3, [23]. Point contacts with static Coulomb friction, with the coefficient of

friction, µ = 0.8, are applied: one at the front of the foot and one at the heel. Friction

cones are formulated at each contact point using the basis vectors b1 =
[
µ 1

]T
and b2 =

[
−µ 1

]T
. The positive force intensity parameters Φ1, Φ2, Φ3, and Φ4

are the basis vector multipliers, with two of these force intensities associated with

each end of the foot, as shown in Fig. 2.3. Our linear program poses as equality

constraints that the contact wrenches must satisfy Newton’s second law in the x, y,

and rotational directions. The force intensities must also be greater than or equal

3In our 2D simulations, this style of linear parameterization is not an approximation of the true
friction cone, but it is in 3D space.
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Figure 2.3: The simulated robot with point contacts at the front (left) and back
(right) of the foot.

to zero until the robot jumps, as indicated in Section 2.3. These constraints imply

a zero moment point condition [22].

2.4.3 Velocity Maximization for Jumping

In this study, the cost function to be minimized expresses the goal to maxi-

mize the upward y-velocity of the robot COM at the final time, V ∗ , Jcom y velocityżN ,

where this Jacobian is known a priori due to our constrained final position, zfin.. The

simulation mimics the configuration shown in Fig. 2.2. We also strive to avoid un-

necessary deviations from the motor current trajectory which keeps the robot at

equilibrium with its springs, Ubaseline. (See Appendix A for more details.) We

amend the cost function (to be minimized) to include the 1-norm of deviation from

the baseline control signal, Udev = U−Ubaseline. However, to keep the cost function

linear, we create the variable matrix Uabs to represent |Udev|, as shown in (2.21).

We have also added a slight preference towards solutions with small force intensities:
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h(X,U) =− Jcom y velocityżN + α
∑
i∈P

∑
n∈N/N

uabs,i,n+

+ γ
∑
i∈4

∑
n∈N/N

Φi,n,
(2.23)

where α equals 1e−5 and γ equals 1e−8. This cost function is linear, supporting our

problem structure. Considering (2.21), Φ is also an optimization variable in this

problem.

For our simulation, the initial condition is at equilibrium with the two springs,

which drives the formulation of Zbase. (See Appendix A for more details.) The initial

and final conditions capture that the leg position starts and ends at the same angular

configurations, q1N and q2N . The final constraint is that the x-component of velocity

at the COM is equal to zero at the final time.

The sequential linear optimization problem is solved using the Matlab CVX

library [24] with the Gurobi solver. A time period of 0.798 s is considered. The

algorithm converges in 19 iterations, j = 19, within a tolerance of 0.001 for ||X∗j −

X∗j−1||2. Fig. 2.4 demonstrates exponential convergence of our iteration scheme.

The corresponding behavior is shown in Fig. 2.5.a-2.5.c. An optimal value of 1.92

m/s upward velocity is achieved. One will notice spring oscillations, demonstrating

the use of the two springs to store and release energy. Draco bends down and springs

upward, following a jumping trajectory.

E
rr

o
r

Iteration
0 4 8 12 16 20

10−4

10−2

100

Figure 2.4: With the 25th iteration trajectory from the compliant jumping study as
a baseline, the results suggest that the error decays exponentially.
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Figure 2.5: (a) Spring deflection trajectories for the compliant leg’s optimal behav-
ior. (b) The corresponding optimal u’s to produce the optimal trajectory, which
operate at the input limits. (c) The z trajectories produced over 20 iterations to
produce the jumping behavior, demonstrating convergence.

This problem can also be formulated with the assumption of rigid actuators

to allow for a direct comparison between the optimized trajectories for the rigid and

compliant cases. Specifically, (2.6), (2.9), and (2.10) are used without considering

the spring subsystem. The cost function in (2.23) is used for the rigid and compliant

cases, and the resulting optimal motions are compared. Considering the same initial

heights of the robots’ COMs, the compliant leg’s COM reaches a height that is 36%

higher than that of its rigid counterpart. Fig. 2.6 shows the associated Matlab

simulation with a comparison of the achieved COM heights. Fig. 2.7 shows that the
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0.86 m

0.81 m

Figure 2.6: The rigid robot, left, and compliant robot, right (with the springs indi-
cated in pink), after they jump and return to the ground. The COMs of the two
robots are illustrated as black triangles. The two COM initial heights are both 0.67
m when the robots lift into the air, and the maximum heights of the compliant and
rigid configuration COMs are 0.86 m and 0.81 m, respectively, which are marked
with red lines.

optimal velocity in the compliant configuration, 1.92 m/s, is 16% greater than that

of the the rigid configuration, 1.65 m/s. For the rigid robot, the ball screw limits

are not reached, but its motion is still constrained by acceleration limits, damping,

and ground contact constraints. These results demonstrate the gains that can be

achieved from leveraging the dynamics of the springs.

Our optimization program for the rigid system converges in 25 iterations,

as compared to 19 iterations in the compliant simulation. Table 2.4 shows the

breakdown of average computation time per iteration to calculate F ′, Alin, Blin,

bias, and the wrench components, and the time spent in the Gurobi optimizer.

These results demonstrate that consideration of compliance introduces only slightly

increased computational costs in our method.
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Comparison of Upward Velocities
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Figure 2.7: This comparison between the upward velocity components of the optimal
trajectories for the rigid and compliant systems shows that the final velocity of the
compliant system is 1.2 times that of the rigid system.

Table 2.4: Average Time per Iteration for Algorithm Components and Total Simu-
lation Time (s)

Configuration Linearization Optimization Total Time

Compliant 0.077 1.32 28.5
Rigid 0.072 1.14 32.1

2.4.4 Zero Input Behavior

To validate simulation accuracy, we ensured that energy was conserved through-

out a zero input simulation. A test was conducted in which the system was released

from rest from a nearly vertical position. The motors were off and no current was

sent to the system. Compared to the jumping studies, the system was more heavily

influenced by the changing transmission as the links fell downward due to gravity.

As shown in Fig. 2.8, the algorithm converged quickly, in 12 iterations, even in this

highly nonlinear case, thereby demonstrating its success in handling nonlinearities

in the system.

To investigate energy conservation, a time period of 0.60 seconds is considered

with ∆T = 1e−4 s to allow comparison to the numerically-difficult Mp = 0 case.

A pseudo-mass value, Mp = 580 kg (reflected inertia from the robot space to the
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actuator space through the nonlinear transmission), results in 0.55% total energy

fluctuation during falling, whereas Mp = 0 results in 2.73%. With the time step

used in the jumping trajectory generation, ∆T = 0.0095 s, energy varies by 1.79%

with the reasonable pseudo-mass. As Mp approaches 0, the robot does not even

fall, which reflects a loss of important dynamics in the discretization process with

this larger time step. At Mp = 20 kg and this same time step, energy fluctuates by

46%. These outcomes emphasize the importance of the Mp parameter in designing

a reasonably discretized model.
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Figure 2.8: The z trajectories produced over 15 iterations (Mp = 580 kg and ∆T =
.0095 s), showing convergence for the system’s zero input behavior.

2.4.5 Pseudo-Mass Selection

The spring oscillation eigenvalue of the actuator system is influenced by the

reflected link inertia, and can exceed the sampling rate (and therefore suffer from

aliasing when discretized) in the absence of a tuned pseudo-mass parameter. Mp is

set to 580 kg for the two actuators based on closeness to the largest eigenvalue in

the expected operational range.
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Figure 2.9: The natural frequency of A1 (linear time-invariant actuator dynamics
with pseudo-mass) varies with Mp, and we select an Mp value where the frequency
aligns with that of the nonlinear, continuous dynamics at 35 rad/s.

Fig. 2.9 illustrates the importance of selecting a reasonably-tuned Mp value.

The ‘Continuous’ eigenvalues, which are independent of Mp, represent the full dy-

namics of the nonlinear system. With a tuned value of Mp, the full dynamics ap-

proximation used for optimization (Alin) will align closely with the actual dynamics.

The figure demonstrates that the penalty for choosing an Mp value too small, or ne-

glecting it entirely, is greater than for picking a value that is larger than 580 kg. This

is because, if Mp were equal to zero, the actuator model’s spring dynamics would

alias when discretized. If Mp approached infinity, this would equate to a model

with infinite output impedance, which introduces error, but is a common modeling

assumption for SEAs. Since the time step, ∆T , and associated sampling frequency

used to discretize the system in Section 2.2.1 must be significantly greater than the

largest eigenvalue of the continuous system to avoid aliasing, the pseudo-mass mod-

ification is essential to allowing large time-steps, small linear program sizes, and fast

run-times.
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2.5 Algorithm Tuning

We also experimented with providing our algorithm with a better-informed

nominal trajectory. Specifically, we used the optimal trajectory of the rigid system

as the nominal trajectory for the compliant leg. With the same tolerance (0.001),

the algorithm converges in 17 iterations rather than 19. This result supports only

a small efficiency gain from using rigid system trajectory optimization as a warm

start heuristic for actuator-centric trajectory optimization. We expect that in prac-

tice, actuator-less kinematic trajectory planning will be a critical first step even if

actuator-less trajectory optimization is not a useful warm-start.

Fig. 2.10 shows the results of modifying the input penalization parameter,

α, as defined in (2.23). The results show the expected decrease in optimal velocity

after reaching a threshold value, as well as success in algorithm convergence for

various tuned cost functions.

V
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)

α

10−10

0.5

1
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2

10−5 100

Jumping Study

Figure 2.10: Our algorithm converges as α is tuned, demonstrating the limits on
optimal upward COM velocity, V ∗, as the penalty increases.

The performance of our approach depends strongly on the subproblem solver.

While CVX in Matlab offers several solvers, we found that using a solver specifically

suited for linear programming, Gurobi, was needed to extend our approach to larger

time scales.
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Figure 2.11: The Taurus testbed, with an SEA whose spring is softer than Draco’s
viscoelastic elements by an order of magnitude. For our experiment, a 5 lb weight
is attached to the actuator arm.

2.6 Experiments

The findings from simulation were applied for validation on the single degree-

of-freedom Apptronik Taurus testbed with the P170 Orion SEA (Fig. 2.11). The

state space model in (2.20) was used with p = 1. Our trajectory optimization scheme

relies on a well-identified model, so that the control system can depend heavily on

the feed-forward, open loop command for high-speed tasks. System identification

was performed using a least squares approach by fitting the parameters in (2.6) to

the system’s response to white noise and chirp signal current inputs. The identified

parameter values are outlined in Table 2.5.

The goal of the experiments was to maximize final joint velocity at 0.52

seconds. This corresponds to a negative final actuator velocity, since L < 0 for this

system. The cost function to be minimized is:

h(X,U) = żN + σ
∑

n∈N/N

uabs,i,n, (2.24)

where σ equals 1e−8. In addition to our feedforward current command, we imple-

mented a simple P controller, feeding back motor position. For increased stability we
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Table 2.5: P170 Identified Parameters

MS (kg) 1
kS (N/m) 698600
βS (Ns/m) 500
Mm (kg) 250

βm (Ns/m) 5885
ML (kg) 0.227
Mp (kg) 220

βL (Ns/m) 0

Table 2.6: P170 Constraints

δ (m) 0.01
zmin (m) .0911
zmax (m) .1389
ẏ (m/s) 0.3
u (A) 3

∆z (m) 0.1
qN (rad) 1.57
zN (m) 0.11597

N 105
∆T (s) .005

controlled motor position, rather than joint position, in order to control a collocated

system from the control input [25]. Because our configuration involves feedback, it

is important for safety to ensure that conservative current limits are used in the

optimization scheme, and that the software used for implementation upholds the

hardware’s actual upper limits. In this experiment an optimal trajectory was pro-

duced with a maximum allowable current of 3 A, but the motor saturation limit was

8 A. Constraints for optimization are shown in Table 2.6. A smaller time step was

used in this optimization scheme to support the convergence of the specific problem.

For one experiment, the optimal trajectory is devised with spring dynamics

considered, and for comparison, an optimal trajectory is produced while ignoring

spring states. Trajectory generation is first performed in simulation using CVXPY

[26] (to explore available solvers), to obtain the feedforward current command and

desired trajectory. The difference in computational costs for the compliant and rigid

systems are negligible in this case: four iterations and six seconds with compliance

considered versus five iterations and six seconds without compliance.

To select a reasonable pseudo-mass4, we plotted the maximum eigenvalues

of the continuous system, and the maximum eigenvalue of A1 for several distinct

Mp values. We chose Mp = 220 kg based on the alignment of the largest eigenvalue

4Approximating reflected inertia of the arm w.r.t. actuator displacement.
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Figure 2.12: Tuning pseudo-mass. (a) Maximum eigenvalue frequency for true arm-
actuator system (Continuous) and various approximations (A1) for the actuator
alone with varying pseudo-mass (Mp). The arm points down at 0 rad. Changing
eigenvalue frequency for the true system is due to angle-dependent reflected inertia.
The choice of 220 kg is relatively accurate in the operational region centered around
1.57 rad. (b) Simulation error of discrete-time models used for trajectory optimiza-
tion as a function of pseudo-mass, for a feedforward trajectory in the operational
region, with a fixed time step. Average squared error relative to the trajectory of the
true model. The low pseudo-mass example has aliasing errors. High pseudo-mass
errors exist, but are not as extreme.

over a range of likely arm configurations, as seen in Fig. 2.12.a. To quantify the

error between the continuous dynamics and the approximated dynamics with a

particular pseudo-mass, we obtained the Z trajectories for the continuous, true

dynamics, Zc, and the approximate, linearized dynamics, Zlin, for a pre-defined

input current trajectory in the expected operating region. The error associated

with our pseudo-mass selection can then be expressed by the mean squared error of

the Zlin trajectory, σ2
z , as seen in Fig. 2.12.b.

Fig. 2.13 shows the results of the experiments. To compare the expected

and actual behaviors, the position states of the simulated and experimental data

sets are filtered using a second order Butterworth filter with a cutoff frequency of

30 Hz.

29



15.0 15.3 15.6

(a)

-2

0

2

Spring Deflection (mm)

(d) (e)
Input Current (A)Joint Velocity (rad/s)

Time (s)Time (s) Time (s)

Time (s)
15.0 15.3 15.6

0

4

-4

11.1

11.3

15.0 15.3 15.6

11.5

11.7
(b)

Motor Position (cm)
(c)

15.615.0 15.3
1.5

1.6

1.7

Joint Position (rad)

15.0 15.3 15.6
Time (s)

0

6

-6

0

1

2

15.0 15.3 15.6
Time (s)

(f)
Spring Deflection (mm)

1.0

1.2

1.4

1.6

15.615.0 15.3
Time (s)

(h)
Joint Position (rad)

(i)
Joint Velocity (rad/s)

Time (s)
15.0 15.3 15.6

0

4

-4

-8

(j)
Input Current (A)

15.0 15.3 15.6
Time (s)

4

8

-4

0

11.6

12.0

12.4

12.8

15.615.0 15.3
Time (s)

(g)
Motor Position (cm)

Figure 2.13: (a)-(e) show the simulated (red) and actual (green) optimal behav-
ior of the P170 actuator when spring dynamics are considered. The high-quality
tracking in (a)-(e) support that the system has been well identified. (f)-(j) show
the expected and actual behaviors of the actuator when spring dynamics are not
considered. These results demonstrate dynamic inconsistencies in tracking when the
spring subsystem is neglected in planning. The experimental data are shifted by 5
ms to account for time delay. Fifteen seconds are used to interpolate to the starting
position, and the optimal motion begins at 15 s.
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Table 2.7 summarizes the actual and ideal results. In both experiments, the

actuator is able to start and end at the desired actuator position, .11597 m, with

negligible error. With compliance modeled, the optimal trajectory is oscillatory in

order to store and release energy, while the optimal trajectory for the rigid coun-

terpart is a down-up motion. While there is 0.06% error in the final velocity when

compliance is considered, there is 8.21% error in the final velocity when the system

is considered rigid. Fig. 2.13 (e) and (j) show that the feedforward current aligns

well with the actual required current when spring dynamics are considered, while

there are more deviations from nominal when the system is considered rigid. When

compliance is modeled, the ideal, final optimal velocity is 51% greater than that

achieved with the rigid model. These results demonstrate the benefit of modeling

compliance for dynamically feasible motions, and the gains of leveraging compliance

for high-performance tasks.

Table 2.7: Experiment Results

Configuration Actual zN (m) Ideal żN (m/s) Actual żN (m/s)

Compliant 0.11570 0.07671 0.07666
Rigid 0.11644 0.05094 0.04676

2.7 Discussion

Actuator dynamics are often neglected from robot motion planning due to

computational complexity, and our proposed method for trajectory optimization of-

fers several advantages in this regard. First, directly capturing all relevant state

and input constraints is an essential feature for a dynamically consistent trajectory.

Our new robot–actuator interface, modified by pseudo-mass Mp, allows us to ex-

ploit the structural difference between a linear actuator admittance and a nonlinear

robot impedance—which is novel and efficient. Through our formulation, we can

increase the states of the system to include actuator dynamics without paying the
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computational cost typically associated with adding states to nonlinear optimization

problems. Finally, we have demonstrated the gains in executing a high-performance

task by leveraging compliance in the linear optimization subproblem. In the future,

we are interested in how our actuator model could add on to any standard robot

impedance model, including the very general constrained floating base model.
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Chapter 3

Toward Achieving Formal

Guarantees for Human-Aware

Controllers in Human-Robot

Interactions

3.1 Introduction

As robots become more embedded into our everyday lives and begin to col-

laborate with humans, a large potential emerges to boost human productivity by

eliminating unnecessary human chores in workplaces [27]. This potential can only

be realized by robot control systems that process and react to human needs.1 A

survey of human-aware robot navigation shows that many researchers have stud-

ied motion and task plan generation for socially-aware robots, for activities ranging

1This chapter contains material from [28]. My main contributions include model and software
development for controller synthesis and high-level controller implementation for the hardware
experiments.
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from operating in human-occupied areas to engaging in social cues [29]. However,

these methods often lack robustness to disturbances and/or formal guarantees of

goal achievement. Formal methods have been leveraged in robotic applications, but

there is a growing need to apply these techniques to robots that continuously and

directly interact with humans. Our work takes a step toward addressing this need.

Reactive synthesis has been applied in contexts where disturbances are un-

avoidable, such as the DARPA Robotics Challenge [30] and other challenging setups

[31], to provide formal guarantees for specification realizability. There is a gap in

robotics and formal method literature with respect to applying these methods to

direct human-robot interaction (HRI). In reactive synthesis problems, humans are

often framed as randomly or periodically interfering with the robot’s goal [31], [32].

In [33], a reactive synthesis problem is formulated to generate a policy for a robot

to reach a goal position in a simulated kitchen scenario, but the only human inter-

action involves avoiding two moving chefs. We seek to be robust to a larger variety

of disturbances, and to generate policies in which humans and robots continuously

interact.

There is much interest in the HRI community for robot controllers to consider

human factors to boost human productivity [34], [35]. Several research groups are

exploring formal verification methods for robots to interactively support humans

[36], but few groups have incorporated human factors into these methods. In [37], the

authors verify whether a robot assistant can reach commanded positions and deliver

medicine. In addition to these types of interactions, we also explore additional

knowledge of human requirements to improve collaborative task execution. Ref.

[38] takes a step in this direction: A cognitive model of trust is incorporated into a

stochastic multi-player game and probabilistic rational temporal logic specifications

are proposed, but probabilistic model checking is left as future work. In [39], social

norms for a hand-off task are represented as transition systems, and model checking
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is performed to verify successful task completion. In contrast to this work, our

framework uses reactive synthesis to prevent specification violations, while being

robust to uncertainties.

Although it is impossible to generalize human behavior, works like [40], [41]

still demonstrate the insight to be gained by considering human models for decision-

making. For example, in [42], hypothetical human models that consider human pro-

ficiency and stress are employed to synthesize paths for semi-autonomous operation

of drones with human operators. Similarly, we focus on studying the implications of

incorporating human models. Our approach provides the flexibility to update the

human model for effective and personalized human-robot interactions.

The goal of this chapter is to demonstrate a proof-of-concept for devising

control policies via reactive synthesis that consider and improve human working

behavior. In doing so, we generate a controller that is robust to disturbances and

provides formal guarantees for specification satisfaction in an HRI scenario. The

main contribution of our work is a study on reactive synthesis that incorporates

human factors for human-aware robot cooperative tasks. We consider an HRI case

study in which we construct a model of human workers in a workplace as transition

systems to devise a robot controller to deliver and pick up work while considering

the human’s needs. To this end, we formalize system specifications using linear

temporal logic. We use reactive synthesis to automatically construct a controller

that meets all system specifications and a human’s productivity needs. We then

demonstrate the reactive controller on the Toyota HSR (Fig. 3.1). Ultimately, we

explore the question of how robots can make humans more productive by limiting

unnecessary human tasks.

3.2 Preliminaries

Our notation employs the formalisms of [43], which are summarized below:
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Figure 3.1: (a) The Toyota Human Support Robot, which we use as our experimental
platform for human-informed work delivery, picking up completed work. (b) The
HSR dropping off completed work at the Inventory Station.

Definition 1: A transition system, TS, is a tuple TS = (S,Act,→, I, AP,L)

where S is a set of states, Act is a set of actions, →⊆ S × Act × S is a transition

relation, I ⊆ S is a set of initial states, AP is a set of (Boolean) atomic propositions,

and L : S 7→ 2AP is a labeling function.

Definition 2: An infinite path fragment, π = s0s1s2..., for si ∈ S, is an

infinite sequence of states such that si+1 ∈ {s′i ∈ S : ∃α ∈ Act | si
α−→ s′i} ∀i ≥ 0. An

infinite path fragment is a path if the initial state, s0 ∈ I. The set of paths in TS

is denoted as Paths(TS).

Definition 3: The trace of π, trace(π) = L(s0)L(s1)L(s2)..., is a sequence

of sets of atomic propositions that are true in the states along the path. The set of

traces of TS is defined by Traces(TS) = {trace(π) : π ∈ Paths(TS)}

Definition 4: A linear-time (LT) property, P , over atomic propositions in

AP , is a set of infinite sequences over 2AP . TS satisfies P , represented by TS |= P ,

iff Traces(TS) ⊆ P .

Definition 5: Linear-temporal logic (LTL) is a formal language to repre-

sent LT properties. The operators used in this chapter to construct LT formulas
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are conjunction (∧), disjunction (∨), next (©), eventually (♦), globally (�), impli-

cation (→), and negation (¬). Let Φ be an LTL formula over AP . TS satisfies Φ,

represented by TS |= Φ, iff π |= Φ for all π ∈ Paths(TS).

3.3 Work Delivery with Human Backlog Model

This case study examines a robot operating in a work environment and is

inspired by [44]. The robot drops off new work (“deliverables”) at the Human

Workstation, picks up completed work from the Human Workstation, and drops

the completed work off at the Inventory Station. The robot’s contributions thereby

eliminate unnecessary movement by the human to pick up and drop off work. The

goal is for the robot to operate with an awareness of the human’s backlog, defined

as the amount of uncompleted work at the Human Workstation. Assessing human

backlog is an ongoing area of research [45]. We take backlog to be an indicator of

stress levels, as too little work can cause boredom and too much work can result in

higher levels of frustration [46]. We seek to synthesize a controller that guarantees,

despite system disturbances, that the human always has work to complete and is

not over-stressed by work demands.

3.3.1 Modeling

Human Model

In this scenario, the human is always present in the Human Workstation.

(Work breaks are addressed in Sec. 3.4.) The human’s backlog, BL, can range

from 0% to 100%, relative to the maximum amount of uncompleted work that

can be present in the workstation. When the robot is not present in the Human

Workstation, the human works whenenever there is uncompleted work. We consider

a simple, discrete linear BL model that is a function of ∆T time steps that each

last td seconds:
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BL(∆T ) = BLinit − γ∆T, ∆T ∈ {0, 1, 2, ...}, (3.1)

where BLinit is the initial amount of backlog at the Human Workstation, and γ is

the work reduction rate per td seconds. The value of BLinit is updated each time

the robot comes to the Human Workstation to deliver work.

We now formalize the way BL may change between time steps. There is

uncertainty in how much BL decreases during each state transition, as the reduction

value depends on how much time the robot requires to transition between states in

the real-world execution. The worker’s BL can decrease by integer multiples of

γ each time step. We assume that BL may decrease by up to 5γ, based on the

maximum amount of time the robot requires for its most challenging manipulation

task. We consider two possibilities for how BL may shrink. When the robot is

traveling between locations in the workspace, we define the formula v1 such that the

following holds:

©v1 ,
2∨

k=0

(BL− kγ). (3.2)

It may require more time for the robot to drop off completed work at the

Inventory Station than to travel between locations, and so we allow for greater BL

reductions between time steps for this task:

©v2 ,
5∨

k=0

(BL− kγ). (3.3)

The human transitions from the “work” state to the “wait” state if the human

has completed all of her work and the robot has not yet arrived to deliver more work.

The human transitions to the “refill” state when the robot is present in the Human

Workstation and delivers more work. The robot being in the Human Workstation is

equivalent to the robot state, RS, being equal to N. When the robot arrives at the

Human Workstation, BL grows by δ. The human then returns to the working state
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©BL = 0% ∧ ¬ (© RS = N) / v2

© RS = N / v3

©BL > 0% ∧ ¬ (© RS = N) / v2

© RS = N / v3

¬ (© RS = N) / v4

¬ (© RS = N) / v1

© RS = N / v4

Figure 3.2: Human Model with three states. Transitions are triggered by guards, g,
and there are corresponding outputs, y. In this transition system, edges are labeled
in a g / y format. In this system, the outputs are described by v2, v3, and v4.

when the robot departs from the workstation. As seen in Fig. 3.2, there are guards

based on BL and robot behaviors which determine allowable state transitions. The

BL variable is tracked, and grows and shrinks according to v1, v2, v3, and v4. The

formula v3 captures BL growth when the robot arrives at the Human Workstation:

©v3 , BL+ δ, (3.4)

and v4 captures when BL does not change between time steps:

©v4 , BL. (3.5)

Fig. 3.2 demonstrates the possible non-determinism in how BL changes with

each time step, and planning for this uncertainty is discussed further in Sec. 3.3.2.
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Robot Model

The robot moves in a 1D grid. There are N+1 grid spaces, with the grid

spaces labeled as 0 through N. Space 0 corresponds to the Inventory Station, and

(3.3) is valid in this location when the robot drops off completed work. As discussed

in the previous section, space N is the Human Workstation. The robot’s actions are

GoSj, which indicate that the robot is currently moving to position j ∈ 0,1,...,N in

the grid. The robot is free to move within this grid, except for when there is an

obstacle present in a grid space blocking a path. We define the atomic proposition,

“an obstacle is present in State j,” as Oj ∀j = 1,2,...,N-1. The transition system is

shown in Fig. 3.3.

0start 1

23

¬g1 / GoS1

(g1 ∨ ¬g1) / GoS0

(g2 ∨ ¬g2) / GoS0

(g2 ∨ ¬g2) / GoS1

¬g2 / GoS2 ¬g1 / GoS1

(g1 ∨ ¬g1) / GoS2

(g1 ∨ ¬g1) / GoS3

¬g2 / GoS2

g2 / GoS3

Figure 3.3: Robot Model with N = 3. State 0 is the Inventory Station and State
3 is the Human Workstation. Each edge of the TS is labeled with a guard and
an action. The presence of an obstruction in one of the robot’s adjacent positions
can restrict the robot’s next action. The guards express whether or not there is an
obstacle blocking the robot from proceeding to a neighboring state, and we define
g1 , O1 and g2 , O2
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Full HRI System Model

A transition system is then formulated to capture that the robot drops off

deliverables and picks up completed work at the Human Workstation, and drops off

completed work at the Inventory Station. The robot also operates with an awareness

of the human’s work backlog, which will allow for controller synthesis that considers

BL. To combine and synchronize the human and robot systems, the two separate

human and robot models were used to create states which represent both the human

and robot at each time step. The transition system, shown in Fig. 3.4, is expressed

as TSHRI = (S1, Act1,→, I1, AP1, L1) where:

• S1 = {jwork, jwait, Nrefill} ∀ j = 0,1,...,N-1

• Act1 = { GoSj } ∀ j = 0,1,...,N

• I1 = {0work}

• L1(0work) = L1(0wait) = Robot is at Inventory Station.

• L1(Nrefill) = Robot is at Human Workstation.

3.3.2 Reactive Synthesis

It is necessary to incorporate robustness to uncertainty in our approach in

order for the robot to pick up completed work, drop off deliverables, and reason

about the human’s BL in a real environment. We consider a two-player game in

which the robot’s actions are controllable. Obstacle interference, success of drop-

ping off completed work, and the backlog reduction rate act as the uncontrollable

environment. The robot and the environment take turns executing actions, and we

seek to automatically synthesize a robot controller strategy that allows a system

specification to be realizable despite any antagonistic actions executed by the envi-

ronment. To meet the system requirements while handling external disturbances,
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we formulate this scenario as a reactive synthesis problem in which plant actions are

controllable and environment actions are uncontrollable. We seek to find a strategy

that will uphold a specification no matter how the environment selects its actions

for all time [47].
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GoS2/v4

GoS3/v3

GoS2/v4

GoS2/v1

GoS3/v4

Figure 3.4: HRI Work Delivery and Pickup Transition System with N = 3. The
edges of the transition system are labeled first by guards (g3, g4), then by actions,
and lastly by pertinent output variables (v1, v2, v3, v4). The guards which determine
whether the human is working or waiting are expressed by g3 ,©BL > 0% and g4 ,
©BL = 0%. As illustrated in Fig. 3.3, the robot cannot move to a neighboring state
if it contains an obstacle, but we do not show this guard due to space limitations.

To automatically synthesize a controller, we must formalize the specifications

that describe the possible environment behaviors. It is possible in a work environ-
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ment that people may pass through states Sd = {jwork, jwait} ∀j : 0 < j < N

and obstruct the robot from proceeding into an adjacent position in the workspace.

We impose as a safety specification on the robot that it will not proceed toward a

position that contains an obstacle. We also assume that if the human sees the robot

moving to a workspace position, she will not intentionally move to block the robot’s

desired workspace position:

Φd1 ,©RS = j →©¬Oj ∀j = 1,2,..N-1. (3.6)

In our implementation, if there is a human occupying one of the robot’s

neighboring positions, the robot will ask her not to block the workspace. Thus, we

assume that the person will move out of the way by the next time step:

Φd2 , Oj →©¬Oj ∀j = 1,2,..N-1. (3.7)

We also account for the possibility that the robot may not successfully drop

off completed work in the Inventory Station on its first try. At all robot states, the

robot either is or is not manipulating completed work (“hand full” , HF is true or

false). When RS = 0, if the robot is currently manipulating completed work, it will

be successful (S) or unsuccessful (¬S) at dropping off the completed work in that

time step. In order to prevent the environment from interfering indefinitely with a

successful dropoff, we assume that no more than two consecutive tries are required

to be successful. The associated specifications are written as follows:

Φd3 , (¬(RS = 0) ∧©RS = 0 ∧HF )→©(HF ∧ tries = 1 ∧ (¬S ∨ S)), (3.8)

Φd4 , (RS = 0 ∧HF ∧ ¬S∧ tries = 1)→©(HF ∧ tries = 2 ∧ S), and (3.9)

Φd5 , (RS = 0 ∧HF ∧ S)→©(¬HF ). (3.10)

As discussed in Sec. 3.3.1, when the robot is not dropping off deliverables,
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there is uncertainty in how much BL will decrease as the robot transition between

states in the real environment. This uncertainty will impact the value of BL at the

next time step when the human is working. To express the specifications for BL

reduction, we define a formula that describes the situations in which the robot will

attempt to drop off completed work:

g5 ,
[
{¬(RS = 0) ∧©RS = 0} ∨ (tries = 1 ∧ ¬S)

]
∧HF. (3.11)

We now distinguish between the robot moving within the workspace and

performing the dropoff behavior. For workspace motions, we define

Φd6 , ¬(©RS = N) ∧ ¬g5 ∧ ¬wait→©v1, (3.12)

where v1 is as defined in (3.2). During dropoff at the Inventory Station the following

specification holds:

Φd7 , g5 ∧ ¬wait→©v2, (3.13)

where v2 is as defined in (3.3). We desire that the robot always eventually drops

off completed work at the Inventory Station. Unless BL decreases, there would be

no guarantee that the robot would always eventually have completed work to pick

up from the human and drop off at the Inverntory Station. We add the assumption

that if BL stays constant in two consecutive time steps, then BL will decrease in

the next time step:

Φd8 , ¬(©RS = N) ∧ v4 ∧ ¬wait→© (

5∨
k=1

(BL− kγ)), (3.14)

where v4 is as defined in (3.5). We synchronize the real robot’s motion with the BL

model so that this assumption is valid in our implementation.
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3.3.3 Controller Synthesis

The reactive synthesis problem was implemented using Slugs [48] with N = 3.

(We consider four states for our proof-of-concept hardware implementation in Sec.

3.4, but the underlying techniques of our approach can handle a much larger number

of states.) By formulating the problem as a two-player game, Slugs can construct a

reactive robot controller that upholds our specification of interest within TSHRI .

In the simulation, the robot starts at State 0, γ = 3.3%, and δ = 50%. In or-

der to strike a balance between state space fineness and computational efficiency, BL

is represented in Slugs as 0,1,2,...,30, which corresponds to 0%,3.3%,6.7%,...,100%.

Slugs was used to synthesize a controller that always satisfies the specification that

the human’s backlog never reaches 0% and never exceeds 87%. In this manner, the

human always has work to complete, but the robot does not seek to stress her. It

is also desired that the robot will return to the Inventory Station infinitely often to

drop off completed work. Since BL can vary from 0 to 30 in Slugs, we express the

system specification as:

Φ1 = (�BL ≤ 26) ∧ (�BL > 0) ∧�♦(RS = 0 ∧HF ) (3.15)

We provide as an initial condition that BLinit is between 30% and 86.7%

(9 ≤ BLinit ≤ 26), as we found that outside of this BLinit range, (3.15) is not

realizable. We synthesize a strategy using a quad-core Intel Core i7 processor and

12GB of RAM. Slugs computes in less than five seconds that the specification is

realizable, and devises a high-level controller that guarantees that the robot will

react properly to its environment while upholding the system specification. The

controller is in the form of a decision tree, with nodes that capture all possible

combinations of robot and environment behaviors, and the possible transitions from

each node. Based on the robot’s present state and the environment’s behavior, the

decision tree determines the appropriate next robot action. We now have a policy
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that can be leveraged for online decision-making.

3.4 Experiments

3.4.1 Toyota Human Support Robot

The Toyota HSR, which comprises an omni-directional base and a 5-DOF

single manipulator, was adopted as the hardware platform for experimentation.

The HSR uses two different computers: The main PC is for primary perception,

navigation, and manipulation tasks. An Alienware laptop (Intel Core i7-7820HK,

GTX 1080) is used for running OpenPose2, a real-time convolution neural network

based algorithm used for human detection. All robot sub-programs communicate

with each other via the Robot Operating System (ROS) interface. An overview of

the HSR skills used for controller implementation is provided below.

Perception

A laser range scanner is used on both sides of the mobile base to detect

whether there is an obstacle within approximately one meter of the base. To simulate

a more realistic working environment, the robot also perceives if there is a human

in the workstation or if she has left to take a break. A depth camera for RGB-D

video streaming is located on the HSR’s head. Recognition of whether or not there

is a human in the workstation, based on the RBG-D data, is executed by OpenPose.

We created a ROS action so that the HSR turns its head toward the workstation

every five seconds to check for worker presence.

2https://github.com/CMU-Perceptual-Computing-Lab/openpose
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Navigation

All basic navigation functions, including wheel-joint control and avoiding

obstacles, are included in the ROS navigation stack. It is assumed that given a

goal position, the robot can safely navigate to this location, while avoiding dynamic

obstacles via a re-planning scheme.

Manipulation

The robot’s manipulator is used to pick up completed work from the human,

and to drop off completed work at the Inventory Station. For pickup, the robot

moves its end effector near to the human’s right hand so that the human can hand

over her work. To distinguish between S and ¬S during dropoff, as discussed in

Sec. 3.3.2, we use a force sensor mounted at the end effector to judge whether or

not the object successfully made contact with the counter.

3.4.2 Controller Implementation

The decision tree produced by Slugs serves as an online look-up table during

robot operation. After transitioning to the next commanded state, the HSR will

update its knowledge of the environment (mainly, any obstacles, if a dropoff action

was successful, and the human’s current BL). We used SMACH3 to implement a

finite-state machine framework that bridges the gap between the high-level action

policy from Slugs and the robot’s lower-level sequential task executors.

Once the Slugs planner determines the next desired action, the robot’s re-

quired skills are executed sequentially by the sub-task controller that is associated

with a particular SMACH state. In other words, the sub-task control layer is re-

sponsible for decomposing the desired Slugs action into the sequential, lower-level

required skills. For example, when the robot has completed work, the action GoS0

3http://wiki.ros.org/smach
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Decision Tree
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Controller

Robot
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Figure 3.5: The communication protocols between the the robot and the sub-task
(SMACH) and high-level (Slugs) controllers. The systems communicate by repeating
(a)-(h), where: (a) Track and command sequential tasks; (b) Perceive, navigate, and
manipulate; (c) Sequential tasks complete; (d) Request next action; (e) Subscribe
to ROS environment topics; (f) Check for human at workstation. Update RS and
BL when worker is present; (g) Select next action from look-up table. (h) Respond
with next action.

first contains navigation (move to counter at State 0), then manipulation (drop off

object), and finally navigation (move back from counter) skills. The sequence of

behaviors thus requires recognition of when the previous sub-task succeeds. All

robot sub-tasks are programmed with the structure of ROS actions in order to be

flexible to sub-task execution times. Once a high-level action is completed, or the

first dropoff try is unsuccessful, SMACH requests the next desired action from the

Slugs planner. The system architecture is shown in Fig. 3.5.

3.4.3 Results

Through experimentation, we sought to verify that our automatically-synthesized,

high-level controller properly reacts to its environment while maintaining (3.15).

Fig. 3.6 shows the layout of our experimental setup and the positions of States 0

through 3. Referring to the BL model in (3.1), we take td = 10s.
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Robot at State 2

Obstacle at State1

Inventory (State 0)

Workstation (State 3)

Figure 3.6: Experimental setup with four positions in the workspace, corresponding
to RS = 0 (Inventory Station), 1, 2, and 3 (Human Workstation). The HSR trans-
ports deliverables in its satchel and carries completed work in its manipulator back
to the Inventory Station. A human obstructs its path, causing it to remain in State
2 until the next time step, by which time the human will have departed.

To test the robustness of the controller, we allowed the HSR to operate

autonomously for 30 minutes. During this time, the robot reacted to obstacles, in-

teracted with the worker at the workstation, and returned to the Inventory Station

several times to drop off completed work, as shown in Fig 3.7. While we did not

account for the human taking a break in our reactive synthesis problem, we incor-

porated this consideration for our experiments. If the HSR does not sense a human

at the workstation, the HSR waits until she reappears, and then proceeds with its

actions according to the Slugs planner.

It is also of interest to investigate the high-level controller behavior for dif-

fering BLinit values. Fig. 3.8 shows the results with BLinit = 30% (BLinit = 9
30

in Slugs).4 We also highlight whether the robot is manipulating completed work,

and the implementation of the work dropoff logic at State 0. Fig. 3.9 shows the

4This experiment is shown at https://youtu.be/My6WIiZZCsM.
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Figure 3.7: Robustness test with BLinit = 40%. Human obstacles that appear in
States 1 and 2 and depart by the next time step are marked by black x’s. The
worker moves out of the workspace for three minutes, which is highlighted in pink.
The robot waits for the human to return at RS = 2, but does not update RS and
the environment variables in the Slugs planner until the human returns to work.
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Figure 3.8: Robot behavior with BLinit = 30%. When RS = 1 and HF at 1.75
minutes, the SMACH sub-task controller tracks the amount of time the robot takes
to travel from State 1 to State 0 and execute the dropoff sub-tasks, during which
time, tries = 1. If this time exceeds 35 seconds, ¬S is communicated to the high-
level controller. The Slugs planner updates the tries value to be equal to 2, and
commands that the robot continue to execute its dropoff sub-tasks in the next time
step. After the second try, the robot successfully drops off the work, and the robot’s
manipulator is empty again.
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Figure 3.9: Robot behavior with BLinit = 86.7%. The circular markers indicate the
times at which the sub-task controller calls the high-level decision tree to request
the next robot action. Excluding its initial movement to and from State 1, the
robot elects to wait at State 0 until it moves to deliver work, even when there are
no obstacles present.
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robot’s behavior with BLinit = 86.7% (BLinit = 26
30 in Slugs). We note that the

robot first moves to State 1, moves back to State 0, and remains at this position

until it proceeds to the workstation to provide deliverables. The initial movement to

and from State 1 upholds a winning strategy in the two-player game, but provides

no useful output. Additional specifications could be imposed in the reactive syn-

thesis problem to incorporate robot energy efficiency as a consideration to eliminate

unnecessary robot movements.

3.5 Discussion

In all three experiments, the robot successfully maintains human BL needs

and can autonomously reason about and react to its environment. In the situations

considered, the BL value reaches 86.7%, but does not exceed 87%, as desired. It

is interesting to note that the controller strategies drive the robot to wait in State

0 until it moves to deliver new work. The robot does not wait in States 1 or 2 for

extended periods of time. This behavior is sufficient to satisfy system specifications,

but optimizing where the robot waits could be needed in other work environments.

For the experimental setup considered, we have verified that our proposed controller

offers robustness and flexibility for a real-time, human-centered application.

There are several interesting areas remaining for future work. The human

backlog model in the presented case study is a toy model used for proof-of-concept.

In the future, we are interested to incorporate verified, dynamic human models

based on psychology and cognitive theory, to consider how factors such as fatigue,

training, motivation, and stress impact backlog. We are also interested to study

how we may extend our work to produce not only feasible motions, but also optimal

motions. For now, our results support the feasibility of designing robots that are

formally guaranteed to reduce the human share of work activities in the execution

of everyday tasks.
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Chapter 4

Conclusions

This work examines two critical considerations in devising human-centered

robots: producing optimal trajectories that are dynamically consistent with low-

level robot components, and synthesizing high-level, human-aware robot controllers.

It is interesting to note that in one study, we concentrate on generating optimal

motions, while in the other we focus on the realizability of robot controllers, without

any optimization considerations. The differing approaches both give insight on the

capabilities of robot trajectory planners and controllers. What these two studies

have in common is the consideration of limitations that need to be taken into account

for robot planning: in one case, actuator state and input constraints; in the other

case, the productivity abilities of humans.

In Chapter 2 we explore how to efficiently incorporate SEA dynamics into

our planning scheme, based on sequential linear optimization. Our experimental

results demonstrate the benefit of our approach, which leverages actuator compliance

in executing high speed motions. As actuators cannot function as perfect torque

sources, planners that have the knowledge of the actuators’ more-detailed abilities

will allow them to produce achievable trajectories which can leverage the natural

dynamics endowed by their low-level components.
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Human factors are often neglected in formal methods when devising robot

controllers, at the expense of having no formal guarantees that the robot can ac-

tually realize a human-centered goal. In Chapter 3, we leverage reactive synthesis

to devise a controller that supports a human’s and a robot’s collaborative goal. By

formulating a work delivery scenario as a two-player game, we automatically syn-

thesize a controller that considers a human’s work needs and supports robustness to

system disturbances. Experimental validation on the HSR hardware demonstrates

that the high-level controller strategy enables the robot to operate autonomously

and robustly, while considering the activities and productivity of the human worker.

Not only does robot planning need to consider the mechanical abilities of the

low-level robotic components, but also the abilities of the humans that the robots

seek to assist. This thesis demonstrates the potential to devise efficient, robust, fit-

for-purpose planners and controllers that promote the overarching goal of devising

robots that that can collaborate with and support humans in the execution of a

variety of tasks.
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Appendix A

Equilibrium Nominal Trajectory

We seek to identify the equilibrium actuator states, xeq and the corresponding

input currents, ueq, for the Draco P1 leg. In this case there are 10 unknowns: eight

actuator states and two input currents. When the system is in equilibrium, the Alin,

Blin, and bias matrices do not change.

We must linearize about the initial desired configuration of the Draco robot

in order to obtain the Alin, Blin, and bias terms. With the initial desired joint

configurations known, we can calculated the corresponding initial actuator lengths,

z1,init and z2,init. We can then formulate a nominal actuator state vector, xnom =[
0 0 z1,init 0 0 0 z2,init 0

]T
While xnom, which is used for linearization, corresponds to the correct initial

robot configuration, we must find the initial condition that is at equilibrium with

the robot’s springs. Considering (2.20), at equilibrium, xeq = xn+1 = xn, and the

following holds:

xeq = Alinxeq +Blinueq + bias. (A.1)

Simplifying this equation gives:

(I −A)xeq = Blinueq + bias (A.2)
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This expression provides eight equations. Two more equations are needed so

that there are as many equations as unknowns. We leverage that the initial actuator

lengths are known and use the equations that enforce that δinit + yinit = zinit:

Szxeq =

z1,init

z2,init

T (A.3)

where the selector matrix, Sz, captures the displacement terms for the 2-link system:

Sz = Ip ⊗
[
1 0 1 0

]
. (A.4)

We can now formulate a nonsingular matrix to solve for xeq and ueq:

(I −Alin) −Blin
Sz 0

xeq
ueq

 , Aequ
xeq
ueq

 =


biaslin

z1,init

z2,init

 (A.5)

xeq
ueq

 = A−1
equ


biaslin

z1,init

z2,init

 (A.6)

We can now formulate the initial trajectory, X, that is used for linearization

during the first iteration of our strategy. The actuator states of X at each time step

are equal to xeq. Additionally, the values of ueq can be used to form the baseline

control signal at each time step for Ubaseline. Ubaseline can then be used in the cost

function to penalize input currents that deviate from this signal.
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