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ABSTRACT 
 
 

Author:  Mallory Willett 
 
Title:  A Computational Approach to Cultural Resource Management: Autodetecting 

Archaeological Features in Satellite Imagery with Convolutional Neural Networks 
 
Supervising Professor: Alex Walthall, Ph.D.  
 
 
 My thesis proposes the use of convolutional neural networks for automatic detection of 
archaeological features in satellite imagery. Cultural heritage sites require constant management, 
and archaeologists are increasingly turning to satellite imagery to identify and monitor sites from 
afar. Given the huge amount of visual information present in these images and the amount of 
time it takes to do this job with the human eye, I propose a different approach for identifying and 
mapping archaeological features: using computer vision, specifically an algorithm called a 
convolutional neural network, or CNN. By training a CNN on a labeled set of hundreds of the 
same class of archaeological features in a landscape, the CNN can learn to identify new instances 
of the same class of features in previously unseen satellite imagery.  This approach reduces the 
amount of labor required by analog approaches to feature extraction or traditional survey, and 
allows archaeologists to more swiftly identify and therefore protect areas of cultural significance. 
My research on CNNs in other fields and inroads made on a proof-of-concept CNN to identify 
archaeological features demonstrate the feasibility of using this type of algorithm to 
automatically detect archaeological features in satellite imagery. 
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INTRODUCTION 
 

 My relationship with archaeology began by accident. During my sophomore year, I built 

a code for a project in machine learning club using the neural networks API KERAS, named 

after the Greek word for horn, κέρας, a word first found in Homer’s Odyssey 

(https://keras.io/#why-this-name-keras). Elated by the connection between the two fields I found 

most interesting—Classics and Computer Science—I brought the coincidence to my then Greek 

professor. It was my second semester pursuing my Classics major, and I had not yet realized that 

there were people who maintained a professional interest in both Classics and Computer Science. 

A year later, I would read a book of the Odyssey in its original Greek and, finding the word 

κέρας, smile at how I had grown as a student with greater proficiency in both fields. This time, I 

showed the name of this API to my professor, and he, learning that I had coding experience, 

responded by asking if I would like to work on the database for his excavation that summer. My 

relationship with archaeology may have begun by accident, but it has continued on purpose. The 

following summer, I excavated on Crete with the Azoria project, and the next, in Athens with the 

American School’s Agora Excavations. During each intervening school year, I continued to 

pursue my studies in both Classics and Computer Science, thinking about the ways that I could 

apply the skills I was developing in the realm of computer science to the archaeology that I was 

doing in the summers. So, I thought and I thought some more about how I might connect these 

two fields that I loved, and gradually my nebulous ideas for how I could synthesize my two 

interests found their footing, leading to the thesis you are reading now.  

 My primary driving force for this project was to marry computer science and archaeology 

and, ultimately, to create a thesis that was not reflective or summative but forward-looking and 

immediately useful. There is plenty of work in digital humanities, and digital classics in 
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particular, musing on the state of the quickly-digitizing field calling for serious reflection on 

what we want archaeology to look like in the decades to come (Bill Caraher’s work on “slow 

archaeology” comes to mind). And this is all valuable and important work – the nature of 

archaeology can change when we introduce digital tools into the field. A less-than-careful 

approach to digitizing the practice of archaeology, including how we record our data, how we 

think about the things we dig up and how we experience the very act of excavating, can seep into 

the questions we ask as archaeologists and the conclusions we draw from our data (Caraher 

2016:423). 

 But, as an undergraduate student, and one who has a vested interest in computer and data 

science, I felt the best way to make a meaningful contribution to the field while also utilizing and 

improving my skills was to propose an application of computer science for archaeology and to 

document my process of doing so. What you will read in the following 50-something pages, 

then, is my proposal for the use of convolutional neural networks in the fields of cultural 

resource management and archaeology. Specifically, what I will propose is the feasibility of 

automizing large-scale feature extraction from satellite imagery by leveraging convolutional 

neural networks.  

 The task of large-scale feature extraction is a time consuming one, and one that has been 

approached in many ways, both digital and physical, within and without the field of archaeology 

(see, for example, Abolt, et al. 2019; Albert, et al. 2017; Lin, et al. 2014; Schuetter, et al. 2013). 

A manual approach to identify unknown archaeological features in satellite imagery across 

Mongolia, for example, took some 30,000 human hours (Lin, et al. 2014). Physical large-scale 

survey efforts also require manpower and the associated investment of time and resources, which 

vary based on a number of factors including the level of training and effectiveness of field 
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personnel (Banning, et al. 2017). This time commitment, coupled with threats of urban sprawl, 

climate change, and armed conflict, contribute to the urgency of finding a faster way to identify 

archaeological sites and features on a large scale so that those sites might be better protected 

from these threats. The work presented herein, then, holds value not as a timesaving measure or 

as a way to save costs by keeping boots off the ground, but for its promise of identifying sites of 

cultural value wherever we have remote sensing data, especially those sites at immediate risk of 

destruction.  

 This thesis includes background research and an assessment of the state of the fields of 

archaeology and remote sensing and of machine learning and convolutional neural networks. It 

also includes my own proof-of-concept code which aims to demonstrate the feasibility of my 

proposed approach, and a reflection on the choices and mistakes I made, which I hope will both 

advance the body of knowledge on this subject and make life a little bit easier for the next person 

who approaches a task like this. My proof-of-concept code attempts to automatically detect 

tumuli, or burial mounds, in satellite imagery of the ancient Greek city of Histria on the Black 

Sea coast of Romania. I hope that the information contained herein is valuable to classicists and 

computer scientists alike, and that it will be used thoughtfully in the promotion of digital 

approaches to archaeology.  
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A NOTE REGARDING TERMINOLOGY 

 

 Throughout this paper, I employ several important terms and phrases that may not be 

familiar to the reader. Thus, it is essential that I attempt to define these terms and phrases from 

the outset, so that when the reader will be well-informed of my definition of these terms when 

they are first encountered in the text. The first phrase is “cultural resource management,” often 

abbreviated as CRM. I will use the phrases “cultural resources,” “cultural heritage sites” and 

“cultural heritage monuments” interchangeably. Cultural resources and cultural heritage sites 

refer, in this paper, to ancient sites of cultural and historical significance. Their management, 

then, includes the process of excavating and ensuring their protection by navigating the changing 

political, urban and ecological climates that may threaten their existence (White and King 

2007:141-142). Archaeology, then, is a form of cultural resource management, insofar as 

excavation involves interacting with and negotiating for the protection of these sites. What 

happens to heritage sites after excavation, especially those under threat, as this paper will 

discuss, also falls under the umbrella of cultural resource or heritage management. 

 The next phrase to clarify is “computer vision.” Here, I am not referring to when your 

paranoid friend claims that the NSA guy is watching you through your laptop camera. Rather, 

computer vision involves a whole host of tasks that the computer can do that would typically 

require human sight. These tasks include identifying objects in an image and tracking objects as 

they move in a video; a number of computer vision approaches have been developed, for 

example, as a way to track cars in video surveillance in real-time, as a response to increasing 

traffic (Coifman, et al. 1998; Anandhalli and Baligar, 2018). Computer vision played a role in 

the missions of Mars rovers Opportunity and Spirit, helping the rovers detect obstacles and 
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increase the distance traversed each day by the rovers (Matthies, et al. 2007:74-76). Computer 

vision is also behind Facebook’s DeepFace algorithm, powering the company’s scarily accurate 

ability to suggest who it is in that photo you just uploaded (Taigman, et al. 2014). Essentially, 

any time a machine interprets an image, we are dealing with computer vision.  

 Readers may be familiar with traditional neural networks, which interpret text data. A 

convolutional neural network, or CNN, is a type of neural network that performs computer vision 

tasks, and is the kind that I have employed in my thesis project. Built with image processing 

tasks in mind, CNNs – in contrast to traditional neural networks – take images as input, where 

each pixel (rather than, say, each word) is a relevant feature of the data (Burkov 2019:66). 

Convolutional neural networks, or CNNs, are called “neural” because they were modeled after 

the way the human brain learns to interpret new visual information, where blocks of pixels are 

neurons and they talk to each other in a web of mathematical functions that spit out a 

classification at the end. 

 CNNs are algorithms that perform “machine learning,” which is a phrase applied by 

computer scientists to situations where algorithms make predictions from data and change to  

improve their performance on a given task (Burkov 2019:1)1. Readers might be familiar with 

AlphaGo, the first computer program to beat a human at the board game Go– a game considered 

much harder for a computer to win than chess – without any handicaps. AlphaGo’s ability to 

start as a tabula rasa, with no experience or domain knowledge of the game of Go, and achieve 

dominance greater than the best human player of the game in only 24 hours of playing against  

																																																								
1	Andriy	Burkov’s	book	The	Hundred-Page	Machine	Learning	Book,	which	I	reference	several	times	in	this	
paper,	is	an	excellent	resource	for	those	looking	to	learn	more	about	machine	learning	algorithms.	It	is	
technical	without	being	opaque,	accessible	for	those	with	little	previous	exposure	to	the	subject,	and	concise.	
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itself is a classic example of machine learning (Silver, et al. 2017:1-2). How the applications of 

machine learning and CNNs can be beneficial to archaeological investigations will be dealt with 

at greater length later in this paper.   

 

  



	

	

11	

11	

CULTURAL RESOURCE MANAGEMENT AND SATELLITE IMAGERY 

 

 Cultural resource management is a global enterprise (King 2011). The conservation 

efforts required by sites around the world differ wildly – papyri recovered from the dry sands of 

Egypt pose entirely different challenges than preserved bodies uncovered in the peat bogs of 

England and Denmark, for example. But the basic factors that threaten destruction for cultural 

heritage sites are largely ubiquitous  – and, it is worth noting, usually anthropogenic. 

 Urbanization ranks prominently among these threats. As cities grow, they encroach 

further on these sites. Infrastructure initiatives and population growth bring cars, people and 

industries closer to archaeological and heritage sites, putting significant pressure on these 

irreplaceable spaces. For example, a team of scholars from the University of Cyprus studied the 

effects of urbanization on cultural heritage monuments in the Paphos district of Cyprus, choosing 

this location as a place that is both home to many cultural heritage sites, some of which are 

UNESCO World Heritage sites, and which has experienced massive urbanization in the past 35 

years (Agapiou et al. 2015). Based on their research, the team found that urbanization in an area 

like Paphos poses threats for the excavated, visible monuments: construction and heavy traffic 

create vibrations that are destructive to the structural integrity of nearby monuments; pollution 

from vehicles coming nearer to the site damages the monuments which, in Paphos, are 

constructed from highly porous rock that absorbs particles in the air. Moreover, they found that 

urbanization also poses threats to still unexcavated archaeological materials, as rapid 

construction to meet the needs of a growing population can destroy these hidden features. We 

hear about this in cities like Rome, where subway construction often reveals the foundations of 

some ancient wall that is then preserved, but smaller and less metropolitan places like Paphos are 
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also home to a wealth of cultural heritage materials that are at risk for damage or destruction 

from urbanization. 

 Climate change poses another threat. Small upward trends in temperature may not present 

an immediate or drastic threat to cultural heritage materials; however, this temperature increase 

changes the incidence of freeze-thaw events, which are important to the preservation of cultural 

heritage monuments. A team studying how climate change will affect freeze-thaw events in 

Europe found that even slight changes in temperature can alter the number of freeze-thaw cycles 

in a given period, which in turn affects the rate of deterioration for cultural heritage sites exposed 

to these freeze-thaw cycles. For sites in the far north preserved in permafrost, an increase in the 

number of freeze-thaw cycles can upset the preservation of the soil and deteriorate stone, 

increasing the risk of damage to the archaeological and paleoecological remains preserved 

therein (Grossi et al. 2007). Climate change threatens archaeology in other parts of the world, 

too, notably coastal areas: a study found that if the current global temperature is sustained for the 

next two millennia, 40 UNESCO world heritage sites will be affected by the corresponding rise 

in sea levels, since sea levels continue to rise in response to sustained high temperatures; if 

temperatures increase by 3 degrees Celsius, that number goes up to 136 sites (Marzeion and 

Levermann 2014:4). And it bears reiterating that these are just the ones listed as world heritage 

sites by UNESCO – countless more cultural heritage sites located along coastal areas face the 

same fate as temperatures and sea levels continue to rise (Marzeion and Levermann 2014:7). But 

climate change along coasts will not affect all areas equally, due to variances including the 

composition of the ground and the interaction with the tides. Climate change will affect inland 

areas, too, as people living in affected coastal areas move inland, increasing development 

inwards from the shoreline and adding pressure on inland heritage sites and extending the zone at 
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risk of destruction (Anderson et al. 2017:11). Those working in cultural resource management 

must deal urgently with the threats posed to archaeological sites by the changing climate. 

 Armed military conflict looms as perhaps the most dramatic threat to the preservation of 

cultural heritage sites. One has only to look to the news of the past few years for evidence. In 

fact, the list of cultural monuments destroyed by ISIL alone is large enough to warrant its own 

Wikipedia page (and not just a stub!: https://en.wikipedia.org/wiki/Destruction_of_cultural_ 

heritage_by_ISIL).  In addition to destruction, conflict brings an increase in looting, too 

(although looting happens frequently even in areas without active conflict). It is difficult to 

quantify the amount of conflict-related looting and destruction happening at archaeological sites 

around the world. In part, this is due to the fact that, as Blythe Proulx has noted, “there is no 

‘master catalogue’ of all archaeologically significant sites around the world both known and 

unknown, so the task of assessing the extent of the damage caused by looting around the world is 

difficult” (Proulx 2013:111). Furthermore, most work on the relationship between conflict and 

looting in those areas most affected is anecdotal and qualitative, taking the form of journalistic 

pieces or case studies tracing looted objects to the market. Nevertheless, there is work that 

suggests a long-term positive correlation between looting and armed conflict (Fabiani 2018:3-6)  

 Conflict poses an additional burden to cultural resource management because it obstructs 

archaeologists and conservationists from having physical access to a site. In areas of active 

conflict or looting, it can be dangerous for archeologists to monitor, much less intervene in or 

protect, sites under threat. In fact, initial in-person assessments of archaeological sites even in 

areas without armed conflict can be difficult and infrequent due to the degree of human resources 

required at large sites (Cleere et al. 2016:3). Monitoring cultural heritage sites for changes 
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requires both a baseline knowledge and mapping of a given site and the ability to ground-truth 

the current state of the site against its former condition, meaning archaeologists must gather large 

amounts of unbiased data regarding the physical extent of the site’s structures and their rate of 

deterioration before any fruitful ongoing monitoring can occur (Cleere et al. 2016:7). Doing this 

job in person is expensive and slow, requiring manpower and all the costs that come with it. The 

combined weight of all of these factors, coupled with the advantages of remote sensing for 

monitoring sites on a landscape level, may explain why archaeologists are increasingly turning to 

satellite imagery and remote sensing in their effort to monitor and combat the loss of cultural 

heritage sites around the globe.  

 Archaeology and remote sensing have shared a close relationship for a century. Remote 

sensing owes its birth as a scientific field to aerial photography prior to and during World War I, 

when military pilots from various countries took photos of the ground from above. Though 

primarily for military purposes, the value of aerial photography for archaeology was immediately 

noted – one such pilot, UK army Lieutenant P.H. Sharpe, earned the moniker “pioneer of aerial 

archaeology” for being the first to photograph Stonehenge and its surrounding plain from above 

when wind blew him off his military course (Capper 1907:By the end of the 1930s, 

archaeologists recognized the advantage of height in aerial photography and were organizing 

flights over Europe, the Middle East, India, and Central America to collect photography for the 

purposes of finding new archaeological discoveries (Parcak 2009:14-15).	 

 By the Second World War, major world militaries were taking aerial photographs of most 

of Europe to aid in military reconnaissance, and archaeologists themselves collected aerial 

photographs in the interest of documenting and protecting historical sites. During the war, many 

archaeologists learned to work with aerial photos through the field of intelligence. The first use 
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of infrared film in aerial photography came in the 1950s, bringing the archaeological features 

therein into clearer focus, and with the sixties came satellites and space photography, as the US 

funneled funds into space technology on the heels of the Soviets’ launching of Sputnik 

(Taubman 2003:212). Satellite imagery from space reconnaissance satellites like the Corona, 

Argon, and Lanyard systems, originally sent into orbit to gain military intelligence on the 

Russians, would become declassified 25 years later, and that imagery would bring a windfall of 

archaeological discoveries (MacDonald 1995:694, 698). 

 The seventies were marked by a transition to multispectral satellite photography and the 

launching of the Landsat satellite system by the US Department of the Interior, which spurred a 

number of studies with applications for archaeology in the following decade. For instance, the 

First International Conference on Remote Sensing and Cartography in Archaeology was held in 

1983. And in the following year, NASA sponsored a congress on remote sensing in archaeology, 

the impact of which Sarah Parcak writes “cannot be overstated”. One NASA archaeologist, Tom 

Sever, wrote in a report on the meeting: 

New technologies to which [archaeologists] were introduced may represent the kind of scientific 
breakthrough for archaeology in the second half of the 20th century that radiocarbon dating was 
in the first half of the century ... advancements in these areas are occurring so fast that unless 
archaeologists apprise themselves of the technology now, they will be unable to keep pace with 
the technology in the near future (Sever and Wiseman 1985: 2–11). 

 

 Satellite archaeology continued to grow in popularity from the 1990s onwards, especially 

as major organizations like UNESCO endorsed satellite imagery and remote sensing as tenets of 

cultural resource management. More recently, several high-resolution satellites have been 

launched, bringing resolution of these photos down from sometimes 15 meters per pixel to as 

precise as 0.61 meters per pixel, in the case of the QuickBird satellite, or 0.41 meters in the case 
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of GeoEye-1 (“LAND INFO” 2018). These improvements advanced the utility of satellite 

archaeology from identifying large-scale features and patterns to identifying even smaller objects 

in the landscape. 
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MACHINE LEARNING 

 

 Because satellite imagery advancements have reached such a high ceiling for image 

resolution, it is possible, with good enough imagery and a good enough algorithm, to train a 

computer to automatically detect features in that imagery with a high degree of accuracy. A 

quick Google search for machine learning reveals that, although the topic boasts a massive buzz, 

it is difficult to concisely define. NVIDIA, a producer of computer chips and graphics processing 

units, cleanly defines machine learning as “the practice of using algorithms to parse data, learn 

from it, and then make a determination or prediction about something in the world.” It differs 

from other forms of computer programming in that the machine is “‘trained’ using large amounts 

of data and algorithms that give it the ability to learn how to perform the task,” rather than 

explicitly coded with specific instructions (Copeland 2016). Convolutional neural networks, as I 

will discuss in a few pages, are one type of algorithm used to perform machine learning tasks, 

and I will demonstrate how I am training this type of algorithm to extract tumuli from satellite 

imagery on page 43. 

 Machine learning tasks broadly fit into one of three categories: supervised, semi-

supervised, and unsupervised. The end goal for all of these categories is to predict accurately the 

outcome variable for a set of data for which that variable is currently unknown. If there is data 

for which the outcome variable is already known and labeled, we can use these instances to 

“supervise” the machine learning process. As the algorithm makes predictions on the unlabeled 

data, it is iteratively corrected by the known, labeled data until its accuracy reaches an acceptable 

threshold, which a computer scientist can decide based on domain knowledge and the given task 

(Burkov 2019:5). 
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 Classification is the most commonly task performed through supervised learning, and this 

is the task that the algorithm in my thesis attempts to perform. A classification algorithm 

attempts to predict what category some entry in the dataset will fall into, based on the other 

known variable quantities associated with that entry. Classification can be done on traditional 

text-based data – will, for example, a customer default on a loan? The bank can classify that 

consumer as likely or unlikely to default on a loan based on the other variables whose quantities 

are already known like age, marriage status, or income. Classification can also be done on 

images; the textbook dataset for this kind of problem is called the MNIST dataset. This dataset 

contains tens of thousands of images of handwritten digits and is often used as a starting point 

for people who want to learn classification without spending too much time processing messy or 

cumbersome data. (Interested readers will find no shortage of “Build A Classifier in 10 

Minutes!”-esque how-to articles on the web that are built upon this dataset.) This was the first 

classification algorithm I ever built, and I used the bones of my MNIST algorithm to build the 

code for this project.  

 

 

 

 

 

 

 

 

Figure 1: A bare-bones visualization of the MNIST dataset, algorithm and output, from 
https://towardsdatascience.com/image-classification-in-10-minutes-with-mnist-dataset-54c35b77a38d 
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Unsupervised machine learning attempts to make sense of unlabeled data, or data without 

labeled outcome variables. Here, algorithms attempt to discover the underlying structure or 

grouping of the data without explicitly telling you what that data is, as in the case of 

classification. Clustering is the most typical unsupervised machine learning task, in which 

algorithms do their best to identify intrinsic groupings in the data. 

Semi-supervised machine learning falls somewhere in between the two, where the 

outcome variables for some of the data are labeled but some are unknown. In this case, a 

combination of supervised and unsupervised techniques can be used to identify the structure or 

classification of the data whose outcome variables are unknown (Brownlee 2016). Semi-

supervised learning proves useful in many real-world machine learning examples where the 

amount of data is too massive for each instance to have its own label, but we nevertheless have 

some basic grasp of what classes the data might fall into based on a labeled subset of that data. It 

can also provide gains in accuracy and efficiency over fully supervised learning, because it 

reduces the amount of human bias implicit in data labeling and also decreases the amount of time 

spent labeling and computer memory spent processing those additional pieces of information. 

For example, a computer scientist might want to classify websites based on their text content. 

That person might have a set of labeled websites, teaching the computer that specific types of 

websites exist and giving it a framework for what those types of websites might be. The scientist 

can then input a massive number of unlabeled websites, and this new, unlabeled data will allow 

the computer to more fully define which websites are more and less similar to each other and 

perhaps even identify some new types of websites not present in the training set (Castle 2018). 

Additionally, Amazon’s Alexa AI team implemented a semi-supervised approach on Alexa’s 
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speech recognition algorithm and reported an error reduction of up to 22% over previous, fully 

supervised models (Johnson 2019).  

Understanding the breadth of tasks that machine learning can accomplish and when to 

apply which type of learning is crucial for deciding which of these types of machine learning, 

and which algorithms, are appropriate for tackling a given problem. Having examined the three 

subdivisions of machine learning, the next section of my thesis will introduce convolutional 

neural networks and explain why this supervised learning algorithm is best suited to solving the 

problem in my proof-of-concept code. 
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CONVOLUTIONAL NEURAL NETWORKS 
 
 
 Before I can present some applications of convolutional neural networks and the 

methodology of my code, I would like to talk more about CNNs, how they work, and their 

standard applications. From algorithms that can extract land boundaries for the purpose of 

determining the potential profit and insurance costs of a tract of farmland (Babawuro 2012) to 

seeing if a computer can tell the difference between a chihuahua and a muffin (Yao 2017) to 

suggesting who you should tag in photos you add on Facebook (Taigman 2014), CNNs have 

helped make object detection a ubiquitous topic in computer vision (Cao and Choe 2018:3), 

often achieving remarkable accuracy in object detection and classification problems compared to 

other supervised learning algorithms (Krizhevsky 2017:8).  

 

Figure 2: Attempting to classify objects with similar appearances using computer vision. From 
“Chihuahua or muffin? My search for the best computer vision API,” Mariya Yao. 
 

 Convolutional neural networks are a type of neural network. You might know something 

of neural networks in their own right, or perhaps you have heard people use the buzzword “deep 

learning,” which in fact refers to learning performed by neural networks (Burkov 2019:65). As I 

briefly mentioned in my note on terminology, and as the name of the algorithm suggests, the 
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architecture of neural networks was inspired by the structure of the human brain. As Kevin 

Gurney writes in his book An Introduction to Neural Networks,  

 A neural network is an interconnected assembly of simple processing elements, units or 
nodes, whose functionality is loosely based on the animal neuron. The processing ability 
of the network is stored in the interunit connection strengths, or weights, obtained by a 
process of adaptation to, or learning from, a set of training patterns (Gurney 1997:1). 

In the human brain, neurons communicate with each other through electrical signals transmitted 

over axons, and these electrical signals pass over gaps called synapses and are received by 

dendrites. Each neuron is connected to thousands of other neurons, and the brain sets a threshold 

for when each neuron should “fire,” which is determined by the strength of the synaptic 

connection between the neurons.   

 This basic architecture of human learning informs the artificial learning performed by 

neural network. In a neural network, nodes are equivalent to neurons; weights model synapses 

and allow the network to decide whether or not a node in the next layer should be activated 

(nodes in a network will only be activated if they meet some pre-determined threshold, just as 

neurons in the human brain will only fire if their activation function is met). In the figure below 

– a standard visualization of the architecture of neural networks – each circle represents a node. 

Each connecting line will have an assigned weight, and one output node will activate based on 

which output node reaches the threshold for activation (traditionally, the node that activates will 

produce an output of 1, indicating a positive classification, and those that do not activate will 

output a zero, indicating that those possible outcomes are not the correct classification based on 

the information from the input nodes) (Gurney 1997:1-2).  
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Figure 3: a simple example of a neural network, after Gurney 1997:2.  

  

 For example, we can imagine the figure above represents a neural network that would 

like to classify an email as “spam” or “ham” (non-spam email). Pretend that each node in the 

input layer, represented by the four black nodes, is a word taken at random from an email. The 

network will pass those words through a hidden layer, denoted by the three nodes in the center, 

and the embedded mathematical functions (informed by the weights assigned to the arrows) will 

produce an output that activates one of two of the output nodes. If the output of the “spam” node 

is 1 and the “ham” node is 0, the network is telling us that the email is spam. Conversely, if 

“ham” activates with a value of 1, then the network is classifying this email as ham and not 

spam. This is the basic way a neural network operates.     

 If we would like to use the architecture of the neural network above to classify images, 

the size and cost of the problem would quickly become intractable. This is because, when 

classifying an image, each pixel is a relevant piece of data for determining the correct output – 

meaning that each pixel requires its own input node. Even for small images like the ones I use in 

my own proof-of-concept code, which measure 155 by 155 pixels, this amounts to (155x155=) 
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24,025 input nodes. Following the same interconnected structure above, the amount of 

mathematical functions performed by the computer would increase rapidly as layers are added to 

the network.  

 While convolutional neural networks follow the same basic structure of nodes and layers 

depicted in the previous figure, CNNs significantly reduce the number of parameters in models 

with a large number of input nodes without sacrificing accuracy, making them the appropriate 

choice for image processing tasks (Burkov 2019:66). The common structure of a CNN includes 

the input, a convolutional layer, a sub-sampling layer, a fully-connected layer, and an output. 

 

Figure 4: visualization of CNN structure (after Cao and Choe 2018:4).  

  
 

  While all of the hidden (that is, not input or output) layers detailed above involve 

mathematical processes that combine to produce the final output, it is not strictly necessary to 

understand this math in order to grasp the basic way a CNN works. Therefore (and because I am 

not a math major), I will explain only the inner mathematical workings of the convolutional 

layer, as it is the most significant for understanding the algorithm. I will note, however, that the 

purpose of all of the hidden layers in a CNN is to identify features throughout the image and 



	

	

25	

25	

reduce the size of input feature matrices, until the final layer flattens those matrices into a single 

vector which is at last passed through an activation function to produce the output classification 

(Cao and Choe 2018:4-5). 

 Convolutional layers reduce the dimensionality of the input image while retaining the 

salient information contained therein. For example, a 3x3 convolutional layer will pass over the 

image in a “moving window” approach, focusing on small squares of size 3 pixels by 3 pixels at 

a time within the original image, which we will call “filters”. Each of the (3x3 pixels=) 9 pixels 

in these filters receives some numeric value based on the visual information contained by that 

pixel, which is represented in a matrix. The convolutional “moving window,” often called a 

“patch,” also takes the form of a 3x3 matrix, with each value therein determined by the computer 

scientist based on the nature of the feature they would like to extract.  The convolution, then, is 

the mathematical function of performing matrix multiplication on the filter and patch, which 

produces some sum value. This sum value is passed through an activation function and becomes 

a neuron value in the next layer of the CNN (Cao and Choe 2018:3-4, Burkov 2019:66-69). 

 Although CNNs notably yield the highest accuracy in image classification, computer 

scientists consider other criteria when deciding which machine learning algorithm to apply to a 

given problem, too, and one of the most important factors is explainability (Yang, et al. 2019). 

Explainability refers to the ability to retrace and understand how an algorithm made the decision 

that it did. In some algorithms, like decision trees, for example, a human can easily work 

backwards to understand the decisions that the algorithm made which led to its output; in a 

another algorithm, the support vector machine, the output is an equation that one needs only read 

to understand; but in a neural network, while the output is easily interpretable – the image does 

or does not contain a tumulus; the email is or is not spam – it is nearly impossible to explain how 
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the algorithm made its decision, and why it made that decision but not a different one. This is 

because the algorithm itself is a “black box” (Burkov 2019:48).   

 Explainability is important in domains where the stakes are very high, like medicine. It is 

hard to trust and apply the results of an artificially intelligent model when doctors cannot 

understand how a model came to the conclusion it did and why not some other conclusion, and 

the possible cost of a mistake is human lives lost. Unfortunately, the two goals of accuracy and 

explainability are often at odds with one another, where some of the most easily interpretable 

machine learning algorithms are the least accurate, and vice versa (Yang et al. 2019:2). While 

computer scientists across many domains continue to search for highly accurate artificially 

intelligent algorithms whose results are also explainable2, the stakes for misunderstanding how 

and why my CNN identified the tumuli it did are low, rendering explainability a minor concern 

for my research. CNNs, then, do not present a significant explainability problem for the purpose 

of this thesis, allowing me to continue on with this approach due to their greatest potential for 

accuracy.  

 
 
  

																																																								
2 Readers interested in the search for “explainable AI” should see DARPA’s document on the 
subject at www.darpa.mil/attachments/XAIProgramUpdate.pdf, particularly pages 2 and 5.  
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FEATURE EXTRACTION 

 

 Because satellite imagery has achieved such high resolution, it is possible to identify even 

small physical features in good imagery. This finds applications in archaeology where 

archaeological features large and small alike can be identified in high-resolution imagery with 

either manual or computerized techniques. Satellite imagery proves especially useful for 

identifying archaeological features because “viewing archaeological structures from ground level 

generally does not clearly identify the spatial characteristics of these structures of the 

relationship to surrounding archaeological sites.” Furthermore, “in some cases ancient structures 

are not apparent from ground level but become obvious from birds-eye view” (De Laet et al. 

2006:830). 

 With the wealth of satellite imagery provided by platforms like Google Earth and upon 

request from various satellite services like DigitalGlobe or the United States Geological Service, 

archaeologists have no shortage of imagery to draw from if they wish to remotely identify or 

monitor archaeological sites. However, manually extracting archaeological features from satellite 

imagery can be time consuming, especially as the scale of the job and area covered by the 

imagery increases. An extreme example of just how time consuming these jobs can be comes 

from a team at the University of California at San Diego, who endeavored to crowd-source the 

search for the tomb of Genghis Khan (Lin et al. 

2014). This search drew on the manpower of ten thousand online volunteers who participated for 

an average of three hours per person. Although this massive effort did not locate Khan’s elusive 

tomb, it succeeded in identifying dozens of previously-unknown archaeological sites, 55 of 

which were confirmed on the ground by a National Geographic expedition team. Of course, this 

effort spanned an enormous ground area, and the task was far more vague than most feature 
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extraction tasks (participants were not trained archaeologists, and were simply asked to label 

anything “out of the ordinary”), so the time required was magnitudes larger than most efforts to 

extract archaeological features from satellite imagery.  

 It remains the case, nonetheless, that manual efforts to locate, label, and map disparate 

archaeological features across a vast area are time consuming (and not a terribly stimulating use 

of that time, either). Even Sarah Parcak, a highly-skilled archaeologist in her own right, still 

launched the GlobalXplorer project to crowdsource civilian efforts in order to expedite site 

discoveries in satellite imagery (“About the Global Explorer project” 2018). That automating 

feature extraction from satellite imagery by employing a convolutional neural network can 

mitigate such investments of time is well attested in many fields, academic and commercial. A 

team at the University of Texas at Austin trained a CNN to automatically extract ice wedge 

polygons from imagery of ice shelves in Alaska (Abolt et al. 2019). Project members used the 

CNN to identify pixels in LiDAR imagery that comprised the edges of ice wedge polygons.  

 

Figure 5: example CNN output from Abolt et al. transforming raw LiDAR data (left) into easily 
discernable polygons. 
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This image from their paper stood out to me as an example of just how helpful convolutional 

neural networks can be for feature extraction and its applications. Counting, mapping, and 

monitoring changes in ice wedges based only on the LiDAR data in the left-hand image would 

require an exceptional commitment of time and resources, but the polygons extracted by the 

CNN on the right are far easier to interpret and manipulate. The results and the broader 

applications of this project inspired my own work. 

 Still more applications of CNNs for the social sciences can be found in the work of 

computer scientist Dr. Stefano Ermon at Stanford. Ermon has published work on socially 

conscious uses of CNNs and has an academic interest in computational sustainability, including 

assessing the quality of infrastructure in sub-Saharan Africa using satellite imagery and deep 

learning techniques, including CNNs (Oshri et al. 2018). Monitoring changes in quality of 

infrastructure on a large scale, much like monitoring changes to archaeological features over a 

large landscape, is time and resource intensive. Nevertheless, infrastructure quality is a major – 

and sometimes the only – indicator of quality of life in developing countries where statistical 

information on the economic status of individuals is poor or nonexistent, making it imperative to 

be able monitor development in a cost-effective way. Ermon’s team developed a method that 

took as an input imagery from the Landsat 8 and Sentinel 1 satellites, on which they trained a 

convolutional neural network. They pre-trained the CNN on a transfer learning dataset from 

ImageNet to increase the accuracy of the CNN (compared to simply training on random 

initializations). The CNN performed well, classifying electricity and sewage infrastructure above 

85%, roads at 78%, and piped water at 73% accuracy on LandSat 8 imagery (Oshri et al. 2018).  

This project demonstrates not only the feasibility of feature detection and extraction from 

satellite imagery with CNNs but also the social benefit these applications can confer on tasks that 
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are necessary but traditionally resource-intensive.  

 A similar application of CNNs for the monitoring of infrastructure was developed 

following Hurricane Harvey (Cao and Choe 2018). Just as Ermon and his team recognized the 

necessity of monitoring infrastructure development in sub-Saharan Africa, so too did two 

researchers at the University of Washington recognize that timely damage assessment after 

hurricanes is crucial for facilitating the sensible deployment of first responders and resources to 

affected areas. Again, wanting to circumvent the huge costs of time and labor that the manual 

execution of a task like this can require, the duo developed a CNN which classified buildings in 

satellite imagery of affected areas as either “Flooded/Damaged Building” or “Undamaged 

Building” with 97% accuracy (Cao and Choe 2018:14).  

What about application of CNNs in archaeology? As I mentioned earlier, remote sensing 

and archaeology share a close history. Computer science and archaeology, however, are not so 

intimately intertwined. Sarah Parcak, perhaps the doyenne of remote sensing in archaeology, 

uses highly technical methods to adjust various forms of remote sensing data until unknown 

archaeological features, once invisible to the naked eye, become visible. These methods include 

applying contrast enhancement to pixels in satellite imagery to prepare imagery for analysis; 

combining spectral bands to bring invisible features, like vegetation changes, into clearer view; 

and image thresholding, or specifying which pixel values will remain visible to the user (Parcak 

2009:85-96). 

Despite such ground-breaking work, Parcak has expressed some rather traditional 

opinions about the utility of computers for advancing archaeological inquiry. For instance, in her 

handbook Satellite Remote Sensing for Archaeology, she writes that “computers cannot tell if a 
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site or feature is present or not; they just facilitate the display of pixels. It is up to us to determine 

what those pixels mean” (Parcak 2009: 109). Granted, this paper handbook was published in 

2009, and the general knowledge of computer science within the fields of archaeology and 

remote sensing has grown immensely in the past decade – one needs only turn to the buzz about 

digital classics or the growing prominence of and excitement surrounding digital panels and talks 

at archaeological conferences for proof. Nevertheless, true computer vision tasks in archaeology 

seem to come largely from computer scientists who see archaeology as a field whose proximity 

to remote sensing lends itself well to experimenting with feature extraction problems. This is not 

to say that important work is not being done by professional archaeologists – quite the opposite, 

as I will explore in a moment – but rather that if we can appreciate the impressive work being 

done by people outside of the academic domain of archaeology, we can also envision how that 

same vein of work would benefit from the knowledge of scholars within the domain.  

Let us consider some of the groups collaborating across disciplinary boundaries. One 

team of scholars from various disciplines at The Ohio State University sought to identify high 

circular tombs, or HCTs, in satellite imagery of the Arabian landscape (Schuetter et al. 2013). 

Because there are tens of thousands of HCTs scattered throughout this region, and because those 

HCTs tell anthropologists valuable information about settlement patterns and tribal dynamics, 

identifying and mapping them is an important and huge task. The scale of the task is further 

compounded by the fact that the tombs rather blend in with the surrounding landscape when 

viewed in satellite imagery, and that the tens of thousands of tombs are scattered over a massive 

landscape for which a mere 0.2% of the satellite imagery contains pixels belonging to HCTs.  
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Figure 6: overview of computer vision algorithm employed by Schuetter et al.2013 in detection of Arabian 
tombs in satellite imagery.  

 

 Although the team did not use a convolutional neural network, their algorithmic approach 

was elegant and effective (Schuetter et al. 2013:6619-6625). Using a series of algorithms like the 

Canny edge detector, Hough circle fitting, and boundary extraction, the algorithm detected 

candidate HCTs in the satellite imagery. Even with a total dataset of 76 tombs – and a training 

set of only 26 – the algorithms still autodetected tombs at above 50% accuracy, reaching as high 

as 92% accuracy (Schuetter et al. 2013).  
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BACKGROUND ON HISTRIA 
 
 
  My proof-of-concept code centers on extracting tumuli from satellite imagery. Hopefully 

having thoroughly demonstrated the efficacy of convolutional neural networks for feature of 

extraction, I will now introduce the area that is the focus of my code and the archaeological 

features in this area that I attempt to extract.  

 The satellite imagery used in my algorithm is taken of and around the ancient site of 

Histria. Histria is located in present-day Romania along the western coast of the Black Sea, 

80km south of the southernmost arm of the Danube, along a peninsula that extends along Lake 

Sinoé and Lake Histria. The colony takes its name from the Thracian name for the Danube river, 

Istros (Donnellan 2004:201).  

 

 

 

 

 

 

 

 

 

  

 The colony itself is comprised of an acropolis, located on the highest point of the 

peninsula and overlooking the Romanian countryside and the rivers Nuntasi and Iunan-Dere, and 

also a necropolis, situated just to the north of Lake Histria and whose surface measures 

  Figure 7: approximate location of Histria on map of larger Black Sea area 
(Google Earth).  
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approximately 5km2, though the full extent and its boundaries are not exactly clear. Surrounding 

the city proper is the chora.  

 Histria was an offshoot of Miletus and the first Milesian colony settled in the Black Sea 

region. Colonization was a hallmark practice of the Archaic Greeks, (ca. 8th-6th century BC) in 

large part spurred on by population growth in this period that outpaced their ability to exploit the 

natural resources of their homeland. The Greeks sent out colonies all around the Mediterranean 

basin, expanding from Attica and the Aegean islands westward to Spain, eastward to the Levant 

and southward to the coast of Africa. Scholars estimate some 200 colonies were settled around 

the Black Sea alone (Petropoulos 2003:17), out of the approximately 500 total Greek colonies 

that, by the start of the 6th century, accounted for 40% of all Greeks (Cartwright 2018). Miletus 

was particularly fruitful in its colonization of the Black Sea region, and possible explanations for 

the Milesians’ prodigious expansion include a desire to establish a “North-east passage” to bring 

oriental bronzes from Armenia into the Greek world, a hunger for more land, and the promise of 

strategic trading posts in the region (Boardman 1999:239-243).  

 The exact foundation date of Histria is debated, but scholars agree that Milesians had 

settled there by at least the middle of the seventh century BC, and by 630 at the latest 

(Petropoulos 2003:26).  In any case, the archaeological record indicates that Histria was well 

developed by the turn of the century (Donnellan 2004:204-205), and, having minted its first 

coins in 480 BC, was commercially active at the close of the Archaic period (Andrews 2010:55).  

 The first excavations at Histria took place under Vasile Pârvan in 1914, illuminating 

artifacts from the Roman period (ca. 3rd-5th c. AD). Following Pârvan’s death in 1927, 

excavation continued until 1941 under the direction of Scarlat Lambrino. Unfortunately, most of 

Lambrino’s notes and research on the region never saw publication, and attempts by subsequent 
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directors to recover the knowledge obtained by Lambrino during excavation were unsuccessful. 

Excavations resumed in 1950 under the direction of Emil Condurachi, who, for the first time, 

dug beneath the Roman layers at the site and began to uncover the earliest layers of Greek 

settlement.  

 Condurachi was also the first to excavate Histria’s necropolis in 1955. Though untouched 

by any of Condurachi’s predecessors, the necropolis was nevertheless evident to them and, 

indeed, to all since antiquity, from the more than 1,000 tumuli visible to the naked eye. The 

population at Histria buried their dead in these tumuli (singular: tumulus), or burial mounds. In 

the introductory chapter of a large volume on tumuli in antiquity titled Tumulus as Sema (Henry 

and Kelp 2016), Susan A. writes that a tumulus is 

most basically, a bump on the ground … [that] may have been constructed to contain a 
tomb (of varying qualities of construction and elaboration), but it might also be an empty 
artificial mound. Or it might originally have been an artifact of cultivation, of rock 
clearance and of ploughing. Or it might even be a ‘mere’ natural hillock (Alcock 2016:1). 
 

Additionally, although tumuli are most popular in the Black Sea region and Mediterranean, they 

are also a global phenomenon, cropping up across Europe, in East Asia, and in South America 

(Alcock 2016).  

 Tumuli at Histria are concentrated in the colony’s necropolis, which saw a period of use 

from the mid-6th century BCE to the 2nd century CE. Only 34 of the excavated tumuli have been 

published, and a number of features – like their construction, associated finds, and topography – 

have led archaeologists to delineate the phases of the necropolis into three basic groups. The first 

phase dates from the mid-6th century until the mid-4th and is associated with 14 of the 34 tumuli; 

the second phase dates from the mid-4th until the end of the 1st century BC and claims 13 of the 

tumuli, and the third phase dates to the Roman period and claims the remaining seven 

(Donnellan 2004:204-205).  
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 Tumuli burials at Histria differ from tumuli burials at other centers in the Black Sea 

region on two major accounts. First, the tumuli are constructed purely of earth and do not contain 

an interior chamber constructed of wood or stone. Second, the majority of tumuli – 32 of the 

published 34 – contained cremation burials rather than inhumations, a peculiarity of Histria 

compared to the rest of the region, whose burials rituals predominantly favored inhumation.  

 More can be said about the tumuli with regards to the construction and the ritual of 

burial. In the first case, three major construction types emerge: those with a circular ditch 

constructed around the periphery of the tumulus, belonging to the oldest phase of the necropolis; 

those containing an internal funerary platform, measuring from 0.3 to 0.5 meters in height; and 

those containing a stone circle rather than a funerary platform, serving the same ostensible 

purpose of indicating the place of burial but present in only two of the published tumuli. 

 As for burial ritual, again we can identify three types: tumuli with cremation occurring at 

the same place as the burning (primary cremation), tumuli with cremation occurring elsewhere 

from the burning (secondary cremation), and inhumation. Archaeologist Petre Alexandrescu 

even further subdivides the tumuli containing cremations into nine subgroups based on the shape 

and depth of their associated cremation pits, though these fine distinctions do not bear repeating 

here. It is worth noting, though, that of the 34 published tumuli, of which 32 contained 

cremations, only three contained secondary cremations. This further distinguishes Histria from 

other colonies in the Black Sea region. Though cremation graves have been discovered in every 

necropolis on the Bulgarian coast of the Black Sea and at others in the circumpontic region, the 

rite remains relatively rare.  

 Some understanding of the ethnic makeup of the Histrian population can help explain 

these burial practices that seem to be peculiar to Histria. Greeks and Thracians composed the two 
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main ethnic groups present at Histria, Thracians being those people indigenous to the region 

extending over most of the Balkans and down the western coast of the Black Sea, into the 

Bosporus straight to the east and northern Greece to the west. In particular, those Thracians 

indigenous to the Histrian region were called Getae, and the Getae and their ancestors occupied 

the Histrian chora well before the arrival of the Milesians. Following the arrival of the Greeks in 

the area, however, material culture from settlements in the Histrian chora indicates both Thracian 

and Greek presence in those areas, indicating the Greek population engaged outwardly with the 

native Getans. Additionally, archaeological evidence in the form of ceramics implies Getan 

presence in the Histrian city proper in even the city’s earliest period. Much of the traditional 

research on the area indicates an intertwined but nevertheless distinct relationship between the 

Greeks and Thracians at Histria, forgoing a more nuanced understanding of ethnicity at the site. 

Most notably, the population at Histria was not comprised only of Milesians and Getans, but also 

likely of Greeks from other poleis, as well as Scythians. It seems impossible that all of these 

groups lived completely distinct lives, and we should assume that the different groups living at 

Histria adopted some cultural practices from each other in a process that post-colonial studies 

would deem creolization or hybridization (Donnellan 2004).   

 To return to the tumuli, this process of hybridization has major implications for the burial 

practices at Histria. While some of the excavated tumuli fit squarely into purely Greek or 

Thracian burial types, many tumuli contain, in one grave, elements thought to belong to multiple 

funerary traditions. Even in the earliest tumuli we see deviations from traditional Greek and 

Thracian grave types, indicating that the process of hybridization had begun to occur already. 

Fast forward a few generations at Histria and the features of these tumuli begin to converge upon 
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a more similar type, no longer belonging to distinctly Greek or Thracian practices but, instead, a 

hybrid of local and Histrian traditions (Donnellan 2004). 

Further excavation and publishing of the tumuli and graves at Histria will be integral for fully 

understanding the identity of the peoples present at the site, though the question of identity is not 

within the scope of this paper. Still more can be told about the population at this site, though, by 

examining the distribution of tumuli in Histria proper and throughout its chora. However, a 

systematic mapping of the thousands of tumuli in the Romanian countryside is incredibly 

resource intensive. This might take the form of an archaeological survey – requiring lots of 

manpower – or an examination of satellite imagery, requiring less manpower, but an excruciating 

attention to detail and nontrivial investment of time. Training a computer to identify and extract 

tumuli from satellite imagery of the relevant landscapes, then, promises to reduce the time and 

manpower involved in a task of this scope.  
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PROOF-OF-CONCEPT METHOD 

 

 As I mentioned in my section on machine learning, this project uses supervised machine 

learning to perform a classification task. Below is a visualization of supervised classification.  

 

Figure 8: Diagram of Machine Learning Phases (after Salian 2018). 

 

As the graphic of Figure 8 indicates, a set of images and labels are fed into a machine learning 

algorithm – in my case, a convolutional neural network. For my project, the images are from 

satellite imagery of Histria, Romania, and the labels are bounding boxes indicating the presence 

of tumuli. Figures 9 and 10 offer an example of unlabeled imagery and that same imagery 

labeled with bounding boxes. 

 

 

 

 

 

Figure 9: unlabeled satellite imagery Figure 10: satellite imagery from 
fig. 9, labeled with bounding boxes 
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 The CNN extracts features from the imagery – the salient features in my case being the 

tumuli – and the machine learning algorithm then trains on these features and labels until it has 

seen the entirety of the training set. At this point, the machine learning algorithm has some idea 

of what the labeled object “looks like” (though it might not be terribly accurate, – see figure 11). 

In this case, we hope that the algorithm thinks tumuli are approximate circles a few dozen pixels 

in diameter that appear lighter or darker in color than the surrounding landscape. 

 After the algorithm “learns” on the training set, one then supplies it with a new set of 

unlabeled images that it has never seen before. The hope, now, is that the machine has accurately 

learned to recognize the feature you trained it to identify, and that the machine can accurately 

detect those same learned features in a fresh set of images. For an object detection problem like 

the one in my code, the algorithm’s output is labels that it produced itself, in the form of 

bounding boxes, on images it has never seen before. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Example of incorrect output data. I accidentally used images of handwritten numbers as the 
testing set on a classifier that I trained on clothing items. The classifier thinks the number 7 is a sneaker. 
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 In this section, I will now describe my methodology, from collecting and labeling data to 

building the convolutional neural network. Interested readers can find this code and follow my 

progress at https://github.com/mallorywillett/thesis-CNN. 

 
A.   Data description 

1) The raw imagery is Bing aerial imagery, which draws from DigitalGlobe data sources 

2) I uploaded the raw imagery into QGIS, an opensource geographic information system, 

and overlaid a grid layer on the raw imagery to help visualize squares of equal size in 

the landscape 

3) I took screenshots of squares of uniform size (155x155 pixels each) in the grid with 

my native Mac screenshot tool, noting the coordinates of the squares in order to keep 

track of where each image came from in space  

4) I labeled my images with the VGG Image Annotator 

(http://www.robots.ox.ac.uk/~vgg/software/via/)3  

5) I split my labeled images on an 80/20% split into training and testing sets, respectively  

 
   
B.   Labels  

After labeling my images using the VGG Image Annotator, I exported the labels/annotations. 

The VGG Image Annotator exports the labels as a JSON file. JSON stands for JavaScript Open 

Notation, and a JSON file is a kind of text file that represents data in a way that is easy for 

humans and machines to interpret because it is stored as key/value pairs in a dictionary. Because 

I have trouble easily interpreting JSON files, I wrote a script to extract the necessary information 

																																																								
3 I initially chose this labeling tool because it allowed me to draw circles on my imagery, to most closely 
capture the tumuli, whereas many labeling tools only support polygon annotation. I later realized that the 
TensorFlow object detection API that I employed in my CNN used bounding boxes (squares) to detect 
objects, and so ended up labeling my tumuli with squares rather than circles. In the future, I would use the 
LabelImg annotation tool (https://github.com/tzutalin/labelImg) to label my data, because the annotations 
are saved as XML files in PASCAL VOC format. The PASCAL VOC format is one of the record formats 
supported by TensorFlow’s object detection API, so exporting annotations in this format would save you 
the step of writing a custom script to transform your annotations into a format that TensorFlow can work 
with (as I had to do with my outputs from the VGG annotator). 
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from that JSON file and display in plain English text the x and y coordinates of the top left 

corner of each bounding box in a given image, along with the width and height of those 

bounding boxes (this step is not strictly necessary).4 I then split my labeled data into a training 

set, containing 80% of the labeled images, and a testing set, comprising the remaining 20% of 

the images, whose labels I withheld from the CNN. 

 

C.   Object Detection 

I elected to use the TensorFlow Object Detection API5 for my CNN. TensorFlow is an 

opensource machine learning library that provides the backbone for the machine learning 

performed by major companies like Google, Twitter, and Intel 

(https://www.tensorflow.org/about?). The most popular machine learning framework by most 

metrics (Hale 2018), TensorFlow is well documented and has a massive community of users, 

meaning resources and solutions to common problems abound. This makes TensorFlow a 

powerful and friendly framework for newcomers to deep learning like myself.  

 TensorFlow’s Object Detection API use a special file format called TFRecords. This is 

not the format that my original labeled data takes, so I used the script detailed on TensorFlow’s 

GitHub page6 to convert my data into the correct file format.  

 

 

 

																																																								
4 This script, and the whole of my code, is available on my GitHub. 
5 API stands for Application Programming Interface. An object detection API is basically a 
set of prewritten commands that simplify the task of creating an object detection model, 
essentially making it so that you don’t have to reinvent the wheel with a new script for every 
new object detection task. Instead, you can use prewritten functions built into the API.	
6	https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/ 
   using_your_own_dataset.md 
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D.   Training the model 

 Having my labeled images in the right format, I could then begin training. For this, I 

closely followed the instructions of a blog post called “How to train your own Object Detector 

with TensorFlow’s Object Detection API” (Tran 2017).  

To train the model, you need the dataset of TFRecord files and a corresponding label map. 

Because my object detection model was only looking for one class of object – tumulus – my 

label map looked like this: 

 

# Create dictionary of target classes 

label_dict = { 
  1: 'tumulus', 
} 
 

 
The next step in training the model is building an object detection pipeline, which I have not yet 

completed. This pipeline is where you identify parameters for the neural network like batch size, 

training iterations, and learning rate – variables which I will adjust with as I grow my dataset and 

assess the model’s accuracy  

 Because my set of training images is currently small, I intend to train my model on my 

own machine7. As I scale the project upwards to include more imagery of the Histrian chora, 

however, I will likely take a cloud-based training approach in order to free up my own machine 

by harnessing the power of more powerful computers. Services like this are offered through 

Amazon Web Services and the Texas Advanced Computing Center.  

 

																																																								
7 Rather than dedicate too much time to labeling data, I decided instead to only label a small 
set of 20 images, in order that I could dedicate more time to writing the CNN itself. After my 
CNN is up and running, I can then go back and add more labeled data to increase the 
accuracy of the model, which will require only a trivial adjustment to the existing code. 
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REFLECTION AND LESSONS FOR CONTINUATION 
 

 Early in this project, I realized that this was a task far larger than I could handle alone in 

the given amount of time. Although previous to beginning this code I had completed eighteen 

hours of coursework in computer science, including formal education and coding experience in 

machine learning that gave me the boldness to undertake this project in the first place, I 

nevertheless am not a computer science major, and my experience with convolutional neural 

networks was extremely limited before undertaking this project. Without a faculty mentor in the 

computer science department, I found myself struggling to overcome even small roadblocks due 

simply to the fact that I did not know where to look for the answers to my problems.8 

 I learned immediately, therefore, the value of collaboration in academia. In the fall 

semester, a time dedicated to gathering sources before the big writing push in the spring, I found 

myself arranging perhaps a dozen meetings with academics and students in various fields for 

advice on approaching my problem. It was all incredibly valuable and pushed me closer and 

closer to my goal. Still, writing the code was an enormous hurdle, and having a team of people 

help me with it would have made the task far more manageable and the outcome far more 

successful. Ultimately, archaeologists wishing to implement a CNN for feature extraction would 

do well to team up with a computer scientist with CNN/deep learning experience. As I continue 

the work on this code in the future, I will undoubtedly lean on those with more neural network 

expertise than myself. 

 This process was essentially eight long months of trial and error, some errors being more 

painful than others. While every iteration of trial and error improved my workflow and taught me 

more about how to solve my problem, each of these iterations simply lasted too long compared 
																																																								
8 The author was surprised to learn that the body of knowledge on Stack Overflow does, 
indeed, have its limits. 
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to the total possible duration of the project. In a particularly painful instance of this, I 

screenshotted and renamed dozens of images and labeled hundreds of instances of tumuli only to 

realize that the images had to be of identical dimensions (mine, naturally, were not).  

 I thought that I should approach the problem in steps, and that step one was to obtain and 

label all of my data. Often, this is how we approach problems in the humanities and archaeology. 

First we trace the soil change laterally to uncover its visible extent, then we work downward, 

removing and recording the entirety of the context. Or perhaps we want to write a big paper, and 

we begin by dedicating a large chunk of time to researching and gathering sources before putting 

any words on a page. But software development embraces an approach called agile development. 

At its core, agile development embraces continual dialogue among developers and between 

developers and clients to “efficiently and effectively respond to user requirement changes” and 

prevent the “substantial financial loss” that can arise from traditional, non-agile development 

practices (Lee and Xia 2010:88).  

 After spending September through February on a non-agile development approach with 

very little measurable progress on my code, I adopted the agile method as detailed in the book 

Sprint, which focuses on short feedback loops and building facades of prototypes that are just 

real enough to test but not so real that they take weeks or months to develop (Knap et al. 

2016:166). This meant a major change to my method: instead of labeling all of my images in one 

go and building up the code from there, I decided to write a complete code that worked at the 

smallest, most basic level possible. Because I was not spending hours labeling hundreds of 

images, I was more willing to test different object detection APIs and frameworks, even if this 

meant I had to re-label my data – because now I only had a small handful of labels to fix in the 

first place. As I continue to develop and debug my algorithm, this agile approach allows me to 
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focus more of my time on the most essential parts of my code. And when my CNN is finished, I 

can be confident that I chose the best approach for this research, instead of simply sticking to a 

method because I had spent too long working on it to let it go.  

  



	

	

47	

47	

CONCLUSION 

 

 Although the results of my proof-of-concept are still forthcoming, the efficacy of 

convolutional neural networks for object detection and feature extraction is unquestionable. 

Utilizing CNNs in the fields of cultural resource management and archaeology promises not only 

to decrease the human labor involved in manual feature identification but also to better inform 

archaeologists and conservationists of the status of cultural heritage sites, leaving experts better 

equipped to protect those sites. At Histria, locating unmapped tumuli might protect them from 

destruction as the modern city expands and sea levels rise; globally, sites already known to 

archaeologists stand to be more closely monitored with this method, and still more sites stand to 

be discovered. A collaborative effort between computer scientists and archaeologists combined 

with a thoughtful application of convolutional neural networks in the field of archaeology shows 

great promise for advancing the goals of cultural resource management.  
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