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In simulation of closely- or separately-joined rock masses, stability of rock blocks 

is of primary concern. However, there seems to be no approach that can handle general 

modes of simultaneous slidingand truly large rotation under general forces, including 

non-conservative forces such as waterforces. General causes of failure for rock blocks, 

such as limit points, bifurcation points, anddynamic instability (divergence and flutter), 

have never been addressed. This research implementsa formulation, called BS3D(an 

incremental-iterative algorithm introduced by Tonon), for analyzing general failure 

modesof rock blocks under conservative and non-conservative forces. 

Among the constitutive models for rock fractures developed over the years, 

Barton's empirical model has been widely used because it is easy to apply and includes 

several important factors associated with fracture characteristics. Although Barton's 

failure criterion predicts peak shear strength of rock fractures with acceptable precision, it 

has some weaknesses in estimating the peak shear displacement, post-peak shear 

strength, dilation, and surface degradation in unloading and reloading. In this dissertation, 

modifications are made to Barton's original model in order to address these 
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weaknesses.The modified Barton’s model is validated by a series of direct shear tests on 

rock fractures and implemented in BS3D to consider the dilatant behavior of fractures. 

The mechanical behavior of a rock block formed in the roof of a tunnel is 

governed by its geometry, the mechanical characteristics and the deformability of the 

fractures forming the block, the deformability of the block and that of the surrounding 

rock mass, and the stresses within the rock. BS3D, after verification and validation, is 

used to investigate the effect of dilatancy onstability of rock blocks formed in the roof of 

a circular tunnel. 

High-velocity plunging jets, issuing from hydraulic artificial or natural structures, 

can result in scouring of the rock riverbed or the dam toe foundation. Assessment of the 

extent of scour is necessary to ensure the safety of the dam and to guarantee the stability 

of its abutments. BS3D is used to investigate effect of high-velocity jet impact on 

stability of rock blocks in plunge pools. 
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(a) (b) 

 Figure 1.2: (a) Karun-3 Dam; (b) Karun-3 Power Tunnel, Khozestan, Iran. Photo 
courtesy of Iran Water & Power Resource Development Co. 

 

Although several researchers [2, 6-19] proposed different methods to analyze the 

stability of rock blocks, there seems to be no approach that can handle general modes of 

simultaneous sliding and truly large rotation under general forces, including non-

conservative forces such as water forces. General causes of failure for rock blocks, such 

as limit points, bifurcation points, and dynamic instability (divergence and flutter), have 

never been addressed [1]. 

1.1.2 Stability of rock blocks formed in the roof of a tunnel 

The mechanical behavior of a rock block formed in the roof of a tunnel (Figure 

1.3) is governed by its geometry, the mechanical characteristics and the deformability of 

the fractures forming the block, the deformability of the block and that of the surrounding 

rock mass, and the stresses within the rock [20].  

Approaches currently being used to analyze the stability of rock blocks formed in 

the roof of a tunnel can not handle general modes of simultaneous sliding and truly large 

rotation.  

Among the constitutive models for rock fractures developed over the years, 

Barton's empirical model [21, 22] has been widely used because it is easy to apply and 

includes several important factors associated with fracture characteristics. Although 
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 Figure 1.4: Schematic rock scour process in plunge pools [24]. 

1.2 OBJECTIVES AND SCOPE OF THIS STUDY 

Tonon [1] presented an incremental-iterative algorithm for analyzing general 

failure modes of rock blocks subject to generic forces, including non-conservative forces 

such as water forces. The block interacts with the surrounding constraint space using a 

finite number of sensor points. Consistent stiffness matrices were developed that fully 

exploit the quadratic convergence of the adopted Newton–Raphson iterative scheme. The 

algorithm takes into account large block displacements and rotations, which together with 

non-conservative forces make the stiffness matrix non-symmetric. 

The objectives of this research is to implement the formulation developed by 

Tonon [1] for the stability analysis of three dimensional single rock blocks subjected to 

generic forces including water pressure and high-velocity jet impact. The implemented 

code (called BS3D) considers the dilatant behavior of fractures using the modified 

Barton’s model developed in this study. 

 The verified and validated code is used to investigate the following rock 

engineering problems: 

1) Stability of rock blocks formed in the roof of a circular tunnel: effect of dilatancy. 

2) Effect of high-velocity jet impact on stability of rock blocks in plunge pools. 
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1.3 ORGANIZATION  

Chapter 2 summarizes the method proposed by Tonon [1] to analyze the stability 

of single rock blocks for general failure modes under conservative and non-conservative 

forces.  

 Chapter 3 presents a comprehensive literature review performed to address the 

limitation of Barton’s empirical model for rock fractures [21, 22], known as the most 

practical model. A database of direct shear tests available in the literature is assembled 

and analyzed. Modifications are made to Barton's original model in order to address the 

weaknesses described above.  

In Chapter 4, the modified Barton’s model introduced in Chapter 3 is validated by 

a series of direct shear tests on rock fractures.  

In Chapter 5, prototype BS3D computer code developed by Tonon [1] in 

Mathematica is re-written and translated into Fortran 95. Tonon's original code 

implements the algorithm just for tetrahedrons. However, the generalized version of 

BS3D developed in this dissertation can analyze general shapes of rock blocks. 

Furthermore, in situ stress and water pressure are implemented from scratch because they 

were not included in Tonon's code. In Tonon's original code, fracture dilatancy was 

included in a rudimental fashion by using a simplified version of Barton's model. 

However, the generalized version of BS3D can deal with both original [21, 22] and 

modified Barton’s model (Chapter 3) as well as Mohr-Coulomb’s failure criterion [25]. 

BS3D is validated in Chapter 6 for analysis of rock wedge stability by comparing 

the results of BS3D numerical analyses with 64 physical models and 2 case histories 

available from the literature [18, 26]. This investigation demonstrated the advantages of 

BS3D in predicting failure modes of a tetrahedron.  

In Chapter 7, the effect of dilatancy on the stability of a rock block formed in the 

roof of a circular tunnel is investigated: 

- An analytical approach is presented to analyze stability of a 2D triangular wedge 

formed in the roof of a circular tunnel. Two different definitions are introduced 

for the factor of safety of the block. The effects of stiffness and shear strength of 
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the fractures as well as in situ stress conditions on stability of the wedge are 

investigated.  

- A simplified limit equilibrium method is explained to analyze stability of a 

tetrahedron in the roof of an excavation. The results of the analytical analyses are 

compared with those obtained from BS3D simulations. Using the analytical 

limiting equilibrium approach and BS3D, the effects of the normal stiffness of the 

fractures, dilatancy, the tunnel radius, and the block size on stability of the 

tetrahedron are investigated.  

- A comprehensive sensivity analysis is performed on the effects of the shear 

strength, the normal stiffness, the in situ stress condition, the tunnel radius, and 

the block size on stability of a prism formed in the roof of a circular tunnel by 

four fractures that have the same dip angle.  

 

Chapter 8 briefly explains limitations of available approaches to scour evaluation. 

In this Chapter, water pressures caused by impinging jets have been implemented in 

BS3D and the stability of single rock blocks in plunge pools is investigated: 

- An approach is described to estimate pressure forces generated in plunge pools 

due to high-velocity jet impacts.  

- Failure criterion is introduced for jointed rock masses.  

- The scour model implemented in BS3D is calibrated and validated using the 

results of several experimental studies as well as case histories and prototypes 

available from the literature [27-31].  

- Ability of BS3D in considering in situ stress and dilation behavior of rock 

fractures as well as dealing with dynamic divergence and flutter are demonstrated.  
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CHAPTER 2: GENERAL SINGLE ROCK BLOCK STABILITY 

ANALYSIS METHOD (BS3D) 

2.1 INTRODUCTION 

Figure 2.1 shows different failure modes for a rock block subject to gravity. 

Making use of limiting equilibrium methods, John [6], Londe et al. [7], Hendron et al. 

[8], Hoek and Bray [9], Warburton [10], Priest [11], and Goodman and Shi [2] considered 

case (a) (wedge sliding) only. Pioneered by Wittke [12, 13], the study of rotational failure 

modes (b) and (c) in Figure 2.1 was also pursued using analytical methods by Chan and 

Einstein [14], Mauldon and Goodman [15] and Tonon [16]. These analytical methods 

cannot handle general simultaneous sliding and rotation; Yeung and co-workers [17-19] 

thus used a numerical method, such as the Discontinuous Deformation Analysis (DDA), 

to overcome the problem.  

However, there seems to be no approach that can handle general modes of 

simultaneous sliding and truly large rotation under general forces, including non 

conservative forces, such as water forces. General causes of failure for rock blocks have 

never been addressed: limit points (when the active force cannot be incremented further), 

static bifurcation points (when more than one static solution exists), and dynamic 

instability (divergence, when the motion of the block is unbounded in time; and flutter, 

when the unforced motion of the block is oscillatory and unbounded).  

The determination of the factor of safety is a challenge for currently available 

numerical methods, which typically resort to time-consuming trial and error calculations 

using the reduction of the strength parameters (e.g., [32]). After each complete analysis, 

they reduce the strength parameters and repeat the earlier analysis again until failure is 

reached. Whenever failure is not caused by limited strength (e.g., when the block fails in 

a pure rotational mode, or in a more complex roto-translational mode), the reduction of 

the strength parameters cannot yield the factor of safety, but, rather, it yields an incorrect 

failure mode (e.g., sliding rather than toppling).  
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(a) translation (b) rotation about an edge (c) rotation about a corner 

  

(d) torsional sliding (e) slumping 

Figure 2.1: Failure modes of a rock block. After Reference [33]. 

 

On the other hand, in a typical limiting equilibrium analysis, one would need to 

know the normal forces exerted by each of the discontinuities, which are indeterminate 

when contact occurs on more than three non-parallel discontinuities, or on two or more 

parallel discontinuities. Also, one needs to know the point of application for the frictional 

forces. In a typical limit equilibrium analysis, this entails knowing the shear stress 

distribution at limiting equilibrium, which in its turn requires knowledge of the normal 

stress distribution. The latter is, however, unavailable even if one assumes a linear elastic 

behavior of the rock mass and discontinuity (to normal stresses) because the application 

point of the normal force on a contact face is not available unless there is just one contact 

face. In order to overcome the reaction force indeterminacy, one needs to introduce the 

deformability of the discontinuities and/or of the bodies (rock block and surrounding rock 

mass). 
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BS3D [1] implements an incremental-iterative algorithm for analyzing general 

failure modes of rock blocks subject to generic forces, including non conservative forces 

such as water forces. The incremental-iterative nature of the algorithm is only a 

consequence of the non-linearity of the boundary conditions (contact vs. no contact), and 

of the constitutive relationships (deformability and yielding); it is not a consequence of 

the factor of safety determination per se. Consistent stiffness matrices have been 

developed that fully exploit the quadratic convergence of the adopted Newton-Raphson 

iterative scheme. The algorithm takes into account large block displacements and 

rotations, which, together with non-conservative forces make the stiffness matrix non 

symmetric. Also included in the algorithm are in situ stress and fracture dilatancy, which 

introduces non-symmetric rank-one modifications to the stiffness matrix. Progressive 

failure is captured by the algorithm, which has proven capable of detecting numerically 

challenging failure modes, such as rotations about only one point.  

BS3D determines the stability condition of a rock block by following its 

equilibrium path: if equilibrium is not possible, the mode of failure is detected. Failure 

modes may originate from a limit point or from dynamic instability (divergence or 

flutter); equilibrium paths emanating from bifurcation points are followed by the 

algorithm. The algorithm identifies both static and dynamic failure modes. The dynamic 

failure mode, i.e. the possible motion of the body over an infinitesimal interval of time, is 

calculated based on small rotation theory by imposing no further interpenetration at the 

constraints during the dynamic failure mode, and by assuming a rigid-perfectly plastic 

behavior of the discontinuities to shear displacements. The calculation of the factor of 

safety and associated failure mode(s) is obtained by BS3D with no overhead for any type 

of failure mode.  

Indeed, a typical stability analysis is divided into stages, for example: application 

of self weight and in situ stresses (Stage 1) followed by excavation (Stage 2), application 

of water forces (Stage 3), etc.. Within each stage, the active force applied to the block is 

proportional to a stage control parameter. The factor of safety was shown to be equal to 

the value of the stage control parameter at failure [1], and only one (non-linear, and thus 
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incremental-iterative) analysis (with no trial-and-error) is carried out by BS3D to 

determine the factor of safety.  

This chapter describes the basics of general single rock block stability analysis 

(BS3D). The whole chapter was taken from reference [1].  

2.2 KINEMATICS 

Let us fix a global Cartesian reference system (O, x, y, z) with unit vectors ex, ey, ez  

attached to the rock mass and considered as fixed in time. Let a subscript (0) indicate the 

base configuration. The rock block is a rigid body that has six degrees of freedom, 

namely the displacement of the centroid, G, referred to the global reference system, 

( ), , ,, ,
T

G x G y G z Gu u u≡u , and the pseudo-vector that defines the rotation about the centroid 

(again referred to the global reference system), ( ), ,
T

x y zθ θ θ θ≡ =θ r , where 0≤θ <2π is 

the rotation angle and r is a unit vector about which the rotation occurs [34]. The vector 

of degrees of freedom is thus ( ): , T
G=u u θ . This choice of degrees of freedom allows for 

a 2π rotation of the rigid body, at difference with Rodrigues parameters [34] or other 

parameterization that have singularities in the [0, 2π] range. 

 The pseudo-vector θ allows one to calculate the rotation matrix, R3×3, which 

maps a vector v attached to the rigid body from the base configuration to the current 

configuration as v(0) a  R⋅v: 

( ) ( ) ( ) ( )
2

2

2sin / 2sin θθ
θ θ

= + + ⋅R I S θ S θ S θ ,   (2.1) 

where S(.) is the spin operator, i.e.: 

( )
0

0
0

z y

z x

y x

θ θ
θ θ
θ θ

⎛ ⎞−
⎜ ⎟

= −⎜ ⎟
⎜ ⎟−⎝ ⎠

S θ     (2.2) 

Notice that 0limθ → =R I , and that, from a numerical standpoint the sine-squared 

form should be preferred to 1-cosθ  in order avoid the cancellation in computing 1-cosθ  
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for small θ . The spin operator allows one to express the vector product between any two 

3-vectors a and b as: 

( ) ( )× = ⋅ = − × = − ⋅a b S a b b a S b a    (2.3) 

and, for any 3x3 matrix c, has the property  

( ) ( )⋅ = ⋅S a c c S a     (2.4) 

The displacement of any point of the block, P, can then be calculated as: 

( ) (0) (0)P G= + ⋅u u R-I G P     (2.5) 

In the following, the derivative of Pu with respect to the six degrees of freedom 

will be needed. In order to accomplish this, let us first take the derivative of the rotation 

matrix with respect to θ. The columns of R are an orthonormal base ji fixed to the rigid 

body and initially coincident with the global basis. Therefore, by using Poinsot formulas: 

/i id dt = ×j ω j , one obtains: 

( )=R S ω R&      (2.6) 

The angular velocity, ω , is related to θ&  as [35]: 

( )= ⋅ω J θ θ& ,     (2.7) 

where:  

( ) ( ) ( )( )2
2 2

1 sin 12sin / 2T Tθθ
θ θ θ

⎛ ⎞= ⋅ + + − ⋅⎜ ⎟
⎝ ⎠

J θ θ θ S θ I θ θ   (2.8) 

After plugging Equation (2.7) into Equation (2.6), and Equation (2.6) into 

Equation (2.5), one can differentiate the displacement uP making use of Equation (2.3) 

and taking into account that vector (GP)(0) does not change in time because it belongs to 

the base configuration: 

( ) ( )( ) ( ) ( )( ) ( ) ( )(0) (0) (0)P G G G P= + ⋅ = + ⋅ ⋅ = − ⋅ ⋅ = ⋅u u R GP u S J θ θ R GP u S R GP J θ θ D θ u& &&& & & & &
   

           (2.9) 

where: 

( ) ( )( ) ( )( )3 3 (0)
: ,P ×= − ⋅D θ I S R GP J θ   (2.10) 
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ሶܝ ؔ ሾܝ ሶீ ીሶ ሿ்     (2.11) 

Likewise, let v be any vector attached to the moving frame (e.g., GP). Since 

( ) (0)= ⋅v u R v : 

( ) ( ) ( ) ( )(0) (0) (0),P= ⋅ = − ⋅ ⋅ = ⋅v u R v S R v J θ θ H θ v u
�

&& &  (2.12) 

where: 

( ) ( ) ( )( )(0) 3 3 (0), : ,P ×= − ⋅H θ v 0 S R v J θ   (2.13) 

Notice that: both DP and HP are skew-symmetric; J(θ) is neither symmetric nor skew-

symmetric; the large rotation contribution is quantified by J(θ); and that ( )0limθ → =J θ I

, for which one retrieves small-rotation formulations. 

Now, let θ be the compound rotation vector corresponding to a first rotation by 

pseudo-vector θ1 followed by a second rotation by pseudo-vector θ2. θ is calculated 

making use of quaternion as follows [36, 37]. The quaternion qi
 
associated to θi is the 

paring (qi,0, q), where qi,0 is a scalar and q is a vector defined as, respectively: 

( ),0 cos / 2iq θ=  ;   ( )sin / 2
i

θ
θ

=q θ    (2.14) 

The quaternion, q, associated to θ is found using the quaternion product of q2 and q1: 

q := (q0, q) = q2; q1 := ( ),2 ,1 2 1 2,0 1 1,0 2 2 1,i iq q q q− ⋅ + + ×q q q q q q  (2.15) 

θ is then calculated by inverting Equation (2.14), and its rotation matrix can be calculated 

either using Equation (2.1) or (and this reduces numerical inaccuracies) using q directly: 

( ) ( )2
0 02 1 2 2 Tq q= − + +R I S q qq    (2.16) 

The described algorithm is singularity-free and allows one to update a rotation 

pseudo-vector without multiplying rotation matrices and subsequently extracting the 

relevant rotation pseudo-vector: this last algorithm is unstable around and singular for θ = 

±π. Numerical inaccuracies introduced in matrix multiplication may also lead to non 

orthonormal matrices after several updates, whereas Equations (2.1) and (2.16) always 

yield an orthonormal matrix. 
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2.3 THE REACTION FORCES ARE INDETERMINATE  

Let us introduce the following notation: m = mass of the block; EG = inertia 

operator relative to point G [16, 38-41]; &ω  = d dtω/  = angular acceleration; f = fc + fa = 

resultant of the external forces (constraint fc, and active fa); mG = mG,c + mG,a =  

resultant moment of the external forces (constraint mG,c, and active mG,a) with respect to 

pole G. 

The dynamics of the block is controlled by the following system of vector 

differential equations (e.g., [38, 39]): 

G a c
a c

G G a c

m = +⎧
= +⎨ ⋅ × ⋅ +⎩

u f f
F F

E E m m
&&

&ω + ω ω =
 ,   (2.17) 

where Fa = (fa, mG,a)T and Fc = (fc, mG,c)T. 

The first three scalar equations control the motion of the centroid, while the last 

three (Euler’s) scalar equations control the motion of the body relative to the centroid, 

considered as a fixed point about which the body rotates. In order to simplify the 

derivations, in this section small rotations will be used, so that ( ) →J θ I  in Equation 

(2.8), =ω θ&  in Equation (2.7), and =ω θ&&& . An upper bar will indicate small 

displacements. 

Since only the incipient motion is of interest in this section, let us rewrite 

Equation (2.17) for t=0, and take into account the initial conditions: ( )0ω  = 0 (zero 

initial angular velocity) and ( )0G =u 0& , so that the displacement of P in the time interval 

dt is [16]: 

( ) 2 / 2P G dt= + ×u u GP&& &ω     (2.18) 

One obtains the following linear system in the unknown ( ),
T

G=u u&& && &ω  (for 

simplicity, in the following the index “(0)” will be suppressed): 

=Mu F&& ,     (2.19) 

where 3 3

G

m ×⎡ ⎤
= ⎢ ⎥

⎣ ⎦

I 0
M

0 E
, 

G

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

f
F

m
. 
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Equation (2.19) is supplemented with the constraint equations that prevent the 

block penetration into the rock mass. Let us assume that we know the contact points, Pi, 

that remain in contact with a discontinuity. We need to impose that these points move 

parallel to the discontinuities that bound the block. If Pi remains in contact with the j-th 

discontinuity, these constraints can be written in the form , 0
iP c j⋅ =u n  or  

( ) , 0G i c j+ × ⋅ =u GP n&& &ω ,    (2.20) 

where ,c jn  is the block side unit normal to the j-th  discontinuity. Since these 

constraints are linear in u&& , they can be written as =Au 0&& , where matrix A has as many 

rows as there are constraints of the type shown in Equation (2.20): 

 

( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , , , , , , , , , , ,

. . . . . .
i i i i i ix c j y c j z c j P G z c j P G y c j P G x c j P G z c j P G y c j P G x c jn n n y y n z z n z z n x x n x x n y y n⎡ ⎤− − − − − − − − −

= ⎢ ⎥
⎢ ⎥⎣ ⎦

A

           (2.21) 

A virtual displacement is any non-zero vector, ξ 6×1, that lies in the null space of 

A, i.e. it satisfies ⋅ =A 0ξ  [42]. Let the work done under virtual displacements, Wc, by 

the constraint forces Fc be formalized through a vector C, so that [41-51]:  

:T c T
c W= =F Cξ ξ     (2.22) 

The General Principle of Mechanics [42-51] generalizes Gauss Principle of Least 

Constraint [42, 52, 53] to mechanical systems with non-ideal constraints. These 

constraints (such as all frictional constraints) do work for virtual displacements, so that 

C≠0. The General Principle of Mechanics states that: the system evolves in time in such a 

manner that its acceleration minimizes the quadratic form [50]: 

( ) ( )1( ) ( )
T

a a
−− + − +Mu F C M Mu F C&& &&   (subject to the constraint 0=Au&& ) 

Using the General Principle of Mechanics, the acceleration and the resultant 

forces in the system can be obtained in closed-form [50]: 
1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2

( )
( )a

− + − + −

+ + −

= − + −

= − + −

u a M B Aa M I B B M C
Mu F M B Aa M I B B M C

&&

&&
 ,  (2.23) 
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where a superscript “+” indicates the Moore-Penrose generalized inverse of a matrix [54], 
1

a
−=a M F , and 1/ 2−=B AM . 

In Equation (2.23), the constraint resultant generalized force, ( ), T
c c c=F f m  is 

split into two components: the component caused by the ideal constraints 
1/ 2

,c id
+= −F M B Aa , and the component caused by the presence of non-ideal constraints 

1/2 1/2
, ( )c nid

+ −= −F M I B B M C . Several important consequences can be drawn: 

(1) cF  depends on the mass matrix M unless M is of the form mI6×6. This is equivalent 

to requiring that x, y, and z are three principal axes of inertia with moment of inertia 

equal to m. This is quite a rare event; for example, it may occur if the block is a 

sphere with radius equal to 5 / 2  or if it is a cube with edge equal to 2 3 . 

(2) The work done by a frictional constraint is not zero if there is slippage along that 

discontinuity. In a typical limit equilibrium analysis, one would need to know the 

normal force exerted by that discontinuity in order to be able to determine matrix C in 

Equation (2.22). Unfortunately, ,c idF  is only the resultant (force and moment) of the 

normal forces exerted by all the discontinuities. Thus, one cannot calculate the normal 

force on each discontinuity when contact occurs on more than three non parallel 

discontinuities, or on two or more parallel discontinuities. When three or less non 

parallel discontinuities are in contact, the normal force on one of those discontinuities 

is simply found as the projection of the resultant force, fc,id, onto that discontinuity’s 

normal. 

(3) Consider the case in which the virtual displacement has non-zero rotational 

component(s): ξ = ( Gξ , ψ)T. The virtual work is equal to Gξ fT + ψmG
T. In order to 

compute the virtual work done by the frictional forces on a given block face, one 

needs to know mG,c, and thus one needs to know the point of application for the 

frictional forces. In a typical limit equilibrium analysis, this entails knowing the shear 

stress distribution at limiting equilibrium, which in its turn requires knowledge of the 

normal stress distribution. The latter is however unavailable even if one assumes a 
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linear elastic behavior of the rock mass and discontinuity (to normal stresses) because 

the application point of the normal force on a contact face is not available unless there 

is just one contact face. Indeed, if there is just one contact face, let P be the 

application point of the normal force N. The equation ,c id× =OP N m in the three 

coordinates of P has rank 2, and, together with the plane equation for the contact face, 

it yields the three coordinates of P. 

 

In order to overcome the reaction force indeterminacy, one needs to introduce the 

deformability of the discontinuities and/or of the bodies (rock block and surrounding rock 

mass). For example, 3DEC [55, 56] uses normal and tangential springs at the intersection 

point between a discontinuity face and a block’s vertex. BSM3D [57-59] and 3D-DDA 

[17, 18, 60-62]  use similar springs located at the vertices of the contact area. In general, 

these contact points change from one iteration to the next. The thrust of these models is, 

however, toward analyzing systems composed of many blocks: if only one block is 

considered, the introduced approximations are too coarse to yield accurate results 

because: 

• If discontinuities display a non-linear behavior, the discontinuity path 

dependency cannot be modeled when the contact points change at each 

iteration. To get around this, 3DEC can analyze internally discretized blocks, 

but this increases considerably the computational effort.  

• Only an approximate moment of inertia, α, is calculated in 3DEC based upon 

the average distance from the centroid to the vertices of the block [56], so that 

EG = αI3×3, and M becomes close to mI6×6 (see observation 1 above). These 

approximations may lead to large errors in detecting a block’s dynamic failure 

mode because the angular velocity of the unconstrained motion becomes 

parallel to the applied resultant moment (Equation (2.19)), and the incipient 

motion of a block and the resultant constraint force are not accurate (Equation 

(2.23)).  
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• In 3DEC, the constraint force on a given face (in contact with another face) is 

placed mid-way between the centroids of the two contacting blocks [56]; if 

blocks undergo rotation, the position of the centroid is moved based on an 

empirical factor (for which there is no experimental evidence) [56], and 

brought back to a point (which has no physical meaning) on the contacting 

faces if it ends up outside the contacting faces themselves [56]. This whole 

construction is purely geometrical, and is not based on the actual stress 

distribution at the contacting faces. 

 

3D-DDA [17, 18, 60, 61] as well as the Manifold Method [63] are based on the 

assumption that there exists a potential for all forces (active and constraint) acting on the 

block system. As a consequence, all forces must be conservative and no dissipative forces 

(e.g., friction) or path-dependent behavior can be modeled. Moreover, since forces are 

conservative, they must be positional, and therefore non-positional forces (e.g., follower 

loads such as water pressure) cannot be modeled.  

2.4 PROPOSED APPROACH  

Since the general problem is statically indeterminate, the rock block, B, is thought 

of as interacting with the rock mass (constraint space) at a finite number of points lying 

on its boundary, ∂B. These points are termed “sensor points” because they represent the 

points at which the rock block “feels” the constraint space as in haptic technology 

(Sections 2.2.5 and 2.2.6). These points can also be seen as a generalization of the 

“artificial supports” introduced by Chan and Einstein [14], who noticed that the use of 

artificial supports is appealing because of “its analogy with reality, where surfaces are in 

contact at a number of points”. 

Each sensor point is provided with a non-linear normal spring that simulates the 

deformability of the rock mass, of the discontinuity and of the rock block. At each sensor 

point, a non-linear tangential spring equipped with a tangential slider simulates the 
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tangential deformability and the limited shear strength of the discontinuity, respectively. 

Stiffness and resistance will be dealt with in Section 2.8. 

The aim is to determine the stability condition of a rock block: if equilibrium is 

not possible, the mode of failure will be detected. In static conditions, the left-hand side 

of Equation (2.17) is equal to zero, and the equilibrium path of the rock block is thus 

followed using a predictor-corrector (or incremental-iterative) scheme that imposes the 

vanishing of the residual (right-hand side of Equation (2.17)): : a c= = +r F F F  (Section 

2.5). Large displacements and rotations are accommodated as per Section 2.2. 

2.5 THE PREDICTOR-CORRECTOR STRATEGY  

The entire calculation is first divided into stages. For example: application of self 

weight and in situ stresses (stage 1) followed by excavation (stage 2), water forces (stage 

3), etc. Within each stage, Fa is assumed to be proportional to one stage control 

parameter, λ, so that the residual equation that defines the equilibrium path is: 

( ) ( ) ( ), c aλ λ= + =r u F u F u 0     (2.24) 

Its incremental form is: 

aλ λ
λ

∂ ∂
+ = ⇒ =

∂ ∂
r ru 0 Ku F
u

& && &  ,   (2.25) 

where the stiffness matrix is 

: ∂
= −

∂
rK
u

     (2.26) 

Equation (2.25) must be solved with the initial conditions: u0=uprevious stage and 

λ0=0. The additional equation that makes it possible to solve Equation (2.25) is the 

increment control strategy. Let ( ) )(
)(

l
n•  be the value of a variable ( )•  at the l-th iteration (

0=l  refers to the predictor step) during the n-th increment. Let δ indicate iterative 

change and Δ denote increment change. Let (0) (0) 1 (0)
( ) ( ) ( )n n a n

−=v K F  be the predictor velocity, 

and define the stiffness ratio, sr, as: 
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(0) (0) (0)
( ) ( ) ( )

( ) (0) (0)
( ) ( )

T
n n a n

n T
n n

sr
λΔ

=
v F

v v
    (2.27) 

The stiffness ratio is a measure of the system’s stiffness as related to the 

tangential predictor. If  sr(n)/sr(0) > 0.3, then the system has lost less than 70% of its 

stiffness at the first iteration, and load control strategy can be safely applied: 

( )( ) ( ) ( )
( ) ( ) ( ) 0, 0l l l
n n nc stepλ λΔ Δ = Δ − =u    (2.28) 

A value step0 = 0.1 has been successfully used in the implementation. 

Otherwise, the system has lost more than 70% of its stiffness at the first iteration; 

the adopted control strategy is then the arc-length control [64, 65] because it allows the 

static solution to safely reach possible critical points. Let (v, 1)T/f be the tangent vector to 

the equilibrium path normalized to unit length. The arc-length control with fixed-step 

strategy is: 

( )( ) ( ) (0) ( ) ( )
( ) ( ) ( ) ( ) ( ) 0( )

( )

1, 0l l T l l
n n n n nl

n

c step
f

λ λΔ Δ = Δ + Δ − =u v u    (2.29) 

The arc-length controlled forward-Euler predictor is then [66]: 

     (0) (0) (0)
( ) ( ) ( )n n nλΔ = Δu v ,    (2.30) 

where: (0) (0) 1 (0)
( ) ( ) ( )n n a n

−=v K F , (0) (0) (0)
( ) 0 ( ) ( )/ 1 T
n a n nstepλΔ = + F v , and step0 is calculated at the 

first arc-length increment as ( )(0) (0)
0 (0) (0)1/ 20 1 T

astep = + F v . Since units of displacements 

and of angles are intermixed in u, stiffness scaling (energy constraint) has been 

introduced in the increment control via: (0) (0) (0) (0) (0)
( ) ( ) ( ) ( ) ( )

T T
a n n n n n=F v v K v . 

Since the contact status of a sensor point may change at each iteration, the 

corrector phase is a full Newton method, which is based on the truncated Taylor 

expansion of the system of Equations (2.24) and (2.29): 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( 1) ( ) ( 1) ( 1)
( ) ( ) ( ) ( )

( 1) ( ) ( 1) ( 1)
( ) ( ) ( ) ( ) 0

l l
n n

l l
n n

l l l l
n n n n

l l l l
n n n n

c cc c

δ δλ
λ

δ δλ
λ

+ + +

+ + +

⎧ ∂ ∂
= + + =⎪ ∂ ∂⎪

⎨
∂ ∂⎪ = + + =⎪ ∂ ∂⎩

r rr r u 0
u

u
u

 ,  (2.31) 
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i.e.:   
( 1) ( )( ) ( )
( ) ( )( ) ( )
( 1) ( )
( ) ( )

l ll l
n nn a n
l lT
n ncg

δ
δλ

+

+

⎛ ⎞ ⎛ ⎞⎛ ⎞−
=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠

u rK F
g  

   (2.32) 

where: 

( )
( )

(0) (0)
( ) ( )
( ) ( ) (0)

( ) ( ) ( )1l
n

n n
l l T

n a n n

c
f

∂
= = =

∂ +

v v
g

u F v
;   

( )
( )

( ) ( ) (0)
( ) ( ) ( )

1 1
1l

n

l l T
n a n n

cg
fλ

∂
= = =

∂ + F v
 

The system of Equations (2.32) is not symmetric but has small order (i.e. 7), and 

is solved using the LU decomposition (Crout-Banachiewicz) method with partial pivoting 

[67]. The detection of a critical point in the equilibrium path then comes with no 

overhead because the minimum diagonal element of matrix L monitors the smallest 

eigenvalue of K [66, 67]. The stopping criterion for the Newton method is: 
( ) (0) 4 ( ) (0) 2
( ) ( ) ( ) ( )/ 10 AND / 10l l
n n n n

− −< Δ Δ <r r u u   (2.33) 

Divergence is detected using the condition: 
( ) (0) 3 ( ) (0) 3
( ) ( ) ( ) ( )/ 10 OR / 10l l
n n n n> Δ Δ >r r u u    (2.34) 

and the maximum number of iterations is 50. 

Since the rotation vectors cannot be summed up [53, 68], one cannot accumulate 

the generalized displacements )(
)(

l
nuΔ  for a given increment, i.e. one cannot write 

(0) ( )
( ) ( ) ( )

l
n n nl

Δ = Δ + Δ∑u u u . Indeed, the updating of the degree-of-freedom vector, u, 

follows the usual vector laws for its first three components (centroid displacement), and 

the algorithm in Equation (2.14) and (2.15) for its last three components (rotation about 

the centroid). The rotation matrix is updated using Equation (2.16). 

2.6 THE ROCK BLOCK 

Let us first determine the coordinates of the sensor points. Let nf be the number of 

faces making up the rock block. Since the rock block, B, is a polyhedron, the i-th face of 

B, Fi, is a polygon Let Si be an ordered list of its vertices listed in counterclockwise order 

along its boundary (hole vertices are listed in clockwise order). Let nv,i be the number of 

vertices of Fi, i.e. nv,i = #Si. Fi is first triangulated into a set of nt,i = nv,i -2 triangles using 
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the efficient procedure of Seidel [69] as implemented by Narkhede and Manocha [70]; it 

is an incremental randomized algorithm whose expected complexity is ( )iviv nnO ,, log , 

but in practice it is almost linear in time for a simple polygon. Subsequently, sensor 

points are assigned to each triangle as described below.  

 The j-th triangle in Fi is mapped from a normalized plane using the following 

(affine) transformation g shown in Figure 2.2: 

( ) ( )
( ) ( )
( ) ( )⎪

⎩

⎪
⎨

⎧

⋅−+⋅−+=
⋅−+⋅−+=

⋅−+⋅−+=

ηξ
ηξ

ηξ

1,,3,,1,,2,,1,,

1,,3,,1,,2,,1,,

1,,3,,1,,2,,1,,

jijijijiji

jijijijiji

jijijijiji

zzzzzz
yyyyyy

xxxxxx
 ,  (2.35) 

where (xi,j,k, yi,j,k, zi,j,k,) are the coordinates of the k-th triangle vertex, Ai,j,k. In the 

normalized (ξ, η)-plane, each edge is subdivided into the same number of segments, ntt. 

The same number of segments is used for all triangles in Fi, even though one could use a 

different ntt for each triangle, if needed. The normalized triangle in the (ξ, η)-plane 

remains subdivided into ntt
2 subtriangles of equal area, i.e. 1/[2(ntt

2)]. The subtriangle 

area in the (x, y, z)-space is thus: 

, ,1 , ,2 , ,1 , ,3
, 2:

2
i j i j i j i j

i j
tt

a
n
×

=
A A A A

   (2.36) 

 

 

Figure 2.2: Affine transformation g and sensor points for ntt = 4 [1]. 
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A sensor point is located at the centroid of each normalized subtriangle in the (ξ, 

η)-plane. The normalized coordinates of the sensor points in the (ξ, η)-plane may be 

found using Algorithms 1 and 2 in Figure 2.3. 

 

Algorithm 1: 
 
FOR l=1,…, ntt 
     (1/3+(l -1), 1/3 ) / ntt 
 

Algorithm 2: 
 
ntt1 = ntt-1 
FOR l=1,…, ntt-1 
     FOR m = 1,…, ntt1 
          (2/3 + (m - 1), 2/3 +(l-1)) / 
ntt 
          (1/3 + (m - 1), 1/3 + l) / ntt 
     ntt1 = ntt-1 

Figure 2.3: Algorithms for calculating the normalized coordinates of the sensor points in 
the (ξ, η)-plane 

 

For each sensor Pi,j,k (k = 1,…, ntt
2), the coordinates in the (x, y, z)-space are then 

found using Equation (2.35). This ensures that Pi,j,k in the (x, y, z)-space is the centroid of 

the i,j,k-th subtriangle. Indeed, consider the subtriangle with normalized centroid 

coordinates (1/3, 1/3)/ntt. Using Equation (2.35), the x-coordinate of the centroid in the (x, 

y, z)-space is: ( )( ) ( ) ( )ttjijijitt nxxxn 3/3/21 3,,2,,1,, ++− . On the other hand, it is known that 

the coordinates of the centroid of a triangle are the averages of the coordinates of the 

vertices (e.g., [71]). Since the x-coordinates of the vertices are: 1,, jix ,  

( ) ttjijiji nxxx /1,,2,,1,, −+ , and ( ) ttjijiji nxxx /1,,3,,1,, −+ , respectively, one again obtains 

( )( ) ( ) ( )ttjijijitt nxxxn 3/3/21 3,,2,,1,, ++− . Likewise for the other subtriangles.  

Notice that the normalized coordinates of the sensor points are the same for all 

triangles in Fi. Additionally, since an incremental scheme is adopted, these initial 

configuration coordinates will be labeled with a subscript (0). Algorithm 3 in Figure 2.4 

sums up the main calculation steps. 

The current positions for the sensor points are needed in order to detect contacts 

(Section 2.7), and, if there is contact, to calculate the correct reaction forces because the 
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normal and tangential springs are non-linear in the sensor displacement components 

(Section 2.8). Likewise, the current application points and direction (for follower loads) 

of the active external forces are needed to calculate the correct resultants. Therefore, at 

each iteration the coordinates and the stresses at each sensor point are updated using 

Equation (2.5). 

 

Algorithm 3: 
 
CALCULATE NORMALIZED COORDINATES FOR SENSOR POINTS 
FOR i = 1,…, nf 
     FOR j = 1,…, nt,i 

   CALCULATE ai,j (Equation (2.36)) 
   FOR k = 1,…, ntt

2+1 
     CALCULATE )0(,, kjiP  coordinates (Equation (2.35)) 

Figure 2.4: Algorithm that sums up the main calculation steps 

2.7 CONSTRAINT SPACE AND CONTACT DETECTION 

The constraint space, C, is the set of points where the sensor points find a reactive 

force. Oftentimes C is just the rock mass surrounding the block. For example, let D1 be a 

block’s mould and consider the tunnel example in Figure 2.5(a) and Figure 2.5(b) (in 

which C has boundary ∂C = D1 ∪ D2 ∪ D3) and the slope example in Figure 2.5(c) (in 

which C is has boundary ∂C = D1 ∪ D3).  

C is assumed to be fixed in the (x, y, z)-space. At each iteration, one needs to 

know whether a sensor point is in C. In particular, one needs to know whether the 

iterative displacement ( )
( )
l
nδ u  for B has taken a sensor point into or out of C, or whether 

it has kept a sensor point inside or outside C. This is accomplished as follows. 

The boundary of the constraint space, ∂C, is made up of (or is approximated with) 

a set of polygons in the (x, y, z)-space: ሼܥ௜, ݅ ൌ 1,… , ݊௖௜ሽ. Similar to ∂B, each polygon 

Ci is first triangulated using Seidel’s algorithm [69]. Let nc,i denote the i-th unit normal to 

Ci, positive into the unconstrained space for B.  
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(a) (b) (c) 

Figure 2.5: (a) and (b) Tunnel example for block B; (c) slope example for block B [1]. 

 

Oftentimes the path described by a sensor point until B reaches either equilibrium 

or a critical point is small as compared to the representative dimension of C, and sensor 

points interact with a small subset of ∂C. Thus, triangulation and intersection search can 

be limited to a small subset of ∂C enclosed in a bounding box around B: excellent 

efficiency has been achieved with a single Axis-Aligned Bounding Box (AABB) [72] 

inflated 10% on edge. In the common situations exemplified in Figure 2.5, one can even 

restrict ∂C to D1, i.e. to the block’s mould. In this case, no additional computations are 

actually necessary because the triangulation and the query structure for internal point 

location have already been carried out in Section 2.6; consequently, ∀Fi ∈ D1: Ci = Fi  

and nc,i = ni (all of B quantities referring to the initial configuration).   

The logic of the contact algorithm adopted here is based on the three-dimensional 

extension of the Jordan curve Theorem [71, 73], i.e. a simple closed surface separates the 

3D space into two regions of which it is the common boundary. Consider a sensor point 

Pi,j,k that at the (l-1)-th iteration during the n-th increment is not in C. As shown in Figure 

2.6(a), at the l-th iteration, point Pi,j,k is in C if 
, ,

( )
( )i j k

l
P nδu  applied at ( 1)

, , ( )
l

i j k nP −  has an odd 

number of intersections with ∂C; and it remains outside C otherwise (Figure 2.6(b)). As 

shown in Figure 2.6(c) and (d), the other way around is true if Pi,j,k is in C at the (l-1)-th 

iteration. Notice that if two or more intersections are found, 
, ,

( )
( )i j k

l
P nδu  is too large, the 

arclength step0 (Equation (2.29)) must be reduced, and the n-th increment must be 

restarted. 
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(a) (b) 

 
(c) (d) 

Figure 2.6: (a) and (b)  is not in C at the (l-1)-th iteration: (a)  takes 

the sensor point into C, (b)  takes the sensor point out of C. (c) and 

(d)  is in C at the (l-1)-th iteration: (c)  keeps the sensor 

point in C, (d)  takes the sensor point outside C [1]. 

 

In order to check whether 
, ,

( )
( )i j k

l
P nδu  applied at ( 1)

, , ( )
l

i j k nP −  intersects Ch, one first 

calculates the intersection between a ray from ( 1)
, , ( )

l
i j k nP −  in the positive 

, ,

( )
( )i j k

l
P nδu  

direction. This ray has parametric equation OQ = ( 1)
, , ( )

l
i j k nOP − + d 

, , , ,

( ) ( )
( ) ( )/

i j k i j k

l l
P n P nδ δu u , 

δ

δ

δ

δ

( 1)
, , ( )

l
i j k nP −

, ,

( )
( )i j k

l
P nδ u

, ,

( )
( )i j k

l
P nδu

( 1)
, , ( )

l
i j k nP −

, ,

( )
( )i j k

l
P nδu

, ,

( )
( )i j k

l
P nδu
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with d > 0. The idea is to first find the intersection Q* between this ray and the plane 

containing Ch, and then check if Q* lies inside Ch; if it does and 
, ,

( )
( )0

i j k

l
P nd δ≤ ≤ u , then 

Ch is counted as an intersection face.  

If sensor point , ,i j kP  crosses into C, in the calculation of the residual one needs to 

know the distance traveled in C, , , .i j kd  Likewise, if sensor point , ,i j kP  crosses out of C, 

one needs to know the distance traveled outside C, , , .i j kd  In the first (second) case, one 

has 
, ,

( )
( ) , 0

i j k

l
P n c hδ ⋅ <u n  (

, ,

( )
( ) , 0

i j k

l
P n c hδ ⋅ >u n , respectively), and the distance traveled in 

(outside, respectively) C is  
, ,

( )
, , ( )i j k

l
i j k P nd dδ= −u . 

Algorithms for determining whether a point is in a polygon have been reviewed 

by Haines [74]. Since Ch has already been triangulated, the most efficient algorithm 

exploits this triangulation by generating a query structure that is then used to determine 

the location of a point in logarithmic time [70] (the ray tracing algorithm of Franklin [75], 

for example, works in linear time). Because the algorithm handles polygons embedded in 

a 2D space, Ch is projected onto a Cartesian plane. To avoid numerical instabilities, the 

largest component of nc,h is first identified, say this is the x-component. Then, the 

projection of vertex A ∈ Ch is A ≡ (x, y, z)  a  (y, z).  

Efficient algorithms for contact detection (e.g., RAPID [76] and OPCODE [77]) 

yield a list of intersecting boundary triangles, but do not provide information on points 

that are inside two intersecting solids. As a consequence, they cannot be used here. 

2.8 SENSOR POINT STIFFNESS, CONSTRAINT FORCES AND THEIR RESIDUAL 

CONTRIBUTIONS 

Let , , ,c i j kn be the normal to ∂C where Pi,j,k entered C, and let I be the identity 

matrix. In order to simplify the notation, let us suppress the iteration and increment 

indexes. The normal component of the iterative displacement change and the tangential 

component of the incremental displacement are, respectively: 
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( ), , , , , ,, , , , , , , , , , , , ,i j k i j k i j k

T
n P c i j k c i j k P c i j k c i j k Pδ δ δ= ⋅ =u n n u n n u   (2.37) 

( ), , , , , , , , , , , ,, , , , , , , , , , , , , ,i j k i j k i j k i j k i j k i j k

T T
t P P n P P c i j k c i j k P c i j k c i j k PΔ = Δ − Δ = Δ − Δ = − Δu u u u n n u I n n u (2.38) 

2.8.1 Normal stiffness 

At the l-th iteration of the n-th increment, the normal stiffness at a sensor point, 

Pi,j,k, is not zero if and only if ( -1)
, , ( )

l
i j k nP  ∈ C. Let 

, ,, i j kn Pu be the accumulated normal 

displacement into C since Pi,j,k entered C: 
, , , ,, , , , *

i j k i j k

T
n P c i j k Pu = −n u , where “*” denotes “since 

Pi,j,k entered C”. This normal displacement is the sum of three displacement components 

caused, respectively, by the deformability of the discontinuity, the rock block, and the 

constraint space (rock mass): 

, , , , , , , ,, , , ,1 2 3
i j k i j k i j k i j kn P n P n P n Pu u u u= + +    (2.39) 

The deformability of the rock block and of the rock mass are taken into account (albeit in 

a simplified form) in order not to overestimate the forces generated by dilatancy. 

Let , ,2i j kkn  be the normal stiffness of the rock block and let , ,3i j kkn  be the 

normal stiffness of the rock mass, which are assumed to be constant, and are calculated as 

shown below. If , ,i j knσ  is the current normal stress at Pi,j,k, then:  

, ,, , , , ,2 / 2
i j kn P i j k i j ku n knσ= ; 

, ,, , , , ,3 / 3
i j kn P i j k i j ku n knσ=   (2.40) 

Goodman’s hyperbolic model [78] is adopted for the normal behavior of the 

discontinuity: 

, ,

, ,

, , ,
, ,

, , ,

1

1 1 /
i j k

i j k

i j k n P
i j k

n P i j k

s u
n

u v
σ

⋅
=

−
    (2.41) 

where si,j,k and vi,j,k are the initial stiffness and the maximum closure, respectively, of the 

constraint face penetrated by Pi,j,k. 

Substituting Equation (2.40) into Equation (2.39), solving for 
, ,,1

i j kn Pu , and finally 

substituting into Equation (2.41) yields a quadratic equation in the normal stress. Its 

positive root is (subscripts have been omitted to reduce clutter): 
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( ) ( )

( ) ( )( )( )
( )2

2 3 2 3
/ 2 2 3

4 2 3 2 3 3 2 3

n

n n

kn kn u v kn kn s v
n kn kn

kn kn kn kn s v u kn s v kn s v kn v u
σ

⎛ ⎞⋅ ⋅ − − + ⋅ ⋅ +
⎜ ⎟ ⎡ ⎤= ⋅ +⎣ ⎦⎜ ⎟⎜ ⎟⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ + −⎝ ⎠

 

(2.42) 

The normal stiffness of the rock block is assumed to be constant. It is assumed 

that the normal force at a sensor point causes a settlement equal to that of a circular 

foundation resting on an isotropic linearly elastic medium whose depth is equal to the 

distance between the sensor point and the centroid, hi,j,k. The equivalent circular 

foundation is assumed to have the same area as the area of face Fi, 
iFa . The equivalent 

diameter of the foundation is then: 2 /
ii Fd a π= . Let EB and νB be the Young’s 

modulus and the Poisson’s ratio of the intact rock. The stiffness is: 
1

2
, ,, ,

2
, , , ,

, , 2 2
, ,

22
2 2

2 1 1
(1 ) 2(1 ) 2

2(1 ) 1

i j ki j k

i j k i j k iiB
i j k

i B i i B
i j k

B
i

hh
h h ddEkn

d d d h
d

ν ν
ν

−
⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎛ ⎞ ⎝ ⎠= + − + − +⎢ ⎥⎜ ⎟− −⎝ ⎠⎢ ⎥⎛ ⎞

− +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

  (2.43) 

The boundary element method could be also used to determine this stiffness. 

Likewise, the normal stiffness of the rock mass is assumed to be constant. It is 

assumed that the normal force at a sensor point causes a settlement equal to that of a 

circular foundation on an isotropic linearly elastic ground of infinite depth. Let Em and νm 

be the Young’s modulus and the Poisson’s ratio of the rock mass. The stiffness is: 

, , 2

13
1

m
i j k

i m

Ekn
d ν

=
−

    (2.44) 

The contribution of the normal stiffness to the constraint force Fc in Equation 

(2.24) is thus: 

( ) ( )
, , ,( ) ( )

, , , , ( ) ( ) ( )( )
( ) , , ( ) , , ,

c i j kl l
c n i j i j k n l ln

n i j k n c i j k

a nσ
⎛ ⎞

= ⋅ ⎜ ⎟⎜ ⎟
⎝ ⎠

n
F u

S G P n
  (2.45) 

The derivative , , /i j k Pnσ∂ ∂u  will be needed which can be written as: 
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( ), ,

, , , , , , , ,

,, , , , , , , ,
, , , , , ,

, , ,

i j k

i j k i j k i j k i j k

n Pi j k i j k i j k i j kT T
c i j k c i j k

P n P P n P n P

un n n n
u u u

σ σ σ σ∂∂ ∂ ∂ ∂
= = − = −

∂ ∂ ∂ ∂ ∂
n n

u u
,  (2.46) 

where (subscripts have been again omitted to reduce clutter): 

( )( )
( ) ( )( )( )

( )
, ,

, ,

2
,

3 2 3
2 3 1 / 2 2 3

4 2 3 2 3 3 2 3i j k

ni j k

n P
n n

kn s v kn s v kn u vn
kn kn kn kn

u kn kn kn kn s v u kn s v kn s v kn v u

σ
⎡ ⎤

⋅ ⋅ + ⋅ + −∂ ⎢ ⎥ ⎡ ⎤= ⋅ ⋅ + ⋅ +⎢ ⎥ ⎣ ⎦∂ ⎢ ⎥⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ + −⎣ ⎦

 

           (2.47) 

Likewise, the derivative 
, ,

, ,

,

/
i j k

i j k
P

n P

n
u
σ⎛ ⎞∂

⎜ ⎟∂ ∂
⎜ ⎟∂⎝ ⎠

u  will be needed. This can be written 

as: 

, , , ,

2
, , , ,

, , ,2
, ,

/
i j k i j k

i j k i j k T
P c i j k

n P n P

n n
u u
σ σ⎛ ⎞∂ ∂

⎜ ⎟∂ ∂ = −
⎜ ⎟∂ ∂⎝ ⎠

u n ,   (2.48) 

where: 

   ( )

( ) ( )( )( ), ,

32 2
, ,

3/ 22 2
,

2 2 3

4 2 3 2 3 3 2 3i j k

i j k

n P
n n

n kn kn s v
u kn kn kn kn s v u kn s v kn s v kn v u

σ∂ ⋅ ⋅ ⋅
=

∂ ⎡ ⎤⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ + −⎢ ⎥⎣ ⎦

 (2.49) 

Let us now consider possible the special case of sensor points entering C. If 
( -1)

, , ( )
l

i j k nP ∉ C and ( )
, , ( )

l
i j k nP ∈ C, then the normal displacement traveled in C is 

, , , ,

( ) ( )
, , , ( ) , ( )/

i j k i j k

l l
i j k n P n n P nd δ δu u . The penetration of  , ,i j kP  causes the unbalanced force: 

, , , ,

2
( ) ( ) ( ) ( )

, , ( ) , , , ( ) , , , ( ) , ( ): /
i j k i j k

l l l l
i j k n i j i j k n i j k n P n n P na n dσ δ δ= ⋅no u u ,  (2.50) 

and the unbalanced moment: 

( )( ) ( ) ( ) ( ) ( ) ( )
( ) , , ( ) , , ( ) ( ) , , ( ) , , ( )
l l l l l l
n i j k n i j k n n i j k n i j k n× =G P no S G P no   (2.51) 

Therefore, the following is the , ,i j kP  contribution to the residual ( )
( )

l
nr  in Equation 

(2.32): 

( )
( )

, , ( )

( ) ( ) ( )
( ) , , ( ) , , ( )

l
i j k n

l l l
n i j k n i j k n

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

no

S G P no
    (2.52) 
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2.8.2 Shear stiffness 

The Barton-Bandis model for shear strength [79-81] is adopted here because of its 

wide use and relative ease in parameter estimation. Consider first the case in which 
( -1)

, , ( )
l

i j k nP ∈ C. Let Li be the characteristic length of face Fi, and let JRCi,j,k and JCSi,j,k be the 

Joint Roughness Coefficient and the Joint Compressive Strength (respectively) for the 

discontinuity penetrated by , ,i j kP , corrected for the length Li as appropriate [80]. The 

shear strength is: 

 , ,( ) ( )
max, , , ( ) , , ( ) , , , , ,( )

, , ( )

tan log i j kl l
i j k n i j k n i j k b i j kl

i j k n

JCS
n JRC

n
τ σ ϕ

σ
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

,  (2.53) 

where , , ,b i j kϕ  is the base friction angle of the discontinuity penetrated by , ,i j kP .  

Two stiffness models have been considered: in the first model, the shear stiffness 

is equal to a fraction of the normal stiffness (typically one tenth): 

, ,

( 1)

, ,( ) ( )
, , ( ) , , ( ) ,

, ( )

/10 /10
i j k

l

i j kl l
i j k n i j k n i j

n P n

n
ks kn a

u
σ

−
∂

= = ⋅
∂

   (2.54) 

In the second model, following Barton and Bandis, it is assumed that the shear 

stiffness is constant up to the peak shear displacement, , , ,peak i j kδ  [81]: 

( ) ( )
, , ( ) , , ( ) , , ,( )

, , ( )

tan log /l l
i j k n i j k n b peak i j kl

i j k n

JCSks n JRC
n

σ ϕ δ
σ

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
,  (2.55) 

where the peak shear displacement is (L in m): 
0.33

, , ,
, ,

( )
500

i i
peak i j k

i j k

L L m
JRC

δ
−

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
   (2.56) 

Let , , ( 1)i j k n−s  be the last converged shear force at , ,i j kP . In order to avoid spurious 

unloading, incremental (rather than iterative) updates of the shear force are used (e.g., 

page 154 in reference [82]). The updated shear force is thus 

, ,

( ) ( ) ( )
, , ( ) , , ( 1) , , ( ) , ( )i j k

l l l
i j k n i j k n i j k n t P nks−= + Δs s u    (2.57) 
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The contribution to the constraint force, Fc, in Equation (2.24) is thus: 

( ) ( )
( )

, , ( )( )
, ( ) ( ) ( )( )

( ) , , ( ) , , ( )

l
i j k nl

c s l l ln
n i j k n i j k n

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

s
F u

S G P s
  (2.58) 

If, on the other hand, the peak shear strength has been overcome during the previous 

iteration, then ( )
, , ( ) 0l

i j k nks = and the following is the , ,i j kP  contribution to the residual ( )
( )

l
nr  

in Equation (2.32): 

( )

, , , ,

, ,( ) ( ) ( ) ( )
, , ( ) , , ( ) , , , , , , ( ) , ( )( )

, , ( )

( ) ( ) ( )
( ) , , ( ) , , ( )

: tan log /
i j k i j k

i j kl l l l
i j k n i j k n i j k b i j k ij t P n t P nl

i j k n

l l l
n i j k n i j k n

JCS
n JRC a

n
σ ϕ

σ

⎛ ⎞⎡ ⎤⎛ ⎞
⎜ ⎟= − + Δ Δ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎜ ⎟
⎜ ⎟
⎝ ⎠

s u u

S G P s

 (2.59) 

 

Let us now consider possible special cases of sensor points exiting or entering C. 

If ( -1)
, , ( )

l
i j k nP ∈ C and ( )

, , ( )
l

i j k nP ∉ C, then , ,i j kP  contributes neither to the stiffness nor to the 

residual. Finally, if ( -1)
, , ( )

l
i j k nP ∉ C and ( )

, , ( )
l

i j k nP  ∈ C, then the shear stiffness becomes 

active, and the following is the , ,i j kP  contribution to the residual ( )
( )

l
nr  in Equation 

(2.32): 

( )
, , , ,

( ) ( ) ( ) ( )
, , ( ) , , ( ) , , , ( ) , ( )

( ) ( ) ( )
( ) , , ( ) , , ( )

: /
i j k i j k

l l l l
i j k n i j k n i j k t P n t P n

l l l
n i j k n i j k n

ks d δ δ⎛ ⎞=
⎜ ⎟−
⎜ ⎟
⎝ ⎠

s u u

S G P s
  (2.60) 

2.9 ACTIVE FORCES GENERATED BY HYDROSTATIC WATER PRESSURE 

Consider hydrostatic water pressure exerted on the area aij that surrounds Pi,j,k. Let 

zw,i,j,k be the pressure head at Pi,j,k in the base configuration; the piezometric surface is 

assumed to be constant along the equilibrium path. Let ez be the unit vector of the z-axis 

pointing upwards. The contribution to the active force, Fa, in Equation (2.24) is: 

( )
( )

( )( )
, ,

, ,

( ) ( )
, , , ( ) ( )( )

, ,( ) ( ) ( ) ( ) ( )
( ) , , ( ) , , , ( ) ( )

i j k

i j k

T l l
w w i j k z P n i nl

a w i jn l l T l l
w n i j k n w i j k z P n i n

z
a

z

γ

γ

⎛ ⎞−
⎜ ⎟= ⎜ ⎟⎜ ⎟−⎝ ⎠

e u n
F u

S G P e u n
  (2.61) 



32 

2.10  STIFFNESS MATRICES 

By compiling the forces derived above, the residual is calculated as: 

( ) ( ) ( ) ( ) ( )( ), , ,, * **c n c s a w a aλ λ= + + + +r u F u F u F u F u F ,  (2.62) 

where Fa* collects all forces (except for hydrostatic water pressure) that depend on u, and 

Fa** collects all forces that do not depend on u (e.g., weight). 

Per Equation (2.26), each component in Equation (2.62) gives rise to a stiffness 

matrix component: in the finite element method terminology, the first two components of 

the residual yield the equivalent to the structural matrix, whereas Fa,w yields a load 

stiffness matrix.  

Except for Fa*, each component is of the form 

( )
( ) ( )

, ,

, ,, ,

i j k

i j k

P

i j k P

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

v u

S GP v u
    (2.63) 

By taking the derivative of the first three rows with the aid of Equation (2.9), one obtains: 

( ) ( ) ( ) ( ), , , , , ,, ,

, , , ,

( ) ( ) ( )
( )

( )
( )

( )
( ) ( ) ( )

i j k i j k i j ki j k

i j k i j k

l l l
l

P P PP l
P n

P Pn
n n n

∂ ∂ ∂∂
= =

∂ ∂ ∂ ∂

v u v u v uu
D θ

u u u u
 (2.64) 

The derivative of the last tree rows may be rewritten as: 

( ) ( )
( ) ( ) ( ), , , ,

( ) ( ) ( ) ( )( ) ( )
( ) , , ( ) ( ) ( )( ) , , ( ) ( ) ( )

( ) , , ( )
i j k i j k

l l l ll l
n i j k n P n P nn i j k n l l

n i j k n

⎡ ⎤∂ ∂⎡ ⎤∂⎣ ⎦ ⎣ ⎦= − +
∂ ∂ ∂

S G P v u v uG P
S v S G P

u u u
, (2.65) 

and using Equations (2.9) and (2.12), one obtains: 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,

, ,

, ,

( )
( )

, , ( )( ) ( ) ( ) ( ) ( )
( ) ( ) (0) (0) ( ) , , ( ) ( )

( )

,i j k i j k

i j k

i j k

l
l

i j k P P nl l l l l
P n P n n i j k n P n

P
n

⎡ ⎤∂ ∂⎣ ⎦ ⎡ ⎤= − +⎣ ⎦∂ ∂

S GP v u v u
S v u H θ G P S G P D θ

u u
(2.66) 

As for hydrostatic water forces, it is easier to take the derivative with respect to u, and 

therefore one would use: 

  ( ) ( ) ( ) ( ) ( ) ( ), , , ,

, ,

( ) ( )

, , ( ) ( ) ( ) ( )
( ) ( ) (0) (0) ( ) , , ( )

( )( )

,i j k i j k

i j k

l l

i j k P Pl l l l
P n P n n i j k n

nn

⎡ ⎤∂ ∂⎣ ⎦ ⎡ ⎤= − +⎣ ⎦∂ ∂

S GP v u v u
S v u H θ G P S G P

u u
 (2.67) 
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For a given sensor point Pi,j,k, Table 2.1 gives the vectors and matrices needed in 

Equations (2.64), and (2.66) or (2.67). The complete stiffness matrix is then obtained by 

summation over the sensor points: 

( ), , , , , , , , , *
, ,

an i j k s i j k w i j k F
i j k

λ= + + ⋅ +∑K K K K K    (2.68) 

Some considerations on the symmetry of K are in order. K is always non-

symmetric if large rotations occur. In fact, consider the first three rows of K given in 

Equation (2.64) and the contribution of the second term in r.h.s. of Equation (2.66) to the 

last three rows of K. Denote ( ), ,
/

i j kP= ∂ ∂d v u u . The definition in Equation (2.10), yields: 

( )( ) ( )

( )( ) ( )( ) ( )( ) ( )

3 3 (0)

(0) (0) (0)

×
⎛ ⎞− ⋅ ⋅ ⋅
⎜ ⎟
⎜ ⎟⎜ ⎟⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅
⎝ ⎠

dI d S R GP J θ

S R GP d S R GP d S R GP J θ
 (2.69) 

A necessary and sufficient condition for the upper leading diagonal minor to be 

symmetric is that d is symmetric. Under this assumption, the transpose of the upper off-

diagonal minor is equal to: ( ) ( )( )(0)

T ⋅ ⋅ ⋅J θ S R GP d . This is equal to the lower off-

diagonal minor if and only if one neglects large rotations so that ( ) →J θ I . Using 

Equation (2.4), the lower leading diagonal term can be rewritten as 

( )( ) ( )( ) ( )(0) (0)
− ⋅ ⋅ ⋅ ⋅ ⋅d S R GP S R GP J θ , which is symmetric if and only if d is 

symmetric and ( ) →J θ I . Thus, K is symmetric if and only if d is symmetric and one 

neglects large rotations. As shown in Table 2.1, d is symmetric for normal and shear joint 

stiffness, but it is not symmetric when water forces are applied. In addition, the first term 

in the r.h.s of Equation (2.66) is always not symmetric under large rotations because it 

contains ( )J θ . Stiffness matrices in 3D-DDA and BSM3D are symmetric because d is 

always assumed to be symmetric and large rotations are neglected. 
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Table 2.1: Vectors and matrices needed for the calculation of the stiffness matrices [1]. 
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, i j k

i j k

n P

n
u
σ∂

∂
 and 

, ,

2
, ,

2
, i j k

i j k

n P

n
u
σ∂

∂
 are given in Equations (2.49) and (2.51), respectively. 

2.11  DILATANCY 

Discontinuity dilatancy creates a displacement component of a sensor point 

normal to the discontinuity and directed toward the constrained space. Its magnitude is 

equal to the shear displacement times the tangent of the dilatancy angle. The dilatancy 

angle is quantified based on the Barton-Bandis model [79-81] as: 

( )( ) ( )
, , ( ) , , , , ( )log /l l

i j k n i j k i j k nJRC JCS nσ .  

In order to account for dilatancy reduction upon shear displacement reversal, a 

local reference system, ( ) , ,
, ,

i j k
O χ ζ  with unit vectors , ,i j kχ  and , ,i j kζ , is introduced on 

the constraint plane in contact with Pi,j,k. , ,i j kO  is the point at which Pi,j,k enters C, and 
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, ,i j kχ  and , ,i j kζ  are orthogonal unit vectors along which JRC has been measured. The 

shear displacement is then accumulated along the two local axes, e.g.,:  

, , , ,

( ) ( )
, ( ) , , ( )

;
i j k i j k

l T ll
P n i j k P nn

ll l nn n

uχ δ
< <

= ∑ χ u    (2.70) 

Per Barton-Bandis model, the mobilized JRC in, say, the χi,j,k-direction is a function of 

the ratio 
, ,

( )
, ( ) , , ,/

i j k

l
P n peak i j kuχ δ  (e.g., Figure 12 in [81]), where the peak displacement, 

, , ,peak i j kδ , is given in Equation (2.56): 

Sign reversal is then detected using flags of the type: 

, ,

, ,

( ) ( )
, , , ( ) ( ) , ,( )

, , , ( ) ( ) ( )
, , , ( ) ( ) , ,

1 0

1 0
i j k

i j k

l l
i j k n P n i j kl

i j k n l l
i j k n P n i j k

IF
flag

IF
χ

χ
χ

δ δ

δ δ

⎧ ⋅ ≥⎪= ⎨
− ⋅ <⎪⎩

u χ

u χ
  (2.71) 

and the iterative normal displacement is: 

( ), ,

, ,

, ,

, ,( ) ( ) ( )
, , , ( ) , , , ( ) , , ( )( )

, , ( )( )
, ( ) , , ,

, ,( ) ( )
, , , ( ) , , , ( ) , , (( )

, , ( )

tan log

tan log

i j k

i j k

i j k

i j kl l T l
i j k n i j k n i j k P nl

i j k nl
d P n c i j k

i j kl l T
i j k n i j k n i j k Pl

i j k n

JCS
JRC flag

n

JCS
JRC flag

n

χ χ

ζ ζ

δ
σ

δ

δ
σ

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠= −
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

χ u

u n

ζ u( )( )
)

l
n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (2.72) 

If a sensor point enters C, i.e. if ( -1)
, , ( )

l
i j k nP ∉ and ( )

, , ( )
l

i j k nP ∈ C, then recall that , ,i j kd  is 

the distance traveled in C. The normal displacement increment is then obtained by 

multiplying Equation (2.72) by 
, ,

( )
, , ( )/

i j k

l
i j k P nd δ u . 

Although dilatancy per se does not cause any force, and thus any stiffness 

component, it does add a term to the expression of the displacement, which is now equal 

to   
, , , , , ,,*

i j k i j k i j kP P d Pδ= +u u u where 
, ,i j kPu is given in Equation (2.5). As a consequence, 

using Equation (2.9) the derivative 
, ,

/
i j kP∂ ∂u u  in Equations (2.64) and (2.66) is replaced 

by: 

( ) ( ) ( ), , , , , , , , , ,

, , , ,

, , ,*
i j k i j k i j k i j k i j k

i j k i j k

P d P d P P d P
P P P

P P

δ δ δ⎛ ⎞∂ ∂ ∂ ∂ ∂
⎜ ⎟= + = + = +
⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

u u u u u
D θ D θ I D θ

u u u u u
  (2.73) 
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Let us now consider the derivative in Equation (2.73) for the component in the χi-

direction: 

( ), ,

, ,

, ,

,

, ,

, , ,
, , , , , , , , , , ,

, ,

, , ,
, , , , , , , , , , ,

, ,

tan log

tan log
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i j k

i j k

i

i j k

d P i j kT T
i P i j k i j k c i j k i j k
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i j k i T
c i j k i j k i j k i j k P
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χ χ
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δ

σ

δ
σ

∂ ⎛ ⎞
= − ⎜ ⎟⎜ ⎟∂ ⎝ ⎠
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, , , ,
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i j k
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⎡ ⎤⎛ ⎞ ∂∂
− ⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

n χ u
u

   

(2.74) 

Since: 

, ,

, , , , , , , ,

,, , , , , , , , ,
, ,

, ,

i j k

i j k i j k i j k i j k

Pi j k i j k i j k T
i j k
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uJRC JRC JRC
u u
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χ χ
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= =

∂ ∂ ∂ ∂
χ

u u
,   (2.75) 

the second term is equal to: 

   
, ,

, ,

, , , , , , ,2 ( )
, , , , , ( ) , , , , ,

, , , , ,

cos log log
i j k

i j k
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δ
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In the third term: 
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, , , , , , , ,, ,2
, ,

, ,

, , ,

, ,2
, , , , ,

1 1tan log
ln 10

cos log

ln 10 cos log

i j k i j k i j k
i j k i j k

i j k i j k i j k i j ki j k
i j k
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σ
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           (2.77) 

and using Equations (2.46) and (2.77) into Equation (2.74), one finally obtains that the 

third term in Equation (2.74) is equal to: 

  

( )
, ,

, ,

, , , , ,
, , , , , , , , , , ,

,, ,2
, , , , ,

, ,

ln 10 cos log
i j k

i j k
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JRC n
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uJCS
n JRC

n

χ
χ

χ

σ
δ

σ
σ
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−
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χ u n n  (2.78) 
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While the third term contributes a symmetric rank-one modification to the 

stiffness matrix, the first two terms yield non-symmetric rank-one modifications to the 

stiffness matrix. To exemplify, consider a parallelepiped (constrained along its vertical 

faces) that translates downwards, and in which , , ,c i j k x=n e  (horizontal) and i z=χ e  

(vertical up). The net effect of the dilatancy first two terms is to add to the third column 

of ( ), , , ,
/

i j k i j kP P∂ ∂v u u  in Equations (2.64) and (2.66) the first column of 

( ), , , ,
/

i j k i j kP P∂ ∂v u u  multiplied by an appropriate scalar. Dilatancy couples with normal 

stiffness because from Table 1, third column and second row, the added term to 

( ), , , ,
/

i j k i j kP P∂ ∂v u u  is proportional to: 

0 0 1
0 0 0
0 0 0

T T
x x x z

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

e e e e      (2.79) 

whereas dilatancy does not couple with shear stiffness (Table 2.1, third column and third 

row) because ( )T T
x x x z− =I e e e e 0 . 

Per Equation (2.79), a monotonic downward vertical translation causes the first 

term in Equation (2.74) to apply a positive force in the positive x-direction, i.e. toward 

the inside of the block. The second term applies a positive (negative, resp.) force in the 

positive x-direction if JRC is increasing (decreasing, resp.) with 
, ,, i j kPuχ , i.e. if 

, ,, ,i j kP peaku uχ χ≤  (
, ,, ,i j kP peaku uχ χ> , resp.). If the vertical translation is reversed, dilatancy 

forces change sign: this does not cause the stiffness matrix to become negative definite 

because the first two terms in Equation (2.74) contribute only off-diagonal terms, and the 

third term is generally small in comparison with the other terms (except in the vicinity of 

critical points). 

In general, dilatancy introduces a non-symmetric rank-one modification because a 

displacement in the χi,j,k-direction creates a displacement (and then a stiffness change) in 

the , , ,c i j kn -direction but the opposite does not necessarily occur. Indeed, there will be 
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symmetry if and only if a constraint face also occurs with normal χi,j,k, and the point in 

contact with this face has the same JRC, JCS, and normal stress as Pi,j,k.  

2.12  INITIAL STRESSES 

The initial state of stress acting on the rock mass can be easily included in the 

calculations of the first stage as follows. Let σ be the stress tensor of the initial state of 

stress, and let nc,i be the normal to the constraint face Ci that bounds the block. The 

normal and shear stresses on Ci are, respectively:  

, ,
T

i c i c inσ = ⋅ ⋅n nσ     (2.80) 

( ) ,i c inτ σ= ⋅ − ⋅I nσ     (2.81) 

The normal displacement length, ,n iu , that causes the normal stress inσ  is 

found by solving the equation: 

( ),n i in u nσ σ= ,    (2.82) 

where ( ),n in uσ  is given in Equation (2.42). The normal displacement vector that creates 

the initial normal stress is then: , , ,n i n i c iu=u n . 

As for the shear displacement, its unit vector is: 

( ) , /i c inσ τ= −t I nσ     (2.83) 

If τ ≤ τmax (Equation (2.53)), the shear displacement associated with the shear stress is 

equal to: 

, ,/s i s iu kτ= ,     (2.84) 

where ,s ik  is the shear stiffness calculated with Equations (2.54) or (2.55) for a normal 

stress equal to inσ . The shear displacement that creates the initial shear stress is then 

equal to , ,s i s iu= −u t . 

If, on the other hand, τ > τmax, the i-th discontinuity can not take a shear stress 

equal to τ, and the shear displacement is equal to , maxs i τ= −u t . 
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Finally, the initial state of stress is imposed by translating the plane containing Ci 

by the vector , ,n i s i+u u . Once all constraint planes bounding B have been translated in 

this way, constraint faces Ci are determined by taking the intersections of the translated 

planes.  

2.13  FAILURE MODES AND FACTOR OF SAFETY 

2.13.1 Limit points and static instability 

While marching along the equilibrium path, critical points are detected by looking 

at the eigenvalues of the stiffness matrix. If a diagonal element in the LU decomposition 

is equal (or close) to zero, eigenvalues and eigenvectors of the stiffness matrix, zi, are 

calculated to determine limit points and static instability.   

Two cases may occur:  

• ( )
( )

T l
i a n ≠z F 0 : this is a limit point and the active force cannot be incremented 

further.         (2.85) 

• ( )
( )

T l
i a n =z F 0 : this is a static bifurcation point.     (2.86) 

2.13.1.1 Limit point 

When the first limit point is reached along the equilibrium path of the block, the 

active force cannot be incremented further, and the unbalanced resultant force applied to 

the block is ( )( )1 n aλ− F , where n is the last converged increment, and aF  is evaluated at 

the n-th increment. The dynamic failure mode, i.e. the possible motion of the body over 

an infinitesimal interval of time, is calculated based on small rotation theory by imposing 

no further interpenetration at the constraints during the dynamic failure mode, and by 

assuming a rigid-perfectly plastic behavior of the discontinuities to shear displacements. 

In order to determine the dynamic failure mode, the unconstrained motion of the block is 

first calculated using Equation (2.19) as (we are not interested in its magnitude) 

( ) 1
( )1u n aλ −= −u M F     (2.87) 
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This allows one to detect which of the sensor points are to be constrained. Recall 

that a unilateral constraint constraints a body’s motion only if it is active, i.e. only if there 

is contact across that constraint. Therefore, the search is limited to the sensor points, Pi,j,k,  

that are in C at the n-th increment. For each of these sensor points, the unconstrained 

displacement is given by Equation (2.18): 

( ) ( )( ), , , , , ,, , 3 3 ( ) (0)
,

i j k i j k i j ku P u G u P n P u×
⎛ ⎞= + × = − ⋅ ⋅⎜ ⎟
⎝ ⎠

u u GP I S R GP u&& &ω  (2.88) 

Let Ch ∈ ∂C be the active polygon constraint at Pi,j,k. Then Ch constraints the 

possible motion of B if and only if 
, ,, i j ku Pu  is directed into C, i.e. 

( )( ), , , ,, , , 3 3 ( ) (0)
0 , 0

i j k i j k

T
u P c h c h n P×

⎛ ⎞⋅ < ⇒ ⋅ − ⋅ ⋅ <⎜ ⎟
⎝ ⎠

u n n I S R GP u   (2.89) 

If Ch constraints the possible motion of B, then an equality constraint must be 

imposed on the motion of B, u , so that Pi,j,k can only move parallel to Ch 

( )( ), , , ,, , 3 3 ( ) (0)
0 , 0

i j k i j k

T
P c h c h n P×

⎛ ⎞⋅ = ⇒ ⋅ − ⋅ ⋅ =⎜ ⎟
⎝ ⎠

u n n I S R GP u   (2.90) 

If, in addition, Pi,j,k has not been sheared off at the n-th increment, then Pi,j,k 

cannot move parallel to Ch either, and thus Pi,j,k is fixed in space. Equation (2.90) must be 

replaced by the three conditions 

( )( ), ,3 3 ( ) (0)
, 0, , ,

i j k

T
l n P l x y z×

⎛ ⎞⋅ − ⋅ ⋅ = =⎜ ⎟
⎝ ⎠

e I S R GP u   (2.91) 

Constraints (2.90) and (2.91) are linear in u , and can thus be arranged in matrix 

form ⋅ =A u 0 , where the rows of matrix A are either  ( )( )( ), 3 3 ( ) (0)
,T

c h n×⋅ − ⋅n I S R GP  

or ( )( ), ,3 3 ( ) (0)
,

i j k

T
l n P×

⎛ ⎞⋅ − ⋅⎜ ⎟
⎝ ⎠

e I S R GP , , ,l x y z= . Using the General Principle of 

Mechanics [50], the constrained acceleration (mode of failure) can be obtained in closed-

form (Equation (2.23) with C = 0) 
1/ 2− += − ⋅ ⋅ ⋅u a M B A a&& ,   (2.92) 

where a superscript “+” indicates the Moore-Penrose generalized inverse of a matrix [54], 
1

a
−= ⋅a M F , and 1/ 2−= ⋅B A M . The mode of failure can be visualized by superimposing 
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the displacement field calculated using Equation (2.18) with u&&  from Equation (2.92) 

upon the last converged increment configuration. This procedure can be seen as the 

generalization of Sagaseta’s for two-dimensional blocks [83]. 

On the other hand, the static mode(s) of failure is (are) associated with the null 

space of the stiffness matrix at the first limit point along the equilibrium path. More 

specifically, if z is in the null space of this stiffness matrix, then its static failure mode is 

( )* TSign= ⋅z z z F . In general, the static failure modes are different from the dynamic 

failure modes. 

The factor of safety is the ratio between the stabilizing forces and the driving 

forces at limiting equilibrium. It is thus the maximum ratio between the projection of the 

constraint forces on z* and the projection of the active forces on z* for which there is 

equilibrium, i.e. FS = max * / *T T
c az F z F .  Since, during a stage, the active force is 

proportional to the control parameter, * / *T T
c az F z F  = λ, and λ(n) at the last converged 

increment is equal to the factor of safety for the block. As a consequence, the calculation 

of the safety factor comes with no overhead, whereas other codes such as 3-DEC, 

BSM3D and 3D-DDA require time-consuming trial and error calculations using the 

reduction of the strength parameters (e.g., [17]). However, whenever failure is not caused 

by limited strength (e.g., when the block fails in a pure rotational mode, or in a more 

complex roto-translational mode), the reduction of the strength parameters cannot yield 

the factor of safety, but, rather, it yields an incorrect failure mode (e.g., sliding rather than 

toppling). On the other hand, the presented algorithm always unambiguously yields the 

correct factor of safety and associated failure mode(s). 

If the US Load and Resistance Factor Design (LRFD) or European partial factor 

design (Eurocodes) are used, then the appropriate factors are applied directly to the input 

data, and the block is safe if the control parameter is equal to or greater than one. 
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2.13.1.2 Bifurcation point 

At a bifurcation point, the equilibrium path branches out in as many branches as 

the dimension of the null space of the stiffness matrix. Collect these normalized 

eigenvectors in set T. The branch for zi∈T is followed by using a predictor equal to 
(0)

0( 1) in step+Δ = ⋅u z  and (0)
( 1)nλ +Δ =0. The solution is then corrected by following the 

Newton-Raphson algorithm in Section 2.5.  

Modes zi∈T are associated with rigid-body motions orthogonal to the original 

path. As illustrated in Example 4 below, the original equilibrium path is also of interest. 

The original equilibrium path is followed by adding a “spring” aligned with each 

eigenvector in T. This is effected by adding to the stiffness matrix the rank-one 

modifications kizizi
T, where ki is taken as 5% of the largest eigenvalue of K; if this is 

equal to zero, then the block is unconstrained, and it is considered as failed. Notice that a 

displacement parallel to the applied force does zero work with these added springs 

because Equation (2.86) entails that ( ) ( )
( ) ( )
l T T l

a n i i a n =F z z F 0 .  

If the block has not failed, then the equilibrium paths are followed until a limit 

point is encountered (Section 2.13.1.1) or an upper limit on the control parameter is 

reached. 

2.13.2 Dynamic instability 

Consider the neighborhood of a point in the equilibrium path. In this 

neighborhood, Equation (2.19) applies with F = (fc, mG,c)T = -K, and the ODE for the 

motion of the unforced block is: 
( ) ( )
( ) ( )
l l
n n+ =M u K u 0&&     (2.93) 

Using an eigenmodal expansion for the solution, ip t
ii
e= ∑u z , one recovers the 

eigenproblem: 

( )( ) ( ) 2
( ) ( )
l l
n n i ip+ =K M z 0    (2.94) 
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Since K is real and is not symmetric (large rotations, applied non-conservative 

forces such as water pressure), and M is real and positive definite, eigenvalues pi
2 can be 

either real or complex; if the later, they occur in conjugate pairs. In all cases run by the 

author, no numerical problem arose in obtaining eigenvalues pi
2. Three cases are 

distinguished: 

• pi
2 is real and positive: The motion of the block is unbounded in time, and thus the 

block is considered as failed (dynamic instability by divergence). 

• pi
2 is real and negative: The unforced motion of the block is harmonic, the block 

is stable, and the predictor-corrector algorithm continues along the equilibrium 

path. 

• pi
2 is complex: The unforced motion of the block is oscillatory and unbounded, 

and thus the block is considered as failed (dynamic instability by flutter). Since 

these eigenvalues occur in pairs, energy is transferred from one eigenmode to 

another. 

2.14 SUMMARY AND CONCLUSIONS 

Tonon’s [1] incremental-iterative algorithm described in details. The method is to 

analyze general failure modes of rock blocks subject to generic forces, including non-

conservative forces such as water forces. The block interacts with the surrounding 

constraint space using a finite number of sensor points. Consistent stiffness matrices were 

developed that fully exploit the quadratic convergence of the adopted Newton–Raphson 

iterative scheme. The algorithm takes into account large block displacements and 

rotations, which together with non-conservative forces make the stiffness matrix non-

symmetric. 

Also included in the algorithm are fracture dilatancy and in situ stress. Dilatancy 

acts at a kinematic level by adding a normal component to an active sensor point’s 

displacement. As a consequence, dilatancy introduces non-symmetric rank-one 

modifications to the stiffness matrix.  
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Progressive failure is captured by the algorithm, which has proven capable of 

detecting numerically challenging failure modes, such as rotations about only one point. 

All possible failure modes can be automatically detected along the block’s 

equilibrium path; they may originate from a limit point or from dynamic instability 

(divergence or flutter); equilibrium paths emanating from bifurcation points are followed 

by the algorithm.  

The algorithm identifies both static and dynamic failure modes. Static analyses 

(including limiting equilibrium) do not take into account the block’s inertia properties, 

which may lead to detecting an incorrect failure mode. The difference between static and 

dynamic failure modes is relevant to slow versus rapid removal of constraints (e.g. tunnel 

boring machine versus drill- and-blast tunnel excavation), and is the subject of current 

investigation. Any real block is created by the removal of constraints: the algorithm 

simulates this natural process, and allows one to investigate the impact of how blocks are 

constrained on stability and factor of safety. 

The calculation of the factor of safety comes with no overhead, and does not 

require trial and error model runs using the reduction of the strength parameters, which 

may even lead to erroneous failure modes. 

Rock blocks that are typically thought of reaching equilibrium by translation 

actually rotate about their centroid because the reaction forces create a non-zero moment 

about the centroid; this is the case of 2-plane wedges subjected to their own weight. The 

equilibrium path of a rock block that undergoes slumping failure must first pass through a 

bifurcation point, unless the block is laterally constrained. Rock blocks subjected to water 

forces (or other non-conservative forces) may undergo flutter failure before reaching a 

limit point. Thus, existing methods (including limiting equilibrium) may overestimate the 

safety of a rock block when water forces are important (e.g. dam foundations, rock scour 

at bridge piers and under dam jets).  
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CHAPTER 3: CONSTITUTIVE MODEL FOR ROCK 

FRACTURES: REVISITING BARTON’S EMPIRICAL MODEL 

3.1 INTRODUCTION 

In near-surface geotechnical works (for instance, dam foundations, power plants, 

underground caverns, and slopes), the mechanical behavior of the rock masses is 

influenced more by the fractures than by the intact rock. Therefore, algebraic calculations 

and numerical simulations for the mechanical behavior of fractured rock masses require 

the constitutive law of rock fractures. However, the characteristics of intact rock are 

better known; for example, the Suggested Methods of the International Society of Rock 

Mechanics [84] define mathematically the Young’s modulus for uniaxial compressive 

tests but leave out any calculations for the shear and normal stiffnesses of fractures [85].  

In the study of the behavior of a single rock fracture under different loading 

conditions, rock fractures are divided into two main categories: filled and unfilled 

fractures. The shear behavior of unfilled fractures is a function of the roughness and 

compressive strength of the fracture [22] walls, while in the case of filled fractures, the 

physical and mineralogical properties of the material separating the fracture walls are of 

primary concern [22]. In this chapter, the constitutive models of unfilled rock fractures 

with dilatancy and surface degradation are investigated.  

There are two main approaches to the quantitative description of the mechanical 

properties of rock fractures: (a) the theoretical approach, which adopts known theories 

(e.g. plasticity, contact theory, etc.) to simulate the observed behavior (e.g. [86-90]); (b) 

the empirical approach, in which wide-spanning physical data is analyzed to derive 

correlations between variables of influence and models are formulated according to 

observed behavior (e.g. [22, 79, 81, 91-93]). Other efforts combine the above two 

approaches (e.g. [94]) or treat the problem analytically (e.g. [95]) [96].  

Several empirical and theoretical constitutive models were developed by Ladanyi 

and Archambault [91], Goodman [97], Barton and Choubey [22], Plesha [87], Amadei 

and Saeb [98], Jing et al. [99, 100], Qiu et al. [101], etc. Patton [102] proposed bilinear 
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models of saw-tooth fractures. Plesha [87] idealized Patton’s saw-tooth type asperities 

and developed a constitutive model based on the classical theory of plasticity. Huang et 

al. [103] verified Plesha’s exponential degradation law through a series of experiments 

for fractures having saw-tooth type asperities. Qiu et al. [101] revised Plesha’s model by 

idealizing the sinusoidal asperities, but it was less practical due to the complexity of 

constitutive equation. Saeb [104] modified the failure criterion of Ladanyi and 

Archmbault [91]. Gens et al. [105] proposed an elastoplastic constitutive law for 

describing the three-dimensional mechanical behavior of rock fractures. Desai and 

Fishman [106] proposed a constitutive model based on the theory of plasticity for 

characterizing the mechanical response of simulated fractures under monotonic loading, 

unloading and reverse loading. Wang et al. [107] proposed an elliptic yield function 

based on associated flow rule to predict the behavior of rock interfaces and fractures. By 

using the results of a series of  experimental work on sandstone, Leichnitz [108] 

developed a constitutive law for rock fractures that also allows consideration for the non-

linearity of the material behavior. Kana et al. [109] suggested the interlock-friction model 

for dynamic shear response; the importance of second order asperities on the dynamic 

shear behavior was explained by Fox et al. [110]. Samadhiya et al. [111] introduced a 

generalized formulation of a three-dimensional joint/interface element to account for 

dilatancy, roughness, and undulating surface of discontinyities.  

The scale effect on fracture shear strength has been studied by many authors, such 

as Pratt et al. [112], Barton and Choubey [22], Bandis [113], Barton and Bandis [114], 

Barton [115, 116],  Hencher et al. [117], Hencher and Richard [118, 119], Patton [102], 

Cording [120, 121], McMahon [122], Lee [123], and OH [124]. In addition, anisotropic 

shear behavior of rock fractures was considered by some researchers, such as Huang and 

Doong [125], Jing et al. [126] Grasselli et al. [127, 128], and Kulatilake et al. [129, 130].  

Most of the constitutive models were only developed for monotonic shear loading 

without considering surface roughness degradation. Among these models, Barton’s 

empirical model has widely been used because it is easy to apply and includes several 

important factors of fracture properties. 
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In this chapter, Section 3.2 recalls the essential aspects of the most common 

models for rock fractures including Barton-Bandis and Goodman’s empirical models. 

Section 3.3 addresses some of the inconsistencies of Barton’s model in predicting the 

peak shear displacement, post-peak shear strength, dilation, and surface degradation 

during unloading and reloading. A database of results from direct shear tests available in 

the literature was assembled and analyzed. Modifications were made to Barton’s original 

model in order to address some of its weaknesses, and an empirical equation is 

introduced to predict peak shear displacement of rock fractures. Unlike Barton’s model, 

the proposed peak shear displacement relationship depends on normal stress, and in the 

revised model, the post-peak mobilized Fracture Roughness Coefficient (JRC) is given by 

a power law, instead of employing Barton’s table. This new empirical equation for post-

peak mobilized JRC works for all ranges of displacements and never gives unusual zero 

or negative values, even at very large displacements. Moreover, the modified model can 

predict compression (negative) dilatancy at small shear displacements. Furthermore, the 

model suggested here for unloading and reloading behaviors takes into account 18 cyclic 

direct shear tests including the one that Barton used. Section 3.3 shows that the revised 

model not only addresses some of the weaknesses of Barton’s model but also works 

better in predicting the behavior of rock fractures in the collected data of direct shear 

tests. Section 3.4 summaries the results of experimental studies on anisotropic dilatant 

behavior of rock fractures found in the literature. In Section 4, a model is proposed to 

predict the magnitude of JRC in a given direction. 

3.2 CONSTITUTIVE MODELS FOR ROCK FRACTURES  

3.2.1 The Shear Strength of Rock Fractures 

Based on Coulomb’s linear relationship [25], the shear strength of rock fractures 

can be expressed as follows: 

( ),tan φστ ⋅+= nc     (3.1) 
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in which τ  is the peak shear strength under a normal stress of nσ ; c  is cohesion and 

φ  is the friction angle. 

Byerlee [131] suggested that the frictional strength of faults developed through 

intact rock may be the same for all rocks, independent of lithology. Barton [132] showed 

that artificial faults and tension fractures in a variety of rocks have the same peak shear 

strength when the effective normal stress is of the same order or greater than the 

unconfined compression strength of the rocks. However, under low effective normal 

stresses, the shear strength of fractures can vary within relatively wide range.  

Many researchers have attempted to predict the shear strength of non-planar rock 

fractures based on their dilatant behavior. Jaeger [133], Krsmanovic and Langof [134], 

Lane and Heck [135], Patton [136] and Byerlee [131] are among those who first obtained 

curved relationships between the shear strength of the rock fractures and the normal 

stress. Patton [102, 136] and Goldstein et al. [137] used the following equation, basically 

developed by Newland and Alley [138] and Rowe et al. [139] for granular material, to 

represent the shear strength of irregular rock surfaces at low normal stresses: 

( ),tan ibn +⋅= φστ     (3.2) 

in which i  and bφ are the effective roughness and the base friction angle, respectively.  

Although Patton [136] initially suggested that only first-order irregularities would 

contribute to the shear strength of fractures beneath natural slopes, Patton and Deere 

[140] later emphasized that all scales of roughness are likely to be important. At high 

normal stresses, when most irregularities would be sheared off, it was assumed that the 

Coulomb relationship would be valid. 

The recognition that the shear strength of an irregular rock surface can be zero at 

zero normal stress represents a major improvement over the earlier assumption of linear (

c  and φ ) properties. Using a cohesion intercept for rock fractures is inherently 

dangerous, even if the extrapolation is made from the mean effective normal stress level 

appropriate to the particular engineering problem. The Coulomb concept of cohesion and 

friction angle is really no more than a simple mathematical convenience since cohesion is 

not a constant [132]. 
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3.2.1.1 Barton’s failure criterion 

Barton [21] suggested the following empirical law of friction for the shear 

strength of rock fractures: 

⎟
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⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅= r

n
n

JCSJRC φ
σ

στ 10logtan    (3.3) 

The residual friction angle, rφ , (which is equal to basic friction angle, bφ , for 

unweathered rock fractures) can be obtained from residual shear tests on flat unweathered 

rock surfaces. The basic friction angle of the majority of unweathered rock surfaces 

ranges from 25° to 35°, at least at medium stress levels [92, 136, 141-145]. The residual 

friction angle of weathered rock fractures can be estimated based on the Schmidt rebound 

on dry unweathered sawn surfaces and wet fracture surfaces as follows: 

( ) ,2020 ⎟
⎠
⎞

⎜
⎝
⎛×+°−=

R
r

br φφ     (3.4) 

where bφ  is basic friction angle of dry unweathered sawn fracture; R  is Schmidt 

rebound on dry unweathered sawn surface; r  is Schmidt rebound on wet fracture 

surface.  

The fracture roughness coefficient ( JRC ) represents a sliding scale of roughness 

varying from approximately 20 to 0, from the roughest to the smoothest rock surfaces. 

JRC  reduces with the increasing size of the sample [115]: 
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⋅=     (3.5) 

where nJRC and 0JRC  are fracture roughness coefficients of samples with lengths of 

nL  and 0L , respectively.  

The joint wall compressive strength ( JCS ) at low stress levels is equal to the 

unconfined compression strength cσ  of the rock if the fracture is unweathered, but may 

reduce to approximately 4/cσ  for weathered fractures [92]. The Schmidt hammer can 

be employed to measure the JCS  values of weathered rock fractures (Miller’s method 
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[146]).  However, Barton [132] suggested that in view of the safety requirements of rock 

engineering structures, the value of ( )( )bnJCSJRC φσ +⋅ /log10  should be limited to 70°.  

Due to the effect of confinement on the compressive strength of rock asperities, 

the measured shear strength at high normal stress levels is always appreciably higher than 

the predicted value using Equation (3.3) [132]. At low stress levels, appropriate to most 

rock engineering problems, the contact area between fracture walls is extremely small 

[147]; therefore, the strength of asperities can be considered as the unconfined strength. 

However, as the level of nσ  approaches the value of cσ , the area of contact across the 

fracture increases, probably as a result of elastic displacement and possible local failure 

of any mismatching asperities [132]. The increasing contact area in turn causes the 

compressive strength of the asperities themselves to increase due to the more effective 

confinement.  

At high stress levels, the JCS  value appearing in Equation (3.3) should be 

considered to be the confined compression strength of the rock, which is equal to the 

differential stress )( 31 σσ − , where 1σ  is the axial stress at failure and 3σ  is the 

effective confining pressure [132]. Empirical relationships between the compressive 

strength of intact rock as a function of confining pressure are proposed by variety of 

researchers; one of the best one suggested by Bieniawski [148] is as follows: 
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where A and K are constant.   

The joint compressive strength reduces with increasing size of the sample [115]: 
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where nJCS  and 0JCS  are joint compressive strengths of samples with lengths of nL  

and 0L , respectively.  
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3.2.1.2 Saeb’s model 

Saeb [104] modified the failure criterion of Ladanyi and Archmbault [91] which 

is now expressed as follows:  

( ) ( ) ,1tan rssunp saai +−⋅+⋅= φστ    (3.8) 

where sa is the proportion of total fracture area sheared through the asperities and can be 

obtained using the following equation [149]: 
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     (3.9) 

in which 1K is an empirical constant; cσ  is the unconfined compressive strength of 

intact rock. )1( sa− is the proportion of total fracture area on which sliding takes place; 

uφ  is the angle of friction for sliding along the asperities; rs  represents the shear 

strength of the asperity intact rock. Dilation angle, i , can be obtained using the 

following equation: 
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in which 2K  is an empirical constant; )tan( 0i  is the peak rate of dilatancy at zero 

normal stress. 

3.2.1.3 Jing’s model 

Jing et al. [99, 100] proposed the following relationship for the peak friction 

angle:  
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where 0α is the initial asperity angle, nσ  is the magnitude of normal stress and cσ  is 

the magnitude of the uniaxial compressive strength of the material; b  is a material 

constant representing the wearability of the fracture material. 
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In order to investigate anisotropic behavior of rock fractures Jing et al. [126, 150] 

determined and plotted in polar diagram the mobilized friction angles from shear and tilt 

tests for 12 shear directions. They found that the distribution of the total friction angles, 

pφ , on the nominal plane of the fracture surface (lower block), may be generalized as 

follows: (a) pφ varies with both the shear direction and magnitude of normal stress; (b) 

the degree of the directional variation of pφ  decreases with increasing normal stress; (c) 

pφ  decreases with increasing normal stress; (d) under a certain normal stress, the 

directional distribution of the friction angle is not completely random, but displays 

principal directions. These principal directions may or may not be symmetrical, 

depending very much on the geometrical distribution of the asperities on the fracture 

surface. 

The directional dependency of the shear strength of fractures would then be 

represented by the directional variation of the asperity angle 0α  in Equation (3.11). To 

simplify the matter as much as possible, it was assumed that magnitudes of the asperity 

angle follow an elliptical distribution in the plane of the fracture surface. The magnitude 

of the asperity angle in a given direction θ  can then be written as: 

( ) ( )[ ] ( ) ( )[ ] ,cossinsincos 2
21

2
21 ψψψψα ⋅+⋅+⋅−⋅= CCCC   (3.12) 

where ( )ψθα −⋅= cos11C  and ( )ψθα −⋅= sin22C ; 1α  and 2α  are the major and 

minor semi-axes of the ellipse, and ψ  is the angle to the major semi-axis, all of which 

should be determined experimentally. 

3.2.1.4 Grasselli’s model 

Grasselli et al. [128] have digitized and reconstructed a large number of fracture 

surfaces using a triangulation algorithm. This approach results in a discretisation of the 

fracture surface into a finite number of triangles, whose geometric orientations were 

calculated by the authors. Based on their observations and using the triangulated surface 

data, they described the variation of the potential contact area versus the apparent dip 

angle of the fracture surface with the expression: 
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where 0A  is the maximum possible contact area; *
maxθ  is the maximum apparent dip 

angle in the shear direction, and c is a ‘‘roughness’’ parameter which characterizes the 

distribution of the apparent dip angles over the surface.  

Grasselli and Egger [127] proposed the following empirical relationship for peak 

shear strength of rock fractures: 
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where tσ  is tensile strength of intact rock and α  is the angle between the schistosity 

plane and the normal to the fracture; if the rock does not exhibit schistosity, α  is 

assumed to be equal to zero. 

Using Equation (3.14), Joint Roughness Coefficient (JRC) can be determined 

from the following relationship: 
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3.2.1.5 Kulatilake’s model 

Kulatilake et al. [129, 130] developed a new empirical peak shear strength 

criterion for anisotropic rock fractures that includes both the effect of dilation and 

shearing through asperities. They measured roughness profiles at 30° intervals on a 

model fracture and run direct shear tests of different normal stresses of the replicas. They 

suggested the following general equation to model the peak shear strength of rock 

fractures for a specific direction and for 1.0/ <jn σσ : 



54 

 
( ) ( ) ,

10
log8.1160tan1 10

88.063.5

j

r
s

n

j
effbs

j

n

j

aIADa
σ
τ

σ
σ

φ
σ
σ

σ
τ

⋅+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅±+⋅−⋅=   (3.16) 

where jσ  is the joint compressive strength (JCS); A  is a proportionality constant and 

D  is a fractal dimension in the direction considered; effI  is effective nonstationary 

trend angle for considered direction, which is conceptually quite different to an 

inclination angle that exist on a smooth planar joint surface. Because of the irregularities 

of a rock joint surface, it is difficult to estimate effI . However, a procedure is given by 

Kulatilake et al. [129] to estimate the effective nonstationary trend angle; sa  is the area 

proportion where asperities are sheared, which can be estimated for each direction using 

the following equation:  
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The term 
j

r
sa
σ
τ

 in Equation (3.16) is the contribution to peak shear strength due to 

shearing through the asperities and rτ  is the shear strength of intact rock. 

3.2.1.6 OH’s model 

OH [124] developed a joint constitutive model by considering both small-scale 

asperities present in laboratory sample and large-scale waviness observes in the field. He 

found that the evaluation of strength of rock fractures in the field requires assessment of 

large-scale irregularities not present in the lab sample. The complete form of OH’s joint 

model for multi-scale asperities is as follows: 
( )( ) ,tan 0

sWc
nrn fie p ⋅+⋅+⋅= ⋅−αφστ    (3.18) 

where nα  is a shear-through component obtained by laboratory test; 0i  is initial angle 

of inclination of large scale irregularities; c  is a dimensionless asperity degradation 

constant that can be estimated using the following equation: 
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in which 0α  is the initial asperity angle; cσ  is the unconfined compressive strength of 

rock; λ  is wavelength of asperity; and k  is constant. 
sf  in Equation (3.18) is called “sinusoidal function” and mathematically expressed as 

follows [123]: 
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where el argλ  is the wavelength of large-scale irregularity observed in the field.  

Plastic work, pW , is a function of shear strength ( φσσ tan.nt = ) and plastic 

shear displacement ( p
sδ ): 

     ∑ ⋅Δ= t
p

spW σδ     (3.21)  

3.2.2 Rock Fracture Deformation 

Goodman et al. [151] introduced the terms Normal Stiffness, nK , and Shear 

Stiffness, sK , to describe the rate of change of normal stress, nσ , with respect to normal 

displacements, jV , and of the shear stress, τ , with respect to shear displacements, hd , 

respectively.   

3.2.2.1 Normal Stiffness 

Goodman [93] described the basic mechanics of fracture normal deformation by 

considering that the maximum closure  , mV , of a fracture should be less than its aperture 

thickness, ja , defined as the maximum gap anywhere across the mated walls. 

Experiments showed that the fracture closure under increasing normal stress varies in a 

non-linear fashion closely resembling a hyperbola [93, 112, 152, 153].  Bandis et al. 

[80] suggested the following equation for normal stiffness: 
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where the initial normal stiffness, niK , can be calculated from the following relation 

[113]: 
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in which the units of JCS and aj are MPa and mm, respectively. A fair approximation of 

the initial aperture, ja , can be obtained from the following empirical relationship [80]: 
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The maximum closure, mV , can be obtained using the following empirical relationship 

(see Table 3.1 for constants) [80]: 

D

j
m a

JCSCJRCBAV )()( ++=     (3.25) 

Table 3.1: Constant values for the maximum closure in Equation (3.25) [80]. 

Constant 1st Cycle 2nd Cycle 3rd Cycle 
A  1258.02960.0 ±− 0530.01005.0 ±−  0680.01032.0 ±−  
B  0022.00056.0 ±− 0031.00073.0 ±− 0039.00074.0 ±−  
C  3504.02410.2 ± 2351.00082.1 ± 3261.01350.1 ±  
D  1086.02450.0 ±− 1171.02301.0 ±− 1029.02510.0 ±−  
 

 

Goodman [97] suggested that the unloading curves for fractures will follow 

essentially the same path as that for the intact rock; however, Bandis et al. [80] found that 

the unloading stress-opening curves for fractures are also hyperbolic (essentially similar 

in shape for the first, second, and third cycles).  Equation (3.25) can be used to obtain 

maximum closure for the second and third cycles where the values of ja  are based on 

the initial aperture minus the permanent set at the end of first and second cycle. The ratio 

of irrecoverable closure, iV , to maximum closure, mV , can be estimated from Figure 3.1. 
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experiments on the hydromechanical behavior of single joints and found that the initial 

normal stiffness, niK , and the maximum closure, mV , are not independent. These two 

parameters are related with each other, because both are controlled by the surface 

topography of the rock joints and the elastic properties of the intact rock. The initial 

normal stiffness can be estimated as [156]: 

,205
333.1333.1

m
ni

m V
k

V
≤≤     (3.28) 

where the units of niK  and mV  are MPa and µm, respectively. 

3.2.2.2 Shear Stiffness 

The shear displacement, peakδ , required to reach peak shear strength determines 

the secant stiffness of fractures in shear. This is extremely important input data in the 

finite element [157] and distinct element [158] analyses. Secant peak shear stiffness, sK , 

can be obtained from the following equation: 

peak

peak
sK

δ
τ

=      (3.29) 

Barton [92] indicated that model tension fractures representing prototype fracture 

lengths from 225 cm up to 2,925 cm required approximately 1% displacement (

Lpeak 01.0=δ ). In addition, Barton and Choubey [22] suggested 1% displacement as a 

“rule-of-thumb”, based on the overall mean obtained for 136 specimen ( Lpeak 0095.0=δ

). However, they pointed out that peakδ  will eventually reduce to less than L01.0 as 

fracture length increases to several meters. Barton and Bakhtar’s [159] survey of almost 

300 shear test records revealed that peak shear displacement of lab-size fractures (224 

tests) averaged at 1.28% of their corresponding lengths. On the other hand, 71 in situ tests 

gave an average of 0.72% of fracture lengths, thus yielding an overall average of 0.98%. 

Barton [115], by reviewing of a large number for shear tests reported in literature (650 

data points), found that the ratio Lpeak /δ  reduces gradually with increasing block 
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length. Moreover, he proposed that an approximation to the mean trend of 170 data points 

(with block lengths from about 50 mm to 1,000 km) is given by the following equation:  
6.0004.0 Lpeak =δ     (3.30) 

Analysis of data published by Bandis et al. [79] indicates that the ratio Lpeak /δ  

is related to the JRC  of the particular length of fractures tested, and that improved fit to 

the data is obtained with the following equation [115]: 

,
500

1 33.0

⎟
⎠
⎞

⎜
⎝
⎛=

L
JRC

L
peakδ

   (3.31) 

where L is length of fracture sample (in meters).  

Hyperbolic functions are frequently used to express analytically the non-linear 

behavior of sheared fractures in the pre-peak range. Bandis et al. [80] based on 

Kulhaway’s [160] formula suggested the following equation for the tangent shear 

stiffness of a fracture at any level of shear, τ , and normal, nσ , stress:  

,1)(
2

⎟
⎟
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⎞
⎜
⎜
⎝

⎛ ⋅
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fn
njst

R
KK j

τ
τ

σ     (3.32) 

where pτ  is peak shear strength; jn  is stiffness exponent; fR  is failure ratio ( ultττ / ) 

ranging from 0.652 to 0.887; and jK  is a “stiffness number” varying from 3.49 to 30.19 

MPa/mm. It can be calculated using the following empirical relation:    

    JRCK j 86.319.17 +−=     (3.33) 

Lower fR  values were associated with well-interlocked, unweathered fractures of high 

JRC, while planar, fresh, and especially weathered fractures gave the relatively higher 

values.  

Bandis [96] described the normal and shear stress dependency of the shear 

stiffness by applying hyperbolic functions to the u−τ  relationship of the type: 

,
unm

u
⋅+

=τ      (3.34) 



60 

where m is the inverse of initial shear stiffness and n is the inverse of shear stress 

asymptote. 

Wang et al. [107] mentioned that the elastic shear stiffness sK is a function of 

normal stress at the interface and can be expressed in terms of:   

,
)( 10 ns

s aKK σ
θα

+=     (3.35) 

in which )(θα  is a shape function that considers the effect of shear anisotropy on 

elastic deformation. The magnitude of the shape function is unity in isotropic cases. The 

shear elasticity parameters 0sK  and 1a  can be directly determined from the shear 

stiffness-intercept and the gradient of the best straight line, respectively, for the elastic 

normal stress-shear stiffness response for a particular rock fracture. 

Goodman [97] recommended two models to represent the variation of fracture 

shear stress with shear displacement under constant normal stress; one of which assumes 

that the fracture shear stiffness is independent of normal stress (constant stiffness model), 

whereas the other assumes that the peak and residual shear displacements are constant 

(constant displacement model). Both models show an increase in peak and residual shear 

strengths with normal stress. Wibowo et al. [161], based on the shape of the shear versus 

shear displacement response curves obtained from their experimental study, proved that 

neither constant stiffness model nor constant displacement model, by itself, fits the 

observed behavior [162]. 

The peak shear displacement measured in the experiments by Wibowo et al. [161] 

was found to increase with the normal load or stress. A linear relation was used to 

describe the variation of the peak displacement, pu , with applied normal stress, nσ , as 

follows [162]: 

,np bau σ⋅+=     (3.36) 

in which coefficient a and b are to be determined by linear regression analysis of lab test 

results.  
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Jing et al. [99, 100] proposed the following empirical relationship for shear 

stiffness: 

    ,2 m
t

c

n

c

n
t kk ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⋅=
σ
σ

σ
σ    (3.37) 

where m
tk is the maximum shear stiffness and is obtained when the normal stress reaches 

the magnitude of cσ , which is a material constant and should be obtained from lab tests. 

For shear stiffness Yoshinaka and Yambe [154] used the following equation 

proposed by Kondner [163] and Duncan and Chang [164]: 

,)/1( 2
ffsis Rkk ττ⋅−=    (3.38) 

where sik  is the initial shear stiffness. It depends on normal stress and condition of 

fracture surface; it is defined based on two material constants; fτ is peak shear strength; 

and fR  is a material constant.  

Plesha’s model [87] needs shear and normal stiffness and asperity information as 

input values, which should be measured from lab tests. Chen [165] used bilinear shear 

stress-displacement response with shear stiffness which are found from laboratory 

experiments. 

3.2.3 Degradation of fracture asperity 

The degradation of fracture asperity can be conceptualized as the variation of 

asperity angle, which would be evaluated by the secant or tangential slope of dilation 

curves. Plesha [87] and Zubelewicz et al. [166] proposed an exponential model to 

represent the degradation of asperity angle. Lee at al. [167], based on their experimental 

results (a series of cyclic shear tests conducted using both the saw-cut and the split tensile 

fracture specimens) revised Plesha’s plastic constitutive model by considering the second 

order asperities. Homand et al [168, 169] proposed a model to predict the evaluation of 

fracture morphology and the degree of degradation during the course of shearing. Their 

model is as good as Barton’s criteria compared to their experimental results. However, 

Saeb’s model [104] and Ladanyi and Archmabault’s model [91] dealing with proportion 
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of total fracture area sheared through asperities tend to underestimate the observed 

degradation [169]. Hutson and Dowding [170] and Hutson [171] suggested an 

exponential wear equation for fracture asperity based on experimental results using 

artificial fractures in a sinusoidal shapes. Huang et al. [103] tested molded fractures in a 

saw-tooth shape under cyclic shear loading and validated Plesha’s theoretical law for 

fracture asperities degradation [87].   

3.2.3.1 Mobilization of Shear Strength 

Barton [115] showed that the mobilized (pre- or post-peak) shear strength can be 

expressed by using the concept of roughness mobilization, mobilizedJRC , in Equation (3.3). 

The ratio peakmobilized JRCJRC /  can be estimated from the ratio peakδδ /  using the values 

given in Table 3.2. When 5.0/ =peakmobilized JRCJRC , the shear strength mobilized is 

midway between peak and residual values. This point seems to occur at approximately 

peakδ10  for non-planar fractures and peakδ25  for planar fractures. The slow reduction 

towards residual strength found in practice suggests that it is more appropriate to use the 

term “ultimate” strength for the value measured at the end of a shear test [115]. 

 

Table 3.2: Recommended model for shear stress-displacement [115]. 

Non-planar fractures 
Planar fractures ( 50 ≤JRC

) 

peakδ
δ

 peak

mobilized

JRC
JRC

peakδ
δ

peak

mobilized

JRC
JRC

0 ir /φ− 0 ir /φ−

0.3 0 0.3 0 
0.6 0.75 0.6 0.75 
1.0 1.0 1.0 0.95 
2.0 0.85 2.0 1.0 
4.0 0.70 4.0 0.9 

10.0 0.50 10.0 0.7 
25.0 0.40 25.0 0.5 
100 0 100 0 
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- The shear stress decreases linearly along the straight segment DE which has the 

same slope tk  as that of segment O-A, until it reaches point E. 

- When shear continues in the negative direction past the original point of zero 

shear displacement, the shear stress and normal deformation displays similar 

features as in the positive shear direction. 

- For fractures with previous shear histories, no peak shear stress occurs even for 

the first cycle. The dilatancy curves are much less nonlinear. 

3.2.4 Dilatancy 

The prediction of the dilatancy phenomenon of regular or irregular fractures 

subjected to direct shear loading has been addressed by numerous researchers such as 

Patton [102], Ladanyi and Archambault [91], Jaeger [147], Barton [21], Saeb [104], and 

Homand et al [168, 169]. In addition, variations in dilatancy with normal stresses have 

been modeled by many authors: Ladanyi and Archambault [91], Jaeger [147], Barton 

[132], Leichnitz [108], etc.  

Barton and Choubey [22] used both the peak secant dilation angle also called 

initial dilation angle, and the peak tangent dilation angle. Their experimental results 

showed that the peak secant dilation angle is about one-third of the peak tangent dilation 

angle. Ladanyi and Archmbault [91], Schneider [175], and Jing [100] considered the peak 

dilation angle only. 

The peak secant dilation angle (also called initial dilation angle), peaksd , , and the 

peak tangent dilation angle, peaktd , , are defined as follows [22]: 

    r
n

peaksd φ
σ
τ
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The experimental evidence indicates that fractures and fractures dilate most 

strongly when the shear displacement corresponds to the instant of peak shear strength 
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[132]. Both peak tangent and secant dilation angles were occasionally negative or zero 

[22]. The majority of measured peak tangent dilation angles fell between the following 

limits: 

)/(log2)/(log5.0 10,10 npeaktn JCSJRCdJCSJRC σσ ⋅<<⋅   (3.44) 

Barton and Choubey [22] suggested the following relation for the peak tangent 

and secant dilation angles: 

( ) ( )npeakt JCSJRCMd σ/log/1 10, ⋅⋅=     (3.45) 

 ( ) ( ),/log3/1 10, npeaks JCSJRCd σ⋅⋅=     (3.46) 

where M is damage coefficient, given values of 1 or 2 for shearing under low or high 

normal stress respectively [176], or can be obtained from the following relationship [22]: 

( ) 70.0
/log12 10

+=
nJCS

JRCM
σ

   (3.47) 

Barton [115] indicated that dilation will begin at the instant that 0=mobilizedJRC  

and mobilized dilation angle can be obtained from the following relationship: 

    ( ) ( )nmobilizedt JCSJRCMd σ/log/1 10⋅⋅=    (3.48) 

Ladanyi and Archmbault [91] proposed the following relation between the peak 

tangent dilatancy rate and the applied normal stress: 
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    (3.49) 

where k2 is an empirical coefficient, Tσ  is a threshold stress beyond which no further 

dilatancy takes place and )tan( poi  is the peak rate of dilatancy at zero normal stress.  

 Schneider [175] proposed the following relationship between the peak tangent 

dilation angle and the normal stress:  

     ,nk
pop eii σ−=      (3.50) 

where k is an empirical coefficient and poi is the peak tangent dilation angle at zero 

normal stress. 
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 Jing [100] proposed another relationship between the peak tangent dilation angle 

and the normal stress as follows: 

     ,1
k

u

n
pop q

ii ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=
σ

    (3.51) 

where k is another empirical coefficient, poi is the peak tangent dilation angle at zero 

normal stress, and qu is the uniaxial compressive strength of the inact material in the 

fracture wall.  

 Wibowo [162] modified Ladanyi and Archmbault [91] model, Equation (3.49), as 

follows: 
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    (3.52) 

where k3 is an empirical coefficient, Tσ  is a threshold stress beyond which no further 

dilatancy takes place and )tan( avoi  is the avarage rate of dilatancy at zero normal stress. 

3.2.5 Anisotropic dilatant behavior of fractures 

The shearing strength of rock fractures is composed of two components: (1) the 

base friction angle, bφ , resulting from two sawed surfaces sliding over each other, which 

is equal for all shearing directions; and (2) the resistance to sliding and/or shearing of the 

fracture asperities, which is a geometrical parameter. Consequently, the shear strength of 

rock fractures will be anisotropic as long as the surface is uneven and displays anisotropy 

in its geometric property [125].  

Huang and Doong [125] conducted an experimental study on the anisotropy in 

shear strength of fractures by shearing silicon rubber replicas of rock fractures in 

different directions. They found that: (1) the shear strength of the joints with the same 

surface morphology might be different when sheared in reverse direction; (2) the effect of 

anisotropy decreases with increasing normal stress. Their results show that the shear 

direction changes the shear strength of replicas. They adopted Barton’s failure criterion 

[21] together with Tse and Cruden’s equation [177] relating the joint roughness 
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coefficient, JRC, with the root mean square, RMS, of the asperity angle. However, they 

had no specific solution for including the shear direction in the shear strength of rock 

fractures.  

Jing et al. [126, 150], through their experimental study, found that the distribution 

of the total friction angles, pφ , on the nominal plane of the fracture surface (lower 

block), may be generalized as follows: (1) pφ  varies with both the shear direction and 

magnitude of normal stress; (2) the degree of the directional variation of pφ  decreases 

with increasing normal stress; (3) pφ  decreases with increasing normal stress; (4) under 

a certain normal stress, the directional distribution of the friction angle is not completely 

random, but displays principal directions. These principal directions may or may not be 

orthogonal, depending very much on the geometrical distribution of the asperities on the 

fracture surface. They proposed a new model for dilation angle of fractures, in which the 

magnitudes of the asperity angle follows an elliptical distribution. Wang et al. [107] also 

adopted the elliptical model introduced by Jing et al. [126].  

Grasselli et al. [127, 128] and Kulatilake et al. [129, 130] proposed new models 

for rock fractures. Their respective models do not include shear direction and can not be 

used to predict shear strength in different directions because the authors measured the 

geometrical parameters of their models only in the shearing direction.  

3.3 MODIFIED BARTON-BANDIS MODEL 

Among the constitutive models proposed in the literature to estimate the shear 

strength of rock fractures, Barton’s failure criterion is the one mainly used [127] because 

it is easy to apply and includes several important aspects off fracture characteristics that 

can be easily measured or estimated. In addition, Grasselli and Egger [127] stated that 

researchers studying the contribution of morphology to the shear strength have to deal 

with the JRC criterion proposed by Barton in the 1970s [22], and adopted as a reference 

by the International Society of Rock Mechanics in 1978 [178].  

Although, Barton’s failure criterion predicts the peak shear strength of rock 

fractures with acceptable precision, it shows weaknesses in estimating the peak shear 



69 

displacement, post-peak shear strength, dilation, and surface degradation in unloading 

and reloading. The weaknesses of the model are the following: 

- The peak shear displacement is independent of normal stress and is zero for 

sawed fractures [80]; this is not consistent with experimental observations. For 

example, peak shear displacements between 0.05 and 2.71 mm were reported in 

the literature and cited in this chapter.  

- Barton suggested zero mobilized JRC after 100 times of peak shear 

displacement. It means that according to Barton’s model after this amount of 

displacement, the behavior of the fracture is the same as a sawed fracture (no 

dilatancy and rn φστ tan= ). This seems to be just an approximation for the end 

of the curve because there are few experimental results containing post-peak 

shear strength of rock fractures up to about 100 times of the peak shear 

displacement. Moreover, even after this amount of displacement, the fracture 

surface is not the same as a sawed fracture ( 0=mobilizedJRC ). 

- Barton assumed zero dilation displacement up to one-third of peak shear 

displacement and eliminated negative dilatancy. However, many experimental 

studies performed on rock fractures showed that there is a negative dilation at 

small shear displacements.  

- Barton proposed his model for unloading and reloading based on just one cyclic 

direct shear test.  

 

In this study, the original Barton model is modified to address its weaknesses. As 

stated in Section 3.1, there are two main approaches to the quantitative description of the 

mechanical properties of rock fractures: the theoretical approach, and the empirical 

approach. Moreover, as indicated by Saeb [179] and Saeb and Amadei [180-182], the 

shear behavior of a rock fracture under any boundary condition can be determined from 

the response curves of the fracture under constant normal stress. Therefore, in this 

research, the empirical approach was used, which is consistent with Barton’s empirical 

model and the response curves of the fracture under constant normal stress were 
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considered. Barton’s failure criterion for peak shear strength of rock fracture, Equation 

(3.3), was adopted. A database of the results of direct shear tests available in the 

literatures was constructed and analyzed. The ability of Barton’s model to predict peak 

shear displacement, dilation, post peak shear strength, and unloading and shear reversal 

behavior was investigated and modifications are proposed to improve it in its weakness 

points.  

3.3.1 Database 

Two databases were built by collecting the results of direct shear tests available in 

the literature: Monotonic Direct Shear Tests, called MDST (Appendix A.1), and Cyclic 

Direct Shear Tests, called CDST (Appendix A.2). 

Studies on monotonic shearing [79, 81, 106, 113, 115, 127, 154, 161, 162, 169, 

176, 183-210] were investigated to find available monotonic direct shear test results. 

Peak shear strength, peak shear displacement, peak dilation displacement, maximum 

negative value of dilation, and shear displacement at which dilation displacement is zero 

were digitized from the curves. For post peak behavior shear strength, and dilation 

displacement at 4 different points were digitized.  

A large amount of data was collected from a site investigation report series 

published by Svensk Karnbranslehantering AB (Swedish Nuclear Fuel and Waste 

Management Co.) and available online (www.skb.com) [188-210]. In these cases, the 

values of JCS was assumed to be equal to the unconfined compressive strength of intact 

rock, which can be calculated from available results of triaxial tests run on intact rock 

specimens (using Hoek and Brown failure criterion [211, 212]).  In the reports, the 

magnitudes of peak and residual shear strength were available in tabular format and the 

corresponding shear displacements were digitized from curves. Base friction angle and 

JRC values were back calculated assuming that: (1) Barton [21] failure criterion can 

predict the peak and residual shear strength correctly and (2) residual shear strength is 

reached when 5.0/ =peakmobilized JRCJRC [115] and assuming no weathering for fractures 

( br φφ = ), base friction angle and JRC values were back calculated. JRC values may be 
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different for the same specimens under different normal stresses (due to the damage of 

asperities in the shear test run under smaller of normal stresses). The value of the peak 

dilation displacement, the maximum negative value of dilation, and the shear 

displacement at which dilation displacement is zero were all digitized from the curves. 

Results of 18 cyclic direct shear tests were found in the literature [103, 127, 150, 

167, 169, 174, 213]. For each available cycle, shear strengths and dilation displacements 

at different shear displacements were digitized so that shear strength-shear displacement 

as well as dilation-shear displacement curves could be built with the available 

information. 

In should be mentioned that the correlation analyses, in this Chapter, are 

performed employing the trial version of SPSS 14.0 available online (www.spss.com) 

which is a computer program used for data manning and statistical analysis.   

3.3.2 Peak shear displacement 

Although Bandis et al. [80] found that a constant normal peak displacement 

model [214] is not always realistic, Barton’s [115] empirical equation, Equation (3.31), 

for peak shear displacement was independent of normal stress. The non-linear variation 

of shear stiffness with normal stress is due to non-linear variation of peakτ  with nσ  and 

small increase in peakδ  with nσ  [80]. In addition, Wibowo et al. [161, 162] 

demonstrated that neither the constant stiffness model nor the constant displacement 

model, by itself, fits the observed shear behavior of rock fractures.  The peak shear 

displacement measured in the experiments by Wibowo et al. [161] was found to increase 

with the normal load or stress. They introduced a linear relation to describe the variation 

of the peak displacement, peakδ , with applied normal stress, nσ . 

In addition, Barton’s empirical model does not have any clear suggestion for peak 

shear displacement of sawed fractures ( 0=JRC ). The MDST database contained 19 data 

points with zero JRC and peak shear displacement ranging between 0.05 and 2.71mm; in 

these cases, Equation (3.31) would yield zero peak shear displacement. On the other 
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hand, Barton had 2 other suggestions for peak shear displacement before proposing 

Equation (3.31), both of which are independent of JRC: 

- Lpeak 01.0=δ : the result obtained from this equation is the same as the peak 

shear displacement predicted using Equation (3.31) for a fracture with the same 

length and 5.12=JRC . It is clear that rock fractures with 0=JRC  and 

5.12=JRC  should not have the same peak shear displacements. 

- 6.0004.0 Lpeak =δ : For a lab size specimen with block length of 0.1m, the result 

obtained from this equation for a fracture with a length of 0.1m is the same as 

predicted peak shear displacement of a fracture with the same length and 

13=JRC using Equation (3.31). Again, it is clear that rock fractures with 

0=JRC  and 13=JRC  should not have the same peak shear displacements. 

 

The purpose of this section is to find an empirical relationship for peak shear 

displacement considering the effect of normal stress and develop a solution for smooth 

fractures ( 0=JRC ).  

The peak shear displacement, peakδ , of rock fractures may be affected by length of 

the block (L), JRC, JCS, and normal Stress ( nσ ). 

The peak shear displacement, peakδ , and the block length, L , have length 

dimension ( L ). In addition, JCS  and normal stress, nσ , have stress dimension ( 2−FL ). 

However, joint roughness coefficient, JRC , is dimensionless. Dimensional analysis 

[215] was performed. While, there is no idea about the correlation between peakδ  and L, 

a dimensionless parameter was defined to be the ratio of the peak shear displacement to 

the block length and another was introduced as the ratio of the block lengthto the length 

of the lab specimen, L0 (0.1 m). Since only normal stress and JCS have force in their 

dimensions, a dimensionless parameter would be their ratio. Therefore, the following 

dimensionless parameters were found: 
L
peakδ

π =1 , 
0

2 L
L

=π , JRC=3π , and 
JCS

nσπ =4  
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Correlation analyses were performed to find 1π  as a function of 432 ,, πππ : 

),,( 4321 ππππ f=        (3.53-a) 

The MDST database contained 362 direct shear test records. Cases that have JRC 

values between 2 and 20 were selected for this part of analyses (317 data points). In order 

to perform a reliable correlation analyses, all variables should have reasonable 

distributions. It is shown here that distributions of all variables in the MDST database are 

acceptable. 

The block lengths ( 02 L×π ) in the MDST database ranged from 0.049 to 3m with 

distribution depicted in Figure 3.4. It can be seen in the figure that since the MDST 

database contained the results of direct shear tests, the size of the blocks are around 0.1m. 

Therefore, the database may under-represents long fractures. However, the following 

paragraphs demonstrate that the MDST database is adequate from this point of view. 

 

 
Figure 3.4: Distribution of length of the block in 317 data points of the database used 

in correlation analysis of peak shear displacement. 

 
Barton [115] found an approximation to the mean trend of 170 data, Equation 

(3.30), where block length ranged from about 50 mm to 1,000 km (56 samples with 
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0LL ≈ , 94 samples with )(10 0LL ⋅≈ , 5 samples with )(80 0LL ⋅≈ , and 15 earthquake 

fault with block size ranging between 1 and 1000 km). 

Non-linear regression analysis performed on the MDST database to correlate peak 

shear displacement and length of the sample gave the following relationship, which is 

very close to Barton’s Equation (see Figure 3.5 for comparison): 
61.00032.0 Lpeak ⋅=δ     (3.54) 

As can be seen in Figure 3.5, the predicted values from these equations are very 

close; their differences are less than 15% of predicted values from Barton’s equation. It is 

almost impossible to collect all required information, such as JRC, JCS, normal stress, 

peak shear stress, and friction angle, from sheared large blocks. Even Barton could only 

collected the values of peak shear displacement and length of the block. Therefore, the 

MDST database is adequate from this point of view.  

 

 
Figure 3.5: Comparison between Barton’s equation correlating peak shear 

displacement and length of the block and trend line passed through our database. 

 

The magnitude of JRC ( 3π ) in MDST ranged from 2 to 20 with a good 

distribution (close to a normal distribution) depicted in Figure 3.6. In addition, )( 4π
σ
JCS

n  

ranged between 0.001 and 0.6 with distribution illustrated in Figure 3.7.  
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Figure 3.6: Distribution of JRC in 317 data points of the database used in correlation 

analysis of peak shear displacement. 

 

Figure 3.7: Distribution of σn/JRC in 317 data points of the database used in 
correlation analysis of peak shear displacement. 

 
A power relationship has been adopted by Barton to relate peak shear 

displacement with block’s length and JRC, Equation (3.31). Moreover, the power 

function is a convenient form to use in calculations. Consequently, in this study, it was 

first assumed that function f in Equation (3.53-ab) is a power function with the following 

format: 
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dcba 4321 ππππ =             (3.53-b) 

Assuming a power function, the problem of non-linear multivariable regression 

analysis can be simplified to linear multivariable regression analysis, which is much 

easier to solve and the solution is much more reliable in the case where the type of 

function is unknown. This can be done by obtaining a natural logarithm of both sides of 

Equation (3.53-b) as follows: 

( ) ( ) ( ) ( )4321 lnlnlnln)ln( ππππ ⋅+⋅+⋅+= dcba       (3.53-c) 

Linear multivariable regression analysis was performed. With coefficient of 

correlation 42.02 =R  and standard error of estimate equal to 0.65, the following 

constants were obtained: 32.0;37.0;419.0;0618.0 =−=−== dcba . 

By substituting the above constants in Equation (3.53-c), the following 

dimensionless equation for peak shear displacement of the rock fracture was derived: 
32.0

37.0
49.0

0

0618.0 ⎟
⎠
⎞

⎜
⎝
⎛××⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×= −

−

JCS
JRC

L
L

L
npeak σδ   (3.55) 

Adopting SI units (meter for length) and choosing the lab specimen size of

mL 1.00 = , Equation (3.56) can be simplified as follows: 

32.0

37.0

51.0

02.0 ⎟
⎠
⎞

⎜
⎝
⎛=

JCSJRC
L n

peak
σδ    (3.56) 

There is a major difference between Barton’s empirical relationship, Equation 

(3.31), and what is obtained here by correlation analysis, Equation (3.56): although 

Barton found that peak shear displacement increases with JRC, the opposite is found 

here. The following analytical calculations show that the peak shear displacement should 

decrease by increasing JRC. 

Figure 3.8 depicts a diagram of forces applied in shearing rough fractures. In 

Figure 3.8, i  is the dilation angle or the effective roughness angle, which is the angle 

between asperities and the horizontal direction and can be defined as follows: 

,log10 ⎟
⎠
⎞

⎜
⎝
⎛⋅=
σ

JCSJRCi     (3.57) 

in which σ  is normal stress on the horizontal plane. 
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Figure 3.8: Diagram of forces applied at failure in shearing rough fracture. 

 

In addition, R  is the forces applied to the uppermost block. T and N  are the 

horizontal and vertical components of R , respectively. These forces can be obtained by 

projecting R  on X and Y axis. At failure, T and N , can be expressed as: 

( )iRT +⋅= ϕsin     (3.58) 

( )iRN +⋅= ϕcos     (3.59) 

A new coordinate system, ii YX − , is defined in Figure 3.8. iX and iY are parallel 

and perpendicular to the inclined plane of the fracture, which makes an angle of i  with 

the horizontal direction, X. iT  and iN  are the components of R  in ii YX −  coordinate 

system. Thus, iT  and iN  can be determined as follows: 

( )ϕsin⋅= RTi      (3.60) 

)cos(ϕ⋅= RNi     (3.61) 

In other words, iT  can be expressed in terms of iN  using the following equation: 

)tan(ϕ⋅= ii NT     (3.62) 

By substituting Equation (3.59) into Equation (3.62), iN  can be expressed as: 

               ( )
( )iNNi +

⋅=
ϕ
ϕ

cos
cos     (3.63) 
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Normal stress on the horizontal plane can be determined as: 

L
N

=σ      (3.64) 

Normal stress on the inclined plane of fracture is as follows: 

,
i

i
i L

N
=σ      (3.65) 

in which iL  is the length of the fracture along iX  direction and can be obtained from: 

    ( )iLLi cos/=      (3.66) 

By substituting, Equations (3.63), (3.64), and (3.66) into Equation (3.65), we have: 

    ( ) ( )
( )i

i
i +

⋅
⋅=

ϕ
ϕσσ

cos
coscos      (3.67) 

It can be seen in Figure 3.8 that the peak shear displacement in X  direction, δ , 

can be expressed in terms of the peak shear displacement in iX  direction, iδ , as:  

( )ii cos⋅= δδ      (3.68) 

In order to find whether the peak shear displacement increases or decreases with 

JRC, two fractures are defined with the following conditions (both have the same shape 

as what is shown in Figure 3.8): 

- Different dilation angle: 900 21 <<< ii ; and based on Equation (3.57), we 

have: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

2
2

1
1 loglog

σσ
JCSJRCJCSJRC   (3.69) 

- Equal length along iX direction: 21 )()( ii LL =  

- Equal normal stress on the inclined plane of fracture: 21 )()( ii σσ = ; and using 

Equation (3.67), we have: 

( )
( )

( )
( )1

2

2

1

2

1

cos
cos

cos
cos

i
i

i
i

⋅
+
+

=
ϕ
ϕ

σ
σ        (3.70-a) 

Which can be simplified as: 
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( ) ( )
( ) ( )2

1

2

1

tantan1
tantan1

i
i

⋅−
⋅−

=
ϕ
ϕ

σ
σ             (3.70-b) 

While 900 21 <<< ii  and since base friction angles, ϕ , are positive and less 

than 90 degrees: 

     1
)tan()tan(1
)tan()tan(1

2

1

2

1 >
⋅−
⋅−

=
i
i

ϕ
ϕ

σ
σ             (3.70-c) 

- Both fractures are from the same material and have the same Fracture 

Compressive Strength (JCS) and the same base friction angle ( bϕ ). While JCS 

is a positive value and 3,2 σσ>JCS :  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2
10

1

loglog
σσ
JCSJCS

 
  (3.71) 

Based on Equation (3.69) and (3.71), it can be concluded: 

         21 JRCJRC <     (3.72) 

Based on Equation (3.68), peak shear displacements can be expressed as follows: 

)cos(
)cos(

)(
)(

2

1

2

1

2

1

i
i

i

i ⋅=
δ
δ

δ
δ

    (3.73) 

Based on Barton’s model, the peak shear displacement is a function of length of 

the block and JRC. This research found that the peak shear displacement is a function of 

length, JRC, and normal stress, Equation (3.56). Let us now apply Equation (3.56) along 

iX  axis. Since, along the iX  axis, JRC is close to zero for all cases and since 

21 )()( ii LL =  and 21 )()( ii σσ = , the peak shear displacements along the iX direction are 

equal ( 21 )()( ii δδ = ). Thus, Equation (3.73) can be simplified as: 

)cos(
)cos(

2

1

2

1

i
i

=
δ
δ      (3.74) 

Because dilation angles are different ( 900 21 <<< ii ), we have: 

2121 coscos900 iiii >⇒<<<    (3.75) 
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From Equations (3.73) and (3.75), it can be concluded that the peak shear displacement 

decreases with the increasing dilation angle (or JRC): 

21 δδ >       (3.76) 

In order to see whether this conclusion is consistent with Barton’s model or not, 

the peak shear displacements expressed based on Barton’s empirical Equation (Equation 

(3.31)) are as follows: 
33.0

2

1

67.0

2

1

2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

JRC
JRC

L
L

δ
δ

    (3.77) 

Substituting Equation (3.66) in Equation (3.77) and considering 21 )()( ii LL =  we have: 

    ( )
( )

33.0

2

1

67.0

2

1

2

1

cos
cos

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

JRC
JRC

i
i

δ
δ     (3.78) 

It can be shown from Equations (3.72), (3.75), and (3.78) that according to 

Barton’s empirical equation the peak shear displacement increases with increasing JRC (

1
2

1 <
δ
δ ). 

On the other hand, using Equation (3.56), the peak shear displacements are 

expressed as follows: 

    
32.0

2

1

37.0

1

2

51.0

2

1

2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

σ
σ

δ
δ

JRC
JRC

L
L

   (3.79) 

Substituting Equation (3.66) in Equation (3.79), and considering 21 )()( ii LL =  we have: 

( )
( )

32.0

2

1

37.0

1

2

51.0

2

1

2

1

cos
cos

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

σ
σ

δ
δ

JRC
JRC

i
i

  (3.80) 

Through Equations (3.70-c), (3.72), and (3.75), it was proved that all terms in the 

right hand side of Equation (3.80) are bigger than 1. Therefore, their multiplication is 

higher than 1 and consequently the left hand side is higher than 1 ( 21 δδ > ). This is 

exactly consistent with Equation (3.76) and the fact that the peak shear displacement 

decreases with the increasing dilation angle (or increasing JRC).   
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The only problem with Equation (3.56) is predicting peak shear displacement of 

sawed fractures ( 0=JRC ). Based on Equation (3.68), which is consistent with Figure 

3.8, the peak shear displacement of sawed fractures has the following relation: 

δ

σ

δδ =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛⋅

= → JCSJRC
JRCi

10

0

logcos
lim    (3.81) 

However, based on Barton’s empirical Equation (3.31): 

   0
500

limlim
33.0

00 =⎟
⎠
⎞

⎜
⎝
⎛== →→ L

JRCL
JRCJRCi δδ    (3.82) 

And based on Equation (3.56): 

∞→⎟
⎠
⎞

⎜
⎝
⎛== →→

32.0

37.0

51.0

00 02.0limlim
JCSJRC

L
JRCJRCi

σδδ   (3.83) 

This shows that although the predicated peak shear displacement using Equation 

(3.56) changes with normal stress and decreases with increasing JRC, the developed 

equation still has a weakness in the case of smooth fractures ( 0→JRC ). Therefore, the 

power function is a good option, but there may be better choices for relating the peak 

shear displacement and JRC. Consequently, the regression analysis was revised in 

accordance with the above mentioned analytical explanation. The goal is to find an 

empirical equation for the peak shear displacement of sawed fracture, iδ , and then obtain 

the peak shear displacement of rough fractures, peakδ , using Equation (3.68).  

By performing a dimensional analysis [215], the following dimensionless 

parameters were found: 

- 
i

i

L
δπ =1 : based on Equations (3.66) and (3.68), it can be simplified as:  

L
i

L
i peak

peak

δ
δ

π ==

)cos(

)cos(
1

, 

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n

JCSJRCi
σ10log. . 
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- 
0

2 L
Li=π : Based on Equation (3.66), it can be written as:  

( )iL
L
cos.0

2 =π . 

- 
JCS

iσπ =3 : in which iσ  is the normal stress on the inclined plane of fracture 

and can be expressed in terms of nσ , the normal stress on the horizontal plane, 

using Equation (3.67). Therefore,  can be written as  

( )i
i

JCS
n

+
⋅=

ϕ
ϕσπ

cos
coscos

3 . 

 

All 362 direct shear test records available in the MDST database were used to 

calculate the three above mentioned dimensionless parameters and perform correlation 

analyses to find 1π as a function of 32 ,ππ : 

),( 321 πππ f=        (3.84-a) 

Since the power function is a convenient form to be used in calculations, it was 

assumed that function f in Equation (3.84-a) is a power function as follows: 
cba 321 πππ =             (3.84-b) 

Therefore, the problem of non-linear multivariable regression analysis can be 

simplified to linear multivariable regression analysis which is much easier to solve and 

the solution is much more reliable. This can be done by obtaining a natural logarithm of 

both sides of Equation (3.84-b) as follows: 

( ) ( ) ( ) ( )321 lnlnlnln πππ ⋅+⋅+= cba            (3.84-c) 

Linear multivariable regression analysis was performed. With coefficient of 

correlation 38.02 =R  and standard error of estimate equal to 0.68, the following 

constants were derived:  

027.0=a ; 55.0−=b ; 34.0=c  
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By substituting the above constants in Equation (3.84-c), the following 

dimensionless equation for the peak shear displacement of sawed fractures was obtained: 
34.055.0

0

027.0 ⎟
⎠
⎞

⎜
⎝
⎛⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−

JCSL
L

L
ii

i

i σδ    (3.85) 

Adopting SI units (meter for length) and choosing the lab specimen size of L0 = 1 

m, Equation (3.85) can be simplified as follows: 
34.0

45.00077.0 ⎟
⎠
⎞

⎜
⎝
⎛=

JCS
L i

ii
σδ     (3.86) 

Substituting Equations (3.66) to (3.68) into Equation (3.86), the peak shear 

displacement of the rough fractures can be obtained using the following equation: 

( ) ( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅⋅⎟
⎠
⎞

⎜
⎝
⎛⋅=

34.0

45.0

34.0
45.0

cos
coscos

)(cos
1cos0077.0

i
i

i
i

JCS
L n

peak ϕ
ϕσδ  (3.87) 

The base friction angle ranges between 25º to 35º for the majority of unweathered 

rock surfaces [92, 136, 141-145]. Furthermore, in view of the safety requirement of rock 

engineering structures, the value of i+ϕ  is limited to 70º. Therefore, the last part of the 

right hand side of Equation (3.88), 
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

34.0

45.0 )cos(
coscos

cos
1

i
i

i ϕ
ϕ , can range between 1 and 

1.45. Thus, for simplicity it can be eliminated from the equation. Consequently, the 

following empirical relation can be used for the peak shear displacement of fractures: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟

⎠
⎞

⎜
⎝
⎛⋅= )log(cos0077.0

34.0
45.0

n

n
peak

JCSJRC
JCS

L
σ

σδ   (3.88) 

Table 3.3 compares Equations (3.31), (3.56), and (3.88) with each other, in 

accordance with their ratio of predicted to the measured peak shear displacement, 

measured

predicted

δ
δ

, for the 317 cases of MDST database with JRC between 2 and 20. Correlation 

analysis Equation (3.88) had a smaller 2R  compared to Equation (3.56) (0.38 compared 

to 0.42). However, based on the following reasons, it can be concluded from Table 3.3 

that Equation (3.88) works the best in predicting peak shear displacement of fractures: 
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- Although Equation (3.56) has the higher value of Min
measured

predicted )(
δ
δ

, Equation (3.88) 

has the minimum value of Average
measured

predicted )(
δ
δ

, Max
measured

predicted )(
δ
δ

, and sum of the 

square of errors, ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

2

1
measured

predicted

δ
δ

, among the other options.  

- The correlation factor, which is defined as the ratio of standard deviation to the 

average, Average
measured

predicted
STD

measured

predicted )/()(
δ
δ

δ
δ

, is also the minimum in the case of 

Equation (3.88) (0.68 compared to 0.99 and 0.69 from Barton’s equation and 

Equation (3.56), respectively). 

 

Table 3.3: Comparing Barton’s empirical equation with Equations (3.56) and (3.88) 
in predicating the peak shear displacement of rock fractures. 

Parameter Barton’s Equation 
(3.31) 

Equation 
(3.56) 

Equation 
(3.88) 

STDAverage
measured

predicted ±)(
δ
δ

 1.64+1.63 1.26+0.87 1.11+0.76 

Max
measured

predicted)(
δ
δ

 13.70 6.36 5.59 

Min
measured

predicted)(
δ
δ

 0.12 0.23 0.19 

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

2

1
measured

predicted

δ
δ

 980.22 259.70 188.47 

 

 

In addition, for the above mentioned 317 data points, Figure 3.9 illustrates 

predicted peak shear displacement, , using Barton’s equation and Equation 

(3.88) versus the measured peak shear displacement, . It can be seen in the 
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figure that the distribution of  versus  for the case of Equation 

(3.88) is closer to the ideal line of  compared to those obtained 

employing Barton’s equation. 

 

(a) (b) 
Figure 3.9: Predicted versus the measured peak shear displacement: (a) using Barton’s 

equation; (b) Equation (3.88). 

 

Furthermore, using Equation (3.88) to predict the peak shear displacement of rock 

fractures has advantages over Equations (3.31) and (3.56), because it is the only one that 

can be used for all types of rock fractures including sawed, smooth, and rough. Figure 

3.10 compares experimental peak shear displacement for sand blasted and sawed 

fractures (JRC = 0) with the values predicted employing Equation (3.88), as the 

suggested empirical equation of this study. While Equation (3.31) predicts zero peak 

shear displacement for sawed fractures and Equation (3.56) tends to infinity, Equation 

(3.88) yields a good estimation, as it can be seen in Figure 3.10. 

Figure 3.11 demonstrates the ability of Equation (3.88) to consider the effect of 

normal stress on the peak shear displacement. Also shown in Figures 3.12 (m) through 

(p) is Wibowo’s linear correlation (Equation (3.36)). Although, Wibowo’s approximation 

performs the best in these Figures, constants a and b in Wibowo’s model have to be 

determined experimentally for each fracture, whereas no additional parameter has to be 

determined in Equation (3.88). 
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(a) Sand blasted fractures  (b) Diamond sawed fractures  
  

(c) Sawed fractures 
 

Figure 3.10: Comparing measured peak shear displacement with their predicted values 
using Equation (3.88) for the case of sawed fractures (JRC=0) 

 

3.3.3 Post-peak stress-displacement curve 

Barton expressed the post-peak stress-displacement curve by using the concept of 

roughness mobilization, JRCmobilized, in Equation (3.3) [115]. The ratio 

peakmobilized JRCJRC /  can be estimated from the ratio peakδδ / employing the values given 

in Table 3.2. 

Barton assumed that at a shear displacement of peakδ100 , the mobilized JRC 

becomes zero. It seems to be just an approximation for the end of the curve; because 

obviously there are few experimental results containing post-peak shear strength of rock 
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fractures up to about peakδ100 . Moreover, after even this amount of displacement, the 

fracture surface is not the same as sawed fracture (JRCmobilized = 0). 

 

(a) (b) 
  

(c) (d) 
  

 
(e) (f) 

Figure 3.11: Performance of Equation (3.88) in considering the effect of normal stress on 
the peak shear displacement as compared to Barton’s Equation (Equation (3.31)) 

Bandis et al. (1981); Figure 4, JRC = 6.5
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(g) (h) 
  

(i) (j) 
  

(k) (l) 

 Figure 3.11-Continued: Performance of Equation (3.88) in considering the effect of 
normal stress on the peak shear displacement as compared to Barton’s 
Equation (Equation (3.31)) 

Huang et al. (2002); JRC = 8.7
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Huang et al. (2002); JRC = 15.8
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Desai and Fishman (1991); JRC = 2
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(m) (n) 
  

(o) (p) 
  

 Figure 3.11-Continued: Performance of Equation (3.88) in considering the effect of 
normal stress on the peak shear displacement as compared to Barton’s 
Equation (Equation (3.31)) 

 

In addition, Barton divided the problem of post-peak shear strength into two 
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inconsistency for the case of planar fracture. At peak shear displacement, the mobilized 

JRC  was assumed to be 0.95 times of peakJRC . On the other hand, the mobilized JRC  

was assigned to be equal to the peak value of JRC , when the shear displacement is 

twice as much as the peak shear displacement. However, the peak value of JRC , which 

is coincident with peak shear strength, should be mobilized at the peak shear 

displacement. Using the values given in Table 3.2 for planar fractures, the post-peak 
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shear strength at a shear displacement of peakδ2  is higher than the shear strength at 

peakδ . For the case of planar fractures, assume that the actual peak shear displacement is 

the one related to the mobilized JRC  of peakJRC  (i.e.: two times as much as it is 

defined in Table 3.2). As can be seen in Figure 3.12, there is no significant difference 

between the post-peak values of peakmobilized JRCJRC /  given in Table 3.2 for non-planar 

and planar fractures. 

Regarding the above mentioned inconsistencies of Barton’s empirical model in 

predicting the post-peak shear strength of rock fractures, the MDST database was 

analyzed in order to find an empirical relationship between the mobilized JRC  and 

post-peak shear displacement. Initially, it was assumed that the ratio of 

peakmobilized JRCJRC /  is a function of not only peakδδ / , but also normal stress, JCS, and

peakJRC . 

 
Figure 3.12: Comparing the post-peak values of peakmobilized JRCJRC / given by Barton for 

planar and non-planar fractures 

 

It should be noted that most of the direct shear tests performed for research or 
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lab-size specimen of 10 cm, the peak shear displacement is about 1 mm (using the “rule-

of-thumb” suggested by Barton [92]) and shear displacement of 15 mm is approximately 

15 times the peak shear displacement. Consequently, any database used for correlation 

analysis suffers from lack of information for post-peak shear strength when shear 

displacements are greater than peakδ15  . 

The MDST database contains 255 direct shear test records for which the 

magnitude of post-peak shear strength are known at 1 to 4 different points; this gives a  

total number of 762 data points with peakδδ /  ranging between 1 and 40, four of which 

have peakδδ / between 25 and 40. Eliminating these four cases, the other 758 data points (

25/1 << peakδδ ) have a distribution illustrated in Figure 3.13, which shows that the most 

of the data points have peakδδ /  between 1 and 15 (730 out of 758).  

Therefore, regression analysis performed on the MDST database is reliable up to 

10/ =peakδδ . Clearly, for 10/ >peakδδ , the obtained relationship from correlation 

analysis is almost an extrapolation of the approximation through the points with smaller 

amount of displacements. Thus, for large shear displacements, the correlation analysis of 

MDST suffers from exactly the same weakness as Barton’s model. 

 

 
 Figure 3.13: Distribution of peakδδ /  for 758 data points of MDST database used in 

correlation analysis of post-peak shear strength. 
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By performing a dimensional analysis [215], the following dimensionless 

parameters were found: 

peak

mobilized

JRC
JRC

=1π , 
peakδ
δπ =2 , peakJRC=3π , 

JCS
nσπ =4  

Correlation analyses were performed to find 1π as a function of 432 ,, πππ : 

),,( 4321 ππππ f=         (3.89-a) 

The magnitude of 3π ( JRC ) in 758 data points of the MDST database ranges from 

0 to 20 with a normal distribution depicted in Figure 3.14. In addition, Figure 3.7 shows 

that
JCS

nσ ranges between 0.001 and 0.6 with ab acceptable distribution. Initial correlation 

analysis showed that there is no correlation between 1π  and both 3π  and 4π . 

Therefore, Equation (3.89-a) can be written as follows: 

)( 21 ππ f=                  (3.89-b) 

Since at peak shear displacement ( peakδδ = ), the mobilized JRC should be equal to

peakJRC , Equation (3.89-b) should satisfy condition 1)1(1 == fπ .  

Barton expressed the relationship between 1π  and 2π  in tabular format (Table 

3.2). The most common method of using the table is linear interpolation between given 

values. In order to have an initial idea about the shape of function f, the values presented 

in Table 3.2 were analyzed. The table can be approximated by the following functions: 

- Eliminating the weakest point of the table ( 100=
peakδ
δ

), the best fit function 

would be power function ( a
21 ππ = ). 

- Eliminating the second weakest point of the table ( 25=
peakδ
δ

), the best fit 

function would be logarithmic function ( )ln(.1 21 ππ a−= ). 
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The correlation analysis revealed that the power function fits experimental results 

the best. Thus, the following empirical equation with 2R of 0.52 and standard error of 

estimate of 0.58 is proposed to obtain peakmobilized JRCJRC /  from peakδδ / : 

381.0−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

peakpeak

mobilized

JRC
JRC

δ
δ

   (3.90) 

Table 3.4 compares the predicted versus measured values obtained by using 

Equation (3.90) against Table 3.2 for 762 data points of the MDST database. In addition, 

Figure 3.15 illustrates the predicted value of peakmobilized JRCJRC /  using Barton’s model 

(Table 3.2) and Equation (3.90) versus the measured value of peakmobilized JRCJRC / .  

 

 
Figure 3.14: Distribution of JRC for data points of MDST database used in correlation 

analysis of post-peak shear strength. 
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, and sum of the square of errors, 
2

)(
)(

1∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

measuredmobilized

perdictedmobilized

JRC
JRC

, compared to 

Table 3.2. 

- The correlation factor, which is defined as the ratio of standard deviation to the 

average, 

Averagemeasuredmobilized

perdictedmobilized

STDmeasuredmobilized

perdictedmobilized

JRC
JRC
JRC
JRC

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

)(
)(
)(
)(

, is also the minimum in the case of 

Equation (3.90) (0.77 compared to 0.79). 

- It can be seen in Figure 3.15 that the distribution of the predicted value of 

peakmobilized JRCJRC /  versus the measured value of peakmobilized JRCJRC /  using 

Equation (3.90) is closer to the ideal line of 1
)(
)(

=
measuredmobilized

perdictedmobilized

JRC
JRC

 compared 

to those obtained employing Barton’s equation. 

 

Table 3.4: Comparison between Barton’s model proposed in tabular format and 
Equation (3.90) in predicting the ratio of mobilizedJRC  from real peakδδ / . 

Parameter Barton’s Model 
(Table 3.2) 

Equation 
(3.90) 

STD
JRC
JRC

Averagemeasuredmobilized

perdictedmobilized ±⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)(
)(

1.39+1.10 1.19+0.92 

Maxmeasuredmobilized

perdictedmobilized

JRC
JRC

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)(
)(

11.97 9.67 

Minmeasuredmobilized

perdictedmobilized

JRC
JRC

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)(
)(

0.56 0.43 

2

)(
)(

1∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

measuredmobilized

perdictedmobilized

JRC
JRC

37.83 32.35 
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(a) (b) 
Figure 3.15: Predicted versus the measured peakmobilized JRCJRC / : (a) Barton’s model 

(Table 3.2); (b) Equation (3.90) 

 

Barton suggested empirical Equation (3.31) to predict peak shear displacement of 

rock fractures and Table 3.2 to estimate the mobilized JRC . In this study, Equation 

(3.88) was proposed to estimate peak shear displacement and Equation (3.90) was 
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the proposed modified equations in predicting mobilizedJRC  for 762 data points of the 

MSDT database are compared. 
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Parameter Barton’s 
Model  
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Model 

STD
JRC
JRC
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)(
)(
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JRC
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It can be concluded from Table 3.5 that the proposed modified equations work 

batter than Barton’s model in predicting mobilizedJRC , due to the following reasons: 

- Although the proposed modification has the smaller value of 

Minmeasuredmobilized

perdictedmobilized

JRC
JRC

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)(
)(

, it has the minimum value of 

Averagemeasuredmobilized

perdictedmobilized

JRC
JRC

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)(
)(

, 
Maxmeasuredmobilized

perdictedmobilized

JRC
JRC

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)(
)(

, and sum of the square of 

errors, 
2

)(
)(

1∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

measuredmobilized

perdictedmobilized

JRC
JRC

, compared to Barton’s model. 

 

- The correlation factor, which is defined as the ratio of standard deviation to the 

average, 

Averagemeasuredmobilized

perdictedmobilized

STDmeasuredmobilized

perdictedmobilized

JRC
JRC
JRC
JRC

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

)(
)(
)(
)(

, is also the minimum in the case of 

proposed model (0.93 compared to 0.94). 

 

Just for a comparison, Figure 3.16 depicts the proposed model, Equation (3.90), 

and Barton’s Tabular model (Table 3.2) for peakδδ /  ranging between 1 and 100. 

In conclusion, Equation (3.90) is proposed to predict the mobilized JRC after peak 

shear displacement. In addition to the fact that it works better than Table 3.2 in the 

MDST database, it has a smoother curve compared to the linear interpolation of the 

values given in Table 3.2 and is easier to implement numerically. Furthermore, Equation 

(3.90) is independent of JRC  and does not have the same problem as the above 

mentioned inconsistency of Table 3.2 for the case of planar fractures. Both Table 3.2 and 

Equation (3.90) suffer from the same problem: lack of information of rock fracture shear 

strength at shear displacement more than 10 times the peak shear displacement. As a 

result, the predicted magnitudes of mobilized JRC at high shear displacements (



97 

10/ >peakδδ ) using either Table 3.2 or Equation (3.90) are just an extrapolation of the 

relationships obtained by correlation analyses of data points available at smaller 

displacements. However, in this regard Equation (3.90) has the following advantages 

over Table 3.2: 

- At 100/ =peakδδ , Table 3.2 suggested 0=mobilizedJRC , while Equation (3.90) 

proposed peakmobilized JRCJRC 17.0= , which is more realistic, because, even after 

this large amount of displacement, one can not expect a rough fracture to behave 

the same as a sawed fracture. 

- After 100 times peak shear displacement, Table 3.2 has no clear suggestion (or 

maybe proposes a negative value for mobilizedJRC ). However, Equation (3.90) 

yields positive values for JRC regardless of the amount of shear displacement. 

- Up to about 50 times the peak shear displacement, the predicted mobilizedJRC  

using Equation (3.90) is smaller than that obtained employing Table 3.2. Before 

reaching 50 times the peak shear displacement of fractures, using Equation 

(3.90) instead of Table 3.2 for post-peak shear displacement is conservative. 

 

 
 Figure 3.16: Comparison between proposed model for post-peak shear strength 

(Equation (3.90)) and Barton’s model (Table 3.2) 
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3.3.4 Dilatancy 

In this section, the dilatancy behavior of rock fractures is investigated. The goal is 

to find dilation displacement at any shear displacement. The problem is divided into two 

parts: pre-peak and post-peak dilatancy, which means dilatancy before and after peak 

shear displacement, respectively. 

3.3.4.1 Pre-peak  

The MDST database contains the results of 242 direct shear tests for which at 

least dilation at the peak shear displacement is available. Based on the shape of the 

vertical displacement versus the shear displacement curve and how much information is 

available for each test, the results were divided into 4 different categories (Table 3.6). 

 

Table 3.6: Different categories of the MDST database Based on the shape of the vertical 
displacement versus the shear displacement curve and available information 

Categories Number 
of tests  Available data Issues 

Category 1 96 

- Dilation at peak shear 
displacement 
- Shear displacement at which the 
fracture started to dilate 

No negative dilation was depicted. This 
category contains the results of 96 tests, 34 
cases of which come from Barton [115], 
Barton et al. [81], and Bandis et al. [79]. 
While they did not consider the negative 
dilation in their model, there is a possibility 
that they had eliminated the negative part in 
presenting their experimental work. 

Category 2 91 

- Maximum negative dilation 
- Dilation at peak shear 
displacement  
- Shear displacement at which 
dilation is zero 

Fractures initially showed negative dilation 
followed by positive dilation. 

Category 3 38  

Dilation was negative at all points. 35 out of 
38 cases of this category have experienced 
shearing under different normal stresses. 
Thus, there is considerable uncertainty 
regarding these data including mismatching 
results. Therefore, this category was not 
considered in correlation analyses. 

Category 4 17 - Dilation at peak shear 
displacement 

This category was used for validation 
purposes. 
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Barton [115] indicated that a rock fracture begins to dilate at the instant that 

0=mobilizedJRC . Also, he assumed zero dilation up to peakδδ 3.0= . However, in the 

MDST database, almost in half of the cases, there is a negative dilation which will be 

eliminated by Barton’s model. 

On the other hand, Barton [115] proposed Equation (3.48) for the tangent dilation 

angle at each shear displacement and Table 3.2 for mobilized JRC . Based on Table 3.2, 

mobilizedJRC  is negative up to 3.0/ =peakδδ . Therefore, the tangent dilation angle should 

be negative up to 3.0/ =peakδδ . In addition, mobilizedJRC  is zero at 3.0/ =peakδδ  and 

then has a positive value. As a result, dilation displacement should decrease up to 

3.0/ =peakδδ  and then increase. Thus, 3.0/ =peakδδ  should be the minimum of dilation 

displacement, not the point at which the fracture starts to dilate. Consequently, Equation 

(3.48) is inconsistent with Table 3.2. 

Barton and Choubey [22] used the peak secant dilation angle, also called initial 

dilation angle, and the peak tangent dilation angle. Based on their experimental results, 

they found that the peak secant dilation angle is about one-third of the peak tangent 

dilation angle. They proposed Equation (3.45) and (3.46) for peak and secant dilation 

angles, respectively. There are two ways to predict the peak secant dilation angle:  

- Option 1: estimate the peak secant dilation angle using Equation (3.46). 

- Option 2: use Equation (3.45) to estimate the peak tangent dilation angle, 

employ Equation (3.47) to predict damage coefficient, M, and estimate the peak 

secant dilation angle to be one-third of the peak tangent dilation angle: 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

n
peaks

JCSJRC
M

d
σ10, log.13/1   (3.91) 

Regarding the above mentioned inconsistencies and ambiguity, the MDST 

database was analyzed to find a clear model for dilatancy behavior of rock fractures that 

can predict dilation at each shear displacement. 

In order to find which option works better, all 204 cases (Categories 1, 2, and 4 of 

the MDST database in Table 3.6) were considered. For each case, the peak secant dilation 
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angle, peaksd , , was estimated using the above mentioned two options. Then, dilation 

displacement at peak shear displacement, peakv )(δ , was calculated using the following 

equation with the measured value of peakδ : 

( )peakspeakpeakv d ,tan)( ⋅= δδ     (3.92) 

The two options were compared in Table 3.7, in accordance with their ratio of 

predicted peakv )(δ  to measured peakv )(δ . Table 3.7 shows that option 2 is far better than 

option 1.  

Next, the goal was to find at which shear displacement(s), dilation displacement is 

zero. Barton [115] indicated that dilation will begin at the instant that 0=mobilizedJRC  

(zero dilation up to 3.0/ =peakδδ ). Analysis of the MDST database shows that, on 

average, zero dilation occurs as follows: 

- In category 1 (no negative dilation): up to 36.0/ =peakδδ . 

- In category 2 (with negative dilation): at 5.0/ =peakδδ . 

- In categories 1 and 2 (together): at 43.0/ =peakδδ . 

 

Table 3.7: Comparison of two available options to predict the peak secant dilation angle 
at peak shear displacement 

Parameter Option 1 Option 2 
( )
( ) STD

Averagemeasuredpeakv

predictedpeakv
±⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

)(

)(

δ

δ
 1.52+2.14 1.21+1.41 

( )
( )

Maxmeasuredpeakv

predictedpeakv

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

)(

)(

δ

δ
 15.57 9.49 

( )
( )

Minmeasuredpeakv

predictedpeakv

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

)(

)(

δ

δ
 0.09 0.10 

( )
( )

2

)(

)(
1∑

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

measuredpeakv

predictedpeakv

δ

δ
 706.18 325.54 
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As it was mentioned above, from Table 3.2, one can expect that 3.0/ =peakδδ  is 

the point with minimum dilation. However, Barton defined it as the point at which the 

fracture starts to dilate. Here, in order to build a model for dilatancy behavior of rock 

fractures, the following assumptions were made: 

- Dilation displacement is minimum at 25.0/ =peakδδ  

- Dilation displacement is zero at 50.0/ =peakδδ  

Assuming zero dilation at 50.0/ =peakδδ  is compatible with the average value 

obtained from Category 2 of the MDST database. In addition, assuming minimum 

dilation at 25.0/ =peakδδ  is very close to the average value obtained from Category 1 

of the MDST database and what Barton defined in Table 3.2 as far as mobilizedJRC  or 

introduced as starting point of dilation. 

Finally, the goal was to find an equation with which dilation displacement can be 

obtained at each shear displacement. The dimensionless forms of displacement are 

defined as 
peak

h

δ
δ

 and 
peak

v

δ
δ

 where hδ  is shear displacement, vδ  is normal 

displacement (dilation displacement), and peakδ  is peak shear displacement. The 

equation should satisfy the following conditions: 

1) At 0:0 ==
peak

v

peak

h

δ
δ

δ
δ

 

2)  At 0:5.0 ==
peak

v

peak

h

δ
δ

δ
δ

 

3)  At
peak

peakv

peak

v

peak

h

δ
δ

δ
δ

δ
δ )(

:1 ==  

Thus, a quadratic equation with zero intercept as follows would be a good option: 

   ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅=

peak

h

peak

h

peak

v ba
δ
δ

δ
δ

δ
δ

2

   (3.93) 
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In order to satisfy the second and third above mentioned conditions, constants in 

Equation (3.93) should have the following relations: 

05.0 =+ ba      (3.94) 

peak

peakvba
δ
δ )(

=+     (3.95) 

Therefore, the constants were obtained as follows: 

peak

peakva
δ
δ )(

2=      (3.96) 

peak

peakvb
δ
δ )(

−=      (3.97) 

Substituting Equations (3.96) and (3.97) in Equation (3.93), we have: 
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⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅=

peak

h

peak

h

peak

peakv

peak

v

δ
δ

δ
δ

δ
δ

δ
δ

2

2
)(

  (3.98) 

These constants, Equations (3.96) and (3.97), also satisfy the condition that 

minimum dilation occurs at 25.0/ =peakδδ : 

0
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Based on the proposed model for pre-peak dilation displacement, the tangent 

dilation angle of rock fractures at each point can be obtained as follows: 

⎟
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⎜
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   (3.99) 

Therefore, the peak tangent dilation angle can be obtained as follows: 
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

peak

peakv
pd

δ
δ )(

3arctan     (3.100)  

Substituting Equation (3.92) in Equation (3.100), we have: 

   ( ))tan(3arctan , peaksp dd =     (3.101) 

Recall that the shear strength of a rock fracture at peak shear displacement can be 

predicted using Equation (3.3). According to Barton’s model [21], the tangent dilation 

angle at peak shear displacement should be as follows: 

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=′

n
p

JCSJRCd
σ10log     (3.102) 

The MDST database contains the results of 341 direct shear tests for which all 

required information (JRC, JCS, and normal stress) is available in order to calculate ′
pd . 

The analysis proceeded as follows: the peak secant dilation angle was calculated per 

option 2 by using Equations (3.47) and (3.91), then, the peak tangent dilation angle was 

obtained employing Equation (3.101). The ratio of ′
pp dd /  ranged from 0.2 to 1.31 and 

had an average of 0.82 with standard deviation of 0.2. While both pd  and ′
pd are 

defined as the tangent dilation angle at peak shear displacement, it is expected that 

′
pp dd / to be 1. Therefore, based on Equations (3.101) and (3.102), the secant dilation 

angle at can be calculated using the following equation: 

⎟
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3
1arctan    (3.103) 

As a result, an empirical model is proposed for pre-peak dilatancy behavior of 

rock fractures. The model is depicted in Figure 3.17. The dilation displacement can be 

calculated at each shear displacement using the following equation:  
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 Figure 3.17: Proposed model for pre-peak dilation displacement of rock fractures 

 

The proposed model has none of the inconsistencies and ambiguity of Barton’s 

model described in the initial part of this section. Moreover, it simulates negative 

dilation, while Barton’s model does not. For category 2 of the MDST database using the 

proposed model, Equation (3.104), it is found that 
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compared to Barton’s model that gave zero. Underestimation of minimum dilation 

displacement in the suggested model can be justified by considering no negative dilation 

in category 1. Furthermore, the proposed model predicts zero dilation at 50.0/ =peakδδ , 

which is closer to the average measured value, 43.0/ =peakδδ , compared to what 

Barton’s model suggests, 33.0/ =peakδδ . In addition, the dilation displacement at each 

shear displacement can be calculated easily using Equation (3.104); its numerical 

implementation is also much easier. 

3.3.4.2 Post-peak dilatancy 

In the previous section, Equation (3.104) was proposed to obtain dilation 

displacement at each shear displacement before peak shear strength. In this section, the 

post-peak dilation is considered. The tangent dilation angle defined in Equation (3.99). 
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On the other hand, from an analytical point of view, the tangent dilation angle at each 

shear displacement should be obtained from mobilizedJRC  using the following equation: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=′

n
mobilizedt

JCSJRCd
σ10log     (3.105) 

Substituting Equation (3.105) in Equation (3.99), we have: 

)(.logtan)( 10
peak
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peak

v dJCSJRCd
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δ
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δ
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⎛
⋅=   (3.106) 

Section 3.3.3 proposed Equation (3.90) to predict post-peak mobilized JRC . 

Substituting, Equation (3.90) in Equation (3.106), we have: 
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     (3.107-a) 

Consequently, dilation displacement between the peak shear displacement and a 

post-peak point with l
peak

h =
δ
δ

 can be estimated by obtaining the integral of the right 

hand side of Equation (3.107-a) between 1 and l , as follows: 
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Therefore, dilation displacement at a post-peak point with l
peak

h =
δ
δ

 can be predicted as 

follows: 
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The integral part of Equation (3.108) can be solved by employing numerical methods. 

For example, using 1/3-Simpson’s rule, the integral can be written as follows: 
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The MDST database contains the post-peak dilation displacements of 205 direct 

shear tests, for which post-peak dilation at 1 to 4 points are available (total number of 700 

data points). Table 3.8 summarized the results. It is found that Equation (3.104) works 

very well in this database.  

3.3.5 Pre-peak stress-displacement curve 

If one wants to use Equation (3.3) to describe the pre-peak shear stress-

displacement curve, then JRC and bφ  must depend on the displacement δ . This 

dependency is called “mobilization” of JRC and bφ , respectively. 

 Table 3.8: Performance of proposed model, Equation (3.108), in predicting the post-
peak dilation displacements 

Parameter  Equation 
(3.108) 

( )
( ) STD

Averagemeasuredv

perdictedv ±⎟⎟
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⎞
⎜⎜
⎝

⎛
δ
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⎛
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⎛
δ
δ

0.13 
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Barton expressed the pre-peak stress-displacement curve by using the concept of 

roughness mobilization, mobilizedJRC , in Equation (3.3) [115]. The ratio 
peak

mobilized

JRC
JRC

can 

be estimated from the ratio 
peakδ
δ

employing the values given in Table 3.2. In Barton’s 

model, it was assumed, first, that the base friction angle of rock fracture is mobilized and 

reaches its peak value at shear displacement of peakδ3.0 . Then, from peakδ3.0  to the peak 

shear displacement, JRC is mobilized and reaches its peak value at peakδ . This assumption 

is consistent with the zero peak shear displacement for a sawed fracture. However, 

Section 3.3.2 showed that the peak shear displacement of sawed fractures (JRC=0) is 

significantly different from zero. 

The peak shear displacement of lab size rock blocks is very small, about 1mm for 

a 10 cm block. Therefore, for pre-peak shear strength, collecting data by digitizing shear 

stress versus shear displacement curves published in the literature is very difficult and 

may lead to large errors. Therefore, in this section, modification was made to Barton’s 

model for pre-peak shear strength in order to make the modified model consistent. 

Accordingly, the mobilization of pre-peak shear strength was divided into two parts: 

mobilization of friction angle and mobilization of JRC. 

At zero shear displacement, the shear stress is zero, and thus the mobilized 

friction angle is zero. At peak shear displacement, the mobilized friction angle is equal to 

the base friction angle.  

For the case of rough fracture ( 0>JRC ), at zero shear displacement, the shear 

stress is zero. Therefore, the mobilized friction angle and JRC are both zero. At peak 

shear displacement, the mobilized friction angle is equal to the base friction angle and the 

mobilized JRC is equal to peakJRC . 

Section 3.3.4.1 suggest empirical Equation (3.104) for dilation displacement. 

Since dilatancy decreases when peakh δδ 25.00 ≤≤  and increases when peakh δδ 25.0> , 

the mobilized JRC  is assumed to be zero up to peakδ25.0 . The mobilized friction 
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angles at zero and peak shear displacement are known. It was assumed that the shape of 

shear stress versus shear displacement curve is the same as the linear interpolation used 

for the results of Barton’s model. The MDST database was analyzed in accordance with 

the above information. Table 3.9 and Table 3.10 summarize the average value of the 

mobilized friction angle and the mobilized JRC, respectively. 

 

Table 3.9: Pre-peak mobilization of the base friction angle  

peakδ
δ

base

mobilized

φ
φ

0 0 
0.25 0.75 
0.5 0.9 
1 1 

  

 Table 3.10: Pre-peak mobilization of JRC 

peakδ
δ

peak

mobilized

JRC
JRC

0 0 
0.25 0 
0.5 0.67 
0.6 0.83 
1 1 

 

3.3.6 Reversals and unloading 

As was mentioned in section 3.2.3.2, Barton [115] explained how the shear stress-

displacement could be simulated in unloading, reloading, and reversal (Figure 3.2) based 

on one direct shear test. The CDST database contains the results of 18 cyclic direct shear 

tests. These results were investigated to check the accuracy of Barton’s model and revise 

it consistent with the other parts of our modified model.  
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The revised model for unloading and reversal is illustrated in Figure 3.18 ( nστ /  

versus peakδδ / ) for a rock fracture with the following properties: 

     10;10;30 ===
n

b
JCSJRC
σ

φ o

 

 
 Figure 3.18: Proposed model for shear unloading and reversal of rock fractures 

 

- Point A: the peak shear strength can be calculated using Equation (3.3), as: 
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The stress-displacement curve form origin to point A (mobilization of the peak 

shear strength) can be simulated using Table 3.9 and Table 3.10. 

- Point B: the post-peak shear strength at 6/ =peakδδ  can be estimated using 

Equation (3.90), as follows: 

5)6(10)( 381.0381.0 =×== −−
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- Point C: the CDST database shows that on average the shear strength in 

unloading is fully mobilized by reversing the shear displacement by an amount 

equal to the half of peak shear displacement:  

5.55.06/ =−=peakc δδ  

Based on only one cyclic direct shear test, Barton proposed that the mobilized 

JRC in unloading is always equal to peakJRC5.0− . However, our investigation of 18 

direct shear tests of the CDST database revealed that the mobilized JRC in unloading is 

the same as the mobilized JRC at the end of loading stage (Point B), which can be 

justified if the problem is approached analytically (see Figure 3.19). During unloading: 

( ) ( ),tantan iNiNT +−⋅=−⋅−=′ φφ       (3.109-a) 

which can be expressed in terms of stress as follows: 

( )in +−⋅= φστ tan             (3.109-b) 

 
Figure 3.19: Diagram of forces applied to a rough joint at failure during the reversal stage 

 

This means that in this example the mobilized JRC is equal to 5. It should be 

mentioned that both methods consider negative values for base friction angle. Therefore, 

the shear strength at Point C can be calculated as follows: 

( ) 47.0530tan −=+−=
nσ
τ  

- Point D: the CDST database shows that the magnitude of shear stress does not 

change significantly in the unloading stage (from Point C to Point D). 
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- Point E: based on the result of only one cyclic direct shear test, Barton 

concluded that the mobilized JRC in reversal is equal to peakJRC75.0− . 

However, our investigation of 18 direct shear tests in the CDST database 

revealed that the mobilized JRC in reversal is equal to peakJRC87.0− . 

Therefore, the peak value of shear strength in reversal can be calculated as 

follows: 

( ) 8.07.830tanlog87.0tan 10 −=−−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−−=

n
peakb

n

JCSJRC
σ

φ
σ
τ

 

This peak shear strength will be mobilized at a peak shear displacement related to 

the new value of JRC which can be estimated using Equation (3.88): 
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- Point F: the reversal post-peak shear strength at Point F can be estimated using 

Equation (3.90), as follows: 

( ) 4.4
004.1
67.8

381.0381.0

−=⎟
⎠
⎞

⎜
⎝
⎛×−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅=

−−

peak
reversalpeakmobilized JRCJRC

δ
δ

 

   ( ) ( ) 68.0530tan4.430tan −=+=−−=
nσ
τ  

- Point G: similar to Point C, in unloading the reversal load, the shear strength is 

mobilized by a shear displacement increment equal to the half of peak shear 

displacement:  

5.55.06/ −=+−=peakG δδ  

In addition, based on only one cyclic direct shear test, Barton proposed that the 

mobilized JRC in unloading is always equal to peakJRC5.0 . However, our 
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investigation of 18 direct shear tests of the CDST database revealed that the 

mobilized JRC in unloading the reversal is the same as the mobilized JRC at the 

end of reversal loading stage (Point F). This means that in this example the 

mobilized JRC is equal to -4.4. It Therefore, the shear strength at Point G can be 

calculated as follows: 

( ) 48.04.430tan =−=
nσ
τ  

- Point H: the CDST database shows that the shear stress does not change 

significantly in the unloading stage (from Point G to Point H). 

- Point I: based on the result of only one cyclic direct shear test, Barton concluded 

that the mobilized JRC in reloading can be calculated as follows: 

 ( ) ( ) ( ) peakpeakreversalpeakrelaodingpeak JRCJRCJRCJRC 56.075.075.075.0 =−−=−=  

However, our investigation of 18 direct shear tests of the CDST database revealed 

that the mobilized JRC in reloading is equal to: 

    ( ) ( ) ( ) peakpeakreversalpeakrelaodingpeak JRCJRCJRCJRC 76.087.087.087.0 =−−=−=  

Therefore, the peak value of shear strength in reloading can be calculated as 

follows: 

77.0)6.730tan(log76.0tan 10 =+=⎟⎟
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n
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n

JCSJRC
σ

φ
σ
τ  

This peak shear strength will be mobilized at a peak shear displacement related to 

the new value of JRC which can be estimated using Equation (3.88): 
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 The above mentioned method can be used to simulate shear stress-displacement 

behavior of rock fractures in the whole process of loading, unloading, reversal, and 
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reloading. It should be mentioned that the revised method has the following advantages 

over Barton’s model: 

- It is based on the results of 18 direct shear tests while Barton’s model is based 

on the results of only one test. 

- The 18 direct shear tests considered in this study contain between 1 and 20 

cycles, while the only one that Barton considered in his study just had one cycle. 

- The predicted mobilized JRC value for unloading stages may be justified 

analytically (Figure 3.19).  

 

Barton’s model does not have any specific suggestion for dilation displacement 

during unloading, reversal, and reloading. However, in employing Barton’s model, the 

dilatancy behavior of rock fractures can be simulated using the mobilized value of JRC 

obtained from Table 3.2. In the revised model, the dilation displacement can also be 

estimated using the mobilized value of JRC. However, our investigation of the CDST 

database found that at the end of each unloading stage the dilation displacement is almost 

zero. Figure 3.20 depicts the dilation displacement at each shear displacement ( peakv δδ /  

versus peakδδ / ) for the above example: 
 

 
Figure 3.20: Proposed dilation displacement of rock fractures in cyclic shearing 
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- Dilation displacement of loading stages (from origin to Point B) can be 

estimated using the model developed in Section 3.3.4. 

- As was stated above, the dilation displacement at the end of unloading stage 

(Point D) is equal to zero. It is assumed here that dilation displacement 

decreases linearly from Point B to D. 

- Dilation displacement at reversal loading (Point E and F) can be calculated 

using Equation (3.108). 

- Again at the end of unloading stage (Point H), the dilation displacement is equal 

to zero. It is assumed here that dilation displacement decreases linearly from 

Point F to H. 

3.4 A PREDICTIVE MODEL FOR ANISOTROPIC BEHAVIOR OF FRACTURES  

In Barton’s empirical model, JRC and the fracture length are the only geometrical 

parameters that affect the shear strength, shear deformability, peak shear displacement, 

and dilatancy of the rock fractures. For a given direction, the fracture length can be easily 

measured. However, evaluating the magnitude of JRC in all directions is not possible and 

practical. Therefore, in this section, the experimental data available in the literature is 

used to propose a model to estimate the magnitude of JRC in different directions based 

on given two major and minor values of JRC along two orthogonal axes. 

Experimental studies performed by Huang and Doong [125] consisted of direct 

shear tests and roughness measurement on model joints. Silicon rubber replicas of two 

fracture types were tested under 6 different normal stresses and 12 different directions.  

Uniaxial compressive strength and base friction angle were equal to 4 MPa and 28°, 

respectively. In the present study, for each direction, JRC was back-calculated for all 6 

normal stresses by using Barton’s failure criterion. The magnitude of JRC in each 

direction was assumed to be equal to the average of back-calculated JRC’s at different 

normal stresses. Figure 3.21 depicts the distribution of the magnitude of JRC in different 

directions for both fracture types.  
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 Figure 3.21: Distribution of the magnitude of JRC in different directions back 

calculated by using Huang and Doong’s [125] experimental study [216]. 

 

In order to investigate anisotropic behavior of rock fractures, Jing et al. [126, 150] 

determined and plotted in polar diagram the mobilized friction angles from shear tests of 

concrete replicas in 12 shear directions, at 30º intervals, under 4 different normal stresses. 

Uniaxial compressive strength was equal to 52 MPa. In the present study, the base 

friction angle was assumed to be equal to 30°. For each direction, JRC was back-

calculated for all 4 normal stresses using Barton’s failure criterion. The magnitude of 

JRC in each direction was assumed to be equal to the average of back-calculated JRC’s at 

different normal stresses. Figure 3.22 depicts the distribution of the magnitude of JRC in 

different directions.  

A series of direct shear tests performed by Kulatilake et al. [129, 130] on replicas 

in 12 directions and under 5 different normal stresses. Uniaxial compressive strength and 

base friction angle were equal to 9.70 MPa and 34.5°, respectively. In this research, for 

each direction, JRC was back-calculated for all 5 normal stresses using Barton’s failure 

criterion. The magnitude of JRC in each direction was assumed to be equal to the average 

of back-calculated JRC’s at different normal stresses. Figure 3.23 depicts the distribution 

of the magnitude of JRC in different directions. 
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 Figure 3.22: Distribution of the magnitude of JRC in different directions back 

calculated by using Jing et al.’s [125] experimental study [216]. 

 

 
 Figure 3.23: Distribution of the magnitude of JRC in different directions back 

calculated by using Kulatilake et al.’s [125] experimental study [216]. 

 

Grasselli et al. [127, 128] reported anisotropic distribution of peak friction angle 

for concrete replicas of Valtelina serpentinite. Uniaxial compressive strength and base 

friction angle were equal to 47 MPa and 13°, respectively. However, a base friction angle 

of 13° seems to be too low, because the base friction angle of the majority of rock 

surfaces ranges from 25° to 35°, at least at medium stress levels [92, 136, 141-145]. 
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Using this low value for base friction angle, the back-calculated JRC was as large as 31, 

but, according to Barton [21], the magnitude of JRC can range between 0 and 20. 

Therefore, in this research, the base friction angle was assumed to be equal to 30°. For 

each direction, JRC was back-calculated using Barton’s failure criterion. Figure 4 depicts 

the distribution of the magnitude of JRC in different directions, which is comprised 

between 6 and 19. 

 

 
 Figure 3.24: Distribution of the magnitude of JRC in different directions back 

calculated by using Grasselli et al.’s [125] experimental study [216]. 

 

Jing et al. [126, 150] assumed that magnitude of the asperity angle follows an 

elliptical distribution in the plane of the fracture surface. Since the asperity angle is the 

only geometrical parameter in Jing et al.’s model and JRC is the only geometrical 

parameter in Barton’s failure criterion, an option is to adopt an elliptical model for the 

distribution of the magnitude of JRC in different directions. The elliptical model can be 

described in parametric form as follows: 
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where 1JRC  and 2JRC  are the magnitude of JRC along the major and minor semi-

axes of the ellipse, x and y axes (Figure 3.25).  
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 Figure 3.25: Elliptical model for the angular distribution of JRC [216]. 

 

The magnitude of the JRC in a given direction θ  can then be written as: 

22
yx JRCJRCJRC +=θ     (3.111) 

Correlation analyses conducted in this study show that Equation (3.111) yields a 

good approximation for all of the 77 available data points collected from the literature. 

The  measuredpredicted JRCJRC /  ratio has an average of 1.19 with maximum, minimum, and 

standard deviation equal to 2.1, 0.79, and 0.28, respectively. However, Figure 3.21 

through Figure 3.24 illustrate that the actual angular distribution of the JRC does not have 

an elliptical shape, but, rather, it has the shape of an “8”. The following parametric form 

better captures the angular distribution of JRC: 
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Figure 3.26 depicts the suggested model, Equation (3.112). It should be noted 

that, in the proposed model, the magnitude of JRC in a given direction θ  can then be 

estimated using Equation (3.111). Table 3.11 and Figure 3.27 show that the suggested 
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parametric model, Equation (3.112), works better than the elliptical model in predicting 

the magnitude of JRC in different directions.  

 

 
Figure 3.26: Proposed “8” shape model for the angular distribution of JRC (Equation 

(3.112)) [216]. 

  

 Table 3.11: Comparison of elliptical model and proposed “8” shape model (Equation 
(3.112)) for the angular distribution of JRC 

Parameters 

( )
( )measuredx

perdictedx
JRC

JRC

 

( )
( )

measuredy

perdictedy

JRC
JRC

Elliptical 
model 

Proposed “8” shape 
model (Equation 

(3.112)) 

Elliptical 
model 

Proposed “8” shape 
model (Equation 

(3.112)) 

Average 0.859 0.977 1.388 0.981 
Standard deviation 0.234 0.142 0.676 0.136 

Maximum 1.267 1.279 3.215 1.279 
Minimum 0.311 0.671 0.706 0.671 

Proposed model for JRC ; Equation (3.112)

x

y
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JRCθ

θ
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(a) 

 
(c) 

 
(b) 

 
(d) 

 
(e) 

 Figure 3.27: Comparison of elliptical model and proposed “8” shape model 
(Equation (3.112)) for the angular distribution of JRC. 
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3.5 CONCLUSIONS 

Two databases were built by collecting the results of direct shear tests available in 

the literature: Monotonic Direct Shear Tests (MDST), which contains the results of 362 

tests, and Cyclic Direct Shear Tests (CDST), which contains the results of 18 tests.  

Analyses of these databases showed that Barton’s failure criterion works very 

well in predicting the shear strength of rock fractures. However, some weaknesses were 

found in the original Barton model and addressed by correlation analyses performed on 

collected data. The following modifications to Barton’s model are proposed based on the 

results of correlation analyses: 

1) An empirical equation is proposed to predict the peak shear displacement of 

rock fractures. The equation considers the effect of normal stress on the peak 

shear displacement, while Barton’s equation does not. In addition, this equation 

can be used for all types of rock fractures, including sawed, smooth, and rough, 

while Barton’s equation predicts an incorrect value of zero for the peak shear 

displacement of sawed fractures. Finally, the predicted peak shear 

displacement employing the proposed equation of this study decreases as JRC 

increases. However, the predicted value of peak shear displacement using 

Barton’s equation increases with JRC.  

2) An empirical equation is proposed to predict the mobilized JRC, which is used 

to calculate the shear stress-displacement curve after peak shear displacement. 

Besides better matching the MDST database than Barton’s Table, the empirical 

equation gives a smoother curve compared to the linear interpolation of the 

values given in Barton’s Table and is easier to implement numerically.  

3) An equation is proposed to obtain pre-peak dilation at any shear displacement. 

The proposed model has none of the inconsistencies and ambiguity of Barton’s 

model. Moreover, it simulates negative dilation, while Barton’s does not. In 

addition, the dilation displacement at any shear displacement can be calculated 

easily using this equation; also the numerical implementation is much easier. 
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4) An equation is proposed to obtain post-peak dilation at any shear displacement. 

This equation contains an integral which should be solved using numerical 

methods.  

5) Two tables are introduced to simulate the pre-peak shear stress-displacement 

curve (mobilization of pre-peak shear strength): one to estimate the mobilized 

JRC at any shear displacement and another to evaluate the mobilized base 

friction angle at any shear displacement. 

6) A method is described in detail to simulate shear stress-displacement behavior 

of rock fractures in the process of loading, unloading, reversal, and reloading.  

7) A method is proposed to simulate the dilatancy behavior of rock fractures in 

cyclic shearing using the mobilized value of JRC. By investigating the CDST 

database, it was found that at the end of each unloading stage the dilation 

displacement is almost zero.  

8) The JRC angular distribution was found not to have an elliptical shape, but the 

shape of an “8”. Experimental data found in the literature were used 

to formulate a predictive model for the anisotropic distribution of JRC in the 

plane of a fracture. The input data for the model are the maximum and the 

minimum JRC. The shear strength, shear stiffness, and dilation displacement of 

rock fractures subjected to shearing in any direction can then be predicted by 

using either original or modified Barton’s model. 
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CHAPTER 4: VALIDATION OF MODIFIED BARTON’S MODEL 

4.1 INTRODUCTION 

In order to validate the modified Barton’s model developed in Chapter 3, an 

experimental study was performed in UT Rock Mechanics lab by two MS students, 

Marco Invernizzi and Simone Addotto, under my supervision. The objective of this study 

was to validate the proposed empirical equation for the peak shear displacement, the 

modified shear stress-displacement curve, and the suggested equations for dilation 

displacement.  

This Chapter presents the experimental study conducted on rock fractures. Section 

4.2 describes methodology, procedures, and equipment used for testing. Section 4.3 

summarized the results of the tests followed by the conclusions in Section 4.4. 

4.2 METHODOLOGY AND TESTING EQUIPMENT  

The purpose of this experimental study was to validate a newly developed model 

to predict the shear behavior of rock fractures. In order to validate the model for all rock 

types and fracture characteristics, a reasonable range of all parameters that may affect the 

shear behavior of the fractures should be covered in the experimental study. However, 

covering all ranges of all parameters is not feasible due to the limitations in time, 

funding, and available equipment. 

In order to validate the model independent of rock type and rock hardness, the 

experimental study was performed on four different rock types:  

• Two weak rocks:  

(1) Weak limestone, called Limestone 1 (Figure 4.1-a)  

(2) Red sandstone (Figure 4.1-b) 

• Two hard rocks:  

(3) Granite (Figure 4.1-c)  

(4) Metamorphic limestone, called Limestone 2 (Figure 4.1-d)  
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(a) Limestone 1 (weak limestone) (b) Red sandstone 

  
  

 

  
(c) Granite (d) Metamorphic limestone (Limestone 2) 

 Figure 4.1: Rock materials used in the experimental study 
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4.2.2 Uniaxial Compressive Strength  

To evaluate the Uniaxial Compressive Strength (UCS) of the intact rocks, three 

different kinds of tests were carried out: the Schmidt Hammer test, the Point Load Test 

(PLT) and the Uniaxial Compressive Strength (UCS) test with stress-strain curve. 

The Schmidt hammer measures the rebound of a spring loaded mass impacting 

against the surface of the rock (or concrete). Figure 4.2 depicts the L-hammer used in this 

experimental study (impact energy = 0.075 m.kg) which is suitable for measuring UCS 

values down to about 20 MPa and up to at least 300 MPa. When conducting the test the 

hammer should be held at right angles to the surface which in turn should be flat and 

smooth. The rebound reading will be affected by the orientation of the hammer. Thus, the 

rebound value must be corrected to take into account the effect of orientation of the 

hammer and the unit weight of the rock. The Schmidt hammer is an arbitrary scale 

ranging from 10 to 100. The higher rebound gives the higher compressive strength of the 

rock. Several empirical equations can be found in the literature (e.g. [22, 146, 178, 217-

233]) to correlate the rebound value with the uniaxial compressive strength of rock 

materials. However, most of these relationships have validity ranges in terms of rock 

type, rebound value, and/or magnitude of UCS. In this Chapter, the following empirical 

equation originally suggested by Miller [146] and adopted later by Barton and Choubey 

[22] and ISRM [178] is used to correlate UCS and rebound number, R: 

( ) ,01.10088.0log10 +⋅⋅= RUCS γ     (4.1) 

where γ is the dry density of rock (kN/m3) and the unit of UCS is MPa. 

 

 

Figure 4.2: Schmidt hammer 
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Figure 4.3 illustrates Equation (4.1) relating rock density, compressive strength, 

and rebound number of Schmidt (L) hammer (hammer held at right angles downwards to 

the surface). Schmidt hammer tests were performed on each rock type and unconfined 

compressive strengths were estimated from the rebound values. 

 

Figure 4.3: Correlation chart for Schmidt (L) hammer, relating rock density, compressive 
strength, and rebound number [146] 

 

For each rock type, several specimens were prepared by either of the following 

methods: (1) cutting in pieces of cm255 ××  using Lapidary Slab Saw (Figure 4.4-a); (2) 
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coring (with diameter of 5 cm) using core drill press, “Supermax HRD-700H” (Figure 

4.4-b). Point Load Test (PLT) was performed on each specimen employing PLT 

machine, GCTS 8LT100 (Figure 4.5).  

 

       
                   (a)                              (b)       

Figure 4.4: (a) Lapidary Slab Saw; (b) Core drill press 

 

 

Figure 4.5: PLT machine (GCTS 8LT100) 
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Based on ISRM suggested methods for determining point load strength [234], the 

Uniaxial Compressive Strength (UCS) can be calculated from the point load tests. The 

point load index is defined as follows: 

,2)(
e

s D
PI =      (4.2) 

where eD  is the equivalent core diameter. For the case of non-circular cross section it is 

equal to 
π
A4

, in which A is the minimum cross sectional area of a plane trough the 

specimen and the platen contact points. 

The values of the point load index, Is, should be modified for diameter 

corrections:   

,)(50)( ss IFI ×=     (4.3)

,)50/( 45.0
eDF =     (4.4) 

in which eD  has the unit of mm. Two lowest and two highest values of point load 

indices were removed from the data set and the remaining values were averaged. The 

ISRM suggested method for determining point load strength proposes that the Uniaxial 

Compressive Strength is 20-25 times point load index.  

The uniaxial compression test with stress-strain curve is to measure the uniaxial 

or unconfined compressive strength (UCS), Young’s modulus, and Poisson ratio of the 

rock material [235]. A cylinder of intact rock with diameter of 5 cm and length of 10 cm 

(the ratio of length to diameter should be around 2) is loaded axially with no confinement 

pressure until failure. UCS of the intact rock together with stress-strain curve can be 

obtained from this test. For each rock type (except for Limestone 1), three samples were 

cored using drill press, “Supermax HRD-700H” (Figure 4.4-b), trimmed, and ground 

employing specimen grinder (Figure 4.6). A servo hydraulic testing machine (Figure 4.7), 

designed for uniaxial/triaxial tests, was used for performing uniaxial compression tests. 

The reason of not performing UCS test on Limestone 1 is lack of rock material. Attempts 

to find exactly the same Limestone were failed, too. 
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4.2.3 Joint Compressive Strength 

Section 3.2.1.1 explained that the joint compressive strength ( JCS ) at low stress 

levels is equal to the unconfined compression strength, cσ , of the intact rock if the 

fracture is unweathered, but may reduce to approximately 4/cσ  for weathered fractures 

[92]. The Schmidt hammer can be employed to measure the JCS  values of weathered 

rock fractures (Miller’s method [146]). 

For the case of artificial sawed fractures, the fracture is unweathered and 

undamaged and thus JCS should be equal to UCS. However, the process of making 

artificial rough joint (shearing the intact rock or breaking by hammer) makes micro-

fractures which reduce the joint compressive strength. In order to have an estimation of 

the ratio of JCS to UCS for the case of rough joints, 10 Schmidt hammer tests were 

performed on both sawed and rough fractures of each rock type. The Schmidt hammer 

tests on rough fractures were done after performing direct shear test and opening the 

specimen ring. It was found that the uniaxial compressive strengths estimated using the 

rebound values obtained on (sheared) rough fractures are 0.6 times of those predicted 

using the rebound values measured on (intact) sawed fractures. While the process of 

shearing the rough fractures causes some additional damages to the fracture and thus 

decreases its compressive strength, it is estimated that the ratio of JCS to UCS should be 

around 0.8. Therefore, in the rest of the analysis, JCS of rough fractures made according 

to the above mentioned procedure is assumed to be about 0.8 times of UCS of the 

corresponding intact rock. 

4.2.4 Direct shear test 

Several direct shear tests was performed on artificial sawed and rough fractures of 

each rock type. The purpose of the direct shear tests performed on sawed fractures was to 

obtain the base friction angles and to validate the proposed modification in the case of 

sawed (or planar) fractures. On the other hand, the direct shear tests performed on rough 

fractures were to validate the modification made on Barton’s model regarding the peak 

shear displacement, stress-displacement curve, and dilation displacement.  
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4.2.4.1 Sample preparation 

In the case of limestone 1, Lapidary Slab Saw (Figure 4.4-a) was used to cut 

samples of 8 x 8 x 8 cm. However, the drill press (Figure 4.4-b) was employed to core 

samples with 5 cm diameter from the sandstone, the granite, and limestone 2. The 

samples were cut in half by the slab saw whenever a sawed fracture was required.  

In the case of weak rocks (limestone 1 and the sandstone), artificial rough 

fractures were made by shearing the sample under 1 MPa normal stress up to failure of 

intact rock and returning shear actuator to the original position. However, in the case of 

hard rocks (the granite and limestone 2), artificial rough fractures were made by breaking 

the samples in half by hammer.  

For each direct shear test, the sample was prepared in the following procedure 

(Figure 4.8): 

1- Four marks were placed on the outside of the both halves of the specimen to 

remind us of the specimen orientation. These marks would help us to adjust the 

position of the upper half of the specimen on its lower half after taking them 

apart during the later steps of sample preparation. 

2- A thick plastic or aluminum sheet was placed on a suitable level surface and 

the lower half of the specimen holding ring was placed on the sheet. 

3- The inner surface of the bottom specimen ring was greased with white 

petroleum USP jelly produced by Vaseline (Figure 4.8-a). 

4- Anchoring and Patching Cement manufactured by Rockite was used to 

encapsulate the specimen in the specimen ring. This expanding, fast-setting, 

pourable, hydraulic type cement has more than twice the strength of fully 

cured, conventional concrete1. The encapsulating compound was prepared 

according to manufacturer instruction.  

5- The lower half of the specimen was positioned centrally in the lower half of the 

specimen holder. 

                                                 
1 Compressive (28-day) strength of conventional concrete is about 30 MPa 
 



132 

 
(a) Placing the lower half of the 
specimen ring on a sheet of 
aluminum and greasing the 
inner surface of the ring 

(b) Positioning the lower half 
of the specimen in the lower 
half of the ring 

(c) Pouring the encapsulating 
material 

   

 
(d) Placing guide rods and 
modeling clay on the lower ring 

(e) Placing the lower half of 
the specimen and ring 

(f) pouring encapsulating 
compound in upper ring 

 Figure 4.8: Procedure of sample preparation for direct shear test 

 

6- The orientation of the specimen was noted relative to the specimen ring. 

7- A mark was placed on the outside of the specimen ring to remind the specimen 

orientation after the cement has covered the specimen completely.  

8- Adequate support was provided to the specimen using modeling clay to 

maintain it in its position while the encapsulating material cures (Figure 4.8-b). 

9- The encapsulating material was poured carefully into the annular space 

between the lower half of the specimen and the lower half of the specimen 

holding ring. The mix was cured for 10 to 20 minutes (Figure 4.8-c). 
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10- After the bottom encapsulated has sufficiently cured, two guide rods were 

place together with modeling clay on the lower ring such that its cutout edge 

encircles the encapsulated lower half of the specimen and encompasses the test 

zone thickness (Figure 4.8-d). 

11- The upper half of the specimen was placed onto the encapsulated lower half.  

12- The position of the upper half of the specimen was adjusted until the surfaces 

of the test horizon correctly matched by using the four marks on the specimen. 

13- The upper half of the specimen ring was lowered onto the guide rods and 

modeling clay layer without disturbing the position of the top half of the 

specimen (Figure 4.8-e). 

14- The two halves of the specimen holding ring were connected with bolts. 

15- Encapsulating compound was poured into the annular space between the top 

half of the specimen holder and the top of the specimen (Figure 4.8-f). 

16- A layer of fine sand was placed on top of the cement and leveled with the rim 

of the upper specimen ring using a straight edge. 

4.2.4.2 Mechanical testing 

A servo hydraulic testing machine, designed for direct shear tests, has been 

employed for the direct shears tests. The direct shear system (RDS-300) manufactured by 

Geotechnical Consulting and Testing Systems (GCTS) is depicted in Figure 4.9. The 

machine is supplied with one shear boxed made up of an upper and a lower part. The 

upper part can be moved vertically and the lower part can be moved horizontally. Two 

actuators, one acting vertically and one acting horizontally, are used to apply the forces in 

the two directions (degrees of freedoms). Two linear rail bearings are used for guidance 

of the lower box in order to have a controlled linear movement. 

The servo hydraulic testing machine is composed of a compression frame of 500 

KN, a direct shear apparatus, and electro-hydraulic shear and normal load actuators with 

300 kN and 500 kN load capacity, respectively. The maximum stroke is 100 mm in the 

vertical direction and + 50 mm in the shear direction.  
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           (a) Vertical actuator                    (b) Horizontal actuator 

Figure 4.9: Servo hydraulic testing machine (GCTS direct shear test system, RDS-300) 

 

In the shear test, the normal and shear displacements are measured by means of 

Linear Variable Differential Transducers (LVDTs). The vertical displacement between 

the shear box is measured by four LVDTs, positioned in a square pattern around the 

specimen, one in each corner (Figure 4.10). Each of the LVDTs has a measurement range 

of 12 mm. The average value of these four LVDTs is used to represent the vertical 

(normal) displacement presented in the results section. The relative displacement between 

the shear box in the horizontal (shear) direction is measured by one LVDT (Figure 4.9), 

which has a 100 mm range. The sensitivities of the LVDTs are 0.025 mm for shear 

displacement and 0.0025 mm for normal displacement.  

The procedure of assembling the ring in the shear box and performing the test is 

as follows: 
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(a) Front view                             (b) Top view 

 Figure 4.10: Vertical displacement LVDTs 

 

1- Encapsulated specimen was mounted and oriented in the bottom shear box of 

the testing machine. 

2- The top half of the shear box was lowered onto the upper half of the specimen. 

3- The bolts connecting the upper and lower halves of the ring were removed. 

4- Four vertical displacement LVDTs were places on the lower surface of the 

testing machine, at the four corners of the lower half of the shear box. 

5- The horizontal/shear displacement LVDTs was mounted on the machine in 

such a manner that measures the shear displacement of the specimen during 

the test. 

6- The lower part of the shear box with the specimen rings was moved under the 

top part of the shear box. 

7- The top specimen ring was aligned with the upper part of the shear box and 

the normal actuator was commanded to move down with displacement 

control. 

8- A small seating normal load was applied (on the order of 450 to 900 N). 

9- The swivel lock plates were removed for any desired direction to allow 

rotation on any direction as required. 
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10- The shear actuator was moved under computer control to the “home” or 

“zero” position. 

11- The load normal to the shear zone was increased continuously at a constant 

rate until the lowest selected load was attained, and consequent normal 

displacements were recorded.  

12- The shear load was not applied until normal displacement has stabilized. 

13- Stabilization was considered to be complete when normal displacement 

reading oscillated less than 0.05 mm in 10 min. 

14- After the selected normal load had been stabilized, the shear load was applied 

continuously at the selected rate of 1 mm shear displacement per minute. 

15- After reaching the peak shear strength, loading was continued and readings 

were taken until residual shear strength was achieved. 

4.3 RESULTS 

4.3.1 UCS and JCS 

In order to obtain the uniaxial compressive strength of intact rocks, three different 

kinds of tests were performed:  

1) Schmidt hammer tests (the results are summarized in Table 4.1 which also 

includes the measured unit weights of rock materials required for 

estimating UCS from rebound value using Equation (4.1)) 

2) Point Load Tests (the results are summarized in Table 4.2) 

3) Uniaxial Compressive Strength tests with stress-strain curve (the results 

are summarized in Table 4.3) 

Table 4.1: Results of Schmidt hammer tests 

Rock type Number 
of tests 

Average 
rebound value 

Unit weight, γ 
(kN/m3) 

UCS 
(MPa) 

Limestone 1 15 18.6 25.0 26 
Sandstone 10 27.0 25.5 41 

Granite 20 48.4 26.5 138 
Limestone 2 10 49.6 27.0 155 
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Table 4.2: Results of Point Load Tests (PLT) 

Rock Type Test 
No. 

Height 
(mm) 

P   
(N) 

De   
(mm)

IS     
(MPa) F IS(50)   

(MPa)
IS(50), Average 

(MPa) 
UCS 

(MPa) 

Limestone 1 

1 18.14 1570 30.42 1.70 0.80 1.36 

1.34 30 

2 18.44 2410 33.15 2.19 0.83 1.82 
3 18.11 1920 33.46 1.72 0.83 1.43 
4 20.43 1310 35.52 1.04 0.86 0.89 
5 18.64 1760 30.76 1.86 0.80 1.49 
6 20.79 2140 34.81 1.77 0.85 1.50 
7 20.72 1910 34.94 1.56 0.85 1.33 
8 20.17 1300 35.07 1.06 0.85 0.90 

Sandstone 

1 18.70 3890 34.88 3.20 0.850 2.72 

2.42 53 

2 19.73 4020 35.76 3.14 0.860 2.70 
3 23.55 4390 39.03 2.88 0.895 2.58 
4 20.07 4150 35.99 3.20 0.863 2.76 
5 16.14 3150 32.35 3.01 0.822 2.47 
6 21.45 2930 37.27 2.11 0.876 1.85 
7 18.47 3410 34.60 2.85 0.847 2.41 
8 22.11 3780 37.89 2.63 0.883 2.32 
9 17.95 2750 34.07 2.37 0.841 1.99 

Granite 

1 27.62 7170 42.40 3.99 0.928 3.70 

4.00 88 

2 17.27 6290 33.50 5.60 0.835 4.68 
3 19.08 7890 35.19 6.37 0.854 5.44 
4 20.17 4100 36.18 3.13 0.865 2.71 
5 18.41 5880 34.58 4.92 0.847 4.17 
6 19.49 7030 35.56 5.56 0.858 4.77 
7 17.73 5890 33.97 5.10 0.840 4.29 
8 20.5 4420 36.49 3.32 0.868 2.88 
9 17.78 4620 33.96 4.01 0.840 3.37 

10 25.99 7370 40.98 4.39 0.914 4.01 

Limestone 2 

1 23.69 3840 39.02 2.52 0.894 2.26 

2.86 63 

2 28.81 4660 43.08 2.51 0.935 2.35 
3 13.53 3770 29.69 4.28 0.791 3.38 
4 19.31 2920 35.43 2.33 0.856 1.99 
5 21.86 5800 37.31 4.17 0.877 3.65 
6 31.65 6930 45.44 3.36 0.958 3.22 
7 22.41 3560 38.07 2.46 0.885 2.17 
8 17.44 5240 33.71 4.61 0.837 3.86 
9 19.42 5840 35.54 4.62 0.858 3.96 

 

It can be seen that the magnitudes of UCS evaluated using Schmidt hammer tests, 

PLT tests, and UCS test with stress-strain curve are consistent with each other.  

Table 4.4 summarizes the measured (or evaluated) magnitudes of UCS and JCS 

for different rock types. These values are adopted based on the results of Schmidt 

hammer, PLT, and UCS tests. 
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Table 4.3: Results of Uniaxial Compressive Strength tests 

Rock Type Test 
No. 

Height 
(mm) 

Diameter 
(mm) 

UCS 
(MPa) 

Sandstone 

1 110.06 51.02 43.9 
2 105.01 51.00 44.2 
3 111.53 51.91 34.8 

Average UCS 41 

Granite 

1 105.52 51.23 108.1 
2 94.49 51.19 130.2 
3 96.26 51.34 141.5 

Average UCS 127 

Limestone 2 

1 104.75 50.06 173.0 
2 95.16 50.58 188.5 
3 102.20 50.53 157.8 

Average UCS 173 

 

Table 4.4: The measured/evaluated magnitudes of UCS and JCS for different rock types 

Rock type UCS 
(MPa) 

JCSsawed fractures 
 (MPa) 

JCSrough fractures 
 (MPa) 

Limestone 1 28 28 22.5 

Sandstone 41 41 33 

Granite 127 127 101 

Limestone 2 155 155 124 

 

4.3.2 Direct shear tests on sawed fractures 

Direct shear tests were performed on two to four samples of each rock type under 

different normal stresses ranging between 0.2 and 6 MPa. Table 4.5 presents the peak 

shear strength and peak shear displacement of these tests together with the applied 

normal stresses and length of the samples.  

Figure 4.11 depicts shear strength versus normal stress for all direct shear tests 

performed on sawed fractures. While JRC is equal to zero, the inclination of the trendline 

passed through the origin would be equal to )tan( bφ . The base friction angle of each 

rock type is given in Figure 4.11, too. 
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Table 4.5: Results of direct shear tests performed on sawed joints 

Rock Type Specimen 
Number 

L 
(mm) 

nσ  
(MPa)

τ  
(MPa) 

Pδ  

(mm)

Limestone 1 

1 95.03 1.0 0.749 0.96 
5.0 3.518 J�20 

2 80.96 

0.5 0.326 0.42 
1.0 0.726 1.10 
2.0 1.540 1.70 
4.0 3.100 1.25 

3 100.00

5.0 3.500 1.80 
3.0 2.100 1.20 
3.0 2.120 1.10 
3.0 2.098 1.35 

4 86.70 
0.4 0.360 0.55 
0.6 0.480 0.40 
0.8 0.650 0.55 

Sandstone 

1 50.90 

0.3 0.358 0.42 
0.5 0.392 0.50 
0.8 0.656 0.58 
1.0 0.726 0.63 
1.5 0.884 0.72 

2 51.10 

0.2 0.224 0.36 
0.4 0.367 0.46 
0.6 0.420 0.53 
1.2 0.785 0.67 
2.0 1.400 0.79 
4.0 2.503 1.01 
6.0 3.481 1.15 

Granite 

1 51.15 

0.5 0.152 0.30 
1.0 0.299 0.60 
1.5 0.479 0.90 
2.0 0.793 0.52 
4.0 1.792 0.80 

2 51.15 

0.8 0.246 0.65 
1.8 0.635 0.55 
2.5 1.350 0.77 
3.5 1.575 0.56 
4.5 2.360 0.90 

Limestone 2 

1 51.03 

0.2 0.380 0.57 
0.4 0.445 0.60 
0.6 0.582 0.95 
0.8 0.712 0.65 
1.2 0.891 0.69 

2 50.90 

0.5 0.568 0.92 
0.7 0.592 0.78 
0.9 0.722 0.95 
1.1 0.832 0.85 
1.3 0.985 1.06 
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(a) Limestone 1 ( o7.35=bφ ) (b) Sandstone ( o4.31=bφ ) 
  

(c) Granite ( o9.24=bφ ) (d) Limestone 2 ( o2.39=bφ ) 

 Figure 4.11: Calculation of base friction angle 

 

Barton’s empirical equation (Equation (3.31)) suggests zero for peak shear 

displacement of the sawed fractures. However, Chapter 3 introduced Equation (3.88) for 

peak shear displacement which works for all ranges of JRC, even sawed joints. Table 4.6 

and Figure 4.12 show the ability of Equation (3.88) in predicting the peak shear 

displacement of sawed fractures. It can be seen, except for Limestone 2 (very hard rock), 

Equation (3.88) works very well. However, predictions of Equation (3.88) are much 

better than zero given by Barton’s equation (Equation (3.31)). 
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Table 4.6: Ability of Equation (3.88) in predicating the peak shear displacement of sawed 
fractures 

Rock Type  
and adopted magnitude of JCS STDAverage

measured

predicted ±)(
δ
δ

 Max
measured

predicted )(
δ
δ

 Min
measured

predicted )(
δ
δ

Limestone 1 (JCS = 28 MPa) 1.05+0.33 1.73 0. 60 
Sandstone (JCS = 41 MPa) 0.79+0.25 1.46 0.56 
Granite (JCS = 127 MPa) 0.78+0.19 1.06 0.50 

Limestone 2 (JCS = 155 MPa) 0.41+0.08 0.56 0.31 

 

 

 

(a) Limestone 1 (b) Sandstone 

(c) Granite (d) Limestone 2 

Figure 4.12: Predicted versus measured peak shear displacement using Equation (3.88) 
for sawed fractures 

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5

Predicted 
δpeak
using 

Eqation 
(3.88) 
(mm)

Measured δpeak (mm)
0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

Predicted 
δpeak
using 

Equation 
(3.88) 
(mm)

Measured δpeak (mm)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Predicted 
δpeak
using 

Equation 
(3.88) 
(mm)

Measured δpeak (mm) 0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Predicted 
δpeak
using 

Equation 
(3.88) 
(mm)

Measured δpeak (mm)



142 

Figure 4.13 demonstrates the ability of Equation (3.88) to consider the effect of 

normal stress on the peak shear displacement. 
 

 
(a) Limestone 1; Specimen 1 (b) Limestone 1; Specimen 2 

  

 

(c) Limestone 1; Specimen 3 (d) Limestone 1; Specimen 4 
  

(e) Sandstone; Specimen 1 (f) Sandstone; Specimen 2 

Figure 4.13: Comparison between measured peak shear displacement and their predicted 
values using Equation (3.88) for the case of sawed fractures (JRC=0)  
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(g)  Granite; Specimen 1 (h) Granite; Specimen 2 

(i) Limestone 2; Specimen 1 (j) Limestone 2; Specimen 2 
Figure 4.13-Continued: Comparison between measured peak shear displacement and their 

predicted values using Equation (3.88) for the case of sawed fractures (JRC=0) 
 

Although Barton’s original model has no suggestion for stress-displacement curve 

for the case of sawed joints, the modified model proposed in this dissertation suggested 

Table 3.9 to quantify the mobilization of base friction angle. Figure 4.14 compares the 

measured φmobilized/φbase at each shear displacement with the predicted values using Table 

3.9. The measured values of baseφ  and mobilizedφ  are obtained using the follow equations: 

,arctan ⎟⎟
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⎝

⎛
=

n

peak
base σ

τ
φ      (4.5) 

                 
,arctan ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n
mobilized σ

τφ                      (4.6) 

where nσ  is the normal stress; peakτ is the peak shear strength; and τ  is the shear 

stress at a given shear displacement. It can be seen that Table 3.9 works better than 

Barton’s original model. 
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(a) Limestone1 

(b) Sandstone 

Figure 4.14: Comparison between measured ratio of φmobilized/φbase at each shear 
displacement and predicted one using Table 3.9 (sawed fractures) 
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(a) Granite 

(b) Limestone 2 

Figure 4.14-Continued: Comparison between measured ratio of φmobilized/φbase at each 
shear displacement and predicted one using Table 3.9 (sawed fractures) 
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4.3.3 Direct shear tests on rough fractures 

Direct shear tests were performed on three to four samples of each rock type 

under different normal stresses ranging between 0.2 and 2 MPa. Figure 4.15 and Table 

4.7 summarize the results of direct shear tests conducted on the rough fractures of 

different rock types. 

 

(a-1) Shear stress vs. shear displacement curve (a-2) Normal vs. shear displacement curve 

(a) Limestone 

(b-1) Shear stress vs. shear displacement curve (b-2) Normal vs. shear displacement curve 

(b) Sandstone 

Figure 4.15: Shear stress-shear displacement curves and normal displacement-shear 
displacement curves obtained from direct shear tests performed on rough fractures 
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(c-1) Shear stress vs. shear displacement curve (c-2) Normal vs. shear displacement curve 
(c) Granite 

(d-1) Shear stress vs. shear displacement curve (d-2) Normal vs. shear displacement curve 

(d) Limestone 2 

Figure 4.15-Continued: Shear stress-displacement curves and normal displacement-shear 
displacement curves obtained from direct shear tests performed on rough fractures 
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summarizes the calculations of JRC and peak shear displacements both using Barton’s 

equation (Equation (3.31)) and modified empirical equation (Equation (3.88)). 

 

Table 4.7: Results of direct shear tests on rough fractures 

Rock type Specimen 
number 

L
(mm) 

nσ  
(MPa)

Pτ  
(MPa) pδ (mm) 

Limestone 1 

1 76.6 1.0 1.22 2.26 
2 66.2 2.0 2.53 2.78 
3 79.9 0.2 0.63 2.72 
4 76.9 0.5 1.08 0.44 

Sandstone 
1 51.01 0.5 0.82 2.42 
2 51.03 1.0 1.00 1.4 
3 50.40 1.5 1.23 1.36 

Granite 

1 51.1 1.0 1.56 1.46 
2 51.2 1.5 2.33 1.8 
3 51.2 2.0 3.19 0.92 
4 51.4 1.8 2.36 0.33 

Limestone 2 

1 51.1 0.5 0.92 0.72 
2 50.7 0.8 1.47 0.66 
3 50.7 1.0 1.67 0.7 
4 51.1 2.0 3.17 0.73 

 

Table 4.8: Calculations of JRC and peak shear displacement of rough fractures 

Rock Type  
and adopted magnitude of JRC 

Sample
No. JRC

predictedδ
(mm) measured

predicted

δ
δ

predictedδ  
(mm) measured

predicted

δ
δ

 

Equation (3.88) Barton’s equation

Limestone 1 (JCS = 22.5 MPa) 

1 10.6 0.81 0.36 0.79 0.35 
2 14.3 0.96 0.34 0.80 0.29 
3 17.3 0.40 0.15 0.95 0.35 
4 17.1 0.58 1.32 0.93 2.11 

Sandstone (JCS = 33 MPa) 
1 15.0 0.43 0.18 0.67 0.27 
2 8.9 0.60 0.43 0.56 0.40 
3 5.9 0.86 0.63 0.66 0.49 

Granite (JCS = 101MPa) 

1 �6.2 0.35 0.24 0.68 0.47 
2 17.7 0.41 0.23 0.70 0.39 
3 19.4 0.45 0.48 0.73 0.79 
4 15.8 0.46 1.38 0.68 2.06 

Limestone 2 (JCS = 124 MPa) 

1 9.1 0.29 0.40 0.57 0.79 
2 10.5 0.32 0.49 0.59 0.90 
3 9.3 0.37 0.52 0.57 0.81 
4 10.1 0.47 0.64 0.59 0.81 
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Figure 4.16 and Table 4.9 compare Equations (3.31) and (3.88) with each other, in 

accordance with their ratio of predicted to the measured peak shear displacement, 

measured

predicted

δ
δ

, for rough fractures of different rock types.  

  

(a) Limestone 1 (b) Sandstone 

(c) Granite (d) Limestone 2 

Figure 4.16: Predicted versus the measured peak shear displacement using equation 
(3.88) and Barton’s equation for rough fractures 

Table 4.9: Comparison between Barton’s equation (Equation (3.31)) and Equation 
(3.88) in predicting peak shear displacement of rough fractures 

Rock Type 
and adopted magnitude of JRC 

Sample 
No. STDAverage

measured

predicted ±)(
δ
δ

 Max
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predicted )(
δ
δ

 Min
measured

predicted )(
δ
δ

Limestone 1 
(JCS= 26.4 MPa) 

Equation (3.88) 0.54+0.53 1.32 0.15 
Barton’s equation 0.77+0.89 2.11 0.29 

Sandstone  
(JCS = 32.8 MPa) 

Equation (3.88) 0.41+0.23 0.63 0.18 
Barton’s equation 0.39+0.11 0.49 0.27 

Granite 
(JCS = 101.3 MPa) 

Equation (3.88) 0.56+0.54 1.38 0.23 
Barton’s equation 0.93+0.78 2.06 0.39 

Limestone 2 
(JCS = 138.5 MPa) 

Equation (3.88) 0.51+0.10 0.64 0.40 
Barton’s equation 0.83+0.05 0.90 0.79 
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 The following conclusions can be driven from Table 4.8, Table 4.9, and Figure 4.16: 

- Equation (3.88) works better than Equation (3.31) in predicting peak shear 

displacement of rock fractures of Limestone 1, because: 

• Although the value of Average
measured

predicted )(
δ
δ

 calculated using Equation (3.31) is 

closer to one, the correlation factor, Average
measured

predicted
STD

measured

predicted )/()(
δ
δ

δ
δ

, is smaller 

in the case of Equation (3.88) (0.98 from Equation (3.88) compared to 1.16 

from Barton’s equation). 

• For specimens 1 and 2, the ability of Equations (3.31) and (3.88) in predicting 

the peak shear displacement are the same.  

• For specimen 3, Barton’s equation works a little bit better than Equation 

(3.88). 

- The abilities of Equations (3.31) and (3.88) in predicting peak shear 

displacements of rough fractures of the sandstone are almost the same, because: 

• Although the value of Average
measured

predicted )(
δ
δ

 calculated using Equation (3.88) is 

closer to one, the correlation factor, Average
measured

predicted
STD

measured

predicted )/()(
δ
δ

δ
δ

, is smaller 

in the case of Equation (3.31) (0.28 from Equation (3.31) compared to 0.56 

from Equation (3.88)).  

• For specimen 1, Barton’s equation works a little bit better than Equation 

(3.88). 

• For specimens 2 and 3, Equation (3.88) has better predictions for the peak 

shear displacement comparing to those of Barton’s equation. 

- Barton’s equation (Equation (3.31)) works better than Equation (3.88) in 

predicting the peak shear displacements of rough fractures of the granite, 

because: 
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• The value of Average
measured

predicted )(
δ
δ

 calculated using Equation (3.88) is closer to 

one. 

• The correlation factor, Average
measured

predicted
STD

measured

predicted )/()(
δ
δ

δ
δ

, is smaller in the case of 

Equation (3.88).  

• For specimens 1 to 3, Barton’s equation works better than Equation (3.88). 

• For specimens 4, Equation (3.88) has better predictions for the peak shear 

displacement comparing to those of Barton’s equation.  

- Barton’s equation (Equation (3.31)) works better than Equation (3.88) in 

predicting peak shear displacement of rock fractures of limestone 2. 

4.3.3.2 Prediction of shear stress-displacement curve 

Figure 4.17 compares the stress-displacement curve predicted using Barton’s 

original model and the modified model with the stress-displacement curves obtained from 

direct shear tests on rough fractures of Limestone 1. In addition, Table 4.10 compares 

Barton’s model and the modified model in accordance with their ratio of predicted to the 

measured ratio of 
σ
τ  for rough fractures.  

It can be seen in Figure 4.17 and Table 4.10 that both models work very well in 

predicting the stress-displacement curve. For shear displacements smaller than about 8 

times of the peak shear displacement, both models underestimate the stresses and, after 

that, both overestimate the stresses. It can be concluded that the modified model is a little 

bit better than the original model due to the following reasons: 

- The value of 
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 obtained using the modified model is closer to 

one comparing to those calculated using Barton’s model. 
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(a) Limestone 1; Specimen 1 (b) Limestone 1; Specimen 2 
  

(c) Limestone 1; Specimen 3 (d) Limestone 1; Specimen 4 
  

(e) Sandstone; Specimen 1 (f) Sandstone; Specimen 2 

Figure 4.17: Comparison between Barton’s original model and the modified model in 
predicting stress-displacement curve for rough fractures  
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(g) Sandstone; Specimen 3 
 

(h) Granite; Specimen 1 (i) Granite; Specimen 2 
  

(j) Granite; Specimen 3 (k) Granite; Specimen 4 
 

Figure 4.17-Continued: Comparison between Barton’s original model and the modified 
model in predicting stress-displacement curve for rough fractures 
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(l) Limestone 2; Specimen 1 (m) Limestone 2; Specimen 2 
  

 

(n) Limestone 2; Specimen 3 (o) Limestone 2; Specimen 4 
  

Figure 4.17-Continued: Comparison between Barton’s original model and the modified 
model in predicting stress-displacement curve for rough fractures 

Table 4.10: Comparison between Barton’s original model and the modified model in 
predicting tress-displacement curve for rough fractures 
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Limestone 1 Barton’s model 1.09+0.38 2.36 0.69 
Modified model 1.02+0.32 2.07 0.59 

Sandstone Barton’s model 1.09+0.42 2.68 0.74 
Modified model 1.02+0.41 2.58 0.67 

Granite Barton’s model 1.11+0.82 4.19 0.4 
Modified model 1.23+0.87 4.11 0.46 

Limestone 2 Barton’s model 1.52+1.01 6.45 0.78 
Modified model 1.70+1.35 7.04 0.84 
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- The correlation factor, the ratio of 
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, is smaller in 

the case of the modified model. 

- The value of 
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 obtained using the modified model is smaller than 

those calculated using Barton’s model. 

4.3.3.3 Prediction of normal displacement-shear displacement curve (dilatancy) 

Figure 4.18 compares the normal displacement-shear displacement curves 

predicted using Barton’s original model and the modified model with the normal 

displacement-shear displacement curves obtained from direct shear tests on rough 

fractures. In addition, Table 4.11 compares Barton’s model and the modified model in 

accordance with their ratio of 
( ) ( )

( )measuredv

measuredvpredictedvr
δ

δδ −
=

 
at the same shear displacements 

for rough fractures. 

Figure 4.18 and Table 4.11 show that both Barton’s model and the modified 

model have lots of errors in predicting the dilation displacement. An ideal model has the 

ratio of r equal to zero. However, both models give this ratio between 1 and 2.5. Both 

models have lots of approximations and from statistical point of view Barton’s model 

works a little bit better than the modified model. However, due to the following reasons, 

it can be concluded that the modified model should be used for predicting the dilation 

behavior of rock fractures: 

• Barton’s model can predict dilation displacement only at the peak shear 

displacement. The dilation displacements predicted using Barton’s model in 

this Chapter is not calculated exactly from the model proposed by Barton. 

However, they were estimated based on our interpretation, in the lack of direct 

suggestion, which was explained in Section 3.3.4. 
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(a) Limestone 1; Specimen 1 (JCS = 22.5 MPa) (b) Limestone 1; Specimen 1 (JCS = 22.5 MPa) 
 

(c) Limestone 1; Specimen 3 (JCS = 22.5 MPa) (d) Limestone 1; Specimen 4 (JCS = 22.5 MPa) 
  

 

(e) Sandstone; Specimen 1 (JCS = 33 MPa) (f) Sandstone; Specimen 2 (JCS = 33 MPa) 

Figure 4.18: Comparison between Barton’s original model and the modified model in 
predicting dilation displacement for rough fractures 
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(g) Sandstone; Specimen 3 (JCS = 33 MPa) 
 

(h) Granite; Specimen 1 (JCS = 101 MPa) (i) Granite; Specimen 2 (JCS = 101 MPa) 
  

  

(j) Granite; Specimen 3 (JCS = 101 MPa) (k) Granite; Specimen 4 (JCS = 101 MPa) 

Figure 4.18-Continued: Comparison between Barton’s original model and the modified 
model in predicting dilation displacement for rough fractures 
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(l) Limestone 2; Specimen 1 (JCS = 124 MPa) (m) Limestone 2; Specimen 2 (JCS = 124 MPa) 
 

(n) Limestone 2; Specimen 3 (JCS = 124 MPa) (o) Limestone 2; Specimen 4 (JCS = 124 MPa) 

Figure 4.18-Continued: Comparison between Barton’s original model and the modified 
model in predicting dilation displacement for rough fractures 

Table 4.11: Comparison between Barton’s original model and the modified model in 
predicting dilation displacement for rough fractures 

Rock Type Constitutive 
model JRC STDrAverage ±  

maxr  Minr  

Limestone 1 Barton’s model 22.5 1.96+1.68 5.94 0.23 
Modified model 2.12+1.81 7.46 0.15 

Sandstone Barton’s model 33 2.50+2.56 11.03 0.45 
Modified model 2.39+2.26 8.47 0.30 

Granite Barton’s model 101 2.25+2.32 10.50 0.51 
Modified model 1.85 +1.79 6.90 0.11 

Limestone 2 Barton’s model 124 1.52+1.79 7.11 0.06 
Modified model 1.10+1.73 7.79 0.01 
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• In 13 cases out of 15 cases of rough fractures, it can be seen can see negative 

dilation (compression) at small shear displacements. These negative dilations 

are not considered in Barton’s model, which can cause overestimation of 

factor of safety in some analysis such as stability of rock blocks in tunnels. 

These negative dilations are included in the modified model. 

4.4 CONCLUSIONS 

The experimental study presented in Section 4.3 validated the modifications 

proposed in Chapter 3 to Barton’s original model. The following conclusions can be 

driven based on the results of our testing: 

1) The modified empirical equation proposed for peak shear displacement of rock 

fractures (Equation (3.88)) can predict the peak shear displacement of sawed (and 

planar) fractures with acceptable precision. However, Barton’s original equation 

gives zero peak shear displacement for sawed fractures. 

2) The modified empirical equation proposed for peak shear displacement of rock 

fractures (Equation (3.88)) can consider the effect of normal displacement on 

increasing the peak shear displacement, while Barton’s original equation cannot. 

3) Chapter 3 proposed Table 3.9 for shear stress-displacement of sawed fractures 

(mobilization of the base friction angle). Using Table 3.9, the shear stress-

displacement curve of sawed fractures can be predicted with great precision. 

Barton’s original model has no suggestion in this regard. 

4) As far as sawed (or planar) fractures, the modified model works much better than 

the original Barton’s model.  

5) The modified equation proposed for peak shear displacement of rock fractures 

(Equation (3.88)) works better than Barton’s equation (Equation (3.31)) in the 

case of rough fractures of Limestone 1. However, in the case of rough fractures of 

granite and Limestone 2, Barton’s equation works better. In addition, the abilities 

of both equations in the case of sandstone were almost the same.  

6) Since the granite and Limestone 2 are hard rocks and while Limestone 1 and 

sandstone are weak rocks, one may conclude that Barton’s model works better for 
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hard rocks. However, MDST database [188-210] contains many cases of hard 

rock fractures in which modified model works better.  

7) Figure 3.7 shows that, in MDST database, most of the tests have a ratio of 

JCS/σ  between 0.01 and 0.1. It can be seen that, in our experimental study, for 

the cases located within the above domain, the modified model works better than 

Barton’s model. 

8) In the cases of the Granite and Limestone 2, JRC’s are between 10 and 20. 

However, in the cases of Limestone 1 and the Sandstone, JRC’s are between 6 

and 17. Furthermore, for the sawed joints, it can be seen that modified model 

works much better than Barton’s model. It can be concluded that modified model 

works better in the case of planar fractures and Barton’s model works better in the 

case of rough fractures. 

9) Table 4.12 shows that, for rough fractures, Barton’s equation (Equation (3.31)) 

works a little bit better than the modified equation (Equation (3.88)). Although the 

value of Average
measured

perdicted )(
δ
δ

 calculated using Equation (3.31) is closer to one, the 

correlation factor, Average
measured

perdicted
STD

measured

perdicted )/()(
δ
δ

δ
δ

, is smaller in the case of 

Equation (3.88) (0.57 from Equation (3.88) compared to 0.74 from Barton’s 

equation). 

10) Modified model works better than Barton’s original model in predicting shear 

stress-shear displacement curve (for all types of rocks and for both planar and 

rough fractures).  

11) Table 4.13 compares Barton’s model and the modified model in accordance with 

the ratio of 

measured

predicted
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 Table 4.12: Comparison between Barton’s equation and Equation (3.88) in 
predicting the peak shear displacement of rough fractures 

Parameter Equation (3.88) Barton’s equation 
(Equation (3.31))

STDAverage
measured

perdicted ±)(
δ
δ

 0.61+0.35 0.72+0.53 

Max
measured

perdicted )(
δ
δ

 1.28 2.07 

Min
measured

perdicted )(
δ
δ

 0.13 0.27 

  

 Table 4.13: Comparison between Barton’s model and the modified model in 
predicting stress-displacement curve 

Constitutive 
model 
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Barton’s  
model 1.20+0.71 6.45 0.59 

Modified 
model 1.29+0.88 7.04 0.69 

 
12) One of the advantages of modified model in predicting stress-displacement curve 

lies in its ability to predict the curve for high values of the Ph δδ /  ratio which is 

very difficult to achieve in lab tests. Just in one case (rough fracture of the granite; 

specimen 4), the ratio of Ph δδ /  is high and it can be seen that the modified 

model works better than Barton’s model (Figure 4.17-k).   

13) It is almost impossible to make a fracture with JRC smaller than 5 in laboratory 

scales (specimen of about 10 cm). However, direct shear tests performed on 

planar fractures not only can reveal the advantage of the modified model in 

predicting stress-displacement curve, but also can show the advantage of Equation 
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(3.88) on Equation (3.31). It should be noted that, considering the scale effect, a 

fracture with JRC > 5 may have a lab size specimen with JRC < 5.  

14) Our experimental study shows that both the modified model and Barton’s model 

display substantial approximation in predicting dilation displacement of rough 

fractures. However, due to the following reasons, it is believed that the modified 

model should be used for predicting the dilation behavior of rock fractures: 

• Barton’s model can predict dilation displacement only at the peak shear 

displacement. The dilation displacements predicted using Barton’s model in 

this Chapter is not calculated exactly from the model proposed by Barton. 

However, they were estimated based on our interpretation, in the lack of direct 

suggestion, which was explained in Chapter 3. 

• In 13 out of 15 cases of rough fractures tested in our study, it can be seen 

negative dilation (compression) at small shear displacements. These negative 

dilations are not considered in Barton’s model, which can cause 

overestimation of factor of safety in some analysis such as stability of rock 

blocks in tunnels. The negative dilation is included in the modified model. 
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CHAPTER 5: IMPLEMENTATION AND VERIFICATION OF 

BS3D  

5.1 INTRODUCTION  

In this dissertation, prototype BS3D computer code developed by Tonon [1] in 

Mathematica has been re-written and translated into Fortran 95. The implementation has 

been done in the platform of Microsoft Visual Stodio.Net. Intel Visual Fortran has been 

used as Fortran compiler. The code implements Tonon's [1] incremental-iterative 

algorithm for analyzing general failure modes of rock blocks subject to generic forces. 

Consistent stiffness matrices fully exploit the quadratic convergence of the adopted 

Newton-Raphson iterative scheme. The algorithm takes into account large block 

displacements and rotations, which, together with non-conservative forces make the 

stiffness matrix non symmetric. Tonon's original code implements the algorithm just for 

tetrahedrons. However, the generalized version of BS3D developed in this dissertation 

can analyze general shapes of rock blocks. Furthermore, in situ stress and water pressure 

have been implemented from scratch because they were not included in Tonon's code. In 

Tonon's original code, fracture dilatancy was included in a rudimental fashion by using a 

simplified version of Barton's model. However, the generalized version of BS3D can deal 

with both original [21] and modified Barton’s model (Chapter 3) as well as Mohr-

Coulomb’s failure criterion [25]. 

Section 5.2 describes the implementation of BS3D with a brief explanation of 

strategies, algorithms, and formulations implemented in the code but not explained in the 

other chapters of this dissertation. In Section 5.3, the implementation is verified using 

direct shear test examples. In Section 5.4, the in situ stress implementation is verified 

using the example of a Cauchy tetrahedron. The section also deals with the effect of a 

circular tunnel on the stresses acting on a block’s faces. Section 5.5 introduces an 

example to verify the implementation of in situ stress and the Boundary Element Method 

(for normal stiffness of the rock block) in BS3D. Section 5.6 briefly deals with 

hydrostatic water pressure followed by the summary of the Chapter in Section 5.7. 
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5.2 IMPLEMENTATION OF BS3D 

5.2.1 Reading input variables 

BS3D reads physical and mechanical properties of the block and its mould 

together with information regarding applied forces and intended analyses from an input 

file, “input.dat”. Table 5.1 summarizes the list of input variables read by BS3D from the 

main input file. A sample input file is given in Appendix B. 

 

 Table 5.1: List of input variables of BS3D (input.dat) 

Category Description Symbols 
General Number of vertices (required for defining the block and its mould) nvertices 

Block 
geometry 

Coordinate of i-th vertex (i changes between 1 and nvertices) Vi,x…z 
Number of faces of the block nf 
Number of faces of the block with more than one boundary nfwmo 
Number of boundaries in i-th face that has more than one boundary (i changes 
between 1 and nfwmo); nbi = 1+number of holes in the face. If there is no hole in 
the face, nbi = 1 and there is no need to allocate it here. 

nbi 

Number of vertices in j-th boundary of i-th face nvi,j 
List of vertices of j-th boundary of i-th face (for outermost boundary, vertex 
indices should be given here in counterclockwise order along its boundary and, for 
hole, vertices should be listed in clockwise order) 

lvi,j 

General Number of segments (sensor points) per edge ntt 

Mould 
geometry 

Number of faces of the mould nf,mould 
Number of faces that are in common between the block and its mould nf,shared 
Index of a face of the block that is in common with i-face of the mould (i changes 
between 1 and nf,shared) 

sfi 

Number of faces of the mould (not shared with a face of the block) with more than 
one boundary 

nfwmo,mould

Number of boundaries in i-th face of the mould (not shared with a face of the 
block) that has more than one boundary (j changes between 1 and nfwmo,mould) 

nbmi 

Number of vertices in j-th boundary of i-th face of the mould (not shared with a 
face of the block) 

nvmi,j 

List of vertices of j-th boundary of i-th face of the mould (not shared with a face 
of the block) 

lvmi,j 

Mechanical 
properties 

Unit weight of the block (MN/m3) γ 
Gravity acceleration (m/s) g 
Young’s modulus of the block Eb 
Poisson’s ratio of the block νb 
Young’s modulus of rock mass Emass 
Poisson’s ratio of rock mass νmass 
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 Table 5.1-Continued: List of input variables of BS3D (input.dat) 

Category Description Symbols 

Mechanical 
properties 

Dilatancy 
characteristics of i-th 
face of the mould (i 
changes between 1 and 
nf,mould) 

Initial normal stiffness  si 
Maximum closure vi 
Length of lab size specimen for which fracture 
properties are given 

L0,i 

Base friction angle  Φb,i 
JCS JCS0,i 

Isotropic JRC of i-th face of the mould (i changes between 1 and nf,mould) JRC0,i
Anisotropic dilatancy 
characteristics of i-th 
face of the mould (i 
between 1 and nf,mould) 

Length of block along j-th shearing direction (j=1,2) Ln,i,j 
JRC of block along j-th shearing direction (j=1,2) JRC0,i,j 
Direction of j-th shearing direction (j=1,2) ShDj 

Analyses 
characteristics 

Number of permanent faces of the mould (number of faces which are not 
removed in the excavation stage) nperFace 

Number of stages Nstage 
Additional forces and moments applied to the block at i-th stage Fadd,i 
Step stage for i-th stage Step0,i 
Maximum increment number MaxInc 
Maximum iteration number MaxIter 
Maximum λ at i-th stage λi 
Fractures Constitutive model (Mohr-Coloumb, Bartons’s, or Modified Barton’s model) 
Normal stiffness of the block should be calculated using approximation or BEM (see Section 
5.2.5 for details) 
Considering in situ stress around circular tunnel (Yes or No; see Section 5.4.2 for details) 
Considering water pressure due to high-velocity jet impact (Yes or No; see Section 5.6 and 
Chapter 8 for details) 

 

5.2.2 Dilatant behavior of rock fractures 

Section 3.4 introduced a predictive model for anisotropic dilatant behavior of rock 

fractures for which dilatancy characteristics of fractures should be given in two 

perpendicular directions. There are two options in BS3D for entering fracture dilatancy 

properties: isotropic and anisotropic. For anisotropic dilatancy, all information should be 

given in the input file. However, for the case of isotropic dilatancy, the maximum length 

of the block along each face of the mould can be calculated by BS3D automatically. The 

direction is called the 1st shearing direction of the discontinuity. In addition, the length of 

the block along direction perpendicular to the 1st shearing direction is determined and the 

direction is called the 2nd shearing direction of the fracture. 
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The size effect is applied to the given lab size magnitudes of JRC and JCS using 

Equations (3.5) and (3.7), respectively. The peak shear displacements of all faces of the 

mould along both shearing directions are determined using Equations (3.31) or (3.88) 

according to Barton’s model or Modified Barton’s model, respectively. 

5.2.3 Triangulation 

     All faces of the block and its mould are triangulated using the efficient procedure 

of Seidel [69] as implemented by Narkhede and Manocha [70] in C++. The triangulation 

subroutine is called by the main Fortran routine of BS3D using capabilities of Microsoft 

Visual Stodio.Net in multilanguage programming.  

     The triangulation subroutine can divide a 2D polygon into triangles. Thus, all faces 

of the block and the mould should be projected into a 2D plane. However, the 2D plane 

on which each face is to be projected can not be chosen randomly. Numerical inaccuracy 

of floating point errors can occur when the face normal has little or no component in the 

projection direction; in the extreme situation (no component), the face projects to a line 

segment [236]. To reduce such errors for a given face the α-β-γ coordinates are always 

chosen as a right-handed ( γβα ˆˆˆ =× ) permutation of the x-y-z coordinates such that γN̂  

is maximized. This choice maximizes the area of the projected shadow in α-β plane (see 

Figure 5.1). Note that a choice can always be found such that 
1

3ˆ −
>γN [236]. 

 

 Figure 5.1: The α-β-γ axes are a right-handed permutation of the x-y-z axes chosen to 
maximize the size of the face’s projected in the α-β plane [236]. 
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Therefore, before calling triangulation subroutine all faces of the block and the 

mould are projected on the best 2D plane (found by the method proposed by Mirtich 

[236]). 

5.2.4 Mass properties 

Mass properties of the block including centroid, volume, weight, and inertia 

tensor are determined using a subroutine developed in this research based on the method 

proposed by Mirtich [236] to compute polyhedral mass properties (see Appendix C for 

the pseudo code of the algorithm).  

5.2.5 Normal stiffness of rock mass and rock block  

Figure 5.2 depicts a rock block constrained in its mould by surrounding rock 

mass. In rock block stability analyses, in addition to the deformability of the rock 

fractures, the deformability of the rock block and of the rock mass must be taken into 

account in order not to overestimate the forces generated by dilatancy along the fractures 

that bound the block. In order to analyze the stability of a single rock block, Tonon [1] 

adopted Goodman’s hyperbolic model [78] for the normal stiffness of the fractures that 

bound the block. Although the simplified analytical equation (Equation (2.44)) proposed 

by Tonon [1] works very well for the normal stiffness of the surrounding rock mass, the 

suggested approximation for the normal stiffness of the rock block (Equation (2.43)) 

depends on the loading conditions and results may be affected by large errors.  

 

 
 Figure 5.2: Block surrounded by rock mass in its mould. 

Surrounding rock mass

D1... D4: Block faces ︵rock fractures that bound the block ︶

D1

D3

D2
D4

Rock Block
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The deformability of the blocks can conveniently be simulated using the 

Boundary Element Method (BEM). However, all boundary conditions are given as 

stresses, and the direct BEM [237-240] is applied to the solution of the traction boundary 

value problem (TBVP) on the boundary of a domain. The displacement solution of a 

TBVP is not unique because it is defined up to a rigid body motion (RBM), which has 

zero strain energy and thus also zero stresses [241] . 

Taking into account that the symmetric Galerkin Boundary Element Method 

(SGBEM) [242] has some strong similarity with the FEM, Vodicka et al. [241] applied 

the method successfully used in the FEM, e.g. [243, 244], in the SGBEM. The method, 

referred to as Method S by Blazquez et al. [245], enforces additional point supports in the 

displacement field which can be carried out by zeroing the appropriate rows and columns 

in the linear system of equations and defining the corresponding diagonal elements equal 

to a non-zero number [241]. 

Starting from the Fredholm theory of linear operators with zero index [246, 247], 

different mathematical approaches, referred to as Methods F by Blazquez et al. [241], 

have been proposed by various authors [245, 246, 248-257] with the aim of removing 

rigid body motions in elastostatic BEM problems. Methods F can be subdivided into two 

categories: (a) Method F1, also called the augmenting method or bordering method, has 

been considered by various researchers [245, 246, 248-250]; (b) Method F2, sometimes 

called the completion method, has been considered by various authors [245, 252-257].  

In removing RBMs from the TBVP solution, it should be considered that although 

the load prescribed is always equilibrated on the continuum level, after discretization its 

global equilibrium can be slightly perturbed [241]. Nevertheless, it is convenient to 

search for a reasonable approximation of the TBVP solution on the continuum level. 

These difficulties were studied theoretically [246, 258] and numerically [245, 259] for the 

classical BEM. However, it seems that these methods may lack a simple interpretation 

from an engineering point of view as well as a relation between the rigid-body motion 

and global equilibrium conditions.  
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Discretization of the boundary by boundary elements (triangles in BS3D) leads to 

a system of linear equations that can be represented as [239]: 

,BGPHU +=      (5.1) 

where H and G are NN 33 ×  coefficient matrices, with N equal to the number of nodes 

used in the discretization. U, P, and B are displacement, traction, and body force vectors, 

respectively, of dimension 3N. In BS3D, all elements of H and G matrices are calculated 

by using Gaussian integration over triangles [260-263]. iiG  components are calculated 

by following Li’s and Han’s method [264] for evaluating singular integrals in stress 

analysis of solids by the direct BEM. Body force vector, B, is obtained using Galerkin 

Vector approach, which transforms the domain integrals into boundary integrals [237] 

(see Appendix D for pseudo code of implemented subroutines that calculate BEM 

matrices together with verification examples). 

In BS3D, at the end of each increment, all tractions, P, are known. Displacements 

at all boundary nodes are unknown, and can formally be calculated by solving Equation 

(5.1) for U: 

     ( )BGPHU += −1      (5.2) 

However, H is singular and there are infinite solutions for U because the block is 

in equilibrium and free to translate and/or rotate.  

In order to remove the rigid-body motions from the solution, the following 

approach is adopted: 

- The displacements of one arbitrarily chosen boundary node, say Q, are assumed to 

be zero. It should be noted that any boundary node can be selected. 

- 3 equations and 3 unknowns corresponding to the fixed node, Q, can be 

eliminated from the system of Equations (5.1).  

- Although the rigid-body translations have been removed from the displacement 

solution, H should still be singular due to the rigid-body rotation degrees of 

freedom. However, round-off errors turn 1−H  from singular to ill-conditioned. 

Therefore 1−H  can be calculated by the algorithm proposed by Rump [265] to 
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inverse extremely ill-conditioned matrices. As a consequence, displacements at all 

boundary nodes can be calculated with respect to the fixed node, Q.  

- The displacement of the block’s centroid is calculated as the average 

displacement of all nodes, including the fixed one, Q.  

- Relative displacements of all nodes to the centroid are calculated.  

- The new normal unit vector to each boundary face can be obtained because the 

new position of all nodes is known.  

- The normal displacement component of each node (due to the deformability of 

rock block) can be determined given the node’s displacement vector (relative to 

the centroid) and the new normal unit vector to the node’s triangle.  

 

The normal stiffness due to the deformability of the rock block at each node will 

be equal to the ratio of the normal stress to the normal displacement at that node. The 

magnitude of this stiffness depends on the boundary conditions and should be updated at 

the end of each increment. 

5.2.5.3 Results and Discussion 

In order to verify the above mentioned boundary element formulation, consider a 

m1.01.01.0 ××  cubic block shown in Figure 5.4. The block has Young’s modulus of 

1,000 MPa and Poisson’s ratio of 0.25; and it is subjected to compression load of 0.5 

MPa in 1, 2, and 3 directions perpendicular to faces.  

 
Figure 5.4: Dimension of the cubic block considered in verification and the stress 

components on the cub 

x2

x3

x1

0.1 m

0.1 m

0.1 m
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The normal stiffness of the block can be calculated based on the theory of 

elasticity. Figure 5.4 depicts stress components around the cube subjected to compression 

stress, σ , in 3 directions. For linear elastic materials, the strain along the xi axis can be 

calculated as follows [266]: 

    ( ),21 νσε −=
Δ

=
El

l

i

i
i     (5.3) 

where E  and ν  are Young’s modulus and Poisson’s ratio of the block, respectively; 

il  and ilΔ  are length of the block and the total displacement along the xi axis, 

respectively. The relative displacement of each face to the centroid is equal to half of the 

total displacement of the block along the normal vector of that face. Thus, the normal 

stiffness of each face can be calculated analytically as follows: 

( )ν
σ

21
2

2 −
=

Δ
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ii
n l

E
l
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i

    (5.4) 

 

For the cases of loading in 1 and 2 directions, the normal stiffness of the loaded 

faces can be calculated using the following equations, respectively: 

 
i

n l
EK

i

2
=      (5.5) 

( )ν−=
1
2

i
n l

EK
i

     (5.6) 

 

In addition, the block normal stiffness at the nodes located on the top and the 

bottom faces was determined by using both approximation (Equation (2.43)) and the 

proposed algorithm based on Boundary Element Method described in this Section. 

Knowing the solution (5.4), (5.5), or (5.6) as the correct one, Figure 5.5 depicts the 

maximum percent error in estimating the block normal stiffness (at the nodes located on 

the top and the bottom faces) calculated using Tonon’s approximation and the proposed 

BEM-based algorithm for 8 to 72 elements per face. 
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Figure 5.5 shows that the BEM-based algorithm of this Section works very well in 

estimating the normal stiffness.  Although increasing the number of nodes increases the 

accuracy of BEM formulation, it has no effect on the accuracy of the approximation. In 

addition, the accuracy of the approximation depends on the loading condition. The 

maximum error in estimating the normal stiffness calculated using Tonon’s 

approximation is 30, 6.7, and 40 percent in the cases of loading in 1, 2, and 3 directions, 

respectively. In the case of loading in 2 directions, the approximation works very well. 

However, the proposed BEM-based algorithm works with acceptable accuracy for all 

boundary conditions. There are still small errors in the BEM calculation, which come 

from different sources, such as:  

- Gaussian integration over triangles: components of H and G matrices are 

calculated using Gaussian integration over triangles with 16 Gauss points. This 

approximation causes some errors. Increasing the number of Gauss points 

increases the accuracy of the calculations. However, even with 48 Gauss points, 

there are still some very small errors. 

- Calculation of new normal vectors: new normal vectors of each face are 

calculated obtaining the average of new normal vectors of all triangles of that 

face. The new normal vectors of each triangle, in turn, are calculated based on the 

new position of three points closest to the vertices of the triangle, assuming the 

triangle remains planar after deformation. Definitely, this assumption causes some 

errors due to deformability of the block. 

- Round-off errors in calculating coefficient matrices (H and G matrices) 

- Ill-conditioning matrices: matrix H is ill-conditioned due to round-off errors (with 

condition number in order of 103 - 104, for the above explained example with 8 to 

72 elements per face). The condition number associated with the linear equation 

gives a bound on how inaccurate the solution will be after approximate solution. 

Note that this is before the effects of round-off error (in solving the system of 

equations) are taken into account; conditioning is a property of the matrix, not the 
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algorithm or floating point accuracy of the computer used to solve the 

corresponding system. 

5.2.5.4 Summary and conclusion 

An algorithm was proposed to remove the rigid-body motions in the solution of 

an elastostatic problem discretized by the direct BEM approach. The algorithm fixes one 

boundary point to prevent rigid-body translations. Finally, the rigid-body rotations are 

eliminated from the displacement solution. The method was applied to the calculation of 

the normal stiffness of rock blocks. The algorithm was verified with a simple example for 

which analytical solution is available based on the theory of elasticity. This example 

shows the increased accuracy of the proposed algorithm with respect to the 

approximation proposed by Tonon [1]. 

5.2.6 Matrix operation  

As it was mentioned in Section 2.5, the system of Equations (2.32) is non-

symmetric but has small order (i.e. 7), and is solved using LU decomposition (Crout-

Banachiewicz) method with partial pivoting [67]. The detection of a critical point in the 

equilibrium path then comes with no overhead because the minimum diagonal element of 

matrix L monitors the smallest eigenvalues of K [66, 67]. If a diagonal element is equal 

(or close) to zero, eigenvalues and eigenvectors of the stiffness matrix are calculated to 

determine limit points and static instability.  

As it was mentioned in Section 2.13.2, since K is a real and non-symmetric (large 

rotations, applied non-conservative forces such as water pressure) matrix, and M is real, 

symmetric, and positive definite, eigenvalues can be either real or complex (Appendix E 

proves that M is a real, symmetric, and positive definite matrix). Thus, BS3D should be 

able to solve generalized eigenvalue problems in which eigenvalues may be real or 

complex. A subroutine has been developed in this research to solve generalized 

eigenvalue problems based on the approach proposed by Vandebril et al [267]. The 

problem is to find eigensystem of matrix K with respect to matrix M as follows: 

,xx ⋅⋅=⋅ MK λ     (5.7) 
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where λ is the eigenvalue and x is the eigenvector. The positive definite real matrix M 

can be expressed as follows by applying Cholesky factorization [268]:  
TLL ⋅=M      (5.8) 

Thus, the generalized eigenvalue problem in Equation (5.7): 

( ) ( ),1 xLxLLL TTT ⋅⋅=⋅⋅⋅ −− λK    (5.9) 

which is the same as determining the eigensystem of matrix TLTL −− ⋅⋅= 1K . 

In order to calculate the eigenvalues and eigenvectors of matrix ۹ഥ (or any other 

matrices), BS3D uses a Fortran subroutine developed by Moreau [269] based on 

algorithm given by Engeln-Mueller and Uhlig [270]. The subroutine can determine both 

real and complex eigenvalues and corresponding eigenvectors of a square matrix via the 

QR method [271-273].  

In order to calculate ۹ഥ, the inverse of matrix L is needed. To determine the 

inverse of a matrix, BS3D calls a Fortran subroutine developed by Rego [274] based on 

an algorithm explained by McFarlat [275] and Sniedovich [276].  

5.3 VERIFICATION OF BS3D USING DIRECT SHEAR TEST EXAMPLES 

5.3.1 Direct shear test up to peak shear strength 

An example of monotonic direct shear test up to peak shear strength (with normal 

stress in the range of 0.625 and 10 MPa) was simulated using BS3D. The problem 

statement is summarized in Table 5.2 and the block geometry is depicted in Figure 5.6. 

In BS3D simulations, after applying the normal stress as an external force in the 

first stage, the shear stress was applied by adding a longitudinal force in the second stage. 

However, in BS3D the additional forces are applied to the centroid of the block and, thus, 

a shear force may cause a moment which does not occur in a well-conducted direct shear 

test. In order to avoid this kind of unreal moment, in this example, the centroid of the 

block was artificially moved to the lowermost face of the block.  

Since the block has a high Young’s modulus (73.64 GPa) in this example, the 

normal stiffness of the rock block was estimated using Equation (2.43) rather than BEM. 
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Table 5.2: Statement of the direct shear test problem used to verify BS3D implementation 

Parameter Value 
Length of the block (m) 0.2 
Width of the block (m) 0.2 
Height of the block (m) 0.1 
Unit weight of the block (kN/m2) 25.5 
Young’s modulus (GPa) 73.64 
Poisson ratio 0.23 
Initial normal stiffness of fractures (MPa/mm) 8.3 
Maximum closure of fractures (mm) 0.4 
Lab size joint length (m) 0.1 
JRC0 8 
JCS0 (MPa) 30 
Base friction angle, φb (º) 20 
Number of sensor points per edge, ntt 6 
Number of stages: 

• Stage 1: Applying the normal force (step stage = 0.5; λmax=1) 
• Stage 2: Applying the shear force (step stage = 0.01; λmax=2) 

2 

Max increment number 500 
Max iteration number 50 

 

 
 Figure 5.6: Geometry of the cubic block considered in verification example  

 

Figure 5.7 summarizes the results of BS3D simulations for normal stress between 

0.625 MPa and 10 MPa. UDEC User manual [277] introduced a table (Table 5.3) for 

JRCmobilized which is a little bit different from Barton’s table (Table 3.2). In this Section, 

the direct shear test example was also simulated using the UDEC suggested JRCmobilized 

(Table 5.3 has been implemented in BS3D).  
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(a-1) Stress-displacement curve (a-2) Normal displacement-shear displacement curve 
(a) Normal stress = 0.625 MPa; BS3D analyses 

 

(b-1) Stress-displacement curve (b-2) Normal displacement-shear displacement curve 
(b) Normal stress = 1.25 MPa; BS3D analyses 

 

(c-1) Stress-displacement curve (c-2) Normal displacement-shear displacement curve 
(c) Normal stress = 2.5 MPa; BS3D analyses 

 Figure 5.7: Results of BS3D analyses (direct shear test verification example) 
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(d-1) Stress-displacement curve (d-2) Normal displacement-shear displacement curve 
(d) Normal stress = 5 MPa; BS3D analyses 

 

(e-1) Stress-displacement curve (e-2) Normal displacement-shear displacement curve 
(e) Normal stress = 10 MPa; BS3D and UDEC analyses 

Figure 5.6-Continued: Results of BS3D analyses (direct shear test verification example) 

 

 Table 5.3: UDEC Mobilized JRC at each shear displacement [277] 
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In addition, Figure 5.7-(e) shows the results of UDEC analyses (given in UDEC 

User manual [277] and rerun in this study) for the case of normal stress equal to 10 MPa. 

In UDEC simulation, after applying the normal stress on the lowermost face (A1A2A3A4), 

the block was moved with constant horizontal velocity [277] which causes no unreal 

moment.  

The example introduced in this Section is a very simple direct shear test. Thus, the 

stress-displacement curves and the normal displacement versus shear displacement 

curves (for all constitutive models) were easily drawn by developing a spreadsheet in 

Excel. Comparing the curves obtained employing Excel spreadsheet and the results of 

BS3D simulations, it is found that in all cases the results of BS3D are exactly the same as 

what models predict. In addition, it can be seen in Figure 5.7 that there are differences 

between BS3D results obtained using UDEC JRCmobilized model in Table 5.3 and the 

results of UDEC simulations. However, comparing these results with the curves given by 

Excel spreadsheet, it is found that BS3D results are exactly the same as what the model in 

Table 5.3 predicts.  

In order to verify the implementation of anisotropic dilatancy, the same model 

was sheared in eight different shearing directions (every 45˚). Since JRC is the same in 

all directions, the results should not depend on the direction considered. For all cases, the 

results were indeed exactly the same as depicted in Figure 5.7. 

Moreover, in order to verify the implementation of the predictive model 

introduced in Section 3.4 for anisotropic dilatant behavior of fractures, the same model 

was sheared in a direction with an angle of θ (the angle between x-axis and the shearing 

direction depicted in Figure 3.26) equal to 43.85º. JRC1 and JRC2 are assumed to be 10 

and 5, respectively. Therefore, JRCθ  (JRC along the shearing direction) is estimated 

using Equations (3.111) and (3.112) to be 10 which is the same as the magnitude of JRC 

in the above introduced isotropic example. Consequently, the results for anisotropic 

dilatancy should be the same as those depicted in Figure 5.7 (for isotropic dilatancy), 

which indeed is the case.  
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5.3.2 Progressive failure 

In order to verify BS3D implementation for post-peak behavior of rock fractures, 

the above example (normal stress equal to 10 MPa) were simulated. At peak shear 

strength, all sensor points (located at the lowermost face of the block; A1A2A3A4 in Figure 

5.7) which were in contact with the block support are sheared off and, thus, the code 

reports failure. Since the lowermost face of the block (A1A2A3A4) is parallel to x-y plane 

(see Figure 5.7), after all sensor points are sheared off, the block has no resistance against 

translation along x- and y-axes and rotation about the z-axis. However, the code reports 

failure along the given direction of shear force. In order to prevent from failure detection 

and being able to check the post-peak behavior, three springs were artificially added to 

the model: two longitudinal springs along x- and y-axes with spring constants of 4000 

MN/m and one rotational spring (to prevent rotational failure about the z-axis) with a 

spring constant of 4000 MN.m/rad.  

The results of BS3D simulations in Figure 5.8 were compared with the stress-

displacement curves and the normal displacement versus shear displacement curves 

drawn using Excel spreadsheet. It is found that in all cases the results of BS3D are 

exactly the same as what models predict.  

 

(a) Stress-displacement curve (b) Normal displacement-shear displacement curve 

 Figure 5.8: Results of BS3D analyses (direct shear test; progressive failure) 
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This example was simulated by two approaches:  

- Applying shear load in one stage  

- Applying shear load in two different stages: (1) Stage 1: shear stress of 1 MPa; (2) 

Stage 2: shear stress of 5 MPa 

The results are exactly the same, which verifies that the code works well for multistage 

analyses. 

5.3.3 Rotation about vertical axis 

To verify the ability of BS3D in analyzing large rotations, the block in Section 

5.3.1 was subjected to a normal stress of 10 MPa and then was applied a torsion of 0.4 

MN.m about vertical axis as the shear load. It should be mentioned that, in this case, at 

peak (rotational) shear strength, all sensor points located at the lowermost face of the 

block (A1A2A3A4 in Figure 5.7 which were in contact) are sheared off. In order to prevent 

from failure detection, three springs has been artificially added to the model: two 

longitudinal springs along x- and y-axes with spring constants of 4000 MN/m and one 

rotational spring (to prevent rotational failure about the z-axis) with a spring constant of 

4000 MN.m/rad. Since the block has a high Young’s modulus (73.64 GPa) in this 

example, the normal stiffness of the rock block was estimated using Equation (2.43) 

rather than BEM. The result is depicted in Figure 5.9.  

 

 
Figure 5.9: Verification example (large rotation) 
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Considering dilatant behavior of the fracture and different moment arms for 

fracture shear resistant, there is no simple method to check the results predicted using 

BS3D. However, the following points are notable: 

- The block shape after a large rotation of 60˚ does not change (see Table 5.4 for 

the coordinates of block vertices before and after 60˚ rotation). However, using 

DDA, the block expands when simulating problems involving large rotations 

[278-285]. 

Table 5.4: Coordinates or the block edge before and after 60º rotation (BS3D analysis of 
rotation about vertical axis) 

 Before rotation After 60º rotation 

Coordinates of 
the block vertices 

 

ଵܣ ൌ ሾ0 0 0ሿ் 
ଶܣ ൌ ሾ0.2 0 0ሿ் 
ଷܣ ൌ ሾ0.2 0.2 0ሿ் 
ସܣ ൌ ሾ0 0.2 0ሿ் 
ହܣ ൌ ሾ0 0 0.1ሿ் 
଺ܣ ൌ ሾ0.2 0 0.1ሿ் 
଻ܣ ൌ ሾ0.2 0.2 0.1ሿ் 
଼ܣ ൌ ሾ0 0.2 0.1ሿ் 
 

 

ଵܣ ൌ ሾ0.14 െ0.04 0ሿ் 
ଶܣ ൌ ሾ0.24 0.14 0ሿ் 
ଷܣ ൌ ሾ0.06 0.24 0ሿ் 
ସܣ ൌ ሾെ0.04 0.06 0ሿ் 
ହܣ ൌ ሾ0.14 െ0.04 0.1ሿ் 
଺ܣ ൌ ሾ0.24 0.14 1ሿ் 
଻ܣ ൌ ሾ0.06 0.24 0.1ሿ் 
଼ܣ ൌ ሾെ0.04 0.06 0.1ሿ் 

 

 

- The rotation matrices (Equation (2.1)), which map a vector attached to the rigid 

body from the base configuration to current configuration are orthogonal 

throughout the simulation as shown in Table 5.5 at different angles. 

 

Table 5.5: Examples of rotation matrix (BS3D analysis of rotation about vertical axis) 

Rotation angle 30º 45º 60º 

Rotation matrix 

ۏ
ێ
ێ
ێ
3√ۍ
2 െ

1
2 0

1
2

√3
2 0

0 0 ے1
ۑ
ۑ
ۑ
ې
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ێ
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ێ
2√ۍ
2 െ

√2
2 0

√2
2

√2
2 0

0 0 ے1
ۑ
ۑ
ۑ
ې

 

ۏ
ێ
ێ
ێ
ۍ 1
2 െ

√3
2 0

√3
2

1
2 0
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Normal and shear stresses on all four faces are calculated using BS3D and the 

results are checked against the analytical solution. The maximum error is about 0.1% 

which comes from round-off error in floating point arithmetic. 

5.4.2 In situ stresses around a circular tunnel 

In order to implement the effect of a circular tunnel on the state of stresses in the 

surrounding rock mass, formulation of stress distribution around a circular hole of radius 

a in a 3D stress field (consider a Continuum Homogenous Isotropic Linearly Elastic, 

CHILE, medium) is used (Figure 5.11). This formulation is based on generalized (or 

complete) plain strain condition, in which all components of stress, strain, displacement, 

body and surface forces are to be identical in all planes perpendicular to the hole axis 

[286-290]: 
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where U, V, and W are displacements (of any point of the medium) along the x, y, and z 

axes.     

 

 

Figure 5.11: Stress distribution around circular tunnel (state of stresses) 
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Effect of distance from excavation face, d, can be simulated using the following 

ratio [291]: 
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Different components of stresses (in the polar reference system of rθz) at point P 

(depicted in Figure 5.11) can be calculated using the following equations [287]: 
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BS3D converts the state of stresses from the polar reference system (calculated 

using Equations (5.12) through (5.17)) to the global reference system (see Figure 5.11 for 

definition of reference systems). Once the stress tensor in the global reference system, σ, 

is known, the normal and shear stresses applied to each face of the block are determined 

using the approach described in detail in Section 2.12  

The above mentioned analytical method has been implemented in BS3D. If user 

wishes to consider the effect of excavation (a circular tunnel) on in situ stresses, the 

choice should be indicated in the main input file, “input.dat”. In this case, BS3D looks 

for another input file, “tunnel_stress.dat”, which includes values for the parameters 

summarized in Table 5.6 (see Appendix B for an example of the input files). 
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Table 5.6: Parameters required to consider the effect of circular tunnel on in situ stresses 

Description Symbols 
The origin of the global reference system should be on the tunnel axis 

Tunnel diameter 2a 
Unit vector along tunnel axis in global reference system Tunnelaxis 
Distance of excavation face from the origin d 

Tunnel reference system is the same 
as principal stress directions: 

Depth of the tunnel axis Depth 
Unit weight of the rock mass γ 
Lateral pressure coefficient K0 

Tunnel reference system is not the 
same as principal stress direction: Stress tensor:  (σxx, σyy, σzz,τxy,τxz, τyz) 

 

It should be noted that verification of commercial software (e.g.: UDEC) is 

conducted by comparing numerical results with those obtained using the above 

mentioned analytical method. In this research, the implementation has been checked by 

comparing the results of BS3D analyses with hand calculations. 

5.5 VERIFICATION OF BEM AND IN SITU STRESS IMPLEMENTATIONS 

In order to verify the implementation of BEM and in situ stresses, an example is 

introduced here. A cubic block with edge length of 1 m is shown in Figure 5.12-(a). The 

mechanical properties of intact rock, rock mass, and fractures are summarized in Table 

5.7. The block is first constrained along all its six faces while it is subjected to gravity 

and hydrostatic in situ stress of 0.2 MPa. BS3D analyses have been performed using three 

constitutive models for fractures (Mohr-Coulomb’s model, Barton’s Model, and 

Modified Barton’s model) and employing both Equation 2.43 and BEM (Section 5.2.5) to 

determine the normal stiffness of rock fractures. The calculated safety factors versus the 

absolute vertical displacement of the block are depicted in Figure 5.12-(b) through (d). 

The safety factors and the vertical displacements of the block at failure are exactly 

the same as what models predict (calculated using Excel spreadsheet), which verify the 

implementation of in situ stresses (and constitutive models). In addition, it can be seen in 

Figure 5.12 that the results obtained from Equation (2.43) and BEM approach are the 

same, which is to be expected because: 
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1- The block is not as deformable as fractures and rock mass. Thus, the 

deformability of the block should not be too effective and the method of 

predicting the normal stiffness of the block should not affect the results. 

2- It was shown in Section 5.2.5.3 that although Equation (2.43) may lead to large 

errors in general, it works very well for the case of a block loaded in two 

directions. The block is exactly loaded in two directions here. Thus, the 

approximation has negligible errors in this case. 

 

 

 
(a) Geometry of the cubic rock block 

considered in verification example 
(b) Results of BS3D analyses using Mohr-

Coulomb’s model 
  

(c) Results of BS3D analyses using Barton’s 
model 

(d) Results of BS3D analyses using Modified 
Barton’s model 

 Figure 5.12: Verification example for BEM and in situ stress implementations 
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Table 5.7: Mechanical properties of intact rock, rock mass, and fractures (verification 
example; in situ stresses and BEM implementations) 

Parameter Value 
Unit weight of the block (kN/m2) 30 
Young’s modulus (GPa) of rock block 30 
Poisson ratio of rock block 0.3 
Young’s modulus (GPa) of rock mass 7 
Poisson ratio of rock mass 0.2 
Initial normal stiffness of fractures (GPa) 10 
Maximum closure of fractures (mm) 0.1 
Lab size joint length (m) 1 
JRC0 10 
JCS0 (MPa) 70 
Base friction angle, φb (º) 30 

 

5.6 WATER PRESSURE 

Hydrostatic water pressure is implemented in BS3D in the same approach that 

was explained in Section 2.9. The implementation has been verified using the example of 

the direct shear test introduced in Section 5.3 (Figure 5.6); the normal and shear forces 

are now applied by using hydrostatic water pressure instead of additional forces: 

- Applying normal and shear forces as additional forces: 

• Stage 1: a normal stress of 1 MPa was applied by considering a 0.04 MN 

additional force in the negative vertical direction. 

• Stage 2: a shear stress of 1 MPa was applied by considering a 0.04 MN 

additional foce in horizontal direction. 

- Applying normal and shear forces using hydrostatic water pressure: 

• Stage 1: a normal stress of 1 MPa was applied by considering the hydrostatic 

water pressure caused by a column of water with a height of 101.94 m on the 

uppermost face of the block. 

• Stage 2: a shear stress of 1 MPa was applied by considering the hydrostatic 

water pressure caused by a column of water with a constant height of 101.94 

m on one of the vertical faces of the block. 
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It is expected that the results obtained using both methods of applying normal and 

shear stresses be exactly the same (which was indeed found in BS3D results). It should be 

mentioned that these results are different from the results obtained in Section 5.3 for the 

case of normal stress of 1 MPa because, in Section 5.3, the centroid of the block was 

artificially moved to the lowermost face of the block (A1A2A3A4 in Figure 5.7) to prevent 

any moment, which was not done in this Section. Since the purpose of this Section is to 

verify the hydrostatic water pressure implementation, this moment was counterbalanced 

by applying additional forces. Although the simulated example is not the same as a real 

direct shear test, it works for verifying the implementation of the hydrostatic water 

pressure implementation. 

Hydrodynamic water pressures caused by high-velocity jet impacts are also 

incorporated in BS3D using the method described in detail in Chapter 8. In the cases that 

user wants to consider the hydrodynamic pressure caused by high-velocity jet impact at 

the bottom of plunge pools, another input file, “water_pressure.dat”, is read by BS3D. 

The input variables of “water_pressure.dat” are given in Table 5.8 (see Appendix B for 

an example of the input files). 

 Table 5.8: Input variables required for considering hydrodynamic water pressure 
caused by high-velocity jet impact (water_pressure.dat) 

Description Symbols 
Depth of water in the pool (m) depth 
Distance to the jet center line (m) r 
Jet diameter at pool surface (m) Dj 
Jet is circular or rectangular 
Type of turbulence: rough, moderate, or smooth 
Jet length (m) L 
Jet velocity (m/s) Vj 
  

5.7 SUMMARY 

In this Chapter, algorithms and formulations implemented in BS3D but not 

explained in other parts of this dissertation were briefly described. List of variables read 

by BS3D to define the stability problem of a single rock block were introduced (see 
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Appendix B for examples of input files). An algorithm was proposed to remove the rigid-

body motions in the solution of an elastostatic problem discretized by the direct BEM 

approach. The method was applied to the calculation of the normal stiffness of rock 

blocks and verified with a simple example. 

BS3D implementations (including fracture constitutive models, in situ stresses, 

BEM, etc.) were verified using examples of direct shear test and Cauchy tetrahedron. 
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CHAPTER 6: VALIDATION OF GENERAL SINGLE ROCK 

BLOCK STABILITY ANALYSIS (BS3D) 

6.1 INTRODUCTION  

In computational mechanics, verification and validation have received increasing 

attention because critical decisions are made based on the results of computational means 

[292-297]. If verification is the process of determining that a model implementation 

accurately represents the developer’s conceptual description of the model and the 

solution to the model, validation is the process of determining the degree to which a 

model is an accurate representation of the real world from the perspective of the intended 

uses of the model. The problems entailed in a validation process are exacerbated in rock 

engineering, where it is very difficult, or even impossible to test a rock mass at a 

convenient and representative scale.  

Rock engineers have attacked this issue by resorting to two validation methods, 

namely case histories, and model tests. In order to validate BS3D with regard to one of 

the most common failure modes, i.e. wedge failures, Section 6.2 uses the results from 

physical model tests reported by Yeung et al. [18] as well as two case histories of slope 

failures occurred in Turkey and reported by Kumsar et al. [26].  

6.2 WEDGE FAILURE 

6.2.1 Physical models used for validation 

Physical models were constructed and tested by Yeung et al. [18] in order to 

validate Block Theory and 3D-DDA as wedge stability analysis methods. In this Section, 

the results of their study on tetrahedral rock blocks are used to validate BS3D [1] for 

wedge failure.  

As shown in Figure 6.1, a typical model considered by Yeung et al. [18] consisted 

of a plaster wedge block placed on a supporting block, which contained the ‘‘mould’’ of 

the wedge block. The plaster supporting block was attached to a wood base block, which 

in its turn was attached to a tilt table inclined at an angle α with the horizontal direction. 
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The wedge block could move freely without being obstructed by the tilt table. The 

orientation of the model with respect to the dip direction of the tilt table was quantified 

by angle β between the table dip direction and the orthogonal to the wedge intersection 

vector. In each test, a model was fixed in the desired position corresponding to the chosen 

α and β values; the wedge block was held in place and then released.  

Yeung et al. [18] considered two different models. The dimensions of the two 

wedge blocks, named Block 1 and block 2, are shown in Figure 6.2. The angle α varied 

from 0° to 90° in 10° increments while the angle β was equal to 60°, 80°, and 240° for 

Block 1 and equal to 60°, 80°, and 320° for Block 2.  

 

 
 Figure 6.1: Physical model [298]. 

 
 Figure 6.2: Wedge Blocks [298]. 
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The coordinates of the block vertices in each of these cases are summarized in 

Tables 6.1 and 6.2 (in the global reference system, which is illustrated in Figure 6.1). 

 

Table 6.1: Coordinates of the block vertices in the global reference system - Block 1 (see 
Figures 6.1 and 6.2) 

β α 
Block's vertices  

A B C D 
60 0 (13.9, 8.0, 0.0) (3.5, 22.1, 0.0) (-3.5, 9.9, 0.0) (0.0, 16.0, -7.0) 
60 10 (13.6, 8.0, 2.4) (3.4, 22.1, 0.6) (-3.4, 9.9, -0.6) (1.2, 16.0, -6.9) 
60 18.25 (13.2, 8.0, 4.3) (3.3, 22.1, 1.1) (-3.3, 9.9, -1.1) (2.2, 16.0, -6.6) 
60 20 (13.0, 8.0, 4.7) (3.3, 22.1, 1.2) (-3.3, 9.9, -1.2) (2.4, 16.0, -6.6) 
60 30 (12.0, 8.0, 6.9) (3.0, 22.1, 1.8) (-3.0, 9.9, -1.8) (3.5, 16.0, -6.1) 
60 40 (10.6, 8.0, 8.9) (2.7, 22.1, 2.2) (-2.7, 9.9, -2.2) (4.5, 16.0, -5.4) 
60 50 (8.9, 8.0, 10.6) (2.2, 22.1, 2.7) (-2.2, 9.9, -2.7) (5.4, 16.0, -4.5) 
60 60 (6.9, 8.0, 12.0) (1.8, 22.1, 3.0) (-1.8, 9.9, -3.0) (6.1, 16.0, -3.5) 
60 70 (4.7, 8.0, 13.0) (1.2, 22.1, 3.3) (-1.2, 9.9, -3.3) (6.6, 16.0, -2.4) 
60 80 (2.4, 8.0, 13.6) (0.6, 22.1, 3.4) (-0.6, 9.9, -3.4) (6.9, 16.0, -1.2) 
60 90 (0.0, 8.0, 13.9) (0.0, 22.1, 3.5) (0.0, 9.9, -3.5) (7.0, 16.0, 0.0) 
80 0 (15.8, 13.2, 0.0) (1.2, 22.9, 0.0) (-1.2, 9.1, 0.0) (0.0, 16.0, -7.0) 
80 10 (15.5, 13.2, 2.7) (1.2, 22.9, 0.2) (-1.2, 9.1, -0.2) (1.2, 16.0, -6.9) 
80 17.17 (15.1, 13.2, 4.7) (1.2, 22.9, 0.4) (-1.2, 9.1, -0.4) (2.1, 16.0, -6.7) 
80 20 (14.8, 13.2, 5.4) (1.1, 22.9, 0.4) (-1.1, 9.1, -0.4) (2.4, 16.0, -6.6) 
80 30 (13.6, 13.2, 7.9) (1.1, 22.9, 0.6) (-1.1, 9.1, -0.6) (3.5, 16.0, -6.1) 
80 40 (12.1, 13.2, 10.1) (0.9, 22.9, 0.8) (-0.9, 9.1, -0.7) (4.5, 16.0, -5.4) 
80 50 (10.1, 13.2,12.1) (0.8, 22.9, 0.9) (-0.8, 9.1, -0.9) (5.4, 16.0, -4.5) 
80 60 (7.9, 13.2, 13.6) (0.6, 22.9, 1.1) (-0.6, 9.1, -1.1) (6.1, 16.0, -3.5) 
80 70 (5.4, 13.2, 14.8) (0.4, 22.9, 1.1) (-0.4, 9.1, -1.1) (6.6, 16.0, -2.4) 
80 80 (2.7, 13.2, 15.5) (0.2, 22.9, 1.2) (-0.2, 9.1, -1.2) (6.9, 16.0, -1.2) 
80 90 (0.0, 13.2, 15.8) (0.0, 22.9, 1.2) (0.0, 9.1, -1.2) (7.0, 16.0, 0.0) 
240 0 (-13.7, 24.0, 0.0) (-3.5, 9.9, 0.0) (3.5, 22.1, 0.0) (0.0, 16.0, -7.0) 
240 10 (-13.6, 24.0, -2.4) (-3.4, 9.9, -0.6) (3.4, 22.1, 0.6) (1.2, 16.0, -6.9) 
240 20 (-13.0, 24.0, -4.7) (-3.3, 9.9, -1.2) (3.3, 22.1, 1.2) (2.4, 16.0, -6.6) 
240 30 (-12.0, 24.0, -6.9) (-3.0, 9.9, -1.8) (3.0, 22.1, 1.8) (3.5, 16.0, -6.1) 
240 40 (-10.6, 24.0, -8.9) (-2.7, 9.9, -2.2) (2.7, 22.1, 2.2) (4.5, 16.0, -5.4) 
240 50 (-8.9, 24.0, -10.6) (-2.2, 9.9, -2.7) (2.2, 22.1, 2.7) (5.4, 16.0, -4.5) 
240 60 (-6.9, 24.0, -12.0) (-1.8, 9.9, -3.0) (1.8, 22.1, 3.0) (6.1, 16.0, -3.5) 
240 68.1 (-5.2, 24.0, -12.9) (-1.3, 9.9, -3.2) (1.3, 22.1, 3.2) (6.5, 16.0, -2.6) 
240 70 (-4.7, 24.0, -13.0) (-1.2, 9.9, -3.3) (1.2, 22.1, 3.3) (6.6, 16.0, -2.4) 
240 80 (-2.4, 24.0, -13.6) (-0.6, 9.9, -3.4) (0.6, 22.1, 3.4) (6.9, 16.0, -1.2) 
240 90 (0.0, 24.0, -13.9) (0.0, 9.9, -3.5) (0.0, 22.1, 3.5) (7.0, 16.0, 0.0) 
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Table 6.2: Coordinates of the block vertices in the global reference system - Block 2 (see 
Figures 6.1 and 6.2) 

β α 
Block's vertices  

A B C D 
60 0 (6.1, 3.5, 0.0) (3.5, 13.1, 0.0) (-3.5, 0.9, 0.0) (0.0, 7.0, -7.0) 
60 10 (6.0, 3.5, 1.1) (3.4, 13.1, 0.6) (-3.4, 0.9, -0.6) (1.2, 7.0, -6.9) 
60 20 (5.7, 3.5, 2.1) (3.3, 13.1, 1.2) (-3.3, 0.9, -1.2) (2.4, 7.0, -6.6) 
60 30 (5.3, 3.5, 3.0) (3.0, 13.1, 1.8) (-3.0, 0.9, -1.8) (3.5, 7.0, -6.1) 
60 40 (4.6, 3.5, 3.9) (2.7, 13.1, 2.2) (-2.7, 0.9, -2.2) (4.5, 7.0, -5.4) 
60 50 (3.9, 3.5, 4.6) (2.2, 13.1, 2.7) (-2.2, 0.9, -2.7) (5.4, 7.0, -4.5) 
60 60 (3.0, 3.5, 5.3) (1.8, 13.1, 3.0) (-1.8, 0.9, -3.0) (6.1, 7.0, -3.5) 
60 70 (2.1, 3.5, 5.7) (1.2, 13.1, 3.3) (-1.2, 0.9, -3.3) (6.6, 7.0, -2.4) 
60 80 (1.1, 3.5, 6.0) (0.6, 13.1, 3.4) (-0.6, 0.9, -3.4) (6.9, 7.0, -1.2) 
60 90 (0.0, 3.5, 6.1) (0.0, 13.1, 3.5) (0.0, 0.9, -3.5) (7.0, 7.0, 0.0) 
80 0 (6.9, 5.8, 0.0) (1.2, 13.9, 0.0) (-1.2, 0.1, 0.0) (0.0, 7.0, -7.0) 
80 10 (6.8, 5.8, 1.2) (1.2, 13.9, 0.2) (-1.2, 0.1, -0.2) (1.2, 7.0, -6.9) 
80 20 (6.5, 5.8, 2.4) (1.1, 13.9, 0.4) (-1.1, 0.1, -0.4) (2.4, 7.0, -6.6) 
80 30 (6.0, 5.8, 3.4) (1.1, 13.9, 0.6) (-1.1, 0.1, -0.6) (3.5, 7.0, -6.1) 
80 40 (5.3, 5.8, 4.4) (0.9, 13.9, 0.8) (-0.9, 0.1, -0.8) (4.5, 7.0, -5.4) 
80 50 (4.4, 5.8, 5.3) (0.8, 13.9, 0.9) (-0.8, 0.1, -0.9) (5.4, 7.0, -4.5) 
80 60 (3.4, 5.8, 6.0) (0.6, 13.9, 1.1) (-0.6, 0.1, -1.1) (6.1, 7.0, -3.5) 
80 70 (2.4, 5.8, 6.5) (0.4, 13.9, 1.1) (-0.4, 0.1, -1.1) (6.6, 7.0, -2.4) 
80 80 (1.2, 5.8, 6.8) (0.2, 13.9, 1.2) (-0.2, 0.1, -1.2) (6.9, 7.0, -1.2) 
80 90 (0.0, 5.8, 6.9) (0.0, 13.9, 1.2) (0.0, 0.1, -1.2) (7.0, 7.0, 0.0) 
320 0 (-4.5, 1.6, 0.0) (5.4, 2.5, 0.0) (-5.4, 11.5, 0.0) (0.0, 7.0, -7.0) 
320 10 (-4.4, 1.6, -0.8) (5.3, 2.5, 0.9) (-5.3, 11.5, -0.9) (1.2, 7.0, -6.9) 
320 10.25 (-4.4, 1.6, -0.8) (5.3, 2.5, 1.0) (-5.3, 11.5, -1.0) (1.2, 7.0, -6.9) 
320 20 (-4.2, 1.6, -1.5) (5.0, 2.5, 1.8) (-5.0, 11.5, -1.8) (2.4, 7.0, -6.6) 
320 30 (-3.9, 1.6, -2.2) (4.6, 2.5, 2.7) (-4.6, 11.5, -2.7) (3.5, 7.0, -6.1) 
320 40 (-3.4, 1.6, -2.9) (4.1, 2.5, 3.4) (-4.1, 11.5, -3.4) (4.5, 7.0, -5.4) 
320 50 (-2.9, 1.6, -3.4) (3.4, 2.5, 4.1) (-3.4, 11.5, -4.1) (5.4, 7.0, -4.5) 
320 60 (-2.4, 1.6, -3.9) (2.7, 2.5, 4.6) (-2.7, 11.5, -4.6) (6.1, 7.0, -3.5) 
320 70 (-1.5, 1.6, -4.2) (1.8, 2.5, 5.0) (-1.8, 11.5, -5.0) (6.6, 7.0, -2.4) 
320 80 (-0.8, 1.6, -4.4) (0.9, 2.5, 5.3) (-0.9, 11.5, -5.3) (6.9, 7.0, -1.2) 
320 85 (-0.4, 1.6, -4.5) (0.5, 2.5, 5.3) (-0.5, 11.5, -5.3) (7.0, 7.0, -0.6) 
320 90 (0.0, 1.6, -4.5) (0.0, 2.5, 5.4) (0.0, 11.5, -5.4) (7.0, 7.0, 0.0) 

 

Figure 6.2 shows the possible wedge sliding directions (Direction 1 or Direction 

2) and describes the local reference system. Each wedge block was bounded by two joint 

planes (Plane 1 and Plane 2) and two free surfaces, one horizontal and one vertical for 

α=0). The average friction angle determined by Yeung et al. [18] out of 10 direct shear 
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test measurements was equal to 32.5°; the density of the blocks was equal to 1400 kg/m3; 

the Young’s modulus was equal to 1×107 N/m2; and the Poisson’s ratio was equal to 0.49 

[18]. BS3D implements both Mohr-Coulomb and Barton [21, 22, 92, 132] failure criteria. 

Since BS3D takes joint deformability into account using Goodman [78] and Barton-

Bandis models [79, 80, 299] (or Modified Barton’s model, developed in Chapter 3), it 

also requires additional input data, such as initial stiffness and maximum closure of the 

discontinuities. The appropriate magnitude of these two parameters were assumed in this 

study as described below because they were not available in Ref. [18].  

The constitutive model for the rock joints used in the BS3D analysis was Mohr-

Coulomb failure criterion with no dilatancy, because this is what is assumed in Block 

Theory and 3D DDA and because only the friction angle was reported by Yeung et al. 

[18]. In addition, the shear stiffness was assumed to be proportional to (one tenth of) the 

normal stiffness. Thus, the allocated values of JCS and JRC have no effect on the results; 

they are effective only when Barton-Bandis model is used for discontinuities.  

Appropriate ranges for the initial stiffness and the maximum closure of joints 

were determined based on a literature review and a parametric study carried out to find 

the effect of these parameters on the stability of a wedge. A stable case, Block 1 with 

β=60° and α=10°, and an unstable case, Block 1 with β=60° and α=30°, were considered. 

The initial stiffness was changed from 100 to 10,000 MPa/m and the maximum closure 

was changed from 0.01 to 0.5 mm, considering their possible ranges for different types of 

rocks as reported by Bandis et al. [80]. It was found that in these ranges the failure modes 

are the same as in the physical model and the safety factors are the same as calculated 

using limiting equilibrium analysis in Block Theory. Thus, changing the initial stiffness 

and the maximum closure has no effect on the results; because the stress level is low as 

compared to the initial stiffness range, the normal stiffness is very close to the initial 

normal stiffness. The investigation was continued to find when these parameters have an 

effect on the results. It was found that for a very low value of initial stiffness (40 MPa/m) 

and the maximum closure of 0.1 mm, the results changed (The safety factor of Block 1 

with β=60° and α=10° decreased from 1.4 to 0.9 by decreasing the initial stiffness from 
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100 MPa/m to 40 MPa/m and the safety factor of Block 1 with β=60° and α=30° 

decreased from 0.7 to 0.4 by decreasing the initial stiffness from 100 MPa/m to 40 

MPa/m). Based on the normal stiffness values reported by Bandis et al. [80], Kulhawy 

and Fred [160], Panet and Guenot [291], and Rosso [300], the initial stiffness of the 

discontinuities was assumed to be equal to 300 MPa/m with a maximum closure of 

0.1mm, which are reasonable values for the plaster used to make the physical models. 

6.2.2 VALIDATION USING PHYSICAL MODELS 

Tables 6.3 and 6.4 give the results obtained from the physical model tests (failure 

modes) [18], Block Theory analyses based on limiting equilibrium (factors of safety and 

modes of failure), and BS3D (safety factors, static and dynamic failure modes). Block 

Theory analyses were independently carried out by the author and the results were found 

to be in agreement with those reported in Yeung et al. [18]. In Tables 6.3 and 6.4, wedge 

failures are indicated as “Wedge-i” and plane failures are indicated as “Plane-i” ”, where 

“i” indicates the plane number (either 1 or 2 as indicated in Figures 6.2). Dynamic failure 

modes are given using the block centroid’s displacements and the rotation vectors about 

the centroid.  

It should be considered that static and dynamic failure modes can be different 

from each other. In order to illustrate the static and dynamic failure modes, the base 

configuration versus static and dynamic failure modes of Block 1 when β=60° and α=30° 

are depicted in Figure 6.3. It is shown that the static failure mode is wedge sliding in 

Direction 1, for which the displacement vector in the global reference system is (-0.49, 

0.46, -0.74, 0, 0, 0)T, while the dynamic failure mode is roto-translational sliding with 

displacement vector equal to (-0.75, 0.5, -0.43, 0.5, 0.87, 0.04)T in the global reference 

system. In the physical model tests, four different types of failure modes were observed 

by Yeung et al. [18]: sliding on a single plane (plane 1 or 2), sliding on two planes 

simultaneously (wedge sliding in direction 1 or 2), free falling, and torsional sliding.  
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Table 6.3: Results from physical models [18], Block Theory, and BS3D analyses for 
Block 1 

β α 

Physical 
Model Block Theory BS3D 

Failure 
Mode F.S. Failure 

Mode F.S. 
Static 

Failure 
Mode 

Dynamic Failure Mode 
Centroid dir. of Displacement Vector about which rotation occur 

Global Local Global Local 
60 0 Stable 1.98 Stable 2.0 Stable - - - - 
60 10 Stable 1.37 Stable 1.4 Stable - - - - 
60 18.3 Wedge-1 1.04 Wedge-1 1.0 Wedge-1 (-0.82, 0.5, -0.27) (0, 1, 0) (0.46, 0.85, 0.24) (1, 0, 0) 

60 20 Wedge-1 0.99 Wedge-1 1.0 Wedge-1 (-0.81, 0.5, -0.3) (0, 1, 0) (0.45, 0.85, 0.26) (1, 0, 0) 

60 30 Wedge-1 0.72 Wedge-1 0.7 Wedge-1 (-0.75, 0.5, -0.43) (0, 1, 0) (0.5, 0.87, 0.04) (0.98, 0.04, -0.21) 

60 40 Wedge-1 0.51 Wedge-1 0.5 Wedge-1 (-0.75, 0.5, -0.43) (0, 1, 0) (0.37, 0.86, 0.35) (1, 0 , 0) 

60 50 Plane-2 0.36 Plane-2 0.4 Wedge-1 (-0.75, 0.5, -0.43) (0, 1, 0) (0.22, 0.84, 0.5) (0.99, -0.03, 0.15) 

60 60 Plane-2 0.28 Plane-2 0.3 Plane-2 (-0.75, 0.5, -0.43) (0, 1, 0) (0.21, 0.86, 0.47) (1, 0 , 0) 

60 70 Plane-2 0.21 Plane-2 0.2 Plane-2 (-0.75, 0.5, -0.43) (0, 1, 0) (0.02, 0.94, 0.33) (0.98, 0.2, 0.09) 

60 80 Plane-2 0.13 Plane-2 0.1 Plane-2 (-0.75, 0.5, -0.43) (0, 0.99, 0.11) (-0.63, 0.57, -0.54) (0.17, 0.83, 0.52) 

60 90 Plane-2 0.05 Plane-2 0.1 Plane-2 (-0.75, 0.5, -0.43) (0, 0.96, 0.28) (-0.57, 0.26, -0.78) (-0.16, 0.81, 0.57) 
- 0 Stable 1.97 Stable 2.0 Stable  - - - 
- 10 Stable 1.31 Stable 1.3 Stable  - - - 

80 17.17 Wedge-1 1.00 Wedge-1 1.0 Wedge-1 (-0.94, 0.17, -0.29) (0, 1, 0) (0.16, 0.98, 0.08) (1, 0, 0) 

80 20 Wedge-1 0.92 Wedge-1 0.9 Wedge-1 (-0.93, 0.17, -0.34) (0, 1, 0) (0.16, 0.98, 0.09) (1, 0, 0) 

80 30 Wedge-1 0.64 Wedge-1 0.6 Wedge-1 (-0.85, 0.17, -0.49) (0, 1, 0) (0.17, 0.99, 0.04) (1, 0, 0) 

80 40 Wedge-1 0.44 Wedge-1 0.4 Wedge-1 (-0.75, 0.17, -0.63) (0, 1, 0) (0.22, 0.98, -0.05) (0.98, 0.04, -0.18) 

80 50 Wedge-1 0.26 Wedge-1 0.2 Wedge-1 (-0.63, 0.17, -0.75) (0, 1, 0) (0.08, 0.98, 0.17) (1, 0, 0) 

80 60 Plane-2 0.12 Plane-2 0.1 Wedge-1 (-0.49, 0.17, -0.85) (0, 1, 0) (0.01, 0.98, 0.22) (0.99, -0.02, 0.1) 

80 70 Plane-2 0.04 Plane-2 0.0 Plane-2 (-0.34, 0.17, -0.93) (0, 1, 0) (-0.04, 0.98, 0.18) (1, 0, 0) 

80 80 Free fall. 0.00 Free fall. 0.0 Free fall. (-0.17, 0.17, -0.97) (0, 1, 0) (0.01, 0.98, 0.18) (1, 0, 0) 

80 90 Free fall. 0.00 Free fall. 0.0 Free fall. (-0.16, 0.14, -0.98) (-0.03, 0.99, 0.16) (-0.02, 0.61, -0.79) (0.46, 0.89, 0.02) 

240 0 Stable 1.97 Stable 2.0 Stable - - - - 

240 10 Stable 3.24 Stable 3.2 Stable - - - - 

240 20 Stable 8.04 Stable 8.0 Stable - - - - 

240 30 Stable 16.85 Stable 17.0 Stable - - - - 

240 40 Stable 3.94 Stable 4.0 Stable - - - - 

240 50 Stable 2.11 Stable 2.2 Stable - - - - 
240 60 Stable 1.35 Stable 1.4 Stable - - - - 
240 68.1 Wedge-2 0.98 Wedge-2 1.0 Wedge-2 (-0.03, 0.26, 0.97) (-0.67, 0.64, 0.39) (0.66, 0.73, -0.18) (-0.68, -0.3, -0.68) 

240 70 Wedge-2 0.91 Wedge-2 0.9 Wedge-2 (-0.69, 0.68, 0.24) (-0.58, -0.33, 0.73) (0.66, 0.73, -0.15) (-0.68, -0.3, -0.68) 
240 80 Plane-1 0.63 Plane-1 0.6 Wedge-2 (-0.98, 0, 0.17) (0, 0, 1) (-0.13, 0.93, -0.33) (-0.63, -0.77, 0.07) 
240 90 Plane-1 0.47 Plane-1 0.5 Wedge-2 (-1, 0, 0) (0, 0, 1) (0, 1, 0) (-0.82, -0.57, 0.05) 

 

 



199 

Table 6.4: Results from physical models [18], Block Theory, and BS3D analyses for 
Block 2 

β α 

Physical 
Model Block Theory BS3D 

Failure 
Mode F.S. Failure 

Mode F.S. 
Static 

Failure 
Mode 

Dynamic Failure Mode 
Centroid dir. of Displacement Vector about which rotation occur 

Global Local Global Local 
60 0 Wedge-1 0.78 Wedge-1 0.8 Wedge-1 (-0.87, 0.5, 0) (0, 1, 0) (0.5, 0.87, 0) (1, 0, 0) 
60 10 Wedge-1 0.57 Wedge-1 0.6 Wedge-1 (-0.85, 0.5, -0.15) (0, 1, 0) (0.5, 0.86, -0.05) (0.99, 0.01, -0.14) 
60 20 Wedge-1 0.41 Wedge-1 0.4 Wedge-1 (-0.81, 0.5, -0.3) (0, 1, 0) (0.53, 0.81, -0.23) (0.92, 0.04, -0.4) 
60 30 Plane-2 0.27 Plane-2 0.3 Wedge-1 (-0.75, 0.5, -0.43) (0, 1, 0) (0.56, 0.82, -0.11) (0.93, 0.03, -0.4) 
60 40 Plane-2 0.21 Plane-2 0.2 Plane-2 (-0.66, 0.5, -0.56) (0, 1, 0) (0.43, 0.87, 0.25) (1, 0, 0) 
60 50 Plane-2 0.14 Plane-2 0.1 Plane-2 (-0.56, 0.5, -0.66) (0, 1, 0) (0.43, 0.86, 0.26) (0.99, 0.01, -0.16) 
60 60 Plane-2 0.07 Plane-2 0.1 Plane-2 (-0.43, 0.5, -0.75) (0, 1, 0) (0.38, 0.86, 0.34) (0.99, 0.01, -0.16) 
60 70 Plane-2 0.00 Plane-2 0.0 Plane-2 (-0.3, 0.5, -0.81) (0, 1, 0) (0.34, 0.86, 0.39) (0.98, 0.10, -0.18) 
60 80 Plane-2 0.07 Plane-2 0.1 Plane-2 (-0.2, 0.5, -0.84) (0, 1, 0) (-0.23, 0.35, 0.91) (0.73, -0.56, 0.39) 
60 90 Plane-2 0.14 Plane-2 0.1 Plane-2 (-0.22, 0.49, -0.85) (0, 0.98, 0.22) (0.3, 0.95, 0.08) (0.86, 0.41, -0.3) 

80 0 Wedge-1 0.78 Wedge-1 0.8 Wedge-1 (-0.98, 0.17, 0) (0, 1, 0) (0.17, 0.98, 0) (1, 0, 0) 
80 10 Wedge-1 0.55 Wedge-1 0.6 Wedge-1 (-0.97, 0.17, -0.17) (0, 1, 0) (0.18, 0.98, -0.03) (1, 0, 0) 
80 20 Wedge-1 0.37 Wedge-1 0.4 Wedge-1 (-0.93, 0.17, -0.34) (0, 1, 0) (0.19, 0.98, -0.06) (0.99, 0.01, -0.12) 
80 30 Wedge-1 0.21 Wedge-1 0.2 Wedge-1 (-0.85, 0.17, -0.49) (0, 1, 0) (0.21, 0.97, -0.07) (0.99, 0.01, -0.17) 
80 40 Plane-2 0.09 Plane-2 0.1 Wedge-1 (-0.75, 0.17, -0.63) (0, 1, 0) (0.17, -0.98, -0.05) (1, 0, 0) 
80 50 Plane-2 0.01 Plane-2 0.0 Plane-2 (-0.63, 0.17, -0.75) (0, 1, 0) (0.71, 0.21, -0.67) (0.2, 0.09, -0.98) 
80 60 Free fall. 0.00 Free fall. 0.0 Free fall. (-0.5, 0.17, -0.85) (0, 1, 0) (0.09, 0.98, 0.14) (1, 0, 0) 
80 70 Free fall. 0.00 Free fall. 0.0 Free fall. (-0.34, 0.17, -0.92) (0, 1, 0) (0.57, 0.81, -0.11) (0.82, 0.05, -0.57) 
80 80 Free fall. 0.00 Free fall. 0.0 Free fall. (-0.17, 0.17, -0.97) (0, 1, 0) (0.18, 0.97, 0.13) (0.99, 0.01, -0.16) 
80 90 Free fall. 0.00 Free fall. 0.0 Free fall. (0, 0.17, -0.98) (0, 1, 0) (0.16, 0.97, 0.16) (0.99, 0.01, -0.16) 

320 0 Wedge-1 0.78 Wedge-1 0.8 Wedge-1 (0.64, 0.77, 0) (0, 1, 0) (0.77, -0.64, 0) (1, 0, 0) 
320 10 Wedge-1 0.98 Wedge-1 1.0 Wedge-1 (0.63, 0.77, 0.11) (0, 1, 0) (0.79, -0.6, -0.13) (0.96, 0.02, -0.27) 
320 10.3 Wedge-1 0.99 Wedge-1 1.0 Wedge-1 (0.63, 0.77, 0.11) (0, 1, 0) (0.79, -0.6, -0.13) (0.96, 0.02, -0.27) 
320 20 Stable 1.26 Stable 1.3 Stable - - - - 
320 30 Stable 1.70 Stable 1.7 Stable - - - - 
320 40 Stable 2.61 Stable 2.6 Stable - - - - 
320 50 Stable 5.89 Stable 5.9 Stable - - - - 
320 60 Stable 5.39 Stable 5.4 Stable - - - - 
320 70 Stable 2.24 Stable 2.2 Stable - - - - 
320 80 Stable 1.33 Stable 1.3 Stable - - - - 
320 85 TTS1 1.07 Plane-2 1.1 TTS2 (-0.99, 0.02, 0.1) (0, 0, 1) (0.15, 0.98, -0.15) (-0.73, 0.66, -0.16) 
320 90 Plane-2 0.89 Plane-2 0.9 Plane-2 (-1, 0, 0) (0, 0, 1) (0.15, 0.96, -0.23) (-0.79, 0.6, -0.15) 
320 0 Wedge-1 0.78 Wedge-1 0.8 Wedge-1 (0.64, 0.77, 0) (0, 1, 0) (0.77, -0.64, 0) (1, 0, 0) 

1 Two possible failure modes: (1) Translational sliding on plane 2, and (2) torsional sliding on Plane 2. 
2 Two possible failure modes: (1) Translational sliding on plane 2, and (2) torsional sliding on Plane 2: 
          Direction of centroid displacement in the global reference system is (-0.67,0.60,-0.44) and in the local one is (-0.76,0.14,0.63). 
          Vector about which rotation occur in the global reference system is (-0.5,0.07,0.86) and in the local one is (0.58,0.58,0.58).  
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(a) 

 
(b) 

Figure 6.3: Calculated failure modes for Block 1 with initial configuration of β=60° and 
α=30°: (a) Static failure mode versus initial configuration (b) Dynamic failure 
mode versus initial configuration [301]. 

 

BS3D analyses were performed for all combinations of β and α for which the 

results of physical models were available. Each analysis consisted of two stages: in the 

first stage, the block is unilaterally constrained on all its faces, and the rock block 

“consolidates” under its own weight. In the second stage, the constraints are removed 

except along the two faces of the supporting block shown in Figure 6.1; this simulates the 
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block’s release occurred in the physical model. In each stage, loads were increased by 

using increments of the control parameter equal to 0.1. Therefore, the precision of the 

safety factors is equal to 0.1. When comparing the results obtained using BS3D with 

Block Theory analyses, it can be seen that the safety factors calculated using BS3D are 

the same as the rounded safety factors obtained using Block Theory. 

The static failure modes predicted by BS3D agree well with those observed in the 

physical model tests of Yeung et al. [18]. Disagreement occurs only for six cases (out of 

64 total cases considered in this study), in which sliding on one plane was observed in the 

physical models, whereas BS3D predicts sliding on two planes, although the safety 

factors obtained from both methods are the same. To illustrate the reason for such 

differences, the safety factors and directions of sliding on one or two planes for these six 

cases are determined using Block Theory and associated limiting equilibrium analysis; 

the results are summarized in Table 6.5.  

Table 6.5: Safety factor and sliding direction for sliding on 1 or 2 planes 

Block number β α 

Sliding on one plane1 Sliding on two planes1 

F.S. displacement direction F.S. displacement direction 

Block 1 60 50 0.36 (-0.27, 0.42, -0.87) 0.41 (-0.2, 0.46, -0.87) 
Block 1 80 60 0.12 (-0.13, 0.14, -0.98) 0.14 (-0.1, 0.16, -0.98) 
Block 1 240 80 0.63 (-0.55, 0.43, -0.71) 0.65 (-0.53, 0.46, -0.71) 
Block 1 240 90 0.47 (-0.5, 0.32, -0.8) 0.59 (-0.4, 0.46, -0.79) 
Block 2 60 30 0.27 (-0.2, 0.34, -0.92) 0.30 (-0.18, 0.35, -0.92) 
Block 2 80 40 0.09 (-0.1, 0.1, -0.99) 0.12 (-0.08, 0.12, -0.99) 

  1  The Block theory analysis using limiting eqilibrium method   

 
In these six cases, the safety factors and displacement directions for sliding on one 

or two planes are very close to each other, which can hardly be distinguished in physical 

models. The differences between the results of BS3D analysis and those obtained from 

either physical models or Block Theory analyses originate from the following reasons:  

1) Since the directions of sliding are so close one to the other, it could have 

been difficult to distinguish between one-plane and two-plane sliding 
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modes occurred in the physical models. Probably sliding on two planes in 

the physical models could have been easily mistaken for sliding on one 

plane. 

2) BS3D considers the deformability of the discontinuities, whereas Block 

Theory does not. 

 

In addition, it can be seen in Table 6.4 that BS3D correctly predicts the failure 

mode of Block 2 when β=320° and α=85°, while Block Theory does not. In some 

repeated tests, the observed failure modes were either translation or torsional sliding on 

Plane 2; a vertex of the tetrahedral wedge appeared to be stuck to the supporting plane, 

thus causing rotation about the vertex [18]. The failure mode predicted by Block Theory 

is only (translational) sliding on Plane 2 because Block Theory does not consider 

torsional sliding as a failure mode. However, BS3D can deal with rotational as well as 

translational failure modes, and thus it very well captures these failure modes. In this 

case, BS3D correctly predicted two possible static failure modes: (1) translational sliding 

on Plane 2, and (2) torsional sliding on Plane 2; they correspond exactly to the observed 

failure modes. Figure 6.4 shows the initial configuration together with the static and 

dynamic failure modes predicted by BS3D, which are both torsional sliding on Plane 2. 

Moreover, 3D DDA analysis was carried out for Block 2 when β=320° and α=85° 

by Yeung et al. [18] and Figure 6.5 shows the failure mode predicted using 3D DDA. For 

this case, to simulate the torsional sliding mode observed in the physical model, Yeung et 

al. fixed the vertex of the wedge that appeared to be stuck during the test in the analysis, 

thus using 3D DDA artificially by forcibly inducing the rotation about this vertex [18]. If 

the vertex were not fixed, 3D DDA would give a mode of “translational sliding on Plane 

2”, as observed sometimes in the tests for this case [18]. It should be considered that 3D 

DDA can only find one of the failure modes at a time, and some previous information on 

failure mode may be necessary to correctly obtain torsional sliding from 3D DDA. 

However, BS3D could correctly find both possible failure modes (torsional sliding and 

translational sliding), without resorting to any prior information or numerical artifacts.  
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Figure 6.4: Calculated failure modes for Block 2 with initial configuration of α = 85° and 
β = 320° [301]. 

 

 

Figure 6.5: 3D DDA result for torsional sliding case; Block 2 with initial configuration of 
β=320° and α=85° [18]. 
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For each of the other three observed different failure modes, one case was chosen 

and 3D DDA analysis was conducted by Yeung et al. [18]. The results of these three 

cases agree very well with those observed in the physical model tests as well as the 

results obtained by Block Theory and BS3D analysis. According to the 3D DDA 

analysis, the failure mode of Block 1 was predicted to be “free falling” when β=80° and 

α=80°. Figure 6.6 shows failure modes predicted using 3D DDA and BS3D.  

 

   
(a)     (b) 

Figure 6.6: Results of analyses for free falling case; Block 1 with initial configuration of 
β=80° and α=80°: (a) 3D DDA [18] (b) BS3D [301]. 

 

Furthermore, the failure mode of Block 1 when β=60° and α=60° should be 

“sliding on Plane 2”, based on 3D DDA analysis. Figure 6.7 shows failure modes 

predicted using 3D DDA and BS3D. In addition, 3D DDA predicted that Block 1 would 

fail by wedge sliding in Direction 1, when β=60° and α=30°. Figure 6.8 shows failure 

modes predicted using 3D DDA and BS3D.  
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(a)      (b) 

Figure 6.7: Results of analyses for plane 2 sliding case; Block 1 with initial configuration 
of β=60° and α=60°: (a) 3D DDA [18] (b) BS3D [301]. 

 

(a) (b) 

Figure 6.8: Result of analyses for wedge sliding case; Block 1 with initial configuration 
of β=60° and α=30°: (a) 3D DDA [18] (b) BS3D [301]. 
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In addition, Tonon [1] demonstrated the ability of BS3D to deal with 

simultaneous translational and rotational failure modes in two examples; examples 2 and 

3 in ref. [1]. In order to compare the ability of 3D DDA and BS3D in stability analysis of 

blocks with rotational failure modes, the literature was reviewed to find suitable 

examples. Shi [61] explained 3D DDA using three examples, none of which contains a 

rotational failure mode. Four examples were solved using 3D DDA by Liu et al. [302]: 

block sliding along an incline under the action of gravity; a rigid block excited by the 

movement of the foundation; lift-off motion of a rigid block resting on a rigid foundation; 

and scattering of a system of packed cubes. Wang et al. [303] solved three examples 

using 3D DDA: wedge failure analysis; stability analysis of a gravity dam; and dynamic 

stability analysis of the upper part of Konya dam. Hatzor and Feintuch [304] 

demonstrated the validity of dynamic block displacement using DDA by a 2D example of 

block sliding. Moreover, Hatzor et al. [305] reported a case history of dynamic stability 

of jointed rock slope which was simulated by DDA. None of the above examples can be 

used to compare the capabilities of 3D DDA and BS3D in analyzing the stability of 

single blocks that may have rotation in their failure modes.  

6.2.3 Validation using case histories 

Besides physical models, two case histories of slope wedge failure are used to 

validate BS3D. The case histories used in this study were reported by Kumsar et al [26] 

and were also used by Yeung et al. [18].  

6.2.3.1  Case 1: Wedge failure in an Open Museum 

A wedge failure occurred in a thick and soft tuff layer of Zelve Open Museum in 

the Cappadocia Region of Central Anatolia, Turkey [26]. Two joints with dip/dip 

direction equal to 85°/318° and 82°/208°, respectively, bound a tetrahedral wedge. These 

discontinuities had slightly rough surfaces with a friction angle of 30°. The slope surface 

had dip/dip direction equal to 81°/255°. 

Considering the fact that gravity is the only active load, BS3D analysis calculated 

a safety factor of 0.2, with static failure mode consisting of sliding on two planes, and 
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dynamic failure mode being roto-translational sliding. This agrees not only with the 

observation that the wedge has already failed, but also with the safety factor obtained 

from Block Theory analysis. 

6.2.3.2  Case 2: Wedge failure near Ankara Castle 

A wedge failure occurred in a jointed andesite rock mass near Ankara Castle in 

Bent Deresi region of Ankara City, Turkey [26]. Two joints with dip/dip direction equal 

to 44°/194° and 71°/103°, respectively, formed a tetrahedral wedge. These discontinuities 

had a friction angle of 30°. A house sat on top of the wedge failure. The slope surface had 

a dip/dip direction equal to 69°/162°. 

Considering gravity as the only active load, BS3D analysis calculated a safety 

factor of 0.7, with static failure mode consisting of sliding on two planes, and dynamic 

failure mode being roto-translational sliding. These results agree with both the actual 

observation and the safety factor calculated using Block Theory analysis. 

6.3 CONCLUSIONS 

Wedge failure validation under gravity loading has been carried out for BS3D [1], 

an algorithm for analysis of single rock blocks that can handle general failure modes 

under conservative and non-conservative forces.  

Sixty four physical models and two case histories were analyzed using this 

method. For the wedge stability problem, physical modeling and BS3D give the same 

failure modes except for six cases in which sliding on one plane were observed in 

physical models while BS3D predicted sliding on two planes. This is due to the fact that 

the two failure modes have very similar factors of safety and sliding directions, and 

BS3D considers the deformability of the sliding planes.  

In all cases, safety factors obtained using BS3D analyses were the same as 

obtained using Block Theory limiting equilibrium analysis. The results of BS3D analyses 

for two case histories agree well with the observations that the wedges have already 

failed. 
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CHAPTER 7: STABILITY OF ROCK BLOCKS FORMED IN 

THE ROOF OF A CIRCULAR TUNNEL: EFFECT OF DILATANCY 

7.1 INTRODUCTION 

The mechanical behavior of a rock block formed in the roof of a tunnel is 

governed by its geometry, the mechanical characteristics of the joints forming the block, 

the deformability of the fractures forming the block, the deformability of the block and 

that of the surrounding rock mass, and the stresses within the rock [20].  

In this Chapter, the effect of dilatancy on the stability of a rock block formed in 

the roof of a circular tunnel is investigated. Section 7.2 presents an analytical approach to 

analyze stability of a 2D triangular wedge formed in the roof of a circular tunnel. Two 

different definitions are introduced for the factor of safety of the block. The effects of 

stiffness and shear strength of the fractures as well as in situ stress conditions on stability 

of the wedge are investigated. Section 7.3 explains a simplified limit equilibrium method 

to analyze stability of a tetrahedron in the roof of an excavation.  The results of the 

analytical analyses are compared with those obtained from BS3D simulations. Using the 

analytical approach and BS3D, the effects of the normal stiffness of the fractures, 

dilatancy, the tunnel radius, and the block size on stability of the tetrahedron are 

investigated. Section 7.4 presents a comprehensive sensivity analyses on the effects of the 

shear strength, the normal stiffness, the in situ stress condition, the tunnel radius, and the 

block size on stability of a prism formed in the roof of a circular tunnel by four fractures 

with the same dip angles. All of these sensivity analyses are performed using BS3D. 

Finally, the summary and conclusions made based on the sensivity analyses are presented 

in Section 7.5.  

7.2 SYMMETRIC 2D WEDGE IN THE ROOF OF A CIRCULAR TUNNEL 

This Section investigates the stability of a symmetric 2D wedge in the roof of a 

circular tunnel. The effects of stiffness and shear strength of the fractures as well as in 

situ stress conditions on stability of the wedge are studied. 



209 

7.2.1 Stability analysis (analytical solution) 

An analytical solution has been proposed by Bray [306] to analyze the stability of 

a block confined by rock mass. The solution contains a two-stage relaxation procedure 

(Figure 7.1): 

1- The fractures are assumed to be infinitely stiff. The excavation is performed in 

a homogeneous, isotropic, linearly elastic, weightless medium. The confining 

lateral force, Ho, acting horizontally on the wedge is evaluated at this stage. 

2- Assuming flexible fractures and rigid rock mass, loads due to the block 

weight, W, as well as the resultant of the supporting forces, S, are applied 

during this stage. 

 

 

 Figure 7.1: Loading stages in the analytical solution proposed by Bray [20]. 

 

For the symmetric 2D wedge of Figure 7.1, the factor of safety is defined as: 

,0

W
PSFS +

=      (7.1) 

where P0 is the pullout resistance of the wedge, which is the resultant of all forces applied 

to the wedge except for its weight and the supporting forces. It can be evaluated as 

follows [306, 307]: 

,2 00 MHP =      (7.2) 
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in which M is a function of the mechanical properties of the fractures and the apical angle 

of the wedge; and H0 is the horizontal force applied to the wedge by the surrounding rock 

mass at the end of the first stage. The values of M and D are, respectively [20, 306]:  

( ) ( )
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where α  is the semi-apical angle of the wedge; φ  and i are the effective friction (the 

sum of the basic friction angle and the dilation angle) and dilation angles of the fractures;  

and sk  and nk  are the fractures shear and normal stiffness. 

 At the end of the relaxation stage, the horizontal force, H0, applied to a wedge 

formed in the roof of a circular tunnel can be evaluated by modifying Elsworth’s [308] 

analytical expression, in a hydrostatic stress field, as follows [20]: 

( )
( ) ,

cossin
2coscos0

αθα
αθθ

−×
−×

=
×Rp

H
    (7.5) 

where θ  is the angle denoted in Figure 7.2. 

Sofianos et al. suggested the following equation to evaluate the horizontal force, 

H0, confining a wedge in the roof of a circular tunnel in non-hydrostatic stress field [20]: 

 

 
Figure 7.2: Symmetric wedge in the roof of a circular tunnel (biaxial stress field) [20]. 
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7.2.2 Effect of fracture stiffness on 2D wedge stability 

Hudson and Harrison [310] performed a sensivity analysis to show the variation 

in M (defined in Equation (7.3)) as a function of the semi-apical angle, α in Figure 7.2, 

for different ratios of normal to shear stiffness of discontinuities. The effective friction 
angle was assumed to be 30˚ with zero dilation angle. Figure 7.4 presents the results of 

Hudson’s and Harrison’s sensivity analyses (recalculated in this dissertation). They 

concluded that there is a tendency for the prism to be expelled from the surface when the 

semi-apical angle exceeds the effective friction angle, which is exacerbated for high 

values of 
n

s
k

k . 

 

 

Figure 7.4: Effect of semi-apical angle and discontinuity stiffness on the constraining 
force applied on symmetric triangular roof wedge 
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the block weight and the horizontal force, H0, confining the wedge, which in turn requires 

the unit weight of the rock, the tunnel radius, the block height, and the in situ stress 

condition. The unit weight of the rock is assumed to be 27 kN/m3. The factor of safety is 

calculated for the maximum triangular block formed in the roof of a tunnel with diameter 
of 4 m. The semi-apical angle of the wedge is changed between 10 and 80˚, which means 

that the fractures forming the block dip between 80 and 10˚ below horizontal, 

respectively. In order to calculate the weight of the block and the normal and shear forces 

applied to each face, it is assumed that the length of the block along the tunnel axis is 1 

m. Hydrostatic in situ stress of 0.5 MPa is assumed to act prior to excavation of the 

tunnel. Figure 7.5 depicts the factors of safety calculated using Equation (7.1) for 

different semi-apical angles (α) and ratios of normal to shear stiffness (ks/kn). In order to 
present changes in FS with α and ks/kn

 
for the case of stable blocks (10˚ < α < 30˚) more 

clearly, the results are shown in two different scales of FS.  

 

 

Figure 7.5: Variation of FS (Bray’s definition) of maximum 2D wedge formed in the roof 
of a circular tunnel with semi-apical angle and fractures stiffness (hydrostatic stress 
field of 0.5 MPa) 
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It can be seen in Figure 7.5 the tendency of the wedge to be expelled from its 

mould is exacerbated for high values of ks/kn. The factor of safety defined in Equation 

(7.1), for stable blocks, gives FS < -1 and, for unstable blocks, gives FS > -1. However, 

in most geotechnical engineering (or civil engineering) problems, the FS is always 

positive: at equilibrium, FS is equal to one; for stable cases, FS is higher than one; and, 

for unstable cases, FS is between 0 and 1.  

In order to limit the factor of safety in the conventional range, the factor of safety 

is now defined as the ratio of passive to active forces (or the ratio of available shear 

strength to the required shear stress at equilibrium). The same definition is adopted by 

Rocscience in their commercial block theory software, Unwedge [311]. Figure 7.6 

depicts diagram of forces applied on a symmetric triangular roof prism. The factor of 

safety of unsupported 2D wedge is defined as the ratio of passive to active forces as 

follows: 

,
sin2
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WN

SFS
+⋅

⋅
=

α
α      (7.12) 

where N and S are normal and shear forces and can be calculated as follows [235, 306]:  
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Figure 7.6: Diagram of forces applied on a symmetric triangular roof prism [310] 
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Figure 7.7 depicts the factors of safety calculated using Equation (7.12) for 

different semi-apical angles (α) and ratios of normal to shear stiffness (݇௦/݇௡) of 

discontinuities. It can be seen that, except for the case of α=10˚, the factor of safety is 

almost independent of the ratio of ݇௦/݇௡. In the case of α=10˚, the maximum block has 

much larger size compared to the other values of semi-apical angles, and therefore, the 

weight of the block is not negligible compared to the values of normal and shear forces 

applied to the faces. For the case of weightless block (or the case that the weight is 

negligible compared to the in situ stresses), the factor of safety defined in Equation (7.12) 

can be simplified as follows: 

,
tan
tan

α
φ

=FS      (7.15) 

which is independent of the ratio of ݇௦/݇௡. At a depth of about 20 m, one may expect to 

have a hydrostatic in situ stress of 0.5 MPa. For a 4-meter-diameter tunnel, this depth is 

almost considered as a limit between shallow and deep tunnels. However, considering the 
fact that, for a wedge with semi-apical angle of 10˚, the height of the maximum block is 

9.52 m, a depth of 20 m for the tunnel axis is shallow.  

 

 

Figure 7.7: Variation of FS (our definition) of maximum 2D wedge formed in the roof of 
a circular tunnel with semi-apical angle and fractures stiffness (hydrostatic stress 
field of 0.5 MPa) 
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Figure 7.8 depicts the factor of safety of a wedge subjected to hydrostatic stress 

field of 5 MPa calculated using Equation (7.12) for different semi-apical angles (α) and 

ratio of normal to shear stiffness (݇௦/݇௡). It can be seen that, when the weight of the 

block is negligible compared to the in situ stress (which is the case almost in all tunneling 

applications), the factor of safety is independent of the ratio of normal to shear stiffness. 

 

Figure 7.8: Variation of FS (our definition) of maximum 2D wedge formed in the roof of 
a circular tunnel with semi-apical angle and fractures stiffness (hydrostatic stress 
field of 5 MPa) 
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calculated using Equation (7.1) from -6.6 to 58.9 and increases the FS determined 

employing Equation (7.12) from 0.6 to 4.47. It can be seen that the order of magnitudes 

of the factors of safety calculated using Equations (7.1) and (7.12) are different from each 

other. However, adopting either definition for the factor of safety, the effective friction 

angle strongly affects stability of the wedge.  

 

 
Figure 7.9: Effect of friction angle of fractures on stability of a 2D symmetric wedge 
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The same senivity analysis is performed choosing an effective friction angle of 
35˚. Figure 7.12 depicts the results of the analysis. Again, it can be seen that the trend in 

the FS calculated using Equation (7.12) remains the same as in Figure 7.10. However, the 

FS determined using Equation (7.1) decreases (the stability increases) with increasing the 

tunnel depth. 

 

  

 Figure 7.12: Effect of in situ stress on stability of 2D wedge ( ) 
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Figure 7.15: Effect of lateral pressure coefficient on stability of 2D wedge ( o35=φ ) 
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7.2.5 Summary 

An analytical method has been presented for stability analysis of 2D triangular 

prism formed in the roof of a circular tunnel from References [20, 235, 306-310]. In 

addition, a new definition for the factor of safety of the block is presented in this Chapter. 

Based on sensivity analyses, the following conclusions were made: 

1

1.1

1.2

1.3

0 1 2 3 4

FS

Lateral pressure coefficient, k0

Equation (7.12)

‐35

‐30

‐25

‐20

‐15

‐10

‐5

0

0 1 2 3 4

FS

Lateral pressure coefficient, k0

Equation (7.1)



222 

1- Different definitions of the FS may lead to different conclusions in sensivity 

analyses. 

2- Adopting Equation (7.1) as FS definition, it is found that the tendency for the 

prism to be expelled from the surface is exacerbated for high values of ns kk /

. However, defining the FS as given in Equation (7.12), it is found that the 

stability of a 2D triangular wedge is independent of the ratio of ns kk / . 

3- Stability of 2D wedge is strongly affected by the friction angle of the 

fractures.  

4- Adopting Equation (7.12) as the definition of the FS, it is found that 

increasing the in situ stress slightly increases the stability of the block in low 

stress regimes and has no effect on the factor of safety in high stress regimes. 

However, the sensivity analyses performed based on the definition of FS 

given by Equation (7.1) leads to the following conclusions: for a friction angle 

equal to the semi-apical angle, the vertical stress has no effect on the stability 

of the block; for a friction angle smaller than the semi-apical angle, the FS of 

the block increases (the stability decreases) with increasing the vertical stress; 

and for a friction angle more than the semi-apical angle, the FS of the block 

decreases (the stability increases) with increasing the vertical stress. 

5- Defining the FS as Equation (7.12), it is found that increasing the lateral 

pressure coefficient slightly increases the stability of the block in low k0 

regimes and has no effect on the factors of safety in high k0 regimes. 

However, the sensivity analysis performed based on the definition of FS given 

by Equation (7.1) leads to the following conclusions: for a friction angle equal 

to the semi-apical angle, the lateral pressure coefficient has no effect on the 

stability of the block; for a friction angle less than the semi-apical angle, the 

FS of the block increases (the stability decreases) with increasing the lateral 

pressure coefficient; and for a friction angle more than the semi-apical angle, 

the FS of the block decreases (the stability increases) with increasing the 

lateral pressure coefficient. 
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Based on the above mentioned conclusions obtained from senivity analyses, one 

may say that although the definition of the factor of safety given in Equation (7.1) is not 

wrong, it may lead to incorrect conclusions in sensivity analyses. In addition, FS 

introduced in Equation (7.12) is limited to positive values, the same as most geotechnical 

engineering (and civil engineering) applications: at equilibrium, FS=1, for stable blocks, 

FS > 1, and for unstable blocks, 0<FS< 1. Consequently, it is believed that Equation 

(7.12) can define the factor of safety of a 2D symmetric prism better than Equation (7.1). 

7.3 ROOF STABILITY ANALYSIS FOR A TETRAHEDRON  

A relaxation analysis for a non-regular 3D tetrahedral block in the roof of an 

excavation presents some conceptual difficulties, which arise from extra number of 

degrees of freedom. For instance, on any face of the block it is necessary to consider two 

components of orthogonal shear displacement as well as a normal displacement 

component. Maintaining the statical determinacy during the relaxation process would 

require that the block be almost isotropically deformable. Thus, a complete analysis of 

the stability of a tetrahedron is not handled conveniently by relaxation method presented 

earlier for 2D problem [235]. 

7.3.1 Limit equilibrium approach 

Using limit equilibrium methods, it is possible to estimate the wedge (Figure 

7.16) stability considering the frictional properties of the fractures.  

     

Figure 7.16: (a) Geometry for determination of the unit normal vector to a plane; (b) lines 
of action of mobilized shear forces on the face of a tetrahedral wedge [235]. 

(a) (b) 
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Suppose the orientation of the dip vector OA of a fracture surface is defined by 

the dip angle α and dip direction β, illustrated in Figure 7.16-(a).  

The direction cosines of the outward normal to the plane are given by [235]:  

)cos,sinsin,cos(sin),,( αβαβα ⋅⋅== zyx nnnn   (7.16) 

The normal component of traction at any point on the fracture surface can be 

estimated from the stress components and the direction cosines by substitution in the 

equation [235]: 

( )zxxzyzzyxyyxzzzyyyxxxn nnnnnnnnnt σσσσσσ +++++= 2222  (7.17) 

If the normal traction, nt , is determined at a sufficient number of points on the 

fracture surface, its average value and the area of the surface can be used to estimate the 

total normal force N. Thus, for each of the three confined faces of the tetrahedron, the 

respective normal forces N1 , N2 , and N3, can be calculated directly from the surface 

geometry and the elastic stress distribution [235]. 

In determining the stability of a wedge under surface and gravitational forces, it is 

necessary to take account of the directions of the shear resistances mobilized by the joint 

normal forces. Suppose the outward normals to the i-th face of the tetrahedron OABC 

shown in Figure 7.16-(b) are given as follows [235]:   

),,,( ziyixii nnn=n
 

etc.
   

(7.18) 

and that the faces are numbered in a sense compatible with the right-handed system of 

reference axes. The lines of intersection of the faces are then given by cross products of 

the normals to faces, i.e.: 

212,1 nnl ×=
  

etc.
   

(7.19) 

The bisector of an apical angle of a face of the tetrahedron, and directed towards the 

apex, as shown in Figure 7.16-(b), is obtained from the orientations of the adjacent lines 

of intersection which define the face, i.e.: 

( )1,32,11 2
1 IIB +−=

    
(7.20) 

One can establish the unit vector parallel to the i-th bisector [235]: 
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( )ziyixii bbb ,,=b
 

etc.
   

(7.21) 

It can be reasonably assumed that, in the case where the crown trihedral angle of 

the tetrahedron includes the z axis, the mobilized shear resistance on any face is directed 

parallel to the bisector of the face apical angle. Also, the inward unit normal to any face, 

the line of action of the normal component of the surface force, is given by [235]: 

)cos,sinsin,cos(sin),,( αβαβα ⋅⋅−== zyx aaaa   (7.22) 

The magnitude of the maximum shear forces that can be mobilized on the various 

faces are given as follows: 

111 tanφNS =      (7.23) 

and the x, y, and z components of the shear resistance on any face can be determined 

directly from its magnitude and the components of the appropriate unit vector for the 

face, defined by Equation (7.21). Taking account of all applied normal forces and 

mobilized shear resistances, the net vertical force associated with surface forces is [235]: 

( )∑
=

+=
3

1
tan

i
ziiziiz abNF φ     (7.24) 

Introducing the wedge weight, if the resultant vertical force satisfies the condition 

     ,0≤+WFz      (7.25) 

the wedge is potentially stable under the set of surface and body forces [235]. Therefore, 

based on Bray’s [306] and Sofianos’s [307] definition for the safety factor of 2D wedges 

(Equation (7.1)), the factor of safety of 3D tetrahedrons can be defined as follows: 

,
W
FFS z=

 
    (7.26) 

 For stable blocks, FS < -1 and, for unstable blocks, FS > -1.  

In order to show the order of magnitude of the factor of safety calculated using 

Equation (7.26), a tetrahedral rock block is analyzed. The height of the block is assumed 
to be 1 m. The block is formed by 3 fractures with dip directions of 0, 120, and 240˚. The 

dip angle is changed from 10˚ to 80˚ and the factor of safety is calculated using Equation 

(7.26). The effective friction angle of the fracture is equal to 25˚. In addition, it is 

assumed that a hydrostatic in situ stress of 0.5 MPa is applied and the effects of 
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excavation on in situ stresses are eliminated. Figure 7.17-(a) depicts the factor of safety 

of the block versus dip angle of its fractures.  

It can be seen in Figure 7.17-(a) that the FS calculated using Equation (7.26) 

changes from -50 to 90. The factor of safety defined in Equation (7.26), gives positive 

value for stable blocks and negative value for unstable blocks. However, in most 

geotechnical engineering (or civil engineering) problems, the FS is always positive. In 

order to limit the factor of safety in the conventional range, the factor of safety is defined 

as the ratio of passive to active forces (or the ratio of available shear strength to the 

required shear stress at equilibrium). Thus, the factor of safety of unsupported wedges is 

defined as follows: 

∑

∑

=

=

+
= 3

1

3

1

tan

i
zii

i
izii

aNW

bN
FS

φ

     
(7.27) 

Figure 7.12-(b) depicts the FS of the tetrahedron calculated using Equation (7.27) 

versus the dip angle of the fractures, for the same example described earlier in this 

Section. It can be seen that the FS is equal to one when the block is at equilibrium, is 

higher than one for stable blocks, and is smaller than one for unstable block.  

 

(a) Equation (7.26) (b) Equation (7.27) 

Figure 7.17: Variation of FS of 1-meter-heigth tetrahedron with dip angle of its fracture 
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7.3.2 Numerical simulation using BS3D 

The stability of a single rock block with general shapes can be analyzed using 

BS3D, in which the factor of safety is defined as the ratio between the stabilizing forces 

and the driving forces at limiting equilibrium. This definition is the same as in Equation 

(7.27) for 3D tetrahedrons and Equation (7.12) for 2D wedges. In addition, this definition 

is consistent with the definitions used in the most civil engineering/geotechnical 

engineering applications (ex.: Rocscience commercial software: Unwedge). Moreover, 

our definition (Equation (7.12) and (7.27), for 2D and 3D wedges, respectively) has some 

advantages over Bray’s [306] and Sofianos’s [307] definition (Equation (7.1)), as 

demonstrated in Section 7.2. Thus, in the rest of this Chapter, Equation (7.27) is used to 

obtain the analytical factor of safety.  

Although the definition of the factor of safety (Equation (7.27)) in the analytical 

method is the same as the definition of the factor of safety in BS3D, if a block is analyzed 

using both approaches, the factors of safety will be different because: 

- BS3D takes into account the deformability of the rock block, fractures, and 

the rock mass surrounding the block, while the analytical approach (Equation 

(7.27)) does not. 

- BS3D considers the progressive failure and the mobilization of shear strength, 

while the analytical limit equilibrium method does not. 

- In analytical limit equilibrium solution, the in situ stresses are assumed to be 

independent of the block displacement. However, in BS3D analysis, the part 

of the in situ stresses applied to the block changes with block movement.  
 

The tetrahedron that was introduced in Section 7.3.1 is simulated using BS3D. 

The factors of safety obtained from BS3D analyses together with the safety factors 

calculated using the analytical method are depicted in Figure 7.18 where the effective 
friction angle is assumed to be equal to 41˚. The ratio of the shear to normal stiffness of 

the fractures, ks/kn, is assumed to be constant (1/10) with an initial normal stiffness of 

2000 MPa/m. In addition, a hydrostatic in situ stress of 0.5 MPa is applied without 

considering the effect of excavation on in situ stresses around the excavation.  
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Figure 7.18: Comparing the factors of safety calculated using BS3D and the analytical 
approach for a tetrahedral rock block 

 
It can be seen in Figure 7.18 that two curves intersect each other at α equal to 49˚ 

when FS = 1. It means that both found that the block is at limiting equilibrium when 
semi-apical angle (90˚ - α) is equal to the effective friction angle (41˚). It is found from 

both BS3D analyses and the analytical calculations that the tetrahedron is stable if the 
semi-apical angle is larger than the effective friction angle, (90˚- α) > 41˚ or α < 49˚ 

because in these cases the normal stresses applied to the fractures due to in situ stresses 

push the block into its mould and increase the stability of the block. In addition, both 

methods report instability if the semi-apical angle is smaller than the effective friction 
angle, α > 49˚; because in these cases the normal stresses applied to the fractures due to 

in situ stresses push the block outside of its mould and decrease the stability of the block. 

Moreover, it can be seen in Figure 7.18 that, for the case of stable blocks, the 

factors of safety calculated using the analytical approach are higher than those 

determined from BS3D analysis, while for the case of unstable blocks, BS3D gives 

higher factors of safety comparing to those calculated using the analytical approach. 

These differences in factors of safety can be explained based on the fact that the 

analytical approach does not consider the deformability of the fractures, the rock block, 

and the rock mass, while BS3D does. Eliminating the effect of deformability is the same 

as assuming rigid fractures, rock block, and rock mass (or very high stifnesses). Thus, the 
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analytical approach overestimates the normal stresses applied to the fractures due to in 

situ stresses: 

- For the case of stable blocks (FS > 1), the normal forces applied to the 

fractures push the block into its mould and increase the stability of the block. 

Consequently, overestimating the normal stresses applied to the fractures due 

to in situ stresses overestimates the factor of safety. Therefore, for the case of 

stable blocks, the factors of safety calculated using the analytical approach is 

higher than those determined from BS3D analysis. 

- For the case of stable blocks (FS < 1), the normal forces applied to the 

fractures push the block out of its mould and decrease the stability of the 

block. Consequently, overestimating the normal stresses applied to the 

fractures due to in situ stresses underestimates the factor of safety. Therefore, 

for the case of unstable blocks, BS3D gives higher factors of safety compared 

to those calculated using the analytical approach. 

7.3.3 Effect of the fractures’ normal stiffness on stability of tetrahedron 

Unlike the analytical approach, BS3D takes into account the deformability of rock 

fractures in calculating the factor of safety. In order to check the effect of the normal 

stiffness of the fracture on stability of tetrahedron, a sensivity analysis is performed 

considering the same wedge introduced in Section 7.3.2. The effective friction angle is 
assumed to be equal to 41˚. In addition, a hydrostatic in situ stress of 0.5 MPa is applied. 

As it was mentioned in Chapter 5, excavations change the in situ stresses in the 

surrounding rock mass near the excavation perimeter. In this part of analyses, the effects 

of excavation on in situ stresses are not considered and it is assumed that the in situ 

stresses around the underground opening are the same before and after excavation. The 

initial normal stiffness of the fractures, kni, is ranged between 200 and 5000 MPa/m. 

Figure 7.19 depicts the changes in the FS of the block with the initial normal stiffness and 

the dip angle of the block, considering Mohr-Coulomb as constitutive model of rock 

fractures. It should be noted that the ratio of the shear to normal stiffness of the fractures, 
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ks/kn, is assumed to be constant (1/10). It can be seen that the initial normal stiffness of 

the fractures has no effect on stability of 3D wedges. 

 

 

Figure 7.19: The effect of the initial normal stiffness of fractures on stability of 
tetrahedral rock blocks (Mohr-Coulomb’s failure criterion) 

 
The same sensivity analyses are performed adopting the original and the modified 

Barton’s model as the constitutive model of the fractures. In these cases, the mechanical 

properties of the rock fractures are assumed to be o25=bφ , JRC = 10, and JCS = 20 

MPa. Therefore, the effective friction angle of the fractures is 41˚: 
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Figure 7.20 depicts the changes in FS of the block with the initial normal stiffness 

and the dip angle of the block, considering Baron’s original and modified models as 

constitutive model of rock fractures. It can be seen that adopting Barton’s original or 

modified model, the factor of safety of tetrahedral rock block decreases with increasing 

initial normal stiffness of fractures. This effect is more obvious in the case of stable 
blocks with dip angles greater than 50˚. The reason is that, for a given displacement 

increment, the normal stresses decrease more quickly on stiffer fractures. The drop in 
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normal stress lowers the available shear strength before shear stresses become large 

enough to support the block [312]. 

 

(a) Barton’s model (b) Modified Barton’s model 

Figure 7.20: The effect of the initial normal stiffness of fractures on stability of 
tetrahedral rock blocks 
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the shear stiffness (everything is the same as Barton’s model except for 

dilation displacement which is considered to be zero). 

- Barton’s original model 

- Modified Barton’s model 

- Simplified Barton’s model: everything is the same as Barton’s model expect 

for dilation displacement. It is assumed that dilation displacement at a shear 

displacement of pδ
 
is equal to ( )( )np JCSJRC σδ /logtan ⋅⋅ . It means that 

dilatancy starts at zero shear displacement (origin of the shear stress-

displacement curve). 

 

Figure 7.21 depicts the factors of safety versus the dip direction of the fractures 

forming the tetrahedron.  

 

Figure 7.21: The effect of fractures dilatancy on stability of tetrahedral rock blocks 
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factors of safety in the case of the wedge formed by fractures dipping 70˚ below 

horizontal. In Barton’s model, it is assumed that dilation starts at 30% of the peak shear 

displacement. BS3D analyses (adopting Baron’s model as the constitutive model of rock 

fractures) show that the wedge fails by loosing contact (free falling) before any face 

reaches 30% of its peak shear displacement; the ratio of the shear displacement at block’s 

failure to the peak shear displacement of the fractures is 0.14. Therefore, no dilation 

displacement develops when adopting Baron’s model. Consequently, there is no 

difference between the factors of safety calculated using Barton’s model and Mohr-

Coulomb model.  

On the other hand, assuming that dilation starts from zero shear displacement 

(origin of the shear stress-displacement curve), the factors of safety increase comparing 

to those of Barton’s model (or Mohr-Coulomb’s model). One of the reasons is dilation 

displacement increases the normal forces on the face of the block and thus increases the 

shear strength of the fractures. Consequently, the factors of safety increase. It is found 

that the ratio of the shear displacement to the peak shear displacement of the fractures of 

the wedge is 0.21 in this case (adopting the simplified Barton’s model). It means that 

another reason for having higher factors of safety is that more shear strength is mobilized 

for each fracture using the simplified Barton’s model. In other words, not only the peak 

shear strength is higher in simplified Barton’s model, but also the ratio of mobilized to 

peak shear strengths is larger.  

Modified Barton’s model uses a different equation for the peak shear 

displacement (Equation (3.88) instead of Equation (3.31)). In all these examples, the peak 

shear displacements predicted using Equation (3.88) is smaller than those estimated using 

Barton’s empirical equation (Equation (3.31)). In addition, in the modified model, the 

positive dilation starts from 0.5 times the peak shear displacement. BS3D analyses show 
that, at block’s failure, all fractures of the wedge (formed by fractures dipping 70˚ below 

horizontal) experienced a displacement equal to 30% of peak shear displacement, which 

caused negative dilation and decreased the normal stresses across fractures. However, the 

factors of safety calculated using the modified model are higher than those of the original 
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Barton’s model because the fracture mobilized shear strength is higher in the case of the 

modified model. Very small negative dilation (in the order of 10-2 mm) causes a very 

small decrease in the normal stresses applied to each face (in the order of 0.05 MPa 

compared to 0.5 MPa due to the in situ stresses). Assuming 0.45 MPa as normal stress 

applied to each face, the mobilized shear strength of each fracture at failure can be 

predicted using the modified model as follows: 

3.0=
peak

h

δ
δ

   78.0=
base

mobilized

φ
φ

    
(Using Table 3.9)    o5.192578.0 =×=mobilizedφ  

3.0=
peak

h

δ
δ

  134.0=
peak

mobilized

JRC
JRC

(Using Table 3.10) 4.1310134.0 =×=mobilizedJRC  

MPa

JCSJRC
n

mobilizedmobilizednmobilized

18.0
45.0

20log34.15.19tan45.0

logtan

≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛⋅+×=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+⋅=

σ
φστ

 

However, for the case of Barton’s model, the mobilized shear strength of each face can 

be predicated as follows: 
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This simplified calculation shows that the mobilized shear strength on each face is higher 

for the case of modified Barton’s model. It is clear that BS3D analysis is not as simple as 

above and it is a complicated incremental-iterative algorithm that takes into account the 

interaction between the rock block and rock mass as well as the deformability of the 

fractures.  

 The same simplified calculation can show why the factor of safety of the 

simplified Barton’s model is higher than those of Barton’s model, Modified Barton’s 

model, and Mohr-Coulomb’s model. It is found that the ratio of shear displacement to the 
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below horizontal) is 0.21 in the case of simplified model. Assuming dilation starts from 

zero shear displacement and dilation displacement is ⎟
⎟
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logtan  times the 

shear displacement; the normal displacement at failure is calculated to be in the order of 

10-4 m. This normal displacement causes an increase in normal stress of the fracture in 

the order of 0.2 MPa. The mobilized shear strength of each face can be obtained as 

follows: 
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Therefore, the mobilized shear strength predicted using the simplified Barton’s model is 

higher than those predicted employing Barton’s model and the modified model. Thus, the 

factor of safety is higher. 

7.3.5 Effect of size of the tetrahedron on its stability 

In order to investigate the effect of size of the tetrahedron on its stability, a 

sensivity analysis is performed. The above introduced tetrahedron formed by fractures 
dipping 60˚ below horizontal is considered. The height of the block is changed from 1 to 

10 m and the factors of safety are calculated. The mechanical properties of the rock 

fractures are assumed to be o25=bφ , JRC = 10, and JCS = 20 MPa. In addition, a 

hydrostatic in situ stress of 0.5 MPa is applied. The effects of excavation on in situ 

stresses are not considered and it is assumed that the in situ stresses around the 

underground opening are the same before and after excavation. The initial normal 

stiffness of rock block is 2000 MPa/m. The factors of safety of the wedges are calculated 

using the analytical approach (with Mohr-Coulomb’s model) as well as employing BS3D 

adopting the following constitutive models: (1) Mohr-Coulomb with effective friction 

angle of ( )nb JCSJRC σφ /log⋅+ ; (2) Barton’s original model; (3) Modified Barton’s 

model; and (4) Simplified Barton’s model (dilatancy starts at zero shear displacement)  
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Figure 7.22 depicts variation of the factor of safety with height of tetrahedron 
formed by fractures dipping 60˚ below horizontal. It can be seen that the factor of safety 

decreases with increasing size of the wedge. The reasons are as follows: 

- The weight of the block increases with increasing height of the block and 

therefore active forces increase. 

- The length of the block in shearing direction increases with size of the wedge. 

Therefore, the scaled JRC obtained from Equation (3.5) decreases with the 

size of the block which in turn causes a decrease in the shear strength of the 

fractures. Consequently, the factor of safety decreases with the size of the 

block. 

 

 

Figure 7.22: FS versus height of tetrahedron formed by 3 fractures dipping 60˚ below 
horizontal 
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are the same before and after excavation. This assumption was made to be able to 

simplify the analytical limit equilibrium analysis and to be able to compare its results 

with those of BS3D analyses. In this Section, the effect of excavation on in situ stresses 

around a circular tunnel is investigated to find how it affects the stability of a wedge 

formed in the roof of the tunnel.  
The above introduced tetrahedron formed from fractures dipping 60˚ below 

horizontal is considered. The height of the block is 1 m. The mechanical properties of the 

rock fractures are assumed to be o25=bφ , JRC = 10, and JCS = 20 MPa. In addition, a 

hydrostatic in situ stress of 0.5 MPa is assumed to be applied prior to excavation. It is 

assumed that a circular tunnel with a radius changing from 1 to 10 m is excavated and the 

in situ stress condition is modified accordingly. The initial normal stiffness of rock block 

is 2000 MPa/m. The factors of safety of the wedges are calculated using BS3D adopting 

different constitutive models. Figure 7.23 depicts variation of the factor of safety with the 

radius of the circular tunnel. 

 

 

Figure 7.23: FS versus the radius of the circular tunnel (tetrahedron formed by 3 fractures 
dipping 60˚ below horizontal with height of 1 m) 

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10

FS

radius (m)

Mohr‐Coulomb

Barton's model

Modified Barton's model

Simplified Barton's model (dilation 
starts from zero shear displacement)



238 

 

It can be seen that the factor of safety of the wedge increases with increasing the 

radius of the circular tunnel because the normal forces applied to each face of the wedge 

increases with increasing radius of the tunnel. Assume that the rock mass is subjected to 

hydrostatic state of stress with magnitude of P. The stress tensor after excavating a 

circular tunnel with radius of r at distance a from the center of the tunnel can be 

determined as follows (plane strain conditions) [313-315]: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 2

2

1
r
a

P
rσ  ; ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= 2

2

1
r
a

P
θσ ; ,0;

0
==== zrzrzz θθ τττσσ   (7.28) 

where rσ  and θσ  are radial and tangential component of stress. These components are 

the only ones that are affected by excavation. The in situ stresses around circular tunnel 

of radius 1 to 10 m are calculated using Equation (7.28). Then, the normal stresses 

applied to each face of the wedge are calculated. Figure 7.24 depicts variation of the ratio 

of the average normal stress applied to each fracture to the magnitude of the in situ 

hydrostatic pressure with radius of the circular tunnel. 

It can be seen in Figure 7.24 that the normal stress applied to each face increases 

with increasing radius of the tunnel, which in turn causes an increase in the normal forces 

applied to each face.  

 

 

Figure 7.24: Variation of the ratio of the average normal stress applied to each fracture to 
in situ hydrostatic pressure with radius of the circular tunnel 
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7.4 STABILITY OF A PRISM IN THE ROOF OF A CIRCULAR TUNNEL 

Yow and Goodman [312] presented a numerical model for keyblock stability. 

Using the field observations of keyblocks reported by Yow [316], they performed 

sensivity analyses on effects of different parameters such as block geometry, in situ 

stresses, and discontinuity properties on stability of keyblocks. In their study, they 

defined the factor of safety as follows: 

,/1 WFFS −=     (7.29) 

in which F is the resultant of all forces (including the block weight) with positive upward 

direction; and W is the keyblock weight (a negative force). The factor of safety is equal to 

one when the block is at limiting equilibrium. For stable blocks, the factor of safety is 

higher than one; for unstable blocks, the factor of safety is smaller than one and can be 

negative. It can be seen that this definition is deferent from what Bray [306] and Sofianos 

[307] introduced as a safety factor. It is also different from the definition of the factor of 

safety in BS3D and the proposed factors of safety in this Section 7.3 (Equations (7.12) 

and (7.27)). 

 As far as constitutive model for rock fractures, Yow and Goodman [312] used 

Barton’s model assuming that the peak shear displacement is equal to one percent of the 

length of the block. They investigated the effect of the fracture base friction angle, the 

magnitudes of JRC and JCS, the initial normal stiffness, the magnitude of vertical stress, 

and the lateral pressure coefficient on stability of keyblocks in the roof of a circular 

tunnel.  

 In this Section, the same sensivity analyses are performed using BS3D. The 

differences of the analyses done here with respect to those of Yow and Goodman [312] 

are as follows: 

- The definition of the factor of safety is different. 

- The progressive failure along rock fracture is considered. 

- Wider ranges of parameters are checked. 

- Different constitutive models for rock fractures are adopted. 

- The effect of dilation displacement on the stability of the block is investigated. 
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- The effect of principal stress direction on the stability of the block is 

investigated. 

- The effects of distance from the excavation face, the size of the block, and the 

diameter of the tunnel on the stability of the keyblock are investigated. 

 

7.4.1 Problem statement 

The parametric study simulates a symmetrical three-dimensional keyblock in a 

horizontal tunnel with a radius of 1.8 m. The radius from the tunnel centerline to the 

block apex is equal to 2.4 m. Figure 7.25 depicts the typical geometry of pyramidal 

keyblock in the roof of a circular tunnel. Each discontinuity forming a block face dips at 
60˚ below horizontal, and fracture apertures for negligible normal stress are equal to 1 

mm. In situ principal stresses prior to excavation of the tunnel are assumed to act 

vertically and horizontally with lateral pressure coefficient equal to one (hydrostatic state 

of stress). The vertical (horizontal) stress is equal to 3.45 MPa. The unit weight of the 

rock block is assumed to be equal to 27 kN/m3. The mechanical properties held fixed in 

the parametric analyses are summarized in Table 7.1. 

 

   

 Figure 7.25: Typical geometry of pyramidal keyblock [312]. 
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 Table 7.1: Mechanical properties held fixed in the parametric analyses 

Parameter Value 
Young’s modulus of the rock block 30,000 MPa 
Poisson’s ratio of the rock block 0.26 
Young’s modulus of the rock mass 12,000 MPa 
Maximum closure of the fractures 0.75 mm 

 
Based on Yow ‘s and Goodman’s [312] analysis, the factor of safety of this prism 

is 5.1. As the constitutive model of rock fractures, they adopted the old version of 

Barton’s model in which the peak shear displacements of fractures are predicted to be one 

hundredth of the length of the block in the shearing direction. BS3D analyses are 

performed to obtain the factor of safety of the prism with choosing different constitutive 

models for the fractures. The results are as follows: 

- Mohr-Coulomb’s model (Barton’s model excluding dilation): FS = 3.92 

- Barton’s model: FS = 4.04 

- Modified Barton’s model: FS = 3.35 

- Simplified Barton’s model (dilation starts from the origin of shear stress-

displacement curve): FS = 4.3 

- Old Barton’s model (peak shear displacement = block length / 100): FS = 3.59 

 

It can be seen even using the old Barton’s model the factor of safety calculated 

using BS3D is different from the result of Yow ‘s and Goodman’s [312] analysis. The 

reason is that the definition of the factor of safety is different and BS3D considers the 

progressive failure of the fractures, while Yow ‘s and Goodman’s [312] analyses do not.  

In addition, in BS3D analyses, the factor of safety calculated using simplified 

Barton’s model (dilation starts from zero shear displacement) is the highest, followed by 

those determined using Barton’s model, Mohr-Coulomb’s model, and the modified 

Barton’s model. As it was explained before, the Mohr-Coulomb’s model, the Barton’s 

model, and the simplified Barton’s model used in our sensivity analyses are exactly the 

same except for the dilation displacement. The simplified Barton’s model has the highest 
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dilation displacement and, thus, the highest normal forces applied to the fractures, the 

highest shear strength of discontinuities, and the highest factor of safety. The modified 

Barton’s model differs from Barton’s model in terms of the peak shear displacement, the 

mobilized shear strength, and the dilatancy behavior. Therefore, the factor of safety 

calculated using the modified Barton’s model is different (smaller for this prism) from 

those obtained employing the Barton’s model. 

7.4.2 Parametric study (sensivity analyses) 

Yow and Goodman [312] performed sensivity analyses on the effect of the 

following parameters on stability of a keyblock (the above defined prism): 

- The shear strength of discontinuities:  

o dilatancy components:  

 JRC  

 JCS 

o Base friction angle 

- The discontinuity initial normal stiffness 

- In situ stress condition: vertical stress and lateral pressure coefficient 

 

In this Section, parametric studies are performed employing BS3D and adopting 

five different fracture constitutive models, defined as follows: (1) Mohr-Coulomb’s 

model (Barton’s model excluding dilation); (2) Barton’s model; (3) Modified Barton’s 

model; (4) Simplified Barton’s model (dilation starts from zero shear displacement); (5) 

Old Barton’s model (peak shear displacement = length of the block / 100) 

In addition to the effect of parameters investigated by Yow and Goodman [312], 

the following senivity analyses are performed in this Section: 

- Effect of principal stress directions 

- Effect of distance from excavation face 

- Effect of the tunnel radius 
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Figure 7.27: Variation of FS of the prism with Joint Roughness Coefficient (JRC) 

 

Figure 7.28: Variation of FS of the prism with Joint Compressive Strength (JCS) 
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Figure 7.29: Variation of FS of the prism with the base friction angle 

 

Figure 7.30: Variation of FS of the prism with fracture initial normal stiffness  

0

1

2

3

4

5

6

7

8

9

10

20 22 24 26 28 30 32 34 36 38 40

Factor of Safety

Base friction angle (˚)

Mohr‐Coulomb (Barton's model excluding dilation)

Barton's model

Modified Barton's model

Simplified Barton's model (dilation starts from zero shear displacement)

Old Barton's model (peak shear displacement = length of the block / 100)

Yow and Goodman's analysis

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Factor of Safety

Kni (MPa/mm)

Mohr‐Coulomb (Barton's model excluding dilation)

Barton's model

Modified Barton's model

Simplified Barton's model (dilation starts from zero shear displacement)

Old Barton's model (peak shear displacement = length of the block / 100)

Yow and Goodman's analysis



247 

 

Figure 7.31: FS of the prism versus vertical stress with 0.5 lateral stress ratio 

 

Figure 7.32: FS of the prism versus lateral pressure coefficient at a constant in situ 
vertical stress of 3.45 MPa 
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(a) FS versus α (β=0˚) (b) FS versus α (β=10˚) 

(c) FS versus α (β=20˚) (d) FS versus α (β=30˚) 

(e) FS versus α (β=40˚) (f) FS versus α (β=50˚) 

 Figure 7.33: Effect of principal stress directions on stability of prism
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(g) FS versus α (β=60˚) (h) FS versus α (β=10˚) 

(i) FS versus α (β=20˚) (j) FS versus α (β=30˚) 

 
(k) FS versus angles α and β (Mohr-Coulomb’s model) 

 

Figure 7.33-Continued: Effect of principal stress directions on stability of prism 
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 Figure 7.34: FS versus distance from the excavation face 

 

 

Figure 7.35: FS versus radius of the tunnel for a prism 
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The following conclusions can be made based on comparison between the 

sensivity analyses performed in this Section using BS3D and Yow’s and Goodman’s 

[312] analyses (all depicted in Figure 7.27 through Figure 7.33): 

1) Effect of JRC on stability of the prism (Figure 7.27): 

a. The stability of the prism weakly depends on JRC (decreasing JRC from 5 

to 0 decreases FS by 100%). However, Yow and Goodman [312] found that 

the block stability strongly (decreasing JRC from 20 to 0 decreases FS by 

30%) depends on JRC. 

The Barton’s model, the simplified Barton’s model, and the Mohr-

Coulomb’s model have counterintuitive behavior for very small JRC’s. 

Increasing JRC from 0 to 1, the factors of safety decrease instead of 

increasing. The peak shear displacements are predicted using Barton’s 

empirical equation (Equation (3.31)), which predicts zero shear 

displacement for sawed fractures (JRC = 0). If JRC goes to zero, the 

predicted shear displacement goes to zero. Thus, the shear stiffness (the 

ratio of shear strength to the peak shear displacement) goes to infinity. It is 

not possible to perform a BS3D analysis with JRC = 0, using Barton’s 

model, old Barton’s model, or Mohr-Coulomb’s model because these 

constitutive relationships would return a “division by zero” runtime error. 

For JRCs close to zero, the very high values of the shear stiffness of the 

fractures cause some numerical issues in the calculations. In Barton’s 

empirical equation for the peak shear displacement (Equation (3.31)), 

JRC0.33 is in numerator. Consequently, the shear stiffness of the fractures 

changes with 1/ JRC0.33. Figure 7.36 depicts changes in 1/JRC0.33 with 

JRC, which can represent changes in the shear stiffness with JRC. For JRC 

smaller than one, 1/JRC0.33 decreases rapidly with JRC and does not 

change dramatically for higher values of JRC. In analyses, BS3D assumes 

that the fractures are very stiff and with small shear displacements, it 

predicts high shear strength.  
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 Figure 7.36: Variation of 1/ JRC0.33 with JRC 

 

Figure 7.36 shows that the rate of the changes in the fracture shear 

stiffness for very small JRCs (JRC<1) is different from the rest of the 

domain. This problem was one of the reasons that modifications were 

proposed in Chapter 3 to Barton’s empirical model. 

 

2) Effect of JCS on stability of the prism (Figure 7.28):  

a. Yow and Goodman [312] found that the effect of JCS on the stability of the 

prism is not as strong as that of JRC, but it is quite effective. JCS reflects the 

strength of the discontinuity asperities; a higher JCS value implies that 

fewer asperities fail during shearing and that more asperities must be 

overridden.  

b. BS3D analyses found that the stability of the prism weakly depends on JCS. 

c. The FS flattens out after a specific value of JCS, which depends on other 

aspects of the problem because the asperities does not fail and increasing 

JCS almost has no effect on the stability of the block. 

 

3) Effect of base friction angle on stability of the prism (Figure 7.29): 

a. Yow and Goodman [312] found that the base friction angle is quite effective 

on the stability of keyblocks. However, its effect is not as strong as that of 

JRC because the base friction angle affects only the available shear strength 
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while dilatancy (expressed in terms of JRC) affects both shear strength and 

the normal stress brought about by fracture closure.  

b. BS3D analyses show that the factor of safety of the prism increases with the 

base friction angle.  

 

4) Effect of fracture normal stiffness on stability of the prism (Figure 7.30): 

a. Yow and Goodman [312] found that stability decreases as normal stiffness 

increases because, for a given displacement increment the normal stresses 

change more quickly on stiffer discontinuities. The drop in normal stress 

lowers the available shear strength before the shear stresses become large 

enough to support the block.  

b. BS3D analyses show that the factor of safety of the prism decreases with the 

initial stiffness of the fractures. Figure 7.37 depicts the trade-off between 

smaller normal displacements and normal stresses (initial normal stiffness 

ranges between 200 and 5000 MPa/m). It depicts normal stresses and 

normal displacements of a face of the prism versus λ (incremental step) for 

BS3D analyses performed using Barton’s model. 

 

  

 Figure 7.37: Trade-off between smaller normal displacements and normal stresses 
(Barton’s model) 
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Figure 7.37 shows that the normal stresses change more quickly on stiffer 

discontinuities (the same as Yow and Goodman’s [312] statement). Thus, 

the quicker drop in normal stress decreases more rapidly the fracture shear 

strength. Consequently, the stiffer the fractures is, the lower is the safety 

factor of the block.  

Moreover, Figure 7.38 illustrates the magnitude of centroid displacement 

at failure versus the initial normal stiffness obtained using BS3D. It shows 

that for all models failure occurs at a smaller vertical displacement when 

the initial stiffness increases. 

 
Figure 7.38: Displacement at failure versus initial normal stiffness calculated using BS3D 

 
5) Effect of in situ stress condition of the prism (Figure 7.31 through Figure 7.33): 

a. Yow and Goodman [312] found that aside from the shear strength, the most 

critical condition affecting keyblock stability is the stress environment. The 

block becomes less stable as the initial confining stresses decrease; the trend 

accelerates as stress magnitudes become very small (smaller than about 1.5 

MPa). The same conclusion has been made based on BS3D analyses. 

b. Yow and Goodman [312] found that the block becomes less stable as the 

lateral stress ratio decreases; the trend accelerates as the ratio goes below 
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about one-half. The same conclusion has been made based on BS3D 

analyses. 

c. In this Section, another sensivity analysis was performed to investigate the 

effect of principal stress directions on stability of the prism (the stress 

tensors in the global reference system of  

Figure 7.26 are given in Appendix F). It is found that the principal stress 

directions strongly affect the stability of keyblocks.  

d. It can be concluded that the in situ stresses strongly affect the stability of the 

block, even more than the shear strength of fractures (Figure 7.33 versus 

Figure 7.27 through Figure 7.29). However, the actual stress field in the 

rock mass surrounding the excavation is not taken into account in the default 

Unwedge [317] analysis which is based upon the assumption that the 

wedges are subjected to gravitational loading only. 
 

6) Effect of distance from excavation face of the prism (Figure 7.34): the factor of 

safety increases with distance from excavation face up to approximately five 

times the tunnel radius.  
 

7) Effect of the tunnel radius on stability of the prism (Figure 7.35): the factor of 

safety of the prism increases with increasing tunnel radius. The same observation 

was found in Section 7.3.6 (Figure 7.23 shows that the safety factor of the 

tetrahedron increases with increasing the tunnel radius). The reason is that the 

normal forces applied to fractures increase with increasing diameter (the reason is 

explained in details in Section 7.3.6). 
 

8) General comments (Figure 7.27 through Figure 7.35): 

a. Because of different dilation displacements, the factors of safety obtained 

using the simplified Barton’s model are higher than those calculated using 

the Barton’s model, which is higher than those determined employing the 

Mohr-Coulomb model. The higher the dilation displacements are, the 
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higher are the normal forces applied to the fractures, the shear strength of 

the fractures, and, finally, the factor of safety of the block. 

b. The modified Barton’s model and the old Barton’s model may yield 

smaller or higher factors of safety compared the other models. 

7.4.3 Effect of size of the block on stability of a prism 

In order to investigate the effect of keyblock size on its stability, three sensivity 

analyses are performed. The analyses consider prisms that may be formed by four 

fractures dipping 60˚ below horizontal with JRC = 4, JCS = 20.69 MPa, and =bφ 25˚. A 

hydrostatic stress field prior to excavation is assumed with a stress magnitude of 3.45 

MPa. BS3D analyses were performed adopting five different fracture constitutive models 

and the factors of safety were calculated. The sensivity analyses are as follows:  

1) Assuming constant tunnel radius (10 m), the height of the prism was changed 

between 0.5 and 10 m (Figure 7.39). The factor of safety of the block decreases 

with increasing size of the prism. The reasons are: (a) the weight of the block 

increases with its height and (b) the scaled JRC and therefore the shear strength of 

the block fractures decreases with increasing size of the block.  

 
Figure 7.39: FS versus the height of the prism 
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It should be noted that the area of the faces increases with increasing 

height of the prism. However, this increase in the area increases the area on which 

both normal stresses and shear stresses are applied and, thus, increases both the 

normal forces and shear forces applied to the faces. Therefore, increases in the 

area of the faces may have negligible effect on stability of the prism. 

In addition, increasing height of the prism increases its volume (and in 

turn its weight) more than the area of the faces. Figure 7.40 depicts the prism 

considered in this parametric study (α = 60º in this Section). The area of each 

triangular face can be determined as follows: 

ܽ݁ݎܣ ൌ
ܽ · ܾ

2 ൌ
൬ 2ܾ

tanሺߚሻ൰ · ܾ

2 ൌ
ܾଶ

tanሺߚሻ ൌ
ሺܪ · sinሺߙሻሻଶ

tanሺߚሻ ൌ
sinଶሺߙሻ
tanሺߚሻ ·  ଶܪ

Therefore, the area of each triangular face is proportional to square of prism 

height. However, the volume of the prism can be calculated as follows: 

݁݉ݑ݈݋ܸ  ൌ
ܽଶ · ܪ

3 ൌ
൬ 2ܾ

tanሺߚሻ൰
ଶ

· ܪ

3 ൌ
4ሺܪ · sinሺߙሻሻଶ · ܪ

3 tanଶሺߚሻ ൌൌ
4 sinଶሺߙሻ
3 tanଶሺߚሻ ·  ଷܪ

Thus, the volume (and in turn the weight) of the prism is proportional to cube of 

prism height. Consequently, increasing the prism’s height increases the weight 

more than the area of the faces, which means that the active forces increase more 

than passive forces. As a consequence, the factor of safety decreases. 

 

 
 Figure 7.40: Geometry of the prism 
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2) The tunnel radius and the block height were changed with a same scale. The 

analysis considers prisms with a height equal to 1/3 of radius of the tunnel. The 

results shown in Figure 7.41 indicate that the factor of safety of the block 

decreases (by 20%) with increasing radius of the tunnel (from 1 to 10 m) and size 

of the prism accordingly. The change is very small. This is the combination effect 

of the tunnel radius (which increases the FS) and the size of the block (which 

decrease the FS). 

 

 Figure 7.41: FS versus the tunnel radius for the prism with height equal to 1/3 of the 
tunnel radius 

 
3) The tunnel radius was changed (from 1 to 10 m) and the stability of the maximum 

block formed from four fractures dipping 60˚ below horizontal was investigated. 

As illustrated in Figure 7.42, the factor of safety of the maximum block remains 

almost constant with increasing tunnel radius. This is the combination effect of 

the tunnel radius (which increases the FS) and the size of the block (which 

decreases the FS).  
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 Figure 7.42: FS versus the tunnel radius for the maximum prism  

 

7.5 SUMMARY AND CONCLUSIONS  

An analytical method has been presented for stability analysis of 2D triangular 

prism formed in the roof of a circular tunnel from References [20, 235, 306-310]. In 

addition, a new definition for the factor of safety of the block is presented in this Chapter. 

Based on sensivity analyses, the following conclusions were made: 

1) Different FS definitions may lead to different conclusions in sensivity analyses. 

2) Adopting Equation (7.1) as the definition of the FS, it is found that the tendency 

for the prism to be expelled from the surface is exacerbated for high values of 

ns kk / . However, defining the FS as given in Equation (7.12), it is found that the 

stability of 2D triangular wedge is independent of the ratio of ns kk / . 

3) Stability of 2D wedge is strongly affected by the friction angle of the fractures.  

4) Adopting Equation (7.12) as the definition of the FS, it is found that increasing 

the in situ stress (or lateral pressure coefficient) slightly increases the stability of 

the block in low stress (or k0) regimes and has no effect on the factor of safety in 
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high stress (or k0) regimes. However, the sensivity analyses performed based on 

the definition of FS given by Equation (7.1) leads to the following conclusions: 

for a friction angle equal to the semi-apical angle, the vertical stress (or lateral 

pressure coefficient) has no effect on the stability of the block; for a friction angle 

smaller than the semi-apical angle, the FS of the block increases (the stability 

decreases) with increasing the vertical stress (or lateral pressure coefficient); and 

for a friction angle more than the semi-apical angle, the FS of the block decreases 

(the stability increases) with increasing the vertical stress. 

 

Based on the above mentioned conclusions obtained from senivity analyses, one 

may say that although the definition of the factor of safety given in Equation (7.1) is not 

wrong, it may lead to incorrect conclusions in sensivity analyses. In addition, FS 

introduced in Equation (7.12) is limited to positive values, the same as most geotechnical 

engineering (and civil engineering) applications: at equilibrium, FS=1 for stable blocks, 

FS > 1, and for unstable blocks, 0 < FS < 1. Consequently, it is believed that Equation 

(7.12) can define the factor of safety of a 2D symmetric prism better than Equation (7.1). 

An analytical approach was presented using limit equilibrium methods to analyze 

the stability of a tetrahedron formed in the roof of a tunnel. Two different definitions 

were introduced to calculate the factor of safety of the wedge. The following definition is 

adopted in the analytical analyses performed in this Chapter: the factor of safety is 

defined as the ratio of passive to active forces (or the ratio of available shear strength to 

the required shear stress at equilibrium).  

The sensivity analyses performed using the analytical approach and BS3D have 

the following conclusions:  

1) Although the definition of the factor of safety (Equation (7.27)) in the analytical 

method is the same as the definition of the factor of safety in BS3D, if a block is 

analyzed using both approaches, the factors of safety will be different because: 
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- BS3D takes into account the deformability of the rock block, fractures, and 

the rock mass surrounding the block, while the analytical approach (Equation 

(7.27)) does not. 

- BS3D considers the progressive failure and the mobilization of shear strength, 

while the analytical limit equilibrium method does not. 

- In analytical limit equilibrium solution, the in situ stresses are assumed to be 

independent of the block displacement. However, in BS3D analysis, the part 

of the in situ stresses applied to the block change with block movement. 

2) Adopting Mohr-Coulomb as constitutive model of fractures, the initial normal 

stiffness of the fractures (and in turn the normal stiffness of the fractures) has no 

effect on stability of 3D wedges. 

3) Adopting Barton’s original or modified model, the factor of safety of tetrahedral 

rock block decreases with increasing initial normal stiffness of fractures. This 

effect is more obvious in the case of stable blocks with dip angles greater than 
50˚.  

4) The safety factors calculated using the Barton’s model and the Mohr-Coulomb 

model are exactly the same, if the shear displacements of fractures are smaller 

than 30% of the peak shear displacement. 

5) Assuming that dilation starts from zero shear displacement (origin of the shear 

stress-displacement curve), the factors of safety increase compared to those of 

Barton’s model (or Mohr-Coulomb’s model).  

6) Modified Barton’s model uses a different equation for the peak shear 

displacement (Equation (3.88)) and has a different FS (higher in the case of the 

tetrahedron analyzed in this Chapter) compared to those of other models. 

7) The factor of safety decreases with increasing size of the wedge.  

Yow and Goodman [312] presented a numerical model for keyblock stability. 

Using the field observations of keyblocks reported by Yow [316], they performed 

sensivity analyses on effects of different parameters such as block geometry, in situ 

stresses, and discontinuity properties on stability of keyblocks. As far as constitutive 
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model for rock fractures, Yow and Goodman [312] used Barton’s model assuming the 

peak shear displacement is equal to one percent of the length of the block. They 

investigated the effect of the fracture base friction angle, the magnitudes of JRC and JCS, 

the initial normal stiffness, the magnitude of vertical stress, and the lateral pressure 

coefficient on stability of keyblocks in the roof of a circular tunnel. In this Chapter, the 

same sensivity analyses are performed using BS3D. The differences of the analyses done 

here with respect to those of Yow and Goodman [312] is as follows: 

- The definition of the factor of safety is different. 

- The progressive failure of rock fracture is considered. 

- Wider ranges along parameters are checked. 

- The analyses are performed adopting different constitutive models for rock 

fractures. 

- The effect of dilation displacement on the stability of the keyblock is 

investigated. 

- The effect of principal stress direction on the stability of the keyblock is 

investigated. 

- The effects of distance from the excavation face, the size of the block, and the 

diameter of the tunnel on the stability of the keyblock are investigated. 

 

The sensivity analyses performed in this Chapter have the following conclusions: 

1) Even using the old Barton’s model the factor of safety calculated using BS3D 

is different from the result of Yow ‘s and Goodman’s [312] analysis. The 

reason is that the definition of the factor of safety is different and BS3D 

considers the progressive failure of the fractures, while Yow ‘s and 

Goodman’s [312] analysis does not. 

2) In BS3D analyses, the factor of safety calculated using simplified Barton’s 

model (dilation starts from zero shear displacement) is the highest, followed 

by those determined using Barton’s model, Mohr-Coulomb’s model, and the 

modified Barton’s model. As it was explained before, the Mohr-Coulomb’s 
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model, the Barton’s model, and the simplified Barton’s model used in our 

sensivity analyses are exactly the same except for the dilation displacement. 

The simplified Barton’s model has the highest dilation displacement and, thus, 

the highest normal forces applied to the fractures, the highest shear strength of 

discontinuities, and the highest factor of safety.  

3) The modified Barton’s model differs from Barton’s model in terms of the 

peak shear displacement, the mobilized shear strength, and the dilatancy 

behavior. Therefore, the factor of safety calculated using the modified 

Barton’s model is different (smaller for this prism) from those obtained 

employing the Barton’s model. 

4) The stability of the prism weakly depends on JRC (decreasing JRC from 20 to 

0 decreases FS by 30%). However, Yow and Goodman [312] found that the 

block stability strongly (decreasing JRC from 5 to 0 decreases FS by 100%) 

depends on JRC.  

5) The Barton’s model, the simplified Barton’s model, and the Mohr-Coulomb’s 

model have counterintuitive behavior for very small JRC’s. Increasing JRC 

from 0 to 1, the factors of safety decrease instead of increases. 

6) Yow and Goodman [312] found that the effect of JCS on the stability of the 

prism is not as strong as that of JRC, but it is quite effective. BS3D analyses 

found that the stability of the prism is weakly dependent on JCS.  

7) The FS flattens out after a specific value of JCS, which depends on other 

aspects of the problem because the asperities does not fail and increasing JCS 

almost has no effect on the stability of the block. 

8) Yow and Goodman [312] found that the base friction angle is quite effective 

on the stability of keyblocks. In addition, BS3D analyses show that the factor 

of safety of the prism increases with the base friction angle. 

9) Stability decreases as normal stiffness increases (the same as Yow’s and 

Goodman’s [312] conclusion).  
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10) Effect of in situ stress condition of the prism: Yow and Goodman [312] found 

that aside from the shear strength, the most critical condition affecting 

keyblock stability is the stress environment. The block becomes less stable as 

the initial confining stresses decrease; the trend accelerates as stress 

magnitudes become very small (smaller than about 1.5 MPa). The same 

conclusion has been made based on BS3D analyses. 

11) Yow and Goodman [312] found that the block becomes less stable as the 

lateral stress ratio decreases; the trend accelerates as the ratio goes below 

about one-half. The same conclusion has been made based on BS3D analyses. 

12) The principal stress directions strongly affect the stability of keyblocks.  

13) The in situ stresses strongly affect the stability of the block, even more than 

the shear strength of fractures (Figure 7.33 versus Figure 7.27 through Figure 

7.29). 

14) The factor of safety increases with distance from excavation face up to 

approximately five times of the tunnel radius.  

15) The factor of safety of the prism increases with increasing radius of the tunnel.  

16) Because of different dilation displacements, the factors of safety obtained 

using the simplified Barton’s model are higher than those calculated using the 

Barton’s model which itself is higher than those determined employing the 

Mohr-Coulomb model. The higher the dilation displacements are, the higher 

are the normal forces applied to the fractures, the shear strength of the 

fractures, and, finally, the factor of safety of the block. 

17) The modified Barton’s model and the old Barton’s model may have smaller or 

higher factors of safety compared the other models, while they have colloquial 

differences with them. 

18) The factor of safety of the block decreases with increasing size of the prism.  

19) The factor of safety of the block decreases (by 20%) with increasing radius of 

the tunnel (from 1 to 10 m) and size of the prism accordingly. The change is 
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very small. This is the combination effect of the tunnel radius (which 

increases the FS) and the size of the block (which decrease the FS).  

20) The factor of safety of the maximum block remains almost constant with 

increasing tunnel radius. This is the combination effect of the tunnel radius 

(which increases the FS) and the size of the block (which decrease the FS).  

 

Finally, it can be concluded from the sensivity analyses performed in this Chapter 

that, in stability of keyblocks, in situ stresses have the highest effect. In addition, the type 

of constitutive model has strong effect, even higher than those of the shear strength of the 

fractures. The shear strength and stiffness of the fractures have weak effect on stability of 

keyblocks. 
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CHAPTER 8: EFFECT OF HIGH-VELOCITY JET IMPACT ON 

STABILITY OF SINGLE ROCK BLOCKS IN PLUNGE POOLS 

8.1 INTRODUCTION 

Standard dam risk assessment includes consideration for spillway and spillway 

energy dissipator scour. For concrete and masonry dams, it also includes consideration 

for dam overtopping and scour of the foundations. High-velocity plunging jets, issuing 

from hydraulic artificial or natural structures, can result in scouring of the rock riverbed 

or the dam toe foundation. Assessment of the extent of scour is necessary to ensure the 

safety of the dam and to guarantee the stability of its abutments.  

Currently, there is no formulation for evaluating scour caused by general failure 

modes of rock blocks having general shape and subject to general loading (e.g., gravity, 

reinforcement, dam loads) and to the plunge pool water pressures [23]. Limitations of 

available approaches to scour evaluation are briefly explained in Section 8.2.  

Water pressure has been implemented in BS3D. Water forces cause the stiffness 

matrix for the block to be non-symmetric, which opens the doors to additional failure 

modes, such as [318-321]: 

1) Divergence, i.e. the motion is aperiodic and exponentially growing in time. 

2) Flutter, i.e. the motion is periodic and exponentially growing in time. This is a 

self-starting vibration of the block that may occur when a block face rotates 

under hydrodynamic load.  

 

In this Chapter, the stability of single rock blocks in plunge pools is investigated. 

Section 8.3 describes an approach to estimate pressure forces generated in plunge pools 

due to high-velocity jet impacts. Section 8.4 introduces failure criteria for jointed rock 

mass. The scour model implemented in BS3D is calibrated and validated using the results 

of several experimental studies as well as case histories and prototypes in Section 8.5. 

Ability of BS3D in considering in situ stress and dilation behavior of rock fractures as 
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well as dealing with dynamic divergence and flutter are also demonstrated by an example 

in Section 8.5 followed by summary and conclusion in Section 8.6.  

It should be acknowledged that Sections 8.2 through 8.4.1 are taken from 

reference [23] with some integrations and modifications. 

8.2 LIMITATIONS OF AVAILABLE APPROACHES TO SCOUR EVALUATION 

8.2.1 Bollaert’s approaches 

Bollaert’s Dynamic Impulsion (DI) method [30, 31] is limited to vertical 

translational failure (static failure mode) of parallelepiped rock blocks with one face at 

the plunge pool bottom. Indeed, roto-translational failures are common even for 

parallelepiped blocks subjected to pressure fluctuations [322].  

Bollaert’s Comprehensive Fracture Mechanics (CFM) method has only been 

applied to scour extent for the Cabora-Bass dam [30, 31], built in Mozambique on 

“excellent quality granitic gneiss with slight schistosity” [323]. Typical values for the 

unconfined compressive strength, UCS, of gneiss are in the order of 100-200 MPa. 

However, in order to match the prototype scour extent, the author had to use a UCS of 

only 13 MPa. This raises some concerns on the use of this method for predicting scour 

extent based on actual rock properties [23]. 

8.2.2 Annandale’s Erodibility Index 

Annandale’s erodibility index (EI) method [324, 325] is a classification method 

(as opposed to an analytical or numerical method based on mechanical principles) 

applicable to rock masses as a whole, and is not applicable to single rock blocks, which 

typically are critical in dam stability as recognized by Goodman and Powell by working 

on USBR dams [326]. In addition, the EI only approximately accounts for the distinctive 

property of rock masses, i.e. their directionality [33]. Indeed, the EI is obtained by 

multiplication of the following terms: 

,sdbs JKKMEI ⋅⋅⋅=     (8.1) 

where:  
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- Ms = γr/27 UCS, in which γr is the unit weight of the rock in kN/m3 (typically 

25-33 kN/m3), and can have values in the range of 0 to 300. 

- Kb = RQD/Jn: block size, and can have values in the range of 1 to 100. 

- Kd = Jr/Ja: shear strength, and can have values in the range of 0.2 to 4. 

- Js = fracture orientation, and can have values in the range of 0.4 to 1.2. 

 

It is evident that shear strength and relative orientation have little weight on the 

overall EI as compared to unconfined compressive strength and block size [23]. An 

indication that the unconfined compressive strength of the intact rock plays a 

disproportionate role in the EI comes from Bollaert’s application of EI to the Coborra-

Bassa dam [30, 31]. In order to match the prototype scour depths, the unconfined 

compressive strength of the intact rock had to be lowered to 13 MPa, i.e by an order of 

magnitude. This unbalance has been noticed by USBR personnel as well while applying 

the EI on some USBR dams [23]. 

Annandale’s table for determining the unconfined compressive strength of the 

intact rock disagrees with the table proposed by the Geological Society of America 

(GSA), and adopted by the International Society of Rock Mechanics [178], the USBR 

Engineering Geology Field Manual [327], and the British Standards [328]. In particular, 

Annadale’s estimates for soft to very hard rocks rock are much lower than what is 

generally accepted by the rock mechanics community. One would obtain much higher EI 

values by using actual testing than by using Annandale’s table. This may dangerously 

mislead the user, and, since UCS has a major role in determining EI, it may lead to quite 

different estimates of EI, and thus quite different estimates of scour potential [23]. 

8.2.3 Discrete Element Method 

As for numerical methods for discontinuous rock masses, 3DEC by Itasca [56] has 

serious limitations in the dynamics of rigid bodies because it assumes that the inertia 

tensor is always diagonal [55, 56], i.e. rotations are assumed to be parallel to the applied 

resultant moment. Both 3DEC and 3D-DDA [17, 18, 60, 61] use contact points at the 

vertices of the contact areas to calculate constraint forces: this does not allow for path-
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dependent behavior of discontinuities. 3D-DDA assumes that all forces must be 

conservative, and thus cannot handle follower forces, such as water pressure forces, and 

cannot detect divergence or flutter failure modes [23].  

Finally, all numerical methods for discontinuous rock masses need to resort to time 

consuming sensitivity studies in order to calculate the factor of safety of a block. These 

sensitivity studies entail changing the strength parameters, e.g., multiplying the cohesion 

and tangent of the friction angle of fractures by a same amount. If failure is not caused by 

overcoming of the shear strength (e.g., block rotation), then these sensitivity studies will 

not yield the correct safety factor. BS3D formulation overcomes the abovementioned 

limitations and has been validated experimentally on prototypes in Chapter 6. 

8.3 PRESSURE FORCES GENERATED IN PLUNGE POOLS 

Plunging jets occur in various engineering applications, including overtopping 

dams, at the ends of spillway chutes, emanating from gates and valves, and the like [325]. 

Figure 8.1 shows a jet discharging over a dam. 

 
Figure 8.1: Nomenclature for a jet discharging over an ogee spillway and plunging into a 

pool [30] 
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The issuance turbulence intensity, defined as [325]: 

,
V
VTu
′

=      (8.2) 

is an important parameter, at jet issuance, determining overall jet characteristics. The 

variable V ′  is the root mean square value of the fluctuating velocity, and V is the mean 

axial flow velocity of the jet. Table 8.1 contains estimates of issuance turbulence 

intensity for use in practice. 

 

Table 8.1: Typical values of issuance turbulence intensity at various outlet structure [30]  

Type of outlet structure Turbulence intensity uT  (%) 
Free fall 0 – 3 

Ski jump outlet 3 – 5 
Valve, intermediate outlet, or bottom outlet 3 – 8 

 
When a jet is completely developed (Figure 8.2), it no longer contains a core but 

essentially consists of blobs of water that disintegrate into finer and finer drops. 

Individual blobs and drops of water slow down due to air drag and eventually reach 

terminal velocity [325]. Equations that can be used to estimate jet breakup length, Lb, and 

issuance turbulence intensity, Tu, are summarized in Table 8.2. In these equations, Q is 

the total flow rate, q is the flow rate per unit length of the rectangular jet, and jD  is the 

jet diameter at the pool surface. 

8.3.1 Plunge pool floor 

Studies on pressure fluctuation in plunge pools have been conducted by Ervine et 

al. [329], Franzetti and Tanda [330, 331], Xu-Duo-Ming [332], Tao et al. [333], Lopardo 

[334], Armengou [335], May and Willoughby [336], Puertas and Dolz [337], Hartung 

and Hausler [338], Beltaos and Rajartnam [339], Cola [340], Bollaert [30], Bollaert and 

Schleiss [341, 342], etc.  
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Figure 8.2: Jet characteristics [329] 

  

 Table 8.2: Equations for estimating jet breakup length 

Jet type bL  
Turbulence intensity 

uT  (%) Reference 

Rectangular jets 32.06q   Horeni [343] 

Circular jets 

39.060Q  0.3 

Ervine et al. [329] 31.04.17 Q  3 
20.01.4 Q  8 

jD50  to jD100  3 to 8 Ervine and Falvey [344] 
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On the floor of a plunge pool, the maximum and minimum dynamic pressures, 

respectively, can be calculated as follows [329]:      

    ( ) ,
2

2

max g
V

CCP j
wppa ⋅⋅+= + γ

  
  (8.3) 

   ( ) ,
2

2

min g
V

CCP j
wppa ⋅⋅−= − γ

 
   (8.4) 

where paC  is the mean dynamic pressure coefficient; +
pC ( −

pC , respectively) is the 

positive (negative, respectively) extreme fluctuation dynamic pressure coefficient (Figure 

8.3), jV  is the jet velocity at the pool surface ( gZVV ij 22 += , in which iV  is the jet 

velocity at issuance and Z is the plunging jet length depicted in Figure 8.1), and wγ  is 

the unit weight of water. 

 
Figure 8.3: (a) Maximum and (b) minimum fluctuation dynamic pressure coefficient at 

pool floor [329] 
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If the ratio of the jet length to the jet breakup length (L /Lb) is equal to 0.5, paC  

can be calculated with the following expression [329]: 

( ) ( ) ,
875.0

4//
1

4.38 2

⎪⎩

⎪
⎨
⎧ >

+=
otherwise

DYifYDC jj
pa β    (8.5) 

where jD  is the jet diameter at the pool surface (
j

i
ij V

VDD = , in which iD  is the jet 

diameter at issuance depicted in Figure 8.1) and Y  is the pool depth. β  is the free air 

content and, for circular plunging jets, can be estimated using the following equation 

[329, 345-348]:  

    ,1 0
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅′=

jj V
V

D
LKβ     (8.6) 

in which K' is empirically obtained parameter (Table 8.3) and ranges between 0.2 and 

0.4; 0V  (=1 m/s) is the minimum plunging velocity leading to commencement of 

aeration. In addition, for rectangular plunging jets, β can be estimated as follows [346]: 

     
jD

L13.0≈β      (8.7) 

The maximum air content that could reasonably be expected to occur in water is 

on the order of about 65 to 70% [349].  

Corrections can be made to take into account different breakup length [30, 325] 

and turbulence intensity [30]. The following equation can be used to calculate the values 

of the average dynamic pressure coefficient for rectangular jets as a function of jet 

breakup length ratio and dimensionless plunge pool depth [325, 350]:   

 Table 8.3: Constant K’ values [344] 

Turbulence Circular jets Rectangular jets Application limit 
Rough turbulent 0.40 0.20 L/Dj < 50 

Moderate turbulent 0.30 0.15 L/Dj < 100 
Smooth turbulent 0.20 0.10 L/Dj < 100 
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,exp ⎟
⎠
⎞

⎜
⎝
⎛−⋅=

B
YbaC pa     (8.8) 

where B is the width (i.e. thickness) of a rectangular jet. The values of the parameters a 

and b as a function of jet breakup length ratio are presented in Table 8.4. 

8.3.2 Fractures 

As shown in Figure 8.4, Bollaert [30] determined experimentally the pressures in 

a closed-ended fracture (U-joint) and in an open-ended fracture (D-joint), respectively, 

under an impinging jet. The maximum dynamic pressure can be calculated as [30]: 

( ) ,
2

2

max, g
V

CCP j
wpdpdd ⋅⋅+= + γ     (8.9) 

where coefficients pdC  and +
pdC  are given in Figure 8.5. Bollaert noticed that the 

coefficients for the U-joint and for the D-joint are very similar. As a consequence, in this 

research, it is assumed that the actual hydraulic connectivity (of a fracture around a rock 

block with the pool bottom) does not change significantly the pressure field on the 

block’s faces. This entails that predictions based on the D-joint pressure field should be 

robust.  

 

Table 8.4: Parameters for estimating dynamic pressure coefficient as a function of jet 
breakup length ratio [325, 350] 

L /Lb a b )4/( <BYC pa  

0.4-0.5 0.98 0.070 0.78 
0.5-0.6 0.92 0.079 0.69 
0.6-0.8 0.65 0.067 0.50 
1-1.10 0.65 0.163 0.33 
1.1-1.3 0.65 0.185 0.31 
1.5-1.6 0.55 0.200 0.24 
1.8-1.9 0.55 0.250 0.20 
2.2-2.3 0.50 0.250 0.18 
2.3-3.0 0.50 0.400 0.10 



275 

 
 Figure 8.4: Dimensions of joints tested by Ballaert [30] 

 

Figure 8.5: a) Mean and b) positive extreme fluctuation dynamic pressure coefficients at 
sensor “d” in the D-joint of Figure 8.4 (cross and diamond symbols). Gray symbols 
indicate coefficients at sensor “d” in the U-joint of Figure 8.4 [30]. Lines indicate 
experimental results for pool bottom. 

 

8.3.3 Proposed approach for pressures at jet centerline 

Based on the literature review, at the jet centerline, it is proposed to calculate 

pressures in the fractures using the experimental results for the D-joint. The pressures on 

the rock block faces at the pool bottom can be calculated using Equations (8.3) and (8.4). 
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It is assumed that the maximum (minimum, respectively) pressure in a fracture occurs at 

the same time as the minimum (maximum, respectively) pressure on the pool floor.  

In order to validate this assumption, consider the maximum difference between 

the pressure at point “d” (Figure 8.4) and the pressure at the pool bottom (points “a” and 

“ai” in Figure 8.4). First, consider the ratio jDY /  in the 3 to 4 range. Equations (8.4) 

and (8.5) and Figure 8.3-(b) yield a minimum pressure at the pool bottom equal to 

g
V

P j
w 2

5.0
2

min ⋅⋅= γ , whereas Equation (8.9) and Figure 8.5 yield a maximum pressure at 

the bottom of the block equal to 
g

V
P j

wd 2
6.1

2

max, ⋅⋅= γ  . The net uplift pressure coefficient 

is thus about 1.1: this value corresponds well with the difference (experimentally 

measured by Bollaert) between the pressure at point “d” and the average of pressures at 

points “a” and “ai” shown in Figure 8.4. This difference is expressed by Bollaert as [30]: 

,
2

2

g
V

CP j
wp

up
up ⋅⋅= γ

 
   (8.10) 

where p
upC  is given in Figure 8.6. 

 

 

 

Figure 8.6: Net upward pressure coefficient for D-joints [30]. Lines indicate experimental 
results for pool bottom. 
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Likewise, for 8/ =jDY , one obtains a net uplift pressure coefficient of about 

5.12.07.1 =− , which compares well with the data in Figure 8.6. These values are in line 

with the values obtained by Liu et al. [351] by measuring net uplift forces on scaled 

versions of rock blocks in plunge pools. Finally, maximum pressure fluctuations (as 

opposed to root-mean-square values) are also typically used in the stability analysis of 

stilling basin slabs [322, 352, 353]. 

Since the maximum and minimum dynamic pressure coefficients were obtained 

from 2-min records, their values must be doubled for a 24 hour run time, which is 

typically understood to be representative of continuous operation of a plunge pool or 

stilling basin [329, 352]. 

The literature review has revealed that the integral scale of the correlation 

function for pressure fluctuations is very small as compared to the typical dimension of a 

rock block [354]. If the horizontal characteristic dimension of the block is at least twice 

the integral scale, then the pressure fluctuations at two fractures are independent [322]. 

Recall that the net uplift pressure for the D-joint is obtained using the maximum and the 

minimum pressure coefficients for the fracture and the floor, respectively. Since the 

distance between the two vertical fractures in the D-joint is only 7.5 cm, Bollaert’s result 

would confirm this assumption. This assumption is a worst-case scenario because it 

entails that the minimum pressure at one fracture can occur simultaneously with the 

maximum pressure at another fracture, and vice versa. As a consequence, if a block has n 

faces, the stability analysis will be run n2  times to cover all possible combinations of 

pressure distributions on the block’s faces. 

8.3.4 Proposed approach for pressures not at jet centerline 

Since the 1960’s [355], it has been observed experimentally that the pressure on 

the pool floor decreases radially from the jet centerline. The literature research has 

revealed that: 

1- The mean and extreme pressures decrease more rapidly for developed jets, 

and less rapidly for core jets. 
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2- The extreme pressure fluctuations decrease less rapidly than the mean 

pressures. 

3- The minimum extreme pressure fluctuation coefficients are very small (about 

0.1) and are independent of the radial distance and nature of the jets [23]. 

4- The extreme pressure fluctuations are proportional to the root mean square 

pressure fluctuations. 

 

It is thus proposed to apply radially decreasing pressures to the block faces lying 

on the pool floor. The mean and maximum extreme pressure coefficients are taken as 

follows [30, 331, 336]: 

( )( ) ,/3exp 2
max papr CrrC ⋅−=    for core jets  (8.11) 

( )( ) ,/6exp 2
max papr CrrC ⋅−=   for developed jets (8.12) 

,++ = ppr CC     for core jets and r < 0.5rmax (8.13) 

( )( ) ,5.0/3exp 2
max

++ ⋅−−= ppr CrrC   for core jets and r > 0.5rmax  (8.14) 

( )( ) ,/3exp 2
max

++ ⋅−= ppr CrrC   for developed jets   (8.15) 

where ( )+prpr CC  is the mean (maximum extreme, respectively) pressure coefficient at 

distance r to the jet centerline, and YDr j 25.05.0max += . Core jets and developed jets 

can be distinguished from each other using the following criteria [30]: 

⎪
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⎩
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   (8.16) 

 In this research, the minimum extreme pressure fluctuation coefficient on the pool 

floor is estimated using the following two steps:  

1- The minimum extreme pressure fluctuation coefficient, −
prC , is estimated as 

follows: 
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−− = ppr CC      for core jets and r < 0.5rmax (8.17) 

( )( ) −− ⋅−−= ppr CrrC 2
max 5.0/3exp   for core jets and r > 0.5rmax  (8.18) 

( )( ) −− ⋅−= ppr CrrC 2
max/3exp    for developed jets   (8.19)  

2- If −> prC1.0  or prpr CC <− , then it will be assumed that 1.0=−
prC . The 

reason is the higher value for the minimum extreme pressure fluctuation 

coefficient gives the lower pressure on the pool floor which should be a 

positive value. Thus, −
prC  can not be higher than prC . In addition, the 

literature review shows that the minimum extreme pressure fluctuation 

coefficients may be very small (about 0.1). Therefore, 1.0=−
prC  will be 

considered whenever it gives the lowest minimum pressure on the pool floor.  

8.3.5 Summary of pressure distributions on a block 

To account for long duration events, all of the pressure values will be doubled. 

8.3.5.1 Faces lying on the pool floor 

The average pressure distribution on floor is obtained using Equations (8.11) or 

(8.12), where paC  is given by Equations (8.5). The maximum pressure distribution is 

obtained by adding the maximum pressure coefficient given by Equations (8.13) through 

(8.15) with +
pC  as in Figure 8.3. The minimum pressure distribution is obtained by 

subtracting the minimum pressure coefficient to the average pressure distribution. The 

minimum pressure coefficient is estimated using Equations (8.17) through (8.19) with 
−

pC  as in Figure 8.3 or is assumed to be constant and equal to 0.1. The maximum value 

for the minimum pressure coefficient should be adopted. 

8.3.5.2 All other faces 

The pressure is assumed to be uniformly distributed. Its maximum value is 
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( ) ,
2

2

,,,,,max, g
V

CCP j
wrfractureprfractureprfracture ⋅⋅+= + γ    (8.20) 

where: 

( )( ) ,/3exp 2
max,, pdrfracturep CrrC ⋅−=    for core jets  (8.21)  

( )( ) ,/6exp 2
max,, pdrfracturep CrrC ⋅−=    for developed jets (8.22) 

,,,
++ = pdrfracturep CC     for core jets and r < 0.5rmax (8.23) 

( )( ) ,5.0/3exp 2
max,,

++ ⋅−−= pdrfracturep CrrC   for core jets and r > 0.5rmax  (8.24)

( )( ) ,/3exp 2
max,,

++ ⋅−= pdrfracturep CrrC   for developed jets   (8.25) 

where pdC  and +
pdC  are given in Figure 8.5, and r is the minimum distance of the 

block’s face to the jet centerline. 

 The minimum pressure is taken as: 

( ) ,
2

1.0
2

,,,min, g
V

CP j
wrfractureprfracture ⋅⋅−= γ    (8.26)  

where rfracturepC ,,  is calculated using Equations (8.21) and (8.22) with r equal to the 

maximum distance of the block’s face to the jet centerline. 

Let n be the number of faces making up the block. The stability analysis is run for 

all 2n face pressure combinations, and the factor of safety is the minimum control 

parameter at failure calculated in the 2n runs. 

As scour deepens, the configuration and geometry of the plunge pool may affect 

the above pressures. This effect may be introduced through the expressions derived by 

Manso [24] in his experimental work. However, the objective of this dissertation is to 

develop a method to analyze the stability of a single rock block (considering the effect of 

dilatancy and high-velocity jet impact). Therefore, the simulation of the progressive 

failure of blocks at the bottom of the plunge pool (which causes changes in the 

configuration and geometry of the pool) is out of the scope of this research. Since the 

plunge pool geometry is not further defined, in this Chapter, all analyses are performed 

assuming that the plunge pool has a flat bottom during the whole scour process. 
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8.4 FAILURE CRITERIA FOR JOINTED ROCK 

8.4.1 Impulsive nature of the applied forces 

The typical duration of maximum pressure fluctuations is in the order of 5 ms [24, 

30]. Manso [24] found that pressure fluctuation with probability higher than 75% persist 

less than 6 ms at the pool bottom. For core jet conditions, this value drops to 4 ms. For 

developed jet impact conditions, the persistence for equivalent probability is higher than 

for core impact conditions. 

In this dissertation, it is assumed to subject the block to its constant unbalanced 

force at failure for the maximum duration of an extreme pressure fluctuation, i.e. 5 ms. 

This assumption has been successfully used in stilling basins [352].  

As mentioned in Chapter 2, the proposed stability analysis follows the block in its 

static condition until equilibrium is possible between active and reaction forces. When 

the block fails, the active force that cannot be equilibrated by the constraints (nearby 

blocks) imparts an acceleration to the block. The formulation then computes the initial 

acceleration of the block and its subsequent displacement by taking into account the 

inertia of the rock block. This is accomplished by applying rigorous rigid body dynamics. 

This displacement under maximum pressure fluctuations has been observed 

experimentally by Yuditskii [356, 357] to be the beginning of and always conduct to 

block’s ejection. 

Indeed, Yuditskii [356, 357] presented what is probably the first conceptual 

model of the rock scouring process based on pressure fluctuations on rock blocks. His 

procedure is similar to the one proposed here, in that it is based on an evaluation of the 

maximum instantaneous pressure that can separate a rock block from the matrix. For 

increasing pool depths, he compared the maximum pressure gradient amplitude 

originated by jet impact with a limit pressure value corresponding to the equilibrium 

situation. He also conducted experimental work (more than 2,000 tests) focusing on the 

mechanisms of block ejection for varying scour depths, relative size of blocks, block 

density, and joint thickness. One interesting observation is as follows: "the block is 

ejected, neither by one pressure fluctuation of high amplitude nor by a succession of 
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pressure fluctuations of high amplitude, but by one large average pressure that is 

established in the joint underneath the block following a small vertical displacement. The 

opening of the joint that allows this small vertical displacement is done by one pressure 

fluctuation of high amplitude." 

BS3D formulation can calculate the small displacement observed experimentally 

by Yuditskii under maximum pressure fluctuation. What is interesting is that the flow and 

rock mass conditions that led to a small displacement of the blocks then led to the blocks’ 

ejection from the rock mass. In other words, there is experimental evidence that a block is 

ejected if and only if it first fails according to one of the failure modes captured by the 

proposed stability analysis.  

8.4.2 Scour threshold (translational failure mode) 

In this Section, a scour threshold is introduced for the cases in which analysis 

predicts that the block fails in a translational mode, i.e. the dynamic failure mode 

obtained using BS3D is an acceleration in one direction with no rotation. 

It is assumed that the block is subjected to a constant unbalanced force at failure 

for the maximum duration of an extreme pressure fluctuation, i.e. 5 ms. This unbalance 

force causes an initial velocity as follows: 

,tamvmtFF tt Δ⋅⋅=⋅=Δ⋅= ΔΔ

   
(8.27) 

in which F is unbalance force due to the maximum dynamic pressure fluctuation; tΔ  is 

the maximum duration (i.e. 5 ms); tFΔ  is the net impulse on the block; m is the block 

mass; tvΔ  is the initial velocity; and  a  is the acceleration of the block caused by the 

unbalance force. 

It is assumed that the block moves with the initial velocity, tvΔ , for a time duration 

equal to the half of the natural period of the fissure. The natural period of an open-ended 

joint can be obtained as follows [325]: 

,2
c
LTc =

     
(8.28) 
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where c is the pressure wave celerity and for a mixed fluid, like a mixture of water 

containing air, can be estimated using the following equation (valid for %50≤β ) [325]: 
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βρ    

(8.29) 

in which liqc  is the pressure wave celerity in the liquid (assume 1000 m/s for water); 

airc  is the pressure wave celerity in air (assume 340 m/s); liqρ is the density of the liquid 

(assume 1000 kg/m3); airρ is the density of the air (assume 1.29 kg/m3); and mixρ  can 

be estimated as follows [30]:  

( )βρβρρ −⋅+⋅= 1liqairmix
    

(8.30) 

L is the fissure length and can be evaluated as follows [30, 325]:  

bb zxL 2+=
     

(8.31) 

where bx  and bz  are length and height of the block, respectively. 

The block is assumed to be subjected to all forces except for the fluctuation 

dynamic pressure for a duration equal to half of the natural period of the fissure followed 

by an unbalance force in opposite direction which changes the direction of the block 

motion (stops the upward displacement of the block). Thus, the maximum upward 

displacement of the block,
 

uph , can be estimated based on the above given assumptions. 

Criteria for determining if rock blocks from a jointed rock mass will experience 

incipient motion, have been proposed by Bollaert [30] (Table 8.5). Bollaert and Schleiss 

[31] found that ultimate scour depth of Cabora-Bassa Dam corresponds to a ௛ೠ೛
௭್

 ratio of 

0.20, which is not consistent with values given in Table 8.5. 

In this dissertation, BS3D was used to simulate Martins’ [29] scour experimental 

study. Based on these simulations, it is suggested to consider that the block is most likely 

to be removed when ௛ೠ೛
௭್

൐ 0.25  (see Section 8.4.2 for detailed analyses). This 

assumption together with the above described method is validated in the next Section 

using previously solved examples, experimental studies, and case histories. 
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Table 8.5: Criteria to assess rock scour potential by dynamic impulsion [30] 

1.0≤
b

up

z
h

 Rock block remains in place. 

5.01.0 <<
b

up

z
h

 Rock block vibrates and most likely remains in 
place. 

15.0 <≤
b

up

z
h

 
Rock block vibrates and is likely to be 
removed depending of ambient flow 
conditions. 

1>
b

up

z
h

 Rock block is definitely removed from its 
matrix. 

 

8.5 APPLICATION, CALIBRATION, AND VALIDATION OF THE SCOUR MODEL 

By using Federspiel’s experimental study [27, 28], this Section validates the 

above explained method to estimate the dynamic water pressure and BS3D to determine 

the stability of the rock block together with its displacements. Secondly, employing 

Martins’ experimental study [29], the failure criterion of the rock block is calibrated. 

Section 8.4.3. shows the application of the scour model in a fictious rock mass (good 

quality granite) introduced initially by Bollaert [30]. The whole scour model and BS3D 

algorithm are then validated using three case histories and prototypes [29-31]. Finally, 

Section 8.4.6 demonstrates the ability of BS3D in predicting more complicated failure 

modes (divergence and flutter) together with dealing with in situ stress and dilation 

behavior of rock fractures with a fictious example. 

8.5.1 Federspiel’s experimental study (response of an intelligent block to core jet 

impact) 

A large-scale experimental facility has been developed in Laboratory of Hydraulic 

Constructions (LHC), Ecole Polytechnique Federale de Laussanne (EPFL) which 

reproduces high velocity plunging jet [27, 30]. After employing the installation to study 

the behavior of a plunge pool with a flat bottom and one- or two-dimensional joints by 
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transducers. In the center of the measurement box, a large cavity (length = width = 202 

mm and height = 201 mm) allows inserting the intelligent block (a cube with a side 

length of 200 mm). The width of the steel plates has been optimized to have a density 

similar to real rock (2,400 – 2,500 kg/m3). On the top of the "intelligent block", some 

holes have been pre-perforated to fix the pressure transducers. Between the measurement 

box, and the intelligent block, a 3-dimensional fissure of 1 mm width is created. Inside 

the intelligent block, pressure and vibration transducers have been inserted to measure the 

pressure at the pool bottom under high-velocity jet impact and to measure the vibration of 

the block. Finally, both the measurement box and the intelligent block have been placed 

inside the basin simulating the plunge pool (Figure 8.8-b) [27]. 

 

         

  (a)                            (b) 
Figure 8.8: (a) axonometric view of the experimental facility; (b) picture of the facility 

with the measurement box and the intelligent block [27]. 

 

Electronic data acquisition equipment consists of a data acquisition system, 12 

pressure transducers, two displacement transducers (with an absolute measurement range 

between 0 and 8 mm and a precision of less than 0.005 mm (static) or less than 0.01 mm 

(dynamic)), and an accelerometer transducer (which has a sensitivity of 5 mV/g and a 

frequency range between 1 and 10 kHz) [27]. 
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The pressure transducers were fixed within the same vertical plane to reconstruct 

the pressure field around the block (Figure 8.9). Four transducers are installed inside the 

block and measure the pressure at the plunge pool bottom (309-312): the first on the jet 

axis, the second at 25 mm, the third at 50 mm and the fourth at 75 mm from the jet axis 

Four transducers are installed on one of the vertical walls of the measurement box (313-

317): the first at 50 mm from the plunge pool bottom and the following at a 50 mm 

interval. Four transducers are situated underneath the block (318-321): they have the 

same relative position as the four transducers that are installed inside the block. The 

displacement transducer (D1D and D2D not on the Figure 8.9) and the accelerometer 

(ACC) have a fixed position: displacement transducers under the block in “measurement 

box” and the accelerometer in the block [27]. 

  

 Figure 8.9: Transducers position [27]. 

 

Preliminary tests have been performed with a flat bottom and a water jet centered 

on the middle of the intelligent block. Two plunge pool water levels (Y = 0.1 m and 0.6 

m) and four jet outlet velocities (19.6, 22.1, 24.6 and 27.0 m/s) have been tested. The 0.1 

m water level in the plunge (Y) generates a core jet (Y/D ratio of only 1.39), while the 

0.6 m water level generates a developed jet (Y/D ratio of 8.33). For each water level and 

jet velocity, three runs have been performed. The data acquisition frequency was 1 kHz 

and the recording time was 60 seconds (60’000 samples for each transducer) [27]. 
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Based on the results of the preliminary tests, Federspiel et al. [27] made comment 

on the mean and fluctuating coefficients (Figure 8.10). The mean pressure coefficients 

recorded directly under the jet axis for core jet impact are in good agreement with the 

theoretical curves developed by Ervine et al. [329] and with previous pressure records 

made by Bollaert [30] and Manso [24]. The mean pressure coefficients recorded away 

from the jet axis and inside the joints around the block are generally less than the mean 

pressures under the jet axis, which could reasonably be expected. For developed jet 

impact, however, the recorded values are higher than the theoretical curves and rather 

correspond to values for core jet impact. This is most probably due to the jet deflecting 

the plunge pool water level and locally lowering somewhat this water level [27]. In the 

same way, the pressure fluctuation coefficients are in good agreement with theory for 

core jets but differ somewhat from theory for developed jets. As such, the fluctuating part 

is lower than the theoretical curves, which again would correspond to a core jet rather 

than a developed jet [27]. 

 

 
Figure 8.10: Cp mean pressure coefficient and Cp’ pressure fluctuations coefficient (the 
root-mean-square value (RMS) of the fluctuating part of the dynamic pressures) [27]. 

 

In this dissertation, analyses have been performed on the results of Federspiel’s 

experimental study [28]. For each water level and jet velocity, by investigating the results 

of all three experimental runs, the following parameters are obtained and presented in 

Table 8.6: 
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1) The maximum vertical displacement of the block  

2) The maximum net uplift hydrodynamic pressure: difference between the 

maximum dynamic water pressure on the lowermost fracture (measured using 

pressure transducer 309 to 312) and the minimum dynamic water pressure on 

the floor of the plunge pool (measured using pressure transducer 318 to 321) 

3) The duration of maximum pressure fluctuation: 1 ms for all cases  
  

Table 8.6: Summary of Federspiel’s experimental study and BS3D analyses 

Y 
(m) 

Vj 
(m/s) 

Max  
experimental 

vertical  
displacement 

(mm) 

Max 
experimental 

net uplift 
hydrodynamic 

pressure 
(m H2O) 

Vertical displacement predicted using 
BS3D analysis (mm) 

Using the max 
experimental net 

uplift hydrodynamic 
pressure 

Dynamic water pressure 
estimated using the 

approach explained in 
Section 8.2 

0.1 

19.6 0.995 5.77 0.894 0.38 
22.1 0.996 7.26 1.186 0.56 
24.6 1.004 8.23 1.376 0.75 
27.0 1.025 8.7 1.468 0.95 

0.6 

19.6 1.052 10.28 1.778 4.50 
22.1 1.060 5.25 0.791 5.79 
24.6 1.069 5.24 0.789 7.23 
27.0 1.055 6.74 1.084 8.76 

 
For each water level and jet velocity, BS3D analyses are performed to predict the 

maximum vertical displacement of the block using either the following assumption for 

dynamic water pressure: 

1) Measured maximum net uplift hydrodynamic pressure 

2) Estimated hydrodynamic pressure applied on fractures and the bottom of the 

plunge pool using the approach explained in Section 8.3 

 

Since the experimental studies were performed in a short period of time, in the 

numerical simulations, the dynamic pressure magnitudes are estimated without 

considering the coefficient two introduced in Section 8.3.5 to account for long duration 

events.  
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In the lack of any information regarding the air content, β, the pressure wave 

celerity is assumed to be 100 m/s (which correspond to β of about 15%). Thus, the 

natural frequency of open-ended fracture is estimated using Equation (8.28) to be 0.012 

second, knowing the fact that L = 0.6 m (determined using Equation (8.31)). 

In BS3D simulation, the Young’s modulus and Poisson’s ratio of the block and 

the mould is adopted to be 200 GPa and 0.3, respectively. Table 8.6 summarizes the 

results of BS3D analyses. In addition, Figure 8.11 compares the measured and predicted 

(using BS3D) maximum vertical displacement of the block. 

It can be seen in Figure 8.11 that, for both core and developed jet, BS3D works 

well in predicting the maximum displacement of the block when the hydrodynamic 

pressure is adopted to be equal to the experimental net uplift dynamic water pressure. 

These results validate BS3D algorithm excluding the part that deals with estimating 

hydrodynamic pressure. In addition, the results of BS3D analyses with dynamic water 

pressure estimated using the approach explained in Section 8.3 show that: 

- Core jet: the maximum vertical displacement of the block is underestimated. 

- Developed jet: the maximum vertical displacement of the block is 

overestimated. 
 

It seems that the errors in predicting the maximum vertical displacement of the 

block came from the errors in estimating the dynamic water pressure using the approach 

explained in Section 8.3. This approach seems to be the best method which can be found 

in the literature. However, Federspiel et al. are trying to find the weakness of current 

approaches in estimating hydrodynamic pressure caused by high-velocity jet impact, 

experimentally. In the next step of their experimental study, they will employ the above 

introduced facility (intelligent block) to do series of test with jet velocities between 5 and 

30 m/s, for plunge pool water levels between 0.1 m and 1.0 m (with steps of 0.1 m). In 

addition, similar tests but with different jet impact position on the intelligent block will 

be performed (aside from the jet axis: from the middle of the intelligent block to the axis 

of the vertical fissure). 
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(a) Y = 0.1 m (core jet Y/Dj = 1.39) 

 
(b) Y = 0.6 m (developed jet Y/Dj = 8.33) 

  

raverage + rstandard deviation = 1.22 + 0.24 
rmax = 1.43; rmin = 0.90 

raverage + rstandard deviation = 1.05 + 0.45 
rmax = 1.69; rmin = 0.74 

  

Raverage + Rstandard deviation = 0.65 + 0.23 
Rmax = 0.92; Rmin = 0.39 

 

Raverage + Rstandard deviation = 6.20 + 1.73 
Rmax = 8.30; Rmin = 4.28 

  

 
r: the ratio of predicted to the measured maximum vertical displacement of the block (using 
  BS3D with maximum experimental net uplift dynamic pressure)  
R: the ratio of predicted to the measured maximum vertical displacement of the block (BS3D 
  with dynamic water pressure estimated using the approach explained in Section 8.3) 
 

 Figure 8.11: Comparison between measured and predicted maximum vertical 
displacement of the block (Federspiel’s experimental study) 
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8.5.2 Martins’ experimental study (action of free jets on rocky river-beds) 

The river-bed test facility was made up of equal, cubic, comparatively large 

blocks, systematically arranged, without cohesion. The number of tests carried out was 

90, which is resulted from the combination of three angles of impact, α, with three 

openings of the gate closing the orifice discharging the jet, with two values of the sides of 

the blocks, a, with five depth of the water cushion, e. The opening of the gates was 

chosen so as to ensure an approximately square form in the initial cross section of the jet. 

The blocks were made of cement/sand mortar with a unit weight of about 2.2 g/cm3 [29]. 

Table 8.7 summarizes the results of Martins’ [29] experimental study for the cases 

with the sides of blocks equal to 4.7 cm. In the numerical simulation performed in this 

Chapter using BS3D, the air content, β, is assumed to be 30%. Thus, the pressure wave 

celerity is estimated (using Equation (8.29)) to be 25 m/s and the natural frequency of 

open-ended fracture is estimated (using Equation (8.28)) to be 0.014 second, knowing the 

fact that L = 14.1 cm (determined using Equation (8.31)). The maximum duration of 

extreme pressure fluctuation is assumed to be 5 ms. 

In addition, Table 8.8 summarizes the results of Martins’ [29] experimental study 

for the cases with the sides of blocks equal to 3 cm. The natural frequency of open-ended 

fracture is estimated using Equation (8.28) to be 8 ms, knowing the fact that L = 9 cm and 

c = 25 m/s (β = 30%). Since the maximum duration of extreme pressure fluctuation can 

not be higher than half the natural period, it is assumed to be 4 ms. 

BS3D analyses are also summarized in Table 8.7 and Table 8.8. Since the 

experimental studies were performed in a short period of time, in the numerical 

simulations, the dynamic pressure magnitudes are estimated without considering the 

coefficient two introduced in Section 8.3.5 to account for long duration events. For each 

case, the acceleration, the initial velocity, and the maximum upward displacement of the 

block are calculated together with the ratio of hup/zb. 
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Table 8.7: Summary of Martins’ experimental study (a = 4.7 cm) and BS3D analyses 

α e 
(m) 

Q 
(l/s) 

H, 
 Fall, 
(m) 

Vj 
m/s 

Dj 
(m) 

Scour 
Depth 
(m) 

Y 
(m) 

BS3D analyses 
Acceleration 

(m/s2) 
TV Δ

(m/s) 
uph  

(m) b

up

z
h  

40 

0.30 150 1.10 7.23 

0.05 

0.097 0.397 752 3.76 0.026 0.55 
0.24 150 1.34 7.99 0.148 0.388 586 2.93 0.020 0.43 
0.18 160 1.49 8.40 0.197 0.377 472 2.36 0.016 0.35 
0.12 170 1.63 8.80 0.149 0.269 495 2.48 0.017 0.36 
0.06 180 1.79 9.22 0.148 0.208 427 2.14 0.015 0.31 
0.30 221 1.23 7.64 

0.06 

0.196 0.496 399 2.00 0.014 0.29 
0.24 235 1.37 8.07 0.246 0.486 367 1.84 0.013 0.27 
0.18 253 1.56 8.60 0.189 0.369 423 2.12 0.015 0.31 
0.12 259 1.68 8.92 0.194 0.314 378 1.89 0.013 0.28 
0.06 270 1.82 9.29 0.15 0.210 363 1.82 0.012 0.27 
0.30 301 1.27 7.75 

0.07 

0.246 0.546 329 1.65 0.011 0.24 
0.24 324 1.41 8.19 0.246 0.486 329 1.65 0.011 0.24 
0.18 343 1.57 8.69 0.196 0.376 359 1.80 0.012 0.26 
0.12 353 1.71 9.01 0.198 0.318 329 1.65 0.011 0.24 
0.06 371 1.85 9.37 0.196 0.256 292 1.46 0.010 0.21 

55 

0.30 134 1.50 6.63 

0.05 

0.152 0.452 323 1.62 0.011 0.24 
0.24 136 1.59 6.82 0.198 0.438 280 1.40 0.010 0.20 
0.18 144 1.70 7.04 0.197 0.377 326 1.63 0.011 0.24 
0.12 146 1.79 7.24 0.148 0.268 333 1.67 0.011 0.24 
0.06 153 1.89 7.43 0.105 0.165 312 1.56 0.011 0.23 
0.30 201 1.53 6.68 

0.06 

0.192 0.492 314 1.57 0.011 0.23 
0.24 208 1.62 6.88 0.245 0.485 265 1.33 0.009 0.19 
0.18 215 1.71 7.08 0.194 0.374 279 1.40 0.010 0.20 
0.12 220 1.81 7.28 0.143 0.263 286 1.43 0.010 0.21 
0.06 226 1.91 7.48 0.148 0.208 232 1.16 0.008 0.17 
0.30 269 1.54 6.72 

0.07 

0.243 0.543 246 1.23 0.008 0.18 
0.24 278 1.64 6.93 0.198 0.438 262 1.31 0.009 0.19 
0.18 289 1.74 7.13 0.199 0.379 241 1.21 0.008 0.17 
0.12 293 1.81 7.28 0.146 0.266 244 1.22 0.008 0.18 
0.06 301 1.93 7.51 0.193 0.253 185 0.93 0.006 0.13 

70 

0.30 110 1.77 6.27 

0.05 

0.099 0.399 553 2.77 0.019 0.41 
0.24 112 1.85 6.41 0.155 0.395 362 1.81 0.012 0.26 
0.18 115 1.92 6.54 0.149 0.329 328 1.64 0.011 0.24 
0.12 116 2.00 6.67 0.129 0.249 301 1.51 0.010 0.22 
0.06 119 2.08 6.79 0.097 0.157 269 1.35 0.009 0.20 
0.30 165 1.78 6.29 

0.06 

0.099 0.399 466 2.33 0.016 0.34 
0.24 166 1.86 6.43 0.148 0.388 313 1.57 0.011 0.23 
0.18 171 1.94 6.56 0.149 0.329 278 1.39 0.009 0.20 
0.12 178 2.15 6.91 0.099 0.219 315 1.58 0.011 0.23 
0.06 179 2.09 6.82 0.106 0.166 218 1.09 0.007 0.16 
0.30 221 1.79 6.31 

0.07 

0.104 0.404 388 1.94 0.013 0.28 
0.24 227 1.87 6.45 0.151 0.391 267 1.34 0.009 0.19 
0.18 232 1.95 6.58 0.101 0.281 306 1.53 0.010 0.22 
0.12 229 2.03 6.71 0.15 0.270 203 1.02 0.007 0.15 
0.06 238 2.1 6.84 0.102 0.162 193 0.97 0.007 0.14 
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Table 8.8: Summary of Martins’ experimental study (a = 3 cm) and BS3D analyses 

α e 
(m) 

Q 
(l/s) 

H, 
 Fall, 
(m) 

Vj 
m/s 

Dj 
(m) 

Scour 
Depth 
(m) 

Y 
(m) 

BS3D analyses 
Acceleration 

(m/s2) 
TV Δ

(m/s) 
uph  

(m) b

up

z
h  

40 

0.40 13.2 0.91 6.58 

0.05 

0.06 0.46 503 2.01 0.008 0.27 
0.32 14.3 1.11 7.25 0.16 0.48 550 2.20 0.009 0.29 
0.24 15.5 1.30 7.85 0.25 0.49 611 2.44 0.010 0.32 
0.16 16.8 1.50 8.43 0.22 0.38 1028 4.11 0.016 0.55 
0.08 17.6 1.68 8.94 0.15 0.23 825 3.30 0.013 0.44 
0.40 19.2 0.95 6.73 

0.06 

0.13 0.53 575 2.30 0.009 0.30 
0.32 21.2 1.12 7.29 0.22 0.54 651 2.60 0.010 0.34 
0.24 23.4 1.32 7.93 0.28 0.52 833 3.33 0.013 0.44 
0.16 25.8 1.54 8.55 0.25 0.41 988 3.95 0.016 0.52 
0.08 27.1 1.72 9.04 0.19 0.27 828 3.31 0.013 0.44 
0.40 27.2 0.98 6.82 

0.07 

0.28 0.68 470 1.88 0.007 0.25 
0.32 30.0 1.17 7.46 0.31 0.63 682 2.73 0.011 0.36 
0.24 32.2 1.35 8.01 0.28 0.52 914 3.66 0.015 0.48 
0.16 34.6 1.56 8.60 0.19 0.35 821 3.28 0.013 0.44 
0.08 36.8 1.74 9.10 0.19 0.27 729 2.92 0.012 0.39 

55 

0.40 12.4 1.31 6.20 

0.05 

0.13 0.53 274 1.10 0.004 0.14 
0.32 12.9 1.44 6.49 0.19 0.51 353 1.41 0.006 0.19 
0.24 13.8 1.57 6.78 0.22 0.46 534 2.14 0.008 0.28 
0.16 14.3 1.70 7.06 0.16 0.32 643 2.57 0.010 0.34 
0.08 14.6 1.83 7.31 0.13 0.21 506 2.02 0.008 0.27 
0.40 19.0 1.34 6.25 

0.06 

0.16 0.56 437 1.75 0.007 0.23 
0.32 20.1 1.47 6.55 0.28 0.60 397 1.59 0.006 0.21 
0.24 20.8 1.59 6.82 0.28 0.52 614 2.46 0.010 0.32 
0.16 21.8 1.73 7.11 0.15 0.31 569 2.28 0.009 0.30 
0.08 22.2 1.85 7.35 0.10 0.18 360 1.44 0.006 0.19 
0.40 26.1 1.36 6.30 

0.07 

0.22 0.62 500 2.00 0.008 0.26 
0.32 26.8 1.49 6.59 0.31 0.63 530 2.12 0.008 0.28 
0.24 28.8 1.62 6.87 0.19 0.43 593 2.37 0.009 0.31 
0.16 28.9 1.75 7.14 0.16 0.32 520 2.08 0.008 0.27 
0.08 30.3 1.88 7.41 0.13 0.21 366 1.46 0.006 0.19 

70 

0.40 10.5 1.63 6.01 

0.05 

0.06 0.46 418 1.67 0.007 0.22 
0.32 10.9 1.73 6.20 0.13 0.45 468 1.87 0.007 0.25 
0.24 11.2 1.83 6.38 0.16 0.40 616 2.46 0.010 0.33 
0.16 11.7 1.94 6.56 0.09 0.25 473 1.89 0.007 0.25 
0.08 11.7 2.03 6.71 0.07 0.15 299 1.20 0.005 0.16 
0.40 15.8 1.64 6.04 

0.06 

0.06 0.46 526 2.10 0.008 0.28 
0.32 16.8 1.75 6.23 0.13 0.45 552 2.21 0.009 0.29 
0.24 16.6 1.84 6.39 0.12 0.36 504 2.02 0.008 0.27 
0.16 17.3 1.95 6.58 0.13 0.29 462 1.85 0.007 0.24 
0.08 18.4 2.08 6.79 0.10 0.18 306 1.22 0.005 0.16 
0.40 21.4 1.66 6.06 

0.07 

0.03 0.43 460 1.84 0.007 0.24 
0.32 22.1 1.76 6.25 0.16 0.48 524 2.10 0.008 0.28 
0.24 22.8 1.86 6.43 0.19 0.43 518 2.07 0.008 0.27 
0.16 23.4 1.96 6.60 0.13 0.29 406 1.62 0.006 0.21 
0.08 23.7 2.09 6.81 0.10 0.18 260 1.04 0.004 0.14 
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It can be seen in Table 8.7 that the ratio of hup/zb ranges between 0.13 and 0.55 

with an average of 0.25 and a standard deviation of 0.08. In addition, the ratio of hup/zb, in 

Table 8.8, ranges between 0.14 and 0.55 with an average of 0.29 and a standard deviation 

of 0.10.  

Section 8.5.1 showed that the method described in Section 8.3 may underestimate 

or overestimate the hydrodynamic pressure caused by jet impact. Although all 

overestimations occurred for developed jets and all underestimations occurred for core 

jets, since the number of tests are limited to four tests per jet type, it is assumed here that 

the hydrodynamic pressure caused by jet impact may be underestimated or overestimated 

regardless of jet type. Therefore, it is reasonable to choose the average ratio of hup/zb as a 

scour threshold. Consequently, it can be concluded that the block is most likely to be 

removed from its mould when hup/zb

 
> 0.25. 

Using BS3D together with the method described in Section 8.3 to estimate 

hydrodynamic pressure caused by jet impact and calibrated scour threshold (hup/zb

 
> 

0.25), scour depths are predicted for all 90 cases reported by Martins [29]. The results are 

summarized in Table 8.9. The ratio of predicted to measured scour depth, ௗ೛ೝ೐೏೔೎೟೐೏
ௗ೘೐ೌೞೠೝ೐೏

, 

ranges beween 0.39 and 1.52 (0.44 and 1.70) with an average of 0.88 (1.07) and a 

standard deviation of 0.30 (0.31) for the cases with the sides of blocks equal to 4.7 (3.0) 

cm. These results validate the ability of the suggested approach in predicting scour depth. 

8.5.3 Example of a good quality granite 

Bollaert [30] introduced a fictious rock mass to points out his methodology and 

the major parameters of interest. After dealing with the break-up phase of the closed-end 

joints of the rock using the Comprehensive Fracture Mechanics (CFM) model, he 

described the possibility of the ejection of rock blocks from their mass using Dynamic 

Impulsion (DI) model and compared the results with Annandale’s Erodibility Index (EI) 

Method. 
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Table 8.9: Predicted scour depth (Martins’ experimental study) using BS3D 

α Dj 
(m) 

a = 4.7 cm a = 3.0 cm 
e 

(m) 
Scour Depth, d (m) ݀௣௥௘ௗ௜௖௧௘ௗ

݀௠௘௔௦௨௥௘ௗ
 e 

(m) 
Scour Depth, d (m) ݀௣௥௘ௗ௜௖௧௘ௗ

݀௠௘௔௦௨௥௘ௗdmeasured dpredicted (BS3D) dmeasured dpredicted (BS3D) 

40 

0.05 

0.30 0.097 0.147 1.52 0.40 0.06 0.06 1.00 
0.24 0.148 0.198 1.34 0.32 0.16 0.16 1.00 
0.18 0.197 0.247 1.25 0.24 0.25 0.28 1.13 
0.12 0.149 0.199 1.34 0.16 0.22 0.37 1.70 
0.06 0.148 0.198 1.34 0.08 0.15 0.21 1.37 

0.06 

0.30 0.196 0.196 1.00 0.40 0.13 0.16 1.26 
0.24 0.246 0.246 1.00 0.32 0.22 0.28 1.28 
0.18 0.189 0.189 1.00 0.24 0.28 0.37 1.31 
0.12 0.194 0.194 1.00 0.16 0.25 0.37 1.46 
0.06 0.15 0.15 1.00 0.08 0.19 0.27 1.43 

0.07 

0.30 0.246 0.196 0.80 0.40 0.28 0.28 1.00 
0.24 0.246 0.196 0.80 0.32 0.31 0.37 1.19 
0.18 0.196 0.196 1.00 0.24 0.28 0.34 1.20 
0.12 0.198 0.148 0.75 0.16 0.19 0.31 1.66 
0.06 0.196 0.096 0.49 0.08 0.19 0.28 1.44 

55 

0.05 

0.30 0.152 0.152 1.00 0.40 0.13 0.06 0.47 
0.24 0.198 0.148 0.75 0.32 0.19 0.13 0.69 
0.18 0.197 0.197 1.00 0.24 0.22 0.22 1.00 
0.12 0.148 0.148 1.00 0.16 0.16 0.25 1.56 
0.06 0.105 0.055 0.52 0.08 0.13 0.13 1.00 

0.06 

0.30 0.192 0.142 0.74 0.40 0.16 0.13 0.83 
0.24 0.245 0.145 0.59 0.32 0.28 0.25 0.90 
0.18 0.194 0.144 0.74 0.24 0.28 0.34 1.21 
0.12 0.143 0.143 1.00 0.16 0.15 0.21 1.38 
0.06 0.148 0.058 0.39 0.08 0.10 0.06 0.63 

0.07 

0.30 0.243 0.143 0.59 0.40 0.22 0.22 1.00 
0.24 0.198 0.148 0.75 0.32 0.31 0.31 1.00 
0.18 0.199 0.099 0.50 0.24 0.19 0.22 1.16 
0.12 0.146 0.096 0.66 0.16 0.16 0.16 1.00 
0.06 0.193 0.093 0.48 0.08 0.13 0.06 0.45 

70 

0.05 

0.30 0.099 0.149 1.51 0.40 0.06 0.03 0.47 
0.24 0.155 0.155 1.00 0.32 0.13 0.13 1.00 
0.18 0.149 0.149 1.00 0.24 0.16 0.19 1.21 
0.12 0.129 0.097 0.75 0.16 0.09 0.09 1.00 
0.06 0.097 0.047 0.48 0.08 0.07 0.03 0.44 

0.06 

0.30 0.099 0.149 1.51 0.40 0.06 0.06 1.00 
0.24 0.148 0.148 1.00 0.32 0.13 0.13 1.00 
0.18 0.149 0.099 0.66 0.24 0.12 0.12 1.00 
0.12 0.099 0.099 1.00 0.16 0.13 0.13 1.00 
0.06 0.106 0.056 0.53 0.08 0.10 0.06 0.61 

0.07 

0.30 0.104 0.104 1.00 0.40 0.03 0.03 1.00 
0.24 0.151 0.101 0.67 0.32 0.16 0.16 1.00 
0.18 0.101 0.101 1.00 0.24 0.19 0.19 1.00 
0.12 0.15 0.1 0.67 0.16 0.13 0.10 0.79 
0.06 0.102 0.05 0.49 0.08 0.10 0.06 0.63 
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The rock is assumed to be a very good quality granite with a tensile strength, T, of 

19 MPa and an unconfined compressive strength, UCS, of 296 MPa. The unit weight of 

the rock block is 2,650 kg/m3. It exhibits moderately semi-elliptical jointing in the x-

direction (Figure 8.12) and moderately to highly single-edge jointing in the y-direction. 

The rock is considered to consist of horizontal layer of 1 m of height (zb = 1m). The 

length of each side of the block, xb, is assumed to be 2 m. 

 
 Figure 8.12: Cubic blocks in the rock mass [30]. 

 

The jet is issuing from an intermediate outlet structure and its initial turbulence 

intensity, Tu, is estimated at 5%. The jet is vertically impinging with an impact velocity of 

Vj = 40 m/s and an estimated diameter at its point of impact of Dj = 4 m. The distance 

from this point of impact down to the water-rock interface is estimated to be Y = 36 m. 

As such, the ratio of pool depth to jet diameter Y/Dj = 9 and developed jet impact 

conditions govern. The air content is assumed to be negligible and the natural period of 

the fracture is given to be 0.12 seconds [30]. 

Bollaert [30] estimated the ultimate scour depth from the bottom of the plunge 

pool to be 11, 9, and 1 m using CFM, DI, and Annandale’s EI method, respectively. In 

this Section, the scour depth is estimated using BS3D (together with the above explained 

approach for estimating the dynamic water pressure and the given failure criteria). 

Comprehensive Fracture Mechanics (CFM) and Annandale’s EI methods consider 
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developing new fractures in the rock mass due to jet impact. However, Dynamic 

Impulsion (DI) method and BS3D analysis just focus on possibility of the ejection of the 

rock block from its mould. Thus, in this Section, the comparison is made between the 

results of DI method and BS3D analysis. 

Bollaert [30] (in his DI method) assumed that the average net impulsion which 

can be estimated using Equation (8.10) and Figure 8.6 is applied to the block during the 

fissure natural period. This net impulsion was then set equal to the product of the mass of 

the block times the velocity. This results in the maximum velocity that could be given to 

the block. This velocity or kinetic energy is transformed into potential energy by ejection 

of the block. The maximum displacement of the block can be evaluated as follows [30]:  

g
V

h pulset
up ⋅
= −Δ

2

2

     
(8.32) 

Table 8.10 summarizes the determination of the ultimate scour depth using both 

Bollaert’s DI Method and BS3D. 

Table 8.10: Determination of the scour depth using Bollaert DI Method and BS3D 

Depth 
of scour 

(m) 

Y 
(m) Y/Dj 

Bollaert (DI Method) BS3D; dynamic water pressure estimated using 
the approach explained in Section 8.3 

௨ܸ௣ 
(m/s) 

݄௨௣ 
(m) 

݄௨௣
௕ݖ

 Acceleration 
(m/s2) 

௨ܸ௣( ௱்ܸሻ 
(m/s) 

݄௨௣ 
(m) 

݄௨௣
௕ݖ

 

1 37 9.3 12.4 7.84 7.84 2647 13.24 0.78 0.78 
2 38 9.5 10.46 5.58 5.58 2480 12.40 0.73 0.73 
4 40 10.0 8.52 3.70 3.70 2144 10.72 0.63 0.63 
5 41 10.3 6.58 2.21 2.21 1910 9.55 0.56 0.56 
7 43 10.8 5.61 1.60 1.60 1561 7.81 0.45 0.45 
8 44 11.0 4.64 1.10 1.10 1387 6.94 0.39 0.39 
9 45 11.3 3.67 0.69 0.69 1212 6.06 0.35 0.35 

10 46 11.5 2.7 0.37 0.37 1038 5.19 0.29 0.29 
11 47 11.8 1.73 0.15 0.15 863 4.32 0.24 0.24 
12 48 12.0 0.76 0.03 0.03 737 3.69 0.20 0.20 

    
 

Assuming that the ultimate scour depth is reached when the rock block 

displacement becomes less than the height of the block (݄௨௣/ݖ௕ ൏ 1), Bollaert [30] found 

that the ultimate scour depth is about 9 m (see Table 8.10). In addition, assuming that the 
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ultimate scour depth is reached when the rock block displacement becomes less than a 

quarter of the height of the block (݄௨௣/ݖ௕ ൏ 0.25), BS3D analyses (adopting the 

maximum fluctuation duration of 5 ms) estimated that the ultimate scour depth from the 

plunge pool bottom is about 11 m.  

In Section 8.5.1, it was found that the method described in Section 8.3 may 

overestimate dynamic water pressure caused by developed jets. Therefore, the calculated 

vertical displacement of the block and, in turn, the scour depth may be overestimated. 

The jet in Table 8.10 that the jet is a developed one and, thus, the scour depth may be 

overestimated in this case. However, the ultimate scour depths estimated using BS3D and 

DI method agree well with each other (11 and 9 m from the plunge pool bottom, 

respectively). 

8.5.4 Case study of Cabora-Bassa dam 

The Cabora-Bassa Dam, a double curvature arch dam, is located on the Zambezi 

River in Mozambique and has a total spillway discharge capacity of 13,100 m3/s at a 

maximum reservoir level of 326 m a.s.l.. The corresponding tailwater level is at 225 m 

a.s.l. with a depth of nearly 50 m above the natural riverbed. The spillway consists of 

eight identical sluice gates with a height of 6 m and a width of 7.8 m. The exit lip of the 

gates is at elevation 244.30 m a.s.l. and makes an angle of 32.3° with the horizontal. The 

riverbed is very irregular and has its elevations varying from 170 to 180 a.s.l.. The rock is 

mainly granitoide gneiss with little cracking, but with a few gabbro and lamprophyre 

dykes [30, 31]. 

Hydraulic model tests at a 1/75 scale have been conducted at LNEC, Lisbon, 

Portugal [358]. A moveable bed model was used, made with gravel weakly aggregated 

with aluminous cement. The test results predicted the maximum scour depth at an 

elevation of 150 m a.s.l. and a downstream distance from the jet outlet of 250 m [30, 31]. 

The prototype behavior of the dam is characterized by two important operating 

periods. The first one happened in 1975 during 42 days, for a discharge of 6,000 m3/s (=4 

gates). The scour depth after this operation was measured at about 170 m a.s.l.. The 
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tailwater level was at 215 m a.s.l.. The second period occurred in 1978. The spillway was 

being operated for four and a half consecutive months. The maximum reservoir level was 

at 327.74 m a.s.l.. An extensive survey of the scour pit in 1980 showed that the deepest 

point of the scour pit was situated at 158 m a.s.l., i.e., 22 m deeper than the original 

riverbed. This occurred at a downstream distance from the jet outlet ranging from 240 to 

260 m [30, 31]. 

Bollaert [30] assumed that the rock mass is soft rock with a UCS = 13 MPa and 

very little cracking, thus a RQD = 90%, which seems to be unreal assumption for gneiss. 

Annandale’s [324] Erodibility Index Method has been calibrated based on the 

equilibrium scour depth of 160 m a.s.l. attained on the prototype after 1978 [324]. 

The diameter of the jet at issuance from the dam has been estimated as the 

equivalent hydraulic diameter of the mm 8.76 ×  rectangular outlet. This results in an 

initial jet diameter Di = 7.7 m. The jet trajectory has been calculated based on ballistic 

equations and air drag [30, 31]. Bollaert [30] and Bollaert and Schleiss [31] estimated the 

initial turbulence intensity of the jet, Tu, to be 4% and 5%, respectively. Table 8.11 

summarizes jet characteristics of the dam estimated by Bollaert [30] and Bollaert and 

Schleiss [31] based on different assumptions for the initial turbulence intensity. The air 

concentration at jet impact is considered very high (β = 60%) [31]. 

Bollaert [30] and Bollaert and Schleiss [31] performed different analyses using 

CFM and DI method to estimate the ultimate scour depth based on different assumptions, 

some of which are described above. In this Section, two series of analyses have been 

performed to estimate scour depth using BS3D and either Bollaert’s [30] or Bollaert’s 

and Schleiss’s [31] assumptions. 

 Table 8.11: Jet characteristics of Cabora-Bassa dam 

Parameter Bollaert [30] Bollaert and Schleiss [31] 
Initial turbulence intensity of the jet, Tu 4% 5% 
Jet impact velocity, Vj, (m/s) 35 42 
Impact diameter, Dj, (m) 8 7.2 
Outer jet diameter, Dout, (m) 20 17 
Jet break-up length, Lb, (m) 167 152 
Downstream distance from the jet outlet, Xult, (m) 150 145 
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8.5.4.2 Ultimate scour depth of Cabora-Bassa dam (Bollaert’s assumptions) 

Bollaert [30] based on his Comprehensive Fracture Mechanics (CFM) model 

found that instantaneous crack grows until an elevation of 170 m a.s.l.. Further scouring 

to 160 m a.s.l. needed 137 days of discharge, whether this elevation was obtained in situ 

after 139 days. Further scouring down to 150 m a.s.l. will need another 140 days of 

similar discharge conditions. Then, the phenomenon slows down due to jet diffusion 

effects. The elevation of 140 m a.s.l. is considered as a practical limit of the ultimate 

scour depth [30]. 

The characteristic block dimensions are based on model tests performed at LNEC, 

Lisbon. These tests represented in situ blocks with a weight between 50 and 290 kN 

[358]. Assuming a cubic shape, this corresponds to side lengths ranging from 1.2 to 2.2 

m. A side length of 2 m has been used. Due to the high aeration rate small wave celerity 

of 100 m/s is taken. The natural period of the open-ended fracture is estimated to be 0.18 

s, knowing the fact that L = 6 m. The unit weight of the rock block is assumed to be equal 

to 2,000 kg/m3 [30]. The results of Bollaert’s DI analyses are summarized in Table 8.12. 

 

Table 8.12: Determination of the ultimate scour depth of Cabora-Bassa dam based on the 
DI model [30] 

Y 
(m) 

Dj 
(m) 

Vj 
(m/s) Y/ Dj 

Vup 
(m/s) 

hup 
(m) hup /z EI 

m a.s.l. 
166 

20 35 

0.53 10.23 5.33 2.67 160.2 
168 0.52 10.11 5.21 2.60 159.5 
170 0.52 9.98 5.08 2.54 158.7 
180 0.49 9.37 4.48 2.24 154.8 
190 0.46 8.79 3.93 1.97 150.9 
200 0.43 8.22 3.44 1.72 147.0 
210 0.41 7.67 3.00 1.50 143.1 
220 0.38 7.14 2.60 1.30 139.2 
230 0.36 6.63 2.24 1.12 135.3 
234 0.35 6.43 2.11 1.05 133.7 
236 0.35 6.33 2.04 1.02 132.9 
238 0.34 6.23 1.98 0.99 132.1 
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It can be seen in Table 8.12 that, using DI method, the scour depth of 160 m a.s.l. 

that was attained after 1978 corresponds to a critical displacement of 2.6 times the height 

of the characteristic rock block. In the other words, the ultimate scour depth based on the 

dynamic uplift criterion is much deeper. The theoretical critical displacement of one 

times the height of the block is attained at an elevation of 133 m a.s.l. [30]. 

BS3D analyses is performed in this Section to estimate the ultimate scour depth 

using the jet characteristics given in the second column of Table 8.11. The maximum 

duration of extreme pressure fluctuation is adopted to be 5 ms. Assuming that the block is 

most likely to be removed when ݄௨௣/ݖ௕ ൏ 0.25, the ultimate scour depth is estimated to 

be 161 m a.s.l. (Y = 164 m; a = 1239 m/s2; Vup = 6.2 m/s; hup = 0.52; and hup/z = 0.26).  

It should be mentioned that, in predicting the ultimate scour depth, the effect of 

pool geometry introduced by Manso [24] was not considered (it is assumed that the pool 

bottom is flat during the whole scour process). In addition, the maximum value that 

BS3D gives for the ratio of hup/z, in this problem, is 0.3. It can be seen that the ultimate 

scour depth predicted using BS3D (and the method explained in Section 8.3 to estimate 

hydrodynamic pressure and failure criterion) agrees very well with what was attained 

after 1978. 

8.5.4.3 Ultimate scour depth of Cabora-Bassa dam (Bollaert’s and Schleiss’s 

assumptions) 

Bollaert and Schleiss [31] indicated that the CFM method results that are in good 

agreement with the prototype observations: a depth of 170 m a.s.l. is attained after 43 

days of discharge (42 days on prototype), and the depth of 158 m a.s.l., observed on the 

site after the 1978 spillage of 139 days is obtained by the CFM method after 114 days of 

additional spillage. Further scouring down to 154 m a.s.l. would need another 380 days of 

discharge. After, the phenomenon slows down, due to jet diffusion effects, and an 

additional scouring down to 150 m a.s.l. would need about 2,500 days of discharge. 

Stating that the 1978 discharges were exceptional, and accounting for a reasonable 
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lifetime of the dam, it can be argued that the elevation of 150 m a.s.l. constitutes a 

practical limit of ultimate scour depth, in accordance with the model tests [31]. 

Bollaert and Schleiss [31] estimated the scour depth using DI method (Table 

8.13). In their simulation, they assumed cubic shape blocks with a side length of 2 m. 

Due to the high aeration rate, the wave celerity is defined at 100 m/ s. They found that 

[31]: 

- The theoretically necessary displacement of one times the height of the block 

is already attained at an elevation of 176 m a.s.l.  

- The scour depth of 158 m a.s.l., observed on the prototype after the 1978 

discharge period, corresponds to a hup/z ratio of 0.30.  

- The ultimate scour depth based on the dynamic uplift criterion, however, 

should be somewhat deeper, and has been chosen at 152 m a.s.l., 

corresponding to a hup/z ratio of 0.20.  

 

Bollaert and Schleiss [31] stated that this calibration reasonably agrees with the 

ultimate depths found by the CFM method and observed during the model tests [31].  

 

Table 8.13 summarizes the results of BS3D analyses performed in this Section 

using the jet characteristics given in the third column of Table 8.11. In these simulations, 

it is assumed that the maximum duration of extreme pressure fluctuation is 5 ms. 

Assuming that the block is most likely removed when ݄௨௣/ݖ௕ ൐ 0.25, the ultimate scour 

depth is estimated to be at 155 m a.s.l. which agrees with the ultimate depths found by the 

CFM and DI method by Bollaert and Schleiss [31] and observed during the model tests 

by Ramos [358]. It should be mentioned that, in predicting the ultimate scour depth, the 

effect of pool geometry introduced by Manso [24] was not considered (it is assumed that 

the pool bottom is flat during the whole scour process). 
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Table 8.13: Determination of ultimate scour depth of Cobara-Bassa dam using DI method 
[31] and BS3D 

Y 
(m) 

Dj 
(m) 

Vj 
(m/s) 

z 
(m) 

Y/ 
Dj 

Bollaert’s and Schleiss’s 
[31] DI analyses 

BS3D (using jet characteristics 
given in the 3rd column of 

Table 8.11); dynamic water 
pressure estimated using the 

approach explained in  
Section 8.3 

Elevation 
m a.s.l. 

Vup 
(m/s) z

hup Uplift Acceleration 
(m/s2) 

Vup 
(m/s) z

hup  

62.3 

7.2 42 1 

8.6 3.46 0.61 Uplift 1626 8.13 0.69 168.9 
63.4 8.8 3.37 0.58 Uplift 1459 7.295 0.62 168.1 
65.3 9.0 3.22 0.53 Uplift 1367 6.835 0.57 166.7 
66.4 9.2 3.14 0.5 Uplift 1315 6.575 0.55 165.9 
69 9.5 2.95 0.44 Vibrations 1191 5.955 0.49 164.0 

71.6 9.9 2.74 0.38 Vibrations 1068 5.34 0.44 162.1 
74.2 10.3 2.57 0.34 Vibrations 997 4.985 0.41 160.1 
77.2 10.7 2.38 0.29 Vibrations 841 4.205 0.34 158.0 
79.8 11.0 2.23 0.25 Vibrations 706 3.53 0.28 156.0 
82.4 11.4 2.08 0.22 Vibrations 572 2.86 0.22 154.1 
84.6 11.7 1.96 0.2 Stability 457 2.285 0.17 152.5 
87.9 12.2 1.78 0.16 Stability 397 1.985 0.14 150.0 
90.5 12.5 1.66 0.14 Stability 375 1.875 0.13 148.1 

 

8.5.5 Two cases of scour in prototypes (Picote and Kondopoga) 

Two cases of scour in prototypes found in the literature [29, 359, 360] are 

analyzed using BS3D (and the method explained in Section 8.3 to estimate hydrodynamic 

pressure). The results of analyses are summarized in Table 8.14. 

For each case, the maximum vertical displacement of the block at the given scour 

depth are calculated. It can be seen that, at the reported ultimate scour depth, the ratios of 

hup/z determined using BS3D are 0.30 and 0.28 for Picote and Kondopoga prototypes, 

respectively. This agrees with the failure criterion introduced in Section 8.4.2 (the block 

is most likely to be removed when ݄௨௣/ݖ௕ ൐ 0.25).  
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Table 8.14: BS3D analyses of two cases of scour in prototypes (Picote and Kondopoga) 

Parameter / Scheme Picote  
(Portugal) [359] 

Kondopoga  
 (USSR) [360] 

Side length of cubic shape block, a, (m) 1.05 0.14 
Cushion of water, e, (m) 36 1.45 
Discharge, Q, (m3/s) 7000 70 
Fall height, H, (m) 45 11.4 
Jet velocity, Vj, (m/s) 29.71 14.95 
Jet diameter, Dj, (m) 17.32 2.44 
Estimated air entrainment (air content, β) Intermediate (10%) Negligible (2.5%) 
Wave celerity, c, (m/s) 40 70 
Fissure length, L, (m) 3.15 0.42 
Fissure natural period, T, (s) 0.16 0.012 
Actual scour depth (m) 19 4.8 
Y (m) 55 6.25 
Y/Dj 3.18 2.65 
Acceleration (m/s2) 858.70 1304 
Max duration of extreme pressure (ms) 5 5 
Initial velocity of the block, Vup, (m/s) 4.29 6.52 
Maximum vertical displacement of the block, hup, (m) 0.311 0.039 
݄௨௣/ݖ௕ 0.30 0.28 

 

8.5.6 Example of flutter and divergence 

In order to demonstrate the ability of BS3D in predicting more complicated 

failure modes (divergence and flutter) together with dealing with in situ stress and 

dilation behavior of rock fractures, a fictious example is introduced in this Section. 

A cubic rock block with edge length of 1 m is assumed to be in its mould at the 

bottom of a plunge pool. The block is subjected to gravity (unit weight of 2,550 kg/m3) 

and hydrostatic in situ stress of 50 kPa (which applies a normal stress of 50 kPa on 

fractures). The plunge pool has a depth, Y, of 15 m. The jet is assumed to be a moderately 

turbulent circular jet with diameter, Dj, and velocity, Vj, at plunge pool surface of 10 m 

and 45 m/s (at the end of a fall height of about 100 m), respectively. The air content, β, is 

35% and the distance of the block centroid to the jet centerline is 7 m. 

 As illustrated in Figure 8.13, water flows in the negative y-direction along face 

A3A4A8A7 and applies a hydrodynamic water pressure equal to phyd = 1 MPa (which can 
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be generated by water flow with a velocity of about 45 m/s) to the portion of the block 

boundary that moves out of its mould. In order to simplify this example, hydrodynamic 

shear stress is not considered.  

 The following constitutive models are considered for the rock fractures: 

• Mohr-Coulomb model (with an effective friction angle of 50º) 

• Original and modified Barton-Bandis model (JRC = 10, JCS = 70 MPa, and 

φb = 25 º) 

It should be mentioned that, considering the normal stress applied to the fractures 

(50 kPa), the effective friction angle of 50º in Mohr-Coulomb model simulates the same 

fracture shear strength as original or modified Barton-Bandis model does with JRC = 10, 

JCS = 70 MPa, and φb = 25 º. 

 

 

Figure 8.13: (a) Geometry of the cubic rock block considered in the example of flutter 
and divergence; (b) view of the block in YZ-plane and applied pressure due to water flow 

 

Eliminating the dilation behavior of the fractures and more complicated failure 

modes (dynamic flutter and divergence), the block is expected to have a factor of safety 
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of 0.25 with static failure mode along z-axis. However, BS3D analyses give the following 

factors of safety and failure modes (see Figure 8.14 for displaced configurations): 

• Mohr-Coulomb model: the failure mode of the block is dynamic divergence 

along z-axis with a factor of safety of 0.18. 

• Original and modified Barton-Bandis model: the failure modes and the factors 

of safety obtained using these models are almost the same. The failure mode 

of the block is dynamic flutter with a factor of safety of 0.2 and directions 

ሺݑ௫, ,௬ݑ ,௭ݑ ,௫ߠ ,௬ߠ  :௭ሻ் equal toߠ

1- Direction 1: ሺ0.196, െ0.98, 0, 0, 0, 1ሻ் 

2- Direction 2: ሺ0.99,െ0.01, 0, 0, 0, 1ሻ் 

 

The natural period of the open-ended fracture is estimated to be 0.23 s, because L 

= 3 m (determined using Equation (8.31)) and c = 25 m/s (estimated employing Equation 

(8.29)). The scour depths predicted using different approaches are given in  

Table 8.15. Notice that the DI approach (Section 8.2.1) predicts that the block will 

be stable. 

This example shows that a block may be fail by dynamic divergence or flutter 

before its static failure mode can be reached. These failure modes can be detected by 

BS3D which can also deal with in situ stress and dilation behavior of the fractures.  

 

 

Figure 8.14: Displaced configuration of the block (predicted using different approaches) 

 

Y

Z

X

Base configuration

Static (or dynamic divergence)
failure mode:
(0, 0, 1, 0, 0, 0)

Base configuration

Dynamic flutter:
(0.19, -0.98, 0, 0, 0, 1)

Dynamic flutter:
(0.99, -0.01, 0, 0, 1)

Base configuration
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Table 8.15: Predicted scour depth (using different approaches) for the fictious example 
introduced to demonstrate the ability of BS3D in dealing with flutter and divergence 

Analysis description Fracture constitutive 
model FS  

Scour 
depth 
(m) 

Observations (prediction) 

BS3D*; Eliminating fractures’ 
dilation behavior and more 
complicated failure modes 
(dynamic flutter and divergence) 

Mohr-Coulomb model, 
Barton’s model, and 
modified Barton’s 
model 

0.25 0.230 0 The block remains in 
place. 

BS3D* Mohr-Coulomb model 0.18 0.252 1 The block will be 
removed. 

BS3D* 
Barton’s model and 
modified Barton’s 
model 

0.20 0.245 1 The block most likely will 
be removed. 

DI (Net uplift dynamic water 
pressure is predicted using Figure 
8.6 considering the effect of 
distance from jet centerline. The 
maximum vertical displacement of 
the block is evaluated using 
Equation (8.32)) 

Mohr-Coulomb model N/A 0 0 
The net uplift force is 
smaller than the shear 
strength of the fractures. 

* In BS3D analyses, hydrodynamic pressure caused by jet impact is estimated using the approach given in Section 8.3. In 
addition, the maximum vertical displacement of the block, , is evaluated using the method described in Section 8.4.1. 

 

8.6 SUMMARY AND CONCLUSIONS  

In this Chapter, the stability of single rock blocks in plunge pools was 

investigated. An approach was introduced to estimate pressure forces generated in plunge 

pools due to high-velocity jet impacts. This method together with the ability of BS3D in 

determining the stability of the rock block and its displacement were validated using 

Federspiel’s experimental study. 

Based on the simulation of Martins’ [29] experimental study using BS3D, it was 

proposed to consider that the block is most likely to be removed when hup/zb > 0.25.  
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The application of the scour model was explained by a fictious rock mass (good 

quality granite) initially introduced by Bollaert. The whole scour model and BS3D 

algorithm are then validated using three case histories and prototypes.  

Finally, the ability of BS3D in predicting more complicated failure modes 

(divergence and flutter) together with dealing with in situ stress and dilation behavior of 

rock fractures was demonstrated using a fictious example. It was shown that scour 

threshold and depth may be underestimated if divergence and flutter are not taken into 

account. 
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CHAPTER 9: CONCLUSIONS AND RECOMMENDATIONS 

9.1 SUMMARY AND CONCLUSIONS 

9.1.1 Single rock block stability analysis approach 

BS3D, a single rock block stability analysis approach, which is an incremental-

iterative algorithm introduced by Tonon’s [1], was described in detail. The method is to 

analyze general failure modes of rock blocks subject to generic forces, including non-

conservative forces such as water forces. The block interacts with the surrounding 

constraint space using a finite number of sensor points. Consistent stiffness matrices were 

developed that fully exploit the quadratic convergence of the adopted Newton–Raphson 

iterative scheme. The algorithm takes into account large block displacements and 

rotations, which together with non-conservative forces make the stiffness matrix non-

symmetric. 

Also included in the algorithm are fracture dilatancy and in situ stress. Moreover, 

progressive failure is captured by the algorithm, which has proven capable of detecting 

numerically challenging failure modes, such as rotations about only one point. 

All possible failure modes can be automatically detected along the block’s 

equilibrium path; they may originate from a limit point or from dynamic instability 

(divergence or flutter); equilibrium paths emanating from bifurcation points are followed 

by the algorithm.  

The algorithm identifies both static and dynamic failure modes. Static analyses 

(including limiting equilibrium) do not take into account the block’s inertia properties, 

which may lead to detecting an incorrect failure mode. The calculation of the factor of 

safety comes with no overhead, and does not require trial and error model runs using the 

reduction of the strength parameters, which may even lead to erroneous failure modes. 

Rock blocks that are typically thought of reaching equilibrium by translation 

actually rotate about their centroid because the reaction forces create a non-zero moment 

about the centroid; this is the case of 2-plane wedges subjected to their own weight. The 
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equilibrium path of a rock block that undergoes slumping failure must first pass through a 

bifurcation point, unless the block is laterally constrained.  

9.1.2 Modified Barton’s model (a constitutive model for rock fractures) 

Two databases were built by collecting the results of direct shear tests available in 

the literature: Monotonic Direct Shear Tests (MDST), which contains the results of 362 

tests, and Cyclic Direct Shear Tests (CDST), which contains the results of 18 tests.  

Analyses of these databases showed that Barton’s failure criterion works very 

well in predicting the shear strength of rock fractures. However, some weaknesses were 

found in the original Barton model and addressed by correlation analyses performed on 

collected data. The following modifications to Barton’s model are proposed based on the 

results of correlation analyses: 

1) An empirical equation is proposed to predict the peak shear displacement of rock 

fractures. The equation considers the effect of normal stress on the peak shear 

displacement, while Barton’s equation does not. In addition, this equation can be 

used for all types of rock fractures, including sawed, smooth, and rough, while 

Barton’s equation predicts an incorrect value of zero for the peak shear 

displacement of sawed fractures. Finally, the predicted peak shear displacement 

employing the proposed equation of this study decreases as JRC increases. 

However, the predicted value of peak shear displacement using Barton’s equation 

increases with JRC.  

2) An empirical equation is proposed to predict the mobilized JRC, which is used to 

calculate the shear stress-displacement curve after peak shear displacement. 

Besides better matching the MDST database than Barton’s Table, the empirical 

equation gives a smoother curve compared to the linear interpolation of the values 

given in Barton’s Table and is easier to implement numerically.  

3) An equation is proposed to obtain pre-peak dilation at each shear displacement. 

The proposed model has none of the inconsistencies and ambiguity of Barton’s 

model. Moreover, it simulates negative dilation, while Barton’s does not. In 
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addition, the dilation displacement at any shear displacement can be calculated 

easily using this equation; also the numerical implementation is much easier. 

4) An equation is proposed to obtain post-peak dilation at each shear displacement. 

This equation contains an integral which should be solved using numerical 

methods.  

5) Two tables are introduced to simulate the pre-peak shear stress-displacement 

curve (mobilization of pre-peak shear strength): one to estimate the mobilized 

JRC at any shear displacement and another to evaluate the mobilized base friction 

angle at any shear displacement. 

6) A method is described in detail to simulate shear stress-displacement behavior of 

rock fractures in the process of loading, unloading, reversal, and reloading.  

7) A method is proposed to simulate the dilatancy behavior of rock fractures in 

cyclic shearing using the mobilized value of JRC. By investigating the CDST 

database, it was found that at the end of each unloading stage the dilation 

displacement is almost zero.  

8) The JRC angular distribution was found not to have an elliptical shape, but the 

shape of an “8”. Experimental data found in the literature were used to formulate 

a predictive model for the anisotropic distribution of JRC in the plane of a 

fracture. The input data for the model are the maximum and the minimum JRC. 

The shear strength, shear stiffness, and dilation displacement of rock fractures 

subjected to shearing in any direction can then be predicted by using either 

original or modified Barton’s model. 

 

The proposed modifications to Barton’s original model were validated by 

performing an experimental study from which the following conclusions can be drawn: 

• For sawed (or planar) fractures, the modified model works much better than 

the original Barton’s model.  

• Both the modified model and Barton’s original model display substantial 

approximation in predicting the dilatant behavior of rough fractures. However, 
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due to the following reasons, it is believed that the modified model should be 

used for predicting the dilation behavior of rock fractures: 

1- Barton’s empirical equation for peak shear displacement of rock 

fractures can not consider the effect of normal stress on the increase 

of the peak shear displacement. 

2- Barton’s model can predict dilation displacement only at the peak 

shear displacement.  

3- The modified model works better than Barton’s model in predicting 

stress-displacement curve for high values of the ߜ௛/ߜ௣௘௔௞ ratio. 

4- The negative dilation (found also in the experimental study) is not 

considered in Barton’s model, which can cause overestimation of 

factor of safety analysis such as stability of rock blocks in tunnels.  

9.1.3 Estimating normal stiffness of rock blocks using direct BEM 

An algorithm was proposed to remove the rigid-body motions in the solution of 

an elastostatic problem discretized by the direct BEM approach. The algorithm fixes one 

boundary point to prevent rigid-body translations. Finally, the rigid-body rotations are 

eliminated from the displacement solution. The method was applied to the calculation of 

the normal stiffness of rock blocks. The algorithm was verified with a simple example for 

which analytical solution is available based on the theory of elasticity. This example 

shows the increased accuracy of the proposed algorithm with respect to the 

approximation proposed by Tonon [1]. 

9.1.4 Validation of BS3D for wedge failure 

Wedge failure validation under gravity loading has been carried out for BS3D [1].  

Sixty four physical models and two case histories were analyzed using this method. For 

the wedge stability problem, physical modeling and BS3D give the same failure modes 

except for six cases in which sliding on one plane were observed in physical models 

while BS3D predicted sliding on two planes. This is due to the fact that the two failure 
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modes have very similar factors of safety and sliding directions, and BS3D considers the 

deformability of the sliding planes.  

In all cases, safety factors obtained using BS3D analyses were the same as 

obtained using Block Theory limiting equilibrium analysis. The results of BS3D analyses 

for two case histories agree well with the observations of failed wedges.  

9.1.5 Stability of rock blocks formed in the roof of a circular tunnel  

9.1.5.1  2D triangular prism formed in the roof of a circular tunnel 

An analytical method has been presented for stability analysis of 2D triangular 

prism formed in the roof of a circular tunnel. In addition, a new definition for the factor 

of safety of the block was presented. Based on sensivity analyses, the following 

conclusions were made: 
 

1) Different safety factor’s definitions may lead to different conclusions in sensivity 

analyses. 

2) The factor of safety defined in this study is limited to positive values, the same as 

most geotechnical engineering (and civil engineering) applications: at 

equilibrium, FS=1 for stable blocks, FS > 1, and for unstable blocks, 0 < FS < 1.  

3) Contrary to what established in the literature (by Hudson and Harrison [310]), the 

stability of 2D triangular wedge is independent of the ratio of ns kk / . 

4) 2D wedge stability of is strongly affected by the friction angle of the fractures. 

5) Increasing the in situ stress (or lateral pressure coefficient) slightly increases the 

stability of the block in low stress (or k0) regimes and has no effect on the factor 

of safety in high stress (or k0) regimes.  
 

9.1.5.2 3D tetrahedron formed in the roof of a tunnel 

An analytical approach was presented using limit equilibrium methods to analyze 

the stability of a tetrahedron formed in the roof of a tunnel. The factor of safety of the 
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wedge was defined as the ratio of passive to active forces (or the ratio of available shear 

strength to the required shear stress at equilibrium).  

The sensivity analyses performed using the analytical approach and BS3D lead to 

the following conclusions:  

1) Although the definition of the factor of safety in the analytical method is the same 

as the definition of the factor of safety in BS3D, if a block is analyzed using both 

approaches, the factors of safety will be different because: 

- BS3D takes into account the deformability of the rock block, fractures, and 

the rock mass surrounding the block, while the analytical approach does not. 

- BS3D considers the progressive failure and the mobilization of shear strength, 

while the analytical limit equilibrium method does not. 

- In analytical limit equilibrium solution, the in situ stresses are assumed to be 

independent of the block displacement. However, in BS3D analysis, the part 

of the in situ stresses applied to the block changes with block movement. 

2) Adopting Mohr-Coulomb as constitutive model of fractures, the initial normal 

stiffness of the fractures (and in turn the normal stiffness of the fractures) has no 

effect on stability of 3D wedges. 

3) Adopting Barton’s original or modified model, the factor of safety of tetrahedral 

rock block decreases with increasing initial normal stiffness of fractures.  

4) The safety factors calculated using the Barton’s model and the Mohr-Coulomb 

model are exactly the same, if the shear displacements of fractures are smaller 

than 30% of the peak shear displacement. 

5) Modified Barton’s model uses a different equation for the peak shear 

displacement and has a different FS compared to those of other models. 

6) The factor of safety decreases with increasing size of the wedge.  

9.1.5.3  3D prism in the roof of a circular tunnel  

Yow and Goodman [312] presented a numerical model for keyblock stability. 

Using the field observations of keyblocks reported by Yow [316], they performed 

sensivity analyses on effects of different parameters such as block geometry, in situ 
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stresses, and discontinuity properties on stability of keyblocks. As far as constitutive 

model for rock fractures, Yow and Goodman [312] used Barton’s model assuming the 

peak shear displacement is equal to one percent of the length of the block. They 

investigated the effect of the fracture base friction angle, the magnitudes of JRC and JCS, 

the initial normal stiffness, the magnitude of vertical stress, and the lateral pressure 

coefficient on stability of keyblocks in the roof of a circular tunnel. The same sensivity 

analyses were performed using BS3D. The differences of the analyses done here with 

respect to those of Yow and Goodman [312] are as follows: 

- The definition of the factor of safety was different. 

- The progressive failure of rock fracture with different constitutive models 

was considered. 

- Wider parameter ranges were checked. 

- The effects of dilation displacement, principal stress directions, distance 

from the excavation face, the block size, and the tunnel diameter on the 

stability of the keyblock were investigated. 

 

The following conclusions may be drawn from the sensivity analyses: 

1) Even using the old Barton’s model (peak shear displacement is equal to one 

percent of the length of the block) the factor of safety calculated using BS3D is 

different from the result of Yow ‘s and Goodman’s [312] analysis. The reason is 

that the definition of the factor of safety is different and BS3D considers the 

progressive failure of the fractures, while Yow ‘s and Goodman’s [312] analysis 

does not. 

2) In BS3D analyses, the factor of safety calculated using simplified Barton’s model 

(dilation starts from zero shear displacement) was the highest, followed by those 

determined using Barton’s model, Mohr-Coulomb’s model, and the modified 

Barton’s model. The Mohr-Coulomb’s model, the Barton’s model, and the 

simplified Barton’s model used in this study are exactly the same except for the 

dilation displacement. The simplified Barton’s model has the highest dilation 
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displacement and, thus, the highest normal forces applied to the fractures, the 

highest shear strength of discontinuities, and the highest factor of safety.  

3) The modified Barton’s model differs from Barton’s model in terms of the peak 

shear displacement, the mobilized shear strength, and the dilatancy behavior. 

Therefore, the factor of safety calculated using the modified Barton’s model is 

different (smaller for this prism) from those obtained employing the Barton’s 

model. 

4) The stability of the prism weakly depends on JRC (decreasing JRC from 20 to 0 

decreases FS by 30%). However, Yow and Goodman [312] found that the block 

stability strongly (decreasing JRC from 5 to 0 decreases FS by 100%) depends on 

JRC.  

5) The Barton’s model, the simplified Barton’s model, and the Mohr-Coulomb’s 

model have counterintuitive behavior for very small JRC’s. When JRC increases 

from 0 to 1, the factors of safety decrease instead of increasing. 

6) Yow and Goodman [312] found that the effect of JCS on the stability of the prism 

is not as strong as that of JRC, but it is quite effective. BS3D analyses found that 

the stability of the prism is weakly dependent on JCS.  

7) The FS flattens out after a specific value of JCS, which depends on other aspects 

of the problem because the asperities do not fail and increasing JCS almost has no 

effect on the stability of the block. 

8) Yow and Goodman [312] found that the base friction angle is quite effective on 

the stability of keyblocks. In addition, BS3D analyses show that the factor of 

safety of the prism increases with the base friction angle. 

9) Stability decreases as normal stiffness increases (the same as Yow’s and 

Goodman’s [312] conclusion).  

10) Effect of in situ stress condition of the prism: Yow and Goodman [312] found that 

aside from the shear strength, the most critical condition affecting keyblock 

stability is the stress environment. The block becomes less stable as the initial 

confining stresses decrease; the trend accelerates as stress magnitudes become 
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very small (smaller than about 1.5 MPa). The same conclusion has been made 

based on BS3D analyses. 

11) Yow and Goodman [312] found that the block becomes less stable as the lateral 

stress ratio decreases; the trend accelerates as the ratio goes below about one-half. 

The same conclusion has been made based on BS3D analyses. 

12) The principal stress directions strongly affect the stability of keyblocks.  

13) The in situ stresses strongly affect the stability of the block, even more than the 

shear strength of fractures. 

14) The factor of safety increases with distance from excavation face up to 

approximately five times of the tunnel radius.  

15) The factor of safety of the prism increases with increasing radius of the tunnel.  

16) Because of different dilation displacements, the factors of safety obtained using 

the simplified Barton’s model are higher than those calculated using the Barton’s 

model which itself is higher than those determined employing the Mohr-Coulomb 

model. The higher the dilation displacements are, the higher are the normal forces 

applied to the fractures, the shear strength of the fractures, and, finally, the factor 

of safety of the block. 

17) The modified Barton’s model and the old Barton’s model may have smaller or 

higher factors of safety compared the other models, while there are minimal 

differences between them. 

18) The factor of safety of the block decreases with increasing size of the prism.  

19) The factor of safety of the block decreases (by 20%) with increasing radius of the 

tunnel (from 1 to 10 m) and size of the prism accordingly. The change is very 

small. This is the combination effect of the tunnel radius (which increases the FS) 

and the size of the block (which decrease the FS).  

20) The factor of safety of the maximum block remains almost constant with 

increasing tunnel radius. This is the combination effect of the tunnel radius 

(which increases the FS) and the size of the block (which decrease the FS).  
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Finally, it can be concluded from the sensivity analyses performed that, in 

stability of keyblocks, in situ stresses have the highest effect. In addition, the type of 

constitutive model has strong effect, even higher than those of the shear strength of the 

fractures. The shear strength and stiffness of the fractures have weak effect on stability of 

keyblocks. 

9.1.6 Effect of high-velocity jet impact on stability of rock blocks in plunge pools  

The stability of single rock blocks in plunge pools has been investigated. An 

approach is introduced to estimate pressure forces generated in plunge pools due to high-

velocity jet impacts. This method together with the ability of BS3D to determine the 

stability of a rock block and its displacements are validated using Federspiel’s 

experimental study [27, 28]. 

Based on the simulation of Martins’ [29] experimental study using BS3D, it is 

proposed to consider that the block is most likely to be removed when hup/zb > 0.25.  

The application of the scour model is explained by a fictious rock mass (good 

quality granite) initially introduced by Bollaert [30]. The whole scour model and BS3D 

algorithm are then validated using three case histories and prototypes [29-31].  

Finally, the ability of BS3D in predicting more complicated failure modes 

(divergence and flutter) together with dealing with in situ stress and dilation behavior of 

rock fractures is demonstrated using a fictious example. It was shown that rock blocks 

subjected to water forces (or other non-conservative forces) may undergo flutter failure 

before reaching a limit point. Thus, existing methods (including limiting equilibrium) 

may overestimate the safety of a rock block and, thus, underestimate scour depth when 

water forces are important (e.g. dam foundations and rock scour at bridge piers). 

9.2 RECOMMENDATIONS FOR FUTURE STUDIES 

9.2.1 Constitutive model for rock fractures 

In this dissertation, modifications have been proposed to Barton’s model for rock 

fractures based on correlation analyses of the results of direct shear tests found in the 
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literature. The database is given in Appendix A. Although this database presents a great 

source of information, it does not include all direct shear tests done in the past. Adding 

significant number of data to the given database and reanalyzing them may lead to some 

improvements in the modified model.  

In addition, the modified model still suffers from weaknesses mostly in cyclic 

shearing. Performing a series of cyclic direct shear tests on wide ranges of rock fractures 

may lead to a better understanding of behavior of rock joints subjected to load reversal 

and reloading.  

9.2.2 Scour of plunge pools 

An experimental study should be performed to validate predictions of BS3D in 

terms of flutter/divergence versus static failure modes. 

The implemented formulation for the stability analysis of single rock blocks in a 

plunge pool can be folded into a probabilistic approach to evaluate probability of scour 

threshold and extent. This study will deliver a formulation and a computer program for 

the evaluation of: 

• The probability of scour as a function of plunge pool elevation. 

• The probability of scour retrogression in the walls of the plunge pool toward 

the dam, its foundation, or the appurtenances. 

 

The approach should be validated at a couple of dam sites where rock scour is a 

possible failure mechanism as highlighted by available risk analyses. The results of this 

study will allow one to carry out a quantitative risk assessment for scour.  

9.2.3 Scour of bridge foundations 

Scour is one of the first causes of bridge collapse in the USA. BS3D can be used 

to investigate the problem of scour at bridge foundation on rock. BS3D simulation will 

enhance the understanding of rock block removal under fluctuating turbulence. The scour 

zone is to be estimated and recommendations are to be proposed based on this study.  
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9.2.4 Coupling Digital Terrain Method and BS3D 

Laser and photogrammetric methods for rock face characterization produce 

Digital Terrain Method (DTM) that can be used to locate removable blocks. The stability 

of these removable blocks may be studied using BS3D. The developed version of the 

code can be used to remotely analyze stability of rock slopes and/or tunnels to propose a 

guideline for design.  

9.2.5 Stability of rock slopes during earthquake and heavy rains 

Stable natural or artificial rock slopes may become unstable during an earthquake 

or heavy rains (ex: earthquake in Chalous road, Iran, 2005). The effect of earthquakes 

and heavy rains on stability of rock slopes can be investigated using BS3D. Reduction in 

shear strength of rock fracture due to cyclic shearing and/or water flow should be 

considered using an appropriate approach. 
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APPENDIX A: DIRECT SHEAR TEST DATABASE 

A.1. MONOTONIC DIRECT SHEAR TESTS (MDST) DATABASE 

Studies on monotonic shearing [79, 81, 106, 113, 115, 127, 154, 161, 162, 169, 

176, 183-210] were investigated to find available monotonic direct shear test results. 

Peak shear strength, peak shear displacement, peak dilation displacement, maximum 

negative value of dilation, and shear displacement at which dilation displacement is zero 

were digitized from the curves (see Table A.1)  For post peak behavior shear strength, 

and dilation displacement at 4 different points were digitized (see Table A.2).  

A large amount of data was collected from a site investigation report series 

published by Svensk Karnbranslehantering AB [188-210]. In these cases, the values of 

JCS was assumed to be equal to the UCS of intact rock, which can be calculated from 

available results of triaxial tests run on intact rock specimens.  Base friction angle and 

JRC values were back calculated assuming that: (1) Barton [21] failure criterion can 

predict the peak and residual shear strength correctly and (2) residual shear strength is 

reached when 5.0/ =peakmobilized JRCJRC [115] and assuming no weathering for fractures 

( br φφ = ). JRC  values may be different for the same specimens under different normal 

stresses (due to the damage of asperities in the shear test previously run under smaller 

normal stresses).  

A.2. CYCLIC DIRECT SHEAR TESTS (CDST) DATABASE 

Results of 18 cyclic direct shear tests were found in the literature [103, 127, 150, 

167, 169, 174, 213]. For each available cycle, shear strengths and dilation displacements 

at different shear displacements were digitized so that shear strength-shear displacement 

as well as dilation-shear displacement curves could be built with the available 

information (see Table A.3). 
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Table A.1: Monotonic Direct Shear Test (MDST) database: pre-peak behavior 

C
as

e 
N

o.
 Source and 

Description 
L 

(m) 
bφ  

(°) 
JRC JCS 

(kPa) 
pδ  

(mm) 
nσ  

(kPa) 
pτ  

(kPa) 

( )phδ
(mm) 

( ) ( ) 0@ =hv δδ  ( )hδmin  

1 

Barton [115];  
Figure 5.1; 

Tension Fracture 

0.1 30 16 450 0.33 2 - 0.083 0.083 0 
2 0.1 30 16 450 0.46 3.8 - 0.058 0.300 0 
3 0.1 30 16 450 0.50 8 - 0.067 0.300 0 
4 0.1 30 16 450 0.53 13 - 0.062 0.300 0 
5 0.1 30 16 450 0.58 20 - 0.026 0.300 0 
6 0.1 30 16 450 1.18 42 - 0.088 0.710 0 
7 

Bandis [113] 

0.06 32 15.0 2000 0.72 24.5 44.22 - - - 
8 0.12 32 12.2 1464.1 0.92 24.5 34.65 - - - 
9 0.18 32 10.8 1219.9 0.97 24.5 29.42 - - - 

10 0.36 32 8.8 893.02 1.85 24.5 23.18 - - - 
11 

Barton [115]; 
Figure 6.2 

0.06 32 12.5 9554.4 0.78 24.5 50.52 0.22 0.09 0 
12 0.12 32 11.5 4026.1 1.25 24.5 39.78 0.17 0.36 0 
13 0.18 32 11.0 2304.7 1.80 24.5 34.61 0.18 0.73 0 
14 0.36 32 9.0 1679.6 2.22 24.5 32.02 0.11 0.93 0 
15 

Barton et al. [81]; 
Figure 20 

0.25 30 8.3 57000 1.64 6000 4170 0.07 0.74 0 
16 0.25 30 8.3 57000 1.61 24000 13410 0.03 0.8 0 
17 0.75 30 6.7 41000 2.76 6000 3720 0.08 1.01 0 
18 0.75 30 6.7 41000 3.07 24000 12570 0.03 1.08 0 
19 

Barton et al. [81]; 
Figure 22 

0.30 30 8.0 72000 1.55 1000 1020 0.076 0.83 0 
20 0.30 30 8.0 72000 1.71 3000 2570 0.061 0.83 0 
21 0.30 30 8.0 72000 1.67 10000 7530 0.039 0.83 0 
22 0.30 30 8.0 72000 1.67 30000 19670 0.012 0.83 0 
23 

Barton et al. [81]; 
Figure 23 

0.10 30 10.0 100000 0.84 10000 8440 0.04 0.42 0 
24 0.30 30 8.0 72000 1.81 10000 7620 0.06 0.77 0 
25 1.00 30 6.3 50000 3.61 10000 7050 0.08 1.35 0 
26 3.00 30 5.1 36000 7.34 10000 6640 0.02 2.55 0 

27 Olson and Barton 
[176]; Figure 16 0.20 31 9.7 169000 0.87 2000 2350 -0.02 0.93 -0.03 

28 

Jacobsson & 
Flansbjer [192, 
202]; KLX06A;  

Avro Granite 

0.06 33 12.0 184000 0.13 500 1020 0.04 0.04 0.00 
29 0.06 33 7.4 184000 0.6 5000 4930 0.065 0.031 -0.02 
30 0.06 33 6.5 184000 2.17 20000 16370 0.06 1.18 -0.05 
31 0.06 33 7.7 184000 0.24 500 660 0.03 0.12 0.00 
32 0.06 33 6.6 184000 0.3 5000 4710 0.015 0.26 -0.02 
33 0.06 33 6.1 184000 2.26 20000 16140 0.09 0.79 -0.04 
34 0.06 33 12.5 184000 0.47 500 1070 0.14 0 0.00 
35 0.06 33 7.3 184000 0.47 5000 4910 0 0.46 -0.02 
36 0.06 33 3.8 184000 1.48 20000 14910 -0.01 1.66 -0.07 
37 0.06 33 10.8 184000 0.11 500 890 0.05 0.03 0.00 
38 0.06 33 8.7 184000 0.26 5000 5300 0.02 0.19 -0.01 
39 0.06 33 5.7 184000 0.54 20000 15900 -0.03 0.9 -0.05 
40 0.06 33 10.7 184000 0.3 500 880 0.055 0.14 -0.01 
41 0.06 33 8.4 184000 0.38 5000 5200 0 0.39 -0.03 
42 0.06 33 6.4 184000 0.71 20000 16280 -0.01 0.95 -0.03 
43 0.07 33 6.3 184000 0.88 500 580 0.13 0 0.00 
44 0.07 33 3.1 184000 1.5 5000 3890 0.045 0.46 -0.02 
45 0.07 33 1.4 184000 2.87 20000 13670 -0.055  - -0.06 
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e 
N
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( ) ( ) 0@ =hv δδ  ( )hδmin  

46 

Jacobsson & 
Flansbjer [199, 

208]; KL10-117; 
Avro Granite 

0.06 35 9.1 172000 0.79 500 800 0.11 0.17 -0.01 
47 0.06 35 6.7 172000 0.6 5000 5040 0.005 0.59 -0.03 
48 0.06 35 4.6 172000 2.37 20000 16380 0.13 1.16 -0.05 
49 0.06 35 5.3 172000 1.46 5000 4680 0.19 0.34 -0.02 
50 0.06 35 2.1 172000 4.16 20000 15040 0.27 0.95 -0.05 
51 0.06 35 10.6 172000 1.26 500 940 0.02 0.06 -0.02 
52 0.06 35 3.1 172000 3.13 20000 15580 0.11 0.095 -0.04 
53 0.07 35 7.8 172000 1.15 500 710 0.29 0.08 0.00 
54 0.07 35 5.3 172000 0.35 5000 4680 0.08 0.23 -0.01 
55 0.07 35 4.3 172000 0.63 20000 16180 0 0.61 -0.30 
56 0.06 35 9.9 172000 0.45 500 870 0.06 0.19 0.00 
57 0.06 35 7.8 172000 0.58 5000 5350 0.01 0.48 -0.02 
58 0.06 35 4.4 172000 0.94 20000 16280 -0.03 1.29 -0.05 
59 

Jacobsson & 
Flansbjer [200, 
209]; KLX12A-

117; Avro Granite  
and Quartz 

monzodiorite  

0.07 35 10.9 175000 0.13 500 970 0.04 0.02 0.00 
60 0.07 35 7.3 175000 2.38 5000 5220 0.44 0.09 -0.01 
61 0.07 35 5.6 175000 2.68 20000 16950 0.11 0.73 -0.02 
62 0.06 34 11.8 268700 0.71 500 1140 0.2 0.15 0.00 
63 0.06 34 6.5 268700 0.76 5000 5030 0.04 0.56 -0.04 
64 0.06 34 3.9 268700 2.73 20000 15880 0.05 1.13 -0.05 
65 0.06 34 13.4 268700 0.63 500 1420 0.2 0.1 0.00 
66 0.06 34 6.4 268700 0.34 5000 5000 -0.01 0.37 -0.02 
67 0.06 34 2.4 268700 3.13 20000 14910 -0.02  - -0.04 
68 

Jacobsson & 
Flansbjer [201, 

210]; KFM09A-
117; Medium-
grained granite 

0.06 35 8.4 250000 0.49 500 790 0.09 0.13 0.00 
69 0.06 35 6.0 250000 1.69 5000 5040 0.2 0.46 -0.04 
70 0.06 35 3.9 250000 3.12 20000 16370 -0.02 4.2 -0.09 
71 0.05 35 9.3 250000 0.18 500 870 0.03 0.1 0.00 
72 0.05 탟 6.2 250000 0.42 5000 5100 -0.03 0.56 -0.04 
73 0.05 35 2.0 250000 1.09 20000 15190 -0.1  - -0.11 
74 0.05 35 6.6 250000 0.47 500 660 0.07 0.3 -0.01 
75 0.05 35 3.1 250000 0.57 5000 4240 -0.01 0.62 -0.04 
76 0.05 35 1.5 250000 4.13 20000 14900 -0.06  - -0.12 
77 0.05 35 9.4 250000 0.18 500 880 0.08 0 0.00 
78 0.05 35 3.6 250000 1.25 5000 4370 0.11 0.33 -0.02 
79 0.05 35 1.1 250000 3.62 20000 14620 0.02 2.51 -0.07 
80 

Jacobsson & 
Flansbjer [195, 

203]; KFM06A-
117; Medium-
grained granite 

0.06 30 13.4 185000 0.11 500 1040 0.04 0.03 0.00 
81 0.06 30 8.8 185000 0.23 5000 4790 0.01 0.13 0.00 
82 0.06 30 5.4 185000 0.39 20000 14130 0 0.39 -0.09 
83 0.06 30 10.2 185000 0.21 500 750 0.04 0.08 0.00 
84 0.06 30 7.8 185000 1.52 5000 4530 0.24 0.25 -0.01 
85 0.06 30 7.5 185000 0.46 20000 15200 -0.02 0.64 -0.03 
86 0.06 30 5.2 185000 1.14 500 470 0.12 0.27 0.00 
87 0.06 30 4.8 185000 1.53 5000 3840 0.1 0.49 -0.01 
88 0.06 30 5.5 185000 5.05 20000 14160 0.06 2.22 -0.04 
89 0.06 30 8.6 185000 0.31 500 640 0.05 0.04 0.00 
90 0.06 30 5.9 185000 0.44 5000 4090 -0.01 0.5 -0.02 
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91 

Jacobsson & 
Flansbjer [195, 

203]; KFM06A-117; 
Medium-grained 

granite 

0.06 30 5.9 185000 2.56 20000 14350 -0.13  - -0.23 
92 0.06 30 11.4 185000 0.1 500 840 0.005 0.04 0.00 
93 0.06 30 8.5 185000 0.29 5000 4720 -0.01 0.35 -0.02 
94 0.06 30 9.5 185000 2.24 20000 16290 0 2.19 -0.08 
95 0.07 30 13.4 185000 0.15 500 1040 0.01 0.12 0.00 
96 0.07 30 12.1 185000 0.32 5000 5750 -0.02 0.39 -0.03 
97 0.07 30 10.6 185000 0.98 20000 16900 -0.06 1.71 -0.08 
98 

Jacobsson & 
Flansbjer  

[193, 194, 204];  
KFM05A-117; 

Medium-grained 
granite 

0.05 28 15.5 230000 0.12 500 1330 0.02 0.06 0.00 
99 0.05 28 11.2 230000 0.38 5000 5290 0 0.38 -0.02 
100 0.05 28 9.5 230000 1.12 20000 15690 -0.08 2.51 -0.09 
101 0.05 28 14.7 230000 0.11 500 1190 0.03 0.02 0.00 
102 0.05 28 11.5 230000 0.33 5000 5380 0 0.29 -0.01 
103 0.05 28 8.7 230000 0.94 20000 15170 -0.07 1.83 -0.08 
104 0.06 28 7.8 230000 0.46 500 570 0.1 0 0.00 
105 0.06 28 2.9 230000 0.38 5000 3220 -0.005 0.49 -0.02 
106 0.06 28 0.9 230000 6.69 20000 11060 -0.05 -  -0.06 
107 0.06 28 12.2 230000 0.15 500 880 0.04 0.06 0.00 
108 0.06 28 10.6 230000 0.24 5000 5100 0 0.25 -0.02 
109 0.06 28 8.1 230000 0.47 20000 14840 0 0.52 -0.02 
110 0.07 30 14.2 230000 0.15 500 1230 0 0.12 0.00 
111 0.07 30 12.8 230000 0.25 5000 6220 0 0.24 -0.01 
112 0.07 30 11.8 230000 0.46 20000 18370 0.21 0.77 -0.04 
113 0.06 30 9.5 230000 0.21 500 720 0.03 0.12 0.00 
114 0.06 30 7.4 230000 0.46 5000 4540 0 0.46 -0.02 
115 0.06 30 5.2 230000 3.02 20000 14290 -0.06 0 -0.08 
116 0.06 30 13.8 230000 0.1 500 1160 0.03 0.05 0.00 
117 0.06 30 9.0 230000 0.28 5000 4980 0.02 0.14 0.00 
118 0.06 30 6.2 230000 0.84 20000 14830 0.01 0.75 -0.03 
119 0.06 30 13.0 230000 0.05 500 1060 0.02 0.03 0.00 
120 0.06 30 10.2 230000 0.24 5000 5340 0.01 0.15 0.00 
121 0.06 30 7.7 230000 0.58 20000 15720 -0.03 0.96 -0.05 
122 

Jacobsson & 
Flansbjer  

[197, 206];  
KFM08A-117; 

Medium-grained 
granite 

0.06 31 15.8 173000 0.16 500 1460 0.07 0.05 0.00 
123 0.06 31 12.0 173000 0.34 5000 5860 0.02 0.28 -0.01 
124 0.06 31 6.7 173000 0.72 20000 15230 -0.03 0.99 -0.04 
125 0.05 31 11.0 173000 0.13 500 830 0.03 0.04 0.00 
126 0.05 31 8.8 173000 0.33 5000 4910 0.02 0.27 -0.01 
127 0.05 31 8.9 173000 2.99 20000 16390 0.07 0.99 -0.04 
128 0.05 31 15.4 173000 0.22 500 1380 0.06 0.12 0.00 
129 0.05 31 12.8 173000 0.39 5000 6110 0.02 0.33 -0.02 
130 0.05 31 10.3 173000 2.78 20000 17180 0.1 1.26 -0.07 
131 0.06 31 9.1 173000 0.3 500 690 0.06 0.12 0.00 
132 0.06 31 7.6 173000 0.38 5000 4610 0.03 0.31 -0.02 
133 0.06 31 4.8 173000 0.58 20000 14250 -0.02 0.72 -0.04 
134 0.06 31 10.8 173000 0.29 500 810 0.06 0.15 0.00 
135 0.06 31 8.1 173000 0.42 5000 4740 0.03 0.32 -0.01 
136 0.06 31 7.0 173000 2.48 20000 15400 0.14 0.84 -0.04 
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137 

Jacobsson & 
Flansbjer  

[196, 205];  
KLX03A-117; 

Avro Granite and 
Quartz 

monzodiorite 

0.05 35 6.6 158000 1.18 500 630 0.23 0.04 0.00 
138 0.05 34 7.1 158000 0.99 5000 4930 0.1 0.27 -0.01 
139 0.05 34 7.3 158000 1.92 20000 17140 0.02 1.5 -0.05 
140 0.06 34 10.0 158000 0.42 500 830 0.08 0.1 0.00 
141 0.06 34 4.1 158000 1.23 5000 4220 0.03 0.69 -0.02 
142 0.06 34 3.2 158000 1.79 20000 15010 -0.05  - -0.17 
143 0.06 34 6.1 158000 0.33 500 �80 0.04 0.05 0.00 
144 0.06 34 5.5 158000 0.43 5000 4530 0 0.41 -0.01 
145 0.06 34 2.7 158000 3.33 20000 14770 0.09 1.18 -0.04 
146 0.06 34 7.9 158000 0.13 500 680 0.01 0 0.00 
147 0.06 34 4.9 158000 1.84 5000 4390 0.19 0.33 -0.01 
148 0.06 34 4.2 158000 2.23 20000 15490 0.09 0.56 -0.01 
149 0.06 34 11.4 158000 0.18 500 960 0.02 0 0.00 
150 0.06 34 8.4 158000 0.4 5000 5290 0.01 0.34 -0.01 
151 0.06 34 4.9 158000 0.99 20000 15850 -0.01 1.1 -0.03 
152 0.05 34 7.2 158000 1.16 500 640 0.09 0.35 -0.01 
153 0.05 34 4.0 158000 1.3 5000 4200 0.05 0.77 -0.03 
154 0.05 34 1.7 158000 5.1 20000 14280 0 4.96 -0.06 
155 0.06 34 6.1 158000 0.56 500 580 0.02 0.37 -0.01 
156 0.06 34 3.4 158000 0.67 5000 4060 -0.02 0.83 -0.05 
157 0.06 34 1.9 158000 1.32 20000 14360 -0.05 2.3 -0.10 
158 0.06 31 12.7 176000 0.17 500 1000 0.03 0.11 -0.01 
159 0.06 31 9.3 176000 0.32 5000 5060 0 0.32 -0.02 
160 0.06 31 4.9 176000 1.07 20000 14330 -0.04 3.01 -0.05 
161 

Jacobsson & 
Flansbjer  

[198, 207];  
KFM07A-117; 

Medium-grained 
granite 

0.06 35 9.4 206000 0.1 500 850 0.03 0.05 0.00 
162 0.06 35 9.7 206000 0.24 5000 6090 0.01 0.2 -0.01 
163 0.06 35 5.1 206000 0.5 20000 16890 -0.01 0.66 -0.03 
164 0.06 35 9.4 206000 0.07 500 850 0.02 0.04 0.00 
165 0.06 35 9.0 206000 0.23 5000 5850 0.01 0.19 -0.01 
166 0.06 35 5.1 206000 0.75 20000 16870 -0.01 1.06 -0.03 
167 0.06 35 8.8 206000 0.17 500 800 0.02 0.08 0.00 
168 0.06 35 4.8 206000 1.11 5000 4610 0.11 0.23 -0.01 
169 0.06 35 4.6 206000 3.93 20000 16610 0.09 1.1 -0.03 
170 0.05 35 8.3 206000 0.19 500 760 0.03 0.08 0.00 
171 0.05 35 5.2 206000 0.32 5000 4740 -0.005 0.36 -0.02 
172 0.05 35 3.2 206000 1.88 20000 15760 0 1.46 -0.03 
173 0.06 35 8.9 206000 0.23 500 810 0.07 0.03 0.00 
174 0.06 35 6.8 206000 0.27 5000 5180 0.02 0.18 -0.01 
175 0.06 35 5.8 206000 1.85 20000 17290 0.06 0.55 -0.02 
176 

Homand et al. 
[169];  

Schist replicas 

0.15 34 11.0 75000 8.16 400 640 1.17 3 0.00 
177 0.15 34 11.0 75000 9.63 800 1150 2.12 1 0.00 
178 0.15 34 11.0 75000 8.17 1200 1670 1.56 0.25 0.00 
179 0.15 34 11.0 75000 7.68 1800 2360 1.35 0.5 0.00 
180 0.15 34 11.0 75000 12.65 2400 2870 1.17 5.31 -0.18 
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181 

Jacobsson   
[188, 189]; 

KLX02-117;  
Avro Granite 

0.06 34 5.8 202300 0.65 500 570 0.11 0.14 0.00 
182 0.06 34 2.3 202300 1.47 5000 3800 0.13 0.8 -0.02 
183 0.06 34 0.9 202300 2.12 20000 13690 0.11 1.27 -0.03 
184 0.06 34 10.3 202300 0.48 500 880 0.11 0.05 0.00 
185 0.06 34 9.0 202300 0.52 5000 5540 0.04 0.31 -0.01 
186 0.06 34 8.2 202300 0.9 20000 17840 0.02 0.68 -0.03 
187 0.05 34 7.4 202300 0.22 500 660 0.02 0.05 0.00 
188 0.05 34 4.1 202300 1.93 5000 4220 0.1 0.49 -0.01 
189 0.05 34 3.6 202300 3.98 20000 15120 0.07 1.05 -0.02 
190 0.05 34 12.2 202300 0.13 500 1090 0.02 0.11 0.00 
191 0.05 34 7.7 202300 0.28 5000 5160 0 0.27 -0.01 
192 0.05 34 5.3 202300 0.7 20000 16090 0 0.71 -0.03 
193 0.06 34 7.1 202300 1.1 500 640 0.07 0 0.00 
194 0.06 34 6.4 202300 3.11 5000 4790 0.21 0.93 -0.02 
195 0.06 34 7.8 202300 2.95 20000 17570 0.1 1.76 -0.05 
196 0.05 34 12.7 202300 0.1 500 1150 0.03 0 0.00 
197 0.05 34 7.4 202300 0.26 5000 5060 0.01 0.21 -0.02 
198 0.05 34 4.8 202300 0.48 20000 15790 0 0.49 -0.01 
199 0.06 34 10.5 202300 0.47 500 900 0.11 0.1 0.00 
200 0.06 34 9.8 202300 0.49 5000 5790 0.02 0.41 -0.02 
201 0.06 34 7.7 202300 1.09 20000 17510 0.02 0.87 -0.04 
202 0.06 34 11.4 202300 0.14 500 990 0.03 0.08 0.00 
203 0.06 34 8.7 202300 0.4 5000 5460 0.01 0.32 -0.02 
204 0.06 34 7.3 202300 2.66 20000 17290 0.09 1.09 -0.04 
205 0.06 34 4.6 202300 1.09 500 510 0.07 0.13 0.00 
206 0.06 34 2.0 202300 4.54 5000 3730 0.26 1.19 -0.03 
207 0.06 34 0.8 202300 5.68 20000 13660 0.12 2.94 -0.04 
208 Yoshinaka and 

Yamabe [154]; 
Diamond Sawed; 

Welded-tuff  
 (Ohya stone) 

0.14 39 0.0 11200 1.25 490 22.9    
209 0.14 39 0.0 11200 1.45 980 11.4    
210 0.14 39 0.0 11200 1.55 1460 7.7    
211 0.14 39 0.0 11200 1.55 1950 5.7    
212 0.14 39 0.0 11200 1.80 2930 3.8    
213 

Yoshinaka and 
Yamabe [154]; 
Sand Blasted; 
Welded-tuff  

 (Ohya stone) 

0.13 33 0.0 11200 0.25 480 23.3    
214 0.13 33 0.0 11200 1.10 910 12.3    
215 0.13 33 0.0 11200 0.75 1190 9.4    
216 0.13 33 0.0 11200 0.90 1800 6.2    
217 0.13 33 0.0 11200 1.20 2600 4.3    
218 0.13 33 0.0 11200 1.30 3050 3.7    
219 

 
Van Sint Jan 
[185]; Plaster 

0.15 48 20.0 14700 1.50 500 29.4    
220 0.15 48 20.0 14700 1.70 1000 14.7    
221 0.15 48 20.0 14700 1.70 2000 7.35    
222 0.15 48 20.0 14700 2.20 4000 3.675    
223 0.15 48 20.0 14700 2.40 6000 2.45    
224 

Aydan et al. [186]; 
Plaster 

0.16 36 13.0 920 1.20 30 30.67    
225 0.16 36 13.0 920 2.00 70 13.14    
226 0.16 36 11.0 920 1.80 20 46.00    
227 0.16 36 11.0 920 2.45 40 23.00    
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228 

Bandis et al. [79]; 
Figure 4; Tension 

fracture 

0.09 32 6.5 2000 0.47 10 11.28       
229 0.09 32 7.5 2000 0.55 10 15.4       
230 0.09 32 10.6 2000 0.73 10 17.34       
231 0.09 32 16.6 2000 0.73 10 31.16       
232 0.09 32 6.5 2000 0.56 34 32.38       
233 0.09 32 7.5 2000 0.61 34 35.77       
234 0.09 32 10.6 2000 0.8 34 41.4       
235 0.09 32 16.6 2000 0.85 34 52.9       
236 0.09 32 6.5 2000 1.18 90 71.5       
237 0.09 32 7.5 2000 1.07 90 81.8       
238 0.09 32 10.6 2000 0.99 90 90.5       
239 0.09 32 16.6 2000 1.33 90 123       
240 

Bandis et al. [79]; 
Figures 9-21; 

Bedding plane in 
limestone 

0.06 32 17.5 2000 0.57 24.5 56.56 0.15 0.2 0.00 
241 0.12 32 14.2 1375.5 0.74 24.5 52.35 0.14 0.2 0.00 
242 0.18 32 12.6 1105.1 1.17 24.5 41.50 0.1 0.4 0.00 
243 0.36 32 10.2 760.03 2.7 24.5 35.96 0.16 0.8 0.00 
244 0.06 32 17.5 2000 0.75 24.5 54.68       
245 0.12 32 14.2 1404.4 0.91 24.5 41.24       
246 0.18 32 12.6 1142.1 1.87 24.5 45.96       
247 0.36 32 10.2 802 2.17 24.5 41.96       
248 

Bandis et al. [79]; 
Figures 9-21; 

Vertical tension 
joints in siltstone 

0.06 32 17.5 2000 1.13 24.5 44.81       
249 0.12 32 14.2 1404.4 1.74 24.5 33.07       
250 0.18 32 12.6 1142.1 2.13 24.5 35.07       
251 0.36 32 10.2 802 3.5 24.5 26.13       
252 0.06 32 17.5 2000 1.13 24.5 54.68       
253 0.12 32 14.2 1479.4 1.22 24.5 39.25       
254 0.18 32 12.6 1240.2 1.45 24.5 34.00       
255 0.36 32 10.2 917.35 2.17 24.5 27.65       
256 

Bandis et al. [79]; 
Figures 9-21; 

Bedding plane in 
slightly 

metamorphosed 
fine grained 
sandstone 

0.06 32 17.5 2000 1.13 24.5 43.21       
257 0.12 32 14.2 1510.5 1.37 24.5 41.29       
258 0.18 32 12.6 1281.7 1.67 24.5 32.40       
259 0.36 32 10.2 968.01 2.91 24.5 29.60       
260 0.06 32 17.5 2000 0.9 24.5 37.43       
261 0.12 32 14.2 1558.3 1.05 24.5 31.65       
262 0.18 32 12.6 1346.7 1.15 24.5 27.84       
263 0.36 32 10.2 1049.3 1.4 24.5 24.18       
264 0.06 32 17.5 2000 0.75 24.5 28.09       
265 0.12 32 14.2 1693.5 1.15 24.5 25.78       
266 0.18 32 12.6 1536.5 1.1 24.5 24.00       
267 0.36 32 10.2 1301 1.2 24.5 21.60       
268 0.06 32 17.5 2000 0.75 24.5 21.73 0.02 0.39 0.00 
269 0.12 32 14.2 1798.8 1.15 24.5 20.89 0.03 0.39 0.00 
270 0.18 32 12.6 1690.6 1.1 24.5 19.84 0.02 0.39 0.00 
271 0.36 32 10.2 1520.5 1.25 24.5 18.75 0 0.94 0.00 
272 Bandis et al. [79]; 

Figures 9-21; 
Bedding plane in 

limestone 

0.06 32 17.5 2000 0.6 24.5 61.96       
273 0.12 32 14.2 1464.1 0.7 24.5 49.61       
274 0.18 32 12.6 1219.9 0.9 24.5 33.70       
275 0.36 32 10.2 893.02 1.8 24.5 26.67       
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276 

Bandis et al. [79]; 
Figures 9-21; 

Bedding plane in 
Course grained 

sandstone 

0.05 32 18.5 2000 0.7 24.5 58.59 0.02 0.34 0.00 
277 0.10 32 15.0 1361.3 0.8 24.5 39.47 0.03 0.59 0.00 
278 0.20 32 12.2 926.59 1.1 24.5 30.50 0.12 0.34 0.00 
279 0.40 32 9.9 630.69 1.9 24.5 25.34 0.11 0.56 0.00 
280 0.05 32 18.5 2000 0.7 24.5 58.59       
281 0.10 32 15.0 1419.1 0.8 24.5 39.89       
282 0.20 32 12.2 1007 1.1 24.5 30.98       
283 0.40 32 9.9 714.5 1.7 24.5 25.81       
284 

Desai and Fishman 
[106];  

Figures 11-18; 
Concrete replica 

0.30 30 0.0 30000 0.05 35 20.7       
285 0.30 30 0.0 30000 0.1 138 79.67       
286 0.30 30 0.0 30000 0.75 345 199.2       
287 0.30 30 2.0 30000 1.2 35 23.61       
288 0.30 30 3.0 30000 1.1 35 25.43       
289 0.30 30 2.0 30000 1.25 69 46.54       
290 0.30 30 3.0 30000 1.2 69 50.13       
291 0.30 30 2.0 30000 1.6 138 93.08       
292 0.30 30 3.0 30000 2.5 138 100.3       
293 0.30 30 2.0 30000 1.8 345 232.7       
294 0.30 30 3.0 30000 4 345 250.7       
295 

Huang et al. [184]; 
Figures 3-8; 

Replica 

0.10 35 0.0 8500 0.33 300 184       
296 0.10 35 0.0 8500 0.65 500 308       
297 0.10 35 0.0 8500 1.96 1000 777       
298 0.10 35 0.0 8500 2.71 1500 1200       
299 0.10 35 8.7 8500 0.6 100 103.2 0.05 0 0.00 
300 0.10 35 8.7 8500 1.16 300 412.5 0 1.05 -0.04 
301 0.10 35 8.7 8500 0.99 500 523.4 0 1.57 -0.03 
302 0.10 35 8.7 8500 1.49 1000 928.5 -0.03 1.57 -0.03 
303 0.10 35 8.7 8500 2.48 1500 1278 -0.07   -0.06 
304 0.10 35 15.8 8500 0.84 100 191.2 0.07 0.54 0.00 
305 0.10 35 15.8 8500 1.16 300 606.4 0.04 0.39 -0.04 
306 0.10 35 15.8 8500 2 500 785.1 0.03 1.42 0.00 
307 0.10 35 15.8 8500 1.84 1000 1067 0.01 1.42 0.00 
308 0.10 35 15.8 8500 2.5 1500 1530 -0.02   -0.03 
309 

Wibowo [162] and 
Wibowo et al. 

[161]; G2; Replica 

0.14 32 14.6 27600 1.28 276 381.3 0.128   
310 0.14 32 14.6 27600 1.94 1380 1479 0.1552   
311 0.14 32 14.6 27600 2.29 2755 30401 0.2748   
312 0.14 32 14.6 27600 3.95 5516 5488 0.0395   
313 

Wibowo [162] and 
Wibowo et al. 

[161]; F2; Replica 

0.10 32 9.9 27600 0.34 283.3 306.1 0.0544   
314 0.10 32 9.9 27600 0.55 1375 1422 0.066   
315 0.10 32 9.9 27600 1.07 2749 2417 0.0642   
316 0.10 32 9.9 27600 1.08 5509 4482 0.108   
317 

Wibowo [162] and 
Wibowo et al. 

[161]; F3; Replica 

0.11 32 9.8 27600 0.10 272.7 366.6 0.038   
318 0.11 32 9.8 27600 0.67 1380 1297 0.067   
319 0.11 32 9.8 27600 0.78 2760 3232 0.117   
320 0.11 32 9.8 27600 2.08 5512 4233 0.208   
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Table A.1-Continued: MDST database: pre-peak behavior 

C
as

e 
N

o.
 Source and 

Description 
L 

(m) 
bφ  

(°) 
JRC JCS 

ekPa) 
pδ  

(mm) 
nσ  

(kPa) 
pτ  

(kPa) 

( )phδ
(mm) 

( ) ( ) 0@ =hv δδ  ( )hδmin  

321 
Wibowo [162] and 

Wibowo et al. 
[161]; F4; Replica 

0.11 32 15.5 27600 0.42 275.6 464.4 0.0504   
322 0.11 32 15.5 27600 1.34 1378 1532 0.2144   
323 0.11 32 15.5 27600 1.56 2756 2845 0.1872   
324 0.11 32 15.5 27600 1.90 4134 4370 0.171   
325 0.11 32 15.5 27600 2.09 5512 55263 0.1881   
326 

Grasselli and 
Egger [127]; 
Limestone 

0.14 36 20.5 25000 0.5 1070 2200    
327 0.14 36 19.7 25000 0.52 1070 2100    
328 0.14 36 24.1 25000 0.53 3720 5500    
329 0.14 36 25.7 25000 0.31 2450 4600    
330 0.14 36 24.4 25000 0.24 3110 5000    
331 0.14 36 20.2 25000 0.37 1020 2100    
332 0.14 36 23.9 25000 0.74 3110 4900    
333 

Grasselli and 
Egger [127]; 

Granite 

0.14 34 18.1 173000 0.38 2300 5700    
334 0.14 34 17.9 173000 0.65 2300 5600    
335 0.14 34 16.6 173000 0.45 2190 4800    
336 0.14 34 14.2 173000 0.62 1120 2400    
337 0.14 34 15.9 173000 0.38 1120 2900    
338 0.14 34 15.6 173000 0.23 1120 2800    
339 0.14 34 16.2 173000 0.56 1120 3000    
340 0.14 36 3.3 184000 0.3 2650 2400    
341 

Grasselli and 
Egger [127];  

Gneiss 

0.14 36 12.9 160000 0.48 1900 3400    
342 0.14 36 7.4 184000 0.2 3520 4000    
343 0.14 36 6.7 184000 0.31 3570 3900    
344 0.14 36 8.6 184000 0.35 3520 4300    
345 0.14 36 1.8 184000 0.31 4080 3300    
346 0.14 36 9.4 184000 0.35 2600 3500    
347 0.14 37 13.0 87000 0.28 870 1707    
348 

Grasselli and 
Egger [127];  

Marble 

0.14 37 11.7 87000 0.27 1730 2655    
349 0.14 37 16.6 87000 0.5 870 2417    
350 0.14 37 13.5 87000 0.88 3780 5477    
351 0.14 37 9.2 87000 0.29 2600 3214    
352 0.14 37 9.0 87000 0.44 2600 3179    
353 0.14 37 14.8 87000 0.44 3780 5856    
354 0.14 37 15.0 87000 0.39 3830 5976    
355 0.14 37 14.3 87000 0.42 2600 4293    
356 0.14 37 13.7 87000 0.27 870 1816    
357 0.14 37 16.3 87000 0.55 1790 3752    
358 Grasselli and 

Egger [127];  
Sandstone 

0.14 37 27.2 10000 0.65 1020 2088    
359 0.14 37 16.3 10000 0.67 4130 3886    
360 0.14 37 15.0 10000 0.67 2090 2257    
361 Grasselli and 

Egger [127];  
Serpentines 

0.14 39 17.0 74000 0.4 1940 4334    

362 0.14 39 20.9 74000 0.5 970 4702    
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Table A.2: Monotonic Direct Shear Test (MDST) database: post-peak behavior 

C
as

e 
N

o.
 Source and 

Description 
Post-peak shear displacements Post-peak shear stress Post-peak dilation displacement 

1 2 3 4 1 2 3 4 1 2 3 4 
1 

Barton [115];  
Figure 5.1; 

Tension Fracture 

1.0 1.5 2.0 3.0     0.29 0.38 0.45 0.53 
2 1.0 1.5 2.0 3.0     0.21 0.32 0.38 0.49 
3 1.0 1.5 2.0 3.0     0.17 0.27 0.35 0.44 
4 1.0 1.5 2.0 3.0     0.13 0.21 0.27 0.35 
5 1.0 1.5 2.0 3.0     0.15 0.23 0.28 0.33 
6 1.5 2.0 2.3 2.5     0.17 0.19 0.20 0.21 
7 

Bandis [113] 

1.0 2.0 3.0 5.0 35.34 32.13 30.74 29.29     
8 1.0 2.0 3.0 6.0 30.81 28.29 27.40 26.71     
9 1.0 2.0 3.0 6.0 26.40 25.77 25.77 24.25     
10 1.0 2.0 3.0 6.0 23.62 23.25 23.31 22.55     
11 

Barton [115]; 
Figure 6.2 

2.0 3.0 4.0 5.0 47.12 43.52 38.70 36.61 0.41 0.60 0.78 0.97 
12 2.0 3.0 4.0 5.0 37.62 34.96 32.37 31.22 0.27 0.44 0.66 0.86 
13 2.0 3.0 5.0 6.0 34.03 33.52 32.01 31.51 0.27 0.44 0.72 0.83 
14 3.0 4.0 5.0 6.0 30.86 39.86 39.35 39.06 0.25 0.42 0.57 0.65 
15 

Barton et al. [81]; 
Figure 20 

3.0 6.0 12.0 21.0 3980 3790 3630 3500 0.15 0.31 0.56 0.85 
16 3.0 6.0 12.0 21.0 13130 12970 12730 12560 0.05 0.11 0.22 0.33 
17 3.0 6.0 12.0 21.0 3670 3600 3520 3380 0.08 0.21 0.43 0.68 
18 3.0 6.0 12.0 21.0 12540 12520 12430 12260 0.02 0.06 0.06 0.19 
19 

Barton et al. [81]; 
Figure 22 

4.0 8.0 14.0 22.0 910 760 880 860 0.38 0.76 1.23 1.71 
20 4.0 8.0 14.0 22.0 2310 2220 2240 2240 0.28 0.56 0.91 1.27 
21 4.0 8.0 14.0 22.0 7100 6940 6860 6770 0.17 0.34 0.56 0.79 
22 4.0 8.0 14.0 22.0 19310 19000 18860 18810 0.07 0.15 0.26 0.35 
23 

Barton et al. [81]; 
Figure 23 

8.0 14.0 18.0 24.0 7660 7490 7390 7340 0.45 0.66 0.81 0.97 
24 8.0 14.0 18.0 24.0 7490 7310 7200 7160 0.34 0.55 0.67 0.81 
25 8.0 14.0 18.0 24.0 7210 7130 7080 7000 0.22 0.39 0.49 0.62 
26 8.0 14.0 18.0 24.0 7000 6930 6860 6860 0.12 0.25 0.33 0.43 

27 Olson and Barton 
[176]; Figure 16 

1.0 2.5 4.0 5.5 2230 1890 1770 1740 0.02 0.4 0.7 0.95 

28 

Jacobsson & 
Flansbjer [192, 
202]; KLX06A;  

Avro Granite 

0.6 1.0 1.7 2.0 800 690 610 570 0.23 0.36 0.52 0.58 
29 1.0 2.0 3.2 3.5 4870 4450 3970 3900 0.14 0.3 0.43 0.46 
30 2.6 3.2 4.6 5.0 16040 15180 14190 14410 0.09 0.11 0.14 0.14 
31 0.5 1.0 1.6 2.0 550 450 450 450 0.11 0.21 0.31 0.35 
32 1.0 2.0 2.7 3.0 4320 4170 4150 4130 0.12 0.23 0.29 0.31 
33 3.0 4.0 4.5 5.0 1520 15060 14580 14230 0.12 0.15 0.16 0.16 
34 1.0 1.4 1.7 2.0 770 730 670 620 0.32 0.41 0.5 0.65 
35 1.0 2.0 2.8 3.0 4730 4270 4000 4000 0.1 0.26 0.34 0.37 
36 2.0 3.0 4.5 5.0 15060 14460 13840 13580 0.02 0.06 0.06 0.05 
37 0.6 1.0 1.7 2.0 660 570 520 500 0.15 0.24 0.38 0.42 
38 1.0 2.0 2.7 3.0 4600 4000 3900 3900 0.11 0.24 0.32 0.35 
39 1.0 3.0 4.4 5.0 15350 14460 14120 13940 0.01 0.1 0.11 0.1 
40 0.7 1.0 1.7 2.0 690 630 610 610 0.1 0.24 0.36 0.42 
41 1.0 2.0 2.7 3.0 4460 4560 4290 4280 0.1 0.23 0.29 0.31 
42 1.0 3.0 4.4 5.0 15840 15360 14150 14000 0 0.1 0.11 0.11 
43 1.0 1.2 1.7 2.0 590 530 520 500 0.14 0.17 0.2 0.23 
44 2.0 2.3 3.0 3.2 3730 3720 3530 3550 0.06 0.08 0.1 0.1 
45 3.0 4.0 4.4 5.0 13770 13280 13220 13410 -0.06 -0.06 -0.05 -0.05 
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Table A.2-Continued: MDST database: post-peak behavior 

C
as

e 
N

o.
 Source and 

Description 
Post-peak shear displacements Post-peak shear stress Post-peak dilation displacement 

1 2 3 4 1 2 3 4 1 2 3 4 

46 

Jacobsson & 
Flansbjer [199, 

208]; KL10-117; 
Avro Granite 

1.0 1.3 1.7 2.0 690 690 640 640 0.21 0.25 0.3 0.34 
47 1.0 2.0 2.7 3.0 4990 4670 4600 4360 0.58 0.76 0.85 0.89 
48 3.0 4.0 4.5 5.0 15430 14510 14140 13390 0.69 0.73 0.74 0.74 
49  2.0 2.7 3.0  4190 4050 4080  0.26 0.34 0.38 
50   4.5 5.0   14860 14690   0.29 0.32 
51   1.7 2.0   790 780   0.05 0.07 
52  4.0 4.4 5.0  14890 14840 14650  0.11 0.1 0.1 
53   1.7 2.0   650 650   0.41 0.46 
54 1.0 2.0 2.7 3.0 4340 4330 4110 4040 0.16 0.37 0.45 0.49 
55 2.0 4.0 4.4 5.0 14840 14440 14390 13790 0.17 0.34 0.36 0.41 
56  1.0 1.7 2.0  710 640 560  0.26 0.45 0.51 
57 1.0 2.0 2.7 3.0 4980 4460 4170 4070 0.11 0.33 0.43 0.47 
58 2.0 4.0 4.5 5.0 15010 13960 13710 13060 0.04 0.05 0.04 0.02 
59 

Jacobsson & 
Flansbjer [200, 
209]; KLX12A-

117; Avro Granite  
and Quartz 

monzodiorite  

 1.0 1.7 �.0  800 820 790  0.32 0.49 0.55 
60   2.7 3.0   4930 4750   0.5 0.55 
61 3.0 4.0 4.5 5.0 16440 15610 15400 14730 0.13 0.16 0.16 0.17 
62  1.0 1.8 2.0  1040 910 790  0.3 0.48 0.51 
63 1.0 2.0 2.8 3.0 4920 4700 4560 4540 0.09 0.25 0.36 0.38 
64 3.0 4.0 4.5 5.0 15200 13680 13630 13370 0.07 0.05 0.04 0.03 
65  1.0 1.7 2.0  1140 930 850  0.32 0.46 0.52 
66 1.0 2.0 2.7 3.0 4330 4120 4230 4280 0.11 0.19 0.22 0.24 
67  4.0 4.6 5.0  14730 14590 14470  -0.04 -0.05 -0.06 
68 

Jacobsson & 
Flansbjer [201, 

210]; KFM09A-
117; Medium-
grained granite 

 1.0 1.7 2.0  610 650 630  0.24 0.4 0.46 
69  2.0 2.7 3.0  4540 4410 4330  0.24 0.31 0.34 
70  4.0 4.4 5.0  15370 15150 14970  0 0 -0.01 
71  1.0 1.7 2.0  610 610 580  0.26 0.39 0.45 
72 1.0 2.0 2.7 3.0 4500 3880 3660 3490 0.08 0.21 0.28 0.31 
73 2.0 4.0 4.4 5.0 14110 13300 12970 12830 -0.05 -0.04 -0.04 -0.07 
74  1.0 1.7 2.0  580 500 440  0.22 0.39 0.45 
75 1.0 2.0 2.7 3.0 3920 3950 4100 4080 0.07 0.22 0.31 0.35 
76   4.4 5.0   13300 13270   -0.07 -0.08 
77  1.0 1.7 2.0  530 520 440  0.23 0.33 0.35 
78  2.0 2.7 3.0  3840 3760 3710  0.18 0.23 0.25 
79  4.0 4.5 5.0  13760 14000 13770  0.02 0 0 
80 

Jacobsson & 
Flansbjer [195, 

203]; KFM06A-
117; Medium-
grained granite 

 1 1.69 2  569 490 442  0.28 0.38 0.42 
81 1 2 2.71 3 3981 3476 3360 3374 0.13 0.23 0.28 0.3 
82 2 4 4.71 5 13624 12929 12720 12450 0.11 0.19 0.21 0.215 
83  1 1.67 2  501 530 439  0.25 0.4 0.45 
84  2 2.38   3911 4050   0.31 0.36  
85 2 4 4.44 5 14367 13828 13900 13665 0.12 0.19 0.2 0.22 
86   1.7 2   450 441   0.21 0.25 
87  1 2.87 3  3702 3500 3564  0.14 0.2 0.21 
88   5.05    14160    0.06  
89  1 1.72 2  441 420 441  0.15 0.26 0.3 
90 1 2 3.01  3916 3904 3820  0.03 0.08 0.12  
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Table A.2-Continued: MDST database: post-peak behavior 

C
as

e 
N

o.
 Source and 

Description 
Post-peak shear displacements Post-peak shear stress Post-peak dilation displacement 

1 2 3 4 1 2 3 4 1 2 3 4 

91 
Jacobsson & 

Flansbjer [195, 
203]; KFM06A-
117; Medium-
grained granite 

3.0 4.0 4.5 5.0 13990 13637 13650 13494 -0.14 -0.18 -0.2 -0.23 
92  1.0 1.7 2.0  592 590 554  0.24 0.38 0.46 
93 1.0 2.0 2.7 3.0 4319 4276 4380 4281 0.09 0.22 0.28 0.3 
94 3.0 4.0 4.5 5.0 15488 15108 15220 14922 0.03 0.06 0.06 0.06 
95  1.0 1.7 2.0  554 500 491  0.27 0.39 0.44 
96 1.0 2.0 2.9 3.0 4391 4278 3800 3574 0.11 0.25 0.33 0.34 
97 2.0 4.0 4.7 5.0 15276 13590 13020 12734 0.02 0.12 0.13 0.13 
98 

Jacobsson & 
Flansbjer  

[193, 194, 204];  
KFM05A-117; 

Medium-grained 
granite 

  1 1.7 2   608 570 529   0.32 0.46 0.51 
99 1 2 2.71 3 4127 3810 3790 3492 0.13 0.29 0.36 0.39 
100 2 4 4.46 5 14287 14340 14370 13811 -0.02 0.02 0.02 0.01 
101   1 1.68 2   608 510 423   0.33 0.5 0.57 
102 1 2 2.7 3 4339 4021 4070 4180 0.15 0.34 0.41 0.45 
103 4 5 4.45 5 14287 13811 14330 14499 0.01 0.07 0.08 0.09 
104   1 1.83 2   423 400 423   0.19 0.29 0.31 
105 1 2 2.69 3 2990 2778 2750 2752 0.03 0.07 0.08 0.09 
106     7       11030       -0.06   
107   1 1.67 2   555 500 476   0.34 0.51 0.59 
108 1 2 2.7 3 4180 3810 3470 3333 0.16 0.3 0.38 0.41 
109 2 4 4.43 5 13864 12917 13160 13202 0.13 0.25 0.27 0.28 
110 1 2 2.67 3 530 680 670 610 0.32 0.59 0.79 0.89 
111 1 2 2.66 3 4590 5060 4510 4030 0.21 0.44 0.57 0.63 
112 3 4 4.43 5 16550 16130 16600 15730 0.26 0.31 0.33 0.35 
113   1 1.68 2   600 520 480   0.2 0.29 0.33 
114 1 2 2.86 3 4180 3860 3520 3460 0.06 0.15 0.23 0.25 
115   4 5.52 5   13220 13400 13060   -0.06 -0.07 -0.09 
116   1 1.66 2   596 550 546   0.34 0.48 0.55 
117 1 2 2.64 3 4159 3816 3660 3600 0.19 0.34 0.41 0.44 
118 2 4 4.52 5 13435 12050 13690 12750 0.12 0.17 0.17 0.16 
119   1 1.66 2   503 480 398   0.33 0.45 0.5 
120 1 2 2.67 3 3941 3550 3520 3525 0.18 0.32 0.4 0.43 
121 2 4 4.39 5 13183 12260 12920 11721 0.09 0.16 0.17 0.17 
122 

Jacobsson & 
Flansbjer  

[197, 206];  
KFM08A-117; 

Medium-grained 
granite 

1 2 2.36   596 470 480   0.36 0.58 0.64   
123 1 2 2.76 3 4212 3755 3470 3378 0.17 0.33 0.42 0.44 
124 2 4 4.61 5 13628 13142 13000 13002 0.07 0.12 0.11 0.11 
125   1 1.73 2   545 530 520   0.31 0.48 0.53 
126 1 2 2.78 3 4465 4389 4110 4082 0.17 0.33 0.42 0.44 
127   4 4.54 5   15175 15180 14412   0.06 0.04 0.02 
128   1 1.7 2   697 680 660   0.36 0.54 0.62 
129 1 2 2.72 3 5366 4503 4380 4123 0.19 0.39 0.5 0.54 
130 3 4 4.52 5 16554 15679 14950 14981 0.11 0.15 0.16 0.16 
131   1 1.71 2   457 420 444   0.25 0.37 0.41 
132 1 2 2.81 3 3679 3514 3340 3438 0.15 0.25 0.32 0.33 
133 2 4 4.56 5 13307 12316 12790 12418 0.09 0.13 0.13 0.13 
134   1 1.78 2   672 710 672   0.27 0.46 0.54 
135 1 2 2.77 3 4567 4541 3980 3932 0.16 0.35 0.48 0.52 
136 3 4 4.72 5 14550 14068 14040 14106 0.16 0.18 0.2 0.2 
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Table A.2-Continued: MDST database: post-peak behavior 

C
as

e 
N

o.
 Source and 

Description 
Post-peak shear displacements Post-peak shear stress Post-peak dilation displacement 

1 2 3 4 1 2 3 4 1 2 3 4 

137 

Jacobsson & 
Flansbjer  

[196, 205];  
KLX03A-117; 

Avro Granite and 
Quartz 

monzodiorite 

    1.72 2     580 570     0.32 0.36 
138   2 2.81 3   4612 4490 4385   0.24 0.33 0.35 
139 3 4 4.85 5 16703 16557 16570 16412 0.07 0.09 0.11 0.11 
140 1 2 2.22   693 567 550   0.17 0.28 0.3   
141   2 2.72 3   4121 4020 3944   0.05 0.06 0.07 
142 3 5 5.36 6 14589 15769 14800 14454 -0.08 -0.14 -0.15 -0.17 
143   1 1.72 2   495 490 444   0.15 0.23 0.26 
144 1 2 2.69 3 4151 3834 3810 3796 0.15 0.16 0.21 0.23 
145   4 4.49 5   14576 14200 13698   0.11 0.12 0.12 
146   1 1.68 2   571 570 546   0.2 0.32 0.37 
147 2 3 3.71 4 4189 3580 3460 3529 0.21 0.32 0.37 0.39 
148 3 4 5 5.51 14700 14903 14910 14993 0.11 0.12 0.12 0.12 
149   1 1.68 2   635 550 444   0.28 0.42 0.48 
150 1 2 2.7 3 4697 4367 3980 3948 0.12 0.25 0.32 0.34 
151 2 3 4.45 5 15686 15094 14620 14459 0.05 0.14 0.15 0.17 
152     1.84 2     550 533     0.21 0.24 
153   2 2.7 3   4012 3890 3897   0.12 0.19 0.21 
154                         
155   1 1.68 2   495 490 444   0.11 0.23 0.27 
156 1 2 2.71 3 3948 3872 3640 3517 0.03 0.13 0.18 0.2 
157 2 4 4.6 5 13685 13558 13630 13489 -0.01 0.06 0.06 0.07 
158   1 1.87 2   635 560 521   0.22 0.36 0.39 
159 1 2 2.73 3 4532 4075 4010 3859 0.09 0.2 0.26 0.29 
160 2 4 4.58 5 14128 12664 12720 12501 -0.03 -0.01 -0.02 -0.03 
161 

Jacobsson & 
Flansbjer  

[198, 207];  
KFM07A-117; 

Medium-grained 
granite 

  1 1.7 2   647 560 546   0.29 0.42 0.47 
162 1 2 2.7 3 4494 4443 4370 4329 0.16 0.29 0.37 0.4 
163 2 4 4.45 5 15729 15259 15010 14929 0.09 0.17 0.17 0.18 
164   1 1.67 2   647 560 546   0.25 0.36 0.41 
165 1 2 2.67 3 4722 4595 4250 4164 0.14 0.25 0.31 0.33 
166 2 4 4.45 5 16541 15530 15630 15475 0.02 0.1 0.1 0.1 
167   1 1.68 2   571 570 533   0.18 0.28 0.33 
168   2 2.69 3   4329 4260 4291   0.19 0.24 0.26 
169   4 4.66 5   16524 16500 16524   0.09 0.1 0.1 
170   1 1.66 2   609 540 482   0.2 0.27 0.3 
171 1 2 2.68 3 4265 3986 4000 3935 0.08 0.16 0.19 0.21 
172 3 4 4.52 5 15443 15029 14790 14294 0.01 0.01 0.01 0.01 
173   1 1.7 2   597 580 571   0.25 0.37 0.42 
174 1 2 2.72 3 4519 4443 4470 4380 0.13 0.24 0.32 0.3 
175 3 4 4.45 5 16851 16490 16240 16071 0.09 0.11 0.12 0.12 
176 

Homand et al. 
[169];  

Schist replicas 

10 15 20   562 454 432   1.7 2.57 3.14   
177 10 15 20   1119 880 780   2.27 3.4 4.13   
178 10 15 20   1492 1416 1265   1.94 2.96 3.78   
179 10 15 20   2189 2005 1789   2.04 2.96 3.46   
180 15  0     2470 2486     1.49 2.03     
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Table A.2-Continued: MDST database: post-peak behavior 

C
as

e 
N

o.
 Source and 

Description 
Post-peak shear displacements Post-peak shear stress Post-peak dilation displacement 

1 2 3 4 1 2 3 4 1 2 3 4 

181 

Jacobsson   
[188, 189]; 

KLX02-117;  
Avro Granite 

  1 1.73 2   520 470 444   0.17 0.34 0.4 
182   2 2.9 3   3654 3590 3604   0.23 0.39 0.43 
183 3 4 4.63 5 13462 12945 12700 12751 0.23 0.37 0.44 0.49 
184   1 1.7 2   647 660 609   0.28 0.48 0.54 
185 1 3 3.69 4 5278 4694 4470 4466 0.16 0.52 0.61 0.65 
186 2 4 4.7 5 16177 14883 14360 14337 0.16 0.34 0.38 0.41 
187   1 1.98     295 620     0.12 0.21   
188   3 3.2     4009 4020     0.15 0.17   
189     4.46 5     14990 14705     0.08 0.08 
190   1 1.7 2   660 530 444   0.26 0.41 0.46 
191 1 2 2.71 3 4225 3844 3610 3578 0.14 0.29 0.35 0.37 
192 2 4 4.52 5 13944 11102 10900 10900 0.11 0.19 0.19 0.19 
193     1.88 2.22     590 596     0.14 0.17 
194     3.7 4     4480 4377     0.28 0.33 
195   4 4.95 5.55   15783 15480 15720   0.19 0.24 0.28 
196   1 1.92 2   634 580 533   0.29 0.44 0.46 
197 1 2 3.18   4352 3743 3050   0.13 0.24 0.33 0.34 
198 2 4 4.64 5 12967 12600 12180 11936 0.12 0.2 0.2 0.2 
199   1 1.68 2   749 630 596   0.28 0.46 0.53 
200 1 2 2.75 3 5189 4223 3860 3730 0.13 0.33 0.47 0.51 
201 2 4 4.44 5 16634 13969 14240 14908 0.12 0.3 0.32 0.34 
202 1 2 2.48 2.81 787 647 580 609 0.29 0.49 0.57 0.63 
203 1 3 3.65 4 5188 4365 4180 4060 0.1 0.38 0.46 0.49 
204 3 4 4.96 5.53 17102 16662 16150 16050 0.1 0.12 0.12 0.12 
205     1.74 2     460 444     0.14 0.16 
206                         
207       6       13512       0.13 
228 

Bandis et al. [79]; 
Figure 4; Tension 

fracture 

2 3 4 6 12.07 11.57 11.82 11.19         
229 2 3 4 6 14.84 14.71 13.96 12.32         
230 2 3 4 6 16.73 15.85 14.84 13.83         
231 2 3 4 6 24.02 22.26 18.74 16.85         
232 2 3 5 7 33.07 31.19 29.55 27.67         
233 2 3 5 7 34.83 33.83 30.56 27.67         
234 2 3 5 7 40 38.48 35.21 33.07         
235 2 3 5 7 45.02 43.13 39.86 36.85         
236 2 4 6 7 71.09 69.42 68.24 67.4         
237 2 4 6 7 78.97 75.45 72.1 71.43         
238 2 4 6 7 88.19 82.5 77.63 77.3         
239 2 4 6 7 118.9 110.2 105.1 102.1         
240 Bandis et al. [79]; 

Figures 9-21; 
Bedding plane in 

limestone 

2 3 4   48.31 44.7 41.86   0.39 0.55 0.66   
241 2 3 4   46.23 42.41 40.44   0.41 0.63 0.79   
242 2 3 4 6 39.4 38.86 35.9 34.26 0.28 0.48 0.63 0.96 
243   3 4 6   35.9 35.9 34.7   0.24 0.45 0.8 
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Table A.2-Continued: MDST database: post-peak behavior 

C
as

e 
N

o.
 Source and 

Description 
Post-peak shear displacements Post-peak shear stress Post-peak dilation displacement 

1 2 3 4 1 2 3 4 1 2 3 4 

268 Bandis et al. [79]; 
Figures 9-21; 

Bedding plane in 
slightly 

metamorphosed 
fine grained 
sandstone 

2 3 4 5 21.88 21.14 21.29 21.09 0.06 0.09 0.11 0.13 

269 2 3 4 5 20.34 20.29 19.94 19.94 0.06 0.08 0.11 0.12 

270 2 3 4 5 19.5 19.15 19.2 18.85 0.04 0.07 0.1 0.11 

271 2 3 4 5 18.65 18.65 18.4 18.5 0.03 0.05 0.08 0.09 

276 Bandis et al. [79]; 
Figures 9-21; 

Bedding plane in 
Course grained 

sandstone 

2 3 4   49.57 44.52 41.54   0.26 0.5 0.64   
277 2 3 4 6 40.72 38.08 36.63 35.19 0.3 0.47 0.61   
278 2 3 4 6 30.91 30.14 30.24 29.85 0.27 0.43 0.54 0.66 
279 2 3 4 6 25.58 25.96 26.25 25.67 0.17 0.3 0.44 0.56 
299 

Huang et al. [184]; 
Figures 3-8; 

Replica 

2 3 4   111.8 117.5 121.3   0.44 0.72 1.04   
300 2 3 4   434.0 430.2 422.7   0.1 0.25 0.45   
301 2 3 4   500.4 477.6 462.5   0.02 0.08 0.14   
302 2 3 4   898.4 860.5 851   0 0 -0.01   
303   3 4     1257 1192     -0.06 -0.06   
304 2 3     210 210     0.75 1.3     
305 2 3 4   570 520 500   0.2 0.32 0.44   
306   3 4     760 730     0.13 0.27   
307 2 3 4   1040 920 820   0.01 0.01 0   
308   3 4     1480 1390     -0.03 -0.03   
309 

Wibowo [162] and 
Wibowo et al. 

[161]; G2; Replica 

13       236.4        
310 13       1139        
311 13       2493        
312 13       4171        
313 

Wibowo [162] and 
Wibowo et al. 

[161]; F2; Replica 

13       104.1        
314 13       767.6        
315 13       1547        
316 13       3316        
317 

Wibowo [162] and 
Wibowo et al. 

[161]; F3; Replica 

15       135.7        
318 15       842.7        
319 15       2230        
320 15       3386        
321 

Wibowo [162] and 
Wibowo et al. 

[161]; F4; Replica 

15       222.9        
322 15       812.1        
323 15       1821        
324 15       3015        
325 15       3813        
327 

Grasselli and 
Egger [127] 

1 2 3 5 1998 1680 1557      
337 1 2 3 5 2057 1787 1720      
339 1 1.5 2 3 2200 1978 1800      
344 1 2 3 5 2855 2643 2643      
359 1 2 3   3682 3652 3623      



337 

 TableA.3: Cyclic Direct Shear Test (CDST) database 
C

as
e 

N
o.

 

Source and Description 

Shear strength Dilation displacement 

hδ  
(mm) 

Cycle 
no. 

τ  
(KPa) 

hδ  
(mm) 

Cycle  
no. 

vδ  
(mm) 

1 

Celestino and Goodman [174]; Figure 4; Cyclic 
direct shear test (1 cycle) on a 0.35 m long 

specimen of Plaster with UCS=40 MPa, under 
normal stress of 1030 KPa 

0.62 

1 

1279 0.2 

1 

-0.22 
2.38 718 0.58 0 
2.29 0 1.57 0.81 
2.03 -785 2.3 0.68 
0.3 -647 1.9 0.31 

-0.51 -1116 0.67 0 
-2.57 -700 -0.1 -0.54 
-2.33 0 -1.35 -0.08 
-2.22 816 -2.02 -0.08 
-0.42 681 -2.46 -0.28 
0.3 966 -2.22 -0.45 
1.73 773 -1.51 -0.45 

  -0.33 -0.9 
  1.74 -0.9 

2 

Homand et al. [169]; Figure 10-a; Cyclic direct 
shear test (10 cycles) on a 0.145 m long specimen 

of schist replicas with UCS=75 MPa, under 
normal stress of 500 KPa; the base friction angle 

of the replica is 34º 

0.63 

1 

416 2 

1 

0.56 
10 202 6 1.28 
10 0 10 1.85 

9.45 -101 6 1.28 
0.5 -15 2 0.56 
-1.5 -313 0 0 
-10 -210 -2 0.39 
-10 0 -6 1.24 

-9.46 43 -10 1.73 
-0.43 11 -6 1.24 
0.92 

2 

364 -2 0.39 
10 208 0 0 
10 0 dN10 

10 

0.66 
9.45 -154 6 1.37 
0.5 -18 10 1.91 
-1.5 -327 6 1.37 
-10 -227 2 0.66 
-10 0 0 0 

-9.46 45 -2 0.5 
-0.54 26 -6 1.37 
0.92 

2 

334 -10 1.77 
10 327 -6 1.37 
10 0 -2 0.5 

9.45 -166 0 0 
0.5 -54    
-1.5 -425    
-10 -294    
-10 0    

-9.46 101    
-0.88 75    
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 Table A.3-Continued: Cyclic Direct Shear Test (CDST) database 
C

as
e 

N
o.

 

Source and Description 

Shear strength Dilation displacement 

hδ  
(mm) 

Cycle 
no. 

τ  
(KPa) 

hδ  
(mm) 

Cycle  
no. 

vδ  
(mm) 

3 

Homand et al. [169]; Figure 10-b; Cyclic direct 
shear test (10 cycles) on a 0.145 m long specimen 

of schist replicas with UCS=75 MPa, under 
normal stress of 4000 KPa; the base friction angle 

of the replica is 34º 

0.61 

1 

3911 2 

1 

0.51 
10 2214 6 1.32 
10 0 10 1.92 
10 -1119 6 1.32 

1.03 -696 2 0.51 
-1.59 -4163 0 0 
-10 -2963 -2 0.41 

-9.75 0 -6 1.32 
-9.35 1652 -10 1.86 
-1.19 1355 -6 1.32 
0.89 

2 
 

3733 -2 0.41 
10 2622 0 0 
10 0 2 

2 

0.41 
9.85 -1481 6 1.26 
1.26 -896 10 1.85 
-1.59 -4160 6 1.26 
-10 -3111 2 0.41 

-9.75 0 0 0 
-9.38 1696 -2 0.35 
-1.33 1408 -6 1.24 
4.41 

10 

4303 -10 1.8 
10 4006 -6 1.24 
10 0 -2 0.35 

9.61 -2044 0 0 
2.35 -1844 2 

10 

0.17 
-1.46 -4415 6 0.92 
-10 -4126 10 1.6 

-9.75 0 6 0.92 
-9.54 2118 2 0.17 
-1.73 2052 0 0 

   -2 0.21 
   -6 0.98 
   -10 1.62 
   -6 0.98 
   -2 0.21 
   0 0 
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 Table A.3-Continued: Cyclic Direct Shear Test (CDST) database 
C

as
e 

N
o.

 

Source and Description 

Shear strength Dilation displacement 

hδ  
(mm) 

Cycle 
no. 

τ  
(KPa) 

hδ  
(mm) 

Cycle  
no. 

vδ  
(mm) 

4 

Huang et al. [103]; Figure 6; Cyclic direct shear 
test (1 cycle) on a 0.15 m long specimen of 
artificial joint (Hydrostone & water) with 

UCS=38 MPa, under normal stress of 1000 KPa; 
the base friction angle of the replica is 34º 

0.65 

1 

1092 1 

1 

0.07 
6.26 1132 3 0.41 
5.82 -471 5 0.76 
0.68 -506 6.3 0.98 
-0.41 -1022 5 0.8 
-5.93 -1070 3 0.47 
-5.5 524 1 0.12 
-0.17 590 0 0 

   -1 0.13 
   -3 0.46 
   -5 0.81 
   -5.9 0.96 
   -5 0.86 
   -3 0.51 
   -1 0.17 
   0 0 

5 

Huang et al. [103]; Figure 7; Cyclic direct shear 
test (5 cycles) on a 0.15 m long specimen of 

artificial joint (Hydrostone & water) with 
UCS=38 MPa, under normal stress of 500 KPa; 

the base friction angle of the replica is 34º 

0.29 

1 

531 3 

1 

0.58 
6.01 478 6 1.09 
5.77 -221 3 0.58 
0.29 -214 0 0 
-0.46 -490 -3 0.51 
-6.08 -506 -6 1.02 
-5.86 235 -3 0.51 
-0.22 223 0 0 
0.29 

2 

500 3 

5 

0.51 
6.01 529 6 1.05 
5.77 -221 3 0.51 
0.32 -241 0 0 
-0.46 -492 -3 0.48 
-6.08 -540 -6 1.01 
-5.86 235 -3 0.48 
-0.24 246 0 0 
0.29 

5 

512    
6.01 563    
5.77 -221    
0.38 -248    
-0.46 -520    
-6.08 -540    
-5.86 235    
-0.25 265    
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 Table A.3-Continued: Cyclic Direct Shear Test (CDST) database 
C

as
e 

N
o.

 

Source and Description 

Shear strength Dilation displacement 

hδ  
(mm) 

Cycle 
no. 

τ  
(KPa) 

hδ  
(mm) 

Cycle  
no. 

vδ  
(mm) 

6 

Huang et al. [103]; Figure 8; Cyclic direct shear 
test (5 cycles) on a 0.15 m long specimen of 

artificial joint (Hydrostone & water) with 
UCS=38 MPa, under normal stress of 1750 KPa; 

the base friction angle of the replica is 34º 

1.29 

1 

1906 0 

1 

0 
5.82 1876 0.5 -0.07 
5.39 -760 3 0.3 
1.27 -774 5 0.65 
-1.27 -1597 3 0.3 
-5.73 -1635 0.5 -0.08 
-5.35 876 0 -0.15 
-0.83 986 -0.5 -0.1 
1.29 

2 

1679 -3 0.24 
5.9 1789 -5 0.58 
5.39 -760 -3 0.26 
1.5 -913 -0.5 -0.1 

-1.14 -1336 0 

2 

-0.15 
-5.75 -1482 0.5 -0.15 
-5.35 876 3 0.14 
-0.99 1088 5 0.47 
1.29 

5 

1416 3 0.14 
6 1402 0.5 -0.15 

5.39 -760 0 -0.2 
1.86 -1117 -0.5 -0.13 
-1.14 -1336 -3 0.15 
-5.9 -1351 -5 0.44 
-5.35 876 -3 0.16 
-1.13 1190 -0.5 -0.13 

   0 

5 

-0.2 
   0.5 -0.2 
   3 -0.07 
   5 0.1 
   3 -0.15 
   0.5 -0.2 
   0 -0.2 
   -0.5 -0.27 
   -3 -0.03 
   -5 0.22 
   -3 -0.05 
   -0.5 -0.27 
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 Table A.3-Continued: Cyclic Direct Shear Test (CDST) database 
C

as
e 

N
o.

 

Source and Description 

Shear strength Dilation displacement 

hδ  
(mm) 

Cycle 
no. 

τ  
(KPa) 

hδ  
(mm) 

Cycle  
no. 

vδ  
(mm) 

7 

Huang et al. [103]; Figure 9; Cyclic direct shear 
test (20 cycles) on a 0.15 m long specimen of 

artificial joint (Hydrostone & water) with 
UCS=38 MPa, under normal stress of 2000 KPa; 

the base friction angle of the replica is 34º 

0.55 A1 1470 1 0 0 
6.88 B1 1382 1 1 -0.1 
6.65 C1 -412 1 4 0.36 
0.57 D1 -485 1 6.75 0.85 
-0.25 E1 -1360 1 4 0.42 
-6.94 F1 -1205 1 1 -0.1 
-6.83 G1 544 1 0 -0.23 
-0.17 H1 632 1 -1 -0.1 
0.55 A5 1500 1 -4 0.4 
6.88 B5 1426 1 -6.75 0.92 
6.65 C5 -470 1 -4 0.4 
1.07 D5 -492 1 -1 -0.1 
-0.4 E5 -1264 1 0 -0.3 
-6.94 F5 -1264 5 0 -0.4 
-6.78 G5 625 5 1 -0.37 
-0.38 H5 845 5 4 0.13 
0.55 A10 1530 5 6.75 0.63 
6.88 B10 1426 5 4 0.2 
6.65 C10 -536 5 1 -0.3 
2.55 D10 -617 5 0 -0.41 
-0.4 E10 -1264 5 -1 -0.28 
-6.94 F10 -1302 5 -4 0.23 
-6.6 G10 625 5 -6.75 0.74 
-0.74 H10 1087 5 -4 0.23 
0.55 A15 1550 5 -1 -0.28 
6.88 B15 1521 5 0 -0.41 
6.65 C15 -860 20 0 -0.63 
6.22 D15 -904 20 1 -0.57 
-0.4 E15 -1264 20 4 -0.47 
-6.94 F15 -1382 20 6.75 -0.32 
-6.65 G15 1007 20 4 -0.47 
-1.19 H15 1411 20 1 -0.57 
0.55 A20 1550 20 0 -0.63 
6.88 B20 1521 20 -1 -0.66 
6.65 C20 -860 20 -4 -0.52 
6.22 D20 -904 20 -6.75 -0.21 
-0.4 E20 -1264 20 -4 -0.43 
-6.94 F20 -1382 20 -1 -0.57 
-6.65 G20 1007 20 0 -0.63 
-1.19 H20 1411 20 0 -0.63 

   20 1 -0.57 
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 Table A.3-Continued: Cyclic Direct Shear Test (CDST) database 
C

as
e 

N
o.

 

Source and Description 

Shear strength Dilation displacement 

hδ  
(mm) 

Cycle 
no. 

τ  
(KPa) 

hδ  
(mm) 

Cycle  
no. 

vδ  
(mm) 

8 

Huang et al. [103]; Figure 11; Cyclic direct shear 
test (20 cycles) on a 0.15 m long specimen of 

artificial joint (Hydrostone & water) with 
UCS=38 MPa, under normal stress of 3000 KPa; 

the base friction angle of the replica is 34º 

0.15 

1 

2273 0 

1 

0 
7 1966 4 0.58 

6.54 -1057 7 1.1 
0.02 -977 4 0.58 
-0.87 -2364 0 -0.11 
-7.11 -2273 -4 0.33 
-6.69 852 -7 0.85 
-1.24 875 -4 0.33 
0.2 

2 

2148 0 -0.33 
7 1966 0 

2 

-0.33 
6.54 -1057 4 0.33 
0.47 -1114 7 0.8 
-0.87 -2284 4 0.4 
-7.11 -2273 0 -0.27 
-6.69 852 -4 0.2 
-1.05 1046 -7 0.65 
0.25 

4 

1966 -4 0.2 
7 1966 0 -0.39 

6.39 -1591 0 

4 

-0.39 
2.19 -1739 4 0 
-0.87 -2159 7 0.36 
-7.08 -2159 4 0.08 
-6.56 1273 0 -0.39 
-2.33 1739 -4 -0.12 
0.25 

7 

1966 -7 0 
7 1966 -4 -0.24 

6.34 -1863 0 -0.39 
3.08 -2103 0 

7 

-0.53 
-0.87 -2159 4 -0.52 
-7.08 -2159 7 -0.35 
-6.53 1534 4 -0.4 
-2.63 1933 0 -0.53 
0.25 

20 

1966 -4 -0.54 
7 1966 -7 -0.39 

6.34 -1863 -4 -0.45 
3.08 -2103 0 -0.53 
-0.87 -2159 0 

20 

-0.64 
-7.08 -2159 4 -0.65 
-6.53 1534 7 -0.5 
-2.63 1933 4 -0.56 

   0 -0.64 
   -4 -0.62 
   -7 -0.5 
   -4 -0.55 
   0 -0.64 
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 Table A.3-Continued: Cyclic Direct Shear Test (CDST) database 
C

as
e 

N
o.

 

Source and Description 

Shear strength Dilation displacement 

hδ  
(mm) 

Cycle 
no. 

τ  
(KPa) 

hδ  
(mm) 

Cycle  
no. 

vδ  
(mm) 

9 

Lee et al. [167]; Figure 8; Cyclic direct shear test 
(2 cycles) on a 0.12 m long specimen of Granite 

with UCS=151 MPa,  
under normal stress of 1000 KPa; the base 

friction angle of the replica is 35º 

1.23 

1 

1937 0 

1 

0 
15 773 0.6 -0.06 

12.97 492 1.23 0 
0.68 -367 5 1.03 
-1.86 -1125 15 2.17 

-14.83 -828 5 1.03 
-13.7 453 0 0.08 
-1.19 352 -0.72 0 
1.79 

2 

922 -5 0.84 
14.97 851 -15 2.13 
13.87 -469 -5 0.76 
0.98 -437 -0.72 0 
-2.97 -960 0 -0.05 

-14.76 -891 0.68 

2 

0 
-13.57 477 15 1.91 
-1.87 398 13.95 1.91 

   -0.72 0 
   -15 1.84 
   -13.78 1.8 
   -1.02 0 
   0 -0.05 

10 

Lee et al. [167]; Figure 9-a; Cyclic direct shear 
test (15 cycles) on a 0.12 m long specimen of 

Granite with UCS=151 MPa,  
under normal stress of 500 KPa; the base friction 

angle of the replica is 35º 

0.4 

1 

851 0 

1 

0 
15.14 351 0.4 -0.11 
14.44 -277 0.62 0 
0.75 -186 10.19 1.93 
-1.5 -787 15 2.42 

-14.74 -497 8.55 1.95 
-12.98 213 0 -0.13 
-1.58 111 -15 3.16 
0.92 

2 

480 0 

2 

-0.14 
15.14 351 15 2.16 
14.44 -277 0 -0.145 
0.92 -200 -15 2.76 
-2.46 -601 0 -0.15 

-14.74 -561 0 

15 

-0.22 
-12.98 213 15 1.6 
-1.76 145 0 -0.225 
0.97 

15 

412 -15 1.94 
15.14 456 0 -0.23 
14.44 -277    
1.45 -250    
-3.26 -466    

-14.74 -622    
-12.98 213    
-2.33 223    
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 Table A.3-Continued: Cyclic Direct Shear Test (CDST) database 
C

as
e 

N
o.

 

Source and Description 

Shear strength Dilation displacement 

hδ  
(mm) 

Cycle 
no. 

τ  
(KPa) 

hδ  
(mm) 

Cycle  
no. 

vδ  
(mm) 

11 

><p et al. [167]; Figure 9-b; Cyclic direct shear 
test (10 cycles) on a 0.12 m long specimen of 

Marble with UCS=72 MPa,  
under normal stress of 500 KPa; the base friction 

angle of the replica is 38º 

0.29 

1 

1123 0 

1 

0 
14.91 413 0.21 -0.53 
14.62 -298 6.5 1.66 
1.76 -204 15 2.64 
-1.27 -668 7.49 1.52 

-14.99 -574 0 -0.33 
-14.3 277 -15 2.06 
-1.68 225 0 

2 

-0.33 
1.47 

2 

634 15 2.29 
14.95 451 0 -0.33 
14.62 -298 -15 1.81 
2.58 -247 0 

10 

-0.33 
-2.01 -557 15 1.84 

-15.03 -621 0 -0.33 
-14.3 277 -15 1.19 
-1.92 277 0 -0.33 
1.68 

10 

460    
14.95 489    
14.62 -298    
4.05 -311    
-2.66 -468    

-15.03 -655    
-14.3 277    
-2.38 374    

12 

Lee et al. [167]; Figure 10-a; Cyclic direct shear 
test (8 cycles) on a 0.12 m long specimen of 

Granite with UCS=151 MPa,  
under normal stress of 3000 KPa; the base 

friction angle of the replica is 35º 

2.58 

1 

4785 0 

1 

0 
15.01 2298 15 2.04 
11.83 -1314 0 0 
1.12 -1251 -15 1.46 
-1.08 -2690 0 0 

-14.75 -2017 0 

8 

0 
-11.53 1798 15 1.27 
-1.12 1251 0 0 
2.62 

8 

2408 -15 0.78 
15.01 2877 0 0 
12.43 -1423    
2.62 -1830    
-1.94 -2174    
-14.7 -2455    
-11.1 1611    
-2.06 1970    
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 Table A.3-Continued: Cyclic Direct Shear Test (CDST) database 
C

as
e 

N
o.

 

Source and Description 

Shear strength Dilation displacement 

hδ  
(mm) 

Cycle 
no. 

τ  
(KPa) 

hδ  
(mm) 

Cycle  
no. 

vδ  
(mm) 

13 

Lee et al. [167]; Figure 10-b; Cyclic direct shear 
test (4 cycles) on a 0.12 m long specimen of 

Marble with UCS=72 MPa,  
under normal stress of 3000 KPa; the base 

friction angle of the replica is 38º 

0.56 

1 

4466 0 

1 

0 
15.06 1870 3.73 0.89 
13.6 -1274 15.06 1.96 
3.19 -1451 11.87 1.3 
-2.59 -2902 -0.82 0.22 

-15.02 -2225 -9.38 1.15 
-13.2 1628 -15 1.35 
-1.38 1984 -0.86 

2 

0.15 
1.51 

2 

2693 15 1.5 
15.06 2322 -2.24 0.25 
13.6 -1645 -15 0.74 
3.54 -1757 -1.29 

3 

0.14 
-3.63 -2483 15 1.67 

-15.02 -2402 -3.4 0.22 
-13.08 1919 -15 0.26 
-1.81 2354 -5.12 

4 

0.03 
1.63 

4 

2483 15 1.41 
15.06 2402 0 0.1 
13.6 -1854 -15 -0.04 
3.63 -1935 -8 -0.1 
-4.32 -2306 0 0.11 

-15.02 -2610    
-12.99 2161    
-2.07 2483    

14 

Lee et al. [167]; Figure 11; Cyclic direct shear 
test (16 cycles) on a 0.12 m long specimen of 

Granite with UCS=151 MPa,  
under normal stress of 1000 KPa; the base 

friction angle of the replica is 35º 

0.58 

1 

1325 0 1 0 
15 732 15 1 2.73 

14.18 -438 -1.08 1 -0.07 
0.8 -402 -15 1 2.17 

-1.89 -1237 -1.08 2 -0.09 
-14.76 -778 15 2 2.43 
-14.07 387 -1.08 2 -0.1 
-2.91 355 -15 2 1.73 
0.98 

2 

1000 -1.08 16 -0.15 
15 856 15 16 1.55 

14.7 -459 -1.08 16 -0.16 
0.95 -428 -15 16 1.06 
-3.16 -954    

-14.84 -886    
-13.89 438    
-2.95 376    
1.27 

16 

798    
15 995    

14.7 -459    
1.75 -629    
-3.6 -835    
-14.8 -984    

-13.34 541    
-3.89 624    
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 Table A.3-Continued: Cyclic Direct Shear Test (CDST) database 
C

as
e 

N
o.

 

Source and Description 

Shear strength Dilation displacement 

hδ  
(mm) 

Cycle 
no. 

τ  
(KPa) 

hδ  
(mm) 

Cycle  
no. 

vδ  
(mm) 

15 

Jing et al.[99]; Figure 3; Cyclic direct shear test 
(2 cycles) on specimens of concrete replica with 
UCS=52 MPa, under normal stress of 2000 KPa; 

the base friction angle of the replica is 33º 

2.24 

1 

2352 0 

1 

0 
10.32 2017 1.37 -0.2 
7.44 -1282 8.5 0.72 
1.44 -1282 10.25 0.81 
-1.61 -2246 8.5 0.72 
-9.58 -2189 0 -0.15 
-7.87 1249 -7.74 0.7 

0 1437 -10.62 0.92 
5.09 

2 

2090 -7.74 0.7 
8.94 2049 0 

2 

-0.14 
6.1 -1380 2.08 -0.17 
1.44 -1510 3.95 0 
-2.8 -2131 8.94 0.46 

-10.78 -2025 7.17 0.44 
-8.74 1315 3 0 
-0.9 1494 0 -0.15 

    -9.51 0.62 
    -7.74 0.54 
    0 -0.15 

16 

Amadei et al. [213]; Figure 4; Cyclic direct shear 
test (5 cycles) on a 0.11 m long specimens of 

replica with UCS=27.6 MPa,  
under normal stress of 1378 KPa;  

the base friction angle of the replica is 32º 

1.34 

1 

1456 0 

1 

0 
15.00 767 10 1.45 
14.45 -735 15 2.04 
1.62 -863 10 1.27 
-1.50 -1892 0 0 

-13.50 -1176 -10 1.09 
-13.20 304 -13.2 1.36 
-2.25 314 -10 0.99 
0.81 

2 

879 0 

2 

0 
15.00 663 10 1.18 
14.45 -627 15 1.84 
1.62 -863 10 1.13 
-1.50 -1411 0 0 

-13.50 -1176 -10 0.94 
-13.20 206 -13.2 1.28 
-2.25 314 -10 0.94 
0.35 

5 

706 0 

5 

0 
15.00 637 10 0.98 
14.45 -627 15 1.65 
1.62 -863 10 0.98 
-1.50 -1245 0 0 

-13.50 -1176 -10 0.83 
-13.20 206 -13.2 1.19 
-2.25 314 -10 0.83 

   0 0 
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 Table A.3-Continued: Cyclic Direct Shear Test (CDST) database 

C
as

e 
N

o.
 

Source and Description 

Shear strength 

hδ  
(mm) 

Cycle 
no. 

τ  
(KPa) 

17 

Grasselli and Egger [127]; Figure 7; Cyclic direct 
shear test (6 cycles) on a 0.14 m long specimens 

of Serpentinite with UCS=74 MPa,  
under normal stress of 2000 KPa;  

the base friction angle of the replica is 39º 

0.4 
1 

4400 
1 2820 

2.74 2740 
0.37 

2 
3400 

1 2300 
2.74 1740 
0.46 

3 
2000 

1 1980 
2.74 1740 
0.49 

4 
1800 

1 1840 
2.74 1740 
0.5 

5 
1600 

1 1720 
2.74 1740 
0.53 

6 
1600 

1 1700 
2.74 1740 

18 

Grasselli and Egger [127]; Figure 7; Cyclic direct 
shear test (6 cycles) on a 0.14 m long specimens 

of Granite with UCS=173 MPa,  
under normal stress of 1120 KPa;  

the base friction angle of the replica is 34º 

0.56 
1 

3024 
1 2228.8 
3 1780.8 

0.1 
2 

1680 
1 1310.4 
3 1232 

0.34 
3 

1120 
1 1176 
3 1120 

0.49 
4 

1008 
1 1108.8 
3 1120 

0.68 
5 

1008 
1 1108.8 
3 1120 

0.55 A6 
  

B6 

1008 
1 1030.4 
3 1075.2 
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APPENDIX B: EXAMPLES OF BS3D INPUT FILES 

B.1  “INPUT.DAT”  

The example is the same as the one introduced in Section 5.5; just the loading 

condition is different here. The block is depicted in Figure 5.12-(a) and the mechanical 

properties of intact rock, rock mass, and fractures are summarized in Table 5.7. The input 

file, “input.dat”, required to define the problem for BS3D is given in Figure B.1. It is 

assumed that there are no in situ stresses and additional forces. At the second stage 

(simulating the excavation), the lowermost face of the block (A1A2A3A4) is left 

unconstrained. Modified Barton’s model is adopted as the constitutive model of fractures. 

BEM approach is to be used to determine the normal stiffness of the fractures. There is 

no need to consider the effect of excavation on in situ stresses and high-velocity jet 

impact. The analysis of the first stage is to be done with step stage of 0.5 up to maximum 

λ of 1. In addition, the analysis of the second stage is to be done with step stage of 0.1 up 

to maximum λ of 5. Maximum increment and maximum iteration numbers are chosen to 

be 100 and 50, respectively. 

A.2  “TUNNEL_STRESS.DAT” 

In order to consider the effect of excavation on in situ stresses in the surrounding 

rock mass another input file, “tunnel_stress.dat”, should be read by BS3D. Figure B.2 

and Figure B.3 give examples of “tunnel_stress.dat” in which the tunnel reference 

system is the same and is not the same as principal stress directions, respectively. In both 

cases, the tunnel diameter is 3.6 m, the tunnel axis is along the x-axis, and the excavation 

face is located 5 m far from the origin. Figure B.2 introduces hydrostatic in situ stress of 

2.6 MPa, while Figure B.3 defines the following stress tensor: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

33.04.0
3.011.0

4.01.05.0
σ  
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Number-of-vertices(block&mould) 8 
 
vertex(1)   0 0 0 
vertex(2)   1 0 0 
vertex(3)   1 1 0 
vertex(4)   0 1 0 
vertex(5)   0 0 1 
vertex(6)   1 0 1 
vertex(7)   1 1 1 
vertex(8)   0 1 1 
 
****************************************************** 
Block-Geometry 
****************************************************** 
Number_of_faces    6 
Number_of_faces_with_more_than_one_boundary 0  
 
Number_of_Vertices_in_boundary(1)_of_Face(1) 4  
Number_of_Vertices_in_boundary(1)_of_Face(2) 4  
Number_of_Vertices_in_boundary(1)_of_Face(3) 4  
Number_of_Vertices_in_boundary(1)_of_Face(4) 4 
Number_of_Vertices_in_boundary(1)_of_Face(5) 4  
Number_of_Vertices_in_boundary(1)_of_Face(6) 4  
 
Face(1)_boundary(1)_Vertex(1)   1 
Face(1)_boundary(1)_Vertex(2)   5 
Face(1)_boundary(1)_Vertex(3)   8 
Face(1)_boundary(1)_Vertex(4)   4 
Face(2)_boundary(1)_Vertex(1)   4 
Face(2)_boundary(1)_Vertex(2)   8 
Face(2)_boundary(1)_Vertex(3)   7 
Face(2)_boundary(1)_Vertex(4)   3 
Face(3)_boundary(1)_Vertex(1)   2 
Face(3)_boundary(1)_Vertex(2)   3 
Face(3)_boundary(1)_Vertex(3)   7  
Face(3)_boundary(1)_Vertex(4)   6    
Face(4)_boundary(1)_Vertex(1)   1 
Face(4)_boundary(1)_Vertex(2)   2 
Face(4)_boundary(1)_Vertex(3)   6 
Face(4)_boundary(1)_Vertex(4)   5    
Face(5)_boundary(1)_Vertex(1)   6 
Face(5)_boundary(1)_Vertex(2)   7 
Face(5)_boundary(1)_Vertex(3)   8 
Face(5)_boundary(1)_Vertex(4)   5 
Face(6)_boundary(1)_Vertex(1)   1 
Face(6)_boundary(1)_Vertex(2)   4 
Face(6)_boundary(1)_Vertex(3)   3  
Face(6)_boundary(1)_Vertex(4)   2 
 
Number_of_sensor_points_per_edge  6 
****************************************************** 
Mould-Geometry 
****************************************************** 
Number_of_faces    6 
Number-of-same-faces-in-mould-and-block  6 
 
Face(1)-index-same-in-mould-and-block     1 
Face(2)-index-same-in-mould-and-block     2 
Face(3)-index-same-in-mould-and-block     3 
Face(4)-index-same-in-mould-and-block     5 
Face(5)-index-same-in-mould-and-block     4 
Face(6)-index-same-in-mould-and-block     6 

 Figure B.1: Example of “input.dat” 
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****************************************************** 
Mechanical-Properties 
****************************************************** 
Unit_weigth_of_the_block     0.03 
Gravity       9.806 
Young's_Modulus_of_the_Block   30000 
Poisson's_Ratio_of_the_Block    0.3 
Young's_Modulus_of_the_Rock_Mass   7000 
Poisson's_Ratio_of_the_Rock_Mass   0.2 
Isotropic_dilatancy(1)_Anisotropic(2)    1 
Init_stiff&max_closure&Joint_Len&Lab_Face(1)  10000 0.0001 1 
Init_stiff&max_closure&Joint_Len&Lab_Face(1)  10000 0.0001 1 
Init_stiff&max_closure&Joint_Len&Lab_Face(1)  10000 0.0001 1 
Init_stiff&max_closure&Joint_Len&Lab_Face(1)  10000 0.0001 1 
Init_stiff&max_closure&Joint_Len&Lab_Face(1)  10000 0.0001 1 
Init_stiff&max_closure&Joint_Len&Lab_Face(1)  10000 0.0001 1 
JRC0(1&2)_JCS0(MPa)_Base_Friction_Face(1)  10 70 30 
JRC0(1&2)_JCS0(MPa)_Base_Friction_Face(1)  10 70 30 
JRC0(1&2)_JCS0(MPa)_Base_Friction_Face(1)  10 70 30 
JRC0(1&2)_JCS0(MPa)_Base_Friction_Face(1)  10 70 30 
JRC0(1&2)_JCS0(MPa)_Base_Friction_Face(1)  10 70 30 
JRC0(1&2)_JCS0(MPa)_Base_Friction_Face(1)  10 70 30 
 
****************************************************** 
Stage-Analysis-Characteristics 
****************************************************** 
Number_of_Permanent_Faces    5 
Number_of_Stages      2 
fa_Additional_Stage_1   0 0 0 0 0 0 
fa_Additional_Stage_2   0 0 0 0 0 0 
Step_stage_1    0.5 
Step_stage_2    0.1 
Max_increment_Number   100 
Max_iteration_Number   50 
Max_Lambda_Stage_1   1 
Max_Lambda_Stage_2   5 
Residual_Tollerance    0.0001 
Limit_Eigenvalues    0.00002 
Limit_Stiffness_Ratio    0.3 
 
Mohr_Coloumb(0)_Barton(1)_Modified_Barton(2) 2 
Block_Normal_Stiffness_Analytical(0)_BEM(1) 1 
In_Situ_Stress_Circular_Tunnel:No(0)_Yes(1) 0 
Water_pressure_due_to_jet_impact:No(0)_Yes(1) 0 
 

 Figure B.1-Continued: Example of “input.dat” 

 

NOTE: The origin of the global reference system should be on the tunnel axis 
Tunnel_Diameter  3.6 
Tunnel_axis(x_y_z)           1 0 0 
Ditance_of_excavation_face_from_the_origin 5 
(The excavation face is to be located in the negative direction of tunnel exis from the origin) 
 
Tunnel_ref_system_is_the_same_as_principal_stress_dir:yes(1)_no(0) 1 
Depth_of_Tunnel  100 
Unit_Weight_of_Rock_Mass 0.026 
Lateral_Pressure_Coefficient 1 
 

 Figure B.2: Example of “tunnel_stress.dat”; the tunnel reference system is the same 
as principal stress directions 
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NOTE: The origin of the global reference system should be on the tunnel axis 
Tunnel_Diameter  3.6 
Tunnel_axis(x_y_z)           1 0 0 
Ditance_of_excavation_face_from_the_origin 5 
(The excavation face is to be located in the negative direction of tunnel exis from the origin) 
 
Tunnel_ref_system_is_the_same_as_principal_stress_dir:yes(1)_no(0) 0 
In Situ Stress in global ref System 
(Sxx_Syy_Syz_Txy_Txz_Tyz)  0.5 1 3 0.1 0.4 -0.3 
 

 Figure B.3: Example of “tunnel_stress.dat”; the tunnel reference system is not the 
same as principal stress directions 

  

B.3  “WATER_PRESSURE.DAT” 

In order to consider dynamic water pressure caused by high-velocity jet impact on 

the block located in the bottom of a plunge pool, another input file, 

“water_pressure.dat”, should be read by BS3D. Figure B.4 gives an example of input file 

for a plunge pool with following characteristics:  

- Y = 140 m; r = 20 m; Dj = 20 m; Vj = 24.5 m/s 

- Free over fall; Circular jet; Moderate turbulence 

- Maximum duration of extreme hydrodynamic pressure: 5 ms 

 
 
Depth_of_Water_in_the_pool      140 
Considering_all_combinations(1)_Or_the_most_critical_one(0)  0 
 
Distance_to_the_jet_center_line   20 
Jet_diameter_at_the_pool_surface  20 
Jet_diameter_is_the_same_as_jet_width_for_rectangular_jet 
 
Circular(0)_Or_rectangular(1)_jet  0 
Rough(0)_Moderate(1)_Smooth(2)_turbulent 1 
Jet_length     1 
Jet_Velocity_at_the_pool_surface  24.5 
 
Type_of_outlet_structure: 
Free_overfall(0)_Ski_jump_outlet(1)_Valve(2) 0 
Hydrodynamic_pressure_max_Duration  0.005 
 

 Figure B.4: Example of “water_pressure.dat” 
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APPENDIX C: COMPUTATION OF POLYHEDRAL MASS 

PROPERTIES  

The location of a body’s center of mass, and its moments and products of inertia 

about various axes are important physical quantities for any type of dynamic simulation 

or physical based modeling. Mirtch [236] presented an algorithm for computing these 

quantities for a general class of rigid bodies: uniform density polyhedrons. The mass 

integrals may be converted into volume integrals under his assumption. The algorithm is 

based on a three-step reduction of the volume integrals to successively simpler integrals. 

The algorithm is designed to minimize the numerical errors that can result from poorly 

conditioned alignment of a polyhedral faces. It is also designed for efficiency. All 

required volume integrals of the polyhedron; exploiting common subexpressions reduces 

floating point operations [236]. 

In this dissertation, Mirtch’s [236] algorithm has been implemented as a 

subroutine called “massProperties”. Whenever BS3D needs to compute the mass 

properties of a block (a polyhedron), it calls “massProperties” subroutine. Figure C.1 

shows the pseudo code implemented in “massProperties” subroutine which is the same as 

what proposed by Mirtch [236]. 
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SUB MassProperties (Block) 
     ଵܶ, ௫ܶ , ௬ܶ , ௭ܶ , ܶ௫మ, ܶ௬మ, ܶ௭మ, ௫ܶ௬, ௬ܶ௭, ௭ܶ௫ ՚ 0 
     For each face, F, on the boundary of the block, B: 
          Choose α-β-γ as a right-handed permutation of x-y-z that maximized ห ො݊ఊห (see Section 5.2.3 for details) 
,ଵߨ           ,ఈߨ ,ఉߨ ,ఈమߨ ,ఈఉߨ ,ఉమߨ ,ఈయߨ ,ఈమఉߨ ,ఈఉమߨ ఉయߨ ՚ 0            
          For each edge, ε, in counterclockwise order around F: 
଴ߙ                ՚ ߙ െ coordinate of start point of ߚ  ; ߝ଴ ՚ ߚ െ coordinate of start point of ߝ 
ଵߙ                ՚ ߙ െ coordinate of end point of ߚ  ; ߝ଴ ՚ ߚ െ coordinate of end point of ߝ 
               Δߙ ՚ ଵߙ െ ߚ଴;   Δߙ ՚ ଵߚ െ  ଴ߚ
ଵܥ                ՚ ଵߙ ൅ ఈܥ  ;଴ߙ ՚ ଵߙ · ଵܥ ൅ ଴ߙ

ଶ;  ܥఈమ ՚ ଵߙ · ఈܥ ൅ ଴ߙ
ଷ;  ܥఈయ ՚ ଵߙ · ఈమܥ ൅ ଴ߙ

ସ 
ఉܥ                ՚ ଵߚ

ଶ ൅ ଵߚ · ଴ߚ ൅ ଴ߚ
ଶ;  ܥఉమ ՚ ଵߚ · ஒܥ ൅ ଴ߚ

ଷ;  ܥఉయ ՚ ଵߚ · ஒమܥ ൅ ଴ߚ
ସ    

ఈఉܥ                ՚ ଵߙ3
ଶ ൅ ଵߙ2 · ଴ߙ ൅ ଴ߙ

ଶ;  ܭఈఉ ՚ ଵߙ
ଶ ൅ ଵߙ2 · ଴ߙ ൅ ଴ߙ3

ଶ 
ఈమఉܥ                ՚ ଴ߙ · ఈఉܥ ൅ ଵߙ4

ଷ;  ܭఈమఉ ՚ ଵߙ · ఈఉܭ ൅ ଴ߙ4
ଷ 

ఈఉమܥ                ՚ ଵߚ4
ଷ ൅ ଵߚ3

ଶ · ଴ߚ ൅ ଵߚ2 · ଴ߚ
ଶ ൅ ଴ߚ

ଷ;  ܭఈఉమ ՚ ଵߚ
ଷ ൅ ଵߚ2

ଶ · ଴ߚ ൅ ଵߚ3 · ଴ߚ
ଶ ൅ ଴ߚ4

ଷ 
ଵߨ                ՚ ଵߨ ൅ ߚ߂ ·  ଵܥ
ఈߨ                ՚ ఈߨ ൅ ߚ߂ · ఈమߨ  ;ఈܥ ՚ ఈమߨ ൅ ߚ߂ · ఈయߨ  ;ఈమܥ ՚ ఈయߨ ൅ ߚ߂ ·  ఈయܥ
ఉߨ                ՚ ఉߨ ൅ ߙ߂ · ఉమߨ  ;ఉܥ ՚ ఉమߨ ൅ ߙ߂ · ఉయߨ  ;ఉమܥ ՚ ఉయߨ ൅ ߙ߂ ·  ఉయܥ
ఈఉߨ                ՚ ఈఉߨ ൅ ߚ߂ · ሺߚଵ · ଴ߚఈఉ൅ܥ · ఈమఉߨ  ;(ఈఉܭ ՚ ఈమఉߨ ൅ ߚ߂ · ሺߚଵ · ଴ߚఈమఉ൅ܥ ·  ఈమఉሻܭ
ఈఉమߨ                ՚ ఈఉమߨ ൅ ߙ߂ · ሺߙଵ · ଴ߙఈఉమ൅ܥ ·    ఈఉమሻܭ
          End For 
ଵߨ           ՚ ఈߨ  ;ଵ/2ߨ ՚ ఈమߨ  ;ఈ/6ߨ ՚ ఈయߨ  ;ఈమ/12ߨ ՚  ఈయ/20ߨ
ఉߨ           ՚ െߨఉ/6;  ߨఉమ ՚ െߨఉమ/12;  ߨఉయ ՚ െߨఉయ/20 
ఈఉߨ           ՚ ఈమఉߨ  ;ఈఉ/24ߨ ՚ ఈఉమߨ  ;ఈమఉ/60ߨ ՚ െߨఈఉమ/60 
          ߱ ՚ െ ො݊ · ,for some point  ݌ ,݌ on ܨ 
                      ݇ଵ ՚ ො݊ఊ

ିଵ;  ݇ଶ ՚ ݇ଵ
ଶ ;  ݇ଷ ՚ ݇ଵ

ଷ;  ݇ସ ՚ ݇ଵ
ସ 

ఈܨ           ՚ ݇ଵ · ఉܨ  ;ఈߨ ՚ ݇ଵ · ఊܨ  ;ఉߨ ՚ െ݇ଶ · ሺ ො݊ఈ · ఈߨ ൅ ො݊ఉ · ఉߨ ൅ ߱ ·  (ଵߨ
ఈమܨ           ՚ ݇ଵ · ఉమܨ  ;ఈమߨ ՚ ݇ଵ · ఉమߨ  
ఊమܨ           ՚ ݇ଷ · ሺ ො݊ఈ

ଶ · ఈమߨ ൅ 2 ො݊ఈ · ො݊ఉ · ఈఉߨ ൅ ො݊ఉ
ଶ · ఉమߨ ൅ 2 ො݊ఈ · ߱ · ఈߨ ൅ 2 ො݊ఉ · ߱ · ఉߨ ൅ ߱ଶ ·  (ଵߨ

ఈయܨ           ՚ ݇ଵ · ఉయܨ  ;ఈయߨ ՚ ݇ଵ · ఉయߨ  
ఊయܨ           ՚ െ݇ସ · ሺ ො݊ఈ

ଷ · ఈయߨ ൅ 3 ො݊ఈ
ଶ · ො݊ఉ · ఈమఉߨ ൅ ො݊ఉ

ଶ · ఉమߨ ൅ 3 ො݊ఈ · ො݊ఉ
ଶ · ఈఉమߨ ൅ ො݊ఉ

ଷ · ఉయߨ ൅ 
                 3 ො݊ఈ

ଶ · ߱ · ఈమߨ ൅ 6 ො݊ఈ · ො݊ఉ · ߱ · ఈఉߨ ൅ 3 ො݊ఉ
ଶ · ߱ · ఉమߨ ൅ 3 ො݊ఈ · ߱ଶ · ఈߨ ൅ 3 ො݊ఉ · ߱ଶ · ఉߨ ൅  ߱ଷ ·  (ଵߨ

ఈమఉܨ           ՚ ݇ଵ · ఉమఊܨ  ;ఈమఉߨ ՚ െ݇ଶ · ሺ ො݊ఈ · ఈఉమߨ ൅ ො݊ఉ · ఉయߨ ൅ ߱ ·  ఉమሻߨ
ఊమఈܨ           ՚ ݇ଷ · ሺ ො݊ఈ

ଶ · ఈయߨ ൅ 2 ො݊ఈ · ො݊ఉ · ఈమఉߨ ൅ ො݊ఉ
ଶ · ఈఉమߨ ൅ 2 ො݊ఈ · ߱ · ఈమߨ ൅ 2 ො݊ఉ · ߱ · ఈఉߨ ൅ ߱ଶ ·  ఈሻߨ

          If (α = x) Then 
               ଵܶ ՚ ଵܶ ൅ ො݊ఈ ·   ఈܨ
          Else If (β = x) Then 
               ଵܶ ՚ ଵܶ ൅ ො݊ఉ ·  ఉܨ
          Else 
               ଵܶ ՚ ଵܶ ൅ ො݊ఊ ·  ఊܨ
          End IF 
          ఈܶ ՚ ఈܶ ൅ ො݊ఈ · ఈమ;  ఉܶܨ ՚ ఉܶ ൅ ො݊ఉ · ఉమ;  ఊܶܨ ՚ ఊܶ ൅ ො݊ఊ ·  ఊమܨ
          ܶఈమ ՚ ܶఈమ ൅ ො݊ఈ · ఈయ;  ܶఉమܨ ՚ ܶఉమ ൅ ො݊ఉ · ఉయ;  ܶఊమܨ ՚ ܶఊమ ൅ ො݊ఊ · ఊయܨ  
          ఈܶఉ ՚ ఈܶఉ ൅ ො݊ఈ · ఈమఉ;  ఉܶఊܨ ՚ ఉܶఊ ൅ ො݊ఉ · ఉమఊ;  ఊܶఈܨ ՚ ఊܶ ൅ ො݊ఊ ·  ఊమఈܨ
     End For 
     ሺ ௫ܶ, ௬ܶ, ௭ܶሻ ՚ ሺ ௫ܶ, ௬ܶ, ௭ܶሻ/2;  ሺܶ௫మ, ܶ௬మ, ܶ௭మሻ ՚ ሺܶ௫మ, ܶ௬మ, ܶ௭మሻ/3;  ሺ ௫ܶ௬, ௬ܶ௭, ௭ܶ௫ሻ ՚ ሺ ௫ܶ௬, ௬ܶ௭, ௭ܶ௫ሻ/2   

݁݉ݑ݈݋ݒ      ՚ ଵܶ;  ܿ݁݊݀݅݋ݎݐ ՚ ൫ ௫ܶ, ௬ܶ, ௭ܶ൯;  ݅݊݁ݎ݋ݏ݊݁ܶ ܽ݅ݐݎ ՚ ቎
ܶ௫మ ௫ܶ௬ ௭ܶ௫

௫ܶ௬ ܶ௬మ ௬ܶ௭

௭ܶ௫ ௬ܶ௭ ܶ௭మ

቏ 

End MassProperties  

 Figure C.1: Pseudo code of the algorithm that computes polyhedral mass properties 
(after Mirtch [236])  
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APPENDIX D: IMPLEMENTATION AND VERIFICATION OF 

BOUNDARY ELEMENT METHOD IN ELASTOSTATIC PROBLEM  

D.1  IMPLEMENTATION 

BS3D triangulates each face of the block into a set of triangles and subdivides 

each triangle into a set of subtriangles. Subsequently, a point (node) is assigned to the 

centroid of each subtriangle. Figure 5.3 schematically depicts the discretization process. 

In BS3D, all elements of H and G matrices in Equation (5.1) are calculated by using 

Gaussian integration over triangles [260-263]. iiG  components are calculated by 

following Li’s and Han’s method [264] for evaluating singular integrals in stress analysis 

of solids by the direct BEM. Body force vector, B, are obtained using Galerkin Vector 

approach, which transforms the domain integrals into boundary integrals [237]. 

Figure D.1 presents subroutines that calculates BEM matrices, H, G, and B, based 

on the algorithm given in [237, 260-264]. It should be mentioned that, in Figure D.1, all 

vectors are shown in bold; Po is a matrix containing coordinates of all (boundary) 

elements; ne presents the coordinate of sensor points (nodes).  

D.1  VERIFICATION 

In order to verify the implementation of elastostatic BEM matrices, two examples 

have been checked. In both examples, a cubic block with sides of 1 m (Figure D.2) is 

considered. The block seats on a table on its lowermost face, A1A2A3A4. The block has 

Young’s modulus of 30 GPa and Poisson’s ratio of 0.3. Two loading conditions are 

considered: 

1) The block is weightless and subjected to uniformly distributed load of 50 kPa on 

the uppermost face, A5A6A7A8. Stress on face A1A2A3A4 which is in contact with 

the table should be 50 kPa as well. This stress is calculates using BEM assuming 

the following loading and boundary conditions: 
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SUB BEMMatrices (numSen, ne, Po, area, ν, E, n, HMatrix, GMatrix, BMatrix)  
௚ݓ     ՚{0.07215780, 0.04754582, 0.04754582, 0.04754582, 0.01622925, 0.01622925, 0.01622925, 0.05160869,  
          0.05160869, 0.05160869, 0.01361516, 0.01361516, 0.01361516, 0.01361516, 0.01361516, 0.01361516} 
௚ݔ     ՚{0.3333333, 0.08141482, 0.4592926,0. 4592926, 0.8989055, 0.05054723, 0.05054723, 0.6588614,  
          0.1705693, 0.1705693, 0.008394777, 0.008394777, 0.7284924, 0.7284924, 0.2631128, 0.2631128} 
௚ݕ     ՚{0.3333333, 0.4592926, 0.08141482, 0.4592926, 0.05054723, 0.8989055, 0.05054723, 0.1705693,  
          0.6588614, 0.1705693, 0.7284924, 0.2631128, 0.008394777, 0.2631128, 0.008394777, 0.7284924} 
ܧܩ     ՚ ா

ଶሺଵାఔሻ
 

,ݔ݅ݎݐܽܯܩ     ,ݔ݅ݎݐܽܯܪ ,݅ܯܤ ݔ݅ݎݐܽܯܤ ՚ 0 
    For i = 1 to numSen  
        For j = 1 to numSen 
            If (i = j) Then 
                CALL GMatrix (ࢋ࢔௜, ,௝݋ܲ ,௝࢔ ,ߥ                    ௜,௝ሻݔ݅ݎݐܽܯܩ

௜,௝ݔ݅ݎݐܽܯܩ                 ՚ ௔௥௘௔ೕ

ଷ
· ீெ௔௧௥௜௫೔,ೕ

ଵ଺గ·ሺଵିఔሻ·ீா
௜,௝ݔ݅ݎݐܽܯܪ   ;  ՚ ൥

0.5 0 0
0 0.5 0
0 0 0.5

൩                         

            ELSE 
                If (i < j) Then  
                    CALL HGMatrice ሺࢋ࢔௜, ,௝݋ܲ ,௝࢔ , ,ߥ ,ܧܩ ,௜,௝ݔ݅ݎݐܽܯܪ   ௜,௝ሻݔ݅ݎݐܽܯܩ
௜,௝ݔ݅ݎݐܽܯܩ                     ՚ ݁ݎ2ܽ ௝ܽ · ௜,௝ݔ݅ݎݐܽܯܪ  ;௜,௝ݔ݅ݎݐܽܯܩ ՚ ݁ݎ2ܽ ௝ܽ ·   ௜,௝ݔ݅ݎݐܽܯܪ
                Else 
                    CALL HMatrice ሺࢋ࢔௜, ,௝݋ܲ ,௝࢔ ,ߥ   ௜,௝ሻݔ݅ݎݐܽܯܪ
௜,௝ݔ݅ݎݐܽܯܩ                     ՚ ௜,௝ݔ݅ݎݐܽܯܪ  ;௝,௜ݔ݅ݎݐܽܯܩ ՚ ݁ݎ2ܽ ௝ܽ ·   ௜,௝ݔ݅ݎݐܽܯܪ
                End If 
            End If 
            CALL bodyForce ሺࢋ࢔௜, ,௝݋ܲ ,௝࢔ ,ߥ ܯܤ ௝݅ሻ  
௜ݔ݅ݎݐܽܯܤ             ՚ ௜ݔ݅ݎݐܽܯܤ ൅ ݁ݎ2ܽ ௝ܽ · ܯܤ ௝݅                       
        End For              
    End For      
END BEMMatrices 
SUB HGMatrice (ne, Po, n, ν, GE, h, g)  
    ݄, ݃ ՚  0    
    For i =1 to 16         
        ࢘ ՚ ሺ1 െ ௜݃ݔ െ ௜ሻ݃ݕ · ૚࢕ࡼ ൅ ௜݃ݔ · ૛࢕ࡼ ൅ ௜݃ݕ · ૜࢕ࡼ െ                  ࢋ࢔
        For j = 1 to 3 
            For k = 1 to 3 
                If (j = k) Then 
                    ௝݄௝ ՚ ሺିଵ

࢘·࢘
· ࢔·࢘

|࢘| · ሺ1 െ ߥ2 ൅ ଷ௥ೕ
మ

࢘·࢘
ሻሻ · ௜݃ݓ ൅ ௝݄௝ 

                    ݃௝௝ ՚ ଵ
|࢘| · ቀ3 െ ߥ4 ൅ ௥ೕ

మ

࢘·࢘
ቁ · ௜݃ݓ ൅ ݃௝௝ 

                Else 

                                             ௝݄௞ ՚ ሺ
െ1

࢘ · ࢘ · ሺ
࢘ · ࢔
|࢘| ·

௝ݎ3 · ௞ݎ

࢘ · ࢘ െ ሺ1 െ ሻߥ2 ·
݊௞ · ௝െݎ ௝݊ · ௞ݎ

|࢘| ሻሻ · ௜݃ݓ ൅ ௝݄௞ 

                    ݃௝௞ ՚ ଵ
|࢘| · ቀ௥ೕ·௥ೖ

࢘·࢘
ቁ · ௜݃ݓ ൅ ݃௝௝ 

                End If 
            End For 
        End For          
    End For 
    ݃ ՚ ௚

ଵ଺గ·ீா·ሺଵିఔሻ
;    ݄ ՚ ௛

଼గ·ሺଵିఔሻ
 

END HGMatrice 

 Figure D.1: Pseudo code of subroutines that determine BEM matrices 
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SUB GMatrix (ne, Po, n,ν, g)  
    For i =1 to 3  
௜ଵࢀ         ՚  ࢋ࢔
    End For 
ଵଶࢀ     ՚ ଵଷࢀ  ;ଵ࢕ࡼ ՚ ଶଶࢀ  ;ଶ࢕ࡼ ՚ ଶଷࢀ  ;ଶ࢕ࡼ ՚ ଷଶࢀ  ;ଷ࢕ࡼ ՚ ଷଷࢀ  ;ଷ࢕ࡼ ՚  ଵ࢕ࡼ
,૚ࢇ     ,૛ࢇ ,૜ࢇ ݃ ՚ 0           
    For i =1 to 3  
        ࢞૛૚࢏ ՚ ୧ଶࢀ െ ࢏୧ଵ;  ࢞૜૛ࢀ ՚ ୧ଷࢀ െ  ୧ଶࢀ
    End For     
    For i =1 to 3  
        For j =1 to 3  
            ܽ1୧ ՚ ܽ1௜ ൅ 21௜,௝;  ܽ2୧ݔ2 ՚ ܽ2௜ ൅ 21௜,௝ݔ2 · 32௜,௝;  ܽ3୧ݔ ՚ ܽ3௜ ൅  32௜,௝ݔ2
        End For     
    End For           
    For i =1 to 3 
୧ܽݏ         ՚ ܽ1௜ ൅ ܽ2௜ ൅ ܽ3௜;  ݁ܽ୧ ՚ 4ܽ1௜ · ܽ3௜ െ ܽ2௜

ଶ         
    End For               
    For i =1 to 3 

0୧ܫ         ՚ ଵ
ඥ௔ଷ೔

· logଵ଴ሺଶඥ௦௔౟·௔ଷ೔ା௔ଶ೔ାଶ௔ଷ೔

ଶඥ௔ଵ౟·௔ଷ೔ା௔ଶ೔
ሻ;  1ܫ୧ ՚ ඥ௦௔೔

௔ଷ೔
െ ට௔ଵ೔

௔ଷ೔
െ ௔ଶ೔·ூ଴౟

ଶ௔ଷ೔
 

2୧ܫ         ՚ ଶሺ௔ଶ೔ାଶ௔ଷ೔ሻ
௘௔౟·ඥ௦௔೔

െ ଶ௔ଶ೔

௘௔౟·ඥ௔ଵ೔
3୧ܫ   ;  ՚ ିଶሺଶ௔ଵ೔ା௔ଶ೔ሻ

௘௔౟·ඥ௦௔೔
൅ ସ௔ଵ೔

௘௔౟·ඥ௔ଵ೔
 

4୧ܫ         ՚ ሺଶ௔ଶ೔
మିସ௔ଵ೔·௔ଷ೔ାଶ௔ଵ೔·௔ଶ೔ሻ

௔ଷ౟·௘௔౟·ඥ௦௔೔
െ ଶ௔ଵ೔·௔ଶ೔

௔ଷ౟·௘௔౟·ඥ௔ଵ೔
൅ ூ଴౟

௔ଷ౟
5୧ܫ  ; ՚ ଶூଷ౟

௔ଷ೔
െ ௔ଶ೔·ூସ౟

ଶ௔ଷ೔
െ ଵ

௔ଷ౟·ඥ௦௔೔
 

    End For     
��  For i =1 to 3 
        For j =1 to 3 
            If (i = j) Then 
                For k =1 to 3 
                     ݃ ௜ܵ௝௞ ՚ 2ሺ3 െ ሻߥ4 · 0௞ܫ ൅ 21௞,௜ݔ2 · 21௞,௝ݔ · 2௞ܫ ൅ 
                            2൫32ݔ௞,௝ · 21௞,௜ݔ ൅ 32௞,௜ݔ · 21௞,௝൯ݔ · 3௞ܫ ൅ 32௞,௜ݔ2 · 32௞,௝ݔ ·  4௞ܫ
                End For     
            Else 
                For k =1 to 3 
                     ݃ ௜ܵ௝௞ ՚ 21௞,௜ݔ2 · 21௞,௝ݔ · 2௞ܫ ൅ 2൫32ݔ௞,௝ · 21௞,௜ݔ ൅ 32௞,௜ݔ · 21௞,௝൯ݔ ·  3௞ܫ
t                           ൅232ݔ௞,௜ · 32௞,௝ݔ ·  4௞ܫ
                End For     
            End If 
        End For     
    End For         
    For i =1 to 3 
        For j =1 to 3 
            For k =1 to 3  
               ݃௜,௝ ՚ ݃௜,௝ ൅ ݃ ௜ܵ,௝,௞ 
            End For     
        End For     
    End For     
END GMatrix 

 Figure D.1-Continued: Pseudo code of subroutines that determine BEM matrices 
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SUB HMatrix (ne, Po, n,ν, h) 
    ݄ ՚  0 
    For i =1 to 16         
        ࢘ ՚ ሺ1 െ ௜݃ݔ െ ௜ሻ݃ݕ · ૚࢕ࡼ ൅ ௜݃ݔ · ૛࢕ࡼ ൅ ௜݃ݕ · ૜࢕ࡼ െ                  ࢋ࢔
        For j = 1 to 3 
            For k = 1 to 3 
                If (j = k) Then 
                    ௝݄௝ ՚ ሺିଵ

࢘·࢘
· ࢔·࢘

|࢘| · ሺ1 െ ߥ2 ൅ ଷ௥ೕ
మ

࢘·࢘
ሻሻ · ௜݃ݓ ൅ ௝݄௝ 

                Else 

                                             ௝݄௞ ՚ ሺ
െ1

࢘ · ࢘ · ሺ
࢘ · ࢔
|࢘| ·

௝ݎ3 · ௞ݎ

࢘ · ࢘ െ ሺ1 െ ሻߥ2 ·
݊௞ · ௝െݎ ௝݊ · ௞ݎ

|࢘| ሻሻ · ௜݃ݓ ൅ ௝݄௞ 

                End If 
            End For 
        End For         
    End For 
    ݄ ՚ ௛

଼గ·ሺଵିఔሻ
 

END HMatrix    
SUB bodyForce (ne, Po, n, ν, b) 
    b = 0 
    For i = 1 to 16 
        ࢘ ՚ ሺ1 െ ௜݃ݔ െ ௜ሻ݃ݕ · ૚࢕ࡼ ൅ ௜݃ݔ · ૛࢕ࡼ ൅ ௜݃ݕ · ૜࢕ࡼ െ          ࢋ࢔
        For j =1 to 3 
            ௝ܾ ՚ ଵ

ଶሺଵିఔሻ
· ௥య

|࢘| · ௝݊ · ௜݃ݓ ൅ ௝ܾ 

            If (j = 3): ௝ܾ ՚ െ ࢔.࢘
|࢘| · ௜݃ݓ ൅ ௝ܾ  

        End For 
    End For 
    ܾ ՚ ௕

଼గ·ఔ
         

End bodyForce  

 Figure D.1-Continued: Pseudo code of subroutines that determine BEM matrices 

 

 

 Figure D.2: Geometry of the cubic block considered in the verification example 
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a. Body forces: B = 0. 

b. Face A5A6A7A8: U = 0 and P = Unknown. 

c. Face A1A2A3A4: U = Unknown and P = {0, 0, -0.05}. 

d. All other faces: U= Unknown and P = 0. 

Figure D.3 shows the percent error of average stresses calculated using BEM for 

the nodes located on face A5A6A7A8. It can be seen that BEM implementation 

works very well with nominal errors which verifies implementation of H and G 

matrices. 

 

 

Figure D.3: Percent error of average stresses calculated using BEM (Example of 
weightless block on table) 

 
2) The unit weight of the block is 30 kN/m3. Stress on face A1A2A3A4 which is in 

contact with the table should be 30 kPa. This stress is calculated using BEM 

assuming the following loading and boundary conditions: 

e. Body forces: due weight of the block and will be calculated by the code. 

f. Face A5A6A7A8: U = 0 and P = Unknown. 

g. All other faces: U= Unknown and P = 0. 
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Figure D.4 shows the percent error of average stresses calculated using BEM for 

the nodes located on face A5A6A7A8. It can be seen that BEM implementation 

works very well with nominal errors which verifies implementation of B martrix. 

 

 

Figure D.4: Percent error of average stresses calculated using BEM (Example of a block 
on a table subjected to its own weight) 

Figure D.4 shows the percent of errors of average stresses calculated using BEM 

for the nodes located on face A5A6A7A8. It can be seen that BEM implementation 

works very well with nominal errors which verifies implementation of B martrix. 

Figure D.4 shows the percent of errors of average stresses calculated using BEM 

for the nodes located on face A5A6A7A8. It can be seen that BEM implementation 

works very well with nominal errors which verifies implementation of B martrix. 

Figure D.4 shows the  

 

percent of errors of average stresses calculated using BEM for the nodes located 

on face A5A6A7A8. It can be seen that BEM implementation works very well with 

nominal errors which verifies implementation of B martrix. 
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APPENDIX E: MATRIX M IS POSITIVE DEFINITE 

Matrix M is defined in Section 2.3 as follows: 

⎥
⎦

⎤
⎢
⎣

⎡ ⋅
= ×

GE
I

M
0

033m

     
 (E.1) 

where m is the block mass, EG is inertia operator relative to point G (centroid of the 

block) [16, 38-41], and ۷ଷൈଷ is the 3 ൈ 3 identity matrix. By defining, EG as: 

,
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

zzyzxz

yzyyxy

xzxyxx

III
III
III

GE
     

 (E.2) 

M can be expressed as follows: 

,

000
000
000

00000
00000
00000

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

zzyzxz

yzyyxy

xzxyxx

III
III
III

m
m

m

M
   

 (E.3) 

which is clearly real and symmetric.  

An 6 ൈ 6 real symmetric matrix M is positive definite if 0>⋅⋅ vvT M
 
for all 

non-zero real entries (ݒ א R଺) [54, 361]. Let: 

[ ]Tvvvvvvv 654321=
   

 (E.4) 

 By substituting Equations (E.3) and (E.4) in the condition of positive definite 

matrices ( vvCCC T ⋅⋅=+= M21 ), the following expressions are obtained: 

( )2
3

2
2

2
11 vvvmC ++⋅=     (E.5)

 
646554

2
6

2
5

2
42 222 vvIvvIvvIvIvIvIC xzyzxyzzyyxx ⋅⋅+⋅⋅+⋅⋅+⋅+⋅+⋅=  (E.6) 

Since the mass of the block, m, and sum of squares of three real entries 

( )2
3

2
4

2
1 vvv ++

 
are positive, C1 is a positive value. Therefore, to prove that M is a 

positive definite matrix, it is enough to demonstrate that C2 is always positive. 
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 Consider a rigid body comprising N parts, B1, …, BN, each being a uniform 

density polyhedron. The inertia tensor relative to point G (centroid of the block which is 

assumed to be the same as the origin of reference system), EG, can be determined as 

follows [236, 362-364]: 

,

)(

)(

)(

22

111

1

22

11

11

22

1

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+⋅⋅−⋅⋅

⋅⋅−+⋅⋅⋅−

⋅⋅⋅⋅−+⋅

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

∑∑∑

∑∑∑

∑∑∑

===

===

===

ii

N

i
iii

N

i
iii

N

i
i

ii

N

i
iii

N

i
iii

N

i
i

ii

N

i
iii

N

i
iii

N

i
i

zzyzxz

yzyyxy

xzxyxx

yxmzymzxm

zymzxmyxm

zxmyxmzym

III
III
III

GE
  

(E.7) 

in which xi, yi, and zi are coordinates of mass center of polyhedron Bi.   

By substituting Equations (E.7) in Equation (E.6), C2 can be expressed as follows: 

,222

)()()(

1
64

1
65

1
54

22

1

2
6

22

1

2
5

22

1

2
42

ii

N
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iii

N

i
iii

N

i
i

ii

N

i
iii

N

i
iii

N

i
i

zxmvvzymvvyxmvv

yxmvzxmvzymvC

⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−

+⋅++⋅⋅++⋅⋅=

∑∑∑

∑∑∑

===

===  (E.8) 

which can be simplified as: 

 
( )⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅⋅⋅+⋅⋅⋅+⋅⋅⋅⋅−
+⋅++⋅++⋅

⋅=∑
= iiiiii

iiiiii
N

i
i zxvvzyvvyxvv

yxvzxvzyvmC
646554

222
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By rearranging Equation (E.16), C2 can be expressed as follows: 
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which is the summation of multiplication of two positive terms:  

- im : mass of the i-th polyhedron. 

- ( ) ( ) ( )265
2

64
2

54 iiiiii yvzvxvzvxvyv ⋅−⋅+⋅−⋅+⋅−⋅ : sum of the squares of 

three real quantities. 

Therefore, C2 is positive. Since both C1 and C2 are positive values, their summation, C, is 

also positive. Thus, 0>⋅⋅ vvT M  and matrix M is a positive definite matrix.  
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APPENDIX F: STRESS TENSORS (PARAMETRIC STUDY OF 

SECTION 7.4.2) 

A sensivity analyses has been performed in Section 7.4.2 to investigate the effect 

of principal stress directions on the stability of the prism (see Figure 7.25). The results of 

the parametric study are depicted in Figure 7.33. The stress tensors in the global reference 

system of  

Figure 7.26 are given in Table F.1. 

 

Table F.1: Tensors of in situ stresses in the global reference system (parametric study of 
Section 7.4.2) 

β α σxx σyy σzz τxy τxz τyz 

0 

0 5.175 1.725 3.450 0.000 0.000 0.000 
10 5.071 1.829 3.450 0.590 0.000 0.000 
20 4.771 2.129 3.450 1.109 0.000 0.000 
30 4.313 2.588 3.450 1.494 0.000 0.000 
40 3.750 3.150 3.450 1.699 0.000 0.000 
50 3.150 3.750 3.450 1.699 0.000 0.000 
60 2.588 4.313 3.450 1.494 0.000 0.000 
70 2.129 4.771 3.450 1.109 0.000 0.000 
80 1.829 5.071 3.450 0.590 0.000 0.000 
90 1.725 5.175 3.450 0.000 0.000 0.000 

10 

0 5.175 1.777 3.398 0.000 0.000 -0.295 
10 5.071 1.878 3.401 0.581 0.102 -0.277 
20 4.771 2.168 3.410 1.092 0.193 -0.226 
30 4.313 2.614 3.424 1.471 0.259 -0.147 
40 3.750 3.159 3.441 1.673 0.295 -0.051 
50 3.150 3.741 3.459 1.673 0.295 0.051 
60 2.588 4.286 3.476 1.471 0.259 0.147 
70 2.129 4.732 3.490 1.092 0.193 0.226 
80 1.829 5.022 3.499 0.581 0.102 0.277 
90 1.725 5.123 3.502 0.000 0.000 0.295 

20 

0 5.175 1.927 3.248 0.000 0.000 -0.554 
10 5.071 2.019 3.260 0.554 0.202 -0.521 
20 4.771 2.283 3.295 1.042 0.379 -0.425 
30 4.313 2.688 3.349 1.404 0.511 -0.277 
40 3.750 3.186 3.415 1.596 0.581 -0.096 
50 3.150 3.715 3.485 1.596 0.581 0.096 
60 2.588 4.212 3.551 1.404 0.511 0.277 
70 2.129 4.617 3.605 1.042 0.379 0.425 
80 1.829 4.881 3.640 0.554 0.202 0.521 
90 1.725 4.973 3.652 0.000 0.000 0.554 
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Table F.1-Continued: Tensors of in situ stresses in the global reference system  

β α σxx σyy σzz τxy τxz τyz 

30 

0 5.175 2.156 3.019 0.000 0.000 -0.747 
10 5.071 2.234 3.045 0.511 0.295 -0.702 
20 4.771 2.459 3.120 0.960 0.554 -0.572 
30 4.313 2.803 3.234 1.294 0.747 -0.373 
40 3.750 3.225 3.375 1.471 0.849 -0.130 
50 3.150 3.675 3.525 1.471 0.849 0.130 
60 2.588 4.097 3.666 1.294 0.747 0.373 
70 2.129 4.441 3.780 0.960 0.554 0.572 
80 1.829 4.666 3.855 0.511 0.295 0.702 
90 1.725 4.744 3.881 0.000 0.000 0.747 

40 

0 5.175 2.438 2.737 0.000 0.000 -0.849 
10 5.071 2.499 2.780 0.452 0.379 -0.798 
20 4.771 2.675 2.904 0.849 0.713 -0.651 
30 4.313 2.944 3.094 1.144 0.960 -0.425 
40 3.750 3.274 3.326 1.301 1.092 -0.147 
50 3.150 3.626 3.574 1.301 1.092 0.147 
60 2.588 3.956 3.806 1.144 0.960 0.425 
70 2.129 4.225 3.996 0.849 0.713 0.651 
80 1.829 4.401 4.120 0.452 0.379 0.798 
90 1.725 4.462 4.163 0.000 0.000 0.849 

50 

0 5.175 2.737 2.438 0.000 0.000 -0.849 
10 5.071 2.780 2.499 0.379 0.452 -0.798 
20 4.771 2.904 2.675 0.713 0.849 -0.651 
30 4.313 3.094 2.944 0.960 1.144 -0.425 
40 3.750 3.326 3.274 1.092 1.301 -0.147 
50 3.150 3.574 3.626 1.092 1.301 0.147 
60 2.588 3.806 3.956 0.960 1.144 0.425 
70 2.129 3.996 4.225 0.713 0.849 0.651 
80 1.829 4.120 4.401 0.379 0.452 0.798 
90 1.725 4.163 4.462 0.000 0.000 0.849 

60 

0 5.175 3.019 2.156 0.000 0.000 -0.747 
10 5.071 3.045 2.234 0.295 0.511 -0.702 
20 4.771 3.120 2.459 0.554 0.960 -0.572 
30 4.313 3.234 2.803 0.747 1.294 -0.373 
40 3.750 3.375 3.225 0.849 1.471 -0.130 
50 3.150 3.525 3.675 0.849 1.471 0.130 
60 2.588 3.666 4.097 0.747 1.294 0.373 
70 2.129 3.780 4.441 0.554 0.960 0.572 
80 1.829 3.855 4.666 0.295 0.511 0.702 
90 1.725 3.881 4.744 0.000 0.000 0.747 

70 

0 5.175 3.248 1.927 0.000 0.000 -0.554 
10 5.071 3.260 2.019 0.202 0.554 -0.521 
20 4.771 3.295 2.283 0.379 1.042 -0.425 
30 4.313 3.349 2.688 0.511 1.404 -0.277 
40 3.750 3.415 3.186 0.581 1.596 -0.096 
50 3.150 3.485 3.715 0.581 1.596 0.096 
60 2.588 3.551 4.212 0.511 1.404 0.277 
70 2.129 3.605 4.617 0.379 1.042 0.425 
80 1.829 3.640 4.881 0.202 0.554 0.521 
90 1.725 3.652 4.973 0.000 0.000 0.554 
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Table F.1-Continued: Tensors of in situ stresses in the global reference system  

β α σxx σyy σzz τxy τxz τyz 

80 

0 5.175 3.398 1.777 0.000 0.000 -0.295 
10 5.071 3.401 1.878 0.102 0.581 -0.277 
20 4.771 3.410 2.168 0.193 1.092 -0.226 
30 4.313 3.424 2.614 0.259 1.471 -0.147 
40 3.750 3.441 3.159 0.295 1.673 -0.051 
50 3.150 3.459 3.741 0.295 1.673 0.051 
60 2.588 3.476 4.286 0.259 1.471 0.147 
70 2.129 3.490 4.732 0.193 1.092 0.226 
80 1.829 3.499 5.022 0.102 0.581 0.277 
90 1.725 3.502 5.123 0.000 0.000 0.295 

90 

0 5.175 3.450 1.725 0.000 0.000 0.000 
10 5.071 3.450 1.829 0.000 0.590 0.000 
20 4.771 3.450 2.129 0.000 1.109 0.000 
30 4.313 3.450 2.588 0.000 1.494 0.000 
40 3.750 3.450 3.150 0.000 1.699 0.000 
50 3.150 3.450 3.750 0.000 1.699 0.000 
60 2.588 3.450 4.313 0.000 1.494 0.000 
70 2.129 3.450 4.771 0.000 1.109 0.000 
80 1.829 3.450 5.071 0.000 0.590 0.000 
90 1.725 3.450 5.175 0.000 0.000 0.000 
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NOMENCLATURE 

a  Area of equivalent footing of each face of the block (Chapter 2); Tunnel 

radius (Chapter 5); Acceleration of the block caused by the unbalance 

force (Chapter 8) 

a   Line of action of the normal component of the surface force 

ja   Aperture thickness 

sa   Proportion of total fracture area sheared through the asperities 

0A    Maximum possible contact area 

ib   Unit vector parallel to the i-th bisector  

B   Rock block 

B   Body force vectors in BEM formulation 

iB
  

Bisector of an apical angle of ith face  

c Cohesion (Chapter 3); Pressure wave celerity and for a mixed fluid 

(Chapter 8) 

airc    Pressure wave celerity in air  

liqc    Pressure wave celerity in the liquid 

C   Constraint space or face of constraint space 

C   Vector that defines the virtual work for non-ideal constraints 
+

pC   Positive extreme fluctuation dynamic pressure coefficient (pool floor) 
−

pC    Negative extreme fluctuation dynamic pressure coefficient (pool floor) 

p
upC   Net upward pressure coefficient 

paC    Mean dynamic pressure coefficient (pool floor) 

pdC    Mean dynamic pressure coefficient (fractures) 

+
pdC   Positive extreme fluctuation dynamic pressure coefficient (fractures) 

prC    Mean pressure coefficient at distance r to the jet centerline 
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+
prC    Maximum extreme pressure coefficient at distance r to the jet centerline 

+
prC    Minimum extreme pressure coefficient at distance r to the jet centerline 

d  Distance between sensor point and constraint boundary in the direction of 

incremental displacement (Chapter 2); Diameter of equivalent foundation 

(Chapter 2); Distance from excavation face (Chapter 5) 

hd   Horizontal (or shear) displacement 

pd    Peak tangent dilation angle 

peaksd ,   Peak secant dilation angle (also called initial dilation angle) 

td    Mobilized dilation angle 

peaktd ,   Peak tangent dilation angle 

ҧ݀ Distance travelled by a sensor point either in or outside C during an 

increment 

D  Fractal dimension in the considered direction 

eD    Equivalent core diameter in Point Load Test (PLT) 

e   Base unit vector for the global frame 

E  Young’s modulus  

EG   Inertia operator relative to point G (centroid of the block) 

EI  Annandale’s Erodibility Index 

f  Resultant force applied to the centroid; Resultant moment calculated with 

respect to the centroid 
sf    Sinusoidal function in OH’s model 

F  Face of rock block (Chapter 2); Unbalance force due to the maximum 

dynamic pressure fluctuation (Chapter 8) 

F   Generalized force 
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zF
  

Net vertical force associated with surface forces  

tFΔ    Net impulse on the block  

FS  Factor of safety 

G  Centroid of the block 

G  Coefficient matrix in BEM formulation 

h  Height of the block 

uph   Maximum upward displacement of the block
 
 

H   Coefficient matrix in BEM formulation 

H0   The horizontal force applied to the wedge by the surrounding rock mass  

i    Effective roughness (dilation angle) 

0i    Dilation angle at zero normal stress 

۷ଷൈଷ   3 ൈ 3 Identity matrix 

effI    Effective nonstationary trend angle for considered direction 

ji ,l   Line of intersection of faces i and j 

)(sI
  

Point load index  

Ja  A coefficient in Annandale’s EI method 

Jn   A coefficient in Annandale’s EI method (representing number of joints) 

Jr  A coefficient in Annandale’s EI method 

Js    Fracture orientation (Annandale’s EI method) 

JRC  Joint Roughness Coefficient; 0JRC and nJRC  are JRC of samples with 

length of 0L  and nL , respectively; 1JRC  and 2JRC are magnitudes of 

JRC along the major and minor semi-axes of JRC angular distribution, 

respectively; mobilizedJRC is mobilized magnitude of JRC; peakJRC is peak 

value of JRC; θJRC  is magnitude of JRC along the given direction of θ. 

JCS  Joint Compressive Strength; 0JCS and nJCS  are JCS of samples with 

length 0L  and nL , respectively. 
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0K    Lateral pressure coefficient 

Kb   A coefficient in Annandale’s EI method (representing block size) 

Kd A coefficient in Annandale’s EI method (representing fracture shear 

strength) 

jK    A “stiffness number” varying from 3.49 to 30.19 MPa/mm 

nK   Normal Stiffness 

niK   Initial normal stiffness 

sK   Shear Stiffness  

kn1   Discontinuity normal stiffness 

kn2   Block normal stiffness 

kn3   Rock mass normal stiffness 

il    Length of the block along the xi axis 

L  Length (Chapter 2); 0L is sample length in direct shear test; and nL  is 

block length; Jet length (Chapter 8); Fissure length (Chapter 8) 

Lb  Jet breakup length 

m  Block mass 

M   Mass matrix 

M  Damage coefficient (ranges between 1 and 2) (Chapter 3); A function of 

the mechanical properties of the fractures and wedge apical angle 

Ms   A coefficient in Annandale’s EI method  

N   Number (Chapter 2); Normal force (Chapter 7)  

n  Unit normal (block side if normal to ߲B, into unconstrained space if 

normal to ߲C) 

jn    Stiffness exponent  

no   Unbalanced force 

P   Sensor point, contact point, or generic point of the rock block 

P  Traction vector in BEM formulation 
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P0  Pullout resistance of the wedge, which is the resultant of all forces applied 

to the wedge except for its weight and the supporting forces 

maxP   Maximum dynamic pressure 

minP  
 

Minimum dynamic pressure   

Q Total discharge of the jet 

q  First quaternion component (scalar) (Chapter 2); Discharge per unit length 

of the jet (Chapter 8) 

q   Vector quaternion component 

Q   Intersection between a plane and a segment 

r   Residual or unit vector about which the block rotates 

r   Schmidt rebound on wet fracture surface (Chapter 3 and 4); Distance from 

tunnel axis (Chapter 5); Distance from jet centerline (Chapter 8) 

R   Schmidt rebound on dry unweathered sawn surface (Chapter 3 and 4); 

Tunnel radius (Chapter 7) 

fR     Failure ratio ( ultττ / ) ranging from 0.652 to 0.887 

RQD  Rock Quality Designation 

s   Initial discontinuity stiffness 

S Ordered list of face vertices listed in consecutive order (Chapter 2); 

Resultant of support forces (Chapter 7); Shear force (Chapter 7) 

S   Spin operator 

rs    Shear strength of the asperity intact rock 

sr   Spin operator 

nt   Normal component of traction at any point on the fracture surface  

T  Set of normalized vectors in the null space of the stiffness matrix at a 

bifurcation point 

cT
  

Natural period of an open-ended joint
 

 

uT   Issuance turbulence intensity 

u   Displacement or vector of degrees of freedom 
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 ഥ   Small displacement or vector of degrees of freedom for small rotationsܝ

U  Displacement vector (BEM formulation) 

U  Displacement (of any point of the medium) along the x axis 

∞U    Displacement far from excavation face 

u1   Displacement caused by the deformability of the discontinuity 

u2   Displacement caused by the deformability of the rock block 

u3   Displacement caused by the deformability of the constraint space 

UCS   Uniaxial Compressive Strength 

v   Maximum discontinuity closure 

tvΔ    Initial velocity 

V   Velocity 

V Displacement (of any point of the medium) along the y axis (Chapter 7); 

Mean axial flow velocity of the jet (Chapter 8) 

V ′    Root mean square value of the fluctuating velocity 

iV   Jet velocity at issuance  

jV    Jet velocity at the pool surface  

mV   Maximum closure of fractures 

W   Force applied to a parallelepiped 

W  Displacement (of any point of the medium) along the z axis (Chapter 5); 

Weight of the block (Chapter 7)    

pW   Plastic work 

bx    Length of the block 

Y    Plunge pool depth 

z   Vertical co-ordinate, positive upwards 

z   Eigenvector in the null space of the stiffness matrix 

bz    Height of the block 

Z   Plunging jet length depicted  
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Greek Letters  

α    Semi-apical angle of the wedge 

0α     Initial asperity angle 

1α    Major semi-axis of the ellipse (asperity angle in Jing et al. model) 

2α    Minor semi-axis of the ellipse (asperity angle in Jing et al. model) 

nα    Shear-through component obtained by laboratory test 

β    Free air content  

γr    Unit weight of the rock  

wγ    Unit weight of water 

 Accumulated shear displacement   ߜ

hδ    Shear displacement 

( )phδ    Peak dilation displacement (Appendix A) 

( )hδmin
  

Maximum negative value of dilation (Appendix A) 

pδ    Peak shear displacement (Appendix A) 

peakδ    Peak shear displacement of fractures 

vδ    Normal displacement (dilation displacement) 

( ) ( ) 0@ =hv δδ
  

Shear displacement at which dilation displacement is zero (Appendix A) 

peakv )(δ   Dilation displacement at peak shear displacement 

p
sδ   Plastic shear displacement 

Δ   Increment 

tΔ    Maximum duration of extreme pressure fluctuation 
*
maxθ    Maximum apparent dip angle in the shear direction 

λ    Step stage (in BS3D analysis); wavelength of asperity (in OH’s model) 

߭   Poisson’s ratio 

ξ   Virtual displacement 
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airρ   Density of the air  

liqρ     Density of the liquid  

mixρ   Density of mixed liquid and air  

σ   Stress 

1σ    Axial stress at failure  

3σ    Effective confining pressure 

cσ   Unconfined compression strength  

jσ    Joint compressive strength 

nσ   Normal stress 

rσ    Radial component of stress 

tσ    Tensile strength of intact rock 

zσ   Vertical component of stress 

θσ    Tangential component of stress 

τ   Shear stress 

pτ    Shear strength 

peakτ    Peak shear strength 

zrzr θθ τττ ,,   Shear stress components 

φ   Friction angle 

bφ    Base friction angle 

mobilizedφ  Mobilized base friction angle 

rφ   Residual friction angle 

uφ    Angle of friction for sliding along the asperities 

ψ    Angle to the major semi-axis (asperity angle in Jing et al. model) 
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Subscripts (Chapter 2) 

B   Block 

c, h   hth face making up the boundary of the constraint space 

c, i, j, k  Normal to ߲C at the point where Pi, j,k entered C 

d   Caused by dilatancy 

f   Faces making up the rock block 

m   Rock mass 

n   Normal 

(n)   nth increment 

v, i   Vertices of ith face of the rock block 

t   Tangential 

t,i   Triangles of ith face of the rock block 

tt   Subdivisions of a face triangle 

u   Unconstrained motion 

 

Superscripts (Chapter 2) 

(l)   lth iteration 

 

Symbols (Chapter 2) 

߲   Boundary 

#   Cardinality: number of elements in a set or list 
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