Copyright
by
Pooyan Asadollahi
2009



The Dissertation Committee for Pooyan Asadollahi Certifies that this is the

approved version of the following dissertation:

Stability Analysis of a Single Three Dimensional Rock Block:
Effect of Dilatancy and High-velocity Water Jet Impact

Committee:

Fulvio Tonon, Supervisor

Spyridon A Kinnas

Ellen M. Rathje

Anton Schleiss

Kenneth H. Stokoe 11

John L. Tassoulas



Stability Analysis of a Single Three Dimensional Rock Block:
Effect of Dilatancy and High-velocity Water Jet Impact

by

Pooyan Asadollahi, B.S.; M.S.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

The University of Texas at Austin
August 2009



DEDICATION

With all the love in the world,
to my parents, Maryam and Mohammad,

for their endless love, encouragement, and support



ACKNOLWDGEMENTS

I would like to acknowledge my supervisor, Dr. Fulvio Tonon, for supporting and
guiding me throughout my PhD study. He has been a great mentor over the past three
years. | really appreciate all he has done for me from the very beginning hours of my
landing in Austin. This endeavor would never been succeed without his guidance.

I would also want to express my appreciation to my committee members Dr.
Spyridon Kinnas, Dr.Ellen Rathje, Dr.Anton Schleiss,Dr. Kenneth Stokoe, and Dr.John
Tassoulas for their time and helpful comments.

I am indebted to Dr. Anton Schleiss and his student, Matteo Federspiel,from
Ecole Polytechnique Federale de Laussanne (EPFL). Theygave me the opportunity to use
some of their experimental results before being officially published.

I wish to express my gratitude toDr. Alan Cline, Dr. Bob Gilbert, Dr. Thomas
Hughes, Dr. Spyridon Kinnas,Dr. Kenneth Stokoe,Dr.John Tassoulas,Dr. Fulvio Tonon,
and Dr. Stephen Wright. I learned a lot from their lectures throughout my PhD study at
UT-Austin.

Marco Invernizzi and Simone Addotto (former graduate students at Turin
Polytechnic and visiting scholars at UT-Austin) contributed a lot to this research. They
performed experimental study to validate the modifications proposed to Barton’s model.
Theyalso helped me in doing a part of analysespresented in Chapter 7 of this manuscript.
Moreover, Siamack Khorgami, currently research student at University College London,
gave helpful comments on the correlation analyses performed to address some of the
weaknesses of Barton’s model. In addition, Dr. Ghislaine Kozu, Senior Lecturer at UT-
Austin, edited the first draft of Chapter 3 of this dissertation. Their contributions are
deeply appreciated.

The last, but the most, my deepest gratitude goes to my father for his endless
support. Without doubt, my successes, in all steps of my life, were not achieved without

him.



Stability Analysis of a Single Three Dimensional Rock Block:
Effect of Dilatancy and High-velocity Water Jet Impact

PublicationNo.

Pooyan Asadollahi, Ph.D.
The University of Texas at Austin, 2009

Supervisor:Fulvio Tonon

In simulation of closely- or separately-joined rock masses, stability of rock blocks
is of primary concern. However, there seems to be no approach that can handle general
modes of simultaneous slidingand truly large rotation under general forces, including
non-conservative forces such as waterforces. General causes of failure for rock blocks,
such as limit points, bifurcation points, anddynamic instability (divergence and flutter),
have never been addressed. This research implementsa formulation, called BS3D(an
incremental-iterative algorithm introduced by Tonon), for analyzing general failure
modesof rock blocks under conservative and non-conservative forces.

Among the constitutive models for rock fractures developed over the years,
Barton's empirical model has been widely used because it is easy to apply and includes
several important factors associated with fracture characteristics. Although Barton's
failure criterion predicts peak shear strength of rock fractures with acceptable precision, it
has some weaknesses in estimating the peak shear displacement, post-peak shear
strength, dilation, and surface degradation in unloading and reloading. In this dissertation,

modifications are made to Barton's original model in order to address these
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weaknesses. The modified Barton’s model is validated by a series of direct shear tests on
rock fractures and implemented in BS3D to consider the dilatant behavior of fractures.

The mechanical behavior of a rock block formed in the roof of a tunnel is
governed by its geometry, the mechanical characteristics and the deformability of the
fractures forming the block, the deformability of the block and that of the surrounding
rock mass, and the stresses within the rock. BS3D, after verification and validation, is
used to investigate the effect of dilatancy onstability of rock blocks formed in the roof of
a circular tunnel.

High-velocity plunging jets, issuing from hydraulic artificial or natural structures,
can result in scouring of the rock riverbed or the dam toe foundation. Assessment of the
extent of scour is necessary to ensure the safety of the dam and to guarantee the stability
of its abutments. BS3D is used to investigate effect of high-velocity jet impact on

stability of rock blocks in plunge pools.
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CHAPTER 1: INTRODUCTION

1.1 PROBLEM STATEMENT AND MOTIVATION
Rock masses are composed of intact rock and fractures (Figure 1.1). This
assemblage may fail in several ways [1]:
e The intact rock may yield, either violently or plastically.
¢ Blocks may move out of their original seat cut out by the fractures (block mould).

e Any combination of the above failure modes may occur.

Figure 1.1: Rock fractures forming blocks of intact rock; Mount Pelsa, Triassic
dolostone, Dolomites, Italy [1].

This dissertation focuses on the case in which the intact rock is strong enough that
failure will only occur because rock blocks move out of their moulds. Single rock block
i1s considered because, if no removable block is unstable, then the entire rock mass is
stable [2] (a single block may be formed of several stable blocks [3]). In addition, In
simulation of closely- or separately-joined rock masses in rock engineering problem, (for
instance, slopes (Figure 1.1), dam foundations (Figure 1.2-a), and underground
excavations (Figure 1.2-b)), stability of rock blocks is of primary concern [4, 5].

1



Figure 1.2: (a) Karun-3 Dam; (b) Karun-3 Power Tunnel, Khozestan, Iran. Photo
courtesy of Iran Water & Power Resource Development Co.

Although several researchers [2, 6-19] proposed different methods to analyze the
stability of rock blocks, there seems to be no approach that can handle general modes of
simultaneous sliding and truly large rotation under general forces, including non-
conservative forces such as water forces. General causes of failure for rock blocks, such
as limit points, bifurcation points, and dynamic instability (divergence and flutter), have

never been addressed [1].

1.1.2  Stability of rock blocks formed in the roof of a tunnel

The mechanical behavior of a rock block formed in the roof of a tunnel (Figure
1.3) is governed by its geometry, the mechanical characteristics and the deformability of
the fractures forming the block, the deformability of the block and that of the surrounding
rock mass, and the stresses within the rock [20].

Approaches currently being used to analyze the stability of rock blocks formed in
the roof of a tunnel can not handle general modes of simultaneous sliding and truly large
rotation.

Among the constitutive models for rock fractures developed over the years,
Barton's empirical model [21, 22] has been widely used because it is easy to apply and

includes several important factors associated with fracture characteristics. Although
2



Barton's failure criterion predicts peak shear strength of rock fractures with acceptable
precision, it has some weaknesses in estimating the peak shear displacement, post-peak
shear strength, dilation, and surface degradation upon unloading and reloading.
Therefore, approaches used to analyze the stability of tunnel keyblocks suffers from these

weaknesses as well.

Figure 1.3: A tetrahedral block formed in the roof of a tunnel

1.1.3 Stability of rock blocks in plunge pools

Standard dam risk assessment includes consideration for spillway and spillway
energy dissipator scour. For concrete and masonry dams, it also includes consideration
for dam overtopping and scour of the foundations. High-velocity plunging jets, issuing
from hydraulic artificial or natural structures, can result in scouring of the rock riverbed
or the dam toe foundation. Figure 1.4 illustrates the schematic process of rock scour in
plunge pools.

Assessment of the extent of scour is necessary to ensure the safety of the dam and
to guarantee the stability of its abutments. However, currently, there is no formulation for
evaluating scour caused by general failure modes of rock blocks having general shape
and subject to general loading (e.g., gravity, reinforcement, dam loads) and to the plunge

pool water pressures [23].
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Figure 1.4: Schematic rock scour process in plunge pools [24].

1.2 OBJECTIVES AND SCOPE OF THIS STUDY

Tonon [1] presented an incremental-iterative algorithm for analyzing general
failure modes of rock blocks subject to generic forces, including non-conservative forces
such as water forces. The block interacts with the surrounding constraint space using a
finite number of sensor points. Consistent stiffness matrices were developed that fully
exploit the quadratic convergence of the adopted Newton—Raphson iterative scheme. The
algorithm takes into account large block displacements and rotations, which together with
non-conservative forces make the stiffness matrix non-symmetric.

The objectives of this research is to implement the formulation developed by
Tonon [1] for the stability analysis of three dimensional single rock blocks subjected to
generic forces including water pressure and high-velocity jet impact. The implemented
code (called BS3D) considers the dilatant behavior of fractures using the modified
Barton’s model developed in this study.

The verified and validated code is used to investigate the following rock
engineering problems:

1) Stability of rock blocks formed in the roof of a circular tunnel: effect of dilatancy.

2) Effect of high-velocity jet impact on stability of rock blocks in plunge pools.
4



1.3 ORGANIZATION

Chapter 2 summarizes the method proposed by Tonon [1] to analyze the stability
of single rock blocks for general failure modes under conservative and non-conservative
forces.

Chapter 3 presents a comprehensive literature review performed to address the
limitation of Barton’s empirical model for rock fractures [21, 22], known as the most
practical model. A database of direct shear tests available in the literature is assembled
and analyzed. Modifications are made to Barton's original model in order to address the
weaknesses described above.

In Chapter 4, the modified Barton’s model introduced in Chapter 3 is validated by
a series of direct shear tests on rock fractures.

In Chapter 5, prototype BS3D computer code developed by Tonon [1] in
Mathematica is re-written and translated into Fortran 95. Tonon's original code
implements the algorithm just for tetrahedrons. However, the generalized version of
BS3D developed in this dissertation can analyze general shapes of rock blocks.
Furthermore, in situ stress and water pressure are implemented from scratch because they
were not included in Tonon's code. In Tonon's original code, fracture dilatancy was
included in a rudimental fashion by using a simplified version of Barton's model.
However, the generalized version of BS3D can deal with both original [21, 22] and
modified Barton’s model (Chapter 3) as well as Mohr-Coulomb’s failure criterion [25].

BS3D is validated in Chapter 6 for analysis of rock wedge stability by comparing
the results of BS3D numerical analyses with 64 physical models and 2 case histories
available from the literature [18, 26]. This investigation demonstrated the advantages of
BS3D in predicting failure modes of a tetrahedron.

In Chapter 7, the effect of dilatancy on the stability of a rock block formed in the
roof of a circular tunnel is investigated:

- An analytical approach is presented to analyze stability of a 2D triangular wedge
formed in the roof of a circular tunnel. Two different definitions are introduced

for the factor of safety of the block. The effects of stiffness and shear strength of



the fractures as well as in situ stress conditions on stability of the wedge are
investigated.

A simplified limit equilibrium method is explained to analyze stability of a
tetrahedron in the roof of an excavation. The results of the analytical analyses are
compared with those obtained from BS3D simulations. Using the analytical
limiting equilibrium approach and BS3D, the effects of the normal stiffness of the
fractures, dilatancy, the tunnel radius, and the block size on stability of the
tetrahedron are investigated.

A comprehensive sensivity analysis is performed on the effects of the shear
strength, the normal stiffness, the in situ stress condition, the tunnel radius, and
the block size on stability of a prism formed in the roof of a circular tunnel by

four fractures that have the same dip angle.

Chapter 8 briefly explains limitations of available approaches to scour evaluation.

In this Chapter, water pressures caused by impinging jets have been implemented in

BS3D and the stability of single rock blocks in plunge pools is investigated:

An approach is described to estimate pressure forces generated in plunge pools
due to high-velocity jet impacts.

Failure criterion is introduced for jointed rock masses.

The scour model implemented in BS3D is calibrated and validated using the
results of several experimental studies as well as case histories and prototypes
available from the literature [27-31].

Ability of BS3D in considering in situ stress and dilation behavior of rock

fractures as well as dealing with dynamic divergence and flutter are demonstrated.



CHAPTER 2: GENERAL SINGLE ROCK BLOCK STABILITY
ANALYSIS METHOD (BS3D)

2.1 INTRODUCTION

Figure 2.1 shows different failure modes for a rock block subject to gravity.
Making use of limiting equilibrium methods, John [6], Londe et al. [7], Hendron et al.
[8], Hoek and Bray [9], Warburton [10], Priest [11], and Goodman and Shi [2] considered
case (a) (wedge sliding) only. Pioneered by Wittke [12, 13], the study of rotational failure
modes (b) and (c¢) in Figure 2.1 was also pursued using analytical methods by Chan and
Einstein [14], Mauldon and Goodman [15] and Tonon [16]. These analytical methods
cannot handle general simultaneous sliding and rotation; Yeung and co-workers [17-19]
thus used a numerical method, such as the Discontinuous Deformation Analysis (DDA),
to overcome the problem.

However, there seems to be no approach that can handle general modes of
simultaneous sliding and truly large rotation under general forces, including non
conservative forces, such as water forces. General causes of failure for rock blocks have
never been addressed: limit points (when the active force cannot be incremented further),
static bifurcation points (when more than one static solution exists), and dynamic
instability (divergence, when the motion of the block is unbounded in time; and flutter,
when the unforced motion of the block is oscillatory and unbounded).

The determination of the factor of safety is a challenge for currently available
numerical methods, which typically resort to time-consuming trial and error calculations
using the reduction of the strength parameters (e.g., [32]). After each complete analysis,
they reduce the strength parameters and repeat the earlier analysis again until failure is
reached. Whenever failure is not caused by limited strength (e.g., when the block fails in
a pure rotational mode, or in a more complex roto-translational mode), the reduction of
the strength parameters cannot yield the factor of safety, but, rather, it yields an incorrect

failure mode (e.g., sliding rather than toppling).



(a) translation (b) rotation about an edge | (c) rotation about a corner

(d) torsional sliding (e) slumping

Figure 2.1: Failure modes of a rock block. After Reference [33].

On the other hand, in a typical limiting equilibrium analysis, one would need to
know the normal forces exerted by each of the discontinuities, which are indeterminate
when contact occurs on more than three non-parallel discontinuities, or on two or more
parallel discontinuities. Also, one needs to know the point of application for the frictional
forces. In a typical limit equilibrium analysis, this entails knowing the shear stress
distribution at limiting equilibrium, which in its turn requires knowledge of the normal
stress distribution. The latter is, however, unavailable even if one assumes a linear elastic
behavior of the rock mass and discontinuity (to normal stresses) because the application
point of the normal force on a contact face is not available unless there is just one contact
face. In order to overcome the reaction force indeterminacy, one needs to introduce the
deformability of the discontinuities and/or of the bodies (rock block and surrounding rock

mass).



BS3D [1] implements an incremental-iterative algorithm for analyzing general
failure modes of rock blocks subject to generic forces, including non conservative forces
such as water forces. The incremental-iterative nature of the algorithm is only a
consequence of the non-linearity of the boundary conditions (contact vs. no contact), and
of the constitutive relationships (deformability and yielding); it is not a consequence of
the factor of safety determination per se. Consistent stiffness matrices have been
developed that fully exploit the quadratic convergence of the adopted Newton-Raphson
iterative scheme. The algorithm takes into account large block displacements and
rotations, which, together with non-conservative forces make the stiffness matrix non
symmetric. Also included in the algorithm are in situ stress and fracture dilatancy, which
introduces non-symmetric rank-one modifications to the stiffness matrix. Progressive
failure is captured by the algorithm, which has proven capable of detecting numerically
challenging failure modes, such as rotations about only one point.

BS3D determines the stability condition of a rock block by following its
equilibrium path: if equilibrium is not possible, the mode of failure is detected. Failure
modes may originate from a limit point or from dynamic instability (divergence or
flutter); equilibrium paths emanating from bifurcation points are followed by the
algorithm. The algorithm identifies both static and dynamic failure modes. The dynamic
failure mode, i.e. the possible motion of the body over an infinitesimal interval of time, is
calculated based on small rotation theory by imposing no further interpenetration at the
constraints during the dynamic failure mode, and by assuming a rigid-perfectly plastic
behavior of the discontinuities to shear displacements. The calculation of the factor of
safety and associated failure mode(s) is obtained by BS3D with no overhead for any type
of failure mode.

Indeed, a typical stability analysis is divided into stages, for example: application
of self weight and in situ stresses (Stage 1) followed by excavation (Stage 2), application
of water forces (Stage 3), etc.. Within each stage, the active force applied to the block is
proportional to a stage control parameter. The factor of safety was shown to be equal to

the value of the stage control parameter at failure [1], and only one (non-linear, and thus



incremental-iterative) analysis (with no trial-and-error) is carried out by BS3D to
determine the factor of safety.
This chapter describes the basics of general single rock block stability analysis

(BS3D). The whole chapter was taken from reference [1].

2.2 KINEMATICS

Let us fix a global Cartesian reference system (O, X, Y, z) with unit vectors ey, ey, e;
attached to the rock mass and considered as fixed in time. Let a subscript (0) indicate the
base configuration. The rock block is a rigid body that has six degrees of freedom,

namely the displacement of the centroid, G, referred to the global reference system,

T . .
ug = (uXﬂG,uij »UZ,G) , and the pseudo-vector that defines the rotation about the centroid

(again referred to the global reference system), 0= (GX,Hy,HZ )T =0r, where 0<6 <27 is

the rotation angle and r is a unit vector about which the rotation occurs [34]. The vector

of degrees of freedom is thus u:=(ug ,G)T . This choice of degrees of freedom allows for

a 2w rotation of the rigid body, at difference with Rodrigues parameters [34] or other
parameterization that have singularities in the [0, 27t] range.

The pseudo-vector O allows one to calculate the rotation matrix, Rjsy3;, which
maps a vector v attached to the rigid body from the base configuration to the current

configuration as vy = R-v:

. i .2
R:1+S“;95(9)+25m9—(29/2)s(9).s(0), 2.1)
where S(.) is the spin operator, i.e.:
0 -6, 0,
S(@)=| 6, 0 -6, (2.2)
-0, 6. 0

Notice that lim, ,, R =1, and that, from a numerical standpoint the sine-squared

form should be preferred to 1-cos@ in order avoid the cancellation in computing 1-cos @
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for small @ . The spin operator allows one to express the vector product between any two

3-vectors a and b as:

axb=S(a)-b=-bxa=-S(b)-a (2.3)
and, for any 3x3 matrix ¢, has the property
S(a)-c=c-S(a) (2.4)
The displacement of any point of the block, P, can then be calculated as:
u, =ug +(R-I)-G, P, (2.5)

In the following, the derivative of u,with respect to the six degrees of freedom
will be needed. In order to accomplish this, let us first take the derivative of the rotation
matrix with respect to 0. The columns of R are an orthonormal base j; fixed to the rigid
body and initially coincident with the global basis. Therefore, by using Poinsot formulas:
dj, /dt =@ x j; , one obtains:

R=S(®)R (2.6)

The angular velocity, @, is related to 0 as [35]:

w=J(0)-0, (2.7)

where:

J(O):%(O-BT +2sin*(6/2)S(8))+ Sil;e(l—ée-(fj (2.8)
After plugging Equation (2.7) into Equation (2.6), and Equation (2.6) into
Equation (2.5), one can differentiate the displacement up making use of Equation (2.3)
and taking into account that vector (GP)) does not change in time because it belongs to

the base configuration:

i, =g + R-(GP) | =iig +S(J(0)-0)R-(GP) =i, ~S(R:(GP), )J(6)-6=D, (6)-
2.9)
where:
D, (0)=(L..-S(R-(GP),, )3(0)) (2.10)

11



u:=[u, 0]7 (2.11)
Likewise, let v be any vector attached to the moving frame (e.g., GP). Since
v(u)=R-v:

0

v(u)=R-v, = —S(R- V(O))J(B)-G =H, (B, (0))-fl (2.12)
where:
H, (0,v,)=(0,5,-S(R-v,, ) J(0)) (2.13)
Notice that: both Dp and Hp are skew-symmetric; J(0) is neither symmetric nor skew-
symmetric; the large rotation contribution is quantified by J(); and that lim, ,J (0) =1

, for which one retrieves small-rotation formulations.

Now, let 6 be the compound rotation vector corresponding to a first rotation by
pseudo-vector 0, followed by a second rotation by pseudo-vector 0,. 0 is calculated
making use of quaternion as follows [36, 37]. The quaternion q; associated to 6; is the
paring (.0, q), Where (i is a scalar and q is a vector defined as, respectively:
_sin (0/2) o

; (2.14)

Go=cos(0/2) ; g,
The quaternion, q, associated to 0 is found using the quaternion product of q, and q;:

q = (0o, Q) = q2; q1 == (qi,qul —q,°4;5 G,09, 009, 4, qu) (2.15)

0 is then calculated by inverting Equation (2.14), and its rotation matrix can be calculated
either using Equation (2.1) or (and this reduces numerical inaccuracies) using q directly:
R =(2q," -1)I+2q,S(q)+2qq’ (2.16)

The described algorithm is singularity-free and allows one to update a rotation

pseudo-vector without multiplying rotation matrices and subsequently extracting the

relevant rotation pseudo-vector: this last algorithm is unstable around and singular for 8=

+n. Numerical inaccuracies introduced in matrix multiplication may also lead to non

orthonormal matrices after several updates, whereas Equations (2.1) and (2.16) always

yield an orthonormal matrix.
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2.3 THE REACTION FORCES ARE INDETERMINATE

Let us introduce the following notation: m = mass of the block; Eg = inertia
operator relative to point G [16, 38-41]; ® =dw/dt = angular acceleration; f=f; + f, =
resultant of the external forces (constraint f;, and active f3); mg = mg, + mga =
resultant moment of the external forces (constraint mgc, and active mg 5) with respect to
pole G.

The dynamics of the block is controlled by the following system of vector

differential equations (e.g., [38, 39]):

{miiG =f +f

_ =F, +F, , (2.17)
E;-0o+oxE;-® =m_ +m,

where F, = (f5, mg )" and F. = (f;, mg,)".
The first three scalar equations control the motion of the centroid, while the last
three (Euler’s) scalar equations control the motion of the body relative to the centroid,

considered as a fixed point about which the body rotates. In order to simplify the
derivations, in this section small rotations will be used, so that J (9) —1 in Equation
(2.9), 0=0 in Equation (2.7), and ®=0. An upper bar will indicate small

displacements.

Since only the incipient motion is of interest in this section, let us rewrite

Equation (2.17) for t=0, and take into account the initial conditions: (0(0) = 0 (zero
initial angular velocity) and ug (0) =0, so that the displacement of P in the time interval
dtis [16]:
U, = (g +OxGP)dt*/2 (2.18)
One obtains the following linear system in the unknown u= (ﬁG,d))T (for

simplicity, in the following the index “(0)” will be suppressed):
Mu=F, (2.19)

ml,, 0 f
where M = , F= .
0 Eg mg
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Equation (2.19) is supplemented with the constraint equations that prevent the
block penetration into the rock mass. Let us assume that we know the contact points, P;,
that remain in contact with a discontinuity. We need to impose that these points move
parallel to the discontinuities that bound the block. If P; remains in contact with the j-th

discontinuity, these constraints can be written in the form u, -n.; =0 or

c,

(Ug +®xGP,)n,; =0, (2.20)

]

where n_; is the block side unit normal to the j-th discontinuity. Since these

constraints are linear in u, they can be written as Au =0, where matrix A has as many

rows as there are constraints of the type shown in Equation (2.20):

A=
(2.21)
A virtual displacement is any non-zero vector, & ¢, that lies in the null space of
A, i.e. it satisfies A-&=0 [42]. Let the work done under virtual displacements, W, by
the constraint forces F. be formalized through a vector C, so that [41-51]:
ETF =W°=£7C (2.22)
The General Principle of Mechanics [42-51] generalizes Gauss Principle of Least
Constraint [42, 52, 53] to mechanical systems with non-ideal constraints. These
constraints (such as all frictional constraints) do work for virtual displacements, so that
C#0. The General Principle of Mechanics states that: the system evolves in time in such a
manner that its acceleration minimizes the quadratic form [50]:
(Mﬁ— (F, + C))T M (Mi_i— (F, + C)) (subject to the constraint Au=0)
Using the General Principle of Mechanics, the acceleration and the resultant
forces in the system can be obtained in closed-form [50]:
u=a-M"’B'Aa+M "*(I-B'B)M "*C , 2.23)
Mu=F,-M"’B*"Aa+M"*(I-B'B)M "*C
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where a superscript “+” indicates the Moore-Penrose generalized inverse of a matrix [54],

a=MF,,and B=AM"°.
In Equation (2.23), the constraint resultant generalized force, F, :(fc,mc)T is

split into two components: the component caused by the ideal constraints

| DN =-M"’B"Aa, and the component caused by the presence of non-ideal constraints

F o= M"?(1-B"B)M "*C. Several important consequences can be drawn:
(1) F, depends on the mass matrix M unless M is of the form ml¢.c. This is equivalent

to requiring that x, y, and z are three principal axes of inertia with moment of inertia

equal to m. This is quite a rare event; for example, it may occur if the block is a

sphere with radius equal to J5/2 orifitis a cube with edge equal to 243,

(2) The work done by a frictional constraint is not zero if there is slippage along that
discontinuity. In a typical limit equilibrium analysis, one would need to know the
normal force exerted by that discontinuity in order to be able to determine matrix C in

Equation (2.22). Unfortunately, F_;;, is only the resultant (force and moment) of the

normal forces exerted by all the discontinuities. Thus, one cannot calculate the normal
force on each discontinuity when contact occurs on more than three non parallel
discontinuities, or on two or more parallel discontinuities. When three or less non
parallel discontinuities are in contact, the normal force on one of those discontinuities
is simply found as the projection of the resultant force, f; g, onto that discontinuity’s
normal.

(3) Consider the case in which the wvirtual displacement has non-zero rotational

component(s): &= (&;, y)". The virtual work is equal to & f' + ymg'. In order to

compute the virtual work done by the frictional forces on a given block face, one
needs to know mgc, and thus one needs to know the point of application for the
frictional forces. In a typical limit equilibrium analysis, this entails knowing the shear
stress distribution at limiting equilibrium, which in its turn requires knowledge of the

normal stress distribution. The latter is however unavailable even if one assumes a
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linear elastic behavior of the rock mass and discontinuity (to normal stresses) because
the application point of the normal force on a contact face is not available unless there
is just one contact face. Indeed, if there is just one contact face, let P be the

application point of the normal force N. The equation OPxN=m_ in the three

coordinates of P has rank 2, and, together with the plane equation for the contact face,

it yields the three coordinates of P.

In order to overcome the reaction force indeterminacy, one needs to introduce the
deformability of the discontinuities and/or of the bodies (rock block and surrounding rock
mass). For example, 3DEC [55, 56] uses normal and tangential springs at the intersection
point between a discontinuity face and a block’s vertex. BSM3D [57-59] and 3D-DDA
[17, 18, 60-62] use similar springs located at the vertices of the contact area. In general,
these contact points change from one iteration to the next. The thrust of these models is,
however, toward analyzing systems composed of many blocks: if only one block is
considered, the introduced approximations are too coarse to yield accurate results
because:

e [If discontinuities display a non-linear behavior, the discontinuity path
dependency cannot be modeled when the contact points change at each
iteration. To get around this, 3DEC can analyze internally discretized blocks,
but this increases considerably the computational effort.

e Only an approximate moment of inertia, a, is calculated in 3DEC based upon
the average distance from the centroid to the vertices of the block [56], so that
Eg = als.3, and M becomes close to mlg.s (see observation 1 above). These
approximations may lead to large errors in detecting a block’s dynamic failure
mode because the angular velocity of the unconstrained motion becomes
parallel to the applied resultant moment (Equation (2.19)), and the incipient
motion of a block and the resultant constraint force are not accurate (Equation

(2.23)).
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e In 3DEC, the constraint force on a given face (in contact with another face) is
placed mid-way between the centroids of the two contacting blocks [56]; if
blocks undergo rotation, the position of the centroid is moved based on an
empirical factor (for which there is no experimental evidence) [56], and
brought back to a point (which has no physical meaning) on the contacting
faces if it ends up outside the contacting faces themselves [56]. This whole
construction is purely geometrical, and is not based on the actual stress

distribution at the contacting faces.

3D-DDA [17, 18, 60, 61] as well as the Manifold Method [63] are based on the
assumption that there exists a potential for all forces (active and constraint) acting on the
block system. As a consequence, all forces must be conservative and no dissipative forces
(e.g., friction) or path-dependent behavior can be modeled. Moreover, since forces are
conservative, they must be positional, and therefore non-positional forces (e.g., follower

loads such as water pressure) cannot be modeled.

2.4 PROPOSED APPROACH

Since the general problem is statically indeterminate, the rock block, B, is thought
of as interacting with the rock mass (constraint space) at a finite number of points lying
on its boundary, 0B. These points are termed “sensor points” because they represent the
points at which the rock block “feels” the constraint space as in haptic technology
(Sections 2.2.5 and 2.2.6). These points can also be seen as a generalization of the
“artificial supports” introduced by Chan and Einstein [14], who noticed that the use of
artificial supports is appealing because of “its analogy with reality, where surfaces are in
contact at a number of points”.

Each sensor point is provided with a non-linear normal spring that simulates the
deformability of the rock mass, of the discontinuity and of the rock block. At each sensor

point, a non-linear tangential spring equipped with a tangential slider simulates the
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tangential deformability and the limited shear strength of the discontinuity, respectively.
Stiffness and resistance will be dealt with in Section 2.8.

The aim is to determine the stability condition of a rock block: if equilibrium is
not possible, the mode of failure will be detected. In static conditions, the left-hand side
of Equation (2.17) is equal to zero, and the equilibrium path of the rock block is thus
followed using a predictor-corrector (or incremental-iterative) scheme that imposes the

vanishing of the residual (right-hand side of Equation (2.17)): r==F =F, +F, (Section

2.5). Large displacements and rotations are accommodated as per Section 2.2.

2.5 THE PREDICTOR-CORRECTOR STRATEGY

The entire calculation is first divided into stages. For example: application of self
weight and in situ stresses (stage 1) followed by excavation (stage 2), water forces (stage
3), etc. Within each stage, F, is assumed to be proportional to one stage control

parameter, A, so that the residual equation that defines the equilibrium path is:

r(u,A)=F,(u)+AF,(u)=0 (2.24)
Its incremental form is:
@m@i:o:Ku:Fa/i, (2.25)
ou oA
where the stiffness matrix is
K= —ﬂ (2.26)
ou

Equation (2.25) must be solved with the initial conditions: We=Uprevious stage and

Ao=0. The additional equation that makes it possible to solve Equation (2.25) is the

(D

im Dbe the value of a variable (0) at the |-th iteration (

increment control strategy. Let (0)
| =0 refers to the predictor step) during the n-th increment. Let ¢ indicate iterative
change and A denote increment change. Let Vgg; =K22;_1Fa§2; be the predictor velocity,

and define the stiffness ratio, Sr, as:
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AL OT g (0)

_ 2y Y Tam
SF) _—V(O)TV(O) (2.27)
m Y

The stiffness ratio is a measure of the system’s stiffness as related to the
tangential predictor. If Sruy/Srg) > 0.3, then the system has lost less than 70% of its

stiffness at the first iteration, and load control strategy can be safely applied:

c(Aulp), AAL) ) = A4S —step, = 0 (2.28)

A value stepp = 0.1 has been successfully used in the implementation.

Otherwise, the system has lost more than 70% of its stiffness at the first iteration;
the adopted control strategy is then the arc-length control [64, 65] because it allows the
static solution to safely reach possible critical points. Let (v, 1)"/f be the tangent vector to
the equilibrium path normalized to unit length. The arc-length control with fixed-step
strategy is:

1
U] (R OT Ay 0 —
c(Auf).AL) —W‘v(n) Auld) + AL~ step, =0 (2.29)
()
The arc-length controlled forward-Euler predictor is then [66]:
0) _ /(0) A 7(0)
Aug =v AL, (2.30)

. v KO- (0) 0 0)T (0 :
where: Vi, =K F,), AAY) =step, /1+F,)Tv{)) , and step, is calculated at the

first arc-length increment as step, =1/ (201 /l+Fa§8§T VE((;; ) Since units of displacements

and of angles are intermixed in u, stiffness scaling (energy constraint) has been

; ; ; - 0T (0 _ (OT g (0) (,(0)
introduced in the increment control via: K, " vio) = v  Kjvi .

Since the contact status of a sensor point may change at each iteration, the
corrector phase is a full Newton method, which is based on the truncated Taylor

expansion of the system of Equations (2.24) and (2.29):

() or (1+1) or a+1) _
Yoy =T +— o o T é)’tm) =0
all ) 5/7u zl))
5 5 , (2.31)
a+) _ A, OC @+, OC (1+1)
Coy " =Cm * “)5 m T3 Oy =0
(n)




0 0 (I+1) ()]
ie.: Ky —F |[ O |_[ To (2.32)
T T 51(”1) _C(l) :
g g (n) (n)

where:
0 0
gl Ve _ Vi gl _ 1 _ 1
- RErTO N HTo© B 0O T (0
ou (M f(") \/1+Fa(n) Vi 04 ™ f(") 1+Fa(n) Vi

The system of Equations (2.32) is not symmetric but has small order (i.e. 7), and
is solved using the LU decomposition (Crout-Banachiewicz) method with partial pivoting
[67]. The detection of a critical point in the equilibrium path then comes with no
overhead because the minimum diagonal element of matrix L. monitors the smallest

eigenvalue of K [66, 67]. The stopping criterion for the Newton method is:

rol/ e <107 AND [au®|/|aug) | <107 (2.33)
Divergence is detected using the condition:
rol/ e >10° OR [Auy)|/|Au)|> 10 (2.34)

and the maximum number of iterations is 50.

Since the rotation vectors cannot be summed up [53, 68], one cannot accumulate

the generalized displacements Augln)) for a given increment, i.e. one cannot write

Au,, =Au§‘;§+ZIAu§';). Indeed, the updating of the degree-of-freedom vector, u,

follows the usual vector laws for its first three components (centroid displacement), and
the algorithm in Equation (2.14) and (2.15) for its last three components (rotation about

the centroid). The rotation matrix is updated using Equation (2.16).

2.6 THE ROCK BLOCK

Let us first determine the coordinates of the sensor points. Let N be the number of
faces making up the rock block. Since the rock block, B, is a polyhedron, the i-th face of
B, Fi, is a polygon Let Sibe an ordered list of its vertices listed in counterclockwise order
along its boundary (hole vertices are listed in clockwise order). Let ny; be the number of

vertices of Fj, i.e. nyj = #S;. Fj is first triangulated into a set of n¢; = ny; -2 triangles using
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the efficient procedure of Seidel [69] as implemented by Narkhede and Manocha [70]; it

is an incremental randomized algorithm whose expected complexity is O(rl\,’i log nv,i),

but in practice it is almost linear in time for a simple polygon. Subsequently, sensor
points are assigned to each triangle as described below.
The j-th triangle in F; is mapped from a normalized plane using the following

(affine) transformation g shown in Figure 2.2:

X=K¢H«&m_K¢J§+&u3_ﬁu)ﬂ

Y=Yiut Wigs = Yos )+ (igs = Vs )7 (235)
2=2,;,+t\2;,-2;.,)E+\Z5-2 )1
where (Xijx, Yijk» Zijk) are the coordinates of the k-th triangle vertex, Ajjx. In the
normalized (&, i7)-plane, each edge is subdivided into the same number of segments, Ny.
The same number of segments is used for all triangles in F;, even though one could use a
different ny for each triangle, if needed. The normalized triangle in the (&, 77)-plane
remains subdivided into ny subtriangles of equal area, i.e. 1/[2(n’)]. The subtriangle

area in the (X, Yy, Z)-space is thus:

HALUAUJXAthHJH (2.36)

a . =
1,] 2ntt2
i, j-th TRIANGLE
A, — i-th FACE
SENSOR
POINT P, e
1
g -1
5 ‘-... I_ . - O e
>

Figure 2.2: Affine transformation g and sensor points for ntt =4 [1].
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A sensor point is located at the centroid of each normalized subtriangle in the (&,
n)-plane. The normalized coordinates of the sensor points in the (& 77)-plane may be

found using Algorithms 1 and 2 in Figure 2.3.

Algorithm 1: Algorithm 2:

FOR |:1,..., Nyt nttl = nn-l
(1/3+(1-1), 1/3 ) / ng | FOR I=1,..., ne-1
FOR m= 1,..., nttl
@/3+(m- 1), 2/3 +(1-1)) /
Nyt
(1/3+m-1), 1/3+1)/ng
Nl = Ne-1

Figure 2.3: Algorithms for calculating the normalized coordinates of the sensor points in
the (€, n)-plane

For each sensor Pjjx (k=1,..., ni), the coordinates in the (x, y, z)-space are then
found using Equation (2.35). This ensures that P in the (X, Y, z)-space is the centroid of
the 1i,j,k-th subtriangle. Indeed, consider the subtriangle with normalized centroid
coordinates (1/3, 1/3)/ny. Using Equation (2.35), the X-coordinate of the centroid in the (X,
y, 2)-space is: (1—2/(3n, ))Xi,j‘l +(Xiqj’2 +Xi s )/(3nn). On the other hand, it is known that

the coordinates of the centroid of a triangle are the averages of the coordinates of the

vertices (e.g., [71]). Since the X-coordinates of the vertices are: X ;, ,

Xi,j,l+(Xi,j,2_xi,j,1)/ntt , and Xi,j’l+(Xi,j’3—xi’j’1)/nn, respectively, one again obtains

(1-2/(3n, ))Xi, it (Xi, 2t Xiis )/ (3n, ). Likewise for the other subtriangles.

Notice that the normalized coordinates of the sensor points are the same for all
triangles in F;. Additionally, since an incremental scheme is adopted, these initial
configuration coordinates will be labeled with a subscript (0). Algorithm 3 in Figure 2.4
sums up the main calculation steps.

The current positions for the sensor points are needed in order to detect contacts

(Section 2.7), and, if there is contact, to calculate the correct reaction forces because the
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normal and tangential springs are non-linear in the sensor displacement components
(Section 2.8). Likewise, the current application points and direction (for follower loads)
of the active external forces are needed to calculate the correct resultants. Therefore, at
each iteration the coordinates and the stresses at each sensor point are updated using

Equation (2.5).

Algorithm 3:
CALCULATE NORMALIZED COORDINATES FOR SENSOR POINTS
FOR i= 1,...,n¢

FORj=1,...,n

CALCULATE a;j (Equation (2.36))
FOR k= 1,..., Nyt +1

CALCULATE R jko) coordinates (Equation (2.35))

Figure 2.4: Algorithm that sums up the main calculation steps

2.7 CONSTRAINT SPACE AND CONTACT DETECTION

The constraint space, C, is the set of points where the sensor points find a reactive
force. Oftentimes C is just the rock mass surrounding the block. For example, let D; be a
block’s mould and consider the tunnel example in Figure 2.5(a) and Figure 2.5(b) (in
which C has boundary 0C = D; U D, U Ds3) and the slope example in Figure 2.5(c) (in
which C is has boundary 0C = D; U D3).

C is assumed to be fixed in the (X, y, Z)-space. At each iteration, one needs to
know whether a sensor point is in C. In particular, one needs to know whether the

iterative displacement 5u§'n)) for B has taken a sensor point into or out of C, or whether

it has kept a sensor point inside or outside C. This is accomplished as follows.

The boundary of the constraint space, 0C, is made up of (or is approximated with)
a set of polygons in the (X, Yy, z)-space: {C;, i =1, ...,n}. Similar to 0B, each polygon
Ci is first triangulated using Seidel’s algorithm [69]. Let n¢; denote the i-th unit normal to

Ci, positive into the unconstrained space for B.
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(a) (b)
Figure 2.5: (a) and (b) Tunnel example for block B; (¢) slope example for block B [1].

Oftentimes the path described by a sensor point until B reaches either equilibrium
or a critical point is small as compared to the representative dimension of C, and sensor
points interact with a small subset of 0C. Thus, triangulation and intersection search can
be limited to a small subset of dC enclosed in a bounding box around B: excellent
efficiency has been achieved with a single Axis-Aligned Bounding Box (AABB) [72]
inflated 10% on edge. In the common situations exemplified in Figure 2.5, one can even
restrict OC to Dy, i.e. to the block’s mould. In this case, no additional computations are
actually necessary because the triangulation and the query structure for internal point
location have already been carried out in Section 2.6; consequently, VF; € D;: Ci= F;
and n¢; = n; (all of B quantities referring to the initial configuration).

The logic of the contact algorithm adopted here is based on the three-dimensional
extension of the Jordan curve Theorem [71, 73], i.e. a simple closed surface separates the
3D space into two regions of which it is the common boundary. Consider a sensor point

Pi,x that at the (I-1)-th iteration during the n-th increment is not in C. As shown in Figure
2.6(a), at the I-th iteration, point P;jjy is in C if 5upi,j,kg'n)) applied at P, j,kgln_)l) has an odd

number of intersections with 0C; and it remains outside C otherwise (Figure 2.6(b)). As
shown in Figure 2.6(c) and (d), the other way around is true if Pjjy is in C at the (I-1)-th

iteration. Notice that if two or more intersections are found, JSu, 'kEL)) is too large, the
(B

arclength step, (Equation (2.29)) must be reduced, and the n-th increment must be

restarted.
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0
Ljk (n)

(I-1) (-1)
ij.k (n) ik (n)
(a) (b)

(O]
(U]
B (n)

O]
ijk (n)

(d)

Figure 2.6: (a) and (b) P_; ;" isnotin C at the (I-1)-th iteration: (a) Sug_ o takes
0)

the sensor point into C, (b) 5upi ()

takes the sensor point out of C. (c) and

(d) P isin Cat the (I-1)-th iteration: (c) Su, j  keeps the sensor

point in C, (d) Sug_ w takes the sensor point outside C [1].

O]

. |- .
k(M applied at B j,kgn)l) intersects Cp, one first

In order to check whether 5upij

U]

calculates the intersection between a ray from R,j,kggl) in the positive 5upijk(n)

b

. . . . . -
direction. This ray has parametric equation OQ = OB j’kgn)l)Jr d su, o/ H5upi.j.kg'n))
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with d > 0. The idea is to first find the intersection Q* between this ray and the plane

containing Cy, and then check if Q* lies inside Cp; if it does and 0<d < H&upij o

(m| > then

Ch 1s counted as an intersection face.

If sensor point P ;, crosses into C, in the calculation of the residual one needs to

know the distance traveled in C, di, jx- Likewise, if sensor point B ;, crosses out of C,

one needs to know the distance traveled outside C, d; jx- In the first (second) case, one

has 5upijkg:]))-nc,h <0 (5uF,ijk§'n))-nc7h >0, respectively), and the distance traveled in

(outside, respectively) Cis  d, :Héu Wl—d .

Pl.,j.k(n)

Algorithms for determining whether a point is in a polygon have been reviewed
by Haines [74]. Since Cy has already been triangulated, the most efficient algorithm
exploits this triangulation by generating a query structure that is then used to determine
the location of a point in logarithmic time [70] (the ray tracing algorithm of Franklin [75],
for example, works in linear time). Because the algorithm handles polygons embedded in
a 2D space, Cp is projected onto a Cartesian plane. To avoid numerical instabilities, the
largest component of n¢p, is first identified, say this is the X-component. Then, the
projection of vertex A € ChisA=(X,y,2) +— (Y, 2).

Efficient algorithms for contact detection (e.g., RAPID [76] and OPCODE [77])
yield a list of intersecting boundary triangles, but do not provide information on points

that are inside two intersecting solids. As a consequence, they cannot be used here.

2.8 SENSOR POINT STIFFNESS, CONSTRAINT FORCES AND THEIR RESIDUAL

CONTRIBUTIONS

Let n be the normal to 0C where P;jjx entered C, and let I be the identity

CiLik
matrix. In order to simplify the notation, let us suppress the iteration and increment
indexes. The normal component of the iterative displacement change and the tangential

component of the incremental displacement are, respectively:
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_ _ T
é‘un,Pi,j’k =Dk (nc,i,j,k '5“3,,-* ) =0 ek 5“3“ (2.37)

_ T _ T
=Aup -0 n T Aug _(I—ncqi)j,knmk )Aupi_j_k (2.38)

ik

2.8.1 Normal stiffness

At the I-th iteration of the n-th increment, the normal stiffness at a sensor point,

Pijk is not zero if and only if P D ¢ C. Let U, be the accumulated normal
s i,J.k(n) Rk

displacement into C since Pjjx entered C: u ., =-n_ ., "u, *, where “*” denotes “since
SFiLjk 1.k

c,i,j,
Pij« entered C”. This normal displacement is the sum of three displacement components
caused, respectively, by the deformability of the discontinuity, the rock block, and the

constraint space (rock mass):
Upp,, =Ulpp  +U2p +U3 o (2.39)
The deformability of the rock block and of the rock mass are taken into account (albeit in

a simplified form) in order not to overestimate the forces generated by dilatancy.

Let kn2;;, be the normal stiffness of the rock block and let kn3;;, be the

normal stiffness of the rock mass, which are assumed to be constant, and are calculated as

shown below. If on, ;, is the current normal stress at Pij, then:

U2,p  =on kN2 5 U3 e =on g k3, (2.40)

n,R i,]j

Goodman’s hyperbolic model [78] is adopted for the normal behavior of the
discontinuity:
Si ik 'UIn,P

on = —2 2.41
SR BT REVAVARS (241)

nR ik
where S;jx and V;jk are the initial stiffness and the maximum closure, respectively, of the
constraint face penetrated by P; jx.

Substituting Equation (2.40) into Equation (2.39), solving for uln,Pi e and finally

substituting into Equation (2.41) yields a quadratic equation in the normal stress. Its

positive root is (subscripts have been omitted to reduce clutter):
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kn2-kn3-(u, —v)—(kn2+kn3)-s-v+

on= 7 |/]2-(kn2+kn3) |
\/4-(kn2+kn3)-kn2~kn3-s~v-un +(kn3-s-v+kn2(s-v+kn3(v-u,)))

(2.42)
The normal stiffness of the rock block is assumed to be constant. It is assumed
that the normal force at a sensor point causes a settlement equal to that of a circular
foundation resting on an isotropic linearly elastic medium whose depth is equal to the
distance between the sensor point and the centroid, hjjx. The equivalent circular

foundation is assumed to have the same area as the area of face Fi, a; . The equivalent
diameter of the foundation is then: d;=2,/a; /7 . Let Eg and vg be the Young’s

modulus and the Poisson’s ratio of the intact rock. The stiffness is:

- -1

2h ;. [2hi,j,k )2
2h . 2h Y . d.
kn2; | Ee Lik 1+( ""kj d + '

TEd (1-vg?) d, d, 2(1-vy) Y
2(1-vy) 1+[d”]

(2.43)

The boundary element method could be also used to determine this stiffness.

Likewise, the normal stiffness of the rock mass is assumed to be constant. It is
assumed that the normal force at a sensor point causes a settlement equal to that of a
circular foundation on an isotropic linearly elastic ground of infinite depth. Let E;, and vy,

be the Young’s modulus and the Poisson’s ratio of the rock mass. The stiffness is:

1 E
d—l_‘r/“ 5 (2.44)

kn3iqj,k =

The contribution of the normal stiffness to the constraint force F. in Equation

(2.24) is thus:

n.. .
m _ 0 c.i,jk
Fc,n (U)(n) =&, ;0N v {S(G(I)P o )n B k] (2.45)
c,L],

(M7, k()

The derivative don, ;, /ou, will be needed which can be written as:
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oon,;, oon ., OUp  don . oon, .
ik _ i, j.k Rk _ Lik (_ c’i’j’kT): ik T (246)

u.  ou, ou Tou,  eh
Rik nB up Rk Rk

where (subscripts have been again omitted to reduce clutter):

0Mise k| Lo kn3-s-v+kn2(s-v+kn3(u, -v))

/[2-(kn2+kn3)]
ou 2
R \/4-(kn2+kn3)-kn2~kn3-s-v~un +(kn3-s-v+kn2(s~v+kn3(v—un)))

(2.47)

don, .
Likewise, the derivative 8] ——2X |/6u, will be needed. This can be written

u”sPi,j,k
as:
Gani : azgni )
a[au ’J’k}/aup :_au—’J’;nC,i,j,kT’ (2'48)
n’Pl,Jk n’Pl,Jk
where:
3
don 2(kn2-kn3)"-s-v? (2.49)

,73/2

2
Nz [4-(kn2+kn3)-kn2-kn3-s.-v-un +(kn3-s-vkn2(s-v+kn3(v-u,)))

Let us now consider possible the special case of sensor points entering C. If

F{j,k?n')l) ¢ C and F?’j’kEL)) e C, then the normal displacement traveled in C is

. The penetration of B ;, causes the unbalanced force:

T 0 0
dixOUnp /ngn,ﬂ.,-.km)

noi,j,kg'n)) =a -ani,j,kg'n>)ai,,.,k5umpmg';) /Hdunﬂ’j’kg:f) 2, (2.50)
and the unbalanced moment:
G\ P, X100, () =S (GEL))Pi,J',kE:% )“"i,j,kgln)> (2.51)
Therefore, the following is the P ;,  contribution to the residual l‘((,i; in Equation
(2.32):
_ o, o (2.52)

Op O 0
S(Gm)Pi,j,k(n))noi,j,k(m
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2.8.2 Shear stiffness

The Barton-Bandis model for shear strength [79-81] is adopted here because of its

wide use and relative ease in parameter estimation. Consider first the case in which
P ik € C. Let L; be the characteristic length of face Fi, and let JRC;jx and JCS;x be the

Joint Roughness Coefficient and the Joint Compressive Strength (respectively) for the

discontinuity penetrated by P

ijk?

corrected for the length L; as appropriate [80]. The

shear strength is:
0) 0) JICSi i
Toaxi jk(m) = O 12| JRC; ; log ) + @ik | (2.53)
i, j.k(n)
where ¢, ;;, Is the base friction angle of the discontinuity penetrated by R ;.

Two stiffness models have been considered: in the first model, the shear stiffness
is equal to a fraction of the normal stiffness (typically one tenth):
(-
/10 (2.54)
(n)

don,
KS. iy = KNy, ip /10=12, ;- ‘

i,.k(n) i,J.k(n)

nR ik

In the second model, following Barton and Bandis, it is assumed that the shear

stiffness is constant up to the peak shear displacement, o6, ;. [81]:

JCS
kSi,,-,kE'n)) :O-ni,j,kgln)) tan{JRC Iog—n 0 +¢bj/5peak’i’j‘k, (2.55)
ivj.k(n)
where the peak shear displacement is (L in m):
Ll L -0.33
S . o= | _3 m 2.56
peak,i, j,k 50 L\]RC,JkJ ( ) ( )

Let S;;xn1y be the last converged shear force at R ;, . In order to avoid spurious

unloading, incremental (rather than iterative) updates of the shear force are used (e.g.,

page 154 in reference [82]). The updated shear force is thus

n _ 0 0
Sijk(m) = Sijk(n-1) +k3i,j,k(n)Aut,F}M(n) (2.57)
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The contribution to the constraint force, F., in Equation (2.24) is thus:

s
m_ i jk(n)
Feos (U)(n) = [S(G(I) p O )Sljkgln))J (2.58)

()" i,j.k(n)

If, on the other hand, the peak shear strength has been overcome during the previous

r!

0 = contribution to the residual 1,

iteration, then ks, ;) =0and the following is the P,

in Equation (2.32):

s O —l_on ®tanl JRC 1o ‘]CS—'J"+ a |Au., D/lAu, W
iikn) i,j.k(n) ik gan 0 T Poiik | % LRk (M) LR ()

(2.59)

i,.k(n)

hp 0
S(G(n)Pi,j,k(n) )Si,j,k(n)

Let us now consider possible special cases of sensor points exiting or entering C.

If P e Cand P, e C then P, contributes neither to the stiffness nor to the

residual. Finally, if P’ ¢ C and R, ) e C, then the shear stiffness becomes

active, and the following is the P, contribution to the residual ry) in Equation
(2.32):
. N | |
1k = K81 i OUe () /H5Utﬂ,,-,kgn))

(2.60)
S(G(l) P Q) )S (O]

(n)" i,j,k(n) )<, j.k(n)

2.9 ACTIVE FORCES GENERATED BY HYDROSTATIC WATER PRESSURE

Consider hydrostatic water pressure exerted on the area a;j that surrounds P; . Let
Zw,ijx be the pressure head at Pjjx in the base configuration; the piezometric surface is
assumed to be constant along the equilibrium path. Let e, be the unit vector of the z-axis

pointing upwards. The contribution to the active force, F,, in Equation (2.24) is:
Yw Zw,i,',k_ezTuF’ijkEL)) ni?n))
= (u)(') —a ( ! g ) (2.61)
a,w (n) ] s(GOp . M T 0] m
Vw ( (n i,j,k(n))(zw,i,j,k —€, uF’.,,‘k(n))ni(n)
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2.10 STIFFNESS MATRICES

By compiling the forces derived above, the residual is calculated as:
r(u,2)=F,, (u)+F(u)+A(F,, (u)+F,*(u)+F,**), (2.62)

where Fa* collects all forces (except for hydrostatic water pressure) that depend on u, and
Fa** collects all forces that do not depend on u (e.g., weight).

Per Equation (2.26), each component in Equation (2.62) gives rise to a stiffness
matrix component: in the finite element method terminology, the first two components of
the residual yield the equivalent to the structural matrix, whereas Fay yields a load
stiffness matrix.

Except for Fo*, each component is of the form

v(ug, )
S(Gl’i,j,k ) V(upu‘k )
By taking the derivative of the first three rows with the aid of Equation (2.9), one obtains:

aV(uPi‘jyk )‘“) _ av(upi.m ) : - av(upi'” )

ou Oou, ou ‘ ou,
ik (n) ik
(n) (n) ()

(2.63)

O
ou,

i,j.k

Q)

D, (00)  (2.64)

The derivative of the last tree rows may be rewritten as:

a[S(GEI"))P”’kE:‘)))V(upiﬂivkg‘))ﬂ :_S(V)O[GEL))PLMEL))] +S(G“)P () )év(uﬂ’j’kﬁ'n))) . (2.65)
ou ou ou

(M= 1, j.k(n)

and using Equations (2.9) and (2.12), one obtains:

6[5 (GPi,j,k ) V(“F’a,m )J

ou

U]

ov 0}
= _S[V(“P..,.kglnz )JHP (000G Py ) +S (GOl )g:?k(m)DP (00

1k

)(2.66)

(n)
As for hydrostatic water forces, it is easier to take the derivative with respect to u, and
therefore one would use:

6[8 (GPi,j,k )V(“P.,,.k )J

ou

) )
ov(u
= _S[V(“Pi,,-.kgln)> )}HP (BEIn)VG(mP(m ) + S(GE:\)>Pi,j,kE:1)> )(&:Jk) 2.67)

(m (m
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For a given sensor point Pjjx, Table 2.1 gives the vectors and matrices needed in
Equations (2.64), and (2.66) or (2.67). The complete stiffness matrix is then obtained by

summation over the sensor points:

K= Z(Kn,i,j,k +Ks,i,j,k +;L'Kw,i,j,k +KF3*) (2.68)

i,j.k
Some considerations on the symmetry of K are in order. K is always non-
symmetric if large rotations occur. In fact, consider the first three rows of K given in

Equation (2.64) and the contribution of the second term in r.h.s. of Equation (2.66) to the

last three rows of K. Denote d = 8V(uPi )/ ou. The definition in Equation (2.10), yields:

B

dl,,, ~d-S(R-(GP),, )-J(0)
(2.69)
S(R-(GP), )-d -S(R:(GP), )-d-S(R-(GP), }-3(0)

A necessary and sufficient condition for the upper leading diagonal minor to be

symmetric is that d is symmetric. Under this assumption, the transpose of the upper off-

diagonal minor is equal to: J (B)T -S(R-(GP) )-d. This is equal to the lower off-

(0)
diagonal minor if and only if one neglects large rotations so that J (G)—)I. Using
Equation (2.4), the Ilower Ileading diagonal term can be rewritten as

~d-S(R-(GP),, )-S(R-(GP), )-3(6) , which is symmetric if and only if d is

symmetric and J (0) — 1. Thus, K is symmetric if and only if d is symmetric and one

neglects large rotations. As shown in Table 2.1, d is symmetric for normal and shear joint
stiffness, but it is not symmetric when water forces are applied. In addition, the first term

in the r.h.s of Equation (2.66) is always not symmetric under large rotations because it
contains J (9) Stiffness matrices in 3D-DDA and BSM3D are symmetric because d is

always assumed to be symmetric and large rotations are neglected.
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Table 2.1: Vectors and matrices needed for the calculation of the stiffness matrices [1].

o) Rk (M aV(uPLjyk) aV(llP”.k)
or
u, ou
i,j.k
(n) (n)
F . O] 0
- :_8 en | &5 0N ek oviu O
n,i,j.k P Rik 80'ni K T
u i :_a__.—’J’ n...n. ..
69 i,] C,i,j,k e, ]k
llR,Lk lJn9H,Lk
(n) (n)
M) T (0] (U]
o =_8F°’S kSi,j,k(n)(I_nc,i,j,knc,i,j,k )“P”,k(n) oviu
s,i, ],k ou Rk —_k 0 I T
ou = Si,j,k(n)( 0k )
Rik
(n)
OF T M Yo O )
i =——2 ai,ij(zw,i,j,k_ez Up () M) av(up__ )
L, 8“ - 1,j.k —
ou
(n)
LT M
-n;e, -Dp (O(n))
a .7,
e LI ()
+(Zw,i,j,k —¢, uPi,j’k(n))HP (e9ni(0))
2
don, oon; L. . ,
ote: and ——= are given in Equations (2.49) and (2.51), respectively.
Not 0K and “ are g Equations (2.49) and (2.51), respectively
unspl,j,k aumpi,j,k

2.11 DILATANCY

Discontinuity dilatancy creates a displacement component of a sensor point
normal to the discontinuity and directed toward the constrained space. Its magnitude is
equal to the shear displacement times the tangent of the dilatancy angle. The dilatancy

angle is quantified based on the Barton-Bandis model [79-81] as:

).

In order to account for dilatancy reduction upon shear displacement reversal, a

Q)
i,j.k(m

JRC. .,

i, j.k(n)

log(JCS, ;, /on

local reference system, (O, y,¢ )i i with unit vectors y;;, and & ;,, is introduced on

the constraint plane in contact with Pijx. O, ;, 1s the point at which Pijx enters C, and
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%ijx and § ;. are orthogonal unit vectors along which JRC has been measured. The

shear displacement is then accumulated along the two local axes, e.g.,:

| I
Up 0= 2 Xijx OUp () (2.70)

ll<l;nn<n

Per Barton-Bandis model, the mobilized JRC in, say, the y;;-direction is a function of

the ratio U, g'n))/ Opeaxijx (€8, Figure 12 in [81]), where the peak displacement,

o 1s given in Equation (2.56):

peak,i, j.k >

Sign reversal is then detected using flags of the type:

) )
fl o 1 TF O iikmOUs m ik 20
L IR T S P ] 0 @70
- 2 ikmOUr ) Kijk <
and the iterative normal displacement is:
JCS;
tan(JRC, Lo log ——= J( flag,; | vim [k O (1) )+
on, hi
i,j,k(n) (272)

o _
OUgp = Mok

JCS,
i, O] T O]
tan(JRCI e log o © ]( flag, ; jim Sk OUg,,m

i,J.k(n)

)

If a sensor point enters C, i.e. if B ; k(n) "¢ and P jxm € C, then recall that d, ;, is

the distance traveled in C. The normal displacement increment is then obtained by

multiplying Equation (2.72) by d, ;, /H5uF’..J ol

Although dilatancy per se does not cause any force, and thus any stiffness

component, it does add a term to the expression of the displacement, which is now equal

. . . .
to u, _“Pi,;,k+5“d,Pi,,;k where up  is given in Equation (2.5). As a consequence,

i,jk

using Equation (2.9) the derivative GUH » /0w in Equations (2.64) and (2.66) is replaced

u, * (6 oouy (6 oou,, Ou, | oouy (6 573
BES — + [INES — + IS 1,j.k — + ik .
ou P( ) ou P 8upijk ou P( ) (2.73)

u
Rlik
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Let us now consider the derivative in Equation (2.73) for the component in the y;-

direction:
a5ud,P.,k Sijk
W = —SIGN (XiTé‘“Pi,j_k )tan[JRCi,jﬁk,Z log O'ni,jfk ] flag“J.J(nc’i’j,k)(i’j’kT
P JCSLLk dJRC; , T
—nc,i.j.km[tan[‘mci,j,k.z log — ou (flag;]){,i‘j,k ijk OUp )
P JCSLLk 60'ni’j’k T
_"“*"*(mw[tan[mc""*”f log oy )| Pun (flaglvi‘j,k Xijk OUp )
(2.74)
Since:
aJRCi’j’k’Z B a‘]RCi,j,k,z auZaPi,j,k B a‘]RCi,j,k,z . T 2.75)
= = ijk o .
uPi,j,k aulspi,j,k aupi‘j‘k aulapi,j,k

the second term is equal to:

JCS, . JCS, . dJRC, .
—flag,, ,, cos™ (JRClog . ik Jlog = ik ‘Xi,j,kTé‘u M 7’JMnc,i,j,kXi,j,kT (2.76)

B jx(n)
iLik ijk U, p .,

In the third term:

0 JICS, . 1 on 1 JCS, .,
tan| JRC, ;,  log X = JRC, s _ ,1,2
don, ;. b on JCS. . j H13es,  In(10)| - on,

cos? JRCLLk logi"lﬁk
on; ik
_ ‘]RCi,j,k,z
: JCS. .
Gni,j,k 111(10)0052 [JRC”kl log i,j.k J
o*ni’j,k

(2.77)
and using Equations (2.46) and (2.77) into Equation (2.74), one finally obtains that the
third term in Equation (2.74) is equal to:

JRC don,
Jcsi,j,k] U, p

Gni!j,k

T (278)

ik, x

.
- flag,; ;. ‘Xi,j,k Sup Mg Mg

log

i j.k,x

on; j, In(10)cos’ [JRC-
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While the third term contributes a symmetric rank-one modification to the
stiffness matrix, the first two terms yield non-symmetric rank-one modifications to the
stiffness matrix. To exemplify, consider a parallelepiped (constrained along its vertical

faces) that translates downwards, and in which n e, (horizontal) and g, =e,

ik =

(vertical up). The net effect of the dilatancy first two terms is to add to the third column

of é‘v(upl’m)/ aupm’k in Equations (2.64) and (2.66) the first column of

Gv(upi)j’k )/Gupiaj)k multiplied by an appropriate scalar. Dilatancy couples with normal

stiffness because from Table 1, third column and second row, the added term to

8V(upi,j‘k )/8upi'j,k is proportional to:

S O O

1
0 (2.79)
0

0

T T _
ee ee, =0
0

whereas dilatancy does not couple with shear stiffness (Table 2.1, third column and third
row) because (I —ee,’ )eerT =0.

Per Equation (2.79), a monotonic downward vertical translation causes the first
term in Equation (2.74) to apply a positive force in the positive X-direction, i.e. toward

the inside of the block. The second term applies a positive (negative, resp.) force in the

positive X-direction if JRC is increasing (decreasing, resp.) with U, re. if

U, r. SU, peak (uzﬂj,k >U, o> Tesp.). If the vertical translation is reversed, dilatancy

forces change sign: this does not cause the stiffness matrix to become negative definite
because the first two terms in Equation (2.74) contribute only off-diagonal terms, and the
third term is generally small in comparison with the other terms (except in the vicinity of
critical points).

In general, dilatancy introduces a non-symmetric rank-one modification because a
displacement in the y;;k-direction creates a displacement (and then a stiffness change) in

the n -direction but the opposite does not necessarily occur. Indeed, there will be

Ci,j.k
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symmetry if and only if a constraint face also occurs with normal 7, and the point in

contact with this face has the same JRC, JCS, and normal stress as P; j.

2.12 INITIAL STRESSES

The initial state of stress acting on the rock mass can be easily included in the
calculations of the first stage as follows. Let ¢ be the stress tensor of the initial state of
stress, and let nc; be the normal to the constraint face C; that bounds the block. The

normal and shear stresses on C; are, respectively:

on =ng' -o-n (2.80)

Z'ZH(O'ni I-0)-n; (2.81)

The normal displacement length, u ., that causes the normal stress on, is

n,i»

found by solving the equation:

on(u,;)=on, (2.82)
where on (un,i ) is given in Equation (2.42). The normal displacement vector that creates

the initial normal stress is then: u_; =u ;.
As for the shear displacement, its unit vector is:
t=(onl-o)n,/t (2.83)
If T < Tmax (Equation (2.53)), the shear displacement associated with the shear stress is
equal to:
ug; =7/Kg;, (2.84)
where Kk ; is the shear stiffness calculated with Equations (2.54) or (2.55) for a normal

stress equal to on,. The shear displacement that creates the initial shear stress is then

equal to ug; =-ug;t.

If, on the other hand, T > Ty, the i-th discontinuity can not take a shear stress

equal to 7, and the shear displacement is equal to ug; =-7, t.
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Finally, the initial state of stress is imposed by translating the plane containing C;
by the vector u,;+ug;. Once all constraint planes bounding B have been translated in

this way, constraint faces C; are determined by taking the intersections of the translated

planes.
2.13 FAILURE MODES AND FACTOR OF SAFETY

2.13.1 Limit points and static instability

While marching along the equilibrium path, critical points are detected by looking
at the eigenvalues of the stiffness matrix. If a diagonal element in the LU decomposition
is equal (or close) to zero, eigenvalues and eigenvectors of the stiffness matrix, z;, are
calculated to determine limit points and static instability.

Two cases may occur:

. ziTFaE'n)) #0: this is a limit point and the active force cannot be incremented

further. (2.85)
o 7'F,) =0: this is a static bifurcation point. (2.86)
21311 Limit point

When the first limit point is reached along the equilibrium path of the block, the

active force cannot be incremented further, and the unbalanced resultant force applied to

the block is (1- 4,

)Fa , where n is the last converged increment, and F, 1is evaluated at
the n-th increment. The dynamic failure mode, i.e. the possible motion of the body over
an infinitesimal interval of time, is calculated based on small rotation theory by imposing
no further interpenetration at the constraints during the dynamic failure mode, and by
assuming a rigid-perfectly plastic behavior of the discontinuities to shear displacements.
In order to determine the dynamic failure mode, the unconstrained motion of the block is

first calculated using Equation (2.19) as (we are not interested in its magnitude)

u, =(1-4

w )M'F, (2.87)
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This allows one to detect which of the sensor points are to be constrained. Recall
that a unilateral constraint constraints a body’s motion only if it is active, i.e. only if there
is contact across that constraint. Therefore, the search is limited to the sensor points, Pjjy,
that are in C at the n-th increment. For each of these sensor points, the unconstrained

displacement is given by Equation (2.18):
0,5, =(l,c+o,xGP, | ) - (IM,—S (R(n) (cp, )(O) )) w,  (2.88)

Let Cph € OC be the active polygon constraint at Pjjk. Then Cy constraints the

possible motion of B if and only if W, p " is directed into C, i.e.

ﬁU,Pi‘j‘k g, < 0 = nc,hT '(Im’_S(R(n) '(GPPi‘j,k )(o) )) <o (&59)

If Cy, constraints the possible motion of B, then an equality constraint must be

imposed on the motion of B, u, so that P;;x can only move parallel to Cy,
ﬁpi,j,k 'nC,h =0 = nC,hT .(I3X3’_S (R(n) '(GPPi‘j,k )(0) )j -u=0 (290)

If, in addition, Pjjkx has not been sheared off at the n-th increment, then Py
cannot move parallel to Cy either, and thus P; is fixed in space. Equation (2.90) must be

replaced by the three conditions
5 -[IM,—S(RW (cr.,), ))ﬁ 0, 1=xy.2 (2.91)

Constraints (2.90) and (2.91) are linear in u, and can thus be arranged in matrix

form A-u=0, where the rows of matrix A are either n,’ -(IM,—S(R(M -(GP)(O)))

or e,T-(IM,—S(R(M~(GPF,UYk )(0))) , I=Xy,z. Using the General Principle of

Mechanics [50], the constrained acceleration (mode of failure) can be obtained in closed-
form (Equation (2.23) with C = 0)

u=a-M""-B"-A-a, (2.92)
where a superscript “+” indicates the Moore-Penrose generalized inverse of a matrix [54],
a=M"-F,,and B=A-M ", The mode of failure can be visualized by superimposing
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the displacement field calculated using Equation (2.18) with u from Equation (2.92)
upon the last converged increment configuration. This procedure can be seen as the
generalization of Sagaseta’s for two-dimensional blocks [83].

On the other hand, the static mode(s) of failure is (are) associated with the null
space of the stiffness matrix at the first limit point along the equilibrium path. More

specifically, if z is in the null space of this stiffness matrix, then its static failure mode is

z¥=17- Sign(zTF). In general, the static failure modes are different from the dynamic

failure modes.
The factor of safety is the ratio between the stabilizing forces and the driving
forces at limiting equilibrium. It is thus the maximum ratio between the projection of the

constraint forces on z* and the projection of the active forces on z* for which there is

equilibrium, i.c. FS = max|z*" F,/z* F,|.

Since, during a stage, the active force is

proportional to the control parameter, (z*" F,/z*' F,

= A, and A at the last converged

increment is equal to the factor of safety for the block. As a consequence, the calculation
of the safety factor comes with no overhead, whereas other codes such as 3-DEC,
BSM3D and 3D-DDA require time-consuming trial and error calculations using the
reduction of the strength parameters (e.g., [17]). However, whenever failure is not caused
by limited strength (e.g., when the block fails in a pure rotational mode, or in a more
complex roto-translational mode), the reduction of the strength parameters cannot yield
the factor of safety, but, rather, it yields an incorrect failure mode (e.g., sliding rather than
toppling). On the other hand, the presented algorithm always unambiguously yields the
correct factor of safety and associated failure mode(s).

If the US Load and Resistance Factor Design (LRFD) or European partial factor
design (Eurocodes) are used, then the appropriate factors are applied directly to the input

data, and the block is safe if the control parameter is equal to or greater than one.
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2.13.1.2 Bifurcation point

At a bifurcation point, the equilibrium path branches out in as many branches as
the dimension of the null space of the stiffness matrix. Collect these normalized

eigenvectors in set T. The branch for zieT is followed by using a predictor equal to
Auggll) =step, -z; and Ai((r?ll) =0. The solution is then corrected by following the

Newton-Raphson algorithm in Section 2.5.

Modes zieT are associated with rigid-body motions orthogonal to the original
path. As illustrated in Example 4 below, the original equilibrium path is also of interest.
The original equilibrium path is followed by adding a “spring” aligned with each
eigenvector in T. This is effected by adding to the stiffness matrix the rank-one
modifications kiziziT, where k; is taken as 5% of the largest eigenvalue of K; if this is
equal to zero, then the block is unconstrained, and it is considered as failed. Notice that a

displacement parallel to the applied force does zero work with these added springs

because Equation (2.86) entails that FaE'rf)TziziTFaEL)) =0.

If the block has not failed, then the equilibrium paths are followed until a limit
point is encountered (Section 2.13.1.1) or an upper limit on the control parameter is

reached.

2.13.2 Dynamic instability

Consider the neighborhood of a point in the equilibrium path. In this
neighborhood, Equation (2.19) applies with F = (f,, mg¢)' = -K, and the ODE for the

motion of the unforced block is:

M u+K{u=0 (2.93)

Using an eigenmodal expansion for the solution, u= Z:iziepit , one recovers the
eigenproblem:

(K +Mpt)z, =0 (2.94)
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Since K is real and is not symmetric (large rotations, applied non-conservative
forces such as water pressure), and M is real and positive definite, eigenvalues p;* can be
either real or complex; if the later, they occur in conjugate pairs. In all cases run by the
author, no numerical problem arose in obtaining eigenvalues pi°>. Three cases are
distinguished:

° pi2 is real and positive: The motion of the block is unbounded in time, and thus the
block is considered as failed (dynamic instability by divergence).

e pi’ is real and negative: The unforced motion of the block is harmonic, the block
is stable, and the predictor-corrector algorithm continues along the equilibrium
path.

e pi’ is complex: The unforced motion of the block is oscillatory and unbounded,
and thus the block is considered as failed (dynamic instability by flutter). Since
these eigenvalues occur in pairs, energy is transferred from one eigenmode to

another.

2.14 SUMMARY AND CONCLUSIONS

Tonon’s [1] incremental-iterative algorithm described in details. The method is to
analyze general failure modes of rock blocks subject to generic forces, including non-
conservative forces such as water forces. The block interacts with the surrounding
constraint space using a finite number of sensor points. Consistent stiffness matrices were
developed that fully exploit the quadratic convergence of the adopted Newton—Raphson
iterative scheme. The algorithm takes into account large block displacements and
rotations, which together with non-conservative forces make the stiffness matrix non-
symmetric.

Also included in the algorithm are fracture dilatancy and in situ stress. Dilatancy
acts at a kinematic level by adding a normal component to an active sensor point’s
displacement. As a consequence, dilatancy introduces non-symmetric rank-one

modifications to the stiffness matrix.
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Progressive failure is captured by the algorithm, which has proven capable of
detecting numerically challenging failure modes, such as rotations about only one point.

All possible failure modes can be automatically detected along the block’s
equilibrium path; they may originate from a limit point or from dynamic instability
(divergence or flutter); equilibrium paths emanating from bifurcation points are followed
by the algorithm.

The algorithm identifies both static and dynamic failure modes. Static analyses
(including limiting equilibrium) do not take into account the block’s inertia properties,
which may lead to detecting an incorrect failure mode. The difference between static and
dynamic failure modes is relevant to slow versus rapid removal of constraints (e.g. tunnel
boring machine versus drill- and-blast tunnel excavation), and is the subject of current
investigation. Any real block is created by the removal of constraints: the algorithm
simulates this natural process, and allows one to investigate the impact of how blocks are
constrained on stability and factor of safety.

The calculation of the factor of safety comes with no overhead, and does not
require trial and error model runs using the reduction of the strength parameters, which
may even lead to erroneous failure modes.

Rock blocks that are typically thought of reaching equilibrium by translation
actually rotate about their centroid because the reaction forces create a non-zero moment
about the centroid; this is the case of 2-plane wedges subjected to their own weight. The
equilibrium path of a rock block that undergoes slumping failure must first pass through a
bifurcation point, unless the block is laterally constrained. Rock blocks subjected to water
forces (or other non-conservative forces) may undergo flutter failure before reaching a
limit point. Thus, existing methods (including limiting equilibrium) may overestimate the
safety of a rock block when water forces are important (e.g. dam foundations, rock scour

at bridge piers and under dam jets).
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CHAPTER 3: CONSTITUTIVE MODEL FOR ROCK
FRACTURES: REVISITING BARTON’S EMPIRICAL MODEL

3.1 INTRODUCTION

In near-surface geotechnical works (for instance, dam foundations, power plants,
underground caverns, and slopes), the mechanical behavior of the rock masses is
influenced more by the fractures than by the intact rock. Therefore, algebraic calculations
and numerical simulations for the mechanical behavior of fractured rock masses require
the constitutive law of rock fractures. However, the characteristics of intact rock are
better known; for example, the Suggested Methods of the International Society of Rock
Mechanics [84] define mathematically the Young’s modulus for uniaxial compressive
tests but leave out any calculations for the shear and normal stiffnesses of fractures [85].

In the study of the behavior of a single rock fracture under different loading
conditions, rock fractures are divided into two main categories: filled and unfilled
fractures. The shear behavior of unfilled fractures is a function of the roughness and
compressive strength of the fracture [22] walls, while in the case of filled fractures, the
physical and mineralogical properties of the material separating the fracture walls are of
primary concern [22]. In this chapter, the constitutive models of unfilled rock fractures
with dilatancy and surface degradation are investigated.

There are two main approaches to the quantitative description of the mechanical
properties of rock fractures: (a) the theoretical approach, which adopts known theories
(e.g. plasticity, contact theory, etc.) to simulate the observed behavior (e.g. [86-90]); (b)
the empirical approach, in which wide-spanning physical data is analyzed to derive
correlations between variables of influence and models are formulated according to
observed behavior (e.g. [22, 79, 81, 91-93]). Other efforts combine the above two
approaches (e.g. [94]) or treat the problem analytically (e.g. [95]) [96].

Several empirical and theoretical constitutive models were developed by Ladanyi
and Archambault [91], Goodman [97], Barton and Choubey [22], Plesha [87], Amadei
and Saeb [98], Jing et al. [99, 100], Qiu et al. [101], etc. Patton [102] proposed bilinear
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models of saw-tooth fractures. Plesha [87] idealized Patton’s saw-tooth type asperities
and developed a constitutive model based on the classical theory of plasticity. Huang et
al. [103] verified Plesha’s exponential degradation law through a series of experiments
for fractures having saw-tooth type asperities. Qiu et al. [101] revised Plesha’s model by
idealizing the sinusoidal asperities, but it was less practical due to the complexity of
constitutive equation. Saeb [104] modified the failure criterion of Ladanyi and
Archmbault [91]. Gens et al. [105] proposed an elastoplastic constitutive law for
describing the three-dimensional mechanical behavior of rock fractures. Desai and
Fishman [106] proposed a constitutive model based on the theory of plasticity for
characterizing the mechanical response of simulated fractures under monotonic loading,
unloading and reverse loading. Wang et al. [107] proposed an elliptic yield function
based on associated flow rule to predict the behavior of rock interfaces and fractures. By
using the results of a series of experimental work on sandstone, Leichnitz [108]
developed a constitutive law for rock fractures that also allows consideration for the non-
linearity of the material behavior. Kana et al. [109] suggested the interlock-friction model
for dynamic shear response; the importance of second order asperities on the dynamic
shear behavior was explained by Fox et al. [110]. Samadhiya et al. [111] introduced a
generalized formulation of a three-dimensional joint/interface element to account for
dilatancy, roughness, and undulating surface of discontinyities.

The scale effect on fracture shear strength has been studied by many authors, such
as Pratt et al. [112], Barton and Choubey [22], Bandis [113], Barton and Bandis [114],
Barton [115, 116], Hencher et al. [117], Hencher and Richard [118, 119], Patton [102],
Cording [120, 121], McMahon [122], Lee [123], and OH [124]. In addition, anisotropic
shear behavior of rock fractures was considered by some researchers, such as Huang and
Doong [125], Jing et al. [126] Grasselli et al. [127, 128], and Kulatilake et al. [129, 130].

Most of the constitutive models were only developed for monotonic shear loading
without considering surface roughness degradation. Among these models, Barton’s
empirical model has widely been used because it is easy to apply and includes several

important factors of fracture properties.
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In this chapter, Section 3.2 recalls the essential aspects of the most common
models for rock fractures including Barton-Bandis and Goodman’s empirical models.
Section 3.3 addresses some of the inconsistencies of Barton’s model in predicting the
peak shear displacement, post-peak shear strength, dilation, and surface degradation
during unloading and reloading. A database of results from direct shear tests available in
the literature was assembled and analyzed. Modifications were made to Barton’s original
model in order to address some of its weaknesses, and an empirical equation is
introduced to predict peak shear displacement of rock fractures. Unlike Barton’s model,
the proposed peak shear displacement relationship depends on normal stress, and in the
revised model, the post-peak mobilized Fracture Roughness Coefficient (JRC) is given by
a power law, instead of employing Barton’s table. This new empirical equation for post-
peak mobilized JRC works for all ranges of displacements and never gives unusual zero
or negative values, even at very large displacements. Moreover, the modified model can
predict compression (negative) dilatancy at small shear displacements. Furthermore, the
model suggested here for unloading and reloading behaviors takes into account 18 cyclic
direct shear tests including the one that Barton used. Section 3.3 shows that the revised
model not only addresses some of the weaknesses of Barton’s model but also works
better in predicting the behavior of rock fractures in the collected data of direct shear
tests. Section 3.4 summaries the results of experimental studies on anisotropic dilatant
behavior of rock fractures found in the literature. In Section 4, a model is proposed to

predict the magnitude of JRC in a given direction.
3.2 CONSTITUTIVE MODELS FOR ROCK FRACTURES

3.2.1 The Shear Strength of Rock Fractures

Based on Coulomb’s linear relationship [25], the shear strength of rock fractures
can be expressed as follows:

T=C+o0, -tan(¢), (3.1

47



in which 7 is the peak shear strength under a normal stress of o©,; C is cohesion and

¢ 1is the friction angle.

Byerlee [131] suggested that the frictional strength of faults developed through
intact rock may be the same for all rocks, independent of lithology. Barton [132] showed
that artificial faults and tension fractures in a variety of rocks have the same peak shear
strength when the effective normal stress is of the same order or greater than the
unconfined compression strength of the rocks. However, under low effective normal
stresses, the shear strength of fractures can vary within relatively wide range.

Many researchers have attempted to predict the shear strength of non-planar rock
fractures based on their dilatant behavior. Jaeger [133], Krsmanovic and Langof [134],
Lane and Heck [135], Patton [136] and Byerlee [131] are among those who first obtained
curved relationships between the shear strength of the rock fractures and the normal
stress. Patton [102, 136] and Goldstein et al. [137] used the following equation, basically
developed by Newland and Alley [138] and Rowe et al. [139] for granular material, to
represent the shear strength of irregular rock surfaces at low normal stresses:

r=o, -tan(g, +1i), (3.2)
in which i and ¢, are the effective roughness and the base friction angle, respectively.

Although Patton [136] initially suggested that only first-order irregularities would
contribute to the shear strength of fractures beneath natural slopes, Patton and Deere
[140] later emphasized that all scales of roughness are likely to be important. At high
normal stresses, when most irregularities would be sheared off, it was assumed that the
Coulomb relationship would be valid.

The recognition that the shear strength of an irregular rock surface can be zero at
zero normal stress represents a major improvement over the earlier assumption of linear (

Cc and ¢ ) properties. Using a cohesion intercept for rock fractures is inherently

dangerous, even if the extrapolation is made from the mean effective normal stress level
appropriate to the particular engineering problem. The Coulomb concept of cohesion and
friction angle is really no more than a simple mathematical convenience since cohesion is

not a constant [132].
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3.2.1.1 Barton’s failure criterion

Barton [21] suggested the following empirical law of friction for the shear

strength of rock fractures:

T=0," tan(JRC . logl{ﬁj + ¢r] (3.3)
o

n

The residual friction angle, @, (which is equal to basic friction angle, ¢, , for

unweathered rock fractures) can be obtained from residual shear tests on flat unweathered
rock surfaces. The basic friction angle of the majority of unweathered rock surfaces
ranges from 25° to 35°, at least at medium stress levels [92, 136, 141-145]. The residual
friction angle of weathered rock fractures can be estimated based on the Schmidt rebound

on dry unweathered sawn surfaces and wet fracture surfaces as follows:
4, = (4, —20°)+ 20 (%) (3.4)

where ¢ is basic friction angle of dry unweathered sawn fracture; R is Schmidt

rebound on dry unweathered sawn surface; I' is Schmidt rebound on wet fracture
surface.

The fracture roughness coefficient (JRC ) represents a sliding scale of roughness
varying from approximately 20 to 0, from the roughest to the smoothest rock surfaces.

JRC reduces with the increasing size of the sample [115]:
L ~0.02JRC,
JRC, =JRC, (:?j , (3.5)

where JRC and JRC, are fracture roughness coefficients of samples with lengths of
L, and L, respectively.
The joint wall compressive strength (JCS ) at low stress levels is equal to the

unconfined compression strength o, of the rock if the fracture is unweathered, but may
reduce to approximately o, /4 for weathered fractures [92]. The Schmidt hammer can

be employed to measure the JCS values of weathered rock fractures (Miller’s method
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[146]). However, Barton [132] suggested that in view of the safety requirements of rock
engineering structures, the value of (JRC-log,,(JCS/o,)+ @, ) should be limited to 70°.

Due to the effect of confinement on the compressive strength of rock asperities,
the measured shear strength at high normal stress levels is always appreciably higher than
the predicted value using Equation (3.3) [132]. At low stress levels, appropriate to most
rock engineering problems, the contact area between fracture walls is extremely small
[147]; therefore, the strength of asperities can be considered as the unconfined strength.

However, as the level of o, approaches the value of o, the area of contact across the

fracture increases, probably as a result of elastic displacement and possible local failure
of any mismatching asperities [132]. The increasing contact area in turn causes the
compressive strength of the asperities themselves to increase due to the more effective
confinement.

At high stress levels, the JCS value appearing in Equation (3.3) should be

considered to be the confined compression strength of the rock, which is equal to the
differential stress (o, —o;), where 0O is the axial stress at failure and o; is the

effective confining pressure [132]. Empirical relationships between the compressive
strength of intact rock as a function of confining pressure are proposed by variety of

researchers; one of the best one suggested by Bieniawski [148] is as follows:

A
lek-ac-(%] +o,, (3.6)

where A and K are constant.

The joint compressive strength reduces with increasing size of the sample [115]:
L ~0.03JRC,
JCS, =JCS, (:?‘] , (3.7)

where JCS, and JCS, are joint compressive strengths of samples with lengths of L,

and L, respectively.
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3.2.1.2 Saeb’s model
Saeb [104] modified the failure criterion of Ladanyi and Archmbault [91] which
is now expressed as follows:
7, =0, tan(g, +i)-(1-a,)+as,, (3.8)
where a is the proportion of total fracture area sheared through the asperities and can be

obtained using the following equation [149]:

k
aszl—El—ﬁJ , (3.9)

O¢

in which Kis an empirical constant; o, is the unconfined compressive strength of

intact rock. (1—a,)is the proportion of total fracture area on which sliding takes place;

¢, is the angle of friction for sliding along the asperities; S, represents the shear

strength of the asperity intact rock. Dilation angle, i, can be obtained using the

i = tanl{(l - %J 2 -tan(io)} (3.10)

in which K, is an empirical constant; tan(i,) is the peak rate of dilatancy at zero

following equation:

normal stress.

3.2.1.3 Jing’s model

Jing et al. [99, 100] proposed the following relationship for the peak friction

angle:

b
¢p=¢r+%-[1—ﬁJ : (3.11)
O,

c

where ¢, is the initial asperity angle, o, is the magnitude of normal stress and o, is

n
the magnitude of the uniaxial compressive strength of the material, b is a material

constant representing the wearability of the fracture material.
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In order to investigate anisotropic behavior of rock fractures Jing et al. [126, 150]
determined and plotted in polar diagram the mobilized friction angles from shear and tilt
tests for 12 shear directions. They found that the distribution of the total friction angles,

¢,, on the nominal plane of the fracture surface (lower block), may be generalized as
follows: (a) ¢, varies with both the shear direction and magnitude of normal stress; (b)
the degree of the directional variation of ¢, decreases with increasing normal stress; (c)
¢, decreases with increasing normal stress; (d) under a certain normal stress, the

directional distribution of the friction angle is not completely random, but displays
principal directions. These principal directions may or may not be symmetrical,
depending very much on the geometrical distribution of the asperities on the fracture
surface.

The directional dependency of the shear strength of fractures would then be

represented by the directional variation of the asperity angle «, in Equation (3.11). To

simplify the matter as much as possible, it was assumed that magnitudes of the asperity
angle follow an elliptical distribution in the plane of the fracture surface. The magnitude

of the asperity angle in a given direction & can then be written as:

a= \/[Cl -cos(y)—C, -sin(y )} +|[C, -sin(y)+C, - cos(y )], (3.12)

where C, =¢, -Cos(ﬁ—l//) and C,=q, -Sin(H—l//); o, and @, are the major and

minor semi-axes of the ellipse, and y is the angle to the major semi-axis, all of which

should be determined experimentally.

3.2.1.4 Grasselli’s model

Grasselli et al. [128] have digitized and reconstructed a large number of fracture
surfaces using a triangulation algorithm. This approach results in a discretisation of the
fracture surface into a finite number of triangles, whose geometric orientations were
calculated by the authors. Based on their observations and using the triangulated surface
data, they described the variation of the potential contact area versus the apparent dip

angle of the fracture surface with the expression:
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A =%-£%J , (3.13)

where A, is the maximum possible contact area; &, is the maximum apparent dip

angle in the shear direction, and C is a ‘‘roughness’’ parameter which characterizes the
distribution of the apparent dip angles over the surface.
Grasselli and Egger [127] proposed the following empirical relationship for peak

shear strength of rock fractures:

* 1.18 cos o, o
—(max_y. (=N
T,=0, ~tan[¢b + {g’(“:&] J{l +e ThC o J, (3.14)

where o, is tensile strength of intact rock and « is the angle between the schistosity

plane and the normal to the fracture; if the rock does not exhibit schistosity, a is
assumed to be equal to zero.
Using Equation (3.14), Joint Roughness Coefficient (JRC) can be determined

from the following relationship:

* 1.18cosar 0 &
—(max y(Zny
arctan{tan{qﬁb + (eéax] }.{IJF g 9AC o J}%
(3.15)
O-C
logm(J
O-n

JRC =

3.2.1.5 Kulatilake’s model

Kulatilake et al. [129, 130] developed a new empirical peak shear strength
criterion for anisotropic rock fractures that includes both the effect of dilation and
shearing through asperities. They measured roughness profiles at 30° intervals on a
model fracture and run direct shear tests of different normal stresses of the replicas. They
suggested the following general equation to model the peak shear strength of rock

fractures for a specific direction and foro, /o; <0.1:
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| Q

Q

L 2% (1-a,) tan| ¢, + (160D A" £1 81, )-log,,| —1— || +a, - =, (3.16)
o 100, o

i i n ]
where o is the joint compressive strength (JCS); A is a proportionality constant and
D is a fractal dimension in the direction considered; |, is effective nonstationary

trend angle for considered direction, which is conceptually quite different to an
inclination angle that exist on a smooth planar joint surface. Because of the irregularities

of a rock joint surface, it is difficult to estimate I, . However, a procedure is given by

€l
Kulatilake et al. [129] to estimate the effective nonstationary trend angle; a, is the area

proportion where asperities are sheared, which can be estimated for each direction using
the following equation:

3/4 2
a, =10"*.D"*. A {U—J +107°% .1, L"—J (3.17)

g; gj

T
The term a,—— in Equation (3.16) is the contribution to peak shear strength due to

O .

J

shearing through the asperities and 7, is the shear strength of intact rock.

3.2.1.6 OH’s model

OH [124] developed a joint constitutive model by considering both small-scale
asperities present in laboratory sample and large-scale waviness observes in the field. He
found that the evaluation of strength of rock fractures in the field requires assessment of
large-scale irregularities not present in the lab sample. The complete form of OH’s joint

model for multi-scale asperities is as follows:
T=0 tan(¢§r +a, gl iy - fs) , (3.18)
where «, is a shear-through component obtained by laboratory test; 1, is initial angle

of inclination of large scale irregularities; C is a dimensionless asperity degradation

constant that can be estimated using the following equation:
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, (3.19)

in which ¢, is the initial asperity angle; o, is the unconfined compressive strength of
rock; A is wavelength of asperity; and k is constant.

f* in Equation (3.18) is called “sinusoidal function” and mathematically expressed as

p
f=|Z 4 tan"'| —sin 7['5—5 _z /Z, (3.20)
4 0.54,,.) 2| 2

is the wavelength of large-scale irregularity observed in the field.

follows [123]:

where 4.

Plastic work, W, is a function of shear strength (o, =0,.tan¢) and plastic

p’

shear displacement (5. ):

W, => AsP -0, (3.21)

3.2.2 Rock Fracture Deformation

Goodman et al. [151] introduced the terms Normal Stiffness, K , and Shear

noe
Stiffness, K, , to describe the rate of change of normal stress, o, with respect to normal
displacements, Vi, and of the shear stress, 7 , with respect to shear displacements, d,,

respectively.

3.2.2.1 Normal Stiffness

Goodman [93] described the basic mechanics of fracture normal deformation by

considering that the maximum closure, V,,, of a fracture should be less than its aperture
thickness, a; , defined as the maximum gap anywhere across the mated walls.

Experiments showed that the fracture closure under increasing normal stress varies in a
non-linear fashion closely resembling a hyperbola [93, 112, 152, 153]. Bandis et al.

[80] suggested the following equation for normal stiffness:
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-2
Kn:Km-[l “—j : (3.22)

_VmKni +O—n

where the initial normal stiffness, K, can be calculated from the following relation

[113]:

K, =-7.15+1.75JRC + o.oz(ﬁ} (3.23)
a.
]

in which the units of JCS and a; are MPa and mm, respectively. A fair approximation of

the initial aperture, a; , can be obtained from the following empirical relationship [80]:

JRC o
a,=—(02—=--0.1 3.24
=5 (0255700 (3.24)

The maximum closure, V, , can be obtained using the following empirical relationship

(see Table 3.1 for constants) [80]:

JCS

a;

V. =A+B(JRC)+C(—)° (3.25)

Table 3.1: Constant values for the maximum closure in Equation (3.25) [80].

Constant 1st Cycle 2nd Cycle 3rd Cycle
A —0.2960 £ 0.1258 —0.1005 £ 0.0530 —0.1032 £ 0.0680
B —0.0056 £0.0022 —0.0073 £ 0.0031 —0.0074 +£0.0039
C 2.2410+0.3504 1.0082 +0.2351 1.1350+0.3261
D —0.2450 £0.1086 —-0.2301£0.1171 -0.2510£0.1029

Goodman [97] suggested that the unloading curves for fractures will follow
essentially the same path as that for the intact rock; however, Bandis et al. [80] found that
the unloading stress-opening curves for fractures are also hyperbolic (essentially similar
in shape for the first, second, and third cycles). Equation (3.25) can be used to obtain

maximum closure for the second and third cycles where the values of a; are based on

the initial aperture minus the permanent set at the end of first and second cycle. The ratio

of irrecoverable closure, V,, to maximum closure, V,,, can be estimated from Figure 3.1.
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Irrecoverable closure / max. closure % 1V, 7V, )

JCS /0, (MPo/mm)

Figure 3.1: Irrecoverable fracture closure reduces with number of load cycle; with
JCS, value; and with the smallness of the initial fracture aperture, a; [80].

Comparison between interlocked and dislocated fracture normal stiffness

indicated that an assumption of linear decrease in (K,). /(K,) with shear

mis. int.

displacement from zero to &, would be sufficiently accurate for numerical simulation

purposes. The following empirical relation can be used to obtain the normal stiffness of
mismatched rock fracture at peak shear displacement [80]:

(Kn)int, ~ 2 + \]RC . JCSGH
(Kn)mis. 2500

(3.26)

Yoshinaka and Yambe [154] used the following equation for normal stiffness

proposed by Yoshinaka and Nishimaki [155]:

\"

k,=m- exp[l'ﬂ} (3.27)

where m, |, and v, =L/100 are material constants. The model has no advantageous

on Goodman’s model.
Alvarez [156] had collected data from hydromechanical experimental studies

conducted on both natural and induced rock joints. They re-examined published

57



experiments on the hydromechanical behavior of single joints and found that the initial

normal stiffness, K,;, and the maximum closure, V_, are not independent. These two

ni »
parameters are related with each other, because both are controlled by the surface
topography of the rock joints and the elastic properties of the intact rock. The initial
normal stiffness can be estimated as [156]:

5 20
mﬁ Ko S\W’ (3.28)

m m

where the units of K and V,, are MPa and um, respectively.

3.2.2.2 Shear Stiffness

The shear displacement, & required to reach peak shear strength determines

peak *
the secant stiffness of fractures in shear. This is extremely important input data in the

finite element [157] and distinct element [158] analyses. Secant peak shear stiffness, K

can be obtained from the following equation:

K, = ;Peak (3.29)

peak
Barton [92] indicated that model tension fractures representing prototype fracture
lengths from 225 cm up to 2,925 cm required approximately 1% displacement (

0. =0.01L). In addition, Barton and Choubey [22] suggested 1% displacement as a

peak

“rule-of-thumb”, based on the overall mean obtained for 136 specimen (0, = 0.0095L

peal

)- However, they pointed out that &, will eventually reduce to less than 0.01L as

fracture length increases to several meters. Barton and Bakhtar’s [159] survey of almost
300 shear test records revealed that peak shear displacement of lab-size fractures (224
tests) averaged at 1.28% of their corresponding lengths. On the other hand, 71 in Situ tests
gave an average of 0.72% of fracture lengths, thus yielding an overall average of 0.98%.
Barton [115], by reviewing of a large number for shear tests reported in literature (650

data points), found that the ratio o, /L reduces gradually with increasing block

peak
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length. Moreover, he proposed that an approximation to the mean trend of 170 data points

(with block lengths from about 50 mm to 1,000 km) is given by the following equation:
S = 0.004L° (3.30)

peak —

Analysis of data published by Bandis et al. [79] indicates that the ratio &, /L

peak
is related to the JRC of the particular length of fractures tested, and that improved fit to
the data is obtained with the following equation [115]:

5 033
=l e e

where L is length of fracture sample (in meters).

Hyperbolic functions are frequently used to express analytically the non-linear
behavior of sheared fractures in the pre-peak range. Bandis et al. [80] based on
Kulhaway’s [160] formula suggested the following equation for the tangent shear

stiffness of a fracture at any level of shear, 7 , and normal, &, stress:

n; T sz 2
Ke =K;(0,)"| 1= , (3.32)
T

p
where 7, is peak shear strength; n; is stiffness exponent; R is failure ratio (7/7,,)
ranging from 0.652 to 0.887; and K, is a “stiffness number” varying from 3.49 to 30.19
MPa/mm. It can be calculated using the following empirical relation:
K;=-17.19+3.86JRC (3.33)
Lower R, values were associated with well-interlocked, unweathered fractures of high

JRC, while planar, fresh, and especially weathered fractures gave the relatively higher
values.
Bandis [96] described the normal and shear stress dependency of the shear

stiffness by applying hyperbolic functions to the 7 —u relationship of the type:

(3.34)
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where m is the inverse of initial shear stiffness and n is the inverse of shear stress
asymptote.

Wang et al. [107] mentioned that the elastic shear stiffness K. is a function of

normal stress at the interface and can be expressed in terms of:
K K +8,0,, (3.35)
a(0)

in which «(6) is a shape function that considers the effect of shear anisotropy on
elastic deformation. The magnitude of the shape function is unity in isotropic cases. The
shear elasticity parameters K , and @& can be directly determined from the shear

stiffness-intercept and the gradient of the best straight line, respectively, for the elastic
normal stress-shear stiffness response for a particular rock fracture.

Goodman [97] recommended two models to represent the variation of fracture
shear stress with shear displacement under constant normal stress; one of which assumes
that the fracture shear stiffness is independent of normal stress (constant stiffness model),
whereas the other assumes that the peak and residual shear displacements are constant
(constant displacement model). Both models show an increase in peak and residual shear
strengths with normal stress. Wibowo et al. [161], based on the shape of the shear versus
shear displacement response curves obtained from their experimental study, proved that
neither constant stiffness model nor constant displacement model, by itself, fits the
observed behavior [162].

The peak shear displacement measured in the experiments by Wibowo et al. [161]
was found to increase with the normal load or stress. A linear relation was used to

describe the variation of the peak displacement, u,, with applied normal stress, o, as
follows [162]:
u,=a+b-o, (3.36)

in which coefficient a and b are to be determined by linear regression analysis of lab test

results.
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Jing et al. [99, 100] proposed the following empirical relationship for shear

stiffness:

O

K, :ﬁ{z—ﬁj-ktm, (3.37)
GC

where K, is the maximum shear stiffness and is obtained when the normal stress reaches
the magnitude of o, which is a material constant and should be obtained from lab tests.

For shear stiffness Yoshinaka and Yambe [154] used the following equation

proposed by Kondner [163] and Duncan and Chang [164]:

k., =k,(1-R; -z/7,), (3.38)
wherek is the initial shear stiffness. It depends on normal stress and condition of
fracture surface; it is defined based on two material constants; 7, is peak shear strength;
and R, is a material constant.

Plesha’s model [87] needs shear and normal stiffness and asperity information as
input values, which should be measured from lab tests. Chen [165] used bilinear shear
stress-displacement response with shear stiffness which are found from laboratory

experiments.

3.2.3 Degradation of fracture asperity

The degradation of fracture asperity can be conceptualized as the variation of
asperity angle, which would be evaluated by the secant or tangential slope of dilation
curves. Plesha [87] and Zubelewicz et al. [166] proposed an exponential model to
represent the degradation of asperity angle. Lee at al. [167], based on their experimental
results (a series of cyclic shear tests conducted using both the saw-cut and the split tensile
fracture specimens) revised Plesha’s plastic constitutive model by considering the second
order asperities. Homand et al [168, 169] proposed a model to predict the evaluation of
fracture morphology and the degree of degradation during the course of shearing. Their
model is as good as Barton’s criteria compared to their experimental results. However,

Saeb’s model [104] and Ladanyi and Archmabault’s model [91] dealing with proportion
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of total fracture area sheared through asperities tend to underestimate the observed
degradation [169]. Hutson and Dowding [170] and Hutson [171] suggested an
exponential wear equation for fracture asperity based on experimental results using
artificial fractures in a sinusoidal shapes. Huang et al. [103] tested molded fractures in a
saw-tooth shape under cyclic shear loading and validated Plesha’s theoretical law for

fracture asperities degradation [87].

3.2.3.1 Mobilization of Shear Strength
Barton [115] showed that the mobilized (pre- or post-peak) shear strength can be

expressed by using the concept of roughness mobilization, JRC_i..q » In Equation (3.3).

The ratio JRC /IRC o can be estimated from the ratio 5/5,, using the values

mobilized

/JIRC ., =0.5, the shear strength mobilized is

given in Table 3.2. When JRC

mobilized peak

midway between peak and residual values. This point seems to occur at approximately

106 5 for non-planar fractures and 255, for planar fractures. The slow reduction

peak
towards residual strength found in practice suggests that it is more appropriate to use the

term “ultimate” strength for the value measured at the end of a shear test [115].

Table 3.2: Recommended model for shear stress-displacement [115].

Non-planar fractures Planar fractur)es (IRC, < 5
5 JRC mobilized 6 JRC mobilized
0 peak JRC ok O pea JRC o
0 -¢, /i 0 - /i
0.3 0 0.3 0
0.6 0.75 0.6 0.75
1.0 1.0 1.0 0.95
2.0 0.85 2.0 1.0
4.0 0.70 4.0 0.9
10.0 0.50 10.0 0.7
25.0 0.40 25.0 0.5
100 0 100 0

62



3.2.3.2 Unloading and Reversals

Barton [115] found that the shear stiffness measured during the second and
subsequent load sequences average approximately 1.5 times the initial shear stiffness.
Barton [115] considered three sets of data available in the literature [172-174] that
include reversal. Based on the most complete one [174], he explained how the shear
stress-displacement performance could be simulated using the JRC_ ...q concept
(Figure 3.2) as a guideline for unloading, reloading, and reversal. For convenience, the
gradient of the various loading, unloading and reversal curves are defined in units of m

which is given by the following empirical relation:

m= % (3.39)

where i is dilation angle defined as follows:

i = JRC - logm(EJ (3.40)
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Figure 3.2: A preliminary model for simulating the effects of shear reversal and
unloading of rock fractures [115].
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Jing et al. [99] investigated the cyclic behavior of natural fractures using
replicas of natural fracture surfaces. By utilizing these results Jing [100] proposed a
conceptual model for the cyclic shear behavior as depicted in Figure 3.3:

-Segment DE is called the “unloading stage” because it represents the

proportional decrease of shear stress over shear displacement immediately after

reversal of shear direction; 7, is defined as:

7, =0, -tan(d, ), (3.41)

where ¢, is called the basic friction angle of the fracture.

-1

Ly, e

2
four o

Figure 3.3: Idealized behavior of a conceptual model of rock fracture during shear under
constant normal stress, a) Shear stress versus shear displacement; b) normal
displacement versus shear displacement for fractures without previous shear;
c) shear stress and normal displacement versus shear displacement for
fractures with previous shear [99].
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- The shear stress decreases linearly along the straight segment DE which has the

same slope K, as that of segment O-A, until it reaches point E.

- When shear continues in the negative direction past the original point of zero
shear displacement, the shear stress and normal deformation displays similar
features as in the positive shear direction.

- For fractures with previous shear histories, no peak shear stress occurs even for

the first cycle. The dilatancy curves are much less nonlinear.

3.2.4 Dilatancy

The prediction of the dilatancy phenomenon of regular or irregular fractures
subjected to direct shear loading has been addressed by numerous researchers such as
Patton [102], Ladanyi and Archambault [91], Jaeger [147], Barton [21], Saeb [104], and
Homand et al [168, 169]. In addition, variations in dilatancy with normal stresses have
been modeled by many authors: Ladanyi and Archambault [91], Jaeger [147], Barton
[132], Leichnitz [108], etc.

Barton and Choubey [22] used both the peak secant dilation angle also called
initial dilation angle, and the peak tangent dilation angle. Their experimental results
showed that the peak secant dilation angle is about one-third of the peak tangent dilation
angle. Ladanyi and Archmbault [91], Schneider [175], and Jing [100] considered the peak

dilation angle only.

The peak secant dilation angle (also called initial dilation angle), d . , and the
peak tangent dilation angle, d, . , are defined as follows [22]:
ds. peck = arctan(ij -, (3.42)
Gn
00,
d; peak = (5] (3.43)
h @0y, :6peak

The experimental evidence indicates that fractures and fractures dilate most

strongly when the shear displacement corresponds to the instant of peak shear strength
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[132]. Both peak tangent and secant dilation angles were occasionally negative or zero
[22]. The majority of measured peak tangent dilation angles fell between the following
limits:
0.5JRC -log,,(JCS /0,) < d, e <2JRC -log,,(JCS/0,) (3.44)
Barton and Choubey [22] suggested the following relation for the peak tangent
and secant dilation angles:

d; e = (1/M)-JRC -log,,(JCS / ;) (3.45)

t,peak —

d ... =(1/3)-JRC -log,,(JCS /c,), (3.46)

s,peak
where M is damage coefficient, given values of 1 or 2 for shearing under low or high
normal stress respectively [176], or can be obtained from the following relationship [22]:

JRC

M= 12108, (JCS /o) +0.70 (3.47)
Barton [115] indicated that dilation will begin at the instant that JRC_;,.q =0
and mobilized dilation angle can be obtained from the following relationship:
d, =(1/M)- JRC,gyitieq -10g,,(ICS / 0, (3.48)

Ladanyi and Archmbault [91] proposed the following relation between the peak

tangent dilatancy rate and the applied normal stress:
ks
. o, .
tan(i)) =|1-—| -tan(i,,) (3.49)
O7
where k; is an empirical coefficient, o7 is a threshold stress beyond which no further
dilatancy takes place and tan(i,,) is the peak rate of dilatancy at zero normal stress.

Schneider [175] proposed the following relationship between the peak tangent

dilation angle and the normal stress:

s i ko,

|p = IpOe 5 (350)
where k is an empirical coefficient and i ,is the peak tangent dilation angle at zero

normal stress.
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Jing [100] proposed another relationship between the peak tangent dilation angle
and the normal stress as follows:

k

. . O,

I, :|po~(1——“] , (3.51)
Qy

where k is another empirical coefficient, i, is the peak tangent dilation angle at zero

normal stress, and Q, is the uniaxial compressive strength of the inact material in the
fracture wall.
Wibowo [162] modified Ladanyi and Archmbault [91] model, Equation (3.49), as

follows:

k3
tan(i,, ) = (1 —ﬂj tan(i,,, ) (3.52)

Ot
where k3 is an empirical coefficient, o7 is a threshold stress beyond which no further

dilatancy takes place and tan(i,,) is the avarage rate of dilatancy at zero normal stress.

avo

3.2.5 Anisotropic dilatant behavior of fractures

The shearing strength of rock fractures is composed of two components: (1) the

base friction angle, ¢, , resulting from two sawed surfaces sliding over each other, which

is equal for all shearing directions; and (2) the resistance to sliding and/or shearing of the
fracture asperities, which is a geometrical parameter. Consequently, the shear strength of
rock fractures will be anisotropic as long as the surface is uneven and displays anisotropy
in its geometric property [125].

Huang and Doong [125] conducted an experimental study on the anisotropy in
shear strength of fractures by shearing silicon rubber replicas of rock fractures in
different directions. They found that: (1) the shear strength of the joints with the same
surface morphology might be different when sheared in reverse direction; (2) the effect of
anisotropy decreases with increasing normal stress. Their results show that the shear
direction changes the shear strength of replicas. They adopted Barton’s failure criterion

[21] together with Tse and Cruden’s equation [177] relating the joint roughness
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coefficient, JRC, with the root mean square, RMS, of the asperity angle. However, they
had no specific solution for including the shear direction in the shear strength of rock
fractures.

Jing et al. [126, 150], through their experimental study, found that the distribution

of the total friction angles, ¢ , on the nominal plane of the fracture surface (lower

p)

block), may be generalized as follows: (1) ¢, varies with both the shear direction and
magnitude of normal stress; (2) the degree of the directional variation of ¢, decreases
with increasing normal stress; (3) ¢, decreases with increasing normal stress; (4) under

a certain normal stress, the directional distribution of the friction angle is not completely
random, but displays principal directions. These principal directions may or may not be
orthogonal, depending very much on the geometrical distribution of the asperities on the
fracture surface. They proposed a new model for dilation angle of fractures, in which the
magnitudes of the asperity angle follows an elliptical distribution. Wang et al. [107] also
adopted the elliptical model introduced by Jing et al. [126].

Grasselli et al. [127, 128] and Kulatilake et al. [129, 130] proposed new models
for rock fractures. Their respective models do not include shear direction and can not be
used to predict shear strength in different directions because the authors measured the

geometrical parameters of their models only in the shearing direction.

3.3 MODIFIED BARTON-BANDIS MODEL

Among the constitutive models proposed in the literature to estimate the shear
strength of rock fractures, Barton’s failure criterion is the one mainly used [127] because
it is easy to apply and includes several important aspects off fracture characteristics that
can be easily measured or estimated. In addition, Grasselli and Egger [127] stated that
researchers studying the contribution of morphology to the shear strength have to deal
with the JRC criterion proposed by Barton in the 1970s [22], and adopted as a reference
by the International Society of Rock Mechanics in 1978 [178].

Although, Barton’s failure criterion predicts the peak shear strength of rock

fractures with acceptable precision, it shows weaknesses in estimating the peak shear
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displacement, post-peak shear strength, dilation, and surface degradation in unloading

and reloading. The weaknesses of the model are the following:

The peak shear displacement is independent of normal stress and is zero for
sawed fractures [80]; this is not consistent with experimental observations. For
example, peak shear displacements between 0.05 and 2.71 mm were reported in
the literature and cited in this chapter.

Barton suggested zero mobilized JRC after 100 times of peak shear
displacement. It means that according to Barton’s model after this amount of
displacement, the behavior of the fracture is the same as a sawed fracture (no

dilatancy and 7 =o, tan¢, ). This seems to be just an approximation for the end

of the curve because there are few experimental results containing post-peak
shear strength of rock fractures up to about 100 times of the peak shear
displacement. Moreover, even after this amount of displacement, the fracture
=0).

surface is not the same as a sawed fracture (JRC_ ;e

Barton assumed zero dilation displacement up to one-third of peak shear
displacement and eliminated negative dilatancy. However, many experimental
studies performed on rock fractures showed that there is a negative dilation at
small shear displacements.

Barton proposed his model for unloading and reloading based on just one cyclic

direct shear test.

In this study, the original Barton model is modified to address its weaknesses. As

stated in Section 3.1, there are two main approaches to the quantitative description of the

mechanical properties of rock fractures: the theoretical approach, and the empirical

approach. Moreover, as indicated by Saeb [179] and Saeb and Amadei [180-182], the

shear behavior of a rock fracture under any boundary condition can be determined from

the response curves of the fracture under constant normal stress. Therefore, in this

research, the empirical approach was used, which is consistent with Barton’s empirical

model and the response curves of the fracture under constant normal stress were
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considered. Barton’s failure criterion for peak shear strength of rock fracture, Equation
(3.3), was adopted. A database of the results of direct shear tests available in the
literatures was constructed and analyzed. The ability of Barton’s model to predict peak
shear displacement, dilation, post peak shear strength, and unloading and shear reversal
behavior was investigated and modifications are proposed to improve it in its weakness

points.

3.3.1 Database

Two databases were built by collecting the results of direct shear tests available in
the literature: Monotonic Direct Shear Tests, called MDST (Appendix A.1), and Cyclic
Direct Shear Tests, called CDST (Appendix A.2).

Studies on monotonic shearing [79, 81, 106, 113, 115, 127, 154, 161, 162, 169,
176, 183-210] were investigated to find available monotonic direct shear test results.
Peak shear strength, peak shear displacement, peak dilation displacement, maximum
negative value of dilation, and shear displacement at which dilation displacement is zero
were digitized from the curves. For post peak behavior shear strength, and dilation
displacement at 4 different points were digitized.

A large amount of data was collected from a site investigation report series
published by Svensk Karnbranslehantering AB (Swedish Nuclear Fuel and Waste
Management Co.) and available online (www.skb.com) [188-210]. In these cases, the
values of JCS was assumed to be equal to the unconfined compressive strength of intact
rock, which can be calculated from available results of triaxial tests run on intact rock
specimens (using Hoek and Brown failure criterion [211, 212]). In the reports, the
magnitudes of peak and residual shear strength were available in tabular format and the
corresponding shear displacements were digitized from curves. Base friction angle and
JRC values were back calculated assuming that: (1) Barton [21] failure criterion can
predict the peak and residual shear strength correctly and (2) residual shear strength is

reached when JRC /JIRC ... =0.5[115] and assuming no weathering for fractures

mobilized peak

(@, = ¢, ), base friction angle and JRC values were back calculated. JRC values may be
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different for the same specimens under different normal stresses (due to the damage of
asperities in the shear test run under smaller of normal stresses). The value of the peak
dilation displacement, the maximum negative value of dilation, and the shear
displacement at which dilation displacement is zero were all digitized from the curves.

Results of 18 cyclic direct shear tests were found in the literature [103, 127, 150,
167, 169, 174, 213]. For each available cycle, shear strengths and dilation displacements
at different shear displacements were digitized so that shear strength-shear displacement
as well as dilation-shear displacement curves could be built with the available
information.

In should be mentioned that the correlation analyses, in this Chapter, are

performed employing the trial version of SPSS 14.0 available online (www.spss.com)

which is a computer program used for data manning and statistical analysis.

3.3.2 Peak shear displacement

Although Bandis et al. [80] found that a constant normal peak displacement
model [214] is not always realistic, Barton’s [115] empirical equation, Equation (3.31),
for peak shear displacement was independent of normal stress. The non-linear variation

of shear stiffness with normal stress is due to non-linear variation of T peak with o, and

small increase in J with o, [80]. In addition, Wibowo et al. [161, 162]

peak
demonstrated that neither the constant stiffness model nor the constant displacement
model, by itself, fits the observed shear behavior of rock fractures. The peak shear
displacement measured in the experiments by Wibowo et al. [161] was found to increase
with the normal load or stress. They introduced a linear relation to describe the variation

of the peak displacement, & with applied normal stress, o

peak ° n-*

In addition, Barton’s empirical model does not have any clear suggestion for peak
shear displacement of sawed fractures (JRC =0 ). The MDST database contained 19 data
points with zero JRC and peak shear displacement ranging between 0.05 and 2.71mm; in

these cases, Equation (3.31) would yield zero peak shear displacement. On the other
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hand, Barton had 2 other suggestions for peak shear displacement before proposing
Equation (3.31), both of which are independent of JRC:

Opea = 0.01L : the result obtained from this equation is the same as the peak

shear displacement predicted using Equation (3.31) for a fracture with the same
length and JRC =12.5. It is clear that rock fractures with JRC =0 and

JRC =12.5 should not have the same peak shear displacements.
- O ek =0.004L"°: For a lab size specimen with block length of 0.1m, the result

obtained from this equation for a fracture with a length of 0.1m is the same as
predicted peak shear displacement of a fracture with the same length and
JRC =13using Equation (3.31). Again, it is clear that rock fractures with

JRC =0 and JRC =13 should not have the same peak shear displacements.

The purpose of this section is to find an empirical relationship for peak shear
displacement considering the effect of normal stress and develop a solution for smooth
fractures (JRC =0).

The peak shear displacement, & of rock fractures may be affected by length of

peak !

the block (L), JRC, JCS, and normal Stress (o, ).

The peak shear displacement, & and the block length, L, have length

peak !
dimension (L ). In addition, JCS and normal stress, o, have stress dimension ( FL™).

However, joint roughness coefficient, JRC , is dimensionless. Dimensional analysis

[215] was performed. While, there is no idea about the correlation between &, and L,

a dimensionless parameter was defined to be the ratio of the peak shear displacement to
the block length and another was introduced as the ratio of the block lengthto the length
of the lab specimen, Ly (0.1 m). Since only normal stress and JCS have force in their
dimensions, a dimensionless parameter would be their ratio. Therefore, the following

. . ) L o
dimensionless parameters were found: 7, = %ﬁk , mT,=—, m,=JRC,and 7,=—"-

L, Jcs

72



Correlation analyses were performed to find 7; as a function of 7,,7,,7,:
w, =ft(n,, 7y, 7,) (3.53-a)
The MDST database contained 362 direct shear test records. Cases that have JRC
values between 2 and 20 were selected for this part of analyses (317 data points). In order
to perform a reliable correlation analyses, all variables should have reasonable
distributions. It is shown here that distributions of all variables in the MDST database are

acceptable.

The block lengths (7, x L) in the MDST database ranged from 0.049 to 3m with

distribution depicted in Figure 3.4. It can be seen in the figure that since the MDST
database contained the results of direct shear tests, the size of the blocks are around 0.1m.
Therefore, the database may under-represents long fractures. However, the following

paragraphs demonstrate that the MDST database is adequate from this point of view.

Distribution of Length of the Block
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Figure 3.4: Distribution of length of the block in 317 data points of the database used
in correlation analysis of peak shear displacement.

Barton [115] found an approximation to the mean trend of 170 data, Equation

(3.30), where block length ranged from about 50 mm to 1,000 km (56 samples with
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L~L,, 94 samples with L~10-(L,), 5 samples with L~80-(L,), and 15 earthquake

fault with block size ranging between 1 and 1000 km).
Non-linear regression analysis performed on the MDST database to correlate peak
shear displacement and length of the sample gave the following relationship, which is

very close to Barton’s Equation (see Figure 3.5 for comparison):

S =0.0032. L (3.54)

peak

As can be seen in Figure 3.5, the predicted values from these equations are very
close; their differences are less than 15% of predicted values from Barton’s equation. It is
almost impossible to collect all required information, such as JRC, JCS, normal stress,
peak shear stress, and friction angle, from sheared large blocks. Even Barton could only
collected the values of peak shear displacement and length of the block. Therefore, the
MDST database is adequate from this point of view.
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S 4 -~ database (Equation (3.54))
= 2 Barton's equation (Equation
K (3.24))
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0 2 4 6 8 10 12
Length of the block (m)

Figure 3.5: Comparison between Barton’s equation correlating peak shear
displacement and length of the block and trend line passed through our database.

The magnitude of JRC ( ;) in MDST ranged from 2 to 20 with a good

On

JCS

distribution (close to a normal distribution) depicted in Figure 3.6. In addition,

(74)

ranged between 0.001 and 0.6 with distribution illustrated in Figure 3.7.
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Distribution of JRC

O02<JRC<4
m4<JRC<6
B6<JRC<8
B8<JRC<10
m10 < JRC < 12
m12<JRC< 14
m14<JRC< 16
o116 < JRC < 18
D18 < JRC < 20

Number of Cases

Figure 3.6: Distribution of JRC in 317 data points of the database used in correlation
analysis of peak shear displacement.
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Figure 3.7: Distribution of 6,/JRC in 317 data points of the database used in
correlation analysis of peak shear displacement.

A power relationship has been adopted by Barton to relate peak shear
displacement with block’s length and JRC, Equation (3.31). Moreover, the power
function is a convenient form to use in calculations. Consequently, in this study, it was
first assumed that function f in Equation (3.53-ab) is a power function with the following

format:
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T = 3.72'2b7[3c72'4d (3.53-b)

Assuming a power function, the problem of non-linear multivariable regression
analysis can be simplified to linear multivariable regression analysis, which is much
easier to solve and the solution is much more reliable in the case where the type of
function is unknown. This can be done by obtaining a natural logarithm of both sides of
Equation (3.53-b) as follows:

In(z,) =1n(a)+b-1n(z,)+c-In(z,)+d - In(z,) (3.53-¢)

Linear multivariable regression analysis was performed. With coefficient of
correlation R?=0.42 and standard error of estimate equal to 0.65, the following
constants were obtained: a =0.0618 ;b = -0.419;¢c=-0.37;d =0.32 .

By substituting the above constants in Equation (3.53-c), the following

dimensionless equation for peak shear displacement of the rock fracture was derived:

5 L —-0.49 0.32
Toeak _ 00618 x | — x JRC 07 x| Zn_ (3.55)
L L, JCS

Adopting SI units (meter for length) and choosing the lab specimen size of

L, = 0.Im, Equation (3.56) can be simplified as follows:

L 05! o, 0.32
5peak = 002 W[ JCS j (356)

There is a major difference between Barton’s empirical relationship, Equation
(3.31), and what is obtained here by correlation analysis, Equation (3.56): although
Barton found that peak shear displacement increases with JRC, the opposite is found
here. The following analytical calculations show that the peak shear displacement should
decrease by increasing JRC.

Figure 3.8 depicts a diagram of forces applied in shearing rough fractures. In
Figure 3.8, 1 is the dilation angle or the effective roughness angle, which is the angle

between asperities and the horizontal direction and can be defined as follows:
i=JRC -loglo(ﬁ} (3.57)
o

in which o is normal stress on the horizontal plane.
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Figure 3.8: Diagram of forces applied at failure in shearing rough fracture.

In addition, R is the forces applied to the uppermost block. T and N are the
horizontal and vertical components of R, respectively. These forces can be obtained by

projecting R on X and Y axis. At failure, T and N, can be expressed as:
T =R-sin(p+i) (3.58)
N =R-codp+i) (3.59)
A new coordinate system, X; —Y;, is defined in Figure 3.8. X, and Y,are parallel

and perpendicular to the inclined plane of the fracture, which makes an angle of i with

the horizontal direction, X. T, and N, are the components of R in X, —Y; coordinate
system. Thus, T, and N, can be determined as follows:

T =R-sin(p) (3.60)

N, = R-cos(¢) (3.61)
In other words, T, can be expressed in terms of N, using the following equation:

T, =N, - tan(p) (3.62)

By substituting Equation (3.59) into Equation (3.62), N, can be expressed as:

N, =N _cos(p) (3.63)
cos(p+1i)
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Normal stress on the horizontal plane can be determined as:

o=— 3.64
i (3.64)
Normal stress on the inclined plane of fracture is as follows
N.
=t 3.65
o= (3.65)

in which L, is the length of the fracture along X, direction and can be obtained from:

L, = L/cos(i) (3.66)
By substituting, Equations (3.63), (3.64), and (3.66) into Equation (3.65), we have:
5. = o COSlp)-cosli) (3.67)
cos(p+1i)

It can be seen in Figure 3.8 that the peak shear displacement in X direction, &,
can be expressed in terms of the peak shear displacement in X, direction, &, as:
5=05,-cos(i) (3.68)
In order to find whether the peak shear displacement increases or decreases with

JRC, two fractures are defined with the following conditions (both have the same shape

as what is shown in Figure 3.8):
- Different dilation angle: 0<i, <i, <90; and based on Equation (3.57), we

have:

JRCl-Iog[JCS]< JRC, -Iog(JCSj (3.69)

0, 0,
- Equal length along X, direction: (L), =(L),
- Equal normal stress on the inclined plane of fracture: (o), =(o;),; and using

Equation (3.67), we have:

o, _ cos(p+iy) cosi,) i
o, cos(p+i,) cosi,) (3.70-2)

Which can be simplified as:
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oy _ 1—tan(g)- tan(i,) (3.70-b)

(
o, 1-tan(p)-tan(i,)

While 0<i, <i, <90 and since base friction angles, ¢, are positive and less

than 90 degrees:

o, _1-tan(p)-tan(i,) _, (3.70-c)
o, l—tan(p)-tan(i,) .

Both fractures are from the same material and have the same Fracture

Compressive Strength (JCS) and the same base friction angle (¢, ). While JCS

is a positive value and JCS > 02,03
log {E] < loglo[E] (3.71)
o, o,
Based on Equation (3.69) and (3.71), it can be concluded:
JRC <JRC, (3.72)
Based on Equation (3.68), peak shear displacements can be expressed as follows:

L = @ &(Il) (3.73)
0, (0;), cos(l,)
Based on Barton’s model, the peak shear displacement is a function of length of
the block and JRC. This research found that the peak shear displacement is a function of
length, JRC, and normal stress, Equation (3.56). Let us now apply Equation (3.56) along

X; axis. Since, along the X, axis, JRC is close to zero for all cases and since
(L), =(), and (o,), =(0;),, the peak shear displacements along the X, direction are
equal ((5;), =(5;),)- Thus, Equation (3.73) can be simplified as:

i: cos(i,) (3.74)
o, cos(i,) '

Because dilation angles are different (0 <1, <i, <90), we have:

0<i, <i, <90=cosi, >cosl, (3.75)
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From Equations (3.73) and (3.75), it can be concluded that the peak shear displacement
decreases with the increasing dilation angle (or JRC):
5,55, (3.76)
In order to see whether this conclusion is consistent with Barton’s model or not,

the peak shear displacements expressed based on Barton’s empirical Equation (Equation

(3.31)) are as follows:

0.67 0.33
A o
o, L JRC,
Substituting Equation (3.66) in Equation (3.77) and considering (L), =(L;), we have:
L \N\0.67 0.33
o _ cos(i, ) [ JRC, (3.78)
5, | cos(i,) JRC,

It can be shown from Equations (3.72), (3.75), and (3.78) that according to
Barton’s empirical equation the peak shear displacement increases with increasing JRC (

2
—<1).
5 )

2

On the other hand, using Equation (3.56), the peak shear displacements are

0.51 0.37 0.32
i: h . JRC, |2 (3.79)
5, L JRC, o, '

Substituting Equation (3.66) in Equation (3.79), and considering (L;), =(L), we have:

. 0.51 0.37 0.32
5 _(cos(i)) (JRC, | (o (3.80)
5, cos(i,) JRC, o, '

expressed as follows:

Through Equations (3.70-c), (3.72), and (3.75), it was proved that all terms in the
right hand side of Equation (3.80) are bigger than 1. Therefore, their multiplication is
higher than 1 and consequently the left hand side is higher than 1 (6, >3,). This is

exactly consistent with Equation (3.76) and the fact that the peak shear displacement

decreases with the increasing dilation angle (or increasing JRC).
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The only problem with Equation (3.56) is predicting peak shear displacement of
sawed fractures (JRC =0). Based on Equation (3.68), which is consistent with Figure
3.8, the peak shear displacement of sawed fractures has the following relation:

G =lim e 0 =0 (3.81)

COS(JRC -loglo(JCSD
o)

However, based on Barton’s empirical Equation (3.31):

0.33
0, =limy. , 0 =limy. ,, 5—(%(%) =0 (3.82)
And based on Equation (3.56):
‘ . LO‘SI P 0.32
0, =limy. 0 =limy. OOzW(E] — © (3.83)

This shows that although the predicated peak shear displacement using Equation
(3.56) changes with normal stress and decreases with increasing JRC, the developed
equation still has a weakness in the case of smooth fractures (JRC — 0). Therefore, the
power function is a good option, but there may be better choices for relating the peak
shear displacement and JRC. Consequently, the regression analysis was revised in
accordance with the above mentioned analytical explanation. The goal is to find an

empirical equation for the peak shear displacement of sawed fracture, J;, and then obtain

the peak shear displacement of rough fractures, 0 using Equation (3.68).

peak °
By performing a dimensional analysis [215], the following dimensionless

parameters were found:

- 7= % based on Equations (3.66) and (3.68), it can be simplified as:

5peak

cos(i 0 pea
72.1 = L_( ) = ’;_k s

cos(i)

where i= JRC.loglo[E] :
o,

n
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- T, = L : Based on Equation (3.66), it can be written as:

g— b
> L,.cos(i)
- 7Ty = Jgis : in which o; 1is the normal stress on the inclined plane of fracture

and can be expressed in terms of o, the normal stress on the horizontal plane,

using Equation (3.67). Therefore, m; can be written as

_ 0, cosgcosi
JCS cos(p+i)’

T3

All 362 direct shear test records available in the MDST database were used to

calculate the three above mentioned dimensionless parameters and perform correlation
analyses to find 7, as a function of 7,, 7, :
7, = f(n,,7;) (3.84-a)

Since the power function is a convenient form to be used in calculations, it was

assumed that function f in Equation (3.84-a) is a power function as follows:
m =an, (3.84-b)

Therefore, the problem of non-linear multivariable regression analysis can be
simplified to linear multivariable regression analysis which is much easier to solve and
the solution is much more reliable. This can be done by obtaining a natural logarithm of
both sides of Equation (3.84-b) as follows:

In(7,)=1n(a)+b-In(z,)+c-In(z,) (3.84-c)

Linear multivariable regression analysis was performed. With coefficient of

correlation R? =0.38 and standard error of estimate equal to 0.68, the following

constants were derived:

a=0.027; b=-0.55; c=0.34

82



By substituting the above constants in Equation (3.84-c), the following

dimensionless equation for the peak shear displacement of sawed fractures was obtained:

5 L -0.55 0.34
9% - 0.027] & -(—"i j (3.85)
L L, JCS

Adopting Sl units (meter for length) and choosing the lab specimen size of Lo=1

m, Equation (3.85) can be simplified as follows:

JCS
Substituting Equations (3.66) to (3.68) into Equation (3.86), the peak shear

0.34
S = o.oo77|ﬁ°-45(i} (3.86)

displacement of the rough fractures can be obtained using the following equation:

0.34 1 i 0.34

(cosi)*® | cos(p+i)

The base friction angle ranges between 25° to 35° for the majority of unweathered
rock surfaces [92, 136, 141-145]. Furthermore, in view of the safety requirement of rock

engineering structures, the value of ¢+i is limited to 70°. Therefore, the last part of the

.\ 0.34
right hand side of Equation (3.88), 1 Cos pCos | , can range between 1 and
(cosi)®  cos(¢ +i)

1.45. Thus, for simplicity it can be eliminated from the equation. Consequently, the

following empirical relation can be used for the peak shear displacement of fractures:

0.34 JCS
5peak=0.oo77L°-45.(%j -cos(JRCIog( )J (3.88)

O,

Table 3.3 compares Equations (3.31), (3.56), and (3.88) with each other, in

accordance with their ratio of predicted to the measured peak shear displacement,

S
—predicted £6r the 317 cases of MDST database with JRC between 2 and 20. Correlation

measured
analysis Equation (3.88) had a smaller R* compared to Equation (3.56) (0.38 compared
to 0.42). However, based on the following reasons, it can be concluded from Table 3.3

that Equation (3.88) works the best in predicting peak shear displacement of fractures:
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S
Although Equation (3.56) has the higher value of (-2

)win » Equation (3.88)

measured

5predicted 5
)Average ' ( 5

measured

predicted

has the minimum value of ( Jvax . and sum of the

measured

2
o .
square of errors, Z[l—gpL‘mea] , among the other options.

measured
The correlation factor, which is defined as the ratio of standard deviation to the
fo)

/( predicted

)STD 5

measured

( 5pred icted

average, ) nverage » 1S also the minimum in the case of

measured
Equation (3.88) (0.68 compared to 0.99 and 0.69 from Barton’s equation and
Equation (3.56), respectively).

Table 3.3: Comparing Barton’s empirical equation with Equations (3.56) and (3.88)

in predicating the peak shear displacement of rock fractures.

Parameter Barton’s Equation | Equation Equation
(3.31) (3.56) (3.88)
S
(§pred'°ted)AverageJ_rSTD 1.64+1.63 1.26+0.87 | 1.11+0.76
measured
5predicted
( ) Max 13.70 6.36 5.59
5measured
o .
(Rredictedy 0.12 0.23 0.19
5measured
5 2
Z(l—mj 980.22 259.70 188.47
5measured

In addition, for the above mentioned 317 data points, Figure 3.9 illustrates

predicted peak shear displacement, 8ycqicreq, USING Barton’s equation and Equation

(3.88) versus the measured peak shear displacement, &,,cqsureq- It Can be seen in the
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figure that the distribution of &8,,cgicted VETSUS Omeqsurea for the case of Equation
(3.88) is closer to the ideal line of 8y,rcgicted = Omeasurea COMpared to those obtained

employing Barton’s equation.
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Figure 3.9: Predicted versus the measured peak shear displacement: (a) using Barton’s
equation; (b) Equation (3.88).

Furthermore, using Equation (3.88) to predict the peak shear displacement of rock
fractures has advantages over Equations (3.31) and (3.56), because it is the only one that
can be used for all types of rock fractures including sawed, smooth, and rough. Figure
3.10 compares experimental peak shear displacement for sand blasted and sawed
fractures (JRC = 0) with the values predicted employing Equation (3.88), as the
suggested empirical equation of this study. While Equation (3.31) predicts zero peak
shear displacement for sawed fractures and Equation (3.56) tends to infinity, Equation
(3.88) yields a good estimation, as it can be seen in Figure 3.10.

Figure 3.11 demonstrates the ability of Equation (3.88) to consider the effect of
normal stress on the peak shear displacement. Also shown in Figures 3.12 (m) through
(p) is Wibowo’s linear correlation (Equation (3.36)). Although, Wibowo’s approximation
performs the best in these Figures, constants @ and b in Wibowo’s model have to be
determined experimentally for each fracture, whereas no additional parameter has to be

determined in Equation (3.88).
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Figure 3.10: Comparing measured peak shear displacement with their predicted values
using Equation (3.88) for the case of sawed fractures (JRC=0)

3.3.3 Post-peak stress-displacement curve

Barton expressed the post-peak stress-displacement curve by using the concept of
roughness mobilization, JRCppobilizes, 1n  Equation (3.3) [115]. The ratio

JRC /JRC can be estimated from the ratio /5, employing the values given

mobilized peak

in Table 3.2.

Barton assumed that at a shear displacement of 1006 the mobilized JRC

peak °
becomes zero. It seems to be just an approximation for the end of the curve; because

obviously there are few experimental results containing post-peak shear strength of rock
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fractures up to about 1000 Moreover, after even this amount of displacement, the

peak *

fracture surface is not the same as sawed fracture (JRCyobitized = 0).
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Figure 3.11: Performance of Equation (3.88) in considering the effect of normal stress on
the peak shear displacement as compared to Barton’s Equation (Equation (3.31))
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Figure 3.11-Continued: Performance of Equation (3.88) in considering the effect of
normal stress on the peak shear displacement as compared to Barton’s

Equation (Equation (3.31))
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Figure 3.11-Continued: Performance of Equation (3.88) in considering the effect of
normal stress on the peak shear displacement as compared to Barton’s

Equation (Equation (3.31))

In addition, Barton divided the problem of post-peak shear strength into two

categories: non-planar (JRC >5) and planar (JRC <5) fractures [115]. There is an

inconsistency for the case of planar fracture. At peak shear displacement, the mobilized

. On the other hand, the mobilized JRC

JRC was assumed to be 0.95 times of JRC

was assigned to be equal to the peak value of JRC , when the shear displacement is

twice as much as the peak shear displacement. However, the peak value of JRC , which

is coincident with peak shear strength, should be mobilized at the peak shear

displacement. Using the values given in Table 3.2 for planar fractures, the post-peak




shear strength at a shear displacement of 20 is higher than the shear strength at

peak

o For the case of planar fractures, assume that the actual peak shear displacement is

peak *

the one related to the mobilized JRC of JRC (i.e.: two times as much as it is

peak
defined in Table 3.2). As can be seen in Figure 3.12, there is no significant difference

between the post-peak values of JRC iies / JIRC ., given in Table 3.2 for non-planar

and planar fractures.

Regarding the above mentioned inconsistencies of Barton’s empirical model in
predicting the post-peak shear strength of rock fractures, the MDST database was
analyzed in order to find an empirical relationship between the mobilized JRC and
post-peak shear displacement. Initially, it was assumed that the ratio of

JRC but also normal stress, JCS, and

/IRC ., 1s a function of not only 6/6

mobilized peal peak °
JRC .,y -
1.2
) —
x 14 —— Non planar joints
< —— Planar joints
© 0.8
L
O 06 |
x 0.6
=
3
g 044
._g
é 0.2
0

0 20 40 60 80 100 120

(Shear displacement)/(Peak shear displacement)

Figure 3.12: Comparing the post-peak values of JRC / JRC ., given by Barton for

mobilized

planar and non-planar fractures

It should be noted that most of the direct shear tests performed for research or
professional purposes are conducted up to a shear displacement of not more than 15 mm.
Even according to ASTM D5607-02, the displacement devices used to measure shear

displacement in direct shear tests should accommodate a displacement of 13 mm. For a
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lab-size specimen of 10 cm, the peak shear displacement is about 1 mm (using the “rule-
of-thumb” suggested by Barton [92]) and shear displacement of 15 mm is approximately
15 times the peak shear displacement. Consequently, any database used for correlation
analysis suffers from lack of information for post-peak shear strength when shear

displacements are greater than 155,

The MDST database contains 255 direct shear test records for which the
magnitude of post-peak shear strength are known at 1 to 4 different points; this gives a

total number of 762 data points with 6/, ranging between 1 and 40, four of which

have o/0 ,,, between 25 and 40. Eliminating these four cases, the other 758 data points (

peak

1< 0/ 8 <25) have a distribution illustrated in Figure 3.13, which shows that the most

of the data points have ¢/, between 1 and 15 (730 out of 758).

peak
Therefore, regression analysis performed on the MDST database is reliable up to

0/ =10 . Clearly, for 6/6,, >10, the obtained relationship from correlation

peak
analysis is almost an extrapolation of the approximation through the points with smaller
amount of displacements. Thus, for large shear displacements, the correlation analysis of

MDST suffers from exactly the same weakness as Barton’s model.

Distribution of ratio of d/ d pes

500

450 A 440 O 1 < (Shear displ./Peak shear displ.) < 5
400 + B 5 < (Shear displ./Peak shear displ.) < 10
350 A B8 10 < (Shear displ./Peak shear displ.) < 15
300 - B 15 < (Shear displ./Peak shear displ.) < 20
250 A 223 m 20 < (Shear displ./Peak shear displ.) < 25

200

150 |

100 | 67

50 1 19
0

Number of Cases

Figure 3.13: Distribution of §/68 for 758 data points of MDST database used in

correlation analysis of post-peak shear strength.

peak
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By performing a dimensional analysis [215], the following dimensionless
parameters were found:

JRC__ . 5
m, = mobilized , T, = , Ty = JRC T, :i

JRC S peak 2 JCS

peak peak

Correlation analyses were performed to find 7, as a function of 7,,7,,7,:
m = 7y 75, 7,) (3.89-a)
The magnitude of 7, ( JRC ) in 758 data points of the MDST database ranges from

0 to 20 with a normal distribution depicted in Figure 3.14. In addition, Figure 3.7 shows

that Tn
JCS

ranges between 0.001 and 0.6 with ab acceptable distribution. Initial correlation

analysis showed that there is no correlation between 7; and both 7; and 7,.
Therefore, Equation (3.89-a) can be written as follows:

7, = f(x,) (3.89-b)
Since at peak shear displacement (6 =6, ), the mobilized JRC should be equal to

JRC Equation (3.89-b) should satisfy condition 7, = f(1)=1.

peak °
Barton expressed the relationship between 7; and 7, in tabular format (Table

3.2). The most common method of using the table is linear interpolation between given
values. In order to have an initial idea about the shape of function f, the values presented

in Table 3.2 were analyzed. The table can be approximated by the following functions:

- Eliminating the weakest point of the table ( =100), the best fit function

peak

would be power function ( 7, = 7,*).

- Eliminating the second weakest point of the table ( =25), the best fit

peak

function would be logarithmic function (7, =1—a.In(r,)).
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The correlation analysis revealed that the power function fits experimental results

the best. Thus, the following empirical equation with R”of 0.52 and standard error of

estimate of 0.58 is proposed to obtain JRC, izeq / JIRC oo fTOM /Sy -
-0.381
‘]RCmobiIized — 5 (390)
‘]cheak 5peak

Table 3.4 compares the predicted versus measured values obtained by using
Equation (3.90) against Table 3.2 for 762 data points of the MDST database. In addition,

Figure 3.15 illustrates the predicted value of JRC /JRC ., using Barton’s model

mobilized

(Table 3.2) and Equation (3.90) versus the measured value of JRC, izeq / JIRC sy -

Distribution of JRC
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Figure 3.14: Distribution of JRC for data points of MDST database used in correlation
analysis of post-peak shear strength.

Based on the following reasons, it can be concluded from Table 3.4 and Figure
3.15 that Equation (3.90) works better than Table 3.2 in predicting JRC_ 0 :

(‘JRCmobiIized )perdicted j lt
(‘]Rcmobilized )measured Min

Although Equation (3.90) has the smaller value of (

has the minimum value of ((JRCmbi"ze“)pe’dmd j ((‘]Rcmobilized ) perdicted j
Average Max

(‘J RCmobilized )measured (‘] RCmobiIized )measured
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_ (‘]RCmobiIized ) perdicted
(‘J RCmobilized )measured

2
, and sum of the square of errors, 2[1 ] , compared to

Table 3.2.

The correlation factor, which is defined as the ratio of standard deviation to the

[(JRC) ]
(JRCmobilized )measured STD
(‘]Rcmobilized )perdicted j

(JRC, apitized Jmeasured Average

Equation (3.90) (0.77 compared to 0.79).

, 1s also the minimum in the case of

average, (

It can be seen in Figure 3.15 that the distribution of the predicted value of

JRC /JRC ., using

mobilized peal

(‘] RCmobilized ) perdicted
(JRC

mobilized /JRCpeak versus the measured value of JRC

Equation (3.90) is closer to the ideal line of =1 compared

'mobilized )measured

to those obtained employing Barton’s equation.

Table 3.4: Comparison between Barton’s model proposed in tabular format and
Equation (3.90) in predicting the ratio of JRC fromreal s /&

mobilized peak *
Parameter Barton’s Model Equation
(Table 3.2) (3.90)
JRC_ ..\ i
(( mobien ) e ] +STD 1.39+1.10 1.19+0.92
(‘J RCmobiIized )measured Average
{(J RCmobiIiZed )perdicted ] 11.97 9.67
(‘]Rcmobilized )measured Max
E(JRCmobiliZed )perdicted j 0.56 0.43
(‘JRCmobiIized )measured Min
2
Z[l _ (‘JRCmobiIized)perdictedj 37.83 32.35
(‘] I:ecmobilized )measured
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Figure 3.15: Predicted versus the measured JRC

/JRC

mobilized

(Table 3.2); (b) Equation (3.90)

peak *
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: (a) Barton’s model

Barton suggested empirical Equation (3.31) to predict peak shear displacement of

rock fractures and Table 3.2 to estimate the mobilized JRC . In this study, Equation

(3.88) was proposed to estimate peak shear displacement and Equation (3.90) was

introduced to predict the mobilized JRC . In Table 3.5 the ability of Barton’s model and

the proposed modified equations in predicting JRC

MSDT database are compared.

mobilized

for 762 data points of the

Table 3.5: Comparison between Barton’s model (Equation (3.31) and Table 3.2) and
proposed model (Equations (3.88) and (3.90)) in predicting JRC

mobilized

Parameter Barton's | Proposed
Model Model
JRC_ .. i
( moblhzed)perdlcted +STD 1.44+1.36 | 1.20+1.12
(‘] I:\)Cmobilized )measured Average
(‘]Rcmobilized ) perdicted 15.13 12.56
(JRCmobilized )measured Max
(‘]RCmobilized )perdicted 0.47 0.39
(‘]RCmobiIized )measured Min
2
Z - (JRCmobilized )perdicted 45.88 41.74
(‘]RCmobilized )measured
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It can be concluded from Table 3.5 that the proposed modified equations work

batter than Barton’s model in predicting JRC due to the following reasons:

mobilized >

- Although the proposed modification has the smaller value of

[ (‘J RCmobilized ) perdicted
(‘]Rcmobilized )measured

( (J RCmobilized ) perdicted j ( (‘] RCmobilized ) perdicted
Average

j , it has the minimum value of
Min

j , and sum of the square of
(‘]Rcmobilized )measured (‘JRCmobilized )measured Max

2

JRC .. -

errors, z 1- ( mOb'"Zed)perd'Cted , compared to Barton’s model.
(‘JRCmobilized )measured

- The correlation factor, which is defined as the ratio of standard deviation to the

[(‘]Rcmobilized ) perdicted ]
STD

(‘JRCmobiIized)measured . .. .
, 1s also the minimum in the case of
jAverage

(‘]Rcmobilized ) perdicted
(‘]Rcmobilized )measured

average, (

proposed model (0.93 compared to 0.94).

Just for a comparison, Figure 3.16 depicts the proposed model, Equation (3.90),
and Barton’s Tabular model (Table 3.2) for &/6,, ranging between 1 and 100.

In conclusion, Equation (3.90) is proposed to predict the mobilized JRC after peak
shear displacement. In addition to the fact that it works better than Table 3.2 in the
MDST database, it has a smoother curve compared to the linear interpolation of the
values given in Table 3.2 and is easier to implement numerically. Furthermore, Equation
(3.90) is independent of JRC and does not have the same problem as the above
mentioned inconsistency of Table 3.2 for the case of planar fractures. Both Table 3.2 and
Equation (3.90) suffer from the same problem: lack of information of rock fracture shear
strength at shear displacement more than 10 times the peak shear displacement. As a

result, the predicted magnitudes of mobilized JRC at high shear displacements (
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0/0 .5 >10) using either Table 3.2 or Equation (3.90) are just an extrapolation of the

pea
relationships obtained by correlation analyses of data points available at smaller
displacements. However, in this regard Equation (3.90) has the following advantages
over Table 3.2:

- At6/6,,, =100, Table 3.2 suggested JRC

peal

=0, while Equation (3.90)

mobilized

proposed JRC =0.17JRC which is more realistic, because, even after

mobilized peak »
this large amount of displacement, one can not expect a rough fracture to behave
the same as a sawed fracture.

- After 100 times peak shear displacement, Table 3.2 has no clear suggestion (or

maybe proposes a negative value forJRC, ...q)- However, Equation (3.90)

yields positive values for JRC regardless of the amount of shear displacement.

- Up to about 50 times the peak shear displacement, the predicted JRC

mobilized
using Equation (3.90) is smaller than that obtained employing Table 3.2. Before
reaching 50 times the peak shear displacement of fractures, using Equation

(3.90) instead of Table 3.2 for post-peak shear displacement is conservative.

0.9 —— Barton's model for post-peak shear strength (Table 1)

08 | —— Proposed model for post-peak shear strength (equation (17))
0.7 A

0.6 -

0.5 -

(Mobilized JRC) / (Peak JRC)

0 10 20 30 40 50 60 70 80 90 100 110
I I | |
! most of | few experimental | no experimental data |

experimental data
data

(Shear displacement) / (Peak shear displacement)

Figure 3.16: Comparison between proposed model for post-peak shear strength
(Equation (3.90)) and Barton’s model (Table 3.2)
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3.3.4 Dilatancy

In this section, the dilatancy behavior of rock fractures is investigated. The goal is

to find dilation displacement at any shear displacement. The problem is divided into two

parts: pre-peak and post-peak dilatancy, which means dilatancy before and after peak

shear displacement, respectively.

3.3.4.1 Pre-peak

The MDST database contains the results of 242 direct shear tests for which at

least dilation at the peak shear displacement is available. Based on the shape of the

vertical displacement versus the shear displacement curve and how much information is

available for each test, the results were divided into 4 different categories (Table 3.6).

Table 3.6: Different categories of the MDST database Based on the shape of the vertical
displacement versus the shear displacement curve and available information

Categories Number Available data Issues
of tests
No negative dilation was depicted. This
category contains the results of 96 tests, 34
- Dilation at peak shear cases of which come from Barton [115],
Category 1 96 displacement Barton et al. [81], and Bandis et al. [79].
- Shear displacement at which the While they did not consider the negative
fracture started to dilate dilation in their model, there is a possibility
that they had eliminated the negative part in
presenting their experimental work.
- Maximum negative dilation Fractures initially showed negative dilation
- Dilation at peak shear followed by positive dilation.
Category 2 91 displacement
- Shear displacement at which
dilation is zero
Dilation was negative at all points. 35 out of
38 cases of this category have experienced
shearing under different normal stresses.
Category 3 38 Thus, there is considerable uncertainty
regarding these data including mismatching
results. Therefore, this category was not
considered in correlation analyses.
- Dilation at peak shear This category was used for validation
Category 4 17

displacement

purposes.
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Barton [115] indicated that a rock fracture begins to dilate at the instant that

JRC =0. Also, he assumed zero dilation up to 6 =0.30 However, in the

mobilized peak *
MDST database, almost in half of the cases, there is a negative dilation which will be
eliminated by Barton’s model.

On the other hand, Barton [115] proposed Equation (3.48) for the tangent dilation
angle at each shear displacement and Table 3.2 for mobilized JRC . Based on Table 3.2,
JRC

4 1s negative up to 0/0,, =0.3. Therefore, the tangent dilation angle should

mobilizel peak

be negative up to 6/, =0.3. In addition, JRC ;s 1S zero at 6/J ., =0.3 and

peak peak
then has a positive value. As a result, dilation displacement should decrease up to

0/6,., =0.3 and then increase. Thus, 6/6 ..., =0.3 should be the minimum of dilation

peak peak
displacement, not the point at which the fracture starts to dilate. Consequently, Equation
(3.48) is inconsistent with Table 3.2.

Barton and Choubey [22] used the peak secant dilation angle, also called initial
dilation angle, and the peak tangent dilation angle. Based on their experimental results,
they found that the peak secant dilation angle is about one-third of the peak tangent
dilation angle. They proposed Equation (3.45) and (3.46) for peak and secant dilation
angles, respectively. There are two ways to predict the peak secant dilation angle:

- Option 1: estimate the peak secant dilation angle using Equation (3.46).
- Option 2: use Equation (3.45) to estimate the peak tangent dilation angle,
employ Equation (3.47) to predict damage coefficient, M, and estimate the peak

secant dilation angle to be one-third of the peak tangent dilation angle:

1 JCS
Ay pea = (1/3)-(MJRC.Iog10[7D (3.91)

n

Regarding the above mentioned inconsistencies and ambiguity, the MDST
database was analyzed to find a clear model for dilatancy behavior of rock fractures that
can predict dilation at each shear displacement.

In order to find which option works better, all 204 cases (Categories 1, 2, and 4 of

the MDST database in Table 3.6) were considered. For each case, the peak secant dilation
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angle, d was estimated using the above mentioned two options. Then, dilation

s, peak !

displacement at peak shear displacement, (J,) was calculated using the following

peak ?

equation with the measured value of o,

(5v) peak — 5peak ’ tan(ds,peak) (392)
The two options were compared in Table 3.7, in accordance with their ratio of

predicted (o,) to measured (o,) Table 3.7 shows that option 2 is far better than

peak peak *

option 1.
Next, the goal was to find at which shear displacement(s), dilation displacement is

zero. Barton [115] indicated that dilation will begin at the instant that JRC, ;iieq =0

(zero dilation up too/o ., =0.3). Analysis of the MDST database shows that, on

peak
average, zero dilation occurs as follows:

- In category 1 (no negative dilation): upto 6/, =0.36.

peak

- In category 2 (with negative dilation): at 6/6_,, =0.5.

peak

- In categories 1 and 2 (together): at 6/6 ., =0.43.

peak

Table 3.7: Comparison of two available options to predict the peak secant dilation angle
at peak shear displacement

Parameter Option 1 | Option 2
[((50 pesk )predicted J +STD 1524214 | 1.21+1.41
((5v) peak )measured Average
(((5\/) peak )predicted 15.57 9.49
() s | |
( ((5v) peak )predictEd 0.09 0.10
((5v) peak )measured Min | |

5) )\’
Z{l—[(( o )pfed'“ed ]} 706.18 325.54

(( 5V ) peak ) measured

100



As it was mentioned above, from Table 3.2, one can expect that &/6 . =0.3 s

the point with minimum dilation. However, Barton defined it as the point at which the
fracture starts to dilate. Here, in order to build a model for dilatancy behavior of rock
fractures, the following assumptions were made:

- Dilation displacement is minimum at &/, = 0.25

- Dilation displacement is zero at 6/9 ,, = 0.50

peak

Assuming zero dilation at /6, =0.50 is compatible with the average value

peak
obtained from Category 2 of the MDST database. In addition, assuming minimum

dilation at 6/0, =0.25 is very close to the average value obtained from Category 1

peak
of the MDST database and what Barton defined in Table 3.2 as far as JRC, ;,eq OF

introduced as starting point of dilation.
Finally, the goal was to find an equation with which dilation displacement can be

obtained at each shear displacement. The dimensionless forms of displacement are

é;h v

1S normal

and
peak peak

defined as where ¢, 1is shear displacement, o,

v

displacement (dilation displacement), and o is peak shear displacement. The

peak

equation should satisfy the following conditions:

1) At O =0: 2 =0
peak Cspeak
2) At O =0.5: 2 =0
peak Cspeak
1)
3) At 5h :1: 5\, :( v)peak
o o

peak peak peak

Thus, a quadratic equation with zero intercept as follows would be a good option:
0, 1) ’ o,
Y =a-| ——| +b-| (3.93)
é;peak ‘Speak (Speak
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In order to satisfy the second and third above mentioned conditions, constants in

Equation (3.93) should have the following relations:

0.5a+b=0 (3.94)
)
a+b _ O (3.95)
peak

Therefore, the constants were obtained as follows:

0,
a= 2(V)—"e@“k (3.96)
(Speak
0,
b= _(V)_Peak (3.97)
é;peak

Substituting Equations (3.96) and (3.97) in Equation (3.93), we have:

2
0,
% _ Com 2-( O ] —{ 2 ] (3.98)
cspeak éspeak CS cspeak

peak

These constants, Equations (3.96) and (3.97), also satisfy the condition that

minimum dilation occurs at /6, =0.25:

0.
d(5 Vk) o (Oy) peak 0 1)
ge"" =2a- (") +b =P gy~ d(—")
d( h ) 5peak 5peak §peak — 5peak ~0
S 5
" (")
%~ 0.5 Fpea
peak

Based on the proposed model for pre-peak dilation displacement, the tangent

dilation angle of rock fractures at each point can be obtained as follows:

0 eal 0,
d, = arctan P/ | = arctan (O pa {4[ o J—ll (3.99)
d 5h 5peak 5peak
éspeak

Therefore, the peak tangent dilation angle can be obtained as follows:
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0,
d, = arctan(3 (V)—peakJ (3.100)

peak
Substituting Equation (3.92) in Equation (3.100), we have:
d, = arctan(3 tan(dsﬂpeak)) (3.101)

Recall that the shear strength of a rock fracture at peak shear displacement can be
predicted using Equation (3.3). According to Barton’s model [21], the tangent dilation

angle at peak shear displacement should be as follows:

, Jcs
d, = JRC-loglo(—J (3.102)

n

The MDST database contains the results of 341 direct shear tests for which all
required information (JRC, JCS, and normal stress) is available in order to calculate d p, .

The analysis proceeded as follows: the peak secant dilation angle was calculated per

option 2 by using Equations (3.47) and (3.91), then, the peak tangent dilation angle was

obtained employing Equation (3.101). The ratio of d,/d p' ranged from 0.2 to 1.31 and

had an average of 0.82 with standard deviation of 0.2. While both d, and dp’are
defined as the tangent dilation angle at peak shear displacement, it is expected that
d,/ dp'to be 1. Therefore, based on Equations (3.101) and (3.102), the secant dilation

angle at can be calculated using the following equation:

0, =arctan{§-tan[JRC-logl{‘]GEm (3.103)

n

As a result, an empirical model is proposed for pre-peak dilatancy behavior of
rock fractures. The model is depicted in Figure 3.17. The dilation displacement can be

calculated at each shear displacement using the following equation:
2 =l-tan JRC -log,, S o . 2 O -1 (3.104)
5peak 3 Oy 5peak 5peak
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(dv/ dpeak) / ( Tan [JRC.Iog(JRCIS )]/ 3)
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Figure 3.17: Proposed model for pre-peak dilation displacement of rock fractures

The proposed model has none of the inconsistencies and ambiguity of Barton’s
model described in the initial part of this section. Moreover, it simulates negative

dilation, while Barton’s model does not. For category 2 of the MDST database using the

(Sv—nﬂn i
proposed model, Equation (3.104), it is found that {mJ =0.65 ,
( V—min )measured average
compared to Barton’s model that gave zero. Underestimation of minimum dilation
displacement in the suggested model can be justified by considering no negative dilation

in category 1. Furthermore, the proposed model predicts zero dilation at 6/ ., =0.50,

peak

which is closer to the average measured value, 6/6,, =0.43, compared to what

peak

Barton’s model suggests, 6/ ., =0.33. In addition, the dilation displacement at each

peak
shear displacement can be calculated easily using Equation (3.104); its numerical

implementation is also much easier.

3.3.4.2 Post-peak dilatancy

In the previous section, Equation (3.104) was proposed to obtain dilation
displacement at each shear displacement before peak shear strength. In this section, the

post-peak dilation is considered. The tangent dilation angle defined in Equation (3.99).
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On the other hand, from an analytical point of view, the tangent dilation angle at each

shear displacement should be obtained from JRC_,;,.q Using the following equation:

dt, = JRC ohitizea logm(gl (3.105)
O-n
Substituting Equation (3.105) in Equation (3.99), we have:
A 2) = tan] IRy -loe| > | [ (2 (3.106)
peak CTn cspeak

Section 3.3.3 proposed Equation (3.90) to predict post-peak mobilized JRC .
Substituting, Equation (3.90) in Equation (3.106), we have:

—0.381
d( o ) = tan JRCpea{%} -logm(ﬁj d( a! ) (3.107-a)
o,

peak peak n c(;peak

Consequently, dilation displacement between the peak shear displacement and a

S

post-peak point with =1 can be estimated by obtaining the integral of the right

peak

hand side of Equation (3.107-a) between 1 and |, as follows:

I —0.381
O _ [tan Jchea{ai] -1ogw[ﬁj A2y (3.107-b)
O

peak 1 peak n cspeak

S

Therefore, dilation displacement at a post-peak point with =1 can be predicted as

peak

follows:

I —-0.381
o, JCS 0,
5v = 5peak Itan ‘]RCpeak Lé‘—h] ’ loglo[TJ d( " ) + (5v)peak (3108)
1

peak n peak

The integral part of Equation (3.108) can be solved by employing numerical methods.

For example, using 1/3-Simpson’s rule, the integral can be written as follows:

105



' JRC,.., JCS )
J‘tan —p(:m-logm( ~ A=) =
1

o
h n peak

§peak

tan(JRCpeak -lo glo(ﬁn
O-n
-1

6 JRC JRC
+4tan —peak.lo E + tan —peak.lo E
glO 0.381 glO
(I +1)0.381 o, (Hh™ o,

2

The MDST database contains the post-peak dilation displacements of 205 direct
shear tests, for which post-peak dilation at 1 to 4 points are available (total number of 700

data points). Table 3.8 summarized the results. It is found that Equation (3.104) works

very well in this database.

3.3.5 Pre-peak stress-displacement curve

If one wants to use Equation (3.3) to describe the pre-peak shear stress-

displacement curve, then JRC and ¢ must depend on the displacement & . This

dependency is called “mobilization” of JRC and ¢, , respectively.

Table 3.8: Performance of proposed model, Equation (3.108), in predicting the post-
peak dilation displacements

Equation
(3.108)

(( v)perdlcted J +STD 1.44+1.31
v)measured Average

{( perdicted ] 10.49
( v /measured / Max
((

3,) ]
perdicted
0.13
5 Min

v /measured

Parameter

Qq
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Barton expressed the pre-peak stress-displacement curve by using the concept of

JRC. i
in Equation (3.3) [115]. The ratio ——o®1Zd capn

roughness mobilization, JRC,_ i ieq » IRC

peak

be estimated from the ratio employing the values given in Table 3.2. In Barton’s

peak
model, it was assumed, first, that the base friction angle of rock fracture is mobilized and
. Then, from 0.36

reaches its peak value at shear displacement 0f0.36 to the peak

peak peak

shear displacement, JRC is mobilized and reaches its peak value at & This assumption

peak *
is consistent with the zero peak shear displacement for a sawed fracture. However,
Section 3.3.2 showed that the peak shear displacement of sawed fractures (JRC=0) is
significantly different from zero.

The peak shear displacement of lab size rock blocks is very small, about 1mm for
a 10 cm block. Therefore, for pre-peak shear strength, collecting data by digitizing shear
stress versus shear displacement curves published in the literature is very difficult and
may lead to large errors. Therefore, in this section, modification was made to Barton’s
model for pre-peak shear strength in order to make the modified model consistent.
Accordingly, the mobilization of pre-peak shear strength was divided into two parts:
mobilization of friction angle and mobilization of JRC.

At zero shear displacement, the shear stress is zero, and thus the mobilized
friction angle is zero. At peak shear displacement, the mobilized friction angle is equal to
the base friction angle.

For the case of rough fracture (JRC >0), at zero shear displacement, the shear
stress is zero. Therefore, the mobilized friction angle and JRC are both zero. At peak
shear displacement, the mobilized friction angle is equal to the base friction angle and the

mobilized JRC is equal to JRC

peak °
Section 3.3.4.1 suggest empirical Equation (3.104) for dilation displacement.

Since dilatancy decreases when 0<¢, <0.256,, and increases when o, >0.256

pea peak »

the mobilized JRC is assumed to be zero up to 0.250 The mobilized friction

peak *
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angles at zero and peak shear displacement are known. It was assumed that the shape of
shear stress versus shear displacement curve is the same as the linear interpolation used
for the results of Barton’s model. The MDST database was analyzed in accordance with
the above information. Table 3.9 and Table 3.10 summarize the average value of the

mobilized friction angle and the mobilized JRC, respectively.

Table 3.9: Pre-peak mobilization of the base friction angle

5 ¢mobi|ized
5peak ¢base
0 0
0.25 0.75
0.5 0.9
1 1

Table 3.10: Pre-peak mobilization of JRC

5 ‘]RCmobiIized
5peak JRCpeak
0 0
0.25 0
0.5 0.67
0.6 0.83
1 1

3.3.6 Reversals and unloading

As was mentioned in section 3.2.3.2, Barton [115] explained how the shear stress-
displacement could be simulated in unloading, reloading, and reversal (Figure 3.2) based
on one direct shear test. The CDST database contains the results of 18 cyclic direct shear
tests. These results were investigated to check the accuracy of Barton’s model and revise

it consistent with the other parts of our modified model.
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The revised model for unloading and reversal is illustrated in Figure 3.18 (7 /o,
Versus 0/ d ., ) for a rock fracture with the following properties:

JCS

@, =30";JRC =10;—— =10
O-n
F=30° t/sy) 17
JRC=10 A
(JCS /'s,) =10 0.8 4 B
G 0.6 1
H
0.4 4
0.2 1
T T T T T T T 0 T T T T T T 1
7 % 5 4 3 2 1 1 2 3 4 5 6 7
021 (@ drear)
0.4
okl D c
F 0.8 1
E
4

Figure 3.18: Proposed model for shear unloading and reversal of rock fractures

- Point A: the peak shear strength can be calculated using Equation (3.3), as:

- tan[ggﬁD + JRC.Iog(E)J = tan(30 +10) = 0.84
O O,

n n

The stress-displacement curve form origin to point A (mobilization of the peak
shear strength) can be simulated using Table 3.9 and Table 3.10.

- Point B: the post-peak shear strength at 6/9J ., =6 can be estimated using

peak
Equation (3.90), as follows:
o

JRC

'mobilized

— \]cheak( )—0.381 — ]_OX (6)—0.381 — 5

peak

L= tan(% + JRC, e .1og(ﬁ)] = tan(30 +5) = 0.7
O, O,

n n
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- Point C: the CDST database shows that on average the shear strength in
unloading is fully mobilized by reversing the shear displacement by an amount
equal to the half of peak shear displacement:

O,/ Opeae =6—-0.5=5.5

Based on only one cyclic direct shear test, Barton proposed that the mobilized

JRC in unloading is always equal to —0.5JRC However, our investigation of 18

peak *
direct shear tests of the CDST database revealed that the mobilized JRC in unloading is
the same as the mobilized JRC at the end of loading stage (Point B), which can be
justified if the problem is approached analytically (see Figure 3.19). During unloading:

T'=—N-tan(¢—i)=N-tan(—g+i), (3.109-a)
which can be expressed in terms of stress as follows:
=0, tan(—@+i) (3.109-b)
N

L

Figure 3.19: Diagram of forces applied to a rough joint at failure during the reversal stage

This means that in this example the mobilized JRC is equal to 5. It should be
mentioned that both methods consider negative values for base friction angle. Therefore,

the shear strength at Point C can be calculated as follows:

= = tan(-30+5)=-047

Oy

- Point D: the CDST database shows that the magnitude of shear stress does not
change significantly in the unloading stage (from Point C to Point D).
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Point E: based on the result of only one cyclic direct shear test, Barton

concluded that the mobilized JRC in reversal is equal to —0.75JRC ., -

However, our investigation of 18 direct shear tests in the CDST database

revealed that the mobilized JRC in reversal is equal to —0.87JRC, .

Therefore, the peak value of shear strength in reversal can be calculated as

follows:

L= tan(—% ~0.87JRC,,, -1oglo[ﬁn =tan(-30-8.7)=-0.8
O,

Un n

This peak shear strength will be mobilized at a peak shear displacement related to

the new value of JRC which can be estimated using Equation (3.88):

On

g = 0.0077L°% (—")*** cos| 0.87JRC -log,, E
JCS o)

n

cos| 0.87JRC -loglo(JCSj
o _ S J) _ cos(8.7)

S ~ cos(10
ek CO{ RC .logIOEJCS D (10)
O

=-1.004

n

Point F: the reversal post-peak shear strength at Point F can be estimated using

Equation (3.90), as follows:

S -0.381 6 0381
‘]RCmobiIized = (‘]RCpeak) : =-8.7x (—j =44
reversal 5peak 1.004

. —tan(-30-4.4)=tan(30+5)=—0.68
O

n

Point G: similar to Point C, in unloading the reversal load, the shear strength is
mobilized by a shear displacement increment equal to the half of peak shear
displacement:

o/ O =—6+0.5=-5.5

peal
In addition, based on only one cyclic direct shear test, Barton proposed that the

mobilized JRC in unloading is always equal to 0.5JRC However, our

peak *
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investigation of 18 direct shear tests of the CDST database revealed that the
mobilized JRC in unloading the reversal is the same as the mobilized JRC at the
end of reversal loading stage (Point F). This means that in this example the
mobilized JRC is equal to -4.4. It Therefore, the shear strength at Point G can be
calculated as follows:

L =tan(30-4.4)=0.48

Oy

- Point H: the CDST database shows that the shear stress does not change
significantly in the unloading stage (from Point G to Point H).

- Point I: based on the result of only one cyclic direct shear test, Barton concluded
that the mobilized JRC in reloading can be calculated as follows:

(IRC e ) aoting = 075 IRC e res = —0-75(=0.75IRC, ) = 0.56 RC

reversal peak

However, our investigation of 18 direct shear tests of the CDST database revealed
that the mobilized JRC in reloading is equal to:

(IRC et ) ging = ~0-87RC e ) s = —0-87(~ 0.87JRC )= 0.76JRC

peak peak

reversal
Therefore, the peak value of shear strength in reloading can be calculated as

follows:

2= tan(qﬁn +0.76JRC 1y, - logwEED = tan(30 +7.6) = 0.77
O,

O,

n n

This peak shear strength will be mobilized at a peak shear displacement related to
the new value of JRC which can be estimated using Equation (3.88):

0.34
8, =0.0077L"% . In | cos 0.76JRC - log,, B
JCS o

n

JCS

cos| 0.76JRC -logm(]
o, _ On )) cos(7.6)
o cos(10
peak COS(JRC ~10g10(JCSD (10)
o

n

=1.007

The above mentioned method can be used to simulate shear stress-displacement

behavior of rock fractures in the whole process of loading, unloading, reversal, and
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reloading. It should be mentioned that the revised method has the following advantages
over Barton’s model:
- It is based on the results of 18 direct shear tests while Barton’s model is based
on the results of only one test.
- The 18 direct shear tests considered in this study contain between 1 and 20
cycles, while the only one that Barton considered in his study just had one cycle.
- The predicted mobilized JRC value for unloading stages may be justified

analytically (Figure 3.19).

Barton’s model does not have any specific suggestion for dilation displacement
during unloading, reversal, and reloading. However, in employing Barton’s model, the
dilatancy behavior of rock fractures can be simulated using the mobilized value of JRC
obtained from Table 3.2. In the revised model, the dilation displacement can also be
estimated using the mobilized value of JRC. However, our investigation of the CDST
database found that at the end of each unloading stage the dilation displacement is almost

zero. Figure 3.20 depicts the dilation displacement at each shear displacement (6, / O,y

versus 6/, ) for the above example:

07+
F (dv 7 dpeak) B
G 06
c

05
F=30” 0.4 1
JRC=10
(CS /5,) =10

0.3

0.2

E A
0.1
D (@7 Ay

7 6 5 4 3 2 D1 2 3 4 5 6 7

0.1

Figure 3.20: Proposed dilation displacement of rock fractures in cyclic shearing
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- Dilation displacement of loading stages (from origin to Point B) can be
estimated using the model developed in Section 3.3.4.

- As was stated above, the dilation displacement at the end of unloading stage
(Point D) is equal to zero. It is assumed here that dilation displacement
decreases linearly from Point B to D.

- Dilation displacement at reversal loading (Point E and F) can be calculated
using Equation (3.108).

- Again at the end of unloading stage (Point H), the dilation displacement is equal
to zero. It is assumed here that dilation displacement decreases linearly from

Point F to H.

3.4 APREDICTIVE MODEL FOR ANISOTROPIC BEHAVIOR OF FRACTURES

In Barton’s empirical model, JRC and the fracture length are the only geometrical
parameters that affect the shear strength, shear deformability, peak shear displacement,
and dilatancy of the rock fractures. For a given direction, the fracture length can be easily
measured. However, evaluating the magnitude of JRC in all directions is not possible and
practical. Therefore, in this section, the experimental data available in the literature is
used to propose a model to estimate the magnitude of JRC in different directions based
on given two major and minor values of JRC along two orthogonal axes.

Experimental studies performed by Huang and Doong [125] consisted of direct
shear tests and roughness measurement on model joints. Silicon rubber replicas of two
fracture types were tested under 6 different normal stresses and 12 different directions.
Uniaxial compressive strength and base friction angle were equal to 4 MPa and 28°,
respectively. In the present study, for each direction, JRC was back-calculated for all 6
normal stresses by using Barton’s failure criterion. The magnitude of JRC in each
direction was assumed to be equal to the average of back-calculated JRC’s at different
normal stresses. Figure 3.21 depicts the distribution of the magnitude of JRC in different

directions for both fracture types.
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Fracture Type A Fracture Type B

Figure 3.21: Distribution of the magnitude of JRC in different directions back
calculated by using Huang and Doong’s [125] experimental study [216].

In order to investigate anisotropic behavior of rock fractures, Jing et al. [126, 150]
determined and plotted in polar diagram the mobilized friction angles from shear tests of
concrete replicas in 12 shear directions, at 30° intervals, under 4 different normal stresses.
Uniaxial compressive strength was equal to 52 MPa. In the present study, the base
friction angle was assumed to be equal to 30°. For each direction, JRC was back-
calculated for all 4 normal stresses using Barton’s failure criterion. The magnitude of
JRC in each direction was assumed to be equal to the average of back-calculated JRC’s at
different normal stresses. Figure 3.22 depicts the distribution of the magnitude of JRC in
different directions.

A series of direct shear tests performed by Kulatilake et al. [129, 130] on replicas
in 12 directions and under 5 different normal stresses. Uniaxial compressive strength and
base friction angle were equal to 9.70 MPa and 34.5°, respectively. In this research, for
each direction, JRC was back-calculated for all 5 normal stresses using Barton’s failure
criterion. The magnitude of JRC in each direction was assumed to be equal to the average
of back-calculated JRC’s at different normal stresses. Figure 3.23 depicts the distribution
of the magnitude of JRC in different directions.
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Figure 3.22: Distribution of the magnitude of JRC in different directions back
calculated by using Jing et al.’s [125] experimental study [216].

—m— Kulatilake et al. (1999) 10 5
‘\ x
- / 10

Figure 3.23: Distribution of the magnitude of JRC in different directions back
calculated by using Kulatilake et al.’s [125] experimental study [216].

Grasselli et al. [127, 128] reported anisotropic distribution of peak friction angle
for concrete replicas of Valtelina serpentinite. Uniaxial compressive strength and base
friction angle were equal to 47 MPa and 13°, respectively. However, a base friction angle
of 13° seems to be too low, because the base friction angle of the majority of rock

surfaces ranges from 25° to 35°, at least at medium stress levels [92, 136, 141-145].
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Using this low value for base friction angle, the back-calculated JRC was as large as 31,
but, according to Barton [21], the magnitude of JRC can range between 0 and 20.
Therefore, in this research, the base friction angle was assumed to be equal to 30°. For
each direction, JRC was back-calculated using Barton’s failure criterion. Figure 4 depicts
the distribution of the magnitude of JRC in different directions, which is comprised

between 6 and 19.

20 4
—— Grasselli et al. (2003) 151

10 q

Figure 3.24: Distribution of the magnitude of JRC in different directions back
calculated by using Grasselli et al.’s [125] experimental study [216].

Jing et al. [126, 150] assumed that magnitude of the asperity angle follows an
elliptical distribution in the plane of the fracture surface. Since the asperity angle is the
only geometrical parameter in Jing et al.’s model and JRC is the only geometrical
parameter in Barton’s failure criterion, an option is to adopt an elliptical model for the
distribution of the magnitude of JRC in different directions. The elliptical model can be
described in parametric form as follows:

JRC, =JRC, cos(0),

3.110
JRC, = JRC, sin(0), (3-110)

where JRC, and JRC, are the magnitude of JRC along the major and minor semi-

axes of the ellipse, x and y axes (Figure 3.25).
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Elliptical model for JRC
1Y

JRC,

JRCy

JRC;,

Figure 3.25: Elliptical model for the angular distribution of JRC [216].

The magnitude of the JRC in a given direction & can then be written as:

JRC, = /JRC,” + JRC,” (3.111)

Correlation analyses conducted in this study show that Equation (3.111) yields a
good approximation for all of the 77 available data points collected from the literature.
The JRC /JRC

predicted measures Tatio has an average of 1.19 with maximum, minimum, and

standard deviation equal to 2.1, 0.79, and 0.28, respectively. However, Figure 3.21
through Figure 3.24 illustrate that the actual angular distribution of the JRC does not have
an elliptical shape, but, rather, it has the shape of an “8”. The following parametric form

better captures the angular distribution of JRC:

JRC, =4/[JRC, cos(®)[ +[JRC, sin(d) ] cos(6)

(3.112)
JRC, =/[JRC, cos(9)] +[IRC, sin(8)[ sin(6)

Figure 3.26 depicts the suggested model, Equation (3.112). It should be noted
that, in the proposed model, the magnitude of JRC in a given direction € can then be

estimated using Equation (3.111). Table 3.11 and Figure 3.27 show that the suggested
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parametric model, Equation (3.112), works better than the elliptical model in predicting

the magnitude of JRC in different directions.

Proposed model for JRC; Equation (3.112)
1Y

JRC,

JRCy

JRC,

JRCy

Figure 3.26: Proposed “8” shape model for the angular distribution of JRC (Equation
(3.112)) [216].

Table 3.11: Comparison of elliptical model and proposed “8” shape model (Equation
(3.112)) for the angular distribution of JRC

(‘] RC X )perdicted (J RC y )perdicted
(‘] RC X )measured (J RC y )measured
Parameters Elliptical Proposed “8” shape Elliptical Proposed “8” shape
model model (Equation model model (Equation

(3.112)) (3.112))
Average 0.859 0.977 1.388 0.981
Standard deviation 0.234 0.142 0.676 0.136
Maximum 1.267 1.279 3.215 1.279
Minimum 0.311 0.671 0.706 0.671
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Huang & Doong (1990): Fracture Type A
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'8 Shape model for JRC
— - - Elliptical model for JRC

Huang & Doong (1990): Fracture Type B

- - - Experimental JRC
'8’ Shape model for JRC
— - - Elliptical model for JRC
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- -a- - Experimental JRC
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Figure 3.27: Comparison of elliptical model and proposed “8” shape model
(Equation (3.112)) for the angular distribution of JRC.
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3.5 CONCLUSIONS

Two databases were built by collecting the results of direct shear tests available in

the literature: Monotonic Direct Shear Tests (MDST), which contains the results of 362

tests, and Cyclic Direct Shear Tests (CDST), which contains the results of 18 tests.

Analyses of these databases showed that Barton’s failure criterion works very

well in predicting the shear strength of rock fractures. However, some weaknesses were

found in the original Barton model and addressed by correlation analyses performed on

collected data. The following modifications to Barton’s model are proposed based on the

results of correlation analyses:

1y

2)

3)

An empirical equation is proposed to predict the peak shear displacement of
rock fractures. The equation considers the effect of normal stress on the peak
shear displacement, while Barton’s equation does not. In addition, this equation
can be used for all types of rock fractures, including sawed, smooth, and rough,
while Barton’s equation predicts an incorrect value of zero for the peak shear
displacement of sawed fractures. Finally, the predicted peak shear
displacement employing the proposed equation of this study decreases as JRC
increases. However, the predicted value of peak shear displacement using
Barton’s equation increases with JRC.

An empirical equation is proposed to predict the mobilized JRC, which is used
to calculate the shear stress-displacement curve after peak shear displacement.
Besides better matching the MDST database than Barton’s Table, the empirical
equation gives a smoother curve compared to the linear interpolation of the
values given in Barton’s Table and is easier to implement numerically.

An equation is proposed to obtain pre-peak dilation at any shear displacement.
The proposed model has none of the inconsistencies and ambiguity of Barton’s
model. Moreover, it simulates negative dilation, while Barton’s does not. In
addition, the dilation displacement at any shear displacement can be calculated

easily using this equation; also the numerical implementation is much easier.
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4)

5)

6)

7)

8)

An equation is proposed to obtain post-peak dilation at any shear displacement.
This equation contains an integral which should be solved using numerical
methods.

Two tables are introduced to simulate the pre-peak shear stress-displacement
curve (mobilization of pre-peak shear strength): one to estimate the mobilized
JRC at any shear displacement and another to evaluate the mobilized base
friction angle at any shear displacement.

A method is described in detail to simulate shear stress-displacement behavior
of rock fractures in the process of loading, unloading, reversal, and reloading.
A method is proposed to simulate the dilatancy behavior of rock fractures in
cyclic shearing using the mobilized value of JRC. By investigating the CDST
database, it was found that at the end of each unloading stage the dilation
displacement is almost zero.

The JRC angular distribution was found not to have an elliptical shape, but the
shape of an “8”. Experimental data found in the literature were used
to formulate a predictive model for the anisotropic distribution of JRC in the
plane of a fracture. The input data for the model are the maximum and the
minimum JRC. The shear strength, shear stiffness, and dilation displacement of
rock fractures subjected to shearing in any direction can then be predicted by

using either original or modified Barton’s model.
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CHAPTER 4:  VALIDATION OF MODIFIED BARTON’S MODEL

4.1 INTRODUCTION

In order to validate the modified Barton’s model developed in Chapter 3, an
experimental study was performed in UT Rock Mechanics lab by two MS students,
Marco Invernizzi and Simone Addotto, under my supervision. The objective of this study
was to validate the proposed empirical equation for the peak shear displacement, the
modified shear stress-displacement curve, and the suggested equations for dilation
displacement.

This Chapter presents the experimental study conducted on rock fractures. Section
4.2 describes methodology, procedures, and equipment used for testing. Section 4.3

summarized the results of the tests followed by the conclusions in Section 4.4.

4.2 METHODOLOGY AND TESTING EQUIPMENT

The purpose of this experimental study was to validate a newly developed model
to predict the shear behavior of rock fractures. In order to validate the model for all rock
types and fracture characteristics, a reasonable range of all parameters that may affect the
shear behavior of the fractures should be covered in the experimental study. However,
covering all ranges of all parameters is not feasible due to the limitations in time,
funding, and available equipment.

In order to validate the model independent of rock type and rock hardness, the
experimental study was performed on four different rock types:

e Two weak rocks:

(1) Weak limestone, called Limestone 1 (Figure 4.1-a)
(2) Red sandstone (Figure 4.1-b)
e Two hard rocks:
(3) Granite (Figure 4.1-c)
(4) Metamorphic limestone, called Limestone 2 (Figure 4.1-d)
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(a) Limestone 1 (weak limestone)

(c¢) Granite (d) Metamorphic limestone (Limestone 2)

Figure 4.1: Rock materials used in the experimental study
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4.2.2 Uniaxial Compressive Strength

To evaluate the Uniaxial Compressive Strength (UCS) of the intact rocks, three
different kinds of tests were carried out: the Schmidt Hammer test, the Point Load Test
(PLT) and the Uniaxial Compressive Strength (UCS) test with stress-strain curve.

The Schmidt hammer measures the rebound of a spring loaded mass impacting
against the surface of the rock (or concrete). Figure 4.2 depicts the L-hammer used in this
experimental study (impact energy = 0.075 m.kg) which is suitable for measuring UCS
values down to about 20 MPa and up to at least 300 MPa. When conducting the test the
hammer should be held at right angles to the surface which in turn should be flat and
smooth. The rebound reading will be affected by the orientation of the hammer. Thus, the
rebound value must be corrected to take into account the effect of orientation of the
hammer and the unit weight of the rock. The Schmidt hammer is an arbitrary scale
ranging from 10 to 100. The higher rebound gives the higher compressive strength of the
rock. Several empirical equations can be found in the literature (e.g. [22, 146, 178, 217-
233]) to correlate the rebound value with the uniaxial compressive strength of rock
materials. However, most of these relationships have validity ranges in terms of rock
type, rebound value, and/or magnitude of UCS. In this Chapter, the following empirical
equation originally suggested by Miller [146] and adopted later by Barton and Choubey
[22] and ISRM [178] is used to correlate UCS and rebound number, R:

log,,(UCS)=0.0088 -7 - R +1.01, (4.1)

where v is the dry density of rock (kN/m?) and the unit of UCS is MPa.

Figure 4.2: Schmidt hammer
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Figure 4.3 illustrates Equation (4.1) relating rock density, compressive strength,

and rebound number of Schmidt (L) hammer (hammer held at right angles downwards to

the surface). Schmidt hammer tests were performed on each rock type and unconfined

compressive strengths were estimated from the rebound values.
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Figure 4.3: Correlation chart for Schmidt (L) hammer, relating rock density, compressive
strength, and rebound number [146]

For each rock type, several specimens were prepared by either of the following

methods: (1) cutting in pieces of 5x5x2cm using Lapidary Slab Saw (Figure 4.4-a); (2)
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coring (with diameter of 5 cm) using core drill press, “Supermax HRD-700H” (Figure

4.4-b). Point Load Test (PLT) was performed on each specimen employing PLT
machine, GCTS 8LT100 (Figure 4.5).

®.

(a) (b)
Figure 4.4: (a) Lapidary Slab Saw; (b) Core drill press

Figure 4.5: PLT machine (GCTS 8LT100)
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Based on ISRM suggested methods for determining point load strength [234], the
Uniaxial Compressive Strength (UCS) can be calculated from the point load tests. The
point load index is defined as follows:

P

I, =—, 42
CRN 4.2)

e

where D, is the equivalent core diameter. For the case of non-circular cross section it is

44 . . . .. .
equal to ,/—, in which A4 is the minimum cross sectional area of a plane trough the
V4

specimen and the platen contact points.
The values of the point load index, I;, should be modified for diameter

corrections:

1

(5)50

:FXI(s)a (4.3)
F=(D,/50)"", (4.4)
in which D, has the unit of mm. Two lowest and two highest values of point load

indices were removed from the data set and the remaining values were averaged. The
ISRM suggested method for determining point load strength proposes that the Uniaxial
Compressive Strength is 20-25 times point load index.

The uniaxial compression test with stress-strain curve is to measure the uniaxial
or unconfined compressive strength (UCS), Young’s modulus, and Poisson ratio of the
rock material [235]. A cylinder of intact rock with diameter of 5 cm and length of 10 cm
(the ratio of length to diameter should be around 2) is loaded axially with no confinement
pressure until failure. UCS of the intact rock together with stress-strain curve can be
obtained from this test. For each rock type (except for Limestone 1), three samples were
cored using drill press, “Supermax HRD-700H” (Figure 4.4-b), trimmed, and ground
employing specimen grinder (Figure 4.6). A servo hydraulic testing machine (Figure 4.7),
designed for uniaxial/triaxial tests, was used for performing uniaxial compression tests.
The reason of not performing UCS test on Limestone 1 is lack of rock material. Attempts

to find exactly the same Limestone were failed, too.
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Figure 4.7: Uniaxial/Triaxial testing machine
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4.2.3 Joint Compressive Strength

Section 3.2.1.1 explained that the joint compressive strength (JCS ) at low stress

levels is equal to the unconfined compression strength, o,, of the intact rock if the

c

fracture is unweathered, but may reduce to approximately o,/4 for weathered fractures

[92]. The Schmidt hammer can be employed to measure the JCS values of weathered
rock fractures (Miller’s method [146]).

For the case of artificial sawed fractures, the fracture is unweathered and
undamaged and thus JCS should be equal to UCS. However, the process of making
artificial rough joint (shearing the intact rock or breaking by hammer) makes micro-
fractures which reduce the joint compressive strength. In order to have an estimation of
the ratio of JCS to UCS for the case of rough joints, 10 Schmidt hammer tests were
performed on both sawed and rough fractures of each rock type. The Schmidt hammer
tests on rough fractures were done after performing direct shear test and opening the
specimen ring. It was found that the uniaxial compressive strengths estimated using the
rebound values obtained on (sheared) rough fractures are 0.6 times of those predicted
using the rebound values measured on (intact) sawed fractures. While the process of
shearing the rough fractures causes some additional damages to the fracture and thus
decreases its compressive strength, it is estimated that the ratio of JCS to UCS should be
around 0.8. Therefore, in the rest of the analysis, JCS of rough fractures made according
to the above mentioned procedure is assumed to be about 0.8 times of UCS of the

corresponding intact rock.

4.2.4 Direct shear test

Several direct shear tests was performed on artificial sawed and rough fractures of
each rock type. The purpose of the direct shear tests performed on sawed fractures was to
obtain the base friction angles and to validate the proposed modification in the case of
sawed (or planar) fractures. On the other hand, the direct shear tests performed on rough
fractures were to validate the modification made on Barton’s model regarding the peak

shear displacement, stress-displacement curve, and dilation displacement.
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4.2.4.1 Sample preparation

In the case of limestone 1, Lapidary Slab Saw (Figure 4.4-a) was used to cut
samples of 8 x 8 x 8 cm. However, the drill press (Figure 4.4-b) was employed to core
samples with 5 cm diameter from the sandstone, the granite, and limestone 2. The
samples were cut in half by the slab saw whenever a sawed fracture was required.

In the case of weak rocks (limestone 1 and the sandstone), artificial rough
fractures were made by shearing the sample under 1 MPa normal stress up to failure of
intact rock and returning shear actuator to the original position. However, in the case of
hard rocks (the granite and limestone 2), artificial rough fractures were made by breaking
the samples in half by hammer.

For each direct shear test, the sample was prepared in the following procedure
(Figure 4.8):

1- Four marks were placed on the outside of the both halves of the specimen to
remind us of the specimen orientation. These marks would help us to adjust the
position of the upper half of the specimen on its lower half after taking them
apart during the later steps of sample preparation.

2- A thick plastic or aluminum sheet was placed on a suitable level surface and
the lower half of the specimen holding ring was placed on the sheet.

3- The inner surface of the bottom specimen ring was greased with white
petroleum USP jelly produced by Vaseline (Figure 4.8-a).

4- Anchoring and Patching Cement manufactured by Rockite was used to
encapsulate the specimen in the specimen ring. This expanding, fast-setting,
pourable, hydraulic type cement has more than twice the strength of fully
cured, conventional concrete'. The encapsulating compound was prepared
according to manufacturer instruction.

5- The lower half of the specimen was positioned centrally in the lower half of the

specimen holder.

I Compressive (28-day) strength of conventional concrete is about 30 MPa
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(a) Placing the lower half of the
specimen ring on a sheet of
aluminum and greasing the
inner surface of the ring

(b) Positioning the lower half
of the specimen in the lower
half of the ring

(c) Pouring the encapsulating
material

-/ /
-

(d) Placing guide rods and (e) Placing the lower half of  (f) pouring encapsulating
modeling clay on the lower ring  the specimen and ring compound in upper ring

Figure 4.8: Procedure of sample preparation for direct shear test

6- The orientation of the specimen was noted relative to the specimen ring.

7- A mark was placed on the outside of the specimen ring to remind the specimen
orientation after the cement has covered the specimen completely.

8- Adequate support was provided to the specimen using modeling clay to
maintain it in its position while the encapsulating material cures (Figure 4.8-b).

9- The encapsulating material was poured carefully into the annular space
between the lower half of the specimen and the lower half of the specimen

holding ring. The mix was cured for 10 to 20 minutes (Figure 4.8-c).
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10- After the bottom encapsulated has sufficiently cured, two guide rods were
place together with modeling clay on the lower ring such that its cutout edge
encircles the encapsulated lower half of the specimen and encompasses the test
zone thickness (Figure 4.8-d).

11- The upper half of the specimen was placed onto the encapsulated lower half.

12- The position of the upper half of the specimen was adjusted until the surfaces
of the test horizon correctly matched by using the four marks on the specimen.

13- The upper half of the specimen ring was lowered onto the guide rods and
modeling clay layer without disturbing the position of the top half of the
specimen (Figure 4.8-¢).

14- The two halves of the specimen holding ring were connected with bolts.

15- Encapsulating compound was poured into the annular space between the top
half of the specimen holder and the top of the specimen (Figure 4.8-f).

16- A layer of fine sand was placed on top of the cement and leveled with the rim

of the upper specimen ring using a straight edge.

4.2.4.2 Mechanical testing

A servo hydraulic testing machine, designed for direct shear tests, has been
employed for the direct shears tests. The direct shear system (RDS-300) manufactured by
Geotechnical Consulting and Testing Systems (GCTS) is depicted in Figure 4.9. The
machine is supplied with one shear boxed made up of an upper and a lower part. The
upper part can be moved vertically and the lower part can be moved horizontally. Two
actuators, one acting vertically and one acting horizontally, are used to apply the forces in
the two directions (degrees of freedoms). Two linear rail bearings are used for guidance
of the lower box in order to have a controlled linear movement.

The servo hydraulic testing machine is composed of a compression frame of 500
KN, a direct shear apparatus, and electro-hydraulic shear and normal load actuators with
300 kN and 500 kN load capacity, respectively. The maximum stroke is 100 mm in the

vertical direction and + 50 mm in the shear direction.
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(a) Vertical actuator (b) Horizontal actuator

Figure 4.9: Servo hydraulic testing machine (GCTS direct shear test system, RDS-300)

In the shear test, the normal and shear displacements are measured by means of
Linear Variable Differential Transducers (LVDTs). The vertical displacement between
the shear box is measured by four LVDTs, positioned in a square pattern around the
specimen, one in each corner (Figure 4.10). Each of the LVDTs has a measurement range
of 12 mm. The average value of these four LVDTs is used to represent the vertical
(normal) displacement presented in the results section. The relative displacement between
the shear box in the horizontal (shear) direction is measured by one LVDT (Figure 4.9),
which has a 100 mm range. The sensitivities of the LVDTs are 0.025 mm for shear
displacement and 0.0025 mm for normal displacement.

The procedure of assembling the ring in the shear box and performing the test is

as follows:
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displacement LVDTS
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(a) Front view (b) Top view

Figure 4.10: Vertical displacement LVDTs

Encapsulated specimen was mounted and oriented in the bottom shear box of
the testing machine.

The top half of the shear box was lowered onto the upper half of the specimen.
The bolts connecting the upper and lower halves of the ring were removed.
Four vertical displacement LVDTs were places on the lower surface of the
testing machine, at the four corners of the lower half of the shear box.

The horizontal/shear displacement LVDTs was mounted on the machine in
such a manner that measures the shear displacement of the specimen during
the test.

The lower part of the shear box with the specimen rings was moved under the
top part of the shear box.

The top specimen ring was aligned with the upper part of the shear box and
the normal actuator was commanded to move down with displacement
control.

A small seating normal load was applied (on the order of 450 to 900 N).

The swivel lock plates were removed for any desired direction to allow

rotation on any direction as required.
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10- The shear actuator was moved under computer control to the “home” or

11-

“zero” position.
The load normal to the shear zone was increased continuously at a constant
rate until the lowest selected load was attained, and consequent normal

displacements were recorded.

12- The shear load was not applied until normal displacement has stabilized.

13- Stabilization was considered to be complete when normal displacement

reading oscillated less than 0.05 mm in 10 min.

14- After the selected normal load had been stabilized, the shear load was applied

continuously at the selected rate of 1 mm shear displacement per minute.

15- After reaching the peak shear strength, loading was continued and readings

were taken until residual shear strength was achieved.

4.3 RESULTS

43.1 UCSandJCS

In order to obtain the uniaxial compressive strength of intact rocks, three different

kinds of tests were performed:

1)

2)
3)

Schmidt hammer tests (the results are summarized in Table 4.1 which also
includes the measured unit weights of rock materials required for
estimating UCS from rebound value using Equation (4.1))
Point Load Tests (the results are summarized in Table 4.2)
Uniaxial Compressive Strength tests with stress-strain curve (the results

are summarized in Table 4.3)

Table 4.1: Results of Schmidt hammer tests

Number Average Unit weight, y | ycs

Rock type of tests | rebound \%alue (kN/mS) (MPa)
Limestone 1 15 18.6 25.0 26
Sandstone 10 27.0 25.5 41
Granite 20 48.4 26.5 138
Limestone 2 10 49.6 27.0 155
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Table 4.2: Results of Point Load Tests (PLT)

Test HClght P De IS F 13(5()) 13(5()), Average ucs
No. | (mm) | (N) | (mm) | (MPa) (MPa) (MPa) (MPa)
18.14 | 1570|3042 | 1.70 | 0.80 | 1.36
18.44 12410 33.15] 2.19 | 0.83 | 1.82
18.11 [1920]3346| 1.72 | 0.83 | 143
20.43 | 1310 35.52 | 1.04 | 0.86 | 0.89
18.64 [1760]30.76 | 1.86 | 0.80 | 1.49
20.79 [2140|34.81 | 1.77 | 0.85 | 1.50
20.72 1910|3494 | 1.56 | 0.85 | 1.33
20.17 [ 1300 35.07 | 1.06 | 0.85 | 0.90
18.70 [3890|34.88 | 3.20 | 0.850 | 2.72
19.73 14020|35.76 | 3.14 | 0.860 | 2.70
23.55 [4390[39.03 | 2.88 | 0.895 | 2.58
20.07 [4150(3599 | 3.20 | 0.863 | 2.76
16.14 |3150(32.35| 3.01 | 0.822 | 2.47 2.42 53
21.45 129303727 | 2.11 | 0.876 | 1.85
18.47 |3410| 34.60 | 2.85 | 0.847 | 2.41
22.11 |3780| 37.89 | 2.63 | 0.883 | 2.32
17.95 |2750| 34.07 | 2.37 | 0.841 | 1.99
27.62 | 717014240 | 3.99 |0.928 | 3.70
17.27 16290 | 33.50 | 5.60 | 0.835 | 4.68
19.08 | 7890 | 35.19 | 6.37 | 0.854 | 5.44
20.17 [4100 ] 36.18 | 3.13 | 0.865 | 2.71
18.41 | 5880 | 34.58 | 4.92 | 0.847 | 4.17
19.49 |7030| 35.56 | 5.56 | 0.858 | 4.77
17.73 15890 | 33.97 | 5.10 | 0.840 | 4.29
20.5 4420 36.49 | 3.32 | 0.868 | 2.88
17.78 14620 | 33.96 | 4.01 | 0.840 | 3.37

Rock Type

—_—

Limestone 1 1.34 30

Sandstone

Granite 4.00 88

O |0 (AN N[ [(R||—= (ORI Q|N[N[R|WIN =AW

10 | 25.99 |7370| 40.98 | 4.39 | 0914 | 4.01
1 | 23.69 [3840]39.02 | 2.52 | 0.894 | 2.26
2 | 28.81 [4660 | 43.08 | 2.51 | 0935 2.35
3 | 13.53 [3770]29.69 | 428 | 0.791 | 3.38
4 1931 12920]35.43 | 2.33 | 0.856 | 1.99
Limestone2 | 5 | 21.86 | 5800|3731 | 4.17 | 0.877 | 3.65 2.86 63
6 | 31.65 6930|4544 | 3.36 | 0958 | 3.22
7 | 2241 [3560| 38.07 | 2.46 | 0.885 | 2.17
8 | 17.44 [5240|33.71 | 4.61 | 0.837 | 3.86
9 11942 [5840] 35.54 | 4.62 | 0.858 | 3.96

It can be seen that the magnitudes of UCS evaluated using Schmidt hammer tests,
PLT tests, and UCS test with stress-strain curve are consistent with each other.

Table 4.4 summarizes the measured (or evaluated) magnitudes of UCS and JCS
for different rock types. These values are adopted based on the results of Schmidt

hammer, PLT, and UCS tests.
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Table 4.3: Results of Uniaxial Compressive Strength tests

Rock Type Test | Height | Diameter ucs
No. (mm) (mm) (MPa)
1 110.06 51.02 43.9
Sandstone 2 105.01 51.00 44.2
3 111.53 51.91 34.8
Average UCS 41
1 105.52 51.23 108.1
Granite 94.49 51.19 130.2
3 96.26 51.34 141.5
Average UCS 127
1 104.75 50.06 173.0
Limestone 2 2 95.16 50.58 188.5
3 102.20 50.53 157.8
Average UCS 173

Table 4.4: The measured/evaluated magnitudes of UCS and JCS for different rock types

Roek e | (vipay | 7 v | et
Limestone 1 28 28 22.5
Sandstone 41 41 33
Granite 127 127 101
Limestone 2 155 155 124

4.3.2 Direct shear tests on sawed fractures

Direct shear tests were performed on two to four samples of each rock type under
different normal stresses ranging between 0.2 and 6 MPa. Table 4.5 presents the peak
shear strength and peak shear displacement of these tests together with the applied
normal stresses and length of the samples.

Figure 4.11 depicts shear strength versus normal stress for all direct shear tests
performed on sawed fractures. While JRC is equal to zero, the inclination of the trendline

passed through the origin would be equal to tan(¢,). The base friction angle of each

rock type is given in Figure 4.11, too.
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Table 4.5: Results of direct shear tests performed on sawed joints

Specimen | L O, 4 %
Number | (mm) | (vpa) | (MPa) | (mm)
1.0 | 0.749 | 096

Rock Type

! 95.03 5.0 3.518 | JOI20
0.5 0.326 | 0.42
) 80.96 1.0 0.726 | 1.10

2.0 1.540 | 1.70
4.0 3.100 | 1.25
Limestone 1 5.0 3.500 1.80

3.0 2.100 | 1.20
3 100.00 3.0 2.120 | 1.10
3.0 2.098 1.35
0.4 0.360 | 0.55
4 86.70 0.6 0.480 | 0.40
0.8 0.650 | 0.55
0.3 0.358 | 0.42
0.5 0.392 | 0.50
1 50.90 0.8 0.656 | 0.58
1.0 0.726 | 0.63
1.5 0.884 | 0.72
0.2 0.224 | 0.36

Sandstone 04 | 0367 | 0.46

06 | 0420 | 053

2 5110 | 12 | 0.785 | 0.67

20 | 1400 | 0.79

40 | 2503 | 1.01

60 | 3481 | 115

05 | 0152 | 030

10 | 0299 | 0.60

1 5115 | 1.5 | 0479 | 090

20 | 0793 | 052

. 40 | 1792 | 0.80
Granite

0.8 0.246 | 0.65
1.8 0.635 | 0.55
2 51.15 2.5 1.350 | 0.77
3.5 1.575 | 0.56
4.5 2.360 | 0.90
0.2 0.380 | 0.57
0.4 0.445 | 0.60
1 51.03 0.6 0.582 | 0.95
0.8 0.712 | 0.65
1.2 0.891 | 0.69
0.5 0.568 | 0.92
0.7 0.592 | 0.78
2 50.90 0.9 0.722 | 0.95
1.1 0.832 | 0.85
13 0.985 | 1.06

Limestone 2
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Figure 4.11: Calculation of base friction angle

Barton’s empirical equation (Equation (3.31)) suggests zero for peak shear
displacement of the sawed fractures. However, Chapter 3 introduced Equation (3.88) for
peak shear displacement which works for all ranges of JRC, even sawed joints. Table 4.6
and Figure 4.12 show the ability of Equation (3.88) in predicting the peak shear
displacement of sawed fractures. It can be seen, except for Limestone 2 (very hard rock),
Equation (3.88) works very well. However, predictions of Equation (3.88) are much

better than zero given by Barton’s equation (Equation (3.31)).

140



Table 4.6: Ability of Equation (3.88) in predicating the peak shear displacement of sawed

fractures
Rock Type (5predicted ) + STD (5predicted) (5predicted )
and adopted magnitude of JCS S Average — S Max S Min
measured measured measured
Limestone 1 (JCS =28 MPa) 1.05+0.33 1.73 0. 60
Sandstone (JCS= 41 MPa) 0.79+0.25 1.46 0.56
Granite (JCS= 127 MPa) 0.78+0.19 1.06 0.50
Limestone 2 (JCS= 155 MPa) 0.41+0.08 0.56 0.31
2.0
23 Predicted Predicted
d cak 5 ca
2.0 1 usping 15 uspinl;g
Eqation Equation
1.5 - (3.88) L] ] (3.88) a
(mm) o 1.0 1 (mm) o
1.0 A = ]
(]
] u &
sl " 05 - P
Measured §,,, (mm) Measured J,,, (mm)
0.0 T T T T 0-0 T T T
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0
(a) Limestone 1 (b) Sandstone
1.0 1.2 -
Predicted Presdlcted
. ) cal 10 7 p‘eak
0.8 uspinkg using
Equation . ™ 0.8 4 Equation
(3.88) s 0.6 -
(mm) n - ’ (mm)
0.4 1 - 0.4 - . .
] . a® " g
O 2 i 02 T ..
’ Measured 0, (mm)
0.0 Measured §,,, (mm) 0.0 ' T T T :
’ ' ' ' ' 00 02 04 06 08 10 12
0.0 0.2 0.4 0.6 0.8 1.0

(c) Granite (d) Limestone 2

Figure 4.12: Predicted versus measured peak shear displacement using Equation (3.88)
for sawed fractures
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Figure 4.13 demonstrates the ability of Equation (3.88) to consider the effect of

normal stress on the peak shear displacement.

3 4 ) ) ) 2.0
Predicted using Equation (3.88)
a
®  Experimental results - 1.5
£
‘o&’ 1 - a @&
0.5 s Predicted using Equation (3.88)
®  Experimental results
O T T I T T ! 0.0 T T T T 1
0 1 2 3 4 5 6 1 2 3 4 5
o, (kPa) o, (kPa)
(a) Limestone 1; Specimen 1 (b) Limestone 1; Specimen 2
2.0 1.0
a
g ] E O 6
E 10 £ -
g 80.4 .
«© 05 - Predicted using Equation (3.88) w©
= Experimental results 0.2 Predicted using Equation (3.88)
®  Experimental results
0.0 T T 0.0 . . .
0 2 o, (kPa) 4 6 0.5 o, (kPa) 1 1.5
(c) Limestone 1; Specimen 3 (d) Limestone 1; Specimen 4
1.0 1 1.5 .
] = |
0.8 - L ]
L}
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g g
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(e) Sandstone; Specimen 1

(f) Sandstone; Specimen 2

Figure 4.13: Comparison between measured peak shear displacement and their predicted
values using Equation (3.88) for the case of sawed fractures (JRC=0)
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Figure 4.13-Continued: Comparison between measured peak shear displacement and their
predicted values using Equation (3.88) for the case of sawed fractures (JRC=0)

Although Barton’s original model has no suggestion for stress-displacement curve
for the case of sawed joints, the modified model proposed in this dissertation suggested
Table 3.9 to quantify the mobilization of base friction angle. Figure 4.14 compares the
measured Qmobilized/Phase at €ach shear displacement with the predicted values using Table

3.9. The measured values of ¢,,, and ¢, ..q are obtained using the follow equations:

T
Prase = arctan(—"eak j (4.5)
O-n
Drobilized = arctan(i} (4.6)
O-n

where o, is the normal stress; 7, is the peak shear strength; and 7 is the shear

stress at a given shear displacement. It can be seen that Table 3.9 works better than

Barton’s original model.

143



Predicted using Barton's model Predicted using Table 3.9 ——&— Specimen 1 -1 MPa

— - —Specimen1-5MPa e Specimen 2 - 0.5 MPa —&—— Specimen 2 - 1 MPa
Specimen 2 - 2 MPa —&—— Specimen 2 - 4 MPa — — — Specimen 3'- 3 MPa

—¥— Specimen 3" - 3 MPa —&— Specimen 3'"'-3MPa = =------ Specimen 3 -5 MPa

—@—— Specimen 4 - 0.4 MPa Specimen 4 - 0.6 MPa Specimen 4 - 0.8 MPa

1.2

cbmobilized/cbbase

6/épeak
T
1.8 2
(a) Limestonel
Predicted using Barton's model Predicted using Table3.9 = =====-- Specimen 1 - 0.3 Mpa
— — — Specimen 1-0.5 Mpa —¥—— Specimen 1 - 0.8 Mpa ——=— Specimen 1 - 1.0 Mpa
——@&— Specimen 1 - 1.5 Mpa Specimen 2 - 0.2 Mpa ——&—— Specimen 2 - 0.6 Mpa
— -+ — Specimen 2-1.2Mpa = e Specimen 2 - 2.0 Mpa —&—— Specimen 2 - 4.0 Mpa
—&—— Specimen 2 - 6.0 Mpa —i— Specimen 2 - 0.4 Mpa
1.2
¢mobi|ized/¢bas_e ____________ .. . . e ___; —
1 - - - = 77__",,
0.8
0.6
0.4
0.2
0 T T T T T T T T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(b) Sandstone

Figure 4.14: Comparison between measured ratio of @mebilized/Pase at €ach shear
displacement and predicted one using Table 3.9 (sawed fractures)
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Figure 4.14-Continued: Comparison between measured ratio of @mebilized/Pbase at €ach
shear displacement and predicted one using Table 3.9 (sawed fractures)
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4.3.3 Direct shear tests on rough fractures
Direct shear tests were performed on three to four samples of each rock type
under different normal stresses ranging between 0.2 and 2 MPa. Figure 4.15 and Table

4.7 summarize the results of direct shear tests conducted on the rough fractures of

different rock types.
8 1 Specimen 1 - 1 MPa :pec%men ; . ; ﬁl;a
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Figure 4.15: Shear stress-shear displacement curves and normal displacement-shear
displacement curves obtained from direct shear tests performed on rough fractures
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Figure 4.15-Continued: Shear stress-displacement curves and normal displacement-shear
displacement curves obtained from direct shear tests performed on rough fractures

4.3.3.1 Prediction of shear displacement at failure

For each sample, JRC was back-calculated based on the measured values of other

parameters (JCS, base friction angle, normal stress, and shear strength). Table 4.8
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summarizes the calculations of JRC and peak shear displacements both using Barton’s

equation (Equation (3.31)) and modified empirical equation (Equation (3.88)).

Table 4.7: Results of direct shear tests on rough fractures

Specimen | L o, Tp | 5 (mm)
number | (mm) | (MPa) | (MPa)| "
766 | 1.0 | 122 | 226

Rock type

—_—

Limestone 1 66.2 2.0 2.53 2.78

79.9 0.2 0.63 2.72

76.9 0.5 1.08 0.44

51.01 0.5 0.82 2.42

Sandstone 51.03 1.0 1.00 1.4

50.40 1.5 1.23 1.36

51.1 1.0 1.56 1.46

. 51.2 1.5 2.33 1.8
Granite

51.2 20 | 3.19 0.92
514 1.8 | 2.36 0.33
51.1 0.5 | 092 0.72
50.7 0.8 1.47 0.66
50.7 1.0 1.67 0.7
51.1 20 | 3.17 0.73

Limestone 2

AWIN =AW~ WIN[— AW

Table 4.8: Calculations of JRC and peak shear displacement of rough fractures

Rock Type Sample IRC 5predicted @ 5predicted @
and adopted magnitude of JRC No. (mm) | Speasureg | (mMm) Onmeasured
Equation (3.88) Barton’s equation
1 10.6 0.81 0.36 0.79 0.35
Limestone 1 (JCS =22.5 MPa) g i‘;g 828 8?;‘ 82(5) 852
4 17.1 0.58 1.32 0.93 2.11
1 15.0 0.43 0.18 0.67 0.27
Sandstone (JCS= 33 MPa) 2 8.9 0.60 0.43 0.56 0.40
3 5.9 0.86 0.63 0.66 0.49
1 [16.2 0.35 0.24 0.68 0.47
. -~ 2 17.7 041 0.23 0.70 0.39
Granite (JCS = 101MPa) 3194 | 045 | 048 | 0.73 0.79
4 15.8 0.46 1.38 0.68 2.06
1 9.1 0.29 0.40 0.57 0.79
i 2 10.5 0.32 0.49 0.59 0.90
Limestone 2 (JCS= 124 MPa) 3 93 037 052 057 0.81
4 10.1 0.47 0.64 0.59 0.81
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Figure 4.16 and Table 4.9 compare Equations (3.31) and (3.88) with each other, in

accordance with their ratio of predicted to the measured peak shear displacement,

5predicted .
, for rough fractures of different rock types.
5measured
3.0 25
225 L] Banor.l's equation 2 20 | ® Barton's equation
& 20 *Equation (3.88) A X Equation (3.88)
i 3 LS5 A
1.5 w
k5 B 10 -
2 1.0 n l# Q X
s} ™ = B n
g 05 g 0.5 1 X
A Y X A~
0.0 T T T T T 0.0 T T T T
00 05 10 15 20 25 30 0 0.5 1 1.5 2 2.5
Measured § ., (mm) Measured 8., (mm)
(a) Limestone 1 (b) Sandstone
2.0 1.0
. ® Barton's equation
= ® Barton's equation =
E s 1S equ E 08 1 XEquation (3.88)
R X Equation (3.88) g
E % 0.6 =
< 1.0 - <
3 B 04 *
o o - ] L] 2 xX
B 05 | 3 *
£ X X % X £ 02 4
0.0 . . : 0.0 ' ' - '
0 0.5 1 15 2 0 0.2 0.4 0.6 0.8 1
Measured 3, (mm) Measured 3, (mm)

(c) Granite

(d) Limestone 2

Figure 4.16: Predicted versus the measured peak shear displacement using equation
(3.88) and Barton’s equation for rough fractures

Table 4.9: Comparison between Barton’s equation (Equation (3.31)) and Equation
(3.88) in predicting peak shear displacement of rough fractures

Rock Type Sample (5 predicted) +STD (5 predicted) (5 predicted Do
and adopted magnitude of JRC No. S ncured Average S oacured Max S oaored Min

Limestone 1 Equation (3.88) 0.54+0.53 1.32 0.15
(JCS=26.4 MPa) Barton’s equation 0.77+0.89 2.11 0.29
Sandstone Equation (3.88) 0.41+0.23 0.63 0.18
(JCS=32.8 MPa) Barton’s equation 0.39+0.11 0.49 0.27
Granite Equation (3.88) 0.56+0.54 1.38 0.23
(JCS=101.3 MPa) Barton’s equation 0.93+0.78 2.06 0.39
Limestone 2 Equation (3.88) 0.514+0.10 0.64 0.40
(JCS=138.5 MPa) Barton’s equation 0.8340.05 0.90 0.79
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The following conclusions can be driven from Table 4.8, Table 4.9, and Figure 4.16:

Equation (3.88) works better than Equation (3.31) in predicting peak shear

displacement of rock fractures of Limestone 1, because:

5predicted
Although the value of (

)average Calculated using Equation (3.31) is
measured

(5predicted /( 5predicted

)STD 5

measured

closer to one, the correlation factor, ) Average» 1S smaller

measured
in the case of Equation (3.88) (0.98 from Equation (3.88) compared to 1.16
from Barton’s equation).
For specimens 1 and 2, the ability of Equations (3.31) and (3.88) in predicting
the peak shear displacement are the same.

For specimen 3, Barton’s equation works a little bit better than Equation

(3.88).

The abilities of Equations (3.31) and (3.88) in predicting peak shear

displacements of rough fractures of the sandstone are almost the same, because:

(5predicted

Although the value of )verage Calculated using Equation (3.88) is

measured

(5predicted /( 5predicted

)STD 5

measured

closer to one, the correlation factor, ) Average» 1S smaller

measured
in the case of Equation (3.31) (0.28 from Equation (3.31) compared to 0.56
from Equation (3.88)).

For specimen 1, Barton’s equation works a little bit better than Equation
(3.88).

For specimens 2 and 3, Equation (3.88) has better predictions for the peak

shear displacement comparing to those of Barton’s equation.

Barton’s equation (Equation (3.31)) works better than Equation (3.88) in
predicting the peak shear displacements of rough fractures of the granite,

because:
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5 redi
e The value of ( predicted

)average Calculated using Equation (3.88) is closer to
measured

onc.

(5predicted /( é‘predicted

)sto ) average » 18 smaller in the case of

measured measured

e The correlation factor,

Equation (3.88).
e For specimens 1 to 3, Barton’s equation works better than Equation (3.88).
e For specimens 4, Equation (3.88) has better predictions for the peak shear
displacement comparing to those of Barton’s equation.
- Barton’s equation (Equation (3.31)) works better than Equation (3.88) in

predicting peak shear displacement of rock fractures of limestone 2.

4.3.3.2 Prediction of shear stress-displacement curve

Figure 4.17 compares the stress-displacement curve predicted using Barton’s
original model and the modified model with the stress-displacement curves obtained from
direct shear tests on rough fractures of Limestone 1. In addition, Table 4.10 compares

Barton’s model and the modified model in accordance with their ratio of predicted to the

: T
measured ratio of — for rough fractures.
o

It can be seen in Figure 4.17 and Table 4.10 that both models work very well in
predicting the stress-displacement curve. For shear displacements smaller than about 8
times of the peak shear displacement, both models underestimate the stresses and, after
that, both overestimate the stresses. It can be concluded that the modified model is a little

bit better than the original model due to the following reasons:

.
- The value of (aj oredicted obtained using the modified model is closer to

( ; j
(o2
measured Average

one comparing to those calculated using Barton’s model.
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Figure 4.17: Comparison between Barton’s original model and the modified model in
predicting stress-displacement curve for rough fractures
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Figure 4.17-Continued: Comparison between Barton’s original model and the modified
model in predicting stress-displacement curve for rough fractures
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Figure 4.17-Continued: Comparison between Barton’s original model and the modified
model in predicting stress-displacement curve for rough fractures

Table 4.10: Comparison between Barton’s original model and the modified model in
predicting tress-displacement curve for rough fractures

(

Rock Type

(

Constitutive model

T

o

T

o

) predicted

jmeasured Average

+STD

(
(

T

o

j predicted

T

o

j measured /psqy

(
(

Qla|Qal~

j predicted

jmeasured Min

Limestone 1 Bartgn’s model 1.09+0.38 2.36 0.69
Modified model 1.02+0.32 2.07 0.59

Sandstone Bartgn’s model 1.09+0.42 2.68 0.74
Modified model 1.02+0.41 2.58 0.67

Granite Bartgn’s model 1.11+0.82 4.19 0.4
Modified model 1.23+0.87 4.11 0.46

Limestone 2 Bartgn’s model 1.52+1.01 6.45 0.78
Modified model 1.70+1.35 7.04 0.84
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Q|

j predicted to [

jmdmd , 1s smaller in

jmeasured STD (

- The correlation factor, the ratio of [

(

Q| |Q =

SER

j measured Average

the case of the modified model.

T
- The value of [0 jpredicted obtained using the modified model is smaller than

[ ; J
o measured /y1ax

those calculated using Barton’s model.

4.3.3.3 Prediction of normal displacement-shear displacement curve (dilatancy)

Figure 4.18 compares the normal displacement-shear displacement curves
predicted using Barton’s original model and the modified model with the normal
displacement-shear displacement curves obtained from direct shear tests on rough

fractures. In addition, Table 4.11 compares Barton’s model and the modified model in

‘ (5\/ )predicted - (5v )measured

@

v )measured

accordance with their ratio of r = at the same shear displacements

for rough fractures.

Figure 4.18 and Table 4.11 show that both Barton’s model and the modified
model have lots of errors in predicting the dilation displacement. An ideal model has the
ratio of r equal to zero. However, both models give this ratio between 1 and 2.5. Both
models have lots of approximations and from statistical point of view Barton’s model
works a little bit better than the modified model. However, due to the following reasons,
it can be concluded that the modified model should be used for predicting the dilation
behavior of rock fractures:

e Barton’s model can predict dilation displacement only at the peak shear
displacement. The dilation displacements predicted using Barton’s model in
this Chapter is not calculated exactly from the model proposed by Barton.
However, they were estimated based on our interpretation, in the lack of direct

suggestion, which was explained in Section 3.3.4.
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Figure 4.18: Comparison between Barton’s original model and the modified model in
predicting dilation displacement for rough fractures
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Figure 4.18-Continued: Comparison between Barton’s original model and the modified
model in predicting dilation displacement for rough fractures
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Figure 4.18-Continued: Comparison between Barton’s original model and the modified
model in predicting dilation displacement for rough fractures

Table 4.11: Comparison between Barton’s original model and the modified model in
predicting dilation displacement for rough fractures

Rock Type Coﬁgﬁgwe RC | Taeae £STD | 1 | Ty
Limestone 1 Barton’s model 25 1.96+1.68 5.94 0.23
Modified model ’ 2.12+1.81 7.46 0.15
Sandstone Barton’s model 33 2.50+2.56 11.03 | 045
Modified model 2.39+2.26 8.47 0.30
Granite Barton’s model 101 2.2542.32 10.50 | 0.51
Modified model 1.85+1.79 6.90 0.11
Limestone 2 Barton’s model 124 1.52+1.79 7.11 0.06
Modified model 1.10+1.73 7.79 0.01
r—= |(§v )predicted - (§v )measured
(5v )measured ‘
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e In 13 cases out of 15 cases of rough fractures, it can be seen can see negative
dilation (compression) at small shear displacements. These negative dilations
are not considered in Barton’s model, which can cause overestimation of
factor of safety in some analysis such as stability of rock blocks in tunnels.

These negative dilations are included in the modified model.

4.4 CONCLUSIONS

The experimental study presented in Section 4.3 validated the modifications

proposed in Chapter 3 to Barton’s original model. The following conclusions can be

driven based on the results of our testing:

1)

2)

3)

4)

5)

6)

The modified empirical equation proposed for peak shear displacement of rock
fractures (Equation (3.88)) can predict the peak shear displacement of sawed (and
planar) fractures with acceptable precision. However, Barton’s original equation
gives zero peak shear displacement for sawed fractures.

The modified empirical equation proposed for peak shear displacement of rock
fractures (Equation (3.88)) can consider the effect of normal displacement on
increasing the peak shear displacement, while Barton’s original equation cannot.
Chapter 3 proposed Table 3.9 for shear stress-displacement of sawed fractures
(mobilization of the base friction angle). Using Table 3.9, the shear stress-
displacement curve of sawed fractures can be predicted with great precision.
Barton’s original model has no suggestion in this regard.

As far as sawed (or planar) fractures, the modified model works much better than
the original Barton’s model.

The modified equation proposed for peak shear displacement of rock fractures
(Equation (3.88)) works better than Barton’s equation (Equation (3.31)) in the
case of rough fractures of Limestone 1. However, in the case of rough fractures of
granite and Limestone 2, Barton’s equation works better. In addition, the abilities
of both equations in the case of sandstone were almost the same.

Since the granite and Limestone 2 are hard rocks and while Limestone 1 and

sandstone are weak rocks, one may conclude that Barton’s model works better for
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7)

8)

9)

hard rocks. However, MDST database [188-210] contains many cases of hard
rock fractures in which modified model works better.

Figure 3.7 shows that, in MDST database, most of the tests have a ratio of
o/ JCS between 0.01 and 0.1. It can be seen that, in our experimental study, for
the cases located within the above domain, the modified model works better than
Barton’s model.

In the cases of the Granite and Limestone 2, JRC’s are between 10 and 20.
However, in the cases of Limestone 1 and the Sandstone, JRC'’s are between 6
and 17. Furthermore, for the sawed joints, it can be seen that modified model
works much better than Barton’s model. It can be concluded that modified model
works better in the case of planar fractures and Barton’s model works better in the
case of rough fractures.

Table 4.12 shows that, for rough fractures, Barton’s equation (Equation (3.31))
works a little bit better than the modified equation (Equation (3.88)). Although the

5perdicted

value of ( calculated using Equation (3.31) is closer to one, the

) Average
measured

5perdicted 5perdicted . .
( )orp /( is smaller in the case of

correlation factor, ) verage »

measured measured

Equation (3.88) (0.57 from Equation (3.88) compared to 0.74 from Barton’s

equation).

10) Modified model works better than Barton’s original model in predicting shear

stress-shear displacement curve (for all types of rocks and for both planar and

rough fractures).

11) Table 4.13 compares Barton’s model and the modified model in accordance with

the ratio of \ 7/ predicted
T
o

measured
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Table 4.12: Comparison between Barton’s equation and Equation (3.88) in
predicting the peak shear displacement of rough fractures

. Barton’s equation
Parameter Equation (3.88) (Equation (3.31))
5 erdicte
( perdiced )Average i STD 061i035 O72i053
measured
5 dicted
(5per cte )Max 1.28 2.07
measured
rdicted
(5pe icte )Mi’l 0.13 0.27
measured

Table 4.13: Comparison between Barton’s model and the modified model in
predicting stress-displacement curve

8 2 2)

Constitutive O ) predicted +STD o predicted g predicted
model ( T ] B ( T j ( T )

o measured Average o measured Max o measured Min

Barton’s 1.20+0.71 6.45 0.59
model

Modified 1.29+0.88 7.04 0.69
model

12) One of the advantages of modified model in predicting stress-displacement curve

lies in its ability to predict the curve for high values of the ¢, /5, ratio which is

very difficult to achieve in lab tests. Just in one case (rough fracture of the granite;
specimen 4), the ratio of J,/6, is high and it can be seen that the modified
model works better than Barton’s model (Figure 4.17-k).

13) It is almost impossible to make a fracture with JRC smaller than 5 in laboratory
scales (specimen of about 10 cm). However, direct shear tests performed on
planar fractures not only can reveal the advantage of the modified model in

predicting stress-displacement curve, but also can show the advantage of Equation
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(3.88) on Equation (3.31). It should be noted that, considering the scale effect, a

fracture with JRC > 5 may have a lab size specimen with JRC < 5.

14) Our experimental study shows that both the modified model and Barton’s model

display substantial approximation in predicting dilation displacement of rough

fractures. However, due to the following reasons, it is believed that the modified

model should be used for predicting the dilation behavior of rock fractures:

Barton’s model can predict dilation displacement only at the peak shear
displacement. The dilation displacements predicted using Barton’s model in
this Chapter is not calculated exactly from the model proposed by Barton.
However, they were estimated based on our interpretation, in the lack of direct
suggestion, which was explained in Chapter 3.

In 13 out of 15 cases of rough fractures tested in our study, it can be seen
negative dilation (compression) at small shear displacements. These negative
dilations are not considered in Barton’s model, which can cause
overestimation of factor of safety in some analysis such as stability of rock

blocks in tunnels. The negative dilation is included in the modified model.
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CHAPTER 5: IMPLEMENTATION AND VERIFICATION OF
BS3D

5.1 INTRODUCTION

In this dissertation, prototype BS3D computer code developed by Tonon [1] in
Mathematica has been re-written and translated into Fortran 95. The implementation has
been done in the platform of Microsoft Visual Stodio.Net. Intel Visual Fortran has been
used as Fortran compiler. The code implements Tonon's [1] incremental-iterative
algorithm for analyzing general failure modes of rock blocks subject to generic forces.
Consistent stiffness matrices fully exploit the quadratic convergence of the adopted
Newton-Raphson iterative scheme. The algorithm takes into account large block
displacements and rotations, which, together with non-conservative forces make the
stiffness matrix non symmetric. Tonon's original code implements the algorithm just for
tetrahedrons. However, the generalized version of BS3D developed in this dissertation
can analyze general shapes of rock blocks. Furthermore, in situ stress and water pressure
have been implemented from scratch because they were not included in Tonon's code. In
Tonon's original code, fracture dilatancy was included in a rudimental fashion by using a
simplified version of Barton's model. However, the generalized version of BS3D can deal
with both original [21] and modified Barton’s model (Chapter 3) as well as Mohr-
Coulomb’s failure criterion [25].

Section 5.2 describes the implementation of BS3D with a brief explanation of
strategies, algorithms, and formulations implemented in the code but not explained in the
other chapters of this dissertation. In Section 5.3, the implementation is verified using
direct shear test examples. In Section 5.4, the in situ stress implementation is verified
using the example of a Cauchy tetrahedron. The section also deals with the effect of a
circular tunnel on the stresses acting on a block’s faces. Section 5.5 introduces an
example to verify the implementation of in situ stress and the Boundary Element Method
(for normal stiffness of the rock block) in BS3D. Section 5.6 briefly deals with

hydrostatic water pressure followed by the summary of the Chapter in Section 5.7.
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5.2

IMPLEMENTATION OF BS3D

5.2.1 Reading input variables

BS3D reads physical and mechanical properties of the block and its mould

together with information regarding applied forces and intended analyses from an input

file, “input.dat”. Table 5.1 summarizes the list of input variables read by BS3D from the

main input file. A sample input file is given in Appendix B.

Table 5.1: List of input variables of BS3D (input.dat)

Category | Description Symbols
General Number of vertices (required for defining the block and its mould) Nyertices
Coordinate of i-th vertex (i changes between 1 and nyesices) Vix..z
Number of faces of the block ny
Number of faces of the block with more than one boundary Rfivmo
Number of boundaries in i-th face that has more than one boundary (i changes nb;
Block between 1 and nfym0); nb; = 1+number of holes in the face. If there is no hole in
geometry | o face, nb; = 1 and there is no need to allocate it here.
Number of vertices in j-th boundary of i-th face nvi;
List of vertices of j-th boundary of i-th face (for outermost boundary, vertex Ivij
indices should be given here in counterclockwise order along its boundary and, for
hole, vertices should be listed in clockwise order)
General Number of segments (sensor points) per edge ny
Number of faces of the mould Nf mould
Number of faces that are in common between the block and its mould Nf shared
Index of a face of the block that is in common with i-face of the mould (i changes sf;
between 1 and ngshared)
Number of faces of the mould (not shared with a face of the block) with more than Nfiwmo,mould
Mould one boundary
geometry | Number of boundaries in i-th face of the mould (not shared with a face of the nbm;
block) that has more than one boundary (j changes between 1 and n4vmo,mould)
Number of vertices in j-th boundary of i-th face of the mould (not shared with a nvm; j
face of the block)
List of vertices of j-th boundary of i-th face of the mould (not shared with a face Ivm;
of the block)
Unit weight of the block (MN/m") y
Gravity acceleration (m/s) g
Mechanical | Young’s modulus of the block Ep,
properties | Poisson’s ratio of the block Vb
Young’s modulus of rock mass Epass
Poisson’s ratio of rock mass Vimass
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Table 5.1-Continued: List of input variables of BS3D (input.dat)

Category Description Symbols
Dilatancy Initial normal stiffness Si
characteristics of i-th Maximum closure Vi
i%iigg};eeg:;gf l(lan d Length .of lab si;e specimen for which fracture Lo
properties are given
_ 1fmould) Base friction angle Dp ;
Mechanical 7CS JCS’
properties 0.
Isotropic JRC of i-th face of the mould (i changes between 1 and ns,0uld) JRCy,i
Anisotropic dilatancy Length of block along j-th shearing direction (j=1,2) Luij
characteristics of ’.'Fh JRC of block along j-th shearing direction (j=1,2) JRCy,i,
face of the mould (i — - : — -
Direction of j-th shearing direction (j=1,2) ShD:
between 1 and 7 mould) J
Number of permanent faces of the mould (number of faces which are not
removed in the excavation stage) MperFace
Number of stages Nitage
Additional forces and moments applied to the block at i-th stage Foadi
Step stage for i-th stage Stepg,i
Maximum increment number MaxInc
Analyges' Maximum iteration number Maxlter
characteristics | \faximum A at i-th stage i
Fractures Constitutive model (Mohr-Coloumb, Bartons’s, or Modified Barton’s model)
Normal stiffness of the block should be calculated using approximation or BEM (see Section
5.2.5 for details)
Considering in situ stress around circular tunnel (Yes or No; see Section 5.4.2 for details)
Considering water pressure due to high-velocity jet impact (Yes or No; see Section 5.6 and
Chapter 8 for details)

5.2.2 Dilatant behavior of rock fractures

Section 3.4 introduced a predictive model for anisotropic dilatant behavior of rock
fractures for which dilatancy characteristics of fractures should be given in two
perpendicular directions. There are two options in BS3D for entering fracture dilatancy
properties: isotropic and anisotropic. For anisotropic dilatancy, all information should be
given in the input file. However, for the case of isotropic dilatancy, the maximum length
of the block along each face of the mould can be calculated by BS3D automatically. The
direction is called the 1*' shearing direction of the discontinuity. In addition, the length of
the block along direction perpendicular to the 1% shearing direction is determined and the

direction is called the 2™ shearing direction of the fracture.
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The size effect is applied to the given lab size magnitudes of JRC and JCS using
Equations (3.5) and (3.7), respectively. The peak shear displacements of all faces of the
mould along both shearing directions are determined using Equations (3.31) or (3.88)

according to Barton’s model or Modified Barton’s model, respectively.

5.2.3 Triangulation

All faces of the block and its mould are triangulated using the efficient procedure
of Seidel [69] as implemented by Narkhede and Manocha [70] in C++. The triangulation
subroutine is called by the main Fortran routine of BS3D using capabilities of Microsoft
Visual Stodio.Net in multilanguage programming.

The triangulation subroutine can divide a 2D polygon into triangles. Thus, all faces
of the block and the mould should be projected into a 2D plane. However, the 2D plane
on which each face is to be projected can not be chosen randomly. Numerical inaccuracy
of floating point errors can occur when the face normal has little or no component in the
projection direction; in the extreme situation (no component), the face projects to a line

segment [236]. To reduce such errors for a given face the a-B-y coordinates are always

chosen as a right-handed (& x ,B = 7 ) permutation of the x-y-z coordinates such that ‘]\7 ,

is maximized. This choice maximizes the area of the projected shadow in a-f plane (see

Figure 5.1). Note that a choice can always be found such that ‘]\7 7‘ >3 B [236].

Figure 5.1: The a-B-y axes are a right-handed permutation of the x-y-z axes chosen to
maximize the size of the face’s projected in the a- plane [236].
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Therefore, before calling triangulation subroutine all faces of the block and the
mould are projected on the best 2D plane (found by the method proposed by Mirtich
[236]).

5.2.4 Mass properties

Mass properties of the block including centroid, volume, weight, and inertia
tensor are determined using a subroutine developed in this research based on the method
proposed by Mirtich [236] to compute polyhedral mass properties (see Appendix C for
the pseudo code of the algorithm).

5.2.5 Normal stiffness of rock mass and rock block

Figure 5.2 depicts a rock block constrained in its mould by surrounding rock
mass. In rock block stability analyses, in addition to the deformability of the rock
fractures, the deformability of the rock block and of the rock mass must be taken into
account in order not to overestimate the forces generated by dilatancy along the fractures
that bound the block. In order to analyze the stability of a single rock block, Tonon [1]
adopted Goodman’s hyperbolic model [78] for the normal stiffness of the fractures that
bound the block. Although the simplified analytical equation (Equation (2.44)) proposed
by Tonon [1] works very well for the normal stiffness of the surrounding rock mass, the
suggested approximation for the normal stiffness of the rock block (Equation (2.43))

depends on the loading conditions and results may be affected by large errors.

Surrounding rock mass

D1

D3

D1... D4: Block faces (rock fractures that bound the block )

Figure 5.2: Block surrounded by rock mass in its mould.
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The deformability of the blocks can conveniently be simulated using the
Boundary Element Method (BEM). However, all boundary conditions are given as
stresses, and the direct BEM [237-240] is applied to the solution of the traction boundary
value problem (TBVP) on the boundary of a domain. The displacement solution of a
TBVP is not unique because it is defined up to a rigid body motion (RBM), which has
zero strain energy and thus also zero stresses [241] .

Taking into account that the symmetric Galerkin Boundary Element Method
(SGBEM) [242] has some strong similarity with the FEM, Vodicka et al. [241] applied
the method successfully used in the FEM, e.g. [243, 244], in the SGBEM. The method,
referred to as Method S by Blazquez et al. [245], enforces additional point supports in the
displacement field which can be carried out by zeroing the appropriate rows and columns
in the linear system of equations and defining the corresponding diagonal elements equal
to a non-zero number [241].

Starting from the Fredholm theory of linear operators with zero index [246, 247],
different mathematical approaches, referred to as Methods F by Blazquez et al. [241],
have been proposed by various authors [245, 246, 248-257] with the aim of removing
rigid body motions in elastostatic BEM problems. Methods F can be subdivided into two
categories: (a) Method F1, also called the augmenting method or bordering method, has
been considered by various researchers [245, 246, 248-250]; (b) Method F2, sometimes
called the completion method, has been considered by various authors [245, 252-257].

In removing RBMs from the TBVP solution, it should be considered that although
the load prescribed is always equilibrated on the continuum level, after discretization its
global equilibrium can be slightly perturbed [241]. Nevertheless, it is convenient to
search for a reasonable approximation of the TBVP solution on the continuum level.
These difficulties were studied theoretically [246, 258] and numerically [245, 259] for the
classical BEM. However, it seems that these methods may lack a simple interpretation
from an engineering point of view as well as a relation between the rigid-body motion

and global equilibrium conditions.
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In this Section, an algorithm is proposed to remove rigid body motions in the
solution of the boundary form of Somigliana identity discretized by the direct BEM
formulation. The algorithm is validated using an example of calculating of the normal
stiffness of a rock block. The results of BEM analyses are compared with those obtained
by means of the approximation given by Equation (2.43).

Given the stresses on the block’s boundary, the problem is to obtain the
displacements at each point of the block’s boundary due to the deformability of the rock
block. However, if a finite elastic body is completely free (i.e. all prescribed boundary
conditions are given as stresses), the displacement solution is not unique because the
body can freely translate and/or rotate in some directions. There are infinite solutions
generating the same state of stresses; the only difference between two such solutions
being rigid body motions.

5.2.5.2 Proposed Method

Application of BEM to elstostatic problems consists of the numerical solution of a
Boundary Integral Equation, Somigliana identity [239]. Let consider a polyhedral rock
block made of a number of faces (polygons). BS3D triangulates each face of the block
into a set of triangles and subdivides each triangle into a set of subtriangles.
Subsequently, a point (node) is assigned to the centroid of each subtriangle. Figure 5.3

schematically depicts the discretization process.

'Rock Block

Face of the block
Triangulationiof a face

o
Division of a T—=—T——17=
triangle into
subtriangles

Figure 5.3: Discretization of the boundary of the block
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Discretization of the boundary by boundary elements (triangles in BS3D) leads to
a system of linear equations that can be represented as [239]:

HU =GP +B, (5.1)
where H and G are 3N x3N coefficient matrices, with N equal to the number of nodes
used in the discretization. U, P, and B are displacement, traction, and body force vectors,
respectively, of dimension 3N. In BS3D, all elements of H and G matrices are calculated

by using Gaussian integration over triangles [260-263]. G, components are calculated

by following Li’s and Han’s method [264] for evaluating singular integrals in stress
analysis of solids by the direct BEM. Body force vector, B, is obtained using Galerkin
Vector approach, which transforms the domain integrals into boundary integrals [237]
(see Appendix D for pseudo code of implemented subroutines that calculate BEM
matrices together with verification examples).

In BS3D, at the end of each increment, all tractions, P, are known. Displacements
at all boundary nodes are unknown, and can formally be calculated by solving Equation
(5.1) for U:

U=H"GP+B) (5.2)

However, H is singular and there are infinite solutions for U because the block is
in equilibrium and free to translate and/or rotate.

In order to remove the rigid-body motions from the solution, the following
approach is adopted:

- The displacements of one arbitrarily chosen boundary node, say Q, are assumed to
be zero. It should be noted that any boundary node can be selected.
- 3 equations and 3 unknowns corresponding to the fixed node, Q, can be

eliminated from the system of Equations (5.1).

- Although the rigid-body translations have been removed from the displacement

solution, H should still be singular due to the rigid-body rotation degrees of
freedom. However, round-off errors turn H™ from singular to ill-conditioned.

Therefore H™ can be calculated by the algorithm proposed by Rump [265] to
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inverse extremely ill-conditioned matrices. As a consequence, displacements at all
boundary nodes can be calculated with respect to the fixed node, Q.

- The displacement of the block’s centroid is calculated as the average
displacement of all nodes, including the fixed one, Q.

- Relative displacements of all nodes to the centroid are calculated.

- The new normal unit vector to each boundary face can be obtained because the
new position of all nodes is known.

- The normal displacement component of each node (due to the deformability of
rock block) can be determined given the node’s displacement vector (relative to

the centroid) and the new normal unit vector to the node’s triangle.

The normal stiffness due to the deformability of the rock block at each node will
be equal to the ratio of the normal stress to the normal displacement at that node. The
magnitude of this stiffness depends on the boundary conditions and should be updated at

the end of each increment.

5.2.5.3 Results and Discussion

In order to verify the above mentioned boundary element formulation, consider a
0.1x0.1x0.1m cubic block shown in Figure 5.4. The block has Young’s modulus of
1,000 MPa and Poisson’s ratio of 0.25; and it is subjected to compression load of 0.5

MPain 1, 2, and 3 directions perpendicular to faces.

A

01lm
g
)

e

X1

Figure 5.4: Dimension of the cubic block considered in verification and the stress
components on the cub
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The normal stiffness of the block can be calculated based on the theory of
elasticity. Figure 5.4 depicts stress components around the cube subjected to compression
stress, o, in 3 directions. For linear elastic materials, the strain along the x; axis can be
calculated as follows [266]:

Al _oq_
g, =s E(l 2v), (5.3)

where E and v are Young’s modulus and Poisson’s ratio of the block, respectively;

I, and Al, are length of the block and the total displacement along the x; axis,

1
respectively. The relative displacement of each face to the centroid is equal to half of the
total displacement of the block along the normal vector of that face. Thus, the normal
stiffness of each face can be calculated analytically as follows:

K -9 _ 2E
A2 L(A-2v)

(5.4)

For the cases of loading in 1 and 2 directions, the normal stiffness of the loaded
faces can be calculated using the following equations, respectively:
= 2_E (5.5)

P (5.6)

In addition, the block normal stiffness at the nodes located on the top and the
bottom faces was determined by using both approximation (Equation (2.43)) and the
proposed algorithm based on Boundary Element Method described in this Section.
Knowing the solution (5.4), (5.5), or (5.6) as the correct one, Figure 5.5 depicts the
maximum percent error in estimating the block normal stiffness (at the nodes located on
the top and the bottom faces) calculated using Tonon’s approximation and the proposed
BEM-based algorithm for 8 to 72 elements per face.
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Figure 5.5: Maximum percent error in estimating the block normal stiffness
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Figure 5.5 shows that the BEM-based algorithm of this Section works very well in
estimating the normal stiffness. Although increasing the number of nodes increases the
accuracy of BEM formulation, it has no effect on the accuracy of the approximation. In
addition, the accuracy of the approximation depends on the loading condition. The
maximum error in estimating the normal stiffness calculated using Tonon’s
approximation is 30, 6.7, and 40 percent in the cases of loading in 1, 2, and 3 directions,
respectively. In the case of loading in 2 directions, the approximation works very well.
However, the proposed BEM-based algorithm works with acceptable accuracy for all
boundary conditions. There are still small errors in the BEM calculation, which come
from different sources, such as:

- Gaussian integration over triangles: components of H and G matrices are
calculated using Gaussian integration over triangles with 16 Gauss points. This
approximation causes some errors. Increasing the number of Gauss points
increases the accuracy of the calculations. However, even with 48 Gauss points,
there are still some very small errors.

- Calculation of new normal vectors: new normal vectors of each face are
calculated obtaining the average of new normal vectors of all triangles of that
face. The new normal vectors of each triangle, in turn, are calculated based on the
new position of three points closest to the vertices of the triangle, assuming the
triangle remains planar after deformation. Definitely, this assumption causes some
errors due to deformability of the block.

- Round-off errors in calculating coefficient matrices (H and G matrices)

- lll-conditioning matrices: matrix H is ill-conditioned due to round-off errors (with
condition number in order of 10°- 10, for the above explained example with 8 to
72 elements per face). The condition number associated with the linear equation
gives a bound on how inaccurate the solution will be after approximate solution.
Note that this is before the effects of round-off error (in solving the system of

equations) are taken into account; conditioning is a property of the matrix, not the
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algorithm or floating point accuracy of the computer used to solve the

corresponding system.

5.2.5.4 Summary and conclusion

An algorithm was proposed to remove the rigid-body motions in the solution of
an elastostatic problem discretized by the direct BEM approach. The algorithm fixes one
boundary point to prevent rigid-body translations. Finally, the rigid-body rotations are
eliminated from the displacement solution. The method was applied to the calculation of
the normal stiffness of rock blocks. The algorithm was verified with a simple example for
which analytical solution is available based on the theory of elasticity. This example
shows the increased accuracy of the proposed algorithm with respect to the

approximation proposed by Tonon [1].

5.2.6 Matrix operation

As it was mentioned in Section 2.5, the system of Equations (2.32) is non-
symmetric but has small order (i.e. 7), and is solved using LU decomposition (Crout-
Banachiewicz) method with partial pivoting [67]. The detection of a critical point in the
equilibrium path then comes with no overhead because the minimum diagonal element of
matrix L monitors the smallest eigenvalues of K [66, 67]. If a diagonal element is equal
(or close) to zero, eigenvalues and eigenvectors of the stiffness matrix are calculated to
determine limit points and static instability.

As it was mentioned in Section 2.13.2, since K is a real and non-symmetric (large
rotations, applied non-conservative forces such as water pressure) matrix, and M is real,
symmetric, and positive definite, eigenvalues can be either real or complex (Appendix E
proves that M is a real, symmetric, and positive definite matrix). Thus, BS3D should be
able to solve generalized eigenvalue problems in which eigenvalues may be real or
complex. A subroutine has been developed in this research to solve generalized
eigenvalue problems based on the approach proposed by Vandebril et al [267]. The
problem is to find eigensystem of matrix K with respect to matrix M as follows:

K-x=4-M-x, (5.7
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where A is the eigenvalue and x is the eigenvector. The positive definite real matrix M
can be expressed as follows by applying Cholesky factorization [268]:
M=L-L" (5.8)
Thus, the generalized eigenvalue problem in Equation (5.7):

LKL (L x)=2-(L7 - x) (5.9)

which is the same as determining the eigensystem of matrix K=L"-T-L 7.

In order to calculate the eigenvalues and eigenvectors of matrix K (or any other
matrices), BS3D uses a Fortran subroutine developed by Moreau [269] based on
algorithm given by Engeln-Mueller and Uhlig [270]. The subroutine can determine both
real and complex eigenvalues and corresponding eigenvectors of a square matrix via the
QR method [271-273].

In order to calculate K, the inverse of matrix L is needed. To determine the
inverse of a matrix, BS3D calls a Fortran subroutine developed by Rego [274] based on

an algorithm explained by McFarlat [275] and Sniedovich [276].
5.3  VERIFICATION OF BS3D USING DIRECT SHEAR TEST EXAMPLES

5.3.1 Direct shear test up to peak shear strength

An example of monotonic direct shear test up to peak shear strength (with normal
stress in the range of 0.625 and 10 MPa) was simulated using BS3D. The problem
statement is summarized in Table 5.2 and the block geometry is depicted in Figure 5.6.

In BS3D simulations, after applying the normal stress as an external force in the
first stage, the shear stress was applied by adding a longitudinal force in the second stage.
However, in BS3D the additional forces are applied to the centroid of the block and, thus,
a shear force may cause a moment which does not occur in a well-conducted direct shear
test. In order to avoid this kind of unreal moment, in this example, the centroid of the
block was artificially moved to the lowermost face of the block.

Since the block has a high Young’s modulus (73.64 GPa) in this example, the
normal stiffness of the rock block was estimated using Equation (2.43) rather than BEM.
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Table 5.2: Statement of the direct shear test problem used to verify BS3D implementation

Parameter Value
Length of the block (m) 0.2
Width of the block (m) 0.2
Height of the block (m) 0.1
Unit weight of the block (kN/m”) 25.5
Young’s modulus (GPa) 73.64
Poisson ratio 0.23
Initial normal stiffness of fractures (MPa/mm) 8.3
Maximum closure of fractures (mm) 0.4
Lab size joint length (m) 0.1
JRC, 8
JCSy (MPa) 30
Base friction angle, @, (°) 20
Number of sensor points per edge, n, 6
Number of stages: 2
e Stage 1: Applying the normal force (step stage = 0.5; A,,,,=1)
e Stage 2: Applying the shear force (step stage = 0.01; A,,,,.=2)

Max increment number 500
Max iteration number 50

4

A

A 5 A o
Ag | A,
| A1 A 4
e R ——» Y
A 2
X As

Figure 5.6: Geometry of the cubic block considered in verification example

Figure 5.7 summarizes the results of BS3D simulations for normal stress between
0.625 MPa and 10 MPa. UDEC User manual [277] introduced a table (Table 5.3) for
JRCopitizeq Which is a little bit different from Barton’s table (Table 3.2). In this Section,
the direct shear test example was also simulated using the UDEC suggested JRCopitized

(Table 5.3 has been implemented in BS3D).
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Figure 5.7: Results of BS3D analyses (direct shear test verification example)
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Figure 5.6-Continued: Results of BS3D analyses (direct shear test verification example)

Table 5.3: UDEC Mobilized JRC at each shear displacement [277]

o
5 0 02 [03/045| 06 |08 | 1| 15 2 3 4 6 8 | 20| 40 | 60 | 80 | 100
peak
JR Clzobi/ized ¢ r ¢,.
- | -—=10 05 (075109 |1,08 |0.75|07]06)|05|05|04|03]02]0.1 0
JRCpeak i 4i
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In addition, Figure 5.7-(¢) shows the results of UDEC analyses (given in UDEC
User manual [277] and rerun in this study) for the case of normal stress equal to 10 MPa.
In UDEC simulation, after applying the normal stress on the lowermost face (4;4,4344),
the block was moved with constant horizontal velocity [277] which causes no unreal
moment.

The example introduced in this Section is a very simple direct shear test. Thus, the
stress-displacement curves and the normal displacement versus shear displacement
curves (for all constitutive models) were easily drawn by developing a spreadsheet in
Excel. Comparing the curves obtained employing Excel spreadsheet and the results of
BS3D simulations, it is found that in all cases the results of BS3D are exactly the same as
what models predict. In addition, it can be seen in Figure 5.7 that there are differences
between BS3D results obtained using UDEC JRC,ypisizea model in Table 5.3 and the
results of UDEC simulations. However, comparing these results with the curves given by
Excel spreadsheet, it is found that BS3D results are exactly the same as what the model in
Table 5.3 predicts.

In order to verify the implementation of anisotropic dilatancy, the same model
was sheared in eight different shearing directions (every 45°). Since JRC is the same in
all directions, the results should not depend on the direction considered. For all cases, the
results were indeed exactly the same as depicted in Figure 5.7.

Moreover, in order to verify the implementation of the predictive model
introduced in Section 3.4 for anisotropic dilatant behavior of fractures, the same model
was sheared in a direction with an angle of 0 (the angle between x-axis and the shearing
direction depicted in Figure 3.26) equal to 43.85°. JRC;and JRC; are assumed to be 10
and 5, respectively. Therefore, JRCy (JRC along the shearing direction) is estimated
using Equations (3.111) and (3.112) to be 10 which is the same as the magnitude of JRC
in the above introduced isotropic example. Consequently, the results for anisotropic
dilatancy should be the same as those depicted in Figure 5.7 (for isotropic dilatancy),

which indeed is the case.
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5.3.2 Progressive failure

In order to verify BS3D implementation for post-peak behavior of rock fractures,
the above example (normal stress equal to 10 MPa) were simulated. At peak shear
strength, all sensor points (located at the lowermost face of the block; 44,4344 in Figure
5.7) which were in contact with the block support are sheared off and, thus, the code
reports failure. Since the lowermost face of the block (4;4,4344) is parallel to x-y plane
(see Figure 5.7), after all sensor points are sheared off, the block has no resistance against
translation along x- and y-axes and rotation about the z-axis. However, the code reports
failure along the given direction of shear force. In order to prevent from failure detection
and being able to check the post-peak behavior, three springs were artificially added to
the model: two longitudinal springs along x- and y-axes with spring constants of 4000
MN/m and one rotational spring (to prevent rotational failure about the z-axis) with a
spring constant of 4000 MN.m/rad.

The results of BS3D simulations in Figure 5.8 were compared with the stress-
displacement curves and the normal displacement versus shear displacement curves
drawn using Excel spreadsheet. It is found that in all cases the results of BS3D are

exactly the same as what models predict.

05 Modified Barton's model
0.45 0.07 - - - - - Barton's model
wv 0-4 ”/
2 0.06 - e
5035 = -
5 03 | £ 005 - -
G 0.25 € 0.04 - e
= g /,/
2 02 S 0.03
3 Modified Barton's model ©
5 015 1 2002 -
§ o1 4 Tt Barton's model -.g
Soo0s | ¢ Mohr Coulomb £ 0.01 +
0 § 0 T T
0 20 40 60 001 O 10 20 30 40 50 60
Shear displacement (mm) Shear displacement (mm)
(a) Stress-displacement curve (b) Normal displacement-shear displacement curve

Figure 5.8: Results of BS3D analyses (direct shear test; progressive failure)
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This example was simulated by two approaches:
- Applying shear load in one stage
- Applying shear load in two different stages: (1) Stage 1: shear stress of 1 MPa; (2)
Stage 2: shear stress of 5 MPa
The results are exactly the same, which verifies that the code works well for multistage

analyses.

5.3.3 Rotation about vertical axis

To verify the ability of BS3D in analyzing large rotations, the block in Section
5.3.1 was subjected to a normal stress of 10 MPa and then was applied a torsion of 0.4
MN.m about vertical axis as the shear load. It should be mentioned that, in this case, at
peak (rotational) shear strength, all sensor points located at the lowermost face of the
block (A4;4,4344 in Figure 5.7 which were in contact) are sheared off. In order to prevent
from failure detection, three springs has been artificially added to the model: two
longitudinal springs along x- and y-axes with spring constants of 4000 MN/m and one
rotational spring (to prevent rotational failure about the z-axis) with a spring constant of
4000 MN.m/rad. Since the block has a high Young’s modulus (73.64 GPa) in this
example, the normal stiffness of the rock block was estimated using Equation (2.43)

rather than BEM. The result is depicted in Figure 5.9.

Barton's model

= = = = Modified Barton's model

Factor of Safety
=)
o
(o)}

0.04
-------------- Mohr-Coulomb's model
0.02
0.00
0 10 20 30 40 50 60

Rotation angle (degrees)

Figure 5.9: Verification example (large rotation)
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Considering dilatant behavior of the fracture and different moment arms for
fracture shear resistant, there is no simple method to check the results predicted using
BS3D. However, the following points are notable:

- The block shape after a large rotation of 60° does not change (see Table 5.4 for
the coordinates of block vertices before and after 60° rotation). However, using

DDA, the block expands when simulating problems involving large rotations
[278-285].

Table 5.4: Coordinates or the block edge before and after 60° rotation (BS3D analysis of
rotation about vertical axis)

Before rotation After 60° rotation
A;=[0 0 0] A, =[014 -0.04 0]
A, =102 0 o] A, =024 0.14 0]
A; =102 0.2 0]F A; =[0.06 0.24 0]
Coordinatesof | A, =[0 0.2 0]7 A, =[-0.04 0.06 0]"
the block vertices | As=[0 0 0.1]7 As =[0.14 —0.04 0.1]7
A¢=102 0 0.1]" Ag =1[0.24 014 1]
A, =[02 02 01]" | A4,=[0.06 0.24 0.1]"
Ag=1[0 02 0.1]" Ag = [-0.04 0.06 0.1]7

- The rotation matrices (Equation (2.1)), which map a vector attached to the rigid
body from the base configuration to current configuration are orthogonal

throughout the simulation as shown in Table 5.5 at different angles.

Table 5.5: Examples of rotation matrix (BS3D analysis of rotation about vertical axis)

Rotation angle 30° 45° 60°
N 0 V2o 2 0 1 V3 0
2 2 2 2 2 2
Rotation matrix 1 V3 N V3 1
2 2 ° 2z |z 2z °
0 0 1 0 0 1 0 0 1
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5.4 INSITUSTRESSES

5.4.1 Implementation and verification

In this dissertation, in situ stress has been implemented from scratch (in the same
approach that was explained in Section 2.12) because it was not included in Tonon's

Mathematica code. In order to verify implementation of in situ stresses, an example of

NG

Cauchy tetrahedron (Figure 5.10; A = ?-[1 1 1]") with the following in situ stresses

is simulated using BS3D:

1) In situ principal stresses are assumed to act vertically and horizontally with lateral
pressure coefficient equal to one (hydrostatic state of stress). The vertical
(horizontal) stress is equal to 1.5 MPa.

2) Insitu principal stresses are assumed to act vertically and horizontally with lateral
pressure coefficient equal to two. The vertical and horizontal stresses are equal to

1.5 MPa and 3 MPa, respectively.

05 01 04
3) In situ stresses are given by the following tensor: o={0.1 1 -0.3
01 1 ¢
A3
1,'0_,_1
- B
0 o y, O_} |
A O g AS

X

Figure 5.10: Cauchy tetrahedron
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Normal and shear stresses on all four faces are calculated using BS3D and the
results are checked against the analytical solution. The maximum error is about 0.1%

which comes from round-off error in floating point arithmetic.

5.4.2 In situ stresses around a circular tunnel

In order to implement the effect of a circular tunnel on the state of stresses in the
surrounding rock mass, formulation of stress distribution around a circular hole of radius
a in a 3D stress field (consider a Continuum Homogenous Isotropic Linearly Elastic,
CHILE, medium) is used (Figure 5.11). This formulation is based on generalized (or
complete) plain strain condition, in which all components of stress, strain, displacement,
body and surface forces are to be identical in all planes perpendicular to the hole axis
[286-290]:

ou _ oV _ ow _
0Z 07 o7

where U, V, and W are displacements (of any point of the medium) along the x, y, and z

0, (5.10)

axes.

=TTy

Tyzg

Tunnel radius = a

Figure 5.11: Stress distribution around circular tunnel (state of stresses)
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Effect of distance from excavation face, d, can be simulated using the following

ratio [291]:
A :i=0.27+0.71[1—exp(—1.5(iD] (5.11)
U, a

Different components of stresses (in the polar reference system of r6z) at point P

(depicted in Figure 5.11) can be calculated using the following equations [287]:

a2 O-Xo +O-0 3(14 4Cl2 O-xo —O'O .
O.r:(l_ﬂ_z Ty +H 1+ A= —A— 5 a (cos2¢9+rxyosm29) (5.12)

r r r
2 + 4 _
o,=|1+ ﬂa—z ST I P 3a4 Trs T (cos 20+, sin 29) (5.13)
r 2 r 2
a’(o, -0, :
o,=0, —4vi T(%)(cos 20+7,, sin 29) (5.14)
r
3a* 2a* o, -0, ( . )
T=—|1-A—+1—; sin26 + 7, cos26 (5.15)
r r 2
a2
T = —(1 -4 r_zJ(TyZ“ sinf+7,, cos 9) (5.16)
aZ
T, = (1 + /Ir—z](rm cos@ —7, sin 9) (5.17)

BS3D converts the state of stresses from the polar reference system (calculated
using Equations (5.12) through (5.17)) to the global reference system (see Figure 5.11 for
definition of reference systems). Once the stress tensor in the global reference system, o,
is known, the normal and shear stresses applied to each face of the block are determined
using the approach described in detail in Section 2.12

The above mentioned analytical method has been implemented in BS3D. If user
wishes to consider the effect of excavation (a circular tunnel) on in situ stresses, the
choice should be indicated in the main input file, “input.dat’. In this case, BS3D looks
for another input file, “tunnel stress.dat”, which includes values for the parameters

summarized in Table 5.6 (see Appendix B for an example of the input files).
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Table 5.6: Parameters required to consider the effect of circular tunnel on in situ stresses

Description | Symbols
The origin of the global reference system should be on the tunnel axis
Tunnel diameter 2a
Unit vector along tunnel axis in global reference system Tunnel i
Distance of excavation face from the origin d
. Depth of the tunnel axis Depth

Tunngl ?eference system is the same Unit weight of the rock mass y
as principal stress directions: X

Lateral pressure coefficient Ko

Tunnel reference system is not the

S .o Stress tensor:  (0xx, Oyy, Ozz Txy, Txz, T
same as principal stress direction: (oxx Oyy, 022, Txy, Txz, Tyz)

It should be noted that verification of commercial software (e.g.: UDEC) is
conducted by comparing numerical results with those obtained using the above
mentioned analytical method. In this research, the implementation has been checked by

comparing the results of BS3D analyses with hand calculations.

5.5 VERIFICATION OF BEM AND IN SITU STRESS IMPLEMENTATIONS

In order to verify the implementation of BEM and in situ stresses, an example is
introduced here. A cubic block with edge length of 1 m is shown in Figure 5.12-(a). The
mechanical properties of intact rock, rock mass, and fractures are summarized in Table
5.7. The block is first constrained along all its six faces while it is subjected to gravity
and hydrostatic in situ stress of 0.2 MPa. BS3D analyses have been performed using three
constitutive models for fractures (Mohr-Coulomb’s model, Barton’s Model, and
Modified Barton’s model) and employing both Equation 2.43 and BEM (Section 5.2.5) to
determine the normal stiffness of rock fractures. The calculated safety factors versus the
absolute vertical displacement of the block are depicted in Figure 5.12-(b) through (d).

The safety factors and the vertical displacements of the block at failure are exactly
the same as what models predict (calculated using Excel spreadsheet), which verify the
implementation of in situ stresses (and constitutive models). In addition, it can be seen in
Figure 5.12 that the results obtained from Equation (2.43) and BEM approach are the

same, which is to be expected because:
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1- The block is not as deformable as fractures and rock mass. Thus, the
deformability of the block should not be too effective and the method of

predicting the normal stiffness of the block should not affect the results.

2- It was shown in Section 5.2.5.3 that although Equation (2.43) may lead to large
errors in general, it works very well for the case of a block loaded in two
directions. The block is exactly loaded in two directions here. Thus, the
approximation has negligible errors in this case.

7 Block normal stiffness calculated using:
A 2.5 - Approximation (Equation (2.43))
- = =BEM
AS A8 2 - /
' >
A ! A @ .
6 3 7 ~§ 15 - ////
| S 7
! g 1 A /,/
| £ e
A, A, 05 -
P R R L SN V4
A2 0 T T 1
X Aj 0 0.1 0.2 03
Vertical displacement of rock block (mm)
(a) Geometry of the cubic rock block (b) Results of BS3D analyses using Mohr-
considered in verification example Coulomb’s model
Block normal stiffness calculated using: Block normal stiffness calculated using:
Approximation (Equation (2.43)) Approximation (Equation (2.43))
6 - - = «BEM 6 - - == «BEM
o 5 A /”’,
5 - e -
> /’ iy 4 / -
- ) qq;’ d
5 3 - S 3 -
5 8
- Q .
g% g2
14 1 -
O T T 1 O T T T T 1
0 2 4 6 0 0.2 0.4 0.6 0.8 1
Vertical displacement of rock block (mm) Vertical displacement of rock block (mm)

(c) Results of BS3D analyses using Barton’s
model

(d) Results of BS3D analyses using Modified
Barton’s model

Figure 5.12: Verification example for BEM and in situ stress implementations
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Table 5.7: Mechanical properties of intact rock, rock mass, and fractures (verification
example; in situ stresses and BEM implementations)

Parameter Value
Unit weight of the block (kN/m?) 30
Young’s modulus (GPa) of rock block 30
Poisson ratio of rock block 0.3
Young’s modulus (GPa) of rock mass 7
Poisson ratio of rock mass 0.2
Initial normal stiffness of fractures (GPa) 10
Maximum closure of fractures (mm) 0.1
Lab size joint length (m) |
JRC, 10
JCSy (MPa) 70
Base friction angle, ¢, (°) 30

5.6 WATER PRESSURE

Hydrostatic water pressure is implemented in BS3D in the same approach that
was explained in Section 2.9. The implementation has been verified using the example of
the direct shear test introduced in Section 5.3 (Figure 5.6); the normal and shear forces
are now applied by using hydrostatic water pressure instead of additional forces:

- Applying normal and shear forces as additional forces:

e Stage 1: a normal stress of 1 MPa was applied by considering a 0.04 MN
additional force in the negative vertical direction.

e Stage 2: a shear stress of 1 MPa was applied by considering a 0.04 MN
additional foce in horizontal direction.

- Applying normal and shear forces using hydrostatic water pressure:

e Stage 1: a normal stress of 1 MPa was applied by considering the hydrostatic
water pressure caused by a column of water with a height of 101.94 m on the
uppermost face of the block.

e Stage 2: a shear stress of 1 MPa was applied by considering the hydrostatic
water pressure caused by a column of water with a constant height of 101.94

m on one of the vertical faces of the block.
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It is expected that the results obtained using both methods of applying normal and
shear stresses be exactly the same (which was indeed found in BS3D results). It should be
mentioned that these results are different from the results obtained in Section 5.3 for the
case of normal stress of 1 MPa because, in Section 5.3, the centroid of the block was
artificially moved to the lowermost face of the block (4;4,4344 in Figure 5.7) to prevent
any moment, which was not done in this Section. Since the purpose of this Section is to
verify the hydrostatic water pressure implementation, this moment was counterbalanced
by applying additional forces. Although the simulated example is not the same as a real
direct shear test, it works for verifying the implementation of the hydrostatic water
pressure implementation.

Hydrodynamic water pressures caused by high-velocity jet impacts are also
incorporated in BS3D using the method described in detail in Chapter 8. In the cases that
user wants to consider the hydrodynamic pressure caused by high-velocity jet impact at
the bottom of plunge pools, another input file, “water pressure.dat”, is read by BS3D.
The input variables of “water pressure.dat” are given in Table 5.8 (see Appendix B for

an example of the input files).

Table 5.8: Input variables required for considering hydrodynamic water pressure
caused by high-velocity jet impact (water pressure.dat)

Description Symbols
Depth of water in the pool (m) depth
Distance to the jet center line (m) r

Jet diameter at pool surface (m) D;

Jet is circular or rectangular

Type of turbulence: rough, moderate, or smooth
Jet length (m) L
Jet velocity (m/s) Vi

5.7 SUMMARY

In this Chapter, algorithms and formulations implemented in BS3D but not
explained in other parts of this dissertation were briefly described. List of variables read

by BS3D to define the stability problem of a single rock block were introduced (see

190



Appendix B for examples of input files). An algorithm was proposed to remove the rigid-
body motions in the solution of an elastostatic problem discretized by the direct BEM
approach. The method was applied to the calculation of the normal stiffness of rock
blocks and verified with a simple example.

BS3D implementations (including fracture constitutive models, in situ stresses,

BEM, etc.) were verified using examples of direct shear test and Cauchy tetrahedron.
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CHAPTER6:  VALIDATION OF GENERAL SINGLE ROCK
BLOCK STABILITY ANALYSIS (BS3D)

6.1 INTRODUCTION

In computational mechanics, verification and validation have received increasing
attention because critical decisions are made based on the results of computational means
[292-297]. If verification is the process of determining that a model implementation
accurately represents the developer’s conceptual description of the model and the
solution to the model, validation is the process of determining the degree to which a
model is an accurate representation of the real world from the perspective of the intended
uses of the model. The problems entailed in a validation process are exacerbated in rock
engineering, where it is very difficult, or even impossible to test a rock mass at a
convenient and representative scale.

Rock engineers have attacked this issue by resorting to two validation methods,
namely case histories, and model tests. In order to validate BS3D with regard to one of
the most common failure modes, i.e. wedge failures, Section 6.2 uses the results from
physical model tests reported by Yeung et al. [18] as well as two case histories of slope

failures occurred in Turkey and reported by Kumsar et al. [26].
6.2 WEDGE FAILURE

6.2.1 Physical models used for validation

Physical models were constructed and tested by Yeung et al. [18] in order to
validate Block Theory and 3D-DDA as wedge stability analysis methods. In this Section,
the results of their study on tetrahedral rock blocks are used to validate BS3D [1] for
wedge failure.

As shown in Figure 6.1, a typical model considered by Yeung et al. [18] consisted
of a plaster wedge block placed on a supporting block, which contained the “*‘mould’” of
the wedge block. The plaster supporting block was attached to a wood base block, which

in its turn was attached to a tilt table inclined at an angle o with the horizontal direction.
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The wedge block could move freely without being obstructed by the tilt table. The
orientation of the model with respect to the dip direction of the tilt table was quantified
by angle B between the table dip direction and the orthogonal to the wedge intersection

vector. In each test, a model was fixed in the desired position corresponding to the chosen
o and B values; the wedge block was held in place and then released.

Yeung et al. [18] considered two different models. The dimensions of the two
wedge blocks, named Block 1 and block 2, are shown in Figure 6.2. The angle o varied

from 0° to 90° in 10° increments while the angle B was equal to 60°, 80°, and 240° for
Block 1 and equal to 60°, 80°, and 320° for Block 2.
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Figure 6.1: Physical model [298].
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Figure 6.2: Wedge Blocks [298].
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The coordinates of the block vertices in each of these cases are summarized in

Tables 6.1 and 6.2 (in the global reference system, which is illustrated in Figure 6.1).

Table 6.1: Coordinates of the block vertices in the global reference system - Block 1 (see
Figures 6.1 and 6.2)

Block's vertices
Pl @ A B Cc D
60 0 (13.9, 8.0,0.0) (3.5,22.1,0.0) (-3.5,9.9, 0.0) (0.0, 16.0, -7.0)
60 10 (13.6, 8.0, 2.4) (3.4,22.1,0.6) (-3.4,9.9,-06) | (1.2,16.0,-6.9)
60 | 18.25 (13.2,8.0,4.3) (3.3,22.1,1.1) (-3.3,9.9,-1.1) | (2.2,16.0,-6.6)
60 20 (13.0,8.0,4.7) (3.3,22.1,1.2) (-3.3,9.9,-1.2) | (2.4,16.0,-6.6)
60 30 (12.0, 8.0, 6.9) (3.0,22.1,1.8) (-3.0,9.9,-1.8) | (3.5,16.0,-6.1)
60 40 (10.6, 8.0, 8.9) (2.7,22.1,2.2) (-2.7,9.9,-2.2) | (4.5,16.0,-5.4)
60 50 (8.9, 8.0, 10.6) (2.2,22.1,2.7) (-2.2,9.9,-2.7) | (5.4,16.0,-4.5)
60 60 (6.9, 8.0, 12.0) (1.8,22.1, 3.0 (-1.8,9.9,-3.0) | (6.1, 16.0,-3.5)
60 70 (4.7, 8.0, 13.0) (1.2,22.1,3.3) (-1.2,9.9,-3.3) | (6.6,16.0,-2.4)
60 80 (2.4, 8.0, 13.6) (0.6,22.1, 3.4) (-0.6,9.9,-34) | (6.9,16.0,-1.2)
60 90 (0.0, 8.0, 13.9) (0.0, 22.1, 3.5) (0.0,9.9,-3.5) (7.0, 16.0, 0.0)
80 0 (15.8, 13.2, 0.0) (1.2,22.9,0.0) (-1.2,9.1,0.0) (0.0, 16.0, -7.0)
80 10 (15.5, 13.2, 2.7) (1.2,22.9,0.2) (-1.2,9.1,-0.2) | (1.2,16.0,-6.9)
80 | 17.17 (15.1,13.2,4.7) (1.2,22.9,0.4) (-1.2,9.1,-0.4) | (2.1,16.0,-6.7)
80 20 (14.8,13.2,5.4) (1.1,22.9,0.4) (-1.1,9.1,-0.4) | (2.4,16.0,-6.6)
80 30 (13.6,13.2, 7.9) (1.1, 22.9, 0.6) (-1.1,9.1,-0.6) | (3.5, 16.0,-6.1)
80 40 (12.1,13.2,10.1) (0.9, 22.9, 0.8) (-0.9,9.1,-0.7) | (4.5, 16.0,-5.4)
80 50 (10.1, 13.2,12.1) (0.8, 22.9,0.9) (-0.8,9.1,-0.9) | (5.4,16.0,-4.5)
80 60 (7.9, 13.2, 13.6) (0.6,22.9,1.1) (-0.6,9.1,-1.1) | (6.1,16.0,-3.5)
80 70 (5.4,13.2,14.8) (0.4,229,1.1) (-0.4,9.1,-1.1) | (6.6,16.0,-2.4)
80 80 (2.7, 13.2, 15.5) (0.2,22.9,1.2) (-0.2,9.1,-1.2) | (6.9,16.0,-1.2)
80 90 (0.0, 13.2, 15.8) (0.0, 22.9,1.2) (0.0,9.1,-1.2) (7.0, 16.0, 0.0)
240 0 (-13.7, 24.0, 0.0) (-3.5,9.9,0.0) (3.5,22.1,0.0) (0.0, 16.0, -7.0)
240 10 (-13.6,24.0,-2.4) | (-3.4,9.9,-0.6) (3.4,22.1,0.6) (1.2, 16.0, -6.9)
240 20 (-13.0,24.0,-4.7) | (-3.3,9.9,-1.2) (3.3,22.1,1.2) (2.4, 16.0, -6.6)
240 30 (-12.0,24.0,-6.9) | (-3.0,9.9,-1.8) (3.0,22.1,1.8) (3.5, 16.0, -6.1)
240 40 (-10.6,24.0,-8.9) | (-2.7,9.9,-2.2) (2.7,22.1,2.2) (4.5, 16.0, -5.4)
240 50 (-8.9, 24.0,-10.6) | (-2.2,9.9,-2.7) (2.2,22.1,2.7) (5.4, 16.0, -4.5)
240 60 (-6.9,24.0,-12.0) | (-1.8,9.9,-3.0) (1.8,22.1, 3.0 (6.1, 16.0, -3.5)
240 | 68.1 | (-5.2,24.0,-12.9) | (-1.3,9.9,-3.2) (1.3,22.1,3.2) (6.5, 16.0, -2.6)
240 70 (-4.7,24.0,-13.0) | (-1.2,9.9,-3.3) (1.2,22.1,3.3) (6.6, 16.0, -2.4)
240 80 (-2.4,24.0,-13.6) | (-0.6,9.9,-3.4) (0.6, 22.1, 3.4) (6.9, 16.0, -1.2)
240 90 (0.0, 24.0, -13.9) (0.0,9.9, -3.5) (0.0, 22.1, 3.5) (7.0, 16.0, 0.0)
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Table 6.2: Coordinates of the block vertices in the global reference system - Block 2 (see
Figures 6.1 and 6.2)

Block's vertices
P o A B Cc D
60 0 (6.1,3.5,0.0) (35,13.1,0.0) | (-35,0.9,0.0) | (0.0,7.0,-7.0)
60 | 10 (6.0, 3.5,1.1) (3.4,13.1,06) | (-3.4,09,-06) | (1.2,7.0,-6.9)
60 | 20 (5.7, 35,2.1) (3.3,13.1,1.2) | (-3.3,09,-1.2) | (2.4,7.0,-6.6)
60 30 (5.3,3.5,3.0) (3.0,13.1,1.8) | (-3.0,0.9,-1.8) (3.5,7.0,-6.1)
60 40 (4.6, 3.5,3.9) (2.7,13.1,22) | (-2.7,0.9,-2.2) (4.5,7.0,-5.4)
60 | 50 (3.9, 3.5, 4.6) (2.2,13.1,2.7) | (-2.2,09,-27) | (5.4,7.0,-45)
60 | 60 (3.0, 35,5.3) (1.8,13.1,3.0) | (-1.8,0.9,-3.0) | (6.1,7.0,-3.5)
60 | 70 (2.1,35,5.7) (1.2,13.1,33) | (-1.2,0.9,-33) | (6.6,7.0,-2.4)
60 80 (1.1, 3.5,6.0) (0.6,13.1,3.4) | (-0.6,0.9,-3.4) (6.9,7.0,-1.2)
60 90 (0.0,3.5,6.1) (0.0, 13.1, 3.5) (0.0, 0.9, -3.5) (7.0, 7.0,0.0)
80 0 (6.9, 5.8,0.0) (1.2,13.9,0.0) | (-1.2,0.1,0.0) | (0.0,7.0,-7.0)
80 | 10 (6.8,5.8,1.2) (1.2,13.9,0.2) | (-1.2,0.1,-0.2) | (1.2,7.0,-6.9)
80 20 (6.5, 5.8, 2.4) (1.1,13.9,04) | (-1.1,0.1,-0.4) (2.4,7.0, -6.6)
80 30 (6.0, 5.8, 3.4) (1.1,13.9,0.6) | (-1.1,0.1,-0.6) (3.5,7.0,-6.1)
80 | 40 (5.3,5.8, 4.4) (0.9,13.9,0.8) | (-0.9,0.1,-0.8) | (4.5,7.0,-5.4)
80 | 50 (4.4,5.8,5.3) (0.8,13.9,0.9) | (-0.8,0.1,-09) | (5.4,7.0,-45)
80 60 (3.4,5.8,6.0) (0.6,13.9,1.1) | (-0.6,0.1,-1.1) (6.1, 7.0, -3.5)
80 70 (2.4,5.8,6.5) (0.4,13.9,1.1) | (-0.4,0.1,-1.1) (6.6, 7.0, -2.4)
80 | 80 (1.2,5.8, 6.8) (0.2,13.9,1.2) | (-0.2,0.1,-1.2) | (6.9,7.0,-1.2)
80 | 90 (0.0, 5.8, 6.9) (0.0,13.9,1.2) | (0.0,0.1,-1.2) (7.0,7.0,0.0)
320 0 (-4.5, 1.6, 0.0) (5.4, 25, 0.0) (-5.4,11.5,0.0) (0.0, 7.0, -7.0)
320 | 10 (-4.4,1.6,-0.8) (5.3,25,09) | (-5.3,115,-0.9) | (1.2,7.0,-6.9)
320 | 10.25 | (-4.4,1.6,-0.8) (5.3,25,1.0) | (-5.3,11.5,-1.0) | (1.2,7.0,-6.9)
320 | 20 (-4.2,1.6,-1.5) (5.0,25,1.8) | (-5.0,11.5,-1.8) | (2.4,7.0,-6.6)
320 | 30 (-3.9,1.6,-2.2) (4.6,25,2.7) | (-46,115,-27) | (35,7.0,-6.1)
320 | 40 (-3.4,1.6,-2.9) (4.1,25,34) | (-4.1,115,-34) | (45,7.0,-5.4)
320 | 50 (-2.9, 1.6, -3.4) (3.4,25,4.1) | (-34,115,-4.1) | (5.4,7.0,-4.5)
320 | 60 (-2.4,1.6,-3.9) (2.7,25,4.6) | (-2.7,115,-46) | (6.1,7.0,-3.5)
320 | 70 (-1.5,1.6,-4.2) (1.8,25,50) | (-1.8,11.5,-5.0) | (6.6,7.0,-2.4)
320 | 80 (-0.8, 1.6, -4.4) (0.9,25,53) | (-0.9,115,-53) | (6.9,7.0,-1.2)
320 | 85 (-0.4, 1.6, -4.5) (05,25,53) | (-0.5,115,-5.3) | (7.0,7.0,-0.6)
320 | 90 (0.0, 1.6, -4.5) (0.0, 2.5,5.4) (0.0,11.5,-5.4) (7.0, 7.0, 0.0)

Figure 6.2 shows the possible wedge sliding directions (Direction 1 or Direction
2) and describes the local reference system. Each wedge block was bounded by two joint
planes (Plane 1 and Plane 2) and two free surfaces, one horizontal and one vertical for

o=0). The average friction angle determined by Yeung et al. [18] out of 10 direct shear
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test measurements was equal to 32.5; the density of the blocks was equal to 1400 kg/m?;
the Young’s modulus was equal to 1x10" N/m% and the Poisson’s ratio was equal to 0.49
[18]. BS3D implements both Mohr-Coulomb and Barton [21, 22, 92, 132] failure criteria.
Since BS3D takes joint deformability into account using Goodman [78] and Barton-
Bandis models [79, 80, 299] (or Modified Barton’s model, developed in Chapter 3), it
also requires additional input data, such as initial stiffness and maximum closure of the
discontinuities. The appropriate magnitude of these two parameters were assumed in this
study as described below because they were not available in Ref. [18].

The constitutive model for the rock joints used in the BS3D analysis was Mohr-
Coulomb failure criterion with no dilatancy, because this is what is assumed in Block
Theory and 3D DDA and because only the friction angle was reported by Yeung et al.
[18]. In addition, the shear stiffness was assumed to be proportional to (one tenth of) the
normal stiffness. Thus, the allocated values of JCS and JRC have no effect on the results;
they are effective only when Barton-Bandis model is used for discontinuities.

Appropriate ranges for the initial stiffness and the maximum closure of joints
were determined based on a literature review and a parametric study carried out to find
the effect of these parameters on the stability of a wedge. A stable case, Block 1 with
=60° and a=10°, and an unstable case, Block 1 with 3=60° and a=30°, were considered.
The initial stiffness was changed from 100 to 10,000 MPa/m and the maximum closure
was changed from 0.01 to 0.5 mm, considering their possible ranges for different types of
rocks as reported by Bandis et al. [80]. It was found that in these ranges the failure modes
are the same as in the physical model and the safety factors are the same as calculated
using limiting equilibrium analysis in Block Theory. Thus, changing the initial stiffness
and the maximum closure has no effect on the results; because the stress level is low as
compared to the initial stiffness range, the normal stiffness is very close to the initial
normal stiffness. The investigation was continued to find when these parameters have an
effect on the results. It was found that for a very low value of initial stiffness (40 MPa/m)
and the maximum closure of 0.1 mm, the results changed (The safety factor of Block 1

with B=60° and a=10° decreased from 1.4 to 0.9 by decreasing the initial stiffness from
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100 MPa/m to 40 MPa/m and the safety factor of Block 1 with p=60° and «=30°
decreased from 0.7 to 0.4 by decreasing the initial stiffness from 100 MPa/m to 40
MPa/m). Based on the normal stiffness values reported by Bandis et al. [80], Kulhawy
and Fred [160], Panet and Guenot [291], and Rosso [300], the initial stiffness of the
discontinuities was assumed to be equal to 300 MPa/m with a maximum closure of

0.1mm, which are reasonable values for the plaster used to make the physical models.

6.2.2 VALIDATION USING PHYSICAL MODELS

Tables 6.3 and 6.4 give the results obtained from the physical model tests (failure
modes) [18], Block Theory analyses based on limiting equilibrium (factors of safety and
modes of failure), and BS3D (safety factors, static and dynamic failure modes). Block
Theory analyses were independently carried out by the author and the results were found
to be in agreement with those reported in Yeung et al. [18]. In Tables 6.3 and 6.4, wedge

177"

failures are indicated as “Wedge-i” and plane failures are indicated as “Plane-i” ”, where
“I”” indicates the plane number (either 1 or 2 as indicated in Figures 6.2). Dynamic failure
modes are given using the block centroid’s displacements and the rotation vectors about
the centroid.

It should be considered that static and dynamic failure modes can be different
from each other. In order to illustrate the static and dynamic failure modes, the base
configuration versus static and dynamic failure modes of Block 1 when =60° and «=30°
are depicted in Figure 6.3. It is shown that the static failure mode is wedge sliding in
Direction 1, for which the displacement vector in the global reference system is (-0.49,
0.46, -0.74, 0, 0, 0)", while the dynamic failure mode is roto-translational sliding with
displacement vector equal to (-0.75, 0.5, -0.43, 0.5, 0.87, 0.04)" in the global reference
system. In the physical model tests, four different types of failure modes were observed
by Yeung et al. [18]: sliding on a single plane (plane 1 or 2), sliding on two planes

simultaneously (wedge sliding in direction 1 or 2), free falling, and torsional sliding.
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Table 6.3: Results from physical models [18], Block Theory, and BS3D analyses for

Block 1
P&);Ség?l Block Theory BS3D
B a Failure Failure Static _ _ Dynamic Failure Mode _ _
Mode F.S. Mode F.S. | Failure Centroid dir. of Displacement Vector about which rotation occur
Mode Global Local Global Local

60 0 Stable 1.98 Stable 2.0 Stable - - - -

60 10 Stable 1.37 Stable 1.4 Stable - - - -

60 | 18.3 | Wedge-1 | 1.04 | Wedge-1 | 1.0 | Wedge-1 | (-0.82,0.5,-0.27) (0,1,0) (0.46, 0.85, 0.24) (1,0,0)

60 20 Wedge-1 | 0.99 | Wedge-1 1.0 | Wedge-1 | (-0.81,0.5,-0.3) (0,1,0) (0.45, 0.85, 0.26) (1,0,0)

60 30 Wedge-1 0.72 Wedge-1 0.7 Wedge-1 (-0.75, 0.5, -0.43) 0,1,0) (0.5, 0.87,0.04) (0.98,0.04, -0.21)
60 40 Wedge-1 0.51 Wedge-1 0.5 Wedge-1 (-0.75, 0.5, -0.43) 0,1,0) (0.37, 0.86, 0.35) (1,0,0)

60 50 Plane-2 | 0.36 Plane-2 0.4 | Wedge-1 | (-0.75,0.5,-0.43) (0,1,0) (0.22,0.84,05) | (0.99,-0.03,0.15)
60 60 Plane-2 | 0.28 Plane-2 0.3 | Plane-2 | (-0.75,0.5,-0.43) (0,1,0) (0.21, 0.86, 0.47) (1,0,0)

60 70 Plane-2 | 0.21 Plane-2 0.2 Plane-2 | (-0.75, 0.5, -0.43) (0,1,0) (0.02, 0.94, 0.33) (0.98, 0.2, 0.09)
60 | 80 Plane-2 | 0.13 Plane-2 0.1 | Plane-2 | (-0.75,0.5,-0.43) (0,0.99,0.11) | (-0.63,0.57,-0.54) | (0.17,0.83,0.52)
60 90 Plane-2 | 0.05 Plane-2 0.1 | Plane-2 | (-0.75,0.5,-0.43) (0,0.96,0.28) | (-0.57,0.26,-0.78) | (-0.16, 0.81,0.57)

- 0 Stable 1.97 Stable 2.0 Stable - - -

- 10 Stable 131 Stable 13 Stable - - -

80 | 17.17 | Wedge-1 | 1.00 | Wedge-1 1.0 | Wedge-1 | (-0.94,0.17, -0.29) (0,1,0) (0.16, 0.98, 0.08) (1,0,0)

80 20 | Wedge-1 | 092 | Wedge-1 | 09 | Wedge-1 | (-0.93,0.17,-0.34) (0,1,0) (0.16, 0.98, 0.09) (1,0,0)

80 30 | Wedge-1 | 064 | Wedge-1 | 06 | Wedge-1 | (-0.85,0.17, -0.49) (0,1,0) (0.17,0.99, 0.04) (1,0,0)

80 40 Wedge-1 | 044 | Wedge-1 0.4 | Wedge-1 | (-0.75,0.17, -0.63) (0,1,0) (0.22,0.98,-0.05) | (0.98,0.04,-0.18)
80 50 Wedge-1 | 026 | Wedge-l | 0.2 | Wedge-1 | (-0.63,0.17,-0.75) (0,1, 0) (0.08,0.98,0.17) (1,0,0)

80 60 Plane-2 | 0.12 Plane-2 0.1 | Wedge-1 | (-0.49,0.17,-0.85) (0,1,0) (0.01,0.98,0.22) | (0.99,-0.02,0.1)
80 70 Plane-2 | 0.04 Plane-2 0.0 | Plane-2 | (-0.34,0.17,-0.93) (0,1,0) (-0.04, 0.98, 0.18) (1,0,0)

80 80 Freefall. | 0.00 | Free fall. 0.0 | Freefall. | (-0.17,0.17,-0.97) (0,1,0) (0.01, 0.98, 0.18) (1,0,0)

80 90 Freefall. | 0.00 | Free fall. 0.0 | Freefall. | (-0.16,0.14,-0.98) | (-0.03,0.99,0.16) | (-0.02,0.61,-0.79) | (0.46,0.89, 0.02)
240 0 Stable 1.97 Stable 2.0 Stable - - - -
240 10 Stable 3.24 Stable 3.2 Stable - - - -
240 20 Stable 8.04 Stable 8.0 Stable - - - -
240 30 Stable 16.85 Stable 17.0 Stable - - - -
240 40 Stable 3.94 Stable 4.0 Stable - - - -
240 50 Stable 211 Stable 2.2 Stable - - - -
240 60 Stable 1.35 Stable 14 Stable - - - -
240 | 68.1 Wedge-2 0.98 Wedge-2 1.0 Wedge-2 | (-0.03,0.26,0.97) | (-0.67,0.64,0.39) | (0.66,0.73,-0.18) | (-0.68,-0.3,-0.68)
240 | 70 Wedge-2 | 091 | Wedge-2 | 0.9 | Wedge-2 | (-0.69,0.68,0.24) | (-0.58,-0.33,0.73) | (0.66,0.73,-0.15) | (-0.68,-0.3, -0.68)
240 | 80 Plane-1 | 0.63 Plane-1 0.6 | Wedge-2 (-0.98,0,0.17) (0,0, 1) (-0.13,0.93,-0.33) | (-0.63, -0.77, 0.07)
240 | 90 Plane-1 | 0.47 Plane-1 05 | Wedge-2 (-1,0,0) (0,0,1) (0,1,0) (-0.82, -0.57, 0.05)
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Table 6.4: Results from physical models [18], Block Theory, and BS3D analyses for

Block 2
Plt%ség?l Block Theory BS3D
B a ) . Static Dynamic Failure Mode
F&'géree F.S. F&'(I)lége F.S. Failure Centroid dir. of Displacement Vector about which rotation occur
Mode Global Local Global Local
60 0 Wedge-1 | 0.78 | Wedge-1 0.8 Wedge-1 (-0.87, 0.5, 0) 0,1,0) (0.5,0.87,0) (1,0,0)
60 | 10 | Wedge-1 | 057 | Wedge-1 | 0.6 | Wedge-1 | (-0.85,0.5,-0.15) (0,1,0) (0.5,0.86,-0.05) | (0.99,0.01,-0.14)
60 | 20 | Wedge-1 | 0.41 | Wedge-1 | 04 | Wedge-1 | (-0.81,0.5,-0.3) (0,1,0) (0.53,0.81,-0.23) | (0.92,0.04, -0.4)
60 | 30 Plane-2 | 0.27 | Plane-2 03 | Wedge-1 | (-0.75,0.5,-0.43) (0, 1,0) (0.56, 0.82,-0.11) | (0.93, 0.03, -0.4)
60 | 40 Plane-2 | 0.21 | Plane-2 0.2 Plane-2 (-0.66, 0.5, -0.56) (0,1,0) (0.43, 0.87, 0.25) (1,0,0)
60 50 Plane-2 0.14 Plane-2 0.1 Plane-2 (-0.56, 0.5, -0.66) 0,1,0) (0.43,0.86,0.26) | (0.99, 0.01, -0.16)
60 | 60 Plane-2 | 0.07 | Plane-2 0.1 Plane-2 (-0.43, 0.5, -0.75) (0,1,0) (0.38,0.86,0.34) | (0.99, 0.01, -0.16)
60 | 70 Plane-2 | 0.00 | Plane-2 0.0 Plane-2 (-0.3,0.5, -0.81) (0,1,0) (0.34,0.86,0.39) | (0.98,0.10, -0.18)
60 | 80 Plane-2 | 0.07 | Plane-2 0.1 Plane-2 (-0.2, 0.5, -0.84) (0,1,0) (-0.23,0.35,0.91) | (0.73,-0.56, 0.39)
60 | 90 Plane-2 | 0.14 | Plane-2 0.1 Plane-2 | (-0.22,0.49,-0.85) | (0,0.98,0.22) | (0.3,0.95, 0.08) (0.86, 0.41, -0.3)
80 0 Wedge-1 | 0.78 | Wedge-1 | 0.8 | Wedge-1 (-0.98, 0.17, 0) (0,1,0) (0.17,0.98, 0) (1,0,0)
80 | 10 | Wedge-1 | 055 | Wedge-1 | 0.6 | Wedge-1 | (-0.97,0.17,-0.17) (0,1,0) (0.18, 0.98, -0.03) (1,0,0)
80 | 20 | Wedge-1 | 0.37 | Wedge-1 | 04 | Wedge-1 | (-0.93,0.17,-0.34) (0,1,0) (0.19,0.98,-0.06) | (0.99, 0.01,-0.12)
80 | 30 | Wedge-1 | 0.21 | Wedge-1 | 0.2 | Wedge-1 | (-0.85,0.17,-0.49) (0,1,0) (0.21,0.97,-0.07) | (0.99, 0.01, -0.17)
80 40 Plane-2 0.09 Plane-2 0.1 Wedge-1 | (-0.75, 0.17, -0.63) 0,1,0) (0.17, -0.98, -0.05) (1,0,0)
80 | 50 Plane-2 | 0.01 | Plane-2 0.0 Plane-2 | (-0.63,0.17, -0.75) (0,1,0) (0.71,0.21,-0.67) | (0.2, 0.09, -0.98)
80 | 60 | Freefall. | 0.00 | Freefall. | 00 | Freefall. | (-0.5,0.17,-0.85) (0, 1,0) (0.09, 0.98, 0.14) (1,0,0)
80 70 Free fall. | 0.00 Free fall. 0.0 Free fall. (-0.34,0.17, -0.92) 0,1,0) (0.57,0.81, -0.11) (0.82, 0.05, -0.57)
80 80 Free fall. | 0.00 Free fall. 0.0 Free fall. | (-0.17,0.17,-0.97) 0,1,0) (0.18,0.97, 0.13) (0.99, 0.01, -0.16)
80 90 Free fall. | 0.00 | Free fall. 0.0 Free fall. (0, 0.17, -0.98) 0,1,0) (0.16,0.97,0.16) | (0.99, 0.01, -0.16)
320 | 0 | Wedge-1 | 0.78 | Wedge-1 | 0.8 | Wedge-1 (0.64, 0.77, 0) (0,1,0) (0.77, -0.64, 0) (1,0,0)
320 | 10 | Wedge-1 | 0.98 | Wedge-1 | 1.0 | Wedge-1 | (0.63,0.77,0.11) (0,1,0) (0.79,-0.6,-0.13) | (0.96, 0.02, -0.27)
320 | 10.3 | Wedge-1 | 0.99 | Wedge-1 1.0 Wedge-1 (0.63, 0.77, 0.11) 0,1,0) (0.79,-0.6,-0.13) | (0.96, 0.02, -0.27)
320 20 Stable 1.26 Stable 13 Stable - - - -
320 30 Stable 1.70 Stable 1.7 Stable - - - -
320 40 Stable 2.61 Stable 2.6 Stable - - - -
320 50 Stable 5.89 Stable 5.9 Stable - - - -
320 60 Stable 5.39 Stable 5.4 Stable - - - -
320 70 Stable 2.24 Stable 2.2 Stable - - - -
320 80 Stable 1.33 Stable 13 Stable - - - -
320 | 85 TTS! 1.07 | Plane-2 1.1 TTS? (-0.99, 0.02, 0.1) (0,0, 1) (0.15, 0.98, -0.15) | (-0.73, 0.66, -0.16)
320 | 90 Plane-2 | 0.89 | Plane-2 0.9 Plane-2 (-1,0,0) (0,0, 1) (0.15, 0.96,-0.23) | (-0.79, 0.6, -0.15)
320 0 Wedge-1 | 0.78 | Wedge-1 0.8 Wedge-1 (0.64,0.77, 0) 0,1,0) (0.77,-0.64, 0) (1,0,0)

1 Two possible failure modes: (1) Translational sliding on plane 2, and (2) torsional sliding on Plane 2.
2 Two possible failure modes: (1) Translational sliding on plane 2, and (2) torsional sliding on Plane 2:
Direction of centroid displacement in the global reference system is (-0.67,0.60,-0.44) and in the local one is (-0.76,0.14,0.63).
Vector about which rotation occur in the global reference system is (-0.5,0.07,0.86) and in the local one is (0.58,0.58,0.58).
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Figure 6.3: Calculated failure modes for Block 1 with initial configuration of 3=60° and
o=30°: (a) Static failure mode versus initial configuration (b) Dynamic failure
mode versus initial configuration [301].

BS3D analyses were performed for all combinations of B and a for which the
results of physical models were available. Each analysis consisted of two stages: in the
first stage, the block is unilaterally constrained on all its faces, and the rock block
“consolidates” under its own weight. In the second stage, the constraints are removed
except along the two faces of the supporting block shown in Figure 6.1; this simulates the
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block’s release occurred in the physical model. In each stage, loads were increased by
using increments of the control parameter equal to 0.1. Therefore, the precision of the
safety factors is equal to 0.1. When comparing the results obtained using BS3D with
Block Theory analyses, it can be seen that the safety factors calculated using BS3D are
the same as the rounded safety factors obtained using Block Theory.

The static failure modes predicted by BS3D agree well with those observed in the
physical model tests of Yeung et al. [18]. Disagreement occurs only for six cases (out of
64 total cases considered in this study), in which sliding on one plane was observed in the
physical models, whereas BS3D predicts sliding on two planes, although the safety
factors obtained from both methods are the same. To illustrate the reason for such
differences, the safety factors and directions of sliding on one or two planes for these six
cases are determined using Block Theory and associated limiting equilibrium analysis;

the results are summarized in Table 6.5.

Table 6.5: Safety factor and sliding direction for sliding on 1 or 2 planes

Sliding on one plane? Sliding on two planes
Block number B | a . N . L
F.S. | displacement direction | F.S. | displacement direction
Block 1 60 | 50 | 0.36 (-0.27, 0.42, -0.87) 0.41 (-0.2, 0.46, -0.87)
Block 1 80 | 60 | 0.12 (-0.13, 0.14, -0.98) 0.14 (-0.1, 0.16, -0.98)
Block 1 240 | 80 | 0.63 (-0.55, 0.43, -0.71) 0.65 (-0.53, 0.46, -0.71)
Block 1 240 | 90 | 0.47 (-0.5, 0.32, -0.8) 0.59 (-0.4, 0.46, -0.79)
Block 2 60 | 30 | 0.27 (-0.2, 0.34, -0.92) 0.30 (-0.18, 0.35, -0.92)
Block 2 80 | 40 | 0.09 (-0.1, 0.1, -0.99) 0.12 (-0.08, 0.12, -0.99)

! The Block theory analysis using limiting eqilibrium method

In these six cases, the safety factors and displacement directions for sliding on one
or two planes are very close to each other, which can hardly be distinguished in physical
models. The differences between the results of BS3D analysis and those obtained from
either physical models or Block Theory analyses originate from the following reasons:

1) Since the directions of sliding are so close one to the other, it could have

been difficult to distinguish between one-plane and two-plane sliding
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modes occurred in the physical models. Probably sliding on two planes in
the physical models could have been easily mistaken for sliding on one
plane.

2) BS3D considers the deformability of the discontinuities, whereas Block

Theory does not.

In addition, it can be seen in Table 6.4 that BS3D correctly predicts the failure
mode of Block 2 when B=320° and o=85° while Block Theory does not. In some
repeated tests, the observed failure modes were either translation or torsional sliding on
Plane 2; a vertex of the tetrahedral wedge appeared to be stuck to the supporting plane,
thus causing rotation about the vertex [18]. The failure mode predicted by Block Theory
is only (translational) sliding on Plane 2 because Block Theory does not consider
torsional sliding as a failure mode. However, BS3D can deal with rotational as well as
translational failure modes, and thus it very well captures these failure modes. In this
case, BS3D correctly predicted two possible static failure modes: (1) translational sliding
on Plane 2, and (2) torsional sliding on Plane 2; they correspond exactly to the observed
failure modes. Figure 6.4 shows the initial configuration together with the static and
dynamic failure modes predicted by BS3D, which are both torsional sliding on Plane 2.

Moreover, 3D DDA analysis was carried out for Block 2 when 3=320° and .=85°
by Yeung et al. [18] and Figure 6.5 shows the failure mode predicted using 3D DDA. For
this case, to simulate the torsional sliding mode observed in the physical model, Yeung et
al. fixed the vertex of the wedge that appeared to be stuck during the test in the analysis,
thus using 3D DDA artificially by forcibly inducing the rotation about this vertex [18]. If
the vertex were not fixed, 3D DDA would give a mode of “translational sliding on Plane
2”, as observed sometimes in the tests for this case [18]. It should be considered that 3D
DDA can only find one of the failure modes at a time, and some previous information on
failure mode may be necessary to correctly obtain torsional sliding from 3D DDA.
However, BS3D could correctly find both possible failure modes (torsional sliding and

translational sliding), without resorting to any prior information or numerical artifacts.
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Figure 6.4: Calculated failure modes for Block 2 with initial configuration of oo = 85° and
B =320° [301].

Figure 6.5: 3D DDA result for torsional sliding case; Block 2 with initial configuration of
B=320° and a=85° [18].
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For each of the other three observed different failure modes, one case was chosen
and 3D DDA analysis was conducted by Yeung et al. [18]. The results of these three
cases agree very well with those observed in the physical model tests as well as the
results obtained by Block Theory and BS3D analysis. According to the 3D DDA
analysis, the failure mode of Block 1 was predicted to be “free falling” when =80° and

a=80°. Figure 6.6 shows failure modes predicted using 3D DDA and BS3D.

Initial
Configuration

Static Failure
Mode

(a) (b)

Figure 6.6: Results of analyses for free falling case; Block 1 with initial configuration of
=80° and a.=80°: (a) 3D DDA [18] (b) BS3D [301].

Furthermore, the failure mode of Block 1 when B=60° and a=60° should be
“sliding on Plane 2”, based on 3D DDA analysis. Figure 6.7 shows failure modes
predicted using 3D DDA and BS3D. In addition, 3D DDA predicted that Block 1 would
fail by wedge sliding in Direction 1, when 3=60° and a=30°. Figure 6.8 shows failure
modes predicted using 3D DDA and BS3D.
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Figure 6.7: Results of analyses for plane 2 sliding case; Block 1 with initial configuration
of B=60° and a=60°: (a) 3D DDA [18] (b) BS3D [301].
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Figure 6.8: Result of analyses for wedge sliding case; Block 1 with initial configuration
of B=60° and a=30°: (a) 3D DDA [18] (b) BS3D [301].
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In addition, Tonon [1] demonstrated the ability of BS3D to deal with
simultaneous translational and rotational failure modes in two examples; examples 2 and
3in ref. [1]. In order to compare the ability of 3D DDA and BS3D in stability analysis of
blocks with rotational failure modes, the literature was reviewed to find suitable
examples. Shi [61] explained 3D DDA using three examples, none of which contains a
rotational failure mode. Four examples were solved using 3D DDA by Liu et al. [302]:
block sliding along an incline under the action of gravity; a rigid block excited by the
movement of the foundation; lift-off motion of a rigid block resting on a rigid foundation;
and scattering of a system of packed cubes. Wang et al. [303] solved three examples
using 3D DDA: wedge failure analysis; stability analysis of a gravity dam; and dynamic
stability analysis of the upper part of Konya dam. Hatzor and Feintuch [304]
demonstrated the validity of dynamic block displacement using DDA by a 2D example of
block sliding. Moreover, Hatzor et al. [305] reported a case history of dynamic stability
of jointed rock slope which was simulated by DDA. None of the above examples can be
used to compare the capabilities of 3D DDA and BS3D in analyzing the stability of

single blocks that may have rotation in their failure modes.

6.2.3 Validation using case histories

Besides physical models, two case histories of slope wedge failure are used to
validate BS3D. The case histories used in this study were reported by Kumsar et al [26]
and were also used by Yeung et al. [18].

6.2.3.1 Case 1: Wedge failure in an Open Museum

A wedge failure occurred in a thick and soft tuff layer of Zelve Open Museum in
the Cappadocia Region of Central Anatolia, Turkey [26]. Two joints with dip/dip
direction equal to 85°/318° and 82°/208°, respectively, bound a tetrahedral wedge. These
discontinuities had slightly rough surfaces with a friction angle of 30°. The slope surface
had dip/dip direction equal to 81°/255°.

Considering the fact that gravity is the only active load, BS3D analysis calculated
a safety factor of 0.2, with static failure mode consisting of sliding on two planes, and
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dynamic failure mode being roto-translational sliding. This agrees not only with the
observation that the wedge has already failed, but also with the safety factor obtained
from Block Theory analysis.

6.2.3.2 Case 2: Wedge failure near Ankara Castle

A wedge failure occurred in a jointed andesite rock mass near Ankara Castle in
Bent Deresi region of Ankara City, Turkey [26]. Two joints with dip/dip direction equal
to 44°/194° and 71°/103°, respectively, formed a tetrahedral wedge. These discontinuities
had a friction angle of 30°. A house sat on top of the wedge failure. The slope surface had
a dip/dip direction equal to 69°/162°.

Considering gravity as the only active load, BS3D analysis calculated a safety
factor of 0.7, with static failure mode consisting of sliding on two planes, and dynamic
failure mode being roto-translational sliding. These results agree with both the actual
observation and the safety factor calculated using Block Theory analysis.

6.3 CONCLUSIONS

Wedge failure validation under gravity loading has been carried out for BS3D [1],
an algorithm for analysis of single rock blocks that can handle general failure modes
under conservative and non-conservative forces.

Sixty four physical models and two case histories were analyzed using this
method. For the wedge stability problem, physical modeling and BS3D give the same
failure modes except for six cases in which sliding on one plane were observed in
physical models while BS3D predicted sliding on two planes. This is due to the fact that
the two failure modes have very similar factors of safety and sliding directions, and
BS3D considers the deformability of the sliding planes.

In all cases, safety factors obtained using BS3D analyses were the same as
obtained using Block Theory limiting equilibrium analysis. The results of BS3D analyses
for two case histories agree well with the observations that the wedges have already
failed.
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CHAPTER 7: STABILITY OF ROCK BLOCKS FORMED IN
THE ROOF OF A CIRCULAR TUNNEL: EFFECT OF DILATANCY

7.1 INTRODUCTION

The mechanical behavior of a rock block formed in the roof of a tunnel is
governed by its geometry, the mechanical characteristics of the joints forming the block,
the deformability of the fractures forming the block, the deformability of the block and
that of the surrounding rock mass, and the stresses within the rock [20].

In this Chapter, the effect of dilatancy on the stability of a rock block formed in
the roof of a circular tunnel is investigated. Section 7.2 presents an analytical approach to
analyze stability of a 2D triangular wedge formed in the roof of a circular tunnel. Two
different definitions are introduced for the factor of safety of the block. The effects of
stiffness and shear strength of the fractures as well as in situ stress conditions on stability
of the wedge are investigated. Section 7.3 explains a simplified limit equilibrium method
to analyze stability of a tetrahedron in the roof of an excavation. The results of the
analytical analyses are compared with those obtained from BS3D simulations. Using the
analytical approach and BS3D, the effects of the normal stiffness of the fractures,
dilatancy, the tunnel radius, and the block size on stability of the tetrahedron are
investigated. Section 7.4 presents a comprehensive sensivity analyses on the effects of the
shear strength, the normal stiffness, the in situ stress condition, the tunnel radius, and the
block size on stability of a prism formed in the roof of a circular tunnel by four fractures
with the same dip angles. All of these sensivity analyses are performed using BS3D.
Finally, the summary and conclusions made based on the sensivity analyses are presented

in Section 7.5.

7.2 SYMMETRIC 2D WEDGE IN THE ROOF OF A CIRCULAR TUNNEL

This Section investigates the stability of a symmetric 2D wedge in the roof of a
circular tunnel. The effects of stiffness and shear strength of the fractures as well as in

situ stress conditions on stability of the wedge are studied.
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7.2.1 Stability analysis (analytical solution)

An analytical solution has been proposed by Bray [306] to analyze the stability of
a block confined by rock mass. The solution contains a two-stage relaxation procedure
(Figure 7.1):
1- The fractures are assumed to be infinitely stiff. The excavation is performed in
a homogeneous, isotropic, linearly elastic, weightless medium. The confining
lateral force, Ho, acting horizontally on the wedge is evaluated at this stage.
2- Assuming flexible fractures and rigid rock mass, loads due to the block
weight, W, as well as the resultant of the supporting forces, S, are applied

during this stage.

Rock mass

Opening Opening

Stage I. Rigid joints Stage 2. Rigid rock
(Rock mass cotinuous, {The intact rock including the wedge
elastic, homogeneous) is regarded as rigid)

Figure 7.1: Loading stages in the analytical solution proposed by Bray [20].

For the symmetric 2D wedge of Figure 7.1, the factor of safety is defined as:

_S+R,
W

where Py is the pullout resistance of the wedge, which is the resultant of all forces applied

FS : (7.1)

to the wedge except for its weight and the supporting forces. It can be evaluated as
follows [306, 307]:
P, =2MH,, (7.2)
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in which M is a function of the mechanical properties of the fractures and the apical angle
of the wedge; and Hy is the horizontal force applied to the wedge by the surrounding rock

mass at the end of the first stage. The values of M and D are, respectively [20, 306]:

(cos2 a X cos i x l% +sin(a —i)xsin ajx sin(p— )

M = , 7.3
D xcosi (73)
k . sin(a —1)
D =cosa xcos¢@x Sk +sin g x ————=, (7.4)
n cosl

where « is the semi-apical angle of the wedge; ¢ and i are the effective friction (the
sum of the basic friction angle and the dilation angle) and dilation angles of the fractures;

and k; and Kk, are the fractures shear and normal stiffness.

At the end of the relaxation stage, the horizontal force, Hop, applied to a wedge
formed in the roof of a circular tunnel can be evaluated by modifying Elsworth’s [308]
analytical expression, in a hydrostatic stress field, as follows [20]:

H, :cosexcos(0—2a)
pxR sinaxcos(@—a)’

(7.5)

where @ is the angle denoted in Figure 7.2.
Sofianos et al. suggested the following equation to evaluate the horizontal force,

Ho, confining a wedge in the roof of a circular tunnel in non-hydrostatic stress field [20]:

WU

Figure 7.2: Symmetric wedge in the roof of a circular tunnel (biaxial stress field) [20].
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Sofianos et al. suggested the following equation to evaluate the horizontal force,

Ho, confining a wedge in the roof of a circular tunnel in non-hydrostatic stress field [20]:

H, =R e, (7.6)

2
where:

Cy :(1+ Ko)'CHl _(1_ Ko)'CHz (7.7)
h 1

Ch=l=7+l|-——7— )

i (RJFJ (h/R+1) (7.8)
h 1

Cih=|=+l|-—— 7.9

"2 (R j (h/R+1) 79

In hydrostatic stress field Equation (7.6) is reduced to:

H, (h 1
=| — 1—— .
pxR (R+j (h/R+1) (7.10)

Moreover, Nomikos et al. [309] introduced the following analytical solution to

evaluate the horizontal force applied to a symmetric wedge in the roof of a circular tunnel

excavated in an inclined stress field (Figure 7.3):

_pxR

H,

[(1+K0)'CH1_(l_Ko)'CHz'C‘OSZﬂ] (7.11)

Figure 7.3 Circular opening in an inclined biaxial stress field [309].
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7.2.2 Effect of fracture stiffness on 2D wedge stability

Hudson and Harrison [310] performed a sensivity analysis to show the variation
in M (defined in Equation (7.3)) as a function of the semi-apical angle, a in Figure 7.2,
for different ratios of normal to shear stiffness of discontinuities. The effective friction
angle was assumed to be 30° with zero dilation angle. Figure 7.4 presents the results of
Hudson’s and Harrison’s sensivity analyses (recalculated in this dissertation). They
concluded that there is a tendency for the prism to be expelled from the surface when the

semi-apical angle exceeds the effective friction angle, which is exacerbated for high

kS
values of A] .

0.6 1

——Kn/Ks =0.01 e YRS
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A
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1 N R
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— % —Kn/Ks = 10 N ~.
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..... @ Kn >> KS :;
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Figure 7.4: Effect of semi-apical angle and discontinuity stiffness on the constraining
force applied on symmetric triangular roof wedge

Stability of a block is usually expressed by a safety factor rather than the value of
M. Therefore, in this study, the factor of safety of the unsupported block is calculated

using Equation (7.1). However, in order to obtain the factor of safety, one should estimate
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the block weight and the horizontal force, Ho, confining the wedge, which in turn requires
the unit weight of the rock, the tunnel radius, the block height, and the in situ stress
condition. The unit weight of the rock is assumed to be 27 kN/m”’. The factor of safety is
calculated for the maximum triangular block formed in the roof of a tunnel with diameter
of 4 m. The semi-apical angle of the wedge is changed between 10 and 80°, which means
that the fractures forming the block dip between 80 and 10° below horizontal,
respectively. In order to calculate the weight of the block and the normal and shear forces
applied to each face, it is assumed that the length of the block along the tunnel axis is 1
m. Hydrostatic in situ stress of 0.5 MPa is assumed to act prior to excavation of the
tunnel. Figure 7.5 depicts the factors of safety calculated using Equation (7.1) for
different semi-apical angles (a) and ratios of normal to shear stiffness (Ks/kn). In order to

present changes in FS with a and kg/k, for the case of stable blocks (10° < a < 30") more

clearly, the results are shown in two different scales of FS.

500 ~

10 20 a() 30 FS
—— Kn/Ks =0.01 ;
Y]
200 | —BF—Kn/Ks = 0.1 /7
-k - Kn/Ks=1 ;A
.:// II
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— ¥— - Kn/Ks = 100 4
1
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100 -
0
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Figure 7.5: Variation of FS (Bray’s definition) of maximum 2D wedge formed in the roof
of a circular tunnel with semi-apical angle and fractures stiffness (hydrostatic stress
field of 0.5 MPa)
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It can be seen in Figure 7.5 the tendency of the wedge to be expelled from its
mould is exacerbated for high values of k¢k,. The factor of safety defined in Equation
(7.1), for stable blocks, gives FS < -1 and, for unstable blocks, gives FS > -1. However,
in most geotechnical engineering (or civil engineering) problems, the FS is always
positive: at equilibrium, FS is equal to one; for stable cases, FS is higher than one; and,
for unstable cases, FS is between 0 and 1.

In order to limit the factor of safety in the conventional range, the factor of safety
is now defined as the ratio of passive to active forces (or the ratio of available shear
strength to the required shear stress at equilibrium). The same definition is adopted by
Rocscience in their commercial block theory software, Unwedge [311]. Figure 7.6
depicts diagram of forces applied on a symmetric triangular roof prism. The factor of
safety of unsupported 2D wedge is defined as the ratio of passive to active forces as
follows:

Fg_| 28-cosa |
12N -sing +W |

(7.12)

where N and S are normal and shear forces and can be calculated as follows [235, 306]:

HO(Ks cos’ a + Knsinza)-cos¢
K,cosa -cosg+ K, sina -sing

N =

(7.13)

HO(KS cos’ a + K, sin’ a)-sin¢

S= (7.14)

K.cosa-cosg+ K, sina-sing

Figure 7.6: Diagram of forces applied on a symmetric triangular roof prism [310]
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Figure 7.7 depicts the factors of safety calculated using Equation (7.12) for
different semi-apical angles (o) and ratios of normal to shear stiffness (kg/k,) of
discontinuities. It can be seen that, except for the case of a=10°, the factor of safety is
almost independent of the ratio of k;/k,. In the case of a=10°, the maximum block has
much larger size compared to the other values of semi-apical angles, and therefore, the
weight of the block is not negligible compared to the values of normal and shear forces
applied to the faces. For the case of weightless block (or the case that the weight is
negligible compared to the in situ stresses), the factor of safety defined in Equation (7.12)
can be simplified as follows:

_ tang

FS ,
tan o

(7.15)

which is independent of the ratio of k/k,,. At a depth of about 20 m, one may expect to
have a hydrostatic in situ stress of 0.5 MPa. For a 4-meter-diameter tunnel, this depth is
almost considered as a limit between shallow and deep tunnels. However, considering the

fact that, for a wedge with semi-apical angle of 10°, the height of the maximum block is

9.52 m, a depth of 20 m for the tunnel axis is shallow.
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Figure 7.7: Variation of FS (our definition) of maximum 2D wedge formed in the roof of
a circular tunnel with semi-apical angle and fractures stiffness (hydrostatic stress
field of 0.5 MPa)
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Figure 7.8 depicts the factor of safety of a wedge subjected to hydrostatic stress
field of 5 MPa calculated using Equation (7.12) for different semi-apical angles (o) and
ratio of normal to shear stiffness (ks/k,). It can be seen that, when the weight of the
block is negligible compared to the in situ stress (which is the case almost in all tunneling

applications), the factor of safety is independent of the ratio of normal to shear stiffness.
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Figure 7.8: Variation of FS (our definition) of maximum 2D wedge formed in the roof of
a circular tunnel with semi-apical angle and fractures stiffness (hydrostatic stress
field of 5 MPa)

7.2.3 Effect of shear strength of fractures on stability of 2D wedges

Let us consider a 4-meter-diameter tunnel and the maximum triangular prism
formed in the roof of the tunnel by two fractures dipping 60° below horizontal plane. The
rock mass is assumed to be subjected to a hydrostatic stress field of 0.5 MPa. The ratio
ks/k, is assumed to be equal to 0.1. In order to investigate the effect of shear strength of
rock fractures on stability of the wedge, the effective friction angle, ¢, is varied between
20° and 70° and the factors of safety are calculated using both Equation (7.1) and
Equation (7.12). Figure 7.9 summarizes the results of the analyses.

Figure 7.9 shows that the FS of the wedge increases with increasing the effective

friction angle of the fractures. Changing the friction angle from 20 to 70° changes the FS
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calculated using Equation (7.1) from -6.6 to 58.9 and increases the FS determined
employing Equation (7.12) from 0.6 to 4.47. It can be seen that the order of magnitudes
of the factors of safety calculated using Equations (7.1) and (7.12) are different from each
other. However, adopting either definition for the factor of safety, the effective friction

angle strongly affects stability of the wedge.
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Figure 7.9: Effect of friction angle of fractures on stability of a 2D symmetric wedge

7.2.4 Effect of in situ stress condition on stability of 2D wedges

7.2.4.1 Depth of the tunnel (hydrostatic state of stress)

Let us consider a 4-meter-diameter tunnel and the maximum symmetric wedge
formed in the roof of the tunnel by two fractures dipping 60° below horizontal plane. The
ratio of kg/k, is equal to 0.1; the effective friction angle is assumed to be 30°; the rock
mass is subjected to hydrostatic state of stress before the excavation. The magnitude of
the stress is changed from 0.3 to 10 MPa and the factors of safety are calculated using
both Equations (7.1) and (7.12). Figure 7.10 presents the results of the analyses. It can be
seen that the FS calculated using Equation (7.1) is zero and does not change with the

vertical stress (depth of the tunnel). However, the FS determined employing Equation
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(7.12) increases slightly with vertical stress (especially in the low values of in situ

stresses).
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Figure 7.10: Effect of in situ stress on stability of 2D wedge (¢ =30")

The conclusion made based on the definition of FS given by Equation (7.1) seems

to be counterintuitive. Thus, the same sensivity analysis is performed choosing an

effective friction angle of 25°. Figure 7.11 depicts the results of the analyses. It can be

seen that the trend in the FS calculated using Equation (7.12) remains the same as in
Figure 7.10. However, the FS determined using Equation (7.1) increases (the stability

decreases) with increasing tunnel depth.
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Figure 7.11: Effect of in situ stress on stability of 2D wedge (¢ =25")
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The same senivity analysis is performed choosing an effective friction angle of
35°. Figure 7.12 depicts the results of the analysis. Again, it can be seen that the trend in
the FS calculated using Equation (7.12) remains the same as in Figure 7.10. However, the

FS determined using Equation (7.1) decreases (the stability increases) with increasing the

tunnel depth.
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Figure 7.12: Effect of in situ stress on stability of 2D wedge (¢ =25")

It can be seen that, adopting Equation (7.12) as the definition of the FS, the
conclusion is consistent: increasing the tunnel depth slightly increases the stability of the
block in low stress regimes and has no effect on the factor of safety in high stress
regimes. However, the sensivity analyses performed based on the definition of FS given
by Equation (7.1) leads to the following conclusions:

- For a friction angle equal to the semi-apical angle, the vertical stress has no

effect on the stability of the block.

- For a friction angle smaller than the semi-apical angle, the FS of the block

increases (the stability decreases) with increasing in Situ stress.

- For a friction angle larger than the semi-apical angle, the FS of the block

decreases (the stability increases) with increasing in situ stress.
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7.2.4.2 Lateral pressure coefficient

Let us consider a 4-meter-diameter tunnel and the maximum symmetric prism
formed in the roof of the tunnel by two fractures dipping 60 below horizontal plane. The
ratio of ks/Kn is equal to 0.1 and the effective friction angle is assumed to be equal to 30°,
25°, or 35°. The rock mass is subjected to a vertical stress of 1 MPa. Figure 7.13, Figure
7.14, Figure 7.15 present the FS calculated using both Equations (7.1) and (7.12) when

the lateral pressure coefficient is changed from 0.5 to 4 .
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Figure 7.13: Effect of lateral pressure coefficient on stability of 2D wedge (¢ =30")
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Figure 7.14: Effect of lateral pressure coefficient on stability of 2D wedge (¢ = 25")
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Lateral pressure coefficient, k,

0 1 2 3 4
Equation (7.12)
0 T T T 1
1.2 A s
// 5 AN
N
-10 - RN
D N
1.1 -+ -15 - ~
N . R
-20 -+ N
N
N N
1 T T T 1 '25 n
- - — Equation (7.1) S
0 1 2 3 4 39 - RN
FS b
Lateral pressure coefficient, k, -35

Figure 7.15: Effect of lateral pressure coefficient on stability of 2D wedge (¢ = 35°)

The same as what found in Section 7.2.4.1 for the effect of the vertical stress, it
can be seen that, defining the FS as Equation (7.12), the conclusion is consistent:
increasing the lateral pressure coefficient slightly increases the stability of the block in
low Ko regimes and has no effect on the factors of safety in high ko regimes. However, the
sensivity analysis performed based on the definition of FS given by Equation (7.1) leads
to the following conclusions:

- For a friction angle equal to the semi-apical angle, the lateral pressure

coefficient has no effect on the stability of the block.

- For a friction angle smaller than the semi-apical angle, the FS increases (the

stability decreases) with increasing the lateral pressure coefficient.

- For a friction angle larger than the semi-apical angle, the FS decreases (the

stability increases) with increasing the lateral pressure coefficient.

7.25 Summary

An analytical method has been presented for stability analysis of 2D triangular
prism formed in the roof of a circular tunnel from References [20, 235, 306-310]. In
addition, a new definition for the factor of safety of the block is presented in this Chapter.

Based on sensivity analyses, the following conclusions were made:
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Different definitions of the FS may lead to different conclusions in sensivity
analyses.
Adopting Equation (7.1) as FS definition, it is found that the tendency for the

prism to be expelled from the surface is exacerbated for high values of k. /K,

. However, defining the FS as given in Equation (7.12), it is found that the

stability of a 2D triangular wedge is independent of the ratio of Kk, /K, .

Stability of 2D wedge is strongly affected by the friction angle of the
fractures.

Adopting Equation (7.12) as the definition of the FS, it is found that
increasing the in situ stress slightly increases the stability of the block in low
stress regimes and has no effect on the factor of safety in high stress regimes.
However, the sensivity analyses performed based on the definition of FS
given by Equation (7.1) leads to the following conclusions: for a friction angle
equal to the semi-apical angle, the vertical stress has no effect on the stability
of the block; for a friction angle smaller than the semi-apical angle, the FS of
the block increases (the stability decreases) with increasing the vertical stress;
and for a friction angle more than the semi-apical angle, the FS of the block
decreases (the stability increases) with increasing the vertical stress.

Defining the FS as Equation (7.12), it is found that increasing the lateral
pressure coefficient slightly increases the stability of the block in low ko
regimes and has no effect on the factors of safety in high ko regimes.
However, the sensivity analysis performed based on the definition of FS given
by Equation (7.1) leads to the following conclusions: for a friction angle equal
to the semi-apical angle, the lateral pressure coefficient has no effect on the
stability of the block; for a friction angle less than the semi-apical angle, the
FS of the block increases (the stability decreases) with increasing the lateral
pressure coefficient; and for a friction angle more than the semi-apical angle,
the FS of the block decreases (the stability increases) with increasing the

lateral pressure coefficient.
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Based on the above mentioned conclusions obtained from senivity analyses, one
may say that although the definition of the factor of safety given in Equation (7.1) is not
wrong, it may lead to incorrect conclusions in sensivity analyses. In addition, FS
introduced in Equation (7.12) is limited to positive values, the same as most geotechnical
engineering (and civil engineering) applications: at equilibrium, FS=1, for stable blocks,
FS > 1, and for unstable blocks, 0<FS< 1. Consequently, it is believed that Equation
(7.12) can define the factor of safety of a 2D symmetric prism better than Equation (7.1).

7.3 ROOF STABILITY ANALYSIS FOR A TETRAHEDRON

A relaxation analysis for a non-regular 3D tetrahedral block in the roof of an
excavation presents some conceptual difficulties, which arise from extra number of
degrees of freedom. For instance, on any face of the block it is necessary to consider two
components of orthogonal shear displacement as well as a normal displacement
component. Maintaining the statical determinacy during the relaxation process would
require that the block be almost isotropically deformable. Thus, a complete analysis of
the stability of a tetrahedron is not handled conveniently by relaxation method presented

earlier for 2D problem [235].

7.3.1 Limit equilibrium approach

Using limit equilibrium methods, it is possible to estimate the wedge (Figure

7.16) stability considering the frictional properties of the fractures.

Figure 7.16: (a) Geometry for determination of the unit normal vector to a plane; (b) lines
of action of mobilized shear forces on the face of a tetrahedral wedge [235].
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Suppose the orientation of the dip vector OA of a fracture surface is defined by
the dip angle o and dip direction B, illustrated in Figure 7.16-(a).
The direction cosines of the outward normal to the plane are given by [235]:

n=(n,,n,,n,)=(sina-cosB,sina-sin §,cos ) (7.16)

The normal component of traction at any point on the fracture surface can be
estimated from the stress components and the direction cosines by substitution in the
equation [235]:

t—na+na+na+2(nna +n,n,0 +nna) (7.17)

X'y~ xy y' 2% yz 7' 'x™ 2x
If the normal traction, t,, is determined at a sufficient number of points on the

fracture surface, its average value and the area of the surface can be used to estimate the
total normal force N. Thus, for each of the three confined faces of the tetrahedron, the
respective normal forces N; , N2 , and N3, can be calculated directly from the surface
geometry and the elastic stress distribution [235].

In determining the stability of a wedge under surface and gravitational forces, it is
necessary to take account of the directions of the shear resistances mobilized by the joint
normal forces. Suppose the outward normals to the i-th face of the tetrahedron OABC
shown in Figure 7.16-(b) are given as follows [235]:

= (N, Ny, Ny, etc. (7.18)

and that the faces are numbered in a sense compatible with the right-handed system of
reference axes. The lines of intersection of the faces are then given by cross products of
the normals to faces, i.e.:

I, =n,xn, etc. (7.19)

The bisector of an apical angle of a face of the tetrahedron, and directed towards the
apex, as shown in Figure 7.16-(b), is obtained from the orientations of the adjacent lines

of intersection which define the face, i.e.:
1
B, = —5('1,2 +1s,) (7.20)

One can establish the unit vector parallel to the i-th bisector [235]:
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b, = (by.b,;,b,) etc. (7.21)

xi o Myis Mz

It can be reasonably assumed that, in the case where the crown trihedral angle of

the tetrahedron includes the z axis, the mobilized shear resistance on any face is directed

parallel to the bisector of the face apical angle. Also, the inward unit normal to any face,
the line of action of the normal component of the surface force, is given by [235]:

a=(a,,a,,a,)=—(sina-cos f,sina-sin 5,cos a) (7.22)

The magnitude of the maximum shear forces that can be mobilized on the various
faces are given as follows:

S, =N, tang, (7.23)
and the X, Yy, and z components of the shear resistance on any face can be determined
directly from its magnitude and the components of the appropriate unit vector for the
face, defined by Equation (7.21). Taking account of all applied normal forces and

mobilized shear resistances, the net vertical force associated with surface forces is [235]:
3
F, =Y N(b, tang +a,) (7.24)
-1
Introducing the wedge weight, if the resultant vertical force satisties the condition
F,+W <0, (7.25)
the wedge is potentially stable under the set of surface and body forces [235]. Therefore,
based on Bray’s [306] and Sofianos’s [307] definition for the safety factor of 2D wedges

(Equation (7.1)), the factor of safety of 3D tetrahedrons can be defined as follows:
FS=—%, (7.26)

For stable blocks, FS < -1 and, for unstable blocks, FS > -1.
In order to show the order of magnitude of the factor of safety calculated using
Equation (7.26), a tetrahedral rock block is analyzed. The height of the block is assumed
to be 1 m. The block is formed by 3 fractures with dip directions of 0, 120, and 240°. The

dip angle is changed from 10° to 80" and the factor of safety is calculated using Equation
(7.26). The effective friction angle of the fracture is equal to 25°. In addition, it is

assumed that a hydrostatic in situ stress of 0.5 MPa is applied and the effects of
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excavation on in Situ stresses are eliminated. Figure 7.17-(a) depicts the factor of safety
of the block versus dip angle of its fractures.

It can be seen in Figure 7.17-(a) that the FS calculated using Equation (7.26)
changes from -50 to 90. The factor of safety defined in Equation (7.26), gives positive
value for stable blocks and negative value for unstable blocks. However, in most
geotechnical engineering (or civil engineering) problems, the FS is always positive. In
order to limit the factor of safety in the conventional range, the factor of safety is defined
as the ratio of passive to active forces (or the ratio of available shear strength to the
required shear stress at equilibrium). Thus, the factor of safety of unsupported wedges is
defined as follows:

23: N.b, tan ¢,
FS = ——
W +> Na,

i=1

(7.27)

Figure 7.12-(b) depicts the FS of the tetrahedron calculated using Equation (7.27)
versus the dip angle of the fractures, for the same example described earlier in this
Section. It can be seen that the FS is equal to one when the block is at equilibrium, is

higher than one for stable blocks, and is smaller than one for unstable block.

60 1 Fs 3.0 -

— Factor of safety (Equation (7.26)) FS Factor of safety
. .
40 - . 25 | (Equation (7.27)) .
20 - o~. /
SQipangle, a() 20 7 :
0 f===== FETTEE ATTETEE | g FETTEE ﬂ--"\--l ------ 1 Ls /
20 10 20 30 40 50 60 7? 80 ’ /
1.0 A
-40 - \ :
\ . P
] —
-60 - \ 0.5 . -
— Di | °
-80 - \ 0.0 — T T T T llp ang]e’ ¢ ( )I
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(a) Equation (7.26) (b) Equation (7.27)

Figure 7.17: Variation of FS of 1-meter-heigth tetrahedron with dip angle of its fracture
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7.3.2  Numerical simulation using BS3D

The stability of a single rock block with general shapes can be analyzed using
BS3D, in which the factor of safety is defined as the ratio between the stabilizing forces
and the driving forces at limiting equilibrium. This definition is the same as in Equation
(7.27) for 3D tetrahedrons and Equation (7.12) for 2D wedges. In addition, this definition
is consistent with the definitions used in the most civil engineering/geotechnical
engineering applications (ex.: Rocscience commercial software: Unwedge). Moreover,
our definition (Equation (7.12) and (7.27), for 2D and 3D wedges, respectively) has some
advantages over Bray’s [306] and Sofianos’s [307] definition (Equation (7.1)), as
demonstrated in Section 7.2. Thus, in the rest of this Chapter, Equation (7.27) is used to
obtain the analytical factor of safety.

Although the definition of the factor of safety (Equation (7.27)) in the analytical
method is the same as the definition of the factor of safety in BS3D, if a block is analyzed
using both approaches, the factors of safety will be different because:

- BS3D takes into account the deformability of the rock block, fractures, and

the rock mass surrounding the block, while the analytical approach (Equation
(7.27)) does not.

- BS3D considers the progressive failure and the mobilization of shear strength,

while the analytical limit equilibrium method does not.

- In analytical limit equilibrium solution, the in Situ stresses are assumed to be

independent of the block displacement. However, in BS3D analysis, the part

of the in situ stresses applied to the block changes with block movement.

The tetrahedron that was introduced in Section 7.3.1 is simulated using BS3D.
The factors of safety obtained from BS3D analyses together with the safety factors
calculated using the analytical method are depicted in Figure 7.18 where the effective
friction angle is assumed to be equal to 41°. The ratio of the shear to normal stiffness of
the fractures, K¢/kn, is assumed to be constant (1/10) with an initial normal stiffness of
2000 MPa/m. In addition, a hydrostatic in situ stress of 0.5 MPa is applied without
considering the effect of excavation on in Situ stresses around the excavation.
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Figure 7.18: Comparing the factors of safety calculated using BS3D and the analytical
approach for a tetrahedral rock block

It can be seen in Figure 7.18 that two curves intersect each other at o equal to 49°
when FS = 1. It means that both found that the block is at limiting equilibrium when
semi-apical angle (90° - a) is equal to the effective friction angle (41°). It is found from
both BS3D analyses and the analytical calculations that the tetrahedron is stable if the
semi-apical angle is larger than the effective friction angle, (90°- o) > 41° or a < 49°
because in these cases the normal stresses applied to the fractures due to in Situ stresses
push the block into its mould and increase the stability of the block. In addition, both
methods report instability if the semi-apical angle is smaller than the effective friction
angle, a > 49°; because in these cases the normal stresses applied to the fractures due to
in situ stresses push the block outside of its mould and decrease the stability of the block.

Moreover, it can be seen in Figure 7.18 that, for the case of stable blocks, the
factors of safety calculated using the analytical approach are higher than those
determined from BS3D analysis, while for the case of unstable blocks, BS3D gives
higher factors of safety comparing to those calculated using the analytical approach.
These differences in factors of safety can be explained based on the fact that the
analytical approach does not consider the deformability of the fractures, the rock block,
and the rock mass, while BS3D does. Eliminating the effect of deformability is the same

as assuming rigid fractures, rock block, and rock mass (or very high stifnesses). Thus, the
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analytical approach overestimates the normal stresses applied to the fractures due to in
Situ stresses:

- For the case of stable blocks (FS > 1), the normal forces applied to the
fractures push the block into its mould and increase the stability of the block.
Consequently, overestimating the normal stresses applied to the fractures due
to in situ stresses overestimates the factor of safety. Therefore, for the case of
stable blocks, the factors of safety calculated using the analytical approach is
higher than those determined from BS3D analysis.

- For the case of stable blocks (FS < 1), the normal forces applied to the
fractures push the block out of its mould and decrease the stability of the
block. Consequently, overestimating the normal stresses applied to the
fractures due to in situ stresses underestimates the factor of safety. Therefore,
for the case of unstable blocks, BS3D gives higher factors of safety compared

to those calculated using the analytical approach.

7.3.3 Effect of the fractures’ normal stiffness on stability of tetrahedron

Unlike the analytical approach, BS3D takes into account the deformability of rock
fractures in calculating the factor of safety. In order to check the effect of the normal
stiffness of the fracture on stability of tetrahedron, a sensivity analysis is performed
considering the same wedge introduced in Section 7.3.2. The effective friction angle is
assumed to be equal to 41°. In addition, a hydrostatic in situ stress of 0.5 MPa is applied.
As it was mentioned in Chapter 5, excavations change the in situ stresses in the
surrounding rock mass near the excavation perimeter. In this part of analyses, the effects
of excavation on in situ stresses are not considered and it is assumed that the in situ
stresses around the underground opening are the same before and after excavation. The
initial normal stiffness of the fractures, kpi, is ranged between 200 and 5000 MPa/m.
Figure 7.19 depicts the changes in the FS of the block with the initial normal stiffness and
the dip angle of the block, considering Mohr-Coulomb as constitutive model of rock

fractures. It should be noted that the ratio of the shear to normal stiffness of the fractures,
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ks/kn, is assumed to be constant (1/10). It can be seen that the initial normal stiffness of

the fractures has no effect on stability of 3D wedges.

2.5 +
FS Mohr - Coulomb's model Initial normal
stiffness
2 (MPa/m):
1.5 - Kni=200
— — —Kni=500
1 4 .
----- Kni=1000
05 - — - — Kni=2000
e Kni=3000
Dip angle, a (°)
0 T T T T T T 1 = - -- Kni=5000

10 20 30 40 50 60 70 80

Figure 7.19: The effect of the initial normal stiffness of fractures on stability of
tetrahedral rock blocks (Mohr-Coulomb’s failure criterion)

The same sensivity analyses are performed adopting the original and the modified

Barton’s model as the constitutive model of the fractures. In these cases, the mechanical
properties of the rock fractures are assumed to be ¢, =25", JRC = 10, and JCS = 20

MPa. Therefore, the effective friction angle of the fractures is 41°:

¢=JRC ~tan(EJ+¢b = 10~tan(£j+25 ~41°
o, 0.5
Figure 7.20 depicts the changes in FS of the block with the initial normal stiffness
and the dip angle of the block, considering Baron’s original and modified models as
constitutive model of rock fractures. It can be seen that adopting Barton’s original or
modified model, the factor of safety of tetrahedral rock block decreases with increasing
initial normal stiffness of fractures. This effect is more obvious in the case of stable

blocks with dip angles greater than 50°. The reason is that, for a given displacement

increment, the normal stresses decrease more quickly on stiffer fractures. The drop in
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normal stress lowers the available shear strength before shear stresses become large

enough to support the block [312].

Initial normal stiffness (MPa/m): Initial normal stiffness (MPa/m):
3 - Kni=200 35 - Kni=200
Fs — — —Kni=500 - == - Kni=500
2.5 A 3 -
----- Kni=1000 FS -----Kni=1000
2 - — .- — Kni=2000 i/ 2.5 1 — .- — Kni=2000 7
.............. Kni=3000 /, 2 creeveennenne KNi=3000 ///
15 1 - = = = Kni=5000 i’ P D Kni=5000 v
1 - T ee <
1 %
0.5 1 , . 0.5 -
Dip angle, a (°) Dip angle, o (°)
O T T T T T T 1 O T T T T T T 1
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
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Figure 7.20: The effect of the initial normal stiffness of fractures on stability of
tetrahedral rock blocks

7.3.4 Effect of fracture dilatancy on stability of tetrahedron

In order to investigate the effect of dilatancy on stability of tetrahedral rock

blocks, a sensivity analysis is performed on the wedge introduced in Section 7.3.2. The

mechanical properties of the rock fractures are assumed to be ¢ =25, JRC = 10, and

JCS = 20 MPa. In addition, a hydrostatic in situ stress of 0.5 MPa is applied. The effects
of excavation on in situ stresses are not considered and it is assumed that the in situ
stresses around the underground opening are the same before and after excavation. The
initial normal stiffness of rock block is 2000 MPa/m. The factors of safety of the wedges
are calculated using BS3D adopting the following constitutive models:

- Mohr-Coulomb: Mohr-Coulomb failure criterion with effective friction angle

of 41° and Barton’s empirical equation for the peak shear displacement and
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the shear stiffness (everything is the same as Barton’s model except for
dilation displacement which is considered to be zero).

- Barton’s original model

- Modified Barton’s model

- Simplified Barton’s model: everything is the same as Barton’s model expect
for dilation displacement. It is assumed that dilation displacement at a shear

displacement of &, is equal to &, -tan(JRC-log(JCS/ o, )) It means that

dilatancy starts at zero shear displacement (origin of the shear stress-

displacement curve).

Figure 7.21 depicts the factors of safety versus the dip direction of the fractures

forming the tetrahedron.
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Figure 7.21: The effect of fractures dilatancy on stability of tetrahedral rock blocks

It can be seen in Figure 7.21 that the safety factors calculated using Barton’s and
Mohr-Coulomb models are exactly the same. The only difference between these two
models is the dilation displacement. In the case of Mohr-Coulomb’s model, it is assumed
that dilation is zero, while in the case of Barton’s model, dilation displacement is

calculated as explained in Section 3.2.4. Let us explain the reason of having the same
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factors of safety in the case of the wedge formed by fractures dipping 70° below
horizontal. In Barton’s model, it is assumed that dilation starts at 30% of the peak shear
displacement. BS3D analyses (adopting Baron’s model as the constitutive model of rock
fractures) show that the wedge fails by loosing contact (free falling) before any face
reaches 30% of its peak shear displacement; the ratio of the shear displacement at block’s
failure to the peak shear displacement of the fractures is 0.14. Therefore, no dilation
displacement develops when adopting Baron’s model. Consequently, there is no
difference between the factors of safety calculated using Barton’s model and Mohr-
Coulomb model.

On the other hand, assuming that dilation starts from zero shear displacement
(origin of the shear stress-displacement curve), the factors of safety increase comparing
to those of Barton’s model (or Mohr-Coulomb’s model). One of the reasons is dilation
displacement increases the normal forces on the face of the block and thus increases the
shear strength of the fractures. Consequently, the factors of safety increase. It is found
that the ratio of the shear displacement to the peak shear displacement of the fractures of
the wedge is 0.21 in this case (adopting the simplified Barton’s model). It means that
another reason for having higher factors of safety is that more shear strength is mobilized
for each fracture using the simplified Barton’s model. In other words, not only the peak
shear strength is higher in simplified Barton’s model, but also the ratio of mobilized to
peak shear strengths is larger.

Modified Barton’s model uses a different equation for the peak shear
displacement (Equation (3.88) instead of Equation (3.31)). In all these examples, the peak
shear displacements predicted using Equation (3.88) is smaller than those estimated using
Barton’s empirical equation (Equation (3.31)). In addition, in the modified model, the
positive dilation starts from 0.5 times the peak shear displacement. BS3D analyses show
that, at block’s failure, all fractures of the wedge (formed by fractures dipping 70° below
horizontal) experienced a displacement equal to 30% of peak shear displacement, which
caused negative dilation and decreased the normal stresses across fractures. However, the

factors of safety calculated using the modified model are higher than those of the original
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Barton’s model because the fracture mobilized shear strength is higher in the case of the
modified model. Very small negative dilation (in the order of 102 mm) causes a very
small decrease in the normal stresses applied to each face (in the order of 0.05 MPa
compared to 0.5 MPa due to the in situ stresses). Assuming 0.45 MPa as normal stress
applied to each face, the mobilized shear strength of each fracture at failure can be

predicted using the modified model as follows:

S .
=03 > Proniizes _ 0.78 (Using Table 3.9) = @ iig=0.78x25=19.5°
5peak base
) JRC, i
=03 > ——mbiled —(.134(Using Table 3.10) = JRC, 0 = 0.134x10=13.4
5peak ‘]cheak
Tinobilized = On 'tan[¢mobilized +JRC,opiized ‘log(JO-EB -

=0.45x tan(l9.5 +1.34- log(%n ~0.18 MPa

However, for the case of Barton’s model, the mobilized shear strength of each face can

be predicated as follows:

o, JRC i
o =(0.14 > ———mobilizd — _() 83 (Using Table 3.2) > JRC

peak J peak

—0.83x10=-8.3

mobilized —

Toobilized = O -tan(¢base + JRC, itized -log(ﬁn =0.5x% tan(25 -83- log(%n ~0.1 MPa

n

This simplified calculation shows that the mobilized shear strength on each face is higher
for the case of modified Barton’s model. It is clear that BS3D analysis is not as simple as
above and it is a complicated incremental-iterative algorithm that takes into account the
interaction between the rock block and rock mass as well as the deformability of the
fractures.

The same simplified calculation can show why the factor of safety of the
simplified Barton’s model is higher than those of Barton’s model, Modified Barton’s
model, and Mohr-Coulomb’s model. It is found that the ratio of shear displacement to the

peak shear displacement of the fractures of the wedge (formed by fractures dipping 70°
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below horizontal) is 0.21 in the case of simplified model. Assuming dilation starts from

zero shear displacement and dilation displacement is tan[JRC -log(ED times the

O,

shear displacement; the normal displacement at failure is calculated to be in the order of
10 m. This normal displacement causes an increase in normal stress of the fracture in

the order of 0.2 MPa. The mobilized shear strength of each face can be obtained as

follows:
0, JRC ..
" =0.21 >-———mobilzed — .47 (Using Table 3.2) > JRC, 10y = —0.47x10=—4.7
peak ‘]cheak

Trobilized = On -tan((iﬁbase + JRC, pitised -log(ED =0.7x tan(25 -4.7- log(%n ~0.23 MPa

n

Therefore, the mobilized shear strength predicted using the simplified Barton’s model is
higher than those predicted employing Barton’s model and the modified model. Thus, the
factor of safety is higher.

7.3.5 Effect of size of the tetrahedron on its stability

In order to investigate the effect of size of the tetrahedron on its stability, a
sensivity analysis is performed. The above introduced tetrahedron formed by fractures
dipping 60° below horizontal is considered. The height of the block is changed from 1 to

10 m and the factors of safety are calculated. The mechanical properties of the rock

fractures are assumed to be ¢ =25, JRC = 10, and JCS = 20 MPa. In addition, a

hydrostatic in situ stress of 0.5 MPa is applied. The effects of excavation on in situ
stresses are not considered and it is assumed that the in situ stresses around the
underground opening are the same before and after excavation. The initial normal
stiffness of rock block is 2000 MPa/m. The factors of safety of the wedges are calculated
using the analytical approach (with Mohr-Coulomb’s model) as well as employing BS3D
adopting the following constitutive models: (1) Mohr-Coulomb with effective friction

angle of ¢, + JRC -log(JCS/ O'n); (2) Barton’s original model; (3) Modified Barton’s
model; and (4) Simplified Barton’s model (dilatancy starts at zero shear displacement)
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Figure 7.22 depicts variation of the factor of safety with height of tetrahedron
formed by fractures dipping 60° below horizontal. It can be seen that the factor of safety
decreases with increasing size of the wedge. The reasons are as follows:

- The weight of the block increases with increasing height of the block and

therefore active forces increase.

- The length of the block in shearing direction increases with size of the wedge.

Therefore, the scaled JRC obtained from Equation (3.5) decreases with the
size of the block which in turn causes a decrease in the shear strength of the

fractures. Consequently, the factor of safety decreases with the size of the

block.
2.4 -
FS BS3D analysis; Mohr-Coulomb
2.2 1 «ee¥+++ BS3D analysis; Barton's model
2.0 1 —A - - BS3D analysis; Modified Barton's model
1.8 4 —>— BS3D analysis; Simplified Barton's model (dilation starts from zero shear displacement)
1.6 A —©&— Analytical approach; Mohr-Coulomb
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0.0 . . . . . . . . .

Figure 7.22: FS versus height of tetrahedron formed by 3 fractures dipping 60° below
horizontal

7.3.6 Effect of changes in in situ stress due to excavation on stability of tetrahedron

In the all above analysis, the effects of excavation on in sSitu stresses were not

considered and it was assumed that the in situ stresses around the underground opening
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are the same before and after excavation. This assumption was made to be able to
simplify the analytical limit equilibrium analysis and to be able to compare its results
with those of BS3D analyses. In this Section, the effect of excavation on in Situ stresses
around a circular tunnel is investigated to find how it affects the stability of a wedge
formed in the roof of the tunnel.

The above introduced tetrahedron formed from fractures dipping 60° below

horizontal is considered. The height of the block is 1 m. The mechanical properties of the

rock fractures are assumed to be ¢ =25, JRC = 10, and JCS = 20 MPa. In addition, a

hydrostatic in situ stress of 0.5 MPa is assumed to be applied prior to excavation. It is
assumed that a circular tunnel with a radius changing from 1 to 10 m is excavated and the
in situ stress condition is modified accordingly. The initial normal stiffness of rock block
is 2000 MPa/m. The factors of safety of the wedges are calculated using BS3D adopting
different constitutive models. Figure 7.23 depicts variation of the factor of safety with the

radius of the circular tunnel.

20 4 ES Mohr-Coulomb
18 -
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12 - —>¢— Simplified Barton's model (dilation
10 starts from zero shear displacement)
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2
1 radius (m)
0 T T T T T T T T T 1

1 2 3 4 5 6 7 8 9 10

Figure 7.23: FS versus the radius of the circular tunnel (tetrahedron formed by 3 fractures
dipping 60° below horizontal with height of 1 m)
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It can be seen that the factor of safety of the wedge increases with increasing the
radius of the circular tunnel because the normal forces applied to each face of the wedge
increases with increasing radius of the tunnel. Assume that the rock mass is subjected to
hydrostatic state of stress with magnitude of P. The stress tensor after excavating a
circular tunnel with radius of r at distance a from the center of the tunnel can be
determined as follows (plane strain conditions) [313-315]:

2 a2
ﬁ:(l_a_zj > %:(l-i_r_z ;O'Z:O'ZO;Z'“g:TrZ:Z'gz:O, (728)

where o, and o, are radial and tangential component of stress. These components are

the only ones that are affected by excavation. The in situ stresses around circular tunnel
of radius 1 to 10 m are calculated using Equation (7.28). Then, the normal stresses
applied to each face of the wedge are calculated. Figure 7.24 depicts variation of the ratio
of the average normal stress applied to each fracture to the magnitude of the in situ
hydrostatic pressure with radius of the circular tunnel.

It can be seen in Figure 7.24 that the normal stress applied to each face increases
with increasing radius of the tunnel, which in turn causes an increase in the normal forces

applied to each face.

1.8 ~
1.7 4
1.6 A
15 4
14 4
1.3
1.2 4

Ratio of the average normal
stress applied to fractures to the
magnitued of the in situ
hydrostatic pressure

114 Radius (m)

1 T T T T T 1
0 2 4 6 8 10 12

Figure 7.24: Variation of the ratio of the average normal stress applied to each fracture to
in situ hydrostatic pressure with radius of the circular tunnel
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7.4 STABILITY OF A PRISM IN THE ROOF OF A CIRCULAR TUNNEL

Yow and Goodman [312] presented a numerical model for keyblock stability.
Using the field observations of keyblocks reported by Yow [316], they performed
sensivity analyses on effects of different parameters such as block geometry, in situ
stresses, and discontinuity properties on stability of keyblocks. In their study, they
defined the factor of safety as follows:

FS=1-F/W, (7.29)
in which F is the resultant of all forces (including the block weight) with positive upward
direction; and W is the keyblock weight (a negative force). The factor of safety is equal to
one when the block is at limiting equilibrium. For stable blocks, the factor of safety is
higher than one; for unstable blocks, the factor of safety is smaller than one and can be
negative. It can be seen that this definition is deferent from what Bray [306] and Sofianos
[307] introduced as a safety factor. It is also different from the definition of the factor of
safety in BS3D and the proposed factors of safety in this Section 7.3 (Equations (7.12)
and (7.27)).

As far as constitutive model for rock fractures, Yow and Goodman [312] used
Barton’s model assuming that the peak shear displacement is equal to one percent of the
length of the block. They investigated the effect of the fracture base friction angle, the
magnitudes of JRC and JCS, the initial normal stiffness, the magnitude of vertical stress,
and the lateral pressure coefficient on stability of keyblocks in the roof of a circular
tunnel.

In this Section, the same sensivity analyses are performed using BS3D. The
differences of the analyses done here with respect to those of Yow and Goodman [312]
are as follows:

The definition of the factor of safety is different.

- The progressive failure along rock fracture is considered.
- Wider ranges of parameters are checked.
- Different constitutive models for rock fractures are adopted.

- The effect of dilation displacement on the stability of the block is investigated.
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- The effect of principal stress direction on the stability of the block is
investigated.
- The effects of distance from the excavation face, the size of the block, and the

diameter of the tunnel on the stability of the keyblock are investigated.

7.4.1 Problem statement

The parametric study simulates a symmetrical three-dimensional keyblock in a
horizontal tunnel with a radius of 1.8 m. The radius from the tunnel centerline to the
block apex is equal to 2.4 m. Figure 7.25 depicts the typical geometry of pyramidal
keyblock in the roof of a circular tunnel. Each discontinuity forming a block face dips at
60° below horizontal, and fracture apertures for negligible normal stress are equal to 1
mm. In situ principal stresses prior to excavation of the tunnel are assumed to act
vertically and horizontally with lateral pressure coefficient equal to one (hydrostatic state
of stress). The vertical (horizontal) stress is equal to 3.45 MPa. The unit weight of the
rock block is assumed to be equal to 27 kN/m’. The mechanical properties held fixed in

the parametric analyses are summarized in Table 7.1.

/4(

-

= Tunnel coordinate
system

Figure 7.25: Typical geometry of pyramidal keyblock [312].
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Table 7.1: Mechanical properties held fixed in the parametric analyses

Parameter Value
Young’s modulus of the rock block 30,000 MPa
Poisson’s ratio of the rock block 0.26
Young’s modulus of the rock mass 12,000 MPa
Maximum closure of the fractures 0.75 mm

Based on Yow ‘s and Goodman’s [312] analysis, the factor of safety of this prism
is 5.1. As the constitutive model of rock fractures, they adopted the old version of
Barton’s model in which the peak shear displacements of fractures are predicted to be one
hundredth of the length of the block in the shearing direction. BS3D analyses are
performed to obtain the factor of safety of the prism with choosing different constitutive
models for the fractures. The results are as follows:

- Mohr-Coulomb’s model (Barton’s model excluding dilation): FS = 3.92

- Barton’s model: FS = 4.04

- Modified Barton’s model: FS = 3.35

- Simplified Barton’s model (dilation starts from the origin of shear stress-

displacement curve): FS =4.3

- Old Barton’s model (peak shear displacement = block length / 100): FS = 3.59

It can be seen even using the old Barton’s model the factor of safety calculated
using BS3D is different from the result of Yow ‘s and Goodman’s [312] analysis. The
reason is that the definition of the factor of safety is different and BS3D considers the
progressive failure of the fractures, while Yow ‘s and Goodman’s [312] analyses do not.

In addition, in BS3D analyses, the factor of safety calculated using simplified
Barton’s model (dilation starts from zero shear displacement) is the highest, followed by
those determined using Barton’s model, Mohr-Coulomb’s model, and the modified
Barton’s model. As it was explained before, the Mohr-Coulomb’s model, the Barton’s
model, and the simplified Barton’s model used in our sensivity analyses are exactly the

same except for the dilation displacement. The simplified Barton’s model has the highest
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dilation displacement and, thus, the highest normal forces applied to the fractures, the
highest shear strength of discontinuities, and the highest factor of safety. The modified
Barton’s model differs from Barton’s model in terms of the peak shear displacement, the
mobilized shear strength, and the dilatancy behavior. Therefore, the factor of safety
calculated using the modified Barton’s model is different (smaller for this prism) from

those obtained employing the Barton’s model.

7.4.2 Parametric study (sensivity analyses)

Yow and Goodman [312] performed sensivity analyses on the effect of the
following parameters on stability of a keyblock (the above defined prism):
- The shear strength of discontinuities:
0 dilatancy components:
= JRC
= JCS
O Base friction angle
- The discontinuity initial normal stiffness

- Insitu stress condition: vertical stress and lateral pressure coefficient

In this Section, parametric studies are performed employing BS3D and adopting
five different fracture constitutive models, defined as follows: (1) Mohr-Coulomb’s
model (Barton’s model excluding dilation); (2) Barton’s model; (3) Modified Barton’s
model; (4) Simplified Barton’s model (dilation starts from zero shear displacement); (5)
Old Barton’s model (peak shear displacement = length of the block / 100)

In addition to the effect of parameters investigated by Yow and Goodman [312],
the following senivity analyses are performed in this Section:

- Effect of principal stress directions
- Effect of distance from excavation face

- Effect of the tunnel radius
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Yow’s and Goodman’s [312] sensivity analysis on the effect of stresses and loads
on stability of keyblocks was limited to investigating the effect of vertical stress and
lateral pressure coefficient. In all cases, they assumed that the principal stress directions
are vertical and horizontal. However, the principal stress directions may not be vertical
and horizontal. In engineering applications, an easy method to estimate the in situ stress
condition is to evaluate the vertical stress by multiplying the depth to the unit weight of
the rock mass and estimate the lateral pressure coefficient from values available in the
literature. More expensive and time-consuming methods can be employed to measure the
values of in situ stresses and obtain the stress tensor (i.e. the principal stresses and their
directions) [310]. Therefore, in order to see whether these expensive time-consuming
methods are necessary or not, the effect of principal stress directions on keyblock
stability is also investigated in this Section.

Figure 7.26 depicts the global reference system (x-axis is parallel to the tunnel
axis and z-axis is vertical and directed unpward). Table 7.2 summarizes the sensivity

analyses performed in this Section.

xyz: The global reference system
123: The principal stress direction:
O = kl O
O3 = kg O3

X

Figure 7.26: Principal stress directions and the global reference system
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Figure 7.27: Variation of FS of the prism with Joint Roughness Coefficient (JRC)

| Factor of Safety Mohr-Coulomb (Barton's model excluding dilation)
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Figure 7.28: Variation of FS of the prism with Joint Compressive Strength (JCS)
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7] Mohr-Coulomb (Barton's model excluding dilation)
9 Factor of Safety +++¥-++ Barton's model
—A - - Modified Barton's model
8 - —>¢— Simplified Barton's model (dilation starts from zero shear displacement)
—&— 0Id Barton's model (peak shear displacement = length of the block / 100)
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Figure 7.29: Variation of FS of the prism with the base friction angle
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Figure 7.30: Variation of FS of the prism with fracture initial normal stiffness
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Figure 7.31: FS of the prism versus vertical stress with 0.5 lateral stress ratio
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Figure 7.32: FS of the prism versus lateral pressure coefficient at a constant in situ
vertical stress of 3.45 MPa
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—— Mohr-Coulomb (Barton's model excluding dilation)
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Figure 7.33: Effect of principal stress directions on stability of prism
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Figure 7.33-Continued: Effect of principal stress directions on stability of prism
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Figure 7.35: FS versus radius of the tunnel for a prism
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The following conclusions can be made based on comparison between the
sensivity analyses performed in this Section using BS3D and Yow’s and Goodman’s
[312] analyses (all depicted in Figure 7.27 through Figure 7.33):

1) Effect of JRC on stability of the prism (Figure 7.27):

a. The stability of the prism weakly depends on JRC (decreasing JRC from 5
to 0 decreases FS by 100%). However, Yow and Goodman [312] found that
the block stability strongly (decreasing JRC from 20 to 0 decreases FS by
30%) depends on JRC.

The Barton’s model, the simplified Barton’s model, and the Mobhr-
Coulomb’s model have counterintuitive behavior for very small JRC’s.
Increasing JRC from 0 to 1, the factors of safety decrease instead of
increasing. The peak shear displacements are predicted using Barton’s
empirical equation (Equation (3.31)), which predicts zero shear
displacement for sawed fractures (JRC = 0). If JRC goes to zero, the
predicted shear displacement goes to zero. Thus, the shear stiffness (the
ratio of shear strength to the peak shear displacement) goes to infinity. It is
not possible to perform a BS3D analysis with JRC = 0, using Barton’s
model, old Barton’s model, or Mohr-Coulomb’s model because these
constitutive relationships would return a “division by zero” runtime error.
For JRCs close to zero, the very high values of the shear stiffness of the
fractures cause some numerical issues in the calculations. In Barton’s
empirical equation for the peak shear displacement (Equation (3.31)),
JRC"¥ is in numerator. Consequently, the shear stiffness of the fractures
changes with 1/ JRC"¥. Figure 7.36 depicts changes in 1/JRC** with
JRC, which can represent changes in the shear stiffness with JRC. For JRC
smaller than one, 1/JRC** decreases rapidly with JRC and does not
change dramatically for higher values of JRC. In analyses, BS3D assumes
that the fractures are very stiff and with small shear displacements, it

predicts high shear strength.
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Figure 7.36: Variation of 1/ JRC"* with JRC

Figure 7.36 shows that the rate of the changes in the fracture shear

stiffness for very small JRCs (JRC<1) is different from the rest of the

domain. This problem was one of the reasons that modifications were

proposed in Chapter 3 to Barton’s empirical model.

2) Effect of JCS on stability of the prism (Figure 7.28):

a. Yow and Goodman [312] found that the effect of JCS on the stability of the

prism is not as strong as that of JRC, but it is quite effective. JCS reflects the

strength of the discontinuity asperities; a higher JCS value implies that

fewer asperities fail during shearing and that more asperities must be

overridden.

b. BS3D analyses found that the stability of the prism weakly depends on JCS.

c. The FS flattens out after a specific value of JCS, which depends on other

aspects of the problem because the asperities does not fail and increasing

JCS almost has no effect on the stability of the block.

3) Effect of base friction angle on stability of the prism (Figure 7.29):

a. Yow and Goodman [312] found that the base friction angle is quite effective

on the stability of keyblocks. However, its effect is not as strong as that of

JRC because the base friction angle affects only the available shear strength
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while dilatancy (expressed in terms of JRC) affects both shear strength and
the normal stress brought about by fracture closure.
b. BS3D analyses show that the factor of safety of the prism increases with the

base friction angle.

4) Effect of fracture normal stiffness on stability of the prism (Figure 7.30):

a. Yow and Goodman [312] found that stability decreases as normal stiffness
increases because, for a given displacement increment the normal stresses
change more quickly on stiffer discontinuities. The drop in normal stress
lowers the available shear strength before the shear stresses become large
enough to support the block.

b. BS3D analyses show that the factor of safety of the prism decreases with the
initial stiffness of the fractures. Figure 7.37 depicts the trade-off between
smaller normal displacements and normal stresses (initial normal stiffness
ranges between 200 and 5000 MPa/m). It depicts normal stresses and
normal displacements of a face of the prism versus A (incremental step) for

BS3D analyses performed using Barton’s model.

3 7 o,(MPa) K, (MPa/m):

Normal displacement (mm)

0 05 1 15 2 25 3 35 4 45

Figure 7.37: Trade-off between smaller normal displacements and normal stresses
(Barton’s model)
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Figure 7.37 shows that the normal stresses change more quickly on stiffer
discontinuities (the same as Yow and Goodman’s [312] statement). Thus,
the quicker drop in normal stress decreases more rapidly the fracture shear
strength. Consequently, the stiffer the fractures is, the lower is the safety
factor of the block.

Moreover, Figure 7.38 illustrates the magnitude of centroid displacement
at failure versus the initial normal stiffness obtained using BS3D. It shows
that for all models failure occurs at a smaller vertical displacement when

the initial stiffness increases.

1.8 -
1.6 -
1.4 -

1.2 A

Mohr-Coulomb (Barton's model excluding dilation)

0.8 - -++%--+ Barton's model
0.6 - —A - - Modified Barton's model

Displacement at Failure (mm)
=

04 - —>— Simplified Barton's model (dilation starts from zero shear displacement)

—e— 0ld Barton's model (peak shear displacement = length of the block / 100)
Kni (MPa/mm)
O T T T T T T T T T 1

0 0.5 1 1.5 2 2.5 3 35 4 4.5 5

Figure 7.38: Displacement at failure versus initial normal stiffness calculated using BS3D

5) Effect of in situ stress condition of the prism (Figure 7.31 through Figure 7.33):

a. Yow and Goodman [312] found that aside from the shear strength, the most
critical condition affecting keyblock stability is the stress environment. The
block becomes less stable as the initial confining stresses decrease; the trend
accelerates as stress magnitudes become very small (smaller than about 1.5
MPa). The same conclusion has been made based on BS3D analyses.

b. Yow and Goodman [312] found that the block becomes less stable as the

lateral stress ratio decreases; the trend accelerates as the ratio goes below
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about one-half. The same conclusion has been made based on BS3D
analyses.

In this Section, another sensivity analysis was performed to investigate the
effect of principal stress directions on stability of the prism (the stress
tensors in the global reference system of

Figure 7.26 are given in Appendix F). It is found that the principal stress
directions strongly affect the stability of keyblocks.

It can be concluded that the in situ stresses strongly affect the stability of the
block, even more than the shear strength of fractures (Figure 7.33 versus
Figure 7.27 through Figure 7.29). However, the actual stress field in the
rock mass surrounding the excavation is not taken into account in the default
Unwedge [317] analysis which is based upon the assumption that the

wedges are subjected to gravitational loading only.

6) Effect of distance from excavation face of the prism (Figure 7.34): the factor of

safety increases with distance from excavation face up to approximately five

times the tunnel radius.

7) Effect of the tunnel radius on stability of the prism (Figure 7.35): the factor of

safety of the prism increases with increasing tunnel radius. The same observation

was found in Section 7.3.6 (Figure 7.23 shows that the safety factor of the

tetrahedron increases with increasing the tunnel radius). The reason is that the

normal forces applied to fractures increase with increasing diameter (the reason is

explained in details in Section 7.3.6).

8) General comments (Figure 7.27 through Figure 7.35):

a.

Because of different dilation displacements, the factors of safety obtained
using the simplified Barton’s model are higher than those calculated using
the Barton’s model, which is higher than those determined employing the
Mohr-Coulomb model. The higher the dilation displacements are, the
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higher are the normal forces applied to the fractures, the shear strength of
the fractures, and, finally, the factor of safety of the block.
b. The modified Barton’s model and the old Barton’s model may yield

smaller or higher factors of safety compared the other models.

7.4.3 Effect of size of the block on stability of a prism

In order to investigate the effect of keyblock size on its stability, three sensivity
analyses are performed. The analyses consider prisms that may be formed by four

fractures dipping 60° below horizontal with JRC = 4, JCS = 20.69 MPa, and ¢, =25°. A

hydrostatic stress field prior to excavation is assumed with a stress magnitude of 3.45
MPa. BS3D analyses were performed adopting five different fracture constitutive models
and the factors of safety were calculated. The sensivity analyses are as follows:

1) Assuming constant tunnel radius (10 m), the height of the prism was changed
between 0.5 and 10 m (Figure 7.39). The factor of safety of the block decreases
with increasing size of the prism. The reasons are: (a) the weight of the block
increases with its height and (b) the scaled JRC and therefore the shear strength of

the block fractures decreases with increasing size of the block.

10 4 g Mohr-Coulomb (Barton's model excluding dilation)
9 A «=+¥+++ Barton's model
g | X —A - - Modified Barton's model
\ —>— Simplified Barton's model (dilation starts from zero shear displacement)
77 —©— 0Id Barton's model (peak shear displacement = length of the block / 100)
6 -
5 .
4 -
3 -
2 -
1 .
0
0 1 2 3 4 5 6 7 8 9

Figure 7.39: FS versus the height of the prism
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It should be noted that the area of the faces increases with increasing
height of the prism. However, this increase in the area increases the area on which
both normal stresses and shear stresses are applied and, thus, increases both the
normal forces and shear forces applied to the faces. Therefore, increases in the
area of the faces may have negligible effect on stability of the prism.

In addition, increasing height of the prism increases its volume (and in
turn its weight) more than the area of the faces. Figure 7.40 depicts the prism
considered in this parametric study (oo = 60° in this Section). The area of each
triangular face can be determined as follows:

(L) b . .
a-b  \tan(B) b (H-sin(a))?  sin®(a)

Area = =

2 2 wn® @@  w@n@)

Therefore, the area of each triangular face is proportional to square of prism

height. However, the volume of the prism can be calculated as follows:

2b \°
a’-H (W) ‘H _4(H-sin(@)*-H __ 4sin’*(a) .

Vol = = == .
otume 3 3 3 tan?(B) 3tan?(B)

Thus, the volume (and in turn the weight) of the prism is proportional to cube of

prism height. Consequently, increasing the prism’s height increases the weight
more than the area of the faces, which means that the active forces increase more

than passive forces. As a consequence, the factor of safety decreases.

Figure 7.40: Geometry of the prism
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2) The tunnel radius and the block height were changed with a same scale. The
analysis considers prisms with a height equal to 1/3 of radius of the tunnel. The
results shown in Figure 7.41 indicate that the factor of safety of the block
decreases (by 20%) with increasing radius of the tunnel (from 1 to 10 m) and size
of the prism accordingly. The change is very small. This is the combination effect
of the tunnel radius (which increases the FS) and the size of the block (which
decrease the FS).

1 FS

Mohr-Coulomb (Barton's model excluding dilation)
ceee+++ Barton's model
—A - - Modified Barton's model

. —>— Simplified Barton's model (dilation starts from zero shear displacement)

—©— 0Id Barton's model (peak shear displacement = length of the block / 100)

radius (m)

0 1 2 3 4 5 6 7 8 9

Figure 7.41: FS versus the tunnel radius for the prism with height equal to 1/3 of the
tunnel radius

3) The tunnel radius was changed (from 1 to 10 m) and the stability of the maximum
block formed from four fractures dipping 60° below horizontal was investigated.
As illustrated in Figure 7.42, the factor of safety of the maximum block remains
almost constant with increasing tunnel radius. This is the combination effect of
the tunnel radius (which increases the FS) and the size of the block (which
decreases the FS).
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FS Mohr-Coulomb (Barton's model excluding dilation)

+e+¥+-+ Barton's model

3 - —A - - Modified Barton's model

—>— Simplified Barton's model (dilation starts from zero shear displacement)
—©— 0ld Barton's model (peak shear displacement = length of the block / 100)

radius (m)

0 1 2 3 4 5 6 7 8 9 10

Figure 7.42: FS versus the tunnel radius for the maximum prism

7.5 SUMMARY AND CONCLUSIONS

An analytical method has been presented for stability analysis of 2D triangular
prism formed in the roof of a circular tunnel from References [20, 235, 306-310]. In
addition, a new definition for the factor of safety of the block is presented in this Chapter.
Based on sensivity analyses, the following conclusions were made:

1) Different FS definitions may lead to different conclusions in sensivity analyses.
2) Adopting Equation (7.1) as the definition of the FS, it is found that the tendency
for the prism to be expelled from the surface is exacerbated for high values of

k, /K, . However, defining the FS as given in Equation (7.12), it is found that the
stability of 2D triangular wedge is independent of the ratio of k/k,.

3) Stability of 2D wedge is strongly affected by the friction angle of the fractures.
4) Adopting Equation (7.12) as the definition of the FS, it is found that increasing
the in situ stress (or lateral pressure coefficient) slightly increases the stability of

the block in low stress (or ko) regimes and has no effect on the factor of safety in
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high stress (or ko) regimes. However, the sensivity analyses performed based on
the definition of FS given by Equation (7.1) leads to the following conclusions:
for a friction angle equal to the semi-apical angle, the vertical stress (or lateral
pressure coefficient) has no effect on the stability of the block; for a friction angle
smaller than the semi-apical angle, the FS of the block increases (the stability
decreases) with increasing the vertical stress (or lateral pressure coefficient); and
for a friction angle more than the semi-apical angle, the FS of the block decreases
(the stability increases) with increasing the vertical stress.

Based on the above mentioned conclusions obtained from senivity analyses, one
may say that although the definition of the factor of safety given in Equation (7.1) is not
wrong, it may lead to incorrect conclusions in sensivity analyses. In addition, FS
introduced in Equation (7.12) is limited to positive values, the same as most geotechnical
engineering (and civil engineering) applications: at equilibrium, FS=1 for stable blocks,
FS > 1, and for unstable blocks, 0 < FS < 1. Consequently, it is believed that Equation
(7.12) can define the factor of safety of a 2D symmetric prism better than Equation (7.1).

An analytical approach was presented using limit equilibrium methods to analyze
the stability of a tetrahedron formed in the roof of a tunnel. Two different definitions
were introduced to calculate the factor of safety of the wedge. The following definition is
adopted in the analytical analyses performed in this Chapter: the factor of safety is
defined as the ratio of passive to active forces (or the ratio of available shear strength to
the required shear stress at equilibrium).

The sensivity analyses performed using the analytical approach and BS3D have
the following conclusions:

1) Although the definition of the factor of safety (Equation (7.27)) in the analytical
method is the same as the definition of the factor of safety in BS3D, if a block is

analyzed using both approaches, the factors of safety will be different because:
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- BS3D takes into account the deformability of the rock block, fractures, and
the rock mass surrounding the block, while the analytical approach (Equation
(7.27)) does not.

- BS3D considers the progressive failure and the mobilization of shear strength,
while the analytical limit equilibrium method does not.

- Inanalytical limit equilibrium solution, the in situ stresses are assumed to be
independent of the block displacement. However, in BS3D analysis, the part
of the in situ stresses applied to the block change with block movement.

2) Adopting Mohr-Coulomb as constitutive model of fractures, the initial normal
stiffness of the fractures (and in turn the normal stiffness of the fractures) has no
effect on stability of 3D wedges.

3) Adopting Barton’s original or modified model, the factor of safety of tetrahedral
rock block decreases with increasing initial normal stiffness of fractures. This
effect is more obvious in the case of stable blocks with dip angles greater than
50°.

4) The safety factors calculated using the Barton’s model and the Mohr-Coulomb
model are exactly the same, if the shear displacements of fractures are smaller
than 30% of the peak shear displacement.

5) Assuming that dilation starts from zero shear displacement (origin of the shear
stress-displacement curve), the factors of safety increase compared to those of
Barton’s model (or Mohr-Coulomb’s model).

6) Modified Barton’s model uses a different equation for the peak shear
displacement (Equation (3.88)) and has a different FS (higher in the case of the
tetrahedron analyzed in this Chapter) compared to those of other models.

7) The factor of safety decreases with increasing size of the wedge.

Yow and Goodman [312] presented a numerical model for keyblock stability.

Using the field observations of keyblocks reported by Yow [316], they performed
sensivity analyses on effects of different parameters such as block geometry, in situ

stresses, and discontinuity properties on stability of keyblocks. As far as constitutive
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model for rock fractures, Yow and Goodman [312] used Barton’s model assuming the

peak shear displacement is equal to one percent of the length of the block. They

investigated the effect of the fracture base friction angle, the magnitudes of JRC and JCS,

the initial normal stiffness, the magnitude of vertical stress, and the lateral pressure

coefficient on stability of keyblocks in the roof of a circular tunnel. In this Chapter, the

same sensivity analyses are performed using BS3D. The differences of the analyses done

here with respect to those of Yow and Goodman [312] is as follows:

The definition of the factor of safety is different.

The progressive failure of rock fracture is considered.

Wider ranges along parameters are checked.

The analyses are performed adopting different constitutive models for rock
fractures.

The effect of dilation displacement on the stability of the keyblock is
investigated.

The effect of principal stress direction on the stability of the keyblock is
investigated.

The effects of distance from the excavation face, the size of the block, and the

diameter of the tunnel on the stability of the keyblock are investigated.

The sensivity analyses performed in this Chapter have the following conclusions:

1)

2)

Even using the old Barton’s model the factor of safety calculated using BS3D
is different from the result of Yow ‘s and Goodman’s [312] analysis. The
reason is that the definition of the factor of safety is different and BS3D
considers the progressive failure of the fractures, while Yow ‘s and
Goodman’s [312] analysis does not.

In BS3D analyses, the factor of safety calculated using simplified Barton’s
model (dilation starts from zero shear displacement) is the highest, followed
by those determined using Barton’s model, Mohr-Coulomb’s model, and the

modified Barton’s model. As it was explained before, the Mohr-Coulomb’s
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3)

4)

5)

6)

7)

8)

9)

model, the Barton’s model, and the simplified Barton’s model used in our
sensivity analyses are exactly the same except for the dilation displacement.
The simplified Barton’s model has the highest dilation displacement and, thus,
the highest normal forces applied to the fractures, the highest shear strength of
discontinuities, and the highest factor of safety.

The modified Barton’s model differs from Barton’s model in terms of the
peak shear displacement, the mobilized shear strength, and the dilatancy
behavior. Therefore, the factor of safety calculated using the modified
Barton’s model is different (smaller for this prism) from those obtained
employing the Barton’s model.

The stability of the prism weakly depends on JRC (decreasing JRC from 20 to
0 decreases FS by 30%). However, Yow and Goodman [312] found that the
block stability strongly (decreasing JRC from 5 to O decreases FS by 100%)
depends on JRC.

The Barton’s model, the simplified Barton’s model, and the Mohr-Coulomb’s
model have counterintuitive behavior for very small JRC’s. Increasing JRC
from 0 to 1, the factors of safety decrease instead of increases.

Yow and Goodman [312] found that the effect of JCS on the stability of the
prism is not as strong as that of JRC, but it is quite effective. BS3D analyses
found that the stability of the prism is weakly dependent on JCS.

The FS flattens out after a specific value of JCS, which depends on other
aspects of the problem because the asperities does not fail and increasing JCS
almost has no effect on the stability of the block.

Yow and Goodman [312] found that the base friction angle is quite effective
on the stability of keyblocks. In addition, BS3D analyses show that the factor
of safety of the prism increases with the base friction angle.

Stability decreases as normal stiffness increases (the same as Yow’s and

Goodman’s [312] conclusion).
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10) Effect of in situ stress condition of the prism: Yow and Goodman [312] found
that aside from the shear strength, the most critical condition affecting
keyblock stability is the stress environment. The block becomes less stable as
the initial confining stresses decrease; the trend accelerates as stress
magnitudes become very small (smaller than about 1.5 MPa). The same
conclusion has been made based on BS3D analyses.

11) Yow and Goodman [312] found that the block becomes less stable as the
lateral stress ratio decreases; the trend accelerates as the ratio goes below
about one-half. The same conclusion has been made based on BS3D analyses.

12) The principal stress directions strongly affect the stability of keyblocks.

13) The in situ stresses strongly affect the stability of the block, even more than
the shear strength of fractures (Figure 7.33 versus Figure 7.27 through Figure
7.29).

14) The factor of safety increases with distance from excavation face up to
approximately five times of the tunnel radius.

15) The factor of safety of the prism increases with increasing radius of the tunnel.

16) Because of different dilation displacements, the factors of safety obtained
using the simplified Barton’s model are higher than those calculated using the
Barton’s model which itself is higher than those determined employing the
Mohr-Coulomb model. The higher the dilation displacements are, the higher
are the normal forces applied to the fractures, the shear strength of the
fractures, and, finally, the factor of safety of the block.

17) The modified Barton’s model and the old Barton’s model may have smaller or
higher factors of safety compared the other models, while they have colloquial
differences with them.

18) The factor of safety of the block decreases with increasing size of the prism.

19) The factor of safety of the block decreases (by 20%) with increasing radius of

the tunnel (from 1 to 10 m) and size of the prism accordingly. The change is

264



very small. This is the combination effect of the tunnel radius (which
increases the FS) and the size of the block (which decrease the FS).

20) The factor of safety of the maximum block remains almost constant with
increasing tunnel radius. This is the combination effect of the tunnel radius

(which increases the FS) and the size of the block (which decrease the FS).

Finally, it can be concluded from the sensivity analyses performed in this Chapter
that, in stability of keyblocks, in situ stresses have the highest effect. In addition, the type
of constitutive model has strong effect, even higher than those of the shear strength of the
fractures. The shear strength and stiffness of the fractures have weak effect on stability of

keyblocks.
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CHAPTER 8: EFFECT OF HIGH-VELOCITY JET IMPACT ON
STABILITY OF SINGLE ROCK BLOCKS IN PLUNGE POOLS

8.1 INTRODUCTION

Standard dam risk assessment includes consideration for spillway and spillway
energy dissipator scour. For concrete and masonry dams, it also includes consideration
for dam overtopping and scour of the foundations. High-velocity plunging jets, issuing
from hydraulic artificial or natural structures, can result in scouring of the rock riverbed
or the dam toe foundation. Assessment of the extent of scour is necessary to ensure the
safety of the dam and to guarantee the stability of its abutments.

Currently, there is no formulation for evaluating scour caused by general failure
modes of rock blocks having general shape and subject to general loading (e.g., gravity,
reinforcement, dam loads) and to the plunge pool water pressures [23]. Limitations of
available approaches to scour evaluation are briefly explained in Section 8.2.

Water pressure has been implemented in BS3D. Water forces cause the stiffness
matrix for the block to be non-symmetric, which opens the doors to additional failure
modes, such as [318-321]:

1) Divergence, i.e. the motion is aperiodic and exponentially growing in time.
2) Flutter, i.e. the motion is periodic and exponentially growing in time. This is a
self-starting vibration of the block that may occur when a block face rotates

under hydrodynamic load.

In this Chapter, the stability of single rock blocks in plunge pools is investigated.
Section 8.3 describes an approach to estimate pressure forces generated in plunge pools
due to high-velocity jet impacts. Section 8.4 introduces failure criteria for jointed rock
mass. The scour model implemented in BS3D is calibrated and validated using the results
of several experimental studies as well as case histories and prototypes in Section 8.5.

Ability of BS3D in considering in situ stress and dilation behavior of rock fractures as
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well as dealing with dynamic divergence and flutter are also demonstrated by an example
in Section 8.5 followed by summary and conclusion in Section 8.6.
It should be acknowledged that Sections 8.2 through 8.4.1 are taken from

reference [23] with some integrations and modifications.

8.2 LIMITATIONS OF AVAILABLE APPROACHES TO SCOUR EVALUATION

8.2.1 Bollaert’s approaches

Bollaert’s Dynamic Impulsion (DI) method [30, 31] is limited to vertical
translational failure (static failure mode) of parallelepiped rock blocks with one face at
the plunge pool bottom. Indeed, roto-translational failures are common even for
parallelepiped blocks subjected to pressure fluctuations [322].

Bollaert’s Comprehensive Fracture Mechanics (CFM) method has only been
applied to scour extent for the Cabora-Bass dam [30, 31], built in Mozambique on
“excellent quality granitic gneiss with slight schistosity” [323]. Typical values for the
unconfined compressive strength, UCS, of gneiss are in the order of 100-200 MPa.
However, in order to match the prototype scour extent, the author had to use a UCS of
only 13 MPa. This raises some concerns on the use of this method for predicting scour

extent based on actual rock properties [23].

8.2.2 Annandale’s Erodibility Index
Annandale’s erodibility index (EI) method [324, 325] is a classification method

(as opposed to an analytical or numerical method based on mechanical principles)
applicable to rock masses as a whole, and is not applicable to single rock blocks, which
typically are critical in dam stability as recognized by Goodman and Powell by working
on USBR dams [326]. In addition, the EI only approximately accounts for the distinctive
property of rock masses, i.e. their directionality [33]. Indeed, the EI is obtained by
multiplication of the following terms:
El =M, K, -K,-J,, (8.1)

where:
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- Ms=v/27 UCS, in which y; is the unit weight of the rock in kN/m’ (typically
25-33 kN/m’), and can have values in the range of 0 to 300.

- Ky, =RQD/Jp: block size, and can have values in the range of 1 to 100.

- Kg=J/Ja: shear strength, and can have values in the range of 0.2 to 4.

- Js = fracture orientation, and can have values in the range of 0.4 to 1.2.

It is evident that shear strength and relative orientation have little weight on the
overall EI as compared to unconfined compressive strength and block size [23]. An
indication that the unconfined compressive strength of the intact rock plays a
disproportionate role in the EI comes from Bollaert’s application of EI to the Coborra-
Bassa dam [30, 31]. In order to match the prototype scour depths, the unconfined
compressive strength of the intact rock had to be lowered to 13 MPa, i.e by an order of
magnitude. This unbalance has been noticed by USBR personnel as well while applying
the EI on some USBR dams [23].

Annandale’s table for determining the unconfined compressive strength of the
intact rock disagrees with the table proposed by the Geological Society of America
(GSA), and adopted by the International Society of Rock Mechanics [178], the USBR
Engineering Geology Field Manual [327], and the British Standards [328]. In particular,
Annadale’s estimates for soft to very hard rocks rock are much lower than what is
generally accepted by the rock mechanics community. One would obtain much higher EI
values by using actual testing than by using Annandale’s table. This may dangerously
mislead the user, and, since UCS has a major role in determining EI, it may lead to quite

different estimates of EI, and thus quite different estimates of scour potential [23].

8.2.3 Discrete Element Method

As for numerical methods for discontinuous rock masses, 3DEC by Itasca [56] has
serious limitations in the dynamics of rigid bodies because it assumes that the inertia
tensor is always diagonal [55, 56], i.e. rotations are assumed to be parallel to the applied
resultant moment. Both 3DEC and 3D-DDA [17, 18, 60, 61] use contact points at the

vertices of the contact areas to calculate constraint forces: this does not allow for path-
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dependent behavior of discontinuities. 3D-DDA assumes that all forces must be
conservative, and thus cannot handle follower forces, such as water pressure forces, and
cannot detect divergence or flutter failure modes [23].

Finally, all numerical methods for discontinuous rock masses need to resort to time
consuming sensitivity studies in order to calculate the factor of safety of a block. These
sensitivity studies entail changing the strength parameters, e.g., multiplying the cohesion
and tangent of the friction angle of fractures by a same amount. If failure is not caused by
overcoming of the shear strength (e.g., block rotation), then these sensitivity studies will
not yield the correct safety factor. BS3D formulation overcomes the abovementioned

limitations and has been validated experimentally on prototypes in Chapter 6.

8.3 PRESSURE FORCES GENERATED IN PLUNGE POOLS

Plunging jets occur in various engineering applications, including overtopping
dams, at the ends of spillway chutes, emanating from gates and valves, and the like [325].

Figure 8.1 shows a jet discharging over a dam.

> Plunging Jet

A

“ » Plunge pool
2
' f Rock mass
Cmaxpd' Apc! fc’ CI
Figure 8.1: Nomenclature for a jet discharging over an ogée spillway and plunging into a

pool [30]
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The issuance turbulence intensity, defined as [325]:

-
\Y

IS an important parameter, at jet issuance, determining overall jet characteristics. The

(8.2)

variable V' is the root mean square value of the fluctuating velocity, and V is the mean
axial flow velocity of the jet. Table 8.1 contains estimates of issuance turbulence

intensity for use in practice.

Table 8.1: Typical values of issuance turbulence intensity at various outlet structure [30]

Type of outlet structure Turbulence intensity T, (%)
Free fall 0-3
Ski jump outlet 3-5
Valve, intermediate outlet, or bottom outlet 3-8

When a jet is completely developed (Figure 8.2), it no longer contains a core but
essentially consists of blobs of water that disintegrate into finer and finer drops.
Individual blobs and drops of water slow down due to air drag and eventually reach
terminal velocity [325]. Equations that can be used to estimate jet breakup length, Ly, and
issuance turbulence intensity, T,, are summarized in Table 8.2. In these equations, Q is

the total flow rate, q is the flow rate per unit length of the rectangular jet, and D; is the

jet diameter at the pool surface.

8.3.1 Plunge pool floor

Studies on pressure fluctuation in plunge pools have been conducted by Ervine et
al. [329], Franzetti and Tanda [330, 331], Xu-Duo-Ming [332], Tao et al. [333], Lopardo
[334], Armengou [335], May and Willoughby [336], Puertas and Dolz [337], Hartung
and Hausler [338], Beltaos and Rajartnam [339], Cola [340], Bollaert [30], Bollaert and
Schleiss [341, 342], etc.
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Figure 8.2: Jet characteristics [329]
Table 8.2: Equations for estimating jet breakup length
L Turbulence intensity "
Jett R
et type b T, (%) eference
Rectangular jets 6q°* Horeni [343]
60Q°"* 0.3
17.4Q% 3 Ervine et al. [329]
Circular jets 020
4.1Q™ 8
50D; to 100D, 3to8 Ervine and Falvey [344]
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On the floor of a plunge pool, the maximum and minimum dynamic pressures,

respectively, can be calculated as follows [329]:

2

P =(Cpa +Cp*)~7W \;—‘g (8.3)

2
Pmin :(Cpa_Cp_)'yw'Za (84)
where C, is the mean dynamic pressure coefficient; Cp+(Cp7, respectively) is the

positive (negative, respectively) extreme fluctuation dynamic pressure coefficient (Figure

8.3), V, is the jet velocity at the pool surface (V; = JV.> +29Z , in which V, is the jet

velocity at issuance and Z is the plunging jet length depicted in Figure 8.1), and p,, is

the unit weight of water.
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Figure 8.3: (a) Maximum and (b) minimum fluctuation dynamic pressure coefficient at
pool floor [329]
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If the ratio of the jet length to the jet breakup length (L /Lp) is equal to 0.5, C ,

can be calculated with the following expression [329]:

38.4 )
———|D./Y f Y/D. >4
Cp= (l"‘ﬂ)( J )Z | i~ ’
0.875 otherwise

(8.5)

]

where D; is the jet diameter at the pool surface (D; = D, /\% , in which D, is the jet
j

diameter at issuance depicted in Figure 8.1) and Y is the pool depth. £ is the free air

content and, for circular plunging jets, can be estimated using the following equation

[329, 345-348]:

D; V.

B=K’ L-LI—V—"} (8.6)
] J

in which K' is empirically obtained parameter (Table 8.3) and ranges between 0.2 and

0.4; V, (=1 m/s) is the minimum plunging velocity leading to commencement of

aeration. In addition, for rectangular plunging jets, B can be estimated as follows [346]:

L
ﬂ~0.13\/D:j (8.7)

The maximum air content that could reasonably be expected to occur in water is
on the order of about 65 to 70% [349].

Corrections can be made to take into account different breakup length [30, 325]
and turbulence intensity [30]. The following equation can be used to calculate the values
of the average dynamic pressure coefficient for rectangular jets as a function of jet

breakup length ratio and dimensionless plunge pool depth [325, 350]:

Table 8.3: Constant K’ values [344]

Turbulence Circular jets | Rectangularjets | Application limit
Rough turbulent 0.40 0.20 L/D; <50
Moderate turbulent 0.30 0.15 L/D; <100
Smooth turbulent 0.20 0.10 L/D; < 100
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C.=a: exp(— bYEj’ (8.8)

where B is the width (i.e. thickness) of a rectangular jet. The values of the parameters a

and b as a function of jet breakup length ratio are presented in Table 8.4.

8.3.2 Fractures

As shown in Figure 8.4, Bollaert [30] determined experimentally the pressures in
a closed-ended fracture (U-joint) and in an open-ended fracture (D-joint), respectively,

under an impinging jet. The maximum dynamic pressure can be calculated as [30]:

V.’

Poos =(Cos +Coi) 7 S (8.9)

where coefficients C; and de+ are given in Figure 8.5. Bollaert noticed that the
coefficients for the U-joint and for the D-joint are very similar. As a consequence, in this
research, it is assumed that the actual hydraulic connectivity (of a fracture around a rock
block with the pool bottom) does not change significantly the pressure field on the
block’s faces. This entails that predictions based on the D-joint pressure field should be

robust.

Table 8.4: Parameters for estimating dynamic pressure coefficient as a function of jet
breakup length ratio [325, 350]

L /L, a b C(Y/B<4)
0.4-0.5 | 098 | 0.070 0.78
0.5-0.6 | 0.92 | 0.079 0.69
0.6-0.8 | 0.65 | 0.067 0.50
1-1.10 | 0.65 | 0.163 0.33
1.1-1.3 | 0.65 | 0.185 0.31
1.5-1.6 | 0.55 | 0.200 0.24
1.8-19 | 0.55 | 0.250 0.20
2.2-2.3 | 0.50 | 0.250 0.18
2.3-3.0 | 0.50 | 0.400 0.10
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s Sensor Type Position
% EI a pool bottom 25 mm from joint
. {L(d ) a pool bottom 50 mm from joint
_ﬁT 4 Z c rock joint center, 420 mm inside
0.075m i |l 0.01m 0.075m| 11 0.01m d rock joint center, 790 mm inside
U-joint D-joint
Figure 8.4: Dimensions of joints tested by Ballaert [30]
1.2 20
L — Franzetti & Tanda (1987) ——— Ervine et al. (1997) best fit of C*,,
10 4+—+— -+« Ervine et al. (1997) |
T
i 12+
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Figure 8.5: a) Mean and b) positive extreme fluctuation dynamic pressure coefficients at
sensor “d” in the D-joint of Figure 8.4 (cross and diamond symbols). Gray symbols
indicate coefficients at sensor “d” in the U-joint of Figure 8.4 [30]. Lines indicate

experimental results for pool bottom.

8.3.3 Proposed approach for pressures at jet centerline

Based on the literature review, at the jet centerline, it is proposed to calculate

pressures in the fractures using the experimental results for the D-joint. The pressures on

the rock block faces at the pool bottom can be calculated using Equations (8.3) and (8.4).

275



It is assumed that the maximum (minimum, respectively) pressure in a fracture occurs at
the same time as the minimum (maximum, respectively) pressure on the pool floor.
In order to validate this assumption, consider the maximum difference between

the pressure at point “d” (Figure 8.4) and the pressure at the pool bottom (points “a” and

13 i’)
a

in Figure 8.4). First, consider the ratio Y /D; in the 3 to 4 range. Equations (3.4)

and (8.5) and Figure 8.3-(b) yield a minimum pressure at the pool bottom equal to

2

P.=057, 2—’ , Whereas Equation (8.9) and Figure 8.5 yield a maximum pressure at
g

min

2
j

the bottom of the block equalto P, =1.6-7, "Sq The net uplift pressure coefficient
g

max,d

is thus about 1.1: this value corresponds well with the difference (experimentally

measured by Bollaert) between the pressure at point “d” and the average of pressures at

points “a” and “a” shown in Figure 8.4. This difference is expressed by Bollaert as [30]:
V 2

P =C%,.y -—, 8.10

up PV w 29 ( )

where C™, is given in Figure 8.6.
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—— Ervine et al. (1997) best fit of C*,,
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0.0 +———imp— e
0o 2 4 6 8 10 12 14 16 18 20

YD, [-]

Figure 8.6: Net upward pressure coefficient for D-joints [30]. Lines indicate experimental
results for pool bottom.
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Likewise, for Y/D; =8, one obtains a net uplift pressure coefficient of about

1.7-0.2=1.5, which compares well with the data in Figure 8.6. These values are in line
with the values obtained by Liu et al. [351] by measuring net uplift forces on scaled
versions of rock blocks in plunge pools. Finally, maximum pressure fluctuations (as
opposed to root-mean-square values) are also typically used in the stability analysis of
stilling basin slabs [322, 352, 353].

Since the maximum and minimum dynamic pressure coefficients were obtained
from 2-min records, their values must be doubled for a 24 hour run time, which is
typically understood to be representative of continuous operation of a plunge pool or
stilling basin [329, 352].

The literature review has revealed that the integral scale of the correlation
function for pressure fluctuations is very small as compared to the typical dimension of a
rock block [354]. If the horizontal characteristic dimension of the block is at least twice
the integral scale, then the pressure fluctuations at two fractures are independent [322].
Recall that the net uplift pressure for the D-joint is obtained using the maximum and the
minimum pressure coefficients for the fracture and the floor, respectively. Since the
distance between the two vertical fractures in the D-joint is only 7.5 cm, Bollaert’s result
would confirm this assumption. This assumption is a worst-case scenario because it
entails that the minimum pressure at one fracture can occur simultaneously with the

maximum pressure at another fracture, and vice versa. As a consequence, if a block has n

faces, the stability analysis will be run 2" times to cover all possible combinations of

pressure distributions on the block’s faces.

8.3.4 Proposed approach for pressures not at jet centerline

Since the 1960°s [355], it has been observed experimentally that the pressure on
the pool floor decreases radially from the jet centerline. The literature research has
revealed that:

1- The mean and extreme pressures decrease more rapidly for developed jets,

and less rapidly for core jets.
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2- The extreme pressure fluctuations decrease less rapidly than the mean
pressures.

3- The minimum extreme pressure fluctuation coefficients are very small (about
0.1) and are independent of the radial distance and nature of the jets [23].

4- The extreme pressure fluctuations are proportional to the root mean square

pressure fluctuations.

It is thus proposed to apply radially decreasing pressures to the block faces lying
on the pool floor. The mean and maximum extreme pressure coefficients are taken as

follows [30, 331, 336]:

C = exp(— 3(r It .. )2 ) Cras for core jets (8.11)
Co = exp(— or/r.. ) ) Coas for developed jets  (8.12)
C, =C., for core jets and r < 051, (8.13)
C, = exp(— 3r/r, — 0.5)2)~ C,", forcorejetsand r>0.5rmex  (8.14)
C, = exp(— 3(r/r,. ) ) C,, for developed jets (8.15)
where C, (C pr+) i1s the mean (maximum extreme, respectively) pressure coefficient at

distance r to the jet centerline, and 1, =0.5D; +0.25Y . Core jets and developed jets

can be distinguished from each other using the following criteria [30]:

0<DL<4—6 = core jet

YJ (8.16)
4—6<D—<20—40 = developed jet

J
In this research, the minimum extreme pressure fluctuation coefficient on the pool

floor is estimated using the following two steps:

I- The minimum extreme pressure fluctuation coefficient, Cpr , 1s estimated as

follows:
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C, =C, for core jets and r < 0.5rmax ~ (8.17)
C, = exp(— 3(!‘ /. — 0.5)2)- C, for core jets and r > 0.5rmax  (8.18)
C, = exp(— 3(!‘ /T )2) C, for developed jets (3.19)

2- If 0.1>C, or C, <C,, then it will be assumed that C, =0.1. The

pr >
reason is the higher value for the minimum extreme pressure fluctuation

coefficient gives the lower pressure on the pool floor which should be a

positive value. Thus, C,

can not be higher than C . In addition, the
literature review shows that the minimum extreme pressure fluctuation

coefficients may be very small (about 0.1). Therefore, C, =0.1 will be

p

considered whenever it gives the lowest minimum pressure on the pool floor.

8.3.5 Summary of pressure distributions on a block

To account for long duration events, all of the pressure values will be doubled.

8.3.5.1 Faces lying on the pool floor

The average pressure distribution on floor is obtained using Equations (8.11) or

(8.12), where C_, is given by Equations (8.5). The maximum pressure distribution is

pa
obtained by adding the maximum pressure coefficient given by Equations (8.13) through
(8.15) with Cp+ as in Figure 8.3. The minimum pressure distribution is obtained by

subtracting the minimum pressure coefficient to the average pressure distribution. The

minimum pressure coefficient is estimated using Equations (8.17) through (8.19) with
C, asin Figure 8.3 or is assumed to be constant and equal to 0.1. The maximum value

for the minimum pressure coefficient should be adopted.

8.3.5.2 All other faces

The pressure is assumed to be uniformly distributed. Its maximum value is
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2

V.
= ). .
Pmax,fracture,r - (C p, fracture,r + Cp,fracture,r ) 7/w s (820)

29
where:
o. fracture.r exp(— 3(!‘ . )2 ) C od > for core jets (8.21)
o fracturer = exp( 6(!‘ .. )2) Cois for developed jets (8.22)
o.fracturer = de+ , for core jets and r < 0.5rmax  (8.23)

exp( 3r/r,, — 0.5)2)~ C,q» forcorejetsandr>0.5rmax  (8.24)

p, fracturer

C
C
C
C
C

max

exp( r/r,. ) ) Cu > for developed jets (8.25)

p, fracturer
+ . . . . .« . .
where C , and C,;° are given in Figure 8.5, and r is the minimum distance of the

block’s face to the jet centerline.

The minimum pressure is taken as:

2

VJ
F)min, fracture,r — (Cp,fracture,r -0. 1) Vw: Ea (826)

where C is calculated using Equations (8.21) and (8.22) with r equal to the

p, fracture,r
maximum distance of the block’s face to the jet centerline.

Let n be the number of faces making up the block. The stability analysis is run for
all 2" face pressure combinations, and the factor of safety is the minimum control
parameter at failure calculated in the 2" runs.

As scour deepens, the configuration and geometry of the plunge pool may affect
the above pressures. This effect may be introduced through the expressions derived by
Manso [24] in his experimental work. However, the objective of this dissertation is to
develop a method to analyze the stability of a single rock block (considering the effect of
dilatancy and high-velocity jet impact). Therefore, the simulation of the progressive
failure of blocks at the bottom of the plunge pool (which causes changes in the
configuration and geometry of the pool) is out of the scope of this research. Since the
plunge pool geometry is not further defined, in this Chapter, all analyses are performed

assuming that the plunge pool has a flat bottom during the whole scour process.
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8.4 FAILURE CRITERIA FOR JOINTED ROCK

8.4.1 Impulsive nature of the applied forces

The typical duration of maximum pressure fluctuations is in the order of 5 ms [24,
30]. Manso [24] found that pressure fluctuation with probability higher than 75% persist
less than 6 ms at the pool bottom. For core jet conditions, this value drops to 4 ms. For
developed jet impact conditions, the persistence for equivalent probability is higher than
for core impact conditions.

In this dissertation, it is assumed to subject the block to its constant unbalanced
force at failure for the maximum duration of an extreme pressure fluctuation, i.e. 5 ms.
This assumption has been successfully used in stilling basins [352].

As mentioned in Chapter 2, the proposed stability analysis follows the block in its
static condition until equilibrium is possible between active and reaction forces. When
the block fails, the active force that cannot be equilibrated by the constraints (nearby
blocks) imparts an acceleration to the block. The formulation then computes the initial
acceleration of the block and its subsequent displacement by taking into account the
inertia of the rock block. This is accomplished by applying rigorous rigid body dynamics.
This displacement under maximum pressure fluctuations has been observed
experimentally by Yuditskii [356, 357] to be the beginning of and always conduct to
block’s ejection.

Indeed, Yuditskii [356, 357] presented what is probably the first conceptual
model of the rock scouring process based on pressure fluctuations on rock blocks. His
procedure is similar to the one proposed here, in that it is based on an evaluation of the
maximum instantaneous pressure that can separate a rock block from the matrix. For
increasing pool depths, he compared the maximum pressure gradient amplitude
originated by jet impact with a limit pressure value corresponding to the equilibrium
situation. He also conducted experimental work (more than 2,000 tests) focusing on the
mechanisms of block ejection for varying scour depths, relative size of blocks, block
density, and joint thickness. One interesting observation is as follows: "the block is

ejected, neither by one pressure fluctuation of high amplitude nor by a succession of
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pressure fluctuations of high amplitude, but by one large average pressure that is
established in the joint underneath the block following a small vertical displacement. The
opening of the joint that allows this small vertical displacement is done by one pressure
fluctuation of high amplitude."

BS3D formulation can calculate the small displacement observed experimentally
by Yuditskii under maximum pressure fluctuation. What is interesting is that the flow and
rock mass conditions that led to a small displacement of the blocks then led to the blocks’
ejection from the rock mass. In other words, there is experimental evidence that a block is
ejected if and only if it first fails according to one of the failure modes captured by the

proposed stability analysis.

8.4.2 Scour threshold (translational failure mode)

In this Section, a scour threshold is introduced for the cases in which analysis
predicts that the block fails in a translational mode, i.e. the dynamic failure mode
obtained using BS3D is an acceleration in one direction with no rotation.

It is assumed that the block is subjected to a constant unbalanced force at failure
for the maximum duration of an extreme pressure fluctuation, i.e. 5 ms. This unbalance
force causes an initial velocity as follows:

Fo.=F-At=m-v, =m-a-At, (8.27)
in which F is unbalance force due to the maximum dynamic pressure fluctuation; At is

the maximum duration (i.e. 5 ms); F, is the net impulse on the block; m is the block
mass; V,, 1is the initial velocity; and a is the acceleration of the block caused by the

unbalance force.

It is assumed that the block moves with the initial velocity,V,,, for a time duration

equal to the half of the natural period of the fissure. The natural period of an open-ended

joint can be obtained as follows [325]:

c

T =%, (8.28)
C
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where c is the pressure wave celerity and for a mixed fluid, like a mixture of water

containing air, can be estimated using the following equation (valid for £ <50%) [325]:

1 1
Crix = P ! (l—ﬂ) .\ ﬁ ) (829)
pliq 'Clziq pair 'Csir

in which c,, is the pressure wave celerity in the liquid (assume 1000 m/s for water);
Car 1S the pressure wave celerity in air (assume 340 m/s); p,, is the density of the liquid

(assume 1000 kg/m®); p,.. is the density of the air (assume 1.29 kg/m®); and p,, can

be estimated as follows [30]:

pmixzpair'ﬁ—i_pliq'(l_ﬁ) (830)
L is the fissure length and can be evaluated as follows [30, 325]:
L=x, +2z, (8.31)

where x, and z, are length and height of the block, respectively.

The block is assumed to be subjected to all forces except for the fluctuation
dynamic pressure for a duration equal to half of the natural period of the fissure followed
by an unbalance force in opposite direction which changes the direction of the block
motion (stops the upward displacement of the block). Thus, the maximum upward

displacement of the block, h_, can be estimated based on the above given assumptions.

up !
Criteria for determining if rock blocks from a jointed rock mass will experience
incipient motion, have been proposed by Bollaert [30] (Table 8.5). Bollaert and Schleiss
[31] found that ultimate scour depth of Cabora-Bassa Dam corresponds to a hzﬂ ratio of
b
0.20, which is not consistent with values given in Table 8.5.
In this dissertation, BS3D was used to simulate Martins’ [29] scour experimental

study. Based on these simulations, it is suggested to consider that the block is most likely
to be removed when hzﬂ>0.25 (see Section 8.4.2 for detailed analyses). This
b

assumption together with the above described method is validated in the next Section

using previously solved examples, experimental studies, and case histories.
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Table 8.5: Criteria to assess rock scour potential by dynamic impulsion [30]

ZUP <0.1 Rock block remains in place.
b
0.1< % <05 Rock block vibrates and most likely remains in
' z, | place.
; Rock block vibrates and is likely to be
05<—"<1 removed depending of ambient flow
Zy conditions.
hﬂ >1 Rock block is definitely removed from its
Z, matrix.

8.5 APPLICATION, CALIBRATION, AND VALIDATION OF THE SCOUR MODEL

By using Federspiel’s experimental study [27, 28], this Section validates the
above explained method to estimate the dynamic water pressure and BS3D to determine
the stability of the rock block together with its displacements. Secondly, employing
Martins’ experimental study [29], the failure criterion of the rock block is calibrated.
Section 8.4.3. shows the application of the scour model in a fictious rock mass (good
quality granite) introduced initially by Bollaert [30]. The whole scour model and BS3D
algorithm are then validated using three case histories and prototypes [29-31]. Finally,
Section 8.4.6 demonstrates the ability of BS3D in predicting more complicated failure
modes (divergence and flutter) together with dealing with in situ stress and dilation

behavior of rock fractures with a fictious example.

8.5.1 Federspiel’s experimental study (response of an intelligent block to core jet
impact)
A large-scale experimental facility has been developed in Laboratory of Hydraulic
Constructions (LHC), Ecole Polytechnique Federale de Laussanne (EPFL) which
reproduces high velocity plunging jet [27, 30]. After employing the installation to study

the behavior of a plunge pool with a flat bottom and one- or two-dimensional joints by
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Bollaert [30], different plunge pool geometries have been studied for a simple one-
dimensional joint by Manso [24].

Federspiel et al. [27, 28] have been doing an experimental study using the above
mentioned facility to investigate the behavior of a single rock block generated by a 3-
dimensional joint network and impinged by a high-velocity water jet. The block is
modeled by a hollow steel cube instrumented with a large series of pressure transducers,
accelerometers, and displacement transducers.

The experimental facility is depicted in Figure 8.7. The plunge pool is a 3-meter-
diameter cylindrical basin in steel reinforced Lucite. The bottom of the basin is made of a
rigid steel frame and the height of the basin is 1.4 m. The water supply is a conduit with a
72-mm-diameter cylindrical jet outlet. The water restitution consists of four conduits
simulating the downstream conditions. The maximum discharge is 250 /s, which

corresponds to jet outlet velocities of max 30 m/s [27].

(1) The plunge pool, (2) the water supply, (3) his structure, (4) the plunge pool bottom, (5) the Tevel of the
plunge pool bottom, (6) the plunge pool max. water level, and (7) the water restitution

Figure 8.7: General view of the experimental facility (transversal section) [27].

The measurement box (length = width = 402 mm and height = 340 mm) is a
structure composed of steel plates (Figure 8.8-a). The thickness of the steel plates is 20

mm. Inside this box, a large series of cavities allow inserting pressure and displacement
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transducers. In the center of the measurement box, a large cavity (length = width = 202
mm and height = 201 mm) allows inserting the intelligent block (a cube with a side
length of 200 mm). The width of the steel plates has been optimized to have a density
similar to real rock (2,400 — 2,500 kg/m®). On the top of the "intelligent block", some
holes have been pre-perforated to fix the pressure transducers. Between the measurement
box, and the intelligent block, a 3-dimensional fissure of 1 mm width is created. Inside
the intelligent block, pressure and vibration transducers have been inserted to measure the
pressure at the pool bottom under high-velocity jet impact and to measure the vibration of
the block. Finally, both the measurement box and the intelligent block have been placed
inside the basin simulating the plunge pool (Figure 8.8-b) [27].

(a) (b)
Figure 8.8: (a) axonometric view of the experimental facility; (b) picture of the facility
with the measurement box and the intelligent block [27].

Electronic data acquisition equipment consists of a data acquisition system, 12
pressure transducers, two displacement transducers (with an absolute measurement range
between 0 and 8 mm and a precision of less than 0.005 mm (static) or less than 0.01 mm
(dynamic)), and an accelerometer transducer (which has a sensitivity of 5 mV/g and a

frequency range between 1 and 10 kHz) [27].
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The pressure transducers were fixed within the same vertical plane to reconstruct
the pressure field around the block (Figure 8.9). Four transducers are installed inside the
block and measure the pressure at the plunge pool bottom (309-312): the first on the jet
axis, the second at 25 mm, the third at 50 mm and the fourth at 75 mm from the jet axis
Four transducers are installed on one of the vertical walls of the measurement box (313-
317): the first at 50 mm from the plunge pool bottom and the following at a 50 mm
interval. Four transducers are situated underneath the block (318-321): they have the
same relative position as the four transducers that are installed inside the block. The
displacement transducer (DI1D and D2D not on the Figure 8.9) and the accelerometer
(ACC) have a fixed position: displacement transducers under the block in “measurement

box” and the accelerometer in the block [27].

Water jet position

O —l| [
—_—

[aalantenlanill

Intelligent block

Surrounding fissure

Measurement box

Figure 8.9: Transducers position [27].

Preliminary tests have been performed with a flat bottom and a water jet centered
on the middle of the intelligent block. Two plunge pool water levels (Y = 0.1 m and 0.6
m) and four jet outlet velocities (19.6, 22.1, 24.6 and 27.0 m/s) have been tested. The 0.1
m water level in the plunge (Y) generates a core jet (Y/D ratio of only 1.39), while the
0.6 m water level generates a developed jet (Y/D ratio of 8.33). For each water level and
jet velocity, three runs have been performed. The data acquisition frequency was 1 kHz

and the recording time was 60 seconds (60’000 samples for each transducer) [27].
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Based on the results of the preliminary tests, Federspiel et al. [27] made comment
on the mean and fluctuating coefficients (Figure 8.10). The mean pressure coefficients
recorded directly under the jet axis for core jet impact are in good agreement with the
theoretical curves developed by Ervine et al. [329] and with previous pressure records
made by Bollaert [30] and Manso [24]. The mean pressure coefficients recorded away
from the jet axis and inside the joints around the block are generally less than the mean
pressures under the jet axis, which could reasonably be expected. For developed jet
impact, however, the recorded values are higher than the theoretical curves and rather
correspond to values for core jet impact. This is most probably due to the jet deflecting
the plunge pool water level and locally lowering somewhat this water level [27]. In the
same way, the pressure fluctuation coefficients are in good agreement with theory for
core jets but differ somewhat from theory for developed jets. As such, the fluctuating part
is lower than the theoretical curves, which again would correspond to a core jet rather

than a developed jet [27].
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Figure 8.10: C, mean pressure coefficient and Cp’ pressure fluctuations coefficient (the
root-mean-square value (RMS) of the fluctuating part of the dynamic pressures) [27].

In this dissertation, analyses have been performed on the results of Federspiel’s
experimental study [28]. For each water level and jet velocity, by investigating the results

of all three experimental runs, the following parameters are obtained and presented in

Table 8.6:
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1) The maximum vertical displacement of the block

2) The maximum net uplift hydrodynamic pressure: difference between the
maximum dynamic water pressure on the lowermost fracture (measured using
pressure transducer 309 to 312) and the minimum dynamic water pressure on
the floor of the plunge pool (measured using pressure transducer 318 to 321)

3) The duration of maximum pressure fluctuation: 1 ms for all cases

Table 8.6: Summary of Federspiel’s experimental study and BS3D analyses

Max Max Vertical displacement predicted using
. experimental BS3D analysis (mm)
experimental ; - .
Y \% vertical net uplift Using the max Dynamic water pressure
(m) | (m/s) di hydrodynamic experimental net estimated using the
isplacement . . S
(mm) pressure uplift hydrodynamic | approach gxplalned in
(m H,0) pressure Section 8.2
19.6 0.995 5.77 0.894 0.38
01 22.1 0.996 7.26 1.186 0.56
' 24.6 1.004 8.23 1.376 0.75
27.0 1.025 8.7 1.468 0.95
19.6 1.052 10.28 1.778 4.50
0.6 22.1 1.060 5.25 0.791 5.79
' 24.6 1.069 5.24 0.789 7.23
27.0 1.055 6.74 1.084 8.76

For each water level and jet velocity, BS3D analyses are performed to predict the
maximum vertical displacement of the block using either the following assumption for
dynamic water pressure:

1) Measured maximum net uplift hydrodynamic pressure

2) Estimated hydrodynamic pressure applied on fractures and the bottom of the

plunge pool using the approach explained in Section 8.3

Since the experimental studies were performed in a short period of time, in the
numerical simulations, the dynamic pressure magnitudes are estimated without
considering the coefficient two introduced in Section 8.3.5 to account for long duration

gvents.

289




In the lack of any information regarding the air content, B, the pressure wave
celerity is assumed to be 100 m/s (which correspond to B of about 15%). Thus, the
natural frequency of open-ended fracture is estimated using Equation (8.28) to be 0.012
second, knowing the fact that L = 0.6 m (determined using Equation (8.31)).

In BS3D simulation, the Young’s modulus and Poisson’s ratio of the block and
the mould is adopted to be 200 GPa and 0.3, respectively. Table 8.6 summarizes the
results of BS3D analyses. In addition, Figure 8.11 compares the measured and predicted
(using BS3D) maximum vertical displacement of the block.

It can be seen in Figure 8.11 that, for both core and developed jet, BS3D works
well in predicting the maximum displacement of the block when the hydrodynamic
pressure is adopted to be equal to the experimental net uplift dynamic water pressure.
These results validate BS3D algorithm excluding the part that deals with estimating
hydrodynamic pressure. In addition, the results of BS3D analyses with dynamic water
pressure estimated using the approach explained in Section 8.3 show that:

- Core jet: the maximum vertical displacement of the block is underestimated.

- Developed jet: the maximum vertical displacement of the block is

overestimated.

It seems that the errors in predicting the maximum vertical displacement of the
block came from the errors in estimating the dynamic water pressure using the approach
explained in Section 8.3. This approach seems to be the best method which can be found
in the literature. However, Federspiel et al. are trying to find the weakness of current
approaches in estimating hydrodynamic pressure caused by high-velocity jet impact,
experimentally. In the next step of their experimental study, they will employ the above
introduced facility (intelligent block) to do series of test with jet velocities between 5 and
30 m/s, for plunge pool water levels between 0.1 m and 1.0 m (with steps of 0.1 m). In
addition, similar tests but with different jet impact position on the intelligent block will
be performed (aside from the jet axis: from the middle of the intelligent block to the axis

of the vertical fissure).
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—¥— Experimental results

— X— - BS3D: using the max experimental net uplift

dynamic pressure

- =G- = BS3D: dynamic water pressure estimated using

the approach explained in Section 8.3
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= - % = BS3D: using the max experimental net uplift dynamic
pressure

- =G = BS3D: dynamic water pressure estimated using the
approach explained in Section 8.3
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(a) Y=0.1 m (core jet Y/Dj=1.39)

Taverage T T'standard deviation = 1.22+0.24

Tmax — 1.43; T'min — 0.90

Raverage + Rstandard deviation = 0.65 + 0.23

Rmax = 0.92; Rypin = 0.39

(b) Y =0.6 m (developed jet Y/Dj = 8.33)

Taverage T T'standard deviation = 1.05+0.45
I'max — 1.69; T'min — 0.74

Raverage + Rstandard deviation = 6.20 + 1.73
Rmax = 8.30; Rpin =4.28

r: the ratio of predicted to the measured maximum vertical displacement of the block (using
BS3D with maximum experimental net uplift dynamic pressure)

R: the ratio of predicted to the measured maximum vertical displacement of the block (BS3D
with dynamic water pressure estimated using the approach explained in Section 8.3)

Figure 8.11: Comparison between measured and predicted maximum vertical
displacement of the block (Federspiel’s experimental study)
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8.5.2 Martins’ experimental study (action of free jets on rocky river-beds)

The river-bed test facility was made up of equal, cubic, comparatively large
blocks, systematically arranged, without cohesion. The number of tests carried out was
90, which is resulted from the combination of three angles of impact, a, with three
openings of the gate closing the orifice discharging the jet, with two values of the sides of
the blocks, a, with five depth of the water cushion, e. The opening of the gates was
chosen so as to ensure an approximately square form in the initial cross section of the jet.
The blocks were made of cement/sand mortar with a unit weight of about 2.2 g/cm’ [29].

Table 8.7 summarizes the results of Martins’ [29] experimental study for the cases
with the sides of blocks equal to 4.7 cm. In the numerical simulation performed in this
Chapter using BS3D, the air content, B3, is assumed to be 30%. Thus, the pressure wave
celerity is estimated (using Equation (8.29)) to be 25 m/s and the natural frequency of
open-ended fracture is estimated (using Equation (8.28)) to be 0.014 second, knowing the
fact that L = 14.1 cm (determined using Equation (8.31)). The maximum duration of
extreme pressure fluctuation is assumed to be 5 ms.

In addition, Table 8.8 summarizes the results of Martins’ [29] experimental study
for the cases with the sides of blocks equal to 3 cm. The natural frequency of open-ended
fracture is estimated using Equation (8.28) to be 8 ms, knowing the fact that L =9 cm and
c =25 m/s (B = 30%). Since the maximum duration of extreme pressure fluctuation can
not be higher than half the natural period, it is assumed to be 4 ms.

BS3D analyses are also summarized in Table 8.7 and Table 8.8. Since the
experimental studies were performed in a short period of time, in the numerical
simulations, the dynamic pressure magnitudes are estimated without considering the
coefficient two introduced in Section 8.3.5 to account for long duration events. For each
case, the acceleration, the initial velocity, and the maximum upward displacement of the

block are calculated together with the ratio of hyp/zp.
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Table 8.7: Summary of Martins’ experimental study (a = 4.7 cm) and BS3D analyses

H

Scour

BS3D analyses

o (1(131) (l/Qs ) Fall, n\ll/Js (El’) Depth (Il) Acceleration | V,r h,, N
(m) (m) (m/s”) (m/s) (m) Zy
0.30 150 1.10 7.23 0.097 0.397 752 3.76 0.026 0.55
0.24 150 1.34 7.99 0.148 0.388 586 2.93 0.020 0.43
0.18 160 1.49 8.40 0.05 0.197 0.377 472 2.36 0.016 0.35
0.12 170 1.63 8.80 0.149 0.269 495 2.48 0.017 0.36
0.06 180 1.79 9.22 0.148 0.208 427 2.14 0.015 0.31
0.30 221 1.23 7.64 0.196 0.496 399 2.00 0.014 0.29
0.24 235 1.37 8.07 0.246 0.486 367 1.84 0.013 0.27
40 | 0.18 253 1.56 8.60 0.06 0.189 0.369 423 2.12 0.015 0.31
0.12 259 1.68 8.92 0.194 0.314 378 1.89 0.013 0.28
0.06 270 1.82 9.29 0.15 0.210 363 1.82 0.012 0.27
0.30 301 1.27 7.75 0.246 0.546 329 1.65 0.011 0.24
0.24 324 1.41 8.19 0.246 0.486 329 1.65 0.011 0.24
0.18 343 1.57 8.69 0.07 0.196 0.376 359 1.80 0.012 0.26
0.12 353 1.71 9.01 0.198 0.318 329 1.65 0.011 0.24
0.06 371 1.85 9.37 0.196 0.256 292 1.46 0.010 0.21
0.30 134 1.50 6.63 0.152 0.452 323 1.62 0.011 0.24
0.24 136 1.59 6.82 0.198 0.438 280 1.40 0.010 0.20
0.18 144 1.70 7.04 0.05 0.197 0.377 326 1.63 0.011 0.24
0.12 146 1.79 7.24 0.148 0.268 333 1.67 0.011 0.24
0.06 153 1.89 7.43 0.105 0.165 312 1.56 0.011 0.23
0.30 201 1.53 6.68 0.192 0.492 314 1.57 0.011 0.23
0.24 208 1.62 6.88 0.245 0.485 265 1.33 0.009 0.19
55 0.18 215 1.71 7.08 0.06 0.194 0.374 279 1.40 0.010 0.20
0.12 220 1.81 7.28 0.143 0.263 286 1.43 0.010 0.21
0.06 226 191 7.48 0.148 0.208 232 1.16 0.008 0.17
0.30 269 1.54 6.72 0.243 0.543 246 1.23 0.008 0.18
0.24 278 1.64 6.93 0.198 0.438 262 1.31 0.009 0.19
0.18 289 1.74 7.13 0.07 0.199 0.379 241 1.21 0.008 0.17
0.12 293 1.81 7.28 0.146 0.266 244 1.22 0.008 0.18
0.06 301 1.93 7.51 0.193 0.253 185 0.93 0.006 0.13
0.30 110 1.77 6.27 0.099 0.399 553 2.77 0.019 0.41
0.24 112 1.85 6.41 0.155 0.395 362 1.81 0.012 0.26
0.18 115 1.92 6.54 0.05 0.149 0.329 328 1.64 0.011 0.24
0.12 116 2.00 6.67 0.129 0.249 301 1.51 0.010 0.22
0.06 119 2.08 6.79 0.097 0.157 269 1.35 0.009 0.20
0.30 165 1.78 6.29 0.099 0.399 466 2.33 0.016 0.34
0.24 166 1.86 6.43 0.148 0.388 313 1.57 0.011 0.23
70 | 0.18 171 1.94 6.56 0.06 0.149 0.329 278 1.39 0.009 0.20
0.12 178 2.15 6.91 0.099 0.219 315 1.58 0.011 0.23
0.06 179 2.09 6.82 0.106 0.166 218 1.09 0.007 0.16
0.30 221 1.79 6.31 0.104 0.404 388 1.94 0.013 0.28
0.24 227 1.87 6.45 0.151 0.391 267 1.34 0.009 0.19
0.18 232 1.95 6.58 0.07 0.101 0.281 306 1.53 0.010 0.22
0.12 229 2.03 6.71 0.15 0.270 203 1.02 0.007 0.15
0.06 238 2.1 6.84 0.102 0.162 193 0.97 0.007 0.14

293




Table 8.8: Summary of Martins’ experimental study (a =3 cm) and BS3D analyses

] o H, v o Scour v BS3D analyses
o m) | (Us) Fall, m /Js ( mj) Depth (m) Acceleration | V,; h,, N
(m) (m) (m/s%) (m/s) (m) Zy
0.40 13.2 091 6.58 0.06 0.46 503 2.01 0.008 0.27
0.32 14.3 1.11 7.25 0.16 0.48 550 2.20 0.009 0.29
0.24 15.5 1.30 7.85 0.05 0.25 0.49 611 2.44 0.010 0.32
0.16 16.8 1.50 8.43 0.22 0.38 1028 4.11 0.016 0.55
0.08 17.6 1.68 8.94 0.15 0.23 825 3.30 0.013 0.44
0.40 19.2 0.95 6.73 0.13 0.53 575 2.30 0.009 0.30
0.32 21.2 1.12 7.29 0.22 0.54 651 2.60 0.010 0.34
40 0.24 234 1.32 7.93 0.06 0.28 0.52 833 3.33 0.013 0.44
0.16 25.8 1.54 8.55 0.25 0.41 988 3.95 0.016 0.52
0.08 27.1 1.72 9.04 0.19 0.27 828 3.31 0.013 0.44
0.40 27.2 0.98 6.82 0.28 0.68 470 1.88 0.007 0.25
0.32 30.0 1.17 7.46 0.31 0.63 682 2.73 0.011 0.36
0.24 32.2 1.35 8.01 0.07 0.28 0.52 914 3.66 0.015 0.48
0.16 34.6 1.56 8.60 0.19 0.35 821 3.28 0.013 0.44
0.08 36.8 1.74 9.10 0.19 0.27 729 2.92 0.012 0.39
0.40 12.4 1.31 6.20 0.13 0.53 274 1.10 0.004 0.14
0.32 12.9 1.44 6.49 0.19 0.51 353 1.41 0.006 0.19
0.24 13.8 1.57 6.78 0.05 0.22 0.46 534 2.14 0.008 0.28
0.16 14.3 1.70 7.06 0.16 0.32 643 2.57 0.010 0.34
0.08 14.6 1.83 7.31 0.13 0.21 506 2.02 0.008 0.27
0.40 19.0 1.34 6.25 0.16 0.56 437 1.75 0.007 0.23
0.32 20.1 1.47 6.55 0.28 0.60 397 1.59 0.006 0.21
55 0.24 20.8 1.59 6.82 0.06 0.28 0.52 614 2.46 0.010 0.32
0.16 21.8 1.73 7.11 0.15 0.31 569 2.28 0.009 0.30
0.08 22.2 1.85 7.35 0.10 0.18 360 1.44 0.006 0.19
0.40 26.1 1.36 6.30 0.22 0.62 500 2.00 0.008 0.26
0.32 26.8 1.49 6.59 0.31 0.63 530 2.12 0.008 0.28
0.24 28.8 1.62 6.87 0.07 0.19 0.43 593 2.37 0.009 0.31
0.16 28.9 1.75 7.14 0.16 0.32 520 2.08 0.008 0.27
0.08 30.3 1.88 7.41 0.13 0.21 366 1.46 0.006 0.19
0.40 10.5 1.63 6.01 0.06 0.46 418 1.67 0.007 0.22
0.32 10.9 1.73 6.20 0.13 0.45 468 1.87 0.007 0.25
0.24 11.2 1.83 6.38 0.05 0.16 0.40 616 2.46 0.010 0.33
0.16 11.7 1.94 6.56 0.09 0.25 473 1.89 0.007 0.25
0.08 11.7 2.03 6.71 0.07 0.15 299 1.20 0.005 0.16
0.40 15.8 1.64 6.04 0.06 0.46 526 2.10 0.008 0.28
0.32 16.8 1.75 6.23 0.13 0.45 552 2.21 0.009 0.29
70 0.24 16.6 1.84 6.39 0.06 0.12 0.36 504 2.02 0.008 0.27
0.16 17.3 1.95 6.58 0.13 0.29 462 1.85 0.007 0.24
0.08 18.4 2.08 6.79 0.10 0.18 306 1.22 0.005 0.16
0.40 21.4 1.66 6.06 0.03 0.43 460 1.84 0.007 0.24
0.32 22.1 1.76 6.25 0.16 0.48 524 2.10 0.008 0.28
0.24 22.8 1.86 6.43 0.07 0.19 0.43 518 2.07 0.008 0.27
0.16 234 1.96 6.60 0.13 0.29 406 1.62 0.006 0.21
0.08 23.7 2.09 6.81 0.10 0.18 260 1.04 0.004 0.14
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It can be seen in Table 8.7 that the ratio of hyy/zy ranges between 0.13 and 0.55
with an average of 0.25 and a standard deviation of 0.08. In addition, the ratio of hyy/zp, in
Table 8.8, ranges between 0.14 and 0.55 with an average of 0.29 and a standard deviation
of 0.10.

Section 8.5.1 showed that the method described in Section 8.3 may underestimate
or overestimate the hydrodynamic pressure caused by jet impact. Although all
overestimations occurred for developed jets and all underestimations occurred for core
jets, since the number of tests are limited to four tests per jet type, it is assumed here that
the hydrodynamic pressure caused by jet impact may be underestimated or overestimated
regardless of jet type. Therefore, it is reasonable to choose the average ratio of hyp/z, as a
scour threshold. Consequently, it can be concluded that the block is most likely to be
removed from its mould when hyp/z, > 0.25.

Using BS3D together with the method described in Section 8.3 to estimate
hydrodynamic pressure caused by jet impact and calibrated scour threshold (hyp/zy >

0.25), scour depths are predicted for all 90 cases reported by Martins [29]. The results are

. . . . dpredicte
summarized in Table 8.9. The ratio of predicted to measured scour depth, —Zre%<ted

measured

ranges beween 0.39 and 1.52 (0.44 and 1.70) with an average of 0.88 (1.07) and a
standard deviation of 0.30 (0.31) for the cases with the sides of blocks equal to 4.7 (3.0)
cm. These results validate the ability of the suggested approach in predicting scour depth.

8.5.3 Example of a good quality granite

Bollaert [30] introduced a fictious rock mass to points out his methodology and
the major parameters of interest. After dealing with the break-up phase of the closed-end
joints of the rock using the Comprehensive Fracture Mechanics (CFM) model, he
described the possibility of the ejection of rock blocks from their mass using Dynamic
Impulsion (DI) model and compared the results with Annandale’s Erodibility Index (EI)
Method.
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Table 8.9: Predicted scour depth (Martins’ experimental study) using BS3D

a=47cm a=3.0cm

a (zi) e Scour Depth, d (m) Apredicted e Scour Depth, d (m) dpredictea
(m) dmeasured dpredicted (BS3D) dmeasured (m) dmeasured dpredicted (BS3D) dmeasured

0.30 0.097 0.147 1.52 0.40 0.06 0.06 1.00

0.24 0.148 0.198 1.34 0.32 0.16 0.16 1.00

0.05 | 0.18 0.197 0.247 1.25 0.24 0.25 0.28 1.13

0.12 0.149 0.199 1.34 0.16 0.22 0.37 1.70

0.06 0.148 0.198 1.34 0.08 0.15 0.21 1.37

0.30 0.196 0.196 1.00 0.40 0.13 0.16 1.26

0.24 0.246 0.246 1.00 0.32 0.22 0.28 1.28

40 | 0.06 | 0.18 0.189 0.189 1.00 0.24 0.28 0.37 1.31

0.12 0.194 0.194 1.00 0.16 0.25 0.37 1.46

0.06 0.15 0.15 1.00 0.08 0.19 0.27 1.43

0.30 0.246 0.196 0.80 0.40 0.28 0.28 1.00

0.24 0.246 0.196 0.80 0.32 0.31 0.37 1.19

0.07 | 0.18 0.196 0.196 1.00 0.24 0.28 0.34 1.20

0.12 0.198 0.148 0.75 0.16 0.19 0.31 1.66

0.06 0.196 0.096 0.49 0.08 0.19 0.28 1.44

0.30 0.152 0.152 1.00 0.40 0.13 0.06 0.47

0.24 0.198 0.148 0.75 0.32 0.19 0.13 0.69

0.05 | 0.18 0.197 0.197 1.00 0.24 0.22 0.22 1.00

0.12 0.148 0.148 1.00 0.16 0.16 0.25 1.56

0.06 0.105 0.055 0.52 0.08 0.13 0.13 1.00

0.30 0.192 0.142 0.74 0.40 0.16 0.13 0.83

0.24 0.245 0.145 0.59 0.32 0.28 0.25 0.90

55| 0.06 | 0.18 0.194 0.144 0.74 0.24 0.28 0.34 1.21

0.12 0.143 0.143 1.00 0.16 0.15 0.21 1.38

0.06 0.148 0.058 0.39 0.08 0.10 0.06 0.63

0.30 0.243 0.143 0.59 0.40 0.22 0.22 1.00

0.24 0.198 0.148 0.75 0.32 0.31 0.31 1.00

0.07 | 0.18 0.199 0.099 0.50 0.24 0.19 0.22 1.16

0.12 0.146 0.096 0.66 0.16 0.16 0.16 1.00

0.06 0.193 0.093 0.48 0.08 0.13 0.06 0.45

0.30 0.099 0.149 1.51 0.40 0.06 0.03 0.47

0.24 0.155 0.155 1.00 0.32 0.13 0.13 1.00

0.05 | 0.18 0.149 0.149 1.00 0.24 0.16 0.19 1.21

0.12 0.129 0.097 0.75 0.16 0.09 0.09 1.00

0.06 0.097 0.047 0.48 0.08 0.07 0.03 0.44

0.30 0.099 0.149 1.51 0.40 0.06 0.06 1.00

0.24 0.148 0.148 1.00 0.32 0.13 0.13 1.00

70 | 0.06 | 0.18 0.149 0.099 0.66 0.24 0.12 0.12 1.00

0.12 0.099 0.099 1.00 0.16 0.13 0.13 1.00

0.06 0.106 0.056 0.53 0.08 0.10 0.06 0.61

0.30 0.104 0.104 1.00 0.40 0.03 0.03 1.00

0.24 0.151 0.101 0.67 0.32 0.16 0.16 1.00

0.07 | 0.18 0.101 0.101 1.00 0.24 0.19 0.19 1.00

0.12 0.15 0.1 0.67 0.16 0.13 0.10 0.79

0.06 0.102 0.05 0.49 0.08 0.10 0.06 0.63
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The rock is assumed to be a very good quality granite with a tensile strength, T, of
19 MPa and an unconfined compressive strength, UCS, of 296 MPa. The unit weight of
the rock block is 2,650 kg/m’. It exhibits moderately semi-elliptical jointing in the x-
direction (Figure 8.12) and moderately to highly single-edge jointing in the y-direction.
The rock is considered to consist of horizontal layer of 1 m of height (z, = Im). The

length of each side of the block, X, is assumed to be 2 m.

e

Figure 8.12: Cubic blocks in the rock mass [30].

The jet is issuing from an intermediate outlet structure and its initial turbulence
intensity, Ty, is estimated at 5%. The jet is vertically impinging with an impact velocity of
Vj = 40 m/s and an estimated diameter at its point of impact of Dj = 4 m. The distance
from this point of impact down to the water-rock interface is estimated to be Y = 36 m.
As such, the ratio of pool depth to jet diameter Y/Dj= 9 and developed jet impact
conditions govern. The air content is assumed to be negligible and the natural period of
the fracture is given to be 0.12 seconds [30].

Bollaert [30] estimated the ultimate scour depth from the bottom of the plunge
pool to be 11, 9, and 1 m using CFM, DI, and Annandale’s EI method, respectively. In
this Section, the scour depth is estimated using BS3D (together with the above explained
approach for estimating the dynamic water pressure and the given failure criteria).
Comprehensive Fracture Mechanics (CFM) and Annandale’s EI methods consider
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developing new fractures in the rock mass due to jet impact. However, Dynamic
Impulsion (DI) method and BS3D analysis just focus on possibility of the ejection of the
rock block from its mould. Thus, in this Section, the comparison is made between the
results of DI method and BS3D analysis.

Bollaert [30] (in his DI method) assumed that the average net impulsion which
can be estimated using Equation (8.10) and Figure 8.6 is applied to the block during the
fissure natural period. This net impulsion was then set equal to the product of the mass of
the block times the velocity. This results in the maximum velocity that could be given to
the block. This velocity or kinetic energy is transformed into potential energy by ejection

of the block. The maximum displacement of the block can be evaluated as follows [30]:

V 2
_ At—pulse (832)
2.9

up

Table 8.10 summarizes the determination of the ultimate scour depth using both

Bollaert’s DI Method and BS3D.

Table 8.10: Determination of the scour depth using Bollaert DI Method and BS3D

BS3D; dynamic water pressure estimated usin
]f)epth Y vID Bollaert (DI Method) the a}llpproach explzri)ined in Section 8.3 ¢
0 (s;qc)mr (m) i Vap Ry hup Acceler?tion Vip(Var) hup hup
(m/s) (m) Zp (m/s") (m/s) (m) Zp
1 37 9.3 12.4 7.84 7.84 2647 13.24 0.78 0.78
2 38 9.5 10.46 5.58 5.58 2480 12.40 0.73 0.73
4 40 | 10.0 8.52 3.70 3.70 2144 10.72 0.63 0.63
5 41 10.3 6.58 2.21 2.21 1910 9.55 0.56 0.56
7 43 10.8 5.61 1.60 1.60 1561 7.81 0.45 0.45
8 44 | 11.0 4.64 1.10 1.10 1387 6.94 0.39 0.39
9 45 | 11.3 3.67 0.69 0.69 1212 6.06 0.35 0.35
10 46 | 11.5 2.7 0.37 0.37 1038 5.19 0.29 0.29
11 47 | 11.8 1.73 0.15 0.15 863 4.32 0.24 0.24
12 48 | 12.0 0.76 0.03 0.03 737 3.69 0.20 0.20

Assuming that the ultimate scour depth is reached when the rock block
displacement becomes less than the height of the block (h,,/z, < 1), Bollaert [30] found

that the ultimate scour depth is about 9 m (see Table 8.10). In addition, assuming that the
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ultimate scour depth is reached when the rock block displacement becomes less than a
quarter of the height of the block (hy,/z, < 0.25), BS3D analyses (adopting the
maximum fluctuation duration of 5 ms) estimated that the ultimate scour depth from the
plunge pool bottom is about 11 m.

In Section 8.5.1, it was found that the method described in Section 8.3 may
overestimate dynamic water pressure caused by developed jets. Therefore, the calculated
vertical displacement of the block and, in turn, the scour depth may be overestimated.
The jet in Table 8.10 that the jet is a developed one and, thus, the scour depth may be
overestimated in this case. However, the ultimate scour depths estimated using BS3D and
DI method agree well with each other (11 and 9 m from the plunge pool bottom,

respectively).

8.5.4 Case study of Cabora-Bassa dam

The Cabora-Bassa Dam, a double curvature arch dam, is located on the Zambezi
River in Mozambique and has a total spillway discharge capacity of 13,100 m’/s at a
maximum reservoir level of 326 m a.s.l.. The corresponding tailwater level is at 225 m
a.s.l. with a depth of nearly 50 m above the natural riverbed. The spillway consists of
eight identical sluice gates with a height of 6 m and a width of 7.8 m. The exit lip of the
gates 1is at elevation 244.30 m a.s.l. and makes an angle of 32.3° with the horizontal. The
riverbed is very irregular and has its elevations varying from 170 to 180 a.s.l.. The rock is
mainly granitoide gneiss with little cracking, but with a few gabbro and lamprophyre
dykes [30, 31].

Hydraulic model tests at a 1/75 scale have been conducted at LNEC, Lisbon,
Portugal [358]. A moveable bed model was used, made with gravel weakly aggregated
with aluminous cement. The test results predicted the maximum scour depth at an
elevation of 150 m a.s.l. and a downstream distance from the jet outlet of 250 m [30, 31].

The prototype behavior of the dam is characterized by two important operating
periods. The first one happened in 1975 during 42 days, for a discharge of 6,000 m’/s (=4

gates). The scour depth after this operation was measured at about 170 m a.s.l.. The
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tailwater level was at 215 m a.s.l.. The second period occurred in 1978. The spillway was
being operated for four and a half consecutive months. The maximum reservoir level was
at 327.74 m a.s.l.. An extensive survey of the scour pit in 1980 showed that the deepest
point of the scour pit was situated at 158 m a.s.l., i.e., 22 m deeper than the original
riverbed. This occurred at a downstream distance from the jet outlet ranging from 240 to
260 m [30, 31].

Bollaert [30] assumed that the rock mass is soft rock with a UCS = 13 MPa and
very little cracking, thus a RQD = 90%, which seems to be unreal assumption for gneiss.
Annandale’s [324] Erodibility Index Method has been calibrated based on the
equilibrium scour depth of 160 m a.s.l. attained on the prototype after 1978 [324].

The diameter of the jet at issuance from the dam has been estimated as the
equivalent hydraulic diameter of the 6mx7.8m rectangular outlet. This results in an
initial jet diameter Dj= 7.7 m. The jet trajectory has been calculated based on ballistic
equations and air drag [30, 31]. Bollaert [30] and Bollaert and Schleiss [31] estimated the
initial turbulence intensity of the jet, Ty, to be 4% and 5%, respectively. Table 8.11
summarizes jet characteristics of the dam estimated by Bollaert [30] and Bollaert and
Schleiss [31] based on different assumptions for the initial turbulence intensity. The air
concentration at jet impact is considered very high (B = 60%) [31].

Bollaert [30] and Bollaert and Schleiss [31] performed different analyses using
CFM and DI method to estimate the ultimate scour depth based on different assumptions,
some of which are described above. In this Section, two series of analyses have been
performed to estimate scour depth using BS3D and either Bollaert’s [30] or Bollaert’s

and Schleiss’s [31] assumptions.

Table 8.11: Jet characteristics of Cabora-Bassa dam

Parameter Bollaert [30] | Bollaert and Schleiss [31]
Initial turbulence intensity of the jet, T, 4% 5%
Jet impact velocity, Vi, (m/s) 35 42
Impact diameter, D;, (m) 8 7.2
Outer jet diameter, Doy, (m) 20 17
Jet break-up length, Ly, (m) 167 152
Downstream distance from the jet outlet, X, (m) 150 145
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8.5.4.2 Ultimate scour depth of Cabora-Bassa dam (Bollaert’s assumptions)

Bollaert [30] based on his Comprehensive Fracture Mechanics (CFM) model
found that instantaneous crack grows until an elevation of 170 m a.s.l.. Further scouring
to 160 m a.s.l. needed 137 days of discharge, whether this elevation was obtained in situ
after 139 days. Further scouring down to 150 m a.s.l. will need another 140 days of
similar discharge conditions. Then, the phenomenon slows down due to jet diffusion
effects. The elevation of 140 m a.s.l. is considered as a practical limit of the ultimate
scour depth [30].

The characteristic block dimensions are based on model tests performed at LNEC,
Lisbon. These tests represented in Situ blocks with a weight between 50 and 290 kN
[358]. Assuming a cubic shape, this corresponds to side lengths ranging from 1.2 to 2.2
m. A side length of 2 m has been used. Due to the high aeration rate small wave celerity
of 100 m/s is taken. The natural period of the open-ended fracture is estimated to be 0.18
s, knowing the fact that L = 6 m. The unit weight of the rock block is assumed to be equal
to 2,000 kg/rn3 [30]. The results of Bollaert’s DI analyses are summarized in Table 8.12.

Table 8.12: Determination of the ultimate scour depth of Cabora-Bassa dam based on the
DI model [30]

Y [ D | V V. h El

) | m) | sy | YO | sy | m) | ™| masi.
166 053 | 1023 | 533 | 2.67 | 1602
168 052 | 10.11 | 521 | 2.60 | 1595
170 052 | 998 | 5.08 | 2.54 | 1587
180 0.49 | 937 | 448 | 224 | 1548
190 0.46 | 879 | 3.93 | 1.97 | 150.9
200 | 0 | 35 [043 | 822 [344 | 1.72 | 1470
210 0.41 | 7.67 | 3.00 | 1.50 | 143.1
220 038 | 7.14 | 2.60 | 130 | 1392
230 036 | 663 | 224 | 1.12 | 1353
234 035 | 643 | 2.11 | 1.05 | 1337
236 035 | 633 | 204 | 1.02 | 1329
238 034 | 623 | 198 | 099 | 132.1
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It can be seen in Table 8.12 that, using DI method, the scour depth of 160 m a.s.l.
that was attained after 1978 corresponds to a critical displacement of 2.6 times the height
of the characteristic rock block. In the other words, the ultimate scour depth based on the
dynamic uplift criterion is much deeper. The theoretical critical displacement of one
times the height of the block is attained at an elevation of 133 m a.s.l. [30].

BS3D analyses is performed in this Section to estimate the ultimate scour depth
using the jet characteristics given in the second column of Table 8.11. The maximum
duration of extreme pressure fluctuation is adopted to be 5 ms. Assuming that the block is
most likely to be removed when hy,,,/z;, < 0.25, the ultimate scour depth is estimated to
be 161 ma.s.l. (Y=164m;a= 1239 m/s%; Vyp = 6.2 m/s; hyp = 0.52; and hy/z = 0.26).

It should be mentioned that, in predicting the ultimate scour depth, the effect of
pool geometry introduced by Manso [24] was not considered (it is assumed that the pool
bottom is flat during the whole scour process). In addition, the maximum value that
BS3D gives for the ratio of hyy/z, in this problem, is 0.3. It can be seen that the ultimate
scour depth predicted using BS3D (and the method explained in Section 8.3 to estimate
hydrodynamic pressure and failure criterion) agrees very well with what was attained

after 1978.

8.5.4.3 Ultimate scour depth of Cabora-Bassa dam (Bollaert’s and Schleiss’s

assumptions)

Bollaert and Schleiss [31] indicated that the CFM method results that are in good
agreement with the prototype observations: a depth of 170 m a.s.l. is attained after 43
days of discharge (42 days on prototype), and the depth of 158 m a.s.l., observed on the
site after the 1978 spillage of 139 days is obtained by the CFM method after 114 days of
additional spillage. Further scouring down to 154 m a.s.l. would need another 380 days of
discharge. After, the phenomenon slows down, due to jet diffusion effects, and an
additional scouring down to 150 m a.s.l. would need about 2,500 days of discharge.

Stating that the 1978 discharges were exceptional, and accounting for a reasonable
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lifetime of the dam, it can be argued that the elevation of 150 m a.s.l. constitutes a
practical limit of ultimate scour depth, in accordance with the model tests [31].
Bollaert and Schleiss [31] estimated the scour depth using DI method (Table
8.13). In their simulation, they assumed cubic shape blocks with a side length of 2 m.
Due to the high aeration rate, the wave celerity is defined at 100 m/ s. They found that
[31]:
- The theoretically necessary displacement of one times the height of the block
is already attained at an elevation of 176 m a.s.1.
- The scour depth of 158 m a.s.l., observed on the prototype after the 1978
discharge period, corresponds to a hyy/z ratio of 0.30.
- The ultimate scour depth based on the dynamic uplift criterion, however,
should be somewhat deeper, and has been chosen at 152 m as.l,

corresponding to a hyy/z ratio of 0.20.

Bollaert and Schleiss [31] stated that this calibration reasonably agrees with the
ultimate depths found by the CFM method and observed during the model tests [31].

Table 8.13 summarizes the results of BS3D analyses performed in this Section
using the jet characteristics given in the third column of Table 8.11. In these simulations,
it is assumed that the maximum duration of extreme pressure fluctuation is 5 ms.
Assuming that the block is most likely removed when h,,;,/z;, > 0.25, the ultimate scour
depth is estimated to be at 155 m a.s.l. which agrees with the ultimate depths found by the
CFM and DI method by Bollaert and Schleiss [31] and observed during the model tests
by Ramos [358]. It should be mentioned that, in predicting the ultimate scour depth, the
effect of pool geometry introduced by Manso [24] was not considered (it is assumed that

the pool bottom is flat during the whole scour process).
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Table 8.13: Determination of ultimate scour depth of Cobara-Bassa dam using DI method
[31] and BS3D

BS3D (using jet characteristics
given in the 3™ column of
Bollaert’s and Schleiss’s Table 8.11); dynamic water
y D, v, , v/ [31] DI analyses prez;l;z zsﬁr:;;?gigzanﬁl the Elevation
(m) | (m) | (m/s) | (m) | D Section 8.3 m a.s.L
Vip hup Uplift Accelerzation Vip hup
(m/s) | 5 (m/s%) (m/s) 7

62.3 8.6 | 3.46 | 0.61 Uplift 1626 8.13 0.69 168.9
63.4 8.8 | 3.37 | 0.58 Uplift 1459 7.295 | 0.62 168.1
65.3 9.0 | 3.22 | 0.53 Uplift 1367 6.835 | 0.57 166.7
66.4 92 | 3.14 | 0.5 Uplift 1315 6.575 | 0.55 165.9
69 9.5 | 295 | 0.44 | Vibrations 1191 5.955 0.49 164.0
71.6 9.9 | 2.74 | 0.38 | Vibrations 1068 5.34 0.44 162.1
742 |72 | 42 1 103 | 2.57 | 0.34 | Vibrations 997 4985 | 041 160.1
77.2 10.7 | 2.38 | 0.29 | Vibrations 841 4.205 0.34 158.0
79.8 11.0 | 2.23 | 0.25 | Vibrations 706 3.53 0.28 156.0
82.4 11.4 | 2.08 | 0.22 | Vibrations 572 2.86 0.22 154.1
84.6 11.7 | 1.96 | 0.2 | Stability 457 2.285 0.17 152.5
87.9 122 | 1.78 | 0.16 | Stability 397 1.985| 0.14 150.0
90.5 12.5] 1.66 | 0.14 | Stability 375 1.875 | 0.13 148.1

8.5.5 Two cases of scour in prototypes (Picote and Kondopoga)

Two cases of scour in prototypes found in the literature [29, 359, 360] are
analyzed using BS3D (and the method explained in Section 8.3 to estimate hydrodynamic
pressure). The results of analyses are summarized in Table 8.14.

For each case, the maximum vertical displacement of the block at the given scour
depth are calculated. It can be seen that, at the reported ultimate scour depth, the ratios of
hup/z determined using BS3D are 0.30 and 0.28 for Picote and Kondopoga prototypes,
respectively. This agrees with the failure criterion introduced in Section 8.4.2 (the block

is most likely to be removed when h,,,/z, > 0.25).
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Table 8.14: BS3D analyses of two cases of scour in prototypes (Picote and Kondopoga)

Picote Kondopoga

Parameter / Scheme (Portugal) [359] (USSR)p [3g60]
Side length of cubic shape block, a, (m) 1.05 0.14
Cushion of water, e, (m) 36 1.45
Discharge, Q, (m’/s) 7000 70
Fall height, H, (m) 45 114
Jet velocity, Vj, (m/s) 29.71 14.95
Jet diameter, Dj, (m) 17.32 2.44
Estimated air entrainment (air content, ) Intermediate (10%) | Negligible (2.5%)
Wave celerity, c, (m/s) 40 70
Fissure length, L, (m) 3.15 0.42
Fissure natural period, T, (s) 0.16 0.012
Actual scour depth (m) 19 4.8
Y (m) 55 6.25
Y/D; 3.18 2.65
Acceleration (m/s°) 858.70 1304
Max duration of extreme pressure (ms) 5 5
Initial velocity of the block, V., (m/s) 4.29 6.52
Maximum vertical displacement of the block, hyp, (m) 0.311 0.039
hup/ 2 0.30 0.28

8.5.6 Example of flutter and divergence

In order to demonstrate the ability of BS3D in predicting more complicated

failure modes (divergence and flutter) together with dealing with in situ stress and

dilation behavior of rock fractures, a fictious example is introduced in this Section.

A cubic rock block with edge length of 1 m is assumed to be in its mould at the

bottom of a plunge pool. The block is subjected to gravity (unit weight of 2,550 kg/m’)
and hydrostatic in situ stress of 50 kPa (which applies a normal stress of 50 kPa on
fractures). The plunge pool has a depth, Y, of 15 m. The jet is assumed to be a moderately
turbulent circular jet with diameter, Dj, and velocity, Vj, at plunge pool surface of 10 m
and 45 m/s (at the end of a fall height of about 100 m), respectively. The air content, B, is
35% and the distance of the block centroid to the jet centerline is 7 m.

As illustrated in Figure 8.13, water flows in the negative y-direction along face

A3A4AgA7 and applies a hydrodynamic water pressure equal to pryg = 1 MPa (which can
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be generated by water flow with a velocity of about 45 m/s) to the portion of the block
boundary that moves out of its mould. In order to simplify this example, hydrodynamic
shear stress is not considered.

The following constitutive models are considered for the rock fractures:

e Mohr-Coulomb model (with an effective friction angle of 50°)

¢ Original and modified Barton-Bandis model (JRC =10, JCS = 70 MPa, and

o =25°)

It should be mentioned that, considering the normal stress applied to the fractures
(50 kPa), the effective friction angle of 50° in Mohr-Coulomb model simulates the same
fracture shear strength as original or modified Barton-Bandis model does with JRC = 10,

JCS =70 MPa, and ¢, = 25 °.

Z
A
7 Water flow
A
5 A8 A
Ag Aq Uov T )
| G
| 4
A, A, /G<0>
D e e 4 //
A /,// /L
21- > Y
X As

(a) (b)

Figure 8.13: (a) Geometry of the cubic rock block considered in the example of flutter
and divergence; (b) view of the block in YZ-plane and applied pressure due to water flow

Eliminating the dilation behavior of the fractures and more complicated failure

modes (dynamic flutter and divergence), the block is expected to have a factor of safety
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of 0.25 with static failure mode along z-axis. However, BS3D analyses give the following
factors of safety and failure modes (see Figure 8.14 for displaced configurations):

e  Mohr-Coulomb model: the failure mode of the block is dynamic divergence
along z-axis with a factor of safety of 0.18.

e Original and modified Barton-Bandis model: the failure modes and the factors
of safety obtained using these models are almost the same. The failure mode
of the block is dynamic flutter with a factor of safety of 0.2 and directions
(Uys Uy, Uz, By, 0,,0,)" equal to:

1- Direction 1: (0.196, —0.98, 0, 0, 0, 1)7
2- Direction 2: (0.99,-0.01, 0, 0,0,1)7

The natural period of the open-ended fracture is estimated to be 0.23 s, because L
= 3 m (determined using Equation (8.31)) and ¢ = 25 m/s (estimated employing Equation
(8.29)). The scour depths predicted using different approaches are given in

Table 8.15. Notice that the DI approach (Section 8.2.1) predicts that the block will
be stable.

This example shows that a block may be fail by dynamic divergence or flutter
before its static failure mode can be reached. These failure modes can be detected by

BS3D which can also deal with in situ stress and dilation behavior of the fractures.

Dynamic flutter:
(0.99,-0.01,0,0, 1)

Static (or dynamic divergence) Dynamic flutter:
I, failure mode: (0.19,-0.98,0,0,0, 1)
)

.

s rasrih bt
7

/TH .
-

Base configuration

/E;se configuration

Figure 8.14: Displaced configuration of the block (predicted using different approaches)

I I IiIinait

Base configuration
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Table 8.15: Predicted scour depth (using different approaches) for the fictious example
introduced to demonstrate the ability of BS3D in dealing with flutter and divergence

Fracture constitutive h Scour
Analysis description FS | =2 | depth | Observations (prediction)
model Z (m)
BS3D": Eliminating fractures’ Mohr-Coulomb model,
dilation behavior and more Barton’s model, and The block remains in
. . o , 0.25 | 0.230 0
complicated failure modes modified Barton’s place.
(dynamic flutter and divergence) model
BS3D" Mohr-Coulomb model | 0.18 | 0.252 | 1 | Theblockwillbe
removed.
Barton’s model and . .
BS3D" modified Barton’s 020 | 0.245 | 1 | Iheblock mostlikely will
be removed.
model
DI (Net uplift dynamic water
pressure is predicted using Figure
8.6 considering the effect of The net uplift force is
distance from jet centerline. The Mohr-Coulomb model | N/A | 0 0 smaller than the shear

maximum vertical displacement of
the block is evaluated using
Equation (8.32))

strength of the fractures.

" In BS3D analyses, hydrodynamic pressure caused by jet impact is estimated using the approach given in Section 8.3. In

addition, the maximum vertical displacement of the block, h

up

8.6 SUMMARY AND CONCLUSIONS

is evaluated using the method described in Section 8.4.1.

In this Chapter, the stability of single rock blocks in plunge pools was

investigated. An approach was introduced to estimate pressure forces generated in plunge

pools due to high-velocity jet impacts. This method together with the ability of BS3D in

determining the stability of the rock block and its displacement were validated using

Federspiel’s experimental study.

Based on the simulation of Martins’ [29] experimental study using BS3D, it was

proposed to consider that the block is most likely to be removed when hyp/z, > 0.25.
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The application of the scour model was explained by a fictious rock mass (good
quality granite) initially introduced by Bollaert. The whole scour model and BS3D
algorithm are then validated using three case histories and prototypes.

Finally, the ability of BS3D in predicting more complicated failure modes
(divergence and flutter) together with dealing with in situ stress and dilation behavior of
rock fractures was demonstrated using a fictious example. It was shown that scour
threshold and depth may be underestimated if divergence and flutter are not taken into

account.
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CHAPTER 9: CONCLUSIONS AND RECOMMENDATIONS

9.1 SUMMARY AND CONCLUSIONS

9.1.1 Single rock block stability analysis approach

BS3D, a single rock block stability analysis approach, which is an incremental-
iterative algorithm introduced by Tonon’s [1], was described in detail. The method is to
analyze general failure modes of rock blocks subject to generic forces, including non-
conservative forces such as water forces. The block interacts with the surrounding
constraint space using a finite number of sensor points. Consistent stiffness matrices were
developed that fully exploit the quadratic convergence of the adopted Newton—Raphson
iterative scheme. The algorithm takes into account large block displacements and
rotations, which together with non-conservative forces make the stiffness matrix non-
symmetric.

Also included in the algorithm are fracture dilatancy and in situ stress. Moreover,
progressive failure is captured by the algorithm, which has proven capable of detecting
numerically challenging failure modes, such as rotations about only one point.

All possible failure modes can be automatically detected along the block’s
equilibrium path; they may originate from a limit point or from dynamic instability
(divergence or flutter); equilibrium paths emanating from bifurcation points are followed
by the algorithm.

The algorithm identifies both static and dynamic failure modes. Static analyses
(including limiting equilibrium) do not take into account the block’s inertia properties,
which may lead to detecting an incorrect failure mode. The calculation of the factor of
safety comes with no overhead, and does not require trial and error model runs using the
reduction of the strength parameters, which may even lead to erroneous failure modes.

Rock blocks that are typically thought of reaching equilibrium by translation
actually rotate about their centroid because the reaction forces create a non-zero moment

about the centroid; this is the case of 2-plane wedges subjected to their own weight. The
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equilibrium path of a rock block that undergoes slumping failure must first pass through a
bifurcation point, unless the block is laterally constrained.

9.1.2 Modified Barton’s model (a constitutive model for rock fractures)

Two databases were built by collecting the results of direct shear tests available in
the literature: Monotonic Direct Shear Tests (MDST), which contains the results of 362
tests, and Cyclic Direct Shear Tests (CDST), which contains the results of 18 tests.

Analyses of these databases showed that Barton’s failure criterion works very
well in predicting the shear strength of rock fractures. However, some weaknesses were
found in the original Barton model and addressed by correlation analyses performed on
collected data. The following modifications to Barton’s model are proposed based on the
results of correlation analyses:

1) An empirical equation is proposed to predict the peak shear displacement of rock
fractures. The equation considers the effect of normal stress on the peak shear
displacement, while Barton’s equation does not. In addition, this equation can be
used for all types of rock fractures, including sawed, smooth, and rough, while
Barton’s equation predicts an incorrect value of zero for the peak shear
displacement of sawed fractures. Finally, the predicted peak shear displacement
employing the proposed equation of this study decreases as JRC increases.
However, the predicted value of peak shear displacement using Barton’s equation
increases with JRC.

2) An empirical equation is proposed to predict the mobilized JRC, which is used to
calculate the shear stress-displacement curve after peak shear displacement.
Besides better matching the MDST database than Barton’s Table, the empirical
equation gives a smoother curve compared to the linear interpolation of the values
given in Barton’s Table and is easier to implement numerically.

3) An equation is proposed to obtain pre-peak dilation at each shear displacement.
The proposed model has none of the inconsistencies and ambiguity of Barton’s

model. Moreover, it simulates negative dilation, while Barton’s does not. In
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addition, the dilation displacement at any shear displacement can be calculated
easily using this equation; also the numerical implementation is much easier.

4) An equation is proposed to obtain post-peak dilation at each shear displacement.
This equation contains an integral which should be solved using numerical
methods.

5) Two tables are introduced to simulate the pre-peak shear stress-displacement
curve (mobilization of pre-peak shear strength): one to estimate the mobilized
JRC at any shear displacement and another to evaluate the mobilized base friction
angle at any shear displacement.

6) A method is described in detail to simulate shear stress-displacement behavior of
rock fractures in the process of loading, unloading, reversal, and reloading.

7) A method is proposed to simulate the dilatancy behavior of rock fractures in
cyclic shearing using the mobilized value of JRC. By investigating the CDST
database, it was found that at the end of each unloading stage the dilation
displacement is almost zero.

8) The JRC angular distribution was found not to have an elliptical shape, but the
shape of an “8”. Experimental data found in the literature were used to formulate
a predictive model for the anisotropic distribution of JRC in the plane of a
fracture. The input data for the model are the maximum and the minimum JRC.
The shear strength, shear stiffness, and dilation displacement of rock fractures
subjected to shearing in any direction can then be predicted by using either

original or modified Barton’s model.

The proposed modifications to Barton’s original model were validated by
performing an experimental study from which the following conclusions can be drawn:
e For sawed (or planar) fractures, the modified model works much better than
the original Barton’s model.
e Both the modified model and Barton’s original model display substantial
approximation in predicting the dilatant behavior of rough fractures. However,
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due to the following reasons, it is believed that the modified model should be
used for predicting the dilation behavior of rock fractures:

1- Barton’s empirical equation for peak shear displacement of rock
fractures can not consider the effect of normal stress on the increase
of the peak shear displacement.

2- Barton’s model can predict dilation displacement only at the peak
shear displacement.

3- The modified model works better than Barton’s model in predicting
stress-displacement curve for high values of the &;,/8,¢qx ratio.

4- The negative dilation (found also in the experimental study) is not
considered in Barton’s model, which can cause overestimation of

factor of safety analysis such as stability of rock blocks in tunnels.

9.1.3 Estimating normal stiffness of rock blocks using direct BEM

An algorithm was proposed to remove the rigid-body motions in the solution of
an elastostatic problem discretized by the direct BEM approach. The algorithm fixes one
boundary point to prevent rigid-body translations. Finally, the rigid-body rotations are
eliminated from the displacement solution. The method was applied to the calculation of
the normal stiffness of rock blocks. The algorithm was verified with a simple example for
which analytical solution is available based on the theory of elasticity. This example
shows the increased accuracy of the proposed algorithm with respect to the
approximation proposed by Tonon [1].

9.14 Validation of BS3D for wedge failure

Wedge failure validation under gravity loading has been carried out for BS3D [1].
Sixty four physical models and two case histories were analyzed using this method. For
the wedge stability problem, physical modeling and BS3D give the same failure modes
except for six cases in which sliding on one plane were observed in physical models
while BS3D predicted sliding on two planes. This is due to the fact that the two failure

313



modes have very similar factors of safety and sliding directions, and BS3D considers the
deformability of the sliding planes.

In all cases, safety factors obtained using BS3D analyses were the same as
obtained using Block Theory limiting equilibrium analysis. The results of BS3D analyses

for two case histories agree well with the observations of failed wedges.

9.1.5 Stability of rock blocks formed in the roof of a circular tunnel

9.1.5.1 2D triangular prism formed in the roof of a circular tunnel

An analytical method has been presented for stability analysis of 2D triangular
prism formed in the roof of a circular tunnel. In addition, a new definition for the factor
of safety of the block was presented. Based on sensivity analyses, the following

conclusions were made;:

1) Different safety factor’s definitions may lead to different conclusions in sensivity
analyses.

2) The factor of safety defined in this study is limited to positive values, the same as
most geotechnical engineering (and civil engineering) applications: at
equilibrium, FS=1 for stable blocks, FS > 1, and for unstable blocks, 0 < FS < 1.

3) Contrary to what established in the literature (by Hudson and Harrison [310]), the
stability of 2D triangular wedge is independent of the ratio of k/k,.

4) 2D wedge stability of is strongly affected by the friction angle of the fractures.
5) Increasing the in situ stress (or lateral pressure coefficient) slightly increases the
stability of the block in low stress (or ko) regimes and has no effect on the factor

of safety in high stress (or ko) regimes.

9.1.5.2 3D tetrahedron formed in the roof of a tunnel

An analytical approach was presented using limit equilibrium methods to analyze

the stability of a tetrahedron formed in the roof of a tunnel. The factor of safety of the
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wedge was defined as the ratio of passive to active forces (or the ratio of available shear

strength to the required shear stress at equilibrium).

The sensivity analyses performed using the analytical approach and BS3D lead to

the following conclusions:

1)

2)

3)

4)

5)

6)

Although the definition of the factor of safety in the analytical method is the same
as the definition of the factor of safety in BS3D, if a block is analyzed using both
approaches, the factors of safety will be different because:

- BS3D takes into account the deformability of the rock block, fractures, and
the rock mass surrounding the block, while the analytical approach does not.

- BS3D considers the progressive failure and the mobilization of shear strength,
while the analytical limit equilibrium method does not.

- Inanalytical limit equilibrium solution, the in situ stresses are assumed to be
independent of the block displacement. However, in BS3D analysis, the part
of the in situ stresses applied to the block changes with block movement.

Adopting Mohr-Coulomb as constitutive model of fractures, the initial normal

stiffness of the fractures (and in turn the normal stiffness of the fractures) has no

effect on stability of 3D wedges.

Adopting Barton’s original or modified model, the factor of safety of tetrahedral

rock block decreases with increasing initial normal stiffness of fractures.

The safety factors calculated using the Barton’s model and the Mohr-Coulomb

model are exactly the same, if the shear displacements of fractures are smaller

than 30% of the peak shear displacement.

Modified Barton’s model uses a different equation for the peak shear

displacement and has a different FS compared to those of other models.

The factor of safety decreases with increasing size of the wedge.

9.1.5.3 3D prism in the roof of a circular tunnel

Yow and Goodman [312] presented a numerical model for keyblock stability.

Using the field observations of keyblocks reported by Yow [316], they performed

sensivity analyses on effects of different parameters such as block geometry, in situ
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stresses, and discontinuity properties on stability of keyblocks. As far as constitutive

model for rock fractures, Yow and Goodman [312] used Barton’s model assuming the

peak shear displacement is equal to one percent of the length of the block. They

investigated the effect of the fracture base friction angle, the magnitudes of JRC and JCS,

the initial normal stiffness, the magnitude of vertical stress, and the lateral pressure

coefficient on stability of keyblocks in the roof of a circular tunnel. The same sensivity

analyses were performed using BS3D. The differences of the analyses done here with

respect to those of Yow and Goodman [312] are as follows:

1)

2)

- The definition of the factor of safety was different.

- The progressive failure of rock fracture with different constitutive models
was considered.

- Wider parameter ranges were checked.

- The effects of dilation displacement, principal stress directions, distance
from the excavation face, the block size, and the tunnel diameter on the

stability of the keyblock were investigated.

The following conclusions may be drawn from the sensivity analyses:

Even using the old Barton’s model (peak shear displacement is equal to one
percent of the length of the block) the factor of safety calculated using BS3D is
different from the result of Yow ‘s and Goodman’s [312] analysis. The reason is
that the definition of the factor of safety is different and BS3D considers the
progressive failure of the fractures, while Yow ‘s and Goodman’s [312] analysis
does not.

In BS3D analyses, the factor of safety calculated using simplified Barton’s model
(dilation starts from zero shear displacement) was the highest, followed by those
determined using Barton’s model, Mohr-Coulomb’s model, and the modified
Barton’s model. The Mohr-Coulomb’s model, the Barton’s model, and the
simplified Barton’s model used in this study are exactly the same except for the

dilation displacement. The simplified Barton’s model has the highest dilation
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3)

4)

5)

6)

7)

8)

9)

displacement and, thus, the highest normal forces applied to the fractures, the
highest shear strength of discontinuities, and the highest factor of safety.

The modified Barton’s model differs from Barton’s model in terms of the peak
shear displacement, the mobilized shear strength, and the dilatancy behavior.
Therefore, the factor of safety calculated using the modified Barton’s model is
different (smaller for this prism) from those obtained employing the Barton’s
model.

The stability of the prism weakly depends on JRC (decreasing JRC from 20 to 0
decreases FS by 30%). However, Yow and Goodman [312] found that the block
stability strongly (decreasing JRC from 5 to O decreases FS by 100%) depends on
JRC.

The Barton’s model, the simplified Barton’s model, and the Mohr-Coulomb’s
model have counterintuitive behavior for very small JRC’s. When JRC increases
from O to 1, the factors of safety decrease instead of increasing.

Yow and Goodman [312] found that the effect of JCS on the stability of the prism
is not as strong as that of JRC, but it is quite effective. BS3D analyses found that
the stability of the prism is weakly dependent on JCS.

The FS flattens out after a specific value of JCS, which depends on other aspects
of the problem because the asperities do not fail and increasing JCS almost has no
effect on the stability of the block.

Yow and Goodman [312] found that the base friction angle is quite effective on
the stability of keyblocks. In addition, BS3D analyses show that the factor of
safety of the prism increases with the base friction angle.

Stability decreases as normal stiffness increases (the same as Yow’s and
Goodman’s [312] conclusion).

10) Effect of in situ stress condition of the prism: Yow and Goodman [312] found that

aside from the shear strength, the most critical condition affecting keyblock
stability is the stress environment. The block becomes less stable as the initial

confining stresses decrease; the trend accelerates as stress magnitudes become

317



very small (smaller than about 1.5 MPa). The same conclusion has been made
based on BS3D analyses.

11) Yow and Goodman [312] found that the block becomes less stable as the lateral
stress ratio decreases; the trend accelerates as the ratio goes below about one-half.
The same conclusion has been made based on BS3D analyses.

12) The principal stress directions strongly affect the stability of keyblocks.

13) The in situ stresses strongly affect the stability of the block, even more than the
shear strength of fractures.

14) The factor of safety increases with distance from excavation face up to
approximately five times of the tunnel radius.

15) The factor of safety of the prism increases with increasing radius of the tunnel.

16) Because of different dilation displacements, the factors of safety obtained using
the simplified Barton’s model are higher than those calculated using the Barton’s
model which itself is higher than those determined employing the Mohr-Coulomb
model. The higher the dilation displacements are, the higher are the normal forces
applied to the fractures, the shear strength of the fractures, and, finally, the factor
of safety of the block.

17) The modified Barton’s model and the old Barton’s model may have smaller or
higher factors of safety compared the other models, while there are minimal
differences between them.

18) The factor of safety of the block decreases with increasing size of the prism.

19) The factor of safety of the block decreases (by 20%) with increasing radius of the
tunnel (from 1 to 10 m) and size of the prism accordingly. The change is very
small. This is the combination effect of the tunnel radius (which increases the FS)
and the size of the block (which decrease the FS).

20) The factor of safety of the maximum block remains almost constant with
increasing tunnel radius. This is the combination effect of the tunnel radius

(which increases the FS) and the size of the block (which decrease the FS).
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Finally, it can be concluded from the sensivity analyses performed that, in
stability of keyblocks, in situ stresses have the highest effect. In addition, the type of
constitutive model has strong effect, even higher than those of the shear strength of the
fractures. The shear strength and stiffness of the fractures have weak effect on stability of

keyblocks.

9.1.6 Effect of high-velocity jet impact on stability of rock blocks in plunge pools

The stability of single rock blocks in plunge pools has been investigated. An
approach is introduced to estimate pressure forces generated in plunge pools due to high-
velocity jet impacts. This method together with the ability of BS3D to determine the
stability of a rock block and its displacements are validated using Federspiel’s
experimental study [27, 28].

Based on the simulation of Martins’ [29] experimental study using BS3D, it is
proposed to consider that the block is most likely to be removed when hyy/zy, > 0.25.

The application of the scour model is explained by a fictious rock mass (good
quality granite) initially introduced by Bollaert [30]. The whole scour model and BS3D
algorithm are then validated using three case histories and prototypes [29-31].

Finally, the ability of BS3D in predicting more complicated failure modes
(divergence and flutter) together with dealing with in situ stress and dilation behavior of
rock fractures is demonstrated using a fictious example. It was shown that rock blocks
subjected to water forces (or other non-conservative forces) may undergo flutter failure
before reaching a limit point. Thus, existing methods (including limiting equilibrium)
may overestimate the safety of a rock block and, thus, underestimate scour depth when

water forces are important (e.g. dam foundations and rock scour at bridge piers).

9.2 RECOMMENDATIONS FOR FUTURE STUDIES

9.2.1 Constitutive model for rock fractures

In this dissertation, modifications have been proposed to Barton’s model for rock
fractures based on correlation analyses of the results of direct shear tests found in the

319



literature. The database is given in Appendix A. Although this database presents a great
source of information, it does not include all direct shear tests done in the past. Adding
significant number of data to the given database and reanalyzing them may lead to some
improvements in the modified model.

In addition, the modified model still suffers from weaknesses mostly in cyclic
shearing. Performing a series of cyclic direct shear tests on wide ranges of rock fractures
may lead to a better understanding of behavior of rock joints subjected to load reversal

and reloading.

9.2.2 Scour of plunge pools

An experimental study should be performed to validate predictions of BS3D in
terms of flutter/divergence versus static failure modes.

The implemented formulation for the stability analysis of single rock blocks in a
plunge pool can be folded into a probabilistic approach to evaluate probability of scour
threshold and extent. This study will deliver a formulation and a computer program for
the evaluation of:

e The probability of scour as a function of plunge pool elevation.

e The probability of scour retrogression in the walls of the plunge pool toward

the dam, its foundation, or the appurtenances.

The approach should be validated at a couple of dam sites where rock scour is a
possible failure mechanism as highlighted by available risk analyses. The results of this

study will allow one to carry out a quantitative risk assessment for scour.

9.2.3 Scour of bridge foundations

Scour is one of the first causes of bridge collapse in the USA. BS3D can be used
to investigate the problem of scour at bridge foundation on rock. BS3D simulation will
enhance the understanding of rock block removal under fluctuating turbulence. The scour

zone is to be estimated and recommendations are to be proposed based on this study.
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9.2.4 Coupling Digital Terrain Method and BS3D

Laser and photogrammetric methods for rock face characterization produce
Digital Terrain Method (DTM) that can be used to locate removable blocks. The stability
of these removable blocks may be studied using BS3D. The developed version of the
code can be used to remotely analyze stability of rock slopes and/or tunnels to propose a

guideline for design.

9.2.5 Stability of rock slopes during earthquake and heavy rains

Stable natural or artificial rock slopes may become unstable during an earthquake
or heavy rains (ex: earthquake in Chalous road, Iran, 2005). The effect of earthquakes
and heavy rains on stability of rock slopes can be investigated using BS3D. Reduction in
shear strength of rock fracture due to cyclic shearing and/or water flow should be

considered using an appropriate approach.
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APPENDIX A: DIRECT SHEAR TEST DATABASE

A.1l. MONOTONIC DIRECT SHEAR TESTS (MDST) DATABASE

Studies on monotonic shearing [79, 81, 106, 113, 115, 127, 154, 161, 162, 169,
176, 183-210] were investigated to find available monotonic direct shear test results.
Peak shear strength, peak shear displacement, peak dilation displacement, maximum
negative value of dilation, and shear displacement at which dilation displacement is zero
were digitized from the curves (see Table A.1) For post peak behavior shear strength,
and dilation displacement at 4 different points were digitized (see Table A.2).

A large amount of data was collected from a site investigation report series
published by Svensk Karnbranslehantering AB [188-210]. In these cases, the values of
JCS was assumed to be equal to the UCS of intact rock, which can be calculated from
available results of triaxial tests run on intact rock specimens. Base friction angle and
JRC values were back calculated assuming that: (1) Barton [21] failure criterion can
predict the peak and residual shear strength correctly and (2) residual shear strength is

reached when JRC /JRC .. =0.5[115] and assuming no weathering for fractures

mobilized peak

(4, =¢,). JRC values may be different for the same specimens under different normal

stresses (due to the damage of asperities in the shear test previously run under smaller

normal stresses).

A.2. CycLIC DIRECT SHEAR TESTS (CDST) DATABASE

Results of 18 cyclic direct shear tests were found in the literature [103, 127, 150,
167, 169, 174, 213]. For each available cycle, shear strengths and dilation displacements
at different shear displacements were digitized so that shear strength-shear displacement
as well as dilation-shear displacement curves could be built with the available

information (see Table A.3).
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Table A.1: Monotonic Direct Shear Test (MDST) database: pre-peak behavior

% s Source and L | & JRe | J€8 o, o, Ty (§h)p bo) min(J,
oZ Description M | @ (kPa) (mm) | (kPa) | (kPa) | (mm) ( V)@(5h )=0 ( h)

1 01 | 30 | 16 450 0.33 2 - 0.083 0.083 0

2 Barton [115]; 01 | 30 [ 16 450 0.46 3.8 - 0.058 0.300 0

3 Figure 5.1, 01 | 30 [ 16 450 0.50 8 - 0.067 0.300 0
4 | Tension Fracture |_0-L | 30 [ 16 450 0.53 13 - 0.062 0.300 0

5 01 | 30 | 16 450 0.58 20 - 0.026 0.300 0

6 01 | 30 [ 16 450 1.18 42 - 0.088 0.710 0

7 006 | 32 | 1560 | 2000 | 072 | 245 | 44.22 - - -

8 Bandis [113] 012 | 32 [ 122 | 14641 | 092 | 245 | 34.65 - - -

9 018 | 32 [ 108 | 12199 | 097 | 245 [ 29.42 - - -
10 036 | 32 | 88 | 893.02 | 1.85 | 245 | 2318 - - -
11 006 | 32 [ 125 | 9554.4 | 078 | 245 | 5052 | 0.22 0.09 0
12 Barton [115]; 012 | 32 [ 115 | 4026.1 | 1.25 | 245 | 39.78 | 017 0.36 0
13 Figure 6.2 018 | 32 [ 11.0 | 23047 | 1.80 | 245 | 3461 | 0.18 0.73 0
14 036 | 32 | 9.0 | 1679.6 | 2.22 | 245 | 3202 | 0.11 0.93 0
15 025 | 30 | 83 | 57000 | 1.64 | 6000 | 4170 | 0.07 0.74 0
16 | Bartonetal. [81]; | 0.25 | 30 | 83 | 57000 | 1.61 | 24000 | 13410 | 0.03 0.8 0
17 Figure 20 075 | 30 | 6.7 | 41000 | 2.76 | 6000 | 3720 | 0.08 1.01 0
18 075 | 30 | 6.7 | 41000 | 3.07 | 24000 | 12570 | 0.03 1.08 0
19 030 | 30 | 80 | 72000 | 1.55 | 1000 | 1020 | 0.076 0.83 0
20 | Bartonetal.[81]; | 0.30 | 30 | 80 | 72000 | 1.71 | 3000 | 2570 | 0.061 0.83 0
21 Figure 22 0.30 | 30 | 80 | 72000 | 1.67 | 10000 | 7530 | 0.039 0.83 0
22 030 | 30 | 80 | 72000 | 1.67 | 30000 | 19670 | 0.012 0.83 0
23 0.10 | 30 | 10.0 | 100000 | 0.84 | 10000 | 8440 | 0.04 0.42 0
24 | Bartonetal.[81]; [ 030 | 30 | 80 | 72000 | 1.81 | 10000 | 7620 | 0.06 0.77 0
25 Figure 23 1.00 [ 30 | 6.3 | 50000 | 3.61 | 10000 | 7050 | 0.08 1.35 0
26 3.00 | 30 [ 5.1 | 36000 | 7.34 | 10000 | 6640 | 0.02 2.55 0

Olson and Barton

27 | 176 Figure 16 | 2° | 31 | 97 | 169000 | 087 | 2000 | 2350 | -0.02 0.93 -0.03
28 0.06 | 33 | 12.0 | 184000 | 0.13 | 500 | 1020 | 0.04 0.04 0.00
29 006 | 33 | 7.4 | 184000 | 0.6 | 5000 | 4930 | 0.065 0.031 -0.02
30 006 | 33 | 65 | 184000 | 2.17 | 20000 | 16370 | 0.06 1.18 -0.05
31 006 | 33 | 7.7 | 184000 | 0.24 | 500 660 0.03 0.12 0.00
32 0.06 | 33 | 6.6 | 184000 | 0.3 | 5000 | 4710 | 0.015 0.26 -0.02
33 006 | 33 | 6.1 | 184000 | 2.26 | 20000 | 16140 | 0.09 0.79 -0.04
34 0.06 | 33 | 125 | 184000 | 047 | 500 | 1070 | 0.14 0 0.00
35 Jacobsson & 0.06 | 33 | 7.3 | 184000 | 0.47 | 5000 | 4910 0 0.46 -0.02
36 | Flansbjer [192, [ 0.06 | 33 | 3.8 | 184000 | 1.48 | 20000 | 14910 | -0.01 1.66 -0.07
37 | 202]; KLXO06A; | 0.06 | 33 | 10.8 | 184000 | 0.11 | 500 890 0.05 0.03 0.00
38 Avro Granite 006 | 33 | 87 | 184000 | 0.26 | 5000 | 5300 | 0.02 0.19 -0.01
39 006 | 33 | 57 | 184000 | 0.54 | 20000 | 15900 | -0.03 0.9 -0.05
40 0.06 | 33 [ 10.7 | 184000 | 03 500 | 880 | 0.055 0.14 -0.01
41 006 | 33 | 84 | 184000 | 0.38 | 5000 | 5200 0 0.39 -0.03
42 0.06 | 33 | 6.4 | 184000 | 0.71 | 20000 | 16280 | -0.01 0.95 -0.03
43 007 | 33 | 6.3 | 184000 | 0.88 | 500 | 580 0.13 0 0.00
44 007 | 33 | 31 | 184000 | 1.5 | 5000 | 3890 | 0.045 0.46 -0.02
45 0.07 | 33 | 1.4 [ 184000 | 2.87 | 20000 | 13670 | -0.055 - -0.06
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Table A.1-Continued: MDST database: pre-peak behavior

8 s Source and L | & R JCS o, o, 7, (5h )p S min
S8z Description m | JRC kPa) | (mm) | (kPa) | (kPa) (mm) ( v)@(ﬁh )=0 (5h)
46 006 | 35 | 91 | 172000 | 0.79 | 500 | 800 | 0.11 0.17 -0.01
47 006 | 35 | 67 | 172000 | 0.6 | 5000 | 5040 | 0.005 0.59 -0.03
48 006 | 35 | 46 | 172000 | 2.37 | 20000 | 16380 | 0.13 1.16 -0.05
49 006 | 35 | 53 | 172000 | 146 | 5000 | 4680 | 0.19 0.34 -0.02
50 006 | 35 | 21 | 172000 | 4.16 | 20000 | 15040 | 0.27 0.95 -0.05
51 ngggt?s::’[‘lgs 0.06 | 35 | 10.6 | 172000 | 1.26 500 940 0.02 0.06 -0.02
52 | o) KJL10-117'; 006 | 35 | 3.1 | 172000 | 3.13 | 20000 | 15580 | 0.11 0.095 -0.04
53 Ao Granite 007 | 35 | 7.8 | 172000 | 115 | 500 | 710 | 0.29 0.08 0.00
54 007 | 35 | 53 | 172000 | 0.35 | 5000 | 4680 | 0.08 0.23 -0.01
55 007 | 35 | 43 | 172000 | 0.63 | 20000 | 16180 0 0.61 -0.30
56 006 | 35 | 9.9 | 172000 | 045 | 500 | 870 | 0.6 0.19 0.00
57 006 | 35 | 7.8 | 172000 | 058 | 5000 | 5350 | 0.01 0.48 -0.02
58 006 | 35 | 44 | 172000 | 0.94 | 20000 | 16280 | -0.03 1.29 -0.05
59 007 | 35 | 10.9 | 175000 | 0.13 | 500 | 970 | 0.04 0.02 0.00
60 007 | 35 | 7.3 | 175000 | 2.38 | 5000 | 5220 | 0.44 0.09 -0.01
61 Jacobsson & 007 | 35 | 56 | 175000 | 2.68 | 20000 | 16950 | 0.11 0.73 -0.02
62 | Flansbjer[200, ["906 | 34 | 11.8 | 268700 | 0.71 | 500 | 1140 | 0.2 0.15 0.00
63 ﬁgg]A\}/(rI(;)((Blriﬁte 0.06 | 34 | 65 | 268700 | 0.76 | 5000 | 5030 | 0.04 0.56 -0.04
64 and Quartz 006 | 34 | 3.9 | 268700 | 2.73 | 20000 | 15880 | 0.05 113 -0.05
65 monzodiorite 006 | 34 | 134 | 268700 | 0.63 | 500 | 1420 | 0.2 0.1 0.00
66 006 | 34 | 64 | 268700 | 0.34 | 5000 | 5000 | -0.01 0.37 -0.02
67 006 | 34 | 24 | 268700 | 3.13 | 20000 | 14910 | -0.02 - -0.04
68 006 | 35 | 84 | 250000 | 0.49 | 500 | 790 | 0.09 0.13 0.00
69 006 | 35 | 6.0 | 250000 | 169 | 5000 | 5040 | 0.2 0.46 -0.04
70 006 | 35 | 39 | 250000 | 3.12 | 20000 | 16370 | -0.02 42 -0.09
71 005 | 35 | 93 | 250000 | 0.18 | 500 | 870 | 0.03 0.1 0.00
72 Jacobsson & 005 | en | 6.2 | 250000 | 0.42 | 5000 | 5100 | -0.03 0.56 -0.04
73 ZFl'g;SEEIr\A[ggi 005 | 35 | 20 | 250000 | 1.09 | 20000 | 15190 | -0.1 - 011
74 | “117 Medium- | 005 | 35 | 66 | 250000 | 047 | 500 | 660 | 0.07 0.3 -0.01
75 grained granite 0.05 35 3.1 250000 0.57 5000 4240 -0.01 0.62 -0.04
76 005 | 35 | 1.5 | 250000 | 4.13 | 20000 | 14900 | -0.06 - -0.12
77 005 | 35 | 94 | 250000 | 0.18 | 500 | 880 | 0.8 0 0.00
78 005 | 35 | 36 | 250000 | 125 | 5000 | 4370 | 0.11 0.33 -0.02
79 005 | 35 | 11 | 250000 | 3.62 | 20000 | 14620 | 0.02 251 -0.07
80 006 | 30 | 134 | 185000 | 0.11 | 500 | 1040 | 0.04 0.03 0.00
81 006 | 30 | 88 | 185000 | 0.23 | 5000 | 4790 | 0.01 0.13 0.00
82 006 | 30 | 54 | 185000 | 0.39 | 20000 | 14130 0 0.39 -0.09
83 Jacobsson & 006 | 30 | 10.2 | 185000 | 021 | 500 | 750 | 0.04 0.08 0.00
84 | Flansbjer [195, | 0.06 | 30 | 7.8 | 185000 | 1.52 | 5000 | 4530 | 0.24 0.25 -0.01
85 | 203]; KFMOBA- | 0.06 | 30 75 | 185000 | 0.46 | 20000 | 15200 | -0.02 0.64 -0.03
86 | 117;Medium- 006 | 30 | 52 [ 185000 | 1.14 | 500 470 0.12 0.27 0.00
g7 | OQrainedgranitt 7006 | 30 | 4.8 | 185000 | 1.53 | 5000 | 3840 | 0.1 0.49 -0.01
88 006 | 30 | 55 | 185000 | 505 | 20000 | 14160 | 0.06 2.22 -0.04
89 006 | 30 | 86 | 185000 | 0.31 | 500 | 640 | 0.5 0.04 0.00
90 006 | 30 | 59 | 185000 | 0.44 | 5000 | 4090 | -0.01 05 -0.02
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Table A.1-Continued: MDST database: pre-peak behavior

Bo| gmms |G | s 0 | | n O () | mins)
() (mm) | (kPa) | (kPa) | (mm)
91 006 | 30 | 59 | 185000 | 2.56 | 20000 | 14350 | -0.13 - -0.23
92 Jacobsson & 006 | 30 | 11.4 | 185000 | 0.1 500 840 | 0.005 0.04 0.00
93 Flansbjer [195, 006 | 30 | 85 | 185000 | 0.29 | 5000 | 4720 | -0.01 0.35 -0.02
94 | 203]; KFM0BA-117; | 0.06 | 30 | 9.5 | 185000 | 2.24 | 20000 | 16290 0 2.19 -0.08
95 Medium-grained | 007 | 30 | 13.4 | 185000 | 0.15 | 500 | 1040 | 0.01 0.12 0.00
9% granite 007 | 30 | 12.1 | 185000 | 0.32 | 5000 | 5750 | -0.02 0.39 -0.03
97 007 | 30 | 10.6 | 185000 | 0.98 | 20000 | 16900 | -0.06 171 -0.08
98 005 | 28 | 155 | 230000 | 0.12 | 500 | 1330 | 0.02 0.06 0.00
99 005 | 28 | 11.2 | 230000 | 0.38 | 5000 | 5290 0 0.38 -0.02
100 0.05 | 28 | 95 | 230000 | 1.12 | 20000 | 15690 | -0.08 2.51 -0.09
101 005 | 28 | 147 | 230000 | 011 | 500 | 1190 | 0.03 0.02 0.00
102 0.05 | 28 | 115 | 230000 | 0.33 | 5000 | 5380 0 0.29 -0.01
103 005 | 28 | 87 | 230000 | 0.94 | 20000 | 15170 | -0.07 1.83 -0.08
104 006 | 28 | 7.8 | 230000 | 046 | 500 570 0.1 0 0.00
105 006 | 28 | 29 | 230000 | 038 | 5000 | 3220 | -0.005 0.49 -0.02
106 006 | 28 | 09 | 230000 | 6.69 | 20000 | 11060 | -0.05 - -0.06
107 Jacobsson & 0.06 | 28 | 12.2 | 230000 | 0.15 | 500 880 0.04 0.06 0.00
108 Flansbjer 0.06 | 28 | 10.6 | 230000 | 0.24 | 5000 | 5100 0 0.25 -0.02
109 | [193,194,204];  ['906 [ 28 | 8.1 | 230000 | 0.47 | 20000 | 14840 0 0.52 -0.02
110 | KPMOSA-LLT P00 ™30 142 | 230000 | 045 | 500 | 1230 | 0 0.12 0.00
Medium-grained
111 granite 007 | 30 | 12.8 | 230000 | 0.25 | 5000 | 6220 0 0.24 -0.01
112 007 | 30 | 11.8 | 230000 | 0.46 | 20000 | 18370 | 0.21 0.77 -0.04
113 006 | 30 | 95 | 230000 | 021 | 500 720 0.03 0.12 0.00
114 006 | 30 | 7.4 | 230000 | 046 | 5000 | 4540 0 0.46 -0.02
115 0.06 | 30 | 52 | 230000 | 3.02 | 20000 | 14290 | -0.06 0 -0.08
116 0.06 | 30 | 13.8 | 230000 | 0.1 500 | 1160 | 0.03 0.05 0.00
117 0.06 | 30 | 9.0 | 230000 | 0.28 | 5000 | 4980 | 0.02 0.14 0.00
118 0.06 | 30 | 6.2 | 230000 | 0.84 | 20000 | 14830 | 0.01 0.75 -0.03
119 0.06 | 30 | 13.0 | 230000 | 0.05 | 500 | 1060 | 0.02 0.03 0.00
120 0.06 | 30 | 10.2 | 230000 | 0.24 | 5000 | 5340 | 0.01 0.15 0.00
121 0.06 | 30 | 7.7 | 230000 | 0.58 | 20000 | 15720 | -0.03 0.96 -0.05
122 0.06 | 31 | 15.8 | 173000 | 0.16 | 500 | 1460 | 0.07 0.05 0.00
123 006 | 31 | 12.0 | 173000 | 0.34 | 5000 | 5860 | 0.02 0.28 -0.01
124 006 | 31 | 6.7 | 173000 | 0.72 | 20000 | 15230 | -0.03 0.99 -0.04
125 0.05 | 31 | 11.0 | 173000 | 0.13 | 500 830 0.03 0.04 0.00
126 005 | 31 | 88 | 173000 | 0.33 | 5000 | 4910 | 0.02 0.27 -0.01
127 Jacobsson & 0.05 | 31 8.9 | 173000 | 2.99 | 20000 | 16390 | 0.07 0.99 -0.04
128 [fg"szbéga; 005 | 31 | 154 | 173000 | 0.22 | 500 | 1380 | 0.06 0.12 0.00
129 KFMOSA-117: 0.05 | 31 | 12.8 | 173000 | 0.39 | 5000 | 6110 | 0.02 0.33 -0.02
130 | Medium-grained | 005 | 31 | 10.3 | 173000 | 278 | 20000 | 17180 | 0.1 1.26 -0.07
131 granite 0.06 | 31 | 9.1 | 173000 | 0.3 500 690 0.06 0.12 0.00
132 0.06 | 31 | 7.6 | 173000 | 0.38 | 5000 | 4610 | 0.03 0.31 -0.02
133 0.06 | 31 | 48 | 173000 | 0.58 | 20000 | 14250 | -0.02 0.72 -0.04
134 006 | 31 | 108 | 173000 | 029 | 500 810 0.06 0.15 0.00
135 0.06 | 31 | 81 | 173000 | 042 | 5000 | 4740 | 0.03 0.32 -0.01
136 006 | 31 | 7.0 | 173000 | 2.48 | 20000 | 15400 | 0.14 0.84 -0.04
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Table A.1-Continued: MDST database: pre-peak behavior

3o Source and L JCS o O, T 5h) ;
SZ|  Description m) (ﬂ; RC 1 (kpa) (mr';) @) (kppa) ((mm)p (5\/)@(5h Lo | min(s,)
137 005 | 35 | 6.6 | 158000 | 1.18 | 500 | 630 | 0.23 0.04 0.00
138 005 | 34 | 71 | 158000 | 0.99 | 5000 | 4930 | 01 0.27 -0.01
139 005 | 34 | 7.3 | 158000 | 1.92 | 20000 | 17140 | 0.02 15 -0.05
140 006 | 34 | 100 | 158000 | 042 | 500 | 830 | 0.08 0.1 0.00
141 006 | 34 | 41 | 158000 | 1.23 | 5000 | 4220 | 0.03 0.69 -0.02
142 006 | 34 | 32 | 158000 | 1.79 | 20000 | 15010 | -0.05 - -0.17
143 006 | 34 | 6.1 | 158000 | 0.33 | 500 80 | 0.04 0.05 0.00
144 006 | 34 | 55 | 158000 | 0.43 | 5000 | 4530 0 0.41 -0.01
145 006 | 34 | 27 | 158000 | 3.33 | 20000 | 14770 | 0.09 1.18 -0.04
146 Jacobsson & 006 | 34 | 7.9 | 158000 | 013 | 500 | 680 | 0.01 0 0.00
147 Flansbjer 006 | 34 | 49 | 158000 | 1.84 | 5000 | 4390 | 0.19 0.33 -0.01
148 K{_l)%gé,zo\qi]ﬁ 006 | 34 | 42 | 158000 | 223 | 20000 | 15490 | 0.09 0.56 -0.01
149 | Ayro Graniteand | 096 | 34 | 114 | 158000 | 0.18 | 500 | 960 | 0.2 0 0.00
150 Quartz 006 | 34 | 84 | 158000 | 04 | 5000 | 5290 | 0.01 0.34 -0.01
151 monzodiorite 006 | 34 | 4.9 [ 158000 | 0.99 | 20000 | 15850 | -0.01 11 -0.03
152 005 | 34 | 7.2 | 158000 | 1.16 | 500 | 640 | 0.09 0.35 -0.01
153 005 | 34 | 40 | 158000 | 1.3 | 5000 | 4200 | 0.5 0.77 -0.03
154 005 | 34 | 17 | 158000 | 5.1 | 20000 | 14280 0 4.96 -0.06
155 006 | 34 | 61 | 158000 | 056 | 500 | 580 | 0.2 0.37 -0.01
156 006 | 34 | 34 | 158000 | 0.67 | 5000 | 4060 | -0.02 0.83 -0.05
157 006 | 34 | 1.9 | 158000 | 1.32 | 20000 | 14360 | -0.05 23 -0.10
158 006 | 31 | 127 | 176000 | 0.17 | 500 | 1000 | 0.03 0.11 -0.01
159 006 | 31 | 93 | 176000 | 0.32 | 5000 | 5060 0 0.32 -0.02
160 006 | 31 | 49 | 176000 | 1.07 | 20000 | 14330 | -0.04 3.01 -0.05
161 006 | 35 | 94 | 206000 | 0.1 500 | 850 | 0.03 0.05 0.00
162 006 | 35 | 9.7 | 206000 | 0.24 | 5000 | 6090 | 0.01 0.2 -0.01
163 006 | 35 | 51 | 206000 | 05 | 20000 | 16890 | -0.01 0.66 -0.03
164 006 | 35 | 94 | 206000 | 007 | 500 | 850 | 0.2 0.04 0.00
165 006 | 35 | 90 | 206000 | 0.23 | 5000 | 5850 | 0.01 0.19 -0.01
166 Jacobsson & 006 | 35 | 51 | 206000 | 0.75 | 20000 | 16870 | -0.01 1.06 -0.03
167 [gasnszbé% 006 | 35 | 88 | 206000 | 0.17 | 500 | 800 | 0.02 0.08 0.00
168 | | Fyvo7a.17. | 006 [ 35 | 48 [206000 | 1.11 [ 5000 | 4610 | 011 0.23 -0.01
169 | wedium-grained | 006 | 35 | 46 | 206000 | 3.93 | 20000 | 16610 | 0.09 11 -0.03
170 granite 005 | 35 | 83 | 206000 | 019 | 500 | 760 | 0.03 0.08 0.00
171 005 | 35 | 52 | 206000 | 0.32 | 5000 | 4740 | -0.005 0.36 -0.02
172 005 | 35 | 3.2 | 206000 | 1.88 | 20000 | 15760 0 1.46 -0.03
173 006 | 35 | 89 | 206000 | 023 | 500 | 810 | 0.07 0.03 0.00
174 006 | 35 | 6.8 | 206000 | 0.27 | 5000 | 5180 | 0.02 0.18 -0.01
175 006 | 35 | 58 | 206000 | 1.85 | 20000 | 17290 | 0.06 0.55 -0.02
176 015 | 34 | 120 | 75000 | 816 | 400 | 640 | 117 3 0.00
177 | Homandetal. | 0.15 | 34 | 110 | 75000 | 9.63 | 800 | 1150 | 2.12 1 0.00
178 [169]; 015 | 34 | 110 | 75000 | 817 | 1200 | 1670 | 1.56 0.25 0.00
179 | Schistreplicas | 015 | 34 | 11.0 | 75000 | 7.68 | 1800 | 2360 | 1.35 05 0.00
180 015 | 34 | 11.0 | 75000 | 12.65 | 2400 | 2870 | 117 5.31 -0.18
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Table A.1-Continued: MDST database: pre-peak behavior

8 s Source and L | & JRe | I€8 o, o, Ty (5h)p bo) min(dJ,
oz Description m | @ KP2) | (mm) | (kPa) | (kPa) (mm) ( V)@(5h )=0 ( h)
181 0.06 | 34 | 58 | 202300 | 065 | 500 | 570 | 0.1 0.14 0.00
182 006 | 34 | 2.3 | 202300 | 1.47 | 5000 | 3800 | 0.13 08 -0.02
183 006 | 34 | 09 | 202300 | 2.12 | 20000 | 13690 | 0.11 1.27 0.03
184 0.06 | 34 | 10.3 | 202300 | 0.48 | 500 | 880 | 0.1 0.05 0.00
185 006 | 34 | 9.0 | 202300 | 052 | 5000 | 5540 | 0.04 031 -0.01
186 006 | 34 | 82 | 202300 | 0.9 | 20000 | 17840 | 0.02 0.68 0.03
187 005 | 34 | 74 | 202300 | 022 | s00 | 660 | 0.02 0.05 0.00
188 005 | 34 | 41 | 202300 | 193 | 5000 | 4220 | 0.1 0.49 -0.01
189 005 | 34 | 3.6 | 202300 | 3.98 | 20000 | 15120 | 0.07 1.05 -0.02
190 005 | 34 | 122 | 202300 | 0.13 | 500 | 1090 | 0.02 0.11 0.00
191 005 | 34 | 7.7 | 202300 | 0.28 | 5000 | 5160 0 0.27 -0.01
192 005 | 34 | 53 | 202300 | 0.7 | 20000 | 16090 0 0.71 -0.03
193 Jacobsson 006 | 34 | 7.1 | 202300 | 1.1 500 | 640 | 0.07 0 0.00
194 [188, 189]; 006 | 34 | 6.4 | 202300 | 3.11 | 5000 | 4790 | 0.21 0.93 -0.02
195 KLX02-117; 006 | 34 | 7.8 | 202300 | 2.95 | 20000 | 17570 | 0.1 1.76 -0.05
196 Avro Granite 005 | 34 | 127 | 202300 | 0.1 500 | 1150 | 0.03 0 0.00
197 005 | 34 | 7.4 | 202300 | 0.26 | 5000 | 5060 | 0.01 0.21 -0.02
198 005 | 34 | 48 | 202300 | 0.48 | 20000 | 15790 0 0.49 -0.01
199 006 | 34 | 105 | 202300 | 0.47 | 500 | 900 | 0.11 0.1 0.00
200 006 | 34 | 9.8 | 202300 | 0.49 | 5000 | 5790 | 0.02 0.41 0.02
201 006 | 34 | 7.7 | 202300 | 1.09 | 20000 | 17510 | 0.02 0.87 0.04
202 006 | 34 | 11.4 | 202300 | 0.14 | 500 | 990 | 0.03 0.08 0.00
203 006 | 34 | 87 | 202300 | 0.4 | 5000 | 5460 | 0.1 0.32 -0.02
204 006 | 34 | 7.3 | 202300 | 266 | 20000 | 17290 | 0.09 1.09 -0.04
205 006 | 34 | 46 | 202300 | 109 | 500 | 510 | 007 0.13 0.00
206 006 | 34 | 2.0 | 202300 | 454 | 5000 | 3730 | 0.6 1.19 -0.03
207 006 | 34 | 0.8 | 202300 | 568 | 20000 | 13660 | 0.12 2.94 0.04
208 | voshinakaand | 0-14 | 39 | 00 | 11200 | 125 | 490 [ 229

209 | Yamabe[t54; | 014 | 39 | 00 | 11200 | 145 | 980 | 114

210 | Diamond Sawed; | 0.4 | 39 | 0.0 | 11200 | 155 | 1460 | 7.7

211 Welded-tuff 014 | 39 | 00 | 11200 | 155 | 1950 | 5.7

212 (Ohyastone) 572739 | 0.0 | 11200 | 1.80 | 2930 | 38

213 _ 013 | 33 | 00 | 11200 | 025 | 480 | 233

214 igi‘;gg'ﬁgz]d 013 | 33 | 00 | 11200 | 110 | 910 | 123

215 Sand Blasted; | 013 | 33 | 00 [ 11200 [ 075 | 1190 | 94

216 Welded tuff 013 | 33 | 00 | 11200 | 0.90 | 1800 | 6.2

217 (Ohyastone) | 013 | 33 | 00 | 11200 | 1.20 | 2600 [ 43

218 013 | 33 | 00 | 11200 | 1.30 | 3050 | 3.7

219 0.15 | 48 | 20.0 | 14700 | 150 | 500 | 29.4

220 015 | 48 | 200 | 14700 | 170 | 1000 | 147

221 Van Sint Jan 015 | 48 | 200 | 14700 | 170 | 2000 | 7.35

222 [185]; Plaster 0.15 | 48 | 20.0 | 14700 | 2.20 | 4000 | 3.675

223 0.15 | 48 | 20.0 | 14700 | 2.40 | 6000 | 2.45

224 0.16 | 36 | 130 | 920 1.20 30 | 3067

225 | Aydanetal [186]; | 0.16 | 36 | 13.0 | 920 2.00 70 | 13.14

226 Plaster 016 | 36 | 11.0 | 920 1.80 20 | 46.00

227 016 | 36 | 11.0 | 920 2.45 40 | 23.00
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Table A.1-Continued: MDST database: pre-peak behavior

[<5) . -
Bg| fmat | L || des | |0y | |G ()] mins)
P ©) (mm) | (kPa) | (kPa) | (mm) "

228 0.09 | 32 | 65 | 2000 | 047 10 | 11.28
229 009 | 32 | 75 | 2000 | 055 10 154
230 009 | 32 | 106 | 2000 | 0.73 10 | 17.34
231 009 | 32 | 166 | 2000 | 0.73 10 | 3116
232 . 009 | 32 | 65 | 2000 | 056 34 | 3238
233 | Bandisetal. [79]; Too9 [ 32 | 75 | 2000 | 0.61 34 | 35.77
234 | Figure4;Tension o091 37 | 10.6 | 2000 0.8 3 | 414
235 fracture 009 | 32 | 166 | 2000 | 0.85 34 52.9
236 009 | 32 | 65 | 2000 | 1.18 90 715
237 009 | 32 | 75 | 2000 | 1.07 90 81.8
238 009 | 32 | 106 | 2000 | 0.99 90 905
239 009 | 32 | 166 | 2000 | 1.33 ) 123
240 006 | 32 | 175 | 2000 | 057 | 245 | 5656 | 0.15 0.2 0.00
241 012 | 32 | 142 | 13755 | 074 | 245 | 5235 | 0.14 0.2 0.00
242 | Bandisetal, [79]; | 0.18 | 32 | 126 | 11051 | 117 | 245 | 41.50 | 0.1 0.4 0.00
243 Figures 9-21; 036 | 32 | 102 | 760.03 | 2.7 | 245 | 3596 | 0.6 0.8 0.00
244 | Beddingplanein | 0.06 | 32 | 175 | 2000 0.75 | 245 | 54.68
245 limestone 012 | 32 | 142 | 14044 | 091 245 | 41.24
246 018 | 32 | 12.6 | 11421 | 187 | 245 | 459
247 036 | 32 | 102 | 802 217 | 245 | 41.96
248 006 | 32 | 175 | 2000 | 113 | 245 | 4481
249 012 | 32 | 142 | 14044 | 174 | 245 | 33.07
250 Bandis et al. [79]; 0.18 32 12.6 1142.1 2.13 24.5 35.07
251 Figures 9-21; 036 | 32 | 102 | 802 35 | 245 | 2613
252 | Vertical tension | 0.06 | 32 | 175 | 2000 | 1.13 | 245 | 54.68
253 | jointsinsiltstone | 0.12 | 32 | 14.2 | 14794 | 1.22 245 | 39.25
254 018 | 32 | 12.6 | 12402 | 145 | 245 | 34.00
255 036 | 32 | 102 | 917.35 | 217 | 245 | 27.65
256 006 | 32 | 175 | 2000 | 113 | 245 | 4321
257 012 | 32 | 142 | 15105 | 137 | 245 | 41.29
258 0.18 | 32 126 | 1281.7 1.67 245 32.40
259 036 | 32 | 102 | 968.01 | 291 | 245 | 29.60
260 , 175 . 5 | 37.43
261 | Dandisetal. [79]; 8 22 22 142 122?303 10095 53 : 31.65
Figures 9-21; : : : : : :
262 | Bedding planein | 0.18 | 32 | 126 | 13467 | 115 | 245 | 27.84
263 slightly 036 | 32 | 102 | 10493 | 14 | 245 | 2418
264 | metamorphosed | 006 | 32 | 175 | 2000 | 075 | 245 | 28.09
265 fine grained 012 | 32 | 142 | 16935 | 115 | 245 | 25.78
266 sandstone 018 | 32 | 126 | 15365 | 1.1 245 | 24.00
267 036 | 32 | 102 | 1301 12 | 245 | 21.60
268 006 | 32 | 175 | 2000 | 0.75 | 245 | 21.73 | 002 0.39 0.00
269 012 | 32 | 142 | 17988 | 115 | 245 | 2089 | 003 0.39 0.00
270 018 | 32 | 126 | 16906 | 11 | 245 | 1984 | 002 0.39 0.00
271 036 | 32 | 102 | 15205 | 125 | 245 | 18.75 0 0.94 0.00
272 | Bandisetal [79]; | 0.06 | 32 | 175 | 2000 06 | 245 | 61.96
273 Figures 9-21; 012 | 32 | 142 | 14641 | 0.7 | 245 | 4961
274 | Beddingplanein | 0.18 | 32 | 126 | 12199 | 09 | 245 | 33.70
275 limestone 036 | 32 | 102 | 893.02 | 18 | 245 | 2667
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Table A.1-Continued: MDST database: pre-peak behavior

e Source and L JCS o O, T 5h) ;
SZ|  Description m) (ﬂ; RC 1 (kpa) (mr';) @) (kppa) ((mm)p (5\/)@(5h):o min(s,)
276 005 | 32 | 185 | 2000 | 07 | 245 | 5859 | 002 0.34 0.00
277 _ 0.10 | 32 | 150 | 13613 | 08 | 245 | 3947 | 003 0.59 0.00
278 | Bandisetal [79]; 7020 | 32 | 122 | 92659 | 1.1 245 | 3050 | 0.12 0.34 0.00
279 Figures 9-21; 7520 [ 32 | 9.9 | 63069 | 19 245 | 2534 | 0.11 0.56 0.00
280 Bé’gg:ggé’r':l?]ié” 005 | 32 | 185 | 2000 | 0.7 | 245 | 5859

281 andstone 010 | 32 | 150 | 14191 | 08 | 245 | 39.89

282 020 | 32 | 122 | 1007 | 11 | 245 | 30.98

283 040 | 32 | 99 | 7145 | 17 | 245 | 2581

284 030 | 30 | 0.0 | 30000 | 005 | 35 | 20.7

285 030 | 30 | 00 | 30000 | 01 | 138 | 79.67

286 030 | 30 | 00 | 30000 | 075 | 345 | 199.2

287 030 | 30 | 20 | 30000 | 1.2 35 | 2361

288 | Desaiand Fishman | 0.30 | 30 3.0 30000 1.1 35 25.43

289 _[08l, 1"030 | 30 | 20 | 30000 | 125 | 69 | 4654

290 CFo'gg::felépllia 030 | 30 | 30 | 30000 | 1.2 69 | 50.13

201 030 | 30 | 20 | 30000 | 16 | 138 | 93.08

202 030 | 30 | 30 | 30000 | 25 | 138 | 1003

203 030 | 30 | 20 | 30000 | 18 | 345 | 2327

204 030 | 30 | 30 | 30000 4 345 | 2507

2905 010 | 35 | 00 | 8500 | 033 | 300 | 184

296 010 | 35 | 00 | 8500 | 065 | 500 | 308

207 010 | 35 | 00 | 8500 | 1.96 | 1000 | 777

208 010 | 35 | 00 | 8500 | 271 | 1500 | 1200

299 010 | 35 | 87 | 8500 | 06 | 100 | 1032 | 005 0 0.00
300 010 | 35 | 87 | 8500 | 116 | 300 | 4125 | 0O 1.05 20.04
301 | Hueng et a'é[;?“]? 010 | 35 | 87 | 8500 | 099 | 500 | 5234 | 0 157 -0.03
302 I%uer;?ﬁcz; * [o010| 35 | 87 | 8500 | 149 | 1000 | 9285 | -0.03 157 2003
303 010 | 35 | 87 | 8500 | 248 | 1500 | 1278 | -0.07 20.06
304 010 | 35 | 158 | 8500 | 084 | 100 | 1912 | 007 0.54 0.00
305 010 | 35 | 158 | 8500 | 1.16 | 300 | 606.4 | 0.04 0.39 20.04
306 010 | 35 | 158 | 8500 2 500 | 7851 | 0.03 1.42 0.00
307 010 | 35 | 158 | 8500 | 1.84 | 1000 | 1067 | 001 1.42 0.00
308 010 | 35 | 158 | 8500 | 25 | 1500 | 1530 | -0.02 20.03
309 | 014 | 32 | 146 | 27600 | 128 | 276 | 3813 | 0.128

310 W{/t\’/?l‘;‘g\’lv[jzﬂlf”d 014 | 32 | 146 | 27600 | 1.04 | 1380 | 1479 | 0.1552

811 | 11611 G2; Replica | 014 | 32 | 146 | 27600 | 229 | 2755 | 30401 | 02748

312 014 | 32 | 146 | 27600 | 395 | 5516 | 5488 | 0.0395

313 | 010 | 32 | 99 | 27600 | 034 | 2833 | 306.1 | 0.0544

314 W{/?/‘I’;‘g\’,v[jztzlif”d 010 | 32 | 99 | 27600 | 055 | 1375 | 1422 | 0.066

315 | (161 F2: Replica | 010 | 32 | 99 | 27600 | 107 | 2749 | 2417 | 00642

316 010 | 32 | 99 | 27600 | 1.08 | 5509 | 4482 | 0.108

37 | 011 | 32 | 98 | 27600 | 010 | 2727 | 366.6 | 0.038

318 W{X;’g"o [162] f‘”d 011 | 32 | 98 | 27600 | 0.67 | 1380 | 1297 | 0.067

319 [161'];‘2’;’?52;“'% 011 | 32 | 98 | 27600 | 078 | 2760 | 3232 | 0.117

320 011 | 32 | 98 | 27600 | 208 | 5512 | 4233 | 0.208
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Table A.1-Continued: MDST database: pre-peak behavior

3 S Source and L | & | jpc | ICS o, o, 7, (5h)p (5) min(§ )
O Description (m) ©) ekPa) (mm) | (kPa) | (kPa) (mm) v/@(s;,)=0 h
321 011 | 32 15,5 | 27600 0.42 | 275.6 | 464.4 | 0.0504

322 | wibowo [162]and | 0.11 | 32 | 155 | 27600 | 1.34 | 1378 | 1532 | 0.2144

323 Wibowo et al. 011 | 32 15,5 | 27600 1.56 2756 2845 | 0.1872

324 | [161]; F4;Replica | 911 | 32 | 155 | 27600 1.90 | 4134 | 4370 | 0.171

325 011 | 32 | 155 | 27600 | 209 | 5512 | 55263 | 0.1881
326 014 | 36 | 205 | 25000 | 05 | 1070 | 2200
327 014 | 36 | 197 | 25000 | 052 | 1070 | 2100
328 Grasselliand | 014 | 36 | 241 | 25000 | 053 | 3720 | 5500
329 Egger [127]; 014 | 36 | 257 | 25000 | 0.31 | 2450 | 4600
330 Limestone 014 | 36 | 244 | 25000 | 0.24 | 3110 | 5000
331 014 | 36 | 202 | 25000 | 0.37 | 1020 | 2100
332 014 | 36 | 23.9 | 25000 | 0.74 | 3110 | 4900
333 014 | 34 | 181 | 173000 | 0.38 | 2300 | 5700
334 014 | 34 | 17.9 | 173000 | 0.65 | 2300 | 5600
335 014 | 34 | 166 | 173000 | 045 | 2190 | 4800

336 Grasselli and 014 | 34 | 142 | 173000 | 062 | 1120 | 2400

337 Egger [127]; 014 | 34 | 159 | 173000 | 038 | 1120 | 2900

Granite
338 014 | 34 15.6 | 173000 0.23 1120 2800
339 014 | 34 16.2 | 173000 0.56 1120 3000
340 014 | 36 3.3 184000 0.3 2650 2400
341 014 | 36 12.9 | 160000 0.48 1900 3400
342 014 | 36 7.4 184000 0.2 3520 4000
343 Grasselli and 014 | 36 6.7 184000 0.31 3570 3900
344 Egger [127]; 014 | 36 8.6 184000 0.35 3520 4300
345 Gneiss 014 | 36 18 184000 0.31 4080 3300
346 014 | 36 94 184000 0.35 2600 3500
347 0.14 | 37 13.0 87000 0.28 870 1707
348 0.14 | 37 11.7 87000 0.27 1730 2655
349 0.14 | 37 16.6 87000 0.5 870 2417
350 0.14 | 37 135 87000 0.88 3780 5477
351 0.14 | 37 9.2 87000 0.29 2600 3214

352 | CGrasselliand "9, 75790 | 87000 | 0.44 | 2600 | 3179

Egger [127];

353 Marble 0.4 | 37 | 148 [ 87000 | 044 | 3780 | 5856
354 0.14 | 37 | 150 [ 87000 | 0.39 | 3830 | 5976
355 0.4 | 37 | 143 [ 87000 | 042 | 2600 | 4293
356 0.4 | 37 | 137 [ 87000 | 0.27 | 870 | 1816
357 0.4 | 37 | 163 [ 87000 | 055 | 1790 | 3752
358 | Grasselliand | 0.14 | 37 | 27.2 | 10000 | 0.65 | 1020 | 2088
359 Egger [127]; [ 014 | 37 | 163 | 10000 | 0.67 | 4130 | 3886
360 Sandstone 0.14 | 37 | 150 [ 10000 | 0.67 | 2090 | 2257

361 Grasselli and 014 | 39 | 17.0 | 74000 0.4 1940 | 4334

Egger [127];
362 Serpentines 0.14 39 20.9 74000 0.5 970 4702
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Table A.2: Monotonic Direct Shear Test (MDST) database: post-peak behavior

25 Source and Post-peak shear displacements Post-peak shear stress Post-peak dilation displacement

82| Description 1| 2] 3 4 1 2 3 4 1 2 3 4
1 10 | 15 | 20 3.0 0.29 0.38 0.45 0.53
2 10 | 15 | 20 3.0 0.21 0.32 0.38 0.49
3 | Barton[l15  PyoT 715 20 | 30 017 | 027 | 035 | 044
4 Te:;%f}”;;gt‘ure 10 | 15 | 20 | 30 013 | 021 | 027 | 035
5 10 | 15 | 2.0 3.0 0.15 0.23 0.28 0.33
6 15 | 20 | 23 25 0.17 0.19 0.20 0.21
7 1.0 | 20 | 30 5.0 3534 | 3213 | 30.74 | 29.29
8 Bandis [113] 10 | 20 | 30 6.0 30.81 | 2829 | 27.40 | 26.71
9 10 | 20 | 3.0 6.0 26.40 | 2577 | 25.77 | 24.25
10 1.0 | 20 | 30 6.0 23.62 | 2325 | 2331 | 22,55
11 20 | 30 | 40 5.0 4712 | 4352 | 3870 | 3661 | 041 0.60 0.78 0.97
12 Barton [115]: 20 | 30 | 40 5.0 37.62 | 3496 | 3237 | 31.22 | 0.27 0.44 0.66 0.86
13 Figure 6.2 20 | 30 | 50 6.0 34.03 | 3352 | 32.01 | 3151 | 0.27 0.44 0.72 0.83
14 30 | 40 | 50 6.0 30.86 | 39.86 | 39.35 | 39.06 | 0.25 0.42 0.57 0.65
15 30 | 60 | 120 | 210 | 3980 3790 3630 | 3500 | 0.15 0.31 0.56 0.85
16 | Bartonetal.[81]; | 30 [ 6.0 [ 120 | 21.0 | 13130 | 12970 [ 12730 | 12560 | 0.05 0.11 0.22 0.33
17 Figure 20 30 | 6.0 | 120 | 210 | 3670 3600 3520 | 3380 | 0.08 0.21 0.43 0.68
18 30 | 6.0 | 120 | 21.0 | 12540 | 12520 | 12430 | 12260 | 0.02 0.06 0.06 0.19
19 40 | 80 | 140 | 220 910 760 880 860 0.38 0.76 1.23 1.71
20 | Bartonetal.[81]; | 40 | 80 | 140 | 220 | 2310 2220 2240 | 2240 | 0.28 0.56 0.91 1.27
21 Figure 22 40 | 80 | 140 | 220 | 7100 6940 6860 | 6770 | 0.17 0.34 0.56 0.79
22 40 | 80 | 140 | 220 | 19310 | 19000 | 18860 | 18810 | 0.07 0.15 0.26 0.35
23 80 | 140 | 18.0 | 240 | 7660 7490 7390 | 7340 | 0.45 0.66 0.81 0.97
24 | Bartonetal.[81]; | 8.0 | 140 | 180 | 240 | 7490 7310 7200 | 7160 | 0.34 0.55 0.67 0.81
25 Figure 23 80 | 140 | 180 | 240 | 7210 7130 7080 | 7000 | 0.22 0.39 0.49 0.62
26 80 | 140 | 180 | 240 | 7000 6930 6860 | 6860 | 0.12 0.25 0.33 0.43
,7 | OlsonandBarton [ 1.0 | 25 | 4.0 55 2230 1890 1770 | 1740 | 0.02 0.4 0.7 0.95

[176]; Figure 16

28 06 | 1.0 | 17 2.0 800 690 610 570 0.23 0.36 0.52 0.58
29 10 | 20 | 32 35 4870 4450 3970 | 3900 | 0.14 0.3 0.43 0.46
30 26 | 32 | 46 50 | 16040 | 15180 | 14190 | 14410 | 0.09 0.11 0.14 0.14
31 05 | 10 | 16 2.0 550 450 450 450 0.11 0.21 0.31 0.35
32 1.0 | 20 | 27 3.0 4320 4170 4150 | 4130 | 0.12 0.23 0.29 0.31
33 30 | 40 | 45 5.0 1520 | 15060 | 14580 | 14230 | 0.12 0.15 0.16 0.16
34 1.0 | 14 | 17 2.0 770 730 670 620 0.32 0.41 05 0.65
35 Jacobsson & 10 | 20 | 2.8 3.0 4730 4270 4000 | 4000 0.1 0.26 0.34 0.37
36 | Flansbjer [192, 20 | 30 | 45 50 | 15060 | 14460 | 13840 | 13580 | 0.02 0.06 0.06 0.05
37 | 202]; KLXO06A; 06 | 1.0 | 1.7 2.0 660 570 520 500 0.15 0.24 0.38 0.42
38 Avro Granite 10 | 20 | 27 3.0 4600 4000 3900 | 3900 | 0.1 0.24 0.32 0.35
39 10 | 30 | 44 50 | 15350 | 14460 | 14120 | 13940 | 0.01 01 0.11 0.1
40 07 | 10 | 17 2.0 690 630 610 610 0.1 0.24 0.36 0.42
41 1.0 | 20 | 27 3.0 4460 4560 4290 | 4280 0.1 0.23 0.29 0.31
42 10 | 30 | 44 50 | 15840 | 15360 | 14150 | 14000 0 0.1 0.11 0.11
43 10 | 12 | 17 2.0 590 530 520 500 0.14 0.17 0.2 0.23
44 20 | 23 | 30 3.2 3730 3720 3530 | 3550 | 0.06 0.08 0.1 0.1
45 30 | 40 | 44 50 | 13770 | 13280 | 13220 | 13410 | -0.06 | -0.06 | -0.05 | -0.05
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Table A.2-Continued: MDST database: post-peak behavior

Post-peak shear displacements

Post-peak shear stress

Post-peak dilation displacement

§ S Source and

© % Description 1| 2| 3 4 1 2 3 4 1 2 3 4
46 10 | 1.3 | 17 2.0 690 690 640 640 | 021 | 0.25 0.3 0.34
47 10 | 20 | 27 3.0 4990 4670 | 4600 | 4360 | 058 | 0.76 0.85 | 0.89
48 30 | 40 | 45 5.0 15430 | 14510 | 14140 | 13390 | 0.69 | 0.73 074 | 0.74
49 20 | 27 3.0 4190 | 4050 | 4080 026 | 034 | 0.38
50 45 5.0 14860 | 14690 029 | 032
51 Jacobsson & 1.7 2.0 790 780 0.05 | 0.07
52 | Flansbjer [199, 40 | 44 5.0 14890 | 14840 | 14650 0.11 0.1 0.1
53 | 208]; KL10-117; 17 2.0 650 | 650 041 | 046
54 | AvroGranite 10 | 20 | 27 | 30 | 4340 | 4330 | 4110 | 4040 | 016 | 037 | 045 | 049
55 20 | 40 | 44 5.0 14840 | 14440 | 14390 | 13790 | 0.17 | 034 | 036 | 0.41
56 10 | 17 2.0 710 640 560 026 | 045 | 051
57 10 | 20 | 27 3.0 4980 4460 | 4170 | 4070 | 0.11 | 0.33 043 | 047
58 20 | 40 | 45 5.0 15010 | 13960 | 13710 | 13060 | 0.04 | 0.05 | 0.04 | 0.02
59 10 | 17 0 800 820 790 0.32 049 | 055
60 2.7 3.0 4930 | 4750 05 0.55
61 Jacobsson & 30 | 40 | 45 5.0 16440 | 15610 | 15400 | 14730 | 0.13 | 0.16 016 | 017
g2 | Flansbjer [200, 1.0 | 18 2.0 1040 910 790 0.3 0.48 0.51
63 12139]A\P/(r|5)c<;1r§2te 10 | 20 | 28 | 30 | 4920 | 4700 | 4560 | 4540 | 0.09 | 025 | 036 | 038
64 and Quartz 30 | 40 | 45 5.0 15200 | 13680 | 13630 | 13370 | 0.07 | 0.05 | 004 | 0.03
65 monzodiorite 10 | 17 2.0 1140 930 850 0.32 046 | 052
66 10 | 20 | 27 3.0 4330 4120 | 4230 | 4280 | 011 | 0.19 022 | 024
67 40 | 46 5.0 14730 | 14590 | 14470 -0.04 | 005 | -0.06
68 10 | 17 2.0 610 650 630 0.24 0.4 0.46
69 20 | 27 3.0 4540 | 4410 | 4330 024 | 031 | 034
70 40 | 44 5.0 15370 | 15150 | 14970 0 0 -0.01
71 10 | 17 2.0 610 610 580 026 | 039 | 045
72 Jacobsson & 10 | 20 | 27 3.0 4500 3880 | 3660 | 3490 | 0.08 | 0.21 028 | 031
73 2?8{‘5?;;\/'[38; 20 | 40 | 44 5.0 14110 | 13300 | 12970 | 12830 | -0.05 | -0.04 | -0.04 | -0.07
74 | 117 Medium- 10 | 17 2.0 580 500 | 440 0.22 039 | 045
75 | grained granite 10 | 20 | 27 3.0 3920 3050 | 4100 | 4080 | 0.07 | 0.22 031 | 035
76 4.4 5.0 13300 | 13270 -0.07 | -0.08
77 10 | 17 2.0 530 520 | 440 023 | 033 | 035
78 20 | 27 3.0 3840 | 3760 | 3710 018 | 023 | 025
79 40 | 45 5.0 13760 | 14000 | 13770 0.02 0 0
80 1 | 169 2 569 490 | 442 028 | 038 | 042
81 1 2 | 271 3 3981 3476 | 3360 | 3374 | 013 | 023 | 0.28 0.3
82 2 4 | 471 5 13624 | 12929 | 12720 | 12450 | 0.11 | 0.19 021 | 0215
83 Jacobsson & 1 | 167 2 501 530 | 439 0.25 0.4 0.45
84 | Flanshjer [195, 2 | 2.38 3911 | 4050 0.31 0.36

85 203]; KFMOBA- 2 4 4.44 5 14367 13828 13900 | 13665 0.12 0.19 0.2 0.22
86 117; Medium- 1.7 2 450 441 0.21 0.25
g7 | 9rained granite 1 | 287 3 3702 | 3500 | 3564 0.14 0.2 0.21
88 5.05 14160 0.06

89 1 | 172 2 441 420 441 015 | 026 0.3
90 1 2 | 301 3916 3904 | 3820 003 | 008 | 012
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Table A.2-Continued: MDST database: post-peak behavior

Post-peak shear displacements

Post-peak shear stress

Post-peak dilation displacement

% S Source and
© = | Description 1| 2 | 3 4 1 2 3 4 1 2 3 4
91 3.0 4.0 4.5 5.0 13990 | 13637 | 13650 | 13494 | -0.14 -0.18 -0.2 -0.23
92 Jacobsson & 1.0 1.7 2.0 592 590 554 0.24 0.38 0.46
93 Flansbjer [195, 10 [ 20 [ 27 30 [ 4319 | 4276 | 4380 | 4281 | 0.09 | 022 | 0.28 03
94 203]; KFMOBA- 3.0 4.0 4.5 5.0 15488 15108 15220 | 14922 0.03 0.06 0.06 0.06
95 117; Medium- 1.0 1.7 2.0 554 500 491 0.27 0.39 0.44
96 grained granite 1.0 2.0 2.9 3.0 4391 4278 3800 3574 0.11 0.25 0.33 0.34
97 20 | 40 | 47 50 | 15276 | 13590 | 13020 | 12734 | 0.02 0.12 0.13 0.13
98 1 1.7 2 608 570 529 0.32 0.46 0.51
99 1 2 2.71 3 4127 3810 3790 3492 0.13 0.29 0.36 0.39
100 2 4 4.46 5 14287 14340 14370 | 13811 | -0.02 0.02 0.02 0.01
101 1 1.68 2 608 510 423 0.33 0.5 0.57
102 1 2 2.7 3 4339 4021 4070 4180 0.15 0.34 0.41 0.45
103 4 5 4.45 5 14287 | 13811 14330 | 14499 | 0.01 0.07 0.08 0.09
104 1 1.83 2 423 400 423 0.19 0.29 0.31
105 1 2 2.69 3 2990 2778 2750 2752 0.03 0.07 0.08 0.09
106 7 11030 -0.06
107 1 1.67 2 555 500 476 0.34 0.51 0.59
Jacobsson &
108 Flansbjer 1 2 2.7 3 4180 3810 3470 3333 0.16 0.3 0.38 0.41
109 [193, 194, 204]; 2 4 4.43 5 13864 | 12917 | 13160 | 13202 | 0.13 0.25 0.27 0.28
110 KEMO5A-117: 1 2 | 267 3 530 680 670 610 | 032 | 059 0.79 0.89
111 Medium-grained 1 2 2.66 3 4590 5060 4510 4030 0.21 0.44 0.57 0.63
112 granite 3 4 4.43 5 16550 | 16130 | 16600 | 15730 | 0.26 0.31 0.33 0.35
113 1 1.68 2 600 520 480 0.2 0.29 0.33
114 1 2 2.86 3 4180 3860 3520 3460 0.06 0.15 0.23 0.25
115 4 5.52 5 13220 13400 | 13060 -0.06 -0.07 -0.09
116 1 1.66 2 596 550 546 0.34 0.48 0.55
117 1 2 2.64 3 4159 3816 3660 3600 0.19 0.34 0.41 0.44
118 2 4 4.52 5 13435 12050 13690 | 12750 0.12 0.17 0.17 0.16
119 1 1.66 2 503 480 398 0.33 0.45 0.5
120 1 2 2.67 3 3941 3550 3520 3525 0.18 0.32 0.4 0.43
121 2 4 4.39 5 13183 12260 12920 | 11721 0.09 0.16 0.17 0.17
122 1 2 2.36 596 470 480 0.36 0.58 0.64
123 1 2 2.76 3 4212 3755 3470 3378 0.17 0.33 0.42 0.44
124 2 4 4.61 5 13628 | 13142 13000 | 13002 | 0.07 0.12 0.11 0.11
125 1 1.73 2 545 530 520 0.31 0.48 0.53
126 1 2 2.78 3 4465 4389 4110 4082 0.17 0.33 0.42 0.44
Jacobsson &
127 Flansbjer 4 | 454 5 15175 | 15180 | 14412 006 | 0.04 | 0.02
128 [197, 206]; 1 1.7 2 697 680 660 0.36 0.54 0.62
129 KFMO08A-117; 1 2 2.72 3 5366 4503 4380 4123 0.19 0.39 0.5 0.54
130 Medium-grained 3 4 452 5 16554 15679 14950 | 14981 0.11 0.15 0.16 0.16
131 granite 1 1.71 2 457 420 444 0.25 0.37 0.41
132 1 2 2.81 3 3679 3514 3340 3438 0.15 0.25 0.32 0.33
133 2 4 4.56 5 13307 | 12316 | 12790 | 12418 | 0.09 0.13 0.13 0.13
134 1 1.78 2 672 710 672 0.27 0.46 0.54
135 1 2 2.77 3 4567 4541 3980 3932 0.16 0.35 0.48 0.52
136 3 4 4,72 5 14550 14068 14040 | 14106 0.16 0.18 0.2 0.2
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Table A.2-Continued: MDST database: post-peak behavior

Post-peak shear displacements

Post-peak shear stress

Post-peak dilation displacement

§ S Source and

© = | Description 1| 2 | 3 4 1 2 3 4 1 2 3 4
137 12 | 2 580 | 570 032 | 0.36
138 2 [281 ] 3 4612 | 4490 | 4385 024 | 033 | 035
139 3 | 4 [ 485 | 5 |16703| 16557 | 16570 | 16412 | 0.07 | 009 | 041 | 0.1
140 1 [ 2 [22 693 | 567 550 017 | 028 | 03

141 2 |22 3 4121 | 4020 | 3944 0.05 | 006 | 007
142 3 | 5 |53 | 6 14589 | 15769 | 14800 | 14454 | -0.08 | 014 | -015 | 017
143 1 [12] 2 495 490 | 444 015 | 023 | 026
144 1 | 2 | 269 3 [451] 383 [ 3810 [ 3796 [ 015 | 016 | 021 | 0.23
145 4 [ 449 5 14576 | 14200 | 13698 011 | 012 | 012
146 Jacobsson & 1 [1e8] 2 571 570 | 546 02 [ 032 | 037
147 Flansbjer 2 | 3 | 371 | 4 | 4189 | 3580 | 3460 | 3529 | 021 | 032 | 037 | 039
148 K[Lligéiﬁ]i?; 3 | 4[5 51 [ 14700 | 14903 [ 14910 | 14993 [ 011 | 042 | 012 | 012
149 | Avro Granite and 1 [1e8] 2 635 550 | 444 028 | 042 | 048
150 Quartz 1 [ 2 [ 27 3 | 4697 | 4367 | 3980 | 3948 | 012 [ 025 | 032 | 034
151 monzodiorite 2 | 3 [ 445 | 5 | 15686 | 15094 | 14620 | 14459 | 0.05 | 014 | 015 | 0.7
152 184 | 2 550 | 533 021 | 024
153 2 [ 27 3 4012 | 3890 | 3897 012 | 019 | o021
154

155 1 [168 | 2 495 490 | 444 011 | 023 | 027
156 1 [ 2 [27m [ 3 | 3048 | 3872 | 3640 [ 3517 | 003 [ 013 | 018 | 02
157 2 | 4 | 46 5 | 13685 | 13558 | 13630 | 13489 | -0.01 | 0.6 | 006 | 0.07
158 1 [187 ]| 2 635 560 | 521 022 | 036 | 039
159 1 [ 2 [ 273 3 | 4532 | 4075 | 4010 [ 3859 | 009 [ 02 | 026 | 029
160 2 | 4 [458 | 5 |14128| 12664 | 12720 | 12501 | -0.03 | -0.01 [ -0.02 | -0.03
161 1 [ 17 2 647 560 | 546 029 | 042 | 047
162 1 [ 2 [ 27 3 | 4494 | 4443 | 4370 | 4329 | 016 | 029 | 037 | 04
163 2 | 4 [ 445 | 5 |15729| 15259 | 15010 | 14929 | 0.09 | 047 | 047 | 0.8
164 1 [we7 ] 2 647 560 | 546 025 | 036 | 041
165 1 | 2 | 267 3 [ 4122 ] 4595 | 4250 | 4164 | 014 [ 025 | 031 | 033
166 Jacobsson & 2 | 4 | 445 | 5 16541 | 15530 | 15630 | 15475 | 002 | 0.1 01 01
167 [i')%”szbé% 1 168 | 2 571 | 570 | 533 018 | 028 | 033
168 | \FvovA-11T: 2 [260 ] 3 4329 | 4260 | 4291 019 | 024 | 026
169 | Medium-grained 4 466 | 5 16524 | 16500 | 16524 009 | 01 0.1
170 granite 1 [1e6 | 2 609 540 | 482 02 | 027 | 03
171 1 [ 2 [ 268 3 | 425 | 3986 | 4000 [ 3935 | 008 [ 016 | 019 | 021
172 3 | 4 [ 452 | 5 |15443| 15029 | 14790 | 14204 | 0.01 | 001 | 001 | 0.01
173 1 [ 17 2 597 580 | 571 025 | 037 | 042
174 1 [ 2 [ 272 3 | 4519 | 4443 | 4470 [ 4380 | 043 [ 024 | 032 | 03
175 3 | 4 [445 | 5 |16851| 16490 | 16240 | 16071 | 0.09 | 041 | 012 [ 0.2
176 10 | 15 ] 20 562 | 454 432 17 | 257 | 314

177 Homand et al. 10 | 15 ] 20 1119 | 880 780 227 | 34 [ 413

178 [169]; 10 | 15 20 1492 | 1416 | 1265 194 | 296 | 378

179 Schist replicas 10 [ 15 [ 20 2189 | 2005 | 1789 204 | 296 | 3.46

180 15 | 0 2470 | 2486 149 | 203
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Table A.2-Continued: MDST database: post-peak behavior

Post-peak shear displacements

Post-peak shear stress

Post-peak dilation displacement

§ S Source and

© = | Description 1| 2 | 3 4 1 2 3 4 1 2 3 4
181 1 | 173 2 520 470 | 444 017 | 034 | 04
182 2 | 29 3 3654 | 3590 | 3604 023 | 039 | 043
183 3 | 4 | 463 5 | 13462 | 12945 | 12700 | 12751 | 023 | 0.37 | 0.44 | 049
184 1| 17 2 647 660 | 609 028 | 048 | 054
185 3 | 369 4 5278 | 4694 | 4470 | 4466 | 016 | 052 | 0.61 | 0.65
186 4 | a7 5 | 16177 | 14883 | 14360 | 14337 | 016 | 034 | 038 | 041
187 1 | 198 295 620 012 | 021

188 3 | 32 4009 | 4020 015 | 017

189 4.46 5 14990 | 14705 008 | 008
190 1| 17 2 660 530 | 444 026 | 041 | 046
191 1 | 2 [ 2n 3 4225 | 3844 | 3610 | 3578 | 014 | 029 | 035 | 037
192 4 | 452 5 | 13944 | 11202 | 10900 | 10900 | 011 | 019 | 019 | 019
193 [Jlaggbfzgr]‘. 188 | 2.22 590 | 596 014 | 017
194 KLX02-117 3.7 4 4480 | 4377 028 | 033
195 AvIo Granite 4 | 495 | 555 15783 | 15480 | 15720 019 | 024 | 028
196 1 | 192 2 634 580 | 533 029 | 044 | 046
197 1 | 2 | 318 4352 | 3743 | 3050 013 | 024 | 033 | 034
198 2 | 4 | 464 5 | 12967 | 12600 | 12180 | 11936 | 0.12 | 0.2 0.2 0.2
199 1 | 168 2 749 630 | 59 028 | 046 | 053
200 1 | 2 |2 3 5189 | 4223 | 3860 | 3730 | 013 | 033 | 047 | 051
201 2 | 4 | a4 5 | 16634 | 13969 | 14240 | 14908 | 012 | 03 | 032 | 034
202 1 | 2 [ 248 ] 281 | 787 647 580 | 609 | 029 | 049 | 057 | 0.63
203 1 | 3 | 365 4 5188 | 4365 | 4180 | 4060 | 0.1 | 038 | 046 | 049
204 3 | 4 | 496 | 553 [ 17102 | 16662 | 16150 | 16050 | 01 | 012 | 012 | 0.12
205 1.74 2 460 | 444 014 | 016
206

207 6 13512 013
228 2 | 3 4 6 | 1207 | 1157 | 11.82 | 11.19

229 2 | 3 4 6 | 1484 | 1471 | 1396 | 12.32

230 2 | 3 4 6 | 1673 | 1585 | 14.84 | 1383

231 2 | 3 4 6 | 2402 | 2226 | 1874 | 16.85

232 _ 2 | 3 5 7 [ 3307 ] 3119 | 2955 | 27.67

233 EZ}”&E o ?_Ln[;‘cﬁ 2 | 3 | 5 7 | 3483 | 3383 | 3056 | 27.67

234 fracture 2 | 3 5 7 40 | 3848 | 3521 | 33.07

235 2 | 3 5 7 | 4502 | 4313 | 39.86 | 36.85

236 2 | 4 6 7 | 7109 | 69.42 | 6824 | 674

237 2 | 4 6 7 | 7897 | 7545 | 721 | 7143

238 2 | 4 6 7 | 819 85 | 7763 | 773

239 2 | a4 6 7 | 1189 | 1102 | 1051 | 102.1

240 | gandisetal [79]: | 2 | 3 4 4831 | 447 | 4186 039 | 055 | 066

241 Figures 9-21; 2 | 3 4 4623 | 4241 | 40.44 041 | 063 | 079

242 | Beddingplanein | 2 | 3 4 6 394 | 388 | 359 | 3426 | 028 | 048 | 063 | 096
243 limestone 3 4 6 369 | 359 | 347 024 | 045 | 08
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Table A.2-Continued: MDST database: post-peak behavior

Post-peak shear displacements

Post-peak shear stress

Post-peak dilation displacement

@o Source and

© = | Description 1| 2 | 3 4 1 2 3 4 1 2 3 4

268 | Bandisetal. [79]; | 5 3 4 5 21.88 | 2114 | 2129 | 21.09 | 006 | 009 | 011 | 0.3
Figures 9-21,

269 | Bedding plane in 4 5 2034 | 2029 | 1994 | 1994 | 006 | 008 | 011 | 012

270 met;',;?,?;'ﬁosed 2 3 4 5 195 | 1915 | 192 | 1885 | 004 | 0.07 0.1 0.11

271 f'sr;iggzﬂid 2 | 3 4 5 1865 | 1865 | 184 | 185 | 003 | 005 | 008 | 0.09

276 Bandis et al. [79]; 2 3 4 49.57 44.52 41.54 0.26 0.5 0.64

277 Figures 9-21; 2 3 4 6 40.72 | 3808 | 3663 | 35.19 | 0.3 047 | 061

278 ngg:;‘gé’r';’;ié” 2 3 4 6 3091 | 3014 | 3024 | 2985 | 027 | 043 | 054 | 066

279 sandstone 2 3 4 6 2558 | 2596 | 2625 | 2567 | 017 | 03 044 | 056

299 2 3 4 1118 | 1175 | 1213 044 | 072 | 1.04

300 2 3 4 4340 | 4302 | 4227 01 | 025 | 045

301 2 3 4 5004 | 4776 | 4625 002 | 008 | 014

302 2 3 4 898.4 | 8605 | 851 0 0 -0.01

303 H“ag;glf:ez'é[;?“]; 3 | 4 1257 | 1192 006 | -0.06

304 Replica 2 3 210 210 0.75 13

305 2 3 4 570 520 500 02 | 032 | 044

306 3 4 760 730 013 | 027

307 2 3 4 1040 | 920 820 001 | 001 0

308 3 4 1480 | 1390 -0.03 | -0.03

309 _ 13 236.4

| W e |75

311 [161]; G2; Replica 13 2493

312 13 4171

313 _ 13 104.1

| W |3

315 [161]; F2; Replica 13 1547

316 13 3316

317 _ 15 135.7

S| e |

319 [161]; F3; Repli.ca 15 2230

320 15 3386

321 15 2229

322 | wibowo [162]and | 15 812.1

323 Wibowo et al. 15 1821

324 | [161]; F4; Replica | 15 3015

325 15 3813

327 1 2 3 5 1998 | 1680 | 1557

337 _ 1 2 3 5 2057 | 1787 | 1720

339 Grasselli and 1 | 15 | 2 3 2200 | 1978 | 1800
Egger [127]

344 1 2 3 5 2855 | 2643 | 2643

359 1 2 3 3682 | 3652 | 3623
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TableA.3: Cyclic Direct Shear Test (CDST) database

S Shear strength Dilation displacement
% Source and Description 5h Cycle r 5h Cycle 5\/
© (mm) no. (KPa) (mm) no. (mm)
0.62 1279 0.2 -0.22
2.38 718 0.58 0
2.29 0 1.57 0.81
2.03 -785 23 0.68
0.3 -647 1.9 0.31
Celestino and Goodman [174]; Figure 4; Cyclic -0.51 -1116 0.67 0
1 dirgct shear test (1 cycle) ona0.35mlong -257 1 -700 0.1 1 -0.54
specimen of Plaster with UCS=40 MPa, under 233 0 135 0.08
normal stress of 1030 KPa 2 816 202 20.08
-0.42 681 -2.46 -0.28
0.3 966 -2.22 -0.45
1.73 773 -1.51 -0.45
-0.33 -0.9
1.74 -0.9
0.63 416 2 0.56
10 202 6 1.28
10 0 10 1.85
9.45 -101 6 1.28
0.5 1 -15 2 0.56
-1.5 -313 0 0
-10 -210 -2 ! 0.39
-10 0 -6 1.24
-9.46 43 -10 1.73
-0.43 11 -6 1.24
0.92 364 -2 0.39
10 208 0 0
Homand et al. [169]; Figure 10-a; Cyclic direct 10 0 dN10 0.66
shear test (10 cycles) on a 0.145 m long specimen 9.45 -154 6 1.37
2 of schist replicas with UCS=75 MPa, under 0.5 2 -18 10 191
normal stress of 500 KPa; the base friction angle -1.5 -327 6 1.37
of the replica is 34° -10 227 2 0.66
-10 0 0 10 0
-9.46 45 -2 0.5
-0.54 26 -6 1.37
0.92 334 -10 1.77
10 327 -6 1.37
10 0 -2 0.5
9.45 -166 0 0
0.5 5 -54
-1.5 -425
-10 -294
-10 0
-9.46 101
-0.88 75
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Table A.3-Continued: Cyclic Direct Shear Test (CDST) database

2 Shear strength Dilation displacement
% Source and Description 5h Cycle T 5h Cycle 5\/
O (mm) no. (KPa) (mm) no. (mm)
0.61 3911 2 0.51
10 2214 6 1.32
10 0 10 1.92
10 -1119 6 1.32
1.03 1 -696 2 0.51
-1.59 -4163 0 L 0
-10 -2963 -2 0.41
-9.75 0 -6 1.32
-9.35 1652 -10 1.86
-1.19 1355 -6 1.32
0.89 3733 -2 0.41
10 2622 0 0
10 0 2 0.41
9.85 -1481 6 1.26
1.26 2 -896 10 1.85
-1.59 -4160 6 1.26
Homand et al. [169]; Figure 10-b; Cyclic direct -10 -3111 2 0.41
shear test (10 cycles) on a 0.145 m long specimen 975 0 0 0
3 of schist replicas with UCS=75 MPa, under 2
normal stress of 4000 KPa; the base friction angle -9.38 1696 -2 0.35
of the replica is 34° -1.33 1408 -6 124
4.41 4303 -10 1.8
10 4006 -6 1.24
10 0 -2 0.35
9.61 -2044 0 0
2.35 10 -1844 2 0.17
-1.46 -4415 6 0.92
-10 -4126 10 1.6
-9.75 0 6 0.92
-9.54 2118 2 0.17
-1.73 2052 0 0
-2 10 0.21
-6 0.98
-10 1.62
-6 0.98
-2 0.21
0 0
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Table A.3-Continued: Cyclic Direct Shear Test (CDST) database

S Shear strength Dilation displacement
% Source and Description 5h Cycle r 5h Cycle 5\/
© (mm) no. (KPa) (mm) no. (mm)
0.65 1092 1 0.07
6.26 1132 3 0.41
5.82 -471 5 0.76
0.68 1 -506 6.3 0.98
-0.41 -1022 5 0.8
-5.93 -1070 3 0.47
Huang et al. [103]; Figure 6; Cyclic direct shear .55 524 1 0.12
test (1 cycle) ona 0.15 m lon i
4 artigicigll joi)nt (Hydrostone g@ziglrr)n\?vriltﬁf 0.7 5% 0 1 0
UCS=38 MPa, under normal stress of 1000 KPa; -1 0.13
the base friction angle of the replica is 34° -3 0.46
-5 0.81
-5.9 0.96
-5 0.86
-3 0.51
-1 0.17
0 0
0.29 531 3 0.58
6.01 478 6 1.09
5.77 -221 3 0.58
0.29 1 -214 0 1 0
-0.46 -490 -3 0.51
-6.08 -506 -6 1.02
-5.86 235 -3 0.51
-0.22 223 0 0
0.29 500 3 0.51
6.01 529 6 1.05
Huang et al. [103]; Figure 7; Cyclic direct shear 5.77 -221 3 0.51
test (5 (Eycl_es_) ona 0.15mlong specime_n of 032 a1 0 0
5 artificial joint (Hydrostone & water) with 2 5
UCS=38 MPa, under normal stress of 500 KPa; -0.46 -492 -3 0.48
the base friction angle of the replica is 34° -6.08 -540 -6 1.01
-5.86 235 -3 0.48
-0.24 246 0 0
0.29 512
6.01 563
5.77 -221
0.38 5 -248
-0.46 -520
-6.08 -540
-5.86 235
-0.25 265
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Table A.3-Continued: Cyclic Direct Shear Test (CDST) database

S Shear strength Dilation displacement
% Source and Description 5h Cycle r 5h Cycle 5\/
O (mm) no. (KPa) (mm) no. (mm)
1.29 1906 0 0
5.82 1876 0.5 -0.07
5.39 -760 3 0.3
1.27 1 -774 5 0.65
-1.27 -1597 3 0.3
-5.73 -1635 0.5 L -0.08
-5.35 876 0 -0.15
-0.83 986 -0.5 -0.1
1.29 1679 -3 0.24
5.9 1789 -5 0.58
5.39 -760 -3 0.26
15 ’ -913 -0.5 -0.1
-1.14 -1336 0 -0.15
-5.75 -1482 0.5 -0.15
-5.35 876 3 0.14
-0.99 1088 5 0.47
Huang et al. [103]; Figure 8; Cyclic direct shear 1.29 1416 3 0.14
test (5 cycles) on a 0.15 m lon imen of
6 arti(ficigl joialt (Hydrostone &g vf/gte:r) v?/itr? 6 1402 05 2 015
UCS=38 MPa, under normal stress of 1750 KPa; 5.39 -760 0 -0.2
the base friction angle of the replica is 34° 1.86 5 -1117 | -05 -0.13
-1.14 -1336 -3 0.15
-5.9 -1351 -5 0.44
-5.35 876 -3 0.16
-1.13 1190 -0.5 -0.13
0 -0.2
0.5 -0.2
3 -0.07
5 0.1
3 -0.15
0.5 -0.2
0 S -0.2
-0.5 -0.27
-3 -0.03
-5 0.22
-3 -0.05
-0.5 -0.27
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Table A.3-Continued: Cyclic Direct Shear Test (CDST) database

S Shear strength Dilation displacement
% Source and Description 5h Cycle r 5h Cycle 5\/
S (mm) no. (KPa) (mm) no. (mm)
0.55 Al 1470 1 0 0
6.88 B1 1382 1 1 -0.1
6.65 C1 -412 1 4 0.36
0.57 D1 -485 1 6.75 0.85
-0.25 E1l -1360 1 4 0.42
-6.94 F1 -1205 1 1 -0.1
-6.83 G1 544 1 0 -0.23
-0.17 H1l 632 1 -1 -0.1
0.55 A5 1500 1 -4 0.4
6.88 B5 1426 1 -6.75 0.92
6.65 C5 -470 1 -4 0.4
1.07 D5 -492 1 -1 -0.1
-0.4 E5 -1264 1 0 -0.3
-6.94 F5 -1264 5 0 -0.4
-6.78 G5 625 5 1 -0.37
-0.38 H5 845 5 4 0.13
0.55 A10 1530 5 6.75 0.63
6.88 B10 1426 5 4 0.2
Huang et al. [103]; Figure 9; Cyclic direct shear 6.65 C10 ~536 > 1 03
test (20 cycles) on a 0.15 m long specimen of 255 | D10 | -617 5 0 041
7 artificial joint (Hydrostone & water) with -0.4 E10 -1264 5 -1 -0.28
UCS=38 MPa, under normal stress of 2000 KPa; -6.94 F10 -1302 5 4 0.23
the base friction angle of the replica is 34° 66 G10 625 5 675 074
-0.74 H10 1087 5 -4 0.23
0.55 Al5 1550 5 -1 -0.28
6.88 B15 1521 5 0 -0.41
6.65 C15 -860 20 0 -0.63
6.22 D15 -904 20 1 -0.57
-0.4 E15 -1264 20 4 -0.47
-6.94 F15 -1382 20 6.75 -0.32
-6.65 G15 1007 20 4 -0.47
-1.19 H15 1411 20 1 -0.57
0.55 A20 1550 20 0 -0.63
6.88 B20 1521 20 -1 -0.66
6.65 C20 -860 20 -4 -0.52
6.22 D20 -904 20 -6.75 -0.21
-0.4 E20 -1264 20 -4 -0.43
-6.94 F20 -1382 20 -1 -0.57
-6.65 G20 1007 20 0 -0.63
-1.19 H20 1411 20 0 -0.63
20 1 -0.57
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Table A.3-Continued: Cyclic Direct Shear Test (CDST) database

S Shear strength Dilation displacement
pd
2 Source and Description S, Cycle T S, Cycle S,
O (mm) no. (KPa) (mm) no. (mm)
0.15 2273 0 0
7 1966 4 0.58
6.54 -1057 7 1.1
0.02 -977 4 0.58
-0.87 ! -2364 0 1 -0.11
-7.11 -2273 -4 0.33
-6.69 852 -7 0.85
-1.24 875 -4 0.33
0.2 2148 0 -0.33
7 1966 0 -0.33
6.54 -1057 4 0.33
0.47 ) -1114 7 0.8
-0.87 -2284 4 0.4
-7.11 -2273 0 2 -0.27
-6.69 852 -4 0.2
-1.05 1046 -7 0.65
0.25 1966 -4 0.2
7 1966 0 -0.39
6.39 -1591 0 -0.39
2.19 -1739 4 0
Huang et al. [103]; Figure 11; Cyclic direct shear | -0.87 4 -2159 7 0.36
test (20 cycles) on a 0.15 m long specimen of -7.08 2159 4 0.08
8 artificial joint (Hydrostone & water) with
UCS=38 MPJa, unéerynormal stress of 3)000 KPa; 6.56 1273 0 ‘ -0.39
the base friction angle of the replica is 34° 2.33 1739 4 0.12
0.25 1966 -7 0
7 1966 -4 -0.24
6.34 -1863 0 -0.39
3.08 -2103 0 -0.53
087 | ! [ 2159 | 4 052
-7.08 -2159 7 -0.35
-6.53 1534 4 -0.4
-2.63 1933 0 7 -0.53
0.25 1966 -4 -0.54
7 1966 -7 -0.39
6.34 -1863 -4 -0.45
3.08 20 -2103 0 -0.53
-0.87 -2159 0 -0.64
-7.08 -2159 4 -0.65
-6.53 1534 7 -0.5
-2.63 1933 4 -0.56
0 20 -0.64
-4 -0.62
-7 -0.5
-4 -0.55
0 -0.64

342




Table A.3-Continued: Cyclic Direct Shear Test (CDST) database

Shear strength Dilation displacement
§ S Source and Description O, | Cycle | 7 o, | Cycle | 9,
(mm) no. (KPa) (mm) no. (mm)
1.23 1937 0 0
15 773 0.6 -0.06
12.97 492 1.23 0
0.68 1 -367 5 1.03
-1.86 -1125 15 2.17
-14.83 -828 5 1.03
-13.7 453 0 1 0.08
-1.19 352 -0.72 0
Lee et al. [167]; Figure 8; Cyclic direct shear test 1.79 922 -5 0.84
(2 cycles) on a 0.12 m long specimen of Granite 14.97 851 -15 213
9 with UCS=151 MPa,
under normal stress of 1000 KPa; the base 10375887 223 0572 O'g 6
friction angle of the replica is 35° 2
-2.97 -960 0 -0.05
-14.76 -891 0.68 0
-13.57 477 15 1.91
-1.87 398 13.95 1.91
-0.72 2 0
-15 1.84
-13.78 1.8
-1.02 0
0 -0.05
0.4 851 0 0
15.14 351 0.4 -0.11
14.44 -277 0.62 0
0.75 1 -186 10.19 L 1.93
-1.5 -787 15 2.42
-14.74 -497 8.55 1.95
-12.98 213 0 -0.13
-1.58 111 -15 3.16
0.92 480 0 -0.14
. L 15.14 351 15 2.16
Lee et al. [167]; Figure 9-a; Cyclic dlr(_ect shear 14.42 277 0 2 0145
test (15 cycles) on a 0.12 m long specimen of
10 Granite with UCS=151 MPa, 0.92 ) 200 | -15 2.76
under normal stress of 500 KPa; the base friction | -2:46 -601 0 -0.15
angle of the replica is 35° -14.74 -561 0 -0.22
-12.98 213 15 1.6
-1.76 145 0 15 -0.225
0.97 412 -15 1.94
15.14 456 0 -0.23
14.44 -277
1.45 15 -250
-3.26 -466
-14.74 -622
-12.98 213
-2.33 223
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Table A.3-Continued: Cyclic Direct Shear Test (CDST) database

S Shear strength Dilation displacement
% Source and Description 5h Cycle r 5h Cycle 5\/
S (mm) no. (KPa) (mm) no. (mm)
0.29 1123 0 0
14.91 413 0.21 -0.53
14.62 -298 6.5 1.66
1.76 1 -204 15 1 2.64
-1.27 -668 7.49 1.52
-14.99 -574 0 -0.33
-14.3 277 -15 2.06
-1.68 225 0 -0.33
1.47 634 15 ’ 2.29
14.95 451 0 -0.33
><p et al. [167]; Figure 9-b; Cyclic direct shear 14.62 -298 -15 1.81
test (10 ¢ . i
T B e e T T
under normal stress of 500 KPa; the base friction -2.01 -557 15 1.84
angle of the replica is 38° -15.03 -621 0 10 -0.33
-14.3 277 -15 1.19
-1.92 277 0 -0.33
1.68 460
14.95 489
14.62 -298
4.05 -311
-2.66 10 -468
-15.03 -655
-14.3 277
-2.38 374
2.58 4785 0 0
15.01 2298 15 2.04
11.83 -1314 0 1 0
1.12 1 -1251 -15 1.46
-1.08 -2690 0 0
-14.75 -2017 0 0
Lee et al. [167]; Figure 10-a; Cyclic direct shear | -11.53 1798 15 1.27
test (8 ¢ . i
p | e nastzmng spsinenof [Ty 1 o | 8 [
under normal stress of 3000 KPa; the base 2.62 2408 15 0.78
friction angle of the replica is 35° 15.01 2877 0 0
12.43 -1423
2.62 8 -1830
-1.94 -2174
-14.7 -2455
-11.1 1611
-2.06 1970
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Table A.3-Continued: Cyclic Direct Shear Test (CDST) database

Shear strength Dilation displacement
(<5
&2 Source and Description O, | Cycle | 7 o, | Cycle | 9,
(mm) no. (KPa) (mm) no. (mm)
0.56 4466 0 0
15.06 1870 3.73 0.89
13.6 -1274 | 15.06 1.96
3.19 1 -1451 | 11.87 1 1.3
-2.59 -2902 | -0.82 0.22
-15.02 -2225 | -9.38 1.15
-13.2 1628 -15 1.35
-1.38 1984 -0.86 0.15
151 2693 15 15
. o 15.06 232 | 224 | 2 [0
Lee et al. [167]; Figure 10-b; Cyclic dl_rect shear 136 1645 15 074
test (4 cycles) on a 0.12 m long specimen of
13 Marble with UCS=72 MPa, 3.54 2 -1757 | -1.29 0.14
under normal stress of 3000 KPa; the base -3.63 -2483 15 3 1.67
friction angle of the replica is 38° -15.02 -2402 -3.4 0.22
-13.08 1919 -15 0.26
-1.81 2354 -5.12 0.03
1.63 2483 15 141
15.06 2402 0 4 0.1
13.6 -1854 -15 -0.04
3.63 4 -1935 -8 -0.1
-4.32 -2306 0 0.11
-15.02 -2610
-12.99 2161
-2.07 2483
0.58 1325 0 1 0
15 732 15 1 2.73
14.18 -438 -1.08 1 -0.07
0.8 1 -402 -15 1 2.17
-1.89 -1237 | -1.08 2 -0.09
-14.76 -778 15 2 2.43
-14.07 387 -1.08 2 -0.1
-2.91 355 -15 2 1.73
0.98 1000 -1.08 16 -0.15
. L 15 856 15 16 1.55
(o ey o el Sy [aw 6 ot
14 Granite with UCS=151 MPa, (:)39156 2 géi 15 16 1.06
under normal stress of 1000 KPa; the base .
friction angle of the replica is 35° -14.84 -886
-13.89 438
-2.95 376
1.27 798
15 995
14.7 -459
1.75 -629
-3.6 16 -835
-14.8 -984
-13.34 541
-3.89 624
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Table A.3-Continued: Cyclic Direct Shear Test (CDST) database

Shear strength Dilation displacement
§ S Source and Description O, | Cycle | 7 o, | Cycle | 9,
(mm) no. (KPa) (mm) no. (mm)
2.24 2352 0 0
10.32 2017 1.37 -0.2
7.44 -1282 8.5 0.72
1.44 1 -1282 | 10.25 0.81
-1.61 -2246 8.5 1 0.72
-9.58 -2189 0 -0.15
-7.87 1249 -7.74 0.7
) ) o 0 1437 | -10.62 0.92
Jing et al.[99]; Flgure 3; Cyclic direct sh_ear tgst 509 2090 774 07
15 (2 cycles) on specimens of concrete replica with 5,04 2049 0 014
UCS=52 MPa, under normal stress of 2000 KPa; : :
the base friction angle of the replica is 33° 6.1 -1380 | 2.08 -0.17
1.44 -1510 3.95 0
-2.8 2 -2131 8.94 0.46
-10.78 -2025 7.17 9 0.44
-8.74 1315 3 0
-0.9 1494 0 -0.15
-9.51 0.62
-7.74 0.54
0 -0.15
1.34 1456 0 0
15.00 767 10 1.45
14.45 -735 15 2.04
1.62 1 -863 10 1 1.27
-1.50 -1892 0 0
-13.50 -1176 -10 1.09
-13.20 304 -13.2 1.36
-2.25 314 -10 0.99
0.81 879 0 0
15.00 663 10 1.18
Amadei et al. [213]; Figure 4; Cyclic direct shear | 14.45 -627 15 1.84
test (5 cycles) on a 0.11 m long specimens of 1.62 -863 10 1.13
16 replica with UCS=27.6 MPa, 150 2 Famr T o 2 0
under po_rmal stress of 1378 {(Pg; 13.50 1176 10 0.94
the base friction angle of the replica is 32° 1320 208 132 128
-2.25 314 -10 0.94
0.35 706 0 0
15.00 637 10 0.98
14.45 -627 15 1.65
1.62 -863 10 0.98
-1.50 S -1245 0 5 0
-13.50 -1176 -10 0.83
-13.20 206 -13.2 1.19
-2.25 314 -10 0.83
0 0
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Table A.3-Continued: Cyclic Direct Shear Test (CDST) database

S Shear strength
g Source and Description 5h Cycle T
O (mm) no. (KPa)
0.4 4400
1 1 2820
2.74 2740
0.37 3400
1 2 2300
2.74 1740
0.46 2000
Grasselli and Egger [127]; Figure 7; Cyclic direct 1 3 1980
shear test (6 cycles) on a 0.14 m long specimens 274 1740
17 of Serpentinite with UCS=74 MPa,
under normal stress of 2000 KPa; 0.49 1800
the base friction angle of the replica is 39° 1 4 1840
2.74 1740
0.5 1600
1 5 1720
2.74 1740
0.53 1600
1 6 1700
2.74 1740
0.56 3024
1 1 2228.8
3 1780.8
0.1 1680
1 2 1310.4
3 1232
0.34 1120
Grasselli and Egger [127]; Figure 7; Cyclic direct 1 3 1176
shear test (6 cycles) on a 0.14 m long specimens 3 1120
18 of Granite with UCS=173 MPa,
under normal stress of 1120 KPa; 0.49 1008
the base friction angle of the replica is 34° 1 4 1108.8
3 1120
0.68 1008
1 5 1108.8
3 1120
0.55 A6 1008
1 1030.4
3 B6 | 1075.2
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APPENDIX B: EXAMPLES OF BS3D INPUT FILES

B.1 “INPUT.DAT”

The example is the same as the one introduced in Section 5.5; just the loading
condition is different here. The block is depicted in Figure 5.12-(a) and the mechanical
properties of intact rock, rock mass, and fractures are summarized in Table 5.7. The input
file, “input.dat”, required to define the problem for BS3D is given in Figure B.1. It is
assumed that there are no in situ stresses and additional forces. At the second stage
(simulating the excavation), the lowermost face of the block (A4;4,4344) is left
unconstrained. Modified Barton’s model is adopted as the constitutive model of fractures.
BEM approach is to be used to determine the normal stiffness of the fractures. There is
no need to consider the effect of excavation on in situ stresses and high-velocity jet
impact. The analysis of the first stage is to be done with step stage of 0.5 up to maximum
A of 1. In addition, the analysis of the second stage is to be done with step stage of 0.1 up
to maximum A of 5. Maximum increment and maximum iteration numbers are chosen to

be 100 and 50, respectively.

A.2 “TUNNEL_STRESS.DAT”

In order to consider the effect of excavation on in situ stresses in the surrounding
rock mass another input file, “funnel stress.dat”, should be read by BS3D. Figure B.2
and Figure B.3 give examples of “tumnel stress.dat” in which the tunnel reference
system is the same and is not the same as principal stress directions, respectively. In both
cases, the tunnel diameter is 3.6 m, the tunnel axis is along the x-axis, and the excavation
face is located 5 m far from the origin. Figure B.2 introduces hydrostatic in situ stress of

2.6 MPa, while Figure B.3 defines the following stress tensor:

05 01 04
o=0.1 1 -0.3
04 -03 3
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Number-of-vertices(block&mould) 8
vertex(1) 0 0 0
vertex(2) 1 0 0
vertex(3) 1 1 0
vertex(4) 0 1 0
vertex(5) 0 0 1
vertex(6) 1 0 1
vertex(7) 1 1 1
vertex(8) 0 1 1

sk sk sk ke sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk stk sk stk sk sk skosk sk kol sk skok sk kol sk skokoskoskokokk

Block-Geometry

sfe sfe st she sfe sk e sfe sk sk sfe sk sk ske sk sk ke she sk s sfe sk sk ske she sk ke sfe sk ke she sk s she sk sk she sk stk sfe sk s sk skt sk sk skeskeoskeoskok sk
Number of faces 6

Number of faces with more than _one boundary 0

Number of Vertices in_boundary(1) of Face(1)
Number_of Vertices_in_boundary(1) of Face(2)
Number_of Vertices_in_boundary(1) of Face(3)
Number of Vertices_in_boundary(1) of Face(4)
Number_of Vertices_in_boundary(1) of Face(5)
Number_of Vertices_in_boundary(1) of Face(6)

L i i

Face(1) boundary(1) Vertex(1)
Face(1) boundary(1l) Vertex(2)
Face(1) boundary(1) Vertex(3)
Face(1) boundary(1) Vertex(4)
Face(2) boundary(1l) Vertex(1)
Face(2) boundary(1l) Vertex(2)
Face(2) boundary(1) Vertex(3)
Face(2) boundary(1l) Vertex(4)
Face(3) boundary(1) Vertex(1)
Face(3) boundary(1) Vertex(2)
Face(3) boundary(1) Vertex(3)
Face(3) boundary(1) Vertex(4)
Face(4) boundary(1) Vertex(1)
Face(4) boundary(1) Vertex(2)
Face(4) boundary(1) Vertex(3)
Face(4) boundary(1) Vertex(4)
Face(5) boundary(1) Vertex(1)
Face(5) boundary(1l) Vertex(2)
Face(5) boundary(1) Vertex(3)
Face(5) _boundary(1) Vertex(4)
Face(6) boundary(1) Vertex(1)
Face(6) boundary(1) Vertex(2)
Face(6) boundary(1) Vertex(3)
Face(6) boundary(1) Vertex(4)

NWERA~LUVWOIANAUNAND L AJIWNOD WA AW —

Number_of sensor_points_per edge 6
st sk ok sk ok sk ok sk s ok sk s ok sk sk stk sk stk sk ook sk otk sk okoskosk ook sk ook sk ok sk ok skokoksk ok ok sk

Mould-Geometry

ke sfe st ke sfe sk e sfe sk sk sk she sk she sk sk sie sk sk e she sk sk ske sfe sk ske she sk ke sk sk s she sk sk ske she sk sk sfe sk e sk sk sk ske sk skeske sk skeoskosk
Number_of faces 6
Number-of-same-faces-in-mould-and-block 6

Face(1)-index-same-in-mould-and-block
Face(2)-index-same-in-mould-and-block
Face(3)-index-same-in-mould-and-block
Face(4)-index-same-in-mould-and-block
Face(5)-index-same-in-mould-and-block
Face(6)-index-same-in-mould-and-block

AN B W=

Figure B.1: Example of “input.dat”
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st ot et s s s s otttk s s sk ottt s s sl sk st stk sl sl kot Rk sk ol R R R Rk sk sk ok o

Mechanical-Properties

s sfe ke sk s st st s she ke sk sk sk st sk sk sk ke sk sk sk shesfe sk sk sk sk st sk steske sk sk sk st sk stk sk sk sk skeskoskok skok skokokokoskok

Unit_weigth_of the block 0.03

Gravity 9.806
Young's_Modulus_of the Block 30000
Poisson's_Ratio_of the Block 0.3

Young's Modulus_of the Rock Mass 7000

Poisson's_Ratio_of the Rock Mass 0.2

Isotropic_dilatancy(1) Anisotropic(2) 1
Init_stiff&max_closure&Joint Len&Lab Face(1) 10000 0.0001 1
Init_stiff&max_closure&Joint Len&Lab Face(1) 10000 0.0001 1
Init_stiff&max_closure&Joint Len&Lab Face(1) 10000 0.0001 1
Init_stiff&max_closure&Joint Len&Lab Face(1) 10000 0.0001 1
Init_stiff&max_closure&Joint Len&Lab Face(1) 10000 0.0001 1
Init_stiff&max_closure&Joint Len&Lab Face(1) 10000 0.0001 1
JRCO(1&2) JCSO(MPa)_Base_Friction_Face(1) 10 70 30
JRCO(1&2) JCSO(MPa) Base Friction Face(1) 10 70 30
JRCO(1&2)_JCSO(MPa) Base_Friction Face(1) 10 70 30
JRCO(1&2)_JCSO(MPa) Base Friction Face(1) 10 70 30
JRCO(1&2) JCSO(MPa) Base Friction Face(1) 10 70 30
JRCO(1&2)_JCSO(MPa) Base_Friction Face(1) 10 70 30
sfe 3k s s s sfe 3t sfe s sfesfe s sfe e s sfe sk sfe s s she s sfe s sfeshe sk sfe s sfeshe sk sfe sk sfeshe s sfe s sfesie sk stk st skoskeoksiokoskoko
Stage-Analysis-Characteristics

sfe 3k sfe e 3 she 3 sfe e s sk s sfe sl s sfe sk sfe s s she s sfe e sfeske st she e sfeske s sk s sfeske sk sfe sk sfeske steske sk sfeske sk kesiolkoskokok

Number_of Permanent Faces 5

Number of Stages 2

fa_Additional Stage 1 0 0 0
fa_Additional_Stage 2 0 0 0
Step_stage 1 0.5

Step_stage 2 0.1
Max_increment_Number 100
Max_iteration_Number 50

Max_Lambda_Stage 1 1

Max_Lambda_Stage 2 5

Residual_Tollerance 0.0001
Limit_Eigenvalues 0.00002

Limit_Stiffness Ratio 0.3

Mohr_Coloumb(0) Barton(1) Modified Barton(2) 2

Block Normal Stiffness Analytical(0) BEM(1) 1
In_Situ_Stress_Circular Tunnel:No(0)_Yes(1) 0
Water_pressure_due_to_jet_impact:No(0) Yes(1) 0

Figure B.1-Continued: Example of “input.dat”

NOTE: The origin of the global reference system should be on the tunnel axis

Tunnel Diameter 3.6
Tunnel _axis(x_y_z) 1 0 0
Ditance_of excavation_face from the origin 5

(The excavation face is to be located in the negative direction of tunnel exis from the origin)

Tunnel _ref system is_the same as principal stress_dir:yes(1) no(0)

Depth_of Tunnel 100
Unit Weight of Rock Mass  0.026
Lateral Pressure Coefficient 1

1

Figure B.2: Example of “tunnel_stress.dat”; the tunnel reference system is the same
as principal stress directions
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NOTE: The origin of the global reference system should be on the tunnel axis

Tunnel Diameter 3.6
Tunnel _axis(x_y_z) 1 0 0
Ditance_of excavation_face from the origin 5

(The excavation face is to be located in the negative direction of tunnel exis from the origin)

Tunnel _ref system is_the same as principal stress_dir:yes(1) no(0) 0
In Situ Stress in global ref System
(Sxx_Syy_Syz_Txy Txz Tyz) 0.5 1 3 0.1 0.4 -0.3

Figure B.3: Example of “funnel stress.dat’; the tunnel reference system is not the
same as principal stress directions

B.3 “WATER_PRESSURE.DAT”

In order to consider dynamic water pressure caused by high-velocity jet impact on
the block located in the bottom of a plunge pool, another input file,
“water_pressure.dat”, should be read by BS3D. Figure B.4 gives an example of input file
for a plunge pool with following characteristics:

- Y=140m;r=20m; D;=20m; V;=24.5 m/s

- Free over fall; Circular jet; Moderate turbulence

- Maximum duration of extreme hydrodynamic pressure: 5 ms

Depth_of Water_in_the pool 140
Considering_all combinations(1) Or_the most_critical one(0) 0
Distance _to_the jet center line 20

Jet _diameter at the pool surface 20

Jet_diameter is_the same as jet width for rectangular jet

Circular(0) Or_rectangular(1) jet 0
Rough(0) Moderate(1) Smooth(2) turbulent 1

Jet length 1

Jet Velocity at the pool surface 24.5
Type_of outlet_structure:

Free overfall(0) Ski_jump_outlet(1) Valve(2) 0
Hydrodynamic_pressure_max_Duration 0.005

Figure B.4: Example of “water pressure.dat”
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APPENDIX C: COMPUTATION OF POLYHEDRAL MASS
PROPERTIES

The location of a body’s center of mass, and its moments and products of inertia
about various axes are important physical quantities for any type of dynamic simulation
or physical based modeling. Mirtch [236] presented an algorithm for computing these
quantities for a general class of rigid bodies: uniform density polyhedrons. The mass
integrals may be converted into volume integrals under his assumption. The algorithm is
based on a three-step reduction of the volume integrals to successively simpler integrals.
The algorithm is designed to minimize the numerical errors that can result from poorly
conditioned alignment of a polyhedral faces. It is also designed for efficiency. All
required volume integrals of the polyhedron; exploiting common subexpressions reduces
floating point operations [236].

In this dissertation, Mirtch’s [236] algorithm has been implemented as a
subroutine called “massProperties”. Whenever BS3D needs to compute the mass
properties of a block (a polyhedron), it calls “massProperties” subroutine. Figure C.1
shows the pseudo code implemented in “massProperties” subroutine which is the same as

what proposed by Mirtch [236].
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SUB MassProperties (Block)
Tu T Ty T To2, Ty2, T2, Ty Ty, Tpye < 0
For each face, F, on the boundary of the block, B:
Choose a-B-y as a right-handed permutation of x-y-z that maximized |ﬁy| (see Section 5.2.3 for details)
1, Mo, 0B, Wa2, Map, T2, M3, M2, Mape, Tgs < 0
For each edge, ¢, in counterclockwise order around F:
a, < a — coordinate of start pointof ¢ ; f, « B — coordinate of start point of &
a, « a — coordinate of end pointof e ; S, « f — coordinate of end point of &
Aa <« ay —ag; AB < By —Bo
Cireap+ay;, Cpear-C+ag? Cpearp-Cuotag’; Cueay-Chp+apt
Cp < Bi? + By Bo + Bo”: Cpz < By - Cp+ Bo’; Cpgs « By - Cpe +Bo"
Cap < 301% +2a;y - ag + ap?;  Kup « ay% + 2a; - ag + 3a,°
Carp & Ao~ Cop + 413 Kyzp « aq - Kop + 4ay®
Copz < 48,° + 3B, Bo + 2By - Bo” + Bo’s Kyp2 < B’ +2B1% - Bo + 3By - Bo” + 4By’
m e +A48 -G
Mg« Mg +AB - Cy; Moz « Moz + AL - Cpz; T3 & Mz + A - Cps
g « Mg + Aa - Cg; Tgz < Tg2 + Aa - Cﬁz; TTgs < Tigs + Aa - Cﬁs
Tap < Tap + Aﬁ : (ﬁl * Caﬁ'l'ﬁo * Kaﬁ); Tg2p < Tg2p + Aﬁ : (ﬁl : Ca23+ﬁ0 : Kazzﬁ)
Tap2 <« Mapz + Aa - (ay - Copztag - Kqpe2)
End For
My < T [2; Mg < Ma/6; Moz < We2/12; Moz & mys /20
ng « —Tg/6; Mgz « —Tp2[12; Tps < —Tps /20
Tap < Map/24; Tga2p « Ta2p/60; Tape « —T4p2/60
w « —A - p for some point,p,on F
ke ek ks ek kg kgt
By« ky g, Fgeky-mg, F, < —ky (g mg+Ag-ng+w-m)
Faz «— k1 *TMy2, FBZ « k1 'T[Bz
F, k3 (Ag” T, +2ﬁa-ﬁﬁ-naﬁ+ﬁl32-rrﬁz + 20w Ty + 2fp - @ - g + w? - y)
Foz <« ky-Tgs; Fps « ky-1gs
Fps o —ky+ (g’ - g + 30" - g - g + g’ - ge + 3R - ig” - Mape +Ag° - 1ps +
3,7 @ Tz + 67y - fig - @ - Tp + 305 ‘W Tge + 3y 07 - Ty + 3 - P g + @3- my)
Forg < k- Tozg; Fgey, « —ky - (g - gz +fig - mgs + w - mg2)
Fpog < ks (Rg”  Tgs + 20y - Aig - Mazp + g’ - Tape + 2Ag - 0 - Mgz + 2Ag - @ - Tap + @2 - )
If (0 = x) Then
T, T+, F,
Else If (B =x) Then
T1 « T1 + 'ﬁ[; . Fﬁ
Else
Ty « T, +#,-F,
End IF
Ty« Ty+fg Fo; TgeTg+fp-Fpoy T, T, +1, Fpe
Tz < Toz + 7y - Fus; Tﬁz « Tﬁz + ﬁﬁ . Fﬁs; Tyz « Tyz + ﬁy . Fy3
Taﬁ «— Ta[; + ﬁa . F(IZﬁ; Tﬁy — Tﬁy + ﬁ[i’ . Fﬁzy; Tya — T.y + ﬁy . Fyza

End For
(Tx' Ty! Tz) < (Tx' Ty! Tz)/Z; (sz' Tyz! Tzz) < (szl Tyzr Tzz)/3; (Txyl Tyz' sz) < (Txyr Tyz' sz)/z
Tyz Tyy Tpx
volume < Ty; centroid « (Ty, Ty, T,); inertiaTensor « [Txy Ty2 Ty,
Ty Ty, Ty
End MassProperties

Figure C.1: Pseudo code of the algorithm that computes polyhedral mass properties
(after Mirtch [236])
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APPENDIX D: IMPLEMENTATION AND VERIFICATION OF
BOUNDARY ELEMENT METHOD IN ELASTOSTATIC PROBLEM

D.1 IMPLEMENTATION

BS3D triangulates each face of the block into a set of triangles and subdivides
each triangle into a set of subtriangles. Subsequently, a point (node) is assigned to the
centroid of each subtriangle. Figure 5.3 schematically depicts the discretization process.
In BS3D, all elements of H and G matrices in Equation (5.1) are calculated by using

Gaussian integration over triangles [260-263]. G,

. components are calculated by
following Li’s and Han’s method [264] for evaluating singular integrals in stress analysis
of solids by the direct BEM. Body force vector, B, are obtained using Galerkin Vector
approach, which transforms the domain integrals into boundary integrals [237].

Figure D.1 presents subroutines that calculates BEM matrices, H, G, and B, based
on the algorithm given in [237, 260-264]. It should be mentioned that, in Figure D.1, all

vectors are shown in bold; Po is a matrix containing coordinates of all (boundary)

elements; ne presents the coordinate of sensor points (nodes).

D.1 VERIFICATION

In order to verify the implementation of elastostatic BEM matrices, two examples
have been checked. In both examples, a cubic block with sides of 1 m (Figure D.2) is
considered. The block seats on a table on its lowermost face, 4;4,434,. The block has
Young’s modulus of 30 GPa and Poisson’s ratio of 0.3. Two loading conditions are
considered:

1) The block is weightless and subjected to uniformly distributed load of 50 kPa on
the uppermost face, As454,4s. Stress on face 4;4,43A4 which is in contact with
the table should be 50 kPa as well. This stress is calculates using BEM assuming

the following loading and boundary conditions:
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SUB BEMMatrices (numSen, ne, Po, area, v, E, n, HMatrix, GMatrix, BMatrix)
wy <10.07215780, 0.04754582, 0.04754582, 0.04754582, 0.01622925, 0.01622925, 0.01622925, 0.05160869,
0.05160869, 0.05160869, 0.01361516, 0.01361516, 0.01361516, 0.01361516, 0.01361516, 0.01361516}
xg <1{0.3333333, 0.08141482, 0.4592926,0. 4592926, 0.8989055, 0.05054723, 0.05054723, 0.6588614,
0.1705693, 0.1705693, 0.008394777, 0.008394777, 0.7284924, 0.7284924, 0.2631128, 0.2631128}
¥g <10.3333333, 0.4592926, 0.08141482, 0.4592926, 0.05054723, 0.8989055, 0.05054723, 0.1705693,
0.6588614, 0.1705693, 0.7284924, 0.2631128, 0.008394777, 0.2631128, 0.008394777, 0.7284924}
E
GE < 2(1+v)
GMatrix, HMatrix, BMi, BMatrix < 0
For i =1 to numSen
Forj =1 to numSen
If (i =) Then
CALL GMatrix (nei, POj, nj, v, GMatrixi'j)

. 05 0 0
GMatrix; j « ar;a, % ;  HMatrix;; « [ 0 05 0 ]
0 0 0.5
ELSE
If (i <j) Then
CALL HGMatrice (ne;, Poj,m;,,v,GE, HMatrix; j, GMatrixi,j)
GMatrix;; « 2area; - GMatrix; j; HMatrix; ; « 2area; - HMatrix;
Else
CALL HMatrice (ne;, Poj,n;,v, HMatrix; ;)
GMatrix;; « GMatrix;;; HMatrix;; < 2area; - HMatrix;
End If
End If

CALL bodyForce (ne,-,Poj,nj,v, BMi]-)
BMatrix; « BMatrix; + 2area; - BMi;

End For
End For
END BEMMatrices
SUB HGMatrice (ne, Po,n, v, GE, h, g)
h,g< 0
Fori=1to 16
T« (1-xg; —yg;) - Poy +xg;- Poy +yg; - Pog —ne
Forj=1to3
Fork=1to3
If G =k) Then
-1 rn 3r;?
1 r;?
gjj ‘—m'(3—4v+,’7)'wgi+9ﬁ
Else
-1 r-n 3r'1, N " Tj—N; * Ty
h: — (—. —(1=2v)-—J1 T E\Y.wag: + h
jk < (r'r |T| rer ( V) |r| )) ng+ jk
1 Ti Tk
9jk (_m'(:,.r)'ng""gjj
End If
End For
End For
End For
g . h
9< 16m-GE-(1-v)’ h < 8m-(1-v)
END HGMatrice

Figure D.1: Pseudo code of subroutines that determine BEM matrices
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SUB GMatrix (ne, Po, n,v, g)
Fori=1to3
Ty < ne
End For
T, < Po;; Ti3 < Poy; Ty < Poy; Tyz < Pos; Tip < Pog; Tiz < Poy
al,a2,a3,g < 0

Fori=1to3
x21; <« Ti; —Tyy; x32; < T3 — Ty,
End For
Fori=1to3
Forj=1to3
ali « ali + 2x211’], aZi «— aZi + 2x21,’] . x321‘], a3i «— a3i + 2x321’]
End For
End For
Fori=1to3
sa; < al; +a2; +a3;; ea; < 4al;-a3; — ULZi2
End For
Fori=1to3
1 2,/saj-a3;+a2;+2a3; sa; al; a2;-10;
10 = =l armnas e, o e
2(a2;+2a3;) 2a2; . —2(2a1;+a2;) 4al;
12, « ea;-/sa; - eaiJal; ’ I3; < ea;-[sa; ea;-Jal;
14 (Zaziz—4a1i-a3i+2a1i-a2i) _ 2al;-a2; + ﬂ' 15 ﬁ _ M _ 1
1 a3j-ea;/sa; a3yeainfal; = a3y’ 1 as; 2a3; a3;fsa;
End For
[0 Fori=1to3
Forj=1to3
If (i =j) Then
Fork=1to3
gSijk «— 2(3 - 4V) . IOk + 2x21k_l- . lek']' . IZk +
2(x32p ) X213 + x32p; - X215 ;) + I3 + 2x32); - x32 - 4y,
End For
Else
Fork=1to3
GSijic < 2x21; - X214+ 12 + 2(x32 - X215 + 132y - x21 ) - I3
t +2x32k‘i . x32k’j . I4k
End For
End If
End For
End For
Fori=1to3
Forj=1to3
Fork=1to3
9ij < 9ij + 9Sijk
End For
End For
End For

END GMatrix

Figure D.1-Continued: Pseudo code of subroutines that determine BEM matrices
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SUB HMatrix (ne, Po, n,v, h)

h <20
Fori=1to 16
r < (1-xg; —yg:) - Poy + xg; - Po, +yg; - Poz —ne
Forj=1to3
Fork=1to3
If (j = k) Then
-1 rn 3r;?
Else
-1 r-n 3r;-m Ny 1;—N; * 1
B = Gyt (o g — (U= 20 = 0) s wgi +
End If
End For
End For
End For
8m-(1-v)
END HMatrix
SUB bodyForce (ne, Po, n, v, b)
b=0
Fori=1to 16
r < (1-xg;—yg)) Poy+xg;, Poy+yg;  Po3—ne
Forj=1to3
1 T
bj «— 20 ﬁ Tl]- W@ + b]

End For

End For
e b

8m-v

End bodyForce

Figure D.1-Continued: Pseudo code of subroutines that determine BEM matrices

4
A
Ay Ag
Ag | A,
A, A,
I b Y
Ayl
A

X

Figure D.2: Geometry of the cubic block considered in the verification example
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b.
C.

d.

Body forces: B =0.

Face A54447,4s: U = 0 and P = Unknown.

Face A;4,A4344: U = Unknown and P = {0, 0, -0.05}.
All other faces: U= Unknown and P = 0.

Figure D.3 shows the percent error of average stresses calculated using BEM for

the nodes located on face As4s474s. It can be seen that BEM implementation

works very well with nominal errors which verifies implementation of H and G

matrices.
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o
=
——

o

0 200 400 600 800 1000 1200

Relative error of calculated stress on
the lowermost face using BEM (%)

Total number of elements

Figure D.3: Percent error of average stresses calculated using BEM (Example of

weightless block on table)

2) The unit weight of the block is 30 kN/m’. Stress on face 4 1424344 which is in
contact with the table should be 30 kPa. This stress is calculated using BEM

assuming the following loading and boundary conditions:

€.

f.

Body forces: due weight of the block and will be calculated by the code.
Face 454s4,45: U = 0 and P = Unknown.

g. All other faces: U= Unknown and P = 0.
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Figure D.4 shows the percent error of average stresses calculated using BEM for
the nodes located on face As4s474s. It can be seen that BEM implementation

works very well with nominal errors which verifies implementation of B martrix.

O T T T T T 1
0 200 400 600 800 1000 1200

Relative error of calculated stress on
the lowermost face using BEM (%)

Total number of elements

Figure D.4: Percent error of average stresses calculated using BEM (Example of a block
on a table subjected to its own weight)
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APPENDIX E: MATRIX M IS POSITIVE DEFINITE

Matrix M is defined in Section 2.3 as follows:

M| e O E.1
1" e (E.1)

where m is the block mass, E¢ is inertia operator relative to point G (centroid of the

block) [16, 38-41], and I343 isthe 3 X 3 identity matrix. By defining, E¢ as:

xx xy Xz
Ec=|1, I, I.} (E.2)
Xz yz ]zz
M can be expressed as follows:
‘m 0 0 0 0 O]
0O m 0 0 0 O
0O 0 m 0 0 O
M = , (E.3)
O O O xx Xy Xz
o o0 o0 7, I, I,
L 0 0 0 Xz yz 2z |

which is clearly real and symmetric.
An 6 X 6 real symmetric matrix M is positive definite if v/ -M-v>0 for all
non-zero real entries (v € R®) [54, 361]. Let:
V= [v1 V, VoV, Vs v6]T (E4)
By substituting Equations (E.3) and (E.4) in the condition of positive definite
matrices (C =C,+C, =v' -M-v), the following expressions are obtained:
C = m-(v12 +v,’ +v32) (E.5)
C =1, -v42 +]yy 'V52 +1_ -v62 +21xy Y, Vs +21yz Vs Vg +21 v, v (E.6)
Since the mass of the block, m, and sum of squares of three real entries
(vl2 +v42 +v32) are positive, C; is a positive value. Therefore, to prove that M is a

positive definite matrix, it is enough to demonstrate that C, is always positive.
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Consider a rigid body comprising N parts, By, ..., By, €ach being a uniform
density polyhedron. The inertia tensor relative to point G (centroid of the block which is
assumed to be the same as the origin of reference system), Eg, can be determined as
follows [236, 362-364]:

N N N
mi'(yiz"'ziz) _Zmi'xi’yi Zmi'xi’zi
| i=1 i=1 i=1

| =
XX Xy Xz N N N
Ec=[1ly 1, I,|= _Zmi'xi‘yi zmi'(xi2+zi2) _zmi'yi'zi ) (E.7)
| | | = =) i1
xz yz 124

N N
m; - X -z _Zmi'Yi'zi Zmi(xi2+yi2)
i1 i1 i1

in which x;, y;, and z; are coordinates of mass center of polyhedron B;.
By substituting Equations (E.7) in Equation (E.6), C, can be expressed as follows:

N N N
C=V, > M (y +2) +vs - D m (% +25) +v - Y (% +y;7)
i=1 i=1 i=1

(E.8)
N N N
_2'V4'V5'zmi'Xi’yi_z'vs've'zmi'yi'Zi_2’V4'Ve'Zmi'Xi'Zi’
i=1 i=1 i=1
which can be simplified as:
N 2 (y2, 52 2 (g2, 52 2 (2 2
C2: mi' V4 (y| +Z| )+V5 (XI +Z| )+V6 (XI +y|) (Eg)
=1 =2V Vg XYy Vg Vg Y Z+V, VX Z)

By rearranging Equation (E.16), C, can be expressed as follows:
C, :ZN:mi ~{(v4 Y =V X Y+ (Vo z =V X P (Ve Z — VY )2} (E.10)
=
which is the summation of multiplication of two positive terms:
- m;: mass of the i-th polyhedron.
- (VY Ve X (v, oz =g X )+ (Vg z, -V -y, ) 0 sum of the squares of

three real quantities.

Therefore, C, is positive. Since both C; and C, are positive values, their summation, C, is

also positive. Thus, v' -M-v>0 and matrix M is a positive definite matrix.

361



APPENDIX F: STRESS TENSORS (PARAMETRIC STUDY OF
SECTION 7.4.2)

A sensivity analyses has been performed in Section 7.4.2 to investigate the effect
of principal stress directions on the stability of the prism (see Figure 7.25). The results of
the parametric study are depicted in Figure 7.33. The stress tensors in the global reference
system of

Figure 7.26 are given in Table F.1.

Table F.1: Tensors of in situ stresses in the global reference system (parametric study of

Section 7.4.2)
B o Gyx Oyy Oy, Tyy Ty, Ty,
0 5.175 1.725 3.450 0.000 0.000 0.000
10 | 5.071 | 1.829 | 3.450 | 0.590 | 0.000 | 0.000
20 4.771 2.129 3.450 1.109 0.000 0.000
30 | 4313 | 2.588 | 3.450 | 1.494 | 0.000 | 0.000
0 40 3.750 3.150 3.450 1.699 0.000 0.000
50 | 3.150 | 3.750 | 3.450 | 1.699 | 0.000 | 0.000
60 2.588 4313 3.450 1.494 0.000 0.000
70 | 2.129 | 4771 | 3.450 | 1.109 | 0.000 | 0.000
80 | 1.829 | 5.071 | 3.450 | 0.590 | 0.000 | 0.000
90 | 1.725 | 5.175 | 3.450 | 0.000 | 0.000 | 0.000
0 | 5175 | 1.777 | 3.398 | 0.000 | 0.000 | -0.295
10 | 5071 | 1.878 | 3.401 | 0.581 | 0.102 | -0.277
20 | 4771 | 2.168 | 3.410 | 1.092 | 0.193 | -0.226
30 | 4313 | 2614 | 3424 | 1471 | 0259 | -0.147
10 40 | 3.750 | 3.159 | 3441 | 1.673 | 0295 | -0.051
50 | 3.150 | 3.741 | 3.459 | 1.673 | 0.295 | 0.051
60 | 2.588 | 4286 | 3.476 | 1471 | 0259 | 0.147
70 | 2.129 | 4732 | 3.490 | 1.092 | 0.193 | 0.226
80 | 1.829 | 5.022 | 3.499 | 0581 | 0.102 | 0277
90 1.725 5.123 3.502 0.000 0.000 0.295
0 | 5175 | 1.927 | 3.248 | 0.000 | 0.000 | -0.554
10 5.071 2.019 3.260 0.554 0.202 -0.521
20 | 4771 | 2.283 | 3295 | 1.042 | 0379 | -0.425
30 4313 2.688 3.349 1.404 0.511 -0.277
5o 40 | 3750 | 3.186 | 3415 | 1.596 | 0.581 | -0.09
50 3.150 3.715 3.485 1.596 0.581 0.096
60 | 2.588 | 4212 | 3.551 | 1.404 | 0.511 0.277
70 2.129 4.617 3.605 1.042 0.379 0.425
80 | 1.829 | 4.881 | 3.640 | 0.554 | 0202 | 0.521
90 | 1.725 | 4.973 | 3.652 | 0.000 | 0.000 | 0.554
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Table F.1-Continued: Tensors of in situ stresses in the global reference system

B o Gyx Oyy Gy, Tyy Ty Ty,
0 | 5175 | 2.156 | 3.019 | 0.000 | 0.000 | -0.747
10 | 5071 | 2234 | 3.045 | 0.511 | 0295 | -0.702
20 | 4771 | 2.459 | 3.120 | 0.960 | 0.554 | -0.572
30 | 4313 | 2.803 | 3234 | 1294 | 0.747 | -0373
30 40 [ 3750 | 3225 | 3.375 | 1471 | 0.849 | -0.130
50 | 3.150 | 3.675 | 3.525 | 1471 | 0.849 | 0.130
60 | 2.588 | 4.097 | 3.666 | 1.294 | 0.747 | 0.373
70 | 2.129 | 4.441 | 3.780 | 0960 | 0.554 | 0.572
80 | 1.829 | 4.666 | 3.855 | 0.511 | 0295 | 0.702
90 | 1.725 | 4.744 | 3.881 | 0.000 | 0.000 | 0.747
0 | 5175 | 2438 | 2.737 | 0.000 | 0.000 | -0.849
10 | 5071 | 2499 | 2.780 | 0452 | 0379 | -0.798
20 | 4771 | 2.675 | 2904 | 0.849 | 0.713 | -0.651
30 | 4313 | 2944 | 3.094 | 1.144 | 0.960 | -0.425
40 |40 | 3.750 | 3274 | 3.326 | 1301 | 1.092 | -0.147
50 | 3.150 | 3.626 | 3.574 | 1301 | 1.092 | 0.147
60 | 2.588 | 3.956 | 3.806 | 1.144 | 0.960 | 0.425
70 | 2.129 | 4225 | 3.996 | 0.849 | 0.713 | 0.651
80 | 1.829 | 4401 | 4.120 | 0452 | 0379 | 0.798
90 | 1.725 | 4.462 | 4.163 | 0.000 | 0.000 | 0.849
0 | 5175 | 2737 | 2.438 | 0.000 | 0.000 | -0.849
10 | 5.071 | 2780 | 2.499 | 0379 | 0452 | -0.798
20 | 4771 | 2904 | 2675 | 0.713 | 0.849 | -0.651
30 | 4313 | 3.094 | 2944 | 0960 | 1.144 | -0.425
so |40 | 3.750 | 3.326 | 3.274 | 1.092 | 1301 | -0.147
50 | 3.150 | 3.574 | 3.626 | 1.092 | 1.301 0.147
60 | 2.588 | 3.806 | 3.956 | 0.960 | 1.144 | 0.425
70 | 2.129 | 3.996 | 4225 | 0.713 | 0.849 | 0.651
80 | 1.829 | 4.120 | 4.401 | 0379 | 0452 | 0.798
90 | 1.725 | 4.163 | 4.462 | 0.000 | 0.000 | 0.849
0 | 5175 | 3.019 | 2.156 | 0.000 | 0.000 | -0.747
10 | 5.071 | 3.045 | 2234 | 0.295 | 0.511 | -0.702
20 | 4771 | 3.120 | 2.459 | 0.554 | 0.960 | -0.572
30 | 4313 | 3234 | 2.803 | 0.747 | 1.294 | -0.373
6o |40 | 3750 | 3375 | 3.225 | 0.849 | 1471 | -0.130
50 | 3.150 | 3.525 | 3.675 | 0.849 | 1.471 0.130
60 | 2.588 | 3.666 | 4.097 | 0.747 | 1294 | 0.373
70 | 2.129 | 3.780 | 4.441 | 0.554 | 0.960 | 0.572
80 | 1.829 | 3.855 | 4.666 | 0.295 | 0.511 0.702
90 | 1.725 | 3.881 | 4.744 | 0.000 | 0.000 | 0.747
0 | 5175 | 3.248 | 1.927 | 0.000 | 0.000 | -0.554
10 | 5.071 | 3.260 | 2.019 | 0202 | 0.554 | -0.521
20 | 4771 | 3.295 | 2283 | 0379 | 1.042 | -0.425
30 | 4313 | 3349 | 2.688 | 0511 | 1.404 | -0.277
20 |40 | 3750 | 3415 | 3.186 | 0581 | 1.596 | -0.09
50 | 3.150 | 3.485 | 3.715 | 0.581 | 1.596 | 0.096
60 | 2.588 | 3.551 | 4212 | 0511 | 1404 | 0.277
70 | 2.129 | 3.605 | 4.617 | 0379 | 1.042 | 0.425
80 | 1.829 | 3.640 | 4.881 | 0202 | 0.554 | 0.521
90 | 1.725 | 3.652 | 4.973 | 0.000 | 0.000 | 0.554
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Table F.1-Continued: Tensors of in situ stresses in the global reference system

B o Oxx Cyy Gy Tyy Tyy Ty,

0 5.175 3.398 1.777 0.000 0.000 -0.295
10 5.071 3.401 1.878 0.102 0.581 -0.277
20 4.771 3.410 2.168 0.193 1.092 -0.226
30 4313 3.424 2.614 0.259 1.471 -0.147
40 3.750 3.441 3.159 0.295 1.673 -0.051

80 50 | 3.150 | 3.459 | 3.741 0.295 1.673 0.051
60 | 2588 | 3.476 | 4286 | 0.259 1471 0.147
70 | 2.129 | 3490 | 4.732 | 0.193 1.092 0.226
80 1.829 | 3.499 | 5.022 | 0.102 | 0.581 0.277
90 1.725 3.502 | 5.123 0.000 | 0.000 0.295
0 5.175 3.450 1.725 0.000 | 0.000 0.000
10 | 5.071 3.450 1.829 | 0.000 | 0.590 0.000
20 | 4.771 3450 | 2.129 | 0.000 1.109 0.000
30 | 4.313 3.450 | 2.588 | 0.000 1.494 0.000
90 40 | 3.750 | 3.450 | 3.150 | 0.000 1.699 0.000

50 | 3.150 | 3.450 3.750 | 0.000 1.699 0.000
60 | 2.588 3450 | 4.313 0.000 1.494 0.000
70 | 2.129 3.450 | 4.771 0.000 1.109 0.000
80 1.829 3.450 5.071 0.000 0.590 0.000
90 1.725 3.450 5.175 0.000 0.000 0.000
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NOMENCLATURE

Area of equivalent footing of each face of the block (Chapter 2); Tunnel
radius (Chapter 5); Acceleration of the block caused by the unbalance
force (Chapter 8)

Line of action of the normal component of the surface force

Aperture thickness

Proportion of total fracture area sheared through the asperities
Maximum possible contact area

Unit vector parallel to the i-th bisector

Rock block
Body force vectors in BEM formulation

Bisector of an apical angle of i”" face

Cohesion (Chapter 3); Pressure wave celerity and for a mixed fluid
(Chapter 8)

Pressure wave celerity in air
Pressure wave celerity in the liquid

Constraint space or face of constraint space

Vector that defines the virtual work for non-ideal constraints
Positive extreme fluctuation dynamic pressure coetficient (pool floor)
Negative extreme fluctuation dynamic pressure coefficient (pool floor)

Net upward pressure coefficient

Mean dynamic pressure coetficient (pool floor)

Mean dynamic pressure coefficient (fractures)

Positive extreme fluctuation dynamic pressure coefficient (fractures)

Mean pressure coefficient at distance 7 to the jet centerline
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pr

pr

=

[_U X

s, peak

~

QU X

t, peak

Qi

Maximum extreme pressure coefficient at distance 7 to the jet centerline

Minimum extreme pressure coefficient at distance r to the jet centerline

Distance between sensor point and constraint boundary in the direction of
incremental displacement (Chapter 2); Diameter of equivalent foundation
(Chapter 2); Distance from excavation face (Chapter 5)

Horizontal (or shear) displacement

Peak tangent dilation angle

Peak secant dilation angle (also called initial dilation angle)
Mobilized dilation angle

Peak tangent dilation angle

Distance travelled by a sensor point either in or outside C during an
increment

Fractal dimension in the considered direction
Equivalent core diameter in Point Load Test (PLT)
Base unit vector for the global frame

Young’s modulus

Inertia operator relative to point G (centroid of the block)

Annandale’s Erodibility Index

Resultant force applied to the centroid; Resultant moment calculated with
respect to the centroid

Sinusoidal function in OH’s model

Face of rock block (Chapter 2); Unbalance force due to the maximum
dynamic pressure fluctuation (Chapter 8)

Generalized force
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JRC

JCS

Net vertical force associated with surface forces
Net impulse on the block

Factor of safety
Centroid of the block
Coefficient matrix in BEM formulation

Height of the block

Maximum upward displacement of the block

Coefficient matrix in BEM formulation
The horizontal force applied to the wedge by the surrounding rock mass
Effective roughness (dilation angle)

Dilation angle at zero normal stress

3 X 3 Identity matrix

Effective nonstationary trend angle for considered direction

Line of intersection of faces i and j

Point load index

A coefficient in Annandale’s EI method

A coefficient in Annandale’s EI method (representing number of joints)
A coefficient in Annandale’s EI method

Fracture orientation (Annandale’s EI method)

Joint Roughness Coefficient; JRC,and JRC, are JRC of samples with
length of L, and L,, respectively; JRC, and JRC, are magnitudes of

JRC along the major and minor semi-axes of JRC angular distribution,

respectively; JRC, ;... 18 mobilized magnitude of JRC;JRC ,,, is peak
value of JRC; JRC, is magnitude of JRC along the given direction of 6.
Joint Compressive Strength; JCS and JCS, are JCS of samples with

length L, and L, respectively.
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no

Lateral pressure coefficient

A coefficient in Annandale’s EI method (representing block size)

A coefficient in Annandale’s EI method (representing fracture shear
strength)

A “stiffness number” varying from 3.49 to 30.19 MPa/mm

Normal Stiffness
Initial normal stiffness
Shear Stiffness

Discontinuity normal stiffness
Block normal stiffness
Rock mass normal stiffness

Length of the block along the x; axis
Length (Chapter 2);L,is sample length in direct shear test; and L, is

block length; Jet length (Chapter 8); Fissure length (Chapter 8)

Jet breakup length

Block mass

Mass matrix

Damage coefficient (ranges between 1 and 2) (Chapter 3); A function of
the mechanical properties of the fractures and wedge apical angle

A coefficient in Annandale’s EI method

Number (Chapter 2); Normal force (Chapter 7)

Unit normal (block side if normal to 9B, into unconstrained space if
normal to 9dC)

Stiffness exponent

Unbalanced force
Sensor point, contact point, or generic point of the rock block

Traction vector in BEM formulation
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Q =«

Pullout resistance of the wedge, which is the resultant of all forces applied
to the wedge except for its weight and the supporting forces

Maximum dynamic pressure

Minimum dynamic pressure

Total discharge of the jet

First quaternion component (scalar) (Chapter 2); Discharge per unit length
of the jet (Chapter 8)

Vector quaternion component

Intersection between a plane and a segment

Residual or unit vector about which the block rotates

Schmidt rebound on wet fracture surface (Chapter 3 and 4); Distance from
tunnel axis (Chapter 5); Distance from jet centerline (Chapter 8)

Schmidt rebound on dry unweathered sawn surface (Chapter 3 and 4);
Tunnel radius (Chapter 7)

Failure ratio (7 /7, ) ranging from 0.652 to 0.887

Rock Quality Designation

Initial discontinuity stiffness

Ordered list of face vertices listed in consecutive order (Chapter 2);
Resultant of support forces (Chapter 7); Shear force (Chapter 7)

Spin operator

Shear strength of the asperity intact rock

Spin operator

Normal component of traction at any point on the fracture surface

Set of normalized vectors in the null space of the stiffness matrix at a

bifurcation point

Natural period of an open-ended joint
Issuance turbulence intensity
Displacement or vector of degrees of freedom
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=]

NN =

S =

Small displacement or vector of degrees of freedom for small rotations
Displacement vector (BEM formulation)

Displacement (of any point of the medium) along the x axis
Displacement far from excavation face

Displacement caused by the deformability of the discontinuity
Displacement caused by the deformability of the rock block
Displacement caused by the deformability of the constraint space
Uniaxial Compressive Strength

Maximum discontinuity closure

Initial velocity

Velocity

Displacement (of any point of the medium) along the y axis (Chapter 7);
Mean axial flow velocity of the jet (Chapter 8)

Root mean square value of the fluctuating velocity

Jet velocity at issuance

Jet velocity at the pool surface

Maximum closure of fractures

Force applied to a parallelepiped
Displacement (of any point of the medium) along the z axis (Chapter 5);
Weight of the block (Chapter 7)

Plastic work

Length of the block

Plunge pool depth
Vertical co-ordinate, positive upwards
Eigenvector in the null space of the stiffness matrix

Height of the block

Plunging jet length depicted
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Greek Letters

o Semi-apical angle of the wedge

a, Initial asperity angle

Q Major semi-axis of the ellipse (asperity angle in Jing et al. model)
a, Minor semi-axis of the ellipse (asperity angle in Jing ef al. model)
a, Shear-through component obtained by laboratory test

p Free air content

Yr Unit weight of the rock

7. Unit weight of water

6 Accumulated shear displacement

0, Shear displacement

(§h )p Peak dilation displacement (Appendix A)

min(5h) Maximum negative value of dilation (Appendix A)

0, Peak shear displacement (Appendix A)

O peak Peak shear displacement of fractures

o Normal displacement (dilation displacement)

(5v )@( 5,)=0 Shear displacement at which dilation displacement is zero (Appendix A)

(0, pear Dilation displacement at peak shear displacement
or Plastic shear displacement

A Increment

At Maximum duration of extreme pressure fluctuation

£

Maximum apparent dip angle in the shear direction

max

A Step stage (in BS3D analysis); wavelength of asperity (in OH’s model)
v Poisson’s ratio
13 Virtual displacement
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pair
pliq

p mix

¢mobilized

P
¢M

7

Density of the air

Density of the liquid

Density of mixed liquid and air
Stress

Axial stress at failure

Effective confining pressure
Unconfined compression strength
Joint compressive strength
Normal stress

Radial component of stress
Tensile strength of intact rock

Vertical component of stress
Tangential component of stress

Shear stress

Shear strength
Peak shear strength

Shear stress components
Friction angle
Base friction angle

Mobilized base friction angle

Residual friction angle

Angle of friction for sliding along the asperities

Angle to the major semi-axis (asperity angle in Jing et al. model)
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Subscripts (Chapter 2)

B Block

c, h h™ face making up the boundary of the constraint space
C, 1, k Normal to dC at the point where P; ;; entered C
d Caused by dilatancy

f Faces making up the rock block

m Rock mass

n Normal

(n) n™ increment

A\ Vertices of i™ face of the rock block

t Tangential

t,i Triangles of i™ face of the rock block

tt Subdivisions of a face triangle

u Unconstrained motion

Superscripts (Chapter 2)

() I™ iteration
Symbols (Chapter 2)

d Boundary

# Cardinality: number of elements in a set or list

373



10.

1.

12.

13.

14.

REFERENCES

Tonon, F., Analysis of single rock blocks for general failure modes under
conservative and non-conservative forces. International Journal for Numerical
and Analytical Methods in Geomechanics, 2007. 31(14): p. 1567-1608.

Goodman, R.E. and G.H. Shi, Block theory and its application to rock
engineering. 1985, Englewood, NJ: Wiley.

Yarahmadi Bafghi, A. and T. Verdel, The probabilistic key-group method.
International Journal for Numerical and Analytical Methods in Geomechanics,
2003. 27: p. 495-511.

Brady, B.H.G., Stress analysis for rock masses, in Engineering in Rock Masses,
F.G. Bell, Editor. 1992, Butterworth-Heinemann Ltd: Oxford, UK.

Palassi, M. and P. Asadollahi. Design or rockbolts and shotcrete for tunnel in
jointed rock. in the 57th Canadian Geotechnical Conf. (QeoQuebec 2004). 2004.
Quebec, Canada: On CD, Sec. 5G, pp. 33-40.

John, K., Graphical stability analysis of slopes in jointed rock. J Soil Mech Found
Div ASCE, 1968. 94: p. 497-526.

Londe P, V.G., Vormeringer R., Stability of rock slopes, a three-dimensional
study. J Soil Mech Found Div (ASCE), 1969. 95(1): p. 235-62.

Hendron AJ, C.E., Aiyer AK., Analytical and graphical methods for the analysis
of slopes in rock masses. 1980, Technical Report GL-80-2, US Army Engineers
Nuclear Cratering Group, Livermore, CA.

Hoek ET, B.J., Rock Slope Engineering, ed. 3rd. 1981, London, England: Institute
of Min and Metallurgy.

Warburton, P.M., Vector stability analysis of an arbitrary polyhedral rock block
with any number of free faces. Int. J. of Rock Mech. and Mining Sci. & Geomech.
Abstracts, 1981. 18: p. 415-427.

Priest, S.D., Hemispherical Projection Methods in Rock Mechanics. 1985,
London: George Allan & Unwin.

Wittke, W., Methods to analyze the stability of rock slopes with and without
additional loading, in Rock Mechanics and Engineering Geology Supplement 2.
1965, Springer-Verlag KG: Vienna, Austria.

Wittke, W., Felsmechanik. Springer-Verlag KG, Berlin, Germany, 1984. Also,
Rock Mechanics. Springer-Verlag KG, Berlin, Germany, 1990.

Chan, H. and H.H. Einestein, Approach to complete limit equilibrium analysis for
rock wedges-the method of "artificial supports". Rock Mech Rock Eng, 1981. 14:
p. 59-86.

374



15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

Mauldon, M., and Goodman, RE., Vector analysis of keyblock rotation. J Geotech
Geoenviron Eng (ASCE), 1996. 122: p. 976-987.

Tonon, F., Generalization of Mauldon's and Goodman's vector analysis of
keyblock rotations. J Geotech Geoenviron Eng ASCE, 1998. 124(10): p. 913-22.

Jiang, Q.H. and M.R. Yeung, A model of point to face contact for three-
dimensional discontinuous deformation analysis. Rock Mech Rock Eng, 2004. 37:
p. 95-116.

Yeung, M.R., Q.H. Jiang, and N. Sun, Validation of block theory and three-
dimensional discontinuous deformation analysis as wedge stability analysis
methods. Int J Rock Mech Min Sci, 2003. 40: p. 265-75.

Sun, N., et al., Design method coupling block theory and three-dimensional
discontinuous deformation analysis, in 40th US rock mech symp. 2005:
Anchorage, Alaska.

Sofianos, A.l., P. Nomikos, and C.E. Tsoutrelis, Stability of symmetric wedge
formed in the roof of a circular tunnel: nonhydrostatic natural stress field. Int J
Rock Mech Min Sci, 1999. 36: p. 687-691.

Barton, N., Review of a new shear strength criterion for rock joints. Engineering
Geology, 1973. 7: p. 287-332.

Barton, N. and V. Choubey, The Shear Strength of Rock Joints in Theory and
Practice. Rock Mechanics, 1977. 10: p. 1-54.

Tonon, F., A Probabilistic Evaluation of Scour Threshold and Extent in Fractured
Rock Plunge Pools, in Unsolicited proposal to the Bureau of Reclamation,
Department of the Interior. Unfunded. 2006.

Manso, P.A., The influence of pool geometry and induced flow currents in rock
scour by high-velocity plunging jets, A. Schleiss, Editor. 2006, Communiction
No. 25 of the Laboratory of Hydraulic Constructions, EPFL: Lausanne,
Switzerland (ISSN 1661-1179).

Coulomb, C.A., Essai sur une application des regles des maximis et mnimis a
quelquels problemesde statique relatifs. a la architecture. Mem. Acad. Ray. Div.
Sav., 1776. 7: p. 343-387.

Kumsar H., A.O., and Ulusay R., Dynamic and static stability assessment of rock
slopes against wedge failure. Rock Mechanics and Rock Engineering, 2000.
33(1): p. 31-51.

Federspiel, M.P.E.A., E.F.R. Bollaert, and A.J. Schleiss, Respose of an intelligent
block to symmetrical core jet impact, in IAHR. 2009: Vancouver.

Schleiss, AJ. and M.P.E.A. Federspiel, Response of an intelligent block to
symmetrical core jet impact, P. Asadollahi, Editor. 2009.

375



29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Martins, R., Contribuution to the knowledge on the scour action of free jets on
rocky river-beds, in Commision Interhnationale Des Grands Barrages, Onzieme
Congres des Grands Barrages. 1973: Madrid.

Bollaert, E., Transient water pressures in joints and formation of rock scour due
to high-velocity jet impact, A. Schleiss, Editor. 2002, Communication No. 13 of
the Laboratory of Hydraulic Constructions, EPFL: Lausanne, Switzerland. (ISSN
1661-1179).

Bollaert, E.F.R. and A.J. Schleiss, Physically based model for evaluation of rock
scour due to high-velocity jet impact. Journal of Hydraulic Engineeirng, ASCE,
2005. March: p. 153-165.

Sun, N., Yeung, M.R., Lee, C.F., Jiang, Q.H. Design Method Coupling Block
Theory and Three-Dimensional Discontinuous Deformation Analysis. in Alaska
Rocks 2005, 40th U. S. Rock Mechanics Symposium Rock Mechanics for Energy,

Mineral and Infrastructure Development in the Northern Regions (Eds.: G. Chen,
S. Huang, W. Zhou, J. Tinucci). June 25-29, 2004. Anchorage, Alaska.

Goodman, R.E., Block theory and its applications. Geotechnique, 1995. 45: p.
383-432.

Argyris, J., An excursion into large rotations. Computer Methods in Applied
Mechanics and Engineering, 1982. 32: p. 85-155.

Hibbitt Karlsson & Sorensen, 1., ABAQUS Theory Manual Version 6.3. 2002,
Hibbitt, Karlsson & Sorensen, Inc.

Spring, K.W., Euler parameters and the use of quaternion algebra in the
manipulation of finite rotations: a review. Mechanisms and Machine Theory,

1986. 21: p. 365-373.

Hamilton, W.R., Elements of Quaternions. 3 ed. 1969, New York: Chelsea Pub.
Co.

Truesdell, C.A., A4 First Course in Rational Continuum Mechanics 2ed. 1991,
New York: Academic Press.

Sheck, F., Mechanics from Newton's Laws to Deterministic Chaos. 2004, Berlin:
Springer.

Tonon, F., Explicit exact formulas for the 3-D tetrahedron inertia in terms of its
vertex coordinates. Journal of Mathematics and Statistics, 2004. 1: p. 8-11.

Tonon, F., Analytical formulas for the geometric and inertia quantities of the
largest removable blocks around tunnels. International Journal for Numerical and
Analytical Methods in Geomechanics 2007. 31(11): p. 1301-1327.

Udwadia, F.E. and R.E. Kalaba, Analytical Dynamics-A New Approach. 1996,
New York: Cambridge University Press.

376



43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.
57.

Kalaba, R.E. and F.E. Udwadia, Analytical dynamics with constraint forces that
do work. Applied Mathematics and Computation, 2001. 121: p. 211-217.

Kalaba, R.E., H. Natsuyama, and F.E. Udwadia, An extension of Guass's principle
of least constraint. International Journal of General Systems, 2004. 33(1): p. 63-
69.

Udwadia, F.E. and R.E. Kalaba, Non-ideal constraints and Lagrangian dynamics.
Journal of Aerospace Engineering, 2000. 13: p. 17-22.

Udwadia, F.E. and R.E. Kalaba, What is the general form of the explicit equations

of motion for constrained mechanical system? Journal of Applied Mechanics,
2002. 69: p. 335-339.

Udwadia, F.E. and R.E. Kalaba, On the foundations of analytical dynamics.
International Journal of Nonlinear Mechanics, 2002. 37: p. 1079-1090.

Udwadia, F.E. and R.E. Kalaba, Explicit equations of motion for systems with
non-ideal constraints. Journal of Applied Mechanics, 2001. 68: p. 462-467.

Udwadia, F.E., R.E. Kalaba, and P. Phohomsiri, Mechanical systems with
nonideal constraints: explicit equations without the use of generalized inverses.
Journal of Applied Mechanics, 2004. 71(5): p. 618-621.

Udwadia, F.E., New general principle of mechanics and its application to general
nonideal nonholonomic systems. Journal of Applied Mechanics, 2005. 131(4): p.
444-450.

Udwadia, F.E., On constrained motion. Applied Mathematics and Computation,
2005. 164: p. 313-320.

Guass, C.F., Uber Ein Neues Allgemeines Grundgesetz der Mechanik. journal fur
Reine und Angewandte Mathematik, 1829. 4: p. 232-235.

Whittaker, E.T., 4 Treatise on the Analytical Dynamics of Particles and Rigid
Bodies, Cambridge, UK: Cambridge University Press.

Horn, R. and C. Johnson, Matrix Analysis. 1985, Cambridge, UK: Cambridge
University Press.

Hart, R.D., P.A. Cundall, and J. Lemos, Formulation of a three-dimensional
distinct element model - Part Il. Mechanical calculations for motion and
interaction of a system composed of many polyhedral blocks. International Journal

of Rock Mechanics and Mining Sciences and Geomechanical Abstracts, 1988.
25(3): p. 117-125.

Itasca, 3DEC User's Manual. 1999, Minneapolis, MN: Itasca.

Wang, B. and V.K. Garga, 4 numerical method for modelling large displacements
of jointed rocks. 1. Fundamentals. Canadian Geotechnical Journal, 1993. 30: p.
96-108.

377



58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.
69.

70.

Wang, B. and V K. Garga, 4 numerical method for modelling large displacements
of jointed rocks. II. Modelling of rock bolts and groundwater and applications.
Canadian Geotechnical Journal, 1993. 30: p. 109-123.

Li, G.G. and J. Vance. 4 3-D block-spring model for simulating the behavior of
jointed rocks. in Proceeding of the 37th US Rock Mechanics Symposium. 1999.
Vail, USA: Balkema: Rotterdam.

Jang, H.I. and C.I. Lee. Development of a three-dimensional discontinuous
deformation analysis technique and its application to toppling failure. in
Proceeding of the Fifth International Conference on Analysis of Discontinuous
Deformation. 2002. Wuhan, China: Balkema: Rotterdam.

Shi, G.H. Three dimensional discontinuous deformation analysis. in Proceedings
of the 38th US Rock Mechanics Symposium. 2001. Washington, DC: Balkema:
Rotterdam.

Shi, G.H. Application of discontinuous deformation analysis (DDA) to rock
engineering. in International Symposium on Computational Mechanics, July 30 -
August 1, 2007. 2007. Beijing, China.

Shi, G.H. Manifold method. Discontinuous deformation analysis (DDA) and
simulations of discontinuous media. in Proceedings of the First International

Forum on Discontinuous Deformation Analysis (DDA) and Simulations of
Discontinuous media. 1996. Berkeley, CA: TSI Press: Albuquerque, NM.

Riks, E., The application of Newton's method to the problem of elastic stability.
Transactions of the ASME Journal of Applied Mechanics, 1972. 39: p. 1060-
1065.

Wempner, G.A., Discrete approximations related to nonlinear theories of solids.
International Journal of Solids and Structures, 1971. 7: p. 1581-1599.

Felippa, C., Nonlinear Finite Element Methods. (accessed 12/29/05), Department
of Aerospace Engineering, University of Colorado at Boulder.
www.colorado.edu/engineering/CAS/courses.d/NFEM.d/.

Quarteromi, A., R. Sacco, and F. Saleri, Numerical Methematics. 2000, New
York: Springer.

Pars, L.A., A Treatise on Analytical Dynamics, London: Heinemann.
Seidel, R., 4 simple and fast incremental randomized algorithm for computing

trapezoidal decompositions and for triangulating polygons. Computational
Geometry: Theory and Applications, 1991. 1(1): p. 51-64.

Narkhede, A. and D. Manocha, Fast polygon triangulation based on Seidel's
algorithm, in Graphics Gems, V. Alan Paeth, Editor. 1995, Academic Press: New
York. p. 394-397. http://www.cs.unc.edu/~dm/CODE/GEM/chapter.html.

378



71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

&4.

85.

86.

O'Rourke, J., Computational Geometry in C. 2 ed. 1998, NY: Cambridge
University Press.

van den Bergen, G., Efficient collision detection of complex deformable models
using AABB trees. Journal of Graphics Tools, 1998. 2: p. 1-13.

Henle, M., A Combinatorial Introduction to Topology. 1979, San Francisco: W.H.
Freeman.

Haines, E., Point in polygon strategies, in Graphics Gems IV, P. Heckbert, Editor.
1994, Academic Press: New York. p. 24-46.
http://www.acm.org/pubs/tog/editors/erich/ptinpoly/.

Franklin, R.W,, http.//www.ecse.rpi.edu/Homepages/wrf/Research/Short-
Notes/pnpoly.html.

Gottschalk, S., M.C. Lin, and D. Manocha. OBB-Tree: a hierarchical structure
for rapid interfence detection. in Proceedings of ACM Conference SIGGRAPH 96
1996. Chicago.

Terdiman, P., http.//www.codercorner.com/Opcode.htm.

Goodman, R.E., The deformability of joints. ASTM Special Technical
Publication, 1970. 477: p. 174-196.

Bandis, S.C., A.C. Lumsden, and N. Barton, Experimental studies of scale effects
on the shear behaviour of rock joints. 1981. 18: p. 1-21.

Bandis, S.C., A.C. Lumsden, and N.R. Barton, Fundamentals of Rock Joint
Deformation. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1983. 20(6): p.
249-268.

Barton, N., S.C. Bandis, and K. Bakhtar, Strength, Deformation and Conductivity
Coupling of Rock Joints. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1985.
22(3): p. 121-140.

Chrisfield, M.A., Non-linear Finite Element Analysis of Solids and Structure-
Volume 1.1991, Wiley: Chichester.

Sagaseta, C., Modes of instability of a rigid block on an inclined plane. Rock
Mechanics and Rock Engineering, 1986. 19: p. 261-266.

Brown, E.T., Rock characterization, testing and monitoring, ISRM Suggested
Methods. 1981, Oxford: Pergamon Press.

Muralha, J., Evaluation of mechanical characteristic of rock joints under shear
loads, in International Symposium on Rock Joints. 1990, A.A. Balkema: Leon,
Norway.

Swan, G. Tribbology and the characterization of rock joints. in 22nd US Symp. on
Rock Mechanics 1981. Boston.

379



87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

Plesha, M.E., Constitutive models for rock discontinuities with dilatancy and
surface degradation. Int. J. Numerical and Analytical Methods in Geomechanics,
1987. 11: p. 345-362.

Kane, F.W. and E.C. Drumm. 4 modified 'cap’ model for rock joints. in 28th US
Symp. on Rock Mechanics. 1987. Tuscon.

Desai, C.S. and K.L. Fishman. Constitutive models for rocks and discontinuities
(joints). in 28th US Symp. on Rock Mechanics. 1987. Tuscon.

Hsu-Sun, K. Non-linear analysis of the mechanical properties of joints and weak
intercalations in rock. in 3rd Int. Conf. on Numerical Methods in Geomechanics.
1979. Aachen.

Ladanyi, B. and G. Archambault, Simulation of the shear behaviour of a jointed
rock mass, in The 11th Symposium on Rock Mechanics. 1969: Berkeley, p. 105-
125.

Barton, N., Estimation of in situ shear strength from back analysis of failed rock
slopes, in Int. Symp. Rock Mech. Rock Fracture. 1971, Paper 11-27: Nancy.

Goodman, R.E. The mechanical properties of joints. in Proc. 3rd Congr. ISRM,
Vol. 14, p. 127-140. 1974. Denver.

Pande, G.N. 4 constitutive model of rock joints. in Int. Symp. on Fundamentals of
Rock Joints. 1985. Bjorkliden, Sweden.

Heuze, F.E. and T.G. Barbour. Models for jointed rock structures. in Ist Int. Conf.
on Computing in Civil Engng. 1981. NY, ASCE.

Bandis, S.C., Mechanical properties of rock joints, in International Symposium on
Rock Joints. 1990, A.A. Balkema: Leon, Norway.

Goodman, R.E., Methods of Geological Engineering in Discontinuous Rock.
1976: West, New York.

Amadei, B. and S. Saeb, Constitutive models of rock joints, in Internation
Symposium on Rock Joints. 1990, A.A. Balkema: Leon, Norway.

Jing, L., O. Stephansson, and E. Nordlund, Study of rock joints under cyclic
loading conditions. Rock Mech. Rock Engng., 1993. 26(3): p. 215-232.

Jing, L., Numerical modeling of jointed rock masses by distinct element method
for two and three-dimensional problems 1990, Lulea University of Technology:
Lulea, Sweden.

Qiu, X., et al., An investigation of the mechanics of rock joints-Part II: Analytical
investigation int. J. Rock. Mech. Min. Sci. & Geomech. Abstr., 1993. 30(3): p.
271-287.

Patton, F.D., Multiple modes of shear failure in rock, in The 1st Congress of the
International Society of Rock Mechanics. 1966: Lisbon, p. 509-513.

380



103.

104.

105.

106.

107.

108.

109.

110.

I11.

112.

113.

114.

115.

116.

117.

Huang, X., et al., An investigation of the mechanics of rock joints-Part I:
Laboratory investigation. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1993.
30(3): p. 257-269.

Saeb, S., 4 variance on Ladanyi and Archambault's shear strength criterion, in
Rock Joints, S. Barton, Editor. 1990, Balkema: Rotterdam. p. 701-705.

Gens, A., I. Carol, and E.E. Alonso, 4 constitutive model for rock joints,

formulation and numerical implementation. Computers and Geotechnics, 1990. 9:
p. 3-20.

Desai, C.S. and K.L. Fishman, Plasticity-based constitutive model with associated
testing for joints. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1991. 28(1): p.
15-26.

Wang, J.G., Y. Ichikawa, and C.F. Leung, 4 constitutive model for rock interfaces
and joints. Int. J. Rock Mech. Min. Sci., 2003. 40: p. 41-53.

Leichnitz, W., Mechanical properties of rock joints. Int. J. Rock Mech. Min. Sci.
& Geomech. Abstr., 1985. 22(5): p. 313-321.

Kana, D.D., D.J. Fox, and S.M. Hsiung, Interlock/friction model for dynamic
shear response in natural jointed rock. Int. J. Rock. Mech. Min. Sci. & Geomech.
Abstr., 1996. 33(4): p. 371-386.

Fox, D.J., D.D. Kana, and S.M. Hsiung, Influence of interface roughness on
dynamic shear behavior in jointed rock. Int. J. Rock. Mech. Min. Sci., 1998.
35(7): p. 923-940.

Samadhiya, N.K., M.N. Viladkar, and M.A. Al-Obaydi, Three-dimensional
Jjoint/interface element for rough undulating major discontinuities in rock masses.
Int. J. Geomechanics, 2008. 8(6): p. 327-335.

Pratt, H.R., A.D. Black, and B. W.F., Friction and deformation of jointed quartz
diorite, in Proc. 3rd Congr. ISRM, Vol IIA, p. 306-310. 1974: Denver.

Bandis, S.C., Experimental studies of scale effects on shear strength and
deformation of rock joints, PhD thesis. 1980, University of Leeds, 385 p.

Barton, N. and S.C. Bandis, Effects of block size on t he shear behavior of jointed
rock, in 23rd US Symposium on Rock Mechanics. 1982: Berkely, California.

Barton, N., Modelling Rock Joint Behavior from In Situ Block Tests: Implications

for Nuclear Waste Repository Design. 1982, Office of Nuclear Waste Isolation,
Columbus, OH, 96p., ONWI-308, September 1982.

Barton, N., Scale effects or sampling bias?, in Ist Int. Workshop on Scale Effects
in Rock Masses. 1990: Leon, Norway.

Hencher, S.R., J.P. Toy, and A.C. Lumsen, Scale dependent shear strength of
rock joints. Scale effect in Rock Masses. 1993, Rotterdam: Balkema.

381



118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

Hencher, S.R. and L.R. Richards, The basic frictional resistance of sheeting joints
in Hong Kong grantie. Hong Kong Engineer, 1982. 11(2): p. 21-25.

Hencher, S.R. and L.R. Richards, Laboratory dircet shear testing of rock
discontinuities. Ground Engineering, 1989. March 1989: p. 24-31.

Cording, E.J., Shear strength of bedding and foliation surface, in A speciality
conference, ASCE. 1976.

Cording, E.J. and J.W. Mahar, The effect of natural goelogic discontinuities on
behavior of rock in tunnels, in 1974 Rapid Excavation and Tunneling Conference
1974: San Francisco, CA.

McMahon, B.K., Some practical considerations for the estimation of shear
strength of joints and other discontinuities, in Int. Symp. on Fundamentals of
Rock joints. 1985: Bjorkliden, Sweden.

Lee, S.W., Stability around underground openings in rock with dilative, non-
persistent and multi-scale wavy joints using a discrete element method, in Civil
Engineering 2003, Univeristy of Illinois: Urbana-Champaign.

OH, JM., Three dimensional numerical modeling of excavation in rock with
dilatant joints, in Civil Engineering. 2005, University of Illinois: Urbana-
Champaign. p. 232.

Huang, T.H. and Y.S. Doong, Anisotropic shear strength of rock joints, in
International Symposium on Rock Joints. 1990, A.A. Balkema: Leon, Norway.

Jing, L., E. Nordlund, and O. Stephansson, An experimental study on the
anisotropy and stress-dependency of the strength and deformability of rock joints.
Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1992. 29(6): p. 535-542.

Grasselli, G. and P. Egger, Constitutive law for the shear strength of rock joints
based on three-dimensional parameters. Int. J. Rock Mech. Min. Sci., 2003. 40:
p. 25-40.

Grasselli, G., J. Wirth, and P. Egger, Quantitative three-dimensional description
of a rough surface and parameter evolution with shearing. Int. J. Rock Mech.
Min. Sci., 2002. 2002: p. 789-800.

Kulatilake, P.H.S.W., B.B. Panda, and N. Nghiem, Development of new peak
shear-strength criterion for anisotropic rock joints. Journal of Engineering

Mechanics, 1999. 125(9): p. 1010-1017.

Kulatilake, P.H.S.W., et al., New peak shear strength criteria for anisotropic rock
joints. Int. J. Rock. Mech. Min. Sci. & Geomech. Abstr., 1995. 32(7): p. 673-697.

Byerlee, J.D., The fracture strength and frictional strength of Weber sandstone.
Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1975. 12: p. 1-4.

Barton, N., Rock Mechanics Review: The Shear Strength of Rock and Rock Joints.
Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1976. 13: p. 255-279.

382



133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

Jaeger, J.C., The frictional properties of joints in rock Geofis. Pura Appl., Milano,
1959. 43: p. 148-158.

Krsmanovic, D. and Z. Langof, Large scale laboratory tests of the shear strength
of rocky material. Rock Mech Eng. Geol., Suppl., 1964. 1: p. 20-30.

Lane, K.S. and W.J. Heck. Triaxial testing for strength of rock joints. in 6th Symp.
Rock Mech. 1964. Rolla, MI, p. 98-108.

Patton, F.D., Multiple modes of shear failure in rock and related materials,
Thesis. 1966, University of Illinois.

Goldstein, M., et al., Investigation of mechanical properties of cracked rock, in
Ist Congr. Int. Soc. Rock Mech. 1966, Vol. 1, p. 521-524: Lisbon.

Newland, P.L. and B.H. Alley, Volume changes in drained triaxial tests on
granular materials. Geotechnique, 1957. 7: p. 17-34.

Rowe, P.W., L. Barden, and L.K. Lee, Energy components during the triaxial cell
and direct shear tests. Geotechnique, 1964. 14: p. 247-261.

Patton, F.D. and D.U. Deere. Significant geologic factors in rock slope stability.
in Symp. Theor. Background Plann. Open Pit Mines with spec. Ref. to Slope Stab.
1970. Johannesburg: p. 143-151, Balkema, Cape Town.

Coulson, J.H. Shear strength of flat surfaces in rock. in 13th Symp. on Rock Mech.
1972. Urbana, IL: p.77-105.

Hutchinson, J.N. Field and laboratory studies of a fall in Upper Chalk cliffs at
Joss Bay, Isle of Thanet. Stress-strain behaviour of soils. in Roscoe Mem. Symp.
1972. Cambridge University: p. 692-706. G.T.Foulis, Henley-on-Thames.

Krsmanovic, D., Initial and residual shear strength of hard rocks. Geotechnique,
1967. 17: p. 145-160.

Ripley, C.F. and K.L. Lee, Sliding friction tests on sedimentary rock specimens,
in 7th Congr. Large Dams. 1962, Vol. 4, p. 657-671: Rome.

Wallace, G.B., E.J. Slebir, and F.A. Anderson. Foundation testing for Auburn
Dam. in 11th Symp. Rock Mech. 1970. Berkely, CA: p. 461-498.

Miller, R.P., Engineering classification and index properties for intact rock. 1965,
PhD Thesis, University of Illinois. p. 282.

Jaeger, J.C., Friction of rocks and stability of rock slopes. Geotechnique, 1971.
21: p. 97-134.

Bieniawski, Z.T., Estimating the strength of rock materials. J. S. Aftr. Inst. Min.
Metal., 1972. 74: p. 312-320.

Hoek, E. and J.W. Bray, Rock Slope Engineering. 1977, London: Institution of
Minning and Metallurgy.

383



150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

Jing, L., E. Nordlund, and O. Stephansson, A4 3-D constitutive model for rock

Jjoints with anisotropic friction and stress dependency in shear stiffness. Int. J.
Rock Mech. Min. Sci. & Geomech. Abstr., 1994. 31(2): p. 173-178.

Goodman, R.E., R.L. Taylor, and T.A. Brekke, A model for the mechanics of
jointed rock. J. Soil Mech. Fdns Div., Proc. Am. Soc. Civ. Engrs., 1968.
94(SM3): p. 637-659.

Iwai, K., Fundamental studies of fluid flow through a single fracture, PhD thesis.
1976, University of California, Berkeley, 208 p.

Shehata, W.M., PhD thesis (1971), queted in Sharp J.C. and Miani Y.N.T., in
fundamental considerations on the hydrualic characteristics of joints in rock, in
Proc. Symp. on Percolation Through Fissured Rock, Paper No. TI-F. 1972:
Stuttgart.

Yoshinaka, R. and T. Yamabe, Joint stiffness and the deformation behaviour of
discontinuous rock. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1986. 23(1):
p. 19-28.

Yoshinaka, R. and H. Nishimaki, Experimenal and numerical studies on bearing
capacity of soft rock foundation. Proc. Japan Soc. Civ. Engrs, 1980. 304: p. 113-
128.

Alvarez, T.A., E. Cording, and R.A. Mikhail, Hydromechanical behavior of rock
joints: A re-interpretation of published experiments, in 35th US Symp on Rock
Mechanics. 1995, Balkema: Lake Tahoe, NV.

Barton, N., 4 model study of rock joint deformation. Int. J. Rock Mech. Min. Sci.,
1972.9: p. 570-602.

Asadollahi, P., Modeling Rockbolts and Shotcrete in Tunnels Excavated Through
Jointed Rock and Comparison with an Empirical Method, MSc Thesis, in Civil
Engineering. 2004, University of Tehran: Tehran.

Barton, N. and K. Bakhtar, Rock joint description and modelling for the
hydrothermomechanical design of nuclear waste repositories. 1983, Terra Tek
Engineering. p. 270.

Kulhaway, F.H., Stress-deformation properties of rock and rock discontinuities.
Engineering Geology, 1975. 8: p. 327-350.

Wibowo, J., et al., Effect of boundary conditions on the strength and
deformability of replicas of natural fractures in welded tuff: data report. 1993,
Sandia National Laboratories: Albuquerque, New Mexico.

Wibowo, J., Effect of boundary conditions and surface damage on the shear
behavior of rock joints: tests and analytical predictions, in Civil Engineering.
1994, University of Colorado at Boulder: Boulder, CO. p. 200.

384



163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

Kondner, R.L., Hyperbolic stress-strain response: cohesive soils. J. Soil Mech.
Fdns Div., Proc. Am. Soc. Civ. Engnrs, 1963. 89(SMI): p. 115-143.

Duncan, J.M. and C.Y. Chang, Non-linear analysis of stress and strain in soils. J.
Soil Mech. Fdns. Div. Am, Soc. Civ. Engrs., 1970. 96: p. 1629-1655.

Chen, E.P., 4 constitutive model for jointed rock mass with orthogonal sets of
joints. Journal of Applied Mechanics, 1989. 56: p. 25-32.

Zubelewicz, A., et al. A constitutive mpdel for cyclic behavior of dilatant rock
joints. in The second International Conference on Constitutive laws for
Engineering Materials 1987.

Lee, H.S., et al., Influence of asperity degradation on the mechanical behavior of
rough rock joints under cyclic shear loading. Int. J. Rock Mech. Min. Sci., 2001.
38: p. 967-980.

Homand-Etienne, F., et al., Rock joints behaviour under cyclic direct shear tests,
in Rock Mechanics for Industry, K. Amadei, Scott Smealie, Editor. 1999,
Balkema: Rotterdam. p. 399-406.

Hommand, F., T. Belem, and M. Souley, Friction and degradation of rock joint
surfaces under shear loads. Int. J. Numerical and Analytical Methods in
Geomechanics, 2001. 25: p. 973-999.

Hutson, R.W. and C.H. Dowding, Joint asperity degradation during cyclic shear.
Int. J. Rock. Mech. Min. Sci. & Geomech. Abstr., 1990. 27(2): p. 109-119.

Hutson, R.W., Preparation of duplicate rock joints and their changing dilatancy
under cyclic shear. 1987, Northwestern University: Evanston, Illinois.

Weissbach, G. and H.K. Kutter. The influence of stress and strain history on the
shear strength of rock joints. in The 3rd International Congress of Engineering
Geologists. 1978. Madrid, Spain.

Martin, G.R. and P.J. Millar. Joint strength characteristics of a weathered rock. in
The 3rd International Congress on Rock Mechanics. 1974. Denver, Colorado.

Celestino, T.B. and R.E. Goodman. Path dependency of rough joints in bi-
directional shearing. in 4th International Congress on Rock Mechanics. 1979.
Montreux, Switzerland.

Schneider, H.J., The friction and deformation behavior of rock joints, in Rock
Mech. 8. 1976, Springer-Verlag. p. pp. 169-185.

Olsson, R. and N. Barton, An Improved Model for Hydromechanical Coupling
During Shearing of Rock Joints. Int. J. Rock Mech. Min. Sci. , 2001. 38: p. 317-
329.

Tse, R. and D.M. Cruden, Estimating joint roughness coefficient. Int J] Rock Mech
Min Sci, 1977. 16: p. 303-307.

385



178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

ISRM, Suggested methods for the quantitative description of discontinuities in
rock masses. Int. J. Rock. Mech. Min. Sci. & Geomech. Abstr., 1978. 15: p. 319-
68.

Saeb, S., Effect of boundary conditions on the behavior of a dilatant rock joint.
1989, University of Colorado at Boulder, PhD.

Saeb, S. and B. Amadei. Effect of boundary conditions on the shear behavior of a
dilatant rock joint. in 30th US Symp. Rock Mech. 1989. Morgantown, WV.

Saeb, S. and B. Amadei, Modelling joint response under constant or variable
normal stiffness boundary conditions. Int. J. Rock. Mech. Min. Sci. & Geomech.
Abstr., 1990. 27: p. 213-217.

Saeb, S. and B. Amadei, Modelling rock joints under shear and normal loading.
Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1992. 29(3): p. 267-278.

Kutter, H.K., Results of Laboratory Direct Shear Tests on Four Rock Types, in
Rock Mechanics Research Report, No. 28. 1974, Imperical Colledge, London.

Huang, T.H., C.S. Chang, and C.Y. Chao, Experimental and mathematical
modeling for fracture of rock joint with regular asperities. Engineering Fracture
Mechanics, 2002. 69: p. 1977-1996.

Van Sint Jan, M.L., Shear tests of model rock joints under stiff normal loading, in
International Symposium on Rock Joints. 1990, A.A. Balkema: Leon, Norway.

Aydan, O., et al., Studies on interfaces and discontinuities and an incremental
elasto-plastic constitutive law, in International Symposium on Rock Joints. 1990,
A.A. Balkema: Leon, Norway.

Wibowo, J., et al., Effect of boundary conditions on the strength and
deformability of replicas of natural fractures in welded tuff: data analysis. 1994,
Sandia National Laboratories: Albuquerque, New Mexico.

Jacobsson, L., Oskarshamn Site Investigation - Borehole KLX02 - Uniaxial
compression test of intact rock. 2004, Svensk Kirnbrinslehantering AB.

Jacobsson, L., Oskarshamn Site Investigation - Borehole KLX02 - Normal
Loading and Shear Tests on Joints. 2004, Svensk Kérnbrinslehantering AB
(SKB).

Jacobsson, L., Oskarshamn Site Investigation - Borehole KLX04A - Normal
Loading and Shear Tests on Joints. 2004, Svensk Kérnbrinslehantering AB
(SKB).

Jacobsson, L., Oskarshamn Site Investigation - Borehole KLX04A - Triaxial
compression test of intact rock. 2004, Svensk Kirnbrinslehantering AB (SKB).

Jacobsson, L., Oskarshamn Site Investigation - Borehole KLX06A - Triaxial
compression test of intact rock. 2005, Svensk Kirnbrinslehantering AB (SKB).

386



193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

Jacobsson, L., Fotsmark Site Investigation - Borehole KFMO05A - Triaxial
compression test of intact rock. 2005, Svensk Karnbranslehantering AB (SKB).

Jacobsson, L., Forsmark Site Investigation - Borehole KFMO05A - Normal
Loading and Shear Tests on Joints. 2005, Svensk Kérnbranslehantering AB
(SKB).

Jacobsson, L., Fotsmark Site Investigation - Borehole KFM06A - Uniaxial
compression test of intact rock. 2005, Svensk Karnbranslehantering AB (SKB).

Jacobsson, L., Oskarshamn Site Investigation - Borehole KLX03A4 - Triaxial
compression test of intact rock. 2005, Svensk Kéirnbranslehantering AB.

Jacobsson, L., Fotsmark Site Investigation - Borehole KFMO08A - Triaxial
compression test of intact rock. 2005, Svensk Karnbranslehantering AB (SKB).

Jacobsson, L., Fotsmark Site Investigation - Borehole KFM07A - Uniaxial
compression test of intact rock. 2005, Svensk Karnbranslehantering AB (SKB).

Jacobsson, L., Oskarshamn Site Investigation - Borehole KLXI10 - Triaxial
compression test of intact rock. 2006, Svensk Kéirnbranslehantering AB.

Jacobsson, L., Oskarshamn Site Investigation - Borehole KLXI2A - Triaxial
compression test of intact rock. 2006, Svensk Karnbranslehantering AB (SKB).

Jacobsson, L., Forsmark Site Investigation - Borehole KFM09A4 - Triaxial
compression test of intact rock. 2006, Svensk Karnbranslehantering AB (SKB).

Jacobsson, L. and M. Flansbjer, Oskarshamn Site Investigation - Borehole
KLX064 - Normal Loading and Shear Tests on Joints. 2005, Svensk
Kérnbréanslehantering AB (SKB).

Jacobsson, L. and M. Flansbjer, Forsmark Site Investigation - Borehole KFM06A
- Normal Loading and Shear Tests on Joints. 2005, Svensk Karnbrianslehantering
AB (SKB).

Jacobsson, L. and M. Flansbjer, Fotsmark Site Investigation - Borehole KFM05A

- Normal test with direct and indirect deformation measurement together with
shear test on joints. 2005, Svensk Karnbrianslehantering AB (SKB).

Jacobsson, L. and M. Flansbjer, Oskarshamn Site Investigation - Borehole
KLX034 - Normal Loading and Shear Tests on Joints. 2005, Svensk
Kérnbréinslehantering AB.

Jacobsson, L. and M. Flansbjer, Fotsmark Site Investigation - Borehole KFM08A
- Normal load and shear test on joints. 2005, Svensk Karnbranslehantering AB
(SKB).

Jacobsson, L. and M. Flansbjer, Forsmark Site Investigation - Borehole KFM07A4

- Normal Loading and Shear Tests on Joints. 2005, Svensk Kérnbrénslehantering
AB (SKB).

387



208.

209.

210.

211.

212.

213.

214.

215.
216.

217.

218.

219.

220.

221.

222.

Jacobsson, L. and M. Flansbjer, Oskarshamn Site Investigation - Borehole KLX10
- Normal Loading and Shear Tests on Joints. 2006, Svensk Kéarnbrinslehantering
AB.

Jacobsson, L. and M. Flansbjer, Oskarshamn Site Investigation - Borehole
KLXI124 - Normal Loading and Shear Tests on Joints. 2006, Svensk
Kérnbréanslehantering AB (SKB).

Jacobsson, L. and M. Flansbjer, Forsmark Site Investigation - Borehole KFM09A
- Normal Loading and Shear Tests on Joints. 2006, Svensk Kéarnbrinslehantering
AB (SKB).

Heok, E. and E.T. Brown, Underground Excavation in Rock. 1980: London Instn.
Min. Metall.

Heok, E. and E.T. Brown, Empirical srength criterion for rock masses. J.
Geotech. Engng Div. ASCE, 1980. 106: p. 1013-1035.

Amadei, B., et al., Applicability of existing models to predict the behavior of
replicas of natural fractures of welded tuff under different boundary conditions.
Geotechnical and Geological Engineering, 1998. 16: p. 79-128.

John, K.W., Civil engineering approach to evaluate strength and deformability of
regularly jointed rock, in Proc. 11th Symp. on Rock Mechanics, p. 68-82. 1970.

Szirtes, T., Applied dimensional analysis and modeling. 1997: McGraw-Hill.

Asadollahi, P. and F. Tonon. Anisotropy of the strength, deformability, and
dilatancy of rock fractures. in 43rd US Rock Mechanics Symposium and 4th US-
Canada Rock Mechanics Symposium. 2009. Ashville, NC.

Aufmuth, R.E., 4 systematic determination of rock hardness by rebound hammer
method. ASTM Standard, 1973. 0409 (D 5873-00).

Cargill, J.S. and A. Shakoor, Evaluation of empirical methods for measuring the
uniaxial compressive strength. Int J Rock Mech Min Sci, 1990. 27: p. 495-503.

Dearman, W.R. and T.Y. Irfan. Assesment of the degree of weathering in granite
using petrographic and physical index tests. in Proc. Int. Symp. on Deterioration
and Protection of Stone Monuments. 1978. Unesco, Paris, pp. 1-35, Paper 2.3.

Deere, D.U. and R.P. Miller, Engineering classification and index properties for
intact rocks, in Tech Report, Air Force Weapons Lab. 1966: New Mexico, No.
AFNL-TR, pp. 65-116. Kirtland.

Ghose, A.K. and S. Chakraborti, Empirical strength indices of Indian coals-an
investigation, in 27th US Symp. on Rock Mech. 1986, Balkema, Rotterdam, pp.
59-61.

Haramy, K.Y. and M.J. DeMarco, Use of Schmidt hammer for rock and coal
testing, in 26th US Symp. on Rock Mech. 1985, Balkema, Rotterdam, pp. 549-555:
Rapid City.

388



223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

234.

235.

236.

237.

Kahraman, S., Evaluation of simple methods for assessing the uniaxial
compressive strength of rock. Int J Rock Mech Min Sci, 2001. 38: p. 981-994.

Katz, O., Z. Reches, and J.C. Roegiers, Evaluation of mechanical rock properties
using a Schmidt Hammer. Int J Rock Mech Min Sci, 2000. 37: p. 723-728.

Kidybinski, A., Method of investigation, estimation and classification of roofs in
the USA for the selection of suitable mechanized support for long walls, in Project
No. 14-01-0001-1450. 1980, Centeral Mining Institute: Katowice, Poland.

Sachpazis, C.I., Correlating Schmidt hardness with compressive strength and
Young's modulus of carbonate rocks. Bull. Int. Assoc. Eng. Geol., 1990. 42: p. 75-
83.

Shorey, P.R., et al., Schmidt hammer rebound data for estimation of large scale in
situ coal strength. Int J] Rock Mech Min Sci Geomech Abstr, 1984. 21: p. 39-42.

Singh, R.N., F.P. Hassani, and P.A.S. Elkington, The application of strength and
deformation index testing to the stability assessment of coal measures
excavations, in 24th US Symp. on Rock Mech. 1983, Balkema, Rotterdam: Texas
A and M Univ. AEG.

Tugrul, A. and LH. Zarif, Correlation of mineralogical and textural
characteristics with engineering properties of selected granitic rocks from Turkey

Engineering Geology, 1999. 51: p. 303-317.

Xu, S., P. Grasso, and A. Mahtab, Use of Schmidt hammer for estimating
mechanical properties of weak rock, in Proc. 6th International IAEG Congress,
vol. 1. 1990, Balkema, Rotterdam.

Yasar, E. and Y. Erdogan, Estimation of rock physiomechanical properties using
hardness methods. Engineering Geology, 2004. 71: p. 281-288.

Aydin, A. and A. Basu, The Shmidth hammer in rock material characterization.
Engineering Geology, 2005. 81: p. 1-14.

Aydin, A., ISRM Suggested method for determination of the Schmidt hammer
rebound hardness: Revised version. Int ] Rock Mech Min Sci, 2009. 46: p. 627-
634.

ISRM, Suggested Methods for Determining Point Load Strength. International
Journal of Rock Mechanics & Mining Sciences, 1985. 22(2): p. 51-60.

Brady, B.H.G. and E.T. Brown, Rock Mechanics for underground mining, ed. T.
edition. 2004, Dordrecht, The Netherlands: Kluwer Academic Publishers.

Mirtich, B., Fast and accurate computation of polyhedral mass properties.
Journal of graphics tools, 1995. 1(2): p. 31-50.

Aliabadi, M.H., The Boundary Element Method (Volume 2: Applications in Solids
and Structures). Vol. 2. 2002, West Sussex, England: John Wiley & Sons, Ltd.

389



238.

239.

240.

241.

242.

243.
244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

Balas, J., J. Sladek, and V. Sladek, Stress Analysis by Boundary Element Method.
1989, Amesterdam: Elsevier.

Brebbia, C.A., J.C.F. Telles, and L.C. Wrobel, Boundary Element Techniques,
Theory and Applications in Engineering 1984, Berlin: Springer.

Paris, F. and J. Canas, Boundary FElement Method, Fundamentals and
Applications. 1997, Oxford: Oxford University Press.

Vodicka, R., V. Mantic, and F. Paris, Note on the removal of rigid body motions
in the solution of elastostatic traction boundary value problems by SGBEM.
Engineering Analysis with Boundary Elements, 2006. 30: p. 790-798.

Bonnet, M., G. Maier, and C. Polizzotto, Symmetric Galerkin boundary element
method. Appl. Mech. Rev., 1998. 15: p. 669-704.

Szabo, B. and J. Babuska, The finite element method. 1991, New York: Wiley.

Zienkiewicz, O.C. and R.L. Taylor, The finite element method, vol. 1: the basis.
2000, Oxford: Butterworth-Heinemann.

Blazquez, A., et al., On the removal of rigid body motions in the solution of
elastostatic problems by direct BEM. International Journal for Numerical
Methods in Engineering, 1996. 39: p. 4021-4038.

Chen, G. and J. Zhou, Boundary Element Methods. 1992, London: Academic
Press.

Prossdorf, S. and V.G. Mazya, Linear and boundary integral equations. 1991,
Berlin: Springer.

Costabel, M., Principles of boundary element methods. Comput. Phys. Reports,
1987. 6: p. 243-274.

Hsiao, G. and W.L. Wendland. On a boundary integral method for some exterior
problems in elasticity in Thiliski University 1985: Tbiliski University Press.

Karrila, S.J. and S. Kim, Integral equations of the second kind for Stokes flow:

direct solution for physical variables and removal of inherent accuracy
limitations. Chem Eng Comm, 1989. 82: p. 123-61.

Greenbaum, A., L. Greengard, and G.B. McFadden, Laplace's equation and the
Dirichlet-Neumann map in multiply connected domains. J. Comput. Phys. , 1993.
105: p. 267-278.

Heise, U., Removal of zero eigenvalues of integral operators in elastostatic
boundary value problems. Acta Mech., 1981. 41: p. 41-61.

Lutz, E., W. Ye, and S. Mukherjee, Elimination of rigid body modes from
discritized boundary integral equations. Int. J. Solids Struct., 1998. 35: p. 4427-
36.

390



254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

265.

266.

267.

Phan-Thien, N. and D. Tullock, Compeleted double layer boundary element
method in elasticity. J Mech Phys Solids, 1993. 41: p. 1067-86.

Power, H. and G. Miranda, Second kind integral equation formulation of Stokes'
flows past a particle of arbitrary shape. SIAM J Appl Math, 1987. 47: p. 689-98.

Ugodchikov, A.G. and N.M. Khutorianskii, Boundary Element Method in the
Mechanics of the Deformable Solid Body (in Russian). 1986, Kazan: Kazan
Univeristy Publishers.

Vable, M., Importance and use of rigid body mode in boundary element method.
International Journal for Numerical Methods in Engineering, 1990. 29: p. 453-72.

Chen, G. and S. Sun, Augmenting a Fredholm operator of zero index to achieve
invertibility for elliptic boundary value problems. J. Math. Anal. Appl., 1993.
176: p. 24-48.

Telles, J.C.F. and F.A. De Paula, Boundary elements with equilibrium
satisfaction-a consistent formulation for potential and elastostatic problems.
International Journal for Numerical Methods in Engineering, 1991. 32: p. 609-21.

Cowper, G.R., Gaussian Quadrature Formulas for Triangles. International
Journal of Numerical Methods in Engineering 1973. 7: p. 405-408.

Lyness, J.N. and D. Jespersen, Moderate Degree Symmetric Gaussian Quadrature
Rules for the Triangle. International Journal for Numerical Methods in
Engineering, 1985. 21: p. 1129-1148.

Dunavant, D.A., High Degree Efficient Symmetrical Gaussian Quadrature Rules
for the Triangle. International Journal for Numerical Methods in Engineering,
1985. 21: p. 1129-1148.

Hammer, P.C. and A.H. Stroud, Numerical Integration over Simplexes and
Cones. Mathematical Tables and other Aides to Computation, 1956. X(54): p.
130-139.

Li, H. and G. Han, A new method for evaluating singular integrals in stress
analysis of solids by the direct Boundary Element Method. International Journal
for Numerical Methods in Engineering, 1985. 21: p. 2071-2098.

Rump, S., Inversion of extremely ill-conditioned matrices in floating-point.
JJIIAM, 2008. Submitted for publication.

Sadd, M.H., Elasticity : Theory, Applications, and Numerics 2004, Amsterdam ;
Boston: Elsevier Butterworth Heinemann.

Vandebril, R., G. Golub, and M. Van Barel, On solving the definite tridiagonal
symmetric generalized eigenvalue problem, in Celestijnenlaan 200A - B-3001
Heverlee. 2007, Katholieke Universiteit Leuven, Department of Computer
Science: Belgium.

391



268.

269.

270.

271.

272.

273.

274.

275.

276.

2717.

278.

279.

280.

281.

282.

283.

Golub, G.H. and C.F. Van Loan, Matrix Computations, ed. 3. 1996: The Johns
Hopkins University Press.

Moreau, J.P.  Module  feigen0.f90  (http./pagesperso-orange.fr/jean-
pierre.moreau/Fortran/feigen0 f90.txt). (accessed 02/2009) [cited.

Engeln-Mueller, G. and F. Uhlig, Numerical Algorithms with C. 1996: Springer-
Verlag.

Peters and Wilkinson, Eigenvectors of real and complex matrices by LR and QR
triangularisations. Num. Math., 1970. 16: p. 184-204.

Martin and Wilkinson, Similarity reductions of a general matrix to Hessenberg
form. Num. Math., 1968. 12: p. 339-358.

Parlett and Reinsch, Balancing a matrix for calculations of eigenvalues and
eigenvectors. Num. Math., 1969. 13: p. 293-304.

Rego, J. Subroutine to find the inverse of a square matrix
(http.//www.dreamincode.net/code/snippet1296.htm).  [cited 02/2009].

McFarland. Help center for mathematical Students
(http.://math.uww.edu/~mctarlat/inverse.htm).  [cited 02/2009].

Sniedovich, M. Matrix Inverse
(http://www.tutor.ms.unimelb.edu.au/matrix/matrix_inverse.html). [cited
02/2009].

Itasca, UDEC (Universal Distinct Element Code) Special Features. 2000,
Minneapolis, MN: Itasca.

Guangqi, C., Numerical modelling of rock fall using extended DDA. Chinese
Journal of Rock Mechanics and Engineering, 2003. 22(16): p. 926-931.

Shi, G.H., Discontinuous deformation analysis-a new model for the statics and
dynamics of block systems, in Civil Engineering. 1988, University of California:
Berkeley.

Ke, T.C., Simulated testing of two-dimensional heterogeneous and discontinuous
rock masses using discontinuous deformation analysis, in Civil Engineering.
1993, University of California: Berkeley.

Ke, T.C. Modification of DDA with respect to rigid body rotation. in the First

International Conference on Analysis of Discontinuous Deformation. 1995.
Chungli, Taiwan, ROC, 260-273.

Ke, T.C. The issue of rigid body rotation in DDA. in he First International Forum

on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous
Media. 1996. Berkeley, CA: TSI Press: Albuquerque, NM; 318-325.

MacLaughlin, M.M. and N. Sitar. Rigid body rotations in DDA. in the First
International Forum on Discontinuous Deformation Analysis (DDA) and

392



284.

285.

286.

287.

288.

2809.

290.

291.

292.

293.

294.

295.

296.

297.

Simulations of Discontinuous Media. 1996. Berkeley, CA: TSI Press:
Albuquerque, NM, 1996, 620—-636.

Cheng, Y.M. and Y.H. Zhang, Rigid body rotation and block internal
discretization in DDA analysis. International Journal for Numerical and
Analytical Methods in Geomechanics, 2000. 24: p. 567-578.

MacLaughlin, M.M. and D.M. Doolin, Review of validation of the discontinuous
deformation analysis (DDA) method. Int. J. Numer. Anal. Meth. Geomech., 2006.
30: p. 271-305.

Amadei, B., Rock anisotropy and theory of stress measurements. 1983, Germany:
Springer-Verlag Berlin Heidelberg.

Amadei, B. and R.E. Goodman. Formulation of complete plane strain for
regularly jointed rocks. in Proc. 222d Symp. on Rock. Mech. (M.1.T.). 1981.

Lekhnitskii, S.G., Theory of elasticity of an anisotropic elastic body. 1963, San
Francisco: Holden Day, Inc.

Milne-Thomson, L.M., Antiplane elastic systems. 1962, Berlin: Springer Verlag.

Brady, B.H.G. and J.W. Bray, The boundary element method for determining
stresses and displacements around long openings in a triaxial stress field. Int J
Rock Mech Min Sci, 1978. 15(1): p. 21-28.

Panet, M. and A. Guenot, Analysis of convergence behind the face of a tunnel, in
Int Symposium Tunneling 1982. 1982: Brington, 249-268.

Babuska, J. and T. Oden, Verification and validation in computational
engineering and science: basic concepts. Comp Meth Appl Mech Eng, 2004. 193:
p. 4057-66.

Easterling, R.C., Statistical foundations for model validation: two papers, in
Sandia Nat Lab rep SAND2003-0287. 2003: Albuquerque, NM.

Hills, R.G. and L.H. Leslie, Statistical validation of engineering and scientific
models: validation experiments to application, in Sandia Nat Lab rep SAND2003-
0706.2003: Albuquerque, NM.

Oberkampf, W.L. and T.G. Trucano, Verification and validation in computational
fluid dynamics, in Sandia Nat Lab rep SAND2002-0529. 2002: Albuquerque, NM.

Oberkampf, W.L., T.G. Trucano, and C. Hirsch, Verification, validation, and
predictive capability in computational engineering and physics, in Sandia Nat
Lab Rep SAND2003-3769. 2003: Albuquerque, NM.

Trucano, T.G., M. Pilch, and W.L. Oberkampf, General concepts for
experimental validation of AISC code applications, in Sandia Nat Lab rep
SANDZ2002-0341. 2002: Albequerque, NM.

393



298.

299.

300.

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

311.

312.

Tonon, F. and P. Asadollahi, Validation of general single rock block stability
analysis (BS3D) for wedge failure. International Journal of Rock Mechanics and
Mining Sciences, 2008. 45: p. 627-637.

Bandis, S.C., N. Barton, and M. Christianson. Application of a New Numerical
Model of Joint Behaviour to Rock Mechanics Problems. in International
Symposium on Fundamentals of Rock Joints. 1985. Bjorkliden.

Rosso, R.S., 4 comparison of joint stiffness measurements in direct shear triaxial
compression and In situ. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1976.
13: p. 167-172.

Asadollahi, P. and F. Tonon. Validation of single rock block stability analysis. in
42nd US Rock Mechanics Symposium. 2008. San Fransisco, CA.

Liu, J., X. Kong, and G. Lin, Formulations of the three dimesional discontinuous
diformation analysis method. Acta Mechanica Sinica, 2001. 20: p. 270-282.

Wang, J., L. G., and J. Liu, Static and dynamic stability analysis using 3D DDA
with incision body scheme. Earthquake Engineering and Engineering Vibration,
2006. 5: p. 273-283.

Hatzor, Y.H. and A. Feintuch, The validity of dynamic block displacement
prediction using DDA. Int ] Rock Mech Min Sci. , 2001. 38: p. 599-606.

Hatzor, Y.H., A.A. Arzi, and Y. Zaslavsky, Dynamic stability analysis of jointed

rock slopes using the DDA method.: King Herod’s Palace, Masada, Israel. . Int
J Rock Mech Min Sci., 2004. 41: p. 813-832.

Bray, J.W., Unpublished note. 1977, Imperial College: London.

Sofianos, A.L, Stability of wedges in tunnel roofs. int J Rock Mech Min Sci
Geomech Abstr, 1986. 23(2): p. 119-130.

Elsworth, D., Wedge stability in the roof of a circular tunnel: plane strain
condition Int J] Rock Mech Min Sci Geomech Abstr, 1986. 23(2): p. 177-181.

Nomikos, P., A.I. Sofianos, and C.E. Tsoutrelis, Symmetric wedge in the roof of a
tunnel excavated in an inclined stress field. Int ] Rock Mech Min Sci, 2002. 39: p.
59-67.

Hudson, J.A. and J.P. Harrison, Engineering Rock Mechanics: An Introduction to
the Principles, ed. t. Edition. 2005, Amesterdam, The Nederlands: Elsevire Ltd.

Rocscience, Unwedge Theory Manual — Factor of Safety Calculations
(http.//'www.rocscience.com/downloads/unwedge/unwedge theory.pdf). Accessed
online in Feb. 2009.

Yow, J.L. and R.E. Goodman, 4 ground reaction curve based upon block theory.
Rock Mechanics and Rock Engineering, 1987. 20: p. 167-190.

394



313.

314.

315.

316.

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

327.

Muskhelishvili, N.I., Some basic problems of the mathematical theory of
elasticity, ed. 4. 1963: J.R.M. Radok. Noodhof: Gronigen.

Timoshenko, S.P. and J.N. Goodier, Theory of elasticity, ed. 3. 1970, Wiley: New
York.

Poulos, H.G. and E.H. Davis, Elastic solutions for soil and rock mechanics. 1974:
Wiley: New York.

Yow, J.L., Field investigation of keyblock stability. 1985, Lawrence Livermore
National Laboratory Report UCRL 53632.

Rocscience, Field stress tutorial
(http.//www.rocsience.com/downloads/unwedge/webhelp/unwedge.htm).
Accessed online in Feb. 2009.

Holmes, P. and J.E. Marsden, Bifurcation to divergence and flutter in flow-
induced oscillations: an infinite dimensional analysis. Automatica. J. IFAC, 1978.

14: p. 367-384.

Iudovich, V.I., The onset of auto-oscillations in a fluid. J. Applied Math.Mech,
1971. 35: p. 587-603.

Kounadis, A.N., The existence of regions of divergence instability for
nonconservative systems under follower forces. Int. J. of Solids and Structures,
1983. 19: p. 725-733.

Kounadis, A.N., On the failure of static stability analyses of nonconservative
systems in regions of divergence instability. Int. J. of Solids and Structures, 1994.
31: p. 2099-2120.

Fiorotto, V. and A. Rinaldo, Turbulent pressure fluctuations under hyraulic
jumps. J. Hydraulic Research. 30: p. 499-519.

Hoek, E. and E.T. Brown, Underground Excavation in Rock. 1980: London Instn.
Min. Metall.

Annandale, G.W., Erodibility. Journal of Hydraulic Research, 1995. 33(4): p.
471-494.

Annandale, G.W., Scour Technology - Mechanics and Engineering Practice.
2006, New York, NY: McGraw Hill.

Goodman, R.E. and C. Powell, Investigations of blocks in foundations and
abutments of concrete dams. J. Geotech. and Geoenvir. Engrg,, 2003. 129: p. 105-
116.

USBR, Engineering Geology Field Manual, in Engineering Geology, Technical
Service Center, Bureau of Reclamation, U.S. Department of Interior, Denver,
CO., http://www.usbr.gov/pmts/geology/. 2006.

395



328.

329.

330.

331.

332.

333.

334.

335.

336.

337.

338.

339.

340.

341.

342.

BS5930, Code of Practice for Site Investigations. British Standards Institution
(BSI). 1981, London.

Ervine, D.A., H.T. Falvey, and W. Withers, Pressure fluctuations in plunge pool
floors. J. Hydraulic Research, 1997. 35: p. 257-279.

Franzetti, V. and M.G. Tanda, Getti deviati a simmetria assiale, in Report of
Istituto di Idraulica e Costruzioni Idrauliche, Politecnico di Milano. 1984.

Franzetti, V. and M.G. Tanda. Analysis of turbulent pressure fluctuation caused
by a circular impinging jet. in International Symposium on New Technology in
Model Testing in Hydraulic Research. 1987. India, pp. 85-91.

Xu-Duo-Ming. Pressao no fundo de um canal devido ao choque de um jacto
plano. in e suas caracteristicas de fluctuacao, Translation from chinese by J.A.
Pinto de Campos. 1983. Lisboa.

Tao, C.G., L. JiYong, and L. Xiangrong. Efeito do impacto, no leito do rio, da
lamina descarregada sobre uma barragem-abobada. in Laboratorio Nacianal de
Engenharia Civil, Translation from Chinese by de Campose, J.A.P. 1985. Lisboa.

Lopardo, R.A. Stilling basin pressure fluctuations. in Conference Proceedings,
Model-prototype Correlation of Hydraulic Structures. 1988. P.Burgi, pp. 56-73.

Armengou, J., Disipacion de energia hidraulica e pie de presa en presas boveda.
1991, Universitat Politechnica de Catalunya: Barcelona.

May, R.W.P. and I.R. Willoughby, Impact pressures in plunge pool basins due to
vertical falling jets, R.S. 242, Editor. 1991: HR Wallingford, UK.

Puertas, J. and J. Dolz, Criterios hidraulicos para el diseno de cuencos de
disipacion de energia en presas boveda con vertido libre por coronacion. 1994,
University of Catalunya: Barcelona.

Hartung, F. and E. Hausler. Scours, stilling basins and downstream protection
under free overfall jets at dams. in Proceedings of the 11th Congress on Large
Dams. 1973. Madrid, pp. 39-56.

Beltaos, S. and N. Rajaratnam, Plane turbulent impinging jets. Journal of
Hydraulic Research, IAHR, 1973. 11(1): p. 29-59.

Cola, R. Energy dissipation of a high-velocity vertical jet entering a basin. in
Proceedings of the 11th Congress of the I.A.H.R. 1965. Leningrad.

Bollaert, E. and A. Schleiss, Scour of rock due to the impact of plunging high
velocity jets. Part I: A state-of-the-art review. Journal of Hydraulic research,
2003. 41(5): p. 451-464.

Bollaert, E. and A. Schleiss, Scour of rock due to the impact of plunging high
velocity jets. Part Il: Experimental results of dynamic pressures at pool bottoms
and in one- and two-dimensional closed-end rock joints. Journal of Hydraulic

Research, 2003. 41(5): p. 465-480.
396



343.

344.

345.

346.

347.

348.

349.

350.

351.

352.

353.

354.

355.

356.

357.

Horeni, P., Desintegration of a Free Jet of Water in Air. 1956, Sesit 93, Praha,
Pokbaba.

Ervine, D.A. and H.T. Falvey, Behavior of Turbulent Jets in the Atmosphere and
in Plunge Pools. Proceedings of the Institution of Civil Engineers, 1987. 83(2): p.
295-314.

Ervine, D.A., The entrainment of air in water. Water Power & Dam Construction,
1976. December: p. 27-30.

Ervine, D.A. and E.M. Elsawy. Model scale effect in air-regulated siphon
spillways. in BHRA Symposium on Siphons and Siphon Spillways. 1975. London,
May, Paper B2.

Melo, J.F. Reduction of plunge pool floor dynamic pressure due to jet air
entrainment. in Rock Scour due to falling High-velocity Jets. 2002. Lausanne,
Switzerland.

Ervine, D.A., Air Entrainment in Hydraulic Structures: A Review Proceedings of
the Institution of Civil Engineers, Wat., Marit. & Energy, 1998. 130: p. 142-153.

Mason, P.J. and K. Arumugam, Free Jet Scour below Dams and Flip Buckets.
Journal of Hydraulic Engineeirng, 1985. 111(2): p. 220-235.

Castillo, L.G., Personal Communication. 2004.

Liu, P.Q., J.R. Dong, and C. Yu, Experimental investigation o fluctuating uplift
on rock blocks at the bottom of the scour pool downstream of Three-Gorges
spillway. J. Hydraulic Research, 1998. 36: p. 55-68.

Fiorotto, V. and P. Salandin, Design of anchored slabs in spillway stilling basins.
Journal of Hydraulic Engineeirng, 2000. 126: p. 502-512.

Bellin, A. and V. Fiorotto, Direct dynamic force measurement on slabs in
spillway stilling basins. ASCE J. Hydrualic Eng., 1995. 121: p. 686-693.

Melo, J.F., ANN. Pinheiro, and C.M. Ramos, Forces on plunge pool slabs:
influence of joints location and width. ASCE J. Hydrualic Eng., 2006. 131: p. 49-
60.

Hausler, E., Dynamische Wasserdrucke auf Tosbeckenplatten infolge freier
Uberfallstrhlen bei Talsperren. Wasserwirtschaft, 1966. 2: p. 42-49.

Yuditski, G.A., Actual pressure on the channel bottom below ski-jump spillways.
Izvestiya Vsesoyuznogo Nauchno-Issledovatel-Skogo Instuta Gidrotekhiki, 1967.
67: p. 231-240.

Yuditski, G.A., Experimental Prediction of Rock Bed Scour Below a Ski-jump
Spillway Dam, ed. 1.P.£.S.T.I. Translated from Russian. 1971.

397



358.

359.

360.

361.

362.

363.

364.

Ramos, C.M. Energy dissipation on free jet spillways. Bases for its study in
hydraulic models. in Proc. Transactions of the Int. Symp. on the Layout of Dams
in Narrow Gorges, Vol. 1, ICOLD. 1982. Rio de Janeiro, Brazil, 263-268.

Cunha, L.V. and A.C. Lencastre. La dissipation de l'energie dans un evacuateur
en saut de ski. in Observation de l'erosion, Lisboa, LNEX, 1966 (Technical Paper
no. 288). 1966.

Kamenev, L.A., Excavacao de um leito por um jacto em queda livre (2), in LNEC,
Transl. no. 474 from Trudy gidravlicheskoi laboratorii, no. 11. 1965.

Bhatia, R., Positive definite matrices. Princeton Series in Applied Mathematics.
2007.

Greenwood, D.T., Principles of Dynamics. 1988, Englewood Cliffs, NJ: Prentice-
Hall.

Meriam, J.L. and L.G. Kraige, Engineering Mechanics Volume 2: Dynamics.
1986, New York: John Wiley Sons.

Tenenbaum, R.A., Fundamental of Applied Dynamics. 2004: Springer.

398



VITA

Pooyan Asadollahi was born on April 22, 1980 in Tehran, Iran, to Maryam
Tavoosian and Mohammad Asadollahi. Pooyan attended Alborz High School, Tehran,
Iran, and graduated in June 1997. In the same year, he entered the University of Tehran
for his undergraduate studies. He graduated with a Bachelor of Science degree in Civil
Engineering in June 2002. Pooyan remained at the University of Tehran to pursue a
graduate degree in Civil Engineering with a focus on Soil Mechanics and Foundation
Engineering. He received a Master of Science degree in December 2004. His master
thesis was entitles “Modeling Rockbolts and Shotcrete in Tunnels Excavated Through
Jointed Rock and Comparison with an Empirical Method". Pooyan was employed as a
Geotechnical Engineer at Mahab Ghodss Consulting Engineering Company from October
2003 to June 2006. In Fall 2006, he entered the PhD program of the Department of Civil
Engineering (the Geotechnical Engineering Group) of the University of Texas at Austin.
Pooyan has published 8 papers in international conferences and 4 technical articles in

international journals

Permanent Address: 107 Dastour St., Soheil St., Shariati Av., Tehran, 193144855, Iran

This manuscript was typed by the author.

399





