
Copyright

by

Michael Victor Nehme

2009



The Dissertation Committee for Michael Victor Nehme
certifies that this is the approved version of the following dissertation:

Two-Person Games for Stochastic Network Interdiction:

Models, Methods, and Complexities

Committee:

David P. Morton, Supervisor

Jonathan F. Bard

Constantine Caramanis

John Hasenbein

Elmira Popova

R. Kevin Wood



Two-Person Games for Stochastic Network Interdiction:

Models, Methods, and Complexities

by

Michael Victor Nehme, B.S.E.; M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2009



To my grandparents.



Acknowledgments

I would like to begin by thanking my advisor and financial supporter

Professor David P. Morton. His classes and his uncanny ability to come up

with a great answer on the spot to almost any question made my studies

significantly easier than they would have been otherwise. He also imparted

enough of his speaking and writing style onto me that people would sometimes

guess that he was my advisor before being told. I’ve been told this is a mostly

good thing.

I would like to thank my dissertation committee members, Professors

Jonathan F. Bard, Constantine Caramanis, John Hasenbein, Elmira Popova,

and Kevin Wood. In particular, I thank Dr. Popova for providing financial

support near the beginning of my program and for having the utmost faith

in my abilities. Also, I thank Dr. Wood for providing the basis for much of

my research and for providing many suggestions for the improvement of my

dissertation.

A special thanks goes to my high school math teachers Mrs. Michelle

Haubert and Mr. Jeff Limber for teaching ridiculously good classes, and in

particular Mr. Limber for ensuring that I would always remember how to spell

the word “parallel.” Finally, I would like to thank Professor Gary Ybarra of

Duke University for making my first engineering class a great one, for greatly

v



improving my work ethic, and for forcing us to write everything in LATEX.

vi



Two-Person Games for Stochastic Network Interdiction:

Models, Methods, and Complexities

Publication No.

Michael Victor Nehme, Ph.D.

The University of Texas at Austin, 2009

Supervisor: David P. Morton

We describe a stochastic network interdiction problem in which an in-

terdictor, subject to limited resources, installs radiation detectors at border

checkpoints in a transportation network in order to minimize the probability

that a smuggler of nuclear material can traverse the residual network unde-

tected. The problems are stochastic because the smuggler’s origin-destination

pair, the mass and type of material being smuggled, and the level of shielding

are known only through a probability distribution when the detectors are in-

stalled. We consider three variants of the problem. The first is a Stackelberg

game which assumes that the smuggler chooses a maximum-reliability path

through the network with full knowledge of detector locations. The second is

a Cournot game in which the interdictor and the smuggler act simultaneously.

The third is a “hybrid” game in which only a subset of detector locations is

revealed to the smuggler.
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In the Stackelberg setting, the problem is NP-complete even if the in-

terdictor can only install detectors at border checkpoints of a single country.

However, we can compute wait-and-see bounds in polynomial time if the in-

terdictor can only install detectors at border checkpoints of the origin and des-

tination countries. We describe mixed-integer programming formulations and

customized branch-and-bound algorithms which exploit this fact, and provide

computational results which show that these specialized approaches are sub-

stantially faster than more straightforward integer-programming implementa-

tions. We also present some special properties of the single-country case and

a complexity landscape for this family of problems.

The Cournot variant of the problem is potentially challenging as the

interdictor must place a probability distribution over an exponentially-sized

set of feasible detector deployments. We use the equivalence of optimization

and separation to show that the problem is polynomially solvable in the single-

country case if the detectors have unit installation costs. We present a row-

generation algorithm and a version of the weighted majority algorithm to solve

such instances. We use an exact-penalty result to formulate a model in which

some detectors are visible to the smuggler and others are not. This may be

appropriate to model “decoy” detectors and detector upgrades.
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Chapter 1

Introduction

1.1 Game Theory

In this dissertation, we describe several models for deploying radiation

detectors in order to minimize the probability that a smuggler of nuclear ma-

terial can avoid detection. In a standard mathematical programming model,

a decision maker chooses values for a set of variables known as decision vari-

ables in order to minimize or maximize some function known as an objective

function or simply the objective. Many such models are well studied and are

appropriate if the objective depends only on decision variables controlled by

the decision maker. For our models, it is prudent to assume that the smuggler

is a strategic thinker and makes decisions in order to maximize the probability

that he can avoid detection. We therefore need to borrow heavily from game

theory, which was developed to model situations in which multiple parties with

differing and possibly conflicting objectives can affect each other’s objectives.

In a game, each party or player has a set of “strategies” from which to choose

and an objective function which typically depends on the strategies chosen by

the other players. A strategy can be defined as “a rule for action so complete

and detailed that a player need not actually be present once his strategy is

known” [38]. A game can be either zero-sum or general-sum; in the former
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case the sum of all the players’ gains is a constant and in the latter the sum

depends on which strategies the players select. Players may choose, and reveal,

their strategies either simultaneously or sequentially; we refer to the former

case as a “Cournot” game and the latter as a “Stackelberg” game.

Most credit game theory’s inception to von Neumann and Morgenstern

[37] who show that in any two-person zero-sum game, there exists an equi-

librium in which neither player has an incentive to change his own strategy

unilaterally. That is, neither player wishes to change his strategy even if he

is aware of the other player’s strategy. In many cases this equilibrium is only

guaranteed to exist if we allow the players to randomize their strategies. That

is, instead of choosing a single “pure” strategy, a player may choose a “mixed”

strategy which assigns a probability to each pure strategy. In a game such as

Rock, Paper, Scissors, for example, it is clear that no pure-strategy equilib-

rium exists but if we allow randomization then there exists a mixed-strategy

equilibrium in which each player uniformly and randomly selects one of the

three available strategies. Nash [28] shows that such an equilibrium exists even

in general-sum games and thus permanently attached his name to the concept.

Zero-sum games became a natural model for many military applications

as it is generally wise to assume your enemy is a strategic thinker. One of the

earliest and most well known of such models is the Colonel Blotto game [6, 35]

in which two players allocate soldiers to N independent battlefields. On each

battlefield the player who allocates the most soldiers wins and the player who

wins the most battlefields wins the overall game. The classic Blotto game
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has become the baseline model for much of the recent research regarding the

allocation of resources to defend against terrorist threats, although many of

the latest models are not zero-sum.

Bier et al. [5] consider a model in which a defender allocates resources

to two sites and an attacker can choose to attack exactly one of the sites.

While the attacker is assumed to know the defender’s valuations of the sites,

the defender only has a distribution function for the attacker’s valuations. The

defender seeks to minimize the expected loss due to an attack plus cost of de-

fenses and the attacker seeks to maximize the expected payoff of the attack.

They prove the existence of a pure strategy Nash equilibrium for both play-

ers. Zhuang and Bier [44] describe a model for allocating resources to defend

against the dual threats of terrorism and natural disasters. In the model, a

defender can continuously allocate resources to defend against both threats

at multiple sites while an attacker continuously allocates resources to attack

those sites. Both simultaneous and sequential games are studied and, perhaps

surprisingly, the authors show that the defender may actually do better by re-

vealing his strategy to the attacker if the attacker’s optimal response is unique.

This so-called “first-mover advantage” is only possible, however, in a general-

sum setting. They also remark that pure strategy equilibria are common in

their game because continuous decision variables are used and the probability

of a successful attack is assumed to be convex in the defender’s allocations and

concave in the attacker’s.

Powell [30] describes a similar model where the defender again allocates
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continuous resources to several potential targets. These defensive resources de-

crease the probability of a successful attack. The defender and the attacker

place possibly different values on each target, and the attacker chooses the tar-

get with the highest expected payoff, defined as the product of the probability

of success and the attacker’s value of the target. In the zero-sum setting in

which the attacker and defender have the same valuations of the targets, he

shows that the simultaneous and sequential game both have the same payoff.

He also shows that the defender’s optimal strategy is to allocate resources to

the target with the highest value until the expected payoff equals that of the

target with the second highest value. Then resources are allocated to both

targets until their expected payoff equals that of the third highest value and

so on, until the defender exhausts his resources. He also claims that this strat-

egy is optimal even if the attacker and defender have different valuations of

the targets.

Though intuitively it seems that a defender benefits by keeping his allo-

cations a secret, in the papers discussed previously, secrecy is either irrelevant

or may even hurt the defender. This may be the case in a general-sum game

but is never the case in a zero-sum game. Consider the following representation

of a two-person zero-sum game:

min
x∈X

max
y∈Y

f(x, y).

Here the player who chooses x must choose first and reveal this decision to the

other player, who then chooses y. The game is zero-sum because one player
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seeks to maximize f(x, y) and the other seeks to maximize −f(x, y). We can

then make the following observation.

Proposition 1. Let

v∗1 = min
x∈X

max
y∈Y

f(x, y)

and

v∗2 = max
y∈Y

min
x∈X

f(x, y).

Then v∗1 ≥ v∗2.

Proof. Let x∗1 and y∗1 solve the “min-max” problem and x∗2 and y∗2 solve the

“max-min” problem. Then

v∗1 = f(x∗1, y
∗
1) ≥ f(x∗1, y

∗
2) ≥ f(x∗2, y

∗
2) = v∗2.

So in a zero-sum game, the second-mover may have an advantage. So-called

minimax theorems identify conditions under which v∗1 = v∗2. One of the most

famous such theorems is the following, due to Fan [11].

Proposition 2. If X and Y are compact, convex sets and if f(·, y) is convex

on X for all y ∈ Y and f(x, ·) is concave on Y for all x ∈ X then v∗1 = v∗2.

If the conditions of Proposition 2 hold then neither player can benefit

from secrecy and thus the payoff of the game is the same whether the game is

sequential or simultaneous. For the games considered in [44], these conditions
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are satisfied due to continuous decision variables and the assumption of dimin-

ishing returns. In our work, some decisions are naturally discrete and we can

only achieve convexity of the feasible regions by allowing mixed strategies.

1.2 Two-Person Zero-Sum Cournot Games

In a two-person zero-sum Cournot game (TPZSCG), each player has a

set of “pure” strategies from which to choose, and strategies are assumed to

be selected simultaneously by the two players. The assumption that players

act simultaneously is valid provided neither player can ascertain the other

player’s selection. In the zero-sum case, which we focus on here, there exists an

objective function, sometimes called a payoff function, which depends on both

players’ selections and which one player seeks to maximize and the other seeks

to minimize [38]. In the so-called normal form representation of a TPZSCG we

use a payoff matrix to store all possible payoffs of the game [37]. This matrix

contains a row for each pure strategy available to the minimizing player, who

we call the “row player”, and a column for each pure strategy available to

the maximizing player, who we call the “column player.” When playing pure

strategies the row player picks a row, the column player simultaneously picks

a column, and the entry of the matrix that is at the intersection of the row

and column picks, becomes the payoff for the game. The normal form is valid

whenever both players have a finite number of pure strategies.

To address the simultaneous nature of the players’ decisions, instead

of selecting a single pure strategy, each player is motivated to select a mixed

6



strategy, a probability distribution over the available pure strategies. Then,

when the game is played each player randomly selects a pure strategy according

to the chosen probability distribution.

To formulate the normal form TPZSCG as a mathematical program,

let i ∈ I index the row players pure strategies and j ∈ J index those of the

column player. Then the row player’s decision variables, xi, i ∈ I, represent

the probability that pure strategy i is selected and the column player’s decision

variables, yj, j ∈ J , represent the probability that pure strategy j is selected.

If the payoff matrix is given by Aij, i ∈ I, j ∈ J , then the TPZSCG can be

formulated as follows:

v∗ = max
y∈Y

min
x∈X

∑
i∈I

∑
j∈J

Aijxiyj, (1.1)

where Y = {y ∈ R|J |+ :
∑

j∈J yj = 1} and X = {x ∈ R|I|+ :
∑

i∈I xi = 1}. The

objective function is simply the expected payoff conditioned on each player’s

mixed strategy. The ordering of the “max” and “min” seems to imply that the

column player selects his mixed strategy first and reveals his selection to the

row player. However, the fact that X and Y are convex and compact, coupled

with the fact that the objective function in (1.1) is concave in y for fixed x

and convex in x for fixed y, implies that, by Proposition 2, we obtain the same

optimal value, v∗, if we exchange the order of the “max” and “min”, i.e., if

the row player selects his mixed strategy first and reveals his selection to the

column player. Due to this symmetry, we can view the formulation as requiring

that the two players choose their mixed strategies simultaneously. This also
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implies that the optimal solution of this problem gives a Nash equilibrium,

that is, even if one player knows the other’s mixed strategy, that player still

has no incentive to deviate from his original mixed strategy. If in model (1.1),

we (a) fix y ∈ Y to create a linear program (LP) with variables x, (b) define

λ as the dual variable for the single structural constraint in that LP, (c) take

the dual of the LP, and (d) then release y, we obtain the following equivalent

problem:

v∗ = max
y,λ

λ (1.2a)

s.t. λ ≤
∑
j∈J

Aijyj : xi, i ∈ I (1.2b)∑
j∈J

yj = 1 (1.2c)

yj ≥ 0, j ∈ J. (1.2d)

Here, the column player takes a convex combination of the columns of A,

and the new decision variable λ is the smallest entry in the resulting column

vector. Thus λ represents the value of the row player’s best response to the

column player’s mixed strategy. From the column player’s perspective this

is a (seemingly) pessimistic view since it assumes the row player knows his

mixed strategy and acts accordingly. Equivalently, however, we can return to

model (1.1) and do the following: (a) interchange the “max” and “min”, (b)

fix x ∈ X to create an LP with variables y, (c) define θ as the dual variable

for the single structural constraint in that LP, (d) take the dual of the LP, and

8



(e) release y. This results in the following problem:

v∗ = min
x,θ

θ (1.3a)

s.t. θ ≥
∑
i∈I

Aijxi : yj, j ∈ J (1.3b)∑
i∈I

xi = 1 (1.3c)

xi ≥ 0, i ∈ I. (1.3d)

Here, the row player takes a convex combination of the rows of A and θ falls

onto the largest value of the resulting row vector. This would seem pessimistic

from the point of view of the row player. But problems (1.2) and (1.3) are

each other’s duals and therefore have the same optimal value according to

strong duality. This proves Proposition 2 for the special case in which the

payoff function is bilinear and the players’ feasible regions are unit simplices.

Also note that either LP gives an optimal mixed strategy for both players; the

primal solution gives probabilities for one player and the dual variables the

probabilities for the other.

1.3 The Weighted Majority Algorithm

For a two-person zero-sum Cournot game in which each player has

a modest number of strategies, the linear programs described in the previous

section provide an easy way to compute the Nash equilibrium. For the network

interdiction models considered in this dissertation, however, the interdictor

may have an exponentially-sized set of strategies. We could use standard row-

or column-generation techniques to overcome this difficulty, but instead turn
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to a generalization of the “weighted majority” algorithm originally developed

by Littlestone and Warmuth [22] to solve on-line allocation models. Freund

and Schapire show that a slight modification of this algorithm can be used to

approximately solve games with a large or even unknown payoff matrix [12].

The on-line allocation model can be defined as follows. For every time

step t = 1, ..., T , an allocation agent must assign a probability pti to each

strategy i ∈ I. After each time period, the agent observes a loss lti ∈ [0, 1] for

each strategy, and after T time periods incurs an expected cumulative loss of

L =
T∑
t=1

∑
i∈I

ltip
t
i.

The agent’s goal is to minimize the net loss, defined as the difference between

the expected cumulative loss and the minimum cumulative loss over all strate-

gies. That is, the agent seeks to minimize

L−min
i∈I

Li.

where Li =
∑T

t=1 l
t
i. The weighted majority algorithm prescribes a choice

for pti, i ∈ I, t ∈ {1, . . . , T}, that we describe shortly. The net loss of the

weighted majority algorithm is bounded by O(
√
T log |I|) even if we allow the

loss vectors lt to be chosen in an adversarial fashion and to depend on the

agent’s choice of the distribution pt [13].

The algorithm is easy to implement. At each time period t, the agent

keeps a non-negative weight wti on each strategy and chooses a probability
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distribution over the strategies by normalizing the weights as follows:

pti =
wti∑
i′∈I w

t
i′
, i ∈ I, t = 1, ..., T.

The agent, after observing the losses for each strategy, then updates the

weights by the following rule:

wt+1
i = wtiβ

lti ,

where β ∈ (0, 1) is an appropriately chosen constant. The following result

from [13] relates the loss incurred by the weighted majority algorithm to the

loss of the best strategy.

Theorem 3. Let Lβ be the cumulative loss incurred by an agent applying the

weighted majority algorithm for a given value of β. For any sequence of loss

vectors l1, ..., lT and for any i ∈ I, we have

Lβ ≤
− ln(w1

i )− Li ln β
1− β

.

In particular if we let i ∈ argmini∈ILi and choose w1
i = 1/|I|, i ∈ I, we get

the following bound:

Lβ ≤
mini∈I Li ln(1/β) + ln |I|

1− β
.

To choose β, suppose that we have an upper bound L̃ on the loss incurred by

the best strategy, i.e., mini∈I Li ≤ L̃. Then if we choose

β =
1

1 +
√

2 ln |I|
L̃

11



we achieve the following upper bound on the average loss incurred by the

weighted majority algorithm:

Lβ
T
≤ min

i∈I

Li
T

+

√
2L̃ ln |I|
T

+
ln |I|
T

.

Now consider a two-person zero-sum Cournot game with a payoff matrix

A and pure strategies for the row and column player indexed by i ∈ I and

j ∈ J , respectively. Every time period t, which we interpret as iterations in an

algorithmic solution procedure, the probabilities pti give a valid mixed-strategy

xti over the row player’s pure strategies i ∈ I. Suppose we choose the loss for

each strategy i ∈ I as lti =
∑

j∈J Aijy
t
j, where (ytj)j∈J is the column player’s

best response to the mixed strategy (xti)i∈I given by an optimal solution to

max
y∈Y

∑
i∈I

∑
j∈J

Aijx
t
iyj.

If we let x̄i = 1
T

∑T
t=1 x

t
i and ȳj = 1

T

∑T
t=1 y

t
j, then x̄ and ȳ are valid mixed-

strategies for the row and column player, respectively. Following the analysis

of [12], we can show that x̄ and ȳ approximate the Nash equilibrium of the

game within ∆T =

√
2L̃ ln |I|
T

+ ln |I|
T

. First, we show that
Lβ
T

gives an upper

12



bound on the row player’s loss if he uses the mixed-strategy x̄.

max
y∈Y

∑
i∈I

∑
j∈J

Aijx̄iyj = max
y∈Y

∑
i∈I

∑
j∈J

Aij

(
1

T

T∑
t=1

xti

)
yj

≤ 1

T

T∑
t=1

max
y∈Y

∑
i∈I

∑
j∈J

Aijx
t
iyj

=
1

T

T∑
t=1

∑
i∈I

∑
j∈J

Aijx
t
iy
t
j

=
Lβ
T
.

Also, we show that mini∈I
Li
T

is exactly the column player’s payoff if he uses

the mixed-strategy ȳ and the row player responds optimally.

min
i∈I

Li
T

= min
i∈I

1

T

T∑
t=1

lti

= min
i∈I

1

T

T∑
t=1

∑
j∈J

Aijy
t
j

= min
x∈X

1

T

T∑
t=1

∑
i∈I

∑
j∈J

Aijxiy
t
j

= min
x∈X

∑
i∈I

∑
j∈J

Aijxiȳj.

Using the fact that
Lβ
T
≤ mini∈I

Li
T

+ ∆T we can now say the following:

max
y∈Y

∑
i∈I

∑
j∈J

Aijx̄iyj ≤ min
x∈X

∑
i∈I

∑
j∈J

Aijxiȳj + ∆T . (1.6)

Inequality (1.6) implies that if the row player uses the mixed-strategy x̄, the

loss he incurs never exceeds the Nash equilibrium loss by more than ∆T . Like-

wise, subtracting ∆T from both sides of (1.6), we see that if the column player
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uses the mixed-strategy ȳ, the payoff he receives falls short of the Nash equi-

librium payoff by at most ∆T . It is in this sense that x̄ and ȳ approximate the

Nash equilibrium of the game.

1.4 Benders’ Decomposition

Consider an LP of the following form:

z∗ = min
x≥0,y≥0

cx+ fy (1.7a)

s.t. Ax = b (1.7b)

−Bx+Dy = d. (1.7c)

Assume that this LP has a finite optimal solution and that for every x that

satisfies Ax = b, x ≥ 0, there exists a y that satisfies Dy = Bx + d, y ≥ 0.

Then (1.7) can be rewritten as:

z∗ = min
x≥0

cx+ h(x) (1.8a)

s.t. Ax = b, (1.8b)

where

h(x) = min
y≥0

fy (1.9a)

s.t. Dy = Bx+ d : π. (1.9b)

The dual feasible region of (1.9) is Π = {π : πD ≤ f} and the dual objective

is π(Bx + d). Therefore with π(1), ..., π(L) denoting the extreme points of Π,
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h(x) = max1≤i≤L π
(i)(Bx + d). This implies that h(x) ≥ π(i)(Bx + d), i =

1, ..., L, and so (1.8) can be written as:

z∗ = min
x≥0,θ

cx+ θ (1.10a)

s.t. Ax = b (1.10b)

θ ≥ π(i)Bx+ d, i = 1, ..., L. (1.10c)

Constraints (1.10c) are called “optimality cuts.” Of course, enumerating all of

the extreme points of Π is grossly inefficient so we aim to solve relaxations of

the master problem (1.10) with optimality cuts generated for a small subset

of the extreme points of Π. We generate additional optimality cuts by solving

instances of the subproblem (1.9) with x fixed to an optimal solution of a

relaxation of (1.10). This identifies the most violated constraint in (1.10c)

which can then be added to the relaxation of the master problem. Since Π has

a finite number of extreme points this process is guaranteed to terminate in a

finite number of iterations. The above algorithm forms an outer-linearlization

of h(x). In stochastic programming this algorithm is known as the L-shaped

method [36]. In integer programming a similar method is due to Benders [4]

and in nonlinear programming a related method is due to Kelley [19].

1.5 Network Interdiction

Network interdiction deals with problems in which an interdictor, sub-

ject to one or more resource constraints, can structurally or parametrically

alter a given network. The interdictor does so knowing that an adversary
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solves a network optimization problem in the resulting network, and the in-

terdictor’s goal is to optimally degrade the adversary’s performance. Many

models for network interdiction have been proposed, varying in the objectives

of the interdictor and adversary, the manner in which the interdictor may

change the network, and the underlying network optimization problem.

Wollmer considers problems in which the interdictor can remove a fixed

number of arcs from the network with the goal of either minimizing the maxi-

mum flow [41] or maximizing the minimum cost flow [42]. In Corley and Chang

[8], the interdictor removes a fixed number of nodes, and all arcs incident to

those nodes, in order to minimize the maximum flow. Fulkerson and Harding

[14] show that if the interdictor may continuously increase the lengths of the

arcs in a shortest path problem subject to a linear cost, then the problem is

equivalent to a minimum cost flow problem. Bayrak and Bailey [3] consider

a shortest path interdiction problem with asymmetric information in that the

adversary does not know the true lengths of the arcs. The authors formulate

the problem as a mixed-integer nonlinear program, which they then linearize.

Wood [43] proves that the problem of minimizing the maximum flow

subject to a cardinality constraint on the number of arcs that can be removed

is NP-complete in the strong sense. He also shows that the problem can be

formulated as a mixed-integer program by using the equivalence between the

max-flow and min-cut problems and suggests several valid inequalities that

can be used to strengthen the formulation. Lim and Smith [21] consider two

multicommodity versions of this problem; in the first arcs are completely de-
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stroyed when interdicted, and in the second arc capacities can be continuously

decreased. Smith et al. [33] considers the problem of designing a multicom-

modity flow network that is robust with respect to an intelligent attacker. The

authors propose a three-stage model; in the first stage the network designer

constructs a network, in the second stage an attacker reduces the capacity of

some arcs in the network, and in the third stage the designer solves a multi-

commodity flow problem on the residual network. The authors consider three

models of attacker behavior; in the first two the attacker destroys arcs in a

greedy fashion and in the third the attacker seeks to minimize the maximum

post-interdiction profit. Each case is formulated as a mixed-integer program,

and a cutting-plane algorithm is suggested for the third.

Israeli and Wood [18] develop a decomposition scheme for the problem

of maximizing the adversary’s shortest path when the interdictor can discretely

increase the length of some subset of arcs. Specifically, a master problem first

finds an interdiction plan that maximizes the minimum length of some sub-

set of the adversary’s feasible paths, then a subproblem generates the best

response path to this interdiction plan and adds it to the subset of paths

considered by the master. The optimal value of the master problem and the

length of the best response path provide upper and lower bounds, respectively,

to allow termination with an ε-optimal solution. The authors also introduce

the notion of a super-valid inequality, an inequality which is guaranteed not to

remove all optimal solutions to a problem unless the optimal solution has al-

ready been found. The idea behind these super-valid inequalities is as follows.

17



The subproblem generates the adversary’s best response to a feasible interdic-

tion plan and consequently produces a lower bound to the master problem.

To achieve a maximum shortest path greater than this lower bound, the in-

terdictor must remove at least one arc on the shortest path generated by the

subproblem. Several variants of the super-valid inequality are discussed and

are shown to considerably speed solution time.

Washburn and Wood [39] consider a model in which the interdictor

chooses an arc k to interdict and the adversary simultaneously chooses a path

to traverse. If the adversary’s path includes the interdicted arc, then the adver-

sary is detected with probability pk, otherwise the adversary is not detected.

They show that optimal mixed strategies for both players can be found by

solving a minimum-cut problem. Interestingly, the optimal mixed strategy for

the interdictor is to interdict arcs along this minimum-cut with a probability

that is inversely proportional to the detection probability on that arc. Sev-

eral extensions to the basic model are considered. In particular, under certain

conditions the problem in which the interdictor can choose multiple arcs to

interdict can also be solved via a minimum-cut problem.

Morton et al. [26] look at stochastic network interdiction problems

with a focus on the prevention of nuclear smuggling. In the basic model,

every arc in a transportation network has an associated evasion probability,

and the interdictor may discretely decrease the evasion probability on some

subset of those arcs by installing detectors with the goal of minimizing the

evasion probability of the maximum-reliability path. The model is stochastic
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in that the interdictor does not know the adversary’s origin and destination

but instead has a probability distribution over a number of potential origin-

destination pairs. A simplified model is discussed in which the interdictor

may only install detectors at border checkpoints of a single country, and valid

inequalities known as step inequalities are developed to tighten the resulting

mixed-integer program. Morton and Pan [25] develop an enhanced L-shaped

decomposition method for solving the general model. Step inequalities are

also developed to tighten the linear programming relaxation of the associated

master problem.

1.6 Attacker-Defender Models and Exact Penalty Re-
sults

Here we describe a canonical problem which we use as the basis for

many of our models. Brown et al. [7] propose an “attacker-defender” model

in which the defender operates a system according to the following LP:

min
y≥0

cy (1.11a)

s.t. Ay = b (1.11b)

Fy ≤ u. (1.11c)

Constraints (1.11b) include operation requirements of the defender’s system

and (1.11c) are capacity constraints for each of the defender’s assets that is

vulnerable to attack. An attacker, subject to his own resource constraints,

attacks some subset of these assets with the goal of maximizing the defender’s
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cost of operating the resulting system. Assuming an attack on an asset is

guaranteed to destroy the entire capacity of that asset, the attacker’s problem

can be formulated as:

max
x∈X

h(x), (1.12)

where

h(x) = min
y≥0

cy (1.13a)

s.t. Ay = b (1.13b)

Fy ≤ U(e− x) : −π(x). (1.13c)

Here U = diag(u), e is the vector of all 1s, and x ∈ X contains binary re-

strictions on x as well as the attacker’s resource constraints. If a component

of x takes value 1 then the corresponding capacity drops to 0, and otherwise

the capacity remains at its nominal value. Since X is not a convex set, the

order of the “max” and “min” cannot be interchanged. The defender then

operates the system with any assets which were not destroyed. A natural way

to reformulate (1.12) is to convert the inner linear program to a maximization

problem by taking its dual. Unfortunately this yields a term containing the

product of x and π and thus a nonlinear mixed-integer program.

The underlying problem here is that since x appears on the right-hand

side of the constraints, h(·) is a convex function over the convex hull of X.

But since we are maximizing over x, we would prefer h(·) to be concave. This

can be achieved if we can relax constraints (1.13c) and add an appropriate
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penalty term to the objective. The following refinement of an exact-penalty

result from [27] does exactly this.

Proposition 4. Assume

v∗ = min
y≥0

cy (1.14)

s.t. Ay = b : γ (1.15)

Fy ≤ u : −π, (1.16)

has a finite optimal solution. If π̄ ≥ π∗ for some optimal dual subvector π∗

and

v∗∗ = min
y≥0

cy + π̄(Fy − u)+ (1.17)

s.t. Ay = b, (1.18)

where x+ = max(x, 0), then v∗ = v∗∗.

Proof. Problem (1.17) can be reformulated as:

v∗∗ = min
y≥0,θ≥0

cy + π̄θ

s.t. Ay = b : γ

Fy − θ ≤ u : −π.

The dual of this reformulation is:

v∗∗ = max
γ,π

γb− πu (1.19a)

s.t. γA− πF ≤ c : y (1.19b)

π ≤ π̄ : θ (1.19c)

π ≥ 0. (1.19d)
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This is exactly the dual of (1.15) with the addition of constraint (1.19c). How-

ever, by assumption π̄ ≥ π∗ for some optimal π∗, so the addition of (1.19c)

does not remove all optimal solutions to the dual of (1.15). Therefore by strong

duality v∗ = v∗∗.

Applying Proposition 4 to (1.13) results in a penalty term of the form

π̄(Fy − U(e − x))+. A standard linearization of this term moves x back into

the constraints. But the fact that the components of x are binary coupled

with Fy being nominally bounded above by u allows us to keep x in the

objective and out of the constraints. To see why, we write the kth component

of (Fy − U(e − x))+ as (Fk·y − uk(1 − xk))
+, which equals 0 if xk = 0 and

equals Fk·y if xk = 1. Thus, we have π̄(Fy − U(e − x))+ = xT Π̄Fy for all

x ∈ X where Π̄ = diag(π̄).

We now define a new function h̄(x) as follows:

h̄(x) = min
y≥0

cy + xT Π̄Fy (1.20a)

s.t. Ay = b (1.20b)

Fy ≤ u, (1.20c)

where π̄ ≥ π∗(x) for all x ∈ X and π∗(x) is an optimal dual subvector to

(1.13). By Proposition 4, h(x) = h̄(x) for all x ∈ X, but h̄(·) is concave over

the convex hull of X, making it more amenable to maximization. In particular

we can either take the dual of (1.20) to obtain a mixed-integer linear program,

or apply a decomposition scheme such as Benders’ decomposition.
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1.7 Overview of the Contents

Pan [29] considers a stochastic network interdiction problem in which

the interdictor seeks to minimize the maximum-reliability path in a network.

The interdictor, subject to a budget constraint, installs radiation detectors on

some subset of arcs in the network. A detector has the effect of decreasing

the reliability of the arc at which it is installed. The adversary is a smuggler

of nuclear material whose characteristics, such as his origin and destination,

the mass and type of material being smuggled, and the thickness of the lead

shielding, are known only via a probability distribution at the time the in-

terdictor installs the detectors. This dissertation augments and extends that

work as follows.

In Chapter 2, we consider a special case in which the interdictor can

only install detectors at border checkpoints of a single country. We assume

that the smuggler chooses a path with knowledge of the detector locations

and arc reliabilities. While [29] shows that the problem is NP-complete sub-

ject to a cardinality or knapsack constraint on the number of detectors that

are installed, we describe a formulation of this problem which has a totally

unimodular constraint matrix when the budget constraint is relaxed. As a

result, the budget-constrained version of the problem can be solved in poly-

nomial time under certain conditions. We show that the solutions that can be

found in polynomial time are nested, that is, for any pair of such solutions, the

checkpoints which receive detectors in the solution with the smaller budget

will be a subset of those which receive detectors in the other. We also describe
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a customized branch-and-bound algorithm which performs well in practice.

Chapter 3 considers a variant of the single-country problem in which

the interdictor and the smuggler act simultaneously. The resulting model

is a two-person zero-sum Cournot game in which the interdictor can have

exponentially-many strategies. We discuss the complexity of the model and

describe a solution technique based on the weighted majority algorithm. In

the cardinality-constrained case, we show that the value of the game can be

found by solving a polynomially-sized linear program. We also suggest two

Cournot-Stackelberg “hybrid” models in which one player may either pur-

chase additional pure strategies for his own use or remove pure strategies from

his opponent’s strategy set. The latter model is used as the basis for an in-

terdiction model in which some detectors are transparent to the smuggler and

others are not.

Chapter 4 considers a network interdiction problem in which the inter-

dictor may install detectors along border checkpoints of two countries, typically

the origin and destination countries of a smuggler. We show that this problem

can be solved in polynomial time if the smuggler characteristics are known

before detectors are installed. We also show that in the stochastic setting,

many of the solution techniques described in Chapter 2 for the single-country

problem have natural extensions into the two-country version and are very

effective at reducing computational effort. We conclude with some complex-

ity results which show that some polynomially-solvable interdiction problems

become NP-complete when we add an additional country to the problem.
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Chapter 2

Bipartite Stochastic Network Interdiction

Problem

2.1 Introduction

We describe a stochastic network interdiction model designed to locate ra-

diation detectors, which detect gamma and neutron emissions from nuclear

material, at critical border crossings. The goal is to locate the detectors on

an underlying transportation network to minimize the probability of a suc-

cessful smuggling attempt. We focus on the development of a strengthened

mixed-integer programming formulation and a customized branch-and-bound

algorithm which reduce the required computational effort.

We model two adversaries, an interdictor and a smuggler, and a trans-

portation network G(N,A). The smuggler starts at origin node o ∈ N and

wishes to reach destination node d ∈ N . The probability that the smuggler

will evade detection while traversing arc (i, j) ∈ A is qij if the interdictor in-

stalls a detector on (i, j) and pij > qij otherwise. At most one detector may

be installed per arc. A smuggler can be caught by indigenous law enforcement

without detection equipment, and so pij < 1. Detection events on distinct arcs

are assumed to be mutually independent. The smuggler chooses an o-d path to
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maximize his evasion probability. With limited resources, the interdictor must

select arcs on which to install detectors in order to minimize this probability.

The threat scenario, indexed by ω ∈ Ω, specifies the origin-destination

pair, (oω, dω), as well as other details about the nuclear material being smug-

gled and the manner in which it is shielded. So, the probability a smuggler

evades detection if a detector is installed on arc (i, j) is scenario dependent,

i.e., qij depends on ω, denoted qωij. In general, the indigenous evasion proba-

bilities, pij, could also depend on the threat scenario. The bulk of what we

present is valid when pij = pωij, but in Section 2.3 we discuss a computationally

valuable variable-aggregation scheme that arises naturally when pij does not

depend on ω. The threat scenario is unknown when detectors are installed,

but is governed by a probability mass function, pω, ω ∈ Ω, which is assumed

to be known. In what follows, “threat scenario ω” will often be shortened to

simply “smuggler ω.”

The timing of the interdictor’s and smuggler’s decisions and the realiza-

tion of the threat scenario is as follows: First, the interdictor installs detectors

on a subset of the network’s arcs subject to a budget constraint. Then, a

threat scenario is revealed and the smuggler selects a path that solves

max
P∈Poω,dω

∏
(i,j)∈P

[
pωij(1− xij) + qωijxij

]
, (2.1)

where Poω ,dω is the set of all oω-dω paths and where xij = 1 if a detector is

installed on arc (i, j) and xij = 0 otherwise. We conservatively assume the

smuggler selects a path with full knowledge of the detector locations and eva-
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sion probabilities. For a given ω ∈ Ω and installation plan xij, (i, j) ∈ A, the

value of (2.1) gives the probability that the smuggler traverses the network

undetected, conditional on the realization of threat scenario ω. The inter-

dictor seeks to minimize the sum of these conditional evasion probabilities,

each weighted by pω, over all threat scenarios. Problem (2.1) is a maximum-

reliability path problem since both the evasion probabilities and the installa-

tion plan are fixed and known to the smuggler by the time he selects a path.

Then we can view the interdictor’s problem as minimizing the expected value

of the maximum-reliability path.

Morton et al. [26] formulate the problem on a general network as

a mixed-integer program and Pan and Morton [25] develop an enhanced L-

shaped decomposition method and use valid inequalities when solving the as-

sociated master problem. See [18] for the deterministic version of this problem,

[3] for a variant with asymmetric information, and [9] for a variant in which

interdiction successes are uncertain. We give a more extensive review of net-

work interdiction research in Section 1.5. This chapter develops mixed-integer

programming formulations and enhanced branch-and-bound algorithms for the

special case of this problem in which a smuggler encounters at most one de-

tector. These enhancements significantly reduce computational effort. Also,

while this special case is known to be NP-complete, we describe a condition

under which we can solve an instance in polynomial time.
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2.2 Problem Description

We restrict attention to a special case that arises when we can only

place detectors at border-crossing checkpoints of a single country. The key to

simplifying the formulation in this case is that each oω-dω path has exactly

one arc on which the smuggler could encounter a detector. Let K be the set

of checkpoint arcs, i.e., arcs that a smuggler could traverse depending on the

selected path, that could contain a detector. For each ω, we compute the value

of the maximum-reliability path from oω to the tail of each checkpoint arc and

the value of the maximum-reliability path from the head of each checkpoint

arc to dω. Call the product of these two probabilities γωk , k = (i, j) ∈ K.

Then the evasion probability for smuggler ω if he traverses checkpoint k is

either γωk p
ω
k or γωk q

ω
k , depending on whether a detector is installed. Figure 2.1

shows the topology of the preprocessed network and the transformed bipartite

network. We can then formulate the bipartite stochastic network interdiction

problem (BiSNIP) as follows.
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Figure 2.1: (a) Network topology after preprocessing for the single country
problem. Only border crossing arcs can receive detectors, so the network be-
tween the source and the tails of the checkpoint arcs and the heads of the
checkpoint arcs and the destination can be reduced. (b) The equivalent bipar-
tite network.
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Sets:

K set of border checkpoints

Data:
b total budget for installing detectors

ck cost of installing a detector at border checkpoint k ∈ K
Random elements:
ω ∈ Ω sample point and sample space for threat scenarios

pω probability mass function

pωk probability smuggler ω can traverse checkpoint k undetected with

no detector installed

qωk < pωk probability smuggler ω can traverse checkpoint k undetected with

a detector installed

γωk product of the values of the maximum-reliability paths from oω to

the tail of arc k and from the head of arc k to dω for smuggler ω

Interdictor’s decision variables:

xk 1 if a detector is installed at checkpoint k and 0 otherwise

Smuggler’s decision variables:

θω evasion probability for smuggler ω

Formulation:

min
x,θ

∑
ω∈Ω

pωθω (2.2a)

s.t. x ∈ X (2.2b)

θω ≥ γωk p
ω
k (1− xk), k ∈ K,ω ∈ Ω (2.2c)

θω ≥ γωk q
ω
k xk, k ∈ K,ω ∈ Ω, (2.2d)

where X = {x ∈ B|K| :
∑

k∈K ckxk ≤ b}.

BiSNIP (2.2) may be viewed on a bipartite network with arcs (ω, k)

linking each threat scenario with its checkpoints. Variable θω is the conditional
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probability the smuggler avoids detection, given ω, and model (2.2) minimizes

the (unconditional) probability the smuggler avoids detection. Constraints

(2.2c) and (2.2d) force the evasion probability for each smuggler to equal that

of the maximum reliability path, i.e., θω = maxk∈K{γωk pωk (1− xk), γωk qωk xk}.

Our initial attempts to solve the BiSNIP model (2.2) using a branch-

and-bound solution method indicated that BiSNIP’s linear-programming (LP)

relaxation can produce very weak lower bounds. The following proposition

tightens constraints (2.2c) and effectively eliminates constraints (2.2d) in the

BiSNIP model.

Proposition 5. Consider the BiSNIP model (2.2), let qωmax ≡ maxk∈K γ
ω
k q

ω
k ,

and assume 0 ≤ qωk ≤ pωk ≤ 1 and 0 ≤ γωk ≤ 1 for all k ∈ K, ω ∈ Ω. Then the

inequalities

θω ≥ γωk p
ω
k − (γωk p

ω
k − qωmax)xk, k ∈ K, ω ∈ Ω (2.3a)

θω ≥ qωmax, ω ∈ Ω (2.3b)

are valid for BiSNIP.

Proof. Let k∗ ∈ argmaxk∈Kγ
ω
k q

ω
k for some ω ∈ Ω. If xk∗ = 1, then constraint

(2.2d) dominates (2.2c) and yields θω ≥ γωk∗q
ω
k∗ = qωmax. And, if xk∗ = 0 then

constraint (2.2c) dominates (2.2d) and yields θω ≥ γωk∗p
ω
k∗ ≥ γωk∗q

ω
k∗ = qωmax.

This proves the validity of (2.3b). Now for any k ∈ K, if xk = 1 then (2.3a)

becomes (2.3b), and if xk = 0 then (2.3a) is equivalent to (2.2c). Thus (2.3a)

is valid as well.
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We can view the right-hand side of (2.3b) as providing an optimistic bound,

from the interdictor’s perspective, on the evasion probability of smuggler ω.

Then (2.3a) is simply a strengthened version of (2.2c) in which the right-hand

side drops down to the lower bound qωmax instead of zero when xk = 1.

We can replace constraints (2.2c) and (2.2d) in BiSNIP with (2.3a) and

(2.3b) since every constraint in the former set is dominated by some constraint

in the latter. In doing so we obtain a model with half as many structural

constraints and at least as strong an LP relaxation. Furthermore, defining

θ̄ω = θω − qωmax and rωk = (γωk p
ω
k − qωmax)+, where (·)+ = max(·, 0), we can

transform BiSNIP into a model in which θ̄ω has simple lower bounds of zero:

min
x,θ̄

∑
ω∈Ω

pωθ̄ω (2.4a)

s.t. x ∈ X (2.4b)

θ̄ω ≥ rωk (1− xk), k ∈ K, ω ∈ Ω. (2.4c)

Here γωk p
ω
k ≤ qωmax implies that rωk = 0 and in this case, the corre-

sponding constraint (2.4c) reduces to a non-negativity constraint. This occurs

when smuggler ω prefers a checkpoint with evasion probability qωmax to that of

checkpoint k. Model (2.4) implicitly ignores such checkpoint-smuggler pairs.

Model (2.4) is equivalent to BiSNIP in that both models have the same

set of optimal solutions for locating the detectors, but their objective functions

differ by the constant
∑

ω∈Ω p
ωqωmax. We can view this as a transformation to a

model in which the radiation detectors are perfectly reliable, i.e., model (2.4)
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has the form of model (2.2) with qωk = 0. We conclude by noting that in some

instances (2.4) can be further tightened by replacing (2.4c) with

θ̄ω ≥ rωk − (rωk − θω)xk, k ∈ K, ω ∈ Ω, (2.5)

where

θω = min
x∈X

max
k∈K

rωk (1− xk), ω ∈ Ω. (2.6)

We can efficiently compute θω for each ω ∈ Ω by sorting the checkpoints in

decreasing order by rωk , then greedily allocating detectors until the interdiction

budget b is depleted. This is equivalent to solving the wait-and-see problem,

that is, each θω is computed under the assumption that we know in advance

that threat scenario ω is realized and allocate the detectors accordingly.

2.3 Scenario Aggregation

We now focus our discussion on the transformed model (2.4) but sup-

press the “bar” notation on θω for simplicity. Suppose that for some pair of

smugglers ω, ω′ ∈ Ω we can index the checkpoints in K, k1, k2, . . . , k|K|, such

that rωk1 ≥ rωk2 ≥ · · · ≥ rωk|K| and rω
′

k1
≥ rω

′

k2
≥ · · · ≥ rω

′

k|K|
. That is to say, both

of these particular smugglers may have different evasion probabilities at some

or all checkpoints, but they can rank-order the checkpoints in an identical

manner.

The motivation for considering the above situation in the context of the

BiSNIP model arises as follows. Suppose the indigenous evasion probabilities
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do not depend on the threat scenario. Consider two smugglers, ω and ω′, that

are identical in every way, including their origin-destination pair, the mass and

type of material they smuggle, etc., except that smuggler ω shields his material

better than does smuggler ω′. Then, for each checkpoint the indigenous eva-

sion probabilities associated with traveling from origin to destination via that

checkpoint will be identical for both smugglers, pωkγ
ω
k = pω

′

k γ
ω′

k for all k ∈ K.

And, the evasion probability at each checkpoint will be larger for the smuggler

with better shielding, qωk > qω
′

k for all k ∈ K. This then results in smugglers ω

and ω′ ordering their checkpoints in an identical manner. As suggested above,

there may be fewer positive values of rωk , k ∈ K, than of rω
′

k , k ∈ K, but they

will still satisfy the requisite (inclusive) ordering condition. The same result

can arise, for example, when the two smugglers are carrying different masses of

nuclear material, and it can arise for distinct origin-destination pairs, typically

in close geographic proximity. It can also arise when the indigenous evasion

probabilities depend on the threat scenario, as long as their ordering is identi-

cal. Specifically, since rωk = (γωk p
ω
k − qωmax)+, two smugglers with different but

identically ordered γωk p
ω
k values satisfy the ordering condition.

Fix an interdiction plan for BiSNIP, x = (xk)k∈K ∈ X. Then for ω and

ω′ satisfying the identical-ordering assumption we have θω = rωk∗ and θω
′
= rω

′

k∗ ,

where k∗ ∈ argmaxk∈Kr
ω
k (1−xk) and k∗ ∈ argmaxk∈Kr

ω′

k (1−xk) can be taken

to be the same checkpoint. The contribution of θω and θω
′

to the objective

function (2.4a) is given by pωθω+pω
′
θω
′
. Of course, we do not know x ahead of

time but we can replace ω and ω′ with a single scenario, say ω̄. The objective
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function coefficient of θω̄ is equal to pω + pω
′
, and the evasion probability at

each checkpoint k ∈ K is

pωrωk + pω
′
rω
′

k

pω + pω′

for scenario ω̄. Extending these ideas to an arbitrary number of scenarios

yields the following proposition.

Proposition 6. Consider model (2.4), let x ∈ X, and let θω = maxk∈K r
ω
k (1−

xk). Suppose there exists a partition, Ωn, n ∈ N, of Ω such that every smuggler

in a particular subset Ωn orders his evasion probabilities in an identical fashion.

That is, for each n ∈ N there exists kn1 , k
n
2 , . . . , k

n
|K| such that rωkn1 ≥ rωkn2 ≥

· · · ≥ rωkn|K|
for all ω ∈ Ωn. Let θωn = maxk∈K r

ωn
k (1 − xk) where rωnk =∑

ω∈Ωn p
ωrωk /p

ωn and where pωn =
∑

ω∈Ωn p
ω. Then pωnθωn =

∑
ω∈Ωn p

ωθω.

Proof. Under the ordering assumption for rωk , ω ∈ Ω, for each x ∈ X and

n ∈ N, there exists a k∗ such that rωk∗ = maxk∈K r
ω
k (1 − xk), ∀ω ∈ Ωn. Since

pω ≥ 0,∀ω, k∗ also maximizes
∑

ω∈Ωn p
ωrωk (1− xk). Thus,

pωnθωn = max
k∈K

pωnrωnk (1− xk)

= max
k∈K

∑
ω∈Ωn

pωrωk (1− xk)

=
∑
ω∈Ωn

pω max
k∈K

rωk (1− xk)

=
∑
ω∈Ωn

pωθω.
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Corollary 7. Under the hypotheses of Proposition 6, the following model is

equivalent to model (2.4):

min
x,θ

∑
n∈N

pωnθωn

s.t. x ∈ X (2.7)

θωn ≥ rωnk (1− xk), k ∈ K, n ∈ N.

In the equivalent aggregated model (2.7), rωnk and θωn are still conditional

evasion probabilities but are now conditioned on the event ω ∈ Ωn whereas

their counterparts in (2.4) were conditioned on the realization of a single threat

scenario. Similarly pωn = P (Ωn) is the probability that a threat scenario in

Ωn is realized.

2.4 Step Inequalities

Previous work (e.g., [26, 29]) tightening the LP relaxation of (2.4) in-

volves the development of a class of valid inequalities known as step inequali-

ties. To motivate these step inequalities, we first define some notation which

we will use for the remainder of this chapter. Let k(i, ω) ∈ K be an index

mapping of the checkpoints such that rωk(i,ω) ≥ rωk(i+1,ω) for all i = 1, . . . , |K|−1

and ω ∈ Ω and that ∪|K|i=1{k(i, ω)} = K for all ω ∈ Ω. Then we define a set

Kω
k for every k ∈ K and ω ∈ Ω which satisfies

Kω
k(i,ω) = {k(i′, ω) : 1 ≤ i′ < i}, 1 ≤ i ≤ |K|, ω ∈ Ω. (2.8)
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We can view Kω
k as the set of all checkpoints which smuggler ω ranks higher

than checkpoint k, with ties between checkpoints being resolved arbitrarily.

So every k′ ∈ Kω
k satisfies rωk′ ≥ rωk and every k′ /∈ Kω

k satisfies rωk′ ≤ rωk . Now

let T (ω) = {k1, . . . , kl} ⊆ K satisfy ki ∈ Kω
ki+1

for i = 1, . . . , l − 1. Then we

must have rωk1 ≥ rωk2 ≥ · · · ≥ rωkl and can define a step inequality on T (ω) as

follows:

θω ≥ rωk1 − (rωk1 − r
ω
k2

)xk1 − · · · − (rωkl − r
ω
kl+1

)xkl , (2.9)

where rωkl+1
≡ 0. The number of step inequalities for every scenario can be

exponential in |K| and so adding all possible step inequalities to (2.4) is out

of the question. Instead, we iteratively solve the linear-programming relax-

ation of (2.4) and add step inequalities on an as-needed basis. The separation

problem for step inequalities requires that given (x̂, θ̂), a feasible solution to

the LP relaxation of (2.4), we either identify a most violated step inequality

for each ω or determine that none are violated. To find a most violated step

inequality for some ω, if it exists, we must find a T (ω) which maximizes the

right-hand side of (2.9). That is, we must solve:

zω = max
T (ω)⊆K

rωk1 − (rωk1 − r
ω
k2

)x̂k1 − · · · − (rωkl − r
ω
kl+1

)x̂kl , (2.10)

for each ω ∈ Ω. The following results show that we can determine whether a

particular k should be included in an optimal solution to (2.10) by sorting. For

this result and for the remainder of the chapter we reserve the “hat” notation,

as in (x̂, θ̂), for solutions of the LP relaxation.
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Proposition 8. Let ω ∈ Ω and x̂ ∈ [0, 1]|K| be given. There exists an optimal

solution T ∗(ω) to (2.10) in which k ∈ T ∗(ω) if and only if either Kω
k = ∅ or

x̂k < min
k′∈Kω

k

x̂k′ . (2.11)

Proof. We first show that we can construct an optimal solution to (2.10) which

contains every k which satisfies either Kω
k = ∅ or (2.11). We then show that

any checkpoint k which satisfies neither Kω
k = ∅ nor (2.11) can be removed

from this optimal solution without decreasing the objective.

Suppose that T ∗(ω) is an optimal solution to (2.10) and zω is the corre-

sponding optimal value. We first consider the case in which Kω
k = ∅ for some

k ∈ K \ T ∗(ω),

zω = rωk1 − · · · − (rωkl − r
ω
kl+1

)x̂kl

= rωk − (rωk − rωk1)− · · · − (rωkl − r
ω
kl+1

)x̂kl

≤ rωk − (rωk − rωk1)x̂k − · · · − (rωkl − r
ω
kl+1

)x̂kl . (2.12)

The inequality in (2.12) holds since x̂k ≤ 1 and since Kω
k = ∅ implies rωk ≥

rωk1 . But since (2.12) is simply the objective function of (2.10) evaluated at

T (ω) = T ∗(ω) ∪ {k}, adding k to an optimal solution of (2.10) will maintain

optimality. We turn to the case in which there exists k ∈ K \ T ∗(ω) such

that Kω
k 6= ∅ and x̂k < mink′∈Kω

k
x̂k′ . If T ∗(ω) ∩ Kω

k = ∅, then adding k to

T ∗(ω) cannot decrease the objective function as shown above. So we assume

T ∗(ω)∩Kω
k 6= ∅ and let i′ = max{i:ki∈T ∗(ω)∩Kω

k } i. Then ki′ ∈ Kω
k and for i′ 6= l,
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ki′+1 /∈ Kω
k . We can then add k to the right-hand side of the step inequality

between ki′ and ki′+1 as follows:

zω = rωk1 − · · · − (rωki′ − r
ω
ki′+1

)x̂ki′ − · · ·

= rωk1 − · · · − (rωki′ − r
ω
k )x̂ki′ − (rωk − rωki′+1

)x̂ki′ − · · ·

≤ rωk1 − · · · − (rωki′ − r
ω
k )x̂ki′ − (rωk − rωki′+1

)x̂k − · · ·. (2.13)

The inequality in (2.13) holds since ki′ ∈ Kω
k implies x̂k < x̂ki′ and ki′+1 /∈ Kω

k

implies rωk ≥ rωki′+1
. Note that the above still holds if i′ = l since we defined

rωkl+1
to be 0 and rk ≥ 0. But (2.13) is simply the objective function of (2.10)

evaluated at T (ω) = T ∗(ω) ∪ {k}. So, starting with an arbitrary optimal

solution to (2.10), we can add any checkpoint satisfying either Kω
k = ∅ or

(2.11) and maintain optimality. This proves the reverse direction.

Now suppose T ∗(ω) contains all k satisfying either Kω
k = ∅ or (2.11)

but also contains some k with Kω
k 6= ∅ which does not satisfy (2.11). It must

hold that at least one element of argmink′∈Kω
k
x̂k′ is in T ∗(ω). Then there exists

ki, ki+1 ∈ T ∗(ω) such that x̂ki ≤ x̂ki+1
, and so,

zω = rωk1 − · · · − (rωki − r
ω
ki+1

)x̂ki − (rωki+1
− rωki+2

)x̂ki+1
− · · ·

≤ rωk1 − · · · − (rωki − r
ω
ki+1

)x̂ki − (rωki+1
− rωki+2

)x̂ki − · · ·

= rωk1 − · · · − (rωki+2
− rωki)x̂ki − · · ·. (2.14)

But (2.14) is simply the objective function of (2.10) evaluated at T (ω) =

T ∗(ω)\ki+1. So we can remove ki+1 without decreasing the objective function.

But ki+1 satisfies neither Kω
ki+1

= ∅ nor (2.11) since ki ∈ Kω
ki+1

. If we iteratively
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remove all such checkpoints, after a finite number of iterations we obtain an

optimal solution which only includes checkpoints satisfying either Kω
k = ∅ or

(2.11).

Proposition 8 provides an algorithm for generating an optimal solution to

(2.10) in polynomial time. In fact, we can sort rωk , k ∈ K, for each ω ∈

Ω, prior to beginning the iterative separation process, then we can solve the

separation problem for some ω ∈ Ω by making at most |K| comparisons.

Defining mink′∈∅ x̂k′ to be 1, we can also obtain an analytical form for zω in

terms of x̂ as follows.

Proposition 9. Let ω ∈ Ω and x̂ ∈ [0, 1]|K| be given. Then the optimal value

of (2.10) is given by:

zω =
∑
k∈K

rωk

(
min
k′∈Kω

k

x̂k′ − x̂k
)+

. (2.15)

Proof. Rearranging the terms in the objective function of (2.10) we obtain:

zω = max
T (ω)⊆K

∑
ki∈T (ω)

rωki(x̂ki−1
− x̂ki), (2.16)

where x̂k0 ≡ 1. By Proposition 8 we have that we can form an optimal

solution T ∗(ω) to (2.10) via the rule k ∈ T ∗(ω) if and only if either Kω
k = ∅ or

x̂k < mink′∈Kω
k
x̂k′ . For such an optimal set, T ∗(ω), we claim that

x̂ki−1
= min

k′∈Kω
ki

x̂k′ . (2.17)

Equation (2.17) holds for i = 1 since x̂k0 = 1 and Kω
k1

= ∅. Suppose that

(2.17) does not hold for some i > 1. Then there exists a non-empty set
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K ′ = {k′ ∈ Kω
ki

: x̂k′ < x̂ki−1
}. If any element of K ′ also lies in Kω

ki−1
, then

ki−1 would not satisfy condition (2.11) and thus would not be included in

T ∗(ω). If none of the elements of K ′ lie in Kω
ki−1

, then at least one element of

K ′ would have been included in T ∗(ω) between ki−1 and ki. In either case we

have a contradiction, and so (2.17) must hold. Applying (2.17) we obtain:

zω =
∑

ki∈T ∗(ω)

rωki(x̂ki−1
− x̂ki)

=
∑

ki∈T ∗(ω)

rωki

(
min
k′∈Kω

ki

x̂k′ − x̂ki

)

=
∑
k∈K

rωk

(
min
k′∈Kω

k

x̂k′ − x̂k
)+

, (2.18)

for all ω ∈ Ω. The equality in (2.18) is due to the fact that x̂k ≥ mink′∈Kω
k
x̂k′

for any k ∈ K \ T ∗(ω).

Corollary 10. Consider the LP relaxation of model (2.4) in which all of the

step inequalities have been added. If (x̂, θ̂) denotes an optimal solution to this

linear program, then its optimal value satisfies

∑
ω∈Ω

pωθ̂ω =
∑
ω∈Ω

∑
k∈K

rωk

(
min
k′∈Kω

k

x̂k′ − x̂k
)+

. (2.19)

Note that we can say that θ̂ω = zω even if none of the step inequalities are

violated for a particular ω since the original inequalities (2.4c) are special cases

of the step inequality. That is, if no step inequalities are violated for some

ω ∈ Ω, zω will simply equal the right-hand side of some binding constraint in

(2.4c).
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2.5 Reformulation

We now describe a polynomially-sized reformulation of BiSNIP, whose

LP relaxation is as strong as that of (2.4) with every step inequality added. Our

motivation for developing this reformulation is three-fold. First, a compact

reformulation may be preferable in terms of ease of implementation. Second,

the reformulation reveals some interesting theoretical results which we present

in Section 2.6. Third, the reformulation is amenable to a customized branch-

and-bound scheme which we describe in Section 2.8.

Let decision variable vωk equal 1 if smuggler ω traverses checkpoint k

and 0 otherwise, and let vωk0 equal 1 if all checkpoints are interdicted and 0

otherwise, where k0 6∈ K is an additional dummy index. These variables allow

us to explicitly encode the smuggler’s preferences as follows:

min
x,θ,v

∑
ω∈Ω

pωθω (2.20a)

s.t. x ∈ X (2.20b)

θω =
∑
k∈K

rωk v
ω
k , ω ∈ Ω (2.20c)

xk ≥ vωk0 +
∑

k′∈K\K̄ω
k

vωk′ , k ∈ K, ω ∈ Ω (2.20d)

vωk0 +
∑
k∈K

vωk = 1, ω ∈ Ω (2.20e)

0 ≤ vωk ≤ 1, k ∈ K ∪ {k0}, ω ∈ Ω, (2.20f)

where K̄ω
k = Kω

k ∪ {k} and we take
∑

k′∈∅ v
ω
k′ as 0. Constraint (2.20d) says

that a smuggler will only traverse a checkpoint ranked lower than checkpoint k
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if a detector is installed at checkpoint k. Constraint (2.20e) requires that each

smuggler traverses exactly one checkpoint and (2.20c) selects the appropriate

evasion probability for each smuggler. We do not enforce integrality constraints

on v since, as we show later, there is no incentive to fractionalize v when x is

binary.

To see that model (2.20) properly computes the conditional evasion

probabilities θω, ω ∈ Ω, let x ∈ X be a feasible installation plan and kω∗ ∈

argmax{k:xk=0}r
ω
k be an optimal response for smuggler ω given x. Since xkω∗ =

0, by (2.20d) vωk must be 0 for all k ranked lower than kω∗. The variable vωkω∗ ,

along with any vωk corresponding to a k ranked higher than kω∗, is not bound

by constraint (2.20d). For each ω ∈ Ω, in order to minimize θω and satisfy

constraint (2.20e), we choose from amongst the free vωk one of the variables

with the smallest rωk coefficient to be 1. So we can choose vωkω∗ = 1 which

yields the appropriate evasion probability θω = rωkω∗ . For the trivial case in

which xk = 1, ∀k ∈ K, we can set vωk0 = 1 and achieve θω = 0. In practice, the

budget is typically small enough so that it is impossible to install a detector

at every checkpoint and in that case we can fix vωk0 = 0.

We can informally comment on the strength of (2.20) as follows. Con-

sider the LP relaxation of (2.20), and suppose that xk = 0 for some k ∈ K.

Then vωk′ = 0 for all k′ ∈ K such that rωk′ < rωk by (2.20d) and θω ≥ rωk , with

equality holding only if vωk = 1. But vωk = 1 forces xk′ = 1 for all k′ such that

rωk′ > rωk , again by (2.20d). Contrast this with the LP relaxation of (2.4), in

which we can achieve θω = rωk by setting xk′ =
rωk−r

ω
k′

rωk
for every k′ such that
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rωk′ > rωk . We next comment more formally on the strength of (2.20) by first

showing that the optimal value of its LP relaxation is equal to that of (2.4)

with all step inequalities added.

Lemma 11. There exists an optimal solution to the LP relaxation of (2.20)

(x̂, θ̂, v̂), in which

v̂ωk =

1− x̂k −
∑
k′∈Kω

k

v̂ωk′

+

,

for all k ∈ K,ω ∈ Ω.

Proof. By constraint (2.20e), we can rewrite constraint (2.20d) as:

xk ≥ 1− vωk −
∑
k′∈Kω

k

vωk′ , k ∈ K, ω ∈ Ω. (2.21)

Rearranging the terms of (2.21) and incorporating the non-negativity con-

straints on v we obtain:

vωk ≥

1− xk −
∑
k′∈Kω

k

vωk′

+

≡ vωk , k ∈ K, ω ∈ Ω. (2.22)

Let ω ∈ Ω and suppose (2.22) is strict for some k ∈ K at an optimal solution

(x̂, v̂, θ̂) to the LP relaxation of (2.20). Let k1 ∈ argmin{k′:v̂ω
k′>v

ω
k′}
|Kω

k′|. And,

let k2 ∈ argmin{k′:k1∈Kω
k′}
|Kω

k′ | if Kω
k1
∪ {k1} 6= K and k2 = k0 otherwise. Now

we construct a perturbed solution identical to (x̂, v̂, θ̂) but with vωk1 = v̂ωk1 − ε,

vωk2 = v̂ωk2 + ε, and θω = θ̂ω − ε(rωk1 − r
ω
k2

), where ε = v̂ωk1 − v
ω
k1

and rωk0 ≡ 0. To

show that this perturbed solution satisfies (2.20d), we equivalently show that

it satisfies (2.22). For k ∈ K \ {k1, k2}, both sides of (2.22) remain unchanged

44



since for all such k, either k1, k2 ∈ Kω
k or k1, k2 /∈ Kω

k . (If k2 = k0 the latter

is always true since k1 must be the smuggler’s lowest ranked checkpoint and

k0 6∈ K.) Inequality (2.22) remains satisfied for k = k1 since the right-hand

side remains unchanged and ε = v̂ωk1 − v
ω
k . Finally, for k = k2 6= k0, both sides

of (2.22) increase by ε. So inequality (2.22) holds which implies (2.20d) holds

as well. The rest of the constraints in (2.20) are also satisfied by construction.

This perturbed solution is optimal since rωk1 ≥ rωk2 and has the property that

(2.22) is tight for all k′ ∈ Kω
k1
∪ {k1}. Repeating this perturbation at most

|K||Ω| times we obtain an optimal solution for which (2.22) is tight for all

k ∈ K.

Theorem 12. The optimal value of the LP relaxation of (2.4) with all step

inequalities added is equal to that of the LP relaxation of (2.20).

Proof. By Proposition 9, if we fix x̂ ∈ [0, 1]|K| in (2.4), add the most violated

step inequalities for each scenario, and optimize over θ we obtain:

θω = zω =
∑
k∈K

rωk

(
min
k′∈Kω

k

x̂k′ − x̂k
)+

,

where zω is the largest right-hand side of all step inequalities for scenario ω.

Since the objective function of (2.4) is
∑

ω∈Ω p
ωθω and is identical to that of

(2.20), it suffices to show that v̂ωk = (mink′∈Kω
k
x̂k′−x̂k)+ at an optimal solution

to the LP relaxation of (2.20) for the same fixed x = x̂.

Let ω ∈ Ω and assume without loss of generality that Kω
k = {k′ ∈

K : k′ < k}. Then under the indexing for this particular ω, mink′∈Kω
k
x̂k′ =
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mink′<k x̂k′ . By induction we now show that:

min
k′<k+1

xk′ = x1 − (x1 − x2)+ − · · · −
(

min
k′<k

xk′ − xk
)+

(2.23a)

v̂ωk =

(
min
k′<k

x̂k′ − x̂k
)+

(2.23b)

holds for all k ≥ 2. For the base case k = 2 we have:

min(x1, x2) = x1 − (x1 − x2)+ (2.24a)

v̂ω2 = (x̂1 − x̂2)+. (2.24b)

Equation (2.24a) holds since (x1−x2)+ = (x1−x2) if x1 > x2 and (x1−x2)+ = 0

otherwise. Equation (2.24b) holds since by Lemma 11, v̂ω1 = 1 − x̂1 and

v̂ω2 = (1 − x̂2 − v̂ω1 )+ = (x̂1 − x̂2)+. Now assume that (2.23a) holds for an

arbitrary k ≥ 2. Then:

min
k′<k+2

xk′ = min
k′<k+1

xk′ −
(

min
k′<k+1

xk′ − xk+1

)+

= x1 − (x1 − x2)+ − · · · −
(

min
k′<k+1

xk′ − xk+1

)+

by the same argument we made for the base case (2.24a). Thus (2.23a) holds

for all k ≥ 2. Finally, assume (2.23b) holds for an arbitrary k ≥ 2. Lemma 11

then yields:

v̂ωk+1 = (1− x̂k+1 − v̂ω1 − v̂ω2 − · · · − v̂ωk )+

=

(
1− x̂k+1 − (1− x̂1)− (x̂1 − x̂2)+ − · · · −

(
min
k′<k

x̂k′ − x̂k
)+
)+

=

(
min
k′<k+1

x̂k′ − x̂k
)+

.
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Finally, we show that the non-dominated auxiliary variables of (2.20)

correspond exactly to the extreme points of the convex hulls of the polyhedra

induced by constraints (2.4c) for each ω ∈ Ω.

Proposition 13. Let Θω = {(x, θω) : θω ≥ rωk (1 − xk), k ∈ K, θω ∈ R+, x ∈

Z|K|+ }, where 0 ≤ rωk ≤ 1, and let (x̂, θ̂ω) be an extreme point of the convex hull

of Θω. Then either θ̂ω = rωk for some k ∈ K or θ̂ω = 0. Moreover, x̂k = 1 if

rωk > θ̂ω and x̂k = 0 otherwise.

Proof. Suppose that (x̂, θ̂ω) is an extreme point of conv(Θω). Then

θ̂ω ≥ rωmax ≡ max(max
k∈K

rωk (1− x̂k), 0). (2.25)

Now suppose that θ̂ω > rωmax. Then the points (x̂, θ̂ω + ε) and (x̂, θ̂ω− ε) where

ε = θ̂ω − rωmax are both in Θω. But (x̂, θ̂ω) is a convex combination of these

points and thus cannot be an extreme point of conv(Θω). So θ̂ω = rωmax and

consequently θ̂ω must be either rωk for some k ∈ K or 0. This proves the first

claim.

To prove the second claim, note that if (x̂, θ̂ω) ∈ Θω, then x̂k ≥ 1 for

every k with rωk > θ̂ω. Now suppose that for some k′ ∈ K, either xk′ ≥ 2 and

rωk′ > θ̂ω or xk′ ≥ 1 and rωk′ ≤ θ̂ω. Then (x̂+ ek′ , θ̂
ω) and (x̂− ek′ , θ̂ω), where ek

is the unit vector with the kth component equal to 1, are both in Θω. Since

(x̂, θ̂ω) is a convex combination of these two points, we must have that x̂k = 1

for all k with rωk > θ̂ω and x̂k = 0 otherwise.
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The significance of Proposition 13 is that the convex hull of Θω has at most

|K| + 1 extreme points. We can also easily enumerate the extreme directions

of conv(Θω); they are simply (ek, 0), k ∈ K, and (0, 1). Writing conv(Θω) as a

convex combination of its extreme points and a non-negatively weighted lin-

ear combination of its extreme directions results in constraints (2.20c)-(2.20f)

above. If some of the rωk are equal to each other or 0, we have fewer than

|K|+1 extreme points since each extreme point corresponds to a unique value

of θ̂ω. This may seem to be a discrepancy since we always have |K| + 1 aux-

iliary variables per scenario, but can be explained as follows. If multiple vωk

variables have the same coefficient in (2.20c), the variable corresponding to the

smallest |Kω
k | will dominate, and only the dominating variable corresponds to

an extreme point. So the strength of the LP relaxation of (2.20) lies in that it

does not allow points (x, θ) feasible to the LP relaxation of (2.4) but for which

(x, θω) does not lie in conv(Θω). See [24] for a survey of tight formulations for

mixed-integer sets similar to that of BiSNIP.

We conclude this section with a transformed version of (2.20) which has

the same LP relaxation value but a sparser constraint matrix. We introduce a

new decision variable uωk which equals 1 if smuggler ω traverses a checkpoint

with a lower evasion probability than that of checkpoint k and 0 otherwise.

Recall that k(i, ω) is smuggler ω’s ith best checkpoint. Then we can relate v

to u as follows

vωk(i,ω) = uωk(i−1,ω) − uωk(i,ω), (2.26)

where uωk(0,ω) ≡ 1 and vωk0 = uωk(|K|,ω), ω ∈ Ω. We can now replace v with u in
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model (2.20) starting with constraint (2.20d) as follows

xk(i,ω) ≥ vωk0 +

|K|∑
i′=i+1

vωk(i′,ω)

= uωk(|K|,ω) +

|K|∑
i′=i+1

(
uωk(i′−1,ω) − uωk(i′,ω)

)
= uωk(i,ω).

Constraint (2.20e) is satisfied automatically since vωk0 +
∑

k∈K v
ω
k = uωk(0,ω) = 1.

Non-negativity constraints on v simply translate into

uωk(i−1,ω) ≥ uωk(i,ω), i = 1, . . . , |K|, ω ∈ Ω.

Finally, we can substitute out v from constraint (2.20c) as follows

θω =

|K|∑
i=1

rωk(i,ω)

(
uωk(i−1,ω) − uωk(i,ω)

)
= rωk(1,ω) +

|K|∑
i=1

(
rωk(i+1,ω) − rωk(i,ω)

)
uωk(i,ω),

where rωk(|K|+1,ω) ≡ 0. With

sωk(i,ω) ≡ rωk(i,ω) − rωk(i+1,ω),

minimizing
∑

ω∈Ω p
ωθω is equivalent to maximizing

∑
ω∈Ω

∑
k∈K p

ωsωku
ω
k . Thus,
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we arrive at the following model:

max
x,u

∑
ω∈Ω

∑
k∈K

pωsωku
ω
k (2.29a)

s.t. x ∈ X (2.29b)

xk ≥ uωk , k ∈ K, ω ∈ Ω (2.29c)

uωk(i−1,ω) ≥ uωk(i,ω), i = 2, . . . , |K|, ω ∈ Ω (2.29d)

0 ≤ uωk ≤ 1, k ∈ K,ω ∈ Ω. (2.29e)

We do not include constraint (2.29d) for i = 1 since that would simply reduce

to a simple upper bound 1 ≥ uωk(1,ω). Note that this model is equivalent to

(2.20) since given v, u can be uniquely determined and vice-versa. While

model (2.29) has roughly twice as many structural constraints as (2.20), it has

a sparser constraint matrix for moderate- and large-scale instances since every

constraint other than the budget constraint has only two non-zero terms. We

focus our attention on model (2.29) for the remainder of this chapter. An

advantage to taking the perspective of model (2.29) is that it is identical to,

minus the budget constraint, the shared fixed cost problem introduced by Rhys

[32].

2.6 Efficient Nested Solutions

BiSNIP is strongly NP-complete, even with unit interdiction costs and

equally likely threat scenarios [29]. We now describe a family of instances of

BiSNIP that can be solved in polynomial time by solving a modest number of

linear programs. Given a probability mass function over the scenarios and an
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evasion probability for every scenario-checkpoint pair, we can plot the maxi-

mum decrease in evasion probability, relative to the uninterdicted system, as a

function of the budget by solving a BiSNIP instance for every possible budget

level. We refer to this curve as the efficient frontier of solutions, provided it

increases strictly. In this section we show that the solutions corresponding to

extreme points of the concave envelope of the efficient frontier can be found in

polynomial time (see Figure 2.2). And, given a pair of solutions which both

correspond to extreme points, the checkpoints interdicted in one solution are

a subset of those interdicted in the other. We refer to this as the nestedness

property. Hochbaum [17] shows that this property holds for a related prob-

lem by exploiting the solution properties of an equivalent parametric max-flow

problem. In this section, we show that the nestedness property hinges on a

supermodularity property of the objective function and a submodularity prop-

erty of the cost function. In general, solutions to BiSNIP are not necessarily

nested; see for example [23].

To elaborate further, consider a biobjective integer program in which

one objective is to maximize the decrease in the evasion probability, and the

other is to minimize detector installation costs. A solution for which it is both

impossible to decrease the expected evasion probability without increasing in-

stallation costs and impossible to decrease installation costs without increas-

ing the expected evasion probability is said to be Pareto efficient. Kuhn and

Tucker [20] show that we can find some Pareto efficient solutions by solving

a single-objective program whose objective is a weighted sum of the objec-
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Figure 2.2: An example efficient frontier of solutions. Solutions corresponding
to points A, B, and C can be found in polynomial time and are nested.

tives of the biobjective program. More specifically, every solution to this

single-objective program corresponds to a point on the concave envelope of

the efficient frontier [31].

For our problem, the resulting single-objective program is simply the

Lagrangian relaxation of (2.29) with the budget constraint dualized, which we

now show has an LP relaxation with integral extreme points. We first present

a result linking û to x̂ in an extreme point solution.

Lemma 14. Consider the LP relaxation of model (2.29) with the budget con-

straint
∑

k∈K ckxk ≤ b relaxed and let (x̂, û) be an extreme point solution.
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Then if ûωk > 0,

ûωk = min
k′∈K̄ω

k

x̂k′ .

Proof. By constraints (2.29c) and (2.29d) we have that

ûωk(i,ω) ≤ min
(
x̂k(i,ω), û

ω
k(i−1,ω)

)
= min

i′≤i
x̂k(i′,ω), i = 1, . . . , |K|, ω ∈ Ω. (2.30)

Equivalently, we have ûωk ≤ mink′∈K̄ω
k
x̂k′ for all k ∈ K and ω ∈ Ω. If this

inequality is strict for some k ∈ K and ω ∈ Ω and ûωk > 0, then we can

form two points feasible to the LP relaxation of (2.29) by perturbing ûωk by

ε = min
(

mink′∈K̄ω
k
x̂k′ − ûωk , ûωk

)
. Since (x̂, û) can be written as a strict convex

combination of these two points, it cannot be an extreme point.

Note that the above argument also holds if the budget constraint is not relaxed,

a fact we use later.

Proposition 15. Let XU be the feasible region of the LP relaxation of (2.29)

with the budget constraint
∑

k∈K ckxk ≤ b relaxed. Then every extreme point

of XU is integer valued.

Proof. Suppose not. Then there exists (x̂, û) ∈ XU with some component of x̂

or û being fractional. By Lemma 14, if any component of û is fractional then

some component of x̂ is also fractional. Therefore, there exists a non-empty

K ′ ⊆ K such that x̂k is fractional for every k ∈ K ′, and the following pair of

points is feasible:

xk = x̂k + εI(k ∈ K ′), k ∈ K; uωk = ûωk + εI(0 < ûωk < 1), k ∈ K, ω ∈ Ω

xk = x̂k − εI(k ∈ K ′), k ∈ K; uωk = ûωk − εI(0 < ûωk < 1), k ∈ K, ω ∈ Ω,
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where ε = mink∈K′(x̂k, 1 − x̂k) and I(·) is the indicator function. Since (x̂, û)

can be written as a strict convex combination of these two points, we have a

contradiction.

It is also possible to prove Proposition 15 using the fact that the associated

constraint matrix is totally unimodular since every element in the matrix is

0, 1, or -1, every row has at most two non-zero entries, and every row with

two non-zero entries sums to 0. The significance of Proposition 15 is that

we can solve an instance of BiSNIP in polynomial time if the solution to

that instance corresponds to an extreme point of the concave envelope of the

efficient frontier. We can find all such points by solving a parameterized LP.

Alternatively, the Lagrangian relaxation can be cast as a parameterized min-

cut problem [2] and solved efficiently using the push-relabel algorithm [15, 16]

or the pseudoflow algorithm [17]. Note that in general there may exist points

on the efficient frontier that lie below the concave envelope, so this does not

contradict the fact that BiSNIP is NP-complete. We refer to such points as

being convex dominated [31]. We formally describe this notion in the context

of our problem as follows.

Definition 1. Let K ′ ⊆ K. We define the gain function g : 2K → R as:

g(K ′) =
∑

(ω,k):K̄ω
k ⊆K′

pωsωk .

Definition 2. Let K ′ ⊆ K. We define the cost function c : 2K → R as:

c(K ′) =
∑
k∈K′

ck.
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Definition 3. Let K̂ ⊆ K. Then K̂ is convex dominated if there exists

K̂−, K̂+ ⊆ K with c(K̂−) ≤ c(K̂) ≤ c(K̂+) and c(K̂−) 6= c(K̂+) such that:

g(K̂) < αg(K̂−) + (1− α)g(K̂+),

where α = c(K̂+)−c(K̂)

c(K̂+)−c(K̂−)
.

Any solution on the concave envelope of the efficient frontier corresponds to

a set of checkpoints K̂ which satisfies g(K̂) ≥ αg(K̂−) + (1− α)g(K̂+) for all

K̂−, K̂+ satisfying the conditions of Definition 3, and for an extreme point of

the efficient frontier’s convex hull, this inequality is strict unless c(K̂) = c(K̂−)

or c(K̂) = c(K̂+).

Before we prove the nestedness property, we present some useful prop-

erties of the gain function and the efficient frontier. First, we show that the

gain function is supermodular (see, e.g., [34]).

Proposition 16. g(·) is a supermodular function. That is, if A ⊂ B ⊆ K

and k′ ∈ A, then

g(A)− g(A \ {k′}) ≤ g(B)− g(B \ {k′}).

Proof. For any K ′ ⊆ K such that k′ ∈ K ′ we have:

g(K ′)− g(K ′ \ {k′}) =
∑

(ω,k):K̄ω
k ⊆K′

pωsωk −
∑

(ω,k):K̄ω
k ⊆K′\{k′}

pωsωk

=
∑

(ω,k)∈G(K′,k′)

pωsωk ,
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where G(K ′, k′) = {(ω, k) : K̄ω
k ⊆ K ′, k′ ∈ K̄ω

k }. But G(A, k′) ⊆ G(B, k′)

coupled with non-negativity of the gain function’s summand yields the desired

result.

Definition 4. Let A,B ⊆ K satisfy c(A) < c(B). We define the gain-to-cost

ratio m : 2K × 2K → R as:

m(A,B) =
g(B)− g(A)

c(B)− c(A)
. (2.32)

Next, we present some useful results regarding sets that are not convex domi-

nated.

Lemma 17. Let A,B,C ⊆ K satisfy c(A) < c(B) < c(C). Then

(a) m(A,C) = αm(A,B) + (1− α)m(B,C) for some α ∈ (0, 1);

(b) if A is not convex dominated then m(A,B) = min{K′⊆K:c(K′)≤c(A)}m(K ′, B);

(c) if B is not convex dominated then m(A,B) = max{K′⊆K:c(K′)≥c(B)}m(A,K ′);

and,

(d) if B is not convex dominated and m(A,C) = m(A,B) = m(B,C), then

neither A nor C is convex dominated.

Proof. With α = c(B)−c(A)
c(C)−c(A)

, part (a) holds immediately. We prove part (b) by

contradiction. Suppose that m(A,B) > min{K′⊆K:c(K′)≤c(A)}m(K ′, B). Then

there exists K∗ ⊆ K with c(K∗) ≤ c(A) which satisfies m(A,B) > m(K∗, B).
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If we let α = c(B)−c(A)
c(B)−c(K∗) , then A is convex dominated by K∗ and B as follows:

g(B)− g(A)

c(B)− c(A)
>

g(B)− g(K∗)

c(B)− c(K∗)
=⇒

g(B)− g(A) > α(g(B)− g(K∗)) =⇒

αg(K∗) + (1− α)g(B) > g(A).

Similarly we can prove part (c) by contradiction. Supposem(A,B) < m(A,K∗)

for some K∗ satisfying c(K∗) ≥ c(B). If we let α = c(K∗)−c(B)
c(K∗)−c(A)

, then B is convex

dominated by A and K∗ as follows:

g(B)− g(A)

c(B)− c(A)
<

g(K∗)− g(A)

c(K∗)− c(A)
=⇒

g(B)− g(A) < (1− α)(g(K∗)− g(A)) =⇒

g(B) < αg(A) + (1− α)g(K∗).

Finally, to prove (d) assume that C is convex dominated and satisfiesm(A,C) =

m(A,B) = m(B,C). Then there exists C−, C+ ⊆ K with c(C−) ≤ c(C) ≤

c(C+) and c(C−) 6= c(C+) which satisfy

g(C) < αg(C−) + (1− α)g(C+),

where α = c(C+)−c(C)
c(C+)−c(C−)

. But if c(C) = c(C−), then g(C−) > g(C) and

m(A,C−) > m(A,C) = m(A,B), contradicting part (c). If c(C) = c(C+)

we would have m(A,C+) > m(A,B) again contradicting part (c). So we can

assume c(C−) < c(C) < c(C+). Then we have

α(g(C+)− g(C−)) < g(C+)− g(C) =⇒
g(C+)− g(C−)

c(C+)− c(C−)
<

g(C+)− g(C)

c(C+)− c(C)
.
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So m(C−, C+) < m(C,C+) and, by part (a), m(C−, C) < m(C,C+). But by

part (c), since c(C+) > c(B) we must have m(A,C+) ≤ m(A,B) = m(A,C),

which by part (a) implies m(C,C+) ≤ m(A,C). To summarize we have

m(C−, C) < m(C,C+) ≤ m(A,C) = m(A,B) = m(B,C).

Now suppose c(C−) < c(B). Since B is not convex dominated and m(C−, C) <

m(B,C), this contradicts part (b). So we must have c(C−) ≥ c(B). Since

m(C−, C) < m(A,C), by part (a) we have m(A,C) < m(A,C−). By hypoth-

esis this implies m(A,B) < m(A,C−) which is a contradiction of part (c).

Similar logic shows that A is also not convex dominated.

Of particular interest is part (c) of Lemma 17, which states that a set of

checkpoints which is not convex dominated maximizes the gain-to-cost ratio

between the set and any other set with smaller cost. In other words, the

solutions that we can find in polynomial time conveniently happen to be those

that maximize the decrease in evasion probability per unit installation cost.

Additionally, we can show that solutions that correspond to corner points

of the concave envelope are nested, that is, any pair of corner point solutions

corresponds to a pair of sets of checkpoints one of whom is a subset of the other.

This can be a desirable property if funds for installing detectors are made

available over time [17, 23]. The nestedness property is a direct consequence

of the following.

Theorem 18. Let A,B ⊆ K. Then if neither A nor B is convex dominated,

then neither AB nor A ∪B is convex dominated.
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Proof. Assume without loss of generality that c(A) ≤ c(B). If A ⊆ B then

AB = A and A ∪ B = B and the result holds by hypothesis. Suppose then

that A 6⊆ B. Then we have c(AB) < c(A) < c(A ∪ B). By Proposition 16

we have that g(A ∪B)− g(B) ≥ g(A)− g(AB), and since c(A ∪B)− c(B) =

c(A)−c(AB) = c(A\B), this implies that m(B,A∪B) ≥ m(AB,A). Also, by

Lemma 17(b) we have m(AB,A∪B) ≥ m(A,A∪B) which implies m(AB,A) ≥

m(A,A ∪B) by Lemma 17(a). Combining these results we have:

m(B,A ∪B) ≥ m(AB,A) ≥ m(A,A ∪B). (2.33)

But by Lemma 17(b), we have m(B,A ∪ B) ≤ m(A,A ∪ B) and so (2.33)

must hold with equality throughout. So m(AB,A) = m(A,A ∪ B) and by

Lemma 17(d), neither AB nor A ∪B is convex dominated.

Corollary 19. Let K1, K2 ⊆ K correspond to points on the concave envelope

of the efficient frontier with c(K1) < c(K2). If either K1 or K2 corresponds to

an extreme point, then K1 ⊂ K2. Moreover, if both K1 and K2 correspond to

extreme points and c(K1) = c(K2), then K1 = K2.

Corollary 19 follows since g(Ki) = αig(K1K2) + (1 − αi)g(K1 ∪K2), i = 1, 2,

for αi = c(K1∪K2)−c(Ki)
c(K1∪K2)−c(K1K2)

, which implies that K1 and K2 do not correspond to

extreme points unless K1 = K1K2 and K2 = K1 ∪ K2. The second part of

the corollary implies that each extreme point corresponds to a unique set of

checkpoints.

We conclude this section by proposing an easy-to-implement algorithm

for generating all extreme points, based on the following observation.
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Proposition 20. Let (x̂, û) be an extreme point solution to the LP relaxation

of (2.29). Then all fractional components of x̂ must be equal.

Proof. We assume without loss of generality that ck ≥ 1,∀k. Suppose there

exists k1, k2 ∈ K such that x̂k1 and x̂k2 are both fractional and x̂k1 6= x̂k2 . Let

K1 = {k ∈ K : x̂k = x̂k1} and K2 = {k ∈ K : x̂k = x̂k2}. By Lemma 14 we

have that if ûωk > 0 then ûωk = mink′∈K̄ω
k
xk′ . Let

ε = min

{
1

2
min

k′∈K\K1

|x̂k1 − x̂k′|,
1

2
min

k′∈K\K2

|x̂k2 − x̂k′|, x̂k1 , 1− x̂k1 , x̂k2 , 1− x̂k2
}
.

The following two points are feasible to the LP relaxation of (2.29):

xk = x̂k + ε
c(K1)

I(k ∈ K1)− ε
c(K2)

I(k ∈ K2), k ∈ K;

uωk = ûωk + ε
c(K1)

I(ûωk = x̂k1)− ε
c(K2)

I(ûωk = x̂k2), k ∈ K, ω ∈ Ω

xk = x̂k − ε
c(K1)

I(k ∈ K1) + ε
c(K2)

I(k ∈ K2), k ∈ K;

uωk = ûωk − ε
c(K1)

I(ûωk = x̂k1) + ε
c(K2)

I(ûωk = x̂k2), k ∈ K, ω ∈ Ω.

Since (x̂, û) can be written as a strict convex combination of these two points,

it is not an extreme point.

The algorithm to generate the solutions corresponding to all extreme

points of the efficient frontier’s convex envelope proceeds as follows. Assume

without loss of generality that ck ≥ 1,∀k, and let (x̂, û) be a solution to the LP

relaxation of (2.29) with f = 1. If K∗ ⊆ K indexes the positive components

of x̂ and K∗ 6= ∅, then
∑

k∈K∗ ckx̂k = 1 and x̂k = I(k ∈ K∗)/c(K∗),∀k ∈ K by

Proposition 20. So the objective value is simply g(K∗)/c(K∗) and therefore
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K∗ represents a Pareto-efficient solution which is not convex dominated as it

must solve minK′⊆K g(K ′)/c(K ′). By Corollary 19 and Lemma 17(c), we can

then resolve the LP relaxation of (2.29) with xk fixed to 1 for all k ∈ K∗ and

with f = c(K∗) + 1 to generate the next extreme point. We can generate all

extreme points by iterating in this fashion until we arrive at a solution in which

all checkpoints the smuggler would consider traversing are interdicted. Note

that this algorithm may also generate some points that are on the concave

upper envelope but not extreme points. This algorithm is summarized in the

pseudo-code of Algorithm 1.

Algorithm 1: GetExtremePoints(p, r, c)

Input: Scenario probabilities pω > 0, evasion probabilities rωk ≥ 0, detector
installation costs ck ≥ 1
Output: Sets K1, . . . , Kn ⊆ K corresponding to all extreme points on the
concave envelope of the efficient frontier
K1 ← ∅
n← 1
loop

Solve the LP relaxation of (2.29) with b =
∑

k∈Kn ck + 1 and the added
constraints xk = 1, k ∈ Kn and let (x̂, û) be the optimal solution
if Kn = {k ∈ K : x̂k > 0} then

break
end if
Let Kn+1 = {k ∈ K : x̂k > 0}
n← n+ 1
if Kn == K then

break
end if

end loop
return K1, . . . , Kn
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2.7 Preprocessing

Model (2.29) has an additional |K||Ω| decision variables not present in

(2.4). While the strengthened LP relaxation more than compensates for the

extra variables, we can possibly reduce the size of model (2.29) in two ways.

Our first approach uses the fact that the budget constraint implies that some

of the auxiliary variables must be zero and the second is a generalization of

the scenario aggregation scheme described previously.

Proposition 21. Let K̄ω
k = {k′ : rωk′ ≥ rωk } and suppose

∑
k′∈K̄ω

k
ck′ > b for

some k ∈ K and ω ∈ Ω. Then uωk = 0 in any feasible solution to (2.29).

Proof. Suppose uωk > 0 and
∑

k′∈K̄ω
k
ck′ > b for some k ∈ K and ω ∈ Ω.

Then constraints (2.29c) and (2.29d), coupled with the integrality of x, imply

that xk′ = 1 for all k′ ∈ K̄ω
k . This is inconsistent with constraint (2.29b)

since
∑

k∈K ckxk ≥
∑

k′∈K̄ω
k
ck′xk′ > b, and so uωk must be 0 in any feasible

solution.

Proposition 21 makes use of the fact that smuggler ω traverses a checkpoint

with a lower evasion probability than that of k only if we interdict all check-

points with an evasion probability at least as high as that of k. If interdicting

all such checkpoints consumes more budget than we have, then we can fix the

corresponding uωk to zero. This simple observation can both reduce the number

of variables and greatly strengthen the LP relaxation, especially if the budget

is small relative to the number of checkpoints. To see why the LP relaxation

may be tightened, consider the following example.
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Example 1. Let |Ω| = 1 and |K| = 3 with c1 = c2 = c3 = 1 and r1 = 1,

r2 = 0.9, r3 = 0. If b = 1, then (2.29) is:

max
x,u

0.1u1 + 0.9u2

s.t. u1 ≥ u2

x1 ≥ u1

x2 ≥ u2 (2.35)

x1 + x2 + x3 ≤ 1

x1, x2, x3 ∈ {0, 1}

0 ≤ u ≤ 1.

The optimal solution of (2.35) is x∗ = (1, 0, 0), u∗ = (1, 0, 0) which gives a

decrease in the evasion probability of 0.1. But the optimal solution to the LP

relaxation of (2.35) is xLP = (0.5, 0.5, 0), uLP = (0.5, 0.5, 0), giving a decrease

in evasion probability of 0.5. However, u2 > 0 forces x1 = x2 = 1, and so we

can fix u2 = 0 and the optimal solution to the LP relaxation is now integer

feasible.

We now show that we can aggregate some of the auxiliary variables

that remain if a pair of smugglers ranks their checkpoints similarly.

Proposition 22. Consider model (2.29) and suppose that K̄ω1
k = K̄ω2

k for

some k ∈ K and ω1, ω2 ∈ Ω. Then there is an optimal solution with uω1
k = uω2

k .
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Proof. Constraints (2.29c) and (2.29d) imply that uωk ≤ mink′∈K̄ω
k
xk′ . This

inequality is tight for at least one optimal solution to (2.29) since the objec-

tive function coefficients of uωk are all non-negative and there are no other

constraints on u, aside from the simple bound constraints which are auto-

matically satisfied. So if K̄ω1
k = K̄ω2

k then uω1
k = uω2

k in at least one optimal

solution.

By Proposition 22, for any ω1, ω2 ∈ Ω and k ∈ K with K̄ω1
k = K̄ω2

k , we can

eliminate the variable uω2
k by replacing sω1

k with sω1
k + sω2

k . In addition, we can

eliminate a constraint from both (2.29c) and (2.29d).

The hypothesis of Proposition 22 is satisfied if both smugglers ω1 and

ω2 prefer the same set of checkpoints to checkpoint k. This may occur, for

example, if a pair of smugglers shares an origin and have destinations in close

proximity to each other, or vice versa. The pair of smugglers may, therefore,

rank their top checkpoints differently but rank the rest of their checkpoints

identically. This pair of smugglers does not satisfy the strict ordering condition

of Proposition 6 but does, at least for those checkpoints that are identically

ranked, satisfy the ordering condition of Proposition 22 and so at least some

reduction in problem size is possible.

2.8 Branching

We now describe a branching scheme which makes use of the idea,

presented in Proposition 21, that we can eliminate auxiliary variables that, if
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positive, force the budget constraint to be violated. For each smuggler, we can

identify and fix such variables by sorting the checkpoints in order of decreasing

conditional evasion probability, then scanning the sorted list until we find a

checkpoint k with
∑

k′∈K̄ω
k
ck′ > b. We can view this as applying a greedy

algorithm to each smuggler in which we interdict the chosen smuggler’s best

uninterdicted checkpoint until the budget is depleted. This greedy algorithm

gives an optimal policy if the interdictor could wait until the smuggler scenario

was revealed and then deploy the detectors, that is, the greedy algorithm

solves the wait-and-see problem. The solution to the wait-and-see problem

provides a lower bound on the conditional evasion probability for each smuggler

scenario, and the auxiliary variables that we fix to zero correspond to scenario-

checkpoint pairs with evasion probabilities smaller than this lower bound.

The potential for the reformulated model to still have weak LP relax-

ation bounds lies with the fact that, if the smugglers do not rank the check-

points similarly, it is impossible to achieve all of these lower bounds simulta-

neously if we must deploy detectors before the smuggler scenario is revealed.

However, as we allocate detectors within a branch-and-bound tree, our re-

maining budget, after having fixed xk = 1 for some subset of checkpoints, will

decrease and likely tighten the lower bounds on some of the conditional evasion

probabilities. We could resolve the wait-and-see problem and fix additional uωk

variables at each node in the tree, but this can be time consuming. This

motivates a branching scheme that allocates detectors as quickly as possible.

So while a standard branching scheme would be to pick a checkpoint k′ with
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xk′ fractional in the LP relaxation and create a subproblem in which xk′ = 0

and another in which xk′ = 1, the scheme we describe here instead branches

on whether an entire subset of checkpoints receives detectors. Then, for each

subproblem generated, we recompute the wait-and-see bounds, fix additional

uωk variables, and finally decide whether to branch on another subset of check-

points or to hand the subproblem off to a general purpose branch-and-bound

solver.

To further motivate this scheme, consider the following. Suppose that,

for a particular smuggler, there exists a subset of checkpoints such that each

checkpoint, if not interdicted, gives the smuggler a path with high evasion

probability. Also suppose that if the entire subset is interdicted that the

smuggler is forced to traverse a path with a much lower evasion probability.

This phenomenon may occur in practical problems if there exists a cluster of

checkpoints in close proximity to each other and, say, the origin for a particular

smuggler. If this subset of checkpoints also provides paths with high evasion

probabilities to some other smugglers, we have strong reason to believe that

the entire subset should be interdicted in an optimal solution. To check this

hypothesis, we can generate two subproblems: one in which every checkpoint

in the subset is interdicted and one in which at least one checkpoint in the

subset is not interdicted. So if S is the subset of checkpoints we think should

be interdicted, we create one subproblem in which
∑

k∈S xk = |S| and another

in which
∑

k∈S xk ≤ |S|−1. We refer to the creation of the former subproblem

as “branching up” and the latter as “branching down.” The benefit of this
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scheme is that it allows us, if the subset S is intelligently chosen, to fix several

extra variables in the subproblems that could not be fixed at the root node.

The following result describes how extra variables may be fixed.

Proposition 23. Consider model (2.29) and let S ⊂ K. Then

(i)
∑

k∈S xk = |S| implies that uωk = 0 for all k ∈ K and ω ∈ Ω such that∑
k′∈K̄ω

k ∪S
ck′ > b

(ii)
∑

k∈S xk ≤ |S| − 1 implies that uωk = 0 for all k ∈ K and ω ∈ Ω such that

S ⊆ K̄ω
k .

Proof. Part (i) follows from the fact that, if uωk > 0, then xk′ = 1 for all

k′ ∈ K̄ω
k . But

∑
k∈S xk = |S| implies that xk = 1 for all k ∈ S. If interdict-

ing all checkpoints that are either in K̄ω
k or S exceeds the budget, that is if∑

k′∈K̄ω
k ∪S

ck′ > b, then (2.29) is infeasible. Part (ii) follows immediately by

noting that uωk > 0 implies that
∑

k′∈K̄ω
k
xk′ = |K̄ω

k |, which in turn implies that∑
k∈S xk = |S| if S ⊆ K̄ω

k .

We choose a subset S to branch on so that each of the subproblems

generated makes significant progress towards feasibility. The size of set S

provides a measure of how much progress is made branching up since a larger

S leads to more variables being fixed in the resulting subproblem. To ensure

significant progress is made branching down, S should be chosen such that

some of the components of u which were positive in the solution to the LP

relaxation of the parent problem are fixed to 0 in the subproblem. Since

increasing the size of S typically leads to fewer components of u being fixed
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in the branch down, there is an inherent tradeoff between the progress made

in one branch and the progress made in the other.

We quantify the progress made in the branch down as follows. If we

view (2.29) as a reward collecting problem in which a reward sωk is earned when

the variable uωk is set to 1, then given a subset S and a feasible LP relaxation

solution (x̂, û), we can compute the total reward earned by the LP relaxation

solution but that cannot be earned if S is not fully interdicted via the following

function:

Loss(S) =
∑
ω∈Ω

∑
k:S⊆K̄ω

k

pωsωk û
ω
k .

Ideally, we seek a subset that maximizes this loss function for each potential

subset size t, then pick some subset along this efficient frontier of solutions.

Since maximizing the loss function for a fixed subset size t is as hard as solving

an instance of BiSNIP, we instead greedily approximate this efficient frontier

as follows. Starting with S0 = ∅ and for every possible subset size t = 1, . . . , b,

we compute

Losst = max
k∈K\St−1

Loss(St−1 ∪ {k}),

and let St = St−1 ∪ {k∗}, where k∗ is the maximizer.

Once we have an approximation for the efficient frontier, we must

choose amongst its members a subset on which to branch. In our compu-

tational experiments, we choose to branch on the subset St∗ , where t∗ ∈

argmax1≤t≤b t · Losst. The idea behind this choice is that it should promote

solutions near the center of our approximated efficient frontier and guarantee
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that each branch makes positive progress. In order to obtain an integer feasi-

ble solution as quickly as possible, we use a depth-first node selection strategy

in which the branch up is evaluated before the branch down. A pseudo-code

representation of the customized branch-and-bound algorithm can be found in

Appendix A.

2.9 Computational Results

In this section, we discuss results from US model instances, restricting

attention to land border crossings entering the continental US from Mexico

and Canada. Using a North American road network, we model 7 origins in

Mexico, 7 origins in Canada and 10 destinations in the US, giving a total

of |Ω| = 140 threat scenarios. Since all detectors are identical, we use a

cardinality-constrained special case of the BiSNIP model, i.e., ck = 1, for all

k ∈ K, in constraint set X, and we solve the model for various budget val-

ues, b, representing the number of border crossings equipped with detectors.

Each checkpoint has an indigenous evasion probability based on its perceived

vulnerability, pk, and this varies by checkpoint, k. However, facing the same

threat specified by ω, we assume detectors in distinct locations behave identi-

cally and the probability a smuggler evades detection, by the detector, is qω,

which does not depend on k. If a detector is installed at k we assume both the

indigenous detection capability and the detector technology are independently

employed so that qωk used in (2.2d) is given by qωk = qωpk. If ω only specifies the

origin-destination pair (e.g., because distinct shielding scenarios have already
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been aggregated) then we can drop q’s dependence on ω so that qωk = qpk for

some constant q. The indigenous evasion probabilities are based on a multi-

attribute factor model described in detail in [40]. All of the MIPs associated

with both sets of BiSNIP instances were solved via the commercially-available

CPLEX software [10].

Figure 2.3 shows the 136 motor-crossing checkpoints we consider. The

figure also indicates four clusters of checkpoints important in results we de-

scribe below. We again solve the associated BiSNIP instances for a range of

values of b, the number of detectors we can install. These hedge against 140

origin-destination threat scenarios, with half originating in Canada and the

other half in Mexico. In addition to ranging b we assume the effectiveness of

the detection equipment is independent of the scenario and checkpoint, that is

qωk = qpk for some constant q. We create multiple model instances by ranging

the value of q.

Figure 2.4 shows the optimal evasion probability over all threat sce-

narios versus the budget for four values of the detector effectiveness, q. The

evasion probability is reported as a fraction of that when no detectors are in-

stalled. Significant jumps in the graph occur when we are given just enough

detectors to interdict an entire cluster of checkpoints. For example, we notice

a large decrease in the evasion probability as the budget increases to b = 34

as such a budget allows us to interdict every checkpoint along the Mexican

border. Smaller but still significant jumps occur when the budget increases
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Figure 2.3: The figure shows 136 motor-crossing checkpoints from Canada
and Mexico into the continental United States, and groups the checkpoints
into four clusters.

to 11, allowing us to interdict all checkpoints in Mexico east of Big Bend (see

Figure 2.5), and when the budget increases to b = 97, allowing us to interdict

all checkpoints in Mexico and all checkpoints in Canada west of Lake Huron

(see Figure 2.6a and 2.6b).

Also noteworthy is the fact that for small values of the budget (b <

11), the optimal solution interdicts checkpoints along the Great Lakes (see

Figure 2.5a). Intuitively this is because there are more gaps between those

checkpoints than there are anywhere else. Finally, we note that the solutions

did vary as detectors become less effective. A notable example of this is that
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with more effective detectors (q = 0, 0.25, 0.5), there is an incentive to shift all

detectors from eastern Canada to western Canada when the budget increases

from 96 to 97. This was not the case with the most ineffective detectors

(q = 0.75) as such detectors could not convince smugglers with origins in

western Canada to travel around the Great Lakes to traverse a detector-free

checkpoint (see Figure 2.6c).

Figure 2.4: The figure shows the improvement factor as a function of the num-
ber of detectors installed for the US model. The four plots correspond to differ-
ent levels of effectiveness of the detectors, specifically, with q = 0.75, 0.50, 0.25
and 0 in qωk = qpk.
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To show the value of using wait-and-see bounds and reformulation

(2.29), we report optimality gaps for perfectly reliable detectors, q = 0, and

various budget levels b under the following configurations: (1) Model (2.4);

(2) Model (2.4) with (2.5); (3) Model (2.29); (4) Model (2.29) with the pre-

processing suggested by Proposition 21. Table 2.1 reports optimality gaps

as percentages of the optimal unconditional evasion probability given by the

optimal value to (2.4).

To show the value of the various computational enhancements proposed

in this chapter, we report solution times for perfectly reliable detectors, q = 0,

and various budget levels b under the following configurations: (1) Model

(2.4) with (2.5) (BASE); (2) Model (2.29) using Proposition 21 (REF); (3)

Model (2.29) using Propositions 21 and 22 (REF-AGG); (4) Model (2.29) using

Propositions 21 and 22 solved by the customized branch-and-bound algorithm

of Section 2.8 (REF-AGG-C). Table 2.2 reports solution times in seconds. The

computation times reported were on a 3.73 GHz Dell Xeon dual-processor

machine with 8 GB of memory, running CPLEX version 10.1 with an absolute

tolerance of 10−4.
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(2.4) + Preprocessed
b (2.4) (2.5) (2.29) (2.29)

10 17.5 0.53 14.3 0.116
20 31.2 2.01 28.1 0.327
30 53.7 2.89 50.9 1.46
40 11.3 3.62 3.49 0
50 22.0 6.14 11.8 0.964
60 32.4 6.08 20.8 0.456
70 49.4 14.2 36.3 6.67
80 69.0 21.0 54.2 13.1
90 101 31.3 83.4 23.8
100 139 40.9 117 33.8

Table 2.1: Optimality gaps as percentages of optimal unconditional evasion
probabilities for US model instances with perfectly reliable detectors, q = 0.

b BASE REF REF-AGG REF-AGG-C
10 0.4 0.7 0.3 0.06
20 1.9 2.5 1.3 0.15
30 3.4 7.3 1.2 0.17
40 2.3 1.56 0.4 0.16
50 4.9 12 2.6 0.32
60 14 29 6.5 0.39
70 194 162 53 1.3
80 1332 311 70 1.6
90 × 1235 113 2.6
100 1133 1904 80 2.9

Table 2.2: Solution times in seconds for US model instances with perfectly
reliable detectors, q = 0. × indicates that the solution time exceeded 2 hours.
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(a) b = 10

(b) b = 11

Figure 2.5: Part (a) of the figure shows the optimal solution to the US model
instance with perfectly reliable detectors, q = 0, and with a budget to install
detectors at b = 10 locations. Part (b) of the figure is identical but for b = 11.
Note that the full number of checkpoints are not visible in the map due to
their close proximity.
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(a) b = 96 and q = 0

(b) b = 97 and q = 0

(c) b = 97 and q = 0.75

Figure 2.6: Part (a) of the figure shows the optimal solution to the US model
instance with perfectly reliable detectors, q = 0, and with a budget to install
detectors at b = 96 locations. Part (b) of the figure is identical but for f = 97.
Part (c) of the figure is for b = 97 and q = 0.75.
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Chapter 3

Two-Person Zero-Sum Games for Network

Interdiction

3.1 Introduction

This chapter considers game-theoretic models for nuclear smuggling de-

tection. In the previous chapter, we consider a stochastic network interdiction

problem in which a smuggler of nuclear material chooses a maximum-reliability

path through a transportation network with full knowledge of the locations of

the locations of radiation detectors installed by an interdictor. In Section 3.2

we consider a variant of this problem in which we assume that the smug-

gler knows the locations of the detectors only via a probability distribution.

The resulting model is a two-person zero-sum Cournot game. We give some

complexity results and discuss solution techniques. Section 3.3 describes two-

person zero-sum game models in which one player, subject to a budget con-

straint, may add strategies to his own strategy set or remove strategies from

his opponent’s strategy set. We conclude in Section 3.4 by describing a model

in which only a subset of detector locations are revealed to the smuggler.
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3.2 TPZSCGs with Exponentially Many Strategies

3.2.1 Motivation

We consider a zero-sum Cournot-game with two opposing parties, an

interdictor and an evader. Suppose that the interdictor, in an attempt to

thwart smuggling attempts, has a fixed budget with which he can deploy de-

tectors to a set of border checkpoints indexed by j ∈ J . Then suppose that

an evader wishing to cross the border must choose a checkpoint from J . If

the evader attempts to cross checkpoint j and no detector is installed then he

evades detection with probability pj. If checkpoint j has a detector installed,

the evasion probability is instead qj < pj. Since the interdictor seeks to mini-

mize the evasion probability and the evader seeks to maximize it, this problem

can be modeled as a two-person zero-sum game.

If the deployment of detectors is transparent, that is, if the evader

knows which checkpoints received detectors, then this problem can be modeled

as a Stackelberg game. This case has been discussed extensively in [25, 26].

We examine the case where the evader knows the problem parameters (pj, qj,

and the interdiction budget and costs) but cannot see where detectors have

been deployed. In this case since the evader is unaware of the actions taken

by the interdictor, the two parties effectively make their respective decisions

simultaneously and so a Cournot model is appropriate. We may prefer a

Cournot model if, for example, all checkpoints are equipped with a “black

box” that is indistinguishable from a real detector and the interdictor then

places a real detector in some subset of the black boxes. Alternatively, suppose
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that all checkpoints already have detectors installed and that the interdictor

can “upgrade” some subset of these detectors but the upgraded detectors are

indistinguishable from the original detectors.

3.2.2 Single-Evader Model

In the following TPZSCG, the interdictor is the row player and the

evader the column player. The model concerns a geographic region in which

the evader begins. The interdictor’s goal is to contain the evader in this

region by detecting any attempt to cross the region’s border. Each of the

interdictor’s pure strategies represents a feasible deployment of detectors across

the border checkpoints, and each of the evader’s pure strategies represents

a checkpoint to cross. So our payoff matrix has a row for each subset of

checkpoints on which the interdictor can install detectors, without exceeding

the budget, and a column for each checkpoint. The evader’s goal is to find

a mixed strategy, here a probability distribution over the checkpoints, which

maximizes the probability that he crosses the border undetected, while the

interdictor’s goal is to find a probability distribution over all feasible detector

deployments which minimizes this probability. We can formulate this problem
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as follows:

Indices and Sets

i ∈ I feasible detector deployments the interdictor can choose

j ∈ J checkpoints the evader can choose

Data

cj cost of installing a detector at checkpoint j

b total budget for installing detectors

pj probability evader can traverse j undetected when no detector is

installed

qj probability evader can traverse j undetected when a detector is

installed

Aij game’s payoff if evader selects checkpoint j to cross and interdictor

selects detector deployment i, i.e., Aij = qj if deployment i places a

detector at checkpoint j and otherwise Aij = pj. Here, for each row

i ∈ I we have
∑

j∈J cjI(Aij = qj) ≤ b, where I(·) is the indicator

function

Decision Variables

xi probability that the interdictor chooses detector deployment i

yj probability that the evader chooses checkpoint j to cross the border

Formulation

v∗ = max
y,λ

λ (3.1a)

s.t. λ ≤
∑
j∈J

Aijyj : xi, i ∈ I (3.1b)∑
j∈J

yj = 1 (3.1c)

yj ≥ 0, j ∈ J. (3.1d)

The right-hand side of constraint (3.1b) is the evasion probability associated

with detector deployment i ∈ I, and the evader’s checkpoint-selection strategy
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y. The constraint has the effect of selecting the minimum of these evasion

probabilities over all detector deployments i ∈ I, and the evader seeks to

maximize that value. The optimal dual variables xi, i ∈ I, on constraints

(3.1b) define an optimal mixed strategy over all feasible detector deployments.

It may seem that in this model the evader must place a probability dis-

tribution across the checkpoints first and then the interdictor picks a detector

deployment that hedges optimally against the evader’s distribution. That is,

it seems that we are forcing the evader to act first. However, if we were to

reverse the order of the decisions and have the interdictor pick a distribution

first, we would arrive at a formulation which is the dual of (3.1). So although

one might view the decisions in this model as taking place sequentially, the

allowance of mixed strategies implies simultaneous decisions by the players.

Model (3.1) is an LP with |I| + 1 structural constraints, and since |I|

is the number of feasible detector deployments, the number of constraints is

of exponential size. For example, if cj = 1, j ∈ J , b = 20, and |J | = 100,

then the set I will have cardinality |I| =
(|J |
b

)
=
(

100
20

)
. However, the bulk of

these constraints are irrelevant, that is, they are slack at an optimal solution.

More specifically, in our setting, J is of modest size, and we know that at an

optimal extreme point, at most |J | − 1 of the constraints (3.1b) have positive

dual variables xi, i ∈ I. In later sections we describe how the weighted majority

algorithm can be used to find approximate solutions to (3.1). Here, we describe

a row-generation scheme which can solve model (3.1) exactly and gives insights

into its complexity. We first solve a relaxation of model (3.1) with constraints
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(3.1b) defined over I ′ ⊂ I. Solving the associated LP, we obtain ŷ and λ̂ as

well as dual multipliers x̂. Then, we determine whether ŷ and λ̂ are feasible

to the original problem, i.e., with (3.1b) defined on set I. If not, we find the

most violated constraint (3.1b). This assessment and identification is carried

out via solving a so-called separation problem.

This separation problem is equivalent to finding a detector deployment

that minimizes the evasion probability given that the evader’s mixed strategy

is ŷ. Since λ appears on the left-hand side of all the constraints in (3.1b), we

need to find the smallest right-hand side over all deployments i ∈ I, that is,

we solve:

min
i∈I

∑
j∈J

Aij ŷj. (3.2)

We can express Aij = pj − (pj − qj)zj, where zj equals 1 one if a detector

is installed on checkpoint j and zj equals 0 otherwise, and the set Z = {z :∑
j∈J cjzj ≤ b, zj ∈ {0, 1}, j ∈ J} enumerates all feasible detector deployments

i ∈ I. As a result, the separation problem for model (3.2) can be rewritten as:

max
z∈Z

∑
j∈J

(pj − qj)ŷjzj. (3.3)

Model (3.3) is a knapsack problem and is NP-hard. It can be solved, however,

in pseudo-polynomial time using dynamic programming. Given an optimal

solution z∗ to (3.3) we check whether

λ̂ ≤
∑
j∈J

[pj − (pj − qj)z∗j ]ŷj. (3.4)
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If so, then the current solution (x̂, ŷ) solves (3.1). If not then z∗ yields a new

row i∗ with Ai∗ = (pj−(pj−qj)z∗j )j∈J . We replace I ′ with I ′∪{i∗}, re-solve the

associated relaxation of (3.1), and repeat until (3.4) is satisfied. Alternatively,

we know the optimal solution to (3.1) defined over a subset I ′ ⊂ I yields an

optimal value v̄ ≥ v∗. And, the value
∑

j∈J [pj − (pj − qj)z∗j ]ŷj ≤ v∗ because

it corresponds to a feasible strategy of the evader coupled with an optimal

response of the interdictor. If these upper and lower bounds on v∗ are within

ε we may terminate with an ε-optimal solution. In this case the interdictor

cannot decrease the evasion probability by more than ε by deviating from the

mixed strategy suggested by this near-optimal solution to the model.

3.2.3 Multiple-Evader Model

Now say that instead of a single evader, a random evader ω ∈ Ω is

chosen according to a probability distribution pω known to the interdictor.

Each evader may have different evasion probabilities pωj and qωj . Let yωj be

evader ω’s mixed strategy and let Aωij be defined for each evader in a fashion

analogous to that for the single-evader model. Then the multiple-evader model
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may be formulated as follows:

v∗ = max
y

min
x

∑
i∈I

∑
j∈J

∑
ω∈Ω

pωAωijxiy
ω
j (3.5a)

s.t.
∑
i∈I

xi = 1 : λ (3.5b)∑
j∈J

yωj = 1, ω ∈ Ω (3.5c)

xi ≥ 0, i ∈ I (3.5d)

yωj ≥ 0, j ∈ J, ω ∈ Ω. (3.5e)

Here we take the view that the interdictor is playing a game against multiple

evaders, one of whom is selected according to pω. Each evader has a different

payoff matrix Aω as evasion probabilities may vary across evaders. Again,

since the objective (3.5a) is concave in y = [yω]ω∈Ω for fixed x and convex in

x for fixed y and the feasible regions for x and y are both convex, we may

interchange the “max” and the “min” and obtain the same optimal value, v∗.

So, we can view the formulation as having an interdictor and multiple evaders

decide on strategies simultaneously, but then only one evader (selected by pω)

is realized.

If we (a) fix y to create an LP with variables x, (b) define λ as the dual

variable for the single structural constraint in that LP, (c) take the dual of the
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LP, and (d) then free y, we obtain the following equivalent problem:

v∗ = max
y,λ

λ (3.6a)

s.t. λ ≤
∑
j∈J

∑
ω∈Ω

pωAωijy
ω
j : xi, i ∈ I (3.6b)∑

j∈J

yωj = 1, ω ∈ Ω (3.6c)

yωj ≥ 0, j ∈ J, ω ∈ Ω. (3.6d)

Constraint set (3.6b) contains an exponential number of constraints, most of

which are slack at a basic feasible solution. So we can solve relaxations of (3.6)

with constraints (3.6b) only defined over a subset, I ′ ⊂ I, of feasible detector

deployments to obtain ŷ and λ̂ as well as dual variables x̂, then identify the

most violated constraint in (3.6b) and add the associated detector deployment

to I ′. To identify the most violated constraint in (3.6b) for some ŷ and λ̂ we find

the constraint with the smallest right-hand side. Mimicking the development

from the single-evader case, this problem can be formulated as follows:

max
z∈Z

∑
j∈J

∑
ω∈Ω

pω(pωj − qωj )ŷωj zj. (3.7)

As before, the optimal z∗ indicates that (x̂, ŷ) is optimal to (3.5) if

λ̂ ≤
∑
ω∈Ω

∑
j∈J

pω[pωj − (pωj − qωj )z∗j ]ŷ
ω
j , (3.8)

and identifies a violated row i∗ otherwise. We can view model (3.7) as finding

the best response to the mixed strategies of all the evaders in Ω. If the row i∗

corresponding to that best response is not already in I ′, then it is added to I ′

and the relaxation is resolved.
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3.2.4 Cardinality-Constrained Case

Here we adapt an idea from [39] to simplify model (3.5) in the case

where the detector installation cost is constant over all border checkpoints.

Letting θω be the dual variables of constraints (3.6c) and taking the dual of

(3.6) we arrive at the following formulation:

v∗ = min
x,θ

∑
ω∈Ω

θω (3.9a)

s.t. θω ≥ pω
∑
i∈I

Aωijxi : yωj , j ∈ J, ω ∈ Ω (3.9b)∑
i∈I

xi = 1 : λ (3.9c)

0 ≤ xi, i ∈ I. (3.9d)

Model (3.9) has exponentially many variables but can be reduced to a model

with |Ω| + |J | variables if we assume that cj = 1 for all j ∈ J . We define the

strategy-checkpoint incidence matrix D by

Dij =

{
1 if strategy i places a detector on checkpoint j
0 otherwise.

If we define x̂j =
∑

i∈I Dijxi, j ∈ J, and express Aωij = pωj + (qωj − pωj )Dij, then

constraints (3.9b) can be written as:

θω ≥ pω
∑
i∈I

(pωj + (qωj − pωj )Dij)xi

= pω(pωj
∑
i∈I

xi + (qωj − pωj )
∑
i∈I

Dijxi)

= pω(pωj + (qωj − pωj )x̂j).

Since
∑

i∈I xi = 1, we know that x̂j =
∑

i∈I Dijxi ≤ maxiDij = 1 and∑
j∈J x̂j =

∑
i∈I xi

∑
j∈J Dij = b. This suggests the following relaxation to
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model (3.9):

min
x̂,θ

∑
ω∈Ω

θω (3.10a)

s.t. θω ≥ pω(pωj + (qωj − pωj )x̂j), j ∈ J, ω ∈ Ω (3.10b)∑
j∈J

x̂j = b (3.10c)

0 ≤ x̂j ≤ 1, j ∈ J. (3.10d)

This is a linear program with |J | + |Ω| variables and |J ||Ω| + 1 structural

constraints. For any (x, θ) pair that is feasible to (3.9), the pair (DTx, θ) is

feasible to (3.10), and so (3.10) is clearly a relaxation to (3.9). The following

result shows that we can also map x̂ back to x and so the optimal values of

(3.9) and (3.10) are in fact equal.

Proposition 24. For every (x̂, θ) which is feasible to (3.10), there exists an

(x, θ) with DTx = x̂ which is feasible to (3.9).

Proof. We must show that the system DTx = x̂, eTx = 1, x ≥ 0 always has

a solution, where we again use e to denote the vector of all 1s. Summing the

constraints of DTx = x̂ and dividing by b yields eTx = 1, so that constraint

is redundant. It suffices to show, therefore, that there exists a solution to

DTx = x̂, x ≥ 0. By Farkas’ lemma that system has a solution if and only if

the system πDT ≤ 0, πx̂ > 0 does not have a solution. πDT ≤ 0 implies that∑
j∈J Dijπj ≤ 0, i ∈ I. Since vector (Dij)j∈J has exactly b components equal

to 1 and the rest are zero, these inequalities can be written as
∑

j∈J ′ πj ≤ 0
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for all J ′ ⊂ J, |J ′| = b. But we know that

πx̂ =
∑
j∈J

πjx̂j ≤ max
J ′⊂J,|J ′|=b

∑
j∈J ′

πj ≤ 0

since
∑

j∈J x̂j = b and x̂ is bounded above by 1 componentwise. Therefore

πDT ≤ 0, πx̂ > 0 has no solution andDTx = x̂, x ≥ 0 must have a solution.

Given x̂ which solves (3.10) we can find a corresponding x which solves

(3.9) by solving the phase 1 linear program:

min
x,s

∑
j∈J

sj

s.t.
∑
i∈I

Dijxi + sj = x̂j : πj, j ∈ J

0 ≤ xi, i ∈ I

0 ≤ sj, j ∈ J.

The dual of this LP is:

max
π

∑
j∈J

x̂jπj (3.12a)

s.t.
∑
j∈J

Dijπj ≤ 0 : xi, i ∈ I (3.12b)

πj ≤ 1 : sj, j ∈ J. (3.12c)

Since constraint set (3.12b) is exponentially sized, we use row gener-

ation to solve (3.12). Given an optimal solution π̂ to a relaxation of (3.12)

with constraint set (3.12b) only defined over I ′ ⊂ I, we can identify the most

violated of the relaxed constraints by maximizing
∑

j∈J Dijπ̂j over all i ∈ I.
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For any given i ∈ I, the vector (Dij)j∈J has exactly b components equal to

1, so this maximization can be done by finding the b largest values of π̂j over

j ∈ J . If the sum of these b largest values is non-positive then the current

solution π̂ solves (3.12) and the dual variables of (3.12b) are a solution to the

system Dx = x̂, x ≥ 0. Otherwise we add the corresponding row to I ′ and

repeat. Alternatively, as we describe in the following section, we may use the

weighted majority algorithm to find an approximate solution to the game. We

conclude by noting that the ability to compute the value of the game v∗ for

this special case by solving a polynomially-sized linear program facilitates the

development of an extension of model (3.5) in which some subset of detectors

are visible to the smuggler. We return to this idea in Section 3.4.

3.2.5 Weighted Majority

We now describe how the weighted majority algorithm can be used to

generate a near-optimal solution to (3.5). Every iteration, t = 1, . . . , T , of the

weighted majority algorithm can be viewed as a fictitious play of the game in

the following sense. We take the perspective of the smugglers ω ∈ Ω, for whom

we maintain weights wt,ωj for every checkpoint j ∈ J and iteration t = 1, . . . , T

which are updated via:

wt+1,ω
j = wt,ωj β(ω)l

t,ω
j ,

where β(ω) ∈ (0, 1) is an appropriately chosen constant and lt,ωj is the loss if

smuggler ω traverses checkpoint j in iteration t. We describe how both are

chosen shortly. Every iteration t, the smugglers choose mixed strategies yt,ω
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according to:

yt,ωj =
wt,ωj∑
j′∈J w

t,ω
j′

, j ∈ J, t = 1, . . . , T,

and the interdictor responds with the best response xt given by:

xt ∈ argminx∈X
∑
i∈I

∑
j∈J

∑
ω∈Ω

pωAωijxiy
t,ω
j ,

where X = {x ∈ R|I|+ :
∑

i∈I xi = 1}. There exists at least one pure-strategy

best response, which can be computed by solving a problem of the form (3.7).

Each loss lt,ωj is chosen to be the detection probability for checkpoint j and

smuggler ω given the interdictor’s best response, that is, lt,ωj =
∑

i∈I(1−Aωij)xti.

This gives lt,ωj = 1−pωj if the interdictor’s best response is to allocate a detector

to checkpoint j, and lt,ωj = 1− qωj otherwise. We choose β(ω) according to:

β(ω) =
1

1 +
√

2 ln |J |
L̃(ω)

, ω ∈ Ω.

where L̃(ω) is an upper bound on the detection probability for smuggler ω.

Nominally we may choose L̃(ω) = T minj∈J(1− qωj ). A possibly tighter choice

is T (1− v∗(ω)) where v∗(ω) is the optimal value of

min
x̂,θω

θω (3.13)

s.t. θω ≥ pωj + (qωj − pωj )x̂j, j ∈ J, (3.14)∑
j∈J

cjx̂j = b (3.15)

0 ≤ x̂j ≤ 1, j ∈ J. (3.16)

We note that (3.13) can be solved efficiently via a greedy algorithm.
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By Theorem 3, after T iterations, we have for each ω ∈ Ω

Lωβ(ω)

T
≤ min

j∈J

Lωj
T

+ ∆ω
T , (3.17)

where

Lωβ(ω) =
∑T

t=1

∑
i∈I
∑

j∈J(1− Aωij)xtiy
t,ω
j

Lωj =
∑T

t=1

∑
i∈I(1− Aωij)xti

∆ω
T =

√
2L̃(ω) ln |J |

T
+ ln |J |

T
.

Now let x̄i = 1
T

∑T
t=1 x

t
i and ȳωj = 1

T

∑T
t=1 y

t,ω
j . We have that

1− v∗ ≤ max
x∈X

∑
i∈I

∑
j∈J

∑
ω∈Ω

pω(1− Aωij)xiȳωj

= max
x∈X

∑
ω∈Ω

∑
i∈I

∑
j∈J

pω(1− Aωij)xi

(
1

T

T∑
t=1

yt,ωj

)

≤ 1

T

T∑
t=1

max
x∈X

∑
i∈I

∑
j∈J

∑
ω∈Ω

pω(1− Aωij)xiy
t,ω
j

=
∑
ω∈Ω

pω
1

T

T∑
t=1

∑
i∈I

∑
j∈J

(1− Aωij)xtiy
t,ω
j

=
∑
ω∈Ω

pω
Lωβ(ω)

T
, (3.18a)

where v∗ is the optimal evasion probability. We also have

min
j∈J

Lωj
T

= min
j∈J

1

T

T∑
t=1

∑
i∈I

(1− Aωij)xti

= min
yω∈Y

∑
i∈I

∑
j∈J

(1− Aωij)x̄iyωj ,
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where Y = {yω ∈ R|J |+ :
∑

j∈J y
ω
j = 1}. This implies

1− v∗ ≥
∑
ω∈Ω

pω min
j∈J

Lωj
T
.

Summing (3.17) over all ω ∈ Ω weighted by pω shows that x̄ and ȳ approximate

(3.5) within
∑

ω∈Ω p
ω∆ω

T .

3.3 Optimal Design of a Two-Person Zero-Sum Cournot
Game

In a two-person game, the players’ actions are modeled as taking place

either simultaneously or sequentially. Game theoreticians refer to the former

case as a Cournot game and the latter as a Stackelberg game. Since in reality

players usually do not act at the exact same moment in time, the modeling

choice between a Cournot and a Stackelberg game typically depends upon

whether one player can acquire knowledge of the other player’s action. If the

player who acts second (the second-mover) is not aware of the first-mover’s

action, then the players are effectively choosing their strategies simultaneously

and a Cournot model is appropriate.

These two models can be viewed as extreme since they assume that the

first-mover’s actions are either all transparent or all non-transparent to the

second-mover. In this section we consider models that are “hybrids” of the

Cournot and Stackelberg models in that some of the first-mover’s actions are

revealed to the second-mover and others are not. To accomplish this, we start

with a standard Cournot game but allow the first-mover to make transparent
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“design” decisions which alter the payoff matrix of the game. In particular,

we discuss two models: one in which the first-mover can purchase additional

pure strategies for his own use during the game, and another in which the

first-mover can remove some of the second-mover’s pure strategies. In both

cases the first-mover is subject to a budget constraint which limits the number

of pure strategies he can add or remove.

3.3.1 Investing in Premium Strategies

We consider a variant of a TPZSCG in which there are two versions

of each column strategy: a “free” version which can be played at no cost and

a “premium” version which can only be played if the column player invests

in that strategy in the design stage. The column player has a limited budget

and must make these investments via a binary variable tj, j ∈ J , before the

TPZSCG is played. If the premium strategy j ∈ J has been selected in this

design stage, and then the row player chooses i ∈ I and the column player

chooses j ∈ J , the payoff is Aij. If the respective players choose i and j when

premium strategy j has not been selected the payoff is Bij where Aij ≥ Bij.

The investments tj, j ∈ J , are discrete in nature and are transparent to the row

player. After t has been selected, each player places a probability distribution

on the available strategies in the induced TPZSCG. Through these discrete

premium choices we optimally design a TPZSCG, from the perspective of the

column player. This problem can be formulated as follows:
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Indices and Sets

i ∈ I indexes the row player’s pure strategies

j ∈ J indexes the column player’s pure strategies

Data

cj cost of investing in premium strategy j

b investment budget

Aij game’s payoff if the row player plays strategy i and the column

player plays the premium version of strategy j

Bij game’s payoff if the row player plays strategy i and the column

player plays the free version of strategy j

uj upper bound on the probability that the column player plays the

premium version of strategy j

Row Player’s Decision Variables

xi probability that the row player plays strategy i

Column Player’s Decision Variables

tj takes value 1 if the column player invests in strategy j and 0

otherwise

yj probability that the column player plays the premium version of

strategy j

zj probability that the column player plays the free version of strategy

j
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Formulation

v∗ = max
t

max
y,z

min
x

∑
i∈I

∑
j∈J

xi(Aijyj +Bijzj) (3.20a)

s.t.
∑
i∈I

xi = 1 : θ (3.20b)∑
j∈J

(yj + zj) = 1 (3.20c)∑
j∈J

cjtj ≤ b (3.20d)

0 ≤ xi, i ∈ I (3.20e)

0 ≤ yj ≤ tj, j ∈ J (3.20f)

0 ≤ zj, j ∈ J (3.20g)

tj ∈ {0, 1}, j ∈ J. (3.20h)

The outer maximization with respect to t selects premium strategies, sub-

ject to a knapsack constraint, (3.20d) and (3.20h). The order of the inner

maxy,z minx can be equivalently written minx maxy,z. The decisions x and

(y, z) may be viewed as being made simultaneously and are governed by the

respective convexity constraints (3.20b), (3.20e) and (3.20c), (3.20f), (3.20g).

Constraint (3.20f) also disallows playing premium strategy yj if it has not been

selected via tj. When tj = 1 we are allowed to select yj and nominally, that is

limited only by 1.

3.3.2 Tightening the Formulation

In what follows, we replace constraint (3.20f) by 0 ≤ yj ≤ ujtj, j ∈ J ,

and seek values of uj, j ∈ J , so that the new model is equivalent to model
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(3.20), i.e., with uj = 1. As we show, tightening the values of uj, j ∈ J ,

improves our ability to solve model (3.20) and this plays a key role in our

solution strategy described below. With θ denoting the dual variable on con-

straint (3.20b), we fix the decisions in the outer maximization, t, y, z, and take

the dual of the inner minimization with respect to x, to arrive at the following

mixed-integer program:

v∗ = max
t,y,z,θ

θ (3.21a)

s.t. θ ≤
∑
j∈J

(Aijyj +Bijzj), i ∈ I (3.21b)∑
j∈J

(yj + zj) = 1 (3.21c)∑
j∈J

cjtj ≤ b (3.21d)

0 ≤ yj ≤ ujtj, j ∈ J (3.21e)

0 ≤ zj, j ∈ J (3.21f)

tj ∈ {0, 1}, j ∈ J. (3.21g)

The parameters uj, j ∈ J, are upper bounds on the probability the column

player plays the premium version of strategy j. If uj = 1 for all j ∈ J , model

(3.21) tends to have a very weak linear programming relaxation: Constraint

(3.21d) is redundant if we allow t to be continuous and b ≥ maxj∈J cj. Un-

less we can obtain tighter upper bounds on yj, j ∈ J , relaxing t’s integrality

constraints is equivalent to allowing use of all premium strategies without in-

vestment. Therefore, naive application of a branch-and-bound algorithm is

computationally ineffective. It is crucial, therefore, to make uj, j ∈ J, as small
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as possible without eliminating (all) optimal solutions to model (3.20). We

refer to such u-values as being valid.

To find tighter valid upper bounds on y, suppose we have valid values

for uj, j ∈ J, (e.g., initially uj = 1, j ∈ J) and a feasible solution to (3.21), and

let v be the associated objective function value. We know v ≤ v∗ and that if

we wish to improve upon this lower bound we must achieve a payoff greater

than v for all row strategies. Therefore for each j′ ∈ J we let:

uj′ = max
t,y,z

yj′ (3.22a)

s.t. v ≤
∑
j∈J

(Aijyj +Bijzj), i ∈ I (3.22b)

(3.21c)− (3.21g). (3.22c)

The linear programming relaxation of model (3.22) allows use of all premium

strategies without prior investment. Ignoring this potential concern allows

(3.22) to be solved quickly but may result in loose values of uj. Still, our

preliminary computational experience has shown that the bounds generated

by (3.22) tend to be significantly less than 1 and that using these bounds to

tighten model (3.21) can significantly improve its solution time when using a

branch-and-bound solver.

Solving model (3.22) as a mixed-integer program generates tighter bounds

on y but could result in |J | auxiliary problems that are essentially as difficult

to solve as model (3.21). However, we can generate an instance of model (3.22)

for each j′ ∈ J and solve those instances in parallel with an instance of model

(3.21). While the tightest upper bounds come from solving model (3.22) to

97



optimality, relaxations also produce valid upper bounds on y. So, these in-

stances of (3.22) can periodically report their progress, specifically their best

linear-programming relaxation upper bound, so far. These are then reported

both to model (3.21) and to other instances of model (3.22). As using smaller

uj can greatly speed the solution time of model (3.21), all problem instances

can benefit from the improved bounds. In simplest form, these computations

can run on |J |+1 computing nodes. For practical problems the number of col-

umn strategies |J | can be large, e.g., in the hundreds or much larger. Clearly

for larger models, multiple instances of (3.22) are solved on each computing

node.

3.3.3 Removing an Opponent’s Premium Strategies

Suppose we alter the previous model by giving control of the decision

variables tj, j ∈ J, to the row player and inverting their role so that they now

forbid, instead of allow, the use of the premium strategies. That is, the column

player can use premium strategy j if and only if the associated tj = 0. Also, let

cj be the row player’s cost of removing premium strategy j from the column

player’s set of pure strategies. This modified problem can be formulated as
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follows:

v∗ = min
t

min
x

max
y,z

∑
i∈I

∑
j∈J

xi(Aijyj +Bijzj)−
∑
j∈J

πjtjyj (3.23a)

s.t.
∑
i∈I

xi = 1 (3.23b)∑
j∈J

(yj + zj) = 1 : λ (3.23c)∑
j∈J

cjtj ≤ b (3.23d)

0 ≤ xi, i ∈ I (3.23e)

0 ≤ yj, j ∈ J (3.23f)

0 ≤ zj, j ∈ J (3.23g)

tj ∈ {0, 1}, j ∈ J. (3.23h)

The term −
∑

j∈J πjtjyj in the objective guarantees that yj = 0 if the corre-

sponding tj = 1, provided that πj is sufficiently large. We fix the decisions

in the outer minimizations, t, x, and take the dual of the inner maximization
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with respect to y, z, to arrive at the following mixed-integer program:

v∗ = min
t,x,λ

λ (3.24a)

s.t. λ ≥
∑
i∈I

Aijxi − πjtj : yj, j ∈ J (3.24b)

λ ≥
∑
i∈I

Bijxi : zj, j ∈ J (3.24c)∑
i∈I

xi = 1 (3.24d)∑
j∈J

cjtj ≤ b (3.24e)

0 ≤ xi, i ∈ I (3.24f)

tj ∈ {0, 1}, j ∈ J. (3.24g)

The decision variables yj are now the dual variables of constraints (3.24b).

For sufficiently large πj, setting some tj to 1 will force the corresponding

constraint in (3.24b) to be slack and the corresponding dual variable yj to

be 0. Excessively large πj, however, can result in a weak linear programming

relaxation and so we focus our efforts on making πj as small as possible and

still valid. A valid πj has the property that πj >
∑

i∈I Aijx
∗
i − λ∗ for at least

one (x∗, λ∗) optimal to (3.24). To find valid values for the πj we can solve the

following problem for each j′ ∈ J :

πj′ = max
t,x,λ

∑
i∈I

Aij′xi − λ (3.25a)

s.t. (3.24b)− (3.24g). (3.25b)

Of course, any upper bound on the optimal solution to (3.25) also provides

a valid choice for πj, so we may relax the integrality constraints and solve
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(3.25) as an LP or use the best remaining upper bound from an incomplete

branch-and-bound tree. We may solve (3.25) without an upper bound v̄ on

v∗, although if such a bound is available we can add the constraint λ ≤ v̄ to

the formulation.

3.3.4 Complexity

Call the model of Sections 2.1-2.2 in which the column player invests

in premium strategies, Add-TPZSCG, and call the model of Section 2.3 in

which the row player can invest to forbid use of such a premium strategy

Remove-TPZSCG. We now show that we can reduce the VERTEX-COVER

problem to the decision versions of both Add-TPZSCG and Remove-TPZSCG

and thus both problems are strongly NP-complete. The following defines the

VERTEX-COVER problem:

VERTEX-COVER:

INSTANCE: Graph G(V,E), a positive integer k ≤ |V |.

QUESTION: Does there exist a subset V ′ ⊂ V such that |V ′| ≤ k and

that every edge in E is adjacent to at least one vertex in V ′?

For the following, we assume unit costs to add or remove a premium

strategy, cj = 1, j ∈ J , and a payoff of zero under all free strategies, B = 0.

Add-TPZSCG-DECISION:

INSTANCE: Payoff matrix Aij, i ∈ I, j ∈ J , positive integer b ≤ |J |,

and a real α.
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QUESTION: Does there exist a subset J ′ ⊂ J of columns in A with

|J ′| = b and non-negative weights yj, j ∈ J ′, with
∑

j∈J ′ yj = 1 such that

∑
j∈J ′

Aijyj ≥ α,

for all i ∈ I?

Theorem 25. Add-TPZSCG-DECISION is strongly NP-complete.

Proof. We first show that Add-TPZSCG-DECISION is in NP and then re-

duce VERTEX-COVER, which is known to be strongly NP-complete, to Add-

TPZSCG-DECISION. A polynomial-length guess for an instance of Add-

TPZSCG-DECISION consists of J ′ ⊂ J with |J ′| = b and probabilities

yj, j ∈ J ′. Such a guess verifies a yes-instance of Add-TPZSCG-DECISION if

the column player can guarantee a payoff of at least α by playing pure strategy

j with probability yj. To check this, we simply compare
∑

j∈J ′ Aijyj to α for

each i ∈ I. The number of steps required to do these comparisons is bounded

by O(|I||J |) so Add-TPZSCG-DECISION is in NP.

Next, we give a polynomial time reduction from VERTEX-COVER to

Add-TPZSCG-DECISION. For each e ∈ E, create a row e ∈ I in the payoff

matrix A and for each v ∈ V create a column v ∈ J . Let Aev = 1 if edge e ∈ E

is adjacent to v ∈ V and Aev = 0 otherwise. Finally let b = k and α = 1
k
.

Suppose that the instance of VERTEX-COVER is a yes-instance. Say

we invest in the premium strategies corresponding to the vertex cover V ′ (so
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J ′ = V ′) and play each of those strategies with probability yv = 1/k, v ∈ V ′.

Then ∑
v∈V ′

Aevyv =
1

k

∑
v∈V ′

Aev ≥
1

k
,

for each e ∈ E since Aev must be 1 for at least one v ∈ V ′ since V ′ is a vertex

cover. Therefore the corresponding instance of Add-TPZSCG-DECISION is

also a yes-instance.

Conversely, if the instance of Add-TPZSCG-DECISION is a yes-instance

then there exists a subset J ′ ⊂ J such that at least one v ∈ J ′ is positive for

each e ∈ I (otherwise we would achieve a payoff of zero under row strategy

e ∈ I). Therefore V ′ = J ′ forms a cardinality k vertex cover of graph G and

the instance of VERTEX-COVER is also a yes-instance.

Since the above transformation can be done in polynomial time, Add-

TPZSCG-DECISION is strongly NP-complete.

We now define a decision version of Remove-TPZSCG and show that

it is also strongly NP-complete.

Remove-TPZSCG-DECISION:

INSTANCE: Payoff matrix Aij, i ∈ I, j ∈ J , positive integer b ≤ |J |,

and a real α.

QUESTION: Does there exist a subset J ′ ⊂ J of columns in A with

|J ′| = b and non-negative weights xi, i ∈ I with
∑

i∈I xi = 1 such that∑
i∈I

Aijxi ≤ α,
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for all j ∈ J \ J ′?

Theorem 26. Remove-TPZSCG-DECISION is strongly NP-complete.

Proof. We show this again by a reduction from VERTEX-COVER. Confirming

that a guess consisting of a subset J ′ ⊂ J and probabilities xi, i ∈ I, verifies a

yes-instance of Remove-TPZSCG-DECISION involves comparing
∑

i∈I Aijxi

to α for each j ∈ J \ J ′, which can be done in O(|I||J |) time. Therefore

Remove-TPZSCG-DECISION is in NP.

We can reduce VERTEX-COVER to Remove-TPZSCG-DECISION as

follows. First, in the payoff matrix A create a row v ∈ I and column v ∈ J for

each vertex v ∈ V and a column e ∈ J for each edge e ∈ E. Let Ave = −1 if

edge e ∈ E is adjacent to v ∈ V and Ave = 0 otherwise. Also let Avv′ = −1 for

v = v′ and Avv′ = 0 otherwise. That is, −A will be the vertex-edge adjacency

matrix of G concatenated with an identity matrix. Finally let b = |V |− k and

α = − 1
k
.

If the instance of Remove-TPZSCG-DECISION is a yes-instance, then

we can find probabilities xi, i ∈ I, such that we achieve a payoff of at most

−1/k for each column strategy not in J ′. For columns v′ ∈ J \J ′ this amounts

to: ∑
v∈I

Avv′xv = −xv′ ≤ −
1

k
.

Clearly if
∑

v∈I xv = 1, this inequality can only hold for k vertices, so the

|V | − k column strategies that we are allowed to remove must come from the

strategies corresponding to the vertices of G. Then xv = 1/k for all v ∈ J \J ′.
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With no more column strategies to remove, we must also guarantee a payoff

of at most −1/k for each e ∈ J . This amounts to:∑
v∈J\J ′

Avexv =
1

k

∑
v∈J\J ′

Ave ≤ −
1

k
,

for all e ∈ J . This is only possible if Ave = −1 for at least one v ∈ J \ J ′,

which implies that J \ J ′ is a vertex cover with cardinality k. Therefore the

instance of VERTEX-COVER is also a yes-instance.

Suppose the instance of VERTEX-COVER is a yes-instance and let

V ′ ⊂ V be a cardinality-k vertex cover. If for each v ∈ V \ V ′ we remove

column strategy v ∈ J and for each v′ ∈ V ′ we play row strategy v′ ∈ I

with probability 1/k, then we achieve a payoff of at most −1/k for each of

the remaining column strategies. Since we did so by only removing |V | − k

column strategies, the instance of Remove-TPZSCG-DECISION must also be

a yes-instance.

This transformation can be done in polynomial time so Remove

-TPZSCG-DECISION is strongly NP-complete.

3.4 Transparent and Non-transparent Assets

3.4.1 Knapsack-Constrained Non-transparent Assets

The previous section assumes that all the detectors that the interdictor

deploys are non-transparent, that is, that the evader cannot determine where

they are. Suppose now that the interdictor has one type of asset which is non-

transparent as before but also has another type of asset which, when deployed,
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is transparent (i.e., visible) to the evader. In our initial model, each checkpoint

can have none, one, or both types of assets. For this we propose a two-stage

model in which the interdictor deploys the transparent assets in the first stage

and the interdictor and smuggler play the previously described two-person

zero-sum Cournot game in the second stage.

Suppose checkpoint j does not receive a transparent asset. In this case,

if it receives a non-transparent asset the evasion probability for evader ω is

qωj ; otherwise the evasion probability is pωj . If checkpoint j does receive a

transparent asset then the evasion probability for evader ω is rωj if no non-

transparent asset is present and sωj if a non-transparent asset is present. We

assume pωj > qωj , pωj > rωj , rωj > sωj , and qωj > sωj . No ordering between rωj

and qωj is assumed. To incorporate the transparent assets into the model, we

create two columns in the payoff matrix for each checkpoint j ∈ J and evader

ω ∈ Ω; a “premium” column which contains the pωj and qωj evasion probabilities

and a “free” column which contains the rωj and sωj probabilities. Deploying a

transparent asset to a checkpoint simply prevents all evaders from using the
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premium column for that checkpoint. We can formulate this as follows:

Indices and Sets

i ∈ I indexes feasible deployments of the non-transparent assets

j ∈ J indexes checkpoints the evader can choose

ω ∈ Ω indexes evader scenarios

Data

c1
j cost of installing a transparent asset at checkpoint j

c2
j cost of installing a non-transparent asset at checkpoint j

b1 budget for installing transparent assets

b2 budget for installing non-transparent assets

pωj probability evader ω can traverse j undetected when neither type of

asset is present

qωj probability evader ω can traverse j undetected when there is no

transparent asset present but a non-transparent asset is present

Aωij game’s payoff if evader ω selects checkpoint j and the interdictor

selects deployment i with no transparent asset installed at j, i.e.,

Aωij = qωj if deployment i places a non-transparent asset on

checkpoint j and otherwise Aωij = pωj .
∑

j∈J c
2
jI(Aωij = qωj ) ≤ b2, i ∈ I

rωj probability evader ω can traverse j undetected when there is a

transparent asset present but no non-transparent asset is present

sωj probability evader ω can traverse j undetected when both types of

assets are present

Bω
ij game’s payoff if evader ω selects checkpoint j and the interdictor

selects deployment i with a transparent asset installed at j, i.e.,

Bω
ij = sωj if deployment i places a non-transparent asset on

checkpoint j and otherwise Bω
ij = rωj .

∑
j∈J c

2
jI(Bω

ij = sωj ) ≤ b2, i ∈ I

107



Interdictor’s Decision Variables

tj indicates if the interdictor installs a transparent asset at checkpoint

j

xi probability that the interdictor chooses deployment plan i for

installing non-transparent assets

Evader’s Decision Variables

yωj probability that evader ω chooses checkpoint j when there is no

transparent asset present

zωj probability that evader ω chooses checkpoint j when there is a

transparent asset present

Formulation

v∗ = min
t∈T

h(t), (3.26)

where T = {t :
∑

j∈J c
1
j tj ≤ b1, tj ∈ {0, 1}, j ∈ J} and h(t) is the optimal

value of:

max
y,z

min
x

∑
i∈I

∑
j∈J

∑
ω∈Ω

pωxi(A
ω
ijy

ω
j +Bω

ijz
ω
j ) (3.27a)

s.t.
∑
i∈I

xi = 1 : λ (3.27b)∑
j∈J

(yωj + zωj ) = 1 : θω, ω ∈ Ω (3.27c)

0 ≤ xi, i ∈ I (3.27d)

0 ≤ yωj ≤ 1− tj, j ∈ J, ω ∈ Ω (3.27e)

0 ≤ zωj , j ∈ J, ω ∈ Ω. (3.27f)

Fixing y and z and taking the dual of the inner linear program with respect
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to x, where λ is the dual variable on (3.27b), gives us the following:

h(t) = max
y,z,λ

λ (3.28a)

s.t. λ ≤
∑
j∈J

∑
ω∈Ω

pω(Aωijy
ω
j +Bω

ijz
ω
j ) : xi i ∈ I (3.28b)∑

j∈J

(yωj + zωj ) = 1, ω ∈ Ω (3.28c)

0 ≤ yωj ≤ 1− tj : πωj (t), j ∈ J, ω ∈ Ω (3.28d)

0 ≤ zωj , j ∈ J, ω ∈ Ω. (3.28e)

If tj = 0 for some j, an evader would prefer to use the yωj decision variable

over zωj since the associated evasion probabilities are larger. If tj = 1 for some

j, an evader wishing to traverse checkpoint j is forced to use the zωj decision

variable due to (3.28d). Unfortunately the optimal value of this optimization

problem is a concave function of t since t appears on the right-hand side of the

constraints. This does not make h amenable to minimization. We reformulate

(3.28) with the goal of effectively moving t into the objective function. To

do so, we find values π̄ωj such that π̄ωj ≥ πωj (t), that is, we find upper bounds

on the optimal dual variables of (3.28d). Then, applying Proposition 4 and

following the same procedure we used to reformulate model (1.13) as model

(1.20), we assess a penalty π̄ωj if tj = 1 and yωj > 0 and relax the upper bounds
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on y in constraints (3.28d). This results in the following problem:

h̄(t) = max
y,z,λ

λ−
∑
j∈J

∑
ω∈Ω

π̄ωj tjy
ω
j (3.29a)

s.t. λ ≤
∑
j∈J

∑
ω∈Ω

pω(Aωijy
ω
j +Bω

ijz
ω
j ) : xi, i ∈ I (3.29b)∑

j∈J

(yωj + zωj ) = 1 : θω, ω ∈ Ω (3.29c)

0 ≤ yωj , j ∈ J, ω ∈ Ω (3.29d)

0 ≤ zωj , j ∈ J, ω ∈ Ω. (3.29e)

By Proposition 4, it can be shown that h(t) = h̄(t) for all t ∈ T but h̄ is convex

over the convex hull of T while h is concave over the convex hull of T . To make

our model amenable to decomposition, we use h̄ instead of h. If we let L index

the extreme points of the feasible region of model (3.29) and (y
ω(l)
j , z

ω(l)
j , λ(l))l∈L

be those extreme points then model (3.26) can be reformulated as:

min
t,γ

γ (3.30a)

s.t. γ ≥ λ(l) −
∑
j∈J

∑
ω∈Ω

π̄ωj y
w(l)
j tj, l ∈ L (3.30b)

t ∈ T. (3.30c)

To generate constraints (3.30b), we first solve a relaxation of (3.30) with a

subset of the possible constraints in (3.30b) to obtain a feasible t, then sub-

stitute that t into model (3.29) and solve to generate a new extreme point (ŷ,

ẑ, λ̂). We then add the constraint associated with that extreme point and

repeat. Optimal solutions to the relaxations of (3.30) give us lower bounds

on the optimal value of (3.26), and optimal solutions to (3.29) for some fixed
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t ∈ T give upper bounds. If these bounds are within ε of each other we may

terminate with an ε-optimal solution.

When we solve (3.29) for a fixed value of t, we generate the constraints

in (3.29b) on an as-needed basis by solving a relaxation with a small subset of

constraints to generate (ŷ, ẑ, λ̂) and then solving a separation problem of the

form (3.7). The solution to the separation problem either identifies a violated

constraint in (3.29b) or proves that all constraints are satisfied by the current

(ŷ, ẑ, λ̂).

3.4.2 Cardinality-Constrained Non-transparent Assets

If c2
j = 1 for all j ∈ J , then we can compute the optimal value of

the second-stage problem by solving a polynomially-sized LP as shown in

Section 3.2.4. This allows us to formulate the two-stage model as a single

large-scale MIP. To show this, we first write the dual of model (3.29) as:

h̄(t) = min
x,θ

∑
ω∈Ω

θω (3.31a)

s.t. θω ≥
∑
i∈I

pωAωijxi − π̄ωj tj : yωj , j ∈ J, ω ∈ Ω (3.31b)

θω ≥
∑
i∈I

pωBω
ijxi : zωj , j ∈ J, ω ∈ Ω (3.31c)∑

i∈I

xi = 1 : λ (3.31d)

0 ≤ xi, i ∈ I. (3.31e)

If we let D be the strategy-checkpoint incidence matrix as defined in Sec-

tion 3.2.4, then we can express our payoff matrices as Aωij = pωj − (qωj − pωj )Dij
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and Bω
ij = rωj − (sωj − rωj )Dij. Defining x̂j =

∑
i∈I Dijxi as the probability that

checkpoint j receives a non-transparent asset, we can write model (3.31) as:

h̄(t) = min
x̂,θ

∑
ω∈Ω

θω (3.32a)

s.t. θω ≥ pω(pωj − (qωj + pωj )x̂j)− π̄ωj tj, j ∈ J, ω ∈ Ω(3.32b)

θω ≥ pω(rωj − (sωj − rωj )x̂j), j ∈ J, ω ∈ Ω (3.32c)∑
j∈J

x̂j = b2 (3.32d)

0 ≤ x̂j ≤ 1, j ∈ J. (3.32e)

Dividing pω out of θω so that θω now represents the conditional evasion prob-

ability of smuggler ω and suppressing any “bar” or “hat” notation, we can

write the full two-stage model as follows:

min
t,x,θ

∑
ω∈Ω

pωθω (3.33a)

s.t. θω ≥ pωj + (qωj − pωj )xj − πωj tj, j ∈ J, ω ∈ Ω (3.33b)

θω ≥ rωj + (sωj − rωj )xj, j ∈ J, ω ∈ Ω (3.33c)∑
j∈J

c1
j tj ≤ b1 (3.33d)∑

j∈J

xj = b2 (3.33e)

tj ∈ {0, 1}, j ∈ J (3.33f)

0 ≤ xj ≤ 1, j ∈ J. (3.33g)

We must choose πωj to be sufficiently large such that we are guaranteed that

constraint (3.33b) is not binding for any j with tj = 1. One possibility is to let

πωj = pωj , but this can lead to a loose LP relaxation value. In the next section
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we discuss a reformulation which both tightens the LP relaxation value and

obviates the need for tight bounds for the parameter πωj .

3.4.3 Reformulation for p = q

We now consider a reformulation of model (3.33) which can significantly

tighten its LP relaxation. We first consider the simplified case in which the

non-transparent asset does not decrease the evasion probability at a checkpoint

unless a transparent asset is also installed at that checkpoint. This situation

could arise, for example, if the transparent asset is a detector and the non-

transparent asset is an upgrade to that detector. In this case we have pωj = qωj

for all j ∈ J and ω ∈ Ω and constraint (3.33b) becomes:

θω ≥ pωj (1− tj), j ∈ J, ω ∈ Ω, (3.34)

if we choose πωj = pωj . We can now state the following result regarding the

convex hull of the polyhedron induced by constraints (3.34) and (3.33c) for a

particular ω ∈ Ω.

Proposition 27. Let Θω = {(t, x, θω) : θω ≥ pωj (1− tj), j ∈ J, θω ≥ rωj + (sωj −

rωj )xj, j ∈ J, t ∈ Z|J |+ , x ∈ R|J |+ , θω ∈ R+} where 0 ≤ sωj ≤ rωj ≤ pωj ≤ 1 and let

(t̂, x̂, θ̂ω) be an extreme point of the convex hull of Θω. Then

(i) θ̂ω must equal either pωj or rωj for some j ∈ J or 0;

(ii) t̂j = 1 if pωj > θ̂ω and t̂j = 0 otherwise; and,

(iii) x̂j =
(θ̂ω−rωj )+

sωj −rωj
.
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Proof. Suppose that (t̂, x̂, θ̂ω) is an extreme point of the convex hull of Θω.

Then

θ̂ω ≥ θmin ≡ max(max
j∈J

pωj (1− t̂j),max
j∈J

rωj + (sωj − rωj )x̂j, 0).

If θ̂ω > θmin then the points (t̂, x̂, θ̂ω + ε) and (t̂, x̂, θ̂ω − ε) where ε = θ̂ω − θmin

are both in Θω, contradicting the assumption that (t̂, x̂, θ̂ω) is an extreme

point. Therefore θ̂ω = θmin. Now maxj∈J p
ω
j (1− t̂j) can only equal pωj for some

j ∈ J or 0 since pωj ≤ 1 and t̂j must be integer. To prove (i) it only remains

to show that if θ̂ω 6= pωj for all j ∈ J and θ̂ω 6= 0, then θ̂ω = rωj for some

j ∈ J . Suppose not. Then there exists a non-empty subset J ′ ⊆ J such that

θ̂ω = rωj + (sωj − rωj )x̂j > 0 and x̂j > 0 for all j ∈ J ′. Let ε = min(ε1, ε2)

where ε1 = θ̂ω − max(maxj∈J p
ω
j (1 − t̂j),maxj∈J\J ′ r

ω
j + (sωj − rωj )x̂j, 0) and

ε2 = minj∈J ′(r
ω
j − sωj )x̂j. If eJ ′ =

∑
j∈J ′

ej
rωj −sωj

, where ej is the unit vector

with the jth component equal to 1, then the points (t̂, x̂ + εeJ ′ , θ̂
ω − ε) and

(t̂, x̂− εeJ ′ , θ̂ω + ε) are both in Θω. This proves (i).

To prove (ii), note that we must have t̂j ≥ 1 for all j such that pωj > θ̂ω

and t̂j ≥ 0 otherwise. Suppose that for some j′, either t̂j′ ≥ 2 and pωj′ > θ̂ω or

t̂j′ ≥ 1 and pωj′ ≤ θ̂ω. Then (t̂ + ej′ , x̂, θ̂
ω) and (t̂ − ej′ , x̂, θ̂ω) are both in Θω

giving a contradiction. Therefore t̂j = 1 for all j such that pωj > θ̂ω and t̂j = 0

otherwise. Similarly to prove (iii), note that x̂j ≥
(θ̂ω−rωj )+

sωj −rωj
for all j ∈ J and

suppose that this inequality is strict for some j′ ∈ J . Then (t̂, x̂+ εej′ , θ̂
ω) and

(t̂, x̂ − εej′ , θ̂ω), where ε = x̂j′ −
(θ̂ω−rω

j′ )
+

sω
j′−r

ω
j′

, are both in Θω and (t̂, x̂, θ̂ω) is not

an extreme point of the convex hull of Θω.
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The significance of Proposition 27 is that at an extreme point of the convex

hull of Θω, θω can only take on at most 2|J |+ 1 distinct values at an extreme

point and, given a value of θω, both t and x take on unique values. Thus, the

convex hull of Θω has at most 2|J | + 1 extreme points. This, coupled with

the fact that the extreme directions are (ej, 0, 0), j ∈ J , (0, ej, 0), j ∈ J , and

(0, 0, 1), means that we can form a polynomially-sized representation of the

convex hull of Θω. Specifically, if we append a “dummy” checkpoint j0 to J

with pωj0 = 0 and let auxiliary variables uωj correspond to the extreme point at

which θω = pωj and vωj correspond to the extreme point at which θω = rωj , we

can replace constraints (3.34) and (3.33c) with the following system:

θω ≥
∑
j∈J

(pωj u
ω
j + rωj v

ω
j ), ω ∈ Ω (3.35a)

tj ≥
∑

j′:pω
j′<p

ω
j

uωj′ +
∑

j′:rω
j′<p

ω
j

vωj′ , j ∈ J, ω ∈ Ω (3.35b)

xj ≥
∑
j′∈J

[
(rωj − pωj′)+

rωj − sωj
uωj′ +

(rωj − rωj′)+

rωj − sωj
vωj′

]
, j ∈ J, ω ∈ Ω (3.35c)∑

j∈J

(uωj + vωj ) = 1, ω ∈ Ω (3.35d)

0 ≤ uωj ≤ 1, j ∈ J, ω ∈ Ω (3.35e)

0 ≤ vωj ≤ 1, j ∈ J, ω ∈ Ω. (3.35f)

The auxiliary variables uωj and vωj choose a target evasion probability and con-

straints (3.35b) and (3.35c) require that the appropriate resources be deployed

to meet that target. More specifically, (3.35b) requires that a transparent as-

set be deployed at checkpoint j if the target evasion probability is lower than

pωj , and (3.35c) requires that the probability that a non-transparent asset is
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deployed at checkpoint j be sufficiently large if the target evasion probability

is lower than rωj . Finally, constraint (3.35a) chooses the appropriate evasion

probability and (3.35d)-(3.35f) are standard convexity constraints. Taking

into account the fact that constraint (3.35a) is tight at an optimal solution

when we minimize a positively weighted sum of θω, we arrive at the following

reformulation of (3.33) for pωj = qωj :

min
u,v,t,x

∑
ω∈Ω

pω
∑
j∈J

(pωj u
ω
j + rωj v

ω
j ) (3.36)

s.t. (3.35b)− (3.35f)

(3.33d)− (3.33g).

3.4.4 Reformulation for p 6= q

We now present a polyhedral analysis and the resulting reformulation

for (3.33) when p 6= q. First, we present a result regarding the convex hull

of the polyhedron induced by constraints (3.33b) and (3.33c) for a particular

ω ∈ Ω.

Proposition 28. Let Θω = {(t, x, θω) : θω ≥ pωj (1 − tj) + (qωj − pωj )xj, j ∈

J, θω ≥ rωj + (sωj − rωj )xj, j ∈ J, t ∈ Z|J |+ , x ∈ R|J |+ , θω ∈ R+}, where

0 ≤ sωj ≤ rωj ≤ pωj ≤ 1 and qωj ≤ pωj , and let (t̂, x̂, θ̂ω) be an extreme point of

the convex hull of Θω. Then

(i) θ̂ω must equal either pωj or rωj for some j ∈ J or 0, and

(ii) for all j ∈ J , either t̂j = 1 and x̂j =
(rωj −θ̂ω)+

rωj −sωj
or t̂j = 0 and x̂j =

(pωj −θ̂ω)+

pωj −qωj
.

Proof. Suppose that (t̂, x̂, θ̂ω) is an extreme point of the convex hull of Θω.
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Then

θ̂ω = max(max
j∈J

pωj (1− t̂j) + (qωj − pωj )x̂j,max
j∈J

rωj + (sωj − rωj )x̂j, 0).

But maxj∈J p
ω
j (1− t̂j) + (qωj − pωj )x̂j is either no bigger than 0 or equals pωj′ for

some j′ ∈ J . Suppose not. Then there exists a non-empty set J ′ = {j ∈ J :

t̂j = 0, θ̂ω = pωj + (qωj − pωj )x̂j, x̂j > 0}. Then the points (t̂, x̂ + εeJ ′ , θ̂
ω − ε)

and (t̂, x̂− εeJ ′ , θ̂ω + ε), where eJ ′ =
∑

j∈J ′
ej

pωj −qωj
and ε is sufficiently small, are

both in Θω. By similar logic, maxj∈J r
ω
j + (sωj − rωj )x̂j is either no bigger than

0 or will equal rωj′ for some j ∈ J . This proves (i).

To prove (ii), we first note that if t̂j ≥ 2 for any j ∈ J , then the points

(t̂+ej, x̂, θ̂
ω) and (t̂−ej, x̂, θ̂ω) are both in Θω. Thus, for each j ∈ J , it suffices

only to consider the cases t̂j = 1 and t̂j = 0. If t̂j = 1, then x̂j ≥
(rωj −θ̂ω)+

rωj −sωj
, and

if t̂j = 0, then x̂j ≥
(pωj −θ̂ω)+

pωj −qωj
. In either case, if the inequality on x̂j is strict

then the points (t̂, x̂+ εej, θ̂
ω) and (t̂, x̂− εej, θ̂ω) are both in Θω and (t̂, x̂, θ̂ω)

cannot be an extreme point of the convex hull of Θω. So the inequality on x̂j

must hold with equality which proves (ii).

We can still write down a polynomially-sized representation of the con-

vex hull of Θω even though the set now has exponentially many extreme points.

In addition to uωj and vωj which have the same interpretation as before, we in-

troduce auxiliary variables αωjj′ and βωjj′ . The new variable αωjj′ (βωjj′) will equal

1 if uωj′ = 1 (vωj′ = 1) and tj′ = 0. We can view these new variables as selecting

from amongst the two cases referred to in part (ii) of Proposition 28. Then
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the convex hull of Θω can be represented as follows:

θω ≥
∑
j∈J

pωj u
ω
j + rωj v

ω
j , ω ∈ Ω (3.37a)

tj ≥
∑

j′:pω
j′<p

ω
j

(uωj′ − αωjj′) +
∑

j′:rω
j′<p

ω
j

(vωj′ − βωjj′), j ∈ J, ω ∈ Ω (3.37b)

xj ≥
∑
j′∈J

[
(rωj − pωj′)+

rωj − sωj
uωj′ +

(rωj − rωj′)+

rωj − sωj
vωj′

]
, j ∈ J, ω ∈ Ω (3.37c)

xj ≥
∑
j′∈J

[
(pωj − pωj′)+

pωj − qωj
αωjj′ +

(pωj − rωj′)+

pωj − qωj
βωjj′

]
, j ∈ J, ω ∈ Ω(3.37d)

αωjj′ ≤ uωj′ , j ∈ J, j′ ∈ J, ω ∈ Ω (3.37e)

βωjj′ ≤ vωj′ , j ∈ J, j′ ∈ J, ω ∈ Ω (3.37f)∑
j∈J

(uωj + vωj ) = 1, ω ∈ Ω (3.37g)

α, β, u, v ≥ 0. (3.37h)

Then model (3.33) can be reformulated as:

min
α,β,u,v,t,x

∑
ω∈Ω

pω
∑
j∈J

(pωj u
ω
j + rωj v

ω
j ) (3.38)

s.t. (3.37b)− (3.37h)

(3.33d)− (3.33g).
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Chapter 4

Two-Country Network Interdiction

4.1 Introduction

Thus far, we have restricted our attention to network interdiction prob-

lems in which an interdictor installs radiation detectors at border crossings

of a single country with the goal of minimizing the evasion probability of a

smuggler. If the interdictor and smuggler agree on the values of the evasion

probabilities and the smuggler is aware of the detector locations, then the

problem can be solved in polynomial time if the smuggler’s origin-destination

pair is known ahead of time but is NP-complete if the origin-destination pair

is known only via a probability distribution. Thus, while the stochastic ver-

sion of the problem is hard to solve, we can easily compute a lower bound on

the smuggler’s evasion probability conditional on his origin-destination pair.

If we solve a mixed-integer programming formulation of the problem via a

branch-and-bound algorithm, such a lower bound can significantly tighten the

LP relaxation and decrease the overall solution time.

In the one-country problem, the country in question could be either the

country in which the nuclear material originates or the country to which it is

being smuggled. A natural extension to this problem is to allow the installation
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of detectors at border crossings of both the origin and destination countries. In

Section 4.2 we show that this two-country model also has the property that it

is solvable in polynomial time given the smuggler’s origin-destination pair but

is NP-complete if the origin-destination pair is stochastic. In Section 4.3, we

formulate the stochastic version of the two-country model and present solution

techniques which perform well in practice. In Section 4.4 we show that the

three-country model is NP-complete even in the deterministic case, and that

the two-country stochastic model remains NP-complete even when the budget

constraint is dualized.

4.2 Two-Country Deterministic Network Interdiction
Problem

4.2.1 Formulation

We first show that the deterministic version of the two-country problem

can be solved in polynomial time by solving a series of vertex cover problems

on a bipartite network. We are given a transportation network with node

set N and arc set A, an origin o ∈ N , and a destination d ∈ N . For each

arc a ∈ A, the probability that the smuggler can traverse the arc undetected

is pa if there is no detector installed on the arc and qa otherwise. We let

i ∈ I index all arcs corresponding to outbound border crossings for the origin

country, j ∈ J index all arcs corresponding to inbound border crossings for

the destination country, and assume that every o-d path includes exactly one

arc in I and one arc in J and that only arcs in I and J can receive detectors.
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Since the smuggler encounters no detectors along any path from o to the tail of

an arc i ∈ I, we can precompute the maximum probability that the smuggler

can reach checkpoint i ∈ I undetected by solving a maximum-reliability path

problem. By the same reasoning, we can precompute the maximum probability

that the smuggler can travel undetected from the head of an arc i ∈ I to the

tail of an arc j ∈ J and from the head of an arc j ∈ J to the destination

d. We define parameter γk as the product of these three probabilities where

k ∈ K indexes all possible (i, j) pairs. Figure 4.1 shows the network topology

after preprocessing for the stochastic version of this problem considered in

Section 4.3. The topology of the deterministic version differs only in that it

includes a single origin-destination pair.

Figure 4.1: Topology of the preprocessed network for the two-country stochas-
tic network interdiction problem. Only border crossing arcs can receive detec-
tors.

In what follows, we refer to the elements k ∈ K as paths since, assuming

that the aforementioned maximum-reliability paths are unique and that the

smuggler has perfect information, there is a one-to-one correspondence between
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the elements of K and the paths the smuggler would potentially traverse. If

i(k) ∈ I and j(k) ∈ J are the checkpoint arcs traversed by path k, then the

probability the smuggler can traverse path k undetected is the product of γk

and one of pi(k)pj(k), pi(k)qj(k), qi(k)pj(k), and qi(k)qj(k). We can formulate the

two-country deterministic network interdiction problem as follows.

Indices and sets:

I set of outbound border checkpoints for the origin country

J set of inbound border checkpoints for the destination country,

I ∩ J = ∅
K = I × J set of paths the smuggler may traverse

i(k), j(k) checkpoint arcs traversed by path k

Data:
b total budget for installing detectors

ci, cj cost of installing detector at border checkpoint i, j

γk probability smuggler can traverse paths from o to tail of i(k),

from the head of i(k) to tail of j(k), and from the head of j(k)

to d undetected

pi, pj probability smuggler can traverse checkpoint i, j undetected

with no detector installed

qi, qj probability smuggler can traverse checkpoint i, j undetected

with a detector installed; qi < pi and qj < pj

Decision variables:

xi, xj 1 if a detector is installed at checkpoint i, j and 0 otherwise

θ probability that the smuggler evades detection
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Formulation:

min
x,θ

θ (4.1a)

s.t. x ∈ X (4.1b)

θ ≥ γkpi(k)pj(k)(1− xi(k) − xj(k)), k ∈ K (4.1c)

θ ≥ γkqi(k)pj(k)(1− xj(k)), k ∈ K (4.1d)

θ ≥ γkpi(k)qj(k)(1− xi(k)), k ∈ K (4.1e)

θ ≥ γkqi(k)qj(k), k ∈ K, (4.1f)

where X = {x ∈ B|I|+|J | :
∑

i∈I cixi +
∑

j∈J cjxj ≤ b}. Constraint (4.1c) states

that if neither checkpoint along a path k is interdicted, then the smuggler

achieves an evasion probability of at least γkpi(k)pj(k). Constraints (4.1d) and

(4.1e) handle the case in which one checkpoint along path k is interdicted and

the other is not, and (4.1f) handles the case in which both checkpoints along

path k are interdicted.

4.2.2 Simplifying the Model

Model (4.1) is a mixed-integer linear program and could be solved using

a standard branch-and-bound solver. We do not recommend this, and instead

outline a procedure for solving (4.1) in polynomial time. Before doing so, we

describe some ways to reduce the size of the model and simplify notation.

This is also useful for our subsequent discussion of the stochastic variant of

the model. First, constraint (4.1f) is nothing more than a simple lower bound
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on the variable θ and can be replaced by the single dominating constraint

θ ≥ max
k∈K

γkqi(k)qj(k). (4.2)

We can also reduce the number of constraints in (4.1d) and (4.1e). If

we define Kj = {k ∈ K : j(k) = j}, then we can rewrite (4.1d) as follows

θ ≥ γkqi(k)pj(1− xj), j ∈ J, k ∈ Kj. (4.3)

For a fixed j ∈ J , these constraints are identical apart from the γkqi(k)pj

coefficient on the right-hand side. So, for each j ∈ J , we only need to include

the constraint with the largest coefficient and therefore (4.1d) is dominated by

θ ≥ max
k∈Kj

γkqi(k)pj(1− xj), j ∈ J. (4.4)

Similarly, if we define Ki = {k ∈ K : i(k) = i}, then (4.1e) is dominated by

θ ≥ max
k∈Ki

γkpiqj(k)(1− xi), i ∈ I. (4.5)

Replacing (4.1d) and (4.1e) with (4.4) and (4.5) reduces the size of the model

by replacing 2|I||J | constraints with |I|+ |J | constraints.

Now, we can write model (4.1) with a single set of constraints linking θ

to x by noting that both (4.4) and (4.5) are special cases of (4.1c) with either

xi(k) or xj(k) fixed to 0. To handle these special cases, we append “dummy”

checkpoints i0 and j0 to sets I and J , respectively, and create new decision

variables xi0 and xj0 which are both fixed to 0. For each i ∈ I, we create a path

k(i) with i(k(i)) = i and j(k(i)) = j0. We similarly create a path k(j) for each
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j ∈ J . Also, we define an augmented set of paths K̄ = K∪i∈I{k(i)}∪j∈J{k(j)}

and a parameter (rk)k∈K̄ as follows:

rk =


γkpi(k)pj(k) k ∈ K
maxk′∈Ki γk′piqj(k′) k = k(i), i ∈ I
maxk′∈Kj γk′qi(k′)pj k = k(j), j ∈ J.

(4.6)

Then the constraint

θ ≥ rk(1− xi(k) − xj(k)), k ∈ K̄, (4.7)

includes constraint (4.1c) as well as both constraints (4.4) and (4.5). Finally,

we use simple lower bound on θ, θ ≡ maxk∈K γkqi(k)qj(k), to tighten the coeffi-

cients of (4.7) and obtain the following model:

min
x,θ

θ (4.8a)

s.t. x ∈ X (4.8b)

θ ≥ rk − (rk − θ)+(xi(k) + xj(k)), k ∈ K̄ (4.8c)

θ ≥ θ, (4.8d)

where we redefine X = {x ∈ B|I|+|J | :
∑

i∈I cixi +
∑

j∈J cjxj ≤ b, xi0 = xj0 =

0}.

4.2.3 Solution Techniques

In this section, we prove that (4.8) can be solved in polynomial time.

This is a direct result of the fact that the optimal value of (4.8) can only take

on a modest number of values, coupled with the fact that, for any fixed θ̂, we
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can efficiently assess the feasibility of (4.8) with the added constraint θ ≤ θ̂

by solving a vertex cover problem on a bipartite graph. We also propose a

bisection search procedure for solving (4.8) which uses this feasibility test as

a subroutine.

Theorem 29. Model (4.8) can be solved in polynomial time.

Proof. At an optimal solution (x∗, θ∗) to (4.8), either θ∗ = θ or at least one

constraint in (4.8c) is tight. Since the components of x∗ are binary, it must

hold that either θ∗ = rk for some k ∈ K̄ or θ∗ = θ. Since θ∗ can take on at

most |I||J |+ |I|+ |J |+ 1 values, we can solve (4.8) in polynomial time if, for

a fixed target evasion probability θ̂ ≥ θ, we can either find a feasible solution

(x̂, θ̂) to (4.8) or show that (4.8) with the added constraint θ ≤ θ̂ is infeasible.

Equivalently, we must either find an x ∈ X satisfying

xi(k) + xj(k) ≥ 1 ∀k ∈ K̄ : rk > θ̂. (4.9)

or prove that no such x ∈ X exists. This equivalence is due to the fact that if

xi(k) +xj(k) = 0 for any k ∈ K̄ with rk > θ̂, then we have θ ≥ rk > θ̂ by (4.8c).

In the (weighted) vertex cover problem we are given an undirected

graph G(V,E), weights wv, v ∈ V , and a positive real α, and must determine

whether there exists a subset V ′ ⊆ V with
∑

v∈V ′ cv ≤ α such that for every

edge (i, j) ∈ E at least one of i and j belongs to V ′. We can formulate a vertex

cover problem that finds an x ∈ X satisfying (4.9) if it exists as follows. We

create a vertex vi ∈ V with weight ci for every i ∈ I and a vertex vj ∈ V with
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weight cj for every j ∈ J . Then for every k ∈ K̄ such that rk > θ̂, we create

an edge ek ∈ E such that ek = (vi(k), vj(k)) if i(k) 6= i0 and j(k) 6= j0. If for

some such k we have i(k) = i0, then to satisfy (4.9) we must choose xj(k) = 1.

In this case, we delete the vertex vj(k) from V and all edges adjacent to the

deleted vertex from E. Similarly, if j(k) = j0 for ek ∈ E then we must have

xi(k) = 1 and we delete vertex vi(k) and all adjacent edges. Deleting a vertex

is equivalent to forcing interdiction of the corresponding checkpoint. Finally,

we let α be the difference between the budget b and the sum of the weights of

the vertices that were deleted. If α < 0 then model (4.8) with the additional

constraint θ ≤ θ̂ is infeasible. Otherwise, we determine feasibility by solving

the vertex cover problem. Since every e ∈ E can be written as e = (vi, vj)

where i ∈ I and j ∈ J , the graph we have defined is bipartite. If ci = cj = 1

for all i ∈ I and j ∈ J , by König’s theorem the vertex cover problem can be

solved in polynomial time by solving the associated maximum cardinality edge

matching problem. For general interdiction costs, we can solve the vertex cover

problem by finding a minimum cut on a directed graph G′ defined identically

to G aside from the following modifications. Add a source vertex s and a sink

vertex t. For all i ∈ I add a directed edge (s, vi) with capacity ci, and for all

j ∈ J add a directed edge (vj, t) with capacity cj. Let every e = (vi, vj) ∈ E

be directed from vi to vj and have infinite capacity. Every finite-capacity s-t

cut in G′ corresponds to a feasible vertex cover of G with total weight equal to

the value of the cut, and vice versa [1]. Thus, we can solve (4.8) in polynomial

time.
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Several computational enhancements we develop for the stochastic variant of

(4.8) use the construction and solution of the bipartite vertex cover problem

described in Theorem 29 as a subroutine. To facilitate the development of both

those computational enhancements and a bisection search for solving (4.8), we

include the following pseudo-code description.
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Algorithm 2: CanCoverPaths(S, c, b)

Input: Subset of paths S ⊆ K̄, installation costs ci, cj, interdiction budget
b
Output: Return true if there exists x ∈ X satisfying xi(k)+xj(k) ≥ 1 ∀k ∈ S,
return false otherwise
For every i ∈ I (j ∈ J) add vertex vi (vj) with weight ci (cj) to V
E ← ∅
for all k ∈ S do

if i(k) = i0 then
V ← V \ {j(k)}
b← b− cj(k)

end if
if j(k) = j0 then
V ← V \ {i(k)}
b← b− ci(k)

end if
end for
for all k ∈ S do

if i(k) 6= i0 and j(k) 6= j0 and i(k) ∈ V and j(k) ∈ V then
E ← (vi(k), vj(k))

end if
end for
if b < 0 then

return false
end if
if there exists a vertex cover of weight b or less for G(V,E) then

return true
else

return false
end if

We conclude this section by describing a simple bisection search pro-

cedure for solving instances of (4.8). First, let K+ = {k ∈ K̄ : rk > θ} and

index the paths k ∈ K+, k1, . . . , k|K+|, such that rk1 ≥ rk2 ≥ · · · ≥ rk|K+|
. Let
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i = 1 and ī = |K+|. Then, repeat the following until i = ī. For θ̂ = rki where

i = d(i+ ī)/2e, determine if there exists x ∈ X that satisfies (4.9) by running

Algorithm 2 with S = {k1, . . . , ki−1}. If so, then θ∗ ≤ rki and let i = i. If

not, then θ∗ > rki and let ī = i − 1. If i = ī and i 6= |K+|, then θ∗ = rki .

If i = ī = |K+| determine if there exists x ∈ X satisfying (4.9) for θ̂ = θ by

running Algorithm 2 with S = K+. If so, then θ∗ = θ. Otherwise θ∗ = rk|K+|
.

4.3 Two-Country Stochastic Network Interdiction Prob-
lem

In this section we consider a stochastic variant of the two-country net-

work interdiction problem in which the arc evasion probabilities and the smug-

gler’s origin-destination pair are random. We are given a finite number of

smuggler scenarios ω ∈ Ω, each of which is realized with a known probability

pω. Each scenario specifies an origin-destination pair (oω, dω) and arc eva-

sion probabilities pωa and qωa , which are defined in the same manner as their

deterministic counterparts. As such, we define parameters γωk and rωk which

are scenario dependent but are otherwise defined identically to γk and rk, re-

spectively. If we let decision variable θω be the smuggler’s evasion probability

conditional on the realization of scenario ω and seek to minimize the uncon-

ditional evasion probability, then we obtain the following stochastic extension

of model (4.8):
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min
x,θ

∑
ω∈Ω

pωθω (4.10a)

s.t. x ∈ X (4.10b)

θω ≥ rωk − (rωk − θω)+(xi(k) + xj(k)), k ∈ K̄, ω ∈ Ω (4.10c)

θω ≥ θω, ω ∈ Ω, (4.10d)

where θω is a lower bound on θω. Nominally we may choose

θω = max
k∈K

γωk q
ω
i(k)q

ω
j(k).

Alternatively, for each ω ∈ Ω in turn, we can let θω be the minimum of θω

subject to constraints (4.10b)-(4.10d) defined only over the current ω. We can

compute these lower bounds in polynomial time by solving a single scenario

problem in the form of (4.8) for each ω ∈ Ω. Doing so is equivalent to solving

the wait-and-see problem associated with model (4.10). That is, we are com-

puting the minimum evasion probability for each smuggler as if we know the

smuggler’s identity before installing the detectors. For larger instances, espe-

cially those with a small budget relative to the number of checkpoints, the

computational effort spent computing tighter values of θω is more than made

up for by decreased computational effort when running a branch-and-bound

algorithm to solve model (4.10).

Preliminary computational experiments revealed two main obstacles to

effectively solving (4.10). First, since the number of paths can grow quadrat-

ically in the number of checkpoints, the size of constraint set (4.10c) can be
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large even for modest instances. Tighter lower bounds θω on the conditional

evasion probabilities help to address this issue since constraint (4.10c) can be

removed for any k ∈ K̄ and ω ∈ Ω such that rωk ≤ θω. In Section 4.3.1, we

show that by solving a sequence of bipartite vertex cover problems we can

identify additional constraints in (4.10c) that cannot be binding. Doing so is

especially worthwhile when solving instances with larger budget values. Sec-

ond, the LP relaxation of (4.10) typically produces very weak lower bounds.

In Section 4.3.2 we describe a stronger reformulation of (4.10) which is similar

to the reformulation of BiSNIP from Section 2.5. Additionally, we recognize

that the bounds obtained by solving the wait-and-see problem are typically

loose since we do not actually know the smuggler’s identity ahead of time.

In Section 4.3.3 we describe a customized branching scheme which helps to

alleviate this problem.

4.3.1 Identifying Additional Non-binding Constraints

Recall that constraint (4.10c) need not be generated for any k ∈ K̄

and ω ∈ Ω satisfying rωk ≤ θω, where θω is any valid lower bound on θω. This

occurs when, for example, we have insufficient budget to interdict at least one

checkpoint along every path that gives smuggler ω a higher evasion probability

than that of path k. In this case, smuggler ω never traverses path k and the

corresponding constraint in (4.10c) cannot be binding. The same holds true

if it is impossible to force smuggler ω to traverse path k without interdicting

one of the checkpoints used by path k. We state this formally as follows.
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Proposition 30. For a particular k′ ∈ K̄ and ω′ ∈ Ω, constraint (4.10c)

cannot be binding in a feasible solution to (4.10) unless there exists x ∈ X

satisfying

xi(k) + xj(k) ≥ 1, ∀k ∈ K̄ : rω
′

k > rω
′

k′ (4.11)

and

xi(k′) = xj(k′) = 0. (4.12)

Proof. Consider constraint (4.10c) for a fixed k′ ∈ K̄ and ω′ ∈ Ω. If (4.11) does

not hold, then there exists k′′ ∈ K̄ with rω
′

k′′ > rω
′

k′ such that xi(k′′) + xj(k′′) = 0.

Then θω
′ ≥ rω

′

k′′ > rω
′

k′ and the constraint cannot be binding. If (4.12) does not

hold, then the constraint cannot be binding since its right-hand side is at most

θω
′

and θω
′ ≥ θω

′
.

We can run Algorithm 2 with S = {k ∈ K̄ : rω
′

k > rω
′

k′ } to determine whether

there exists x ∈ X satisfying (4.11). To determine whether there exists x ∈ X

satisfying both (4.11) and (4.12), we treat checkpoints i(k′) and j(k′) as non-

interdictable checkpoints, i.e., for any path in S which traverses i(k′) or j(k′),

replace i(k′) with i0 and j(k′) with j0, and run Algorithm 2 using the modified

set S as input. We repeat this for all k′ ∈ K̄ and ω′ ∈ Ω with rω
′

k′ > θω
′

and

delete the instance of (4.10c) corresponding to k′ and ω′ if Algorithm 2 returns

false.
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4.3.2 Reformulation

We now consider a reformulation of (4.10) which has a tighter LP relax-

ation. This reformulation is analogous to that for BiSNIP, which we described

in Chapter 2. To make the connection between (4.10) and BiSNIP, we define a

new decision variable vk, k ∈ K̄, which can equal 1 if either checkpoint along

path k is interdicted and must equal 0 otherwise. That is, we have

vk ≤ xi(k) + xj(k), k ∈ K̄

0 ≤ vk ≤ 1, k ∈ K̄,

and constraint (4.10c) can be written as

θω ≥ rωk − (rωk − θω)+vk, k ∈ K̄, ω ∈ Ω.

Consider the mixed-integer set Θω = {(v, θω) : θω ≥ rωk − (rωk − θ
ω)+vk, k ∈

K̄, θω ≥ θω, v ∈ Z|K̄|+ }. We know from the analysis of an equivalent set in

Section 2.5 that the convex hull of Θω has at most |K̄|+ 1 extreme points and

|K̄| + 1 extreme directions. We also know how to construct a polynomially-

sized description of this convex hull. We apply the same analysis to (4.10)

as follows. Let k(l, ω) ∈ K̄ be an index mapping of the paths satisfying

rωk(1,ω) ≥ rωk(2,ω) ≥ · · · ≥ rω
k(|K̄|,ω)

and ∪|K̄|l=1{k(l, ω)} = K̄ for all ω ∈ Ω. Also

define auxiliary variables uωk which equal 1 if smuggler ω is forced to traverse

a path with an evasion probability lower than that of path k and equal 0

otherwise. Then we obtain the following reformulation of (4.10):
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min
x,u,θ

∑
ω∈Ω

pωθω (4.14a)

s.t. x ∈ X (4.14b)

θω ≥
∑

k(l,ω)∈K̄

rωk(l,ω)(u
ω
k(l−1,ω) − uωk(l,ω)), ω ∈ Ω (4.14c)

xi(k) + xj(k) ≥ uωk , k ∈ K̄, ω ∈ Ω (4.14d)

uωk(l−1,ω) ≥ uωk(l,ω), l = 2, . . . , |K̄|, ω ∈ Ω (4.14e)

0 ≤ uωk ≤ I(rωk > θω), k ∈ K̄, ω ∈ Ω (4.14f)

θω ≥ θω, ω ∈ Ω, (4.14g)

where uωk(0,ω) ≡ 1 and vk is replaced by xi(k) + xj(k) in constraint (4.14d). A

shortcoming of (4.14) is that it contains |K̄||Ω| variables not present in (4.10),

which only has |I| + |J | + |Ω| variables. Our computational experience has

shown that the LP relaxation of (4.14) can be considerably more challenging

to solve than that of (4.10). We attribute this to the fact that even an instance

of (4.14) with a modest number of checkpoints and scenarios can have a large

number of variables since the number of paths is quadratic in the number of

checkpoints. On the other hand, the number of variables in (4.10) is linear

in the number of checkpoints and the number of scenarios. For large-scale

instances, we were unable to solve the LP relaxation of (4.14) in a reasonable

amount of time. For the corresponding instances of (4.10), the LP relaxation

solved quickly but produced lower bounds too weak to prove optimality.

We obtain a formulation with a tighter LP relaxation than (4.10) but
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with fewer variables than (4.14) by including fewer constraints in the defini-

tions of the sets Θω. Specifically, we define Θω = {(v, θω) : θω ≥ rωk − (rωk −

θω)+vk, k ∈ Kω, θω ≥ θω, v ∈ Z|K̄|+ } where Kω ⊆ K̄, ω ∈ Ω. Let k′(l, ω) ∈ Kω

be an index mapping of the paths satisfying rωk′(1,ω) ≥ rωk′(2,ω) ≥ · · · ≥ rωk′(|Kω |,ω)

and ∪|K
ω |

l=1 {k′(l, ω)} = Kω for all ω ∈ Ω. Then the following is a valid reformu-

lation of (4.10):

min
x,u,θ

∑
ω∈Ω

pωθω (4.15a)

s.t. x ∈ X (4.15b)

θω ≥ rωk − (rωk − θω)+(xi(k) + xj(k)), k ∈ K̄ \Kω, ω ∈ Ω(4.15c)

θω ≥
∑

k′(l,ω)∈Kω

rωk′(l,ω)(u
ω
k′(l−1,ω) − uωk′(l,ω)), ω ∈ Ω (4.15d)

xi(k) + xj(k) ≥ uωk , k ∈ Kω, ω ∈ Ω (4.15e)

uωk′(l−1,ω) ≥ uωk′(l,ω), l = 2, . . . , |Kω|, ω ∈ Ω (4.15f)

0 ≤ uωk ≤ I(rωk > θω), k ∈ Kω, ω ∈ Ω (4.15g)

θω ≥ θω, ω ∈ Ω, (4.15h)

where uωk′(0,ω) ≡ 1. For each ω ∈ Ω, constraint (4.10c) for paths k ∈ Kω

are included in the definition of Θω and are enforced by constraints (4.15d) -

(4.15g), which describe the convex hull of Θω. For paths k ∈ K̄\Kω constraint

(4.10c) remains in its original form as (4.15c).

We determine which paths to include in each Kω based on the following

observation. Let (x̂, û, θ̂) be an optimal solution to the LP relaxation of (4.14),

and let v̂k = min(x̂i(k) + x̂j(k), 1) for all k ∈ K̄. By induction on constraints

136



(4.14d) and (4.14e), we have that

ûωk(l,ω) ≤ min
1≤l′≤l

v̂k(l′,ω), l = 1, . . . , |K̄|, ω ∈ Ω. (4.16)

Since increasing a component of u can only decrease the objective value, we

assume (4.16) holds with equality. If v̂k(l,ω) ≥ min1≤l′≤l−1 v̂k(l′,ω) for some l and

ω, then ûωk(l,ω) = ûωk(l−1,ω), and constraint (4.14c) is equivalent to (4.15d) with

Kω = K̄ \{k(l, ω)}. This implies that the inclusion of k(l, ω) in Kω would not

strengthen the LP relaxation of (4.15), and suggests the following routine for

populating Kω, ω ∈ Ω. Solve the LP relaxation of model (4.15) with Kω = ∅,

ω ∈ Ω, and let (x̂, û, θ̂) be the optimal solution. Compute v̂, and for every

ω ∈ Ω and l = 1, . . . , |K̄|, add k(l, ω) to Kω only if v̂k(l,ω) < min1≤l′≤l−1 v̂k(l′,ω).

Resolve (4.15) and augment Kω until v̂k(l,ω) ≥ min1≤l′≤l−1 v̂k(l′,ω) for all ω ∈ Ω

and k(l, ω) ∈ K̄ \ Kω or until some other termination criteria is met. In

practice, this results in only a modest number of paths being included in

each Kω, and so (4.15) typically solves faster than either (4.10) or (4.14) for

challenging instances.

4.3.3 Branching

We note from our computational experience that instances of (4.10) typ-

ically become more challenging to solve as the budget for installing detectors

increases. With unit interdiction costs, some of the most challenging instances

are those with a budget, b, greater than half the checkpoints,|I| + |J |, which

is counterintuitive since the number of feasible solutions, |X|, decreases when

the budget exceeds that threshold. We reconcile this apparent inconsistency
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with the fact that the lower bounds θω obtained by solving the wait-and-see

problem decrease as the budget increases. Since we calculate θω by assum-

ing that we dedicate all of our detectors to minimizing smuggler ω’s evasion

probability, these bounds become particularly weak for instances with large

budgets in which the smugglers do not rank the paths in a similar fashion. In

this section, we present a customized branching scheme which addresses this

issue. This branching scheme is based on the following result.

Proposition 31. Consider model (4.10) and let S ⊂ K̄. Then either

xi(k) + xj(k) ≥ 1 ∀k ∈ S, (4.17)

or

θω ≥ min
k∈S

rωk ∀ω ∈ Ω. (4.18)

Proof. Suppose xi(k′) + xj(k′) = 0 for some k′ ∈ S. Then by (4.10c) we have

θω ≥ rωk′ ≥ mink∈S r
ω
k for all ω ∈ Ω.

Proposition 31 states that either we interdict at least one checkpoint

along every path in S, as in (4.17), or every smuggler can freely traverse at

least one path in S, as in (4.18). This suggests a branching scheme in which

we branch on whether (4.17) or (4.18) holds. The advantage to branching in

this fashion is that the lower bounds θω can be tightened in both subproblems

if we intelligently choose the subset S. This is clear for the subproblem in

which (4.18) holds as we can choose θω = mink∈S r
ω
k . For the subproblem in

which (4.17) holds, we must allocate at least one detector to every path in S,
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and so we can compute a tighter θω for any smuggler ω who does not prefer

to traverse any paths in S.

To elaborate further, for every ω ∈ Ω let θω(S) be the optimal value of

the following problem:

min
x,θω

θω (4.19a)

s.t. x ∈ X (4.19b)

θω ≥ rωk − (rωk − θω)+(xi(k) + xj(k)), k ∈ K̄ (4.19c)

θω ≥ θω (4.19d)

xi(k) + xj(k) ≥ 1, k ∈ S. (4.19e)

Problem (4.19) is a single scenario problem of the form (4.8), but with the

added constraint (4.19e). Just as we discuss for (4.8) in Section 4.2.3, it holds

that at an optimal solution (x∗, θω∗) to (4.19), θω∗ can take on at most |K̄|+ 1

distinct values. Therefore given S we can compute θω(S) in polynomial time if

we can determine whether problem (4.19) with the added constraint θω ≤ θ̂ω

is feasible in polynomial time. But (4.19) θω ≤ θ̂ω is feasible if and only if

there exists x ∈ X satisfying

xi(k) + xj(k) ≥ 1, ∀k ∈ {k′ ∈ K̄ : rωk′ > θ̂ω} ∪ S. (4.20)

Condition (4.20) is equivalent to condition (4.9), and so we can determine

feasibility by running Algorithm 2. If (4.17) holds then we can let θω = θω(S)

for every ω ∈ Ω. Of course, we may also add (4.17) to the subproblem as

constraints, which may further tighten the relaxation. Constraints of the form

139



(4.17) are similar in spirit to the so-called supervalid inequalities developed by

Israeli and Wood [18] for the deterministic network interdiction problem on

a general network. In that setting the supervalid inequalities were shown to

significantly improve computational efficiency.

We give a high-level description of the branching scheme as follows.

First, branch on the disjunction (4.17) versus (4.18), and, for each subprob-

lem generated, recompute the lower bounds θω, ω ∈ Ω. Then, choose the

subproblem with the minimum
∑

ω∈Ω p
ωθω and branch recursively unless that

subproblem satisfies some termination criteria. For our computational experi-

ments, we set a maximum depth and size of the tree. If a subproblem exceeds

the depth threshold, we do not perform customized branching on that sub-

problem, and if the number of outstanding subproblems in the tree exceeds

a threshold, we terminate customized branching and solve each outstanding

subproblem with a commercial branch-and-bound solver.

When branching on the disjunction (4.17) versus (4.18), the choice of

S is critical in order to guarantee that each subproblem has tighter lower

bounds than its parent. The choice of a larger S tends to strengthen the

bounds for the subproblem associated with (4.17), and a smaller S tends to

strengthen those of the subproblem associated with (4.18). We resolve this

tradeoff in the following way. Let S̄1, . . . , S̄M be the subsets for which (4.17)

is enforced and S1, . . . , SN be the subsets for which (4.18) is enforced at the

140



current subproblem. Then as the lower bounds on θω we can choose

θω = max(θω(S̄), max
1≤n≤N

min
k∈Sn

rωk ), ω ∈ Ω,

where S̄ = ∪Mm=1S̄m. To assist in determining a subset of paths to branch on,

we define a function of S for each subproblem which estimates the progress

made in that subproblem. For the subproblem in which (4.17) holds we use the

size of S because, as indicated, a larger S tends to strengthen this subproblem.

For the subproblem in which (4.18) holds, we use the following function:

V alue(S) =
∑
ω∈Ω

pω(min
k∈S

rωk − θω)+. (4.21)

We can view this function as the sum of increases in the lower bound on θω,

weighted by scenario probability. Ideally, we would branch on a subset that

solves

max
S⊂K̄\S̄:|S|=t

V alue(S), (4.22)

for some t ∈ {1, . . . , |K̄ \ S̄|}. Doing so would guarantee that we cannot

increase V alue(S) without decreasing the size of S. Solving (4.22) exactly is

out of the question since it is at least as hard as BiSNIP, which is known to

be NP-complete. Instead, for each t = 1, . . . , |K̄ \ S̄| we greedily approximate

the solution to (4.22) by computing

V aluet = max
k∈K̄\(St−1∪S̄)

V alue(St−1 ∪ {k}), (4.23)

where S0 = ∅, and letting St = St−1 ∪{k∗}, where k∗ is a maximizer in (4.23).

In order to promote progress in both subproblems, we choose to branch on the
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subset St∗ where

t∗ ∈ argmax1≤t≤|K̄\S̄|t · V aluet.

A pseudo-code representation of the customized branch-and-bound algorithm

can be found in Appendix B.

4.3.4 Computational Results

In this section, we discuss results from two-country model instances

with origins in Russia and destinations in the US. We consider 7 origins in

Russia and 3 destinations in the US, giving a total of |Ω| = 21 threat scenarios.

We assume that the smuggler uses a motor crossing to leave Russia, travels to

either Mexico or Canada via sea or air, and then uses a motor crossing to enter

the US. Figure 4.2a shows the 303 Russian checkpoints and Figure 4.2b shows

the 143 US checkpoints we consider. We assume that detectors are perfectly

reliable and have unit installation costs.

We test four approaches: (1) Solve (4.10) (BASE); (2) Solve (4.15)

(REF); (3) Solve (4.15) eliminating non-binding constraints as described in

Section 4.3.1 (REF-PRUNE); (4) Solve (4.15) via the customized branch-and-

bound scheme described in Section 4.3.3, eliminating non-binding constraints

(REF-PRUNE-C). For each approach, we use wait-and-see bounds to tighten

coefficients and remove constraints. Table 4.1 reports solution times in seconds

for various budget values b. All MIPs were solved with CPLEX 10.1 with a

relative tolerance of 10−4.

To determine the value of solving the two-country problem, for budget
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(a) Russia

(b) U.S.

Figure 4.2: Motor-crossing checkpoints for a two-country instance

values b = 1, . . . , 100, we solve two one-country problems, one in which we re-

strict ourselves to installing detectors only at Russian checkpoints and another

in which we restrict ourselves to installing detectors only at US checkpoints.
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b BASE REF REF-PRUNE REF-PRUNE-C
10 2 4 1 37
20 37 19 7 54
30 94 44 16 64
40 2340 413 285 152
50 1732 222 87 70
60 × × 5935 170
70 × × × 968
80 × × × 2304
90 × × × 1852
100 × × × 2849

Table 4.1: Solution times in seconds for Russia-US model instances with per-
fectly reliable detectors. × indicates that the solution time exceeded 2 hours.

Figure 4.3 plots the objective value of better of the two one-country solutions

and the objective value of the two-country solution versus the budget. The

objective function values are scaled to one if no detectors are installed, that is,

the y-axis is the ratio of the evasion probability when installing a number of

detectors to that when no detectors are installed. Each one-country problems

solved in a matter of seconds. While the computational effort required to solve

a two-country problem is typically much greater than that of a one-country

problem, for some budget levels we observe two-country solutions with ob-

jective values that are upwards of 2% less than that of the best one-country

solution.

We obtain the largest drops in evasion probability by interdicting check-

points in areas where checkpoints are sparse. For small budgets it is optimal

to interdict checkpoints around the Great Lakes and the checkpoints entering
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Figure 4.3: The improvement factor as a function of the number of detectors
installed for the better of the two one-country solutions and the two-country
solution for the Russia-US model.

California from Mexico, see for example the b = 13 solution in Figure 4.4a. We

see a large drop in evasion probability from b = 46 to b = 51, when we obtain a

large enough budget to interdict all checkpoints in Canada west of Lake Huron

and all checkpoints entering California from Mexico as in the b = 51 solution

in Figure 4.4b. The largest gap between the evasion probability of the best

one-country solution and that of the best two-country solution occurs when

b = 88, for which it is optimal to interdict several checkpoints along the US
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border and to interdict every checkpoint along Russia’s border with Finland

(see Figure 4.5).

(a) b = 13

(b) b = 51

Figure 4.4: Optimal solutions to the Russia-US model instance with perfectly
reliable detectors.
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Figure 4.5: Optimal solution to the Russia-US model for b = 88.
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4.4 Complexity

While most of the problems considered in this dissertation are NP-

complete, some special cases, and variants, can be solved in polynomial time.

For example, BiSNIP is known to be NP-complete, but as discussed in Sec-

tion 2.6 can be solved efficiently if we dualize the budget constraint. Also,

the two-country problem considered in this chapter is NP-complete in the

stochastic setting but as we saw in Section 4.2.3 polynomially solvable in the

deterministic setting. In general, the computational complexity of our class

of network interdiction problems depends strongly on the number of countries

whose borders we may interdict. A natural question, therefore, is whether we

can extend the efficient algorithms that exist for the two special cases men-

tioned here to problems with additional countries. In this section, we answer

this question in the negative. That is, we show that the two-country stochas-

tic network interdiction problem is NP-complete even with a dualized budget

constraint, and the three-country deterministic network interdiction problem

is NP-complete.

4.4.1 Two-Country Stochastic Network Interdiction Problem with
Dualized Budget Constraint

We show that the Lagrangian relaxation of model (4.10) with the bud-

get constraint
∑

i∈I cixi +
∑

j∈J cjxj ≤ b dualized is NP-complete, even if

ci = cj = 1 for all i ∈ I and j ∈ J , rωk ∈ {0, 1}, and rωk = 0 ∀k ∈ K̄ \ K.

That is to say, we assume detectors have unit costs are perfectly reliable and
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that the probability the smuggler is caught by indigenous law enforcement is

zero. Let Kω
+ = {k ∈ K : rωk = 1} denote the set of paths that smuggler ω has

access to and consider the following model.

min
x,θ

z =
∑
ω∈Ω

pωθω + λ(
∑
i∈I

xi +
∑
j∈J

xj) (4.24a)

s.t. θω ≥ 1− xi(k) − xj(k), k ∈ Kω
+, ω ∈ Ω (4.24b)

θω ≥ 0, ω ∈ Ω (4.24c)

x ∈ {0, 1}|I|+|J |. (4.24d)

The decision problem of (4.24) is to determine if there exists (x, θ) satisfying

(4.24b)-(4.24d) and z ≤ α for some target α. We show that the decision

problem is NP-complete via a reduction from (unweighted) vertex cover. That

is, we show: Given a graph G(V,E) and a positive integer n ≤ |V |, there exists

V ′ ⊆ V with |V ′| ≤ n such that every edge in E is adjacent to at least one

vertex in V ′ if and only if there exists a solution to a transformed instance of

the decision problem of (4.24).

We transform an instance of vertex cover to an instance of the de-

cision problem of (4.24) as follows. For every v ∈ V , create checkpoints

ı̄(v), i(v), ı̄′(v), i′(v) ∈ I and ̄(v), j(v), ̄′(v), j′(v) ∈ J . Create a scenario

ω′ ∈ Ω with pω
′

= ε1 and for every v ∈ V let (i(v), ̄(v)), (̄ı(v), j(v)) ∈ Kω′
+

and for every (v1, v2) ∈ E let (̄ı(v2), ̄(v1)) ∈ Kω′
+ . For every v ∈ V , cre-

ate scenarios ω̄(v), ω(v) ∈ Ω with pω̄(v) = ε3 and pω(v) = ε3 + ε4 and let

(̄ı(v), ̄′(v)), (̄ı′(v), ̄(v)) ∈ K ω̄(v)
+ and (i(v), j′(v)), (i′(v), j(v)) ∈ Kω(v)

+ . Finally,

149



let λ = ε2 and

α = 2|V |ε2 + |V |ε3 + nε4, (4.25)

where ε1, . . . , ε4 > 0 satisfy:

ε1 + 2|V |ε3 + |V |ε4 = 1 (4.26a)

ε1 > 2|V |ε2 + |V |ε3 + nε4 = α (4.26b)

ε2 > |V |ε3 + nε4 (4.26c)

ε3 > nε4. (4.26d)

Equation (4.26a) guarantees that pω, ω ∈ Ω, is a valid probability measure.

The necessity of inequalities (4.26b) - (4.26d) becomes apparent in the fol-

lowing result. The transformed problem is a yes-instance if and only if there

exists (x, θ) satisfying:

α ≥ ε1θ
ω′ + ε3

∑
v∈V

θω̄(v) + (ε3 + ε4)
∑
v∈V

θω(v) + ε2(
∑
i∈I

xi +
∑
j∈J

xj)(4.27a)

θω
′ ≥ 1− xi(v) − x̄(v), v ∈ V (4.27b)

θω
′ ≥ 1− xı̄(v) − xj(v), v ∈ V (4.27c)

θω
′ ≥ 1− xı̄(v2) − x̄(v1), (v1, v2) ∈ E (4.27d)

θω̄(v) ≥ 1− xı̄(v) − x̄′(v), v ∈ V (4.27e)

θω̄(v) ≥ 1− xı̄′(v) − x̄(v), v ∈ V (4.27f)

θω(v) ≥ 1− xi(v) − xj′(v), v ∈ V (4.27g)

θω(v) ≥ 1− xi′(v) − xj(v), v ∈ V (4.27h)

x ∈ {0, 1}|I|+|J |. (4.27i)
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Figure 4.6 shows the paths available to each smuggler in the transformed

instance of (4.24) for V = {1, 2, 3} and E = {(1, 2), (2, 3)}.

Figure 4.6: Transformed instance of (4.24) for V = {1, 2, 3} and E =
{(1, 2), (2, 3)}. Each arrow indicates a path that the smuggler has access to
under the given scenario. All available paths have nominal evasion probability
1.

Informally, we connect a solution to (4.27) and a solution to the vertex

cover problem in the following way. The checkpoints ı̄(v) and ̄(v) are inter-

dicted if and only vertex v is included in V ′. Similarly, the checkpoints i(v) and

j(v) are interdicted if and only if vertex v is not included in V ′. In the former

case, smuggler ω̄(v) is always detected and smuggler ω(v) is never detected,

and in the later case the opposite is true. The |V |ε3 term in (4.25) ensures

that we detect either smuggler ω̄(v) or smuggler ω(v) for each v ∈ V , the kε4
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term ensures that at most k of the smugglers ω(v), v ∈ V , evade detection,

and the 2|V |ε2 term ensures that we interdict no more than 2|V | checkpoints.

This guarantees that every vertex is either included or not included in V ′, and

that V ′ includes at most k vertices. Finally, we choose pω
′

= ε1 > α in order

to force detection of smuggler ω′. This forces θω
′

= 0, which guarantees V ′ is

a valid vertex cover by constraint (4.27d). The following result formalizes this

connection.

Lemma 32. Let (x, θ) satisfy (4.27). Then

(a) xı̄′(v) = xi′(v) = x̄′(v) = xj′(v) = 0 for all v ∈ V ;

(b) either xı̄(v) = x̄(v) = 1 and xi(v) = xj(v) = 0 or xı̄(v) = x̄(v) = 0 and

xi(v) = xj(v) = 1 for all v ∈ V ;

(c) if V ′ ⊆ V indexes all v satisfying xı̄(v) = x̄(v) = 1, then |V ′| ≤ n;

(d) for every (v1, v2) ∈ E, either xı̄(v1) = x̄(v1) = 1 or xı̄(v2) = x̄(v2) = 1.

Proof. We first show that we must have

xi(v) + x̄(v) ≥ 1 ∀v ∈ V (4.28a)

xı̄(v) + xj(v) ≥ 1 ∀v ∈ V. (4.28b)

If not, then θω
′ ≥ 1 by (4.27b) - (4.27c) and z ≥ ε1 > α by (4.26b). Summing

the inequalities in (4.28) gives us

∑
v∈V

(xı̄(v) + xi(v) + x̄(v) + xj(v)) ≥ 2|V |, (4.29)
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which, coupled with the fact that ∪v∈V {i(v), ı̄(v)} ⊂ I and ∪v∈V {j(v), ̄(v)} ⊂

J , implies ∑
i∈I

xi +
∑
j∈J

xj ≥ 2|V |. (4.30)

If inequality (4.30) is strict, then we have z ≥ (2|V |+ 1)ε2 > 2|V |ε2 + |V |ε3 +

nε4 = α by (4.26c). Therefore∑
i∈I

xi +
∑
j∈J

xj = 2|V |. (4.31)

Inequality (4.29) implies that if any of xı̄′(v), xi′(v), x̄′(v), xj′(v) were equal to 1

then (4.31) would be violated. Therefore part (a) holds.

To prove part (b), we show that for all v ∈ V , exactly one of θω̄(v) and

θω(v) equals 0. From (4.28) we have that xı̄(v) +xi(v) +x̄(v) +xj(v) ≥ 2 ∀v ∈ V .

If this inequality were strict for some v ∈ V , then (4.31) would be violated.

Therefore

xı̄(v) + xi(v) + x̄(v) + xj(v) = 2 ∀v ∈ V. (4.32)

Suppose that for some v ∈ V both θω̄(v) < 1 and θω(v) < 1. Inequalities (4.27e)

- (4.27f), coupled with the fact that xı̄′(v) = x̄′(v) = 0, imply xı̄(v) = x̄(v) = 1,

and inequalities (4.27g) - (4.27h), coupled with the fact that xi′(v) = xj′(v) =

0, imply xi(v) = xj(v) = 1. This contradicts (4.32) so we must have either

θω̄(v) ≥ 1 or θω(v) ≥ 1 for all v ∈ V . But we cannot have both θω̄(v) ≥ 1 and

θω(v) ≥ 1 for any v ∈ V , since this implies z ≥ 2|V |ε2 + (|V | + 1)ε3 + ε4 >

2|V |ε2 + |V |ε3 + (n + 1)ε4 > α by (4.26d). So either θω̄(v) = 0 which forces

xı̄(v) = x̄(v) = 1 and xi(v) = xj(v) = 0, or θω(v) = 0 which forces xı̄(v) = x̄(v) = 0

and xi(v) = xj(v) = 1. This proves part (b).
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To prove part (c), note that part (b) implies that θω̄(v) ≥ 1 for all

v ∈ V \V̄ and θω(v) ≥ 1 for all v ∈ V ′. Therefore, z ≥ 2|V |ε2+|V |ε3+|V ′|ε4 > α

unless |V ′| ≤ k. Finally, we have already shown that we cannot have θω
′ ≥ 1,

so by (4.27d) we must have either xı̄(v1) = 1 or x̄(v2) = 1. By part (b), this

implies that either xı̄(v1) = x̄(v1) = 1 or xı̄(v2) = x̄(v2) = 1, which proves part

(d).

Theorem 33. The decision version of (4.24) is NP-complete.

Proof. We first establish that the decision version of (4.24) belongs to the

class NP. Note that a polynomial-length guess consists of a subset S ⊆ I ∪ J

of interdicted checkpoints. We can determine in polynomial time whether or

not such a guess verifies an instance of the decision version of (4.24) as a yes-

instance provided that we can efficiently evaluate the evasion probability for

each smuggler given that every checkpoint in subset S is interdicted. Comput-

ing the evasion probability for a particular smuggler can be done in polynomial

time by a complete enumeration of all paths.

We must show that the original vertex cover instance is a yes-instance

if and only if the transformed instance of the decision problem of (4.24) is

a yes-instance. Suppose the vertex cover instance is a yes-instance. Then

there exists V ′ ⊆ V with |V ′| ≤ n such that for every (v1, v2) ∈ E, either

v1 ∈ V ′ or v2 ∈ V ′. Given V ′, we construct a solution to (4.27) as follows.

For every v ∈ V , let xı̄′(v) = xi′(v) = x̄′(v) = xj′(v) = 0. For every v ∈ V ′, let

xı̄(v) = x̄(v) = 1 and xi(v) = xj(v) = 0, and let θω̄(v) = 0 and θω(v) = 1. For
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every v ∈ V \V ′, let xı̄(v) = x̄(v) = 0 and xi(v) = xj(v) = 1, and let θω̄(v) = 1 and

θω(v) = 0. Finally, since for every (v1, v2) ∈ E either xı̄(v2) = 1 or x̄(v2) = 1,

we can let θω
′
= 0. Since |V ′| ≤ n, we have z ≤ 2|V |ε2 + |V |ε3 + kε4 = α, and

thus the instance of the decision problem of (4.24) is a yes-instance.

To show the reverse direction, suppose the transformed instance of the

decision problem of (4.24) is a yes-instance. Then there exists (x, θ) satisfying

(4.27). We know by Lemma 32(b) that either xı̄(v) = x̄(v) = 1 and xi(v) =

xj(v) = 0 or vice-versa. Let V ′ = {v ∈ V : xı̄(v) = x̄(v) = 1}. By Lemma 32(c)

we know that |V ′| ≤ k, and by Lemma 32(d) we know that for every (v1, v2) ∈

E, either v1 ∈ V ′ or v2 ∈ V ′. So V ′ is a valid vertex cover and thus the vertex

cover instance is a yes-instance.

4.4.2 Three-Country Deterministic Network Interdiction Problem

For some stochastic network interdiction problems, the bounds pro-

vided by the solution to the wait-and-see problem can be used to improve

computational performance. Since these bounds are computed by solving a

single-scenario problem for each smuggler scenario, the effectiveness of such

a strategy is linked to our ability to efficiently solve the deterministic version

of the interdiction problem. In the deterministic setting, we can solve the

one-country problem via a greedy algorithm and the two-country problem via

a minimum cut problem. In this section, we prove that it is NP-complete

to solve the three-country deterministic interdiction problem, even with unit

interdiction costs and perfectly reliable detectors.
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We describe the three-country deterministic interdiction problem as

follows. Let h ∈ H, i ∈ I, and j ∈ J index sets of checkpoint arcs in a

transportation network G(N,A). First, an interdictor chooses b checkpoint

arcs to remove from the network. Then, a smuggler with a given origin o ∈ N

and destination d ∈ N chooses a o-d path which maximizes the probability

that he avoids detection. Without being detected, the smuggler can traverse a

path from the origin o to the tail of a checkpoint arc h ∈ H with probability pho ,

from the head of checkpoint arc h ∈ H to the tail of checkpoint arc i ∈ I with

probability pih, from the head of checkpoint arc i ∈ I to the tail of checkpoint

arc j ∈ J with probability pji , and from the head of checkpoint arc j ∈ J to the

destination d with probability pdj . The smuggler may traverse a checkpoint arc

without being detected with probability 1 unless the interdictor removes the

arc. A checkpoint arc becomes impassible when removed. Let K = H ∪ I ∪ J ,

and let decision variable xk = 1 if checkpoint arc k ∈ K is interdicted and

xk = 0 otherwise. We define a subset of checkpoints K0 ⊂ K, which indexes all

checkpoints which cannot receive detectors, i.e., xk = 0, k ∈ K0. Note that we

can form an equivalent model in which every checkpoint can receive a detector

by creating a total of b + 1 copies of every checkpoint in K0. We modify a

dynamic programming based LP formulation of the maximum reliability path

problem in which πk, k ∈ K, is the probability that the smuggler can traverse

path from the tail of checkpoint arc k ∈ K to the destination d without being

detected, and πo is the probability that the smuggler can traverse an o-d path
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undetected. The objective of the interdictor is to minimize πo as follows:

min
x,π

πo (4.33a)

s.t. x ∈ X (4.33b)

πj = (ptj − xj)+, j ∈ J (4.33c)

πi = (max
j∈J

pjiπj − xi)+, i ∈ I (4.33d)

πh = (max
i∈I

pihπi − xh)+, h ∈ H (4.33e)

πo = max
h∈H

phoπh. (4.33f)

where X = {x ∈ B|K| :
∑

k∈K xk ≤ b, xk = 0, k ∈ K0}.

The decision problem of (4.33) is to determine if there exists (x, π)

satisfying (4.33b)-(4.33f) and πs ≤ α for some target α. We show that the

decision problem is NP-complete via reduction from (unweighted) vertex cover.

In the undirected graph G(V,E) associated with the vertex cover instance, we

represent every edge e ∈ E as e = (v1(e), v2(e)) where v1(e) and v2(e) are

ordered arbitrarily. We also define El(v) = {e ∈ E : vl(e) = v} for l = 1, 2

and v ∈ V . We transform an instance of vertex cover into an instance of the

decision problem of (4.33) as follows. For every v ∈ V , create checkpoints

h(v) ∈ H and i0(v) ∈ I ∩ K0. For every e ∈ E, create checkpoints i(e) ∈ I

and j(e) ∈ J . Finally, create checkpoints h0 ∈ H ∩K0 and j0 ∈ J ∩K0, and

choose α = ε2, where 0 < ε < 1, and b = n + |E|. The transformed instance

of the decision problem of (4.33) is a yes-instance if and only if there exists
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(x, π) satisfying:

x ∈ X (4.34a)

πo ≤ ε2 (4.34b)

πj(e) = 1− xj(e), e ∈ E (4.34c)

πj0 = ε (4.34d)

πi(e) =
(
max

(
πj(e), πj0

)
− xi(e)

)+
, e ∈ E (4.34e)

πi0(v) = max
e∈E2(v)

επj(e), v ∈ V (4.34f)

πh(v) =

(
max

(
max
e∈E1(v)

πi(e), πi0(v)

)
− xh(v)

)+

, v ∈ V (4.34g)

πh0 = max
e∈E

επi(e) (4.34h)

πo = max

(
max
v∈V

πh(v), πh0

)
. (4.34i)

We connect a solution to the vertex cover instance and a solution to

(4.34) in the following way. If (4.34) is feasible, then there exists a solution

(x, π) with
∑

v∈V xh(v) ≤ n in which the set V ′ = {v ∈ V : xh(v) = 1} is a valid

vertex cover. And, given a vertex cover V ′, there exists a solution (x, π) to

(4.34) with xh(v) = 1 if and only if v ∈ V ′, xi(e) = 1 if v1(e) 6∈ V ′, and xj(e) = 1

if v2(e) 6∈ V ′. Since either v1(e) ∈ V ′ or v2(e) ∈ V ′ for any feasible vertex

cover V ′, we have that exactly n + |E| checkpoints are interdicted. If v1(e)

and v2(e) are both in V ′, we arbitrarily choose one of xi(e) and xj(e) to equal

1. Figure 4.7 shows the network corresponding to (4.34) for V = {1, 2, 3} and

E = {e1, e2} where e1 = (1, 2) and e2 = (2, 3). For n = 2, there exists a vertex

cover V ′ = {1, 2}. The corresponding solution to the interdiction problem is
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to interdict checkpoints h(1), h(2), j(e2) and either i(e1) or j(e1). The only

remaining paths in the residual network go through checkpoints h0 and j0 and

have reliability ε2.

Figure 4.7: Network corresponding to (4.34) for V = {1, 2, 3} and E = {e1, e2}
where e1 = (1, 2) and e2 = (2, 3). Solid arrows indicate arcs with reliability 1,
while dotted arrows indicate arcs with reliability ε.

We formalize this connection in the following results.

Lemma 34. If system (4.34) is feasible, then there exists (x, π) satisfying both

(4.34) and:

xi(e) + xj(e) = 1, e ∈ E (4.35a)∑
v∈V xh(v) ≤ n. (4.35b)

Proof. Suppose (x, π) satisfies (4.34). By (4.34b) and (4.34i) we must have

πh0 ≤ ε2, which is true only if πi(e) ≤ ε for all e ∈ E, which in turn is

true only if xi(e) + xj(e) ≥ 1 for all e ∈ E by (4.34c) and (4.34e). Let E ′ =
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{e ∈ E : xi(e) + xj(e) = 2}. Then we can perturb (x, π) in the following

way and maintain feasibility of (4.34). For every e ∈ E ′, let xj(e) = 0 and

xh(v2(e)) = 1. This can only decrease
∑

k∈K xk and so we maintain x ∈ X. For

every e ∈ E ′ set πj(e) = 1 to maintain feasibility of (4.34c), and set πi0(v2(e)) = ε

to maintain feasibility of (4.34f). Note that we still have xi(e) = 1 for all

e ∈ E ′, so constraint (4.34e) is unaffected by the perturbation. Similarly

(4.34g) is unaffected even when v = v2(e) since we set xh(v2(e)) = 1. The

perturbed solution is feasible to (4.34) and satisfies (4.35a). Condition (4.35a)

implies
∑

e∈E xi(e) + xj(e) = |E|, and therefore condition (4.35b) also holds

since
∑

k∈K xk ≤ n+ |E|.

Theorem 35. The decision version of (4.33) is NP-complete.

Proof. We first establish that the decision version of (4.33) belongs to the class

NP. A polynomial-length guess consists of S ⊆ H ∪ I ∪ J with |S| = b. Given

that all checkpoints in subset S are interdicted, we can compute the smuggler’s

evasion probability in polynomial time by a complete enumeration of all paths.

We can then verify whether or not S verifies an instance of the decision version

of (4.33) as a yes-instance by comparing the evasion probability to α.

We show that (4.34) is feasible if and only if there exists a vertex cover

of size n or less. Let V ′ ⊆ V be a vertex cover with |V ′| ≤ n. Then we

construct a solution to (4.34) as follows. Let xh(v) = 1 if v ∈ V ′ and let

xh(v) = 0 otherwise. For every e ∈ E, if v1(e) /∈ V ′ let xi(e) = 1 and xj(e) = 0,

and let xi(e) = 0 and xj(e) = 1 otherwise. Note that since V ′ is a vertex cover,
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for every e ∈ E either v1(e) or v2(e) is in V ′, and so xj(e) = 1 if v2(e) /∈ V ′. We

have
∑

k∈K xk = n + |E| and so x ∈ X. Since xi(e) + xj(e) = 1 for all e ∈ E,

we can set πi(e) = ε(1 − xi(e)) and therefore πh0 = ε2 maxe∈E(1 − xi(e)) ≤ ε2.

So πo ≤ ε2 if πh(v) ≤ ε2. But πh(v) > ε2 implies that xh(v) = 0 and that

either xi(e) = 0 for some e ∈ E1(v) or xj(e) for some e ∈ E2(v). This leads

to a contradiction, since xh(v) = 0 implies that v /∈ V ′, and thus xi(e) = 1 if

v1(e) /∈ V ′ and xj(e) = 1 if v2(e) /∈ V ′.

Next, we show that if there exists a solution to (4.34), then the vertex

cover instance is a yes-instance. By Lemma 34, if (4.34) is feasible, then there

exists a solution satisfying (4.35a) and (4.35b). Let (x, π) be such a solution.

Then for every v ∈ V , either xh(v) = 1 or πi(e) ≤ ε2 for all e ∈ E1(v) by (4.34b)

and (4.34g). But πi(e) ≤ ε2 only if xi(e) = 1, so

xh(v1(e)) + xi(e) ≥ 1, e ∈ E. (4.36)

Similarly, for every v ∈ V , either xh(v) = 1 or πi0(v) ≤ ε2. But πi0(v) ≤ ε2 only

if xj(e) = 1 for all e ∈ E2(v) and so,

xh(v2(e)) + xj(e) ≥ 1, e ∈ E. (4.37)

Since for every e ∈ E, either xi(e) or xj(e) equals 0 by (4.35a), we have that

either xh(v1(e)) or xh(v2(e)) equals 1. So V ′ = {v ∈ V : xh(v) = 1} is a valid

vertex cover, and |V ′| ≤ n by (4.35b).

Table 4.2 gives a summary of the complexity results of the Stackelberg

games considered in this dissertation. All problems in P remain polynomially-
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solvable even with arbitrary interdiction costs, and all NP-complete problems

remain hard even with unit interdiction costs.

Number of Countries
1 2 3

Deterministic P P NP-complete
Stochastic with Soft Budget P NP-complete NP-complete
Stochastic with Hard Budget NP-complete NP-complete NP-complete

Table 4.2: Complexity landscape of the maximum-reliability network interdic-
tion problem.
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Chapter 5

Conclusion

This dissertation has developed models and solution techniques for a

class of stochastic network interdiction problems. In these models, an inter-

dictor installs detectors on arcs in a network subject to a budget constraint,

while a smuggler selects a path in the residual network. The interdictor’s goal

is to minimize the reliability of the smuggler’s chosen path. Relevant smuggler

characteristics such as the origin-destination pair, mass and type of mate-

rial being smuggled, and the thickness of shielding are known only through a

probability distribution at the time the detectors are installed. The models

considered vary in the number of countries in which the interdictor can in-

stall detectors and whether the two parties act simultaneously or sequentially.

The work in this dissertation was motivated by the Second Line of Defense

(SLD) Program, which is a cooperative program between the US DOE and

the Russian Federation State Customs Committee. The SLD Program aims

to minimize the risk of illicit trafficking of nuclear material, equipment and

technology.

Chapter 2 considers a Stackelberg game in which the interdictor can

only install detectors at border checkpoints of a single country. The single
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country in question will typically be either a country from which we expect

material may be stolen, such as Russia, or a country that we wish to keep

smugglers from entering, such as the United States. We present conditions

under which smuggler scenarios with similar attributes may be aggregated.

While the problem is NP-complete with a hard budget constraint, the problem

becomes solvable in polynomial time when the budget constraint is dualized.

This implies that solutions on the concave envelope of the efficient frontier can

be found in polynomial time. We use the fact that the decrease in the smug-

gler’s evasion probability as a function of the set of interdicted checkpoints

is supermodular to show that solutions on the concave envelope are nested.

A naive mixed-integer programming (MIP) formulation of the problem can

lead to loose linear-programming (LP) relaxations. We present an extended

formulation based on a polyhedral analysis which tightens the LP relaxation

and develop an associated branch-and-bound algorithm which utilizes easily

computed wait-and-see bounds and performs well on particularly challenging

instances.

Chapter 3 considers a two-person zero-sum Cournot game in which

the interdictor and the smuggler act simultaneously. The challenge here lies

in the fact that the interdictor must place a probability distribution over an

exponentially-sized set of pure strategies. We show that in the single-country

case if the detectors have unit installation costs, we may determine the value of

the game by solving a polynomially-sized LP in which the decision variables are

the marginal probabilities that a checkpoint receives a detector. We present an
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easily-implementable version of the weighted majority algorithm to find a joint

distribution which approximates the marginals. Finally, we present a model

in which the interdictor can install two types of assets; the first type is visible

to the smuggler and the second is not. This model may be appropriate if, for

example, the interdictor can “upgrade” some subset of the installed detectors

or if the interdictor can install “decoy” detectors.

Chapter 4 extends the results for the Stackelberg game considered in

Chapter 2 to the case in which the interdictor can install detectors at border

checkpoints of both the origin and destination country. If the smuggler char-

acteristics are known before the detectors are installed, the problem can be

solved in polynomial time by solving a sequence of vertex cover problems on

bipartite graphs. Thus, the wait-and-see bounds for the stochastic problem

are easily obtained. We use these bounds to tighten the LP relaxation of the

associated MIP formulation. We conclude with complexity results for the two-

country problem with a dualized budget constraint and for the three-country

problem. These results fill out the complexity landscape for the Stackelberg

version of the problem.

The main contributions of this dissertation lie in both the development

of a Cournot model and associated solution techniques for the maximum-

reliability stochastic network interdiction problem, and significant algorithmic

advances for the Stackelberg model. In particular, the customized branch-

and-bound scheme developed for the one- and two-country models allows us

to solve significantly larger problem instances than was possible using previ-
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ous methods. We also make several connections between network interdiction

models and other research areas, i.e., the selection problem, supermodularity,

and nestedness, which to our knowledge had not been made previously.
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Appendix A

Customized Branch-and-Bound for BiSNIP

The following is a pseudo-code representation of the customized branch-

and-bound algorithm for solving BiSNIP. For a subproblem P in the branch-

and-bound tree, we define S̄(P ) = {S̄1, . . . , S̄m} as the set of subsets S̄i ⊂

K, i = 1, . . . ,m, for which xk = 1, k ∈ ∪mi=1S̄i is enforced, and S(P ) =

{S1, . . . , Sn} as the set of subsets Si ⊂ K, i = 1, . . . , n, for which
∑

k∈Si
xk ≤

|Si| − 1, i = 1, . . . , n is enforced. We use a standard last-in, first-out stack to

store the subproblems in the tree.
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Algorithm 3: GetF ixedV ariables(P )

Input: Problem P
Output: Set U of all (k, ω) pairs corresponding to uωk which should be fixed
to 0 in problem P
Let S̄ be the union of the elements of S̄(P )
Let S1, . . . , Sn be the elements of S(P )
U ← ∅
for all ω ∈ Ω, k ∈ K do

for i = 1, . . . , n do
if Si ⊆ Kω

k then
Add (k, ω) to U

end if
end for
if
∑

k′∈Kω
k ∪S̄

ck′ > b then

Add (k, ω) to U
end if

end for
return U

Algorithm 4: GetCriticalSubset(û)

Input: Partial solution û to the LP relaxation of a BiSNIP instance
Output: Subset of checkpoints to branch on S
S0 ← ∅
for t = 1, . . . , b do

Compute St ∈ argmaxk∈K\St−1
Loss(St−1 ∪ {k})

Losst ← Loss(St)
end for
Let t∗ ∈ argmax1≤t≤bt · Losst
S ← St∗
return S
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Algorithm 5: BranchAndBound(p, r, c, b)

Input: Scenario probabilities pω > 0, evasion probabilities rωk ≥ 0, detector
installation costs ck ≥ 1, installation budget b
Output: Optimal installation plan x∗, minimum evasion probability z∗

for all ω ∈ Ω do
Sort the components of rωk in decreasing order
for i = 1, . . . , |K| do

Let k(i, ω) ∈ K denote the ith checkpoint in the sorted list
Let Kω

k(i,ω) = {k(i′, ω) : 1 ≤ i′ ≤ i}
Compute sωk(i,ω) = rωk(i,ω) − rωk(i+1,ω) where rωk(|K|+1,ω) ≡ 0

end for
end for
Create problem P with S̄(P ) = S(P ) = ∅
Create an empty stack of problems and push P onto the stack
LB ← −∞
while stack not empty do

Pop problem P off the stack
U ← GetF ixedV ariables(P )
Let (x̂, û) be the optimal solution to the LP relaxation of (2.29) with the
added constraints xk = 1, k ∈ S̄, and uωk = 0, (k, ω) ∈ U
ẑ ←

∑
ω∈Ω

∑
k∈K p

ωsωk û
ω
k

if ẑ > LB then
if x̂ is integral then
LB ← ẑ
x∗ ← x̂

else
S ← GetCriticalSubset(û)
Create problems P̄ ← P and P ← P
Add S to S̄(P̄ ) and to S(P )
Push P onto stack
Push P̄ onto stack

end if
end if

end while
z∗ ←

∑
ω∈Ω p

ωrωk(1,ω) − LB
return x∗, z∗
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Appendix B

Customized Branch-and-Bound for the

Two-Country Stochastic Network Interdiction

Problem

The following is a pseudo-code representation of the customized branch-

and-bound algorithm for solving the two-country stochastic network interdic-

tion problem. For a subproblem P in the branch-and-bound tree, we define

S̄(P ) = {S̄1, . . . , S̄m} as the set of subsets S̄i ⊂ K̄, i = 1, . . . ,m, for which

xi(k) + xj(k) ≥ 1, k ∈ ∪mi=1S̄i is enforced, and S(P ) = {S1, . . . , Sn} as the set

of subsets Si ⊂ K̄, i = 1, . . . , n, for which θω ≥ max1≤i≤n mink∈Si r
ω
k , ω ∈ Ω, is

enforced. We use a pair of priority queues, pq1 and pq2, to store subproblems

in the tree. The former stores those subproblems which are still eligible for

customized branching, and the latter stores those which are to be solved by a

commercial branch-and-bound solver. For each priority queue, a pop operation

returns the subproblem in the queue with the smallest lower bound.
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Algorithm 6: GetCriticalSubset(P )

Input: Problem P
Output: Subset of paths to branch on S
Let S̄ be the union of the elements of S̄(P )
S0 ← ∅
for t = 1, . . . , |K̄ \ S̄| do

Compute St ∈ argmaxk∈K̄\(St−1∪S̄)V alue(St−1 ∪ {k})
V aluet ← V alue(St)

end for
Let t∗ ∈ argmax1≤t≤|K̄\S̄|t · V aluet
S ← St∗
return S

Algorithm 7: UpdateBoundsAndPush(pq, P, UB)

Input: Priority queue pq, problem P , objective function upper bound UB
Output: Updated θ(P, ω), ω ∈ Ω, problem P pushed onto pq if lower bound
for P less than UB
Let S̄ be the union of the elements of S̄(P )
Let S1, . . . , SN be the elements of S(P )
LB ← 0
for all ω ∈ Ω do
θ(P, ω)← max(θω(S̄),max1≤n≤N mink∈Sn r

ω
k )

LB ← LB + θ(P, ω)
end for
if LB < UB then

Push P onto pq with priority LB
end if
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Algorithm 8: BranchAndBound(p, r, c, b, UB,MAXD,MAXP )

Input: Scenario probabilities pω > 0, evasion probabilities rωk ≥ 0, inter-
diction costs ci, cj, installation budget b, objective function upper bound
UB, maximum depth of branch-and-bound tree MAXD, maximum size of
branch-and-bound tree MAXP
Output: Optimal interdiction plan x∗, minimum evasion probability z∗

Create two empty priority queues of problems pq1 and pq2
Create problem P with S̄(P ) = S(P ) = ∅ and θ(P, ω) = θω(∅), ω ∈ Ω
Push P onto pq1 with priority

∑
ω∈Ω p

ωθ(P, ω)
while pq1 not empty and pq1.size+ pq2.size < MAXP do

Pop problem P off of pq1
if |S̄(P )|+ |S(P )| ≥MAXD then

Push P onto pq2 with priority
∑

ω∈Ω p
ωθ(P, ω)

continue
end if
S ← GetCriticalSubset(P )
Create P̄ ← P and P ← P
Add St∗ to S̄(P̄ ) and to S(P )
UpdateBoundsAndPush(pq1, P̄ , UB)
UpdateBoundsAndPush(pq1, P , UB)

end while
while pq1 not empty do

Pop problem P off of pq1
Push problem P onto pq2 with priority

∑
ω∈Ω p

ωθ(P, ω)
end while
while pq2 not empty do

Pop problem P off of pq2
Let S̄ be the union of the elements of S̄(P )
Let x̂, θ̂ be the optimal solution to (4.10) with θω = θ(P, ω) and with the
added constraints xi(k) + xj(k) ≥ 1, k ∈ S̄
ẑ ←

∑
ω∈Ω

∑
k∈K p

ωθ̂ω

if ẑ < UB then
UB ← ẑ
x∗ ← x̂

end if
end while
return x∗, z∗
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