
Copyright

by

Matthew Alexander Denend

2018

The Thesis Committee for Matthew Alexander Denend
Certifies that this is the approved version of the following Thesis:

Challenging Variants of the Collatz Conjecture

APPROVED BY

SUPERVISING COMMITTEE:

Scott Aaronson, Supervisor

Marienus Heule, Co-Supervisor

Challenging Variants of the Collatz Conjecture

by

Matthew Alexander Denend

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2018

Dedicated to my late mother, who passed away earlier this year, yet never let her

three battles with cancer stop her from endlessly loving her sons and her husband.

Acknowledgments

I want to give a huge thank you to both of my advisors for this project:

Professor Scott Aaronson and Professor Marijn Heule.

Professor Scott Aaronson came to UT Austin from MIT in fall 2016. I knew

that I wanted to write a master’s thesis from pretty much the time I started my

master’s degree, and I heard he might be a great person to work with. We come

from very different backgrounds. He is well-renowned for his work in theoretical

quantum computing. I came into UT’s CS program with virtually no math/CS

theory background, as my undergrad degree is in electrical engineering. He had a

project idea related to SAT solving that interested me, and eventually suggested that

I talk to Dr. Marijn Heule about SAT solving. As a result, this project was born.

I got a chance to witness firsthand the enthusiasm that Scott has for CS and math

theory. It’s no wonder that Scott has done so much work in theoretical computer

science... he just keeps going and going! This entire project would not have been

possible without him and he is as much, if not more, of an author of this thesis as

I am. I’m also deeply thankful to him for his support as I had to go through the

challenge of losing my mom.

Professor Marijn Heule became an assistant research professor at UT Austin

in fall 2017. He was a research scientist with UT when I first met him. Marijn is

a master at SAT solving, and is famous for his proof of the Boolean Pythagorean

v

Triples Problem in 2016 that was the largest proof ever at the time at 100 TB. Much

like Scott, Marijn has a great deal of enthusiasm for mathematical problems. This

entire project is originally Marijn’s idea, so I am thankful that he had this idea, and

I am very happy to have written a thesis on such a cool topic. Without his advice

and direction and his many read-overs and edits, this thesis would have not been

possible to finish, so he is as much, if not more, of an author of this thesis as I am.

I am also deeply thankful of the support he gave me as I had to go through the

challenge of losing my mom.

When Scott and Marijn first met each other, they raced each other to solve

several proofs related to this project: Scott by hand, Marijn using computation. I

happened to be in the middle of it all, unable to keep up with the blazing speed

of these two brilliant minds. It took me some time but I can now confidently read

through most of these thoughts that Scott and Marijn had and understand them

much better now. I am indebted to these two men and can only hope to someday

achieve the greatness and brilliance of them.

I am also thankful for the many friends that I have made along the way

towards finishing this thesis, especially those who gave me support as I had to deal

with the loss of my mom. There are far too many to list, but you know who you

are. From my time here in Austin, I have made many friends that I want to keep for

many years to come.

Finaly, I want to thank my immediate family. First, my older brother, for

being one of the most patient, hard working people I know. He has been a great role

model for me, and continues to do so, and is a great friend of mine as well. Even

vi

though we haven’t lived together in a while, I’ve enjoyed spending lots of time with

him over the phone.

My father, for keeping me in line during my childhood and instilling discipline

into me that I managed to carry with me through both undergrad and graduate

school. He is a great person to talk to in difficult situations and always puts others

before himself, and is also a great friend of mine as well.

Most of all, I am so thankful that I had such a loving, caring mother. She

told me, a couple of months before she passed, her dream job was to be a house wife

and take care of her kids. Her passion for this really showed... without all of the

love and caring she gave to me, I can’t imagine that I’d be sitting here, writing the

acknowledgements section of my master’s thesis. She was one of my best friends,

always willing to listen to me whether I had time to talk for 10 minutes or 2 hours,

always caring and loving me. But most of all, she taught me how important it is to

never quit. Cancer may wear you down and make you tired, weak, and treatment

may compromise your immune system, but it can never take away your ability to be

human, your ability to lovem your soul. She fought three valiant battles with cancer,

one before I was born, and never gave up in any of them. I had difficult time dealing

with my mom slowly dying 2000 miles away for almost the entirety of my time in

grad school, but she didn’t want me to leave school to come back for her. She wanted

me to keep fighting, alongside her. And here’s the product of that determination.

Thank you so much for everything, mom.

vii

Abstract

Challenging Variants of the Collatz Conjecture

Matthew Alexander Denend, M.S. Comp.Sci.

The University of Texas at Austin, 2018

Supervisors: Scott Aaronson
Marienus Heule

The Collatz Conjecture (also known as the 3N + 1 problem) is simple to

explain, yet proving that all positive integers following the Collatz Mapping must

converge to 1 has eluded mathematicians for over half a century. Aaronson and

Heule are exploring solving the Collatz Conjecture using an approach involving string

rewrite systems: Aaronson transformed the Conjecture into a string rewrite system

and Heule has been applying parallel SAT solvers on instances of this system. Similar

approaches have been applied successfully to other mathematical problems.

We started looking into simpler variants of the conjecture. This thesis defines

some of these variants and investigates easily provable as well as very hard variants.

We study the hardness of unsolved variants by computing the number of rewrite

steps needed up to 1 billion. Our hardness prediction method suggests that proving

termination of the challenging variants should be considerably easier compared to

solving the original conjecture.

viii

Table of Contents

Acknowledgments v

Abstract viii

List of Figures xi

Chapter 1. Introduction 1

Chapter 2. Definitions 4

Chapter 3. Alternative Termination Conditions 6

3.1 Base b Collatz Graph Definition . 6

3.2 Base b Collatz Graph Lemmas . 7

3.3 Base 4 Collatz Graph and Variants 12

3.3.1 Base 4 Collatz Graph Construction 12

3.3.2 Base 4 Collatz Variants . 14

3.4 Base 8 Collatz Graph and Variants 16

3.4.1 Base 8 Collatz Graph Construction 17

3.4.2 Base 8 Collatz Graph Cycle Analysis 18

3.4.3 Base 8 Collatz Variants . 22

Chapter 4. Collatz Variant Hardness Prediction 25

4.1 Defining Measures . 25

4.2 Generating Measures . 27

4.3 Single Base Collatz Variant Analysis 30

4.3.1 Hardness Function Results and Analysis 31

4.3.2 Percentage of Sequence Function Results and Analysis 33

4.3.3 Sequence Similarity Analysis 35

4.4 Paired Base Avoidance Analysis . 36

ix

4.4.1 Hardness Function Results and Analysis 37

4.4.2 Percentage of Sequence Function Results and Analysis 37

Chapter 5. Heule’s and Aaronson’s Attempts to Prove the Collatz
Conjecture 40

5.1 SAT Solver Background . 40

5.2 String Rewrite System and Matrix Interpretation Background 41

5.3 The Collatz Conjecture as a String Rewriting System 44

5.4 Proving Collatz Conjecture Results 49

Chapter 6. Collatz SRS Analysis 50

6.1 Simulating the Collatz SRS . 50

6.2 Determining Extra Steps the Collatz SRS Adds 52

6.3 Collatz SRS Subproblem Analysis . 53

6.3.1 Modified Base 8 Rewrite System 53

6.3.2 Defining Measures for Subproblem Analysis 57

6.3.3 Subproblem Hardness Analysis 58

6.4 Further SRS Rule Modifications . 60

6.4.1 Odd Collatz SRS . 61

6.4.2 Change in Rewrite Steps . 62

Chapter 7. Conclusion 64

Bibliography 65

Vita 67

x

List of Figures

3.1 The long multiplication corresponding to 3x + 1. Note how, in the
addition step, the 1+1 is in place of a zero, and the addition is just
x+ 2x+ 1. 9

3.2 The Base 4 Collatz Graph, G4. There are 4 nodes, each one corre-
sponding to a value mod 4. 13

3.3 The Base 8 Collatz Graph, G8. There are 8 nodes, each one corre-
sponding to a value mod 8. 16

4.1 This graph visualizes how, for records r, the H values for Collatz
Variants 1, 3, 5, and 7 compare to each other, and how they compare
to HC . The number of bits for the records (log2N) is the x-axis, and
the hardness measure H as defined in Subsection 4.1 is the y-axis. . . 32

4.2 This graph visualizes how, for records r, P values for Collatz Variants
1, 3, 5, and 7 compare to each other. The number of bits for the
records (log2N) is the x-axis, and the percentage measure P as defined
in Subsection 4.1 is the y-axis. 33

4.3 This graph visualizes how, for records r, H measure for the three
Collatz Variants {1, 5}, {1, 7}, and {5, 7}. The number of bits for the
records (log2N) is the x-axis, and the hardness measure H as defined
in Subsection 4.1 is the y-axis. Classical hardness was omitted from
this graph to eliminate distortion. 36

4.4 This graph visualizes how, for records r, the P measure for variants
{1, 5}, {1, 7}, and {5, 7}. The number of bits for the records (log2N)
is the x-axis, and the hardness measure P as defined in Subsection 4.1
is the y-axis. 38

6.1 This graph compares, on the same set of input numbers, classical
hardness as defined in Chapter 4, and rewrite hardness, which is the
number of steps divided by the number of input bits squared. The
number of bits for the records (log2 r) is the x-axis, and the hardness
is the y-axis. 54

6.2 This graph visualizes how, for records r, the R values for subprob-
lems 1, 5, and 7 compare to each other. The number of bits for the
records (log2N) is the x-axis, and the hardness measure R as defined
in section 6.3.2 is the y-axis. 59

xi

6.3 This graph shows what percentage the odd rules change the rewrite
steps, as opposed to the original Collatz SRS. The number of bits for
the records (log2N) is the x-axis, and the percent decrease is the y-axis. 62

xii

Chapter 1

Introduction

Computers have been successfully applied to many complex problems, such

as those in finance, healthcare, and the Internet. However, computers still struggle

with several problems. Consider whether a given program on any input will always

terminate. One can easily show that certain programs will always halt. For example,

we can easily show a program that takes an integer input x, computes y = x + 1,

prints y, then halts, will always terminate. Nevertheless, there exist simple programs

that are much harder to determine if they always terminate. Algorithm 1 is such an

example. Will this program always return 1 for any positive integer N , causing it to

halt? This problem is a reformulation of the Collatz Conjecture, also known as the

3N + 1 problem.

Algorithm 1 The Collatz Conjecture Sequence, Col(N)

1: if N ≤ 1 then return N

2: if N ≡ 0 (mod 2) then return Col(N/2)

3: return Col(3N + 1)

We know from Turing that no program exists to determine if an arbitrary

program with arbitrary input can halt [1], but that does not exclude the possibility

of a program that determines if specifically Algorithm 1 halts. However, no program

has been found to show that all positive integer inputs for Algorithm 1 will halt, even

1

though this problem can be explained to an elementary grade student. The problem

has been extensively analyzed, according to surveys by Lagrias [2] [3], yet no proof

has been found. The search is further motivated by extensive empirical evidence

suggesting that the Collatz Conjecture is true. According to a website maintained

by Roosendahl [4], all numbers up to 87 · 260, or about 1020, have been tried as N in

Algorithm 1, and have converged to 1.

Since the Collatz Conjecture has been challenging to prove, we propose an-

other supposedly simpler variant of it. Can we prove that the code in Algorithm

2, where A = {1}, and b = 8, always terminates for any positive integer N? Even

though this program seems to be easier, we do not have a program showing this

variant always terminates either!

Algorithm 2 A Collatz Conjecture Variant Colmod(N,A, b)

1: if (N ≤ 1) ∨ (N ≡ a1 (mod b)) ∨ . . . ∨ (N ≡ as (mod b)) then return N

2: if N ≡ 0 (mod 2) then return Colmod(N/2, A, b)

3: return Colmod(3N + 1, A, b)

One of the goals of this thesis is to try and determine how hard certain

variants of the Collatz Conjecture are to solve. A contribution of this thesis is that

it uses empirical data to try and find trends of hardness for difficult variants, and

compare these trends to the hardness of solving the whole Collatz Conjecture. This

thesis also follows an approach that Heule and Aaronson have devised attempting

to craft a program to determine if Algorithm 1 always halts [5]. At a high level, it

involves taking a completely reworked formulation of Algorithm 1 and using known

techniques that, if certain conditions are met, the reworked formulation can be shown

2

to terminate for any positive integer input. The formulation requires SAT solvers,

string rewrite systems, and a technique called matrix interpretation, all topics which

will be covered briefly in this paper as background. This thesis also investigates a

rewrite system that Aaronson crafted, and we believe that, if Aaronson’s system is

found to terminate for all input, the Collatz Conjecture holds. We analyze properties

of this rewrite system, and the previously variants are investigated with this rewrite

system as well.

The rest of this thesis is outlined as follows: Chapter 2 introduces definitions

that will be used throughout the paper. Chapter 3 defines several Collatz Conjecture

Variants, both solved and unsolved, including Colmod(N, {1}, 8)). Chapter 4 analyzes

the difficulty of these variants using algebra. Chapter 5 discusses the results so far of

Heule using Aaronson’s rewrite system and parallel SAT solving to prove the Collatz

Conjecture and hard Collatz Variants, as well as necessary background to understand

the approach. Finally, Chapter 6 investigates hardness of solving the same variants

covered in Chapter 4, but derived from Aaronson’s rewrite system instead.

3

Chapter 2

Definitions

We will use the following terms throughout this thesis:

• 3N + 1 sequence: Define this as follows:

N0 = N = initial input number

Ni+1 =

{
Ni/2 if Ni is even

3Ni + 1 if Ni is odd

This sequence can continue for arbitrarily large values of i, but we are only

interested in following the sequence until Ni, for some i, is 1, as any value after

1 follows the cycle of 1→ 4→ 2→ 1 infinitely.

Note that if we run Col(N), we would, after i recursive calls, end up passing,

into the i+ 1th recursive call of Algorithm 1, Ni+1. Algorithm 1 can be modi-

fied to store the sequence of numbers N,N1, . . . , Ni, meaning it can effectively

compute 3N + 1 sequences as well. However, for simplicity, throughout the re-

mainder of this thesis, we just refer to 3N + 1 sequences, with N as the initial

input, and Ni as the i number in the 3N + 1 sequence that started with N .

• 3N + 1 mapping: One recursive call of Col(N) for input number N , giving

us the number N1, as defined in the 3N + 1 sequence.

4

• Avoidance set A: The second parameter of Algorithm 2, Colmod(N,A, b),

which was defined in the introduction. A = {a1 . . . as} is all of the numbers

modulo the positive integer b that cause termination of the algorithm. This

termination condition is in addition to the sole termination condition of Al-

gorithm 1: when the input into Col(N), N , is 1. Note that for all a ∈ A,

0 ≤ a < b, and A = ∅ turns Algorithm 2 into Algorithm 1.

• Collatz Variant: When we say “Collatz Variant” we are referring to a specific

instance of Algorithm 2.

• Colmod(N,A, b) : A specific instance of a Collatz Variant for a positive integer

N , avoidance set A, and positive integer b.

• Collatz Variant A: The vast majority of our analysis on Collatz Variants is

on instances when b = 8, so when we say Collatz Variant A, it is shorthand

for Colmod(N,A, 8). We often list several base 8 instances of Collatz Vari-

ants together, so for instance, if we say Collatz Variants 1, 5, 7, and {1, 5};

we mean the instances Colmod(N, {1}, 8), Colmod(N, {5}, 8), Colmod(N, {7}, 8),

and Colmod(N, {1, 5}, 8); respectively. Note that when listing variants in this

manner, we omit the braces normally around singleton sets.

• Number of bits: For any number N , we say that, written in binary, it has

m bits. Note that m = log2N .

5

Chapter 3

Alternative Termination Conditions

This chapter explores some of the possible Collatz Variants. Before we inves-

tigate them, we define a graph paradigm that transforms the 3N + 1 problem into

directed graphs that depict the flow for all input numbers modulo base b, where b

is a power of 2. Using this paradigm, we can show that some variants are easily

provable. However, others are not.

3.1 Base b Collatz Graph Definition

Define Gb = (V,E) to be a “Base b Collatz Graph”, where b = 2k, and k

is nonnegative. Choosing a power of 2 for b allows us to easily reason with binary

numbers, which is useful for both several proofs in this chapter and the Collatz SRS

that we will discuss starting in Chapter 5. V has b vertices in it, where each vertex

is labeled a unique integer in the interval [0, b − 1]. We say that a number N is

visiting vertex v ∈ V if and only if N ≡ v (mod b) for vertex v labeled with integer

v. Out of convenience, note that we use v as a vertex and integer interchangeably

in this paper. Let N be an input number, and N1 the result of applying the 3N + 1

mapping to N . E = V × V is a set of directed edges, where, for nodes u, v ∈ V ,

(u, v) ∈ E if and only if Ni ≡ u (mod b) and Ni+1 ≡ v (mod b) for some N and N1.

6

3.2 Base b Collatz Graph Lemmas

This section contains some lemmas that are used throughout this chapter.

First, we start with a lemma about the number of node transitions in any Collatz

Base b Graph Gb.

Lemma 3.2.1. Given a Collatz Base b Graph, for all v ∈ V , if node v is even, then

it has two outgoing edges. Otherwise, if node v is odd, then it has only one outgoing

edge.

Proof. Take some number N that is visiting node v, and consider N in binary. First,

let us consider the case where node v is even. When we divide by 2, we just remove

the lowest 0 bit from N to get N1. The bit at index k− 1 of N1 can be either a 0 or

a 1, allowing for two options for even nodes.

Now, let N visit an odd node v. Multiplying N by 3 and adding 1 will give

us a N1 where the binary string for it grows at least one bit longer than N , since

3 ·N = 2 ·N + N , and 2N in binary is shifting the bits of N one index to the left,

then adding a 0 bit to the least significant bit. This gives us only one option for

the least significant k bits, meaning N1 can only visit one node, and only one such

outgoing edge from v exists.

Now, we have a couple of important properties about cycles that exist in any

Collatz Base b Graph, and the fact that these cycles cannot continue indefinitely.

First, we introduce the “0 cycle” lemma.

7

Lemma 3.2.2. For any Collatz Base b Graph (where b is a positive power of 2), a

self-loop occurs on a 0 node. This cycle cannot continue indefinitely.

Proof. Assume we have an input number N such that N ≡ 0 (mod b). This means

that the k least significant bits are all 0. Apply the 3N + 1 mapping once to this

string. We remove a 0 from the end, since we divide the input number by 2. We

now look at the new number N1 and the k least significant bits. The k − 1 least

significant bits are all 0. But what is the value of the bit in the most significant of

the k lowest bits of N1? If it is a 0, then N1 ≡ 0 (mod b), and we have a self-loop.

To show that the self loop cannot continue indefinitely: every time we follow

the self-loop, remove a 0. Since we also know that N > 1 in order for the algorithm

to continue running, we also know that at least one binary digit is a 1. So as we

continue dividing by 2 and removing bits that are 0, we eventually reach, after i

visits to node 0, a point where the least k significant bits are 1000 . . . 0, meaning Ni

is visiting node b/2 instead, ending the cycle.

Now, we introduce another important lemma about cycles: the fact that we

will always have a cycle between nodes b − 2 and b − 1, and it cannot continue

indefinitely.

Lemma 3.2.3. For any Collatz Base b Graph, a cycle between exists between nodes

b− 2 and b− 1. This cycle cannot continue indefinitely.

Proof. In this proof, we will show first that a b− 1→ b− 2→ b− 1 cycle exists, and

second, that this cycle cannot continue indefinitely; more precisely, that some number

8

xn xn−1 . . . xj+1 xj . . . xk+1 xk 1 1 . . . 1 1 1
× 1 1

cn+2 cn+1 cn cn−1 cj+1 cj ck+1 1 1 1 1 1

xn xn−1 . . . xj+1 xj . . . xk+1 xk 1 1 . . . 1 1 1
+ xn xn−1 xn−2 . . . xj xj−1 . . . xk 1 1 1 . . . 1 1 1+1

yn+2 yn+1 yn yn−1 . . . yj+1 yj . . . yk+1 yk 1 1 . . . 1 1 0

Figure 3.1: The long multiplication corresponding to 3x + 1. Note how, in the
addition step, the 1+1 is in place of a zero, and the addition is just x+ 2x+ 1.

congruent modulo to b− 2 (mod b), after division by 2, actually becomes congruent

modulo to b/2 − 1 (mod b) instead. We will prove this using long multiplication in

binary.

Let x be a arbitrary number1 congruent modulo to b − 1 (mod b). We want

to express x in binary, so let x have m bits. We know that since x is congruent

modulo to b − 1 (mod b), all bits from indices 0 to k − 1 are 1. Let xj denote the

jth bit of x, k ≤ j ≤ m. These bits are unknown. Let 1+1 correspond to the adding

of 1 after multiplying by 3, which is added to the least significant bit of x. Let

cj denote the unknown carry for the jth addition of bits. Let y be the result after

3x+ 1 is computed, and let index j of y be the same index as x. The multiplication

is referenced in Figure 3.1.

As mentioned in lemma 3.2.1, multiplication of a binary number x by 3 is

just x + 2x, and 2x is just placing all bits of x one index to the left, adding a 0 bit

at the newly vacant spot. In the multiplication we show in Figure 3.1, we write this

1Normally, we use the notation N to denote an arbitrary number in the 3N + 1 sequence, but
we mean Ni to mean the ith number in the 3N + 1 sequence, whereas in this proof, we have xj to
denote the jth bit of x. Hence, we use variables x and y instead of N and N1.

9

but replace the new least significant 0 bit of 2x with the special 1+1 bit, allowing us

to perform 3x+ 1 with just one addition instead of two.

Notice that all bits in the resulting binary number y from indices 0 to k−1 are

1, except for index 0, which is 0. This is because all bits of y, save the least significant

bit, are computed by adding 1+1 and carrying over the 1 from the previous addition.

As a result, y is congruent modulo to b − 2 (mod b), meaning an edge from node

b− 1 (mod b) to node b− 2 (mod b) exists in our graph.

When we divide y by 2, we just remove the least significant 0 bit from y,

decreasing the indices of all bits in y by 1. Hence, bit yk is now in position k − 1. If

yk is 1, our number is now congruent modulo to b− 1 (mod b). This means an edge

also exists from node b− 2 (mod b) to node b− 1 (mod b), proving the existence of

the b− 2→ b− 1→ b− 2 cycle.

Now we show that this cycle will always eventually terminate. This happens

when, after dividing a number congruent modulo to b − 2 (mod b) by 2, bit yk−1 is

0. So we need to show this eventually occurs for any positive integer x. There are

two cases for this:

1. Some bit in x is 0. Let xj be the least significant bit of x that is 0 (all bits

which have indices lower than j are 1). Look back at Figure 3.1, and replace

xj = 0, and have all bits at indices less than j be 1. After taking the 3x + 1

step, all bits of y between 1 and j − 1 will be 1, since for each bit, we add

1 + 1 and carry over a 1. However, when we get to index j, we add 1 + 0 plus a

carry of 1, making bit yj = 0. Since after we divide by 2 we move all bits one

10

index to the right, bit yj now moves to index j − 1. We repeat this process a

total of j − k + 1 times. After this, the 0 bit will be in position yk−1, making

y congruent modulo to b/2− 1 (mod b) instead, breaking the cycle.

2. No bit in x is 0. In this case, again looking at Figure 3.1, all bits in y from

indices 1 to m will be 1. However, bit ym+1 = 0, because ym+1 = cm+1 + xm +

xm+1, and cm+1 = 1 and xm = 1, but xm+1 = 0. Since bit ym+1 = 0 we move

it over one index to index m after dividing by 2. We then follow case 1, where

j = m, and hence, the cycle also breaks in this case.

Hence, no input number can follow the b− 2→ b− 1→ b− 2 cycle indefinitely.

We introduce one more lemma that shows that cycles where the magnitude

of divisions by 2 outweigh the magnitude of multiplications by 3. We call this the

“even node dominance lemma”.

Lemma 3.2.4. Given a cycle in any Collatz Base b Graph G, let Ve be the set of

even nodes in the cycle, and Vo be the set of odd nodes. If 2|Ve| > 3|Vo|, then the cycle

cannot continue indefinitely.

Proof. Let 2|Ve| > 3|Vo| and j = |Ve| + |Vo|. Let N be visiting a node v in the cycle,

and assume N will run through the cycle at least once without terminating, implying

no number between N and Nj inclusive is 1, and that Nj visits the same node v as

N did. We visited |Ve| vertices in the cycle, so we divided N by 2|Ve| after one trip

11

around the cycle. We also visited |Vo| vertices in the cycle, each time multiplying by

3, and overall, multiplied N by about 3|Vo|.2

Hence, after we visited the cycle once, we computed Nj ≈ 3|Vo|

2|Ve|
N . Since

2|Ve| > 3|Vo|, Nj < N . Therefore, one of two things must happen:

1. N eventually becomes 1, which means the cycle no longer can be repeated.

2. The cycle is eventually broken.

In both cases, the cycle cannot continue indefinitely.

3.3 Base 4 Collatz Graph and Variants

In this section, we build a simple example of a Base b Collatz Graph: G4. We

chose G4 because we can prove that Colmod(N,A, 4) terminates for any nonempty

A ⊆ {0, 1, 2, 3}. In G4, there are 4 different nodes: one for each integer between

0 and 3. When determining which node v input number N visits, we look at the

lowest 2 bits of N , since 4 = 22. For example, N ≡ 0 (mod 4) has 00 as the 2 least

significant bits, whereas N ≡ 2 (mod 4) has 10 as its 2 least significant bits.

3.3.1 Base 4 Collatz Graph Construction

Figure 3.2 shows G4. We describe the construction in this subsection. We

start by describing the transitions for even nodes, then the transitions for odd nodes.

2We also added one each time we visit an odd node, but this is asymptotically insignificant
compared to multiplying by 3 or dividing by 2, so we ignore it in this proof.

12

0 1

2 3

Figure 3.2: The Base 4 Collatz Graph, G4. There are 4 nodes, each one corresponding
to a value mod 4.

Assume, in all cases, that a number N is written in binary. First, the transitions for

even nodes:

• N visiting node 0 means N ends with binary string “00”. Removing the last 0

bit of N leaves either “00”, meaning N1 visits node 0 again, or “10”, meaning

N1 visits node 2 instead.

• N visiting node 2 means N ends with binary string “10”. Removing the last

0 bit of N leaves either “01”, meaning N1 visits node 1, or “11”, meaning N1

visits node 3.

Now, the transitions for odd nodes. Let x2 and x3 be unknown bits:

• N visiting node 1 means N ends with binary string “01”. Multiplying this by

3 and adding 1 results in N1 ending with “x200”, so N1 visits node 0.

• N visiting node 3 means N ends with binary string “11”. Multiplying this by

3 and adding 1 results in N1 ending with “x3x210”, so N1 visits node 2.

13

3.3.2 Base 4 Collatz Variants

We introduced the Base 4 case for nodes because we can prove that we need

to visit all of the nodes in this graph, which is equivalent to saying that each of the

Collatz Variants, Colmod(N,A, 4) terminates for nonempty A ⊆ {0, 1, 2, 3}, and for

any input number N .

Theorem 3.3.1. Colmod(N,A, 4) terminates for nonempty A ⊆ {0, 1, 2, 3}.

Proof. Assume that no 3N + 1 sequence described in this proof reaches 1, other-

wise Colmod(N,A, 4) terminates trivially for any A. We will start with proving that

Colmod(N, {2}, 4) will terminate for any input number N , because the 2 node is

central to the Base 4 graph.

Lemma 3.3.2. Colmod(N, {2}, 4) terminates for any N .

Proof. We use the graph to help in this proof. An equivalent question is this: Can

we show that node 2 must be visited for all input numbers? To show that this is the

case, we have to show that all other nodes must visit node 2.

• 2: If the input number N is visiting node 2, we are already done.

• 3: If the input number N is visiting node 3, then after the 3N + 1 mapping is

applied to N , N1 is now visiting node 2.

• 1 and 0: Let N be visiting node 1. N1 visits node 0 after applying the 3N + 1

mapping once. To show N1+j must leave node 0, we use lemma 3.2.2 (the “0

14

cycle” lemma) for b = 4, and N1+j will visit node 2 after j more applications

of the 3N + 1 mapping, both causing Colmod(N, {2}, 4) to terminate.

Since all other nodes must visit node 2, it means that for all N , Colmod(N, {2}, 4)

terminates.

Lemma 3.3.3. Colmod(N, {1}, 4) terminates for any N .

Proof. We use lemma 3.3.2 to show that node 2 must be visited, meaning that for

any input number N , Ni ≡ 2 (mod 4) after i steps. Then we use lemma 3.2.3 to

show that the cycle between nodes 2 and 3 cannot continue indefinitely, so after j

more steps, Ni+j visits node 1, proving termination of this variant.

Lemma 3.3.4. Colmod(N, {0}, 4) terminates for any N .

Proof. Given lemma 3.3.3, we know after i steps Ni must visit node 1, and given

lemma 3.2.1, an odd node can only have one outgoing edge, so Ni+1 visits node 0.

Lemma 3.3.5. Colmod(N, {3}, 4) terminates for any N .

Proof. Given the “even node dominance lemma”, 3.2.4, the 2 → 1 → 0 → . . . → 2

cycle cannot continue forever because, if we assume that the 0 node never self-cycles,

22 > 31. The 0 self-cycle makes even nodes dominate even more. So an input

number N in the 2 → 1 → 0 → . . . → 2 cycle must, after i steps, visit node 3,

causing Colmod(N, {3}, 4) to terminate.

15

0

1

2

3

4

5

6

7

Figure 3.3: The Base 8 Collatz Graph, G8. There are 8 nodes, each one corresponding
to a value mod 8.

Since all of these lemmas hold, it follows that any singleton set from A ⊆

{0, 1, 2, 3} causes Colmod(N,A, 4) to terminate. Also, by definition of Algorithm 2,

any larger size sets for A also terminate as larger set sizes add more termination

conditions. So any nonempty set A will cause Colmod(N,A, 4) to terminate for any

input N .

3.4 Base 8 Collatz Graph and Variants

After proving Colmod(N,A, 4) terminates for any nonempty base set A and

input number N , we decided to see what would happen if we expanded to k = 3 bits.

We have not been able to prove all variants of Colmod(N,A, 8) for all nonempty sets

A. This will motivate further computation undertaken in Chapter 4, as we try to

determine how hard figuring out these unproven variants are. Figure 3.3 shows the

base 8 graph. There are 8 different nodes, since 8 = 23.

16

3.4.1 Base 8 Collatz Graph Construction

Like G4 before, we show how to construct G8. We examine the even nodes

first. In this case, there are four different nodes: 0, 2, 4, and 6. Using lemma 3.2.1,

each vertex has two different transitions, depending on what the next bit to the left

of the 3 bits after removing the least significant 0.

• N visiting node 0 means N ends with binary string “000”. Removing the last

0 bit of N leaves either “000”, meaning N1 loops to node 0; or “100”, meaning

N1 visits node 4 instead.

• N visiting node 2 means N ends with binary string “010”. Removing the last 0

bit leaves either “001”, meaning N1 visits node 1; or “101”, meaning N1 visits

node 5.

• N visiting node 4 means N ends with binary string “100”. Removing the last 0

bit leaves either “010”, meaning N1 visits node 2; or “110”, meaning N1 visits

node 6.

• N visiting node 6 means N ends with binary string “110”. Removing the last 0

bit leaves either “011”, meaning N1 visits node 3, or “111”, meaning N1 visits

node 7.

Now, the odd nodes. Let x3 and x4 be unknown bits.

• N visiting node 1 means N ends with binary string “001”. Multiplying this by

3 and adding 1 results in N1 ending with “100”, so N1 visits node 4.

17

• N visiting node 3 means N ends with binary string “011”. Multiplying this by

3 and adding 1 results in N1 ending with “x3010”, so N1 visits node 2.

• N visiting node 5 means N ends with binary string “101”. Multiplying this by

3 and adding 1 results in N1 ending with “x4x3000”, so N1 visits node 0.

• N visiting node 7 means N ends with binary string “111”. Multiplying this by

3 and adding 1 results in N1 ending with “x4x3110”, so N1 visits node 6.

3.4.2 Base 8 Collatz Graph Cycle Analysis

Since we do not have proofs for all Collatz Variants Colmod(N,A, 8), we an-

alyzed whether certain cycles can last indefinitely. We have found that all simple

cycles of G8 can be proven to not last indefinitely. However, showing that some

combinations of these simple cycles cannot continue forever is much more difficult to

do.

We tie in interesting Collatz Variants to these analyses. We start with smaller

cycles and work our way into longer cycles, as well as combinations of them.

• The 0 self-cycle, (0→ . . .) cannot continue forever, as per lemma 3.2.2.

• The 6→ 7→ 6 cycle cannot continue forever as per lemma 3.2.3.

• The 4 → 2 → 1 → 4 cycle cannot continue forever, as even nodes dominate

(22 > 3), so according to lemma 3.2.4, this cycle cannot last forever.

• 4 → 2 → 5 → 0 → . . . → 4 cycle: Even nodes dominate, even without any

0 self-cycles (23 > 3), so according to lemma 3.2.4, this cycle cannot continue

18

forever. We can also combine this cycle with the 4 → 2 → 1 → 4 cycle, and

since both cycles cause input numbers to decrease, the combination of these

two cycles must visit a new node to prevent the number from converging to

1. The only other choice is node 6, so this argument is used to prove Collatz

Variant 6 must terminate.

• 4 → 6 → 3 → 2 → 1 → 4 cycle: There are three different variations of this

cycle. We have a proof for only one of them:

– No transition allowed from 4 → 2: The following theorem explains this

case.

Theorem 3.4.1. Aaronson ’17: The 4 → 6 → 3 → 2 → 1 → 4 cycle

cannot continue indefinitely.

Proof. If we start some number N such that N ≡ 4 (mod 8), and follow

the 4 → 6 → 3 → 2 → 1 → 4 cycle once, we turn N into (9N + 20)/8 =

9
8
(N + 20) − 20. If we were to repeat the cycle k times, we would turn

N into 9
8

k
(N + 20) − 20. This quantity must be an integer for all k if

the cycle is to continue forever. However, N + 20 will only have a finite

number of factors of 8, so the cycle must terminate.

– Transition allowed between 4 → 2: This creates a conflict between two

different cycles: one that causes growth by approximately a factor of 9/8

(4→ 6→ 3→ 2→ 1→ 4), and another that causes the cycle to decay by

a factor of 4/3 (4→ 2→ 1→ 4). Even though we can prove that both of

19

these cycles terminate independently, it has been a challenge to show that

the combination of them cannot continue indefinitely, as we cannot prove

that one cycle must stop transitioning to the other. Hence, no proof, by

hand or machine, is known that we must break out of this combination

of cycles, by visiting either node 5 or 7. A proof that this combination of

cycles must be broken would prove termination of Collatz Variant {5, 7},

which we explore in Chapter 4.

– Building on the prior point, we can also consider visits to the node 7 as well

in this cycle. This adds the 6 → 7 → 6 cycle to the already challenging

two cycle case. If we can’t prove that the smaller combination of cycles

4→ 6→ 3→ 2→ 1→ 4 and 4→ 2→ 1→ 4 cannot terminate, it would

be far more difficult to add a third cycle, even though all three cycles must

terminate individually. A proof of this cycle would solve Collatz Variant

5, also explored in Chapter 4.

• 4→ 6→ 3→ 2→ 5→ 0→ . . .→ 4 cycle: There are three different variations

to showing this cycle cannot continue forever: keeping both nodes 1 and 7

omitted, or omitting one node or the other. Adding in both nodes yields the

entire base 8 graph. The variant where both 1 and 7 are omitted is proven, the

other two are not.

– Strictly following this cycle, no changes: assuming no zero-cycles, there

are 4 distinct even nodes in this cycle, and 2 distinct odd nodes. 24 > 32,

so according to the “even node dominance lemma”, 3.2.4, this cycle cannot

20

continue forever. The nodes that must be visited to break this cycle are

either 1 or 7, so this is a proof that Collatz Variant {1, 7} terminates.

– Allowing 7 but avoiding 1: Like variant {5, 7}, we have two conflict-

ing cycles: the 6 → 7 → 6 cycle which cause the number to grow

by approximately 3
2

every time it takes this cycle, and the base cycle

4→ 6→ 3→ 2→ 5→ 0→ . . .→ 4 that reduces it by approximately 16
9

,

depending on number of zero self cycles. These two cycles are interesting

in that they clash the fastest growing part of the graph: the 6 → 7 → 6

cycle, and the fastest decaying part of the graph: the 0 self-cycle, followed

by two more even numbers. We are also not aware of a proof for this case

either. Such a proof that these two cycles cannot continue combined for-

ever would be equivalent to proving termination of Collatz Variant 1. We

present analysis of hardness of this cycle in Chapter 4.

– Allowing 1 but avoiding 7: Adding back in node 1 but disallowing node

7 actually allows for three different cycles: 4 → 6 → 3 → 2 → 5 → 0 →

. . . → 4, 4 → 6 → 3 → 2 → 1 → 4, and 4 → 2 → 1 → 4. Finding a

proof for this case is expected to be harder than the unsolved two cycle

case of 4 → 6 → 3 → 2 → 1 → 4, and 4 → 2 → 1 → 4. Solving that the

combination of these three cycles must terminate is equivalent to proving

termination of Collatz Variant 7.

21

3.4.3 Base 8 Collatz Variants

As for which nodes we are forced to visit during the computation of a 3N + 1

sequence, we can prove Collatz Variants 2, 3, 4 and 6 terminate, meaning nodes 2, 3,

4, and 6 must be visited in the base 8 graph eventually. Variant 0 can be shown to

terminate if another unproven variant terminates. It will still be mentioned with the

already proven variants. The following will explain how these five variants terminate.

We present them in an order to build arguments off of one another. Like the proofs

for Base 4 Collatz Variants, assume that no 3N + 1 sequence described in this proof

reaches 1, otherwise Colmod(N,A, 8) terminates trivially for any A.

• Colmod(N, {6}, 8): Like in the Collatz Base 4 Graph, we have to show that

all other nodes must visit node 6 eventually. There are several different cases

we enumerate here:

1. N visits node 6. We are already done.

2. N visits node 7. Then after one application of the 3N + 1 mapping, N1

visits node 6.

3. N is visiting nodes 0, 1, 2, 4, or 5. The 3N+1 sequence for N in this case,

to avoid node 6, would have to traverse one of two cycles: 4→ 2→ 1→ 4

or 4→ 2→ 5→ 0→ . . .→ 4. We talked about how this combination of

cycles cannot continue forever in Subsection 3.4.2. So an N input number

in either one of these cycles, after i steps, must visit node 6.

4. N visits node 3. Then after one application of the 3N + 1 mapping,

22

N1 visits node 2, and we apply the previous argument to show it must

transition to node 6 eventually.

Hence, Colmod(N, {6}, 8) must terminate for any input N .

• Colmod(N, {3}, 8): We know that Colmod(N, {6}, 8) terminates, so as a result,

an input number N must transition to node 6 after i steps. Given lemma 3.2.3,

the 6 → 7 → 6 cycle cannot continue forever. Hence, after another j steps,

Ni+j visits node 3, meaning Colmod(N, {3}, 8) must terminate.

• Colmod(N, {2}, 8): Since we know that N must visit node 3 after i steps, we

apply the 3N+1 mapping once, andNi+1 visits node 2, proving Colmod(N, {2}, 8)

must terminate.

• Colmod(N, {4}, 8): Given that we know we need to visit node 2, we know

that Ni visits node 2. We look at the graph and see two different paths, both

which lead to node 4: Either visit node 1 then 4, or visit node 5 then 0. From

lemma 3.2.2, the 0 cycle cannot continue forever, so either way, the path taken

must traverse to node 4. Hence after j steps for j ≥ 2, Ni+j visits node 4, and

Colmod(N, {4}, 8) terminates.

• Colmod(N, {0}, 8): In the graph, we can see that to visit node 0, we must

come from node 5. So we cannot prove this yet unless we prove termination

for Colmod(N, {5}, 8).

We do not have proofs for Colmod(N, {1}, 8), Colmod(N, {5}, 8), Colmod(N, {7}, 8),

but we can prove a couple of combined variants of them:

23

• Colmod(N, {1, 5}, 8): We already know that Collatz Variant 2, so Ni visits

node 2. Looking at the base 8 graph, 2 must traverse to either node 1 or 5.

Hence, after one application of the 3N + 1 mapping, Ni+1 visits either 1 or 5,

meaning Colmod(N, {1, 5}, 8) must terminate.

• Colmod(N, {1, 7}, 8): This was discussed in Subsection 3.4.2, but repeated

here: Since the 4 → 6 → 3 → 2 → 5 → 0 → . . . → 4 cannot continue forever,

either node 1 or 7 must be visited, since there are not other choices for nodes.

Hence, Colmod(N, {1, 7}, 8) must terminate.

However, the combination Colmod(N, {5, 7}, 8) has not been proven. Hence, we’ve

run some computational experiments to try and better understand the difficulty of

coming up with a proof for termination of variant {5, 7}, as well as Collatz Variants

1, 5, and 7.

24

Chapter 4

Collatz Variant Hardness Prediction

In this section, we attempt to determine how difficult variants from Algo-

rithm 2 are for Colmod(N,A, 8), where A = {1}, {5}, {7}, or {5, 7}. We start by

defining some measures, talk about the process of running experiments, and talk

about the results. We analyze termination of the singleton set Collatz Variants 1, 5,

and 7; and the combined 2-element variant of {5, 7}; in separate sections.

4.1 Defining Measures

We define hardness off of the notion that odd numbers make the Collatz

Conjecture harder, whereas even numbers make it easier. To more precisely define

the measures, define the following numbers, given some input number N :

• f(N): The total number of steps in the sequence for N before it converges to

1.

• fodd(N): Number of odd numbers visited in the sequence from N to 1. Note

that feven(N) = f(N)− fodd(N).

• A: The base avoidance set. Same as defined in Algorithm 2 and Chapter 2.

For the Collatz Variants we are exploring in this chapter, A ⊆ {1, 3, 5, 7} and

25

A 6= ∅.

• Collatz Variant A Sequence: The sequence of numbers that, for input number

N , runs i numbers in length, such that ∀a ∈ A, j ∈ [0, i], (Nj 6≡ a (mod 8)∧Nj >

1).

• g(N,A): The highest number of steps that an input number N , while comput-

ing Algorithm 1, also avoids termination of Collatz Variant A. More precisely,

the longest number of steps in a Collatz Variant A Sequence for all numbers in

the 3N + 1 sequence for N until it reaches 1.

• godd(N,A) : The number of odd numbers within the given g(N,A).

• Slice: a batch of numbers from some low number to some high number for a

fixed A.

• Nmin: the lowest number of any slice.

• Nmax: the highest number of any slice.

• Record: any number r in the range that has g(r, A) higher than all numbers

measured so far in the slice. More formally, any new record rnew must have

the properties compared to the current record rcurrent: rnew > rcurrent, and

g(rnew, A) > g(rcurrent, A) for a specific A. Note that we measure records off of

total steps, not total number of odd numbers.

Using these numbers, three different measures are defined, and the intuition behind

why they were chosen is given as well:

26

Hardness: Defined to be H(N,A) = godd(N,A)
log2 N

. This assesses whether or

not increasing the number of bits needed to represent the number N changes the

difficulty of determining a proof for Collatz Variants 1, 5, 7, or {5, 7}.

Classical hardness: Defined to be HC(N) = fodd(N)
log2 N

. This is a comparison

to our hardness measure, but we compute HC with respect to the whole sequence,

instead of trying to avoid specific numbers. Records for classical hardness occur

when rnew > rcurrent and f(rnew) > f(rcurrent).

Note that classical hardness is much like the gamma value mentioned by

Lagrias [2] [3] and Roosendaal [4], except that γ(N) = feven(N)
logN

. We chose to define

our measure based on odd numbers for purposes of this thesis, because the Collatz

String Rewrite System we define in Chapter 5 is made much harder by the presence

of odd numbers.

Percentage of Sequence: Defined to be P (N,A) = godd(N,A)
fodd(N)

. This assesses

what percentage of all odd numbers in the Collatz Sequence lie within Record Collatz

Variant Sequences for Collatz Variants 1, 5, 7, or {5, 7}.

4.2 Generating Measures

We wrote a program that computes Collatz Sequences using Java, and ran it

on all odd numbers from 1 to 1 billion. The program has various modes which evolved

over the lifetime of this project. In these modes, let A be a family of avoidance sets

A, and let r(A) be the record for set A ∈ A.

27

• baseavoid is the default option. This allows us to check all A ∈ A by running

through all odd numbers from Nmin (we usually use 1) to Nmax (we usually use

1 billion), and determines the record r(A) for all of these numbers. When it

finishes, it prints out, for each A, separate csv files that have r(A), g(r(A), A),

and the Record Collatz Variant A Sequence. Algorithm 3 outlines how we run

this for the family of sets A for a given N . Before printing results, we repeat

this algorithm for each odd N ∈ [Nmin, Nmax].

Algorithm 3 Base Avoid Mode for input N

1: Input: The initial number N ; family of avoidance sets A; dictionary that stores,
for all sets A ∈ A, r(A) and g(r, A)

2: Let M be a dictionary
3: for A ∈ A do
4: M [A]← 0

5: while N > 1 do
6: if N ≡ 0 (mod 2) then
7: N ← N/2
8: else
9: N ← 3N + 1

10: y ← N (mod b)
11: for A ∈ A do
12: if y ∈ A then
13: if M [A] > g(r, A) then
14: g(r, A)←M [A]
15: r(A)← N

16: M [A]← 0
17: else
18: M [A]←M [A] + 1

• entirechain just runs Algorithm 1 for all odd N in the range Nmin ≤ N ≤

Nmax, and prints out the smallest number that has the longest length 3N + 1

28

sequence. More precisely, it prints out the smallest odd number r such that

(∀x ∈ [Nmin, Nmax]|x ≡ 1 (mod 2))(f(r) ≥ f(x)).

• untildecay means that, for each odd number in between Nmin and Nmax, we

continue to run until, after i steps, we have a number Ni such that Ni < N .

We return only the longest sequence of numbers that occurs until the resulting

number is smaller than the initial number, as well as the steps i needed.

• updown is a quite different mode. For each odd number N such that Nmin ≤

N ≤ Nmax, determine two things. First, the number of steps it takes for N

to become some number Ni such that Ni < N , like in the untildecay mode.

Second, the number of steps it takes for another number Ng to grow to N if such

an Ng exists (no multiple of 3 can grow from a smaller number, for instance).

The output prints out, for all odd numbers in the range, Ni, the number of

steps it takes for N to turn into Ni, and, if Ng exists, the number Ng and the

number of steps it takes for Ng to grow into N . The process of computing

Ng and the number of steps it takes for Ng to grow into N is included in a

README for the git repository mentioned at the end of this section.

• avoidingmodgrowth computes, for Nmin ≤ N ≤ Nmax and for all A ∈ A, r(A)

and g(r(A), A) in the same manner as the baseavoid mode, except we do not

overwrite old records with new ones. Instead, we store all records in a table.

A csv file is made for each A ∈ A, and given such an A, we print progressively

growing r(A) and g(r(A), A). This is the mode we used to generate the hardness

results in this thesis.

29

As mentioned, we used the avoidingmodgrowth mode to generate the records defined

in Subsection 4.2. We run for sequences of odd numbers in multiple slices, usually 8,

in order to take advantage of parallel computing via a distributed computing program

called Condor that was made by The University of Wisconsin-Madison [6]. We then

combine the records of these 8 tables by hand using the defined record criterion.

Within slices we are running, we added an option to avoid recomputing odd

numbers already part of a prior Collatz Sequence, as these will never generate new

records. However, this option can be disabled if we wish to compute extremely large

numbers and slices and are limited in our memory storage.

The program could have been rewritten to build off of previously used results,

which should run faster, but this would have been difficult without many GBs of

memory available and good memory management in our program. So the space

efficient approach was chosen for this project.

The code can be accessed via a public GitHub repository located at https:

//github.com/mdenend/CollatzRewriteSystem. A README file is included that

explains how to run the code and available options.

4.3 Single Base Collatz Variant Analysis

Our analysis for analyzing the termination of Collatz Variants 1, 5, and 7 is

broken into three subsections: two exploring our defined computations, H and P ,

and a third one analyzing interesting properties of sequence similarities that may

provide insight to eventual proofs showing that these three Collatz Variants must

30

https://github.com/mdenend/CollatzRewriteSystem
https://github.com/mdenend/CollatzRewriteSystem

terminate. For exploring H and P , we took all of the records for Collatz Variants 1,

5, and 7, and plotted, for records r, the number of bits (log2 r) versus H(r, A) and

P (r, A), respectively. We also added in Collatz Variant 3 as a control case.

4.3.1 Hardness Function Results and Analysis

Figure 4.1 shows the results, for records r, of H(r, A) versus the number of

bits (log2 r). Comparing the three unproven Collatz Variants 1, 5, and 7 to the

proven variant 3, the known variant is easier. The known variant actually slight

decreases in hardness as the number of bits increases, meaning that there are fewer

odd numbers per bit.

Comparing the unknown variants to themselves, there is no consistent leader

among the three as the number of bits increases. However, they all seem to be within

a hardness range of 1-3, with only a couple of exceptions. Variant 7 seems to remain

in the same range with no definite increase or decrease, whereas variants 1 and 5 grow

slightly from about 12 bits onward. The growth for both variants 1 and 5 may be

because as numbers get larger, there are more opportunities to visit the 6→ 7→ 6

cycle, which adds odd numbers more quickly to the sequence than any other base 8

graph traversal. More experiments for higher numbers should be consider in order to

determine whether any of these three unknown variants continue to trend the same

way.

Classical hardness actually tends to grow linearly against the log scale, mean-

ing that as the input number increases in number of bits, HC increases logarithmi-

cally. This contrasts to H for all the plotted Collatz Variants, which tend to stay

31

Figure 4.1: This graph visualizes how, for records r, the H values for Collatz Variants
1, 3, 5, and 7 compare to each other, and how they compare to HC . The number of
bits for the records (log2N) is the x-axis, and the hardness measure H as defined in
Subsection 4.1 is the y-axis.

32

Figure 4.2: This graph visualizes how, for records r, P values for Collatz Variants
1, 3, 5, and 7 compare to each other. The number of bits for the records (log2N) is
the x-axis, and the percentage measure P as defined in Subsection 4.1 is the y-axis.

below an H of 3, meaning that figuring out proofs for the variants’ termination is

expected to be easier than proving the Collatz Conjecture.

4.3.2 Percentage of Sequence Function Results and Analysis

Figure 4.2 shows, for records r, the results of P (r, A) versus the number of

bitsin r. P (N,A), as discussed earlier, is just calculating what percentage of odd

numbers are part of record sequences for Collatz Variants 1, 3, 5, and 7.

Collatz Variant 7 comprises the highest percentage overall, with a couple of

exceptions. Following Collatz Variant 7 causes the sequence to decline rapidly, since

the 6→ 7→ 6 cycle causes an input number to grow faster than any other cycle in

33

the base 8 graph. Almost all of the records for variant 7 terminate at 1 instead of

actually reaching a number that is 7 (mod 8).

Variant 5 tends to have a low percentage, and appears to be the least erratic

of all four variants. Variant 5 avoids the 0 self-cycle, which causes many divisions

by 2. Numbers having record sequences that avoid 5 (mod 8) tend to turn into

very large numbers when variant 5 terminates, meaning that many more steps in the

3N + 1 mapping must often be taken before these numbers converge to 1.

Variant 1 is interesting, because as the input numbers grow larger, the line

changes from erratic behavior to a more steady percentage at around 20 bits. This

is likely a consequence of the sequence similarity that is seen in larger records for

variant 1, which will be analyzed in Subsection 4.3.3. Further, as mentioned in the

cycle analysis in Subsection 3.4.2, the 4 → 6 → 3 → 2 → 5 → 0 → . . . → 4 cycle

combined with the 6 → 7 → 6 cycle causes a clash between the decay of the 0 self-

cycle and the growth of the 6→ 7→ 6 cycle. This may explain some of the erratic

percentage for variant 1, aside from the small part with chain similarity.

Variant 3 record sequences tend to have the lowest percentage of all odd

numbers compared to other variants, even lower than variant 5, but also has erratic

percentage. This could be explained by the fact that avoiding termination of variant

3 causes the sequence to follow some combination of the 6 → 7 → 6 cycle, the

4→ 2→ 1→ 4 cycle, or the 4→ 2→ 5→ 0→ . . .→ 4 cycle with some number of

0 self-cycles. The first cycle causes growth, whereas both other cycles cause decay. If

the growth cycle is followed, the number gets larger, likely reducing the percentage

of odd numbers making up long chains avoiding termination of variant 3, whereas

34

the decay cycles cause the number to shrink, tending the percentages to be higher.

This may explain why variant 3 causes widely different percentages.

4.3.3 Sequence Similarity Analysis

We analyzed the sequences of the records for Collatz Variants 1, 5, and 7 as

well to see if we could find any similarities:

• Variant 1: There are two groups of records that were particularly interesting:

Those from 325,791 to 32,505,681 (call this group S), and those from 35,651,835

to 949,643,331 (call this group T). Group S numbers all terminated at number

161, and group T numbers all terminated at number 35,369. These sequences

all matched number-by-number at least one other sequence starting at most 8

steps from the beginning. This is a striking similarity meaning that records for

variant 1 might be predictably related to groups S or T , or perhaps to other

groups.

• Variant 7: All record sequences, except for input number 27, terminated at 1.

While there was some similarity between sequences (all numbers ≥ 62079 had

the same last 41 numbers), there were many different paths taken from the

input, so not as many patterns as variant 1.

• Variant 5: This had few matches and was the most changing of the records, so

chain similarity appears not to have affected the low variance that P has for

variant 5.

35

Figure 4.3: This graph visualizes how, for records r, H measure for the three Collatz
Variants {1, 5}, {1, 7}, and {5, 7}. The number of bits for the records (log2N) is
the x-axis, and the hardness measure H as defined in Subsection 4.1 is the y-axis.
Classical hardness was omitted from this graph to eliminate distortion.

4.4 Paired Base Avoidance Analysis

Since termination of Collatz Variants 1, 5, and 7 appear to be difficult to

prove, we also analyzed two element combinations of them. The termination of two

such variants were already proved in Subsection 3.4.3: {1, 5} and {1, 7}. However,

termination of variant {5, 7} has yet to be proven. This section will analyze what

happens to H(N,A) and P (N,A) where A = {1, 5}, {1, 7}, and {5, 7}.

36

4.4.1 Hardness Function Results and Analysis

Figure 4.3 shows, for records r, H(r, A) versus bits in r. These results were

quite surprising. At first thought, it would have appeared that the unproven variant

{5, 7} should be the hardest to determine, compared to the two variants we have

proofs for. But both variants {1, 5} and {1, 7} had alike predictive hardness to

{5, 7}! These numbers suggest that a proof for determining why variant {5, 7} must

terminate is either easier than we anticipated, or our hardness measures are not very

good. However, given the fact that variant 3 for the single base cases is clearly easier

than variants 1, 5, and 7, we have reason to believe this measure should be good.

Further investigation needs to be considered.

4.4.2 Percentage of Sequence Function Results and Analysis

Figure 4.4 shows, for records r, P (r, A) versus bits in r. Record sequences

for variant {1, 7} make up the highest percentage of their overall Collatz Sequences,

because avoiding both the 6 → 7 → 6 and the 4 → 6 → 3 → 2 → 1 → 4 cycles

allows for the sequence to only go through the 4 → 2 → 5 → 0 → . . . → 4 cycle,

causing fast decay, like variant 7.

Both variants {1, 5} and {5, 7} are much closer to each other in the percentage

that their Record Collatz Variant Sequences comprise of their 3N + 1 sequences,

although as the numbers grow past 17 bits in size, variant {5, 7} comprises of the

higher percentage. A possible explanation is the fact that the 6 → 7 → 6 cycle

allowed in variant {1, 5}, but not variant {5, 7}, causes a number to grow larger than

the 4 → 6 → 3 → 2 → 1 cycle that variant {5, 7} allows. Also, since variant {1, 5}

37

Figure 4.4: This graph visualizes how, for records r, the P measure for variants
{1, 5}, {1, 7}, and {5, 7}. The number of bits for the records (log2N) is the x-axis,
and the hardness measure P as defined in Subsection 4.1 is the y-axis.

38

allows for larger numbers, and larger numbers generally (but not always) take more

steps to decline, allowing for more growth should mean that Record Collatz Variant

{1, 5} Sequences comprise a lower percentage of all odd numbers in record numbers’

overall 3N + 1 sequences.

39

Chapter 5

Heule’s and Aaronson’s Attempts to Prove the

Collatz Conjecture

In this chapter, we touch upon the approach that Heule and Aaronson came

up with to try and prove the Collatz Conjecture. Before doing so, we mention back-

ground needed to understand the approach: SAT solvers, string rewrite systems, and

matrix interpretation. We then introduce the string rewrite system that Aaronson

built, which, if it terminates, we believe it is equivalent to showing that the Collatz

Conjecture holds. We then present results of attempts where Heule applied parallel

SAT solving instances on Aaronson’s rewrite system to see if the Collatz Conjecture

holds.

5.1 SAT Solver Background

SAT solvers are powerful programs that can solve some incredibly complex

problems, such as those found in hardware verification, software verification, and

combinatorics. SAT solvers leverage the fact that k-SAT, where k is the maximum

number of literals per clause, is a decision problem that is NP-Complete when k > 21,

meaning that if P 6= NP , the worst case runtime is exponential. However, with

1See the Cook-Levin Theorem for a proof showing that k-SAT is NP-complete.

40

clever heuristics, we can actually solve many interesting propositional logic formulas

in linear time. Also, since k-SAT is NP-Complete, other NP-Complete problems may

be reduced to it, meaning some instances of NP-Complete problems can be solved

with SAT solvers. Knowing SAT solving background is not important for this thesis,

but there is a great deal of literature talking about SAT solving, so one can check,

for instance, [7].

5.2 String Rewrite System and Matrix Interpretation Back-
ground

A string rewriting system (SRS), at a high level, takes a input string of an

certain alphabet (set of valid symbols) and applies string rewriting rules (SRRs) in

an arbitrary order on the input string to see if the string can be transformed further.

The SRS continues to apply SRRs on the input string until the input string no longer

has any substrings as input for an SRR. This causes the SRS to terminate.

An example SRS to explain further is given, which is from [5].

SRS A: The alphabet is Σ = {a, b, c} and the SRRs are as follows:

1. aa→ bc

2. bb→ ac

3. cc→ ab

A problem, called Zantema’s Other Problem [8], using SRS A, asks the following

question:

41

Zantema’s Other Problem: Does the system laid out in SRS A terminate for any

input string (a|b|c)∗?

If one thinks about this problem a little, it would seem that a proof should be

easy to show. Surprisingly, both humans and computers struggled to come up with a

proof for this problem when initially presented. However, Hofbauer and Waldmann

came up with a proof [8], and from this found that, if the alphabet of an SRS can be

converted to functions with certain properties, we can prove that any input string to

this SRS can terminate [9].

We explain in more detail using Zantema’s other problem. The matrices

needed, which are from [8], are the following:

a(~x) =


1 0 0 3
0 0 2 1
0 1 0 1
0 0 0 0

 ~x+


1
0
1
0



b(~x) =


1 2 0 0
0 2 0 1
0 1 0 0
0 0 0 0

 ~x+


1
2
0
0



c(~x) =


1 0 0 1
0 0 0 1
0 1 0 1
0 2 0 0

 ~x+


1
0
3
0


We can build a vector representation of an input string by composing the functions

for symbols together. We follow the example from [5] here. For instance, if we build

the vector representation of the input string “bbaa,” we would computeb◦ b◦ b◦a(~0),

42

which gives us the following vector:

b(b(a(a(~0)))) =


18
14
6
0


The matrices chosen earlier are not constructed arbitrarily. They are chosen in such a

manner that, any time an input string has a rewrite rule applied to it, the magnitude

of the vector representation of the input string decreases. The vector must continue

to decrease in magnitude until the input string can no longer accept new SRRs,

causing the SRS to terminate. The search for correct matrices is challenging, but

SAT solvers can help in this process by checking if a d × d matrix is large enough

to meet the aforementioned requirements. The process of building these matrices

is technical so further background will not be covered here, but if one is interested,

they can check the paper by Endrullis, Waldmann and Zantema [10]. We will use

our example string “bbaa” to show that the vector representation of it is always

decreasing, but first, define the � operator to show that, for vectors (x1 . . . xd) and

(y1 . . . yd), (x1 . . . xd) � (y1 . . . yd) if x1 > y1 and xi ≥ yi for i ∈ {2, . . . , d}. In other

words, the first element of a vector must be always decreasing after we apply a rule,

while the other d − 1 elements must either be the same number or decrease. This

operator ensures the magnitude of the vector always decreases.

The following is a possible set of rules that can be applied to “bbaa” as well

as the vector representations of the string:

43

bbaa → bbbc → bacc → baab → bbcb → accb → aabb → aaac → abcc → abab
18
14
6
0

 �


17
14
6
0

 �


15
14
6
0

 �


14
14
6
0

 �


13
14
6
0

 �


7
14
5
0

 �


6
14
5
0

 �


4
14
3
0

 �


3
0
3
0

 �


2
0
3
0


The vector representation of the strings are always decreasing as defined by

the � operator. We could apply any string with symbols a, b, and c and apply rules

until termination and the vectors representing the strings would always decrease.

5.3 The Collatz Conjecture as a String Rewriting System

Aaronson built an SRS representing the 3N + 1 mapping [5]. We’ll call this

the Collatz SRS throughout the remainder of this thesis.

Let the alphabet of the Collatz SRS consist of the symbols a, b, c, d, e, f, g.

The symbols can be written as these linear functions:

a(x) = 2x e(x) = 3x

b(x) = 2x+ 1 f(x) = 3x+ 1

c(x) = 1 g(x) = 3x+ 2

d(x) = x

The symbols a and b are binary symbols. They represent a binary system:

a is 0 and b is 1. The symbols e, f , and g are ternary symbols. They represent a

ternary system: e is 0, f is 1, and g is 2. c and d are placeholder symbols to represent

44

the leading 1 and the end of the string, respectively. They help this SRS know where

the beginning and end of the string are.

Note that in order to correctly compute the values that the strings represent

using the above linear functions, one needs to read the functions from left to right.

That is to say, the string cabad, which is equal to 10, is not equal to c ◦ a ◦ b ◦ a ◦ d,

where ◦ is the composition of functions. Instead, cabad = d ◦ a ◦ b ◦ a ◦ c. Aaronson

chose to write the strings like this since they follow the way we would write numbers.

Using the provided alphabet, Aaronson created the following series of SRRs:

D1 : ad→ d A1 : ae → ea B1 : be → fb C1 : ce → cb

D2 : bd → gd A2 : af → eb B2 : bf → ga C2 : cf → caa

A3 : ag → fa B3 : bg → gb C3 : cg → cab

The SRRs provided here allow for Aaronson’s SRS to be equivalent to the 3N + 1

mapping, but a formal proof showing this is the case is difficult, because we have yet

to find a proof showing that the SRRs can be applied in arbitrary order. However,

we can explain how the rules work, and show that any valid input string correctly

follows the 3N + 1 mapping that the number the string represents follows, and after

this, we will show the ordering we follow for the remainder of this thesis, and why

this ordering is correct.

Each of the rules denotes how to handle the symbols a− g and various com-

binations of them that occur. The D rules represent handling the 3N + 1 mapping

for a binary system. D1 is how we handle an even number. It computes division

of N by 2 by removing the a symbol that represents a binary 0. D2 is actually a

45

combination of several steps. If we were to represent 3N + 1, we could just write

bd → bfd, meaning take all previous symbols and multiply the result by 3 and add

1. The problem with this rule is that it increases the size of the resulting string,

making the system more difficult to prove. However, bfd → gad is a valid rule, as

d ◦ f ◦ b = 3(2x+ 1) + 1 = 6x+ 4 and d ◦ a ◦ g = 2(3x+ 2) = 6x+ 4, and from here,

we can apply the rule ad→ d to allow us to turn gad into gd. Since 3N + 1 always

results in an even number, we can just make rule D2 compute (3N + 1)/2 without

growing the string size, ultimately making rule D2 into bd→ gd. D2 is the rule that

makes termination of our system hard to prove. Without it, we would not need the

A, B, or C rules.

The A, B and C rules all deal with the handling of the ternary symbols and

the eventual conversion of these ternary symbols into binary symbols. The A and B

rules deal with the case when a ternary symbol is to the right of the binary symbol,

and how to switch the ternary symbol and the binary symbol without changing the

number the string represents. We will show that all 6 of these rules preserve the

same number by showing that the string represents the same value after each rule

has been applied:

• ae → ea: ae = e ◦ a = e(a(x)) = 2(3x) = 6x, and ea = a ◦ e = a(e(x)) =

3(2x) = 6x.

• af → eb: af = f ◦ a = f(a(x)) = 3(2x) + 1 = 6x + 1, and eb = b ◦ e =

b(e(x)) = 2(3x) + 1 = 6x+ 1.

46

• ag → fa: ag = g ◦ a = g(a(x)) = 3(2x) + 2 = 6x + 2, and fa = a ◦ f =

a(f(x)) = 2(3x+ 1) = 6x+ 2.

• be → fb: be = e◦b = e(b(x)) = 3(2x+1) = 6x+3, and fb = b◦f = b(f(x)) =

2(3x+ 1) + 1 = 6x+ 3.

• bf → ga: bf = f ◦ b = f(b(x)) = 3(2x + 1) + 1 = 6x + 4, and ga = a ◦ g =

a(g(x)) = 2(3x+ 2) = 6x+ 4.

• bg → gb: bg = g ◦ b = g(b(x)) = 3(2x + 1) + 2 = 6x + 5, and gb = b ◦ g =

b(g(x)) = 2(3x+ 2) + 1 = 6x+ 5.

Hence, these rules are all correct.

The C rules take advantage of the fact that the c symbol is a binary 1, and,

in a strictly binary string, it is the most significant bit of the number the string

corresponds to. When the ternary symbol is adjacent to the c symbol, we apply one

of the three c rules to convert the ternary symbol into binary symbol(s). These rules

also preserve the number the string represents, shown here:

• ce → cb: ce = e◦c = e(c(x)) = 3(1) = 3, and cb = b◦c = b(c(x)) = 2(1)+1 =

3.

• cf → caa: cf = f ◦c = f(c) = 3(1)+1 = 4, and caa = a◦a◦c = a(a(c(x))) =

2(2(1)) = 4.

• cg → cab: cg = g ◦ c = g(c) = 3(1) + 2 = 5, and cab = b ◦ a ◦ c = b(a(c(x))) =

2(2(1)) + 1 = 5.

47

Hence, we have shown that the A, B, and C rules all preserve value, and the D rules

correctly apply the 3N + 1 mapping.

Here is how one can run the SRS and preserve an ordering we know to be

valid:

1. Take the initial input number, and convert it to binary. Make the leading 1 a

c symbol, and all 0’s and other 1’s a’s and b’s, respectively.

2. Append a d to the end of the string.

3. Until we have the string cd:

• Apply the appropriate D rule.

• If a ternary character is generated, apply A and B rules until the ternary

symbol and the c are adjacent, then apply the appropriate C rule.

This order of applying the SRRs is correct, because one takes a string that is strictly

in binary symbols and applies the correct D rules until a ternary character is gen-

erated. In this SRS, the only D rule that generates a ternary character is rule D2.

When a ternary symbol is generated, we immediately apply A, B, and C rules until

the ternary symbol is converted into binary symbol(s). The number is not changed

during application of the A, B, and C rules, making the ordering correct. We use

this to investigate properties of the Collatz SRS, which we will discuss in Chapter 6.

If we take the Collatz SRS and find matrix functions for all symbols that

cause all vector representations of input strings to decrease when SRRs are applied,

48

then we believe we can prove the Collatz Conjecture. We don’t have a formal proof,

because we don’t have a proof that applying the Collatz SRRs in arbitrary order

results in the same output string. However, we strongly believe that termination

of the Collatz SRS implies termination of Algorithm 1, since the rewrite system

operates on input strings the same way as Algorithm 1 would on positive integers.

5.4 Proving Collatz Conjecture Results

This section discusses some of the results of attempting to solve the Collatz

Conjecture using matrix interpretation [5]. Heule initially tried to run the Collatz

SRS on state-of-the-art matrix interpretation solvers like AProVE [11]. However, 4

of the 11 rules needed to be removed before the system could be solved. As a result, a

custom matrix interpretation solver was built by Heule specifically for this problem.

Heule, as of now, has been unable to prove termination of the entire 11 rule system

with matrix interpretation. However, any combination of 10 of the 11 rules has been

proven.

Heule has also run the matrix interpretation on several Collatz Variants: the

ones that remain unproven in this thesis; namely Collatz Variants 1, 5, 7, and {5, 7};

also have not been proved by the matrix interpretation system yet. The ones which

were proven; variants 2, 3, 4, and 6; were proven by the system. Hence, the motiva-

tion for investigating hardness of the unproven Collatz Variants came about, as did

the motivation for writing this thesis. Further work on this and related problems

will be done under NSF grant CCF-1813993 in the coming years [12].

49

Chapter 6

Collatz SRS Analysis

Now that we have explained Heule’s and Aaronson’s attempts to solve the

Collatz Conjecture, we focus on analyzing the Collatz SRS further. We do so by

simulating the Collatz SRS and various modifications of it in order to analyze the

number of steps these SRSes take. First, we discuss a program we created that

replays the Collatz SRS for any input number, which is used throughout this chapter.

We then attempt to establish a reasonable bound for number of rewrite steps by

comparing classical hardness records from Chapter 4. We use this bound to compute

reasonable hardness measures for modifications of the Collatz SRS that align with

unproven Base 8 Collatz Variants. Finally, we explore a modification to Aaronson’s

rewrite system which reduces rewrite steps.

6.1 Simulating the Collatz SRS

We wrote a program that simulates the Collatz SRS in Java. It takes two

different required inputs: some positive integers (either one number, or a batch of

numbers, one per line), and a string file which has one SRR per line in the format

“input output”, which represents the rule input→ output. The # character can be

used to comment out a line. This is a convenience to easily remove a rule to create

50

SRRs that correspond to Collatz Variants.

The output is a file that shows how the initial number is transformed into

a valid input string for the Collatz SRS, and the terms that this initial string get

turned into as we run the Collatz SRS. The number which each string represents

is also written, as well as a header cell that counts the total number of steps. If a

batch of numbers is run, each number gets a separate file. Also, an aggregate file

can be printed for batches which has rows that list, for each input number, what

the number is, the final number it eventually turns into, and the number of rewrite

steps.

The program converts an input number into a binary rewrite string with

symbols a, b, c, and d. The rewrite term is stored in a character array that has a

“sliding” string in it. This is an efficient way to take advantage of Aaronson’s SRS,

because a number only grows from the c term, and shrinks from the d term. Hence,

the spare space of the array is past the c term, and any time a D rule decreases size,

we move in the end of the d symbol, and all other symbols past the ending d symbol

are thrown out if more space is needed. For instance, when we apply rule D2, the a

term gets replaced with a d term, and a pointer denoting the end of the string gets

moved to the new d symbol. If we run out of space in the array, we double the size

of it, and discard any unnecessary symbols past the first d symbol.

As discussed in Section 5.3, we don’t apply SRRs in arbitrary order. Given

a rewrite string with only symbols a, b, c, and d, we check to see if any D rule can

be applied. If not, the program terminates. If we do find a D rule, then apply it,

and check if a ternary symbol is generated by it. If so, we apply the A and B rules

51

to swap the ternary symbol with binary symbols until we can apply a C rule, which

removes the ternary symbol.

The code can be accessed via a public GitHub repository located at https:

//github.com/mdenend/CollatzRewriteSystem. A README file is included that

explains how to run the code and available options.

6.2 Determining Extra Steps the Collatz SRS Adds

Looking at how the Collatz SRS operates, one can establish a reasonable

bound on how many more steps the Collatz SRS adds compared to the algebraic

method of computing Collatz Sequences. Starting with a number that is purely in

binary symbols a and b, plus the placeholder symbols c and d, there are two different

events that can occur. When a is the symbol to the immediate left of the d, we divide

by 2. It only takes one step to complete this division. On the other hand, when a

b symbol is to the immediate left of the d, we turn the b symbol into a g symbol to

effectively compute (3N + 1)/2, and, following the established order, apply A, B,

and C rules to convert the ternary symbol to binary. This adds Θ(m) rewrite steps

per odd number.

We can compare the number of steps that the rewrite system takes to classical

hardness records from Chapter 4. Let m in this case be the bits for classical hardness

record r. If we do in fact apply a factor of Θ(m) more steps per odd number in the

Collatz SRS, then classical hardness should be pretty close to the rewrite steps for

odd numbers divided by log2 r. We call this “rewrite hardness”. We compute the

rewrite hardness to classical hardness by inputting classical hardness records into

52

https://github.com/mdenend/CollatzRewriteSystem
https://github.com/mdenend/CollatzRewriteSystem

the Collatz SRS. The results of this analysis are presented in Figure 6.1. From this

graph, it appears that dividing the odd number of rewrite steps by log2 r creates a

reasonably tight bound against classical hardness, so the Collatz SRS adding a factor

of Θ(m) rewrite steps per odd number appears to be correct.

6.3 Collatz SRS Subproblem Analysis

Now we know that the Collatz SRS adds a factor of m more steps compared

to the steps in Collatz Sequences, we look back at the Collatz Variants. In this

section, we modify the Collatz SRS to create various “Collatz Subproblems”. These

subproblems are modifications of the SRRs for the Collatz SRS with the goal of

having Collatz Subproblems that align with our previously defined Collatz Variants.

We show how to create Collatz Subproblems, then run computation using our Collatz

SRS simulation.

6.3.1 Modified Base 8 Rewrite System

We modified the Collatz SRS to make it tie into Collatz Variants. Recall the

D rules of the Collatz SRS:

D1 : ad→ d 0 (mod 2)

D2 : bd→ gd 1 (mod 2)

D1 handles numbers congruent modulo to 0 (mod 2) by dividing the number by 2,

while D2 handles numbers congruent modulo to 1 (mod 2) by computing (3N+1)/2.

53

Figure 6.1: This graph compares, on the same set of input numbers, classical hardness
as defined in Chapter 4, and rewrite hardness, which is the number of steps divided
by the number of input bits squared. The number of bits for the records (log2 r) is
the x-axis, and the hardness is the y-axis.

54

Also note that all input strings for these rules are just one bit, since the placeholder

d is not a bit.

We can expand the input from 1 bit to 3 bits and come up with 8 D rules to

create an equivalent system:

aaad→ aad 0 (mod 8)

aabd→ ebad 1 (mod 8)

abad→ abd 2 (mod 8)

abbd→ fabd 3 (mod 8)

baad→ bad 4 (mod 8)

babd→ gaad 5 (mod 8)

bbad→ bbd 6 (mod 8)

bbbd→ gbbd 7 (mod 8)

Observe that the input substrings for these rules all correspond to a node in graph G8.

The rules take in substrings that represent numbers congruent modulo to 0-7 (mod 8),

meaning the numbers represented by the whole input strings would be visiting nodes

0-7, respectively. The outputs are the result of dividing by 2 or multiplying by 3

and adding 1, in context of the SRS. All of the odd node rule outputs, like rule D2

in the original system, are just a combination of several rules, which ensure that the

output string is not longer, and it reduces a couple of steps by moving the ternary

term toward the front. All of the even node rules are just the same exact rule D1

in the original system, so we can remove any even rules and replace them with the

55

original D1. We can also eliminate any extra a terms in the output of odd rules that

we know would be eliminated by rule D1. We ended up using the following SRRs in

the Base 8 Collatz SRS:

D81 : ad→ d 0 (mod 2)

D82 : aabd→ ebd 1 (mod 8)

D83 : abbd→ fabd 3 (mod 8)

D84 : babd→ gd 5 (mod 8)

D85 : bbbd→ gbbd 7 (mod 8)

Because these rules were constructed using only SRRs in the Collatz SRS that we

know to be correct, we know these new D rules, plus the A, B, and C rules, are

equivalent to the original Collatz SRS. However, removing one of these rules could

make the system easier to prove, which in turn constructs something much like a

Collatz Variant. We present such an SRS with rule D82 removed:

D81 : ad→ d 0 (mod 2)

D83 : abbd→ fbbd 3 (mod 8)

D84 : babd→ gd 5 (mod 8)

D85 : bbbd→ gbbd 7 (mod 8)

Since we removed the SRR that corresponds to input 1 (mod 8), termination of this

SRS should imply termination of Collatz Variant 1, as removing a rule causes any

string with this input to terminate the system. This modified Collatz SRS is called

Collatz Subproblem 1 in this paper. Note how removing an SRR is equivalent to

56

adding the corresponding termination condition in Algorithm 2. We analyzed this

and other Collatz Subproblems that should imply termination of unproven Collatz

Variants.

6.3.2 Defining Measures for Subproblem Analysis

For the Collatz Subproblem computations, instead of defining hardness by

number of odd numbers, we define hardness based off of the total steps applied,

because of the fact that odd numbers add significantly more steps than even numbers.

Define the following numbers, given some input number N :

• fr(N): The total number of Collatz SRS rewrite steps for N before it converges

to 1.

• A: The base avoidance set, same as used in Algorithm 2 and Chapter 4. In

this chapter, A ⊆ {1, 5, 7} and A 6= ∅.

• Collatz Subproblem A: Defined much in the same way as Collatz Variant A,

but with modified Collatz SRSes instead. Let A be the base avoidance set.

Collatz Subproblem A is a modified Base 8 Collatz SRS that, for all a ∈ A, the

SRR corresponding to a (mod 8) is removed. Therefore, any string that has

the input to a dropped rule will caused the modified Collatz SRS to terminate

in the same manner as Collatz Variants. Listing several Collatz Subproblems is

done in the same way as Collatz Variants, so we can write Collatz Subproblems

1 and {5, 7} to mean these two modifications of the Base 8 Collatz SRS.

57

• Record Sequence for Collatz Subproblem A: This is the same record sequence

as for Collatz Variant A, which was defined in Chapter 4, but we start with

an input string representing the first number in the Record Collatz Variant

Sequence, and run rewrite rules until we reach the number whose input string

causes Collatz Subproblem A to terminate (same number that causes Collatz

Variant A to terminate). We only run SRSes for the record numbers we deter-

mined with the algebraic Collatz Program defined in subsection 4.2, as running

computation for only the Collatz SRS on all odd numbers up to 1 billion would

take an extremely long time.

• R(N,A, 8) : The number of rewrite steps that the record sequence for Collatz

Variant A for base 8 and number N takes when run as Collatz Subproblem A

instead.

We define a hardness measure: HSRS, where HSRS = R(N,A,8)

log22 N
. This effectively

computes the hardness of the SRRs that corresponds to determining termination of

Collatz Variant A, but HSRS also takes into account the extra factor of m steps that

the Collatz SRS adds. The number of bits we divide by is determined by our starting

number, not the first number in the record length sequence. This is the same as for

our Collatz Variant computation in Chapter 4.

6.3.3 Subproblem Hardness Analysis

Figure 6.2 shows the analysis of hardness for the modified SRS with four

different Collatz Subproblems: 1, 5, 7, and {5, 7}. Unlike the analysis for the Collatz

58

Figure 6.2: This graph visualizes how, for records r, the R values for subproblems 1,
5, and 7 compare to each other. The number of bits for the records (log2N) is the
x-axis, and the hardness measure R as defined in section 6.3.2 is the y-axis.

59

Variants, we have clearer separation. Subproblem 5 has the highest HSRS on almost

all of its records. Since Collatz Variant 5 record sequences tend to grow to very

large numbers, these extra bits that the large numbers generate add even more steps

needed by the rewrite system. Further, subproblem 5 appears to get harder as the

number of bits increases, a trend not apparent in the Collatz Variant 5 H measure.

Subproblem 1 exhibits the growth as numbers get bigger, but tapers off once again

for numbers more than 20 bits, much like Collatz Variant 1. Subproblem 7 shows no

increase in HSRS as numbers get larger. This suggests subproblem 7 might be easier

to solve than subproblems 1 or 5. Subproblem {5, 7} has the lowest hardness, which

makes sense given that it has one less rule than any of the other three subproblems.

6.4 Further SRS Rule Modifications

It is possible that the set of SRRs in the Collatz SRS can be optimized to

reduce number of rewrite steps. These optimizations may possibly lead to solutions

for the subproblems listed in this chapter. We present one modification of the Collatz

SRS by replacing the base D rules with rules that have both input and output

correspond to odd numbers. We then look at the results of doing so.

60

6.4.1 Odd Collatz SRS

It is possible to replace both D1 and D2 in the Collatz SRS with the following

set of rules that calculates with strictly odd numbers:

Do1 : bbd→ gbd 3 (mod 4)

Do2 : aabd→ ebd 1 (mod 8)

Do3 : babd→ bd 5 (mod 8)

Notice that rule Do1 and Do2 are borrowed from the base 8 modification of the Collatz

SRS. Do1 combines both rule D83 and D85 , removing the leading a or b, respectively.

Do1 has the A, B, and C rules determine the next symbol(s). Rule Do2 is the same

as rule D82 .

Rule Do3 is not as intuitive at first glance, but we can look at rule D84 , which

has the same input as Do3, and see that the output for D84 is the same as the normal

D2 rule, gd, so we can “step backwards” using rule D2 to allow for us to get bd as

our output, and hence, have a full set of correct D rules that go from odd number

to odd number.

Observe that all of the Do rules have a left handed side and a right handed

side ending with bd. As a consequence, we can remove the b symbol in the second to

last symbol for both the input string and the rules, resulting in the following SRRs:

Do1∗ : bd→ gd 3 (mod 4)

Do2∗ : aad→ ed 1 (mod 8)

Do3∗ : bad→ d 5 (mod 8)

61

Figure 6.3: This graph shows what percentage the odd rules change the rewrite steps,
as opposed to the original Collatz SRS. The number of bits for the records (log2N)
is the x-axis, and the percent decrease is the y-axis.

6.4.2 Change in Rewrite Steps

Figure 6.3 shows the percentage of rewrite steps the Odd Collatz SRS changes,

compared to the original Collatz SRS, when run on classical hardness records. The

Odd Collatz SRS reduces the number of steps greatly for smaller numbers. However,

as the numbers get larger, the percentage reduction of steps lowers significantly.

This is probably because records for larger numbers have 3N + 1 sequences that

tend to have more odd numbers, which add in more rewrite steps. That said, this

62

modification to the rewrite system does overall reduce the number of rewrite steps.

Other SRR modifications for the Collatz SRS should be considered, as the right set

of clever rules may prove termination of Collatz Subproblems, and perhaps, even

prove that the Collatz Conjecture holds.

63

Chapter 7

Conclusion

In this thesis, we analyzed the Collatz Conjecture and simpler, yet still chal-

lenging variants, and proposed a hardness prediction for determining the answers

that these variants terminate. We started by building a program that investigates

Collatz Variants by running many 3N + 1 sequences for all odd numbers up to 1

billion, and seeing how many odd numbers occur in record breaking sequences that

avoid terminating the Collatz Variants.

We also investigated the Collatz SRS that Aaronson created and that Heule

tried to prove with matrix interpretation. Even though this methodology has been

unable to solve the Collatz Conjecture so far, we think it still has promise. We also

built a simple program that ran the Collatz SRS and determined the hardness for

subproblems, finding out that the hardness varies more than in the algebraic case.

We also explored other modifications to try and reduce rewrite steps needed.

We believe this approach for trying to solve the Collatz Conjecture, as well

as Collatz Variants, has merit and needs further investigation. Further work will be

done under the recently approved grant [12].

64

Bibliography

[1] A. M. Turing, “On Computable Numbers, with an Application to the Entschei-

dungsproblem,” Proceedings of the London Mathematical Society, vol. s2-42,

no. 1, pp. 230–265, 1936.

[2] J. C. Lagarias, “The 3x+1 problem: An annotated bibliography (1963–1999)

(sorted by author).” https://arxiv.org/abs/math/03092, Sept. 2003.

[3] J. C. Lagarias, “The 3x+1 Problem: An Annotated Bibliography, II (2000-

2009).” https://arxiv.org/abs/math/0608208, Aug. 2006.

[4] E. Roosendaal, “On the 3x+1 Problem.” http://www.ericr.nl/wondrous/,

2018.

[5] M. J. H. Heule and S. Aaronson. Personal communication, Sept. 2017.

[6] D. Thain, T. Tannenbaum, and M. Livny, “Distributed Computing in Prac-

tice: The Condor Experience: Research Articles,” Concurr. Comput. : Pract.

Exper., vol. 17, pp. 323–356, Feb. 2005.

[7] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook of Satis-

fiability: Volume 185 Frontiers in Artificial Intelligence and Applications. Am-

sterdam, The Netherlands, The Netherlands: IOS Press, 2009.

65

https://arxiv.org/abs/math/03092
https://arxiv.org/abs/math/0608208
http://www.ericr.nl/wondrous/

[8] D. Hofbauer and J. Waldmann, “Termination of aa → bc, bb → ac, cc → ab,”

Inf. Process. Lett., vol. 98, pp. 156–158, May 2006.

[9] D. Hofbauer and J. Waldmann, Termination of String Rewriting with Matrix

Interpretations, pp. 328–342. Berlin, Heidelberg: Springer Berlin Heidelberg,

2006.

[10] J. Endrullis, J. Waldmann, and H. Zantema, Matrix Interpretations for Proving

Termination of Term Rewriting, pp. 574–588. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2006.

[11] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke, “Automated termi-

nation proofs with aprove,” in Rewriting Techniques and Applications (V. van

Oostrom, ed.), (Berlin, Heidelberg), pp. 210–220, Springer Berlin Heidelberg,

2004.

[12] M. J. H. Heule and S. Aaronson, “SHF: Small: MaPaMaP: Massively Parallel

Solving of Math Problems.” NSF Award CCF-1813993.

66

Vita

Matthew Alexander Denend was born in Spokane, Washington. He received

the Bachelor of Science degree in Electrical Engineering, cum laude, from The Uni-

versity of Washington, Seattle, in 2012. He worked as a Packet Core Performance

Engineer at T-Mobile in Bellevue, Washington for 3 years. He decided to pursue a

Master of Science in Computer Science degree, and after he was accepted to The

University of Texas at Austin in 2015, he left his job at T-Mobile to move to Austin,

Texas and became a full-time student.

Email address: mdenend@gmail.com

This thesis was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

67

	Acknowledgments
	Abstract
	List of Figures
	Chapter 1. Introduction
	Chapter 2. Definitions
	Chapter 3. Alternative Termination Conditions
	Base b Collatz Graph Definition
	Base b Collatz Graph Lemmas
	Base 4 Collatz Graph and Variants
	Base 4 Collatz Graph Construction
	Base 4 Collatz Variants

	Base 8 Collatz Graph and Variants
	Base 8 Collatz Graph Construction
	Base 8 Collatz Graph Cycle Analysis
	Base 8 Collatz Variants

	Chapter 4. Collatz Variant Hardness Prediction
	Defining Measures
	Generating Measures
	Single Base Collatz Variant Analysis
	Hardness Function Results and Analysis
	Percentage of Sequence Function Results and Analysis
	Sequence Similarity Analysis

	Paired Base Avoidance Analysis
	Hardness Function Results and Analysis
	Percentage of Sequence Function Results and Analysis

	Chapter 5. Heule's and Aaronson's Attempts to Prove the Collatz Conjecture
	SAT Solver Background
	String Rewrite System and Matrix Interpretation Background
	The Collatz Conjecture as a String Rewriting System
	Proving Collatz Conjecture Results

	Chapter 6. Collatz SRS Analysis
	Simulating the Collatz SRS
	Determining Extra Steps the Collatz SRS Adds
	Collatz SRS Subproblem Analysis
	Modified Base 8 Rewrite System
	Defining Measures for Subproblem Analysis
	Subproblem Hardness Analysis

	Further SRS Rule Modifications
	Odd Collatz SRS
	Change in Rewrite Steps

	Chapter 7. Conclusion
	Bibliography
	Vita

