Copyright
by
Donovan Michael Kolbly

2002

The Dissertation Committee for Donovan Michael Kolbly

Certifies that this is the approved version of the following dissertation:

Extensible Language Implementation

Committee:

Gordon Novak, Supervisor

Don Batory

Don Fussell

Calvin Lin

Robert Strandh

Extensible Language Implementation

by

Donovan Michael Kolbly, B.S.; M.S.

Dissertation
Presented to the Faculty of the Graduate School of
the University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2002

Extensible Language Implementation

Publication No.

Donovan Michael Kolbly, Ph.D.
The University of Texas at Austin, 2002

Supervisor: Gordon Novak

This work presents several new approaches to the construction of extensible
languages, and is the first system to combine local, dynamically extensible
context-free syntax with the expressive power of meta-level procedures. The
unifying theme of our system is that meaning should be computed relative to
local context.

We show how this theme is manifest in an implementation of a Scheme
macro system which achieves hygienic macro expansion without rewriting.
Additionally, our Scheme macro system makes available compile-time meta-
objects for additional power in writing macros; macros that pattern match on
compile-time types for optimization at macro-processing time are one example.
This approach is currently in use in our RScheme implementation of Scheme.

We also show the how this approach is applied to languages with conven-
tional syntax, using Java as an example. We present a dynamically extensible

parser based on the Earley parsing algorithm. This approach is practical as

v

well as flexible; a straightforward implementation in C parses a 600-line (2777
token) file in about 44ms on an 866MHz Pentium III.

We also describe a language extension framework that makes possible
an extensible variant of Java, in which new syntax can be supplied by the
casual programmer with only limited knowledge of the underlying compiler
implementation or approach. This finally makes available to Java program-
mers the easy access to structured macro facilities that Lisp programmers
find so powerful. Finally, we demonstrate this framework by constructing a

deterministic finite automaton language extension to Java.

Contents

Abstract

Chapter 1 Introduction

1.1

1.2
1.3
14
1.5

Motivation
1.1.1 Our Contribution
Modularity, Reusability, and Extensibility
Syntax-Directed Translation
Summary of Basic Approach

Scopeof Work

Chapter 2 Macro Systems

2.1
2.2

2.3

Introductiono L
Background
221 CMacros v v i e e
222 LispMacros
2.2.3 Scheme Macros
2.2.4 Systems Related to Macros.
A Taxonomy of Scheme Macros

2.3.1 Call-by-name Inline Procedures

vi

iv

o 00 N W N ==

2.3.2 Advertent Capture 30

2.3.3 Explicit Intentional Capture 31

2.4 Our Contribution 32
2.4.1 RScheme Macros 32
2.4.2 Type Reflective Macros 33

2.5 Our Implementation 33
2.5.1 Operation 34
2.5.2 Reflection Operators 46
Chapter 3 Extensible Parsing 50
3.1 Introduction Lo 50
3.2 Background o 93
3.2.1 What We Would LiketoDo 53
3.2.2 Granularity of Grammar Changes 54
3.2.3 Applications of Our Approach 54
3.2.4 Limitations 0oL 55

3.3 Contour Sensitivity Lo 56
3.3.1 Major Styles of Environment Passing 96
3.3.2 General Mechanism 57

3.4 Implementing Contour Sensitivity 58
3.4.1 Frequent Grammar Changes 58
3.4.2 Simple Interpretation 60

3.5 Implementation of Continuation Passing Parser 61
3.5.1 General Description 61
3.5.2 Representation of Rules 62
3.5.3 Dynamic Rule Compilation 65

vii

3.5.4 Major Styles in Terms of Mechanism 65

355 Examples 67
3.5.6 Performance 71
Chapter 4 Extensible Earley Parsing 72
4.1 Introduction 72
4.2 Description of Earley Parsing 72
421 States 74
422 StateSets 74
4.2.3 Initial Conditions 75
424 Processingo 75
4.2.5 Predictiono oL 77
426 Scanning 78
427 Completion 79
4.2.8 Relationship to Tomita Parsing 80

4.3 Advantages to the Earley Approach 81
4.3.1 Flexibility o 81

4.3.2 Extensibility oo oL 82
4.3.3 Understandability 84
4.3.4 Complexity L 85

4.4 Drawbacks to the Earley Approach 85
441 EXpressiveness.o 85

442 Performance L 86

4.5 Extensibilityo oo 87
451 Scopelssues 87

4.6 Our Implementation 89

viil

4.6.1 Details &9

46.2 Metasyntaxo 90
4.6.3 Meaning Computation 92
4.6.4 Performance L. 95

4.7 Literal Equivalence 97
4.8 Improvements to Basic Earley 101
4.8.1 Conflict resolution 101
4.8.2 Pruning states using FIRST 102
4.8.3 Approximating FIRST 102
Chapter 5 Compiler Extension Framework 104
5.1 Capabilities of Extension Framework 104
5.1.1 Declarative, Pattern-Based Transformation 105
5.1.2 Pattern Matching Synthesized Attributes 105
5.1.3 Procedural Code-Production Mechanisms 106

5.2 Elements of an Extension Framework 106
5.3 Implementation 107
5.3.1 Meta-language 107
5.3.2 Syntax Evaluation 109
5.3.3 Recursive Compilation 110
5.3.4 Pattern Variables 0oL 111
5.3.5 Local Grammar Changes 114
5.3.6 In-line Computation 116

5.4 Declarative Transformations 116
5.5 Synthesized Attributes 117
5.6 Procedural Code Production 119

X

5.6.1 Token Sequences 119
5.6.2 Compilation o000 119
5.6.3 Environments and Syntax 119
5.6.4 Reflectiono 120

5.7 Modular Syntax Lo 120
5.8 Full Meta-syntax 121
5.8.1 Syntax Declarations 123
582 Syntax Rules 124
5.8.3 Syntax Pattern Elements 124
584 Actions 127
5.8.5 Local Variables 132
5.8.6 Inline Actions 132
587 Example 133

5.9 Issues and Future Work 135
5.9.1 Substitution Conformance 135
5.9.2 Translation Recursion 136
5.9.3 Meta-syntax Scope 137
5.9.4 Syntax Module Templates 137
Chapter 6 An Application of an Extensible Language 138
6.1 Introduction Lo 138
6.2 Implementation Approach 140
6.2.1 Declaring the Extension 141
6.2.2 Building the Final Meaning 142
6.2.3 Declaring the State-Keeping Variable 145
6.2.4 Declaring the Java Class’s Entry Method 146

6.2.5 Declaring the Java Class’s Accessor Methods
6.2.6 States Within an Automaton
6.2.7 Building the State Switcher
6.2.8 Declaring transitions
6.2.9 Symbolic State Names
6.3 Example Use of the DFA Extension
6.3.1 Sample Extended-Java File
6.3.2 Generated class definition

6.3.3 Generated process() method

Chapter 7 Final Words

7.1 Related Work L.
7.1.1 Syntactic Exposures
7.1.2 Term Rewriting,
7.1.3 Hygienic Macro Expansion
7.1.4 Reusable Generative Programming
7.1.5 Adaptable Grammars
7.1.6 Open Compilers and MOPs

7.2 Limitations and Future Work
7.2.1 Meta-Object Protocol
7.2.2 Error Reporting
7.2.3 Synthesized Attributes

7.3 Conclusions

Bibliography

Vita

xi

159
159
159
159
160
161
161
162
165
165
165
166
169

171

177

Chapter 1

Introduction

The advantages of extensible languages have long been realized by the Lisp
community. The ability to easily adjust the language to fit the application,
rather than to always adjust the application to fit the language, is at the heart
of what Lisp programmers consider the deep power of Lisp [17, 33]. In this
work, we show how that power can be made more accessible and powerful
even in Scheme, as well as available to programmers in languages with con-
ventional syntax such as Java. The tree-structured transformations of Lisp
macros integrated with an extensible parser allow the concepts to be unified.
In addition, a well-structured compiler meta-object protocol exposes relevant
aspects of the compilation process and provides powerful programmable hooks

for extending the language to fit the application.

1.1 Motivation

This work is motivated by the fact that much existing work in extensible

languages is either insufficiently expressive in the kinds of extensions that

are permitted (i.e., function libraries) or expressed at the wrong level or in
the wrong ways (e.g., purely procedural transformations operating over text
strings).

That is, we are primarily motivated by:
e Ease of language implementation
e Ease of language extension

e Ease of re-engineering language implementation (e.g., to change perfor-

mance tradeoffs to deal with new technologies or new usage patterns)
We recognize the following themes:
e Extensible languages should have extensible compilers.

e Meaning should be expressed naturally through context, especially through
contour sensitive contexts, which preserve lexical scoping throughout

transformation.

e An extensible compiler should have a friendly interface and be integrated

with languages using conventional grammars.
e Objects used during the front-end processing of a program should be

reified, and be the domain objects of meta-programming.

1.1.1 Ouwur Contribution

With these themes and motivations in mind, in this work we describe an

approach that provides:

e Context-local and dynamically modifiable concrete syntax,

e Full context-free syntactic power, and

e A means for defining procedural meta-level code for arbitrary computa-

tion at compile-time.

Furthermore, we illustrate this approach in a system with Java as a base

language.

1.2 Modularity, Reusability, and Extensibility

The primary means of creating large and complex software systems has been
by building relatively simple program modules, and composing those modules
into larger, more complex software systems. The process for developing the
large software system can then be decomposed into the development of smaller
program modules. Smaller program modules are easier to understand, develop,
and test, and well-constructed modules can be reused to build other software
applications.

A refined use of modularization is for program layering. Program lay-
ering arranges modules into layers whose role is to transform the program
concepts at a higher level of abstraction to those at a lower level of abstrac-
tion. A layer is then extending the language below the layer, creating a new
(possibly superset) language.

Figure 1.1 shows how we draw the relationship between the language
LO below the layer, the module layer, and the language created by the layer,
L1.

Layering is a powerful structuring tool, and has been used in systems

from the Basic Linear Algebra Subroutines to the 7-layered OSI protocol stack

L1
layer

LO

Figure 1.1: A simple layered program

for network communication. The modularity provided by well-architected lay-
ering leads to highly effective reuse of modules.
If Figure 1.1 is drawn on its side and the layer module is thought of as a

process, an approach to language extension known as preprocessing is revealed:

L1 » layer >» LO

Figure 1.2: A preprocessing approach

In this approach, language L1 is consumed by the layer process, gener-
ating an appropriate program in LO as output. The language L1 is said to be
preprocessed into LO because the eventual execution of the original program
is done in an LO execution environment.

Be it layering or preprocessing, the manner in which this modularity
is expressed can be divided into two broad categories. The first category is
extension within the language, in which the language itself contains the means
to create or modify layers. The second category is extension from outside the
language, which requires the separate implementation of a language translator,
and is restricted to expressing modules using the preprocessing approach.

Extension from within the language is often accomplished via program

libraries. This technique is so well known — since the days of Fortran, at least
— that it is not given a second thought. A language without the ability to
be extended via function libraries is immediately recognized as unsuitable for
serious programming.

Large and complex software systems have been built using the program
library technique. Some libraries are so large and complex that sophisticated
systems are required just in order to compose their constituents (e.g., see the
work on the composition of astronomical library components by Stickel and
Waldinger [37]). Other libraries are really procedural interfaces to a specialized
language environment. For example, RenderMan [41] and OpenGL [44] both
maintain a complex virtual machine which is managed by a library of API calls
that encode the constructs and primitives of the language, including nesting
and conditionals. Still other libraries vastly extend the power and usefulness
of the base language (e.g., the Java core API and the C++ Standard Template
Library).

These kinds of libraries are mostly collections of procedural abstrac-
tions. The C++ STL is a notable exception in this respect; it represents a
library of programming templates which are instantiated at compile-time to
create the application.

Procedural abstraction libraries are limited in their expressiveness in
most languages. For example, the evaluation of arguments is usually defined
to take place before a function is called. Call-by-value semantics for argument
passing make it impossible to implement a conditional construct such as if
using a function library style extension.

Another problem with procedural abstractions is that the syntax of

function calls is usually constrained by the language. For example, most

Fortran-derived languages adopt the notation from mathematics of the func-
tion name followed by, in parentheses, a comma-separated list of arguments.

Programmers of such languages would immediately recognize the example:
atan2(y, x)

as a call to a function named atan2 with two arguments, y and x.

Sometimes, language extensions are in the form of macros. These have
the added expressiveness of being able to define special forms, but macro se-
mantics are usually that of textual substitution. Many macro implementations
give little or no thought to preserving the relevant expression context (i.e., the
context at the point of macro definition for the purpose of evaluating the macro
body, and the context at the point of macro use for the purpose of evaluating
the macro arguments.)

In more severe cases, language extensions have taken the form of pre-
processors. C++ was originally implemented this way, as a preprocessor for
transforming C++ into C!. Sometimes the preprocessor is itself extensible.

The C preprocessor and C++ both are extensible preprocessors in the
sense that the language they provide can be extended by the input program.
In the language of C macros, this comes in the form of the #define directive.
In C++, a class definition adds to the preprocessor’s internal structures repre-
senting the program being transformed and thereby constitutes an extension.
In both cases, the preprocessor defines, as part of the language it provides,
an extension framework. The eventual output of the C preprocessor has all
macros removed, and corresponds to the plain C code. The C preprocessor is

such a general internally-extensible filter, tied only loosely to the C language,

1Since the original implementation, however, the C++ language has become complicated
enough to warrant its own compiler.

that it has been used as an extensibility mechanism for other languages, such
as IDL [29].

Like the C preprocessor, the C++ translator generates plain C code as
its output. The translation required to provide the C++ language is quite a
bit more sophisticated, and involves building complex internal data structures,
applying internal transformations on parse trees, and unparsing the result
into textual C code for consumption by the plain C compiler. C++ supports
relatively sophisticated language extensions in the form of templates, which
essentially support abstractions over types?.

Preprocessing can also be regarded as language implementation by trans-
formation. If the input language and output language are sufficiently different,
it is often regarded this way (the line becomes somewhat blurry when the input

language is a strict superset of the output language).

1.3 Syntax-Directed Translation

Another major force in much of the development of language systems has
been the notion of syntaz-directed translation. In this metaphor, the syntactic
structures of the language correspond to semantic structures. As a result, the
translation of a program, or its assignment of meaning, can be embedded in
the parsing process.

Lisp has never been saddled with the notion of syntax-directed transla-
tion, instead basing translation on the top-down processing of a simple parse

tree. This gives Lisp programmers a more powerful means of expressing trans-

2As opposed to functions, which abstract over values. That is, a function computes a
new value by being instantiated with a set of values as its arguments. A template creates a
new construct by being instantiated with types as arguments.

formations, because they can operate on trees instead of streams of tokens.

1.4 Summary of Basic Approach

Our basic approach is to compile expressions in environments. A compiler
normally makes use of some kind of compile-time environment to keep track
of the meaning of identifiers. This can be in the form of a global symbol
table or, more typically, a structured representation that reflects the nested
structure of the program.

Our approach, then, is to extend the use of this sort of symbol table in-
formation to permit the effective interpretation of macros in their appropriate
contexts. As we show, this approach allows the macros themselves to reflect
(examine and operate upon) these contexts, which makes possible new kinds
of expressive power and convenience [39].

This approach is extended to traditional language syntax using an inter-
pretive parsing approach. In the parsing interpreter, the grammar becomes a
part of the compile-time context, to be manipulated to implement the desired

context-dependent aspect of the extensible syntax.

1.5 Scope of Work

There are three distinct but related aspects of this new approach to front-end

compilation:

e Avoiding common problems with traditional macros (e.g., providing hy-

gienic macro processing).

e Extending the power of Scheme-style macros, exposing the operation of
the front-end and allowing the programmer to intervene in a structured,

timely manner.
e Supporting conventional grammars.

These aspects provide the structure for the rest of this discussion, and
are the main points of this work.

The issue of providing syntactic extensions in a Lisp-like language (i.e.,
Scheme) involves an approach where macro processing is fully integrated with
normal compiler processing. Integrating macro processing with the compiler
gives macros both efficiency and power. This approach is efficient because no
rewriting of the source program need be done, in contrast to traditional macro
processing which does rewrite the source program into a “macro expanded”
program. Additional power for macros is derived from the use of compile-time
protocols to allow macros access to the information that is normally available
at compile-time. No additional work is required to make such information
available — the compiler typically needs the information anyway — but because
macro processing is integrated with compilation, the macro system can access
that information in a convenient manner.

Languages with conventional surface grammars such as Java and C also
need mechanisms for syntactic extensibility. Chapter 3 shows how an extensible
parser can be constructed that applies the general principle of context-sensitive
processing to the parsing problem for a very simple parser. Chapter 4 applies
the extensible parsing approach to a more sophisticated parser based on the

Earley parsing algorithm.

Chapter 2

Macro Systems

2.1 Introduction

In this chapter, we describe a kind of language extension mechanism that is
capable of expressing new constructs with much more flexibility than conven-
tional library mechanisms support. The kind of language extension mechanism
we address is that of macro systems. A macro system is a language facility
that allows the user to write localized transformations (macros) that can be
applied to the source program before later phases of the program processing
system attempt to assign a meaning to the source program.

We first discuss the very different macro systems available in the C lan-
guage and the Lisp family of languages, including Common Lisp and Scheme.
We then provide a tentative taxonomy of Scheme macros — a catalog of com-
mon usage patterns adapted from the work of Carl [10].

Then we elaborate upon our approach, which integrates macro pro-

cessing with compilation. That is, macros are elaborated in a computation

10

interleaved with the normal work of compiling, instead of operating as a pre-
pass. We show how that can lead to some additional expressive capabilities
for macro writers because some compile-time information is available at macro

processing time.

2.2 Background

As we indicated in the previous chapter, the procedural abstraction is a pri-
mary means of building modular program subsystems. However, many lan-
guages constrain the form and semantics of procedure calls. For example, a
procedure call form typically evaluates all of its arguments exactly once be-
fore invoking the called procedure. In some cases, the common semantics of a
procedure call are insufficient to express the desired construct.

For example, if the application makes repeated use of an operation like
swap, it makes sense to encapsulate the functionality within an abstraction so
it can be reused effectively. However, the swap operation does not lend itself to
a procedural abstraction because both of its arguments are to be interpreted
as both lvalues and rvalues — that is, as locations suitable for being stored into
(lvalues) as well as locations to be read (rvalues)! [38]. Hence, a fixed function
calling protocol like call-by-value breaks down for operations like swap.

Typically, because the function calling protocol is fixed in a language,
procedural abstractions cannot implement special forms. Special forms are

program constructs which have special rules for evaluating their constituent

!The use of an argument as both an Ivalue and an rvalue can be dealt with in languages
with explicit pointers by simply passing a pointer to the locations by value. However,
some languages with call-by-value semantics, such as Scheme and Tcl, do not have explicit
pointers.

11

parts. if and assignment (=) are typical examples of special forms. if is
a special form because its consequent part is only evaluated or executed if
the conditional expression yields a true result. The assignment operation is
a special form because its left-hand side (the target of the assignment) is not
evaluated; rather, its meaning is a location into which the value of the right-
hand side is to be stored.

In some cases, a special form does not constitute an expression in the
sense of an execution that takes place at runtime to produce a value. Instead,
a special form may represent a definition or other operation which affects the
state of the compiler. Pragmas, definitions, declarations, and imports are all
common examples of this kind of special form.

A language extension technique commonly used when the function call-
ing protocol breaks down is that of macros. A macro is a user-defined trans-
formation of the source program that takes place at compile time.

Because macros do their transforming at compile time, their invocation
protocol is more flexible than the usual call-by-value function calling conven-
tion. For example, they may arrange to have some arguments evaluated or

executed only in certain cases or more than once.

2.2.1 C Macros

The C language defines a standard preprocessor for C programs [23]. The
preprocessor implements an extensible macro language, allowing some kinds
of macros to be defined in C programs. However, C macros are almost com-
pletely distinct from the rest of the C language. Practically the only thing C

macros share with the rest of the language is the lexical (token) structure and

12

the syntax of function calls. The lack of cooperation between the C macro
processor (typically implemented as a separate textual filter program) and the
rest of the C language results in problems with both syntax and context.
Definitions in a program intended for the C preprocessor are lexically
quite distinct from definitions intended for the plain C compiler. For example,

a typical function definition in C looks like:

int sqr(int a)
{

return a * a;

whereas an analogous macro definition looks like:
#define sqr(a) ((a)*(a))

Pre-ANSI C preprocessors considered a macro definition to expand to a
sequence of characters. The lack of lexical structure in the expansion created
opportunities to violate the lexical integrity of the macro arguments. For
example, a macro such as the following does not preserve the lexical integrity

of its arguments:
#define quote(a) "a"

A use of the macro quote such as “quote(1 + 2)” does not preserve
the apparent lexical structure of the arguments to the call — the argument
appears to be three tokens, whereas in fact the argument is interpreted as a

string of 5 characters, with spaces being significant.

13

When the ANSI committee refined the C language, the recognition of
the problems with violating lexical integrity prompted the specification to
change so that the C preprocessor considers the body of a macro definition to
be a sequence of tokens instead of a sequence of characters.

In some cases, it is accepted practice (and in fact a common idiom) to
want to violate the lexical integrity of the arguments in a C macro. To support
those cases, the ANSI committee defined special operators, “#” and “##”, to
bypass the default behavior.

One place this feature is used is in the generation of families of lan-
guage objects; that is, sets of related objects, typically sharing a portion of
their name. For example, an application that uses C structures to record in-
formation about normal language procedures might make use of a C macro
to build the appropriate structures automatically. The following macro, for

example, illustrates such a use:

#define PROC(name,arg) \
int name(int); \
struct info name ## _info = \
{ name, \
name }; \

int name(int arg)

This macro can be used to declare a procedure with a common interface

(i.e., takes a single integer argument and returns an integer result) like so:

PROC(sqr,x)
{

return x * Xx;

14

The occurrence of the PROC macro creates the appropriate structure
declaration and fills it in. The use of the special ## operator in the macro
definition creates a new token (identifier) composed of the characters of its
arguments. Hence, the above example use creates a variable sqr_info of type
struct info. Furthermore, the use of the special # operator creates a string
whose contents are the characters of the macro argument, in this case “sqr”.
Using these special operators, the sqr_info structure can be initialized with
the name of the procedure declared using the PROC macro.

The # operator is especially useful as a simple form of introspection,
allowing a macro to transform the text of an argument into a program data
object. The standard C assert macro makes use of this operator to provide an
informative error message when a program assertion fails. Lisp programmers
are familiar with this general technique as the ability for macros to quote an
argument.

Despite these special operations, the default behavior in the C prepro-
cessor is to preserve the lexical structure. Nevertheless, the lack of grammatical
structure in the expansion creates opportunities to violate the grammatical in-
tegrity of the macro arguments.

Consider, for example, the following naive implementation of the sqr

mMacro:
#define sqr(a) axa

This macro definition appears to capture the intended meaning, but in

fact is an error waiting to happen. Because the C preprocessor does not honor

15

the grammatical structure of the macro arguments, a grammatical misinter-
pretation can arise. For example, consider what happens if the programmer
uses sqr (x+1). The rule of substitution of strings of tokens gives rise to the
token sequence x+1*x+1, which means the same as x+(1*x)+1. However, the
intended meaning was probably (x+1)*(x+1), a very different expression.
Competent C programmers are familiar with the consequences of the C
preprocessor not preserving the grammatical structure of the macro arguments.
As a matter of habit, they defend against this kind of misinterpretation by
inserting parentheses around the uses of macro arguments, as in the following

definition:

#define sqr(a) ((a)*(a))

The invocation protocol for macros is one of textual substitution, so side
effects in an argument to the sqr macro occur twice. Repeated side-effects can
lead to peculiar situations. For example, the probability that sqr (random())
returns a square number is almost nil, whereas it would appear to always do
SO.

Despite its limitations, the textual substitution protocol makes C pre-
processor macros sufficient for defining special forms. The lack of any enforce-
ment of evaluation order means that the macro definition can typically arrange
to evaluate its arguments exactly as many times as desired.

However, the textual substitution protocol interacts poorly with the in-
ability in the C language to define local variables within an expression. Lisp
programmers who write macros are familiar with the problems of repeated
side-effects and, like C macro writers inserting parentheses to prevent gram-

matical misinterpretation, routinely insert binding constructs to ensure that

16

certain arguments are evaluated exactly once and in the right order. However,
the C language enforces a dichotomy between statements and expressions.
Statements may contain expressions, but not vice-versa. Since all the binding
constructs in C are statements, an expression cannot bind a temporary vari-
able to hold onto the value of an expression that should be evaluated once,
such as the argument to sqr.

An extension to C supported by the gcc compiler is the ability to write
a statement as an expression by enclosing it in braces within parentheses. This

construct creates a statement expression. Hence, it is possible to write:

#define sqr(a) ({ int temp = (a); \

temp * temp; })

However, in ANSI C this is not possible, so a safe inlined version of sqr
is impossible to write.

Another advantage of the textual substitution protocol for macro invo-
cation in C, compared to the functional calling protocol, is that of polymor-
phism. That is, the polymorphism available with the standard mathematical
operators in C is available to the caller of a macro using those operators.

For example, some versions of the sqr macro given above, such as:
#define sqr(a) ((a)*(a))

can operate on both integral and floating-point arguments, returning a value
of the same type. This works because the macro substitution process has no
knowledge of types, and textual substitution produces expressions to which
the normal C compiler can apply the usual polymorphic arithmetic operators.

Polymorphism of this nature is of relatively little use in C because of the

17

limited availability of polymorphic operators, but C++ programmers can make
considerable use of this capability.

When the programmer uses the statement expression extension of gcc,
preserving this polymorphism in the safe version requires the use of an ad-
ditional extension operator. The meaning of the typeof operator applied to
some expression e is the type which is the result of e. Therefore, the typeof
operator can be used to declare a variable of a type which is not known to the
author of the macro definition. Extending our running sqr macro to preserve

numeric polymorphism this way, we have:

#define sqr(a) ({ typeof(a) temp = (a); \

temp * temp; })

Even with the use of C extensions, C macros still have problems dealing

with temporary names. The following example illustrates the problem:

(x); \
(y); \

sqrt(x_temp * x_temp + \

#define dist(x,y) ({ typeof(x) x_temp

typeof (y) y_temp

y_temp * y_temp); })

If the expression given y involves a variable named x_temp, its occur-
rence in the macro expansion refers to the temporary variable defined by the
macro.

The problem with internal names conflicting with program source names
is somewhat ameliorated by the choice of obscure names for internal identifiers.
However, the problem cannot be completely avoided if a macro might be used

recursively or occur in different expansion paths.

18

For example, in C, macros can’t expand recursively because there’s
no macro-time control construct to avoid indefinite recursion. However, two
macros can both be defined in terms of some other macro, which results in the

same kind of sharing.

#define UTIL_START { int secretflag; secretflag = 0;
#define UTIL_END(proc) if (secretflag) proc(secretflag); }

#define UTIL_TAG secretflag = __line__

#define TRACK_ERRORS_START UTIL_START
#define TRACK_ERROR_END UTIL_END(got_error)
#define ERROR_HERE UTIL_TAG

#define TRACK_WARN_START UTIL_START
#define TRACK_WARN_END UTIL_END(got_warning)
#define WARNING_HERE UTIL_TAG

If a warning-tracking block is used inside of an error-tracking block,
their secretflag variables get confused. In C, the way around this is to
either duplicate the code (i.e., not have a separate UTIL abstraction), or to
pass around uniquifying identifiers (which might have to come from the source
program, if the same kind of blocks of this sort can be nested, which may in
turn happen via macro expansion!)

Another problem with C macros is their limited surface syntax — the
use of a macro always looks like a function call, even when its semantics are
more similar to constructs in the language with different syntax. For example,

a macro to implement a new kind of looping construct would wind up looking

19

like a function call rather than a while statement.

2.2.2 Lisp Macros

In a Lisp compiler (or interpreter), the basic processing of input programs
is somewhat different from that of traditional FORTRAN-derived languages.
The input program is subjected to lexical analysis and parsing, as usual, but
the result of parsing is essentially a parse tree represented as a Lisp data struc-
ture, instead of an abstract syntax tree. The part of the Lisp compiler that
assigns meaning to the input program (i.e., builds an abstract syntax tree) op-
erates on this parse tree data structure. In the traditional language approach,
that part of the compiler functions inside the parser, assigning meaning during
the parse itself.

Lisp, like C, also appreciates the utility of macros. The same comments
above that made macros desirable in C apply to Lisp as well. Because Lisp, like
C, has a fixed and call-by-value function calling protocol, the need to control
the evaluation of arguments gives rise to the need for macros. The ability to
portably inline code is another classic reason to use macros in Lisp, as well as
in C.

Macros are implemented somewhat differently in Lisp than they are
in C. Instead of a separate, preprocessing-based language layer, macros are
executed at compile time, interleaved with the normal compilation [22]2. When
the compiler encounters a parse tree whose head names a macro, the compiler
executes the body of the macro, with the other branches of the parse tree

bound as the arguments to the macro. The result of executing the macro

2 Actually, Common Lisp does not specify exactly when execution of macro forms hap-
pens, which gives rise to a whole new class of macro errors.

20

definition’s body is a new parse tree, which the compiler then proceeds to
compile as usual.

One thing to notice is that the body of the macro is arbitrary Lisp
code. The complete power of the programming language is available to the
programmer at compile time for the purpose of expanding the use of a macro.
This is very different from most macro systems, and C’s in particular, which
have only very limited expressiveness available to the macro system?.

Mostly because macros are so common in Lisp, a special operator was in-
troduced to make it easy to write the body of a macro. This is the quasiquote
or backquote operator, and it works essentially by letting the programmer write

a parse tree as data with holes in it. For example,
“(x ,x 2)

represents a parse tree for a 3-element list with * at its head, a 2 in the last
position, and a hole in the middle position. The execution of such a form
effectively fills in the holes by evaluating the expressions within unquotes or
commas. Hence, if the value of x is the parse tree (+ 1 2), then the result of

executing the above quasiquoted form would be:
(*x (+12)2)

The use of quasiquote makes it quite easy to write many Lisp macros.
Extending the running example above for C, one could write a naive macro in

Lisp for computing the square of an argument:

(defmacro sqr (x)

“(* ,x ,x))

3For example, in C it is not possible to write a macro repeat(n,x) which expands to n
copies of the expression x.

21

In the context of C, we saw how the sqr macro would inadvertently
evaluate its argument twice. This naive macro in Lisp would do likewise.

Unlike C, Lisp does not distinguish statements from expressions. In ef-
fect, everything is an expression, including binding constructs. This uniformity

makes fixing the multiple-evaluation problem straightforward:

(defmacro sqr (x)
“(let ((temp ,x))

(* temp temp)))

Furthermore, Lisp is dynamically typed, whereas C is statically typed.
Hence, the lauded polymorphism available to C macros is trivially available in
Lisp macros as well, even with a binding construct to hold temporary values?.
In a dynamic type system, the polymorphism is realized at the leaves of the
computation tree so intermediate compiler passes and intermediate variables
need not replicate knowledge of the data type. (On the down side, this makes
it much harder for compilers to check types and do type-based optimizations.)

The above macro definition still has the problem of name clashes of
temporary names. The sqr macro is too simple to illustrate this problem, so

instead consider a macro for the binary form of the Lisp or special form:

(defmacro or (a b)
“(let ((temp ,a))
(if temp
temp
b))

4This benefit comes at the cost of either runtime performance or compiler complexity.

22

Recall that the intention is that or returns the value of its first argument
if it is not nil (and in which case it does not evaluate its second argument).
Otherwise or returns the value of its second argument.

The use of a temporary variable prevents repeated evaluation of the first
argument when it turns out to be true, but the name given to that temporary
variable can clash with names in the second argument. Consider the following

use of the or macro:

(defun uncomfortablep (temp)
(or (> temp 80)
(< temp 65)))

The expansion of this macro results in:

(defun uncomfortablep (temp)
(let ((temp (> temp 80)))
(if temp
temp
(< temp 65))))

The identifier temp in (< temp 65) is meant to refer to the argument
of the function uncomfortablep, and instead winds up referring to the local
variable by the same name.

This problem can be somewhat mitigated by the choice of even more
obscure names. However, when macros can be used recursively, no assignment
of obscure names can protect against an inadvertent conflict. Fortunately, be-

cause Lisp macros have the complete expressiveness of the language® for gen-

5The language in which the macros are written is properly called the meta-language, but
in Lisp the meta-language is the same as the underlying (target) language.

23

erating expansion parse trees, a macro can construct a new identifier on each
invocation. This is the so-called gensym approach for dealing with variable
capture problems in Lisp macros. The following modified or macro illustrates

this approach:

(defmacro or (a b)
(let ((temp (gensym)))
‘(let ((,temp ,a))
(if ,temp
,temp
,0))))

Now, each time the or macro is called, a new, fresh identifier is created
for use as the name of the temporary variable. Since the identifier is new, it
cannot conflict with any other identifier in the program, whether generated by
gensym Or not.

By appropriate use of temporary variables to avoid multiple evaluation
and the gensym approach to avoid name clashes, Lisp macros can be written
that correctly provide their intended semantics. However, due to these pitfalls,
doing so may involve considerable work and obscure bugs may lurk undetected.

Lisp macros are restricted to defining new expressions®. That is, the
compiler does not recognize the use of a macro in places that are not seman-

tically expressions, e.g., in the formal arguments specification of a procedure.

6Common Lisp has a related but separate mechanism for defining macros for assignment
locations. setf macros allow the definition of new kinds of arguments to the assignment
special forms.

24

2.2.3 Scheme Macros

The Scheme language takes a slightly different approach to achieving the goal
of macro support. Scheme macros are in some ways intermediate between
Lisp macros and C macros. Like Lisp macros, they operate on structured
parse trees (not abstract syntax trees). Like C macros, they are declarative
and do not provide all of the expressive power of the language to the macro
programmer.

The main distinguishing characteristic of Scheme macros is that they
automatically provide hygienic macro expansion [14]. Hygienic macro expan-
sion refers to the avoidance of name clashes such as we saw in the or macro
example in the previous section.

Scheme macros are defined using the define-syntax form. A set of
patterns are given with syntax-rules, and in each pattern the special symbol

w»

_” acts as a place-holder for the name of the macro being defined. The special

”

symbol “...” is used to denote a repeating element of the argument pattern.

For example, a simple Scheme macro for or is:

(define-syntax or
(syntax-rules ()
((_ ab)
(let ((temp a))
(if temp
temp
b)))))

This defines a macro which matches a two-argument invocation of or, for

example, (or (cat) (dog)).

25

The macro expansion process as defined in R°RS automatically ensures
that names introduced in different contexts (i.e., inside the macro definition
vs. at the use site) do not inadvertently refer to each other. In this case, the
temp variable that is used to prevent multiple evaluation of the first argument,
a, does not conflict with any identifier temp in the argument b.

Note that Scheme macros have to deal with suppressing multiple eval-
uation of arguments. This is a property of all macro systems that can express
special forms, because the whole purpose of a special form is to permit the
evaluation of an argument either zero times or more than once.

Scheme achieves hygienic macro expansion by making the macro ex-
pansion process aware of the binding constructs such as let so that it can
automatically rename variables when necessary. If the above or macro were

used in something like:

(define (uncomfortable? temp)
(or (> temp 80)
(< temp 65)))

then the effect is as though the gensym approach in Lisp were used, but

automatically. The result is something like:

(define (uncomfortable? temp)
(let ((temp.1 (> temp 80)))
(if temp.1
temp.1
(< temp 65))))

Because the macro expander is aware of the variable binding role of

26

let, it can create a new name for its variables and keep track of the mapping
from source names to renamed variables.

Most Scheme implementations appear to implement the hygienic se-
mantics of Scheme macros using a renaming technique. That is, hygiene is
achieved by automatically computing the necessary generated symbols.

The renaming transformation is a process which is interleaved with com-
pilation, but separate from that compilation. As a result, the macro expander
has to be aware of all the constructs in the language which affect scope and to
handle any renaming appropriately. Fortunately, this is usually easy because
the system designer typically implements only a few basic forms in the com-
piler proper and uses macro expansion to handle the rest. For example, the
core compiler might implement only lambda, letrec, set! and a few others.
Most binding constructs, like let* and do, would be implemented as macros.
The macro expander only needs to be aware of the constructs directly under-
stood by the core compiler because the expander already knows how to handle

general hygienic expansion of macros.

2.2.4 Systems Related to Macros

Macro systems are not the only means for allowing the user to define special
forms. More flexible argument passing techniques can generalize the tradi-
tional function calling protocol sufficiently that special forms are accessible.
One such flexible argument passing technique is that of call-by-name. In
call-by-name argument passing, the evaluation of the arguments to a procedure
is under the control of the called procedure. This achieves an effect somewhat

like macros, and special forms can be written using this parameter passing

27

technique.
For example, consider the following conditional construct (in a pseudo-

Algol language):

define until(WHAT, TO_EXIT)
begin
while true do
begin
WHAT;
if TO_EXIT then return;
end;

end.

Call-by-name has problems, though. In particular, it is known that a
call-by-name calling convention cannot implement swap safely. Furthermore,
it seems that the use of such a subtle calling convention as call-by-name can
be quite dangerous to use as frequently as function calling is used, as well as
being rather inefficient to use as the default calling convention.

Another argument passing technique that is flexible enough to imple-
ment some special forms is that of call-by-need or lazy evaluation. In this
technique, arguments are evaluated zero or one times, and only when needed.
Conditional constructs can be implemented using call-by-need. However, new
binding constructs cannot be implemented in Haskell because, although typical
implementations use a transformational process to convert the exposed lan-
guage to a lower-level core language (desugaring), these sugar-coating facilities

are not exposed to the programmer.

28

2.3 A Taxonomy of Scheme Macros

2.3.1 Call-by-name Inline Procedures

Perhaps the simplest use of Scheme macros is as call-by-name inline procedures.
In this case, macro definitions are regarded as declarations of inline procedures
whose arguments are passed by name rather than by value.

Call-by-name inline procedures are also the easiest to implement cor-
rectly. The technique of syntactic closures was introduced by Bawden and
Rees [6] to solve the hygiene problem for call-by-name inline procedures. The
syntactic closure approach is sufficient for implementing macros used as call-
by-name inline procedures, and our approach is based on extending these ideas.

As an example, the or macro illustrates the common use of macros as

call-by-name inline procedures.

(define-syntax or
(syntax-rules ()
((_ term)
term)
(@)
#1)
((_ term terms ...)
(let ((temp term))
(if temp
temp
(or terms ...))))))

29

2.3.2 Advertent Capture

Inline call-by-name procedures, and a straightforward implementation using
syntactic closures, cannot express binding constructs. The ability to create
bindings in a macro body whose variables are visible to expressions that are
arguments to the macro requires advertent capture. The sense of advertent is
that the capture of identifiers by the body of the macro is done on purpose,
with due consideration of the intended semantics.

The Scheme form let* is easily expressed using a macro with advertent

capture:

(define-syntax letx
(syntax-rules ()
((_ O body ...)
(begin body ...))
((_ ((var init) bdg ...) body ...)
(let ((var init))

(let* (bdg ...) body ...)))))

In this macro, the bindings represented by var are inserted by the
macro, and capture references within body. For example, a use of the letx

macro such as:

(letx ((begin ’start)
(end ’stop))

(1ist begin end))

would expand into:

30

(let ((begin.1 ’start))
(let ((end.1 ’stop))
(begin
(1ist begin.1 end.1))))

where begin.1 and end.1 are identifiers constructed by the macro expansion
process. They are chosen to be unique, and hence do not clash with any

reference in the body of the macro, in particular the reference to begin.

2.3.3 Explicit Intentional Capture

A third general use of macros is to insert a binding into an environment where
the inserted name does not occur as an argument to the macro. We call this
explicit intentional capture.

Implementing something like C while, which permits the use of break
within its body, requires explicit intentional capture. Consider the following

procedure which makes use of a hypothetical while special form:

(define (with-each-datum port proc)
(while #t
(let ((datum (read port)))
(if (eof-object? datum)
(break)

(proc datum)))))

Here, the special form while introduces a new binding for break in the
scope of its body. The name break is not explicitly referenced by the invoker

of the macro, so the advertent capture rules cannot apply. Explicit intentional

31

capture makes it possible to write while, and at the same time makes the

macro author explicitly aware that they are bypassing the normal scope rules.

2.4 Our Contribution

Our approach is novel in two respects. First, it does not explicitly rewrite the
source program; there is no notion of a “transformed” output that is subse-
quently fed into a macro-deficient compiler. Second, it allows the meaning of
special forms (including syntax) to be propagated upward in the compilation

process. The latter corresponds to a controlled form of eager macro processing.

2.4.1 RScheme Macros

The RScheme implementation of Scheme supports Scheme macros, but the sys-
tem achieves hygienic macro expansion using a technique which is not based
on preprocessing and renaming of variables, which most Scheme implemen-
tations use. The RScheme implementation integrates macro expansion with
compilation; there is no macro expansion per se.

Because macro processing is fully integrated with compilation, RScheme’s
macro facility does not need to be explicitly aware of the binding constructs
in the underlying language. Instead, the macro facility directly manipulates
the compile-time objects representing variables and bindings. Furthermore,
the order of macro processing is well-defined, since the RScheme system does

not have a separate interpreter.

32

2.4.2 Type Reflective Macros

The integration of the macro system with the compiler makes possible addi-
tional taxa of Scheme macros. An RScheme macro can use compile-time in-
formation to do new kinds of pattern matching. Being able to pattern match
on compile-time information allows certain kinds of optimizations to be ex-
pressed using the macro system, which makes this ability a powerful language
development tool as well as valuable to the end user.

For example, a runtime system might have two primitive procedures for
adding numbers, one to be used when both arguments are known at compile-
time to be small integers. A macro can define a pattern that only matches
when that condition is satisfied and generates the appropriate, fast instruction.
The default rule could invoke the slower primitive procedure.

This general approach has been used in the RScheme system to struc-
ture the interface between high-level code and low-level primitives with differ-

ing performance tradeoffs. Examples are elaborated in Section 2.5.2.

2.5 Our Implementation

Our implementation is based on a simple recursive compiler operating over
a surface parse of the input program. The surface parse is the result of the
Scheme read procedure, and hence is a tree-structured representation of the
source text. The tree structure is laid out explicitly by the user; there is no
understanding of the language grammar or semantics that are applied at this
time. The recursive structure of compilation is over this tree, so the program

subtext at any given point is the input to the compilation procedure.

33

The return value from the compilation procedure is the meaning associ-
ated with that program subtext in the context of that point in the system. In
particular, it is either intermediate code or a meta-object denoting a variable.

The structure of intermediate code as used in our implementation is
not important for this discussion — it may be any appropriate representation
which has variable bindings completely resolved. In our implementation, it
is a simple tree-code representation which can be immediately fed into the
back end of the RScheme compiler for code generation. Furthermore, textual
references to variables are encoded as object references to the corresponding
variable meta-object. No binding ambiguity can arise, because the variable
reference points to the actual variable meta-object. Meta-objects denoting

variables represent occurrences of variable definitions in the input program.

2.5.1 Operation

To compile an expression in an environment, we maintain a data structure
representing the “location” of the expression. By location here we mean a
complete indication of the scope of the expression, which is sufficient to com-
pletely resolve the meaning of any identifier that may occur in that expression.

An expression’s location is a 2-tuple of its place and its environment.
The place denotes the lexical position within the source text. The environ-
ment denotes the mapping from identifier-place tuples to actual variables. By
actual variables, we mean completely resolved compile-time meta-objects that
represent either a collection of run-time bindings or a distinct compile-time
binding.

To illustrate this terminology, consider the following program fragment:

34

(I anbda (x)

(let ((y (foo x))) |
[(cons x Y)))

The rectilinear contours are a visualization of the places in this program
fragment. The lambda introduces a new contour for its argument. Likewise,
the let introduces a contour for its variable. This fragment, with places P1

and P2, exercise the the following bindings:

(lambda, top) — lambda-sf
(x,P1) — x-var

(y,P2) — y-var

Example 1

Let us walk through an initial, simple example. This example does not illus-
trate the more subtle effects when macros are involved; it just shows how the
system works in the simple case. This should make it clear that the correct
result is produced at least for code that doesn’t use macros.

This simple procedure cons’s the head of the first list onto the second

list, for example, turning (a b) and (3 2 1) into (a 3 2 1):

(lambda (x y)
(let ((z (car x)))

(cons z y)))

Initially, the place is top and the envt consists of (along with many

35

more like this):

(lambda, top) — lambda-sf
(let,top) — let-sf
(coms, top) — cons-tlv
(car,top) — car-tlv

The -sf suffix is a mnemonic to indicate meta-objects denoting spe-
cial forms. Likewise, the -tlv suffix is used to name top-level variables. In
the actual implementation, these names correspond to meta-objects which are
subclasses of <variable>. Each special form meta-object has a compile-time
procedure, its handler, associated with it, which is responsible for implement-
ing the semantics of the form. The handler is invoked to process an occurrence
of the form, and is provided with the complete compile-time environment.

The meaning of the form (lambda ...) is determined by the meta-
object that is the meaning of the head part. That is, to compute the meaning
of a list structure, the meaning of the head position is computed, and then
computing the meaning for the entire form is delegated to the head’s meaning.

Computing the meaning of a symbol involves a double loop. The outer
loop is over the nesting of the place. That is, we start at the current place, and
if we can’t find a binding in the environment for that place, we try its outer
contour until we run out of places to look. If we run out of places, the symbol
is unbound in this place, which is an error”.

Since the current place is top, we search the envt (bottom to top) for

a tuple (lambda, top). In this case, we find it — it is bound to the variable

"In the actual implementation, giving up means that the symbol presumably refers to an
as-yet undefined variable; i.e., it is a forward reference. We do not address those engineering
issues in this discussion, assuming that all variables are defined.

36

lambda-sf — so we return that as the meaning of the symbol lambda in the
place top.

Now we return to the problem of determining the meaning of (lambda
...), whose head means lambda-sf. The behavior of special forms for com-
puting compositions is to invoke the special form’s handler, the compile-time
procedure associated with the special form for just this purpose. This pro-
cedure is one of the primary gateways from the main recursive compilation
driver to special-case code.

The handler for lambda-sf parses the “lambda list” — the procedure
arguments®. Having parsed the arguments, the Jambda-sf handler constructs a
new contour, since it knows that its body is in a new scope, and the arguments
are bound in the environment with respect to the new place. Call the new

place P. Then, in this case, the handler adds:

(x,P) — x-var

(y,P) — y-var

to the end of the environment chain.

The meta-objects x-var and y-var are compile-time objects that repre-
sent a collection of storage locations at runtime.

Having established the bindings, the meaning of the body, (let ...),
is computed in the new place, P, and environment. As before, the structure is
recognized as a list, and the head looked up. In this case, the first iteration of
the outer lookup — an attempt to locate (let, P) in the environment — fails, so

the outer place, top, is checked and (let, top) is found to be bound to let-sf.

8How the lambda list is parsed is to use the internal pattern-matching mechanism from
the inside of the compiler, since the pattern matching already knows how to expand pattern
variables in pursuit of a match.

37

Example 2

Let us take as a further example a more difficult case. In this case, we define
a macro and call it. However, we still do nothing very complicated. In fact,

this example could be handled well with a syntactic closures approach [6].

(lambda (temp x y)
(let-syntax ((or (syntax-rules ()
((_ ab)
(let ((temp a))

(if temp

temp
b))))))

(or (temp x)

(temp y))))

In this example, the first argument to the procedure is intended to be
another procedure which obtains the temperature value of an object, or returns
#f if the temperature is not known.

As before, initially place is top and the environment consists of:

(lambda, top) — lambda-sf
(let,top) — let-sf
(let-syntax, top) — let-syntax-sf
(if, top) — if-sf

Again, the processing of 1lambda creates a new place — call it () — and extends

38

the environment with:

(temp, Q) — temp-var0
(x,Q) — x-var

,Q) — yvar

Now, when the let-syntax form is processed, the handler® creates a place

inside) — call it R — and extends the environment with:

(or,R) — or-rules

Here, or-rules is a kind of special form that captures the syntax rules, the
place @, and the environment up through the binding for y. (Note that if this
had been a letrec-syntax form, the place R would be captured and hence
its environment would include the or binding.)

The determination of meaning for the body of the let-syntax is the
usual. In this case, when or is found in contour R, its meaning is a syntactic
abstraction. The meaning of a list whose first element means a syntactic
abstraction is determined by finding an appropriate expansion using pattern
matching in the syntax rules.

Here we have only one pattern, and it matches. The result of finding a
pattern match is that the current place reverts to the place of definition, and
then a new contour (place) is created to represent the scope of the pattern
variables. In this case, this means we bind the identifiers a and b to pattern
variable objects that capture the source text and place. The environment itself

is not reverted.

9Located via the binding (let-syntax, top) — let-syntax-sf

39

Let us call the new place S, in which case we bind:

(a,S) — a-pv

(b,S) — b-pv

where a-pv denotes the text (temp x) in place R, and b-pv denotes the text
(temp y) in place R.

We now compute the meaning of the body of the matched syntax rule
in the so extended environment and in place R. The let form is recognized
as usual.

Notice at this point that we are computing meanings as usual — there
is no explicit recognition that we are inside the body of a syntactic template.

It is during the computation of the meaning of the initial value expres-
sion for the let that we first encounter a pattern variable. That is, the lookup
of (a, S) finds a-pv. To compute the meaning of a pattern variable, we compute
the meaning of its text in its place of origin, in this case (temp x) in R. The
environment chain is unchanged — it monotonically increases with the depth
of recursive compilation and implicitly shrinks when a recursive compilation

exits.

40

At this point, the environment contains:

(lambda, top) — lambda-sf
(let,top) — let-sf
(let-syntax, top) — let-syntax-sf
(if, top) — if-sf

(temp, Q) — temp-varQ
(x,Q) — x-var
(y,Q) — y-var
(or,R) — or-rules
(a,S) — apv
(b,S) — b-pv

And the environment chain looks like:

Q
AN
R S

Since (temp x) is a list, we compute the meaning of the first element as
usual. In this case, there is no (temp, R), but we find (temp, Q) instead, which
is a regular variable that represents the first formal argument to the procedure
we’re compiling. Since the meaning of the first element of the list is a regular
program variable, the entire list must be a procedure call. Thus, the meaning
of the remaining elements of the list are determined, and the meaning of the
entire (temp x) is a combination.

This works for all occurrences of this general style. In general, any
binding that is added to the environment from within the syntax rule has a

place attribute which is different from that of any other binding. Specifically,

41

bindings created inside the syntax rule are in place S (or a descendant), and
thus do not match a binding meant for place R.

Having computed the meaning of the initial value expression for the let
inside the syntax template, the let-sf handler creates a new contour, 7', and

extends the environment with temp in 7"

(temp, T) — temp-varl

With this in place, the identifier temp inside the let body (i.e., in T')
matches (temp, T) instead of (temp, R). The rest of the compilation in this

example proceeds similarly, obtaining the desired result.

Example 3

Here we illustrate how the system operates in the presence of advertent cap-

ture, and how it detects the implicit capture rule.

top: (lambda (n)
P1: (let-syntax
((for (syntax-rules ()
((_ (var init limit) body ...)

P3: (let loop ((var init))

42

P4: (if (< init 1limit)
(begin
body ...
(Loop (+ var 1)))))))))
P2: (for (i 0 n)
(print i))))

To solve this problem, we revisit the observation made previously —
that the special forms use the internal pattern matching mechanism to match
their own arguments. In this case, 1let uses the pattern matcher to match its
arguments, and by doing so, obtains the expansion of var along with its place.
When let goes to bind var, the let actually binds i in the place of call, so

the environment during the compilation of body looks like:

(lambda, top) — lambda-sf

(n,P1) — n-var
(for,P2) — for-rules
(var,P3) — var-pv = (i, P2)
(init, P3) — init-pv = (0, P2)
(1imit, P3) — limit-pv = (n, P2)
(body, P3) — body-pv = ((print i), P2)
(i,P2) — i-var

Where the places are arranged so:

43

top

|
P2/ \P3
|

P4

Note that there is no need to bind (var, P4), because any use of var in

P4 expands into i in P2 anyway by virtue of its expansion.

Example 4

This example illustrates the implementation of explicit intentional capture.
Consider the following procedure definition that uses a local macro imple-
menting while, with the lexical places top, P1, ..., P7.

This example uses the call/cc!? primitive of Scheme to implement
non-local transfer of control. The call/cc procedure calls its argument (here,
the lambda with body P6) with one value, which is a procedure (here, bound
to brk). A call to that procedure (brk) does not return, and instead causes
call/cc to return. This kind of non-local control transfer is familiar to C

programmers as setjmp/longjmp.

10Formally, call/cc is call-with-current-continuation. The name is abbreviated for
obvious reasons.

44

top [
(lambda (str)

Pl_(1et-syntax ((while (syntax-rules ()
((_ expr body ...)
P5_(call/cc

(lambda (brk)
P6_(1et loop ()
(if expr

(let (((*WHERE body break) (brk)))

P7 body ...

(1oop)))))))))

(let ((i 0))
P2 (while (< i (string-length str))
P3(if (char=? (string-ref str i) #\,)

(break))
(set! i (+ i 1)))

i)

The compilation of this form proceeds just as before, until the compiler
gets to creating the binding for break. At this point, we introduce the *WHERE
operator. Its purpose is to signal the compiler explicitly that a symbol is being
intentionally captured. In this case, the form (*WHERE body break) tells the
compiler’s binding facility to interpret the symbol break as if it had come from
the same place as the value of the pattern variable body (i.e., from the call
site).

As a result, during the processing of the body of the inner let, we might

have:

45

top

P2/P1\P5
Lo
Lo

And:

(lambda, top) — lambda-sf

(let,top) — let-sf
(str,P1) — str-var
(while, P2) — while-rules
(i,P3) — i-var
(expr, P5) — expr-pv
(body, P5) — body-pv
(brk, P6) — brk-var
(break, P3) — break-var

2.5.2 Reflection Operators

At this point, we are ready to introduce the remaining reflective operators that

are implemented and give examples of how to use them and when they are

46

appropriate. We have already seen the use of the *WHERE operator (abbreviated
W, . »

in RScheme, in analogy to C++’s scoping operator, so that body: :break
is equivalent to (*WHERE body break)).

Aliasing

For purposes of aliasing (i.e., ensuring that two symbols in different places
refer to the same object), we introduce the let-alias form. For example,
if the while that we had above required that break be available both in its
body and in its expression argument (since those are different expressions) we

would use let-alias to ensure it the necessary dual availability:

(define-syntax while
(syntax-rules ()
((_ expr body ...)
(call/cc
(lambda (brk)
(let loop O
(let ((body::break (brk)))
(let-alias ((expr::break body: :break))
(if expr
(begin
body ...
(Loop)))))))))))

Note that 1let-alias is simply a binding construct that does not create
any new meta-objects; it only re-links existing meta-objects under new names

Oor scopes.

47

Type-based Pattern Matching

A powerful application of the interleaving of compilation with macro expansion
is type-based pattern matching. This application gives us the ability to define
type-polymorphic inline procedures, as is done in the mapping of primitive
operations in RScheme to user accessible procedures.

For example,

(define-syntax binary+
(syntax-rules ()
((_ (#IS x <fixnum> :constant) (*IS y <fixnum> :constant))
(*EVAL (+ x y)))
((_ (IS x <fixnum>) (*IS y <fixnum>))
(fixnum+ x y))
((_ x (*IS y <fixnum> constant))
(let ((temp x))
(if (fixnum? temp)
(fixnum+ x y)
(generic+ x y))))
(Cxy
(generic+ x y))))

The *IS operator is used to reflect on compile-time type information and
other attributes. In order to determine if a parameter matches, the compiler
is obliged to compile the expression and determine its type. In general, this
is risky if the meta-system can have side-effects on the compile-time state. In

the current implementation, we leave it to the macro developer to be aware of

48

any such issues. The *EVAL operator is used to evaluate code at compile time,
which here is used to actually do the work of the optimization.

Another approach that was tried was to tentatively compile the ar-
gument, and reuse the resulting meaning as the pattern variable expansion.
This approach has the disadvantage of not allowing the argument to appear
in a different environment (although if the argument appears in a different
environment in use, then the author needs to be aware of the possibility that
the expression may exhibit different attributes during use than during pattern
matching!).

Consider the following example of using synthesized attributes:

(define-syntax for
(syntax-rules ()
((_ (var
(*IS init :side-effect-free)
(*IS limit :side-effect-free))
body ...)
(implementation exploiting lack of side-effects in init and limit))
((_ (var init limit) body ...)

(fallback implementation))))

This ability can be considered a simple kind of fact-based pattern match-
ing, where the available facts are encoded by the type system and other ac-
cessible properties of the compile-time context. This could be generalized
to manipulating arbitrary (and potentially domain-specific) synthesized and

inherited attributes, as is done in McMicMac by Krishnamurthi et al. [27].

49

Chapter 3

Extensible Parsing

3.1 Introduction

Implementors of conventional computer languages have long been concerned
with the problem of parsing. Parsing is the process of turning a linear string
of characters representing a program into a structured representation that is
closer to the meaning of the program. Conventional languages, as we use the
term here, refers to languages whose syntax is derived from Algol. This family
includes Pascal, C, and, more recently, Java and C#. From a syntactic point
of view, these languages are in significant contrast to the Lisp family, in which
the parse structure is coded explicitly by the programmer, making the job of
syntax analysis trivial for a Lisp compiler.

In this chapter, we introduce the notion of extensible parsing. Extensible
parsing is a generalization of the traditional idea that the grammar, or syntax,
of the language is fixed at language design time. Instead, the grammar can

evolve as the processing of a program takes place. In many ways, the ability

90

to modify or extend the grammar during program processing is analogous to
the definition of macros in a Lisp-like language. However, in a conventional
language, there is no manifest tree-like data structure on which the macros
might operate.

In this chapter, we give a simple implementation of an extensible parser
that is based on the recursive-descent parsing strategy. We are not concerned
with the performance of the extensible parser but instead use it to make con-
crete the ideas we present as making up the extensible parsing framework.

The main idea of extensible parsing is that the grammar is a data ob-
ject to be manipulated at the runtime of the compiler, much as environment
and scope were manipulated in Chapter 2. However, the grammar is not ma-
nipulated arbitrarily. Instead, we illustrate some common kinds of grammar
changes that behave in fairly regular ways. We call these regular patterns
grammar change styles. The two major styles are top-level forms and nested,
block-like constructs.

Top-level forms tend to make grammar changes that live beyond the
occurrence of the form itself. For example, in C a top-level form that defines a
new type (i.e., a typedef) has a scope that extends to the end of the program
unit.

Block-like constructs, on the other hand, tend to support nesting and
make grammar changes whose extent is contained within the form itself. For
example, a C while statement might introduce a new grammar rule that makes
break a valid construct within its body.

Although performance is not the main focus of this chapter, it is worth
remarking upon the focus of much of the research into efficient parsing tech-

niques over the past 30 years or so. This research primarily leverages off the

o1

fact that language grammar was fixed and known at compiler design time.
Since the compiler would be invoked many times for the one time that the
compiler itself was compiled, a large amount of processing was warranted in
producing an efficient compiler. In the case of the language grammar, this
meant that an almost arbitrary amount of work was justified in constructing
a parser that would be efficient at runtime (i.e., when the compiler ran, which
is to say, when it was compiling some other program).

The common computer science technique of moving computation across
the barrier between compile time and run time was applied with excellent re-
sults in the field of parsing techniques. Typically, at build time, an abstraction
of the workings of the parser would be constructed and formed into a finite-
state automaton. The automaton would be encoded into parse tables that
would be built into the compiler as static data structures to be interpreted at
runtime.

However, since computers are roughly 1000 times faster than they were
when much of this research took place, and more and more time is being
spent in optimization phases instead of front-end processing like parsing, the
benefits of this body of language research are less clear today. In particular, if a
considerable amount of expressive power or programmer flexibility is available
at the expense of some parsing time, it seems a tradeoff well worth making.
The usefulness and consequent construction of a flexible parser, at the cost of
preprocessing for efficient runtime execution, is the subject of this chapter. In
Chapter 4, we return to the subject of efficiency and give an implementation

that maintains the flexibility of extensible parsing but with improved efficiency.

92

3.2 Background

Extensible parsing is not a new idea. Cardelli [9] uses lambda calculus as a
base language and shows how it can be extended to support the embedding
of other languages such as SQL. However, for Cardelli grammar changes are
global in scope, making the use of grammar changes suitable only in certain
circumstances.

A theoretical framework for extensible parsing is available in the recent
work on adaptable grammars, such as that of Schutt [35]. However, as far as

we can tell, there is no implementation underlying this work.

3.2.1 What We Would Like to Do

Our approach seeks to permit grammar changes both with high frequency
and with local scope. An example of grammar extensions using this approach
would be the while statement that introduces the break statement. In this
approach, the while would create a label that is the target of a goto generated
by the break. Furthermore, we would like for each nested while statement
of this kind to use unique labels. It therefore becomes necessary for grammar
changes to manipulate lexical scopes.

In a longer perspective, we imagine introducing rules for entire object
system extensions. This might involve first-class representations of whole sub-
grammar changes that can be stored with the meta-objects for classes. For
example, this might be a means to allow the implementation of C++ as a
collection of syntactic extensions on top of C.

In essence, we are trying to obtain the benefits of Lisp and Scheme

macros for more traditional programming languages. Recall that Lisp and

93

Scheme macros manipulate a tree representation of the program rather than,
for example, the token strings that are manipulated by C (cpp) macros. Lisp
languages make use of a two-level grammar, where the first level parses token
streams into a tree representation. The second level takes those trees as input
and generates abstract syntax trees. Lisp and Scheme macros operate at the
second level, and the first level is fixed and trivial in structure. These two levels
are intermixed in ordinary programming languages, making it necessary to
modify the grammar to achieve the effect of Lisp macros. With this approach
we imagine being able to start with a small subset of Java and building up the

entire language using syntactic extensions.

3.2.2 Granularity of Grammar Changes

For our approach to obtain maximum usefulness, we must allow grammar
changes on a very fine granularity. In particular, we must be able to parse the
input corresponding to one part of a grammar rule using a different grammar
from that used to parse the rest of the input. The grammar is represented by
the parse environment, which is passed around and modified in the parsing

process to achieve the parsing of different parts in different environments.

3.2.3 Applications of Our Approach

With this approach, we can express non-context-free constructs in a structured
way. An example of such a non-context-free construct is C’s while and break,
as mentioned above.

Another typical example is the typedef in C. In the traditional ap-

proach, the tokenizer is patched to reflect a new lexical category for an identi-

o4

fier, which widens the interface between the parser and scanner components.
In our approach, we can handle this exclusively in the parser — we would intro-
duce a new grammar rule for type-name that implicitly re-categorizes the new
type name. Because the grammar understands the scope contours of the lan-
guage, such a grammatical re-categorization follows the normal scoping rules
of the language (which would be more difficult to implement in the scanner,

which has no concept of language scope).

3.2.4 Limitations

Lisp macros, by virtue of working on internal data structures, are not limited
to any particular order of inspection of their parts. A grammatical approach,
however, is. Tokens only become available in a fixed, left-to-right, order.
Hence, we would have difficulty expressing grammatical constructs such as
Haskell’s where clause because the variable declarations come after the body.
Likewise, Java’s try/catch is problematic to process syntactically because the
catch modifier comes after the body that it modifies.

Note that we can parse these constructs, but we cannot make use of
fine-grained grammar changes to do so. Some kinds of grammar changes are
still possible, but any changes that involve the meaning values from the suffix
of the construct cannot determine the grammatical structure of the prefix.
In any case, a compiler using our approach could still perform traditional

manipulations of the meaning structures to implement the intended semantics.

95

3.3 Contour Sensitivity

While this approach has a much greater expressive power than pure context-
free grammar processing, it is not as unstructured as a general-purpose pro-
gramming language for parsing. We eztend the power of a traditional gram-
matical framework without going to the extreme of a full programming lan-
guage, which gives arbitrary expressiveness with no grammatical structure.
Since we know of no other name for this kind of power, we choose the name
“contour sensitivity” because the constructs are sensitive to the grammatical

contours.

3.3.1 Major Styles of Environment Passing

Even the power of contour sensitivity might be too much in some cases. In
fact, we have only been able to distinguish two major usage patterns of contour
sensitivity in grammars.

The first usage pattern is characterized by file-level global or forward-
scope constructs such as Scheme’s define and C’s typedef. In this style,
which we call sequence style, language entities following the construct are all
in the scope of the construct.

The second usage pattern is characterized by local scope, such as Scheme’s
let or C’s block-local variables. In this style, which we call block style, only
entities contained in the construct are in its scope. (Notice, though, that local
variables within a block in C follow the first usage pattern, as in Scheme’s

letx*.)

o6

3.3.2 General Mechanism

In order to explain the general mechanism, we need some additional terminol-
ogy. We assume the reader is familiar with basic parsing terminology.

A rule maps a non-terminal to a sequence of terminals and non-terminals.

A parser is a procedure — derived from a rule — which implements the
parsing of the input, recursively calling other parsers to recognize the non-
terminals in the corresponding rule.

The meaning is the result of compiling an input string. Meanings are
usually abstract syntax trees but can have other representations such as code,
or can even be values in the case of a syntax-directed interpreter. Rules are
thought of as producing a meaning as a composition of the meanings of its
components. Terminals have appropriate elementary meanings corresponding
to concrete lexemes.

A parse environment maps non-terminals to sequences of parsers. Each
parser in the sequence corresponds to a rule for the non-terminal.

A rule is used to parse input using an environment called the inherited
environment. The result of such a parse (if successful) is the meaning as well
as another environment called the synthesized environment.

The top-level parse procedure has as arguments a non-terminal to be
parsed and an environment in which to interpret it. The parse procedure
looks up the non-terminal in the given environment, obtaining the associated
sequence of parsers. The top-level procedure calls the parsers in order with
the same environment until one succeeds.

A parser, in turn, takes a parse environment and a sequence of tokens to

be parsed. The parser attempts to recognize an instance of the corresponding

o7

rule at the beginning of the given sequence of tokens. If it succeeds, the parser
passes the remaining input sequence and a possibly modified environment to
its continuation.

When a rule contains a terminal, the corresponding parser simply checks
that the input sequence contains that terminal. However, when a rule contains
a non-terminal, the corresponding parser contains a call to the top-level parse
procedure. The parser at this point is free to pass an environment of its choice
to the top-level parse procedure. For example, in implementing while/break
as mentioned above, the parser associated with while, if invoked with envi-
ronment E, would pass an environment E’ to parse its body. E' would be E
augmented with a parser that recognizes break as a statement.

Similarly, a parser is free to use or ignore the parse environment re-
turned by the recursive call to the top-level parse procedure. For example, in
implementing typedef, the parser that recognizes sequences of top-level forms
passes the synthesized parse environment from one form as the inherited parse

environment to the next.

3.4 Implementing Contour Sensitivity

3.4.1 Frequent Grammar Changes

Traditional parsing methods use heavy preprocessing of the grammar in order
to speed up runtime performance. Such preprocessing techniques are appro-
priate when the grammar is fixed and when parsing would otherwise be too
slow. Preprocessing usually means constructing some kind of automaton to

recognize sequences of input tokens and/or nonterminals.

o8

As we have already discussed, we are targeting applications that require
frequent grammar changes. Such applications naturally include embedded
languages such as SQL statements in a C program. Often, however, even
though a single source language is involved, our approach can still be very
useful. Traditional languages are usually described by context-free grammars,
even though they are not actually context free.

We have already mentioned typedefs in C where the interpretation
of a sequence of tokens depends on whether an identifier is a variable or a
type. For instance, the token sequence x * y can be a variable declaration
of y as a pointer if x is a type or an arithmetic multiplication expression if x
is a variable. The traditional solution to this problem is to patch the lexical
analyzer so that when a typedef has been seen, the corresponding identifier
is subsequently considered to be a type name and not a variable identifier.

We also mentioned the break statement in C which is valid only inside
loops. The usual solution to this problem is to always consider break a state-
ment and then to make a second pass over the abstract syntax tree and reject
its use in other contexts.

With our approach, such simple context sensitivity is naturally ex-
pressed within the framework of the grammar. Other examples include type
verification of operands to operators, checking whether certain expressions are
compile-time computable, and more.

All of these examples require that frequent grammar changes be handled
efficiently. That requirement excludes heavy preprocessing of the grammar.
Fortunately, parsing is now such a small fraction of language processing that
the total time remains small even with a substantial increase in the time to

parse the source.

99

Preprocessing of the grammar is not completely excluded. The method
of Heering, Klint, and Rekers preprocesses the grammar incrementally [18].
Such an approach can be very efficient and can adaptively adjust to the fre-
quency of grammar changes. That is, if grammar changes are very frequent,
then only the part of the automaton that is needed is preprocessed. Otherwise,
if grammar changes are infrequent, parsing becomes faster over time as more
and more of the automaton is computed.

This research is primarily concerned with the mechanisms and style for
extensible parsing. The tradeoff between (possibly incremental) preprocessing
time (and software complexity) and parsing time for typical applications is left
for future work. Research into the tradeoffs as applied to typical applications
is complicated by the fact that, since few incremental grammars exist, there
is not a corpus of typical applications to examine.

For this chapter, we avoid discussing these tradeoffs and concentrate
on a purely interpretive approach, which unfortunately has poor worst-case

behavior. Even so, it performs well in practice.

3.4.2 Simple Interpretation

The best way to minimize preprocessing is to avoid it altogether. We therefore
represent the grammar as a collection of independent rules that are interpreted
by the parser.

The parser itself uses backtracking whenever it fails to recognize a se-
quence of tokens. All possible rules for a nonterminal are tried in order until

one succeeds!.

1Qur continuation-passing parser cannot handle left recursion (direct or indirect) and
is not fully backtracking. However, it has no lookahead constraint, so it is more restricted

60

Notice that for very deeply nested definitions, our parser can require
exponential time to recognize a sequence of tokens. A simple memoization
trick could be used to avoid such behavior, but since the purpose of this im-
plementation is only to demonstrate the feasibility of our framework and not
to have an extremely fast parser, we have not implemented such optimiza-
tions. Despite this extremely bad worst-case behavior, the parser is actually
sufficiently fast for most purposes.

Furthermore, the parser described here has the same limitation as LL
parsers in that it cannot handle left recursion. We are currently working on
parsing techniques that allow both fast parsing and the flexibility required for
frequent grammar changes. In Chapter 4 we discuss the adaptation of the more

powerful Earley [16] parsing algorithm to our environment passing framework.

3.5 Implementation of Continuation Passing

Parser

3.5.1 General Description

In section 3.3.2 we gave a general description of the mechanism used to im-
plement the parser. However, we deliberately did not expand on the actual
mechanism for passing control among the parsers. In this section, we fill in
the remaining aspects of the implementation.

In general, our implementation uses explicit continuation passing, in
which each parser receives two continuations, one for success and one for fail-

ure. Thus, our implementation backtracks over failures and tries new possi-

than LL(co) but differently limited than LL(k) for any k.

61

bilities until it either fails at the top level or succeeds.

3.5.2 Representation of Rules

Since grammar changes are expected to be frequent, our representation of
the grammar is one for which change operations are cheap. We also want a
relatively high degree of interpretation relative to compilation.

We accomplish the goal of having inexpensive grammar changes by rep-
resenting alternative rules for a non-terminal as a simple list structure. The
list contains the names of non-terminals that are the constituent rules. This
indirection through the name of the non-terminal is an essential part of our
mechanism.

Notice that some trivial grammar transformations must be applied in
order to fit this representation. For example, consider the following simple

statement grammar:

(1)) W

stmt — “let” war expr “;
stmt — {7 stmtlist “}”
stmt — “print” expr “;”
stmtlist — €
stmtlist — stmt stmtlist

Each alternative for the non-terminals stmt and stmtlist is broken out
into its own rule and given an arbitrary name. The non-terminal itself is
made into an alternative sequence consisting of those constituents. Hence, the

grammar is transformed into something like the following, where every entry

62

is either alternatives among non-terminals or a sequence of items.

stmt — Sy | Sy | S3

S — “let” war “=" expr ;7

So — {7 stmtlist “}

S3 — “print” empr ;7
stmtlist — Ly | Lo

Ly — stmt stmtlist

Ly — €

Right-hand sides that are simply or-separated sequences of non-terminal
names are represented as lists of those non-terminal names. These lists are
then interpreted by a special alternative-parsing procedure.

With this additional information, we can now describe the complete
mechanism. The top-level parse procedure takes an input stream, a non-
terminal to be parsed, an environment in which to interpret the non-terminal,
a success continuation, and a failure continuation. All success continuations
follow the same protocol. They take a meaning value, the remaining input
stream, and a possibly modified environment.

Similarly, all failure continuations follow a protocol. They take a single
argument, the input stream at the point of failure. The current implementation
does not take advantage of this information, but it could be useful for error
reporting.

The top-level parser procedure operates by looking up the non-terminal

name in the given environment. This lookup could yield either an elementary

63

parser or a list of alternative non-terminal names.

In the case of a list of alternative non-terminal names, the top-level parse
procedure calls a special alternative-parsing procedure. The arguments to the
specialized procedure are the input stream, the list of alternative non-terminal
names, the environment for interpreting them, the success continuation and
the failure continuation. The specialized alternative-parsing procedure calls
the top-level parse procedure for each alternative in the list, passing a failure
continuation whose effect is to continue with the alternatives. Since the success
continuation is the same, when any alternative succeeds, the parse of the whole
alternative sequence succeeds.

If the lookup does not yield a list of alternative non-terminal names,
it yields an elementary parser. In this case, the elementary parser is called
with the same arguments as the top-level parse procedure except that no non-
terminal is needed.

A parser corresponding to a sequence of terminals and non-terminals
uses a protocol dual to that of the alternative-parsing procedure. For an
element in the sequence that is a terminal, the parser simply checks that the
input stream contains that terminal and calls the failure continuation if not.
If the input stream does contain the terminal, it simply continues with the
next element in the sequence and the rest of the input stream. For elements
in the sequence which are non-terminals, the parser calls the top-level parse
procedure, passing a success continuation whose effect is to continue with the
elements in the sequence. The failure continuation is the same as given for
the whole parser, so when the parse of any element fails, the parse of the
whole sequence fails. Similarly, when a non-terminal parse succeeds, the input

stream from the success continuation is used to continue parsing the sequence.

64

Since each success continuation receives a parse environment from the
recursive call, at any point in the sequence multiple parse environments are
available. Hence, the elementary parser can implement the appropriate gram-
mar contour by selecting the environment that implements the particular con-

tour. It can even compute an entirely new environment if necessary.

3.5.3 Dynamic Rule Compilation

There are two ways of generating elementary parsers. A hand-coded procedure
that follows the parser protocol may be inserted into the grammar by hand,
thereby bootstrapping the system. Alternatively, they may be generated from

grammar rules consisting of sequences of terminals and non-terminals.

3.5.4 Major Styles in Terms of Mechanism

Let us now return to our two major contour styles to explain how these styles
can be implemented in terms of the mechanism described in this section. Recall
that the sequence style requires that modifications to the environment be
visible to succeeding language constructs. This is easily implemented by an
elementary parser that uses the environment of the success continuation to
parse the next element in the sequence. Thus, changes to the environment
that occur during the parse of one element are visible during the parse of the
next element.

Consider, for example, the following grammar fragment:
L—SL

which might be part of a grammar for recognizing sequences L of top-level

65

statements S. The recursive call to parse L would be handed the parse envi-
ronment received by the success continuation that was passed to the recursive
call to parse S. The parser for S would of course have to call its success
continuation with an appropriately modified environment.

For block style, modifications to the environment are contained entirely
within the scope of the construct. We implement this style by passing a mod-
ified environment to the call to the top-level parser for the language construct
representing the body and then not using that environment any more.

Consider, for example, the following grammar fragment for a while

construct:

W — while £ S

Here, E and S denote expression and statement constituents, respec-
tively. The recursive call to parse S would be given a parse environment
extended with the break construct. Neither this modified environment nor
the one passed to the success continuation of this recursive call would be used
again.

Since the while statement is designed to have no non-local effect on the
environment, it calls its success continuation with the same parse environment
with which it was called. Hence, it interacts with a containing parser for state-
ments using the sequence style of contours by making no change. Similarly, if
the S part of the while contains a sequence, non-local modifications within
that sequence would not be passed on to the successor of the while. These
two styles allow for a combination of sequences and blocks, where each block

creates a new scope for a sequence within which to operate.

66

3.5.5 Examples

We now present an example to illustrate the above points. In this example,
we walk through the operation of the continuation-passing extensible parser,
using a simple statement grammar similar to that described earlier, including
a while statement that implements loop termination by extending the set of
valid statements to include break.

Several things are worth noting, as they limit the utility of this imple-
mentation in practice. First, this parser does not support full backtracking.
That is, a parse decision in a local area of the grammar may consume input
which is later necessary to make some other parse work. Second, the parsing
activity is eager — it matches longer prefixes first.

The latter shows up in the sample grammar in the rule for stmtlist. The
production L; must occur before Lo, since Ly matches anything and hence

stmtlist is always empty.

{
let x = 5;
while (p(x)) {
if (x <= 0)
break;

x = £(x);

In this parse tree, for brevity we elide the non-terminals that denote
alternatives, e.g., stmt and expr. Instead, the alternative that succeeds is

shown.

67

Here is the complete grammar we’ll use for this example:?

stmt — Sl | Sg | S3 | S4 | S5 | S(j

Sl _> “1et” var “=77 ezpr [14 ; 7

Sy — " stmtlist “}”

Ss — “print” expr “;”

S4 _> “if” “(77 e$p,r “)77 Stmt

Sy — “while” “(* expr “)” Al stmt

S¢ — war “=" expr

expr — testexpr | funcallexpr | wvarezpr | literalezpr
stmtlist — Ly | Ly

Ly — stmt stmtlist

Ly, — ¢

When the parse starts, the main parse procedure is invoked with stmt as
the goal non-terminal, the token string as input, the default environment which
contains the grammar and any global top-level variables, a success procedure
for accepting the input, and a failure procedure to reject the input.

In the initial grammar, stmt is bound to a sequence of alternatives, Si,

.., Sg. For stmt, the main parse procedure dispatches to the alternative-list

2Since this is a recursive descent parser, the actual representation of the expr non-
terminal has had its left recursion eliminated, a mechanical process described by Aho et al. [1]
which produces a lengthy grammar. For brevity, since we are not concerned here with
expression parsing, we show expr in its unfactored form.

68

parsing procedure, which in turn attempts to parse S, ..., S¢ with the same
input it was given, the same success procedure, and a failure procedure that
goes on to the next alternative.

In this case, S; immediately fails when it tries to match “let”. The
failure procedure returns to the alternative-list process to try the next one,
i.e., So.

Sy starts by matching the open brace, and then trying to parse a stmitlist,
which succeeds. In the process of succeeding, the stmtlist breaks down into a
sequence of L; nodes (one for each statement parsed) with an Ly at the end,
as shown here:

5
[Ll_‘ «y
ol [L]
(2]

where o is the let statement, and «y is the while statement. As mentioned

earlier, the behavior of the L; elementary parser is to use the environment
passed to the success procedure as the environment for the remainder stmtlist.

That is, a; produces an environment that is its input environment aug-
mented with a binding for the variable x, and the Ly parse that contains oy
passes that augmented environment along as context for the parse of as. This
is an example of the sequence grammar change style as applied to the program
environment (here it’s not being used to change the grammar per se, but the

environment and grammar are kept together).

69

When it comes to parsing the while statement itself, which is s, we
illustrate how block-style grammar changes take place. In this case, the parse

tree looks like this:

“While” “(77

EIA

The elementary parser for S5 parses the first 4 items as usual but then passes
an extended grammar to the stmt parse which matches Sy in this case. The
extended grammar includes a new statement non-terminal, S,,, and a redefi-
nition of stmt which includes S,,. That is, in the extended environment, the

grammar includes:

Stmt—>Sw|Sl|Sz|S3|S4|S5|SG

Sw _) “break” [13 ; ”

Now when parsing the statements in the body of the while, e.g., ¢4,

70

the break statement is recognized and parsed, producing;:

$1

Sy

“jfr « (77 61‘}7‘ cc) ” S'w

“break” “7

Once the parse of ¢, is complete, the extended environment is discarded
— it is not passed to the success procedure of Sy itself, since it is not the
intention of the while construct to manipulate the environment or grammar

of a sequence in which it occurs.

3.5.6 Performance

The parser described in this chapter is intended to be an illustration of the
capabilities of an environment-passing parser, and not an exemplar of per-
formance. In fact, the parser described here is exponentially slow in some
cases. The implementation is only intended to illustrate an application of the
framework and the general ideas of interpreted extensible parsing. Despite
its potential slowness, however, the implementation is simple enough that it
performs tolerably well in practice. Some care in constructing the grammar

for efficient recursive-descent parsing leads to quite reasonable performance.

71

Chapter 4

Extensible Earley Parsing

4.1 Introduction

This chapter describes the adaptation of a relatively efficient parsing algo-
rithm, that of Earley [16, 15], for the purpose of extensible parsing. The
Earley algorithm is essentially an interpreted version of a table-driven parser.
However, the Earley algorithm can handle all context-free grammars, includ-
ing ambiguous ones, and it is relatively efficient. In fact, even though the
Earley algorithm is interpretive in nature, it achieves computational bounds

commensurate with that of other parsers that do a lot of pre-compilation.

4.2 Description of Earley Parsing

Like an automaton built by a parser generator, the Earley parsing technique
works by keeping track of a set of rules that are in the process of being rec-
ognized. However, instead of interpreting an abstraction (i.e., an automaton)

of the possible rules that might be recognized, the Earley technique tracks the

72

actual, concrete rules that describe the input seen so far.

For example, the states of an LR parser represent the same set of par-
tially recognized rules as an Earley parser does. However, an LR parser gener-
ator pre-computes the possible sets and the possible transitions between sets
for all valid inputs, while the Earley technique computes the set at parse time.
Computing the set at parse time is important for our purpose, since we are
changing the grammar during the parse process.

A language is characterized by its vocabulary, which is a set of symbols
used to describe valid sentences in the language. Terminal symbols are those
that appear in a sentence, and non-terminals are those that are used in the
grammar to describe the abstract forms of the language.

The grammar is a set of rules. Each rule consists of a non-terminal and
a sequence of vocabulary symbols. For example, a rule which consists of the

non-terminal N and the sequence of vocabulary symbols a, B, ¢, D is written:

N —-aBc¢cD

We use the convention that lower case letters denote terminals and
upper case letters denote non-terminals. We also use € to denote an empty
right-hand side.

When describing the state of a parse in progress, a rule is written with
a dot in it to denote the current position of the parse activity. This is called

an item. For example,

N —aB - -cD

indicates a rule undergoing a match, wherein an a and a B have been recog-

nized, and a c is about to be recognized.

73

4.2.1 States

Each state of an Earley parse is an item together with a back pointer which
refers back to the position in the input which gave rise to the rule. In the
discussion about pure Earley parsing, we write states as illustrated by this

example:

(N—aB - cD,3) (4.1)

This denotes the state with rule N — a B ¢ D, with the dot at position 2
(i.e., with 2 elements to the left of the dot). In particular, this state is saying
that an a and a B have been recognized so far, and that a ¢ and a D must be
recognized next in order for an N to be recognized. State 4.1 also has a back
pointer to position 3 in the input, which means that the recognition of this

occurrence of an N began at position 3 in the input.

4.2.2 State Sets

Each position in the input (N+1 of them for an input of length N) is associated
with a set of states. The set of states encodes both recursion and parallelism.
The recursions correspond to attempts to expand non-terminals in the right-
hand side of a rule. The parallelism corresponds to the different possible
expansions for a particular non-terminal.

For example, in the following grammar:

pgm — stmt pgm
pgm — €

stmt — ifstmt
stmt — callstmt

74

when a stmt is being recognized, there are two possibilities (ifstmt and call-

stmt), which are tracked in parallel in different subsets of the state set.

4.2.3 Initial Conditions

Initially, the state (¢ — - 5,0) is the content of the state associated with
position 0. This state represents the circumstance that, initially, nothing has
yet been recognized, and the entire program (represented by the start symbol

S) is about to be recognized.

4.2.4 Processing

Processing proceeds by, for each successive position in the input, iterating the
operations of completion and prediction on a state set until a fixed point is
reached. Then the scan operation is used to construct the initial contents of
the state set for the next position in the input®.

In pseudo-code, processing works like:

ssa|0] = initial();
1=0;
while(i < length(input))
begin
iterate(ssali],1);
ssali + 1] = scan(ssali], input[i]);
=1+ 1;

end;

!This description corresponds to our implementation but differs slightly from Earley’s
explanation in that the next state is built while processing the current state.

75

where ssa is the array of state sets and tnput is the array of input tokens.
In this implementation, ss acts like an array for the purposes of iteration
(that is, new entries are added to the end) and like a set for purposes of

duplicate elimination. With this in mind, one iteration step looks like:

procedure iterate(ss, 1)
k=0;
while(k < length(ss))
begin
ss = ss U derived(ss[k], i);
k=k+1;

end

When a valid input sentence of length n has been processed, the contents of
ssaln| contain a state (¢ — S -,0). This indicates that an entire S has been
recognized, starting at the beginning of the string. If a state of this form does
not appear in ssa[n|, then the input string was not a sentence in the language.

Computing the derivatives of a state (the derived function) depends on
what is to the right of the dot. There are three cases to consider: (1) there is a
non-terminal to the right of the dot, (2) there is a terminal to the right of the
dot, and (3) there is nothing to the right of the dot. These are described in
detail in the following sections. Note that case (2) is not handled by derived;

it is handled by the call to scan in the main processing loop.

76

4.2.5 Prediction

Prediction is an attempt to match a non-terminal, and occurs when a state

has a non-terminal to the right of its dot. For example, consider the state:
(N —a- BcD,3)

This state represents a parse in progress in which an a has just been seen, and a
B is expected. The processing of this state within a state set (i.e., the behavior
of the iterate function on this state) introduces new states corresponding to
the possible expansions for B.

In general, if A is the non-terminal to the right of the dot in a state
s and 7 is the current position in the input, then for each rule r of the form
A — 3, the result of iterate contains (A — - 3,). Note that 5 could be empty,
in which case this new rule is completable within this state set. Furthermore,
if B is empty, then we have to be careful to make sure that the completion
does happen for the state s being processed. Otherwise, it might occur that
A — € has already been introduced and completed within this state set on
behalf of some other non-terminal B. Duplicate elimination within ss would
keep s from processing the completion of B. We handle this as a special case

of a prediction that results in an e-rule state that is already in the state set.

procedure predict(s)
A = s.next;
result = ();
for rin G(A)
result = result U (r, k);

return result;

7

end

where k is the input position corresponding to the current state, and G(A)
denotes the lookup of the non-terminal symbol A in the grammar G, which

returns a list of rules. s.next is the symbol after the dot in s.

4.2.6 Scanning

Scanning is the process of matching a token in the input string, and occurs
when a state has a terminal to the right of its dot. Scanning is the means for
initializing the contents of the state set corresponding to the next position in
the input stream. Successful scanning advances the dot past a terminal, and
corresponds to consuming an input token.

To scan a state s,

s=(N = p1 -apBaj)

provided that a appears next in the input, then the state set for the next input

position includes:

s =(N = pra - Pa,j)

procedure scan(ss,token)
begin
result = (;
for sin ss
if snext €T
and match(s.next, token) then

result = result U §';

78

return result;

end

where T' is the set of terminal symbols, and s’ is the same as s but with the

position of the dot advanced by one.

4.2.7 Completion

Completion is analogous to reduction in a traditional parser. A state can be
completed when an item has its dot to the right; that is, there is nothing after
the dot.

Unlike reduction in a traditional parser, in Earley parsing meanings
(e.g., abstract syntax trees) are not computed during completion. Instead,
the parser maintains a record of the completions that took place during pars-
ing and when parsing is complete, that record is analyzed to construct the
corresponding meaning. The reason for this delayed approach to computing
meaning is to maintain polynomial complexity bounds in the face of ambiguous
grammars. That is, since Earley can parse sentences using an ambiguous gram-
mar, computing the meaning during the parse can lead to a state explosion
which would degrade Earley’s asymptotic complexity results to exponential
instead of O(n?).

To compute the derivative states of a completable state s, where:
$ = <N - ﬁ 7.7>

ssalj| is examined to determine which states led to state s. In particular, the

states leading to s are those states in ssa[j] with an N to the right of the dot

79

because those created the prediction that we are now completing. For each

state in ssa[j] of the form:
<M—)ﬁ1 . Nﬁg,m>

the derived set of s includes (M — (1 N - B3, m). Note that 85 could be empty,
in which case another completion takes place, for M this time.

Thus, completion of a state s is the process whereby the dot is advanced
past a non-terminal in some other state m. The state m is in the state set

corresponding to the input position referred to by the back pointer of state s.

4.2.8 Relationship to Tomita Parsing

The Tomita [40] approach to parsing is worth mentioning because it shares
the ability of the Earley parser to parse sentences using arbitrary context-
free grammars and uses a similar parallel approach. However, a Tomita style
parser creates explicitly parallel parsers when an uncertainty is encountered.
However, to avoid exponential blowup, a Tomita parser must then go through
extra work to join together different forked parsers that reach the same point
in parsing through different paths.

The Earley approach is generally equivalent to the Tomita approach if
the explicitly parallel parsers are regarded as being implemented using user-
level threads with light-weight state and a specialized thread scheduler which
advances each thread in lock-step with the input stream. The back pointers

in the state link together the “stack” of activations of the thread.

80

4.3 Advantages to the Earley Approach

4.3.1 Flexibility

One of the main advantages of the Earley approach to parsing is that it grace-
fully handles arbitrary context-free grammars. Traditional wisdom is that
large classes of grammars can be converted into a convenient canonical form
such as LR or LL. However, this canonicalizing conversion often distorts the
resulting concrete tree, which makes it difficult to compose meanings.

For example, consider the following grammar G for array references:

E _} E [13 [’7 E (C] ”

EF — i

This can be converted into LL form using the techniques described in

Aho et al. [1]. Doing so results in a grammar G’

E —- id FE’
E) _) « [7’ E “] ” E)
E' — ¢

However, when presented with the sentence x[y], grammars G and G’
behave very differently. G’ generates the parse tree shown in Figure 4.1.

Since E' is not an expression — in fact, it has no correspondence to
the constructs in the language — it is difficult to associate a meaning with it
that corresponds to some semantics of the language. In order to make use
of grammar G’, an artificial meaning must be assigned to E’. This artificial
meaning must then be taken apart in order to build the correct meaning for

the expression F.

81

Figure 4.1: Parse tree for x[y] with grammar G’.

As a consequence, the meaning computations in G’ must break apart the
meanings of their constituent parts. On the other hand, if G could have been
parsed directly, its meaning computations would be simple compositions of
their parts, each with a direct correspondence to the semantics of the language.

Furthermore, many techniques for producing efficient parsers for static
grammars rely on being able to compute global properties of the grammar. For
example, token lookahead sets are one of the first tricks for improving parser
efficiency, and the computation involves the entire grammar. This is difficult

to do when the grammar keeps changing, as in an extensible language.

4.3.2 Extensibility

As mentioned previously (c.f. 4.2), an Earley parser explicitly processes the
rules of a context-free grammar in its original form. This makes the parser
easy to extend, because it is clear what needs to happen when a grammar
change takes place — the grammar representation is simply updated. There
is no additional processing necessary, since the parser operates on a direct

representation of the grammar.

82

An Earley parser can also be thought of as processing multiple can-
didate parses in parallel. We can achieve scoped, local grammar changes by
augmenting the states of these parses with a parse environment that contains
the grammar. Hence, the parser can be parsing multiple grammars at once.

Consider, for example, the following grammar:

A — aBb

A — aAch

In this example, the interpretation of B depends on what follows it?. That is,
a B followed by a c is to be interpreted under the influence of grammar change
Aq.

The Earley parser would normally introduce two states to correspond

to the two active possibilities:
(A — -aBb,k)

(A — -aBc,k)

If the grammar augments Earley parsing state, then it’s clear how this can

work:

(A — -aBbk,G)
(A — -aBc,k,A1(G))

where A;(G) denotes the influence of the grammar change on the original

grammar G.

2Doing this a lot in a language can make it very difficult to read, because you can’t
understand a program in a straightforward left-to-right manner. However, several languages
have some flavor of this when it comes to exceptional cases, specifically because they want
to keep the thinking for exceptional cases out of the way of the normal case. In any case,
it’s interesting that an extensible Earley parser can handle this!

83

Cardelli’s [9] mechanism for syntactic extension at the surface grammar
level operates at a global level. Our approach makes possible local and scoped
changes to the grammar.

So, our approach adds a parse environment to the state which includes
the grammar. In addition, since we do not want to run back over the parse
states to build a parse tree, and we aren’t worried about parsing ambiguous
grammars, we collect the meanings in the parse states as well. Hence, our
states look like:

<N_)G’B ' CD,3)</'LOHU'1>7O‘>

which denote the same states as in (4.1) but with accumulated meanings
(1o, p1) and in environment .

The meaning sequence (u, 141) is exactly as long as the position of the
dot, and its elements are in correspondence with the vocabulary symbols to
the left of the dot. In this example, pg is the meaning resulting from the parse

of a and p, is the meaning resulting from the parse of B.

4.3.3 Understandability

The Earley parsing approach is a straightforward implementation of a parser
for general context-free grammars. A straightforward implementation makes
system development, debugging, and maintenance more cost effective. Fur-
thermore, despite the direct implementation, an Earley parser is not inefficient
in the common case. Before Earley, generic parsers for context-free grammars

were somewhat less efficient even when operating on unambiguous grammars.

84

4.3.4 Complexity

The theoretical (asymptotic) complexity of the Earley approach is not bad, and
it is dependent on the class of grammar on which it is operating. According
to Earley [16], the algorithm is O(n?®) in the worst case. For unambiguous
grammars, an O(n?) bound is obtained.

Indeed, for many practical language grammars, it appears that O(n)
performance is expected. The latter class of grammars are those for which the
size of the state set does not grow with the length of the input string. Earley
calls these grammars bounded state grammars. Furthermore, bounded state

grammars include most LR(k) grammars as well.

4.4 Drawbacks to the Earley Approach

4.4.1 Expressiveness

If we weren’t concerned about the issue of programmer extensibility, then one
drawback to the Earley approach is that it may be too general. That is, most of
its flexibility is wasted because it seems that many kinds of grammar changes
— indeed, the most structured and hence most understandable ones — have
no greater expressive power than static context-free grammars. This is true
because the dynamic grammar can be converted into an equivalent (although
somewhat larger) static grammar by appropriate sub-grammar expansions and
substitutions?.

However, we take the position that a grammar expressed as a dynamic

3Although we did not work out the theoretical details of this process, a few casual
translations suggested that the process is similar in spirit to how non-deterministic finite
automata are converted into equivalent deterministic automata.

85

grammar is more clear and natural. For example, taking the example of while
and break, it is somewhat clearer to define statements in general and express
the exception case that break is a valid kind of statement inside a while body.
The alternative is to explain that there are two sets of statements — those inside
while and those not — and that the two sets are the same except that break
is in one set and not the other. This isn’t a difficult factoring problem if the
new kind of thing (break in this case) were only allowed directly inside the

while. If that were the case, the programmer could simply write:

stmt — while “(” (c:expr) “)”

“{” (conseq: while_stmt_list) “}”

while_stmt_list — in_while_stmt while_stmt_list
while_stmt_list — €

in_while_stmt — stmt

in_while_stmt — “break” «;”

However, a break statement is allowed inside another statement in the body
of the while, for example, an if statement. With some statements using sub-
statements as constituents, the entire stmt sub-grammar has to be replicated
and translated to account for the addition of the break statement. This ex-
plosion, which multiplies with each statement with this property, is why static

semantics as a compiler construction technique is so widely accepted.

4.4.2 Performance

Although the theoretical performance (asymptotic complexity) of the Ear-

ley approach is good, especially considering its flexibility, the practical per-

86

formance is less impressive. In practice, the performance suffers from the
difficulties of all interpreters; systems that make heavy use of compile-time
information (and compile-time static knowledge) to build efficient parsers can
achieve better performance than those that don’t. For example, the yacc
parser generator spends a relatively large amount of time preprocessing the
grammar in order to build a structure that is very fast to interpret at runtime.
An Earley parser does not utilize precomputation of this sort, and hence it
must recompute the same kinds of information at parse time, incurring that
time cost for each program compiled.

Despite somewhat less efficiency than a parser like yacc, an Earley
parser can achieve sufficient performance for practical purposes. Our imple-
mentation written in C parses a 600-line Java program in about 44ms on an
866MHz Pentium III. Considering the flexibility that this approach enjoys,

this seems plenty fast for production use.

4.5 Extensibility

4.5.1 Scope Issues

An extensible parser can be thought of as dealing with multiple static gram-
mars. Each grammar change creates a new grammar for parsing a portion of
the input program. The scope issue to be resolved is determining in which
grammar a particular non-terminal being recognized is to be interpreted.

The scope of a grammar change is the set of non-terminal symbols over

which the change applies®.

4Since we use a conventional separate lexical scanner, we don’t allow changes to the
lexical analyzer and hence can take the meaning of terminal symbols as fixed and global.

87

What does scope look like in an Earley parser?

The same scope issues that arise in hygienic macro expansion come up in
extensible parsing, and we show how those issues are addressed.

However, when the grammar is no longer a static entity, an additional
scope issue arises, which is: What is the scope of a change to the grammar?
An example of the scope issue is in the parsing of something like Java’s while
statement where break is a valid statement inside while but not elsewhere.
The scope of the grammar change that makes break a valid statement should
only be the body of the while, not its expression part and not statements that
follow the while.

The usual approach for handling this sort of construct is to make break
be a valid statement in all contexts and then to check the static semantics of
the program after parsing is complete or using parse-time attributes (in fact,
there is a whole discipline for defining static semantics [42].)

Our approach uses the ability to extend the grammar during parsing.
When a while statement is encountered, the rule for the statement can make
a change to the grammar for the duration of the parsing of its body. This

change is the extension of the set of valid statements to include break.

Hygiene in an Earley parser

Grammar changes in our approach have dynamic extent and indefinite scope.
In this respect they are like special variables in Lisp. A grammar rule anywhere

may make use of a grammar change as long as the change is still active.

Future work should look at relaxing this restriction — there is some suggestion that with
some optimizations for the purpose, scanning could take place in the grammar itself!

38

4.6 Our Implementation

We have two implementations of an extensible Earley parser. One is written
in Scheme and is used for testing new ideas and validating concepts. The
other is written in C and is intended primarily for benchmarking, so that the
interpretive overhead of the Scheme implementation doesn’t overshadow the
actual performance of the parser.

The Scheme implementation is designed for flexibility and not for speed.
As a test bed for concepts, it is more convenient to work out how a feature can
be implemented in a highly dynamic environment such as Scheme than in a
pedantic, low-level environment like C. This implementation does not engage in
any of the performance optimizations described later®. The C implementation,
by contrast, is tuned for performance. It uses standard systems programming

optimizations to implement the algorithm efficiently.

4.6.1 Details
Literal Equivalence

In our current implementation, we do nothing special to handle literal equiv-
alence. Literal equivalence for identifier tokens is determined by equivalence
of their characters. As a result, we get a kind of context-sensitive keyword
determination. An identifier plays the role of a syntactic keyword if it occurs

at a place where one is expected.

5The Scheme implementation does employ the optimization described in section 4.8.2,
pruning states using FIRST. This optimization is only because we wanted to exercise the
FIRST-pruning optimization in the test bed before implementing it in the low-level imple-
mentation. We also use the Scheme implementation to precompute the FIRST sets when
grammars are being precompiled.

89

Note that this behavior, combined with poor programmer practice, can
lead to programs that are difficult to read. PL/I, for example, exhibits this

kind of context-sensitive keyword identification [20]. Consider:

if(x) = then + then; (1)
if(x) = then + then then; (2)

In this example, (1) is an assignment of the sum “then+then” to the array
“if” | and (2) is a test of the value x against the sum “then+then”. To mitigate
this problem, we implement keywords as distinguished entities, but they are

scoped to the grammar change module which introduces them.

Disambiguation

Our implementation computes meaning as the parse progresses, instead of in a
post-pass as traditional Earley parsing does. To prevent an explosion of states,
we use a disambiguating rule to collapse ambiguous cases. This is discussed

more fully in section 4.8.1.

4.6.2 Meta-syntax

The notation we use is essentially standard BNF (e.g., see Aho et al. [1]).
Occurrences of vocabulary elements on the right-hand side of a rule are given
variable names to represent the meaning for the corresponding parsed input
element during the computation of the meaning for the whole rule®. For a
more complete explanation of our meta-syntax, see Section 5.8.

For a simple example, a rule for an if statement might be:

6These variable names play the same role as the $% variables in the action part of yacc
grammar rules.

90

ifstmt — if ({c:expr)) (conseq:stmt) else (alt: stmt)

The typographical distinctions herein which signal different roles for
identifiers, such as between if and ifstmt, are written in the meta-syntax with
quotes. Other special symbols are entered using existing operator symbols

such as <, > and :. The above rule might be written in our meta-syntax as:

ifstmt = "if" " (" <c:expr> ")"
<conseq:stmt>

"else" <alt:stmt>

This defines a rule called ifstmt, which begins with a syntactic literal
(if), followed by an expression ¢ in parentheses, followed by a statement
(conseq), followed by another syntactic literal (else), with another statement
alt at the end.

It is necessary in this implementation to use existing operator symbols
because the tokenizer is not integrated with the parser. This implies that
tokenization is not an extensible facility in this implementation. Hence, all
meta-syntactic notation must either use the existing tokens of the language
being implemented or add new tokens to the language globally. In general, we
do not want to change the lexical structure of the base language, so existing
token forms are used to express meta-syntactic forms.

Future work includes the incorporation of an extensible scanner. The
ability to extend the lexical structure in a local and scoped way makes certain
kinds of language extensions much more natural and eliminate the necessity
to use existing tokens in meta-syntactic forms. It should also allow user ex-

tensions to the language to specify new lexical categories.

91

4.6.3 Meaning Computation

Because we are compiling and not just recognizing, we have to associate a
meaning with grammar rules. We implement two ways of computing a new
meaning; a primitive, procedural meaning function, and a recursive compila-
tion to produce new meaning.

The following definition for the traditional if statement illustrates the

notation used in this discussion:

ifstmt — if ((c:expr)) (conseq:stmt)
else (alt: stmt)

=makeif (¢, conseq, alt)
In this example, the non-terminal is ifstmt, the pattern is:
if ((c:expr)) (conseq:stmt) else (alt: stmt)

where ¢, conseq, and alt are pattern variables. The expression for computing
the meaning is:

makeif (c, conseq, alt)

This example also illustrates using an extra-grammatical function, makeif,
to compute the overall meaning of the complete ifstmt. Taking as arguments
the appropriate pattern variables, makeif builds, using the facilities of the
underlying metalanguage, a complete meaning value.

The simple functional form of this meaning computation is what we
mean by composition of meaning. That is, the new meaning is composed from
the old (lower-level) meanings.

Since the parser is itself a mechanism for computing meanings, the sec-

ond approach simply reuses that mechanism. In this case, the replacement text

92

and a grammatical type is handed back to the parser/compiler in a recursive

sub-parse:

ifstmt — if ((c:expr)) (conseq:stmt)
I [if (¢) conseq else { }]|

Here, the meaning for a single-branch if (i.e., an if statement without
an alternative part) is determined by computing the meaning for the program
fragment given in double-brackets. The portion inside the double-brackets is
referred to as the template. The template, much like a quasiquote form in
Lisp, acts like a token string with holes. In this case, the token string denotes
a full two-branch if.

The holes are filled in with parts taken from the original form. In this
example, ¢ and conseq are pattern variables and denote the meanings resulting
from the parse of an ezpr and a stmt. When these tokens are encountered
during the parse, the meaning obtained during the parse of the left-hand side
is immediately substituted, and it is as if the production were complete.

Note that this is essentially the same approach used in compiling with
Scheme macros, except that the meanings of the constituent parts are deter-
mined by the pattern rather than by their use in the template or body part.
Recall that in Scheme macros, the occurrence of a pattern variable in a tem-
plate represents the parse tree for the corresponding part of the input, coupled
with a compile-time environment to protect hygiene. In our parsing approach,
the pattern variable denotes a complete meaning, such as an abstract syntax
tree.

The assignment of meaning during pattern recognition is necessary, or

at least convenient, because there are no other syntactic cues to guide a surface

93

parse of an occurrence of the macro. In Scheme, by contrast, the parenthetical
list representation is a simple syntax which requires no knowledge of macros
or meanings to build trees out of source text.

One consequence of this approach is that grammar changes that only
become apparent during the parse of the right-hand side (the replacement text)
are not known during the parse of the left-hand side (the occurrence text).

One environmental interaction that comes up in extensible parsing but
doesn’t manifest in Scheme macro processing is the declaration of the surface

syntactic types of the arguments. For example, in a pattern declaration:
forstmt — for (v:var) = (e:expr) ...

var is a kind of variable reference in the pattern that does not manifest in
Scheme macro processing, i.e., it is a reference to a non-terminal name. In
Scheme macros, there are no names given to syntactic roles in a pattern. That
is, there are no pattern abstractions in Scheme macros.

Furthermore, the meaning of the identifier var should be determined in
the environment of use, even though it occurs in the environment of definition.
Thus, for example, the user can change the syntax of erpr. That change is
visible and used by any rule which uses expr in its pattern, even if the rule
has no knowledge of the possibility that expr has changed.

However, the template is interpreted in the environment of definition,
preventing local changes to the grammar from affecting the syntactic interpre-
tation of the template”. For example, let us suppose that in addition to the

if statement mentioned previously there is a construct, with, which adds a

"This is like the second part of the hygiene condition; references (implicit in the syntactic
construction) in the template should not be captured by bindings other than those present
at the point of macro definition.

94

new kind of expression, it, to the grammar:
withstmt — with ((e:expr)) Aq[(body: stmt) |

where A; represents a grammar change whose scope is the bracket-delimited
portion of the rule and whose effect is to add the symbol it to the alternatives
for expr.

Now consider an input program fragment such as:

with (foo())
if (it)

print(it);

The with establishes a new kind of expr which consists of the symbol
it. Even though the ifstmt rule was written with no knowledge of the future
withstmt rule the occurrence of expr in ifstmt should consider it to be a valid
expression. This is true even though the occurrence of expr in the pattern
ifstmt is well outside the static scope of the change made by A;.

Hence, although we cannot implicitly carry a grammar change from the
right-hand side (template) into the left-hand side (pattern) of a translation
rule, we can isolate productions that make use of a non-terminal N from the

local effects of redefining N.

4.6.4 Performance

Practical measurements have been made of Earley parsing in the context of im-
proving its performance using precomputation approaches [30]. Unfortunately,

since that work did not give the implementation of unmodified Earley, it is

95

difficult to draw conclusions about the general performance of the unmodified
Earley approach.

Our implementation is designed from the start to be fast, since one of
our points is that the Earley approach is not prohibitively expensive. Our C
implementation uses traditional performance-improving techniques such as in-
lining, as well as carefully chosen data structure representations. Furthermore,
since modern compilers spend much more time in optimization and other back-
end processing than in front-end processing like parsing, if the parser is a bit
slower because it is completely interpretive (as in Earley), the overall system
cost is still not prohibitive.

We don’t have a large body of language implementations designed to
be extensible. Therefore, in order to understand the performance implications
of our extensible grammar approach, we made a pessimistic estimation of the
frequency of grammar changes. In particular, we assumed that a grammar
change could take place at every input token.

This analysis leads us to the natural advantage of the Earley parsing
technique. Since Earley parsing is essentially an interpretive process, there is
no processing of any grammar changes required in order to start recognizing
against a modified grammar. Thus, even if grammar changes are extraordi-
narily frequent, performance is essentially unchanged.

Even in the absence of any grammar changes, performance is tolerable
in practice. As mentioned previously, without any grammar changes (i.e., with
a completely static grammar), our C parser implementation parses a 600-line

Java program (2777 tokens) in about 44ms on an 866MHz Pentium III.

96

4.7 Literal Equivalence

Scheme macros have the ability to specify pattern elements that must match
literally. Since this is most often useful for identifiers (for example, else),
the question arises as to how to distinguish identifiers that denote pattern
variables from identifiers that are keywords. Scheme answers this by having the
developer provide an explicit list of identifiers along with the syntax definition.
The identifiers in the list are then considered literals in the patterns rather
than pattern variables.

Furthermore, in Scheme, these syntactic literals are scoped, meaning
that the determination of literal equivalence takes into account the normal
scoping of the language. The syntactic literals are not reserved words, and the
identifiers may be rebound, leading to new meanings (and hence a failure to
match in the pattern).

In Scheme, the cond special form can be implemented using a macro.
To do so requires the use of a scoped syntactic literal for recognizing the else

clause correctly. The following definition of cond illustrates the idea:

(define-syntax cond
(syntax-rules (else)

((_ (test body ...) clause ...)

(if test
(begin body ...)
(cond clause ...)))

)

#£)

((_ (else body ...))

97

(begin body ...))))

Here, else is a syntactic keyword and is therefore declared explicitly in the
syntax-rules clause.
The scoped nature of the else keyword is illustrated by the following

example:

(let ((else #f)

(never #f))

(cond
(never 0)
(else 1)))

If the occurrence of else were interpreted as referring to the syntactic
keyword, this program fragment would evaluate to 1. Instead, the local binding
of else shadows its meaning as a syntactic keyword so that its occurrence
denotes the usual variable reference instead, and hence this program fragment
evaluates to #f instead.

In an extensible parsing context, it is also necessary to specify syntactic
literals. In a Scheme system, there are only a few special cases where syntactic
literals are required. The else clause in a cond is one of just a few examples.
However, in parsing traditional languages, syntactic literals are used to rec-
ognize essentially all constructs. Syntactic literals are the keywords of the

language, such as if and while, and introduce most statements®.

81t appears that statements are usually introduced by such distinguished keywords partly
for computation and partly for comprehension reasons. Computationally, any parser has
an easier time if it can recognize the kind of construct it is parsing as soon as possible.
Recursive descent parsers, a mainstay of hand-constructed parser techniques, rely on this
early recognition of constructs. It also seems that the same principle applies in the cognitive

98

How does the system determine whether or not a syntactic literal matches
a particular token in the input? There are two basic approaches to making that
determination. The first, more traditional approach, marks certain identifiers
as special reserved words. The second approach allows literal equivalence to
be a local property of an identifier.

In the traditional reserved-word approach, any occurrence of something
that looks like an identifier but is made up of a particular character sequence
is regarded as a different class of token — an instance of a reserved word. For
example, while may look somewhat like an identifier, but its actual content
causes it to be classified by the scanner as a reserved word, or, more generally, a
syntactic literal. In this way, since the lexeme is never regarded as an identifier,
there is no confusion between identifiers and reserved words. Keywords are
not even considered identifiers by the lexical analyzer; their special roles are
determined and assigned during lexical analysis and are fixed and global in the
language. This approach has the advantage of clarity — there is no ambiguity
about the syntactic role of while.

However, this approach fails when the language is to be extended dy-
namically, because the author of a particular module cannot know what syn-
tactic literals are going to be used by some other extension to the language
— the global nature of reserved words breaks the modularity of the language
system. Hence, an extensible language system must support a means to scope
syntactic literals to their textual regions of relevance and avoid influencing
other textual regions of the program.

This second approach makes literal equivalence a local property of an

process; it is simply easier for humans to read a program when a left-to-right scan reveals
the structure of the program in a top-down manner. Standard mathematical expression
grammars are an interesting counterexample.

99

identifier, determined by it context of occurrence. We accomplish this by
making the lexical analyzer extensible in exactly one dimension: the set of
identifiers that are interpreted as syntactic keywords is associated with the
current grammar.

Once scope has been introduced to manage the modularity of syntactic
literals, another question arises: How is a syntactic literal in a pattern deter-
mined to match a syntactic literal in the input? This is the same question as
applies to program variables — how is a reference to a program variable known
to refer to one particular declared variable or another. To recall the example

for program variables, consider the simple case:

int foo(int x)
{
print(x);
if (x ==0) {
int x = 9;

print(x);

The second occurrence of a reference to the program variable x clearly refers
to the second declaration — the mechanisms of lexical scope ensure this by
properly managing the compile-time context.

The problem is the same for syntactic literals but recalls the approach of
Scheme where syntactic keywords are lexically interpreted as identifiers. Dur-
ing compilation, these keywords are recognized as being “bound” to syntactic

markers like else and including special forms like if and let.

100

4.8 Improvements to Basic Earley

In addition to using Earley as the core algorithm for creating an extensible
parser, we have made some simple changes that simplify parsing and improve
performance without significantly impairing the incrementally extensible ben-

efits.

4.8.1 Conflict resolution

In the presence of an ambiguous grammar, the general Earley algorithm can
return all parse trees for a given input string. This can be done with no extra
space cost in a recognizer. However, a parser that builds meaning during the
parse can require exponential space to encode the meanings of all the different
parse trees. In practical language design, it is useful to have a simple rule
for eliminating ambiguities locally, that is, as soon as an ambiguous parse is
detected in the input.

We have developed an approach for resolving conflicts between alter-
native possible rule reductions that is simple to understand and trivial to
implement. In our approach, we attempt to resolve conflicts eagerly. Conflicts
arise when parsing an ambiguous phrase, so essentially we resolve the ambigu-
ity as soon as the conflict is detected. The disambiguation rule we adopt is to
preserve the earlier rule in the grammar and discard the later rule. This has
the advantage of being easy to understand and fully deterministic.

This is actually quite easy to do by implementing the parser to be rule-
order preserving. That is, by evolving the Earley states in an ordered fashion,
we know that in an Earley state containing two conflicting completions, the

completions are processed in exactly the same order in which they were added

101

as a result of the prediction which introduced them. Conflicting completions
are those that are for the same non-terminal and are covering the same sub-
string of input, that is, their predicted-from pointers are to the same state.
Then, we simply ensure that the predictions are introduced in the same or-
der as the occurrence of their rules in the grammar. We keep only the first
conflicting completion, and the user has an easy-to-understand model for the

resolution of conflicts in parsing.

4.8.2 Pruning states using FIRST

Observation of the operation of the the Earley-based parser indicates that
many tuples are introduced that are dropped in the transition to the next
state (i.e., reading the next input token). For our 2777-token Java program,
without FIRST pruning, there are 1225560 tuples created, compared to 618620
if pruning is done. Commensurate with this gain, overall parser running time
is almost cut in half (86ms versus 44ms).

Even better, these tuples can not be introduced at all by initially veri-
fying that the succeeding input token is not in the FIRST set® of a dotted rule
to be predicted. This way, no prediction succeeds that does not lead to a rule

that matches the next token of input.

4.8.3 Approximating FIRST

Unfortunately, it is relatively expensive to compute the FIRST set because
it is a global property of a grammar and would in principle need to be re-

computed whenever the grammar changes. Part of the difficulty lies in empty

9See Aho et al. [1] for a description of the FIRST set.

102

(¢) rules; you can’t simply recursively expand the left-hand non-terminal — if
a non-terminal can expand into nothing, the FIRST computation has to check
the next grammar element in the rule, too.

However, it turns out that an easy-to-compute approximation of FIRST
gets most of the benefit. In fact, the numbers cited above are based on using
this approximation. The approximation is to punt on epsilon productions and
assume they can match anything. In the usual computation of FIRST, an
epsilon production causes the invoking rule context to check the next gram-
mar element for its FIRST. In our approximation, the FIRST of an epsilon
production is defined to be the universal set. This is a conservative estimate
of the real FIRST but makes the scope of the computation much more local

and hence easier to recompute.

103

Chapter 5

Compiler Extension Framework

In the last chapter, we introduced a compiler built using the Earley algorithm
as the core engine. Prior to that, in Chapter 2, we introduced the theme
of extensible programming as a discipline with supporting technology from
the language framework, specifically in the context of Lisp systems. In this
chapter, we bring these concepts together and show how a few additional
capabilities in an extensible compiler can bring the full power of the extensible

programming discipline to bear in a conventional syntax.

5.1 Capabilities of Extension Framework
The additional capabilities we wish to add are:

e Declarative, pattern-based transformations
e Transformations based on synthesized attributes

e Arbitrary procedural mechanisms to produce code

104

5.1.1 Declarative, Pattern-Based Transformation

A declarative, pattern-based transformation is a pair consisting of a target
language pattern and a template for the translation expressed in a reduced
form of the target language. The restriction on the form of the template is
to prevent indefinite recursion of transformation; as a matter of practice, the
pattern is constructed to match a “high level” language construct, and the
template makes use of only lower level constructs.

Using pattern-based transformations, a language system developer can
easily define a translation from one set of language features into another. This
capability is important because many language features are easily understood
in terms of simpler, more primitive features. Indeed, new language features are
often defined for the programmer in terms of existing features. For example,
»

the “4+=" operator is often defined in terms of the existing “4” and “=

operators.

5.1.2 Pattern Matching Synthesized Attributes

Since the result of parsing is to produce meaning values, and parsing takes
place while trying to match a pattern in a pattern-based transformation, there
is additional opportunity to include attributes of the meaning in the pattern
matching process. Thus, the transformation can match synthesized attributes
in the elements of the pattern part.

Transformations based on synthesized attributes extend the capabili-
ties of declarative, pattern-based transformations by letting patterns match
on computed properties of the constituent parts. For example, a formatting

procedure like printf can be expanded at compile-time if the format string is

105

a compile-time constant. The property of an expression being a compile-time

constant is a synthesized attribute of an expression.

5.1.3 Procedural Code-Production Mechanisms

Arbitrary procedural mechanisms to produce code are the ultimate fall-back
for the language system developer. This is the escape hatch when the declara-
tive, pattern-based transformations are too weak, and the problem cannot be
expressed locally in terms of synthesized attributes. Procedural mechanisms
are also how a language system is bootstrapped, since in order to begin, the

language system must be expressed in terms of some other available language.

5.2 Elements of an Extension Framework

Supporting the target language is the eventual purpose of a language system. It
is in the target language that end users express the solutions to their problems.
In the lexicon of layering, the target language is the interface at the top of the
layer.

An extensible parser requires two languages in order to be useful. First,
there must be a language which can describe the syntax of the new feature.
Because this constitutes a syntax for describing syntax, it is called meta-syntaz.
Second, there must be a language for describing how to compute the meaning
(e.g., intermediate code) for the new feature.

The meta-language provides the means to implement the target lan-
guage. In terms of layering, it is the means by which the layer itself can be
implemented. In the context of this work, we say that the meta-language is

the language used to express the computation of meaning.

106

An extensible parser requires some notation to define the syntax of the
target language and to associate parsing activity with actions expressed in
the meta-language. This notation is the meta-syntax, and it contains as a
sub-language the meta-language.

Parsing is the process of applying the rules of the current grammar to
identify target language elements (as defined using meta-syntax) in the input
sequence of tokens. Compiling is parsing plus the invocation of the actions
written in the meta-language to produce a meaning for the target language

element (usually some form of intermediate code).

5.3 Implementation

To achieve the desired capabilities, our approach involves extending the Earley
parser described in the previous chapter with several features. The following

features are added:

e Meta-language: a notation for expressing the composition of interme-
diate code, possibly employing recursive compilation, pattern variables,

and the results of in-line computation

e Local grammar changes: the ability to parse some parts of a rule using

a different or modified grammar

e In-line computation: the ability to execute meta-language code during

the parse before the completion of a rule

5.3.1 Meta-language
The meta-language includes the following features:

107

e Syntax evaluation: the ability to translate syntax from the intermediate
code compiled from meta-syntax to the internal representation used by

the parser

e Recursive compilation: the invocation of the compiler as part of an action
computation (i.e., from the meta-language) to compile new strings of

tokens into intermediate code

e Pattern variables: the ability to reference the non-terminals of a produc-

tion’s right-hand side from within a recursive compilation

For ease in developing the meta-language itself, we use a bootstrapping
process to make the power of the extensible compiler available for implement-
ing the meta-language. Since we claim that this approach is valuable in the
development of language systems, what better (or first) system to which to
apply the approach than the system’s meta-language!

The bootstrapping proceeds in three phases:

(1) The initial grammar is not expressed in meta-syntax notation at all.
Instead, the initial grammar is expressed using the intermediate code to which
the meta-syntax normally compiles and which the parser consumes. This is
necessary because initially there is no grammar with which to parse meta-
syntax. The grammar defined in this phase is for meta-syntax and is limited
to just enough to express what is needed in the next phase. In our implemen-
tation, the initial grammar compiles most of the meta-syntax part but very
little of the meta-language. This initial grammar lacks in-line computation in
the meta-syntax and has only variable references, literals, and function calls

in the meta-language.

108

(2) With basic meta-syntax in place and a sufficient meta-language,
we can now extend the initial grammar using meta-syntax instead of hard-
coded syntactic intermediate code. In this phase, we extend the meta-syntax
grammar to include in-line computation and extend the meta-language to in-
clude assignment statements, basic conditionals (if), block constructs, and
the primitives used for doing on-the-fly grammar changes (syntax).

(3) Having most functionality in place, we flesh out the grammar to
make it fully featured. Here, we write while in terms of if and goto, add

one-branch if, and provide other convenience statements and expressions.

5.3.2 Syntax Evaluation

Syntax evaluation is the process of turning meta-syntactic intermediate code
into the data structures that drive the actual parser. The meta-syntactic
intermediate code is the meaning computed by parsing the meta-syntax.

The interpreted nature of Earley makes this process very straightfor-
ward for us, compared to what would be necessary for a table-driven LALR
parser. This fact is due to the inherent similarity between the data structures
of an Earley parser and the representation of the meta-syntax.

We also use this evaluation process to support some convenience nota-
tions in the meta-syntax. We support repetition, optional parts, and alter-

natives, as illustrated in Figure 5.1, where A and B denote pattern subparts.
In support of extending the basic syntax with convenience notations, the

syntax evaluation process turns the extensions into the flattened representation

expected by Earley. For example:

109

repetition A*
optional part [A]
alternative forms | A | B

Figure 5.1: Extensions to basic meta-syntax.

S % “(77 A >|< “)’7 = f($2)
is transformed into:
S _> “(” T]_ “)” = f($2)
T A T = cons($1,%$2)
Ty —e =0

where T} is a newly generated non-terminal'. The actions associated with the
T, rules have the effect of building the meaning of A* as a list of A meanings.

Similarly, the optional construct [A] produces a meaning which is either
the false value in the meta-language or the meaning of A. The alternative
construct A|B produces a meaning which is the meaning of the subpart that

matched.

5.3.3 Recursive Compilation

The ability to recursively invoke the parser is presented as a procedure in the
meta-language, compile, which accepts a non-terminal name, a token string,

and an optional set of pattern variable bindings?.

!The name T} is actually formed from the name of A by appending a __star, which
is necessary to allow the extension author access to the entire repetition construct. An
example of this is in the next chapter.

2The very name of this procedure, compile, shows our perspective — this operation is
one to produce intermediate code, and is not merely determining syntactical structure.

110

Recursive compilation is mostly achieved simply by following the en-
gineering practice of avoiding global variables. With that, the parser initial-
ization procedure is refined to allow a parse to start at a non-terminal other
than the grammar’s start symbol. As Earley parsing was originally defined,
the grammar contains a distinguished entry point, ¢ (see Section 4.2.3). Sup-
porting recursive compilation then reduces to building an appropriate ¢ rule
on demand.

Now when trying to parse a token string L with respect to a non-
terminal A, the framework builds an initial state (¢ — - A,0) where k is
newly generated3. The parser then runs with L as input. In the final state, if
L is a valid occurrence of A, then there is a tuple (¢ — A -,0), the meaning

for which is the value of the recursive compilation.

5.3.4 Pattern Variables

The meta-language needs a way to refer to the meanings that have been built
up by compiling the elements of a pattern. Some systems use numerical vari-
ables (e.g., see YACC [21]), others use symbolic variables (e.g., see the work
of Cardelli et al. [9].) Since the audience of our meta-syntax is fairly broad,
we believe symbolic names are the better choice. These variables are used in
two ways — they are the variables used in the meta-language for composing
new meaning, and they are referenced in declarative translations.

We do not extend the parser per se to implement symbolic pattern

variables. Instead, in the process of compiling the meta-language into an

3In fact, we don’t even need to generate a new symbol — we simply build a new anonymous
<production> object, which achieves the effect of having defined a new non-terminal. Since
the ¢ name never appears on the right-hand side of any rule, the production does not need
a name.

111

executable representation suitable for the runtime environment of the compiler,
the compiler maps the positional syntactic parameters to the symbolic names.

For example, in Figure 5.2, the action part is compiled into a representation

like:

(lambda (ignore s)

(compile ’stmt ’...))

which the runtime environment calls with arguments that are the meaning of
the twice identifier token and the stmt, respectively. The meaning of the
identifier is discarded because it is not assigned a name in the production.

The parser is extended to recognize when a pattern variable is being
used in a token string. The parser substitutes the associated meaning value
when it encounters an identifier which is bound to a meaning in the syntactic
environment. To implement this, the environment structure in the parser
includes a pattern variable symbol table. The value of a symbol is a meaning
value and a non-terminal name. When the parser is predicting (N — « - A),
it checks to see if the next input token is an identifier whose name occurs in
the pattern variable symbol table and which was generated by parsing an A.
If this happens, the meaning is appended to the tuple, and (N — a A -)
is put into the next parse state, just as if an actual A had been parsed out of
the input at that point.

Taking Figure 5.2 as an example, s is a pattern variable that gets bound
to the meaning resulting from parsing the stmt that follows the “twice” key-
word. In the recursive compilation, the body of the block is expecting a stmt,
so the occurrence of s matches and the stmt production is completed. This is

repeated again for the second occurrence of s.

112

twice_stmt
= "twice" <s:stmt>
== compile(:stmt, [[{ s s } 1]);

Figure 5.2: The twice statement, illustrating pattern variables and substitu-
tion conformance.

In our language for describing language extensions, a rule is comprised of
a three parts. The first part is a non-terminal name (e.g., twice_stmt) followed
by an equals sign (“="). The second part is a sequence of elements which are
to make up an occurrence of the form (e.g., the keyword twice and a stmt)
followed by a double-equals sign (“=="). The third part is the expression which
is to compute the meaning of the form from its constituents (e.g., an invocation
of the compile operator). Inside the third part (the meaning expression), a
bare colon (“:”) introduces a symbol in the meta-language (e.g., :stmt), and
double-brackets (“[[” ... “]]1”) enclose a string of tokens which are to be
recursively compiled. This notation is described more fully in Section 5.8.

Note that there is no “;” after the s, which looks a little strange to the
casual observer. However, this follows from the expansion of the block form
and the fact that s is a statement. Figure 5.3 shows how the block expansion
works out to the level of the s, which matches the stmt non-terminal.

In some cases, non-terminals are organized into some kind of meaning
hierarchy. In fact, to express precedence in this kind of grammar, it is common

to see very deep hierarchies®. For example, a primary is a valid ezpr. In this

40ur Java grammar has 21 levels of nesting from expr to identifier. In a case like this,
pre-processing the grammar, as is done in most compiler generators, can greatly improve

113

block |

“{7 stmitlist “}”

[stmt| [stmitlist]

| stmt| ‘ stmtlist ‘

[s]
Figure 5.3: Parse tree for translation of the twice statement.

case, something parsed as an primary could be used where a expr is expected.
See Figure 5.4 for an example. In our implementation, this inheritance happens
automatically because the Earley parser keeps expanding ezpr in the current
parse state until it gets to primary, at which point it matches the pattern

variable e.

5.3.5 Local Grammar Changes

Normally, the parser uses the environment of a tuple for resolving grammar
lookups (recall that a parse tuple has an associated grammar environment). A
local grammar change is an operator which tells the parser to use a different
environment for parsing a particular non-terminal in a pattern. The meta-

syntax for a local grammar change pattern part looks like:

performance. Pre-processing wins because (1) ezpr is a very common grammatical element,
and (2) a single identifier is a very common expr. Our interpreted approach frequently
expands 21 non-terminals just to discover that x is an expression!

114

expr = "getter" <e:primary>
== compile(:expr, [[lambda () e 1])

(((7’

ar g%‘

“lambda”

conditional

[add
I

primary
ej

Figure 5.4: Parse tree illustrating how a primary gets used as an expr.

<pv:mnt:ev>

where pv is the name of the pattern variable to bind the resulting meaning, nt
is the non-terminal to parse, and ev is the name of the variable which contains
the environment in which parse nt (and the grammar in which to find nt itself).

The ev is either a rule local variable (Section 5.3.6) or the global name
of a syntax module (Section 5.7). For example, <q:query:sql_syntax> in a
pattern means to parse the non-terminal query as found in the sql_syntax
module and to use the name q to refer to the resulting meaning within this

rule.

115

5.3.6 In-line Computation

To support complex computations to build environments for use in grammar
changes, we introduce the ability to do computation in-line with the parsing of
the right-hand-side®. This allows a single environment to be used for several
distinct non-terminals.

In a generalization of pattern variables, the meta-language supports
variables that are local to the production. These variables are used to store
environments built by in-line computations for use in grammar change opera-
tions. As an example of using this feature to extend the syntax environment

before processing a subsequent phrase, take:

stmt
= "foo" { enew = extend(envt, ...); }
<s:stmt:enew>

The function extend is exposed to the meta-language for the purpose

of building new environments (see Section 5.6.3.)

5.4 Declarative Transformations

The general strategy for supporting declarative transformations was presented
in the previous chapter. To apply this strategy, our meta-language includes a
literal constant notation for a sequence of tokens. Such a literal constant is

typically used to supply the argument to a recursive compilation, as in:

®This is not a new concept. YACC [21] supports the same thing, although in that system
this feature is not used to compute new grammars on the fly!

116

xc_stmt
= "if" "(" <e:expr> ")" <t:xc_stmt>

== compile(:xc_stmt, [[if (e) t else {} 11);

The compile meta-language operator takes two arguments — a non-
terminal of the grammar, and a token sequence. It returns the meaning of
the token sequence when compiled as the given non-terminal. compile is
not a plain procedure, because it reflects on the scope of the meta-language
expression. That is, it arranges for the token sequence to be compiled in an
environment that includes the pattern variables present in the right-hand side
of the syntactic definition. For example, in the above definition for xc_stmt,
the use of compile includes an environment that binds e to the result of
compiling the ezxpr and t to the result of compiling the zc_stmt. This notation
is similar to that of Cardelli [9], apart from some details of meta-syntax.

With declarative transformation and the other meta-programming tools
in hand, we can realize the full implementation of while in terms of if and
goto, with break defined locally for the body. Figure 5.5 shows how while is

expressed for the meta-language as it appears in the third phase of bootstrap-

ping.

5.5 Synthesized Attributes

Because we have an expressive meta-language, the action associated with a
given production can do arbitrary analysis on the meaning of the pattern
variables. However, there is no way to select one of several otherwise ambigu-

ous matches depending on that analysis. We introduce the concept of syntax

117

xc_while
= "while" "(" <e:expr> ")"
{ loop = gensym();
e2 = extend(envt,
syntax(xc_stmt = break_stmt;),
syntax(break_stmt
= "break" ";"
== compile(:xc_stmt,
[[return loop;l]);));
}
<s:xc_stmt:e2>
== compile(:xc_stmt,
[[loop: if (e) { s goto loop; } 11);

Figure 5.5: Definition of while for the meta-language using extensible syntax
features.

guards to enable this ability. The meta-syntax for this feature is a meta-
language expression preceded by “/;” and located before the action part. For
example, consider the following simple optimization implemented in the gram-

mar using a guard to check if an operand is zero:

sum
= <el:expr> "+" <e2:expr>

/; zeroq(e2) /* check for always-0 right operand */

Our system implements this by arranging for a special meaning value to
be returned as the meaning when the guard expression fails. When completion

processing encounters the special value, it discards the entire tuple.

118

5.6 Procedural Code Production

The standard library of the meta-language provides several facilities that are
used to procedurally produce code. Principally, these facilities provide access
to the machinery of the compiler and the objects of intermediate code. For our
purposes, we use the RScheme runtime system as the execution environment
for the meta-language, although the meta-language syntax is closer to that of

Java.

5.6.1 Token Sequences

In this meta-language, we use Scheme data structures to represent compile-
time objects. A token is a pair, and a sequence of tokens is a list. Since the
underlying meta-language is Scheme, all of the list management functions are

available for building and destructuring token sequences.

5.6.2 Compilation

The function compile_in acts like the compile operator but takes an explicit
environment and a set of pattern variables and their meanings as an argument.
Apart from being the underlying implementation of compile, this is used when

finer control over the environment is required.

5.6.3 Environments and Syntax

The extend function takes a syntax environment and a set of syntax rules and
returns a new, extended environment. The syntax rules are produced using

the syntax special form, which wraps a meta-syntax form. For example,

119

syntax(stmt = new_stmt;)

is an expression which produces syntax intermediate code, suitable for use in
extending an environment. This can then be used to extend an environment

like so:

extend(envt, syntax(stmt = new_stmt;))

5.6.4 Reflection

The literal function takes an object of the meta-language and returns the
intermediate code for an expression whose effect is to produce a corresponding
object in the target language. How objects in the meta language translate to
target objects is determined by the adaption to the target language within the
extensible compiler framework, which is covered in Chapter 6 for Java as a

target language.

5.7 Modular Syntax

Our approach supports modularizing syntax, much as in the vocabularies de-
scribed by Krishnamurthi [26]. In our system, we use syntax modules to
separate out the meta-syntax (and its associated meta-language syntax) from
the target language syntax. A syntax module is realized as a named syntactic
environment, so a module can make use of another module by using the gram-
mar change operator to reference the target module and a non-terminal in it.
For example, the gateway between a target language in our current system

and the meta-syntax might be expressed like so:

120

decl
= "syntax" <u:unit:meta_syntax>

== apply(extend, envt, u);

One consequence of this modularization is to distinguish keywords from
different sub-languages. For example, the module meta syntax might use as
a keyword the identifier “to”, which is not a keyword in the target language.
This is desirable because some sub-languages define a lot of keywords that
would pollute the parent language. For example, SQL uses keywords heavily,
and reserving those words in a C target language would be prohibitive. Our
modularity approach enables the designer to support an SQL extension facility

without dragging all of the SQL keywords into the target language:

expr
= "sql" <q:query:sql_syntax>

== list(:sql_gateway, q);

5.8 Full Meta-syntax

In this section we give a more complete description of the syntax and seman-
tics of our meta-syntax, including the embedded meta-language. To describe
the meta-syntax of our system as a Java extension framework, we use fairly
standard extended BNF notation. In this description, a production is written
as a non-terminal, followed by an arrow, followed by a sequence of elements.

Each element is either:

e a non-terminal name, such as foo,

121

target sx /‘\m ota sx
decl [—

i " : unit = ...
= "syntax" <u:unit:meta_sx>
== extend(envt,u)

er'r) sql_sx
= "sql" <qg:query:sql_sx> queTy =

== |iSt(:SQ|_eSCape,Q)

Figure 5.6: Syntax modules being used to contain sub-languages.

e a reference to a category of tokens, such as id,

“w_"

e a literal token, written in quotes, such as “foo” or , Oor

e an element followed by *, such as foo*, to denote zero or more occurrences

of the element foo.

For example,
expr — exrpr “.” id

is a claim that one possible form for the grammatical element expr is an expr
followed by a literal “.” token, followed by an identifier. This is a left-recursive
rule because the non-terminal being defined occurs as the first element in the
right-hand side of the production. For describing our system’s meta-syntax, we
only need to define two token categories: id for identifier tokens and string
for string tokens. The description of the meta-language requires the additional

token categories int for integer literals and num for other numeric literals.

122

5.8.1 Syntax Declarations

In this section we describe the top-level structure of a syntactic declaration
in our extended Java implementation. The basic form is that of a syntactic

extension local to a file, which is introduced using the keyword syntax.
java_tl_decl — “syntax” syntax_decls java_tl_decl

A syntactic extension plays the role of a top-level declaration, and con-
veys to the following declaration an environment extended with the newly
defined syntax. The same idea applies if the syntax is being imported from an

separate file:

@, ”

java_tl_decl — “import” “syntax” name “;” java_tl_decl

This form causes a named syntactic declaration in the file indicated by name
to be imported and supplied to the remaining java_tl_decl forms. The file is
located according to the usual rules of Java package naming.

Syntax declarations themselves are enclosed in braces:
syntaz_decls — “{” syntaz_decl* “}”

Each declaration consists of a non-terminal name (id) and one or more

“]”-separated syntax-rules that denote alternative productions for the non-

terminal:

w_m" We”

syntax_dec] — id syntax_rules *;

syntaz_rules — syntaz_rule

(¢|77

syntaz_rules — syntaz_rule syntaz_rules

123

5.8.2 Syntax Rules

As seen above, each non-terminal is associated with a set of syntax rules that
define the valid expansions of that non-terminal. In the general case, a single

syntax rule is a sequence of syntax pattern elements followed by a rule action:
syntaz_rule — pat_elem”* rule_action

A shorthand notation is provided for the common case that one non-

terminal is valid in the place of another:
syntax_rule — id

This would be used, for example, to write that a block is a kind of stmt:
stmt = block;

This declaration states that anywhere a stmt is expected, a block can be
supplied. Of course, the kind of meaning (e.g., intermediate code) built by
block would have to be compatible with the kind of meaning expected by

users of stmt.

5.8.3 Syntax Pattern Elements

Syntax pattern elements define the right-hand side of a grammar rule. The pat-
tern elements specify what constitutes a valid occurrence of the non-terminal

being defined.

124

Primitive Pattern Elements

The two most basic kinds of pattern elements are tokens (terminal symbols)

and non-terminal identifiers:

pat_elem — pat_token

pat_elem — pat_nt

A token pattern is represented as a literal string, which matches the
same token on input. It is an error if the string does not scan as exactly one

token.
pat_token — string
For example,
break_stmt = "break" ";"

is part of a syntax declaration for break_stmt, with a syntax rule pattern list
that contains two pattern elements. Each of the two pattern elements matches

a literal token. The first token must be the identifier break and the second

@,

token must be the semicolon delimiter “;

Composite Pattern Elements

The other basic kind of pattern element is a binding construct, which is used

to bind a syntax variable to the meaning from a constituent pattern element:

pat_elem — pat_bind

pat_bind — “<” id “:” pat_elem “>”

(See also Section 5.8.6 for another pat_bind form)

125

We also allow the syntax author some convenience notations in defining
the syntax pattern. The following pat_op element is used to define repeating

and optional syntactic patterns:

pat_elem pat_op

pat_op “ patelem®™ “)” pat_opcode

—
—

pat_opcode — “¥”
N

pat_opcode

The opcode * denotes zero or more occurrences of the pat_elem sequence. The
meaning that is constructed at parse time for a * construct is a list of the

meanings of each occurrence. For example, consider the following fragment:
block_stmt = "{" <body: (stmt)*> "}"

The meaning bound to the syntax variable body is structured as a list
of lists, each item of the outer list representing one occurrence of the pattern
sequence (stmt), and each inner list being of length 1, the single item being
the meaning of the stmt occurrence. For example, when presented with the in-
put { a=1; b=2; }, the variable body is the structure ((M(a=1)), (M(b=2)))
where M(z) denotes the meaning resulting from compiling z.

The opcode “?” causes the pattern sequence to match zero or one oc-
currence. The resulting meaning is either #f (the unique false value in the
meta-language’s underlying interpreter) if no occurrence was matched or a list

of the meanings of the pattern elements. Consider, for example:
if_stmt = "if" <e:expr> "then" <t:stmt> <f:["else" stmt]>

Here, f takes on either a 2-item list value (M (else), M (stmt)) or #£, depend-

ing upon whether the else clause was matched in the input or not.

126

In addition to the postfix “?” operator, an optional element sequence

can also be written using the standard [---] notation:

pat_elem — pat_opt

pat_opt — “[" pat_elem* “1”

5.8.4 Actions

The meta-syntax contains as a sub-language the meta-language, which defines
the actions and expressions used to compute the meaning resulting from a
parse match. The simplest arrangement is that the action is an expression in
the meta-language, which is to be evaluated when the production is completed

in the Earley parser:

[13 ”

rule_action — xC_exrpr

The zc_expr is evaluated with respect to any variables bound by pat_bind
pattern elements.

Since the meta-language uses Scheme as its underlying interpreter, a
special expression is defined to make Scheme symbol values denotable using

Java’s lexical rules:
zc_expr — 7 id

The “:” is used to introduce a meta-language literal symbol value. For exam-
ple, :stmt is a meta-language expression which evaluates to the symbol stmt
in the underlying interpreter. Similarly, some global variables are defined to

hold other well-known Scheme values.

127

Meta-language Variable | Equivalent Scheme Expression

nil ()
true #t
false #f

Token Sequences

In order to perform a recursive compilation, a meta-language procedure needs
to have a token string to compile. Token strings are entered as literal objects
delimited with double square-brackets. Conceptually, a token sequence is a
token of the meta-language, although it is actually implemented in the current

system using a grammar rule for matching a string of bracket-balanced tokens.

Procedures
The meta-language supports procedure call expressions in the usual notation:

zc_expr — id “(" call.args “)”

call_args €

_)
call_args — call_args_ne
%

“w o

call_args_ne zc_expr “,” call_args_ne

The meta-language also provides access to all the normal procedures of
the underlying interpreter. Primarily, these are used for manipulating the data
structures which make up the intermediate code of an extension (for example,
see Section 6.2.2.) Since the underlying interpreter is RScheme, most Scheme
procedures are available [14].

For manipulating lists, common procedures are the list constructors

list and cons, and the list accessors car (get first item), cdr (get rest of

128

items), cadr (get second item), etc. The list iteration procedures map and

for-each are also available.

The Compile Operator

The compile operator is the primary means for continuing the compilation
recursively from within meta-language code. It is invoked syntactically like
a function with two required arguments and one optional argument. The
first argument is a symbol denoting the non-terminal that is to drive the
compilation. The second argument is the token sequence to be compiled. The
optional third argument is a set of syntax bindings to be used in the compile.

The compile operator is special (i.e., it is not a normal procedure)
because it knows about the syntax variables that have been defined using
pat_bind. By default, compile interprets an identifier in the supplied token
string that matches the name and non-terminal type in a pat_bind construct
as meaning the previously parsed value. The optional third argument extends
this set of bindings with an explicit list of three-item lists. The three items in
the list are the identifier in the token string to match, the non-terminal that

represents to type of meaning, and the meaning value.

Embedded Syntax

Since a meta-language procedure may need to manipulate the syntactic en-
vironment (see the extend operator, below), it is necessary to have a way of
“quoting” syntax rules so they can be managed as first-class objects. The

syntax special form does just that:

zc_expr — “syntax” “(" syntazx_decl “)”

129

The value of a syntax form is a syntax rule set, the internal representation of
a set of syntax declarations, suitable for installing into the syntactic environ-

ment.

The Extend Operator

The basic operation on syntactic environments is to extend them with new
rules. The extend operator does that, taking as arguments an environment
and a sequence of syntax rule sets and returning a new environment which
incorporates the indicated rule sets.

The following example extends the syntax environment with a trace
statement in the context of an enclosing tracing. The example does this
by computing a new environment in an inline action using the extend oper-
ator, and then using that environment to compile the block of control. No
additional computation of the meaning is required in this example (i.e., the
meaning can simply be body), because any uses of trace inside the body have

already been properly compiled.

stmt = "tracing"
{ e = extend(envt,
syntax(stmt = "trace" ";"
= ...)); }
<body:block:e>

== body;

130

Anonymous Procedures

Anonymous procedure abstractions using lambda are also available. Syntax
variables defined using pat_bind elements are available to the procedure like

other variables with lexical scope.

zc_expr — “lambda” “(” zc_lambda_name_list “)” xzc_block
zc_lambda_name_list — €
zc_lambda_name_list — zc_lambda_name
zc_lambda_name_list — zc_lambda_name “,” zc_lambda_name_list

In addition to defining normal meta-language arguments, syntax vari-
ables can be declared as procedure arguments, which makes the identifier avail-

able to the compile operator.

zc_lambda_name — id

zc_lambda_name — id “:” id

The second form is used to declare an argument whose value is a meaning of

the given type. This is useful, for example, in situations like the following:

stmt = "traceall" "{" <stmtlist:(stmt)*> "}"
== map(lambda(s:stmt)
{ compile(:stmt, [[{ trace(); s } 11); 3,

map(car, stmtlist));

Here, an anonymous procedure is being used to iterate a compilation
over a collection of statements. Without the convenience of specifying the syn-
tactic type in the 1ambda argument list, implementing that would be somewhat

more verbose:

131

stmt = "traceall" "{" <stmtlist:(stmt)*> "}"
== map(lambda(s)
{ compile(:stmt,
([{ traceO; s } 11,
list(list(:s,
:stmt,
car(s))));
1,

stmtlist);

5.8.5 Local Variables

Local variables are implicitly declared by assigning to their name. They can
be used to remember values between inline actions (see below) and the action

expression.

“_"

rc_expr — id TC_expr

5.8.6 Inline Actions

We also permit the evaluation of meta-language code during the recognition

part of the parse.
pat_elem — xc_block

In general, this is functionally equivalent to defining a unique non-terminal T}
with an empty pattern and the zc_block as the action, and using 7T}, where the

zc_block occurs as a pattern element. That is:
foo = <a:A> { F(); } <b:B> == G(a,b)

132

is functionally similar to:

foo = <a:A> Fk <b:B> == G(a,b);

Fk = /* empty */ == FQ);

However, this kind of inline action is supported specially in order to let any
local variables created by the xc_block be visible to the remaining pattern ele-
ments and rule_action of the current rule. Local variables created by an inline
action let the programmer parse a non-terminal in a different environment
using a variant of the pat_bind form. This form is used to parse an occurrence

of a non-terminal with respect to a different parse environment:
patbind — < id “" id “” id 97

The three id’s are, respectively, the name to which to bind the resulting mean-
ing, the non-terminal to be parsed, and the name of the pattern-local variable
containing the environment to be used.

So, for example, we can say:
while_stmt = "while" <e:expr> { brkenv = --- } <body:stmt:brkenv>

where - - - denotes some additional meta-language code to compute a syntax
environment. This allows meta-language code to easily define the environment

of compilation for subsequent non-terminals.

5.8.7 Example

For a complete example of some meta-syntax, consider a syntax declaration

for a twice statement (the body of which appears in Figure 5.2):

133

syntax {
twice_stmt
= "twice" <s:stmt>

== compile(:stmt, [[{ s s } 1]);

The entire construct is interpreted as a kind of top-level Java decla-
ration (a java_tl_decl), comprised of a single syntaz_decl for the non-terminal
twice_stmt®.

The twice_stmt non-terminal is associated with one syntaz_rule that
consists of two pattern elements, the literal identifier “twice” followed by some
kind of stmt, with the result bound to the syntax variable s.

Furthermore, this declaration states that when a twice_stmt is rec-
ognized (the completion step in the Earley parser), the way to compute the
meaning is to invoke the compile operator with two arguments, the symbol
stmt and the 4-token sequence { s s }. Because s is a syntax variable in
the pattern list, the compile operator recognizes occurrences of the token s
in the token string as references to the meaning computed by parsing the

non-terminal stmt.

SNote that the three names referred to in this sentence are non-terminal names:
java_tl_decl and syntaz_decl are non-terminals of the meta-language, and twice_stmt is
a non-terminal of the target language. We render them with a different typographical style
to emphasize the distinction, but in fact both are present in the same grammar. This fact
makes it possible to extend the extension framework from within the language, a hallmark
of a reflective system [33].

134

5.9 Issues and Future Work

5.9.1 Substitution Conformance

One issue that arises when doing pattern variable substitutions at the gram-
matical level is determining conformance of meaning. For example, if the
original production compiles something as a stmt, then the meaning is inter-
mediate code appropriate for a stmt. Such intermediate code should probably
not be used where, for example, a decl is needed.

One of the problems with our method of determining conformance oc-
curs when there are anonymous pattern structures. For example, in our meta-
grammar, we permit constructs like <slist: (stmt)*> (see Section 5.3.2).

However, there is no way to determine conformance for the resulting
meaning. Hence, we prohibit the use of such a definition in a declarative
transformation. From an extensible language design perspective, this implies
that the grammar must use named non-terminals for any element which is to
be reused in a macro pattern. Future work should ascertain how to ameliorate
this limitation.

Some systems rely on static type checking to ensure that pattern vari-
ables are used in places compatible with the obtained meaning [9, 34]. This
approach is generally too restrictive for our purposes, since it requires too

much whole-grammar analysis for correctness’.

7 Although it would be useful to implement static checking where possible for grammar
modules that are developed as units. This would help address the testing problem common
to most purely interpreted systems.

135

5.9.2 Translation Recursion

The way our approach eagerly computes meanings as soon as constructs are
recognized (i.e., at completion), combined with our approach to transforma-
tional compilation, can lead to unbounded recursion. This is similar to the
problem of left recursion in a recursive-descent parser [1]. The problem arises
when one form is translated into another that contains a completable instance
of itself. Eager completion means that a “completable instance” may only be a
prefix of the translation string. This comes up, for example, in the translation

of one-branch if to two-branch if. The natural rule to try to write is:

xc_onebranchif
= "if" "(" <e:expr> ")" <t:xc_stmt>

== compile(:xc_stmt, [[if (e) t else {} 11);

but, because this rule itself is completable after the t in the expansion, the
system loops trying to determine the meaning of the first 5 tokens of the
translation.

For our meta-language extensions, we worked around this by expressing
the translation directly in terms of a xc_twobranchif instead of in terms of an
xc_stmt. This works for some cases but is not a general solution in two ways:
(1) it requires knowledge of the non-terminal that bypasses the recursion, and
(2) it assumes the recursion is at the top level. With respect to (2), note that
the solution does not apply when a construct nested within the token string

passed to compile matches the rule being parsed, for example:

xc_onebranchif
= "if" "(" <e:expr> ")" <t:xc_stmt>

== compile(:xc_stmt, [[{ if (e) t else {} } 11);

136

triggers the same indefinite recursion.

5.9.3 Meta-syntax Scope

To scale a language system built using our approach, a way of managing the
scope of syntactic identifiers needs to be developed. In our current imple-
mentation, syntactic identifiers are realized as symbols, and their scope is
correspondingly global, at least within a given syntax module. This is useful
in some ways — for example, a syntax module can extend the definition of expr
— but being able to manage these identifiers in a more controlled way, with

only well-defined export points, would be more scalable.

5.9.4 Syntax Module Templates

The logical next step for syntax modules is to support syntax module tem-
plates, which are parameterized modules. This would enable more sophisti-
cated reuse of syntax modules, enabling a syntactic concept (e.g., expressions)
to be applied uniformly in different areas of a language system. For exam-
ple, in our system itself, the concept of expressions shows up in both the
meta-language and the target language, yet we can’t reuse the syntax module
because it generates different intermediate code. One way of parameterizing
modules would be to supply the set of intermediate code constructor bindings,

thereby tailoring how intermediate code is produced.

137

Chapter 6

An Application of an Extensible

Language

6.1 Introduction

In this chapter, we apply our approach to the problem of defining an extension
to the Java language. The application we develop enables the simple defini-
tion of a finite-state machine with actions on state transitions (i.e., a Mealy
machine).

The language extension we consider is as follows:

“automaton” name ‘{7 wvardecl* statedecl” “}”

automatondecl —
vardecl — wisibility type mname “=" initvalue “;”
visibility — “public” | “private”
statedecl — name [“accept”] “{” transition® “}”
transition — int “=>” name (block | “;”)

138

A

0

Figure 6.1: A simple string recognizer in graphical state machine representa-
tion
For simplicity, we consider only automata over an integer vocabulary.

In the following example, the automaton defined using this extension
is constructed to recognize strings of 1’s surrounded by non-empty strings of
0’s and to count the number of 1’s. For example, the string “00001111000” is
recognized by this automaton, and the number of 1’s is four. Figure 6.1 shows

this state machine in diagrammatic form.

automaton InteriorString {
public int count = O;
start { 0 -> pre; }
pre {1 -> mid { count++; }
0 -> pre; }
mid { 1 -> mid { count++; }
0 -> post; }

post accept { 0 -> post; }

The objective of this extension is to transform an automaton declara-

tion, such as the one above, into a Java class of the same name that implements

139

the automaton’s behavior. The Java class provides a process method that
takes a segment of input supplied as an integer array. The public variables
declared in the automaton are available as public instance variables of the Java
class.

The generated class implements the Automaton interface, which consists

of the following methods:

public void process(int input([]);
public String getState();

public boolean isAccepting();

The process method is responsible for executing the automaton with
some input symbols. This method attempts to consume the input (sub)string
and either leaves the automaton in the appropriate state or throws a RuntimeException
if a particular transition is not possible. The getState method returns the
current state of the automaton as a string. The isAccepting method answers

whether or not the current state of the automaton is an accepting state.

6.2 Implementation Approach

This application illustrates the occasional need to deconstruct meaning values
(e.g., intermediate code). This arises because the lower-level constructs (in
this case, the state declarations) contribute to different top-level constructs
(in this case, the methods of the automaton class).

To support automata declarations as an extension to Java, we define a
syntactic extension module called dfa that defines a new kind of type decla-

ration. In the base Java language, a type declaration is a class or interface

140

declaration. Since an automaton acts like a kind of class, it is natural to extend

the syntactic construct for classes.

6.2.1 Declaring the Extension

The outermost portion of the extension itself is shown in Figure 6.2. Here, the
name of the syntax module is being declared as dfa, and the main entry point

at type_decl is being installed®.

syntax dfa {
type_decl
= "automaton" <aname:java_id>
"{" <vars:(field_decl)*>
<states: (statedecl)x*>
n } n
== (typebody)
(statedecl)
(transition)

¥

Figure 6.2: Top-level structure of the DFA extension to Java. The field decl
non-terminal is part of the underlying Java grammar.

The grammar symbol name type_decl, and its role in the grammar of
the underlying language, must be known to the author of the extension. In
general, our approach requires knowing something about the specific grammar

that is used to realize the underlying language. Although this requirement

'Note that we extend the type_decl non-terminal, which is from the underlying Java
grammar. Likewise, we reuse field decl, the grammatical element for class field decla-
rations. There is no need for us to redefine field decl, since the underlying language
provides us what we need. In fact, we thereby get to reuse all the machinery for parsing
field declarations and their initializers.

141

follows from the need to install new grammatical productions in the grammar,
it does expose some details of the implementation. In practice, we expect that
language systems built to be extensible would incorporate the grammar as
part of the language specification, with all the important non-terminal names

standardized.

6.2.2 Building the Final Meaning

Approaching this application top-down, the next thing to define is the meta-
level code that compiles the entire automaton construct. In Figure 6.3, the
basic structure of the automaton compiler is laid out. The strategy is to build
up the automaton’s class definition from pieces defined in subsequent sections.
These pieces are then assembled by the call to compile into a single class
definition.

As a matter of bookkeeping, the first statement deconstructs the mean-
ings that are bound to states that matched the (statedecl)* repetition
pattern. The meaning of a repetition is a list of the meanings of the elements.
However, each element is a sequence, the meaning of which is a list of the
meaning of its elements. Hence, the meaning structure for states is a list
(one entry per field decl) of lists (one entry in the list is the field decl
meaning itself). Since we are only concerned with the list of field decl
meanings, the first thing we do is pull those meanings out.

This code fragment also shows how meta-language code can compute the
value of a set of syntactic variables that are interpreted during parse time. The
special operator compile normally takes two arguments: a symbol denoting

the non-terminal to parse, and a string of tokens that is the fragment to

142

typebody =
sx = map(car, states);
(internal-state)
process-method)
getstate-method)
accepting-method)
statename-statics)
compile(:type_decl,
[[class aname implements Automaton { cbody } 11,
list(1list(:cbody,
:class_body_decl__star,
append(list(cbl),
vars,
statenames,
list(cb2, cb3, cbd))))); };

{
(
{
{

Figure 6.3: Meta-language code for building the meaning of a complete au-
tomaton construct.

be parsed. The compile operator also implicitly understands any syntactic
variables that are in scope from the pattern. For example, in Figure 6.3, the
identifier aname in the token string passed to compile refers to the meaning
that was parsed by the java_id pattern in Figure 6.2. compile can take an
optional third argument which is a computed set of syntactic variables.

In this case, we are procedurally constructing the elements that make
up the class body. In order to insert the meaning of the parts into the final
meaning, we define a local syntactic variable cbody to take on the meaning
of the class body. Furthermore, we compute cbody by appending several
meaning fragments to form the complete body (the code referred to by internal-

state, process-method, etc., is responsible for building these fragments and is

143

described in detail below.)
This example also illustrates what happens when a repetition construct
is transformed by the compiler extension framework. In our Java grammar, a

class body is defined as follows:

class_body
= "{" <b:(class_body_decl)*> "}"

")

When the class_body_decl is expanded into the direct grammar representa-

tion required by the Earley parser, it is transformed into something like:

class_body

= "{" <b:class_body_decl__star> "}"

class_body_decl__star

= /* empty */ == nil

| class_body_decl__1 class_body_decl__star == cons($1, $2);
class_body_decl__1

= class_body_decl == 1list($1);

(The 1ist operator on the last line is why the first statement in Figure 6.3
appears.)

Since the construction of the automaton requires supplying a sequence
of class body declarations whose length depends on procedural meta-language
code, we need to build up the entire sequence and supply it as the meaning

associated with a class_body_decl__star.

144

One of the benefits of our approach starts to become clear here. The au-
tomaton extension is written entirely in terms of a well-defined meta-language
and the underlying language; a class definition can be constructed without any
knowledge of the form of the intermediate code. Only the syntactic elements
of the underlying grammar need be identified (i.e., as we mentioned above,
that a type_decl is the appropriate kind of syntactic object to supply a class

definition.)?

6.2.3 Declaring the State-Keeping Variable

Our Java class requires an instance variable in which to store the current
state of the automaton. The code to declare this instance variable is shown
in Figure 6.4. This intermediate code fragment is incorporated into the main

class object when the class body is assembled in Figure 6.3.

internal-state =
cbl = compile(:class_body_decl,
[[private int state = start; 1]);

Figure 6.4: Meta-language code to build the internal state variable for the
resulting Java class implementation.

The identifier state is the literal name of the internal variable that is
used to maintain the current state of the automaton. The token start is the
name of the start state, which is bound to an appropriate integer representation

in the resulting class by the code generated in statename-statics (Figure 6.12).

2In some cases, as we'll see, it is necessary to deconstruct the meaning values produced
by the underlying grammar. In this application, it only becomes necessary for literal values
and identifiers, for which it is easy to provide appropriate meta-language operators.

145

6.2.4 Declaring the Java Class’s Entry Method

The main entry point to the Java class that this extension produces is the
process method, which is responsible for advancing the state of the automaton
according to a sequence of input symbols represented by an array of integers.
Figure 6.5 has the meta-language code fragment that generates the process
method.

Input symbols are represented as integers in this implementation, so
process takes an array of integers and executes the state machine for each
symbol. If a transition cannot be made from a given state with a certain

symbol as input, then a RuntimeException is thrown (see Section 6.2.8).

process-method =
cb2 = compile(:class_body_decl,
L
// main entry point
public void process(int input[])

{
int 1i;
for (i=0; i<input.length; i++)
{
int symbol = input[i];
switch (state) { state_clauses }
}
}
17,

list(list(:state_clauses,
:switch_clause__star,
map(cadr, sx))));

Figure 6.5: Meta-language code to build the process method in the Java class
implementation.

146

6.2.5 Declaring the Java Class’s Accessor Methods

In this application, each generated Java class supports two accessor methods,
isAccepting and getState. See Figures 6.6 and 6.7, respectively. The ap-
proach to implementing both is similar and involves a switch on the current
state of the automaton. The switch clause for each state returns the appropri-
ate value (i.e., the state name as a string literal in the case of the getState
value, and a boolean value in the case of isAccepting.) Note that the com-
pilation of the actual case clause is done when the state is being parsed, in

Figure 6.8.

getstate-method =
cb3 = compile(:class_body_decl,

L

// current state inspector

public String getState()

{
switch (state) { return_state_clauses }
return "7unknown";

}

11,

list(list(:return_state_clauses,
:switch_clause__star,
map(caddr, sx))));

Figure 6.6: Meta-language code to build the getState method.

6.2.6 States Within an Automaton

At this point, we are ready to describe the part of the grammar that is re-

sponsible for parsing the states within an automaton. Figure 6.8 shows the

147

accepting-method =
cb4 = compile(:class_body_decl,
L
// currently in an accept state?
public boolean isAccepting()

{
switch (state) { return_accept_clauses }
return false; // unknown state

}

11,

list(list(:return_accept_clauses,
:switch_clause__star,
map(cadddr, sx))));

Figure 6.7: Meta-language code to build the isAccepting method.

statedecl production. Each state comprises:

e a state name (matching java_id and bound to the syntax variable n),

e a flag indicating whether it is an accept state (matching accept_flag,

which is defined at the bottom of Figure 6.8, and bound to a),
e a set of explicit transitions (bound to t), and

e a default transition which is really the error handler (bound to d).

In this application, we use list-oriented data structures to communicate in-
termediate code between the non-terminal statedecl and type_decl. Figure 6.8
gives the statedecl fragment of code, which builds the main list structure we
use in this application. The data types we build here using lists could be

formalized, and a larger application may benefit from static type checking to

148

constrain the grammar itself (for example, see Cardelli et al. [9]). However,
our approach is dynamically typed, which we find more suitable for experi-

mental work. The list, which is the meaning associated with statedecl, has

statedecl =
statedecl = <n:java_id> <a:accept_flag>
"{" <t:(transition) *>
<d:default_transition>
II}II
== list(n,
(stateswitcher)
compile(:switch_clause, [[case n: return strform; 1],
list(list(:strform,
1expr,
literal(tostring(n))))),
compile(:switch_clause, [[case n: return aa;]],
list(list(:aa, :expr, a))));
accept_flag = "accept" == compile(:expr, [[true 1])
| /* empty */ == compile(:expr, [[false]]);

Figure 6.8: Sub-language for declaring states within an automaton.

four items:
e the name of the state,

e the clause that goes into the “big switch” in the process() method (see

the definition of stateswitcher in Section 6.2.7),

e the clause that goes into the switch statement in the getState method,

and

e the clause that goes into the switch statement in the isAccepting method.

149

These clauses are assembled into the appropriate switch statements in the
top-level action (see Figure 6.3).

In the implementation of exposing the accept flag, in which we compile
a switch clause® to be used in Figure 6.7, we essentially build the literal answer
to the question “is this an accept state?” for each different state. We expect
that the underlying language compiler applies some common subexpression

elimination to optimize the code that appears in the resulting statement:

switch (state) {
case 0: return false;
case 1: return false;
case 2: return false;

case 3: return true;

If the compiler did not do so, and this bloated code were a problem, then
a little additional work at a higher level (i.e., in Figure 6.7) could do some
application-specific optimization.

This fragment illustrates the use of the extension framework operator
literal, which is responsible for producing the target language meaning that
creates a value equivalent to the meta-language argument that is its argument.
For example, literal(3) produces intermediate code which, when executed,
evaluates to the integer value “3” in the target language. In this case, we are
using literal to convert the state name identifier (which is a symbol object
in the metalanguage) to a string literal in the target language to be returned

as the value of the getState method.

3 A switch clause is a constituent of a switch statement, which is Java’s multi-way branch
statement. A switch clause is also known as a case statement.

150

6.2.7 Building the State Switcher

Figure 6.9 shows the meta-language code that constructs the switch clause for
the current state in the process method. For each state of the automaton, the
process method switches on the next input symbol. The identifier symbol in
the argument to the compile operator refers to the local variable declared in

the compiled code in Figure 6.5.

stateswitcher =
compile(:switch_clause, [[case n:
switch (symbol) {
symclauses
}
break; 1],
list(list(:symclauses,
:switch_clause__star,
append(t, list(d)))))

Figure 6.9: Meta-language code for building the switch clause for a single state
that makes up part of the “big switch” in the process method.

The clauses which make up the body of the switch on the input sym-
bol are supplied to the compile operator in the alias symclauses. The
symclauses alias plays the role of a sequence of switch clauses (formally, a
switch_clause__star), which we construct by appending the cases for each indi-
vidually defined transition with the default (or error) transition. Section 6.2.8
shows how the switch clause intermediate code is built up for each transition,

including the default.

151

6.2.8 Declaring transitions

The transitions among the states of the automaton are declared using the
grammar elements defined in Figure 6.10. There are two forms for a transition
declaration. The first form is used when the automaton programmer is not
executing any code on the state transition. The second form is used to supply

an action to perform when the automaton makes that transition.

transition =
transition = <k:integer_literal_expr> "->" <n:name> ";"
== compile(:switch_clause,
[[case k: state = n; break; 1]);

transition = <k:integer_literal_expr> "->" <n:name> <b:block>
== compile(:switch_clause,
[[case k: b state = n; break; 1]);

Figure 6.10: Sub-language extension for the declaration of a single transition
within a state.

Both forms are structurally similar. In each, there is the identification
of the input symbol that is used to trigger the transition. The input symbol is
grammatically an integer_literal_expr and is bound to k. k becomes the case
expr in the resulting switch clause. The destination, or target, state is also
identified by name and bound to the syntax variable n.

The difference between the forms is that the second form expects a Java
block, which is bound to the syntax variable b. In turn, the user’s action
block, b, is employed just before the assignment to update the state variable
in the resulting switch clause. In the sample automaton, the transition action

block form is used to count the number of “1” symbols in the middle of the

152

string. The meaning that we generate for a transition non-terminal is simply
the switch clause that is used when process switches on the input symbol.
We also need to handle the case where the input symbol is not valid in
the current state. The specification requires that we throw a RuntimeException
in that case. We achieve this by defining a default_transition, which plays the
role similar to that of a transition but is not specific to any particular input
symbol. Figure 6.11 shows how the default_transition is handled. The default
transition is realized as the default clause on the switch that dispatches on
the input symbol in the current state. We factored this out into a separate
non-terminal partly by analogy with the other transitions, and partly as a hook
for extending the application to allow the user to specify a different default

transition behavior.

default-transition =
default_transition
= /* empty... no override of error behavior for now */
== compile(:switch_clause,
[[default: throw new RuntimeException(); 1]);

Figure 6.11: Hook for declaring default transition behavior.

6.2.9 Symbolic State Names

One feature of this application is that states are numbered automatically; the
user does not have to deal with state identifiers. This is analogous to the way,
for example, the yacc compiler generator builds internal dispatch tables with
short integer names, but the programmer only has to deal with the symbol

state names. This is the kind of detail that practical language users demand.

153

This feature is implemented by maintaining a mapping from symbolic
state names to numbers assigned by the extension. A straightforward mapping
is sufficient in this case. The symbols are assigned identifiers 0, 1, ... in the
order in which the declarations appear in the automaton.

If we also define Java-level symbols to map the symbols to the internal
id’s, then this simplifies the extension author’s job. We do so in Figure 6.12.
For each state, a Java class variable is defined that takes on the value of the
internally assigned identifier. With these definitions supplied in the gener-
ated Java class, the author may now do local compilations using Java to map
the symbolic state names to the internal integer number. For example, see
Figure 6.8, where the compilation of the various switch clauses can proceed

without having to map to state numbers in meta-language code.

statename-statics =
statenames = map(lambda(k,n)

{
compile(:class_body_decl,
[[private final static int name = k; 1],
list(list(:name, :java_id, n),
list(:k, :expr, literal(k))));
1,

range(length(sx)),
map(car, sx));

Figure 6.12: Building the Java definitions of symbol state names, mapping
state names to internal identifiers.

Usually, this is done for convenience in implementing the language ex-
tension and sometimes incurs a cost because the underlying language is not

likely to have optimizations to deal with the generated code structures. In this

154

case, we expect the underlying language compiler to inline the values of these
symbols (they are declared “final” so the compiler knows they cannot change

at runtime), resulting in no runtime performance penalty.

6.3 Example Use of the DFA Extension

In this section, we return to the sample finite state machine described in the
introduction of this chapter and show the Java code equivalent to what the

DFA language extension generates to implement it.

6.3.1 Sample Extended-Java File

This is the input file, which imports the DFA syntax and defines an automaton
called InteriorString.

import syntax DFA.dfa;

automaton InteriorString {
public int count = O;

start { 0 -> pre; }
pre { 1 -> mid { count++; }

0 -> pre; }

mid { 1 -> mid { count++; }
0 -> post; }

post accept { 0 -> post; }

6.3.2 Generated class definition

Here is the Java code generated as a result of processing the above automaton
declaration. The process method of the class definition is elaborated in the

next section.

155

class InteriorString implements Automaton {

private int state = start;

public int count = O;

private final static int start =
private final static int pre = 1;
private final static int mid = 2;
private final static int post = 3;

0;

public String getState() {
switch (state)
{
case start:
return "start";

case pre:
return "pre";
case mid:
return "mid";
case post:
return "post";
}
return "7unknown";
}
public void process(int input[]) { ... }

public boolean isAccepting() {
switch (state)
{
case start:
return false;
case pre:
return false;
case mid:
return false;
case post:
return true;
}
return false;
}
}

156

6.3.3 Generated process() method

Here is the process method. Note the characteristic nested-switch structure
generated by this Java extension and the use of symbolic names to avoid extra

work in the extension itself.

public void process(int input[]) {
int 1i;
for (i = 0; i < input.length; i++) {
int symbol = input[i];
switch (state)
{
case start:

switch (symbol)

{
case O:
state = pre;
break;
default:throw new RuntimeException();
} break;
case pre:
switch (symbol)
{
case 1:
{
count++;
+
state = mid;
break;
case O:
state = pre;
break;
default:
throw new RuntimeException();
}
break;
case mid:
switch (symbol)
{
case 1:

157

{

count++;
b
state = mid;
break;
case O:
state = post;
break;
default:
throw new RuntimeException();
b
break;
case post:
switch (symbol)
{
case O:
state = post;
break;
default:
throw new RuntimeException();
b
break;

158

Chapter 7

Final Words

7.1 Related Work

7.1.1 Syntactic Exposures

Earlier work in generalizing syntactic closures, syntactic exposures [10], is
along the same lines as our approach, with the interleaving of compilation and
expansion for the purpose of improved pattern matching abilities. Our im-
plementation handles some cases of advertent capture better, especially when
macros are used to define macros and pattern variables are used in macro

pattern rules.

7.1.2 Term Rewriting

There is some similarity between our general approach and the way some
term rewriting systems compute normalized head forms eagerly. In defining
an evaluation strategy for term rewriting, the system described by Nakamura

et al. [31, 32] computes a function 1) of the operator, which is used as meta-

159

data to drive the rewriting of terms in the expression. For example, when
presented with an expression like = + y, the rewriting of sub-terms z and y is
controlled by the value of the strategy function ¢(4). The eager evaluation
of the head form (the head form here is the operator +) is being done for
the same reason we resolve the head form first — in order to determine the
appropriate action to apply to the expression controlled by the operator. In
essence, both their approach and ours compute the control information first
and then delegate the interpretation of the entire form based on the result of
that control information. However, our approach achieves the effects without

the space cost of general rewriting.

7.1.3 Hygienic Macro Expansion

As pointed out earlier, our approach achieves the general goals of hygienic
macro expansion as described by Clinger and Rees [13]. The interleaved ex-
pansion and macro scanning process described there is similar to our lazy
processing, although we interleave with actual compilation. Interleaving com-
pilation with macro processing opens the door to macro dispatch (i.e., pattern
matching) based on the intermediate results of compilation (synthesized at-
tributes), which we exploit in our type-reflective macros.

Our general approach is similar to that of syntactic closures [25], in
that we capture the syntactic environment at the point of macro definition.
However, our implementation separates the lexical location (“place”) from
the dynamic location. Among other things, this allows us to identify distinct
variables in one interleaved compilation pass instead of re-processing the input

with relabeled identifiers.

160

7.1.4 Reusable Generative Programming

The work by Krishnamurthi et al.on McMicMac [27] views extensible languages
over the Lisp family as a generative programming problem. The main thrust in
that work is to develop languages using reusable modules of linguistic features
called vocabularies. Their vocabulary development takes place in a separate
space, so it is not reflective in the same sense. Their framework addresses
the issues of our internal compiler meta-object protocol, an aspect that, while
important for its engineering considerations, is not the main thrust of our
work.

Their vocabulary abstraction is especially interesting, as it could ad-
dress the proliferation of compilation types in our system. That is, we have
separate sub-compilers for list forms, atoms, etc., which we implement using
generic function dispatch. Their dispatching approach could unify the different
levels of dispatch in our implementation. And, whereas we use the existing lan-
guage’s module framework to organize our syntactic extensions, their concept
of vocabularies is a useful way to abstract extensions.

Although we believe their framework could be used to implement our
approach, their default assumption about how to handle macros in such a lan-
guage is still based on source—source transformation, and hence is less efficient

and unable to leverage compile-time knowledge to drive transformation.

7.1.5 Adaptable Grammars

In the literature of extensible parsing, the subclass of adaptable grammars
known as Recursive Adaptable Grammars, or RAGs, contains a notion similar

to that of contour sensitivity, and the goals in expressiveness are similar to

161

our own [35]. RAGs are the result of an effort to preserve the modeling and
analytic benefits of context free grammars while permitting local variations in
the grammar.

It is interesting to note that some would push the adaptable grammar
to the point of subsuming all attribute calculations within the syntax. For
example, Christiansen [12] is concerned with the use of adaptable grammars
to unify static semantics with the grammar, similar to our example of making
break a valid statement only in the scope of a breakable construct. The
general approach involves defining a grammar rule to store information that
is traditionally stored in a symbol table or computed from the meaning a la
attribute grammars. Our own opinion is that this goes too far and that the
language implementation benefits from having the power of both a declarative
description of mostly-context-free patterns to match surface syntax and the
full procedural expressiveness of an underlying meta-language.

Furthermore, the specific implementation described by Christiansen [12]
seems to utilize a global grammar table, and thus has difficulty cleaning up
when exiting block scopes. Although the thrust of our work is not specifically
in the translation of static semantic constraints into the grammar, the ease
with which our implementation manages local grammar changes would make

such a strategy somewhat more straightforward.

7.1.6 Open Compilers and MOPs

In developing a language system that makes use of an extensible grammar, the
language designer typically defines a particular protocol that can be followed

by the language extender to define a new language extension. This proto-

162

col involves things like the well-defined non-terminals through which most of
the extensions are expected to take place. For example, we expect that most
systems defining a conventional programming language will have hooks for
statements, expressions, and variable declarations, at the least. The use of vo-
cabularies in McMicMac [27] as a language extension modularity mechanism is
a more formalized approach to what would be well-known hook non-terminals
in the implementation described here.

The Intentional Programming project [2, 36] is concerned with the def-
inition of language abstractions as transformations on meaning structures.
However, that work operates directly against the meaning structures, with
textual syntax limited to an input mechanism. Furthermore, transformations
are implemented procedurally against the compiler’s meta-objects, which un-
necessarily separates the intention developer from the developer in the target
language.

Other work in transformational programming, such as that of Visser [43],
incorporates the ability to define transformations in terms of the concrete syn-
tax of the program, along with the ability to incorporate new syntax. How-
ever, their syntax is statically defined (although partitioned into composable
modules) and global for a module, whereas our system supports local syntax
extensions.

The Jakarta tool suite (JTS) is a facility that addresses the issue of lan-
guage extensibility as a set of generator components [4]. This has the benefit of
supporting modularity of the language extension features; in fact, JTS lever-
ages the component composition of the JTS framework itself. One of the main
focuses of the JTS work is support for composable domain-specific languages.

Our approach achieves syntactic modularity but has no special support for

163

modularizing its meta-language procedures. Incorporating advanced modular-
ization features into our approach, as is done in JTS, is a rich area for future
research.

The <bigwig> project [7] is targeted at defining interactive Web ser-
vices and can handle syntactic extensions together with the transformations
to more primitive language structures. However, in <bigwig>, macros must
start with an identifier, which shares the limitations of C’s macro system:;
for example, new infix operators cannot be introduced. Also, there is no
procedural meta-language for expressing transformations more complex than
pattern-based transformations.

The Java Syntactic Extender [3] work uses an approach similar to that
of C for defining macros. The set of syntactic forms which are considered
extensible are statically limited, although JSE improves upon C by allowing
statements as well as procedure call forms to be extended. JSE is not dy-
namically extensible in the sense that our system allows users to define new
syntactic forms of any sort.

Other approaches to language extensibility have been taken. The meta-
object protocol approach [24, 11] enables the extension author to define how
certain language constructs are processed. In these systems, the underlying
object system provides the structural framework to which the extensions are
attached. The extensions defined using our approach are associated with the
syntactic representation of the program

A meta-program in our approach executes in the context of the compiler,
but is not explicitly part of the compiler. The domain objects of the meta-
programmer in our approach are meanings, parse environments, and token

strings. For example, using just our approach, the meta-programmer cannot

164

alter the internal processing of a built-in language construct such as the lay-
out of a data structure without redefining the syntactic entities that introduce
them. This is in contrast to the open compiler work of Lamping et.al [28],
which is specifically intended to incrementally redefine internal compiler pro-

cessing using a compile-time meta-object protocol.

7.2 Limitations and Future Work

7.2.1 Meta-Object Protocol

Considerably more formalism can be developed around the syntax and se-
mantics of our meta-language itself. A more systematic development of the
meta-language would allow the definition of a meta-object protocol (MOP) as
the foundation of the extensible language framework [28]. With a well-defined
MOP in place, the meta-syntax can be constructed in terms of that protocol,

enabling user-defined extensions to our meta-language!.

7.2.2 Error Reporting

More work is needed to determine how best to report syntactic errors in the
context of a dynamic grammar. As in most language systems, the emphasis
in our work is on core functionality when presented with correct input and, to
a lesser extent, on detecting incorrect input. But for a language system to be
practical, it must report errors in a way that is useful to the programmer.

The interpretive nature of the Earley parser is useful for error reporting

1 User-defined extensions are possible in our current implementation. In fact, our system
is bootstrapped in multiple stages using our own meta-syntax to do so. However, the
syntactic hooks necessary to do so are not well formalized.

165

in some ways, because it is easy to compute the set of constructs which are
being parsed at any given point, even in the presence of syntactic extensions?.
However, more work is needed to refine these capabilities in the current imple-
mentation to report even more useful error conditions and ideally to implement

error recovery so that parsing can continue on a best-effort basis.

7.2.3 Synthesized Attributes

More work is needed to understand the relationship between the eager evalu-
ation of intermediate code and the lazier evaluation of meaning on the basis
of the template. This is especially a problem as the template may try to in-
troduce binding constructs which, depending upon context, could change how

the pattern element should be compiled.

Static Syntax Type Checking

Our implementation uses dynamic type checking in the meta-language. Other
systems [9, 8, 5] apply static type rules to ensure that any meaning constructed
by an extension is a valid composition of primitive meaning operators and val-
ues. Furthermore, they ensure that the occurrence of the extension construct
in a program always produces the right kind of meaning at the right place in
the target program. Additional work is needed to analyze applications of our

approach to ascertain whether static checking is helpful or a hindrance.

2In fact, we found it so easy that just for the purpose of debugging the examples in
Chapter 6, we significantly improved the error reporting capabilities

166

Convenience Notations

One of the practical limitations of our current extensible parsing system re-
volves around the problem of interpolating single syntactic constructs into a
sequence. For example, in Figure 6.3 we had to explicitly append several pieces
together in order to form the body of a class definition. We would rather

have been able to write something like:

compile(:type_decl,
[[class aname implements Automaton
{
private int state = start;
vars
statenames
process_method
getstate_method
isaccepting_method
b
11)3

and let the parsing engine do the interpolation of vars and statenames. There
are several ways this could be implemented within the current framework. The
basic idea is to extend the expansion of the repetition construct. Recall that
the repetition construct is responsible for transforming a Kleene star pattern
(e.g., “decl*”) into grammatical primitives suitable for interpretation by the
Earley parser.

One approach would be, in the expansion of “A*.” to define a rule such

as:

167

A__star — A__star A__star = append($1,$2)

This has the disadvantage of being extremely ambiguous. While this could be
parsed, it tends to degenerate into O(n?) complexity.

Another approach would be to define a non-terminal name which could
not be parsed directly (call it A__seq), and could only be satisfied by a syntactic
substitution. Then, an additional rule in the repetition expansion could be

defined:
A__star — A__seq A__star = append($1,$2)

This has the disadvantage of introducing a new and irregular kind of object
into the parsing engine.
Another approach would be to require the programmer to signal the

interpolation. Then, the repetition expansion could include:
A__star — “@” ident A__star = append (expand($2),$3)

This runs the risk of conflicting with the grammar of the target language,
although for any particular target language a suitable indicator could be iden-
tified. This also ambiguates the use of the alias identifier in the token stream
as standing for itself in an expansion and standing for what it denotes as an
alias.

In general, more applications should be built using this approach in
order to identify the practical limitations of the system and point the way to
additional convenience notations. To make this work more widely available,
and to test its end-to-end performance, one area of future work is to integrate

the current extensible Java into a full compiler. The Jikes implementation [19]

168

looks especially promising for this purpose, as it is fast and well structured for

replacing the parser front end.

7.3 Conclusions

The expressive power of Lisp macros can be made available to programmers of
languages with traditional syntax, which allows the easy development of new
language features and the modular construction of domain-specific language
extensions. Furthermore, integrating syntactic extensibility with true compi-
lation enables the reflection of synthesized attributes into syntactic processing,
which in turn increases the expressive range of declarative, syntax-based lan-
guage extensions.

This work is the first to efficiently apply the concepts of declarative and
procedural macro processing to the domain of languages with a traditional
syntax, such as Java and C. We have shown how macro processing can be
interleaved with compilation, and how an efficient, locally extensible parser
can be used to execute macro expansions at parse time.

With an extensible parsing framework that includes the capabilities of
macro transformation, a language system that adds extensibility to Java can
be constructed. An extensible Java implementation can be used to rapidly
develop new language features and to define domain-specific languages as il-
lustrated in Chapter 6.

This is the first system to combine support for local, dynamically exten-
sible context-free syntax with control by meta-level procedures. It is clear to us
that this capability leads to a more robust programming paradigm, in which

the roles of programmer and language author blur, and application-specific

169

language extensions become a standard mechanism for modular abstraction.

170

1]

2]

3]

[4]

[5]

Bibliography

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

W. Aitken, B. Dickens, P. Kwiatkowski, O. de Moor, and D.Richter.
Transformation in intentional programming. In Proceedings Fifth Interna-

tional Conference on Software Reuse, Victoria, B.C., Canada, June 1998.

IEEE.

Jonathan R. Bachrach and Keith Playford. The Java syntactic exten-
der (JSE). In Proceedings of the 2001 ACM Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA
2001). ACM, 2001.

Don Batory, Bernie Lofaso, and Yannis Smaragdakis. JTS: tools for im-
plementing domain-specific languages. In Proceedings Fifth International
Conference on Software Reuse, pages 143-53, Victoria, B.C., Canada,
June 1998. [EEE.

Alan Bawden. First-class macros have types. In Conf. Rec. POPL ’00:
27th ACM Symp. Princ. of Prog. Langs., pages 133-141, 2000.

171

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

Alan Bawden and Jonathan Rees. Syntactic closures. In Conference on

LISP and Functional Programming, pages 86—95, 1988.

C. Brabrand and M. Schwartzbach. Growing languages with
metamorphic syntax macros, 2000. Submitted for publication;

http://www.brics.dk/bigwig/ .

Luca Cardelli, Florian Matthes, and Martin Abadi. Extensible grammars
for language specialization. In Proceedings of the Fourth International
Workshop on Database Programming Languages, August 1993, Manhat-
tan, New York. Springer Verlag, 1994.

Luca Cardelli, Florian Matthes, and Martin Abadi. FExtensible syntax
with lexical scoping. SRC Research Report 121, Digital Equipment Corpo-
ration, 1994. ftp://gatekeeper.dec.com/pub/DEC/SRC/research-reports/.

Stephen Paul Carl. Syntactic exposures — a lexically-scoped macro facility
for extensible languages. Master’s thesis, University of Texas at Austin,

1996. ftp://ftp.cs.utexas.edu/pub/garbage/carl-msthesis.ps.

Shigeru Chiba. A metaobject protocol for C++. In Proceedings of the
1995 ACM Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA 1995), 1995.

H. Christiansen. A survey of adaptable grammars. SIGPLAN Notices,
25(11):35-44, 1990.

Will Clinger and Jonathan Rees. Macros that work. In Conference Record
of the Eighteenth Annual ACM Symposium on Principles of Programming
Languages, pages 155—162, January 1991.

172

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

R. Kent Dybvig. The Scheme Programming Language. Prentice Hall,
second edition, 1996.

Jay Earley. An Efficient Context-free Parsing Algorithm. PhD thesis,
Carnegie-Mellon University, 1968.

Jay Earley. An efficient context-free parsing algorithm. Communications

of the ACM, 13(2):94-102, February 1970.
Paul Graham. On Lisp. Prentice Hall, 1994.

J. Heering, P. Klint, and J. Rekers. Incremental generation of parsers.
IEEE Transactions on Software Engineering, 16(12):1344-1351, 1990.
Also in SIGPLAN notices 24(7):179-191, 1989.

IBM. IBM developerWorks - Open Source Software - Jikes’ Home.

http://oss.software.ibm.com /developerworks/opensource/jikes/ .
ISO. PL/I. Technical Report 6160, ISO, 1979.

Steven C. Johnson. Yacc: Yet another compiler compiler. In UNIX
Programmer’s Manual, volume 2, pages 353-387. Holt, Rinehart, and
Winston, New York, NY, USA, 1979.

Guy L. Steele Jr. Common Lisp: The Language. Digital Press, 1984.

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Lan-
guage. Prentice Hall, second edition, 1988.

G. Kiczales, J. des Rivieres, and D. G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, 1991.

173

[25]

[26]

[27]

28]

[29]

[30]

[31]

Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce
Duba. Hygienic macro expansion. In 1986 ACM Conference on Lisp and
Functional Programming, pages 151-159, 1986.

Shriram Krishnamurthi. Linguistic Reuse. PhD thesis, Rice University,

2001.

Shriram Krishnamurthi, Matthias Felleisen, and Bruce F. Duba. From
macros to reusable generative programming. Technical Report TR 00-
364, Rice University, 2000. http://www.ccs.neu.edu/scheme/pubs/tr00-
364.ps.gz.

John Lamping, Gregor Kiczales, Luis Rodriguez, and Erik Ruf. An archi-
tecture for an open compiler. In Proceedings of the International Work-

shop on Reflection and Meta-Level Architecture, 1992.

X/Open Company Ltd. DCE: Remote procedure call.
Technical ~Report P312, X/Open Company Ltd., 1995.
http://www.linuxworld.com/linuxworld /lw-1999-09 /lw-09-corba_1-2.html.

Philippe McLean and R. Nigel Horspool. A faster Earley parser. In
Proceedings of the International Conference on Compiler Construction,

pages 281-293, 1996.

M. Nakamura and K. Ogata. The evaluation strategy for head normal
form with and without on-demand flags. In In Proc. of 3rd International
Workshop on Rewriting Logic and its Applications, WRLA 00, volume 36
of Electronic Notes in Theoretical Computer Science. Elsevier Sciences,

2001.

174

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Masaki Nakamura. FEvaluation Strategies for Term Rewriting Systems.

PhD thesis, Japan Advanced Institute of Science and Technology, 2002.
Christian Queinnec. Lisp in Small Pieces. University of Cambridge, 1994.

Tim Sheard and Neal Nelson. Type safe abstractions using program gen-
erators. Technical Report 95-013, Oregon Graduate Institute of Science
and Technology, 1995.

John N. Shutt. Recursive adaptable grammars. Master’s thesis, Worcester

Polytechnic Institute, 1993.

C. Simonyi. The death of computer languages, the birth of intentional
programming. Microsoft Technical Report MSR-TR-95-52, Microsoft Re-
search, 1995.

Mark Stickel and Richard Waldinger. Deductive composition of astro-
nomical software from subroutine libraries. In Twelfth International Con-

ference on Automated Deduction, pages 341-355, June 1994.

Christopher Strachey. Fundamental concepts in programming languages.

Higher-Order and Symbolic Computation, 13(1/2):11-49, 2000.

Gregory T. Sullivan. Aspect-oriented programming using reflection and

metaobject protocols. Communications of the ACM, 44(10):95-97, 2001.
M. Tomita. Efficient Parsing for Natural Language. Kluwer, 1985.

Steve Upstill. The Renderman Companion: A Programmer’s Guide to

Realistic Computer Graphics. Addison-Wesley, 1990.

175

[42] Arie van Deursen. The static semantics of pascal. In Arie van Deursen,
Jan Heering, and Paul Klint, editors, Language Prototyping: An Algebraic
Specification Approach, number 5 in AMAST Series in Computing, pages
31-52. World Scientific, 1996.

[43] Eelco Visser. Meta-programming with concrete object syntax. Technical
Report UU-CS-2002-028, Institute of Information and Computing Sci-
ences, Utrecht University, 2002. To appear in LNCS, October, 2002.

[44] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL
Programming Guide. Addison-Wesley, third edition, 1999.

176

Vita

Donovan Michael Kolbly was born in Apple Valley, California on October 30,
1967, the son of Phyllis Stevenson Kolbly and Richard Bauer Kolbly. After
completing his High School education at Barstow High School in Barstow,
California, he entered the Physics program at California State Polytechnic
University, Pomona. He received a Bachelor of Science degree from that insti-
tution in March 1990. During the summer of 1990, he attended an extension
program of the University of New Mexico in Los Alamos, New Mexico. In
the Fall of that year, he entered the Graduate School at the University of
Texas at Austin in the Physics department. In 1991, he transfered to the
Computer Sciences department, and obtained a Master of Science degree in

December 1994.

Permanent Address: 8710 Mosquero Circle
Austin, Texas 78748

This dissertation was typeset with IXTEX 2¢ by the author.

177

