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Repetitive stress injuries are common in the workplace where workers perform 

repetitive tasks continuously throughout the day.  Muscle fatigue may lead to injury 

either directly through muscle damage or indirectly through changes in coordination, 

development of muscle imbalances, kinematic and muscle activation variability, and/or 

movement instability.  To better understand the role of muscle fatigue in changes in 

movement parameters, we studied how muscle fatigue and muscle imbalances affected 

the control of movement timing, variability, and stability during a repetitive upper 

extremity sawing task.  

Since muscle fatigue leads to delayed muscle and cognitive response times, we 

might expect the ability to maintain movement timing would decline with muscle fatigue.  

We compared timing errors pre- and post-fatigue as subjects performed this repetitive 

sawing task synchronized with a metronome using standard techniques and a goal-

equivalent manifold (GEM) approach.  No differences in basic performance parameters 

were found.  Significant decreases in the temporal correlations of the timing errors and 
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velocities indicated that subjects made more frequent corrections to their movements 

post-fatigue.   

Muscle fatigue may lead to movement instability through a variety of mechanisms 

including delayed muscle response times and muscle imbalances.  To measure movement 

stability, we must first define a state space that describes the movement.  We compared a 

variety of different state space definitions and found that state spaces composed of angles 

and velocities with little redundant information provide the most consistent results.  We 

then studied the affect of fatigue on the shoulder flexor muscles and general fatigue of the 

arm on movement stability.  Subjects were able to maintain stability in spite of muscle 

fatigue, shoulder strength imbalance and decreased muscle cocontraction.   

Little is known about the time course for adaptations in response to fatigue.  We 

studied the effect of muscle fatigue on movement coordination, kinematic variability and 

movement stability while subjects performed the same sawing task at two work heights.  

Increasing the height of the task caused subjects to make more adjustments to their 

movement patterns in response to muscle fatigue.  Subjects also exhibited some increases 

in kinematic variability at the shoulder but no changes in movement stability.  These 

findings suggest that people alter their kinematic patterns in response to fatigue possibly 

to maintain stability at the expense of increased variability.    
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Chapter 1: Introduction 

1.1 SIGNIFICANCE OF MUSCULOSKELETAL INJURIES 

Musculoskeletal injuries occur when the mechanical properties of soft or hard 

tissues are overwhelmed by applied loads.  They may result from a single event or an 

accumulation of microfractures or microtears over time (Goerlick et al., 2003).  The latter 

are termed repetitive stress injuries (RSIs) or cumulative trauma injuries (Latko et al., 

1999; Côté et al., 2005).  Work-related musculoskeletal injuries affected over 375,500 

people in the U.S. in 2005 resulting in 30% of all work days lost due to work-related 

injuries (U.S. Bureau of Labor Statistics, 2005).  Injuries caused by repetitive motions 

like grasping tools, scanning groceries, and typing resulted in the longest absences from 

work (U.S. Bureau of Labor Statistics, 2005).  Upper extremity RSI cost workers and the 

U.S. economy at least $12 to $14 Billion a year (Gardner-Morse and Stokes, 1998; Boden 

and Galizzi, 1999; Levenstein, 1999; Keogh et al., 2000). The true costs are significantly 

higher, since only 1 in 10 workers who suffer RSI seek compensation (Gardner-Morse 

and Stokes, 1998; Pransky et al., 1999).  While the exact causes of RSIs are unknown, 

there are several common characteristics associated with their development.  These 

include high force (Barr, 2002), a high number of movement repetitions (Latko et al., 

1999), improper postures, muscular imbalances, and muscle fatigue (Côté et al., 2005).    

Muscle fatigue is defined as a decrease in the force generating capacity of a 

muscle or muscle group after activity (Bigland-Ritchie and Woods, 1984; DeLuca, 1984; 

Gandevia, 2001).  Fatigue is a combination of both central and peripheral processes 

(Gandevia, 2001).  At the peripheral level, there is a loss of force generating capacity of 

individual motor units (Selen et al., 2007).  To maintain force, the central nervous system 

can increase its drive to the muscles.  This causes already active motor units to fire more 
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frequently and causes larger motor units to be recruited.  This leads to an increased sense 

of effort (Gandevia, 2001).  As fatigue progresses, the number of active motor units 

decreases, muscle fiber conduction velocity decreases (Farina et al., 2002), motor units 

fire more slowly (Bigland-Ritchie and Woods, 1984), and the motor units become more 

synchronized (Arihara and Sakamoto, 1999).  These changes lead to decreases in the 

mean or median frequencies of the electromyogram (EMG) signal (Bigland-Ritchie and 

Woods, 1984) and eventually to task failure (Hunter et al., 2004).    
 
 

1.2 FATIGUE AND INJURY 

Muscle fatigue has been suggested to cause injury both directly and indirectly 

(Fig. 1.1).  Muscle fatigue decreases the amount of energy that a muscle can absorb at the 

same degree of stretch.  This leaves the muscle more susceptible to muscle strain injuries 

(Mair et al., 1996).  In addition, exhausting stretch-shortening cycles can lead to 

microscopic structural damage of the contractile elements of the muscle (Friden et al., 

1988), and extensive eccentric contractions can lead to disorganization of the sacromeric 

band pattern (Lieber et al., 1991).  The relationship between fiber strain and muscle 

injury is complex (Butterfield and Herzog, 2005) however, and even more so in the case 

of fatigue. 
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Figure 1.1: Proposed injury model 
This schematic illustrates the possible relationships between muscle fatigue and injury 
based on the literature.  Each link is described in a section of this introduction. 

 

1.3 MUSCLE FATIGUE AND COORDINATION 

Repeatedly performing manual tasks leads to muscle fatigue, which can induce 

changes in motor coordination (Viitasalo et al., 1993; Bonnard et al., 1994; Forestier and 

Nougier, 1998). Studies of single joint upper extremity movements have shown that 

fatigue leads to differential changes in the phasic firing rates of agonist and antagonist 

muscles and degradations in performance (Jaric et al., 1999; Corcos et al., 2002). Studies 

of sub-maximal jumping and hopping reported fatigue associated changes in both joint 

and muscle coordination (Viitasalo et al., 1993; Bonnard et al., 1994).     

Certain changes in coordination may pre-dispose individuals to developing RSIs 

by inducing poor biomechanics (Rodgers et al., 1994; Sparto et al., 1997; Mizrahi et al., 

2000). Studies of repetitive lifting (Marras, 1997; Sparto et al., 1997) showed that after 

fatigue subjects switched from a squat-lift to a stoop-lift strategy, which has been 
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associated with ligament and intervertebral disc damage (Burgess-Limerick, 2003).  

Fatigue has also been shown to alter the typical proximal-to-distal organization of joint 

coordination in throwing (Forestier and Nougier, 1998).  In a whole body sawing task, 

subjects altered their inter-joint coordination patterns, such that while the individual 

segment movement characteristics changed with fatigue their endpoint trajectories did not 

(Côté et al., 2002).  Such biomechanical changes resulting from fatigue may indicate an 

increased potential for injury (Sparto et al., 1997; Rodgers et al., 2003), or may 

alternatively reflect protective strategies used to decrease injury risk (Madigan and 

Pidcoe, 2003). 

During many of these tasks, fatigue was localized to a specific muscle group.  

Localized muscle fatigue may also contribute to, or indicate risk of, chronic muscle pain 

(Nussbaum, 2001).  It is unclear whether the same adaptations would also be present if 

the fatigue was not specific to any particular muscle.  To our knowledge, only one study 

has investigated this distinction.  In this study, subjects performed a repetitive lifting task 

after either a back extension fatigue protocol targeted at specific fatigue of the trunk 

extensor muscles or a rowing task to generate non-specific widespread fatigue.  The 

specific fatigue protocol caused changes in muscle timing, while the non-specific fatigue 

protocol did not (Goerlick et al., 2003).   

 

1.4 CONTROL OF MOVEMENT TIMING 

Repetitive movements are common in daily life and numerous work 

environments.  Typical repetitive motion activities include factory assembly work, 

typing, scanning groceries, walking, and running.  Timing is often critical in these 

activities.  For instance, in assembly line work, individuals lose productivity and increase 
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their potential for injury if they cannot maintain timing.  Muscle fatigue adversely affects 

movement and muscle timing (Wilder et al., 1996; McQuade et al., 1998), as well as 

reaction time (Lorist et al., 2002).  Increased activity in the prefrontal areas of the brain 

after muscle fatigue may contribute to increased processing time during congnitive 

reaction time tests (van Duinen et al., 2007).  At the muscle level, fatigue increases the 

‘electromechanical delay’, possibly due to decreased muscle fiber conduction velocity 

(Wilder et al., 1996).  Muscle fatigue may also alter the ability to reproduce a movement.  

In a rapid elbow flexion/extension task, fatiguing the extensor muscles caused an 

undershoot of the final position during extension but had no affect on flexion movement 

(Jaric et al., 1999).  In more complex multi-joint tasks, subjects may change their muscle 

activation strategies to maintain the same end-point trajectories (Lucidi and Lehman, 

1992; Côté et al., 2002; Heuer et al., 2002; Selen et al., 2007).  

 

Figure 1.2: Schematic of a reaction time test 
The time it takes for the brain to recognize a stimlus and decide to act is known as the 
‘Premotor Time’.  The time for the brain to send a signal to the muscles to act is the 
‘Electomechanical delay’ or ‘muscle response time’.  Finally the time it takes to complete 
the requisite movement is the ‘movement time’.  Each of these reaction times may be 
slowed by muscle fatigue. 

Multi-joint tasks exhibit infinite movement solutions (equifinality), so 

determining an appropriate control strategy is difficult.  One way to study control is to 

quantify how quickly subjects respond to deviations away from the task goal.  For 

d 

t 

Total Reaction Time (TRT) 

Premotor Time (PT) Electromechanical 
Delay (EMD) 

Movement 
Time (MT) 
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redundant tasks, one can define a “goal equivalent manifold” (GEM) (Cusumano and 

Cesari, 2006), which yields an explicit mapping between variability of body state 

variables and variability of the goal variables defined by the task.  All viable task 

solutions lie on the GEM.  To determine how quickly deviations are corrected, we can 

quantify temporal correlations in a time series (Hausdorff et al., 1995; Peng et al., 1995; 

Gates, 2007; Gates et al., 2007).  Deviations that go uncorrected lead to “persistent” 

correlations over consecutive movements.  Thus, less “persistence” or greater “anti-

persistence” in a time series indicates a highly controlled process where deviations are 

rapidly corrected (Gates and Dingwell, 2008); Ch.2).  A previous study used similar 

techniques to look at movement of the center of pressure during quiet standing.  They 

found that localized fatigue of the ankle plantarflexors caused increased anti-persistence 

of these movements indicating that more control was applied after fatigue, possibly to 

maintain stability (Corbeil et al., 2003).   

 

1.5 MUSCLE FATIGUE AND VARIABILITY 

Muscle fatigue can lead to increased muscle force unsteadiness proportional to the 

force level (Missenard et al., 2008a).  This unsteadiness may in turn lead to increased 

kinematic and kinetic variability (Parnianpour et al., 1988; Selen et al., 2007).  Muscle 

fatigue may also reduce cocontraction of opposing muscle groups (Missenard et al., 

2008b), which can lead to decreased stiffness and increased variability (Gribble et al., 

2003; Selen et al., 2005).  In multi-joint dynamic tasks, people may alter their 

biomechanical coordination strategies (Sparto et al., 1997; Côté et al., 2002) or muscle 

activation patterns (Corcos et al., 2002; Goerlick et al., 2003).  These adjustments may 

serve to minimize changes in overall kinematic variability.   
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It is debatable whether or not changes in variability of movements relate to 

increased risk of injury, however.  Greater variability might lead to injury by increasing 

the likelihood of extreme movements (Potvin and O’Brien, 1998).  Conversely, increased 

variability might be protective, because it prevents the joints from constantly being 

loaded in the same manner.  Hamill et al. (1999) found that subjects with patellofemoral 

pain were less variable than asymptomatic individuals when running.  They suggest that 

subjects with pain found a repeatable solution that minimized pain. This would further 

exacerbate the problem, however, since they continue to stress the joints in the same 

manner causing an accumulation of microscopic damage of the tissues and/or cartilage 

being stressed (Hamill et al., 1999; Madeleine et al., 2003).  Madeleine et al. (2003) 

studied experienced butchers with no history of injury and healthy novice butchers.  They 

found that the experienced butchers had more variable motions and suggested that this 

may be a protective strategy to prevent musculoskeletal injuries.  It is unclear whether 

similar adaptations would be made in response to muscle fatigue, however.   

 

1.6 MUSCLE IMBALANCES AND MUSCLE FATIGUE 

Muscle imbalances were originally defined as an impaired relationship between 

muscles which are prone to develop tightness and shortness, and muscles which are prone 

to inhibition (Janda, 1993).  This definition has been adapted to include any asymmetry 

of strength, power, endurance, or flexibility between opposing muscle groups 

(Beukeboom et al., 2000).  Reduced activity of some muscles around a joint may lead to 

excessive motion in the direction in which the dominant muscle operates 

(Alizadehkhaiyat et al., 2007), or to improper joint loading (Goerlick et al., 2003).   

Imbalances may be inherent or they could result from prolonged static postures (Valachi 
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and Valachi, 2003), selective training of different muscles (Burnham et al., 1993), or 

alteration in endurance or ‘fatiguability’ between opposing muscle groups (Hagg and 

Milerad, 1997; Alizadehkhaiyat et al., 2007) 

Localized muscle fatigue leads to altered muscle activation patterns in fatigued 

muscles (Goerlick et al., 2003), increased compensation of other joints (Madeleine et al., 

1999; Côté et al., 2002), and can lead to muscle imbalance if only one muscle group 

crossing a joint is selectively fatigued (Alizadehkhaiyat et al., 2007).  These studies 

support the “Differential Fatigue Theory” (Kumar, 2001), which proposed that during 

strenuous activity, the muscles surrounding a joint fatigue at different rates.  Since 

muscle fatigue leads to a decrement in force production (Basmajian and DeLuca, 1985), 

this creates a force imbalance around the joint which could lead to abnormal stress 

distributions (Goerlick et al., 2003).  

A few studies support the differential rate of fatigue of opposing muscle groups.  

Kumar and Narayan (1998) found different rates of fatigue in 14 lower back muscles 

during an isometric axial rotation contraction.  Mizrahi et al. (2000) found greater fatigue 

in the ankle dorsiflexors than plantarflexors during prolonged running.  Haag et al. (1997) 

found greater wrist extensor fatigue than flexor fatigue during gripping.  And finally, 

Kilbom et al. (1993) observed greater fatigue on the flexor side during a one-handed 

carrying task.  None of these studies concurrently measured force imbalances or stress 

distributions, however. 

Muscle imbalances may play an important role in the development of 

musculoskeletal injuries, such as tennis elbow (Kamien, 1990).  Possible causes of tennis 

elbow include decreased strength (Alizadehkhaiyat et al., 2007) and fatigability (Hagg 

and Milerad, 1997) of the wrist extensors compared to wrist flexors.  Another study 

showed that runners suffering from overuse injuries had greater muscle imbalances about 
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their hip than non-injured runners (Niemuth et al., 2005).  Muscle strength imbalance of 

the shoulder rotators has also been associated with increased prevalence of shoulder 

injuries (Wang and Cochrane, 2001).  In addition, an imbalance between the flexor and 

extensor strength of the trunk can significantly influence the lordotic curve of the lumbar 

spine, potentially resulting in low back pain (Kim et al., 2006).  

 

1.7 MOVEMENT STABILITY & COORDINATION 

The body controls stability in many ways.  The central nervous system integrates 

afferent information about joint position, kinesthesia and proprioception to generate 

muscular responses to maintain functional stability during movement (Bowman et al., 

2006).  If any of these feedback mechanisms are adversely affected, the muscular 

responses may also be altered.  Fatigue has been linked to decreased proprioception 

(Myers et al., 1999), decreased kinesthesia (Pedersen et al., 1999), altered reflexes 

(Wojtys et al., 1996) and increased muscle response time (Wilder et al., 1996; Wojtys et 

al., 1996).  Muscle fatigue may in turn lead to decreased stability.  One difficulty is that 

the definition of ‘stability’ varies greatly.  Stability is often equated to joint stiffness.  To 

compensate for fatigue, people may co-contract their muscles leading to increased joint 

stiffness (Psek and Cafarelli, 1993), which may protect the joint from injury.  However, 

muscle fatigue also results in decreased muscle response times (Wilder et al., 1996), so 

any shocks due to sudden perturbations must be absorbed by the passive tissues (Sparto et 

al., 1997).  Thus, stiffness alone may not predict the likelihood of injury in the presence 

of sudden loading or perturbations.   

As an alternative, we can measure stability as the capacity of a system to respond 

to perturbations (Full et al., 2002).  In particular, “local dynamic stability” measures 
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directly quantify the resilience of the motor system to small perturbations that occur 

naturally during movement (Dingwell and Cusumano, 2000; Dingwell and Marin, 2006; 

Dingwell et al., 2007).  To examine the response to perturbations, we must first define a 

state space that describes the movement.  The state space can be composed of any 

variables that adequately describe the motion (refer to Ch. 3 for additional details).  For 

example we can look at a simple pendulum.  The equation of motion for the pendulum is  

 θθ sin
L
g

−=&&  (1.1) 

The state of the pendulum is characterized by defining its angular displacement from the 

vertical position, θ, and its corresponding angular velocity, θ&  (Fig. 1.3).  A plot of θ 

versus θ&  is known as the ‘state space’ (Fig. 1.3B) since it uniquely describes the state of 

the system for all time points (Kantz and Schreiber, 2004).  If this system had noise you 

would see small deviations away from the mean trajectory.  These represent what might 

happen if a small perturbation were applied to the system.  We can track these 

‘perturbations’ over time in state space by measuring the distance between two nearest 

neighbors at any time point  (Fig. 1.3C).  We look at all the distances between nearest 

neighbors and then add them up to find the average logarithm of the divergence (Fig. 

1.3D).  This tells us whether trajectories converge together over time or diverge apart.  

The slope of the mean log divergence curve is the local divergence exponent.  Positive 

exponents indicate that the trajectories diverge apart and thus the system is unstable.  

Higher values indicate a more rapid divergence and thus greater instability.   
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Figure 1.3: Schematic representations of local and orbital stability analyses.  
A) Illustration of a simple pendulum.  B) The state space of the pendulum is defined by 
the angular position and velocity of the mass.  The solid line represents an ideal 
pendulum while the dashed line represents what would happen if the system had noise.  
C) The distance between nearest neighbors in state space is measured as time evolves.  
D)  The mean logarithm of the divergence, )(ln( id j , is calculated for each time 
increment. The slope of the mean log divergence curve over 0 to 1 cycles is known as the 
short-term local divergence exponent, λS

*, while the slope over 4 to 10 cycles is the long-
term local divergence exponent, λL

*. E) Representation of a Poincaré section transecting 
the state space perpendicular to the system trajectory.  The system state, Sk, at cycle k 
evolves to Sk+1 one cycle later.  The Floquet multipliers quantify whether the distances 
between these states and the system fixed point, S*, grow or decay on average across 
many cycles. (Figure adapted from (Kang and Dingwell, 2008) 
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Two studies have examined the effect of muscle fatigue on local dynamic 

stability.  Yoshino et al. (2004) measured local dynamic stability during prolonged 

walking.  Subjects who showed greater leg muscle fatigue after prolonged walking 

compensated by slowing down, which increased their trunk stability.  Subjects who 

showed moderate fatigue did not slow down and became more unstable.  Granata and 

Gottipatti (2008) studied the effect of specific fatigue of the back extensors on repeated 

back flexion/extension.   They found that the movement was more unstable post-fatigue.  

This is might suggest that people are more likely sustain an injury if they are perturbed 

(Sparto et al., 1997).  

A second approach can be used to quantify local stability of periodic systems.  

This method requires that the movement has a limit cycle, which is a closed trajectory in 

state space that at least one other trajectory spirals into either as time approaches infinity 

or as time approaches minus-infinity.  Orbital stability can be quantified using Floquet 

multipliers (Nayfeh and Balachandran, 1995), which quantify how the system’s states 

respond to local perturbations discretely from one cycle to the next at a single point 

during the cycle.  They quantify how a perturbation at cycle k will change after one full 

cycle.  This analysis is done on specific pieces of the limit cycle, known as Poincaré 

sections.  The trajectories of cycle k and cycle k+1 both intersect the Poincaré section 

(Fig. 1.3E).  The relationship of cycle k to k+1, each relative to the limit cycle, or the 

mapping of cycle k to k+1 at a particular part of the cycle, is called the Jacobian matrix, 

whose eigenvalues are the Floquet multipliers.  The largest Floquet multiplier defines the 

stability of the system.  A Floquet multiplier greater than 1 indicates that a perturbation 

will increase by that factor at the next cycle, and the perturbation will become greater and 

greater, indicating instability.  A Floquet multiplier less than 1 indicates that a 

perturbation will decrease by that amount by the subsequent cycle, indicating stability.  
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Presently, no one has studied the effect of muscle fatigue on the orbital stability of 

repetitive movements. 

 

1.8 SPECIFIC AIMS 

To date, the strategies people use to delay muscle fatigue are not known.  Most 

work tasks require movements that fatigue more than just a single muscle group.  It is 

also unclear whether both isolated and multi-muscle fatigue have the same affect on 

coordination changes.  It is necessary, therefore, to look at the effect of both widespread 

muscle fatigue and localized muscle fatigue (which can create muscle imbalances) on 

low-load repetitive tasks, similar to those encountered in many work places.  The goal of 

this dissertation was to determine how muscle fatigue and muscle imbalances alter the 

control of movement timing and movement stability.  I proposed the following four 

specific aims.   

 

Specific Aim #1: Determine how muscle fatigue affects the control of movement 

timing during a repetitive task.   

To address this first aim, we looked at how muscle fatigue affected the subject’s 

ability to synchronize repetitive movements with a metronome in the face of progressing 

muscle fatigue.  The increased force variability and delayed reaction times associated 

with muscle fatigue (Bigland-Ritchie and Woods, 1984; Farina et al., 2002; Lorist et al., 

2002; van Duinen et al., 2007) suggest that task performance should deteriorate with 

fatigue: i.e., that timing errors would increase in magnitude.  Alternatively, subjects could 

alter their movement patterns to maintain task performance: i.e., they would continue to 
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achieve the task goal (Côté et al., 2002; Selen et al., 2007).  Therefore, we proposed two 

alternative hypotheses: 

 

Hypothesis 1a: Task performance will deteriorate with fatigue: i.e. timing errors would 

increase in magnitude.   

Hypothesis 1b: Subjects will alter their movement patterns to maintain task performance: 

i.e. subjects would continue to achieve the task goal.   

Hypothesis 2: Subjects will adopt a control strategy that aligns their movements with the 

GEM for this task: i.e. deviations perpendicular to the GEM would be much smaller in 

magnitude and would be corrected more rapidly than deviations along the GEM.  

 

Specific Aim #2: Determine an appropriate state space for local stability analyses.   

 In order to study the local stability of kinematics, one must first define an 

appropriate state space for the movement.  One difficulty is that the state space definition 

is not unique and it is not clear whether the measure of local stability, the local 

divergence exponent, is affected by this choice.  We studied the effect of state space 

definition on the local stability measure for both experimental data and data for which the 

true local divergence exponent was known.  We used various state space definitions that 

primarily had been used previously in the literature.   

 

Specific Aim #3: Determine how widespread vs. localized muscle fatigue affect the 

control of movement stability.   

Fatigue likely leaves subjects less able to respond to perturbations that can cause 

injury.  However, how muscle fatigue and/or muscle imbalances affect the control of 

movement stability is not well understood.  Subjects performed a five minute repetitive 
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sawing task before and after completing one of two fatiguing tasks.  The first task 

primarily fatigued the shoulder flexor muscles while the second caused general fatigue of 

the arm.  We quantified local dynamic stability for each five minute trial to test the 

following hypotheses: 

 

Hypothesis 4: Subjects will exhibit greater dynamic instability following both of the 

fatigue protocols. 

Hypothesis 5: The increases in dynamic instability will be larger following specific 

fatigue of the shoulder flexors than widespread muscle fatigue. 

Hypothesis 6:  The muscles will become more unbalanced after the specific fatigue of the 

shoulder flexors than after the general fatigue of the arm (ie. the ratio of flexor to 

extensor strength will decrease). 

 

Specific Aim #4: Determine how muscle fatigue affects stability and variability of 

movements performed at two heights.   

In this aim we determined how coordination, kinematic variability and dynamic 

stability of the arm were affected by muscle fatigue while subjects performed a repetitive 

task at a constant rate until volitional exhaustion.  Upper limb disorders are commonly 

associated with repetitive work performed with the arm elevated and abducted (Ohlsson 

et al., 1995), so this task was performed at both sternum and shoulder levels.  We 

measured peak angles, kinematic variability and local dynamic stability over time to test 

the following hypotheses: 
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Hypothesis 1: Subjects would change their movement patterns more dramatically when 

the task was performed at a higher height since this was assumed to be more difficult to 

maintain.  

Hypothesis 2: Kinematic variability would increase with fatigue in response to increase 

neuromuscular noise.  

Hypothesis 3: Movement stability would decrease with fatigue.   

Hypothesis 4: Movement variability and instability would be greater for movements 

performed at shoulder level where the incidence of injury is greater. 

 

This dissertation determined how muscle fatigue and muscle imbalances affect the 

control of movement timing, variability, and movement stability.  These components of 

control are critical for maintaining performance during repetitive goal-directed movement 

tasks.  While this dissertation is not related to how these parameters relate to injury 

themselves, we hope that eventually these results will lay the groundwork for linking 

specific movement parameters with increased injury risk.   
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Chapter 2:  The Effects of Neuromuscular Fatigue on Task 
Performance during Repetitive Goal-Directed Movements 1 

2.1 ABSTRACT 

Proper movement timing is essential to the successful execution of many motor 

tasks and may be adversely affected by muscle fatigue. This study quantified how muscle 

fatigue affected task performance during a repetitive upper extremity task. A total of 14 

healthy young adults pushed a low load back and forth along a low-friction horizontal 

track in time with a metronome until volitional exhaustion. Kinematic, force, and 

electromyography (EMG) data were measured continuously throughout the task. The first 

and last 3.5 min were analyzed to represent ‘‘early’’ and ‘‘late’’ fatigue. Means and 

standard deviations of movement distance, speed, and timing errors were computed. We 

also decomposed variations in movement distance and speed into deviations that directly 

affected achieving the task goal and those that did not, by identifying the goal equivalent 

manifold (GEM) of all valid solutions to this task. Detrended fluctuation analysis was 

used to quantify the temporal persistence in each time series. Principle components 

analysis provided a direct measure of alignment with the GEM. Median power 

frequencies of the EMG significantly decreased in six of the nine muscles tested 

indicating that subjects did fatigue.  However, there were no differences in the means or 

variability of movement distance, speed, or timing errors. Thus, subjects maintained 

overall performance despite fatigue. Subjects applied slightly higher peak handle forces 

when they were fatigued (p = 0.032). Muscle fatigue caused significant reductions in the 

temporal persistence of movement speed (p = 0.037) and timing errors (p = 0.046), 

                                                 
1 This chapter is published as Gates, DH. and Dingwell, J.B. (2008) The effects of neuromuscular fatigue 
on task performance during repetitive goal-directed movements. Experimental Brain Research 187, 573-
585. 
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indicating that subjects corrected errors more quickly when fatigued. Mean deviations 

and variability perpendicular to the GEM were much smaller than variability along the 

GEM (p < 0.001). Deviations perpendicular to the GEM were also corrected much more 

rapidly than those along the GEM (p < 0.001). Subjects aligned themselves very closely 

(±7o), but not exactly (p < 0.001), with the GEM.  These measures were not significantly 

affected by muscle fatigue.  Overall, these results indicated that subjects altered their 

biomechanical movement patterns in response to muscle fatigue, but did so in a way that 

specifically preserved the goal relevant features of task performance. 

 

2.2 INTRODUCTION 

Rhythmic movements performed during daily activities are often triggered and 

sustained by external signals (e.g., auditory, visual, etc.) (Bove et al., 2007).  Timing is 

often critical to these repetitive movement tasks.  During coordinated movements, 

specific muscles must be activated and/or inactivated in both the correct sequence and at 

appropriate times (O'Boyle et al., 1996).  Muscle fatigue can alter muscle timing (Wilder 

et al., 1996; Strange and Berg, 2007) and muscle coordination (Corcos et al., 2002; 

Goerlick et al., 2003; Billaut et al., 2005), thus impeding task performance.  However, 

exactly how muscle fatigue affects the control of timing during repetitive tasks has not 

been established.   

Muscle fatigue is defined as a decrease in the force generating capacity of a 

muscle or muscle group after activity (Bigland-Ritchie and Woods, 1984; DeLuca, 1984; 

Gandevia, 2001).   Fatigue is a combination of both central and peripheral processes 

(Gandevia, 2001).  At the peripheral level, there is a loss of force generating capacity of 

individual motor units (Selen et al., 2007).  To maintain force, the central nervous system 
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can increase its drive to the muscles.  This causes already active motor units to fire more 

frequently and causes larger motor units to be recruited.  This leads to an increased sense 

of effort (Gandevia, 2001).    As fatigue progresses, the number of active motor units 

decreases, muscle fiber conduction velocity decreases (Farina et al., 2002), motor units 

fire more slowly (Bigland-Ritchie and Woods, 1984), and the motor units become more 

synchronized (Arihara and Sakamoto, 1999).  This leads to decreased mean or median 

frequencies of the electromyogram (EMG) signal (Bigland-Ritchie and Woods, 1984) 

and eventually to task failure (Hunter et al., 2004).    

Muscle fatigue may impair a person’s ability to properly execute a task.  Reaction 

time during a choice reaction time task increased with muscle fatigue (Lorist et al., 2002).  

fMRI studies showed increased activity in the prefrontal areas of the brain after muscle 

fatigue, which may explain this increase in processing time (van Duinen et al., 2007).  At 

the muscle level, fatigue causes an increase in muscle response time or 

‘electromechanical delay’ (Wilder et al., 1996), possibly due to the decrease in muscle 

fiber conduction velocity.  Muscle fatigue may also affect the body’s ability to 

successfully reproduce a movement.  In a study of rapid elbow flexion/extension, fatigue 

of the extensor muscles caused an undershoot of the final position during extension but 

had no affect on flexion (Jaric et al., 1999).  However, other studies showed no affect of 

fatigue on the end-point trajectories in multi-joint tasks (Lucidi and Lehman, 1992; Côté 

et al., 2002; Heuer et al., 2002; Selen et al., 2007).  In each of these studies, it was 

presumed that subjects changed their neural control (muscle activation) or coordination 

strategies to achieve the same overall task goal.   

Little is known about how muscle fatigue affects movement control.  To 

determine this, it is important to define what parameters humans actively try to control.  

Since movement variability may increase with muscle fatigue (Selen et al., 2007), there 
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may be active higher level processes occurring to combat this variability in order to retain 

accuracy.  Many multi-joint tasks exhibit an infinite number of possible movement 

solutions (i.e., equifinality), so determining an optimal control strategy is difficult.  One 

way to quantify the system’s degree of control is to study how quickly subjects respond 

to deviations away from the task goal.  Cusumano and Cesari (2006) introduced the idea 

of a ‘goal equivalent manifold’ (GEM) which provided a rigorous approach to 

quantifying motor redundancy in goal-directed movements.  This method defines an 

explicit mapping between the variability of the body state variables (e.g., position, speed) 

and variability of the goal variables defined by the task.  All possible solutions to the task 

lie along the GEM.  Using this approach one can determine whether muscle fatigue 

affects the outcome (i.e., the ‘goal’), the body, or both.   

One way to determine how quickly deviations are corrected is to quantify the 

temporal correlation structure of the variations in a time series (Hausdorff et al., 1995; 

Peng et al., 1995).  When deviations in one direction are more likely to be followed by 

deviations in the opposite direction, the time series exhibits “anti-persistent” correlations.  

This indicates a highly controlled process.  When deviations in one direction are more 

likely to be followed by deviations in the same direction (i.e., the deviations get bigger in 

magnitude) the time series exhibits “persistent” correlations.  To date, only one group has 

examined the affect of fatigue on such temporal correlations.  Localized muscle fatigue of 

the ankle plantarflexors caused the center of pressure trajectories during quiet standing to 

become more anti-persistent (Corbeil et al., 2003).  These results suggested that the 

actions taken by the postural control system to maintain balance were more frequent post-

fatigue (Corbeil et al., 2003).  

The goal of this project was to determine how muscle fatigue affected the control 

of repetitive goal-directed upper extremity movements.  Subjects performed a repetitive 
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sawing-like task in time with a metronome until volitional exhaustion.  The increased 

force variability and delayed reaction times associated with muscle fatigue (Bigland-

Ritchie and Woods, 1984; Farina et al., 2002; Lorist et al., 2002; van Duinen et al., 2007) 

suggest that task performance should deteriorate with fatigue: i.e., that timing errors 

would increase in magnitude.  Alternatively, subjects could alter their movement patterns 

to maintain task performance: i.e., they would continue to achieve the task goal (Côté et 

al., 2002; Selen et al., 2007).  We hypothesized that subjects would adopt a control 

strategy that aligned their movements with the GEM for this task: i.e., that deviations 

perpendicular to the GEM would be much smaller in magnitude and would be corrected 

more rapidly than deviations along the GEM.  We further hypothesized that while 

subjects would alter their movement patterns to combat the effects of muscle fatigue, 

those features of motor performance that were specifically “goal relevant” would not 

change. 

 

2.3 METHODS 

Subjects 

14 healthy right-handed subjects (9 male, 5 female) participated.  Their mean ± 

standard deviation age, body mass, and height were 27 ± 2.7 yr, 72.5 ± 16.9 kg and 1.72 

± 0.10 m, respectively.  All participants signed institutionally approved informed consent 

forms and were screened to ensure that no subject had a history of medications, surgeries, 

injuries, or illnesses that might have affected their upper extremity joint movements.  To 

determine handedness, subjects completed a modified version of the Edinburgh Inventory 

(Oldfield, 1971) (Appendix B). This inventory indicates the level of dominance of one 

hand over another. A score of 0/10 indicates a complete left-handed preference, while a 
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score of 10/10 indicates a complete right-handed preference. All subjects scored at least 

9/10 on the Edinburgh Inventory, indicating a strong right-handed dominance. 

 

Experimental Protocol 

To monitor timing parameters during fatigue, we built a device to simulate a 

repetitive work task similar to sawing (Fig. 2.1).  Subjects made bi-directional horizontal 

movements in the anterior-posterior direction with their right arm while holding a handle 

mounted to a carriage riding on a low friction track attached to a support frame.  Inertial 

resistance was supplied by an adjustable set of weights mounted on the carriage.  

Therefore, the resisting load was always opposed to the direction of motion so the arm 

extensors were the primary agonists during the pushing stroke, while the flexors were the 

primary agonists on the pulling stroke.  
  

XH

 

Figure 2.1: Illustration of the experimental setup. 
Subjects were seated in a high-back chair and restrained by belts across the waist and 
shoulders.  Subjects pushed a handle with an adjustable weight across a low friction 
horizontal track.  This track was adjusted to the level of the subject’s sternum.  A single 
marker on top of the handle quantified the anterior-posterior motions of the handle (XH).   
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The device was adjusted so the subject’s legs were at a 90˚ angle with the ground.  

The height of the bar was adjusted so the midpoint between the third and fourth finger 

was in line with the xiphoid process.  The front/back position of the chair was adjusted to 

be comfortable for the subject and allow for a full range of motion.  This was defined as a 

maximum point almost to full extension (no hyperextension) and a minimum point at the 

level of the sternum.   

To ensure the task resistance was comparable across subjects, we first measured 

each subject’s maximum pushing/pulling force using a second custom handle attached to 

a Baseline® dynamometer that was rigidly mounted on a table.  Subjects alternately 

pushed and then pulled on this rigidly fixed handle as hard as they could for 5 seconds 

each, 3 times, with 60 seconds of rest in between each attempt.  The average of these six 

peak forces applied during each maximal effort defined that subject’s maximum 

isometric pushing/pulling strength.   

Subjects were instructed to move in time with a metronome.  To ensure the task 

was dynamically equivalent across subjects, the frequency of the metronome was set to 

twice the average of the predicted resonant frequencies of the upper arm and forearm 

segments of each subject (2 beats per cycle).  The natural frequency, fn, of a rigid body 

pendulum is  

 
o

n I
mgrf

π2
1

=  (2.1)  

where m is the mass of the limb segment, Io is the moment of inertia of the limb segment 

about the axis of rotation, and r is the distance from the axis of rotation to the center of 

mass of the limb segment. Given each subject’s height and weight, values for m, Io, and r 

were estimated from standard anthropometric tables (Winter, 2005).  The average natural 

frequency was 1.07 ± 0.03 Hz.   
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Subjects performed the sawing task with the weight mounted on the carriage (Fig. 

2.1) set to 15% of this maximum pushing/pulling force.  The actual forces experienced by 

each subject were a function of this external load, their hand acceleration (through F = 

m⋅a), and to some extent friction.  Because movement distance and frequency were also 

both scaled to each subject, so were these external forces.  Therefore, the forces applied 

to the handle by each subject were monitored throughout the trial by a 6 axis load cell 

(JR3 Inc., Woodland, CA) mounted at the base of the handle.   

Our goal was to quantify the effects of muscle fatigue on movement timing and 

coordination.  However, our findings could have been potentially seriously confounded if 

subjects simultaneously exhibited changes due to learning of the task.  Humans can 

adjust grip force to accommodate simple inertial loads imposed by typical rigid objects 

within as little as 135 ms during a single movement (Bock, 1993).  When subjects lift 

objects of unusually high densities, they adapt their responses within fewer than five 

movements (Gordon et al., 1993).  Even for more complex modifications of the arm’s 

inertial properties, adaptation is typically completed within 40 to 50 movements 

(Sainburg et al., 1999).  Thus, we expected subjects would “learn” to manipulate the 

simple inertial load used in the present experiment vary quickly.  Pilot testing confirmed 

that subjects did indeed learn this task (i.e., their mean errors approached zero) within 

just a few (< 10) movements.  Thus, to ensure that our results were not influenced by 

learning effects, subjects were asked to perform a warm up trial, moving in time with the 

metronome, for a minimum of 30 seconds (~30 cycles) or until they felt completely 

comfortable with the task.  Subjects then rested for one minute to minimize any fatigue 

effects that may have occurred during this practice period.   

Subjects then performed the fatigue task by sawing until they reached voluntary 

exhaustion.  Once the fatigue trials began, data collection did not begin until subjects 
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visually reached steady-state (an additional ~20 cycles).  Subjects were given strong 

verbal encouragement to continue and were told to “focus on the metronome and keep 

time with the beat” when they exhibited any difficulty maintaining timing.  They were 

similarly instructed to maintain full range of motion if they began making smaller 

movements than specified. 

A single reflective marker was placed on the top of the handle (Fig. 2.1) to define 

the beginning and end of each cycle.  The 3D position of this marker was recorded 

continuously during each fatigue trial at 60 Hz using an 8-camera Vicon-612 motion 

analysis system (Oxford Metrics, Oxford, UK).  Nine preamplified EMG surface 

electrodes (Delsys Inc., Boston, MA) were attached to the dominant arm and torso to 

record activity in the middle trapezius, pectoralis major, deltoids (anterior, lateral and 

posterior), triceps (lateral head), biceps, flexor carpi radialis, and extensor carpi radialis 

longus.  Electrodes were positioned over each muscle according to accepted 

recommendations (Konrad, 2005).  EMG and metronome data were recorded 

continuously at 1080 Hz during all trials.  Additionally, ratings of perceived exertion 

(RPE) were recorded once every 3 minutes during each trial using the modified Borg 

scale (Borg, 1974; Borg, 1982), on which subjects subjectively rated their level of fatigue 

on a scale from 0 (“none at all”) to 10 (“maximal exertion”). 

 

Data Analyses 

Raw EMG data were band-pass filtered from 20 to 400 Hz.  Time points defining 

the beginning, middle, and end of each cycle, as determined from the marker data were 

used to split each EMG signal into the push stroke and pull stroke.  Median power 

frequencies (MdPF) of the EMG signals were used to indicate muscle fatigue (DeLuca, 

1984).  The MdPF for each stroke (either push or pull) was computed from the power 
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spectrum of the signal using Welch’s method (MATLAB, Mathworks, Natick, MA).  The 

MdPF for each complete movement cycle (push plus pull) was calculated as the average 

of the MdPFs for the push and pull strokes (MacIsaac et al., 2001).  For each muscle, the 

average MdPF for the first 224 cycles and the last 224 cycles (approximately 3.5 

minutes) were compared using paired t-tests.  This range was chosen because the other 

analyses used (see below) required relatively long time series.  The need for longer time 

series was balanced against the need to capture only the earliest stages of fatigue.  Data 

from two subjects for the middle deltoid and one subject for the wrist flexor were omitted 

due to technical problems during data collection.     

The kinematic data from the handle marker (Fig. 2.1) were filtered using a 5th 

order low-pass Butterworth filter with a cutoff frequency of 6 Hz.  These marker data 

were then resampled to 1080 Hz using a piecewise cubic interpolant in Matlab 

(Mathworks, Natick, MA) to match the sampling frequency of the metronome.  The 

beginning and end of each movement stroke (i.e., either push or pull) were defined as the 

minimum and maximum excursions of the marker in the anterior-posterior direction.  

These minima/maxima were found by first differentiating the marker trajectory data and 

then locating the zero crossings of the velocity.  For each movement cycle (i.e., push 

followed by pull), i, movement distance, d(i), was defined as the maximum minus the 

minimum anterior-posterior marker excursions for the push phase.  Movement speeds, 

s(i), were defined as the movement distance, d(i), divided by the elapsed time for each 

movement cycle.  Timing errors, e(j) were calculated separately for each stroke, j, by 

subtracting the time the handle marker reached a maximum or minimum from the time of 

the nearest metronome signal (Fig. 2.2; (Chen et al., 1997; Ding et al., 2002).  Thus, 

negative timing errors indicated that the subject lagged behind the metronome, while 

positive value indicated that they were ahead of it.   
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Figure 2.2: Example of calculating timing errors. 
A) An example segment of the handle marker trajectory (XH) is shown with points of 
minimum and maximum extension highlighted (‘×’).  Errors were defined as the elapsed 
time between these points and the metronome signal (‘•’).  B) Example time series of 
timing errors for the same representative subject: S12.  This subject consistently lagged 
behind the metronome.  Points where the errors switch sign indicate where the subject 
was so far behind that they became more aligned with the subsequent metronome signal. 

To appropriately non-dimensionalize these variables (Hof, 1996), movement 

speed was rescaled by a factor )/(1 mfH ⋅ , where H was the subject’s height and fm was 

the frequency of the metronome.  Movement distance was rescaled by 1/H.  The non-

dimensional distance, D(i), was equal to the non-dimensional speed, S(i), at every 

location where the goal, fm, was reached.  Because the same characteristic length (H) was 

used to non-dimensionalize both movement distance and speed, this choice did not affect 

the GEM analyses.  Time series of non-dimensionalized E(j), D(i), and S(i) values were 

analyzed to quantify task performance and the overall movement patterns subjects used to 

achieve that performance. 

In addition to these measures, we also used a performance analysis based on the 

idea of body-goal variability mapping (Cusumano and Cesari, 2006).  The primary goal 

of this task was to maintain movement time, T, with the metronome on each movement.  

However, there are an infinite number of combinations of movement distance, D, and 

speed, S, that will achieve this goal, so long as D/S = T.  These [D, S] combinations 
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define the goal equivalent manifold (GEM) for this task (Fig. 2.3).  It should be noted 

that this GEM is defined explicitly by the goal of the task itself.  It exists independent of 

our choice of analyses and independent of whether and how (or even if) subjects choose 

to control their movements in relation to the GEM.  Given the existence of this GEM, we 

can then decompose the variability in the body movement parameters, D(i) and S(i), into 

components that directly affect task performance (i.e., achieving the task goal) and those 

that have no effect on achieving the task goal (Fig. 2.3;  Cusumano and Cesari 2006).  

Variability in D(i) and S(i) were thus decomposed into variability tangent to and 

perpendicular to the GEM:  

 ( ) ( ) ( ) PPTT eieii ˆˆ δδδ +=
v

 (2.2) 

where ( )iδ
v

 was the vector-valued error in movement time for movement i, δT(i) was the 

corresponding magnitude of the deviation tangent to the GEM, δP(i) was the 

corresponding magnitude of the deviation perpendicular to the GEM, and Tê  and 

Pê were unit vectors defining directions tangent to and perpendicular to the GEM (Fig. 

2.3).  Any scalar deviations ( ) ( ) TT eii ˆ⋅= δδ
v

 do not contribute to errors in movement time, 

while the deviations ( ) ( ) PP eii ˆ⋅= δδ
v

 do.  Thus, changes in the magnitude, variability, 

and/or cycle-to-cycle dynamics of these δP(i) deviations would indicate changes in motor 

performance that were specifically “goal relevant.” 

Because the GEM is defined strictly by the task itself, this does not mean that 

subjects will take advantage of the GEM in regulating their movements.  Computing the 

relative magnitudes of the variability of deviations in the δP and δT directions provides 

some insight as to how people regulate their movements.  However, the ratio of these 

variances alone does not directly test the issue of alignment itself.  To directly quantify 

how well each subject aligned their movements with the GEM, we also performed a 

principle components analysis (Wing et al., 2004) on the data obtained from each subject 
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during each trial.  We computed the eigenvector associated with the largest eigenvalue of 

the covariance matrix.  This vector is known as the first principle component (PC1) 

because it defines the direction in which the greatest variance occurs.  We then computed 

the angle (θ) between this PC1 vector and the GEM using the dot product.  Values of θ  

very close to zero would indicate that subjects were indeed aligning their movements 

with the GEM. 

 

Figure 2.3: Example of the goal equivalent manifold (GEM) analysis. 
A) The non-dimensional movement speed (S) is plotted versus non-dimensional 
movement distance (D).  All combinations where S is equal to D achieve the ‘goal’ of 
matching the metronome frequency, and thus define the GEM (diagonal line).  Deviations 
perpendicular to and tangent to the GEM are denoted δP and δΤ, respectively.  B) 
Example time series of δP and δΤ  fluctuations for a representative subject: S03.  
Fluctuations along the manifold were larger than those perpendicular to the manifold. 

Detrended Fluctuation Analysis (DFA) was used to determine the degree to which 

each time series exhibited persistent or anti-persistent temporal correlations across 

successive movements.  This method has been used extensively in the analysis of 

experimental time series because it reduces noise effects and removes local trends 

making it less likely to be affected by nonstationarities (Hausdorff et al., 1995).  

Complete details of the methodology are published elsewhere (Peng and Buldyrev, 1993; 
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Peng et al., 1994; Hausdorff et al., 1995; Peng et al., 1995).  In brief, the data sequence of 

length N was first integrated and then divided into equal, non-overlapping segments of 

length n.  In each segment, the series was detrended by subtracting a least squares linear 

fit to that segment.  The squares of the integrated, detrended data points (i.e, residuals) 

were then averaged over the entire data set and the square root of the mean residual, F(n), 

was calculated.  This process was repeated for different values of segment lengths, n, 

ranging from 4 to N/4.   

Typically, F(n) increases with n and a graph of log[F(n)] versus log(n) will often 

exhibit an approximately power-law relationship indicating the presence of scaling, such 

that F(n) ≈ nα (Hausdorff et al., 1995; Peng et al., 1995).  These log[F(n)] versus log(n) 

plots were fitted with a linear function using least squares regression.  The slope of this 

line defined the scaling exponent α (Fig. 2.4).  A value of α = 0.5 indicates the time 

series is completely uncorrelated (i.e., random white noise).  When, α < 0.5, the time 

series contains anti-persistent temporal correlations.  This indicates a highly controlled 

process where deviations in one direction are more likely to be followed by deviations 

(i.e., corrections) in the opposite direction.  Persistent temporal correlations are present 

when 0.5 < α ≤ 1.0 (Hausdorff et al., 1995).  In this case, deviations in one direction are 

likely to be followed by deviations in the same direction (i.e., the deviations are not 

immediately corrected). 

DFA was performed on the series of timing errors, E(j), movement distances, D(i) 

and movement speeds, S(i), as well as the deviations perpendicular to, δP(i), and along, 

δT(i), the GEM. The first and last [ ]224,...,1∈i  movement cycles (i.e., [ ]488,...,1∈j  

timing errors) from each experiment were analyzed (approximately 3.5 minutes) to obtain 

‘early’ and ‘late’ fatigue measures.  Early / Late comparisons for means, standard 

deviations, and α of each of these time series were made using paired t-tests (Minitab 14, 
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Minitab Inc, State College, PA).  Comparisons between directions (tangent vs. 

perpendicular to the GEM) were also made using paired t-tests.  
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Figure 2.4: Example time series with equal variance and different correlation structures 
A) Two stochastic time series in arbitrary units are shown.  Both have been normalized to 
unit variance.  The top graph clearly shows temporal persistence, whereas the bottom 
graph fluctuates much more rapidly.  B) DFA analyses of the two corresponding time 
series shown in A.  The different temporal correlation patterns are clearly reflected in the 
different scaling exponent values obtained.  Thus, the α exponent obtained from DFA 
quantifies temporal correlations (persistence vs. anti-persistence) in a time series, 
independent of the magnitude of the variance. 

2.4 RESULTS 

Subjects performed the task for 23.93 ± 10.44 minutes (range: 8.64 to 41.20 

minutes).  At the end of the first three minutes, subjects’ rates of perceived exertion 

(RPE) ranged from 2 to 6 (mean = 3.8), while at the beginning of the last segment all 

subjects had an RPE of 9 or higher.  All subjects exhibited localized muscle fatigue as 

measured by decreased MdPF of the EMG signals (Fig. 2.5).  These decreases were 

statistically significant for six of the nine muscles tested (p < 0.039) and nearly 

significant (p = 0.052 and p = 0.088) for two others.   
 



 32

TP PC PD MD AD BI TR WF WE
40

60

80

100

120

140

160

M
d

P
F

 
(H

z
)

* * * *

* *

Early

Late

 

Figure 2.5: Median power frequencies of the EMG signals for the 9 muscles tested. 
All muscles showed a decrease in MdPF from early to late fatigue.  These decreases were 
statistically significant for the posterior deltoid (PD, p = 0.006), middle deltoid (MD, p = 
0.039), anterior deltoid (AD, p = 0.002), triceps (TR, p < 0.001), wrist flexors (WF, p = 
0.006), and wrist extensors (WE, p<0.001).  Decreases in MdPF were nearly statistically 
significant for the trapezius (TP, p =0.052) and biceps (BI, p = 0.088), but were not 
significant for the pectoralis (PC, p = 0.760).  Error bars indicate ±1 between-subject 
standard deviations about the mean.   

To verify that subjects had sufficiently “learned” the sawing task prior to data 

collection, the data from the first 240 cycles were divided into 24 non-overlapping bins of 

10 movements each.  Mean timing errors (E) and perpendicular distances from the GEM 

(δP) were computed within each bin to quantify performance accuracy.  These data were 

compared statistically using a single-factor ANOVA to test for differences across the 24 

bins.  Neither timing errors nor δP deviations changed over this period (p = 0.336 and p = 

0.770, respectively; Fig. 2.6).  Indeed, the δP deviations tended to actually increase 

slightly, indicating that subjects were slightly less able to maintain proper timing.  Thus, 

there was no evidence that any subject exhibited any further learning during the early 

fatigue phases of these experiments. 
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Figure 2.6: Mean timing errors and deviations across the first 240 movements. 
A) Mean timing errors and B) Perpendicular deviations (δP) from the GEM across the 
first 240 cycles of each fatigue trial.  For each subject, average values for each measure 
were computed within 24 non-overlapping bins of 10 movements each.  Symbols (*) 
represent the mean values across all subjects.  Error bars represent between-subject 
standard deviations.  Both measures were very close to zero from the very beginning of 
the fatigue trials.  Timing errors did not change over the first 240 cycles.  Mean δP 
deviations grew slightly larger over time.  These data demonstrate that subjects had fully 
learned the task prior to data collection. 

Mean values of the non-dimensional movement distance (D), speed (S), and 

timing errors (E) were not affected by muscle fatigue (p = 0.958, 0.245, and 0.404, 

respectively; Fig. 2.7A).  Timing errors were typically slightly negative, indicating that 

subjects were responding to the metronome signal rather than anticipating it.  The 

magnitudes of the variability (Fig. 2.7B) for the task parameters D and S were unaffected 

by muscle fatigue (p = 0.695 and p = 0.538, respectively).  The variability of timing 

errors exhibited a slight decrease with muscle fatigue that did not reach statistical 

significance (p = 0.192).  However, α did decrease significantly with muscle fatigue (Fig. 

2.7C) for both movement speed (p = 0.046) and timing errors (p = 0.037), but not for 

movement distance (p = 0.472).  On average, all of these variables exhibited persistent 

temporal correlations (0.5 < α < 1.0), suggesting that they were not tightly controlled. 
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A) The mean values of the movement 
distance (D), speed (S), and timing errors 
(E) were not affected by muscle fatigue 
(p = 0.958, 0.245, and 0.407, 
respectively).  B) Magnitudes of the 
variability (standard deviation) for these 
metrics were also not significantly 
affected by muscle fatigue (p = 0.695, 
0.538, 0.192, respectively).  C) There 
was a significant decrease in α with 
muscle fatigue for movement speed (S; p 
= 0.037) and timing errors (E; 0.046), 
but not distance (D; p = 0.472).  On 
average, all variables exhibited persistent 
cycle-to-cycle correlations (0.5 < α < 
1.0).  Error bars indicate ±1 between-
subject standard deviations about the 
mean. 

Figure 2.7: Mean, standard deviation, and α of the basic timing parameters 

Subjects’ overall force profiles appeared quite similar during Early and Late 

fatigue (Fig. 2.8A).  The mean magnitudes of the peak forces subjects applied to the 

handle increased significantly with muscle fatigue from 28.5 ± 6.0 % to 30.7 ± 7.5% of 

each subjects maximum pushing/pulling force (p = 0.032).  This difference, while small, 

was consistent across subjects (Fig 2.8B).  
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Figure 2.8: Average handle forces early and late fatigue. 
A) Average handle force profiles for early and late fatigue movements, normalized to 
percent MVC and percent cycle time.  Dotted lines represent ± between-subject standard 
deviation bands for each block of movements (Early and Late).  B) Average peak handle 
forces (Fpeak) for each subject for both Early and Late fatigue. Each symbol and line type 
represents the average value for one subject.  While these changes were relatively small, 
they were consistent enough across subjects to be statistically significant (p = 0.032).   

The initial GEM decomposition revealed a strong tendency for subjects to align 

themselves with the GEM.  Deviations perpendicular to the GEM were much smaller 

than those tangent to the GEM (Figs. 2.9 & 2.10).  There were differences between 

subjects in their responses to fatigue, however (Fig 2.9).  Some subjects increased both 

movement amplitude and speed post-fatigue (Fig. 2.9A), while others showed a decrease 

(Fig. 2.9D).  A few subjects became less variable after fatigue (Fig. 2.9B), while others 

were consistently unable to keep time with the metronome post-fatigue (Fig. 2.9C).     
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Figure 2.9: GEM decomposition for 4 representative subjects.  
Points represent the combination of non-dimensional distance (D) and speed (S) for each 
movement.  Symbols ‘×’ and ‘•’ represent the first and last 300 movements, respectively.  
The solid diagonal line is the goal equivalent manifold (GEM).  Subjects tended to align 
with the GEM, such that there were greater deviations along the GEM than perpendicular 
to it.  Two subjects showed an increase in movement amplitude and speed post-fatigue 
(e.g., A), while four others showed a decrease (e.g., D).  Five subjects showed a decrease 
in variability post-fatigue (e.g., B).  Three subjects showed an inability to keep time with 
the metronome post-fatigue (e.g., C).   

The mean magnitudes of the deviations perpendicular to (δP) and tangent to (δT) 

the GEM were significantly different (p < 0.001; Fig. 2.10A).  Fatigue did not affect the 

mean deviations tangent to the GEM (p = 0.573).  Deviations perpendicular to the GEM 

tended to increase slightly post-fatigue (p = 0.087).  The magnitude of the variability 

(Fig. 2.10B) was unaffected by muscle fatigue (δP: p = 0.593, δT: p = 0.837).  The 

magnitude of variability perpendicular to the GEM was significantly less than that 

tangent to the GEM (p < 0.001).  Deviations perpendicular to the GEM were also 

significantly less persistent (Fig. 2.10C) than deviations along the GEM (αP < αT; p < 



 37

0.001).  This indicated that the δP deviations were corrected more quickly than δT 

deviations.  There was also a slight tendency for α to decrease in late fatigue for δT 

deviations (p = 0.122), whereas temporal correlations in δP deviations were unaffected by 

fatigue (p = 0.497).    

      δ
T

       δ
P

0.4

0.6

0.8

1

1.2

α

∗

0

0.01

0.02

0.03

0.04

V
a
ri

a
b

il
it

y

∗

0

0.1

0.2

0.3

0.4

0.5

M
e
a
n

∗

Early

Late

-0.02

-0.01

0

0.01

A.

C.

B.

A) The mean magnitudes of the deviations 
perpendicular to (δP) to the GEM were 
significantly smaller than the deviations 
tangent to (δT) the GEM (p < 0.001).  
Perpendicular deviations tended to get 
slightly larger (i.e., more negative) with 
muscle fatigue (δP: p = 0.087).  Deviations 
along the GEM were not affected by 
muscle fatigue (δT: p = 0.573).  B) The 
variability of deviations perpendicular to 
the GEM was significantly smaller than 
that of deviations tangent to the GEM (p < 
0.001).  Variability was not affected by 
muscle fatigue (δP: p = 0.593, δT: p = 
0.837).  C) Deviations perpendicular to 
the GEM exhibited significantly less 
cycle-to-cycle temporal persistence (i.e., 
smaller α) than deviations tangent to the 
GEM (p < 0.001).  There was a slight 
tendency for α to decrease with fatigue for 
deviations tangent to the GEM (δT: p = 
0.122). Fatigue did not affect the 
persistence of deviations perpendicular to 
the GEM (δP: p  = 0.497).  Error bars 
indicate ±1 between-subject standard 
deviations about the mean. 

 

Figure 2.10: The mean, standard deviation and α of deviations δP and δT  
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The principle components analyses (Fig. 2.11) revealed a slightly different view 

of how well subjects aligned their movements with the GEM.  In most cases, the 

differences in alignment (θ) between the GEM and the first principle component (PC1) of 

the subjects’ data were less than ±10° (Early: 5.9 ± 7.8o, Late: 6.1 ± 6.8o).  Across 

subjects, however, θ was significantly positive (p < 0.001), as determined from a single 

sample t-test with the null hypothesis that µ = 0.  There were no significant changes in 

alignment of the data with the GEM between early and late fatigue (p = 0.93).  Thus, 

even though subjects did exhibit positive ratios of δT to δP variability (Figs. 2.9 and 

2.10B), their movements were not aligned exactly along the GEM itself (Fig. 2.11B). 
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Figure 2.11: Determining degree of alignment with the goal equivalent manifold.  
A) Plots of movement distance (D) vs. speed (S) for one example subject showing the 
orientation of the GEM as defined by the sawing task and the orientation of the first 
principle component (PC1) as determined from the subject’s data.  The angle θ defines 
the orientation of PC1 relative to the GEM.  For this subject, θ = −1.4° during early 
fatigue and θ = +19.0° during late fatigue.  B) Values of the angle θ for all subjects 
during both early and late fatigue.  On average, these angles were slightly positive (p < 
0.001) for most subjects, indicating that subjects did not align their movements exactly 
with the GEM.  Across subjects, these angles did not change significantly from early to 
late fatigue (p = 0.93). 

2.5 DISCUSSION 

Muscle fatigue can alter movement timing (Lorist et al., 2002; van Duinen et al., 

2007).  However, little is known about how muscle fatigue affects performance and 
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control in repetitive tasks.  This study was conducted to determine how muscle fatigue 

affected task performance during a repetitive sawing-like task.  We analyzed the 

magnitudes, variations and temporal correlations of movement-to-movement timing 

errors, E(j), and cycle-to-cycle distances, D(i), and speeds, S(i).  We also analyzed 

performance by decomposing variations in the task variables (D and S) into those that 

directly affected achieving the task goal (δP) and those that did not (δT), by identifying 

the goal equivalent manifold (GEM) of all valid solutions to this task.  Using these 

analyses, we could determine if muscle fatigue affected overall task performance at the 

‘goal’ level, the biomechanical movement patterns subjects used to achieve this 

performance at the ‘body’ level, or both.   

The increased rates of perceived exertion (RPE) and decreased EMG median 

frequencies (Fig. 2.5) demonstrate that the sawing task did induce significant muscle 

fatigue in these subjects.  The primary task goal was to perform the reaching task in time 

with the metronome.  The lack of significant changes in average movement distance, 

speed, and timing errors (Fig. 2.7A) demonstrate that overall task performance did not 

change with fatigue.  Similar results were reported for other upper extremity repetitive 

tasks (Lucidi and Lehman, 1992; Côté et al., 2002; Heuer et al., 2002; Selen et al., 2007).  

The trend for mean deviations perpendicular to the GEM (δP) to increase slightly (but not 

quite significantly) with fatigue (Fig. 2.10A) suggests that there was some (albeit slight) 

deterioration in task performance.  However, the lack of any significant changes (p > 

0.49) in either the variability (Fig. 2.10B) or the temporal correlation structure (Fig. 

2.10C) of δP deviations or in the alignment of subjects’ movements with the GEM (Fig. 

2.11) shows that subjects also maintained the same goal relevant performance with 

respect to the GEM.   
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Conversely, the cycle-to-cycle temporal persistence (α) of movement speed (S) 

and timing errors (E) both significantly decreased with fatigue (Fig. 2.7C).  This indicates 

that subjects corrected timing errors more quickly when their muscles were fatigued.  

These decreases in α are supported by similar decreases found with fatigue during 

standing (Corbeil et al., 2003).  Subjects also exhibited small but consistent increases in 

the peak forces they applied to the handle (p = 0.032; Fig. 2.8B).  Likewise, 6 of the 14 

subjects shifted their operating point along the GEM by making either longer faster 

movements (Fig. 2.9A) or shorter slower movements (Fig. 2.9D) with fatigue.  The 

remaining subjects exhibited other qualitative changes in their movement patterns relative 

to the GEM (Fig. 2.9B & 2.9C).  Together, these findings indicate that subjects 

significantly altered their biomechanical movement patterns in response to fatigue.  

However, these changes were made in such a way that those features of motor 

performance that were specifically “goal relevant” (Figs. 2.10 & 2.11) did not change. 

The goal equivalent manifold (GEM) approach adopted here is similar in some 

respects to the uncontrolled manifold (UCM) approach described in recent literature 

(Scholz and Schöner, 1999; Latash et al., 2002; Schöner and Scholz, 2007).  Both 

approaches identify a sub-set of body-level variables, assumed to have the structure of a 

manifold, that define a full set of motor solutions that equally achieve a given task goal 

(Cusumano and Cesari, 2006).  The UCM approach then attempts to tie the resulting 

geometrical structure of this manifold directly to control by assuming control will be 

exerted only orthogonal to this manifold and not along it.  Based on this assumption, 

putative control variables are identified by quantifying the ratio of the variance 

components parallel and perpendicular to the manifold (Latash et al., 2002).  Conversely, 

the GEM approach makes no a priori assumptions about which variables are being 

“controlled.”  This is because the GEM exists even for purely passive systems where no 
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control is applied at all.  Also, there is no particular reason to necessarily associate 

“control” with only one of the variance components (Cusumano and Cesari, 2006).  If 

(but only if) the body variables being analyzed do turn out to be the variables that are 

controlled, then the GEM would also be a UCM.  However, this is not necessary and the 

ratio of the parallel and perpendicular variance components alone does not guarantee this.  

The GEM approach is thus both more general and more precise than the UCM approach. 

Additionally, there were several technical differences between the analyses 

presented here and those associated with the UCM approach.  First, the UCM approach 

assumes that stability can be equated with variability (Latash et al., 2002; Schöner and 

Scholz, 2007).  However, standard deviations only quantify the average magnitudes of 

the variations that occur across many cycles and do not directly quantify how a system 

responds to perturbations from one cycle to the next (Dingwell and Cusumano, 2000; 

Dingwell and Kang, 2007).  The DFA analyses presented here (Figs. 2.4, 2.7C, and 

2.10C) provide an additional measure of cycle-to-cycle dynamics that is independent of 

variability (Peng et al., 1994; Hausdorff et al., 1995).  Furthermore, variance ratios alone 

(Latash et al., 2002) do not directly quantify how closely each subject’s movements are 

aligned with the GEM.  To assess this, we also conducted principle components analyses 

(PCA; Fig. 2.11) on our data.  While previous authors have commented on the 

relationship between UCM and PCA (Schöner and Scholz, 2007), the present analyses 

are the first we know of to simultaneously apply both approaches to directly assess 

alignment with the GEM.  Even though subjects exhibited greater variability along the 

GEM than perpendicular to it (Fig. 2.10B), their performance was not aligned exactly 

with the GEM (Fig. 2.11).  This suggests, contrary to the UCM interpretation, that there 

was indeed at least some coupling between performance (and likely also control), both 

perpendicular to and along the GEM. 
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The results presented here provide some new insights into the general nature of 

movement timing control and how this control is affected by muscle fatigue.  For 

example, it is clear that subjects altered their biomechanical movement patterns in 

response to fatigue only in such a way that they specifically preserved the goal relevant 

features of their motor performance.  However, these findings do not reveal which 

specific variables were being “controlled” or whether the changes that were observed 

were caused by physical changes in the plant (i.e., the musculoskeletal system being 

controlled), by changes in the underlying control policy (i.e., the specific instructions that 

define how to produce the desired output) each subject adopted, or possibly both.  This 

issue is particularly complicated in the context of fatigue since the physical properties of 

the end effectors (i.e., the muscles) change due to fatigue.  Therefore, it is possible that 

even the same governing control policy could induce different behaviors of these 

effectors.  Therefore, contrary to the typical UCM interpretation (Schöner and Scholz, 

2007), we make no claims that subjects actively controlled their movements 

perpendicular to the GEM but not along it (Cusumano and Cesari, 2006), nor that this 

control was preserved in the face of fatigue.  What we can say is that the lack of fatigue-

related changes in the goal relevant (i.e., δP) performance measures (Figs. 2.10 & 2.11) 

suggests that any peripheral changes that might have directly affected these variables 

were compensated for by concurrent changes in the control policies subjects adopted. 

As subjects tried to maintain time with the metronome, they oscillated between 

leading it and lagging behind it (e.g., Fig. 2.2B).  The mean errors were negative (Fig. 

2.7A), indicating that most subjects reacted to the stimulus rather than anticipating it.  

This result differs from previous findings on finger tapping (Aschersleben, 2002).  One 

reason for this is likely the larger inertial load involved in this task.  This was 

substantiated by the DFA results (Figs. 2.7C & 2.10C), which showed that all five time 
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series measures quantified in this study exhibited statistical persistence (i.e., α > 0.5).  To 

exhibit anti-persistence (i.e., α < 0.5), subjects would have to be able to make immediate 

adjustments to each movement based on the error from the previous movement (e.g., Fig. 

2.4; Bottom row).  The significant inertial load involved in this task likely did not allow 

for such rapid corrections to be possible.  Nevertheless, the finding that the δP deviations 

perpendicular to the GEM were significantly less persistent than the δT deviations along 

the GEM (i.e., αP < αT; Fig. 2.10C) strongly suggests that subjects adopted a general 

control strategy that corrected deviations in δP more rapidly than deviations in δT.   

As mentioned, all five time series measures quantified in this study exhibited 

statistical persistence (i.e., α > 0.5).  It has previously been proposed that findings of α > 

0.5 from the DFA algorithm used here indicate the presence of “long-range correlations” 

such that the underlying time series can be characterized as having an infinite 

decorrelation time (Peng and Buldyrev, 1993; Peng et al., 1994; Hausdorff et al., 1995; 

Peng et al., 1995).  However, this algorithm was recently shown to yield “false positives” 

for many processes with finite correlation times (so-called “short-range correlations”).  

For example, many linear auto-regressive models can also result in findings of α > 0.5 

(Maraun et al., 2004; Gates et al., 2007).  Thus, here we make no claims that these α 

values represent true “long-range correlations” (Maraun et al., 2004).  For our purposes, 

however, α still remains a valid measure of how rapidly the time series is fluctuating and 

thus provides a valid indication of how rapidly subjects were correcting deviations from 

each movement to the next. 

We expected that the variability of the performance measures might increase with 

muscle fatigue (Selen et al., 2007).  Instead, the variability of the timing errors actually 

decreased while the distance, speed, and deviations perpendicular and tangent to the 

GEM remained relatively constant (Figs. 2.7 & 2.9).  Although kinematic variability and 
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force variability have been shown to increase in static tasks such as target tracking (Selen 

et al., 2007), these changes have not been documented in goal-directed movement tasks 

that require varying forces to achieve the goal.     

Despite making the task as dynamically equivalent as possible, differences 

between subjects remained, particularly for time to exhaustion.  One reason for this is that 

since this task was inherently redundant, there were numerous alternative modalities 

subjects could use to compensate for those that were altered by fatigue.  Thus, it is easily 

possible different subjects compensated for fatigue in different ways.  For example, each 

subject showed a unique pattern as to which muscles were most affected by fatigue 

during the task.  By using different muscles, they were still able to perform the task 

accurately with no increase in movement variability.  So while overall muscle force 

variability may increase (Selen et al., 2007), this effect could be counteracted by 

changing coordination strategies to use less fatigued muscles.  The between-subject 

variability observed in this study was similar to that observed in previous studies of 

fatigue in complex multi-joint tasks (Nussbaum, 2001; von Tscharner, 2002; Madigan 

and Pidcoe, 2003; Voge and Dingwell, 2003). 

Another possible explanation is that the subjects fatigued to different degrees.  

Subjects could stop the experiment as soon as they felt they could no longer continue the 

task.  This ‘threshold’ could be different for the different subjects, depending on their 

motivation level and previous experience pushing themselves past the early stages of 

fatigue.  To test this possibility, we correlated the difference between ‘early’ and ‘late’ 

fatigue for each dependent measure to each subject’s time to exhaustion.  Early-late 

differences in variability of movement distances (D) were positively correlated with time 

to exhaustion (r2 = 37.8%; p = 0.019).  Subjects who performed longer showed greater 

decreases in movement distance variability, while subjects who stopped sooner showed 
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greater increases.  Early-late differences in α of timing errors (E) were negatively 

correlated with time to exhaustion (r2 = 29.8%; p = 0.044).  Subjects who performed 

longer showed smaller decreases to slight increases in α of timing errors.  None of the 

other 13 comparisons were statistically significant (0.4% < r2 < 23.2%; 0.82 > p > 0.08).  

Thus, while time to exhaustion had some impact on some of our results, the overall 

effects were not particularly strong. 

It is possible that subjects experienced mental fatigue as well as muscle fatigue, 

since trials lasted up to 41 minutes and were fairly tedious.  Cognitive factors can affect 

these processes during finger tapping where increasing the mental challenge of the task 

can lead to more persistent (i.e., larger α) temporal correlations (Ding et al., 2002).  

Previous work using fMRI has shown that after motor fatigue, activity in the prefrontal 

areas of the brain increases during reaction time task performance (van Duinen et al., 

2007).  This results in increased reaction times during auditory choice reaction time tasks 

(Lorist et al., 2002).  Therefore, if the task became more mentally challenging, it is 

possible that this could offset the effect of muscle fatigue in some subjects.  This may 

explain why the affect in α is smaller in subjects who performed the task for a longer 

duration.   

In summary, subjects significantly altered their biomechanical movement patterns 

in response to muscle fatigue.  Muscle fatigue caused the deviations in movement speed 

and timing errors to become more anti-persistent.  This suggests that subjects made more 

frequent corrections when their muscles were fatigued.  Subjects also increased the peak 

forces they applied to the handle and exhibited qualitative changes in their behavior 

relative to the GEM when they were fatigued. However, the lack of significant changes in 

either the variability or temporal dynamics of the δP deviations perpendicular to the GEM 
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demonstrate that these changes were made only in such a way that they specifically 

preserved the goal relevant features of task performance.   
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Chapter 3: A Comparison of Different State Space Definitions for Local 
Dynamic Stability Analyses 2 

3.1 ABSTRACT 

Measures of local dynamic stability, such as the local divergence exponent ( )*
sλ  

quantify how quickly small perturbations deviate from an attractor that defines the 

motion.  When the governing equations of motion are unknown, an attractor can be 

reconstructed by defining an appropriate state space.  However, state space definitions are 

not unique and accepted methods for defining state spaces have not been established for 

biomechanical studies.  This study first determined how different state space definitions 

affected *
sλ  for the Lorenz attractor, since exact theoretical values were known a priori.  

Values of *
sλ  exhibited errors < 10% for seven of the nine state spaces tested.  State 

spaces containing redundant information performed the poorest.  To examine these 

effects in a biomechanical context, 20 healthy subjects performed a repetitive sawing-like 

task for five minutes before and after fatigue.  Local stability of pre- and post-fatigue 

shoulder movements was compared for six different state space definitions.  Here, *
sλ  

decreased post-fatigue for all six state spaces.  Differences were statistically significant 

for three of these state spaces.   For state spaces defined using delay embedding, 

increasing the embedding dimension decreased *
sλ  in both the Lorenz and experimental 

data.  Overall, our findings suggest that direct numerical comparisons between studies 

that use different state space definitions should be made with caution.  However, trends 

across experimental comparisons appear to persist.  Biomechanical state spaces 

                                                 
2 A version of this chapter is published as a technical note: Gates, D.H. and Dingwell, J.B. (In Press) A 
comparison of different state space definitions for local dynamic stability analyses. Journal of 
Biomechanics. 
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constructed using positions and velocities, or delay reconstruction of individual states, are 

likely to provide consistent results.    

 

3.2 INTRODUCTION 

Nonlinear dynamics methods for determining the local stability of kinematics 

have gained increased interest in recent literature.  For experimental data, the governing 

equations are typically unknown.  During most repetitive movements, the dynamics of 

such movements can be represented geometrically within an n-dimensional ‘state space’ 

where n is the number of state variables (Dingwell and Cusumano, 2000; Kantz and 

Schreiber, 2004).  Typically, these experimental data exhibit the structure of an attractor, 

i.e., a sub-space of the  n-dimensional state space to which neighboring trajectories 

converge (Strogatz, 1994; Dingwell and Kang, 2007). 

Measurable biomechanical state variables typically include linear and/or angular 

displacements, velocities, and/or accelerations.  State spaces may also be defined using 

delay embedding, which allows reconstruction from a single scalar recording, once an 

appropriate time lag and embedding dimension are determined (Kantz and Schreiber, 

2004).  This can greatly simplify data collection and may be advantageous for situations 

where data for some measurable dimensions are prone to error.  However, since 

divergence in one dimension may be compensated by contraction in another (Granata and 

Gottipati, 2008), analyzing one single trajectory may not adequately represent the 

movement.  One proposed way to compensate for this is to perform delay embedding on 

the Euclidean norm of the three Euler angles at a joint (Granata and Gottipati, 2008)3.  

Another option is to analyze a state space composed of all angles and angular velocities 
                                                 
3 The Euclidean norm of 3 Euler angles is not an appropriate measure of the “distance” between two 
angular orientations, as it would be for linear displacements.  This measure should be interpreted here 
merely as a weighted average of the 3 joint angles. 
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at that joint.  However, this will typically include redundant information which could 

negatively impact the results.  One way to define state variables with minimum 

redundancy is to perform a principal components analysis (PCA) on the data (Wing et al., 

2004).  Many state spaces have been applied in biomechanical stability analyses (Table 

3.1).  To date, however, researchers have not explored how different definitions of these 

state spaces affect local stability measures. 

Table 3.1: State Space Definitions used in the literature.   

State Space Definition References 

All angular and linear motion and velocities of a segment Kang and Dingwell, 2006a,b 
Kang and Dingwell, 2008 

All angles and angular velocities at a joint Lee and Granata, 2008 
Slota et al., 2008  

Delay embedding of sagittal plane angles 

England and Granata, 2007  
Manor et al., 2008 
Segal et al., 2008 
Stergiou et al., 2004  

Delay embedding of linear motion of a single marker 

Buzzi et al., 2003 
Dingwell and Marin, 2006  
Dingwell et al. , 2008 
Jordan et al., 2009  

Delay embedding of linear acceleration Dingwell et al., 2000  
Yoshino et al., 2004  

Delay embedding of the Euclidean norm of three Euler angles at 
a joint 

Granta and England, 2006  
Granata and Gottipati, 2008  

This study determined how including different state variables and/or different 

numbers of variables in the state space altered short-term local divergence exponents, λs
*, 

a measure of local dynamic instability (Dingwell and Cusumano, 2000).  Data for which 

the true λs
* was known a priori were analyzed to determine how different state space 

definitions affect the resulting values of λs
*.  Experimental data were then analyzed to 

determine how different state space definitions might affect the answers to research 
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questions attempting to quantify differences in stability between conditions.  The state 

space definitions examined here were chosen primarily from previously published studies 

(Table 3.1). 

3.3 METHODS  

The Lorenz attractor (Strogatz, 1994) was used to test the effect of different state 

space definitions on λs
*.  The Lorenz system is defined by three coupled nonlinear 

differential equations:  

 

( )
( )

zxyz
yzxy

xyx

β
ρ

σ

−=
−−=

−=

&

&

&

 (3.1) 

where σ, ρ, and β are fixed parameters that were set to σ = 16, ρ = 45.92 and β = 4 

(Rosenstein et al., 1993).  These equations were integrated in Matlab using a fourth order 

Runge-Kutta method (ode45) to generate ten trials of 155 seconds at 100 Hz.  The first 

five seconds were removed to eliminate transients.  The first derivative of each trajectory 

was estimated using a three point difference formula.  Uniformly distributed random 

noise was added to attain a minimum signal-to-noise ratio of 100:1, which is considered 

‘moderate’ (Rosenstein et al., 1993).  Because the Lorenz attractor for these parameter 

values is chaotic, λs
* in this case defines the maximum finite-time Lyapunov exponent, 

which should be 1.50 (Rosenstein et al., 1993). 

We defined nine different state spaces for this Lorenz attractor.  The “Full” state 

space was defined by the three )(tx , )(ty , and )(tz  trajectories (Eq. 3.1).  A “Redundant” 

state space was defined from these three trajectories and their derivatives:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]tz,ty,tx,tzty,txt &&&,SSRedundant =    (3.2) 

We performed principal components analysis (Daffertshofer et al., 2004) on both 

the Full and Redundant state spaces.  Principal components analysis is a method that 
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transforms a number of possibly correlated variables into a smaller number of 

uncorrelated variables called principal components.  The first principal component 

accounts for the greatest amount of variability in the data.  Each succeeding component 

accounts for as much of the remaining variability as possible.  PCA can be used for 

reduce the dimensionality of the data while retaining those characteristics of the data set 

that contribute most to its variance, by keeping lower-order principal components and 

ignoring higher-order ones.    

First we defined a matrix of all the state variables, xi(t)  

 [ ])()...(),(),()( 321 txtxtxtxtq n=  (3.3) 

In cases where the state variables did not have the same units, we normalized each to unit 

variance.  This prevented the first principal component from being dominated by higher 

value terms (such as velocity relative to position).  This choice of non-dimensionalization 

is not unique and others might be used.  Then we took the covariance matrix of the data 

set defined by q(t).  The eigenvalues, ei, of this covariance matrix represent the percent of 

the variance that is explained by each variable.  The principle components are determined 

by multiplying the eigenvectors, vi, associated with those eigenvalues by the original state 

space matrix, 

 )()(1 1 tqtPC ⋅= υ  (3.4) 

We then redefined the state space using these principle components.   

 [ ])()...(),(),()( 321 tPCtPCtPCtPCtSS n=   (3.5) 

To explain ≥ 95% of the variance, two principal components were needed for the Full 

state space and 4 were needed for the Redundant state space (Fig. 3.1).  However, since 

this system is three-dimensional (Eq. 3.1), we tested state spaces composed of both three 

and four principal components.   
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Figure 3.1: Principal components analysis (PCA) of the Lorenz attractor.   
A-B) PCA revealed the percentage of the variance explained by each principal 
component.  This percent is shown as a cumulative sum.  Two principal components 
explained >95% of the variance for the Full state space while four were needed for the 
redundant state space. C-D) State spaces are shown for the principal components of the 
Full (C) and Redundant (D) state spaces. E)  Mean log divergence (MLD) curves are 
shown for one trial of a state space of the first two principal components of the Full state 
space. F) MLD curves for a state space with the first three (dashed line) and first four 
(solid line) principal components of the Redundant state space.  The amount and rate of 
divergence for the Redundant SS was less than for the Full SS.     
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Four additional state spaces were defined using delay embedding (Kantz and 

Schreiber, 2004) of )(tx , )(ty , )(tz and 222)( zyxtr ++=  (Granata and Gottipati, 

2008).   Multi-dimensional state spaces were reconstructed from each original time series 

and its time-delayed copies (Takens, 1981): 

 ( ) ( ) ( ) ( ) ( )( )[ ]Tdt,...,qTt,qTt,qtqt E 12Q −+++=  (3.6) 

where }{ )(),(),(),()( tRtZtYtXtQ ∈  was the dE-dimensional state vector, 

}{ )(),(),(),()( trtztytxtq ∈  was the original 1-dimensional data, T was the time delay, and 

dE was the embedding dimension (Fig. 3.2).  Time delays were calculated as the first 

minimum of the average mutual information function of each signal (Fraser and Swinney, 

1986).   

Maximum local divergence exponents ( )*
sλ  were calculated from the exponential 

rates of divergence of small perturbations in state space (Rosenstein et al., 1993; 

Dingwell and Cusumano, 2000).  Positive exponents indicate local instability.  Larger 

exponents indicate greater sensitivity to local perturbations.  Short-term *
sλ  were 

estimated from: 
 ( )[ ] ln 1* td

t js
∆

=λ  (3.7) 

where ( )[ ]td jln  represents the mean log divergence for all pairs of nearest neighbors,  j 

(Rosenstein et al., 1993), over 0 ≤ t ≤ 1 seconds.  To test the effects of embedding 

dimension, we calculated *
sλ  for )(tX , )(tY , and )(tZ for { }20,15,7,6,5,4,3,2∈Ed .  

Kennel et al. (1992) recommend using a dE that is twice the true dimension (i.e., dE = 6), 

while Rosenstein et al. (1993) suggest using a dE equal to the true dimension (i.e., dE = 3).  
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Figure 3.2: Illustration of delay embedding using the Lorenz Attractor 
A) Data for the Lorenz attractor is shown with σ = 16, ρ = 45.92, and β = 4.  A 3-D was 
created from the x(t), y(t) and z(t) data.  B)  Using the method of delays, a state space can 
be created by reconstruction of a single trajectory, x(t).  The time delay, T, is determined 
as the first minimum of the average mutual information function.  A 3-D was created 
using the original time series, x(t), and its time delayed copies, x(t+T) and x(t+2T).  
While the state spaces for the two methods appear different, their dynamics should be the 
same. 

Experimental Data   

Twenty healthy right-handed adults (nine female, eleven male) participated.  

Their mean ± SD age, body mass, and height were 25 ± 2.2 years, 71.2 ± 14.9 kg, and 

1.71 ± 0.10 m respectively.  Subjects were seated in a device built to simulate a repetitive 

work task similar to sawing.   The device was adjusted so that subjects sat with a knee 

angle of 90˚.  The height of the bar was adjusted so the midpoint between the third and 
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fourth finger was at the level of the xiphoid process.  Subjects also wore a five-point 

harness across their waist and shoulders, to restrict trunk motion (Corbeau, Sandy, UT).  

Subjects made bi-directional horizontal movements in the anterior-posterior 

direction with their right arm while holding a handle mounted to a metal platform sliding 

on a low friction track attached to a support frame.  Inertial resistance was supplied by an 

adjustable set of weights mounted on the platform.  To ensure the sawing task resistance 

was comparable across subjects, we first measured each subject’s maximum 

pushing/pulling force using a Baseline® dynamometer that was rigidly mounted to the 

base of the handle.  Subjects alternately pushed and then pulled on this rigidly fixed 

handle as hard as they could for five seconds each, three times, with 60 seconds of rest in 

between each attempt.  The average of these six peak forces applied during each maximal 

effort defined that subject’s maximum isometric pushing/pulling strength.  The weight 

was set to 10% of the subject’s maximum pushing/pulling force to minimize the effects 

of fatigue during the first portion of the experiment and minimize recovery during the 

second block of sawing.   

Subjects performed this task continuously for five minutes while kinematic data 

was collected at 120 Hz from 19 reflective markers on the right arm and trunk using an 8 

camera Vicon motion analysis system (Oxford Metrics, Oxford, UK).  Movement time 

during the task was enforced by a metronome.  For consistency across subjects, the 

frequency of the metronome was set to twice the average of the predicted resonant 

frequencies of the upper arm and forearm segments of each subject (two beats per cycle) 

(Gates and Dingwell, 2008).  

The fatigue protocol was designed to specifically fatigue the shoulder flexors.  

During this task, the subjects lifted a weight (~10% of their maximum isometric shoulder 

flexion strength) in the sagittal plane with their elbows extended.  They completed the 
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lifting task for three minutes or until they felt they could no longer continue.  Eight of the 

20 subjects were unable to complete the full three minutes, and all subjects were fatigued 

at the end of this protocol (RPE ≥ 8).  

Marker data were filtered using a 5th order Butterworth filter with a cutoff 

frequency of 15 Hz.  The joint centers were determined from a static calibration trial 

(Schmidt et al., 1999).  Segment coordinate systems were calculated from the marker 

positions with a least-squares algorithm (Veldpaus, 1988).  The joint centers at each 

instant in time were then calculated based on the position of the joint markers during the 

static trial (Schmidt et al., 1999).  The coordinate systems for the trunk and humerus were 

defined using previous recommendations (Wu et al., 2005; Hingtgen et al., 2006).  The 

three-dimensional movements of the humerus relative to the trunk were determined using 

Euler angles (Wu et al., 2005).  These angles were calculated from the transformation 

matrix for a Y-X-Y rotation sequence (See Appendix C for details). 
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Figure 3.3: Example Euler angles for the shoulder during the sawing task  
Angle data for one trial of a representative subject is shown.  Each line represents one 
complete movement cycle.  Data were normalized to 100 points per cycle for viewing. 
 

We defined six state spaces for shoulder movement.  The “Full” state space was 

composed of the three rotational angles and their angular velocities.   Each state was then 
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normalized to unit variance and PCA was performed.  Four principal components 

explained > 95% of the data variance.  The second state space consisted of these four 

principle components.  Four state spaces were defined using delay embedding.  Global 

false neighbors analyses (Kennel et al., 1992) suggested dE = 5 for all three rotational 

angles (Fig. 3.4).  Therefore, we tested }{ 7,6,5,4,3∈Ed .  Short-term local divergence 

exponents ( *
sλ , Eq. 3.4) were calculated over 0 ≤ t ≤ 1 cycle (Dingwell and Marin, 2006).  

Stability estimates are sensitive to time series length (Granata and England, 2006; Bruijn 

et al., 2009).  Therefore, each time series was first normalized to exactly 36,000 points.  

This resulted in a < 1% change in the length of each time series.  Pre- and post-fatigue *
sλ  

from each trial were compared using paired t-tests for each state space.    
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Figure 3.4: Results of the global false nearest neighbors analysis.   
The percent of global false nearest neighbors (%GFNN) for each of the three angles 
dropped to zero after an embedding dimension of five.  This signifies that there is some 
degree of redundancy in the system.    
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Figure 3.5. Example state spaces for one representative subject.   
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Figure 3.6: Example mean log divergence (MLD) curves for different state spaces 
Data is shown for the same representative subject as Figure 3.5.  The slope of the 
divergence curves changed depending on how the state space was defined.  The trends 
between conditions did not change, however. 
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3.4 RESULTS 

 For the Lorenz attractor, *
sλ  differed depending on which state space was used 

(Fig. 3.7A; Table 3.2).  Redundant state spaces containing derivatives performed the 

poorest (errors > 10%).  Taking only three principal components of the redundant state 

space decreased this error from 20.4% to 7.53%.  All methods correctly indicated that the 

Lorenz attractor is locally unstable ( *
sλ  > 0).  

As the embedding dimension was increased, *
sλ decreased (Fig. 3.7B).  We 

expected that a minimum of three (Rosenstein et al., 1993) to six (Kennel et al., 1992) 

states would reconstruct the state space with minimal error.  Large errors were obtained 

when either too many or too few states were used.  
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Figure 3.7: Local stability results for the Lorenz attractor.  
A) The short-term local divergence exponent, *

sλ , was calculated for 10 simulations with 
seven different state space definitions.  Error bars represent the mean ± 95% confidence 
interval for each method defined in Table 2.  The dotted line represents the expected 
value of 1.50. B) *

sλ  is shown as a function of the embedding dimension.  ‘*’ is *
sλ for the 

delay embedding of x(t), ‘×’ is the delay embedding of y(t), and ‘○’ is the delay 
embedding of z(t).  Error bars represent ± 95% confidence interval for each method. 
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Table 3.2: Percent error in *
sλ  for different state spaces for the Lorenz attractor. 

Method State Space % Error 

Full SS [ ])(),(),( tztytxS =  3.40 

Redundant SS [ ])(),(),(),(),(),( tztytxtztytxS &&&=  10.17 

PCA of Full SS [ ])(2),(1 tPCtPCS =  1.25 
PCA of Redundant 

SS #1 [ ])(4),(3),(2),(1 tPCtPCtPCtPCS =  20.40 

PCA of Redundant 
SS #2 [ ])(3),(2),(1 tPCtPCtPCS =  7.53 

Delay X [ ])6(,),2(),(),()( TtxTtxTtxtxtX +++= K  8.75 

Delay Y [ ])6(,),2(),(),()( TtyTtyTtytytY +++= K  1.41 

Delay Z [ ])6(,),2(),(),()( TtzTtzTtztxztZ +++= K  5.87 

Delay R 
[ ])6(,),2(),(),()( TtrTtrTtrtrtR +++= K  

Where 222)( zyxtr ++=  
6.85 

 
For the experimental data, *

sλ  values also changed across different state spaces.  

Shoulder motion was always locally unstable, both pre- and post-fatigue.  For all state 

spaces, *
sλ  tended to decrease post-fatigue (Fig. 3.8A).  This decrease was statistically 

significant for 3 of the 6 methods (Fig. 3.8A).  As with the Lorenz attractor (Fig 3.7B), 

increasing the embedding dimension caused *
sλ  to decrease (Fig. 3.8B).  However, pre- 

versus post-fatigue differences remained.  
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Figure 3.8: Local stability results for the experimental data.   
A) The short-term local divergence exponent, *

sλ , is shown pre- and post-fatigue for 6 
state space definitions.  From left to right, these are the full state space defined by 
[ ]321321 ,,,,, θθθθθθ &&& , the principal components of the full state space, and delay 

embedding of 1θ , 2θ , 3θ , θr (where 2
3

2
2

2
1 θθθθ ++=r ), and.  Symbols ‘×’ and ‘•’ 

represent Pre- and Post-fatigue trials, respectively.  While the numerical values differed 
depending on the state space definition, there was generally a decrease from pre to post 
fatigue.  This decrease was statistically significant when using the delay embedding of 

3θ (p=0.04) and the full state space (p = 0.03).  B)  *
sλ  pre- and post-fatigue are plotted 

versus embedding dimension, dE, for the delay embedding of 1θ (Top), 2θ (Middle), and 

3θ (Bottom).  Error bars represent ± 95% confidence interval for each method.  *
sλ  

decreased as embedding dimension increased, similarly to the Lorenz data.  This did not 
appear to affect the differences in *

sλ  pre and post fatigue.   

3.5 DISCUSSION 

The only formal requirement for a valid state space is that it uniquely defines the 

state of a system at all points in time (Kantz and Schreiber, 2004).  Thus, any proposed 



 62

state space is not unique.  Here, we explored how several different state spaces affect 

local dynamic stability ( *
sλ ) calculations.  The formulations presented here are by no 

means exhaustive.  It is quite possible that other state space definitions might perform as 

well or better.     

Reasonably accurate results were obtained when PCA was performed on the full 

Lorenz state space and when the correct number of principal components was chosen 

from the redundant state space.  PCA may overestimate the true dimension of the system 

(Clewley et al., 2008) and poor results were in fact obtained when too many principal 

components were included (Table 3.2).  PCA also requires prior normalization of states 

that have different units.  These normalizations are not unique and can affect the value of 
*
sλ .  We therefore do not recommend using PCA to define the state space. 

While there were quantitative differences in *
sλ  for the different experimental 

state spaces (Fig. 3.8), all methods demonstrated whether trajectories were locally more 

or less stable.  Differences between experimental conditions persisted, although the 

statistical significance of these differences did vary.  Similarly, previous work 

demonstrated qualitatively similar changes in walking stability with changes in speed 

(Dingwell and Marin, 2006; England and Granata, 2007; Kang and Dingwell, 2008), 

despite using different state space definitions.  Thus, while it may be difficult to make 

direct numerical comparisons between studies that use different state space definitions, it 

seems that qualitative trends persist.  Overall, our findings suggest that biomechanical 

state spaces constructed using positions and velocities, or delay reconstruction of 

individual states, are likely to provide more consistent results than those constructed 

using principal components.  Efforts should also be made to avoid using redundant 

information wherever possible.    
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Chapter 4: Muscle Fatigue Affects Dynamic Stability of Repetitive 
Movements 

4.1 ABSTRACT 

Muscle fatigue alters neuromuscular responses.  This may lead to increased 

sensitivity to perturbations and possibly to subsequent injury risk.  We studied the affect 

of muscle fatigue on movement stability during a repetitive upper extremity task.  Twenty 

healthy young subjects performed a repetitive work task, similar to sawing, synchronized 

with a metronome before and after performing one of two fatiguing tasks.  The first 

fatigue task (“LIFT”) primarily fatigued the shoulder flexor muscles, while the second 

fatigue task (“SAW”) fatigued all of the muscles of the arm.  Subjects performed each 

task in random order on two different days.  Instantaneous mean frequencies (IMNF) 

decreased over both fatiguing tasks indicating that subjects did experience significant 

muscle fatigue.  The slopes of the IMNF over time and the decreases in maximum force 

measurements demonstrated that the specific fatigue task successfully fatigued the 

shoulder flexors to a greater extent than any other muscle.  On average, subjects exhibited 

more locally stable shoulder movements post-lifting (p = 0.035).  They also exhibited 

more orbitally stable shoulder (p = 0.039) and elbow (p = 0.008) movements after the 

sawing task.  Subjects also exhibited decreased cocontraction at the wrist post-fatigue for 

both tasks and at the elbow and shoulder post-lifting.  Therefore, subjects movements did 

not become more dynamically stable as a result of increased muscle cocontraction. 

4.2 INTRODUCTION 

Muscle fatigue is common in activities that are performed repeatedly over 

extended periods of time, such as in the workplace.  Stability during these movements is 
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crucial to both maintain performance and prevent injury.  Here, we define stability as the 

ability to return to the same movement pattern after a small perturbation.  Stability is 

regulated during movement through feedback control (Reeves et al., 2007).  Feedback 

mechanisms include intrinsic properties of joints and muscles (i.e. stiffness and 

damping),  and the central nervous system, which integrates information about joint 

position (i.e. proprioception) and movement (i.e. kinesthesia) to generate muscle 

(Bowman et al., 2006) and reflex responses (Fig. 4.1).  If any of these feedback 

mechanisms are adversely affected, the resulting muscular responses may not adequately 

adjust for perturbations.  Muscle fatigue causes decreased proprioception (Myers et al., 

1999), decreased kinesthesia (Pedersen et al., 1999), altered reflexes (Wojtys et al., 

1996), increased muscle response time (Wilder et al., 1996; Wojtys et al., 1996), and 

increased central processing time (van Duinen et al., 2007).  Therefore, muscle fatigue 

likely leaves people less able to respond to perturbations.   

 
Figure 4.1 Diagram of the feedback control system of the spine for stability regulation  
From (Reeves et al., 2007) 

To compensate for decreased feedback and delayed responses, the body can 

increase muscle cocontraction to increase muscle stiffness.  For instance, if perturbations 
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are introduced by imposing an external force field, the body can selectively stiffen the 

muscles in that direction to maintain stability of reaching movements (Franklin et al., 

2004).  Individuals  may (Stokes et al., 2000), or may not (Granata et al., 2001; Grondin 

and Potvin, In Press) increase muscle cocontraction in anticipation of expected 

perturbations.  People may also increase stiffness through cocontraction after muscle 

fatigue (Potvin and O’Brien, 1998; Granata et al., 2001; Grondin and Potvin, In Press), 

possibly to maintain stability.  Increased stiffness does not always lead to more stable 

movements, however.  Reeves et al. (2006) found that actively increasing trunk stiffness 

resulted in decreased postural control.  They speculated that increased signal dependent 

noise from the increased trunk muscle recruitment was responsible.  In addition, using 

cocontraction to maintain stability may be unfavorable in the case of fatigue since it can 

initiate a vicious cycle as higher muscle activity is energetically costly and may further 

accelerate fatigue.    

Nonlinear dynamics estimates of movement stability can provide insight into the 

control of dynamic movement tasks (Dingwell and Cusumano, 2000). To our knowledge, 

only two studies have examined the effect of muscle fatigue on local dynamic stability.  

Trunk flexion movements were more locally unstable after fatigue of the trunk extensors 

(Granata and Gottipati, 2008).  In contrast, fatigue of the ankle muscles during prolonged 

walking caused subjects to slow down and trunk movements became more locally stable 

(Yoshino et al., 2004).  The differences in results between these two studies may have 

occurred due to the nature of the fatiguing contractions.  In the first study, fatigue was 

localized to the trunk extensors.  In the second study, fatigue was induced through 

prolonged walking and so it likely occurred in all muscles of the leg.  Specific fatigue of 

a single muscle group may cause greater changes in muscle activation patterns (Goerlick 

et al., 2003), or muscle imbalances (Alizadehkhaiyat et al., 2007).  However, how muscle 
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fatigue and/or muscle imbalances affect the control of movement stability is not well 

understood.   

In this study, we quantified dynamic stability for a continuous sawing task before 

and after subjects performed one of two fatiguing tasks.  The first task was designed to 

primarily fatigue the shoulder flexors.  The second task caused general fatigue of the arm.  

We tested four hypotheses.  First, subjects will exhibit greater dynamic instability 

following both fatiguing tasks.  Second, these increases in dynamic instability will be 

larger following the specific fatigue of the shoulder flexors.  Third, the muscles will 

become more unbalanced after specific fatigue of the shoulder flexors than general 

fatigue of the arm.  Finally, subjects will exhibit increases in cocontraction post-fatigue in 

an attempt to maintain stability. 

 

4.3 METHODS 

Subjects 

A total of 20 healthy right-handed adults (nine female, eleven male) participated.  

Their mean ± SD age, body mass, and height were 25 ± 2.2 years, 71.2 ± 14.9 kg, and 

1.71 ± 0.10 m respectively.  All participants signed institutionally approved informed 

consent forms and were screened to ensure no subject had a history of medications, 

surgeries, injuries, or illnesses that might have affected their upper extremity joint 

movements.  To determine handedness, subjects completed a modified version of the 

Edinburgh Inventory (Oldfield, 1971)Appendix A).  This inventory indicates the level of 

dominance of one hand over another.  A score of 0/10 indicates a complete left-handed 

preference, while a score of 10/10 indicates a complete right-handed preference. All 



 67

subjects scored at least 9/10 on the Edinburgh Inventory, indicating a strong right-handed 

dominance. 

 

General Procedure 

Subjects came to the lab for two visits at least one week apart.  Each experimental 

session followed the same general protocol (Fig. 4.2A).  First, subjects were seated in a 

device built to simulate a repetitive work task similar to sawing (Fig. 4.2B).   The device 

was adjusted so that subjects sat with a knee angle of 90˚.  The height of the metal track 

was adjusted so the midpoint between the third and fourth finger was at the level of the 

xiphoid process.  The front/back position of the chair was adjusted to be comfortable for 

the subject and allow for a full range of motion.  This was defined as at a maximum point 

when almost to full extension (no hyperextension) and at a minimum point at the level of 

the sternum.  Subjects wore a five-point harness across their waist and shoulders to 

restrict trunk motion (Corbeau, Sandy, UT).  

 

Maximum Voluntary Contraction (MVC) Testing  

To ensure the sawing task resistance was comparable across subjects, we first 

measured each subject’s maximum pushing/pulling force using a Baseline® dynamometer 

rigidly mounted to the base of the handle.  Subjects alternately pushed and then pulled on 

this rigidly fixed handle with maximal effort three times for five seconds each time, with 

60 seconds of rest in between each attempt.  The average of these six peak forces applied 

during each maximal effort defined that subject’s maximum voluntary isometric 

contraction (MVC) for pushing/pulling.  These measurements were taken only at the 

beginning of the first trial.   
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Figure 4.2: Illustration of the experimental protocol 
A) General protocol for the experiment.  On both visits, subjects completed all activities.  
Only the fatigue task differed. B) During the sawing task subjects were seated in a high-
back chair and restrained by belts across the waist and shoulders.  A handle with an 
adjustable weight stack was able to slide with low friction across a horizontal track.  This 
track was adjusted to the level of the subject’s sternum.  C) In the sawing (S) fatigue task 
subjects pushed 25% of their pushing/pulling MVC for four minutes.  In the lifting (L) 
fatigue task, subjects lifted 10% of their shoulder flexion MVC in the sagittal plane for 
three minutes.  In both tasks, subjects could stop at any point they felt they could no 
longer continue. 

To test for specific muscle imbalances, each subject’s maximum strength was 

measured in six directions at various points throughout the experimental session.  

Subjects sat, strapped into the device, and adjusted their arms to specific positions (Table 

4.1).  They then pushed against a hand-held load cell (Lafayette Instruments, Lafayette, 

IN) with maximal effort two times for five seconds each time, with 30 seconds of rest in 

between.  The peak of the two forces applied during each trial was taken as each subject’s 
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MVC strength.  Measurements were performed on the right arm only.  To compare across 

subjects, MVCs were normalized to the maximum that they achieved at any of the four 

time points.  Additionally, ratings of perceived exertion (RPE) were recorded using the 

modified Borg scale (Borg, 1974; Borg, 1982).  Subjects subjectively rated their level of 

fatigue on a scale from 0 (“none at all”) to 10 (“maximal exertion”).  These 

measurements were taken periodically throughout the session (Fig. 4.2A). 

Table 4.1: Positions of the arm during strength testing 

Shoulder Flexion Humerus extended and elbow flexed 90˚ in sagittal plane

Shoulder Extension Humerus and elbow extended (~0˚ in sagittal plane) 

Shoulder Internal / 
External Rotation Humerus and elbow flexed to 90˚ and resting on a board 

Elbow Flexion / Extension Humerus and elbow flexed to 90˚ and resting on a board 

Sawing Task  

Subjects made bi-directional horizontal movements in the anterior-posterior 

direction with their right arm while holding a handle mounted to a metal platform sliding 

on a low friction track attached to a support frame (Fig 4.2B).  Inertial resistance was 

supplied by an adjustable set of weights mounted on the handle platform.  Therefore, the 

resisting load was always opposed to the direction of motion so the arm extensors were 

the primary agonists during the pushing stroke, while the flexors were the primary 

agonists on the pulling stroke.  The weight was set to 10% of the subject’s maximum 

pushing/pulling force to minimize fatigue during the sawing pre-test and minimize 

recovery during the sawing post-test.  Subjects performed this task continuously for 5 

minutes while kinematic and electromyography (EMG) data were collected.   
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Movement time during the task was imposed by a metronome.  For consistency 

across subjects, the frequency of the metronome was set to twice the average of the 

predicted resonant frequencies of the upper arm and forearm segments of each subject (2 

beats per cycle) (Gates and Dingwell, 2008).  To ensure results were not influenced by 

learning effects, subjects performed a warm-up trial, moving in time with the metronome, 

for a minimum of 30 seconds (~30 cycles) or until they felt completely comfortable with 

the task.  Subjects then rested for a few minutes to minimize fatigue that may have 

occurred during this practice period.  Previous studies confirmed that subjects were able 

to learn this simple task within just a few (< 10) movements (Gates and Dingwell, 2008). 

Nineteen reflective markers were placed on the right arm and trunk to define the 

movements of four body segments.  Markers were placed on the trunk at the right and left 

acromion processes, the sternal notch, and the seventh cervical vertebra.  Clusters of four 

markers each were placed on the upper and lower arms to define the arm segments.  The 

hand was defined by four markers at the radial and ulnar epicondyles of the wrist and 

third and fifth metacarpal-phalangeal joints.  Additional markers were placed on the 

medial and lateral humeral epicondyles during the static calibration trial.  A final marker 

was placed on the top of the handle to define the beginning and end of each cycle.  The 

3D positions of these markers were recorded continuously during all trials at 120 Hz 

using an 8-camera Vicon-612 motion analysis system (Oxford Metrics, Oxford, UK). 

Nine pairs of preamplified EMG surface electrodes (Delsys Inc., Boston, MA) 

were attached to the muscles of the trunk and right arm to record activity in the pectoralis 

major, upper trapezius, deltoid (anterior, middle and posterior), biceps, triceps, flexor 

carpi radialis, and extensor carpi radialis longus.  Electrodes were positioned over each 

muscle according to accepted recommendations (Konrad, 2005).  All analog data were 

collected at 1080 Hz using a 64-channel A/D board.  
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Each subject completed two fatigue tasks on separate days.  The first task, SAW, 

involved general fatigue of all muscles of the right arm.  Thus, subjects performed the 

same sawing task described above, except with a resistance that was increased to 

approximately 25% of their pushing/pulling MVC.  Subjects performed this task for four 

minutes, or until they felt they could no longer continue.  Two of the 20 subjects fatigued 

in less than four minutes.  Six subjects who were not fatigued at the end of four minutes 

(RPE < 6) were asked to continue for an additional four minutes, or until they reached an 

RPE of eight or higher.  The remaining 12 subjects were fatigued (RPE ≥ 8) at the end of 

four minutes. 

The second fatigue task, LIFT, was designed to primarily fatigue the shoulder 

flexor muscles.  During this task, the subjects lifted a weight (~10% of their maximum 

isometric shoulder flexion strength) in the sagittal plane with their elbows extended.  

They performed the lifting task for three minutes or until they felt they could no longer 

continue.  Eight subjects were unable to complete the full three minutes.  All other 

subjects were fatigued at the end of three minutes (RPE ≥ 8).  

 

Data Analysis 

Marker data were filtered using a 5th order Butterworth filter with a cutoff 

frequency of 15 Hz.  Segment coordinate systems were calculated based on the marker 

positions with a least-squares algorithm (Veldpaus, 1988).  The joint centers at each 

instant in time were then calculated based on the position of the joint markers during the 

static trial (Schmidt et al., 1999).  Local coordinate systems were defined using the 

International Society of Biomechanics’ (ISB) recommendations for the shoulder and 

elbow (Wu et al., 2005) and a modified coordinate system for the trunk (Hingtgen et al., 
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2006) and wrist (Rao et al., 1996).  Three dimensional movements of the right arm were 

determined using Euler angles in accordance with ISB recommendations (Wu et al., 

2005).  All joints were assumed to have three rotational degrees of freedom.  The second 

rotational angle of the elbow, the carrying angle, was not analyzed since it changes only 

minimally due to biomechanical constraints. 

EMG data were filtered to a bandwidth between 20 and 450 Hz (Fig. 4.3A).  The 

instantaneous mean power frequency (IMPF) was calculated using a continuous wavelet 

transform algorithm (Matlab 7.0, Mathworks, Natick, MA) (Hostens, 2004).  A 

‘debauchies’ wavelet (db5) with a center frequency of 720 Hz at the lowest scale was 

used for all analyses.  This wavelet was scaled in 1-scale intervals from 1–38, which 

corresponds to center frequencies ranging from approximately 19–720 Hz.   The power 

density function, or ‘Scalogram’, of the continuous wavelet transform (CWT) was 

computed as 
 2),(),( ττ sCWTsSCAL =  (4.1) 

where s represented the scale (frequency band) and τ  was time (Fig. 4.3B).  The 

instantaneous mean frequency (IMNF) was calculated by 
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(Fig. 4.3C).  The IMNF was then averaged over each cycle to give a single value per 

cycle.  The slope of the IMNF vs. cycles curve was used to quantify trends across the trial 

(Fig. 4.3D).  IMNF slopes during fatigue trials for each condition were compared using a 

single factor ANOVA to test for differences between muscles.  These IMNF values 

quantified how the local fatigue state of each muscle changed across consecutive cycles 
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during the trial.  Localized muscle fatigue would cause the EMG mean frequencies to 

decrease (DeLuca, 1997). 
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Figure 4.3:  Illustration of wavelet analysis to measure instantaneous mean frequency 
A) The raw EMG data for the anterior deltoid is shown for a representative subject during 
the lifting task. B) The scalogram of the EMG signal shown in A. C) The instantaneous 
mean frequency (IMNF) was measured at each instant in time.  D) The average IMNF for 
each cycle was plotted versus cycle to quantify trends over time.     

Separately, raw EMG data were also full wave rectified and filtered with a zero 

lag 2nd order Butterworth low-pass filter with a cut-off frequency of 6 Hz to obtain linear 

envelopes (Missenard et al., 2008b).  EMG linear envelopes were normalized to the 

average peak muscle activation across the pre-sawing trial.  Muscle cocontraction was 

estimated using an index of cocontraction (CCI) modified from (Kellis et al., 2003; 

Missenard et al., 2008b).   
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where p was the percent of the movement cycle, EMGmin was the EMG signal of the 

muscle which as the lower normalized activity at each sampling point, EMGago was the 

EMG of the agonist muscle, and EMGant was the EMG of the antagonist muscle (Fig. 

4.4).  CCIs were calculated for three muscle pairs, shoulder: anterior and posterior 

deltoid, elbow: biceps and triceps, and wrist: extensor and flexor carpi radialis. CCIs 

were calculated for each movement cycle and then averaged across cycles to obtain a 

single value for each subject pre- and post-fatigue under each condition.   
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Figure 4.4: Illustration of calculating the cocontraction index (CCI). 

EMG linear envelopes for one trial of a representative subject are shown.  Here EMGago is 
the anterior deltoid, EMGant is the posterior deltoid and EMGmin is whichever had the 
lower value at that percent of the movement cycle.  Subjects push the weight forward 
during the first 50 % of the movement cycle and then bring it back toward them during 
the last 50 %. 

Responses to small inherent perturbations for the shoulder, elbow and wrist were 

quantified in two ways (Kang and Dingwell, 2008).  First, local dynamic stability of the 

joint motions was quantified.  This measures the quantitative response of the system’s 
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state variables to small perturbations (Dingwell and Cusumano, 2000).  We first defined a 

multi-dimensional state space for each joint (Gates and Dingwell, In Press).  At the 

shoulder and wrist, these consisted of three rotational angles and three angular velocities.  

The elbow state spaces consisted of only two angles and two angular velocities (Fig. 4.5):   

 [ ])(),(),(),(),(),()( 321321 ttttttt θθθθθθ &&&=S  (4.4) 

Euclidean distances between neighboring trajectories in state space were computed as a 

function of time and averaged over many original pairs of initially nearest neighbors 

using a previously published algorithm (Rosenstein et al., 1993).  For any trajectory in 

state space, that trajectory’s nearest neighbor represents what might happen if a small 

local perturbation were applied to the system.  Local divergence exponents were 

estimated from the slopes of linear fits to curves using: 

 ( )[ ] ln 1* td
t j∆

=λ  (4.5) 

where ( )[ ]td jln  was the mean logarithm of the divergence, for all pairs of nearest 

neighbors, j, throughout a time span (Rosenstein et al., 1993).  Positive local divergence 

exponents indicate local instability (i.e., small perturbations grow larger with time).  

Larger exponents indicate greater sensitivity to local perturbations.   

Because the intrinsic time scales were different for each subject (i.e. different 

average cycle times), the time axes of these curves were re-scaled by multiplying time by 

the average cycle frequency for each subject.  Short-term exponents (λS
*) were calculated 

from the slopes of linear fits to the divergence curve between 0 and 1 cycle.  Long-term 

exponents (λL
*) were calculated as the slope between 4 and 10 cycles (Dingwell et al., 

2007).   These calculations are sensitive to the number of sample points (Granata and 

England, 2006) and the number of cycles (Bruijn et al., 2009).  Each Pre/Post trial was 

therefore normalized to exactly 36,000 data points.  This resulted in less than one percent 
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change in the length of each time series.  The frequency of the task was governed by a 

metronome so it was the same for all trials of each subject.  Therefore the number of 

cycles was approximately the same for each trial of that subject (± 2 cycles).     
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Figure 4.5: Example 3-D state spaces for the shoulder elbow, and wrist and their 
corresponding mean log divergence curves for a representative subject.   

Second, orbital stability was quantified by calculating maximum Floquet 

Multipliers (FM) (Nayfeh and Balachandran, 1995) based on established techniques 

(Hurmuzlu et al., 1996; Kuo, 1999; Donelan et al., 2004).  The state space data for each 

individual cycle were time-normalized to 101 samples (0% to 100%).  We defined a 

Poincaré section for each percent of the movement cycle, which defined 101 Poincaré 

sections for the system.  0% and 100% were minimum positions of the handle marker 

while 50% was the maximum position (Fig. 4.5).  The state space, Sk, for each cycle at 

that Poincaré section evolved to the state at the following cycle, Sk+1 according to the 

Poincaré map:  
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The average trajectory across all cycles within a trial was chosen to represent the ‘limit 

cycle’ for the movement.   Limit cycles correspond to single fixed points in each Poincaré 

plane (i.e., at each % of the cycle).  Orbital stability at each Poincaré section was 

estimated by computing how quickly small perturbations away from these fixed points 

grow or decay, using a linearized approximation of equation 5.6: 

 [ ] ( )[ ]***1 SSSSS −≈−+ kk J  (4.7) 

where k enumerates individual cycles, Sk is the system state for cycle k at that Poincaré 

section, and S* is the system state at the fixed point.  J(S*) is the system Jacobian matrix 

for each Poincaré section.  The FM are the eigenvalues of J(S*) (Hurmuzlu and 

Basdogan, 1994; Nayfeh and Balachandran, 1995).  In this case, J(S*) is a 6 x 6 matrix so 

there were six eigenvalues.  Since each Poincaré section occupied a 5 x 5 sub-space of S, 

only the first five eigenvalues were non-zero.   If these FM had a magnitude < 1, 

perturbations shrank, on average, by the next cycle, and the system remained stable.  Like 
*
sλ  and *

Lλ , larger FM imply greater instability (Hurmuzlu and Basdogan, 1994; 

Hurmuzlu et al., 1996; Kuo, 1999; Donelan et al., 2004).  The magnitudes of the 

maximum FM for each percentage of the movement cycle were calculated for all cycles 

and pre- and post-fatigue.  The maximum MaxFM across the movement cycle was 

recorded as ‘MaxFM’.   

IMNF slopes during fatigue trials for each condition were compared using a 

single factor ANOVA to test for differences between muscles.  Significant differences 

across muscles were then explored using a Tukey’s honestly significant difference test. 

MVCs were compared using 2-factor repeated measures ANOVAs (Time point (1-4) x 

Saw/Lift).  All cocontraction indicies (CCI) and stability measures ( *
Sλ , *

Lλ , and peak 

MaxFM) were compared using a 2-factor repeated measures ANOVA (Pre/Post x 
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Saw/Lift).  We explored differences between Pre/Post trials for the different conditions 

using estimated marginal means.  Significance level was set at p < 0.05 for all 

comparisons. 

 

4.4 RESULTS 

All subjects exhibited localized muscle fatigue as measured by decreased IMNF 

of the EMG during both fatigue tasks (Fig. 4.6).  This decrease was significant for all 

muscles tested (95% confidence intervals did not include zero).  The amount of fatigue 

(slope of IMNF vs. cycle) was significantly greater in the anterior deltoid than all other 

muscles (p < 0.019), except the posterior (p = 0.101) and lateral deltoid (p = 0.803) for 

the LIFT fatigue task (Fig. 4.6).  In contrast, the SAW task fatigued all muscles fairly 

equally.  The posterior deltoid was significantly less fatigued than the anterior deltoid (p 

= 0.006) and wrist extensor (p = 0.024).  Therefore, the imbalance in fatigue rates of the 

anterior and posterior deltoid was more pronounced in the non-specific SAW task.       

 MVC measurements were taken at four points during the experimental protocol 

(Fig. 4.2).  MVCs decreased post-fatigue for all strength measures (p < 0.038; Fig 4.7.  

There was also a significant differences between conditions for shoulder flexion MVC (p 

= 0.035).  Subjects exhibited a greater decrease in shoulder flexion strength and increased 

imbalance of flexion/extension and internal/external rotation strength after the LIFT task 

(Fig. 4.6).  Thus, the LIFT task was successful at specifically fatiguing the shoulder 

flexors.   
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Figure 4.6 The slope of the IMNF vs. cycle curves are shown for each condition  
Errorbars represent 95% confidence intervals about the mean of the 20 subjects.  Subjects 
showed fatigue in all muscles as a result of both fatigue protocols.   
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Figure 4.7: Results of MVC testing 
MVC measures were taken at four time points in the experiment (Fig. 4.2A).  A) MVCs 
are shown as a percent of maximum for Top: shoulder flexion and extension, Middle: 
shoulder internal and external rotation, Bottom: elbow flexion and extension. B) Balance 
ratios of shoulder flexion to extension and shoulder internal to external rotation MVCs 
are shown for each time point.  Significant differences from MVC1 are shown for both 
fatigue protocols ‘*’, the lifting protocol only ‘†’, and the sawing protocol only ‘§’.  
Significant differences between conditions at that time point are represented by ‘c’.   
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λs
* decreased post-fatigue at the shoulder (p=0.029; Fig. 4.8).  The estimated 

marginal means showed that the pre/post difference was significant for lifting (p = 0.035) 

but not sawing (p = 0.241).  There were no significant effects of fatigue on the local 

stability of elbow or wrist movements.  There were also no significant differences 

between the two fatigue protocols.  Finally, no differences in λL
* were found for any 

comparison (not shown). 
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Figure 4.8: Mean values of λs
* for the shoulder, elbow and wrist. 

Data are shown for are shown prior to fatigue and after either the sawing or lifting fatigue 
protocol.  Errorbars are the 95% confidence intervals across subjects about the mean.  ‘٭’ 
represent significant pre/post effects.  ‘○’ represents the pre-fatigue sawing trials while 
‘x’ denotes the post-fatigue sawing trials.   
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Figure 4.9: MaxFM across the movement cycle.   
0% is at the start of the pushing phase, at 50%, the subject begins to pull the weight back 
toward them.  100% is the end of the pull phase. 

Orbital stability of the elbow decreased significantly post-fatigue (p = 0.016), but 

did not change for the shoulder (p = 0.152) or wrist (p = 0.060).  There were no 

significant differences between fatigue protocols and no significant protocol x fatigue 
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state interaction effects (elbow: p = 0.054, wrist: p = 0.086).  The estimated marginal 

means revealed significant decreases in MaxFM for the shoulder and elbow post-fatigue 

for the SAW task (p = 0.021 and 0.013 respectively; Fig 4.9 & 4.10).  There were no 

differences in orbital stability after the LIFT task.  
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Figure 4.10: Peak MaxFM for each condition pre and post fatigue.   
‘○’ represents the pre-fatigue sawing trials while ‘x’ denotes the post-fatigue sawing 
trials.  Significant differences from pre to post-fatigue for that condition are denoted with 
  .’٭‘

There was a significant decrease in cocontraction post-fatigue at the shoulder for 

the sawing condition (p = 0.000; Fig. 4.11).  Cocontraction at the wrist decreased 

significantly post-fatigue (p = 0.001) for both conditions. There were no significant 

differences in cocontraction at the elbow.  There were also no significant differences in 

cocontraction between fatigue tasks (p > 0.05).   
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Figure 4.11: Cocontraction indicies (CCI) for the shoulder, elbow, and wrist pre- and 
post-fatigue. 

‘○’ represents the pre-fatigue sawing trials while ‘x’ denotes the post-fatigue sawing 
trials.  Significant differences from pre to post-fatigue for that condition are denoted with 
  .’٭‘

4.5 DISCUSSION 

In this study, we quantified the effect of muscle fatigue on movement stability 

during a repetitive sawing task.  We tested the hypotheses that muscle strength 

imbalances would be generated by specific muscle fatigue of the shoulder flexors and 

that these imbalances would result in movement instability.  Although minor muscle 

imbalances were seen post-fatigue, these did not lead to instability.  In contrast, the 

subjects actually became more locally and orbitally stable post-fatigue.  This was not 

accomplished through increased muscle cocontraction. 

Previous research has shown that muscles respond slower post-fatigue (Wilder et 

al., 1996; Wojtys et al., 1996), which could lead to instability.  However, there are many 

muscles around each joint which may not fatigue at the same rate (Kumar and Narayan, 

1998).  The lifting task here primarily fatigued the anterior deltoid muscle (Fig. 4.5).  It is 
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possible that smaller accessory muscles that were not fatigued could compensate for 

decreased response time of the fatigued muscles thus maintaining constant stability of the 

movement.  Although we attempted to fatigue only the shoulder flexor muscles, we also 

saw significant fatigue in the other muscles tested.  The subjects had to grip the weight in 

their hands which may have caused fatigue of the wrist flexors and extensors.  Subjects 

also likely eccentrically contracted the posterior deltoid to slow the lowering of the 

weight on the down phase.  While this task may not have specifically fatigued of the 

shoulder flexors, it did fatigue the anterior deltoid to a greater degree than any other 

muscle (Fig. 4.5). 

Subjects could have used muscle cocontraction to stiffen the muscles.  This 

allows the intrinsic properties of the system to contribute more in responding to 

perturbations than muscle and reflex response with delays (Reeves et al., 2007).  A few 

studies have found that subjects increase cocontraction in response to fatigue, presumably 

in an effort to maintain stability (Granata et al., 2001; Grondin and Potvin, In Press).  

Muscle fatigue also leads to increased force variability which can impair movement 

accuracy.  To maintain accuracy during a task, people may cocontract their muscles 

(Gardner-Morse and Stokes, 1998; Gribble et al., 2003; van Dieën et al., 2003; Missenard 

et al., 2008a; Reeves et al., 2008).  In other fatigue studies with accuracy requirements, 

subjects did not cocontract their muscles at the expense of decreased accuracy and 

precision of their movements post-fatigue (Huysmans et al., 2008; Missenard et al., 

2008b).  In this study, subjects presumably had to maintain stability of their joint 

movements while accurately matching the metronome timing.  Our results show that 

subjects maintained constant accuracy post-fatigue (no changes in movement time or 

distance) without increasing cocontraction.  They also did not exhibit impaired stability.   
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The cocontraction index used here is not unique.  Many other indicies have been 

proposed (Falconer and Winter, 1985; Frost et al., 1997; Rudolph et al., 2001).  The value 

numerical values differ depending on which index you use (Kellis et al., 2003).  In this 

study, these indices were based only on the prime movers of the task.  Thus, it is possible 

that the smaller accessory muscles either increased or decreased their activity, which 

would change the overall flexor to extensor activity ratio.  However, these are the largest 

muscles, so we expect that they represent the bulk of the activity.   

Despite making the task as dynamically equivalent as possible, differences 

between subjects remained, particularly in the MVC measures which decreased between 

0 and 57%.  One reason for this is that since this task was inherently redundant, there 

were numerous alternative modalities subjects could use to compensate for fatigue (Gates 

and Dingwell, 2008).  The between-subject variability observed in this study was similar 

to that observed in previous studies of fatigue in complex multijoint tasks (Nussbaum, 

2001; von Tscharner, 2002; Madigan and Pidcoe, 2003).  Another possible explanation is 

that the different subjects fatigued to different degrees.  Subjects could stop the fatigue 

task as soon as they felt they could no longer continue the task (RPE =10). This 

‘‘threshold’’ could be different for different subjects, depending on their motivation level 

and previous experience pushing themselves past the early stages of fatigue.  Those with 

prior exercise experience may also have recovered quicker from the fatigue task.  Some 

subjects showed rapid recovery from the fatigue task and their MVC values were 

completely restored after the ‘Post’ trial while others showed continuous decreases.   

In summary, subjects performed consistently accurate movements before and after 

fatigue.  They were able to do this in spite of significant muscle fatigue and decreased 

muscle cocontraction.  Subjects’ shoulder movements became more locally stable after 

targeted fatigue of their shoulder flexors.  Their shoulder and elbow movements became 
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more orbitally stable after general fatigue of the arm.  These results suggest that subjects 

can compensate for muscle fatigue while performing multi-joint redundant tasks, in ways 

that maintain both movement stability and task precision. 
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Chapter 5: The Effect of Muscle Fatigue and Movement Height on 
Movement Stability and Variability  

5.1 ABSTRACT 

Performing repetitive manual tasks can lead to muscle fatigue, which may induce 

changes in motor coordination, movement stability, and kinematic variability.  These 

changes may pre-dispose individuals to developing musculoskeletal injuries.  Movements 

performed at or above shoulder height have been associated with increased shoulder 

injury risk.  Ten healthy subjects performed a repetitive task similar to sawing 

continuously until volitional exhaustion.  This task was synchronized with a metronome 

to control for movement timing.  Subjects performed the sawing task at shoulder (High) 

and sternum (Low) height on two different days.  Joint angles and muscle activity were 

monitored continuously.  Local and orbital stability of the joint angles, kinematic 

variability, and peak angles were calculated for five bins of data spaced evenly 

throughout each trial.  Subjects fatigued more quickly at the High height (p = 0.007).  

They also altered their kinematic patterns significantly in response to muscle fatigue.  

These changes were larger when the task was performed at the High height.  Subjects 

also exhibited increased kinematic variability of their movements post-fatigue.  Increases 

in variability and altered coordination did not lead to greater instability, however.  

Shoulder movements were more locally stable when the task was performed at the High 

height (p = 0.003).  In contrast, shoulder and elbow movements were more orbitally 

unstable for the High condition (p = 0.042 and 0.040 respectively).  Thus people adapt 

their movement strategies in multi-joint redundant tasks, possibly to maintain stability at 

the expense of increased variability.    
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5.2. INTRODUCTION 

Performing manual tasks repeatedly can lead to muscle fatigue, which may induce 

changes in motor coordination (Viitasalo et al., 1993; Bonnard et al., 1994; Forestier and 

Nougier, 1998).  Some changes in coordination may pre-dispose people to develope  

injuries by inducing poor biomechanics (Rodgers et al., 1994; Sparto et al., 1997; Mizrahi 

et al., 2000).  Injury risk during fatiguing repetitive tasks may also be mediated by 

changes in variability and/or stability of the movement. 

Greater variability might lead to injury by increasing the likelihood of extreme 

movements (Potvin and O’Brien, 1998).  Conversely, increased variability might be 

protective, because it prevents the joints from constantly being loaded in the same 

manner (Hamill et al., 1999; Madeleine et al., 2003).  Muscle fatigue can lead to 

increased muscle force unsteadiness proportional to the force level (Missenard et al., 

2008a).  This unsteadiness may in turn lead to increased kinematic and kinetic variability 

(Parnianpour et al., 1988; Selen et al., 2007).  Muscle fatigue may also reduce co-

activation (Missenard et al., 2008b), which can lead to increased variability (Gribble et 

al., 2003; Selen et al., 2005).  In multi-joint dynamic tasks, people may alter their 

biomechanical coordination strategies (Sparto et al., 1997; Côté et al., 2002) or muscle 

activation patterns (Corcos et al., 2002; Goerlick et al., 2003).  These adjustments may 

serve to minimize changes in overall kinematic variability.  

Measures of variability, however, do not quantify the sensitivity of the 

neuromuscular control system to perturbations, i.e., ‘stability’ (Dingwell et al., 2000).  

Stability is defined as the ability of the body to correct for small perturbations quickly 

without tissue damage (Granata et al., 2004).  This is actively controlled by muscle 

recruitment, muscle stiffness, and reflex responses (Granata et al., 2004).  Since  muscle 
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function is essential to stability, any factors affecting muscle responses could result in 

instability.  Muscle fatigue causes decreased proprioception (Myers et al., 1999), 

increased muscle response times (Wilder et al., 1996; Wojtys et al., 1996), increased 

muscle compliance (Huang et al., 2006), altered reflexes (Freund, 1983; Wojtys et al., 

1996), and changes in muscle coordination (Bonnard et al., 1994; Corcos et al., 2002).  

Any of these factors could lead to functional instabilities, possibly increasing the risk of 

in injury (McQuade et al., 1998).  Repeated trunk flexion movements became more 

unstable after specific fatigue of the trunk extensors (Granata and Gottipati, 2008).  In 

contrast, fatigue induced by prolonged walking caused subjects to slow down and their 

trunk movements during walking became more stable (Yoshino et al., 2004). 

Although changes in movement patterns with fatigue are well documented for a 

variety of different tasks, these types of experiments traditionally used a pre versus post 

test approach so the time course over which these changes occur has not been observed.  

The conclusions of such studies may be limited since they not provide any information 

about what happens during the fatiguing process.  Additionally, no studies have 

concurrently quantified kinematics, variability and dynamic stability so it’s unclear 

whether the documented changes in coordination actually lead to instability and increased 

variability.  It is also possible that changes in kinematics server to offset changes in 

variability and instability that may result from muscle fatigue. 

The purpose of this study was to determine how kinematics, kinematic variability 

and dynamic stability of the arm were affected by muscle fatigue while subjects 

performed a repetitive task at a constant rate.  Upper limb disorders are commonly 

associated with repetitive work performed with the arm elevated and abducted (Ohlsson 

et al., 1995), so this task was performed at both sternum and shoulder levels.  We 

hypothesized that 1) Subjects would change their movement patterns more dramatically 
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when the task was performed at the High height since this was assumed to be more 

difficult to maintain, 2) Kinematic variability would increase with fatigue in response to 

increased neuromuscular noise, 3) Shoulder movements would become more locally 

unstable with fatigue, and 4) Movement variability and instability would be greater for 

movements performed at the High height. 

 

5.3 METHODS 

Subjects 

Ten healthy right-handed subjects (four female, six male) participated.  Their 

mean ± SD age, weight, and height were 27.9 ± 2.2 yr, 72.4 ± 18.2 kg and 1.73 ± 0.10 m, 

respectively.  Prior to the experiment, all participants signed institutionally approved 

consent forms and were screened to ensure that no subject had a history of medications, 

surgeries, injuries, or illnesses that might have affected their upper extremity joint 

movements.  To determine handedness, subjects completed a modified version of the 

Edinburgh Inventory (Oldfield, 1971). This inventory indicates the level of dominance of 

one hand over another. A score of 0/10 indicates a complete left-handed preference, 

while a score of 10/10 indicates a complete right-handed preference. All subjects scored 

at least 9/10 on the Edinburgh Inventory, indicating a strong right-handed dominance. 

 

Experimental Protocol  

Subjects performed a repetitive task at two different work heights on two separate 

visits to the laboratory spaced approximately one week apart.  The order of testing was 

randomized.  On each visit, subjects were seated in a device built to simulate a repetitive 

work task similar to sawing (Fig. 5.1).  During each experiment, subjects made bi-
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directional horizontal movements in the anterior-posterior direction with their right arm 

while holding a handle mounted to a metal platform sliding on a low friction track 

attached to a support frame.  Inertial resistance was supplied by an adjustable set of 

weights mounted on the carriage.  Therefore, the resisting load was always opposed to the 

direction of motion so that the arm extensors were the primary agonists during the 

pushing stroke, while the flexors were the primary agonists on the pulling stroke.   

Subjects performed this task synchronized with a metronome continuously until 

voluntary exhaustion. 

 
LOW HIGH

 

Figure 5.1 High/Low Experimental setup.   
Subjects were seated in a high-back chair and restrained by belts across the waist and 
shoulders.  A handle with an adjustable weight stack was able to slide with low friction 
across a horizontal track.  This track was adjusted to either the level of the subject’s 
sternum or their shoulder joint center.   

The device was adjusted so that subjects sat with a knee angle of 90o.  The height 

of the metal track was adjusted so the midpoint between the third and fourth finger was 

either at the level of the xiphoid process (‘Low’) or in line with the shoulder joint center 

(‘High’).  The horizontal position of the chair was adjusted to be comfortable for the 
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subject and to allow for a full range of motion.  This was defined as a maximum point 

almost to full extension (no hyperextension) and a minimum point at the level of the 

sternum.  Subjects also wore a five-point harness (Corbeau, Sandy, UT, USA) cross their 

waist and shoulders, to restrict trunk motion.  

To ensure the task resistance was comparable across subjects, we first measured 

each subject’s maximum pushing/pulling force using a second custom handle attached to 

a Baseline® dynamometer that was rigidly mounted on a table (Fig.2).  Subjects 

alternately pushed and then pulled on this rigidly fixed handle with maximal effort three 

times for five seconds each time with 60 seconds of rest in between each attempt.   The 

average of these six peak forces applied during each maximal effort defined that subject’s 

maximum isometric pushing/pulling strength (MVC).  This was used to set a target 

resistance of 15% MVC for each task.  This percent was chosen from pilot testing to 

achieve complete fatigue in approximately 15 – 20 minutes.  

 

Figure 5.2 Picture of set-up to determine maximum pushing/pulling force 

Subjects were instructed to synchronize their movements with a metronome.  To 

ensure that the task was dynamically equivalent across subjects, the frequency of the 

metronome was set to twice the average of the predicted resonant frequencies of the 

upper arm and forearm segments of each subject (2 beats per cycle) (Gates and Dingwell, 

2008). The average frequency of movement was 1.07 Hz.  To ensure that our results were 
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not influenced by learning effects, subjects were asked to perform a warm up trial, 

moving in time with the metronome, for a minimum of 30 seconds (~30 cycles) or until 

they felt completely comfortable with the task.  Pilot testing confirmed that subjects were 

able to learn this simple task within just a few (< 10) movements (Gates and Dingwell, 

2008).  Subjects then rested for one minute to minimize any fatigue effects that may have 

occurred during this practice period.   

Nineteen reflective markers were placed on the right arm and trunk to define the 

movements of four body segments.  Markers were placed on the trunk at the right and left 

acromion processes, sternal notch, and seventh cervical vertebra.  Clusters of four 

markers each were placed on the upper and lower arms to define the segments.  The hand 

was defined by four markers at the radial and ulnar epicondyles of the wrist and third and 

fifth metacarpal-phalangeal joints.  Additional markers were placed on the medial and 

lateral humeral epicondyles for a static calibration trial.  A final marker was placed on the 

top of the handle to define the beginning and end of each cycle.  The three-dimensional 

position of these markers was recorded continuously during all trials at 60 Hz using an 

eight camera Vicon-612 motion analysis system (Oxford Metrics, Oxford, UK). 

Nine pre-amplified electromyography (EMG) surface electrodes (Delsys Inc., 

Boston, MA, USA) were attached to the dominant arm and torso muscles to record 

activity in the middle trapezius, pectoralis major, deltoid (anterior, lateral and posterior), 

triceps (lateral head), biceps, flexor carpi radialis, and extensor carpi radialis longus.  

Electrodes were positioned over each muscle according to accepted recommendations 

(Konrad, 2005).  EMG signals were recorded at 1080 Hz using a Delsys Bagnoli-8 

(Delsys Inc., Boston, MA, USA) system (differentially amplified with a gain of 1000, 

frequency bandwidth of 20–450 Hz, input impedance >1015/0.2 Ω/pF, CMRR >80 dB) 

prior to A/D conversion.  Additionally, subjects were asked to rate their perceived 
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exertion (RPE) every three minutes during each trial on a modified Borg scale (Borg, 

1974; Borg, 1982).  

 

Data Analysis  

The instantaneous mean power frequency (IMPF) was calculated using wavelet 

transform methods, as this method is more accurate and robust than the Fourier transform 

for analyzing nonstationary signals (Hostens, 2004).  Briefly, a continuous wavelet 

transform (CWT) of the signal was taken (Matlab 7.0, Mathworks, Natick, MA, USA).  

The power density function, or ‘Scalogram’, of the CWT is  
 2),(),( ττ sCWTsSCAL =  (5.2) 

Where s represents the scale (frequency band) and τ  is time.  The instantaneous mean 

frequency (IMNF) is calculated by   
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Where ls is the lowest scale of interest and hs is the highest.  The IMNF was then 

averaged over each cycle to give a single value per cycle.  A ‘debauchies’ wavelet (db5) 

with a center frequency of 720 Hz at the lowest scale was used for all analyses.  This 

wavelet was scaled in 1-scale intervals from 1–38, which corresponds to center 

frequencies ranging from approximately 19–720 Hz.  IMNF values were averaged over 

each cycle to give a single IMNF per cycle.  These IMNF values quantified how the local 

fatigue state of each muscle changed across consecutive cycles during each trial.  

Localized muscle fatigue would cause the EMG mean frequencies to decrease (DeLuca, 

1997).       
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Marker data were filtered using a fifth order Butterworth filter with a cutoff 

frequency of 15 Hz.  Segment coordinate systems were calculated based on the marker 

positions with a least-squares algorithm (Veldpaus, 1988).  The joint centers at each 

instant in time were then calculated based on the position of the joint markers during the 

static trial (Schmidt et al., 1999).  Local coordinate systems were then defined using the 

International Society of Biomechanics’ (ISB) recommendations for the shoulder and 

elbow (Wu et al., 2005) and a modified coordinate system for the trunk (Hingtgen et al., 

2006) and wrist (Rao et al., 1996).  The three dimensional movements of the right arm 

were determined using Euler angles.  The rotation sequences used were in accordance 

with ISB recommendations (Wu et al., 2005).  All joints were assumed to have three 

rotational degrees of freedom.  The second rotational angle of the elbow, the carrying 

angle, was not analyzed since it changes only minimally due to the biomechanical 

constraints on the elbow joint.   

The maximum angle (‘PeakAng’) within each cycle was identified and used to 

evaluate changes in overall kinematics.  Variability was quantified as MeanSD: the 

average width of the standard deviation across the movement cycle (Dingwell and Marin, 

2006).  The mean values of IMNF, PeakAng, and MeanSD were calculated by splitting 

the data into five non-overlapping bins.  Only the last 50 cycles in each bin were 

analyzed to maintain consistency across subjects and conditions. 

Local dynamic stability was defined as the quantitative response of the system’s 

state variables to small perturbations (Kang and Dingwell, 2006b).  To calculate this we 

first defined a multi-dimensional state space for each joint consisting of its three 

rotational angles and angular velocities (except at the elbow, which had onlys two).   

 ( ) ( ) ( ) ( ) ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡=

⋅⋅⋅

t,t,t,t,t,tt 321321S θθθθθθ  (5.4) 
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These state space descriptions were shown to adequately define the joint motion (Gates 

and Dingwell, In Press).  The mean local divergence of nearest neighbor trajectories was 

calculated using a previously published algorithm (Rosenstein et al., 1993).  For any 

trajectory in state space, that trajectory’s nearest neighbor represents what might happen 

if a small local perturbation were applied to the system.  Short-term local divergence 

exponents were estimated from the slopes of linear fits to curves using: 
 ( )[ ] ln 1* td

t js
∆

=λ  (5.5) 

where ( )[ ]td jln  represents the mean logarithm of the divergence, for all pairs of nearest 

neighbors, j, throughout a time span (Rosenstein et al., 1993).  Positive exponents 

indicate local instability (i.e., small perturbations grow larger with time), and larger 

exponents indicate greater sensitivity to local perturbations.   

Since the intrinsic time scales were different for each subject (i.e. different 

average cycle times), the time axes of these curves were re-scaled by multiplying by the 

average cycle frequency for each subject during each condition.  Short-term exponents 

( *
Sλ ) were calculated from the slopes of linear fits to the divergence curve between 0 and 

1 cycle.  Long-term exponents ( *
Lλ ) were calculated as the slope between 4 and 10 cycles 

(Dingwell et al., 2007).  Since these divergence curves are sensitive to the number of 

cycles (Bruijn et al., 2009), only data from the last 50 cycles of each bin were used for 

consistency across subjects and conditions.  This method is also sensitive to the number 

of points (Granata and England, 2006), so the data in each bin was resampled such that 

each series of 50 cycles had exactly 5000 points.    
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Figure 5.3: Methods to determine local divergence exponents.  
A) A 3D projection of the full 6D state space of the shoulder is shown for one 
representative subject.  

.

1θ  is humeral plane angular velocity, 1θ  is the humeral plane 
angle, and 2θ  is the shoulder elevation angle.  B) The mean log divergence (MLD) curve 
(Eq. 5.5) for the data shown in A.  The short-term local divergence exponent, *

Sλ , was 
calculated as the slope of this curve divergence (MLD) between 0 and 1 cycle.  The long-
term local divergence exponent, *

Lλ , was calculated as the slope of the curve between 4 
and 10 cycles. 

Second, orbital stability was quantified by calculating maximum Floquet 

Multipliers (FM) (Nayfeh and Balachandran, 1995) based on established techniques 

(Hurmuzlu et al., 1996; Kuo, 1999; Donelan et al., 2004).  The state space data for each 

individual cycle were time-normalized to 101 samples (0% to 100%).  We defined a 

Poincaré section for each percent of the movement cycle, which defined 101 Poincaré 

sections for the system.  0% and 100% were minimum positions of the handle marker 

while 50% was the maximum position (Fig. 4.5).  The state space, Sk, for each cycle at 
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that Poincaré section evolved to the state at the following cycle, Sk+1 according to the 

Poincaré map:  

 ( )kk F SS =+1  (4.6) 

The average trajectory across all cycles within a trial was chosen to represent the ‘limit 

cycle’ for the movement.   Limit cycles correspond to single fixed points in each Poincaré 

plane (i.e., at each % of the cycle).  Orbital stability at each Poincaré section was 

estimated by computing how quickly small perturbations away from these fixed points 

grow or decay, using a linearized approximation of equation 5.6: 

 [ ] ( )[ ]***1 SSSSS −≈−+ kk J  (4.7) 

where k enumerates individual cycles, Sk is the system state for cycle k at that Poincaré 

section, and S* is the system state at the fixed point.  J(S*) is the system Jacobian matrix 

for each Poincaré section.  The FM are the eigenvalues of J(S*) (Hurmuzlu and 

Basdogan, 1994; Nayfeh and Balachandran, 1995).  In this case, J(S*) is a 6 x 6 matrix so 

there were six eigenvalues.  Since each Poincaré section occupied a 5 x 5 sub-space of S, 

only the first five eigenvalues were non-zero.   If these FM had a magnitude < 1, 

perturbations shrank, on average, by the next cycle, and the system remained stable.  In 

this case, larger FM indicates that movements are approaching instability (i.e. it takes 

longer for perturbations to be ‘absorbed’).  The magnitudes of the maximum FM for each 

percentage of the movement cycle were calculated for all cycles and pre- and post-

fatigue.  The maximum MaxFM across the movement cycle were recorded as ‘MaxFM’.   

The magnitudes of the maximum FM (“Max FM”) for each percent of the movement 

cycle were calculated for the data in each bin.  Data were averaged across subjects to 

quantify differences between conditions and across bins.   

Comparisons for peak angles (PeakAng), kinematic variability (MeanSD), 

dynamic stability ( *
sλ , *

Lλ , and MaxFM) and IMNF were made using 2-factor (Bin (1-5) 
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x Condition (High/Low)) repeated measures ANOVAs  (SPSS Inc., Chicago, IL USA).  

The significance level was set at p < 0.05 for all comparisons.  Least significant 

difference tests were performed to assess significance between bins for each condition 

and between conditions for each bin.   

 

5.3 RESULTS 

Subjects performed the task for significantly longer in the Low condition (24.1 ± 

10.3 min) than the High condition (12 ± 3.9 min; p = 0.007).  All subjects exhibited 

localized muscle fatigue as measured by decreased IMNF of the EMG signals (Fig. 5.4).  

These decreases were statistically significant for all nine muscles tested (p < 0.032).  In 

addition, all subjects reported an RPE of 10 at the completion of the experiment. 
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Figure 5.4: Instantaneous mean frequency (IMNF) across bins.  
The average IMNF was calculated for each of 5 bins.  The means across subjects are 
shown.  Error bars are ±95% confidence intervals.  A significant main effect for bin was 
found for all muscles (p < 0.032).  There was no significant effect of condition for any 
muscle tested.  Bins are offset for clarity. ‘*’ represent bins which were significantly 
different from bin 1 for both conditions.   
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Figure 5.5: Peak angles across bins for both the High and Low condition. 
The average maximum angle (‘PeakAng’) for each bin is shown for the High and Low 
conditions.  The top row shows data for the shoulder joint angles (from left to right, 
humeral plane (S1), elevation angle (S2), rotation (S3) angles).  The middle row is elbow 
flexion (E1) and pronation / supination (E3).  The bottom row is the wrist flexion (W1), 
ab/adduction (W2) and pronation/supination (W3). ‘^’ represents a significant condition 
effect, ‘†’ represents bins which are significantly different from bin 1 for the high 
condition, ‘§’ is for the low condition and ‘*’ is for both conditions. 
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Figure 5.6: MeanSD angles across bins for both the High and Low conditions.  
MeanSD for each joint angle is shown across the 5 bins.  The top row shows data for the 
shoulder joint angles (from left to right, humeral plane (S1), elevation angle (S2), internal 
external rotation (S3)).  The middle row is elbow flexion/extension (E1) and 
pronation/supination (E3).  The bottom row is the wrist flexion/extension (W1), 
ab/adduction (W2) and pronation/supination (W3). ‘^’ represents a significant condition 
effect, ‘†’ represents bins which are significantly different from bin 1 for the high 
condition, ‘§’ is for the low condition and ‘*’ is for both conditions. 
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The average maximum angle (‘PeakAng’) the subjects achieved during each 

movement varied across the trial (Fig. 5.5).  Subjects tended to lower (increased humeral 

‘negative’ elevation (S2: p = 0.001), and externally rotate (S3: p = 0.000) their 

humeruses.  They also increased their elbow extension (E1: p = 0.011) and decreased 

their wrist extension (W1: p = 0.002) and wrist abduction (W2: p = 0.008).  There were 

significant High/Low condition effects for S1 (p = 0.044), S2 (p = 0.000), E1 (p = 0.003), 

E3 (p = 0.000), and W2 (p = 0.005). There were also a significant bin x condition 

interactions for S2 (p = 0.045) and E3 (p = 0.013).   

The variability (‘MeanSD’) of the movements changed with condition and bin 

(Fig. 5.6).  The humeral elevation angle (S2) was more variable for the High condition (p 

= 0.041), while humeral rotation angles (S3) were less variable (p = 0.012).  There was a 

significant bin effect for the humeral plane angle (S1: p = 0.014), elbow flexion angle 

(E1: p = 0.023), wrist flexion (W1: 0.003) and wrist ab/adduction (W2: p = 0.038).   

These differences were relatively small, however (< 2o). 

Short-term (λs
*) and long-term (λL

*) local divergence exponents (Fig. 5.7), were 

calculated to quantify movement stability.  Subjects exhibited more locally unstable 

shoulder movements over the short-term in the Low condition (p = 0.003).  There were 

no significant main effects for either condition or bin for the long-term local divergence 

exponents.  There were no differences in across bins for any variable.   

Maximum Floquet multipliers were calculated as a secondary measure of 

movement stability.  Movements were more orbitally unstable at the High height for the 

shoulder (p=0.042) and elbow (p = 0.040).  There were no significant differences across 

bins, however. 



 105

0.4

0.5

0.6

0.7

0.8
SHO ^

λ
s*

 

 

Low High

ELB WRT

1 2 3 4 5

0

0.02

0.04

0.06

   

λ
L*

1 2 3 4 5

   

Bin
1 2 3 4 5

   

 

 

 

Figure 5.7: Local dynamic stability results for the shoulder, elbow, and wrist 
The top row shows data for short-term exponents, *

sλ .  The bottom row is data for the 
long-term exponent, *

Lλ .  Data is shown for the shoulder, elbow and wrist.  There was 
significant main effect for condition (i.e. Low vs. High) at the shoulder for *

sλ  (p = 
0.003).  There were no significant differences across bins for any variable and no 
Low/High condition effects for any of the other five comparisons. 
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Figure 5.8: Orbital stability results for the shoulder, elbow and wrist  
Data is shown for the shoulder (SHO), elbow (ELB) and wrist (WRT).  MaxFM exhibited 
shows some differences between conditions (shoulder: p = 0.042, elbow: p = 0.040) 
where movemens were slightly less stable (larger MaxFM) for the High condition.  There 
were no differences across bins. ^ represents a significant main effect for condition (p < 
0.05).  

5.4 DISCUSSION 

Muscle fatigue can lead to increased variability (Parnianpour et al., 1988; Selen et 

al., 2007; Missenard et al., 2008a), and decreased stability (Granata and Gottipati, 2008) 

of repetitive movements.  In multi-joint dynamic tasks, people can change their 

biomechanical coordination strategies (Sparto et al., 1997; Côté et al., 2002) or muscle 

activation patterns (Corcos et al., 2002; Goerlick et al., 2003).  These adjustments could 

minimize changes in overall kinematic variability and movement stability.  The purpose 

of this study was to determine how muscle fatigue affected kinematic variability, 

dynamic stability, and coordination during a repetitive task.  This task was performed at 

two work heights.  The High height required the arm to be elevated further against 

gravity and put the humerus in more impinged position relative to the scapula.  This 
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presumable increased the difficulty of the task.  The fatiguing protocol appeared to be 

effectively fatigue the muscles of the right arm.  Each subject reported that their rate of 

perceived exertion was a 10 (on a scale of 10) when they completed the study.  We also 

found significant decreases in instantaneous mean frequency of the EMG signals for both 

work heights (Fig 5.4).    

Generally, the results supported about half of these hypotheses. Subjects altered 

their movement patterns in response to fatigue, predominantly in the High condition (Fig. 

5.5).  This supported our first hypothesis and is consistent with other studies on fatiguing 

repetitive movements (Sparto et al., 1997; Côté et al., 2002).  Subjects also exhibited 

small but significant increases in kinematic variability with muscle fatigue (Fig. 5.6), thus 

supporting our second hypothesis.  However, movement stability did not across the trial, 

contrary to our third hypothesis.  Only variability of the humeral elevation angle was 

greater at the High height (Fig. 5.6).  Additionally, movements at the higher height were 

more locally stable (Fig. 5.7) but less orbitally stable (Fig. 5.8) than those performed at 

the Low height.  Thus our fourth hypothesis was largely unsupported.  In and of 

themselves, the observed differences between the Low and High height conditions do not 

tell you why you see these changes.  They could be related to biomechanical changes or 

they could be related to changes in neural control.    

One reason for the lack of changes in stability may have been adjustments in 

movement speed.  Decreasing speed has been shown to increase local stability (Dingwell 

and Marin, 2006; Granata and England, 2006).  In the present study, we attempted to 

control for movement speed by having subjects synchronize their movements with a 

metronome.  Subjects were largely able to maintain a constant cycle time across the trial 

(p = 0.083) for both conditions (Fig. 5.9). There were no specific targets for the 

movement distance, however, so some subjects adjusted their reaching distance across 
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bins (p = 0.021).  This adjustment was different for the two heights (bin*cond: p = 

0.002).  The average speed therefore also varied across bins (bin: p = 0.008; bin*cond, p 

= 0.000).  Using post-hoc analysis to explore these significant interaction effects, we 

found that temporal parameters were only affected when movements were performed at 

the high height.  Subjects were not able to maintain a constant cycle time as dictated by 

the metronome.  They tended to slow down and make shorter movements over the course 

of the experiment.  Since subjects slowed down, it is possible that this may have offset 

any effect of fatigue on the stability of movements performed at the high height.   
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Figure 5.9 Average cycle times, distance and speed across bins. 
Average data across subjects is shown for both the Low and High conditions.  Error bars 
represent ±95% confidence intervals about the mean. § indicates bins that were 
statistically different from bin 1 for the High condition.   

For most of the biomechanical and dynamic stability variables tested here, trends 

over time are difficult to indentify because of the large between subject variability, 

particularly for time to exhaustion.  One reason for this is that, since this task was 

inherently redundant, there were numerous alternative modalities subjects could use to 

compensate for those that were altered by fatigue.  For example, each subject showed a 
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unique pattern as to which muscles were most affected by fatigue during the task.  This 

could be due to difference in muscle anatomy, muscle fiber type composition, training, 

etc.  All of these factors could potentially affect which muscles fatigued first and to what 

extent.  The differential effects of the task on fatigue led subjects to exhibiting different 

changes over time in their kinematics.  The between-subject variability observed in this 

study was similar to that observed in previous studies of fatigue in complex multi-joint 

tasks (Nussbaum, 2001; von Tscharner, 2002; Madigan and Pidcoe, 2003; Voge and 

Dingwell, 2003). 

While all subjects reported a RPE of 10 at the conclusion of the experiment, it is a 

subjective measure so the actual amount of fatigue might have been different.  Also, in an 

effort to use the same number of trials for each subject we only analyzed the last 50 

cycles of each bin.  This was chosen to capture the later stages of fatigue.  However, it is 

likely that some subjects were already beginning to experience the early stages of fatigue 

in bin #1 so comparisons made here do not directly illustrate ‘no fatigue’ versus fatigue, 

but rather changes throughout the fatiguing process. 

In summary, subjects significantly altered their kinematic patterns in response to 

muscle fatigue. These changes were larger when the task was performed at a higher 

height. Subjects also exhibited increased variability of their movements post-fatigue.  

Increases in variability and altered coordination did not lead to decreased stability, 

however.  Local stability of the shoulder decreased when movements were performed at a 

lower height.  In contrast, orbital stability of the shoulder and elbow decreased for 

movements at the higher height.  This research showed that people adopt their strategies 

in multi-joint redundant tasks, possibly to maintain stability at the expense of increased 

variability. 
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Chapter 6: Conclusion  

SUMMARY 

Repetitive stress injuries are common in the workplace where workers perform 

repetitive tasks continuously throughout the day.  Muscle fatigue may lead to injury 

either directly through muscle damage or indirectly through changes in coordination, 

development of muscle imbalances, kinematic and muscle activation variability, and 

movement instability.  It is difficult to separate these possible causes or to make 

generalizations about how fatigue affects movement since effects seem to be task 

dependent and highly variable amongst subjects.  To better understand the role of muscle 

fatigue in injury, we studied how muscle fatigue and muscle imbalances affected the 

control of movement timing, variability, and stability during an upper extremity sawing 

task. 

Previous research has suggested that muscles respond slower after significant 

muscle fatigue (Wilder et al., 1996; Wojtys et al., 1996).  The muscles activations may 

also become more variable (Bruijn et al., 2009).  Changes at the muscle level likely 

correlate to changes in the resulting kinematics.  A few studies have shown decreased 

performance post fatigue (Jaric et al., 1999; Iwasa et al., 2005; Missenard et al., 2008b), 

while others have found that people retain the ability to reproduce movements or 

accurately hit a target (Côté et al., 2002; Heuer et al., 2002; Selen et al., 2007).  This may 

be possible to the redundancy in human body which enables us to perform the same task 

with different combinations of muscle activity or different joint positions.  In Aim #1 of 

this dissertation, we found that subjects were able to retain timing despite significant 

muscle fatigue.  We further analyzed this data to determine how the subjects were 

controlling their movements and found that subjects made more frequent corrections to 



 111

their movements after fatigue.  This supports work by Corbeil et al. (2003) which showed 

that subjects made more frequent corrections to their center of pressure during standing 

after significant muscle fatigue.   

In this study we also decomposed variability into that which directly affected the 

‘goal’ of maintaining time with the metronome and that which did not.  Those solutions 

which met this goal lied on a ‘goal equivalent manifold’ (GEM) for the task.  Mean 

deviations and variability perpendicular to the GEM were much smaller than those 

tangent to the GEM.  Deviations perpendicular to the GEM were also corrected much 

more rapidly than those tangent to it.  This indicates that subjects were trying to correct 

only those variations which adversely affected performance.  This is an interesting 

finding since it illustrates that increases in overall variability are not necessarily bad.  For 

example, when performing repetitive movements, it may be ideal to take advantage of 

this variability to maintain accuracy and yet prevent the joints from constantly being 

loaded in the same manner.   

The delayed muscular responses mentioned above, may also lead to instability of 

the movement (Granata and Gottipati, 2008).  One way to measure this is to look at the 

local dynamic stability of the movement using techniques from non-linear dynamics.  

While this concept is gaining increasing popularity in recent literature, it has yet to be 

determined how it can accurately be applied to studies of human movement.  Recent 

research has focused on question such as: How many cycles should be included for a 

valid estimate of stability? (Bruijn et al., 2009) How long should the trials be? (Kang and 

Dingwell, 2006b) How many data points are necessary? (Rosenstein et al., 1994)  Should 

the kinematic data be filtered or not? One question that had yet to be addressed was how 

to appropriately define the state space when the equations of motion governing the 

movement are unknown.  In Aim 2 of this dissertation we explored the use of a variety of 
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state spaces that had been used in previous literature as well as exploring the possibility 

of using principal components analysis to define the state space.  We found that for both 

defined nonlinear deterministic system and experimental data state spaces composed of 

the all state variables performed the best, while delay embedding of individual variables 

may also be a viable alternative.  Overall the experimental trends persisted no matter 

which state space was used.  This finding is important since it suggests that we should be 

able to make qualitative comparisons across studies which have used different state 

spaces.  However, quantitative values of stability differed for the different state spaces.  

This suggests that in order to make quantitative comparisons across studies you must you 

the same state space definition. 

Muscle fatigue may also lead to muscle imbalances (Alizadehkhaiyat et al., 2007) 

as the muscles surrounding the joint fatigue at different rates (Kumar and Narayan, 

1998).  These imbalances can lead to excessive movement in the direction that the 

unfatigued / less fatigued muscle operates.  This would lead to decreased stability of the 

joint movement.  In Aim #3 we found that primarily fatiguing the shoulder flexor 

muscles caused decreased force generating capacity of the muscles, increased force 

imbalances of the opposing muscle groups around the shoulder, and decreased 

cocontraction of the wrist muscles.   In spite of these deleterious effects, subjects also 

exhibited increased local stability of their shoulder movements.  In contrast, general 

fatigue of the arm resulted in decreased force generating capacity of the muscles, no 

changes in muscle balance, and decreased cocontraction at the shoulder and wrist.  The 

general fatigue resulted in increased orbital stability of the shoulder and elbow 

movements but no changes in local stability.  Together, these results suggest that neither 

specific fatigue of a muscle group nor general fatigue of the arm have a deleterious effect 

on movement stability.  It is possible that neither protocol fatigued them to the point that 
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they could not quickly adapt their movements or that (as discussed in Aim #1) they 

simply applied more frequent corrections to their movements post-fatigue.   

In multi-joint tasks, people may also alter their coordination patterns to delay the 

onset of fatigue or in response to painful muscles.  These changes in coordination may 

also serve to limit kinematic variability which may arise out of the increased force 

variability associated with muscle fatigue (Bigland-Ritchie and Woods, 1984).  They may 

also improve stability of the movement.  In contrast, many changes in coordination that 

result from fatigue put the body in an improper posture that may increase the risk of 

injury (Sparto et al., 1997).  Little is known about how these variables interact or the time 

course over which these changes are made.  In Aim #4 we found that subjects adapted 

differently when task posture was modified.  When movements were performed at a high 

height, subjects adapted to fatigue by slowing down and making shorter movements.  

They also dropped their arm from the extreme abducted posture.  These changes made 

the subjects more variable in their kinematics while their stability remained constant.  

Subjects found the task to be less challenging at the lower height.  At this height, they 

were able to maintain a constant movement distance and speed.  They mainly exhibited 

altered coordination and increased variability at the wrist.  Again, subjects showed no 

changes in local or orbital stability of their movements with fatigue.  These results 

suggest that subjects can make adjustments to their coordination in ways that maintain 

stability.  It seems that they are not trying to reduce kinematic variability.     

 

INJURY MODEL REVISITED 

In Chapter 1, we proposed the injury model shown in Figure 6.1.  In the 

experiments presented in this dissertation, we showed that subjects did change their 
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coordination patterns in response to fatigue (Chapter 5).  These changes did not appear to 

lead to an improper posture, since subjects showed decreased humeral (negative) 

elevation angles post-fatigue.  Postures with the arm at or above shoulder level are 

associated with an increased risk of injury (Ohlsson, 1995). Subjects did not show a 

decreased ability to maintain movement timing after significant muscle fatigue (Chapter 

2).  Subjects may have been able to continue achieving the task goal by altering their 

control strategies.  We found significant increases in variability of the kinematics post-

fatigue (Chapter 5), but no changes in variability of the endpoint trajectories (Chapter 2).  

We believe this variability may be a good thing since it increases the number of ways 

subjects can perform the task so as to distribute the stresses to different tissues, while still 

allowing for accurate movements.   

 
 
Figure 6.1: Updated injury model 

Targeted muscle fatigue of the shoulder flexors did cause some, albeit small, 

increases in muscle imbalance at the shoulder (Chapter 4).  This increased imbalance did 

not result in instability, however.  These results suggest that subjects are able to adapt 
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their movements in response to fatigue in ways that maintain performance.  Future work 

should focus on monitoring workers performing repetitive tasks continuously for 

extended periods of time.  This could reveal the long-term adaptations people make to 

their movements and which may be associated with increased prevalence of injury. 
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Appendices 

APPENDIX A. HEALTH HISTORY QUESTIONNAIRE 
 
IRB #: 2007-06-0018     Subject ID:       

Date of Birth (mm/dd/yy):     Age:     
(Age less than 21 or greater than 35 excludes) 
 
MALE:     FEMALE:     

Height:   ft./in. =    in. × 0.0254 =    m 

Weight:     lbs. × 0.4567 =    kg.  

BMI (kg/m2):    (BMI > 35 excludes) 

 

1.  Are you taking any medications on a regular basis?    Y  /  N 
     (Exclusions include:  Psychotropics, Antihistamines, Asthma Meds,  
     Aldomet, Clonidine, Anti-Depressants, Anti-Anxiety Meds) 
 
2.  Any additional over- the -counter meds?      Y  /  N 
     If yes, explain: 

3.  Do you have any disability or impairment that affects your arms or shoulders?  Y  / N       
     (If yes, excludes.) 
 
4.  Have you had any broken bones, surgery, or injury to upper extremities? Y  /  N 
     If yes, explain: 
 
5. Do you have arthritis? Does it cause pain or discomfort in your hands or arms?  Y  /  N 
    If yes to discomfort, excludes. 
 
6. Have you had any significant medical problems within the last 10 years?  Y  /  N 
    If yes, explain: 
 
7. Do you have a history of neurological diseases likely to affect your ability to make 

reaching movements, including CVA (stroke), disc disease, peripheral neuropathy, or 
upper extremity weakness? 

   If yes, exclude.         Y  /  N  
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8. Do you have any history of back problems, such as low back pain?  Y  /  N 
 If yes, excludes. 
 
 
9. Do you have any problems with standing balance?    Y  /  N 
 If yes, excludes. 
 
10. Do you have any drug and/or alcohol dependence?    Y  /  N 
 If yes, excludes. 
 
11. Do you have any significant visual impairments?    Y  /  N 
 Examples: loss of binocular vision or the presence of double vision 
 If yes, excludes.   
 
12. Do you wear corrective lenses (glasses or contacts)?    Y  /  N 
 If yes, are you (circle one):  Nearsighted  /  Farsighted 
 If yes, do you wear bifocals:  Yes  /  No 
 
13. Do you have any heart problems or coronary artery disease?   Y  /  N 
 If yes, excludes. 
 
14. Do you have hypertension?       Y  /  N 
 If yes, excludes. 
 
15. Do you have any lung or respiratory problems?     Y  /  N 
 If yes, excludes. 
 
16. Do you smoke? Pattern?          Y  /  N 
 
17. Do you use alcohol? Pattern?        Y  /  N 
 
18. Do you use caffeine (cola, coffee, etc.)? Pattern?    Y  /  N 
 
19. Do you have any allergies that require medication?    Y  /  N 
    If yes, explain. 
 
 
Self-reported activity level: 

How many times a week do you exercise?:        

How long do you spend exercising on those days?:       

What intensity level would you say you exercise at?:      
  (e.g. “low”, “moderate”, or “hard”) 
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APPENDIX B. HANDEDNESS SURVEY 

IRB #:  2005-02-0089    Subject ID:       

Which hand do you ***usually*** use to…. 

Brush your teeth?   R ________  L ________ 

Shave?     R ________  L ________ 

Write?     R ________  L ________ 

Move a computer mouse?  R ________  L ________ 

Hold on top while using a broom? R ________  L ________ 

Hold your knife while cutting food? R ________  L ________ 

Throw a ball?    R ________  L ________ 

Cut with scissors?   R ________  L ________ 

Strike a match?    R ________  L ________ 

Draw?     R ________  L ________ 

 

Total:     R ________  L ________ 

 

Criteria:   Subjects must score at least 8 out of 10 for their right hand to be admitted to the 

study. 
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APPENDIX C: JOINT ANGLE CALCULATIONS 

Locating Joint Centers (also see veldpaus.m) 

The joint centers for the shoulder and elbow were found using the data from 

clusters of markers attached to the upper and lower arm using a least squares optimization 

method (Veldpaus, 1988).  This is done by first, calculating the position of the center of 

the marker cluster, a, from a calibration trial.  
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where m is the number of markers.  Next, the distribution matrix, A, is calculated from 

equation 2.  This matrix depends on the relative position vectors (ai- a) of each of the 

markers with respect to the center. 
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These values do not change throughout the trial.  For each frame of data, the new marker 

center, p, is calculated.  From this we calculate the matrices G and P 
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We then minimize the least squares function )ˆ,ˆ( Hrf defined by: 
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Where the vector r̂ and the matrix Ĥ assumed to be the best approximations for the 

translation vector, r and the rotation matrix, R.  

After much matrix manipulation, we find  
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Where 

 1
2

1 )( jGGtrg T ==   (C-8) 

 2
2

2 )( jGGtrg aT ==  (C-9) 

 33 )det( jGg ==  (C-10) 

Substituting these expressions, we get 
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2 =−− jjββ  (C-12) 

which can then be solved in Matlab using optimization (veldpaus.m). 

From these, we can find the rotation matrix R using 

 1
1 )( −⋅+= CGGR a β   (C-13) 

where, 

 IGGC T
2β+=  (C-14) 

The translation vector, d can then be found using 

 apd −=   (C-15) 

Finally, the location of the joint center (JC) is found as 

 daaJCRJC ref ++−⋅= ))(ˆ(  (C-16) 

 

The 3rd metacarpal joint center was found using the method described by (Rao et al., 

1996).  First, we define a unit vector from the ulnar styloid (UF) to the radial styloid (RF)  
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ih is perpendicular to the plane containing RF, UF, and the fifth metatarsal head (5H) 
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  And  

 hhh jik ×=  (C-20)  
 

Now we define a new plane with the third metacarpal  
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 temphh kji ×=2  (C-22) 

 hhh jik ×= 22   (C-23) 

Then we rotate the second plane about jh until it lies in the first plane  

 

 2hh ii •=θ  (C-24) 
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Illustration of the local coordinate system of the hand (from (Rao et al., 1996)) 

 

Defining Local Coordinate Systems 

The coordinate system of the hand was defined according to Rao et al. (Rao et al., 1996). 

Yh: The line from the wrist joint center (WJC) to 3H 
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Xh: The line perpendicular to the plane formed by Yh, RF and UF 

Zh: The common line perpendicular to the Xh and Yh axis  

 

 

Illustration of the forearm coordinate system from (Wu et al.).  

 

The coordinate system of the forearm was defined according to ISB recommendations 

(Wu et al., 2005) 

Oh: The origin is at the ulnar styloid (UF) 

Yf: The line connecting the ulnar styloid to the joint center of the elbow pointing 

proximally    

Xf: The line perpendicular to the plane through the ulnar styloid, radial styloid and 

midpoint between EL and EM, pointing forward 

Zh: The common line perpendicular to the Xf and Yf axis, pointing to the right  

  

The coordinate system of the humerus was defined using the 2nd option of ISB 

recommendations (Wu et al., 2005) 

Yh:  The line connecting the shoulder joint center (SJC) and the elbow joint (EJC) 

center pointing toward SJC 
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Zh: The common line perpendicular to the plane formed by Yh and Yf, pointing to the 

right. 

Xh:  The common line perpendicular to the Zh and Yh-axis, pointing forward 

 

The coordinate system of the trunk was defined using (Hingtgen et al., 2006) 

Ot: The origin is the midpoint between the left and right acromion processes 

Zt: The line from the left to right acromion processes 

Yt: A line perpendicular to the plane formed by Zt and a line from the origin to the 

clavicle 

Xt: The common line perpendicular to the Yt and Zt axes 

 

Calculating Joint Angles (also see jointangles.m) 

The rotational transformation matrices were calculated from the unit vector matrices of 

each coordinate system (Robertson et al., 2004).   
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Where Td is the unit vector matrix for the distal segment and Tp is the unit vector matrix 

for the proximal segment.  The rotational transformation matrix is then 
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The rotation sequence for the humerus relative to the thorax (often referred to as the 

shoulder joint) (Wu, 2005) is Y-X-Y order 

 

 

Illustration of glenohumeral (shoulder) joint angles (from (Wu et al., 2005)). 

 

1) First, rotate γh about the Yt axis  
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2) Rotate β about the Xh axis    
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3) Rotate γ2 about the Yh axis    
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The angles are determined from the transformation matrix  
 [ ] [ ] [ ]yxy RRRt ⋅⋅=ℜ 2)(  (C-32) 



 125

( ) ( )

( ) ( ) ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=ℜ

hh

hh

hh

h

hh

hh

t
λλ

λλ

ββ
ββ

γγ

γγ

cos0sin
010

sin0cos

cossin0
sincos0

001

cos0sin
010

sin0cos
)(

22

22

(C-33) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−−+

−−−
=ℜ

βγγγγγββγγγγ
γββγβ

γβγγγβγγγγγ

coscoscossinsincossincoscossinsincos
cossincossinsin

coscossincossinsinsinsinsincoscos
)(

212122121

11

122121212

t  

(C-34) 

From here, the angles were calculated: 
Plane Angle (about Yh-axis):   
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Negative Elevation Angle (about Xh-axis):    

 ( )2,2
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Internal/External Rotation (about z’’-axis):    
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Here we assume that sin(β) is negative. 
 
The rotation sequence for the elbow and wrist was (Z-X-Y).  This is solved similarly to 

the shoulder  

 [ ] [ ] [ ]zxy RRRt ⋅⋅=ℜ )(  (C-38) 
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From here, the angles were calculated: 

Flexion / Extension (about Zh-axis):    

 ( )3,2
1sin)( ℜ= −tα

 
(C-40) 

Carrying Angle (Elbow) (about Xh’-axis):  
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Ulnar / Radial Deviation (Wrist) 
Pronation / Supination (about Yh-axis):    
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APPENDIX D: STATISTICS - SPSS CODE 
 
Syntax code 
 
GLM 
s2 BY bin cond subject 
/RANDOM = subject 
/METHOD = SSTYPE(3) 
/EMMEANS = TABLE(bin)  
/EMMEANS = TABLE(cond)  
/EMMEANS = TABLE(bin*cond) COMPARE(bin) ADJ(LSD) 
/EMMEANS = TABLE(bin*cond) COMPARE(cond) ADJ(LSD) 
/CRITERIA = ALPHA(0.05) 
/DESIGN = bin cond bin*cond subject(bin) subject(cond). 
 
Example output 
 

Between-Subjects Factors 

  N 

1 20 

2 20 

3 20 

4 20 

bin 

5 20 
1 50 cond 
2 50 
1 10 
2 10 
3 10 
4 10 
5 10 
6 10 
7 10 
8 10 
9 10 

subject 

10 10 
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Tests of Between-Subjects Effects 

Dependent Variable:s2      

Source 
Type III Sum of 

Squares df Mean Square F Sig. 

Hypothesis 901883.175 1 901883.175 288.660 .000Intercept 

Error 28203.304 9.027 3124.381a   
Hypothesis 81.443 4 20.361 1.060 .391bin 
Error 691.768 36 19.216b   
Hypothesis 3159.126 1 3159.126 1.013 .341cond 
Error 28077.378 9 3119.709c   
Hypothesis 61.166 4 15.291 1.051 .395bin * cond 
Error 523.559 36 14.543d   
Hypothesis 691.768 36 19.216 1.321 .204subject(bin) 
Error 523.559 36 14.543d   
Hypothesis 28077.378 9 3119.709 214.512 .000subject(cond) 
Error 523.559 36 14.543d   

a.  MS(subject(bin)) +  MS(subject(cond)) -  MS(Error)    
b.  MS(subject(bin))      
c.  MS(subject(cond))      
d.  MS(Error)      
 
 

Expected Mean Squaresa,b 

Variance Component 
Source Var(subject(bin)) Var(subject(cond)) Var(Error) Quadratic Term 

Intercept 2.000 5.000 1.000 Intercept, bin, cond, bin * cond 
bin 2.000 .000 1.000 bin, bin * cond 
cond .000 5.000 1.000 cond, bin * cond 
bin * cond .000 .000 1.000 bin * cond 
subject(bin) 2.000 .000 1.000  
subject(cond) .000 5.000 1.000  
Error .000 .000 1.000  
a. For each source, the expected mean square equals the sum of the coefficients in the cells times the 
variance components, plus a quadratic term involving effects in the Quadratic Term cell. 
b. Expected Mean Squares are based on the Type III Sums of Squares. 
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Estimated Marginal Means 
 

1. bin 

Dependent Variable:s2   
95% Confidence Interval 

bin Mean Std. Error Lower Bound Upper Bound 

1 95.935 .853 94.206 97.665
2 95.928 .853 94.198 97.657
3 95.103 .853 93.373 96.832
4 94.119 .853 92.390 95.849
5 93.753 .853 92.023 95.482

 
 

2. cond 

Dependent Variable:s2   
95% Confidence Interval 

cond Mean Std. Error Lower Bound Upper Bound 

1 89.347 .539 88.253 90.441
2 100.588 .539 99.494 101.682

 
 
3. bin * cond 
 

 
 
 
 
 
 

 

Estimates 

Dependent Variable:s2    
95% Confidence Interval 

bin cond Mean Std. Error Lower Bound Upper Bound

1 88.938 1.206 86.492 91.384 1 

2 102.933 1.206 100.487 105.379 
1 89.943 1.206 87.497 92.389 2 
2 101.912 1.206 99.467 104.358 
1 90.168 1.206 87.723 92.614 3 
2 100.037 1.206 97.591 102.483 
1 89.058 1.206 86.612 91.504 4 
2 99.180 1.206 96.735 101.626 
1 88.628 1.206 86.182 91.073 5 
2 98.878 1.206 96.432 101.324 
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Pairwise Comparisons 

Dependent Variable:s2     

95% Confidence Interval for 

Differencea 

cond (I) bin (J) bin 

Mean Difference 

(I-J) Std. Error Sig.a Lower Bound Upper Bound

2 -1.005 1.705 .559 -4.464 2.454

3 -1.231 1.705 .475 -4.689 2.228

4 -.120 1.705 .944 -3.579 3.339

1 

5 .310 1.705 .857 -3.149 3.769

1 1.005 1.705 .559 -2.454 4.464

3 -.225 1.705 .896 -3.684 3.233

4 .885 1.705 .607 -2.574 4.344

2 

5 1.315 1.705 .446 -2.144 4.774

1 1.231 1.705 .475 -2.228 4.689

2 .225 1.705 .896 -3.233 3.684

4 1.110 1.705 .519 -2.348 4.569

3 

5 1.541 1.705 .372 -1.918 4.999

1 .120 1.705 .944 -3.339 3.579

2 -.885 1.705 .607 -4.344 2.574

3 -1.110 1.705 .519 -4.569 2.348

4 

5 .430 1.705 .802 -3.029 3.889

1 -.310 1.705 .857 -3.769 3.149

2 -1.315 1.705 .446 -4.774 2.144

3 -1.541 1.705 .372 -4.999 1.918

1 

5 

4 -.430 1.705 .802 -3.889 3.029
2 1.021 1.705 .553 -2.438 4.480
3 2.896 1.705 .098 -.563 6.355
4 3.753* 1.705 .034 .294 7.212

1 

5 4.055* 1.705 .023 .596 7.514
1 -1.021 1.705 .553 -4.480 2.438
3 1.876 1.705 .279 -1.583 5.334
4 2.732 1.705 .118 -.727 6.191

2 

5 3.034 1.705 .084 -.424 6.493
1 -2.896 1.705 .098 -6.355 .563
2 -1.876 1.705 .279 -5.334 1.583
4 .856 1.705 .619 -2.602 4.315

3 

5 1.159 1.705 .501 -2.300 4.618
1 -3.753* 1.705 .034 -7.212 -.294

2 

4 
2 -2.732 1.705 .118 -6.191 .727
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3 -.856 1.705 .619 -4.315 2.602
5 .302 1.705 .860 -3.156 3.761
1 -4.055* 1.705 .023 -7.514 -.596
2 -3.034 1.705 .084 -6.493 .424
3 -1.159 1.705 .501 -4.618 2.300

5 

4 -.302 1.705 .860 -3.761 3.156
Based on estimated marginal means    
a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
*. The mean difference is significant at the 0.05 level.   
 
 

Univariate Tests 

Dependent Variable:s2     
cond Sum of Squares df Mean Square F Sig. 

Contrast 17.980 4 4.495 .309 .8701 

Error 523.559 36 14.543   
Contrast 124.628 4 31.157 2.142 .0962 
Error 523.559 36 14.543   

Each F tests the simple effects of bin within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal 
means. 
 
 
4. bin * cond 
 

Estimates 

Dependent Variable:s2    
95% Confidence Interval 

bin cond Mean Std. Error Lower Bound Upper Bound 

1 88.938 1.206 86.492 91.384 1 

2 102.933 1.206 100.487 105.379 
1 89.943 1.206 87.497 92.389 2 
2 101.912 1.206 99.467 104.358 
1 90.168 1.206 87.723 92.614 3 
2 100.037 1.206 97.591 102.483 
1 89.058 1.206 86.612 91.504 4 
2 99.180 1.206 96.735 101.626 
1 88.628 1.206 86.182 91.073 5 
2 98.878 1.206 96.432 101.324 
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Pairwise Comparisons 

Dependent Variable:s2     
95% Confidence Interval for 

Differencea 

bin (I) cond (J) cond 
Mean 

Difference (I-J) Std. Error Sig.a Lower Bound 
Upper 
Bound 

1 2 -13.995* 1.705 .000 -17.454 -10.5361 

2 1 13.995* 1.705 .000 10.536 17.454
1 2 -11.970* 1.705 .000 -15.428 -8.5112 
2 1 11.970* 1.705 .000 8.511 15.428
1 2 -9.868* 1.705 .000 -13.327 -6.4103 
2 1 9.868* 1.705 .000 6.410 13.327
1 2 -10.123* 1.705 .000 -13.581 -6.6644 
2 1 10.123* 1.705 .000 6.664 13.581
1 2 -10.250* 1.705 .000 -13.709 -6.7915 
2 1 10.250* 1.705 .000 6.791 13.709

Based on estimated marginal means    
*. The mean difference is significant at the 0.05 level.   
a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
 

Univariate Tests 

Dependent Variable:s2     
bin Sum of Squares df Mean Square F Sig. 

Contrast 979.342 1 979.342 67.340 .0001 

Error 523.559 36 14.543   
Contrast 716.345 1 716.345 49.256 .0002 
Error 523.559 36 14.543   
Contrast 486.936 1 486.936 33.482 .0003 
Error 523.559 36 14.543   
Contrast 512.325 1 512.325 35.228 .0004 
Error 523.559 36 14.543   
Contrast 525.343 1 525.343 36.123 .0005 
Error 523.559 36 14.543   

Each F tests the simple effects of cond within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal 
means. 
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APPENDIX E: MATLAB CODE 

Least Squares Optimization Program: veldpaus.m 
%======================================================================== 
% Deanna Gates 
% Last modified: 1/3/07 
% Description: Uses the least squares method given in, Veldpaus, F. 'A least-sqares algorithm for the 
equiform transformation from spatial marker coordinates' J. Biomechanics 21, 45-54. 1988.  
% to find the transformation matrix from global to local coordinates  
  
%Input: A matrix of marker data (MK), size Nx12 [RUP1 RUP2 RUP3 RUP4] and 
%the position of the cluster markers and joint center during calibration. 
%Ouput: The position of the joint center at each instance in time 
%======================================================================== 
function jc = veldpaus(MK, MK_ref, jc_ref) 
 
global h1 h2 
  
m = 4;  %Number of markers in the cluster 
N=length(MK); %Find the length of the data 
  
%Fix matrix size 
j=1; 
for i=1:m 
    ai(:,i) = MK_ref(1,j:j+2)'; 
    j=j+3; 
end 
  
%Find the postition of the center Po of the marker distribution at calibration time (eq. 2.1) 
a = mean(ai,2); 
  
for i=1:N 
    sump = MK(i,1:3)' + MK(i,4:6)' + MK(i,7:9)' + MK(i,10:12)'; 
    p = (1/m)*sump; % p is position measured at time=i (equation 3.3) 
 
    j=1; 
    for k=1:m 
%Find the distribution matrix A of the relative position of markers with respect to the middle at t=0 (eq. 
2.2) 
        Atemp(:,:,k) = (ai(:,k)-a)*(ai(:,k)-a)'; 
         
        %G is the difference between relative measured position at t=0 and t=i (equation 3.4) 
        Gtemp(:,:,k) = (MK(i,j:j+2)'-p)*(ai(:,k)-a)'; 
         
%Find the distribution matrix P of the relative position of markers with respect to the middle for time=i (eq. 
3.5) 
        Ptemp(:,:,k) = (MK(i,j:j+2)'-p)*(MK(i,j:j+2)'-p)'; 
        j=j+3; 
    end 
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    A = mean(Atemp,3); 
    G = mean(Gtemp,3); 
    P = mean(Ptemp,3); 
  
    %Check the rank of G to ensure that it is greater than 2 
     if rank(G)>2 
        g1 = sqrt(trace(G'*G)); %4.12 
        g2 = sqrt(trace(adjoin(G'*G))); 
        g3 = det(G); 
        h1 = g2/(g1^2); 
        h2 = (g1*g3)/g2^2; 
        %Next, call an optimization routine.  
        x0 = [1; 1];           % Make a starting guess at the solution 
        options = optimset('TolFun', 10^-10, 'Display','off'); 
        x = fsolve(@veld,x0,options); 
        beta1 = x(1)*g1; 
        beta2 = x(2)*g2; 
        D = G'*G + beta2*eye(3);  %equation 4.9 
        R1 = (adjoin(G) + beta1*G)*inv(D); %equation 4.10 
  
        d1 = p - a; %Translation vector of the center of the cluster 
        s= beta1/trace(A); %should be close to one.  Then it behaves like a rigid body 
  
        jc(i,:) = ((R1*(jc_ref(1,1:3)'- a)) + a + d1)'; 
    end 
end 
 
veld.m 
function F = veld(x) 
global h1 h2 
F= [(x(1)^2 - 2*h1*x(2) - 1); (x(2)^2 -2*h2*x(1) - 1)];  
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Joint Angle Program: jointangles.m 
%============================================================== 
% Deanna Gates 
% Written: 5/24/06 
% Last Modified: 10/6/06 
  
% Calculate the three dimensional joint angles 
% This requires the function file findnorm.m to calculate unit vectors 
% Lab coordinate system  + X-Axis is direction of push, + Y-Axis - right arm across body, 
%                        + Z-Axis - up 
% Input: Mat file with smooth trajectories from calmarkerdata.m 
%============================================================== 
clear, close all 
warning off  
  
%File information 
  
for trial =[1:40]   
    %File Information 
    datadir = 'C:\ViconData\NoBiLab\P0020\CSV Files\'; 
    subjectids = ['P06l'; 'P06g'; 'P07l'; 'P07g'; 'S01l'; 'S01g'; 'S02l'; 'S02g'; 'S03l'; 'S03g';. 
                  'S04l'; 'S04g'; 'S05l'; 'S05g'; 'S06l'; 'S06g'; 'S08l'; 'S08g'; 'S11l'; 'S11g'; ... 
                  'S12l'; 'S12g'; 'S13l'; 'S13g'; 'S14g'; 'S14l'; 'S15l'; 'S15g'; 'S16g'; 'S16l';... 
                  'S17g'; 'S17l'; 'S18l'; 'S18g'; 'S19l'; 'S19g'; 'S20l'; 'S20g'; 'S09g'; 'S09l']; 
    Circums = [32.0 32.0 38.0 38.0 37.5 37.5 25.5 25.5 32.0 32.0 ... 
               40.0 40.0 44.5 44.5 31.0 31.0 39.0 39.0 28.5 28.5 ... 
               35.5 35.5 32.0 32.0 39.0 39.0 39.5 39.5 37.5 37.5 ... 
               35.5 35.5 43.0 43.0 41.0 41.0 39.0 39.0 38.5 38.5];     
  
    subjectid = subjectids(trial,:); 
    Circum = Circums(trial); 
    TrialType = 'Pre'; 
  
    %Read in the matfile of marker trajectories 
    load([datadir 'Marker Data\' subjectid '_' TrialType '_m15.mat']); 
    %Read in the matfile of joint centers 
    load([datadir 'Joint Angles\' subjectid '_' TrialType '_jc15.mat']); 
     
    %Filter Joint Centers 
    sampfreq = 120; cutoff =15; %choose lowpas cuttoff (Hz) 
    [b,a] = butter(5, (2 * cutoff) / sampfreq); 
    R3JC = filtfilt(b,a,R3JC);     ELJC = filtfilt(b,a,ELJC);     SHJC = filtfilt(b,a,SHJC); 
     
    %++++++++++++++++++ Joint Coordinate Systems ++++++++++++++++++++++++++++++ 
    % Follows 2.3.6 of G. Wu et al., 2005 'ISB recommendations...' 
  
    %****** Coordinate System of Hand (Metatarsals) ******* 
    %Definition of coordinate system taken from Rao et al. 1996 
    WRJC = (RWRA + RWRB)/2; 
    USRS = RWRA - RWRB; 
    Ym = findnorm(R3JC, WRJC); 
    Xm = -cross(USRS,Ym); 
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    Xm = Xm./repmat(sqrt(sum(Xm.^2,2)),1,3); 
    Zm = cross(Xm,Ym); 
     %****** Coordinate System of Forearm ******* 
    % Origen at ulnar styloid (RWRB) 
  
    %The Y axis of the forearm, Yf, is the line connecting the ulnar styloid to the joint center of the elbow 
pointing proximally 
    Yf = findnorm(RWRB,ELJC); 
  
    %The X-axis of the forearm, Xf, is the line perpendicular to the plane through the ulnar styloid, radial 
styloid and midpoint between EL and EM pointing forward 
    Xf = cross(Yf,USRS);    Xf = Xf./repmat(sqrt(sum(Xf.^2,2)),1,3); 
    %Z-axis is common line perpendicular to the Xf and Yf-axis, pointing to the right. 
    Zf = cross(Xf,Yf); 
  
    %****** Coordinate System of Humerus ******* 
    %ISB guidelines 2nd option (section 2.3.5) 
  
    %The Y axis of the humerus, Yh, is the line connecting shoulder joint center and the elbow joint center 
pointing toward the SHJC 
    Yh = findnorm(ELJC,SHJC); 
    %Z-axis is common line perpendicular to the plane formed by Yh and Yf pointing to the right. 
    Zh = cross(Yh,Yf); Zh = Zh./repmat(sqrt(sum(Zh.^2,2)),1,3); 
        %The X-axis of the humerus, Xh, is the common line perpendicular to the Zh and Yh-axis, pointing 
forward 
    Xh = cross(Yh,Zh); 
  
    %****** Coordinate System of Trunk ******* 
    %Taken form Hingtgen et al. 2006 
    %Origen in midpoint between acromium markers 
    tc=1/2*(RSHO+LSHO); 
    Zt=findnorm(LSHO,RSHO); 
    temp=findnorm(tc,CLAV); 
    Yt = cross(Zt,temp); Yt = Yt./repmat(sqrt(sum(Yt.^2,2)),1,3); 
    clear temp 
    Xt = cross(Yt,Zt); 
  
    %++++++++++++++++++++++++++ Rotation Matrices +++++++++++++++++++++++++++++ 
    %Origin of local coordinate systems (for figures) 
    dm = WRJC; 
    dt = CLAV; 
    df = RWRB + repmat(0.57*distance(RWRB,ELJC),1,3).*Yf; 
    dh = SHJC - repmat(0.436*distance(ELJC,SHJC),1,3).*Yh; 
     
    % preallocate space to save memory 
    elbowangles = zeros(length(Xm),3); wristangles = zeros(length(Xm),3);  
    shoangles = zeros(length(Xm),3); 
     
    for i=1:length(Xf) 
       
        Rm = 52; %For the wrist 
        Rf = [Xf(i,:); Yf(i,:); Zf(i,:)]; %For the forearm 
        Rh = [Xh(i,:); Yh(i,:); Zh(i,:)]; %For the humerus 
        Rt = [Xt(i,:); Yt(i,:); Zt(i,:)]; %For the thorax 
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         %Rotation matrix where hand is distal segment and forearm is proximal 
        RotWrist = Rm*Rf'; 
        %Rotation matrix where forearm is distal segment and humerus is proximal 
        RotElbow = Rf*Rh'; 
        %Rotation matrix where humerous is distal segment and thorax is proximal 
        RotSho = Rh*Rt'; 
  
        %Motion for the wrist joint (hand relative to forearm Z-X-Y order 
        wristangles(i,:) = rot_zxy(RotWrist); 
        %Motion for the elbow joint (forearm relative to humerus, Z,X,Y order) 
        elbowangles(i,:) = rot_zxy(RotElbow); 
        %Motion for the shoulder joint (humerus relative to thorax Y-X-Y order) 
        shoangles(i,:) = rot_yxy(RotSho); 
    end 
  
    elbowangles(:,3) = elbowangles(:,3) + repmat(90,length(elbowangles),1); 
    
    save([datadir 'Joint Angles\' subjectid '_' TrialType '_jointangles15.mat'], 'shoangles','elbowangles', 
'wristangles') 
    clear 
end 
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Timing Errors Code: DFA_Timing Errors.m 
%======================================================================% 
%Written by Deanna Gates on 11/21/06 
 
% DFA timing errors 
% Input:  1) HAND marker mins /maxs from file Subject#_TrialType_minmax1080.mat 
%             2) Metronome data from csv file (example ‘S18_low_force.csv ‘)  
% Output: 1) Error between measurements and 2) Alpha values from DFA analysis 
% This code requires the function files:  1. gemanalysis.m, 2. findnorm.m, 3. DFA.m 
%======================================================================% 
clear, close all 
   
for subject = 1:14 
    %File information 
    datadir = 'C:\Documents and Settings\Deanna\My Documents\P0008\GEM Paper\Data Files\'; 
    subjectids = ['S02'; 'S03'; 'S07'; 'S08'; 'S09'; 'S11';'S13';'S14'; 'S16'; 'S17'; 'S18'; 'S22';'S01';'P08']; 
    TrialType = 'low'; 
    subjectid = subjectids(subject,:); 
    Height = [1.6 1.73 1.88 1.88 1.61 1.66 1.565 1.665 1.73 1.8 1.66 1.79 1.685 1.82]; 
    ArmLength = Height(subject); 
  
    %Import MET data 
    load([datadir 'Metronome Data\' subjectid '_' TrialType '_MET.mat']); pack 
  
    %Find location of beeps from Metronome 
    try Met=Metdata; 
         catch 
    end 
    k=1; 
    for i=1:length(Met)-1 
        if Met(i)>1 
            if k ==1 
                ind(k)=i; 
                k=k+1; 
                %Make sure that the next max is at least 50 points away 
            elseif k>1 & i - ind(k-1) > 50 
                ind(k) = i; 
                k=k+1; 
            end 
        end 
    end 
    
%Import min/max from HAND marker trajectories 
    load([datadir 'Marker Data\' subjectid '_' TrialType '_m20.mat']); 
    %Up sample the hand data to 1080 Hz 
    xi = (1:length(HAND))./60; 
    xf = (1:length(HAND)*18)./1080; 
    HAND_up = interp1(xi,HAND,xf,'cubic'); 
     
    %load min/max 
    load([datadir 'MinMax\' subjectid '_' TrialType '_minmax1080.mat']); 
    %-----------------Calculate Basic Parameters (Distance/Velocity/Cycle Time)--------------------------- 
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    for i=2:length(Mins)-1 
        if Maxs(i)<Mins(i) 
            CycleTime(i-1) = (Maxs(i+1)-Mins(i)).*(1/1080); 
            Dist(i-1) = (HAND_up(Maxs(i+1),1) - HAND_up(Mins(i),1))/1000; 
            Vel(i-1) = Dist(i-1)/CycleTime(i-1); 
        else 
            CycleTime(i-1) = (Maxs(i)-Mins(i)).*(1/1080); 
            Dist(i-1) = (HAND_up(Maxs(i),1) - HAND_up(Mins(i),1))/1000; 
            Vel(i-1) = Dist(i-1)/CycleTime(i-1); 
        end 
    end 
    Dist = Dist/ArmLength;  
    freq = 1 / (mean(diff(ind))/1080); 
    Vel = Vel / (ArmLength * freq); 
 
    % Determine the GEM 
    [perpindist meandist] = gemanalysis(Dist',Vel',1); 
    X = Dist'; 
    Y=Vel'; 
    slope = freq/freq; 
    x = 0:0.01:0.6; 
    gem = slope*x; 
    neggem = -(1/slope)*x ;  
    num = 224;  
     
    % Perform DFA Analysis on Pre-Fatigue Data 
    figure(subject) 
    [npre Fpre spre Rpre ppre] = DFA(perpindist(2:num+1,1)); 
    [npre2 Fpre2 spre2 Rpre2 ppre2] = DFA(meandist(2:num+1,1)); 
    [ndpre Fdpre sdpre Rdpre pdpre] = DFA(Dist(2:num+1)); 
    [nvpre Fvpre svpre Rvpre pvpre] = DFA(Vel(2:num+1)); 
     
    % Perform DFA Analysis on Post-Fatigue Data 
    [npost Fpost spost Rpost ppost ] = DFA(perpindist(end-num:end-1,1)); 
    [npost2 Fpost2 spost2 Rpost2 ppost2] = DFA(meandist(end-num:end-1,1)); 
    [ndpost Fdpost sdpost Rdpost pdpost] = DFA(Dist(end-num:end-1)); 
    [nvpost Fvpost svpost Rvpost pvpost] = DFA(Vel(end-num:end-1)); 
         
    SD_perp = [std(perpindist(2:num+1,1)) std(perpindist(end-num:end-1,1))]; 
    SD_mean = [std(meandist(2:num+1,1)) std(meandist(end-num:end-1,1))]; 
     
    Mean_perp = [mean(perpindist(2:num+1,1)) mean(perpindist(end-num:end-1,1))]; 
    Mean_mean = [mean(meandist(2:num+1,1)) mean(meandist(end-num:end-1,1))]; 
 
   %------------------------ Calculate the timing error----------------------------------------------------------- 
    t = 1:length(HAND_up); 
    Marker_ind = sort([Mins Maxs]); 
  
    %Find places where they missed the beep 
    for i=1:length(Marker_ind) 
        %look around it and see which point is closest 
        temperror = ind  - Marker_ind(i); 
        [k m] = min(abs(temperror)); 
        error(i) = (ind(m)-Marker_ind(i))./1080; 
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    end 
  
    %Pre / Post 
   [npre3 Fpre3 spre3 Rpre3 ppre3] = DFA(error(2:num*2+1)); 
   [npost3 Fpost3 spost3 Rpost3 ppost3] = DFA(error(end-num*2:end-1)); 
  
    SD_error = [std(error(2:num*2+1)) std(error(end-num*2:end-1))]; 
    SD_dist = [std(Dist(1,2:num+1)) std(Dist(1,end-num:end-1))];; 
    SD_vel = [std(Vel(2:num+1)) std(Vel(end-num:end-1))]; 
     
    Mean_error = [mean(error(2:num*2+1)) mean(error(end-num*2:end-1))]; 
    Mean_dist = [mean(Dist(1,2:num+1)) mean(Dist(1,end-num:end-1))];; 
    Mean_vel = [mean(Vel(2:num+1)) mean(Vel(end-num:end-1))]; 
    table = [npre' Fpre' npost' Fpost' npre2' Fpre2' npost2' Fpost2' ndpre' Fdpre' ndpost' Fdpost' nvpre' Fvpre' 
nvpost' Fvpost']; 
    table2 = [npre3' Fpre3' npost3' Fpost3']; 
     
    Rtable = [Rpre ppre Rpost ppost Rpre2 ppre2 Rpost2 ppost2 Rdpre pdpre Rdpost ... 
        pdpost Rvpre pvpre Rvpost pvpost Rpre3 ppre3 Rpost3 ppost3]; 
     save([datadir subjectid '_' TrialType '_DFAresults_all3.mat'],  'npre', 'Fpre','spre', 'npre2', 'Fpre2', 'spre2', 
'npost', 'Fpost', 'spost', 'npost2', 'Fpost2', 'spost2','ndpre','Fdpre','sdpre','nvpre','Fvpre','svpre', 'ndpost', 
'Fdpost', 'sdpost','nvpost','Fvpost','svpost', 'npre3', 'Fpre3', 'spre3', 'npost3', 'Fpost3', 'spost3') 
     save([datadir subjectid '_' TrialType '_VAR2.mat'],  'SD_mean', 'SD_perp', SD_error','SD_dist','SD_vel') 
     save([datadir subjectid '_' TrialType '_MEAN2.mat'],  'Mean_mean', 'Mean_perp', 'Mean_error', 
'Mean_dist', 'Mean_vel') 
    save([datadir subjectid '_' TrialType '_timing.mat'],  'error', 'Dist', 'Vel','perpindist','meandist') 
     save([datadir subjectid '_' TrialType '_Rtable.mat'],  'Rtable') 
   clear 
end 
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Goal Equivalent Manifold Analysis Code: gemanalysis.m 
%======================================================================% 
%Written by Deanna Gates 3/28/06 
 
% This code decomposes errors in X and Y into deviations (delta) tangent and 
% perpindicular to the goal equivalent manifold (GEM) 
% Input:  1) column vectors of X and Y data,  2) slope (GEM)   
% Output: 1) Delta decomposed into two directions 
%======================================================================== 
function [delta_p delta_t] = gemanalysis(X, Y, slope) 
 
N = length(X); 
  
%Plot Error and GEM 
x = min(X):0.01:max(X); 
gem = slope*x; 
yi = mean(Y) + slope*mean(X); 
neggem = -slope*x + yi; 
     
%Define unit vectors perpindicular and tangent to the GEM 
et = findnorm([0 0 0], [1 slope 0]); 
ep = findnorm([0 0 0], [-slope 1 0]); 
  
%Make a vector for all points 
p = [X Y zeros(N,1)]; 
  
%Calculate distance using a dot product 
delta_p = dot(repmat(ep,N,1),p,2); 
delta_t = dot(repmat(et,N,1),p,2); 
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Detrended Fluctation Analysis Code:  DFA.m 
%===================================================================== 
% Written by Deanna Gates, 12/1/05 
% Modified 6/30/06 to calculate the error by starting the bins at the beginning of the trial and then % by 
starting at the end and taking the average of the two (to reduce error of small bins at end). 
% Modified 7/5/06 to split into 50 bins evenly distributed from 4 to 400 on log-log scale. 
% Modified 12/4/07 to give the adjusted R2 values for the n v F plot for a linear, quadratic, and  cubic 
regression 
  
% Input: A column vector of time series of data (stride times) and the order of the fit within the bins.  Set to 
1 for a linear fit as a default 
% Output:  
% 1) n1 which contains the bin lengths used.  
% 2) F1 which contains the RMS fluctuation of the detrended time series corresponding to each  bin 
length,n  
3) p1, the fit for log(n) vs. log(F).  p1(1,1) is the scaling exponent 
% 4) Rvals are the R2 values for the constant term R2 = 0, linear fit, 
% quadratic fit and cubic fit 
% 5) pvals, the p value for the constant term, linear term, squared term 
% and cubed term of the regression 
 ========================================================================= 
function [n1 F1 p1 Rvals pvals]=DFA(x,o) 
 
% order of the polynomial to fit the data in each window 
try order = o; 
    catch order = 1; 
end 
  
warning off 
  
N=length(x); %number of points in time series 
  
%integrate the entire time series 
M=mean(x); 
for k=1:N 
    y_int(k,1) = sum(x(1:k) - M); %make column vector of integrated series 
end 
 
%binlength=round(logspace(log10(4),log10(56),35));%After removing duplicate points, this finds 
% 25 equally spaced points on log-log scale between 4 and 50 
binlength = round(logspace(log10(4),log10(N/4),20)); %After removing duplicate points, this finds 
% 50 equally spaced points on log-log scale between 4 and 400 
  
% initialize matrices 
error=zeros(N,length(binlength)); 
yn=zeros(N,length(binlength)); 
yn2=zeros(N,length(binlength)); 
  
%Calculate the root-mean square fluctuation of the detrended series for all possible bin sizes  
for i=1:length(binlength)  
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    n(i)=binlength(i);   
    %Do a least squares fit to the data for each bin 
    k=(1:N)'; % A column vector representing the x-axis, or index of the time series 
    j=1; 
    while j<N 
        temparray=j:j+(n(i)-1); 
        b=temparray(find(temparray<=N)); %If number of bin size is not even, cut off extra points and fit the 
partial bin at the end 
        p=polyfit(k(b,1),y_int(b,1),order); %fit the time series for the bin 
        yn(b,i)=polyval(p,k(b,1)); %find the value of the straight line at each k 
        j=j+n(i); 
        clear p b 
    end 
    error(:,i) = y_int(:,1)-yn(:,i); %find the difference between the integrated time series and the best fit line 
end 
 %Repeat, starting from the end of the data 
for i=1:length(binlength)  
    n(i)=binlength(i);   
    %Do a least squares fit to the data for each bin 
    k=(1:N)'; % A column vector representing the x-axis, or index of the time series 
    j=N; 
    while j>0 
        temparray=j-(n(i)-1):j; 
        b=temparray(find(temparray>0)); %If number of bin size is not even, cut off extra points and fit the 
partial bin at the end 
        p=polyfit(k(b,1),y_int(b,1),order); %fit the time series for the bin 
        yn2(b,i)=polyval(p,k(b,1)); %find the value of the straight line at each k 
        j=j-n(i); 
        clear p b 
    end 
    error2(:,i) = y_int(:,1)-yn2(:,i); %find the difference between the integrated time series and the best fit 
line 
end 
  
%Sum the detrended time series for each k (column)  
S1=(1/N)*sum(error.^2); 
S2=(1/N)*sum(error2.^2); 
S=(S1+S2)/2; 
  
%Calculate the RMS fluctuation of the detrended series 
F=S.^0.5; 
  
z=1; 
for i=2:length(binlength)     %Remove all duplicate bin lengths (may exist due to rounding). 
    if n(i)>n(i-1) 
        n1(z)=n(i); 
        F1(z)=F(i); 
        z=z+1;  
    end 
end 
  
%Find the scaling exponent, p1(1,1) (the slope of a linear line relating log(F) to log(n)) 
[p1] = polyfit(log10(n1),log10(F1),1); 
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%Determine adjusted R-squared value following Neter et al. Applied Linear Statistical Models, 4th ed. 
1996. p. 229 Table 6.1 
[R2_linear R2adj_quad R2adj_cubic] = adjRsquare(log10(n1)',log10(F1)'); 
  
%Are the fits significant? 
xs = log10(n1)' - repmat(mean(log10(n1)),length(n1),1); 
x = [xs xs.^2 xs.^3]; 
[Coefficients, S_err, XTXI, R_sq, F_val, Coef_stats, Y_hat, residuals, covariance] = mregress(log10(F1)',x, 
1); 
  
Rvals = [ 0; R2_linear; R2adj_quad; R2adj_cubic]; 
pvals = Coef_stats(:,4); 
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