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In MHD magnetic helicity has been shown to represent Gauss linking

numbers of magnetic field lines by Moffatt and others; thus it is endowed with

topological meaning. The noncanonical Hamiltonian formulation of extended

MHD models (that take two-fluid effects into account) has been used to arrive

at their common mathematical structure, which manifests itself via the exis-

tence of two generalized helicities and two Lie-dragged 2-forms. The helicity

invariants play an important role in the second part of thesis dedicated to

understanding the directionality of turbulent cascades.

Generally speaking, invariants (such as energy) can flow in two direc-

tions in a turbulent cascade: forward (towards small scales, leading to dissi-

pation) and inverse (towards large scales), leading to the formation of a con-

densate. This directionality in extended MHD models is estimated using ana-

lytical considerations as well as tests involving 2D numerical simulations. The
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cascade reversal (transition) of the square magnetic vector potential is found,

viz. when the forcing wavenumber exceeds the inverse electron skin depth the

square magnetic vector potential starts to flow towards large wavenumbers, as

opposed to the typical MHD behavior. In addition, the numerics suggest a

simultaneous transition to the inverse cascade of energy in this inertial MHD

regime. This is accompanied by the appearance of large scale structures in the

velocity field, as opposed to the magnetic field as in the MHD case.

Final chapters of the thesis are devoted to devising the action princi-

ple for the relativistic extended MHD. First the special relativistic version is

discussed, where the covariant noncanonical Poisson bracket is found. This is

followed by a short recourse towards describing relativistic collisionless recon-

nection mediated by the electron thermal inertia (purely relativistic effect).

Next, 3+1 splitting inside the Poisson bracket is performed, while only non-

relativistic terms are retained. Thus one arrives at nonrelativistic extended

MHD bracket with arbitrary ion to electron mass ratio. In conclusion, it

is outlined how the Hamiltonian 3+1 formalism can be developed for general

relativistic Hall MHD using canonical Clebsch parametrization and some com-

ments are added on possible issues regarding the quasi-neutrality assumption

in the model that is used throughout the chapter.
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Chapter 1

Action principles and Hamiltonian dynamics

in matter models

The early discovery of action principles (AP)s and associated Hamil-

tonian structure, undoubtably of groundbreaking importance in the history

of physics, has unified existing physical models and provided a means for the

development of new models. In physics it is now believed that an empiri-

cally derived physical model, devoid of phenomenological constitutive rela-

tions, would not be justified unless an underlying AP exists. In addition to

mathematical elegance, APs are of practical importance for seeking invariants

via symmetries using Noether’s theorem [194] (see, e.g., Refs. [203, 64] for

plasma examples), obtaining consistent approximations (e.g., Ref. [120]), and

developing numerical algorithms (e.g., Refs. [85, 257, 143]).

In most areas of fusion, space and astrophysical plasmas, fluid mod-

els have proven to be highly useful in capturing the relevant physics [81, 90].

Since the pioneering works of Hannes Alfvén in the 1930s, ideal magneto-

hydrodynamics (MHD) has established itself as a cornerstone in fusion and

astrophysical plasmas [142, 104, 146]. The ubiquity of ideal MHD stems from

its combination of simplicity and (fairly) wide applicability. As MHD is a
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fluid theory, it shares deep connections with ideal hydrodynamics, including

the concept of helicity conservation. Helicities are of considerable interest as

they are topological quantities [177, 36, 156], and share a close kinship with

the relaxation and self-organization [256, 245] of plasmas. A third advantage

of ideal MHD is that it possesses an elegant action principle [192] and Hamil-

tonian [185] formulation, each of which has several advantages of its own.

Although MHD has proven to be very successful in predicting many

phenomena, it is known to be valid only in certain regimes. There exist a wide

class of systems, particularly in astrophysics and space science, which are col-

lisionless with non-ideal MHD effects becoming important. For instance, one

such notable contribution is the Hall effect that becomes non-negligible when

the characteristic frequencies become comparable to, or greater than, the ion

cyclotron frequency ωci [31]. Another crucial effect worth highlighting is due

to electron inertia, which becomes important when one considers characteris-

tic length scales that are smaller than the electron skin depth de = c/ωpe with

ωpe denoting the electron plasma frequency.

Thus, it is advantageous to seek fluid models containing the above two

effects. Extended MHD, [234, 163] henceforth referred to as XMHD, is a

model that is endowed with both the Hall drift and electron inertia [163]. It

can be rigorously derived from two-fluid theory through a series of systematic

orderings and expansions, as shown in [81, 104, 120]. Although it has long since

been known that ideal MHD has both action principle [192] and Hamiltonian

[185] formulations, the XMHD equivalents proved to be quite elusive. This
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is imporant since we know that XMHD is derived from the two-fluid model,

which is Hamiltonian in nature [233]. Yet, several models in the literature

have failed to recognize the Hamiltonian nature of extended MHD, thereby

giving rise to spurious dissipation; see [130] for a discussion of the same. We

note that many of the extended MHD models have been derived via an action

principle formulation [120], but a Hamiltonian formulation has proven elusive

- it was only very recently that a unified Hamiltonian approach to extended

MHD was proposed in [1] - the former was presented in [120, 72] and the latter

in [1, 158]. At this stage, it is important and instructive to pose two crucial

questions. What general benefits do the Hamiltonian and Action Principle

(HAP) formulations accord? Secondly, what are the physical systems and

phenomena where extended MHD has been successfully employed?

The first question has already been explored extensively, and we refer

the reader to the reviews by [225, 181, 266, 112, 216, 265, 182, 183]. Some

of the chief advantages, apart from their inherent mathematical elegance and

simplification, include:

• A systematic and rigorous means of constructing equilibria and obtaining

sufficient conditions for their stability [112]. This was recently applied

to ideal MHD in a series of works by [12, 13]; see also [188].

• A clear derivation of reduced models without the loss of the Hamiltonian

nature, and thereby avoiding ‘spurious’ dissipation. A few such examples

include [186, 110, 187, 65].
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• An excellent way of building in constraints a priori and permit a natural

analysis of symmetries and associated invariants via Noether’s theorem;

we refer the reader to [187, 120, 157, 159, 73]

• The extraction of important invariants such as the magnetic helicity and

its generalizations [58, 112, 199, 156]. This is done by means of the par-

ticle relabeling symmetry [199] in the action principle approach and via

the degeneracy of the noncanonical Poisson bracket in the Hamiltonian

formulation [262]. It is also possible to establish and elucidate topological

properties of XMHD by means of the HAP approach, as recently shown

in [72, 156]. A comprehensive discussion of the Hamiltonian formulation

is found in the works of [185, 181, 216, 182, 183, 184, 10, 11, 12].

• A detailed understanding of how magnetic reconnection operates by tak-

ing advantage of the underlying Hamiltonian structure, such as the afore-

mentioned invariants [198, 56, 106, 242, 68, 69, 111].

• A natural means of arriving at weak turbulence theories, as described in

[265, 264, 191]. This methodology was applied to Hall MHD by [212].

The reader is directed to the analysis by [2] that drew extensively upon

the HAP approach (for e.g., to construct nonlinear wave solutions), and

thereby arrived at the energy and helicity spectra of XMHD. We also

point out the recent beatification procedure of [251] as an elegant alter-

native, that explicitly relies on the Hamiltonian formulation.

4



• The knowledge of the HAP structures has proven to be highly useful

numerically for constructing structure preserving integrators (variational

and symplectic) [61, 205, 85, 83, 246, 143, 173, 174]. These integrators

have (definitively) outperformed other conventional choices, as the latter

lack the unique conservation laws and geometric properties of the former.

In addition to these (admittedly representative) benefits, we also ob-

serve that the HAP approach has been tangentially employed in astrophysical

phenomena such as Hall MHD dynamos [175, 152, 153] and jets [155]. Thus, it

is quite evident that a thorough understanding of the Hamiltonian and Action

Principle (HAP) formalisms for XMHD is quite warranted.

Fortunately, there are several instances where XMHD has proven to be

a very useful physical model. From the perspective of fundamental plasma

phenomena, both turbulence and reconnection results have been radically al-

tered since the Hall term and electron inertia were taken into account. In the

case of the latter in particular, it is not an exaggeration to say that the whole

field was revitalized through the inclusion of this one simple term. The reader

may consult the excellent texts by [41, 39] on this subject. In turbulence, it has

been shown that the introduction of Hall drift (and electron inertia) leads to

the steepening of spectra [144, 97, 98, 228, 2]. Each of these theoretical conse-

quences has been confirmed through detailed observations of the Earth’s mag-

netosphere [131, 53], and the solar wind and corona [214, 200, 51, 215, 8, 189].

Lastly, we also wish to note that certain fusion phenomena, such as sawtooth

crashes [109], have also been explained well by utilizing XMHD.
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Chapter 2

Review of Hamiltonian methods

2.1 Functional calculus

Since we are going to be relying on functional calculus in this thesis

it is reasonable to provide a small tutorial. For background see [70, 182].

The variational derivative can be thought of as a continuum limit of a partial

derivative in the limit of infinite degrees of freedom. Consider a functional

K = K [u] for some u = u(x), then first variation is defined as

δK := lim
ε→0

K [u+ εδu]−K [u]

ε
=

∫
dx δu

δK

δu
(2.1)

If the Kernel of K is K we can write using integration by parts and ignoring

the surface terms which is the philosophy that will be employed in the rest of

the thesis

δK

δu
=
∂K
∂u
− ∂x

∂K
∂ux

+ ∂2
x

∂K
∂uxx

+ . . . , (2.2)

where ∂x denotes differentiation with respect to the x and ux := ∂u/∂x. If one

performs a coordinate change u→ v one also obtains a functional chain rule

δF

δu
=

(
δv

δu

)†
δF

δv
, (2.3)

where † denotes Hermitian adjoint and if there are multiple fields the multi-

plication can be treated as matrix times vector multiplication.
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2.2 Phase Space Action Principle

As stated in Chapter 1 action principles play a prominent role in phys-

ical theories. Conventionally, in particle theories one formulates a Lagrangian

L := L [q, q̇] using q̇ := qt and defines the action as

S [q, q̇] =

∫ t1

t0

dt L (2.4)

One varies the path connecting x(t1) and x(t0) keeping the ends fixed. The sta-

tionarity of the action corresponds to the physical paths the classical systems

takes. This, according to (2.2), naturally leads to Euler-Lagrange equations.

Under some constraints on Lagrangian this can be turned into an action princi-

ple that generates first order differential equations, Hamilton’s equation. This

is done using the Legendre transform

H = p q̇ − L. (2.5)

One can then introduce the phase space action principle that reads

S [q, p] =

∫ t1

t0

dt (p q̇ − L) . (2.6)

The resulting Hamilton’s equations can be written using z := (q, p) as

ż = J
∂H

∂z
=: {H, z}, (2.7)

where J is the so-called co-symplectic two-form consisting of four distinct

blocks

J :=

(
0 1
−1 0

)
. (2.8)
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We have also defined a Poisson bracket

{F,G} :=
∂F

∂z
J
∂G

∂z
(2.9)

The coordinates q and p making up z are known as canonical coordinates. In

general one may wish to perform transformations to some other coordinate

systems that could be noncanonical. In this case J becomes a function of

z. However there are still properties that J and thus the underlying Poisson

Bracket must satisfy such as

• Antisymmetry: ∀F,G : {F,G} = −{G,F}.

• Jacobi identity: 0 = {F, {G,H}}+ {G, {H,F}}+ {H, {F,G}}

If we find a Poisson bracket with these properties then we know from the Lie-

Darboux theorem that locally there exists a coordinate transformation such

that J takes the form

J :=

 0 1 0
−1 0 0
0 0 0

 . (2.10)

Where the dimensions of the bottom rightmost block coincides with the di-

mension of the null space of J . A consequence of the degeneracy of the co-

symplectic form is that the null-space is spanned by the gradients of the so-

called Casimir invariants, which foliate the phase space into Casimir leaves

and constrain the dynamics of the system (See Fig 2.1). Indeed if we allow

J
∂C

∂z
= 0, (2.11)

8



∇C
Z z(t)

C = const.

Figure 2.1: Foliation of phase space Z by Casimirs C in finite dimensions.
Observe how dynamical system evolves (z = z(t)) on individual Casimir leaves.
But field theories like XMHD are uncountably infinite dimensional!

it follows that

Ċ =
∂C

∂z
J
∂H

∂z
= 0. (2.12)

Of course one has to be careful when applying the wealth of knowledge about

finite-dimensional dynamics to infinite dimensions, which describe fluid/kinetical

theories. A rule of thumb is that sums become integrals and matrices - opera-

tors. For instance, the antisymmetry of the matrix J becomes skew-symmetry

of the operator J .

2.3 Differential Geometry

Geometry has a strong prominence in physics. One of the reasons is

the understanding that the physical law must be manifest in the coordinate

free language. In addition many theorems can be more easily proved adopting

such methods. This section is merely written to set up the definitions and the

9



reader is advised to consult more in-depth materials on the subject such as an

excellent book [88].

We define as is customary p-forms as p-linear cotangent vectors acting

on the vectors of the tangent bundle. In this context symbol d will refer

to exterior differentiation. A map between two manifolds can be denoted

φ : M → N , which induces pullbacks φ? of forms and pushforwards φ? of

vectors. In Chapter 4 an important role is played by the Lie derivative with

respect to some vector field u that is defined as

Luα := lim
ε→0

φ?(t+ ε)α− φ?(t)α
ε

(2.13)

Here the flow φ(t) represents the flow generated by the vector field u. An

identity that will be useful for us will be

d

dt
φ?(t)α = φ?(t) (∂tα + Luα) (2.14)

When this quantity is set to zero, we will refer to the phenomenon as Lie-

dragging. In the plasma literature this corresponds to flux freezing and will

be discussed in the next chapter.
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Chapter 3

Hamiltonian properties of extended

magnetohydrodynamics

3.1 Introduction

A wide variety of phenomena in astrophysics requires models that oper-

ate on scales smaller than ideal MHD. For instance, Hamiltonian reconnection

can take place when electron inertia is taken into account. In [130] several

reduced 2-fluid models (that can be found in literature) were analyzed to see

if they conform to the fundamental law of energy conservation upon removal

of viscosity and resistivity. As a result a particular version of the extended

MHD was presented based on original Lüst’s work [163].

Our goal in this chapter is to demonstrate that most extended MHD

models are endowed with a common underlying structure, which originates via

the underlying Lagrangian picture of fluid models. We use this commonality

to derive Casimir invariants, such as the helicities, through simpler means.

After establishing the correspondence(s) between variants of extended MHD

in Sec. 3.2 and Chapter 4, we prove the Jacobi identity for Hall MHD in

detail in Appendix A. Our work [158] serves as a complement of [1], where the

Hamiltonian structure of extended MHD was analyzed in detail.
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Material in this chapter is largely lifted from Ref [158] 1. In the present

section, we introduce the equations of the extended MHD model, and dis-

cuss its Hamiltonian structure as well as the insights that follow as a natural

consequence.

3.1.1 Preliminary model considerations

Although a correct form of the equations of XMHD has been known

since the 1950s [81, 163], many different variants exist in the literature. Of

these, it is worth remarking that some of them are incorrect and do not con-

serve energy (for details see Ref. [130]).

The XMHD equations comprise of the continuity equation, the momen-

tum equation and the generalized Ohm’s law [104, 39]. They are respectively

given by

∂ρ

∂t
+∇ · (ρV) = 0, (3.1)

ρ

(
∂V

∂t
+ V · ∇V

)
= −∇p+ J×B − me

e2
J · ∇

(
J

n

)
, (3.2)

E + V ×B− J×B−∇pe + µ∇pi
en

= (3.3)

me

ne2

[
∂J

∂t
+∇ ·

(
VJ + JV − 1

en
JJ

)]
. (3.4)

Here, note that the one-fluid variables ρ, V and J = µ0∇ × B are the total

mass density, the centre-of-mass velocity and the current, respectively. E and

1M. Lingam, P. J. Morrison, G. Miloshevich, “Remarkable connections between extended
magnetohydrodynamics models.” Phys. Plasmas, 22(7):072111 July 2015. George Miloshe-
vich is a tertiary author. His contribution was significant (confirming that the model is
indeed Hamiltonian) but the bulk of the work was done by the coauthors.
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B denote the electric and magnetic fields, whilst ps is the pressure of species ‘s’

and p = pi + pe is the total pressure. The variables me and e are the electron

mass and charge, whilst µ = me/mi is the mass ratio. An inspection of (3.3)

reveals that it is far more complex than the ideal MHD Ohm’s law that follows

by setting all terms except the first two (on the LHS) to zero.

The next step is to render the above equations dimensionless. This

is done by normalizing everything in terms of Alfvénic units, and the reader

is directed to [1, 156] for further details. We also introduce the dynamical

variable

B∗ = B + d2
e∇×

[
∇×B

ρ

]
, (3.5)

which is well known from previous theories that relied upon electron inertia,

such as [198, 56]. After some algebraic manipulation (3.2) and (3.3) can be

expressed in a simpler manner as follows:

∂V

∂t
+ (∇×V)×V = −∇

(
h+

V 2

2

)
+

(∇×B)×B∗

ρ
− d2

e∇

[
(∇×B)2

2ρ2

]
,

(3.6)

∂B∗

∂t
= ∇×(V ×B∗)−di∇×

(
(∇×B)×B∗

ρ

)
+d2

e∇×
[

(∇×B)× (∇×V)

ρ

]
.

(3.7)

In obtaining the above two equations, we observe that a barotropic pressure

was implicitly assumed; for a non-barotropic treatment, we refer the reader to

[130, 120, 72]. In the above expressions, note that ds = c/(ωpsL) is the skin

depth of species ‘s’ normalized to the characteristic length scale L, and ωps is

the corresponding plasma frequency. All of these values are in terms of the

fiducial units that were adopted for the purpose of normalization.
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3.2 On the similarities and equivalences of extended
MHD models

In this section, we analyze Hall MHD and demonstrate the equiva-

lence of Poisson brackets with inertial MHD. We exploit this equivalence to

determine the helicities, which are Casimir invariants, of these models in a

straightforward manner.

3.2.1 Hall MHD: an analysis

Hall MHD represents the most widely used variant of the extended

MHD models, and is also one of the simplest. In Hall MHD, it is assumed

that the two species drift with different velocities (as opposed to ideal MHD),

but it is assumed that the electrons are inertialess (akin to ideal MHD). We

commence our analysis with the Hall MHD bracket of [258, 1], expressed as

{F,G}HMHD = −
∫
D

d3x

{
[Fρ∇ ·GV + FV · ∇Gρ] (3.8)

−
[

(∇×V)

ρ
· (FV ×GV)

]
− B

ρ
· (FV × (∇×GB)

− GV × (∇× FB) + di (∇× FB)× (∇×GB))

}
,

where di = c/ (ωpiL) is the normalized ion skin depth and the likes of Fρ,

FV, etc. represent the functional derivatives with respect to the subscripted

variables. We can re-express (3.8) as

{F,G}HMHD = {F,G}MHD + {F,G}Hall, (3.9)
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where {F,G}MHD is the ideal MHD bracket, first obtained in [185] and {F,G}Hall

is the term in (3.8) that involves the ion skin depth di. As a consequence, we

conclude that any Casimir of ideal MHD that is independent of B will auto-

matically serve as a Casimir of Hall MHD. Next, observe that

C1 =

∫
D

d3xA ·B, (3.10)

is a Casimir of ideal MHD. Furthermore, it also satisfies {F, C1}Hall = 0 as

well. Together, they ensure that (3.10) is a Casimir of Hall MHD. Next, let

us suppose that we introduce a new variable

Bi = B + di∇×V, (3.11)

and re-express the bracket in terms of the new set of observables. We find that

{F,G}HMHD ≡ {F,G}HMHD [Bi] = {F,G}MHD [Bi]−{F,G}Hall [Bi] , (3.12)

and the notation ‘Bi’ indicates that the respective components of (3.12) are

the same as (3.9) except that B is replaced by Bi. Thus, by following the same

line of reasoning, we conclude [158] that

C2 =

∫
D

d3xAi ·Bi = (A + diV) · (B + di∇×V) , (3.13)

is a Casimir of ideal MHD, with B→ Bi and it also satisfies {F, C1}Hall [Bi] =

0. Hence, we conclude that C2 is also a Casimir of Hall MHD.

The transformation B→ Bi exhibits two very special properties:

• We see that it preserves the form of the Hall MHD bracket, i.e. it is

evident that (3.9) and (3.12) are identical to one another upon carrying
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out this transformation, apart from the change in sign. The latter can

be absorbed simply via di → −di as well.

• It allows us to quickly determine the second Casimir of Hall MHD, with-

out going through the conventional procedure of solving a set of con-

straint equations. In fact, we see that (3.10) and (3.13) possess the same

form.

Thus, it is evident that such transformations play a crucial role, both in expos-

ing the symmetries of the system and in determining the Casimirs. In Chapter

4, we shall explore this issue in greater detail.

3.2.2 Hall MHD and inertial MHD

Both ideal MHD and Hall MHD assume that the electrons are iner-

tialess, i.e. this is undertaken by taking the limit me/mi → 0 everywhere.

However, there are several regimes where electron inertia effects may be of

considerable importance, such as reconnection [198]. To address this issue,

a new variant of MHD, dubbed inertial MHD, was studied in [130] and the

Hamiltonian and Action Principle (HAP) formulation of two-dimensional in-

ertial MHD were presented in [159].

We shall now turn our attention to inertial MHD, whose non-canonical

bracket is given by

{F,G}IMHD = {F,G}MHD [B?]+d2
e

∫
D

d3x

[
∇×V

ρ
· ((∇× FB?)× (∇×GB?))

]
,

(3.14)
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and the bracket {F,G}MHD [B?] constitutes the ideal MHD bracket with B→

B?. The variable B? is the ‘inertial’ magnetic field, and was first introduced

in [159]. It is given by

B? = B + d2
e∇×

(
∇×B

ρ

)
, (3.15)

where de = c/ (ωpeL) represents the normalized electron skin depth. We shall

now apply the transformation

Be = B? − de∇×V, (3.16)

and re-express our bracket in terms of the new set of observables. Upon doing

so, we find that

{F,G}IMHD ≡ {F,G}IMHD [Be] = {F,G}MHD [Be]

− 2de

∫
D

d3x

[
Be

ρ
· ((∇× FBe)× (∇×GBe))

]
. (3.17)

The second term in the above expression can be compared against the last

term in (3.8) - we see that the two are identical under di → 2de and B→ Be.

Thus, we arrive [158] at one of our central results:

{F,G}IMHD ≡ {F,G}HMHD [2de;Be] . (3.18)

In other words, the inertial MHD bracket is equivalent to the Hall MHD

bracket when the transformations di → 2de and B → Be are applied to the

latter. As a result, we are led to a series of remarkable conclusions:

• As the inertial and Hall MHD brackets are identical under a change of

variables (and constants), proving the Jacobi identity for one of them

constitutes an automatic proof of the other.
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• We can obtain the Casimirs of inertial MHD since the equivalent Casimirs

were determined for Hall MHD. In particular, two helicities emerge:

CI =

∫
D

d3x (A? − deV) · (B? − de∇×V) , (3.19)

CII =

∫
D

d3x (A? + deV) · (B? + de∇×V) , (3.20)

where B? = ∇×A?, and the RHS is determined via (3.15).

• By taking the difference of (3.20) and (3.19), we obtain a Casimir:

CIII =

∫
D

d3xV ·B?, (3.21)

which is identical to the cross-helicity invariant of ideal MHD, after per-

forming the transformation B→ B?. The existence of this invariant has

also been documented in [159].

We observe that (3.20) and (3.21) were obtained as the Casimirs for inertial

MHD in [1], but the authors do not seem to have realized that inertial MHD

has not one, but two Casimirs (helicities) of the form
∫
D
d3xP · (∇×P), as

seen from (3.19) and (3.20). As a result, this allow us to emphasize a rather

unique feature of inertial MHD:

• One can interpret inertial MHD as consisting of two helicities akin to the

magnetic (or fluid) helicity, cementing its similarity to Hall MHD and

the 2-fluid models [233].
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• Alternatively, we can view inertial MHD as being endowed with one

Casimir resembling the magnetic helicity and the other akin to the cross

helicity. Such a feature renders it analogous to ideal MHD, which pos-

sesses similar features [185].

To summarize thus far, we have shown an unusual correspondence between Hall

MHD (inertialess, finite Hall drift) and inertial MHD (finite electron inertia, no

Hall drift) by showing that the two brackets are equivalent under a suitable set

of transformations. We shall explore their origin in more depth in Chapter 4.

3.2.3 Comments on extended MHD

In the sections above, we have discussed models that incorporate the

Hall drift and those that possess a finite electron inertia. Extended MHD

merges these effects, giving rise to a more complete model. The non-canonical

bracket for this model is

{F,G}XMHD = {F,G}IMHD + {F,G}Hall [B?] , (3.22)

and the second term on the RHS denotes the Hall term with B → B?, and

the latter is defined in (3.15).

It is evident that a clear pattern begins to emerge:

1. The Jacobi identity for the Hall bracket can be proven in a simple manner

as it represents the sum of two components, one of which already satisfies

the Jacobi identity (the ideal MHD component). The details are provided

in Appendix A.
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2. The Jacobi identity for inertial MHD automatically follows as per the

discussion in Section 3.2.2.

3. It is easy to see from (3.22) that the extended MHD bracket will then

be composed of a component (inertial MHD) that already satisfies the

Jacobi identity, apart from a second component that represents the Hall

contribution. As a result, the calculation mirrors the proof of the Jacobi

identity for Hall MHD, and the similarities are manifest upon inspecting

(3.9) and (3.22).

Finally, let us consider extended MHD (XMHD) in its entirety, i.e.,

where no terms are dropped from the Ohm’s law (3.3). The noncanonical Pois-

son bracket for this model was derived by [1], and [158] showed that another

beautiful equivalence between the Hall and extended MHD brackets existed.

In mathematical terms, it amounts to

{F,G}XMHD ≡ {F,G}HMHD [di − 2κ±; B±] , (3.23)

where the RHS indicates that the substitutions

B→ B± := B∗ + κ±∇×V, (3.24)

and di → di − 2κ± in (3.8) lead to the XMHD bracket. Again, there are two

such transformations since κ± follow from determining the two roots of the

quadratic equation

κ2 − diκ− d2
e = 0. (3.25)
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Here, observe that setting di = 0 leads us to the inertial-Hall MHD equivalence

discussed above, and also transforms (3.24) to B(I)
± .

Before proceeding further, a comment on why these connections be-

tween the different models are remarkable is in order. In Hall MHD, there

is no electron inertia but there is a finite Hall drift. In inertial MHD, the

situation is exactly reversed, i.e. there is no Hall drift but there is electron in-

ertia. Thus, it is not at all intuitively obvious that the two models could share

a common Hamiltonian structure, since their effects are mutually exclusive.

Yet, the above relations show that there does exist a deep, and non-trivial,

equivalence between the two models. This equivalence is also shared by ex-

tended MHD, which has both Hall drift and electron inertia. Here, it must be

understood that the “equivalence” referred to thus far between Hall MHD and

inertial MHD is only concerned with their respective Poisson brackets. The

corresponding Hamiltonians for these two models are not identical, as they

differ by a single term.
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Chapter 4

Topological extended magnetohydrodynamics

Material from this chapter is partly based on Ref [158] 1

4.1 Topological properties of magnetohydrodynamics

In the pioneering work of Moffatt [177], magnetic helicity has acquired

a topological property, namely a measure of linking of magnetic field lines.

This can be seen easily in the following illustration. Suppose we have two

linked flux tubes. Using the fact that B d3x = ψ d`, magnetic helicity in flux

tube C1 (See Figure 4.1) can be evaluated as

H1 =

∫
d3xA ·B = ψ1

∫
C1

A · d` = ψ1ψ2. (4.1)

The total helicity is the sum of the contribution from both flux tubes which

evaluates to 2ψ1ψ2. Notice that if there is no linking, there is no helicity,

although the converse is not necessarily true. One has to be careful when

performing the last step in (4.1). At this point it is tacitly implied that

flux tubes have no inner structure, which could contribute to the integral.

1M. Lingam, G. Miloshevich, P. J. Morrison “Concomitant Hamiltonian and topologi-
cal structures of extended magnetohydrodynamics.” Phys. Lett. A. 380:2400-2406 July
2016. George Miloshevich is a secondary author but his contribution was significant in
demonstrating topological properties of XMHD.
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A sufficient, although not necessary, requirement for this to be true is that

C1 C2

+

+

(a) Linked loops

+

(b) Figure 8

++

+

(c) Trefoil

Figure 4.1: Schematic of some field configurations. In all of the above crossing
numbers are positive as indicated. Subfigure (a) refers to external helicity,
while (b) and (c) to self-helicity. (a) Linking number = 1. (b) Writhe = 1 (c)
Writhe = 3.

the flux tube is flat and there is no twist (to be defined below) of the field

lines. Using the standard ∇ ·A = 0 gauge one can uncurl ∇×A = B, which

basically means applying Biot-Savart-Laplace equation. This results in the

expression for the helicity H = 2ψ1ψ2L12, where the Gauss linking number

L12 [101] is defined as

L12 :=
1

4π

∫
C1

ds

∫
C2

ds′
X1(s)−X2(s′)

|X1(s)−X2(s)|3
· t̂(s)× t̂(s′). (4.2)

Here X’s are curve coordinates, while t̂ denotes tangent vectors. Notice that

one can substitute velocity for vector potential and get the same result for the

fluid velocity. Recent advances in creating fluids with interesting topology can

be found in Ref. [219].

Linking number can be defined in the following manner. Flatten the

curves so that information about over- and under-crossings remains. The
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linking number may be calculated as

Link =
ν+ − ν−

2
(4.3)

where ν± stand for positive and negative crossings that are determined using

the rule: if the arrow of the over-crossing can be rotated in the positive sense

(right hand rule) towards the arrow of the under-crossing then the crossing

is positive (see Fig. 4.1). A more rigorous definition of the linking number

is found in differential geometry, where given the two curves X and Y both

mapping S1 → R3, projection on a unit sphere S1 × S1 → S2 can be defined

f12 := (s, s′)→ X1(s)−X2(s′)

|X1(s)−X2(s)|
(4.4)

then, denoting pull-back by a star, the Linking number can be represented

L12 =
1

4π

∫
S1×S1

f ∗12d
2 Σ (4.5)

where d2Σ is the fundamental area 2-form on the sphere. It is not hard to

see that this definition is consistent with (4.2) in coordinates if we represent

d2Σ = zdx ∧ dy + xdy ∧ dz + ydz ∧ dx.

As alluded to earlier, one also has to be concerned with internal helicity.

In the subsequent papers [36], [179], [208] it has been shown that linking of

field lines inside the flux tube, associated with self-helicity, can be represented

as a combination of a twist and writhe of the undrelying flux tube. For more

reference see [123], [38], [34], [5], [66], [93], [94], [178], [164], [76]. This fact is

based on the Cǎlugareǎnu theorem [59] and a subsequent multi-dimensional

24



generalization thereof [254]. To summarize, the theorem considers a closed,

possibly knotted ribbon. The ends of the ribbon are two neighboring closed

curves. One of the curves (C) is chosen as the axis. It turns out that the linking

number of the curves is equal to the sum of the writhe and twist. Twist is

defined as the number of right-handed windings that the other curve makes

around the axis

Tw =
1

2π

∫
C
ds û× dû

ds
· t̂ (4.6)

Here û is a unit vector perpendicular to the axis and pointing from the axis

to the other curve, while t̂ is tangent to the axis.

Writhe is easiest to understand for nearly flat curves like in Figure 4.1.

There one only has to sum positive self-crossings and subtract the negative

ones. In general writhe can be estimated in the same way but averaged over

all possible perspectives (solid angle 4π):

Wr = 〈ν+ − ν−〉 (4.7)

Neither writhe nor twist are isotopic2 invariants, however their sum is. The

technical expression is similar to Gauss linking number, except that integration

is taken over the same curve.

Wr :=
1

4π

∫
C1

ds

∫
C1

ds′
X1(s)−X2(s′)

|X1(s)−X2(s)|3
· t̂(s)× t̂(s′) (4.8)

2Isotopy is a continuous set of embeddings from a manifold onto itself. Loosely speaking
this allows continuous deformation of a curve without intersections. Isotopy is a form of
homotopy.

25



Figure 4.2: Binormal-framed right figure-8. The axis (purple) has Wr ≈ 0.717
and Tw ≈ −0.717. Clearly the frame curve (orange) does not link the axis.

The Cǎlugǎreanu theorem states

Lk = Wr + Tw (4.9)

Since helicity internal to a flux tube has to do with self-linkage of field

lines, H = (Wr + Tw)Φ2, where Φ is the toroidal magnetic flux. Now flux

tubes are not ribbons of course, however insight can be gained by considering

a ribbon that is spanned from the axis curve by the normal vector pointing

towards the field line on the periphery of the tube. Given a flux writhe can

ba automatically estimated, however more information is necessary regarding

the twist. This is called framing of the ribbon. The simplest framing is the

one defined by a Frenet frame consisting of Frenet vectors: tangent, normal

and binormal; choosing e.g. the normal as û one gets the following pictures
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Figure 4.3: Binormal-framed right trefoil. The axis (purple) has Wr ≈ 3.22
and Tw ≈ −.22 and, indeed the frame curve (orange) links the axis three
times.

(see Figures 4.2 and 4.3). In these curves twist is equal to the total integrated

torsion, as expected.

One problem with identifying ribbons with realistic flux tubes at first

sight is non-integer rotational transform. Here we define the rotational trans-

form for 3D curves in the same spirit as for Tokamaks. Basically after travers-

ing the tube in the long coordinate, the field line is very unlikely to “bite its

own tail”. In fact, the set of rational rotational transforms is measure zero

of all the possibilities. Fortunately, as can be demonstrated numerically but

also by closely inspecting (4.2), helicity can still be decomposed into twist plus

writhe.

Until now the discussion has been mostly abstract. To show realiz-
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Figure 4.4: Numerically constructed filament-like tube in the form of figure-8.
The axis has Wr ≈ .717 but the tube is framed to have Tw = 0, i.e. field
vectors are parallel to the axis (displayed by arrows). Magnetic field around
the axis has a Gaussian profile. The solid structure (colormap blue to yellow)
represents the strength of the field with cutoff at 5% of its maximal value. In
addition there is a cut made to reveal the field vectors inside. Finally, orange
rings show current density stream lines at chosen locations. Away from the
axis the current quickly drops.
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Figure 4.5: Same filament as the above but from a different perspective. In
this case we are showing field lines of the magnetic field as apposed to isolated
vectors. The blue line represents the axial field, whereas the orange is a single
field line on the periphery of the vortex. The field wraps 7 times around the
axis before it approximately closes (nearest rationalization).

ability of any of this we would like to construct flux filaments numerically.

Furthermore, we have found inconsistencies in the literature, for instance in

[31] it is effectively claimed that a flux tube in the form of a helix would

have helicity in the amount of NΦ2 if the field lines are parallel to the center

axis. This is at variance with H = (Wr + Tw)Φ2, since in such configuration

Tw = 0 and from (4.7) we can estimate that in general helicity should be less.

The reason this contradiction occurs is that counter intuitively, field lines in

kinked, knotted flux tubes may still link each other even if they don’t twist

according to the definition above. This will be demonstrated numerically, be-

low. Another way to see this is to choose the appropriate toroidal-poloidal

decomposition in zero-framing coordinate system as in [66].

The are two challanges when trying to numerically construct such pos-

sibly knotted filament. One has to do with the framing of the tube. It is
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Figure 4.6: Numerically constructed filament tube in the form of trefoil. The
axis has Wr ≈ 3.22 but the tube is framed to have Tw = 0.

desirable to have the field lines align parallel to the axis. While we can easily

define the axis analytically, the field lines around the axis are not in general

copies of it. We need to find the minimal distance to the curve and align the

field line with the tangent vector there. Next helicity needs to be estimated,

but as can be seen from (4.2) this would require a double volume integral,

which in 3 dimensions is very costly. Thus the other problem is instead find-

ing the vector potential for such a flux tube. This can be done by finding the

current j = ∇ ×B and solving the Poisson’s equation ∆A = −j. We used

finite element method by refining the mesh so that it mimics the distribution

of the field intensity. The boundary conditions were addressed according to

prescription found in [23].
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The results can be seen in Figures 4.4 and 4.6. The first case study is

the figure-8 like filament with Wr ≈ 0.717 and Tw ≈ 0. Notice (Figure 4.5)

that even though the twist is zero, because of the torsion (≈ −0.717) the field

line doesn’t close after going around the figure-8 once. Since 0.717 ≈ 5/7 it

approximately links the axis 5 times after going 7 times around. Numerical

helicity is estimated at 0.723 which is reasonable given overall convergence as

the mesh is subsequently refined. Similarly, in case of a trefoil with Wr ≈ 3.22

and torsion ≈ −0.22 after a single passage around the knot the fieldline is

rotated by 0.22 (even though twist is zero) and it approximately links the axis

2 times after 9 revolutions. The numerical helicity in this case turns out to

be ≈ 3.25. There actually is an analytical way of providing twisted, knotted

fields with tunable helicity that can be found in Ref. [127].

Natural fields on the other hand can be broken into a tangle of inter-

linking flux tubes with complex inner structure. When this is done helicity

can be decomposed as

H =
∑
i

(Wri + Twi)ψ
2
i +

∑
ij

Lijψiψj (4.10)

Now the problem with identifying topology of the field with helicity is that

it is not a one to one map in that helicity does not distinguish between say

Borromean rings and the Whitehead link

31



(a) Borromean Rings (b) Whitehead Link

Figure 4.7: Both configurations have the same helicity

4.2 On the topological properties of extended MHD

We have seen earlier that the variable (3.24) lies at the heart of the

equivalence between the different models. To understand why, it is instructive

to take a step backwards and consider ideal MHD. In any introductory text-

book, the frozen-flux property of ideal MHD and the conservation of magnetic

helicity
∫
D
d3xA ·B are presented. Thus, it is natural to ask if one can seek

generalizations of these properties to XMHD, since both of these features are

present in two-fluid theory [233, 237] and in Hall MHD [248].

In ideal MHD, the frozen-flux constraint can be expressed as

B · dS = B0 · dS0, (4.11)

where dS is the area element, and the superscript ‘0’ denotes the values at t = 0

[192]. It is also possible to view the above expression as the statement that

the magnetic flux (in ideal MHD) is a Lie-dragged 2-form; for more details,

the reader may consult [247].

In XMHD, there are two such generalized frozen-flux constraints, given
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S±(t)

S±(0)

V±

V±
B±

B±

Figure 4.8: Schematics of generalized frozen-flux constraints B± · dS± = B0
± ·

dS0
±, where dS± denote the corresponding area elements. It is possible to view

the same statement as Lie dragging.

by

B± · dS± = B0
± · dS0

±, (4.12)

where B± was defined in (3.24) and dS± denotes the corresponding area ele-

ment. This elegant property was first recognized in [158], later proven in [156]

and utilized further in [72].

Next, let us consider the helicity. In ideal MHD, the magnetic helicity

is conserved, but it is no ordinary invariant. Instead, it is both a Casimir

invariant and a topological invariant. Casimir invariants are special invariants

that follow from the degeneracy of the (noncanonical) Poisson bracket, and

they are found via {F,C} = 0 ∀F , with C denoting the Casimir invariant.

They play an important role in regulating the phase space dynamics, as dis-

cussed in [182], and have played an important role in reconnection over the
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years [198, 56, 106]. Magnetic helicity is also a topological invariant since it

is closely connected with the linking and twisting of field lines - more pre-

cisely, it shares close connections with the Gauss linking number as discussed

in [115, 177, 36].

Thus, one can obtain the generalized counterparts of the magnetic he-

licity in extended MHD by seeking out the Casimir invariants that resemble

it. There are two such invariants

K± =

∫
D

d3xA± ·B±, (4.13)

where B± = ∇ ×A±, and the LHS is given by (3.24). It is clear that these

generalized helicities have the same form of the magnetic and fluid helicities

(for MHD and HD respectively), and hence one may expect them to share

similar topological properties. This conjecture was confirmed in [156], where

we have discussed (See Sec. 4.5) some connections with Chern-Simons theory,

a ubiquitous (topological) quantum field theory that appears in high-energy

and condensed matter physics.

From the preceding discussion, it is clear that the variables B± that

facilitate the equivalence between the different extended magnetofluid models

is not arbitrary. It has close connections with the generalized frozen-fluxes,

helicities and Lie-dragged 2-forms all of which have clear mathematical and

physical significance. Lastly, it is also possible to manipulate (3.6) and (3.7)

directly to arrive at

∂tA± = V± ×B± +∇ψ± and ∂tB± = ∇× (V± ×B±), (4.14)
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where V± := V − κ∓∇×B and

ψ± := κ∓he −
(
κ± +

d2
e

di

)
hi − φ+ κ∓d

2
e

J2

2ρ
− d2

e

J ·V
ρ

, (4.15)

as shown in [156]. Upon inspection, it is clear that the second set of equa-

tions in (4.14) exactly resemble the induction equation in ideal MHD, thereby

emphasizing the role of B± as the generalization of the magnetic field. It is,

however, more common to refer to it as the generalized (or canonical) vorticity.

Thus, to summarize our discussion up to this point, we have seen that

the Hamiltonian formulation of XMHD has led us to two important conclu-

sions.

• There exists a high degree of mathematical similarity between the differ-

ent models, even though they have contrasting (and sometimes exclusive)

physical effects. This mathematical equivalence between the models is

rendered very clear when written in Hamiltonian form. Hence, the lat-

ter approach serves as a means of unifying the different extended MHD

models.

• The similarities between extended MHD and ideal MHD can be un-

derstood further by means of the Hamiltonian Action Principle (HAP)

formulations, which lead us to the generalizations of the helicity, flux,

and induction equation.

Bearing these advantages in mind, we shall now proceed to study some perti-

nent features of XMHD turbulence in the subsequent sections.
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4.3 Frozen-in fields in electron-ion plasma

Motivated by [212] and [158] it is reasonable to look for the equation

describing A± := A∗ + κ±v, where

A∗ := A + d2
e

J

ρ
= A + d2

e

∇× (∇×A)

ρ
(4.16)

Assuming that both fluids are barotropic, it can be shown that

∂A±
∂t

= ∇A± ·w± −w± · ∇A± +∇ψ±, (4.17)

where

w± := v − κ∓
J

ρ
(4.18)

and

ψ± := κ∓he −
(
κ± +

d2
e

di

)
hi − φ+ κ∓d

2
e

J2

2ρ
− d2

e

J · v
ρ

(4.19)

Here and in what follows we use the convention such that gradients only act

on the immediate term to the right. We observe (in parallel with relativistic

MHD discussion by Yoshida at al [260]) that one can associate a form A± with

components of A± and from (4.17) we conclude that the Lie-dragged one-form

with corresponding the velocity is exact

∂A±
∂t

+ Lw±A± = dψ±, (4.20)

where Lw± symbol stands for Lie-derivative with respect to the w± flow. The

explicit time derivative appears because of the inherent non-relativistic 3 + 1

splitting (Similar discussion that touches only on differential forms can be

found in Schutz [222] regarding neutral fluids). Using this geometric language
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it is natural to construct other interesting forms that we can have in 3D,

namely a two-form B± := dA± and a three-form K± := A± ∧ dA±. By taking

exterior derivative of (4.20), remembering that d2 = 0 and that Lie derivative

commutes with the exterior derivative

∂B±
∂t

+ Lw±B± = 0 (4.21)

Defining

B± := ∇×A± = B∗ + κ±∇× v, (4.22)

where (the following symbol does not represent the Hodge dual),

B∗ := B + d2
e∇×

∇×B

ρ
, (4.23)

we see that vector density B± is dual to the two-form B±, i.e. in coordinates

B± =
(
B±)x dy ∧ dz +

(
B±)y dz ∧ dx+

(
B±)z dx ∧ dy (4.24)

For more details on how this works in regular MHD see [252]. Notice, however

that their approach to integral invariants is a little different. The consequence

of (4.22) is

∂B±
∂t

= ∇× (w± ×B±) (4.25)

since ∇ · B± = 0. This result was independently obtainedin Ref. [73]. The

geometric language not only allows a coordinate free expression of physics but

also allows us to more easily prove some theorems like extended circulation-

vorticity-helicity conservation and prepares us for a natural relativistic gener-

alization of XMHD.
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Conservation of extended circulation can be elegantly expressed as

d

dt

∫
L±(t)

A± · dl
∣∣∣∣
t=t0

=
d

dt

∫
L±(t)

A±(t)

∣∣∣∣
t=t0

=
d

dt

∫
L±(t0)

Φ∗u±,tA±(t)

∣∣∣∣
t=t0

=

d

dt

∫
L±(t0)

A±(t) + (t− t0)Lu±A± +O
(
(t− t0)2

) ∣∣∣∣
t=t0

=∫
L±(t0)

∂A±
∂t

+ Lw±A±
∣∣∣∣
t=t0

=

∫
L±(t0)

dψ± = 0 (4.26)

Φ∗u±,t denotes a pullback with vector field v± parametrized by t. Integration

is carried over contour L±(t) indicating that vorticity is frozen-in fluid moving

with velocity v±. Likewise vorticity is frozen-in:

d

dt

∫
S±(t)

B± · dS
∣∣∣∣
t=t0

=

∫
S±(t0)

∂B±
∂t

+ Lw±B±
∣∣∣∣
t=t0

= 0 (4.27)

Finally, for helicity

∂K±
∂t

+ Lw±K± = dψ± ∧ dA± = d(ψ±dA±), (4.28)

and one can use Stokes theorem to show

d

dt

∫
V±(t)

K± =

∫
V±(t)

d(ψ±dA±) =

∫
∂V±(t)

ψ±dA± = 0 (4.29)

as long as vorticity vanishes on the boundary. Thus we recover the result

of [1] and [158] regarding conservation of helicities, except that in (4.13) the

integration is carried over the whole domain.

4.4 Epi-2D and arbitary mass ratio XMHD

Here we will draw parallels between the approach taken in Ref. [261]

for the discription of a fluid and our case of XMHD. We rewrite the previous
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expressions in the geometric language and assert that it holds in general co-

ordinate systems. Another difference is that we will Lie-drag with the exact

electron and ion-velocities. For more information on the validity of such model

see Sec. 7.6. We assume that ρ is a 3-form, B a 2-form, v - 1-form and write

the Hamiltonian for barotropic XMHD

H =

∫
M

(1

2
ρ|v|2 + ρU(ρ) +

1

2
Be ∧ ?B

)
, (4.30)

where ρ|v|2 := ρ〈v, v〉 = ?ρ v∧ ?v =: ρ? v∧ ?v. Furthermore, define λ1 = λ2 =

λ+ := m−c/e and λ3 = λ4 = λ− := −m+c/e as well as η̌i := η?i /ρ
?. Then we

write the Clebsch parametrization

v = dφ+
4∑
i=1

η̌idφi and Ae =
4∑
i=1

λiη̌idφi, (4.31)

while we have

Ae := A− λ+λ−
ρ?

d?B =: A− λ+λ−
ρ?

j. (4.32)

The symbol introduced above (d?) stands for co-differential, which in Rieman-

nian coordinates can be represented as d?βp = (−1)n(p+1)+1 ?d?βp. We choose

3-forms ρ and ηi to be our canonical coordinates, while 0-forms φ and φi to be

conjugate momenta.

It is instructive to show how variational derivatives may be applied to

the Hamiltonian (4.30). Using the definition of a global or Hilbert space scalar

one writes∫
M

1

2
〈Be, B〉 vol3 =

∫
M

1

2
Be ∧ ?B =: (Be, B) = (B,Be). (4.33)
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Assuming that operational manifold M is without boundary or that fields

decay sufficiently fast so they are zero at the boundary one has

(dαp−1, βp)− (αp−1, d?βp) =

∫
∂M

αp−1 ∧ ?βp = 0. (4.34)

Thus denoting first variation with respect to the variable ηi as δηi (keeping

other fields constant)

δηi
(Be, B)

2
= (δηiBe, B) = (δη?i dφi, λi

j

ρ?
) =

∫
M
δηi L(λij]/ρ?)φi (4.35)

Here we have introduced musical notation to denote raising operator v] :=

〈 , v〉 and invoked the antiderivation law for the inner product

ij](α
p ∧ βq) = ij]α

p ∧ βq + (−1)p αp ∧ ij]βq, (4.36)

and the Cartan identity

Lj]α = ij]dα + dij]α (4.37)

Defining

vi := v + λi j/ρ
? (4.38)

we get

φ̇i = {φi, H} = −Lv]iφi ⇒ Lṽiφi = 0, (4.39)

Notice that we have extended the manifold to M × R by adding time so

Lṽiφi := φ̇i + Lv]iφi. Likewise one obtains

Lṽρ = Lṽiηi = 0 and Lṽφ =
|v|2

2
− h+

λ+λ−
2

|j|2

(ρ?)2
+
〈Ae, j〉
ρ?

, (4.40)

40



where h is the enthalpy. Notice that Eulerian conservation of a scalar φi as

in (4.39) can be re-expressed in the Lagrangian form f ?t φi(t) = φi(0), where

f ?t is a pull-back with ~vi. Thus one can think of Lagrangianized φi(t) as a

fluid attribute advected with the fluid, this will be elucidated below in the end

of the section. Similarly 3-forms like ρ can also be Lagrangianized and the

implicit Jacobian in the Euler-Lagrange map can thus be obtained.

We wish to derive a useful identity. Let Lũ+u] η̌i = 0. In our case we

see that u = λid
?B/ρ?. It is not hard to show that

Lṽ+u] η̌i = Lṽ+u]
η?i
ρ?

= − η?i
(ρ?)2

? Lu]ρ. (4.41)

Now if we specify u = d?B/ρ? the term on the r.h.s. vanishes since using

(4.37)

Lu]ρ = λi d i(j]/ρ?)(ρ
?voln) = λi d i∇× ~B voln = λi d

2 ? B = 0. (4.42)

Here we have introduced a pseudo-vector ~B dual to a form B. In fact (4.41)

can be summed up as Lṽη̌i = −L(λij]/ρ?)η̌i. This allows natural passage to

physical coordinates:

LṽAe = −
4∑
i=1

λi

(
dφiL(λij]/ρ?)(η̌i) + η̌idLṽφi

)
= −

4∑
i=1

λ2
iL(j]/ρ?)(η̌idφi).

(4.43)

Therefore

LṽAe = L(j]/ρ?)(Af )− d(λ+λ−L(j]/ρ?)φ), (4.44)

where Af := −(λ+ + λ−)Ae + λ+λ−v. It looks like some pressure terms are

missing. It is not clear exactly why that is the case, although in the barotropic
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case it is not a problem since they can be absorbed inside the potential φ

without changing physics. Similarly

Lṽv = d
( |v|2

2
− h+

λ+λ−
2

|j|2

(ρ?)2
+
〈Ae, j〉
ρ?

)
− L(j]/ρ?)Ae (4.45)

and thus

Lṽv = −
ij]Be

ρ?
+ d
( |v|2

2
+
λ+λ−

2

|j|2

(ρ?)2
− h
)
. (4.46)

Equations (4.44) and (4.46) are equivalent to electron-ion XMHD version

where one only keeps the lowest order contribution of the electron inertia.

Then after rescaling λ+ → di ≈ (di +
√
d2
i + 4d2

e)/2 and λ− → −d2
e/di ≈

(di −
√
d2
i + 4d2

e)/2. Thus we see that either ordering can be cast as a Hamil-

tonian theory.

Combining (4.44) and (4.46) one confirms that

Lṽ±B± = 0, B± := Be − λ∓dv, v± := v + λ±
d?B

ρ?
(4.47)

Where v+ corresponds to the velocity of ions. Notice that here we are working

with the two-form B±. It is possible to work instead with dual vector density

or dual pseudo-vector ~B that differs by a
√
g term and both are Lie-dragged,

although the expressions for the Lie-dragging differs by a term in those cases.

Alternatively one obtains the same result by re-labeling η1 =: η
(+)
+ , η2 =:

η
(−)
+ ,η3 =: η

(+)
− ,η4 =: η

(−)
− and re-writing

A± = (λ± − λ∓)(η̌
(+)
± dφ

(+)
± + η̌

(−)
± dφ

(−)
± )− λ∓dφ (4.48)
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and using expressions derived earlier Lṽ± η̌± = 0 = Lṽ±φ±. From the above it

follows that

Lṽ±A± = −λ∓d
( |v|2

2
+ λ+λ−

|j|2

2(ρ?)2
+
ij](Ae + dφ)

ρ?
− h
)

=: dψ± (4.49)

and so

d

dt

∫
M
A± ∧ dA± =

∫
M
Lṽ±(A± ∧ dA±) =

∫
M
d(ψ±A±) = 0. (4.50)

Clearly, if we consider a case where double-primed quantities are zero

the total integrated helicities would evaluate to zero since the integrand is

exact. Alternatively, if M has boundary it can be assumed that the fields

vanish at the boundary. Now we are in a position to exploit an idea introduced

in Ref. [261] in the relation to the epi-2D flow. Since XMHD is a generalization

one expects four charges instead of two.

Q
(+)
± =

∫
Ω

(+)
± (t)

ρf
(ω(+)
± ∧ dφ

(−)
±

ρ?

)
and Q

(−)
± =

∫
Ω

(−)
± (t)

ρf
(ω(−)
± ∧ dφ

(+)
±

ρ?

)
,

(4.51)

where ω± = dη̌± ∧ dφ±. Since η̌ is dragged by v, every infinitesimal element

Ω(t) is viewed as a quasi-particle - epi-2D particle. In this case the symbol for

the charge is actually prime and unprimed, since plus and minus are reserved

for the two different species.

4.5 Topological aspects of the generalized helicities of
extended MHD

Now, we shall take a greater look at the topological ramifications of

K± and (4.50), viz. the generalized helicities and their conservation properties
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respectively.

Let us begin by recalling that A+ and A− serve as 1-forms, appropriately

constructed from A±. If one lets de → 0 and di → 0, we have already indicated

that the vector potential A follows from A±. Yet, it is important to recognize

that all other versions of extended MHD have, not one, but two such 1-forms.

It is well known that the general expression for a helicity-type quantity is

given by H =
∫
M P ∧dP , where A is a compact 3-manifold and P is a 1-form.

We have dropped the inner product operator (Tr) as noted earlier. Hence,

one can duly construct two helicity-like quantities by setting P = A± and the

corresponding (generalized) helicities are given by K±.

We have reiterated the above steps because the crucial aspect of our

work is that these generalized 1-forms, 2-forms and helicities can be seen as

the exact analogues of the vector potential/velocity, magnetic field/vorticity,

and magnetic/fluid helicity respectively. As a result, we are in the remarkable

position of exploiting every known topological property of ideal HD or MHD by

generalizing it to extended MHD via the variable transformations introduced

here, and in [158].

For instance, consider the description of the fluid helicity in terms of

thin vortex filaments, which are represented collectively by an oriented knot

(or link) in M. The expression for the fluid helicity is given by

H =
∑
i

ν2
i Lki + 2

∑
i j

νiνjLkij, (4.52)

where νi denotes the vortex circulation, whilst Lki and Lkij are the self-linking
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and Gauss linking numbers respectively [179, 208]. Moreover, we observe that

Lki = Wri + Twi, implying that the self-linking number can be decomposed

into its writhing and twisting numbers; the latter duo are topologically rele-

vant in their own right [179, 62, 37, 210]. The decomposition of helicity into

its various components has also been verified empirically through a series of

ingenious experiments [132, 219, 133], and numerical simulations in dynamos

[20]. If we replace the vortex filaments, circulation, etc. by the generalized

counterparts (corresponding to B±), we find that the generalized helicities

can be decomposed in a manner exactly identical to (4.52).

For all its elegance and utility, the linking number is beset by a num-

ber of limitations. The foremost amongst them is that it cannot distinguish

between certain topological configurations, such as the Whitehead link (See

Fig. 4.7b) and the Borromean rings (See Fig. 4.7a) [123]. The conventional

means of distinguishing between such configurations is via the Massey product

[33] and its generalizations [113], or other higher-order invariants [209, 249, 4].

As per the correspondence between ideal MHD (or HD) and the different vari-

ants of extended MHD established earlier, we may be able to construct the

equivalent (higher-order) topological invariants for the latter class of models.

It is at this juncture that we introduce the remarkable insight provided by

Witten [255] between topological quantum field theory (TQFT) and knot the-

ory. In particular, Witten demonstrated that the Jones polynomial, a staple of

knot theory, could be naturally interpreted in terms of the Chern-Simons ac-

tion of (2 + 1) Yang-Mills theory. The Chern-Simons action for a non-Abelian
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field theory is given by

S =

∫
M

(
P ∧ dP +

2

3
P ∧ P ∧ P

)
, (4.53)

up to constant factors. Now, suppose that the underlying gauge group is

Abelian, and this choice eliminates the second term on the RHS of the above

expression. Consequently, we are led to the striking result that the helicity is

an Abelian Chern-Simons action [116, 25]. As a result, one can employ the

versatile mathematical formulations of Chern-Simons theory (a 3-dimensional

TQFT) [22, 24, 82] in the realm of plasma and fluid models, thereby opening up

a potentially rich and diverse line of future research, as these methods are more

sophisticated than standard paradigm of computing the linking number(s); for

instance, the Jones polynomial is capable of distinguishing between the White-

head link and the Borromean rings (which have an identical linking number of

zero, as previously mentioned). Despite the inherent mathematical richness of

the helicity/Chern-Simons correspondence, it hasn’t been sufficiently exploited

from a knot-theoretic perspective – the mathematical works by [15, 160, 161]

on the Jones and HOMFLYPT polynomials in HD and MHD constitute the

only such examples of this specific line of enquiry. Although [160, 161] utilized

the formal equivalence between the fluid (or magnetic) helicity and Abelian

Chern-Simons theory, there have been prior studies in high energy physics

and topological hydrodynamics that were cognizant of this concept (see e.g.

[15, 116]). It is also straightforward to apply this framework to non-Abelian

magnetofluid models, as briefly stated in [25].
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Thus, we are free to import the results of [15, 160, 161] in the context of

the generalized helicities. In particular, following the mathematical reasoning

delineated in [160], we are free to compute the Jones polynomial for a given

configuration of the generalized helicity (of which there are two in all). The

proof relies on the construction of the skein relations by means of the Kauff-

man bracket polynomial, and then introducing orientation to obtain the skein

relations of the corresponding Jones polynomial. Let us interpret the results

from the preceding discussion for the (simpler) case of Hall MHD. One of the

Jones polynomials would arise from the magnetic helicity, whilst the other

arises from the canonical helicity. The difference of these two helicities is the

sum of the cross and fluid helicities. Hence, the associated Jones polynomial,

arising from this remainder, would encapsulate the topological properties of

the fluid and cross helicities.

Quite intriguingly, the Chern-Simons forms are odd-dimensional differ-

ential forms [88], implying that the Chern-Simons action (4.53) is meaningful

only for odd dimensions, given that it is proportional to the integral of the

Chern-Simons form. In turn, owing to its identification with the generalized

helicities, the latter acquire this distinct mathematical structure only in odd

dimensions. Ipso facto, this may imply that helicities (magnetic, fluid or gen-

eralized) of this form will naturally emerge in non-relativistic (3D) theories,

but not, perforce, in the case of relativistic theories, as they are intrinsically

four-dimensional in nature. In particular, we note that relativistic MHD pos-

sesses a cross helicity akin to its 3D counterpart, but the 4D version of the
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conventional (3D) magnetic helicity has proven to be elusive from a Hamil-

tonian perspective [73], although it has been derived through other avenues

[165, 260, 201].

Apart from the topological properties of helicity, as seen in isolation,

one can also probe its relationship with energy. For instance, a classic result

by Moffatt [178] established a relation between the minimum magnetic energy

Emin, the flux Φ and the volume V of a magnetic flux tube as follows:

Emin = mΦ2V −1/3, (4.54)

where m depends on the specific properties of the knot, and it is a topological

invariant; see also [89, 35, 207] for similar results. When dealing with extended

MHD, the magnetic component of the energy density must be transformed

from B2 to B ·B?. As a result, it is natural to ask whether one generalize the

result (4.54) to extended MHD, and we intend to pursue this line of enquiry

in our subsequent works.

The applications we have outlined thus far barely scratch the surface.

There are many other results from HD and MHD that can be imported to

extended MHD involving helicity. For instance, one such example is helicity

injection. This phenomenon has been widely studied in the solar context

[193, 117] as it has important ramifications, but there have been no studies

dealing with generalized helicity injection. We shall leave such subjects for

later investigations – it is our present goal to highlight the correspondence

with HD/MHD, thereby paving the way for conducting in-depth research in
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these areas.

4.6 Discussion and Conclusion

In this chapter, we have emphasized and exploited the inherent math-

ematical power of the unified Hamiltonian structure of several extended MHD

models. This enterprise was rendered possible owing to the work of [1], and

the unified Hamiltonian (and its underlying action principle) structure was

established in [158, 72].

Quite evidently, a host of avenues open up for future analyses. The

first, and possibly, the most significant is the derivation of reduced extended

MHD models that retain the Hamiltonian properties of the parent model.

Such models are likely to be of considerable relevance in reconnection studies,

thereby furthering the basic approach adopted in [198, 57, 242, 111]. For this

reason, it was equally important to conduct a detailed examination of their

stability via Hamiltonian methods [121], analogous to the extensive study of

ideal MHD by [12]. We also note the possibility of using extended MHD

models to study dynamos and jets [154], as well as helicity injection [86], the

last of which appears to be a completely unexplored arena. Although these

models are endowed with the ion and electron skin depths, the absence of the

corresponding Larmor radii is evident. To rectify this limitation, it is feasible

to use the gyromap [187, 157] in the extended MHD context, to develop a

gyroviscous theory analogous to the one formulated by Braginskii. In addition,

in Sec. 5.3 we will work with the 2D model that takes ion sound Larmor radius
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into account.

From the unified Hamiltonian structure of these models, we demon-

strated that they possess a common class of Casimir invariants - the generalized

helicities. Motivated by these helicities, we sought the generalizations of the

vorticity (or magnetic field), and thereby established the existence of two Lie-

dragged 2-forms. Thus, the whole enterprise demonstrated that the topologi-

cal properties of these models are a natural consequence of their Hamiltonian

structure. We believe that this is a vital, but rather unrecognized, fact that

merits further attention. By constructing these helicities and 2-forms, we de-

rived properties such as the generalization of Kelvin’s circulation theorem in a

geometric setting. Moreover, we also showed that these helicities can be viewed

as Abelian Chern-Simons theories, and that the methodology introduced by

Witten, for gaining insights into topological quantum field theory, could be

employed here. Consequently, we concluded that the Jones polynomials may

be used to characterize different (generalized vorticity) configurations, serving

as a more powerful tool than the standard Gauss linking number used to char-

acterize fluid or magnetic helicity. By introducing such topological methods

for characterizing helicity, their relevance in the domains of astrophysics and

fusion is self-evident. One such application, of paramount importance, is to

deploy these topological methods in gaining a better understanding of solar

magnetic fields [162].

In summary, we have used the noncanonical Hamiltonian formulation

of extended MHD models to arrive at their common mathematical structure,
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which manifests itself via the existence of generalized helicities and Lie-dragged

2-forms. These helicities, which are topological invariants, can be further stud-

ied through a host of techniques, including the Jones polynomial [15, 160].

From a conceptual point-of-view, our results are elegant, as they exemplify the

spirit of unification common to most physical theories. On the other hand,

we also believe that the results presented herein possess manifold concrete ap-

plications, especially since the helicities serve both as important topological

invariants, and crucial mediators of relaxation and self-organization, recon-

nection, turbulence, and magnetic field generation (dynamos) in fusion and

astrophysical plasmas.
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Chapter 5

Turbulent cascades in plasma models

5.1 Introduction

In various astrophysical and laboratory settings, plasma is known to

be in a turbulent state. This claim is bolstered by the estimates of Reynolds

numbers for astrophysical flows which turn out to be extremely large. Progress

in the understanding of turbulence is thus crucial for explaining the associated

phenomena. On sufficiently large scales, magnetohydrodynamics (MHD) is a

valid model for describing plasma turbulence and is indeed the basis for theo-

retical descriptions of several plasma phenomena. Among these, for instance,

is the magnetic dynamo action (see, e.g. Ref. [41]), which has been estab-

lished as a mechanism for conversion of kinetic energy into magnetic energy.

Such conversion is relevant for the Earth’s magnetosphere as well as the solar

wind. The dynamo action has also been linked to the inverse cascade in MHD

turbulence [92, 96, 95, 180, 48]. Theoretical predictions for MHD turbulence

have been confirmed in numerical simulations [118, 95] and similar works have

been successfully undertaken in three-dimensional (3D) Hall MHD.[226] The

magnetic relaxation process characterizing magnetically confined plasmas in

Reversed Field Pinches [197] is another example of phenomenon whose un-

derstanding is based on the MHD description of a turbulent plasma. Further
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Figure 5.1: MMS will use a two-phase orbit strategy to explore two different
regions where magnetic reconnection often occurs, one on the day side and the
other on the night side of Earth. One of the stated purposes of the mission is
understanding the role of turbulence in the reconnection process.
Credits: NASA

applications of MHD turbulence can be found, for instance, in Ref. [42].

While MHD has been a cornerstone for the description of large scale

plasma phenomena, it fails at short scales, such as the electron skin depth

d̂e = c/ωpe, where c is the speed of light and ωpe is the electron plasma fre-

quency. The model of extended MHD (XMHD) generalizes MHD (as well as

Hall MHD) by including terms that are relevant at scales of the order of d̂e.

The investigation of turbulence at such scales is of relevance for instance for

the recently launched Magnetospheric Multiscale Mission (see Fig. 5.1),[54]

which is known to be capable of probing such scales (observational results

in these regimes have been recently published in Ref. [190]). The probing of

such scales may also become feasible in the laboratory, with facilities such as

WiPAL.[87]
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The emphasis in this chapter will predominantly rely on understand-

ing the direction in which the turbulent cascades flow. In particular, this

refers to the process whereby the energy (or helicity) injected at a certain scale

by some force (typically stirring) has a tendency to flow towards higher or

lower wavenumbers in a turbulent state. In order to predict the direction of

turbulent cascades of invariants of the model, we resort to the well-known

technique of absolute equilibrium states (AES). This technique (see Sec. 5.2.3

and Sec. 5.3.3) has been used in various past works: it was applied to hy-

drodynamical turbulence in Ref. [138], MHD in Refs. [92, 96, 95], Hall MHD

in Refs. [226, 171], two-fluid theory in Ref. [269], 3D XMHD in Ref. [171],

gyrokinetics in Ref. [268], and drift wave turbulence in Refs. [99, 137]. AES

are derived from the Gibbs ensemble probability density and represent states

towards which actual turbulence tends to relax; thereby, they are of value for

predicting the direction and structure of the exchange of various invariants

among the modes.[141] It is important to mention that these modes are not

eigenstates of the various models considered, but Fourier amplitudes allow

analyses of how components of the invariants flow through different scales.

One of the earliest suggestions for ascertaining the inverse cascade

based on AES in MHD turbulence[42] can be found in Ref. [92], followed

by the two-dimensional studies of Ref. [96], inspired by works of Kraichnan

in hydrodynamics.[138, 141] Numerical simulations [95] support the predicted

relaxed spectra. Although later it was found that deviation from Gaussian

statistics occurs as well as breaking of ergodicity in MHD.[229] Good agree-
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ment between AES in Hall MHD and numerics was found in Ref. [226]. Later

mostly analytical calculations for AES were performed in two-fluid theory

[269] and gyrokinetics,[268] where the former alludes to the possibility that the

“poles” of AES can appear in the high-k regime and a pole implies condensa-

tion of a spectral quantity to that wavenumber (see Sec. VI). More detailed

analyses were performed in Ref. [171], predicting the phenomenon of cascade

reversal of the magnetic helicity in 3D extended MHD at the electron skin

depth scale. An in-depth overview can be found in Refs. [230, 171].

The identification of cascade reversal is a subject that has attracted

considerable interest. However, mostly cascade reversals (usually referred to

as cascade transitions in the literature) have only been identified in highly

idealized systems. For instance, there are many examples of cascade reversal

when the interactions of the real physical system have been artificially mod-

ified. For example, in Ref. [211] it is demonstrated that 3D hydrodynamics

(HD) displays a change in the direction of the energy cascade when varying

the value of a free parameter that controls the relative weights of the triadic

interactions between different helical Fourier modes. Another useful study was

performed in a model of thin layer turbulence, [32] where 2D motions were cou-

pled to a single Fourier mode along the vertical direction. As the height of the

layer is varied the authors find critical transitions from forward to backward

cascade of energy.

The literature on cascade reversal in real physical systems, ones with-

out artificial modification, is scarcer. Some examples include rotating three
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dimensional stirred HD system,[232, 77] where the transition to inverse cas-

cade of energy occurs below certain values of Rossby number. In addition, in

Ref. [204] 3D direct numerical simulations of rotating Boussinesq turbulence

also demonstrate such transitions. Moreover, there is theoretical and experi-

mental evidence for the inverse energy cascade in the second sound acoustic

turbulence in superfluid Helium.[100] In 3D MHD, various simulations have

been performed [6, 239] that demonstrate cascade reversal when the system

is forced only mechanically. Since the stirring lacks a magnetic component

with stronger guide fields the flow becomes two-dimensional, leading to the

inverse cascade of energy like in 2D HD. The transition appears to have some

interesting features [227] as the magnetic forcing is turned on, viz. there exists

a critical value for which the energy flux towards the large scales vanishes.

Nevertheless, in the MHD examples above the parameter that is varied is still

somewhat ad hoc and idealized, viz. the form of the amplitude of magnetic

forcing. In contrast, in this chapter the control parameters will be de, di and

ρs (to be defined in Sec. 5.3) and forcing has both mechanical and magnetic

components.

The chapter is organized as follows. The first part (Sec. 5.2) is devoted

to 3D XMHD and is heavilty based on the material from Ref. [171]1. We cal-

culate the mean helicity flux transfer rates and the associated dissipation in

1G. Miloshevich, M. Lingam, P. J. Morrison , “On the structure and statistical theory of
turbulence of extended magnetohydrodynamics” New J. Phys., 19(1):015007 January 2017.
George Miloshevich is the first author. He performed most of the analytical calculations and
made predictions regarding the directions of cascades under supervision of the co-authors.
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Sec. 5.2.1, which leads us to question the direction of the fluxes. To be able to

answer this question we first prove Liouville theorem in Sec 5.2.2. and subse-

quently calculate absolute equilibrium states 5.2.3. The second part based on

material form Ref. [172]2 (Sec. 5.3) is devoted to 2D version of XMHD model,

where electron temperature is not ignored. We review the reduced fluid model

and its Hamiltonian structure in Sec. 5.3.1, while a discussion of its spectral

decomposition properties follows in Sec. 5.3.2. In Sec. 5.3.3 we present our

calculations of AES, whereas in Sec. 5.3.4 we discuss the different regimes

that characterize the AES depending on the values of the parameters. Finally,

in Sec. 5.4 we discuss comparisons with other related models and summarize.

5.2 XMHD Turbulence

In the recent work by [27], expressions for the dissipation rates for Hall

MHD were computed. Their analysis assumed that the Hall MHD turbulence

was homogeneous, but did not rely on the further assumption of isotropy. As

noted above, an important limitation of Hall MHD is that it becomes invalid

when electron inertia effects start to dominate, i.e. when one considers length

scales comparable to the electron skin depth. In such an instance, it makes

sense to use extended MHD instead, on account of the fact that it is endowed

with electron inertia effects.

2G. Miloshevich, M. Lingam, P. J. Morrison , “Direction of cascades in a magnetofluid
model with electron skin depth and ion sound Larmor radius scales” Phys. Plasmas,
25(7):072303 July 2018. George Miloshevich is the first author. He performed most of
the analytical calculations under supervision of the co-authors.
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Driving Range Inertial Range Dissipative Range

k

Figure 5.2: Schematic demonstrating the standard Richardson-Kolmogorov direct
cascade. Energy injected at low k, e.g., via large scale stirring, cascades through the
inertial range and dissipates at small scales (large k). Upon reversal of the arrows
along with the driving and dissipative ranges, a depiction of the inverse cascade is
obtained.

In recent times, there has also been a great deal of interest focused on

the solar wind at sub-electron scales, mostly because of the fact that observa-

tions have now become possible in this regime [214, 9, 213, 51, 215]. Hence, in

the present section, we shall generalize the results of [27] by including electron

inertia.

5.2.1 Mean helicity flux rates

In 3D fluid turbulence, it has been known since the famous works by

[136], and subsequent numerical and experimental tests [91, 236, 42], that the

energy input at large scales flows to small dissipative scales. This phenomenon

is often referred to as a direct Kolmogorov-Richardson cascade [91] - a pictorial

description of this phenomenon has been provided in Fig. 5.2. In MHD, the

direct (forward) cascade of energy and the inverse cascade of magnetic helicity

[92] have been widely explored, and are thus well established [42]. In the

inertial range, it must be borne in mind that the dissipation does not play a

role. Hence, it is expected that, in the stationary regime, the same flux (of

the energy or helicity, for example) flows through each wave number k. This

58



principle was recently employed to conduct a complementary study of XMHD

turbulence in [2].

In our analysis, we are interested in the flux rate of the generalized

helicities (4.13) within the framework of XMHD that are injected at some

length scale. By following the steps outlined in [27], we first introduce the

symmetric two-point correlation function

RK± = R′K± =

〈
A′± ·B± + A± ·B′±

2

〉
, (5.1)

where primed quantities are functions of x′ = x + r, unprimed quantities

depend on x, and the brackets 〈 〉 are a shorthand notation for ensemble

averaging. When the turbulence is homogeneous this can be equivalent to the

spatial average. Upon manipulation we find

∂t
〈
A′± ·B± + A± ·B′±

〉
=
〈
∇ · [(V± ×B±)×A′±] +∇′ · [(V′± ×B′±)×A±]

+ V′± ×B′± ·B± + V± ×B± ·B′± +∇ψ± ·B′± +∇′ψ′± ·B±
〉
.(5.2)

At this stage, we shall digress a little to explain how the principle of statistical

homogeneity can be gainfully employed. Our discussion mirrors the one pre-

sented in [102]. We introduce the change-of-variables ξ = x′+x and r = x′−x,

which implies that ∂/∂x = ∂/∂ξ − ∂/∂r and ∂/∂x′ = ∂/∂ξ + ∂/∂r. For a

given vector field u, this implies that〈
uj(x

′, t)
∂ui(x, t)

∂xi

〉
=

∂

∂xi
〈uj(x′, t)ui(x, t)〉 = − ∂

∂ri
〈uj(x′, t)ui(x, t)〉 =

− ∂

∂x′i
〈uj(x′, t)ui(x, t)〉 = −

〈∂uj(x′, t)
∂x′i

ui(x, t)
〉

(5.3)
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Upon using the above identity in (5.2), we obtain

〈
∇ · [(V± ×B±)×A′±] +∇′ · [(V′± ×B′±)×A±]

〉
= −

〈
∇′ · [(V± ×B±)×A′±] +∇ · [(V′± ×B′±)×A±]

〉
=
〈
V± ×B± ·B′± + V′± ×B′± ·B±〉 = −〈δ(V± ×B±) · δB±

〉
(5.4)

where δf := f ′ − f . Likewise, it is possible to show that

〈
∇′ψ′± ·B± +∇ψ± ·B′±

〉
= −

〈
ψ′±∇ ·B± + ψ±∇′ ·B′±

〉
= 0. (5.5)

Thus, upon combining everything together, we get

∂

∂t

[1

2

〈
A′± ·B± + A± ·B′±

〉]
= −

〈
δ(V± ×B±) · δB±

〉
+D , (5.6)

where we have introduced the phenomenological damping D that occurs at the

sink scale, following the approach of [27]. In the limit of infinite kinetic and

magnetic Reynolds numbers, under the assumption of stationarity, the LHS of

the above expression vanishes due to the ruggedness of the helicity invariants

[167]. Hence, we obtain our result from Ref [171]: the large scale dissipation

equals the mean generalized helicity flux rate

η± =
〈
δ(V± ×B±) · δB±

〉
, (5.7)

which closely resembles the expression of [27]. However, it must be noted

that our expression is more general as it duly encompasses electron inertial

contributions as well via the definition of B±. In the Hall MHD limit with de →

0, we have verified that our result is in exact agreement with the expression

of [27].
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Although (5.7) is quite compact, a great deal of information can be

extracted from it. For instance, it follows that the dissipation rates vanish

when the Beltrami condition B± ‖ V± is attained. These (multi) Beltrami

states are non-trivial, as they are also equilibria of XMHD [2]. This is easy

to verify by inspecting the second set of equations in (4.14), and substituting

the above condition. Thus, this result serves as a consistency check indicating

that the dissipation vanishes when the system has settled into this equilibrium

(in the limit of infinite Reynolds numbers).

In [27] a phenomenological argument for the direction of the cascades

was presented. First, let us recall that the generalized helicities become the

magnetic and ion canonical helicities in Hall MHD [248]. The first is essentially

a copy of the MHD magnetic helicity, while the other is a superposition of MHD

cross helicity and fluid helicity after some rearrangement. In the former, it is

argued that the inverse cascade is expected just as in ideal MHD. In contrast,

the direction of the cascade for the ion canonical helicity (of Hall MHD) can

go either way, as it is dependent on the energy budget of the system. It is

assumed to exhibit an inverse cascade if the magnetic energy is dominant over

the kinetic (and thermal) energy.

Therefore, we see that there is an ambiguity regarding the directionality

of the cascade for one of the helicities. The problem becomes far more acute

when we include electron inertia effects via XMHD. In that case, the magnetic

helicity is not conserved as there is also a (smaller) fluid helicity contribution.

If we apply the above line of reasoning, we would expect to witness the direct
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and inverse cascades of both helicities in XMHD. This is because of the fact

that the two helicities are not fundamentally different, other than the fact

that they are associated with different species [158, 156]. Thus, this raises an

interesting question: how is it possible to get the Hall MHD limit from XMHD?

In other words, why is the direct cascade of one helicity, that corresponds to

the magnetic helicity in the HMHD limit, lost? One possible resolution of

this paradox is by suggesting that the existence of direct or inverse cascades

depends on the length scale we are considering. This question is addressed in

more detail in Sec. 5.2.2 that follows.

5.2.2 Liouville’s theorem for XMHD

The direction of a cascade can be determined by inspecting the general

equilibrium states that the turbulence would tend to relax to, if not for the

continual input of energy [42]. Although turbulence as a phenomenon is far

from equilibrium, absolute equilibria have been used to predict the direction of

the spectral flux [42]. Such equilibria can be obtained from the ideal invariants

described in Sec. 4.2. The approach delineated in the present section is a

generalization of the pioneering studies in hydrodynamic [149, 139, 138] and

MHD [149, 92] turbulence.

However, before applying equilibrium statistical mechanics to the Fourier

modes of XMHD, it is necessary to show that their governing equations sat-

isfy Liouville’s theorem, as was first done in hydrodynamics by [55]. This is

because the variables B? and V are noncanonical and one must identify an
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invariant measure. The Darboux theorem assures that the usual phase space

volume measure is preserved in some local canonical coordinate system;[182]

however, in the truncated noncanonical coordinates, the finite number of re-

tained Fourier amplitudes, equations (5.68) need to be verified. We emphasize

this point because sometimes this step is missing in analyses. It is then pos-

sible to apply the conventional assumption of equal a priori probabilities in

phase space (z1, z2, . . . , zn) [148], which in turn enables one to express an equi-

librium phase space probability density P = P(z1, z2, . . . , zn) as a function of

constants of motion; for XMHD, they are further discussed in Sec. 5.2.3. Liou-

ville’s theorem was reproven and used for 2D fluids by [141], quasi-geostrophy

by [218], incompressible MHD by [149], and more recently similar statistical

approaches have been employed in plasma models [145], such as gyrokinetics

[268].

For an N -dimensional dynamical system żi = Vi(z), for some vector

field V , with i = 1, 2, . . . N , Liouville’s theorem (e.g. [129]) states that any

phase space volume is preserved provided
∑

i ∂żi/∂zi =
∑

i ∂Vi/∂zi = 0, which

is true for any canonical Hamiltonian system. However, incompressible XMHD

is a noncanonical Hamiltonian system, which can be shown 3 through the use

of Dirac brackets [79]. We emphasise again that because Liouville’s theorem is

3We shall defer a detailed exposition of subtleties regarding the noncanonical Hamiltonian
origin of the present measure and comparison to an actual canonical measure to a future
publication. On a related note, we also wish to correct an erroneous statement in [141] - it
was stated therein that 2D fluid flow is not Hamiltonian, but the authors were unaware that
it actually is a Hamiltonian dynamical system, albeit in terms of noncanonical variables
[182].
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variable dependent and the natural (Eulerian) variables are noncanonical, one

must check its validity directly. The idea of Burgers and Lee was to do this

in terms of Fourier amplitudes, which play the role of the particle degrees of

freedom of statistical mechanics. Thus, for XMHD we write the system (3.6)

and (3.7), after assuming incompressibility, in terms of the coefficients of a

Fourier series; i.e. the velocity and magnetic fields are expanded as F (x) =∑
k fk(t) e

ik·x. Then the equations of motion for the Fourier amplitudes are

given by

v̇k = i
(
I − k k

k2

)
·
∑
k′

(
vk−k′ × [k′ × vk′ ]−

b∗k−k′ × [k′ × b∗k′ ]
1 + k′2d2

e

)
, (5.8)

where k2 = k · k and the gradient terms were eliminated via ∇ ·V = 0, and

ḃ
∗
k =

∑
k′

(
ik × [vk′ × b∗k−k′ ]−

di k ×
[
b∗k−k′ × [k′ × b∗k′ ]

]
1 + k′2d2

e

(5.9)

+
i d2

e

1 + k′2d2
e

[
k × k′ vk−k′ · k′ × b∗k′ + k × vk−k′ b

∗
k′ · k × k

′]).
Notice that k · vk = 0 = k · b∗k. Technically, our phase space consists of

real and complex parts of the vectors vk = v−k and b∗k = b∗−k, where the

overbar denotes complex conjugation. However, it is more straightforward to

work with their linear combinations (vk,vk, b
∗
k, b

∗
k), and the same results are

obtained. After some algebra one arrives at∑
l,k

∂v̇lk
∂vlk

= −2i
∑
k

k · v0 = 0, (5.10)

where l indexes the components of vk and v0 denotes the k = 0 Fourier

component. Even if this component is present, the sum is still zero since it is
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odd in k. Similarly, we get∑
l,k

∂ḃ∗lk
∂b∗lk

= −2
∑
k

(
ik · v0 +

di b
∗
0 − i d2

e k × v0
1 + k2d2

e

· k × k
)

= 0. (5.11)

Thus, clearly the sum of (5.10) and (5.11) vanishes so we have shown that

Liouville’s theorem holds true in XMHD. Taking the appropriate limits, it is

easy to verify that it also holds true for Hall MHD, electron MHD, and inertial

MHD as well. It must be recognized that several past studies of Hall and

electron MHD turbulence implicitly relied upon the assumption that Liouville’s

theorem was valid, without having verified it explicitly. To the best of our

knowledge, we have verified it for the first time for XMHD and its simpler

variants.

5.2.3 Absolute Equilibrium States

We now turn to our study of turbulent cascades using the statistical me-

chanics of AES, even though turbulence is an out-of-equilibrium phenomenon.

This might be seen as counterintuitive; however, it important to stress here

that the AES hypothesis is a tool used to predict the direction of cascades

[91, 42]and does not in general describe the distribution of actual invariants

in fully developed turbulence in a driven dissipative system. The operative

intuitive idea is that the AES captures the relevant properties of the nonlinear

dynamics active in the inertial range. It is noteworthy to mention, however,

that in 2D HD turbulence AES actually can be used to describe the large

structures that are formed due to the inverse cascade. This is in part because

of the presence of the inverse energy cascade that dumps energy to large scales
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away from the small scales where the dissipation normally occurs. As a con-

sequence, the flow dynamics is dominated by large scale coherent structures,

such as vortices or jets.[47] In the 3D fluid case there is the well-established

cascade[136] (see Fig. 5.2) from large scales, where stirring occurs, to the

short scales, where energy is dissipated, a picture that has been confirmed in

experiments.[91, 235, 42]

The idea[149, 55] is to assume that Fourier modes play a role analogous

to that of the particle degrees of freedom in statistical mechanics. One calcu-

lates spectra in the canonical ensemble, and then makes predictions regarding

the direction of the cascades based on where the spectra peak. It is understood

that in reality dissipation acts to remove the ultraviolet catastrophe (high k

divergence) that typically occurs in Galerkin systems.[141]

There is a problem that may arise in a case when one has non-additive

constants of motion that may lead to non-Boltzmann statistics. For more on

this see the discussion in Ref. [114]. On the other hand, in the case of the 2D

Euler equation, we find that according to Ref. [60], even though the canonical

distribution has to be used with caution for long-range interacting systems,

the statistical tendency of vortices of the same sign of circulation to cluster in

the so-called negative temperature regime can be indeed predicted using the

same canonical distribution by observing that spectra peak at low k.

In principle, one can proceed to calculate a partition function for ab-

solute equilibria by using the Hamiltonian and the two invariants of XMHD,

given by (4.13). However, because we wish to compare our results with those
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in the literature by taking the MHD limit, viz. di → 0 and de → 0, and because

the generalized helicities of (4.13) become degenerate in this limit, reducing

to the magnetic helicity in both instances with a loss of the cross helicity, it is

convenient to use linear combinations of the helicities (4.13). Thus we consider

the following two Casimirs:

HM :=
1

2

κ+K− − κ−K+

κ+ − κ−
=

1

2

∫
d3x (A∗ ·B∗ + d2

e V · ∇ × V ), (5.12)

HC :=
1

2

K+ −K−
κ+ − κ−

=

∫
d3x (V ·B∗ +

di
2
V · ∇ × V ), (5.13)

where (5.12) was also presented in [1, 2]. The helicities (5.12) and (5.13)

are natural generalizations of the cross and magnetic helicities of ideal MHD

where the second terms in each of these relations can be seen as “corrections”

that vanish in the MHD limit. Here, we have used incompressibility - also a

common assumption in most Hall MHD studies [144, 97] - ensuring that the

two dynamical fields are solenoidal in nature. In Fourier series representation

the three invariants become

H =
1

2

∑
l,k

(
vlkvlk +

b∗lkb
∗
lk

1 + k2d2
e

)
, (5.14)

HM =
i

2

∑
l,m,n,k

εlmnkl

(
d2
e vmkvnk +

b∗mkb
∗
nk)

k2

)
, (5.15)

HC =
1

2

∑
l,k

(
vlkb∗lk + b∗lkvlk + i

∑
m,n

di εlmnklvmkvnk

)
. (5.16)

Notice that the energy as well as the helicities are quadratic in v and b∗. The

absolute equilibrium distribution function is constructed as follows:

P = Z−1 exp[−αH − βHM − γHC ] =: Z−1 exp[−Ai,juiuj/2], (5.17)
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with Z being the partition function. Note in the second equality the vector u

is chosen to consist of 8 entries corresponding to 4 components (two real, two

complex) of vk and b∗k. We shall comment on the parameters α, β and γ at

a later stage in our discussion. The reduction in the total number degrees of

freedom is due to solenoidal property of both fields: k · b∗k = 0 = k ·vk. Using

(5.17) we calculate the average of a quantity F according to

〈F 〉 =

∫ ∏
k

dvkdvkdb
∗
kdb

∗
k F P , (5.18)

which will be used for all averages in the present section. Because all invariants

are quadratic in u the integrations of (5.18) are all Gaussian, allowing us to

achieve our goal of finding correlations of the form 〈uiuj〉 = A−1
i,j ; however, this

requires the inversion of the 8 by 8 matrix

A =



a 0 0 f c 0 0 0
0 a −f 0 0 c 0 0
0 −f a 0 0 0 c 0
f 0 0 a 0 0 0 c
c 0 0 0 d 0 0 b
0 c 0 0 0 d −b 0
0 0 c 0 0 −b d 0
0 0 0 c b 0 0 d


, (5.19)

where a := α, b = β/k, c = γ, f := k(βd2
e + γdi) and d := α/(1 + k2d2

e). The

inverse matrix fortunately has the same form as the simpler MHD case, and
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is given by

A−1 =
1

∆



P 0 0 X Q 0 0 Y
0 P −X 0 0 Q −Y 0
0 −X P 0 0 −Y Q 0
X 0 0 P Y 0 0 Q
Q 0 0 Y R 0 0 W
0 Q −Y 0 0 R −W 0
0 −Y Q 0 0 −W R 0
Y 0 0 Q W 0 0 R


, (5.20)

where the new coefficients are

P := a(d2 − b2)− c2d and X := f(b2 − d2)− c2b, (5.21)

Q := c(c2 − ad− bf) and Y := c(ab+ df), (5.22)

R := d(a2 − f 2)− c2a and W := b(f 2 − a2)− c2f, (5.23)

√
detA =: ∆ = (fb+ ad− c2)2 − (ab+ fd)2. (5.24)

The matrix A has to be positive definite for the procedure to work, i.e. all

of the eigenvalues must be positive [92]. The corresponding identities can be

rearranged after a fair amount of algebra to arrive at the final set of positivity

conditions

a > |f |, d > |b| and c2 < (a− |f |)(d− |b|). (5.25)

A less strict, albeit useful, set of conditions can be derived as well:

ad+ bf > c2 and |af + db| < (ad+ bf − c2) and |c| < a+ d

2
. (5.26)

From these inequalities, we see that ∆ > 0, P > 0 and R > 0 as expected,

ensuring that the autocorrelations are positive. Because of the normalized
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Alfvén scaling, it is clear that k > 1 must be valid, as otherwise we are

concerning ourselves with length scales greater than the size of the system.

Finally, the spectral quantities can be duly evaluated.

We write the Hamiltonian as the sum of kinetic and magnetic energies,

H = HK +HB, with the spectra of each given, respectively, by

EK = 2πk2
∑
l

〈
vlk vlk

〉
=

8πk2P

∆
, (5.27)

EB =
2πk2

1 + k2d2
e

∑
l

〈
b∗lk b

∗
lk

〉
=

8πk2

1 + k2d2
e

R

∆
. (5.28)

Similarly, the spectra of the generalized magnetic and cross helicities, respec-

tively, are

EM = 2πk2
∑
l,m,n

εlmnkl

(
d2
e

〈
vmk vnk

〉
+

〈
b∗mk b

∗
nk

〉
k2

)
= 8πk

d2
ek

2X +W

∆
,(5.29)

EC = 2πk2
∑
l

(
2
〈
vlk b∗lk

〉
+
∑
m,n

di εlmnkl
〈
vmk vnk

〉)
= 8πk2 2Q+ dikX

∆
.(5.30)

It is easy to obtain the spectra of the original generalized helicities via the

relation K± = 2(κ±HC +HM), i.e. by

K± := 2
(
κ±EC + EM

)
. (5.31)

.

5.2.4 Hall MHD Cascades

If we consider the Hall MHD limit as 1 < k � d−1
e , i.e. the range where

Hall effects are important, we obtain the following conditions

α > k|γ|di and α >
|β|
k

and γ2 < (α− k|γ|di)
(
α− |β|

k

)
. (5.32)

70



In addition, we also have

α2 + βγdi > γ2 and α > |γ| and α2 > |βγ|di. (5.33)

During the process of computing the last inequality in (5.32) for k, we also

computed the discriminant

D := (α2 + |γβ|di − γ2)2 − 4α2|γβ|di. (5.34)

Requiring the existence of a k-spectrum (D > 0) leads us to a stricter version

of the first inequality in (5.33):

α > |γ|+
√
|γβ|di. (5.35)

To see how this inequality is obtained, let us rewrite (5.34) as

0 < D =
(
(α−

√
|γβ|di)2 − γ2

)
(α2 + |γβ|di − γ2 + 2α

√
|γβ|di). (5.36)

The second term in the product is clearly positive according to (5.33). Thus,

one requires the first term to be positive which leads us to (5.35). In turn, this

leads us to stricter requirements on k than the ones of the first two inequalities

in (5.32). Our bounds are thus given by

|β|
α

<
α2 + |βγ|di − γ2 −

√
D

2α|γ|di
< k <

α2 + |βγ|di − γ2 +
√
D

2α|γ|di
<

α

|γ|di
. (5.37)

The lower bound on k is also present in ideal MHD, but the upper limit

appears to be solely due to the inclusion of the Hall term. Notice that if we

wish to extend the range of k much further beyond d−1
i it is reasonable to
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impose α � |γ|. Therefore, since di � 1 is typically valid, the assumption

α2 − γ2 � |γβ|di is also justified. If we use this, along with an expansion in

di, the limits can be approximated as

α|β|
α2 − γ2

. k .
α2 − γ2

α|γ|di
(5.38)

so that the parameters can be adjusted to allow for 1 < k � d−1
e .

In the Hall limit the different spectral densities are given by

EK = 8πα
k2(α2 − γ2)− β2

(α2 + βγdi − γ2)2 − α2(kγdi + β/k)2
, (5.39)

EB = 8παk2 α2 − γ2 − γ2k2d2
i

(α2 + βγdi − γ2)2 − α2(kγdi + β/k)2
, (5.40)

EM = 8π
γ2di(βdi − γ)k2 − βα2

(α2 + βγdi − γ2)2 − α2(kγdi + β/k)2
, (5.41)

EC = 8πγk2d
2
i (β

2 − α2k2)− γβdi − 2(α2 + βγdi − γ2)

(α2 + βγdi − γ2)2 − α2(kγdi + β/k)2
. (5.42)

We note that each of these spectra are identical to the previous expressions

obtained by [226] (see their Eqs. (26)-(29)), after undertaking a minor change

of variables. This is not surprising as the authors had derived them using the

same approach, viz. by constructing the absolute equilibrium states. We also

wish to point out an important result that has also been predicted by many

others before - the absence of equipartition between the kinetic and magnetic

spectra in Hall MHD [103, 144, 97, 98, 226, 228, 152, 153]. This trait is unique

to Hall MHD, as it is absent both in ideal MHD and inertial MHD; we shall

demonstrate the latter in Sec. 5.2.5.
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Notice that the average total energy spectrum E = EK + EB can be

computed from (5.39) and (5.40), and has the form

E = 8παk2 2(α2 + βγdi − γ2)− (kγdi + β/k)2

(α2 + βγdi − γ2)2 − α2(kγdi + β/k)2
, (5.43)

which is also equal to the formula provided in [226]. The parameters α, β,

and γ are found by matching the integrated spectral quantities with their

actual spatial values, e.g., by using
∫ kmax

kmin
EK dk, where we imagine a contin-

uum limit. Thus, it is obvious that one cannot provide simple expressions for

these parameters, since they will be complicated transcendental equations in

general.

As noted earlier, the dependence of the spectral quantities on k will

reveal the directionality of the cascades. The direct cascade of some invariant

can be expected if the spectral density is peaked at high wavenumbers and vice-

versa. Based on the complexity of the above formulae even for Hall MHD, it

appears as though any definitive statements are not possible. It is reasonable

to expect that the same quantity may undergo both cascades depending on

the length scale at which the energy is supplied to the system.

The simplest case one can investigate is to consider cases where the

cross-helicity vanishes, viz. EC = 0 ⇒ γ = 0. For this case we have verified

that the standard MHD results presented in [92] are obtained, i.e. the direct

cascade of energy and the inverse cascade of magnetic helicity. This result is

not at all surprising because the magnetic helicity is an invariant of both ideal

and Hall MHD. Our analysis confirms that, in the absence of global cross-
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helicity, when magnetic helicity is injected at length scales much larger than

the electron skin depth, it undergoes an inverse cascade within the framework

of Hall MHD.

Let us consider another simple limit, where β = 0. At first glimpse,

it doesn’t have such a simple interpretation. We can make the picture more

transparent by introducing the definitions

γ

α
=: sinφ and

cos2 φ

| sinφ| di
=: k∗ > k, (5.44)

where the second equality follows from the second relation in (5.38). The

corresponding spectral quantities in these new variables are thus given by

EK =
8π

α cos2 φ

k2

1− k2

k2
∗

and EB = EK

(
1− k2

k2
∗

cos2 φ
)
, (5.45)

together with

EM = −diEK sinφ tan2 φ and EC = −EK sinφ
(

2 +
k2

k2
∗

cot2 φ
)
. (5.46)

After a careful inspection and evaluation, one can verify that these expressions

yield direct cascades of energy and cross-helicity.

In order to visualize these relations, we have plotted the different spec-

tra in Fig. 5.3. It is particularly noteworthy that the magnetic helicity cascade

becomes increasingly complex in the presence of strong cross-helicity. This is

purely due to the additional perturbation coming from the Hall term, as the

ideal MHD range remains completely in the inverse cascade mode.
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Hence, we sum up this preliminary analysis by observing that K+ can

undergo both forward and inverse cascades as predicted by [27]. We have also

verified that our XMHD spectra, in the Hall MHD limit, are equal to the ones

obtained earlier by [226].

5.2.5 Inertial MHD Cascades

We begin by recalling that inertial MHD is a model which lacks the

Hall drift, but is endowed with electron inertia effects [130, 159]. Thus, the

existence of the second condition implies that the model may become relevant

in the range k � d−1
e , i.e. at scales smaller than electron skin depth. Although

this quantity is small in many fusion plasmas, recall that it is highly relevant

in astrophysical and space plasmas, such as the Earth’s magnetosphere and

the solar wind. With this choice of k, observe that d ≈ α/k2d2
e holds true.

Following the same procedure as in Hall MHD, we analyze the necessary

inequalities, and find that

α > k|β|d2
e and α & |γ|. (5.47)

Although de � 1, we also have kde � 1 in this case, and hence the condition

α & |β| appears to be quite reasonable. We also must inspect a counterpart of

the third inequality in (5.25), which according to the constraints listed above

collapses to

|γ| < α

kde
− |β|de. (5.48)
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Figure 5.3: Log-Log Plots for total energy, magnetic and cross-helicity. The
parameters used here are α = 10, β = 9 and γ = {0.001, 0.03, 0.1} is varied so
that different values of HC are obtained (color-coded, see the legend for the
description). The microscales were chosen to be di = 0.1 and de = 0.01.
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Upon computation, the spectra become

EK = EB =
8πα

d2
e

α2

k2d2
e

− β2d2
e − γ2

(
β2 +

α2

k2d2
e

− γ2
)2

− 4α2

β2k2

, (5.49)

EM = −16πβk2d2
e

α2

k2d2
e

+ γ2 − β2d2
e(

β2 +
α2

k2d2
e

− γ2
)2

− 4α2

β2k2

, (5.50)

EC = −16πγk2

β2d2
e +

α2

k2d2
e

− γ2

(
β2 +

α2

k2d2
e

− γ2
)2

− 4α2

β2k2

. (5.51)

An important and pleasing feature is immediately apparent. We see that iner-

tial MHD restores the energy equipartition feature of ideal MHD [231]. This

is along expected lines, since inertial MHD and ideal MHD are very akin to

each other. In fact, it was shown by [159] in 2D that the Hamiltonian (Poisson

bracket) structure of these two models is identical under the transformation

B→ B∗.

We also see that the generalized magnetic and cross helicities vanish

when β and γ are set to zero respectively. Hence, it is instructive to take these

two limits and inspect the resultant expressions. When β = 0, the total energy

is

E =
16πα

α2

k2
− γ2d2

e

, (5.52)

and the cross-helicity is

EC = −E γ
α
k2d2

e. (5.53)
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The other case, with γ = 0, corresponds to the state with zero cross-

helicity. In this instance, we find that the spectra are

E =
16πα

α2

k2
− β2d4

e

and EM = −Eβ
α
k2d4

e. (5.54)

In each of these two limiting cases, we find that all spectral quantities undergo

direct cascades [171] in contrast to the MHD and Hall MHD limits. This

appears to be consistent, to an extent, with previous results in the literature

although most previous studies relied on 2D simulations as opposed to our 3D

analysis [43, 44, 71]. We have plotted the spectra in Fig. 5.3, which confirms

our analytical estimates. Although the wavenumber range from k to 1/d2
e, for

inertial MHD is not applicable everywhere - instead, its presence is likely to

be felt only when k > 1/de. In reality, there is a finite Hall MHD range before

this limit is attained.

We note in passing, that the inclusion of a strong guide field can induce

anisotropic turbulence, and the existence of both inverse and direct cascades,

but this falls outside the scope of our present work

5.3 Electron skin depth and ion sound Larmor radius
effects

Besides Hall MHD and XMHD a number of reduced fluid models exist

that account for additional two-fluid plasma effects, models that are amenable

to simpler analytical and numerical treatments. Such reduced models (see, e.g.,

Ref. [241]) typically rely on the assumption of a magnetic field with a strong
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constant component along one direction (strong guide field assumption) and

are valid at frequencies much lower than the ion cyclotron frequency based on

such a guide field. This situation is relevant for some laboratory plasmas as

well as for a number of astrophysical situations (see, e.g., Ref. [220]). These

models are also characterized by the property of possessing only quadratic

nonlinearities and by a spatial anisotropy induced by the presence of the guide

field.

The purpose of the following parts of the chapter is to investigate the

direction of turbulent cascades in one such reduced fluid model[57] that ac-

counts for the electron skin depth scale and an additional scale, the ion sound

Larmor radius ρ̂s =
√
Te/mi/ωci, with Te the equilibrium electron tempera-

ture, mi the ion mass and ωci the ion cyclotron frequency based on the guide

field. This additional scale, which accounts for finite electron temperature,

proved, for instance, to be crucial for the nonlinear evolution of the current

density and plasma vorticity during a magnetic reconnection process.[106, 75]

In our analysis we consider the two-dimensional (2D) case, assuming

translational invariance along the direction of the guide field. This assumption

could be justified by the presence of a strong guide field. We remark that, in

its original and more general formulation,[221] the model assumes only weak

variations along the guide field and, in particular, nonlinear terms only involve

derivatives along directions perpendicular to the direction of the guide field.

Moreover, the appearance of coherent structures in two-dimensional turbu-

lence and the possible occurrence of reconnection events induced by electron
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inertia, as suggested by recent observations of the fast solar wind,[202] make

the 2D version of the model of interest in its own right. Some comparison

with cascade properties of 3D XMHD will nevertheless be made. In 2D the

model is known to possess two infinite families of integral invariants [221]

(Casimir invariants) associated with the noncanonical Hamiltonian structure

of the model. A qualitative change in the form of these families of invariants

occurs when the normalized ion sound Larmor radius ρs = ρ̂s/L (with L a

characteristic length of the system) is set equal to zero.

One of the main objectives of the present analysis is to see if the cascade

reversal of magnetic helicity at the electron skin depth predicted in Ref. [171]

has a counterpart in the 2D reduced model considered in this paper. (We

anticipate that, when neglecting toroidal velocity and magnetic field compo-

nents, the 2D incompressible limit of XMHD,[108] which we will refer to as to

’2D planar incompressible XMHD’, formally reduces to the 2D reduced model

studied here in the limit ρs = 0). As is well known, the directions of cascades

change when going from 3D to 2D in hydrodynamics and in MHD, although in

the latter case regimes exist where AES predict the same direction for energy

cascade in 2D and 3D (see, e.g., Ref. [40]).

5.3.1 The model and its invariants

As stated in Sec. 5.3, we consider the model of Ref. [57], which was used

earlier in Hamiltonian reconnection studies. [107, 106] This model is applica-

ble to low-β plasmas, with β indicating the ratio of the kinetic and magnetic
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pressures, and it can be seen as an extension of the previously investigated

reduced MHD model of Ref. [96], accounting also for the effects of electron in-

ertia and finite, constant electron temperature. As such, it describes plasmas

with a strong magnetic guide field and it can be used to locally model phe-

nomena such as collisionless reconnection and turbulence, in situations where

a detailed description of the temperature and heat flux evolution is not re-

quired. Because the processes occur on time scales shorter than dissipation

time scales, a collisionless Hamiltonian treatment is appropriate. However,

in a realistic turbulence scenario dissipation cannot be ignored, even if the

resistivity and viscosity appear negligible. The model can be obtained from

a more general three-field model [221] in the cold ion limit and assuming an

ion response with ion density fluctuations proportional to vorticity fluctua-

tions. Alternatively, the model can be obtained from a two-moment closure of

drift-kinetic equations.[74, 270, 240]

The model equations, in dimensionless form, are given by

∂ψ?

∂t
= {ψ?,H} = [ψ?, φ] + ρ2

s[ω, ψ],

∂ω

∂t
= {ω,H} = [ω, φ] + [ψ?,∇2ψ],

(5.55)

where ω = ∇2φ indicates the vorticity associated with a stream function φ

(normalized electrostatic potential), whereas ψ? = ψ − d2
e∇2ψ, with ψ the

poloidal magnetic flux function of a magnetic field B = ∇ψ × ẑ + ẑ. The

parameter de denotes the constant electron skin depth and the second constant

parameter ρs corresponds to the ion sound Larmor radius. The bracket [ , ] is
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defined as usual by [f, g] := ∇f × ∇g · ẑ for two functions f and g and the

noncanonical Poisson bracket { , } is defined below.

Using a caret to denote dimensional quantities, we have adopted the

normalizations, de = d̂e/L, ρs = ρ̂s/L, t = t̂/τA, φ = cφ̂/(B0vAL), and ψ =

ψ̂/(B0L), where as noted above L is a characteristic length and τA = L/vA with

vA being the Alfvén speed based on the amplitude B0 of the guide field. The

latter is assumed directed along the ẑ axis of a Cartesian coordinate system

(x, y, z). Due to the 2D assumption, the z coordinate is taken as ignorable.

Note that, when two-fluid effects are suppressed (i.e. de = ρs = 0), the model

reduces to the 2D reduced MHD model of Ref. [238].

The first equalities of Eqs. (5.55) indicate that the system possesses a

Hamiltonian formulation characterized by a Hamiltonian functional

H :=
1

2

∫
d2x (−φω − ψ?∇2ψ + ρ2

sω
2), (5.56)

and a noncanonical Poisson bracket (see Ref. [182] for review)

{P,Q} =

∫
d2x

{
ω

([
δP

δω
,
δQ

δω

]
+ d2

eρ
2
s

[
δP

δψ?
,
δQ

δψ?

])
+ ψ?

([
δP

δψ?
,
δQ

δω

]
+

[
δP

δω
,
δQ

δψ?

])}
. (5.57)

We remark that when electron temperature effects are neglected, i.e.,

when ρs = 0, Eqs. (5.55) reduce to the 2D inertial MHD (IMHD) system

of Ref. [159] or, equivalently, as stated above, to 2D planar incompressible

XMHD.
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The complexity of the Poisson Bracket of (5.57) can be reduced by the

coordinate transformation ψ± := ψ? ± deρsω to normal coordinates, in which

the Poisson bracket has the following form:

{P,Q} =2deρs

∫
d2x

(
ψ−

[
δP

δψ−
,
δQ

δψ−

]
− ψ+

[
δP

δψ+

,
δQ

δψ+

])
. (5.58)

With the bracket in the form of (5.58), it is easily seen that the systems

possesses two infinite families of Casimir invariants:

C± =

∫
d2xF±(ψ±) , (5.59)

for arbitrary functions F±. Casimir invariants are functionals C that sat-

isfy {C,Q} = 0 for all functionals Q. They are thus preserved for dynamics

generated by any Hamiltonian.

5.3.2 Spectral Analysis

Equilibrium states of XMHD have been studied (see, e.g., Ref. [121])

leading to a generalization of the Grad-Shafranov equation. In contrast, here

we are interested in statistical equilibrium in Fourier space, and the analysis

of the associated direction of cascades.

Using a standard Fourier representation ψ(x) =
∑

k ψk e
ik·x, so that

ψ?k = (1 + k2d2
e)ψk, Eqs. (5.55) become

ψ̇?k = ẑ ·
∑
k′,k′′

δk,k′+k′′ k
′′ × k′

(
ωk′ ψ

?
k′′

k′ 2
+ ρ2

s ωk′ψk′′

)
(5.60)

and

ω̇k = ẑ ·
∑
k′,k′′

δk,k′+k′′ k
′′ × k′

(ωk′ ωk′′

k′ 2
+ k′ 2ψk′ ψ

?
k′′

)
. (5.61)
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These equations can be generated by the Hamiltonian of (5.56) and Poisson

bracket of (5.57) written in terms of Fourier series. Consequently, they preserve

the energy and all Casimir invariants written in terms of their Fourier series.

Of particular interest to us are the quadratic invariants preserved by

(5.60) and (5.61), the so-called rugged invariants. These are the Hamiltonian

and the quadratic Casimirs. The main reason for this is that such invariants

survive wave-number truncations, kmin < k < kmax, which is common for

spectral Galerkin codes. Another motivation for using these invariants is the

ease of handling Gaussian statistics.

Of course, in general there may be other criteria, possibly motivated

by experimental results, to ignore or select certain invariants in an analysis of

our type, based on the effects of viscosity/resistivity or other aspects ignored

in ideal models. For instance in order to determine the relevant invariants,

the authors of Ref. [119] have resorted to experiments. In our case, this possi-

bility is excluded by the difficulty of obtaining experimental measures on the

invariants for our system. Therefore we stick with the quadratic invariants

and introduce linear combinations of the Casimirs of (5.59), viz. the following:

F :=
1

2

∫
d2x

[
(ψ?)2 + d2

eρ
2
s ω

2
]

(5.62)

G :=

∫
d2xω ψ? . (5.63)

The Hamiltonian (5.56) and the constants of (5.62) and (5.63) expressed in
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terms of Fourier series are

H =
1

2

∑
k

(
(ρ2
s + k−2)|ωk|2 +

k2|ψ?k|2

1 + k2d2
e

)
, (5.64)

F =
1

2

∑
k

(|ψ?k|2 + d2
eρ

2
s|ωk|2) , (5.65)

G =
1

2

∑
k

(
ωkψ

?
−k + ω−kψ

?
k

)
. (5.66)

Equations (5.65) and (5.66) can be thought of as 2D remnants of the magnetic

and cross helicities[156] if we set ρs = 0, although since there is no third

dimension they lose their topological meaning associated with linking. It can

be shown via direct calculation that these helicity remnants are indeed rugged.

For instance, using (5.60) and (5.61) and the reality condition ωk = ω−k with

overbar being complex conjugate, we find

Ġ =
∑
k,k′′

ẑ · k′′ × k
(
(k + k′′)2 ψ?kψ

?
k′′ + ρ2

sωkωk′′
)
ψk′ = 0 . (5.67)

Tt is not hard to show (similar to Sec. 5.2.2) that a Liouville theorem is

satisfied, i.e.,

∂ω̇k

∂ωk

= 0 and
∂ψ̇?k
∂ψ?k

= 0 . (5.68)

5.3.3 Absolute Equilibrium States

For more detailed discussion on how AES apply see Sec. 5.2.3.

We seek AES given by the phase space probability density of the form

P = Z−1e−αH−βF−γG =: Z−1e−A
ijuiuj/2 , (5.69)
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Figure 5.4: Log-Log Plots for total energy, remnant magnetic helicity and
cross-helicity. The parameters used in Figures (a,c,e) are α = 10, β = 1 and
γ = {0,−.75, 1} is varied so that different values of G are obtained (color-
coded, see the legend for the description). The microscales were chosen to be
de = 0.1 and ρs = 0.01. Notice that plots are obtained under the assumption
that kmin = 1 and not 2π for the simplicity. The parameters used in Figures
(b,d,f) are α = −0.1, β = 106 and γ = {0, 500, 800} is varied. Helicity F
seems to only have direct cascade, when α < 0. This can also be seen from
able 5.1 since β is so large.
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where ui := {ω<k , ω=k , ψ?<k , ψ?=k } and according to (5.64), (5.65), and (5.66) the

matrix (Aij) is given by

A :=


δ 0 γ 0
0 δ 0 γ
γ 0 η 0
0 γ 0 η

 ,

where

δ := (α + βd2
e)ρ

2
s +

α

k2
and η :=

αk2

1 + k2d2
e

+ β . (5.70)

The parameters α, β and γ present in Eq. (5.69) are Lagrange multipliers.

Their values in terms of the parameters de and ρs are determined by a normal-

ization condition and by imposing that the expectation values of the invariants

H, F and G match their initial values (see Eqs. (5.79), (5.80) and (5.81) ).

This will be carried out in Sec. 5.3.4. These Lagrange multipliers are akin to

the inverse temperatures found in statistical mechanics.

Using (5.69) the partition function Z follows from the normalization

condition ∫
P(k) dΓ(k) =

∫
P(k) dψ?<k dψ?=k dω<k dω

=
k = 1, (5.71)

where ψ?k =: ψ?<k + i ψ?=k . Because the statistics are Gaussian, integration is

straightforward and the partition function is found to be

Z =
(2π)2

√
detA

. (5.72)

One can also invert the matrix A to obtain various expectation values,

such as 〈uiuj〉 = A−1
ij .[122] In addition, it is necessary to investigate the real-

izability condition that the matrix A needs to be positive-definite. Thus we
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impose the condition of positivity of its eigenvaules, otherwise the probabil-

ity distribution would not be integrable. After some algebra we arrive at the

following inequalities

(α + βd2
e)ρ

2
sk

2 + α > 0 , (5.73)

(α + βd2
e)k

2 + β > 0 (5.74)[
(α + βd2

e)ρ
2
sk

2 + α
][

(α + βd2
e)k

2 + β
]

> k2(1 + k2d2
e)γ

2 . (5.75)

At this point it is important to observe that α > 0 when we set ρs = 0. Thus 2D

planar incompressible XMHD cannot have the so-called “negative temperature

states” (NTS) that correspond to α < 0. It appears that NTS are in principle

possible if ρs is not ignorable, i.e., when thermal electron effects are taken into

account. This is interesting since it is known that in 2D fluid turbulence they

are associated with the inverse cascade of energy.[195] Actually NTS have been

analytically predicted in gyrokinetics [268] in the 2+1D case as well as in some

earlier works on drift-wave turbulence.[99, 137] The latter works consider fluid

models formed by an incompressible Euler equation together with an equation

for an advected scalar. Therefore they differ qualitatively from the model

(5.55) that we are using .

It is evident from (5.73) that if α < 0 then α̃ := α + βd2
e > 0. Alter-

natively, we can have α > 0, which if β > 0 obviously implies α̃ > 0 and on

the other hand if β < 0 then (5.74) implies that α̃ is again positive. Thus we
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have the useful inequality independent of k

α̃ := α + βd2
e > 0 . (5.76)

We proceed with evaluating various expectations of correlations. The

quantities of interest are the average squared generalized flux function per

wave-mode

1

2
〈|ψ∗k|2〉 =

[ α̃k2 + β

1 + k2d2
e

− γ2 1

α̃ρ2
s + αk−2

]−1

(5.77)

and the average squared vorticity

1

2
〈|ωk|2〉 =

[
α̃ρ2

s +
α

k2
− γ2 1 + k2d2

e

α̃k2 + β

]−1

. (5.78)

To calculate the remnant cross-helicity we need to add cross-correlation terms

〈G(k)〉 = − γ(
α̃ρ2

s +
α

k2

) α̃k2 + β

1 + k2d2
e

− γ2

. (5.79)

To simplify the analysis we assume that the remnant cross-helicity G is zero

and therefore γ = 0. Thus, per wave mode, we obtain the expressions

〈F (k)〉 =
d2
eρ

2
sk

2

α + α̃ρ2
sk

2
+

1 + k2d2
e

α̃k2 + β
, (5.80)

〈H(k)〉 =
1 + ρ2

sk
2

α + α̃ρ2
sk

2
+

k2

α̃k2 + β
. (5.81)

This is consistent with the MHD results of Ref. [96] (if we relabel appropriately

α→ 2α, β → 2γ, γ → 2β) and apply ρs → 0 limit.

We observe that, for large k, the remnant helicity and energy spectra

behave as follows:

2πk〈F (k)〉 ≈ O
(

1/k
)
, 2πk〈H(k)〉 ≈ O(k) , (5.82)
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similarly to MHD. On the other hand, at large scales, the presence of finite

electron temperature can yield a different behavior, depending on the value of

parameters. Relevant limits of the remnant helicity and energy spectra will

be discussed in Sec. 5.4.

5.3.4 Qualitative analysis

In this section we will discuss different regimes that the system exhibits.

The parameters α and β can be found from the total energy and the remnant

helicity, which are obtained as H =
∫

2πk 〈H(k)〉 dk and F =
∫

2πk 〈F (k)〉 dk.

It also turns out to be convenient to introduce the variable F̃ := F − d2
eH and

the ratio

K :=
H

F̃
= 2

k2
max − k2

min

ln
(β + α̃k2

max)(α + α̃ρ2
sk

2
min)d

2
e/ρ

2
s

(β + α̃k2
min)(α + α̃ρ2

sk
2
max)d2e/ρ2s

− β

α̃
. (5.83)

Notice that αH + βF = α̃H + βF̃ ; however, since F̃ is not a Casimir, in

the following we will focus on the invariant F . In addition we observe the

well-known identity

αH + βF = 2π (k2
max − k2

min) . (5.84)

For simplicity we first consider the 2D planar incompressible XMHD limit

ρs → 0. Then (5.83) becomes

K → 2

(k2
max − k2

min)−1 ln
β + α̃k2

max

β + α̃k2
min

− d2
e

α̃

α

− β

α̃
. (5.85)
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β

α

K

XMHDK∞ = −d−2
e

Kcr = k2
min

forbidden

MHDKb

Figure 5.5: Description of the K vs β/α dependence (not to scale) according
to (5.85) when ρs = 0.

The parameter β switches sign at

Kb := K(β = 0) =
2

(k2
max − k2

min)−1 ln
k2

max

k2
min

− d2
e

, (5.86)

signaling the emergence of negative temperature states. Notice that Kb > 0

provided de is small enough. The local minimum is reached when

Kcr := K

(
β

α
= − k2

min

1 + k2
mind

2
e

)
= k2

min . (5.87)

A depiction of the behavior is shown in Fig. 5.5. Notice that atKcr the remnant

helicity condenses to the lowest wavenumber kmin. This can be seen from the

second term in (5.80) and is a direct analogy of the energy condensation in

HD proposed by Kraichnan [140] and others.

In addition, it can be shown that the logarithm found in the denomina-

tor of (5.85) is a monotonically decreasing function of β/α because kmax > kmin,
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while the magnitude of the second term is linearly increasing and thus there

exists a pole. This pole is absent in MHD, where therefore K > 0. This will be

important below. The analysis is concluded by observing that as β/α → ∞,

K approaches K∞ = −d−2
e and thus curiously there seems to be a gap in the

admissible values of K.

Now let us step back to MHD by letting de → 0 and explicitly follow

an argument found in Refs. [96, 95]. In this case the following identity can be

found from (5.85) in the limit kmax →∞:

β

α
+ k2

min = k2
max exp

[
−2k2

max

K

]
→ 0 . (5.88)

Thus, the authors conclude that physically one can expect condensation to

the lowest wavenumber since β becomes negative. If β is negative we can

have a low-lying pole as will be described below. And when K reaches it local

minimal value (associated with a specific negative value of β, see Fig. 5.5 and

Eq. (5.87)) then this pole coincides with kmin. Existence of a pole naturally

implies that most of the spectral quantity is going to condense there.

If we redo these arguments for the XMHD case, we obtain

K → −d−2
e

(α
α̃

+ 1
)
⇒ β

α
→ −d−2

e

(
1 + d2

eK
)

(5.89)

and therefore β/α may remain positive, thus avoiding condensation for some

values of K even if kmax →∞.

When the electron temperature is not ignorable (ρs > 0) we recover

the α < 0 regime and the situation becomes more complicated according to
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(5.83). From (5.80) and (5.81) we can see that there are two poles. In the

vicinity of one pole the other term can be ignored. When β is negative the

remnant helicity condenses to kcr,1 ∼
√
−β/α̃ as described above in the XMHD

case. However in the α < 0 case the pole kcr,2 ∼
√
−αρ−2

s /α̃ dominates and

the roles of H and F are interchanged. Notice that both poles cannot occur

simultaneously since that would clearly violate (5.76). When ρs is small enough

one expects a diagram similar to that of Fig. 5.5. It is not hard to show that

β changes sign at

Kb = 2
k2

max − k2
min

ln
k2

max

k2
min

− d2
e

ρ2
s

ln
1 + ρ2

sk
2
max

1 + ρ2
sk

2
min

, (5.90)

which generalizes (5.86). In fact, because the second term in the denominator

is monotonic, it turns out that as a function of ρs the quantity Kb is bounded

from below by (5.86), which is positive provided that de is sufficiently small,

so we can assume Kb > 0. Similarly, α changes sign at

Ka = −d−2
e −

2ρ2
s

d2
e

k2
max − k2

min

ln
k2

max

k2
min

− ρ2
s

d2
e

ln
1 + d2

ek
2
max

1 + d2
ek

2
min

(5.91)

and by the same argument Ka < 0, provided that ρs is sufficiently small.

5.4 Comparisons and summary

Our new results concern the limit kde � 1, where

2πk〈F (k)〉 ≈ O(k), 2πk〈H(k)〉 ≈ O(k) . (5.92)
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Length Scale Choices 〈H(k)〉 〈F (k)〉

1 < k � (d−1
e , ρ−1

s )
1

α
+

1

α + βk−2

1

αk2 + β

1� d−1
e � k � ρ−1

s

1

α
+

1

α + βd2
e

1

αd−2
e + β

1� ρ−1
s � k � d−1

e

1

α + βd2
e

+
1

α + βk−2

1

αk2 + β
+

1

αd−2
e + β

1� (d−1
e , ρ−1

s )� k
2

α + βd2
e

2

αd−2
e + β

Table 5.1: Various limits of spectral densities when α > 0 and β not too large.
The first row corresponds to the large scale MHD limit; it was assumed that
β is not orders of magnitude larger than α to avoid singular perturbation and
most likely this situtation is not realizable if one solves for the parameters via
integrals of motion. The second row pertains to the 2D planar incompressible
XMHD high k limit, where gyroeffects have been ignored. The third row
displays an opposite situation, where gyrophysics is relevant but the electron
skin depth ignorable. The last row demonstrates the microscopic k limit, and
may be unphysical depending on how the model ordering works. Notice that
terms were simply ignored based on the ordering, a more precise description
would involve Taylor series.
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Thus we see that the scaling changes from the inverse to direct, which suggests

cascade reversal for the remnant magnetic helicity F . Table 5.1 contains our

analyses for behavior across scales when ρs > 0. The cascade reversal behavior

indicated by (5.82) and (5.92) is seen in this more general analysis. Thus

there is cascade reversal behavior at the electron skin depth in 2D planar

incompressible XMHD as was predicted for 3D XMHD in Ref. [171], although

the details may vary. In Figure. 5.4 we plot spectral quantities for non-zero γ.

As pointed out in Ref. [96], when kde � 1 the inverse cascade implies

the presence of large scale structures in ψ?. In our model due to the presence

of ρs this can be achieved in the α > 0 regime; on the other hand when

ρs = 0 states α < 0 are forbidden. In 3D MHD, the large scale presence of

magnetic helicity is often associated with the generation of large scale magnetic

fields.[7, 26] In Sec. 5.2 [171] we have explored the influence the electron inertia

can have on the development of the turbulent cascade of the magnetic helicity

in 3D. As stated earlier, in absence of ρs the present paper can be seen as a

natural continuation of the earlier work, where geometry is simplified to two

dimensions. In 2D MHD we see that instead of inverse cascade of magnetic

helicity one has inverse cascade of the square vector potential and so we reach

similar conclusions. The fact that magnetic helicity would condense to large

scales is often cited as evidence of the dynamo action in MHD.[95, 45] The

antidynamo theorem applies in the absense of the external magnetic field or

a magnetic source. [227] For comparison see spectral quantities in 3D XMHD

in Fig. 5.3 (see Ref. [171] and Table 5.2 for more details).

95



We are led to conclude that there may be barriers for finer-scale fluc-

tuation amplifications (such as kde � 1). Also a natural conclusion could be

that fluctuations of magnetic helicity F are suppressed on the d−1
e scale. Often

times in this regime the electron MHD (EMHD) model is applied [43, 169, 168]

and so it is worthwhile comparing these models. For the analysis, what mat-

ters are integrals of motion, thus we compare EMHD and inertial MHD (which

corresponds to Eqs. (5.55) with ρs = 0) in Table 5.2. It appears that the sim-

ilarity is greater in 2D than in 3D. Direct cascade of energy is also found in

Ref. [44]. However the model we use can also have non-zero electron temper-

atures (ρs 6= 0) that for some choice of parameters can lead to the inverse

cascade of energy.

Models Energy Magnetic-Helicity

2D EMHD −
∫
d2x 1

2
(ψ?∇2ψ + φ?ω)

∫
d2x 1

2
(ψ?)2

2D IMHD −
∫
d2x 1

2
(ψ?∇2ψ + φω)

∫
d2x 1

2
(ψ?)2

3D EMHD
∫
d3x 1

2
B? ·B

∫
d3x 1

2
A? ·B?

3D IMHD
∫
d3x 1

2
(V 2 + B? ·B)

∫
d3x 1

2
(A? ·B? + d2

eV · ∇ ×V)

3D XMHD
∫
d3x 1

2
(V 2 + B? ·B)

∫
d3x 1

2
(A? ·B? + d2

eV · ∇ ×V)

Table 5.2: Comparison of the integrands for invariants in various extended
MHD models. Notice that IMHD is normalized to the Alfven time-scale, while
EMHD to a whistler time-scale τH = L2ω2

pe/(c
2Ωe). In all cases the operator

∗ := 1− d2
e∇2.

2D IMHD and 2D EMHD can both be derived from 2D XMHD in

specific limits. The former, as already mentioned, is obtained after setting
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to zero the out-of-plane components of the velocity and magnetic field. The

latter is obtained by rescaling the time with respect to the whistler time and

by retaining the leading order terms in the limit di � 1, where di is the

normalized ion skin depth. This comparison puts us in a position to discuss

recent comments [267] regarding 2-fluid absolute equilibrium states.[171, 269]

We agree with Ref. [267] that the qualitative picture of a direct cascade of

the magnetic helicity is achieved in both 3D EMHD[269] and 3D IMHD;[171]

however, the details of spectral dependence are different, for instance in our

model [171] we recover energy equipartition for MHD.

When the effects of ion sound Larmor radius are included the eigenvalue

analysis demonstrates that NTS (α < 0) are possible and we observe that in

the low k limit the total energy per wave-number 2πk〈H(k)〉 scales inversely

with k for the portion of inertial range, suggesting inverse cascade of energy

(see Fig. 5.4b), as was first predicted by Onsager[195] for two-dimensional

hydrodynamics. The inverse cascade of energy can also be inferred from the

expression (5.81) because β is so large. Observed dependence of the invariants

in this regime qualitatively agrees with the picture of the dual cascade obtained

in drift wave two-field fluid models [99, 137] and a gyrokinetic model [268]

investigated later.

Naturally, prior to proceeding to the more general reduced extended

MHD case like that of Ref. [108], these predictions have to be confirmed by di-

rect numerical simulations. For instance, there is evidence of broken ergodicity

and coherent structures[229, 230] in MHD. Broken ergodicity is observed in
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many other physical systems including classical dipolar spin systems.[170] It is

most suitable to consider a pseudo-spectral code [107] to investigate whether

the relaxation of the Fourier modes in MHD can occur. The advantages of

using Galerkin methods in general involve accuracy and “semiconservation“

of the integrals of motion.[196] Although for us it has an additional advantage

since we are interested in the k-space behavior. Alternatively, since relaxation

to equilibria subject to constraints is sought, it could be beneficial to apply

recently developed symplectic/Poisson integration algorithms like the ones of

Refs. [143, 257]. This would also further justify the Hamiltonian treatment

the problem has received.

In closing we note that there are many plasma models where similar

analysis can be performed. One of the candidates we intend to work with in

the future is a special relativistic two-fluid model that was recently shown to

possess Hamiltonian form.[125] This model can be applied in relativistic jets

and laser fusion.
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Chapter 6

Cascade reversal seen in numerics

6.1 Pseudospectral code

In this chapter we will discuss our latest work where we take the model

found in Sec. 5.3.1 and simulate it via a parallel pseudospectral MHD code [105]

modified for our purposes. This is necessary primarily because the analysis in

Sec. 5.3.3 ignores dissipation and is based on the assumption that the ideal

system relax to the most likely state given by the Gibbs distribution. We

have only proved the Liouville’s theorem that shows the conservation of the

phase-space volume but not the H-theorem for this system that would justify

the principle of maximum entropy, which is not expected since turbulence is

quite far from equilibrium.

The equations we simulate are a straightforward generalization of (5.55),

∂ψ?

∂t
+ u · ∇ψ? = η+∆nψ? + η−∆−mψ? + φψ, (6.1)

∂ω

∂t
+ u · ∇ω = b? · ∇j + ν+∆nω + ν−∆−mω + φω, (6.2)

where η+ and ν+ are hyper-dissipation (higher order improves the inertial

range), while η− and ν− are hypodissipation. The latter, while having no

physical counterpart, operates at low wave-numbers and is used to limit the
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condensation of appropriate spectral quantities. Finally, φψ and φω represent

random forcing.

The details of the procedures used can be found in Refs. [105, 63];

however, it suffices to say that the fields are asssumed to be defined on a

periodic domain from 0 to 2π using Fourier expansion. As a result PDEs are

replaced by a set of coupled ODEs. They are advanced in time using the

second order Runge-Kutta scheme.

The main goal is to add stirring at a certain wavenumber (injection

scale) kf . This wavenumber is chosen in such a way that there is enough

inertial range on both sides so that the inverse cascade can be observed. The

choice of kf also depends on the resolution. The rule of thumb is to use kf = 8

for 512× 512, kf = 16 for 1024× 1024 etc.

The fluxes may be calculated in the following manner: from Eqs. (5.60),

(5.61) and (5.64) we see that

Ḣk + 〈φ[ω, φ] + d2
eJ [φ, J ] + φ[J, ψ] + J [φ, ψ]〉k = 0, (6.3)

where, the k subscript indicates we take only a summand, i.e. the correspond-

ing harmonics of (5.64). The Poisson bracket here can be inferred from the

R.H.S. of Eqs. (5.60), (5.61). The second term is denoted πk and represents

the flux through a wavenumber. Of course we have ignored the dissipation

and forcing on the R.H.S. Likewise, from Eqs.. (5.60), (5.61) and (5.65) we see

Ḟk + 〈ψ?[φ, ψ?]〉k = 0. (6.4)
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6.2 Results

We are happy to report that the cascade reversal of F , predicted in

Sec. 5.4, is indeed observed around kde ∼ 1. This can be seen invariably in

multiple trials where we changed the parameter de. In particular, we see in

Fig. 6.1a how the direction of the F is reversed as the parameter kfde is varied.

Regimes below kfde < 0.5 can be associated with MHD (inverse cascade of

the magnetic square potential). On the other hand, regimes above dekf ∼ 1.3

can be associated with the forward cascade of F , as was predicted in Chapter

5.

However, when we look at Fig. 6.1b the picture is less promising (or

more depending on what one is after). In particular, simultaneously with the

reversal of F one observes the transition to the incomplete inverse cascade of

energy above dekf ∼ 1.3. This is at odds with what was predicted from the

AES theory.

It is even more interesting when one looks at the actual real space

distribution of the fields (see Figs. 6.3 and 6.2) in the MHD regime and com-

pares it to the IMHD regime (see Figs. 6.5 and 6.4). In the MHD regime we

see fine structure in the stream-function (Fig. 6.3b) and consequently velocity

flow, and island chains in the magnetic vector potential (Fig. 6.2b) that can

be identified with the in-plane magnetic field lines. On the other hand, after

inspecting the IMHD regime one finds that the roles of φ and ψ are reversed,

along with the appearance of isolated vortices (Fig. 6.5a).
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(a) Helicity F

(b) Total Energy E

Figure 6.1: Plot of the mean fluxes (averaged after the stationary regime is
reached) as a function of wavenumber (see Eqs. (6.4) and (6.3)).
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It is not clear why the energy reverses numerically in the ρs = 0 regime.

In addition we observe that the transition is critical in the sense that there

exists a critical value of kfde when we start getting an inverse cascade of the

energy and a direct cascade of F . We will defer the demonstration of this as

well as many other intersting features for the future publication.
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(a) j

(b) ψ

Figure 6.2: The final stages of evolution for dekf = 0.25 (MHD regime) and
ρs = 0.
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(a) ω

(b) φ

Figure 6.3: The final stages of evolution for dekf = 0.25 (MHD regime) and
ρs = 0.
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(a) j

(b) ψ

Figure 6.4: The final stages of evolution for dekf = 2.67 (IMHD regime) and
ρs = 0.
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(a) ω

(b) φ

Figure 6.5: The final stages of evolution for dekf = 2.67 (IMHD regime) and
ρs = 0.
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Chapter 7

Special relativistic extended

magnetohydrodynamics

7.1 Introduction

In this chapter, we obtain APs for relativistic magnetofluid models.

The material here is heavily based on Ref [125]1. The key ingredient for con-

structing APs for a fluid-like systems is a means for implementing constraints,

because direct extremization yields trivial equations of motion. There are var-

ious formalisms available, depending on how the constraints are implemented.

One is to follow Lagrange [147] and incorporate constraints into the definition

of the variables. This procedure is invoked when using Lagrangian coordi-

nates with the time evolution of variables (fluid element attributes) (e.g., den-

sity and entropy) described a priori by conservation of differential forms along

stream lines. APs in the Lagrangian coordinates have been obtained for the

nonrelativistic neutral fluid, magnetohydrodynamics (MHD),[192] and various

generalized magnetofluid models (e.g. extended MHD (XMHD), inertial MHD

(IMHD), and Hall MHD (HMHD)),[120, 159, 72] as well as for the relativistic

1Y. Kawazurea, G. Miloshevich, P. J. Morrison , “Action principles for relativistic ex-
tended magnetohydrodynamics: A unified theory of magnetofluid models” Phys. Plasmas,
24(2):022103 February 2017. George Miloshevich is a secondary author. His contribution
was significant and it involved some analytical calculations.
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neutral fluid [244, 78, 217] and MHD.[3, 126] In obtaining such formulations

several complications arise, e.g., the inference of the appropriate Lagrangian

variables, the map between the Lagrangian and Eulerian coordinates in the

relativistic case,[126] and the existence of multiple flow characteristics for gen-

eralized magnetofluid models.[120, 72]

A second type of AP, one that is formulated in terms Eulerian vari-

ables, implements the constraints via Lagrange multipliers, and in this way

extremization of the action can lead to correct equations of motion.[225, 151]

Upon enforcing the constraints of conservation of density, entropy, and a La-

grangian label,[151] this procedure was recently used to obtain nonrelativistic

HMHD.[258] Then, this formulation for HMHD was used to regularize the sin-

gular limit to MHD by a renormalization of variables, thereby obtaining an

AP for MHD.[258] For the relativistic neutral fluid, the velocity norm (light-

cone) condition (uµuµ = 1 with fluid four velocity uµ) is required as another

constraint.[223, 206, 224, 128, 84] Instead of taking limit from HMHD with

renormalization, there are alternative formulations for nonrelativistic [253] and

relativistic [29, 30] MHD, in which the Ohm’s law or the induction equation

per se is employed as a constraint.

A third type of AP, one of general utility that incorporates a covariant

Poisson bracket in terms of Eulerian variables, was introduced in Ref. [166].

Instead of including the constraints in the action with Lagrange multipliers,

the constraints are implemented via the degeneracy of a Poisson bracket that

effects constrained variations. In addition to the neutral fluid, such Poisson
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bracket APs have been described for particle mechanics, electromagnetism,

the Vlasov-Maxwell system, and the gravitational field.[166] Most recently,

this kind of action was obtained for relativistic MHD.[73]

From Table 7.1, which summarizes the aforementioned APs, we see

there are missing pieces: the APs for fluid-dynamical systems are (i) the La-

grangian AP, (ii) Eulerian constrained least AP, and (iii) the Eulerian bracket

AP, for relativistic generalized magnetofluid models. In this chapter, we for-

mulate the latter two APs: (ii) and (iii), and show that they are related by

variable transformation. Then we derive APs for HMHD and MHD by taking

limits of the XMHD AP. Relativistic HMHD is derived for the first time in the

present study by this method. Also, we show that the nonrelativistic limit of

the bracket AP gives nonrelativistic XMHD as a Hamiltonian system.

This chapter is organized as follows. In Sec. 7.2 we formulate a con-

strained least AP for relativistic XMHD. In Sec. 7.3 the bracket AP is derived

by a transformation of phase space variables in the constrained least AP. In

Sec. 7.4 we derive relativistic HMHD and MHD by taking limits of the bracket

AP for XMHD. These results are used in Sec. 7.5 where remarkable features

of relativistic HMHD pertaining to collisionless reconnection are considered.

In Sec. 7.6, the nonrelativistic limit of the bracket AP is shown. Finally in

Sec. 7.7 we conclude.
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Constrained least AP

Nonrelativistic
Lin (1963) [151]

fluid

Nonrelativistic Yoshida & Hameiri (2013) [259] (limit from HMHD)

MHD Webb et al. (2014) [253] (Ohm’s law constraint)

Nonrelativistic
Yoshida & Hameiri (2013) [259] (HMHD)

XMHD

Relativistic
Schutz (1970)[223]

fluid

Relativistic Present study [125] (limit from HMHD)

MHD Bekenstein & Oron (2000) (Ohm’s law constraint) [29]

Relativistic
Present study[125]

XMHD

Lagrangian description AP

Nonrelativistic
Lagrange (1788) [147]

fluid

Nonrelativistic
Newcomb (1962) [192]

MHD

Nonrelativistic Keramidas Charidakos

XMHD et al. (2014) [65]

Rel. fluid Salmon (1988) [216]

Relativistic Achterberg (1983) [3]

MHD Kawazura et al. (2014) [126]

Covariant bracket AP

Nonrelativistic
Present study[125]

fluid

Nonrelativistic
Present study[125]

MHD

Nonrelativistic
Present study[125]

XMHD

Relativistic
Marsden et al. (1986) [166]

fluid

Relativistic
D’Avignon et al. (2015) [73]

MHD

Relativistic
Present study[125]

XMHD

Table 7.1: Summary of APs for fluid-dynamical systems.
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7.2 Constrained least action principle

Consider a relativistic plasma consisting of positively and negatively

charged particles with massesm+ andm−, where subscript signs denote species

labels, and assume the Minkowski spacetime with the metric tensor diag(1, −1, −1, −1).

In addition, a proper charge neutrality condition is imposed so that rest frame

particle number densities of each species satisfy n+ = n− = n.[134] The four

velocities of each species are denoted by u±
µ, which obey the velocity norm

conditions

u±
µu±µ = 1 . (7.1)

Using the four velocities u±
µ, the four center of mass velocity and the four

current density can be written as

uµ = (m+/m)u+
µ + (m−/m)u−

µ , (7.2)

Jµ = e(u+
µ − u−µ) , (7.3)

respectively, with m = m+ +m− and the electric charge e. The time and space

components of these fields are written as uµ = (γ, γv/c) and Jµ = (ρq, J) with

speed of light c, Lorentz factor γ = 1/
√

1− (|v|/c)2, and charge density ρq.

The thermodynamic variables needed are the energy density ρ±, the enthalpy

density h±, the entropy density σ±, and the isotropic pressure p±. These are

related by nh± = p± + ρ± = n(∂ρ±/∂n) + σ±(∂ρ±/∂σ±).[166] We also define

total energy density ρ = ρ+ + ρ− and total pressure p = p+ + p−.
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Adding the continuity equations for each species together leads an equa-

tion for n,

∂ν(nu
ν) = 0 , (7.4)

while the adiabatic equations of each species can be written as

∂ν (σ±u±
ν) = 0. (7.5)

In addition to the above constraint equations we include conservations of the

Lagrangian labels ϕ±,

u±ν∂
νϕ± = 0. (7.6)

The full set of independent variables of our action are chosen to be (uµ, Jµ, n, σ±, ϕ±, A
µ),

where Aµ is a four vector potential that defines a Faraday tensor Fµν =

∂µAν − ∂νAµ. Here we consider CGS unit getting rid of a factor c/4π in

the Faraday tensor by renormalization (i.e., cFµν/4π → Fµν). In a manner

similar to that of Lin’s formalism [151] for the nonrelativistic neutral fluid, we

bring (7.4), (7.5), and (7.6) into an action as constraints as follows:

S[u, J, n, σ±, A, ϕ±] =∫ {∑
±

[
−1

2
nh±u±νu±

ν +
1

2
(p± − ρ±)

]
− JνAν

−1

4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)− φ∂ν(nuν)

−
∑
±

[η±∂
ν(σ±u±ν)− λ±u±ν∂νϕ±]

}
d4x, (7.7)

where
∑
± is summation over species, and φ, η±, and λ± are Lagrange multipli-

ers. The first and second terms of (7.7) are the fluid part for each species, the
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third term is an interaction between the fluid and the electromagnetic (EM)

field, the fourth term is the pure EM part, and the other terms represent the

constraints. The velocity norm conditions (7.1) will be imposed after taking a

variation of the action.2

Variation of the action, i.e., setting δS = 0, gives

δuν : nhuν +
∆h

e
Jν = n∂νφ+

∑
±

(σ±∂
νη± + λ±∂

νϕ±) (7.8)

δJν : Aν +
∆h

e
uν +

h†

ne2
Jν =∑

±

[
± m∓
men

(σ±∂
νη± + λ±∂

νϕ±)
]

(7.9)

δσ± : u±ν∂
νη+ =

∂ρ±
∂σ±

(7.10)

δϕ+ : ∂ν (λ+u±ν) = 0 (7.11)

δAν : Jν = ∂µFµν (7.12)

δn : nuν∂
νφ = AνJν + n

∑
±

∂ρ±
∂n

, (7.13)

with h := h+ + h−, ∆h := (m−/m)h+ − (m+/m)h−, and h† = (m2
−/m

2)h+ +

(m2
+/m

2)h−. Using (7.4), (7.5), (7.6), and (7.8)-(7.13), the momentum equa-

2We remark the difference of the treatment of the velocity norm condition between pre-
ceding works of relativistic single fluid AP [206, 128, 84]. In their actions, the velocity norm
condition is included in the action with Lagrange multiplier. However this method cannot
be applied for generalized magnetohydrodynamic models since there are multiple velocity
norm conditions for each species and the multipliers cannot be determined.
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tion and generalized Ohm’s law are obtained:

∂ν

[
nhuµuν +

∆h

e
(uµJν + Jµuν) +

h†

ne2
JµJν

]
(7.14)

= ∂µp+ JνFµν ,

∂ν

[
n(∆h)uµuν +

h†

e
(uµJν + Jµuν) +

∆h]

ne2
JµJν

]
(7.15)

=
m−
m
∂µp+ −

m+

m
∂µp− + enuνFµν −

m+ −m−
m

JνFµν ,

with ∆h] = (m3
−/m

3)h+−(m3
+/m

3)h−. These are equivalent to the relativistic

XMHD equations previously formulated by Koide.[134, 135] The generalized

Ohm’s law of (7.14) can be rewritten as

euνF?µν −
Jν
n
F †

µν
=
m−
m

(
T+∂

µσ+

n

)
− m+

m

(
T−∂

µσ−
n

)
, (7.16)

with

A†
ν

=
m+ −m−

m
Aν − h†

e
uν − ∆h]

ne2
Jν ,

F?µν = ∂µA?ν − ∂νA?µ and F †µν = ∂µA†
ν − ∂νA†µ ,

where a generalized vector potential A? is defined by

A?ν = Aν +
∆h

e
uν +

h†

ne2
Jν . (7.17)

Note, the following must hold as an identity:

∂µ (εµνρσF?ρσ) = 0, (7.18)

where εµνρσ is the four dimensional Levi-Civita symbol. Upon taking the four
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dimensional curl of (7.16), we obtain the generalized induction equation

e
[
∂µ
(
uλF?νλ

)
− ∂ν

(
uλF?µλ

)]
−
[
∂µ
(
Jλ
n
F †νλ

)
−∂ν

(
Jλ
n
F †µλ

)]
− m−

m

[
∂µT+∂

ν
(σ+

n

)
− ∂νT+∂

µ
(σ+

n

)]
+
m+

m

[
∂µT−∂

ν
(σ−
n

)
− ∂νT−∂µ

(σ−
n

)]
= 0. (7.19)

Next, upon combining (7.14) and (7.15) we obtain equations for the

canonical momenta [165] of each species

u±ν (∂µ℘±
ν − ∂ν℘±µ) + T±∂

µ
(σ±
n

)
= 0,

where ℘±
ν = h±u±

ν±eAν . Several simplifications have been proposed to

make these equations tractable;[134, 135] e.g., the assumption of ∆h = 0 (i.e.,

h+ = (m+/m)h and h− = (m−/m)h) and/or the usage of the velocity norm

condition uµu
µ = 1 with (7.2) instead of (7.1). The latter condition requires

JµJ
µ = 0 to be consistent with (7.1) (referred to as the “break down condition”

in Ref. [134]). Such a simplified model has recently come into usage.[67, 17, 19]

Imposing ∆h = 0 on the action (7.7) and/or replacing (7.1) by uµu
µ = 1 and

JµJ
µ = 0, this simplified model is directly obtained from the AP.

7.3 Covariant bracket action principle

Now we construct our covariant action principle. To this end we de-

fine a kinetic momentum mν = nhuν and a generalized momentum m?ν =

mν + (∆h/e)Jν . Then (7.8) and (7.9) can then be viewed as the Clebsch
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representations for m?ν and A?ν . The reason for introducing these new field

variables is that the action (7.7) takes a beautiful form in terms of them:

S =

∫ [
m?νmν

2nh
+
∑
±

1

2
(p± − ρ±) (7.20)

−1

4
(∂µA?ν − ∂νA?µ)(∂µAν − ∂νAµ)

]
d4x.

Interestingly, upon letting m?ν → mν and A?ν → Aν , the action (7.20) becomes

identical to the recently proposed relativistic MHD action of Ref. [73]. When

the simplification ∆h→ 0 is imposed, m?ν becomes the kinetic momentum and

A?ν is decoupled from the kinetic momentum (the nonrelativistic version of

such a vector potential was previously proposed for nonrelativistic IMHD [159]

and XMHD [1, 158]). In other words, the difference of the thermal inertiae

between species (i.e. ∆h) intertwines the kinetic momentum field and the EM

field. Since the nonrelativistic limit (h+ → m+c
2 and h− → m−c

2) results in

∆h→ 0, such a coupling is distinctive of the relativistic two-fluid plasma.

For our covariant action it is convenient to use the Clebsch variables

z = (n, φ, σ±, η±, λ±, ϕ±)

as the independent variables of the action (7.20). With these variables all

of the dynamical equations (7.4), (7.5), (7.6), (7.10), (7.11), and (7.13) are

derived from the least AP (i.e. δS = 0). In terms of z we can simply restate

the AP of Sec. 7.2 as a canonical covariant bracket version of the formalism of

Refs. [166, 73]. A canonical Poisson bracket is defined for functionals F and
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G as

{F, G}canonical =

∫
δF

δz
Jc
δG

δz
d4x =

∫ [
δF

δφ

δG

δn
− δG

δφ

δF

δn
(7.21)

+
∑
±

(
δF

δη±

δG

δσ±
− δG

δη±

δF

δσ±
+
δF

δϕ±

δG

δλ±
− δG

δϕ±

δF

δλ±

)]
d4x,

where Jc is the symplectic matrix and δF/δz denotes the functional derivative

obtained by linearizing a functional, e.g.

δF =

∫
δn

δF

δn
d4x . (7.22)

(See Ref. [182] for review.) Since Jc is non-degenerate, with (n, φ), (σ±, η±),

and (λ±, ϕ±) being canonically conjugate pairs, the least AP is equivalent to

a bracket AP, i.e., {F [z], S}canonical = 0 where F [z] is an arbitrary functional

of z, is equivalent to δS = 0.

Transformation to new “physical” independent variables defined by

z̄ = (n, σ±,m
?ν ,F?µν)

yields a noncanonical covariant bracket because the z̄ are not canonical vari-

ables. To transform the bracket of (7.21) we consider functionals that satisfy
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F̄ [z̄] = F [z], and calculate functional derivatives by the chain rules:

δF

δn
=

δF̄

δn
+
δF̄

δm?ν
∂νφ

+
2m−σ+

men2
∂µ
(
δF̄

δF?µν
∂νη+

)
+

2m−λ+

men2
∂µ
(
δF̄

δF?µν
∂νϕ+

)
−2m+σ−

men2
∂µ
(
δF̄

δF?µν
∂νη−

)
− 2m+λ−

men2
∂µ
(
δF̄

δF?µν
∂νϕ−

)

δF

δφ
= −∂ν

(
n
δF̄

δm?ν

)
,

δF

δσ±
=

δF̄

δσ±
+
δF̄

δm?ν
∂νη± ∓

2m∓
men

∂µ
(
δF̄

δF?µν
∂νη±

)
,

δF

δη±
= −∂ν

(
σ±
δF̄

δm?ν

)
± 2m∓

me
∂µ
(
δF̄

δF?µν
∂ν
σ±
n

)
,

δF

δλ±
=

δF̄

δm?ν
∂νϕ± ∓

2m∓
men

∂µ
(
δF̄

δF?µν
∂νϕ±

)
,

δF

δϕ±
= −∂ν

(
λ±
δF̄

δm?ν

)
± 2m∓

me
∂µ
(
δF̄

δF?µν
∂ν
λ±
n

)
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Substituting these into (7.21) gives the following noncanonical Poisson bracket:{
F̄ , Ḡ

}
XMHD

= −
∫ {

n

(
δḠ

δm?ν
∂ν
δF̄

δn
− δF̄

δm?ν
∂ν
δḠ

δn

)
+ m?ν

(
δḠ

δm?µ
∂µ
δF̄

δm?ν
− δF̄

δm?µ
∂µ
δḠ

δm?ν

)

+
∑
±

[
σ±

(
δḠ

δm?ν
∂ν
δF̄

δσ±
− δF̄

δm?ν
∂ν
δḠ

δσ±

)
± 2m∓

me

(
δF̄

δσ±
∂µ
δḠ

δF?µν
− δḠ

δσ±
∂µ
δF̄

δF?µν
)
∂ν
σ±
n

]

+ 2

(
δF̄

δm?λ
∂µ
δḠ

δF?µν
− δḠ

δm?λ
∂µ
δF̄

δF?µν
)
F?νλ

+
4

ne

(
∂µ
δF̄

δF?µν
)(

∂λ
δḠ

δF?λκ

)
F †κν

}
d4x . (7.23)

The fluid parts (the first three terms) of (7.23) correspond to the covariant

Poisson bracket for the neutral fluid given in Ref. [166]. Next, in order to

use this bracket in a variational sense, the action (7.20) is considered to be

the functional of (n, σ±,m
?ν ,F?µν), i.e. S̄[z̄], and its functional derivatives are

calculated as

δS̄

δm?ν
= uν ,

δS̄

δF?µν
= −1

2
Fµν ,

δS̄

δσ±
= −∂ρ±

∂σ±

δS̄

δn
= h+

m−
men

Jν

(
uν +

m−
men

Jν
)
− h−

m+

men
Jν

(
uν − m+

men
Jν
)

−∂ρ+

∂n
− ∂ρ−

∂n
+

∆h

ne
Jνu

ν +
h†

n2e2
JνJ

ν .

Then equations (7.4), (7.5), (7.14), and (7.19) follow from {F̄ [z̄], S̄} = 0 for

all F̄ .
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Here we must remark that the equations obtained from the bracket

action principle are not closed unless (7.18) is imposed. Although (7.18) is

automatically satisfied by the Clebsch variable definition of F?µν , it does not

emerge from the bracket AP. Therefore, the bracket AP, only by itself, does

not give the closed set of equations. This is a marked difference between a

Hamiltonian formalism of nonrelativistic MHD;[181] although ∇ · B = 0 is

not derived from the Hamiltonian equation, the obtained equations are closed

even if ∇ · B 6= 0. On the other hand, in the relativistic case, if (7.18) is

abandoned, we lose ∂tB = −c∇× E as well.

There may be two remedies for this problem. One is to define a Faraday

tensor that builds-in the Ohm’s law (7.16) and consider (7.18) as a dynamical

equation of the new Faraday tensor [14, 73]. This strategy, however, is difficult

because the Ohm’s law (7.16) is more complicated than that of relativistic

MHD, and then it is hard to formulate the appropriate Faraday tensor. A

second approach is to transform F?µν to A?µ so as to make the bracket action

principle yield Ohm’s law instead of the induction equation. To write the

bracket of (7.23) in terms of A?µ we consider the functional chain rule to

relate functional derivatives with respect to F?µν with those with respect to

A?µ, i.e.

2∂ν
δḠ

δF?µν
=
δḠ

δA?µ
. (7.24)

Using (7.24), one can eliminate F?µν from the Poisson bracket (7.23) while

introducing the variable A?µ. This will give a bracket where the Ohm’s law
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(7.16) is obtained direct. The transformation (7.24) yields

{
F̄ , Ḡ

}
XMHD

= −
∫ {

n

(
δḠ

δm?ν
∂ν
δF̄

δn
− δF̄

δm?ν
∂ν
δḠ

δn

)
+ m?ν

(
δḠ

δm?µ
∂µ
δF̄

δm?ν
− δF̄

δm?µ
∂µ
δḠ

δm?ν

)

+
∑
±

[
σ±

(
δḠ

δm?ν
∂ν
δF̄

δσ±
− δF̄

δm?ν
∂ν
δḠ

δσ±

)

∓m∓
me

(
δF̄

δσ±

δḠ

δA?ν
− δḠ

δσ±

δF̄

δA?ν

)
∂ν
σ±
n

]

+

(
δḠ

δm?ν

δF̄

δA?µ
− δF̄

δm?ν

δḠ

δA?µ

)
F?µν

− 1

ne

δF̄

δA?µ
δḠ

δA?ν
F †µν

}
d4x. (7.25)

Ohm’s law follows from {A?α, S̄}XMHD = 0 with δS̄/δA?µ = Jµ; the other

equations are unaltered so the system is closed.

The noncanonical bracket of (7.25) has the form

{
F̄ , Ḡ

}
XMHD

=

∫
δF̄

δz̄
J δḠ

δz̄
d4x ,

with a new Poisson operator J . However, because the transformation z 7→ z̄

is not invertible, the Poisson operator J is degenerate. Since the bracket AP,

{F̄ [z̄], S̄} = 0, is equivalent to J δS̄/δz̄ = 0, because of this degeneracy it

is no longer true that J δS̄/δz̄ = 0 is identical to δS = 0. In this way the

constraints of the action (7.7) are transferred to the degeneracy of the Poisson

bracket.[166, 73]
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Before closing this section, let us make a remark about the alternative

expression of EM field. The Faraday tensor may be decomposed as Fµν =

εµνλσbλuσ +uµeν −uνeµ with a magnetic field like four vector bν = uµε
µνλσFλσ

and a electric field like four vector eν = uµFµν . [150, 14, 201] This decompo-

sition is especially useful in the relativistic MHD because the standard Ohm’s

law is equivalent to eν = 0, and thus EM field is concisely expressed only by

bν . In the context of action principle, D’Avignon et al. formulated the bracket

AP for the relativistic MHD using bν . [73] It may be possible to reformulate

the relativistic XMHD action principle in terms of bν instead of Fµν . The key

is how we define a generalized four vector (let us call b?ν) that incorporates

inertia effect in the similar way as Fµν → F?µν . Recently, such a general-

ization of bν has been proposed by Pegoraro. [201] Formulation of the action

principle with b?ν and the unification with the MHD action principle [73] will

be a future work.

7.4 Limits to reduced models

In this section we show how to reduce the bracket AP to obtain APs

for unknown relativistic models, with known relativistic counterparts.

First consider the electron-ion plasma, where now the species labels +

and − are replaced by i and e, respectively. Defining electron to ion mass

ratio µ := me/mi � 1, we approximate me/m ∼ µ, mi/m ∼ 1. The ion and

123



electron four-velocities become

uνi = uν +
µJν

ne
, uνe = uν − Jν

ne
,

while the enthalpy variables reduce to ∆h ∼ µhi − he, h
† ∼ µ2hi + he, and

∆h] ∼ µ3hi − he, and the generalized vectors become

m?ν = nhuν +
1

e
(µhi − he)J

ν (7.26)

A?ν = Aν +
1

e
(µhi − he)u

ν +
1

ne2
(µ2hi + he)J

ν (7.27)

A†
ν

= Aν − 1

e
(µ2hi + he)u

ν − 1

ne2
(µ3hi − he)J

ν . (7.28)

Next, in this approximation the noncanonical Poisson bracket (7.25) becomes{
F̄ , Ḡ

}
XMHD

= −
∫ {

n

(
δḠ

δm?ν
∂ν
δF̄

δn
− δF̄

δm?ν
∂ν
δḠ

δn

)
+ m?ν

(
δḠ

δm?µ
∂µ
δF̄

δm?ν
− δF̄

δm?µ
∂µ
δḠ

δm?ν

)

+ σi

(
δḠ

δm?ν
∂ν
δF̄

δσi

− δF̄

δm?ν
∂ν
δḠ

δσi

)
− µ

e

(
δF̄

δσi

δḠ

δA?ν
− δḠ

δσi

δF̄

δA?ν

)
∂ν
(σi

n

)

+ σe

(
δḠ

δm?ν
∂ν
δF̄

δσe

− δF̄

δm?ν
∂ν
δḠ

δσe

)
+

1

e

(
δF̄

δσe

δḠ

δA?ν
− δḠ

δσe

δF̄

δA?ν

)
∂ν
(σe

n

)

+

(
δḠ

δm?ν

δF̄

δA?µ
− δF̄

δm?ν

δḠ

δA?µ

)
F?µν

− 1

ne

δF̄

δA?µ
δḠ

δA?ν
F †µν

}
d4x. (7.29)
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Using the approximate bracket of (7.29) with a reduced action S̄, the covariant

AP produces the continuity equation (7.4) along with the following system of

equations:

∂ν

[
nhuµuν +

1

e
(µhi − he)(u

µJν + Jµuν)

+
1

ne2
(µ2hi + he)J

µJν
]

= ∂µp+ JνFµν , (7.30)

euνF?µν −
Jν
n
F †µν − µTi∂

µ
(σi

n

)
+ Te∂

µ
(σe

n

)
= 0, (7.31)

∂ν

[
σi

(
uν +

µJν

ne

)]
= 0, (7.32)

∂ν

[
σe

(
uν − Jν

ne

)]
= 0. (7.33)

Next consider a further reduction using µ → 0, meaning the electron

rest mass inertia is discarded. This limit gives HMHD, which is well known

in the nonrelativistic case but has not been proposed in the relativistic case.

The terms including he must not be ignored when the electron thermal inertia

is greater than the rest mass inertia (i.e., he � mec
2). For example, the

temperature of electrons in an accretion disk near a black hole can be more

than 1011 K.[263] Then, the thermal inertia he is on the order of 100mec
2,

estimated by an equation of state for an ideal gas he = mec
2 + [Γ/(Γ − 1)]Te

with a specific heat ratio Γ = 4/3.[243] In such a case, the he terms are not

negligible.
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Let us employ the following normalizations:

∂ν → L−1∂ν , n→ n0n, Ti,e → mc2Ti,e,

σi,e → n0σi,e, Fµν →
√
n0mc2Fµν ,

using a typical scale length L and density scale n0. Then the generalized

momentum density and vector potential are normalized as

m?ν → n0mc
2 [nhuν − diheJ

ν ]

A?ν → L
√
n0mc2

[
Aν − diheu

ν + di
2he

Jν

n

]
,

where
√

(mc2)/(e2n0L2) ∼
√

(mic2)/(e2n0L2) = c/(ωiL) = di is the normal-

ized ion skin depth, and the normalized Poisson bracket becomes

{
F̄ , Ḡ

}
HMHD

= −
∫ {

n

(
δḠ

δm?ν
∂ν
δF̄

δn
− δF̄

δm?ν
∂ν
δḠ

δn

)
+ m?ν

(
δḠ

δm?µ
∂µ
δF̄

δm?ν
− δF̄

δm?µ
∂µ
δḠ

δm?ν

)
+ σi

(
δḠ

δm?ν
∂ν
δF̄

δσi

− δF̄

δm?ν
∂ν
δḠ

δσi

)
+ σe

(
δḠ

δm?ν
∂ν
δF̄

δσe

− δF̄

δm?ν
∂ν
δḠ

δσe

)
− 2di

(
δF̄

δσe

∂µ
δḠ

δF?µν
− δḠ

δσe

∂µ
δF̄

δF ?µν

)
∂ν
σe

n

+ 2

(
δF̄

δm?λ
∂µ
δḠ

δF?µν
− δḠ

δm?λ
∂µ
δF̄

δF?µν
)
F?νλ

+
4di

n

(
∂µ
δF̄

δF?µν
)(

∂λ
δḠ

δF?λκ

)
F?κν

}
d4x. (7.34)
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The bracket AP with this scaling gives the following equations:

∂ν

[
nhuµuν − dihe(u

µJν + Jµuν) + d2
i

he

n
JµJν

]
= ∂µp+ JνFµν , (7.35)(

uν − di
Jν
n

)
F?µν = −diTe∂

µ
(σe

n

)
(7.36)

∂ν (σiu
ν) = 0, (7.37)

∂ν

[
σe

(
uν − di

Jν

n

)]
= 0. (7.38)

Note, this relativistic HMHD is different from usual nonrelativistic HMHD. In

Sec. 7.5 we explore some consequences of this.

Next, upon taking the limit di → 0, we obtain relativistic MHD.[150,

80, 14] The Poisson bracket for the relativistic MHD obtained by this reduction

is different from the one proposed by D’Avignon et al. in Ref. [73] because a

magnetic field like four vector bν was used there instead of Aµ. The relation

between the two brackets has yet to be clarified.

The same reduction procedure (from XMHD to MHD) is applicable

for the constrained least AP of Sec. 7.2. For example, if we ignore the elec-

tron rest mass, the velocities of each species are reduced as u+
µ → uµ and

u−
µ → uµ − Jµ/ne. Similarly, the entropy and Lagrangian label constraints

are reduced accordingly. With these reductions the constrained least AP gives

the relativistic HMHD equations. We note, the renormalization method used

in Ref. [259] to derive AP for MHD is also applicable for relativistic HMHD.

There are formalisms alternative to the one we presented that employ

either Ohm’s law or the induction equation per se as a constraint for non-
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relativistic [253] and relativistic [29, 30] MHD. However, these formulations

cannot be reduced from the constrained action (7.7). Whereas the physical

meaning of the constraints in (7.7) is obvious, embedding the Ohm’s law as

a constraint is unnatural and arbitrary. Furthermore, the EM field cannot be

expressed by Clebsch potentials from the AP with the Ohm’s law constraint,

unlike the case for our formulation where this emerges naturally in (7.9).

7.5 Relativistic Collisionless Reconnection

In nonrelativistic MHD with the inclusion of electron (rest mass) inertia

(i.e., IMHD), a consequence of electron inertia is the violation of the frozen-

in magnetic flux condition (see Sec. 4.3), and instead, a flux determined by a

generalized field is conserved.[159] Such an electron inertia effect was suggested

as a mechanism for a collisionless magnetic reconnection[198] and has now been

widely studied. However, nonrelativistic HMHD does satisfy the frozen-in

magnetic flux condition because the electron inertia is discarded by the µ→ 0

limit. Hence, there is no direct mechanism causing collisionless reconnection

in nonrelativistic HMHD.

On the other hand, in relativistic XMHD, there are two kinds of elec-

tron inertiae: one from the electron rest mass me and the other from the

electron temperature he. The µ → 0 limit corresponds to neglecting the

former and keeping the latter. Even though the former is small, the lat-

ter may not be ignorable when electron temperature is large enough. The

latter effect still allows for the violation of the frozen-in magnetic flux con-
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Figure 7.1: Geometry of Sweet-Parker model.

dition. Such a collisionless reconnection mechanism was previously proposed

by Comisso et al. using a Sweet–Parker model in the context of relativistic

XMHD.[67] Here we find an alternative flux given by the generalized vector

potential A?ν → Aν − diheu
ν + d2

i (he/n)Jν to be frozen-in.

Let us stress the difference between our present study and the pair

plasma study by Comisso et al.[67] In the latter, the relativistic electron–

positron plasma with the assumption ∆h = 0 was considered. For HMHD,

however, this ∆h = 0 assumption removes the aforementioned collisionless

reconnection mechanism. From (7.27) and (7.28), we find A?µ → Aµ and

A†
µ → Aµ when we take both ∆h = 0 and µ = 0, so there is no longer the

alternative frozen-in flux in HMHD.

To make this statement more explicit, we write the relativistic HMHD

induction equation in a reference frame moving with the center-of-mass (ion)
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velocity. When the electron fluid is homentropic, the right-hand side of (7.36)

vanishes. Taking a curl of a spatial component of (7.36), we obtain the induc-

tion equation in the reference frame,

∂tB
? +∇× (B? × ṽe) = 0, (7.39)

where

B? = B +∇×
(
−diheγv + d2

i he
J

n

)
(7.40)

and

ṽe =

(
v − di

J

γn

)(
1− di

ρq
γn

)−1

. (7.41)

Here, ṽe is a modified electron velocity that becomes the electron velocity ve

in the nonrelativistic limit γ → 1 and ρq → 0. Evidently from (7.39) and

(7.40), the magnetic field B is no longer frozen-in.

Let us compare (7.40) with the induction equations for other magne-

tohydrodynamic models, summarized in Table 7.2. The frozen-in condition

for B is satisfied in nonrelativistic MHD, HMHD, and relativistic MHD. The

frozen-in condition is violated in nonrelativistic two dimensional IMHD, while

the alternative field B+∇×(d2
e J/n), with the electron skin depth de as charac-

teristic length,[198] is frozen-in. Therefore, the scale length of the collisionless

reconnection caused by the electron inertia is de. On the other hand, the alter-

native frozen-in field in relativistic HMHD is B +∇× (−diheγv + d2
i heJ/n),

which has a characteristic scale length with
√
hedi. Since the scale length de

in nonrelativistic IMHD is replaced to
√
hedi in relativistic HMHD, the recon-

nection scale is expected to be
√
hedi. This estimate is the same as that for
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the Sweet–Parker model for relativistic electron–positron XMHD [67] (recall

that he is normalized by mc2 in this study). Here we have inferred the re-

connection scale just by comparing non-relativistic and relativistic Ohm’s law.

However, in non-relativistic case, it was shown that the reconnection scale is

not determined by the generalized Ohm’s law alone when there is a strong

magnetic guide field. The analysis of gyrofluid model revealed that the rele-

vant scale becomes the ion sound Larmor radius in this case. [69] Hence, the

above discussion on the collisionless reconnection is applicable when there is

no guide field.

Barotropic induction eq. frozen-in field

Nonrelativistic
∂tB +∇× (B× v) = 0 B

MHD

Nonrelativistic
∂tB +∇× (B× ve) = 0 B

Hall MHD

Nonrelativistic
∂tB

? +∇× (B? × v) = 0 B? = B +∇×
(
d2

e J/n
)

2D Inertial MHD

Relativistic MHD ∂tB +∇× (B× v) = 0 B

Relativistic
∂tB

? +∇× (B? × ṽe) = 0
B? = B+

Hall MHD ∇× (−diheγv + d2
i heJ/n)

Table 7.2: Induction equations for nonrelativistic MHD, HMHD and IMHD,
and relativistic MHD and HMHD.
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7.6 Nonrelativistic XMHD – 3+1 decomposition

The covariant Poisson bracket AP formalism also encompasses nonrel-

ativistic theories. We will show this in the context of XMHD, then infer that

this is the case for nonrelativistic MHD and the nonrelativistic ideal fluid. Be-

cause nonrelativistic theories contain space and time separately, it is natural

to pursue this end by beginning from the 3+1 decomposition for relativistic

theories described in Ref. [166]. To this end we state some general tools before

proceeding to the task at hand.

The functional derivative of (7.22) is defined relative to the space-time

pairing, while functional derivatives in conventional Hamiltonian theories are

defined relative to only the spatial pairing, i.e.

δF =

∫
δn

δF

δn
d3x . (7.42)

For functionals of the form F =
∫

Fdx0 where F contains no time derivatives

of a field, it follows e.g. that

δF

δn(x0,x)
=

δF

δn(x)
, (7.43)

where we explicitly display the arguments to distinguish space-time from space

functional derivatives. For nonrelativistic theories, we need to consider func-

tionals that are localized in time, i.e., have the form

F =

∫
δ(x0 − x0′) F dx0 . (7.44)

Observe, in this case, if F contains no time derivatives of the field n, then

δF

δn(x0,x)
= δ(x0 − x0′)

δF

δn(x)
, (7.45)
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and similarly for other fields. Next, let us suppose that a functional G is

separable in the following sense

G = G0 +

∫
G dx0 , (7.46)

where all of the time-like components of fields are contained in the functionals

G0 and G contains no time derivatives of fields. For functionals G for the form

of (7.46) and F for the form of (7.44), it will be shown that

0 = {F,G} = −dF

dt
+ {F ,G }(3) (7.47)

where {F,G} is the canonical bracket (7.21) or the noncanonical bracket (7.23),

and {F ,G }(3) is the appropriate nonrelativistic Poisson bracket. In this way

one can establish the connection between Poisson bracket APs and usual non-

canonical Poisson bracket Hamiltonian formulations.

For the case at hand, let us return to the arbitrary mass plasma (m+

and m−) and consider a nonrelativistic limit with

h→ mc2, ∆h→ 0, h† → (m+m−)c2/m, γ± → 1, ∂tE = 0.

These result in J0 = en(γ+ − γ−) → 0 and J = ∇ × B, and the generalized

fields become

m?ν → nmc2uν = mν ,

A?ν → Aν +
1

ne2

(m+m−
m

c2
)
Jν ,

and

A†
ν

=
m+ −m−

m
A?ν − m−m+c

me
uν ,
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with the four velocity becoming uν = (1, v/c). Using the thermodynamic

relations ρ = n(mc2 +E) and p = nh−ρ, with internal energy E , the following

limit is calculated

1

2
(ρ− p) = n(mc2 + E)− 1

2
nh → n

(
1

2
mc2 + E

)
.

We first show a nonrelativistic Hamilton’s equation for the Clebsch

variables. The action (7.7) is separated as

S[z] =

∫ [
n∂0φ+

∑
±

(
σ±∂

0η± + ϕ±∂
0λ±
)]

d4x−
∫

H d0x,

with a Hamiltonian

H [z] =

∫ [
n(mc2 + E+ + E−) +

1

2
nmv2 +

1

2
J ·A?

]
d3x.

(7.48)

Here v = m/nmc, A?. Substituting, this action and the localized functional

(7.44) to the covariant canonical bracket (7.21), we get

{F, S}canonical =

∫ (
dF

dt
− {F , H }(3)

canonical

)
δ(x0 − x0′) dx0

where {F , H }(3)
canonical is a canonical Poisson bracket defined in the three di-

mensional space. Thus, we get the nonrelativistic canonical Hamilton’s equa-

tion as

dF

dt
= {F , H }(3)

canonical ,

which describes the time evolution of the Clebsch variables z. Transforming the

Clebsch variables to v and B?, we obtain the non-relativistic XMHD equations,

which will be explicitly shown below.
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Now we are set to apply this 3+1 procedure to the noncanonical bracket

(7.23). Upon rearranging the action of (7.20) we obtain

S̄ =

∫
m0m

0

2nmc2
d4x−

∫
H dx0, (7.49)

with the Hamiltonian

H
[
n, σ, mi, A?i

]
= (7.50)

∫ [
− mim

i

2nmc2
+ n

(
1

2
mc2 + E+ + E−

)
− A?iJi

2

]
d3x,

where we used J0 = 0 to get the last term.

Then we calculate {F̄ , S̄}XMHD = 0 to get the nonrelativistic XMHD

equations. The phase space variables must be (n, σ±, m
i, A?i). Hence we

put F̄ = F̄ [n, σ±, m
i, A?i]. Since the action (7.49) does not depends on A?0,

we may write S̄ = S̄[n, σ±, m
0, mi, A?i]. Therefore all the terms including

δF̄ /δm0, δF̄ /δA?0, and δS̄/δA?0 are dropped. Upon writing

F̄ =

∫
δ(x0 − x0′) F [n, σ±, m

i, A?i] dx0 ,
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the covariant bracket AP can be written as

0 =
{
F̄ , S̄

}
XMHD

= −
∫ {

n
m0

nmc2
∂0

[
δ(x0 − x0′)

δF

δn

]
+ δ(x0 − x0′)n

[
−δH
δmi

∂i
δF

δn
+
δF

δmi
∂i
(

m0m
0

2n2mc2
+
δH

δn

)]
+

∑
±

(
σ±

m0

nmc2
∂0

[
δ(x0 − x0′)

δF

δσ±

]
+δ(x0 − x0′)σ±

[
−δH
δmi

∂iδFσ± +
δF

δmi
∂i
(
δH

δσ±

)]
±δ(x0 − x0′)

m∓
me

(
δF

δσ±

δH

δA?i
− δH

δσ±

δF

δA?i

)
∂i
(σ±
n

))

+ mi

(
m0

nmc2
∂0

[
δ(x0 − x0′)

δF

δmi

])
+ δ(x0 − x0′)m0

(
−δF
δmi

∂i
m0

nmc2

)
− δ(x0 − x0′)mj

(
δH

δmi
∂i
δF

δmj
− δF

δmi
∂i
δH

δmj

)
+ δ(x0 − x0′)

(
m0

nmc2

δF

δA?i

)(
∂iA?0 − ∂0A?i

)
+ δ(x0 − x0′)

(
δH

δmi

δF

δA?j
− δF

δmi

δH

δA?j

)
F ?ji

− δ(x0 − x0′)
1

ne

δF

δA?i
δF

δA?j
F †

ij

}
d4x.

Next we substitute m0 = m0 = nmc2 and manipulate some of the terms to

obtain∫ (
δF

δn
∂0n+

δF

δσ+

∂0σ+ +
δF

δσ−
∂0σ− +

δF

δmi
∂0mi +

δF

δA?i
∂0A?i

)
d3x =

1

c

dF

dt
,

yielding {
F̄ , S̄

}
XMHD

=
1

c

∫ (
dF

dt
− {F , H }(3)

)
δ(x0 − x0′) dx0

+

∫
A?0∂i

(
δF

δA?i

)
δ(x0 − x0′) d4x ,
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with a three dimensional Poisson bracket {F , G }(3) that will be explicitly

shown below. Evaluating the δ-function shows
{
F̄ , S̄

}
XMHD

= 0 is equivalent

to Hamilton’s equation along with a gauge-like condition:

dF

dt
= {F , H }(3) and ∇ ·

(
δF

δA?

)
= 0. (7.51)

The second equation of (7.51), the gauge condition, is handled mani-

festly by transforming from the phase space variable A? to B?; since δF/δA? =

∇ × (δF/δB?), with this transformation the second condition is automati-

cally satisfied. Finally, we transform m to v and find that the Poisson bracket

{F , G }(3) becomes

{F , G }(3) =

∫ {(
δG

δv
· ∇δF

δ%
− δF

δv
· ∇δG

δ%

)
+
∇× v

%
·
(
δF

δv
× δG

δv

)
+

∑
±

[
σ±
%

(
δG

δv
· ∇δF

δσ±
− δF

δv
· ∇δG

δσ±

)

∓cm∓
e

(
δF

δσ±

(
∇× δG

δB?

)

−δG
δσ±

(
∇× δF

δB?

))
· ∇
(
σ±
%

)]

−
[
δG

δv
×
(
∇× δF

δB?

)
− δF

δv
×
(
∇× δG

δB?

)]
· B

?

%

− mc

%e

[(
∇× δF

δB?

)
×
(
∇× δG

δB?

)]
·B†

}
d3x, (7.52)

where % = mn and ∇ = −∂i. This Poisson bracket is a generalization of

the nonrelativistic electron-ion XMHD bracket proposed before [1, 156]. The
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bracket of (7.52) differs from the previous results (See Eq. (3.22)) by the choice

of scaling and, more importantly, the assumption m− � m+ is not made.

Now consider the Hamiltonian of (7.50); it becomes

H [n, σ, v, B?] =∫ [
%|v|2

2
+ %

(
1

2
mc2 + E+ + E−

)
+

B? ·B
2

]
d3x, (7.53)

where E±/m is rewritten as E±. The functional derivatives of H are

δH

δ%
=

1

m

δH

δn
=
v2

2
+
c2

2
+
∑
±

(
E± + %

∂E±
∂%

)
+
m+m−c

2

2%2e2
J2,

δH

δσ±
= %

∂E±
∂σ±

,
δH

δv
= %v,

δH

δB?
= B .

Finally, using the above Hamilton’s equations of (7.51) give

∂%

∂t
= {%, H }(3) = −∇ · (%v)

∂σ±
∂t

= {σ±, H }(3) = −∇ ·
[(

v ± cm∓
%e

J

)
σ±

]

∂B?

∂t
= {B?, H }(3) =

∑
±∇×

[
cm∓
e
T±∇

(
σ∓
%

)]
+∇× (v ×B?)−∇×

(
mc

%e
J×B†

)

∂v

∂t
= {v, H }(3) = −(∇× v)× v −∇

(
v2

2
+

m+m−c2

2%2e2
J2

)
−∇p

%
+

J×B?

%
,
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the nonrelativistic Lüst equations [163]. Note, here we used the thermody-

namic relations

dE = Td

(
σ

%

)
+

p

%2
d% =

T

%
dσ +

1

%2
(p− Tσ)d%

and

%d

(
E + %

∂E
∂%

)
+ σd

(
%
∂E
∂σ

)
= dp.

In closing this section, we seek the Casimirs of (7.52) for the barotropic

case. They must satisfy ∀F : 0 = {F,C} leading to a system

∇×
(

B?

%
× Cv + CA? × B?

%

)
= 0 (7.54)

∇ · Cv = 0 and Cv ×
∇× v

%
+ CA? × B?

%
−∇C% = 0, (7.55)

where we use the abbreviated notation C% := δC/δ%. Seeking a helicity Casimir

we assume a linear combination

C(λ) =
1

2

∫
d3x

(
A? + λv

)
·
(
B? + λ∇× v

)
, (7.56)

which is substituted into (7.54) and (7.55) leading to a quadratic equation

for λ with roots λ± = ±m±c/e. These new Casimirs constitute topological

constraints for a plasma with m+, m− species masses. In the limit m− � m+

these Casimirs become those of Refs. [1, 158]. For a discussion of topological

properties of XMHD see Ref. [156]. Notice that the C± coincide exactly with

the known 2-fluid canonical helicities
∫
P ∧ dP for each species of Refs. [165,

260]. However we emphasize here the importance of the variables v and A?.
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In addition the helicity Casimirs, when barotropic condition is violated

we obtain the family

C(σ) =

∫
d3x % f

(σ+

%
,
σ−
%

)
, (7.57)

albeit with the condition σ+/% being a function of σ−/% or f,+− = 0, where

f,+ denotes differentiation with respect to the first argument.

7.7 Conclusion

We have formulated APs for relativistic XMHD.[125] For the con-

strained least action principle, the constraints, namely, conservation of num-

ber density, entropy, and Lagrangian labels for each species, were employed

in the manner of Lin. Extremization of the constrained action led to Cleb-

sch potential expressions for the generalized momentum and the generalized

vector potential. Then, variable transformation from the Clebsch potentials

to the physical variables led to the covariant Poisson bracket for XMHD. In

the Poisson bracket AP the constraints are hidden in the degeneracy of the

Poisson bracket. Through these APs we have unified the Eulerian APs for

all magnetofluid models. Indeed, returning to Table 7.1 we see that all slots

for Eulerian APs have been completed. Now, the only remaining work is the

formulation of the AP for relativistic XMHD in the Lagrangian description.

Examination of the results of Ref. [72] for nonrelativistic XMHD suggests this

may not be an easy task.

Another important result was our formulation of relativistic HMHD,
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obtained by taking a limit of the AP for XMHD. We observed that while non-

relativistic HMHD does not have a direct mechanism for collisionless recon-

nection, relativistic HMHD does allow the violation of the frozen-in magnetic

flux condition via the electron thermal inertia effect. We also found an alter-

native frozen-in flux, in a manner similar to that for nonrelativistic IMHD.

The scale length of the collisionless reconnection was shown to correspond to

the reconnection layer width estimated by Sweet–Parker model.[67] Further

study of relativistic HMHD, such as a numerical simulation of (7.39), will be

the subject of future work.

Lastly in this chapter, we passed to a nonrelativistic limit within the

covariant bracket formalism, thus arriving at a “covariant” bracket for nonrel-

ativistic XMHD. [125] Then we derived the usual 3+1 noncanonical Poisson

bracket. However, beyond the results of Refs. [1, 156], the result of (7.52)

does not assume smallness of electron mass and thus is also applicable to

electron–positron plasmas.
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Chapter 8

General relativistic fluids

8.1 Introduction

In the previous chapter we discussed how a covariant Poisson bracket

can be obtained for relativistic XMHD [125]. This should in principle open

relativistic XMHD to analyses that use Hamiltonian form, such as energy-

Casimir stability, etc. However it is not easy to find such Casimirs and let

alone interpret them as integrals of motion in the covariant language. For

instance in the 3+1 case we have ∀F : {C,F} = 0 implies foliation of phase

space by Casimirs as well as Ċ = {C,H} = 0. However in the covariant

case the Poisson bracket is essentially a derivative of an action principle with

constraints hidden in the degeneracy of the Poisson operator. Equations of

motion are obtained by commuting arbitrary functionals with the action as

opposed to the Hamiltonian, i.e. requiring {S, F} = 0. In addition, the co-

variant approach may suffer from a problem stated in private communications

by Eric D‘Avignon, namely that if we add gravity to the fluid Poisson bracket

[166] then it is not clear how the Jacobi identity is satisfied.

Therefore we propose a step towards purely Hamiltonian description,

i.e. to find a 3+1 Hamiltonian formulation for relativistic XMHD. This can be
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done systematically using the Arnowitt, Deser, Misner approach [16]. Orig-

inally it was devised to quantize gravity although now it is more often used

to numerically simulate general relativity. The details of the procedure are

outlined in section 8.3. Thus once the ADM Poisson bracket for the matter

model is obtained, adding gravity is automatic. Some may wonder where one

would apply general relativistic extended magnetohydrodynamics. For this

we direct the audience to [135, 18]. One could object that near black holes

quantum effects may become important. However, we are confident that there

are regions where a classical treatment is sufficient (for instance in the black

hole accretion discs and magnetosphere[134]). For example, in test-relativistic

hydrodynamics1, the density of the fluid is low and thus its effect on gravity

can be neglected. This can be done if the energy density of the fluid is low

enough and so in this limit one can ignore quantum field theory effects. In

addition, using ADM treatment allows one to cast special relativistic XMHD

in general coordinate systems even if the space is flat. Also, special-relativistic

XMHD has applications to laser accelerated plasmas.

The outline of this chapter is as follows. In Sec. 8.2 we consider a

simplified fluid case that lacks electro-magnetic contribution. The purpose of

that section will be to re-derive covariant noncanonical Poisson bracket for

the ideal fluid. In Sec. 8.3 we will discuss how a space-time foliation can

be done in a rigorous controlled way. In Sec. 8.4 the 3+1 fluid bracket will

1Test relativistic hydrodynamics refers to a model where the fluid is subject to the
background curvature of space-time however the energy of the fluid is sufficiently small that
it does not alter the gravitational field
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be re-derived using the standard Legendre transform. Next, in Sec. 8.5 the

covariant noncanonical Poisson bracket will be derived for test-relativistic Hall

MHD (when gravity is decoupled from the fluid the Jacobi identity is satisfied).

Sec. 8.6 will involve exposition of the new canonical ADM Poisson bracket for

general relativistic Hall MHD using Clebsch variables. In Sec. 8.7 we repeat

the derivation of the invariants for GR MHD. Finally, Sec. 8.8 deals with GR

XMHD invariants along with some discussion on quasineutrality.

8.2 Coviariant fluid action principle

We start by describing the well known covariant action principle [166,

125]. Although it evaluates to pressure on-shell uαuα = −12 like the one used

by [222, 49] it differs from both and is more closely related to the dust action

described in [50, 46].

S =

∫ √
−g d4x

(
−hnu

αuβgαβ
2

+
p− ρ

2

)
. (8.1)

Here h is enthalpy, n is the rest mass density and u is the four-velocity.

Barotropic quantities such as therest mass density ρ = ρ(n) and pressure

p = p(n) are related as

h =
dρ

dn
=
p+ ρ

n
(8.2)

The action principle (AP) is one in terms of Clebsch potentials,

mα := hnuα = n∂αφ+ λI∂αφ
I (8.3)

2We choose metric signature opposite to the one used in Chapter 7 in accordance with
the ADM literature. Another important change in what follows is that we will resort to
c = 1 units.
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In the covariant theory, variational derivatives are defined in the intrinsic sense,

δF =

∫ √
−g d4x

δ̃F

δχk
δχk. (8.4)

If S is varied with respect to these fields χ = (n, φ, λI , φ
I) one obtains

0 =
δ̃S

δφ
=

1√
−g

∂α

(
mα

hn
n
√
−g
)

= (nuα);α, (8.5)

0 =
δ̃S

δφI
= (λIu

α);α and 0 =
δ̃S

δλI
= −uα∂αφI , (8.6)

0 =
δ̃S

δn
=
uαuα

2

d

dn
(hn) +

h

2
+
n

2

dh

dn
− h− uα∂αφ (8.7)

which can be reduced to

uα∂αφ = (uαuα + 1)
n

2

dh

dn
+ (uαuα − 1)

h

2
. (8.8)

There is a hidden constraint here that is seen by applying the Clebsch decom-

position of (8.3) to (8.8) and using (8.6)

mαmα = mαn ∂αφ+ nmαλi∂αφ
i = n2huα∂αφ⇒

(
n

dh

dn
− h
)

(uαuα + 1) = 0.

Thus uαuα = −1 follows. Moreover, the equation of motion for the fluid in

terms of the physical fields can be obtained from (8.5) - (8.8) as follows:

(mβu
α);α = nuαφ;βα + λIu

αφI;βα = n(uαφ,α),β − nhuαuα;β, (8.9)

and thus

(nhuβu
α);α = p,β

uαu
α − 1

2
+ n

(
uαuα + 1

2
n

dh

dn

)
,β

, (8.10)
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which is consistent with the known equations of motion since uαuα = −1. As

a consistency check we observe that the energy-momentum tensor evaluates to

Tαβ = −2
δ̃S

δgαβ
= (ρ+ p)uαuβ + pgαβ. (8.11)

We can also establish the covariant Poisson bracket in the spirit of

[166]. Because the Legendre transform is not a covariant process, we choose to

assign fields as coordinates or momenta depending on a form that can later be

successfully reduced to noncanonical bracket based on the n,mα fields. The

canonical bracket is thus defined

{F,G}cc
fluid =

∫ √
−gd4 x

(
δ̃F

δφ

δ̃G

δn
+
δ̃F

δφI
δ̃G

δλI
− F ↔ G

)
, (8.12)

such that the AP: 0 = {F, S} for arbitrary functional F = F [φ, n, φI , λI ] and

the action S (8.1) yields equations of motion (8.5) - (8.8). Next we perform

a coordinate change from canonical to noncanonical variables (φ, n, φI , λI)→

(n,mα) by applying the chain rule to (8.3):

δ̃G

δn
→ δ̃G

δn
+ φ,β

δ̃G

δmβ

and
δ̃F

δφ
→ −

(
n
δ̃F

δmα

)
;α

(8.13)

δ̃G

δλi
→ φI,β

δ̃G

δmβ

and
δ̃F

δφI
→ −

(
λI
δ̃F

δmα

)
;α

. (8.14)

This transforms (8.12) to the following covariant bracket[166, 125]

{F,G}cl
fluid = −

∫
d4x
√
−g

(
n
δ̃G

δmα

∂α
δ̃F

δn
+mβ

δ̃G

δmα

∂α
δ̃F

δmβ

− F ↔ G

)
(8.15)
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It appears that mαm
α = −h2n2 is no longer a a dynamical constraint and

must be imposed on top of the AP. The latter can be rewritten as

0 = {F, S}cl
fluid =

∫
d4x
√
−g

[(
n
δ̃S

δmα

)
;α

δ̃F

δn
+ n

δ̃F

δmα

∂α
δ̃S

δn

+
δ̃F

δmα

1√
−g

(
√
−g mα

δ̃S

δmβ

)
,β

+mβ
δ̃F

δmα

∂α
δ̃S

δmβ

]
, (8.16)

where we have used (
√
−gV α),α/

√
−g = (V α);α. The variational derivatives

of the action are

δ̃S

δmα

= −uα and
δ̃S

δn
= −h. (8.17)

Since δ̃F/δn and δ̃F/mα are arbitrary we must have (nuα);α = 0 and

0 = n∂α(−h)− 1√
−g

∂β(nhuαu
β
√
−g)− nhuβ∂αuβ = (8.18)

−∂αp+ (nhuαu
β);β + Γνβα u

νuβhn− nhuβuβ;α − nhu
βΓνβα u

ν (8.19)

consistent with (8.10). One problem of the covariant Poisson bracket as de-

scribed above is that we are unable to find any Casimirs and even if some were

found interpret them as some structure on the phase space; thus, so far, the

advantages of covariant Hamiltonian approach are not explicit.

Sometimes it is useful to work with Taub’s current V α := huα. For

instance the bracket (8.15) then is rewritten as

{F,G}nc
fluid = −

∫
d4x
√
−g

(
δ̃G

δVα
∂α
δ̃F

δn
− δ̃F

δVα
∂α
δ̃G

δn
− ∂αVβ − ∂βVα

n

δ̃G

δVα

δ̃F

δVβ

)
,

(8.20)

while variations of the action are now

δ̃S

δVα
= −nV

α

h
and

δ̃S

δn
= 0. (8.21)
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The expression {Vα, S}nc
fluid = 0 leads to compact equations

0 = V α(∂αVβ − ∂βVα) = V α(Vβ;α − Vα;β), (8.22)

because of the antisymmetry.

8.3 Space-Time Foliation

Here we review the formalism necessary for developing our ideas in gen-

eral relativity. There are two major ways to construct Hamiltonian formalisms

there: using the multi-symplectic formalism [250] and the ADM approach [16],

which involves splitting the space-time into a foliated family of the space-like

hypersurfaces. We choose this second approach because it appears to be an

easier and more straightforward generalization of non-relativistic results. One

purpose of constructing a Hamiltonian theory for General Relativistic Ex-

tended MHD is to analyze the stability of astrophysical objects. It is also

possible to pass to the special relativistic context, which applies to laboratory

plasmas (notice that this retains the freedom of using some general coordinate

system). The price to pay is the loss of manifest covariance. This makes the

theory less elegant, however much easier to apply to numerical calculations.

Another advantage for adopting the ADM is that it should be relatively easy

to couple the plasma to gravity since Hamiltonian gravity in this context has

already been developed.

Following the standard prescription we introduce (For background see

[176, 28, 46]) the scalar field t that foliates the space-time manifold into hyper-
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Σ−1

t
Σ0

nα

Nα

tα t

Σ1

t

Figure 8.1: Foliation of space-time M by hypersurfaces Σ.

surfaces (See Fig. 8.1). In what follows Greek indicies will label components

of 4-vectors (0, 1, 2, 3). The normal unit vector nα has covariant components

nα = −Nt,α, where N is a lapse function that measures the difference in

the rate at which the time flows between “Eulerian” and “coordinate” ob-

servers. An eulerian observer is defined to follow the nα congruence, while

a coordinate observer is one that follows the tα congruence. By definition

N = (−t,α gαβ t,β)1/2. The four-vector tα is chosen so that t corresponds to a

time-like coordinate of the coordinate observer: t,αt
α := 1. This has the conse-

quence nαt
α = −N . It is convenient to work with the metric on a hypersurface

γαβ (also a projection operator) defined as γαβ := gαβ + nαnβ. With this it

is natural to define shift vectors that measure how 3-coordinates connect to

each other as we move accross hypersurfaces Nα := γαβ t
β, i.e. project tα onto

a hypersurface. We see that tα − Nα = Nnα. It is important to distinguish

between the special vectors, say ~N obtained by projecting and 4-vectors, like
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nα. Clearly, in this case, n · ~N := nαN
α = 0.

In the coordinate basis, where i = (1, 2, 3) latin indices label com-

ponent of 3-vectors like Nα = (0, N i), while nα = (−N, 0, 0, 0) and nα =

(1/N,−N i/N). So long as we are concerned with the time evolution of scalars,

the Lie derivative is tα∂α = ∂/∂t. The metric itself can be represented in this

basis as (
g00 g0j

gi0 gij

)
=

(
NkN

k −N2 Nj

Ni γij

)
, (8.23)

with the inverse(
g00 g0j

gi0 gij

)
=

(
−1/N2 N j/N2

N i/N2 γij −N iN j/N2

)
. (8.24)

It can be shown that g := det ghν = −N2 det γhν =: −N2γ. It is useful to

know that the contravariant time-like components of spatial tensors including

γ0i and γ0
i vanish.

8.4 ADM fluid bracket

Now we apply the space-time split described in the previous section.

The Lagrangian in this splitting is

L =

∫
N
√
γ d3x

(
−mαmβ

2hn

[
γαβ − (tα −Nα)(tβ −Nβ)

N2

]
+
p− ρ

2

)
, (8.25)

which using (8.3) we can rewrite this as

L =

∫
d3x

( √
γ

2Nhn
(nφ̇+ λI φ̇

I −mαN
α)2 +N

√
γ
p− ρ

2
− mαmβγ

αβ

2hn

√
γN

)
.
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The ADM variations are performed in the 3+1 sense in contrast to (8.4),

δF =

∫
d3x

δF

δχk
δχk (8.26)

Now, following the approach outlined in [50] we define the canonical momenta

as

π :=
δL

δφ̇
=

√
γ

N

nφ̇+ λJ φ̇
J −mαN

α

h
=
√
γnuαnα (8.27)

πI :=
δL

δφ̇i
=

√
γλI

N

nφ̇+ λJ φ̇
J −mαN

α

h
=
λiπ

n
. (8.28)

Thus π ∂αφ+ πI ∂αφ
I = πmα/n and the Legendre transform yields

H =

∫
d3x(πφ̇+πiφ̇

i)−L =

∫
d3x(π ∂αφ+πi ∂αφ

i)(Nα +nαN)−L. (8.29)

After some transformations we obtain

H =

∫
d3x (NH +NαHα) , (8.30)

where

Hα := hπuα = π∂αφ+ πI∂αφ
I , (8.31)

H :=
hπ2

2
√
γn
−√γ p− ρ

2
+
mαmβγ

αβ√γ
2hn

. (8.32)

Now there is no momentum conjugate to n, which imposes a Dirac constraint

0 =
δH

δn
= N

δH
δn

=
N
√
γ

2

(
n

dh

dn
+ h

)(
π2

γn2
− 1− miγ

ijmj

h2n2

)
. (8.33)

This leads to π2 = n2γ(1 + uiγ
ijuj). From (8.27) we see that

π = −n
√
γ(1 + uiγijuj). (8.34)
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If we set−1 = uαu
α = uαuβγ

αβ−uαuβnαnβ ⇒ (nαu
α)2 = 1+uiγ

ijuj ⇒ Nu0 =

−nαuα =
√

1 + uiγijuj consistent with (8.34); thus, −1 = uαu
α follows from

(8.33). This is similar to how (8.7) works. Using (8.34) one can simplify (8.32)

H =
hπ2

√
γn
−√γp =

√
γ
[
ρ(1 + uiγ

ijuj) + puiγ
ijuj
]

=
√
γ nαT

αβnβ. (8.35)

In addition we observe that Hi =
√
γγiµT

µνnν . At this point the formalism

becomes equivalent to the one described in [49]. The difficulty with (8.34) is

that its dependence on n is implicit in h(n). Since in general we are unable

to invert this expression, we need to apply it as a constraint when taking

variations of Hamiltonian. More specifically, using δ
√
γ =

√
γγijδγij/2

3 we

obtain the constraint

h
√

1 + uiuiδπ +

√
γnh

2

[
γij(1 + uiγ

ikuk)− γilulγjkuk
]
δγij +

√
γnγijujδ(hui)

+
√
γ

[
−nuiγijuj

dh

dn
+ (1 + uiγ

ijuj)h

]
δn = 0. (8.36)

This can be applied directly to the variation of the Hamiltonian

δH = −2h
√

1 + uiγijujδπ −
[
h(1 + uiγ

ijuj)− n
dh

dn
uiγ

ijuj

]
δn

−
√
γγijδγij

2

[
nh(1 + uiγ

ijuj) + p
]
, (8.37)

leading to

δH =

√
γ

2

[
pγij + (ρ+ p)uiuj

]
δγij −

hδπ + uiδHi√
1 + ukγkjuj

. (8.38)

3Whether the following operations can be performed without specifying coordinate ob-
server should be addressed later
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This allows calculation of Hamilton’s equations of motion using the canonical

ADM-Poisson bracket

{F,G}ac
fluid =

∫
d3x

(
δF

δφ

δG

δπ
+
δF

δφI
δG

δπI
− F ↔ G

)
, (8.39)

obtaining

φ̇ = {φ,H}ac
fluid =

δH

δπ
= −N h+ uiφ,i√

1 + ukγkjuj
+N iφ,i , (8.40)

which can be rewritten as

−h =

√
1 + uiγijuj

N
(φ̇−Nαφ,α)+γijuiφ,j = −nβnαuβφ,α+γαβuβφ,α = gαβuαφ,β

equivalent to (8.8). Similarly,

π̇ = −δH
δφ

=

(
N iπ − Nγijujπ√

1 + ukγklul

)
,i

or (8.41)

since π must be a tensor density of weight 1 [46] and π̇ = Ltπ is a Lie-derivative

0 = (tαπ −Nαπ),α − (N
√
γuiγ

ijn),j = (
√
−gnαnnβuβ),α − (

√
−guβγβαn),α ,

also consistent with (8.5). The same procedure can be repeated for the other

two phase space variables

φ̇I = {φI , H}ac
fluid =

δH

δπI
= −N

φI,jγ
jiui√

1 + ukγklul
+N jφI,j (8.42)

π̇I = −δH
δπI

=

(
N jπI −

NγjiuiπI√
1 + ukγklul

)
,j

. (8.43)
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Now that we have recovered the correct equations of motion we may choose to

transform to noncanonical coordinates again. Using (8.31) and the chain rule

we see

δG

δπ
→ δG

δπ
+ φ,i

δG

δHi

and
δF

δφ
→ −

(
π
δF

δHi

)
,i

(8.44)

δG

δπI
→ φI,j

δG

δHj

and
δF

δφI
→ −

(
πI
δF

δHj

)
,j

, (8.45)

and (8.39) becomes

{F,G}lc
fluid = −

∫
d3x

(
π
δG

δHi

∂i
δF

δπ
+Hj

δG

δHi

∂i
δF

δHj

− F ↔ G

)
. (8.46)

Recall that because of the negative sign in π this actually matches the form of

the non-relativistic fluid bracket. Thus the same Casimirs (with renormalized

density and velocity) trivially follow. The equations of motion for π, equivalent

to (8.41), trivially lead to baryon conservation. The momentum equation from

(8.46) and (8.38),

Ḣk = {Hk, H}lc
fluid = −π∂k

h

u0
+∂i

[
Hk

(
N i − γijuj

u0

)]
+Hi ∂k

(
N i − γijuj

u0

)
,

(8.47)

is a little more involved and to see that it is equivalent to (8.10) it is useful to

define a dummy variable,

jα :=
√
−gnuα = N

√
γ n(γαβ − nαnβ)uβ = −π

(
γαβuβ
u0

+ tα −Nα

)
. (8.48)

Thus in addition to ∂αj
α = 0 we have

j0 = −π, ji =

(
N i − γijuj

u0

)
π and Hαj

α =
hπ2

u0
, (8.49)
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which using (8.41) allows rewriting (8.47) as

jα∂α
Hk

π
+Hα∂k

jα

π
= π∂k

h

u0
= −∂kπ

Hαj
α

π2
+ ∂k

Hαj
α

π
. (8.50)

This can be compactly represented as

jα
(
∂α
Hk

π
− ∂k

Hα

π

)
= 0, (8.51)

consistent with (8.22). Alternatively it is possible to rewrite (8.47) in the form

∂α (Hkv
α) = N

√
γ ∂kp+Hα∂kt

α −
πhuβu

β
;k

u0
+
Hαu

βΓαβk
u0

, (8.52)

where vα := uα/u0 and we have introduced the Γαβk Christoffel symbols. If we

define Si := −Hi/
√
γ in the coordinates (tα = (1, 0, 0, 0)), the last expression

becomes.

∂0 (
√
γSi) + ∂j

(√
γSiv

j
)

= −N√γ
(
∂ip+

SαSβ
2NS0

∂ig
αβ

)
, (8.53)

which can be found in [28] (eq. 5.14).

Sometimes it is more convenient to work with Taub’s current Vi := hui,

like in the covariant case of Eq. (8.20). Clearly from the covariant example it

is clear that the ADM version will take the form

{F,G}nc
fluid = −

∫
d3x

(
δG

δVi
∂i
δF

δπ
− δF

δVi
∂i
δG

δπ
− (∂iVj − ∂jVi)

π

δG

δVi

δF

δVj

)
.

(8.54)

It is not hard to show from (8.38) that

δH

δVi
= ji and

δH

δπ
= V0. (8.55)
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What follows are Hamilton’s equations of motion:

π̇ = {π,H}nc
fluid = ∂ij

i ⇒ ∂αj
α = 0 and (8.56)

v̇k = ∂kV0 −
∂kVj − ∂jVk

π
jj ⇒ j0∂0Vk + jj∂jVk

π
=
j0∂kV0 + jj∂kVj

π
(8.57)

equivalent to (8.51).

8.5 Covariant Bracket for GR Hall MHD

Here for simplicity we consider the electron inertia-less and non-relativistic

temperature limit of the AP described in [125, 124] and in Chapter 7. The

action is

S[φ, φ±, n, ζ±] =

∫ √
−g d4x

(
−m

νmν

2nh
− F µνFµν

4
+
p− ρ

2

)
, (8.58)

where

mν = nhuν = nVν = n∂νφ+ nζ+∂νφ+ + nζ−∂νφ− and Aν = −ζ−∂νφ−
e

.

(8.59)

Denoting Jµ := F µν
;ν , equations of motion are obtained as follows

0 =
δ̃S

δn
=

(
n

dh

dn
− h
)
uνu

ν + 1

2
(8.60)

0 =
δ̃S

δφ
= (nuν);ν 0 =

δ̃S

δζ+

= −nuνφ+,ν 0 =
δ̃S

δφ+

= (nζ+u
ν);ν (8.61)

0 =
δ̃S

δζ−
= −n

(
uν − Jν

en

)
φ−,ν 0 =

δ̃S

δφ−
=

[
n ζ−

(
uν − Jν

en

)]
;ν

, (8.62)

It is not hard to see using (8.59) that (8.60) implies

uνφ,ν = eAνu
ν − h. (8.63)
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It is not clear whether the other constraint for the electron four-velocity is also

obtained in the similar fashion(
uν −

Jν
en

)(
uν − Jν

en

)
= −1. (8.64)

It is possible that the reason we are unable to produce this constraint is that

quasineutrality has been imposed a priori, i.e. otherwise we would have sep-

arate bulk and electron densities and potential φ-s. Be that as it may, this

constraint is not necessary to produce the right equations of motion from the

AP. The extension of (nonrelativistic) Hall MHD without the assumption of

quasineutrality is considered in [52].

Next, we construct the covariant canonical bracket

{F,G}ac
Hall =

∫ √
−g d4 x

(
δ̃F

δφ

δ̃G

δn
+
∑
±

δ̃F

δφ±

δ̃G

δλ±
− F ↔ G

)
, (8.65)

and effect the coordinate change to (n, V α, Aβ) resulting in the bracket

{F,G}ac
Hall =

∫
d4x
√
−g

(
δ̃F

δVα
∂α
δ̃G

δn
− ∂αVβ

n

δ̃F

δVα

δ̃G

δVβ
− ∂αAβ

n

δ̃F

δAα

δ̃G

δVβ

+
∂αAβ
en

δ̃F

δAα

δ̃G

δAβ
+
Aβ
en

[
δ̃F

δAα

];α
δ̃G

δAβ
− F ↔ G

)
. (8.66)

To achieve full gauge invariance, however, one realizes that F µν constitute the

true physical fields and not Aµ. Using

δ̃G

δAµ
=

(
δ̃G

δF µν
− δ̃G

δF νµ

);ν

= 2

(
δ̃G

δF µν

);ν

, (8.67)
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where the last equality is possible if the functional involves F µν quadratically.

So the last term in (8.68) vanishes4 and we arrive at

{F,G}an
Hall =

∫
d4x
√
−g

(
δ̃F

δVα
∂α
δ̃G

δn
− δ̃G

δVα
∂α
δ̃F

δn
− ∂αVβ − ∂βVα

n

δ̃F

δVα

δ̃G

δVβ

− Fαβ
n

δ̃F

δAα

δ̃G

δVβ
+
Fαβ
n

δ̃G

δAα

δ̃F

δVβ
+
Fαβ
en

δ̃F

δAα

δ̃G

δAβ

)
. (8.68)

With the help of

δ̃S

δVα
= −nuα δ̃S

δAν
= −Jν V αVα = −h2 (8.69)

and

δ̃S

δn
=

(
n

h

dh

dn
− 1

)
(V αVα + h2) = 0, (8.70)

one obtains

0 = {Vµ, S}an
Hall = uν(Vν;µ − Vµ;ν) = −FµνJ

ν

n
, (8.71)

while {Aµ, S}an
Hall = 0 reproduces Ohm’s law

Fµν

(
uν − Jν

en

)
= 0 (8.72)

and 0 = {n, S}an
Hall = −(nuα);α is trivial.

4One must be careful about the Jacobi identity when dropping terms from the Poisson
Bracket
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8.6 ADM Hall MHD

From (8.58) proceeding analogously to (8.25) we see that space-time

split yields

L =

∫
d3x

(
n
√
γ

2Nh
(φ̇+ ζ+φ̇+ + ζ−φ̇− − VαNα)2 +N

√
γ
p− ρ

2
(8.73)

−
√
γNmαmβγ

αβ

2hn
+
N
√
γ

2
γβνnαnµFαβFµν −

N
√
γ

4
γβνγαµFαβFµν

)
.

Fortunately the bulk of the fluid behaves as before,

π :=
√
γnuαnα and π+ :=

δL

δφ̇+

= ζ+π. (8.74)

However, the electron-EM part yields

π− :=
δL

δφ̇−
= ζ−π +

√
γ

e
nαFαβD

βζ− = ζ−π +

√
γ

e
nαFαβ∂

βζ−, (8.75)

where we have introduced typical notation for spatial covariant derivatives:

Dαf := γαβ∂
βf . Also notice that the second equality holds because nαnβFαβ =

0. But this expression involves time derivatives of ζ−. This is because of the

form nαFαβ. Therefore, in order to be able to invert for time derivatives we

must introduce a new canonical momentum not considered earlier.

θ− :=
δL

δζ̇−
= −
√
γ

e
nαFαβD

βφ−. (8.76)

Next, Legendre transform is performed as usual, giving

H =

∫
d3x(πφ̇+ π+φ̇+ + π−φ̇− + θ ˙ζ−)− L (8.77)

=

∫
d3x

(
hπ2N

2n
√
γ

+ πVνN
ν −N√γ p− ρ

2
+
N
√
γnVαγ

αβVβ

2h

+
N
√
γγαµγβνFαβFµν

4
+
N
√
γnαnµγβνFαβFµν

2
+
√
γnαFαβγ

βνNµFµν

)
.
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The last term corresponds to electromagnetic flux and can be re-written using

the identity

√
γnαFαβγ

βνFµνγ
µδ = (π− − ζ−π)Dδφ− + θDδζ−. (8.78)

Equations (8.75) and (8.76) can be inverted to give

nα∂αφ− = Lnφ− = 2
e2 ~Dφ−√

γ
· (π− − ζ−π) ~Dφ− + θ ~Dζ−

J ijφζJ
ij
φζ

(8.79)

and

nα∂αζ− = Lnζ− = 2
e2 ~Dζ−√

γ
· (π− − ζ−π) ~Dφ− + θ ~Dζ−

J ijφζJ
ij
φζ

. (8.80)

Here we defined J ijφζ := Diφ−D
jζ− −Djφ−D

iζ−. The expressions above allow

writing

√
γnαnµγβνFαβFµν

2
=

e2

√
γ

[
(π− − ζ−π) ~Dφ− + θ ~Dζ−

]2

J ijφζJ
ij
φζ

. (8.81)

Finally, the fully space-like components of the electromagnetic action are

N
√
γγαµγβνFαβFµν

4
= N
√
γ
J ijφζJ

ij
φζ

4e2
. (8.82)

Notice that now we can rewrite the Taub-current as

vi = ∂iφ+ ζ−∂iφ− +
π+

π
∂iφ+. (8.83)

Thus Hamiltonian reduces to

H =

∫
d3x

N
 hπ2

n
√
γ
− p√γ +

e2

2
√
γ

[
(π− − ζ−π) ~Dφ− + θ ~Dζ−

]2

J ijφζJ
ij
φζ

+
√
γ
J ijφζJ

ij
φζ

2e2


+ ~N ·

(
π ~Dφ+ π+

~Dφ+ + π− ~Dφ− + θ ~Dζ−

)]
, (8.84)
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where like in the fluid case

δ

∫
d3xN

(
hπ2

n
√
γ
− p√γ

)
= −hδπ + γijujδ (π∂iφ+ π+∂iφ+ + πζ−∂iφ−)

u0
.

(8.85)

Hamilton’s equations of motion for π, φ+ and π+ are equivalent to the fluid

case. The first non-trivial one is as follows:

φ̇− =
δH

δπ−
=
Ne2 ~Dφ−√

γ
· (π− − ζ−π) ~Dφ− + θ ~Dζ−

J ijφζJ
ij
φζ

+N i∂iφ−, (8.86)

and is actually equivalent to (8.79). The equation for ζ̇− is very similar and

reproduces, unsurprisingly, (8.80).

Using (8.79) we see that

tαφ,α =
δH

δπ
= − h

u0
− γijui∂jφ+ γijuiζ−∂jφ−

u0
− ζ−Lnφ− +N iφ,i, (8.87)

which is consistent with (8.63). After more tedious manipulations one also

obtains

π̇− = −δH
δφ−

= −∂i

(
πζ−γ

ijuj
u0

−N√γ
J ijφζD

jζ−

e2
−N iπ−+

e2N
√
γ

~Dζ− ·
(
θ ~Dζ− + (π− − πζ−) ~Dφ−

) (
θDkζ− + (π− − πζ−)Dkφ−

)
Jkiφζ

J ijφζJ
ij
φζ

 .

Using (8.75), (8.79) and (8.80) this can then be rewritten as

∂α (N
√
γnαnµuµnζ− −N

√
γγαµuµnζ−)

−∂α
(
N
√
γ

e
Fανγνβ∂

βζ−

)
= −∂α

(
N
√
γ

e
Fανnνnβ∂

βζ−

)
, (8.88)
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which reduces to the second equation in (8.62). The derivation of the θ equa-

tion is similar and is thus omitted; it reproduces the first equation in (8.62).

Therefore we have constructed a canonical Poisson bracket that successfully

describes relativistic Hall MHD in 3+1 decomposition. Now adding gravity is

trivial.

In summary the Hamiltonian (8.84) is quite complex but the Poisson

bracket for general relativistic Hall MHD is relatively simple because it con-

stitutes a canonical 3+1 bracket:

{F,G} =

∫
d3x

(
δF

δφ

δG

δπ
+
δF

δφ+

δG

δπ+

+
δF

δφ−

δG

δπ−
+
δF

δζ−

δG

δθ
− F ↔ G

)
.

(8.89)

This Poisson bracket works, however Clebsch is known to have gauge freedom.

So one may wish to re-write the Poisson bracket in terms of observables, such

as electric and magnetic fields measured by the Eulerian observer. Such fields

may be obtained from the Faraday tensor decomposition,

Fαβ = nαEβ − Eαnβ + εαβγBγ, (8.90)

which corresponds to Eα = Fαβn
β and Bγ = εαβγFαβ/2, while εαβµ := nνε

ναβµ.

With this decomposition the Hamiltonian (8.84) takes a simple form

H =

∫
d3x

[
N

(
hπ2

n
√
γ
− p√γ +

√
γ
EαEα +BαBα

2

)

+ Nα(πVα +
√
γεαµνE

µBν)

]
. (8.91)

Notice that in relativistic case the Hamiltonian explicitly depends on the elec-

tric field. The expression further motivates finding a Poisson bracket in terms
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of (π, vi, E
i, Bi). However trying to directly perform coordinate change ap-

pears formidable, since the expression for Ei depends on (8.79) and (8.80).

With the covariant approach this is not the problem. In the 3+1 fluid case,

one can get rid of such terms, but in the Hall or even the MHD case the time

derivatives persist. This is probably due to the fact that, expressed in terms of

observables, equations of motion are time dependent both in velocity and the

EM fields in the same equation (see (8.71)), which is caused by the displace-

ment current in relativity. Perhaps this should motivate one to look for some

other variable, a combination of V and E that would serve as a momentum.

In fact this approach exists in relativistic MHD numerical simulations

[28], where a 3+1 decomposition without a Poisson bracket has been obtained.

However the approach is not well suitable for analytics. If one introduces

generalized magnetic field derived from the four-vector bα := εαβµνuβFνµ,

Bα :=
√
γNu0(bα + vαb0), (8.92)

one is pleased to learn that Faraday induction takes a form akin to the non-

relativistic case,

∂tBi = ∂j
(
viBj − vjBi

)
(8.93)

Momentum conservation does looks appear formidable at first glance,

∂t(
√
γSi) + ∂j

(
N
√
γ T ji

)
=

1

2
N
√
γTαβgαβ,i , (8.94)

where T ij is a stress tensor and Si = (nh+ b2)Nu0ui − Nbib
0 is a sought

for expression of the total momentum. However, complexity is hidden in the
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expressions relating Bi and bα (see [28], section 5.2.4) if one insists on making

(π,Hi,Bi) phase space variables, then the Hamiltonian takes a cumbersome

form

H =

∫
d3x

[
N

(
hπ2

n
√
γ
− p√γ +

√
γ b2

(
uiγ

ijuj +
1

2

)
−
(
Nb0

)2√
γ

)
+N iHi

]
.

So, calculating variational expressions such as (8.38) seems difficult, let alone

guessing the correct Poisson bracket.

8.7 Geometry in Relativistic MHD

Here we sum up the invariants for Relativistic MHD that are easier to

obtain. This work is based on [260] and a presentation by Eric Gourgoulhon

on a geometrical approaches to relativistic magnetohydrodynamics. Notice

that the equations of motion can be cast into the very simple form

dF = 0, u · F = 0, and iu · dV =
j

n
· dA, (8.95)

where the letters are forms and vectors identified with the coordinate represen-

tations described above. Using Cartan’s identity we see that the Lie derivative

LuA = iudA+ d(iuA) = d(iuA)⇒ LuF = 0 (8.96)

Thus in accordance with [260] using the Leibniz rule of the Lie derivative

acting on the wedge product [88] we obtain

d

dτ

∫
A ∧ dA =

∫
LuA ∧ dA+ A ∧ LuF =

∫
d(iuAF ) = 0. (8.97)
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Similarly

LuV = iudV + d(iuV ) =
1

n
ijdA+ d(iuV ) =

1

n
ijF − dh. (8.98)

In Ref [126] relativistic cross-helicity was derived using relabeling symmetry.

However the derivation is quite cryptic and thus we present a straightforward

geometric version, which is systematically given by

d

dτ

∫
V ∧ F =

∫
LuV ∧ F + V ∧LuF =

∫
1

n
ijF ∧ F − dh∧ dA = 0. (8.99)

To show this we shall incorporate a property of the interior product, namely

that it acts as an antiderivation [88],

ij(F ∧ F ) = ijF ∧ F + (−1)2F ∧ ijF ⇒ ijF ∧ F =
1

2
ij(F ∧ F ), (8.100)

and it can be shown that

F ∧ F = −E ·B dt ∧ dx ∧ dy ∧ dz = 0, (8.101)

which is true in MHD due to Ohm’s law. There is one more conserved quantity,

namely the energy, which can be obtained from the action (8.58) directly using

(8.11)

Tαβ = nhuαuβ + pgαβ + FαµF β
µ −

gαβ

4
F µνFµν . (8.102)

This then leads to the so called Hamiltonian constraint (a term multiplying

N
√
γ in (8.91))

nαT
αβnβ = (1 + uiγ

ijuj)nh− p+
E2 +B2

2
. (8.103)
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The other term in the Hamiltonian (8.91) (the so-called diffeomorphic con-

straint) can be obtained in the similar fashion by considering space-time com-

ponents of the energy-momentum tensor. We can further simplify the Hamil-

tonian constraint by solving for the electric field using Ohm’s law. This cal-

culation is an exercise in Ref. [28] and we also leave it for the reader:

NEi + εijk
(
vj +N j

)
Bk = 0. (8.104)

In flat space this expression becomes familiar Ohm’s law. The three collected

invariants should allow one to carry out an analysis similar to [171] and [2] for

relativistic turbulence.

To calculate turbulent spectra, all three invariants must be written in

a specific frame. In flat space this is particularly simple. For the helicity this

leads to a flat foliation of space-time (shift and lapse functions are zero and

lapse is unity) and thus if we choose the right observer the expression for the

magnetic helicity just reproduces the three-dimensional version

HM =

∫
d3xA ·B, (8.105)

even though we are considering the relativistic scenario: and so too with cross-

helicity.
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8.8 Relativistic XMHD and quasineutrality

First of all, let us point out a difficulty in extending the action in [125]

to general relativity. The action can be written as

S =

∫ √
−g d4x

(
−m

?νmν

2nh
− F ?µνFµν

4
+
p− ρ

2

)
, (8.106)

where,

m?ν := mν +
∆h

e
Jν and A?ν := Aν +

∆h

e
uν +

h†

ne2
Jν . (8.107)

If we just repeat the calculation done in the previous section we obtain

Tαβ = m?αuβ + F ?αµF β
µ + gαβ

(
−m

?µuµ
2

+
p− ρ

2
− F ?µνFµν

4

)
, (8.108)

which manifestly not symmetric, in principle it can be symmetrized. We are

supposed to make use of the normalization for u and J [125], which can be

reduced to

nh(uµuµ + 1) + 2
∆h

e
uµJ

µ +
h†

ne2
JµJ

µ = 0 and 2uµJ
µ +

JµJ
µ

en
= 0. (8.109)

The problem is we need to obtain [135] the sum of 2 fluid tensors for the

electrons and ions respectively and the E-M tensor, which evaluates as

Tαβ = nhuαuβ+gαβp+
∆h

e

(
uβJα + Jαuβ

)
+

h†

n2e2
JαJβ+FαµF β

µ−
gαβ

4
F µνFµν .

(8.110)

If the energy-momentum tensor is symmetrized every term except the 5th with

JαJβ is obtained, but also many other unexpected terms appear. This is at

odds with the equations of motion. Is something wrong with the action? At
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any rate this is an interesting question that can be answered in future work.

Here we can simply adopt the Koide’s energy-momentum tensor as the correct

one. To see this we construct a straightforward two-fluid action

S =

∫ √
−gd4x

(
−1

2

∑
±

nh±u±νu
ν
± +

p− ρ
2
− 1

4
F µνFµν

)
(8.111)

which can be rewritten as

S =

∫ √
−gd4x

(
−1

2
nhuνu

ν +
∆h

e
Jµuµ −

∆h

2e2n
JνJν +

p− ρ
2
− 1

4
F µνFµν

)
.

(8.112)

From herem (8.110) can be obtained readily, as well as (8.106) after remem-

bering Jµ = F µν
;ν and some integration by parts. So it appears that this is

where our problem lies, in identifying Jµ through F µν since that introduces a

four-divergence and hence another metric coefficient that will be varied when

obtaining the energy-momentum tensor.

However in all of this a more sinister problem is lurking. Suppose

one wishes to obtain energy from (8.110) and look for a non-relativistic limit.

Recall that in the non-relativistic limit energy is [130]

H =

∫
d3x

(
mπv2

2
+mπU +

B2

2
+

1

2

m+m−
mπe2

J2

)
, (8.113)

where π is the positive non-relativistic Eulerian density. Notice that in the

non-relativstic case this works out as

m+πv
2
+

2
+
m−πv

2
−

2
=
mπv2

2
+

1

2

m+m−
mπe2

J2 (8.114)

Now suppose we look at the non-relativistic limit of (8.110) for T 00 and we

notice that all the J0 terms that relate to XMHD effects disappear! This
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appears to be due the implicit choice of the covariant proper charge neutrality

n+ = n− = n employed as opposed to the frame-dependent regular charge

neutrality π+ = π−. Suppose we choose the latter. In this case the fluid-part

of the energy density evaluates as

n+h+(v0
+)2+n−h−(v0

−)2 = π+h+γ++π−h−γ− ≈ πm++πm−+π
m+v

2
+ +m−v

2
−

2
,

from where one just has to continue following (8.114). So the question of what

constitutes the right quasineutrality condition seems to be still open. There is

even a possibility that quasineutrality must be avoided all together and instead

electromagnetism with separate two fluid equations has to be integrated. On

the other hand, if we were to choose properly symmetrized (8.108) as the

correct energy-momentum tensor (that was just deemed to be incorrect in the

disscussion above), with the application of proper charge neutrality then at

first inspection it looks like the non-relativistic energy does follow. The reason

we care about the non-relativistic limit is two-fold: first, it has been established

more precisely through observation, simulations, etc and second, it is believed

that the non-relativistic limit must be somehow a part of a greater relativistic

theory. The problem with second approach (in this paragraph) is that while

proper charge neutrality has a nice feature of being frame-independent, it

appears to be ad hoc (it is not clear why it must be true). The problem with the

first approach is that while quasineutrality makes sense, because it’s violation

would redistribute charge in such a way as to cancel the charges, unless both

fluids have the same velocity, imposing quasineutrality in one frame, violates
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it in the other frame, and thus it is frame dependent. This raises a question

of what is so special about the frame in which quasineutrality is imposed?

Now let us direct the discussion towards helicities. We know[260] that

for each species [165, 125] we have the canonical momenta P± = h±u±± eA =

±e(A? ± (m±m
?)/(men)) =: ±eA± satisfying

u± · dP± = 0⇒ Lu±P± = exact⇒ d

dτ

∫
P± ∧ dP± = 0 (8.115)

Alternatively one may wish to work with A± ∧ dA± and make the integrals of

motion more MHD-like. In any event, these helicities hopefully could serve as

a template to start guesswork for the general-relativistic 3+1 bracket, which

one expects would look similar to its non-relativistic daughter.
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Chapter 9

Conclusions and future work

In this thesis we have explored different Hamiltonian and topological

ramifications of XMHD. Connections between various XMHD models such as

HMHD and IMHD were duly established through a coordinate change in the

Poisson bracket. Helicities, that are Casimir invariants of the Poisson bracket,

have been scrutinized. This lead us to investigate the directionality of the asso-

ciated turbulent cascades. We have confirmed existence of a cascade transition

of the square magnetic potential through the use of pseudospectral numerical

simulations. In particular, in MHD regime we observed its inverse cascade,

which then reverses its direction in the IMHD regime. This is associated with

the development of the partial inverse cascade of energy (even when the ion

sonic Larmor radius is ignorable), which in itself is interesting, yet unaccounted

for effect. Our subsequent efforts will be concentrated on this topic, where we

will further explore the criticality of the transition as well as perhaps a better

theoretical description of the phenomenon. One may attempt to apply a weak

turbulence theory approach. Moreover, we wish to perform simulations with

non-zero ion sound Larmor radius ρs, which are currently not available due to

some problems with the CFL condition.
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In addition, the action principle for relativistic XMHD was established.

However, in doing so we have encountered some problems with quasineutrality

and thus we see a necessity in exploring this topic further. Of course one

expects that turbulence plays a role in violent astrophysical phenomena such

as gamma ray bursts, thus it could be interesting to repeat the work we did

in 2D XMHD, in the relativistic setting. Moreover, motivated by the recent

LIGO detection [21], there is increased interest in the description of neutron

star mergers. This may involve understanding the relativistic behavior of a

neutron spin-fluid coupled to a shallow layer of electron-iron ion plasma on the

surface of neutron stars. In the future, we seek to better assess the evolution

of global magnetic fields as the neutron stars merge via a relativistic XMHD

model with the addition of neutron spin-fluid.

In Ref. [156] (Sec. 4.5) we have emphasized that the topological prop-

erties of extended MHD models can be viewed as a consequence of the Hamil-

tonian description, viz. helicities can also be seen as Lie-dragged three-forms.

In addition, inspired by a similar work in single fluid theory we have outlined

the possibility of using Jones polynomials as a more concrete way of describing

various field configurations compared to the approach relying on simply linking

numbers (twist + writhe). Recall that ideal MHD conserves the topology of

the field. The approach described above may be employed in the analysis of the

three-dimensional reconnection due to non-ideal two-fluid effects, for instance

in Solar Corona. To this date three dimensional collisionless reconnection (due

to two-fluid effects) is not understood well.
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Appendix A

Jacobi identity for Hall MHD

In this section, we shall present a detailed proof of the Jacobi identity

for the noncanonical Hall MHD bracket. The discussion in the preceding

sections ensures that the proof of the Jacobi identity for other versions of

extended MHD can also be established in an analogous manner.

In the absence of the Hall term, we see that (3.8) reduces to the ideal

MHD bracket, first derived in [185]

{F,G} MHD := −
∫
D

d3x

(
Fρ∇ ·Gv −Gρ∇ · Fv +

∇× v

ρ
·Gv × Fv

+ B ·
[Fv

ρ
· ∇GB −

Gv

ρ
· ∇FB +∇Fv

ρ
·Gv −∇

Gv

ρ
· Fv

])
, (A.1)

which is known to satisfy Jacobi identity on its own [185, 181]. The convention

that we will be using throughout is that ∇ operator acts only on the variable

following it, and dyadics can be written in the coordinate form

B · ∇Fv

ρ
·Gv = Bi∂i

(F j
v

ρ

)
Gj
v. (A.2)
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A.1 Hall - Hall Jacobi identity

The introduction of the Hall current leads to additional Hall bracket,

identified previously in (3.9). We recall that it is given by

{F,G}Hall := −di
∫
D

d3x
B

ρ
·
[

(∇× FB)× (∇×GB)
]
. (A.3)

Demonstrating that Hall MHD bracket satisfies Jacobi is important since it

is closely connected to the rest of the extended MHD models, as discussed

previously. The Jacobi identity involves proving that cyclical permutations of

any functionals F,G,H vanish, i.e. we require

0 = {{F,G}, H}+ {{G,H}, F}+ {{H,F}, G} ≡ {{F,G}, H}+ 	
F,G,H (A.4)

Here {, } := {, }MHD + {, }Hall . Because we already know that (A.1) satisfies

Jacobi and according to the bilinearity of Poisson brackets, the general proof

splits into two pieces

{{F,G}MHD, H}Hall + {{F,G}Hall, H}MHD + 	
F,G,H = 0, (A.5)

and

{{F,G}Hall, H}Hall + 	
F,G,H = 0. (A.6)

This split occurs since (A.5) involves terms that are linear in di, whilst (A.6)

is quadratic in di. We introduce the cosymplectic operator J which depends

on the field variables u in general. It is known that Poisson brackets can be

formally written in the form

{F,G} :=
〈δF
δu

∣∣∣J δG
δu

〉
. (A.7)
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The outer brackets in both (A.5) and (A.6) require evaluation of the variational

derivatives of the inner bracket with respect to the field variables:

d

dε
{F,G}[u+ εδu]

∣∣∣
ε=0

:=
〈 δ
δu
{F,G}

∣∣∣δu〉 =
〈 δ2F

δuδu
δu
∣∣∣J δG
δu

〉
+〈δF

δu

∣∣∣J δ2G

δuδu
δu
〉

+
〈δF
δu

∣∣∣δJ
δu

(δu)
δG

δu

〉
. (A.8)

Proving the Jacobi identity for noncanonical Poisson brackets is aided by a the-

orem proven in [181], which states that the first two terms of the above expres-

sion vanish when plugged in the outer bracket, together with the other cyclic

permutations. Thus, we can neglect second variations that appear through-

out the following calculations. Since the outer Hall bracket involves variations

with respect to B, it is enough to consider

δ

δB
{F,G}Hall = −di (∇× FB)× (∇×GB)+ · · · ≡ −di FA×GA + . . . , (A.9)

where the second variations that arise implicitly are suppressed because we

have established that they will not contribute to the Jacobi identity. Hence, it

suffices to compute the variations with respect to the field variables that enter

the Poisson bracket explicitly. Note that the last relation in (A.9) arises due

to B =: ∇×A. This is evident through

δF =

∫
D

d3x
δF

δB
· δB =

∫
D

d3x
δF

δB
· ∇ × δA

=

∫
D

d3x∇× δF

δB
· δA =

∫
D

d3x
δF

δA
· δA. (A.10)

A corollary of the above relation is that FA ≡ δF
δA

is divergence-free, i.e. ∇ ·

FA = 0. Substituting (A.9) into the Hall-Hall part of the Jacobi relation (A.6),
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we obtain

d2
i

∫
D

d3xB ·

(
∇
( 1

2ρ2

)
×
[
FA ×GA

]
+

1

ρ2
∇×

[
FA ×GA

])
×HA. (A.11)

This expression can be expanded using vector identities such as X×(Y × Z) =

Y (X · Z)−Z (X ·Y) and ∇×(X×Y) = ∇·
(
Y XT −X YT

)
, which enables

us to collect certain terms together. Since the Jacobi identity involves two

additional cyclic permutations, we are allowed to carry out cyclic permutations

of the above expression and collect similar terms together. Through a suitable

permutation of the variables, and integrating by parts, we arrive at

{{F,G}Hall, H}Hall + 	
F,G,H = d2

i

∫
D

d3x
1

ρ2
FA ×GA · (HA · ∇)B + 	

F,G,H

= d2
i

∫
D

d3x
1

ρ2
εijkF

j
AG

k
AH

l
A∂lB

i + 	
F,G,H

= d2
i

∫
D

d3x
FA ·GA ×HA

ρ2
δli∂lB

i + 	
F,G,H, (A.12)

where the last step becomes apparent when we explicitly write down the other

two permutations, and use the antisymmetry of Levi-Civita tensor εijk in

addition to the identity εijkε
ljk = 2δli. Finally, upon invoking the identity

∇ ·B = 0, we see that the Hall - Hall Jacobi identity is satisfied.

A.2 Hall - Ideal MHD Jacobi identity

We observe that this part is harder to tackle, owing to the greater

complexity of the resultant expression. Let us first express the first term

in (A.5). As described in the previous section, the outer Hall bracket (A.3)
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necessitates only the explicit variational derivatives with respect to B. Hence,

we only need to consider such variations of the inner MHD bracket (A.1):

δ

δB
{F,G}MHD = −Fv

ρ
·∇GB+

Gv

ρ
·∇FB−∇

Fv

ρ
·GB+∇Gv

ρ
·FB+. . . , (A.13)

and we have suppressed the implicit second-order variations, as they do not

contribute to the Jacobi identity. After substitution into the outer Hall bracket,

we get

{{F,G}MHD, H}Hall + 	
F,G,H = −di

∫
D

B

ρ2
·

[
∇×

(Fv

ρ
· ∇GB −

Gv

ρ
· ∇FB

+ ∇Fv

ρ
·GB −∇

Gv

ρ
· FB

)
×∇×HB

]
+ 	

F,G,H.(A.14)

We proceed to use the vector calculus identities ∇×∇f = 0 and X×∇×Y =

∇Y ·X−X · ∇Y, which allows us to simplify the expression as follows:

{{F,G}MHD, H}Hall = −di
∫
D

d3x
B

ρ
·
(
∇× Fv ×GA −Gv × FA

ρ
×HA

)
.

(A.15)

In the second term of (A.5) the outer MHD bracket requires evaluation of vari-

ations with respect to both B and ρ. We already have the first one from (A.9),

while the second yields

δ

δρ
{F,G}Hall = −di

B

ρ2
· FA ×GA. (A.16)

Upon substituting them into the second term of (A.5), we end up with

−di
∫
D

d3x
B

ρ2
·(FA ×GA) (∇ ·Hv)+

B

ρ
·
(
∇×FA ×GA

ρ
×Hv

)
+ 	
F,G,H. (A.17)
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Upon combining (A.15) and (A.17), we have

J = −di
∫
d3x

(
B

ρ2
· FA ×GA∇ ·Hv +

B

ρ
·
[
∇× FA ×GA

ρ
×Hv

]
+

B

ρ
·
[
∇× Fv ×GA −Gv × FA

ρ
×HA

])
+ 	

F,G,H

= J1 + J2 + J3, (A.18)

where Ji’s represent the three contributions arising from (A.17) and (A.15),

respectively. Applying the vector identities mentioned previously, and recol-

lecting that variations with respect to A are divergence-free, the third term

can be manipulated to yield

J3 = di

∫
D

d3x
B

ρ
·HA ×

(
GA · ∇

Fv

ρ
−∇ · Fv

GA

ρ
− Fv · ∇

GA

ρ
− FA · ∇

Gv

ρ

+ ∇ ·Gv
FA

ρ
+Gv · ∇

FA

ρ

)
= di

∫
D

d3x

(
2B

ρ2
· (FA ×GA) (∇ ·Hv)

+ B · (FA ×GA)

[
∇ ·
(
Hv

ρ2

)]
+ B ·

(Hv

ρ2
· ∇
)(
FA ×GA

)
−B

ρ
·
[
FA × (GA · ∇)−GA × (FA · ∇)

]Hv

ρ

)
. (A.19)

Here, we have used the freedom to permute F,G,H in a consistent manner.

When combined with the first term J1, this results in

J1 + J3 = di

∫
D

d3x

[
∇ ·
[
Hv

ρ

FA ×GA

ρ

]
·B

− B

ρ
·
[
FA × (GA · ∇)−GA × (FA · ∇)

]Hv

ρ

]
. (A.20)

The second term of (A.18) can be rewritten as

J2 = −di
∫
D

d3x

(
Hv

ρ
·∇
(
FA ×GA

ρ

)
·B−B ·∇

(
FA ×GA

ρ

)
·Hv

ρ

)
. (A.21)

179



Upon using (A.20) and (A.21), we can condense (A.18) into

J = di

∫
D

d3x

(
B ·
(
FA ×GA

ρ

)[
∇ ·
(
Hv

ρ

)]
−B · ∇

(
Hv

ρ

)
· FA ×GA

ρ

−B

ρ
·
[
FA × (GA · ∇)−GA × (FA · ∇)

]Hv

ρ

)
. (A.22)

The second term has been integrated by parts, by applying ∇·B = 0 to obtain

this expression. We shall not use any further permutations of F , G and H,

as one such permutation was used previously. It can be shown, in coordinates

for instance, or using the vector identities introduced previously, that the first

two and the last two terms collapse into

J = di

∫
D

d3x

(
B

ρ
·
[(

(FA ×GA)×∇
)
× Hv

ρ

]

− B

ρ
·
[(

(FA ×GA)×∇
)
× Hv

ρ

])
≡ 0. (A.23)

As a result, we see that the Hall - MHD Jacobi identity is satisfied.

Hence, from the results derived in Sections A.1 and A.2, we conclude

that the Hall MHD bracket (3.8) satisfies the Jacobi identity, thereby rendering

it a valid noncanonical Poisson bracket. In turn, this ensures the validity of

the inertial MHD bracket, and by applying the same procedures, it is possible

to show that the extended MHD bracket satisfies the Jacobi identity.
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