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Parameter calibration is considered a crucial, albeit arduous, step for reliable per-

formance of the Storm Water Management Model (SWMM) that engineers often

undertake manually. This research presents an open-source, automated calibration

routine that returns a calibrated model input file to the user. The routine first

represents the catchment network as a directed graph object using the NetworkX

python package for flexibility in handling real-world observed data availability.

Once the calibratable subset of the system is identified, a multi-objective, genetic

algorithm (modified Non-dominated Sorting Genetic Algorithm II: NSGA-II) esti-

mates the Pareto front for the objective functions within the feasible performance

space. The solutions on this Pareto front represent the optimized parameter sets

for matching simulated and observed catchment behavior. A specific solution

among this Pareto set can be chosen by assigning weights to the objective func-

tions. This solution is then returned to the user, completing a fully automated

process that requires minimal user input and does not require intervention or se-

lections during calibration.

Keywords: SWMM, Automated Calibration, NetworkX, Genetic Algorithm, NSGA-

II, Multi-objective Function Optimization
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Chapter 1: Introduction

1.1 Problem Statement

Urban storm water runoff assessments have been conducted as part of urban plan-

ning for nearly as long as cities have been planned (Angelakis, 2017). Empirical

methods such as the rational method, unit hydrographs, and intensity-duration fre-

quency (IDF) curves were used for many years (Baiamonte & Singh, 2017; Wang,

Liu, & Yang, 2012) with individual institutions implementing their own estima-

tion methods, such as the United States Soil Conservation Service’s (SCS) curve

number method (Mishra & Singh, 2003). These methods are empirical, black box

approaches that consider the catchment under scrutiny to be an opaque control

volume with precipitation as the input and runoff as the output. A unit hydro-

graph, for example, relates a hyetograph directly to the marginal runoff and a

simple convolution will yield the storm-specific hydrograph (Wang et al., 2012).

As technology and computing power advanced, engineers broke open the black

box, taking on the physically-based equations governing hydrological processes,

such as the Saint-Venant and Richards Equations that had been widely known but

challenging at large scales (e.g Audusse, Bouchut, Bristeau, Klein, & Perthame,

2004; Lappala, Healy, & Weeks, 1987; Liang & Marche, 2009). A caveat for the

physically-based model approach, however, is an increased number of necessary

parameters to inform the governing equations.

This thesis is a detailed report on the development of SWMMCALPY.

SWMMCALPY supports the EPAs Storm Water Management Model (SWMM) as
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an automated calibration tool written in the python coding language. The name,

SWMMCALPY, comes from the purpose and composition of the tool, SWMM

CAL-ibration using PY-thon. SWMM, as a physically-based hydrologic-hydraulic

model, contains several parameters that require calibration for reliable model per-

formance (Rossman et al., 2010). SWMMCALPY seeks to calibrate these pa-

rameter values to optimize model simulation fit to observed data without the

need for direct user interference. The Non-dominated Sorting Genetic Algorithm

(NSGA-II) is employed to solve the optimization problem in an automated fash-

ion. SWMMCALPY will be coupled with the SWMM User Interface (SWMM-UI)

and released as open source to advance the directive of the National Center for

Infrastructure Modeling and Management (NCIMM) (NCIMM, 2018). According

to Rossman (Rossman et al., 2010), there is currently no automated calibration

procedure recommended by the EPA for SWMM version 5.

Contemporaneously, a test case involving the Brentwood system in north

Austin was prepared as a more compelling evaluation of the performance of SWMM-

CALPY. The hypothesis is that SWMMCALPYs method will produce calibrated

solution that performs comparably to that of PCSWMMs Sensitivity-based Radio

Tuning Calibration SRTC tool.

Chapter 1 presents a necessary overview of the problem statement SWMM-

CALPY seeks to address. Choice components of SWMM itself are reviewed to

introduce hydrologic-hydraulic concepts that are referred to heavily in later chap-

ters. A brief comparison of SWMM to other common hydrologic models helps

highlight the value provided by SWMMCALPY to the world of water resources

engineering. Subsequently, a literature review of past work relating to SWMM

calibration and the use of python pertaining to SWMM innovation is presented.
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Finally, the objectives for SWMMCALPY are enumerated explicitly and broken

down into a format that offers a natural outline for the methodology in Chapter

2.

1.2 Introduction to SWMM

In the early 1970s, the U.S. Environmental Protection Agency (EPA) began de-

velopment of SWMM as one of the first hydrologic-hydraulic solvers (Huber &

Roesner, 2012). The overarching purpose was to aid in planning, designing, and

analyzing storm water runoff quantity as well as quality in urban drainage net-

works (Rossman & Huber, 2016). Since the first release of SWMM, the model

has undergone five major updates, including the most recent, in 2005, which was

a complete rewrite of the SWMM numerical solver in C code (Huber & Roesner,

2012; Rossman et al., 2010).

SWMM is a combined hydrologic-hydraulic model, meaning that the surface

hydrology informs the channel/pipe routing of the drainage network (Rossman

et al., 2010). The model requires forcing data in the form of timeseries rainfall

information in order to produce runoff. It can also accept other forcing data

such as temperature and sun angle, as well as initial/boundary conditions for dry

weather flow. All precipitation falls on subcatchment objects in SWMM, where

the subcatchment is defined as the area that contributes to a single location, the

outlet. SWMM conceptualizes each subcatchment to be a rectangle with area-

averaged parameters (Rossman & Huber, 2016). Some of these parameters are

physically real, such as Manning’s coefficient of impervious surfaces, while others

are intended to be model tuning parameters, such as the imposed uniform slope

and width. The behavior of precipitation on the subcatchment is modeled by

3



the nonlinear reservoir model, which, for each time step, accounts for infiltration,

evaporation, and runoff. The roughness component to the runoff is derived from

Manning’s equation, thus the importance of subcatchment slope and width. All

runoff flows to the subcatchment outlet, where it is routed into SWMMs hydraulic

network (Rossman & Huber, 2016).

Composed of common storm water management features like conduits, weirs,

pumps, and orifices, SWMMs routing method utilizes the one-dimensional Saint-

Venant equation, either in its full form or in the diffusive wave or kinematic wave

approximations. The hydraulic solver uses an implicit backward’s Euler scheme to

solve for the transport of water within the hydraulic network (Rossman & Huber,

2017). The Saint-Venant equation was first implemented in the SWMM 3 release

in 1981 as an additional extended transport (EXTRAN) module and is based on

a link-node approach (Rossman et al., 2010). This link-node approach essentially

reduces the complexity of the model, as computing the exchange of water is limited

to occurring at the interface of links and nodes (Rossman & Huber, 2017).

SWMM is capable of solving for both water quality and quantity, which

enables it to be used in a wide variety of applications (e.g. Alamdari, Sample,

Steinberg, Ross, & Easton, 2017; Cipolla, Maglionico, & Stojkov, 2016; Guan, Sil-

lanpää, & Koivusalo, 2015a). A full description of SWMMs processes and work-

flow is described in four manuals (hydrology (Rossman & Huber, 2016), hydraulics

(Rossman & Huber, 2017), water quality (Rossman, 2016), and the user’s manual

(Rossman et al., 2010)).

Despite being a comprehensive and effective storm water runoff model (Ross-

man et al., 2010), SWMM does not exist in a vacuum. Many other models compete

with SWMM or have slightly different focuses. SWMM is primarily used as an
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urban drainage model (Guan, Sillanpää, & Koivusalo, 2015b); for more rural ap-

plications, a common tool is the Soil and Water Assessment tool (SWAT). SWAT

was built and is maintained by a research team at Texas A&M (Ignatius & Jones,

2018). SWAT can account for a wide variety of land use types that can affect

the hydrology of a system (Neitsch, Arnold, Kiniry, & Williams, 2011), juxta-

posed against SWMMs pervious/impervious binary land use accounting (Ross-

man & Huber, 2016). The Hydrologic Engineering Center – Hydrologic Modeling

System (HEC-HMS) developed by the US Army Core of Engineers, is another

commonly used hydrologic model (Engineers, 2016; Srinivas, Singh, & Deshmukh,

2018). HEC-HMS boasts a bevy of transform hydrographs that convert rainfall

into runoff without assuming a subcatchment shape (Engineers, 2016). Often cou-

pled with the Hydrologic Engineering Center – River Analysis System, the HEC

suite of programs is designed for river systems and larger, natural watersheds.

Something that SWMM has in common with SWAT and HEC-HMS is that

they are all considered “clustered” or “lumped” models (Engineers, 2016; Neitsch

et al., 2011; Rossman et al., 2010). This means that the forcing information

is received by a collection of subcatchments, each with area-averaged parameter

values that have the effect of smoothing out any higher resolution local features

of the system. Not all models make this simplifying assumption. High resolution

models like GSSHA and ADHYDRO create a fine scale grid that overlays the

watershed (Downer & Ogden, 2004). This grid can be adjusted to accommodate

features like curbs or building edges (Downer & Ogden, 2004). In a sense, each

grid cell behaves similarly to a subcatchment in a clustered model (in far greater

numbers) and greater inter-grid exchange of surface water. These “distributed”

models, often maintain separate hydrologic and hydraulic schemes, but have the
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potential for purely 2-dimensional hydrologic model by accounting for channel

shape by use of extremely high-resolution grid cell deployment (Bao, Wang, Zhang,

& Li, 2017).

Even within the SWMM community there are branches and competing

software. The original EPA SWMM remains a popular open source option for

engineers and researchers (EPA, 2014). Meanwhile, proprietary packages such

as PCSWMM and XPSWMM offer additional functionality such as coupled GIS

tools and time-saving calibration methods (CHI Water, 2018). In the open source

community, the EPA has been providing maintenance and access to SWMM for

decades (EPA, 2014). Other groups, like Open Water Analytics (OWA) out of

Cincinnati, OH and the National Center for Infrastructure Modeling and Manage-

ment (NCIMM) based in Austin, TX contribute to free projects. Examples of open

source projects are OWA-SWMM and the SWMM-UI, both of which leverage the

python coding language to make SWMMs workflow more transparent and acces-

sible to the user (McDonnell, 2018a; NCIMM, 2018). The NCIMM directive is, in

part, to bring about the next generation of SWMM, with a special emphasis on

automating time-consuming aspects of the SWMM workflow, and building a faster

solver for SWMMs hydraulics module, thus enabling the viability of larger models

(NCIMM, 2018). SWMMCALPYs objective of returning a calibration parameter

set solution to optimize model agreement with observations, without the need for

user interference, contributes directly to NCIMMs goals for the future of SWMM.

6



1.3 Introduction to Calibration & SWMM

1.3.1 The Need for Calibrating SWMM

Appendix A contains a literature review of studies that undertake SWMM cali-

bration and an analysis about which methods show the most promise for SWMM-

CALPYs automated approach. Important points from Appendix A are summa-

rized here.

SWMM is a physically-based model. SWMMs transparent control volume

approach attempts to make predictions about the commonly sought outcome (the

behavior of the runoff) by describing the physical processes that occur between,

and ultimately affect, the rainfall-runoff relationship. The processes occurring

within the control volume of the watershed can include evapotranspiration, infil-

tration, and storage, each of which has a physical consequence on the amount of

runoff that will occur from a given precipitation event. Subsequently, engineering

decisions that affect these physical processes are investigated closely for their in-

fluences on the rainfall-runoff relationship. This strain of inquiry forms the basis

for the preponderance of scientific studies that utilize SWMMs modeling capacity

(e.g. Cipolla et al., 2016; Rosa, Clausen, & Dietz, 2015; Tobio, Maniquiz-Redillas,

& Kim, 2015).

SWMMs strength, the capacity to use physical processes to describe the

behavior of water in a catchment, is also a point of weakness, as it requires an

increased number of parameters that need to be assigned value accurately in order

to effectively match the observed runoff behavior. Compounding this, many of

these parameters, such as Manning’s roughness or infiltration coefficients, vary by

orders of magnitude and are difficult to estimate precisely at scales larger than a
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laboratory setting. Rigorous scientific research has yielded ranges for these and

other parameters, many of which can be found in the SWMM user’s guide (Ross-

man et al., 2010) or other such handbooks (Maidment, 1993). For the majority of

scientific research, these ranges do not offer the precision necessary to make useful

predictions, so some level of calibration is needed (e.g. Guan et al., 2015b; C. Li,

Liu, Hu, Gong, & Xu, 2016; J. Li, Li, & Li, 2016).

1.3.2 “Calibration” Broken Down

Rossman describes calibration as more than just one step (Rossman et al., 2010).

The common term “calibration” is broken down into sensitivity analysis, actual

calibration, and uncertainty analysis. However, in the literature on calibration

in hydrologic modeling conducting all three sub-steps of calibration is extremely

uncommon; some do the first two steps of sensitivity analysis and calibration in

an automated fashion (Krebs, Kuoppamäki, Kokkonen, & Koivusalo, 2016), while

others do these steps, but some portion of the analysis is done manually (Knighton,

White, Lennon, & Rajan, 2014; C. Li et al., 2016). These three sub-steps create a

natural checklist by which studies can be compared.

� Sensitivity Analysis

� Calibration

� Uncertainty Analysis

Studies that demonstrate the presence of more than one of these steps are

considered to be more sophisticated than those that did one or none, and studies

that show that the steps were done with the assistance of automated algorithms
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are considered to be more sophisticated than those that conducted the analysis

manually.

Sensitivity analysis describes the process of determining which parameters

affect the behavior of the model the most, so that the “insensitive” parameters

can be justifiably neglected. When sensitivity analysis precedes calibration, it can

have the effect of speeding up the calibration process, due to a decreased number

of degrees of freedom, or dimensionality of the problem. A number of researchers

take advantage of this speed-up, especially when conducting calibration manually

(Guan et al., 2015a, 2015b; Rosa et al., 2015). Sensitivity-based approaches to

calibration have also been formally integrated into SWMM, although not in the

EPA-approved downloadable model. The proprietary package PCSWMM makes

use of the Sensitivity-based Radio Tuning Calibration (SRTC) tool (CHI Water,

2018). The SRTC tool works by evaluating the SWMM model at the edges of the

feasible parameter space to develop a number of extreme base cases. The behavior

of the SWMM model given intermediate values within this parameter space can be

linearly interpolated between the base cases (Yim, Aing, Men, & Sovann, 2016).

Calibration itself is the process of comparing model performance to some

observed data set and making adjustments to the model parameters such that the

abstract model more closely matches the real-world observations. Calibration does

not strictly require sensitivity analysis as a prerequisite and some researchers do

not conduct one (Barco, Wong, & Stenstrom, 2008; Masseroni & Cislaghi, 2016).

The penalty of not pre-processing a calibration problem with a sensitivity analysis

is an increase in computational expense, as well as the logical potential for algo-

rithms to struggle to converge to optimal values for parameters that do not affect

the behavior of the model. Barco describes several algorithms that have gained
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popularity in the calibration context (Barco et al., 2008) – Artificial Neural Net-

works (ANN), the complex method (Box, 1965), and the NSGA-II algorithm (Deb

et al., 2002). Barco, however, did not chose one of the aforementioned methods,

and opted for an aggregated approach to multi-objective function optimization

(Barco et al., 2008).

The third sub-step, uncertainty analysis, is best described by contrasting it

against the validation phase. Validation is the process of determining the validity

of a calibrated model by comparing its performance against some data that was

not used for calibration. In this way, the validation phase provides a measure of the

uncertainty of the model as a whole. Uncertainty analysis, on the other hand, is the

process of determining the uncertainty in the solutions of each calibrated parameter

(Knighton, Lennon, Bastidas, & White, 2016). Generalized likelihood uncertainty

estimations (GLUE), Bayesian likelihood functions, and distributions derived from

Markov-chain Monte Carlo simulation are optional strategies for analyzing the

uncertainty in the individual parameter solutions (Knighton et al., 2016; Muleta,

McMillan, Amenu, & Burian, 2013; Sun, Hong, & Hall, 2013; Zhang, Li, & Dai,

2015).

For the present work, the NSGA-II algorithm, was chosen to be incorporated

as the optimization engine for SWMMCALPY. The NSGA-II algorithm as applied

to SWMM is a fairly well-investigated topic (e.g. Herrera, Heathcote, James, &

Bradford, 2006; Krebs, Kokkonen, Valtanen, Koivusalo, & Setälä, 2013; Krebs,

Kokkonen, Valtanen, Setälä, & Koivusalo, 2014; Krebs et al., 2016; Shan & Wang,

2005; Shinma & Reis, 2011, 2014).

Methods for conducting sensitivity analysis and uncertainty analysis are dis-

cussed in the literature review but ultimately omitted from the initial development
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of SWMMCALPY. For this thesis, SWMMCALPY was constructed to converge

to a solution, and so only required the calibration sub-step. Considerations were

made to allow for sensitivity and uncertainty analysis steps to be retroactively

implemented. Python libraries exist to allow for insertion of a GLUE method for

uncertainty analysis to the end of SWMMCALPYs workflow (Python.org, 2018).

1.4 Introduction to Python & SWMM

Initially developed in 1989, Python has grown to be one of the world’s most popular

coding languages (Misirlakis, 2017). Python versions 2.0 and newer have all been in

the open-source domain, differentiating python from coding tools like MATLAB,

which is fairly well supervised by MathWorks (Moler, 2004). Python’s versions

2.7 and 3.x are both commonly used permutations of the base python language

(with very limited inter-version compatibility) making python’s community unusu-

ally fragmented (Wood, 2015). Python does grant myriad advantages, however.

Python is an interpreted, object-oriented, high-level language with community

support and excellent documentation (Python.org, 2018), all of which contributed

to the development of SWMMCALPY. Python’s ability to consolidate data from

disparate sources via wrappers makes it an acceptable choice for dealing with the

input files SWMM uses to contain model information.

Python’s usefulness dealing with the SWMM workflow has already been

investigated. The Open Water Analytics group developed the PySWMM project

as the foundation for their OWA-SWMM toolkit API. PySWMM is a low-level

API that uses abstractions from the C-code underlying SWMM itself to eschew

the broken interactions workflow that has historically characterized SWMM op-

timization. A broken interactions workflow designates that additional input files
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are created to contain the calibrated parameter values, rather than adjust the

original input file. PySWMM accesses the SWMM input and report files directly

to get parameter values or interact with the model results in a novel, transparent

way (McDonnell, 2018a, 2018b). PySWMM was leveraged in the development of

SWMMCALPY.

The SWMM-UI is also built using python (Contributors, 2018). This is dif-

ferent from the EPA SWMM version 5.1 GUI. Two influential open-source groups

are using primarily python tools for their future SWMM development, so it is clear

that python is an acceptable choice for the production of SWMM support tools.

The powerful and state-of-the-art python methods employed is one of the primary

strengths of SWMMCALPY as a calibration routine.

Open-source tools supporting SWMM have been developed in other lan-

guages. RSWMM was designed by researchers at Virginia Tech to automati-

cally calibrate SWMM using the statistical language, R (Alamdari et al., 2017).

RSWMM also uses the NSGA-II algorithm and multiple objective functions. RSWMM

helps fill the space for open-source autocalibration routines for SWMM, but dif-

fers in several ways. Both the primary language used and the objective functions

employed vary between RSWMM and SWMMCALPY. RSWMM also does not

consider uncorrelated subcatchment parameters the way SWMMCALPY does.

Another software, MatSWMM, is a MATLAB-based toolbox build to aid

engineers in real-time investigations of drainage systems (Riaño-Briceño, Barreiro-

Gomez, Ramirez-Jaime, Quijano, & Ocampo-Martinez, 2016). The access MatSWMM

grants to the user in terms of supervising to the traditional SWMM workflow puts it

in a similar category as PySWMM. Both PySWMM and MatSWMM have the ob-

jective of further fracturing the hydrologic black box and enhancing SWMM simu-
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lation transparency. A distinguishing feature between SWMMCALPY, RSWMM,

and MatSWMM, is that RSWMM and MatSWMM were designed for research

purposes and are loosely maintained (Alamdari et al., 2017; Riaño-Briceño et al.,

2016). SWMMCALPY is intended to be used for design purposes.

1.5 SWMMCALPY Objectives

SWMMCALPYs fully-automated routine eliminates the need for direct engineer

interference between the algorithm inputs and the returned solution. Running

SWMMCALPY only requires the initialization work of specifying a SWMM input

file to be calibrated, a root location of observed data within the model system, and

selecting weights for the objective functions. The routine then returns a calibrated

SWMM input file to the user, along with performance statistics.

To achieve this holistic goal in a way that is the most useful to the end user,

SWMMCALPY also has three sub-objectives, or strategies. These sub-objectives

also behave as checkpoints in the SWMMCALPY workflow, each solving a portion

of the overall problem and passing a minimalist argument to the next sub-objective.

The sub-objectives are:

1. to define a variable calibration scope

2. to determine the Pareto front for multiple objective functions

3. to isolate the optimal solution as informed by user-defined weights

Figure 1.1 illustrates the user inputs necessary for SWMMCALPY. It also

broadly depicts SWMMCALPYs workflow segmentation and terminology associ-

ated with that operational section.
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Figure 1.1: Broad description of SWMMCALPYs Workflow from User Inputs to
the Identification of an Optimized Solution.

14



1.5.1 Define Variable Calibration Scope

One issue SWMMCALPY seeks to address is the issue of generality in terms of

observed data availability in real world systems. Improving the accuracy of model

parameters requires observed data for calibration. These observed data could

be collected at the outfall of the system, which would suggest that the entire

catchment drains through the observed location and therefore is calibratable as a

single unit. Observed data could also be collected somewhere else in the system,

indicating that only a subset of the subcatchments that make up a SWMM model

are calibratable with the given information. SWMMCALPY has the capacity to

isolate the scope of a calibration problem given only the location of the observed

data.

Figure 1.2 and Table 1.1 are included to illustrate how different root loca-

tions within a SWMM system result in different clipped subsystems. Figure 1.2

and Table 1.1 are repeated in §2.3 where they are explained in greater detail.
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Figure 1.2: Example1 transformed into directed graph object with corresponding
locations of A) the outlet and B) an upstream junction being passed to SWMM-
CALPY for the list of contributing subcatchments to be extracted.

Table 1.1: SWMMCALPY intermediate output, the list of contributing subcatch-
ments for cases shown in Figure 6A and 6B.

An effect of allowing a variable scope for calibration is that each subcatch-

ment is allowed j degrees of freedom, where j is the number of parameters being

calibrated. Variable scope calibration implies that SWMMCALPY is not limited to

cases where the parameters for each subcatchment are strictly correlated. This as-
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sumption is not applied to some calibration strategies, such as the SRTC tool used

by PCSWMM, which assigns one value of each parameter to all subcatchments in

the system (CHI Water, 2018). Disadvantages of SWMMCALPY’s generalization

of calibrated parameter values include increased computational complexity.

1.5.2 Determine Pareto Front for Multiple Objective Functions

Another engineering consideration SWMMCALPY addresses is the usefulness of

multiple objective functions. A storm water management engineer might, for a

given SWMM model purpose, be interested in various aspects of model behavior.

For that reason, SWMMCALPY aims to minimize a cadre of objective functions

including peak flow error, volume of flow error, a modified Nash-Sutcliffe Efficiency

(NSE) index, and a distance function that insists the algorithm prefer solutions

near the user’s original parameter estimates. These objective functions used in the

initial development of SWMMCALPY are written into the workflow as replaceable

modules. Model results can be evaluated using different criteria merely by provid-

ing new constraint equations and appropriate weighting within SWMMCALPY.

The NSGA-II algorithm employed by SWMMCALPY converges to the

Pareto front for multiple object functions (Deb et al., 2002). This Pareto front is

defined as the surface in n-dimensional space (in the context of SWMMCALPY,

4-dimensions) along which it is impossible to improve the value of one objective

function without worsening the value of at least one other. A graphical represen-

tation of the Pareto front in 2-dimensions is shown in Figure 1.3.
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Figure 1.3: 2-dimsional depiction of the Pareto front for minimizing objective
functions F1 and F2. From Oliveira and Van Noije (2012).

In the jargon of the NSGA-II method, “Anchor Points” are the global min-

ima for either F1 or F2, irrespective of the value of the other and “Dominated

Solutions” are values such that it is possible for both F1 and F2 to be improved

(i.e. that solution cannot exist on the Pareto front) The Pareto front, or “Pareto

frontier” in Figure 1.3, represents essentially the optimal cases for combining F1

and F2. In Figure 1.3, the Pareto front is shown with a convex shape, but the

shape (and location) of the Pareto front varies with the system and the objective

functions used. Without an independent, additional selection criteria, it is impos-

sible to compare the goodness of points along the Pareto front. The difference

between this “selection criteria” and another “objective function” is explained in

the following section, §1.5.3.

Once progress towards the Pareto front ceases, the NSGA-II halts its it-

erative process. In the SWMMCALPY workflow, the NSGA-II is solving a con-
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strained optimization problem. Each parameter being calibrated will only be al-

lowed to vary within an engineering feasible range, thus creating what will be

referred to as the “feasible parameter space” (Knighton et al., 2016). The NSGA-

IIs Pareto front determination occurs in what Shan and Wang (Shan & Wang,

2005) coined the “feasible performance space”.

1.5.3 Isolate Optimal Solution with User-Defined Weights

The selection criteria for comparing Pareto-front solutions makes use of user-

defined weights on the various objective functions. These weights differentiate one

engineering problem from the next. For example, a catchment being studied for

flooding might have different function weights than the same catchment being stud-

ied for low-conditions. The object function weights are used by SWMMCALPY to

inform the routine on its selection of a final solution, after the NSGA-II algorithm

has stopped iterating. By relating the weights to one another, an optimal angle

can be defined. The solution in the final generation of the NSGA-II algorithm

closest to this angle corresponds to the set of parameters that is returned.

The SWMMCALPY routine prompted with a base SWMM input file, obser-

vational data + location, and objective function weights will return a new SWMM

input file with calibrated parameters. Associated performance statistics accom-

pany the calibrated SWMM input file.

——————————————————–
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Chapter 2: Methodology

This chapter presents the methodology of SWMMCALPY. Details on the software

used are presented first. An introduction to the simple SWMM model used for

verification of intermediate steps is also provided. Furthermore, each of the sub-

objectives that collectively comprise the SWMMCALPY workflow is explored in

detail.

2.1 Software Used

SWMM 5.1.012 was downloaded from the official EPA website (EPA, 2014).

Python version 3.6.5 was downloaded from python.org (Python.org, 2018).

A 32-bit instance of this python version was installed to comply with the re-

quirements of the python libraries used. Details on the specific libraries used are

presented in later sections.

Python scripting was done using the PyCharm Community Integrated De-

velopment Environment (IDE) obtained from jetbrains.com (Jetbrains, 2018).

2.2 Example file for SWMMCALPY Development

Throughout the development of SWMMCALPY routine, a simple SWMM system

was used to verify the functionality of intermittent steps. The simple SWMM

system was obtained from the SWMM5 tutorial and shall be referred to as “Ex-

ample1.inp”. Example1.inp – as read by the EPA SWMM 5.1 GUI – is depicted

in Figure 2.1.
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Figure 2.1: EPA acrshortSWMM 5.1 interpretation of the Example1.inp file.

Example1.inp is characterized by 8 subcatchments labeled 1-8 and 14 junc-

tions labeled 9-10 and 13-24. From the Example1.inp file, shown in Table 2.1, each

subcatchment an area of 10 acres. Forcing time series used in the Example1 model

are synthetic.
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Table 2.1: A portion of the Example1.inp file containing subcatchment properties.

Table 2.1 shows relevant subcatchment properties (e.g. area, outlet junc-

tion name) and the model parameters addressed in SWMMCALPYs calibration

exercise. In the initial development of SWMMCALPY only the subcatchment

surface parameters (excluding area) were treated as calibratable. Typically, the

subcatchment area is either selected intentionally or derived from fairly precise

GIS tools (Geosyntec, 2017), so, is not generally a target for calibration. Drainage

network parameters (e.g. CurbLen, PctRouted) and infiltration parameters will be

considered in future work with SWMMCALPY.

The subcatchment Name, Rain Gage, Outlet, and RouteTo are all selected

variables that inform how the model is constructed. They are not calibratable.

Thus, there are eight calibratable subcatchment parameters: %Imperv, Width,

%Slope, N-Imperv, N-Perv, S-Imperv, S-Perv, and PctZero to form the basis of
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the calibration problem to be solved by SWMMCALPY. Table 2.2 describes the

parameters.

Table 2.2: Input file variable names and descriptions. From Rossman et al. (2010).

For the remainder of Chapter 2 the methodology presented uses the Exam-

ple1.inp simple SWMM model. Subsequently, in Chapter 3, a more compelling

test case is introduced to provide evidence for the robustness and effectiveness of

SWMMCALPY on a more complex SWMM model.

2.3 Define Variable Calibration Scope

The logic behind defining a variable calibration scope is first enumerated in Chap-

ter 1 and is restated here. If a storm-driven hydrograph is obtained through

observation at a given location, then that hydrograph contains information only

about SWMM subcatchments whose runoff flowed through that location. It does
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not contain any information about subcatchments whose runoff flowed elsewhere.

For this reason, it is important for SWMMCALPY to produce a clipped SWMM

subsystem of only contributing areas to the observational data location.

An effective means of producing this clipped subsystem for any SWMM

model was found by making use of the NetworkX library in python. The Net-

workX library package operates by converting any system into a “graph object”

composed of a web of “nodes” and “edges”. Various operations can then be ap-

plied to the graph object that were not otherwise possible for the general system

(Johnson & Stinchcombe, 2007). Converting a SWMM model into a NetworkX

graph object is fairly simple as the corollaries from various SWMM objects to

NetworkX’s nodes and edges are strong. SWMMs subcatchments, junctions, and

outfalls were transformed into nodes. Outlets, conduits, weirs, pumps, and the like

were transformed into edges. A constraining assumption that water will only flow

in one direction within the system (i.e. no backwater effects permitted) allowed

the entire SWMM model to be cast as a “directed” graph object, enabling further

functionality.

Unfortunately, the information that informs the construction of the directed

graph object is carried in a variety of places in the SWMM input file. To ex-

tract the NetworkX-critical information, an SWMM input file parser is required.

SWMMCALPY invokes the PySWMM wrapper for this purpose.

PySWMM is a python wrapper for the SWMM workflow that contains func-

tions for accessing aspects of the SWMM model blueprint (McDonnell, 2018b).

Once the input file under consideration is passed to PySWMMs “Simulation”

module, relationships between SWMMs objects can be accessed and passed to

NetworkX for transformation into the final directed graph object. Inconveniently,

24



PySWMM has its own vernacular to describe SWMM objects, which partially con-

flicts with NetworkX’s parlance. In PySWMM, “Nodes” correspond to SWMMs

junctions and outfalls. “Subcatchments” comprise a PySWMM object all to them-

selves. “Links” in PySWMM translate directly to NetworkX “edges”, apart from

the omission of subcatchment outlets, which do not have an associated PySWMM

object. To circumvent the lack of a PySWMM-NetworkX translation for subcatch-

ment outlets, a manual parser was built to supplement PySWMM and adds these

connections as NetworkX edges directly.

We can think of the process as PySWMM reading the SWMM file and pass-

ing it to NetworkX to create a directed graph object for use by SWMMCALPY. A

commented python code file, “DelineateNetwork.py”, is provided in §C.1 with the

script used to execute this transformation. “DelineateNetwork.py” exists as one of

the python scripts comprising the SWMMCALPY routine. Figure 2.2 shows the

result of this transformation on the Example1 model.

Figure 2.2: EPA SWMM 5.1 interpretation of Example1.inp transformed into a
directed graph object. The red circles represent nodes and the dark arrows are the
edges preserving direction.

The SWMM system becomes “traversable” in NetworkX when processed
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into a directed graph object. This means that the relationships between distant

nodes can be investigated much more easily than with original, unprocessed in-

put file. NetworkX contains a “predecessor” function for directed graph objects

that returns the upstream neighboring nodes to any root node. Recursive calls to

this predecessor function on each upstream neighbor identifies the entire network.

Thus, when the node corresponding to the location of the observational data is

passed to the recursive call, the entire contributing subsystem is returned. This

method is preferred over more efficient tree search algorithms because SWMM-

CALPY is not constrained to systems with tree branch-like shapes.

This method is flexible enough to handle cross-cutting connections or re-

dundancies that are typical of real-world SWMM models (Geosyntec, 2017) due

to the NetworkX property that a graph object will ignore any recurring addition.

Figure 2.3 and Table 2.3 were originally presented as Figure 1.2 and Table 1.1 in

§1.5.1, and are re-shown here to illustrate the output of the variable calibration

scope to different root locations within the Example1.inp system.
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Figure 2.3: Example1 transformed into directed graph object with corresponding
locations of A) the outlet and B) an upstream junction being passed to SWMM-
CALPY for the list of contributing subcatchments to be extracted (Again).

Table 2.3: SWMMCALPY intermediate output, the list of contributing subcatch-
ments for cases shown in Figure 6A and 6B (Again).

From a graph object comprising a clipped version of the larger system’s

nodes and edges, it is easy to extract only the subcatchments included by compar-

ing the subsystems nodes to the values held within PySWMM’s “Subcatchments”

object. The end result is the comprehensive list of subcatchments whose runoff
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flows through the observational data location. Figure 2.3 and associated Table 2.3

help clarify the above description by providing output for two different cases of

root locations in the system from Figure 2.2 being passed to SWMMCALPY.

The information presented in Figure 2.3 and Table 2.3 ultimately represents

the scope of the calibration problem should the observational data exist at either

points A or B. Only the subcatchments listed in Table 2.3 will be subject to the

NSGA-II manipulation in the subsequent parts of the SWMMCALPY workflow.

Note that this approach requires that the observational data must be located at a

junction in the SWMM model. In general, observations are made at manholes or

other discrete features in a drainage network (e.g. weirs), so this restriction should

not be burdensome. In the unusual case where data are available along some

channel length, SWMMCALPY requires the drainage system to be defined so that

a junction is included at the observed data location. An interesting calibration

challenge is posed by systems with multiple observed data sets at different locations

that have overlapping calibration scopes. This challenge is discussed §5.2.

2.4 Determine Pareto Front for Multiple Objective Functions

The hydrologic rationale for multiple objective functions, as well as concept of a

Pareto front for these functions, was introduced in Chapter 1 and is revisited here

in greater detail. In general, calibration cannot make a model hydrograph exactly

match observations. The art of calibration then lies in deciding what constitutes

a “best” match, which can be quantified by some combination of measures or

“objective functions”. If a single objective function is used, then calibration be-

comes a matter of minimizing the objective function (or maximizing, depending

on its formulation). Where multiple objective functions are of interest they can
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be combined to create a “Pareto” front that is the locus of all the potentially op-

timum calibration solutions. The selection of the best match then depends on the

weighting provided to the different objectives. The goal of automated calibration

is to force the decisions on weighting, objective limits, and the parameter limits

to be made prior to calibration rather than as ad hoc interventions before or after

calibration when the results are disagreeable.

A key challenge is that each objective function ideally should be indepen-

dent, otherwise the weighting will double-count the dependent effects. In practice,

there will typically be some unavoidable overlap between different objective func-

tions.

Eleven common objective functions for hydrologic modeling have been pre-

viously analyzed (Shinma & Reis, 2011). They determined that metrics of absolute

peak flow error, absolute volume error, and relative squared error most nearly sat-

isfied the independence condition. Minimizing these specific functions captures

the various aspects of a hydrograph: the maximum flow rate, the total amount

of water flowing through the system, and the general shape of the hydrograph as

a time series. These objective functions were considered for use in the NSGA-II

algorithm within SWMMCALPY, but are conceptually difficult to combine with

a simple weighting approach. As a modified approach, the peak flow error and ab-

solute volume error were normalized as the NPE and NV E, respectively, which

provides each in a continuous and bounded range of [0,1] where zero is optimum. A

modified Nash-Sutcliffe Efficiencey (NSEm) and a normalized Euclidean distance

(NED) were also included as objective functions. Figure 2.4 contains a schematic

representation of the hydrological value added by each objective function.
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Figure 2.4: Schematic representation of the hydrologic context behind each of the
four objective functions used in the initial development of SWMMCALPY. A)
NPE - peak error; B) NV E - volume error; C) NSEm - measure of curve fit at
each time instance; and D) NED - distance between parameter sets in the feasible
parameter space.

The mathematical formulations for NPE and NV E are specifically:

NPE =
|max(Q(obs)i) −max(Q(sim)i)|
max(Q(obs)i) +max(Q(sim)i)

(2.1)

NV E =
|Vobs − Vsim|
Vobs + Vsim

(2.2)

where Q is the instantaneous flow rate, V is the volume, subscripts (obs)i
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and (sim)i indicate the ith element of the observation or simulation time series,

respectively. A trapezoidal approximation for volume - assuming a constant time

delta for both timeseries - is used in Eq. 2.2. A general trapezoidal approximation

for volume is shown in Eq. 2.3.

V =
N−1∑
i=1

(f(t)i+1 + f(t)i) ∗ (ti+1 − ti)
2

(2.3)

In Eq. 2.3 f(t) is some function of t and N is the number of elements in

the series f(t).

The relative squared error discussed by (Shinma & Reis, 2011) was re-

placed with a observation-normalized root-mean-square error (RMSE), which can

be thought of as a modified Nash-Sutcliffe Efficiency. The NSE, used frequently

in hydrologic analysis (e.g. De Paola, Giugni, & Pugliese, 2016; Khu & Madsen,

2005; Madsen, 2000), is given formally as by Nash and Sutcliff (Nash & Sutcliffe,

1970):

NSE = 1−

N∑
i=1

(Q(obs)i) −Q(sim)i))
2

N∑
i=1

(Q(obs)i) −Qobs)2
(2.4)

where Qobs is the mean of the observed time series, computed as:

Qobs =
1

N

N∑
i=1

Q(obs)i (2.5)

We define a modified NSE as

NSEm ≡ 1−NSE (2.6)
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If follows that

NSEm =

N∑
i=1

(Q(obs)i) −Q(sim)i))
2

N∑
i=1

(Q(obs)i) −Qobs)2
(2.7)

Although the NSEm uses the same quantifiers as the NSE, the former is

scaled over a range of [0, +∞) with zero being optimum (minimization objective

function), whereas the later is over the range of (-∞, 1] with unity being optimum

(maximization objective function). Thus, our NSEm is readily combined with

NPE and NV E in a combined minimization objective.

As a metric, the NSE index is essentially the ratio of the predictive power

of a model to capture the behavior of a timeseries over the predictive power of the

average of that timeseries alone. So, for the NSEm to have a value great than 1,

the model would have to perform worse than simply the average of the observed

data; or, in other words, terribly. Thus, there is no reason to further constrain

the upper boundary of NSEm to match those of the NPE and NV E. Consistent

objective function bounding enables a more transparent comparison between the

values of the objective functions. Further details on the logical derivations of Eq.

2.1, Eq. 2.2, and Eq. 2.4 are provided in Appendix D.

Ideally, an automatic calibration routine should preserve existing knowledge

of the system and likely conditions. PCSWMMs SRTC tool achieves this explicitly

by requiring user-defined constraints on the allowable change in parameters. This

establishes upper and lower bounds for the sensitivity analysis to proceed; after

which any solution within that feasible parameter space is considered equally valid

(CHI Water, 2018).
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SWMMCALPY asserts the confidence constraint on calibration slightly dif-

ferently than PCSWMMs SRTC tool. At the outset, a default feasible parameter

space is provided as a general constraint to the optimization problem, with value

ranges determined from Chow (1959). In this way, an absolute parameter range

constraint is still imposed. However, as the default feasible parameter space was

constructed to apply to a wide range of SWMM applications, the value ranges

are likely too liberal for a given specific application. Therefore, a fourth objective

function was included into the multi-objective function operability of the NSGA-

II algorithm within SWMMCALPY. Essentially, this objective function represents

the distance, within the feasible parameter space, between the original estimate

of parameter values and a parameter set determined by the NSGA-II algorithm.

These NSGA-II-derived parameter sets with hereafter be referred to as “guesses”.

The distance function is referred to as the normalized Euclidean distance NED.

NED =

√√√√ M∑
i=1

( |Oi − Ti|
Oi + Ti

)2
(2.8)

where Oi and Ti are the ith element of the original and guess parameter sets,

respectively. M is the length of the parameter sets. Eq. 2.8 can be interpreted as

the L2 norm of the vector composed of the normalized absolute difference between

each guess and the original parameter set. Minimizing this distance function would

indicate a calibrated solution that is “close” to the originally estimated parameters.

Variable confidence on the part of the SWMM user can be controlled by assigning

a larger or smaller weight to that objective function.

Three of the four objective functions operate within the feasible performance

space, while the fourth is computed within the feasible parameter space. The
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hydrological interest in the NPE and NV E, schematically demonstrated in Figure

2.4A and 2.4B, respectively, is fairly straightforward. Inaccurately estimating the

peak flow could have consequences for flooding considerations, while errors in

volume could affect water balance problems. The NSEm shown in Figure 2.4C

heavily penalizes phase shift, or peak timing errors, which has implications for

emergency preparedness, while the NED is a nod to an engineer’s confidence in

their initial parameter estimates.

Values for the objective functions forms the basis by which guesses can be

compared, but many guesses must be generated for a suitable solution to be found.

For large dimensional problems, the NSGA-II algorithm is an efficient method by

which to generate guesses in the form of potential parameter sets, evaluate their

performance and generate new guesses such that subsequent generations better

approximate the unique Pareto front for a given problem (Deb et al., 2002; Herrera

et al., 2006). Figure 2.5 presents an overview of the NSGA-II workflow and logical

basis.
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Figure 2.5: Diagram of NSGA-II workflow.
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Figure 2.5 details the informational prerequisites to be provided by the user

and illustrates the flow of steps taken to properly execute the NSGA-II algorithm.

A prosaic description of the overview provided by Figure 2.5 is included here.

Intuitive prerequisites for the NSGA-II algorithm to proceed are a built

SWMM model input file with initial values set for each parameter and a defined

feasible parameter space to constrain future guesses. Additionally, the algorithm

requires some manner of observational (or calibration, as per Figure 2.5) data, to

which the model can be compared for calculation of objective functions (including

the corresponding model location of that data) and user-defined weights on those

objective functions. Another (implied) pre-processing step before the algorithm is

able to produce its first generation of guesses is that the provided text files need

to be read in so the data is available within the python script. In §2.3, PySWMM

was used to parse the network connectivity information from the SWMM sim-

ulation module. However, PySWMM was not built as a comprehensive parser

and lacked the “getter” functions required to access parameter values under the

“[SUBAREAS]” heading. Building off of PySWMMs existing toolbox is possible,

but for simplicity a manual parser was created to access the parameters under

investigation.

Only the parameter data for subcatchments contributing to the root location

are made accessible to the NSGA-II algorithm for manipulation. This screening

process is enforced by the list of subcatchment in the clipped subnetwork graph

object from the NetworkX analysis in §2.3.

Creating a generation of parameter sets to act as guesses is the first active

step in the NSGA-II algorithm. A mutation probability criterion, pm, is applied

repeatedly to a compiled list of contributing subcatchment parameters, creating m
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sets of guesses that are uniquely related to the original guess. Genetic algorithms

often have a third generational parameter, pc, representing a “crossover” probabil-

ity. Crossover probability is the likelihood that two parameter sets in a generation

will be combined to produce a guess in the next generation. Crossover probabil-

ity was neglected in the initial development of SWMMCALPY; each generation

is produced purely on the basis of mutation from the previous generation. Table

2.4 details the genetic algorithm variables chosen for the NSGA-II component of

SWMMCALPY.

Table 2.4: Genetic parameters used by NSGA-II for producing generations of
guesses.

Genetic Algorithm Parameters

Generation Size m 100

Mutation Probability pm 0.5

Crossover Probability pc 0.0

The practical consequence of the values in Table 2.4 is that each parameter

in the initial guess had a 50% chance of being mutated. Mutated parameters were

randomly given a new value according to a uniform distribution. The upper and

lower bounds of the uniform distribution were informed by the default feasible

parameter space. The default feasible parameter space in text file form can be

found in §B.1. A generation size, m, was chosen to be 100, as that is a typical

generation size for NSGA-II (Deb et al., 2002; Shan & Wang, 2005). Others, like

Herrera et al. (Herrera et al., 2006), have used m = 50. A fairly high value for

the mutation probability was chosen because this was the only mechanism causing

generational differences. Sensitivity of NSGA-IIs convergence rate to mutation
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probability is not known.

The initial generation of guesses, referred to as P , is stored in individual,

temporary input files that are identical to the original input file with the exception

of the parameters that had been selected for mutation. Figure 2.6 demonstrates

an example of the differences between the original SWMM model input file for

Example1 and a temporary input file belonging to the first iteration of guesses.

Details on the python script responsible for creating each guess and storing it

within a temporary input file can be found in the commented python script, “Cre-

ateGuesses.py”, in §C.2.
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Figure 2.6: A) Identical to Table 1, portion of Example1.inp that highlights sub-
catchment parameters; B) Temporary input file, one generation separated from
Example1.inp, with the mutated parameters underlined.

To produce Figure 2.6B, Example1.inp input file and the root node of “18”

were passed to the generation generator within SWMMCALPY. One of the 100

resulting temporary files was clipped to highlight the “[SUBCATCHMENTS]”
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and “[SUBAREAS]” headers. The format asymmetry between the two input files

comes from the float precision of the mutated parameters, as well as the fact that

each value was tab delimited in Figure 2.6B, as opposed to variably delimited in

Figure 2.6A. SWMMs C code compiler uses space delimited tokens, so while the

input file in Figure 2.6B is not as aesthetically appealing, it is perfectly legible to

SWMM.

Root node “18” corresponds to the outfall of the Example1.inp SWMM

model, indicating that all subcatchments in the system were contributing sub-

catchments. For this particular temporary file, 34 of the 64 mutate-able parame-

ters (8 parameters by 8 contributing subcatchments) were given new values with

float precision as determined by a uniform distribution for that parameter’s clas-

sification. To clarify this point, the “S-Imperv” parameter was sampled from the

same uniform distribution for each subcatchment and the distribution is unique

to “S-Imperv”. Figure 2.6 also serves to reinforce the point that each parameter

in the set is subjected to the same mutation probability of 0.5. So, the expected

value for the number of mutated parameters in this guess is 32, but the actual

number can vary stochastically around that mean.

For the first iteration of NSGA-II, initial guess set, P , is generated. Subse-

quently, each guess, Pi, is mutated again to form a second generational set, Q. The

set P
⋃
Q undergoes SWMM simulation to begin the iterative, genetic process of

NSGA-II.

Each temporary input file in the set P
⋃
Q is simulated in SWMM using

PySWMM commands and the results are compared to the observational data set

provided at the onset of the NSGA-II algorithm execution. PySWMM has the

functionality to force the SWMM simulation to report the flow through a node
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at a defined timestep. The timestep passed is equal to the time resolution of the

observational dataset and currently is only functional for observed data with a

consistent timestep. It is worth noting here that, because the Example1 SWMM

model being used for the intermediate testing of SWMMCALPYs processes is not

a model that exists anywhere on earth, there are no observations. Instead, a syn-

thetic hydrograph timeseries was constructed that had the same basic shape and

magnitude as the simulated hydrograph at the Example1 system outfall. Figure

2.7 depicts the synthetic “observed” hydrograph timeseries against the simulated

hydrograph for Example1.inp.
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Figure 2.7: Simulated vs “Observed” hydrograph for the outfall of Example1.inp.

Values for the four objective functions being employed can be determined
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by comparing these two timeseries for each guess in a generation. Essentially,

evaluations of the objective functions transform each guess from a vector of length

8n̂, where n̂ is the number of contributing subcatchments, to a vector of length

four that exists in the feasible performance space.

As an elitist algorithm, NSGA-II only maintains the information from the

non-dominated guesses through each generation, or, in the case of the first itera-

tion, from the first two generations. However, there are several ways to evaluate or

approximate non-dominance. A straightforward way is to sum the four objective

functions to determine a sort of cumulative distance from the origin; this approach

is shown in Eq. 2.9. This is commonly done to some degree in hydrological studies

that employ more than one objective function (Barco et al., 2008; Madsen, 2000).

Deb et al. rebuts that this approach is only valid for problems in which the Pareto

front is convex in shape, such as it is shown in Figure 1.3. Deb et al. provides a

set of mathematical expressions to determine non-dominance (Deb et al., 2002),

but these were neglected in favor of the first cut approximation of the Pareto front

for the initial employment of the NSGA-II algorithm in SWMMCALPY. The full

set of non-dominance expressions, as well as an outline for how that search would

be conducted by a python script, is provided in Appendix D.

F =
M∑
i=1

wifi (2.9)

In Eq. 2.9, fi represents each objective function (i.e. Eq. 2.1, 2.2, 2.7, and

2.8) and wi is the corresponding user-defined weight on that objective function. F

is the aggregate function by which each guess is evaluated.

For each iteration of NSGA-II, the union set P
⋃
Q is sorted from lowest to
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highest values of Eq. 2.9. The worse performing 50% of the union set (i.e. ranks

101-200) is culled and their temporary input files deleted. The surviving guesses

form the new-initial set, P . For successive iterations of NSGA-II, the surviving

guesses are mutated to create the younger generation, Q. SWMM simulations

of guesses in set Q are evaluated by Eq. 2.9, the union set P
⋃
Q resorted, and

the worse performing half of guesses culled. This workflow of mutate, simulate,

combine, sort, cull is repeated for many generations. NSGA-II is considered an

elitist algorithm because the fittest guesses fill in the top ranks of the set P for each

generation. While the information within these guesses are mutated to produce

subsequent generations, the fit guesses themselves are preserved so long as they

remain in the top half of P
⋃
Q. A helpful metaphor might be that the guesses

within P are the reigning champs at the end of each iteration; they can only be

removed in the next iteration if one of their children, in set Q, supplants them.

The final requirement for the successful execution of the NSGA-II algorithm

is that a convergence criterion be established. Theoretically, each successive gener-

ation of guesses should more and more accurately predict the true Pareto front for

the specific problem, but there is no stop condition built into the algorithm itself.

Different researchers have investigated different criteria for halting the progression

of the NSGA-II algorithm. Shinma and Reis used 100 iterations and concluded

that was sufficient (Shinma & Reis, 2011). Deb et al. suggests a maximum of

25,000 function evaluations (Deb et al., 2002). With a population size of 100 sets,

this corresponds to 250 generations. Others have used a moving window of the pre-

vious 500 iterations to determine whether the objective functions had substantially

improved within that window (Krebs et al., 2013). Yet another study proposed

the algorithm stopping criteria be respective of each objective function (Herrera
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et al., 2006). The used of an aggregate objective function for NSGA-II sorting

in the initial development of SWMMCALPY suggested that a simple generation

count limit be implemented as the stop criteria; a value of 100 iterations was cho-

sen. Other convergence criteria ideas, such like that presented in Shan and Wang

(Shan & Wang, 2005), are explored in Appendix D. These convergence criteria are

largely predicated on the NSGA-II sorting algorithm used, whether it is simplified

or the full non-dominance sort proposed by Deb et al. (Deb et al., 2002).

The NSGA-II algorithm within SWMMCALPY is able to efficiently esti-

mate the Pareto front for a given calibration problem. The list of contributing

subcatchments, feasible parameter space, observational data timeseries, and equa-

tions for the objective functions are the arguments required to execute this portion

of SWMMCALPY. The NSGA-II algorithm is not capable, however, of comparing

solutions along the Pareto front.

2.5 Isolate Optimal Solution with User-Defined Weights

Weights on the four objective functions, as defined by the engineer at the outset

of the SWMMCALPY routine, can be used to identify a single solution to be

returned to the user. The available set of solutions is contained within the final

set of guesses, P , that exists when NSGA-II has reached its stop criteria. This set,

P , is an approximation of the true Pareto front that exists for the given calibration

problem and therefore should be exclusively comprised of non-dominated solutions

that are difficult to compare.

n∑
i=1

wi = 1 (2.10)
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Constraining the weights by Eq. 2.10 is possible because of the way the

objective functions were formulated. It was posited that each objective function is

bounded between [0, 1]. Bounding the weights similarly enables direct comparison

between weighted objective function values, as they are likely to be of the same

order. A weighted summation of unity was chosen arbitrarily; some consideration

was given to each weight’s value being on the order of one, but Eq. 2.10 has

precedent in Lagrange multipliers commonly used for optimization.

For the aggregate objective function being used as the first cut of the NSGA-

II sorting algorithm in SWMMCALPY, the objective function weights feature

explicitly. At the conclusion of NSGA-IIs iterative process, the parameter set

occupying the first-ranked position within set P is the optimal solution.

SWMMCALPY’s composite python scripts can be found in Appendix C.

Examples of the default and temporary files supporting the python scripts can be

found in Appendix B, with descriptions. Appendix D contains a discussion about

an alternative method by which the optimal solution can be chosen from the final

pareto-approximating set. This method is designed to be compatible with the full

non-dominance rank-sorting algorithm posed by Deb et al. (Deb et al., 2002) and

the stagnating elitist set stop criteria presented by Shan and Wang (Shan & Wang,

2005).

——————————————————–
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Chapter 3: Test Case

While Example1.inp was used to aid in the building of SWMMCALPY’s scripts, its

limitations were numerous. SWMMCALPY is intended to be used by engineers,

not solely as a research exercise. In that vein, a non-physically real, relatively

small system like Example1 was not a robust enough test for SWMMCALPY’s

algorithm. For a better test case, a professionally developed SWMM model was

used. To echo §1.1, the hypothesis is that SWMMCALPY’s calibrated solution

will perform comparably to the calibrated solution determined by an established

method.

3.1 Brentwood: Model Description

The Brentwood neighborhood in northern Austin, Texas has experienced chronic

flooding in the past few years when subjected to even mild storms (Geosyntec,

2017). The City of Austin recruited the consulting firm Geosyntec, Inc. to investi-

gate the root cause of the flooding and propose a cost-effective solution. Geosyntec,

Inc. built and calibrated an existing SWMM model using the PCSWMM software.

A map of the Brentwood site is included in Figure 3.1, whereas an EPA SWMM

rendition of the input file and model complexity information are included in Figure

3.2 and Table 3.1, respectively.
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Figure 3.1: Map of Brentwood Case Study Extents. From Geosyntec (2017).
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Figure 3.2: EPA SWMM 5.1 interpretation of existing Brentwood model, partially
expanded so show detail of SWMM model.

Table 3.1: Model Complexity Data obtained from Geosyntec (2017).

Figures 3.1, 3.2, and Table 3.1 show that the Brentwood neighborhood

model is a substantially more complicated system than Example1 and therefore

poses a more significant and compelling litmus test of SWMMCALPYs algorithm.
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The Brentwood system was built in PCSWMM and calibrated with PCSWMMs

SRTC tool, further adding value to the test case (Geosyntec, 2017). Should

SWMMCALPY manage to yield a calibrated solution for the Brentwood system

that is comparable in performance to that which was obtained by professional

engineers using a popular and effective approach, confidence will grow in SWMM-

CALPY’s capacity to satisfy its objectives.

The Brentwood test case underwent several preprocessing steps to prepare

it to undergo calibration via SWMMCALPY.

1. Prepare an “uncalibrated” copy of the model.

2. Select a single storm event.

3. Determine the objective functions on calibrated SWMM model.

3.2 Prepare an “uncalibrated” copy of the model

The Brentwood SWMM model input files provided by Dr. Brandon Klenzendorf

of Geosyntec, Inc. were the calibrated and validated files used for the composition

of their technical report (Geosyntec, 2017). To make running SWMMCALPY

on the Brentwood case a useful exercise, a copy of the model first had to be

“uncalibrated”. Table 3.2 in the technical report provides a summary of changes

made to the calibrated parameters by the SRTC tool. The table is presented as

Table 3.2 here for convenience.
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Table 3.2: Summary of Subcatchment Parameters Analyzed for Calibration ob-
tained from Geosyntec (2017).

From Table 3.2, it can be seen that Geosyntec’s scope for subcatchment

parameter calibration was slightly different than that of SWMMCALPY’s. “Per-

cent Routed” and Green-Ampt infiltration parameters, “Suction Head”, “Satu-

rated Hydraulic Conductivity”, and “Initial Moisture Deficit”, were calibrated in

the professional calibration of Brentwood, but are neglected by SWMMCALPY.

Conversely, SWMMCALPY calibrates the subcatchment average slope, but, as

the slope was calculated from GIS tools for Brentwood SWMM model develop-

ment, Geosyntec held it static. The intersection of the two method’s calibratable

parameters were corrected to produce the “uncalibrated” input file to undergo

re-calibration. Where available from Table 3.2, the initial values prior to SRTC
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calibration were reinstated (this happened to correspond to all of the “[SUBAR-

EAS]” parameters). For “Subcatchment Width” and “Impervious Cover(%)”, the

negative average of the calibration change in column four (ignoring the difference

between ROW and non-ROW subcatchments) was reapplied to the calibrated value

to approximate the initial value.

For example, for a given, hypothetical, calibrated subcatchment width value,

Calibrated Width(ft) = 425

Average Change =
−0.62 +−0.44

2

Initial Width(ft) = (1− Average Change) ∗ Calibrated Width

Initial Width(ft) ≈ 650

(3.1)

The simple arithmetic in Eq.3.1 was applied to the “Subcatchment Width”

and “Impervious Cover(%)” parameters for each subcatchment, of which there

were many.

This coarse process of undoing Geosyntec’s work calibrating the Brentwood

file yielded a SWMM input file that could be fed as an input into SWMMCALPY

for recalibration.
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3.3 Select a single storm event

As they are currently encoded in the initial development of SWMMCALPY, the

objective functions used by the NSGA-II algorithm can only be applied to a single

storm event. Namely, this restriction falls on the NPE. If Eq. 2.1 is recalled, only

the maximum value from the timeseries is passed, so multiple storm event peaks

would get washed out by the global maximum. There are potential fixes for this

(such as establishing a time gap criteria between local maxima), but they have

not yet been implemented. In lieu of a way to evaluate model performance in a

continuous simulation, the test case of SWMMCALPY on Brentwood will began

with a single storm event.

The storm event to undergo analysis was chosen by selecting the highest

daily rainfall amount within the 2012 - 2014 period for which data was available.

October 13, 2013 had the most rainfall for this 2 year period and, thus, formed

the basis for the single event test case analysis.

A challenge for single storm modeling that does not exist for continuous

simulation is that of spin-up time. Inaccurate initial conditions can affect model

performance, so the model must be simulated far enough back that the initial

conditions are sufficiently approximated. Using a continuous simulation of the

calibrated SWMM model for Brentwood as the ground truth, a spin-up analysis

was conducted for the October 13 storm.

Using forcing data clipped to a variable time increment before midnight on

October 13, the calibrated SWMM model for Brentwood was simulated, up until

14:00 on October 13. Evaluations of the Nash-Sutcliffe Efficiency (NSE) index

were used to determine the sensitivity of each simulation to changes in the time
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increment. An equation for evaluating sensitivity is framed within Eq.3.2.

Sensitivity =
∂R

∂P
(3.2)

In Eq.3.2, R represents the “model” used, or, in this case, the NSE evalu-

ated between the continuous simulation and single event simulation. P represents

the parameter being changed, in this case, the time increment prior to midnight

on October 13, 2013 that is included in the single event simulation.

Multiple time increments of forcing data were simulated for the single event.

The sensitivity parameter described in Eq. 3.2 was computed and plotted against

P , the time increment. The regression is presented in Figure 3.3.

Figure 3.3: Sensitivity Parameter vs Time Increment for simulations with rainfall
data clipped to several hours prior to 12AM on October 13, 2013. Copied from
Appendix E.

From Figure 3.3 it can be seen that the sensitivity of the NSE to increased
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time increment stagnates after roughly 10 hours. This indicates that only 10

hours of forcing data are required to produce as good as possible a single event

simulation.

3.4 Determine the objective functions on calibrated SWMM model

With the time extent for a single event analysis established, the final pre-processing

step for the Brentwood case is to determine how the calibrated SWMM model

performs on the basis of SWMMCALPYs objective functions.

Observational data at the outfall of the system was clipped to the sin-

gle event. SWMMCALPYs entire workflow was not necessary for this one set

of calculations, so the observed data and SWMM input file were passed to the

“ObjectiveFunctions.py” script (commented code provided in §C.4). This script

evaluates Eq. 2.1 - 2.7. Table 3.3 contains the values of these objective functions

for the October 13, 2013 storm in Brentwood.

Table 3.3: Objective Function Values of Brentwood model for Oct. 13, 2013

Objective Functions

NPE 0.0939

NV E 0.2197

NSEm 0.1495

NED 0.3182

October 13, 2013 represented the maximum rain event in the Brentwood

model time frame, so the calibrated simulation may be further off for this event

than other, milder storms. Even so, the calibrated Brentwood model performed
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adequately for NPE and NV E and well for the NSEm. These values were verified

through a more transparent calculation with Microsoft Excel.

With the Brentwood model evaluated for its performance according to

SWMMCALPYs goodness of fit criteria, the test case is prepared for comparison

against SWMMCALPYs solution. If SWMMCALPY is able to manipulate the

forcibly uncalibrated Brentwood file into a calibrated solution that challenges the

benchmark set by the SRTC-calibrated model, the hypothesis of SWMMCALPY

viability will be supported.

——————————————————–
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Chapter 4: Results

As is detailed in §2.5, an aggregate function, Eq. 2.9, was used as the ranking

criteria for all of the guesses in a given generation. The top performing half of

the guesses were maintained for future generations and the #1-ranked guess after

the last iteration is returned to the engineer as the calibrated solution. Figure

4.1 is a plot tracking the value of the aggregate function of the #1-ranked guess

in each generation. The #1-ranked guess was tracked for 5 runs of the NSGA-II

algorithm.

Figure 4.1: Time series showing the progression of the top-ranked guess in each of
100 generations.

Figure 4.1 is a generation series of the top-ranked guess for 5 runs of SWMM-
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CALPY on the Example1.inp file. The weights used are given as:

wi =
1

4
(4.1)

which satisfies the constraining condition given by Eq. 2.10. All objective

functions being weighed equally has the effect of distilling the aggregate function

in Eq. 2.9 down to simply the average of the individual objective functions. The

total inflow at the outfall of the Example1 system (node “18”) was reported and

compared against the synthetic “observed” dataset detailed in §B.2.

Figure 4.1 follows the predicted behavior wherein the aggregate function is

steady at a given value, then jumps to a lower value once a more favorable pa-

rameter set is found. Interestingly, in several of the SWMMCALPY runs there

are anomalies where one generation has a much lower aggregate function value,

but that low value does not survive to the following generation. Upon further

investigation, the anomalies arise when a new guess is promoted to the top rank.

This is intuitive, as it was promoted for the very reason of having a lower aggre-

gate function value. But, in the following generation, without the parameter set

comprising the guess changing in any way, the aggregate function has a different,

higher, value. This suggests that the bug may have its roots in an inconsistency

in the objective function formulations themselves. Addressing this coding bug will

be a priority, detailed in §5.2.

In Figure 4.2, it can be seen how each objective function behaved through

the generations. Figure 4.2 was included to highlight how the modified NSGA-II

algorithm ranked the aggregate function, which was an average of each objective

function. So it was possible for the best guess in each generation to switch dra-
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matically between performing well on, say, the NED to performing well on the

NV E. Table 4.1 then details the values of the objective functions for the solution

returned to the user for each of the calibration runs.

Figure 4.2: Time series showing the progression of each objective function for the
top-ranked guess through 100 generations.

Table 4.1: Multiple objective function values of solutions for several runs of
SWMMCALPY.

NPE NV E NSEm NED Aggregate

Run 1 0.0900 0.0223 0.5967 0.0000 0.17725

Run 2 0.0099 0.0132 0.6778 0.0000 0.17523

Run 3 0.0209 0.0578 0.5925 0.0351 0.17658

Run 4 0.0370 0.0439 0.5971 0.0494 0.18185

Run 5 0.1339 0.0158 0.4721 0.0827 0.17613

Something to notice is that all of the calibration runs tended to converge
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to a value of about 0.17-0.18. Additionally, the values for the NPE, NV E, and

NED were consistently an order of magnitude less than the NSEm values. The

NSEm was added to the suite of objective functions for its ability to capture the

general shape of the hydrograph, with emphasis on the timing of peaks. Figure

4.3 shows how the modified NSGA-II algorithm fails to capture the timing of the

synthetic observed data for calibrated solutions of the Example1.inp system.

Figure 4.3: Hydrograph comparisons of synthetic observed data, the original Ex-
ample1 system, and several calibrated solutions from SWMMCALPY.

The original Example1 system and each calibrated solution have the same

peak timing, which is two hours early on the peak for the synthetic observed

data. A possibility to consider is whether the synthetic observed data (which was

produced before any calibration was done) is even a realizable behavior for the

given SWMM model. It is possible that no parameter value configuration of the
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small, simple Example1 SWMM model can delay the time of concentration enough

to reproduce the hydrograph behavior contained in the synthetic observed data.

Potentially a more consistent and revealing test for SWMMCALPY with

the Example1 system,a model-model comparison will be explored. Two inde-

pendent sets of parameters are constructed as the starting position and “ground

truth”. The “observed” data simply becomes the hydrograph from a simulation

of the ground truth data set, thus guaranteeing that the observed data is at least

realizable from the model.

——————————————————–
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Chapter 5: Conclusions and Future Work

5.1 Conclusions

The problem statement motivating SWMMCALPY presented at the outset of

this thesis was to develop a routine that automates the calibration of the Storm

Water Management Model by making use of a genetic algorithm. Three sub-

objectives: defining a variable calibration scope, determining the Pareto front for

multiple objective functions, and isolating the optimal solution for user-defined

weights, were executed to create a natural outline for SWMMCALPYs workflow,

as shown by Figure 1.1. An simple SWMM system, Example1.inp, was used as a

experimental trial proof of concept for SWMMCALPY.

Defining a variable calibration scope allowed the engineers to relax the con-

straint of perfectly correlated parameter values across the system. The NetworkX

package and recursive search allowed for all contributing nodes to a point to be

identified. This method is flexible enough to capture simple tree systems, as well

as cross-cutting systems, interconnections, and extraneous outfalls.

Multiple objective functions that address independent aspects of a hydro-

graph were attempted to be minimized. To balance guesses that compromised

on one objective function to minimize another, an aggregate function that aver-

ages the objective function values was employed. A modified NSGA-II algorithm

evaluated the fitness of each guess and mutated the fittest guesses to approach

an approximation of the Pareto front for a given calibration system. After 100

iterations of the NSGA-II algorithm, the top-ranked guess was returned as the
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solution to the engineer.

In Chapter 4, a comparison of several runs showed that the algorithm was

capable of yielding a variety of solutions with noticeably different behaviors, but

similar aggregate function values. This highlights the many-to-one issue with

multiple objective functions and invites a comparison with the full-blown NSGA-

II search algorithm detailed in Appendix D.

For simple systems, like the Example1.inp model, SWMMCALPY shows

promise as a viable and flexible calibration routine. However, there is an issue

with routine run time with larger systems. The Brentwood neighborhood test case

analysis was not included in this thesis because of the burgeoning computational

requirements as system complexity increases. To illustrate, 100 generations of the

modified NSGA-II algorithm, with a generation size of 100 guesses, requires 10,000

SWMM model simulations. Run serially, this is easily the most time intensive

aspect of the SWMMCALPY workflow. Some manner of parallelization for will

be critical for expanding the scope of calibratable problems with SWMMCALPY.

5.2 Future Work

Despite success in yielding a calibrated solution for a simple SWMM system,

SWMMCALPY remains in its infancy. More analysis, combined with myriad fixes

and upgrades are necessary to make the routine usable by the general SWMM

community. This upcoming summer, the author will continue to work on SWMM-

CALPY to address the fixes discussed in previous sections and here.

In Figure 4.1, a strange anomaly in the progression of the top-ranked guess

in each generation arose. The fact that the bug seemed to be when a guess had an

inconsistently low value for the aggregate function and then restabilize at a more
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consistent value, points to the issue being with the evaluation of the objective

functions themselves. So, the search for the bug will begin with the “Objective-

Functions.py” file contained in §C.4.

SWMM simulations themselves consume the preponderance of the time

taken by the SWMMCALPY routine. Currently, each SWMM simulation for a

given generation is computed in series, which essentially renders SWMMCALPY

unusable for realistically complicated SWMM models. However, there is no logi-

cal reason for each SWMM simulation in a generation to be computed in series,

which means that there is potential for a two order of magnitude reduction in the

computational time to conduct a SWMMCALPY run. Parallelization of SWMM-

CALPY will be explored and an effort will be made to bring a problem the size of

the Brentwood neighborhood test case described in Chapter 3 into the plausible

scope of the routine.

Another time saving feature that will be investigated in the future devel-

opment of SWMMCALPY is the inclusion of a sensitivity analysis preceding the

actual calibration phase. As alluded to in §1.3.2, sensitivity analysis has the affect

of reducing the dimensionality of the calibration problem. This won’t, on it’s own,

contribute to speeding up the algorithm, but it could potentially increase the rate

of convergence to the Pareto front as insensitive parameters are neglected. An

increased rate of convergence could allow for fewer generations being evaluated to

achieve the desired accuracy. The post-processing corollary to sensitivity analy-

sis is uncertainty analysis. Several ready-made python packages exist to conduct

analyses like the generalized likelihood uncertainty estimation(GLUE; described

further in §A.9). Uncertainty analysis would give the engineer an understanding

of the variance of individual parameters among Pareto front solutions.
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In addition to parallelizing some aspects of the genetic algorithm compo-

nent of SWMMCALPY, several components of the modified NSGA-II sorting algo-

rithms stand to be upgraded. Appendix D contains details of how a more sophis-

ticated Pareto front-nearness search algorithm can replace the aggregate function

used in Chapter 2. A comparison between the two search methods could yield

fruitful information about just how sensitive the solution is to the search method

for multi-objective optimization problems.

Potential for improvement in generalizing the variable calibration scope

problem also exists in this version of SWMMCALPY. §2.3 introduces a challenge

posed by multiple locations of observational data within a system, especially when

the contributing subsystems to that location are overlapping. Solving that prob-

lem will likely involve ramping up the weight for the NED objective function for

those subcatchments which are involved in both clipped subsystems. The logic

is as follows. When one calibratable subsystem exists, the confidence in all sub-

catchment parameters is the same. However, when additional observational data

causes overlapping subsystems, it is not reasonable to overwrite the calibrated pa-

rameters from the first calibration problem, nor is it reasonable to assume they

will not be affected by additional information. The most reasonable solution is to

increase the “confidence” in the solution of the subcatchments that have already

been calibrated through an increase in the weighting of the NED objective func-

tion for those subcatchments. This proposed solution to an overlapping calibration

problem needs to be investigated further.

These problems and opportunities for improvement frame the direction of

future development of SWMMCALPY. The overarching goal was to produce an

automated calibration algorithm that was useful to SWMM users; SWMMCALPY

64



has potential to live up to that expectation. However, improvements to the algo-

rithm and the code itself are a necessary step towards that aim.

——————————————————–
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A Automated Calibration of the EPA’s Storm Water Management

Model: A Review of Published Works

A.1 Introduction

The Storm Water Management Model (SWMM) has been under development by

the U.S. Environmental Protection Agency (EPA) since 1969. It has since under-

gone nearly 50 years of evolution, taking the form of 5 major versions (Huber &

Roesner, 2012). SWMM is a physically based model, similar to the Army Corps of

Engineers-supported Hydrologic Engineering Center - Hydrologic Modeling Sys-

tem (HEC-HMS). Physically based models are best described by contrasting them

with their foil, “black box” models. Black box models consider the catchment

under scrutiny to be an opaque control volume, with precipitation as the input,

and runoff as the output. Examples of black box models are unit hydrographs

that relate a hyetograph directly to the marginal runoff, and a simple convolution

will yield the storm-specific hydrograph (Wang et al., 2012). SWMMs approach is

to have a transparent control volume and attempt to make predictions about the

commonly sought outcome (the behavior of the runoff) by describing the physical

process that occur between, and ultimately affect, the rainfall-runoff relationship.

The processes occurring within the control volume of the watershed can include

evapotranspiration, infiltration, and storage, each of which has a physical conse-

quence on the amount of runoff that will occur from a given precipitation event.

Subsequently, engineering decisions that affect these physical processes are highly

investigated for their influences on the all-important rainfall-runoff relationship.

This strain of inquiry forms the basis for the preponderance of scientific studies

that utilize SWMMs modeling capacity (Cipolla et al., 2016; Feng & Burian, 2016;
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Guan et al., 2015b; Rosa et al., 2015; Tobio et al., 2015).

SWMMs strength, the capacity to use physical processes to describe the

behavior of water in a catchment, is also a point of weakness, as it requires an

increased number of parameters that need to be assigned value accurately in or-

der to effectively match the observed runoff behavior. Compounding this, many

of these parameters, such as Manning’s roughness or infiltration coefficients, are

virtually unknowable at any scale larger than a laboratory setting. Rigorous sci-

entific research has yielded ranges for these variables, many of which can be found

in the SWMM user’s guide written by James, Rossman, & James (Rossman et

al., 2010) or other such handbooks (Maidment, 1993). For the vast majority of

scientific research, these ranges do not offer the precision necessary to make useful

predictions, so some level of calibration is needed (Guan et al., 2015b; Krebs et

al., 2013; C. Li et al., 2016; J. Li et al., 2016).

The purpose of this report is to investigate which calibration methods are

commonly used in published works that employed SWMM for their analysis. A

special focus was placed on automated calibration methods, and the differences be-

tween them, with the ultimate goal of recommending a calibration procedure that

can be supported by the SWMM program for future standardization. According

to Rossman (Rossman et al., 2010), there is currently no automated calibration

procedure recommended by SWMM version 5.

A.2 “Calibration” broken down

Rossman (Rossman et al., 2010) described calibration as more than just one step.

The common term “calibration” is broken down into sensitivity analysis, actual

calibration, and uncertainty, or error, analysis. However, the investigation that
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yielded this report could not find a single article that indicated all three steps

were conducted; some do the first two steps of sensitivity analysis and calibration

in an automated fashion (Krebs et al., 2016), while still others do these steps, but

some portion of the analysis is done manually (Knighton et al., 2014; C. Li et al.,

2016).

� Sensitivity Analysis

� Calibration

� Uncertainty Analysis

This checklist creates a natural outline for this report. If articles that

demonstrate the presence of more than one of these steps are considered to be

more sophisticated than those that did one or fewer, and articles that show that

the steps were done with the assistance of automated algorithms are considered to

be more sophisticated than those that conducted the analysis manually, a research

ranking system emerges. The remaining sections of this report step through this

ranking system, commenting on the research done and the methods used in each

sophistication tier. To reiterate, the primary objective of this literature review is to

identify methods that could be potentially be adopted as the default methodology

for SWMM calibration. Stepping through different levels of research sophistication

and the methods used in each one will help cultivate a sense of which methods

are used in which contexts, and whether any other usage patterns emerge. Papers

using less sophisticated calibration methods were included in this discussion so

that a holistic understanding of the body of work surrounding SWMM could be

achieved.
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A.3 No Calibration Steps

Due to the difficulty in predicting, to an acceptable degree of precision, the values

and rates that govern the physical processes occurring within a unique catchment,

very few published articles attempt to model a study catchment without any cal-

ibration. However, Shen and Zhang Shen and Zhang (2014) did just that in their

analysis of catchments based on GIS and remote sensing data. Their objective was

to determine whether or not the catchment could be reasonably described by com-

puted physical parameters like those used by Horton’s equation. For this reason,

their lack of calibration was justified, albeit unhelpful in terms of illuminating a

useful automated calibration method.

In 2016, Feng and Burian (Feng & Burian, 2016) tried a different approach.

They simply trusted the rigor of their literature review to give them parameter

values that would reasonably match the rainfall-runoff relationship shown in their

observations. Their ultimate conclusion was a “fair” agreement between their

model and the observed relationship.

A.4 Manual Calibration

The second lowest sophistication tier contains research papers and bodies of work

that conducted the minimum level of calibration on known rainfall-runoff rela-

tionships to make useful predictions about what they might look like after the

catchment has undergone some change. Invariably, these studies first conducted

a literature review to get ranges for the parameters they wished to calibrate. Of-

ten among these cited works was Rossman (Rossman et al., 2010). These articles

also tended to cite one another. Studies that employed calibration of any kind
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greatly improved their modeling accuracy over studies that neglected it (Tobio

et al., 2015). Manual calibration involves adjusting model parameters one at a

time until a certain level of satisfaction that the model matches the observed rela-

tionship is attained. A validation step to ensure the calibration retains accuracy

across multiple events or time scales almost always follows. Achieving this level of

satisfaction often takes the form of maximizing the Nash-Sutcliffe Efficiency index

(NSE) (Guan et al., 2015a, 2015b; Rosa et al., 2015; Tobio et al., 2015), although

occasionally it is done by some other method (Cipolla et al., 2016).

NSE = 1−
∑T

t=1(Q
t
0 −Qt

m)2∑T
t=1(Q

t
0 − Q̄0)2

(A.1)

The NSE is a measure of the difference between the calibrated model’s

prediction and the observed runoff behavior. Maximizing theNSE means reducing

this difference as much as possible (Nash & Sutcliffe, 1970). Typically, values of

NSE > 0.85 are considered good (Versini, Ramier, Berthier, & de Gouvello, 2015).

Tobio et al. (Tobio et al., 2015) used the NSE to determine optimal design

parameters for Low Impact Development (LID) in Korea. Experimental LID’s were

tested, and their hydrological parameters determined by matching their modeled

runoff behavior with the observed hydrograph.

A.5 Manual Sensitivity Analysis & Calibration

In this next tier, it becomes useful to discuss the value in coordinating the cal-

ibration and sensitivity analysis steps. The way sensitivity analysis is intended

to be carried out is as a mechanism to simplify, or inform, the calibration step.
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By determining which parameters affect the predicted hydrograph the most, the

calibration can place emphasis on those parameters and afford to neglect the oth-

ers. Especially when the calibration step is being done manually, this can save the

researchers valuable time (Guan et al., 2015a, 2015b; Rosa et al., 2015).

Although the manual calibration step is dominated by the NSE, researchers

have used various methods when it comes to evaluating the sensitivity of their

model to incremental parameter adjustments. Rosa et al. Rosa et al. (2015) used

a method to evaluate relative sensitivity.

Sensitivity =
(∂R
∂P

)(P
R

)
(A.2)

Where ∂R is the difference between the original and new model output in response

to a ∂P change in the parameter value, and R and P are the original model output

and parameter values.

This method is not common, however, and other methods have received

more widespread attention for use in sensitivity analysis. For example, Guan et

al. (Guan et al., 2015a, 2015b) used the NSE for both their sensitivity analysis

as well as their calibration. A parameter can be considered sensitive if a marginal

change in the parameter yields a large response in the model output relative to

the responses of other parameter changes. In this case, the NSE wouldn’t have

to be maximized, but the objective is to find those parameters for which ∂NSE
∂P

is

great.
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A.6 Automated Sensitivity Analysis with Manual or No Calibration

Operating under the notion described in §A.5, wherein the labor-intensive process

of calibration can be streamlined with an effective sensitivity analysis step, many

studies spend significant effort to that end (Knighton et al., 2014; C. Li et al.,

2016; J. Li et al., 2016).

Li et al. (C. Li et al., 2016; J. Li et al., 2016) both used a modified Morris

screening method for their sensitivity analysis, obtained from (Campolongo &

Braddock, 1999). The modified Morris screening method is not unlike the Nash-

Sutcliffe Efficiency Coefficient when used for this purpose. They both relate the

change of the model output to a marginal change in a single parameter.

S =

∣∣∣∣∣
n∑

i=1

(Yi+1 − Yi)/Yi
(Pi+1 − Pi)/Pi

/
n

∣∣∣∣∣ (A.3)

The difference is that the modified Morris screening method can be coded so that

it proceeds automatically and returns the variables ranked in terms of their “S”

value, while the NSE requires some level of oversight. Li et al. (C. Li et al., 2016;

J. Li et al., 2016) then proceeded to use the NSE to calibrate their most sensitive

parameters.

Knighton et al. (Knighton et al., 2014) introduced way of thinking about

sensitivity analysis that is unlike any of the other studies discussed to this point;

the distinction between deterministic and stochastic sensitivity analysis. Both the

modified Morris screening method and the Nash-Sutcliffe Efficiency Coefficient

yield a number, indicating that each parameter affects the model outcome in a
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quantifiable, predictable, and consistent way. Knighton et al. (Knighton et al.,

2014) argued that this “deterministic” approach to the sensitivity analysis is in-

appropriate and biased, and that a better way to conduct sensitivity analysis is

through a probabilistic, or stochastic, approach. In his research, Knighton et al.

(Knighton et al., 2014) preferred a Monte Carlo-style analysis of model sensitiv-

ity, which, essentially, says that each parameter has a Gaussian distribution of

potential sensitivities. It is worth noting that stochastically described parameter

sensitivities can still be related deterministically by comparing the means of their

probability distributions. Knighton et al. (Knighton et al., 2014)’s ideas about

stochastic sensitivity analysis were echoed in his views of the uncertainty analysis

portion of the calibration process, and will be discussed later.

A.7 Automated Calibration with Manual or No Sensitivity Analysis

This section is the converse of §A.6, focusing on research studies that prioritize the

calibration step over the sensitivity analysis step. This can be afforded because

automatic calibration algorithms are employed, cutting down the labor-intensive

process that the researchers mentioned in the former section were also looking to

avoid. It is in this section that many of the processes that may be viable for official

adoption by SWMM are introduced.

Barco et al. Barco et al. (2008) is one of the most well-cited works in this

field with 97 citations. The introduction section of this research article is a minia-

ture literature review in and of itself, shedding light on the articles that gave rise

to many of the most common automated calibration methods in use today. From

the genetic algorithm that evolved into the genetic multi-objective optimization

algorithm (NSGA-II) detailed by (Deb et al., 2002), to the artificial neural network
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(ANN) method coined by (Zaghloul & Abu Kiefa, 2001) but based on the vari-

ous works authored in part by Liong between 1991-1995 (Ibrahim & Liong, 1992;

S. Liong & Ibrahim, 1994; S. Y. Liong, Chan, & Lum, 1991; S.-Y. Liong, Chan,

& ShreeRam, 1995), Barco et al. (Barco et al., 2008) offered a nearly compre-

hensive history of automated calibration method options. Ultimately, the analysis

conducted by Barco et al. Barco et al. (2008) and her team was done using the

complex method put forth by Box (Box, 1965), but many studies investigated

alternative methods enumerated by Barco et al. (Barco et al., 2008).

A concept that has been hinted at, but not yet formally defined, is that of

a calibration target function. When the calibration was being done manually the

most common target function was maximizing the NSE. This can be reasonably

related to matching the total volume of the runoff response, due to the cumulative

difference between the modeled and observed behavior term in the equation. Many

studies, especially those that focus on the effects of urbanization on flooding, were

more interested in changes to the peak flow rate, rather than total volume, as a

result of urbanization or, conversely, some urbanization mitigation strategy (Barco

et al., 2008; Krebs et al., 2013, 2014). Barco(Barco et al., 2008) and her team

understood this, and so they developed a customized target function for their

research.

F = w1

(
Q∗ −Q
Q∗

)2

+ w2

(
P ∗ − P
P ∗

)2

+ w3

n∑
i=1

(
Q∗ −Q
Q∗

)2

i

(A.4)

Where Q is the total flow volume, P is the peak flow rate, and f is the instantaneous

flow rate. “w1”, “w2”, and “w3” are weighting factors that let Barco et al. (2008)
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and her team bias their calibration towards the part of the flow behavior that was

most important to them at the time.

Despite Barco’s (Barco et al., 2008) comprehensiveness in the literature

review portion of the 2008 study, and her creativity in the calibration portion,

parameters were selected for calibration without any consultation of a sensitivity

analysis. After the calibration process was finished, a manual sensitivity analysis

was conducted, seemingly as a discussion point.

Although the complex method was denounced as “precise but slow” by

Masseroni and Cislaghi (Masseroni & Cislaghi, 2016), it is a reasonably popular

automatic calibration method. Granata et al. (Granata, Gargano, & de Marinis,

2016) used it as well in his comparison of SWMM versus Support Vector Regres-

sions for modeling rainfall-runoff relationships in urban areas.

Other studies utilized alternative algorithms to achieve the same goal. The

NSGA-II method described by (Deb et al., 2002) was used by Krebs et al. (Krebs

et al., 2013, 2014). In both of Kreb’s Krebs et al. (2013, 2014) articles, the multi-

objective calibration was preceded by a manual sensitivity analysis with the NSE

as the objective function.

Another option for the calibration step is to involve another program.

“fmincon” is a function available in MATLAB that uses gradients to approach

the optimization. As with the NSGA-II method, a target objective is required,

and the NSE is often used (Masseroni & Cislaghi, 2016).

In §A.6, it was discussed that Knighton et al. Knighton et al. (2014) made

use of a class of functions, Monte Carlo simulations, to approach sensitivity analysis

a different way. Similarly, the Rosenbrock methods are commonly used for solving

differential equations problems, such as the ones posed in calibration. Versini et
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al. (Versini et al., 2015) used the Rosenbrock methods for calibration of SWMM

for the sake of analyzing the impacts of green roofs in a French basin. Wang et

al. (Wang et al., 2012) also calibrated his SWMM model by employing this class

of functions.

As a side note, Wang et al. (Wang et al., 2012) contrasted classic calibration,

like using Rosenbrock, fmincon, or NSGA-II, with a method like ANN. Wang et

al. (Wang et al., 2012) considered this method to be inappropriate for a physically

based model such as SWMM because of the reductive nature of the method. ANN

is described as a “learning algorithm” because it finds its parameters by matching

hydrographs over multiple events. That is, after a while, a program utilizing ANN

would learn to identify that a rain event with certain characteristics would probably

produce a particular runoff result. Wang et al. Wang et al. (2012) disagreed

with the use of this method because it has the effect of reducing the transparent,

physically based, flexible SWMM model into a black box. To corroborate Wang

et al. (2012)’s disapproval, no recent papers were found that utilized the ANN

method for SWMM calibration.

A.8 Automated Sensitivity Analysis and Calibration

This section discusses articles that demonstrated the presence of automated sensi-

tivity analyses followed by automated calibration. This approach would yield the

least labor-intensive calibration of SWMM, provided the methods can be executed

efficiently. Krebs et al. (Krebs et al., 2016) utilized the generalized likelihood

uncertainty estimation (GLUE) for automatic sensitivity analysis, which was ab-

sent in his 2013 and 2014 papers (Krebs et al., 2013, 2014). GLUE, introduced

by (Beven & Binley, 1992), works differently than the NSE and modified Morris
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screening methods discussed previously. The latter methods use a relative sys-

tem, wherein the parameters that affect the model result the most are the ones

considered to be sensitive. The appropriate number of sensitive parameters to

include was still subjective. GLUE standardizes and automates this process by

introducing statistics. GLUE begins similarly to the other methods, by adjusting

one parameter at a time and observing the severity in the change in model result.

The difference is that GLUE checks whether that change in model result is statis-

tically significant, thereby maintaining the sensitivity ranking system of the other

methods, but establishing an objective threshold for sensitivity.

Krebs et al. (Krebs et al., 2016) followed his GLUE-driven sensitivity anal-

ysis with the same NSGA-II calibration technique employed in 2013 and 2014

(Krebs et al., 2013, 2014). This time, however, the objective functions used were

the sum of the squared error and the volume error. Krebs admitted that the two

objective functions yield appreciably different parameter values once calibrated,

an issue which will be discussed further in the next section.

A.9 Automated Sensitivity Analysis and Uncertainty Analysis

This last section focuses on the most sophisticated studies. It is worth noting,

and rather surprising, that none of the research articles consulted for this report

clearly demonstrated all three Rossman-defined steps for the calibration process.

That being said, Knighton et al. (Knighton et al., 2016), was by far the most

sophisticated paper referenced. Knighton et al. (Knighton et al., 2016) built on

his 2014 paper by revisiting the topic of the best approach for sensitivity analysis.

He also discussed a methodology for uncertainty analysis which the majority of

researchers shy away from, or deem unnecessary.
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For the sensitivity analysis portion, Knighton et al. Knighton et al. (2016)

elected to use the multi-objective generalized sensitivity analysis (MOGSA), which

was first proposed by his partner, Bastidas, in 1999 (Bastidas, Gupta, Sorooshian,

Shuttleworth, & Yang, 1999). This sensitivity method is novel to this report

because, unlike the methods discussed previously, it allows for multiple objective

functions in the sensitivity analysis step. Knighton et al. (Knighton et al., 2016)

relied on a Pareto-ranking system for experimental objectivity.

Tackling the complicated and subtle task of parameter uncertainty analy-

sis, Knighton et al. (Knighton et al., 2016) and his team chose to use the GLUE

method that has previously been described as useful for the sensitivity analysis.

Two primary considerations when using GLUE are the initial, or prior, distribu-

tions and the likelihood function used. In this case, Knighton et al. (Knighton

et al., 2016) chose to select a uniform distribution across the feasible parameter

space. The likelihood function used was chosen, after some deliberation, as the

one proposed by Stedinger et al. (Stedinger, Vogel, Lee, & Batchelder, 2008).

L(θ|D) = exp

[
− n

2

∑n
t=1(Dt −Dt)

2∑n
t=1(Dt −DtMLE)2

]
(A.5)

**It is worth noting here that this equation was copied exactly from Knighton et

al. (2016), but there seems to be a typo in the paper, as (Dt-Dt)
2 will always be

zero.

This likelihood function was coupled with the posterior probability of θ.
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P (θ|d2, d3) = k × L(θ|d2)× L(θ|d3) (A.6)

These functions represent a “formal Bayesian approach”, which Knighton

et al. Knighton et al. (2016, 2014) highly preferred. Included in his article is

an argument by Mantovan and Todini (Mantovan & Todini, 2006) and Mantovan

et al. (Mantovan, Todini, & Martina, 2007) suggesting that using an informal

function with GLUE, such as NSE, “represents an incoherent and inconsistent

methodology” and “has no statistical basis”.

The conclusions of Knighton et al. (Knighton et al., 2016) are also deserving

of comment. The objective of the article was to determine whether or not there

was a universal set of sensitive model parameters, rendering the whole sensitivity

analysis process obsolete. Alas, their conclusion was otherwise: there is no univer-

sal set of sensitive parameters. This has implications of instilling doubt in other

studies, like Barco et al. (Barco et al., 2008), which assumed sensitive parameters

based on a literature review.

The other steps of the Rossman-defined calibration process did not suffer

the same contention that seems to surround the uncertainty analysis community.

Several other researchers have also weighed in on the generalized likelihood uncer-

tainty estimation and its place in high-quality scientific work. Studies like (Zhang

et al., 2015) and (Sun et al., 2013) argued the importance of the uncertainty anal-

ysis step and posit that GLUE can be effective if formal likelihood functions that

reflect Bayes’ Theorem of Probability are used, rather than informal, deterministic

functions like NSE. Muleta et al. (Muleta et al., 2013) disagrees, saying that other
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methods, like the Markov-chain Monte Carlo method, are better suited for uncer-

tainty analysis. Mantovan et al. (Mantovan et al., 2007) is a response to Beven,

the inventor of the GLUE method, after Beven made a critique of (Mantovan &

Todini, 2006).

A.10 Recommendations

The objective of this report at the outset was to investigate the way that SWMM

is being calibrated automatically in current literature, and to try to make rec-

ommendations about which of these methods is best. It might be useful at this

juncture to recap the automated methods that have found popular use.

A.10.1 For Sensitivity Analysis

• Modified Morris screening method (C. Li et al., 2016; J. Li et al., 2016)

• Monte Carlo simulation (Knighton et al., 2014)

• Generalized likelihood uncertainty estimation - with Nash-Sutcliffe Efficiency

Coefficient as the objective function (Krebs et al., 2016)

• Multi-objective generalized sensitivity analysis (Knighton et al., 2016)

Only one of these methods, MOGSA, affords the researcher the flexibility of

multiple objective functions to define sensitive parameters. Much of the time, this

flexibility exceeds the requirements of the study, as the researcher only cares about

either the peak flow or the total flow runoff volume, but in the rare case that both,

or additional runoff qualities, require scrutiny, MOGSAis the only method from
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this list that can effectively differentiate between parameters that are sensitive for

two different calibration objectives.

A.10.2 For Calibration

• Rosenbrock (Versini et al., 2015; Wang et al., 2012)

• fmincon (Masseroni & Cislaghi, 2016)

• Complex multi-objective (Barco et al., 2008; Granata et al., 2016)

• Genetic multi-objective optimization algorithm (Krebs et al., 2013, 2014,

2016)

Fmincon can be eliminated as viable, as it unnecessarily cumbersome to

use an additional program to conduct an automatic calibration. The other three

methods have achieved reasonable popularity and success, but Masseroni and Cis-

laghi’s (Masseroni & Cislaghi, 2016) critique of the complex method is valid, so it

too is removed from consideration. To decide between the who remaining meth-

ods, the same logic used in the sensitivity analysis discussion is applied here. The

flexibility to bias a calibration to ensure accuracy on the part of the rainfall-runoff

relationship that is most relevant to the research question is an invaluable asset.

For that reason, the NSGA-II is the best option from those given here.

While there is obvious desirability for the ability to calibrate in a biased way

to ensure that the relevant portion of the rainfall-runoff relationship is captured,

it is worth remembering what calibration is. All research studies that wish to

use SWMM must first establish what Knighton et al. Knighton et al. (2016)

called a “feasible parameter space”. That is the range of possible values that
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each of the parameters might conceivable have. That is the reasonable range of

parameter values by which the catchment of study must actually physically be

described. Calibrating differently to optimize different parts of the hydrograph

response seems reasonable, until the physical catchment is recalled. It is, in a way,

nonsensical for the average slope of a catchment to be 0.01 and 0.05, depending

on which makes the model result more attractive.

A.10.3 For Uncertainty Analysis

• Generalized likelihood uncertainty estimation - various formal Bayesian like-

lihood functions (Knighton et al., 2016; Sun et al., 2013; Zhang et al., 2015)

• Markov-chain Monte Carlo simulation (Muleta et al., 2013)

Despite the weirdly political atmosphere surrounding the uncertainty anal-

ysis community, the authors of the works consulted for this report agreed that

this was an under-appreciated and important component of analysis undertaken

with SWMM. For many studies, the level of scientific objectivity that uncertainty

analysis grants is not necessary to arrive at useful conclusions. However, for truly

sophisticated studies, or for research that is not constrained by the brevity of a

journal article (such as a thesis or dissertation), uncertainty analysis is a require-

ment. Good arguments have been made on behalf of using GLUE with Bayesian

likelihood functions.

A.11 Conclusion

This report consists of a representative collection of published work that has been

done using SWMM, specifically, the calibration of parameters in SWMM to make
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the model more useful. It is clear that there has been tremendous variability and

even dissention over the best way for this to be done.

The three steps of the Rossman-defined calibration process could perhaps

be expanded to four, as the process cannot begin without a firmly and reasonably

set feasible parameter space. Researchers invariably have, and will continue to, de-

velop these parameter spaces from published literature review of journal articles or

hydrological handbooks. However, agreement among researchers for the standard

protocol for calibration seems to end there. Establishing a SWMM-supported,

comprehensive, standardized methodology for the remaining three steps of the

calibration process would be a valuable addition to this highly used program.

——————————————————–
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B Compilation of Temporary Supporting Files for SWMMCALPY

B.1 Parameter ranges.txt

Parameter ranges.txt is a keyword-value style list of the surface parameters being

calibrated by SWMMCALPY. The parameter is listed, followed by their corre-

sponding low and high value for use in the uniform distribution sampling that

creates random guesses.
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Parameter_ranges
    Percent Impervious (Low High) - 0 100

     Width (Low High) - 1 1000
    Slope (Low High) - 0.0001 0.4

     Impervious N (Low High) - 0.001 0.1
     Pervious N (Low High) - 0.001 0.1

    Impervious Storage (Low High) - 0.001 3
    Pervious Storage (Low High) - 0.001 3

    Percent Zero Storage (Low High) - 0 100
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B.2 Trial observation.dat

Trial observation.dat contains the synthetically created observed hydrograph for

comparison against SWMM simulations. Header metadata includes the root loca-

tion and the type of data that is being reported. What follows is a MM/DD/YYYY

HH:MM:SS Value format for the data being reported. Values less than 0 were in-

cluded to build generality into SWMMCALPYs ability to deal with missing data.

87



trial_observation
; Node 18 Total Inflow
18
01/01/1998 01:00:00 0
01/01/1998 02:00:00 1
01/01/1998 03:00:00 5
01/01/1998 04:00:00 10
01/01/1998 05:00:00 19
01/01/1998 06:00:00 25
01/01/1998 07:00:00 20
01/01/1998 08:00:00 12
01/01/1998 09:00:00 0
01/01/1998 10:00:00 0.06
01/01/1998 11:00:00 0.04
01/01/1998 12:00:00 0.01
01/01/1998 13:00:00 0
01/01/1998 14:00:00 0
01/01/1998 15:00:00 0
01/01/1998 16:00:00 0
01/01/1998 17:00:00 0
01/01/1998 18:00:00 -9999
01/01/1998 19:00:00 -9999
01/01/1998 20:00:00 0
01/01/1998 21:00:00 0
01/01/1998 22:00:00 0
01/01/1998 23:00:00 0
01/02/1998 00:00:00 0
01/02/1998 01:00:00 0
01/02/1998 02:00:00 0
01/02/1998 03:00:00 0
01/02/1998 04:00:00 0
01/02/1998 05:00:00 0.82
01/02/1998 06:00:00 0.6
01/02/1998 07:00:00 0.19
01/02/1998 08:00:00 0.11
01/02/1998 09:00:00 0.06
01/02/1998 10:00:00 0.04
01/02/1998 11:00:00 0.01
01/02/1998 12:00:00 0
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B.3 Example1.inp

Example1.inp is the full input file that EPA SWMM reads to execute model runs

and produce the GUI.
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Example1
[TITLE]
;;Project Title/Notes
Example 1

[OPTIONS]
;;Option             Value
FLOW_UNITS           CFS
INFILTRATION         HORTON
FLOW_ROUTING         KINWAVE
LINK_OFFSETS         DEPTH
MIN_SLOPE            0
ALLOW_PONDING        NO
SKIP_STEADY_STATE    NO

START_DATE           01/01/1998
START_TIME           00:00:00
REPORT_START_DATE    01/01/1998
REPORT_START_TIME    00:00:00
END_DATE             01/02/1998
END_TIME             12:00:00
SWEEP_START          01/01
SWEEP_END            12/31
DRY_DAYS             5
REPORT_STEP          00:05:00
WET_STEP             00:15:00
DRY_STEP             01:00:00
ROUTING_STEP         0:01:00 

INERTIAL_DAMPING     PARTIAL
NORMAL_FLOW_LIMITED  BOTH
FORCE_MAIN_EQUATION  D-W
VARIABLE_STEP        0.75
LENGTHENING_STEP     0
MIN_SURFAREA         12.557
MAX_TRIALS           8
HEAD_TOLERANCE       0.005
SYS_FLOW_TOL         5
LAT_FLOW_TOL         5
MINIMUM_STEP         0.5
THREADS              1

[EVAPORATION]
;;Data Source    Parameters
;;-------------- ----------------
CONSTANT         0.0
DRY_ONLY         NO

[RAINGAGES]
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Example1
;;Name           Format    Interval SCF      Source    
;;-------------- --------- ------ ------ ----------
RG1              INTENSITY 1:00     1.0      TIMESERIES TS1             

[SUBCATCHMENTS]
;;Name           Rain Gage        Outlet           Area     %Imperv  Width    %Slope
  CurbLen  SnowPack        
;;-------------- ---------------- ---------------- -------- -------- -------- 
-------- -------- ----------------
1                RG1              9                10       50       500      0.01  
  0                        
2                RG1              10               10       50       500      0.01  
  0                        
3                RG1              13               10       50       500      0.01  
  0                        
4                RG1              22               10       50       500      0.01  
  0                        
5                RG1              15               10       50       500      0.01  
  0                        
6                RG1              23               10       10       500      0.01  
  0                        
7                RG1              19               10       10       500      0.01  
  0                        
8                RG1              18               10       10       500      0.01  
  0                        

[SUBAREAS]
;;Subcatchment   N-Imperv   N-Perv     S-Imperv   S-Perv     PctZero    RouteTo    
PctRouted 
;;-------------- ---------- ---------- ---------- ---------- ---------- ---------- 
----------
1                0.001      0.10       0.05       0.05       25         OUTLET    
2                0.001      0.10       0.05       0.05       25         OUTLET    
3                0.001      0.10       0.05       0.05       25         OUTLET    
4                0.001      0.10       0.05       0.05       25         OUTLET    
5                0.001      0.10       0.05       0.05       25         OUTLET    
6                0.001      0.10       0.05       0.05       25         OUTLET    
7                0.001      0.10       0.05       0.05       25         OUTLET    
8                0.001      0.10       0.05       0.05       25         OUTLET    

[INFILTRATION]
;;Subcatchment   MaxRate    MinRate    Decay      DryTime    MaxInfil  
;;-------------- ---------- ---------- ---------- ---------- ----------
1                0.7        0.3        4.14       0.50       0         
2                0.7        0.3        4.14       0.50       0         
3                0.7        0.3        4.14       0.50       0         
4                0.7        0.3        4.14       0.50       0         
5                0.7        0.3        4.14       0.50       0         
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Example1
6                0.7        0.3        4.14       0.50       0         
7                0.7        0.3        4.14       0.50       0         
8                0.7        0.3        4.14       0.50       0         

[JUNCTIONS]
;;Name           Elevation  MaxDepth   InitDepth  SurDepth   Aponded   
;;-------------- ---------- ---------- ---------- ---------- ----------
9                1000       3          0          0          0         
10               995        3          0          0          0         
13               995        3          0          0          0         
14               990        3          0          0          0         
15               987        3          0          0          0         
16               985        3          0          0          0         
17               980        3          0          0          0         
19               1010       3          0          0          0         
20               1005       3          0          0          0         
21               990        3          0          0          0         
22               987        3          0          0          0         
23               990        3          0          0          0         
24               984        3          0          0          0         

[OUTFALLS]
;;Name           Elevation  Type       Stage Data       Gated    Route To        
;;-------------- ---------- ---------- ---------------- -------- ----------------
18               975        FREE                        NO                       

[CONDUITS]
;;Name           From Node        To Node          Length     Roughness  InOffset   
OutOffset  InitFlow   MaxFlow   
;;-------------- ---------------- ---------------- ---------- ---------- ---------- 
---------- ---------- ----------
1                9                10               400        0.01       0          
0          0          0         
4                19               20               200        0.01       0          
0          0          0         
5                20               21               200        0.01       0          
0          0          0         
6                10               21               400        0.01       0          
1          0          0         
7                21               22               300        0.01       1          
1          0          0         
8                22               16               300        0.01       0          
0          0          0         
10               17               18               400        0.01       0          
0          0          0         
11               13               14               400        0.01       0          
0          0          0         
12               14               15               400        0.01       0          
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0          0          0         
13               15               16               400        0.01       0          
0          0          0         
14               23               24               400        0.01       0          
0          0          0         
15               16               24               100        0.01       0          
0          0          0         
16               24               17               400        0.01       0          
0          0          0         

[XSECTIONS]
;;Link           Shape        Geom1            Geom2      Geom3      Geom4      
Barrels    Culvert   
;;-------------- ------------ ---------------- ---------- ---------- ---------- 
---------- ----------
1                CIRCULAR     1.5              0          0          0          1   
                
4                CIRCULAR     1                0          0          0          1   
                
5                CIRCULAR     1                0          0          0          1   
                
6                CIRCULAR     1                0          0          0          1   
                
7                CIRCULAR     2                0          0          0          1   
                
8                CIRCULAR     2                0          0          0          1   
                
10               CIRCULAR     2                0          0          0          1   
                
11               CIRCULAR     1.5              0          0          0          1   
                
12               CIRCULAR     1.5              0          0          0          1   
                
13               CIRCULAR     1.5              0          0          0          1   
                
14               CIRCULAR     1                0          0          0          1   
                
15               CIRCULAR     2                0          0          0          1   
                
16               CIRCULAR     2                0          0          0          1   
                

[POLLUTANTS]
;;Name           Units  Crain      Cgw        Crdii      Kdecay     SnowOnly   
Co-Pollutant     Co-Frac    Cdwf       Cinit     
;;-------------- ------ ---------- ---------- ---------- ---------- ---------- 
---------------- ---------- ---------- ----------
TSS              MG/L   0.0        0.0        0          0.0        NO         *    
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           0.0        0          0         
Lead             UG/L   0.0        0.0        0          0.0        NO         TSS  
           0.2        0          0         

[LANDUSES]
;;               Sweeping   Fraction   Last      
;;Name           Interval   Available  Swept     
;;-------------- ---------- ---------- ----------
Residential                                      
Undeveloped                                      

[COVERAGES]
;;Subcatchment   Land Use         Percent   
;;-------------- ---------------- ----------
1                Residential      100.00    
2                Residential      50.00     
2                Undeveloped      50.00     
3                Residential      100.00    
4                Residential      50.00     
4                Undeveloped      50.00     
5                Residential      100.00    
6                Undeveloped      100.00    
7                Undeveloped      100.00    
8                Undeveloped      100.00    

[LOADINGS]
;;Subcatchment   Pollutant        Buildup   
;;-------------- ---------------- ----------

[BUILDUP]
;;Land Use       Pollutant        Function   Coeff1     Coeff2     Coeff3     Per 
Unit  
;;-------------- ---------------- ---------- ---------- ---------- ---------- 
----------
Residential      TSS              SAT        50         0          2          AREA  
   
Residential      Lead             NONE       0          0          0          AREA  
   
Undeveloped      TSS              SAT        100        0          3          AREA  
   
Undeveloped      Lead             NONE       0          0          0          AREA  
   

[WASHOFF]
;;Land Use       Pollutant        Function   Coeff1     Coeff2     SweepRmvl  
BmpRmvl   
;;-------------- ---------------- ---------- ---------- ---------- ---------- 
----------
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Residential      TSS              EXP        0.1        1          0          0     
   
Residential      Lead             EMC        0          0          0          0     
   
Undeveloped      TSS              EXP        0.1        0.7        0          0     
   
Undeveloped      Lead             EMC        0          0          0          0     
   

[TIMESERIES]
;;Name           Date       Time       Value     
;;-------------- ---------- ---------- ----------
;RAINFALL
TS1                         0:00       0.0       
TS1                         1:00       0.25      
TS1                         2:00       0.5       
TS1                         3:00       0.8       
TS1                         4:00       0.4       
TS1                         5:00       0.1       
TS1                         6:00       0.0       
TS1                         27:00      0.0       
TS1                         28:00      0.4       
TS1                         29:00      0.2       
TS1                         30:00      0.0       

[REPORT]
;;Reporting Options
INPUT      NO
CONTROLS   NO
SUBCATCHMENTS ALL
NODES ALL
LINKS ALL

[TAGS]

[MAP]
DIMENSIONS 0.000 0.000 10000.000 10000.000
Units      None

[COORDINATES]
;;Node           X-Coord            Y-Coord           
;;-------------- ------------------ ------------------
9                4042.110           9600.000          
10               4105.260           6947.370          
13               2336.840           4357.890          
14               3157.890           4294.740          
15               3221.050           3242.110          
16               4821.050           3326.320          
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17               6252.630           2147.370          
19               7768.420           6736.840          
20               5957.890           6589.470          
21               4926.320           6105.260          
22               4421.050           4715.790          
23               6484.210           3978.950          
24               5389.470           3031.580          
18               6631.580           505.260           

[VERTICES]
;;Link           X-Coord            Y-Coord           
;;-------------- ------------------ ------------------
10               6673.680           1368.420          

[Polygons]
;;Subcatchment   X-Coord            Y-Coord           
;;-------------- ------------------ ------------------
1                3936.840           6905.260          
1                3494.740           6252.630          
1                273.680            6336.840          
1                252.630            8526.320          
1                463.160            9200.000          
1                1157.890           9726.320          
1                4000.000           9705.260          
2                7600.000           9663.160          
2                7705.260           6736.840          
2                5915.790           6694.740          
2                4926.320           6294.740          
2                4189.470           7200.000          
2                4126.320           9621.050          
3                2357.890           6021.050          
3                2400.000           4336.840          
3                3031.580           4252.630          
3                2989.470           3389.470          
3                315.790            3410.530          
3                294.740            6000.000          
4                3473.680           6105.260          
4                3915.790           6421.050          
4                4168.420           6694.740          
4                4463.160           6463.160          
4                4821.050           6063.160          
4                4400.000           5263.160          
4                4357.890           4442.110          
4                4547.370           3705.260          
4                4000.000           3431.580          
4                3326.320           3368.420          
4                3242.110           3536.840          
4                3136.840           5157.890          
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4                2589.470           5178.950          
4                2589.470           6063.160          
4                3284.210           6063.160          
4                3705.260           6231.580          
4                4126.320           6715.790          
5                2568.420           3200.000          
5                4905.260           3136.840          
5                5221.050           2842.110          
5                5747.370           2421.050          
5                6463.160           1578.950          
5                6610.530           968.420           
5                6589.470           505.260           
5                1305.260           484.210           
5                968.420            336.840           
5                315.790            778.950           
5                315.790            3115.790          
6                9052.630           4147.370          
6                7894.740           4189.470          
6                6442.110           4105.260          
6                5915.790           3642.110          
6                5326.320           3221.050          
6                4631.580           4231.580          
6                4568.420           5010.530          
6                4884.210           5768.420          
6                5368.420           6294.740          
6                6042.110           6568.420          
6                8968.420           6526.320          
7                8736.840           9642.110          
7                9010.530           9389.470          
7                9010.530           8631.580          
7                9052.630           6778.950          
7                7789.470           6800.000          
7                7726.320           9642.110          
8                9073.680           2063.160          
8                9052.630           778.950           
8                8505.260           336.840           
8                7431.580           315.790           
8                7410.530           484.210           
8                6842.110           505.260           
8                6842.110           589.470           
8                6821.050           1178.950          
8                6547.370           1831.580          
8                6147.370           2378.950          
8                5600.000           3073.680          
8                6589.470           3894.740          
8                8863.160           3978.950          

[SYMBOLS]
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;;Gage           X-Coord            Y-Coord           
;;-------------- ------------------ ------------------
RG1              10084.210          8210.530          
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C Compilation of Commented Code Comprising SWMMCALPY

Figure C.1 is an illustration of how the five scripts that comprise SWMMCALPY

communicate with each other.

Figure C.1: Schematic of the communication patterns between the five scripts
comprising SWMMCALPY

DelineateNetwork.py is passed to CreateGuesses.py once to initialize the

scope of the calibration problem. Subsequently, CreateGuesses.py passes a gener-

ation of input files to Objective functions.py and L2.py to calculate the objective

functions, which are assessed and managed by the Generations.py script. Gener-

ations.py then passes enlists CreateGuesses.py to generate the next generation to

be evaluated, sorted, and culled/persisted. Objective functions.py and L2.py are

grouped because, while being separate scripts, they share the same overall purpose

of calculating objective function values for individual guesses.

C.1 DelineateNetwork.py

DelineateNetwork.py shows how SWMMCALPY leverages PySWMM and Net-

workX to determine the clipped subsystem for a given calibration problem.
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DelineateNetwork
#The primary purpose of DelineateNetwork.py is to use PySWMM and NetworkX to define 
the scope of the calibration problem
# within a given SWMM system

#Classes from PySWMM and NetworkX
from pyswmm import Simulation, Nodes, Links, Subcatchments
import networkx as nx

#Name of the SWMM input file starting point and the name of the root location
inputfilename = 'Example1.inp'
root = '18'

#Initialize global variables
global network, subnetwork

#network is the entire SWMM system
network = nx.DiGraph()

#subnetwork is just the components upstream of root
subnetwork = nx.DiGraph()

#Create network
def createnetwork(inputfilename):
    global sim
    linklist = []

    #Allows the PySWMM wrapper to access the input file
    sim = Simulation(inputfilename)

    #Read each subcatchment and add the node to network
    for sub in Subcatchments(sim):
        network.add_node(sub.subcatchmentid)

    #Read each node (as defined by PySWMM) and add the node (as defined by NetworkX)
to network
    for nodes in Nodes(sim):
        network.add_node(nodes.nodeid)

    #Read each link and add the edge to network
    for link in Links(sim):
        linklist.append(link.connections)
    network.add_edges_from(linklist)

    #Read the subcatchment connections and add the edge to network
    for sub in Subcatchments(sim):
        network.add_edge(sub.subcatchmentid,sub.connection[1])
    return
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DelineateNetwork
#Create subnetwork
def subnetworkdelineation(root):

    #Begin by populating subnetwork with the root node
    subnetwork.add_node(root)

    #Determine the list of upstream nodes
    predecessorlist = list(network.predecessors(root))

    #If there are no predecessors, return
    if predecessorlist == []:
        return
    else:

        #Recursive search through predecessors, add new nodes to subnetwork
        for i in predecessorlist:
            subnetwork.add_node(i)
            subnetworkdelineation(i)

    #Global subnetwork is only nodes, no edges
    return

#Determine which subnetwork nodes are subcatchments
def subnetwork_subcatchments(inputfilename, root):

    #Initialize subcatchment list, faster to define as global rather than return
    global list_of_subcatchments
    list_of_subcatchments = []

    #Create network
    createnetwork(inputfilename)

    #Create subnetwork
    subnetworkdelineation(root)

    #Compare subnetwork to PySWMM subcatchments, if there's a match, at it to 
list_of_subcatchments
    for subcatchment in Subcatchments(sim):
        subcatchmentname = subcatchment.subcatchmentid

        for subnode in subnetwork:
            if subnode == subcatchmentname:
                list_of_subcatchments.append(subcatchmentname)
    return

#Calls function that defines list_of_subcatchments variable
# runs automatically when DelineateNetwork is imported
subnetwork_subcatchments(inputfilename, root)
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C.2 CreateGuesses.py

CreateGuesses.py contains the portions of SWMMCALPY that pertain to parsing

a SWMM input file (like the one shown in Chapter B), manipulating the parameter

information held within, and inserting the manipulated parameter set information

into a new input file. CreateGuesses.py references the clipped subsystem deter-

mined by DelineateNetwork.py

102



CreateGuesses
#Random package used to select from uniform distribution
from random import *

#Import the list_of_subcatchments variable from DelineateNetwork
import DelineateNetwork_Commented
import numpy as np

#Defines feasible parameter space
constraintfilename = 'Parameter_ranges.txt'
inputfilename = 'Example1.inp'
root = '18'

#List of "trialfileXX" is used to define a generation of NSGA-II guesses
filelist = ['trialfile01.inp', 'trialfile02.inp', 'trialfile03.inp', 
'trialfile04.inp', 'trialfile05.inp',
            'trialfile06.inp', 'trialfile07.inp',
            'trialfile08.inp', 'trialfile09.inp', 'trialfile10.inp', 
'trialfile11.inp', 'trialfile12.inp',
            'trialfile13.inp', 'trialfile14.inp',
            'trialfile15.inp', 'trialfile16.inp', 'trialfile17.inp', 
'trialfile18.inp', 'trialfile19.inp',
            'trialfile20.inp', 'trialfile21.inp',
            'trialfile22.inp', 'trialfile23.inp', 'trialfile24.inp', 
'trialfile25.inp', 'trialfile26.inp',
            'trialfile27.inp', 'trialfile28.inp',
            'trialfile29.inp', 'trialfile30.inp', 'trialfile31.inp', 
'trialfile32.inp', 'trialfile33.inp',
            'trialfile34.inp', 'trialfile35.inp',
            'trialfile36.inp', 'trialfile37.inp', 'trialfile38.inp', 
'trialfile39.inp', 'trialfile40.inp',
            'trialfile41.inp', 'trialfile42.inp',
            'trialfile43.inp', 'trialfile44.inp', 'trialfile45.inp', 
'trialfile46.inp', 'trialfile47.inp',
            'trialfile48.inp', 'trialfile49.inp',
            'trialfile50.inp', 'trialfile51.inp', 'trialfile52.inp', 
'trialfile53.inp', 'trialfile54.inp',
            'trialfile55.inp', 'trialfile56.inp',
            'trialfile57.inp', 'trialfile58.inp', 'trialfile59.inp', 
'trialfile60.inp', 'trialfile61.inp',
            'trialfile62.inp', 'trialfile63.inp',
            'trialfile64.inp', 'trialfile65.inp', 'trialfile66.inp', 
'trialfile67.inp', 'trialfile68.inp',
            'trialfile69.inp', 'trialfile70.inp',
            'trialfile71.inp', 'trialfile72.inp', 'trialfile73.inp', 
'trialfile74.inp', 'trialfile75.inp',
            'trialfile76.inp', 'trialfile77.inp',
            'trialfile78.inp', 'trialfile79.inp', 'trialfile80.inp', 
'trialfile81.inp', 'trialfile82.inp',
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            'trialfile83.inp', 'trialfile84.inp',
            'trialfile85.inp', 'trialfile86.inp', 'trialfile87.inp', 
'trialfile88.inp', 'trialfile89.inp',
            'trialfile90.inp', 'trialfile91.inp',
            'trialfile92.inp', 'trialfile93.inp', 'trialfile94.inp', 
'trialfile95.inp', 'trialfile96.inp',
            'trialfile97.inp', 'trialfile98.inp',
            'trialfile99.inp', 'trialfile100.inp']

#Reads the feasible parameter space into global variables
def readparametersfromfile(constraintfilename):
    global percentimpervious, width, slope, impervious_n, pervious_n, 
impervious_storage, pervious_storage, percent_zero_storage
    constraintfile = open(constraintfilename, 'r')

    #Reads each line in constraintfile, preserves generality to change order or 
include/exclude parameters
    # Assumes file is organized as Keyword - High Low
    for line in constraintfile:
        if (line.find("Percent Impervious") != -1):
            percentimpervious = []
            templine = line.split()
            #Add High and Low parameter limits to global list variable
            percentimpervious.append(float(templine[-2]))
            percentimpervious.append(float(templine[-1]))
        elif (line.find("Width") != -1):
            width = []
            templine = line.split()
            width.append(float(templine[-2]))
            width.append(float(templine[-1]))
        elif (line.find("Slope") != -1):
            slope = []
            templine = line.split()
            slope.append(float(templine[-2]))
            slope.append(float(templine[-1]))
        elif (line.find("Impervious N") != -1):
            impervious_n = []
            templine = line.split()
            impervious_n.append(float(templine[-2]))
            impervious_n.append(float(templine[-1]))
        elif (line.find("Pervious N") != -1):
            pervious_n = []
            templine = line.split()
            pervious_n.append(float(templine[-2]))
            pervious_n.append(float(templine[-1]))
        elif (line.find("Impervious Storage") != -1):
            impervious_storage = []
            templine = line.split()
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            impervious_storage.append(float(templine[-2]))
            impervious_storage.append(float(templine[-1]))
        elif (line.find("Pervious Storage") != -1):
            pervious_storage = []
            templine = line.split()
            pervious_storage.append(float(templine[-2]))
            pervious_storage.append(float(templine[-1]))
        elif (line.find("Percent Zero Storage") != -1):
            percent_zero_storage = []
            templine = line.split()
            percent_zero_storage.append(float(templine[-2]))
            percent_zero_storage.append(float(templine[-1]))
    return

#Call function as standalone, only needs to occur once
readparametersfromfile(constraintfilename)

#Counts the number of lines in input file
# Used in later for loops because while loops were causing issues
def countsubcatchments(inputfilename):
    global count
    with open(inputfilename) as swmmput:
        count = 0
        for line in swmmput:
            count += 1
        return

#Call function as standalone, only needs to occur once
countsubcatchments(inputfilename)

#Reads the surface parameters from the initial input file into a 2D list
def read_initial_parameters(inputfilename):

    #SWMM surface parameters are stored under [SUBCATCHMENTS] and [SUBAREAS] headers
in .inp file
    subc_params = []
    subarea_params = []

    #subcatchment_parameters is the name of the 2D list of parameters
    # subc_names is compared to list_of_subcatchments from DelineateNetwork.py
    global subcatchment_parameters, subc_names
    subc_names = []
    subcatchment_parameters = []

    #Open the SWMM inputfile as read only
    inputfile = open(inputfilename, 'r')

    #For each line in the inputfile
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    for line in inputfile:

        #Find where the [SUBCATCHMENTS] header begins
        if (line.find("[SUBCATCHMENTS]") != -1):
            line = inputfile.readline()

            #Use count to define how long the parser should keep looking for 
information
            for i in range(count):
                templine = list(line)

                #Check if the line contains metadata
                if templine[0] == ";" or templine[0] == " " or len(templine) < 10:
                    line = inputfile.readline()
                    continue

                #Check if the next header has been reached
                elif (line.find("[") != -1):
                    break

                #Read in the parameter as a split line
                else:
                    linesplit = line.split()

                    #[SUBCATCHMENT] area parameters are in token locations 4-7
                    subc_params.append(linesplit[4:7])

                    #The subcatchment name is in token location 0
                    subc_names.append(linesplit[0])
                    line = inputfile.readline()

        #Same search within the [SUBAREAS] header
        if (line.find("[SUBAREAS]") != -1):
            line = inputfile.readline()
            for i in range(count):
                templine = list(line)
                if templine[0] == ";" or templine[0] == " " or len(templine) < 10:
                    line = inputfile.readline()
                    continue
                elif (line.find("[") != -1):
                    break
                else:
                    linesplit = line.split()
                    subarea_params.append(linesplit[1:6])
                    line = inputfile.readline()

    #Compiles the 2D subc_params and subarea_params lists into a single 2D list, 
subcatchment parameters, that contains
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    # the surface parameters for each subcatchment in a 1D list as a 2D list 
element.
    for i in range(len(subc_params)):
        for j in range(len(subarea_params[i])):
            subc_params[i].append(subarea_params[i][j])
        subcatchment_parameters.append(subc_params[i])
    return

#Only called once at the beginning of SWMMCALPY to get a starting location of the 
parameter set
read_initial_parameters(inputfilename)

#Transforms a 2D list into a 1D list for
def transformation_flatten(twoDlistinput):
    oneDlistoutput = []

    #For every 1D list element in the 2D list, add it to the 1D list.  This 
preserves order but destroys the 2nd Dim.
    for i in range(len(twoDlistinput)):
        for j in range(len(twoDlistinput[i])):
            oneDlistoutput.append(twoDlistinput[i][j])
    return(oneDlistoutput)

#Clips the initial guess down to only the clipped subsystem being scrutinized
def compile_initial_guess():
    global initial_guess_flat, relevant_subcatchment_parameters
    relevant_subcatchment_indices = []

    #Search for the subcatchment names from read_initial_parameters() and 
DelineateNetwork.list_of_subcatchments
    for allsub in subc_names:
        for upstreamsub in DelineateNetwork_Commented.list_of_subcatchments:

            #If they match, add the index to a dummy list
            if allsub == upstreamsub:
                relevant_subcatchment_indices.append(subc_names.index(allsub))
    relevant_subcatchment_parameters = []

    #For each index in the dummy list, grab the corresponding element in the 2D 
subcatchment_parameters list
    for i in relevant_subcatchment_indices:
        relevant_subcatchment_parameters.append(subcatchment_parameters[i])

    #Transform the clipped 2D list into the 1D list for manipulation
    initial_guess_flat = transformation_flatten(relevant_subcatchment_parameters)
    return

#Only needs to happen once to determine the location of the relevant parameter set
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compile_initial_guess()

#Another transformation function that casts the strings from the parsed list into 
floats
def caststringsasfloats():
    initial_guess_floats = []

    #For every value in a 1D list, recast the value as a float and add it to a new 
float list
    for string_value in initial_guess_flat:
        initial_guess_floats.append(float(string_value))
    return(initial_guess_floats)

#Function that generates a mutated guess from some parent guess
def createrandomsetofP():

    #Initial transformation of a parsed set of guesses into floats
    temporaryguess = caststringsasfloats()

    #For each parameter in the list of floats
    for parameter in range(len(temporaryguess)):
        binary_setter = uniform(0, 1)

        # Basically flip a coin
        if binary_setter < 0.5:
            # if heads, go to the next parameter

            continue
        else:
            # if tails,

            if parameter % 8 == 0:
                # AND the parameter index is divisible by 8 (the number of 
calibratable parameters in this first cut)

                temporaryguess[parameter] = uniform(percentimpervious[0], 
percentimpervious[1])
                # Reassign that parameter in the list of floats to a random number 
generated from a uniform distribution
                # whose boundaries were specified in the "readparametersfromfile" 
parser function

            elif parameter % 8 == 1:
                # Do the same for width, slope, etc

                temporaryguess[parameter] = uniform(width[0], width[1])
            elif parameter % 8 == 2:
                temporaryguess[parameter] = uniform(slope[0], slope[1])
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            elif parameter % 8 == 3:
                temporaryguess[parameter] = uniform(impervious_n[0], 
impervious_n[1])
            elif parameter % 8 == 4:
                temporaryguess[parameter] = uniform(pervious_n[0], pervious_n[1])
            elif parameter % 8 == 5:
                temporaryguess[parameter] = uniform(impervious_storage[0], 
impervious_storage[1])
            elif parameter % 8 == 6:
                temporaryguess[parameter] = uniform(pervious_storage[0], 
pervious_storage[1])
            elif parameter % 8 == 7:
                temporaryguess[parameter] = uniform(percent_zero_storage[0], 
percent_zero_storage[1])

    #Retuns a mutated guess
    return (temporaryguess)

#Transformation from floats back into strings for reinsertion into input file
def castfloatsasstrings():

    #Calls the random guess generator to initialize the list to be recast
    floattostring = createrandomsetofP()
    guess_strings = []

    #Add the guess back element wise to a dummy list of strings
    for float in floattostring:
        guess_strings.append(str(float))
    return(guess_strings)

#Inverse of the flatten transformation, reexpands a 1D list into a 2D array where 
each element in a row is one of
# each subcatchment's surface parameters
def transformation_fatten(oneDlistinput):

    #Initialize a 2D np array of zeros to be repopulated, number of columns is the 
number of subcatchments, and
    # the number of rows is the number of surface parameters
    new_twoDlistoutput = np.zeros((len(relevant_subcatchment_parameters[0]), 
len(relevant_subcatchment_parameters)))
    row_count = -1
    col_count = 0

    #For each parameter in the 1D list
    for oneDparameter in oneDlistinput:
        row_count = row_count + 1

        #Populate the array row by row, essentially each subcatchment gets populated
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top to bottom
        if row_count < len(relevant_subcatchment_parameters[0]):

            # If the row count is still less than the number of different parameters
(i.e. < 8)
            new_twoDlistoutput[row_count][col_count] = oneDparameter
        else:

            # Once the number of rows in each column has been exceeded, move to the 
next column and restart row count
            row_count = 0
            col_count = col_count + 1
            new_twoDlistoutput[row_count][col_count] = oneDparameter
    return (new_twoDlistoutput)

#Reinsert the np array of strings into the input file
def insertguessestoinputfile(inputfile, trialfile):

    #Initialize the np array, guess, as a recast version of a randomly generated 
guess
    guess = transformation_fatten(castfloatsasstrings())

    #Open and read the initial input file and store the information in the contents 
variable
    with open(inputfile, 'r') as swmmput:
        contents = swmmput.readlines()

        #Go back to the top of the inputfile
        swmmput.seek(0)

        #Read input file again and where the parameters are found insert the guess 
parameter into the contents variable
        for line in swmmput:
            if line.find('[SUBCATCHMENTS]') != -1:
                for i in range(count):
                    line = swmmput.readline()
                    linelist = list(line)
                    if linelist[0] == " " or linelist[0] == ";" or len(linelist) < 
10:
                        continue
                    elif (line.find('[SUBAREAS]') != -1):
                        break
                    else:

                        #When a subcatchment name in the inputfile is found, check 
if that subcatchment is in the
                        # clipped subsystem
                        for sub in DelineateNetwork_Commented.list_of_subcatchments:
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                            templine = contents.index(line)
                            splitline = contents[templine].split()

                            #If the subcatchment is relevant, add the guess 
parameter to the contents variable
                            if splitline[0] == sub:
                                splitline[4] = 
str(guess[0][DelineateNetwork_Commented.list_of_subcatchments.index(sub)])
                                splitline[5] = 
str(guess[1][DelineateNetwork_Commented.list_of_subcatchments.index(sub)])
                                splitline[6] = 
str(guess[2][DelineateNetwork_Commented.list_of_subcatchments.index(sub)])

                                #Add some spaces to the input file to improve 
readability
                                contents[templine] = "      ".join(splitline) + "\n"
                                break
            if line.find('[SUBAREAS]') != -1:

                # This is the same thing, but for the [SUBAREAS] header which houses
5 of the 8 parameters
                for i in range(count):
                    line = swmmput.readline()
                    linelist = list(line)
                    if linelist[0] == " " or linelist[0] == ";" or len(linelist) < 
10:
                        continue
                    elif (line.find('[') != -1):
                        break
                    else:
                        for sub in DelineateNetwork_Commented.list_of_subcatchments:
                            templine = contents.index(line)
                            splitline = contents[templine].split()
                            if splitline[0] == sub:
                                splitline[1] = 
str(guess[3][DelineateNetwork_Commented.list_of_subcatchments.index(sub)])
                                splitline[2] = 
str(guess[4][DelineateNetwork_Commented.list_of_subcatchments.index(sub)])
                                splitline[3] = 
str(guess[5][DelineateNetwork_Commented.list_of_subcatchments.index(sub)])
                                splitline[4] = 
str(guess[6][DelineateNetwork_Commented.list_of_subcatchments.index(sub)])
                                splitline[5] = 
str(guess[7][DelineateNetwork_Commented.list_of_subcatchments.index(sub)])
                                contents[templine] = "      ".join(splitline) + '\n'
                                break

    #Close the original swmm input file
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    swmmput.close()

    #Open the trial file and write all the lines from the contents variable
    with open(trialfile, 'w') as newfile:
        for i in range(count):
            newfile.write(contents[i])

    #Then close the trialfile
    newfile.close()
    return

#Iterate the process of generating a random guess and creating a new input file 100 
times to create a generation
def create_generation(inputfilename, filelist):
    for trialfile in filelist:
        insertguessestoinputfile(inputfilename, trialfile)
    return

#Create the first generation of guesses.  Result is 100 new input files in the 
directory.
create_generation(inputfilename, filelist)
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C.3 L2.py

L2.py is a script that calculates the NED objective function by comparing the

parameter set obtained from a guess input file to the one obtained from the origi-

nal input file. The NED objective function is calculated in a separate script than

the other objective functions because it operates within the “feasible parameter

space” rather than the “feasible performance space” like the other three objective

functions. L2.py references CreateGuesses.py to access functions that grab the two

parameter sets.
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#Import CreateGuesses to access functions
import CreateGuesses

#Import math perform squared operations
import math

#Collect the list of parameter values from each guess
def get_random_guess(trialfilename):

    #Initialize a variable containing the string list of parameters for each guess
    global random_guess_str

    #Determine this list of strings by calling the return of the 
transformation_flatten function, with the 2D list
    # from the read_initial_parameters function passed as an argument.
    random_guess_str = 
CreateGuesses.transformation_flatten(CreateGuesses.read_initial_parameters(trialfile
name))
    return random_guess_str

#Determine the NED between the guess and the original inputfile
def L2norm(trialfilename):

    #Collect the string list of parameter values from each guess
    get_random_guess(trialfilename)

    #Collect the float list of parameter values from the original estimate
    initial_guess = CreateGuesses.caststringsasfloats()

    #Initialize lists and variables to be populated
    random_guess = []
    numerator = []
    denominator = []
    num_sum = 0
    denom_sum = 0
    L2 = 0

    #Cast the string list of parameter values from each guess into a float list
    for i in random_guess_str:
        random_guess.append(float(i))

    #Compare the two lists of parameters, append the differences squared to a dummy 
list
    for parameter in initial_guess:
        num = (parameter - random_guess[initial_guess.index(parameter)])
        num_squared = math.pow(num, 2)
        numerator.append(num_squared)
        denom = parameter + random_guess[initial_guess.index(parameter)]
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        denom_squared = math.pow(denom, 2)
        denominator.append(denom_squared)

    #Sum the dummy list of numerator and denominator comparisons between the two 
float lists
    for j_index in numerator:
        num_sum = num_sum + j_index
        denom_sum = denom_sum + denominator[numerator.index(j_index)]

    #Compute the NED by taking the square root of the list sums
    L2 = math.sqrt(num_sum/denom_sum)

    #Return the NED float value for use in Objective_function.py
    return(L2)
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C.4 Objective functions.py

Objective functions.py calculates the remaining objective functions: the NPE,

NV E, and NSEm. It does so by comparing the simulated hydrograph managed by

PySWMM with the synthetically produced observed hydrograph shown in B. Ob-

jective functions.py also calculates the aggregate functions and ranks the guesses

within a generation based on the aggregate function values. Objective functions.py

references L2.py to collect the values of the NED objective function for a given

guess.
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#Import pyswmm for use in accessing the swmm simulations
from pyswmm import Simulation, Nodes, Links, Subcatchments

#Import datetime to manage the time delta between recorded data
import datetime

#Import re so that lines can be split on more than one criteria
import re

#Import L2 so that all objective functions can be aggregated
import L2

#Specify the observation file for comparison to simulations.  Observations must be 
equally spaced in time.
observationdatafile = "trial_observation.dat"

#Specify the location in the system of the observation data
root = "18"

#List of trial files for a given generation
filelist = ['trialfile01.inp', 'trialfile02.inp', 'trialfile03.inp', 
'trialfile04.inp', 'trialfile05.inp',
            'trialfile06.inp', 'trialfile07.inp',
            'trialfile08.inp', 'trialfile09.inp', 'trialfile10.inp', 
'trialfile11.inp', 'trialfile12.inp',
            'trialfile13.inp', 'trialfile14.inp',
            'trialfile15.inp', 'trialfile16.inp', 'trialfile17.inp', 
'trialfile18.inp', 'trialfile19.inp',
            'trialfile20.inp', 'trialfile21.inp',
            'trialfile22.inp', 'trialfile23.inp', 'trialfile24.inp', 
'trialfile25.inp', 'trialfile26.inp',
            'trialfile27.inp', 'trialfile28.inp',
            'trialfile29.inp', 'trialfile30.inp', 'trialfile31.inp', 
'trialfile32.inp', 'trialfile33.inp',
            'trialfile34.inp', 'trialfile35.inp',
            'trialfile36.inp', 'trialfile37.inp', 'trialfile38.inp', 
'trialfile39.inp', 'trialfile40.inp',
            'trialfile41.inp', 'trialfile42.inp',
            'trialfile43.inp', 'trialfile44.inp', 'trialfile45.inp', 
'trialfile46.inp', 'trialfile47.inp',
            'trialfile48.inp', 'trialfile49.inp',
            'trialfile50.inp', 'trialfile51.inp', 'trialfile52.inp', 
'trialfile53.inp', 'trialfile54.inp',
            'trialfile55.inp', 'trialfile56.inp',
            'trialfile57.inp', 'trialfile58.inp', 'trialfile59.inp', 
'trialfile60.inp', 'trialfile61.inp',
            'trialfile62.inp', 'trialfile63.inp',
            'trialfile64.inp', 'trialfile65.inp', 'trialfile66.inp', 
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'trialfile67.inp', 'trialfile68.inp',
            'trialfile69.inp', 'trialfile70.inp',
            'trialfile71.inp', 'trialfile72.inp', 'trialfile73.inp', 
'trialfile74.inp', 'trialfile75.inp',
            'trialfile76.inp', 'trialfile77.inp',
            'trialfile78.inp', 'trialfile79.inp', 'trialfile80.inp', 
'trialfile81.inp', 'trialfile82.inp',
            'trialfile83.inp', 'trialfile84.inp',
            'trialfile85.inp', 'trialfile86.inp', 'trialfile87.inp', 
'trialfile88.inp', 'trialfile89.inp',
            'trialfile90.inp', 'trialfile91.inp',
            'trialfile92.inp', 'trialfile93.inp', 'trialfile94.inp', 
'trialfile95.inp', 'trialfile96.inp',
            'trialfile97.inp', 'trialfile98.inp',
            'trialfile99.inp', 'trialfile100.inp']

#Specify the weights for each objective function
weights = [0.25, 0.25, 0.25, 0.25]

#Read the observation data into a time series
def readobservationfile(observationdatafile):

    #Open the file as read only, place all information into a contents variable
    with open(observationdatafile, 'r') as obs_file:
        global contents
        contents = obs_file.readlines()

        #Initialize variables that will be used to compute objective functions
        global obs_data, time_difference, obs_time
        obs_data = []
        obs_time = []

        #For each line in contents variable
        for line in contents:

            #Split the line into characters
            linelist = list(line)

            #Determine if the line is metadata
            if linelist[0] == ';' or linelist[0] == ' ' or len(list(line)) < 15:
                continue

            #if not metadata
            else:
                templine = line.split()

                #If the data is a placeholder, replace it with 0
                if float(templine[-1]) < 0:
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                    obs_data.append(0)

                #If the data is a true value, add it to the obs_data list
                else:
                    obs_data.append(float(templine[-1]))

                #Process the datatime data in the observation data file
                # formatting requisite is MM/DD/YYYY HH:MM:SS
                day_templine_preprocessing = line.replace(' ', ';')
                day_templine = re.split('[/|;|:]', day_templine_preprocessing)
                month = int(day_templine[0])
                day = int(day_templine[1])
                year = int(day_templine[2])
                hour = int(day_templine[3])
                minute = int(day_templine[4])
                second = int(day_templine[5])
                obs_time.append(datetime.datetime(year, month, day, hour, minute, 
second))

        #Determine the time spacing of the series
        time_difference = obs_time[1] - obs_time[0]
    return

#This function only needs to be called once as the observational data doesn't change
readobservationfile(observationdatafile)

#Formulation of NPE
def normalizedpeakerror():

    #Maximum value of simulated hydrograph from PySWMM
    peak_simulation = max(hydrograph)

    #Maximum value of observed hydrograph from readobservationfile()
    peak_observation = max(obs_data)

    #Calculate NPE
    peak_error = abs(peak_simulation - peak_observation)/(peak_observation + 
peak_simulation)

    #Returns the float value of NPE
    return(peak_error)

#Formulation of NVE
def normalizedvolumeerror():

    #Initivalize volume of simulation and observation hydrographs
    volume_simulation = 0
    volume_observation = 0
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    #Trapezoidal approximations of hydrographs
    for sim_index in range(1,len(hydrograph)):
        volume_simulation_trapezoid = 
(hydrograph[sim_index-1]+hydrograph[sim_index])*simulation_timestep/2
        volume_simulation = volume_simulation + volume_simulation_trapezoid
    for data_index in range(1,len(obs_data)):
        volume_observation_trapezoid = 
(obs_data[data_index-1]+obs_data[data_index])*time_difference.total_seconds()/2
        volume_observation = volume_observation + volume_observation_trapezoid

    #Calculate NVE
    volume_error = abs(volume_simulation-volume_observation)/(volume_simulation + 
volume_observation)

    #Returns the float value of NVE
    return(volume_error)

#Formulation of NSEm
def nashsutcliffe():

    #Compute the average of the observed data set
    average_obs = sum(obs_data)/len(obs_data)

    #Initialize the sum of the differences
    sum_sim_obs = 0
    sum_obs_obsave = 0

    #Bound the computation to time instances where both time series exist
    for i in range(len(min(obs_data, hydrograph))-1):

        #Update the sum of the differences for each time step
        diff_sim_obs = (obs_data[i] - hydrograph[i])**2
        sum_sim_obs = sum_sim_obs + diff_sim_obs
        diff_obs_obsave = (obs_data[i] - average_obs)**2
        sum_obs_obsave = sum_obs_obsave + diff_obs_obsave

    #Compute the final ratio for NSEm
    mNSE = sum_sim_obs/sum_obs_obsave

    #Returns the float value of NSEm
    return(mNSE)

#Compile a list of the objective function values for each guess
def objectivefunctions(filelist, observationdatafile):

    #Define global variables that are used in other functions
    global hydrograph, simulation_timestep, sim_time, P_prime

Page 4

120



Objective_functions_Commented
    P_prime = []

    #For each guess
    for trialfile in filelist:

        #Initialize the lists that will be populated by PySWMM
        hydrograph = []
        sim_time = []

        #Open each trialfile with PySWMM
        with Simulation(trialfile) as sim:

            #Initialize the nodes that will be perused to find the root
            node_object = Nodes(sim)

            #Set the root location within PySWMM
            root_location = node_object[root]

            #Specify that PySWMM should report simulation values at the same time 
resolution as the observed data
            simulation_timestep = time_difference.total_seconds()
            sim.step_advance(simulation_timestep)

            #For each time step in a SWMM simulation with PySWMM
            for step in sim:

                #Append the current time
                sim_time.append(sim.current_time)

                #Append the hydrograph value
                hydrograph.append(root_location.total_inflow)

        #Determine the objective function values for each trial file
        objFunc = [normalizedpeakerror(), normalizedvolumeerror(), nashsutcliffe(), 
L2.L2norm(trialfile)]

        #Append the objFunc list to a transformed list of guesses P_prime
        P_prime.append(objFunc)
    return

#Compute the aggregate function of objective functions
def aggregateFunction():

    #Initialize a global list aggFunc to be sorted in another function
    global aggFunc
    aggFunc = []

    #For each guess in a generation of P', compute the aggregate function
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    for objFunc in P_prime:
        aggFunc.append(objFunc[0]*weights[0] + objFunc[1]*weights[1] + 
objFunc[2]*weights[2] + objFunc[3]*weights[3])

    #Return the list of aggregate function values
    return(aggFunc)

#Create a list ranking the aggregate functions values for a given generation
def rankP_prime():

    #Define a dummy variable x that is equal to the list of aggregate function 
values
    x = aggregateFunction()

    #Sort x from low to high
    seq = sorted(x)

    #Create a new list, index, that is the rank of the aggregate function value for 
a given guess relative to the other
    # guesses within that generation
    index = [seq.index(v) for v in x]

    #Return this indexed list
    return(index)
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C.5 Generations.py

Generations.py contains the workflow for the abbreviated NSGA-II algorithm ex-

plained by §2.4. It assesses the ranked guesses, culls the poor performers, and re-

populates a new generation with mutations of the best performing guesses. Gener-

ations.py references both Objective functions.py to access the ranked list of guesses

as well as CreateGuesses.py to produce each subsequent generation of guesses.

123



Generations_Commented
#Import Objective_functions to access the rankP_prime() function
import Objective_functions

#Import CreateGuesses to access read_initial_parameters() and 
compile_initial_guess() functions
import CreateGuesses

#Initialize lists of input files that comprise the current and next generation
filelist = ['trialfile01.inp', 'trialfile02.inp', 'trialfile03.inp', 
'trialfile04.inp', 'trialfile05.inp',
            'trialfile06.inp', 'trialfile07.inp',
            'trialfile08.inp', 'trialfile09.inp', 'trialfile10.inp', 
'trialfile11.inp', 'trialfile12.inp',
            'trialfile13.inp', 'trialfile14.inp',
            'trialfile15.inp', 'trialfile16.inp', 'trialfile17.inp', 
'trialfile18.inp', 'trialfile19.inp',
            'trialfile20.inp', 'trialfile21.inp',
            'trialfile22.inp', 'trialfile23.inp', 'trialfile24.inp', 
'trialfile25.inp', 'trialfile26.inp',
            'trialfile27.inp', 'trialfile28.inp',
            'trialfile29.inp', 'trialfile30.inp', 'trialfile31.inp', 
'trialfile32.inp', 'trialfile33.inp',
            'trialfile34.inp', 'trialfile35.inp',
            'trialfile36.inp', 'trialfile37.inp', 'trialfile38.inp', 
'trialfile39.inp', 'trialfile40.inp',
            'trialfile41.inp', 'trialfile42.inp',
            'trialfile43.inp', 'trialfile44.inp', 'trialfile45.inp', 
'trialfile46.inp', 'trialfile47.inp',
            'trialfile48.inp', 'trialfile49.inp',
            'trialfile50.inp', 'trialfile51.inp', 'trialfile52.inp', 
'trialfile53.inp', 'trialfile54.inp',
            'trialfile55.inp', 'trialfile56.inp',
            'trialfile57.inp', 'trialfile58.inp', 'trialfile59.inp', 
'trialfile60.inp', 'trialfile61.inp',
            'trialfile62.inp', 'trialfile63.inp',
            'trialfile64.inp', 'trialfile65.inp', 'trialfile66.inp', 
'trialfile67.inp', 'trialfile68.inp',
            'trialfile69.inp', 'trialfile70.inp',
            'trialfile71.inp', 'trialfile72.inp', 'trialfile73.inp', 
'trialfile74.inp', 'trialfile75.inp',
            'trialfile76.inp', 'trialfile77.inp',
            'trialfile78.inp', 'trialfile79.inp', 'trialfile80.inp', 
'trialfile81.inp', 'trialfile82.inp',
            'trialfile83.inp', 'trialfile84.inp',
            'trialfile85.inp', 'trialfile86.inp', 'trialfile87.inp', 
'trialfile88.inp', 'trialfile89.inp',
            'trialfile90.inp', 'trialfile91.inp',
            'trialfile92.inp', 'trialfile93.inp', 'trialfile94.inp', 
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'trialfile95.inp', 'trialfile96.inp',
            'trialfile97.inp', 'trialfile98.inp',
            'trialfile99.inp', 'trialfile100.inp']
Qfilelist = ['trialfile101.inp', 'trialfile102.inp', 'trialfile103.inp', 
'trialfile104.inp', 'trialfile105.inp',
            'trialfile106.inp', 'trialfile107.inp',
            'trialfile108.inp', 'trialfile109.inp', 'trialfile110.inp', 
'trialfile111.inp', 'trialfile112.inp',
            'trialfile113.inp', 'trialfile114.inp',
            'trialfile115.inp', 'trialfile116.inp', 'trialfile117.inp', 
'trialfile118.inp', 'trialfile119.inp',
            'trialfile120.inp', 'trialfile121.inp',
            'trialfile122.inp', 'trialfile123.inp', 'trialfile124.inp', 
'trialfile125.inp', 'trialfile126.inp',
            'trialfile127.inp', 'trialfile128.inp',
            'trialfile129.inp', 'trialfile130.inp', 'trialfile131.inp', 
'trialfile132.inp', 'trialfile133.inp',
            'trialfile134.inp', 'trialfile135.inp',
            'trialfile136.inp', 'trialfile137.inp', 'trialfile138.inp', 
'trialfile139.inp', 'trialfile140.inp',
            'trialfile141.inp', 'trialfile142.inp',
            'trialfile143.inp', 'trialfile144.inp', 'trialfile145.inp', 
'trialfile146.inp', 'trialfile147.inp',
            'trialfile148.inp', 'trialfile149.inp',
            'trialfile150.inp', 'trialfile151.inp', 'trialfile152.inp', 
'trialfile153.inp', 'trialfile154.inp',
            'trialfile155.inp', 'trialfile156.inp',
            'trialfile157.inp', 'trialfile158.inp', 'trialfile159.inp', 
'trialfile160.inp', 'trialfile161.inp',
            'trialfile162.inp', 'trialfile163.inp',
            'trialfile164.inp', 'trialfile165.inp', 'trialfile166.inp', 
'trialfile167.inp', 'trialfile168.inp',
            'trialfile169.inp', 'trialfile170.inp',
            'trialfile171.inp', 'trialfile172.inp', 'trialfile173.inp', 
'trialfile174.inp', 'trialfile175.inp',
            'trialfile176.inp', 'trialfile177.inp',
            'trialfile178.inp', 'trialfile179.inp', 'trialfile180.inp', 
'trialfile181.inp', 'trialfile182.inp',
            'trialfile183.inp', 'trialfile184.inp',
            'trialfile185.inp', 'trialfile186.inp', 'trialfile187.inp', 
'trialfile188.inp', 'trialfile189.inp',
            'trialfile190.inp', 'trialfile191.inp',
            'trialfile192.inp', 'trialfile193.inp', 'trialfile194.inp', 
'trialfile195.inp', 'trialfile196.inp',
            'trialfile197.inp', 'trialfile198.inp',
            'trialfile199.inp', 'trialfile200.inp']
Unionsetlist = filelist + Qfilelist
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#Specify the observation data set, the root location, and the objective function 
weights
observationdatafile = "trial_observation.dat"
root = "18"
weights = [0.25, 0.25, 0.25, 0.25]

#To create the 2nd generation, for each 1st generation file
for infile in filelist:

    #Read the parameters
    CreateGuesses.read_initial_parameters(infile)

    #And compile the initial guess
    CreateGuesses.compile_initial_guess()

    #Specify the corresponding 2nd generation file, and "make a generation" on that 
single file that is only 1 file long
    # compiling 100 "make a generation"s gives you a full 2nd generation.
    Qfile = [Qfilelist[filelist.index(infile)]]
    CreateGuesses.create_generation(infile, Qfile)

#Write the Objective Function values for the #1-ranked guess for each generation
with open('Ob_Func.txt', 'w') as file:

    #Write the Headers
    file.write("NPE        NVE        NSEm        NED \n")

    #For 100 generations
    for iteration in range(100):
        #Determine the objective function values for each file in the 2 generations 
being compared
        Objective_functions.objectivefunctions(Unionsetlist, observationdatafile)

        #Initialize the nextgenlist and the survivinglist, which will be populated 
with files that are to be replaced
        # or to be maintained, respectively.
        nextgenlist = []
        survivinglist = []

        #For each guess in the ranked list of guesses,
        for guess in Objective_functions.rankP_prime():

            #If the guess is ranked worse than 100th, add the corresponding input 
file to the nextgenlist
            if guess >= 100:
                
nextgenlist.append(Unionsetlist[Objective_functions.rankP_prime().index(guess)])
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            #If the guess is ranked 100th or better, add the corresponding input 
file to the survivinglist
            else:
                
survivinglist.append(Unionsetlist[Objective_functions.rankP_prime().index(guess)])

            #If the guess is ranked 1st, print the objective functions to the file, 
and print the name of the file
            # and aggregate function value to the screen for ease of tracking 
progress
            if guess == 0:
                
print(Objective_functions.aggFunc[Objective_functions.rankP_prime().index(guess)])
                print(Unionsetlist[Objective_functions.rankP_prime().index(guess)])
                file.write("{:.04f}     {:.04f}     {:.04f}     
{:.04f}\n".format(Objective_functions.P_prime[
                                                                                  
Objective_functions.rankP_prime().
                                                                                  
index(guess)][0], Objective_functions.
                                                                                  
P_prime[Objective_functions.
                                                                                  
rankP_prime().index(guess)][1],
                                                                                  
Objective_functions.P_prime[
                                                                                  
Objective_functions.rankP_prime().
                                                                                  
index(guess)][2], Objective_functions.
                                                                                  
P_prime[Objective_functions.
                                                                                  
rankP_prime().index(guess)][3]))

        #For each file that is being kept to the next generation
        for goodfile in survivinglist:
            #Reread the new inital parameters and compile the initial guess
            CreateGuesses.read_initial_parameters(goodfile)
            CreateGuesses.compile_initial_guess()

            #The nextgenlist corresponding to the goodfile is mutated to create the 
child for the next generation
            Qfile = [nextgenlist[survivinglist.index(goodfile)]]
            CreateGuesses.create_generation(goodfile, Qfile)
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D Formulation of SWMMCALPY2.0’s Search and Decision Criteria

The methodology presented in Chapter 2 can be said to describe the initial de-

velopment of SWMMCALPY, or SWMMCALPY1.0. Several decisions were made

to reduce the complexity of the algorithm and expedite the implementation of

the code behind it. Presented in this Appendix is the mathematical blueprint for

the implementation of SWMMCALPY2.0, or the next iteration of SWMMCALPY

that includes the full search, sort, and decision making criteria for executing the

NSGA-II algorithm. For each decision, the SWMMCALPY1.0 approximation is

restated, and the plans for SWMMCALPY2.0 are summarized, with the logical

equations presented.

D.1 Non-dominated Sorting

By and large, SWMMCALPY2.0 is identical to SWMMCALPY1.0. Divergence

first occurs when the first generation of P
⋃
Q is sorted for non-dominance. In

SWMMCALPY1.0, this is done using a single, aggregated objective function shown

in Eq. 2.9. Using this method, non-dominance is essentially approximated by a

weighted distance from the origin in the feasible performance space. A commonly

used approach (Barco et al., 2008), this aggregate function does a good job differ-

entiating between points that are clearly dominated and those that are near the

Pareto front, but has difficulty identifying the correct solution set for problems in

which the Pareto front has a general shape (i.e. not convex) (Deb et al., 2002).

In SWMMCALPY2.0, however, the full non-dominance criteria are applied

to each generation posed by the NSGA-II algorithm. Spelled out in Deb et al.

(2002), this algorithm establishes a Pareto-nearness ranking criteria by which the
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guesses are evaluated. The surviving set, new P , is filled with the highest ranking

guesses. Ties are broken using a distance clustering technique that is also pre-

sented. The logic behind the “fast non-dominated sort” algorithm is shown in

Figure D.2 and subsequently paraphrased.

Figure D.2: “Fast Non-dominated Sort” algorithm from Deb et al. (2002).

The fast non-dominated sort algorithm works by essentially distilling a gen-

eration of guesses into classes or “shells” (think electron shells on an atomic model)

based on non-dominance. For each generation, every guess is compared to every

other guess. If, for a given Pi, there does not exist a Pj such that Pj < Pi for all

objective functions, that means that Pi is non-dominated. This criteria is logically
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expressed in Eq. D.1

For Pi in P :

For Pj in P where j 6= i :

if F1(Pj) < F1(Pi)

and if F2(Pj) < F2(Pi)

...

and if Fn(Pj) < Fn(Pi)

Then Pi is NOT non− dominated

(D.1)

Eq. D.1 expands on the logic presented in Figure D.2. Should any of the

objective function comparison tests fail every Pj for a given Pi that means Pi is

non-dominated, and its genetic information should persist to the next generation.

These generationally non-dominated guesses comprise the first shell. It should be

noted that the objective functions are sought to be minimized, so smaller values

of Fi are desirable.

Conversely, should Pi be found to be dominated, it is added to the Sp set

indicated in Figure D.2. Once set P has been entirely searched, the search for non-

dominance is repeated on set Sp. Non-dominated guesses from set Sp comprise the

second shell of guesses, and the remainder are passed to the next set, which will be

called Sp=1. This cascading search for non-dominance continues until the surviving

generation has been filled. In the case of SWMMCALPY, where the generation

size is 100, this means that 100 guesses from the various non-dominated sets, P

first, then Sp, then Sp=1,2,...,n are included in the next iteration of NSGA-II genetic
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process. Deb et al. Deb et al. (2002) lauds this search algorithm as the “fast

non-dominated sort” because it has computational complexity of O(MN2), where

M is the number of sortings, or number of sets, P and Spi , and N is the number

of guesses in a generation.

The question arises from this arbitrary generation size cutoff: what happens

if the generation size is reached halfway through a set? Should that occur, a

clustering metric is applied to ensure that diversity among solutions is used as a

tie-breaker. When each guess is being compared to each other guess on the basis

of the objective functions, the distance between the two guesses in the feasible

performance space is also evaluated. When a non-dominance approximating shell

exceeds the allotted spaces within the next generation, the distance vector for

each guess becomes important. In an attempt to promote diversity of solutions,

the guesses within the set are further sorted based on the cumulative distance to

the nearest two points, from highest to lowest. In doing so, guesses in regions that

are less densely populated are more likely to be included in the surviving set of

guesses.

Once the surviving set of guesses is filled, the child generation is produced

the same way in SWMMCALPY2.0 as in SWMMCALPY1.0, by leveraging the

genetic parameters given in Table 2.4.

D.2 Stop Criteria

In §2.4, options for a stop criteria are discussed. For the simple aggregate objec-

tive function sorting approach used by SWMMCALPY1.0, a number of iterations

passed – rather than a determination of convergence – is sufficient. For the fast

non-dominated sort detailed in §D.1, an estimate of convergence is perhaps a more
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robust way of determining if the NSGA-II algorithm has approached the Pareto

front. Shan and Wang (2005) suggests that for each generation, the previous

generation can be consulted for the answer.

The NSGA-II, being an elitist algorithm, ensures that guesses with the best

performance persist to the next generations. Shan and Wang (Shan & Wang, 2005)

posits that this elitism can be leveraged for determining whether the NSGA-II

algorithm has ceased progressing. The stop criteria suggested by Shan and Wang

(Shan & Wang, 2005) is simple and the logic is paraphrased as such: if the surviving

set for a given generation contains 95% of the same population of guesses as the

previous generation, exit. Essentially, if only 5% of the population of the surviving

guesses has been turned over from the last generation that is a good indicator that

a large portion of the guesses are truly non-dominated, and are near the Pareto

front.

D.3 Selecting One Solution Along Pareto Front

In SWMMCALPY1.0, to recap §2.5 the selection of a final solution is actually fairly

straightforward. Because the objective function weights behave as coefficients in

the aggregate function, the final solution that is returned to the engineer is simply

the parameter set, or guess, with the smallest value of the aggregate function after

the iterations stopping criteria has been reached.

For SWMMCALPY2.0, the objective function weights do not play a role

until the very end. The NSGA-II algorithm and approach to determining the

Pareto front do not rely on the weights. The effect of this is that the Pareto front

is static for a given problem. Where the engineer’s preference becomes important

is identifying a single solution from among these Pareto-approximating solutions.
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An optimal angle, or more specifically, an optimal vector of angles is defined based

on a vector of the objective function weights to each of objective function axis.

Θ = (θ1, θ2, θ3, θ4) (D.2)

θi = arccos
( W · ei
|W ||ei|

)
(D.3)

W = (w1, w2, w3, w4) (D.4)

Eq. D.2 contains the optimal angle vector Θ, which will be used to dis-

tinguish between solutions in on the Pareto front. The equation by which each

component of the optimal angle vector is calculated is presented in Eq. D.3 [CI-

TATION]. W corresponds to the vector of the objective function weights, shown

in Eq. D.5, while ei indicates the unit vector along each of the objective function

axis. This formulation is given specifically for 4 objective functions, but can be

very easily generalized to more or fewer objective functions.

Using Eq. D.3, the angle vector corresponding to each of the parameter

sets in the final generation from the NSGA-II portion of SWMMCALPY can be

calculated. Vector W would simply need to be supplanted with a new vector, F
′
.

The components of F
′

are the values of the objective functions, or, more simply,

the coordinate in the feasible performance space for the guess under scrutiny. F
′
is

similar to the aggregate function F , but in vector form and sans weight coefficients.

F
′
= (f1, f2, f3, f4) (D.5)
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The transformation from coordinates in the feasible performance space into

feasible “angle” space allows the Euclidean distance between each solution and the

coordinate of the optimal angle vector to be calculated. The Pareto front solution

whose angle is nearest to the optimal angle is returned to the engineer as the

calibrated parameter set.

These three alterations to the NSGA-II execution within the SWMMCALPY2.0

workflow constitute a significant upgrade in sophistication, as well as an increased

flexibility in handling non-convex Pareto fronts. The effect of these alterations on

the final solution is discussed in §5.2.

——————————————————–

E Detailed Report on Brentwood Test Case Preprocessing by Brittany

Hornik

E.1 Objectives of File Preparation

To validate that the SWMMCALPY program functions as intended, data files

from an area with known rainfall had to be prepared and tested. The data chosen

was from the neighborhood of Brentwood from 2012-2014 because of our ability to

access the data files through Dr. Brandon Klenzendorf at the consulting company

Geosyntec, Inc. The Brentwood files were prepared to accomplish two key ob-

jectives: evaluate the “uncalibrated” input files based on four objective functions

used by SWMMCALPY and uncalibrated the input files to use as a starting point

for the SWMMCALPY routine.
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Figure E.3: Key Elements of the Brentwood Drainage System. From Geosyntec
(2017)

E.2 Background on Brentwood

The data that was used to evaluate the SWMMCALPY routine was from Brent-

wood, a neighborhood in central Austin, Texas. A consulting firm, Geosyntec,

was hired by the City of Austin to determine solutions to flooding, erosion, and

water quality problems in the neighborhood. To properly accomplish this, they

developed a model in PCSWMM of the drainage system in Brentwood involving

elements such as subcatchments, junctions, inlets, conduits, and rain gages. Fig-

ure E.3 depicts the key elements of the model superimposed on a physical map of

the area being investigated.

To create an accurate model, information about the topography and drainage
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features had to be input into PCSWMM. Much of the data was collected from a

GIS database, Shapefile, or other databases. Information that could not be found

elsewhere was gathered in the field and input into the PCSWMM model. The forc-

ing data inputs for precipitation calibration came directly from Brentwood rain

gages, BW1 and BW2. From Figure E.3, BW1 acted as both a rain gage and the

outfall for the entire Brentwood system.

The Brentwood model was developed in PCSWMM and calibrated using

Sensitivity-based Radio Tuning Calibration (SRTC). This tool functions to adjust

the calibrated parameters with the goal of reducing the variability between the

observed and simulated rainfall events over the period of interest, particularly the

difference in peak flow rates and total runoff volume for the Brentwood model.

The SWMMCALPY calibration method will be analyzed in comparison to the

SRTC calibrated parameters to verify the routine against a valid case study by

professional engineers.

E.3 Evaluation of Calibrated Brentwood Input Files

For the evaluation of the calibrated Brentwood files, a simulation of the storm

with the greatest volume of rainfall was run in SWMM 5. Before running the

simulation, the date with the largest rainfall had to be determined. To accomplish

this, python code was developed that read the BW1 raingage data file and sorted

the dates from least to greatest rainfall as determined by a tipping bucket. It

was determined that October 13, 2013 was the day that experienced the heaviest

rainfall. With the largest volume storm found, the spin-up process could begin.

Spin-up involved clipping the forcing files to determine the time required

prior to the event of interest that no significant changes were made to the resulting
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hydrographs. The largest rain storm was from 12AM to 2PM on October 13,

2013. This time frame was used as the reference. Copies of the BW1 raingage

and BW2 raingage text files were made so that the data in them could be altered.

First, the files were clipped so that they only contained data from 12AM to 2PM

on October 13, 2013. The Brentwood model with these newly altered files were

then used to run a simulation on SWMM 5 between the aforementioned times

and dates. Since BW1 acted as the outlet for the neighborhood, the computed

flow rates through the outlet and their corresponding times since the start of the

simulation were downloaded and input into an Excel spreadsheet. Using 0 as

midnight on October 13, 2013, the hydrograph for the time period was plotted.

The rain gage files were clipped to four different times to contain rainfall data from

1.5, 4, 6, 8, 12, 24, and 48 hours prior to 12AM on October 13, 2013. The outlet

flow rates and times were exported to Excel. To normalize the data that started

prior to midnight, the 0-time values needed to align. This was accomplished by

dividing the hours prior to midnight by 24, subtracting that value from the days,

and adding the hours. Once normalized the hydrographs produced the plot in

Figure E.4.
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Figure E.4: Hydrographs of Rainfall Data Clipped 48, 24, 12, 8, 6, 4, 1.5, and 0
Hours Prior to 12AM 10/13/13.

While each hydrograph generally follows the same path, some variations

exist between graphs. For example, the peak flow rates were inconsistent from

hydrograph to hydrograph.

A modified Nash-Sutcliffe efficiency index was applied to the data to de-

termine the spin-up time required for the modeled hydrograph to estimate the

observed hydrograph. The data were compared in sequential order beginning with

the comparison of data from 10/13/13 from 12AM-2PM and data from 10/12/13

from 10:30PM to 10/13/13 at 2PM. Eq. 2.7 is the modified Nash-Sutcliffe effi-

ciency index.

The NSE was computed for each test. Flow rates were only compared along

the same time interval. For example, when comparing the October 13 reference
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with the flow rates produced from beginning the simulation an hour and a half

prior to midnight, the flow rates used were those that shared the same time frame

from midnight to 2PM. With the NSE calculated for each test prior to the reference

time, the derivatives between the time differences were found and plotted in Figure

E.5. This was accomplished by taking the difference between the sequential times

prior and dividing by the time difference. Table E.1 lists the computed NSE and

the derivative between the tests.

Table E.1: Modified Nash-Sutcliffe Efficiencies of Tested Spin-Up Times.
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Figure E.5: Sensitivity Parameter vs Time Increment for simulations with rainfall
data clipped to several hours prior to 12AM on October 13, 2013.

It can be surmised from Figure E.5 that the derivative of the modified NSE

with respect to time is relatively constant after a time difference of 4 hours. With

the spin-up time determined, the Brentwood files could now be properly prepared

for SWMMCALPY.

E.4 Preparation of Uncalibrated Brentwood Input Files

A crucial step in the calibration process is the verification of the calibrated results

with observed data. Therefore, the objective functions produced from SWMM-

CALPY must be similar to those produced from the comparison of the uncali-

brated and calibrated Brentwood input files. The Brentwood model determined

the calibrated parameters from information found in the field or in databases.

These parameters were calibrated based on the information from Table E.2 in the
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technical report provided by Geosyntec Consultants.

Table E.2: Summary of Subcatchment Parameters Analyzed for Calibration ob-
tained from Geosyntec (2017).

To obtain the objectives functions, these parameters had to be uncalibrated.

The input file “001 Brentwood 1D Existing Monitoring rev1” was converted to a

.csv file and imported into Microsoft Excel to efficiently alter the desired param-

eters. The parameters of interest for the subcatchments were the “Subcatchment

Width” and “Impervious Cover”, and the parameters “N for Impervious Cover”,

“N for Pervious Cover”, “Depression Storage for Impervious Cover”, “Depression

Storage for Pervious Cover”, and “Percent Impervious Cover with Zero Depres-

sion” were altered for the subareas. While the subarea parameters were reverted to

their initial values in Table E.2, the subcatchment parameters had to recalculated

based on their calibrated values. The “Subcatchment Width” was uncalibrated

141



using the following formula.

Initial Width = 2 ∗ Calibrated Width (E.1)

The “Impervious Cover” was uncalibrated in a similar manner.

Initial Impervious Cover = 1.1 ∗ Calibrated Impervious Cover (E.2)

The above arithmetic was applied to the specified parameters for each of

the 619 subcatchments.

Reverting the calibrated parameters back to their initial values created a

SWMM input file of the Brentwood model. This uncalibrated file could be com-

pared to the calibrated file by calculating the L2-norm. Furthermore, SWMM-

CALPY could perform the recalibration of this input file and return its calculated

L2-norm. These computed objective functions, once compared, could determine

the effectiveness and validity of SWMMCALPY.

E.5 Verification

The verification process is intended to determine whether SWMMCALPY can

achieve its purpose as a method for calibration. It involves the calculation of the

objectives functions based on the observed data and the computed SWMM data

at the outfall of the Brentwood case.

The previously determined spin-up time was used to clip the observational

data to the desired October 13, 2013 event. This outfall data was then compared
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to the simulated outfall data for the same time frame of the event to compute the

four objective functions: peak error, volume error, Nash-Sutcliffe Efficiency, and

L2-norm.

Microsoft Excel was utilized to transparently calculate the objective func-

tions. The formulas for the peak error, volume error, Nash-Sutcliffe Efficiency, and

L2-norm are presented below. The peak error in Eq. 2.1 compared the maximum

total inflows of the observer and simulated data.

Volume error required the integration of the hydrographs produced for the

observed and simulated data. To simplify, the trapezoid method was employed to

incrementally find the areas between each time interval of one minute. The NV E

calculation is given by Eq. 2.2 and Eq. 2.3.

The Nash Sutcliffe Efficiency objective function was determined as it was

previous when calculating the required spin-up time, Eq. 2.7. As for the L2-norm,

the “distance” in the n-dimensional space between the calibrated and uncalibrated

input files had to be normalized by the “size” of the calibrated and uncalibrated

parameters. This is shown in Eq. 2.8.

The evaluation of the Brentwood model was accomplished in accordance

with the objective functions computed by SWMMCALPY. The final computed

objectives functions for the October 13, 2013 are presented in Table 3.3. The va-

lidity of SWMMCALPY is to be determined from the comparison of the objectives

functions produced by SWMMCALPY from the uncalibrated Brentwood input file

and the objectives functions computed from the above calculations.
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E.6 Conclusion

The validation of the SWMMCALPY routine required that its calibrated param-

eters be compared to a calibration method that is already verified and validated.

In this case, the SRTC in PCSWMM was the professional calibration tool against

which the SWMMCALPY parameters were compared. Geosyntec provided rain-

fall data from 2012-2014 as well as a SWMM model for the Austin neighborhood

of Brentwood. The contributed files had to undergo pre-processing to prepare for

SWMMCALPY.

During pre-processing the rainfall event was selected, the spin-up time for

the single storm was determined, the input file was uncalibrated, and the objective

functions of the SWMM simulation of the Brentwood data were calculated. A

python script was written to sort the three years’ worth of rainfall from days

with the greatest rainfall to days with the least. October 13, 2013 was the day

of highest rainfall and the event of interest for the rest of pre-processing. To

find the spin-time, simulations were run at various times prior to midnight of the

October 13 storm and the flow rates were compared using a modified Nash-Sutcliffe

efficiency index. The spin-up time was determined to be four hours. With this

information, the simulation run for the October 13 storm was compared to the

clipped October 13 storm from a continuous simulation to find the peak error,

volume error, and modified Nash-Sutcliffe efficiency. The Brentwood input file

was uncalibrated back to its original values for several parameters. This input

file was then compared to the calibrated input file to calculate the L2-norm. The

four objectives functions computed are ready to be measured against objective

functions produced by SWMMCALPY on the uncalibrated input file.

144



References

Alamdari, N., Sample, D., Steinberg, P., Ross, A., & Easton, Z. (2017, June).

Assessing the Effects of Climate Change on Water Quantity and Quality in

an Urban Watershed Using a Calibrated Stormwater Model. Water , 9 (12),

464. Retrieved 2018-03-07, from http://www.mdpi.com/2073-4441/9/7/

464 doi: 10.3390/w9070464

Angelakis, A. N. (2017, October). Urban waste- and stormwater management

in Greece: past, present and future. Water Science and Technology-Water

Supply , 17 (5), 1386–1399. (WOS:000417944300021) doi: 10.2166/ws.2017

.042

Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., & Perthame, B. (2004, Jan-

uary). A Fast and Stable Well-Balanced Scheme with Hydrostatic Recon-

struction for Shallow Water Flows. SIAM Journal on Scientific Computing ,

25 (6), 2050–2065. Retrieved 2018-04-03, from http://epubs.siam.org/

doi/10.1137/S1064827503431090 doi: 10.1137/S1064827503431090

Baiamonte, G., & Singh, V. P. (2017, July). Modeling the probability distribution

of peak discharge for infiltrating hillslopes. Water Resources Research, 53 (7),

6018–6032. (WOS:000407895000046) doi: 10.1002/2016WR020109

Bao, H., Wang, L., Zhang, K., & Li, Z. (2017, July). Application of a de-

145

http://www.mdpi.com/2073-4441/9/7/464
http://www.mdpi.com/2073-4441/9/7/464
http://epubs.siam.org/doi/10.1137/S1064827503431090
http://epubs.siam.org/doi/10.1137/S1064827503431090


veloped distributed hydrological model based on the mixed runoff gener-

ation model and 2d kinematic wave flow routing model for better flood

forecasting: The developed GMKHM-2d model for better flood forecasting.

Atmospheric Science Letters , 18 (7), 284–293. Retrieved 2018-04-04, from

http://doi.wiley.com/10.1002/asl.754 doi: 10.1002/asl.754

Barco, J., Wong, K. M., & Stenstrom, M. K. (2008). Automatic calibration of the

US EPA SWMM model for a large urban catchment. Journal of Hydraulic

Engineering , 134 (4), 466–474.

Bastidas, L. A., Gupta, H. V., Sorooshian, S., Shuttleworth, W. J., & Yang,

Z. L. (1999). Sensitivity analysis of a land surface scheme using multicriteria

methods. Journal of Geophysical Research: Atmospheres , 104 (D16), 19481–

19490.

Beven, K., & Binley, A. (1992, July). The future of distributed models:

Model calibration and uncertainty prediction. Hydrological Processes , 6 (3),

279–298. Retrieved 2018-04-06, from http://doi.wiley.com/10.1002/

hyp.3360060305 doi: 10.1002/hyp.3360060305

Box, M. J. (1965, April). A New Method of Constrained Optimization and a

Comparison With Other Methods. The Computer Journal , 8 (1), 42–52.

Retrieved 2018-04-06, from https://academic.oup.com/comjnl/article

-lookup/doi/10.1093/comjnl/8.1.42 doi: 10.1093/comjnl/8.1.42

Campolongo, F., & Braddock, R. (1999, January). Sensitivity analysis of the

IMAGE Greenhouse model. Environmental Modelling & Software, 14 (4),

275–282. Retrieved 2018-04-06, from http://linkinghub.elsevier.com/

retrieve/pii/S1364815298000796 doi: 10.1016/S1364-8152(98)00079-6

CHI Water. (2018). Introduction to PCSWMM Workshop. CHI Water.

146

http://doi.wiley.com/10.1002/asl.754
http://doi.wiley.com/10.1002/hyp.3360060305
http://doi.wiley.com/10.1002/hyp.3360060305
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/8.1.42
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/8.1.42
http://linkinghub.elsevier.com/retrieve/pii/S1364815298000796
http://linkinghub.elsevier.com/retrieve/pii/S1364815298000796


Chow, V. T. (1959). Open-Channel Hydraulics. McGraw-Hill Book Company.

Cipolla, S. S., Maglionico, M., & Stojkov, I. (2016, October). A long-term

hydrological modelling of an extensive green roof by means of SWMM.

Ecological Engineering , 95 , 876–887. Retrieved 2018-03-07, from http://

linkinghub.elsevier.com/retrieve/pii/S0925857416304608 doi: 10

.1016/j.ecoleng.2016.07.009

Contributors, V. (2018). SWMM-EPANET user interface. Retrieved 2018-

04-04, from https://github.com/USEPA/SWMM-EPANET User Interface

(original-date: 2015-12-18T15:41:52Z)

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist mul-

tiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary

computation, 6 (2), 182–197.

De Paola, F., Giugni, M., & Pugliese, F. (2016, October). A harmony-based cal-

ibration tool for urban drainage systems. Proceedings of the Institution of

Civil Engineers - Water Management , 171 (1), 30–41. Retrieved 2018-03-

07, from https://www.icevirtuallibrary.com/doi/10.1680/jwama.16

.00057 doi: 10.1680/jwama.16.00057

Downer, C. W., & Ogden, F. L. (2004, May). GSSHA: Model To Simulate Di-

verse Stream Flow Producing Processes. Journal of Hydrologic Engineering ,

9 (3), 161–174. Retrieved 2018-04-03, from http://ascelibrary.org/doi/

10.1061/%28ASCE%291084-0699%282004%299%3A3%28161%29 doi: 10.1061/

(ASCE)1084-0699(2004)9:3(161)

Engineers, U. A. C. (2016). HEC-HMS User’s Manual, Version 4.2.

EPA. (2014). Storm Water Management Model (SWMM) [Data and Tools].

Retrieved 2018-04-04, from https://www.epa.gov/water-research/storm

147

http://linkinghub.elsevier.com/retrieve/pii/S0925857416304608
http://linkinghub.elsevier.com/retrieve/pii/S0925857416304608
https://github.com/USEPA/SWMM-EPANET_User_Interface
https://www.icevirtuallibrary.com/doi/10.1680/jwama.16.00057
https://www.icevirtuallibrary.com/doi/10.1680/jwama.16.00057
http://ascelibrary.org/doi/10.1061/%28ASCE%291084-0699%282004%299%3A3%28161%29
http://ascelibrary.org/doi/10.1061/%28ASCE%291084-0699%282004%299%3A3%28161%29
https://www.epa.gov/water-research/storm-water-management-model-swmm
https://www.epa.gov/water-research/storm-water-management-model-swmm
https://www.epa.gov/water-research/storm-water-management-model-swmm


-water-management-model-swmm

Feng, Y., & Burian, S. (2016). Improving evapotranspiration mechanisms in

the US environmental protection agency’s Storm Water Management Model.

Journal of Hydrologic Engineering , 21 (10), 06016007.

Geosyntec. (2017, January). Impact of Decentralized Green Stormwater Controls

(Modeling Results Summary). City of Austin Watershed Protection Depart-

ment.

Granata, F., Gargano, R., & de Marinis, G. (2016, February). Support Vector

Regression for Rainfall-Runoff Modeling in Urban Drainage: A Comparison

with the EPA’s Storm Water Management Model. Water , 8 (12), 69. Re-

trieved 2018-03-07, from http://www.mdpi.com/2073-4441/8/3/69 doi:

10.3390/w8030069
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