

Copyright

by

Cagri Eryilmaz

2017

The Thesis Committee for Cagri Eryilmaz

certifies that this is the approved version of the following thesis:

Fine-Grain Acceleration of Graph Algorithms on

a Heterogeneous Chip

APPROVED BY

SUPERVISING COMMITTEE:

Mattan Erez

Keshav Pingali

Supervisor:

Fine-Grain Acceleration of Graph Algorithms on

a Heterogeneous Chip

by

Cagri Eryilmaz, B.S.

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

May 2017

Dedication

To my late dad,

and to my beloved mother and sister.

v

Acknowledgements

I would like to thank Mattan Erez for his guidance and mentorship throughout my

three years at ECE department. His great vision and knowledge on computer architecture

introduced me the needed insight in graduate school. Working with him and LPH team was

a great chance.

I’d also like to thank all ECE Architecture, Computer Systems, and Embedded

Systems (ACSES), formerly known as Computer Architecture and Embedded Processors,

track professors. The courses they taught and all the conversations I had with them made

me a better future computer architect.

I’d also like to thank Keshav Pingali. He and his team provided great feedback

during the evaluations and writing of this thesis.

I’d also like to the people I worked with at AMD Research and Microsoft Research.

Especially I would like to thank Oguz Ergin, Osman Unsal and Adrian Cristal for their

great support for my development.

This work, without my family’s limitless support would not be achievable.

vi

Abstract

Fine-Grain Acceleration of Graph Algorithms on

a Heterogeneous Chip

Cagri Eryilmaz, MSE

The University of Texas at Austin, 2017

Supervisor: Mattan Erez

With the rise of heterogeneous chips available in the market, where integrated GPU

cores and CPU cores reside in the same chip and share a unified memory, it is possible to

have better execution schemes for many graph algorithms. Graph algorithms can exhibit

producer-consumer behavior, a varying amount of parallelism during execution, and

irregularity which results in inefficiency. The inefficiency problem could be solved by

exploiting heterogeneity between cores. In this work, I provide an understanding of the

executions of some graph algorithms in heterogeneous chips and accelerate their

executions by using fine-grain software optimization techniques. To achieve this, I

introduce two different fine-grain execution techniques to accelerate the Maximal

Independent Set and Preflow-push graph algorithms, and present an evaluation of the

techniques on a heterogeneous chip. My techniques, namely Overlapping Threads with

Hot-Vertices and Task Switcher, provide 1.3x to 16x speedup over CPU-only execution

depending on the input and the algorithm.

vii

Table of Contents

Acknowledgements ..v

Abstract .. vi

Table of Contents .. vii

List of Figures ..x

I. Introduction ...1

I.I Thesis Statement ..1

I.II Contributions...1

I.III Organization ..1

II. Background ...3

II.I Heterogeneity in Hardware ...3

II.II Software ...4

II.II.I Producer-Consumer Irregular Applications5

II.III Fine-Grain Computation ..5

III. Motivation ...7

IV. Fine-Grain Acceleration of Graph Algorithms on Heterogeneous Chips9

IV.I Overlapping Threads Technique ...10

viii

IV.II. Hot-Vertices Technique ..12

IV.III Task Switcher Technique ...13

IV.III.I Model of Task Switcher Technique ..17

V. Methodology ...19

V.I. Algorithms and Inputs ...19

V.I.I Maximal Independent Set (MIS) ...19

V.I.II Preflow - Push (PP) ..23

V.I.III Inputs ..26

V.II Hardware ...26

VI. Evaluation ...28

VI.I Maximal Independent Set ..28

VI.I.I Overlapping Threads ..28

VI.I.II Overlapping Threads and Hot-Vertices29

VI.I.III Task Switcher ..30

VI.II Preflow - Push ..32

VI.II.I Task Switcher ...33

ix

VII. Conclusion ..36

VIII. References ...37

x

List of Figures

Figure 1: The flow of the framework .. 9

Figure 2: Baseline producer-consumer model .. 11

Figure 3: Overlapping Threads ... 12

Figure 4: Overlapping Threads combined with Hot-Vertices 14

Figure 5: Illustration of Task-Switcher technique .. 16

Figure 6: Task Switcher, example scenarios... 17

Figure 7: Serial maximal independent set ... 20

Figure 8: Parallel MIS implementation... 21

Figure 9: The kernels of MIS .. 22

Figure 10: The serial version of PP... 23

Figure 11: The parallel version of PP and its kernels ... 25

Figure 12: Overlapping Threads applied to MIS. ... 28

Figure 13: Average power consumption for MIS for 99% and 80% overlap. 29

Figure 14: MIS with Overlapping Threads and Hot-Vertices 30

Figure 15: Task Switcher speed-up for MIS ... 31

Figure 16: The task placement decisions made by the Task Switcher model and

decision maker for MIS .. 32

Figure 17: The required assignments for the best theoretical speed-up. 34

Figure 18: Preflow-push in Task Switcher ... 35

1

I. Introduction

I.I THESIS STATEMENT

Accelerating irregular applications on a commonly available heterogeneous

processor with fine-grain software optimization techniques yields promising speed-up.

I.II CONTRIBUTIONS

I provide a compile time solution which achieves significant speedup for a given

graph algorithm and sparse inputs on a heterogeneous chip where CPU and GPU cores are

incorporated in a single die sharing unified memory space. The graph algorithms I have

chosen, namely Maximal Independent Set and Preflow-Push, cover producer-consumer

behavior, a varying amount of parallelism, and complex kernels which can be seen in any

parallel application. The techniques I develop, namely Overlapping Threads, Hot-Vertices

and Task Switcher provide 1.3x to 16x speedup depending on the algorithm and input. The

Overlapping Threads technique benefits from fine-grain functions of OpenCL 2.0 allowing

different kernel threads to overlap such that total execution time is reduced. Hot-Vertices

provide a technique to lessen memory pressure by finding the vertices with highest degrees.

Task Switcher allows different task assignments to be made between CPU and GPU cores

during a parallel execution.

I.III ORGANIZATION

At the following background section, hardware and software changes over time,

why fine-grain computation is important and why heterogeneous chips are promising are

2

discussed. Then, in Section III, I discuss my motivation. The details of the framework are

discussed in section IV. The methodology and evaluations are provided in Section V and

VI respectively.

3

II. Background

II.I HETEROGENEITY IN HARDWARE

The idea of heterogeneous cores in a chip has been widely anticipated and studied.

The first ideas of heterogeneous cores in a chip started with the small core-big core idea

where the big cores accelerated the critical sections of an algorithm while smaller and

energy-efficient cores [2] [3] executed the non-critical sections of an algorithm.

Later, as large-scale integration techniques improved and realizing single-

instruction multiple-data (SIMD) units are better suited to parallel applications requiring

high-throughput, the computer architects started to analyze the benefits of combining CPU

and GPU cores in the same die to satisfy the energy efficiency and throughput need of such

parallel applications. Examples include AMD Fusion or following APUs such as Kaveri

[4] or Carrizo [5] and Intel Sandy-Bridge [6] and following products by Intel. Intel’s Sandy

Bridge is the first commercial processor that integrates GPUs on a chip with CPU cores,

and AMD’s Fusion architecture (later named and incorporated as Heterogeneous System

Architecture (HSA)) integrates more powerful GPUs on the same die [7] than the former.

Heterogeneous chips where GPU cores and CPU cores embodied together have an

important feature which helps programmers and architects to achieve better execution

schemes: sharing the same physical memory where GPU and CPU cores can communicate

without copying data and without crossing a slow peripheral bus. This in return results in

better coherency between the cores as well as provides a better underlying system for

development of fine-grain software techniques.

4

II.II SOFTWARE

While such developments are happening in hardware, computer scientists in the big

data field working on complicated problems such as complex networks, knowledge

discovery, pattern recognition, and language understanding are trying to tackle the

significant problem of irregularity in their applications [10] [11]. Irregularity in parallel

applications causes inefficient executions on high-performance systems, such as discrete

GPU, which is designed for executing high locality and regular, partitionable structures.

The workload irregularity which is caused by the scarcity of the input is characterized by

irregular control flow, irregular communication patterns, and irregular data structures [12].

Pingali et al. [31] provide a system that automatically tackles the problems of irregularity

of a parallel application with significant compiler level techniques, however they do not

explore fine-grain interaction between different types of cores.

As Feo et al. [12] note, the research shifted toward providing optimization

techniques for the software or optimizing the hardware by integrating specialized cores, in

my case, GPU cores. Heterogeneous chips can be a candidate for exploring such fine-grain

execution methods. It is because heterogeneous chips support shared virtual memory and

coherency between the different types of cores which would enable us to explore fine-grain

execution methods. Nevertheless, by the nature of heterogeneous chips, they also exhibit

some problems. To name a few, task scheduling [15] and utilization of the memory system

[16] [17] are two important areas of research for heterogeneous chips. Research in these

areas is still ongoing, Panneerselvam et al. [15] provide a dynamic solution (runtime) to

task scheduling, which aims to achieve high utilization of available cores. Jeong et al. [38]

provide a mechanism to dynamically adjust the Quality-of-Service policy of memory

5

controllers so that performance would not be bottlenecked by inefficient usage of memory.

Wang et al. [16] offer a memory request scheduling policy for heterogeneous chips,

resulting in an improvement in row buffer locality, service latency of CPU memory

requests and throughput of the overall system. Ausavarungnirun et al. [39] provides a

staged memory controller for integrated CPU-GPU systems, where memory requests are

categorized and passed to three different stages in the memory controller.

II.II.I Producer-Consumer Irregular Applications

Some irregular applications show producer-consumer behavior. Maximal

Independent Set (MIS) [21] algorithm can be given as an example to this behavior.

Although the details are provided in later sections, in such algorithms, one of the kernels

is producing data, often in a linear fashion, such as generating a random number or making

it available depending on a condition, and then consumer kernel uses the data. It is

important to focus on producer-consumer applications in finer-grain execution since their

collaborative nature can help us to develop better insight and techniques in finer grain.

When combined with heterogeneous architectures, algorithms like MIS, can benefit from

fine-grain software optimization techniques implemented for such architectures. The

benefits can include less idle-time for available cores in a heterogeneous die during

execution, better utilization of the memory and efficient task placement decisions, for

which I provide software techniques in fine-grain in this work.

II.III FINE-GRAIN COMPUTATION

Fine-grain execution techniques are already studied for the high-performance

computing systems. The studies such as I-Structures [23] and J-Machine multicomputer

6

[24] provide a better understanding of data structures suited for efficiency, parallelism, and

ease of coding or communication methods in the fine-grain world.

Recently, Kim et al. [25] developed a fine-grain work list technique for GPGPUs

targeting irregular applications. The technique implements fine-grain work-lists in HW to

improve the algorithmic efficiency of data-driven irregular applications. Ributzka et al.

[26] studies the feasibility, usefulness, and trade-offs of fine-grain in-memory

synchronization support in a real-world large-scale many-core chip, IBM Cyclops-64,

inspired from the Cray XMT’s [13] fine-grain in memory synchronization. Grossman et al.

[27] introduces a hardware block to Anton 2, a massively parallel special purpose

supercomputer for molecular dynamics simulations, which provides flexible and efficient

support for fine-grained event-driven computation. Another fine-grain multithreading

technique [28] aiming energy efficiency has been studied for in-order and out-of-order

processors. Observing that at any instance during the parallel execution only a small

fraction of memory locations are actively participating in synchronization, [29] proposes a

fine-grain synchronization buffer for multiple threads in a multicore system.

7

III. Motivation

Heterogeneous architectures where GPU cores and CPU cores are combined within

a single processor have an important feature which helps programmers to achieve better

execution schemes: unified memory system. Allowing CPU and GPU cores to share the

virtual memory space via common page tables, address translations, and process space

identifiers [8] enables the implementation of fine-grain execution techniques. OpenCL 2.0

[18] version provides fine-grain shared virtual memory functionality allowing any

available devices on any system communicate via shared space, as long as there is support

from hardware [19]. Nevertheless, the possibilities that can be achieved with heterogeneous

chips with such coding platforms are yet to be explored.

Among the irregular algorithms, producer-consumer behavior is commonly seen,

such as in graph coloring [20] and maximal independent set [21]. In such algorithms, in

addition to problems of irregularity, the programmers has to come up with solutions for

data dependency between producer and consumer kernels in order to lessen idle times on

the cores. The idea of heterogeneity can be a solution for this problem as well.

In this work, my contributions are as follows:

1. Provide a framework achieving significant speedup in a given

heterogeneous chip for a given irregular graph application. Two examples include Maximal

Independent Set for producer-consumer behavior and Preflow-Push for varying amount of

parallelism with more complex kernels.

2. Explore a technique for producer-consumer graph algorithms which aims to

overlap production and consumption, called Overlapping Threads

8

3. Develop a basic compile-time task assigner and a model associated with it

which finds switching point in a parallel application.

4. Explore a technique for reducing the memory pressure caused by large

amount of polling due to SW fine-grain implementation, called Hot-Vertices.

9

IV. Fine-Grain Acceleration of Graph Algorithms

on Heterogeneous Chips

To accelerate the algorithms with fine grain optimization techniques, I propose two

main techniques in this compile time framework, as can be seen in Fig 1. The first one,

named Overlapping Threads, overlaps producer and consumer threads in a given producer-

consumer application. To tackle the problem of increased memory pressure, I propose the

Hot-Vertices technique, combined with Overlapping Threads. The second technique,

named the Task Switcher, provides an execution model and task placement decision maker

before execution. The detailed discussion of each technique is given in the following

sections.

Start

Kernel File

User Provides
Find Kernels

of Scalar

Instructions

of Vector

InstructionsSystem Properties

Available Different

Type of Cores

Frequency Ratio

Scalar / Vector

Performance Factor

OpenCL Micro-benchmarks

Model & Decision

Maker

Actual Execution

Task

Switcher

Overlapping

Threads

End

Data Movement

Sequence Control

Arithmetic Operation

Throughput

Intensive

Compute

Intensive
Hot

Vertices

User Hints

Figure 1: The flow of the framework

10

IV.I OVERLAPPING THREADS TECHNIQUE

In any given producer-consumer irregular application we have producer kernel(s)

and consumer kernel(s). Normally, these kernels would be executed in a serial fashion, that

is after the producer kernel completes its execution, consumer threads would be able to

launch and consume the producer data as shown in Figure 2. I take this execution as the

baseline execution model for comparison.

In Overlapping Threads, I try to benefit from the idea that some of the consumer

threads could actually execute without even waiting until the producer kernel completes.

To achieve this I utilize OpenCL 2.0 [30] Shared Virtual Memory (SVM) functions, and I

implement a fine-grain full-empty bit structure in software. This structure is used as a fine

grain synchronization point for different kernels. For example, for producer-consumer

applications, fine-grain full-empty bit software structure allows consumer threads to check

whether the data is produced or not, which is done via polling on the structure. This

structure is an array of bits, where each bit denotes whether the corresponding data has

been produced or not. The length of the array is equal to number of items or nodes to be

processed. As a general rule of thumb in OpenCL 2.0 SVM fine-grain implementations,

the writes and reads to any shared memory address is done via SVM atomic functions.

I study varying amounts of overlap focusing on the best execution time and energy

consumption. The overlap amount ranges from 20% to 99%. The amount defines when to

launch consumer kernels. For example, 20% overlap states, after producing 80% of the

data, the consumer threads are launched, that is, while producing the last 20% of the data,

both producer and consumer threads are overlapped. The technique is illustrated in Fig 3.

The diagram on the left shows 20% overlap where at every computational step while

11

producing the last 20% of the data, the consumer kernels are launched. The diagram on the

left is for 99% overlap.

P

t = 0

t = t1

C

P

C

t = t2

P

C

...

Figure 2: Baseline producer-consumer model

With OpenCL 2.0 [30] it is possible to use shared virtual memory (SVM) functions.

With SVM, the same address space is exposed to both the host and the devices within a

given context. This allows the programmer to use pointer-based data structures in OpenCL

such as graphs or lists. The OpenCL manual specifies three types of SVM:

1. Coarse-Grained buffer SVM: Sharing occurs at the granularity of regions of

memory objects

2. Fine-Grained buffer SVM: Sharing occurs at the granularity of individual

loads/stores in memory objects.

3. Fine-Grained system SVM: Sharing occurs at the granularity of individual

loads/stores occurring anywhere within the host memory.

12

P

t = 0

t = t1

P

C

t = t2

P

C

N

N x 0.2

N

N x 0.2

...

P

t = 0

t = t1

P
C

t = t2

P
C

N N x 0.99

N N x 0.99

...

Figure 3: Overlapping Threads

Another terminology for producer-consumer Overlapping Threads is “pipeline

parallelism.” In [31], authors denote that “if it is possible to overlap the executions of the

producer and consumer, the resulting parallelism is called pipeline parallelism.”

IV.II. HOT-VERTICES TECHNIQUE

In a given sparse input, when the Overlapping Threads technique is applied, the

highest degree vertices may cause a significant amount of memory requests. The consumer

threads assigned to highest degree vertices will have higher data dependencies which in

return will contribute significantly to the amount of memory requests done during the

execution. This is because the fine-grain full-empty bit data structure is checked by each

of the neighbors of a vertex and is may be checked repeatedly until the vertex is produced.

The high-degree vertices are therefore much more likely to be accessed numerous times if

they are not produced early, leading to significant extra bandwidth just for checking their

13

full/empty status. The Hot-Vertices technique produces the highest degree vertices early

so that the polling done on these nodes is significantly reduced.

To lessen the overhead due to finding the high-degree vertices, I apply the

approximate sorting on the GPU to determine the vertices with highest neighbors to lessen

the time spent (=overhead) for analyzing the vertices. The overheads are counted for in my

calculations. The input graph and its structure otherwise are not modified in any way.

As mentioned at the beginning of this section, the Hot-Vertices idea is explored

with Overlapping Threads as an auxiliary method to improve the efficiency of the

Overlapping Threads method. An illustration of Hot-Vertices is given in Figure 4 with 60%

overlap. In Figure 4, on the left side only Overlapping Threads with 60% overlap is shown,

and on the right, I apply the Hot-Vertices technique. The time t’1 includes the time spent

for sorting the vertices, and producing the top 20% of all nodes with highest degrees. The

only overhead is the time spent on sorting and finding out In the overall diagram, I try to

evaluate if t’4 < t2 by varying the amount of early-produced hot vertices among 2%, 10%,

and 20%.

IV.III TASK SWITCHER TECHNIQUE

Every parallel algorithm starts with a pre-defined task assignment for the kernels.

A kernel may sometimes be more suitable for GPU execution and other times more suitable

for CPU execution. Generally, when parallelism is higher GPU execution is preferred,

though there are other factors that influence the optimal decision of placing a kernel on the

GPU or CPU. Conditions, such as the amount of available parallelism and the usage of

resources, may change during execution. My work is not concerned about the latter since

14

it often requires a run-time solution [15] which checks the resource use on-the-fly which I

do not aim to provide with this work. Rather, a compile-time tuning decision is made for

the former, that is, the amount of available parallelism.

t = 0

t = t1

P

C

t = t2

P

C

N
N x 0.6

N
N x 0.6

P

C

P

C

0.8 x N
N x 0.6

N x 0.6

t = 0
t = t 1

t = t 3

t = t 2

0.8 x N

t = t 4

Figure 4: Overlapping Threads combined with Hot-Vertices

The Task Switcher is a framework for making dynamic decisions on whether a

kernel should execute on the GPU or CPU component of the heterogeneous chip using a

combination of compile-time and run-time information. The framework has two main

components. The first is a programming pattern and helper scripts that enable an auto-tuned

per-kernel decision. Each kernel is wrapped with a conditional to test where it should be

run. The condition depends either on a static decision communicated via a script or a

dynamic decision that depends on available parallelism during execution. The second

framework component statically determines the parallelism breaking point: when expected

available parallelism is above the breaking point, the kernel executes on the GPU and

executes on the CPU otherwise. The breaking point is computed based on a model that

takes into account the relative frequencies of the CPU and GPU, the performance ratio

15

between the two core types when executing vector instructions, the fraction of vector

instructions in the kernel, and possible additional programmer-provided hints. The model

is described in detail in Section IV.III.I.

To make a dynamic decision, the programmer must estimate available parallelism

and compare to the breaking-point value computed by the Task Switcher model. As a

concrete example consider the MIS application where the length of the work list at the

beginning of each iteration is a good indicator for parallelism and can be readily used to

make a decision on where each kernel should execute every iteration. This process is

depicted in Figure 5 with possible decisions on placement for two producer-consumer

kernels denoted (P and C, respectively) shown in in Figure 6. Scenario A in Figure 6 shows

an example where the producing kernel (P) is always assigned to the CPU and the

consuming kernel (C) to the GPU. Scenario B illustrates the breaking point being reached

after the first execution of kernel C, after which all kernels are assigned to the CPU.

Scenario C illustrates another possibility where both kernels switch their preferred

execution core type during execution.

16

while (execution condition) //available iteration or nodes

{ if toBeProcessedNodeCount(in%) > breakingPoint(in%)

before-run task assignment sceneraio;

elif

user provided break point scenario

}

User provided

break point

scenario

Before-run

task

assignment

scenario

Model

HW / SW Parameters

Breaking Point (in %)

: Latency Oriented Kernel

: Throughput Oriented Kernel

CPU GPU

CPU GPU

CPU

GPU

Legend

CPU GPU

Throughput oriented

kernel is assigned to

GPU

Scenario

II

Scenario I

Figure 5: Illustration of Task-Switcher technique

17

t = 0

t = t1

P

C

t = t2

P

C

P

C

t = t3

CPU GPU
t = 0

t = t1

P

C

t = t2

P

C

P

C

t = t3

CPU GPU
t = 0

t = t1

P

C

t = t2

P

C

P

C

t = t3

CPU GPU

Scenario A Scenario B Scenario C

Figure 6: Task Switcher, example scenarios

IV.III.I Model of Task Switcher Technique

The model and decision maker (MDM) evaluation outcome is breakpoint

percentage which is used to apply new task placements during the execution. It takes the

following variables into its decision process:

 Scalar / Vector Performance Factor: Throughput-intensive and compute-intensive

micro-benchmarks are run on both of the CPU and GPU cores separately, and a

ratio is taken. This is independent of the algorithm.

 Frequency Ratio: The frequency ratio of CPU and GPU cores.

 Kernel Hints: Some of the kernels are known to be efficient on certain type of core

and this information is given as a hint to the model by the user.

 Kernel Details: For each kernel, scalar and vector instructions are counted, and an

approximate ratio is given to the model for each kernel.

18

This model has only one main duty: to provide a breakpoint percentage. The

percentage is calculated with the following equation:

Equation 1: The percentage calculation, used for deciding on the time of applying the decisions

% = 100 ∗
1

𝐹𝑟𝑒𝑞 𝑅𝑎𝑡𝑖𝑜(𝐶𝑃𝑈, 𝐺𝑃𝑈) ∗ (𝑆𝑐𝑎𝑙𝑎𝑟 − 𝑉𝑒𝑐𝑡𝑜𝑟 𝑃𝑒𝑟𝑓 𝐹𝑎𝑐𝑡𝑜𝑟)

∗
1

∑ 𝑆𝑐𝑎𝑙𝑎𝑟/ 𝑉𝑒𝑐𝑡𝑜𝑟 𝐼𝑛𝑠𝑡𝑟. 𝑅𝑎𝑡𝑖𝑜

Equation 1 provides a percentage so that a user-provided task placement decision

can be applied. For every kernel, the ratio of scalar instruction count/vector instruction

count is taken. This tuning parameter, which determines when to execute a kernel on the

CPU and when on the GPU, is heuristically determined using a compiler analysis of the

kernel code. For example for MIS, the model equation yields 26.3%, as can be seen in

Equation 2, that is, “when the amount of available parallelism is decreased to 26.3%, the

user defined task placement decision should take place.” For MIS, this decision is “assign

all the tasks to CPU”, since user provides the fact that after a while, the available

parallelism will be reduced and CPU would be much faster executing the remaining tasks.

The numbers 9.12, 1.02, 0.89 denote the ratios of scalar to vector instructions in each kernel

of MIS, calculated via a compiler analysis.

Equation 2: Evaluation of the equation for MIS

% = 100 ∗
1

5.5 ∗ (
1

16)
[

1

 9.12 + 1.02 + 0.89
] = 26.3 %

The user provides the information regarding what type of actions should be taken

after the decision point has been reached. The information from the user is provided in the

forms of knobs to a script which arranges and modifies the OpenCL code to be executed.

19

V. Methodology

To evaluate the ideas presented, I have utilized an actual heterogeneous chip, nine

different sparse inputs from 10th DIMACS Implementation Challenge [32] and two

producer-consumer algorithms.

V.I. ALGORITHMS AND INPUTS

Two different algorithms are picked due to their importance among the graph

algorithms and their suitable behavior for my evaluations:

1. Maximal Independent Set

2. Preflow-Push

V.I.I Maximal Independent Set (MIS)

Maximal independent set (MIS) [21] in an undirected graph is a maximal collection of

vertices, I, which are subject to the restriction that no pair of vertices in I are adjacent. MIS

is commonly used as a basic block in many application domains such as pattern

recognition, computer vision and molecular biology. The serial implementation of the

algorithm is given in Figure 7.

20

S = empty set, C = V,

while C is not empty

{

 label each v in C with a random r(v),

 for all v in C in parallel

{

 if r(v) < min(r(neighbors of v))

{

 move v from C to S,

 remove neighbors of v from C,

 }

 }

}

Figure 7: Serial maximal independent set

The parallel implementation of MIS starts with labeling each vertex with a random

value and each vertex during an iteration, where a thread is assigned to, decides if it can be

included in the set or not. Depending on the outcome of the decision the vertex will be

added to the current set. For the vertices added to the set of the current iteration, the

algorithm marks all neighbors of the selected vertices inactive. This removes the

neighboring vertices from the candidate list and disallows them from participating at the

next iteration of the algorithm. The algorithm terminates when all nodes are visited and

evaluated.

Parallel implementation of MIS is given in Figure 8 and its kernels are given in

Figure 9. This code shows how the Task Switcher enables kernel execution on a particular

core type. Please note that in Fig 8., ts_<kernel>_perct is the variable name for the

percentage calculated in Task Switcher. If the Task Switcher is not enabled the SVM

functionality allows us to overlap the kernels without any barrier between kernels. Please

also note that when we would like to enable Overlapping Threads the definitions for the

21

variables used during the execution should be different. This is again provided with basic

if-else blocks in my code to be able to switch to Overlapping Threads technique.

S = empty set, C = V,

while C is not empty

{

 if(taskSwitcherEnb && ts_randomize_perct){

 Call Randomize() kernel on GPU

 } else {

 Call Randomize() kernel on CPU

 }

 if(taskSwitcherEnb && ts_mis_perct){

 Call Randomize() kernel on CPU

 } else {

 Call Randomize() kernel on GPU

 }

 if(taskSwitcherEnb && ts_randomize_perct){

 Call Deactivate() kernel on CPU

 } else {

 Call Deactivate() kernel on GPU

 }

}

Figure 8: Parallel MIS implementation

22

kernel MIS(){

 execute[I] = true

 if(node I is active) {

 for every neighbor of I {

 while(!ready[neighbor]){

 }

 if(randomize[I] > randomize[neighbor]){

 execute[I] = false

 }

 }

 } else {

 execute[I] = false

 }

}

kernel Randomize(){

 randomize[i] = copyFromRandStream()

 ready[i] = True

}

kernel Deactivate(){
 if(execute[I] is true){

 I is selected

 Remaining nodes--

 for every neighbor of I{

 if (neighbor is inactive){

 Remaining nodes--

 } elif (neighbor is active){

 Neighbor is inactive

 Remaining nodes -

 }

 }

 }

}

Figure 9: The kernels of MIS

23

V.I.II Preflow - Push (PP)

Given a source node and a sink node in an undirected graph and given capacity

constraints on the edges, the maximum flow problem tries to maximize the amount of flow

that can be sent from source to sink. One of the solutions to maximum flow problem is the

Preflow-push algorithm.

In the algorithm, nodes are temporarily allowed to have excess flow, i.e., they might

have more incoming than outgoing flow. Such nodes are called active nodes. Another

characteristic of the algorithm is that every node is assigned a height, so that nodes can

only send flow to nodes with a lower height than their own. The algorithm is initialized by

assigning a height of N (the number of nodes) to the source and zero to the sink and all of

other nodes.

Figure 10: The serial version of PP

Preflow-Push is used to solve problems such as disjoint paths and bipartite

matching, as one of the main blocks to such graph algorithms. The Preflow concept was

introduced by Karzanov (O(V3)), and later Goldberg et al. designed an algorithm with

Workset ws = new Workset(g.getSource()),

 foreach (Node node: ws) {

 g.relabel(node)

 for (Node neighbor : graph.getNeighbors(node)) {

 if (graph.pushFlow(node, neighbor) > 0) {

 if (!neighbor.isSourceOrSink())

 ws.add(neighbor),

 if (node.excess() <= 0)

 break,

 }

 }

 if (node.excess() > 0)

 ws.add(node),

 }

24

O(V2E). Among the many approaches, Goldberg’s implementation is relatively easier to

parallelize than other augmenting path-based algorithms, which is my base.

The parallel version of PP starts with initializing the height, edge capacities, and

excess arrays. Its pseudo-code is given in Figure 11. Height is used for find the direction

of flow and excess denotes which node has excess flow. Edge capacity as the name implies

defines the capacity of each edge in a given graph. First kernel, Preflow(), finds the

neighbor with the lowest height and pushes the excess of the main node (at where a thread

is assigned) or capacity of the edge between a main node and selected neighbor, whichever

is the minimum. To eliminate race conditions, I have another kernel called push-adjust(),

which adjusts the excess and capacities. The BFS stage is for adjusting the heights of the

nodes starting from the sink. The details of the BFS are not discussed and I use the two-

stage parallel BFS implementation given in [36].

25

initialize height, edge capacity, excess arrays

while(sink does not have excess){

 kernel Preflow() on GPU

 kernel Push-Adjust() on CPU

 if (first iteration){

 kernel BFS() on GPU

 } else {

 kernel BFS() on CPU

 }

}

kernel Preflow(){

 if (node I has excess) {

 find the neighbor with lowest height

 if (selected neighbor height < height of I) {

 find minimum(excess[I],edge capacity)

 excess[selected neighbor] += min

 capacity[edge] -= min

 excess[I] -= min

 }

}

kernel Push-Adjust() {

 for every neighbor of I{

 if(height[I] > height[neighbor]){

 if(excess[I] >= capacity[ToNeighbor]){

 excess[I] -= capacity[ToNeighbor]

 excess[neighbor] += capacity[ToNeighbor]

 capacity[ToNeighbor] = 0

 } elif (excess[I] < capacity[ToNeighbor]){

 excess[I] = 0

 excess[neighbor] - = excess[I]

 capacity[ToNeighbor] -= excess[I]

 }

 }

 }

}

// BFS implementation is taken from [36].

Figure 11: The parallel version of PP and its kernels

26

V.I.III Inputs

Nine different sparse graph inputs are picked from 10th DIMACS Implementation

Challenge.

Table 1: Inputs used for evaluation.

Input Name # of Vertices # of Edges

cage15 5,154,859 94,044,692

nlpkkt120 3,542,400 46,651,696

kkt_power 2,063,494 6,482,320

g3_circuit 1,585,478 3,037,674

thermal2 1,227,087 3,676,134

ecology1 1,000,000 1,998,000

ldoor 952,203 22,785,136

audikw_1 943,695 38,354,076

af_shell9 504,855 8,542,010

V.II HARDWARE

For the evaluations, I have utilized AMD APU A10-7850K APU. The APU has 4

CPU cores (28nm Steamroller core) at 4 GHz frequency and 8 GCN (Graphics core next)

cores which provide 512 GPU threads in total at 720 MHz clock frequency. The system

can share the virtual memory between CPU and GPU, allowing them to have uniform

access to the entire memory region.

My system has 8GB DDR3-2133 memory in two channels and peak bandwidth

from OpenCL micro-benchmark “Global Bandwidth” with vector width 8 is 12.75 GB/s

27

for CPU random read and 51.10 GB/s for GPU random read. Although the bandwidth

calculation methodology is not detailed in the paper, [33] provides 7.8 GB/s for CPU and

28.9 GB/s GPU as peak bandwidth with the same APU with 32GB DDR3 memory. I

suspect that the memory was not in dual channel mode and that’s why almost 2x difference

exists.

28

VI. Evaluation

VI.I MAXIMAL INDEPENDENT SET

VI.I.I Overlapping Threads

Overlapping Threads could be applied to MIS since MIS provides kernels with data

dependencies between them. When Overlapping Threads technique is applied to MIS with

the inputs I have, it achieves a speedup of 1.3x to 1.6x as seen in Figure 13. During the

evaluations, I have observed that after ~80% of the overlap there is no execution time gain

and I claim this is the sweet-spot for this algorithm.

Figure 12: Overlapping Threads applied to MIS.

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

 O
V

2
0

%
 O

V

3
0

%
 O

V

4
0

%
 O

V

5
0

%
 O

V

6
0

%
 O

V

7
0

%
 O

V

8
0

%
 O

V

9
5

%
 O

V

9
9

%
 O

V

N
o

 O
V

2
0

%
 O

V

3
0

%
 O

V

4
0

%
 O

V

5
0

%
 O

V

6
0

%
 O

V

7
0

%
 O

V

8
0

%
 O

V

9
5

%
 O

V

9
9

%
 O

V

N
o

 O
V

2
0

%
 O

V

3
0

%
 O

V

4
0

%
 O

V

5
0

%
 O

V

6
0

%
 O

V

7
0

%
 O

V

8
0

%
 O

V

9
5

%
 O

V

9
9

%
 O

V

N
o

 O
V

2
0

%
 O

V

3
0

%
 O

V

4
0

%
 O

V

5
0

%
 O

V

6
0

%
 O

V

7
0

%
 O

V

8
0

%
 O

V

9
5

%
 O

V

9
9

%
 O

V

N
o

 O
V

2
0

%
 O

V

3
0

%
 O

V

4
0

%
 O

V

5
0

%
 O

V

6
0

%
 O

V

7
0

%
 O

V

8
0

%
 O

V

9
5

%
 O

V

9
9

%
 O

V

af_shell9 cage15 ecology1 nlpkkt120 thermal2

Execution Time - MIS

0.4

0.5

0.6

0.7

0.8

0.9

1

No
OV

20%
OV

30%
OV

40%
OV

50%
OV

60%
OV

70%
OV

80%
OV

95%
OV

99%
OV

No
OV

20%
OV

30%
OV

40%
OV

50%
OV

60%
OV

70%
OV

80%
OV

95%
OV

99%
OV

No
OV

20%
OV

30%
OV

40%
OV

50%
OV

60%
OV

70%
OV

80%
OV

95%
OV

99%
OV

No
OV

20%
OV

30%
OV

40%
OV

50%
OV

60%
OV

70%
OV

80%
OV

95%
OV

99%
OV

audikw1 g3_circuit kkt_power ldoor

Execution Time - MIS

29

Figure 13: Average power consumption for MIS for 99% and 80% overlap.

Please note that it is relatively easy to define a percentage for the framework and

the framework would provide the code when the Overlapping Thread is enabled. One

would prefer applying 99% overlap, and it would give the same speed-up as 80% overlap.

However, this would result in higher energy consumption since there would be more

polling done in 99% overlap case. To back-up my claim I have measured the power

consumption of the chip for the 80% and 99% overlapping amounts and found out that

80% overlapping consumes less power in 8 out of 9 inputs as shown in Figure 13.

VI.I.II Overlapping Threads and Hot-Vertices

Although any node can contribute to the amount of polling done throughout the

execution, the most significant impact is done by the nodes with highest degrees. Hot-

Vertices technique aims to reduce the amount of polling done by the threads assigned to

the nodes with highest degrees by pre-producing such nodes so that the polling done on

these nodes would not be needed. During my evaluations with MIS, I prove that producing

such vertices early reduces the overall execution time. For simplicity and readability, some

82

83

84

85

86

87

88

89

90

91

92

af_shell9 cage15 ecology1 nlpkkt120 thermal2 audikw_1 g3_circuit kkt_power ldoor

P
o

w
e
r

(W
)

Input

Average Power Consumption - MIS

99% Overlap 80% Overlap

30

of the results are not shown in Figure 14, and only essential data is presented for

comparison purposes: No overlap and 99% overlap with different Hot-Vertices amount.

For each of the inputs, I calculate no Hot-Vertices (HV), 2%, 10% and 20% HV. The

percentages denote how many of the highest degree vertices are produced early. As seen

in Figure 14, the Hot-Vertices idea reduces the total execution time, which also

incorporates overheads such as the time spent for finding the Hot-Vertices.

Figure 14: MIS with Overlapping Threads and Hot-Vertices

VI.I.III Task Switcher

When the Task Switcher is enabled in the framework, model evaluation takes place at

compile time and task placement decisions are applied dynamically to MIS. For MIS, the

Task Switcher achieves ~1.6x to 1.9x speed-up compared to CPU-only execution as shown

in Fig 15.

Implementation-wise, MIS has three kernels and each kernel is assigned to either CPU

or GPU. The task placement done by the model and decision maker is shown in Fig 16.

31

Each colored block denotes that that particular kernel will be executed on CPU or GPU

depending on the location of the block. For example for af_shell9, at the first computational

step Randomize kernel executes on CPU while MIS and Deactivate kernel executes on the

GPU. At the second computational step, Randomize and MIS execute on CPU, while the

Deactivate kernel will be executed on GPU. These decisions are given by the user, and the

Task Switcher decides when to apply these decisions by calculating the equation as

discussed in Section IV.III.I. Please note that after 26.3% reduction happens for every

input, the tasks on GPU are assigned to CPU.

Figure 15: Task Switcher speed-up for MIS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
P

U
 O

n
ly

G
P

U
 O

n
ly

T
S

C
P

U
 O

n
ly

G
P

U
 O

n
ly

T
S

C
P

U
 O

n
ly

G
P

U
 O

n
ly

T
S

C
P

U
 O

n
ly

G
P

U
 O

n
ly

T
S

C
P

U
 O

n
ly

G
P

U
 O

n
ly

T
S

C
P

U
 O

n
ly

G
P

U
 O

n
ly

T
S

C
P

U
 O

n
ly

G
P

U
 O

n
ly

T
S

C
P

U
 O

n
ly

G
P

U
 O

n
ly

T
S

C
P

U
 O

n
ly

G
P

U
 O

n
ly

T
S

af_shell9 audikw_1 cage15 ecology1 g3_circuit kkt_power ldoor nlpkkt120 thermal2

MIS - Task Switcher - SpeedUp

32

Figure 16: The task placement decisions made by the Task Switcher model and decision maker for

MIS

VI.II PREFLOW - PUSH

Preflow-push shows different behavior than MIS. Firstly, it does not have the strong

producer-consumer interaction that MIS does. It has three main steps namely: Preflow,

Push Adjust, and BFS (see Figure 11). These steps do not exhibit strong data dependency

among them, which makes the Overlapping Threads technique exploration for Preflow-

push infeasible. Secondly, the amount of parallelism available in PP after the first

computational step is significantly reduced. This difference between the first iteration and

the rest, makes Preflow push benefit significantly from task switching. Even though there

is no readily-available variable for estimating available parallelism as with MIS, the

programmer can use the Task Switcher framework and helper scripts to provide hints and

directives on where each kernel should execute. My analysis easily indicates that the

Preflow kernel should always execute on the GPU, Push Adjust on the CPU, and that BFS

CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

Randomize

MIS

Deactivate

Randomize

MIS

Deactivate

Randomize

MIS

Deactivate

Randomize

MIS

Deactivate

Randomize

MIS

Deactivate

Randomize

MIS

Deactivate

Randomize

MIS

Deactivate

Randomize

MIS

Deactivate

ldoor nlpkkt120 thermal2af_shell9 audikw_1 cage15 ecology1 g3_circuit kkt_power

33

should run on the GPU in the first iteration but on the CPU in following iterations where

parallelism is lower. These decisions are expressed in a tuning file that is then used by a

script and the OpenCL framework code within the application.

VI.II.I Task Switcher

Preflow-push has three kernels, and for each kernel, certain decisions are applied

by the Task Switcher model & decision maker:

 BFS at first computational stage is assigned to the GPU cores and the

remaining BFS at the next computational stages are assigned to the CPU.

 PP is assigned to GPU

 Adjust is assigned to CPU

I run the given code by the framework on my heterogeneous chip and compare the

results to the CPU-only execution of the Preflow-Push. My technique on Preflow-Push

provides 1.3x as minimum and 18x as maximum speed-up. Excluding two inputs, as can

be seen in Figure 18 the speed-up varies between 1.3x to 2.4x, averaging 1.78x speed-up.

The reason I exclude two of the inputs is that they take very few computational steps and

BFS calculation takes a significant portion of the total execution time of Preflow-Push,

resulting in significant speed-up as shown in Figure 18 when BFS portion is accelerated

via GPU. This is solely dependent on the structure of these sparse graphs. In Figure 18, the

CPU-only execution is normalized to one, and the theoretical best and Task Switcher

results are compared.

34

Figure 17: The required assignments for the best theoretical speed-up.

I also measure the best possible theoretical speed-up by running the code on CPU

and GPU and finding the minimum execution time for each of the kernels at each

computational step and the information is provided in Figure 17. In Figure 17, the gray

boxes denote where my Task Switcher technique, when applied to PP, has failed to achieve

the best task assignment. For example for BFS & af_shell9, the best theoretical task

assignment was to assign first two iterations to GPU, but my framework assigns only the

first iteration to GPU as rest is executed on CPU. I prove that my framework can achieve

84% accuracy while making task placement decisions compared to best theoretical speed-

up.

TotalCPU GPU TotalCPU GPUTotalCPU GPUTotalCPU GPUTotalCPU GPUTotalCPU GPUTotalCPU GPUTotalCPU GPUTotalCPU GPU

Preflow (GPU) 84 0 84 24 0 24 5 0 5 11 0 11 4 0 4 8 0 8 37 0 37 39 0 39 83 0 83

Push-Adjust (CPU) 84 84 0 24 24 0 5 5 0 11 0 11 4 0 4 8 1 7 37 37 0 39 39 0 83 0 83

BFS 84 82 2 24 11 13 5 0 5 11 10 1 4 3 1 8 7 1 37 34 3 39 9 30 83 80 3

kkt_power ldoor nlpkkt120 thermal2af_shell9 audkw_1 cage15 ecology g3_circuit

35

Figure 18: Preflow-push in Task Switcher

0

1

2

3

4

5

6

af_shell9 audikw_1 cage15 kkt_power ldoor nlpkkt120 thermal2

S
p

ee
d

-u
p

Input

PP - Task Switcher

CPU - Only Theoretical Best Task Switcher

36

VII. Conclusion

The use of heterogeneous chip multiprocessors for improving the performance and

energy efficiency of computations is an active research topic. I provide insights into how

to utilize such processors for two commonly used sparse graph algorithms and demonstrate

how to accelerate these applications on a commodity heterogeneous Accelerated

Processing Unit that combines latency-oriented CPU cores and throughput-oriented GPU

cores. I evaluate how the combination of overlapping the execution of data-dependent

kernels (Overlapping Threads), reducing the amount of memory polling needed to

accomplish this overhead (Overlapping Threads + Hot-Vertices), and applying a heuristic

for task placement that is based on static analysis (the Task Switcher), provides substantial

improvements in execution.

37

VIII. References

[1] T. Mudge, "Power: a first-class architectural design constraint," Computer, vol.

34, no. 4, pp. 52-58, 2001 April.

[2] J. A. Joao, A. Suleman, O. Mutlu and Y. N. Patt, "Utility-Based Acceleration of

Multithreaded Applications on Asymmetric CMPs," ISCA '13 Proceedings of the

40th Annual International Symposium on Computer Architecture, pp. 154-165,

2013.

[3] A. Suleman, O. Mutlu, M. Qureshi and Y. N. Patt, "An Asymmetric Multi-Core

Architecture for Accelerating Critical Sections," The University of Texas at

Austin, Austin, TX, September 2008.

[4] H. Xie, "Get Ready For Next Generation APU Architecture," Advanced Micro

Devices, 2013.

[5] A. M. Devices, "AMD “Carrizo” architecture unveiled at ISSCC," Advanced

Micro Devices, [Online]. Available: http://www.amd.com/en-us/who-we-

are/corporate-information/events/isscc. [Accessed 1 October 2016].

[6] I. Corporation, "Products (Formerly Sandy Bridge)," Intel Corporation, [Online].

Available: http://ark.intel.com/products/codename/29900/Sandy-Bridge#@All.

[Accessed 25 10 2016].

[7] J. Lee and H. Kim, "TAP: A TLP-Aware Cache Management Policy for a CPU-

GPU Heterogeneous Arhitecture," HPCA '12 Proceedings of the 2012 IEEE 18th

International Symposium on High-Performance Computer Architecture, pp. 1-

12, 2012.

[8] I. Bratt, "HSA Queueing," Hot Chips, August 2013.

[9] M. Schulte, M. Ignatowski, G. H. Loh, B. M. Beckmann, W. C. Brantley, S.

Gurumurthi, N. Jayasena, I. Paul, S. K. Reinhardt and G. Rodgers, "Achieveing

Exascale Capabilities Through Heterogeneous Computing," IEEE Computer

Society, pp. 26-36, 2015.

[10] M. Kulkarni, M. Burtscher, C. Cascaval and K. Pingali, "Lonestar: A Suite of

Parallel Irregular Programs," Performance Analysis of Systems and Software,

2009. ISPASS 2009, 2oo9.

38

[11] S. Che, B. M. Beckmann, S. Reinhardt and K. Skadron, "Pannotia:

Understanding Irregular GPGPU Graph Applications," Workload

Characterization IISWC 2013 IEEE International Symposiom on, 2013.

[12] J. Feo, O. Villa, A. Tumeo and S. Secchi, "Irregular applications: architectures

and algorithms," In Proceedings of the First Workshop on Irregular

Applications: Architectures and Algorithms, pp. 1-2, 2011.

[13] J. Feo, D. Harper, S. Kahan and P. Konecny, "ELDORADO," CF'05 Proceedings

of the 2nd Conference on Computing Frontiers, pp. 28-34, 2005.

[14] A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz,

B.-H. Lim, K. Mackenzie and D. Yeung, "The MIT Alewife Machine:

Architecture and Performance," ISCA '95 Proceedings of the 22nd annual

international symposium on Computer architecture, pp. 2-13, 1995.

[15] S. Panneerselvam and M. Swift, "Rinnegan : Efficient Resource Use in

Heterogeneous Architectures," PACT'16, 2016.

[16] H. Wang, R. Singh, M. Schulte and N. S. Kim, "Memory Scheduling Towards

High Throughput Cooperative Heterogeneous Computing," PACT'14, 2014.

[17] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. Hill, S. Reinhardt and

D. A. Wood, "Heterogeneous System Coherence for Integrated CPU-GPU

Systems," MICRO-46, 2013.

[18] "OpenCL : The open standard for parallel programming of heterogeneous

systems," Khronos, [Online]. Available: https://www.khronos.org/opencl/.

[Accessed 1 October 2016].

[19] P. Raghavendra, "OpenCL 2.0: Fine-Grain Shared Virtual Memory," Advanced

Micro Devices, 15 January 2015. [Online]. Available:

http://developer.amd.com/community/blog/2015/01/15/opencl-2-0-fine-grain-

shared-virtual-memory/. [Accessed 1 October 2016].

[20] J. Cohen and P. Castonguay, "Efficient Graph Matching and Coloring on the

GPU," NVIDIA - GPU Tech Conference, 2012.

[21] M. Luby, "A Simple Parallel Algorithm for the Maximal Independent Set

Problem," Society for Industrial and Applied Mathematics, vol. 15, no. 4, pp.

1036-1053, 1986.

[22] W.-m. Hwu, GPU Computing Gems Jade Edition, Elsevier, 2011.

39

[23] Arvind, R. S. Nikhil and K. K. Pingali, "I-structures: data structures for parallel

computing," ACM Transactions on Programming Languages and Systems

(TOPLAS), vol. 11, no. 4, pp. 598-632 , 1989 .

[24] M. Noakes, D. Wallach and W. J. Dally, "The J-Machine Multicomputer : An

Architectural Evaluation," Computer Architecture, 1993., Proceedings of the

20th Annual International Symposium on, 1993.

[25] J. Kim and C. Batten, "Accelerating Irregular Algorithms on GPGPUs Using

Fine-Grain Hardware Worklist," Microarchitecture (MICRO), 2014 47th Annual

IEEE/ACM International Symposium on, 2014.

[26] J. Ributzka, Y. Hayashi, J. B. Manzano and G. R. Gao, "The elephant and the

mice: the role of non-strict fine-grain synchronization for modern many-core

architectures," ICS '11 Proceedings of the international conference on

Supercomputing, pp. 338-347 , 2011.

[27] J. P. Grossman, J. S. Kuskin, J. A. Bank, M. Theobald, R. O. Dror, D. J. Ierardi,

R. H. Larson, U. B. Schafer, B. Towles, C. Young and D. E. Shaw, "Hardware

support for fine-grained event-driven computation inton 2," Proceedings of the

eighteenth international conference on Architectural support for programming

languages and operating systems , pp. 549-560 , 2013.

[28] A. Gontmakher, A. Mendelson and A. Schuster, "Using fine grain multithreading

for energy efficient computing," Proceedings of the 12th ACM SIGPLAN

symposium on Principles and practice of parallel programming, pp. 259-269 ,

2007 .

[29] W. Zhu, V. Sreedhar, Z. Hu and G. R. Gao, "Synchronization state buffer:

supporting efficient fine-grain synchronization on many-core architectures,"

Proceedings of the 34th annual international symposium on Computer

architecture , pp. 35-45 , 2007.

[30] Khronos, "OpenCL 2.0 Reference Pages," Khronos, [Online]. Available:

https://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/. [Accessed 22

December 2016].

[31] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem,

T.-H. Lee, A. Lenharth, R. Manevich, M. Mendez-Lojo, D. Prountzos and X.

Sui, "The Tao of Parallelism in Algorithms," PLDI'11, pp. 12-25, 2011.

[32] D. A. Bader, H. Meyerhenke, P. Sanders and D. Wagner, "Graph Partitioning

and Graph Clustering. 10th DIMACS Implementation Challenge Workshop.," in

40

American Mathematical Society and Center for Discrete Mathematics and

Theoretical Computer Science, Georgia Institute of Technology, Atlanta, GA.,

2012, February.

[33] J. He, S. Zhang and B. He, "In-Cache Query Co-Processing on Coupled CPU-

GPU Architectures," Proceedings of the VLDB Endowment, vol. 8, no. 4, pp.

329-340, 12/2014.

[34] R. Ribeiro, J. Barbosa and L. P. Santos, "A Framework For Efficient Execution

of Data Parallel Irregular Applications on Heterogeneous Systems," Parallel

Procesing Letters 25, June, 2014.

[35] W. Song, S. Mukhopadhyay and S. Yalamanchili, "Amdahl's Law for Lifetime

Reliability Scaling in Heterogeneous Multicore Processors," 2016 IEEE

International Symposium on High Performance Computer Architecture, 2016.

[36] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,

Hang-Ha Lee, Kevin Skadron “Rodinia: A benchmark suite for heterogeneous

computing” Workload Characterization, 2009. IISWC 2009. IEEE International

Symposium on, 4-6, October, 2009.

[37] AMD Graphics Core Next(GCN) Architecture, White Paper, June 2012

[38] Min Kyu Jeong, Mattan Erez, Chander Sudanthi, Nigel Paver “A QoS-Aware

Memory Controller for Dynamically Balancing GPU and CPU Bandwidth Use

in an MPSoC,” Proceeding DAC '12 Proceedings of the 49th Annual Design

Automation Conference, Pages 850-855, June 2012

[39] Rachata Ausavarungnirun, Kevin Kai-Wei Chang, Lavanya Subramanian,

Gabriel H. Loh, Onur Mutlu, “Staged Memory Scheduling: Achieving High

Performance and Scalability in Heterogeneous Systems,” Proceeding ISCA '12

Proceedings of the 39th Annual International Symposium on Computer

Architecture, Pages 416-427, June 2012

