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Abstract 

Fine-Grain Acceleration of Graph Algorithms on  

a Heterogeneous Chip 

Cagri Eryilmaz, MSE 

The University of Texas at Austin, 2017 

Supervisor:  Mattan Erez 

With the rise of heterogeneous chips available in the market, where integrated GPU 

cores and CPU cores reside in the same chip and share a unified memory, it is possible to 

have better execution schemes for many graph algorithms. Graph algorithms can exhibit 

producer-consumer behavior, a varying amount of parallelism during execution, and 

irregularity which results in inefficiency. The inefficiency problem could be solved by 

exploiting heterogeneity between cores. In this work, I provide an understanding of the 

executions of some graph algorithms in heterogeneous chips and accelerate their 

executions by using fine-grain software optimization techniques. To achieve this, I 

introduce two different fine-grain execution techniques to accelerate the Maximal 

Independent Set and Preflow-push graph algorithms, and present an evaluation of the 

techniques on a heterogeneous chip. My techniques, namely Overlapping Threads with 

Hot-Vertices and Task Switcher, provide 1.3x to 16x speedup over CPU-only execution 

depending on the input and the algorithm. 
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I. Introduction 

I.I THESIS STATEMENT 

Accelerating irregular applications on a commonly available heterogeneous 

processor with fine-grain software optimization techniques yields promising speed-up. 

I.II CONTRIBUTIONS 

I provide a compile time solution which achieves significant speedup for a given 

graph algorithm and sparse inputs on a heterogeneous chip where CPU and GPU cores are 

incorporated in a single die sharing unified memory space. The graph algorithms I have 

chosen, namely Maximal Independent Set and Preflow-Push, cover producer-consumer 

behavior, a varying amount of parallelism, and complex kernels which can be seen in any 

parallel application. The techniques I develop, namely Overlapping Threads, Hot-Vertices 

and Task Switcher provide 1.3x to 16x speedup depending on the algorithm and input. The 

Overlapping Threads technique benefits from fine-grain functions of OpenCL 2.0 allowing 

different kernel threads to overlap such that total execution time is reduced. Hot-Vertices 

provide a technique to lessen memory pressure by finding the vertices with highest degrees. 

Task Switcher allows different task assignments to be made between CPU and GPU cores 

during a parallel execution. 

I.III ORGANIZATION 

At the following background section, hardware and software changes over time, 

why fine-grain computation is important and why heterogeneous chips are promising are 
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discussed. Then, in Section III, I discuss my motivation. The details of the framework are 

discussed in section IV. The methodology and evaluations are provided in Section V and 

VI respectively.  
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II. Background 

II.I HETEROGENEITY IN HARDWARE 

The idea of heterogeneous cores in a chip has been widely anticipated and studied. 

The first ideas of heterogeneous cores in a chip started with the small core-big core idea 

where the big cores accelerated the critical sections of an algorithm while smaller and 

energy-efficient cores [2] [3] executed the non-critical sections of an algorithm.  

Later, as large-scale integration techniques improved and realizing single-

instruction multiple-data (SIMD) units are better suited to parallel applications requiring 

high-throughput, the computer architects started to analyze the benefits of combining CPU 

and GPU cores in the same die to satisfy the energy efficiency and throughput need of such 

parallel applications. Examples include AMD Fusion or following APUs such as Kaveri 

[4] or Carrizo [5] and Intel Sandy-Bridge [6] and following products by Intel. Intel’s Sandy 

Bridge is the first commercial processor that integrates GPUs on a chip with CPU cores, 

and AMD’s Fusion architecture (later named and incorporated as Heterogeneous System 

Architecture (HSA)) integrates more powerful GPUs on the same die [7] than the former.  

Heterogeneous chips where GPU cores and CPU cores embodied together have an 

important feature which helps programmers and architects to achieve better execution 

schemes: sharing the same physical memory where GPU and CPU cores can communicate 

without copying data and without crossing a slow peripheral bus. This in return results in 

better coherency between the cores as well as provides a better underlying system for 

development of fine-grain software techniques.  
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II.II SOFTWARE 

While such developments are happening in hardware, computer scientists in the big 

data field working on complicated problems such as complex networks, knowledge 

discovery, pattern recognition, and language understanding are trying to tackle the 

significant problem of irregularity in their applications [10] [11]. Irregularity in parallel 

applications causes inefficient executions on high-performance systems, such as discrete 

GPU, which is designed for executing high locality and regular, partitionable structures. 

The workload irregularity which is caused by the scarcity of the input is characterized by 

irregular control flow, irregular communication patterns, and irregular data structures [12]. 

Pingali et al. [31] provide a system that automatically tackles the problems of irregularity 

of a parallel application with significant compiler level techniques, however they do not 

explore fine-grain interaction between different types of cores.  

As Feo et al. [12] note, the research shifted toward providing optimization 

techniques for the software or optimizing the hardware by integrating specialized cores, in 

my case, GPU cores. Heterogeneous chips can be a candidate for exploring such fine-grain 

execution methods. It is because heterogeneous chips support shared virtual memory and 

coherency between the different types of cores which would enable us to explore fine-grain 

execution methods. Nevertheless, by the nature of heterogeneous chips, they also exhibit 

some problems. To name a few, task scheduling [15] and utilization of the memory system 

[16] [17] are two important areas of research for heterogeneous chips. Research in these 

areas is still ongoing, Panneerselvam et al. [15] provide a dynamic solution (runtime) to 

task scheduling, which aims to achieve high utilization of available cores. Jeong et al. [38] 

provide a mechanism to dynamically adjust the Quality-of-Service policy of memory 



5 

 

controllers so that performance would not be bottlenecked by inefficient usage of memory. 

Wang et al. [16] offer a memory request scheduling policy for heterogeneous chips, 

resulting in an improvement in row buffer locality, service latency of CPU memory 

requests and throughput of the overall system. Ausavarungnirun et al. [39] provides a 

staged memory controller for integrated CPU-GPU systems, where memory requests are 

categorized and passed to three different stages in the memory controller.  

II.II.I Producer-Consumer Irregular Applications 

Some irregular applications show producer-consumer behavior. Maximal 

Independent Set (MIS) [21] algorithm can be given as an example to this behavior. 

Although the details are provided in later sections, in such algorithms, one of the kernels 

is producing data, often in a linear fashion, such as generating a random number or making 

it available depending on a condition, and then consumer kernel uses the data. It is 

important to focus on producer-consumer applications in finer-grain execution since their 

collaborative nature can help us to develop better insight and techniques in finer grain. 

When combined with heterogeneous architectures, algorithms like MIS, can benefit from 

fine-grain software optimization techniques implemented for such architectures. The 

benefits can include less idle-time for available cores in a heterogeneous die during 

execution, better utilization of the memory and efficient task placement decisions, for 

which I provide software techniques in fine-grain in this work. 

II.III FINE-GRAIN COMPUTATION 

Fine-grain execution techniques are already studied for the high-performance 

computing systems. The studies such as I-Structures [23] and J-Machine multicomputer 
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[24] provide a better understanding of data structures suited for efficiency, parallelism, and 

ease of coding or communication methods in the fine-grain world. 

Recently, Kim et al. [25] developed a fine-grain work list technique for GPGPUs 

targeting irregular applications. The technique implements fine-grain work-lists in HW to 

improve the algorithmic efficiency of data-driven irregular applications. Ributzka et al. 

[26] studies the feasibility, usefulness, and trade-offs of fine-grain in-memory 

synchronization support in a real-world large-scale many-core chip, IBM Cyclops-64,  

inspired from the Cray XMT’s [13] fine-grain in memory synchronization. Grossman et al. 

[27] introduces a hardware block to Anton 2, a massively parallel special purpose 

supercomputer for molecular dynamics simulations, which provides flexible and efficient 

support for fine-grained event-driven computation. Another fine-grain multithreading 

technique [28] aiming energy efficiency has been studied for in-order and out-of-order 

processors. Observing that at any instance during the parallel execution only a small 

fraction of memory locations are actively participating in synchronization, [29] proposes a 

fine-grain synchronization buffer for multiple threads in a multicore system. 
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III. Motivation 

Heterogeneous architectures where GPU cores and CPU cores are combined within 

a single processor have an important feature which helps programmers to achieve better 

execution schemes: unified memory system. Allowing CPU and GPU cores to share the 

virtual memory space via common page tables, address translations, and process space 

identifiers [8] enables the implementation of fine-grain execution techniques. OpenCL 2.0 

[18] version provides fine-grain shared virtual memory functionality allowing any 

available devices on any system communicate via shared space, as long as there is support 

from hardware [19]. Nevertheless, the possibilities that can be achieved with heterogeneous 

chips with such coding platforms are yet to be explored. 

Among the irregular algorithms, producer-consumer behavior is commonly seen, 

such as in graph coloring [20] and maximal independent set [21]. In such algorithms, in 

addition to problems of irregularity, the programmers has to come up with solutions for 

data dependency between producer and consumer kernels in order to lessen idle times on 

the cores. The idea of heterogeneity can be a solution for this problem as well. 

In this work, my contributions are as follows: 

1. Provide a framework achieving significant speedup in a given 

heterogeneous chip for a given irregular graph application. Two examples include Maximal 

Independent Set for producer-consumer behavior and Preflow-Push for varying amount of 

parallelism with more complex kernels. 

2. Explore a technique for producer-consumer graph algorithms which aims to 

overlap production and consumption, called Overlapping Threads 
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3. Develop a basic compile-time task assigner and a model associated with it 

which finds switching point in a parallel application. 

4. Explore a technique for reducing the memory pressure caused by large 

amount of polling due to SW fine-grain implementation, called Hot-Vertices. 
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IV. Fine-Grain Acceleration of Graph Algorithms  

on Heterogeneous Chips 

To accelerate the algorithms with fine grain optimization techniques, I propose two 

main techniques in this compile time framework, as can be seen in Fig 1. The first one, 

named Overlapping Threads, overlaps producer and consumer threads in a given producer-

consumer application. To tackle the problem of increased memory pressure, I propose the 

Hot-Vertices technique, combined with Overlapping Threads. The second technique, 

named the Task Switcher, provides an execution model and task placement decision maker 

before execution. The detailed discussion of each technique is given in the following 

sections.  

Start
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Figure 1: The flow of the framework 
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IV.I OVERLAPPING THREADS TECHNIQUE 

In any given producer-consumer irregular application we have producer kernel(s) 

and consumer kernel(s). Normally, these kernels would be executed in a serial fashion, that 

is after the producer kernel completes its execution, consumer threads would be able to 

launch and consume the producer data as shown in Figure 2. I take this execution as the 

baseline execution model for comparison. 

In Overlapping Threads, I try to benefit from the idea that some of the consumer 

threads could actually execute without even waiting until the producer kernel completes. 

To achieve this I utilize OpenCL 2.0 [30] Shared Virtual Memory (SVM) functions, and I 

implement a fine-grain full-empty bit structure in software. This structure is used as a fine 

grain synchronization point for different kernels. For example, for producer-consumer 

applications, fine-grain full-empty bit software structure allows consumer threads to check 

whether the data is produced or not, which is done via polling on the structure. This 

structure is an array of bits, where each bit denotes whether the corresponding data has 

been produced or not. The length of the array is equal to number of items or nodes to be 

processed. As a general rule of thumb in OpenCL 2.0 SVM fine-grain implementations, 

the writes and reads to any shared memory address is done via SVM atomic functions. 

I study varying amounts of overlap focusing on the best execution time and energy 

consumption. The overlap amount ranges from 20% to 99%. The amount defines when to 

launch consumer kernels. For example, 20% overlap states, after producing 80% of the 

data, the consumer threads are launched, that is, while producing the last 20% of the data, 

both producer and consumer threads are overlapped. The technique is illustrated in Fig 3. 

The diagram on the left shows 20% overlap where at every computational step while 
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producing the last 20% of the data, the consumer kernels are launched. The diagram on the 

left is for 99% overlap. 
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Figure 2: Baseline producer-consumer model 

With OpenCL 2.0 [30] it is possible to use shared virtual memory (SVM) functions. 

With SVM, the same address space is exposed to both the host and the devices within a 

given context. This allows the programmer to use pointer-based data structures in OpenCL 

such as graphs or lists. The OpenCL manual specifies three types of SVM: 

1. Coarse-Grained buffer SVM: Sharing occurs at the granularity of regions of 

memory objects 

2. Fine-Grained buffer SVM: Sharing occurs at the granularity of individual 

loads/stores in memory objects. 

3. Fine-Grained system SVM: Sharing occurs at the granularity of individual 

loads/stores occurring anywhere within the host memory. 
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Figure 3: Overlapping Threads 

Another terminology for producer-consumer Overlapping Threads is “pipeline 

parallelism.” In [31], authors denote that “if it is possible to overlap the executions of the 

producer and consumer, the resulting parallelism is called pipeline parallelism.” 

IV.II. HOT-VERTICES TECHNIQUE 

In a given sparse input, when the Overlapping Threads technique is applied, the 

highest degree vertices may cause a significant amount of memory requests. The consumer 

threads assigned to highest degree vertices will have higher data dependencies which in 

return will contribute significantly to the amount of memory requests done during the 

execution. This is because the fine-grain full-empty bit data structure is checked by each 

of the neighbors of a vertex and is may be checked repeatedly until the vertex is produced. 

The high-degree vertices are therefore much more likely to be accessed numerous times if 

they are not produced early, leading to significant extra bandwidth just for checking their 
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full/empty status. The Hot-Vertices technique produces the highest degree vertices early 

so that the polling done on these nodes is significantly reduced. 

To lessen the overhead due to finding the high-degree vertices, I apply the 

approximate sorting on the GPU to determine the vertices with highest neighbors to lessen 

the time spent (=overhead) for analyzing the vertices. The overheads are counted for in my 

calculations. The input graph and its structure otherwise are not modified in any way. 

As mentioned at the beginning of this section, the Hot-Vertices idea is explored 

with Overlapping Threads as an auxiliary method to improve the efficiency of the 

Overlapping Threads method. An illustration of Hot-Vertices is given in Figure 4 with 60% 

overlap. In Figure 4, on the left side only Overlapping Threads with 60% overlap is shown, 

and on the right, I apply the Hot-Vertices technique. The time t’1 includes the time spent 

for sorting the vertices, and producing the top 20% of all nodes with highest degrees. The 

only overhead is the time spent on sorting and finding out In the overall diagram, I try to 

evaluate if t’4 < t2 by varying the amount of early-produced hot vertices among 2%, 10%, 

and 20%. 

IV.III TASK SWITCHER TECHNIQUE 

Every parallel algorithm starts with a pre-defined task assignment for the kernels. 

A kernel may sometimes be more suitable for GPU execution and other times more suitable 

for CPU execution. Generally, when parallelism is higher GPU execution is preferred, 

though there are other factors that influence the optimal decision of placing a kernel on the 

GPU or CPU. Conditions, such as the amount of available parallelism and the usage of 

resources, may change during execution. My work is not concerned about the latter since 
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it often requires a run-time solution [15] which checks the resource use on-the-fly which I 

do not aim to provide with this work. Rather, a compile-time tuning decision is made for 

the former, that is, the amount of available parallelism.  

t = 0

t = t1

P

C

t = t2

P

C

N
N x 0.6

N
N x 0.6

P

C

P

C

0.8 x N
N x 0.6

N x 0.6

t  = 0
t  = t 1

t  = t 3

t  = t 2

0.8 x N

t  = t 4

 

Figure 4: Overlapping Threads combined with Hot-Vertices 

The Task Switcher is a framework for making dynamic decisions on whether a 

kernel should execute on the GPU or CPU component of the heterogeneous chip using a 

combination of compile-time and run-time information. The framework has two main 

components. The first is a programming pattern and helper scripts that enable an auto-tuned 

per-kernel decision. Each kernel is wrapped with a conditional to test where it should be 

run. The condition depends either on a static decision communicated via a script or a 

dynamic decision that depends on available parallelism during execution. The second 

framework component statically determines the parallelism breaking point: when expected 

available parallelism is above the breaking point, the kernel executes on the GPU and 

executes on the CPU otherwise. The breaking point is computed based on a model that 

takes into account the relative frequencies of the CPU and GPU, the performance ratio 
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between the two core types when executing vector instructions, the fraction of vector 

instructions in the kernel, and possible additional programmer-provided hints. The model 

is described in detail in Section IV.III.I.  

To make a dynamic decision, the programmer must estimate available parallelism 

and compare to the breaking-point value computed by the Task Switcher model. As a 

concrete example consider the MIS application where the length of the work list at the 

beginning of each iteration is a good indicator for parallelism and can be readily used to 

make a decision on where each kernel should execute every iteration. This process is 

depicted in Figure 5 with possible decisions on placement for two producer-consumer 

kernels denoted (P and C, respectively) shown in in Figure 6. Scenario A in Figure 6 shows 

an example where the producing kernel (P) is always assigned to the CPU and the 

consuming kernel (C) to the GPU. Scenario B illustrates the breaking point being reached 

after the first execution of kernel C, after which all kernels are assigned to the CPU. 

Scenario C illustrates another possibility where both kernels switch their preferred 

execution core type during execution. 
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while (execution condition) //available iteration or nodes 

{ if toBeProcessedNodeCount(in%) > breakingPoint(in%)

before-run task assignment sceneraio;

elif

user provided break point scenario

}
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Figure 5: Illustration of Task-Switcher technique 
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Figure 6: Task Switcher, example scenarios 

IV.III.I Model of Task Switcher Technique 

The model and decision maker (MDM) evaluation outcome is breakpoint 

percentage which is used to apply new task placements during the execution. It takes the 

following variables into its decision process: 

 Scalar / Vector Performance Factor: Throughput-intensive and compute-intensive 

micro-benchmarks are run on both of the CPU and GPU cores separately, and a 

ratio is taken. This is independent of the algorithm. 

 Frequency Ratio: The frequency ratio of CPU and GPU cores. 

 Kernel Hints: Some of the kernels are known to be efficient on certain type of core 

and this information is given as a hint to the model by the user. 

 Kernel Details: For each kernel, scalar and vector instructions are counted, and an 

approximate ratio is given to the model for each kernel. 
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This model has only one main duty: to provide a breakpoint percentage. The 

percentage is calculated with the following equation: 

Equation 1: The percentage calculation, used for deciding on the time of applying the decisions 

% = 100 ∗
1

𝐹𝑟𝑒𝑞 𝑅𝑎𝑡𝑖𝑜(𝐶𝑃𝑈, 𝐺𝑃𝑈) ∗  (𝑆𝑐𝑎𝑙𝑎𝑟 − 𝑉𝑒𝑐𝑡𝑜𝑟 𝑃𝑒𝑟𝑓 𝐹𝑎𝑐𝑡𝑜𝑟)

∗
1

∑ 𝑆𝑐𝑎𝑙𝑎𝑟/ 𝑉𝑒𝑐𝑡𝑜𝑟 𝐼𝑛𝑠𝑡𝑟. 𝑅𝑎𝑡𝑖𝑜 
 

Equation 1 provides a percentage so that a user-provided task placement decision 

can be applied. For every kernel, the ratio of scalar instruction count/vector instruction 

count is taken. This tuning parameter, which determines when to execute a kernel on the 

CPU and when on the GPU, is heuristically determined using a compiler analysis of the 

kernel code. For example for MIS, the model equation yields 26.3%, as can be seen in 

Equation 2, that is, “when the amount of available parallelism is decreased to 26.3%, the 

user defined task placement decision should take place.” For MIS, this decision is “assign 

all the tasks to CPU”, since user provides the fact that after a while, the available 

parallelism will be reduced and CPU would be much faster executing the remaining tasks. 

The numbers 9.12, 1.02, 0.89 denote the ratios of scalar to vector instructions in each kernel 

of MIS, calculated via a compiler analysis. 

Equation 2: Evaluation of the equation for MIS 

% = 100 ∗
1

5.5 ∗ (
1

16)
[

1

 9.12 + 1.02 + 0.89
] = 26.3 % 

The user provides the information regarding what type of actions should be taken 

after the decision point has been reached. The information from the user is provided in the 

forms of knobs to a script which arranges and modifies the OpenCL code to be executed. 
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V. Methodology 

To evaluate the ideas presented, I have utilized an actual heterogeneous chip, nine 

different sparse inputs from 10th DIMACS Implementation Challenge [32] and two 

producer-consumer algorithms. 

V.I. ALGORITHMS AND INPUTS 

Two different algorithms are picked due to their importance among the graph 

algorithms and their suitable behavior for my evaluations: 

1. Maximal Independent Set 

2. Preflow-Push 

V.I.I Maximal Independent Set (MIS) 

Maximal independent set (MIS) [21] in an undirected graph is a maximal collection of 

vertices, I, which are subject to the restriction that no pair of vertices in I are adjacent. MIS 

is commonly used as a basic block in many application domains such as pattern 

recognition, computer vision and molecular biology. The serial implementation of the 

algorithm is given in Figure 7. 
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S = empty set,  C = V, 

while C is not empty  

{ 

   label each v in C with a random r(v), 

   for all v in C in parallel  

{ 

         if r(v) < min( r(neighbors of v) )  

{ 

         move v from C to S, 

         remove neighbors of v from C, 

         } 

    } 

} 

Figure 7: Serial maximal independent set 

The parallel implementation of MIS starts with labeling each vertex with a random 

value and each vertex during an iteration, where a thread is assigned to, decides if it can be 

included in the set or not. Depending on the outcome of the decision the vertex will be 

added to the current set. For the vertices added to the set of the current iteration, the 

algorithm marks all neighbors of the selected vertices inactive. This removes the 

neighboring vertices from the candidate list and disallows them from participating at the 

next iteration of the algorithm. The algorithm terminates when all nodes are visited and 

evaluated.  

Parallel implementation of MIS is given in Figure 8 and its kernels are given in 

Figure 9. This code shows how the Task Switcher enables kernel execution on a particular 

core type. Please note that in Fig 8., ts_<kernel>_perct is the variable name for the 

percentage calculated in Task Switcher. If the Task Switcher is not enabled the SVM 

functionality allows us to overlap the kernels without any barrier between kernels. Please 

also note that when we would like to enable Overlapping Threads the definitions for the 
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variables used during the execution should be different. This is again provided with basic 

if-else blocks in my code to be able to switch to Overlapping Threads technique. 

 

S = empty set,  C = V, 

while C is not empty  

{ 

 if(taskSwitcherEnb && ts_randomize_perct){ 

  Call Randomize() kernel on GPU 

 } else { 

  Call Randomize() kernel on CPU 

 } 

 if(taskSwitcherEnb && ts_mis_perct){ 

  Call Randomize() kernel on CPU 

 } else { 

  Call Randomize() kernel on GPU 

 } 

 if(taskSwitcherEnb && ts_randomize_perct){ 

  Call Deactivate() kernel on CPU 

 } else { 

  Call Deactivate() kernel on GPU 

 } 

} 

Figure 8: Parallel MIS implementation 
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kernel MIS(){ 

 execute[I] = true 

 if(node I is active) { 

 

 

  for every neighbor of I { 

   while(!ready[neighbor]){ 

   } 

   if(randomize[I] > randomize[neighbor] ){ 

    execute[I] = false 

   } 

  } 

 } else { 

  execute[I] = false 

 } 

} 

 

 

kernel Randomize(){ 

 randomize[i] = copyFromRandStream() 

 ready[i] = True 

} 

 

kernel Deactivate(){ 
 if(execute[I] is true){ 

  I is selected 

  Remaining nodes-- 

  for every neighbor of I{ 

   if (neighbor is inactive){ 

    Remaining nodes-- 

   } elif (neighbor is active){ 

    Neighbor is inactive 

    Remaining nodes - 

   } 

  } 

 } 

} 

 

Figure 9: The kernels of MIS 
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V.I.II Preflow - Push (PP) 

Given a source node and a sink node in an undirected graph and given capacity 

constraints on the edges, the maximum flow problem tries to maximize the amount of flow 

that can be sent from source to sink. One of the solutions to maximum flow problem is the 

Preflow-push algorithm. 

In the algorithm, nodes are temporarily allowed to have excess flow, i.e., they might 

have more incoming than outgoing flow. Such nodes are called active nodes. Another 

characteristic of the algorithm is that every node is assigned a height, so that nodes can 

only send flow to nodes with a lower height than their own. The algorithm is initialized by 

assigning a height of N (the number of nodes) to the source and zero to the sink and all of 

other nodes. 

 

 

 

 

 

 

Figure 10: The serial version of PP 

Preflow-Push is used to solve problems such as disjoint paths and bipartite 

matching, as one of the main blocks to such graph algorithms. The Preflow concept was 

introduced by Karzanov (O(V3)), and later Goldberg et al. designed an algorithm with 

Workset ws = new Workset(g.getSource()), 

 foreach (Node node: ws) { 

  g.relabel(node) 

  for (Node neighbor : graph.getNeighbors(node)) { 

   if (graph.pushFlow(node, neighbor) > 0) { 

    if (!neighbor.isSourceOrSink()) 

     ws.add(neighbor), 

    if (node.excess() <= 0) 

    break, 

   } 

  } 

  if (node.excess() > 0) 

  ws.add(node), 

 } 
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O(V2E). Among the many approaches, Goldberg’s implementation is relatively easier to 

parallelize than other augmenting path-based algorithms, which is my base. 

The parallel version of PP starts with initializing the height, edge capacities, and 

excess arrays. Its pseudo-code is given in Figure 11. Height is used for find the direction 

of flow and excess denotes which node has excess flow. Edge capacity as the name implies 

defines the capacity of each edge in a given graph. First kernel, Preflow(), finds the 

neighbor with the lowest height and pushes the excess of the main node (at where a thread 

is assigned) or capacity of the edge between a main node and selected neighbor, whichever 

is the minimum. To eliminate race conditions, I have another kernel called push-adjust(), 

which adjusts the excess and capacities. The BFS stage is for adjusting the heights of the 

nodes starting from the sink. The details of the BFS are not discussed and I use the two-

stage parallel BFS implementation given in [36]. 

 

 

 

 

 

 

 

 

 

 

 



25 

 

 
initialize height, edge capacity, excess arrays 

while(sink does not have excess){ 

 kernel Preflow() on GPU 

 kernel Push-Adjust() on CPU 

 if (first iteration){ 

  kernel BFS() on GPU 

 } else { 

  kernel BFS() on CPU 

 } 

} 

kernel Preflow(){ 

 if (node I has excess) { 

  find the neighbor with lowest height 

  if (selected neighbor height < height of I) { 

   find minimum(excess[I],edge capacity) 

   excess[selected neighbor] += min 

   capacity[edge] -= min 

   excess[I] -= min 

 } 

} 

kernel Push-Adjust() { 

 for every neighbor of I{ 

  if(height[I] > height[neighbor]){ 

   if(excess[I] >= capacity[ToNeighbor]){ 

    excess[I] -= capacity[ToNeighbor] 

    excess[neighbor] += capacity[ToNeighbor] 

    capacity[ToNeighbor] = 0 

   } elif (excess[I] < capacity[ToNeighbor]){ 

    excess[I] = 0 

    excess[neighbor] - = excess[I] 

    capacity[ToNeighbor] -= excess[I] 

   } 

  } 

 } 

} 

// BFS implementation is taken from [36].  

Figure 11: The parallel version of PP and its kernels 
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V.I.III Inputs 

Nine different sparse graph inputs are picked from 10th DIMACS Implementation 

Challenge. 

Table 1: Inputs used for evaluation. 

Input Name # of Vertices # of Edges 

cage15 5,154,859 94,044,692 

nlpkkt120 3,542,400 46,651,696 

kkt_power 2,063,494 6,482,320 

g3_circuit 1,585,478 3,037,674 

thermal2 1,227,087 3,676,134 

ecology1 1,000,000 1,998,000 

ldoor 952,203 22,785,136 

audikw_1 943,695 38,354,076 

af_shell9 504,855 8,542,010 

V.II HARDWARE 

For the evaluations, I have utilized AMD APU A10-7850K APU. The APU has 4 

CPU cores (28nm Steamroller core) at 4 GHz frequency and 8 GCN (Graphics core next) 

cores which provide 512 GPU threads in total at 720 MHz clock frequency. The system 

can share the virtual memory between CPU and GPU, allowing them to have uniform 

access to the entire memory region. 

My system has 8GB DDR3-2133 memory in two channels and peak bandwidth 

from OpenCL micro-benchmark “Global Bandwidth” with vector width 8 is 12.75 GB/s 
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for CPU random read and 51.10 GB/s for GPU random read. Although the bandwidth 

calculation methodology is not detailed in the paper, [33] provides 7.8 GB/s for CPU and 

28.9 GB/s GPU as peak bandwidth with the same APU with 32GB DDR3 memory. I 

suspect that the memory was not in dual channel mode and that’s why almost 2x difference 

exists. 
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VI. Evaluation 

VI.I MAXIMAL INDEPENDENT SET 

VI.I.I Overlapping Threads 

Overlapping Threads could be applied to MIS since MIS provides kernels with data 

dependencies between them. When Overlapping Threads technique is applied to MIS with 

the inputs I have, it achieves a speedup of 1.3x to 1.6x as seen in Figure 13. During the 

evaluations, I have observed that after ~80% of the overlap there is no execution time gain 

and I claim this is the sweet-spot for this algorithm. 

 

 

 

Figure 12: Overlapping Threads applied to MIS. 
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Figure 13: Average power consumption for MIS for 99% and 80% overlap. 

Please note that it is relatively easy to define a percentage for the framework and 

the framework would provide the code when the Overlapping Thread is enabled. One 

would prefer applying 99% overlap, and it would give the same speed-up as 80% overlap. 

However, this would result in higher energy consumption since there would be more 

polling done in 99% overlap case. To back-up my claim I have measured the power 

consumption of the chip for the 80% and 99% overlapping amounts and found out that 

80% overlapping consumes less power in 8 out of 9 inputs as shown in Figure 13.  

VI.I.II Overlapping Threads and Hot-Vertices 

Although any node can contribute to the amount of polling done throughout the 

execution, the most significant impact is done by the nodes with highest degrees. Hot-

Vertices technique aims to reduce the amount of polling done by the threads assigned to 

the nodes with highest degrees by pre-producing such nodes so that the polling done on 

these nodes would not be needed. During my evaluations with MIS, I prove that producing 

such vertices early reduces the overall execution time. For simplicity and readability, some 
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of the results are not shown in Figure 14, and only essential data is presented for 

comparison purposes: No overlap and 99% overlap with different Hot-Vertices amount. 

For each of the inputs, I calculate no Hot-Vertices (HV), 2%, 10% and 20% HV. The 

percentages denote how many of the highest degree vertices are produced early. As seen 

in Figure 14, the Hot-Vertices idea reduces the total execution time, which also 

incorporates overheads such as the time spent for finding the Hot-Vertices. 

 

Figure 14: MIS with Overlapping Threads and Hot-Vertices 

VI.I.III Task Switcher  

When the Task Switcher is enabled in the framework, model evaluation takes place at 

compile time and task placement decisions are applied dynamically to MIS. For MIS, the 

Task Switcher achieves ~1.6x to 1.9x speed-up compared to CPU-only execution as shown 

in Fig 15.  

Implementation-wise, MIS has three kernels and each kernel is assigned to either CPU 

or GPU. The task placement done by the model and decision maker is shown in Fig 16. 
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Each colored block denotes that that particular kernel will be executed on CPU or GPU 

depending on the location of the block. For example for af_shell9, at the first computational 

step Randomize kernel executes on CPU while MIS and Deactivate kernel executes on the 

GPU. At the second computational step, Randomize and MIS execute on CPU, while the 

Deactivate kernel will be executed on GPU. These decisions are given by the user, and the 

Task Switcher decides when to apply these decisions by calculating the equation as 

discussed in Section IV.III.I. Please note that after 26.3% reduction happens for every 

input, the tasks on GPU are assigned to CPU. 

 

Figure 15: Task Switcher speed-up for MIS 
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Figure 16: The task placement decisions made by the Task Switcher model and decision maker for 

MIS 

VI.II PREFLOW - PUSH 

Preflow-push shows different behavior than MIS. Firstly, it does not have the strong 

producer-consumer interaction that MIS does. It has three main steps namely: Preflow, 

Push Adjust, and BFS (see Figure 11). These steps do not exhibit strong data dependency 

among them, which makes the Overlapping Threads technique exploration for Preflow-

push infeasible. Secondly, the amount of parallelism available in PP after the first 

computational step is significantly reduced. This difference between the first iteration and 

the rest, makes Preflow push benefit significantly from task switching. Even though there 

is no readily-available variable for estimating available parallelism as with MIS, the 

programmer can use the Task Switcher framework and helper scripts to provide hints and 

directives on where each kernel should execute. My analysis easily indicates that the 

Preflow kernel should always execute on the GPU, Push Adjust on the CPU, and that BFS 
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should run on the GPU in the first iteration but on the CPU in following iterations where 

parallelism is lower. These decisions are expressed in a tuning file that is then used by a 

script and the OpenCL framework code within the application. 

VI.II.I Task Switcher  

Preflow-push has three kernels, and for each kernel, certain decisions are applied 

by the Task Switcher model & decision maker: 

 BFS at first computational stage is assigned to the GPU cores and the 

remaining BFS at the next computational stages are assigned to the CPU. 

 PP is assigned to GPU 

 Adjust is assigned to CPU 

I run the given code by the framework on my heterogeneous chip and compare the 

results to the CPU-only execution of the Preflow-Push. My technique on Preflow-Push 

provides 1.3x as minimum and 18x as maximum speed-up. Excluding two inputs, as can 

be seen in Figure 18 the speed-up varies between 1.3x to 2.4x, averaging 1.78x speed-up. 

The reason I exclude two of the inputs is that they take very few computational steps and 

BFS calculation takes a significant portion of the total execution time of Preflow-Push, 

resulting in significant speed-up as shown in Figure 18 when BFS portion is accelerated 

via GPU. This is solely dependent on the structure of these sparse graphs. In Figure 18, the 

CPU-only execution is normalized to one, and the theoretical best and Task Switcher 

results are compared. 



34 

 

 

Figure 17: The required assignments for the best theoretical speed-up. 

I also measure the best possible theoretical speed-up by running the code on CPU 

and GPU and finding the minimum execution time for each of the kernels at each 

computational step and the information is provided in Figure 17. In Figure 17, the gray 

boxes denote where my Task Switcher technique, when applied to PP, has failed to achieve 

the best task assignment. For example for BFS & af_shell9, the best theoretical task 

assignment was to assign first two iterations to GPU, but my framework assigns only the 

first iteration to GPU as rest is executed on CPU. I prove that my framework can achieve 

84% accuracy while making task placement decisions compared to best theoretical speed-

up.  

 

 

 

 

 

TotalCPU GPU TotalCPU GPUTotalCPU GPUTotalCPU GPUTotalCPU GPUTotalCPU GPUTotalCPU GPUTotalCPU GPUTotalCPU GPU

Preflow (GPU) 84 0 84 24 0 24 5 0 5 11 0 11 4 0 4 8 0 8 37 0 37 39 0 39 83 0 83

Push-Adjust (CPU) 84 84 0 24 24 0 5 5 0 11 0 11 4 0 4 8 1 7 37 37 0 39 39 0 83 0 83

BFS 84 82 2 24 11 13 5 0 5 11 10 1 4 3 1 8 7 1 37 34 3 39 9 30 83 80 3

kkt_power ldoor nlpkkt120 thermal2af_shell9 audkw_1 cage15 ecology g3_circuit
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Figure 18: Preflow-push in Task Switcher 
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VII. Conclusion 

The use of heterogeneous chip multiprocessors for improving the performance and 

energy efficiency of computations is an active research topic. I provide insights into how 

to utilize such processors for two commonly used sparse graph algorithms and demonstrate 

how to accelerate these applications on a commodity heterogeneous Accelerated 

Processing Unit that combines latency-oriented CPU cores and throughput-oriented GPU 

cores. I evaluate how the combination of overlapping the execution of data-dependent 

kernels (Overlapping Threads), reducing the amount of memory polling needed to 

accomplish this overhead (Overlapping Threads + Hot-Vertices), and applying a heuristic 

for task placement that is based on static analysis (the Task Switcher), provides substantial 

improvements in execution. 
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