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Abstract 

Three new Arkansas lamproites were delineated and evaluated during the 1980’s.  

The intrusions were emplaced during the Middle Cretaceous Period based on 

stratigraphic relationships and published isotopic ages.  Geological relationships record 

a dominant crater facies lamproite with minimal vent erosion.  A 260 tonne sample 

taken from the two larger lamproite vents recovered 5 macro diamonds (>0.5mm) 

yielding a sub-economic diamond grade of ~0.04 carats per 100 tonnes.  A diamond 

evaluation program undertaken at the Prairie Creek vent by the Arkansas State Parks 

Commission in the 1990’s resulted in mapping of four major rock types: epiclastic 

rocks, olivine lamproite, phlogopite-rich tuff and olivine-rich tuff.  Significant diamond 

contents were found only within the phlogopite-rich tuff (~0.11 carat/100 t) and olivine-

rich tuff (~1.1 carat/100 t).   Stratigraphic relationships indicate that the diamondiferous 
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tuffs have undergone <50 meters of erosion.  Extrapolation of the surface rock units and 

their diamond contents to the pre-erosion surface suggests that ~93,000 carats of 

diamonds were liberated and then concentrated as a natural surface enrichment. 

Mantle xenoliths recovered from the Black Lick and Twin Knobs lamproite 

vents were analyzed for major element compositions.  Their data were used to calculate 

a pressure-temperature array that record maximum pressures of ~5 GPa and maximum 

temperatures of ~1000oC for the xenolith source region.  Comparisons between 

calculated pressures and olivine compositions indicate relatively shallow fertile mantle 

overlying more depleted mantle lithosphere.  The two layers of mantle lithosphere may 

represent different ages based on their olivine composition.  Crustal xenoliths include 

near-surface sedimentary rocks and abundant amphibolite with granitoids and rare meta-

sedimentary and meta-volcanic rocks.  K-Ar dates of 1.48-1.31 Ga were obtained from 

four amphibolite xenoliths.  The cooling ages confirm that continental crust of ~1.42 Ga 

in age extends beneath southwestern Arkansas and that thermal effects of the younger 

Grenville and Ouachita orogenies were insufficient to reset the amphibole K-Ar systems.  

Xenolith data and published results are used to test two models for development of the 

Ouachita system.  The first model proposes that the Ouachita trough is part of a mid-

continent failed rift; the second model suggests the Ouachita System was formed at the 

rifted oceanic margin of the continental craton.  The xenolith data support the intra-

craton rift model over the oceanic-margin model. 
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Chapter 1 

REGIONAL SETTING 

Several occurrences of diamond-bearing olivine lamproite are located in Pike 

County, Arkansas, USA (Scott-Smith and Skinner, 1984a).  Pike County is located in the 

southwestern part of the state and straddles the geologic and physiographic boundary 

between the Gulf Coastal Plain and the Ouachita Mountains (Figure 1-1).  The Gulf 

Coastal Plain is characterized by gently south-dipping Cretaceous sedimentary rocks that 

onlap and lie unconformably over the intensely folded and faulted east-west trending 

Paleozoic sedimentary rocks of the Ouachita Mountains (Miser and Purdue, 1929). 

The existence of diamondiferous lamproites within such a young tectonic 

province located at the southern margin of the continental craton is unique and enigmatic.  

Most primary diamondiferous kimberlites are located within well exposed stable cratons 

of Precambrian age, such as those in South Africa, Siberia Australia and western Canada.  

A possible explanation for this occurrence is that the Ouachita Mountains may have been 

thrust onto and overlie the southern margin of the North American craton which 

represents a preserved boundary between continental and oceanic crust (Lillie, 1985).  

The age of the craton in this area is uncertain, although areas 300 km to the west 

(Oklahoma) and north (Missouri) contain rocks of the 1.3 to 1.5 Ga granite-rhyolite 

terrane of the mid-continental craton (Van Schmus and others, 1986).  Precambrian rocks 

exposed in the Llano uplift of central Texas, located about 500 kilometers to the 

southwest, record ages from 1.38 to 1.07 Ga (Mosher, 1998).  The Llano area lies south 

of the Llano deformation front, which is equivalent to the Grenville deformation front, 
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and extends northeastward from central Texas towards southwestern Arkansas (Figure 1-

2). 

The Prairie Creek lamproite, the largest intrusion within the Prairie Creek 

lamproite province, is wholly enclosed within the “Crater of Diamonds” State Park and 

has been determined to have a K-Ar age of 97-106 Ma (Zartman, 1977; Gogineni and 

others, 1978).  Cretaceous lamproite intrusions were apparently injected along a zone of 

structural weakness related to the Gulf Coast hinge line (Baksi, 1997).  The northeast 

alignment is also sub-parallel to the northeast-trending Reelfoot Rift located 

approximately 100 km east of the intrusions.  Numerous syenite intrusions also of 

Cretaceous age, at least one with a carbonatite core (Magnet Cove), were emplaced along 

the trace of the Reelfoot Rift (Figure 1-3).  Other Cretaceous age intrusions exist in 

southeastern Arkansas beneath the Mississippi Embayment (Moody, 1949). 

The Prairie Creek lamproite province consists of seven known diamondiferous 

lamproite vents which extend for 5 km in a northeasterly direction from the largest of the 

vents, Prairie Creek (Figure 1-4).  Three previously unexplored Arkansas lamproites were 

delineated and evaluated during the 1980’s.  The three vents – Black Lick (10 hectares), 

Twin Knobs 2 (2 hectares) and Timberlands (<1 hectare) -- were intruded into the Lower 

Cretaceous Trinity Formation and are overlain unconformably by the Late Cretaceous 

Tokio Formation rocks.  These stratigraphic relationships, first described in detail in 

Chapter 2, are used in conjunction with published economic data to re-evaluate the 

diamond distribution at the “Crater of Diamonds” State Park in Chapter 3. 

Xenoliths of mantle and crustal rocks were recovered from the Black Lick and 

Twin Knobs 2 lamproites during Arkansas Diamond Development Company’s (ADDC) 

diamond bulk test.  Xenoliths are pieces of foreign or country rocks that become 
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entrained within the volcanic host rock at any point during the ascent of magmas from 

their mantle lithosphere source regions.  These small fragments of rock can reveal 

information as to the composition, age and geological history of the mantle and crustal 

lithosphere beneath southwestern Arkansas.  This xenolith suite is of particular 

importance as no previous xenolith studies have focused on the Prairie Creek lamproite 

province, simply because no quantity of xenoliths has ever been recovered. 

Approximately 1.5 kilograms of xenoliths were recovered from 260 tonnes of 

lamproitic material treated in a diamond recovery plant near Sloan, Colorado.  An 

additional one kilogram of xenoliths was supplied by Mike Waldman; the latter were 

derived from Superior Mineral’s economic evaluation of the Twin Knobs 1 lamproite 

from 170 tonnes treated at the same Colorado recovery plant a few years earlier.  This 

recovery process involves progressive crushing, screening and heavy media separation 

resulting in xenoliths in the 0.5 to 3.0 centimeter size range. 

The 2.5 kilograms of xenoliths represent less than 0.0006 % of the total lamproite 

processed.  Approximately ¾ of the xenoliths recovered are of probable crustal origin.  

Half of these crustal xenoliths consist of near-surface lithologies including shale, 

sandstone and quartzite.  The deep crustal xenoliths are dominantly amphibolite, with 

lesser quantities of granite and rare meta-sedimentary, meta-volcanic and micaceous 

rocks.  The mantle xenoliths include dunite, harzburgite, websterite, eclogite and both 

spinel and garnet lherzolite. 

Compositions of mantle-derived xenoliths (Chapter 4) record a P-T array 

indicating a calculated geotherm of ~40mW/m2.  Analysis of the depletion index and 

recorded pressures of xenoliths indicate the presence of a two layer mantle lithosphere.  

The majority of the deep crustal xenoliths (Chapter 5) are amphibolites with lesser 
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amounts of granite which generally are extensively altered to epidote-rich rock.  K-Ar 

isotopic dates of the amphibolites record an average age of 1.42 Ga.  These new xenolith 

data have significant implications for the generation of continental lithosphere in this 

region. 
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Figure 1-1:  Geographic map of south-central United States.  The location of the 
Prairie Creek lamproite province is shown in relation to selected 
geologic elements. 
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Figure 1-2:  Interpreted basement geology of south-central United States (Van 
Schmus and others, 1986).  The Llano front separates 1.3-1.5 Ga 
granite-rhyolite terrane from 1.0-1.2 Ga Llano terrane.  No known 
basement rocks exist beneath the Prairie Creek lamproite province. 
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Figure 1-3:  Simplified geologic map of Arkansas.  The Prairie Creek lamproite 
province is located in the southwestern part of the state; other known 
Cretaceous igneous rocks are exposed in the central and southeastern 
part of the state. 
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Figure 1-4:  Location of known Prairie Creek lamproite occurrences. 
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Chapter 2 

GEOLOGY OF THREE NEW LAMPROITE OCCURRENCES 

EXPLORATION HISTORY 

The Black Lick vent, the largest of the three intrusions, was originally described 

by Miser (1913) as two small peridotite outcrops located on the side of a hill about five 

kilometers northeast of the Prairie Creek intrusion.  Black Lick was acquired by 

American Selection Trust (Amselco) in 1979.  Their exploration efforts in the early 

1980’s determined the size of the intrusion more accurately and culminated with a rotary 

pan diamond bulk test.  Doug Duskin (personal communication, 1993) reported that 

approximately 1000 tonnes of material was tested without the recovery of any macro-

diamonds.  However, the intrusion is diamondiferous, because samples collected from 

Amselco’s pan tailings contained abundant micro-diamonds (McCandless and others, 

1994). 

Arkansas Diamond Development Company (ADDC) reviewed an aeromagnetic 

Dighem survey flown by General Crude Oil (GCO) Minerals in 1982.  This review, in 

1987, revealed a weak one to two gamma airborne anomaly near the vicinity of the Black 

Lick intrusion.  A ground magnetic survey was completed using a Geometric proton 

magnetometer with diurnal corrections applied to data gathered along a 15 m x 30 m tape 

and compass grid.  The resulting magnetic survey map revealed magnetic anomalies of 

between 10 and 50 gammas over background (Dunn and Taylor, 1988a).  The 

geophysical anomaly was investigated using a buggy-mounted rotary drilling rig as much 
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of the surface was overlain by a thin veneer of younger Tokio Formation gravel.  Twenty-

nine shallow drill holes were used to outline the 10 hectare area of the Black Lick 

lamproite vent (Dunn and Taylor, 1989). 

The Twin Knobs 2 intrusion was originally described by Miser (1913) as a 

peridotite tuff located on the side of a hill about three kilometers northeast of the Prairie 

Creek intrusion.  In the same document, Miser described a similar occurrence of 

peridotite tuff in the well on the “old Riley place” just east of the main intrusion.  This 

occurrence was delineated by Superior Minerals and described as the Twin Knobs #1 

lamproite by Waldman and others (1987). 

The Twin Knobs 2 lamproite was further characterized in an ADDC review of 

the Dighem aeromagnetic survey that revealed a weak one gamma airborne anomaly on 

the side of the Twin Knobs hill.  Ground exploration discovered evidence of the original 

excavations that Miser completed during the 1910’s.  ADDC explored the area of the 

aeromagnetic anomaly using both ground geophysics and soil geochemistry. The 

resulting magnetic survey map revealed magnetic anomalies of between 10 and 50 

gammas (Dunn and Taylor, 1988a).  The largest anomalies were later determined to be 

associated with two east trending magmatic lamproite dikes, which probably correspond 

to two ultramafic dikes found in the area by Superior Minerals in 1982 (Mike Waldman, 

1989, personal communication). 

A soil geochemical survey was completed concurrently over the same survey 

grid.  One pound samples were collected from the clay-rich B-soil horizon for analysis of 

exchangeable magnesium (Mg), nickel (Ni), chromium (Cr) and niobium (Nb).  These 

elements had proved useful in a test survey performed at an adjacent lamproite (Gregory 

and Tooms, 1969).  A significant geochemical anomaly was observed proximal to the 
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ground magnetic anomaly (Dunn and Taylor, 1988a).  The results of this ADDC 

geochemical soil survey indicated that the Twin Knobs 2 intrusion was best defined by 

the dispersal of nickel and niobium within the overlying soils.  Background nickel values 

were <20 parts per million (ppm) whereas a peak value of ~ 300 ppm was observed.  

Background niobium values were <15 ppm whereas a peak value of 120 ppm was 

observed.  Threshold values for nickel and niobium were approximately 80 and 60 ppm, 

respectively.  The geochemical anomalies defined by chromium and magnesium were 

relatively weaker, less defined, and had a greater down-slope dispersion.  Threshold 

values for chromium and magnesium were 300 and 8000 ppm, respectively.  

Geochemical soil anomalies at the Twin Knobs 2 lamproite are slightly stronger, but 

comparable to those reported for the Twin Knobs 1 lamproite (Waldman and others, 

1987).   The coincident geophysical and geochemical anomalies were investigated using 

a buggy-mounted rotary drilling rig in 1988.  Fourteen shallow drill holes were used to 

define a 2 hectare vent (Dunn and Taylor, 1988b). 

The Timberlands occurrence was discovered by GCO Minerals in 1982 by 

ground follow-up of their aeromagnetic Dighem survey.  The Dighem survey revealed a 

<1 gamma magnetic airborne anomaly, which when followed up on the ground 

corresponded to a very small (~15 meter) anomaly with a magnitude of about 50 

gammas.   Three of eight drill holes penetrated sections of lamproite.  ADDC acquired 

the mineral rights and exploration data from GCO Minerals and three of seven additional 

drill holes defined a buried (~12 meters deep) <1 hectare size lamproite (Dunn and 

Taylor 1988c).  No economic evaluation was undertaken due to its small size and depth 

of burial.  
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GEOLOGY 
 

All three igneous complexes were intruded into the Upper Early Cretaceous Trinity 

Group (~120 Ma) and unconformably overlain by the Lower Late Cretaceous Tokio Formation 

(~85 Ma). The Tokio Formation was deposited directly above of all three lamproite vents.  The 

existence of this caprock indicates that little or no erosion of the lamproite has occurred since 

Cretaceous time.  The exposed stratigraphic relationships are consistent with a Mid Cretaceous 

age of intrusion.  This timing is in agreement with the 97 to 106 Ma K-Ar isotopic age range 

determined for the Prairie Creek intrusion by Zartman (1977) and Gogineni and others (1978).  

Lamproite field relationships were documented during trenching and were interpreted 

from drill cuttings.  A border facies, consisting of sandy tuffs and fine-grained lapilli tuffs with 

minor amounts of epiclastic rocks, commonly occurs at the margins of the lamproitic vents. This 

border facies appears to be transitional to, and to be intruded by, later coarser-grained lapilli tuffs 

and more massive autolithic breccias near specific loci within the vents.  The autolithic breccias 

have been interpreted by Waldman and others (1987) as representing proximity to the vent.  The 

pyroclastic material was intruded by late-stage dikes of hypabyssal olivine lamproite.  The 

contacts of some larger hypabyssal dikes have transition zones of auto-brecciated lamproite near 

their margins. This auto-brecciated lamproite may result from volatile exsolution from the magma 

and/or phreatic fragmentation of magmatic debris (Mitchell and Bergman, 1991).   Some of the 

hypabyssal lamproite may have reached the surface as lava flows as indicated by samples of 

olivine lamproite with vesicles found on the surface of the Black Lick vent.  The observed 
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eruptive relationship is in good agreement with the idealized eruptive sequences of lamproites 

described by Mitchell and Bergman (1991).  

The geological relationships appear the same for all three lamproites, although the ratio 

and volume of specific rock types vary within any individual vent.  The Black Lick lamproite has 

a well-defined border facies consisting of sandy tuffs and fine-grained pyroclastic tuffs with a 

larger volume of coarse-grained pyroclastic lapilli tuffs (Dunn and Taylor, 1989).  Specific areas 

within the vent, generally associated with a stronger magnetic signature, contain more massive 

autolithic breccia which appears to have been intruded into coarse-grained pyroclastic tuffs.  A 

surface geological interpretation of the Black Lick lamproite is shown in Figure 2-1.  The large 

size of the vent is suggestive of a relatively complex eruptive history with a characteristic 

champagne glass shape.  The moderate dip of the vent contact shown in the representative north-

south cross-section (Figure 2-2) is in agreement with the dip of the contact determined by deep 

drilling at the Prairie Creek intrusion (Morgan Worldwide Mining Consultants, 1997).  

Moderately dipping contacts also are associated with the diamondiferous lamproites of Western 

Australia (Atkinson and others, 1984). 

The Twin Knobs 2 lamproite consists of fine-grained pyroclastic rocks such as sandy and 

lapilli tuffs with only a few small coarse-grained pyroclastic centers (Dunn and Taylor, 1988b).  

Two late-stage hypabyssal dikes (defined by magnetic anomalies) penetrate the vent.  A surface 

geological interpretation of the Twin Knobs 2 lamproite is shown in Figure 2-3.  In the 

representative northwest-southeast cross-section of the vent (Figure 2-4), the very shallow 

dipping contact is consistent with the abundance of “crater facies” pyroclastic tuffs.  The 

Timberlands vent appears to be a small, near-vertical intrusion of hypabyssal olivine lamproite 

with only minor amounts of auto-brecciation associated with margin contacts (Figure 2-5).  In the 
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subsurface geological interpretation (Figure 2-6), the Timberlands vent is shown as a small 

intrusion of less than a hectare in size emanating from an east-trending lamproite dike (Dunn and 

Taylor, 1988b).  Fine-grained pyroclastic tuffs were not observed, although the top of the 

intrusion shows oxidation and soil development probably due to sub-aerial exposure in 

Cretaceous time. 

The wide diversity of vent shapes and petrological facies within this small lamproite 

province is ascribed to structural controls on magma emplacement.  The relative locations of the 

seven known vents within the province define a strong southwest-northeast alignment.  This 

alignment is best represented by the nearly continuous lamproite outcrop between the Black Lick 

and the American vents which appear to be enlargements within a subsurface dike structure.  This 

SW-NE alignment is strongly suggestive of a deep-seated structural control parallel to the 

Reelfoot Rift located ~100 kilometers east of this lamproite province.  The three vents described 

in this paper also show an internally consistent west-east orientation.  This is most apparent 

within hypabyssal lamproite intruded in the form of dikes.  This west-east orientation is probably 

imposed on the magmas as they follow W-E oriented thrust faults, common features at depths of 

>60 meters, contained within rocks of the underlying Ouachita Mountains structural province. 

The large variation in relative amounts of crater facies and hypabyssal facies is best 

explained by variations in magma interaction with groundwater at the time of intrusion.  The 

lamproite magmas were apparently intruded into a near-surface water-saturated coastal 

environment represented by the Trinity Group marls with a 30-meter thick basal gravel.  Much of 

the volcanic activity was phreatomagmatic in origin, as is consistent with the large amounts of 

pyroclastic debris within the crater vents.  Areas with less pyroclastic debris such as the 

Timberlands lamproite may have been intruded into an area of less groundwater saturation and 
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decreased basal gravel thickness.   Variation in the amount and textures of pyroclastic material 

within the vents appear to be related to the amount of interaction with near surface water in 

Cretaceous time.  

 

PETROLOGY 
 

The observed petrology and mineralogy within the three lamproites is in good agreement 

with more detailed studies reported for the Prairie Creek intrusion (Gogineni and others, 1978; 

Bolivar and Brookins, 1979; Scott-Smith and Skinner, 1984a) and with other lamproites within 

the district (Scott-Smith and Skinner, 1984b; Waldman and others, 1987).  Velde (2000) has 

studied the reaction zones of mafic xenoliths within the hypabyssal olivine lamproite and found 

that they contain almost all of the characteristic lamproitic mineral phases such as potassium-

richterite, priderite, jeppeite and haggertyite.  The two major igneous rock types observed include 

a diverse textural range of pyroclastic materials and hypabyssal olivine lamproite. 

 

Hypabyssal Olivine Lamproite 

 
The hypabyssal olivine lamproite is dark green to black and is hard and dense in hand 

sample.  I estimate it comprises about 25% of the volume of the diatremes.  Phenocrysts of 

olivine and pseudomorphs of olivine altered to serpentine constitute up to 20% of the rock and are 

subhedral (~2mm).  The rock contains about 10% relatively large (~1mm) poikilitic phenocrysts 

of pale mica, probably tetraferriphlogopite, judging from its characteristic reverse pleochroism of 
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brown to orange.  Megacrysts of olivine and ilmenite are common.  The groundmass consists of 

abundant laths of phlogopite, serpentine replacing olivine, clinopyroxene, amphibole, perovskite, 

and lesser amounts of apatite and spinel in a devitrified glass consisting largely of a fine-grained 

clay mineral.  Potassium-richterite and priderite were identified only in selvages surrounding 

ultramafic xenoliths.  Microprobe analyses of mineral phases are in good agreement with those 

found by previous authors at other vents within the lamproite province.  Xenoliths of sedimentary 

rocks are common giving some rock a brecciated appearance in hand sample. 

 

Pyroclastic Rocks 

About 75% of the surface area of the lamproites consists of pyroclastic rocks 

including autolithic breccias, lapilli tuffs, and sandy tuffs.  The pyroclastic rocks are quite 

variable in composition and texture and commonly appear interbedded with gradational 

contacts.  Sub-rounded breccias, massive to thinly bedded lapilli tuffs and sandy tuffs 

with rare epiclastic rocks were observed.  The sandy tuffs and epiclastic rocks are 

generally finer-grained, and more extensively reworked, and they may represent a more 

distal pyroclastic facies.  Veinlets of secondary calcite and barite commonly cut through 

all pyroclastic rock types. 

Autoliths of lamproite are common among the autolithic breccias and lapilli tuffs.  

The autoliths consist of pyroclastic material with a rounded accretionary form, but they 

have different grain sizes from the surrounding matrix.  Altered olivine and pale 

phlogopite micro-phenocrysts are set in a fine-grained groundmass of serpentine, 

clinopyroxene, perovskite, carbonate, and altered glass.  Xenoliths of sandstone, shale, 

and marl are common. 
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DIAMOND BULK TESTING 

Both the Black Lick and Twin Knobs 2 lamproites were bulk-tested by ADDC 

for diamond content utilizing at least four trenches within pyroclastic rocks from each 

vent (trench locations shown in figure 2-1 and 2-3).  The top three meters of each trench 

was spoiled and only the lower 2 meters of material from each pit was shipped for 

processing.  The material was transported via covered truck to a recovery plant near 

Sloan, Colorado.  The plant utilized a jaw crusher, scrubber, washer and various screens 

to produce a consistent feed into a heavy media circuit.  The diamonds were recovered 

from the heavy media concentrate using both “SORTEX” and grease table technology for 

redundancy.  Test diamonds and density tracers were utilized to assure good diamond 

recovery. 

Three macro diamonds in excess of 0.5 mm were recovered from the 155 tonnes 

of material from the Black Lick lamproite (Figure 2-7).  Total weight of the three stones 

was approximately 0.045 carat.  Three of the four pits at Black Lick yielded one stone 

each.  The calculated diamond grade throughout the Black Lick lamproite was 

approximately 0.03 carats per 100 tonnes.  The first diamond found is a clear white to 

light gray modified octahedron about 1.5 mm on a side.  The stone displayed abundant 

surface trigons and other features.  The stone had a large area of embayment and/or 

cleavage with about 25% of the original crystal missing.  The stone might be classified as 

gem quality weighing 0.015 carat.  The second diamond is a slightly included brown 

dodecahedron about 1.5 mm on the longest side.  The diamond has a naturally polished 

rounded surface except for a cleavage where about 40% of the original stone is missing.  
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The stone might be classified as a near gem weighing 0.02 carat.  The third diamond 

found is an included brown octahedron about 1.5 mm on the longest side.  The stone 

indicates the presence of partly resorbed surface growth lines.  The crystal is embayed 

along a cleavage and about 30% of the original stone is missing.  The diamond would be 

classified as an industrial stone weighing 0.01 carat. 

Two additional macro diamonds in excess of 0.5 mm were recovered from the 

105 tonnes of material from the Twin Knobs 2 lamproite (Figure 2-7).  Total weight of 

the two stones was 0.04 carat.  Both diamonds were recovered from the northern pits 

(coarse pyroclastics), whereas the southern pits (fine pyroclastics) did not yield macro 

diamonds.  The calculated diamond grade throughout the Twin Knobs 2 lamproite was 

approximately 0.04 carats per 100 tonnes.  The first diamond recovered was a brown-

white modified octahedron about 1 mm on a side.  The stone displays surface trigons, 

although they are extensively corroded.  The stone has abundant inclusions including 

some attached lamproite.  The stone would be classified as industrial grade weighing 

about 0.01 carat.  The second diamond recovered was a clear white tetrahexahedron 

about 2 mm on a side.  The diamond had sharp growth features and trigons and appeared 

to be a cleavage representing about 70% of the original stone.  The stone had a piece of 

attached lamproite and would be classified as a small gem weighing about 0.03 carat.  

The calculated average diamond content of both intrusions was an order of magnitude 

less that that observed at the Prairie Creek lamproite which yielded an average diamond 

grade of 0.57 carats per 100 tonnes (Morgan Worldwide Mining Consultants, 1997), and 

for the Twin Knobs 1 lamproite which yielded a grade of 0.17 carats per 100 tonnes 

(Waldman and others, 1987). 
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XENOLITHS, MEGACRYSTS AND XENOCRYSTS 

Rare xenoliths of mantle and crustal rocks have been recovered from the Black 

Lick and Twin Knobs 2 lamproites.  Approximately 1.5 kilograms of xenoliths were 

recovered from 260 tonnes of lamproitic material treated for the diamond bulk sample.  

Approximately ¾ of the xenoliths recovered are of probable crustal origin.  Half of these 

crustal xenoliths consist of near-surface lithologies including shale, sandstone and 

quartzite.  The deeper crustal xenoliths are dominantly amphibolite, with lesser quantities 

of granitic and volcanic rock and rare mica-rich rocks.  The mantle xenoliths include 

dunite, harzburgite, websterite, wehrlite, eclogite and both spinel and garnet lherzolite.  

In addition, megacrysts of olivine, clinopyroxene, ilmenite, spinel and garnet have been 

recovered.  Microprobe analysis of these indicator minerals is in good agreement with the 

analysis reported by Waldman and others (1987).  A comparable suite of deep-seated 

xenoliths was observed within the Twin Knobs 1, but no detailed description of their 

mineralogy has been published. 
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Figure 2-1:  Surface geological interpretation of the Black Lick lamproite. 
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Figure 2-2:  Geological cross-section of the Black Lick lamproite.  Exploration 
boreholes are shown with depth in meters. 
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Figure 2-3:  Surface geological interpretation of the Twin Knobs 2 lamproite. 
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Figure 2-4:  Geological cross-section of the Twin Knobs 2 lamproite.  Exploration 
boreholes are shown with depth in meters. 
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Figure 2-5:  Subsurface geological interpretation of the Timberlands lamproite. 
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Figure 2-6:  Geological cross-section of the Timberlands lamproite.  Exploration 
boreholes are shown with depth in meters. 
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Figure 2-7:  Diamonds recovered during bulk sampling evaluation.  The top two 
diamonds are recovered from Twin Knobs 2; the three lower 
diamonds are from the Black Lick lamproite. 
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Chapter 3 

DIAMOND ECONOMICS OF THE PRAIRIE CREEK 
LAMPROITE 

 

INTRODUCTION 

The discovery of economic diamond deposits in the late 1970’s within Western 

Australia lamproitic intrusions generated renewed interest in the Arkansas lamproite 

province and resulted in reevaluation of the diamond potential of the region.  The purpose 

of this paper is to utilize the geologic setting and recent diamond evaluation results at the 

Prairie Creek Lamproite within the Crater of Diamonds State Park to constrain estimates 

of the post-erosion diamond distribution.  This model is then used to provide an 

estimation of the diamond distribution within and immediately adjacent to the 

diamondiferous lamproite.  This model provides insight into the future economic 

potential of the intrusion as both a commercial mine and as a tourist attraction.  In 

addition, the model helps to explain and clarify past mining history that has been poorly 

documented in the literature. 
 

MINING HISTORY 

Diamonds were first found on this property on August 1, 1906, by the owner 

John W. Huddleston.  Immediately after confirmation of the diamond find, the majority 

of the property was optioned and eventually sold to a consortium that organized into the 
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Arkansas Diamond Company.  Arkansas Diamond Company production was initiated in 

1907 and continued until the end of 1912.  In 1919, the mining operation was reorganized 

as Arkansas Diamond Mining Corporation of Virginia, and a larger washing plant was 

constructed.   Production in the 1920’s appears to have been plagued by various 

problems, but production continued until 1927 when the property was sold under threat of 

foreclosure.  Small scale operations were reinitiated in 1928 and continued until stopped 

by the Great Depression in 1931 (Kidwell, 1990). 

In 1944, the Bureau of Mines evaluated the property as a source of industrial 

diamonds.  Their report published in 1949 indicated only low-grade diamond reserves.  In 

1948, Glenn Martin leased the diamond property and erected a washing plant to test the 

recently consolidated diamond deposit.  This test returned only 246 carats of diamonds 

from approximately 112,000 tonnes of material.  The State of Arkansas purchased the 

land in 1972 and named it the “Crater of Diamonds State Park”.  Since that time, 

numerous improvements have been made on the property to facilitate its operation as a 

tourist attraction. Approximately 500 diamonds, with a total carat weight of nearly 50 

carats, are recovered annually by tourists within the State Park.  

 

PRAIRIE CREEK GEOLOGY 

A review of the early mining history revealed that the only available subsurface 

information on the lamproite intrusion was from three holes described by Fuller in 1909 

and by Thoenen and others (1949) in the U.S. Bureau of Mines investigation of 1943-

1944.  This drilling was to a maximum depth of 63 meters with an average depth of less 

than 10 meters.  Few if any of the borings intersected the intrusive contact at depth, and 
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therefore they provided no significant data on the size or shape of the diamond resource 

at depth.   The Phase 1 evaluation of the vent was undertaken in 1990 by the State Parks 

Commission to provide this subsurface data. 

The Phase 1 Evaluation Program involved vertical and angled diamond drilling 

in order to determine the subsurface shape of the lamproite intrusion.  At various 

locations around the intrusion both vertical and 45o diamond drill holes were drilled that, 

when used with the known surface outcrop location, provided a three point intrusive 

contact surface.  The results of this drilling revealed that the sides of the intrusion dip 

inward with depth at an approximate 45o angle mimicking the shape of a martini glass as 

indicated on cross-sections generated during the Phase 1 evaluation program (Morgan 

Mining & Environmental Consultants, 1993).  This morphology is typical for high level 

crater facies lamproitic vents (Mitchell and Bergman, 1991).  

The Phase 1 Evaluation Program resulted in a clearer understanding of the 

surface geology and its three-dimensional projection into the subsurface.  Four main rock 

types were identified and mapped (Figure 3-1).  The first rock type is hypabyssal 

magmatic olivine lamproite which forms nearly half of the surface vent exposure.  It is a 

very hard, dense, greenish-black olivine porphyry lamproite with contact-metamorphosed 

near-surface sedimentary xenoliths.   This unit was previously described by Miser and 

Purdue as “magmatic”.  The second mapped unit was “maar epiclastics” which likely 

formed in shallow crater lakes during periods between eruptions.  The epiclastics largely 

consist of medium-grained quartz sandstone and appear to have been preserved near the 

margins of the intrusion.  The distribution of epiclastic rocks is erratic as the unit 

thickness changes rapidly over short distances.  Estimated mapped surface exposure is 
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about 5% of the area and total volume of the “epiclastics” within the vent is estimated as 

less than 10% (MMEC, 1993). 

In addition, two types of pyroclastic lamproite were observed and mapped.  The 

first type is a phlogopite-rich tuff which is generally finer-grained and was previously 

mapped by Miser and Purdue (1929), and subsequent workers as “tuffs”.  Although the 

geologic contact between the two types of lamproite tuff are not very well defined, due to 

a transitional nature, the phlogopite-rich tuffs are believed to make up approximately 

20% of the surface outcrop.  The second type, olivine-rich lamproite tuff occupies much 

of the visitor search area and was previously mapped in 1929 as “breccia”.  The textures 

observed do not resemble “breccias” because clasts are not angular in nature, but rather 

coarse-grained tuffs and lapilli tuffs with rounded fragments.  The surface extent of the 

olivine-rich tuffs can be estimated from the map of surface geology as approximately 

30% of the 32 hectare vent. 

 

IN-SITU DIAMOND DISTRIBUTION 

The four major rock types were bulk tested for diamond content as part of the 

Phase 2 Evaluation Program completed by the State Parks Commission in 1997.  The 

purpose of the evaluation was to determine the diamond grade and value of the diamond-

bearing lamproite.  This evaluation utilized 14 trenches throughout the vent, each 

consisting of a 600 tonne bulk sample.  Approximately 3 meters of surface overburden 

was removed for backfill and the in-situ lamproite was shipped to an off-site heavy media 

plant for diamond concentration and recovery (Morgan Worldwide Mining Consultants, 

1997).  It should be noted that some researchers question the validity of the 1990’s 
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evaluation (Howard, 2000); however, the reported diamond grades appear to be validated 

by the data comparison discussed below. 

Estimated diamond grades can be applied to these four rock types based on 

results of the bulk diamond testing.  The specific diamond content of the magmatic 

olivine lamproite that forms about 45% of the surface outcrop was never definitively 

determined.  Miser and Purdue (1929) reported that only a few small diamonds have ever 

been found within this unit.  Because the massive resistant rock is not conducive to rotary 

pan concentration or crushing and heavy media separation, the rock type has never been 

bulk tested economically.  However, petrological observations by Roger Mitchell 

(MMEC, 1993) revealed reaction rims around the large olivine megacrysts and poikilitic 

phlogopite phenocrysts which indicate a relatively slow cooling.  Mitchell suggested that 

few diamonds would survive this slow cooling event under conditions outside of the 

diamond stability field.  Both of these lines of evidence suggest that the in-situ diamond 

content of the magmatic olivine lamproite is insignificant. 

The epiclastics are generally fine-grained clay to sandy sedimentary rocks that 

also have not been definitively sampled.  Trench 3-B was largely in the epiclastics of the 

border zone and although described as “sandy tuffs”, it yielded no diamonds from a 240 

tonne bulk sample.  In contrast, the relatively fine-grained border facies described as 

sandy tuffs within the diamondiferous Australian lamproite province is described as 

having relatively high grade diamond contents.  Due to the barren epiclastic deposit 

sampled during the Phase 2 testing, the volumetrically small amount of “epiclastics” is 

considered barren of diamonds. 

The phlogopite-rich tuffs commonly appear somewhat transitional between the 

border “epiclastics” and the central olivine-rich tuffs and are found interbedded with both 
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units. Phlogopite-rich tuffs are mostly found on West Hill and the eastern flanks of 

Middle Hill adjacent to the western edge of the visitor search area.  Four of the bulk 

sample trenches were at least in part finer-grained phlogopite-rich tuffs.  Evaluation of 

the diamond-content of the in-situ phlogopite-rich tuffs yielded two trenches barren of 

diamonds and two other trenches with less than 0.11 carats per 100 tonnes (0.11 cpht).  

To estimate maximum reasonable diamond contents, it is assumed that the fine-grained 

phlogopite-rich tuffs have an average diamond content of 0.11 cpht. 

The olivine-rich tuffs tend to be coarse-grained due to the presence of rounded 

lamproite lapilli.  The olivine-rich tuffs are found throughout most of the visitor search 

area and represent the source of most of the visitor diamonds.  The majority of the 

diamond evaluation efforts were concentrated within its outcrop areas and the in-situ 

diamond distribution is fairly well defined.  Results from the Phase 2 evaluation show 

that the majority of the olivine-rich lapilli tuffs have a diamond grade of ~1.1 cpht.  

Material from the northern and southern margins of the visitor search areas show 

evidence of dilution by other rock types and yield average diamond grades of about 0.33 

cpht (Figure 3-2).  In order to place an upper limit on the reasonable diamond content, the 

olivine-rich lapilli tuffs were assumed to have an average grade of 1.1 cpht. 

 

MODEL AND EROSIONAL HISTORY 

The unique stratigraphic relationship in which the Arkansas lamproites were 

intruded into the Upper Early Cretaceous Trinity Group, eroded, and then capped by the 

Lower Late Cretaceous Tokio Formation allows accurate estimation of the time of 

intrusion.  Furthermore, the elevation of this regional unconformity permits an accurate 
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determination of the amount of lamproite erosion since Late Cretaceous time.  An 

adjacent lamproitic intrusion (Twin Knobs 2), located approximately 1.5 kilometers 

northeast of the Prairie Creek vent, reveals the cross-cutting relationship of the lamproites 

with the host stratigraphy (Dunn and Taylor, 2001).  The top of the intrusion is eroded 

and the basal gravel of the Tokio Formation was deposited nearly horizontally on the 

eroded surface.  The elevation of this erosional surface is ~150 meters above mean sea 

level.  This erosional surface exists at similar elevations at both the Black Lick and 

American lamproite vents further northeast along the trend of the intrusions. 

Extrapolation of this disconformity to the southwest reveals that the Prairie Creek 

pipe within the Crater of Diamonds State Park was probably buried by the Tokio 

Formation during the Late Cretaceous Period.   It was only exhumed by erosion in recent 

geologic time by the action of the Little Missouri River at an elevation of 150 meters 

above sea level (Figure 3-3).  The highest elevation within the park today is the East Hill 

(elevation of ~140 meters) which is capped by erosion-resistant magmatic olivine 

lamproite.  The elevation of this resistant topographic feature tends to reinforce the 

approximate exhumation elevation of 150 meters for the Prairie Creek vent.  The average 

elevation of the visitor search area at the Crater of Diamond State Park is just higher than 

100 meters above sea level indicating that the average thickness removed by erosion of 

the diamondiferous intrusion in recent geologic time is less than 50 meters (Dunn, 2000). 

This erosion depth, the area of intrusion, and the approximate diamond grade of 

the removed rock yields an estimate of the total volume of original diamonds liberated by 

erosion.  The density of in-situ weathered lamproite during the Phase 2 evaluation was 

found to be ~1.65 tonnes per cubic meter.  The geologic mapping indicated about 20% of 

the surface area (6.4 hectares or 64,000 square meters) to be phlogopite-rich lamproite 
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with an average diamond content of 0.11 cpht.  Assuming a maximum erosion depth of 

50 meters, the total eroded volume of phlogopite-rich tuffs is 3,200,000 cubic meters or 

~5,280,000 tonnes of material.  If this material contained an average grade of 0.11 cpht, a 

total of ~5,800 carats of diamond would have been liberated. 

The same calculation for the olivine-rich pyroclastics that cover 30% of the 

mapped vent yields 9.6 hectares of exposure or 96,000 square meters of olivine-rich 

pyroclastics.  This number multiplied by a maximum erosion depth of 50 meters yields a 

total volume of 4,800,000 cubic meters or ~7,920,000 tonnes.  If this material contained 

an average grade of 1.1 cpht, a total of ~87,000 carats of diamond would have been 

liberated.  All of the diamondiferous material eroded since exhumation of the deposit 

would yield an estimated 93,000 carats of diamond (Dunn, 2000). 

 

SURFACE CONCENTRATION 

Southwestern Arkansas experiences warm and humid summers and cool to mild 

winters, with almost a sub-tropical climate and over 125 cm of rain per year.  The local 

climate results in development of pedalfer to lateritic soil horizons with well-developed 

thick organic-rich residual black topsoil.  The surface layer or organic-rich A-layer is 

known to contain mainly resistate minerals which are not easily weathered or eroded and 

have accumulated over time within the soil.  These surface soils develop by extensive 

chemical weathering and dissolution of the underlying ultrabasic rock (saprolite).  This 

process is demonstrated by the deep leaching and extensive saprolite development 

(depths > 30 meters) found during drilling and by the low density of lamproite during the 

bulk testing. 
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Chemical weathering is expected to predominate over physical transport of 

material in a low-relief sub-tropical environment.  Thoenen and others (1949) stated that 

“The greatest concentration of diamonds appears to have been found in the black ground 

capping the brecciated peridotite.  This averaged about 2.5 feet thickness and yielded a 

diamond concentration of approximately 0.844 carat per cubic yard” (~50 cpht).  During 

the Phase 2 evaluation program, an absence of original organic-rich surface layer was 

observed over the entire intrusion, even in areas which overlay “barren” magmatic 

lamproite rock types.  Earliest mining operations most probably removed and exploited 

the natural surface concentration of diamonds.  Early recovery methods were designed 

for extremely soft weathered material, and large crushers were not utilized during these 

operations.  A report by an employee of the Arkansas Diamond Company, indicated that 

existing mining operations were recovering ~15 cpht with an average stone size of 0.35 

carats (Fuller, 1931). 

Rotary pan concentration techniques used in the old mining operations had 

relatively poor recovery rates especially for smaller stones because insignificant weight 

differences did not allow for gravity separation of small diamonds.  A cumulative plot of 

actual diamond size distribution for the Phase 2 diamond evaluation reveals that nearly 

50% of the diamond content by carat weight is in the size fraction of less than 0.3 carats 

(MWMC, 1997).  The average size of recovered diamond was just over 0.2 carats.  

Reported diamond grades during the early mining years may have been underreported by 

as much as 50% due to non-recovery of smaller diamonds.  Actual diamond contents 

within the surface soil concentration mined in the early stages of commercial operations 

may have had diamond grades in excess of 30 cpht.  This hypothesis is borne out by the 

fact that in the 1980’s the majority of diamonds reported as finds at the Crater of 
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Diamonds State Park was by artisan miners who were working the old tailings near the 

southern edge of the visitor search area.  In additional, the majority of these stones were 

less than 0.3 carat in size.  It is proposed that the vast majority of these diamonds were 

non-recoverable during early commercial production. 

Records of the early diamond production are sparse, with the most complete 

review of diamond production and grades that of Fuller (1931).  Fuller suggested that at 

least two grades of ore were processed.  The first ore type was rich in diamonds and 

yielded recovered diamond grades of 15 cpht with actual total diamond contents possibly 

in excess of 30 cpht.  The second reported ore grade encompassed over 50% of the 

material processed for the period 1919 to 1925.  This material yielded 176 carats of 

diamonds from ~20,000 cubic meters of material.  The combination yields an average 

recovered ore grade of approximately 0.5 cpht.  Compensating for a 50% loss of small 

stones yields an average ore grade of about 1.0 cpht.   

The U.S. Bureau of Mines evaluation during the 1940’s consisted of 54 large 

diameter holes drilled from the surface, yielding ~240 cubic meters or 395 tonnes of 

material.  Processing of this material yielded 32 stones weighing a total of 8.41 carats for 

an average grade of 2.1 cpht and an average size of 0.25 carats (Theonen and others, 

1949).  This ore grade is slightly higher than the Glenn Martin bulk test results where a 

large bulk sample from the consolidated mining properties produced about 246 carats 

from approximately 112,000 tonnes of material (St. Clair, 1956).  The calculated ore 

grade during this evaluation is approximately 0.22 cpht.  It has been noted that no small 

stones were recovered during this test so consideration for poor recovery during 

processing yields approximate diamond grades of up to 0.44 cpht. 
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Review of the Crater of Diamonds State Park mining history and the results of 

the 1996 Phase 2 evaluation suggest that two types of diamond resources were 

encountered at the Prairie Creek Lamproite.  The first ore type was relatively rich in 

diamonds with recovered ore grades in excess of 15 cpht and probable actual diamond 

contents near 30 cpht.  This material constituted the bulk of the material washed in the 

earliest mining operations until 1912 and at least part of the material processed during the 

1920’s.  During the 1920’s two ore grades can be distinguished.  The higher-grade ore 

had grades comparable to those of earlier mined surface enrichments and was probably 

constituted from the same material.  The lower grade ore processed appears to represent 

in-situ pyroclastic lamproite and yielded diamond contents averaging <1.0 cpht.  By the 

late 1920’s, nearly all of the surface-enriched material had been processed.  The in-situ 

material at that time was found to be too low grade and sub-economic, and the 

commercial operation failed and was abandoned by 1931. 

Later economic evaluations at the Prairie Creek vent specifically evaluated the 

in-situ lamproite as the enriched surface material had been depleted.  The U.S. Bureau of 

Mines test, which may have included some surface material, yielded average diamond 

contents of 2.1 cpht.  Glenn Martin’s large scale evaluation in 1948 yielded average 

grades of about 0.44 cpht, and the 1997 Phase 2 evaluation yielded an average grade of 

0.57 cpht.  When viewed in retrospect, the mining history and reported diamond grades 

appear consistent with the current geologic understanding and erosion processes at work 

in the area. 
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ECONOMIC CONSIDERATIONS 

The mining history and economic evaluation of the in-situ Prairie Creek 

lamproite vent proves that it has limited commercial economic potential even utilizing 

modern large-scale bulk mining equipment.  The Phase 2 evaluation proved that although 

the total resource size is significant, the in-situ diamond grade is too low for economic 

consideration.  However, a review of the results of the Phase 2 evaluation in conjunction 

with the sparse mining records suggests that early mining grades were significantly 

higher due to weathering and diamond concentration in the soil overburden.   Diamond 

concentrations exceeded economic diamond ore grades for that time.  Unfortunately, the 

natural high-grade concentration in the surface soil was volumetrically small for a 

commercial mining operation and was essentially depleted by the end of the 1920’s. 

The commercial alluvial potential of diamonds derived from the Prairie Creek 

lamproitic vent can be determined utilizing the erosional model.   Erosion estimates for 

this vent indicate that a maximum of 50 meters of erosion has occurred since the 

Cretaceous.  Previous calculations have revealed that the pyroclastic lamproite eroded 

from the vent would have yielded approximately 93,000 carats of diamonds.  Diamonds 

recovered from the surface lag concentrations which were less than a meter thick and 

covered the 16 hectares of the intrusion and had an estimated diamond grade of 30 cpht 

would have yielded approximately 58,000 carats of diamonds.  Of this amount of 

diamond, it is estimated that ~ 29,000 carats of the larger stones were recovered by early 

mining operations and another ~29,000 carats of the smaller stones were lost to the 

tailings. 
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This calculation reveals that approximately 35,000 carats of diamonds could have 

been removed from the vent area.  These diamonds would be contained in adjacent 

eluvial deposits and small erosion channels, and they would ultimately be delivered to the 

Little Missouri River for transport and fluvial concentration.  Using the average value of 

diamonds recovered during the Phase 2 evaluation ($12.30 per carat), the potential value 

of all the Prairie Creek intrusion alluvial diamonds is approximately US $430,000.  

Obviously, commercial alluvial diamond deposits along the Little Missouri River are not 

economically feasible.  The lack of alluvial diamond potential is supported by two lines 

of evidence.  The first is the near total lack of diamonds found immediately downstream 

of the vent.  Furthermore, American Selection Trust (AMSELCO) is known to have 

evaluated the alluvial potential of the Little Missouri River approximately 10 kilometers 

downstream.  No diamonds were recovered from at least one large tonnage gravel sample 

(Doug Duskin, personal communication, 1991). 

The diamond resource provided by eluvial diamonds adjacent to the vent can be 

estimated utilizing the erosion model.  Approximately 35,000 carats of diamonds are 

estimated to have been removed from the surface of the vent.  Of this value, many of 

these diamonds have probably not been transported far (due to lateritic soils) and may be 

contained in eluvial deposits adjacent to the vent.  Artisan miners discovered two 

diamond-rich eluvial stream channels (east and west drains) during the late 1980’s and 

extensively worked these channels until they were exhausted.  The “drains” were 

essentially buried ephemeral streams which ran from the center of the vent to the Little 

Missouri River.  Furthermore, Phase 2 evaluation tested some eluvial material formed by 

downslope creep off the southern margin of the vent in trench 3A.  This material had 

small pebbles and gravel, and despite being of eluvial nature, yielded two diamonds from 
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a relatively small sample.  This sample demonstrates that the eluvial material and/or 

terrace alluvium mapped adjacent to the vent may still contain some surface 

concentrations of diamonds that were not previously recovered.  These deposits adjacent 

to the intrusion may provide promising targets for further tourist development within the 

park (Dunn, 2000). 
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Figure 3-1:  Simplified surface geology of the Prairie Creek lamproite.   The four mapped volcanic rock types are 
indicated.  Modified from MWMC (1997). 
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Figure 3-2:  Recovered diamond grade within the Prairie Creek lamproite.  Modified from MWMC (1997). 
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Figure 3-3:  Erosion profile across the Arkansas lamproite province.  Estimated level of erosion of the Prairie Creek 
lamproite below the below regional unconformity is indicated.  Kt indicates the Early Cretaceous Trinity 
Group and the Kto indicates the Late Cretaceous Tokio Formation. 
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Chapter 4 

MANTLE XENOLITHS 

 

XENOLITH PETROLOGY 

The xenoliths, recovered as crushed heavy media concentrate (<3cm), were 

initially sorted by their probable crustal or mantle origin and by major compositional rock 

groups.  Representative xenoliths of each major compositional group were selected for 

thin sections based on their relative abundance and lack of visible alteration as 

determined by binocular microscope examination.  Ultramafic xenoliths were of 

particular interest because multiphase xenoliths can be used to estimate mantle pressure 

and temperature conditions.  Detailed mineralogy was determined by thin section 

analysis.  Xenoliths consisting of two or more minerals were selected for microprobe 

analysis to determine mineral compositions.  Polished thin sections were carbon coated, 

and areas of interest were marked using ink to assist in future location and identification. 

This study is based on ~40 mantle xenoliths ranging in size from 0.5 cm to 3.0 

cm in size.  Megacrysts were recovered, but are not described in this study as they have 

been adequately addressed previously (Waldman and others, 1987).  The mantle xenolith 

suite includes the following rock types (lithologic nomenclature of Le Bas and others, 

1986) with approximate proportion: dunite (20%), harzburgite, (10%), wehrlite (5%), 

eclogite (10%), spinel lherzolite (30%), garnet/spinel lherzolite (10%) and garnet 

lherzolite (15%). 
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Dunite 

Dunite xenoliths are composed predominantly of olivine with at least some of the 

olivine altered to serpentine.  This alteration initiated along fractures and expanded 

outward until many of the dunite xenoliths are predominantly serpentine and secondary 

Fe-oxides.  Most dunite xenoliths are coarse-grained (>1 cm) with some grains possibly 

originating as olivine megacrysts.  Many of the coarse olivine grains are wholly or 

partially recrystallized to clear equant (0.5 mm) polygonal olivine neoblasts.  

 

Harzburgite  

The harzburgite suite is represented by two samples (m12 and m36) of coarse (~6 

mm) peridotite with ~75% olivine and ~20% orthopyroxene and ~5% subhedral fine (<1 

mm) spinel.  Sample m12 has nearly opaque spinel and sample m36 shows extensive 

serpentinization at grain boundaries and only rare altered spinel. 

 

Wehrlite 

Three samples containing only olivine and clinopyroxene were observed (m10, 

m44 and m50).  However, the latter two samples may be fragments of spinel lherzolite 

which are lacking orthopyroxene due to their small size.  The first sample (m10) may 

represent wehrlite as it has a much higher iron to magnesium ratio than the latter two 

samples.   It consists of 90% olivine and 10% clinopyroxene.  The sample has coarse 

olivine (1 cm), with one small (1 mm) very pale green clinopyroxene grain.  The 

clinopyroxene grain is rimmed by an alteration halo of serpentine. 
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Garnet Websterite 

Two samples of garnet websterite (m42 and m43) consist of ~70% garnet, ~20% 

clinopyroxene, and ~10% orthopyroxene (Figure 4-1a).  The garnet is coarse-grained 

(~10 mm) and pink in color and it has abundant pyroxene inclusions.  The clinopyroxene 

exists as fine-grained (2 mm) inclusions and discrete grains (4 mm) and is pale green in 

thin section.  The orthopyroxene is fine-grained (1-2 mm), lacks visible exsolution, and 

occurs only as inclusions within the garnet. 

 

Eclogite 

Four eclogite samples (m26, m28, m29, and m51) contain about 75% subhedral 

green pleochroic clinopyroxene (10 mm) and 20% sub-rounded (5 mm) orange garnet 

(Figure 4-1b).  Two samples include about 5% subhedral brown rutile (2 mm), and the 

garnet contains exsolution needles that may also be rutile (m26 and m51).  All the garnets 

have kelyphite rims, less than 1 mm thick, surrounding the relatively inclusion-free 

garnets.  The garnet/clinopyroxene boundary in one sample (m28) is altered to fine-

grained amphibole and phlogopite near a lamproite contact.  The clinopyroxene in two 

samples is extensively altered to clay minerals (weathering?). 

 

Low-Cr Spinel Lherzolite 

Ten low-Cr spinel lherzolite samples (m9, m17, m20, m21,m23, m24, m32, m33, 

m46 and m47) consist of ~45% olivine, ~30% orthopyroxene, ~15% clinopyroxene and 

~10% brown spinel.  The olivine is typically coarse (5 mm) and partly recrystallized to 
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clear equant (1 mm) olivine neoblasts.  The orthopyroxene is coarse (5 mm) with good 

cleavage and commonly with exsolution lamellae.  The clinopyroxene tends to be in fine 

(<2 mm) equant grains and intimately associated with second-generation spinel.  The 

spinel is light to medium brown color and may record two episodes of growth.  First-

episode spinel is in fine (1 mm) subhedral grains that are commonly embayed and 

altered.  The second-episode spinel is at grain boundaries and in an intergranular texture, 

commonly poikilitic, and enclosing equant grains of other minerals (Figure 4-1c).  The 

textures may indicate re-equilibration of the spinel lherzolite to changing P-T conditions. 

 

Mid-Cr Spinel Lherzolite 

Four mid-Cr spinel lherzolite samples (m6, m30, m37, and m41) consist of ~50% 

olivine, ~30% orthopyroxene, ~15% clinopyroxene and ~5% brown spinel.  The olivine 

is typically coarse (5 mm) and rarely recrystallized to clear equant (1 mm) olivine 

neoblasts.  The orthopyroxene is coarse (5 mm) with occasional thin exsolution lamellae.  

The clinopyroxene generally forms fine (<2 mm) equant grains associated with the 

spinel.  The spinel is dark brown, medium-grained (> 2 mm) with evidence of some 

secondary growth along grain boundaries (Figure 4-1d).  The textures may indicate re-

equilibration of the spinel lherzolite in changing P-T conditions. 

 

High-Cr Spinel Peridotite 

Three high-Cr spinel peridotites (m4, m12, m36,) consist of ~60% olivine, ~30% 

orthopyroxene, ~2% clinopyroxene and ~8% opaque spinel (Figure 4-2a).  The olivine is 

coarse (5 mm), with no evidence of recrystallization.  The orthopyroxene is coarse (5 
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mm) and lacks exsolution lamellae.  The clinopyroxene is rare and forms (<2 mm) equant 

grains.  The spinel is opaque in thin section and small (<1mm) equant subhedral grains. 

 

Garnet/Spinel Lherzolite 

Four garnet/spinel lherzolites (m25, m27, m31 and m49) consist of subhedral (5 

mm) olivine (40%), subhedral orthopyroxene (25%), clinopyroxene (15%), brown spinel 

(10%), and very pale lilac garnet (10%).   The garnet occurs as overgrowths (0.5 mm) on 

slightly to strongly corroded and embayed brown spinel with garnet growth near grain 

boundaries (m25 and m27) and at the apparent expense of spinel (Figure 4-2b).  Most 

samples show evidence of growth of neoblastic (~1 mm) clinopyroxene at the expense of 

coarse-grained (~3 mm) orthopyroxene.   Coarse grains (~5 mm) of olivine are partly 

recrystallized to fine-grained neoblastic olivine (~1 mm). 

 

Garnet Lherzolites 

The garnet lherzolite suite consists of seven samples (bl4f, m7, m22, m34, m35, 

m45 and m48) which can be separated into two groups based on the appearance of the 

garnet.  The first group consists of four samples (bl4f, m7, m34, and m45) with coarse-

grained (~3mm) olivine (45%), subhedral orthopyroxene (35%), subhedral clinopyroxene 

(10%) and purple garnet (10%) with kelyphite rims (Figure 4-2d).  Some of the garnet is 

altered and has irregular shapes (m34 and m45) with thick (~50um) kelyphite rims.  The 

second group (m22, m35, and m48) has coarse to neoblastic olivine (45%) subhedral 

orthopyroxene (35%), rounded clinopyroxene (10%) and pale lilac garnet (15%) without 

kelyphite rims (Figure 4-2c).  The olivine is partly recrystallized from coarse (5 mm) to 
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neoblastic (1 mm) grains.  Some exsolution lamellae are present in the orthopyroxene.  

Some of the garnet is anhedral, interstitial grains. 

 

MINERAL CHEMISTRY OF PERIDOTITE XENOLITHS 

Analytical methods 

All wavelength dispersive microprobe analysis were performed on the JEOL 

Superprobe 733 at The University of Texas at Austin.  Accelerating voltage was 

maintained at 15keV with a cup current of about 40 na.  A beam diameter of one micron 

was typically used except for calibration of Na using albite, which required a 10 micron 

beam.  Maximum counting times for both standards and unknowns were set at 40 

seconds.  Counts were terminated before 40 seconds if a standard deviation less than 

0.3% was achieved based on counting statistics.  In nearly all cases, ten elements were 

analyzed using the four spectrometer crystals.  Energy dispersive spectrometry (EDS) 

was used to qualitatively confirm the mineral assemblages present and one or more 

backscattered electron images (BSE) were generated for each thin section analyzed.  

Secondary standards were analyzed prior to and upon completion of analysis of 

unknowns to check on accuracy of the mineral analysis.  Representative mineral rim 

compositions used in calculation of  P-T conditions are listed in Table 4-1.  

 

Olivine 

Most olivine compositions have Mg-numbers (100*Mg / Mg + Fe) in the range 

89.5 to 93.6.  The most magnesian olivine occurs in coarse garnet lherzolites (92.0 to 

92.5) and in mid-Cr and high-Cr spinel lherzolites (91.4 to 93.6).  Olivine in the low-Cr 
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spinel lherzolites, garnet/spinel lherzolites, and three recrystallized garnet lherzolites 

have Mg-numbers in the range 89.5 to 91.1.  Olivine in a wehrlite has an exceptionally 

low Mg-number of 83.2.  Olivine from most xenoliths have Cr, Ca, and Ti contents at or 

near detection limits (~0.01 wt %).  NiO contents are between 0.35 and 0.42 wt %.  MnO 

contents of olivine are between 0.06 and 0.15 wt % and positively correlate with FeO 

contents.  Olivine appears homogeneous for all major elements as determined by electron 

microprobe traverses within grains and across grain boundaries. 

 

Orthopyroxene 

Most orthopyroxene Mg-numbers are in the range from 89.7 to 94.0 and all are 

higher than the corresponding olivine Mg-numbers.  This relationship of Mg-number 

between olivine and orthopyroxene is consistent with equilibrium (Gurney and others, 

1979).  Orthopyroxene grains in the first group of garnet lherzolites and mid-Cr and high-

Cr spinel lherzolites have the highest Mg-numbers, whereas those in the low-Cr spinel, 

garnet/spinel lherzolite and second group of garnet lherzolites have relatively low Mg-

numbers. In a garnet websterite, orthopyroxene has an exceptionally low Mg-number of 

83.2. 

The Cr2O3 content of orthopyroxene lies in the range from 0.1% to 0.7%, but no 

systematic variation among xenolith groups was observed.  The CaO content of most 

orthopyroxene is in the range 0.10% to 0.37 wt %. Trends are difficult to discern, but 

orthopyroxene tends to have the highest CaO values (up to 0.37%) in the first group of 

garnet lherzolites.  Orthopyroxene in the two garnet websterites have exceptionally high 

CaO contents up to 1.81%.  Highest Al2O3 contents in orthopyroxene are found in the 



 51

low-Cr spinel lherzolites (2.1% to 4.1%), whereas the lowest Al2O3 contents are found in 

the garnet-bearing lherzolites (0.47% to 1.52%) and in the high-Cr spinel lherzolites 

(0.47% to 0.89%).  Orthopyroxene in one garnet websterite, contains an exceptional 7.35 

wt % Al2O3.  The Cr-number (100*Cr / Cr + Al) of orthopyroxene is an indicator of the 

melt depletion level of the rock.  Orthopyroxene in the high-Cr spinel peridotites and first 

group of garnet lherzolites have the highest chrome numbers of all the xenoliths (Table 4-

2).  Orthopyroxene in high-Cr peridotite is relatively homogeneous (Figure 4-3a, b), 

whereas in low-Cr spinel lherzolite subtle zoning is demonstrated by electron microprobe 

traverses within grains and across grain boundaries (Figure 4-4a, b). 

 

Clinopyroxene 

The Mg-numbers of clinopyroxene within peridotites are in the range 92 to 96 

and are higher than the Mg-numbers of corresponding olivine and orthopyroxene.  

Exceptional clinopyroxene mg-values between 83.1 and 89.6 are found for wehrlite and 

websterite and between 75 and 85 for eclogite.  The titanium content of clinopyroxene 

ranges from below detection to 0.5 wt % TiO2.  A high TiO2 content of clinopyroxene is 

often considered an indicator of peridotite fertility.  Clinopyroxene in the mid-Cr and 

high-Cr spinel peridotites tend to have the lowest TiO2 content whereas clinopyroxene 

associated with the garnet/spinel lherzolites tend to have the highest titanium contents 

(Table 4-2).  Chrome content of clinopyroxene ranges from 0.6 % to 2.6 wt % Cr2O3, 

with those in the garnet-bearing lherzolites having values greater than 1.0% Cr2O3 and 

those in the spinel lherzolites generally less than 1.0 wt % Cr2O3.  Sodium content of 

clinopyroxene has a similar trend; in the garnet-bearing xenoliths the value exceeds 2.0 
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wt % Na2O, whereas in the spinel lherzolites it generally is less.  The alumina content of 

the clinopyroxene ranges between 0.8 wt % Al2O3 and 6.2 wt % Al2O3.  Values in the two 

garnet websterites again are exceptional, between 8.0 and 11.5 wt % Al2O3.  

Clinopyroxene in coarse garnet lherzolite and mid-Cr and high-Cr spinel lherzolite 

generally have low (<2.0 wt %) Al2O3. 

Compositional zoning at grain boundaries within clinopyroxene grains is rare or 

absent in high-Cr lherzolites (Figure 4-3a, b) and subtle within the low-Cr spinel 

lherzolites (Figure 4-4a, b).  Clinopyroxene zoning within the low-Cr spinel lherzolites is 

usually near-rim depletion adjacent to orthopyroxene and near-rim enrichment adjacent to 

garnet.  This compositional zonation is most apparent in elements with low diffusion 

rates (Al and Cr) and may record chemical diffusion gradients to grain boundaries. 

 

Spinel   

Spinels are readily sub-divided into high-Cr, mid-Cr and low-Cr groups.  The 

low-Cr spinel appears red-brown in thin section and contains less than 30 wt % Cr2O3.  

Mid-Cr spinel is usually dark brown in thin section and contains between 30 and 45 wt % 

Cr2O3.  High-Cr spinel is usually opaque in thin section and contains more than 50 wt % 

Cr2O3.  Low-Cr spinel has between 17.0 and 19.4 wt % MgO, whereas high-Cr spinel 

have less than 15 wt % MgO.  The Cr-number (100*Cr / Cr + Al) in spinel is an excellent 

way to distinguish between the three groups of chrome spinel.  Low-Cr spinels have Cr-

numbers of less than 30, mid-Cr spinels have values between 30 and 60, whereas high-Cr 

spinels have Cr-numbers greater than 60 (Table 4-2). 
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Garnet 

There are two distinct types of peridotite garnet based on color, texture and 

chemical analysis.  The first type of garnet is darker red to purple in color, coarse-grained 

(<1 cm), sub-rounded, and is surrounded by kelyphite rims.  These garnets are relatively 

high-Cr (3-9 wt % Cr2O3) pyrope garnet.  Garnet of the second type is very pale lilac in 

color and lacks a kelyphite rim.   Grains are either rounded and equant or elongated along 

grain-boundaries.  These garnets are relatively low-Cr (1-2 wt % Cr2O3) pyrope garnet 

and found in some garnet lherzolite and garnet/spinel lherzolites.  The high-Cr peridotite 

garnets have higher TiO2 (0.1-0.3 wt %), higher CaO (5-9 wt %) and lower Al2O3 (17-21 

wt %), lower FeO (7-9 wt %) when compared to low-Cr peridotite garnets. The Cr-

number in garnet is considered an indicator of melt depletion of the rock.  High-Cr 

lherzolite garnets (depleted) have Cr-numbers in excess of 8.0 whereas low-Cr lherzolite 

garnets (fertile) have ratios of less than 5.0 (Table 4-2). 

Major element compositional zoning at grain boundaries within garnet grains is 

generally rare or absent in high-Cr garnet lherzolite, when excluding the kelyphite rim 

(Figure 4-5a).  Major element compositional zoning at grain boundaries is subtle within 

the low-Cr garnet/spinel lherzolite (Figure 4-5b).  Compositional zoning within low-Cr 

garnet/spinel lherzolite grains is commonly near-rim enrichment in Al2O3, and near-rim 

depletion in CaO and MgO. 

Garnet within the two garnet websterites is coarse-grained and light pink in color.  

This garnet has moderate Cr2O3 (2.73-2.81 wt %), high TiO2 (0.99-1.14 wt %), moderate 

CaO (5.11-5.43 wt %) and moderate FeO (8-10 wt %) when compared to lherzolitic 

garnet.  Garnet found in eclogite is pale orange, rounded and has a kelyphite rim.  Three 
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of four eclogites have garnet with less than 0.1 wt % Cr2O3, whereas the exception (m26) 

has 0.56 wt % Cr2O3.   Eclogite garnet has relatively high TiO2 (0.1-0.4 wt %), high CaO 

(4.8-8.2 wt %), and high FeO (18-20 wt %) when compared to garnets in the lherzolite 

suite. 

 

PRESSURE-TEMPERATURE CALCULATIONS 

Method 

Equilibrium pressure-temperature (P-T) calculations are based on the partitioning 

of elements between coexisting minerals, and are an integral part of research on the upper 

mantle.  A major advance in P-T calculations resulted from experiments utilizing 

naturally occurring mantle compositions.  The most widely used and accepted 

geobarometer for mantle peridotites is that of Brey and Kohler (1990) which utilizes 

solubility of Al in orthopyroxene equilibrated with garnet (P BKN).  Widely used 

geothermometers include those of Brey and Kohler (1990) which utilize a clinopyroxene-

based two pyroxene thermometer (T BKN) and a calcium-in-orthopyroxene-based 

thermometer (T BKopx).  A review of temperature and pressures of mineral equilibrium 

by Smith (1999) indicates that the clinopyroxene-based thermometer (T BKN) is more 

accurate at temperatures in excess of 900oC while the orthopyroxene-based thermometer 

(T BKopx) is more accurate in the range of 800oC to 900oC. 

Because calculated pressure and temperatures for mantle xenoliths are based on 

equilibrium compositions, sufficient time and temperature at ambient mantle conditions 

are required to permit minerals to equilibrate by diffusion.  Compositions of minerals in 

Arkansas xenoliths with calculated temperatures of ~900oC were found to be relatively 
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homogenous.  Homogeneity is taken to be when the standard deviation for various 

analyses within a grain is approximately the standard deviation expected from 

microprobe counting statistics.  Xenoliths that record temperatures of ~800oC or less may 

not have equilibrated to ambient mantle conditions, except very near grain contacts 

(Smith, 1999).  Therefore, the use of line scans to determine mineral compositions near 

grain boundaries is a preferred analytical technique for minerals used in P-T calculations.   

The outermost grain boundary compositions of mineral phases, with good stoichiometric 

and oxide weight totals, were utilized for all calculations.  Many of the analyzed 

xenoliths yield evidence of re-equilibration, recrystallization and secondary mineral 

growth.  It is hoped that use of compositions near grain boundaries will most closely 

reproduce the ambient mantle conditions immediately prior to xenolith entrainment and 

eruption in Cretaceous time. 

Comparison of P-T calculations utilizing different methodologies is a powerful 

tool for evaluation of mineral equilibrium and accuracy of results.  Therefore, many 

different thermobarometers were used to calculate P-T conditions recorded by single 

xenoliths. All pressures and temperatures were calculated with the FORTRAN program 

TP01.v1 which is available from a web address (http:// 

www.geo.utexas.edu/DougSmith/).  Calculated pressures and temperatures for all 

orthopyroxene and garnet-bearing Arkansas xenoliths are listed in Table 4-3. 

 

Results 

Two garnet lherzolite xenoliths (bl4f and m7) record pressures of ~4 GPa and 

temperatures in excess of 900oC.   Two garnet lherzolite xenoliths (m34, and m45) record 
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pressures of ~3 GPa and temperatures near 800oC.  Seven additional xenoliths (m22, 

m25, m27, m31, m35, m48 and m49) record pressures of ~2.5 GPa and temperatures 

slightly less than 800oC.  Four of these seven xenoliths contain coexisting spinel and 

garnet and help to define the garnet/spinel transition zone within the upper mantle.  The 

last two P-T array points are relatively low pressure and high temperature falling well off 

the main trend and represent the two garnet websterite xenoliths.  Calculated P-T 

conditions for all xenoliths with garnet and orthopyroxene, together with the graphite-

diamond transition curve and typical mantle geotherms are plotted in Figure 4-6a, b, c, d.  

The presence of garnet rims as overgrowths on spinel within four of the xenoliths confirm 

that the garnet-spinel transition zone occurs between 2 and 3 GPa of pressure.  These 

pressures are consistent with those suggested by O’Neill (1981).  Likewise, calculated P-

T conditions for the deepest xenoliths fall within the diamond stability field and are 

consistent with the presence of diamond within all the Arkansas lamproites (Dunn and 

Taylor, 2001).  Both of these mineralogical and petrological observations are consistent 

with the calculated P-T values for the Arkansas xenoliths.   

P-T values using the T BKN two pyroxene thermometer (Figure 4-6a) can be 

compared to a plot using the T BK orthopyroxene thermometer (Figure 4-6b).  The two 

plots compare favorably at higher temperatures in excess of 800oC.  Temperatures for 

xenoliths at lower temperatures show a good cluster for the T BKopx thermometer 

whereas the T BKN two pyroxene thermometer shows much greater scatter.  These data 

support the conclusion of Smith (1999) that the T BK orthopyroxene thermometer 

appears more accurate than the T BKN two-pyroxene thermometer at temperatures of less 

than 900oC. Calculated temperatures at less than 800oC are thought to represent blocking 

temperatures as indicated by the increasing tendency of xenoliths at these lower 
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temperatures to show compositional mineral zoning (Figures 4-4a, b) and by the 

increasing discrepancies between different thermometers.  The P-T array calculated using 

T Krogh (a garnet-clinopyroxene based thermometer) @ P BKN (Krogh, 1988) records 

slightly higher temperatures for the deep xenoliths than both the pyroxene-based 

thermometers.  However, overall the T Krogh array is consistent with those using the T 

BK thermometers and is shown as Figure 4-6c.  P-T values were calculated using the T 

Nimis @ P Nimis thermobarometer (Nimis and Taylor, 2000).  This single clinopyroxene 

method is based on a completely different barometer using Cr in clinopyroxene.  The 

Nimis barometer records slightly (+/-1 GPa) higher pressures for high-Cr lherzolites and 

slightly (+/-1 GPa) lower pressures for the low-Cr lherzolites than the P BKN barometer 

(Figure 4-6d).  These calculated pressure differences tend to increase the scatter of data 

points from the average mantle geotherm when compared to the P BKN barometer.  This 

increased scatter of data points with the Nimis barometer indicates a less robust, but 

viable alternative geobarometer for mantle lherzolites. 

 

Discussion of Results 

The P-T arrays calculated for Arkansas mantle xenoliths are proposed to 

represent equilibration to a conductive, steady state geotherm at the time of lamproite 

eruption (excepting two anomalous garnet websterites).   In order to compare the 

Arkansas geotherm with those elsewhere, the calculated 40mW/m2 geotherm of Pollack 

and Chapman (1977) and the xenolith-derived Kalahari (southern Africa) craton 

geotherm (Rudnick and Nyblade, 1999) are also shown in the P-T arrays (Figure 4-6a, b, 

c, d).  The Arkansas data at pressures of less than 3 GPa plot at or above a geotherm of 
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~40mW/m2, whereas data at pressures greater than 3 GPa tend to plot at or below this 

relatively cool mantle geotherm.  This result is in agreement with calculations of T, based 

on TNi in garnet, from ~100 garnets recovered at the Prairie Creek and Twin Knobs 1 

lamproites which are consistent with a geotherm of ~40mW/m2 (Griffin and others, 

1994).  Furthermore, the Arkansas P-T array is very similar to that calculated using 

mantle xenoliths and the same thermobarometers by Rudnick and Nyblade (1999) for the 

Kalahari craton. 

Archean age cratons have yielded P-T xenolith arrays which indicate geotherms 

of ~40mW/m2 or less.  O’Reilly and others (2001) have used the observation that 

Archons (Archean cratons) typically have a geotherm of less than 40mW/m2, Protons 

(Proterozoic cratons) have a geotherm of between 40-45 mW/m2, and Tectons (cratons 

<1Ga) have a geotherm of 50 mW/m2 or more.  This relationship is used to define a 

concept of technothermal age of the cratons which states that the older the craton, the 

cooler the associated geotherm.  Based on these observations, the Arkansas xenolith P-T 

array is indicative of a stable craton of at least Early Proterozoic age.  This is a surprising 

result, as Arkansas lamproites intrude deformed Paleozoic age rocks of the Ouachita 

orogeny. 

The two points representing garnet websterite fall well off the main P-T array.  

They appear to be unrelated to the main xenolith trend and may indicate a different 

genesis.  The pyroxenes in the garnet websterite are partly altered inclusions within the 

garnet.  Calculated pressures and temperatures using different thermobarometers vary 

widely for the two garnet websterite xenoliths, suggesting lack of mineral equilibrium for 

these pyroxenes.  However, calculated pressures are generally less than 2 GPa and 

temperatures in excess of 1000o C.  These conditions are more representative of basaltic 
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magma crystallization at depth than those of a conductive mantle geotherm.  These two 

garnet websterite xenoliths may have formed during underplating of basaltic magmas 

near the base of the continental crust.  This hypothesis is in agreement with the proposed 

genesis of potassium richterite xenoliths as being cumulates within the lamproite melt 

(Mitchell and Lewis, 1983).  The high temperatures indicated by the pyroxene 

compositions suggest insufficient time for conductive cooling and therefore they may be 

related to the Cretaceous volcanic event that generated the host lamproites. 

The forsterite content of olivine can be used as a proxy for the amount of melt 

depletion within the mantle.  There is also a strong correlation between the average 

forsterite content in olivine and the age of the lithospheric mantle from which the olivine 

is derived (Gaul and others, 2000).  These authors observe that Archean age mantle 

lithosphere olivine is ~Fo92-93, Proterozoic lithosphere olivine is ~Fo91-92 whereas 

Phanerozoic mantle lithosphere olivine is ~Fo90.  Given the importance of the forsterite 

content of olivine, it is included under the olivine analysis of Table 4-1 and Table 4-2. 

A comparison of the forsterite content of olivine vs. calculated pressures (depth) 

for the xenoliths yields estimated mantle depletion with depth.  Data for all xenoliths 

containing a geobarometer assemblage indicate a general trend of increasing mantle 

depletion with depth to pressures of ~5 GPa (Figure 4-7).  Only the four garnet lherzolite 

xenoliths that reveal the highest pressures (3-5 GPa) have olivine more magnesian than 

Fo92.  Of greater significance, all other garnet-bearing xenoliths have olivine with a 

forsterite content of less than Fo90-91.  This gap in forsterite content represents a 

significant break in mantle depletion from a shallow less depleted mantle lithosphere to a 

relatively depleted mantle lithosphere at depths in excess of 100 kilometers. 
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Inclusion of the forsterite content of olivine within all spinel peridotites would 

add many more data points to this graph; however, spinel peridotites do not contain a 

reliable geobarometer.  It is reasonable to assume that most typical (low-Cr) spinel 

peridotites have equilibrated at pressures of ~1.5 GPa, a value which is less than the 

xenolith-defined spinel-garnet transition zone which occurs at recorded pressures 

between 2 and 3 GPa.  Ten of the 17 spinel peridotites would qualify as typical low-Cr 

spinel lherzolites which have forsterite contents of olivine between Fo89.5 and Fo91.2. 

The other seven spinel peridotites are mid-Cr and high-Cr spinel peridotites 

(spinel with >30 wt % Cr2O3) with olivine in the range of Fo91.4 to Fo93.5.  The high-Cr 

spinel peridotites may represent a distinct group of mantle xenoliths.  Increasing the 

Cr2O3 content of spinel has been found to increase the depth of the spinel-garnet 

transition (O’Neill, 1981).  An inverse correlation has been found between the Cr2O3 

content of spinel and the Al2O3 in the orthopyroxene (Figure 4-8).  All rocks containing 

spinel with over 30 wt % Cr2O3 have less than ~2 wt% Al2O3 in the orthopyroxene.  Boyd 

and others (1999) showed that spinel peridotites containing orthopyroxene with less than 

1.0 wt % Al2O3 may represent peridotite equilibrated at pressures within the garnet 

stability field.  The three high-Cr spinel peridotites (m4, m12 and m36) all have less than 

1.0 wt % Al2O3 and a Cr-number in spinel of ~70.  Lee and Rudnick (1999) found that a 

Cr-number in spinel of 70 increases the garnet-spinel transition to pressures of ~ 3.6 GPa 

in xenoliths from Tanzania.   In other words, the three high-Cr xenoliths may represent 

“garnet-facies” spinel peridotites and could represent pressures as great as ~3.5 GPa 

(greater than the garnet/spinel transition zone for aluminous peridotites).  The four mid-

Cr spinel lherzolites have petrologic and chemical characteristics between the low-Cr and 

high Cr spinel lherzolites.  They are assumed to represent pressures of ~2.5 GPa, midway 
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between the two groups and well within the garnet/spinel transition zone as recorded by 

the four garnet/spinel lherzolites.  Addition of all the spinel peridotites, plotted at 

pressures indicated by the Cr-number in spinel to the previous plot of garnet lherzolite 

depletion vs. depth indicates that the trend of increasing mantle depletion with depth is 

still observed (Figure 4-9).  The relatively sharp break between relatively fertile shallow 

mantle (<Fo91.5) and depleted deeper mantle (>Fo92) lithosphere occurs at pressures of 

~3GPa. 

The assumption that high-Cr spinel peridotite (orthopyroxene with <1 wt % 

Al2O3) equilibrated at pressures greater than low-Cr spinel lherzolites (orthopyroxene 

with >2 wt % Al2O3) is reasonable, given that the decreasing Al2O3 content of 

orthopyroxene in the presence of garnet with increasing pressure, is the basis for the 

widely used P BKN barometer in garnet lherzolite.  Further evaluation that high-Cr spinel 

peridotites are derived from greater depths than low-Cr spinel lherzolites can be made by 

comparing calculated temperatures recorded by the two xenolith populations.  Calculated 

temperatures for spinel peridotites derived from seven different thermometers are 

provided in Table 4-4.  The high-Cr spinel peridotites generally lack clinopyroxene 

preventing the use of clinopyroxene-based thermometers.  However, the one high-Cr 

spinel lherzolite and the mid-Cr spinel lherzolites generally record higher temperatures 

than the low-Cr spinel lherzolites.  Furthermore, the olivine-spinel thermometer of 

Ballhaus and others (1991) can be applied to all of the spinel peridotites, and these 

calculations record significantly higher temperatures for the high-Cr spinel peridotites 

than the low-Cr spinel lherzolites.  Application of the P Nimis (Cr-in-clinopyroxene) 

barometer to spinel lherzolite also indicates that the high- and mid-Cr groups generally 

record higher pressures than the low-Cr spinel lherzolites. 
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A plot of xenolith abundance and mineralogy used in conjunction with estimated 

pressure of origin yields a theoretical depth profile of the sub-continental lithospheric 

mantle beneath southwestern Arkansas at the time of eruption (Figure 4-10).  The 

lowermost part of the section is dominated by relatively depleted high-Cr spinel 

harzburgite and high-Cr garnet lherzolite, whereas the uppermost mantle section consists 

of relatively fertile low-Cr spinel lherzolites and a higher abundance of eclogite, wehrlite 

and garnet websterite. 

Eclogite equilibration temperatures were calculated using T Krogh at pressures of 

1.5 GPa (Table 4-5).  The four eclogites can be divided into low temperature and high 

temperature groups and plotted according to their recorded temperatures on the T Krogh 

P-T array geotherm of ~45mW/m2 (Figure 4-6c).  This exercise indicates that the two 

higher temperature eclogites were derived from depths of ~3 GPa and hence their 

equilibrium temperatures were recalculated to those pressures.  After placing all xenoliths 

at their estimated depths, a relatively sharp break between the two chemically different 

mantle volumes appears at a pressure of ~3 GPa. 

The crust-mantle boundary is at depths of 30-35 kilometers based on seismic 

reflection interpretation beneath the Prairie Creek lamproite province (Mickus and Keller, 

1992).  This shallow boundary is consistent with more detailed crustal models which 

indicate that much of the Gulf Coast has a crustal thickness of less than 40 kilometers 

(Chulick and Mooney, 1998).  The gravity data indicate the presence of low density 

upper mantle (~3.30 gm/cm3) suggesting the presence of a Mg-rich depleted mantle 

beneath the region.  Two different methodologies (Boyd and McCallister, 1976; Lee and 

others, 2001) were used to estimate the density of the Arkansas mantle lherzolites.  These 

calculations indicate a relatively low upper mantle density of 3.34-3.36 g/cm3.  Grand 
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(1994) also found evidence for the presence of anomalous mantle to a depth of 175 

kilometers as indicated by anomalously high shear velocities more typical of highly 

depleted Archean age shield areas beneath Arkansas.  This suggestion is compatible with 

Re-Os isotope studies of the Prairie Creek lamproites which find that the mantle source 

rocks of the Arkansas lamproites had sub-chondritic Re/Os ratios that are best satisfied 

by a refractory (harzburgitic) mantle source (Lambert and others, 1995).  Lamproite 

magmas were probably generated at depths of ~6 GPa and temperatures in excess of 

1200oC, based on maximum recorded xenolith pressures and extrapolation of the ~40 

mW/m2 mantle geotherm. 

Both xenolith abundance (mantle section) and depletion plots (olivine Fo) indicate 

the existence of a two-part mantle lithosphere beneath the Prairie Creek lamproite 

province in Cretaceous time.  The upper part of the mantle lithosphere consists 

predominantly of relatively fertile peridotite with an olivine content of ~Fo90.  In contrast, 

the lower part of the mantle lithosphere is relatively depleted with an olivine content of 

Fo92-93.  Griffin and others (1998a) used the forsterite content of mantle olivine to help 

define the tectonothermal age of the craton.  Application of their criteria to the two part 

mantle lithosphere observed beneath the Prairie Creek lamproite province indicates the 

shallow mantle lithosphere has a Tecton (<1.0 Ga) age, whereas the deeper, depleted 

mantle lithosphere might be an Archon (>2.5 Ga). 

The finding of a shallow fertile mantle lithosphere overlying a deeper depleted 

mantle lithosphere is in contrast to mantle sections proposed for most other sub-

continental lithospheric mantle of Archean age.  Kopylova and others (1998) found that 

the Canadian Slave Province has a relatively depleted upper lithosphere and a much more 

fertile, metasomatized, lower mantle lithosphere.  Griffin and others (1998a) found 
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similar layering in the Siberian craton, and Rudnick and Nyblade (1999) summarized 

earlier data to show that the Kalahari craton had increasing mantle fertility at depth due to 

metasomatism within the asthenosphere.  Evidence for this type of deep lithosphere 

metasomatism may be indicated by Arkansas garnet xenocryst data (Griffin and others, 

1994), which are used to calculate olivine equilibrium compositions and which indicate 

an increase in olivine Mg-numbers down to a pressure of ~5 GPa but show a slight 

decrease in olivine Mg-numbers at pressures between 5-6 GPa (Bill Griffin, personal 

communication, 2002).  Olivine inclusions found within Arkansas diamonds have Mg-

numbers of 91.7 and 92.2 and could be interpreted to show a slight decrease in Mg-

number at these higher pressures (Pantaleo and others, 1979). 

The finding of fertile mantle lithosphere overlying depleted mantle lithosphere is 

more common in Proterozoic age cratons.  This sub-continental mantle lithospheric 

structure is similar to sections based on xenoliths of Shandong Province in China (Griffin 

and others, 1998b), and the Colorado Plateau of the western U.S. (Roden and Shimizu, 

1993).  The Gawler craton of Australia is similar in that there is a sharp boundary 

between the upper and lower mantle layers which may suggest a two-stage construction 

of that mantle lithosphere (Scott-Smith and others, 1984). 

The presence of a two-part mantle lithosphere with relatively young fertile 

material overlying a relatively cool, depleted ancient mantle lithosphere located in a 

Paleozoic age tectonic belt on the southern margin of the North American craton is 

problematic.  Two possible emplacement scenarios are consistent with available data.  

The first proposed model is that an allochthonous terrane of either Archean or Lower 

Proterozoic age was incorporated into the southern margin of the North American craton 

before the development of the mid-continent granite-rhyolite terrane of 1.3 to 1.5 Ga.  
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Such a region would have a depleted lithospheric keel which would be extremely stable 

(low density) and difficult to destroy by delamination (Jordan, 1978).  Parts of this old 

allocthonous terrane would have to survive the forces associated with the granite-rhyolite 

terrane development leaving some relatively pristine depleted lithosphere keel at depth.  

A similar scenario has been proposed for the eastern Sino-Korean craton where thickened 

mantle lithosphere with extensional tectonics resulted in partial rejuvenation to a younger 

more fertile lithosphere (Griffin and others, 1998b).  It is possible that small regions of 

relatively intact depleted mantle lithosphere could have been preserved and sampled by 

the Prairie Creek lamproite province.  Evidence that is consistent with such a scenario is 

U-Pb dating of one zircon recovered from concentrates from the Prairie Creek lamproite 

that records a 1.85 Ga isotopic age which is older than any known crustal rocks in the 

region (Reichenback and Parrish, 1988).  Also, Nelson and DePaolo (1985) have 

determined Sm-Nd crustal formation ages for several clustered samples from the granite-

rhyolite terrane in southern Oklahoma to be from 1.81 to 1.98 Ga in age.  It is possible 

that these ~1.9 Ga ages could represent a sample of preserved allochthonous terrane 

located within the southern edge of the mid-continent craton. 

A second model for the presence of the two layer mantle lithosphere involves 

tectonic emplacement of relatively old (Archean?) depleted mantle lithosphere beneath  

younger (Upper Proterozoic) more fertile continental lithosphere by subduction within a 

large scale continent-continent collision.  Mosher (1998) has proposed that the Grenville-

Llano deformation front separating a 1.3-1.5 Ga granite-rhyolite terrane from the ~ 1.1 

Ga age Grenville-Llano terrane to the south continues northeast from central Texas 

toward the Arkansas border.  K-Ar ages of four amphibolite xenoliths recovered from the 

Prairie Creek lamproite province yields ages of 1.48 Ga, 1.43 Ga, 1.43 Ga, and 1.31 Ga 
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(Dunn and others, 2000).  These ages are suggestive of an association with the mid-

continent granite-rhyolite terrane and indicate that the region was inboard and thermally 

isolated from the major continent-continent collision associated with the Grenville-Llano 

orogeny.  Based on paleomagnetic data, it has been proposed that the continent-continent 

collision which generated this Grenville deformation resulted from collision of the 

southern margin of the North American craton with the Kalahari craton (Dalziel and 

others, 2000).  Preservation of part of this Archean craton may have occurred due to 

tectonic stacking of depleted mantle lithosphere which would probably preserve an 

Archean lithosphere keel (Poudjom Djormani and others, 2001).  It may be more than 

coincidental that the xenolith-defined mantle geotherms of Arkansas and the Kalahari 

craton are similar.  Other evidence for possible juxtaposition of mantle lithosphere comes 

from isotope studies.   Lambert and others (1995) have used Re-Os isotopic studies of the 

Prairie Creek lamproite to obtain a lithosphere separation model age of ~1.2 Ga.  

However, they suggest that subduction-related processes associated with Grenville-Llano 

tectonics may have juxtaposed younger(?) lithosphere under the Middle Proterozoic age 

craton.  Alibert and Albarede (1988) used Sr, Nd and Pb isotope data to determine that 

the Prairie Creek lamproite shows a major contribution of ancient recycled sediments in 

its mantle source in contrast to North American “kimberlites”.  Both low and high 

temperature eclogites have been recorded and their presence may suggest a possible 

tectonic emplacement of this two layer mantle boundary.  The observed presence of both 

peridotite and eclogite-suite minerals as inclusions within Arkansas diamonds (Pantaleo 

and others, 1979) helps support the role of subduction-related tectonics in the generation 

of Arkansas diamonds. 
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Arkansas mantle xenoliths reveal the existence of a shallow fertile mantle layer 

above a deeper depleted mantle layer, with a relatively sharp contact between the two 

types of sub-continental mantle lithosphere.  This juxtaposition of mantle lithosphere 

suggests a two-stage construction of the sub-continental mantle lithosphere beneath 

southwestern Arkansas.  It is proposed that this juxtaposition was tectonically emplaced 

either by incorporation of an older allochtonous terrane within the southern margin of the 

North American craton or by tectonic stacking of sub-continental mantle lithosphere 

during a continent-continent collision.  A similar tectonic emplacement scenario might be 

applicable to other areas with comparable structured sub-continental lithospheric sections 

such as the southern Australian craton. 
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    TABLE 4-1 

Mineral Rim Compositions used in Pressure-Temperature Calculations 

 
            
  m7 gtlz    bl4f gtlz    
 Olivine OPX CPX Garnet  Olivine OPX CPX Garnet   
SiO2 41.47 57.76 54.71 41.89  40.74 57.44 54.66 40.68   
TiO2 0.02 0.03 0.09 0.22  nd 0.07 0.18 0.29   
Al2O3 nd 0.57 1.88 16.95  nd 0.47 1.98 17.15   
Cr2O3 0.03 0.32 2.6 8.43  0.03 0.28 2.01 3.94   
FeO* 7.58 4.65 2.04 7.33  7.56 5.17 2.34 8.17   
MnO 0.12 0.11 0.06 0.45  0.10 0.10 0.06 0.46   
MgO 51.05 35.33 15.76 18.04  51.71 36.51 16.26 19.82   
CaO 0.01 0.32 19.32 7.05  0.03 0.37 19.81 4.89   
Na2O nd 0.10 2.65 0.04  0.05 0.13 2.29 0.08   
K2O nd nd nd nd  nd nd nd nd   
NiO 0.37 0.08 0.06 0.03  0.37 0.08 nd 0.05   
Total 100.6 99.27 99.17 100.43  100.6 100.62 99.59 95.53   
mg# 0.923 0.931 0.932 0.814  0.924 0.926 0.925 0.812   
            
  m34 gtlz    m45 gtlz    
 Olivine OPX CPX Garnet  Olivine OPX CPX Garnet   
SiO2 41.49 58.39 55.13 41.88  41.49 57.5 55.82 41.26   
TiO2 0.03 0.07 0.31 0.11  0.01 0.08 0.17 0.38   
Al2O3 nd 0.69 2.80 21.26  nd 1.08 1.62 17.67   
Cr2O3 0.03 0.23 1.92 3.05  nd 0.37 2.11 6.61   
FeO* 7.72 4.97 1.70 8.56  7.59 4.96 2.02 7.81   
MnO 0.10 0.10 0.01 0.50  0.11 0.11 0.10 0.45   
MgO 51.00 36.03 15.59 19.23  51.51 35.51 16.49 18.91   
CaO 0.01 0.19 21.22 5.24  0.02 0.33 20.07 6.24   
Na2O nd nd 2.12 0.02  nd 0.09 2.04 0.04   
K2O nd nd nd nd  nd nd nd nd   
NiO 0.36 0.07 0.03 0.02  0.36 0.13 0.14 0.01   
Total 100.75 100.76 100.83 99.87  101.11 100.16 100.58 99.38   
mg# 0.922 0.928 0.942 0.800  0.924 0.927 0.936 0.812   
 
 
            



 69

  m22 gtlz    m35 gtlz    
 Olivine OPX CPX Garnet  Olivine OPX CPX Garnet   
SiO2 40.09 56.70 54.48 41.51  41.54 56.89 54.58 42.03   
TiO2 0.01 0.09 0.36 0.07  nd 0.07 0.35 0.06   
Al2O3 0.13 1.38 3.68 21.82  nd 0.89 3.51 21.99   
Cr2O3 nd 0.27 1.02 1.22  nd 0.23 1.36 1.55   
FeO* 9.49 5.83 2.27 10.28  8.94 5.70 2.05 10.35   
MnO 0.10 0.10 0.04 0.43  0.09 0.10 0.01 0.46   
MgO 48.35 34.28 15.17 18.61  49.58 34.79 14.85 18.97   
CaO 0.03 0.22 20.32 4.62  0.01 0.22 19.81 4.64   
Na2O nd 0.03 2.55 0.03  nd 0.04 2.78 nd   
K2O nd nd nd nd  nd nd nd nd   
NiO 0.35 0.11 0.02 0.01  0.38 0.04 0.02 nd   
Total 98.55 99.01 99.91 98.60  100.57 98.97 99.32 100.07   
mg# 0.901 0.913 0.923 0.763  0.908 0.916 0.928 0.766   
            
  m48 gtlz    m25 gtsplz    
 Olivine OPX CPX Garnet  Olivine OPX CPX Garnet Spinel  
SiO2 41.18 58.09 55.41 41.48  40.02 56.16 52.35 40.83 nd  
TiO2 nd 0.09 0.40 0.05  nd 0.09 0.42 0.06 0.17  
Al2O3 nd 1.06 3.77 22.05  nd 1.13 6.02 21.68 45.20  
Cr2O3 nd 0.28 1.28 1.60  nd 0.20 0.87 0.98 19.03  
FeO* 8.95 5.83 2.02 10.19  9.25 5.86 2.11 10.74 14.95  
MnO 0.08 0.11 0.04 0.47  0.06 0.08 0.04 0.53 0.14  
MgO 49.75 35.09 14.67 19.09  49.20 34.69 14.21 18.37 17.20  
CaO 0.01 0.21 20.09 4.57  nd 0.25 20.84 4.53 nd  
Na2O nd nd 2.36 0.03  nd 0.04 2.01 nd nd  
K2O nd nd nd nd  nd nd nd nd nd  
NiO 0.44 0.07 0.05 0.03  0.37 0.08 0.04 0.01 0.28  
Total 100.42 100.85 100.19 99.56  98.91 98.58 98.91 97.74 96.98  
mg# 0.908 0.915 0.928 0.770  0.905 0.913 0.923 0.753 0.672  
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  m27 gtsplz     m42 gtweb   
 Olivine OPX CPX Garnet Spinel  OPX CPX Garnet   
SiO2 40.38 57.25 52.50 41.98 0.03  51.83 49.13 41.76   
TiO2 nd 0.10 0.49 0.06 0.14  0.38 1.52 1.14   
Al2O3 nd 1.52 5.00 22.54 48.17  7.35 8.07 19.72   
Cr2O3 nd 0.26 0.77 1.17 17.07  0.68 0.59 2.73   
FeO* 9.58 5.72 2.12 10.21 13.96  8.57 5.74 10.05   
MnO 0.09 0.09 0.04 0.47 nd  0.25 0.22 0.29   
MgO 49.37 34.84 14.77 18.41 17.57  29.17 16.10 19.12   
CaO 0.01 0.20 20.90 4.94 nd  1.81 18.04 5.43   
Na2O nd 0.03 1.85 0.03 nd  0.13 0.84 0.09   
K2O nd nd nd nd nd  nd nd nd   
NiO 0.35 0.06 0.04 nd 0.26  na na na   
Total 99.80 100.07 98.48 99.81 97.22  100.17 100.25 100.33   
mg# 0.902 0.916 0.925 0.763 0.692  0.858 0.833 0.772   
            
  m31 gtsplz     m43 gtweb   
 Olivine OPX CPX Garnet Spinel  OPX CPX Garnet   
SiO2 40.35 58.94 55.01 42.20 nd  57.53 45.47 41.65   
TiO2 nd 0.08 0.40 0.09 0.16  nd 2.46 0.99   
Al2O3 nd 0.83 3.73 22.84 50.44  2.58 11.52 20.41   
Cr2O3 nd 0.11 0.78 0.91 16.79  0.13 1.11 2.81   
FeO* 8.96 5.74 2.22 10.30 13.85  6.57 4.63 8.01   
MnO 0.10 0.10 0.04 0.48 0.13  0.01 0.18 0.29   
MgO 49.32 35.37 14.99 18.96 18.02  32.80 12.78 21.13   
CaO 0.01 0.16 20.55 4.43 0.03  0.56 20.48 5.11   
Na2O nd nd 2.82 nd nd  nd 1.09 0.05   
K2O nd nd nd nd nd  nd nd nd   
NiO 0.41 0.08 0.04 0.02 0.37  na na na   
Total 99.18 101.43 100.58 100.25 99.80  100.2 99.72 100.45   
mg# 0.907 0.917 0.923 0.766 0.699  0.899 0.831 0.825   
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  m49 gtsplz     m4 crsplz   
 Olivine OPX CPX Garnet Spinel  Olivine OPX CPX Spinel  
SiO2 41.24 57.54 54.30 40.91 0.02  41.29 57.75 56.51 0.03  
TiO2 nd 0.10 0.34 0.03 0.28  nd nd 0.02 0.16  
Al2O3 nd 1.01 3.35 23.07 40.77  nd 0.89 0.81 14.81  
Cr2O3 nd 0.21 1.06 1.08 24.91  nd 0.28 0.61 55.61  
FeO* 9.23 5.95 2.24 9.19 15.75  7.81 4.91 1.33 14.73  
MnO 0.09 0.09 0.07 0.33 0.03  nd 0.10 0.06 nd  
MgO 49.61 34.39 15.15 19.73 16.28  50.37 36.28 18.01 13.30  
CaO nd 0.26 20.56 4.99 nd  nd 0.13 23.99 nd  
Na2O nd nd 2.10 nd nd  nd nd 0.40 nd  
K2O nd nd nd nd nd  nd nd nd nd  
NiO 0.45 0.09 0.02 nd 0.25  0.27 nd nd 0.07  
Total 100.63 99.66 99.19 99.35 98.31  99.75 100.34 101.74 98.73  
mg# 0.905 0.912 0.923 0.793 0.648  0.920 0.929 0.960 0.617  
            
  m6 crsplz    m12 crsphz    
 Olivine OPX CPX Spinel  Olivine OPX Spinel    
SiO2 41.3 57.10 55.06 0.04  41.16 58.42 0.07    
TiO2 0.01 nd 0.01 0.16  0.02 0.05 0.72    
Al2O3 nd 2.06 1.33 30.18  0.03 0.56 9.97    
Cr2O3 nd 0.45 0.49 39.13  0.02 0.30 55.94    
FeO* 8.37 5.31 1.66 14.68  6.99 4.33 18.19    
MnO 0.11 0.12 0.06 0.22  0.09 0.10 nd    
MgO 50.17 34.33 17.30 14.50  50.74 35.70 13.04    
CaO nd 0.28 23.62 nd  nd 0.22 nd    
Na2O nd nd 0.18 nd  nd 0.11 nd    
K2O nd nd nd nd  nd nd nd    
NiO 0.39 0.09 0.03 0.09  0.35 0.07 0.14    
Total 100.37 99.75 99.74 98.84  99.41 99.86 98.09    
mg# 0.914 0.920 0.949 0.638  0.928 0.936 0.561    
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  m30 crsplx    m36 crsphz    
 Olivine OPX CPX Spinel  Olivine OPX Spinel    
SiO2 41.84 57.91 54.61 nd  41.65 58.11 0.08    
TiO2 0.01 0.07 0.16 0.31  0.02 0.02 4.95    
Al2O3 nd 2.04 2.82 36.04  nd 0.47 13.09    
Cr2O3 nd 0.37 1.07 32.36  0.04 0.37 43.12    
FeO* 7.55 4.77 1.52 13.02  7.55 4.43 21.52    
MnO 0.11 0.12 0.05 0.22  0.11 0.13 nd    
MgO 51.01 35.17 16.13 16.21  51.31 35.51 14.72    
CaO 0.02 0.23 22.48 0.03  0.01 0.32 nd    
Na2O nd nd 1.35 nd  nd 0.16 nd    
K2O nd nd nd nd  nd nd nd    
NiO 0.37 0.07 0.03 0.18  na na na    
Total 100.92 100.77 100.22 98.37  100.7 99.52 97.49    
mg# 0.923 0.929 0.950 0.689  0.924 0.935 0.549    
            
  m37 crsplz    m41 crsplz    
 Olivine OPX CPX Spinel  Olivine OPX CPX Spinel   
SiO2 41.55 57.66 55.75 nd  41.77 57.65 55.24 0.03   
TiO2 0.01 0.02 0.03 0.22  0.02 0.01 0.09 0.10   
Al2O3 0.04 1.36 1.11 22.60  nd 1.70 3.68 30.86   
Cr2O3 nd 0.42 0.63 45.53  nd 0.41 1.44 39.70   
FeO* 8.33 5.18 1.60 16.01  6.41 4.10 1.29 12.06   
MnO 0.13 0.12 0.08 0.27  0.06 0.07 0.02 0.27   
MgO 50.18 35.03 17.47 13.57  51.87 35.88 15.74 16.00   
CaO 0.02 0.29 24.17 0.05  0.01 0.16 20.71 nd   
Na2O 0.05 nd 0.37 nd  nd nd 2.06 nd   
K2O nd nd nd nd  nd nd nd nd   
NiO 0.38 0.10 0.04 0.09  0.38 0.05 0.03 0.10   
Total 100.91 100.19 101.25 98.34  100.53 100.1 100.3 98.86   
mg# 0.915 0.923 0.951 0.602  0.935 0.940 0.956 0.703   
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  m9 splz    m17 splz    
 Olivine OPX CPX Spinel  Olivine OPX CPX Spinel   
SiO2 40.56 56.18 53.95 0.06  42.13 56.99 54.58 0.01   
TiO2 nd 0.01 0.07 0.04  nd 0.02 0.09 0.03   
Al2O3 nd 2.14 2.54 44.46  nd 2.59 2.54 49.32   
Cr2O3 0.01 0.28 0.71 22.48  nd 0.29 0.49 19.13   
FeO* 8.65 5.88 1.57 13.53  9.27 6.17 1.91 13.33   
MnO 0.12 0.16 0.09 0.13  0.14 0.16 0.06 0.13   
MgO 49.98 34.06 16.71 17.11  50.34 34.28 16.93 17.72   
CaO nd 0.26 24.15 nd  0.01 0.27 23.85 nd   
Na2O nd nd 0.62 nd  nd nd 0.57 nd   
K2O nd nd nd nd  nd nd nd nd   
NiO 0.42 0.08        nd 0.18  0.37 0.08 0.03 0.25   
Total 99.75 99.06 100.41 97.99  102.26 100.86 101.05 98.80   
mg# 0.911 0.912 0.950 0.693  0.906 0.908 0.940 0.703   
            
  m20 splz    m21 splz    
 Olivine OPX CPX Spinel  Olivine OPX CPX Spinel   
SiO2 40.80 54.35 53.24 0.01  40.34 54.77 52.55 0.01   
TiO2 0.02 0.03 0.16 0.08  nd 0.11 0.48 0.07   
Al2O3 nd 3.55 4.36 47.46  nd 3.33 4.82 51.20   
Cr2O3 nd 0.54 1.13 19.01  nd 0.33 0.79 14.39   
FeO* 8.88 5.82 1.81 12.89  8.79 5.58 1.73 11.31   
MnO 0.14 0.13 0.09 0.14  0.13 0.15 0.09 nd   
MgO 48.82 33.79 15.17 17.55  48.94 33.75 14.95 19.02   
CaO 0.01 0.29 22.53 nd  0.01 0.31 21.69 nd   
Na2O nd nd 1.55 nd  nd nd 1.64 nd   
K2O nd nd nd nd  nd nd nd nd   
NiO na na na na  na na na na   
Total 98.65 98.52 100.1 97.01  98.22 98.35 98.74 96.00   
mg# 0.907 0.912 0.937 0.708  0.908 0.915 0.939 0.750   
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  m23 splz    m24 splz    
 Olivine OPX CPX Spinel  Olivine OPX CPX Spinel   
SiO2 41.00 55.42 52.12 0.02  41.58 56.51 53.45 0.04   
TiO2 nd nd 0.07 nd  nd 0.07 0.32 0.10   
Al2O3 nd 2.91 3.82 53.50  nd 2.55 3.93 51.59   
Cr2O3 nd 0.31 0.73 13.07  nd 0.27 0.73 15.58   
FeO* 9.04 5.89 1.77 11.56  8.83 5.88 1.72 11.85   
MnO 0.12 0.14 0.07 nd  0.11 0.15 0.10 nd   
MgO 49.48 33.94 15.41 18.59  50.38 34.47 15.45 18.73   
CaO 0.01 0.28 22.43 nd  0.01 0.24 22.37 0.07   
Na2O nd nd 1.06 nd  nd 0.03 1.52 nd   
K2O nd nd nd nd  nd nd nd nd   
NiO 0.40 0.08 0.04 0.26  0.39 0.07 0.05 0.28   
Total 100.06 99.00 97.52 97.02  101.31 100.24 99.64 98.25   
mg# 0.907 0.911 0.939 0.741  0.910 0.913 0.941 0.738   
            
  m32 splz    m33 splz    
 Olivine OPX CPX Spinel  Olivine OPX CPX Spinel   
SiO2 41.10 56.22 53.78 0.02  41.1 56.28 53.82 0.01   
TiO2 nd 0.06 0.42 0.07  nd 0.03 0.13 0.03   
Al2O3 nd 3.88 5.37 56.63  nd 2.42 3.26 51.77   
Cr2O3 nd 0.26 0.62 10.58  nd 0.25 0.61 16.27   
FeO* 9.61 6.29 2.11 12.02  8.84 5.73 1.73 12.41   
MnO 0.14 0.14 0.08 nd  0.14 0.12 0.07 nd   
MgO 48.84 33.64 15.11 19.33  49.81 34.23 15.81 18.48   
CaO 0.01 0.10 21.34 nd  nd 0.22 23.36 nd   
Na2O nd nd 2.73 nd  nd nd 1.22 nd   
K2O nd nd nd nd  nd nd nd nd   
NiO 0.40 nd nd 0.35  0.40 0.06 0.04 0.27   
Total 100.12 100.59 101.56 99.02  100.29 99.36 100.05 99.24   
mg# 0.901 0.905 0.927 0.741  0.909 0.914 0.942 0.726   
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  m46 splz    m47 splz    
 Olivine OPX CPX Spinel  Olivine OPX CPX Spinel   
SiO2 40.36 54.98 52.38 0.07  41.26 56.17 53.66 0.02   
TiO2 nd 0.04 0.33 0.14  nd 0.07 0.31 0.05   
Al2O3 nd 4.07 5.97 55.27  nd 3.50 5.14 57.69   
Cr2O3 0.05 0.33 0.75 9.97  0.06 0.21 0.58 9.47   
FeO* 10.14 6.28 2.14 12.82  10.21 6.82 2.22 12.12   
MnO 0.13 0.15 0.08 0.10  0.15 0.17 0.06 0.09   
MgO 48.47 32.86 14.39 19.03  48.94 33.55 15.16 19.32   
CaO 0.01 0.27 21.36 0.08  0.01 0.21 20.69 0.02   
Na2O nd 0.03 1.76 nd  nd nd 1.70 nd   
K2O nd nd nd nd  nd nd nd nd   
NiO na na na na  na na na na   
Total 99.17 99.01 99.16 97.48  100.64 100.72 99.52 98.78   
mg# 0.895 0.903 0.923 0.726  0.895 0.898 0.924 0.740   
            
 m10 wehr  m44 splz?   m50 splz?   
 Olivine CPX  Olivine CPX  Olivine CPX Spinel   
SiO2 39.14 53.88  41.29 56.01  41.27 53.54 0.04   
TiO2 nd 0.08  0.03 0.35  nd 0.33 0.08   
Al2O3 nd 1.52  0.03 1.88  nd 4.66 49.11   
Cr2O3 nd 2.43  0.07 1.22  nd 0.89 17.15   
FeO* 15.66 3.91  10.14 4.05  8.88 1.98 12.05   
MnO 0.13 0.02  0.12 0.13  0.12 0.10 0.09   
MgO 43.64 14.57  48.72 19.53  49.85 14.86 19.13   
CaO 0.09 20.19  0.08 16.30  nd 21.58 0.04   
Na2O nd 2.28  0.03 1.51  nd 1.78 nd   
K2O nd nd  nd nd  nd nd nd   
NiO na na  na na  na na na   
Total 98.71 98.88  100.51 100.9  100.13 99.72 97.69   
mg# 0.832 0.869  0.895 0.896  0.909 0.930 0.739   
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 m39 gtlz?  m26 eclg  m28 eclg    
 CPX Garnet  CPX Garnet  CPX Garnet    
SiO2 55.82 41.29  53.77 39.63  53.96 39.86    
TiO2 0.20 0.64  0.06 0.10  0.40 0.39    
Al2O3 1.34 18.00  1.47 21.36  4.81 21.06    
Cr2O3 1.11 5.92  0.21 0.58  0.05 0.09    
FeO* 2.42 7.85  5.00 19.67  7.10 19.36    
MnO 0.05 0.35  0.07 0.46  0.07 0.41    
MgO 17.48 17.31  15.21 12.25  12.28 11.78    
CaO 21.59 8.81  21.36 4.86  16.87 6.08    
Na2O 0.94 nd  1.22 nd  3.36 0.09    
K2O nd nd  nd nd  nd nd    
NiO 0.03 0.01  na na  na na    
Total 100.9 100.19  98.37 98.91  98.90 99.12    
mg# 0.928 0.797  0.844 0.526  0.755 0.520    
            
 m29 eclg  m51 eclg       
 CPX Garnet  CPX Garnet       
SiO2 50.78 40.56  55.11 40.01       
TiO2 0.37 0.08  0.17 0.06       
Al2O3 4.28 22.15  8.92 21.24       
Cr2O3 0.12 0.10  0.10 0.07       
FeO* 6.64 18.22  3.52 17.72       
MnO 0.11 0.22  0.02 0.26       
MgO 13.96 11.18  10.08 11.36       
CaO 22.72 8.14  15.63 7.83       
Na2O 0.85 0.02  5.31 0.04       
K2O nd nd  nd nd       
NiO na na  0.04 0.01       
Total 99.83 100.67  98.90 98.60       
mg# 0.789 0.522  0.836 0.533       

 

FeO*:  Total iron as FeO 
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            TABLE 4-2     
       Selected Mineral Compositions Sensitive to Melt Depletion 

Sample No. olivineFo
cpx 

wt%TiO2
      opx 
wt%Al2O3

opx 
(Cr#) sp (Cr#) gt (Cr#)

Gt. Lherz.       
bl4f 92.42 0.18 0.47 37.3 na 13.3 
m7 92.31 0.09 0.57 36.0 na 25.0 
m34 92.17 0.31 0.69 25.0 na 8.8 
m45 92.36 0.17 1.08 25.5 na 20.1 
m22 90.08 0.36 1.38 16.4 na 3.6 
m35 90.81 0.35 0.89 20.5 na 4.5 
m48 90.83 0.40 1.06 20.9 na 4.6 
Gt/Sp Lherz.       
m25 90.46 0.42 1.23 14.6 22.0 2.9 
m27 90.18 0.49 1.52 14.6 19.2 3.4 
m31 90.75 0.40 0.83 11.7 18.3 2.6 
m49 90.55 0.34 1.01 17.2 29.1 3.0 
Gt. Webst.       
m42 na 1.52 7.35 8.4 na 8.5 
m43 na 2.46 2.58 4.8 na 8.5 
Hi-Cr Sphz.       
m4 92.00 0.02 0.89 23.9 71.6 na 
m12 92.82 na 0.56 34.8 79.0 na 
m36 92.37 na 0.47 44.0 68.8 na 
Mid-Cr Splz.       
m6 91.44 0.01 2.06 17.9 46.5 na 
m30 92.33 0.16 2.04 18.1 37.6 na 
m37 91.48 0.03 1.37 23.6 57.5 na 
m41 93.52 0.09 1.70 19.4 56.3 na 
Low-Cr Splz.       
m9 91.15 0.07 2.14 11.6 25.3 na 
m17 90.64 0.09 2.59 10.0 20.6 na 
m20 90.74 0.16 3.55 13.2 21.2 na 
m21 90.84 0.48 3.33 9.0 15.9 na 
m23 90.70 0.07 2.91 9.6 14.1 na 
m24 91.05 0.32 2.55 9.5 16.8 na 
m32 90.06 0.42 3.88 6.3 11.1 na 
m33 90.94 0.13 2.42 9.4 17.4 na 
m46 89.49 0.33 4.07 7.5 10.8 na 
m47 89.52 0.31 3.50 5.7 9.9 na 
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        TABLE 4-3        
 Calculated Pressure and Temperature for Garnet-Bearing Xenoliths 

 Gpa (oC) 
 

Gpa  
 

(oC)  Gpa 
 

(oC)  Gpa (oC) 
Sample  PBKN TBKN PBKN TBKopx PBKN TKrogh PNimis TNimis
Gt. Lhz.         
bl4f 4.6 977 4.5 967 4.7 993 5.0 899 
m7 3.9 930 3.8 907 4.5 1053 6.0 867 
m34 3.1 767 3.3 798 3.3 800 2.8 686 
m45 3.6 936 2.6 864 2.8 908 5.3 968 
m22 2.1 757 2.2 782 2.2 767 2.4 668 
m35 2.6 759 2.9 810 2.6 755 2.8 660 
m48 3.2 869 2.7 790 2.5 755 2.5 769 
Gt/Sp 
Lhz.         
m25 2.5 784 2.7 824 2.3 743 0.9 672 
m27 2.2 805 2.0 755 2.0 759 1.2 711 
m31 1.9 585 2.8 752 3.0 791 1.9 496 
m49 3.1 835 3.1 845 3.4 896 2.5 749 
Gt. 
Web.         
m42 1.5 1186 1.8 1253 2.3 1262 1.4 1124 
m43 2.2 1045 1.7 929 1.4 1135 0.3 861 
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         TABLE 4-4       
  Calculated Temperature for Spinel Peridotites at Assumed Pressures 

 (oC) (oC) (oC) (oC) (oC) (oC) (oC) 
Sample  TBKN TBKopx TNimis TWells TWES TSeitz TBallhaus
        
Hi-Cr @ 3.5 Gpa        
m4 845 749 856 884 776 1076 949 
m12 na na na na na na 991 
m36 na na na na na na 1091 
Mid-Cr @ 2.5 Gpa        
m6 862 832 878 911 889 1554 779 
m30 734 796 690 800 853 885 766 
m37 777 858 756 841 847 1271 858 
m41 889 741 811 883 889 810 na 
Lo-Cr @ 1.5 Gpa        
m9 588 780 573 723 832 911 731 
m17 740 783 732 829 851 1131 705 
m20 562 799 510 688 991 1010 731 
m21 700 810 634 774 898 935 814 
m23 674 792 639 772 877 933 720 
m24 616 765 565 722 841 874 748 
m32 380 642 311 546 892 945 760 
m33 432 752 398 610 832 927 713 
m46 752 786 681 803 933 962 790 
m47 909 744 853 914 859 865 749 
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       TABLE 4-5 

   Eclogite Temperature and Depletion Criteria 

 

Sample #  T Krogh (oC) T Krogh (oC) 
Atomic        

gt (Cr/Cr+Al) 
cpx 

wt%TiO2 
cpx 

wt%Na2O
Eclogite  @1.5 GPa @3.0 GPa    
m26  624 672 1.79 0.06 1.22 
m28  867 925 0.29 0.40 3.36 
m29  666 710 0.30 0.37 0.85 
m51  821 873 0.22 0.17 5.31 
       
T Krogh  (Krogh, 1988)     
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Figure 4-1:  Selected backscatter electron images of xenoliths: a) garnet websterite (m43) showing pyroxene 
inclusions, b) eclogite (m51) showing garnet with kelyphite rim, c) low-Cr spinel lherzolite (m23) with 
grain boundary growth of spinel and d) mid-Cr spinel lherzolite (m37) with minor grain boundary 
growth of spinel.  Dark circles are ink spots for navigation purposes. 
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Figure 4-2:  Selected backscatter electron images of xenoliths: a) high-Cr spinel peridotite (m4), b) garnet/spinel 
lherzolite (m31) showing garnet (no kelyphite) overgrowth of spinel c) low-Cr garnet lherzolite (m35) 
without kelyphite rim and d) high-Cr garnet lherzolite (m7) with kelyphite rim.  Dark circles are ink 
spots for navigation purposes. 
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Figure 4-3a:  Compositional zoning in a high-Cr garnet lherzolite.  Pyroxenes appear homogeneous excluding grain 
boundary interferences in a traverse across an orthopyroxene/clinopyroxene grain contact. 
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Figure 4-3b:  Compositional zoning in a high-Cr spinel lherzolite.  The orthopyroxene is homogeneous, whereas the 
clinopyroxene has a slight rim-depletion in CaO in a traverse across an opx/cpx grain contact. 
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Figure 4-4a:  Compositional zoning in a low-Cr spinel lherzolite.  The orthopyroxene shows a rim-enrichment, 
whereas the clinopyroxene shows a rim-depletion in Al2O3 in a traverse across an opx/cpx grain contact.
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Figure 4-4b:  Compositional zoning in a low-Cr spinel lherzolite.  The orthopyroxene shows a progressive rim-
enrichment in Al2O3.  The clinopyroxene shows a progressive rim-depletion in Al2O3, Cr2O3 and Na2O 
in a traverse across an orthopyroxene/clinopyroxene grain contact.
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Figure 4-5a:  Compositional zoning in a high-Cr garnet lherzolite.  Both the clinopyroxene and the garnet show 
relative homogeneity near the grain boundary with the kelyphite rim (middle) which is variable in composition in a 
traverse across a clinopyroxene/garnet grain contact.
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Figure 4-5b:  Compositional zoning in a low-Cr garnet/spinel lherzolite.  The clinopyroxene shows a rim-enrichment 
of CaO and Al2O3 and a rim-depletion in MgO and Na2O in a traverse across a clinopyroxene/garnet 
grain contact.
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Figure 4-6a:  P-T xenolith array utilizing T BKN @ P BKN.  The 40mW/m2 
geotherm of Pollock and Chapman (1977) and the Kalahari geotherm 
of Rudnick and Nyblade (1999) are shown for comparison.  
Graphite-diamond equilibrium is according to Kennedy and 
Kennedy (1976).  Note that all but the deepest xenoliths plot above 
the 40 mW/m2 geotherm. 
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Figure 4-6b:  P-T xenoliths array utilizing T BKopx @ P BKN.  Note that the 
shallow xenoliths plot above whereas the deep xenoliths plot at or 
below the 40 mW/m2 geotherm. 
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Figure 4-6c:  P-T xenolith array utilizing T Krogh @ P BKN.  Note that the 
shallow xenoliths plot above whereas the deep xenoliths plot at or 
below the 40 mW/m2 geotherm. 
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Figure 4-6d:  P-T xenolith array utilizing T Nimis @ P Nimis.  Note that the 
shallow xenoliths plot above whereas the deep xenoliths plot at or 
below the 40 mW/m2 geotherm. 
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Figure 4-7:  Comparison of forsterite content in olivine and pressure.  Estimated 
pressure determined using the T BKN @ P BKN thermobarometer.  
Note the gap in olivine Mg# between shallow (<3 GPa) and deep (>3 
GPa) xenoliths. 
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Figure 4-8:  Comparison of Cr2O3 in spinel and Al2O3 in orthopyroxene.  Note the 
rapid increase in Cr2O3 of spinel when orthopyroxene falls below ~2 
wt % Al2O3.  Boyd and others (1999) argue that spinel peridotites 
with less than 1% Al2O3 in opx have equilibrated at pressures greater 
than the garnet/spinel transition. 
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Figure 4-9:  Comparison of forsterite content of olivine and pressure (PBKN).  
Includes the addition of low-Cr spinel lherzolites @ 15 GPa, mid-Cr 
spinel lherzolites @ 2.5 GPa and all high-Cr spinel peridotites @ 3.5 
GPa.  Note the correlation of increasing Mg-number in olivine with 
increasing pressure. 
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Figure 4-10:  Idealized section of sub-continental mantle lithosphere.  Section is 
located beneath the Prairie Creek lamproite province.  Number of 
xenolith type shown in parenthesis. 
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Chapter 5 

CRUSTAL XENOLITHS 

 

XENOLITH PETROLOGY 

 

The crustal xenoliths (1-3 cm in size) were recovered as heavy media 

concentrates with a density cut-off of ~2.82 g/cm3.  Therefore, the recovery process may 

result in a sampling bias favoring higher density rock types.  Crustal xenoliths were 

initially sorted by major compositional rock groups.  Representative xenoliths of each 

major compositional group were selected for thin section analysis based on their relative 

abundance and lack of visible alteration.  Crustal xenoliths were divided into shallow 

near-surface lithologies, which include sedimentary rocks, and deeper lithologies, which 

include amphibolite, granite, rhyolite, epidote-rich rocks and pelitic metamorphic rocks.  

Selected polished thin sections representing major compositional groups were analyzed 

on the JEOL Superprobe 733 at The University of Texas at Austin.  Accelerating voltage 

was maintained at 15keV with a cup current of ~30 na.  Nine elements were analyzed on 

the four crystals.  Energy dispersive spectrometry (EDS) was used to confirm the mineral 

assemblages present and backscattered electron images (BSE) were generated for 

selected thin sections. 
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Near-Surface Lithologies 

Approximately half of the crustal xenoliths are composed of near surface 

lithologies which include conglomerate, sandstone, chert and quartzite.  The 

conglomerate consists of coarse sand and gravel which is cemented by iron-oxide rich 

cement.  This rock is similar in appearance to some of the basal conglomerates found in 

the proximal Cretaceous-age sedimentary rocks into which the host lamproites were 

intruded.  The sandstone, quartzite, and chert are extremely durable and frequently have 

an abundance of opaque heavy minerals or iron oxide staining.  These rock types are 

similar in appearance to Paleozoic age Ouachita-facies sedimentary rocks which are 

known to exist in the area at depths greater than ~100 meters (Dunn and Taylor, 2001).  

There is no visible thermal alteration of these shallow crustal xenoliths, and they are 

probably derived from documented local lithologies (Miser and Purdue, 1929).  Two 

anomalous pink oolitic dolomite xenoliths with pellets and intraclasts were found that had 

a density of ~2.77 g/cm3.  These xenoliths are similar to Cambro-Ordovician platform 

carbonate rocks found throughout the southern mid-continent region (Hardie, 1989). 

 

Amphibolite 

The deep crustal xenoliths are about 50% amphibolite consisting of dominant 

amphibole and lesser amounts of plagioclase.  Color ranges from very dark green to a 

moderate shade of gray.  Grain size tends to be fine to medium-grained (~1 mm) although 

some coarse-grained (~5 mm) varieties have been observed.  Weak alignment of mafic 

minerals indicates a slight foliation is present in the amphibolite (Figures 5-1a).  The 
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density of the amphibolite ranged from 3.01 to 3.16 g/cm3 with an average value of ~3.08 

g/cm3. 

Amphibole (~50%) in thin section is prismatic and pleochroic from pale olive to 

dark green in color.  The plagioclase (~30%) is equant, anhedral and weakly altered to 

clay minerals.  Albite twinning of the plagioclase is apparent.  Accessory minerals range 

in quantity and type and include biotite, chlorite, microcline, quartz, titanite, ilmenite and 

apatite.  The biotite is subhedral and pleochroic light- to dark brown.  The chlorite tends 

to be an alteration of biotite and amphibole and is blue-green in thin section.  The 

microcline occurs as equant grains generally altered to clay minerals.  Some remnant 

tartan-plaid twinning is observed.  The quartz is fresh, equant, anhedral and appears as 

interstitial grains. 

Minerals in representative amphibolites (c1 and c10) were analyzed and the 

compositions of selected minerals are listed in Table 5-1.  The amphiboles generally have 

between 0.5 and 1.1 wt % K2O and would be classified as magnesio- and ferro 

hornblende.  Observed plagioclase composition ranges from oligoclase (An31Ab69 

through bytownite (An86Ab14).  Such calcium-rich plagioclase is uncommon in 

amphibolites and may indicate some type of calcium enrichment and/or alteration. 

 

Granitic and Rhyolitic Rocks 

Felsic composition xenoliths consisting of granitic and rhyolitic rocks are 

relatively rare making up only ~5% of the deep crustal xenoliths.  The coarse-grained (5-

10 mm) granites are usually light pink in color and consist of quartz and microcline with 

lesser amounts of plagioclase, and muscovite (Figure 5-1b).  Many of the granitic 
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xenoliths are iron-stained and have visible hematite and/or magnetite.  The quartz is gray, 

microcline is pink, and the plagioclase is white in color.  No foliation is evident within 

the granite xenoliths.  The rhyolite xenoliths are fine-grained (<1mm) and commonly 

dark pink in color.  Alkali feldspar and quartz are the dominant minerals present.  The 

average density of both the granite and rhyolite xenoliths is a surprisingly high ~2.90 

g/cm3.  This high density is attributed to the abundance of iron oxides and epidote 

alteration which may make them more susceptible to concentration within the xenolith 

recovery process. 

When viewed in thin section, the granite has anhedral quartz commonly with 

undulose extinction.  The microcline is equant, subhedral, and has some evident tartan-

plaid twinning.  The plagioclase is equant with some albite twinning.  The Na-rich 

plagioclase is albite composition.  Both feldspars are weakly altered to clay minerals.  

Both muscovite and biotite are subhedral and the biotite is pleochroic brown-to dark 

brown.  Magnetite and specular hematite are common as iron oxide minerals.  The 

rhyolite consists predominantly of altered potassium feldspar, prismatic epidote and 

quartz with accessory magnetite, biotite and calcite.  Representative mineral 

compositions of a granite xenolith (c25) are listed in Table 5-1. 

 

Epidote-rich  Rocks 

Approximately 40% of the recovered deep crustal xenoliths are classified as 

epidote-rich rocks.  Most of the samples are light green, commonly with some pink 

overtones.  Grain size tends to be fine- to medium-grained (1-2 mm) although coarser 

(~10 mm) varieties are present.  Foliation within the epidote-rich xenoliths is rare except 
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where epidote growth is concentrated along compositional layering.  Densities of epidote-

rich rocks are variable depending on the amount of epidote present, but typically range 

from 3.1 to 3.2 g/cm3. 

Most of the granitic xenoliths show evidence of epidote growth.  A particularly 

attractive version of altered granite (c22) is a pink and green rock known as unakite 

(Figure 5-1c).  In thin section, this rock consists of slightly altered equant, microcline 

with tartan-plaid twinning and subhedral pale green epidote.  The clinozoisite appears to 

be associated with alteration of mafic minerals including amphiboles, biotite and iron 

oxides.  Accessory minerals observed within the unakite include: equant quartz, sub-

rounded equant titanite, and hematite which appears to have grain-boundary growth.  A 

similar alteration process of rhyolitic xenoliths has been observed.  Some of the felsic 

xenoliths, especially in the fine-grained varieties, have been so completely replaced by 

epidote that they could be termed epidotites. 

Epidote alteration of the amphibolite is less common but observed.  Initial 

epidote growth seems to occur at the expense of plagioclase leaving a rock consisting 

mainly of amphibole and epidote (Figure 5-1d).  The epidote appears to be produced 

from an alteration of plagioclase within the rock (c17 and c18).  Common accessory 

minerals include quartz, garnet and hematite.  Continued epidotization of an amphibolite 

protolith appears to result in alteration of the hornblende to a Ca-poor amphibole (c18).  

Extreme alteration of amphibolite (c23 and c24) may result in a dark colored epidote-rich 

rock with both zoisite and clinozoisite and lacking amphibole (Figure 5-1e).  Common 

accessory minerals in these highly altered epidote-rich rocks include quartz, biotite, 

muscovite, chlorite and garnet. 
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Minerals in representative epidote-rich xenoliths were analyzed and compositions 

of selected minerals are listed in Table 5-1.  Relatively unaltered xenoliths have Ca-rich 

amphiboles such as hornblende.  Increasing epidote alteration appears to result in the 

conversion of hornblende to monoclinic amphiboles such as grunerite (c23) and finally to 

the complete elimination of amphiboles from the amphibolite protolith.  Epidote 

alteration of plagioclase-rich amphibolite may result in the growth of garnet.  Garnet 

observed within an epidote-rich xenolith (c18) contains ~65% grossular and ~30% 

almandine component.  A different xenolith contains Mn-rich garnet ~71% grossular, 

~12% almandine and ~17% spessartine component (c17). 

 

Pelitic Metamorphic Rocks 

Relatively rare (~5%) dark colored xenoliths consist almost exclusively of 

coarse-grained (~7 mm) micas (Figure 5-1f).  These xenoliths show foliation as a weak 

alignment of the micas (c20 and c21).  The density of the micaceous xenoliths averages ~ 

3.10 g/cm3.  These micaceous xenoliths consist of ~65% biotite which is elongated, 

subhedral, and pleochroic in light to dark brown color in thin-section.  The muscovite 

(~20%) is subhedral elongate crystals.  Accessory minerals include anhedral interstitial 

quartz, sub-rounded equant apatite, and equant, opaque ilmenite.  Representative mineral 

compositions in a micaceous xenolith (c20) are listed in Table 5-1.   The ilmenite 

associated with this rock is exceptionally rich in manganese (~16 wt % MnO). 
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K-AR DATING  

Amphibolites were selected for K-Ar isotopic age dating of the hornblende based 

on their unaltered appearance.  Separation of the hornblende was completed by initial 

crushing of the xenolith and both mechanical (magnetic separation) and visual 

(microscope) separation to help ensure purity of the sample.  One large amphibolite 

xenolith was supplied to Steve Bergman of the Arco Oil and Gas Research Facility for K-

Ar dating in 1990.  Three hornblende separates from individual xenoliths were supplied 

to F. W. McDowell at The University of Texas at Austin facilities for additional K-Ar 

dating. 

The first amphibolite xenolith submitted to Steve Bergman (Tom Bills, Geochron 

Labs, analyst) for analysis yielded an isotopic age of 1431 +/- 37 Ma.  The three isotopic 

age dates completed at the University of Texas yielded ages of 1478 +/- 144 Ma, 1425 +/- 

51 Ma and 1310 +/- 58 Ma with the error range indicated by one standard deviation in the 

data (Dunn and others, 2000).  Data from all K-Ar isotopic analyses are provided in 

Table 5-2.  The four K-Ar isotopic ages indicate an average age of approximately 1.42 

Ga for the amphibolites. 

 

DISCUSSION OF RESULTS 

Petrology of the crustal xenoliths indicates that about half are near surface 

sedimentary lithologies and half are deeper igneous and metamorphic rock types.  Study 

of the igneous and metamorphic xenoliths indicates that ~50% are amphibolites, ~5% are 

pelitic metamorphic rocks, ~5% are granitic/rhyolitic and the remaining ~40% are 
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epidote-rich varieties.  Thin section examination indicates that the majority of the 

epidote-rich xenoliths were derived from alteration of granitic and rhyolitic protoliths and 

a lesser number were derived from amphibolite protoliths.  The rarity of unaltered felsic 

igneous rocks is readily explained by sampling bias of the heavy-media recovery process.  

The densities of felsic rocks are simply too low to permit heavy media concentration 

unless there is an abundance of epidote or iron oxide to increase the density of the 

xenoliths.  Petrologic observations indicate that the basement rock beneath southwestern 

Arkansas consists largely of two protoliths: granite/rhyolite and amphibolite. 

These petrological data can be used to delineate rock types associated with a 

lithospheric transect model generated from gravity and seismic data in the region (Mickus 

and Keller, 1992).  This north-south cross section originates in southwest Missouri, 

passes through southwestern Arkansas (Prairie Creek lamproite province), and 

approximates the Texas-Louisiana border before extending offshore into the Gulf of 

Mexico (Figure 5-2).  Details of this lithospheric transect in the region of the Prairie 

Creek lamproite province were derived from COCORP (Consortium for Continental 

Reflection Profiling) and PASSCAL (Program for Array Seismic Studies of the 

Continental Lithosphere) data (Figure 5-3).  The Prairie Creek lamproite province is 

located where the Gulf Coast Basin sediments onlap onto the Ouachita-facies rocks of the 

Ouachita Mountains. 

The Mickus and Keller model indicate that the density of the lower cratonal crust 

is ~3.07 g/cm3.  Density of the amphibolite averaged 3.08 g/cm3 and is in good agreement 

with the modeled density of the lower cratonal crust.  The modeled density of the upper 

cratonal crust is ~2.75 g/cm3.  This value is comparable to those expected for the 
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granite/rhyolite terrane of the southern mid-continent but is lower than those rocks 

concentrated during the heavy media processing. 

The lithospheric transect of Mickus and Keller indicates the majority of deep 

crustal xenoliths recovered from beneath the Prairie Creek Lamproite province should be 

derived from “oceanic transition crust” with a density of ~2.98.  This transition crust has 

a thickness and calculated density that could be consistent with either thickened oceanic 

crust or thinned cratonal crust.  The thinned cratonal crust origin is favored based on 

petrological data showing an abundance of epidote-rich rocks derived from both 

granite/rhyolite and amphibolite protoliths.  A combination of the 3.08 g/cm3 lower 

cratonal crust (amphibolite) and the 2.90 g/cm3 epidote-rich granitic/rhyolitic upper 

cratonal crust could easily yield an average density of 2.98 g/cm3 associated with the 

“oceanic transition crust”.  Furthermore, thinning of continental crust might result in fluid 

mobilization causing epidotization observed in granitic and rhyolitic rocks and the 

apparent retrograde metamorphism observed in the amphibolite. 

A more convincing argument that this “oceanic transition crust” might actually 

be thinned and altered cratonal crust is provided by the K-Ar isotopic age dating of 

contained amphibolites.  Hornblende separates from four different amphibolite xenoliths 

yielded K-Ar isotopic ages of ~1.42 Ga.  This isotopic age indicates the last time the 

amphibolite cooled through the blocking temperature of hornblende.  The blocking 

temperature of hornblende is estimated to be 500 +/- 50oC (Hanes, 1991).  The ~1.42 Ga 

isotopic age of the amphibolite is consistent with the age of the granite/rhyolite province 

of mid-continental craton and is inconsistent with an expected younger age associated 

with development of “oceanic transition crust”. 
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The Mickus and Keller transect suggests the presence of mafic intrusions, with a 

density of ~3.05 g/cm3 within the deep crustal section beneath the Prairie Creek lamproite 

province.  The relatively rare pelitic metamorphic xenoliths which consist largely of 

biotite, muscovite, quartz and ilmenite may be associated with metasomatism by a variety 

of this igneous rock.  The density of the micaceous xenoliths was found to be about ~3.10 

g/cm3 and is comparable with the modeled density of the mafic intrusions. 

Approximately half of the crustal xenoliths recovered represent near surface 

lithologies including the Late Cretaceous sedimentary cover and the Paleozoic Ouachita 

facies sandstone and chert.  Seismic data in southwestern Arkansas show at least 6,000 

meters of layered reflectors which were confirmed by drilling to be Carbonaceous flysch 

(Nicholas and Waddell, 1989).  The only modeled rock type not well-represented in the 

crustal xenoliths are the “lower sediments?” with a density of 2.69 g/cm3.  These are 

believed to represent equivalent Lower Paleozoic carbonate rocks found elsewhere in the 

Ouachita region (Nicholas and Waddell, 1989).  Two recovered dolomitized carbonate 

xenoliths are comparable to these Cambro-Ordovician carbonate rocks (Hardie, 1989) 

and are believed to be representatives of the “lower sediments?”.  These rocks may be 

under-represented in the crustal xenoliths due to their relatively low density minimizing 

xenolith recovery or due to extensive epidote alteration masking their true rock 

association.  It is concluded that there is generally good agreement between the rock 

associations and their densities predicted by the lithospheric transect of Mickus and 

Keller and observed crustal xenolith petrology. 

K-Ar dating of deep crustal amphibolite indicates that they are associated with 

the granite-rhyolite terrane of the southern mid-continent region.  Mosher (1998) has also 

proposed that the Grenville-Llano deformation front, separating a 1.3-1.5 Ga granite-
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rhyolite terrane from the 1.0-1.2 Ga Grenville-Llano terrane to the south, continues 

northeast from central Texas toward the Arkansas border.  This significant age boundary 

must jog to the south of the Prairie Creek lamproite province due to the 1.42 Ga 

amphibolite age.  The K-Ar age data are significant because it shows no evidence of 

metamorphism associated with either the Grenville or Ouachita orogenies.  The ~1.42 Ga 

isotopic age indicates that later tectonic events of the region (Grenville or Ouachita) were 

of insufficient thermal intensity (~500oC) to exceed the hornblende K-Ar blocking 

temperature in the lower crust (Hanes, 1991).  The amphibolite basement rocks indicate 

that the region was inboard and thermally isolated from the major continent-continent 

collision associated with the Grenville-Llano orogeny at about 1.1 Ga.  It should be noted 

that there may be some evidence for proximity to the Grenville-Llano deformation front.  

U-Pb dating of zircons recovered from concentrates of the Prairie Creek lamproite have 

yielded a 1050 Ma age (Reichenback and Parrish, 1988).  The 1050 Ma age is indicative 

of Grenville terrane suggesting either proximity to the Llano deformation front or 

basement involvement in later Ouachita deformation. 

Xenolith petrology, amphibolite isotopic ages and the lithospheric transect of 

Mickus and Keller can be used to test two major models proposed for generation of the 

Ouachita salient and the northern Gulf Coast.  The first model is that the Ouachita trough 

was part of an Early Paleozoic failed rift system that had continental crust with Grenville 

basement located south of Ouachita trough (Figure 5-4).  Evidence supporting this 

hypothesis is the pre-orogenic sedimentation patterns that suggest the Ouachita trough 

was a narrow two-sided basin with the southern bounding block providing craton-like 

detritus well into Ordovician time (Lowe, 1985).  The second model is that the southern 

margin of the mid-continent rifted in late Precambrian-early Paleozoic time along the 
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Ouachita rift (Figure 5-5).  This rift zone extended from south-central Texas northeast to 

its intersection with the northwest-trending Alabama-Oklahoma transform fault (Thomas, 

1991).  The large block of continental lithosphere that was rafted out of the Ouachita 

salient was proposed to have docked with Gondwanaland, becoming part of the 

Precordillera of Argentina (Astini and others, 1995).  Support for a Laurentian origin for 

the Argentine Precordillera was provided by U-Pb zircon ages indicating a Grenville age 

(Kay and others, 1996), and by correlation with syn-rift rhyolites of Cambrian age 

(Thomas, 2000).  Expected lithosphere characteristics of these two models for generation 

of the Ouachita Trough are compared in Table 5-3, and evaluated below. 

Data on mantle rocks are provided by xenoliths recovered from the Prairie Creek 

lamproite province in southwestern Arkansas.  These xenoliths record evidence of a two 

layer subcontinental mantle lithosphere with depletion levels and a geothermal gradient 

consistent with a Lower Proterozoic age stable craton (Dunn and others, 2000).  

Furthermore, the relatively high Mg-number of olivine in conjunction with the relative 

abundance of orthopyroxene within the Arkansas mantle peridotites is typical of sub-

continental mantle lithosphere and is inconsistent with depleted oceanic mantle 

lithosphere (Boyd, 1989). 

The hypothesis of depleted, low density mantle lithosphere is reinforced by the 

lithospheric transect model generated from gravity and seismic data in the region (Mickus 

and Keller, 1992).  The lithospheric transect shows that the Prairie Creek lamproite 

province falls within the basin structure adjacent to the southern margin of the mid-

continent craton (Figure 5-6).  This transect shows the presence of depleted (low density) 

mantle lithosphere beneath the Arkansas lamproite province with a density of 3.30 g/cm3.  

More fertile “oceanic” mantle lithosphere with a density ~3.42 g/cm3, is observed 



 109

approximately 400 km south of the Prairie Creek lamproite province beneath southern 

Louisiana.  Subcontinental mantle lithosphere xenoliths at Prairie Creek record high 

olivine depletion and low heat flow and therefore are more consistent with the continental 

rift-Ouachita model than the rifted ocean margin Ouachita model. 

Deeper crust xenoliths consist of amphibolite, rare granitic/rhyolitic rock, and 

significant amounts of altered epidote-rich rock.  The 1.42 Ga K-Ar age of the 

amphibolite establishes an association with the granite-rhyolite terrane of the mid-

continent.  Furthermore, the K-Ar ages indicate that crustal temperatures did not exceed 

500oC since the Proterozoic indicating thermal isolation from the effects of the Grenville 

and Ouachita orogenies.  No petrologic evidence for the presence of Cambrian age ocean 

crust as predicted by the rifted ocean margin model was observed.  Even if the region was 

located inland of the rifted margin, it is hard to imagine close proximity to a long-

standing Early Paleozoic mid-ocean ridge without some evidence of its thermal effects. 

The lithospheric transect of Mickus and Keller indicates the presence of “oceanic 

transition crust” with a density of ~2.98 g/cm3.  This transition crust has a thickness and 

density that could be consistent with either thickened oceanic crust or thinned lower 

cratonal crust.  However, the 1.42 Ga amphibolite age strongly favors a lower cratonic 

origin rather than oceanic crust.  The composition of the crustal xenoliths and the 1.42 Ga 

K-Ar amphibolites are consistent with continental extension (structural) of 

granite/rhyolite terrane and favor the continental rift model for the origin of the Ouachita 

system.  A most interesting observation from the lithospheric transect model is that the 

“rift pillow”, a thick package of basaltic intrusions associated with oceanic rifts, is found 

much further south associated with ocean crust within the Gulf of Mexico and not within 

the structure beneath the Arkansas lamproite province.  The lack of Paleozoic age ocean 
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crust or associated thermal effects, including a “rift pillow” beneath the Arkansas 

lamproite province, is inconsistent with the rifted ocean margin origin of the Ouachita 

system.  However, the mantle lithosphere transect is consistent with ocean crust within 

the Gulf of Mexico being a rifted ocean margin of either Lower Paleozoic or Mesozoic 

age. 

The dominant basement rock found in xenoliths from beneath southwestern 

Arkansas is 1.4 Ga amphibolite of the mid-continent granite-rhyolite terrane.  However, 

projection of the Llano deformation and U-Pb zircon ages of ~ 1050 Ma indicate that the 

area may be proximal to this structure.  Basement continuity is reinforced by the 

lithospheric transect model which shows both structural symmetry and lateral continuity 

(Figure 5-6).  Cratonal crust north of the Ouachita region consists of an upper crust which 

is ~20 km thick with a density of 2.75 g/cm3 and a lower crust which is ~20 km thick and 

a density of 3.07 g/cm3.  This is nearly identical in thickness and density to the two part 

“micro-continent” south of the Ouachita region.  Continuity of basement features across 

the Ouachita trough is more consistent with the continental rift-basin as opposed to the 

ocean margin model of genesis.  

The structure of the Ouachita metamorphic belt has been described as consisting 

of a frontal zone, central zone, and southern Carboniferous province.  The frontal zone 

consists of thrusts and folds involving mainly unmetamorphosed Carboniferous flysch.  

The central zone or core area consists of older pre-Carboniferous rocks, with greenschist-

facies metamorphism, and flanked by Carboniferous flysch.  The southern province 

consists of faulted and folded Carboniferous strata, but with deformation decreasing 

southward until relatively undeformed Carboniferous strata are encountered (Nicholas 

and Weddell, 1989).  The low metamorphic grade within the tectonic zone and the 



 111

apparent symmetry of the deformation belt are more consistent with a rift association 

than with a strongly deformed asymmetrically accreted island arc terrane. 

Stratigraphic correlation of the pre-orogenic rocks has not been made because 

drilling has yet to encounter Lower Paleozoic strata south of the exposed Ouachita 

Mountains.  However, pre-orogenic sedimentation patterns indicate that the Ouachita 

trough was a narrow two-sided basin with significant detrital input from the southern 

bounding block.  The composition of this southerly derived detritus suggests a craton-

derived passive margin sequence (Lowe, 1985).  A deep well drilled near Waco, Texas, 

within the core zone of the Ouachita belt, encountered massive carbonates which have 

been correlated with Ordovician carbonates of the adjacent foreland (Nicholas and 

Waddell, 1989).  These rocks may correlate with the two dolomitized xenoliths found 

within the Prairie Creek lamproites. 

Stratigraphic correlation of the syn-orogenic Carboniferous flysch is nearly 

impossible due to the extensive deformation within this sedimentary sequence.  Nicholas 

and Weddell (1989) have made a broad correlation of the Carboniferous flysch across the 

Ouachita Mountains in stating that the rocks are slightly deformed and unmetamorphosed 

in the frontal zone, strongly deformed and weakly metamorphosed within the core zone, 

and slightly deformed and unmetamorphosed in the southern province.  Probably the best 

chance for correlation of rocks across the Ouachita trough lies with dating of intersected 

volcanic units.  Thin volcanic units are found throughout much of the Paleozoic as 

indicated by exposed tuffs within the Lower Stanley Group (Miser and Purdue, 1929), 

and drilled volcanic rock of 380 Ma to 255 Ma near Waco, Texas (Nicholas and Waddell, 

1989).  Another well drilled near Sabine, Texas, within the Texarkana platform, 

intersected rhyolite porphyry with a Rb-Sr age of 255 +/- 10 Ma (Nicholas and Waddell, 
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1989).  This isotopic age is comparable with a Rb-Sr age of 255 +/- 11 Ma recovered 

from volcanic rock within the well near Waco, Texas, on the other side of the Ouachita 

trough and suggests a possible correlation of these rocks.  Possible correlation of both 

pre-orogenic and syn-orogenic volcanic rocks across the Ouachita system would favor 

the continental rift model for Ouachita development.  In addition, the sporadic nature of 

these thin volcanic units within a thick sedimentary section is more consistent with a rift-

related association than that of an accreted volcanic island-arc suggested within the rifted 

ocean margin model. 

Nd isotopes have been used to constrain sediment sources for the Ouachita-

Marathon fold belts.  Research indicates that Nd depleted mantle model ages (TDM) 

define three distinct populations: a Lower to Middle Ordovician TDM = 2.0 Ga, an Upper 

Ordovician to Pennsylvanian TDM =1.6 Ga, and a Mississippian volcanic tuff TDM = 1.1 

Ga (Gleason and others, 1995).  The authors interpret the data to imply that there was a 

shift from craton-derived to Appalachian-derived sediment sources at ~450 Ma.  They 

interpret the Mississippian tuffs TDM to have resulted from the isotopic mixing of old 

crust with young mantle-derived components within a continental margin arc.  However, 

this data is more consistent with the rift-basin model for formation of the Ouachita 

System.  In this model, the ~450 Ma shift in sediment sources is from craton-derived to 

craton-margin derived sediment sources of Grenville age located to the south and 

consistent with interpreted source directions.  The Mississippian tuff TDM = 1.1 Ga, 

would be expected if these volcanic units were derived from melting of Grenville age 

crust located in the craton margin to the south.  Therefore, Nd isotope data from Ouachita 

sedimentary assemblages are consistent with the rift-basin Ouachita model of formation. 
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Xenolith data, geophysical transects, and possible stratigraphic correlation across 

the Ouachita fold belt support the rift-basin model of the Ouachita Trough as opposed to 

the rifted continental margin and late Paleozoic development of an exotic island arc 

terrane.  It seems likely that the Ouachita trough was part of an early Paleozoic failed rift 

system that developed separately from the older Appalachian continental margin (Lowe, 

1989).  The Ouachita trough was connected to both the Early Paleozoic Wichita and 

Reelfoot rifts and consisted of two parts; the east-west trending Ouachita Rift in Arkansas 

and the northeast trending Waco Rift in Texas (Figure 5-7).  The Ouachita trough 

probably formed from distended continental crust with the southern bounding block 

consisting of a micro-continent of Grenville basement and Lower Paleozoic sediments.  

Inclusion of this bounding block of Grenville age basement extends the southern margin 

of the mid-continent craton into southern Louisiana (Figure 5-7). 

The rift system apparently deepened rapidly during the Early Carboniferous 

Period with subsidence ending in the Early Pennsylvanian Period with onset of the 

Ouachita orogeny.  The Ouachita orogeny may have been initiated when the southern 

margin of the bounding micro-continent was impinged by an Appalachian-type orogeny.  

Tectonic forces associated with this orogeny at the southern passive margin were 

transmitted through this stable block causing compression of the Carboniferous flysch 

and resulting in the thin-skin fold and thrust belt of the Ouachita Mountains. 

The Ouachita rift-basin model, through its association with the mid-continent 

rift-system, helps to explain the shape of the Ouachita salient, the location of the existing 

Ouachita outcrops, and the lack of high-grade metamorphic rock or plutons within the 

Ouachita Mountains.  This model predicts the existence of a cratonic block with 

Grenville basement beneath the Texarkana Platform and the resulting bio-stratigraphic 
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correlation of the Carboniferous flysch across the Ouachita trough.  The Ouachita rift 

model is inconsistent with the hypothesis that the provenance region of the Argentine 

Precordillera was the Ouachita rifted margin and instead suggests another area further 

south near the craton margin as a likely provenance region of Laurentia. 

The Prairie Creek lamproite xenolith suite, in conjunction with geophysical data, 

provides important constraints on models of the origin of the Ouachita System.  This data 

provides evidence for the association of the Ouachita trough with a Paleozoic continental 

rift system and possible extension of the mid-continent craton ~400 km further south than 

previously suspected.  Validation of the aulacogen/rift model would rewrite the basement 

geology of the Gulf Coast region.   In summary, the Prairie Creek lamproite xenolith 

suite provides important constraints for the regional Paleozoic tectonic evolution of the 

southern mid-continent and Gulf Coast regions. 
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         TABLE 5-1    
 Mineral Compositions of Selected Crustal Xenoliths 

 
   c1 amphibolite   c10 amphibolite 
  amph biotite plag titanite  amph muscov plag ilmenite 
SiO2  45.33 36.88 60.10 31.17  43.92 48.79 45.48 nd 
TiO2  0.68 1.59 nd 36.20  0.76 0.01 0.02 49.52 
Al2O3  9.61 15.67 25.35 1.50  10.98 35.08 36.12 nd 
FeO*  15.03 14.86 0.10 0.91  18.23 0.57 0.16 45.30 
MnO  0.36 0.26 nd 0.08  0.42 0.02 nd 1.93 
MgO  11.99 15.86 nd 0.01  9.96 0.37 nd 0.03 
CaO  11.95 0.03 6.44 28.90  10.57 0.55 17.62 0.05 
Na2O  1.07 nd 7.85 nd  1.36 1.47 1.34 nd 
K2O  1.06 8.44 0.14 0.05  0.53 8.69 nd 0.02 
Total  97.08 93.58 99.98 98.82  96.73 95.56 100.73 96.86 
           
   c25 granite    c20 micaceous 
  kspar muscov plag biotite  muscov biotite ilmenite 
SiO2  65.39 46.12 68.16 33.92  46.50 35.11 0.89  
TiO2  nd 0.45 nd 0.98  1.07 1.91 48.71  
Al2O3  18.61 31.28 20.00 16.62  31.81 16.28 0.17  
FeO*  nd 4.89 nd 24.88  3.34 25.92 31.16  
MnO  nd 0.04 nd 0.43  nd 0.56 15.98  
MgO  nd 1.23 nd 6.90  0.90 5.99 0.08  
CaO  nd nd 0.46 0.16  0.02 nd 0.09  
Na2O  0.54 0.33 11.19 0.04  0.38 0.06 0.06  
K2O  15.30 10.35 0.10 9.43  10.79 9.63 0.10  
Total  99.87 94.69 99.94 93.36  94.82 95.47 97.23  
           
   c22 unakite  c17 epidote-rich   
  epidote kspar hem  epidote amph garnet   
SiO2  37.73 64.34 nd  37.73 49.14 37.42   
TiO2  0.07 0.02 0.10  0.13 0.04 0.34   
Al2O3  21.89 17.63 nd  23.73 3.55 16.83   
FeO*  12.47 0.04 91.95  10.94 20.40 11.45   
MnO  0.19 nd 0.15  0.35 1.36 7.31   
MgO  0.04 nd nd  nd 9.93 nd   
CaO  22.86 nd nd  22.53 11.33 24.92   
Na2O  0.01 0.40 nd  nd 0.66 nd   
K2O  nd 16.20 0.02  nd 0.25 nd   
Total  95.26 98.63 92.22  95.42 96.67 98.28   
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  c18 epidote-rich   c23 epidote-rich  
  epidote amph garnet  zoisite epidote chlorite muscov  
SiO2  37.07 56.37 38.13  44.02 38.79 21.96 45.91  
TiO2  0.31 nd 0.11  nd nd 0.72 nd  
Al2O3  9.42 18.09 22.10  24.4 27.06 20.64 36.16  
FeO*  18.08 6.29 13.76  0.36 8.3 41.76 2.22  
MnO  2.01 0.02 0.23  0.03 0.24 0.58 nd  
MgO  0.08 4.27 0.02  nd nd 2.53 0.41  
CaO  30.96 1.43 22.58  26.22 23.58 0.18 0.05  
Na2O  nd 0.11 nd  0.02 nd 0.02 0.22  
K2O  nd 0.47 nd  nd nd 0.03 10.90  
Total  97.94 87.07 96.94  95.06 98.01 88.43 95.91  
           
   c24 epidote-rich      
  epidote chlorite muscov titanite      
SiO2  39.08 22.13 45.95 30.68      
TiO2  nd 0.09 nd 32.95      
Al2O3  29.96 20.57 35.97 4.78      
FeO*  4.63 40.55 1.70 2.10      
MnO  0.09 0.71 nd 0.05      
MgO  nd 3.30 0.25 0.07      
CaO  23.80 0.02 0.02 27.52      
Na2O  nd 0.02 0.27 nd      
K2O  nd 0.06 10.82 nd      
Total  97.55 87.46 94.97 98.17      

FeO*:  Total iron as FeO 
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     TABLE 5-2     
     K-Ar Data 

 
Sample Mineral       wt % K %40*Ar       40*Ar (ppm) Age (Ma)    +/- 1o 

BL  hornblende 0.95     96    0.1434        1431            37 

BL 1 hornblende 0.886     98  0.1428       1478          144 

BL 1b hornblende 0.893     98  0.1326        1425            51 

TK 1 hornblende 0.942     98  0.1242        1310            58 

Constants: =4.963*10-10/yr; =0.581*10-10/yr; 40K/K= 1.167*10-4 

 

           
    TABLE  5-3     
  Comparison of Ouachita Model Expectations 

            

   Aulacogen/Rift-Basin  Oceanic Margin/Island Arc 

Stratigraphy  regional correlation  no correlation 
 
Volcanic Rocks sporadic (alkalic)  widespread (calc-alkaline) 
 
Metamorphic Rocks low-grade (symmetric) high-grade (asymmetric) 
 
Basement Rocks structural continuity  no continuity 
 
Lower Crust  altered granite/gabbro  ocean floor/”rift pillow” 
 
Upper Mantle continental, low-geotherm oceanic, high-geotherm 
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Figure 5-1:  Photomicrographs of thin sections in plane polarized light: a) an 
ilmenite-bearing amphibolite (c10), b) granite with muscovite and biotite (c25), c) 
Unakite, altered granite consisting of microcline, quartz and epidote (c22), d) 
epidote-rich rock consisting of epidote, amphibole, and garnet (c17), e) extremely 
altered epidote-rich rock showing breakdown of amphibole to epidote and chlorite 
(c23), and f) micaceous rock with biotite, muscovite and ilmenite (c20). 
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Figure 5-2:  Location map of the lithospheric transect of Mickus and Keller, 1992.  
Sub-surface detail derived from COCORP / PASSCAL gravity and 
seismic data in the area of the Prairie Creek lamproite province. 
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Figure 5-3:  Detailed crustal section beneath the Prairie Creek lamproite province.  
Section modified from the lithospheric transect of Mickus and 
Keller, 1992.  Model is based on seismic and gravity surveys along 
the PASSCAL/COCORP transect shown in Figure 5-2.  Calculated 
rock density in g/cm3 is shown in parenthesis. 

 



 121

S. Oklahoma

Aulacogen

Reelfoot

Rift

 
Figure 5-4:  Aulacogen model of Ouachita System (Lowe, 1985).  The region is 
associated with a mid-continent rift system in the Early Paleozoic Era. 
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Figure 5-5:  Rifted margin model of Ouachita System (Lowe, 1985).  The region 
is associated with a rifted oceanic margin in the Early Paleozoic Era. 
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Figure 5-6:  Simplified lithospheric transect model (Mickus and Keller, 1992).  
The approximate location of the Prairie Creek lamproite province is 
indicated.  Calculated rock density in g/cm3 is shown in parenthesis. 
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Figure 5-7:  Idealized basement geology for the Ouachita aulacogen model. 
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Chapter 6 

SUMMARY AND CONCLUSIONS 

 

Three previously unexplored Arkansas lamproites (satellites to the main Prairie 

Creek vent) were delineated and evaluated during the 1980’s.  Exploration programs 

utilized detailed geophysics, heavy mineral sampling and soil geochemistry.  The three 

vents – Black Lick (10 hectares), Twin Knobs 2 (2 hectares) and Timberlands (<1 

hectare) -- were intruded into Early Cretaceous Trinity Fm deposits. and are overlain 

unconformably by the Late Cretaceous Tokio Fm.  This stratigraphy is consistent with 

published K-Ar phlogopite ages of ~106 Ma for the Prairie Creek vent.  Field 

relationships establish that about 75% of the surface area of the lamproites consist of 

pyroclastic tuffs, typically with fine-grained sandy tuffs near the margins, and coarse-

grained pyroclastics near the cores of the lamproite.  Approximately 25% of the vents 

consist of late stage hypabyssal olivine lamproite which may have reached the surface as 

extrusive flows. 

A 260 tonne bulk sample taken from the two larger lamproites recovered 5 macro 

diamonds (>0.5mm) yielding a sub-economic average diamond grade of ~0.04 carats per 

100 tonnes.  This diamond grade is slightly less than that reported for the adjacent Prairie 

Creek and Twin Knobs 1 lamproites.  The bulk sampling yielded a rare suite of mantle 

and crustal xenoliths. 

The recent economic evaluation of the Prairie Creek lamproite has served to 

advance the understanding of both the geology and history of the Crater of Diamonds 
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State Park.  Although the economic evaluations reveal that the in-situ lamproite is not of 

significant grade to warrant large scale mining operations, they do reveal that the 

property was a viable economic diamond mine in its time.  Commercial diamond grades 

were initially achieved due to the extreme chemical weathering of the ultramafic rock in 

the subtropical environment. This unique erosion history allowed for development of 

economic lag deposits over the vent but also served to minimize downstream 

accumulation of alluvial diamond deposits.  Even though the rich diamondiferous surface 

soils were rapidly depleted, there is evidence that soils with at least some natural 

enrichment of diamond remain in the form of small drainages radiating from the 

intrusion, and as eluvial and alluvial soils adjacent to the intrusion.  These deposits are 

located within the Park boundaries and remain as a future resource to be developed for 

the tourist industry.  All economic evaluations to date have demonstrated the existence of 

naturally occurring macrodiamonds, and these diamonds, along with the past mining 

history, are the reason that the State Park was founded and continues in operation today 

as a tourist attraction.  

Both mantle and crustal xenoliths were recovered during diamond bulk testing of 

various vents within the Prairie Creek lamproite province.  Mantle xenoliths include 

approximately 40 polymineralic xenoliths consisting of eclogite, garnet websterite, 

wehrlite, harzburgite, spinel lherzolite, garnet/spinel lherzolite and garnet lherzolite.  

Pressure-temperature calculations based on partitioning of elements between minerals 

generated a P-T array indicating a geotherm of ~40 mW/m2; a value typical of Archean or 

Lower Proterozoic age mantle lithosphere.  Two P-T array points with anomalously high 

temperature values depart from this geotherm and may represent underplating of the 
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continental crust by magmas associated with the Cretaceous igneous province within 

southern Arkansas. 

Analysis of the Mg-number of olivine within the xenoliths and their recorded 

pressures indicates the presence of a two layer mantle lithosphere.  The shallow mantle 

lithosphere appears to be relatively fertile consisting of eclogite, wehrlite, websterite, and 

garnet/spinel lherzolite with an approximate olivine content of Fo90.5.  The deeper mantle 

lithosphere below a depth of ~100 km appears to be relatively depleted consisting of 

high-Cr spinel lherzolite, harzburgite and garnet lherzolite with an approximate olivine 

content of Fo92.5.  Proposed relationships between average olivine forsterite content and 

the age of the lithosphere imply that the deeper depleted mantle lithosphere is 

significantly older than the shallow fertile mantle lithosphere.  Two models for tectonic 

emplacement of this two-layered mantle lithosphere are proposed.  The first model 

suggests incorporation of older allocthonous terrane within the southern margin of the 

North American craton.  Evidence to support this model includes Sm-Nd model ages 

(Nelson and DePaolo, 1985) and a U-Pb zircon age (Reichenback and Parrish, 1988) 

which are older than any known rocks in the area.  The second model suggests tectonic 

emplacement of an older continental lithosphere beneath the younger North American 

craton.  This model is supported by the presence of a sharp compositional boundary 

between the two mantle layers, deep eclogite suite minerals, regional tectonics, and Sr, 

Nd and Pb isotopic studies.  Additional trace, rare-earth element and isotopic studies of 

these mantle xenoliths may further define the emplacement models for this two-layer 

mantle lithosphere. 

Crustal xenoliths were also recovered during diamond bulk testing within the 

Prairie Creek lamproite province.  More than half of these xenoliths were from near-
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surface sedimentary rocks of either Cretaceous or Paleozoic age.  The deeper crustal 

xenoliths are igneous and metamorphic rock types derived from rocks not exposed at the 

surface.  The majority of these deeper xenoliths are amphibolite with rare granite and 

pelitic metamorphic rocks.  Approximately 40% of the deep crustal xenoliths are 

extensively altered epidote-rich rocks.  K-Ar ages of four amphibolite samples average ~ 

1.42 Ga.  This Proterozoic age indicates the amphibolite is associated with the mid-

continent craton and was thermally isolated from later tectonic events associated with 

both the Grenville and Ouachita orogenies. 

Xenolith compositions and isotopic ages in conjunction with published 

geophysical and drill data are used to test two tectonic models for the development of the 

Ouachita Mountains.  The first model proposed by Lowe (1985) suggests the Ouachita 

trough is a failed rift basin essentially contained within the North American craton.  The 

second model proposed by Thomas (1991) suggests the Ouachita trough is a rifted 

continental margin with late Paleozoic accretion of an island arc terrane.  Recovered 

mantle xenoliths are typical of sub-continental mantle lithosphere and record a relatively 

low geothermal gradient, whereas deep crustal xenoliths indicate 1.42 Ga amphibolite 

basement rocks.  No evidence for the presence of Lower Paleozoic ocean crust or the 

thermal effects of an ocean rift was observed.  A lithospheric transect generated from 

geophysical data shows symmetry of density and thickness of continental crust across the 

margins of the Ouachita trough (Mickus and Keller, 1992).  Deep drilling has indicated 

symmetry in the style of structural deformation and low-grade metamorphism within the 

frontal, core and southern provinces of the Ouachita system (Nicholas and Weddell, 

1989).  Stratigraphic correlations are inferred for both the pre and syn-orogenic rocks 

across the Ouachita trough.  Application of these data to two models of Ouachita 
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development suggests that the Ouachita trough is extended and thinned continental 

lithosphere associated with a Paleozoic rift system that developed separately from the 

Appalachian continental margin.  Tectonic forces associated with the Appalachian 

orogeny at the distant continental margin were transmitted inland via a crustal bock 

resulting in compression, folding and faulting of the thick Carboniferous flysch 

developed within the Paleozoic aulacogen. 
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Appendix A 

Microprobe Results for Mantle Xenoliths 
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Appendix B 

Microprobe Results for Crustal Xenoliths 
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