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Theoretical thermodynamic models that accurately capture liquid behavior do so 

at the cost of ease of use, and do not explicitly reduce to simple relationships observed 

among liquid properties. Of these relationships, the linear response of liquid density to 

changes in temperature is one of the simplest and most nearly universal. At low 

pressures, plots of saturated liquid density vs. temperature are linear over a substantial 

temperature range. This behavior has been observed for liquids as diverse as monoatomic 

elements, small organics, molten salts and metals, and polymers. Water and liquid helium 

are the only known exceptions to this low pressure linearity. This observation is extended 

to liquid isobars at elevated pressure and to liquid mixtures.  

To capture fluid relationships through easily implemented, analytical equations, a 

model using a Scaled Particle Theory (SPT) for mixtures of hard spheres in a mean-field 

approximation is developed. Thermodynamic properties are derived from the random 

insertion of a hard sphere (HS) chain into an HS mixture and invoking random mixing to 

calculate energetics. The SPT model completely characterizes pure fluids with three 

independent parameters that can be calculated from pure component properties. Binary 

mixtures require only one additional interaction parameter, which can be approximated 

using a geometric mean combining rule or treated as an adjustable parameter. This SPT 
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chain model is comparable to other thermodynamic models with mean-field 

configurational energies for mixtures of small, similarly-sized molecules, but yields 

unsatisfactory results when applied to polymer/solvent systems. The approximations the 

SPT model makes for the HS chain are investigated as a potential source of error. To 

improve on the SPT configurational energy approximation, a Quasi-Chemical Square 

Well (QCSW) model is developed that limits both the attractive range of a given  

molecular segment and the number of other segments with which it can interact. Though 

the SPT and QCSW models do not explicitly reduce to a simple isobaric 

density/temperature relationship, the QCSW model predicts a linear-like regime for 

saturated liquids at low pressure over an extended temperature range, and introduces 

promising concepts for modeling liquids. 
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Chapter 1:  Dimensionless Thermodynamics and Liquids Properties* 

Contributions to the configurational entropy of simple saturated liquids correlate 

well with reduced density (𝜌𝑅 ≡ 𝜌/𝜌𝑐)[2]. This correlation suggests that simple saturated 

liquids should have comparable thermodynamic properties at the same reduced density. 

The universal dependence of saturated liquid properties on reduced density would be a 

strong corresponding states principle (CSP); unfortunately, thermodynamic properties 

that have dimensions do not obey this CSP. If rendered dimensionless by the proper 

choice of scaling variables, plots of several dimensionless properties vs. 𝜌𝑅 form “master 

curves” for classes of liquids, better illustrating corresponding states principles. 

1.1 DIMENSIONLESS THERMODYNAMIC PROPERTIES 

A van der Waals (VDW) type model characterized by a configurational energy 

(−𝑈) that is directly proportional to density 𝜌 is employed for selecting appropriate 

scaling variables and calculated property comparisons. Equations of state (EOS) for these 

models have the general form:  

𝑍 =
𝑃

𝜌𝑘𝑇
= 1 + 𝐻𝑠(𝜌) −

𝑈

𝐾𝑇

= 1 + 𝐻𝑠(𝜌𝑅) −
𝜌𝑅𝑢

𝑘𝑇

(1.1) 

 

in which 𝜌𝑅 is the reduced density (𝜌𝑅 ≡ 𝜌/𝜌𝑐),  𝜌𝑐 is the critical density, and 𝑢 is a 

constant. The function 𝐻𝑠(𝜌𝑅) is the contribution to the EOS from hard sphere repulsion. 

𝐻𝑠(0 ) = 0, and 𝐻𝑠(𝜌𝑅 > 0) > 0. For the classical VDW EOS, 

                                                 
*Much of the material in this chapter was adapted with permission from the original author of: Isaac C. 

Sanchez, “Dimensionless Thermodynamics: A New Paradigm for Liquid State Properties,” J. Phys. Chem. 

B 118 (31), 9386 (2014) [1]. For the present dissertation, Sean Patrick O’Keefe recalculated all numerical 

values and reorganized material to serve as an introduction to the concepts of simple thermodynamic 

modeling for liquids and the nearly universal corresponding states behavior of liquid properties. Only 

material relevant to this specific goal was adapted. 
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𝑍 = 1 +
𝜌𝑅

3 − 𝜌𝑅⏟  
𝐻𝑠(𝜌𝑅)

−
9𝜌𝑅
8𝑇𝑅

(1.2)
 

in which the reduced temperature 𝑇𝑅 ≡ 𝑇/𝑇𝑐, and 𝑇𝑐 is the critical temperature. 

1.1.1 Cohesive Energy Density 

Solving (1.1) for the configurational energy of a VDW liquid gives: 

 
𝑈𝑙𝑖𝑞

𝑘𝑇
= 1 + 𝐻𝑠(𝜌) − 𝑍𝑙𝑖𝑞 (1.3) 

The normal liquid range (NLR) is here considered the range extending from the 

triple point to the normal boiling temperatures. For liquids in the NLR, the 

compressibility factor 𝑍𝑙𝑖𝑞 is of order 10−3 or smaller, and 𝐻𝑠(𝜌𝑅) is of order 10. In the 

NLR 𝑍𝑙𝑖𝑞 contributes negligibly to 𝑈𝑙𝑖𝑞/𝑘𝑇 compared to 1 + 𝐻𝑠(𝜌𝑅), and (1.3) predicts 

that dimensionless configurational energy should be completely determined by the 

reduced density. The saturated vapor in equilibrium with a liquid in the NLR may be 

approximated as as an ideal gas with no configurational energy. With these 

approximations the dimensionless energy change of a VDW fluid in the NLR is given by: 

 
Δ𝑈𝑣𝑎𝑝
𝑘𝑇

≃
𝑈𝑙𝑖𝑞
𝑘𝑇
= 1 + 𝐻𝑠(𝜌𝑅) (1.4) 

 

For liquid/vapor equilibrium, the thermal contribution to the internal energy 

cancels when calculating Δ𝐸𝑣𝑎𝑝 leaving only the contribution from configurational 

energy changes. The change in configurational energy on vaporization Δ𝑈𝑣𝑎𝑝 is equal to 

the change in internal energy on vaporization Δ𝐸𝑣𝑎𝑝. 
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The cohesive energy density (CED or 𝛿2)  is a thermodynamic property used in 

liquid mixture models. and is closely associated with the vaporization energy. 𝛿2 is 

defined as 

𝛿2 ≡
𝑈𝑙𝑖𝑞

𝑉
≃ 𝜌Δ𝑈𝑣𝑎𝑝 (1.5) 

(1.5) has units of pressure (𝛿 is the well-known Hildebrand solubility parameter). 

Equations (1.4) and (1.5) suggest rendering the CED dimensionless with the pressure 

variable 𝜌𝑘𝑇. The resulting dimensionless CED only depends on 𝜌𝑅 for a VDW type 

liquid in the NLR: 

 

𝛿2 ≡
𝛿2

𝜌𝑘𝑇
= 1 + 𝐻𝑠(𝜌𝑅) − 𝑍𝑙𝑖𝑞 = 1 + 𝐻𝑠(𝜌𝑅) (1.6) 

This dimensionless CED decreases as temperature is increased in the NLR. Figure 

1.1 plots the dimensionless CED for common organic liquids including aliphatic and 

aromatic hydrocarbons and fully halogenated small organics. At the normal boiling point 

𝛿2 reaches a value of 9.2 ± 0.6 in Figure 1.1. The corresponding experimental values of 

the reduced density at the normal boiling point is 𝜌𝑅 = 2.63 ± 0.07 for these liquids.  𝜌𝑅 

at the normal boiling points of elemental and very small molecule liquids lie within or 

nearly within this range, but 𝛿2 at the normal boiling point for these species is lower. 

Figure 1.2 shows that 𝛿2 for these species at 𝜌𝑅 = 2.63 ± 0.07 is 𝛿2 = 8.0 ± 0.5. All 

experimental data used for figures and tables in this chapter were obtained from the NIST 

webbook of thermophysical properties of fluid systems 

http://webbook.nist.gov/chemistry/fluid/ [3].  

http://webbook.nist.gov/chemistry/fluid/
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Figure 1.1: Dimensionless cohesive energy density as a function of reduced density for 

common organic liquids in the NLR 

 

 

 

Figure 1.2: Dimensionless cohesive energy density as a function of reduced density for 

elemental and small molecule liquids in the NLR 
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1.1.2 Entropy of Vaporization and Trouton’s Rule 

The entropy and enthalpy of vaporization are given by 

 

Δ𝑆𝑣𝑎𝑝
𝑘

=
Δ𝐻𝑣𝑎𝑝
𝑘𝑇

=
Δ𝑈𝑣𝑎𝑝
𝑘𝑇

+ 𝑍𝑣𝑎𝑝 − 𝑍𝑙𝑖𝑞 (1.7) 

 

In the NLR, 𝑍𝑣𝑎𝑝 = 1 and 𝑍𝑙𝑖𝑞 ≃ 0 so that for a VDW type liquid: 

 

Δ𝑆𝑣𝑎𝑝
𝑘

= 1 +
Δ𝑈𝑣𝑎𝑝
𝑘𝑇

≃ 1 + δ̃2 = 2 + 𝐻𝑠(𝜌𝑅) (1.8) 

 

Substituting 𝛿2 = 9.2 ± 0.6  into (1.8) gives 

 

Δ𝑆𝑣𝑎𝑝
𝑘

= 10.2 ± 0.6 (1.9) 

which is Trouton’s rule at the normal boiling point.  

Trouton’s rule does not apply to two well-known classes of fluid, some hydrogen 

bonding liquids, and very small monoatomic and diatomic molecules. The hydrogen 

bonding liquid exceptions yield Δ𝑆𝑣𝑎𝑝/𝑘 > 11, and the very small molecules 

yieldΔ𝑆𝑣𝑎𝑝/𝑘 < 9.5. For this reason, it is convenient to define 3 broad liquid groups by 

either their dimensional vaporization entropies at their normal boiling points or Trouton’s 

constant (Δ𝑆𝑣𝑎𝑝/𝑘): 

Δ𝑆𝑣𝑎𝑝

𝑘
= {

8.5 to 9.5  Group I

9.8 to10.8  Group II

> 11.2  Group III

 

 

Ranges don’t overlap, as some liquids do not neatly fall into these categories. 

Group I includes the inert elements and diatomic molecules given in Table 1.1. Group II 
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includes non-polar and slightly polar organic liquids given in Tables 1.2–1.4.  Group III 

liquids include many polar and hydrogen bonding liquids such as alcohols. Water is in its 

own unique group. Group I and Group II share some thermodynamic properties, yet show 

a clear difference for other properties. Dimensionless entropies of vaporization are 

plotted in Figure 1.3 for some Group II liquids. The superposition of Δ𝑆𝑣𝑎𝑝 vs. 𝜌𝑅 plots 

illustrates a generalized Trouton’s rule. Many Group II liquids at their normal boiling 

points have reduced densities of 𝜌𝑅 = 2.63 ± 0.07, which corresponds to a Δ𝑆𝑣𝑎𝑝/𝑘~10 

(Trouton’s constant), but at 𝜌𝑅 = 2, Trouton’s constant would be about five.  

 

 

 

Figure 1.3: Entropies of vaporization for some Group II molecules. 
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ideal gas from a density of 𝜌𝑖𝑔 = 𝑃
𝑠𝑎𝑡/𝑘𝑇 to an ideal gas at the same density as the liquid 

𝜌𝑙𝑖𝑞 followed by “turning on the interactions” to convert the dense ideal gas to a liquid 

with the density 𝜌𝑙𝑖𝑞. The second contribution to the entropy of condensation is the self-

solvation entropy Δ𝑆𝑝. The first contribution  Δ𝑆𝑐𝑜𝑛𝑑 is easily calculated as the 

isothermal compression of an ideal gas: 

 

Δ𝑆𝑐𝑜𝑛𝑑
𝑘

= ln(
𝜌𝑖𝑔

𝜌𝑙𝑖𝑞
) = ln (

𝑘𝑇𝜌𝑖𝑔/𝑃
𝑠𝑎𝑡

𝑘𝑇𝜌𝑙𝑖𝑞/𝑃𝑠𝑎𝑡
) = ln 𝑍𝑙𝑖𝑞 − ln𝑍𝑖𝑔 = ln𝑍𝑙𝑖𝑞 < 0 (1.10) 

 

Since Δ𝑆𝑣𝑎𝑝 and 𝑍𝑙𝑖𝑞 are experimental measurables, the self-solvation entropy 

Δ𝑆𝑝 can be calculated from the thermodynamic cycle: 

 

Δ𝑆𝑣𝑎𝑝 + Δ𝑆𝑐𝑜𝑛𝑑 + Δ𝑆𝑝 = 0 (1.11) 

Self-solvation entropy has been described as the entropy loss of transferring a molecule at 

a fixed position in an ideal gas to a fixed position in a liquid of density 𝜌𝑙𝑖𝑞.[4,5]  Since 

the molecule is fixed in space before and after the transfer, there are no entropic 

contributions associated with changes in molecular translational degrees of freedom; Δ𝑆𝑝 

isolates the entropy contribution of molecular interactions in the solvation process. 

 

1.1.3 Chemical Potential 

The chemical potential relative to an ideal gas at the same temperature and 

pressure may be computed from the equation of state by [6]: 

 

𝜇 − 𝜇𝑖𝑔(𝑇, 𝑃) = 𝑍 − 1 − ln 𝑍 + ∫
𝑍 − 1

𝜌
𝑑𝜌

𝜌𝑅

0

(1.12) 
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For a saturated liquid in equilibrium with an ideal gas, (1.12) is identically zero. 

Substituting the EOS (1.1) into (1.12) and rearranging yields: 

 

ln 𝑍𝑙𝑖𝑞 = 𝐻𝑠(𝜌𝑅) − 2
𝜌𝑅𝑢

𝑘𝑇
+ ∫

𝐻𝑠(𝜌)

𝜌
𝑑𝜌

𝜌𝑅

0

(1.13) 

 

In the NLR, setting 𝑍𝑙𝑖𝑞 ≃ 0, and solving for the potential energy contribution gives: 

 

ln 𝑍𝑙𝑖𝑞 = −2 − 𝐻𝑠(𝜌𝑅) + ∫
𝐻𝑠(𝜌)

𝜌
𝑑𝜌

𝜌𝑅

0

(1.14) 

 

Equation (1.14) predicts that in the NLR, 𝑍𝑙𝑖𝑞 depends only on 𝜌𝑅. The validity of this 

conclusion is illustrated in Figure 1.4. Superposition of ln 𝑍𝑙𝑖𝑞 vs. 𝜌𝑅 data persists to the 

critical point where the vapor may not be approximated as an ideal gas [7]. 

 

 

Figure 1.4: Behavior of the logarithm of liquid compressibility factor −𝑘 ln𝑍𝑙𝑖𝑞 for 

different types of liquids. 
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1.1.4 Thermal Expansion, Isothermal Compressibility, & Thermal Pressure  

The thermal expansion coefficient and isothermal compressibility can be 

calculated from equation (1.1) in the NLR (𝑍𝑙𝑖𝑞 ≃ 0; 𝑢/𝑘𝑇 ≃ 1 + 𝐻𝑠(𝜌𝑅)): 

 

�̃� ≡ 𝑇𝛼 = −𝑇 
𝜕 ln 𝜌𝑅
𝜕𝑇

)
𝑃
=

1 +𝐻𝑠(𝜌𝑅)

𝜌𝑅
𝑑𝐻𝑠(𝜌𝑅)
𝑑𝜌𝑅

− 1 − 𝐻𝑠(𝜌𝑅)
(1.15)

 

 

�̃� ≡ (𝑘𝑇𝜌)𝜅 = 𝜌𝑘𝑇 
𝜕 ln 𝜌𝑅
𝜕𝑃

)
𝑇
= [(

𝜕𝜌𝑅𝑍

𝜕𝜌𝑅
)
𝑇

]

−1

=
1

𝜌𝑅
𝑑𝐻𝑠(𝜌𝑅)
𝑑𝜌𝑅

− 1 − 𝐻𝑠(𝜌𝑅)
(1.16) 

 

Both �̃� and �̃� depend only on 𝜌𝑅 in the NLR. 

 

 

 

Figure 1.5: Dimensionless isothermal compressibility vs. reduced density 
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Figure 1.6: Dimensionless thermal expansion coefficient vs. reduced density 

In Figure 1.5, �̃� is plotted against 𝜌𝑅. For �̃�, both Group I and II molecules nearly 

follow the same universal curve, but Figure 1.6 shows that larger molecule liquids tend 

toward larger �̃� at a given 𝜌𝑅.  

The thermal pressure coefficient is given by: 

 

𝛾𝑣 =
𝜕𝑃

𝜕𝑇
)
𝑉
=
𝛼

𝜅

�̃�𝑣 =
𝑇𝛼

(𝑘𝑡𝜌)𝜅
=
�̃�

�̃�
= 1 + 𝐻𝑠(𝜌𝑅)

(1.17) 

 

In the NLR where 𝑍𝑙𝑖𝑞 ≃ 0, 𝛿2 and �̃�𝑣 are equal to one another. This result only holds if 

configurational energy is directly proportional to density. �̃�𝑣 is plotted in Figure 1.7. 

Groups I and II form separate, distinct branches. 
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Figure 1.7: Dimensionless thermal pressure coefficient as a function of reduced density 

1.1.5 Surface Tension 

There is no explicit thermodynamic relation to guide in the selection of a scaling 

variable to render the surface tension (𝜎) dimensionless. Some applications of Cahn-

Hilliard theory[8,9] indicate calculating surface tension through integrating the 

Helmholtz free energy density (which has units of pressure) over a characteristic 

interfacial distance. As with CED, Helmholtz free energy densities scale as 𝜌𝑘𝑇, while 

interfacial distance scales as 𝜌−1/3; therefore, a dimensionless surface tension �̃� can be 

defined as:  

�̃� =
𝜎

𝑘𝑇𝜌2/3
(1.18) 

 

�̃� is plotted against 𝜌𝑅 in Figure 1.8. While a wide variety of non-polar liquids show 

satisfactory superposition, Group I liquids �̃� are 10 to 20% greater than Group II liquids.  
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Figure 1.8: Dimensionless surface tension as a function of reduced density 
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yield the correct value of a given property. Figure 1.3 shows that Δ𝑆𝑐𝑜𝑛𝑑 = 𝑘 ln 𝑍𝑙𝑖𝑞 

dependence on 𝜌𝑅 appears to be more universal than Δ𝑆𝑣𝑎𝑝 even including Group III 

liquids such as methanol. Through equation (1.14) 휂𝑐 is therefore adjusted to yield the 

correct value of Δ𝑆𝑐𝑜𝑛𝑑 at the normal boiling point for a given liquid. This adjusted value 

of 휂𝑐 is then used to predict all other thermodynamic properties in this chapter. Figure 1.9 

compares the compressibility factor of liquid oxygen as a function of 𝜌𝑅 calculated with 

the 휂𝑐 = 0.1287 and the value of 휂𝑐 = 0.159, adjusted to match 𝑍𝑙𝑖𝑞 at oxygen’s normal 

boiling point. 휂𝑐 = 0.1287 overestimates 𝑍𝑙𝑖𝑞 in the NLR. Values of 휂𝑐 determined this 

way are shown for several liquids in Tables 1.1–1.4.  

 

For the Group I liquids in Table 1, 휂𝑐 is bounded tightly. 

 

0.156 ≤ 휂𝑐 ≤ 0.160 

 

From computer simulations, the critical density 𝜌𝑐𝜎
3 of a Lennard-Jones (𝐿𝐽) fluid has 

been estimated between 0.29 and 0.31 [12–14]. Taking 𝜎 as the effective diameter of the 

𝐿𝐽 particle, the fraction of space occupied by an LJ fluid at the critical occupied density 

휂𝑐(𝐿𝐽) is: 

0.152 ≤ 휂𝑐(𝐿𝐽) ≤ 0.160 
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Figure 1.9: Compressibility factor calculated for the mean-filed SPT unchained sphere 

model for oxygen in the NLR. 

With 휂𝑐  rescaled to match Δ𝑆𝑐𝑜𝑛𝑑 other thermodynamic properties are calculated. 
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N2 CO Ar O2 CH4 Xe 

critical 

temperature 
𝑇𝑐(K) 126.192 132.86 150.69 154.58 190.56 289.73 

critical volume 𝑉𝑐(cm3/mol) 89.4 92.2 74.6 73.4 98.6 119.0 

normal boiling 

temperature 
𝑇𝑏(K) 77.4 81.6 87.3 90.2 111.7 165.1 

volume at 𝑇𝑏 𝑉𝑏(cm3/mol) 34.8 35.3 28.6 28.0 38.0 44.6 

 
𝜌𝑅 2.57 2.61 2.61 2.62 2.60 2.67 

 
− ln𝑍𝑙𝑖𝑞 5.21 5.25 5.52 5.58 5.49 5.72 

휂𝑐 adjusted 0.158 0.156 0.160 0.159 0.160 0.158 

휂𝑏 calcd 0.406 0.407 0.416 0.417 0.415 0.421 

Δ𝑆𝑣𝑎𝑝/𝑘 
exptl 8.7 8.9 8.9 9.1 8.8 9.1 

calcd 8.5 8.5 9.0 9.0 8.9 9.2 

−Δ𝑆𝑝/𝑘 
exptl 3.5 3.6 3.3 3.5 3.3 3.4 

calcd 3.3 3.3 3.4 3.5 3.4 3.5 

𝛿2 
exptl 7.7 7.9 7.9 8.1 7.9 8.2 

calcd 7.5 7.5 8.0 8.0 7.9 8.2 

�̃� 
exptl 0.44 0.45 0.39 0.39 0.39 0.38 

calcd 0.66 0.65 0.62 0.61 0.62 0.60 

(102)�̃� 
exptl 6.0 6.1 5.4 5.2 5.5 5.2 

calcd 8.8 8.7 7.8 7.6 7.9 7.3 

�̃�𝑣 
exptl 7.35 7.47 7.20 7.52 7.09 7.28 

calcd 7.49 7.55 7.96 8.04 7.91 8.25 

�̃� exptl 1.2 1.3 1.4 1.4 1.4 1.4 

(102)�̃��̃� exptl 7.4 7.7 7.4 7.2 7.5 7.4 

Table 1.1: Experimental comparisons of SPT model with Group I small molecules at 

their normal boiling points. 

This SPT VDW model for unchained spheres was less successful at calculating 

some second order properties of Group I liquids. The model consistently overestimates 

dimensionless isothermal compressibility and thermal expansion coefficient for Group I 

liquids by as much as 50%. The ratio of the two, �̃�𝑣, is accurately predicted. Table 1.1 

shows that for Group I liquids, the experimental values of the dimensionless thermal 

pressure coefficient (�̃�𝑣) and CED (𝛿2) agree with one another, consistent with NLR 
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properties for a model that assumes a linear dependency of configurational energy on 

density.  

 

  
Propene C3H8 n-C4H10 C(CH3)4 

critical temperature 𝑇𝑐(K) 365.57 369.825 425.125 433.74 

critical volume 𝑉𝑐(cm3/mol) 188.4 200.0 254.92 305.81 

normal boiling 

temperature 
𝑇𝑏 (K) 225.5 231.0 272.66 282.65 

volume at 𝑇𝑏 𝑉𝑏(cm3/mol) 69.1 75.9 96.67 120.01 

 
𝜌𝑅 2.7 2.6 2.64 2.55 

 
− ln𝑍𝑙𝑖𝑞 5.6 5.5 5.44 5.26 

휂𝑐 adjusted 0.2 0.2 0.16 0.16 

휂𝑏 calcd 0.4 0.4 0.41 0.41 

𝛥𝑆𝑣𝑎𝑝 
exptl 9.9 9.8 9.89 9.69 

calcd 9.06 8.96 8.84 8.57 

−𝛥𝑆𝑝/𝑘 
exptl 4.27 4.26 4.44 4.43 

calcd 3.47 3.44 3.40 3.31 

𝛿2 
exptl 8.90 8.82 8.93 8.74 

calcd 8.06 7.96 7.84 7.57 

�̃� 
exptl 0.46 0.46 0.49 0.50 

calcd 0.61 0.62 0.63 0.65 

(102)�̃� 
exptl 5.2 5.0 5.1 5.1 

calcd 7.6 7.8 8.0 8.6 

�̃�𝑣 
exptl 8.89 9.16 9.59 9.84 

calcd 8.06 7.96 7.84 7.57 

�̃� exptl 1.3 1.2 1.2 — 

(102)�̃��̃� exptl 6.6 6.3 6.0 — 

Table 1.2: Experimental comparisons of SPT model with aliphatic hydrocarbons at 

their normal boiling points 

Group II liquid properties are shown in Tables 1.2–1.4. Like Group I liquids, the 

adjusted 휂𝑐 vary little from one liquid to the other: 

0.153 ≤ 휂𝑐 ≤ 0.160 
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The calculated Group II Δ𝑆𝑣𝑎𝑝/𝑘 and Δ𝑆𝑝/𝑘 are lower than their measured values by 

about 1 to 2. The discrepancy increases as molecular size increases. The experimental 

Δ𝑆𝑝 values indicate that Group II liquids, which occupy larger molecular volumes than 

Group I, pay a larger entropic penalty in self-solvation. With regards to entropy changes, 

and other energetic properties like the CED, the SPT model for unchained spherical 

molecules is adequate for small Group I molecules, but not for Group II molecules.  

 

  
n-C6H14 C6H6 (CH2)6 n-C7H16 CH3C6H5 

critical temperature 𝑇𝑐 (K) 507.82 562.05 553.64 540.13 591.75 

critical volume 𝑉𝑐(cm3/mol) 369.6 252.8 308.3 431.9 315.6 

normal boiling 

temperature 
𝑇𝑏 (K) 341.9 353.2 353.9 371.5 383.7 

volume at 𝑇𝑏 𝑉𝑏(cm3/mol) 140.6 96.0 117.0 163.1 118.3 

 
𝜌𝑅 2.63 2.63 2.64 2.65 2.67 

 
− ln𝑍𝑙𝑖𝑞 5.30 5.71 5.51 5.23 5.58 

휂𝑐 adjusted 0.155 0.160 0.158 0.154 0.156 

휂𝑏 calcd 0.409 0.421 0.415 0.407 0.417 

𝛥𝑆𝑣𝑎𝑝/𝑘 
exptl 10.2 10.5 10.2 10.3 10.4 

calcd 8.6 9.2 8.9 8.5 9.1 

−𝛥𝑆𝑝/𝑘 
exptl 4.9 4.8 4.7 5.0 4.8 

calcd 3.3 3.5 3.4 3.3 3.5 

𝛿2 
exptl 9.2 9.5 9.2 9.3 9.5 

calcd 7.6 8.2 7.9 7.5 8.1 

�̃� 
exptl 0.56 0.49 0.50 0.58 0.51 

calcd 0.65 0.60 0.62 0.66 0.61 

(102)�̃� 
exptl 5.6 4.8 4.8 5.5 4.9 

calcd 8.5 7.3 7.8 8.7 7.6 

�̃�𝑣 
exptl 10.03 10.25 10.43 10.48 10.32 

calcd 7.62 8.24 7.95 7.52 8.05 

�̃� exptl 1.1 1.3 1.2 1.0 1.1 

(102)�̃��̃� exptl 5.9 6.1 5.9 5.7 5.6 

Table 1.3: Experimental comparisons of SPT model with aliphatic and aromatic 

hydrocarbons at their normal boiling points 
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CCl3F CCl2F2 CClF3 CF4 C2F6 C3F8 

critical temperature Tc (K) 471.11 385.12 302 227.51 293.03 345.02 

critical volume 𝑉𝑐(cm3/mol) 248.0 214.0 179.2 140.7 225.0 299.4 

normal boiling 

temperature 
𝑇𝑏 (K) 296.9 243.4 191.7 145.1 195.1 236.4 

volume at 𝑇𝑏 𝑉𝑏(cm3/mol) 92.9 81.3 68.7 54.9 86.0 116.7 

 
𝜌𝑅 2.67 2.63 2.61 2.56 2.62 2.57 

 
− ln 𝑍𝑙𝑖𝑞 5.57 5.50 5.43 5.38 5.23 5.11 

휂𝑐 adjusted 0.156 0.158 0.158 0.161 0.155 0.157 

휂𝑏 calcd 0.417 0.415 0.413 0.411 0.406 0.403 

Δ𝑆𝑣𝑎𝑝/𝑘 
exptl 10.1 9.9 9.8 9.8 10.0 10.1 

calcd 9.0 8.9 8.8 8.7 8.5 8.3 

−Δ𝑆𝑝/𝑘 
exptl 4.5 4.4 4.4 4.4 4.7 4.9 

calcd 3.5 3.4 3.4 3.4 3.3 3.2 

𝛿2 
exptl 9.1 9.0 8.8 8.8 9.0 9.1 

calcd 8.0 7.9 7.8 7.7 7.5 7.3 

�̃� 
exptl 0.48 0.48 0.49 0.49 0.54 0.58 

calcd 0.61 0.62 0.63 0.64 0.66 0.67 

(102)�̃� 
exptl 4.9 4.9 5.3 5.2 5.6 5.1 

calcd 7.7 7.8 8.0 8.2 8.7 9.1 

�̃�𝑣 
exptl 9.77 9.78 9.26 9.27 9.61 11.32 

calcd 8.03 7.93 7.83 7.75 7.52 7.35 

�̃� exptl 1.3 1.2 1.2 1.2 1.1 1.1 

(102)�̃��̃� exptl 6.1 6.1 6.5 6.4 6.3 5.5 

Table 1.4: Experimental comparisons of SPT model with halogenated hydrocarbons at 

their normal boiling points 

The calculated 휂𝐵 for Group II liquids average 0.412, which does not statistically 

differ from the average 휂𝐵 for Group I liquids (0.415). As with the Group I liquids, this 

model overestimates �̃� and �̃� by about 50%, But unlike Group I, it does not accurately 

calculate �̃�𝑣. The discrepancy generally increases with molecular size. For Group II 

liquids, experimentally �̃�𝑣 > 𝛿
2. �̃�𝑣 − 𝛿

2 increases as molecular size increases. 
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Figures 1.5 and 1.8 show that both �̃� and �̃� satisfy a CSP; therefore, their product 

also satisfies a CSP: 

�̃��̃� = 𝜌1/3𝜅𝜎 (1.19) 

 

This experimental product is given in the tables. The 𝜅𝜎 product, has units of length, and 

has recognized as a fundamental  length scale for liquids[15]. 𝜅𝜎 varies as 𝑉1/3 ∝ 𝜌−1/3 

which is a measure of the average distance between molecules. 

1.3 SUMMARY AND CONCLUSIONS 

Thermodynamic properties can be rendered dimensionless with properly chosen 

scaling variables. For most properties, these variables are those which a generic VDW 

model suggests to reduce a given property to a function of reduced density in the NLR. 

This controlling nature of density in determining liquid properties yields the following 

corresponding states principle:  liquids at the same reduced density 𝜌𝑅 have comparable 

dimensionless thermodynamic properties. At low pressures, for a generic VDW model, 

temperature can be eliminated explicitly via the EOS by setting 𝑍𝑙𝑖𝑞 = 0.  For these 

models, 𝜌𝑅 becomes the only variable governing the thermodynamic properties of liquids 

in the NLR.  

Depending on Δ𝑆𝑣𝑎𝑝/𝑘, liquids can be classified into 3 general groups. Group I 

includes small molecules such as monoatomic elements, diatomic elements, and methane. 

Group II includes slightly larger non-polar and slightly polar organics such as those in 

Tables 1.2–1.4. Group III includes polar and hydrogen bonding liquids. Some 

thermodynamic properties of both Group I and II superpose to form “master curves,” 

such   as �̃� and − ln 𝑍𝑙𝑖𝑞, while other properties split into branches such as �̃� and 𝛾𝑣. 

Isothermal compressibility may be the most universal property among Groups I and II. 



 20 

Among the liquids listed in Tables 1.1–1.4, the average experimental value of  �̃� at their 

normal boiling points is (5.1 ± 0.1)×10−2. A similar small variation is also observed in 

− ln 𝑍𝑙𝑖𝑞 = Δ𝑆𝑐𝑜𝑛𝑑/𝑘.  

Using critical occupied volume fraction as the only adjustable parameter, the 

dimensionless thermodynamic properties are calculated at the normal boiling point with a 

VDW type model based on Scaled Particle Theory for hard spheres. Excellent agreement 

is obtained for some properties of Group I liquids. These properties for small molecules 

calculated with this model also agree well with computed Lennard-Jones properties. 

Overall, this SPT model for small, rigid, unchained spheres is unsuitable for large 

flexible molecules such as n-heptane. At their normal boiling points, the experimental 

Δ𝑆𝑝/𝑘 shown in the tables are larger in magnitude for Group II liquids than for Group I 

liquids, yet the Δ𝑆𝑝/𝑘 calculated with this model do not show this trend. The SPT model 

developed and described in Chapter 2–4 addresses this issue by introducing a parameter 

(𝑟) to account for molecular size differences. 
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Chapter 2:  Scaled Particle Theory of Molecular and Polymer Solutions* 

2.1 INTRODUCTION 

The analytically simple, easily implemented Lattice Fluid (LF) model[17–19] 

remains popular in thermodynamic modeling of polymer fluids and polymer/solvent 

solutions[20–23]. Newer, more complex models yield accurate calculated 

properties[24,25] and can provide structural information[26,27], but at the cost of 

practicality. As an example, most implementations of Statistical Associating Fluid 

Theory (SAFT) require five pure component parameters[28] compared to LF’s three, and 

SAFT chemical potentials are much more complicated than corresponding expressions 

for LF chemical potentials[18,29].  Some models that emphasize structure have difficult 

and inaccurate equations of state[30]. The enduring popularity of the LF model may be 

attributed to its robustness in calculating fluid properties of all sizes, its statistical 

thermodynamic foundation, and its relative ease of use; however, the LF model is built 

upon a lattice description of a fluid, which has obvious limitations in its ability to 

describe a fluid from a molecular viewpoint.   

Scaled Particle Theory (SPT) is an off-lattice model shown to accurately predict 

thermodynamic properties of hard sphere (HS) mixtures[31].  As demonstrated in 

Chapter 1, adding a random mixing approximation to calculate potential energy (mean-

field or van der Waals approximation)  has shown useful in calculating some properties 

of small, elemental and rigid liquids[1]. A mean-field type argument is also invoked to 

derive the insertion probability for a tangent HS chain with SPT as an individual sphere 

template. The combination of insertion probability and potential energy allows the 

calculation of the chemical potential and other thermodynamic properties. Size and 

                                                 
* This material was partly published as: Sean P. O’Keefe, and Isaac C. Sanchez, “Scaled Particle Theory of 

solutions: Comparison with Lattice Fluid Model” Fluid Phase Equilibria 433, 67 (2017)[16]. Sean Patrick 

O’Keefe is the primary author. 
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energetic parameters for this SPT model are equal in number and similar in interpretation 

to the LF parameters. Like the LF model, the SPT model is easy to use and does not 

require much computing effort.  Unlike the LF model, the SPT molecular description is 

an off-lattice model that strictly defines segment sizes.    

 

2.2 SPT CHAIN MODEL DESCRIPTION  

A molecule of type 𝑖 is modeled as a chain of 𝑟𝑖 tangent hard spheres of diameter 

𝜎𝑖 (pearl necklace model). Both 𝑟𝑖 and 𝜎𝑖 are characteristic properties of the molecule 

independent of temperature and pressure. The volume occupied by a single 𝑖 molecule is 

𝑟𝑖𝜋𝜎𝑖
3/6 ≡ 𝑟𝑖𝑣𝑖

∗.  The two independent molecular size parameters, 𝑣𝑖
∗ = 𝜋𝜎𝑖

3/6  and 𝑟𝑖 

are analogous to the LF segment volume 𝑣𝑖
∗ and chain length 𝑟𝑖

0 parameters given in 

[18,19]. For an 𝑚-component system of volume 𝑉 containing 𝑁1 molecules of type 1, 𝑁2 

molecules of type 2…  𝑁𝑚 molecules of type 𝑚, 𝑁 = ∑ 𝑁𝑖
𝑚
𝑖=1 , the HS volume is assumed 

additive, and occupied volume fraction 휂 is defined by: 

 

휂 =
∑ 𝑁𝑖𝑟𝑖𝑣𝑖

∗𝑚
𝑖

𝑉
=
𝑉∗

𝑉
(2.1) 

 

Like �̃� in the LF model, 휂 is a ratio of occupied to total volume and functions as a 

reduced density. 

2.2.1 Chemical Potential 

The chemical potential of species 𝑖 (𝜇𝑖) can be expressed as[32]: 

 

𝜇𝑖 = 𝑘𝑇 ln(𝜙𝑖휂/𝑟𝑖𝑣𝑖
∗𝑞𝑖B𝑖) (2.2) 
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where 𝑘 is the Boltzmann constant, 𝑇 is the system temperature, 𝑞𝑖 is the internal 

molecular partition function assumed to be at most a function of 𝑇 (and hereafter, 

suppressed), and B𝑖 is the dimensionless Widom insertion factor for the chain. 𝜙𝑖 is the 

fraction of the total HS volume occupied by species 𝑖: 

 

𝜙𝑖 =
𝑁𝑖𝑟𝑖𝑣𝑖

∗

𝑉
;   휂𝑖 = 𝜙𝑖휂 (2.3) 

For a HS fluid in a mean-field approximation in which fluctuations in the energy are 

ignored, B𝑖 is given by[2]: 

ln B𝑖 = lnP𝑖 − 𝛽〈𝜓𝑖〉 (2.4) 

 

𝛽 = 1/𝑘𝑇, 〈𝜓𝑖〉 is the average attractive energy of a HS chain of type 𝑖 with all other 

molecules in the system, and P𝑖 is the probability of a successful random insertion of a 

chain of 𝑟𝑖 hard spheres into the HS system at once. P𝑖 can be approximated as the 

product of inserting each sphere of the chain of 𝑟𝑖 spheres independently into the mixture. 

With P1𝑖 as the probability of inserting a single HS of diameter 𝜎𝑖 into the system, this 

approximation yields: 

P𝑖 = P𝐻𝑆,𝑖
𝑟𝑖 (2.5) 

Equation (2.5) completely ignores chain connectivity. If P𝐻𝑆,𝑖 were known exactly, the 

approximate P𝑖 calculated from an exact P𝐻𝑆,𝑖 using (4) would overestimate the insertion 

probability since it does not require the more stringent condition that 𝑟𝑖 contiguous sites 

be available for a successful insertion. 
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According to SPT[31]: 

 

− lnP𝐻𝑆,𝑖 = ln(1 + 𝑦) + (3𝜎−1𝜎𝑖 + 3𝜎−2𝜎𝑖
2 + 𝜎−3𝜎𝑖

3)𝑦

+(
9

2
𝜎−1
2 𝜎𝑖

2 + 3𝜎−1𝜎−2𝜎𝑖
3) 𝑦2 + 3𝜎−1

3 𝜎𝑖
3𝑦3

(2.6) 

 

in which 

𝜎−𝑘 =∑
𝜙𝑖

𝜎𝑖
𝑘

𝑖

(2.7) 

and 

𝑦 =
휂

1 − 휂
; 휂 =

𝑦

1 + 𝑦
(2.8) 

 

The mean-field potential energy is identical to that given for the LF model in[19].  

Assuming that hard spheres interact attractively with one another through a 𝑅−6 potential 

of the form 휀𝑖𝑗(𝜎𝑖𝑗/𝑅)
6
, the average interaction energy of a molecule of type 𝑖 with a 

system of attractive spheres is given by: 

 

〈𝜓𝑖〉 = −2𝑟𝑖𝑣𝑖
∗휂∑𝜙𝑗𝑃𝑖𝑗

∗

𝑗

(2.9) 

where 

𝑃𝑖𝑗
∗ = 4 (

𝜎𝑖𝑗
3

𝜎𝑖𝑖
∗𝜎𝑗𝑗
3) 휀𝑖𝑗 and 𝑃𝑖𝑖

∗ = 𝑃𝑖
∗ =

2𝜋휀𝑖𝑖/3

𝜋𝜎𝑖𝑖
3/6

≡
휀𝑖
∗

𝑣𝑖
∗ (2.10) 

 

𝑃𝑖𝑗
∗  is a temperature independent parameter with units of pressure that measures how 

strongly an 𝑖 sphere attracts a 𝑗 sphere. 
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Using equations (2.2–2.10) the chemical potential of species 𝑖 is given by: 

 

𝛽𝜇𝑖 = ln (
𝜙𝑖휂

𝑟𝑖𝑣𝑖
∗)

⏟  
𝑁𝑖/𝑉=𝜌𝑖

+ 𝑟𝑖

[
 
 
 
 
 
ln(1 + 𝑦) + (3𝜎−1𝜎𝑖 + 3𝜎−2𝜎𝑖

2 + 𝜎−3𝜎𝑖
3)𝑦

+(
9

2
𝜎−1
2 𝜎𝑖

2 + 3𝜎−1𝜎−2𝜎𝑖
3) 𝑦2

+3𝜎−1
3 𝜎𝑖

3𝑦3 − 2𝛽𝑣𝑖
∗휂∑𝜙𝑗𝑃𝑖𝑗

∗

𝑗 ]
 
 
 
 
 

(2.11) 

 

Equation (2.11) satisfies the Gibbs-Duhem requirement that ∑ 𝑁𝑖𝜇𝑖𝑖 = 0 at a fixed 

temperature and pressure. 

 

2.2.2 Equation of State 

If the chemical potential is known to within a function of temperature, the 

equation of state may be found through isothermal integrations of the Gibbs-Duhem 

equation[6] by: 

 

𝑍 ≡
𝑃

𝜌𝑘𝑇
= 1 − lnB +

1

휂
∫ ln B𝑑휂
𝜂

0

(2.12) 

ln B =∑𝑥𝑖 ln B𝑖
𝑖

(2.13) 

in which 𝑥𝑖 are mole/number fractions.  Equation (2.12) yields the following EOS for the 

system of SPT chains: 

 

𝑍

𝑟
=
�̃�

휂�̃�
=
(1 + 𝑦)(𝜎−3 + 3𝜎−1𝜎−2𝑦 + 3𝜎−1

3  𝑦2)

𝜎−3
− (1 −

1

𝑟
) −

휂

�̃�

�̃� ≡ 𝑃/𝑃∗ 𝑃∗ =∑∑𝜙𝑖𝜙𝑗𝑃𝑖𝑗
∗

𝑗𝑖

�̃� ≡ 𝑇/𝑇∗ 𝑇∗ = 𝑃∗𝑣∗/𝑘

(2.14) 
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𝑟 is the number average chain length of the SPT chain mixture: 

𝑟 =∑𝑥𝑖𝑟𝑖
𝑖

(2.15) 

and 𝑣∗ is the average sphere volume in the mixture given by: 

 

𝑣∗ =
∑ 𝑁𝑖𝑟𝑖𝑣𝑖

∗
𝑖

∑ 𝑁𝑖𝑟𝑖𝑖
=
𝑉∗

𝑟𝑁
or equivalently

1

𝑣∗
=∑

𝜙𝑖
𝑣𝑖
∗

𝑖

=
6𝜎−3
𝜋

(2.16) 

 

For pure fluids (2.14) reduces to: 

�̃�

휂�̃�
=
1

𝑟
+ 4𝑦 + 6𝑦2 + 3𝑦3 −

휂

�̃�
(2.17) 

and the ideal gas law: 
�̃�

𝜂�̃�
=
1

𝑟
 is recovered in the limit 휂, 𝑦 → 0.  

The dimensionless and characteristic macroscopic properties have the same 

meanings and origins as the corresponding LF properties. A pure fluid is completely 

characterized by its molecular parameters 𝑣𝑖 , 𝑟𝑖, 𝑃𝑖
∗ or alternately, its corresponding 

macroscopic parameters 𝑇𝑖
∗, 𝑃𝑖

∗, 𝜌𝑖
∗ ≡ (𝑉𝑖

∗)−1 (𝑉∗ intensive). Mixtures only require 

interaction parameters 𝑃𝑖𝑗
∗  for each constituent pair in addition to its pure component 

parameters. Appendix A contains SPT chain equation of state parameters for pure fluids 

and binary mixtures. 

2.3 OTHER DERIVED THERMODYNAMIC PROPERTIES 

The chemical potential (2.11) and the equation of state (2.14) can be used to 

derive other thermodynamic properties of the system to within functions of temperature. 
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2.3.1 Free Energy 

The Gibbs free energy 𝐺 is found by summing chemical potentials weighted by 

number fraction 𝑥𝑖: 

 

𝐺

𝑁𝑘𝑇
=∑𝑥𝑖𝛽𝜇𝑖

𝑖

=∑𝑥𝑖 ln 𝜌𝑖
𝑖

−
2𝑟휂

�̃�

+𝑟 {ln(1 + 𝑦) + (
1

𝜎−3
) [

(6𝜎−1𝜎−2 + 𝜎−3)𝑦

+(
9

2
𝜎−1
3 + 3𝜎−1𝜎−2)𝑦

2 + 3𝜎−1
3 𝑦3

]}

(2.18) 

 

Fixing 휂 and 𝑦 through the equation of state, equation of state and taking 

(𝜕𝐺/𝜕𝑁𝑖)𝑇,𝑃,𝑁𝑗≠𝑖 on (2.18) recovers (2.11). Substituting the equation of state (2.14) into 

(2.18) gives an equivalent pressure explicit free energy: 

 

𝐺

𝑁𝑘𝑇
=∑𝑥𝑖 ln 𝜌𝑖

𝑖

+ 𝑟 [
�̃�

휂�̃�
+ ln(1 + 𝑦) +

1

𝜎−3
(3𝜎−1𝜎−2𝑦 +

3

2
𝜎−1
3 𝑦2) −

1

𝑟
−
휂

�̃�
] (2.19) 

 

The Helmholtz free energy 𝐴 can be found by subtracting 
𝑃

𝜌𝑘𝑇
=
𝑟�̃�

𝜂�̃�
 from (2.19). 

 

𝐴

𝑁𝑘𝑇
=∑𝑥𝑖 ln 𝜌𝑖

𝑖

+ 𝑟 [ln(1 + 𝑦) +
1

𝜎−3
(3𝜎−1𝜎−2𝑦 +

3

2
𝜎−1
3 𝑦2) −

1

𝑟
−
휂

�̃�
] (2.20) 

 

Applying the thermodynamic relation 𝑃 = −(
𝜕𝐴

𝜕𝑉
)
𝑇

 to (2.20) recovers the EOS (2.14). 
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2.3.2 Enthalpy, Configurational Energy, and Configurational Entropy 

To avoid doubly counting pairs, the configurational energy of the system is half 

the sum of the average energies of interaction of each chain: 

 

𝑈

𝑁𝑘𝑇
=
1

2
∑𝑥𝑖𝛽〈𝜓𝑖〉

𝑖

= −𝛽휂𝑟𝑣∗∑∑𝜙𝑖𝜙𝑗𝑃𝑖𝑗
∗

𝑗𝑖

= −
𝑟휂

�̃�
(2.21) 

Neglecting thermal contributions to the internal energy, the enthalpy 𝐻 of the system to 

within a function of temperature is given as: 

 

𝐻

𝑁𝑘𝑇
=
𝑈

𝑁𝑘𝑇
+
𝑃

𝜌𝑘𝑇
= 𝑟 [

�̃�

휂�̃�
−
𝑟휂

�̃�
]

= 𝑟 [
(1 + 𝑦)(𝜎−3 + 3𝜎−1𝜎−2𝑦 + 3𝜎−1

3  𝑦2)

𝜎−3
− (1 −

1

𝑟
) −

2휂

�̃�
]

(2.22) 

 

In this mean-field SPT model, the configurational entropy is decoupled from the 

configurational energy. The two are linked through their separate contributions to 

thermodynamic properties. The configurational entropy 𝑆 may be calculated by 

subtracting the Helmholtz free energy (2.20) (which deliberately neglects the purely 

thermal energetic contribution) from the configurational energy (2.21). 

 

𝑆

𝑁𝑘
=
𝑈

𝑁𝑘𝑇
−
𝐴

𝑁𝑘𝑇

= −∑𝑥𝑖 ln 𝜌𝑖
𝑖

− 𝑟 [ln(1 + 𝑦) +
1

𝜎−3
(3𝜎−1𝜎−2𝑦 +

3

2
𝜎−1
3 𝑦2) −

1

𝑟
]

(2.23) 

 

Equation (2.23) depends only on composition and density. Contributions from 

configurational energy and temperature are only implicit via the equation of state. 
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2.3.3 Second Order Properties 

Several second order properties may be derived from equations presented thus far. 

The isothermal compressibility is given by: 

 

𝜅 =
1

𝜌
(
𝜕𝜌

𝜕𝑃
)
𝑇,𝑁
=

(

 
 
𝑃∗�̃�

{
 
 

 
 𝑦(1 + 𝑦) [1 + 6

𝜎−1𝜎−2
𝜎−3

𝑦 + 9
𝜎−1
3

𝜎−3
𝑦2]

− (1 −
1

𝑟
) 휂 −

2휂2

�̃� }
 
 

 
 

)

 
 

−1

(2.24) 

 

and the thermal expansion coefficient by: 

 

𝛼 = −
1

𝜌
(
𝜕𝜌

𝜕𝑇
)
𝑃,𝑁
=

[
�̃�
�̃�
+
휂2

�̃�
]

𝑇 {
𝑦(1 + 𝑦) [1 + 6

𝜎−1𝜎−2
𝜎−3

𝑦 + 9
𝜎−1
3

𝜎−3
𝑦2]

− (1 −
1
𝑟) 휂 −

2휂2

�̃�

}

(2.25)
 

 

The thermal pressure coefficient is easily calculated from (2.24) and (2.25). 

 

𝛾𝑣 = (
𝜕𝑃

𝜕𝑇
)
𝑉,𝑁
=
𝛼

𝜅
=
𝑃∗

T∗
[
�̃�

�̃�
+
휂2

�̃�
] (2.26) 

 

Since energies are only known to within a function of temperature, absolute heat 

capacities cannot be calculated. The difference in intensive heat capacities on a per chain 

basis is given by: 

𝐶𝑝 − 𝐶𝑣 =
𝑇𝛼𝛾𝑣
𝜌
=

𝑘𝑟
휂 [
�̃�
�̃�
+
휂2

�̃�
]
2

{
𝑦(1 + 𝑦) [1 + 6

𝜎−1𝜎−2
𝜎−3

𝑦 + 9
𝜎−1
3

𝜎−3
𝑦2]

− (1 −
1
𝑟) 휂 −

2휂2

�̃�

}

(2.27)
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Equation (2.27) shows that as the chain length increases, the heat capacity difference per 

chain increases. Dividing (2.27) by the number average molecular weight 𝑀𝑛 gives the 

mass intensive heat capacity difference �̂�𝑝 − �̂�𝑉. As with the LF model, for polymers, 

chain length is proportional to molecular weight. As 𝑟 → ∞,  the heat capacity difference 

per chain also → ∞, but the mass intensive �̂�𝑝 − �̂�𝑣 remains finite. 

 

2.3.4 Liquid/Vapor Critical Point 

At a given composition, 휂 is directly proportional to the number density 𝜌; 

therefore, the liquid/vapor critical conditions may be written as: 

 

(
𝜕�̃�

𝜕휂
)
𝑇

= (
𝜕2�̃�

𝜕휂2
)
𝑇

= 0 (2.28) 

For a pure fluid, equations (2.17) (2.27), and (2.28) establish a system of three equations 

to solve for dimensionless pressure �̃�𝑐, temperature �̃�𝑐, and occupied volume fraction 휂𝑐: 

 

�̃�𝑐 = −휂𝑐
2 + 휂𝑐�̃�𝑐 [

1

𝑟
+ 4𝑦𝑐 + 6𝑦𝑐

2 + 3𝑦𝑐
3] (2.29) 

�̃�𝑐 =
(1 − 휂𝑐)

2

4 + 22𝑦𝑐 + 36𝑦𝑐2 + 18𝑦𝑐
3

(2.30) 

30𝑦𝑐
2 + 92𝑦𝑐

3 + 99𝑦𝑐
4 + 36𝑦𝑐

5 =
1

𝑟
(2.31) 

 

For convenience, the critical compressibility factor 𝑍𝑐 may be rewritten as: 

 

𝑍𝑐 = 𝑟
�̃�𝑐

휂�̃�𝑐
= 𝑟 [

1

3𝑟
+
19

3
𝑦𝑐
3 + 12𝑦𝑐

4 + 6𝑦𝑐
5] (2.32) 

 

The critical properties 휂𝑐 , and �̃�𝑐 as a function of 𝑟 are shown in Figure 2.1. 
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Figure 2.1: 휂𝑐 and �̃�𝑐 as a function of 𝑟 for short chain length (𝑟 ≤ 20) 

For the limiting cases of 𝑟 = 1, and 𝑟 → ∞, equation (2.31) may be solved 

analytically. 휂𝑐 , �̃�𝑐, �̃�𝑐, and 𝑍𝑐 for these cases are given in Table 2.1. The result of a 

density and pressure of zero and 𝑍𝑐 = 1/3 for 𝑟 → ∞ are identical to those of the LF 

model for an infinitely long chain[17]. 1/3 is the lowest value of 𝑍𝑐the model predicts; 

however, 𝑍𝑐 < 0.3 for most small molecule liquids. As with the LF model, the SPT chain 

model is inadequate at critical PVT evaluation. 

 

 𝑟 = 1 𝑟 → ∞ 

휂𝑐 
√73 − 7

12
= 0.1287 0 

�̃�𝑐 
11,534√73 − 98,898

6,912
= 0.09383 1/4 

�̃�𝑐 
8,762 − 1,022√73

6,912
= 0.004344 0 

𝑍𝑐 
1,975 + 157√73

9,216
= 0.3599 1/3 

Table 2.1: Dimensionless critical properties in the single sphere (𝑟 = 1) and infinite 

chain (𝑟 → ∞) limits 
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2.3.5 Phase Stability in Binary Mixtures and the Spinodal 

A homogeneous binary mixture is stable or metastable with respect to 

concentration fluctuations if the second concentration derivative of the Gibbs free energy 

is positive, or equivalently if 

 
𝜕𝜇𝑖
𝜕𝑥𝑖
)
𝑇,𝑃

> 0 (2.33) 

for both species 1 and 2 in the binary mixture. Applying relationships described in 

reference [33] to the SPT chain model, gives the stability condition as: 

 

𝑣∗ (
1

𝑟1𝑣1
∗𝜙1

+
1

𝑟2𝑣2
∗𝜙2
) − 2휂𝛽𝑣∗Δ𝑃12

∗ −
𝜅𝛽𝑣∗𝑃𝜙

2

휂

+
1

𝜎−3
(
1

𝜎1
−
1

𝜎2
)
2

[6𝑦 (
1

𝜎1
+
1

𝜎2
) + 9𝑦2𝜎−1]

> 0 (2.34) 

 

in which 

Δ𝑃12
∗ ≡ 𝑃1

∗ + 𝑃2
∗ − 2𝑃12

∗ (2.35) 

and 𝑃𝜙 = 𝜕𝑃/𝜕𝜙 )𝑇,𝑣 is the isothermal, isochoric pressure coefficient and is given by: 

 

𝑃𝜙 = 𝑘𝑇

{
 
 

 
 
−2휂2𝛽[𝜙1𝑃1

∗ + (𝜙2 −𝜙1)𝑃12
∗ −𝜙2𝑃2

∗]

+휂 (
1

𝑟1𝑣1
∗ −

1

𝑟2𝑣2
∗) + (𝑦 − 휂) (

1

𝑣1
∗ −

1

𝑣2
∗)

+
6

𝜋
(
1

𝜎1
−
1

𝜎2
) [3𝑦2𝜎−2 + 3𝑦

2𝜎−1 (
1

𝜎1
+
1

𝜎2
) + 9𝑦3𝜎−1

2 ]
}
 
 

 
 

(2.36) 

 

If the indices 1 & 2 are interchanged in (2.36), 𝑃𝜙 only changes sign, and the left side of 

inequality (2.34) is unaffected.  All other quantities in (2.34) have been defined earlier in 

the chapter. 
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In inequality (2.34), 

 

𝑣∗ (
1

𝑟1𝑣1
∗𝜙1

+
1

𝑟2𝑣2
∗𝜙2
) 

 

is a favorable (supports homogeneous phase stability) combinatorial entropy contribution. 

−2휂𝛽𝑣∗𝛥𝑃12
∗  is an energetic contribution. It is generally negative (unfavorable), but in 

some cases, may be positive (favorable) if Δ𝑃12
∗ < 0. −𝜅𝛽𝑣∗𝑃𝜙

2𝜅𝑃𝜙
2/휂 is an unfavorable 

entropic contribution from equation of state effects (non-zero compressibility), and 

 

1

𝜎−3
(
1

𝜎1
−
1

𝜎2
)
2

[6𝑦 (
1

𝜎1
+
1

𝜎2
) + 9𝑦2𝜎−1] 

 

is a favorable entropic term arising from the net reduction in excluded volume for a HS 

pair upon mixing spheres of different sizes. 

If inequality (2.34) is not met, the homogenous binary phase is unstable and the 

mixture will separate into two fluid phases.  Setting the inequality equal to zero defines 

the spinodal, the boundary between phase stability (or metastability) and instability. 

2.3.6 Pressure Explicit Chemical Potential (binary mixtures) 

Often in binary phase equilibrium calculations, an alternate yet equivalent 

pressure explicit form of the chemical potential (2.11) is more convenient.  Multiplying 

both sides of the equation of state (2.14) by 𝜎−3𝜎1
3 = 𝑣1

∗/𝑣∗  and rearranging yields: 

 
𝑃𝑣1

∗

휂𝑘𝑇
− 𝜎1

3(1 + 𝑦)[𝜎−3 + 3𝜎−1𝜎−2𝑦 + 3𝜎−1
3 𝑦2] + (1 −

1

𝑟
)
𝑣1
∗

𝑣∗
+ 𝑣1휂𝛽𝑃

∗ = 0 (2.37) 
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Since (2.37) equals zero, it can be added to (2.11) without changing its value. This 

addition yields (neglecting the temperature independent − ln 𝑟𝑖𝑣𝑖) 

 

𝛽𝜇1 = ln𝜙1 + (1 −
𝑟1𝑣1

∗

𝑟2𝑣2
∗)𝜙2 + 𝑟1휂𝜒1𝜙2

2 + ln 휂 − 1

 +𝑟1 [

ln(1 + 𝑦) + (3𝜎−1𝜎1 + 3𝜎−2𝜎1
2 − 3𝜎−1𝜎−2𝜎1

3)𝑦

+ (
9

2
𝜎−1
2 𝜎1

2 − 3𝜎−1
3 𝜎1

3) 𝑦2 +
�̃�1

휂�̃�1
−
휂

�̃�1

]

 (2.38) 

 

�̃�1 ≡ 𝑃/𝑃1
∗; �̃�1 ≡ 𝑇/𝑇1

∗. 𝜒1 is given by: 

𝜒1 = 𝛽𝑣1
∗Δ𝑃12

∗ (2.39) 

 

The following identity was used in deriving (2.38): 

 

−
𝑟1
𝑟
𝜎−3𝜎1

3 = −1 + (1 −
𝑟1𝑣1

∗

𝑟2𝑣2
∗)𝜙2 (2.40) 

The pressure explicit chemical potential for species 2 can be found by interchanging the 

subscripts 1 and 2.   

Equation (2.19) is recovered when the − ln 𝑟𝑖𝑣𝑖
∗ is restored, and ∑ 𝑥𝑖𝛽𝜇𝑖𝑖  is 

applied to this pressure explicit form of the chemical potential. Equation (2.38) is 

particularly useful when the change in 𝜇1 on mixing is required to satisfy the functional 

form suggested by classical theory: 

𝛽(𝜇1 − 𝜇1
0) = ln𝜙1 + (1 −

𝑟1𝑣1
∗

𝑟2𝑣2
∗)𝜙2 + 𝜙2

2𝜒 (2.41) 

where 𝜇1
0 is the pure component chemical potential.  In this way (2.41) can be used to 

define an effective 𝜒, 
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𝜒𝑒𝑓𝑓 = 𝑟1휂𝜒1 +
1

𝜙2

{
 
 
 

 
 
 

ln (
휂

휂1
0) + 𝑟1

[
 
 
 
 
 
 
 ln (

1 + 𝑦

1 + 𝑦1
0) − 3𝑦1

0 − 3(𝑦1
0)2

+(3𝜎−1𝜎1 + 3𝜎−2𝜎1
2 − 3𝜎−1𝜎−2𝜎1

3)𝑦

+ (
9

2
𝜎−1
2 𝜎1

2 − 3𝜎−1
3 𝜎1

3) 𝑦2

+
�̃�1

�̃�1
(
1

휂
−
1

휂0
) −

(휂 − 휂1
0)

�̃�1 ]
 
 
 
 
 
 
 

}
 
 
 

 
 
 

(2.42) 

 

in which 휂1
0 and 𝑦1

0 denote 휂 and 𝑦 of pure component 1 at the specified temperature and 

pressure. The analogous expression for the LF model is[19]: 

 

𝜒𝑒𝑓𝑓 = 𝑟1�̃�𝜒1 +
1

𝜙2
2

{
  
 

  
 

ln (
�̃�

�̃�1
0) + 𝑟1

[
 
 
 
 
 
 
(1 − �̃�)

�̃�
ln(1 − �̃�)

−
(1 − �̃�1

0)

�̃�1
0 ln(1 − �̃�1

0)

+
�̃�1

�̃�1
(
1

�̃�
−
1

�̃�1
0) −

(�̃� − �̃�1
0)

�̃�1 ]
 
 
 
 
 
 

}
  
 

  
 

(2.43) 

 

in which �̃� is a reduced density analogous to 휂 and all other LF variables and parameters 

have the same interpretations as those for the SPT model. 

Experimentally, for a solvent(1)/polymer(2) solution, 𝜒𝑒𝑓𝑓 may increase or 

decrease as polymer composition increases[34].  Both the SPT and LF models predict an 

increase in reduced density with increasing polymer composition. For the LF model, all 

composition dependent terms within the square brackets of (2.43) decrease with 

increasing polymer composition (𝜙2) and (2.43) almost universally predicts a decrease in 

𝜒𝑒𝑓𝑓 with increasing 𝜙2. In contrast, many of the terms in the square brackets of (2.42) 

increase as 휂 increases, and the SPT 𝜒𝑒𝑓𝑓 may either increase or decrease with 𝜙2. 
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2.4 CHAPTER SUMMARY 

Using Scaled Particle Theory (SPT) in a mean-field configurational energy 

approximation, an easily implemented, off-lattice, thermodynamically consistent model 

of fluid mixtures is developed. Chemical potentials are derived from the random insertion 

of a HS chain into a HS fluid and invoking random mixing to calculate energetics. Like 

the Lattice Fluid (LF) model, the SPT model completely characterizes pure fluids with 

three parameters that can be calculated from pure component properties. Binary mixtures 

require only one additional interaction parameter. Several thermodynamic properties, 

including binary phase stability criteria are derived. This model was shown to calculate 

properties of small, rigid, nearly spherical molecules in Chapter 1 when chain length was 

set as (𝑟 = 1). In Chapter 3 this model is compared with LF model for calculating 

properties of fluid systems.  
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Chapter 3:  SPT Model Comparisons with Experiment* 

3.1 INTRODUCTION 

The SPT chain model is a simple, off-lattice thermodynamic model that 

approximates molecules with a well-defined size and shape. Despite its apparent 

theoretical advantages, the model’s success should be determined by its ability to predict 

thermodynamic properties against other theoretical models. In Chapter 3 the SPT chain 

model is compared against experimental data and the Lattice Fluid model[17–19]. Both 

models are entirely theoretical in origin, require the same number of parameters, and are 

analytically simple. Most of the systems selected in this chapter had been successfully 

described by the LF model[17,18,35]. 

When considering binary mixtures in this chapter for both models, the interaction 

parameter 𝑃12
∗  will be reported through a parameter 휁12 which scales 𝑃12

∗  relative to the 

geometric mean of the pure species characteristic pressures. 

 

휁12 = 𝑃12
∗ /√𝑃1

∗𝑃2
∗ (3.1) 

 

 In the original formulation of the LF model[18], the characteristic energy 휀∗ = 𝑘𝑇∗ was 

given by a quadratic mixing rule weighted by 𝜙 instead of the characteristic pressure 𝑃∗ 

as in equation (2.14). The geometric mean scaling was also done on a characteristic 

interaction energy 휀12
∗ = 휁12√휀1

∗휀2
∗  instead of by (3.1). All LF predictions in this chapter 

were recalculated using the characteristic pressure weighted mixing rule. Pure component 

SPT parameters and 휁12 fit for certain mixtures for both models can be found in 

                                                 
* As with Chapter 2, this material was partly published as: Sean P. O’Keefe, and Isaac C. Sanchez, “Scaled 

Particle Theory of solutions: Comparison with Lattice Fluid model” Fluid Phase Equilibria 433, 67 

(2017)[16]. Sean Patrick O’Keefe is the primary author. 
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Appendix A. Other LF parameters are either those reported in [17] and [19] or given as 

used in this chapter. 

 

3.2 ONE COMPONENT LIQUID/VAPOR EQUILIBRIUM 

For a pure liquid (𝑙𝑖𝑞) in equilibrium with its vapor (𝑣𝑎𝑝), chemical potential s of 

each phase at the given temperature and pressure must be equal: 

 

𝜇𝑙𝑖𝑞(𝑇, 𝑃) = 𝜇𝑣𝑎𝑝(𝑇, 𝑃) (3.2) 

 

 At a fixed temperature, (2.17) for each phase and (3.2) establish a system of three 

equations to solve for the unknowns 𝑃, 휂𝑙𝑖𝑞 , 휂𝑣𝑎𝑝. As described in Chapter 1, setting 

𝑍 = 𝑟�̃�/휂�̃� ≃ 0 excellently approximates 휂𝑙𝑖𝑞 at NLR temperatures, but in order to 

obtain saturated pressures and 휂𝑣𝑎𝑝, the two equations of state and chemical potential 

equality must be solved without approximation.  Model predictions of the temperature 

dependence of saturated pressures for nitrogen and the more flexible n-decane are shown 

in Figures 3.1 and 3.2 respectively. Saturated density predictions are shown in Figures 

3.3 and 3.4. Experimental data used for Figures 3.1–3.4 were obtained from the NIST 

webbook of thermophysical properties of fluid systems 

http://webbook.nist.gov/chemistry/fluid/[3]. The two models are comparable at predicting 

both saturated pressures and densities.  

http://webbook.nist.gov/chemistry/fluid/
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Figure 3.1: Model comparison for calculating vapor pressure of nitrogen 

 

 

Figure 3.2: Model comparison for calculating vapor pressure of n-decane 
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Figure 3.3: Saturated liquid and vapor density calculations for nitrogen 

 

 

Figure 3.4: Saturated liquid and vapor density calculations for n-decane 
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3.3 GAS SOLUBILITY IN MOLTEN POLYMERS 

By equating the chemical potential of a pure gas (𝜇1
0) to that of the same gas 

dissolved in a polymer (𝜇1), a Henry’s law constant (𝑘𝐻) for that gas(1)/polymer(2) 

system is obtained.  For the pure gas equation (2.38) is written as: 

 

𝛽𝜇1
0 = ln 휂1

0 − 1 +
𝑟1�̃�1

휂1
0�̃�1
+ 𝑟1 [ln(1 + 𝑦1

0) + 3𝑦1
0 +
3

2
(𝑦1
0)2 −

휂1
0

�̃�1
] (3.3) 

 

In the dilute limit both 휂, 𝑦 → 0 and the ideal gas law is valid such that 𝑟1�̃�1 휂1�̃�1⁄ = 1 

and (3.3) simplifies to: 

𝛽𝜇1
0 = ln 휂1

0 (3.4)  

휂𝑖
0, and 𝑦𝑖

0 denote 휂 and 𝑦 of the pure species 𝑖. Dilute gases are sparingly soluble in 

polymers[35]. The limit 𝜙1 → 0, may be applied to the composition of dissolved gas in 

the polymer. In this limit, 𝜙2 → 1, 휂 → 휂2
0, 𝑦 → 𝑦2

0, and 𝜎−𝑘 → 𝜎2
−𝑘. The SPT chemical 

potential for the gas in this limit is given by: 

 

𝛽𝜇1 = ln𝜙1 + ln 휂2
0 + 𝑟1

[
 
 
 
 ln(1 + 𝑦2

0) + (3
𝜎1
𝜎2
+ 3

𝜎1
2

𝜎2
2 − 3

𝜎1
3

𝜎2
3)𝑦2

0

+(
9

2

𝜎1
2

𝜎2
2 − 3

𝜎1
3

𝜎2
3) (𝑦2

0)2 +
�̃�1

휂2
0�̃�1
−
휂2
0

�̃�1
+ 휂2

0𝜒1
]
 
 
 
 

(3.5) 

 

Denoting the concentration of gas in the polymer 𝑐1
𝑙𝑖𝑞

, and the partial pressure of gas in 

equilibrium with the liquid 𝑃1, Henry’s Law is written as: 

 

𝑃1 = 𝑘ℎ𝑐1
𝑙𝑖𝑞 (3.6) 
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The SPT model definitions give 𝑐1
𝑙𝑖𝑞

 in units of mass per unit volume as: 

𝑐1
𝑙𝑖𝑞 =

휂2
0𝑀1
𝑟1𝑣1

𝜙1 (3.7) 

in which 𝑀1 is the molar mass of the gas. Equating chemical potentials (3.4) and (3.5) 

and rearranging terms gives the reciprocal of the Henry’s law constant 𝑘𝐻
−1 as: 

 

𝑘𝐻
−1 =

𝑀1
𝑅𝑇
(1 − 휂2

0)𝑟1 exp

{
 
 

 
 

𝑟1

[
 
 
 
 −(3

𝜎1
𝜎2
+ 3

𝜎1
2

𝜎2
2 − 3

𝜎1
3

𝜎2
3)𝑦2

0

−(
9

2

𝜎1
2

𝜎2
2 − 3

𝜎1
3

𝜎2
3) (𝑦2

0)2 −
�̃�1

휂2
0�̃�1
+
휂2
0

�̃�1
− 휂2

0𝜒1
]
 
 
 
 

}
 
 

 
 

(3.8) 

 

Solubility of gases in polymers is frequently measured through inverse gas 

chromatography (IGC) experiments. In these experiments the net retention volume 𝑉𝑁 is 

measured as the difference in volume of gas needed to elute a probe gas and volume of 

gas needed to elute a non-interacting marker gas. 𝑉𝑁 is thus the total volume of gas 

absorbed by the polymer. Dividing 𝑉𝑁 by the mass of the polymer gives the specific 

retention volume 𝑉𝑔 which is related to (𝑘𝐻
−1)  through[36]: 

 

𝑉𝑔 = 𝑘𝐻
−1 (

𝑅𝑇

𝑀1𝜌2
) (3.9) 

in which 𝜌2 is the mass density of the polymer. Often 𝑉𝑔 is corrected to a standard 

temperature 𝑇0 = 273.15 K in which case, the corrected specific retention volume 𝑉𝑔
0 is 

given by[37]: 

𝑉𝑔
0 = 𝑘𝐻

−1  (
𝑅𝑇0

𝑀1𝜌2
0) (3.10) 

The LF equation for 𝑘𝐻 analogous to equation (3.8) is given as[35]: 

 

𝑘𝐻
−1 =

𝑀1
𝑅𝑇
(1 − �̃�2)

𝑟1 exp {𝑟1 [−1 −
ln(1 − �̃�2)

�̃�2
−
�̃�1

�̃�2�̃�1
+
�̃�2

�̃�1
− �̃�2𝜒1]} (3.11) 
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From a functional viewpoint, the primary difference in equations (3.8) and (3.11) is that 

the SPT model prediction explicitly depends on the segment diameter ratio 𝜎1/𝜎2  

whereas the LF model does not. 

Specific retention volumes were calculated with both the LF and SPT models for 

gases at atmospheric pressure dissolved in three polymeric liquids. A geometric mean 

approximation was invoked for the cross term 𝑃12
∗ = √𝑃1

∗𝑃2
∗ (휁12 = 1); therefore, the 

mixture properties are completely determined by pure component equation of state 

parameters.  Figures 3.5–3.7 compare the predicted specific retention volumes that scale 

gas solubility. Experimental solubility data was taken from references [38] and [39]. 

 

 

Figure: 3.5 Comparison of calculated and experimental specific retention volumes for 

short alkanes and aromatic hydrocarbons at 423, 448, and 473 K in 

polystyrene. 
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Figure 3.6: Comparison of experimental and calculated specific retention volumes of 

alkanes, cyclic hydrocarbons, aromatic hydrocarbons, and chlorinated 

hydrocarbons in poly(1-butene) at 373 K. 

 

 

Figure 3.7: Comparison of calculated and experimental specific retention volumes in 

atactic-polypropylene at 373 K for 26 hydrocarbons and 8 oxygen 

containing organics.  LF parameters for a-PP were fit as 

𝑇∗ = 619 K, 𝑃∗ = 340 MPa, 𝜌∗ = 0.917 g/cm3  
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Predicted SPT solubilities were generally lower than corresponding LF 

predictions. With the exception of undecane, the absolute percent error in the predictions 

of alkane solubility increased with increasing chain length for SPT, while the percent 

error for the LF model remained roughly constant. LF was superior in predicting 

solubilities of larger, more chainlike molecules such as alkanes and aromatic 

hydrocarbons. SPT was somewhat better at predicting solubilities of very small chlorine 

containing molecules and most of the oxygen containing organics.  

 

3.4 ISOTHERMAL METHANE/BUTANE LIQUID/VAPOR EQUILIBRIUM 

As with the pure species liquid/vapor equilibrium discussed in Section 3.2, phase 

equilibrium conditions for binary mixtures are determined through equating chemical 

potentials 
𝜇1
′ (𝑇, 𝑃, 𝜙1

′ ) = 𝜇1
′′(𝑇, 𝑃, 𝜙1

′′)

𝜇2
′ (𝑇, 𝑃, 𝜙2

′ ) = 𝜇2
′′(𝑇, 𝑃, 𝜙2

′′)
(3.12) 

in which the primes denote separate phases. At equilibrium, each phase must satisfy the 

equation of state (2.14). The relationship: 

 
𝜙1
′ + 𝜙2

′ = 1

𝜙1
′′ + 𝜙2

′′ = 1
(3.13) 

must also hold. At fixed temperature and pressure, equations (3.12), (3.13), (2.11), and 

(2.14) completely describe the binary two phase system in equilibrium and determine the 

compositions of each phase.  

Figure 3.8 shows a liquid/vapor diagram in the pressure-composition plane for a 

methane/n-butane mixture at 104.4°C. The values of 휁12 for both the SPT and LF models 

were determined by a single point fit matching the experimental boiling point at a 
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composition 10.1 mol% methane at 54.4°C, 50 °C below the temperature of Figure 3.8. 

Experimental data for the phase diagram calculation were obtained from reference [40]. 

Both the LF and SPT model predict the retrograde condensation phenomenon, in 

which a liquid can be produced by decreasing pressure. Reversing the example given in 

reference [18], at 104.4°C and a pressure of over 100 atm, a mixture of 54 mol% methane 

is a dense fluid. If the pressure is decreased to about 95.3 atm, the liquid/vapor 

coexistence curve is reached, and a liquid of a higher density appears. Liquid continues to 

appear with decreasing pressure until about 72 atm when liquid begins to disappear as 

pressure is decreased. At about 54.3 atm, the lower branch of the coexistence curve is 

reached, and the liquid disappears completely. 

  

 

 

Figure 3.8: Liquid/Vapor phase diagram in the pressure composition plane for 

methane/n-butane at 104.4°C. 
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LF calculations are more accurate than SPT in the high butane composition limit. 

Though butane is a reasonably small molecule, it is larger and more flexible than 

methane.  SPT becomes increasingly more accurate as the methane concentration 

increases. The experimental data suggests a mixture critical pressure of 102 atm at 

104.4°C. LF predicts a critical pressure of 122.7 atm while SPT better predicts a critical 

pressure of 98.2 atm.  

 

3.5 HEATS AND VOLUMES OF MIXING 

Figure 3.9 compares experimental heats of mixing given in reference [41] with 

𝛥𝐻𝑚 calculated using equation (2.22) and the analogous LF enthalpy equation for three 

binary hydrocarbon mixtures, benzene/cyclohexane, benzene/n-heptane, and  

cyclohexane/n-heptane at atmospheric pressure and 20°C. The values of 휁12 given in 

Table A3 were calculated by matching a single 𝛥𝐻𝑚 for each mixture at an intermediate 

composition to its experimental measurement. All other properties were then calculated 

with these 휁12. Because 𝑍𝑙𝑖𝑞 ≪ |𝑈𝑙𝑖𝑞/𝑘𝑇|, the potential energy terms dominate 𝛥𝐻𝑚 

calculations, and Δ𝐻𝑚 ≃ Δ𝑈𝑚 for these liquids.  Since both the LF and SPT models use 

the same mean-field approximation for potential energy, the calculations in Figure 3.9 

agree to the extent that they appear to superpose. 
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Figure 3.9: Heats of mixing for three hydrocarbon mixtures at atmospheric pressure and 

20°C 

Volume changes on mixing for these binary mixtures at 25°C and atmospheric 

pressure were also calculated using both models and compared with experimental data for 

these mixtures with the same values of 휁12 as those used to construct Figure 3.9. Figure 

3.10 plots calculated volume changes on mixing against measured values taken from 

reference [42]. The SPT chain model is clearly inferior as the volume changes for the 

benzene/cyclohexane solution are overestimated by as much as 50%. The two models 

agree well for cyclohexane/n-heptane volumes changes of mixing. In Figure 3.10 𝑉0 is 

the ideal volume of the mixture assuming volume additivity. For both models the 

benzene/cyclohexane mixture had the greatest volume changes on mixing, and the 

cyclohexane/n-heptane mixture had the least volume change on mixing. 
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Figure 3.10: Volume change of mixing for three hydrocarbon mixtures at 25°C and 

atmospheric pressure 

All thermodynamic properties of ternary and higher order systems for the LF and 

SPT models are completely determined by pure component and respective binary mixture 

parameters. Table 3.1 compares 𝛥𝐻𝑚 for benzene/cyclohexane/n-heptane ternary 

mixtures calculated with the two models and experimental results. The SPT model 

appears comparable to LF at calculating enthalpies of mixing of ternary mixtures. 
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Mole Fractions Δ𝐻𝑚 (J/mol) 

Benzene Cyclohexane SPT LF Exptl. [43] 

0.27 0.418 807 805 737 

0.335 0.505 836 836 818 

0.752 0.188 689 694 697 

0.81 0.070 625 634 649 

0.791 0.120 642 649 673 

0.856 0.083 483 490 489 

0.501 0.195 972 974 946 

0.595 0.250 911 915 904 

0.298 0.280 845 841 819 

0.316 0.237 861 857 828 

0.415 0.342 935 935 957 

0.197 0.684 604 604 616 

0.206 0.169 661 653 645 

Table 3.1: SPT and LF heats of mixing for benzene/cyclohexane/n-heptane ternary 

mixtures 

3.6 SYSTEMS WITH UPPER CRITICAL SOLUTION TEMPERATURES 

At low temperatures, the Δ𝑃12
∗  term in inequality (2.34) becomes large in 

magnitude. If Δ𝑃12
∗  is positive, inequality (2.34) may not hold for a single, binary 

homogeneous phase at low temperatures, and the system will phase separate into two 

liquid phases. For a given temperature and pressure, composition of each phase is given 

by the conditions in Section 3.4. When plotted on the temperature-composition plane, 

liquid/liquid equilibria of this type reach a maximum Upper Critical Solution 

Temperature (UCST).  

Binary mixtures of perfluoroalkanes and hydrocarbons often exhibit this 

liquid/liquid behavior at low temperatures. Figure 3.11 compares experimental solubility 

data from reference [25] with the coexistence curves calculated with the SPT and LF 

models for an n-perfluorooctane/n-octane mixture at atmospheric pressure. 휁12were 

determined by requiring the octane rich phase at 350.52 K to have an n-perfluorooctane 
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mole fraction 𝑥 = 0.3013. The SPT model is slightly closer to the experimental data than 

the LF model, but the models agree better with each other than either one does with the 

data. As with the Δ𝐻𝑚 calculations in Section 3.5, the UCST type of phase instability and 

equilibrium conditions strongly depend on the unfavorable changes in potential energy on 

mixing, and both models use a mean-field VDW type potential energy. Theoretical UCST 

type liquid/liquid coexistence curves are narrower than the experimental solubility 

measurements, consistent with the coexistence curves in [18]. 

 

 

Figure 3.11: Liquid-liquid equilibrium for n-perfluorooctane/n-octane at atmospheric 

pressure. LF n-perfluorooctane parameters are 𝑇∗ = 430.9 K, 

𝑃∗ = 220.9 MPa, 𝜌∗ = 2.250 g/cm3. 

Setting inequality (2.34) to zero defines the spinodal. The spinodal is a condition 

applied to a single, homogeneous phase, and it is more easily solved than the system of 
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homogeneous phase instability, the spinodal provides the general nature of the phase 

diagram. Extrema in the spinodal occur at the same temperatures and compositions as 

critical solution temperatures in liquid/liquid coexistence curves. The UCST type of 

liquid/liquid phase stability strongly depends on 𝛥𝑃12
∗ . Changes in 𝑃12

∗  or 휁12 of ±0.1% 

dramatically shift the calculated UCST. To illustrate the effect of 휁12 on the calculated 

UCTS, Table 3.2 shows UCSTs calculated for five aniline mixtures assuming 휁12 = 1. 

Values of 휁12 that yield the correct UCSTs, shown in Table 3.2, are near unity, yet few of 

the UCSTs calculated with a geometric mean assumption is acceptable. 

 

 UCST (°C)  휁12 required for correct UCST 

Aniline/ Expt [44] SPT LF SPT LF 

n-Butane 84.1 61.89 10.05 0.99396 0.98641 
n-Pentane 71.7 30.42 35.22 0.98837 0.99147 
n-Hexane 69.1 14.42 63.71 0.98498 0.99860 
n-Heptane 70.1 1.06 52.79 0.98181 0.99574 
Cyclohexane 29.5 -69.82 -110.75 0.97421 0.97013 

Table 3.2: Effect of 휁12 on calculated UCSTs for aniline/hydrocarbon mixtures at 

atmospheric pressure 

Because of this sensitivity, values of 휁12 for three binary polar/nonpolar acetone 

mixtures were fit by matching the calculated liquid/liquid UCSTs to those given in 

reference [44]. To demonstrate the self-consistency of the model, these same values of 

휁12 fit at the UCST were used to calculate the liquid/vapor coexistence curves for each 

acetone mixture. These mixtures all experience minimum boiling azeotropes[45] at more 

than 80°C. above the respective UCST. Figure 3.12 shows the liquid/vapor phase 

diagram for the acetone/carbon disulfide mixture at atmospheric pressure. Methods of 

fitting 휁12 were identical for SPT and LF models. Experimental data for Figure 3.12 was 

taken from reference [40]. Table 3.3 summarizes predicted azeotrope temperatures and 
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compositions and compares them to experimental data.  For these systems SPT and LF 

models agree well with each other and measured quantities. 

 

 

UCST 

(°C)[44]  

Azeotrope Temperature (°C) 
Azeotrope composition 

wt% acetone 

acetone/ SPT LF Expt [45] SPT LF Expt[45] 

carbon 

disulfide 
−42 41.1 40.6 39.25 31.8 31.7 33 

n-Hexane −39 52.5 51.9 49.8 65.8 62.6 59 

Cyclohexane −29 54.2 54.4 53.0 75.6 75.3 67 

Table 3.3: Comparison of experimental and theoretical azeotropes of binary acetone 

mixtures 

 

 

Figure 3.12: Comparison of Acetone/CS2 liquid/vapor coexistence curves at atmospheric 

pressure 
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3.7 LIQUID/VAPOR EQUILIBRIUM FOR A POLAR/POLAR MIXTURE 

Though both the SPT chain and LF models base their configurational energies on 

an R-6 potential they were reasonably capable of predicting liquid/vapor equilibrium 

compositions for mixtures of 2,6-dimethylpyridine, a weak base, and phenol, a weak 

acid. 휁12 values were determined by fitting the maximum boiling azeotrope temperature 

of 185.5°C at 760 mm Hg [45]. The phase diagrams at 760 mm Hg and at 200 mm Hg in 

Figure 3.13 were both calculated using the values of 휁12 fit at 760 mm Hg. Experimental 

points in Figure 3.13 are taken from reference [46]. Both the SPT and LF models yielded 

similar results.  Δ𝑃12
∗  for this mixture is negative, indicating two cross (2,6-

dimethylpyridine-phenol) interactions are energetically more favorable than the sum of 

the like (phenol-phenol and 2,6-dimethylpyridine/2,6-dimethylpyridine) interactions. 

 

 

Figure 3.13: Liquid/Vapor phase diagram of 2,6-dimethyl-pyridine and phenol 
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3.8 POLYMER/SOLVENT SYSTEMS 

At high temperatures, the −𝜅𝛽𝑣∗𝑃𝜙
2𝜅𝑃𝜙

2/휂 contribution to (2.34) may drive 

binary phase separation if equation of state parameters are sufficiently different (as in 

polymer/solvent solutions). Coexistence curves of this type reach local minima lower 

critical solution temperatures (LCSTs). As with the UCSTs discussed in Section 3.6, the 

spinodal gives the general character of the liquid/liquid phase diagram, and LCSTs may 

be obtained directly from spinodal calculations. To test the ability of the SPT model to 

describe LCST behavior and polymer/solvent solutions, spinodal curves were calculated 

for solutions of n-hexane and polyisobutlyene (PIB) that exhibit LCSTs.  The molecular 

weight of the PIB used in calculations was 1.5×106 which exhibits an LCST in n-hexane 

solution at  128°C[47]. 

The upper-left pane in Figure 3.14 is the spinodal curve for the PIB/hexane 

system calculated with the SPT model by approximating the interaction pressure with the 

geometric mean, (휁12 = 1). With this interaction pressure, the SPT model predicts 

immiscibility at all temperatures and reasonable compositions. The spinodal (and 

corresponding phase diagram) is an asymmetric hourglass type which occurs when the 

LCST and UCST curves intersect. The PIB/hexane spinodal for the LF model at 휁12 = 1 

is shown in the lower-left of Figure 3.14. It does not predict the phase instability seen 

with the SPT model, and calculates an LCST of 59.3°C.  

Increasing the value of 휁12 makes 1,2 interactions more energetically favorable, 

and causes the SPT hourglass phase diagram to split into an LCST and UCST type 

diagram. For the SPT model, separation occurs near a 휁12 of 1.0054 (upper right of 

Figure 3.14). The UCST is the local maximum of the concave down branch and has a 

value of -86.9°C. The LCST is the local minimum of the concave up branch and has a 
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value of -69.1°C. At 휁12 = 1.02, the SPT UCST drops to about -197°C while the LCST 

increases to +15.0°C (not shown in Figure 3.14). 

 

 

  

Figure 3.14: Calculated spinodal curves for the PIB/n-hexane system at atmospheric 

pressure. CSTs are indicated when applicable. Solid curves are spinodals 

calculated with the indicated model and 휁12 or Δ𝑃12
∗ . Dashed horizontal lines 

indicate the experimental value of 128°C. 

The LCST continues to increase as the polymer/solvent interactions are made 

more favorable.   When 𝛥𝑃12
∗ = 0, two 1,2 interactions are as favorable as the sum of a 

1,1 and a 2,2 interaction.  When 𝛥𝑃12
∗ ≤ 0, the only negative contribution to inequality 
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(2.34) that may drive liquid/liquid phase separation is −𝜅𝛽휂𝑃𝜙
2. The SPT LCST for the 

PIB/hexane system reaches a maximum of about 89.26°C at 휁12 ~1.219.  The SPT model 

was unable to attain the experimental LCST of 128°C[47]. The LF model does reach the 

correct LCST at 휁12 = 1.035.  

The LCSTs reported in [18], using a characteristic energy 휀∗ based mixing rule, 

instead of the 𝑃∗ based rule, better agreed with measured critical solution temperatures. 

To make a fair comparison with [18], inequality (2.34) was rederived for the SPT chain 

model with this 휀∗ = 𝑣∗𝑃∗ based mixing rule and applied to the PIB/n-hexane system. 

With this 휀∗ mixing rule, the LF model predicted an LCST of 99°C at 

휁12 = 휀12
∗ /√휀1

∗휀2
∗ = 1, an improvement over the LF LCST with a 𝑃∗based mixing rule. 

When this 휀12
∗  mixing rule was attempted for SPT, the calculated LCST for 휁12 = 1 was  

−228.5°C, an improvement only in the sense that it no longer predicted complete 

immiscibility.  

These spinodal calculations were repeated with the SPT model for different 

polymers and solvents with the 𝑃∗ based mixing rule. All polymer/solvent spinodals 

predicted the type of immiscibility shown in the upper-left pane of Figure 3.14 for 

휁12 = 1, and underpredicted LCSTs at values of 휁12 large enough to separate the LCST 

and UCST curves. The behavior was even observed for model spinodal calculations for 

solutions with linear polyethylene, whose equation of state parameters in Appendix A are 

closest to those of small molecules. These results strongly contrast LF calculations of the 

same systems that predict homogeneous phase stability below a well-defined LCST for 

polymer/solvent systems. 
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3.9 CHAPTER SUMMARY AND CONCLUSIONS 

The SPT chain model was intended to model the fluid systems whose properties 

are successfully predicted by the LF model. Both models require the same number of 

parameters, the potential energy derivation is identical for both models, and the spinodal 

inequalities of both models predict the same types of phase instabilities. SPT was 

repeatedly compared with LF throughout this chapter, yielding mixed results. Both 

models were comparable when applied to mixtures of small, similarly sized molecules, 

but the LF model was superior when applied to polymer solutions. In Chapter 4 the 

ability of Scaled Particle Theory to model binary mixtures of differently sized hard 

spheres, and the approximation used to extend the individual sphere insertion probability 

to long chains are discussed.  
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Chapter 4:  SPT Shortcomings and other Models for Hard Sphere 

Solutions and Hard Sphere Chain Solutions* 

4.1 INTRODUCTION 

For most of the solutions of molecules with low 𝑟, SPT is neither evidently 

superior nor inferior to the LF model. Inequality (2.34) predicts the same types of phase 

instability as the LF spinodal given in [19], and if the SPT HS volumes of each 

component are similar, the SPT and LF spinodals have a similar functional appearance. 

Both models characterize pure fluids with three independent parameters (𝑟, 𝑣∗, 𝑃∗) . 

Binary mixtures require only one additional parameter, 𝑃12
∗  (or equivalently 휁12), and 

parameters for both models have similar molecular interpretations. 

SPT was best at predicting some properties of small, Group I fluids. Many of 

these types of molecules, such as methane, can reasonably be considered a single 

attractive hard sphere for the purpose of the SPT model. The success of this model with 

respect to unchained spheres may be attributed to its statistical thermodynamic 

foundation. In the absence of attractive interactions (𝑃𝑖𝑗
∗ = 0), equation (2.14) for 

mixtures of hard spheres (𝑟1, 𝑟2…𝑟𝑖 = 1) reduces to the Percus-Yevick compressibility 

equation of state generalized for mixtures[31,48]: 

 
𝑃

𝜌𝑘𝑇
= (1 + 𝑦) (1 + 3

𝜎−1𝜎−2
𝜎−3

𝑦 + 3
𝜎−1
𝜎−3
𝑦2) (4.1) 

  

                                                 
* As with Chapters 2 and 3, this material was partly published as: Sean P. O’Keefe, and Isaac C. Sanchez, 

“Scaled Particle Theory of solutions: Comparison with Lattice Fluid model” Fluid Phase Equilibria 433, 

67 (2017)[16]. Sean Patrick O’Keefe is the primary author. 
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When all spheres have equivalent diameters, equation (4.1) reduces to the more familiar 

Percus-Yevick compressibility equation of state for a pure HS fluid: 

 

𝑃

𝜌𝑘𝑇
=
1 + 휂 + 휂2

(1 − 휂)3
(4.2) 

 

Equation (4.2) was used as 1 + 𝐻𝑆(𝜌) in Chapter 1. When a mean-field potential energy 

contribution was added to (4.2), this simplified SPT model proved excellent at calculating 

first-order thermodynamic properties for Group I liquids in Table 1.1[1]. 

The LF model was clearly superior at predicting properties of polymer/solvent 

solutions. In addition to the difference in chain length parameters (𝑟polymer ≫ 𝑟solvent), 

Appendix A tabulates significant qualitative differences in value between SPTT solvent 

and polymer molecular parameters.  In the LF model, characteristic temperatures (𝑇∗) are 

of 𝑂(102) K for both small and polymeric molecules[17,19].  In the SPT model, small 

molecules have 𝑇∗s of 𝑂(103) K, and polymer molecules have larger 𝑇∗s, typically a 

factor of three to five times those of chemically similar small molecules.  For the SPT 

model small nonpolar aromatics in Table A1 have 𝑇∗s from 5×103 to 6×103 K, while in 

Table A2 polystyrene and poly(o-methyl styrene) both have 𝑇∗ > 2×104. Corresponding 

LF 𝑇∗s  range from 5×102 to 6×102 K for small aromatics[17], while the LF 𝑇∗s for 

polystyrene and  poly(o-methyl styrene) are 773 K and 796 K respectively[49].  

SPT characteristic pressures 𝑃∗s for both polymers and small molecules are are 

𝑂(103) MPa. Since 𝑇∗ ∝ 𝑃∗𝑣∗, the difference in characteristic temperatures manifests as 

a significant difference in segment volume. The polymer sphere volumes are about 8–10 

times that of small molecule 𝑣∗.  One should expect that in a homologous series of 
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molecules, such as the n-alkanes, the fundamental monomer size of the model should 

remain invariant with chain length, but for n-pentadecane (the longest n-alkane in Table 

A1) 𝜎 is 3.91 Å (𝑣∗ = 36 cm3/mol) while linear polyethylene has a 𝜎 of 6.35 Å 

(𝑣∗ = 154 cm3/mol). The linear polyethylene sphere volume 𝑣∗ is therefore 4.28 times 

that of the n-pentadecane  𝑣∗.  

Section 4.2 examines the effects of sphere size differences, composition, and 휂 on 

the SPT model’s ability to predict insertion probabilities in binary mixtures of unchained 

hard spheres. In section 4.3, models that improve upon the SPT model by explicitly 

accounting for chain connectivity are compared to SPT for the insertion probability of 

chains of spheres and predicted polymer/solvent critical solution temperatures. 

For a system of hard spheres or hard sphere chains without weak attractive 

interactions, the compressibility factor is a function of density only (𝑍 = 𝑍(휂)). All 

models discussed calculate insertion probabilities through integration of the isothermal 

Gibbs-Duhem equation followed by differentiation. The probability of inserting species 1 

in a binary mixture of hard sphere chains from a given equation of state is: 

 

− lnP1 = (𝑍 − 1)
𝑟1𝑣1

∗

𝑟𝑣∗
+∫

(𝑍 − 1)

휂
𝑑휂

𝜂

0

+
𝜙2𝑣1

∗

𝑣∗
 ∫

𝜕

𝜕𝜙1
(
𝑍 − 1

휂
)
𝑇,𝑃,𝜂

𝑑휂
𝜂

0

(4.3) 

 

− ln P2 may be found by interchanging the 1 and 2 subscripts in (4.3). 

4.2 BINARY MIXTURES OF UNCHAINED HARD SPHERES 

Previous work indicated that SPT tends to underpredict insertion probabilities of 

unchained hard spheres (𝑟1, 𝑟2 = 1)[50]. SPT insertion probability for unchained hard 

spheres are here compared with both simulated insertion probability (or equivalent 

growth probabilities) data, and insertion probabilities derived of other models. 
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4.2.1 Extended Carnahan-Starling Model 

The extended Carnahan-Starling model (eCS) for HS mixtures was developed 

from exact requirements in the limit of a point particle/HS mixture system, and the form 

of the radial distribution function at contact obtained with a Percus-Yevick 

approximation[51] applied to the Carnahan-Starling model for a one component HS 

system[52].  The eCS EOS is given by: 

 

𝑍 = 1 + [1 + 3
𝜎−1𝜎−2
𝜎−3

] 𝑦 + [3
𝜎−1𝜎−2
𝜎−3

+ 3
𝜎−1
3

𝜎−3
] 𝑦2 + [

𝜎−1𝜎−2
𝜎−3

+
𝜎−1
3

𝜎−3
] 𝑦3 (4.4) 

 

Equation (4.4) is more accurate[51,53] than the Boublík-Mansoori-Carnahan-Starling-

Leland[54,55] equation of state. The insertion probability for species 1 in a binary HS 

mixture found by using (4.4) in equation (4.3) is: 

 

− lnP1 = (1 + 𝜎1𝜎−1 + 𝜎1
2𝜎−2 + 4𝜎1

3𝜎−1
3 − 𝜎1

3𝜎−1𝜎−2 − 6σ1
2𝜎−1
2 ) ln(1 + 𝑦)

+(2𝜎1𝜎−1 + 2𝜎1
2𝜎−2 + 6𝜎1

2𝜎−1
2 + 𝜎1

3𝜎−1𝜎−2 + 𝜎1
3𝜎−3 − 4𝜎1

3𝜎−1
3 )𝑦

+
1

2
(𝜎1𝜎−1 + 𝜎1

2𝜎−2 + 3𝜎1
2𝜎−1
2 + 5𝜎1

3𝜎−1𝜎−2 + 4𝜎1
3𝜎−1
3 )𝑦2

+(𝜎1
3𝜎−1𝜎−2 + 𝜎1

3𝜎−1
3 )𝑦3 

(4.5) 
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4.2.2 Fourth Virial Expansion 

Expanding in powers of 휂 a fourth virial expansion gives for 𝑍: 

𝑍 = 1 + 𝑏2휂 + 𝑏3휂
2 + 𝑏4휂

3… (4.6) 

 

A virial expansion was selected for comparison because unlike SPT, virial expansions 

consistently overpredict insertion probabilities. The exact second and third virial 

coefficients for HS mixtures are given as[56]: 

 

𝑏2 = 1 + 3
𝜎−1𝜎−2
𝜎−3

(4.7) 

𝑏3 = 1 + 6
𝜎−1𝜎−2
𝜎−3

+ 3
𝜎−1
3

𝜎−3
(4.8) 

Using an exact composition dependence of partial virial coefficients and numerical fitting 

to polynomial functions of the diameter ratio, the fourth virial coefficient in a binary HS 

mixture may be approximated as[53,57,58]: 

 

𝑏4 = (𝜎1
3𝜎−3)

3[𝑥2
4𝑏4
(0) + 4𝑥1𝑥2

3𝑏4
(1) + 6𝑥1

2𝑥2
2𝑏4
(2) + 4𝑥1

3𝑥2𝑏4
(3) + 𝑥1

4𝑏4
(4)] (4.9) 

𝑏4
𝑘 are the partial virial coefficients given by: 

 

𝑏4
(0)
= 18.365 (

𝜎2
𝜎1
)
9

𝑏4
(1) =

1

4
(
𝜎2
𝜎1
)
6

[30 + 33.042 (
𝜎2
𝜎1
) + 9.417 (

𝜎2
𝜎1
)
2

+ (
𝜎2
𝜎1
)
3

]

𝑏4
(2) =

1

2
(
𝜎2
𝜎1
)
3

[4 + 14.365 (
𝜎2
𝜎1
) + 14.365 (

𝜎2
𝜎1
)
2

+ 4(
𝜎2
𝜎1
)
3

]

𝑏4
(3) =

1

4
[1 + 9.417 (

𝜎2
𝜎1
) + 33.042 (

𝜎2
𝜎1
)
2

+ 30 (
𝜎2
𝜎1
)
3

]

𝑏4
(4) = 18.365

(4.10) 
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The fourth virial insertion probability for a sphere of diameter 𝜎1 in a binary HS 

mixture is given by: 

 

− lnP1 = [3𝜎1𝜎−1 + 3𝜎1
2𝜎−2 + 𝜎1

3𝜎−3 + 1]휂

+ [3𝜎1𝜎−1 + 3𝜎1
2𝜎−2 + 𝜎1

3𝜎−3 +
9

2
𝜎1
2𝜎−1
2 + 3𝜎1

3𝜎−1𝜎−2 +
1

2
] 휂2

+[
4

3
𝑥1
3𝑏4
(4)
+ 4𝑥1

2𝑥2𝑏4
(3)
+ 4𝑥1𝑥2

2𝑏4
(2)
+
4

3
𝑥2
3𝑏4
(1)
] 𝜎1

9𝜎−3
3 휂3

(4.11) 

 

The insertion probability of component (2) is found by interchanging the subscripts 1 and 

2 in both (4.11) and each of the 𝑏4
(𝑘)

.  

Expanding the SPT insertion probability in 휂 about 휂 = 0 gives: 

 

− lnP1 = [3𝜎1𝜎−1 + 3𝜎1
2𝜎−2 + 𝜎1

3𝜎−3 + 1]휂

+ [3𝜎1𝜎−1 + 3𝜎1
2𝜎−2 + 𝜎1

3𝜎−3 +
9

2
𝜎1
2𝜎−1
2 + 3𝜎1

3𝜎−1𝜎−2 +
1

2
] 휂2

+ [3𝜎1𝜎−1 + 3𝜎1
2𝜎−2 + 𝜎1

3𝜎−3 + 9𝜎1
2𝜎−1
2 + 6𝜎1

3𝜎−1𝜎−2 + 3𝜎1
3𝜎−1
3 +

1

3
] 휂3

(4.12) 

 

SPT correctly predicts the second and third virial coefficients, but its fourth virial 

coefficient is 1 + 9
𝜎−1𝜎−2

𝜎−3
+ 9

𝜎−1
3

𝜎−3
 which tends to be greater than 𝑏4 calculated with 

equations (4.9) and (4.10).  

4.2.3 Model Comparisons with Simulation Data 

Figures 4.1–4.5 compare insertion probabilities measured in simulations with 

those calculated with SPT (2.6), eCS (4.5), and the fourth virial expansion (4.11). Figures 

4.1–4.4 use data  taken from reference [59], and Figure 4.5 uses data  taken from 

reference [60]. Both references employed particle growth methods instead of direct 

insertion of the HS with diameter 𝜎. 
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Trends in insertion probabilities may qualitatively be explained through the 

availability of cavities large enough to accommodate a sphere either of diameter 𝜎1 

(Figures 4.1, 4.3, and 4.5) or 𝜎2 (Figures 4.2 and 4.4). At a fixed mole fraction of either 

large or small spheres, 휂 is modified by changing the available empty space, and insertion 

probability decreases as 휂 increases in Figures 4.3–4.5. In Figures 4.1 and 4.2, insertion 

probabilities decrease as the composition of the smaller sphere increases. Small spheres 

are better at distributing occupied volume than larger spheres, while large spheres 

concentrate the occupied volume. There are more clusters of large cavities and HS 

insertion probability is higher in the large sphere composition limit at 휂 = 0.35, than in 

the small sphere composition limit at 휂 = 0.35. This HS volume dispersion is also the 

reason why Figure 4.4 shows a greater insertion probability for HS of type 2 when 

𝜎2/𝜎1 = 0.3 than when 𝜎2/𝜎1 = 0.6, even though 𝜎2/𝜎1 = 0.6 has a relatively smaller 

species 2. This is also why in Figure 4.2, the 𝜎2/𝜎1 = 0.3 has a greater insertion 

probability than the 𝜎2/𝜎1 = 0.6 curve near the limit concentrated in larger spheres, but 

the 𝜎2/𝜎1 = 0.6 insertion probability is greater when the mixture is concentrated in small 

spheres. Since all curves in Figure 4.5 are at the infinite dilution limit, average cavity size 

relative to solvent size only depends on 휂, and insertion probability simply decreases as 

solute size increases. 

 



 66 

 

Figure 4.1: Insertion probability of smaller sphere(1) in a binary HS mixture versus 

mole fraction of small sphere(𝑥1) at 휂 = 0.35 

 

 

Figure 4.2: Insertion probability of larger sphere(2) in a binary HS mixture versus mole 

fraction of small sphere(𝑥1) at 휂 = 0.35 
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Figure 4.3: Effect of 휂 on insertion probability of smaller sphere(1) in a binary HS at 

𝑥1 = 𝑥2 = 0.5 

 

 

Figure 4.4: Effect of 휂 on insertion probability of larger sphere(2) in a binary HS at 

𝑥1 = 𝑥2 = 0.5 
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Figure 4.5: Solute insertion probability at infinite dilution as a function of the ratio of 

solute(1) diameter to solvent(2) diameter 

In all five plots, the fourth virial expansion overestimates insertion probability as 

expected. SPT predicts lower insertion probabilities than the other models, and in all but 

the two lower 휂 curves in Figure 4.5 underpredicts simulated probabilities. The eCS 

model is consistently best. At its worst the eCS model curves appear to superpose with 

the SPT curves, but in Figure 4.4 eCS remains accurate over the entire 휂 range for each 

𝜎2/𝜎1 while SPT is unsatisfactory at predicting insertion probabilities of large spheres at  

휂 > 0.4. 

 

4.3 MODELS FOR HARD SPHERE CHAINS 

For individual unchained spheres, Section 4.2 showed that SPT tends to predict 

lower insertion probabilities than reported simulation data. Ignoring chain connectivity, 

-16

-14

-12

-10

-8

-6

-4

-2

0

0 1 2 3 4

ln
 P

so
lu

te

σ1/σ2

η = 0.05236

η = 0.20944

η = 0.41888

SPT

eCS

4th Virial



 69 

as in equation (2.5), introduces this error upon insertion of every SPT sphere in the chain 

of 𝑟 spheres. The eCS model better calculated insertion probability data, and if applied to 

equations (2.5–13) may yield a better model for HS chains than the SPT model. Simple 

analytical models that explicitly account for neighboring spheres at contact might also 

improve on the SPT chain insertion probability. 

4.3.1 Extended Carnahan-Starling Chains 

Substituting equation (4.5) into equation (2.5) gives the insertion probability for 

an eCS chain of 𝑟𝑖 tangent hard spheres (THS), with diameter 𝜎𝑖, without short-ranged 

attractive interactions: 

 

− ln P𝑖 = −𝑟𝑖 ln P𝐻𝑆,𝑖 = 𝑟𝑖

[
 
 
 
 
 
 
 
 
 (
1 + 𝜎1𝜎−1 + 𝜎1

2𝜎−2
+4𝜎1

3𝜎−1
3 − 𝜎1

3𝜎−1𝜎−2 − 6σ1
2𝜎−1
2 ) ln(1 + 𝑦)

+(
2𝜎1𝜎−1 + 2𝜎1

2𝜎−2 + 6𝜎1
2𝜎−1
2

+𝜎1
3𝜎−1𝜎−2 + 𝜎1

3𝜎−3 − 4𝜎1
3𝜎−1
3 )𝑦

+(

1

2
𝜎1𝜎−1 +

1

2
𝜎1
2𝜎−2 +

3

2
𝜎1
2𝜎−1
2

+
5

2
𝜎1
3𝜎−1𝜎−2 + 2𝜎1

3𝜎−1
3

)𝑦2

+(𝜎1
3𝜎−1𝜎−2 + 𝜎1

3𝜎−1
3 )𝑦3 ]

 
 
 
 
 
 
 
 
 

(4.13) 

 

With equations (2.12) and (2.13), the eCS chain EOS is given as: 

 

𝑍 = 1 + 𝑟 [(1 + 3
𝜎−1𝜎−2
𝜎−3

)𝑦 + (3
𝜎−1𝜎−2
𝜎−3

+ 3
𝜎−1
3

𝜎−3
)𝑦2 + (

𝜎−1𝜎−2
𝜎−3

+
𝜎−1
3

𝜎−3
)𝑦3] (4.14) 

 

4.3.2 Chiew Type Models for Tangent Hard Sphere Chains 

To investigate the effects of segment connectivity, the SPT chain model was 

compared to three Chiew Percus-Yevick (PY) type chain models[61,62]. These models 
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retain the bulk HS PY type contribution to the equation of state of the SPT model, but 

their equations of state contain additional contributions from the bonding of segments 

derived from Baxter’s solution of the Ornstein-Zernike equation with a PY 

approximation for hard spheres with infinitely adhesive surfaces[63].  

Percus-Yevick Compressibility (PY-C) Model 

This model uses a Percus-Yevick radial distribution function to account for 

chaining and Equation (4.1) as the HS contribution. The PY-C EOS is given by: 

 

𝑍 = 1 + 𝑦 + 𝑟 [
3

2

𝜎−1𝜎−2
𝜎−3

𝑦 + (
3

2

𝜎−1𝜎−2
𝜎−3

+ 3
𝜎−1
3

𝜎−3
) 𝑦2 + 3

𝜎−1
3

𝜎−3
𝑦3]

+
3

2
𝑦(1 + 𝑦)𝜎−1  ∑𝑥𝑖𝜎𝑖

𝑖

(4.15) 

 

The insertion probability found through Equation (4.3) is: 

 

− lnP𝑖 = ln(1 + 𝑦) + 3𝑟𝑖𝜎𝑖
3𝜎−1
3 𝑦3

+[
9

2
𝑟𝑖𝜎𝑖

2𝜎−1
2 +

3

2
𝑟𝑖𝜎𝑖

3𝜎−1𝜎−2 +
3

2
𝜎−1
𝑟𝑖𝑣𝑖

∗

𝑟𝑣∗
 ∑𝑥𝑗𝜎𝑗
𝑗

] 𝑦2

+[
𝑟𝑖𝑣𝑖

∗

𝑟𝑣∗
+
3

2
𝑟𝑖𝜎𝑖𝜎−1 +

3

2
𝑟𝑖𝜎𝑖

2𝜎−2 +
3

2
(
𝜋

6
)
𝑟𝑖𝜎𝑖

2

𝑟𝑣∗
 ∑𝑥𝑗𝜎𝑗
𝑗

+
3

2
𝜎𝑖𝜎−1] 𝑦

(4.16) 

 

Percus-Yevick Carnahan-Starling (PY-CS) Model 

This model uses the Percus-Yevick radial distribution function for connectivity, 

but uses the more accurate Boublík-Mansoori-Carnahan-Starling-Leland (BMCSL) 

equation of state[54,55] for the HS contribution. The resulting EOS is 
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𝑍 = 1 + 𝑦 + 𝑟 [
3

2

𝜎−1𝜎−2
𝜎−3

𝑦 + (
3

2

𝜎−1𝜎−2
𝜎−3

+ 3
𝜎−1
3

𝜎−3
) 𝑦2 + 2

𝜎−1
3

𝜎−3
𝑦3]

+
3

2
𝑦(1 + 𝑦)𝜎−1  ∑𝑥𝑖𝜎𝑖

𝑖

(4.17) 

The only difference between (4.17) and (4.15) is the coefficient of the 𝑦3 term.  

 

The insertion probability found through Equation (4.3) is: 

 

− lnP𝑖 = [1 − 3𝑟𝑖𝜎𝑖
2𝜎−1
2 + 2𝑟𝑖𝜎𝑖

3𝜎−1
3 ] ln(1 + 𝑦)

+

[
 
 
 
 
𝑟𝑖𝑣𝑖

∗

𝑟𝑣∗
+ 3𝑟𝑖𝜎𝑖

2𝜎−1
2 − 2𝑟𝑖𝜎𝑖

3𝜎−1
3 +

3

2
𝑟𝑖𝜎𝑖

2𝜎−2 +
3

2
𝑟𝑖𝜎𝑖𝜎−1

+
3

2
(
𝜋

6
)(
𝑟𝑖𝜎𝑖

2

𝑟𝑣∗
)∑𝑥𝑗𝜎𝑗

𝑗

+
3

2
𝜎−1𝜎𝑖

]
 
 
 
 

𝑦

+

[
 
 
 
 3𝑟𝑖𝜎𝑖

2𝜎−1
2 + 𝑟𝑖𝜎𝑖

3𝜎−1
3 +

3

2
𝑟𝑖𝜎𝑖

3𝜎−1𝜎−2

+
3

2

𝑟𝑖𝑣𝑖
𝑟𝑣∗

𝜎−1∑𝑥𝑗𝜎𝑗
𝑗 ]

 
 
 
 

𝑦2 + 2𝑟𝑖𝜎𝑖
3𝜎−1
3 𝑦3

(4.18) 

 

Perturbed Hard Chain Theory (PHCT) 

Perturbed Hard Chain Theory uses the BMCSL equation of state and radial 

distribution function for the connected HS chain[64]. The resulting EOS is: 

 

𝑍 = 1 + 𝑦 + 𝑟 [
3

2

𝜎−1𝜎−2
𝜎−3

𝑦 + (
3

2

𝜎−1𝜎−2
𝜎−3

+
5

2

𝜎−1
3

𝜎−3
)𝑦2 +

3

2

𝜎−1
3

𝜎−3
𝑦3]

+
3

2
𝑦(1 + 𝑦)𝜎−1∑𝑥𝑖𝜎𝑖

𝑖

+
1

2
𝑦2(1 + 𝑦)𝜎−1

2 ∑𝑥𝑖𝜎𝑖
2

𝑖

(4.19) 
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The insertion probability found through Equation (4.3) is: 

− ln P𝑖 = [1 − 3𝑟𝑖𝜎𝑖
2𝜎−1
2 + 2𝑟𝑖𝜎𝑖

3𝜎−1
3 ] ln(1 + 𝑦)

+

[
 
 
 
 
𝑟𝑖𝑣𝑖

∗

𝑟𝑣∗
+
3

2
𝑟𝑖𝜎𝑖

2𝜎−2 +
3

2
𝑟𝑖𝜎𝑖𝜎−1 + 3𝑟𝑖𝜎𝑖

2𝜎−1
2

−2𝑟𝑖𝜎𝑖
3𝜎−1
3 +

3

2
(
𝜋

6
)(
𝑟𝑖𝜎𝑖

2

𝑟𝑣∗
)∑𝑥𝑗𝜎𝑗

𝑗

+
3

2
𝜎−1𝜎𝑖

]
 
 
 
 

𝑦

+
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3

2
𝑟𝑖𝜎𝑖

3𝜎−1𝜎−2 + 𝑟𝑖𝜎𝑖
3𝜎−1
3 +
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4
𝑟𝑖𝜎𝑖

2𝜎−1
2 +

1

4
𝜎−1
2 𝜎𝑖

2

+
1

2
𝜎−1 (

𝜋

6
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𝑟𝑖𝜎𝑖

2

𝑟𝑣∗
)∑𝑥𝑗𝜎𝑗

2

𝑗

+
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𝜎−1 (

𝑟𝑖𝑣𝑖
𝑟𝑣∗
)∑𝑥𝑗𝜎𝑗
𝑗 ]

 
 
 
 

𝑦 2

+[
3

2
𝑟𝑖𝜎𝑖

3𝜎−1
3 +

1

2
(
𝑟𝑖𝑣𝑖

∗

𝑟𝑣∗
)𝜎−1

2 ∑𝑥𝑗𝜎𝑗
2

𝑗

] 𝑦3

(4.20) 

4.3.3 Comparison of Models for Long Chain Insertion Probability 

Hard chain insertion probabilities for the SPT and Chiew models were compared 

using equivalent chain and segment volume ratios among models. For the solvent(1), 

polymer(2) system, segment diameter ratio 𝜎2/𝜎1 was set to 2.3, and chain lengths were 

set 𝑟1 = 5, 𝑟2 = 1,000. All values correspond with polymer/solvent parameters fit for the 

SPT model. The infinite dilution limit, 𝜙1 → 1, was also applied to correspond with the 

limit where SPT was least accurate[50].  

Insertion Probabilities under these conditions are plotted in Figure 4.6 versus the 

occupied volume fraction. SPT calculates much lower insertion probabilities than the 

other models at all 휂, and eCS agrees better with SPT than any of the Chiew models. 

Since the eCS chain model ignores chain connectivity in the same manner as the SPT 

chain model, Figure 4.6 shows that the chain connectivity approximation more greatly 

contributed to insertion probability effect in the polymer/solvent system than any error in 

individual sphere insertion probability. 
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Figure 4.6: Long chain (𝑟 = 1,000) insertion probability into short chain (𝑟 = 5) fluid 

vs. occupied volume fraction 

 

4.3.4 Polymer/Solvent Model Parameters 

Considering the Chiew models predicted much greater insertion probabilities than 

the SPT chain model at typical LCST densities and compositions, a VDW mean-field 

energy contribution of Equation (2.9) was added to the Chiew models. PIB and n-hexane 

parameters were fit using the methods described in Appendix A for the SPT model. The 

Chiew model parameters in Table 4.1 have the same interpretations as the corresponding 

SPT parameters. For both the polymer and solvent, the characteristic temperature 𝑇∗ is 

much lower for the Chiew models than for the SPT model, and the hexane chain length is 

longer, but the parameters still indicate that 𝑣polymer
∗ > 𝑣solvent

∗ , and Chiew modeled 

polymer/solvent mixtures likely will encounter the issues seen in Chapter 3. 
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Model 

n-Hexane PIB 

𝑇∗ (K) 𝑃∗ (MPa) 𝜌∗ (g/cm3) 𝑟 𝑇∗ (K) 𝑃∗ (MPa) 𝜌∗ (g/cm3) 

PY-C 2204 2514 2.25 5.249 13952 810 1.47 

PY-CS 2254 2322 2.17 4.931 13302 774 1.43 

PHCT 2266 2136 2.08 4.706 12022 756 1.41 

Table 4.1: n-Hexane and poly(isobutylene) equation of state parameters for the Chiew 

type models for hard sphere chains 

4.3.5 Chiew Model Spinodals and Polymer/Solvent LCSTs 

The equation for the single homogeneous binary phase stability (or metastability), 

the spinodal was determined for these models with methods described in reference [33]. 

 

PY-C Spinodal 

The PY-C spinodal is given by: 

𝑣∗ (
1

𝑟1𝑣1
∗𝜙1

+
1

𝑟2𝑣2
∗𝜙2
) − 2휂𝛽𝑣∗Δ𝑃12

∗ −
𝜅𝛽𝑣∗𝑃𝜙

2

휂

+3(
1

𝜎−3
) (
1
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𝜎2
) [(

1

𝜎1
2 −

1

𝜎2
2) + (

1

𝑟1𝜎1
2 −

1

𝑟2𝜎2
2)] 𝑦

+9(
1

𝜎−3
)𝜎−1 (

1

𝜎1
−
1

𝜎2
)
2

𝑦2

= 0 (4.21) 

in which 

𝑃𝜙 = 𝑘𝑇

{
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3
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(
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3
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6

𝜋
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1
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−
1

𝜎2
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and 

𝜅 =

{
 

 
𝑘𝑇

휂

[
 
 
 
 
𝑦2

𝑟𝑣∗
+ 3𝜎−1 (

𝜙1𝜎1
𝑟1𝑣1

∗ +
𝜙2𝜎2
𝑟2𝑣2

∗ )𝑦
3

+
6

𝜋
(3𝜎−1𝜎−2)𝑦

3 +
6

𝜋
(9𝜎−1

3 )𝑦4]
 
 
 
 

− 2휂2𝑃∗

}
 

 
−1

(4.23) 

 

PY-CS Spinodal 

The PY-CS spinodal is given by 

 

𝑣∗ (
1

𝑟1𝑣1
∗𝜙1

+
1

𝑟2𝑣2
∗𝜙2
) − 2휂𝛽𝑣∗Δ𝑃12

∗ −
𝜅𝛽𝑣∗𝑃𝜙

2

휂

+3(
1

𝜎−3
) (
1

𝜎1
−
1

𝜎2
) [(

1

𝜎1
2 −

1

𝜎2
2) + 2𝜎−1 (

1

𝜎1
−
1

𝜎2
) + (

1

𝑟1𝜎1
2 −

1

𝑟2𝜎2
2)] 𝑦

+6(
1

𝜎−3
)𝜎−1 (

1

𝜎1
−
1

𝜎2
)
2

𝑦2 − 6(
1

𝜎−3
)𝜎−1 (

1

𝜎1
−
1

𝜎2
)
2

ln(1 + 𝑦)

= 0 (4.24) 

in which 

𝑃𝜙 = 𝑘𝑇

{
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(4.25) 

 

and 

𝜅 =

{
 

 
𝑘𝑇

휂
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𝜋

6
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(4.26) 



 76 

PHCT Spinodal 

The PY-C spinodal is given by: 

𝑣∗ (
1

𝑟1𝑣1
∗𝜙1

+
1

𝑟2𝑣2
∗𝜙2
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휂
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1
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= 0 (4.27) 

in which 

𝑃𝜙 = 𝑘𝑇

{
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(4.28) 

and 

𝜅 =

{
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Spinodal Calculations 

Figure 4.7 shows the calculated spinodals for the PIB/n-hexane mixture for the 

three Chiew type models with 휁12 = 1.  The SPT spinodal for 휁12 = 1 was also included 

for comparison. As in Section 3.8, the molecular weight of the PIB used in calculations 

was 1.5×106. The Chiew models performed better than the SPT chain model, in that they 

all predicted a temperature range of single homogeneous phase stability for 휁12 = 1, but 

the Chiew predicted LCSTs for 휁12 = 1 occurred far below the experimental 128°C[47]. 

Making polymer/solvent interactions more favorable by increasing 휁12 did improve the 

calculated LCSTs, but the Chiew models reached a maximum LCST far below the 

experimental value and below that of the SPT model upon adjustment of 휁12. The 

maximum LCST and associated 휁12 for each model is listed in Table 4.2. Each Δ𝑃12
∗ < 0 

at the 휁12 values in Table 4.2. 

 

model max LCST (°C) 휁12 

SPT 89.26 1.219 

PY-C 83.37 1.209 

PY-CS 83.05 1.205 

PHCT 58.73 1.188 

Table 4.2: Maximum LCST predicted with adjusted 휁12 for each model for the PIB/n-

hexane solution 
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Figure 4.7: Calculated spinodal curves for the PIB/n-hexane system at atmospheric 

pressure. CSTs are indicated when applicable. Solid curves are spinodals 

calculated with the indicated model and 휁12 = 1. Dashed horizontal lines 

indicate the experimental value of 128°C. 

4.3.6 Other Considered Model 

A Chapman type statistical associating fluid theory (SAFT) perturbation model 

for mixtures of homonuclear chains using a BMCSL HS reference fluid was 

developed[61,65], and a mean field potential energy was added. The resulting equation of 

state is given by: 
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𝑍 = 1 + 𝑟 [(1 + 3
𝜎−1𝜎−2
𝜎−3

)𝑦 + 3(
𝜎−1𝜎−2
𝜎−3

+
𝜎−1
3

𝜎−3
) 𝑦2 + 2

𝜎−1
3

𝜎−3
𝑦3]

−∑{𝑥𝑖(𝑟𝑖 − 1) [
𝑦 +

3
2𝜎−1𝜎𝑖𝑦 + 3𝜎−1𝜎𝑖𝑦

2 + 𝜎−1
2 𝜎𝑖

2𝑦2 +
3
2𝜎−1

2 𝜎𝑖
2𝑦3

1 +
3
2𝜎−1𝑦𝜎𝑖 +

1
2𝜎−1

2 𝑦2𝜎𝑖
2

]}

𝑖

(4.30) 

 

By nature of the model, chemical potentials and the spinodal for binary mixtures may be 

analytically derived, but equation (4.30) and other thermodynamic properties are more 

complicated than their Chiew model counterparts and offer little improvements in 

accuracy. Ultimately this SAFT model did not meet the ease of implementation goal 

stated in Chapter 2. 

 

4.4 CONCLUSIONS 

The SPT model was compared against other models to predict insertion 

probabilities of hard spheres and hard sphere chains. The eCS model better predicted the 

insertion probabilities of individual spheres, but Figure 4.6 showed that improving the 

accuracy of individual sphere insertion probability had little effect on the chain chemical 

potential compared to explicitly accounting for chain connectivity.  When applied to the 

PIB/hexane solution, Chiew type models provided marginal improvements in accuracy at 

the cost of practicality. In Chapter 7, improvements to the mean-field van der Waals 

configurational energy contribution is addressed through a new thermodynamic model 

which more realistically limits the number of spheres a given sphere can attract and the 

range over which the attractive energy may extend. 
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Chapter 5:  Linearity of Saturated Liquid Density and Configurational 

Energy at Low Pressure* 

5.1 INTRODUCTION 

Fluid Zeno lines are the loci of points in the temperature-density plane where the 

compressibility factor 𝑃/𝜌𝑘𝑇 ≡ 𝑍 = 1. This linearity is not limited to the supercritical 

fluids, but persists well into the subcritical regime. Batschinski first reported on this 

unique locus, also known as the “Boyle line”[67], which was discovered in 1906[68]. It 

serves as an index for the competition between attractive and repulsive forces: when 

𝑍 > 1 repulsive forces dominate (hard fluid), and when 𝑍 < 1 attractive forces dominate 

(soft fluid)[69]. On the 𝑍 = 1 line these opposing forces balance and the fluid exhibits 

pseudo ideal gas behavior. This line intersects the temperature axis (zero density 

intercept) at the Boyle temperature 𝑇𝐵
∗ where the second virial coefficient vanishes. 𝑇𝐵

∗ 

typically is 2 to 2.5 times the critical temperature 𝑇𝑐. When the 𝑍 = 1 line reaches 𝑇𝑐, the 

density is about 2 times greater than the critical density 𝜌𝑐 with a pressure roughly 8 

times the critical pressure, consistent with 𝑍𝑐 in the range 0.25–0.31. For many fluids, the 

Zeno line extends well into the subcritical liquid regime, covering a span of several 

hundred Kelvin. 

Iso-Z curves for 𝑍 < 1 lines diverge negatively from the Zeno line and terminate 

on the coexistence (COEX) curve[70]. As temperature approaches absolute zero, the 

extrapolated Zeno line enters the metastable liquid regime and intersects the density axis 

at the Boyle density 𝜌𝐵
∗ . Physically 𝜌𝐵

∗  represents the maximum hypothetical density of 

the disordered liquid at absolute zero. With the exception of the van der Waals equation 

                                                 
* This material was published as: Isaac C. Sanchez, Sean O’Keefe, and Jeffrey F. Xu, “New Zeno-Like 

Liquid States” J. Phys. Chem. B 120 (15), 3705 (2016)[66]. Sean Patrick O’Keefe contributed to the data 

collection plotting and regression of sections detailing the linearity of liquid density in temperature along 

𝑍 ≃ 0. 
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of state (VDW EOS), no other known purely theoretical EOS captures the Zeno linearity 

at all temperatures, from supercritical to subcritical regimes[71]. 

Just as the 𝑍 = 1 locus defines the Zeno line, there is another locus in the 

temperature-density plane that defines another striking linearity in liquids. This linear 

locus is defined by liquid states for which 𝑍 → 0, where the low temperature region of 

this iso-Z curve coincides with the liquid branch of the liquid-vapor coexistence curve. 

As discussed in Chapter 1, on the liquid-vapor coexistence curve, the saturated vapor 

compressibility factor 𝑍𝑣𝑎𝑝 → 1 with decreasing temperature, and the saturated liquid, 

compressibility factor 𝑍𝑙𝑖𝑞 → 0 as temperature decreases. Due to the decreasing vapor 

pressure (𝑃sat → 0) the saturated vapor behaves like an ideal gas, while for saturated 

liquids, 𝑍𝑙𝑖𝑞 = 𝑃sat/𝑘𝑇𝜌𝑙𝑖𝑞 → 0/𝑘𝑇𝜌𝑙𝑖𝑞 = 0. For example, many liquids at their normal 

boiling point have a compressibility factor 𝑍𝑙𝑖𝑞 = exp[−5.5 ± 0.2] ~0.024 and. This 

liquid compressibility factor further decreases as the triple point is approached. Thus, in 

the normal liquid range (NLR as defined in Chapter 1), 𝑍𝑙𝑖𝑞 ≃ 0 for saturated liquids.  

Saturated liquid densities in the NLR are linear in temperature and form a strong 

corresponding states principle (CSP). The so-called “Law of Rectilinear Diameters” may 

be interpreted as an early observation of this relationship for liquids[72]. Often written as: 

 
1

2
(𝜌𝑙𝑖𝑞 + 𝜌𝑣𝑎𝑝) = 𝜌𝑐 + 𝑎(𝑇𝑐 − 𝑇) (5.1) 

 

in which  𝑎 is a positive constant, the rectilinear diameter statement equates the average 

of the saturated vapor density and saturated liquid density to a linear function of the 

difference between temperature and 𝑇𝑐. In its earliest applications, (5.1) estimated the 

critical density[73]; however, its accuracy decreases as the critical point is 
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approached[74]. (5.1) is most accurate along the portion of the coexistence curve when 

𝑍 ≃ 0, and 𝜌𝑙 ≫ 𝜌𝑣 . In this limit (5.1) can be written as: 

 

𝜌𝑙𝑖𝑞 = 2(𝜌𝑐 + 𝑎)𝑇𝑐 − 2𝑎𝑇 (5.2) 

which corresponds with the observed linearity of liquid density in temperature as 𝑍 ≃ 0. 

When the 𝑍 ≃ 0 line is extrapolated to absolute zero, its value is near the Boyle 

density 𝜌𝐵
∗ , the 𝑇 = 0 intercept of the Zeno line. This 𝑍 ≃ 0 linearity is a common 

characteristic of liquids with negligible or very low vapor pressures. Liquids that express 

this linearity include monoatomic and diatomic elements, other low boiling organics, 

hydrogen bonding ammonia and methanol, molten metals and salts[75,76], metal 

alloys[77–81], and polymer melts[82]. Helium and water are the only known 

exceptions, both of which exhibit slight, but noticeable curvature along the 𝑍 ≃ 0 curve 

as the triple point is approached.  

Plots of the configurational energy of the saturated liquid also vary linearly with 

density or temperature in the NLR. Extension of this line to zero temperature defines the 

ground state configurational energy of the hypothetical disordered liquid. This linear 

dependence on density implies that the usual VDW approximation for the configurational 

energy is valid in the NLR for a wide variety of liquids that include some hydrogen 

bonding liquids such as ammonia. 

 

5.2 ZENO-LIKE STATES AS 𝒁 ≃ 𝟎 

5.2.1 Insights from the van der Waals equation 

The VDW EOS can be expressed in reduced variables as: 

 



 83 

𝑃

𝜌𝑘𝑇
≡ 𝑍 =

3

3 − 𝜌𝑅
−
9𝜌𝑅
8𝑇𝑅

(5.3) 

 

in which 𝜌𝑅 ≡ 𝜌/𝜌𝑐 , and 𝑇𝑅 ≡ 𝑇/𝑇𝑐. Equating 𝑍 to unity yields the Zeno line (𝑍 = 1): 

 
𝑇𝐵
27/8

+
𝜌𝐵
3
≡
𝑇𝐵
𝑇𝐵
∗ +
𝜌𝐵
𝜌𝐵
∗ = 1 (5.4) 

 

where the Boyle temperature 𝑇𝐵
∗/𝑇𝑐 = 27/8, and the Boyle density 𝜌𝐵

∗ /𝜌𝑐 = 3. When 

these Boyle parameters are used to reduce temperature and pressure the VDW EOS 

adopts a simple form: 

 

𝑍 =
1

1 − (𝜌/𝜌𝐵
∗ )
−
(𝜌/𝜌𝐵

∗ )

(𝑇/𝑇𝐵
∗)

(5.5) 

 

In the NLR where 𝑍 ≃ 0, setting equation (5.3) to zero results in a parabolic 

equation and a corresponding states principle (CSP): 

 

𝑇𝑅 =
9

8
𝜌𝑅 (1 −

𝜌𝑅
3
) (5.6) 

 

Equation (5.6) suggests saturated liquids for which 𝑍 ≃ 0 should obey a CSP when 

temperature and density are reduced by their respective critical values. This idea is tested 

in Figure 5.1 for 11 liquids. As can be seen, the CSP holds to some degree, but not as 

well as equation (5.6) suggests. Though the CSP predicted by the EOS is not observed, 

each plot is strikingly linear, a quality not predicted by the VDW equation. Figure 5.1 

also shows that 𝜌𝑅 for some liquids exceeds 3, the maximum reduced density allowed by 

the classical VDW model, further suggesting the inadequacy of the VDW EOS in 
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modeling saturated liquids. Data used for Figures 5.1, and 5.2 were obtained from  the 

NIST webbook of thermophysical properties of fluid systems 

http://webbook.nist.gov/chemistry/fluid/ [3]. 

 

 

Figure 5.1: Reduced temperature-reduced density plot of saturated liquids in the NLR 

 

If equation (5.3) is set to zero, a different CSP is predicted: 

 

𝑇/𝑇𝐵
∗ = (𝜌/𝜌𝐵

∗ )[1 − (𝜌/𝜌𝐵
∗ )] (5.7) 
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Rescaling the temperature and pressure with the Boyle parameters yields a much better 

CSP (not shown), but the apparent linearity of the data is not captured. Table 5.1 contains 

density (𝜌∗) and temperature (𝑇∗) intercepts of the 𝑍 ≃ 0  saturated density/temperature 

lines in Figure 5.1 reduced by 𝜌𝑐 and 𝑇𝑐 respectively. Table 5.1 also contains reduced 

Zeno line intercepts with 𝜌𝐵
∗  and 𝑇𝐵

∗ values taken from reference [69] while all other data 

were obtained from the NIST webbook[3]. Reducing the density and temperature by the 

𝑍 ≃ 0 intercepts and replotting yields Figure 5.2. Typical deviations from the line 

defined by the reducing 𝜌 and 𝑇 by the saturated liquid intercepts are of the order of 0.5% 

in the NLR and within experimental uncertainties. 

 

 

 

Figure 5.2: Dimensionless density vs. temperature plots of the data shown in Figure 5.1 
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liquids 

𝑇𝐵
∗

𝑇𝑐
 
𝜌𝐵
∗

𝜌𝑐
 
𝜌∗

𝜌𝑐
 
𝑇∗

𝑇𝑐
 
𝑈∗

𝑅𝑇∗
 
𝑇∗

𝑈∗
𝑑𝑈

𝑑𝑇
 

Trouton’s 

constant 

Group I 

argon* 2.71 3.52 3.60 2.08 3.4 1.26 8.9 

krypton* 2.72 3.45 3.66 2.09 3.4 1.25 9.0 

xenon* 2.74 3.47 3.66 2.10 3.4 1.27 9.2 

methane* 2.67 3.50 3.55 2.18 3.2 1.23 8.9 

oxygen* 2.64 3.51 3.58 2.19 3.3 1.25 9.1 

nitrogen* 2.57 3.63 3.64 2.10 3.6 1.29 8.7 

CO 2.56 3.62 3.73  2.04 3.9 1.30 8.8 

average 2.66 3.53 3.63 2.11 3.5 1.26 8.9 

Group II 

ethylene 2.54 3.65 3.70 2.19 3.8 1.38 9.6 

ethane* 2.49 3.71 3.65 2.17 3.8 1.31 9.6 

propane 2.46 3.74 3.73 2.14 4.3 1.36 9.8 

butane* 2.39 3.78 3.80 2.11 5.2 1.37 9.9 

pentane* 2.28 3.90 3.85 2.10 5.1 1.41 10.0 

hexane 2.32 3.89 3.95 2.03 5.6 1.36 10.1 

decane 2.21 4.04 4.12 1.96 7.4 1.41 10.6 

C6H12 2.36 3.76 3.89 2.00 5.2 1.36 10.2 

C6H6 2.34 3.81 3.86 1.98 5.2 1.42 10.5 

C6H5CH3 2.41 3.79 3.91 2.05 5.5 1.44 10.4 

C(CH3)4 2.38 3.68 3.77 2.00 5.1 1.37 9.7 

H2S 2.58 3.66 3.79 2.06 4.1 1.32 10.5 

CF4 2.31 3.74 3.70  2.09 4.6 1.35 9.8 

CHF3 2.39 3.94 4.02 2.02 5.3 1.33 10.6 

CH2F2 2.48 4.04 4.18 2.00 5.2 1.30 10.8 

CH3F 2.64 3.81 4.05 1.96 4.9 1.30 10.3 

C2F5H 2.26 3.91 3.96 1.99 5.9 1.36 10.5 

C2F6 2.27 3.89 3.97 1.95 5.6 1.33 10.6 

average 2.40 3.82 3.88 2.04 5.1 1.36 10.2 

Group III 

ammonia 2.54 4.16 4.27 2.07 4.8 1.28 11.7 

methanol — — 3.90 2.09 — — 12.6 

Table 5.1: Summary of parameters associated with Zeno-like states.  
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The density intercept is designated as 𝜌∗. This is the hypothetical maximum 

density attainable by the disordered liquid. The temperature intercept is designated as 𝑇∗. 

This temperature represents the theoretical critical temperature of a fluid in which the 

liquid side of the liquid-vapor coexistence curve remains linear along the entirety of the 

coexistence curve. Each liquid satisfies the following simple linear equation: 

 
𝜌

𝜌∗
+
𝑇

𝑇∗
= 1 (5.8) 

where 𝜌∗ and 𝑇∗ are respectively the density and temperature of a saturated liquid in the 

NLR. This equation also holds along low-pressure isobars where 𝑍 ≃ 0 . 

 

 

Figure 5.3: Schematic illustration of the coexistence curve, the Zeno (𝑍 = 1), and the 

NLR saturated density (𝑍 ≃ 0) lines 

𝑇∗ 

𝜌𝐵
∗ = 𝜌∗ 
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Figure 5.3 schematically illustrates the temperature-density phase diagram. The 

two iso-𝑍 lines (𝑍 = 1; 𝑍 ≃ 0) along with their temperature and density intercepts are 

also displayed. When both lines are extrapolated to zero temperature, they intercept the 

density axis at approximately the same density, 𝜌∗ ≃ 𝜌𝐵
∗  which is the hypothetical 

maximum density attainable by the disordered liquid at absolute zero. As seen in Table 

5.1, this density is usually 3.5 to 4.0 times the critical density for small organics, but 

tends to be larger for more chainlike molecules such as dodecane and for molten metals 

(Table 5.3). The 𝑍 = 1 locus intercepts the temperature at the well-known Boyle 

temperature 𝑇𝐵
∗, which is usually about 2 to 2.5 times 𝑇𝑐. The extension of the 𝑍 ≃ 0 line 

to zero density intercepts the temperature axis at 𝑇∗. If the 𝑍 ≃ 0 condition persisted to 

low densities, something theoretically possible for a polymer liquid, then 𝑇𝑐  →  𝑇𝑐
∗.  

Table 5.1 divides liquids into the groups determined by Trouton’s constant 

(Δ𝑆𝑣𝑎𝑝/𝑘) discussed in Chapter 1. The table summarizes intercepts of both the 𝑍 = 1 

and 𝑍 ≃ 0 lines for various fluids, and as can be seen, for the many 𝜌∗ ≃ 𝜌𝐵
∗ . Although 

equation (5.7) does not predict a linear dependence of temperature on density, the VDW 

EOS does predict that as 𝑇 →  0, along the 𝑍 ≃ 0 condition, 𝜌 → 𝜌𝐵
∗ , the Boyle density 

intercept of the 𝑍 = 1 line. Others have come to the same conclusion that the extension 

of the VDW EOS to zero temperature intersects the density axis at 𝜌𝐵
∗ , but use a different 

argument[83]. 

Zeno line and saturated liquid data in the NLR are tabulated for n-decane In Table 

5.2 and plotted in Figure 5.4. Coefficient of determination (R2) values for both the Zeno 

line and the saturated liquid density line are greater than 0.999. Figure 5.4 illustrates the 

striking linearity of the two lines and how they approach a common intercept at absolute 

zero. The convergence to a common density is not perfect 

(𝜌𝐵
∗ /𝜌𝑐 = 4.04; 𝜌

∗/𝜌𝑐 = 4.12); usually 𝜌∗ is 1 to 2% larger than 𝜌𝐵
∗ . The linearity of the 
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saturated density data in the NLR for decane extends over 200K, whereas for xenon it is 

only about 4K. The extent of the NLR depends on the triple point pressure. Lower triple 

point pressures, require a greater temperature rise to reach atmospheric pressure. For 

decane the triple point pressure is 𝑂(10−5 ) bar, whereas for xenon it is about 0.8 bar. 

Data for Table 5.2 and Figure 5.4 were obtained from  the NIST webbook of 

thermophysical properties of fluid systems http://webbook.nist.gov/chemistry/fluid/ [3]. 

 

 

𝑍 = 1 𝑍 ≃ 0 

𝑇 
(K) 

𝜌 
(mol/L) 

𝑃 
(bar) 

𝑇 
(K) 

𝜌 
(mol/L) 

𝑃 
(bar) 

𝑍sat 

675 3.35 188 447 4.25 1 6.3×10−3 

650 3.47 188 444 4.27 0.932 5.9×10−3  
625 3.60 187 424 4.39 0.539 3.5×10−3 
600 3.72 186 404 4.51 0.291 1.9×10−3 
550 3.96 182 384 4.62 0.145 9.8×10−4 
500 4.21 175 364 4.74 6.6×10−2 5×10−4 
450 4.44 167 344 4.85 2.7×10−2 2×10−4 
400 4.68 156 324 4.96 9.2×10−3 7×10−5 
350 4.92 144 304 5.07 2.7×10−3 2×10−5 
300 5.16 129 284 5.18 6.4×10−4 5×10−6 
275 5.29 121 264 5.29 1.2×10−4 1×10−6 
260 5.36 116 244 5.40 1.5×10−5 6×10−7 

Table 5.2: Zeno line and saturated liquid data in the NLR are tabulated for n-decane 

 

http://webbook.nist.gov/chemistry/fluid/
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Figure 5.4: Zeno line (𝑍 = 1) and saturated liquid data (𝑍𝑠𝑎𝑡 ≃ 0) for decane 

 

5.2.2 Polymeric, inorganic, ionic, and metallic liquids 

Polymer melts should have a large NLR since they have negligible vapor 

pressures at temperatures well above their melting temperatures. Polymer liquid densities 

are a linear function of temperature for both non-polar and polar polymers. 𝜌∗ and 𝑇∗ 

parameters have been fit and tabulated for many polymers for use in an equation of state 

that reduces to equation (5.8) at 𝑍 ≃ 0[82]. The physical interpretations of the 𝜌∗ and 𝑇∗ 

parameters are identical to those in Section 5.2.1. Most organic polymers tend to 

thermally decompose by 300 C. 

Molten metals and salts have very low or negligible vapor pressures and large 

NLRs. The density of liquid metals and salts has been shown to vary linearly with 

temperature[75,76] In Table 5.3 density and temperature intercepts ( 𝜌𝑔
∗ , 𝑇𝑐

∗) have been 
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determined for some molten metals, salts, and sulfur. These intercepts have been used to 

construct the master plot shown in Figure 5.5. Unless an alternate reference is listed, 

density and critical point data were obtained from NIST Web Thermo Tables (http://wtt-

pro.nist.gov/wttpro/). Critical temperatures in reference [84] are estimated values, and 

critical densities for these species are unavailable. 

 

liquid 𝜌∗ (g/cc) 𝜌∗

𝜌𝑐∗
 

𝑇∗ 𝑇∗

𝑇𝑐
 

Lithium[85] 0.563 4.7 5590 1.74 

Sodium[85] 1.015 4.9 4240 1.65 

Potassium[85] 0.919 4.7 3710 1.67 

Rubidium[86] 1.62 5.5 3470 1.72 

Cesium[86] 2.02 5.3 3390 1.76 

Aluminum[87]    2.59 4.6 11,130 1.69 

Magnesium[88]    1.8 4.4 7690 3.0 

Calcium[84]   1.56 — 8615 2.6 

Strontium[84]    2.54 — 11,330 3.7 

Barium[84]  3.7 — 10,940 3.0 

Iridium[84]   21.8 — 25,600 3.3 

Sulfur     2.02 3.7 3490 2.7 

SnCl4     2.98 4.0 1150 1.95 

TiCl4     2.24 3.9 1290 2.0 

SbCl3     3.48 3.9 1516 1.9 

AlCl3     2.57 5.0 946 1.5 

Table 5.3: Density-temperature parameters for some molten metals and salts.  

Unlike organic liquids, density linearity for inorganics can persist to well above 

the normal boiling point. The data in Figure 5.5 superposes to the same line as Figure 5.2, 

and the two sets of data could have been combined to a single figure while maintaining 

the strong corresponding states principle. 

http://wtt-pro.nist.gov/wttpro/
http://wtt-pro.nist.gov/wttpro/
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Figure 5.5: Illustrates the linear dependence of density on temperature in the NLR for 

some liquid metals and inorganics.  

5.2.3 Linearity in the configurational energy 

As discussed in Chapter 1, the internal energy of vaporization 𝛥𝐸𝑣𝑎𝑝 to an 

excellent approximation equals the liquid configurational energy, 𝑈𝑙𝑖𝑞 in the NLR. 

Thermal energy contributions to the internal energy for both liquid and vapor phases are 

equal and cancel in forming 𝛥𝐸𝑣𝑎𝑝 and the configurational energy of the dilute gas phase 

is to a good approximation negligible. In the NLR |𝑈𝑙𝑖𝑞| = Δ𝐸𝑣𝑎𝑝. When 𝛥𝐸𝑣𝑎𝑝 is plotted 

against temperature or density, linear plots are obtained with slope m: 
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𝑚 = −
𝑇∗

𝑈∗
 (
𝜕𝑈

𝜕𝑇
)
𝑍≃0

=
𝜌∗

𝑈∗
 (
𝜕𝑈

𝜕𝜌
) > 0

𝑈

𝑈∗
= 1 −𝑚

𝑇

𝑇∗
= 1 −𝑚(1 −

𝜌

𝜌∗
)

(5.9) 

Extension of either line to absolute zero, defines the ground state energy 𝑈∗ of the 

disordered liquid. Some energy parameters are tabulated in Table 5.1. Potential energy 

intercepts for methanol were excluded from Table 5.1 because its configurational energy 

exhibits a slight negative curvature in the NLR. The potential energy linearity is 

illustrated in Figure 5.6. Energy of vaporization data were obtained from the NIST 

webbook[3]. 

 

Figure 5.6: Master plot for saturated liquid configurational energy in the NLR.  

The configurational energy linearity implies that the classical VDW 
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liquids in the NLR. In the VDW approximation, −𝑈𝑉𝐷𝑊 = 2𝑎𝜌 where 𝑎 is the usual 

VDW parameter that measures the attractive strength of the interaction. From equation 

(5.9) we see that the VDW parameter can be identified with the following: 

 

𝑎 =
1

2
 (
𝜕|𝑈|

𝜕𝜌
)
𝑍≃0

=
𝑚

2

𝑈∗

𝜌∗
(5.10) 

 

The VDW value for the 𝑎 parameter is: 

 

𝑎 =
9

8

𝑅𝑇𝑐
𝜌𝑐

(5.11) 

Using the tabulated values for the monoatomic and diatomic Group I liquids given in 

Table 5.1, the calculated VDW 𝑎 parameter averages 1.28𝑅𝑇𝑐/𝜌𝑐 as compared with 

9𝑅𝑇𝑐/8𝜌𝑐. The effective 𝑎 parameter for Group II liquids averages higher at 1.85𝑅𝑇𝑐/𝜌𝑐. 

5.3 DISCUSSION 

Liquids in their NLR (𝑃sat ≤ 1 bar) exhibit a linear density behavior with 

temperature. Figures 5.2 and 5.5 show these data superpose to form a single master curve. 

Deviations from linearity are typically less than 0.5%, often within the experimental 

accuracy of the data itself. This linearity, which has been noted for specific liquids, 

appears to be a broadly applicable property of liquids in general. This ubiquitous linearity 

implies that the liquid branch of the liquid-vapor coexistence curve is linear in 

temperature in the NLR and represents a very strong corresponding states principle: 

Saturated liquid densities are a linear function of temperature in the NLR for molecular, 

polymeric, inorganic, ionic, and metallic liquids and when reduced by the intercepts of 

this line superpose to form a single master curve. Helium and water currently remain the 

only outstanding exceptions to this CSP. 
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As Figure 5.3 schematically illustrates, if this linear behavior where to persist to 

low density (𝜌 → 0), the critical temperature would approach the theoretical temperature 

intercept 𝑇∗. The only liquid that might exhibit this density/temperature linearity from the 

melting point to the critical point is a polymeric liquid of high molecular weight. 

According to the LF model[17], setting 𝑍 ≃ 0 gives: 

 

�̃� = −
�̃�2

ln(1 − �̃�) + (1 − 1/𝑟)�̃�
(5.12) 

 

as 𝑟 − ∞, and �̃� → 0, �̃� → 2 along 𝑍 ≃ 0. The dimensionless LF critical temperature is 

given by: 

�̃�𝑐 =
2𝑟

(1 + √𝑟)
2

(5.13) 

 as 𝑟 → ∞, �̃�𝑐 → 2. While the LF model does not predict a linear density/temperature 

dependence as 𝑍 ≃ 0, it does predict that as chain length 𝑟 → ∞, and �̃� → 0 along 𝑍 ≃ 0, 

the dimensionless temperature �̃� → �̃�𝑐 and 𝑇∗/𝑇𝑐 → 1 (for 𝑇∗ defined as the temperature 

intercept of the 𝑍 ≃ 0 curve). LF and other chain models predict that as 𝑟 → ∞, 𝜌𝑐 → 0; 

therefore 𝜌∗/𝜌𝑐 → ∞ for infinite chain lengths. This general trend can already be 

discerned in Table 5.1 among the normal alkanes from ethane to dodecane. For very long 

chains, the saturated vapor pressure remains negligibly small at temperatures near the 

critical point so that the requirement that 𝑍 ≃ 0 is satisfied over nearly the entire liquid 

branch of the coexistence curve. Most organic polymers begin to thermally degrade 

before reaching 300°C. Since 𝑇∗ > 1,000 𝐾 for high molecular weight polymers, and a 

liquid-vapor critical point has never been observed for these fluids, the suggested equality 

of the regressed 𝑇∗ and the hypothetical polymer liquid/vapor critical temperature cannot 

be confirmed. 
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In Table 5.3 the five alkali metals from Li to Cs, along with Al have very similar 

values of 𝜌𝑔
∗  /𝜌𝑐~5, which are larger than any organic in Table 5.1, and all have similar 

values of 𝑇𝑐
∗/𝑇𝑐~1.7, which are smaller than any organic. Based on the heuristic 

arguments above, both ratios suggest that alkali metals should exhibit a larger NLR than 

organics. The low 𝑍 values and persistence of the density/temperature linearity beyond 

the normal boiling point for inorganics support this suggestion. For sodium, the linearity 

persists to temperatures at least 450 K above its normal boiling point of 1156 K and 

likely continues higher temperatures. Overall, the measured linear behavior for Na 

stretches over 1200 K. For cesium, linearity persists to at least 350 K above its boiling 

point of 944 K and over 1000 K overall. Based on the behaviors of Na and Cs, similar 

extended linear density ranges are expected for some of the other alkali metals above 

their normal boiling points. 

While linearity for inorganics can persist several degrees above the normal 

boiling point, negative deviations of the order of 1% from linear behavior for xenon 

begin about 50 degrees above its normal boiling point or at 𝑍𝑙𝑖𝑞 ≃ 0.02. Sodium remains 

linear to 450 degrees above its boiling point where 𝑍𝑙𝑖𝑞 ≃ 0.04, and deviations remain 

< 0.5%. All density/temperature parameters ( 𝜌∗, 𝑇∗ ) tabulated in Tables 5.1 and 5.3 

were determined entirely with data in the NLR where 𝑍𝑙𝑖𝑞 is usually less than 0.005. If a 

larger temperature range were to be employed in fitting the data, somewhat different 

parameters would be obtained and the apparent range of linearity could be extended at the 

expense of overall accuracy. Because of this decrease in accuracy, and inconsistencies of 

this decrease from fluid to fluid, a general rule for linearity extent beyond the normal 

boiling point remains undefined. 

For chain molecules, the molar energy of vaporization increases with chain length 

because the chain molecule attractively interacts with many monomers that belong to 
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other chains. Although these monomer-monomer interactions are often weak VDW types, 

there are many interactions per chain and the number of interactions increases linearly 

with chain length. A consequence of the increase of Δ𝐸𝑣𝑎𝑝 with chain length is that the 

equilibrium vapor pressure drops with increasing chain length effectively increasing the 

NLR. In molten metals, the attractive forces between atoms are much stronger than the 

VDW forces among organic molecules. Tighter bonding manifests as higher 𝑇𝑐 and 

normal boiling temperatures, as well as much smaller thermal expansion coefficients. The 

decrease in thermal expansion coefficients corresponds to a larger temperature increase 

required to go from the triple point to the normal boiling point, which by definition is the 

NLR. While the Δ𝐸𝑣𝑎𝑝 differences explain why certain liquids have greater NLRs than 

others, it does not explain why the density/temperature linearity might persist well 

beyond the NLR.  

Intercepts for the 𝑍 = 1 locus, are the Boyle temperature 𝑇𝐵
∗, where the second 

virial coefficient vanishes, and the Boyle density is given by[89]: 

 

𝜌𝐵
∗ =

𝑇𝐵
∗ 𝑑𝐵2
𝑑𝑇
|
𝑇=𝑇𝐵

∗

𝐵3(𝑇𝐵
∗)

(5.14)
 

where 𝐵2 and 𝐵3 are the 2nd and 3rd virial coefficients of the density virial expansion. In 

normal practice, neither the Boyle temperature nor density is determined from virial 

coefficients. Instead, 𝑃𝜌𝑇 data are used to establish the 𝑍 = 1 locus, and if the locus 

appears linear, it is extended to zero density to determine 𝑇𝐵
∗ and to zero temperature to 

obtain the Boyle density. This method used to determine the 𝑇𝐵
∗ and 𝜌𝐵

∗  values reported in 

Table 5.1. Similarly, saturated 𝑃𝜌𝑇 data used to determine the 𝑍 ≃ 0 locus in the NLR 

were extended to zero temperature to determine 𝜌∗. According to the VDW model, 

𝜌∗ = 𝜌𝐵
∗  , but 𝜌∗ values in Table 5.1 tend to be about 1 to 2% greater than the 𝜌𝐵

∗ . 
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Diverse liquids in terms of interatomic interactions and structure exhibit simple 

and similar density and configurational energy behavior in their NLRs. The condition 

𝑍 = 0 corresponds to the situation in which attractive forces have become completely 

dominant, to the extent that molecules in the liquid state can no longer escape to the 

vapor state. Even at the normal boiling point only about 1 out of 250 molecules is able to 

escape from liquid to vapor states[1]. The repulsive forces appear to serve as an excluded 

volume background force that prevents the liquid from collapsing due to the strength of 

the attractive forces. For many organics, this attractive interaction increases in strength 

linearly with density, or equivalently through the density/temperature linearity, increases 

linearly with decreasing temperature. Simultaneous satisfaction of both linear 

requirements, 𝑍 = 1, 𝑍 ≃ 0, linearity with a VDW type interaction energy at high 

densities are imposing constraints on any model based EOS. 

5.4 CONCLUSIONS 

Saturated liquid densities are a linear function of temperature in the NLR for 

molecular, polymeric, inorganic, ionic, and metallic liquids and superpose to form a 

single master curve. Although others might exist, water and helium are the only known 

exceptions to this very strong corresponding states principle. Many organics that include 

some hydrogen bonding liquids such as ammonia, possess a configurational energy in the 

NLR that varies linearly with density in agreement with the well-known VDW 

approximation for the interaction energy. Within this dissertation, this chapter 

demonstrates that these very simple linear property relationships are nearly universal to 

all liquids at low pressure. In Chapter 6, this linear density/temperature relationship is 

further applied to all liquids (with the exceptions of water and helium) at NLR 

temperatures and elevated pressures. 
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Chapter 6:  Universal Linearity of Liquid Density with Temperature 

6.1 INTRODUCTION 

Although atomic interactions in molten metals differ from the strong coulombic 

interactions in molten salts and both differ significantly from weak van der Waals 

interactions present in organic liquids, nearly  all liquids appear to display simple, 

universal empirical property relationships[90]. Chapter 5 discussed the simple linear 

density/temperature relationship of saturated liquids (with the exceptions of water and 

helium) at very low pressures and temperatures in the NLR. When reduced by the 

intercepts of this line, the liquid densities follow a relationship of the form: 

(𝜌/𝜌∗) + (𝑇/𝑇∗) = 1, and satisfy a strong corresponding states principle[66]. For 

volatile liquids, this linearity had been observed through the so-called “law of rectilinear 

diameters” in the limit 𝜌𝑙𝑖𝑞 ≫ 𝜌𝑣𝑎𝑝 [72,73]. In 1968 Bondi noted that 𝜕𝜌/𝜕𝑇 for liquids 

was constant over a large temperature range[91]. This relationship has separately been 

applied to molten metals and salts[75,76], alloys[77–81], and polymer melts[82] at low 

pressures (𝑃 ≤ 1 bar). In this chapter, the linear relationship is extended to homogeneous 

mixtures and density/temperature isobars for liquids at elevated pressure. 

6.2 LINEARITY OF LIQUID DENSITY/TEMPERATURE ISOBARS AT LOW PRESSURE 

Often a linear density/temperature relationship is directly applied as  an isobaric, 

linear Taylor expansion about an average temperature 𝑇0 as is done for simplified 

buoyancy-driven flow calculations[92–94]: 

 

𝜌 = 𝜌0[1 − 𝛼0(𝑇 − 𝑇0)] (6.1) 

𝜌0 is the density at 𝑇0, and 𝛼0 = −(𝜕𝜌/𝜕𝑇)𝑝/𝜌0|𝑇=𝑇0
is the isobaric coefficient of 

thermal expansion at 𝑇0. The isobaric density expansion in temperature (6.1) is valid over 
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temperature ranges in which the second and higher order terms in the isobaric Taylor 

expansion are much less than the linear term over the temperature range. Applying this 

condition to the second order term gives: 

 

|
|
(
𝜕2𝜌
𝜕𝑇2

)
𝑃
|
𝑇=𝑇0

2 (
𝜕𝜌
𝜕𝑇
)
𝑃
|
𝑇=𝑇0

(𝑇 − 𝑇0)|
| = ||

𝛼0
2 − (

𝜕𝛼
𝜕𝑇
)
𝑃
|
𝑇=𝑇0

2𝛼0
(𝑇 − 𝑇0)|| ≪ 1 (6.2) 

 

as the condition for near linearity of a density/temperature isobar. 

When |𝑇 − 𝑇0| is large, condition (6.2) is satisfied when (𝜕2𝜌/𝜕𝑇2)𝑃|𝑇=𝑇0 or 

equivalently |𝛼0
2 − (𝜕𝛼/𝜕𝑇)𝑃|𝑇=𝑇0| is low. For most liquids, (𝜕𝛼/𝜕𝑇)𝑃|𝑇0 > 0 and 

(𝜕𝛼/𝜕𝑇)𝑃|𝑇0~ 𝛼0
2 at temperatures far below 𝑇𝑐. With this combination of conditions, 

(6.2) may be satisfied at large values of |𝑇 − 𝑇0|. As an example, toluene at 1 bar and 

𝑇0 = 280.5 (the midpoint of the NLR) is considered. Using data generated from the 

NIST REFPROP model[95] through the NIST/TRC Web Thermo Tables (WTT) 

http://wtt-pro.nist.gov/wtt-pro/, the maximum value on the left side of (6.2)  at NLR 

temperatures and 1 bar is 0.0134. Since 0.0134 ≪ 1, the density of liquid toluene at 1 

bar, may be considered a linear function of temperature over the NLR temperature range 

178–383 K. In Chapter 5, liquid water and helium were the only exceptions noted for this 

low pressure linearity given by (5.8)[66]. For both helium and water, (𝜕𝛼/𝜕𝑇)𝑃 ≫ 𝛼
2 at 

temperatures near the triple point, and condition (6.2) is not met. 

If the isobaric expansion were carried out in volume instead of density, the 

conditions for the validity of a linear expansion in volume analogous to (6.2) is given by: 

http://wtt-pro.nist.gov/wtt-pro/
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|
|
(
𝜕2𝑉
𝜕𝑇2

)
𝑃
|
𝑇=𝑇0

2(
𝜕𝑉
𝜕𝑇
)
𝑃
|
𝑇=𝑇0

(𝑇 − 𝑇0)|
| = ||

𝛼0
2 + (

𝜕𝛼
𝜕𝑇
)
𝑃
|
𝑇=𝑇0

2𝛼0
(𝑇 − 𝑇0)|| ≪ 1 (6.3) 

 

The only difference between criteria (6.3) and (6.2) is the sign modifying 

(∂α/ ∂T)𝑃|𝑇=𝑇0. Since (∂α/ ∂T)𝑃 is positive for most liquids below their critical 

temperatures, volume/temperature isobars express a greater degree of deviation from 

linearity than density/temperature isobars. The maximum value of (6.3) for toluene at 1 

bar and 𝑇0 = 280.5 K is 0.121. While this calculation indicates a linear volume 

expansion in temperature for toluene may still reasonably apply over short temperature 

differences, the analogous density expansions is more accurate in that range and better 

describes the liquid over the NLR.  

To show the near linearity of density/temperature isobars, Table 6.1 lists 

maximum values of the left side of condition (6.2) for liquids at 1 bar, with 𝑇0 set as the 

midpoint of the temperature range considered. Table 6.1 also list the maximum fractional 

change in density relative to 𝜌0 along the temperature range given by |𝛼0(𝑇 − 𝑇0|.  Since 

𝑇0 is chosen as the midpoint, and the absolute value is taken, maximum values of both 

quantities occur at either of the endpoints of the temperature range. For small molecule 

liquids, all values were obtained or derived from the NIST wtt-pro thermos tables[95], 

and the NLR temperature range as defined earlier in this dissertation was used. 

Temperature ranges for polymer fluids are those given by Rodgers.[49] who carefully 

ensured that those temperatures described the polymer melt.  𝛼0 and (𝜕𝛼/𝜕𝑇)𝑃|𝑇0 for 

polymers were calculated from a Tait model with Temperature dependences of Tait 

parameters for all polymers taken from  Rodgers[49] or from Olabisi and Simha.[96]. 
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Liquid |𝛼0(𝑇 − 𝑇0)|Max 

|
|
(
𝜕2𝜌
𝜕𝑇2

)
𝑃
|
𝑇=𝑇0

2 (
𝜕𝜌
𝜕𝑇
)
𝑃
|
𝑇=𝑇0

(𝑇 − 𝑇0)|
| 

Argon 0.0076 0.0044 

Krypton 0.0060 0.0042 

Xenon 0.0041 0.0029 

Methane 0.0333 0.0238 

Oxygen 0.0673 0.0267 

Nitrogen 0.0365 0.0273 

Carbon Monoxide 0.0345 0.0221 

Ethane 0.0886 0.0314 

Propane 0.1126 0.0286 

n-Butane 0.0980 0.0331 

n-Pentane 0.1079 0.0239 

n-Hexane 0.1054 0.0241 

n-Decane 0.1166 0.0340 

n-Dodecane 0.1246 0.0499 

Neopentane 0.0215 0.0167 

Ethene 0.0705 0.0291 

Cyclohexane 0.0472 0.0188 

Benzene 0.0471 0.0163 

Toluene 0.1084 0.0134 

Hydrogen Sulfide 0.0222 0.0109 

Trifluoromethane 0.0810 0.0304 

Perfluoroethane 0.0289 0.0235 

Poly(Styrene) 0.0411 0.0103 

Poly(epichlorohydrin) 0.0466 0.0117 

Poly(caprolactone) 0.0304 0.0076 

Poly(Methyl Methacrylate) 0.0254 0.0226 

Poly(Isobutylene) 0.0322 0.0081 

Poly(Tetrafluoroethylene) 0.0613 0.0307 

Poly(Vinyl acetate) 0.0467 0.0080 

Poly(Ethylene) (linear) 0.0453 0.0113 

Table 6.1: Near linearity condition and fractional density increases relative to a 

midpoint density for liquids at 1 bar 
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6.3 DENSITY/TEMPERATURE LINEARITY IN MOLECULAR AND POLYMERIC LIQUIDS 

This linearity can be expressed in the following compact form: 

 
𝜌

𝜌𝑃
∗ +

𝑇

𝑇𝑃
∗ = 1 (6.4) 

in which the subscripts “𝑃” indicate isobaric data were regressed. As in Chapter 5, 𝜌𝑃
∗  and 

𝑇𝑃
∗ are the density (𝑇 = 0) and temperature (𝜌 = 0) intercepts of the line, respectively.  If 

the density data lie along a high-pressure isobar, both 𝜌𝑃
∗  and 𝑇𝑃

∗ will obtain unique values 

for the isobar different from those at low pressure. 𝜌𝑃
∗  retains its interpretation as the 

maximum density the fluid may attain along the isobar. Appendix B gives low pressure 

𝜌𝑃
∗  and 𝑇𝑃

∗ values obtained through linear least squares regression of either isobaric or 

saturated density/temperature data. 

6.3.1 Pure Liquids at Low Pressure 

For small molecule liquids, densities were regressed at NLR temperatures. 

Isobaric data at 1 bar were used when available, otherwise saturated densities were 

regressed. Density data were obtained with models[95,97,98] through the NIST/TRC 

Web Thermo Tables (WTT) http://wtt-pro.nist.gov/wtt-pro/. Only polymers with 

tabulated PVT data (unbiased) were regressed[49,96,99–104] with temperature ranges 

matching those given by Rodgers[49]. Density/temperature lines for molten metals and 

salts are available elsewhere[75,76]. Coefficient of determination (R2) values were 

greater than 0.99 for all 144 liquids. Over the temperature ranges regressed, the linear 

equation (6.4) correlates the densities and temperature to within the uncertainties of the 

source data.  

Often the nonlinear Rackett equation[105] is employed to estimate liquid densities 

in the NLR for engineering applications. The Rackett equation requires three parameters, 

http://wtt-pro.nist.gov/wtt-pro/
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𝑇𝑐,𝜌𝑐, and 𝑍𝑐 (or 𝑃𝑐).  It returns liquid densities to within 1 or 2% accuracy for a given 

temperature.  While the Rackett equation may apply over a larger temperature range than 

(6.4), a linear density/temperature correlation only requires two parameters and yields 

densities within experimental uncertainties (1 part in a 1000 or less) in the NLR. 

 

6.3.2 Density/Temperature Linearity at High Pressures 

In Figures 6.1 & 6.2 density/temperature data are plotted along high pressure 

isobars for pure toluene and poly(vinyl acetate) (PVAc) respectively. Temperature ranges 

are identical to those used for the low-pressure fits. For toluene in Figure 6.1, data points 

were generated using the NIST REFPROP model through http://wtt-pro.nist.gov/wtt-

pro/[95]. For the PVAc in Figure 6.2, the viscosity-average molecular weight was 

given as 𝑀𝜈 = 189,000, and PVT data were given by McKinney and Goldstein[100]. 

Maximum pressure was determined by the source data.  Lowest R2 values for the least 

squares linear regressions in Figure 6.1 and Figure 6.2 are 0.9966 for toluene and 0.9997 

for PVAc, both calculated at the maximum pressures regressed for the liquids, where 

uncertainties in density measurements are greatest[95,100]. As can be seen in the figures, 

the slopes, −𝜌𝑃
∗/𝑇𝑃

∗, and intercepts, 𝜌∗ vary with pressure. 

 

http://wtt-pro.nist.gov/wtt-pro/
http://wtt-pro.nist.gov/wtt-pro/
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Figure 6.1: 𝜌 vs. 𝑇 plots and linear fits for toluene at different pressures.  

 

 

Figure 6.2: 𝜌 vs. 𝑇 plots and linear fits for Poly(vinyl acetate) at different pressures. 
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6.2.3 Density/Temperature Linearity of Liquid Mixtures 

The PVT behavior of liquid mixtures is similar to that of pure liquids[106–108]. 

Ramos-Estrada, Iglesias-Silva, and Hall[109] measured densities for binary n-pentane, n-

hexane, n-heptane mixtures over a temperature range 273–363 K at atmospheric pressure. 

Figure 6.3 plots their density/temperature measurements for four compositions of binary 

n-hexane/n-heptane mixtures. Density/temperature regressions on data by Ramos-Estrada 

et al.  for each mixture and each composition displayed the same linear behavior as pure 

liquids. Lowest R2 value was 0.99952 for the n-hexane/n-heptane mixture at 40.07 

mole% n-hexane. 

 

 

Figure 6.3: 𝜌 vs. 𝑇 plots and linear fits for binary mixtures of n-hexane and n-heptane 

for different compositions at atmospheric pressure 
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measured isothermal volumetric response to pressure at four different temperatures for 

mixtures  of benzene and isooctane[110]. In order to obtain the isobaric regressions and 

plots for Figure 6.4, the isothermal Secant Bulk Modulus (SBM) equation was used to 

calculate densities at a given pressure. Malhotra and Woolf fit the SBM coefficients  to 

their measurements[110]. Of the regressed lines in Figure 6.4 the lowest R2 is 0.9991 at 

1,200 bar; however, the linearity is less impressive than the lines in Figures 6.1–6.3 

considering only four points were used for the regression. 

 

 

Figure 6.4: 𝜌 vs. 𝑇 plots and linear fits for liquid binary mixtures of 49.78 mole% 

benzene/50.22 mole% isooctane at different pressures. 

As with pure liquids, the linear density/temperature relationship is observed only 

at temperatures far below 𝑇𝑐. Figure 6.5 plots the saturated liquid densities of mixtures of 
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Hamad[111]. Figure 6.5 also contains lines fit to the densities at NLR temperatures. The 

linearity becomes less accurate at temperatures above the NLR. Figure 6.5 also shows 

that plots become less linear as the composition of n-hexane, the species with the lower 

𝑇𝑐, increases.  

 

 

Figure 6.5: 𝜌 vs. 𝑇 plots for binary liquid mixtures of n-hexane and benzene at 

saturation pressure. Lines are fit using NLR temperatures only. 
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mixtures, the excess volume 𝑉𝐸 = 𝑉 − 𝑉𝐼𝑑𝑒𝑎𝑙 satisfies |𝑉𝐸/𝑉𝐼𝑑𝑒𝑎𝑙| < 3%, and setting 

𝑉 = 𝑉𝐼𝑑𝑒𝑎𝑙 introduces minimal error[77,112–114]. While (6.5) may be used to accurately 

estimate volumes of liquid mixtures, solving the density/temperature relationship (6.4) 

for pure component volumes and substituting into (6.5) will not yield a linear 

density/temperature relationship for the mixture. In order to explicitly preserve a linear 

density/temperature relationship without additional adjustable parameters, mixing rules 

for 𝑇𝑃
∗ and 𝜌𝑃

∗  must be employed. 

Several mixing rules have been developed for use in liquid PVT 

correlations[115]. Many of these are based on a corresponding states analysis and use 𝑇𝑐 

and the critical volume 𝑉𝑐 as characteristic temperature and volume parameters 

respectively. For many liquids, 𝑇𝑃=0
∗ ≈ 2𝑇𝑐[66,73]; therefore a mixing rule which weighs 

mixture critical temperatures by a composition variable should be appropriate in 

calculating 𝑇𝑃
∗ from 𝑇𝑖,𝑃

∗ , the pure component temperature intercept of 𝑖. Mixing rules 

involving critical and characteristic volume have successfully been applied to correlations 

interchangeably[115]. 

Some characteristic volume mixing rules used in liquid correlations only apply to 

intensive molar volumes. Characteristic molar volume for the mixture 𝑉∗ is related to the 

characteristic mass density 𝜌∗ by: 

 

𝑉∗ = (𝜌∗∑
𝑤𝑖
𝑀𝑖
)
−1

(6.6) 

in which 𝑤𝑖 and 𝑀𝑖 are weight fraction and molecular weight of 𝑖. 

The simplest mixing rule for 𝑉∗ is that of characteristic volume additivity which 

averages characteristic molar volume contributions weighted by 𝑥𝑖: 
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𝑉𝑃
∗ =∑𝑥𝑖𝑉𝑖,𝑝

∗ (6.7a) 

 

or equivalently: 

𝜌𝑃
∗ =∑𝜙𝑖

∗𝜌𝑖,𝑃
∗ (6.7b) 

 

𝜙𝑖
∗ is the occupied volume fraction of 𝑖, and is related to 𝑤𝑖 by: 

 

𝜙𝑖
∗ =

𝑤𝑖/𝜌𝑖,𝑃
∗

∑𝑤𝑖/𝜌𝑖,𝑃
∗ (6.8) 

 

The  𝑉𝑃
∗ mixing rule for Hankinson and Thomson’s correlation is[116]: 

 

𝑉𝑃
∗ =

1

4
[∑𝑥𝑖𝑉𝑖,𝑃

∗ + 3(∑𝑥𝑖(𝑉𝑖,𝑃
∗ )

2/3
) (∑𝑥𝑖(𝑉𝑖,𝑃

∗ )
1/3
)] (6.9) 

 

A quadratic mixing rule was also considered: 

 

𝑉𝑃
∗ =∑∑𝑥𝑖𝑥𝑗𝑉𝑖𝑗,𝑃

∗

𝑗𝑖

(6.10) 

where 𝑉𝑖𝑖,𝑃
∗ = 𝑉𝑖,𝑃

∗ . To avoid requiring additional parameters, 𝑉𝑖𝑗,𝑃
∗ was accounted for by: 

 

𝑉𝑖𝑗,𝑃
∗ =

휁𝑖𝑗

8
[(𝑉𝑖,𝑃

∗ )
1/3
+ (𝑉𝑖,𝑃

∗ )
1/3
]
3

(6.11) 

in which 휁𝑖𝑗 scales 𝑉𝑖𝑗,𝑃
∗  with respect to a volume determined by an average characteristic 

length. Setting 휁𝑖𝑗 = 1, and substituting the resulting 𝑉𝑖𝑗,𝑃 into (6.10) recovers mixing 

rule (6.9). For 휁𝑖𝑗 ≠ 1, a mixing rule originally intended for use in scaling a cross 

characteristic temperature 𝑇𝑖𝑗
∗  for mixtures of alkanes[117],will be used. It is given by: 
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휁𝑖𝑗 =
8(𝑉𝑖,𝑃

∗ 𝑉𝑗,𝑃
∗ )
1/2

[(𝑉𝑖,𝑃
∗ )
1/3
+ (𝑉𝑖,𝑃

∗ )
1/3
]
3 (6.12) 

Equation (6.12) ultimately sets 𝑉𝑖𝑗
∗  to the geometric mean of 𝑉𝑖

∗, and 𝑉𝑗
∗. 

Values of 𝑉𝑃
∗ were calculated with the mixing rules described and compared with 

𝑉𝑃
∗ fit to equations (6.4) and (6.6) for the mixtures in Figure 6.4. This mixture was chosen 

because of the large difference in pure component 𝜌𝑃=1 bar
∗ . Figure 6.6 shows these 

comparisons at 1 bar. At 1 bar, characteristic volume additivity (6.7) best fit regressed 𝑉𝑃
∗ 

with an average absolute percent error (AAPE) of 0.615%. At 150 MPa the Hankinson 

and Thomson mixing rule (6.9) was best with an AAPE of 0.551%, though characteristic 

volume additivity only had an AAPE of 0.721% at 150 MPa. Due to its superiority at 

lower pressures, its simple functional form, and its similar predictive ability to other 

mixing rules at elevated pressures, characteristic volume additivity (6.7) was selected as 

the mixing rule for 𝑉𝑃
∗ and 𝜌𝑃

∗ .  

 

 

Figure 6.6: Characteristic volume comparison for benzene/isooctane mixtures at 1 bar 
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The simplest mixing rule for 𝑇∗ is of a Kay pseudocritical type[118] for which 

characteristic temperatures are weighted by 𝑥𝑖: 

 

𝑇𝑝
∗ =∑𝑥𝑖𝑇𝑖,𝑃

∗ (6.13) 

 

A similar mixing rule uses a 𝜙𝑖
∗ weighted average[119]: 

 

𝑇𝑃
∗ =∑𝜙𝑖

∗𝑇𝑖,𝑃
∗ (6.14) 

 

Quadratic mixing rules include that for the Hankinson and Thomson 

correlation[116]: 

𝑇𝑃
∗ =

∑ ∑ 𝑥𝑖𝑥𝑗𝑇𝑖𝑗,𝑃
∗ 𝑉𝑖𝑗,𝑃

∗
𝑗𝑖

𝑉∗
(6.15) 

 

in which 𝑇𝑖𝑖,𝑃
∗ = 𝑇𝑖,𝑃

∗ , 𝑉𝑖𝑖,𝑃
∗ = 𝑉𝑖,𝑃

∗  and the cross terms are given by: 

 

𝑇𝑖𝑗,𝑃
∗ 𝑉𝑖𝑗,𝑃

∗ = (𝑇𝑖,𝑃
∗ 𝑇𝑗,𝑃

∗ 𝑉𝑖,𝑃
∗ 𝑉𝑗,𝑃

∗ )
1/2

(6.16) 

 

Though equation (6.9) was used in Hankinson and Thomson’s original correlation, 𝑉∗ is 

here calculated with equation (6.7a). 

Other quadratic mixing rules include: 

 

𝑇𝑃
∗ =∑∑𝑥𝑖𝑥𝑗𝑇𝑖𝑗,𝑃

∗

𝑗𝑖

(6.17) 

and: 

𝑇𝑃
∗ =∑∑𝜙𝑖

∗𝜙𝑗
∗𝑇𝑖𝑗,𝑃
∗

𝑗𝑖

(6.18) 
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𝑇𝑖𝑖,𝑃
∗ = 𝑇𝑖,𝑃

∗ . 𝑇𝑖𝑗
∗  may be calculated as either a scaling of the arithmetic mean: 

 

𝑇𝑖𝑗,𝑃
∗ =

휁𝑖𝑗

2
(𝑇𝑖,𝑃
∗ + 𝑇𝑗,𝑃

∗ ) (6.19) 

or a scaling of the geometric mean: 

 

𝑇𝑖𝑗,𝑃
∗ = 휁𝑖𝑗(𝑇𝑖,𝑃

∗ 𝑇𝑗,𝑃
∗ )

1/2
(6.20) 

 

of 𝑇𝑖,𝑃
∗  and 𝑇𝑗,𝑃

∗ . To avoid introduction of additional parameters, 휁𝑖𝑗 may either be set to 

unity or determined by equation (6.12). Equation (6.13) is recovered when the arithmetic 

mean is used for 𝑇𝑖𝑗,𝑃
∗  in equation (6.17), and (6.14) is recovered when the arithmetic 

mean is used for 𝑇𝑖𝑗
∗  in equation (6.18). 

Guided by the success of (6.7) in calculating 𝜌𝑃
∗ , two other mixing rules for 𝑇𝑃

∗ 

were considered. The first calculates the density of the mixture as the average of the pure 

component densities weighted by 𝜙𝑖
∗. The corresponding 𝑇𝑃

∗ mixing rule is: 

 

𝑇𝑃
∗ = (

1

𝜌𝑃
∗∑

𝜙𝑖
∗𝜌𝑖,𝑃
∗

𝑇𝑖,𝑃
∗ )

−1

(6.21) 

 

The second additional mixing rule corresponds to a linear volume expansion in 

temperature and gives an average (𝑇𝑖,𝑃
∗ )

−1
 weighed by 𝜙𝑖

∗: 

 

𝑇𝑃
∗ = (∑

𝜙𝑖
∗

𝑇𝑖,𝑃
∗ )

−1

(6.22) 
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Though both (6.21) and (6.22) are inspired by mixture volume additivity, and 

calculations using these rules agree well with those assuming volume additive, equations 

(6.21) and (6.22) predict a negative excess volume (𝑉𝐸 = 𝑉 − 𝑉Ideal) when used with 

(6.7), corresponding to small contraction on mixing (Δ𝑉𝑚 < 0). 

To determine a suitable mixing rule for 𝑇𝑃
∗, calculated densities were compared 

with measurements of binary mixture densities at 25°C and atmospheric 

pressure[112,113].  Table 6.2 compares the error in measured densities of 582 binary 

mixtures and densities calculated using equations (6.4), (6.7), and each 𝑇𝑃
∗ mixing rule. 

Pure component parameters from Appendix B were used. Table 6.2 also contains average 

absolute percent error (AAPE) for densities calculated from an ideal mixture volume 

assumption (𝑉𝐸 = 0)  for comparison. All 𝑇𝑃
∗ mixing rules included in Table 6.2 are 

< 1%, indicating that for liquid mixtures of small molecules, any mixing rule that 

reasonably averages component 𝑇𝑖,𝑃
∗  is satisfactory in density calculations. The largest 

AAPE is 0.5504% for the Hankinson and Thomson 𝑇𝑃
∗ rule. 

 

 

Equations used for 𝜌 

calculation 

AAPE 

(%) 

Equations used for 𝜌 

calculation 

AAPE 

(%) 

𝑉𝐸 = 0 0.2535 (6.17), (6.20), (6.12) 0.4817 

(6.13) 0.3373 (6.18), (6.19), (6.12) 0.2385 

(6.14) 0.3325 (6.18), (6.20),  휁𝑖𝑗 = 1  0.3097 

(6.15), (6.16) 0.5504 (6.18), (6.20), (6.12) 0.2269 

(6.17), (6.19), (6.12) 0.4550 (6.21) 0.2388 

(6.17), (6.20), 휁𝑖𝑗 = 1 0.3596 (6.22) 0.2604 

Table 6.2: Errors of 𝑇𝑃
∗ mixing rules in calculating densities of mixtures of small 

organics at atmospheric pressure 
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While these mixing rules worked well for mixtures of small organics, several are 

inadequate when differences between component 𝑉𝑖,𝑃
∗  are large, such as in 

polymer/solvent systems.  The characteristic mass densities for both small compounds 

and polymers in Appendix B are 𝑂(103) kg/m3; therefore, since 𝑀𝑝𝑜𝑙𝑦𝑚𝑒𝑟 ≫ 𝑀𝑠𝑜𝑙𝑣𝑒𝑛𝑡, 

the mole intensive  characteristic volumes 𝑉𝑝𝑜𝑙𝑦𝑚𝑒𝑟,𝑃
∗ ≫ 𝑉𝑠𝑜𝑙𝑣𝑒𝑛𝑡,𝑃

∗
. The 𝑇𝑃

∗ mixing rules 

based on 𝑥𝑖 calculate 𝑇𝑃
∗ close to 𝑇𝑠𝑜𝑙𝑣𝑒𝑛𝑡,𝑃

∗ . Equation (6.12) calculates 휁𝑖𝑗 near unity for 

mixtures of similarly sized molecules, but when 𝑉𝑖,𝑃
∗ ≫ 𝑉𝑗,𝑃

∗ , equation (6.12) calculates 

much lower 휁𝑖𝑗; for example, if  𝑉𝑖
∗/𝑉𝑗

∗ = 1,000 (a reasonable order of magnitude 

comparison for a polymer(𝑖)/solvent(𝑗) system),  휁𝑖𝑗 = 0.19 by equation (6.12). 

The same 𝑇𝑃
∗ mixing rules examined in Table 6.2 were used to calculate densities 

of poly(isobutylene) (PIB) and short n-alkanes for comparison with data by Flory, 

Ellenson, and Eichinger[114]. As with the mixtures of small organics, Table 6.3 contains 

AAPE for densities calculated using equations (6.4) and (6.7) with each 𝑇𝑃
∗. Table 6.3 

also includes the AAPE of densities calculated with a 𝑉𝐸 = 0 assumption. The PIB had a 

viscosity average molecular weight of 40,000.  Pure component parameters are given in 

Appendix B. 

 

Equations used for 𝜌 

calculation 

AAPE 

(%) 
Equations used for 𝜌 calculation AAPE 

(%) 

𝑉𝐸 = 0 0.5121 (6.17), (6.20), (6.12) 8.2646 

(6.13) 7.9919 (6.18), (6.19), (6.12) 8.7016 

(6.14) 2.2870 (6.18), (6.20), 휁𝑖𝑗 = 1 1.7801 

(6.15), (6.16) 35.9082 (6.18), (6.20), (6.12) 9.0388 

(6.17), (6.19), (6.12) 8.2593 (6.21) 0.5500 

(6.17), (6.20), 휁𝑖𝑗 = 1 8.0092 (6.22) 0.1142 

Table 6.3: Errors of 𝑇𝑃
∗ mixing rules in calculating densities of PIB/alkane solutions at 

atmospheric pressure 
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Most of the 𝑇∗ mixing rules are inadequate at predicting the densities of the 

polymer/solvent mixtures. Seven mixing rules in Table 6.3 yield AAPE > 5%, with the 

Hankinson and Thomson  𝑇𝑃
∗ again providing the worst agreement. This is likely because 

these mixing rules were developed for a specific, nonlinear liquid density correlation, 

which does not employ characteristic volume additivity. The only mixing rule in Table 

6.3 which better calculates densities than an additive volume assumption is equation 

(6.22), but (6.21) is satisfactory, and (6.21) is slightly better for mixtures of small 

organics. If (6.21) were selected as the appropriate 𝑇𝑃
∗ mixing rule, and both 𝜌𝑖,𝑃

∗  and 𝑇𝑖,𝑃
∗  

are known for each component species, the density/temperature line for the mixture is 

given by: 

𝜌 =∑𝜙𝑖
∗𝜌𝑖 =∑[𝜙𝑖𝜌𝑖,𝑃

∗ (1 −
𝑇

𝑇𝑖,𝑃
∗ )] = 𝜌𝑃

∗ (1 −
𝑇

𝑇𝑃
∗) (6.23) 

Equation (6.23) is less accurate for molten metal alloys than it is for mixtures of 

organics. Linear density/temperature relationships have been fit for pure molten 

metals[75,76] and for some molten alloys at low external pressure[77–81]. The 

individually fit intercepts do not agree with those calculated from (6.7), (6.22), or other 

mixing rules, and species specific empirical composition dependences are often given 

instead[79,81]. Equation (6.23) should only be used for molten alloys as an 

approximation for the isobaric density/temperature relationship when direct 

measurements are unavailable. 

6.4 DISCUSSION OF DENSITY/TEMPERATURE LINEARITY IN LIQUIDS 

As with any other expansion or regression, the parameters for a given species (𝑇𝑃
∗ 

and 𝜌𝑃
∗ ) depend on the fitting method and data points used. Figure 6.7 compares 𝑇𝑃

∗ of 

liquid toluene regressed over two different temperature ranges. At a pressure of 1 bar, the 
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𝑇𝑃
∗ differ by 35.0 K while the difference rises to 335 K at 5,000 bar. Even though the 

difference in 𝑇𝑝
∗ at 5,000 bar is of the same order of magnitude as the temperature 

intercept itself, using the 𝑇𝑃
∗ and 𝜌𝑃

∗  regressed for 322.2–383.2 K to calculate density at 

178.2 K produces an error of only 1.22%. The  individual intercepts may differ, but 

properly paired intercepts may be used to extrapolate densities to lower NLR 

temperatures with reasonable accuracy. 

 

 

Figure 6.7: Plots of 𝑇𝑃
∗ for toluene vs. pressure calculated with data spanning two 

different temperature ranges 

This dependence of intercepts on temperature ranges, and the small, but nonzero 

values of (𝜕𝜌/𝜕𝑇)𝑃 suggest that the isobaric density is a nonlinear function of 

temperature that exhibits minimal curvature over an extended temperature range. This 

relationship is, however, accurate over the entire NLR, and an equation for density of the 

form of (6.223) may be used for liquids under nearly isobaric conditions and NLR 
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temperatures. A linear density/temperature relationship is particularly useful in linking 

theoretical volumetric interpretations of mobility properties of liquids with observed 

temperature dependences.  

The specific free volume (SFV) is given by: 

 

𝑆𝐹𝑉 = 𝑉 − 𝑉0 (6.24) 

in which 𝑉0 is the specific occupied volume. Often 𝑉0 is taken as the specific volume of 

the medium extrapolated to absolute zero[82,120,121], but it may also be generally 

defined as the specific limiting volume of the system in which 𝑆𝐹𝑉 → 0[122,123]. 

Equation (6.23) provides a simple means of extrapolating the specific volume of liquids 

and liquid mixtures to absolute zero. With (6.23): 

 

𝑉0 = (𝜌𝑃
∗ )−1 = [∑𝜙𝑖

∗𝜌𝑖,𝑃
∗ (𝑃)]

−1

(6.25) 

 

Extrapolation methods that account for the curvature of density/temperature 

isobars above the NLR consistently predict larger 𝑉0 (smaller 𝜌𝑃
∗ )[105,120,124,125], but 

for Group II liquids, the difference between 𝑉0 calculated with a linear density 

extrapolation and a nonlinear method is often a small fraction of the liquid specific 

volume at NLR temperatures[126]. Another means of calculating 𝑉0 (mass intensive) for 

polymers, popularized by Lee[127], relates 𝑉0 to the van der Waals volume (𝑉𝑣𝑑𝑤) by: 

 

𝑉0 = 1.3𝑉vdw (6.26) 

in which 𝑉vdw is calculated by a group contribution method[128]. In his investigation into 

the 1.3 factor, Horn[121] traces  its origins to an assertion by Van Krevelen[129] which 
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was likely based on an approximation for polymer models. Comparison of calculated 

𝑉vdw with extrapolated density data for polymers show that 1.3 is a decent estimate, but 

deviation is significant enough that the factor should not be considered a universal 

constant[82]. Horn concludes that direct extrapolation is preferable to the 1.3 factor. 

The fractional free volume (FFV) is defined as the ratio of SSV to specific system 

volume. Setting 𝜌𝑃
∗ = 𝑉0

−1 and using equation (6.23) for 𝜌 = 𝑉−1 gives for FFV: 

 

𝐹𝐹𝑉 = 𝜌𝑆𝐹𝑉 = 1 −
𝜌

𝜌𝑃
∗ =

𝑇

𝑇𝑃
∗ (6.27) 

 

When density is a linear function of temperature, FFV is directly proportional to 

temperature, with a proportionality constant of 1/𝑇𝑃
∗. Sanchez and Cho observed this 

FFV dependence for pure, amorphous polymers at low pressures[82], but they calculated 

FFV at elevated pressures through their equation of state, and neither small molecules nor 

solutions were considered. At a given pressure, mixing rule (6.21) and equation (6.27) 

offer direct composition and temperature dependences of FFV. 

Free volume correlations are frequently used to explain the effects of density on 

mobility properties in amorphous media, particularly in polymers[120,123,127,130,131]. 

The empirical relationship by Doolittle[120] and Williams, Landel, and Ferry[132] for 

viscosity 휂𝑣 (the subscript is only to distinguish viscosity from occupied volume 

fraction), and the related theoretical  expression by Cohen and Turnbull[123] for the 

diffusion coefficient 𝒟 in liquids, both have the functional form: 

 

휂𝑣, 𝒟 = 𝐴 exp[𝐵/𝑆𝐹𝑉] (6.28) 
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in which 𝐵 (positive for 휂, negative for 𝒟) depends on composition and accounts for both 

free volume overlap and the minimum volume required for either molecular or segment 

motion. 𝐴 has different theoretical interpretations depending on the property it correlates. 

𝐴 depends on composition and temperature, but its temperature dependence is weaker 

than the exponential contribution[133,134]. 

When FFV is directly proportional to temperature, as in (6.27), equation (6.28) 

and similar hybrid free volume/activation models[133,134] yield: 

 

휂𝑣, 𝒟 = 𝐴 exp[−𝐵𝜌𝑃
∗ ] exp[𝐵𝜌𝑃

∗𝑇𝑃
∗/𝑇] (6.29) 

 

Since exp[−𝐵𝜌∗(𝑃)] is independent of temperature it may be absorbed into 𝐴 without 

changing the overall temperature dependence of (6.29). With exp[−𝐵𝜌∗(𝑃)] absorbed 

into 𝐴, (6.29) adopts an Arrhenius type temperature dependence, a relationship frequently 

invoked to correlate the effects of temperature on mobility properties[133,135,136].  

6.5 SUMMARY AND CONCLUSIONS 

Isobaric plots of density vs. temperature are linear for liquids over a large 

temperature range. For small molecule liquids, this temperature range extends from the 

melting to at least the normal boiling temperatures. This linearity, discussed in Chapter 5 

for liquids at low pressure, was shown to be the general, nearly universal behavior of 

liquid density/temperature isobars. It accurately describes the density/temperature 

relationship of small molecular liquids, polymer melts, and liquids mixtures, at both low 

and elevated pressures.  Appendix B contains low pressure line parameters for 140 pure 

liquids for the simple and accurate calculation of densities in the normal liquid range. 

Values in Table B1 used with the mixing rules developed can calculate liquid density 
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while maintaining the density/temperature linearity. Due to the strong dependence of the 

line parameters on the fitting conditions (particularly at elevated pressures), this linearity 

cannot be developed into a consistent thermodynamic model, like the SPT model. In 

Chapter 7, a new thermodynamic model for small, weakly attractive molecules is 

developed. This new model exhibits negligible curvature over much of the 𝑍 ≃ 0 isobar, 

and it emphasizes the role of occupied volume through the interrelation between a limited 

coordination number/occupied volume fraction and potential energy saturation. 
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Chapter 7:  Quasi-Chemical Square Well Model of Fluids* 

While much of [125] focuses on the thermodynamics of glasses and the 

implications of this model, the model itself was developed to more realistically describe 

the potential energy of an attractive sphere by limiting the attraction range of each sphere. 

7.1 INTRODUCTION 

Ideas and models of the glass transition remain engaging subjects[137,138] 

decades after the introduction of theories and concepts[139]. In 1948 Kauzmann noted 

that when the metastable liquid entropy line is extended to low temperatures, the 

extrapolation falls to the crystal entropy at what is now known as the “Kauzmann 

temperature”[140], motivating interest in the nature of the glass transition. The liquid-to-

glass transition intervenes before the extension of this line reaches the crystal entropy, 

resolving the “entropy catastrophe.” Though the glass transition resolves a 

thermodynamic issue, the resolution in and of itself does not answer whether or not it is a 

true thermodynamic transition. A review of this subject is given in reference [141]. 

In 1958 Gibbs and DiMarzio argued that the glass transition was a 

thermodynamic, second-order phase transition with  a statistical lattice model of polymer 

liquids that they developed[142]. They proposed that the observed liquid-to-glass 

transition in polymeric systems is a kinetically controlled manifestation of this underlying 

thermodynamic transition, a dogma which prevails, but with occasional criticism[143].   

The Gibbs-DiMarzio interpretation was developed for long chain polymers, but simple 

molecules such as toluene or elemental sulfur also exhibit glass transitions. In this chapter 

                                                 
* This material was published as: Isaac C. Sanchez, and Sean O’Keefe, “Theoretical Rationale for a 

Thermodynamic Glass State” J. Phys. Chem. B 120 (35), 9443 (2016)[125]. For the article Sean Patrick 

O’Keefe contributed the appendix and refined the model and its approximations. For the purposes of this 

dissertation Sean Patrick O’Keefe recalculated all values and corrected the excess entropy equation. 
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physical principles of glasses are addressed within the context of a quasi-chemical square 

well model developed for small molecules, with short-ranged attractive interactions.  

Like the models discussed in Chapter 1–4, hard sphere (HS) contributions to this 

model are considered using Scaled Particle Theory (SPT), but this SPT model is treated 

as a square-well (SW) fluid in a quasi-chemical (QC) approximation.  A SW potential 

includes both attractive and repulsive interactions: 

 

𝑢(𝑅) = {
∞ 𝑅 < 𝜎
−휀 𝜎 ≤ 𝑅 ≤ 𝜆𝜎
0 𝑅 > 𝜆𝜎

(7.1) 

 

Others have developed QC type approximations for a SW fluid[144–147]. Those 

studies concentrated on calculating the effective coordination number of a HS and using 

that result to calculate the free energy by isothermal integration of the energy, or by 

simply adding the calculated energy to a HS equation of state.  The present approach 

proceeds via the chemical potential route discussed in Chapter 2 for the SPT chain model. 

This model clearly defines what additional approximations must be made within the 

context of a QC approach.     

7.2 QUASI-CHEMICAL APPROXIMATION 

Because of excluded volume crowding, a HS can attract at most a maximum 

number 𝑛max of other spheres into its attractive domain.  When 𝜆 = 1, the excluded 

volume around the central sphere equals eight times the HS volume of 𝑣0 = 𝜋𝜎
3/6.   The 

shell volume 𝑉𝑆 accessible for the placement of spheres within the attractive domain of a 

central sphere is given by:  

𝑉𝑆 = 8(𝜋𝜎
3/6)(𝜆3 − 1) (7.2) 
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Figure 7.1: Two-dimensional schematic illustrates the contribution of hard spheres (HS) 

to the occupied volume in the attraction shell around the central sphere 

The fraction of space occupied by 𝑛max spheres within the shell volume is 

approximately given by: 

 

𝑛max(𝜋𝜎
3/6)

𝑉𝑆
=

𝑛max

8(𝜆3 − 1)
= 휂max (7.3) 

in which 휂max is the maximum possible occupied volume fraction within the attraction 

shell. For random close packing, 휂max ≃ 0.64[148], but 휂max is a parameter fixed by 𝜆 

and the choice of 𝑛max.  

Figure 7.1 schematically illustrates the HS contribution to the occupied volume in 

the attraction shell (the gray annulus) around the black sphere. The volume of the 

attraction shell is 8(𝜆3 − 1)𝑣0.  Although portions of a HS can enter the unoccupied 

excluded volume region (the white annulus), HS centers cannot. Each red sphere center 
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in the attraction shell experiences an attractive energy of −휀, but each sphere itself only 

partially contributes to the occupied volume in the attraction shell.  In contrast, an orange 

sphere whose center lies outside the attraction shell can still contribute to the occupied 

volume in the attraction shell.  In Figure 7.1, 𝜆 = 3/2 and the volume of the attractive 

shell is 19𝑣0, but shrinks to 7.625𝑣0 for 𝜆 = 1.25.   As 𝜆 → ∞, a SW fluid approaches a 

van der Waals (VDW) limit[149]. Equation (7.3) better approximates 휂max as 𝜆 increases.   

In the spirit of a QC approximation, the probability P𝑛 that 𝑛 sphere centers are 

within the attraction domain of a given sphere is given by a binomial distribution[150]: 

 

P𝑛 = (
𝑛max
𝑛
) (𝑧𝑒𝛽𝜀)

𝑛
/𝑄

𝑄 = ∑ (
𝑛max
𝑛
) (𝑧𝑒𝛽𝜀)

𝑛

𝑛max

𝑛=0

= (1 + 𝑧𝑒𝛽𝜀)
𝑛max

(7.4) 

where 𝛽 = (𝑘𝑇)−1 and 𝑧 is a QC parameter to be determined self-consistently.  The 

average number of interacting spheres within the attractive shell volume 𝑉𝑆 is given by: 

 

〈𝑛〉 = ∑ 𝑛P𝑛

𝑛max

𝑛=0

=
𝜕 ln𝑄

𝜕(𝛽휀)
= 𝑛max

𝑧𝑒𝛽𝜀

1 + 𝑧𝑒𝛽𝜀
(7.5) 

휂𝑆 is given by: 

휂𝑆 =
〈𝑛〉(𝜋𝜎3/6)

𝑉𝑆
= 휂max

𝑧𝑒𝛽𝜀

1 + 𝑧𝑒𝛽𝜀
(7.6) 

 

Equation (7.6) is not rigorously correct. Figure 7.1 shows that spheres with 

centers that lie outside the attractive domain (𝑅 > 𝜆𝜎) can also contribute to the local 

occupied fraction, and spheres with centers within the attraction zone may not contribute 

their entire volume to the occupied fraction. From geometry, a local occupied volume 
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fraction can be defined and measured in computer simulations[151], but for simplicity 

this is not employed here. 

For large 𝜆, the occupied volume fraction in the attractive shell must approach the 

global volume fraction, lim
𝜆→∞

휂𝑆 = 휂, where 휂 retains the definition 휂 = (𝜋𝜎3/6)𝜌, with 𝜌 

as the number density.  This corresponds to the VDW limit where 𝜆 → ∞ and 휀 → 0, but 

the product 𝜆휀 remains fixed. Using this as an approximation for all values of 𝜆 yields a 

self-consistent value for the 𝑧 parameter: 

 

lim
𝛽𝜀→0

휂𝑆 = 휂 = 휂max
𝑧

1 + 𝑧

𝑧 =
휂

휂max − 휂
≡

휃

1 − 휃

(7.7) 

where 휃 = 휂/휂max is the average occupied fraction in the attraction shell in the high 

temperature limit. In application of the model, 𝜆 is set to small, finite values 

(1.25 ≤ 𝜆 ≤ 2), the interaction energy is nonzero, and equation (7.7) accurately 

calculates the local occupied volume fraction at low densities only. Rigorously, a SW 

fluid behaves like a HS fluid in the limit 𝛽휀 → 0. A HS fluid has a local density greater 

than the global density[152], but this local HS density lacks a simple, analytical solution, 

and its use would require complicated numerical implementation to calculate 

thermodynamic properties. Despite its approximate origin, equation (7.7) is preferred to a 

numerical HS solution for the purposes of this model. Substituting this result into 

equation (7.5) yields: 

 

〈𝑛〉

𝑛max
=

휃𝑒𝛽𝜀

1 + 휃(𝑒𝛽𝜀 − 1)
(7.8) 
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 This interpretation of 휃 always holds providing 𝜆 is large, but becomes an approximation 

for small 𝜆.  Notice that as 𝛽휀 → ∞, 〈𝑛〉/𝑛max → 1. 

Number fluctuations within the attractive shell are given by: 

 

〈𝑛2〉 − 〈𝑛〉2 =
𝜕〈𝑛〉

𝜕(𝛽휀)
= 𝑛max

휃(1 − 휃)𝑒𝛽𝜀

[1 + 휃(𝑒𝛽𝜀 − 1)]2
(7.9) 

and fluctuations relative to the mean are: 

 

√〈𝑛2〉 − 〈𝑛〉2

〈𝑛〉
= 𝑒−𝛽𝜀/2√

(1 − 휃)/휃

𝑛max
(7.10) 

 

There are two limits where the fluctuations vanish: as 𝑇 → 0 and as 𝑛max → ∞.   The 

latter occurs at all temperatures and is characteristic of a VDW type model. 

 

7.3 QCSW THERMODYNAMIC PROPERTIES 

7.3.1 Configurational Energy 

Let 𝜓 = −𝑛휀 be the attractive interaction energy of a HS with 𝑛 other HSs in its 

interaction domain. The average interaction energy per HS is 

 

〈𝜓〉 = −〈𝑛〉휀 = −𝑛max휀
휃𝑒𝛽𝜀

1 + 휃(𝑒𝛽𝜀 − 1)
(7.11) 

 

The configurational energy contribution to the constant volume heat capacity is given by: 

 
𝐶𝑉
𝑘
= (𝛽휀)2

𝜕〈𝑛〉

𝜕(𝛽휀)
= (𝛽휀)2[〈𝑛2〉 − 〈𝑛〉2] (7.12) 
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7.3.2 Equation of State and Chemical Potential 

Now let P0(𝜓)𝑑𝜓 be the probability that a random insertion of a HS yields 

interaction energy 𝜓 and P(𝜓)𝑑𝜓 be the probability that any HS already in the fluid 

exhibits interaction energy 𝜓.  These two distributions are related by[32]: 

 

P(𝜓) =
P0(𝜓)𝑒

−𝛽𝜓

B
(7.13) 

 

in which B is the insertion factor.  Noting P0(𝜓 > 0) = P(𝜓 > 0) = 0, equation (7.13) 

provides a useful and insightful definition for the insertion factor: 

 

B =
∫ P0(𝜓)𝑑𝜓
∞

−∞

∫ P(𝜓)𝑒𝛽𝜀𝑑𝜓
∞

−∞

=
∫ P0(𝜓)𝑑𝜓
0

−∞
+ ∫ P0(𝜓)𝑑𝜓

∞

0

∫ P(𝜓)𝑒𝛽𝜀𝑑𝜓
0

−∞
+ ∫ P(𝜓)𝑒𝛽𝜀𝑑𝜓

∞

0

=
∫ P0(𝜓)𝑑𝜓
0

−∞
+ 0

∫ P(𝜓)𝑒𝛽𝜀𝑑𝜓
0

−∞
+ 0

=
∫ P0(𝜓)𝑑𝜓
0

−∞

∫ P(𝜓)𝑒𝛽𝜀𝑑𝜓
0

−∞

=
P𝑖𝑛𝑠
〈𝑒𝛽𝜓〉

(7.14) 

 

where P𝑖𝑛𝑠 is the insertion probability for a successful random insertion of a HS into a HS 

fluid with an average interaction energy per sphere of 〈𝜓〉. Taking the logarithm of (7.14) 

gives: 

ln B = ln P𝑖𝑛𝑠 − ln〈exp[−𝛽휀𝑛]〉 (7.15) 

 

〈exp[−𝛽휀𝑛]〉 can be calculated exactly in the QC approximation: 

 

〈exp[−𝛽휀𝑛]〉 = ∑ P𝑛

𝑛max

𝑛=0

exp[−𝛽휀𝑛] =
∑ (

𝑛max
𝑛
) 𝑧𝑛

𝑛max
𝑛=0

𝑄

= [1 + 휃(𝑒𝛽𝜀 − 1)]
−𝑛max

(7.16) 
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Substituting equation (7.16) into (7.15) gives: 

 

lnB = lnP𝑖𝑛𝑠 + 𝑛max ln[1 + 휃(𝑒
𝛽𝜀 − 1)] (7.17) 

 

The required insertion probability can be approximated with the SPT model[10]: 

 

lnP𝑖𝑛𝑠 = ln(1 − 휂) −
휂(14 − 13휂 + 5휂2)

2(1 − 휂)3
(7.18) 

 

Equation (7.18) is equivalent to (2.6) for a pure HS fluid (𝜎−𝑘 = 𝜎
−𝑘). To within a 

function of temperature, the chemical potential is given by[32]: 

 
𝛽𝜇 = ln 𝜌 − ln B

= 𝜇𝑖𝑔(𝑇, 𝑃) − ln(𝑍B) = 𝜇𝑖𝑔(𝑇, 𝜌) − ln B
(7.19) 

𝜇𝑖𝑔(𝑇, 𝑃) is the chemical potential of an ideal gas at the same temperature and pressure of 

the QCSW fluid, and 𝜇𝑖𝑔(𝑇, 𝜌) is the chemical potential of an ideal gas at the same 

temperature and density as the QCSW fluid.  

The EOS is given through isothermal integration of the Gibbs-Duhem equation: 

 

𝑍 = 1 − lnB +
1

휂
∫ ln B𝑑휂
𝜂

0

= 𝑍𝑆𝑃𝑇 + 𝑍int (7.20) 

 

where 𝑍𝑆𝑃𝑇 is the SPT contribution to the EOS that arises from ln P𝑖𝑛𝑠 and 𝑍𝑖𝑛𝑡 is the 

contribution from attractive interactions: 

𝑍int = 𝑛max {
ln[1 + 휃(𝑒𝛽𝜀 − 1)

휃(𝑒𝛽𝜀 − 1)
− 1} (7.21) 
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The complete EOS is: 

𝑍 =
1 + 휂 + 휂2

(1 − 휂)3
+ 𝑛max {

ln[1 + 휃(𝑒𝛽𝜀 − 1)]

휃(𝑒𝛽𝜀 − 1)
− 1}

𝑍 = 1 + 𝑏2휂 + 𝑏3휂
2…

(7.22) 

 

 

The dimensionless virial coefficients are given by: 

 

𝑏𝑘 = 1 +
3

2
𝑘(𝑘 − 1) + 𝑛max

(−1)𝑘+1

𝑘
[
𝑒𝛽𝜀 − 1

휂max
]

𝑘−1

𝑘 ≥ 2 (7.23) 

 

𝑏2 is the correct dimensionless second virial coefficient for the SW potential: 

 

𝑏2 = 4[1 − (𝜆
3 − 1)(𝑒𝛽𝜀 − 1)] (7.24) 

7.3.3 Critical Properties 

The critical point is determined by: 

 

𝜕(휂𝑍)

𝜕휂
)
𝑇

=
𝜕2(휂𝑍)

𝜕휂2
)
𝑇

= 0 (7.25) 

The critical temperature is given by: 

 

exp[𝛽𝑐휀] = 1 +
1

휃𝑐 [
𝑛max(1 − 휂𝑐)4

(1 + 2휂𝑐)2
− 1]

(7.26)
 

 in which 휂𝑐, 𝛽𝑐, and 휃𝑐 are values of 휂, 𝛽, and 휃 at the critical point.  휂𝑐 is given by the 

single positive root of the polynomial: 

(1 + 2휂𝑐)
3 + 𝑛max(1 − 휂𝑐)

3[6휂𝑐
2 + 7휂𝑐 − 1] = 0 (7.27) 
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The critical volume fraction is determined by the maximum number of sphere 

centers that can be accommodated within the accessible shell volume 𝑛max.  As 

𝑛max → ∞, or equivalently as 𝜆 → ∞, 휂𝑐 reaches the SPT value given in Table 2.1: 

 

lim
𝑛max→∞

휂𝑐 =
√73 − 7

12
= 0.1287 (7.28) 

 

At the other extreme, as 𝑛max → 1, 휂𝑐 → 0, and the critical temperature 𝑇𝑐 → 0 by 

equation (7.26); as a consequence, the liquid-vapor transition vanishes as 𝑛max → 1. 

 

7.3.4 VDW Limit 

The SPT model uses a VDW type energy in which every HS attractively interacts 

with ever other HS in the system, or equivalently 𝑛max, 𝜆 → ∞.  The effect of the 

interaction range on the model can be seen by keeping the product 𝑛max휀 constant while 

letting 휀 → 0 and 𝑛max → ∞.  In this VDW limit, the interaction energy per HS remains 

constant as the attractive interaction range, as measured by 𝜆, approaches ∞. 

 

𝑍 =
1 + 휂 + 휂2

(1 − 휂)3
−
𝑛max휀

2
휃𝛽[1 + 𝑂(𝛽휀) + 𝑂(𝛽휀)2… ]

lim
𝑛max→∞
𝜀→0

𝑍 =
1 + 휂 + 휂2

(1 − 휂)3
− 휂

𝑛max휀

2𝑘𝑇휂max

(7.29) 

 

From (7.29), the SPT 𝑇∗ is related to the QCSW parameters through: 

 

𝑇𝑆𝑃𝑇
∗ =

𝑛max휀

2𝑘휂max
(7.30) 
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This SW to VDW transitional behavior has been observed in MC simulations 

where the phase diagram shifts from a cubic (non-classical) to a parabolic (classical) type 

as 𝜆 increases[153,154].  Attractive contributions to the EOS behave differently in the 

VDW limit. In equation (7.29) the attractive contribution to 𝑍 diverges as 𝑇 → 0, while in 

equation (7.22) it does not.  

7.4 MODEL PARAMETERS 

Three parameters characterize the SW potential: the well depth 휀, the HS diameter 

𝜎, and the well width 𝜆𝜎; 휀 establishes the temperature scale (𝛽휀) and 𝜋𝜎3𝜌/6 defines 

the HS volume fraction, 휂.  Monte Carlo (MC) studies of the SW potential[145,153–155] 

have primarily focused on the range =1.25 ≤ 𝜆 ≤ 2 with 𝜆 = 3/2 a popular choice.  For 

𝜆 > 7/4 the SW model begins to exhibit mean-field (VDW) like character[153,154].  

The QCSW model introduces an additional parameter, 𝑛max, the maximum 

number of atoms that can be accommodated in the attraction zone around a HS.  MC 

studies indicate that 𝑛max ≃ 12 as a high-density limit for 𝜆 = 3/2[156]. It also agrees 

with a calculation using pair distribution functions for HS fluids (see Appendix C).  A 

choice of 𝑛max = 12 and 𝜆 = 3/2  defines the maximum packing fraction 휂max within the 

attraction shell: 

휂max =
𝑛max

8(𝜆3 − 1)
=
12

19
= 0.63 (7.31) 

 

An 휂max of 0.63 agrees well with what is believed to be a good estimate of 

random close packing of spheres of the same size[148]; however,  MC simulations 

indicate that the triple point for 𝜆 = 3/2 occurs at 휂 = 0.437[157], suggesting the SW 

fluid will crystallize well before the high-density limit of 0.63 is reached.  
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7.5 EVIDENCE FOR A THERMODYNAMIC GLASS STATE 

Figure 7.2 plots calculated saturated liquid density in the NLR (𝑍 ≃ 0) for 

𝜆 = 3/2  and 𝑛max = 12. For the purposes of the calculations here, the NLR was defined 

such that 𝑇𝑅 ≡ 𝑇/𝑇𝑐 = 𝛽𝑐휀/𝛽휀 ≤ 0.8. This roughly corresponds to the temperature range 

at which 𝑍 ≃ 0 for saturated liquids[1]. For 𝜆 = 3/2 and 𝑛max = 12, equations (7.26) 

and (7.26) give 𝛽𝑐휀 = 0.89. 

 

 

Figure 7.2: Variation of occupied volume fraction with reduced temperature for the 

QCSW and the 휂, 𝑇𝑅 line for the stable liquid extrapolated to low 

temperatures 

In Figure 7.2, the stable liquid was defined such that 휂 along the 𝑍 ≃ 0 isobar was 

less than the simulated liquid density of 0.437 at the SW triple point from 

simulation[157]. As 𝑍 → 0, the QCSW EOS reduces to a temperature independent 

equation: 

lim
𝛽𝜀→∞

𝑍 =
1 + 휂 + 휂2

(1 − 휂)3
− 𝑛max = 0 (7.32) 
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The solution of this equation for 𝑛max = 12 is 휂 = 0.478. In Figure 7.2, glass states are 

operationally defined by 〈𝑛〉/𝑛max > 0.999.  The metastable liquid is defined in Figure 

7.2 as fluids for which 0.437 < 휂 < 0.478 along 𝑍 ≃ 0. In Figure 7.2 the density indeed 

approaches 휂 = 0.478 as the temperature approaches zero. Mean-field (VDW type) 

equations of state do not display this behavior. Physically, the attraction shell, which can 

only accommodate 𝑛max HS centers, begins to saturate well before zero temperature is 

reached.  For example, equation (7.8) calculates 〈𝑛〉/𝑛max > 0.99 at 𝛽휀 = 4 (or 𝑇/

𝑇𝑐=0.22) along the 𝑍 ≃ 0 isobar. Once the attraction shell saturates, further lowering of 

temperature no longer influences the EOS. 

 This limiting density is the global density; the local density in the attraction shell 

around a HS at saturation as given by equation (7.7) approaches 휂max = 0.63.  If the 

central atom and its excluded volume were included in local density calculations, the 

local density of a 13 HS cluster increases to 13/(8𝜆3) = 13/27 = 0.481, which is 

within two significant figures of the global density of 0.478.  This reflects well on the 

self-consistency of the QCSW model for the choices 𝜆 = 3/2 and 𝑛max = 12.   

For a completely repulsive system, such as a HS fluid, density is controlled by 𝛽𝑃 

where 𝑃 is the pressure.  In a system with attractive interactions of strength 휀, both 𝛽𝑃  

and 𝛽휀 control the density with density increasing as either variable increases, but for a 

liquid in equilibrium with its vapor at temperatures below its normal boiling point, only 

𝛽휀 controls the density with repulsive forces acting to keep the liquid from completely 

collapsing.  At some condensed state, the liquid may become so dense that its density no 

longer responds to an increase in 𝛽휀.  For example, if attractive interactions were added 

to a metastable HS fluid (휂 > 0.494), intuitively the density would not be expected to 

change much provided that the system remained disordered (density would noticeable 
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increase if crystallization intervened).  From a qualitative viewpoint, the QCSW model is 

consistent with the idea that attractive interactions become ineffective in controlling 

liquid density at high densities, and a hypothetical limiting density, defined by the force 

balance, might be reached. The observed limiting density of 0.478 is in the metastable 

liquid regime, at a greater occupied volume fraction than the triple point 휂 of 0.437 for an 

SW fluid at 𝜆 = 3/2.  It represents a density defined through equation (7.32) where the 

liquid gets “stuck.” Once attractive forces become ineffective, the liquid approaches a 

density that defines a balance of attractive and repulsive (packing) forces.  If the more 

accurate Carnahan-Starling EOS[157] is used, this limiting density becomes 0.488, about 

2% greater[52] than 0.478.    

Some insight can also be gained by calculating the liquid entropy: 

 

− ln(𝑍B) = 𝛽[𝜇 − 𝜇𝑖𝑔(𝑇, 𝑃)] = 𝛽[𝑈
𝐸 − 𝑇𝑆𝐸] (7.33) 

 

where the superscript 𝐸 denotes an excess property relative to an ideal gas at the same 

temperature and density.  The excess internal energy may be taken as:  

 

𝛽𝑈𝐸 = 𝛽〈𝜓〉 (7.34) 

With (7.33) and (7.34) the excess entropy of the fluid relative to an ideal gas at the same 

density and temperature is given by: 

𝑆𝐸/𝑘 = ln(B) + 𝛽〈𝜓〉 (7.35) 
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At low temperatures where 𝑍 → 0, 𝑆𝐸 becomes a function of density only: 

 

lim
𝛽𝜀→∞

𝑆𝐸/𝑘 = ln P𝑖𝑛𝑠 + 𝑛max ln 휃

= −19 for 휂 = 0.478
(7.36) 

 

Figure 7.3 illustrates this excess entropy as a function of temperature.  Equation (7.36) 

indicates that 𝑆𝐸 asymptotes to a finite value at low temperatures and avoids the “entropy 

catastrophe.”  At about 𝑇𝑅 < 0.1, the liquid becomes a glass. 

 

 

 

Figure 7.3: Plot of excess configurational entropy calculated from equation (7.35) 

against 𝑇𝑅.  The densities in Figure 7.2 were used here 

For comparison, this entropy change for a HS fluid is given by: 

 

𝑆𝐸/𝑘 = ln P𝑖𝑛𝑠 = −15.7 for 휂 = 0.478 (7.37) 
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This reveals that adding attractive interactions to a HS fluid causes an additional lowering 

of the entropy. Attractive interactions act to restrict the available configuration space.  

This loss of configuration space corresponds to an entropy loss. A lowering of the 

configurational energy compensates for this entropy loss (energy-entropy compensation).   

7.6 APPROXIMATE NATURE OF THE QCSW MODEL 

Although the QCSW model provides a new physical insight, it remains an 

imperfect model.  As an example, the predicted QCSW critical properties for 𝜆 = 3/2  

and 𝑛max = 12 are 휂𝑐 = 0.1043  and 𝑘𝑇𝑐/휀 = 1.136, both lower than the exact MC 

values of 휂𝑐 = 0.16 and 𝑘𝑇𝑐/휀 = 1.218[155]. The QC approximation used to calculate 

〈exp(−𝑛𝛽휀)〉 in (7.15) takes into account short-range fluctuations in energy, but fails to 

account for the long wavelength density fluctuations that occur near the critical point. 

In equation (7.14), the insertion probability for a SW fluid will have a finite 

number of contributions: 

 

P𝑖𝑛𝑠 = P0(0) + P0(−휀) + P0(−2휀) (7.38) 

 

P0(−𝑛휀)is the probability that a random insertion of a HS into the SW fluid system of 

density 휂 will result in 𝑛 attractive interactions.  These probabilities will depend on the 

average interaction energy, 〈𝜓〉, at the given fluid density.  In deriving the QCSW 

chemical potential, the approximation is made that P𝑖𝑛𝑠 = P0(0) where P0(0) is 

approximated as the HS fluid insertion probability given by equation (7.18). This 

approximation is most applicable at high densities since the void distribution in a SW 

fluid at high densities should not differ much from that of a HS fluid.    
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7.7 SUMMARY  

As a liquid becomes dense, repulsive forces control its structure and density, 

while attractive forces play a minor role. Mean-field models in the VDW genre do not 

yield this qualitative result. Instead, attractive force contributions to the EOS increase 

with decreasing temperature and diverge as 𝑇 → 0 as 1/𝑇. This negative divergence 

requires the repulsive contribution to the EOS to diverge positively and sometimes at a 

nonphysical value of density. The mean-field SPT model predicts 휂 → 1 as 𝑇 → 0, a 

physically impossible occupied volume fraction for a HS mixture. In contrast, the QCSW 

model indicates that this tug-of-war between attractive and repulsive forces results in a 

unique and physically realistic limiting density at low temperatures.  For 𝜆 = 3/2 and 

𝑛max = 12, this limiting density is 휂 = 0.478, which is greater than the triple point 

density determined from MC simulations (0.437)[157], but less than equilibrium fluid-to-

solid transition density of a HS system (휂 = 0.494)[158]. Using the MC value of the 

critical occupied volume fraction (휂𝑐 = 0.16) to reduce the QCSW 휂, the QCSW reduced 

density at the low temperature limit is 𝜌𝑅 ≡ 휂/휂𝑐 = 3.0.  Many simple liquids such as the 

inert elements, methane, and Lennard-Jones fluids[159] begin to freeze at reduced 

densities of about 2.6.  A reduced density of 3 would place the QCSW limiting density in 

the metastable liquid range for simple fluids.  

The are other checks on the physical reasonableness of the QCSW model.  The 

stable liquid points in Figure 7.2 more than span much of the NLR and were used to form 

the dotted line shown in the figure (R2 > 0.999).  If this line is extended to zero 

temperature, it intersects at 휂 = 0.548, or at a reduced density of 0.548/0.16 = 3.4.   

Extrapolation of experimental density data for Ar, Kr, Xe, CH4, S, O2, and N2 to zero 

temperature yields an average intercept of 𝜌𝑅 = 3.6227 in reasonable agreement with the 

QCSW value of 3.4.  As an additional observation of interest, the density 휂 ≃ 0.54 also 
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corresponds to the estimated Kauzmann density for the putative fluid-to-glass transition 

for hard spheres[151]. 

The QCSW model does not exhibit a second order phase transition to define a 

clear boundary between glass and liquid states; however, with decreasing temperature 

both the thermal expansion coefficient and the QCSW contribution to the heat capacity 

dramatically decrease and asymptote to zero at zero temperature.  The QCSW 

configurational energy contribution to the heat capacity calculated with equation (7.12) is 

illustrated in Figure 7.4. This behavior might be termed a pseudo second order phase 

transition and tends to mimic what is often observed experimentally.  The QCSW model 

predicts that on cooling the liquid gets “stuck” at a density where the configurational 

energy has saturated. This causes other thermodynamic properties, such as the 

configurational entropy, to also saturate. Without the clearly defined thermodynamic 

definition of the liquid-to-glass transition, for the purposes of the QCSW, the liquid-to-

glass transition is operationally defined as occurring when the configurational energy 

reaches 99.9% of its saturated value.  For 𝜆 = 3/2 and 𝑛max = 12, this occurs near 𝛽휀 =

10 (or about 𝑇/𝑇𝑐 = 0.1).   
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Figure 7.4: Variation of the QCSW contribution to the constant volume heat capacity 

with temperature.  

This view of the glass transition differs from the prevailing interpretation that the 

ideal thermodynamic liquid-to-glass transition occurs when the configurational entropy 

reaches zero (or a constant) via a second order phase transition.  Similarity exists in the 

sense that the configurational entropy of the QCSW model reaches a limiting value, but 

the limiting entropy property of the QCSW model is a direct consequence of 

configurational energy saturation. For short-range attractive interactions, excluded 

volume limits the number of other spheres within the attractive domain of a given sphere.  

At high densities, this limiting number is quickly approached. In real molecular systems 

with short-range interactions, whether monomeric or polymeric, the same limited 

attractive interactions between atoms or group of atoms are expected to prevail.   
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7.8 CONCLUSION 

The QCSW model endorses the intuitive concept that at high densities, the short-

ranged attractive contribution to the configurational energy begins to saturate before zero 

temperature is reached.  As a consequence of this saturation, the balance between 

repulsive and attractive forces defines a unique liquid density, which effectively becomes 

temperature independent.  This fixed density in turn establishes the value of the 

configurational entropy and all other density dependent thermodynamic properties.  

These low temperature, force-stabilized states are identified as glass states.   

This physical insight offered by the QCSW model appears to be widely applicable 

to liquids with short-range attractive forces. Extensions to longer chains and direct 

application of the model are discussed in Chapter 8. 
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Chapter 8:  Extension and Application of QCSW Model to Polymers 

8.1 INTRODUCTION 

Chapter 7 presented the QCSW model in terms of an unchained SW fluid, but 

glass formation occurs in a wide variety of molecular and polymeric liquids. The QCSW 

phenomenon of configurational energy at high densities may be extended to molecules of 

all sizes in general. This new mechanism of energy saturation does not vitiate the 

prevailing dogma that the number of ways that molecules can randomly pack into a 

disordered array reaches a limiting value with decreasing temperature which defines the 

ideal glass[142,160–163].  A HS fluid without attractive interactions exhibits a putative 

glass transition[151] near the “random loose packing” limit of about 0.55[164]. This 

“packing mechanism” of glass formation is still expected to control for liquids with high 

glass transition temperatures 𝑇𝑔 for which the QCSW model does not predict the polymer 

has yet reached energy saturation, but when parameters are fit to polymer melts, many do 

appear to reach an energy saturation limit at the measured value of 𝑇𝑔.  

8.2 QCSW EXTENSION TO CHAINS 

Figure 8.1 shows a two-dimensional schematic of a segment of a QCSW chain. 

The gray annuli are the attractive domains of the two black spheres with 𝜆 set to 3/2. 

Each attractive shell has a volume 𝑉𝑆 = 8(𝜆
3 − 1)(𝜋/6)𝜎3 = 19𝑣0 in which 

𝑣0 = (𝜋/6)𝜎
3 for (𝜆 = 3/2). The white annuli around the black spheres are the excluded 

volume regions where no other sphere center may enter.  The red sphere centers lie 

within the attractive domains of the black spheres, and one red sphere lies in both 

domains.  These red spheres might belong to other chains or to the same chain. The two 

blue spheres directly connected to the black spheres do not contribute to the attractive 

interaction.  Because neighboring spheres along a chain do not contribute to the attractive 
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domain, but do reduce the available space around a central sphere, the  𝑛max of Chapter 7 

must be reduced by two, and the maximum number of spheres that can be accommodated 

in an attractive domain of a chained sphere is here set at 𝑛max = 10.  𝑛max now functions 

as an effective coordination number per monomer. The nearest-neighbor connected 

spheres still contribute to the local packing density; therefore 휂max retains the value  

휂max = 12/19 = 0.63, which corresponds to the random close-packing value for hard 

spheres[148,164]. 

 

 

 

Figure 8.1: Two-dimensional schematic of a tangent sphere chain  

A QCSW chains is modeled a tangent sphere chain of 𝑟 HS monomers 

attractively interacting with other monomers through SW potentials. The maximum 
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possible interaction energy/chain is −𝑟𝑛max휀. This may involve both intermolecular 

interactions from spheres on different chains and intramolecular monomer-monomer 

interactions from non-neighbor spheres on the same chain.  The probability P𝑛 that 𝑛 

spheres are within the attraction domain of a single, given monomer is given by the 

binomial distribution of equation (7.4). The assumed average attraction felt by a 

monomer is −〈𝑛〉휀,  where 〈𝑛〉 is the average number of non-bonded spheres within its 

attractive domain given by equation (7.5). Assuming statistical independence of each 

sphere in the chain, the average energy of the 𝑟-mer chain is −𝑟〈𝑛〉휀. 

The volume fraction of space occupied by the spheres in the attraction shell of a 

given sphere 휂𝑆 (which includes the two bonding neighbors) is given by: 

 

휂𝑆 =
(〈𝑛〉 + 2)𝑣0

𝑉𝑆
= 휂max

휃𝑒𝛽𝜀

1 + 휃(𝑒𝛽𝜀 − 1)
(8.1) 

 

where again 휃 = 휂/휂max. All approximations stated in Chapter 7 for solving for the 

quasi-chemical parameter 𝑧 and the local occupied volume fraction 휂𝑆 are retained here. 

The insertion factor for a QCSW chain is given by: 

 

ln B = ln P𝑖𝑛𝑠 − 𝑟 ln〈exp[−𝛽휀𝑛]〉 (8.2) 

 

P𝑖𝑛𝑠 is approximated with the SPT single sphere insertion probability[10], and the means 

of extending the insertion probability to chains given by equation (2.5), and 

〈exp[−𝛽휀𝑛]〉 is given by (7.16).  Through isothermal integration of the Gibbs-Duhem 

equation, the QCSW chain equation of state is given as: 
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𝑍

𝑟
=
𝑃𝑣0
휂𝑘𝑇

=
1

𝑟
+ [
1 + 휂 + 휂2

(1 − 휂)3
− 1] − 𝑛max [1 −

ln[1 + 휃(𝑒𝛽𝜀 − 1)]

휃(𝑒𝛽𝜀 − 1)
] (8.3) 

The SPT equation is recovered as attractive shell approaches ∞ while 𝑛max휀 is 

held constant: 

 

lim
𝑛max→∞
𝜀→0
𝑛max𝜀=const.

𝑃𝑣0
휂𝑘𝑇

=
1

𝑟
− 1 +

1 + 휂 + 휂2

(1 − 휂)3
− 휂

𝑛max휀

2𝑘𝑇휂max
(8.4)

 

 

in which the SPT 𝑇∗ is given in relation to the QCSW 휀/𝑘 by equation (7.30). The 

potential energy contribution to the EOS in the VDW limit diverges as 1/𝑇 while in the 

QCSW chain equation it reaches an asymptotic limit. 

The occupied volume fraction for the QCSW chain EOS in equation (8.3) and the 

VDW limit of (8.4) are plotted in Figure 8.2 for  𝑛max = 10, 𝜆 = 3/2j, and 𝑟 → ∞ along 

the 𝑍 ≃ 0 isobar.  The intercepts for the QCSW linear density/temperature extrapolation 

are 휂 = 0.515 at zero temperature and 𝑘𝑇/휀 = 2.124 at zero density.  

 

 

Figure 8.2: Comparison of density predictions of the QC and mean field (VDW type) 

equations of state.  
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In Figure 8.2, as 𝑇 → 0, the QCSW predicts 휂 → 0.465, while the mean-field 

(VDW) model predicts 휂 → 1 as 𝑇 → 0 (a physically unrealistic limit for the occupied 

volume fraction). The QC approximation also yields a linear density/temperature 

relationship over a large temperature range in agreement with the observations in 

Chapters 5 and 6. 

The saturated liquid approaches energy saturation along the plateau region of the 

density/temperature curve defined by 𝛽휀 → ∞ where the equation of state in the NLR for 

the infinitely long chain is given by: 

 

1 + 휂𝑔 + 휂𝑔
2

(1 − 휂𝑔)
3 − (1 + 𝑛max) = 0 (8.5) 

 

(8.5) defines the ideal glass density 휂𝑔.  휂𝑔 is a function of 𝑛max only, and for 𝑛max = 10, 

휂𝑔 = 0.465.  

Equations (7.33–36) may be used to calculate the excess entropy per monomer of 

the QCSW chain relative to an ideal gas at the same density and temperature. In the low 

temperature limit, the excess entropy per monomer is given by: 

 

lim
𝛽𝜀→∞

𝑆𝐸/𝑘 = ln P1 + 𝑛max ln 휃

= −17.4 at 휂 = 0.465
(8.6) 

 

where P1 is the insertion probability of the single unchained HS. The excess entropy per 

monomer as a function of temperature is plotted in Figure 8.3.  
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Figure 8.3: Plot of excess entropy per monomer against reduced temperature 

This excess entropy asymptotes at low temperatures to a fixed value, 

𝑆𝐸/𝑘 = −17.4. The QC model avoids the “Kauzmann entropy catastrophe”[161]. This 
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zero (or a constant) via a second order phase transition[142], the packing saturation 

method mentioned in 8.1. Like the QCSW the configurational entropy of this packing 

mechanism method reaches a limiting value, but the cause and effect relationship is 

different.   

Increasing density through any constraint causes 〈𝑛〉/𝑛max to approach unity. 

Chapter 7 did not discuss the effects of pressure on potential energy saturation and glass 

formation. The application of pressure increases the probability of attractive interactions, 
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energy saturation at higher temperatures. These predictions are in qualitative accord with 

experimental observations. 

8.3 DENSITY/TEMPERATURE LINEARITY AND QCSW PARAMETERS 

Though the equation of state clearly does not functionally obey a linear 

density/temperature relationship, Figure 8.2 shows that the QCSW chain density is linear 

over a substantial temperature range. The equation of the linear region of Figure 8.2 for 

QCSW with 𝑛max = 10, 𝑟 → ∞ along 𝑍 ≃ 0 may be written as: 

 
휂

0.515
+

𝑘𝑇

2.124휀
= 1 (8.7) 

 

 휂 is proportional to the mass density by 휂 = 𝜌𝑟𝑣0/𝑀 in which 𝑀 is the molecular 

weight. From the regressed linear density/temperature intercepts (𝜌𝑃
∗ , 𝑇𝑃

∗), the parameters 

𝑟𝑣0/𝑀 and 휀/𝑘 may be calculated. Values of 휀/𝑘 and the corresponding 𝜌𝑃
∗  for some 

polymers are given in Table 8.1. These values were fit with empirical expressions of low 

pressure mass intensive volume given by Rodgers[49]. Rodgers carefully ensured that the 

temperature ranges applied to polymer melts only; therefore, parameters in Table 8.1 are 

not biased by experimental 𝑇𝑔 values. Figure 8.4 plots some of the density/temperature 

data against the QCSW 𝑍, 𝑃 ≃ 0 isobar. Most glass temperatures in Table 8.1 were 

retrieved from the Polymer Properties Database: 

 http://polymerdatabase.com/polymer%20physics/Polymer%20Tg.html 

 

 

 

 

http://polymerdatabase.com/polymer%20physics/Polymer%20Tg.html
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Figure 8.4: Polymer density data at low pressure fit to the QCSW model 
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Polymer Poly- 

𝑇𝑔 

(K) 
휀/𝑘  
(K) 

𝜌𝑃
∗  

(g/cm3) 

𝜌𝑔 

(g/cm3) 

〈𝑛〉𝑔

𝑛max
 

PPO p-phenylene oxide 487 902.1 1.367 1.02 0.908 

TMPC tetramethyl bisphenol-A PC 467 942.8 1.358 1.04 0.926 

PEEK ether ether ketone 421 1025 1.555 1.25 0.956 

PC carbonate 418 1011 1.442 1.16 0.955 

PAr arylate 385 1114 1.442 1.21 0.975 

PCHMA cyclohexyl methacrylate 382 980 1.316 1.07 0.962 

PMMA methyl methacrylate 378 1025 1.403 1.16 0.969 

PH phenoxy 363 996 1.381 1.14 0.970 

PET ethylene terephthalate 343 987.7 1.596 1.33 0.974 

PEMA ethyl methacrylate 336 842.2 1.362 1.1 0.959 

PVAc vinyl acetate 305 819.3 1.42 1.17 0.968 

PnBMA n-butyl methacrylate 293 863 1.262 1.06 0.976 

PMA methyl acrylate 283 886.6 1.396 1.18 0.981 

PEA ethyl acrylate 250 846.9 1.343 1.15 0.986 

PVME vinyl methyl ether 245 890.6 1.219 1.05 0.989 

PEO ethylene oxide 215 881.8 1.328 1.16 0.993 

PCL caprolactone 207 932.2 1.279 1.13 0.996 

PTHF tetrahydrofuran 187 893 1.161 1.03 0.997 

PoMS ortho methylstyrene 409 1094 1.203 0.989 0.967 

PS styrene 373 1106 1.206 1.022 0.977 

a-PP propylene(atactic) 253 802.1 1.045 0.888 0.982 

i-PB 1-butene (isotactic) 244 934.3 1.007 0.877 0.991 

PIB isobutylene 203 972.1 1.074 0.952 0.997 

LPE ethylene (linear) 193 831.7 1.033 0.909 0.995 

PBD cis-1,4 butadiene 170 831 1.081 0.959 0.997 

Table 8.1: Fit QCSW 휀/𝑘 and glass properties for some polymers 

8.4 THERMODYNAMIC GLASS TRANSITION MECHANISM 

The QC model is based on hard sphere packing with maximum random close 

packing of 12/19 = 0.632.  Mixtures of differently sized spheres, and  ellipsoid objects 

can randomly pack to higher densities[165].  In a real polymer, the structure of the chain 

backbone and pendant side groups dictate chain stiffness and molecular packing.  The QC 
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model does not explicitly incorporate chain stiffness, nor does it consider packing objects 

of different sizes and shapes.   

In Figure 8.5, 휂𝑔 (the occupied volume fraction at 𝑇𝑔) are plotted against 

reciprocal temperature (휀/𝑘𝑇𝑔) for the polymers in Table 8.1.  Excluding PPO and 

TMPC, the average is 휂𝑔 = 0.44 ± 0.02.  Table 8.1 contains values of 〈𝑛〉/𝑛max at 𝑇𝑔 

which may be considered the fraction of energy saturation reached. At 휂𝑔 = 0.44 along 

𝑍 ≃ 0, 〈𝑛〉/𝑛max > 98%. 

 

 

Figure 8.5: Plot of the occupied volume fraction at 𝑇𝑔 versus reciprocal temperature for 

the polymers listed in Table 8.1   
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and TMPC as exceptions. For PPO, 휀/𝑘𝑇𝑔 = 1.85, and 〈𝑛〉/𝑛max = 0.908.  If energy 

saturation were controlling, 〈𝑛〉/𝑛max would be closer to unity. The QC model can 

accommodate inefficient packing by adjusting 휂max or 𝑛max. Reduction of 휂max signifies 

less efficient packing around a monomer. With a maximum number of monomers 

allowed within the attraction zone set to 𝑛max = 10, a fixed 𝜆 = 3/2, and two 

neighboring monomers contributing to the local density, 휂max = 12/19 = 0.632.  If 

inefficient packing limits the coordination number to 8, then the maximum packing 

fraction around any monomer becomes 10/19. For PPO, lowering 𝑛max to 8 increases the 

〈𝑛〉/𝑛max from 90% to 93%, insufficient to infer energy saturation. 

8.5 THERMODYNAMICS, KINETICS, AND FRAGILITY 

Experimentally observed glass transitions are kinetic phenomena. Computer 

simulations on various model systems support the idea of a direct connection between 

dynamics and excess entropy.  This connection has been invoked for simple 

fluids[166,167] as well as for polymers[168]. Fragile polymers are kinetically 

characterized as those whose temperature dependent dynamics near 𝑇𝑔 deviate 

substantially from Arrhenius behavior[169]. In general, polymers with rigid or sterically 

hindered backbones exhibit the greatest fragility and have high 𝑇𝑔s[170,171]; however, 

fragility does not always scale with 𝑇𝑔 and other structural factors such as 

inflexible/flexible pendant groups to explain deviations[172] have been invoked[173]. 

Among 14 polymers for which fragility indices have been measured, a decent 

correlation between fragility and saturation degree is observed and plotted in Figure 8.6.  

This trend is more apparent in Figure 8.7 where 𝑇𝑔 is plotted against 휂𝑔. All polymers 

included in Figure 8.7 have reached at least 95% saturation as determined by 〈𝑛〉/𝑛max. 

Like PPO and TMPC, PTFE glass  may have reached packing saturation. In Figure 8.6, 
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the solid blue circles are fragility indices from Qin & McKenna[171]. Black circles use 

WLF constants calculated at 𝑇𝑔 from Berry-Fox[174] using 𝑚 = 𝐶1𝑇𝑔/𝐶2. 

 

 

Figure 8.6: Plot of fragility index (m) against occupied volume fraction (휂𝑔) at 𝑇𝑔 that 

illustrates that fragility decreases with increasing saturation  

 

 

Figure 8.7: Plot illustrates that low 𝑇𝑔 polymers saturate more completely (complete 

saturation at 휂𝑔 = 0.465) 
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8.6 SUMMARY AND CONCLUSIONS 

Treating the monomer-monomer energetics of a tangent sphere chain model as a 

square well potential in a quasi-chemical approximation yields configurational energy 

saturation prior to reaching zero temperature. Energy saturation is 99.7% complete at 

𝑘𝑇/휀 = 0.2. Among the polymers in Tables 8.1, all but PPO and TMPC appear near 

energy saturation at their reported 𝑇𝑔s. Incomplete saturation of PPO and TMPC (90.8 

and 92.6%, respectively) may indicate inefficient molecular packing with a “packing 

saturation limit” interrupting energy saturation. Low 𝑇𝑔 polymers systematically saturate 

more completely than high 𝑇𝑔 polymers.  Average saturation reaches 98% for the 

tabulated polymers at an average occupied volume fraction of 휂 = 0.44 ± 0.02. 

Calculated occupied volume fractions at 𝑇𝑔, a measure of saturation degree, correlate 

with polymer fragility. Fragile polymers tend to be less saturated. In Figure 8.7, 

correlation of 𝑇𝑔 with saturation is demonstrated with a broad polymer set Excess entropy 

per monomer (𝑆𝐸/𝑘) relative to an ideal gas at the same temperature and density 

asymptotes at low temperatures to a value of -17.4 per monomer. This limiting entropy 

property is a direct consequence of energy saturation, but does not deny “packing 

saturation” as a glass formation mechanism. 

The QCSW model uses a more physically realistic potential energy than the SPT 

model introduced in Chapter 2, yet it is still easily implemented and analyzed. Only a few 

implications and applications of the model were discussed. The QCSW model, or even 

the concept of configurational energy saturation independent of the model, has the 

potential to describe properties of liquids in general. 
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Appendix A:  SPT Equation of State Parameters* 

In the SPT model, like the LF model, a pure fluid is completely determined by 

three parameters. For small molecule fluids, these parameters can be estimated from 

known saturation and vaporization properties at a corresponding temperature. Details of 

implementation are given in Appendix A of reference [19] for the LF model and the same 

procedure can be adopted for SPT model. 

Since Δ𝑆𝑣𝑎𝑝/𝑅 = Δ𝐻𝑣𝑎𝑝/𝑅𝑇, equation (2.23) may be rearranged for a liquid in 

equilibrium with its vapor to solve for 𝑟: 

 

𝑟 =
Δ𝐻𝑣𝑎𝑝/𝑅𝑇 − ln(휂𝑙𝑖𝑞/휂𝑣𝑎𝑝)

ln (
1 + 𝑦𝑙𝑖𝑞
1 + 𝑦𝑣𝑎𝑝

) + 3(𝑦𝑙𝑖𝑞 − 𝑦𝑣𝑎𝑝) +
3
2 (𝑦𝑙𝑖𝑞

2 − 𝑦𝑣𝑎𝑝2 )

(A1)
 

 

in which Experimental mass density at saturation 𝜌𝑙𝑖𝑞,𝑣𝑎𝑝 may be converted to the 

occupied volume fraction 휂𝑙𝑖𝑞,𝑣𝑎𝑝, by: 

휂𝑙𝑖𝑞,𝑣𝑎𝑝 ≡
𝑟𝑣∗

𝑉
=
𝑟𝑣∗

𝑀
𝜌𝑙𝑖𝑞,𝑣𝑎𝑝 ≡

𝜌𝑙𝑖𝑞,𝑣𝑎𝑝

𝜌∗
(A2) 

where 𝜌∗ for the SPT model is here defined as the ratio of the mass of a given molecule 

to the HS volume the molecule occupies. Since thermal contributions to Δ𝐸𝑣𝑎𝑝 cancel, 

equation (2.21) may be rearranged to give: 

𝑇∗ =
Δ𝐸𝑣𝑎𝑝

𝑟𝑅(휂𝑙𝑖𝑞 − 휂𝑣𝑎𝑝)
(A3) 

The SPT chain EOS for a pure liquid is given by: 

휂𝑙𝑖𝑞
2 + �̃�sat − 휂𝑙𝑖𝑞�̃� [

1

𝑟
+ 4𝑦𝑙𝑖𝑞 + 6𝑦𝑙𝑖𝑞

2 + 3𝑦𝑙𝑖𝑞
3 ] = 0 (A4) 

                                                 
* This material was partly published as Appendix A in: Sean P. O’Keefe, and Isaac C. Sanchez, “Scaled 

Particle Theory of solutions: Comparison with Lattice Fluid model” Fluid Phase Equilibria 433, 67 

(2017)[16]. Sean Patrick O’Keefe is the primary author. 
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With knowledge of Δ𝐻𝑣𝑎𝑝, Δ𝐸𝑣𝑎𝑝, 𝜌𝑙𝑖𝑞 , 𝜌𝑣𝑎𝑝 , and 𝑃sat for a given temperature, with 

identity (A2), equations (A1), (A3), and (A.4) form a system of three equations of three 

independent variables (𝑟, 𝑣∗, 𝑇∗). All other pure component parameters may be derived 

from these. 

Equation of state parameters for 80 fluids calculated in this manner are tabulated 

in Table A1.  With the exception of carbon dioxide, these parameters were chosen such 

that saturated pressure was near atmospheric. For CO2, pressure was increased to 6 bar to 

ensure liquid/vapor equilibrium. As this is a single point fit, differences in calculated 

properties from measured values at the temperature and pressure at which the fit was 

performed are identically zero. 

 

Fluid 𝑇∗(K) 𝑃∗ (MPa) 𝜌∗(g/cm3) 𝑣∗(cc/mol) 𝑟 

methane 2160 1110 1.01 16.18 0.979 

ethane 2623 1832 1.59 11.90 1.623 

propane 3477 1662 1.59 17.39 1.600 

n-butane 3862 1682 1.71 19.09 1.790 

n-pentane 4097 1739 1.81 19.59 2.035 

n-hexane 4291 1772 1.89 20.13 2.263 

n-heptane 4437 1815 1.97 20.33 2.505 

n-octane 4521 1884 2.04 19.95 2.800 

n-nonane 4653 1888 2.09 20.49 2.993 

n-decane 4747 1906 2.14 20.70 3.216 

n-undecane 4911 1773 2.05 23.03 3.315 

n-dodecane 4893 1950 2.22 20.86 3.671 

n-tridecane 5205 1802 2.22 24.01 3.455 

n-tetradecane 4926 2179 2.38 18.80 4.435 

n-pentadecane 5358 1768 2.25 25.19 3.747 

isobutane 3693 1593 1.70 19.27 1.776 

2-methylbutane 4090 1586 1.75 21.45 1.917 

neopentane 3836 1462 1.75 21.81 1.886 

Table A1: SPT equation of state parameters for small molecules  
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Fluid 𝑇∗(K) 𝑃∗ (MPa) 𝜌∗(g/cm3) 𝑣∗(cc/mol) 𝑟 

2-methylpentane 4237 1678 1.87 20.99 2.190 

2,2-dimethylbutane 4370 1532 1.90 23.72 1.910 

2,3-dimethylbutane 4363 1591 1.87 22.80 2.022 

ethylene 2819 1636 1.46 14.33 1.339 

propene 3444 1766 1.65 16.22 1.576 

1-butene 3840 1749 1.76 18.26 1.749 

trans-2-butene 3947 1806 1.76 18.17 1.757 

cis-2-butene 3947 1911 1.81 17.17 1.809 

1,3-butadiene 3969 1809 1.76 18.24 1.686 

isoprene 4285 1873 1.91 19.02 1.876 

propyne 3892 2361 1.86 13.71 1.567 

cyclopentane 4643 1929 1.96 20.01 1.787 

cyclohexane 4866 1929 2.07 20.98 1.938 

cycloheptane 5253 1920 2.13 22.75 2.029 

cyclooctane 5505 1923 2.19 23.81 2.157 

cyclohexene 5924 1528 1.89 32.23 1.349 

benzene 5012 2254 2.23 18.49 1.893 

toluene 5236 2143 2.25 20.32 2.016 

ethylbenzene 5323 2094 2.28 21.13 2.199 

p-xylene 5307 2107 2.27 20.94 2.236 

m-xylene 5284 2156 2.29 20.38 2.272 

o-xylene 5455 2148 2.30 21.11 2.189 

styrene 5614 2254 2.40 20.71 2.098 

chloromethane 4033 2675 2.63 12.53 1.534 

dichloromethane 4639 2917 3.53 13.22 1.822 

chloroform 4911 2384 3.89 17.12 1.791 

carbon tetrachloride 5142 1972 4.10 21.68 1.732 

1-chlorobutane 4729 2099 2.40 18.74 2.062 

1,1 dichloroethane 4623 2398 3.17 16.03 1.949 

1,2 dichloroethane 5098 2662 3.24 15.93 1.917 

1,1,1 trichloroethane 4852 2051 3.54 19.67 1.913 

1,1 dichloroethylene 4564 2175 3.27 17.45 1.702 

trans-1,2-dichloroethylene 4761 2371 3.31 16.69 1.756 

cis-1,2-dichloroethylene 4971 2491 3.33 16.59 1.752 

trichloroethylene 5193 2264 3.76 19.08 1.834 

Table A1 cont. 
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Fluid 𝑇∗(K) 𝑃∗ (MPa) 𝜌∗(g/cm3) 𝑣∗(cc/mol) 𝑟 

fluorobenzene 4986 2277 2.69 18.21 1.959 

chlorobenzene 5637 2287 2.80 20.50 1.961 

bromobenzene 5984 2307 3.72 21.56 1.959 

perfluorobutane 3020 1628 5.40 15.43 2.855 

perfluoroheptane 3537 1611 5.85 18.26 3.632 

perfluorooctane 3655 1684 6.21 18.05 3.906 

acetone 4800 2628 2.07 15.19 1.845 

2-butanone 4807 2457 2.14 16.27 2.068 

diethyl ether 4048 2005 2.07 16.79 2.133 

tetrahydrofuran 4929 2415 2.32 16.97 1.831 

1,4 -Dioxane 5054 2801 2.73 15.00 2.152 

ethyl formate 4297 2770 2.54 12.9 2.266 

methyl acetate 4373 2851 2.60 12.75 2.235 

ethyl acetate 4367 2604 2.55 13.94 2.478 

propyl acetate 4494 2431 2.52 15.37 2.638 

butyl acetate 4639 2291 2.47 16.83 2.790 

aniline 5910 3313 2.61 14.83 2.407 

2,6-dimethylpyridine 5214 2435 2.47 17.80 2.438 

phenol 5644 4164 3.12 11.27 2.675 

carbon dioxide 2657 3839 3.79 5.76 2.018 

carbon disulfide 5693 2401 2.54 19.71 1.278 

nitrogen 1329 937 2.06 11.8 1.154 

oxygen 1696 1281 2.76 11.01 1.052 

argon 1699 1157 3.35 12.21 0.976 

krypton 2407 1277 5.67 15.67 0.943 

xenon 3296 1407 6.96 19.47 0.969 

carbon monoxide 1362 1018 2.04 11.12 1.232 

Table A1 cont. 

For polymers of high molecular weight, 𝑟 → ∞ ,1/𝑟 → 0, and the equation of 

state reduces to a simple form: 

휂2 + �̃� − 휂�̃�[4𝑦 + 6𝑦2 + 3𝑦3] = 0 (A5) 
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and satisfies a corresponding states principle, a property that is well established for 

polymers[82]. The characteristic 𝑇∗, 𝑃∗, and 𝜌∗ for several polymeric fluids shown in 

Table A2 were obtained using a least squares fitting of equation (A5) to the empirical 

Modified Tait equation: 

 
𝑉

𝑉0(𝑇)
= 1 − 𝐶 ln (1 +

1

𝐶

𝑃

𝐵0(𝑇)
) (A6) 

with 𝐶 set to Cutler’s constant of 0.0894. Functional forms of 𝑉0(𝑇) and 𝐵0(𝑇) were 

taken from reference [82].  Details on the ranges of applicability and references to the 

data used to fit 𝐵0(𝑇) and 𝑉0(𝑇) for the polymer liquids is given in reference [49].  

 

For each polymer, temperature ranges over which SPT parameters were fit 

correspond to those given by Rodgers[49], who carefully selected conditions that avoid 

glass formation or crystallization. Pressures ranged from 0.1 to 1 MPa for the same 

reason.  Considering (A5) can analytically be solved for temperature, and liquid densities 

are more sensitive to changes in temperature than to changes in pressure, parameters were 

fit to minimize differences in measured and calculated temperature. Table A2 contains 

the average absolute percent error (AAPE) between the SPT calculated temperature for a 

given intensive volume, and a temperature which yields the same intensive volume by 

equation (A6) at that specified pressure. 
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Poly- 𝑇∗ (K) 𝑃∗ (MPa) 
𝜌∗ 

(g/cm3) 
𝑣∗ 

(cm3/mol) AAPE (%) 

dimethyl siloxane 10860 736 1.75 123 0.028 

styrene 22860 833 1.63 228 0.065 

o-methyl styrene 21140 959 1.63 183 0.034 

methyl methacrylate 20010 1232 1.90 135 0.088 

n-butyl methacrylate 14260 755 1.78 157 0.748 

cyclohexyl methacrylate 16720 1066 1.84 130 0.097 

ethyl acrylate 13780 977 1.90 117 0.324 

ethyl methacrylate 12950 1501 1.97 72 0.021 

methyl acrylate 15080 1088 1.95 115 0.372 

vinyl acetate 15210 1211 1.97 104 0.085 

ethylene (linear) 11780 1211 1.89 81 0.023 

ethylene (branched) 12950 1070 1.81 101 0.042 

butadiene 19070 892 1.41 178 0.062 

1-butene 14200 826 1.46 143 0.086 

arylate 17910 1118 2.05 133 0.266 

caprolactone 16690 964 1.77 144 0.026 

carbonate 14660 1133 2.12 108 0.506 

bisphenol chloral PC 15420 1346 2.46 95 0.333 

hexafluoro bisphenol-A PC 11370 1367 2.87 69 0.078 

tetramethyl bisphenol-A PC 12920 1348 2.04 80 0.053 

ethylene terephthalate 13010 2031 2.43 53 0.012 

isobutylene 22200 753 1.41 245 0.054 

propylene (isotactic) 13220 787 1.47 140 0.015 

propylene (atactic) 12690 780 1.50 135 0.228 

Phenoxy 16150 933 1.96 144 1.066 

sulfone 16040 1699 2.18 78 0.293 

ethylene oxide 15130 1200 1.86 105 0.047 

ether ether ketone 12900 1957 2.41 55 0.005 

tetrahydrofuran 15750 882 1.61 148 0.128 

4-methyl-1-pentene 12750 601 1.49 176 0.357 

amide 6 22750 896 2.01 211 0.021 

epichlorohydrin 20260 929 2.13 181 0.092 

vinyl chloride 20220 853 2.21 197 0.220 

phenylene oxide 11760 1327 2.09 74 0.162 

Table A2: SPT Equation of state parameters for polymeric liquids 



 161 

Only an interaction parameter 𝑃12
∗  (or equivalently, 𝛥𝑃12

∗ = 𝑃1
∗ + 𝑃2

∗ − 2𝑃12
∗ ) is 

required to characterize a binary mixture. All other parameters either are pure component 

parameters as given in Tables A1 and A2 or can be directly derived from pure component 

parameters. Often with nonpolar mixtures, as with the calculations in Section 3.3, a 

geometric mean is assumed for 𝑃12
∗ : 

𝑃12
∗ = √𝑃1

∗𝑃2
∗ (A7) 

 

in which case the mixture properties are completely determined by pure component 

equation of state parameters and: 

Δ𝑃12
∗ = [√𝑃1

∗ −√𝑃2
∗]
2

(A8) 

 

In practice, calculations using the geometric mean often yield unsatisfactory 

results and adjustment of the interaction parameter is required. It is convenient to define a 

dimensionless parameter 휁12 which indicates the extent to which 𝑃12
∗  deviates from the 

geometric mean: 

휁12 = 𝑃12
∗ /√𝑃1

∗𝑃2
∗ (A9) 

 

휁12 may be obtained from any mixture thermodynamic property such as a heat of mixing 

or a mixture’s upper critical solution temperature. Table A3 lists values of 휁12 used in 

calculations for some of the binary mixtures discussed in Chapter 3 and the type of 

experimental data used to obtain 휁12. The table also gives recalculated 휁12 for the LF 

model for these mixtures.  In reference [18], 휁12 was originally calculated as 

휁12 = 휀12
∗ /√휀1

∗휀2
∗, but in order to make equivalent comparisons to the SPT model,   휁12 

values for the LF model in Table A3  were recalculated using equation (A9). 
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Mixture SPT LF Data type 

methane/n-butane 0.93390 0.97720 Boiling point 

benzene/cyclohexane 0.96986 0.96340 Heat of mixing 

benzene/n-heptane 0.97120 0.97220 Heat of mixing 

cyclohexane/n-heptane 0.99080 0.99327 Heat of mixing 

aniline/n-butane 0.99396 0.98641 UCST 

aniline/n-pentane 0.98837 0.99147 UCST 

aniline/n-hexane 0.98498 0.99860 UCST 

aniline/n-heptane 0.98181 0.99574 UCST 

aniline/cyclohexane 0.97421 0.97013 UCST 

acetone/carbon disulfide 0.93740 0.93413 UCST 

acetone/n-hexane 0.96183 0.97799 UCST 

acetone/cyclohexane 0.94453 0.94892 UCST 

n-perfluorooctane/ 

n-octane 

0.92486 0.92975 liquid/liquid solubility  

2,6-Dimethylpyridine/ 

phenol 

1.11535 1.14239 azeotrope temperature  

Table A3: Interaction pressure scale parameter parameter 휁12 for various binary 

mixtures 
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Appendix B:  Line Parameters for Liquids at Low Pressure 

Table B1 contains low pressure regressed intercepts (𝑇∗, 𝜌∗) and coefficients of 

determination (R2) fit to the line: 
𝜌

𝜌𝑃
∗ +

𝑇

𝑇𝑃
∗ = 1 (B1) 

for 140+ small molecule liquids and polymer melts. Temperature ranges of fits are 

described in Chapter 6. Data for small (non-polymer) liquids were obtained from 

models[95,97,98] through the NIST/TRC Web Thermo Tables (WTT) http://wtt-

pro.nist.gov/wtt-pro/. Data for polymer melts were obtained directly from the references 

cited in the table. An asterisk indicates saturated liquid data were used and not isobaric 

density data at 1bar. 

 

Liquid 𝜌∗(kg/m3) 𝑇∗(K) R2 

Model/ 

Data source 

argon 1930 315.0 1.0000 [95] 

krypton 3327 437.5 1.0000 [95] 

xenon 4040 609 0.999 [95] 

oxygen 1558 338.5 0.9996 [95] 

nitrogen 1140 265 1.000 [95] 

carbon monoxide 1135 271 1.000 [95] 

hydrogen sulfide 1310 768 1.000 [95] 

carbon disulfide* 1690 1160 1.000 [97] 

methane 578 416 1.000 [95] 

ethane 755.4 663.5 0.9997 [95] 

propane 822.4 793.6 0.9998 [95] 

n-butane 866 901 1.000 [95] 

n-pentane 893 981 1.000 [95] 

n-hexane 922 1030 1.000 [95] 

n-heptane 931 1100 1.000 [95] 

n-octane 942 1150 1.000 [95] 

n-nonane 955 1180 1.000 [95] 

Table B1: Regressed line parameters for liquids at low pressure 

http://wtt-pro.nist.gov/wtt-pro/
http://wtt-pro.nist.gov/wtt-pro/
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Liquid 𝜌∗(kg/m3) 𝑇∗(K) R2 

Model/ 
Data source 

n-decane 965 1210 1.000 [95] 
n-undecane* 971 1240 0.999 [97] 
n-dodecane 978 1260 0.999 [95] 
n-tridecane 981 1290 0.999 [98] 
n-tetradecane* 970 1380 0.999 [97] 
n-pentadecane* 992 1310 0.999 [97] 
n-hexadecane* 995 1330 0.999 [97] 
n-heptadecane 999 1350 0.998 [98] 
isobutane 852.9 870.2 0.9996 [95] 
isopentane 892.4 964.3 0.9999 [95] 
neopentane 891 870 1.000 [95] 
2,3-dimethylbutane* 903 1090 0.999 [97] 
2-methylpentane 912 1030 1.000 [95] 
3-methylpentane* 934 1010 1.000 [97] 
2,2-dimethylpentane* 924 1080 1.000 [97] 
2,3-dimethylpentane* 942 1110 1.000 [97] 
isooctane 935.5 1123 0.9998 [98] 
2-2-dimethylhexane* 946 1100 1.000 [97] 
2,5-dimethylhexane* 935 1130 0.999 [97] 
ethene 793.7 597.2 0.9997 [95] 
propene 868 763 1.000 [95] 
1-butene 911 855 1.000 [95] 
trans-2-butene 911 882 1.000 [95] 
cis-2-butene 930 892 1.000 [95] 
1,3-butadiene* 944 867 1.000 [97] 
isoprene* 959 999 0.994 [97] 
cyclopentane 1020 1100 1.000 [95] 
cyclohexane 1060 1100 1.000 [95] 
methylcyclohexane 1020 1180 1.000 [95] 
cis-1,2-dimethylcyclohexane* 1040 1250 0.998 [97] 
trans-1,2-dimethylcyclohexane* 1010 1270 0.998 [97] 
cycloheptane* 1070 1210 1.000 [97] 
cyclooctane 1080 1300 1.000 [98] 
cyclohexene* 1080 1170 0.999 [97] 
trans-decalin* 1090 1440 1.000 [97] 
cis-decalin* 1120 1460 1.000 [97] 

Table B1 cont. 
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Liquid 𝜌∗(kg/m3) 𝑇∗(K) R2 

Model/ 
Data source 

tetralin* 1210 1480 1.000 [97] 
benzene 1200 1100 1.000 [95] 
toluene 1140 1210 1.000 [95] 
ethylbenzene* 1120 1290 1.000 [97] 
o-xylene 1140 1290 1.000 [98] 
m-xylene 1120 1290 1.000 [98] 
p-xylene 1130 1240 1.000 [98] 
fluorobenzene* 1380 1140 1.000 [97] 
chlorobenzene* 1430 1290 1.000 [97] 
bromobenzene 1900 1370 1.000 [98] 
phenol* 1350 1460 1.000 [97] 
phenanthrene* 1340 1800 0.9901 [97] 
chloromethane* 1398 909.0 0.9981 [97] 
dichloromethane* 1850 1033 1.0000 [97] 
chloroform* 2070 1045 0.9989 [97] 
carbon tetrachloride* 2165 1110 1.0000 [97] 
chloroethane* 1280 980 0.999 [97] 
1,1 dichloroethane* 1620 1060 0.999 [97] 
1,2 dichloroethane* 1690 1140 1.000 [97] 
1,1,1 trichloroethane 1820 1100 0.998 [97] 
1-chlorobutane* 1190 1150 0.998 [97] 
1-chlorohexane 1160 1200 1.000 [98] 
1-chlorohexadecane* 1080 1500 0.999 [97] 
1,1 dichloroethylene* 1710 1010 0.997 [97] 
trans-1,2-dichloroethene* 1750 1040 0.998 [97] 
cis-1,2-dichloroethene* 1740 1120 1.000 [97] 
trichloroethylene* 1920 1220 0.997 [97] 
fluoromethane 1268 639.4 0.9998 [95] 
difluoromethane 1775 703.0 0.9997 [95] 
trifluoromethane 2118 605.3 0.9996 [95] 
carbon tetrafluoride 2341 461.3 0.9999 [95] 
perfluoroethane 2430 573 1.000 [95] 
perfluoropropane 2450 692 1.000 [95] 
perfluorobutane 2340 857 0.999 [95] 
perfluoropentane 2520 836 0.995 [95] 
perflurorhexane* 2500 895 0.998 [97] 

Table B1 cont. 
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Liquid 𝜌∗(kg/m3) 𝑇∗(K) R2 

Model/ 
Data source 

perflurorhexane* 2500 895 0.998 [97] 
perfluoroheptane* 2490 953 0.998 [97] 
perfluorooctane* 2550 957 0.999 [97] 
perfluorononane* 2490 1040 0.997 [97] 
perfluorodecane* 2520 1090 0.997 [97] 
acetone 1106 1025 0.9999 [95] 
methyl ethyl ketone* 1102 1083 0.9993 [97] 
vinyl methyl ketone* 1140 1130 0.998 [97] 
diethyl ketone* 1110 1110 1.000 [97] 
ethyl vinyl ketone* 1110 1210 0.999 [97] 
ethyl propyl ketone* 1080 1190 0.998 [97] 
dimethyl ether* 1050 838 1.000 [95] 
diethyl ether* 1030 963 0.999 [97] 
divinyl ether* 1100 988 0.999 [97] 
tetrahydrofuran* 1180 1200 0.996 [97] 
1,4-dioxane* 1370 1190 1.000 [97] 
methyl formate* 1390 974 1.000 [97] 
acetic acid* 1380 1220 1.000 [97] 
methyl acetate* 1290 1070 0.998 [97] 
ethyl acetate* 1250 1040 1.000 [97] 
propyl acetate* 1210 1100 1.000 [97] 
n-butyl acetate* 1180 1150 0.994 [97] 
propyl propionate* 1190 1120 1.000 [97] 
methanol 1072 1119 0.9999 [95] 
ethanol 1040 1210 0.999 [95] 
1-propanol 1040 1300 0.999 [98] 
isopropanol 1020 1260 0.995 [98] 
1-butanol 1040 1330 0.999 [98] 
tert-butanol* 1110 1010 1.000 [97] 
1-hexanol* 1040 1350 0.998 [97] 
ammonia 959.4 831.2 0.9996 [95] 
triethylamine* 984 1120 0.999 [97] 
nitromethane* 1540 1130 1.000 [97] 
aniline* 1290 1430 1.000 [97] 
β-picoline* 1230 1320 1.000 [97] 
γ-picoline* 1220 1330 1.000 [97] 

Table B1 cont. 
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Liquid 𝜌∗(kg/m3) 𝑇∗(K) R2 

Model/ 
Data source 

2,6-dimethylpyridine* 1200 1280 0.998 [97] 
n-palmitic acid* 1110 1480 0.997 [97] 
n-stearic acid* 1110 1480 0.997 [97] 

Polymer melts 
polystyrene  1213 2377 1.000 [99] 
poly( o-methylstyrene) 1201 2327 1.000 [99] 
poly(vinyl acetate)  1438.7 1729.2 0.99997 [100] 
poly(methyl methacrylate)  1400 2185 0.9998 [96] 
poly(cyclohexyl methacrylate)  1319 2051 0.9994 [96] 
poly(n-butyl methacrylate)  1265 1807 0.9999 [96] 
branched polyethylene 1020 1798 0.9970 [96] 
linear polyethylene  1038 1726 0.9997 [96] 
high MW linear polyethylene  1051 1618 0.9996 [96] 
poly(isobutylene) 1067.0 2121.2 0.99997 [101] 
poly(dimethylsiloxane)  1218.3 1456.3 0.99981 [102] 
poly(4-methyl- 1-pentene)  982.12 1923.7 0.99613 [103] 
poly(tetrafluoroethylene)  2907.1 1311.9 0.99840 [104] 
poly(epichlorohydrin)  1592 2090 0.9999 [49] 
poly (c-caprolactone)  1280 1962 0.9992 [49] 
poly(vinyl chloride)  1633 2173 0.9975 [49] 
atactic-polypropylene 1050 1669 0.9956 [49] 

Table B1 cont. 
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Appendix C:  SPT Equation of State Parameters* 

In the high density limit (or the high temperature limit) the QCSW model behaves 

structurally like a HS fluid.  In this limit, 〈𝑛〉 can be approximated as the number of HS 

centers between 𝜎 and 𝜆𝜎 of a given central sphere.  Using the pair distribution function 

𝑔(𝑟/𝜎), 〈𝑛〉 may be calculated for a HS fluid through: 

 

〈𝑛〉 = 4𝜋𝜌𝜎3∫ (𝑟/𝜎)2𝑔(𝑟/𝜎; 휂)𝑑(𝑟/𝜎)
𝜆

1

(C1) 

 

Tabulated values of  𝑔(𝑟; 𝜌) are available in the literature[152] as a function of 𝑟/𝜎 at 

selected values of 𝜌𝜎3 = 6휂/𝜋, and 𝑔(1; 휂) may be approximated through the  Percus-

Yevick radial distribution function at contact for the HS fluid[48]. 

𝑔(1, 휂) =
1 +

1
2 휂

(1 − 휂)2
(C2) 

 The integral (C2) was evaluated numerically with a simple trapezoid integration 

for 𝜆 = 3/2 at four different 휂 in Table C1. At 휂 = 0.484, the largest 휂 given, the 

calculated coordination number of 12.6 is in good agreement with the 

approximate 𝑛max = 12.  

 

휂 0.340 0.393 0.445 0.484 

〈𝑛〉 9.0 10.5 11.8 12.6 

Table C1: Average number of hard spheres with centers between a distance 𝜎 and 

3𝜆𝜎/2 of a central sphere in a HS fluid 

                                                 
* This material was published as Appendix in: Isaac C. Sanchez, and Sean O’Keefe, “Theoretical Rationale 

for a Thermodynamic Glass State” J. Phys. Chem. B 120 (35), 9443 (2016)[125]. Sean Patrick O’Keefe 

performed the calculations that appear in this appendix both in the article and in the present dissertation. 
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