
Copyright

by

Zachary James Smith

2016

A Markov Chain Model for Predicting Major League

Baseball

APPROVED BY

SUPERVISING COMMITTEE:

J. Eric Bickel, Supervisor

John Hasenbein

The Report Committee for Zachary James Smith
Certifies that this is the approved version of the

following report:

A Markov Chain Model for Predicting Major League

Baseball

by

Zachary James Smith, B.S.

REPORT

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2016

A Markov Chain Model for Predicting Major League

Baseball

Zachary James Smith, M.S.E.

The University of Texas at Austin, 2016

Supervisor: J. Eric Bickel

In this report, we present a Markov chain model for predicting the

scores and the winning team of Major League Baseball (MLB) games. We

discuss how a baseball game can be viewed as an infinite horizon discrete-time

Markov chain with finite state space. We demonstrate how standard Markov

chain theory can be used to obtain analytical solutions for the expected runs

and win probability in a given MLB matchup. We improve upon previous

models by incorporating pitching and more complex baserunning, and then

demonstrate the effect of these changes by comparing our model to historical

data. We also discuss computational methods for solving the model. Finally,

we test our model on games from the 2015 MLB season.

iv

Table of Contents

Abstract iv

List of Tables vi

List of Figures vii

1 Introduction . 1

2 Literature review . 2

3 The expected runs model . 4

3.1 Computing expected runs 5

3.2 Event probabilities . 5

3.3 State transitions and baserunning 14

3.4 Solving for expected runs 18

4 The win probability model . 20

4.1 Solving for win probability 21

4.2 Computational experience 26

5 Model validation . 28

5.1 Structural evaluation 28

5.2 2015 season prediction 35

6 Conclusion . 47

Appendices 49

Appendix A. Baserunning 50

1 Movement on hits and walks 51

1.1 Home runs, triples and walks 51

1.2 Doubles . 51

1.3 Singles . 52

2 Movement on outs . 54

2.1 Scoring from third base on an out 54

v

Appendix B. Matrices 56

1 Matrix construction . 57

1.1 Expected runs . 57

1.2 Win probability . 58

Bibliography 61

Vita 64

vi

List of Tables

1 Bryce Harper 2016 Steamer Projections. 7

2 Bryce Harper 2016 projections, park adjusted 8

3 Bryce Harper event probabilities, park neutral 9

4 Harper 2016 split adjustment factors 10

5 Harper vs. Syndergaard, Log5 probabilities 12

6 D’Esopo and Lefkowitz baserunning model 14

7 Harper vs. Syndergaard, plate appearance probabilities 16

8 Harper vs. Syndergaard, plate appearance transitions 17

9 2014 half-inning runs scored vs. model predictions 42

10 Expected Runs: LD baserunning vs. full baserunning 43

11 Average absolute error (in win %) for out/base combinations . 44

12 Predicted vs. actual win percentages for 2015 season 44

13 Predicted vs. actual win percentages (2015): small buckets . . 44

14 W/L Classification (2015) . 45

15 Expected runs vs. true average scoring (2015) 45

16 Predicted vs. actual win percentages (2015): using projections 45

17 W/L Classification (2015) . 45

18 Expected runs vs. true average scoring (2015) 46

1 Scoring from third on out, 0 outs in inning 55

vii

List of Figures

1 Historical Win Probabilities vs. Model Predicted Win Proba-
bilities . 31

2 Residuals (p̂i − pi) with home team batting 32

3 Residuals (p̂i − pi) for home team batting with bases loaded . 33

4 Residuals (p̂i − pi) for home team batting, bases loaded, one out 34

viii

1 Introduction

Baseball, or “America’s pastime”, is a sport consisting of two teams

made up of pitchers and batters. Each team has (at any one time) 8-9 po-

sition players (depending on whether a designated hitter is used), who are

responsible for hitting and fielding, and one pitcher, responsible for prevent-

ing the opposing team’s hitters from scoring runs. There are a number of

characteristics which make baseball particularly amenable to mathematical

modeling. First, at any given time, a baseball game can be in exactly one of a

finite collection of game states. In addition, the future evolution of the system

depends only on the current state and the discrete events (such as a hit) which

move the game to a new state. Furthermore, statistics and data are readily

available for estimating the player skills which determine in-game events.

The attributes described above suggest that a baseball game can be

modeled as a Markov chain. In this article, we describe a Markov chain model

for estimating runs and win probabilities for Major League Baseball (MLB)

games. In what follows, we briefly survey relevant literature, describe the

technical details of our model, discuss methods for solving the model, compare

our model’s predictions to previous models, and test our model’s performance

on games from the 2015 season.

1

2 Literature review

We briefly review some previous work which uses Markov chain mod-

els in the context of baseball. The idea for modeling a baseball game using

Markov chains dates back to at least Howard [7], who, in 1960, presented a

simple, one-inning, Markov decision process (MDP) which found the optimal

time to bunt with the goal of maximizing expected runs scored. In his famed

sabermetric tome, The Book, Tom Tango [16] presents a Markov chain ap-

proach for computing expected runs which does not account for differences in

player skills. Bukiet et al. [1] build a Markov model for predicting the distri-

bution of runs over a full game for a unique lineup of MLB player, and use it

to analyze optimization of batting orders.

Related Markov models seek to estimate win probabilities for teams in

a baseball game. In his dissertation, Null [11] uses a Markov chain framework

to predict win probabilities, and discusses how the model could be extended

to an MDP which could be used to make in-game decisions. Hirotsu and

Wright [5] present an MDP model to evaluate the optimal time to substitute

a pinch hitter. Hirotsu and Bickel [4], in an unpublished manuscript, present

an MDP model to estimate the optimal time to bunt in order to maximize

win probability or expected runs. They also note that a decision maker should

focus on the former objective, not the latter, to correctly maximize the chances

of winning.

There are also a large number of models which instead use simulation to

compute expected runs, win probabilities, and other statistics. A few examples

2

are given in [8] and [14]. This approach is used in a number of commercial

software packages.

Markov models and simulation models each have their own strengths.

A simulation model provides sampling distributions for various quantities of

interest (such as runs scored). In addition, a simulation model can more easily

track in-game changes – who specifically is on which base, substitutions, etc.

Markov chain models facilitate computation of expected values, and, generally,

can produce these results much faster than running simulations. It also allows

for simultaneous prediction for every possible state in a given game. This

feature was our primary reason for choosing the Markov chain approach – we

wanted to be able to track win probabilities during a game in real time. Finally,

as in [11] and [5], it is easy to incorporate optimal decision making within a

Markov chain model. In the following sections, we discuss our approach to

modeling a baseball game as a Markov chain.

3

3 The expected runs model

In this section, we introduce the objectives, the mathematical structure,

and the analytical solution methods for our expected runs model. A baseball

game can be fully described by a discrete set of characteristics: the current

batter and pitcher, the batter due up for the defending team, the inning, the

number of outs, the configuration of runners on the basepaths, and the score.

Given a particular state in a baseball game, our model calculates the expected

runs each team will score from that point until the end of the game.

We model a baseball game using the theory of discrete time, discrete

state space Markov chains (DTMCs). Formally, a DTMC is a stochastic pro-

cess consisting of a discrete state space S, and a stochastic transition matrix

P which describes the random movement between states in S. The transition

probabilities from a given state must adhere to the ‘Markov property,’ mean-

ing that the probability of moving from state i to state j, pij ∈ P does not

depend on the previous evolution of the system.

A baseball game fits into this framework nicely as probabilities between

game states are logically assumed to be independent of past events. For ex-

ample, suppose the game is in the bottom of the ninth inning, tied, with 2

outs and no one on base. The batter’s chances of hitting a home run – moving

the game into the “game over, home team wins” state – depend only on the

current state, the current pitcher, and the batter’s own talent, not on the par-

ticular path the game followed to reach that particular state. We now provide

more details on calculating expected runs and win probabilities.

4

3.1 Computing expected runs

We first describe the model used to compute expected runs over the

course of a 9 inning game for a given team. In reality, a team can potentially

bat in more than 9 innings if the game goes into extra innings. On the other

hand, the home team may not need to bat in the bottom of the ninth if

they already lead. However, for simplicity, when computing expected runs we

assume that a team will come up to bat 9 times during the game. As we are

only interested in one team’s performance, the elements in the state space, S,

are defined completely by:

1. The player up to bat (9 total)

2. The inning (9 total)

3. The number of outs (9 total)

4. The configuration of the baserunners on the basepaths (8 total)

There are 9 × 9 × 8 × 3 = 1944 total in-game states and a single absorbing

state, 4, representing the end of the game. We construct a 1945×1945 matrix

P which describes the evolution of the stochastic process.

3.2 Event probabilities

Transition probabilities in any state depend on the current batter, the

current pitcher, the current number of outs, and the current base configuration.

5

In our model, we assume the current batter/pitcher matchup will result in one

of the following events: single, double, triple, HR, walk/hit by pitch

(BB+HBP), double play (with < 2 outs), strikeout (K), other out

(non double play). A sequence of calculations are performed to estimate

the probabilities of these events for a given plate appearance.

We deliberately leave out a number of possible strategic baseball plays,

most notably bunts, steals, and intentional walks. These events would com-

plicate the model, as the set of possible transitions and the associated prob-

abilities when the batter decides to bunt are completely different than those

when he decides to try for a hit. In addition, treating these ‘strategic’ plays

separately allows for the possibility of adding an optimal decision making com-

ponent to our model in the future.

In each state, a pitcher from the defending team faces the hitter at the

plate. The opposing starting pitcher begins the game. After the starter exits

the game, we use the defending team’s average bullpen performance to inform

pitching for the remainder of the game. Together, the abilities of the hitter

and the pitcher inform event probabilities in a given plate appearance.

The following sequence of steps are performed to calculate these prob-

abilities. First, raw counts for batting events are obtained for both the batter

and pitcher from Steamer Projections [18] or previous season data. Using pro-

jections is the default option, as these projections consider a player’s previous

statistics, age, and other factors to forecast future performance. For exam-

ple, Steamer projects the following counting stats for Washington National’s

6

outfielder Bryce Harper for the 2016 season.

Table 1: Bryce Harper 2016 Steamer Projections.

AB 1B 2B 3B HR BB+HBP K
536 94 31 2 37 110 129

Neither a player’s projections nor his past season statistics are park

neutral, meaning that, for hitters, the projections will be higher (lower) for

players who play in home stadiums which are more (less) favorable to hitters

(the opposite relations hold for pitchers). When evaluating a hitter vs. pitcher

matchup, we would like to consider their talents in a neutral environment;

thus we ‘park normalize’ the raw Steamer projections (or data) using ‘park

factors’.

Fangraphs.com [17] publishes park factors for every stadium in MLB.

Park factors describe the frequency of batting events in a given park compared

to the league average frequency. A neutral park for a given batting event,

say home runs for lefties, would have a park factor of 100. If more lefty

home runs were hit in that park compared to other stadiums, the park factor

would be greater than 100. Park factors provided by Fangraphs are specific to

the handedness of the batter. Furthermore, to facilitate calculation of park-

neutral statistics, the park factors presented on Fangraphs are adjusted down

to account for the fact that batters play only half of their games in their home

ballpark.

We divide the projected hitting statistics for both the batter and pitcher

7

by the park factors for each category. For example, if Bryce Harper is projected

to hit 37 HR in 2016, and the National’s park has a lefty-batter park factor for

HR of 92, our park-neutral projection for Harper’s HR total is 37/.92 = 38.54.

In Table 2 we show the park factors for National’s Park, along with Bryce

Harper’s adjusted hitting projections.

Table 2: Bryce Harper 2016 projections, park adjusted

1B 2B 3B HR
Park factors 108 104 70 92
Neutralized projection 90.4 37.25 2.35 38.54

Next, we convert the park-normalized frequency projections into event

probabilities for both the batter and pitcher. For a given batter or pitcher,

the probability of event e, where e could be a single, double, triple, home run,

walk/HBP (BB+HBP) or strikeout, is

P (e) =
freq(e)

AB +BB +HBP
(1)

where freq(e) is the projected frequency of event e, AB is projected at-bats,

BB is projected walks, andHBP is projected hit-by-pitches. The denominator

represents all possible considered outcomes of the plate appearance. We again

use Bryce Harper’s normalized projections for demonstration in Table 3.

Now, we need to explicitly take into consideration the handedness of the

batter and pitcher. Over large samples, hitters perform worse against pitchers

of the same handedness and better when facing opposite-handed hurlers. To

8

Table 3: Bryce Harper event probabilities, park neutral

AB 1B 2B 3B HR BB+HBP K
Projected counts 536 90.4 37.25 2.35 38.54 110 129
Event Probabilities .15 .05 .003 .06 .17 .2

explicitly account for this in our model, we use the ZiPS splits projections,

made available by creator Dan Szymborksi [15]. ZiPS provides full-season

statistical projections subdivided by the hand of the opposing pitcher (for

batters) and by the hand of the opposing batter (for pitchers). We use these

‘splits’ projections to compute handedness adjustment factors for each player

in the batter-pitcher matchup.

As it may be difficult to project exact statistics by handedness for

low frequency events like doubles and triples, we produce handedness splits

for the following events: Non-HR hits, HR, BB+HBP and Strikeout.

For an event e in this set, we compute the h handedness adjustment factor,

h ∈ {right, left} for e, HAh(e) as

HAh(e) =
P (e|PitcherHand = h)

P (e)
. (2)

If a switch-hitter (a hitter who can hit both righty and lefty) is at the plate,

we assume that they will bat righty (lefty) if the pitcher is a lefty (righty).

Continuing with our example, suppose Bryce Harper is at the plate

facing righty Noah Syndergaard of the division rival New York Mets. In Table

4, we show Bryce Harper’s ZiPS projected event probabilities against righties,

9

overall, and the associated handedness adjustment factors we would apply to

his park-neutral event probabilities in Table 3.

Table 4: Harper 2016 split adjustment factors

H (non HR) HR BB+HBP K
vs. Righties .1956 .063 .181 .196
Overall .1955 .0588 .176 .201
Handedness adjustment 1.00 1.08 1.025 .975

Similarly, handedness adjustments would be calculated for the pitcher,

Syndergaard, reflecting his projected performance against lefties. Now, we

adjust each players projected probabilities given in Table 3 by multiplying by

the relevant handedness adjustment factors in Table 4. For example, Bryce

Harper’s park-neutral HR probability is .06. His park-neutral HR probability

against a lefty is calculated as .06× 1.08 = .064. As expected, we project that

Harper will be more likely to hit home runs against a righty pitcher.

Up to this point, we have computed projected event probabilities for

our batter and pitcher which reflect how we expect them to perform against the

league as a whole (adjusted for handedness). However, we have not considered

how the specific players in the given plate appearance will perform against each

other. We would not expect Syndergaard to perform against Bryce Harper as

he would against all other left-handed hitters, because Bryce Harper is one of

the best hitters in MLB. To derive event probabilities for the specific head-to-

head matchup, we use the so called “total Log5 rule” introduced in [3]. The

total Log5 rule generalizes the well-known Log5 rule introduced by Bill James

10

[9] to matchups involving more than two outcomes. The logical premise for

both rules is as follows: If a batter and pitcher meet, and the pitcher is worse

than the league average, we would expect the batter to perform better against

this particular pitcher than he does against the rest of the league (i.e., his

performance on average). Many baseball simulators employ similar variants

of the Log5 rule (see [8] and [14], for example).

We consider the following possible outcomes for the plate appearance

when applying the total Log5 rule: Ball-in-play (BIP), HR, BB+HBP,

K. These events are generally considered within the control of the pitcher;

once the ball is put in play, defense and luck generally determine the outcome

of the plate appearance. For an event e among these four outcomes, the Log5

probability of event e for the given plate appearance is

PLog5(e) =

pb(e)×pp(e)
pl(e)∑

e
pb(e)×pp(e)

pl(e)

(3)

where pb(e) is the batter’s probability of generating event e, pp(e) is the

pitcher’s, and pl(e) is the leaguewide probability of event e in a plate appear-

ance with the same handedness matchup. In our example of Harper vs. Syn-

dergaard, this latter value would be the probability of event e calculated from

frequency data (as in Table 3) for all lefty-batter vs. righty-pitcher matchups

from the previous season. We use season data as opposed to the projected

league average because the projections often do not accurately predict playing

time, which can cause distortions. In addition, it is unlikely that the average

performance over hundreds of thousands of plate appearances in 2015 will be

11

significantly different than the average in 2016.

Table 5: Harper vs. Syndergaard, Log5 probabilities

BIP HR BB+HBP K
Harper .586 .064 .174 .1946
Syndergaard .621 .019 .068 .292
League (L vs. R) .685 .027 .096 .191
Total Log5 probabilities .525 .047 .127 .303

We then distribute the log5 probability assigned to ‘BIP’ to the events

1B, 2B, 3B, Out (in play) according to the hitter’s own distribution of

events given that he puts the ball into play. For example, Bryce Harper,

against the league as a whole, is projected to put the ball in play 57% of the

time, with singles making up 26.3% of these events (see Table 3). Against

Syndergaard, per Table 5, Harper is expected to put the ball in play with

probability .525. Thus, we would estimate that he will hit a single against

Syndergaard with probability .525× .263 = .138.

We make three final adjustments to the event probabilities associated

with the plate appearance. First, we readjust for the park in which the game

is being played. For example, if the game is in National’s Park, we would

re-apply the relevant park factors for Harper. Next, we adjust for home field

advantage. Using data from the previous season (obtained from Baseball-

Reference), we compute a ‘home-field’ factor which compares the performance

of players at home compared to players in all games. For example, over the

2013 and 2014 seasons, players hit HRs in 2.39% of plate appearances in all

12

games, but 2.43% of plate appearances at home, resulting in an HR home-field

adjustment of 1.014. We would then adjust the plate appearance probabilities

in an analagous manner to handedness.

Finally, we would consider the number of hitters faced by the pitcher

prior to the given plate appearance, as pitching performance degrades over re-

peated exposure to hitters. Again, we compute “times-thru-order” adjustment

factors using full-season data from Baseball Reference. For example, in 2014,

when the hitter faced a pitcher the third time during a game, his probability of

hitting a homerun was 14% above baseline. Thus, we would increase our event

probability for an HR by 14%. We do not explicitly track the batters faced by

the starter, as this would need to be included in the state space to preserve the

Markov property. Instead, apply the adjustment factor based on the inning

in which the plate appearance takes place. Steamer provides projections for

batters faced per inning for every pitcher. Thus, we can estimate the number

of times a pitcher has gone through the order in a given state by:

Batters faced = Inning× BPI (4)

where BPI is the projected number of batters a pitcher will face per inning.

Finally, in some states it is relevant to consider double plays (we will

discuss when double plays are applicable in 3.3). We estimate the probability

of a double play for a given plate appearance using baserunning data for the

hitter from the previous season. This probability is computed from frequency

data available on Baseball-Reference, and the probability of a double play is

13

simply DP/DP Opportunities.

Having described how event probabilities for a given plate appearance

are derived, we now turn to the issue of baserunning, which determines tran-

sitions in the matrix P.

3.3 State transitions and baserunning

State transitions are determined by event probabilities, as described in

Section 3.2, combined with a baserunning model which describes the movement

of runners given certain events. For example, a single with a man on first could

result in two possible transitions. In either case, the batter will advance to

first, but the baserunner could end up on either second base or third base. We

now give a full description of our baserunning model.

Previous models (see [4], [1], [5]) have used a simplified baserunning

model proposed by D’Espopo and Lefkowitz [2] which is summarized in Table

6. After examining baserunning data, we felt that the model above fails to ad-

Table 6: D’Esopo and Lefkowitz baserunning model

Event Advancement
Walk Batter to first, baserunners advance one base if forced
Single Batter to first, baserunners on second and third score,

baserunner on first to second
Double Batter to second, baserunners on second and third score,

baserunner on first to third
Triple Batter to third, all baserunners score
HR Batter scores, all baserunners score
Out No baserunners advance

14

equately describe the baserunning dynamics of a real MLB game. We develop

a more realistic baserunning model by adding the following:

1. Double Plays – When there are fewer than two outs, and a runner is

on first base, we consider the possibility that the batter will hit into a

double play.

2. Scoring from third base on outs – We allow a runner on third to

score on an out when the ball is put in play. We obtain the leaguewide

probabilities of scoring on an out from third for a regular ball-in-play

(BIP) out, and for a double play. We scale the probability by the batter’s

strikeout percentage, as the ball must be put in play for the runner to

reach home.

3. Runner advancement on hits – When a single is hit, we allow a run-

ner on first base to potentially advance to third base. Similarly, when

a double is hit with a baserunner on first, we allow for the possibility

that said runner will score. Finally, we assume that only some baserun-

ners score from second on a single. Statistics for individual batters for

advancements are available on Baseball-Reference and we use the team

average to inform these probabilities.

4. Runner advancement on out – We allow for the possibility that the

lead baserunner (not on third base) will advance on an out in play. We

use a single leaguewide probability for this event.

15

Other models have used different baserunning frameworks. Null [11]

calculates probabilities of transitioning from one base configuration to an-

other after a certain event by looking at leaguewide historical frequency data.

For example, given that an out occurs with one man on first, Null looks at all

historical examples of this event type and state and computes the probability

of any subsequent base state being realized. Compared to our approach, Null’s

estimates are more comprehensive; no limits are placed on the possible subse-

quent base state compositions given a certain event. However, our approach

is better for incorporating readily available team and player specific data. For

example, a team with fast runners is likely to advance from first to third on a

single more frequently than the historical frequencies would suggest, and our

baserunning model allows for those considerations.

To make the full advancement model clear, we give an example of the

transitions from a representative state. Suppose that Bryce Harper is facing

Noah Syndergaard with no outs and baserunners on first and third in the first

inning, in a game played at National’s stadium. Following Section 3.2, our

event probabilities for this plate appearance are:

Table 7: Harper vs. Syndergaard, plate appearance probabilities

1B 2B 3B HR BB+HBP K DP
0.149 0.049 0.003 0.039 0.104 0.23 .095

We will use the following notation to refer to base configurations. The

symbol ‘—’ will be used to denote that all bases are empty. The symbol ‘–1’

16

denotes that a man is on first, and the other bases are empty. Similarly, ‘32-’

will be used when second and third are occupied. Notation for the remaining

base configurations follows this pattern. The possible transitions from our

Bryce Harper plate appearance (base configuration 3-1) are given in Table 8.

Table 8: Harper vs. Syndergaard, plate appearance transitions

Event New state Runs Probability Description
1B 0 outs, -21 1 (.149)(.78) Single, runner on 1st to 2nd
1B 0 outs, 3-1 1 (.149)(.22) Single, runner on 1st to 3rd
2B 0 outs, 32- 1 (.049)(.39) Double, runner on 1st to 3rd
2B 0 outs, -2- 2 (.049)(.61) Double, runner on 1st scores
3B 0 outs, 3– 2 .003 Triple, all runners score
HR 0 outs, — 3 .039 HR, all runners score
K 1 outs, 3-1 0 .23 Strikeout
DP 2 outs, — 1 (.095)(.74) Double play, runner on 3rd

scores
DP 2 outs, -2- 0 (.095)(.26) Double play, runner out at

home
Out (IP) 1 outs, 3-1 0 (.335)(.374)(.60) Out in play, runners don’t

advance
Out (IP) 1 outs, 32- 0 (.335)(.374)(.40) Out in play, runner on first

advances
Out (IP) 1 outs, –1 1 (.335)(.626)(.60) Out in play, runner on 3rd

scores, runner on 1st stays
Out (IP) 1 outs, -2- 1 (.335)(.626)(.40) Out in play, runner on 3rd

scores, runner on first ad-
vances

A full description of all possible transitions is given in Appendix A. In

Section 5.1, we compare our model results using our full baserunning model

with those obtained with the D’Esopo and Lefkowitz model.

17

3.4 Solving for expected runs

The matrix P is built with possible transitions reflecting the baserun-

ning model presented in Section 3.3 and probability values corresponding with

player abilities as calculated in Section 3.2. A rewards matrix R, which cor-

responds in dimension to P is created as follows. For an entry pij of P,

pij = 0 → rij = 0. If pij > 0, rij is the number of runs which would score

per the baserunning model (see Section 3.3), given a transition from state i to

state j, i, j ∈ S. We set r44 = 0 meaning that we can never score after the

game has finished (See Appendix B, Section 1 for full details on the structure

of the transition matrix and the rewards matrix).

We now describe how to compute the expected runs scored in a game,

following the formulation in [4] and [5]. We first note that, despite assum-

ing that a team will bat in exactly 9 innings, the time horizon for a baseball

game is uncertain. The game is not over until three outs are registered in

the ninth inning; the game makes an arbitrary number of transitions before

this endpoint. Thus, we consider the time horizon over which rewards are

aggregated to be infinite. We also note that all in-game states form a tran-

sient class, with the end-game state, 4, a single absorbing state. Let v(i)

be the expected runs scored from state i ∈ S up to the end of the game.

Furthermore, let q(i) =
∑

j∈S pijrij so that q = [q(1), q(2)...] is the vector of

one-step expected runs from any state. Following previous papers (and well

known results concerning Markov chains with rewards), our expected runs

18

vector v = [v(1), v(2), ...] satisfies:

v = Pv + q. (5)

This linear system has a unique solution once we impose the known constraint

v(4) = 0.

We now turn to the more complicated case of solving for winning per-

centages.

19

4 The win probability model

The win probability model estimates the home team’s probability of

winning at any state during the course of a baseball game. As in Section 3, we

develop a Markov chain model to solve for these probabilities. As illustrated

in previous work the state space, S, expands greatly when we are interested

in estimating the probability that the home team A will beat the away team

B from any point in a baseball game [4], [11]. Our new state space consists of:

1. The current home team player due to bat (9 possible players)

2. The current away team player due to bat (9 possible players)

3. The current batting team, or whether we are in the top or the bottom

of the inning (2 possibilities)

4. The inning (9 regular innings)

5. The number of outs in the inning (0,1, or 2)

6. The base configuration (8 possible, ranging from empty to loaded)

7. The home team’s lead, l, (l ∈ [−q, q] ∩ Z, q ∈ Z (2q + 1 possible values)

Techinically, the state space could be unbounded as there is no upper

or lower bound for the home team’s lead. However, for real games, q is finite,

practically speaking. There are competing considerations when considering

the cap, q, on the possible score differences in a game. From a computational

20

standpoint, keeping q small decreases the size of the state space, making math-

ematical operations easier. However, setting q too low leads to unintentional

bias in the model in favor of the home team. To see why, consider the ninth

inning; the home team need only achieve l > 0 to win the game, and so a cap

on the home team lead does not influence their chances of winning for any

state in the final inning. However, the visiting team must prevent the home

team from reaching this threshold. Thus, capping the amount by which the

home team can trail artificially improves the chances that the home team will

win. In our base model, we set q = 8 because, for two identical teams (without

considering home field advantage), this cap yields a projected .500 probability

of the home team winning from the beginning of the game.

We also note that the game can go into extra innings if the score is

tied at the end of the 9th. At that point, the game becomes sudden death;

if either team leads after an inning is completed, that team is the victor, or

if not, the game continues. Thus, our state space is unbounded if we were

to explicitly include all possible extra innings. However, as we show in the

following section, we need only consider one extra inning to fully solve the

model.

4.1 Solving for win probability

We can approach solving for win probability in a manner similar to

solving for expected runs scored. We build a transition matrix P, which,

considering 9 innings and a maximum lead for either team of 8, is a 594, 864×

21

594, 864 matrix. The structure of this matrix has been previously described

in [4], [5]. The baserunning model given in Section 3.3 is used to govern

transitions, and event probabilities are computed as in Section 3.2. One small

distinction is that scoring is now accounted for within the state space, as

opposed to a scoring rewards matrix as in Section 3.4.

In the Win Probability model, the home team accrues a ‘reward’ only

when a transition is made from a state i ∈ S to 4, the end-of-game state.

If the home team is leading when this transition is made, they have won the

game, and thus accrue a reward of 1. Conversely, if they are trailing when this

transition occurs, a reward of 0 is obtained. Once again let q(i) = pi4ri4 for

i ∈ S where ri4 is the reward of 0 or 1 accrued by the home team when the

game ends. Then, as before, the vector of win probabilities from any state,

w = [w(1), w(2)...], satisfies:

w = Pw + q. (6)

Again, the system has a unique solution when we impose the constraint

w(4) = 0.

Equation 6 can be thought of as a simple application of the law of total

probability, with

w(i) =
∑

j∈S\4

pijw(j) + pi4ri4 (7)

where ri4 is the simply the probability of winning upon transition to the end

of game state.

22

There are a few issues with computing win probabilities by solving the

linear system in Equation 6. First, when our state space is limited to nine

innings, we must decide what reward to assign when the ninth is completed

and the game is tied. One possibility is to simply assign a reward of .5 to the

home team should the game go into extra innings. However, if one team is

significantly better than the other, this can skew computed probabilities (par-

ticularly in later innings) in an unrealistic manner. Second, solving equation

6 is a computational challenge due to the size of the matrix. We now discuss

our method for solving the model which addresses both issues.

Due to the sequential nature of a baseball game, Equation 6 can be

solved in pieces. By sequential, we mean the following: within a given inning,

we can only (potentially) transition to a later inning, and can never return to

an earlier inning. Similarly, within innings, we can only advance from the top

of the inning to the bottom, and not the other way around. One can see that

the same pattern holds for outs within half innings as well. Mathematically,

as Equation 7 makes clear, the components of vector w associated with inning

k ∈ 1, ...9 can depend only on win probability values from innings k+1, k+2...

In our model, we choose to decompose Equation 6 by inning. We begin

by solving for all extra-inning win probabilities simultaneously. Let Pextra be

the transition probability matrix for one extra inning. In this case, as we are

considering only one inning, the size of our state space is 9×9×2×8×3×17 =

66, 096 (See Appendix B, Section 2 for full details on the structure of the

transition matrix).

23

We note that all extra innings look identical in terms of computing win

percentages. A reward of either 0 or 1 is given to the home team at the end

of the inning depending on whether the home team is trailing or leading. If

the game is tied, the game transitions to another extra inning with identical

characteristics. Thus, from a modeling perspective, we can ‘transition’ to

a new extra inning by defining non-zero transition probabilities from states

at the end of the current extra inning to the beginning of the same inning.

Specifically, if we are in an extra-inning state, i, where the home team is

batting, the game is tied, there are 1 or 2 outs, with batter b ∈ 1, 2, ...9 due up

for the away team, there (may) be a non-zero probability (if an out or double

play are recorded) that the inning will end with the game tied, triggering a

new extra inning to begin. In this case, we define a nonzero entry in Pextra,

eij, where j is a state at the top of the extra with 0 outs, no men on, and

batter b at the plate.

Let qextra be the vector of one-step rewards for the extra inning, where

qextra(i) =

{
pi4 Home team is leading in state i
0 o.w.

}
(8)

with 4 once again representing the end-of-game state. As before, we can

solve for the home team’s chances of winning from any state in extra innings

by finding the unique solution to:

wextra = Pextrawextra + qextra (9)

To solve for the rest of the game, we work backwards inning by inning.

Let 4k denote the end-of-inning state for inning k. Let Pk be the transition

24

matrix for inning k. For the ninth inning, we can easily create P9 by removing

the self loops in Pextra (along with potentially adjusting the values of the

transition probabilities). In this case, we have:

q9(i) =


pi49 Home team is leading in state i
pi49wextra(i,49) Game is tied
0 o.w.

 . (10)

where wextra(i,49) is the win probability associated with the state in extra

innings entered upon the transition i to 49. For example, if i ={Home bat-

ter 1, Away batter 1, Bottom of 9th, 2 outs, No baserunners, Tied}, then

wextra(i,49) would be the win probability associated with the extra inning

state {Home batter 2, Away batter 1, Top of 10th, 0 outs, No baserunners,

Tied}.

For inning k, k ≤ 8, we have the following definition for the one-step

rewards vector q:

qk(i) = pi4k
wk+1(i,4k). (11)

We sequentially solve the system of equations

wk = Pkwk + qk (12)

for k = 9, 8...1. Solving Equation 12 for each inning gives estimates for the

home team’s win probability from every possible state in the game.

25

4.2 Computational experience

The model, as described in Section 4.1 was implemented in Python 2.7.

There are two primary computational tasks associated with solving the model:

1. Building the matrices Pk, k = extra, 9, 8..., 1

2. Solving the systems given in equation 4.1

As the matrices are large and sparse, we make use of Python’s ScyPi sparse

matrix functionality for both constructing the matrices and solving the linear

equations.

Our decomposition approach has two computational advantages com-

pared with solving the full model simultaneously, as in Equation 6. In terms

of construction, the matrices Pk have an identical structure for each inning.

Thus, once we have built Pextra we only have to substitute new probability

values into the same matrix (to reflect a different pitcher, for example) to cre-

ate Pk, k = 9, 8, ..., 1. In addition, decomposing the problem allows for faster

solution of linear equations, as computational complexity for solving Equation

4.1 grows faster than linearly in the dimension of P.

Running the model on a MacBook Airr with a 1.4 Ghz Intel Core i5

processor, we found that, in total, building the full model and solving equation

6 takes about 33 seconds on average. In total, building the matrices and solving

the linear system sequentially, as in Equation 4.1, takes just under 10 seconds.

26

Using an iterative solver, it takes an average of 10 seconds to find the solution

for equation 6, compared to < 1 second to solve all ten systems of equations.

27

5 Model validation

There are three major components of our model which influence accu-

racy.

1. Structural – Does the hitting and baserunning model accurately reflect

a real baseball game?

2. Batter vs. Pitcher matchups – Can we accurately predict the outcome of

plate appearances with batters and pitchers of various skill levels?

3. Data and projections – Are the data and player projections used to

inform player performance accurate?

We first consider Item 1, the accuracy of our model structure.

5.1 Structural evaluation

In this section, we explore whether our structural model of a baseball

game makes sense by comparing our model to real data. By structural model,

we mean the hitting events we have chosen to consider, and the baserunning

model that dictates the movement of players. It’s worth noting that the level

of ‘modeling control’ in this structural sense is limited. For example, when an

out is made, we must move to a state with one more out, or end the current

half-inning. When the bottom of an inning is complete, we must move to a

state in the top of the following inning.

28

Thus, from a modeling perspective, we are limited in decisions on what

events to consider (i.e., should we include double plays?) and how runners

move on the basepath (i.e., does a runner on second always score on a single?).

We laid out our batting and baserunning model in detail in Sections 3.2 and 3.3,

and in Appendix A. Our limited number of structural decisions means that, for

validation purposes, we can limit ourselves to considering model performance

in predicting runs over the course of a representative half-inning.

Baseball Prospectus [20] has data on the average runs scored in a half

inning, based on the number of outs and the configuration of runners on the

bases. We downloaded the data for 2015 based on a sample of 2, 429 games.

Then, we used our model to predict expected runs within a half-inning using

a team of average 2015 batters (assumed to be competing against average

pitchers, i.e. we do not consider pitcher performance). We also compare our

model’s structural performance with earlier models using the Leftkowitz and

D’Esopo baserunning model. A comparison of our model’s predictions for

expected runs and the true data is given in Table 9.

Our model does a good job at predicting runs within a half-inning, with

no errors exceeding 1/10th of a run. We now demonstrate the benefit of our

more complex baserunning model given in Section 3.3. We perform the same

experiment as before, using the simple D’Esopo and Lefkowitz baserunning

model (we will refer to it as simply LD) in place of our own. A comparison

between the accuracy of our model and the simplified baserunning framework

is given in Table 10.

29

Our model, equipped with the full baserunning model described in Sec-

tion 3.3, outperforms the simpler baserunning model in terms of accuracy.

The largest error with the simple model is .262 runs, compared to .095 for our

model. On average, the absolute error between our model’s predictions and

the data is .031 runs, compared to .082 for the LD baserunning model. It is

not hard to see how the LD model’s limitations could cause inaccuracy. For

example, without allowing scoring from third on outs, the LD model does not

perform well in predicting runs scored when a runner is on third base with

fewer than two outs.

We also validated our model against historical win probabilities. His-

torical win probabilities for the home team for every combination of inning,

out, base configuration, and score were obtained from Greg Stoll’s Win Ex-

pectancy Finder [13]. Data was obtained from all games between 1957 and

2014 (free courtesy of retrosheet.com). As before, we used the average hitter

statistics over this time frame to inform our model, and predicted win proba-

bilities. In Figure 1 we plot historical win percentages (for n = 5, 080 states

where at least 100 observations were available) against the win probabilities

calculated from our model.

In general our model performed well at predicting win probabilities.

Let pi denote the win probability predicted for the home team in state i,

and p̂i be the true proportion of games a home team won when state i was

reached during the game. Overall, the absolute average error between our

win probability predictions and the percentages in the data (for states with

30

Figure 1: Historical Win Probabilities vs. Model Predicted Win Probabilities

at least 100 observations), (
∑

i |p̂i − pi|)/n, was 1.12%. In 60% of the states

considered pi ∈ {p̂i ± 1%}. Delving further into the results, our model is,

promisingly, more accurate on average in more commonly occurring states.

In states with over 500 observations, the average absolute error between our

prediction and the data, in terms of win-percentage, was .90%; in states with

under 500 observations the average absolute error was 1.40%.

We also sought to verify that our model did not have notable biases

in prediction errors. We looked at the residuals – the differences between

historical win percentages and our model’s projections, {p̂i − pi, i = 1, ..., n}

– and searched for patterns. We first verified that we were not systematically

overestimating (or underestimating) the home team win percentage from states

31

in the bottom of the inning, and underestimating (or overestimating) win

percentages in the top of the inning. If this were the case, residuals as a whole

would mask the underlying flaw. We show the residuals for all states where

the home team was batting in Figure 2.

Figure 2: Residuals (p̂i − pi) with home team batting

We see no pattern of overestimation or underestimation in the residuals;

the average (not-absolute) residual is −.2%. We can, however, continue to

parse these results. Figures 3 and 4 show residuals for states with the home

team batting and the bases loaded, and the home team batting, bases loaded,

and 0 outs.

We see no clear patterns in the errors in either Figure 3 or Figure 4, with

average residuals of −.36% and −.62% respectively. In general, we do not find

32

Figure 3: Residuals (p̂i − pi) for home team batting with bases loaded

evidence that our model is systematically erroneous. Additional breakdowns

yielded similar results.

Although our model does not appear to be systematically incorrect, as

can be seen in Figure 1, this does not mean that it provides perfect predic-

tions. Reiterating our earlier point, mis-prediction is most likely to occur if

the structural baserunning model does not adequately reflect reality. In Table

11 we examine the average absolute prediction errors for various combinations

of outs and base configurations.

As shown in Table 11, the model performs worse when there are many

baserunners and a low number of outs. On the one hand, these states appear

33

Figure 4: Residuals (p̂i − pi) for home team batting, bases loaded, one out

in real games less frequently which means that the historical data may be

more noisy. On the other hand, higher errors in these states reflects known

limitations of our model: we don’t consider all possible baserunning outcomes,

and we don’t consider strategy (steals, bunts, intentional walks) which dictate

state transitions when runners reach base. We also do not consider differences

in hitter abilities with men on base; we use the same event probabilities when

the bases are loaded as when the bases are empty. In the real world, hitters

generally perform better as more runners are added to the basepath, because

pitchers are forced to pitch from the stretch (to prevent steals) and pound the

strikezone (to avoid walks). Adjusting hitting percentages by baserunner state

could add greater fidelity.

34

In an absolute sense, however, our model performs reasonably well al-

ready across these scenarios with average errors lower than 3% in all cases. We

now turn to our model’s performance in predicting the results of individual

games in the 2015 season.

5.2 2015 season prediction

In Section 5.1 we examined our model’s performance against historical

data obtained from many games. This did not, however, involve considering

matchups between individual teams with unique lineups and pitchers. In order

to test whether we could accurately predict outcomes of individual games we

ran our model for 1, 728 games from the 2015 MLB season. As mentioned

previously, predicting player performance in a given season (as projection sys-

tems such as Steamer attempt) is, in and of itself, an inexact science. It goes

without saying that, if player projections are inaccurate, our model will be

inaccurate. Thus, to separate the performance of our model with the perfor-

mance of the projections, we used 2015 data for all players when predicting

the games from the 2015 season. In other words, we assumed we knew exactly

how well the players would perform on average.

In our sample of 2, 328 games, the home team was victorious 54.4% of

the time. On average, our model predicted a win percentage for the home

team of 52.6%. Per Betfirm.com [10], from 2010 to 2014 the home team won

53.7% of the time. Within our sample, the home and road teams scored an

average of 4.33 and 4.12 runs per game, respectively. Our model predicted, on

35

average, that the home team would score 4.16 runs per game, and the away

team 3.88, suggesting that either our baserunning model is not adequately

representing scoring, or that we are over-emphasizing pitching skill.

In order to measure the precision of our model, we separate the predic-

tions into buckets. For example, a game where our model predicts the home

team would win 53% of the time would be grouped in the 51%− 59% bucket.

Then, for the set of games in each prediction bucket, we computed the actual

win percentage for the home team. Ideally, we would hope that in games where

the home team is predicted to win 51%− 59% of the time, they actually win

a proportion of games within that range. Table 12 shows the results of this

analysis.

As shown in Table 12, our model performs well, especially for buckets

where predictions are made most frequently. The actual observed win percent-

ages fell within each bucket in all but one case: when the model predicted a

win percentage between 35 and 43 percent, the observed win percentage was

48.57%. However, it is worth noting that evaluating results using a bucketing

approach is highly sensitive to the number of buckets, and the bucketing cutoff

values. For example, when we take smaller buckets (with sufficient numbers of

predictions) we can see that the model fidelity appears to degrade. See Table

13 for these results.

The results in Table 13 show that our model’s predictions, which look

very accurate when using large buckets, appear worse when placed under a

microscope. Unlike the results in Table 12, we no longer have a clear upward

36

trend in observed win percentages corresponding with increases in predicted

probabilities. There are a few things that are going on here. First, we are

looking at smaller sample sizes within buckets which could lead to more noisy

real world proportions. Over small to medium samples of games, unexpected

winning percentages can occur. For example, it is not uncommon for teams to

outperform their hitting fundamentals over entire seasons by stringing together

hits in high leverage situations.

But in addition, our model may not be accurate within this level of

detail. The most likely culprit for the lack of fidelity is error in assessment

of batter-pitcher matchups. As lineups in MLB are generally relatively ho-

mogeneous in talent, assessing win percentages precisely requires acurately

evaluating the effect of pitching. As noted previously, the Log5 method gives

only an approximation formula for quantifying matchup probabilities.

We made some attempt to more rigorously quantify the accuracy of our

model. Unlike a logistic regression model, grouping by features (regressors) is

not applicable for our results. When grouping by features is not possible, the

Hosmer-Lemeshow (HL) test can be used to assess fit [6]. This test assesses

model fidelity by comparing predicted successes (in our case, home team wins)

within subgroups with observed percentages. As recommended, we split our

predictions up by deciles. We then computed the HL statistic:

10∑
g=1

(Og − Eg)
2

Ngπg(1− πg)
(13)

37

where Og are the observed wins in group g, πg is the average predicted win

probabiliy for group g, Ng is the number of observations in group g, and

Eg = πgNg. The distribution for the HL statistic approaches a chi-squared

distribution with d.f. g − 2. The HL test states that if the probability of

observing a value greater than or equal to the test statistic is less than .05 then

the model does not fit the data. The test statistic for our model’s predictions

and the true 2015 data was .049, suggesting that our predictions don’t fit the

data well.

It is worth noting, however, that the HL statistic is notoriously sensitive

to group size and group divisions. When testing our model’s predictions, this

issue came up. For example, when our predictions and the data were divided

up into 12 equally sized groups, as opposed to 10, our HL statistic was greater

than .05.

We also looked at classification rates based on our model’s predictions.

When our model gave a prediction above .5 for the home team’s win prob-

ability, we categorized that game as a win, and other games we classified as

losses. We then examined how many wins and losses we correctly predicted.

This information is presented in Table 14.

Games we classified as home team wins were actually won by the home

team 59.5% of the time. Games we classified as losses were won by the home

team 46.7% of the time. In total, our model predicted the correct outcome

57.04% of the time – more accurate than predicting the home team to win every

game. However, with our model most frequently predicting win probabilities

38

within the 45% to 60% range (reflecting the relative parity among baseball

teams), a model that is useful for baseball prediction model may not be useful

for win/loss classification.

We also compared our predictions for expected runs with the actual

score from our sample of games. Promisingly, our predictions matched up well

with the observed data. The expected runs for home teams derived from our

model and the true averages are shown in Table 15.

Again, all of the same caveats regarding bucketing apply. However,

we see a clear trend in these results: when we predicted a higher expected

run total, the average number of runs scored was indeed higher. This set of

results gives us some confidence that, at the very least, our model is properly

discerning lineup and pitching quality.

We also computed win probabilities for the same sample of 2, 328 games

using 2015 projections to inform hitter and pitcher skill. Our model predicted

on average that the home team would score 3.75 runs and the away team 3.49

runs. On average, our model predicted a win percentage of 52.8% for the home

team. One immediately notices that expected runs drop considerably when

using the projections, to well below the true scoring level in 2015. We recreate

Table 12 for the projection-based results in Table 16.

Again, even using projections to inform the model, with the larger

bucket size we appear to predict relatively accurately. At the very least, as

our model’s prediction for win probability increases, so does the observed win

39

probability. Redoing the H-L test for the projection based predictions (again

using deciles), we obtain a p-value for the test statistic of .214, suggesting that

our model fits the data. In terms of classifying wins and losses, we compare

predicted wins to actual wins in Table 17.

In this case, games we classified as a home team win were won by the

home team 59% of the time. Games we classified as a home team loss were won

by the home team 46.2% of the time. Overall, our model correctly predicts

the outcome 57.1% of the time. Finally, we repeat our comparison of expected

runs (generated by our model) and observed run scoring in Table 18.

Once again, we see that observed runs increase with our model’s pre-

dictions for expected runs. However, we underestimate runs more significantly

when we use projections. There are two potential reasons for this underesti-

mation. First, projections tend to smooth out player performances towards

the league average, which leads to less high-end run projections. Second, very

poor spot players may not have projections available and, when projections

were missing, we assumed a league average player.

The good news is that using projections appears to maintain the model’s

utility. Teams and hitters with better projections are predicted by the model

to score more runs and win more frequently, and in the aggregate they do

just that. To summarize all the results in this section: our model seems to be

fairly capable at discerning at a high level which teams are better than others.

However, further refinement (and perhaps related research into more accurate

modeling of batter-pitcher matchups) might be necessary to increase fidelity

40

further.

41

Table 9: 2014 half-inning runs scored vs. model predictions

Outs Bases Data Model WP Difference
0 — 0.479 0.455 0.024
0 –1 0.843 0.811 0.032
0 -2- 1.076 1.04 0.037
0 3– 1.305 1.317 -0.012
0 -21 1.44 1.35 0.09
0 3-1 1.668 1.634 0.034
0 32- 1.902 1.843 0.059
0 321 2.265 2.171 0.095
1 — 0.257 0.246 0.011
1 –1 0.5 0.482 0.018
1 -2- 0.649 0.63 0.019
1 3– 0.892 0.925 -0.033
1 -21 0.892 0.856 0.036
1 3-1 1.135 1.082 0.053
1 32- 1.283 1.305 -0.022
1 321 1.526 1.505 0.022
2 — 0.1 0.094 0.006
2 –1 0.22 0.205 0.016
2 -2- 0.315 0.294 0.021
2 3– 0.361 0.347 0.014
2 -21 0.436 0.417 0.019
2 3-1 0.481 0.463 0.019
2 32- 0.576 0.552 0.024
2 321 0.697 0.734 -0.037

42

Table 10: Expected Runs: LD baserunning vs. full baserunning

Outs Bases Data Error LD Error Full Baserunning
0 — 0.479 0.021 0.024
0 –1 0.843 0.023 0.032
0 -2- 1.076 0.033 0.037
0 3– 1.305 0.262 -0.012
0 -21 1.44 0.021 0.09
0 3-1 1.668 0.249 0.034
0 32- 1.902 0.26 0.059
0 321 2.265 0.165 0.095
1 — 0.257 0.008 0.011
1 –1 0.5 0.018 0.018
1 -2- 0.649 -0.043 0.019
1 3– 0.892 0.2 -0.033
1 -21 0.892 -0.043 0.036
1 3-1 1.135 0.2 0.053
1 32- 1.283 0.139 -0.022
1 321 1.526 0.058 0.022
2 — 0.1 0.005 0.006
2 –1 0.22 0.02 0.016
2 -2- 0.315 -0.033 0.021
2 3– 0.361 0.013 0.014
2 -21 0.436 -0.023 0.019
2 3-1 0.481 0.023 0.019
2 32- 0.576 -0.03 0.024
2 321 0.697 -0.078 -0.037

43

Table 11: Average absolute error (in win %) for out/base combinations

Base Config. Outs 0 1 2
— 0.58 0.57 0.55
–1 0.89 0.76 0.67
-2- 1.08 1.08 0.92
3– 1.34 1.21 0.85
-21 2.49 1.23 1.17
3-1 1.54 1.45 1.2
32- 2.52 1.39 1.54
321 1.92 1.34 1.24

Table 12: Predicted vs. actual win percentages for 2015 season

Predicted win prob. (%) Games Avg. prediction (%) Actual win %
<27 24 22.17 25

27 to 35 108 32.43 36.11
35 to 43 315 40.15 48.57
43 to 51 598 47.64 47.66
51 to 59 635 55.16 55.59
59 to 67 471 62.75 63.91
67 to 75 145 70.4 71.72

75+ 32 78.58 78.13

Table 13: Predicted vs. actual win percentages (2015): small buckets

Predicted win prob. (%) Games Avg. prediction (%) Actual win %
41 to 45 223 43.17 0.47
45 to 49 298 46.98 0.51
49 to 53 337 50.88 0.48
53 to 57 339 54.92 0.58
57 to 61 313 59.05 0.56
61 to 65 225 63.05 0.61

44

Table 14: W/L Classification (2015)

Predict Win Predict Loss
Win 830 436
Loss 564 498

Table 15: Expected runs vs. true average scoring (2015)

Exp. Runs n Avg. Exp. Runs. True Avg. in sample
1-2 1 1.77 0
2-3 177 2.74 3.11
3-4 898 3.57 3.99
4-5 902 4.44 4.4
5-6 282 5.39 5.59
6+ 68 6.7 5.96

Table 16: Predicted vs. actual win percentages (2015): using projections

Predicted win prob. (%) Games Avg. prediction (%) Actual win %
<32 17 0.3 0.29

32 to 39 114 0.37 0.39
39 to 45 308 0.43 0.42
45 to 52 633 0.49 0.53
52 to 58 673 0.55 0.55
58 to 64 430 0.61 0.64
64 to 71 133 0.67 0.68

71+ 19 0.73 0.79

Table 17: W/L Classification (2015)

Predict Win Predict Loss
Win 873 393
Loss 605 457

45

Table 18: Expected runs vs. true average scoring (2015)

Exp. Runs n Avg. Exp. Runs. True Avg. in sample
1-2 1 1.99 0
2-3 266 2.76 3.82
3-4 1262 3.52 4.09
4-5 718 4.38 4.83
5-6 75 5.26 5.51
6+ 4 7.9 8.5

46

6 Conclusion

We begin our concluding remarks by discussing some limitations of our

model. While our baserunning model is more complex than some previous

examples, we certainly don’t consider a completely exhaustive list of poten-

tial transitions. For example, there are rare occasions when a runner scores

from first base when a single is hit – in our model, this transition is impossi-

ble. Further consideration of all possible transitions could potentially increase

model accuracy further, although it is worth noting that there are diminishing

returns to adding more and more possible (low probability) transitions.

In addition, our model does not have the capability of explicitly con-

sidering who is on the basepath. For example, having Dee Gordon (one of the

fastest players in baseball) on first base would considerably change the possible

transition probabilities for runner advancement. However, detailed inclusion

of unique baserunners, and their positions on the basepath, would require a

massive expansion of the state space.

There are a few limitations in our approach for incorporating pitching.

For one, we don’t consider changes in pitching performance contingent on the

configuration of runners on the base path. In reality, pitchers may pitch worse

(better) with runners on (off) base. In addition, when we make predictions

from the beginning of the game for expected runs, we have to project the

number of innings the opposing starter will remain in the game. However, this

duration is often contingent on the runs that are scored against that pitcher.

In other words, if many runs are scored, the starter will exit the game earlier;

47

our model, however, unlike a simulation model, has no way of taking this into

account. The result would be that our model might underestimate expected

runs, as relief pitchers are often worse than the starters they replace.

The Log5 method used to generate matchup probabilities for a given

batter and pitcher, is, in and of itself, an approximation. The total Log5 rule

used in our model has been shown to match observed event frequencies over

large samples of real plate appearances (see [3]). However, testing the rule

is difficult in the context of individual plate appearances, where data for a

specific pitcher and batter matchup are too few to draw inferences. Similarly,

while projection systems are remarkably accurate in the aggregate, for many

individual players they can be far off. Large projection errors for a single

player can be enough to change our model’s prediction for a given matchup.

Based on the results presented in this study, we can think of a number of

possible directions for future work. Adding in-game strategic decision making

to our model could add insight on the specific circumstances where managers

should employ bunts or steals. We could also further investigate methods

beyond Log5 for modeling batter-pitcher matchups.

Overall, our model showed promise in predicting the outcome of base-

ball games, but failed to completely capture the interaction between batters

and pitchers. We look forward to continued honing of our tool in the future.

48

Appendices

49

Appendix A

Baserunning

In this appendix, we describe completely the baserunning model pre-

sented in Section 3.3.

50

1 Movement on hits and walks

When a hit occurs, there are various possible ways runners on the

basepaths can advance. We enumerate these possibilities here.

1.1 Home runs, triples and walks

Movement on home runs and triples is simple. On a home run, re-

gardless of base configuration, all runners score including the batter himself.

Subsequently, the bases are left empty. On a triple, the batter reaches third

and all runners previously on the basepath score.

If the batter draws a walk, the batter himself advances to first. If

a baserunner is blocking his path to first, that runner advances to second,

pushing a runner on second to third, etc.

1.2 Doubles

If a double is hit, the following movement will occur. Runners on second

and third score. The batter himself reaches second. If there is a runner on first,

the runner may score, or they may reach third. Baseball-Reference provides

data for every player on how often that player scores from first base when a

double is hit. For the 2016 season, we would use baserunning data from 2015.

For each team in a given matchup, we compute a team-specific prob-

ability of a player on first scoring on a double. In a given lineup, for player

i ∈ {1, ..., 9}, let si be the number of times a player scores from first base when

a double is hit. Let ŝi be the total number of times player i was on first base

51

when a double was hit. Then our team probability of scoring from first on a

double is:

P (Score from 1st on double) =

∑9
i=1 si∑9
i=1 ŝi

. (1)

Let pdbl be the probability the batter at the plate hits a double (as

described in Section 3.2. Now, in states with a runner on first (i.e., with base

configurations –1,-21,3-1,321), the probability the runner on first scores on a

double is:

pdbl × P (Score from 1st on Double). (2)

1.3 Singles

In our model, when a single is hit, with certainty, the runner reaches

first base and a baserunner on third scores. If a runner is on either first or

second (or both), then we have a number of possibilities. A runner on second

may score or they may stop at third. A runner on first may advance to second

or may advance to third. In both cases, frequency data analagous to those

presented in Appendix A, Section 1.2 is available from Baseball-Reference for

every player. Letting ssi be the number of times player i scores from second

on a single, and ŝsi be the total number of times player i is on second when a

single is hit, a team probability for scoring from second on a single is calculated

as:

P (Score from 2nd on single) =

∑9
i=1 ssi∑9
i=1 ŝsi

. (3)

52

A team probability of advancing to third from first on a single is com-

puted analagously. Clearly, when runners are on first and second, the runner

on first can only reach third on a single if the runner on second has scored.

Thus, for these base states, we adjust the probability of advancement from

first to third given that the runner on second scores upwards until the overall

probability of a runner advancing from first to third matches the value in other

states.

53

2 Movement on outs

When an out is made, runners can sometimes advance. This occurs

when the ball is put into play; the runner can advance on a groundball out or

’tag up’ and advance on a fly ball out. Of course, runners can only advance

when an out does not end the half-inning.

2.1 Scoring from third base on an out

A runner on third can score on an out or a double play provided the

half-inning does not end. A runner cannot score on a strikeout. Leaguewide

frequencies for scoring from third on an in-play out (non-double play) and

on double plays are available at Baseball-Reference. Letting OS be the total

number of in-play, non-double play outs where a runner scored from third, and

O the total number of in-play, non-double-play outs, with a runner on third,

we have

P (Runner Score from 3rd|Out in play) =
OS

O
. (4)

Similarly, we can compute the probability a runner will score from third

on a double play. Note, this is only an applicable possibility when there are 0

outs in the inning and the configuration of runners on the bases is such that

a double play is possible – i.e. there is a runner on first. Let pout be the

current batter’s probability of making an out (any kind), pK the probability of

a strikeout, and pDP the probability of a double play. Furthermore, let po3 be

54

the league probability P (Runner Score from 3rd|Out in play), and let pdp3 be

the league probability P (Runner Score from 3rd|Dbl. Play). For states with

a runner on third, we summarize the possible movement from third base on

an out in Table 1 of Appendix A.

Table 1: Scoring from third on out, 0 outs in inning

Base Configs. Event Probability
3–, 32- Runner scores on in-play out (pout − pK)(po3)

Runner remains at third (pout − pK)(1− po3) + pK
3-1,321 Runner scores on in-play out (pout − pK − pDP)(po3)

Runner scores on DP (pDP)(pdp3)
Runner fails to score on DP** (pDP)(1− pdp3)
Non-DP out, runner stays on 3rd pK + (pout − pK − pDP)(1− po3)

**If runner fails to score on a double play with the bases loaded, we assume
runners were out at home and first.

Besides scoring on outs, we allow the lead baserunner to advance on

outs from the base configurations –1, -2-, -21, and 3-1. For simplicity, we use a

single league average probability for advancement given that the ball is put in

play. We use the statistics in the book Beyond Batting Average [12], along with

the distribution of fly-balls vs. ground balls for the previous season (available

at Baseball-Reference), to calculate the advancement probability. The base

value used in our model is .3. For greater fidelity, one could segment by the

base configuration, and explicitly consider a hitter’s fly-ball vs. ground-ball

splits.

55

Appendix B

Matrices

56

1 Matrix construction

In this appendix, we give the details of the matrix structures described

in Sections 3 and 4.

1.1 Expected runs

We now give the details for building the expected runs matrix. Let Pi

be the submatrix associated with the ith player in the batting order. Then

Pi is a 216 × 216 square matrix holding transitions between all innings, all

out states, and all base configurations. We organize states in our submatrix

heirarchically, with innings at the top level, outs at the second level, and

base configurations at the lowest level. Let Hj,k be the submatrix associated

with inning j with k outs which dictates transitions on a hit, and Oj,k be the

submatrix associated with transitions on outs in inning j with k outs. Then,

for i, i = 1, ..., 9

Pi =



H1,0 O1,0 O1,0 0 0
0 H1,1 O1,1 O1,1 0 0
0 0 H1,2 O1,2 0 0
...

... 0 H2,0 O2,0 O2,0 0 . . . 0
...

...
...

...
. 0

0 . . . H9,0 O9,0 O9,0

0 . . . H9,1 O9,1

0 . . . 09,2


. (1)

Now, our full expected run matrix P can be written as:

57

P =


0 P1 0 . . . 0

0 0 P2 0
...

...
...

...
. . .

...
0 P8

P9 0 0

 . (2)

R, the one-step rewards matrix also described in Section 3 is identical in

structure to P. Entries in P are replaced with the runs scored associated with

the corresponding transition in P.

1.2 Win probability

As described in section 4, we decompose the the full matrix for the

win probability model into matrices Pk for inning k with states on each axis

ordered heirarchically by:

Home team player up (or due up)y
Away team player up (or due up)y

Top/bottom of inningy
Outsy

Base configurationy
Home team lead (-8 to 8)

58

For player i on the away team, i = 1, ..., 9, we have two associated

submatrices, one for the top of the inning ATop
i , and one for the bottom of the

inning, ABottom
i . Let Hj be the transitions to a new base configuration and

home lead given after a hit, given that there are j outs in the inning, and Oj

be the same transitions when an out is recorded. Then

ATop
i =



H0 O0 O0 0 0 0
0 H1 O1 O1 0 0
0 0 H2 O1 0 0
0 0 0 0 0 0

0 . . .
...

0 . . . 0


(3)

and

ABottom
i =


0 0 0 0 0 0
0 . . . 0
0 . . . 0
0 0 0 H0 O0 O0

0 0 0 0 H1 O1

0 . . . 0 0 H2

 . (4)

Note that during the bottom of the inning, all transitions to a third

out are transitions to the absorbing ’end-of-inning’ state, 4k. For the extra

inning, we possibly add transitions back to the beginning of the inning on outs

when the game is tied and the bottom of the inning is completed. Letting Ej

represent these loop transitions when there are j outs. In this case, we have

59

ABottom
i =


0 0 0 0 0 0
0 . . . 0
0 . . . 0
0 0 0 H0 O0 O0

E1 0 0 0 H1 O1

E2 0 . . . 0 0 H2

 . (5)

Moving one step further up in our heirarchy, for each batter p, p = 1, ...9 on

the home team we define submatrices BTop
p and BBottom

p . Then

BTop
p =


0 ATop

1 0 . . . 0

0 0 ATop
2 0

...
...

...
...

. . .
...

0 ATop
8

ATop
9 0 . . . 0

 (6)

and similarly

BBottom
p =


ABottom

1 0 . . . 0

0 ABottom
2 0

...
...

...
. . .

...
0 ABottom

9

 . (7)

Then finally, the full matrix for inning k is:

Pk =



BTop
1 BBottom

1 0 0

0 BTop
2 BBottom

2 0 . . .
...

... 0 BTop
3 BBottom

3 0
...

...
...

.
...

0 . . . 0 BTop
8 BBottom

8

BBottom
9 0 . . . 0 BTop

9


. (8)

60

Bibliography

[1] Bukiet, B., Harold, E. R., & Palacios, J. L. (1997). A Markov Chain

Approach to Baseball. Operations Research, 45(1), 14-23.

[2] D’Esopo, D. A. & Lefkowitz, B. (1977) The Distribution of Runs in the

Game of Baseball. Optimal Strategies in Sports (S. P. Ladany & R. E.

Machol eds). Amsterdam: North-Holland, pp. 55-62.

[3] Haechrel, M. (2014) Matchup Probabilities in Major League Baseball.

SABR Baseball Research Journal. Available at:

http://sabr.org/research

/matchup-probabilities-major-league-baseball

[4] Hirotsu, N. & Bickel, J.E. (2014) On the Benefit of the Sacrifice Bunt:

The Importance of Differing Objectives. Manuscript submitted for pub-

lication.

[5] Hirotsu, N. & Wright, M. (2003) A Markov Chain Approach to Optimal

Pinch Hitting Strategies in a Designated Hitter Rule Baseball Game. J.

Oper. Res. Soc. Jpn., 46, 353-371

[6] Hosmer, D. W., Lemeshow, Stanley. (2013) Applied Logistic Regression:

Third Edition. Wiley.

61

[7] Howard, R. A. (1960) Dynamic Programming and Markov Processes.

Cambridge: Technology Press of the Massachusetts Institure of Technol-

ogy

[8] Hunter, Matt. (2014) 10 Lessons I Learned from Creating a Baseball

Simulator. The Hardball Times. www.hardballtimes.com

[9] James, Bill. (1983) Log5 Method. The Bill James Baseball Abstract:

12-13

[10] Jones, J. (2015, April 2) MLB Home Field Advantage. Retrieved from

http://www.betfirm.com/mlb-home-field-advantage/

[11] Null, B. (2009) Stochastic modeling and optimization in baseball. Pro-

Quest Dissertations & Theses Global.

[12] Panas, L. (2010) Beyond Batting Average. Lulu.com. 64-65.

[13] Stoll, G. Win Expectancy Finder. Retrieved from

http://gregstoll.dyndns.org

[14] Sugano, Adam P. (2008) A Player Based Approach to Baseball Simula-

tion. UCLA Statistics.

[15] Szymborski, D. (2016) ZiPS Projections. Retrieved from

twitter.com/dszymborski/status/704046976992677888

[16] Tango, T. M. (2006) The Book: Playing The Percentages In Baseball.

TMA Press.

62

[17] Handedness Park Factors (2015). Retrieved from

http://www.fangraphs.com/guts

[18] Steamer Projections. steamerprojections.com

[19] Baseball-Reference. baseball-reference.com

[20] Baseball Prospectus. baseballprospectus.com

63

Vita

Zachary Smith is an aspiring PhD student at the University of Texas

at Austin. He graduated from American University in 2013 with a degree

in Mathematics/Economics. His research involves stochastic modeling, fore-

casting, and decision analysis. He supports the Philadelphia Phillies, who

mortgaged the future to win in 2010-2011 and are now one of the worst teams

in MLB.

Permanent address: 4604 Evans Avenue
Austin, Texas 78751

This report was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

64

