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The role of Bicoid Stability Factor in oskar mRNA function and 

regulation, and the mechanisms for oskar mRNA transport to the 

oocyte 

 

Young Hee Ryu, Ph.D 
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Supervisor: Paul M. Macdonald 

 

My dissertation is separated into two subjects. First, I examined the role of 

Bicoid Stability Factor (BSF) in oskar (osk) regulation. Second, I studied cis-

acting elements involved in osk mRNA transport to the oocyte during early 

oogenesis.  

Oskar (Osk) is a body patterning determinant in Drosophila and is highly 

concentrated at the posterior pole of the oocyte. This spatially-restricted 

deployment relies on a coordinated program of osk mRNA localization and 

translational regulation, all dependent on cis-acting regulatory elements located 

primarily in the 3’ UTR of the mRNA. Notably, some of these elements, as well as 

sequences required for a noncoding role of osk mRNA, are clustered in a short 

region (the C region) near the 3’ end of the osk mRNA. To better understand the 

role of the C region, I searched for proteins that bind specifically to this region 

and I found BSF. Binding assays to mutant RNAs suggested that BSF does not 

act in the noncoding function of osk mRNA. To test for a role for BSF in 

regulation of Osk protein expression, I used two complementary approaches, 

reducing the BSF level or disrupting BSF binding to the osk mRNA. Both 
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generated similar results: a reduction or loss of posterior Osk protein and osk 

mRNA in late oogenesis and early embryogenesis, while the level of osk mRNA 

was not affected. My work suggests that BSF could act in a late phase of osk 

mRNA localization or translational activation.  

Localization of osk mRNA to the posterior pole of the oocyte is achieved 

by multiple transport steps. One is mRNA transport from the nurse cells to the 

oocyte. Although cis-acting elements including the oocyte entry signal (OES) in 

the osk mRNA 3’ UTR have been implicated in mRNA oocyte transport, the 

precise mechanisms remain unknown. Here, I show that the clusters of Bru 

binding sites in the osk mRNA 3’ UTR required for translational regulation confer 

oocyte transport on a reporter mRNA. However, neither Bru sites nor the OES 

are essential for oocyte transport of osk mRNA. This suggests that there are 

multiple mechanisms redundantly acting in oocyte transport. 
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Chapter 1: General Introduction 

Asymmetric protein accumulation is crucial for establishing body axes in 

animal development, and often relies on the mechanisms of mRNA localization 

and translational regulation during mRNA transport. We are interested in osk 

regulation. Oskar (Osk) protein is a posterior patterning determinant in 

Drosophila. Accumulation of Osk only at the posterior pole of the oocyte is 

required for embryonic abdomen and germline formation. This restricted pattern 

of Osk accumulation is achieved by multiple regulatory processes, including 

mRNA localization, translational repression during mRNA localization, and 

translational activation once the mRNA is localized at the posterior pole of the 

oocyte. Various cis-acting elements and trans-acting factors mediating these 

regulatory processes have been identified, and their functions have been studied. 

However, despite this progress many questions remain and there must be 

additional components that have not yet been identified. Obtaining a more 

complete understanding of this paradigm will provide further insights into the 

fundamental mechanisms underlying local gene expression, which is essential in 

polarized cells in various biological processes.   

 

DROSOPHILA OOGENESIS 

Drosophila oogenesis is a valuable model system for the detailed study of 

mRNA localization and translation. A single ovary contains all of the 

developmental stages, simply organized from stem cells to mature eggs. The 

cells in which the mRNAs and proteins appear are relatively large, which allows 

us to easily track changes in the movements and accumulation of the mRNAs 
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and proteins from stage to stage. In addition, availability of the powerful genetic 

techniques and a wide variety of mutants makes this system useful for studying 

the mechanisms underlying gene regulation.  

Drosophila oogenesis is divided into 14 morphologically distinct stages 

(Fig. 1.1A). A female Drosophila has a pair of ovaries, each made up of ~18 

ovarioles. A single ovariole is a series of egg chambers, the structural and 

functional units of oogenesis. At one end of the ovariole is the germarium. At the 

anterior tip of the germarium, germline stem cell divisions occur to generate a 

new stem cell and a stem cell daughter called a cystoblast. Cystoblasts undergo 

four mitotic divisions, with incomplete cytokinesis, to produce a cyst of 16 cells 

that are interconnected by cytoplasmic bridges called ring canals. This cluster of 

germline cells is surrounded by a single layer of somatic follicle cells, to make the 

egg chamber. Only one of the 16 germline cells develops into an oocyte, while 

the remaining 15 cells become nurse cells with polyploid nuclei (Fig. 1.1B). The 

nurse cells are highly active in transcription and translation, producing mRNAs 

and proteins that are transported into the developing oocyte through the ring 

canals to aid oocyte maturation. On the other hand, the oocyte nucleus forms a 

compact structure called the karyosome, and remains transcriptionally quiescent 

until the mature egg is laid and activated. Toward the end of oogenesis, the 

nurse cells degenerate and expel their cytoplasm into the oocyte, a process 

called nurse cell dumping. Finally, the nurse cells undergo apoptosis (reviewed in 

(Bastock and St Johnston, 2008; Riechmann and Ephrussi, 2001)). 
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BODY PATTERN FORMATION IN DROSOPHILA 

Establishment of body axes requires a restricted protein accumulation, 

which can be initiated by localizing specific mRNAs to particular subcellular 

regions. mRNA localization is often coupled to translational repression to prevent 

ectopic or precocious expression of the protein. In Drosophila, embryonic body 

axes are specified during oogenesis, and rely on localization of four key mRNAs, 

oskar (osk), nanos (nos), bicoid (bcd), and gurken (grk), to particular cytoplasmic 

regions of the oocyte (reviewed in (Johnstone and Lasko, 2001))(Fig. 1.1B).  

The anterior-posterior (AP) patterning of the Drosophila embryo requires 

localization of bcd mRNA to the anterior tip of the oocyte (Berleth et al., 1988) 

and localization of osk and nos mRNAs to the posterior pole of the oocyte 

(Ephrussi et al., 1991; Gavis and Lehmann, 1992; Kim-Ha et al., 1991). The bcd 

and nos mRNAs are present throughout oogenesis, but their translation is 

repressed. After fertilization, translational repression is relieved and the proteins 

are produced in the embryo in opposing gradients. Bcd protein, responsible for 

head and thorax formation, accumulates at the anterior (Berleth et al., 1988). Nos 

protein, responsible for germline and abdomen formation, accumulates at the 

posterior (Lehmann and Nusslein-Volhard, 1991). The anterior-to-posterior Bcd 

gradient is mainly achieved through bcd mRNA localization at the anterior (Dilao 

and Muraro, 2010; Driever and Nusslein-Volhard, 1988; Little et al., 2011). In 

contrast, the posterior-to-anterior Nos gradient is achieved through both mRNA 

localization at the posterior and translational repression of nos mRNA outside the 

posterior region (Bergsten and Gavis, 1999)(reviewed in (Lasko, 2012)).  

osk mRNA localizes to the posterior pole of the oocyte (Kim-Ha et al., 

1991). Translation of unlocalized osk mRNA is highly repressed. Only at the 
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posterior, it begins to be translated to produce Osk protein responsible for 

assembly of the germ/pole plasm, a specialized cytoplasm containing RNP 

complexes essential for embryonic posterior patterning and germ/pole cell 

formation (Ephrussi and Lehmann, 1992; Kim-Ha et al., 1995; Markussen et al., 

1995). Embryos lacking Osk at the posterior fail to form both abdomen and germ 

cells (Lehmann and Nusslein-Volhard, 1986), while embryos having mislocalized 

Osk at the anterior have ectopic abdomen and germ cells (Ephrussi and 

Lehmann, 1992; Smith et al., 1992). Therefore, tightly regulated osk mRNA 

localization and Osk expression is required for Drosophila development.  

grk mRNA localizes to the posterior of the oocyte during early oogenesis, 

and to the anterodorsal corner of the ooctye during mid-oogenesis (Johnstone 

and Lasko, 2001). This distinct grk mRNA localization contributes to both 

anteroposterior and dorsoventral pattern formation. Grk protein, a transforming 

growth factor (TGF)-α homolog, locally activates the epidermal growth factor 

receptor (EGFR) on the surrounding follicle cells. Early in oogenesis, posteriorly 

positioned Grk activates EGFR signaling in surrounding follicle cells to adopt the 

posterior fate, which in turn induces AP axis specification (Gonzalez-Reyes et al., 

1995; Roth et al., 1995). During mid-oogenesis, anterodorsally positioned Grk 

activates EGFR signaling in surrounding follicle cells to adopt the dorsal fate, 

which in turn initiates DV axis specification (Neuman-Silberberg and Schupbach, 

1993).  

 

OSKAR MRNA LOCALIZATION 

osk mRNA is transcribed in nurse cell nuclei and transported to the oocyte 

through the ring canals. During stages from 1 to 7, osk mRNA is highly 
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concentrated in the oocyte. At stage 8, the oocyte begins to expand, and osk 

mRNA is transiently concentrated at the anterior of the oocyte. From stage 9 

onward it specifically accumulates at the posterior pole of the oocyte (Fig. 1.2A) 

and remains localized until early embryogenesis (Ephrussi et al., 1991; Kim-Ha et 

al., 1991). Therefore, osk mRNA localization to the posterior pole of the oocyte 

can be separated into different steps: transport from the nurse cell nucleus to the 

cytoplasm, transport from the nurse cell cytoplasm to the oocyte, transport to the 

posterior pole of the oocyte, and finally anchoring at the posterior cortex of the 

oocyte. Various cis-acting elements and trans-acting factors acting in the different 

steps have been identified and studied. However, the exact molecular 

mechanisms mediated by them still need to be elucidated. One part of my work 

revealed a novel form of osk mRNA transport from nurse cells to the oocyte 

during early oogenesis. Another part of my work, on the role of BSF, raises the 

possibility that BSF acts in osk mRNA localization or anchoring during late 

oogenesis. To provide the context for those studies, I explain what is known 

about the mechanisms of osk mRNA localization.  

In the nurse cell nucleus, osk mRNA is transcribed and associates with 

several hnRNP proteins (Hrp48, Squid (Sqd), and Glorund (Glo)), to make an 

initial RNP complex (St Johnston, 2005). Exon junction complex (EJC) 

components (Mago nashi (Mago), Y14, and eIF4Alll) are associated with the osk 

mRNA/hnRNP complex (Hachet and Ephrussi, 2001; Mohr et al., 2001; Palacios 

et al., 2004), which is exported into the nurse cell cytoplasm in an RNA helicase 

UAP56-dependent manner (Meignin and Davis, 2008). For the most part, the 

functional significance of assembling these factors with osk mRNA in the nucleus 

remains unclear. An exception concerns the factors involved in pre-mRNA 
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splicing: splicing the osk pre-mRNA first intron and deposition of the EJC 

components are crucial for osk mRNA localization to the posterior pole of the 

oocyte (to be discussed in more detail below).   

From the nurse cell cytoplasm, osk mRNA is transported to the oocyte 

(simply referred as oocyte transport). This step depends on sequences within the 

osk mRNA 3' UTR (Kim-Ha et al., 1993). Recently, these elements were more 

precisely mapped and the oocyte entry signal (OES) was identified. The 

secondary structure and ‘A/U richness’ within the OES sequences were shown to 

be required for the oocyte transport of the reporter mRNA (Jambor et al., 2014). 

However, it is still unknown how OES works. It could act as a scaffold to recruit 

proteins essential for oocyte transport. Although the OES was required for oocyte 

transport of a reporter mRNA containing a part of the osk 3' UTR, it remains 

unknown whether the OES is necessary in the context of an otherwise intact osk 

mRNA.  

In addition to the cis-acting element, osk mRNA oocyte transport depends 

on the minus-end-directed motor Dynein complex, including Dynein heavy chain 

(Dhc), Bicaudal D (Bic-D), and Egalitarian (Egl). Disruption of these factors 

abrogated oocyte transport (Clark et al., 2007; Ephrussi et al., 1991; Mach and 

Lehmann, 1997; McGrail and Hays, 1997; Suter and Steward, 1991; Swan et al., 

1999). In contrast, disruption of plus-end-directed transport by mutating kinesin-1 

did not disrupt oocyte transport. Instead, osk mRNA localization to the posterior 

of the oocyte was affected (Brendza et al., 2000; Cha et al., 2002). These results 

suggest that two distinct microtubule-dependent pathways are involved in osk 

mRNA transport: first, minus-end-directed, dynein-dependent oocyte transport, 

and then plus-end-directed, kinesin-1-dependent posterior localization.  
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Once osk mRNA is transported from nurse cells into the oocyte, it 

localizes to the posterior pole of the oocyte (simply referred as posterior 

localization). As mentioned above, deposition of the Exon junction complex (EJC) 

on the osk mRNA is involved in mRNA posterior localization. The EJC is a multi-

protein complex that binds to mRNA upstream of exon-exon junctions following 

splicing, and is thought to remain bound to the mRNA until the first round of 

translation (Tange et al., 2005). The core EJC components Mago nashi (Mago), 

Y14, Tsunagi, and eIF4Alll and additional cytoplasmic protein Barentz (Btz) are 

crucial for osk mRNA posterior localization. Mutation of any one of them disrupts 

posterior localization (Hachet and Ephrussi, 2001; Mohr et al., 2001; Palacios et 

al., 2004). It is uncertain how the EJC components act in osk mRNA posterior 

localization. The EJC was suggested as a candidate protein complex that links 

mRNA to the microtubule motor proteins (Trucco et al., 2009), although 

subsequent work argues against this (Trucco et al., 2010). EJC components may 

serve as a landmark for recruiting other essential localization factors to osk 

mRNA. This can be supported by the evidence that eIF4Alll physically interacts 

with cytoplasmic localization factor Btz in vitro, and an eIF4Alll mutant enhanced 

the defect of osk mRNA posterior localization caused by btz mutation (Palacios et 

al., 2004).  

Splicing contributes to osk mRNA posterior localization not only by EJC 

deposition. In addition, splicing of the first intron is necessary. Splicing of the first 

intron creates a 28 nt stem-loop structure named spliced osk localization element 

(SOLE), by joining of the last 18 nt of exon 1 and first 10 nt of exon 2. Posterior 

localization is mediated by the stem-loop secondary structure of the SOLE, not 
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by its sequence (Ghosh et al., 2012). Taken together, splicing has a dual function 

in osk mRNA posterior localization, assembling the SOLE and loading the EJC.  

Besides EJC components, osk mRNA posterior localization requires 

various trans-acting factors, and some of them bind directly to the osk mRNA 3’ 

UTR. One example is Staufen (Stau). Stau is an RNA binding protein that 

colocalizes with osk mRNA throughout oogenesis and is required for osk mRNA 

posterior localization (Kim-Ha et al., 1991; Martin et al., 2003). Interestingly, Stau 

is also required for osk mRNA translation and this function is independent of its 

role in mRNA localization (Micklem et al., 2000). Although how Stau acts is still 

under investigation, the different domains of Stau are implicated in different roles. 

Stau contains five double-strand RNA-binding domains (dsRBDs). Among them, 

dsRBD2 is involved in osk mRNA posterior localization, and dsRBD5 is involved 

in translational activation (Micklem et al., 2000). Recently, three types of stem-

loop secondary structures named Staufen recognized structures (SRS) in the 3’ 

UTRs were predicted by genome-wide analysis of the Stau-associated mRNAs. 

Among three types of SRSs (type l, ll, and lll), osk mRNA carries four Type ll 

SRSs and one Type ll SRS in the 3’ UTR, suggesting the direct binding of Stau to 

osk mRNA (Laver et al., 2013).  

Another trans-acting factor is Exuperantia (Exu). Exu was shown to be 

present in a large osk-containing RNP particle. Mutation of exu disrupted osk 

mRNA localization both in nurse cells and the oocyte during stages 9 and 10 of 

oogenesis, suggesting that Exu acts in osk localization both in nurse cells and 

the oocyte. Because the exu mutants reduced but did not eliminate osk mRNA 

localization, the contribution of Exu is expected to be redundant with other 

unknown localization mechanisms (Wilhelm et al., 2000). 
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Once osk mRNA reaches at the posterior pole, it is captured and anchored 

at the posterior cortex to prevent its diffusion into cytoplasm. Actin-based motor 

Myosin-V (Myo V) is needed for anchoring of osk mRNA and Osk protein at the 

posterior cortex, and mainly associates with the osk mRNA transport complex at 

that position. Myo V appears to act in the final short-range movements in the 

posterior, following the long-range microtubule-based transport of osk mRNA. 

Myo V interacts with Kinesin heavy chain (Khc) and negatively regulates Kinesin 

activity in osk mRNA localization, suggesting an antagonizing role of Myo V in 

microtubule organization. Taken together, coordination of microtubule- and actin-

based motor activities may be required for correct osk mRNA posterior 

localization and anchoring (Krauss et al., 2009).  

Interestingly, Osk protein itself acts in anchoring. osk mRNA produces two 

protein isoforms, Long and Short Osk, which have distinct functions in pole plasm 

assembly at the posterior of the oocyte. Short Osk acts in recruiting pole plasm 

components (Markussen et al., 1995), while Long Osk acts in anchoring of the 

pole plasm components including osk mRNA and Short Osk at the posterior 

cortex (Vanzo and Ephrussi, 2002). Recently, the two Osk isoforms were shown 

to stimulate endocytosis at the posterior of the oocyte. This leads to initiation of 

actin remodeling, and the formation of long F-actin projections emanating from 

cortical F-actin bundles at the posterior pole of the oocyte. This event is important 

for anchoring of osk mRNA and Osk protein at the posterior cortex (Vanzo et al., 

2007).  

Consistent with the requirement of actin remodeling in anchoring, several 

actin-associated proteins such as Bifocal and Homer (Babu et al., 2004), and 

several proteins involved in endocytosis such as Rabenosyn-5 (Tanaka and 
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Nakamura, 2008) and Rab11 (Dollar et al., 2002; Jankovics et al., 2001) were 

found to be involved in osk mRNA anchoring. However, the molecular functions 

of them are still unknown, such as how they associate or interact with osk mRNA, 

and whether specific sequences in the osk mRNA (cis-acting elements) are 

involved in its anchoring. 

Distinct from the motor-dependent directional transport along the 

cytoskeleton elements, the bulk cytoplasmic flows that occur in the oocyte during 

the later stages of oogenesis have been suggested to underlie another form of 

osk mRNA localization (Glotzer et al., 1997). Fluorescently labeled osk mRNA 

that is injected into live oocytes at late stage 9-11 first disperses throughout the 

cytoplasm, then accumulates at the posterior pole. Injected osk mRNA can be 

transiently localized at the posterior, even in the absence of Osk protein. 

However, this localization disappears by stage 10 if Osk protein is not present. 

This suggests that initial posterior localization does not require anchoring 

(Glotzer et al., 1997).  

In summary, transport of the osk mRNA throughout oogenesis involves 

different steps and different mechanisms. Transport to the oocyte relies on the 

cis-acting elements in the 3’ UTR and a minus-end-directed, dynein-dependent 

transport. By contrast, osk mRNA posterior localization depends on plus-end-

directed, kinesin-1-dependent transport. Splicing of the first intron is required for 

posterior localization by assembling SOLE and by depositing the EJC 

components. Other proteins, including Btz, Stau, and Exu, mediate osk mRNA 

posterior localization. Following the microtubule-dependent long-range 

movement, osk mRNA is captured at the posterior cortex, presumably by actin-

dependent short-range movement. Finally, the osk mRNA is tightly anchored at 
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the posterior cortex mediated by F-actin cytoskeleton remodeling and 

endocytosis. Osk protein itself acts in osk mRNA and Osk protein anchoring by 

stimulating actin dynamics and endocytosis at the posterior. In addition to 

directed motor-dependent movement, bulk cytoplasmic flow also contributes to 

the late phase of osk mRNA localization.  

 

OSKAR MRNA TRANSLATION 

Restricted Osk accumulation can be achieved by a complex and 

coordinated program of osk mRNA localization and translational control. 

Translation is divided into two phases: translational repression during mRNA 

transport to the posterior pole of the oocyte, and translational activation after 

reaching the posterior (Kim-Ha et al., 1995; Markussen et al., 1995; Rongo et al., 

1995). My work on the role of BSF raises the possibility that BSF acts in osk 

mRNA translational activation during later stage of oogenesis. Here, I explain 

what is known about mechanisms regulating osk mRNA translation.  

 

Translational repression of osk mRNA during its transport:  

Bruno (Bru) was the first protein shown to act in osk mRNA translational 

repression (Kim-Ha et al., 1995). Bru is a nucleo-cytoplasmic shuttling protein 

and is thought to bind to the osk mRNA in the nurse cell nuclei (Snee et al., 

2008). There are multiple Bru binding sequences in the osk 3’ UTR: the Bruno 

response elements (BREs)(Kim-Ha et al., 1995), and the type ll and type lll 

binding sites (Reveal et al., 2010). All of these sites are clustered in two separate 

regions of the 3’ UTR, named the AB and C regions. Mutation of the BREs in the 
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AB and C regions reduced Bru binding in vitro and induced precocious 

expression of Osk in the oocyte in vivo (Kim-Ha et al., 1995). This implicated Bru 

in repression of translation during mRNA localization. Two models have been 

proposed to explain how Bru acts in repression. The first model is that Bru 

recruits Cup, a protein that binds to and inactivates eIF4E (Nakamura et al., 

2004). The second model is that Bru oligomerizes multiple osk mRNAs into large 

silencing particles that are inaccessible to the translational machinery 

(Chekulaeva et al., 2006).  

The first model was suggested by data showing Bru interacts with Cup, 

which in turn interacts with eIF4E (Nakamura et al., 2004; Wilhelm et al., 2003; 

Zappavigna et al., 2004). Formation of the translation initiation complex is 

enhanced by the interaction between the cap-binding protein eIF4E and the 

scaffold protein eIF4G (reviewed in (Jackson et al., 2010)). Therefore, disrupting 

their interaction has been considered as a common way to inhibit translation 

(Haghighat et al., 1995; Mader et al., 1995). Cup is an eIF4E-binding protein 

(eIF-BP) and competes with eIF4G for binding to the same surface on eIF4E 

(Zappavigna et al., 2004). Mutation of cup caused precocious Osk expression 

(Nakamura et al., 2004; Wilhelm et al., 2003). This suggested that Cup is 

involved in repression of osk mRNA translation during mRNA transport. In 

addition, Cup physically interacts with Bru in vivo (Nakamura et al., 2004). 

Therefore, the model is that Bru binds to the osk mRNA 3’ UTR, recruits Cup, 

which then inhibits the molecule of eIF4E bound to the other end of the same 

molecule of osk mRNA (Nakamura et al., 2004). This model is appealing, but has 

not been rigorously tested. For example, a stronger case could be made by 

selectively preventing the Bru/Cup interaction.  
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The second model was suggested by data showing that Bru promotes in 

vitro oligomerization of an RNA consisting of a short coding region (an epitope 

tag) fused to two copies of the AB region. When tested in an in vitro translation 

system this RNA forms a large particle with Bru, and is not associated with 

ribosomal subunits (Chekulaeva et al., 2006). The model that osk mRNA is co-

packaged in a large RNP in vivo is supported by hitchhiking, the phenomenon in 

which osk mRNA can confer localization on another mRNA containing the osk 3’ 

UTR but is not itself able to localize (Hachet and Ephrussi, 2004). This suggested 

a link between two RNAs, either by direct interaction or an interaction mediated 

by a protein. The silencing particle model implicates Bru as the protein that 

mediates the link between RNAs. However, a subsequent study showed that the 

BREs are neither required nor sufficient for hitchhiking in vivo (Besse et al., 

2009). It isn’t clear why Bru mediates RNA oligomerization in vitro but appears 

not to do so in vivo. One possible explanation is that the abnormally high density 

of Bru binding sites in the RNA used for the in vitro assays leads to an unnatural 

assembly of artificial particles.  

Although Bru does not appear to oligomerize osk mRNA in vivo, another 

protein does appear to have this function. Polypyrimidine tract binding protein 

(PTB) colocalizes with osk mRNA during oogenesis, and directly binds to multiple 

regions of the osk 3’ UTR. heph is the gene that encodes PTB. In a heph mutant 

the size of endogenous osk RNP particles was smaller, and hitchhiking of the osk 

3’UTR containing RNAs to endogenous osk mRNA was reduced. Furthermore, 

the heph mutant showed premature Osk expression during stages 5-6 of 

oogenesis. Taken together, PTB seems to be involved in osk mRNA translational 

repression presumably through the formation of a large silencing particle (Besse 
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et al., 2009). Although the repression mechanism by PTB remains unclear, PTB 

does not seem to act in recruitment of other translational repressors because Bru 

binding to osk mRNA is not abrogated in heph mutant (Besse et al., 2009). 

Mammalian PTB has been shown to act as a chaperone promoting intra- and 

intermolecular RNA interactions (Auweter and Allain, 2008; Mitchell et al., 2005; 

Song et al., 2005). Therefore, it is hypothesized that the chaperone activity of 

PTB may be essential for the multimerization of osk mRNAs, thereby forming the 

densely packed osk RNP particles inaccessible to the translation machinery 

(Besse et al., 2009). 

Bicaudal C (Bic-C) is another factor implicated in osk mRNA translational 

repression. Bic-C contains five copies of the KH domain, an RNA binding motif. A 

mutation within a single KH domain not only weakens RNA binding in vitro but 

also showed premature Osk expression (Saffman et al., 1998). Moreover, Bic-C 

overexpression disrupted posterior Osk accumulation (Chicoine et al., 2007). Bic-

C has been shown to directly bind to the 5’ UTR of Bic-C mRNA and recruits the 

CCR4 deadenylase complex to negatively regulate its own expression (Chicoine 

et al., 2007). Taken together, it is possible that Bic-C binds to osk mRNA to 

repress translation by deadenylating the poly(A) tail. However, osk mRNA was 

not highly enriched among mRNAs that copurify with Bic-C, and so the cause of 

depression of osk mRNA translation in Bic-C mutant ovaries remains uncertain.  

 

Translational activation of osk mRNA at the posterior pole of the oocyte.  

Once osk mRNA is localized, translation begins, which allow us to detect 

posterior Osk from stage 9 of oogenesis (Kim-Ha et al., 1995)(Fig. 1.2B). 

However, this initial Osk production is not enough for posterior body patterning 
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and germ cell formation. Most of Osk is produced after stage 10A of oogenesis 

through continued expression, and this later phase of Osk production is crucial 

for body patterning and germ cell formation (Snee et al., 2007). With multiple 

forms of repression and different phases of translation, multiple forms of 

translational activation may exist.  

One form of activation, called regional activation, involves the inhibition of 

the repressive activity of Bru. Regional activation occurs in a broad posterior 

region in the oocyte, does not depend on localization of the mRNA, and does not 

require any cis-acting element in the mRNA. This form of activation is disrupted 

by Bru mutations that prevent Bru dimerization, suggesting that dimerization of 

Bru inhibits its ability to repress translation. Loss of Bru dimerization does not 

affect translation of endogenous osk mRNA, and so this form of activation is not 

essential and is likely redundant with another form of activation (Kim et al., 2015).  

Other forms of activation are mediated by cis-acting elements, including 

the IBEs and certain Bru binding sites. In addition, several proteins including Orb, 

Vasa, and Staufen are also implicated in activation. 

Imp-binding elements (IBEs) are sequences located in the 3’ UTR that are 

required for translational activation. The IBEs are binding sites for Imp protein, 

the Drosophila homolog of insulin growth factor ll mRNA binding protein (IMP). 

There are 13 copies of the consensus IBE motif (UUUAY) in the osk 3’ UTR. 

Mutation of all IBEs, or of certain subsets, prevented Osk production at any stage 

of oogenesis, leading to a strong posterior patterning defect in embryos. The 

IBEs act in translation, not mRNA localization, as the initial posterior localization 

of the IBE mutant mRNAs was normal (Munro et al., 2006). Due to the absence 

of Osk, the mRNAs were not anchored properly at the posterior cortex of the 



 16 

oocyte. These results suggest that IBEs are critical for activation of translation at 

the posterior. Although Imp directly binds to IBEs and colocalizes with osk 

mRNA, the role of IBEs in osk mRNA translational activation is independent of 

Imp (Munro et al., 2006). It is still unknown whether the IBEs mediate binding of 

other factors, or whether IMP serves other roles.  

Interestingly, the C region BREs function not only in repression, but also 

have a role in translational activation (Reveal et al., 2010). While mutations of 

both the AB and C BREs induced precocious Osk expression in the oocyte, 

mutations of just the C BREs reduced posterior Osk accumulation at stage 9 

onward. Because osk mRNA localization and translation are tightly coupled and 

depend on one another, it is often difficult to distinguish the two processes. 

However, osk mRNA localization was normal in the C BREs mutant. Therefore, 

the C BREs acts specifically in translation rather than localization (Reveal et al., 

2010). How the C BREs contribute to activation is still unclear. As the C BREs 

are near the 3’ end of the mRNA, polyadenylation was suggested as a possible 

role of the C BREs. However, the length of osk mRNA poly(A) tail is not changed 

when the C BREs are mutated. Similarly, the type ll Bru binding sites in the C 

region (C ll) are also required for translational activation (Reveal et al., 2010). 

Interestingly, the degree of the activation defect caused by the C ll mutation is 

stronger than caused by the C BREs mutation, even though Bru binding to the C 

ll is much weaker than binding to the C BREs. Therefore, another activation 

factor, in addition to Bru, may also bind to the C ll sites.  

The role of Bru could involve recruiting other activation factors. Bru 

physically interacts with Vasa (Webster et al., 1997) and Orb (Castagnetti and 

Ephrussi, 2003), two factors implicated in osk mRNA translational activation.  
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Vasa (Vas) is involved in osk mRNA translational activation during the late 

stages of oogenesis. A vas mutant showed normal accumulation of Osk at stage 

10 of oogenesis (Harris and Macdonald, 2001), but the total level of Osk was 

largely reduced in the ovary as judged by western blot analysis (Markussen et al., 

1995; Rongo et al., 1995). This suggests that Vas acts in a later phase of Osk 

expression rather than activation at stage 9-10. It is still unknown how Vas works. 

Vas is an ATP-dependent, DEAD-box RNA helicase. Another DEAD Box 

helicase, eIF4A, melts secondary structure in the mRNA 5’ UTR, which helps 

ribosome scanning (Gingras et al., 1999). Similarly, Vas may activate translation 

by restructuring the osk mRNA. Vas colocalizes with osk mRNA at the oocyte 

posterior from stage 9 of oogenesis. Association of Vas with osk mRNA could be 

achieved by either Bru or direct binding to osk mRNA. Bru was shown to directly 

interact with Vas (Webster et al., 1997), which suggests that Bru recruits Vas to 

osk mRNA. On the other hand, Vas was shown to bind directly and specifically to 

the U-rich motif within the mei-P26 3’ UTR to activate its translation (Liu et al., 

2009). Similar to this, Vas could be directly recruited to osk mRNA by a U-rich 

motif present in the osk 3’ UTR.  

Another way in which Bru could mediate activation is through recruitment 

of Orb to the osk mRNA. Orb is the Drosophila homolog of Xenopus CPEB, a 

protein that binds to a U-rich cytoplasmic polyadenylation element (CPE) (Hake 

and Richter, 1994; Stebbins-Boaz et al., 1996) to recruit and stabilize the 

cytoplasmic polyadenylation machinery (Mendez et al., 2000). In many species, 

there is a correlation between the translational status of an mRNA and the length 

of its poly(A) tail (reviewed in (Richter, 1999)). The mRNA active in translation 

has a long poly(A) tail, while the mRNA repressed in translation has a short 
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poly(A) tail (Lieberfarb et al., 1996; Salles et al., 1994). One study showed that 

osk mRNA requires a long poly(A) tail for the most efficient translation with in 

vitro translation systems, although how this relates to the situation in vivo is not 

entirely clear. The length of the osk mRNA poly(A) tail is still controversial. Orb 

does appear to have a role in activation of osk mRNA translation by regulating 

the poly(A) tail (Castagnetti and Ephrussi, 2003; Chang et al., 1999). In orb 

mutant ovaries osk mRNA has a somewhat shortened poly(A) tail and Osk 

protein levels are reduced. One important question is whether this function of Orb 

serves as a prerequisite for osk mRNA translation, or if it is an event that occurs 

specifically at the posterior pole of the oocyte for local activation of translation. A 

comparison of osk mRNAs extracted from two groups of egg chambers, early (up 

to stage 5, when osk mRNA is not translated) and late (5-14, when osk mRNA is 

translated), showed that both groups had poly(A) tails of similar lengths. This 

argues that Orb-dependent polyadenylation does not occur solely at the time 

when osk mRNA translation occurs, and therefore serves as a prerequisite but 

does not immediately trigger translation (Castagnetti and Ephrussi, 2003). 

Furthermore, the osk mRNA translation defect in orb mutants might be, to some 

extent, due to an mRNA localization defect. Over 30% of oocytes of a 

hypomorphic orb mutant showed abnormal localization of osk mRNA (Castagnetti 

and Ephrussi, 2003), and a strong orb mutant failed to localize osk mRNA to the 

posterior pole of the oocyte (Christerson and McKearin, 1994). In this strong orb 

mutant microtubule organization was also disrupted (Martin et al., 2003). 

Therefore, Orb could stimulate osk mRNA translation by adding or maintaining 

the poly(A) tail, could act in osk mRNA localization by regulating microtubule 

organization, or both.  
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Interestingly, Orb interacts physically with Bic-C (a negative regulator of 

osk mRNA translation, presumably acting by deadenylating osk mRNA)(Saffman 

et al., 1998) and Bru (a negative/positive regulator of osk mRNA translation) 

(Castagnetti and Ephrussi, 2003). This supports the idea that regulation of 

poly(A) tail is used as one of the mechanisms regulating osk mRNA translation, 

although the experiments with Bru suggest otherwise.  

Like Orb, Staufen (Stau) is a protein involved in both osk mRNA 

localization and translation. Mutants of stau fail to localize osk mRNA, revealing a 

role in that process. Localization of osk mRNA is typically required for its 

translation, and so Stau has at least an indirect role in activation. Evidence for a 

more direct role came from experiments with the osk ABC BRE- transgene, which 

is defective in repression and produces Osk protein precociously and 

independent of mRNA localization. In the stau mutant the precocious translation 

of Osk from osk ABC BRE- was lost. Further evidence of a direct role for Stau in 

activation of osk mRNA translation came from analysis of engineered stau 

mutants. Stau contains five double-stranded-RNA-binding domains (dsRBDs). 

Mutation of dsRBD2 disrupted osk mRNA posterior localization. By contrast, 

mutation of dsRBD5 had no effect on osk mRNA localization, but disrupted 

translational activation (Micklem et al., 2000). Since dsRBD5 is not required for 

RNA binding, the contribution of Stau in osk mRNA translational activation is 

probably recruitment of other proteins that have not been identified yet (Micklem 

et al., 2000). 

In summary, osk mRNA translation is tightly regulated by many cis- and 

trans-acting factors. During mRNA localization, translation is repressed. Bru, 

Cup, and Bic-C are involved in repression. Once RNA reaches the posterior pole 
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of the oocyte, repression is relieved and translation is activated. One form of 

activation is inhibition of the repressive activity of Bru, which occurs in the 

posterior region of the oocyte and does not require mRNA localization or a 

regulatory element in the osk mRNA. Other forms of activation rely on cis-acting 

elements including the IBEs and the C region Bru binding sites. trans-acting 

factors including Vas, Orb, and Stau are involved in activation. Some of the 

proteins are involved in multiple processes. Orb and Stau acts in both osk mRNA 

localization and translational activation. Bru acts in both osk mRNA translational 

activation and repression. How these forms of activation occur remains unclear.  

 

OSKAR MRNA FUNCTION 

RNAs are typically categorized by their coding potential. One group 

consists of mRNAs. These RNAs have a coding function and encode proteins. 

Another group has no coding function. These RNAs can be involved in variety of 

biological processes such as gene expression at the levels of transcription, RNA 

processing, and translation, protection of genomes from foreign nucleic acids, 

and guidance for DNA synthesis or rearrangement. Mostly, noncoding RNAs 

perform their function as an RNA-protein complex. Examples include the 

ribosome, snRNPs, telomerase, and microRNAs. A ribozyme acts in an 

exceptional manner, as the RNA structure itself performs the enzymatic function 

(reviewed in (Cech and Steitz, 2014)). Xenopus VegT mRNA is an unusual 

example of an mRNA that performs both functions. As an mRNA, it contains long 

open reading frame encoding a transcription factor required for endoderm 

formation in Xenopus oocyte. VegT mRNA itself is also required for organization 

of the cytokeratin cytoskeleton in the vegetal cortex of the oocyte, however VegT 
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protein is dispensable for this structural function (Kloc et al., 2007; Kloc et al., 

2005).  

Another mRNA having both coding and noncoding function is Drosophila 

osk. As an mRNA, osk encodes a protein required for embryonic body patterning 

and germ cell formation (Ephrussi et al., 1991; Kim-Ha et al., 1991). In addition to 

this coding function, osk mRNA is also required for progression of oogenesis and 

formation of the karyosome in the oocyte. osk mutants that lack osk mRNA (osk 

RNA null mutants) arrest oogenesis and have fragmented karyosomes (Jenny et 

al., 2006). Osk protein is not required for this part of osk gene function because 

osk nonsense mutant alleles do not arrest oogenesis (Kim-Ha et al., 1991). 

Furthermore, expression of the osk 3’ UTR alone was sufficient to rescue the 

oogenesis arrest of osk RNA null mutants, indicating that the osk 3’UTR provides 

the noncoding RNA function (Jenny et al., 2006). 

Recently, essential noncoding functional elements in the osk 3’ UTR were 

identified (Kanke et al., 2015). The essential elements are clustered close 

together in the C region and are of three types. One type of essential element 

consists of the C region Bru binding sites. A second type of essential element is 

defined by two adjacent clusters of mutations, each altering 5 nucleotides. The 

factor or factors that bind this element is unknown. The third type of element 

consists of A-rich sequences, which appear to serve as binding sites for poly(A) 

binding protein (PABP). Mutation of these elements largely eliminated noncoding 

function, with phenotypes almost identical to those caused by complete absence 

of osk mRNA. Neither RNA levels nor the RNA accumulation pattern in early-

stage egg chambers was affected by mutation of these elements. Therefore, loss 

of the osk RNA noncoding function is not due to affecting RNA stability or RNA 
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distribution (Kanke et al., 2015). How this cluster of essential elements functions 

is not yet known.  

 

BICOID STABILITY FACTOR 

I found that Bicoid Stability Factor (BSF) binds to the osk RNA 3’ region 

involved in both regulation of osk expression and the noncoding function of osk 

mRNA. Here, I briefly explain BSF.  

BSF was previously identified as a cytoplasmic ovarian protein which 

bound to bcd mRNA 3’ UTR, and showed a redundant role in stabilization of bcd 

RNA during oogenesis (Mancebo et al., 2001). BSF is a member of the family of 

Leucine-rich pentatricopeptide repeat-containing (LRPPRC) proteins (Mancebo 

et al., 2001; Sterky et al., 2010). The pentatriocopeptide repeat (PPR) is a 

canonical 35 amino acid motif that functions as an RNA binding domain. It can 

appear in many copies in a single protein, repeated up to 30 times. The PPR 

protein family was initially found in plants (Small and Peeters, 2000). A large 

number of PPR proteins from plants have been discovered and shown to act in a 

wide range of RNA processing events, such as RNA editing, splicing, cleavage, 

and translation within chloroplasts and mitochondria (reviewed in (Schmitz-

Linneweber and Small, 2008)). Mammalian genomes have only a few members 

of this gene family, and their functions and molecular mechanisms have been 

partially elucidated. BSF as a LRPPRC protein is mainly found in mitochondria 

and this may be the predominant location at least in some tissues (Bratic et al., 

2011). Within mitochondria, reducing the level of BSF by RNAi knockdown (KD) 

affects mitochondrial transcription, mRNA polyadenylation, and translation (Bratic 
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et al., 2011). BSF was also reported to have a role in regulation of early zygotic 

genes expression in early embryogenesis by binding to a short consensus 

sequence in the 5’ UTR region of the DNA (De Renzis et al., 2007).   

Characterization of bsf gene expression patterns in Drosophila females 

shows the highest expression level in ovaries, with lower expression in other 

tissues (flybase website). A bsf mutant is lethal, and when tested in germ line 

clones arrests oogenesis at a very early stage of development (De Renzis et al., 

2007). Therefore BSF is required for Drosophila oogenesis. However, it still 

largely remains unknown what bsf functions are, both in ovaries and in other 

tissues. 

 

OVERVIEW OF DISSERTATION RESEARCH  

The main goal of my dissertation research is to elucidate the mechanism 

regulating osk expression by BSF, a protein that I found to bind to 3’ sequences 

in the osk mRNA. 

We identified essential elements for osk RNA noncoding function 

positioned in a short region (the C region) near the 3’ end of the osk mRNA. They 

are in close proximity to the elements required for mRNA translational activation. 

I initially searched for proteins that bind specifically to this region of the mRNA to 

better understand the roles of this region. BSF was found as a binding factor. 

Because two mutations in osk mRNA that reduce BSF binding have no effect on 

the noncoding function of osk RNA, BSF does not appear to be required for this 

function. However, such specific binding is strongly suggestive of a functional 

role. Furthermore, the close proximity of the BSF binding site to Bru binding sites 
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required for activation of osk mRNA translation raises the possibility that BSF has 

a similar role. I tested this possibility using two complementary approaches: 

reducing BSF levels and disrupting BSF binding. 

Knock down (KD) of bsf during oogenesis caused a decrease of Osk 

accumulation at the posterior pole of the oocyte during later oogenesis (after 

stage 10), and a decrease of both Osk protein and osk RNA accumulation at the 

posterior end during early embryogenesis with a consistent correlation between 

reduced protein and RNA. However, neither protein nor RNA accumulation was 

affected by bsf KD during oogenesis up to stage 10. Disruption of the interaction 

between BSF and osk mRNA by mutating the BSF binding sites generated 

similar results. Mutating the BSF binding sites did not affect RNA levels. This 

suggests that BSF does not act in osk mRNA stability. As longer poly(A) tails 

typically correlate with enhanced translation, I examined poly(A) tail length to test 

whether BSF directly affects translation. I found no decrease in poly(A) tail length 

of the mutant osk mRNA relative to control. According to the results so far, two 

possible roles of BSF could be suggested. BSF could act in osk mRNA 

localization. Because only localized osk mRNA is competent for translation, a 

defect in mRNA localization would lead to loss of Osk expression. Alternatively, 

BSF could act in a late phase of osk mRNA translational activation. Because Osk 

is required for osk mRNA anchoring to the posterior cortex, a defect in Osk 

expression would lead to dispersal of the mRNA. 

Interestingly, our results showed that the same cis-acting elements are 

required for different purposes at different times in Drosophila oogenesis. The 

essential elements for the osk RNA noncoding function acting in early in 

oogenesis are also crucial for osk mRNA translation later in oogenesis. It is 
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unknown how they act. The trans-acting factors bound to this region (such as 

Bru, BSF, and PABP) could act together for regulating osk translation or 

noncoding function. It will be worth finding binding partners of them, and it will be 

interesting to determine whether and how they all interact to regulate osk.  
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FIGURES  

 

 

 

 

Figure 1.1. Drosophila oogenesis 

A. A single ovariole. Egg chambers of increasing age are displayed from left to 
right. The germarium contains germline and somatic stem cells that produce cells 
in an egg chamber. Nurse cells degenerated near the end of oogenesis. 
B. An egg chamber contains germline-derived nurse cells and the oocyte 
interconnected by ring canals, and somatic follicle cells that surround the oocyte 
(and nuse cells at earlier stages). Three localized determinants are shown in a 
stage 10 egg chamber.  
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Figure 1.2. osk mRNA and Osk protein distributions during oogenesis 

A. osk mRNA is initially concentrated in the oocyte (arrows) during early 
oogenesis, and it eventually becomes localized to the posterior pole of the oocyte 
(arrowhead) from stage 9 onward. osk mRNA is red. 
B. Osk protein is not detected during early stages of oogenesis. Osk protein 
appears only at the posterior pole of the oocyte from stage 9 onward. DNA is red, 
Osk::HA is green. 
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ABSTRACT 

The Drosophila oskar (osk) mRNA is unusual in having both coding and 

noncoding functions. As an mRNA, osk encodes a protein which is deployed 

specifically at the posterior of the oocyte. This spatially-restricted deployment 

relies on a program of mRNA localization and both repression and activation of 

translation, all dependent on regulatory elements located primarily in the 3’ 

untranslated region (UTR) of the mRNA. The 3’ UTR also mediates the 

noncoding function of osk, which is essential for progression through oogenesis. 

Mutations which most strongly disrupt the noncoding function are positioned in a 

short region (the C region) near the 3’ end of the mRNA, in close proximity to 

elements required for activation of translation. We show that Bicoid Stability 

Factor (BSF) binds specifically to the C region of the mRNA. Both knockdown of 

bsf and mutation of BSF binding sites in osk mRNA have the same 

consequences: Osk expression is largely eliminated late in oogenesis, with both 

mRNA localization and translation disrupted. Although the C region of the osk 3’ 

UTR is required for the noncoding function, BSF binding does not appear to be 

essential for that function. 

 

INTRODUCTION 

One way to categorize RNAs is by their coding potential, or lack thereof. 

Members of one group, the mRNAs, have long open reading frames and are 

translated, thereby performing a coding function. The other group, consisting of 

RNAs without long open reading frames, has many members with no consistent 

size or organization. Such noncoding RNAs perform a wide variety of structural, 

regulatory and enzymatic functions (Cech and Steitz, 2014). Often, these coding 
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and noncoding roles are mutually exclusive. Most of the exceptions involve small 

ORFs, which can encode short peptides, in long noncoding RNAs 

(lncRNAs)(Andrews and Rothnagel, 2014; Bazzini et al., 2014; Anderson et al., 

2015). Rarely, more dramatic overlap in function has been observed for 

conventional mRNAs with long open reading frames. The Xenopus VegT mRNA 

encodes a transcription factor required for endoderm formation in the embryo. 

The same mRNA also has a structural role in organization of the cytokeratin 

cytoskeleton (Heasman et al., 2001; Kloc et al., 2005; Kloc et al., 2007). 

Depletion of VegT mRNA leads to fragmentation of the cytokeratin network in the 

vegetal cortex of the oocyte. Sequences within much of the mRNA appear to act 

redundantly in controlling the organization of the cytokeratin network, with a 

functional element contained within a 300 nt portion of the 3’ UTR sufficient to 

induce depolymerization of cytokeratin filaments (Kloc et al., 2011).  

A second mRNA with essential coding and noncoding functions is oskar 

(osk), from Drosophila. Osk protein is expressed specifically at the posterior pole 

of the oocyte and early embryo, where it is responsible for embryonic body 

patterning and germ cell formation (Lehmann and Nüsslein-Volhard, 1986; Kim-

Ha et al., 1991; Ephrussi et al., 1991). In the absence of Osk protein, oogenesis 

progresses normally except for the failure to assemble posterior pole plasm in the 

oocyte. Although eggs are produced, the embryos fail to form abdominal 

segments and die. This coding role for osk places substantial constraints on the 

mRNA sequence. The open reading frame is constrained by the need to encode 

Osk protein. In addition, noncoding regions are constrained by the elaborate 

regulation required to restrict Osk protein expression to a discrete subcellular 

domain: misexpression of Osk is just as lethal as loss of Osk (Ephrussi and 
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Lehmann, 1992; Smith et al., 1992). The osk mRNA is also needed, independent 

of its coding role, for progression through oogenesis. In the absence of osk 

mRNA a variety of defects emerge in the organization of the egg chamber, with 

oogenesis arrested and no eggs produced (Jenny et al., 2006; Kanke et al., 

2015). These defects are present well before the developmental stage when Osk 

protein first appears, and the osk RNA function does not require the osk coding 

region. Instead, the osk mRNA 3’ UTR mediates the noncoding function, placing 

constraints on the sequence of that region of the mRNA. 

Deployment of Osk protein specifically at the posterior pole of the oocyte 

involves a complex and coordinated program of mRNA localization and 

translational control. osk mRNA is transcribed in the nurse cells and transported 

into the oocyte through cytoplasmic bridges. Within the oocyte, osk mRNA is 

transiently enriched at different positions, culminating in persistent posterior 

localization starting at stage 9; this is when Osk protein first accumulates (Kim-

Ha et al., 1991; Ephrussi et al., 1991; Kim-Ha et al., 1995; Rongo et al., 1995; 

Markussen et al., 1995). Translational repression serves to prevent expression 

from osk mRNA that has not yet been localized, or has failed to become localized 

(Kim-Ha et al., 1995; Nakamura et al., 2001; Wilhelm et al., 2003; Nakamura et 

al., 2004; Besse et al., 2009). Once osk mRNA is localized, translational 

activation must then override repression and allow Osk protein to be made. Many 

factors and regulatory elements are required for this regulation (Lipshitz and 

Smibert, 2000; Besse and Ephrussi, 2008; Lasko, 2012), with most of the 

elements positioned in the 3’ UTR (Kim-Ha et al., 1993; Kim-Ha et al., 1995; 

Munro et al., 2006; Reveal et al., 2010; Vazquez-Pianzola et al., 2011; Jambor et 

al., 2014). Among the elements are a number of binding sites for Bru (BREs and 
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others), clustered in two regions of the 3’ UTR: the AB region (close to the coding 

region), and the C region (close to the 3’ end). Mutation of all the BREs disrupts 

translational repression, revealing the role of Bru as a repressor (Kim-Ha et al., 

1995). By contrast, mutation of only the C region cluster of BREs disrupts 

translational activation, implicating Bru in activation, as well as repression 

(Reveal et al., 2010). Similarly, mutation of the Bru type II binding sites (Reveal et 

al., 2011) in the C region also disrupts translational activation (Reveal et al., 

2010). 

The noncoding role of osk mRNA is mediated by the 3’ UTR (Jenny et al., 

2006). One part of this role is to sequester Bru, and this relies on the Bru binding 

sites that also mediate regulation (Kanke et al., 2015). Of greater importance to 

the noncoding requirement for osk mRNA are sequences positioned close to the 

mRNA 3’ end in the C region, including the Bru binding sites that activate 

translation. These C region Bru binding sites contribute to sequestration of Bru, 

but also play a separate and essential role in osk noncoding function (Kanke et 

al., 2015). Additional sequences essential for the noncoding function, which do 

not bind Bru, are positioned nearby. Some of the sequences in this region appear 

to act by binding poly(A) binding protein (PABP) (Vazquez-Pianzola et al., 2011; 

Kanke et al., 2015). However, the mutations which most strongly disrupt osk RNA 

function are not PABP binding sites, and the factor expected to bind them has not 

been identified (Kanke et al., 2015). 

To better understand the roles of the C region of the osk mRNA we 

searched for proteins which bind specifically to the essential sequences. Here we 

show that Bicoid Stability Factor (BSF), a protein previously found to act in 

stabilizing the bicoid mRNA (Mancebo et al., 2001), binds to the osk C region, 
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with binding dependent on sequences most critical for osk RNA function early in 

oogenesis. Surprisingly, we find that the same sequences are also required 

again, late in oogenesis, for regulation of osk expression. BSF mediates this later 

function, as shown in two complementary approaches. However, binding of BSF 

to the C region does not appear to be responsible for the early function, as 

certain mutations which substantially reduce BSF binding have no effect on the 

noncoding role of osk mRNA. Why regulatory and functional elements should be 

superimposed in the RNA sequence is an intriguing question, as the osk 3’ UTR 

is quite large and thus does not seem to be constrained in size.  

 

RESULTS 

Proteins that bind close to the 3' end of the osk mRNA 

To identify proteins that bind to the C region of the osk mRNA 3’ UTR, an 

affinity purification approach with a streptavidin-binding aptamer (S1 

aptamer)(Walker et al., 2008) was used. Transcripts consisting of the final 150 nt 

of the osk mRNA (the C region) fused to the S1 aptamer (oskC::S1) were bound 

to streptavidin beads and mixed with ovary extracts to allow assembly of RNP 

complexes. After washing and recovery of the beads (the pellet fraction), many 

proteins co-purified (Fig. 2.1A). These are expected to include a large number of 

non-specific binding proteins, in addition to proteins bound specifically. Indeed, 

purification using just the S1 RNA yielded a very similar collection of proteins, as 

judged by staining of total protein (Fig. 2.1A) and by detection of individual 

proteins (Fig. 2.1B). As an initial test to identify proteins bound specifically to the 

osk C region RNA, a parallel purification was performed with a mutant version of 
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the RNA, carrying the osk3'977-981 mutation that (in the context of the intact osk 

mRNA) largely abolishes osk RNA function (Kanke et al., 2015). One protein not 

bound to oskC3'977-981::S1, or to S1 alone, migrated with an apparent size of 

150 kDa. Mass spectrometry of the 150 kDa band identified Bicoid Stability 

Factor (BSF) as the most abundant protein. Western blot analysis of samples 

from the affinity purifications confirmed this identification (Fig. 2.1B). The western 

blots were also probed for Bru, which binds to sites within the C region. As 

expected, Bru did not bind the S1 RNA, but did bind both oskC::S1 and 

oskC3'977-981::S1 (Fig. 2.1B; Kanke et al., 2015)(the 977-981 mutation does not 

affect the Bru binding sites; Fig. 2.1D). 

Additional transcripts bearing other mutations were tested for BSF binding 

to examine whether the correlation between loss of BSF binding (Fig. 2.1C) and 

loss of osk RNA function (Fig. 2.1D) would be extended. Mutant oskC3’984-

988::S1 was as strongly defective as oskC3’977-981::S1, with BSF binding 

reduced to a background level. Mutants oskC3’970-974::S1 and oskC3’997-

1001::S1 also had substantially reduced BSF binding, although still above 

background. The remaining mutants, oskC3’990-994::S1 and oskC3’1004-

1008::S1, had strong BSF binding, similar to the wild type level (Fig. 2.1C). 

Comparison of the effects of mutations on BSF binding and noncoding osk RNA 

function reveals that two mutants - oskC3'970-974 and oskC3’997-1001 - were 

clearly impaired for BSF binding (with the stronger effect for oskC3'970-974), yet 

both retained a wild type level of osk RNA function (Fig. 2.1D; Kanke et al., 

2015). Thus, BSF binding appears not to be required for the noncoding osk RNA 

function, although we cannot exclude the possibility that the residual weak 

binding of these mutants is sufficient for this function. 
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bsf is required for accumulation of Osk protein 

Although BSF binding to the osk C region does not appear to be essential 

for the noncoding osk RNA function, such specific binding is strongly suggestive 

of a functional role. Furthermore, the close proximity of the BSF binding site to 

Bru binding sites required for activation of osk mRNA translation raises the 

possibility that BSF has a similar role. Characterization of Osk protein expression 

in a bsf mutant is problematic, as oogenesis is blocked at an early stage (De 

Renzis et al., 2007), while translation of osk mRNA occurs much later in 

oogenesis. A knock down (KD) approach could avoid this problem, as depletion 

of BSF might not occur quickly enough to interfere with its role early in 

oogenesis. The TRiP-bsf transgene (a strain from the Transgenic RNAi Project 

(TRiP), see Methods) was expressed in the female germ line under control of 

GAL4 drivers. In initial experiments the nosGAL4::VP16-nos.UTR driver, which is 

active at the earliest stages of oogenesis (Van Doren et al., 1998), was used. 

Most egg chambers failed to develop to the later stages (Fig. 2.6), consistent with 

the prior analysis of the bsf mutant (De Renzis et al., 2007). We therefore used 

the matalpha4-GAL-VP16 Gal4 driver, which is not strongly active very early in 

oogenesis. To assess the efficiency of bsf KD, BSF protein was monitored in 

ovaries and early stage embryos (prior to the onset of zygotic transcription) by 

western blot analysis. The level of BSF was reduced in ovaries, with a much 

stronger reduction in early-stage embryos (Fig. 2.2A). 

Osk protein expression was monitored in the bsf KD ovaries by 

immunodetection of endogenous Osk, or of Osk::HA expressed from an epitope-

tagged osk transgene (Kim et al., 2015; Kanke and Macdonald, 2015); both 
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methods gave similar results. In the bsf KD ovaries, Osk protein expression 

appeared normal up to stage 10 (Fig. 2.2B, Fig. 2.7), when deposition of the 

vitelline membrane interferes with antibody accessibility. Further reducing BSF 

levels in flies also heterozygous for the bsf SH1181 mutation also had no effect 

(Fig. 2.2B, Fig. 2.7). Consistent with this, the accumulation of osk RNA was also 

similar to that in wild type egg chamber up to stage 10 (Fig. 2.2C). 

To examine the later stages of oogenesis, when most of Osk protein is 

made, an osk::GFP transgene with the entire osk gene and regulatory elements 

was used (Fig. 2.2D)(Snee et al., 2007). Detection of GFP fluorescence 

circumvents the problem of the vitelline membrane restricting access for 

antibodies. In a wild type background Osk::GFP appeared at the posterior pole of 

stage 9 oocytes, just as for endogenous Osk. This distribution persisted for the 

remainder of oogenesis, with the signal strength increasing at the later stages. 

For the bsf KD egg chambers, the early pattern of Osk::GFP was similar to that in 

wild type. However, at later stages of oogenesis defects in Osk::GFP expression 

appeared: although most late stage oocytes retained the high level typically 

found in wild type, some had either weak or undetectable levels (Fig. 2.2E). To 

further enhance depletion of BSF, the same experiments were also performed 

with flies heterozygous for bsf SH1181; the defects were stronger, with most 

oocytes having no detectable Osk::GFP (Fig. 2.2E).  

We also monitored localization of osk::GFP mRNA in the bsf KD. Because 

the effect on Osk::GFP protein was variable, double-labeling experiments were 

performed to detect both the mRNA and protein in the same samples and thus 

reveal any correlation in defects. For this analysis early embryos were used, as 

the vitelline membrane of late stage egg chambers interferes with the in situ 
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hybridization method. In wild type embryos both Osk::GFP protein and osk::GFP 

RNA were present at high levels at the posterior pole. By contrast, most embryos 

from bsf KD mothers heterozygous for bsf SH1181 had weak or undetectable levels 

of both Osk::GFP protein and osk::GFP mRNA, with a consistent correlation 

between reduced mRNA and reduced protein (Fig. 2.2F). 

The knockdown results implicate BSF in posterior accumulation of Osk 

protein and osk RNA. BSF could have an indirect effect, although the binding of 

BSF to the osk mRNA suggests a direct role. Furthermore, BSF is present at the 

posterior pole of the oocyte where osk mRNA is localized (Fig. 2.2G), consistent 

with persistent binding and a direct role. This posterior crescent of BSF was 

substantially reduced in the bsf KD (Fig. 2.2G).  

 

Loss of BSF binding affects Osk protein expression but not osk mRNA 
stability 

To complement the studies in which BSF protein is depleted, we also 

examined the consequences of mutating the osk mRNA to disrupt BSF binding. 

Similar results from both approaches would strengthen the argument that BSF 

regulates Osk expression. Furthermore, defects in osk expression associated 

with loss of BSF binding would strongly support the model that BSF acts directly.  

Four mutations in the osk 3’ UTR C region affected BSF binding: the 

3'970-974 and 3’997-1001 mutations reduced binding, and the 3'977-981 and 

3'984-988 mutations further reduced binding to background levels (Fig. 2.1C). 

For analysis of Osk expression, the standard approach is to place a mutant 

transgene in an osk RNA null background so that it is the only source of osk 
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mRNA and protein. Two features of osk mRNA create complications for analysis 

of these transgenes.  

One complication involves the bifunctionality of osk mRNA, with its coding 

and noncoding roles. The noncoding function of osk mRNA is required for 

progression through oogenesis: in the absence of osk mRNA, oogenesis is 

arrested at stage 6/7, before the normal onset of Osk protein expression (Jenny 

et al., 2006). When tested in the osk RNA null background, most osk transgenes 

provide full osk RNA function, enabling progression through oogenesis and 

evaluation of Osk expression. However, the two mutations that most strongly 

disrupt BSF binding, 3'977-981 and 3'984-988, essentially eliminate osk RNA 

function (Kanke et al., 2015). Consequently, oogenesis remains arrested when 

osk transgenes with these mutations are tested in osk RNA null flies, and an 

effect on Osk protein expression cannot be evaluated. The solution is to co-

express these mutants with a helper RNA, an osk mRNA that provides the 

noncoding function, but cannot itself make Osk protein. Thus, oogenesis 

progresses normally, and the ability of a mutant transgene to make Osk protein 

(or embryonic patterning activity) can be monitored. A helper osk mRNA that has 

full RNA function but is protein null and cannot make Osk protein is osk54, which 

has a small insertion in the first exon coding region that alters the reading frame 

and introduces a stop codon (Kim-Ha et al., 1991).  

The second complication is that some forms of osk translational control 

are subject to the phenomenon of regulation in trans (Reveal et al., 2010). The 

concept of regulation in trans has been invoked to explain how translational 

control elements on one RNA molecule can influence the translational regulation 

of another RNA molecule. We hypothesized that regulation in trans is made 
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possible by assembly of the RNAs in particles, placing them in close proximity. 

Under these circumstances, long range interactions that underlie certain forms of 

regulation (e.g. between molecules bound to distant parts of an mRNA, such as 

the 5’ cap and the 3’ UTR) would now have the potential to occur between 

different RNA molecules. As an example, the phenomenon of regulation in trans 

is displayed by osk transcripts with mutations in the C region Bru binding sites. 

When expressed as the only osk mRNA in an osk RNA null background, osk C 

BRE- is strongly defective in activation of translation (Fig. 2.3A). However, this 

defect is largely eliminated by co-expression with other osk transcripts which 

have wild type C region BREs, but are themselves unable to make functional Osk 

protein (e.g. osk54)(Fig. 2.3A)(Reveal et al., 2010). The only source of functional 

Osk protein in this experiment was from osk C BRE-, and so its activation defect 

must have been suppressed. 

Just as the osk C BRE- regulatory defect can be rescued in trans, a 

regulatory defect of osk3'977-981 and osk3'984-988 mutants might also be 

rescued in trans. The problem is that we can’t test the osk3'977-981 and 

osk3'984-988 mutants in the absence of other osk mRNAs (to eliminate the 

possibility of rescue in trans), because a helper osk mRNA is required to provide 

the noncoding osk RNA function these mutants lack, and thus allow 

developmental progression to the later stages of oogenesis when Osk protein is 

expressed.  

A solution to this experimental challenge is to use osk IBE- transgenes to 

provide the helper RNA. These transgenes have mutations in binding sites for 

Imp, which are spread throughout the osk 3’UTR. Mutation of certain subsets of 

IBEs or all IBEs have the same effects: a complete absence of Osk protein, with 
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the noncoding osk RNA function remaining intact (Munro et al., 2006). 

Importantly, the osk IBE- mutant does not participate in regulation in trans: its 

activation defect is not rescued at all by the presence of osk mRNAs with intact 

IBEs (Reveal et al., 2010), and it does not strongly rescue the activation defects 

of other osk mutants (e.g. osk C BRE-, Fig. 2.3A; unpublished). Therefore, the 

osk IBE- mRNA can be used to provide the early noncoding osk RNA function 

that mutants osk3'977-981 and osk3'984-988 lack, but the osk IBE- mRNA will 

not influence the ability of these mutants to make Osk protein later in oogenesis. 

Transgenes with mutations that disrupt BSF binding, or with the 

interdigitated mutation that does not affect BSF binding, were tested for their 

ability to provide osk patterning activity in the presence of either osk54 or osk IBE- 

helper RNAs (Fig. 2.3A). The mutant with normal BSF binding, osk3’990-994, is 

largely defective in the noncoding osk RNA function, and produces very few eggs 

(Kanke et al., 2015)(Fig. 2.3A). The osk54 helper RNA fully rescued the 

noncoding function of osk3’990-994, allowing production of embryos, and these 

embryos had no patterning defects. Similar results were obtained with osk3’990-

994 in combination with the osk IBE- helper RNA. From these results we 

conclude that the osk3’990-994 mutation affected only the noncoding osk RNA 

function, and did not substantially alter regulation of osk expression. 

By contrast, the mutants with BSF binding defects all displayed evidence 

of reduced osk patterning activity (Fig. 2.3A). The osk3'977-981 and osk3'984-

988 mutants have the strongest defects in BSF binding. Because these mutants 

are completely defective in the noncoding osk RNA function (Kanke et al., 2015), 

they produce no embryos in the absence of a helper osk mRNA. When these 

mutants were co-expressed with the osk54 helper RNA, patterning was effectively 
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wild type. However, when co-expressed with the osk IBE- helper RNA, only very 

low levels of osk patterning activity were produced. From these results we 

conclude that the osk3'977-981 and osk3'984-988 mutants each had defects in 

osk expression, as observed when co-expressed with the osk IBE- helper RNA. 

Furthermore, these defects could be rescued in trans, as shown by the absence 

of significant patterning defects when the osk3'977-981 and osk3'984-988 

mutants were co-expressed with the osk54 helper RNA. Thus, the mutants with 

the strongest defects in BSF binding had reduced or almost undetectable osk 

activity.  

The osk3’970-974 and osk3’997-1001 mutants also interfere with BSF 

binding but to a lesser degree. These mutants can produce embryos without a 

helper RNA, because neither affects the noncoding osk RNA function (Kanke et 

al., 2015). The embryos from both mutants were missing abdominal segments, 

the phenotype caused by reduced levels of osk activity. The severity of the 

patterning defects of the osk3’970-974 and osk3’997-1001 mutants correlated 

with the effect on BSF binding, although the weaker osk3’997-1001 mutant also 

has a lower level of mRNA (Kanke et al., 2015). Using the helper RNAs to test for 

regulation in trans, the patterning defects of osk3’970-974 and osk3’997-1001 

were fully rescued by co-expression with osk54, and only very weakly rescued by 

co-expression with osk IBE-. Thus, all of the mutants with defects in BSF binding 

had patterning defects consistent with reduced osk activity, and all displayed 

regulation in trans. 

To confirm that the loss of osk patterning activity of the mutants unable to 

bind BSF was due to a defect in Osk protein expression, we monitored Osk::GFP 

produced by oskT140::GFP transgenes, either a wild type version or versions 
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bearing the 3'977-981 or 3'984-988 mutations (which most strongly affect BSF 

binding)(Fig. 2.4A). The transgenes were co-expressed with the osk IBE- helper 

to provide noncoding osk RNA function. The results were similar to those 

obtained with the bsf KD. No change in Osk::GFP expression between the wild 

type and mutants was detected up to stage 10 of oogenesis (Fig. 2.4B). 

However, in late stage oocytes and early stage embryos the mutants had 

dramatically reduced levels of Osk::GFP (Fig. 2.4C,D). 

One explanation for the defects caused by the 3'977-981 and 3'984-988 

mutations is destabilization of the mRNA, an option suggested by the role of bsf 

in stabilizing bcd mRNA (Mancebo et al., 2001). To ensure that transgene mRNA 

levels were not influenced by differences in transcription, all of the oskT140::GFP 

transgenes used in Fig. 2.4 were introduced by phiC31 transgenesis to the same 

target site in the genome, thus avoiding variation in transcription due to insertion 

site. Neither of the mutants had decreased mRNA levels relative to the control 

(Fig. 2.4E), demonstrating that mutation of the BSF binding sites does not cause 

destabilization of the mRNA.  

 

Close proximity in Bru and BSF binding 

The 3'970-974 mutation disrupts a type II Bru binding site (Reveal et al., 

2010; Reveal et al., 2011), interferes with BSF binding (Fig. 2.1D), and causes 

reduced osk patterning activity (Fig. 2.3A). A mutant with both of the osk C region 

type II Bru binding sites disrupted (osk C II-) has a strong defect in activation of 

osk mRNA translation (Reveal et al., 2010)(Fig. 2.3B), and the patterning defect 

of the osk C II- mutant had been suggested to result from the loss of Bru binding 
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to the type II sites (Reveal et al., 2010). Now, knowing that mutation of the 3’ type 

II site also affects BSF binding, we reevaluated this conclusion. 

Patterning activities were compared for transgenes with the different 

combinations of mutant type II Bru binding sites: both sites mutated (osk3’920-

923,970-974, which is osk C II-), only the 5’ site mutated (osk3’920-923, or osk C 

5’II-), or only the 3’ site mutated (osk3’970-974, or osk C 3’II-)(Fig. 2.3B). The 

original C II- mutant with both sites mutated has the weakest patterning activity, 

even though this mRNA is present at a higher level than the others (Fig. 2.3C). 

Comparing the transgenes with single type II sites mutated revealed that they 

make unequal contributions to osk activity: mutation of just the 5’ site had no 

effect on patterning, while mutation of just the 3’ site led to partial osk activity (as 

already described above). This suggests some degree of redundancy between 

the two sites, but with the 3’ site having a more important contribution. 

Redundancy could reflect the fact that both sites bind Bru (Reveal et al., 2010; 

Reveal et al., 2011), with Bru bound to either site providing at least partial 

function. A similar argument cannot be made for BSF, as mutation of the 5’ site 

alone had no effect on BSF binding, nor did mutation of the 5’ site enhance the 

reduction of BSF binding caused by mutation of the 3’ site (Fig. 2.3D; note that 

the effects on Bru binding in this assay are subtle, as the high affinity BREs are 

also present in the C region RNA substrate). The more substantial contribution of 

the 3’ site to osk activity could be due to its role in binding both Bru and BSF. An 

understanding of how this sequence both constitutes a Bru binding site and is 

required for strong BSF binding will require an in-depth analysis of BSF binding 

properties. Nevertheless, there is no need to invoke competition for Bru and BSF 

binding to the same sequence. Instead, Bru bound to the type II site could 
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enhance or facilitate interaction of BSF with adjacent sequences, which are 

essential for BSF binding. 

 

BSF and osk mRNA polyadenylation 

The position of the BSF binding site in the osk mRNA, close to the poly(A) 

tail, raises the possibility that BSF activates translation by promoting cytoplasmic 

polyadenylation. This possibility is also suggested by the role of BSF in 

processing and adding poly(A) tails to polycistronic mitochondrial RNAs, although 

this reaction is substantially different from cytoplasmic polyadenylation of 

conventional eukaryotic mRNAs (Bratic et al., 2011). To measure poly(A) tail 

lengths for the mRNAs with mutations in the BSF binding site, the assay must be 

able to distinguish between those mRNAs and the osk IBE- helper mRNA (which 

must be present to provide osk noncoding RNA function). One useful approach 

relies on circularization of the mRNA, followed by mRNA-specific reverse 

transcription and PCR (using a primer complementary to GFP sequences present 

only in the mRNAs with the mutated BSF binding site), and sequencing (Fig. 

2.5A, Methods). The results showed a range of poly(A) tail length from 20 to 

almost 100 in all genotypes, consistent with a previous direct measurement of 

wild type osk mRNA (Lie and Macdonald, 1999). Neither oskT140::GFP 3'977-

981 nor oskT140::GFP 3'984-988 had consistently shorter poly(A) tails than the 

oskT140::GFP mRNA control (Fig. 2.5B,C). This suggests that BSF function in 

osk expression is not by controlling polyadenylation. 
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DISCUSSION 

Here we focus on two features of the work. One is the identification of BSF 

as a factor required for the complex post-transcriptional regulation of osk mRNA. 

The second is the discovery that RNA elements with seemingly unrelated 

responsibilities, and acting at different times during oogenesis, are superimposed 

in the osk mRNA.  

BSF is a one of a family of proteins harboring the pentatricopeptide (PPR) 

motif, which acts as an RNA binding domain (Barkan et al., 2012; Filipovska and 

Rackham, 2013; Yin et al., 2013). The vast majority of PPR proteins are from 

plants and have multiple copies of the motif, typically with no other recognizable 

domain (Lurin et al., 2004). When BSF was first characterized, methods for 

detection of protein motifs reported seven copies of the PPR in BSF: four tandem 

copies near the amino terminus, and three separated copies in the carboxyl-

terminal half (Mancebo et al., 2001). By the current definition of the PPR domain, 

presumably refined with the large number of additional examples identified since 

2001, BSF has only a single PPR domain. However, the entire amino-terminal 

region containing the four tandem repeats is highly conserved with the closest 

human homolog of BSF, Leucine-rich PPR motif-containing protein (LRPPRC), in 

which all four PPRs continue to be identified (Mili et al., 2001; Sterky et al., 2010; 

Ruzzenente et al., 2012). Given the divergence of the PPR-like domains of BSF, 

it is possible that not all have RNA binding activity. 

PPR-containing proteins have been implicated in a wide range of 

processes, ranging from transcription, to mRNA export from the nucleus (Mili et 

al., 2001; Topisirovic et al., 2009; Tsuchiya et al., 2004), to various forms of post-

transcriptional regulation in both cytoplasm and organelles (Sasarman et al., 
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2010; Gohil et al., 2010). Thus, the presence of this motif suggests a function in 

nucleic acid transactions, but is not indicative of a specific role. Except for the 

PPR proteins in which other domains dictate function (Zehrmann et al., 2011), 

proteins of this type may serve primarily in binding to nucleic acids, with the 

outcome of that binding probably specified by associated factors. 

BSF was initially identified as a cytoplasmic ovarian protein which bound 

to bicoid mRNA, playing a redundant role in stabilization of the mRNA (Mancebo 

et al., 2001). BSF also binds DNA, and was purified on the basis of specific 

binding to a short DNA sequence found in the promoter region of genes 

transcribed very early in embryogenesis (De Renzis et al., 2007). Whether BSF 

binds to and activates transcription of associated genes in vivo remains 

uncertain: another protein, Zelda, binds the same sequence and is required for 

early transcription (Liang et al., 2008). In flight muscle BSF appears in 

sarcomeric bands. BSF, like LRPPRC, is also found in mitochondria and this may 

be the predominant location at least in some tissues (Bratic et al., 2011). Within 

mitochondria, reducing the level of BSF affects mitochondrial transcription, 

mRNA polyadenylation, and translation (Bratic et al., 2011). 

We have now identified a further role for BSF, in regulation of osk mRNA. 

Complementary approaches, either disrupting BSF binding to the mRNA or 

reducing the level of BSF, had similar effects: reduction or loss of both 

posteriorly-localized osk mRNA and Osk protein late in oogenesis and in 

embryos. The defects were strongest with osk transgenes bearing mutations that 

reduced BSF binding to background levels, and less severe with KD of bsf. This 

is not surprising, as the KD does not eliminate BSF. Regulation of osk mRNA 

occurs at several levels, and several options can explain the observed defects. 
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We have ruled out one option, an effect on osk mRNA stability. Two other options 

are most likely for the loss of Osk protein accumulation: disruption of mRNA 

localization or translational activation. Neither mutation of the BSF binding site 

nor KD of bsf affects the initial phase of osk mRNA localization to the posterior 

pole of the oocyte. However, the mechanism of localization can change as 

oogenesis progresses and BSF could act in a later phase, having a role in 

capture of mRNA circulated in the oocyte by cytoplasmic flow (Glotzer et al., 

1997). Because only localized osk mRNA is efficiently translated, a defect in 

mRNA localization would result in loss of Osk protein expression. Alternatively, 

BSF could act in a late phase of translational activation, when the bulk of Osk 

protein accumulates (Snee et al., 2007). Because Osk protein is required for 

anchoring of osk mRNA, a defect in production of Osk protein would result in 

dispersal of the mRNA. Distinguishing between possible roles in mRNA 

localization or translational activation is simple if one defect clearly precedes the 

other, but no difference in the timing of the defects has been detected.  

If BSF more directly affects translation, a possible mechanism involves the 

poly(A) tail. Typically, longer tails are correlated with enhanced translation, and 

the length of the tail can be extended in the cytoplasm (Jacobson, 1996; Wickens 

et al., 1996; Preiss and Hentze, 1998). As first shown in Xenopus, CPEB protein 

bound to a regulatory element (CPE) positioned close to the poly(A) tail directs 

cytoplasmic polyadenylation and translational activation (Hake and Richter, 

1994). We found no decrease in poly(A) tail length for osk mRNAs with mutations 

in the BSF binding sites, but instead a small increase. Thus it appears that BSF 

does not activate osk mRNA translation by extension of the poly(A) tail. A caveat 
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to that conclusion is that an effect on a very small subpopulation of osk 

transcripts would not have been detected. 

 

Superimposition of RNA elements for function and regulation 

osk mRNA has both coding and noncoding functions. In the absence of 

osk mRNA there are multiple defects beyond those caused later in oogenesis by 

the absence of Osk protein: the karyosome fails to condense, multiple proteins 

are displaced from large RNPs (nuage and sponge bodies), the same proteins 

become enriched in the somatic follicle cells, and oogenesis is arrested (Jenny et 

al., 2006; Kanke et al., 2015). How the presence of osk RNA prevents these 

problems is only partially understood. It is noteworthy that sequences critical for 

osk RNA function overlap with sequences which mediate regulation by Bru and 

BSF. This raises the question of whether the same RNA elements serve both 

roles, which might imply some mechanistic commonalities in RNA function and 

regulation, or if different types of RNA elements are superimposed on one 

another. 

One biochemical role of osk mRNA in its noncoding function is to 

sequester Bru, presumably preventing Bru from binding inappropriately to low 

affinity sites in normally unbound mRNAs, and thereby altering their regulation 

(Kanke et al., 2015). Mutations which reduce Bru binding also cause the other 

defects associated with absence of osk mRNA (karyosome formation, protein 

distributions, arrest of oogenesis), but to a lesser degree. Thus, sequestration of 

Bru is one component of osk RNA function, but not the main component.  

The C region Bru binding sites have an additional role in the noncoding 

osk RNA function, with mutation of all C region sites being effectively equivalent 
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to complete absence of osk mRNA. By contrast, mutation of all AB region Bru 

binding sites only reduces the noncoding osk RNA function, and so there must be 

a unique property of the C region sites. It is not higher affinity for Bru, as AB 

region sites bind Bru more strongly (Kim-Ha et al., 1995; Kanke et al., 2015). 

Rather, the special feature of the C region sites is most likely their close proximity 

to other sequences essential for noncoding osk RNA function. Curiously, the C 

region Bru binding sites can also be distinguished from those in the AB region by 

their role in translational activation: mutation of C region sites disrupts activation, 

while mutation of AB regions sites does not. 

Other sequences in the osk 3’ region also have roles in both regulation 

and noncoding osk RNA function. A-rich sequences (ARSs) close to the poly(A) 

tail bind PABP (Vazquez-Pianzola et al., 2011). Mutations affecting some or all of 

the ARSs cause partial defects in both the noncoding function and osk mRNA 

regulation (Vazquez-Pianzola et al., 2011; Kanke et al., 2015)(unpublished). How 

the ARSs contribute to either RNA function or regulation is not entirely 

understood. In pabp mutants osk mRNA is destabilized, but it is uncertain if this 

reflects loss of PABP binding to the poly(A) tail or to the ARSs (Vazquez-

Pianzola et al., 2011). However, mutation of an ARS does affect osk regulation 

without altering mRNA stability (Kanke et al., 2015). Thus, it is unknown if the 

mechanisms used by PABP and the ARSs for osk regulation and noncoding osk 

function are shared or distinct.  

Mutations which disrupt BSF binding have defects in osk regulation, and 

the evidence presented here strongly supports the conclusion that BSF mediates 

this regulation. Two of these mutations, osk3’977-981 and osk3’984-988, also 

have severe effects on noncoding osk RNA function, almost identical to absence 
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of osk mRNA. However, other mutations which disrupt BSF binding (osk3’970-

974 and osk3’997-1001), albeit to a lesser degree, have no detectable effect on 

noncoding osk RNA function (Kanke et al., 2015). Thus, the ability to bind BSF 

does not correlate with the ability to provide noncoding osk RNA function. 

Instead, the evidence suggests that two different functions are superimposed in 

the critical osk 3’ UTR C region. One function, mediated by BSF binding, acts in 

regulation of osk mRNA expression late in oogenesis. A second function, which 

presumably involves interaction with another factor, is essential for the action of 

osk as a noncoding RNA early in oogenesis. 

The high density of RNA elements for function or regulation in the C region 

of the osk 3’ UTR is paralleled by an extremely high degree of phylogenetic 

conservation. The segment containing the cluster of Bru, BSF and PABP binding 

sites has the highest level of sequence conservation across the entire 3’ UTR, 

and is more conserved than much of the osk coding region (UCSC genome 

browser phastCons analysis). An intriguing question is why the functional and 

regulatory elements are so densely packed and superimposed. Reuse of the 

same sequences for multiple purposes is a well known feature of certain viruses, 

imposed by size constraints (Sanger et al., 1977). A similar explanation seems 

unlikely for osk, as the 3’ UTR is quite large (over 1000 nucleotides) and there is 

no obvious reason why a small further enlargement would pose a problem. It will 

be interesting to determine if these elements are subject to a positional 

constraint, relying on mechanisms which require close proximity to the 3’ end of 

the mRNA and thus forcing them to be superimposed.  
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SUMMARY & FUTURE STUDY 

Here, I showed that BSF associates with a 3’ region of the osk mRNA 3’ 

UTR and is required for either a late phase of osk mRNA localization or a late 

phase of osk mRNA translational activation, or both.  

In this chapter, I suggested that BSF is not required for osk noncoding 

RNA function, because two mutations in osk mRNA that strongly reduce BSF 

binding (although still above the background level) did not affect the noncoding 

function. However, we still cannot exclude the possibility that the remaining BSF 

binding is enough for noncoding function, and thus BSF may be involved in 

noncoding function. There may be other factor(s) important for the noncoding 

function that are recruited by BSF to the osk mRNA. An immunoprecipitation-

based approach can be used to test this possibility, ideally using protein extracts 

prepared from early-stage egg chambers, as noncoding function is required early 

in oogenesis. 

Bru and PABP binding sites are involved in both osk mRNA translational 

activation and the osk noncoding RNA function (Reveal et al., 2010; Kanke et al., 

2015; Vazquez-Pianzola et al., 2015; unpublished data). Interestingly, BSF 

binding sites are very close to or overlap with the Bru or PABP binding sites. 

Therefore, it is possible that BSF acts in its role as a complex with either Bru or 

PABP, or both. We can test their interaction by using a co-immunoprecipitation 

approach. 
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MATERIALS AND METHODS 

Flies and transgenes 

For bsf KD, TRiP line y sc v; P{TRiP.HMS01022}attP2 (Bloomington stock 

34550) was used. Mutants were bsf SH1181 (De Renzis et al., 2007), osk54 

(Lehmann and Nüsslein-Volhard, 1986), oskA87 (Jenny et al., 2006), osk0 (Kanke 

et al., 2015), and Df(3R)osk (Reveal et al., 2010). The osk IBE- transgene used in 

Figs. 2.4 and 5 has the A set of IBEs mutated, and the version used in Fig. 2.3 

has all IBEs mutated. Both behave identically, with a complete absence of Osk 

protein produced (Munro et al., 2006), and the same very low level of ability to 

rescue in trans the activation defect of osk C BRE- (unpublished). The different 

versions of osk IBE- were used to facilitate fly stock construction. The osk::HA 

transgene reproduces endogenous osk expression and function (Kim et al., 2015; 

Kanke and Macdonald, 2015). The osk::GFP transgene used in Fig. 2.2 (Snee et 

al., 2007), had been remobilized in the lab of Liz Gavis to restore expression. The 

osk transgenes with 3’ UTR C region mutations were those described (Kanke et 

al., 2015), or had the same mutations but with mGFP6 (Haseloff, 1999) inserted 

after T140 (M139 is the aminoterminal end of Short Osk). The latter set were 

constructed in vector pGE-attB (Huang et al., 2009) and inserted by phiC31 

transgenesis into a second chromosome site at 51C (Bloomington stock 24482).  

 

Antibodies 

Antibodies for western blot analysis: mouse anti-Bru (1:8,000); rat anti-

BSF (1:1,000); rat anti-Cup (1:2,000); rabbit anti-Growl (1:2,000); rabbit anti-

Hrp48 (1:10,000); rabbit anti-La (1:1,000); chicken anti-NS1 (1:1,000); rabbit anti-

Tral (1:10,000); mouse anti-α-Tubulin (Sigma)(1:1,000); alkaline phosphatase-
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conjugated goat anti-rat IgG (Sigma)(1:5,000); alkaline phosphatase-conjugated 

goat anti-mouse IgG (Applied Biosystem)(1:5,000). Antibodies for imaging: 

mouse anti-HA (Covance)(1:1,000); rabbit anti-Osk (1:2,000); mouse anti-Orb 

(4H8)(1:1); rabbit anti-BSF (1:1,000); Alexa Fluor 488 goat anti-mouse IgG 

(Invitrogen)(1:800); Alexa Fluor 488 goat anti-rabbit IgG (Invitrogen)(1:800). 

 

oskC::S1 aptamer fusion RNAs for affinity purification  

A plasmid with the S1 aptamer and a T7 promoter (from Craig Smibert) 

was modified by addition of the final 150 bp of the osk 3’ UTR (wt or mutant; 

amplified by PCR). Plasmids were linearized with EcoRl (NEB), purified by 

phenol extraction and ethanol precipitation, and used as templates for 

transcription reactions. Fusion RNA transcripts were synthesized and purified 

with the MEGAscript T7 Kit according to the manufacturers instructions (Ambion). 

 

Preparation of ovary extract  

Ovaries from young females (w1118) fed on yeast for 3~4 days were 

dissected in 1X PBS on ice, washed once with ice cold COEB100 (50 mM 

HEPES, pH 7.4, 10 mM MgCl2, 100 mM NaCl, 0.1% Triton X-100, 10% Glycerol, 

0.1 mM DTT, Complete, Mini, EDTA-free protease inhibitor cocktail tablet 

(Roche)) and frozen at -80 °C. Ovaries were thawed (all subsequent steps on ice 

or at 4 °C) and homogenized with a plastic pestle in a 1.5 ml microfuge tube 

followed by adding 10 µl of COEB100 per pair of ovaries. The lysate was cleared 

by centrifugation at 12,000 rpm for 25 min and the supernatent saved. Protein 

concentration in the extract was determined by Bradford (Bio-rad) method, and 
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the extract diluted to 1 mg/ml with COEB100. After centrifugation at 12,000 rpm 

for 25 min, extract was pre-incubated with 5 µg of soluble avidin (Sigma) per 1 

mg of protein for 15 min. 

 

RNA affinity purification 

Streptavidin agarose beads (Sigma) were equilibrated by washing several 

times with OEB100 (50 mM HEPES, pH 7.4, 10 mM MgCl2, 100 mM NaCl, 0.1% 

Triton X-100, 10% Glycerol, 0.1 mM DTT). RNA for purification (40 µg) was 

incubated with 35 µl of beads in 100 µl ice-cold OEB100 supplemented with 40 

units/ml RNasin (Promega) for 1 hr at 4 °C with gentle rotation. The beads were 

spun down, the supernatant removed, and 1 mg of pre-cleared ovary extract (1 

ml) added followed by incubation for 2 hr at 4 °C with rotation. After incubation, 

the beads were spun down, saving both pellet and supernatant (S) fractions. The 

pellet fraction was washed several times with ice-cold OEB100, and boiled in 35 

µl of 6X protein sample buffer for 10 min to elute bound proteins (P). S and P 

fractions were separated by SDS-PAGE and analyzed by coomassie staining and 

western blot. 

 

Whole-mount ovary staining 

Sample preparation and antibody staining were performed as described 

(Kim-Ha et al., 1995; Reveal et al., 2010). TO-PRO-3 Iodide (Invitrogen)(1:1,000) 

was used to stain nuclei. Microscopy of all samples made use of a Leica TCS-SP 

laser scanning confocal microscope.  
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In situ hybridization 

In situ hybridization in ovary whole mount preparation was performed as 

described (Jambor et al., 2014). Fluorescent RNA probes were synthesized with 

DIG RNA labeling mix (Roche). 

 

Cuticle analysis 

Cuticle preparations (Wieschaus and Nüsslein-Volhard, 1986) were 

mounted in Hoyer’s Mounting Medium and viewed with a Nikon Eclipse E600 

microscope. 

 

RNA-protein double staining in embryos 

RNA-protein double staining was modified from (Lécuyer et al., 2008). 

Briefly, early-stage embryos were dechorionated with bleach and fixed with 

paraformaldehyde/heptane mix for 20 min. The embryos were post-fixed two 

times, and then incubated with RNA probe overnight. After washing steps, the 

embryos were incubated with the mouse anti-GFP (Santa Cruz) diluted at 1:200 

for 2 hr, followed by incubation with Alexa Fluor 488 goat anti-mouse (Invitrogen) 

diluted at 1:800 for 1 hr. After washing the embryos were incubated with 1/50 

diluted Cy5 tyramide (PerkinElmer) for 30 min and mounted on slides with 

Vectashield Mounting Medium (Vector Labs), and imaged with Leica TCS-SP 

laser scanning confocal microscope. 

 

RNA preparation and qPCR analysis 

Ovaries from young females fed on yeast for 3-4 days were dissected into 
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ice-cold PBS and late-stage egg chambers isolated. Approximately 100 early-

stage embryos were collected from females in the process of oviposition and 

dechorionated. Total RNAs were isolated using Tri Reagent-LS (Molecular 

Research Center) according to the manufacturer’s protocol. RNA samples were 

treated with DNase l (Qiagen) and purified with RNeasy MiniElute Cleanup Kit 

(Qiagen). 1 µg of RNAs were used to synthesize cDNA using iScript cDNA 

synthesis kit (Bio-rad) according to the manufacturer’s protocol. qPCR was 

carried out on a ViiATM 7 Real-Time PCR system (Applied Biosystem) using 

iTaqTM Universal SYBR®  Green Supermix (Bio-rad). Primers: α-tubulin, 5’-

atgcgcgaagtagtctccatc-3’ and 5’-aggtgtcgtgacccacact-3’; mGFP6, 5’-

tttcactggagttgtcccaa-3’ and 5’-ggccatggaacaggtagttt-3’ (set1) and 5’-

aggacgacgggaactacaag-3’ and 5’-taagctcgatcctgttgacg-3’ (set 2).  

 

RNA circularization and RT-PCR 

RNAs were prepared as for qPCR. Gene specific oligo/RNase H treatment 

was performed to remove mRNA 5’ caps. 2 µg RNA and 2.5 µg oligo 1 (5’-

ggaattcacttgtgactgcg-3’) were mixed in 20 µl of 10 mM Tris-HCl, 50 mM NaCl, 1 

mM EDTA (pH 8.0), incubated for 10 min at 70 °C and gradually cooled to 25 °C. 

The samples were incubated for 1 hr at 37 °C with 2.5 U of RNase H (NEB) and 

20 U of RNase Inhibitor, Human Placenta (HPRI, NEB) in 50 µl of RNase H 

buffer (NEB). Decapped RNAs were purified with RNeasy MiniElute Cleanup Kit 

(Qiagen).  

For circularization, decapped RNA (1.5 µg) was incubated with 10 U of T4 

RNA ligase (NEB) and 20 U of HPRI in 200 µl T4 RNA ligase buffer, 0.1 mM 

ATP, and 10% PEG8000 for over 16 hr at 16 °C. Circularized RNAs (cRNAs) 
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were precipitated with isopropanol after extraction with phenol/chloroform, the 

cRNA pellets were washed with 70% ethanol, and dissolved 8 µl nuclease free-

dH2O. cDNA was synthesized with the GeneAmp RNA PCR Kit (Applied 

Biosystems), using 3 µl of cRNA and oligo 2 (5’-ggccatggaacaggtagttt-3’). PCR 

with oligo 2 and oligo 3 (5’-tctggatccttctggcgtaatttacag-3’) was performed using 

Plantium PCR SuperMix (Invitrogen). PCR products were purified using ExoSAP-

IP (Affymetrix) for direct sequencing and for cloning into pCRll-TOPO vector 

(Invitrogen). 
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FIGURES 

 

Figure 2.1. BSF binds close to the 3' end of the osk mRNA. 
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A. Coomassie-stained gel of ovarian proteins from affinity purification. Input is the 
starting material. S and P are supernatent and pellet fractions following 
purification with the RNAs indicated at top (the osk RNA segment is the C region, 
the final 150 nt of the 3’ UTR, either wild type or with the indicated mutations). 
Amounts loaded, relative to the extract used for one purification are: input and 
supernatent, 0.8%; pellet, 33.3%. The arrow indicates a ~150 kDa protein which 
binds only to wild type oskC::S1 RNA. Because of the small amount of 
supernatent loaded, loss of binding does not lead to a high level of protein 
detected in the supernatent fraction. 
B. Western blot analysis of proteins in fractions from the affinity purifications.  
C. BSF and Bru binding, detected by western blot, to osk 3’ region mutant RNAs. 
The amounts loaded were as in panel A. Mutations 977-981 and 984-988 have 
the strongest effect on BSF binding, 970-974 and 997-1001 are intermediate 
(with 977-1001 retaining the most binding activity), and 990-994 and 1004-1008 
have no detectable effect. Names for these mutations reflect location of the 
changes in the 3’ UTR, with position 1 being the first nucleotide after the stop 
codon. 
D. Diagram of the osk mRNA 3’ UTR with the sequence of osk C region showing 
mutations and Bru binding sites. The 3’ UTR is shown as a grey rectangle with 
the AB and C regions indicated above (Kim-Ha et al., 1995). Individual Bru 
binding sites (BREs and type II sites) are shown above the 3’ UTR as blue bars. 
Mutations that disrupt noncoding osk RNA function are shown below the 3’ UTR 
as yellow or red bars. The yellow bars indicate a lesser effect of individual 
mutations (multiple Bru sites must be mutated to strongly disrupt the noncoding 
function). The red bars indicate mutations that effectively eliminate that function. 
Simultaneous mutation of all C region Bru binding sites (as indicated by the red 
bars in parentheses) also eliminates the noncoding osk RNA function. The C 
region is enlarged below to show the RNA sequence, the positions of Bru binding 
sites, mutations (below the sequence in lower case) and their effects on osk RNA 
function and BSF binding.  
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Figure 2.2. bsf is required for a late phase of Osk protein expression. 
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A. Efficiency of bsf KD in ovaries and early embryos, as detected by western blot 
analysis. w

1118
 was used as a control. Samples were wt (w

1118
), KD (TRiP-bsf 

transgene with matalpha4-GAL-VP16), and control (TRiP-bsf transgene without 
GAL4 driver). Proteins were detected using anti-BSF (top) or anti-α-Tubulin (bottom).  
B. Osk expression is normal in the bsf KD up to stage 10 of oogenesis. Panels show 
detection of nuclei and Osk::HA (Methods). Higher magnification images of just 
Osk::HA from other examples of egg chambers are shown at right. bsf KD was as in 
panel A. For bsf KD in bsf

+/-
, the flies were heterozygous for bsf

SH1181
. DNA, red; 

Osk::HA, green. Scale bars in this and other panels are 20 µm. Genotypes used 
were as follows (only relevant genes are indicated). bsf

+/+
 is +/+; osk::HA matalpha4-

GAL-VP16 osk
A87

/TM3Sb. bsf KD is +/+; osk::HA matalpha4-GAL-VP16 osk
A87

/TRiP-
bsf. bsf KD in bsf

+/-
 is bsf

SH1181
/+; osk::HA matalpha4-GAL-VP16 osk

A87
/TRiP-bsf. 

C. osk mRNA is localized normally in bsf KD up to stage 10 of oogenesis. Left and 
middle panels show Stau protein (which colocalizes with osk mRNA; middle panel at 
higher magnification) and the right panels show osk mRNA. For the Stau panels 
DNA is red and Stau is green. For the in situ hybridization panels osk RNA is red 
(the signal in follicle cells is background). 
D. Schematic diagram of the osk::GFP transgene for examination of late-stages of 
oogenesis, which is a genomic osk gene with GFP appended to the end of the osk 
coding region. All osk sequences, including the 3’ UTR and transcriptional control 
elements, remain present. 
E. Osk::GFP expression in late-stage egg chambers. Panels show the posterior 
portion of stage 13-14 egg chambers, with examples of the different levels of 
posterior Osk::GFP accumulation. Upper panels are just the Osk::GFP signal, while 
lower panels also show DNA (and background TOPRO-3 staining). The table below 
the images shows the percentage of oocytes in each category for the same 
genotypes as in panel B. DNA, red; Osk::GFP, green. 
F. Osk::GFP protein (upper) and osk::GFP mRNA (lower) double-labeling in early-
stage embryos. osk::GFP expressed from single copies in bsf

+/+
 or bsf KD in bsf

+/- 

background. Osk::GFP protein and osk::GFP RNA (upper and lower panels, 
respectively) in early-stage embryos (each pair of panels is from the same embryo). 
This correlation between levels of localized protein and mRNA was observed in all 
embryos. The table below the images is as in panel E, with the values applying to 
both protein and mRNA.  
Genotypes for the samples in E and mothers of samples in F were as follows. bsf 

+/+
: 

osk::GFP/+; matalpha4-GAL-VP16 osk
A87

/TM2. bsf KD: osk::GFP/+; matalpha4-
GAL-VP16 osk

A87
/TRiP-bsf. bsf KD in bsf

+/- 
background: osk::GFP/bsf

SH1181
; 

matalpha4-GAL-VP16 osk
A87

/TRiP-bsf. 
G. Immunodetection of BSF in wild type and in bsf KD. For each genotype the 
posterior of an egg chamber is shown at left, with the boxed posterior region shown 
at higher magnification at the right. Although the anti-BSF antibody shows poor 
penetration into the egg chamber, a crescent of BSF is detected specifically at the 
posterior pole of the oocyte (lower levels appear along the entire cortex). Note that 
the follicle cell BSF is not affected by the bsf KD, which is limited to the germline 
cells by use of the matalpha4-GAL-VP16 driver. DNA (TOPRO-3), red; BSF, green.  
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Figure 2.3. Effects of mutating Bru and BSF binding sites on osk activity 
and protein binding. 
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A. Patterning activity of osk transgenes with 3’ UTR C region mutations, tested as 
single copies in the oskA87/Df(3R)osk background (osk RNA-)(top), with osk54 
(middle) or osk IBE- (bottom; this transgene has all IBEs mutated) also present. 
For each genotype, the fraction of cuticles with the number of abdominal 
segments indicated by colors is given as a percentage. The number of abdominal 
segments corresponds to the level of osk activity, with wild type embryos having 
eight. Mutants which produce no or few embryos lack the noncoding osk RNA 
function required for progression through oogenesis. ND is not determined 
(because of the very modest patterning defects of the osk3’997-1001 mutant). 
Transgene mRNA levels differ somewhat (Kanke et al., 2015), but the strong 
levels of osk patterning activity they produce when co-expressed with the osk54 
mRNA (and thus subject to regulation in trans) provides a point of reference for 
interpreting their activities in the absence of regulation in trans. 
B. Patterning activity of osk transgenes, tested as single copies in the 
oskA87/Df(3R)osk background (osk RNA-). 
C. Levels of osk mRNAs for the transgenes in panel B, relative to the amount 
from a wild type osk transgene. Data are reproduced from (Kanke et al., 2015). 
D. BSF and Bru binding, detected by western blot, to oskC::S1 RNAs (the final 
150 nt of the osk 3’ UTR) with mutated type II Bru binding sites. The amounts 
loaded were as in Fig. 1A. As in Fig. 1, the 970-974 mutation reduced BSF 
binding but not to the background level seen with the S1 RNA. Mutation of the 
Bru type II sites did not dramatically reduce Bru binding, as the high affinity BREs 
are also present in all of the oskC::S1 RNAs. 
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Figure 2.4. Loss of BSF binding affects Osk protein expression but not osk 
mRNA stability. 
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A. Schematic diagram of osk mRNAs used in the assays. The oskT140::GFP 
transgene has wild type or mutant versions of the 3’ UTR. All oskT140::GFP 
transgenes were inserted at the same genomic site by phiC31 transgenesis to 
avoid position effects that might alter transcription levels. The osk IBE- transgene 
has the A subset of IBE mutations (Munro et al., 2006) in the 3’ UTR. 
B. OskT140::GFP in stage 10 oocytes. All oskT140::GFP transgenes were co-
expressed with osk IBE- (to provide the noncoding osk RNA function for the 
mutants) in the osk0/Df(3R)osk background. Panels show the posterior portion of 
stage 10 egg chambers; Left panel is from osk+; Middle panel is from 
oskT140::GFP-977-981; Right panel is from oskT140::GFP-984-988. DNA in red 
and OskT140::GFP in green. The scale bar is 20 µm. 
C. OskT140::GFP in stage 13-14 egg chambers. The panels are examples of the 
different level of OskT140::GFP accumulation at the posterior of the oocyte: 
strong, weak, or very weak/undetectable. The upper panels are OskT140::GFP 
only, and the lower panels show both OskT140::GFP and DNA. The table below 
the images shows the percentage of oocytes in each category for the 
oskT140::GFP transgenes with wild type or mutant osk 3’ UTRs. DNA in red and 
OskT140::GFP in green. The scale bars for B, C and D are 20 µm. 
D. OskT140::GFP protein and osk::GFP RNA (upper and lower panels, 
respectively) in early-stage embryos (each pair of panels is from the same 
embryo). This correlation between levels of localized protein and mRNA was 
observed in all embryos. The table below the images is as in panel B, with the 
values applying to both protein and mRNA.  
E. Levels of mRNA measured by qPCR. RNA levels were measured with mGFP6 
oligos (two different oligo pairs) to detect only oskT140::GFP transgene mRNAs. 
Error bars indicate standard deviation, n is 9 for each sample. The oskT140::GFP 
transgenes make use of mGFP6 (Methods). 
Genotypes for B-E (maternal genotypes for embryos) were as follows. osk+: 
oskT140::GFP/osk IBE-; osk0/Df(3R)osk. 977-981: oskT140::GFP 3’977-981/osk 
IBE-; osk0/Df(3R)osk. 984-988: oskT140::GFP 3’984-988/osk IBE-; 
osk0/Df(3R)osk. 
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Figure 2.5. BSF binding is not required to maintain poly(A) tail length.  

A. Schematic diagram of the circularized RT-PCR (cRT-PCR) assay, to 
selectively measure poly(A) tail length for oskT140::GFP mRNAs when co-
expressed with osk IBE- mRNA. The osk IBE- transgene has the A subset of IBE 
mutations (Munro et al., 2006) in the 3’ UTR. The use of a primer (oligo 2) which 
anneals to GFP ensures that only the oskT140::GFP mRNAs are substrates for 
both cDNA synthesis and PCR in the assay.  
B-E. Lengths of poly(A) tails for individual cloned PCR products from late-stage 
egg chambers (B-C) and early-stage embryos (D-E). For panels B and D the 
sequence traces are for a single clone, with the range in poly(A) tail length given 
above. P values are indicated by *** P<0.001; ns, not significant with p>0.05. 
Genotypes are the same as in Fig. 4. 
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Figure 2.6. Knock down of bsf blocks oogenesis. 

Each panel shows ovarioles stained with TOPRO3 for detection of nuclei. A, wild 
type (w1118). B, control with the GAL4 driver (nos-GAL4::VP16-nos.UTR). C, bsf 
KD in bsf heterozygote (bsfSH1181/+; TRiP-bsf/nos-GAL4::VP16-nos.UTR). The 
scale bar is 20 µm.  
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Figure 2.7. Osk expression is normal in bsf KD up to stage 10 of     
oogenesis. 

Each panel shows detection of nuclei and endogenous Osk. Genotypes are as 
follows. w1118: bsf+/bsf+. Control: TRiP-bsf/TRiP-bsf (no GAL4 driver). bsf KD: 
matalpha4-GAL-VP16/TRiP-bsf. Control 2: bsfSH1181/+; TRiP-bsf/TM2 (no GAL4 
driver). bsf KD in bsf+/-: bsfSH1181/+; TRiP-bsf/matalpha4-GAL-VP16. DNA, red; 
Osk, green. The scale bar is 20 µm. 
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INTRODUCTION 

Analysis of early stages of animal development highlighted the 

phenomenon of mRNA localization. Proteins responsible for patterning certain 

insect and amphibian embryos are asymmetrically distributed within oocytes, and 

the patterns of protein distribution can be traced to the prior localization of the 

encoding mRNAs (St Johnston 1995). Localization of these mRNAs relies on cis-

acting signals, which serve to associate the mRNAs with factors involved in 

directed transport and anchoring (Lipshitz and Smibert 2000). Thus far, there 

appears to be a correlation between the complexity of the localization program 

and the complexity of the localization signal. At one extreme, exemplified by the 

Drosophila bicoid (bcd) and oskar (osk) mRNAs, localization involves multiple 

steps and the mRNAs are delivered to mRNA-specific destinations (St Johnston 

et al. 1989; Kim-Ha et al. 1991; Ephrussi et al. 1991). Signals that localize these 

mRNAs are complex, with multiple different elements needed (Macdonald 1990; 

Macdonald 1993; Macdonald 1997; Ferrandon 1997; KimHa 1993; Ghosh 2012). 

Some other programs of mRNA localization, such as apical localization in early 

Drosophila embryos (Davis and Ish-Horowicz 1991) or localization to the distal 

regions of leading lamellae and filopodia of cultured chicken embryonic 

fibroblasts (Lawrence and Singer 1986), are comparatively simple. For these 

mRNAs the localization signals are also comparatively simple, typically limited to 

one discrete element that may bind a single localization factor (Ross et al. 1997; 

Dienstbier et al. 2009). Notably, the signals for simple localization programs are 

modular: they can be used in different cell types and for multiple mRNAs (Bullock 

and Ish-Horowicz 2001)(Snee et al. 2005), and they can be incorporated into 

more complex localization signals (Macdonald et al. 1993). The TLS localization 
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signal from the Drosophila fs(1)K10 mRNA is a paradigm for such modularity 

(Serano and Cohen 1995).  

In the ovary, fs(1)K10 mRNA is synthesized in the nurse cells and then 

efficiently transported to the oocyte and enriched along the anterior margin. The 

TLS is located within the fs(1)K10 mRNA 3’UTR and consists of an A/U-rich 

stem-loop (Serano and Cohen 1995), which adopts an unusual helical structure 

(Bullock et al. 2010). Egalitarian (Egl) protein binds the TLS to mediate 

association with Dynein for transport along microtubules (Dienstbier et al. 2009). 

Deletion of the TLS eliminates localization of fs(1)K10 mRNA (Serano and Cohen 

1995), while addition of a minimal TLS (44 nt) to other mRNAs robustly confers 

the same program of oocyte transport and anterior localization (Serano and 

Cohen 1995; Bullock and Ish-Horowicz 2001). The TLS also supports apical 

localization when microinjected into early Drosophila embryos, with localization 

dependent on the same proteins as in the ovary (Bullock and Ish-Horowicz 

2001). Strikingly, a number of embryonic mRNAs that display this pattern of 

apical localization in early embryos undergo transport to the oocyte when 

ectopically expressed in ovaries. These mRNAs have stem-loop structures 

required for localization, often similar in composition to the TLS (Bullock and Ish-

Horowicz 2001). 

Transport mediated by the TLS/Egl transport system can be useful in the 

context of more complex localization programs. Both bcd and osk mRNAs must 

be transported to the oocyte, and both appear to use this system. A stem loop 

structure within the bcd localization signal mediates transport to the oocyte and is 

sufficient to direct apical localization in the early embryo. Both localization 

programs are sensitive to the same point mutation in the signal (Macdonald et al. 
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1993; Bullock and Ish-Horowicz 2001). The situation for osk mRNA is more 

nuanced. Just as for mRNAs with the TLS, the osk mRNA is very strongly 

enriched in the oocyte. This property relies on a localization element within the 3’ 

UTR (Kim-Ha et al. 1993; Kim et al. 2014). Sequences which appear to be 

important for the function of this element, called the OES, have been more 

precisely mapped to part of a stem loop structure which resembles the TLS in 

having an A/U-rich stem. Mutation of this part of the stem disrupts OES activity, 

and compensatory changes restore activity (Jambor et al. 2014). Despite this 

similarity between the TLS and the OES, the OES is depauperate by comparison: 

it is not active in isolation, and only directs a reporter mRNA in the context of 

larger regions of the osk 3’UTR. Furthermore, Egl-dependent apical localization 

of osk mRNA in early embryos is substantially weaker than for other RNAs with 

TLS-like signals (Bullock and Ish-Horowicz 2001; Jambor et al. 2014). These 

observations raise the possibility that additional localization elements contribute 

to transport of osk mRNA to the oocyte. 

The phenomenon of mRNA localization initially appeared to be limited in 

scope, but it is now clear that many mRNAs are subject to this form of regulation 

(Lécuyer et al. 2007; Holt and Bullock 2009). In addition, there are many different 

distribution patterns. Does each different pattern require a unique localization 

signal, to be bound by a protein dedicated to that program of localization? 

Combinatorial localization mechanisms might reduce the number of required 

signals and factors. Nevertheless, the great diversity in localization patterns 

suggests the existence of many localization factors. Here we show that a 

regulatory circuit used to control translation - both the binding sites in the mRNA 

and the binding factor - also mediates mRNA localization. Translational 
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regulation of osk mRNA relies on Bruno (Bru), which binds to multiple sites in the 

3’ UTR (Kim-Ha et al. 1995; Reveal et al. 2010; Reveal et al. 2011). One cluster 

of Bru binding sites in the AB region, near the 5’ end of the 3’ UTR, acts in 

translational repression. A second cluster of Bru binding sites, near the mRNA 3’ 

end in the C region, acts in both repression and translational activation. We find 

that either cluster of Bru binding sites confers oocyte transport on a reporter 

mRNA, as do isolated Bru binding sites. However, neither Bru sites nor the OES 

are essential for oocyte transport of osk mRNA. We suggest that the use of a 

suboptimal TLS/Egl oocyte transport system is an important feature of the 

complex localization of osk mRNA: weak association with that system would 

facilitate the subsequent transfer to other systems for delivery of the mRNA to the 

posterior pole of the oocyte, while strong and persistent association would 

prevent that later step in localization. 

 

RESULTS 

The AB and C regions of the osk 3' UTR confer oocyte localization on 
reporter mRNAs 

UAS-GFP reporter transgenes bearing either of the two osk 3' UTR 

regions with Bru binding sites - the AB and C regions - are translationally 

repressed during oogenesis. The GFP, GFP-AB and GFP-C mRNAs are present 

at similar levels, but the amounts of GFP protein produced by GFP-AB and GFP-

C mRNAs are dramatically lower than for GFP mRNA (Reveal et al. 2010). 

Comparison of the distribution of these mRNAs by in situ hybridization revealed a 

further difference that was most prominent during the previtellogenic stages of 

oogenesis. In combination with a germ line-specific GAL4 driver, the GFP mRNA 
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was present evenly throughout the germ line cells. By contrast, the GFP-AB and 

GFP-C mRNAs were substantially enriched in the oocyte (Fig. 3.1), revealing that 

the AB and C regions provided localization activity similar to that of the TLS. 

However, folding predictions suggested that neither region adopts a stem-loop 

structure, a characteristic of TLS and TLS-like signals. Thus, each of these 

regions appears to contain a novel form of transport signal. 

 

Bru binding sites confer oocyte localization on reporter mRNAs 

Because the AB and C regions both mediated enrichment in the oocyte, 

any feature shared by these regions would be a likely candidate for the transport 

signal. The AB and C regions were initially defined by their ability to bind Bru, a 

repressor of osk mRNA translation (Kim-Ha et al. 1995). To ask if Bru binding 

sites are required for oocyte enrichment, we made use of reporter transgenes 

originally constructed to study translational regulation by Bru. The UAS-osk1-

534::GFP reporter includes the first 534 bp of the osk transcription unit (most of 

the first exon, and encoding the N-terminal 173 amino acids) (Kim et al. 2015). 

Versions of this reporter transgene (referred to as UAS-osk::GFP for simplicity) 

include the osk 3’ UTR AB or C regions, in wild type form or with Bru binding 

sites mutated. The UAS-osk::GFP reporter alone, without osk 3’ UTR sequences, 

produced an mRNA that was not enriched in the oocyte (Fig. 3.2A). Just as for 

the GFP reporter, addition of the osk 3' UTR AB or C regions conferred 

substantial oocyte enrichment on the osk::GFP mRNA (Fig. 3.2B,C). Notably, 

mutation of the Bru binding sites in either UAS-osk::GFP-AB or UAS-osk::GFP-C 

eliminated oocyte enrichment (Fig. 3.2E,F). 

Although these results showed that Bru binding sites are required for 
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enrichment of the mRNAs in the oocyte, the Bru sites might not be sufficient, and 

other proteins which also bind to the AB and C regions might also be required. To 

ask if Bru binding sites alone confer oocyte enrichment, two additional 

transgenes were tested. Each has multiple copies of Bru binding sites inserted in 

the reporter mRNA 3’ UTR, and each is synthetic and not derived from the osk 

mRNA.  

The UAS-GFP-anti-Bru aptamer transgene includes the template for 

multiple copies of the bru.4 and bru.18 aptamers. These anti-Bru aptamers were 

selected in vitro for their ability to bind recombinant Bru protein, and they confer 

translational repression on the GFP reporter mRNA (Reveal et al. 2011). The 

GFP-anti-Bru aptamer mRNA was enriched in the oocyte (Fig. 3.2G).  

The UAS-GFP-4xBRE transgene includes 4 copies of the 

TGTTTTATATGT motif, which corresponds to a BRE-type Bru binding site. 

Inclusion of these Bru binding sites confers Bru-dependent translational 

repression on the GFP-4xBRE mRNA (Reveal et al. 2011). These binding sites 

also resulted in enrichment of the mRNA in the oocyte (Fig. 3.2H). 

From these results we conclude that the presence of Bru binding sites in 

an mRNA is sufficient for oocyte enrichment. For both the GFP-anti-Bru aptamer 

and GFP-4xBRE mRNAs the degree of oocyte enrichment was lower than 

conferred by the osk 3' UTR AB or C regions. However, a lower degree of 

enrichment is expected, because the synthetic Bru binding sites are not as 

effective as the osk AB or C regions in conferring translational repression on the 

reporter mRNA, and the synthetic binding sites have lower affinity for Bru than 

the AB and C region RNAs (Reveal et al. 2010). 
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Bru mediates oocyte RNA enrichment independent of endogenous osk 
mRNA 

A possible mechanism for Bru-dependent oocyte enrichment is 

hitchhiking, in which the reporter mRNAs would be transported to the oocyte via 

association with endogenous osk mRNA. Such a mechanism has been 

established for mRNA localization to the posterior of the oocyte later in 

oogenesis, with Polypyrimidine Tract Binding protein (PTB) mediating association 

of osk mRNA and the hitchhiking mRNAs (Hachet and Ephrussi 2004; Besse et 

al. 2009). By analogy, Bru could bridge between the reporter and osk mRNAs. To 

test this possibility, we monitored the distribution of the osk::GFP-AB reporter 

mRNA in ovaries lacking osk mRNA. Even in the absence of osk mRNA, 

substantial oocyte enrichment of the osk::GFP-AB mRNA was detected (Fig. 

3.2I). Thus, Bru-dependent RNA enrichment in the oocyte was not achieved by 

hitchhiking on osk mRNA. 

 

Degeneracy in oocyte transport of osk mRNA 

We have shown that either of two regions of the osk mRNA 3' UTR was 

sufficient to direct Bru-dependent transport into the oocyte. A different transport 

signal was initially mapped by deletion analysis (Kim-Ha et al. 1993), with a 

recent study showing that a highly conserved portion of that region was important 

for transport (Kim et al. 2014). Another recent report also addressed the function 

of this signal, using reporter mRNAs to identify sequences sufficient for transport 

and to define the Oocyte Entry Signal or OES (Jambor et al. 2014). The OES is 

active in the context of overlapping segments of the osk 3' UTR (positions 499-

759 and 630-1028). Within the overlapping region is a stem-loop structure, SL2b, 
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whose loop sequences mediate RNA dimerization. When inserted in the 3’ UTR 

of a GFP mRNA, each of the overlapping segments confers strong oocyte 

enrichment. Deletion of the loop of SL2b does not affect transport, and so this 

process is independent of RNA dimerization. Significantly, mutation of either 

stem strand in the distal portion of SL2b disrupts oocyte transport of the GFP 

reporter mRNA, while mutation of both strands to restore base pairing restores 

transport. These mutations define the OES, which has some similarity to the TLS, 

being an A/U rich region of double-stranded RNA.  

The experiments with the OES and the Bru binding sites demonstrate that 

multiple elements in the osk 3' UTR can direct transport of reporter mRNAs to the 

oocyte. What these experiments do not test is whether either individual type of 

transport element is essential for oocyte transport of the osk mRNA (as opposed 

to a reporter mRNA not containing all osk mRNA sequences). To address this 

issue we mutated the different elements in osk transgenes, which were then 

tested in flies lacking endogenous osk mRNA to eliminate the possibility of 

hitchhiking. The osk ABC all- mRNA has the Bru binding sites in both AB and C 

regions mutated (Reveal et al. 2010). The same mutations abolished the ability of 

these regions to confer oocyte transport of the GFP-AB and GFP-C mRNAs, but 

had no discernible effect on transport of osk mRNA to the oocyte: the osk ABC 

all- mRNAs showed strong oocyte enrichment (Fig. 3.3). To inactivate the OES in 

the osk mRNA, we used a deletion mutant, osk3'∆665-685, that lacks one strand 

of the stem shown to be required for OES function, as well as the loop which 

mediates RNA dimerization. The osk3'∆665-685 mutant was strongly enriched in 

the oocyte (Fig. 3.3). Thus, neither the Bru binding sites nor the OES are 

required for transport of osk mRNA to the oocyte, suggesting degeneracy in this 
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process. To assess the consequences of eliminating both Bru- and OES-

dependent transport, an osk transgene bearing both the Bru site mutations and 

the OES deletion, osk ABC all- 3'∆665-685, was tested. Despite the loss of both 

types of oocyte transport signals, the mRNA was still strongly enriched in the 

oocyte (Fig. 3.3). Thus, there must be another contribution to oocyte transport. 

The likely location for an additional transport element is close to the OES 

in SL2b. In the initial mapping of osk sequences important for transport, two 

deletion mutants, lacking 3’ UTR nt 534-684 or 683-796, had strong defects in 

transport to the oocyte (Kim-Ha et al. 1993). Each mutant removes one stem of 

SL2b. Both of the more recent studies also found that deletions within this region 

strongly affected transport. Mutant GFP-osk∆61 deletes all of one strand of the 

SL2b (Kim et al. 2014), and UAS-gfp-osk3’UTR ∆2b deletes all of SL2b (Jambor 

et al. 2014).  

To better understand the contributions of the different parts of SL2b to 

oocyte transport, we tested several additional mutants. Three of these have small 

deletions that, in combination with osk3'∆665-685, collectively remove or disrupt 

all of SL2b (Fig. 3.4A,B). All of the small deletion mutants show clear enrichment 

of osk mRNA in the oocyte, although osk3’∆706-723 is not as strongly enriched 

as the wild type control (Fig. 3.4C). Given the absence of a strong transport 

defect for any of the mutants removing only parts of SL2b, we also tested a 

mutant in which the entire SL2b was precisely deleted. This mutant, osk3’∆634-

742, was strongly impaired for transport, but the vast majority of egg chambers 

retained unambiguous enrichment of the mRNA in the oocyte (Fig. 3.4D). These 

results lead to two conclusions. First, there must be degeneracy or redundancy 

within SL2b, as mutations equivalent to those used to disrupt OES function in 
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reporter transgenes had no substantial effect on osk mRNA transport. Second, 

although SL2b is an important contributor to oocyte transport of osk mRNA, it is 

not the only contributor. 

 

Mutation of stem-loop 2b impairs the noncoding osk RNA function 

The osk mRNA has a noncoding function, independent of its role in 

producing Osk protein. Sequences which provide the noncoding function are 

contained within the osk mRNA 3’ UTR, and they require localization to the 

oocyte for their activity (Jenny et al. 2006; Kanke et al. 2015). Consequently, 

mutations which impair transport to the oocyte may also impair osk noncoding 

function. Each of the mutants with deletions in SL2b was tested for rescue of the 

osk RNA null phenotype. In the absence of osk mRNA, oogenesis is arrested at 

stage 6/7 and no eggs are produced. Partial rescue of this phenotype allows 

oogenesis to progress further and restores some egg laying, with the rate of egg 

laying providing a measure of noncoding osk RNA function (Jenny et al. 2006; 

Kanke et al. 2015).  

A wild type osk transgene, when present in a single copy, provides strong 

noncoding osk RNA function with an egg laying rate of 2.5 or more eggs per 

female per hour. Each of the small deletions within SL2b resulted in a lower rate 

of egg laying. For mutants osk3’∆636-652, osk3’∆665-685 and osk3’∆688-705 

the reduction was modest, with rates between half and two thirds of wild type. For 

mutant osk3’∆706-723, which had the strongest defect in RNA transport to the 

oocyte, the reduction was more severe with only 0.1 eggs laid per hour per 

female. Even with two copies of the transgene the rate was still affected at 1.4 

eggs/hr/female. Not surprisingly, deletion of all of SL2b had the strongest effect: 
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no eggs were laid with one copy of the transgene, and with two copies the rate 

remained low at 0.7/hr/female. Among the eggs laid, many had a spindle 

morphology, a phenotype also found in other situations in which rescue of the 

osk RNA null phenotype is incomplete.  

 

DISCUSSION 

There are two main conclusions from these studies. The first is that Bru, a 

translational regulator, plays an additional role in mRNA transport. The ability of a 

factor with another primary function to also confer RNA localization suggests an 

explanation for the considerable diversity of mRNA localization patterns, and a 

general mechanism by which these patterns can be achieved. The second main 

conclusion is that multiple mechanisms contribute to transport of osk mRNA to 

the oocyte. We suggest that this is not simply to ensure transport, but provides 

the means to transition from this phase of mRNA localization to the subsequent 

movement within the oocyte to the posterior pole.   

Bru was originally identified for its role in translational repression (Kim-Ha 

et al. 1995). Subsequent studies also implicated Bru in translational activation 

(Reveal et al. 2010). Now we have found that the presence of Bru binding sites in 

mRNAs confers a specific form of mRNA localization, transport to the oocyte 

during early stages of oogenesis. The distribution of Bru in the ovary fits well with 

the new role. At early stages Bru protein is highly concentrated in the oocyte, 

despite a more uniform distribution of the mRNA (Webster et al. 1997). Bru must 

therefore be moved to this destination, a process that would allow for 

colocalization of associated RNAs.  

It is noteworthy that a large fraction of all mRNAs display some form of 
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localization. Within the ovary about 10% are concentrated in early stage oocytes, 

a pattern similar to the localization conferred by Bru (Dubowy and Macdonald 

1998). This high incidence of RNA transport to the oocyte could represent, at 

least in part, colocalization with proteins that function primarily in some other role, 

but facilitate a form of mRNA localization as they are themselves moved to the 

oocyte. Recent studies have highlighted secondary roles in RNA binding for 

various proteins more primarily implicated in other functions (Castello et al. 

2012). We propose a related form of secondary function: RNA binding proteins 

acting in some form of regulation or metabolism can have the secondary function 

of RNA transport. This paradigm could apply to the remarkable prevalence of 

mRNA localization found for embryonic mRNAs in Drosophila, of which about 

70% exhibit some form of localization (Lécuyer et al. 2007). For some or even 

many of these mRNAs, localization could rely on association with proteins whose 

primary role is not mRNA transport, but can nevertheless provide this function as 

a consequence of their own subcellular localization. Notably, very often the 

degree of mRNA localization is not high, implying a low efficiency which would be 

consistent with the model. If this model is correct, an extremely large and diverse 

set of RNA binding sites will function as mRNA localization signals.  

The work presented here highlights the value of combining different types 

of assays to explore mechanisms of mRNA localization. Testing the ability of an 

RNA element to confer localization on reporter mRNAs reveals what the element 

can do. Testing the effects of removing the element from its natural setting, the 

host RNA, reveals whether that function is essential. In this manner we have 

shown that multiple elements share the ability to direct the osk mRNA to the 

oocyte, but that no single element is essential.  
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The system for transport of osk mRNA to the oocyte displays both 

degeneracy and redundancy. Degeneracy refers to the ability of structurally 

distinct elements to perform the same function (Tononi et al. 1999). The Bru sites 

and the OES have degenerate roles in RNA transport. Redundancy involves the 

use of multiple iterations of the same element, each performing the same 

function (Tononi et al. 1999). Here the different Bru binding sites act redundantly, 

with either of two clusters of sites conferring oocyte localization on a reporter 

mRNA. Similarly, the different parts of SL2b could act redundantly. The previous 

mapping of the OES tested the distal portion of the SL2b (Jambor et al. 2014). 

We have now shown that multiple parts of SL2b contribute to OES function, with 

a central part being most sensitive to deletion. However, the entire SL2b must be 

deleted to substantially reduce mRNA transport to the oocyte. A likely 

explanation is that SL2b provides multiple, redundant binding sites for Egl, and 

that all must be deleted to strongly affect mRNA transport to the oocyte. 

Both redundancy and degeneracy can provide robustness to a biological 

process. While having robust transport of osk mRNA is important - this 

localization step is required both for the noncoding osk RNA function and as a 

prerequisite for further localization within the oocyte - there may be another 

reason why osk relies on its particular combination of transport mechanisms. A 

suggestive and intriguing feature of the OES is its relative frailty, as compared to 

the archetype for this class of localization signal, the TLS of fs(1)K10 mRNA. The 

TLS is largely insensitive to sequence context: a short segment containing just 

the TLS stem-loop has been shown to confer strong oocyte transport on multiple 

different mRNAs (Serano and Cohen 1995). This robustness suggests that 

formation of the TLS structure, which is critical for its function and binding Egl 
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(Dienstbier et al. 2009; Bullock et al. 2010), is highly favored. By contrast, the 

OES cannot function on its own: even the complete stem-loop 2b does not 

support RNA localization of a reporter mRNA, requiring flanking osk 3’ UTR 

sequences (either 131 nt to the 5’ side or 269 nt to the 3’ side) for this activity 

(Jambor et al. 2014). Sensitivity to sequence context raises the possibility that 

alternate folding options constrain the ability of the OES to adopt the structure 

suitable for Egl binding. The contrast between the TLS and the OES is also 

evident in their different abilities to direct mRNA localization in an ectopic setting. 

When tested for apical localization in early embryos, the TLS is highly active, 

while the OES is weakly active with only a fraction of the osk RNA being localized 

(Bullock and Ish-Horowicz 2001; Jambor et al. 2014). Such incomplete 

localization could be due to only a fraction of the RNA having the required 

structure, or to inherently weaker affinity of the structure for Egl, or both. Why 

would evolution of osk have produced an etiolated TLS-like transport signal? 

Notably, the TLS not only directs the fs(1)K10 mRNA to the oocyte, it also 

restrains the mRNA at the site of entry into the oocyte at the anterior margin 

(Serano and Cohen 1995). Although osk mRNA is also concentrated at the 

anterior margin of the oocyte, this distribution is transient and the mRNA 

undergoes a further step in localization to the posterior pole, a process that relies 

on a different localization signal, the SOLE (Kim-Ha et al. 1991; Ephrussi et al. 

1991; Ghosh et al. 2012). We suggest that the need to switch between different 

localization systems - one for transport to the oocyte, and one for movement 

within the oocyte - demands that the machinery mediating the initial step not be 

tenaciously associated with the mRNA.  
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SUMMARY & FUTURE STUDY 

Here, we showed a new role of Bru binding sites in the osk mRNA 3’ UTR 

in mRNA oocyte transport. Unlike the OES, previously reported as the oocyte 

transport element located in the osk mRNA 3’ UTR (Jambor et al., 2014), Bru 

binding sites do not seem to adopt a stem-loop structure and are active in 

isolation. Bru binding sites or the OES are sufficient to direct oocyte transport of a 

reporter mRNA. However, neither of them is required for oocyte transport of osk 

mRNA. Therefore, there must be another contribution to oocyte transport. We 

suggest that there are multiple degenerate mechanisms acting in oocyte 

transport of osk mRNA.  

Interestingly, deletion of a stem-loop structure (SL2b) in the OES not only 

greatly reduced oocyte transport of osk mRNA, but also impaired osk noncoding 

function. Preliminary results indicate that loss of osk noncoding RNA function is 

not due to reduced osk mRNA levels. These results are consistent with an earlier 

observation (Kanke et al ref) that transport of osk mRNA to the oocyte is required 

for its activity in noncoding function.  

To confirm that the role for SL2b in osk noncoding RNA function is to 

provide transport of the mRNA to the oocyte, we can ask if the TLS (a well-

characterized signal for oocyte transport) can substitute for SL2b. The TLS 

confers strong oocyte transport on multiple different mRNAs (Serano and Cohen, 

1995). Therefore, adding the TLS to an osk mRNA lacking SL2b should restore 

oocyte transport of osk mRNA, and is expected to also restore osk noncoding 

RNA function. If the noncoding function is not restored, this would argue that 

SL2b has a role in that function distinct from transport of the mRNA to the oocyte.  
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The same transgene leads to a further experiment, in which we can ask if 

a strongly active oocyte transport signal will interfere with the subsequent steps 

in osk mRNA localization. If posterior localization is disrupted by replacement of 

SL2b with the TLS, this would support our model that osk mRNA uses weak 

mechanisms for oocyte transport to facilitate the subsequent transfer to the 

machinery involved movement of mRNA to the posterior pole of the oocyte. 
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FIGURES 

 

 

Figure 3.1. Oocyte transport directed by the AB and C regions of the osk 
mRNA 3’ UTR. 

The diagram at top shows the osk mRNA 3’ UTR, with the two regions containing 
Bru binding sites (AB and C) indicated, as well as the transgenes tested. Below 
are panels showing the distribution of transgene mRNAs. For each egg chamber 
the position of the oocyte is indicated with an arrowhead (if no enrichment of the 
mRNA) or an arrow (if the mRNA is enriched). 
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Figure 3.2. Bru binding sites mediate RNA transport to the oocyte. 

Distributions of transgene mRNAs were detected by in situ hybridization. For 
each egg chamber the position of the oocyte is indicated with an arrowhead (if no 
enrichment of the mRNA) or an arrow (if the mRNA is enriched). A-F are the 
osk::GFP reporter, with additions as indicated. G-H are the GFP reporter (Fig. 
3.1) with additions as indicated. I shows the distribution of the osk::GFP-AB 
mRNA in egg chambers lacking osk mRNA. 
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Figure 3.3. Persistent oocyte transport when both Bru binding sites and the 
OES are mutated. 

All panels are in situ hybridization to detect osk mRNAs, as indicated. All 
transgenes were tested in an osk RNA null background. 
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Figure 3.4. The role of stem-loop 2b in transport of osk mRNA to the oocyte. 

A. Diagram of the 3’ half of the osk 3’ UTR, with the position of SL2b marked for 
comparison to reporter transgenes with 3’ UTR segments (indicated above with 
light gray bars; (Jambor et al. 2014)) or to deletions introduced into osk 
transgenes (indicated below with dark and medium gray bars). Those with dark 
bars are from Kim-Ha et al. (olc15 and olc16) or Kim et al. (GFP-osk∆61). Those 
with medium gray bars are from this study. 
B. Proposed structure of SL2b (Jambor et al. 2011) with the positions of deletions 
indicated.  
C. Effects of small deletions on osk mRNA transport to the oocyte. Each 
transgene was tested as a single copy in the osk RNA null background, with the 
transgene RNA detected by in situ hybridization. The upper and lower panels are 
identical, except that the signal intensity was increased for the upper panels to 
display the entire egg chambers. 
D. Effect of deleting the entire SL2b on osk mRNA transport to the oocyte. The 
panels are as in C. Although the oocyte enrichment is low for the mutant, all of 
the egg chambers (n=30) had detectable concentration in the oocyte as shown 
by the representative examples. 
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Figure 3.5. Stem-loop 2b is required for the noncoding function of osk 
mRNA. 

Egg laying rates for osk transgenes tested in osk RNA null background. Each 
vertical bar indicates the results of a separate experiment. 
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RESULTS 

Inducing bsf KD in different developmental stages of oogenesis does not 
affect Osk accumulation up to stage 10 of oogenesis. 

The bsf KD shown in the Chapter Two was induced by the matalpha4-

GAL-VP16 Gal4 driver which activates gene expression during mid oogenesis. In 

parallel with using the matalpha4-GAL-VP16 driver, I also tested other GAL4 

drivers: the nosGAL4::VP16-nos.UTR driver which activates gene expression in 

the female germarium and then again later in oogenesis, and the MTD-GLA4 

(MTD) driver which activates gene expression in the female germarium and 

throughout oogenesis. To assess the efficiency of the bsf KD, BSF protein level 

was monitored in ovaries by western blot analysis. The level of BSF reduction by 

the nosGAL4::VP16-nos.UTR driver in ovaries was similar to that by the 

matalpha4-GAL-VP16 driver (Fig. A.1A). 

Osk protein expression was monitored in the bsf KD ovaries by 

immunodetection of endogenous Osk (Fig. A.1B, C, and D), or of Osk::HA (Fig. 

A.1E,F) expressed from an epitope-tagged osk transgene; both methods gave 

similar results. The amount of Osk was similar to that in the wild type egg 

chambers up to stage 10 (Fig. A.1B). Different from using the matalpha4-GAL-

VP16 driver in the bsfSH1181 heterozygous mutant background to further reduce 

BSF level, using the nosGAL4::VP16-nos.UTR driver in the same genetic 

background disrupted oogenesis (Fig. A.1C,E). Most of the ovarioles showed 

arrested or abnormal progression of oogenesis (Fig. A.1C,E, top panels), and few 

ovarioles showed normal oogenesis (Fig. A.1C,E, bottom panels). However, the 

amount of Osk was similar to that in the wild type egg chambers up to stage 10 

(Fig. A.1D, left panels and Fig. A.1F). Consistent with this, the accumulation of 
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osk RNA was also similar to that in the wild type egg chambers up to stage 10 

(Fig. A.1D, middle and right panels).  

 

BSF localizes mainly at the posterior pole of the oocyte 

BSF was initially identified as a cytoplasmic ovarian protein which bound 

to bicoid mRNA. BSF appeared in particles within the cytoplasm of both the 

nurse cells and the oocyte during oogenesis up to stage 7-8 (Mancebo et al., 

2001). BSF was found in mitochondria and this may be the predominant location 

at least in some tissues (Bratic et al., 2011). Since I found that BSF was 

associated with osk mRNA and involved in posterior Osk accumulation during 

late oogenesis, I wanted to re-examine its subcellular distribution within the 

oocyte during late oogenesis. First, I tried immunodetection of BSF using a new 

anti-BSF antibody to examine stage 9-10 egg chambers. During early-stages of 

oogenesis (< stage 5), BSF was present throughout the egg chamber appearing 

in regions surrounding the nuclei, consistent with the previous result (Mancebo et 

al., 2001)(Fig. A.2A). During mid-oogenesis (stage 6-8), BSF was not detected 

either in the nurse cells or the oocyte. This might be because of an antibody 

issue since the anti-BSF antibody showed poor penetration into the egg (Fig. 

A.2A). In stage 10 egg chambers, BSF mainly appeared at the posterior pole of 

the oocyte with lower levels detected along the entire cortex of the oocyte (Fig. 

A.2B-D); however BSF was not detected in the nurse cells probably due to an 

antibody penetration problem. Although individual differences were seen within 

the same genotype, generally a lower level of BSF crescent was detected in the 

bsf+/- (Fig. A.2C-C’’) and bsf KD in bsf+/- oocytes (Fig. A.2D-D’’) compared to the 

wild-type oocytes (Fig. A.2B-B’’). 
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Next, I tried expressing the UAS-bsf::GFP transgenes using the 

matalpha4-GAL-VP16 driver to examine the later-stages of oogenesis  (after 

stage 10), when immunodetection becomes impossible due to deposition of the 

vitelline membrane. Interestingly, overexpression of BSF also disrupted 

progression of oogenesis, although it is also possible that BSF::GFP as a fusion 

protein could cause this problem. In the bsf+/+ background, BSF::GFP expression 

caused abnormal progression of oogenesis. Even though the overall ovary 

phenotype seemed to be arrested in development, several late-stage egg 

chambers could be seen in the ovary. Four UAS-bsf::GFP transgenic lines 

showed similar expression pattern. During early-stages of oogenesis (< stage 5), 

a strong GFP signal was detected throughout the egg chamber and found in 

regions surrounding the nuclei, consistent with the immunodetection results. 

During mid-oogenesis (stage 6-8), the GFP signal appeared as mosaic pattern or 

disappeared. During late-stages of oogenesis (stage 9-10), no GFP signal was 

detected throughout the egg chamber. Overall the line-1 and line-2 showed a 

weaker GFP signal than the line-3 and line-4. Corresponding to this, the line-1 

and line-2 showed a milder defect in progression of oogenesis than the line-3 and 

line-4 (Fig. A.3A-D). The correlation between the BSF::GFP expression level and 

degree of the defect in progression of oogenesis suggests an early function of 

BSF in oogenesis.  

If the excess of BSF was what caused the abnormal progression of 

oogenesis, this defect could be relieved/rescued by reducing the BSF level. 

Therefore, I tried expressing the UAS-bsf::GFP transgene in the bsf+/- 

background using the matalpha4-GAL-VP16 driver or the nosGAL4::VP16-

nos.UTR driver. In the bsf+/- background, using the matalpha4-GAL-VP16 did not 
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reduce the defect in progression of oogenesis, and showed a similar expression 

pattern/level to that in the bsf+/+ background (Fig. A.3E-E’ versus Fig. A.3B). In 

the bsf+/- background, using the nosGAL4::VP16-nos.UTR somewhat rescued the 

defect in progression of oogenesis, and the GFP signal was detected in late-

stage egg chambers; a mosaic pattern was shown in the nurse cells, but no GFP 

signal was detected in the oocyte at all (Fig. A.3F-F’).  

 

BSF and Bru are not co-immunoprecipitated 

Both BSF and Bru bind to the osk RNA 3’ region. Among three BSF 

binding sites, two (977-981 and 984-988) are very close to and one (970-974) 

overlaps with the Bru binding site. All of these three sites appeared to be involved 

in Osk expression. Therefore, it is conceivable that BSF and Bru interact with 

each other to activate translation of osk mRNA. To test this possibility I 

performed an immunoprecipitation (IP) assay. Unexpectedly, neither BSF nor Bru 

was co-immunoprecipitated with either the anti-Bru or anti-BSF antibody, 

respectively (Fig. A.4A). It could simply suggest that BSF and Bru do not interact. 

Since BSF and Bru bind to the osk RNA 3’ region directly (Fig. A.4B), it is also 

possible that their interaction is RNA-dependent and our experimental condition 

was not proper to detect this (since I did not add RNase inhibitors to the samples 

during the IP assay, there could have been degradation of RNA during antibody 

incubation with ovary extract overnight). It is worth repeating the IP assay in 

different experimental conditions such as adding RNase inhibitors, adjusting the 

salt/detergent concentration. 
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Loss of BSF binding affects Osk protein expression 

In the Chapter Two, I showed that loss of BSF binding to the osk RNA 

affects Osk expression in the later-stage oocytes and early-stage embryos by 

imaging approach. I also monitored the level of Osk protein by western blot 

analysis. Same transgenes used for the imaging approach were tested (Fig. 

A.5A). The whole ovary extract and extract from the later-stage egg chambers 

were each divided into a soluble fraction and an insoluble fraction (see Methods). 

In the soluble fraction, both endogenous Long Osk and Short Osk were detected 

by the anti-Osk antibody in extract from the osk+/+ (w1118) and osk+/- (IBE-; osk+/-) 

ovaries. Although I could not detect the OskT140::GFP protein in the soluble 

fraction using the anti-Osk or anti-GFP antibodies (Fig. A.5B), I could in the 

insoluble fraction. As expected, the protein expression level of the mutant 

transgenes (977-981 or 984-988) was dramatically reduced compared to that of 

the wild type transgene (osk+) (Fig. A.5C). The degree of reduction was stronger 

in extract from the later-stage egg chambers, consistent with the imaging results 

showing no change in the expression of the mutant transgenes up to stage 10 of 

oogenesis. Similar results were obtained from using the osk::HA transgenes (Fig. 

A.5D,E). 

 

BSF also binds to the osk RNA 5’ region, however the correlation between 
osk translational activation and BSF binding to the osk RNA 5’ region is not 
established 

Translational activation of osk is dependent on the cis-acting elements in 

osk mRNA. One of these to be initially identified lies in the 5’ portion of the 

mRNA, in the regions between the alternate translation initiation codons used to 

make the Long Osk and Short Osk proteins (Gunkel et al., 1998). Recently, we 
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reevaluated the 5’ portion in order to characterize the role of particular sequences 

in Osk expression. Deletion of the osk mRNA sequences 91-120, 118-135 and 

121-150 resulted in low protein levels and embryonic patterning defects ((Kanke 

and Macdonald, 2015), Fig. A.6A). Interestingly, we found that BSF also binds to 

the osk RNA 5’ portion containing sequences initially considered to be important 

for translational activation. BSF binding to the 5’ RNA was as strong as binding to 

the 3’ RNA (Fig. A.6B,C). Therefore, I wanted to test the transcripts bearing 

deletion mutations (Fig. A.6D) for loss of BSF binding and consequently any loss 

of translational activation. The mutants Δ61-90 and Δ91-120 were strongly 

defective in BSF binding. The remaining mutants, Δ118-135, Δ121-150, Δ151-

180, and osk5’(M1R) (this is a control for Δ118-135 which also has the M1R 

mutation) had no defect in BSF binding (Fig. A.6E). The mutant Δ61-90 had no 

defect in Osk expression and embryonic body patterning in the absence of BSF 

binding. This suggests that BSF binding to the osk RNA 5’ region is not involved 

in the osk translational activation. 

 

MATERIALS AND METHODS 

Flies and Transgenes 

The genomic osk transgenes included 3XHA epitope tag inserted after 

T140 (M139 is the aminoterminal end of Short Osk). This tag does not detectably 

alter osk expression or patterning activity. Expression of UAS transgenes was 

tested by the nosGAL4::VP16-nos.UTR or MTD-GAL4 (Bloomington stock 

31777) driver.  
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Antibodies 

Antibodies for western blot analysis: mouse anti-HA (Covance)(1:1,000); 

mouse anti-Bru (1:8,000); rat anti-BSF (1:1,000); rabbit anti-Osk (1:2,000); 

mouse anti-GFP (Sigma)(1:2,500); mouse anti-α-Tubulin (Sigma)(1:1,000); 

alkaline phosphatase-conjugated goat anti-rat IgG (Sigma)(1:5,000); alkaline 

phosphatase-conjugated goat anti-mouse IgG (Applied Biosystem)(1:5,000). 

Antibodies for imaging: mouse anti-HA (Covance)(1:1,000); rabbit anti-Osk 

(1:2,000); rabbit anti-BSF (1:1,000); Alexa Fluor 488 goat anti-mouse IgG 

(Invitrogen)(1:800); Alexa Fluor 488 goat anti-rabbit IgG (Invitrogen)(1:800).   

 

Immunoprecipitation 

Protein extract was prepared as for RNA affinity purification. Protein A/G 

beads (Santa Cruz) were equilibrated by washing several times with OEB100 (50 

mM HEPES, pH 7.4, 10 mM MgCl2, 100 mM NaCl, 0.1% Triton X-100, 10% 

Glycerol, 0.1 mM DTT). 1 mg of ovary extract (1ml) was incubated with 10 ul of 

anti-BSF (1:100) or 1 ul of anti-Bru (1:1,000) overnight at 4 °C with rotation. And 

then, 20 ul of equilibrated protein A/G beads were added followed by incubation 

for 1 hr at 4 °C with rotation. After incubation, the beads were spun down, saving 

both pellets and supernatant (S) fractions. The pellet fraction was washed 

several times with ice-cold OEB150 (50 mM HEPES, pH 7.4, 10 mM MgCl2, 150 

mM NaCl, 0.1% Triton X-100, 10% Glycerol, 0.1 mM DTT), and boiled in 20 µl of 

6X protein sample buffer for 10 min to elute bound proteins (P). S and P fractions 

were separated by SDS-PAGE and analyzed by western blot. 
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Preparation of ovary extract for western blot analysis 

Ovaries from young females fed on yeast for 3~4 days were dissected in 

1X PBS on ice, washed once with ice cold COEB100 (50 mM HEPES, pH 7.4, 10 

mM MgCl2, 100 mM NaCl, 0.1% Triton X-100, 10% Glycerol, 0.1 mM DTT, 

Complete, Mini, EDTA-free protease inhibitor cocktail tablet (Roche)). 20 pairs of 

ovaries and 200 late-stage egg chambers from each genotype were collected. 

After washing, they were homogenized with a plastic pestle in a 1.5 ml microfuge 

tube in the presence of 60 ul (whole ovaries) or 20 ul (late-stage egg chambers) 

COEB100. The lysates were separated the soluble fraction (in the supernatant) 

from the insoluble fraction (in the pellet) by centrifugation at 12,000 rpm for 25 

min. Protein concentration of the soluble fraction was determined by Bradford 

(Bio-rad) method. Insoluble fractions were boiled in 100 µl (whole ovaries) or 50 

µl (late-stage egg chambers) of 6X protein sample buffer for 15 min and 10 µl 

was separated by SDS-PAGE for western blot analysis.  

 

UV cross-linking assay 

The osk RNA probes were transcribed from the plasmids used in RNA 

affinity purification using MAXIscript kit (Ambion) and uniformly labeled with [α-

32P]UTP (800Ci/mmol, Perkin Elmer) according to the manufacturers instructions.  

After phenol/chroloform extraction, unincorporated nucleotides were removed 

using NucAway spin column (Ambion) and the RNA probes were precipitated 

with ammonium acetate/ethanol. UV cross-linking assay was performed as 

described (Kim-Ha et al., 1995), except the different composition of 10X binding 

buffer (60 mM HEPES, pH7.9, 300mM KCl, 20 mM MgCl2, and Complete, Mini 

EDTA-free protease inhibitor cocktail tablet (Roche)). After electrophoresis of 
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cross-linked adducts, gels were dried using GelAir Drying system (Bio-rad) and 

exposed to a Phosphor Screen (Molecular Dynamics) for 12 hr. The screen was 

then analyzed with a Typhoon lase scanner (GE Healthcare). 
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FIGURES 

 

 

 
 

Figure A.1. Inducing bsf KD in different developmental stages does not 
affect Osk accumulation during oogenesis up to stage 10. 

A. Efficiency of the bsf KD in ovaries using the matalpha4-GAL-VP16 (matα) or 
the nosGAL4::VP16-nos.UTR (nos) driver detected by western blot analysis. 
w1118 was used as a wild type control. Genotypes used as follows. Control is +/+; 
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TRiP-bsf/TRiP-bsf. bsf KD>matα is +/+; TRiP-bsf/matalpha4-GAL-VP16. bsf 
KD>nos is +/+; TRiP-bsf/nosGAL4::VP16-nos.UTR. For osk::HA transgenic, bsf 
+/+ is +/+; osk::HA matalpha4-GAL-VP16 oskA87/+. bsf KD>matα is +/+; osk::HA 
matalpha4-GAL-VP16 oskA87/TRiP-bsf. 
B. Osk accumulation is normal in the bsf KD driven by different GAL4 drivers up 
to stage 10 of oogenesis. Panels show the posterior portion of stage 10 egg 
chambers. DNA, red; Osk, green. The scale bars in this and other panels are 20 
μm. Genotypes are as follows. bsf KD>nos is +/+; TRiP-bsf/nosGAL4::VP16-
nos.UTR. bsf KD>MTD is otu-GAL4-VP16; nos-GAL4-NGT/+; TRiP-bsf/nos-
GAL4-VP16.  
C. Ovary phenotypes of bsf KD in bsf +/- by the nosGAL4::VP16-nos.UTR driver. 
The examples of the ovarioles showing arrested oogenesis (top) and normal 
oogenesis (bottom). DNA, red; Osk, green. 
D. The bsf KD in the bsf +/- by the nosGAL4::VP16-nos.UTR driver does not affect 
Osk expression and osk RNA accumulation up to stage 10 of oogenesis. Left 
panels show detection of endogenous Osk protein. Middle panels show Stau 
protein (which colocalizes with osk mRNA). Right panels show osk mRNA. Top 
panels from w1118 and bottom panels from bsf KD in bsf +/- by the 
nosGAL4::VP16-nos.UTR driver. For the Osk and Stau protein panels, DNA is 
red and protein is green. For the in situ hybridization panels osk RNA is red (the 
signal in follicle cells is background).  
Genotypes in C-D is as follows. bsf KD in bsf +/- >nos is bsfSH1181/+; TRiP-bsf/ 
nosGAL4::VP16-nos.UTR.  
E. Ovary phenotypes of the bsf KD in the bsf +/- by the nosGAL4::VP16-nos.UTR 
driver. Top panel shows arrested oogenesis ovarioles. Bottom panel shows late-
stage egg chambers having normal Osk::HA accumulation. 
F. Osk expression is normal in the bsf KD in the bsf +/- by the nosGAL4::VP16-
nos.UTR driver up to stage 10 of oogenesis. Panels show posterior portion of 
stage 10 egg chambers. Top panel shows bsf+/+ and bottom panel shows bsf KD 
in bsf +/- by the nosGAL4::VP16-nos.UTR driver. DNA, red; Osk::HA, green.  
Genotypes in E-F are as follows. bsf +/+ is osk::HA/+; nosGAL4::VP16-nos.UTR 
oskA87/+. bsf KD in bsf +/- >nos is bsfSH1181/ osk::HA; nosGAL4::VP16-nos.UTR 
oskA87/TRiP-bsf. DNA, red: Osk::HA, green.  
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Figure A.2. Within the oocyte, BSF is mainly localized at the posterior pole 

Immunodetection of BSF expressed from w1118 (A-B’’), bsf 
+/- (C-C’’), and bsf KD 

in bsf 
+/- (D-D’’) egg chambers. All panels show only the portion of the oocyte; 

each panel from the same genotype shows individual variation in BSF 
expression. Although the anti-BSF antibody shows poor penetration into the egg 
chamber, a crescent of BSF is detected specifically at the posterior pole of the 
oocyte (lower levels appear along the entire cortex). DNA, red; BSF, green. Scale 
bar is 20 μm. Genotypes used as follows. bsf 

+/- is bsfSH1181/CyO; TRiP-bsf/TM2. 
bsf KD in bsf+/- is bsfSH1181/+; TRiP-bsf/matalpha4-GAL-VP16. 
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Figure A.3. Overexpression of BSF::GFP disrupts progression of oogenesis  

A-D. Ovary phenotypes of the UAS-bsf::GFP expression by the matalpha4-GAL-
VP16 (matα) driver in the bsf+/+ background. Four lines of the UAS-bsf::GFP were 
tested. Each panel is from each transgenic line and the genotypes are indicated 
at top. DNA, red; BSF::GFP, green. The scale bar in this and other panels are 20 
μm. 
E-E’. The UAS-bsf::GFP expression by the matalpha4-GAL-VP16 (matα) driver in 
the bsf+/- background. Early-stage egg chambers are shown in E. Mid- and late-
stage egg chambers are shown in E’. The genotype is indicated at top. DNA, red; 
BSF::GFP, green. 
F-F’. The UAS-bsf::GFP expression by the nosGAL4::VP16-nos.UTR (nos) driver 
in the bsf+/- background. Early- and mid-stage egg chambers are shown in F. 
Late-stage egg chambers are shown in F’. The genotype is indicated at top. 
DNA, red; BSF::GFP, green. 
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Figure A.4. BSF and Bru are not co-immunoprecipitated 

A. Upper panel is a western blot probed with the anti-BSF antibody, and the 
lower panel is a western blot probed with the anti-Bru antibody. Input is the 
starting material. S and P are supernatant and pellet fractions following 
immunoprecipitating with the anti-BSF or anti-Bru antibodies indicated at top. 
Amounts loaded are: input and supernatant, 0.8%; pellet, 40%. The extra bands 
detected by the anti-Bru might be a degraded Bru or nonspecific bindings of the 
antibody.  
B. BSF directly binds to osk RNA. BSF and Bru binding, detected by the UV 
cross-linking assay, to the radiolabeled osk 3’ region mutant RNAs. The two blot 
images show the results from independent experiments. Mutants 970-974 and 
984-988 have the strongest effect on BSF binding, 977-981 and 997-1001 are 
intermediate, and 990-994 has no detectable effect.  
C-D. Quantification of BSF (C) and Bru (D) binding levels from the UV cross-
linking assay.  
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Figure A.5. Loss of BSF binding affects Osk protein expression  

A. Schematic diagram of osk transgenes used in the assay. The oskT140::GFP 
transgene has wild type or mutant versions of the 3’ UTR. All oskT140::GFP 
transgenes were inserted at the same genomic site by phiC31 transgenesis to 
avoid position effects that might alter expression levels. The osk IBE- transgene 
has the A subset of IBE mutations (Munro et al., 2006) in the 3’ UTR. 
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B. Western blot results of the soluble fractions probed with the anti-Osk (top), 
anti-α-Tubulin (middle), and anti-GFP (bottom). 24 µg of soluble proteins were 
used for probing the anti-Osk and α-Tubulin antibodies, and 48 µg of soluble 
proteins were used for probing the anti-GFP antibody which detects 
OskT140::GFP protein. OskT140::GFP proteins were not detected by the anti-
GFP antibody. All bands in bottom panel result from non-specific antibody 
binding. 
C. Western blot results of the insoluble fractions probed with the anti-Osk (top) 
and anti-α-Tubulin (bottom). Long Osk and Short Osk bands from the 
oskT140::GFP transgenes are degradation products.    
Genotypes used as follows. IBE-; osk+/- is oskIBE-/oskIBE- ;Df(3R)osk/TM2. osk+ is 
oskT140::GFP/osk IBE-; osk0/Df(3R)osk. 977-981 is oskT140::GFP3’977-981/osk 
IBE-; osk0/Df(3R)osk. 984-988 is oskT140::GFP3’984-988/osk IBE-;  
osk0/Df(3R)osk. 
D. Schematic diagram of the osk transgenes used in the assay. The osk::HA 
transgene has wild type or mutant version, 977-981 of the 3’ UTR. The osk IBE- 
transgene has the A subset of IBE mutations (Munro et al., 2006) in the 3’ UTR. 
E. Western blot results probed with the anti-HA (top) which detects Osk::HA 
protein, and the anti-α-Tubulin (bottom). 24 µg of soluble proteins were used. The 
band indicated by an asterisk was not appeared after anti-HA probing, it was 
appeared only after the anti-α-Tubulin probing. Therefore, this band might be a 
background or nonspecific binding of the anti-α-Tubulin.  
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Figure A.6. BSF also binds to the osk RNA 5’ region, however the 
correlation between osk translational activation and BSF 
binding to the osk RNA 5’ region is not established 

A. Diagram of the osk::HA transgenes carrying deletion mutations in the 5’ 
region. The first start codon was mutated, and HA was inserted next to the 
second start codon. Regions implicated in embryonic body patterning activity 
corresponding to the translational activation are indicated. The Δ91-120, Δ118-
135, and Δ121-150 showed the strongest defect in embryonic body patterning. 
Other mutations had no detectable defect (Kanke and Macdonald, 2015).  
B. Schematic diagram of the osk 5’ region of RNA fused to S1 aptamer 
(S1::osk5’) and osk 3’ region of RNA fused to S1 aptamer (osk3’::S1) used in S1 
aptamer RNA purification assay.   
C. BSF and Bru binding, detected by western blot analysis, to the osk 5’ or 3’ 
region RNAs. Input is the starting material. S and P are supernatant and pellet 
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fractions following purification with the RNAs indicated at top. Amounts loaded 
are: input and supernatent, 0.8%; pellet, 33.3%. 
D. Schematic diagram of the osk 5’ region deletion mutant RNAs used in RNA 
purification assay to test BSF binding.  
E. BSF binding detected by western blot (top) and coomassie staining (bottom) to 
the osk 5’ region mutant RNAs. The amounts loaded were as in panel C. The 
Δ61-90 and Δ91-120 have the strongest effect on BSF binding. Other mutations 
have no detectable effect. The arrow in coomassie stained gel indicates the 
bands of BSF judged by size. 
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