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Abstract 

Shared Autonomous Electric Vehicle (SAEV) Operations Across the 

Austin, Texas Region, with a Focus on Charging Infrastructure 

Provision and Cost Calculations 

Benjamin Jesse Loeb, M.S.E.

The University of Texas at Austin, 2016 

Supervisor: Kara M. Kockelman. 

Shared autonomous vehicles, or SAVs, have attracted significant public and 

private interest because of the opportunity to simplify vehicle access, avoid parking costs, 

reduce fleet size, and, ultimately, save many travelers time and money. One way to 

extend these benefits is through an electric vehicle (EV) fleet. EVs are especially suited 

for this heavy usage due to their lower energy costs and reduced maintenance needs. As 

the price of EV batteries continues to fall, charging facilities become more convenient, 

and renewable energy sources grow in market share, EVs will become more 

economically and environmentally competitive with conventionally-fueled vehicles. EVs 

are limited by their distance range and charge times, so these are important factors when 

considering operations of a large, electric SAV (SAEV) fleet. 

This study simulated performance characteristics of SAEV fleets serving travelers 

across the Austin, Texas 5,301 square-mile, 6-county region.  The simulation works in 

synch with the agent-based, open-source, simulator MATSim, with SAEVs as a new 
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mode. Charging stations are placed, as needed, to serve all trips requested over 30 days of 

initial model runs. This model uses a mixed fleet where one third of the vehicles in use 

are gasoline hybrid-electric vehicles which serve all trips in excess of 35 miles, to prevent 

these low-range EVs from being burdened by long trips. Travelers may sometimes share 

rides, when practical, up to four travelers per vehicle. Hundreds of simulations of 

distinctive fleet sizes with different ranges and various charge times suggest that the 

number and location of stations depend almost wholly on vehicle range. Reducing charge 

times, as well as independently increasing vehicle range, does lower fleet response times 

(to trip requests). Increasing fleet size improves response times the most. The effects of 

dynamic ridesharing and the number of charging stations available are also studied here.   

The station generation algorithm produced 170 charging stations for a fleet of 

SAEVs with 60-mile range. A 200-mile range fleet resulted in just 19 stations. When 

testing a fleet of 200-mile range and 30-minute charge times with the set of 170 charging 

stations, average response times were low at 6.8 minutes per request. Empty vehicle 

miles traveled (empty VMT) accounted for 15% of total travel over the course of the 

simulation day and just 3.7% of this empty VMT was driving to charging stations (or 

0.6% of total VMT). It is estimated that this fleet will cost $0.60 to $1.09 per passenger-

mile assuming a 10 year return on investment for capital costs (e.g. land acquisition and 

charging facilities). This is compared to a base case of a fully gasoline-powered fleet 

which can achieve average response times of 6.4 minutes per trip and 9.73% empty VMT 

for the same sized fleet. A lower-performance fleet, with 60-mile ranges and 240-minute 

charge times, meets requests with an average response time of 33.1 minutes creating 

25.7% empty VMT. 19% of this empty VMT (4.82% of total VMT) is to access charging 

stations. Cost calculations estimate this fleet would cost between $0.59 and $0.97 per 

passenger-mile to operate. A gasoline fleet is estimated to operate at just $0.30 to $0.62 
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per passenger mile. These savings are thanks to the presence of existing fueling stations 

that do not need to be maintained by the fleet manager.  

For all but very large fleet sizes, DRS showed substantial changes to response 

times. With a fleet size of 5 travelers per SAEV, response times fell by 32 minutes on 

average with an average imposed delay of 11 minutes per traveler. DRS also halved 

empty VMT for a fleet size of 5 travelers per vehicle. Increasing the number of charging 

stations from 19 to 170 improved response times and empty VMT but for most fleet sizes 

these improvements were not substantial.   
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Chapter 1: Introduction 

MOTIVATION 

An exciting application of self-driving, automated-vehicle technology is one-way 

carsharing, similar to services like Car2Go and transportation network companies (TNCs) 

such as Lyft – but without a driver. Unlike a TNC or taxi fleet with several drivers 

working largely independently, an autonomous fleet has the advantage of being 

controlled by an automatic fleet manager, who can assign vehicles to requests in a way 

that can keep response times as low as possible. Unlike human drivers, autonomous 

vehicles cannot miss, or ignore trips; they may work unlimited hours and they do not 

need to return home each night. Shared autonomous vehicles (SAVs) are envisioned to 

eventually save many travelers money and time, while reducing personal-vehicle fleet 

sizes in use today (Fagnant and Kockelman, 2015). One way to extend such benefits is to 

use an electric vehicle (EV) fleet (as in Chen et al., 2016 and Chen and Kockelman, 

2016). EVs are especially suited for the heavy use of longer daily travel distances 

experienced by shared fleets due to their relatively low energy and maintenance needs 

(U.S. DOE, 2016). A system of shared autonomous electric vehicles (SAEVs) can carry a 

relatively high fixed cost due to the cost of large batteries, and additional charging 

infrastructure, but may reduce overall costs via lower energy and maintenance needs. 

EVs are also expected to reduce environmental costs in most locations, especially with 

the long term addition of renewable feedstocks to the power grid (Reiter and Kockelman, 

2016). Unlike petroleum-fueled vehicles, EVs have the potential to be a zero-carbon 

transportation option when coupled with zero-carbon electrical generation. For now, EVs 

are responsible for substantial carbon emissions from upstream electrical production 

using fossil fuels and are comparable to hybrid vehicles in terms of per-mile carbon 
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emissions (McLaren, 2016). However, as electrical generation becomes cleaner, 

electrification of the vehicle fleet is a great way to double down on these carbon savings. 

EVs zero-tailpipe-emissions, even with "dirty" electrical production, will not contribute 

to local smog and pollution, especially notable in urban cores. As the price of EV 

technology continues to fall (Nykvist & Nilsson, 2015) and charging facilities become 

more convenient, EVs will become increasingly financially, as well as environmentally, 

advantageous over traditional, petroleum-fueled vehicles.  

With heavy use of a shared fleet (i.e., over 100 miles per day per vehicle, rather 

than 20 miles [Fagnant and Kockelman 2015]), vehicle turnover will be faster, leading to 

quicker adoption of new EV technologies (Martinez, 2015). All-electric, non-hybrid, EVs 

are, unfortunately, limited by their range (the distance an EV is able to drive on a single 

charge) and battery charge times, which tend to require two to twenty+ times as long as 

gas station refueling, depending on the power output. Anticipating the number, placement 

and size of charging stations is also an important prerequisite for an SAEV fleet, since 

charging stations are rare in most parts of the U.S., while gas stations are quite common. 

Any self-driving fleet will incur high fixed costs, at least in early stages of technology 

release, so scenarios under which such a fleet is cost effective, compared to a gasoline-

powered fleet, should be explored before making this large capital investment, granted 

such scenarios even exist. Slow charge times and poor battery-capacity have been major 

barriers for EV adoption by households in the US and elsewhere (Stephens, 2013), but 

these barriers are steadily falling as charge times under an hour are becoming available in 

more and more fast-charge locations [see, e.g., https://www.tesla.com/supercharger] 

(Bullis, 2013). Battery ranges are rising with new vehicles such as Chevrolet Bolt 

(Chevrolet, 2016) and Tesla Model 3 (Tesla Motors, 2016a) both expected to deliver 200 

miles of range for under $40,000. The recent, dramatic, drop in battery prices will also 
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play a big role in EV adoption, now at an estimated $190 per kilowatt-hour (kWh), 

roughly one fourth what they cost back in 2009 (Voelcker, 2016). 

This work simulates what would be a first-to-market, private, SAEV service: 

there are no identical competing services or available charging infrastructure assumed. 

This study simulates robust locations around the region for charging station placement, as 

well as the effects of battery range, charge times, and fleet size on SAEV system 

performance for the 6-county Capital Area Metropolitan Planning Organization 

(CAMPO) region surrounding Austin, Texas. The primary metrics for performance are 

response times, and unoccupied vehicle mileage. The work addresses gaps in much recent 

research by modeling SAV services across a very large region with a highly detailed (true 

to life) network of roadways and with variable population densities and land uses. The 

simulation framework improves upon agent-based simulations created by Bösch et al. 

(2016), adopting electric charging strategies created by Chen et al. (2016). Both of these 

works were further improved upon by using a dynamic ridesharing strategy, more 

realistic vehicle speeds, allowing charging vehicles to respond to requests, using more 

robust charging strategies, requiring that 100% of demand be met and more. All of these 

improvements will produce a higher degree of realism and improve the fleet’s 

performance using creative charging and passenger-pickup strategies. 

Some of this work (Loeb et al., 2016) is under review for publication in 

Transportation Research Part C with co-authors Kara Kockelman and Jun Liu. 

PRIOR RESEARCH 

In this section, several prior works related to this paper are summarized. The first 

three (Chen et al. [2016], Chen and Kockelman [2016] and Bösch et al. [2016]) provide 

the primary methods and the inspiration for this work. The remaining works are listed in 
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decreasing order of their relevance and/or contributions to this paper. Additional 

literature review can be found in the appendix. 

While several studies have recently simulated the operations of SAV fleets in 

urban environments (Fagnant & Kockelman, 2015; Martinez, 2015; Spieser et al., 2014; 

Zachariah et al. 2014), only Chen et al. (2016) and Chen and Kockelman (2016) have 

allowed for electric vehicles or for rural and low-density trip-making locations. They 

modeled SAEV services over a 100 mile × 100 mile homogenous grid with quarter-mile 

spacing, where each grid cell had different population densities depending on their 

distance from the network's center. Cells within 2.5, 7.5 and 15 miles were considered 

downtown, urban, and suburban respectively. Cells not falling within these circles were 

considered exurban. Every scenario they tested produces 7%-14% empty VMT, though 

VMT produced by recharging trips are negligible. They concluded that an SAEV system 

could serve all passenger demand with competitive response times as low as 7.7 minutes 

with 30-minute charge times and a 160-mile effective vehicle range and costs comparable 

to that of a gasoline-powered fleet with just 6.6% more vehicles. Their systems were 

estimated to be cheaper than a gasoline fleet with fuel prices as low as $2.50 per gallon 

assuming $45,000 purchase price for a long-range SAEV, $405 per kWh for replacement 

batteries assuming the battery will be replaced once in the life of each vehicle at 115,000 

miles, $0.061 per mile in vehicle maintenance costs, $1,600 in annual insurance and 

registration costs (per vehicle), and $0.13 per kWh (for battery charging). This led to 

costs of 43 to 48 cents per passenger-mile or 66 to 74 cents per mile after considering 

general administration (back office) costs. They assumed no land acquisition costs, or any 

costs associated with paving, station lighting, etc. To conduct this study, a 2-phase "warm 

start" began the simulation. The first phase generated charging stations using an 

oversized fleet. The demand was simulated and a new station was spawned whenever a 
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vehicle needed a charging station but one is not in range. Phase 2, SAEV fleet generation, 

took place over 20 simulation days using the proposed charging stations from phase 1. A 

vehicle was spawned whenever a traveler's demand was not met within 10 minutes, and 

the average number of SAEVs from the twenty days was taken to be the needed fleet 

size. The model runs scenarios assuming short range and long range EVs (80 or 200 

miles) as well as fast charging versus regular charging (4 hours and 30 minutes 

respectively). Fast charging was assumed to reduce usable range by 20%.  

Given their specific setup, Chen and Kockelman’s (2016) and Chen et al.’s (2016) 

simulation results suggest that fleet size is highly sensitive to charge times, as well as 

vehicle range, and that long-range (200-mile) SAEVs are able to reduce fleet size by 20 

percent (relative to short-range, 80-mile, settings) while fast-chargers reduce fleet size by 

30% (comparing 4-hour charges to 30-minute charges.) Combining long ranges and fast 

charges reduces fleet by 44% over the base case. Their simulation setup suggests that the 

number of charging stations will not vary much, but the number of chargers needed at 

each station can be cut by 45.2% and 85.6%, network-wide, for short-range and long-

range SAEVs respectively using fast chargers. After analyzing all costs involved, they 

concluded that SAEV travel could be priced at $0.66 to $0.74 per person-trip-mile while 

allowing for 10% profit margins. This level of pricing would make SAEVs economically 

competitive with conventional cars; however, automated chargers are important so as not 

to require human attendants connecting charging cords to SAEVs, if SAEVs are to be 

competitive with gasoline-fueled SAVs (requiring attendants). While this current paper 

borrows much of its inspiration from the Chen et al. (2016) and Chen and Kockelman 

(2016) papers, it relies on a much more realistic network with 234,444 directed (one-

way) links, and allows a more complex charging strategy (e.g. vehicles may leave 

charging stations as needed before being fully charged), more realistic charging rates, 



 6 

travel times and congestion are modeled more realistically, the vehicle search algorithm 

is more advanced and tuned, ridesharing is implemented, far more scenarios were tested, 

and cost estimates are more thorough.   

In order to simulate SAV operations in Zurich, Bösch et al. (2016) created a 

program to work with MATSim (Horni et al., 2016), which is an agent-based and 

activity-based model of travel demand that allows for dynamic traffic assignment to 

large-scale networks with reasonable computing times. Like most MATSim users, Bösch 

et al. (2016) simulated 10% of total personal travel demands. But they focused on SAV 

operations and SAV fleet size, concluding that one SAV could serve 10 trip-makers per 

day with wait times of 3.11 minutes after rejecting 3.8% of trips due to response times 

over 10 minutes. The simulation takes the MATSim output and will consider a certain 

number of trips taken as SAV requests, depending on the settings. A registered SAV 

request will be assigned a nearby SAV which will then travel to the passenger's location. 

Once the vehicle and passenger are both ready, they will transport to the trip end location. 

The arrival time is calculated using corrected beeline distances and average speeds found 

from in the MATSim output. It was found that for low levels of demand, the required 

fleet is dependent on the number of requested trips. For most times of the day, a third or 

more of the SAVs were not needed/not in use; however, privately owned cars in 

Switzerland are used productively just 3.2% of the day (according to survey data). Their 

study is somewhat limited since traffic assignment is performed prior to SAV simulation. 

This makes dynamic ride-sharing, as well as vehicle relocation, difficult to represent. 

Even without these features found in many other models, results still showed 

improvement over current conditions. Bösch et al.’s (2016) program is a major 

contribution to this thesis’ work, along with Nagel’s (2016) MATSim code. By 

simulating the CAMPO region in MATSim first, modifying and then using Bösch et al.’s 
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(2016) code, this research is able to generate charging stations and then simulate realistic 

SAEV operations across the 6-county Austin region.  

Some past studies have been too optimistic in their predictions of response times 

and replacement rates (the average number of conventional vehicles that can be replaced 

by each SAV) due to limitations on service area size and person-trip distances. In a small 

(10 mi × 10 mi) region, with a tightly gridded network, Fagnant and Kockelman (2014, 

2015) estimated that a single SAV could replace the trip-making of 9 to 11 conventional 

vehicles while providing minimal wait times and reductions in several emissions species 

(thanks to smaller-than-average-US fleet vehicles and reductions in engine cold starts). 

Fagnant and Kockelman’s (2016) dynamic ride-sharing (DRS) evaluations of Austin’s 12 

mile × 24 mile core region yielded similar results. However, higher replacement rates 

appear feasible when trip distances are shorter, as in the case of smaller-region 

simulations, which neglect longer-distance trip-making. Their results also show vehicle 

replacement rates rise, wait times fall, and empty-VMT falls with greater spatial intensity 

of trip-making (thanks to more efficient use of SAVs and more opportunities for DRS).  

Martínez (2015) concluded that an SAEV fleet should be very plausible when 

each vehicle has a 30-minute gap or downtime in which to charge every 175 km (109 

mi), by increasing the SAV fleet size only 2%. They simulated the Lisbon, Portugal 

region in detail, with travelers sharing SAV rides as a specific mode alternative (similar 

to Zhang et al.’s [2015] approach), alongside subway, buses, non-motorized modes, and 

private conventional cars. They estimated that the same level of personal mobility for 

Lisbon travelers can be achieved with just 10% of current fleet sizes. Overall, vehicle 

travel or VMT was simulated to increase anywhere from 6% (with ridesharing and public 

transport) to 89% (no ridesharing or public transport), while 100% of on-street and 80% 

of off-street parking was no longer needed, assuming 100% “adoption” (or release of all 
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privately were vehicles). A private taxi fleet needs more vehicles to keep up with a shared 

taxi fleet and requires considerably more repositioning trips. 18% and 26% more shared 

taxis and private taxis, respectively, are needed when there is no high capacity public 

transit. With only 50% penetration/user adoption of SAVs, total vehicle-miles were 

predicted to rise 30% to 90% due to elimination of public transit (for the 90% case) and 

empty repositioning trips in all cases.  

Martínez (2015) noted that heavy use of SAV fleet vehicles expedites rapid fleet 

turnover to newer and cleaner vehicle technologies. One policy concern is labor issues 

involving taxi companies; however, Martínez notes that taxi companies can step up and 

take an active role in bring SAVs to market. This new, agent-based model, developed for 

this study was set in Lisbon Metropolitan Area because it is a fairly typical European 

city/region, in terms of GDP per capita. Lisbon also has a well established subway system 

which helps to study SAVs interactions with heavy rail transit. Lisbon generates over 

5,000,000 person trips per day, 55% of which are commutes to work or school and 1.2 

million take place within Lisbon which are the focus of this study. Lisbon has relatively 

low car ownership at 21.7% and low daily travel at 1.9 trips per person. There are over 

60,000 cars, 400 buses and 2,000 taxis circulating simultaneously during peak periods in 

Lisbon making 60 vehicles per road-kilometer and an estimated 160,000 cars parked 

simultaneously, a utilization rate of 78%. In Lisbon, 60% of trips are taken by private car 

which drops to 40% in the city center, where 20% of trips are taken by walking or some 

other non-motorized mode. A population was synthesized using Lisbon travel survey to 

generate trips within the city that are allocated at the census block level and timed for a 

synthetic weekday. Each trip was characterized by its departure time, origin-destination 

pair, trip purpose and traveler's age. For all modes, access time, waiting time and number 

of transfers were all considered. Trips were assigned non-motorized mode when less than 
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1 km (0.6 mi) long, or assigned to the subway when a station is nearby; the rest were 

assigned to an SAV. Buses were eliminated from the network since the average bus 

occupancy is only 20% in the base case. When an agent requests a ride, the dispatcher 

will find the best SAV and have it pick up the passenger. Ridesharing is allowed when an 

increase of no more than 20% of trip time or trip distance is imposed, capped at 10 

minutes and 2 km. SAVs may have a capacity of 2, 5 or 8 passengers. When a vehicle is 

empty and unassigned, it will park and wait. The scenarios studied are the presence of 

ridesharing, availability of the subway system, penetration rate (50% or 100%) and time 

period. The share of mass transit actually increased from the base case when it is 

available, likely because in real life, walking trips longer than 1 km are fairly common. In 

addition to the results found above, the simulations show that travel time increases under 

ridesharing are of little concern. In the peak hours, ridesharing can be achieved more 

easily because of the high demand. Party size elasticity is 1.07, meaning for each 1% 

increase in overall demand, party size increases 1.07%. Martínez’s Lisbon simulations 

suggested that ridesharing may reduce VMT along arterial roadways, but add substantial 

VMT to local roads. In the worst case, VMT increased by nearly 90%. Another key 

finding was that, at 50% penetration, public transit was still needed to meet demand in a 

reasonable timeframe. They estimated private-vehicle replacements to be as high as 10 to 

1, and as little as 0.9 to 1.0.  

Zhang et al.’s (2015) SAV with DRS simulations on a synthetic network 

predicted a 14:1 vehicle replacement. They also acknowledged the possibility of charging 

but only predict two 2-hour intervals every 3 days in which charging can take place, 

which certainly isn't feasible. After considering all costs, trip costs can be reduced by 

62.5% over a vehicle-ownership model. Like Fagnant and Kockelman (2016), they did 

not presume that all travelers are willing to share rides with strangers. Their simulation 
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framework employs a straightforward relocation strategy, where empty vehicles can 

move toward areas with low available-vehicle density (relative to expected near-term 

demands). Each SAV in the system was able to serve one or two vehicle-trips at a time 

with trip profiles matching the 2009 NHTS in a 10×10 mile grid with one minute 

timesteps. Similar to in Chen et al., household density was high (4,000 households/mi
2
) 

near the urban core, but drops discretely at more than 10 miles from the center (1,500 

households/mi
2
) in the corners of the study area. The area was split into grid cells 0.05 

miles across. Each household in the study area made approximately 5.66 trips per day and 

departure times and trip lengths were assigned randomly using the data supplied by the 

2009 NHTS. Destinations were based on origin and trip length. To begin the simulation, 

the fleet was comprised of 500 randomly distributed vehicles. The size of the fleet was 

increased in increments of 50 vehicles until the reduction in average waiting time was 

less than 30 seconds for all travelers. The study found 700 vehicles were adequate. Travel 

speeds were fixed at 30 mph for peak times and 21 mph off-peak.  There are criteria that 

must be met in order for two travelers to share a ride. Travelers must both be willing to 

share a ride, the cost induced delay must be less than the savings in travel costs for all 

parties and a detour cannot be made to pick up a new client. Delay cost was estimated 

using randomly assigned hourly salary rates based on the density function of the 2014 US 

Census. Results show that only 6.7% of trips participated in ridesharing; however 

probability of ridesharing was larger when the vehicle-trip is quite long or when the 

client's salary is lower. Ridesharing was able to reduce average delay from 4.24 minutes 

to 2.66 minutes during peak times and average detour time was only 0.82 minutes for 

these trips. Ridesharing reduced VMT by 4.74% but still increases trip lengths by 11% 

with 0.6 empty VMT per trip, on average. Counter-intuitively, cold starts increased by 

6.82% when ridesharing is considered, however this is still 98% fewer cold starts than 
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without an SAV fleet (this assumes these vehicles are able to run 24/7 for extended 

periods of time). The 700-vehicle fleet was able to replace 9858 conventional vehicles 

indicating a 14:1 replacement rate, also reducing parking by 92.5%. It is noted that the 

parking demand could be reduced further by the fact that parked SAVs do not need space 

to open doors. While DRS tends not to improve passenger experience, it will decrease 

VMT and thereby reduce congestion.  

Atasoy et al. (2015) simulated a conventional taxi-type system wherein 

passengers select which type of taxi or TNC service they prefer, based on real-time 

pricing and wait times (as provided by the fleet manager). Passengers could choose from 

private taxi, shared taxi or minibus. Results showed that a welfare optimizing strategy 

gives the best results for users, providing request processing times of 1.5-2.5 seconds per 

user. The vehicle fleet was dynamically allocated, meaning vehicles can take on any one 

of the three roles as needed. When a passenger requests a trip, (through smart phone or 

some similar device) the fleet manager determines a choice set for the traveler with 

quoted prices, arrival time and departure time. A logit system calibrated using constants 

from Koppelman and Bhat (2006) will then allow the passenger to choose the best option 

for their needs which may include rejecting all options. The options may lie within or 

outside of the user's intended arrival window; however, undesirable arrivals are penalized 

in the logit model, where late arrivals are more heavily penalized than early arrivals. The 

model is optimized, separately, over vehicle allocation decisions for profit maximization, 

consumer surplus maximization and multi-objective optimization (social benefit). Profit 

maximization leads to low passenger satisfaction. The social benefit case is solved using 

an exhaustive search mechanism. The framework is implemented in C++ and R with a 

24-hour time horizon. They implemented this framework with conventional vehicles, not 

self-driving vehicles, for a network resembling Tokyo's Hino City, but traffic conditions, 
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and thus congestion feedbacks, were ignored. Demand was assumed as 1% of the trips or 

5,000 ride requests randomly generated taking into account appropriate daily demand 

fluctuations and population densities. OD pairs less than 500 meters (0.3 mi) apart were 

not considered.  Costs to operate this fleet are assumed at $200/day plus $0.20/km. For 

the first scenario tested, taxis cost $5 plus $0.50 per mile, shared taxies were 50% of the 

taxi fare and bus was $3. Alternative specific constants were $1 for bus and $3 for taxi. 

For the second scenario, Taxi prices were raised to $6 plus $0.60/mile, shared taxi was 

60% of the taxi fare, and the bus was $5. Similarly, the ASC was changed to $8 for bus 

and shared taxi and $10 for private taxi. The authors tested these pricing scenarios and 

found that, in all cases, the shared (taxi-type) fleet delivered greater consumer surplus 

and profits than a public bus system serving the same demands, even with all human-

driven vehicles (where the cost of labor makes taxi or TNC prices quite high).   

Burghout et al. (2015) predicted major VMT increases of 24% in the Stockholm, 

Sweden network with an SAV fleet without dynamic ridesharing, but, interestingly, 

found that the location of this increased VMT may not contribute substantially to 

congestion. When ride-sharing was included in their model, VMT fell 11% from the base 

case, and total travel times fell 7%. Their study performed traffic assignment to anticipate 

changing travel times. This study includes a ridesharing model that is somewhat unique. 

Ridesharing follows three restraints: passenger loading and unloading is first in-first out 

(FIFO), ridesharing itineraries are developed to minimize travel times and lastly, if 

several co-passengers are possible for a vehicle, the passenger whose trip has the closest 

start time is chosen. For all trips, occupancy is limited to four passengers, boarding and 

alighting take 2 and 1 minute respectively, and intrazonal trips are proportional to the 

square root of the zones area. The area of study, the Stockholm network, consists of 421 

demand zones, 11,000 links and covers 40 km × 40 km (25 mi × 25 mi). Link speed 
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limits, as well signal timings, are known and travel speed on a link is fixed at 75% of the 

respective speed limit. A full simulation day consists of 498,732 trips over 132,976 OD 

pairs where only internal trips are studied. This demand was fit to morning and afternoon 

peaks using toll data and a Gaussian distribution. Total mileage is 2,606,000 km 

(1,619,000 mi) with an average trip length of 10 km (6 mi) and 30 min. The maximum 

allowed detour to rideshare was given several different values which showed it is 

unlikely that increasing the allowed detour beyond 50% would provide additional gains. 

This simulation models VMT as more elastic to ridesharing than most studies. Similar to 

Fagnant and Kockelman (2015) and Chen et al. (2015), SAVs were created when a 

request was made (during the test start/initial simulation runs) and no vehicle was 

available to serve it within 10 minutes or so. 
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Chapter 2: Methods 

This study uses three major steps to simulate SAV operations across Austin, 

Texas: tour generation, traffic assignment, and SAV simulation. SAV simulation is the 

primary study and is performed through the following processes: charging station 

generation, vehicle charging rules, vehicle assignment and dynamic ridesharing. 

 

TOUR GENERATION 

The travel data to generate tours come from Austin’s 2010 Capital Area 

Metropolitan Planning Organization (CAMPO) trip-making predictions, in addition to 

U.S. National Household Travel Survey (NHTS) data for the year 2009 (U.S. Department 

of Transportation, 2009). Liu et al. (2016) used CAMPO’s trip tables by trip purpose to 

generate reasonable activity plans (a key input to MATSim) for a sample of residents of 

the 6-county region (Burnet, Bastrop, Caldwell, Hays, Williamson and Travis counties). 

As described in Liu et al. (2016), a 20% sample of the region’s  roughly 8.8 million daily 

trips were re-constructed, to provide far more spatial resolution (mapping to specific 

homes and then to the ends of every block or road segment in Open Street Maps) than an 

MPO’s TAZs allow. These trips were chained for individual travelers, creating a daily 

tour for performing planned/desired activities. 15.7% of persons are assumed to make no 

trips on the given travel day, and 22.6% of persons make two trips.  

These activity plans are important for building a tour-based or activity-based 

model. Tour-based models are believed to offer a more realistic simulation of network 

use by connecting trip ends, and bringing most travelers back to their homes at the end of 

a travel day, rather than allowing trips to form and end rather independently in 

conventional (aggregate) models.  
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TRAFFIC ASSIGNMENT TO OBTAIN TRAVEL TIMES 

Dynamic traffic assignment (DTA) was performed using the agent-based 

MATSim model (Horni et al., 2016), which seeks to optimize individuals’ trip patterns in 

order to approach a network-wide user equilibrium. This is done through a co-

evolutionary process of scoring competing travel plans, for each traveler, across desired 

activity sets. MATSim has a five step iterative process: loading of initial demand, 

mobility simulation, scoring, replanning and analyses. After each replanning phase, the 

mobility simulation and scoring are performed again, and this cycle is repeated for 

several iterations, approaching network-wide user equilibrium. Then analyses of the final 

iteration may take place. 

In the first step, the initial demand is loaded into the program. This is in the form 

of the tours created by Liu et al. mentioned above. MATSim requires that each traveler 

has a set of plans with desired end times and desired mode choices. Some activities that 

travelers may carry out include work, shopping and home. Next, the mobility simulation 

dynamically loads the provided network, delivering real-time travel time estimates and 

congestion using a queue model. MATSim’s time-step is just one second, so trip 

departures are scheduled nearly continuously over a 24-hour day plus an additional 6 

hours to make sure every tour is completed since tours are not permitted to start mid-way 

(at 3 am each morning, when the 24-hour day begins). (Note that MATSim developers 

are experimenting with 72+ hour simulations for more complete results) The first 

network loading of the simulation will carry out plans just as they appear in the initial 

demand. After the 1-day simulation is complete, each agent's plan for that day receives a 

score. Agents receive positive scores for on-time departures and on-time arrivals; 

likewise their scores will decrease for late or early, departures and arrivals. The agents 

remember their plans and respective scores, and will store their five highest scoring 
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plans, always rejecting the lowest scoring plan after five have been saved. At the end of 

each simulation-day (iteration), MATSim creates an event-file containing a list of trips 

for each agent that can then be used for requests on the SAEV simulation, as described 

later on. 

After scoring, MATSim will randomly select a subset of travelers to attempt to 

improve each of these traveler's routes, modes, when flexible, and departure time 

selections, as feasible. Travelers may only replan a mode choice for a sub-tour (e.g. 

making a shopping trip on one's lunch break). 

Then the network is loaded again to simulate another full day and scoring and 

replanning phases occur once more. After more than one plan has been executed, agents 

may choose from one of their saved plans as part of the replanning process and the score 

for that plan is reevaluated. MATSim is unique in that it is a co-evolutionary process 

meaning each traveler chooses plans independently of other travelers' choices. This 

mimics real life travel decisions where individuals largely make decisions based on their 

personal perception and experiences, unlike typical DTA algorithms, which shift travelers 

in large groups. Replanning is not done through a rigorous procedure; instead it is a 

randomized trial-and-error process. While this may not seem optimal, empirical studies 

have shown that this method will converge to a dynamic user-equilibrium over many 

iterations.  

The network used for this study is derived from OpenStreetMap, which contains 

highly detailed network information for the Austin 6-county region. 
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SAV SIMULATION CODE 

The underlying code for much of the SAEV simulator was developed by Bösch et 

al. (2016) to model a conventionally-fueled SAV fleet serving Zurich. For this study, 

their SAV simulator was modified to enable SAEVs, along with a few performance 

enhancements including more accurate speed data, and allowing more trips to be met 

regardless of wait times.  

Their model simulates an SAV fleet which behaves very much like a TNC (e.g. 

Uber, Lyft, and Fasten) or taxi service where travelers make a request when they wish to 

travel, and they are picked up by a vehicle and taken to their desired destination. Unlike a 

TNC or taxi fleet with several drivers working largely independently, an autonomous 

fleet has the advantage of being controlled by an automatic fleet manager who can assign 

vehicles to requests in a way that can keep response times as low as possible. Unlike 

human drivers, autonomous vehicles cannot miss, ignore or reject trips; they may work 

unlimited hours and they do not need to return home each night.   

The trip file outputted by MATSim is loaded into the SAV code to represent 

demand. The trip file is taken from a late MATSim iteration (10 works well), so these 

trips are close to a user equilibrium. One weakness of MATSim is evident here in that no 

convergence criteria given by the software. Future works should use many more 

iterations to verify the number of iterations needed to reach stable results given adequate 

time and computing power. The trip file contains the origin and destination of each trip as 

well as the respective travel times. From these trip files, a random sample of 

travelers/agents is assumed to use SAVs throughout the day rather than their original 

modes. Their departure times, as given in the trip file, are taken to be their desired 

departure time, rather than actual departure time. In their code, it is assumed that every 

traveler will make a request 5 minutes before their desired departure time. Once the 
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request is registered, the program searches for a vehicle that can reach the agent within 5 

minutes of the scheduled departure time (or within 10 minutes of the trip request). The 

vehicle search is repeated every timestep (i.e., every second) until a suitable vehicle is 

found; the first suitable vehicle found is immediately assigned to the request. If no 

suitable vehicle is found within 5 minutes of the requested departure time, the request is 

dropped and the trip is left un-served. Once an SAV has received an assignment, it drives 

to the traveler. If the vehicle arrives before the scheduled departure time, it waits for the 

traveler; otherwise, the traveler boards immediately and heads to their destination.  

There are two different types of vehicle speeds that must be modeled in this 

simulation. Travel time transporting SAV users to their destinations is taken directly from 

the MATSim event-file and is derived using the DTA algorithm described in the traffic 

assignment section. Empty-vehicle movement, however, was not modeled in the 

upstream traffic assignment, so empty SAV travel time must be estimated another way: 

using average network speed and a Euclidian distance correction factor. Bösch et al. had 

a separate program to find the average ratio of every trip's actual driving distance to its 

Euclidean (or "beeline") distance between its origin-destination pair. The SAV code can 

easily find Euclidean distance between any two locations, so this correction factor gives 

an estimate as to the actual driving distance between any two points on the network. 

Bösch et al. used another code to find the average driving speed of every trip on the 

network as fond in the event-file. The travel time estimated for any empty vehicle is then: 

 
(𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒) = 

(𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) × (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟) × (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑠𝑝𝑒𝑒𝑑)  (1) 
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After an SAV drops off its user, it remains at that location until it receives a new 

assignment. The issue with the travel time given in the trip file is that it is the travel time 

of the trip departing at the exact time that the traveler makes the request. Given some 

finite response time, the network conditions will change slightly (or a lot if the pickup is 

quite late) by the time the vehicle arrives to pick up the passenger. Empty travel speeds 

is, of course, an even rougher estimate.  

 

CODE MODIFICATIONS TO SIMULATE SAEVS 

This code was very attractive for a lot of reasons: it is highly versatile to different 

data sets, it runs quickly, provides a lot of useful data and is totally open-source. There 

were, however, a lot of functionalities needed for this study, not available in the code. 

There were also a few ways in which the code's realism could be improved. The main 

contribution of this work is the extensive modifications and adaptations of this code.  

The first major modification is the simulation of electric vehicles. The original 

code does not consider the impacts of vehicle range; therefore refueling times and fuel 

station locations are ignored. This is a reasonable estimate for gasoline-powered fleets, 

which may be able to serve trips all day on a single fill-up, and refueling times are 

relatively brief. In SAEV applications, recharge times are likely to vary from 20 minutes 

to 8 hours, depending on charging station power and battery capacity, so vehicle range 

can have important impacts on an SAEVs’ ability to serve trips throughout the day. The 

location and number of charging stations also affect the amount of time SAEVs will 

spend driving to and from them. Adapting this code for EVs involved the tracking of 

vehicle range, recharging strategies, and placement of charging stations (described 

below).  
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The next most important issue is empty traveling speed. Instead of using a single 

average speed for the whole day, the program will check the event file at every timestep 

to determine the average speed at that time. The empty speed is then temporally updated 

in the simulation for every timestep. This is still limited in that empty vehicle travel is 

identical across the entire network for every road type; however, peak time slow-downs 

and off-peak free flow speeds are now simulated more realistically.  

Another concern is that the code will reject trip requests after a ten-minute, 

unsuccessful search for a vehicle. This was updated to exclude trip requests exceeding a 

certain distance, and keeping the remaining requests open until they are met. The trips 

that were rejected are instead serviced by a hybrid-electric (HEV) fleet, with no range 

limitation. From an implementation standpoint, this is more user-friendly: customers can 

know ahead of time if their trip is serviceable by an EV based on its length, rather than be 

rejected after waiting several minutes. This is especially important to any captive users 

who may not have had an opportunity to arrange an alternate mode. Wait times are 

closely correlated to trip length because the probability of finding a vehicle with adequate 

range goes down as trip length goes up. Therefore setting a cap on trip length is an 

effective measure to keep wait times reasonable. 

A more subtle change is a modification to the search algorithm. The code looked 

for vehicles that could meet each request within 5 minutes of the desired departure time. 

This means as the 5 minute deadline approached, the search radius decreased until finally 

reaching zero, and consequently, the probability of finding a suitable vehicle would 

decrease as time went on. This was modified to maintain a fixed search radius for a 

certain period of time. After that period had passed, the code will simply assign the 

closest possible vehicle, regardless of how far away it is. Tuning these parameters 
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showed that maintaining a 10 second search radius for 9 seconds gave the best response 

times.  

One of the most advanced modifications to the code was the introduction of 

dynamic ridesharing, or DRS. DRS was implemented to decrease customer wait times, 

reduce empty travel and decrease vehicle idle time. This is demonstrated to be effective 

in many simulations including Fagnant & Kockelman (2016), Zhang et al. (2015), Atasoy 

et al. (2015), Burghout et al. (2015), Martínez (2015), and many more not reviewed here. 

The dynamic ridesharing algorithm is discussed in detail below.   

This study examines how station locations, vehicle range, and recharge speeds are 

likely to affect SAEV fleet performance. Many of the assumptions used here come from 

Chen et al.’s (2015) charging station generation and SAEV charging algorithms and were 

added to Bösch et al.’s (2016) SAV codes. 

 

CHARGING STATION GENERATION 

The first step to adapt the code for EVs is to develop a set of charging stations on 

the network. The stations are generated in mostly the same technique developed by Chen 

et al. (2015). This is done by first assuming a large/oversized (1 vehicle for every 

traveler) SAEV fleet, randomly distributed over space, running to meet trip demands. 

Whenever a vehicle receives a travel request, it checks to see if it has enough remaining 

range/battery charge to pick up the passenger and then take the passenger to the desired 

destination. If not, a charging station is generated at the vehicle’s location, and the 

vehicle is immediately assigned to charge at that station. That vehicle is then removed 

from consideration for that particular request, and the simulator searches again to find a 

suitable vehicle. This process is run for 30 simulation days, and the vehicle fleet is re-set 
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to random origins at the beginning of each day, while the list of charging stations is 

carried over into each subsequent day. Loeb et al. (2016) determined that extending the 

station generation phase longer than 30 days had little to no effect on the number of 

stations generated. For days 21 through 30, the daily number of visits for each station is 

recorded and at the end of the 30-day simulation, the stations with fewer than 1 visit per 

hour (after scaling for sample size) are removed due to inactivity.  The vehicle fleet is 

then randomized again and the simulation is given a final run where no new stations can 

be formed. The flow diagram for the station generation phase can be seen in Figure 2.1 

below. This algorithm provides no guarantees of optimality for station locations; 

however, it does serve to minimize the number of stations given vehicle parameters.  
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Figure 2.1: Charging Station generation phase flow diagram (this diagram does not 

show the entire simulation process, but demonstrates how a charging station 

may be generated.) 

SAEV CHARGING RULES 

After the charging-station generation process, Bösch et al.’s (2016) upgraded 

SAV simulation code is run normally. Similar to the earlier model runs, for station 

generation, vehicles have to check that they have adequate range before responding to a 

request – but they also now must be able to reach a charging station after delivering the 

passenger(s). With this technique, an SAEV will always have a charging station in range, 

so it cannot be stranded.  

There are two conditions under which a vehicle may be assigned to a charging 

station. First, in every 1-second simulator timestep, SAEVs with a range below 5% of 

their battery’s capacity will be sent to charge. Lastly, a vehicle will charge when it 

receives a request that it has too little range to fulfill and less than 80% charge remaining 

as is shown to work well by Chen et al. (2016). 
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To start the charging procedure, the vehicle travels to the nearest charging station 

and immediately begins charging upon arrival. Charging occurs in two stages, when 

remaining range is above or below 80%. To achieve full charge, the battery first charges 

to 80% during the first half of the total assumed charge time, and the remaining 20% 

charges in the latter half as suggested by many state-of-charge graphs, a good example of 

which can be found at Tesla Motors (2016b). This implies two different charging rates:  

 

For remaining range under 80%:  𝑅𝑎𝑡𝑒𝑓𝑎𝑠𝑡 =
0.8𝑅𝑎𝑛𝑔𝑒

0.5𝑇𝑓𝑢𝑙𝑙
      (2) 

For remaining range above 80%:  𝑅𝑎𝑡𝑒𝑠𝑙𝑜𝑤 =
0.2𝑅𝑎𝑛𝑔𝑒

0.5𝑇𝑓𝑢𝑙𝑙
    (3) 

where Tfull is the time needed to achieve full charge if starting from zero charge, 

Range is the vehicle's range when it has full change, and Rateslow and Ratefast correspond 

to the charging rates when remaining range lies above or below 80% of battery capacity, 

respectively. Charging rate is expressed in units of distance per time (or miles per hour of 

charge time). Long term depreciations in battery range as a result of repeated charges are 

not studied here. A charging vehicle will cease charging when it has reached a full 

charge, but will not leave unless assigned to a request. Charging stations should, in 

theory, be able to operate without any attendants, if the SAEVS are equipped with robotic 

or inductive charging interfaces, though bigger/more active stations can have attendants 

to fill tires, clean windows, and more. 

 

VEHICLE ASSIGNMENT 

When a request is received in the program, it is assigned a vehicle in a way that 

seeks to reduce the traveler's waiting time. The first step in this process is to define a 
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search radius. This is the area surrounding the traveler inside of which any SAEV is able 

to reach the passengers within a specified timeframe. If no SAEV lies within the search 

radius, the request is ignored and will be reevaluated the next timestep. Since this code 

does not track vehicles on true roads, vehicles just passing through the search radius 

cannot be evaluated since their exact locations at a given timestep are not known. After 

several timesteps, the search radius is made infinitely large such that all SAEVs on the 

network are candidates to service the request. For the results found in this work, a search 

radius of 10 seconds was maintained for 9 seconds before opening up the radius to the 

whole network.  

When an SAEV is found inside the search radius, it may or may not be eligible to 

respond to the request. There are several criteria that must be met: 1) The vehicle must 

have enough range to pick up the passenger, take the passenger to the destination and 

finally make it a nearby charging station; 2) the vehicle must be the closest eligible 

SAEV within the search radius; 3) if the vehicle is charging, there must not be any 

eligible vehicles in the search radius that are not charging; 4) if there are passengers in 

the SAEV already, the new traveler may not impose a delay of more than 30% on any 

passenger's original trip time, and there must be 4 or fewer passenger on board at any 

given time.  

This introduces some improvements over both Chen et al. (2016) and Bösch et al. 

(2016), the most important being the introduction of ridesharing, offered by neither of 

these works. The DRS capabilities are described in detail below. Also, Chen et al.’s 

(2016) SAEV simulations does not allow charging vehicles to undocked and fulfill a 

service request. By allowing this capability, SAEVs do not have to sit idly at charging 

stations when they are eligible to meet requests. This is also advantageous because 

batteries charge more slowly as they reach capacity shown in the SAEV charging rules 
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section above; now vehicles only have to sit through these slower charge times if they 

have no other more productive assignment. Bösch et al. (2016) was limited in their search 

algorithm by ignoring vehicles already transporting passengers.  Besides making DRS 

impossible, this also excludes from consideration vehicles that are about to be close to a 

requesting traveler when dropping off another passenger nearby. 

 

DYNAMIC RIDESHARING 

Because traffic assignment is performed upstream of the SAEV code, dynamic 

ridesharing capabilities are somewhat limited. This is because, geographically, only the 

end points of each vehicle-trip are known, and the SAEV will "teleport" between them. 

Therefore once an SAEV is headed for a destination, it may not change course before its 

intended arrival time. The only thing this means for ridesharing is that an SAEV may 

accept a ride request while carrying a passenger, but it may not change course until it 

arrives at its intended destination. The way this is dealt with in the code is using a last-in-

first-out (LIFO) pattern for pickups and drop-offs. The reasoning may be best 

demonstrated with an example, shown in Figure 2.2. Suppose a traveler, traveler A 

located at origin A on 51st Street, requests a ride downtown to Destination A at 09:55. 

The code determines that the SAEV in the upper right is the closest eligible vehicle and 

assigns it to traveler A and the vehicle's arrive time to Origin A is determined to be 10:00. 

At 09:57, while en-route, the vehicle receives a request from traveler B, in Hyde Park 

headed to South Austin. The vehicle accepts this request, and continues on to pick up 

traveler A and the vehicle's arrival time at Origin B is determined to be 10:06. traveler A 

boards the vehicle at 10:00 and they continue to Origin B, but again, on the way, at 

10:04, the vehicle receives a request from traveler C in West Campus headed to East 
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Riverside, near origin B. This trip is also accepted. The vehicle continues to pick up 

traveler B, and then picks up traveler C without interruption. At this point, it might be 

intuitive to drop off traveler A first. Unfortunately, travel times between Origin C and 

Destination A are not in the MATSim trip file, and so must be estimated. On the other 

hand, the trip between Origin C and Destination C are in the trip file, so that travel time 

is well estimated through traffic assignment. Therefore in order to preserve the highest 

degree of realism, the last traveler picked up must be the first to be dropped off. This may 

appear to be unfair, but the algorithm enforces the rule that no traveler may experience a 

delay greater than 30% to their in-vehicle travel time (IVTT). For example, suppose that 

traveler A's initial travel time, given in the MATSim trip file, is 30 minutes. This means 

that that maximum allowable IVTT for traveler A is 39 minutes. When the vehicle 

received the request from traveler B, the code calculated a travel time of 33 minutes, 

traveling from Origin A to Origin B to Destination B to Destination A. Then when 

receiving the request from traveler C, the code verified that the travel time from Origin A 

to Origin B to Origin C to Destination C to Destination B to Destination A was 38 

minutes. This is less than 39 minutes so traveler C imposes an acceptable delay on 

traveler A. Likewise, it is verified that traveler C imposes an acceptable delay on traveler 

B.  For every one of these requests, the four rules from the Vehicle Assignment section 

still apply and no more than four travelers may share a vehicle. This FILO method of 

ridesharing is definitely not optimal so a more advanced routing mechanism could 

improve response times further. Also, the imposed delay estimates are calculated using 

instantaneous (not predictive) travel time estimates, so it is possible for a traveler to 

experience a delay greater than 30% if network conditions worsen while picking up 

fellow passengers.  
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Figure 2.2: Example of a possible ridesharing route in Austin 
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SIMULATED SCENARIOS 

The charging station assignment and SAEV simulations were run for several fleet 

size plus range plus charging rate scenarios to appreciate system performance metrics, 

like average response times, empty VMT, and number and size of stations generated. 

Fleet size is pre-determined here in terms of average ridership per vehicle, or the average 

number of travelers served per SAEV. These average ridership rates were varied from 4:1 

to 8:1 in increments of 1.  

The share of travelers assumed to use an SAEV is fixed at 0.5% of the network's 

demand. This is out of the 20% trip sample of total network demand. In other words 0.1% 

of the region’s travelers or total person-trip-making is simulated in each scenario, in order 

to keep computation times on the order of hours, to make testing the hundreds of 

scenarios here a reality. Charging time requirements were varied from 30 minutes 

through 240 minutes, across scenarios simulated. Battery ranges varied from 60 miles to 

200 miles, in 20-mile increments. Unless otherwise noted in the discussion of results 

(below), the standard or base scenario’s range is assumed to be 200 miles with a complete 

charging time of 30 minutes, and average ridership of 5 travelers or 5 trip-makers per 

SAEV (Table 3.1). (Note: Since 15% of the population does not travel on any given day, 

this 5:1 ratio means about 6 persons in the local population per SAEV.)  

EVs have a fairly limited range, so meeting longer trips will usually take many 

iterations, slowing computation time and yielding poor results. To mitigate this issue, one 

third of the fleet is considered to be Hybrid-electric vehicles (HEV) and is dedicated to 

meeting trips greater than or equal to 35 miles. The electric fleet is free to quickly meet 

the shorter trips that it is better suited for. The HEVs are powered by gasoline, so their 

refuel times are effectively negligible over the course of a 24-hour day. This means they 

are able to efficiently serve these long trips without first checking their range. Without 
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this hybridized fleet, meeting 100% of trip requests on the network is practically 

infeasible.  
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Chapter 3: Results 

This section presents the data found from various simulations along with 

discussion of those results. Many different parameters underwent sensitivity analysis. 

When a parameter is not the focus of a certain result it will take the default parameter 

given in Table 3.1, unless otherwise noted.  

 

Parameter Default Value 

Vehicle range 200 miles 

Fleet size 5 travelers per vehicle 

Charge Time 30 minutes 

Mode Split 
0.5% travelers (choosing to use 

SAEVS as oppose to another mode) 

Table 3.1: Default values to assume for given parameters unless otherwise specified in 

text 

 

STATION GENERATION  

A set of charging stations was the first input needed for the rest of the simulations. 

Loeb et al. (2016) noted that the number, and location, of stations depend almost entirely 

on vehicle range. Some changes were made to the algorithm, but it is still largely similar. 

With this reasoning, stations were generated over a set of different vehicle ranges, (60 

miles to 200 miles in 20-mile increments) for two different charging speed scenarios (30 

minutes and 240 minutes). The 30-day station generation phase was run at least three 

times for each range and charge time scenario. Some were given as many as six trial runs 

if there was significant variation in the number of stations produced or there were outlier 

data. The number of stations generated under each scenario was averaged to get the 



 32 

results found in Figure 3.1. The fleet was oversized at 1 vehicle per traveler and mode 

split was reduced to 0.25% to reduce run times over this very long simulation.  

 

 

Figure 3.1: Average number of charging stations generated for both fast-charging and 

slow-charging scenarios across different vehicle ranges 

 Figure 3.1 shows that, as expected, the number of stations generated depends 

primarily upon vehicle range and much less on charge times. While the 30-minute charge 

time shows generally fewer stations, the difference in outcomes is not very consistent or 

terribly significant considering a factor of four reduction in charge times. For slow-

charging vehicles, the number of stations fell almost linearly from 174 stations with 60-

mile range to 19 stations at a 200-mile range. For the fast-charging scenario, the number 

of stations fell from 166 at a 200-mile range to about 20 for a 60-mile range. Some of the 

scenarios in the following section compare how the SAEV fleet performs with a 

relatively large number of stations compared to fewer. For these two different sets of 

stations, the large list of stations comes from the 60-mile scenario and the smaller list 

comes from the 200-miles scenario. From the three trials run for each vehicle-range 
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scenario, the sets of stations chosen for further runs were selected for being the most 

representative (the closest to the average for each respective range) and are shown in 

figures 3.2 and 3.3. Both come from the 240-minute scenario containing 170 and 19 

stations respectively. 

  

 

Figure 3.2: Stations developed under 200-mile vehicle range 
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.  

Figure 3.3: Stations developed under 60-mile vehicle range 

In Figure 3.3 (the larger number of stations), stations tend to be grouped closer to 

the Austin urban core, as expected since the highest population density, and hence trip 

density, lies there. In Figure 3.2 (the smaller number of stations), stations outside of 

Austin tend to fall right in the center of the surrounding towns, where one might typically 

expect to find fuel stations. From these diagrams, a visual inspection indicates that 

nothing is out of the ordinary, and these station placements seem quite reasonable.  
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EMPTY VMT AND RESPONSE TIME 

The primary metrics of performance in these simulations are response times (how 

long the traveler must wait before picked up) and empty VMT (how much the SAEVs 

drive around unoccupied). A summary of key results for five major scenarios can be 

found in Table 3.2, below: 

 

Scenario 

Gasoline 

SAV 

Short-

Range 

SAEV 

Short-

Range 

SAEV 

Fast 

Charge 

Long-

Range 

SAEV 

Long-

Range 

SAEV Fast 

Charge 

Long-Range 

SAEV Fast 

Charge, 

Reduced Fleet 

Range (mi) 

 
Infinite 60 60 200 200 200 

Recharge Time (min) 

 
N/A 240 30 240 30 30 

# of Charging 

Stations 
N/A 170 170 170 170 170 

Avg. Ridership 

(travelers/vehicle) 
5 5 5 5 5 7 

Avg. Daily miles per 

Vehicle 
411 288 423 394 349 573 

Avg. Daily Trips per 

Vehicle 
20.5 25.5 25.5 25.5 25.5 35.8 

Avg.  Response Time 

Per Trip (min) 
6.4 33.1 19.1 20.1 6.8 40.4 

% Unoccupied Travel 

 
9.73 25.7 30.3 25.8 15.28 30.3 

% Travel for 

Charging 
N/A 4.82 8.54 3.29 0.56 4.24 

Max % Concurrently 

Charging Vehicles 
N/A 73.5 95.8 79.2 16.5 72.3 

Table 3.2: Key findings from 5 simulation scenarios including a gasoline-powered 

base-case 

Many of the response times seen in Table 3.2 may appear far too long for most 

travelers to tolerate. It is important to find what types of scenarios may yield a feasible 

SAEV fleet, so several sensitivity analyses were performed to determine the effects of 
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various parameters on fleet performance. The results presented here will not include the 

statistics from the HEV fleet unless noted otherwise.  

 

 

Figure 3.4: Average response times for 4 different charging time scenarios for different 

vehicle ranges 

As seen in Figure 3.4, response times show clear correlation with both charge 

times and vehicle range. While reducing the charging time from 240 minutes to 120 

minutes showed little effect, further reductions to 60 or 30 minutes gave considerable 

benefit. Figure 3.4 may provide evidence that a charge time of 30 minutes or less is 

necessary to provide adequate mobility.  
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Figure 3.5: Average response times for four different charge time scenarios across 

different fleet sizes 

Figure 3.5 shows response times with respect to fleet size. Fleet size is given in 

units of travelers per SAEV and includes the HEV fleet as well. This may bias results a 

bit low, since the two thirds of the fleet that is studied here is left to pick up more than 

two thirds of the trips. However, this is just a consequence of insisting that every 

traveler's requests be met.  

Fleet size has a much stronger correlation with response times than charge times 

or vehicle range, though the effects of vehicle range are still evident in the figure. 

Interestingly, at a fleet size of 7 travelers/vehicle, range seems to make no difference on 

response times, though this is not the case for smaller or larger fleets. 
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Figure 3.6: Distributions of average response times across different vehicle ranges 

Figure 3.6 demonstrates the effects of vehicle range on response time 

distributions. The blue bar at the top indicates the proportion of trips greater than 35 

miles that are handled by HEVs. Response times over 30 minutes carry significant weight 

in average response time calculations, despite being a very small proportion of all 

response times.   
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Figure 3.7: Average response times with many and few charging stations, across 

different fleet sizes 

 

Figure 3.8: Average empty VMT with many and few charging stations across different 

fleet sizes 
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As mentioned in the section above, two different sets of charging stations were 

compared here in Figures 3.7 & 3.8. Surprisingly the nearly-order-of-magnitude 

difference in charging stations shows little difference in the response. The wide gap in 

empty VMT is expected, since vehicles are, at any point, further from a charging station 

when there are fewer on the network, hence needing to traverse more distance to charge.   

 

 

Figure 3.9: Average empty VMT, with and without DRS, across different fleet sizes 
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Figure 3.10:  Average response times, with and without DRS, across different fleet sizes 

Figure 3.9 and Figure 3.10 show clear improvements with the implementation of a 

DRS system. In the 5 travelers/SAEV case, empty VMT drops by more than a factor of 

two, and response times drop by more than a factor of four. It is not clear why at a larger 

fleet size, DRS yields improvements to response times but worsens unoccupied travel 

proportions. The question remains, however, whether the imposed delay on travelers of 

sharing a ride is worth the improvements in response times. It would appear that it does, 

adding an average travel delay of 11 minutes per traveler while improving average 

response times by 32 minutes with an average vehicle occupancy of just 1.16 (persons 

per vehicle-trip).  

Figures 3.8 and 3.9 together show that empty VMT is considerable for all 

scenarios studied, never falling below 10% and even exceeding 40% when the number of 

stations is reduced. This equates to many miles that would be added across the network in 

addition to current network demand. The mode split here is small (assumed just 0.1% of 

travelers choose SAEVs) so this will not induce significant congestion feedbacks. 
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However, with a much larger sample of vehicles studied, this empty travel would begin to 

have impacts on travel time estimates. Since no network loading is performed by this 

code, these impacts would not be reflected in the results, demonstrating the need to have 

built-in dynamic network loading to study SAVs. DRS does reduce the number of 

occupied miles driven which would mitigate the burden of empty VMT slightly. Besides 

induced congestion, empty VMT has effects on operation costs which are studied in the 

financial section below.  

 

Figure 3.11: Occupancy rates for SAEVs with DRS, across different fleet sizes  

Figure 3.11 shows how vehicle occupancies change under varying fleet sizes. Not 

surprisingly, with a large fleet of 4 travelers per vehicle, the fleet is dominated by single-

occupancy vehicles. 4-occupant vehicles are very rare, going from virtually nonexistent 

to a maximum frequency of 3.2%. Figure 3.11 and Figure 3.9 seem to demonstrate that 
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DRS may work optimally under certain fleet sizes and may actually be harmful under 

others. More sensitivity analysis may be needed to determine why this occurs.   

The HEV fleet is not the main focus of this study, but it useful to verify that HEV 

fleet meets demand reasonably. Here, an HEV fleet is not influenced by changes in any 

EV parameters since it has no notable range limitations (over the course of a day’s 

driving) or long charge times, so only two scenarios for this fleet are studied here. (These 

two scenarios affect the shortest path problem, but this is not an issue here since no traffic 

assignment is performed during this simulation.) One of these two scenarios can be seen 

in Figure 3.12, which shows how the HEV fleet is able to meet all trip requests in under 

30 minutes for the case of 6 travelers per vehicle, but response times start to increase, 

with increasing rate or slope, after that point when there are more than 6 travelers per 

SAV. This is not a serious problem, since travelers requesting longer trips are prepared to 

invest more time in their travel and call ahead to schedule a pickup. Response times for 

the 8 travelers-per-vehicle scenario are reasonable for neither the EV nor the HEV fleets.  

 

Figure 3.12: Average response times between the EV and HEV fleet across different fleet 

sizes for the 200-mile range, 30-minute charge time scenario  
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To get a better understanding of how to improve fleet performance, it was 

important to understand where the fleet struggles. A plot of request start locations which 

were served in excess of 30 minutes is shown in Figure 3.13 below. At first glass these 

trips appear to be very evenly distributed across the region. But considering the high trip 

density in the urban core, there are relatively very few long-response-time trips 

represented in that area. This shows that, as expected, trips in these high density areas 

tend to be met much more quickly than the trips in suburban and exurban areas.  Another 

important consideration is the travel required to pick up each passenger.  Figure 3.14 

shows the start locations of trips that required SAEVs to travel 15 miles or more to make 

the pickup. This set of trips has much less disparity than those in Figure 3.13; not one trip 

lies with the City of Austin. These long pickups will be much more costly to the fleet 

operator, so this result is very important for fare structuring. This suggests that the city 

limits of Austin would make a suitable boundary for a pricing zone, where those outside 

of city limits would be required to pay a premium for their extra empty travel needs. 

Coupling this surcharge with long response times, these outside trips carry high disutility 

for travelers and would be mostly eliminated with a logit mode choice model.  
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Figure 3.13: Start locations of trips with response times greater than 30 minutes 
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Figure 3.14: Start locations of trips that require an SAEV to travel 15 miles or more to 

make the pickup 

 

FINANCIAL ANALYSIS 

A financial analysis is warranted to find initial estimates for feasibility, 

recommendations for pricing schemes, and to seed a mode choice model. Costs were 
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estimated from various sources for capital expenses, vehicle and charger maintenance, 

electricity and vehicle fees. These costs were split into high, low and medium (most 

likely) estimates, as shown in Table 3.3. 

 
 Low Cost Mid Cost High Cost 

Vehicle Capital 

SAEV (per vehicle) $50,000 $55,000 $70,000 

LR SAEV (per vehicle) $60,000 $65,000 $95,000 

Replacement batter (per 

kWh)  + $50 install 
$100 

$145 $190 

Vehicle Operations 

Maintenance (per mile) $0.054 $0.061 $0.066 

General Administration $0.044 $0.11 $0.18 

Insurance & Registration 

(per vehicle-year) 
$550 $1,110 $2,220 

Electricity (per kWh) $0.01717 + delivery, demand, adjustment, regulatory and customer charges 

Charging Infrastructure 

Level II Charging (per 

charger) 
$8,000 $12,000 $18,000 

Level II Annual Maintenance 

(per charger) 
$25 $40 $50 

Level III Charging (per 

charger) 
$10,000 $45,000 $100,000 

Level III Annual 

Maintenance (per charger) 
$1,000 $1,500 $2,000 

Land Acquisition (per 

vehicle space) 
$990 $1,730 $3,540 

Table 3.3: Low, medium and high price estimates for needed expenses to implement an 

SAEV fleet 

Vehicle costs were estimated based on popular production EVs, such as the 2017 

Chevrolet Volt and 2017 Mitsubishi i-MiEV, with all-electric ranges (AERs) of 53 and 

59 miles, respectively. These ranges are not far from the 60-mile assumption for short-

range SAEVs used here. These two models presently have MSRPs of $33,220 

(Chevrolet, 2016) and $22,995 (Mitsubishi Motors, 2016) respectively. As for long-range 

EVs, the 2016 Tesla Model S 90d has a 294-mile range and costs $89,500 (Tesla Motors, 

2016c). The Model S is a luxury, high-performance sedan with more range than needed. 
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Tesla anticipates releasing the Model 3 at just $35,000 in the year 2018 with a range of 

215 miles (Tesla, 2016b). This will be Tesla's first experience with an "economy" EV, so 

this price carries no strong guarantees. These prices do not include government rebates, 

which are due to be phased out in the near future (IRS, 2016), so should not be depended 

upon for this study.  Vehicle autonomy is reported by ENO (2013) to have an estimated 

marginal cost of $25,000 to $50,000 but this cost could come down to $10,000 after at 

least 10 years.  For this analysis it is assumed that a regular range SAEV will cost 

$50,000 to $70,000 ($25,000 to $45,000 + $25,000 autonomy package) and a long range 

SAEV will be $60,000 to $95,000 ($35,000 to $70,000 + $25,000 autonomy package).  

Similar to Chen et al. (2015), SAEVs are anticipated to last 215,000 miles, similar 

to the average lifespan of a NYC taxicab (New York City Taxi & Limousine 

Commission, 2014). The type of vehicle and driving environment are extremely disparate 

between NYC taxicabs and the proposed SAEV fleet, so a sensitivity analysis is 

warranted here.  A battery's usable life is estimated at roughly 100,000 miles based on 

standard practice by OEMs to warranty their batteries for this distance plus various 

reports such as Saxton (2013). Then a battery will need to replaced at least once during a 

vehicle's lifetime, but it would not be a good investment to replace the battery a second 

time since the vehicle will be very close to (if not in excess of) the end of its service-life.  

Replacement batteries are expected to cost between $100 and $190 per kWh per 

estimates from GM and Tesla (Voelcker, 2016), substantially lower than recent estimates 

of $268/kWh in 2015 and $1,000/kWh in 2008 (IEA, 2016). It's assumed that a trained 

technician could replace a battery in about an hour working at $50 an hour. Vehicle 

operation and maintenance costs are assumed to be similar to those for conventional, 

privately-owned gasoline vehicles, which AAA (2015) estimates to be 5.4 to 6.6 cents per 

mile for various vehicle types. Changes to insurance premiums are a big unknown 
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pending state and federal legislation and substantial safety research. Some estimate 

increases to premiums by a factor of 3 or 4 (e.g. Burns et al., 2013) which may be the 

case in the near term as this technology is in its early stages. Currently three states (CA, 

NV, and FL) have adopted requirements for $5 million insurance premiums for AVs 

(Technology Law and Policy Clinic, 2015), with other states looking to follow suit 

(PennDOT, 2016). On the other hand, a greater number of studies anticipate decreases to 

insurance premiums (e.g.  KPMG, 2015), even the possibility of their elimination (that is 

by assuming 100% manufacturer liability). AAA’s (2015) annual average insurance costs 

for privately-held cars is $1,100, so an SAV’s annual insurance cost is assumed to vary 

between $555 and $2,200, anticipating both sides of this scenario. SAVs will be used 

very intensely, but are expected to operate more safely; this uncertainty is represented in 

the wide range of insurance cost estimates. Electricity costs are estimated using the City 

of Austin Electricity Tariff for this fiscal year (City of Austin, 2016). Commercial 

electricity is charged on the basis of a customer charge, electric delivery, demand charge, 

energy charge, power supply adjustment and regulatory charge. The chargers on the 

SAEV network will deliver an average power of about 1,360 kW, putting this system 

clearly in the range of 300 kW to 3,000 kW, and costs are assessed accordingly (energy 

usage is divided by 0.85, which is the approximate efficiency of most EV chargers as 

given by many reports such as Forward et al. [2013]). This leads to $65/month customer 

charge, $4.47/kW electric delivery, $0.01717/kWh energy charge, $0.02761/kWh power 

supply adjustment (after taking weighted sum for summer and winter rates) and 

$3.75/kW regulatory charge. The one remaining term is demand charge, which depends 

on peak energy usage over the day; it will vary substantially under different charging 

methods. Only one cost scenario was considered for electricity expense since these prices 

are well known. This should be extended to also emulate regions where electrical costs 
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are very high (e.g. California) and where electrical costs are relatively low (e.g. the 

Pacific Northwest). Also analyzing these costs at a station level rather than at the network 

level would provide more detailed and accurate costs.  

Land on which charging stations will be built is estimated using Zillow.com's 

classifieds of land for sale in the Austin area (http://www.zillow.com/austin-tx/land/).  By 

compiling all listings available on November 18, 2016, the average land costs are 

$20.81/ft
2
 with a median of $11.84. The first, second (median) and third quartiles of this 

data can be used for a high, medium and low estimate of land costs: $6.11, $11.84 and 

$27.24 per square foot respectively. Some of these lots would require paving which is 

estimated at $1.25 to $1.50 per square foot for an average parking lot (Brahney, 2015). 

To be safe, $1.50 is added to each estimate for paving. The space occupied by a single 

vehicle was compared to the compact EV, the Nissan Leaf which is 175 in. long and 70 

in. wide (Nissan, 2016).  Adding 24 in. to each dimension for a safe spacing between 

vehicles yields a footprint of 130 ft
2
 per vehicle. Multiplying by land and pavement 

prices gives $990, $1,730, and $3,540 of total pavement costs per vehicle space provided. 

This does not include any space for vehicle circulation, only for attendants to move about 

which could be an issue. A more accurate estimate of these land costs would price land 

by its location in the region instead of assuming an average and would also include some 

minimum circulations space.   

Capital costs, namely acquisition of land and provision of charging infrastructure, 

are reduced to a per-mile basis by assuming a ten-year return on investment aggregated 

over all mileage accrued over these years. Increases in demand for SAEV use over this 

10-year period are considered accounted for in the increased revenue they provide. 

Level II chargers are estimated by the USDOE (2012) to cost between $8,000 and 

$18,000, including installation, hardware, materials, labor and administration fees, with 
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$25 to $50 annual maintenance cost per Level II charger. The USDOE (2012) and New 

York City Taxi & Limousine Commission (2013) estimate that Level III charger 

provision costs from $10,000 to $100,000, including those same fees (listed above) and 

$1,000 to $2,000 in annual maintenance costs per charger. The number of required 

chargers at each site is found here by summing the maximum number of SAEVs present 

at each charging station over the course of the simulation day. General administration 

costs were estimated by APTA (2015) Public Transportation fact book using the costs 

found for vanpooling data, since this was the most similar mode. They estimated $57.6 

million per year for 1,319 million passenger-miles or 4.34 cents per passenger-mile. Chen 

et al. (2015) estimate 18.4 cents per mile for this expense, which serves as an upper 

estimate on this cost. 

Gasoline-powered fleets are assumed to have the same associated costs, as 

applicable, with fuel prices ranging from $2.00 to $4.00 per US gallon, operating at 30 to 

50 miles per gallon, similar to the Toyota Camry, Toyota Prius and many similar 

vehicles. The gasoline-powered vehicles will need attendants to give them fill-ups at fuel 

stations. Suppose attendants are paid $15/hr and are posted, one each, at a number of fuel 

stations across the network. Let the number of fuel stations occupied by an attendant vary 

between the number of charging stations generated in the simulation, that is, between 19 

and 170. If fuel stations are manned 24-hours per day, the cost will be $6,840 to $61,200 

daily. The costs per service-mile for the three cost scenarios are shown in the Tables 3.4, 

3.5 and 3.6 below assuming vehicle lifetime of 215,000 miles.  

Since vehicle lifetime is difficult to estimate, a sensitivity analysis was performed 

over a series of possible vehicle lifetimes to estimate total per-mile cost for each of fleet 

type studied in Tables 3.4 through 3.6. These results can be found in Figure 3.15 for the 

mid-range cost estimate 
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This analysis indicates that starting an SAEV fleet from the ground up is not 

financially advantageous over a traditionally-fueled SAV fleet. This comes from the high 

capital cost of vehicles and purchasing and maintaining a system of charging stations. Of 

the scenarios listed, only the high-range, fast-charge scenario and gasoline scenario yield 

promising response times of 6.8 and 6.4 minutes respectively. This shows that opting for 

fast charging and higher range vehicles is definitely worth the additional capital in the 

long run over a short-range, slow-charging fleet, gaining nearly a fivefold reduction in 

response times.  

A fully electrified fleet is not advantageous to the operator right now, but public 

EV charging stations are becoming more widely available. EVs are becoming cheaper to 

own and operate, and the future of fossil fuels is not clear. The cost to run this EV fleet is 

still quite low on a per-mileage basis--less than driving a personal vehicle 10,000 miles 

per year (AAA, 2013) for the low- and mid-range cost estimates. It is good to know there 

are alternatives to fossil fuels that can be profitable for such a fleet with the uncertain 

future of our climate and fossil fuel prices. 
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Table 3.4: Low-range cost estimates, per occupied-mile, for an SAEV fleet 

Table 3.5: Mid-range cost estimates, per occupied-mile, for an SAEV fleet   

Low-Range, costs per 

occupied mile (cents/mi) 

Gasoline-

powered 

Standard 

SAEV 

Fast-

Charge 

(FC) SAEV 

Long-

Range (LR) 

SAEV 

FC, LR 

SAEV 

FC, LR 

SAEV 

Reduced 

Fleet 

Electricity/fuel   4.43 3.72 7.29 4.83 5.24 14.0 

Maintenance (vehicles 

and chargers) & General 

Administration/Attendants 

14.9 11.8 14.2 11.7 11.4 13.9 

Insurance/Registration 0.41 0.71 0.51 0.52 0.52 0.38 

Capital Costs (Land & 

Chargers) 
0.00 3.28 2.20 1.67 0.66 1.93 

Vehicle Purchase Costs 14.7 37.7 38.0 43.3 38.5 44.0 

Battery Costs 0.00 1.28 1.37 4.21 3.69 4.47 

 

Total cost  29.9 58.5 63.5 66.2 60.0 78.6 

Mid-Range, costs per 

occupied mile (cents/mi) 

Gasoline-

powered 

Standard 

SAEV 

Fast-

Charge 

(FC) SAEV 

Long-

Range (LR) 

SAEV 

FC, LR 

SAEV 

FC, LR 

SAEV 

Reduced 

Fleet 

Electricity/fuel   6.65 3.72 7.29 4.83 5.24 14.0 
Maintenance (vehicles 

and chargers) & General 

Administration/Attendants 
40.0 19.4 22.8 19.3 19.1 22.4 

Insurance/Registration 0.82 1.42 1.03 1.04 1.06 0.76 
Capital Costs (Land & 

Chargers) 
0.00 5.0 9.35 2.56 2.82 8.21 

Vehicle Purchase Costs 17.7 41.5 41.8 46.9 41.7 47.6 

Battery Costs 0.00 1.85 2.00 6.09 5.33 6.46 
 

Total cost  42.9 72.9 84.2 80.7 75.2 99.4 
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Table 3.6: High-range cost estimates, per occupied-mile, for an SAEV fleet 

High-Range, costs per 

occupied mile (cents/mi) 

Gasoline-

powered 

Standard 

SAEV 

Fast-

Charge 

(FC) SAEV 

Long-

Range (LR) 

SAEV 

FC, LR 

SAEV 

FC, LR 

SAEV 

Reduced 

Fleet 

Electricity/fuel   8.86 3.72 7.29 4.83 5.24 14.0 
Maintenance (vehicles 

and chargers) & General 

Administration/Attendants 
65.4 27.1 31.5 27.0 27.0 31.0 

Insurance/Registration 1.64 2.85 2.06 2.08 2.06 1.52 
Capital Costs (Land & 

Chargers) 
0.00 7.82 20.7 3.99 6.23 18.2 

Vehicle Purchase Costs 26.5 52.8 53.2 68.5 61.0 6.96 

Battery Costs 0.00 2.41 2.57 8.00 6.98 8.45 
 

Total cost  62.3 96.7 117 114 109 142 
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Figure 3.15: Cost per service-mile across different vehicle lifetimes 
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Chapter 4: Conclusions 

The rising popularity of carsharing, electric vehicle technology, and vehicle 

automation is leading to new research on the operations of SAV fleets. This study sought 

more cost-effective and more environmentally sustainable solutions for long-term 

mobility needs and demands by all types of travelers. This study is unique in that it 

provides a fleet with mixed fuel-types so as not to leave out a single traveler that requests 

a ride. It is also unique because of its large, highly detailed network and wide variety of 

trip lengths. These simulations of SAEV fleet activities across the greater Austin, Texas 

region provide promising results. Operations of various SAEV fleet scenarios were 

simulated to appreciate the need for different charging station locations and charge times.  

There are some important aspects of this model that limit realism and fleet 

performance. The biggest issue is the lack of network loading that occurs for empty 

travel, since all DTA is performed upstream by MATSim. This results in rough estimates 

of travel speeds and travel distances. This same problem limits the possibilities of DRS 

because vehicles are not able to change course en-route when their exact network 

position is not known. Another valuable extension would to perform a more spatially 

disaggregated analysis which could establish pricing zones, achieve a better 

understanding of land costs and provide more realistic vehicle speeds.  

After delegating trips above 35 miles to an HEV fleet, a fleet size serving 5 

travelers per SAV was able to serve 79% of trips in under 10 minutes with an average 

response time of 6.8 minutes. Under this same scenario, unoccupied travel accounted for 

just 15% of VMT, with driving to charging stations accounting for 3.6% of this empty-

vehicle mileage. This percentage of empty VMT is higher than found in other papers, as 

somewhat expected, thanks to a very large and realistic network along with frequent 
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travel to and from charging stations. If operators wish to offer more charging locations 

(with fewer chargers, for example), this excess VMT statistic can be brought down. 

Economies of scale and density in sizing and citing the stations may determine the 

optimal result.  

A sensitivity analysis was conducted next, using different charge times, vehicle 

ranges, and average vehicle occupancies or travel party sizes, to see how these factors 

impact vehicle response times and the number of charging stations simulated. Those 

results suggest that the number of stations is highly dependent on vehicle range, calling 

for 170 stations for a vehicle fleet with 60-mile ranges, but just 19 stations needed for the 

same size fleet with 200-mile ranges. The other two factors considered (fleet size and 

charge times) do not appear to correlate/vary with the number of stations generated. 

Average response times tend to improve with both increased range and decreased charge 

times, but reduced charge times (from 240 minutes to 120 minutes) had little effect.   

Importantly, increasing fleet size (or SAEVs per traveler) is found to have a 

profound effect on response times. With 30-minute charge times, a fleet averaging 8 

travelers-per-vehicle resulted in average response times of around 40 minutes on the 

electrified fleet, regardless of vehicle range. A fleet with 5 travelers-per-vehicle delivered 

average response times under 10 minutes for vehicles with all-electric ranges of 140 

miles or higher. At just 4 travelers per SAEV, average response times fell to 4.72 

minutes.  

Reducing charge times also improves response times. For the fleet with 120-mile 

range and 5 travelers per vehicle, a charge time of 4 hours resulted in an average response 

time of 30.1 minutes, which falls to 11.4 minutes with 30-minute charge times. However, 

differences in response between 240-minute charge and 120-minute charge are not 

significant, and in fact, in one case, the 240-minute range performs better. Therefore, it is 
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not recommended that a fleet manager expend resources to reduce charge times unless 

they can fall well below 2 hours. These findings suggest that a fully electric SAEV fleet 

is reasonable for a region similar to Austin, Texas, with the support of policymakers and 

fleet managers. Understanding financial tradeoffs between vehicle range and station 

construction is another important prerequisite for delivering such services. Also 

important will be analyzing the balance of charge times and fleet size with desired 

response times. Financial analysis indicated that a fast-charging, high-range fleet has a 

very small increase in costs over a low-range, slow-charging fleet while providing far 

better performance. Therefore a fleet manager is recommended to make a larger capital 

investment in better charge times and bigger batteries for what would likely be a far more 

profitable fleet in the long term. However, a gasoline-powered fleet is still financially 

advantageous to EVs. A mode choice will be a necessary future work (similar to the one 

found in Liu et al. [2016]) to make the demand distribution more realistic. This will also 

require the development of a fare structure based on a more in-depth financial analysis. 

Fleet performance metrics are enhanced by employing a dynamic ridesharing (DRS) 

system, decreasing response times by a factor of four in some cases, and empty VMT by 

a factor of 2.  
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Appendices 

ADDITIONAL PRIOR RESEARCH 

Zachariah et al. (2014) simulated an SAV fleet for travel across the US state of 

New Jersey, with SAVs making pickups and drop-offs at discrete stations called 

aTaxiStands. They had a unique algorithm where for each scenario, every vehicle has a 

scheduled departure delay (DD) and a set maximum number of common destinations 

(CD). These variables allow for ridesharing such that as many travelers appear within the 

DD can share a ride so long as they have fewer than CD different destinations and the trip 

length of any traveler is not increased by more than 20%. This 20% figure appears to be a 

standard in most literature covering dynamic ridesharing. True average vehicle 

occupancy (AVO) was recorded for different values of departure delay (DD) and CD and 

results showed that AVO was positively correlated with both CD and DD. With 

reasonable DD and CD pairs, trip miles can be halved. Using a CD of 5 timesteps and a 

DD of 5 timesteps lead to VMT cut by two thirds. Rideshare opportunities were shown to 

vary spatially and temporally, notably increasing during peak periods and at train 

stations. The New Jersey network was created by pixilating the state into half-mile by 

half-mile squares, with all trips using gridded/Manhattan distances and fixed travel 

speeds rather than a true, and congestible, road network. This study models New Jersey 

because of its geographic variety and mix of open and utilized spaces. The synthetic New 

Jersey dataset was generated in four steps: creation of a population of individuals who, on 

aggregate, resemble New Jersey, assignment of workplaces and schools as anchors, 

assignment of activity patterns and trip ends, and assignment of arrival and departure 

times. When an individual was created, it took the type of student, worker or other based 

on age and regional attributes until each of the 8,791,894 NJ residents living in 118,654 

census blocks had demographic characteristics. Travelers passing through New Jersey 
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were also studied, where their OD pairs fit into eight discrete buckets.  About 50% of the 

person-trips came from the top 6.1% of trip-producing pixels and 95% of trips came from 

the top 44%. Their work did not consider fleet size or any kind of empty-vehicle mileage, 

with all aTaxiStands having an arbitrarily large number of SAVs able to suit any level of 

demand. Also, since the road network was based on pixels and Manhattan distance, no 

real traffic assignment occurs.  

Lastly, Spieser et al. (2014) estimated that, in Singapore, SAVs can save drivers, 

on average, 50% in monetary travel costs per mile as opposed to using a private vehicle 

by splitting up the hefty cost of vehicle ownership. They concluded that all personal-

travel needs in this island-state could be met using an SAV fleet approximately one-third 

the current passenger-vehicle fleet (or 1 SAV for every 17.28 Singaporeans, rather than 

the present ratio of 1 to 6.65). They used Singapore’s actual road network and trip data 

from 10,840 of its 1.14 million households and Taxi Data which gives the status and 

location of every taxi in 30 second timesteps. A minimum fleet size was found to be 

92,693 vehicles, delivering poor service with peak-period wait times well over one hour. 

With 200,000 SAVs in circulation, 90% were available for requests at any given moment 

on an average, simulated weekday, and 50% were not in use (not tending to request) 

during peak times of day. With 300,000 vehicles, these availability rates rose to 95% 

(across a 24-hour day) and 72% during the peak times, with peak-period wait-times 

averaging less than 15 minutes. A conventional human driven (HV) fleet is compared to 

the SAV fleet for a financial analysis. Estimated cost to own a mid-sized car including 

parking expenses is approximately $18,000/year. Retrofitting a car for full autonomy is 

estimated as a $15,000 onetime expense. SAVs are expected to depreciate much faster 

than HVs and have an expected lifespan of 2.5 years. They will also require significant 

maintenance and cleaning budgets. AVs can park in low-valued land or provide logistics 
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solutions like shipping parcels when travel demand is low so as to save money and 

produce revenue. The estimate annual cost of service for the human driven fleet and SAV 

fleet is $12,563 and $9,728 respectively. Total time spent on vehicle ownership and 

operations activities were estimated at 885 hours/year in the US and 458 hours in 

Singapore so the Value of Travel Time Savings from the DOT is used to monetize these 

hours. Time on business trips on local roads were valued at 100% of the median wage, 

personal travel 75% and heavily congest travel 150% when using a conventional vehicle. 

This boils down to a total mobility costs of $1.48 per person-mile in Singapore and $1.14 

in the US, for SAV usage when allowing for values of travel and wait times at just 20 

percent of the median wage in SAVs compared to the 50 percent that the USDOT in 2011 

and others regularly assume (Small, 2012). This is in part because those waiting or en 

route but not having to drive can often make reasonably productive use of that time. 

These figures are in contrast to private vehicles which cost $2.77 per person mile in 

Singapore and $2.20 in the US accounting for travel time valued at 50% of the median 

wage. These values are far more than $0.78/mi reported by the American Automobile 

Association (AAA, 2013) for vehicle ownership and use costs, along with Fagnant and 

Kockelman’s (2015) and Chen et al.’s (2016) full-cost accounting for SAV operator 

costs.  Spieser et al.'s (2014) study is limited because it does not study congestion.  

 

EXPLANATION OF CODE 

The source code created by Bösch et al. (2016) can be cloned from the Git 

repository https://github.com/matsim-org/matsim.git. The project that 

was modified is called boescpa and can be found in the directory:  

/playgrounds/boescpa/src/main/java/playground/boescpa/av/st
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aticDemand. Many classes in this project were modified in some way, especially 

staticAVSim which is the main class. AVAssignment was modified to change the 

search algorithm to assign particular vehicles to requests. AutonomousVehicle is 

the vehicle object class which was updated to include features salient to EVs, such as 

range and number of chargers performed over the course of a simulation. It was also 

updated to log more statistics such as empty travel,   total mileage and more. 

Constants contains nearly every tunable parameter in the project to prevent magic 

numbers. This was expanded to support new features and to increase the number of 

tunable parameters in the code. StaticAVSim required major changes to accommodate 

DRS functionality. In the original code, vehicles are not tracked in real time; when a 

vehicle receives an assignment, it will not have presence on the network until it 

completes the assignment. The structure of the primary for loop in the main class was 

rebuilt so that the location of a vehicle is known at each stop that it makes. Many 

methods were needed to add ridesharing capability. Charging strategies also required 

many methods in StaticAVSim including significant additions to create a charging 

station generation algorithm. A class called ChargingStation was added to make a 

charging station object. The class CSAssignment was added, analogous to 

AVAssignment, to be responsible for assigning vehicles to charging stations. The 

Stats class was updated to record many more statistics and was improved to write a 

highly detailed summary file which was invaluable when running hundreds of trials back-

to-back.  

A method written for this study is shown below. Its task is to look at vehicles that 

are found to have "low charge" and to determine an appropriate assignment for this 

vehicle. If it is during a station-generation phase, an appropriate action might be to 

generate a charging station.  
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private static void handleLowCharge(AutonomousVehicle lowChargeVehicle) { 

     if (lowChargeVehicle.getDropoffList().size() > 0) { 

      throw new  IllegalArgumentException("Busy vehicle charging");  

     } 

     if (lowChargeVehicle.getStation() != null) { 

      System.out.println("Veh ID: " + lowChargeVehicle.getVehicleID()); 

      throw new  IllegalArgumentException("Charging vehicle given charging 

assignment");  

     } 

     int closestStation = CSAssignment.assignStationToVehicle(lowChargeVehicle, 

chargingStations); 

 

     //move it to the right station! 

     if (closestStation > -1) { 

      chargingStations.get(closestStation).incNumberOfServices(); 

      lowChargeVehicle.atStation(chargingStations.get(closestStation)); 

      lowChargeVehicle.incNumberOfCharges(); 

      lowChargeVehicle.incRange(-

Constants.BEELINE_FACTOR_STREET*CoordUtils.calcEuclideanDistance(lowChargeVehicle.getMyPo

sition(), chargingStations.get(closestStation).getStationPosition())); 

     

 lowChargeVehicle.incStationAccessDistance(Constants.BEELINE_FACTOR_STREET*CoordUti

ls.calcEuclideanDistance(lowChargeVehicle.getMyPosition(), 

chargingStations.get(closestStation).getStationPosition())); 

     

 stats.incStationAccess(Constants.BEELINE_FACTOR_STREET*CoordUtils.calcEuclideanDis

tance(lowChargeVehicle.getMyPosition(), 

chargingStations.get(closestStation).getStationPosition())); 

      double travelTime = 

lowChargeVehicle.moveTo(chargingStations.get(closestStation).getStationPosition());  

      //if (lowChargeVehicle.getVehicleID() == 269) System.out.println("going to 

charge!"); 

      vehiclesCharging.add(lowChargeVehicle); 

        

      availableVehicles.remove(lowChargeVehicle); 

      lowChargeVehicle.setArrivalTime(Math.max(time, 

lowChargeVehicle.getArrivalTime()) + (int) travelTime); 

      chargingStations.get(closestStation).incCurrentOccupancy(1); 

     } else { 

      if (warmStartNumber == 0) { 

       System.out.println("Veh ID: " + lowChargeVehicle.getVehicleID()); 

       System.out.println("Veh range: " + 

lowChargeVehicle.getCurrentRange()); 

       System.out.println("Closest Station: " + 

Constants.BEELINE_FACTOR_STREET*CoordUtils.calcEuclideanDistance(chargingStations.get(CSA

ssignment.getAbsoluteClosest(lowChargeVehicle.getMyPosition(), 

chargingStations)).getStationPosition(), lowChargeVehicle.getMyPosition())); 

       throw new  IllegalArgumentException("Building Station after warm 

start");  

      } 

      //or make a new one if it can't make it 

      ChargingStation newStation = new ChargingStation(); 

         newStation.setStationID(chargingStations.size()); 

         newStation.setStationPosition(lowChargeVehicle.getMyPosition()); 

         //newStation.setTimeOfCreation(time); 

         newStation.setCreatedBy(lowChargeVehicle); 

         chargingStations.add(newStation); 

         lowChargeVehicle.atStation(newStation); 

         lowChargeVehicle.setArrivalTime(Math.max(time, 

lowChargeVehicle.getArrivalTime())); 

         newStation.incNumberOfServices(); 

         Stats.addStation(newStation); 

      vehiclesCharging.add(lowChargeVehicle); 
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      availableVehicles.remove(lowChargeVehicle); 

       

     } 

    } 

    

The following sample is a method that looks at each vehicle being charged to 

determine how to handle that vehicle at each respective timestep. Typically, it will just 

receive more charge, but full vehicles must be removed from the charging station. 

 
    private static void handleChargingVehicles() { 

        stats.updateMaxVehiclesCharging(vehiclesCharging.size()); //update max charging 

stats 

     for (AutonomousVehicle vehicleToBeCharged : vehiclesCharging) { 

      //System.out.println("The range on THIS vehicle is: " + 

vehicleToBeCharged.getCurrentRange()); 

      if (time >= vehicleToBeCharged.getArrivalTime()) { 

       //We assume the vehicle reaches 80% range in half the charge time, 

and  

       //the remaining 20% in the remaining half  

       if (vehicleToBeCharged.getCurrentRange() < 0.8 * 

Constants.EV_RANGE) { 

       

 vehicleToBeCharged.incRange(Constants.SIMULATION_INTERVAL*(0.8*Constants.EV_RANGE)

/(0.5*Constants.EV_CHARGE_TIME)); 

       } else { 

       

 vehicleToBeCharged.incRange(Constants.SIMULATION_INTERVAL*(0.2*Constants.EV_RANGE)

/(0.5*Constants.EV_CHARGE_TIME)); 

        if (vehicleToBeCharged.getCurrentRange() >= 

Constants.EV_RANGE) { 

         //System.out.println("full charge occured on " + 

vehicleToBeCharged.getVehicleID()); 

         vehicleToBeCharged.resetRange(); 

         vehicleToBeCharged.incNumberOfFullCharges(); 

         vehicleToBeCharged.resetArrivalTime(); 

         vehiclesCharged.add(vehicleToBeCharged); 

         availableVehicles.add(vehicleToBeCharged); 

        

 vehicleToBeCharged.getStation().incCurrentOccupancy(-1); 

        } 

       }  

      } 

     } 

     //remove charged vehicles 

     for (AutonomousVehicle chargedVehicle : vehiclesCharged) { 

      vehiclesCharging.remove(chargedVehicle); 

      vehiclesCharging.remove(chargedVehicle); 

      chargedVehicle.atStation(null); 

     } 

     vehiclesCharged = new ArrayList<>(); 

       

    } 
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ADDITIONAL FIGURES 

 

Figure A1: OpenStreetsMap network used for this study overlaid on the six counties of 

the CAMPO region 
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Glossary 

AV  - Autonomous Vehicle 

AVO  - Average Vehicle Occupancy 

CAMPO  - Capital Area Metropolitan Planning Authority  

DRS  - Dynamic Ridesharing  

DTA  - Dynamic Traffic Assignment  

EV  - Electric Vehicle 

HEV   - Hybrid Electric Vehicle (gasoline-electric) 

IVTT  - In-Vehicle Travel Time 

SAEV  - Shared Autonomous Electric Vehicle 

SAV   - Shared Autonomous Vehicle 

TNC  - Transportation Networking Company 

VMT   - Vehicle-Miles Traveled 
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