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We study regularity estimates for solutions to implicit constraint obsta-

cle problems and penalized boundary obstacle problems. We first prove regu-

larity estimates for the solution and the free boundary in the classical stochas-

tic impulse control problem. We show that the free boundary ∂{u < ϕu},

where ϕu is the implicit constraint obstacle, can be decomposed into a union

of regular points, singular points, and degenerate points with corresponding

regularity and measure theoretic estimates. We then turn to generalizing our

analysis to the fully nonlinear problem with obstacles admitting a general

modulus of semiconvexity ω(r). We prove that solutions to the fully nonlinear

stochastic impulse control problem are Cω(r) up to C1,1. Finally we turn our

attention to study both nonuniform and uniform estimates for the penalized

boundary obstacle problem, ∆1/2uε = βε(u
ε). We obtain sharp estimates for

the solution in both the nonuniform and uniform theory.

vii



Table of Contents

Acknowledgments v

Abstract vii

Chapter 1. Introduction 1

1.1 Regularity Estimates for Free Boundary Problems . . . . . . . 2

1.2 Summary of Thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2. The Obstacle Problem 14

2.1 The Classical Obstacle Problem . . . . . . . . . . . . . . . . . 14

2.2 The Lower Dimensional Obstacle Problem . . . . . . . . . . . 21

2.3 Singularly Perturbed Free Boundary Problems . . . . . . . . . 25

Chapter 3. The Classical Implicit Constraint Obstacle Problem 28

3.1 Basic Definitions and Assumptions . . . . . . . . . . . . . . . . 28

3.2 Existence and Uniqueness Theory . . . . . . . . . . . . . . . . 29

3.3 Localization of the Obstacle and Semiconcavity Estimates . . . 33

3.4 Optimal C1,1 Estimates for the Solution . . . . . . . . . . . . . 40

3.5 Regularity Estimates for the Free Boundary . . . . . . . . . . 46

Chapter 4. The Fully Nonlinear Implicit Constraint Obstacle
Problem 50

4.1 Lipschitz Estimates for the Solution . . . . . . . . . . . . . . . 51

4.2 Optimal Cω(r) Estimates for the Solution . . . . . . . . . . . . 55

4.3 Applications to a Penalized Problem . . . . . . . . . . . . . . . 64

viii



Chapter 5. The Penalized Boundary Obstacle Problem 72

5.1 A Mathematical Model for Homogenization . . . . . . . . . . . 72

5.2 Optimal Nonuniform Estimates s = 1
2

. . . . . . . . . . . . . . 73

5.3 Preliminary Uniform Estimates s = 1
2

. . . . . . . . . . . . . . 83

5.4 Uniform C1,α Growth from the ε−Level Set . . . . . . . . . . . 92

5.5 Uniform C1,1/2 Estimate for Global Penalized Solutions . . . . 96

5.6 Uniform C1,1/2 Estimate for General Penalized Solutions . . . 103

Chapter 6. Conclusion and Future Directions 112

Appendices 114

Appendix A. Elliptic Regularity 115

Appendix B. Properties of Semiconcave Functions 120

Appendix C. Variational Inequalities 122

Bibliography 130

Vita 138

ix



Chapter 1

Introduction

”For the unity of field theory lies in its
techniques of analysis, the mathematical tools it
uses to obtain answers.”

— P. Morse, H. Feshbach,
Methods of Theoretical Physics

Mathematical models play an important role in the study of scientific

and engineering phenomena. A common feature of many mathematical models

is that they necessarily lead to equations admitting an ellipticity condition. A

particular class of models we consider are elliptic and parabolic free boundary

problems. Free boundary problems have been used widely as mathematical

models in the context of fluid dynamics, elasticity, shape optimization and

optimal stopping time problems. Moreover, their mathematical treatment has

led to important developments and connections with other areas of modern

mathematics such as minimal surface theory, optimal transportation theory,

calculus of variations, geometric measure theory, harmonic analysis, geometric

analysis, and stochastic processes. For a nice overview of past and recent

applications of free boundary theory we refer to [11], [52], [59], [28].

In this research work, we are particularly interested in investigating

mathematical questions related to existence, uniqueness, asymptotic behavior,
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and regularity. The following thesis is devoted to two classes of free boundary

problems of obstacle-type. The first class of problems studies regularity esti-

mates for obstacle problems admitting a nonlocal obstacle. The second class

of problems considers uniform regularity estimates for singularly perturbed

lower dimensional obstacle problems.

1.1 Regularity Estimates for Free Boundary Problems

A free boundary problem can be described as a boundary value prob-

lem for either an evolving or stationary physical system, where some of the

unknowns or their derivatives change their behavior discontinuously at some

particular values. More precisely the goal is to find an unknown pair (u,Ω),

where the function u solves some equation outside ∂Ω (Free Boundary), and

some global conditions prescribe the behavior of u across ∂Ω. Some examples

of free boundary problems are:

a. The solid-liquid interphase, when a material undergoes a phase transtion.

b. The boundary between the exercise and continuation region for a financial

instrument such as options.

c. The transition from elastic to plastic behavior when stress goes through a

critical value.

As in the theory of elliptic partial differential equations one first at-

tempts to find weak solutions to the problem by variational methods or meth-
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ods stemming from nonlinear PDE theory i.e. maximum principles, viscosity

solutions. The next step is to study regularity estimates for the pair (u, ∂Ω).

Many of the applications mentioned above fall into one of two classes of free

boundary problems:

1. Obstacle-Type Free Boundary Problems

2. Bernoulli-Type Free Boundary Problems or problems with transmission

conditions across the free boundary.

The obstacle problem is considered a one-phase problem, where the

solution u is non-trivial on only one side of the interface. A nice visualiza-

tion of the obstacle problem is of an elastic membrane being pressed against

a solid surface due to an external force. Here we assume that the membrane

is given by the graph of the function u. The free bounadry is the separating

curve between the contact and noncontact region. The obstacle problem can

be studied as an energy minimization problem for the membrane under the

constraint that it must lie above the solid surface. The existence and unique-

ness theory for this problem can be obtained through a study of variational

inequalities (See Appendix C) or the theory of sets of finite perimeter.

Bernoulli-Type Free Boundary Problems often appear as two-phase

problems. In the stationary problem, the solution u, may represent tempera-

ture such as in flame propogation problems, taking both positive and negative
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values. Along the free boundary, or the zero level surface of u, here represent-

ing the edge of the flame, uν , the normal derivative satisfies a jump condition

expressing the dynamics of the process. The general idea is to build classi-

cal solutions so that the separating surface ∂Ω is regular, u is regular up to

∂Ω from both phases, and the free boundary conditions expressed in terms of

uν are satisfied pointwise. This is usually done by integrating the transition

condition to give a weak formulation to the problem through variational tech-

niques expressed as conservation laws or by supersolution methods.

We point out that our interest in subsequent chapters is to study one

phase free boundary problems. The general methodology to study regular-

ity estimates for obstacle-type free boundary problems are inspired by related

techniques in the theory of minimal surfaces. We briefly discuss the main

steps in studying existence, uniqueness and regularity estimates for minimal

surfaces. As before we split the problem into two distinct steps:

Step 1: Find a family of surfaces, for which a general notion of area can

be defined.

One first shows that this family is closed under a limiting process and that the

area is semicontinuous with respect to this process. Recall a set Ω has finite

perimeter if for any smooth vector field v with supx∈Ω |v| ≤ 1,∣∣∣∣ˆ
Ω

∇ · v
∣∣∣∣ ≤ C0.
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The best constant C0 is called the perimeter of ∂Ω. Heuristically,∣∣∣∣ˆ
Ω

∇ · v
∣∣∣∣ =

∣∣∣∣ˆ
∂Ω

v · ν
∣∣∣∣ ≤ |Area(∂Ω)| .

Moreover the perimeter functional is shown to be lower-semicontinuous and

hence the direct methods of calculus of variations gives an existence proof to

the problem of finding a set with minimum perimeter.

Step 2: Show that ∂Ω is a smooth hypersurface outside of an unavoidable

singular set.

One technique to study the regularity theory of minimal surfaces is to look at

invariance properties of minimal surfaces, in particular invariance under rigid

motions and dilations as well as monotonicity formulas. Formally, if S is an

area minimizing surface in Rn+1 through 0, then,

E(r, S, z) =
Area(S ∩Br(z))

rn

is a monotonically increasing quantity in r. This monotonicity implies that

E(r) has a limit as r tends to 0 or ∞. If we blow up a minimal surface then,

E(0, S, z) = lim
r→0

E(rt, S, z) = lim
r→0

E(t, Sr, z) = E(t, S0, 0)

a quantity that is constant in r. Here Sr = {x : z+rx ∈ S} denotes the scaling

and the blow-up is denoted by S0. The next step is to classify the minimizing

cones S0. Studying various alternatives, one tries to deduce the regualrity for

S near 0.
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We conclude this section by making some remarks about monotonicity for-

mulas and their usefulness for regularity theory. Heuristically they measure

a sort of radial entropy for solutions to diffusive problems, that increases as

we diverge from a fixed point. Some known examples of monotone quantities

of interest in elliptic free boundary theory are the Almgren Frequency Func-

tional for harmonic functions, the average of subharmonic functions, Weiss-

Type Monotonicity Formulas, Monneau-Type Monotonicity Formulas and the

Alt-Caffarelli-Friedman Monotonicity Formula. In a later section, we will use

monotonicity formulas to understand optimal regularity estimates for solu-

tions in the lower dimensional obstacle problem. The general idea is that as

you scale into the origin, the blow-up solution is less complex and oscillatory.

Hence in a neighborhood of the origin we obtain a kind of structural control

on the growth rate of the local solution. There are some interesting connec-

tions between monotonicity formulas and entropy in a physical system. The

interested reader should see [8], [30]. Moreover a very thorough explanation of

monotonicity formulas in the context of free boundary problems can be found

in [51], [21].

1.2 Summary of Thesis

We now give a summary of the main chapters of the thesis. We begin

in the second chapter by reviewing some of the main results in the regularity

theory for free boundary problems of obstacle-type. In particular we discuss
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classical obstacle problems, lower dimensional obstacle problems and their

singular perturbations.

In the third chapter we consider an implicit constraint obstacle problem

arising in impulse control theory. Stochastic impulse control problems ([11],

[45], [46], [32]) are control problems that fall between classical diffusion control

and optimal stopping problems. In these problems the controller is allowed

to instantaneously move the state process by a certain amount every time the

state exits the non-intervention region. This allows for the controlled process

to have sample paths with jumps. There is an enormous literature studying

stochastic impulse control models and many of these models have found a wide

range of applications in electrical engineering, mechanical engineering, quan-

tum engineering, robotics, image processing, and mathematical finance. Some

classical references are [45], [32], [11]. A key operator in stochastic impulse

control problems is the intervention operator,

Mu(x) = inf
ξ≥0

(u(x+ ξ) + 1). (1.1)

The operator represents the value of the control policy that consists of taking

the best immediate action in state x and behaving optimally afterwards. Since

it is not always the case that the optimal control requires intervention at t = 0,

this leads to the quasi-variational inequality,

u(x) ≤ Mu(x) ∀x ∈ Rn. (1.2)
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From the analytic perspective one obtains an obstacle problem where the ob-

stacle depends implicitly and nonlocally on the solution. More precisely we

can consider the classical stochastic impulse control problem as a boundary

value problem,


Lu ≤ f(x) ∀x ∈ Ω.

u(x) ≤ Mu(x) ∀x ∈ Ω.

u = 0 ∀x ∈ ∂Ω.

(1.3)

Here we let, Lu ≡ −
∑n

i,j=1 aij(x) ∂2u
∂xi∂xj

+
∑n

i=1 bi(x) ∂u
∂xi

+ c(x)u with suitable

regularity assumptions on the data and,

Mu(x) = 1 + inf
ξ≥0

x+ξ∈Ω̄

(u(x+ ξ)). (1.4)

In this chapter, we present a new proof for the sharp C1,1
loc (Ω) estimate

for the solution to (1.3). We point out that the sharp C1,1
loc estimate has been

previously obtained (see [13], [14]). As a corollary of our proof we also obtain

a direct proof of the fact that the nonlocal obstacle, Mu(x) is C1,1
loc on the con-

tact set {u = Mu}. Since the obstacle depends on the solution, the strategy is

to improve the regulariity of the solution and use it to improve the regularity

of the obstacle. We start by first proving continuity of the solution and then

proceeding to prove a semiconcavity estimate for the obstacle. In the following

section we use the semiconcavity of the obstacle and the superhamonicity of

the solution to produce the C1,1 estimate.
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In the last section we study regularity estimates for the free boundary

∂{u < Mu}. We first observe that the set of free boundary points can be

structured according to where inf u(x+ξ) is realized. If the infimum is realized

in the interor of the positive cone then we conclude that the obstacle is locally

constant in a neighborhood of a free boundary point. This gives us regularity

estimates of the free boundary at regular points and singular points as defined

in the classical obstacle problem. If the infimum is realized on the boundary

of the cone then under the assumption that f is analytic we conclude that

the free boundary is contained in a finite collection of C∞ submanifolds. In

particular we prove the following theorem,

Theorem 1. Consider the classical stochastic impulse control problem


Lu ≤ f(x) ∀x ∈ Ω.

u(x) ≤ Mu(x) ∀x ∈ Ω.

u = 0 ∀x ∈ ∂Ω.

(1.5)

Assume that all coefficients in L are analytic, f is analytic and f(x) ≤

f(x + ξ) ∀ξ ≥ 0. Then it follows that, ∂{u < Mu} = Γr(u) ∪ Γs(u) ∪ Γd(u)

where,

1. ∀x0 ∈ Γr(u) there exists some appropriate system of coordinates in which

the coincidence set {u = Mu} is a subgraph {xn ≤ g(x1, . . . , xn−1)} in a

neighborhood of x0 and the function g is analytic.
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2. ∀x0 ∈ Γs(u), x0 is either isolated or locally contained in a C1 submanifold.

3. Γd(u) ⊂ Σ(u) where Σ(u) is a finite collection of C∞ submanifolds.

In the fourth chapter we consider a fully nonlinear problem. We con-

sider F (D2u), a fully nonlinear uniformly elliptic operator. We assume that

the operator is either convex or concave in the hessian variable. We define

ϕu(x) to be a semiconvex function with a general modulus of semiconvexity

ω(r). We consider the following boundary value problem.


F (D2u) ≤ 0 ∀x ∈ Ω.

u(x) ≥ ϕu(x) ∀x ∈ Ω.

u = 0 ∀x ∈ ∂Ω.

(1.6)

The following are our main results in this chapter,

Theorem 2. Consider the fully nonlinear obstacle problem with obstacle ϕu,

admitting a modulus of semiconvexity, ω(r). Then the solution u has a modulus

of continuity ω(r) up to C1,1(Ω).

As an application we apply our result to obtain a sharp estimate for the

solution to the following fully nonlinear stochastic impulse control problems,

Theorem 3. Let Ω ⊂ Rn be a bounded domain with a C2,α boundary ∂Ω.

Define

Mu(x) = ϕ(x) + inf
ξ≥0

x+ξ∈Ω̄

(u(x+ ξ)). (1.7)
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Here ϕ(x) is ω(r) semiconcave, strictly positive, bounded, and decreasing in

the positive cone ξ ≥ 0. Consider the solution to the following fully nonlinear

stochastic impulse control problem,


F (D2u) ≥ 0 ∀x ∈ Ω.

u(x) ≤ Mu(x) ∀x ∈ Ω.

u = 0 ∀x ∈ ∂Ω.

(1.8)

Then, the solution u has modulus of continuity ω(r) up to C1,1(Ω).

We remark that as a corollary of this theorem we recover the sharp C1,1

estimate for the classical stochastic impulse control problem.

We proceed in stages to prove the stated theorems. The main point of in-

terest in the first theorem is to improve the modulus of continuity for the

obstacle ϕu on the contact set {u = ϕu}. In particular the goal is to obtain

a uniform modulus of continuity ω(r) for ϕu which we can then propogate to

the solution u. The second theorem follows from the first theorem once we

apply the semiconcavity estimates for the nonlocal obstacle Mu(x) obtained

in the previous chapter. Moreover we can extend the free boundary regularity

from the classical implicit constraint problem under the assumption that the

data is analytic and ϕ(x) = 1. Finally as an application of the previous results

we consider a singularly perturbed fully nonlinear obstacle problem and show

optimal decay rates for Hölder norm estimates.
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In the fifth chapter we are interested in investigating estimates for the

solution to the penalized boundary obstacle problem. Our interest in this

problem is understanding both sharp uniform and nonuniform estimates in the

penalizing parameter. We begin by first considering the nonuniform theory and

characterize the optimal growth of solutions from the free boundary. Regarding

uniform estimates, as in the theory for the boundary obstacle problem, by

standard regularity theory it is enough to prove uniform estimates at the level

of uεy. A consequnce of our estimates is that we can prove uniform convergence

of the penalized solution to the solution of the boundary obstacle problem.

This follows from the sharp uniform estimates and the following observation.

Assume for a uniform constant C,

|1
ε
(uε)−| = |uεy| ≤ C.

This implies,

|(uε)−| ≤ εC.

Letting ε→ 0 we conclude that,

(u0)− ≡ 0.

Furthermore the uniform estimate from below on uεy allows us to con-

clude that u0
y does not deteriorate on {u0 = 0}. Hence we recover the solution

to the boundary obstacle problem with zero obstacle. Since the sharp estimate

for the limiting solution is known (see [4]), we aim to show that uεy is uniformly

C1/2. The following is our main result,
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Theorem 4. Let uε be a solution to the penalized boundary obstacle problem.

Then there exists a modulus of continuity ω : (0,∞)→ (0,∞) independent of

ε, such that ω(δ) = O(δ1/2) as δ → 0 and ∀x, y ∈ Br/2 and ∀ε > 0,

|uεy(x)− uεy(y)| ≤ |x− y|1/2. (1.9)

We proceed in stages to prove the uniform estimates. We make the

standing assumption that uε(0) = 0, so in particular uεy(0) = 0. The idea is

to first prove the semiconvexity of the solution in the tangential directions.

An iteration argument will allow us to conclude a Hölder growth estimate for

uεy from the interface ∂{uε > 0}. To obtain the sharp estimate, we study

global solutions of the penalized problem. Global solutions are convex hence

we are able to employ a monotonicty formula first proved in [4] to improve

the growth estimate from the interface obtained in the preceding section. A

scaling argument in the penalization parameter concludes the proof of the

desired universal Hölder estimate. For the local problem we utilize a technical

estimate to correct for semiconvexity and then an iterative application of the

monotonicity formula improves the growth estimate of uεy from the interface.

To conclude the universal Hölder norm estimate we apply again the scaling

arguments in the penalization parameter as considered for the global solutions.
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Chapter 2

The Obstacle Problem

”The Procrustean tendency to force the
physical situation to fit the requirements of a
partial differential equation results in a field
which is both more regular and more irregular
then the ’actual’ conditions. A solution of a
differential equation is more smoothly
continuous over most of space and time than is
the corresponding physical situation, but it
usually is also provided with a finite number of
mathematical discontinuities which are
considerably more ’sharp’ than the actual
condition exhibits.”

— P. Morse, H. Feshbach,
Methods of Theoretical Physics

In this chapter we recall some of the key results in the theory of ob-

stacle problems. We consider the classical obstacle problem, the thin obstacle

problem and some singular perturbations.

2.1 The Classical Obstacle Problem

Consider a fixed horizontal wire with an attached membrane which is

forced to lie above a fixed obstacle in the domain. The resulting geometry

gives us a contact area between the membrane and the obstacle, a non contact

region where the membrane is strictly above the obstacle and the boundary
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separating these regions. The goal is to understand the qualitative properties

of the membrane and the geometric behavior of the boundary. As formulated,

this is the classical obstacle problem. More precisely assume the membrane is

the graph of a function

u : Ω ⊂ Rn → R

where Ω is a smooth bounded domain and u = g on the boundary ∂Ω, rep-

resenting the wire. Moreover let ψ represent the graph of the obstacle in the

domain. Such a problem can be posed in the theory of variational inequlities

and leads to an existence and uniquness theory for the problem (see Appendix

C). For convenience we consider the problem with w = u − ψ. This allows

one to utilize geometric methods such as scaling and blow-ups. Thus we de-

fine the coincidence set to be Λ = {w = 0}, the noncoincidence set to be

N = {w > 0}, and the free boundary, Γ = ∂{u > 0}. This leads to some nice

regularity properties which were first proven by J. Frehse,

Theorem 5. (Frehse [31], Regularity of the Mnimizer) The solution to the

obstacle problem satisfies,
∆w = 1 on {w > 0} ∩ Ω

w ≥ 0 on Ω

w ∈ C1,1(Ω).

We remark that a solution w satisfying the above is considered to be a

normalized solution. We also remark that on {w > 0} one actually has on the

right hand side,

∆w = ∆(u− ψ) = −∆ψ.
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What is needed to be a normalized solution is that ∆ψ ≤ −C < 0 and ∆ψ is

dini continuous (see [6]).

With the above structural theorem, one is now in position to study the

geometric properties of the free boundary. We point out that since 0 ∈ Γ,

‖w‖C1,1 is preserved under the family of dilations wλ = 1
λ2w(λx). Hence one

has enough compactness to consider the blow-up solution, i.e. wλk → w∞

as λk → ∞. It clearly follows that w∞ will be non-negative, C1,1 and satisfy

∆w∞ = 1 on the set w∞ > 0. What is not clear is that w∞ does not identically

vanish. In other words can one prove compactness of Γk = ∂{wλk > 0}? Can

one say that free boundaries converge to free boundaries? This is answered

positively by the following non-degeneracy statement,

Lemma 1. (Non-Degeneracy) If x0 ∈ N , then

sup
Br(x0)

w ≥ 1

2n
r2.

The key point in this lemma is the strict concavity of the obstacle in a

neighborhood of the free boundary point. The proof follows a straightforward

application of the maximum principle. In particular we conclude that

sup
Br(x0)

w∞ ≥
1

2n
r2

and hence 0 ∈ Γ∞ = ∂{w∞ > 0}.

The next step is to classify blow-up solutions. This is obtained in the fol-

lowing theorem first proven by Luis Caffarelli,
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Theorem 6. (Caffarelli [15], [20], Characterization of the Blow-up Limit) The

blow-up limit is unique and depends only on the point x0 on the free boundary.

Either there exists a unit vector νx0 ∈ Sn−1 such that,

w∞(x0) =
1

2
max(〈x, νx0〉, 0)2,

and the point x0 is called a Regular Point. Or w∞ is a quadratic form. In

particular,

w∞(x0) =
1

2
〈x,Ax0x〉

where Ax0 is a symmetrtic n× n matrix such that TrAx0 = 1 and x0 is called

a Singular Point.

We remark that the theorem gives us a Liouville result which classifies

the blowups as well as the uniqueness of the blowups. The first step to prove

the classification theorem is to show that w∞ is convex. More precisely,

Lemma 2. There is a modulus of continuity ω(r) where ω(r) monotone,

ω(0+) = 0, such that Diiw(x) ≥ −ω(|x|).

The proof is a direct application of the Harnack Inequality and an

iteration argument. It follows that the coincidence set {w∞ = 0} is a convex

set. The next step is analogous to the minimal surface theory where we would

like to rule out that Γ is not asymptotically a cone. Hence we perform another

blow-up in a neighborhood of 0, and consider

(w∞)∞ = lim
λk→0

(w∞)λk .
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It follows that {(w∞)∞ = 0} is either a point or a convex cone. If it is

a point or a convex cone with empty interior then it follows that

w∞(x0) =
1

2
〈x,Ax0x〉,

where Ax0 is a symmetrtic n × n matrix such that TrAx0 = 1. On the other

hand if {(w∞)∞ = 0} has nonempty interior, then,

w∞(x0) =
1

2
max(〈x, νx0〉, 0)2,

and ∂{w∞ > 0} is a Lipschitz surface. The proof follows from showing that

∇w∞ locally around 0, is strictly monotone in a cone of directions centered

around δ, a vector directed towards the interior of the contact set. Moreover it

follows after a straightening of the boundary and an application of the Bound-

ary Harnack Principle that in a neighborhood of 0 the level surfaces of w∞ are

in fact C1,α. We remark that it follows that points on the free boundary in the

local picture which blowup to this profile are then unique.

What remains to be done is to carry the analysis in the global picture back

to the local solution w. In 2−dimensions Schaeffer [58] showed that the free

boundary can form a thin neck or a cusp point. The intuition behind these

examples comes from considering continuous deformations with varying ob-

stacles with different components. Such a construcion follows from the fact

that a priori the coincidence set could be composed of an infinite number of

components with accumulation points. Hence it is important to understand
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what assumptions in the local picture will guarantee convergence in the blow-

up to a convex coincidence set with a non-empty interior. Here we introduce

a measurement which gives us a dichotomoy for points on the free boundary

of w,

Definition 1. We define the thickness of the conincidence set {w = 0}, in a

ball Br(x0) by

δr(x0) =
1

r
m.d.({w = 0} ∩Br(x0)},

where the minimum diameter (m.d.) of {w = 0} ∩ Br(x0) is the infimum

of distances between pairs of parallel hyperplanes which contains {w = 0} ∩

Br(x0).

We now state a theorem regarding convergence of free boundary points

in the local picture to the global picture. This allows us to define the Regular

Points and Singular Points of the free boundary. The following theorem

was first proven by Luis Caffarelli,

Theorem 7. (Caffarelli [15]) Let 0 ∈ Γ. There exists a modulus of continuity

ω(ρ) such that for 0 ∈ Γ either,

(a) 0 is a Singular Point and m.d.({w = 0} ∩Bρ(x0)} ≤ ρω(ρ) ∀ρ ≤ 1 or

(b) 0 is a Regular Point and ∃ρ0 such that m.d.({w = 0} ∩ Bρ0(x0)} ≥

ρ0ω(ρ0) and ∀ρ < ρ0, m.d.({w = 0} ∩Bρ(x0)} ≥ cρω(ρ0).

The proof follows from compactness and properties for normalized so-

lutions. Moreover it follows from a density estimate that the set of points
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satisfying (b) is an open set of the free boundary and at those points satisfy-

ing (a) the free boundary becomes cusp like. Now it remains to propogate the

regularity of the free boundary in the global picture back to the local picture

at regular points. This follows from the following theorem,

Theorem 8. (Caffarelli [20]) Suppose w is a normalized solution. Then there

exists a modulus of continuity ω(r) such that if for one value of r, say r0,

m.d.({w = 0} ∩ Br0(x0)} > r0ω(r0), then in a r2
0 neighborhood of the origin,

the free boundary is a C1,α surface xn = f(x′) with

‖f‖C1,α ≤ C(n)

r0

.

Subsequently one also has higher regularity of the free boundary at

regular points,

Theorem 9. (Kinderlehrer-Nirenberg [43], Isakov [35]) Let w is a normalized

solution, 0 ∈ Γ, and ∆w = f . Then f ∈ Cm,α(B1) implies Γ is a hypersurface

of class Cm+1,α in some neighborhood of 0. Furthermore if f is analytic then

near the origin Γ is analytic.

Finally we can also consider the Singular Points on the free bound-

ary. Recall that a Singular Point are those points for which |({w = 0} ∩

Br(x0)}| ⊂ Srω(r) (a strip of width rω(r)) for every positive r. The unqiueness

of the blow-up is a consequence of the Alt-Caffarelli-Friedman monotonicity

formula [20] or a monotonicity formula due to Monneau [47]. It follows that

one can control the convergence rate in a uniform fashion. In particular it
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is shown that the normalized solution has a Taylor expansion of order 2 at

singular points,

Theorem 10. (Caffarelli [20], Monneau [47]) If w is a normalized solution

and 0 is a Singular Point, then

w(x) =
1

2
〈x,D2w(0)x〉+ o(x2).

It follows from an application of the ACF monotonicity formula or

an application of the Whitney Extension Lemma combined with the implicit

function theorem that one can prove a structural theorem for points on the

singular set,

Theorem 11. (Caffarelli [20], Monneau [47]) The map

x0 → Ax0

is continuous on the set of singular points on the free boundary. Moreover the

set of singular points is a closed set in a C1 (n− 1)-dimensional manifold.

2.2 The Lower Dimensional Obstacle Problem

In this section we give a brief overview of a variant of the classical

obstacle problem, where the obstacle is restricted to lie on a lower dimen-

sional manifold M. Such problems arise in the context of flow through semi-

permeable membranes, elasticity, boundary control temperature, or heat con-

duction problems (see [29]). Let Ω be a domain in Rn+1 divided into two parts
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Ω+ and Ω− by M. Let ϕ : M → R be a thin obstacle and g a given function

on ∂Ω satisfying g > ϕ on M ∩ ∂Ω. The problem can be given a formulation

in the theory of variational inequalities and is shown to satisfy,

∆u ≤ 0 Ω,

∆u = 0 Ω \M,

u ≥ ϕ M,

uν+ + uν− ≤ 0 M,

(u− ϕ)(uν+ + uν−) = 0 M.

Moreover if M = Rn × {0} then the problem is equivalent to,

∆u ≤ 0 Ω,

∆u = 0 Ω \M,

u ≥ ϕ M,

uν+ ≤ 0 M,

(u− ϕ)uν+ = 0 M.

We now consider the specific case when Ω = B1, the unit ball in Rn+1. Fur-

thermore we define B′1 = B1 ∩ {xn+1 = 0}. We fix u = 0 on ∂B1 ∩ {xn+1 > 0}

and ϕ < 0 on ∂B′1. We remark that regularity estimates for the local problem

in Ω = B+
1 can be deduced from regularity estimates in the global problem

Ω = Rn × (0,∞) by using radially symmetric cutoff functions. Also the con-

verse is true.

We point out that the lower dimensional problem is strongly related

to problems in fractional diffusion. To better understand this relationship we

study the harmonic extension problem. Given u0 a rapidly decaying function,
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let u be the unique solution to the Dirichlet problem,{
∆u = 0 Rn × (0,∞),

u(x, 0) = u0 Rn.

Consider the Dirichlet to Neumann map T : u0 → −uy(x, 0). Since u0 is

smooth and uy is harmonic we find,

T ◦ T [u0] = −∂y(−∂yuy(x, 0)) = uyy(x, 0) = −∆u0.

Hence it follows that

T = (−∆)1/2,

where solutions to (−∆)1/2 arise as minimizers of the functional

J(v) =

ˆ
Rn

ˆ
Rn

|v(x)− v(y)|2

|x− y|n+1
dxdy.

From this we are able to draw the following conclusions,

a. If u is a solution to the lower dimensional obstacle problem in Rn× (0,∞),

then u0 = u(·, 0) solves the obstace problem for (−∆)1/2.

b. If we start with a solution u0 to the obstacle problem for (−∆)1/2 then its

harmonic extension u solves the lower dimensional obstacle problem.

We consider again the lower dimensional obstacle problem in the local geome-

try. From the 2-dimensional problem it is strongly suggested that the solution

has a saddle shape, with convex behavior in the tangential directions and con-

cavity in the normal direction. The main questions become as in the classical
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obstacle problem, to study the regularity estimates for the solution u as well as

the (n−1)-dimensional free boundary Γ = ∂{u(·, 0) > ϕ}. When studying the

optimal regularity estimates for the solution, the best one hopes to obtain is

C1,1/2 on each side of M. This has been obtained in [4], [25]. Moreover in recent

work [10] the complete classification of free boundary points is achieved for

concave obstacles as discussed in the previous section on the classical obstacle

problem. The new idea is to prove a non-degeneracy statement at all points on

the free boundary and show that solutions grow at least quadratically at every

free boundary point. This work unifies many of the previous results related

to the regularity of the free boundary (see [25], [55] [49]). To conclude this

section we outline the major steps to show the optimal regularity estimate for

the solution and the free boundary. We remark that many of these steps are

closely followed and inspired by work in the classical obstacle problem.

a. Lipschitz Continuity and local C1,α estimates of the solution for some

0 < α < 1 [12].

b. Optimal C1,1/2 regularity for tangentially convex global solutions using a

monotonicity formula [4].

c. Correction for semiconvexity and optimal C1,1/2 regularity for local solu-

tions [4].

d. Almgren’s Frequency formula and another derivation of the optimal C1,1/2

estimate [25].

e. Classification of asymptotic blow-up profiles around a free boundary point
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according to homogeneity of the blow-up [5].

f. Lipschitz Regularity of Free Boundary in a neighborhood of stable points

(homogeneity of blow-up is 3
2
) [5] [25].

g. Boundary Harnack Principle and C1,α regularity at stable points of the Free

Boundary [5], [25].

h. Structure of the set of points on the Free Boundary with vanishing density.

(Singular Set) [49].

Before closing this section we remark that all of the previous results have

been generalized to the fractional obstacle problem where one studies the ob-

stacle problem for (−∆)s for 0 < s < 1. In fact many of the above results

are derived in this more general framework. As before one has an extension

formula analgous to the case s = 1
2

(see [23]) and corresponding statements

about optimal regularity of the solution and free boundary. For a complete

reference to the fractional obstacle problem see [56].

2.3 Singularly Perturbed Free Boundary Problems

Problems in differential equations are often approximated by regular-

izing ones. To obtain information about the original problem, one tries to

establish results for the regularizing solution which carry over in the limit. In

the context of obstacle problems a classical technique in this area is the pe-

nalization method. The underlying idea to study perturbed solutions is that

small perturbations for uniformly elliptic equations propogate in a quantifi-
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able fashion (Harnack Inequalities and Maximum Principles), hence studying

perturbed solutions can help to establish regularity estimates and stability es-

timates for the original solution. In free boundary problems the question to

ask is how would a perturbation of order ε displace the free boundary? The

problem can be formulated as a study of a one-parameter family of solutions

of operators that degenerate along a level surface {u = 0}. In particular we

ask the question, what are the regularity properties of the solution and level

surfaces of the solution to an equation of the type,

∆uε = βε(u
ε)?

Specifically we would like to consider those properties of the solution that

are independent of the parameter ε, hence those properties which hold for

the limiting solution u0. Restricting our attention to variational solutions

we consider an ε smoothing of minimizers with the following Euler-Lagrange

Equation,

∆u0 = α[(u0)+]α−1 0 < α < 2.

We note that equations of this type are invariant under the rescaling

w0(x) =
1

λ
2

2−α
u0(λx).

It follows that the natural regularity for this problem is C
2

2−α . We remark that

in the case

α→ 2

we formally recover the obstacle problem and in the case

α→ 0
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we formally recover the Alt-Caffarelli problem [2]. The intermediate cases were

studied by Alt and Phillips [3]. Much work has also been done on the penal-

ized problem (see [53] [54]). In the penalization problem one is interested in

studying uniform estimates for the solution uε in the ε-strip, namely, measure

theoretic estimates of 0 < uε < ε, and its uniform speed of convergence to the

limiting problem. We remark that there do exist some general technique to

establish such uniform estimates [17]:

a. Establishing optimal regularity estimates and non-degeneracy estimates

for the penalized solution. Such estimates are in principle constrained by the

homogeneity of the limiting solution.

b. Measure estimates for the ε-strip. These should in the limit recover the

Hausdorff measure estimates for the free boundary.

c. Lipschitz level surfaces are uniformly C1,α. One has to obtain a Haranck

Inequality for level surfaces.

d. Flatness implies Lipschitz. In the case of penalizations for obstacle type

problems we would like to establish that blow-ups for the penalization prob-

lem are close to the blow-ups of regular points in the limiting obstacle problem.

We take up singularly perturbed problems in chapter 5, when we consider

the penalized boundary obstacle problem.
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Chapter 3

The Classical Implicit Constraint Obstacle

Problem

3.1 Basic Definitions and Assumptions

Let Ω ⊆ Rn be a bounded domain with C2,α boundary ∂Ω. Assume

c(x) ≥ c0 > 0; aij, bi, c, ∈ C2+α(Ω̄) for 0 < α < 1, and the matrix (aij)

is positive definite for all x ∈ Ω̄. Furthermore let f ∈ Cα(Ω̄). For any

ξ = (ξ1, . . . , ξn) we let ξ ≥ 0 denote ξi ≥ 0 ∀i. Consider,

Lu ≡ −
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u. (3.1)

Define the operator:

Mu(x) = 1 + inf
ξ≥0

x+ξ∈Ω

u(x+ ξ). (3.2)

We introduce the bilinear form a(u, v) associated to our operator L,

a(u, v) = (Lu, v) ∀u, v ∈ C∞0 (Ω). (3.3)

Furthermore assume that our bilinear form is coercive,

a(u, u) ≥ γ(‖u‖W 1,2(Ω))
2 ∀u ∈ W 1,2

0 (Ω), γ > 0. (3.4)

We consider the quasi-variational inequality:
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u ∈ W 1,2
0 (Ω) u ≤ Mu,

a(u, v − u) ≥ (f, v − u) ∀v ∈ W 1,2
0 (Ω) v ≤ Mu. (3.5)

We list a few properties of our operator Mu that will be useful for the

remaining parts of this chapter,

u1(x) ≤ u2 a.e.⇒ Mu1(x) ≤ Mu2(x) a.e.

M : L∞ → L∞.

M : C(Ω̄)→ C(Ω̄).

Furthermore we assume that f ≥ − 1
c0

. This implies that the solution

ū to the variational equation Lū = f in Ω, ū ∈ H1
0 (Ω) satisfies the property

ū ≥ −1. This in particular implies that the set of solutions to v ∈ H1
0 (Ω) v ≤

Mū is nonempty. Without loss of generality we assume that ū < 1.

3.2 Existence and Uniqueness Theory

We now proceed to prove the existence of a unique continuous solution

to (3.5). We follow closely the proof in [38].

Lemma 3. There exists a unique solution u ∈ C(Ω) of (3.5).

Proof. From standard elliptic theory we know that there exists a unique solu-

tion u0 ∈ C(Ω) of
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{
a(u, v) = (f, u− v) ∀x ∈ Ω,

u = 0 ∀x ∈ ∂Ω.
(3.6)

Since Mu0 is continuous we know from the theory of variational in-

equalities that there exists a unique solution u1 ∈ C(Ω) of
a(u, v) ≥ (f, u− v) ∀x ∈ Ω,

u ≤ Mu0 ∀x ∈ Ω,

u = 0 ∀x ∈ ∂Ω.

(3.7)

Moreover for n = 2, 3, . . . we obtain un ∈ C(Ω) satisfying,
a(u, v) ≥ (f, u− v) ∀x ∈ Ω,

u ≤ Mun−1 ∀x ∈ Ω,

u = 0 ∀x ∈ ∂Ω.

(3.8)

Since u1 is a subsolution of (3.6), by the comparison principle (see

Appendix C), we know that u1 ≤ u0. We also know that −1 is a subsolution

of (3.77), hence the comparison implies that −1 ≤ u1. Moreover it follows

from the properties of Mu that 0 ≤ Mu1 ≤ Mu0. This implies in particular

that u2 is an admissable subsolution to (3.7). Arguing as before we see that

−1 ≤ u2 ≤ u1. We can continue this process and obtain a sequence of functions

−1 ≤ . . . ≤ un ≤ . . . ≤ u1 ≤ u0. (3.9)

Now we look to prove an upper bound on the sequence. Consider

µ ∈ (0, 1) such that µ‖u0‖C(Ω) ≤ 1. Assume there exists θn ∈ (0, 1] such that

∀n ∈ N,

un − un+1 ≤ θnun. (3.10)
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We claim that this implies

un+1 − un+2 ≤ θn(1− µ)un+1. (3.11)

With this claim we are able to almost conclude the proof of the theorem.

In particular the positivity of un implies that u1−u2 ≤ u2. We can set θ1 = 1.

Moreover from (3.11) it follows that u2 − u3 ≤ (1− µ)u2. Hence θ2 = (1− µ).

Therefore setting θn = (1− µ)n−1 we find

un+1 − un+2 ≤ (1− µ)nun+1 ≤ (1− µ)n‖u0‖C(Ω). (3.12)

Combining (3.12) with (3.9) we see that there exists a function u ∈

C(Ω) such that ‖un − u‖C(Ω) → 0 as n → ∞. Moreover from the estimate

‖Mu −Mv‖C(Ω) ≤ ‖u − v‖C(Ω) it follows that u is a solution to the classical

stochastic impulse control problem. Hence we are reduced to proving (3.11)

and establishing uniqueness of the solution. By the concavity of Mu and (3.10)

it follows,

ψ = (1− θn)Mun + θn ≤ (1− θn)Mun + θnM0 ≤ M(1− θnun) ≤ Mun+1. (*)

We consider the continuous solutions to the following obstacle prob-

lems. Let w ∈ C(Ω) solve,
a(u, v) ≥ (f, u− v) ∀x ∈ Ω.

u ≤ ψ ∀x ∈ Ω.

u = 0 ∀x ∈ ∂Ω.

(3.13)
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Let z ∈ C(Ω) solve,
a(u, v) ≥ (f, u− v) ∀x ∈ Ω.

u ≤ 1 ∀x ∈ Ω.

u = 0 ∀x ∈ ∂Ω.

(3.14)

From (*) and the comparision theorem for variational inequalities it

follows that w ≤ un+2. Moreover it follows that θnz solves,
a(u, v) ≥ (f, u− v) ∀x ∈ Ω.

u ≤ θn ∀x ∈ Ω.

u = 0 ∀x ∈ ∂Ω.

(3.15)

Observing that ψ ≥ θn, it follows from comparision that θnw ≥ θnz.

Next we observe that (1− θn)un+1 is a subsolution and (1− θn)w is a solution

of the following obstacle problem,
a(u, v) ≥ (f, u− v) ∀x ∈ Ω.

u ≤ (1− θn)ψ ∀x ∈ Ω.

u = 0 ∀x ∈ ∂Ω.

(3.16)

Hence we find, (1 − θn)un+1 ≤ (1 − θn)w . Putting this together we

obtain,

(1− θn)un+1 + θnz ≤ (1− θn)w + θnw = w ≤ un+2. (**)

Recall that ∀n, µun+1 ≤ 1. This implies that µun+1 is a subsolution of (3.14).

So in particular, µun+1 ≤ z. Putting this into (**) we obtain our desired

estimate (3.11),

un+1 − un+2 ≤ θn(1− µ)un+1.

Finally to prove uniqueness, suppose u and ū are distinct solutions. The

positivity of the solution implies u − ū ≤ u. Hence arguing as above we find
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u − ū ≤ (1 − µ)nu, for all n ≥ 0. Letting n → ∞ we find that u − ū ≤ 0.

Interchanging u and ū we conclude u = ū.

3.3 Localization of the Obstacle and Semiconcavity Es-
timates

Using the improved regularity on the solution u, we now proceed to

prove that the obstacle Mu(x) is semi-concave with semiconcave with a linear

modulus, i.e. ω(r) = Cr2. The strategy of the proof will follow the ideas pre-

sented in [13]. For the present argument we consider a more general obstacle.

Lemma 4. Let ϕ(x) be ω(r) semi-concave, strictly positive, bounded, and

decreasing in the positive cone ξ ≥ 0. Then the Obstacle

Mu(x) = ϕ(x) + inf
ξ≥0

x+ξ∈Ω

u(x+ ξ)

is semi-concave with modulus of semi-concavity ω(r).

Proof. We consider two distinct cases:

1. x0 ∈ {u = Mu}.

2. x0 ∈ {u < Mu}.

Case 1: Fix x0 ∈ {u = Mu}.

The proof in this case is based on characterizing the set where the infimum of u

occurs and establishing that this set is uniformly contained in the non-contact

region {u < Mu}. This is the content of the following claims. We define the
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following sets:

1. Σ≥x0 = {x0 + ξ : ξ ≥ 0}.

2. Σx0 = {ϕ(x0) + u(x0 + ξ) = Mu(x0)}.

The following claim characterizes Σx0 as the set of points where u realizes

its infimum.

Claim 1. For every y ∈ (Σ≥x0 \ Σx0) and for every x ∈ Σx0, u(x) ≤ u(y).

Proof. Fix x̄ ∈ Σx0 . Suppose by contradiction that ∃x1 ∈ Σ≥x0 \Σx0 such that

u(x1) < u(x̄). This implies the following,

ϕ(x0) + u(x1) < ϕ(x0) + u(x̄)

= Mu(x0) = ϕ(x0) + inf
ξ≥0

x0+ξ∈Ω

u(x0 + ξ).

In particular we obtain,

u(x1) < inf
ξ≥0

x0+ξ∈Ω

u(x0 + ξ).

This is a contradiction.

We now prove that pointwise the elements of Σx0 are contained in the

non-contact region, {u < Mu}.

Claim 2. Suppose the solution to the Boundary Value Problem Lū = f satis-

fies

ū < inf
∂Ω
ϕ.
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Then ∀x ∈ Σx0 it follows that u(x) < Mu(x).

Moreover in a neighborhood N1 of x we have u ∈ C1,1(N1).

Proof. We observe that the first statement ensures that Σx0 ∩ (∂Ω) = ∅.

Suppose x0 ∈ Ω◦, x ∈ ∂Ω and x0 ≤ x. Then we observe,

Mu(x0) = u(x0)

≤ ū(x0) < inf
∂Ω
ϕ ≤ ϕ(x) + u(x) ≤ ϕ(x0) + u(x).

The last inequality follows from the monotonicity of ϕ(x) in the cone.

Hence in particular Σx0 ∩ (∂Ω) = ∅.

Suppose now by contradiction that ∃x ∈ Σx0 such that u(x) = Mu(x). Then

we have the following,

u(x0) = Mu(x0)

= ϕ(x0) + u(x)

= ϕ(x0) + Mu(x) ≥ ϕ(x0) + Mu(x0) > Mu(x0)

The last inequality follows from the strict positivity of the function ϕ.

We observe that the inequality contradicts the obstacle constraint u(x0) ≤

Mu(x0). Hence we have reached our desired contradiction.

Finally the last statement of the claim follows from the continuity of u. The

continuity of the solution implies that {u < Mu} is an open set and thus in a

small neighborhood N1 of x, u satisfies the equation, Lu = f. We can therefore

apply interior regularity estimates for the operator L to conclude.
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We now strenghten the previous claim to obtain a uniform neighbor-

hood of Σx0 that is strictly contained in the non-contact region.

Claim 3. ∃δ0 > 0 such that d {{u = Mu},Σx0} > δ0.

Proof. Suppose by contradiction ∃{δk} ↘ 0 and {xk} ⊂ Σx0 , such that

d(xk, {u = Mu}) ≤ δk ∀k.

By definition, xk ∈ Σx0 , implies

ϕ(x0) + u(xk) = Mu(x0) ∀k.

By the continuity of u(x) this implies in particular that ϕ(x0) +u(x̄) =

Mu(x0) for some x̄ ∈ {u = Mu}. On the other hand, ϕ(x0) + u(x̄) = Mu(x0)

implies x̄ ∈ Σx0 . Hence from the previous claim we obtain,

Mu(x̄) = u(x̄) < Mu(x̄).

This is our desired contradiction.

We now state and prove a claim which allows us to localize the obstacle

in the neighborhood of a contact point.

Claim 4. For every x, x̄ ∈ Ω, ∃δ > 0, such that if |x−x0| < δ, and d(x̄,Σx0) >

δ, then u(x) < ϕ(x) + u(x̄). Moreover, if x ∈ {u = Mu}, then x̄ /∈ Σx.
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Proof. Suppose by contradiction that there exists a sequence of points {xk}

and {x̄k′} satisfying:

1. |xk − x0| = δk.

2. d(x̄k′ ,Σx0) > δk′ > 0.

3. {δk} ↘ 0 and {δk′} ↘ 0.

4. u(xk) ≥ ϕ(xk) + u(x̄k′) ∀k and ∀k′.

We observe that from the previous claim ∃k0, k
′
0, such that ∀k ≥ k0 we have

the following chain of inequalities,

Mu(x0 + δk) ≤ Mu(x̄k′0)

≤ ϕ(x̄k′0) + u(x̄k′0)

≤ ϕ(x0 + δk) + u(x̄k′0)

≤ u(x0 + δk) ≤ Mu(x0 + δk).

Thus the above inequalities are all equalities. This implies ∀k ≥ k0,

Mu(x0 + δk) = ϕ(x0 + δk) + u(x̄k′0).

Letting k →∞ we obtain,

Mu(x0) = ϕ(x0) + u(x̄k′0).

Which implies in particular that x̄k′0 ∈ Σx0 . This is our desired contra-

diction.
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From the last claim we can redefine the obstacle for Vδ = {|x−x0| < δ}.

In particular by taking δ sufficiently small ∃N2 neighborhood of Σx0 such that,

Mu(x) = ϕ(x) + inf
ξ≥0

x+ξ∈N2

u(x+ ξ).

For an even smaller δ,

Mu(x) = ϕ(x) + inf
ξ≥0

x0+ξ∈N3

u(x+ ξ).

Where N3 is such that,

Vδ +N3 − x0 ⊆ N1.

Here N1 is the neighborhood obtained in Claim 3. In particular for

x ∈ Vδ and ξ ∈ N3 − x0, we can bound the second incremental quotients,

δ2u = u(x+ h+ ξ) + u(x− h+ ξ)− 2u(x+ ξ) ≤ c|h|2.

Moreover we know that for some x+ ξ̄ in N1, we have,

inf
ξ≥0

x+ξ∈N1

u(x+ ξ) = u(x+ ξ̄).

Now we consider the second incremental quotients of the obstacleMu(x).

By the semiconcavity of ϕ we obtain,

δ2Mu(x) ≤ ω(h) + u(x+ ξ̄ + h) + u(x+ ξ̄ − h)− 2u(x+ ξ̄)

≤ ω(h) + c|h|2

≤ Cω(h).
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Thus, in a neighborhood of a contact point, Mu(x) is semiconcave with

semiconcavity modulus ω(h).

Case 2: Fix x ∈ {u < Mu}. We argue as before by considering the second

incremental quotients of the obstacle, δ2Mu(x). We observe that the infimum

of u in the positive cone, ξ ≥ 0, must always be realized at a non-contact

point. Suppose ∃ x+ ξ1 ∈ {u = Mu} satisfing,

inf
ξ≥0

x+ξ∈Ω

u(x+ ξ) = u(x+ ξ1).

Then from Case 1 there exists ξ2 ∈ Σx+ξ1 ⊂ {u < Mu} such that,

inf
ξ≥0

x+ξ1+ξ∈Ω

u(x+ ξ1 + ξ) = u(x+ ξ1 + ξ2).

Since ξ1 + ξ2 ≥ 0, we have found a positive vector admissable to

inf
ξ≥0

x+ξ∈Ω

u(x+ ξ).

Furthermore, u(x+ ξ1 + ξ2) ≤ u(x+ ξ1). Hence we conclude that for a

fixed x ∈ {u < Mu}, and for some x+ ξ̄ in {u < Mu},

inf
ξ≥0

x+ξ∈Ω

u(x+ ξ) = u(x+ ξ̄).

Moreover from Claim 4 we know that x + ξ̄ is a uniform positive dis-

tance away from the contact set {u = Mu}. Hence there exists a uniform
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neighborhood N0 of points around x+ ξ̄ where {u < Mu}. In a smaller neigh-

borhood N1, u ∈ C1,1(N1). In particular for x + ξ ∈ N1, we can bound again

the second incremental quotients,

u(x+ h+ ξ) + u(x− h+ ξ)− 2u(x+ ξ) ≤ c|h|2.

Using once more the semiconcavity estimate on ϕ(x) and for some x+ ξ̄

in N1 we find,

δ2Mu(x) ≤ ω(h) + u(x+ ξ̄ + h) + u(x+ ξ̄ − h)− 2u(x+ ξ̄)

≤ ω(h) + c|h|2

≤ Cω(h).

Thus, in a neighborhood of a non-contact point, Mu(x) is semi-concave

with semi-concavity modulus ω(h).

Remark 1. We point out that the existence and uniqueness of a continuous

viscosity solution follows from taking a sequence of solutions to a regularized

obstacle problem and proving convergence in C(Ω). We refer the reader to [48]

for remarks in this direction as well as showing equivalence between various

notions of solutions to the obstacle problem.

3.4 Optimal C1,1 Estimates for the Solution

In the previous section we proved that the unique bounded solution to

the classical stochastic impulse control problem is continuous and that our im-

plicit constraint obstacle is locally semi-concave. We now consider the sharp
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C1,1 estimate for the solution to the classical stochastic impulse control prob-

lem. We restrict to the case L = ∆ and set f = 0. All of the arguments can

be suitably modified for general L and nonzero f . We consider,
∆u(x) ≥ 0 ∀x ∈ Ω,

u(x) ≤ ϕu(x) ∀x ∈ Ω,

u = 0 ∀x ∈ ∂Ω.

(3.17)

Here we have set,

ϕu(x) = ϕ+ inf
ξ≥0

x+ξ∈Ω̄

(u(x+ ξ)),

where ϕ has a linear modulus of semiconcavity. We point out again that the

sharp C1,1
loc estimate in the classical stochastic impulse control problem has

been previously obtained (see [13], [14]). Our intent is to provide an alternate

proof that is generalizable to the fully nonlinear problem considered in the

next chapter.

Recall that a function v is semiconcave with semiconcavity modulus

ω(r) if a vector p ∈ Rn belongs to D+v(x) if and only if v(y)− v(x)− 〈p, y −

x〉 ≤ ω(|x − y|). Fix x0 ∈ {u = ϕu}. Define the linear part of the obstacle,

Lx0(x) = ϕu(x0) + 〈p, x− x0〉. We consider

w(x) = u(x)− Lx0(x).

We observe that in Br(x), w(x) has a modulus of semiconcavity ω(r) =

Cr2, i.e. w(x) ≤ Cr2. We now state our main lemma.

41



Lemma 5. There exists universal constants K,C > 0, such that ∀x ∈ Br/4(x0),

−K ≤ ∆w ≤ C. (3.18)

Before proving this lemma we make a few observations. Fix Φ ∈

C∞0 (B r
2
(x0)). We recall the following fact from the theory of distributions: If u

is a negative distribution in X with u(Φ) ≤ 0 for all non-negative Φ ∈ C∞0 (X),

then u is a negative measure. In particular we have,

0 ≥
ˆ
B r

2

Φ dµ =

ˆ
B r

2

∆u Φ. (3.19)

We consider ∀ρ < r
2
,

µ(Bρ(x0))

|Bρ(x0)|
=

1

α(n)ρn

ˆ
Bρ

dµ =
1

α(n)ρn

ˆ
Bρ

∆u. (3.20)

A straightforward application of the Gauss-Green Formula gives to us

the following identity,

1

α(n)ρn

ˆ
Bρ

∆w =
n

ρ

d

dρ
Ψ(ρ). (3.21)

Where Ψ(ρ) = 1
nα(n)ρn−1

´
∂Bρ

w.

Claim 5. Let w = u − Lx0 be defined as before. Then for some universal

constant K(n) > 0,

n

ρ

d

dρ
Ψ(ρ) ≥ −K.

Proof. We expand the derivative and compute.

n

ρ

d

dρ
Ψ(ρ) =

n

ρ

1− n
nα(n)ρn

ˆ
∂Bρ(x0)

w(y)dS(y) +
n

nα(n)ρn
d

dρ

ˆ
∂Bρ(x0)

w(y)dS(y)
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=
n

ρ

n− 1

nα(n)ρn

ˆ
∂Bρ(x0)

−w(y)dS(y) +
1

α(n)ρn
d

dρ
ρn−1

ˆ
∂B1(0)

w(x0 + ρz)dS(z)

=
n

ρ

n− 1

nα(n)ρn

ˆ
∂Bρ(x0)

−w(y)dS(y) +
ρn−2(n− 1)

α(n)ρn
ρn−1

ρn−1

ˆ
∂B1(0)

w(x0 + ρz)dS(z)

+
ρn−1

α(n)ρn
d

dρ

ˆ
∂B1(0)

w(x0 + ρz)dS(z)

=
n

ρ

n− 1

nα(n)ρn

ˆ
∂Bρ(x0)

−w(y)dS(y) +
(n− 1)

α(n)ρn+1

ˆ
∂Bρ(x0)

w(y)dS(y)

+
ρn−1

α(n)ρn
d

dρ

ˆ
∂B1(0)

w(x0 + ρz)dS(z)

By the modulus of semi-concavity on the ball we have,

n

ρ

n− 1

nα(n)ρn

ˆ
∂Bρ(x0)

−w(y)dS(y) ≥ n(n− 1)

α(n)nρn+1
|∂Bρ(x0)| (−Cρ2) = −C(n2−n).

By the mean value theorem for subharmonic functions we have,

(n− 1)

α(n)ρn+1

ˆ
∂Bρ(x0)

w(y)dS(y) ≥ (n− 1)

α(n)ρn+1
w(x0) = 0.

By the nondecreasing property for the average integral we have:

ρn−1

α(n)ρn
d

dρ

ˆ
∂B1(0)

w(x0 + ρz)dS(z) ≥ 0.

Hence for K = C(n2 − n) we obtain the desired estimate.

Proof. (Lemma 5) From the claim we obtain the estimate,

1

α(n)ρn

ˆ
Bρ

∆w ≥ −K.
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Moreover from (3.19) and the semiconcavity estimate we obtain,

C ≥ µ(Bρ(x0))

|Bρ(x0)|
≥ −K.

Letting ρ→ 0 we find ∀x ∈ B r
4
(x0),

C ≥ ∆u(x) ≥ −K.

We now state and prove the sharp estimate for the solution.

Theorem 12. Let u be a solution to the classical stochastic impulse control

problem. Then,

‖u‖C1,1(Br/4) ≤ C (3.22)

Proof. We recall some basic notions and definitions for convenience. For fur-

ther details refer to [18]. We say that P is a parabaloid of opening M whenever,

P (x) = l0 + l(x)± M

2
|x|2.

We define,

Θ(u,A)(x0),

to be the infimum of all positive constants M for which there is a conex

parabaloid of opening M that touches u from above at x0 in A. Similarly one

can define the infimum of all positive constants M for which there is a convex

parabaloid of opening −M that touches u from below at x0 in A,

Θ(u,A)(x0).
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We further define,

Θ(u,A)(x0) = sup{Θ(u,A)(x0),Θ(u,A)(x0)} ≤ ∞.

As before we fix x0 ∈ {u = ϕu}. We consider the second incremental

quotients of u and Mu,

∆2
hu(x0) =

u(x0 + h) + u(x0 − h)− 2u(x0)

|h|2
.

∆2
hϕu(x0) =

ϕu(x0 + h) + ϕu(x0 − h)− 2ϕu(x0)

|h|2
.

We make the following observations,

1. ∆2
hu(x0) ≤ ∆2

hϕu(x0).

2. 0 ≤ Θ(u,Bρ)(x0) = Θ(ϕu, Bρ)(x0) ≤ C.

3. 0 ≤ Θ(u,Bρ)(x0) = Θ(ϕu, Bρ)(x0) ≤ K.

Putting the estimates together we obtain,

−K ≤ −Θ(u,Bρ)(x0) ≤ ∆2
hu(x0) ≤ ∆2

hϕu(x0) ≤ Θ(Mu,Bρ)(x0) ≤ C.

In particular ∀x ∈ Bρ,

−K ≤ −Θ(u,Bρ)(x) ≤ ∆2
hu(x) ≤ Θ(u,Bρ)(x) ≤ C.

This follows from choosing ∀x ∈ Bρ, the lower parabaloid and upper

parabaloid to be respectively,

P1(y) = u(x) + 〈p1, y − x〉 −
K

2
|y|2.
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P2(y) = u(x) + 〈p2, y − x〉+
C

2
|y|2.

We obtain,

Θ(u, ε) = Θ(u,Bρ ∩Bε(x))(x) ∈ L∞(Bρ).

By Proposition 1.1 in [18] it follows,

‖D2u‖L∞(Bρ) ≤ C.

3.5 Regularity Estimates for the Free Boundary

In this section we prove a structural theorem for the free boundary

Γ = ∂{u < Mu}.

Theorem 13. Consider the classical stochastic impulse control problem
∆u(x) ≥ f(x) ∀x ∈ Ω,

u(x) ≤ Mu(x) = 1 + inf ξ≥0

x+ξ∈Ω
u(x+ ξ) ∀x ∈ Ω,

u = 0 ∀x ∈ ∂Ω.

(3.23)

Moreover assume that f is analytic and f(x) ≤ f(x+ ξ) ∀ξ ≥ 0. Then

it follows that, ∂{u < Mu} = Γr(u) ∪ Γs(u) ∪ Γd(u) where,

1. ∀x0 ∈ Γr(u) there exists some appropriate system of coordinates in which

the coincidence set {u = Mu} is a subgraph {xn ≤ g(x1, . . . , xn−1)} in a

neighborhood of x0 and the function g is analytic.

2. ∀x0 ∈ Γs(u), x0 is either isolated or locally contained in a C1 submanifold.

3. Γd(u) ⊂ Σ(u) where Σ(u) is a finite collection of C∞ submanifolds.
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Proof. Recall Σx = {1 + u(x+ ξ) = Mu(x)} and Σ≥x = {x+ ξ : ξ ≥ 0}. We

define the following sets

1. Σ0
≥x = {ξ ∈ Σ≥x | ξi > 0 ∀i = 1, . . . , n}.

2. ∂iΣ≥x = {ξ ∈ Σ≥x | ξi > 0 and ξk = 0 ∀k = 1, . . . , i− 1, i+ 1, . . . , n}.

3. Σ0
x = {ξ ∈ Σx | ξ ∈ Σ0

≥x}.

4. ∂iΣx = {ξ ∈ Σx | ξ ∈ ∂iΣ≥x}.

We note that

Σ≥x = Σ0
≥x ∪ (

n⋃
i

∂iΣ≥x),

Σx = Σ0
x ∪ (

n⋃
i

∂iΣx).

Fix x0 ∈ ∂{u < Mu} and let ξ0 be the positive vector such that,

inf
ξ≥0

x0+ξ∈Ω

u(x0 + ξ) = 1 + u(x0 + ξ0).

Case 1: ξ0 ∈ Σ0
x0
. Then it follows from Claim 4, that ∀x ∈ B δ

2
(x0), ξ0 ∈ Σ0

x.

In particular for a fixed constant C, Mu = C in B δ
2
(x0). Without loss of

generality we take C = 0. Furthermore it follows that at a contact point x0 we

have the following chain of inequalities,

f(x0) ≤ ∆u(x0) ≤ ∆Mu(x0) ≤ f(x0 + ξ0).

In particular,

f(x0) ≤ ∆u(x0) ≤ 0.
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We make the following claim,

Claim 6. f(x0) < 0.

Proof. Suppose by contradiction that f(x0) = 0. By analyticity of f , it follows

that Ω = {f > 0} satisfies an interior sphere condition. Hence, ∀z ∈ ∂Ω there

exists, y ∈ Ω and open ball Br(y) such that Br(y) ∩ Ω = {z}. In particular

consider z = x0 and y = y0. Observe that ∀x ∈ Br(y0) \ {x0}, it follows that

w = u−Mu < 0 and ∆w = ∆u = f > 0. Hence by the Hopf Boundary point

lemma,

∂w

∂ν
(x0) > 0.

But w ∈ C1,1(x0). A contradiction.

From the claim it follows that in a small neighborhood Bη(x0), we can

study the following problem,
∆w(x) = f(x) < 0 ∀x ∈ {w < 0} ∩Bη(x0),

w(x) ≤ 0 ∀x ∈ Bη(x0),

w ∈ C1,1 ∀x ∈ Bη(x0)

(3.24)

Hence w is a normalized solution and the conclusion follows for,

Finally to conclude we define,

Γr(u) = {x ∈ Γ | Σ0
x = Σx and x is a Regular Point}.

Γs(u) = {x ∈ Γ | Σ0
x = Σx and x is a Singular Point}.
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Case 2: ξ0 ∈ ∂iΣx0 . We consider the set

Σ(u) =
n⋃
i

{uxi = 0} × Rn−1.

By analyticity of f it follows that {uxi = 0} is a finite set ∀i = 1, . . . , n. Hence

Σ(u) is a finite collection of hyperplanes {lj}kj=1 ⊂ Rn. We define

Γd(u) = {x ∈ Γ(u) | ∃ξ̄ ∈ ∂iΣx}.

Finally to conclude we observe,

Γd(u) ⊂ Σ(u).
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Chapter 4

The Fully Nonlinear Implicit Constraint

Obstacle Problem

In this chapter we prove estimates for fully nonlinear obstacle problems

admitting obstacles with a general modulus of semiconvexity. We recall our

main results in this direction.

Theorem 14. We consider F (D2u), a fully nonlinear uniformly elliptic oper-

ator. We assume that the operator is either convex or concave in the hessian

variable. We define ϕu(x) to be a semiconvex function with a general modulus

of semiconvexity ω(r). We consider the following boundary value problem.


F (D2u) ≤ 0 ∀x ∈ Ω.

u(x) ≥ ϕu(x) ∀x ∈ Ω.

u = 0 ∀x ∈ ∂Ω.

(4.1)

Then the solution u has a modulus of continuity ω(r) up to C1,1(Ω).

As an application we apply our result to obtain a sharp estimate for the

solution to the following fully nonlinear stochastic impulse control problem:

Theorem 15. Let Ω ⊂ Rn be a bounded domain with a C2,α boundary ∂Ω.
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Define

Mu(x) = ϕ(x) + inf
ξ≥0

x+ξ∈Ω̄

(u(x+ ξ)). (4.2)

Here ϕ(x) is ω(r) semi-concave, strictly positive, bounded, and decreas-

ing in the positive cone ξ ≥ 0. Consider the solution to the following fully

nonlinear stochastic impulse control problem,
F (D2u) ≥ f ∀x ∈ Ω.

u(x) ≤ Mu(x) ∀x ∈ Ω.

u = 0 ∀x ∈ ∂Ω.

(4.3)

Then, the solution u has modulus of continuity ω(r) up to C1,1(Ω).

In the rest of this chapter, we proceed in stages to prove the stated

theorems. We remark that Theorem 15 follows directly from Theorem 14 and

Lemma 4 in the previous section.

4.1 Lipschitz Estimates for the Solution

To obtain the optimal estimate we first prove initial regularity estimates

which we hope to extend. We fix f = 0. All the proofs may be modified for

a nonzero sufficiently regular f . We begin by first proving that solutions are

indeed continuous.

Lemma 6. Let u be a solution to (4) with semiconvex obstacle ϕu. Then

u ∈ C(Ω).

The lemma follows from a result due to Evans.
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Lemma 7. If u is continuous in {u = ϕu}, then u is continuous in Ω.

Proof. The possibility of a discontinuity is limited to a point on the free bound-

ary, ∂{u > ϕu}. Consider x0 ∈ {u = ϕu} and without loss of generality assume

u(x0) = 0. Suppose by contradiction, that there exists a sequence of points

{xk} with the following properties:

1. {xk} → x0.

2. ∀k, xk ∈ {u > ϕu}.

3. µ = limxk→x0 u(xk) > u(x0) = 0.

By lower semicontinuity of u, we know that ∀δ > 0 there exists a neighborhood

of x0 such that u ≥ −δ for δ << µ. We consider

rk = dist[xk, {u = ϕu}].

For a large enough k we can ensure that:

1. u(x) + δ ≥ 0 in Brk(xk).

2. u(xk) + δ ≥ µ
2
.

Moreover we know that u(x) + δ satisfies the equation in Brk(xk). By the

Harnack Inequality we obtain,

µ

2
≤ u(xk) + δ ≤ C inf

B rk
2 (xk)

(u+ δ).

This implies for some C0 > 0 universal,

inf
B rk

2 (xk)

u ≥ C0µ.

52



Since u is also superharmonic, we know from the weak Harnack In-

equality in B4rk(yk) that,

u(yk) ≥ c

( 
B2rk

(yk)

up

) 1
p

=
c

|B2rk |1/p

ˆ
B2rk

(yk)\B rk
2

(xk)

up +

ˆ
B rk

2
(xk)

up

 1
p

≥ c

|B2rk |1/p
(
−(δ)p|B2rk |+ (C0µ)p|B rk

2
|
) 1
p

≥ C1µ for C1 > 0.

On the other hand u(yk) = ϕu(yk) and yk → x0. This implies in

particular that,

1. ϕu(yk) ≥ C1µ.

2. ϕ(x0) = u(x0) = 0.

This is our desired contradiction.

Remark 2. We observe that the conditions on the obstacle may be relaxed in

the proof of this lemma. In fact continuity of the obstacle is sufficient.

A generic semiconvex function with a general modulus of semiconvexity

is known to be Lipschitz in the interior (See Appendix B). We extend the

previous result to show that solutions to a fully nonlinear obstacle problem

admitting obstacles with a Lipschitz modulus of continuity grow from the free

boundary with a comparable rate.

Lemma 8. Let u be a solution to (4.1) with semiconvex obstacle ϕu. Fix
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0 ∈ ∂{u > ϕu}. Then

sup
Br(0)

u(x) ≤ Cr.

Proof. Let γ(r) denote the Lipschitz modulus of continuity for the obstacle ϕu

in Br(0). The obstacle condition u ≥ ϕu implies in Br(0) that

u ≥ ϕu(0)− γ(r).

Define

v(x) = u− (ϕu(0)− γ(r)).

We note that F (D2v) = F (D2u) ≤ 0 and F (D2v) = 0 inside {u > ϕu}.

We consider x ∈ Br/4(0) ∩ {u > ϕu}. Moreover we let y be the closest free

boundary point to x. Let ρ be the distance of x to its closest free boundary

point y. From the Weak Harnack Inequality it follows,

v(y) ≥ C

( 
B2ρ(y)

vp

)1/p

.

By the positivity of v and Harnack Inequality in Bρ(x), it follows that

the right hand side,

≥ C

(
Bρ(x)

B2ρ(y)

 
Bρ(x)

vp

)1/p

≥ Cv(x).

Recall that |ϕu(0)− ϕu(y)| ≤ γ(r). Hence,

0 ≤ v(y) = ϕu(y)− ϕu(0) + γ(r) ≤ 2γ(r).
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Changing back to our solution u, we find,

0 ≤ u(x)− (u(0)− γ(r)) ≤ Cv(y) ≤ Cγ(r).

In particular,

u(x)− u(0) ≤ Cγ(r).

4.2 Optimal Cω(r) Estimates for the Solution

In the previous section we assumed that the obstacle had a uniform

modulus of continutity. A priori for semi-concave functions you only know that

the uniform modulus of continuity is Lipschitz. Our goal as in the classical

case will be to study the interplay between the equation and the obstacle to

improve regularity estimates for the obstacle on the contact set. We start

this section by stating and proving a lemma in the particular case that our

operator is the Laplacian. The motivating calculation will help us proceed to

prove the desired estimate in the more general case. The content of the lemma

says that for any given point x1 ∈ {u(x) > ϕu(x)}, ∃x0 ∈ {u(x) = ϕu(x)} such

that the solution grows at most by ω(2|x1 − x0|) where ω(|x1 − x0|) denotes

the modulus of semiconvexity for the obstacle on the ball B|x1−x0|(x0). Since a

lower estimate is available via the obstacle, what we aim to show is that around

a fixed contact point the modulus of continuity of the solution is controlled by

the modulus of semiconvexity of the obstacle.
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Lemma 9. Let ϕu(x) be a semiconvex function with general modulus of semi-

convexity ω(r). Consider the following obstacle problem:
∆u ≤ 0 ∀x ∈ Ω.

u(x) ≥ ϕu(x) ∀x ∈ Ω.

u = 0 ∀x ∈ ∂Ω

(4.4)

Fix x ∈ {u(x) > ϕu(x)} and define Lx0(x) = ϕu(x0) + 〈p, x − x0〉, the

linear part of the obstacle at the point x0. Then ∃x0 ∈ {u(x) = ϕu(x)} and

C(n) > 0 such that u(x)− Lx0(x) ≤ C(n)ω(2|x− x0|).

Proof. We fix x1 ∈ {u(x) > ϕu(x)}. Let x0 denote the closest point to x1

in {u = ϕu}. We denote this distance by ρ = |x1 − x0|. Define w(x) =

u(x)− Lx0(x). Using the mean value theorem for superharmonic functions in

B2ρ(x0) we have,

0 = w(x0) ≥ 1

α(n)2nρn

ˆ
B2ρ(x0)

w(y) dy

= K(n)

ˆ
B2ρ(x0)rBρ(x1)

w(y) dy +K(n)

ˆ
Bρ(x1)

w(y) dy.

Semiconvexity of w(x) in B2ρ(x0) and an application of the mean value

theorem for harmonic functions in Bρ(x1) implies,

≥ K(n)

ˆ
B2ρ(x0)rBρ(x1)

−ω(2|y − x0|) + C1(n)w(x1)

≥ −C̃(n)ω(2ρ) + C1(n)w(x1).

In particular we obtain the desired bound,

w(x1) ≤ C(n)ω(2ρ).
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We now look to generalize the previous argument in the fully nonlinear

setting. In the preceding proof the lower bound on the obstacle was transferred

to the solution at the contact point. Moreover we were able to renormalize the

solution by subtracting off a linear part. We will also need a generalization of

the mean value theorem that was used to connect pointwise information with

information about the measure ∆u.

We consider again (4.1). For clarity we set ω(r) = C̄r2 for some positive

constant C̄ > 0. The arguments presented below can be trivially modified

for the general semiconvex modulus by an appropriate rescaling. We make a

remark in this direction towards the end of this section.

Lemma 10. Let x1 ∈ {u > ϕu}. Then ∃x0 ∈ {u = ϕu} such that for

w(x) = u(x)− Lx0(x), where Lx0(x) = ϕu(x0) + 〈p, x− x0〉 denotes the linear

part of the obstacle at the point x0, and a universal constant K(n) > 0,

w(x1) ≤ K(n)|x1 − x0|2.

Proof. Fix x1 ∈ {u > ϕu}. Let x0 be the closest point to x1 in {u = ϕu}. We

denote this distance by ρ = |x1− x0|. By the modulus of semiconvexity of the

obstacle we know that w(x) ≥ −16C̄ρ2 on B4ρ(x0). The idea of the proof is

to zoom out to scale 1 and prove that the solution is bounded by a universal

constant and then rescale back to obtain the desired bound. Consider the

transformation y = x−x0

ρ
and the scaled solution,

v(y) =
w(ρy + x0)

16C̄ρ2
+ 1. (4.5)
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We note that v(y) is a non-negative supersolution on B4(0) with

inf
B4(0)

v(y) ≤ 1.

Moreover v(y) is a solution in B1(y1), since x0 is the closest point in

the contact set to x1. By the interior Harnack Inequality,

v(y1) ≤ sup
B 1

2
(y1)

v(y) ≤ C inf
B 1

2
(y1)

v(y).

We also know from the weak Lε estimate for supersolutions that for

universal constants d, ε,

|{v ≥ t} ∩B2(0)| ≤ dt−ε ∀t > 0.

We observe that B 1
2
(y1) ⊆ B2(0). Hence we can choose t = t0 such that

t0 =

(
δd

|B 1
2

(y1)|

) 1
ε

,

for δ > 0. It follows that,

|{v ≤ t} ∩B 1
2
(y1)| > δ|B 1

2
(y1)| > 0.

Hence there exists a universal constant C such that,

v(y1) ≤ C.

This implies from (4.5),

w(ρy1 + x0)

4C̄ρ2
≤ C.
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Rescaling back we find,

w(x1) ≤ K|x1 − x0|2.

We now prove a lemma that controls the oscillation of the solution

between two arbitrary points on the contact set {u = ϕu}. As a corollary

which we state after the proof, we improve the modulus of continuity for the

obstacle ϕu on the contact set {u = ϕu}.

Lemma 11. Let x1 ∈ {u = ϕu} and x0 ∈ {u = ϕu}. Then for w(x) =

u(x)− Lx0(x), where Lx0(x) = ϕu(x0) + 〈p, x− x0〉 denotes the linear part of

the obstacle at the point x0, and K(n) > 0 a universal constant,

w(x1) ≤ K(n)|x1 − x0|2.

Proof. Assume by contradiction that for an arbitrary large constant K > 0

w > K|x1 − x0|2. (4.6)

As before we denote the distance between the points by ρ = |x1 − x0|.

We begin with a claim.

Claim 7. ∃ Half Ball HBρ(x1) such that ∀x ∈ HBρ(x1), w(x) ≥ K
2
ρ2.

Proof. We define ϕw = ϕu − Lx0 , where as before Lx0 = ϕu(x0) + 〈p, x − x0〉

for p ∈ D+ϕu(x0) the superdifferential of ϕu at the point x0. We make the
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following observations:

1. w ≥ ϕw ∀x ∈ B2ρ(x0).

2. ϕw(x1) = ϕu(x1)− ϕu(x0) + 〈p, x− x1〉 − 〈p, x− x0〉 ∀x ∈ B2ρ(x0).

In particular,

w(x) ≥ ϕw(x1) + ϕu(x)− ϕu(x1)− 〈p, x− x1〉.

Now consider d ∈ D+ϕu(x1) and observe that w(x1) = ϕw(x1). This

produces the following inequality,

w(x) ≥ w(x1) + ϕu(x)− ϕu(x1)− 〈d, x− x1〉 − 〈p− d, x− x1〉.

By semiconvexity on Bρ(x1), (4.6), and fixing x ∈ HBρ(x1) = {x ∈

Bρ(x1) | 〈p− d, x− x1〉 ≤ 0}, we have,

w(x) ≥ Kρ2 − C̄ρ2.

We can choose K large enough so that we obtain,

w(x) ≥ K

2
ρ2.

This is our desired half ball.

We now consider again the dilated solution v(y) from the previous

lemma (4.5). By the weak Harnack Inequality for supersolutions, ∃C > 0

universal and ε > 0 such that,

ˆ
B4(0)

|v(x)|ε/2 ≤
(
C inf

B2(0)
v(x)

) 2
ε

≤ (Cv(0))
2
ε = C.
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From our previous claim we obtain

0 < |{v(y) >
K

32C̄
} ∩B1(y1)|.

Here C̄ is our semiconvexity constant from before. We now have the

following chain of inequalities,

0 < |{v(y) >
K

32C̄
} ∩B1(y1)| ( K

32C̄
)ε/2

=

ˆ
{v(x)> K

32C̄
}∩B1(y1)

(
K

32C̄
)ε/2

≤
ˆ
{v(x)> K

32C̄
}∩B1(y1)

|v(x)|ε/2

≤
ˆ
B4(0)

|v(x)|ε/2 ≤
(
C inf

B2(0)
v(x)

) 2
ε

≤ (Cv(0))
2
ε = C.

For K large enough we obtain a contradiction. Hence for a universal

constant K(n) > 0,

w(x1) ≤ K(n)|x1 − x0|2.

Remark 3. Assume our obstacle is semiconvex on Br(x) with modulus of

semiconvexity ω(r). We can translate our solution to the origin and scale by

the modulus of semiconvexity of the obstacle. In particular, set ρ to be the

distance between our fixed points.

v(y) =
w(ρy + x0)

ω(4ρ)
+ 1. (4.7)

One can check that we get similar estimates in terms of the modulus of

semiconvexity ω(ρ).
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Remark 4. A corollary of the previous lemma is that on the contact set {u =

ϕu} the obstacle ϕu has a modulus of continuity ω(r). In particular,

‖ϕu‖Cω(r)
loc ({u=ϕu})

≤ C. (4.8)

We can now state and prove a sharp estimate for our solutions.

Theorem 16. Consider the boundary value problem (4.1) with semiconvex

obstacle ϕu admitting a modulus of semiconvexity, ω(r). Then the solution u

has modulus of continuity ω(r) up to C1,1(Ω). In particuluar,

‖u‖Cω(r)(Ω) ≤ C. (4.9)

Proof. To prove this theorem we consider three distinct cases.

Case 1: x1 ∈ {u > ϕu}, x0 ∈ {u = ϕu}.

Choose the closest point in the contact set to x1 and call it x̄1. Then we apply

Lemma 10 to obtain the correct oscillation estimate up to the free bound-

ary. Then an application of Lemma 11 gives us the correct oscillation estimate

between two contact points. Finally we use the triangle inequality to conclude.

Case 2: x1, x0 ∈ {u = ϕu}.

This is the content of Lemma 11.

Case 3: x1, x0 ∈ {u > ϕu}.

We distinguish two different subcases.

Case 3a: max{d(x1, {u = ϕu}), d(x0, {u = ϕu})} ≥ 4|x1 − x2|.
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Suppose max{d(x1, {u = ϕu}), d(x2, {u = ϕu})} = ρ. Without loss of gener-

ality we assume that the maximum distance is realized at the point x1. We

observe that B|x1−x0|(x1) ⊆ B ρ
2
(x1), and we consider w = u − Lx1 , where Lx1

denotes the linear part of the solution at x1. By an application of the Harnack

Inequality we obtain,

sup
Bρ(x1)

w ≤ C inf
Bρ/2(x1)

w ≤ Cw(x2) ≤ Cω(ρ).

Moreover we also appeal to the interior estimates for solutions to our

fully nonlinear convex or concave operator, F (D2u) = 0,

‖w − w(x1)‖Cω(ρ)(B ρ
2

(x1)) ≤
K

ω(ρ)
‖w − w(x1)‖L∞(Bρ(x1)).

Hence,

‖w − w(x1)‖Cω(ρ)(B ρ
2

(x1)) ≤ C.

Case3b: max{d(x1, {u = ϕu}), d(x2, {u = ϕu})} < 4|x1 − x2|

In this case one considers ρ1 = d(x1, {u = ϕu}) and ρ0 = d(x0, {u = ϕu}).

Let x̄1 be the closest contact point to x1 and x̄0 the closest contact point to

x0. We can apply Lemma 10 to obtain the desired oscillation estimate for

each point up to the free boundary. We then apply Lemma 11 to control the

oscillation between two contact points. Finally we apply the triangle inequality

to conclude.

Finally as in the classical case, assuming analytic data and f(x) ≤

f(x+ ξ) ∀ξ ≥ 0, as well as concavity of F (·) in the hessian variable, it follows
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from an application of a nonlinear version of the Hopf Boundary Point Lemma

[7] and the results of [44] that we obtain the following structural theorem for

the free boundary,

Theorem 17. Given the Fully Nonlinear Stochastic Impulse Control Problem
F (D2u) ≥ f ∀x ∈ Ω.

u(x) ≤ Mu(x) = 1 + inf ξ≥0

x+ξ∈Ω
u(x+ ξ). ∀x ∈ Ω.

u = 0 ∀x ∈ ∂Ω.

(4.10)

It follows that, ∂{u < Mu} = Γ1(u) ∪ Γ2(u) where,

1. ∀x0 ∈ Γ1(u) satisfying a uniform thickness condition on the coincidence set

{u = Mu}, there exists some appropriate system of coordinates in which the

coincidence set is a subgraph {xn ≤ g(x1, . . . , xn−1)} in a neighborhood of x0

and the function g is analytic.

2. Γ2(u) ⊂ Σ(u) where Σ(u) is a finite collection of C∞ submanifolds.

Remark 5. We point out that the above theorem holds for the more general

implicit constraint obstacle

Mu = h(x) + inf
ξ≥0

x+ξ∈Ω

u(x+ ξ)

where the regularity of Γ1(u) corresponds to the regularity of h(x).

4.3 Applications to a Penalized Problem

In this section we study a penalized fully nonlinear obstacle problem.

The goal is to obtain optimal uniform estimates in the penalizing paramter ε.
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For this section we fix the modulus of semiconvexity to be linear, i.e. ω(r) =

cr2. We point out that the followng can be suitably modified for a general

modulus of semiconvexity. The idea to obtain the optimal estimate is to use

the interplay between semiconvexity of the obstacle and the superharmonicity

of the equation as before.

Lemma 12. Consider the fully nonlinear penalized obstacle problem with ob-

stacle ϕu, admitting a modulus of semiconvexity, ω(r) = Cr2 and a suitably

defined class of penalizations βε,
F (D2u) = βε(u− ϕu) Ω,

u = 0 ∂Ω,

ϕu < 0 ∂Ω.

(4.11)

Then the solution u has a modulus of continuity ω(r) up to C1,α(Ω) ∀α < 1

independent of the penalizing parameter ε.

Proof. Let ρ(x) be a function in C∞(Rn) with support in the unit ball, such

that ρ ≥ 0 and
´
Rn ρ = 1. Define for any δ > 0,

ρδ(x) = δ−nρ(
x

δ
).

Consider the mollifier

Jδ[ϕu](x) =

ˆ
Ω

ρδ(x− y)ϕu(y) dy.

Recall that ϕu semi-convex with a linear modulus implies that for any

ξ ∈ C∞0 (Ω0), ξ ≥ 0, where Ω0 ⊂ Ω is an open set, it holds that for any
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directional derivative, ∂
∂η

and some constant C > 0 independent of δ,

ˆ
Ω

ϕu
∂2ξ

∂η2
≥ −C.

Taking ξ = ρδ, it follows that pointwise in Ω,

∂2Jδ[ϕu]

∂η2
≥ −C.

We consider, ϕδu = Jδ[ϕu + C
2
|x|2]− C

2
|x|2. It follows that

|Dϕδu| ≤ C.

∂2ϕδu
∂η2

≥ −C.

ϕδu → ϕu uniformly in Ω as δ → 0.

Define βε(t) ∈ C∞ for 0 < ε < 1 and C a constant independent of ε,

such that,

1. β′ε(t) > 0.

2. βε(t)→ 0 if t > 0, ε→ 0.

3. βε(t)→ −∞ if t < 0, ε→ 0.

4. βε(t) ≤ C

5. β′′ε (t) ≤ 0.

Consider the penalized problem,{
F (D2u)− βε(u− ϕεu) = 0 Ω,

u = 0 ∂Ω.
(4.12)

Define for N > 0,

βε,N(t) = max{min{βε, N},−N}.
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Consider the problem,{
F (D2u)− βε,N(u− ϕεu) = 0 Ω,

u = 0 ∂Ω.
(4.13)

It follows from W 2,p theory for fully nonlinear equations that for each

v ∈ Lp(Ω)∩C0(Ω̄) (1 < p <∞), there exists a unique solution w ∈ W 2,p(Ω)∩

C0(Ω̄) solving, {
F (D2w)− βε,N(v − ϕεu) = 0 Ω,

u = 0 ∂Ω,
(4.14)

and for C̄ independent of v,

‖w‖W 2,p ≤ C̄.

Define the solution map T such that Tv = w. Notice that T maps

BC̄(0) ⊂ Lp(Ω) into itself and is compact. Hence by Schauder’s fixed-point

theorem, it follows, that there exists u such that Tu = u. In particular,

we have found a solution to (4.12). Moreover βε,N(u − ϕεu) ∈ C0,α. Hence by

Evans-Krylov ‖u‖C2,α ≤ C(ε). We now estimate ζ = βε,N(u−ϕεu). By definition

we know that βε,N(u− ϕεu) ≤ C for a constant C independent of N, ε. Let x0

be the minimum point of ζ. Without loss of generality we assume,

µ = ζ(x0), µ ≤ 0, µ < βε(0).

It follows that x0 /∈ ∂Ω. If not, then,

µ = ζ(x0) = βε,N(−ϕεu) ≥ βε,N(0) ≥ βε(0).
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A contradiction. On the other hand if x0 ∈ Ω, then β′ε(t) ≥ 0 implies that,

min
Ω

(u− ϕεu) = u− ϕεu(x0) < 0.

Moreover it follows thatD2(u−ϕεu)(x0) ≥ 0. Hence F (D2(u−ϕεu)(x0)) ≥

0. By Ellipticity and the semiconvexity estimate it follows that,

βε,N(u− ϕεu)(x0) = F (D2uε,N −D2ϕεu +D2ϕεu)

≥ F (D2uε,N −D2ϕεu) + λ‖D2(ϕεu)
+‖ − Λ‖D2(ϕεu)

−‖

≥ −C.

In particular, |βε,N(u−ϕεu)| ≤ C for a constant C independent of ε and

N . Furthermore |F (D2u)| ≤ C. It follows from elliptic estimates,

‖u‖W 2,p ≤ C.

Hence for N large enough u is a solution for the penalized problem (4.10).

We now prove the optimal estimate as before

Theorem 18. Consider the solution to the fully nonlinear penalized obstacle

problem with obstacle ϕu, admitting a modulus of semiconvexity, ω(r) = Cr2

and a suitably defined class of penalizations βε. Moreover assume that F (D2u)

is convex in the Hessian variable. Then the solution u is C1,1 independent of

ε.

Proof. Consider the penalization problem
F (D2u) = βε(u− ϕu) Ω,

u = 0 ∂Ω.

ϕu < 0 ∂Ω.

(4.15)
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We aim to bound inf uττ from below. The following computation continues to

hold for viscosity solutions by using incremental quotients and recalling that

second order incremental quotients are supersolutions of a convex equation.

We fix a directional derivative τ and differentiate the penalization identity to

obtain,

Fij,kl(D
2u)(Dijuτ )(Dkluτ ) + Fij(D

2u)(Dijuττ ) =

β′′ε (u− ϕu)(u− ϕu)2
τ + β′ε(u− ϕu)(u− ϕu)ττ .

By convexity of the operator and the structural conditions on the pe-

nalization family βε(t) it follows that

Fij(D
2u))(Dijuττ ) ≤ β′ε(u− ϕu)(u− ϕu)ττ .

Suppose the minimum point of uττ is in the interior of the domain then,

since β′(t) > 0, we find (u−ϕu)ττ ≥ 0. In particular, uττ ≥ −C. Suppose now

that the minimum point of uττ is realized on the boundary of the domain. We

differentiate the equation with respect to xτ for τ ∈ {1, . . . , n−1} and obtain,

Fij(D
2u)Dijuτ = β′ε(u− ϕu)(u− ϕu)τ .

Recall ϕu < 0 on ∂Ω. Hence for a fixed ε0 > 0 it follows that ϕu ≤ u + ε0 in

{x ∈ Ω̄ | d(x, ∂Ω) ≤ ε0
2
}. Morevover by the uniform continuity of uε → u on

Ω̄, there exists a small ε1, such that ϕu ≤ u + ε0
2

, |β′| < ε0, and |β′′| < ε0 in

{x ∈ Ω̄ | d(x, ∂Ω) ≤ ε0
2
} for 0 < ε < ε1. Hence it follows from the boundary

Hölder estimates for linear non-divergence form equations,

‖uτn‖L∞(∂B+(
ε0
4

)) ≤ C.
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Moreover by uniform ellipticity we can use the equation to solve for unn

in terms of β and ukl for k ∈ (1, . . . , n−1) and l ∈ (1, . . . , n). Hence we obtain

after straightening the boundary,

‖D2u‖L∞(∂Ω) ≤ C.

Hence it follows that the solution is semiconvex with a linear modulus.

Moreover F (D2u) ≤ 0. Hence an application of Lemma 11 proves that u has

a uniform C1,1 estimate.

Remark 6. We point out that the above arguments give us a straightforward

proof for C1,1 estimates when the operator is convex. The previous section was

based on C1,α estimates for Fully Nonlinear equations hence did not have a

restriction on the sign of the operator.

Remark 7. Previous computation and estimates can be generalized to Viscos-

ity Solutions of convex operators (see [18]).

Finally, as an application of the uniform estimates, we prove how the

C2,α estimate for the penalized problem decays in the penalizing parameter.

Corollary 1. Consider the fully nonlinear penalized obstacle problem with

obstacle ϕu, admitting a modulus of semi-convexity, ω(r) = Cr2 and a suitably

defined class of penalizations βε,
F (D2u) = βε(u− ϕu) Ω,

u = 0 ∂Ω.

ϕu < 0 ∂Ω.

(4.16)

70



Moreover assume that F (·) is convex in the hessian variable. Then for a

constant C independent of ε,

‖u‖C2,α ≤ Cε−α.

Proof. It is well known that the penalization problem converges to the obsta-

cle problem independent of the choice of penalizing family. Hence we fix a

penalizing family,

βε(t) =

{
t
ε2

t < 0.
0 t ≥ 0.

(4.17)

Also we fix ϕu = 0. We consider the scaled function,

vε(x) =
1

ε2
uε(εx).

We note that

F (D2vε) = F (D2(
1

ε2
uε(εx))) = F (D2uε(εx)) =

1

ε2
uε(εx) = vε(x).

Hence we obtain for a constant C independent of ε,

‖vε‖C2,α ≤ C.

It follows,

|D2uε(x)−D2uε(y)| = |ε2D2vε(
x

ε
)− ε2D2vε(

y

ε
)|

= |D2vε(
x

ε
)−D2vε(

y

ε
)|

≤ C|x
ε
− y

ε
|α

≤ Cε−α|x− y|α.
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Chapter 5

The Penalized Boundary Obstacle Problem

5.1 A Mathematical Model for Homogenization

We consider a homogenization problem modeling diffusion through a

semi-permeable membrane. In this model the transport of the molecules

through the membrane is possible only across some given channels and in

a fixed direction. More precisely:

Given a smooth function φ : Rn → Rn and a subset Tδ of Rn, consider the

solution uδ to the following obstacle-type problem
uδ(x) ≥ φ(x) ∀x ∈ Tδ.
(−∆)suδ ≥ 0 ∀x ∈ Rn.

(−∆)suδ = 0 ∀x ∈ Rn \ Tδ.
(−∆)suδ = 0 ∀x ∈ Tδ and uδ > φ(x).

Here (−∆)s denotes the fractional Laplace operator of order s ∈ (0, 1).

We think of the domain Rn as being perforated with holes and the obstacle,

φ, supported on the set Tδ. Here Tδ is a union of small sets Sδ(k) that are

periodically distributed. Here Sδ(k) remains periodically distributed but is

allowed to take random shapes and sizes. In this case we introduce a proba-

bility space (Ω,F,P), and assume ∀ω ∈ Ω, ∀δ > 0, there exists some subset
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Sδ(k, ω) ⊂ Bδ(δk) where Bδ(δk) denotes the ball of radius δ centered at δk.

We then define Tδ =
⋃
k∈Zn Sδ(k, ω).

Restricting the problem to an open subset D ⊂ Rn+1
+ , and assuming the ca-

pacity of Sδ(k, ω) = δnγ(k, ω) ≤ δnγ̄ where γ(k, ω) is a stationary ergodic

process and γ̄ > 0, it follows that the solution to the above system converges

W 1,2(D, ‖y‖adxdy)-weak and almost surely with resepct to ω ∈ Ω to the min-

imizer of the the penalized energy functional,

Eε(u) =
1

2

ˆ
D

|y|a|∇u|2 dxdy +
1

2ε

ˆ
Σ

(u− φ)2
− dx. (5.1)

Here Σ = D∩{y = 0}, 0 < 1
ε
< C(γ̄), and a = 1−2s. We refer to ([24])

for the relevant details. We also point out that it follows from Proposition 2.8

in [55] that there exists a constant C(ε) such that for s ∈ (0, 1) and s 6= 1/2,

‖u‖C1,2s ≤ C(ε).

In this chapter our interest is to study the critical case s = 1
2
. We are

interested in studying optimal estimates for the solution uε to (5.1) wth a = 0.

5.2 Optimal Nonuniform Estimates s = 1
2

Recently in [9], [50] it is shown that solutions to the penalized functional

are C1,α. Here we show that generically this is the best you can do. In

particular assuming φ = 0, D = B1(0), a = 0, B
′
r = Rn−1 ∩ Br, and given a

73



function ϕ ∈ C2,α
(
B1

)
, we consider the following problem,

∆u = 0 in B+
1 ,

uy = u− on B′r,

u = ϕ(x) on (∂B1)+,

(5.2)

where (∂B1)+ denote the set ∂B+
1 \ {y = 0}. Our result is the following,

Theorem 19. If ∇u(0) 6= 0, then u /∈ C1,1(0).

Proof. Assume by contradiction that u ∈ C1,1(0) and ∇u(0) 6= 0. By the

extension theorem [23], and the semigroup property of −(−∆u)s, it follows

that,

−(−∆)1/2u− = −(−∆)1/2 ◦ −(−∆)1/2u = ∆u ∈ L∞.

By [9], [50] we know that u ∈ C1,α(0) hence u has a unique differential,

namely P1 = ∇u(0). Without loss of generality it follows that P1 = ∇u(0)

is also a superdifferential for u− (if not consider u+). Trivally, P2 = 0 is

another subdifferential for u−. Moreover it follows by the C1,1 assumption

that (u−)ττ (0) ≤ C for any directional derivative τ . Consider for P1 6= P2,

ϕ(x) = [u(0) + min{P1 · x, P2 · x}+
C

2
|x|2]χB1(0).

It follows from a straightforward computation that,

−(−∆)1/2ϕ(0) = −∞.

Moreover u−(x) ≤ ϕ(x) with equality at x = 0. Hence by the comparison

principle,

−(−∆)1/2u−(0) ≤ −(−∆)1/2ϕ(0) = −∞.
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But we showed above that −(−∆)1/2u−(0) ≥ −C. A contradiction.

We point out that the above proof relied crucially on the fact that the

gradient of the function does not vanish at the origin. We now consider the

case where ∇u(0) = 0. We proceed to show that in this case u ∈ C1,1(0). We

do so by showing monotonicity of the Almgren Frequency Functional.

Lemma 13. Let uε be the solution to the penalized boundary obstacle problem

in B1 with the following properties:

1. ∆uε = 0 in B1 \ {uεy = 1
ε
uε}.

2. uε(0) = 0

3. uε(x, 0)uεν(x, 0) ≤ 0 ∀x ∈ B′1.

Define

Φ(r;uε) = r

´
Br
|∇uε|2´

∂Br
(uε)2

= r
V (r;uε)

H(r;uε)
. (5.3)

Then ∀r ∈ (0, 1),

(i) Φ(r;uε) < +∞

(ii) Φ(r;uε) is monotone increasing in r.

Moreover define

0 ≤ lim
r→0+

Φ(r;uε) = µ <∞.

Then, Φ(r) = µ identically in (0, 1) if and only if u has homogeneity µ and
´
y=0

uuν = 0.
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Proof. We start by computing,

logΦ(r;uε) = log r + log V (r;uε)− logH(r;uε).

Differentiating this identify gives us,

d(logΦ(r;uε))

dr
=

1

r
+
V ′(r;uε)

V (r;uε)
− H ′(r;uε)

H(r;uε)
. (5.4)

We are reduced to showing that

d(logΦ(r;uε))

dr
≥ 0.

We have that,

V ′(r;uε) =

ˆ
∂Br

|∇uε|2.

H ′(r;uε) =
n

r
H(r;uε) + 2

[ˆ
∂Br\{y=0}

uεuεν +

ˆ
{y=0}∩∂Br

uεuεν

]
.

Moreover we know that,

ˆ
Br

|∇uε|2 =
1

2

ˆ
Br

∆(uε)2 =

ˆ
{y=0}∩Br

uεuεν +

ˆ
∂Br\{y=0}

uεuεν .

We consider the following vector field,

h(x) = div[x|∇uε|2 − 2(x · ∇uε)∇uε].

Since ∆uε = 0 in Br \ {uεy = 1
ε
uε}, we find h(x) = (n− 1)|∇uε|2 in Br \ {uεy =

1
ε
uε}. This implies in particular by the divergence theorem,

(n− 1)

ˆ
Br

|∇uε|2 =

ˆ
Br

h
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=

ˆ
∂Br\{y=0}

[x|∇uε|2 − 2(x · ∇uε)∇uε] · ν

+

ˆ
{y=0}∩∂Br

[x|∇uε|2 − 2(x · ∇uε)∇uε] · ν.

We consider each term separately.

ˆ
∂Br\{y=0}

[x|∇uε|2 − 2(x · ∇uε)∇uε] · ν = r

ˆ
∂Br\{y=0}

|∇uε|2

−2r

ˆ
∂Br\{y=0}

(uεν)
2.

Moreover,

ˆ
{y=0}∩∂Br

[x|∇uε|2 − 2(x · ∇uε)∇uε] · ν =

ˆ
{uεy= 1

ε
uε}∩∂Br

[x|∇uε|2 − 2(x · ∇uε)∇uε] · ν

+

ˆ
{uεy=0}∩∂Br

[x|∇uε|2 − 2(x · ∇uε)∇uε] · ν.

Since we are on the hyperplane it follows that,

ˆ
{uεy=0}∩∂Br

[x|∇uε|2 − 2(x · ∇uε)∇uε] · ν = 0.

ˆ
{uεy= 1

ε
uε}∩∂Br

[x|∇uε|2 − 2(x · ∇uε)∇uε] · ν = −2

ˆ
{uεy= 1

ε
uε}∩∂Br

(x · ∇uε)uεν .

Hence we obtain,

(n− 1)

ˆ
Br

|∇uε|2 = r

ˆ
∂Br\{y=0}

|∇uε|2 − 2r

ˆ
∂Br\{y=0}

(uεν)
2

−2

ˆ
{uεy= 1

ε
uε}∩∂Br

(x · ∇uε)uεν .
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Which in particular give us after rearrangement,

ˆ
∂Br\{y=0}

|∇uε|2 =
n− 1

r

ˆ
Br

|∇uε|2 + 2

ˆ
∂Br\{y=0}

(uεν)
2

+
2

r

ˆ
{uεy= 1

ε
uε}∩∂Br

(x · ∇uε)uεν .

Plugging back into (5.4) we find,

d(logΦ(r;uε))

dr
=

1

r
+

n−1
r

´
Br
|∇uε|2 + 2

´
∂Br\{y=0}(u

ε
ν)

2 + 2
r

´
{uεy= 1

ε
uε}∩∂Br(x · ∇u

ε)uεν´
Br
|∇uε|2

−
n
r
H(r;uε) + 2[

´
∂Br\{y=0} u

εuεν +
´
{y=0}∩∂Br u

εuεν ]´
∂Br

(uε)2

Which reduces to,

=
2
´
∂Br\{y=0}(u

ε
ν)

2

´
Br
|∇uε|2

−
2
´
∂Br\{y=0} u

εuεν´
∂Br

(uε)2
−

2
´
{y=0}∩∂Br u

εuεν´
∂Br

(uε)2

+

2
r

´
{uεy= 1

ε
uε}∩∂Br(x · ∇u

ε)uεν´
Br
|∇uε|2

.

We note the following inequalities:

1.
´
{y=0}∩Br u

εuεν ≤ 0.

2. 0 ≤
´
Br
|∇uε|2 =

´
{y=0}∩Br u

εuεν +
´
∂Br\{y=0} u

εuεν ≤
´
∂Br\{y=0} u

εuεν .

3.
´
∂Br\{y=0} u

εuεν ≤ (
´
∂Br

(uε)2)1/2(
´
∂Br\{y=0}(u

ε
ν)

2)1/2.

Continuing the inequality we obtain,

≥
2
´
∂Br\{y=0}(u

ε
ν)

2

´
∂Br\{y=0} u

εuεν
−

2
´
∂Br\{y=0} u

εuεν´
∂Br

(uε)2
+

2
r

´
{uεy= 1

ε
uε}∩∂Br(x · ∇u

ε)uεν´
Br
|∇uε|2
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≥
2(
´
∂Br\{y=0} u

εuεν)
2

´
∂Br

(uε)2
´
∂Br\{y=0} u

εuεν
−

2
´
∂Br\{y=0} u

εuεν´
∂Br

(uε)2
+

2
r

´
{uεy= 1

ε
uε}∩∂Br(x · ∇u

ε)uεν´
Br
|∇uε|2

≥
2
r

´
{uεy= 1

ε
uε}∩∂Br(x · ∇u

ε)uεν´
Br
|∇uε|2

.

Recalling the penalization and applying an integration by parts we get,

2

r

ˆ
{uεy= 1

ε
uε}∩∂Br

(x · ∇uε)uεν =
−1

rε

ˆ
{uεy= 1

ε
uε}∩∂Br

x · ∇(uε)2

=
−1

rε

[
r

ˆ
∂{uεy= 1

ε
uε}∩∂Br

(uε)2 + r

ˆ
{uεy= 1

ε
uε}∩∂Br

(uε)2 − n
ˆ
{uεy= 1

ε
uε}∩∂Br

(uε)2

]

=
n

rε

ˆ
{uεy= 1

ε
uε}∩∂Br

(uε)2 − 1

ε

ˆ
{uεy= 1

ε
uε}∩∂Br

(uε)2

The last equatlity follows from the fact that uε = 0 on ∂{uεy = 1
ε
uε}.

Moreover n ≥ 1 and r ≤ 1 implies,

d(logΦ(r;uε))

dr
≥ 0.

Our desired estimate. Equality follows when u is proportional to uν on

∂Br ∀0 < r < 1, and
´
{y=0} uuν = 0. When both are satisfied then, by the

radial formula for the Laplace operator and unique continuation it follows that

u = |x|µg(θ) where θ ∈ ∂B1.

We supress the ε in what follows. Define

ϕ(r) = ϕ(r;u) =

 
∂B+

r

u2.

We remark that Φ(r;u) = r
2
d
dr

logϕ(r;u). We now state some corrolaries that

follow from the monotonicity of the Almgren Frequency Functional.
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Corollary 2. Let 0 ≤ limr→0+ Φ(r;u) = µ <∞. Then,

(a) The function r → r−2µϕ(r) is nondecreasing for 0 < r < 1. In particular,

ϕ(r) ≤ r2µϕ(1) ≤ r2µ sup
B1

|u|.

(b) Let 0 < r < 1. ∀δ > 0, ∃r0(δ) > 0 such that ∀r, R ≤ r0(δ),

ϕ(R) ≤
(
R

r

)2(µ+δ)

ϕ(r).

Proof. For (a): We compute,

ϕ′(r) =
d

dr

 
∂Br

u2 =
C(n)

rn

ˆ
∂Br

u2 + 2

 
∂Br

uuν

Hence,

d

dr
(r−2µϕ(r)) = −2µr−2µ−1ϕ(r) + r−2µ

(
C(n)

rn

ˆ
∂Br

u2 + 2

 
∂Br

uuν

)
≥ −2µr−2µ−1ϕ(r) + 2r−2µ

 
∂Br

uuν

= −2µr−2µ−1ϕ(r) + 2r−2µ 1

|∂Br|

ˆ
Br

|∇u|2

=
−2µr−2µ−1

|∂Br|

(
r

ˆ
Br

|∇u|2 − µ
ˆ
∂Br

u2

)
≥ 0.

For (b) Let r0(δ) be such that Φ(r;u) ≤ µ + δ for r, R ≤ r0. Then it

follows that,

Φ(r;u) =
r

2

d

dr
logϕ(r;u) ≤ µ+ δ.

To conclude we integrate the inequality over (r, R).
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We now conclude that the growth rate of the solution to the penalized

problem are constrained by the homogeneity of the blow up solutions.

Corollary 3. Let u solve the penalized problem. Then ∀x ∈ Br/2,

|u(x)| ≤ rµ sup
B1

|u|.

Proof. We note that u2
+ is a positive subharmonic function in the domain.

Hence,

(u+)2 ≤
 
∂Br

(u+)2 ≤ r2µ sup
B1

|(u+)2|.

A similar estimate holds for (u−)2.

The final step to obtain the optimal regularity estimate is to study blow

up sequences around a free boundary point. We define

vr(x) =
u(rx)

[ϕ(u; r)]1/2
.

We note that ‖vr‖L2(∂B1) = 1. We obvserve,

ˆ
BR

|∇vr|2 =
Φ(vr;R)

R

ˆ
∂BR

v2
r = |∂B1|Rn−1Φ(u; rR)

ϕ(rR;u)

ϕ(r;u)
.

For a fixed R > 1 and every r such that rR ≤ r0(δ),

ˆ
BR

|∇vr|2 ≤ |∂B1|(µ+ δ)Rn−1+2(µ+δ).

Hence {vr} are equibounded in H1
loc and by the C1,α estimate they are also

bounded in C1,α
loc . Thus there exists a uniformly convergent subsequence on

every compact subset of Rn such that,

vj → v∗, ∇vj → ∇v∗.

81



Note: ‖vr‖L2(∂B1) = 1, implies that the blow-up is nontrivial. Moreover,

[u(rx)]y = ruy(rx) =
r

ε
u−(rx).

Letting r → 0, we find that v∗ satisfies,{
∆v∗ = 0 in B+

1 .

v∗y = 0 on B′r.
(5.5)

Also as rj → 0,

Φ(rj, u) = Φ(1, vj)→ Φ(1, v∗) = µ.

Hence v∗ is homogenous of degree µ. We can evenly reflect v∗ in the entire

domain and consider the solution in B1. Hence it follows from [5] that v∗ is a

quadratic polynomial. In particular µ = 2. From Corollary 3 it follows that,

Theorem 20. Let u be a solution to the penalized problem with ∇u(0) = 0.

Then ∀x ∈ Br/2,

|u(x)| ≤ r2 sup
B1

|u|.

Remark 8. We point out that the analysis of the free boundary ∂{u > 0}

is carried out in recent work [1] for the general fractional problem. In that

paper the author obtains monotonicity for a perturbed frequency functional and

discusses the Hausdorff dimension of the singular set, defined to be the set of

points where the gradient vanishes. It is left open as an interesting problem to

study higher regularity of the free boundary at points of nonvanishing gradient.
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5.3 Preliminary Uniform Estimates s = 1
2

It is the purpose of this section to study uniform estimates of minimizers

to Eε(u),

Eε(u) =
1

2

ˆ
D

|y|a|∇u|2 dxdy +
1

2ε

ˆ
Σ

(u− φ)2
− dx. (5.6)

The functional Eε(u) can be thought of as a family of functionals para-

materized by ε. From the point of view of the limiting obstacle problem, the

penalizing term accounts for the obstacle constraint in the boundary obstacle

problem. The idea is that the family of functionals contstructed in this way

behave like E(u) when u ≥ φ and penalizes the function when u < φ. The

strength of the penalization increases as ε decreases.

We let uε deonte the solution to the penalized boundary obstacle problem.

In particular assuming φ = 0, D = B1(0), a = 0, B
′
r = Rn−1 ∩ Br, and given

a function ϕ ∈ C2,α
(
B1

)
strictly positive on ∂B+

1 ∩ {y = 0}, we consider the

following penalized problem,
∆uε = 0 in B+

1 ,

uεy = βε(u
ε) on B′r,

uε = ϕ(x) on (∂B1)+,

(5.7)

where (∂B1)+ denotes as before the set ∂B+
1 \ {y = 0}. Motivated

by the random homogenization problem, we define the following family of

penalization functions:

Definition 2. For ε > 0, a family of functions βε(t) is an admissible penal-

ization if it satisfies the following:
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1. ∀ε > 0, βε(t) is uniformly Lipschitz for −∞ < t <∞.

2. ∀ε > 0, βε(t) ≤ 0.

3. ∀ε > 0 and ∀t ≥ 0, βε(t) = 0.

4. β′ε(t) ≥ 0.

5. β′′ε (t) ≤ 0.

Remark 9. We point out a scaling property of the class of penalizing functions.

If β1(t) satisfies the conditions of the definition, then ∀ε > 0, βε(t) = β1(t/ε)

is an admissible family of penalizations. In general if βε(t) is an element of

an admissable family of penalizations, then the function β(t) = βε(σt) is an

element of the same admissable family corresponding to the parameter ε
σ

. We

point out that a similar class of penalization functionals was considered in [53],

[54].

Without loss of generality we consider

βε(t) =

{
t
ε

t < 0.
0 t ≥ 0.

(5.8)

We start by noting that we can perfom an even reflection in the y

variable and consider the problem posed on the entire domain B1, where uε

is harmonic in the upper and lower half spaces and uε = ϕ on ∂B1. When

proving estimates it will suffice to consider only one of the half spaces. For

covenience we study estimates in B+
1 .

Lemma 14. Let uε be the solution to the penalized boundary obstacle problem.

Then,

‖uε‖L∞(B1) ≤ ‖ϕ‖L∞(∂B1). (5.9)
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Proof. Since uεy(x, 0) = βε(u
ε) ≤ 0, by the maximum principle it follows that,

inf
x∈B+

1

uε ≥ inf
x∈∂B+

1

ϕ.

Suppose now by contradiction that,

sup
x∈B+

1

uε > sup
x∈∂B+

1

ϕ.

Then by the Hopf Lemma, this must be obtained at some point (x0, 0)

where uεy(x0, 0) < 0. But these are exactly the set of points where uε(x, 0) ≤ 0.

Since we are assuming that ϕ(x, 0) > 0 we have our desired contradiction. By

reflection we obtain a similar estimate in B−1 .

The next result shows that the normal derivative is uniformly bounded.

Lemma 15. Let uε be the solution to the penalized boundary obstacle problem.

Then,

‖uεy‖L∞(B1) ≤ C. (5.10)

Proof. We consider the following auxillary problem,
∆h = 0 in B1 \ {y = 0},
h = minuε in B′1,

h = −M on ∂B1.

Here we let −M < infx∈∂B1 ϕ. Since ∆h = 0 and h = inf uε on B′1, we

know by the comparison principle that uε ≥ h everywhere. Furthermore at

the minimum point (x0, 0) of uε on B′1, we know that,

uεy(x0, 0) ≥ hy(x0, 0).
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From harmonic estimates it follows that for a universal constant C,

hy(x0, 0) ≥ −C.

Moreover using the boundary condition uεy = 1
ε
uε, we see that,

uεy(x0, 0) = min
B′1

uεy(x, 0).

On the other hand uεy = βε(u
ε) ≤ 0. Hence this proves that,

−C ≤ uεy(x, 0) ≤ 0 ∀x ∈ B′1.

Finally, noting that ∆uεy = 0 in the interior of the domain an application

of the maximium princple propogates the estimate inside. That is,

‖uεy‖L∞(B1) ≤ C.

Before proving the tangential semiconvexity of the solution we state

and prove a result that restricts our penalization to the interior of the domain.

More specifically, by the positivity of ϕ on ∂B1 ∩{y = 0}, we know that there

exists a neighborhood N(∂B1) of ∂B1 ∩ {y = 0} ⊂ ∂B1 where ϕ > 0. Our

next lemma helps us propogate this information into the interior.

Lemma 16. ∃δ0 > 0, such that ∀x ∈ B′1 \ B′1−δ0, uε(x, 0) > 0. In particular,

in the annlular region B′1 \B′1−δ0 , βε(u
ε) = 0.
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Proof. Let (x, y) ∈ N(∂B1). Then by the uniform boundedness of uεy we see

that,

ϕ(x, y)− uε(x, 0) =

ˆ y

0

uεy(x̄, s) ds ≤ Cy.

Hence for y ≤ y0 where y0 small enough,

0 < ϕ(x, y)− Cy ≤ uε(x, 0).

To conclude, we define

δ0 = distance { {(x, 0) | (x, y) ∈ ∂B1 where y > y0 }, ∂B1 ∩ {y = 0} } > 0.

(5.11)

Using the previous lemma we now prove that solutions are semi-convex

in the tangential directions.

Lemma 17. Let uε be the solution to the penalized boundary obstacle problem.

Then for any direction τ parallel to Rn−1,

inf
B1−δ0

uεττ ≥ −C0. (5.12)

Here δ0 is from the previous lemma, and C0 is a constant independent

of ε.

Proof. We consider the tangential second incremental quotients for our solu-

tion uε and uεy at a point x. Specifically, ∀δ > 0,

uεττ,δ(x) =
uε(x+ δτ) + uε(x− δτ)− 2uε(x)

δ2
.
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(uεy)ττ,δ(x) =
uεy(x+ δτ) + uεy(x− δτ)− 2uεy(x)

δ2
.

We point out that for every x ∈ {uεy = 1
ε
uε} we have the inequality,

1

ε
uεττ,δ(x) ≥ (uεy)ττ,δ(x). (5.13)

This follows from the observation that for every x ∈ {uεy = 1
ε
uε}, x±δτ

could lie outside of the set {uεy = 1
ε
uε}. Outside of this set uε > 0 and uεy = 0.

In particular we always have the inequality, 1
ε
uε(x ± δτ) ≥ uεy(x ± δτ). The

following claim characterizes where uεττ,δ(x) achieves its minimum point.

Claim: Let (x0, 0) ∈ B′1 be such that

uεττ,δ(x0) = min
B′1

uεττ,δ(x).

Then, x0 ∈ {uε > 0}.

Proof. Suppose that the minimum point (x0, 0) for uεττ,δ(x) is not realized on

the set {uε > 0}. Then for some x0 ∈ {uεy = 1
ε
uε},

uεττ,δ(x0) = min
B′1

uεττ,δ(x).

Recalling (5.13) and using Hopf’s Lemma we see that,

1

ε
uεττ,δ(x0) ≥ (uεy)ττ,δ(x0) > 0.

In particular uεττ,δ cannot achieve a negative minimum on the set {uεy =

1
ε
uε}. This is our desired contradiction. Hence the minimum points of uεττ,δ(x)

must be achieved on the set {uε > 0} as desired.

88



We observe that for every x ∈ {uε > 0},

∆(uεττ,δ(x)) ≤ 0. (5.14)

Since ∀x ∈ {uε > 0}, it follows that ∆uε(x) = 0, a direct computation

shows

∆(uεττ,δ(x)) =
∆uε(x+ δτ) + ∆uε(x− δτ)

δ2

=
(∂u
∂y

+ ∂u
∂ν

)(x+ δτ)Hn + (∂u
∂y

+ ∂u
∂ν

)(x− δτ)Hn

δ2
≤ 0.

Here Hn denotes the n-dimensional Hausdorff Measure and ∂
∂ν

= − ∂
∂y

is the outward pointing normal. Thus it follows that in distribution uεττ,δ(x0)

is superharmonic in B1. In particular by the minimum principle for superhar-

monic functions we know that for some x1 ∈ ∂B1−δ0 , and for δ0 defined before

(5.11),

uεττ,δ(x0) ≥ min
∂B1−δ0

uεττ,δ(x) = uεττ,δ(x1).

From standard harmonic estimates it follows that there exists a con-

stant C0 universal such that,

‖D2uε‖L∞(B δ0
2

(x1)) ≤ C0.

Shrinking the neighborhood slightly we find that ∀ 0 < δ < δ0
4

,

‖uεττ,δ‖L∞(B δ0
4

(x1)) ≤ C0.

In particular uεττ,δ(x1) ≥ −C0. By the minimum principle for super-

harmonic functions we can propogate the estimate into the interior. That is,
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∀ 0 < δ < δ0
4

and ∀x ∈ B1−δ0 ,

uεττ,δ(x) ≥ −C0.

Finally letting δ → 0 we obtain our desired estimate,

uεττ ≥ −C0.

Remark 10. The semi-convexity in the tangential direction implies for any

tangential direction τ that ‖uετ‖L∞(B1−δ0 ) ≤ C. Combining this fact with the

previous L∞ estimate for uεy we know that our solution uε is uniformly Lipschitz

continuous in B1−δ0. In particular ‖∇uε‖L∞(B1−δ0 ) ≤ C.

Remark 11. We observe that, semi-convexity in the tangential directions im-

plies by the equation semi-concavity in the y-direction. In particular,

0 ≥ ∆uε =
n−1∑
i=1

uεττ + uεyy ≥ −(n− 1)C0 + uεyy

So in particular,

sup
B+

1−δ0

uεyy ≤ (n− 1)C0 (5.15)

We conclude this section by stating a corollary that follows directly

from the previous lemma. In particular we point out that we already have

some control on the solution uε from above.
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Corollary 4. Let uε be a solution to the penalized boundary obstacle problem.

Then for some universal constant C in B+
1−δ0,

(a) uε(x′, y)− Cy2 is concave in y, and uε(x′, y) + |x′|2 is convex in x′.

(b) uεy(x
′, t)− uεy(x′, s) ≤ C(t− s). (t > s)

(c) uε(x′, t)− uε(x′, 0) ≤ Ct2.

(d) If uε(x, t) ≥ h then in the half ball

HB′ρ = {z : |z − x| ≤ ρ, 〈z − x,∇xu
ε〉 ≥ 0},

uε(z, t) ≥ h− Cρ2.

Proof. a) This is a restatatement of the semiconvexity estimate in the tangen-

tial directions and the semiconcavity estimate in the normal direction.

b) We have that uεy − 2Cy is decreasing therefore,

uεy(x, t)− 2Ct ≤ uεy(x, s)− 2Cs.

c) Integrating the inequality uεy ≤ Cs from 0 to t gives the desired

inequality.

d) From convexity we know,

uε(z, t) + C|z|2 ≥ uε(x, t) + C|x|2 + 〈z − x,∇xu(x, t) + 2Cx〉.

Hence, if uε(x, t) ≥ h in HB′ρ(x), then,

uε(z, t) ≥ uε(x, t)− C|x− z|2 ≥ h− Cρ2.

91



5.4 Uniform C1,α Growth from the ε−Level Set

In this section we prove an estimate of technical interest. We show

that uεy has a uniform C1,α growth from the set ∂{uε > 0}. We point out that

our argument is very close to the argument presented in ([27]). We repeat the

main steps of the argument to check that all estimates are independent of ε.

The idea is to use the semi-concavity estimate and an iteration argument to

obtain the desired Hölder growth.

Lemma 18. Let uε be our solution in Γ1 and let 0 ∈ ∂{uε > 0}. Then there

exists two constants K1 > 0 and µ ∈ (0, 1) such that

inf
Γ

4−k
uεy ≥ −K1µ

k.

Proof. We proceed to prove the lemma using mathematical induction.

Case k =1: The base case follows from the uniform estimates obtained pre-

viously on uεy (Lemma 15).

Induction Step: Assume, for some constants K1 > 0 and µ ∈ (0, 1) to be

chosen later, the result is true for some k = k0, i.e.,

inf
Γ

4−k0

uλy ≥ −K1µ
k0 . (5.16)

We start by renormalizing the solution inside Γ1. We define,

ūλ(x, y) =
1

K1

(
4

µ

)k0

uλ
( x

4k0
,
y

4k0

)
. (5.17)

We obtain the following scaled estimates,

(i) inf
Γ1

ūλy ≥ −1.

(ii) ūλyy ≤
(n− 1)C0

K1(4µ)k0
.

(5.18)
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Recall that (n−1)C0 is the semi-concavity estimate found before (5.15).

Fix L = C̄C0 for C̄ >> 1 and define

wε(x, y) = ūε(x, y)− L

K1(4µ)k0

[
|x|2 − (n− 1)y2

]
. (5.19)

We make the following observations about wε(x, y):

1. wε is harmonic in the interior of Γ1/2.

2. wε is strictly negative on the set {uεy = 1
ε
uε}.

3. wε approaches 0 at the origin.

4. By Hopf’s Lemma wε obtains its non-negative maximum on ∂[Γ1/2 \ {y =

0}].

We consider two distinct cases:

Case 1: The maximum of wε is attained on ∂Γ1/2 ∩ {y = 1
2
√

2n
}.

This implies that there exists x0 ∈ B′1/2 such that

ūε
(
x0,

1

2
√

2n

)
≥ −C L

K1(4µ)k0
.

Using part (d) of Corollary 1, we observe that there exists an (n-1)

dimensional half ball HB′1/2

(
x0,

1
2
√

2n

)
such that

ūε
(
x,

1

2
√

2n

)
≥ −C

2

L

K1(4µ)k0
∀x ∈ HB′1/2

(
x0,

1

2
√

2n

)
.

Recalling the definition of the penalization, βε(u
ε), and by the semi-

concavity estimate for ūε (5.18), a Taylor expansion on the set {uεy = 1
ε
uε},
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gives us the following inequality,

uε(x, y) ≤ uλ(x, y)− uε(x, 0) ≤ uεy(x, 0) · y + (n− 1)C0y
2. (5.20)

Moreover we obtain the following estimate,

ūεy (x, 0) ≥ −C L

K1(4µ)k0
∀x ∈ HB′1/2 (x0, 0) . (5.21)

Case 2: The maximum is attained on ∂Γ1/2 \ {y = 1
2
√

2n
}.

Let (x′0, y
′
0) be the maximum point. Since this point is on the lateral side

of the cylinder, we have that |x′0|2 ≥ 2(n − 1)|y0|2. This provides for us the

following estimate,

ūε (x′0, y
′
0) ≥ L

K1(4µ)k0
.

As before we know that there exists an (n-1) dimensional half ball

HB′1/2 (x′0, y
′
0) such that,

ūε (x, y′0) ≥ L

2K1(4µ)k0
∀x ∈ HB′1/2 (x′0, y

′
0) .

Again recalling the definition of the penalization βε(u
ε), and using

(5.20) we obtain,

ūεy (x, 0) ≥ 0 ∀x ∈ HB′1/2 (x′0, 0) . (5.22)

Thus in both cases we reach the conclusion that there exists C1 > 0

and a point x̄ ∈ B′1/2 such that

ūεy (x, 0) ≥ −C1
L

K1(4µ)k0
∀x ∈ HB′1/2 (x̄, 0) .
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Furthermore if we choose K1 and µ satisfying, K1 > 2C1 and µ ≥ 1
4

then we have

ūεy (x, 0) > −1

2
.

Recalling again (5.18), we use the following result for harmonic func-

tions which is a consequence of the Poisson Representation Formula. It gives

us pointwise information from a measure estimate.

Remark 12. Let v ≤ 0, ∆v = 0 in B′1(x0)×(0, 1), and continuous in B′1(x0)×

[0, 1]. Assume v(x, 0) ≥ −1/2 in B′δ(x
∗) for some Bδ(x

∗) ⊂ B1(x0). Then,

v(x, y) ≥ −η(δ) in B′1/2(x0)× [1/4, 3/4]. (5.23)

Using (5.23) we obtain the existence of a constant η < 1 such that,

ūεy

(
x,

1

4
√

2n

)
> −η ∀x ∈ B′1/4.

Once more applying the semi-concavity estimate we obtain for a K1

sufficiently large,

ūεy (x, y) > −η − (n− 1)C0

K1(4µ)k0
=: −µ > −1.

Rescaling back we find for k = k0 + 1 our desired inequality,

inf
Γ

4−k
uεy ≥ −K1µ

k.
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Remark 13. We observe that the conclusion of this lemma implies the exis-

tence of an 0 < α < 1 such that ∀r ≤ 1− δ0,

sup
Γr

|uεy| ≤ Crα. (5.24)

In particular for x ∈ {uεy = 1
ε
uε},

uεy(x) ≤ dα(∂{uε > 0}). (5.25)

uεy(εx) ≤ εαdα(∂{uε > 0}). (5.26)

5.5 Uniform C1,1/2 Estimate for Global Penalized Solu-
tions

In this section we restrict our attention to global solutions of the pe-

nalized boundary obstacle problem. More specifically we are interested in

solutions that are tangentially convex, i.e. uεττ ≥ 0. We remark that this

implies that the set {(x, 0) : uεy(x, 0) < 0} is a convex set. We will prove

the uniform C1,1/2 estimate for this class of solutions. Our result relies on a

monotonicity formula and the first eigenvalue of the following problem,

Theorem 21. Let ∇θ denote the surface gradient on the unit sphere ∂B1.

Consider,

λ0 = inf
w∈H1/2(∂B+

1 )

w=0 on (∂B′1(x,0))−

´
∂B+

1
|∇θw|2 dS´

∂B+
1
|w|2 dS

,
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where ∂B′1(x, 0)− = {x′ = (x′′, xn−1) ∈ B′1 | xn−1 < 0}. Then,

λ0 =
2n− 1

4
. (5.27)

We do not prove this theorem here but refer to [4] where it is proven in

detail. We turn our attention instead to proving a monotonicity result which

is crucial in the sequel to prove the sharp estimate.

Lemma 19. Let w be any continuous function on B+
r with the following prop-

erties:

1. ∆w = 0 in B+
r .

2. w(0) = 0.

3. w(x, 0) ≤ 0 and w(x, 0)wν(x, 0) ≤ 0 ∀x ∈ B′r.

4. {x ∈ B′r | w(x, 0) < 0} is nonempty and convex.

Define

ϕ(r) =
1

r

ˆ
B+
r

|∇w|2

|x|n−1
. (5.28)

Then ∀r ∈ (0, R),

(i) ϕ(r) < +∞

(ii) ϕ(r) is monotone increasing in r.

Proof. Harmonicity of w in the interior gives to us the following identity,

∆w2 = 2w∆w + 2|∇w|2 = 2|∇w|2.
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This allows us to rewrite the integrand as,

ϕ(r) =
1

2r

ˆ
B+
r

∆w2

|x|n−1
.

It will be sufficient to prove the monotonicity of ϕ(r) since ϕ(1) < +∞.

Differentiating ϕ(r) we obtain,

ϕ′(r) =
−1

2r2

ˆ
B+
r

∆w2

|x|n−1
+

1

rn

ˆ
∂B+

r

|∇w|2. (*)

Expanding out the first term gives us,

1

2r2

ˆ
B+
r

∆w2

|x|n−1
=

1

rn+1

ˆ
(∂Br)+

wwν +
1

2r2

ˆ
{y=0}∩Br

2wwν
|x|n−1

ds

− 1

2r2

ˆ
B+
r

∇w2 · ∇
(

1

|x|n−1

)
ds.

Recalling that w(0) = 0, the last term in this expansion can be further

expanded to get,

− 1

2r2

ˆ
B+
r

∇w2 · ∇
(

1

|x|n−1

)
ds =

n− 1

2rn+2

ˆ
(∂Br)+

w2ds

− 1

2r2

ˆ
{y=0}∩Br

w2

(
1

|x|n−1

)
· ν ds.

We observe that the second term in this expansion is zero, hence we

obtain,

− 1

2r2

ˆ
B+
r

∇w2 · ∇
(

1

|x|n−1

)
ds =

n− 1

2rn+2

ˆ
(∂Br)+

w2ds.

Putting the above together we obtain,

1

2r2

ˆ
B+
r

∆w2

|x|n−1
=

1

rn+1

ˆ
(∂Br)+

wwν +
1

2r2

ˆ
{y=0}∩Br

2wwν
|x|n−1

ds
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+
n− 1

2rn+2

ˆ
(∂Br)+

w2ds.

An application of Cauchy-Schwarz to the first term allows us to continue

the inequality,

≤
(

1

2rn+2

ˆ
(∂Br)+

w2ds

)1/2(
2

rn

ˆ
(∂Br)+

w2
νds

)1/2

+
n− 1

2rn+2

ˆ
(∂Br)+

w2ds+
1

2r2

ˆ
{y=0}∩Br

2wwν
|x|n−1

ds.

Moreover the positivity of the integrands allows us to integrate over

the larger spatial domain ∂B+
r . In particular we have,

≤
(

1

2rn+2

ˆ
∂B+

r

w2ds

)1/2(
2

rn

ˆ
∂B+

r

w2
νds

)1/2

+
n− 1

2rn+2

ˆ
∂B+

r

w2ds

+
1

2r2

ˆ
{y=0}∩Br

2wwν
|x|n−1

ds.

Rewriting the spatial gradient in terms of the surface gradient we ob-

tain, ˆ
∂B+

r

|∇w|2 =

ˆ
∂B+

r

|∇θw|2 +

ˆ
∂B+

r

w2
ν .

Putting this back into (*) we obtain,

ϕ′(r) ≥ −2n− 1

4rn+2

ˆ
∂B+

r

w2ds− 1

rn

ˆ
∂B+

r

w2
νds−

1

2r2

ˆ
{y=0}∩Br

2wwν
|x|n−1

ds

+
1

rn

ˆ
∂B+

r

|∇θw|2 +
1

rn

ˆ
∂B+

r

w2
ν .

After cancellation we are reduced to,

ϕ′(r) ≥ −2n− 1

4rn+2

ˆ
∂B+

r

w2ds+
1

rn

ˆ
∂B+

r

|∇θw|2 −
1

2r2

ˆ
{y=0}∩Br

2wwν
|x|n−1

ds.
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Since we are assuming {x ∈ B′r | w(x, 0) < 0} is nonempty and convex,

this implies that w vanishes on at least (∂B′1)−, and hence is admissable to

the eigenvalue problem (Theorem 21). This implies in particular that

´
∂B+

1
|∇θw|2 dS´

∂B+
1
|w|2 dS

≥ 2n− 1

4
.

We are thus reduced to studying the positivity of the corrective term,

ϕ′(r) ≥ − 1

2r2

ˆ
{y=0}∩Br

2wwν
|x|n−1

ds.

Finally using the assumption that w(x, 0)wν(x, 0) ≤ 0 implies that,

− 1

2r2

ˆ
{y=0}∩B̄r

2wwν
|x|n−1

ds ≥ 0.

Thus we conclude,

ϕ′(r) ≥ 0 for any 0 < r ≤ R.

In particular we have shown,

ϕ(r) ≤ ϕ(R) for any 0 < r ≤ R.

We now use the monotonicity of ϕ(r) to conclude the sharp estimate

for global solutions to the penalized boundary obstacle problem.

Theorem 22. Let uε be a global solution to the penalized boundary obstacle

problem. Then there exists a modulus of continuity ω : (0,∞) → (0,∞)
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independent of ε, such that ω(δ) = O(δ1/2) as δ → 0 and ∀x, y ∈ Br/2 and

∀ε > 0,

|uεy(x)− uεy(y)| ≤ |x− y|1/2. (5.29)

Proof. We begin by setting w = uεy. Observe that w satisfies the assumptions

of the previous lemma. We thus obtain,

1

rn

ˆ
B+
r

|∇w|2 ≤ 1

r

ˆ
B+
r

|∇w|2

|x|n−1
≤ ϕ(1/2).

Since w vanishes on half of the ball in B′r, the Poincare Inequality

implies that,  
B+
r

w2 ≤ Cr2

 
B+
r

|∇w|2 ≤ C0r.

Moreover since w2 is subharmonic across {y = 0} an application of the

mean value theorem produces the estimate,

w2|B+
r/2
≤
 
B+
r

w2 ≤ Cr.

In particular we have obtained,

sup
Br/2

|uεy| ≤ Cr1/2.

Since uεy = 0 in the region {uε > 0} and we have proved uniform C1/2

estimates for uεy on ∂{uε > 0}, it is sufficient by standard regularity the-

ory to prove the estimate when approaching ∂{uε > 0} from inside the set

{uεy = 1
ε
uε}. We let dF (x) denote the distance of x to ∂{uε > 0}, and d (x, y)

denote the distance between two arbitrary points x and y. We start by fixing
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two points, x and y ∈ {uεy = 1
ε
uε}. We consider two distinct cases.

Case 1:

d̄F := max{dF (x), dF (y)} ≤ 4d (x, y) .

Let us set x̄, ȳ ∈ ∂{uε > 0} such that |x−x̄| = dF (x) and |y−ȳ| = dF (y).

Then we have the following estimate,

|uεy(x)− uεy(y)| ≤ sup
B+

4|x−y|(x̄)

|uεy|+ sup
B+

4|x−y|(ȳ)

|uεy| ≤ C|x− y|1/2.

Case 2:

d̄F := max{dF (x), dF (y)} ≥ 4d (x, y) .

In this case we consider two interior points that are far from the inter-

face. It is shown above that, uεy(x) ≤ Cd
1/2
F (x). Define the following function,

vε(x) =
1

ε3/2
uε(εx). (5.30)

We point out that vε and vεy are of the same order. In particular,

vεy(x) =
1

ε1/2
uεy(εx) =

1

ε1/2
· 1

ε
uε(εx) =

1

ε3/2
uε(εx) = vε(x).

Moreover we know from (22) that,

uεy(εx) ≤ Cε1/2d
1/2
F (x).
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This provides for us the following estimate,

vε(x) = vεy(x) ≤ 1

ε1/2
· Cε1/2d1/2

F (x) = Cd
1/2
F (x). (5.31)

We consider interior estimates for boundary value problems with the

Robin boundary condition, vεy(x) = vε(x). Since vε is of lower order, we inherit

the Hölder regularity estimate for the Dirichlet problem. In particular we have

the following estimate for a constant C independent of ε,

‖vεy‖C1/2(BR/2(x)) ≤
C

R1/2
‖vε‖L∞(BR(x)). (5.32)

Fix R = dF (x)
ε

. Plugging (5.31) into (5.32) we obtain,

‖vεy‖C1/2(BR/2(x/ε)) ≤
Cε1/2

d
1/2
F (x)

‖vε‖L∞(BR(x/ε)) ≤
Cε1/2

d
1/2
F (x)

· d
1/2
F (x)

ε1/2
= C. (5.33)

Applying the estimate obtained in (5.33), it follows from (5.30),

|uεy(x)− uεy(y)| = |ε1/2vεy(x/ε)− ε1/2vεy(y/ε)|

= ε1/2|vεy(x/ε)− vεy(y/ε)|

≤ Cε1/2|x
ε
− y

ε
|1/2

= C|x− y|1/2.

Our desired estimate.

5.6 Uniform C1,1/2 Estimate for General Penalized So-
lutions

In this section we prove the sharp estimate for general solutions to the

penalized boundary obstacle problem. First we prove a lemma that quantifies
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the fact that general solutions are tangentially almost convex. The proof is

identical to the one presented in [27]. We present it here for completeness.

Lemma 20. Let C > 0 and α ∈ (0, 1/2] be as in Remark 12. Let C0 be the

semiconvexity constant (5.12). Set δα = 1
4
( α
α+1
− α

2
). Then there exists r0 =

r0(α,C,C0) > 0 such that the convex hull of the set {x ∈ B′r : uεy < −rα+δα}

does not contain the origin for r ≤ r0.

Proof. Consider (x′, 0) ∈ {uεy < −rα+δα}. Utilizing (16) we obtain,

uε(x′, h) ≤ −rα+δαh+
(n− 1)C0

2
h2.

Recalling the C1,α estimate for uε we also know,

uε(0, h) = uε(0, h)− uε(0, 0) ≥ −Ch1+α.

Assume by contradiction that the convex hull of the set {x ∈ B′r : uεy <

−rα+δα} contains the origin. We know from the semi-convexity estimate that

∀x ∈ {uεy < −rα+δα},

uε(0, h) ≤ uε(x, h) + C0h
2.

Combining the previous three estimates we see that for all r, h ∈ (0, 1),

Ch1+α ≥ rα+δαh− (n− 1)C0

2
h2 − C0h

2.

To contradict this inequality we choose h = h(r) in such a way that for

r sufficiently small,

h2 << r2 << h1+α << rα+δαh.
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We set h = r1+2δα/α and δα <
1
2
( α
α+1
− α

2
). This is our desired contra-

diction.

We now study the monotonicity formula as applied to general solutions.

Lemma 21. Let δα > 0 be as in the previous lemma and uε the solution to the

penalized boundary obstacle problem. Define vε = uε + (n−1)C0

2
x2 − (n−1)C0

2
y2

where (n− 1)C0 is the semiconcavity constant of uε. Furthermore set w = vεy

and ϕ(r) as before. Then there exists a universal constant C such that ,

(i) 2α + δα > 1 =⇒ ϕ(r) ≤ C.

(ii) 2α + δα < 1 =⇒ ϕ(r) ≤ Cr2α+δα−1.

Proof. Since ∆w = 0 in the interior we can proceed as before to obtain the

identity,

∆w2 = 2w∆w + 2|∇w|2 = 2|∇w|2.

Differentiating ϕ we obtain as before,

ϕ′(r) ≥ −2n− 1

4rn+2

ˆ
∂B+

r

w2ds+
1

rn

ˆ
∂B+

r

|∇θw|2 −
1

2r2

ˆ
{y=0}∩Br

2wwν
|x|n−1

ds.

We first consider the corrective term,

− 1

2r2

ˆ
{y=0}∩Br

2wwν
|x|n−1

ds.

Notice that for our choice of w,

1. w|{y=0} = uεy(x, 0) ≤ 0.

2. wν = −(uεy)y = −(uεyy − (n− 1)C0) ≥ 0.
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In particular,

w(x, 0)wν(x, 0) ≤ 0.

This implies as before,

− 1

2r2

ˆ
{y=0}∩Br

2wwν
|x|n−1

ds ≥ 0.

Thus we can drop the corrective term and consider the following in-

equality,

ϕ′(r) ≥ −2n− 1

4rn+2

ˆ
∂B+

r

w2ds+
1

rn

ˆ
∂B+

r

|∇θw|2.

To account for the semi-convexity we introduce the truncated function,

wt =

{
w + rα+δα w < rα+δα .
0 otherwise.

(5.34)

We make the following observations about wt:

1. |wt| ≤ |w| ≤ Crα + Cr ≤ C̄rα.

2. |w − wt| ≤ rα+δ.

3.
´
∂B+

r
|∇θwt|2 ≤

´
∂B+

r
|∇θw|2.

Hence we have the following estimate,

ϕ′(r) ≥ −2n− 1

4rn+2

ˆ
∂B+

r

[(w − wt) + wt]
2ds+

1

rn

ˆ
∂B+

r

|∇θwt|2.

Using the previous lemma we see that wt is admissable for the eigen-

value problem (Theorem 21). Hence,

ϕ′(r) ≥ −2n− 1

4rn+2

ˆ
∂B+

r

[(w − wt)2 + 2wt(w − wt)]ds.
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Using the growth estimates for wt we have in particular,

ϕ′(r) ≥ −Cr2α+δ−2.

After integrating the inequality we find,

ϕ(1)− ϕ(r) =

ˆ 1

r

ϕ′(r) ≥
ˆ 1

r

−Cr2α+δ−2 =
−C

2α + δ − 1
[1− r2α+δ−1].

This implies in particular,

ϕ(r) ≤ ϕ(1) +
C

2α + δ − 1
− C

2α + δ − 1
r2α+δ−1.

With this lemma in hand we can now state and prove our sharp estimate

for the solution to the penalized boundary obstacle problem.

Theorem 23. Let uε be a solution to the penalized boundary obstacle problem.

Then there exists a modulus of continuity ω : (0,∞)→ (0,∞) independent of

ε, such that ω(δ) = O(δ1/2) as δ → 0 and ∀x, y ∈ Br/2 and ∀ε > 0,

|uεy(x)− uεy(y)| ≤ |x− y|1/2. (5.35)

Proof. Let w = vεy be defined as before and consider wt as in the previous

lemma. Since wt vanishes on more than half the ball of B′r we have by the

Poincare Inequality, ˆ
B+
r

w2
t ≤ Cr2

ˆ
B+
r

|∇wt|2.
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In particular we produce the following estimate,

1

rn+1

ˆ
B+
r

w2
t ≤

C

rn−1

ˆ
B+
r

|∇wt|2 ≤
C

rn−1

ˆ
B+
r

|∇w|2 ≤ C

ˆ
B+
r

|∇w|2

|x|n−1
= Cϕ(r).

Moreover, since w2
t is subharmonic across {y = 0}, for s < r − |x| and

any |x| ≤ r,

w2
t (x) ≤ n

ωnsn

ˆ
Bs(x)

w2
t ≤

n

ωnsn

ˆ
Br

w2
t

≤ C
(r
s

)n n

ωnrn

ˆ
B+
r

w2
t ≤ C

(
1

s

)n
ϕ(r)r.

Now we consider separately the two distinct cases:

Case 1: 2α + δα > 1.

From the previous lemma this implies that ϕ(r) ≤ C. Hence in particular,

w2
t ≤ Cr.

We observe that,

sup
B+
r/2

w ≤ C[sup
B+
r/2

wt + rα+δα ].

Thus we obtain,

w ≤ wt + rα+δ ≤ Cr1/2 + rα+δα ≤ C̄r1/2.

Case 2: 2α + δα < 1.
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From the previous lemma this implies that ϕ(r) ≤ Cr2α+δα−1. Hence in par-

ticular,

w2
t ≤ Cr2α+δα .

This produces for us the estimate,

w ≤ wt + rα+δ ≤ Crα+ δ
2 + rα+δ

≤ Crα+ δα
2 .

We observe that we have improved the estimate for w. Set α1 = α+ δα
2
.

If α1 satisfies the assumption of Case 1, then we are done. If not then using

the lemma again we obtain,

w ≤ Crα+ δα
2

+ δα
2 .

We observe that we can iterate this procedure a finite number of times,

e.g. k times, until we get αk+ δα
2
> 1

2
. Hence after a finite number of iterations

we are in Case 1.

Thus in both cases we conclude that,

w ≤ Cr1/2.

Recalling that w = uεy − (n− 1)C0y, we find that,

uεy ≤ (n− 1)C0r + Cr1/2 ≤ C̄r1/2
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Hence in particular we obtain the uniform estimate,

sup
Br/2

|uεy| ≤ Cr1/2.

To conclude we consider the distnct cases as before.

Finally we remark that as before one can obtain a uniform decay rate

in the penalizing paramter ε.

Corollary 5. Let uε be a solution to the penalized boundary obstacle problem.

Then ∀α < 1,

‖uε‖C1,α ≤ Cε−α.

Proof. As before we fix a penalizing family,

βε(t) =

{
t
ε

t < 0.
0 t ≥ 0.

(5.36)

We consider the scaled function,

vε(x) =
1

ε
uε(εx).

We note that

[vε]y(x) = vε(x).

Hence we obtain for a constant C independent of ε, ∀α < 1,

‖vε‖C1,α ≤ C.
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It follows for a directional derivative τ ,

|uετ (x)− uετ (y)| = |εvετ (
x

ε
)− εvετ (

y

ε
)|

= |vετ (
x

ε
)− vετ (

y

ε
)|

≤ C|x
ε
− y

ε
|α

≤ Cε−α|x− y|α.
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Chapter 6

Conclusion and Future Directions

This thesis was devoted to studying two classes of problems in the

theory of free boundary problems of obstacle-type. In this last chapter we

comment on some interesting directions of research left open and some prob-

lems the author aims to work on in the future.

The first question is regarding the measure of the set of free boundary

points in the implicit constraint obstacle problem, namely the set Γd. It is nat-

ural to ask if this set is actually finite under the assumption that f is analytic.

By projecting points to their closest free boundary point, we see that Γd would

indeed be finite if one could rule out the scenario that the solution sticks to the

obstacle in the negative direction. In a similar direction it will be interesting to

understand the free boundary in 2d under weaker regularity assumptions on f .

Here we have to undertake a finer analysis of the set of free boundary points Γd.

Another direction of interest is to study the fully nonlinear stochastic

impulse control problem with more general fully nonlinear operators, such as

Monge-Ampere type and other degenerate elliptic equations. The goal would
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be to prove a general modulus of semiconvexity estimate for the solution using

properties of the fully nonlinear operator. In this direction it would also be

interesting to study measure theoretic estimates for the symmetric difference

of free boundaries arising in these problems.

Finally it is of interest to pursue regularity estimates for the level sets

of singularly perturbed free boundary problems. In this direction it would

be interesting to understand the regularity of level sets for solutions to the

penalized fully nonlinear stochastic impulse control problem and the penalized

boundary obstacle problem. We would like to show uniform convergence of

the level sets to the corresponding free boundary.
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Appendix A

Elliptic Regularity

In this Appendix we collect some of the main results and tools from

second order elliptic equations used in the main body of the work. We natu-

rally consider the division between linear and nonlinear equations. We remark

that estimates can be derived as apriori estimates under suitable regularity

assumptions on the data, or found after a suitable existence theory for weak

solutions. A good reference for a priori estimates is [34], and a nice reference

for weak solutions theory is [18].

Linear Theory: We recall some a priori estimates for non-divergence form

elliptic equations. We remark that such estimates are applicable to fully non-

linear equations under smoothness assumptions on the solution and operartor.

Suppose Ω is a bounded connected domain in Rn. Consider the operator

L in Ω.

Lu = aij(x)Diju+ b(x)Diu+ c(x)u

for u ∈ C2∩C(Ω). Assume aij, bi, c are continuous and L is uniformly elliptic,
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i.e. for any x ∈ Ω, and any ξ ∈ Rn,

aijξiξj ≥ λ|ξ|2.

Theorem 24. (Schauder Interior Estimates) Let u ∈ C2,α be a solution of

Lu = f . Assume in addition,

‖aij‖C0,α(Ω), ‖bi‖C0,α(Ω), ‖c‖C0,α(Ω) ≤ Λ.

Then,

‖u‖C2,α(Ω) ≤ C(n, α, λ,Λ)
(
‖u‖C0(Ω) + ‖f‖C0,α(Ω)

)
.

Theorem 25. (Hopf Lemma) Let B be an open ball in Rn with x0 ∈ ∂B.

Suppose u ∈ C2(B) ∩ C(B ∪ {x0}) satisfies Lu ≥ 0 in B with c(x) ≤ 0 in B.

Assume in addition that ∀x ∈ B and u(x0) ≥ 0,

u(x) < u(x0).

Then for each outward pointing direction ν at x0, with ν · n(x0) > 0 there

holds,

lim inf
t→0+

1

t
[u(x0)− u(x0 − tν)] > 0.

The following estimate does not depend on the smoothness or continuity

of the coefficients,

Theorem 26. (Krylov, Boundary Harnack) Let u solve{
aijuij = f in B+

1 ,

u = 0 in ∂B+
1 ∩ {xn = 0}.
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Then for 0 < r ≤ 1,

oscB+
r

(
u

xn

)
≤ Crα

(
oscB+

1

(
u

xn

)
+ ‖f‖L∞

)
where the constants depend only on ellipticity and dimension.

Fully Nonlinear Theory: We recall some known fact for solutions to

fully nonlinear equations of the form,

F (D2u(x), x) = f(x),

where x ∈ Ω, and u, f are functions defined in a bounded domain Ω of Rn.

Moreover F (M,x) is a real valued function defined on S × Ω, where S is the

space of real n × x symmetric matrices. We assume that F is a uniformly

elliptic operator.

Definition 3. F is uniformly elliptic if there are two positive constants λ ≤ Λ

such that for any M ∈ S and x ∈ Ω,

λ‖N‖ ≤ F (M +N, x)− F (M,x) ≤ Λ‖N‖ ∀N ≥ 0,

where N ≥ 0, whenever N is a non-negatve symmetric matrix.

By a property for symmetric matricies,

Lemma 22. F is uniformly elliptic if and only if ∀M,N ∈ S, ∀x ∈ Ω,

F (M +N, x) ≤ F (M,x) + Λ‖N+‖ − λ‖N−‖.

We now define viscosity solutions.
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Definition 4. A continuous function u in Ω is a viscosity subsolution (resp.

supersolution) in Ω when the following condition holds: if x0 ∈ Ω, ϕ ∈ C2(Ω),

and u− ϕ has a local maximum at x0, then

F (D2ϕ(x0), x0) ≥ f(x0),

with opposite signs for supersolutions.

We now recall some qualitative properties for viscosity solutions to fully

nonlinear equations.

Theorem 27. (ABP Estimate) Let u be a viscosity supersolution in Bd and f

a continuous bounded function in Bd. Assume that u is continuous in B̄d and

u ≥ 0 on ∂Bd. Then

sup
Bd

u− ≤ Cd

(ˆ
Bd∩{u=Γu}

(f+)n
)1/n

,

where Γu is the convex envelope of −u− in B2d and C is a universal constant.

Lemma 23. (Lε Lemma) Suppose u is a viscosity supersolution in Q4
√
n and

f satisfy:

u ≥ 0 in Q4
√
n,

inf
Q3

≤ 1,

‖f‖Ln ≤ ε0.

Then, for positive universal constants d and ε,

|{u ≥ t} ∩Q1| ≤ dt−ε ∀t > 0.
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Theorem 28. (Weak Harnack Inequality) Let u be a viscosity supersolution

in Q1 that satisfies u ≥ 0 in Q1, where f is continuous and bounded in Q1.

Then,

‖u‖
L
ε
2 (Q1/4)

≤ C(inf
Q 1

2

u+ ‖f‖Ln(Q1)).

Theorem 29. (Harnack Inequality) Let u be a viscosity solution in Q1 satis-

fying u ≥ 0 in Q1, and f continuous and bounded in Q1. Then

sup
Q 1

2

u ≤ C(inf
Q 1

2

u+ ‖f‖Ln(Q1)),

where C is a universal constant.

Theorem 30. Let u be a viscosity solution of F (D2u) = 0 in B1(0). Then

u ∈ C1,α(B̄ 1
2
) and

‖u‖C1,α(B̄ 1
2

) ≤ C(‖u‖L∞(B1) + |F (0)|),

where 0 < α < 1 and C are universal constants.

Theorem 31. (Evans-Krylov) Let u be a viscosity solution of a concave equa-

tion F (D2u) = 0 in B1(0). Then u ∈ C2,α(B̄ 1
2
) and

‖u‖C2,α(B̄ 1
2

) ≤ C(‖u‖L∞(B1) + |F (0)|),

where 0 < α < 1 and C are universal constants.
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Appendix B

Properties of Semiconcave Functions

In this appendix we collect some facts about semiconcave functions that

we need in the main body of this work. We start with a definition:

Definition 5. (Semiconcave Functions) Let S ⊂ Rn. A function u : S → Rn

is semiconcave if there exists a nondecreasing upper semi-continuous function

ω : R+ → R+ such that limρ→0+ ω(ρ) = 0 and,

∀λ ∈ (0, 1) ∀x, y ∈ S such that their segment is contained in S,

λu(x) + (1− λ)u(y)− u(λx+ (1− λ)y) ≤ λ(1− λ)|x− y|ω(|x− y|).

Moreover we say u is semiconcave with linear modulus if ω(|x− y|) =

k|x − y| for some constant k. We now state a general regularity estimate for

semiconcave functions with a general modulus of semiconcavity.

Theorem 32. A semiconcave function u : S → R is locally Lipschitz contin-

uous in the interior of S.

We now introduce a notion of derivative for semiconcave functions:

Definition 6. (Superdifferential)

D+u(x) = {p ∈ Rn | lim sup
y→x

u(y)− u(x)− 〈p, y − x〉
|y − x|

≤ 0}.
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Definition 7. (Subdifferential)

D−u(x) = {p ∈ Rn | lim inf
y→x

u(y)− u(x)− 〈p, y − x〉
|y − x|

≥ 0}.

We now come to an important characterization of the superdifferential

of a semiconcave function:

Lemma 24. Let u : A→ Rn be semiconcave function with modulus ω and let

x ∈ A. Then a vector p ∈ Rn belongs to D+u(x) if and only if

u(y)− u(x) ≤ 〈p, y − x〉+ ‖x− y‖ω(‖x− y‖) ∀y ∈ A

We also state the following result,

Theorem 33. If u : A → R is both semiconcave and semicovex in A, then

u ∈ C1(A). In addition, on each compact subset of A the modulus of continuity

of Du is of the form c1ω(c2r), where ω is a modulus of semiconvexity and of

semiconcavity for u, and c1, c2 > 0 are constants.

As a corollary we obtain,

Corollary 6. Let A ⊂ Rn be open convex and let u : A→ R be both semiconvex

and semiconcave with a linear modulus and constant C. Then u ∈ C1,1(A) and

the Lipschitz constant of Du is equal to C.
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Appendix C

Variational Inequalities

One can view variational inequalities as a natural generalization of the

variational approach to solving Boundary Value Problems in Partial Differen-

tial Equations. Many problems in optimization theory and Partial Differen-

tial Equations can be solved as a variational inequality. The need to study

variational inequalities in PDE arise from solving elliptic and parabolic type

equations in a domain with sutiable constraints. For example, variational in-

equalities are a natural framework in which to study obstacle problems. The

conceptual idea is that our solution is constrained to always lie above or be-

low a prescribed obstacle in our domain. A general reference for variational

inequalities is [42].

From a functional analytic point of view, variational inequalities can be thought

of as a problem characterizing projections onto convex sets. In the theory of

Boundary Value Problems one faces a similar characterization and finds that

the method of orthogonal projections play an analogous role. In the context

of variational inequalities one first proves a Brouwer Fixed Point theorem for

a compact, convex set K ⊆ Rn. Key ingredients in the proof are the unique

existence of a projection operator onto any closed convex set, and the Brouwer
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Fixed Point Theorem for closed balls Σ ⊆ Rn. The interesting point is that

one can characterize this projection as a variational inequality:

Lemma 25. Let K be a closed convex set of a Hilbert Space ( H, (.) ). Then

y = PKx, the projection of x on K ⇐⇒ 〈y, η − y〉 ≥ 〈x, η − y〉 ∀η ∈ K.

Let us now return to the obstacle problem:

Example 1. (Obstacle Problem) Let D ⊆ Rn be a smooth bounded domain

with boundary ∂D. Suppose we are also given an Obstacle, a function ϕ defined

on D̄ = D ∪ ∂D and a smooth function f defined on ∂D. Define:

K = {u ∈ H1(D) : u|∂D = f(x) and u ≥ ϕ in D}

We know that K is a closed convex set. We look in particular for a unique

u0 ∈ K such that u0 minimizes the Dirichlet Integral:

ˆ
D

(∇u0)2dx = min
v∈K

ˆ
D

(∇v)2dx

Finding a solution to the obstacle problem is equivalent to finding a unique

solution u to following variational problem: ∀v ∈ K,

〈∇u,∇(v − u)〉 ≥ 〈f, v − u〉

A key difference between obstacle type problems and the classical bound-

ary value problems is the existence of the set of points where our solution

touches the obstacle. In particular one must also consider the coincidence set:

Λ = {x ∈ D : u(x) = ϕ(x)}
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The boundary of the noncoincidence set is what is called the Free Boundary.

We now consider a general framework in which to understand varia-

tional inequalities and in particular variational inequalities admitting implicit

constraints. We let E denote a Real Vector Space, and let C1 ⊆ C ⊆ E. We

define two functions,

ϕ : C1 × C → (−∞,+∞] with ϕ(u, .) 6= +∞ ∀u ∈ C1. (C.1)

f : C1 × C × C → (−∞,+∞) with f(u, v, v) ≤ 0 ∀u ∈ C1 and ∀v ∈ C.

(C.2)

Our problem is to find all vectors u ∈ C1 such that for some given

subset C0 ⊆ C1:

u ∈ C0

ϕ(u, u) + f(u, u, w) ≤ ϕ(u,w) ∀w ∈ C (C.3)

The way one deals with this general problem is to break it up into two

consecutive steps. In step one we fix our vector u ∈ C1. Define:

ψ(w) = ϕ(u,w) ∀w ∈ C (C.4)

g(v, w) = f(u, v, w) ∀v, w ∈ C (C.5)

We look for all vectors v ∈ E that solve the variational problem,
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v ∈ C

ψ(v) + g(v, w) ≤ ψ(w) ∀w ∈ C (C.6)

We let S(u) denote the set of all solutions to the variational problem.

We define the selection map:

S : C1 → 2C (C.7)

The objective of the first step is to show that under suitable assump-

tions on our data: E, C, C1, ϕ, and f, the selection map has suitably nice

properties. In particular we must show that the map is non-empty ∀u ∈ C1.

In the second step we aim to find all the fixed points of the selection

map S belonging to some given set C0 ⊆ C1. We aim to find all vectors u

solving:

u ∈ C0

u ∈ S(u) (C.8)

This in principle is the general framework we adopt to help us solve

quasivariational inequalities. The idea is to find the correct assumptions on

othe functions and sets above that will allow us to show existence and unique-

ness for both variational and quasi-variational inequalities. Let us start by

stating some results from the classical theory of variational inequalities and

then generalize these results to the situation of implicit constraints.
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Theorem 34. Assume that C is a closed convex subset of a Hausdorff Topo-

logical Vector Space E, ψ is convex, lower semi-continuous not identically ∞

on E. Furthermore assume that g(v, v) ≤ 0 ∀v ∈ C, and g(v, .) is concave

∀v ∈ C. Furthermore assume ∀w ∈ C g(., w) is lower semi-continuous on

E. Finally assume that ∃B ⊂ E and w0 ∈ B ∩ C such that ψ(w0) < ∞ and

ψ(v) + g(v, w0) > ψ(w0) ∀v ∈ C r B. Then the set of all solutions v to the

problem

v ∈ C,

ψ(v) + g(v, w) ≤ ψ(w) ∀w ∈ C,

is a non-empty compact subset of B ∩ C.

As a corollary to this theorem we get our first existence and uniqueness

theorem for Variational Inequalities:

Theorem 35. (Lion-Stampacchia) Let V be a real Hilbert-Space, C a non-

empty closed, convex subset of V, a(. , .) a coercive continuous bilinear form

on V. Then for every continuous linear functional v′ on V, there exists a unique

vector u that satisfies,

u ∈ C,

a(u, u− w) ≤ 〈v′, u− w〉 ∀w ∈ C.

126



When one considers nonlinear variational inequalities the assumption

of lower semi-continuity for g is too strong. Instead one can assume that g

satisfies a monotonicity requirement as well as being hemicontinuous. Under

these modified assumptions one can still prove an existence and uniqueness

theorem similar to the theorem stated above. In the second step of our problem

we have to show that the selection map has a fixed point in a given subset C0.

For this step of the problem one must also consider topological properties of

the mappings and to allow C0 to have a topology independent of the topology

induced from the larger space E. In particular one may assume that C0 is a

locally convex topological space which has a continuous injection into C1.

Theorem 36. Let C, C1, ϕ, and f be given as above. Define ψ = ϕ(u, .) as

before satisfying the assumptions in the previous theorem. Define g = f(u, ., .)

satisfying the assumptions in the previous theorem and is monotone and hemi-

continuous. Assume furthermore that both satisfy the coercivity condition.

Suppose also that C0 satisfies topological condition mentioned above, S(C0) ⊆

C0, and the set of all pairs (u, v) ∈ C0×C0 with v ∈ S(u) is closed. Then our

initial problem admits a solution u.

The proof for this theorem relies on the following formulation of the

Kakutani Fixed Point Theorem:

Theorem 37. (Kakutani Fixed Point Theorem) Let S be a non-empty, com-

pact, and convex subset of a locally convex topological vector space. Let ϕ :

S → 2S be a set-valued function which is upper semi-continuous and if the
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image of the map is non-empty, compact and convex. Then ϕ has a fixed

point.

To be a bit more concrete, let us state how one goes about applying

these results in the context of quasi-variational Inequalities. Under suitable

monotonicity conditions, coercivity conditions, and semi-continuity conditions,

one can use the above results to prove an existence result for quasi-variational

inequalities. We obtain the following useful result:

Theorem 38. (Quasivariational Inequlity Existence) Suppose that:

a(v, w) is a coercive bilinear form on a Hilbert Space V.

v′ is a continuous linear functional on V.

Let Q be a map that associates with each vector u of a convex closed

subset C of V a non-empty convex closed subset Q(u) of V. Then there exists

a solution to the following QVI:

u ∈ C u ∈ Q(u).

a(u, u− w) ≤ 〈v′, u− w〉 ∀w ∈ Q(u).

For a general Banach Space X one can introduce a partial ordering ≤

that is induced by the closed positive cone,

P = {v ∈ X | v ≥ 0}.
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We assume that X is a vector lattice under this ordering. We can then

define the order dual X∗, the closed subspace of the dual space X ′ generated

by the positive cone,

P′ = {x′ ∈ X ′ | 〈x′, x〉 ≥ 0 ∀x ∈ P}.

In the context of linear second order elliptic Partial Differential Equations

one considers our Banach Space X to be either H1(Ω), H1
0 (Ω), or any closed

subset V of H1(Ω) such that H1
0 (Ω) ⊆ V ⊆ H1(Ω). In the context of nonlin-

ear second order elliptic Partial Differential Equations we consider the general

Sobolev Spaces W 1,p(Ω) and W 1,p
0 (Ω). On these Banach Spaces one considers

the ordering: u ≤ v ⇐⇒ u(x) ≤ v(x) a.e. ∀x ∈ Ω. Using the order struc-

ture of Banach Spaces one can prove comparision theorems that help in the

constructive proof of the existence and uniqueness of solutions to specific qua-

sivariational inequalities. A general reference for quasi-variational inequalities

is [46].
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