
Copyright

by

Yuanzhong Xu

2016

The Dissertation Committee for Yuanzhong Xu
certifies that this is the approved version of the following dissertation:

Platform-level Protection for Interacting Mobile Apps

Committee:

Emmett Witchel, Supervisor

Lorenzo Alvisi

Roxana Geambasu

Keshav Pingali

Vitaly Shmatikov

Platform-level Protection for Interacting Mobile Apps

by

Yuanzhong Xu, B.E.; M.S.Comp.Sci.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2016

To everyone

Acknowledgments

I would like to thank Emmett Witchel for encouraging me to explore

and innovate in the area of computer systems, and teaching me the value of

practical research. I am also grateful to other great mentors, Weidong Cui,

Marcus Peinado, and Vitaly Shmatikov, who have helped me with several

research projects during the past few years. I also want to thank former

members of our research group, Owen Hofmann, Alan Dunn, Michael Lee,

and Sangman Kim, for their help during my early PhD career.

My five-year graduate school life has been fun and inspiring because of

the help and support from many other friends and fellow graduate students:

Sebastian Angel, Xue Chen, Natacha Crooks, Yu Feng, Martin Georgiev, Trin-

abh Gupta, Yige Hu, Jianyu Huang, Tyler Hunt, Youngjin Kwon, Zuocheng

Ren, Chunzhi Su, Xinyu Wang, Yuepeng Wang, Chao Xie, Hongkun Yang,

Sangki Yun, and Zhiting Zhu.

Finally, I want to thank my family for their encouragement that has

been keeping me optimistic and patient.

Yuanzhong Xu

The University of Texas at Austin

August, 2016

v

Platform-level Protection for Interacting Mobile Apps

Yuanzhong Xu, Ph.D.

The University of Texas at Austin, 2016

Supervisor: Emmett Witchel

In a modern mobile platform, apps are mutually distrustful, but they

share the same device and frequently interact with each other. This disserta-

tion shows how existing platforms, like Android and iOS, often fail to support

important data protection scenarios, and describes two systems to improve

platform-level security.

First, many data leaks in existing platforms are due to the lack of in-

formation flow control for inter-app data exchanges. For example, a document

viewer that opens an attachment from an email client often further discloses

the attachment to other apps or to the network. To prevent such leaks, we

need strict information flow confinement, but a challenge to enforce such con-

finement in existing platforms is the potential disruptions to confined apps.

We present Maxoid, a system that uses context-aware custom views of apps’

storage state to make information flow enforcement backward compatible.

Second, apps’ abstraction of data has diverged from platforms’ abstrac-

tion of data. Modern mobile apps heavily rely on structured data, and rela-

tional databases have become the hub for apps’ internal data management.

vi

However, in existing platforms, protection mechanisms are coarse-grained and

have no visibility to the structures of apps’ data. In these platforms, access

control is a mixture of coarse-grained mechanisms and many ad hoc user-

level checks, making data protection unprincipled and error-prone. We present

Earp, a new mobile platform that combines simple object-level permissions and

capability relationships among objects to naturally protect structured data for

mobile apps. It achieves a uniform abstraction for storing, sharing and effi-

ciently protecting structured data, for both storage and inter-app services.

vii

Table of Contents

Acknowledgments v

Abstract vi

Chapter 1. Introduction 1

1.1 Information flow control . 3

1.2 Abstraction for structured data 4

Chapter 2. Background 7

2.1 Software architecture . 8

2.2 Inter-app communication . 10

2.3 Basic security model and enforcement 12

Chapter 3. Maxoid: transparently information flow confinement 19

3.1 Motivation and overview . 22

3.1.1 Private and public state in Android 22

3.1.2 Case studies . 23

3.1.3 Information flow tracking and challenges 27

3.1.4 Overview of Maxoid . 29

3.1.5 Threat model . 31

3.2 State model and Maxoid architecture 32

3.2.1 Confining delegates by custom views 35

3.2.2 Evolving views of private state 37

3.2.3 Public state and volatile state 39

3.2.4 IPC and initiator policy specification 42

3.2.5 Maxoid system architecture 43

3.3 File system . 44

3.3.1 Files in Maxoid views 44

viii

3.3.2 Implementing Maxoid views with Aufs 45

3.4 System content providers . 50

3.4.1 System content providers in Maxoid 50

3.4.2 SQLite copy-on-write proxy layer 52

3.4.3 Modifications to content providers 56

3.5 API and implementation . 57

3.5.1 API summary . 57

3.5.2 Tracking app execution context 59

3.5.3 User interface . 60

3.6 Maxoid use cases . 61

3.7 Performance . 63

3.7.1 Microbenchmarks . 64

3.7.2 Macrobenchmarks . 65

3.8 Discussion . 67

3.8.1 Applicability to other platforms 67

3.8.2 Scope and limitations 68

Chapter 4. Earp: abstraction and protection for structured data 70

4.1 Inadequacy of existing platforms 73

4.2 Design goals and overview . 77

4.2.1 Data model . 78

4.2.2 Access rights . 79

4.2.3 Data-access APIs . 80

4.2.4 Choosing the platform 82

4.3 Data storage and protection 83

4.3.1 Data model . 83

4.3.2 Access rights . 85

4.3.3 App-defined access policies 88

4.3.4 Subset descriptors . 90

4.3.5 Object graph library . 94

4.4 Data sharing via inter-app services 95

4.4.1 Implementing a relational service API 96

ix

4.4.2 Using a relational service API 97

4.4.3 Optimizing access-control checks 98

4.5 Implementation of Earp . 100

4.5.1 Storing files . 100

4.5.2 Events and threads . 101

4.5.3 Connections and transactions 103

4.5.4 Safe SQL interface . 104

4.5.5 Reference monitor . 104

4.6 Earp use cases . 105

4.7 Performance . 109

4.7.1 Microbenchmarks . 109

4.7.2 Macrobenchmarks . 112

4.8 Applicability to Android . 113

4.8.1 Earp for Android content providers 114

4.8.2 Audio library in Media Provider 118

Chapter 5. Related work 121

5.1 Information flow . 121

5.2 Flexible access control . 123

5.3 Related techniques for other platforms 124

Chapter 6. Conclusion 127

Bibliography 128

Vita 140

x

Chapter 1

Introduction

In modern mobile platforms, mutually distrustful apps from many dif-

ferent developers run on the same device. The platform is responsible for

protecting apps from each other, treating them as different security principals.

Despite the lack of mutual trust, apps communicate and exchange data with

each other as much as they do with the platform. Individual apps are designed

for specific functions, but many common tasks require functionality from mul-

tiple apps. For example, having an email app open an attached file using a

document viewer app requires the two apps to cooperate. Moreover, many

popular apps now provide standard services for third-party apps, such as stor-

age provided by Google Drive and user authentication provided by Facebook.

Storage and authentication have traditionally been the responsibility of the

platform, but as a result of this shift, popular service apps become essential

for supporting other apps that cannot be fully trusted.

Cross-app interactions are unavoidable because some apps provide es-

sential functions. In addition to enforcing basic isolation between apps, the

platform must mediate their interactions and enforce security policies. How-

ever, with standard security mechanisms in existing platforms, enforcing de-

sired policies on cross-app interactions is often impractical or even impossi-

1

ble, because they either create burdens to developers and users or cannot be

achieved at all. Existing platforms implicitly rely on developers and users to

protect their data and determine what apps can be trusted, although in reality

apps are mutually distrustful. To demonstrate the problem, we have identified

two security challenges created by cross-app interactions.

First, inter-app data exchange increases the possibility of data leaks.

In the email attachment example, even though the email app does not inten-

tionally disclose the attachment to unauthorized parties, the chosen document

viewer might not keep it private. Our study shows that popular document

viewers often copy files to public storage which is shared by all apps; conse-

quently, any app may subsequently read and send the file’s contents to remote

untrusted parties over the network. The platform, at best, can let the user

decide whether to use the document viewer. Unfortunately, the user is often

unaware of data leaks because they are more difficult to observe than func-

tionality bugs; even if the user is aware of the risks, he or she may still use the

app in order to open a specific type of file, choosing functionality over security.

Second, apps use ad hoc data structures to represent high-level seman-

tics when they share data with each other. App-level structured data often

involve complex relationships among objects, e.g., a photo album which in-

cludes photos, some of which have textual tags. The diversity of representa-

tions and semantics forces existing platforms to enforce access control using

coarse-grained approaches, ignoring app-level semantics. An app could imple-

ment its own fine-grained checks on its ad hoc data structures, but that is

2

tedious and error-prone because of the complex inter-related objects; in real-

ity, most developers simply use the platform’s coarse-grained mechanism. As

a result, apps often get more access rights than they need, which is a violation

of the principle of least privilege [Sal74]. For example, an image filter app is

often given the permission for the entire photo gallery, even though the user

only wants to process a small subset of photos. With such coarse-grained ac-

cess control, if this app is malicious or contains security bugs, the entire photo

gallery could be subject to data leakage or damage.

Existing platforms fail to adequately address the above challenges for

cross-app interactions, and often leave data security up to individual mutually

distrustful apps, resulting in serious problems [FWM+11,EOMC11,WXWC13,

GJS14]. This dissertation presents two systems that improve the security

mechanisms in mobile platforms with respect to these challenges, giving users

and developers platform-level assurance for data security.

1.1 Information flow control

The desired security policies in many cross-app interaction scenarios

involve information-flow properties, but these platforms contain insufficient

mechanism to enforce a desired policy. For the email attachment scenario, the

user would like the attachment not to be disclosed to unauthorized parties at

any time, regardless of what apps open the attachment. However, in Android

or iOS, once the document viewer is granted access to the attachment file,

there is no restriction on what it can do with this file; it can copy the file to

3

public storage, send it to other apps or upload it to a remote server. Without

the ability to follow the flow of information, existing platforms pit security

and functionality against each other, imposing a dilemma on the user: choose

highly functional apps or choose better data security.

Maxoid [XW15] is our attempt to overcome the above limitation. Its

security mechanisms track the execution context of an app instance and enforce

information flow control. For example, when the document viewer receives a

sensitive email attachment, it enters a confined mode where Maxoid guarantees

it cannot further leak information about the attachment to unconfined apps

or to the network. A challenge is that näıvely enforcing strong confinement

can cause serious disruptions to existing apps, making the system unusable.

Maxoid addresses this challenge by using a technique we call custom views of

state, which creates multiple versions of data when necessary to make the con-

finement transparent. Maxoid has strong secrecy and integrity guarantees for

both the app that shares data (e.g., the email client) and the app that receives

data (e.g., the document viewer), without introducing complex programming

models.

1.2 Abstraction for structured data

Apps’ abstraction of data has diverged from platforms’ abstraction of

data. Internally, mobile apps heavily rely on structured data managed by

relational databases, such as SQLite in Android and the SQLite-based li-

brary—Core Data—in iOS. However, the platforms’ security mechanisms are

4

coarse-grained and have no visibility to these structures; today, access control

in mobile platforms is a mixture of basic coarse-grained mechanisms based on

the traditional byte-stream abstraction inherited from UNIX (used for files,

pipes, etc.), and ad hoc user-level checks spread throughout different system

utilities and inter-app services. Each app presents an ad hoc API with ad

hoc access-control semantics, different from those presented by the platform

or other apps. This leaves apps without a clear and consistent model for man-

aging and protecting access to users’ data and leads to serious security and

privacy vulnerabilities.

Earp [XHK+16] is a system we propose to make platform-level secu-

rity mechanisms support apps’ abstraction of data. It exposes the relational

model as platform-level uniform APIs for both storage and inter-app services,

with structure-aware data protection. Being structure-aware means not only

supporting fine-grained object-level access control, but also faithfully captur-

ing the relationships among objects. Earp introduces capability relationships

which are implied in the app’s data model; for instance, having access to a

photo album may transitively confer access to all photos contained in it. Ca-

pability relationships also make permission management feasible and efficient

when access control is fine-grained.

Earp’s unifying data-access abstraction is a subset descriptor. Subset

descriptors are capability-like handles that enable the holder to operate on

some rows and columns of a database, subject to restrictions defined by the

data owner. Subset descriptors can also be downgraded and transferred to

5

other apps. Moreover, capability relationships require transitively computing

access rights which can be expensive, but by keeping computed access rights in

subset descriptors that are created at run time, Earp avoids recomputing them

on each operation, thus making both querying and access control efficient.

6

Chapter 2

Background

Like traditional operating systems such as UNIX, mobile platforms

manage hardware resources, and provide common services allowing different

apps to share the device. In fact, these platforms do use UNIX-like ker-

nels—Android uses a customized Linux kernel, and iOS uses XNU, the kernel

which is also used by Darwin.

The basic security model in traditional desktop OSes is motivated by

the problem that different users may share the same machine. In this model,

users are the security principals, and the kernel has a reference monitor that

allows users to keep some of their files private while share some other files with

other users.

In contrast, a mobile device typically has only one user, but he or

she installs apps from many different companies and individual developers.

There is no guarantee that these apps are trustworthy in terms of protecting

the user’s data. In reality, buggy, curious or even malicious apps have been

causing serious security problems [HHJ+11, ZJ13]. As the principle of least

privilege [Sal74] suggests, the platform needs to limit the access to user data

and system resources for different apps, in order to reduce the amount of

potential harm done by these apps. As a result, apps become the security

7

principals, and they carry different access rights to data and system resources.

Mobile platforms provide rich APIs, which include not only the inter-

faces for physical device features such as sensors and cameras, but also stan-

dard ways to manage data with certain high-level semantics, such as photos and

contact information. These semantics are typically considered as application-

level concepts in desktop OSes, but in mobile platforms they are provided as

standard platform APIs.

This chapter discusses software architecture, inter-app communication

and security mechanisms in existing mobile platforms.

2.1 Software architecture

Figure 2.1 schematically shows the software architectures of several

existing mobile platforms, with a comparison to desktop operating systems like

UNIX or Linux. From an application’s point of view, UNIX-like OSes provide

a simple abstraction. Storage and communication share a unified byte-stream

data model, with files and IPC channels such as pipes and sockets accessed via

file descriptors [RT74]. The file descriptor API is implemented in the kernel,

programs access storage and communication via system calls. The in-kernel

reference monitor enforces access control at the granularity of an entire file or

IPC channel.

Native mobile platforms. Native platforms are those where an app can

be compiled into native code that directly runs on the device, without the

8

DOM

access control
coarse-grained

app sandbox

contacts files

JavaScript Engine

Browser Runtime

access control
granularity: per file

virtual file system

app process

syscalls

ext4, ...

app process
Framework libraries:

SQLiteXML

IndexedDB

UNIX/Linux Android Firefox OS

access control
granularity: per file

virtual file system

ext4, ...

syscalls

Figure 2.1: Comparison of software architectures in UNIX/Linux, Android,
and Firefox OS.

requirement of a runtime. Although Android apps are typically written in

Java and run in the Dalvik VM (a customized Java virtual machine), they

may also include parts written in native-code languages like C and C++1,

which can directly make system calls to the kernel. Threfore, Android does

not rely on the Dalvik VM to enforce security policies.

Besides raw files, Android has other standard data storage APIs such as

databases and key-value stores. However, they are implemented as app-level

libraries such as SQLite and XML. In Android, an app runs in its own process

and has control of its entire user-level address space, so access control checks

for storage need to be done in the kernel. From the kernel’s point of view,

databases and key-value stores are just files containing unstructured bytes.

Consequently, the in-kernel reference monitor has no visibility into the internal

structures of apps’ data and cannot provide row- or column-level access control

1https://developer.android.com/ndk/index.html

9

https://developer.android.com/ndk/index.html

or consider inter-object relationships when making access-control decisions.

Similarly, iOS provides Core Data2, a set of structured APIs for apps to manage

and persist their data, but the structure of the data is not visible to the

privileged reference monitor.

Browser-based mobile platforms. Several modern platforms support mo-

bile apps purely written in Web code such as HTML5 and JavaScript, includ-

ing Firefox OS, Google Chrome, WebOS, Tizen, Windows Runtime Apps and

Ubuntu Touch. Their platform-level APIs expose database storage and high-

level resource abstractions such as “calender”, “contacts” and “photo gallery”

to apps; the implementation of these APIs is typically based on a customized,

UI-less browser runtime. The browser runtime enforces access control checks

for apps, since it cannot be bypassed by Web apps. Such enforcement is usu-

ally coarse-grained, e.g., at the granularity of the entire collection of contacts.

From the app’s viewpoint, a call to a platform API is more like a system call

than a traditional library call. The platform thus acts like the OS.

2.2 Inter-app communication

Modern mobile apps cooperate with each other and form an app ecosys-

tem. To facilitate this trend, mobile platforms provide ways for apps to com-

municate.

2https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/

CoreData

10

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/CoreData
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/CoreData

Foreground communication and invocation. Existing platforms allows

a running app to invoke another app, with data attached to the invocation.

This typically brings the invoked app to foreground. In Android, the invocation

mechanism is called intents ; an intent describes an invocation, which is first

passed to Android’s Activity Manager Service and then routed to a suitable

receiving app. In iOS, invoking an app can be done by sending a URL that

has a scheme registered by the app. In Firefox OS, a similar mechanism is

called MozActivity.

Sharing via background services. Android supports inter-app data shar-

ing via content providers3. A content provider is an app component that imple-

ments a background service that allows apps to read and write data. Android

defines a standard, database-like API for all content providers, with operations

including query, insert, update, and delete. Data in a content provider is iden-

tified by a content URI with optional query parameters. Despite the common

API, the backend of a content provider can be implemented in arbitrary ways,

e.g., using files, databases, or in-memory data structures.

Firefox OS allows an app to define a background service with inter-app

message ports, which can send and receive JavaScript objects. Unlike Android,

it does not define standard high-level APIs for such services.

In comparison, inter-app sharing in iOS is much more limited. Two

3https://developer.android.com/guide/topics/providers/

content-provider-basics.html

11

https://developer.android.com/guide/topics/providers/content-provider-basics.html
https://developer.android.com/guide/topics/providers/content-provider-basics.html

independent apps cannot directly share data via the file system or background

services. Instead, sharing often requires foreground operations and user in-

volvement (e.g., choosing a file and invoking another app to open it), even

with the app extention mechanism that allows a small set of UI elements to

interact with other apps. Sharing may also be accomplished via copying to a

system-wide shared API like the photo gallery.

2.3 Basic security model and enforcement

The security model in mobile platforms are app-centric. Apps are con-

sidered to be different principals, and the platform enforces access control in

terms of what resources an app can access.

Private and public state. A high-level way to view data stored in a mobile

platform is to differentiate private state owned by individual apps from public

state shared among apps.

Private state is the data accessible to only the owning app. An app

has full control over its private state, and can access it without explicit per-

missions. Note that although such state is private, nothing prevents the app

from intentionally sharing its data to another receiving app if this is desired,

e.g., sending via an invocation.

Allowing apps to have private state is essential to support the app-

centric security model. An app may be entrusted by the user only for a specific

task, and the user may want to keep the data related to the task private to that

12

app; from the developer’s point of view, it is also desired to protect the app’s

data from being accessed by untrusted apps or competing companies. For

example, the Gmail app is expected to manage the user’s emails and access

Google account information, but not to access data owned by the Facebook

app. The two apps can simply keep their sensitive data private.

In native platforms like Android and iOS, an app’s private state is

usually a dedicated file directory, and the kernel ensures that it is by default

only accessible to the owning app—Android assigns unique UIDs to apps and

uses file permissions in Linux, while iOS uses a sandbox supported by its

kernel that can confine an app’s access to the file system. Structured APIs

like databases are provided as libraries, and they use file-backed storage; the

platform considers them as raw files when enforcing access control. In Browser-

based platforms, private state includes some HTML5 storage APIs such as

IndexedDB, and access control is enforced by the browser runtime.

Public state includes standard storage APIs available to all apps, such

as file storage on an SD card, the user’s contact list and photo gallery. Ac-

cess to such resources typically requires platform-defined permissions for the

app. Enforcement of access control is usually specific to platforms and the

implementation of these shared resources.

In fact, some shared resources are implemented in built-in apps, e.g.,

the photo gallery in Android is part of the Media Provider app. Depending on

the context, we can either think that the gallery app is part of the platform,

or that it is an app that shares data to other apps. Chapter 3 chooses the

13

former interpretation while Chapter 4 chooses the latter, because they focus

on problems from different perspectives.

Permissions. Mobile platforms associate system resources with permissions.

An app carries a list of permissions that are granted either upon installation

or at run time as approved by the user. For example, an app requires cor-

responding permissions in order to access cameras, sensors, SD card storage,

photos, and contacts. Despite the significant difference among these resources,

the simple permission mechanism works for them in the same coarse-grained

manner—it simply accepts or denies any request to the resource by checking

the associated permissions without interpreting any high-level semantics.

In iOS, apps need to request permissions at run time, by showing

prompts to the user. In earlier versions of Android, permissions can only

be granted at install time. That means an app specifies a list of permissions in

its package manifest, and the user has to accept all of them in order to install

it. This design was aimed at improving user experience by avoiding permission

prompts. However, beginning in Android 6.0, apps can request critical per-

missions at run time, at the granularity of permission groups4, and the user is

allowed to revoke them. On the other hand, iOS historically requires run-time

permission granting.

Some platforms also allow an app to define its own permissions when

sharing its data to other apps. For example, an Android app can define a

4https://developer.android.com/training/permissions/requesting.html

14

https://developer.android.com/training/permissions/requesting.html

content provider to serve data for other apps, but may require the other apps

to obtain a permission it defines.

Access control in Android content providers. Android’s content provider

mechanism is relatively complex, and deserves detailed discussion here. An app

can statically define permissions required for other apps to access its content

provider, specified in its manifest—an XML file that comes with the app’s dis-

tribution package. It can define read/write permissions for the entire content

provider, or separate permissions for different subsets identified by different

URI paths. However, even with path-level permissions, such permissions are

still limited to coarse-grained categories (e.g., Media Provider could use differ-

ent path-level permissions for images, audio and video, although in fact it only

uses a single permission for them all) because it is impossible to assign differ-

ent permissions to dynamically created objects, nor specify custom policies for

different client apps.

Android also has another mechanism5 for fine-grained, temporary ac-

cess granting. However, although Android calls it “URI permissions”, it is not

a way to specify or enforce security policies; instead, it can be considered a

run-time capability-passing mechanism, similar to passing a file descriptor to

another process in Linux. Android mostly uses them to involve the user in

access-control decisions; for example, when the user clicks on a document and

5https://developer.android.com/guide/topics/security/permissions.html#uri

15

https://developer.android.com/guide/topics/security/permissions.html#uri

system_server process
(multi-threaded)

client app process content provider (CP) app

Kernel

Binder

content resolver

framework libraries framework libraries

Activity
Manager
Service
(AMS)

run-time
app info

Package
Manager
Service
(PMS)

static
app info4. check permission

for operation.

content provider impl
(query, insert, update, delete)

Binder ref.

2. (First time only) If client has no Binder reference object for the content
provider, ask AMS to get one. AMS performs optimistic permission checks.

1. app queries.

3. invokes CP. 5. query AMS for
permission info.

6. query PMS for
permission info.

7. invoke CP
implementation.

Figure 2.2: Android apps communicate using a content provider.

chooses an app to open it, a URI permission for this document is dynamically

passed to the receiving app.

In Android, low-level inter-process communication (IPC) is based on

Binder, a kernel-level mechanism that implements a remote procedure call

(RPC) framework for different app processes or threads to invoke each other.

Android’s customized Linux kernel contains a driver for Binder. In a Binder

connection, the client process holds a Binder reference object. Reference ob-

jects cannot be constructed by the client itself, but they can be passed to

other processes like file descriptors. Binder is used by the content provider

framework.

All running apps have been initialized with Binder connections to core

system services, such as Activity Manager Service and Package Manager Ser-

16

vice, which typically run in a multi-threaded process named systerm_server.

Figure 2.2 illustrates how a client app communicates with a content

provider and how access control is enforced. The processes of these two apps

directly communicate via the Binder mechanism, on top of which Android’s

framework libraries implement the content provider interface. The client-side

interface is called a content resolver, which translates the app’s queries to

low-level Binder calls.

The content resolver first checks if a connection has been established

with the content provider. If not, it invokes Activity Manager Service to get

a Binder reference object for the content provider. Activity Manager Service

performs preliminary, optimistic permission checks—if there is any chance that

the client may be permitted to access the content provider regardless of what

operation it may use, Activity Manager Service passes a reference object to it.

If the connection has been established, the content provider is invoked using

the connection.

On the service side, when a Binder request is received, the content

provider’s library code first retrieves low-level credentials (e.g., UID and PID)

about the calling app process as provided by the kernel, then invokes Activity

Manager Service to query whether the requesting process has the required

permission to perform the requested operation. Activity Manager Service has

run-time information about all app processes, and it may also communicate

with Package Manager Service to get static information about different apps’

permissions. If the request passes the permission check, the library code calls

17

the app-specific implementation of the content provider, then returns result.

We summarize the security mechanisms for content providers.

• Permissions are static and coarse-grained. For example, Android’s

built-in Contacts Provider defines two permissions in its manifest, for reading

and writing the entire contact database, respectively.

• Run-time capability passing can be fine-grained, but the decision

whether to pass a capability is up to the app. For example, an app that has

access to Contacts Provider can pass the capability for a specific contact to

another app, but it needs to decide whether this should happen, e.g., whether

this is permitted by the user.

• Access checks are performed by framework library code that runs in

the same process as the content provider app, with reliable request information

provided by the kernel and system services (Figure 2.2).

18

Chapter 3

Maxoid: transparently information flow confinement

For mobile apps, the tension between the diversity of providers and the

goals of a seamless mobile experience creates a security problem. Apps from

different developers must work together, but they have no reason to trust each

other. Mobile platforms like Android and iOS provide app-centric security

models where apps are treated as different principals, to protect each app’s

private data, and control each app’s access to shared data by specifying a

variety of permissions (Section 2.3). However, such an intuitive model is not

sufficient to protect confidentiality or integrity for common scenarios where

the user would like two or more apps to cooperate on sensitive data.

For example, email apps must invoke external programs to view at-

tachments, cloud storage apps must invoke external editors, and a comparison

shopping app may need a bar code reader app. In these examples, data ex-

change happens across apps. From the app-centric security perspective, it is

desirable to keep the data private to the original owning app (email, cloud stor-

This chapter is based on previous publication [XW15]“Maxoid: Transparently Confining
Mobile Applications with Custom Views of State”, by Yuanzhong Xu and Emmett Witchel,
in the 10th ACM European Conference on Computer Systems (EuroSys), Bordeaux, France,
April 2015. My contributions to this publication include investigating data leakage problems
in Android, designing the Maxoid state model, implementing the Android-based prototype,
building use cases and evaluating performance overheads.

19

age, shopping); however, the owning app does not have sufficient functionality

to process the data. We call the app that needs to invoke other helper apps

the initiator and the invoked app the delegate, and we say that the delegate

runs on behalf of the initiator. In existing platforms, once the initiator shares

sensitive data with the delegate, it has no control on how the delegate uses

the data. For instance, the delegate may copy the initiator’s sensitive data to

public storage (see Section 3.1.2).

The app-based security model in modern mobile systems allows a new

balance of usability and security for initiator and delegate apps that is not

available to desktop or server systems. Based on the clear distinction of apps’

private and public (shared) state, it is possible to reason about security require-

ments for inter-app cooperation with fairly simple, coarse-grained information

flow mechanisms that require little or no change to existing apps and without

requiring new, complex policies.

We propose Maxoid1, a new security model that provides secrecy and

integrity for cooperating apps. We have built a prototype of Maxoid by modi-

fying Android 4.3.2. Maxoid allows delegates to access initiator private state,

but prevents delegates from leaking these secrets to other apps or transfer-

ring them over the network; delegates may update initiator private state or

public state to return results, but Maxoid allows the initiator to selectively

commit or discard those updates to prevent unwanted modifications by dele-

1The name is a contraction of The Matrix and Android, because Maxoid composes a
custom reality for delegates on Android.

20

gates. Conversely, Maxoid also protects delegates by disallowing the initiator

from reading or writing its delegates’ private state.

Maxoid achieves its security goals while minimizing disruption to del-

egates by presenting different views of private and public state to initiators

and delegates. A delegate’s view transparently confines its access to persistent

state like files and data in system content providers (e.g., Media). Delegates

can still access resources to which they have permission (except the loss of

network connection when the confinement begins), without violating Maxoid’s

security properties. Controlling views of state, e.g., by using a union file sys-

tem and a copy-on-write SQL proxy, transparently provides a coarse-grained

mechanism to control information flow.

Maxoid prioritizes backward compatibility and ease of adoption. It is

fully compatible with legacy Android apps when the new Maxoid features are

not used for them. Even when being used to confine delegates, Maxoid can be

completely transparent, i.e., it can support unmodified delegate apps with full

security guarantees. It also provides simple (often optional) APIs for develop-

ers to improve usability. For example, some of a delegate’s data may be cleared

by Maxoid for transparency by default, but it may alternatively use Maxoid

APIs to keep persistent state, like a list of recently accessed files. However,

this state is only accessible when the delegate is run by that same initiator.

Thus, a PDF viewer that runs on behalf of an email client can have previous

email attachments in its recently opened list, but these attachments will not

be visible when the PDF viewer does not run on behalf of the email client.

21

Finally, Maxoid has negligible overhead for initiators compared to unmodified

Android; for delegates, it adds a small overhead for most operations though it

slows down certain worst-case microbenchmarks.

3.1 Motivation and overview

This section describes the private and public state in Android, problems

found in case studies, how a näıve information flow control solution suffers from

poor usability, and an overview of Maxoid.

3.1.1 Private and public state in Android

In Android, each app is assigned a dedicated UID, which isolates apps

from each other. An app’s private state includes shared preferences,2 internal

file storage, and private SQLite databases. All of them are stored as private

files of the owning app, with the interface to the key-value store and database

provided by user-level libraries.

Public state includes external file storage (e.g., SD card) and system

content providers (Downloads, Media, User Dictionary, Contacts, etc.). Sys-

tem content providers are implemented as built-in apps, but we treat them as

part of the Android platform in this chapter, because they provide essential

standard APIs for data storage (Section 2.3).

In earlier versions of Android, an app can either have no access to

2 Though called shared preferences, it is actually a private key-value store, see http:

//developer.android.com/guide/topics/data/data-storage.html.

22

http://developer.android.com/guide/topics/data/data-storage.html
http://developer.android.com/guide/topics/data/data-storage.html

public state

BAinitiator

delegate

C D
other apps

invoke

co
py

network

Figure 3.1: A delegate app (B) can cause leakage of data from an initiator
app (A), by copying it to other apps and the public state, or sending over the
network.

external storage, or have access to all files on it. Starting from Android 4.4, an

app may have partial access to external storage; each app is granted access to

a dedicated directory without explicitly asking for permission. However, apps

with permission for external storage can still access all files on it. Therefore,

we still consider the entire external storage as public state.

3.1.2 Case studies

We analyze the behavior of some popular Android apps that collabora-

tively execute while sharing sensitive data. We categorize these apps into two

types: 1) data processing apps, which can be typically used as delegates, and

2) apps that need help from data processing apps, which can be used as initia-

tors. One theme that emerges is that Android’s access control model provides

no information flow control on sensitive data, which limits how effectively it

can enforce security protections. Figure 3.1 is an high-level illustration of how

data leaks can happen in a typical initiator-delegate scenario.

23

Category
of Sample

Operation
State left after the operation

Apps App Private state Public state

Document
viewer,
editor,
converter

17

Adobe open a file
via a URI

XML:
File copy on SD card.

Reader recent files.

Kingsoft
Office

open a file
via a URI

ADF:
recent files.

File copy on SD card.
A thumbnail on SD card.
Entries in a DB on SD card.

Scanner
20

Barcode scan a QR
code

DB:
Scanner recent scans.

Cam
Scanner

scan a file
DB:
recent scans.

Image saved to SD card.
Thumbnail on SD card.
Log file on SD card.

Photo 30
Camera
MX

take a photo
Photo saved to SD card.
Entry in Media Provider.

edit a photo Entry in Media Provider.

Media 10 VPlayer play a video
DB: playback
history.

Thumbnail on SD card.

Table 3.1: State left after apps process their target data. In the private state
column, XML indicates state saved in the shared preference key-value store;
DB indicates state saved in an SQLite database; ADF indicates state saved in
files with app-defined formats.

Data processing apps. We manually study 77 popular Android apps for

processing different types of data, such as documents, media files, and QR

codes. These apps are selected based on popularity and relevance from Google

Play. We find that, after processing data, these apps leave traces of that

data that can be accessed by other apps. Table 3.1 summarizes how different

classes of apps leak state. Currently, there is no careful control of state at the

application level, so Maxoid aims to provide it at the system level.

Apps that need help of others. We analyze four Android apps that need

the help of other apps.

24

I. Dropbox. Dropbox hosts the user’s files, but has very limited support

for processing files. When the Dropbox app fetches a file from its server, it

saves the file to a directory in public external storage to allow other apps

to open it. Therefore, the Dropbox client does not provide privacy on its

files. Whenever another app changes a file, Dropbox automatically syncs this

change to its server, even if this change is unintended. This behavior provides

no integrity for Dropbox’s files.

II. Google Drive. Google Drive is similar to Dropbox, but 1) it caches

downloaded files in its private internal storage; 2) it can save encrypted files

to external storage for offline access, which will be decrypted and cached in in-

ternal storage when the user opens them. Google Drive makes internal cached

files world-readable to allow other apps to open, but the path names include

random strings and other apps cannot list entries in the parent directory. Thus

invoked apps only know how to access specific files that Google Drive discloses

to them via invocations. However, they can leak information about the files

that have been disclosed to them. (see Table 3.1).

III. Email. Emails often contain attachments. By default, Android’s

built-in Email app saves an attachment file in its private internal storage for

security. The user can explicitly save an attachment to external storage and its

metadata to the Downloads provider. To allow another app to open the private

internal file, Email uses Android’s per-URI permissions: it defines a content

provider that maps a content URI to an attachment file, then invokes the

other app with the corresponding URI, and sets the flag FLAG_GRANT_READ_-

25

URI_PERMISSION. Now the invoked app can open this URI to get a Parcel-

FileDescriptor. The actual file is still opened by Email’s process, but the

file descriptor is passed to the invoked app. This mechanism only grants the

invoked app one-time permission on the single file. However, the invoked app

can still copy this file to its private state or public state (Table 3.1).

IV. Browsers. Chrome and Android’s built-in Browser app support

incognito mode to avoid leaving traces about the user’s browsing history on

the device. However, neither browser supports incognito download. In an

incognito tab, a user-downloaded file will be saved to external storage and

added to the Downloads provider, which maintains index and metadata for

downloaded files. Even if the browsers were modified to store the files in private

internal storage, and adopt a per-URI permission approach to allow other apps

to open them, the same problems would still exist as with Email, since the

browsers cannot erase data left by other apps. Even a browser with perfect

incognito mode would not address the safety of input data. For example, if

the user reads a URL from a QR code scanner app and opens it in a browser,

the browser’s incognito mode cannot erase the data’s history in the scanning

app.

In summary, the fundamental problem with app collaboration in An-

droid is a lack of an information flow security mechanism that would allow

another app to receive sensitive data, but then limit the receiving app’s ability

to communicate once it has read that data.

26

3.1.3 Information flow tracking and challenges

Additional information flow control mechanisms are needed to secure

the use cases in Section 3.1.2. A potential solution is to perform taint tracking

on apps’ private data. The system allows one app to send its private data to

another app, but the data is labeled as tainted. Then the receiver is confined

such that any of its data depending on the received data will also be tainted,

and disallowed from being written to public storage or the network. This

approach is in line with previous decentralized information flow control (DIFC)

systems.

Difficulty in programmability. Typical DIFC systems are not designed

to be backward compatible with legacy applications. Applications need to

be re-written to comply with the security rules in those systems. Under-

standing subtle data flows makes it difficult to adapt complex applications to

fine-grained information flow tracking [EKV+05].

However, our goal is to support legacy applications. Näıvely applying

previous approaches would cause serious usability issues.

Uncontrolled taint propagation. Legacy apps often do not distinguish

public input and private input from other apps. For example, when Adobe

Reader opens a PDF file, it does not take extra care of controlling data prop-

agation if the file is a private attachment from Email; in reality, it creates an

27

entry in the list of recent files, and makes a copy of the attachment and stores

it on the public SD card (Table 3.1).

To secure this use case, a taint tracking system would need to label

the attachment as tainted, and control the propagation of data depending on

it. It may disallow Adobe Reader from writing tainted data (such as a copy

of the file) to the SD card or the network. However, such restrictions would

probably break the normal operation of Adobe Reader, because it would get

unexpected permission errors.

An alternative approach is to still allow Adobe Reader to write tainted

data to the SD card, but to keep the taint on the written data. Writing tainted

data to the network is still disallowed, because the platform cannot track taint

propagation outside the device. This approach may not directly break Adobe

Reader, but it suffers from the problem of uncontrolled taint propagation. The

SD card is a public resource, which means if other apps read tainted data on

it, they would be tainted as well. Different apps would collectively propagate

taint throughout the device, making many apps unable to write to network.

Figure 3.2 summarizes the dilemma when using such näıve information

flow tracking approaches.

Granularity of taint tracking. In general, a more fine-grained taint-tracking

mechanism tends to suffer less from usability problems caused by false posi-

tives. However, fine-grained mechanisms also tend to have more complexity

and performance overhead. TaintDroid [EGC+10] is a fine-grained taint track-

28

public state

BA
delegate

C D
other apps

invoke

co
py

network
public state

BA
initiator delegate

invoke

copy

network

C
other apps initiator

represents tainted data

Figure 3.2: Dilemma of näıvely applying information flow tracking approaches.
The approach shown on the left causes significant disruptions to the delegate
by disabling access to public state and communication with other apps; the
other approach shown on the right results in uncontrolled taint propagation
that disables many apps from accessing the network.

ing system with moderate overhead on Android, but it does not track implicit

data leakage via control flows.

3.1.4 Overview of Maxoid

To solve the above usability problems, Maxoid controls the propaga-

tion of tainted data by maintaining extra copies of data when necessary, and

presenting transparent views of these data for confined apps to keep backward

compatibility.

This technique allows Maxoid to adopt a fairly coarse-grained, conser-

vative taint tracking mechanism while remaining usable. In Maxoid, once an

app receives private data from another app, all of its outputs are considered

tainted and thus protected by creating extra copies. The coarse-grained ap-

proach avoids much of the potential complexity and performance penalty in

taint-tracking systems.

29

Definitions. Maxoid differentiates the execution context of an app instance

running on behalf of another. In Maxoid, an app can run on behalf of itself,

in which case it executes identically to how it would in Android. But if an

app executes on behalf of another app, there are system facilities to manage

information propagation.

App B’s instance running on behalf of app A is denoted as BA, where

A is called the initiator app of BA, and BA is called a delegate of A.

Like in Android, an app can declassify its private data by writing it

to public state, or sending it via IPC to other apps. Maxoid does not prevent

A from mistakenly declassifying its own private state; it prevents BA from

leaking A’s sensitive data via public writes or IPC.

Maxoid confines BA so it can safely access A’s private data. To make

the confinement transparent to BA, Maxoid creates custom views of private

and public state for BA. In these views, BA can still access a resource as

long as B normally has the permission (see Section 3.2.1).

Maxoid confinement is invocation-transitive. When BA invokes an-

other app, the invoked instance is forced to be a delegate of A, e.g., CA (see

Section 3.2.4).

Augmented delegate access right. Input to BA is even more permissive

than B’s normal execution – BA can also read A’s private state. BA can still

observe other apps’ updates to public resources after BA starts. Moreover, BA

can still write to all allowed resources, and it will read its own writes, but these

30

writes are transparently confined by Maxoid. BA does not need to know it is

executing on behalf of A, which allows Maxoid to support unmodified apps.

Network. In keeping with Maxoid’s coarse-grained design philosophy, dele-

gates are prevented from accessing the network, because Maxoid cannot control

data flow in the network. Since network disruption is common in the mobile

environment, cutting off network access is typically tolerated by apps. The del-

egate still has access to any data fetched from the network prior to its starting

to run on behalf of an initiator. When the delegate is next run on behalf of

itself (as an initiator), its access to the network is restored. Lack of network

access for delegates means that Maxoid does not support scenarios where BA

needs to send A’s private data to a server for processing (although A still has

the option to invoke B to do that insecurely as in Android). We could avoid

cutting off network access by extending Maxoid into apps’ backend services, if

they were all hosted on a trusted cloud, and preventing apps from accessing

network resources other than the trusted cloud, like in πBox [LWG+13].

IPC. Maxoid tracks and controls inter-app communication to enforce its se-

curity properties. It also allows initiators to specify their security requirements

using Android intents—Android’s inter-app invocation mechanism.

3.1.5 Threat model

Maxoid protects initiators from arbitrary malicious delegates. The del-

egate apps can be written in Java and run in the Dalvik VM, or written in

31

C and compiled as native binaries. This is because Maxoid’s security enforce-

ment is implemented in trusted system services and the kernel. Delegates can

directly access private data of their initiators, but Maxoid controls their output

to avoid data leakage and unexpected modifications.

Maxoid also protects delegates from malicious initiators. Being an ini-

tiator does not mean the app is privileged; like in Android, it is still prevented

from reading or writing private data of other apps, including its delegates.

Maxoid does not prevent an app from mishandling its own private data.

It does not stop an initiator from mistakenly leaking its own private data, or

mistakenly handling the interactions with their delegates which might com-

promise data integrity.

Maxoid assumes the operating system kernel and trusted system ser-

vices are not compromised. Side channel attacks are out of our scope.

3.2 State model and Maxoid architecture

Maxoid presents different transparent views of private and public states

to initiators and delegates. Some data in these views may have different ver-

sions; maintaining multiple versions of data is a key technique in Maxoid that

resolves the problem of taint propagation. We introduce several notations for

views of state.

• Priv(x): the view of private state for app instance x.

• Pub(x): the view of public state that Maxoid presents to x. Note that

32

this includes resources that x may not have permission.3

• Pub(all): the data shared by all apps. If x is an initiator, Pub(x) =

Pub(all).

Whether an app runs as a delegate or an initiator, it can access everything in

its view of private state, and everything in its view of public state for which

it has the corresponding Android permissions (decided at install time).

The goal of Maxoid is to improve security for A by confining BA in

such a way as to minimize disruption and code changes to Android, A, and B.

Maxoid achieves the following security goals and usability goals.

S1. Secrecy of the initiator. Only A and delegates of A can access A’s

private state. When B no longer runs on behalf of A, it cannot observe data

depending on A’s private state, unless A declassifies it, e.g., by writing it to

public state, or sending it via IPC to other apps.

S2. Integrity of the initiator. When BA updates A’s private or public

state, A has the ability to revert to the previous version. In fact, Maxoid

requires A or the user to commit BA’s update to make it the default version

for A and other apps not executing on behalf of A; otherwise, the update is

only visible to A and A’s delegates.

3 x can actually access Pub(x) ∩ Perms(x), where Perms(x) is the set of Android
permissions that x has for public resources. For simplicity, we do not explicitly mention
Perms(x) in this section.

33

S3. Secrecy of the delegate. A cannot learn the private state of BA unless

BA declassifies it.

S4. Integrity of the delegate. First, A cannot write to BA’s private state;

second, when B no longer runs on behalf of any other app, Maxoid restores

the private state as it was right before it was last started as a delegate. Having

run on behalf of other apps does not modify B’s private state.

In addition to the security guarantees, the design of Maxoid is guided

by a principle that we call minimum isolation: whenever a data flow is safe,

it should be allowed in order to minimize disruption. In addition to mini-

mum isolation, Maxoid strives to be backward compatible. Minimum isolation

guides U1and U2 , while backward compatibility guides U3 .

U1. Initial state availability. WhenBA is started, Pub(BA) and Priv(BA)

contain all data available in Pub(all) and Priv(B) up to that point. Maxoid

does not create a blank initial environment for delegates, where a delegate

would lose the user’s normal preference settings and useful data collected pre-

viously.

U2. Update visibility. First, an initiator’s update to public state can be

observed by all app instances, including delegates of any initiator. Second, a

delegate’s update to public state (e.g., Pub(BA)) should be observed by its

initiator (e.g., A) and all delegates (including itself) of the same initiator (e.g.,

34

sna
psho

t B

BA

Pub(all)Priv(A)

 Priv(BA)

Priv(B)

app instance state

app write to state app read from state

Notations

initiator
views

delegate
views

A

Vol(A)Vol(A)

Pub(BA)

Figure 3.3: Overview of Maxoid confinement. Hatching in a state box indicates
taints: Priv(A) and Priv(B) are the sources of taints, V ol(A) is tainted by
Priv(A), and Priv(BA) is tainted by both Priv(A) and Priv(B).

CA).

U3. Transparency to delegates. Maxoid should support unmodified del-

egates by maintaining the same API to access state as Android. BA is al-

ways allowed to read/write Priv(BA); BA is allowed to read/write a resource

in Pub(BA) as long as B has the permission to read/write this resource in

Pub(all).

3.2.1 Confining delegates by custom views

Figure 3.3 illustrates how Maxoid confines a delegate. Solid arrows

represent possible read/write by an app instance to a state. We describe the

confinement and show how it achieves the security and usability goals.

35

Views. For initiators, the views of private and public state are identical to

those in Android.

For a delegate BA, Priv(BA) is initialized as a snapshot of Priv(B)

(U1), and any update by BA is made copy-on-write. As a result, BA’s private

writes are confined in Priv(BA) and can not affect Priv(B) (S4).

Initially Pub(BA) consists of Pub(all) (U1) and Priv(A). By includ-

ing Priv(A) in BA’s view of public state, Maxoid naturally grants BA the

permission to access Priv(A). However, all writes by BA to Pub(BA) are redi-

rected to the volatile state of A, or V ol(A), such that BA cannot directly

overwrite Pub(all) or Priv(A) (S2).

All delegates of A share the same V ol(A), and the same view of public

state. We use Pub(xA) to denote the view for all delegates of A, where x is not a

specific app. V ol(A) is defined as the set of data written by all of A’s delegates

to Pub(xA). Pub(xA) is a transparent, merged view of Pub(all)∪Priv(A) and

V ol(A) (see Section 3.2.3).

Information flows. A directed path of solid arrows in Figure 3.3 represents

an information flow. Maxoid doesn’t use fine-grained taint tracking [EGC+10],

but enforces conservative rules to guarantee security.

1. Priv(A)→ BA → V ol(A). This indicates that V ol(A) may depend

on Priv(A), i.e., V ol(A) is tainted by Priv(A). Thus V ol(A) is only visible

to A and delegates of A (S1).

36

2. Priv(A) → BA → Priv(BA). Priv(BA) is thus tainted by both

Priv(A) and Priv(B) (Priv(BA) is initially forked from Priv(B)). Therefore,

BA is the only app instance that can access Priv(BA) (S1 , S3).

3. Priv(BA)→ BA → V ol(A), but V ol(A) is not tainted by Priv(B),

because V ol(A) is part of Pub(BA) and BA already declassifies the writes to

V ol(A), i.e., removes the Priv(B) taint; however, it has no power to remove

the Priv(A) taint on V ol(A). Maxoid, like Android, considers every write by

x to Pub(x) a declassification.

4. V ol(A) ↔ A, A can observe and control its delegates’ updates to

Pub(xA) (U2).

5. A cannot read or write Priv(BA) (S3 , S4).

Transparency (U3). The security properties (S1 - S4) are automatically

enforced by Maxoid presenting BA custom views of state. BA can still read/-

write data in Priv(BA) and Pub(BA), without extra app logic to obey security

rules.

3.2.2 Evolving views of private state

History of a delegate’s private state. When BA starts, Priv(BA) is

forked from Priv(B), as required by initial state availability (U1). When B

no longer runs on behalf of A, its private state is resumed to the version that

was forked. If B makes updates to Priv(B), then Priv(BA) and Priv(B) will

diverge. The next time BA runs, Maxoid cannot merge them.

37

In that case, if B is not aware of Maxoid, to maintain transparency,

we could either 1) discard the old Priv(BA), and fork from Priv(B) if it

diverges from the old Priv(BA); or 2) keep using the old Priv(BA). Either

way, some updates are invisible to BA, although it is safe to let BA see them.

We choose the first option, for several reasons. First, the user can update

his/her preferences while normally using B, and those updates will be in effect

when he/she uses B as a delegate of any other app; second, BA does not have

network access but B could fetch data from the Internet, thus Priv(B) may

contain resources that BA cannot obtain. Note that Priv(BA) will not be

discarded when B is consecutively invoked as a delegate for any initiator.

Persistent private state. Nevertheless, if the delegate app is aware of Max-

oid, it can use a Maxoid API to improve its usability. Maxoid splits a delegate’s

private state into two parts: 1) the normal private state as in Android,

nPriv(BA), and 2) the persistent private state, pPriv(BA).

nPriv(BA) will be discarded if it diverges from Priv(B), and will be

reforked from it. pPriv(BA) will not be discarded (unless A explicitly requests

so), and BA can use it to store data that is persistent across invocations even

if B updates Priv(B) between invocations of BA. For different initiators, del-

egates have different isolated views of persistent private state, e.g., pPriv(BA)

and pPriv(BC) are isolated. Figure 3.4 demonstrates how pPriv and nPriv

evolve over time.

pPriv is a new API to delegates which is not transparent. However,

38

Time (invocations)

B
Priv(B)

=n1

nPriv(BA)
=n2

nPriv(BA)
=n1

Priv(B)
=n0

pPriv(BA)
=p0

pPriv(BA)
=p1

nPriv(BA)
=n3

pPriv(BA)
=p2

Priv(B)
=n3

BA
discarded

B

nPriv(BA)
=n4

Priv(B)

nPriv(BA)

pPriv(BA)
BA

Figure 3.4: Normal and persistent private states evolving over time. A solid
box is an app instance running for a period. An ellipse shows the value (version
number) of a state before or after an invocation.

this API is optional, and exists only for improving usability. For instance, if a

document viewer runs normally, it can store entries of recent files in a database

that belongs to its normal private state. If it runs on behalf of another app, it

can store the entries in a database that belongs to its persistent private state;

other unimportant updates like cache files can still be stored in the normal

private state. When it is started as a delegate, it can generate a list of recent

files merged from both databases.

3.2.3 Public state and volatile state

In Android, a public resource can be located via a file name or a URI

(for content providers), which we refer to as a name. The entire public state

can be viewed as a set of name-value pairs.

Maxoid needs to create extra volatile copies of data when delegates

write to their views of public state, to prevent Pub(all) from being tainted.

Maxoid does not take a full snapshot of the entire Pub(all) when a delegate

39

starts. Instead, it adopts a unilateral per-name copy-on-write mechanism.

If none of A’s delegates has updated a public resource, the same copy

of this resource is shared in both Pub(xA) and Pub(all); BA can see updates

to this resource by initiators. Once a delegate of A updates a public resource,

Maxoid creates a volatile copy of this resource for all delegates of A. From

this point on, BA only sees the volatile copy and cannot observe the updates

from non-delegates, until A removes this volatile copy; however, this does not

affect other resources.

This copy-on-write mechanism is unilateral, because it only happens

for writes from delegates. With this mechanism, delegates of A may observe

some resources updated themselves, but some other resources updated by ini-

tiators. If the two sets of resources have dependencies, consistency issues might

occur. However, inconsistencies in public resources are common in Android

because they are rarely protected by system-wide locks. At minimum, Maxoid

guarantees that all of A’s delegates can read their writes.

We do not use full snapshots of Pub(all), for two reasons. First, cre-

ating a full snapshot for a delegate would make it unable to observe later

updates from initiators to any resource in Pub(all), which is a violation of

update visibility (U2). Second, full snapshots are expensive, because they re-

quire making copies whenever any initiator writes to the public state. Instead,

Maxoid minimizes performance overhead for the normal initiator mode.

40

Naming of resources in different views. When a delegate BA updates a

resource in public state, Maxoid forks the resource, keeping both the original

and the updated versions of the resource.

• All delegates of A see only the updated version with the original name,

as part of Pub(xA). This guarantees delegates that they will read their

writes.

• A sees both versions. The original version keeps the original name, as

part of Pub(all). The updated version is given a different name, as part

of V ol(A).

Commit and clean-up. Data in the volatile state can be retrieved by the

initiator with names in a special pattern, i.e., a “tmp” in the path name or

the URI. Often, the initiator A (e.g., Dropbox) only wants BA (an editor) to

change one or a few files, but BA may also generate side effects like cached

copies and metadata saved to databases. The desired and undesired changes

to public state by BA all belong to V ol(A). A can selectively commit the

desired change by copying it from V ol(A) to a non-volatile place. After that,

A can discard the entire V ol(A) conveniently because of the fixed naming

pattern, to clean up undesired changes. The commit operation can be done

by the user manually, or by adding functionality to the initiator for a better

user experience.

41

3.2.4 IPC and initiator policy specification

Android’s inter-process communication is based on the native Binder

IPC. However, the direct use of it is typically for intra-app, and app-to-system-

service communications. Background inter-app communication using content

providers is also based on Binder.

In Maxoid, direct Binder IPC for a delegate is restricted to its initiator,

other delegates of the same initiator, and trusted system processes.

Intent. Inter-app invocation is done with a higher-level API, intent. An

app uses an intent to invoke another app: the intent describes an invocation

and is passed to Activity Manager Service (via Binder IPC), which finds the

suitable target app component and routes the intent to it. The intent itself

may contain the sender’s sensitive data, or a URI/path name to some sensitive

data.

Invocation-transitivity. When BA invokes app C, the invoked instance is

forced to be A’s delegate, i.e., CA. Therefore, BA cannot leak data in Priv(A)

via IPC; it can only invoke A or delegates of A (S1). Also, since Maxoid

does not stop the invocation, BA is not disrupted (U3). Similarly, broadcast

intents from BA are only delivered to A and delegates of A.

If initiator C invokes app B, the invoked instance can only be either B

on behalf of itself or BC ; C cannot invoke BA to steal Priv(A) from the result

of the invocation (S1).

42

Specifying invocation type. When initiator A invokes another app, it can

specify whether the invoked app will be started normally (on behalf of itself)

or as a delegate of A. If an invocation contains or points to A’s data that A

thinks needs protection, it should invoke the target app as a delegate. Maxoid

has two ways for an initiator to specify this intention, and the details will be

discussed in Section 3.5.1.

Maxoid also allows the user to start a delegate BA without A’s explicit

invocation if this is the user’s intention. The user can specify this intention

with the user interface of the system’s Launcher (Section 3.5.3).

Maxoid does not support nested delegation. If BA specifies to in-

voke C as B’s delegate, that invocation will fail, because BA can only invoke

delegates of A.

3.2.5 Maxoid system architecture

The system architecture of Maxoid is shown in Figure 3.5. It has new

components in Android’s Activity Manager Service and kernel to track the

context of apps (e.g., what initiators they run on behalf of) and intent IPC be-

tween them, and choose the correct context for a new invocation (Section 3.2.4,

Section 3.5.2). Other components implement Maxoid view switching for file

system (Section 3.3) and system content providers (Section 3.4). Zygote is the

parent process in Android that forks all app processes, which preloads common

Java classes and resources, to speed up application launching.

43

Private
mount

namespace

Dalvik VM

SQLite
COW proxy

System
content
provider

Dalvik VM

SQLite
COW proxy

System
content
provider

Kernel AufsProcess context tracking

Dalvik VM

Zygote Aufs branch manager

Dalvik VM Dalvik VM

System services

Activity Manager
Service

App context/Intent
tracking SQLite

COW proxy

System
content
provider

App 1
modifications

Private
mount

namespace

Dalvik VM

App 2

Figure 3.5: Maxoid system architecture. Gray boxes are new components or
modifications to Android.

3.3 File system

This section explains how Maxoid manages different views of the file

system.

3.3.1 Files in Maxoid views

An app can access private and public files in the same way as it does

in Android. It uses regular path names, and Maxoid achieves security trans-

parently by presenting it the correct view of files. In addition, an initiator A’s

volatile state V ol(A) is a new concept in Maxoid, and files in it can be located

by A in a tmp directory under the mount point.

Figure 3.6 illustrates a scenario involving A, BA and another app X,

which all read/write some files. Each of them has its own view of these files.

Files in Pub(all) are visible to all three app instances, and they have the same

view of these files, until BA’s write causes unilateral copy-on-write. BA can

44

A's private file file changed by BA
public file

a

b

c

c

tmp/c

a

b

c

a

b

c

a

b

c

a

b

c
tmp/b

a

b

c

tmp/c

tmp/c

a

b

c

tmp/b

tmp/c

a

b

c

tmp/b

a

b

c

a

b

c

a

b

c

a

b

c

c c c c c c

A's view

BA's view

Public view

X writes

BA writes

BA writes

A writes A
commits
tmp/b

Side effect
removed

BA terminates

Time

initial states

Figure 3.6: Views of files for A, BA and X. The figure shows a scenario where
A wants BA to edit a file b, but BA also has side changes on file c.

access files in Priv(A), but any write operation also causes copy-on-write.

After BA writes, Maxoid presents it the updated version with the original

path name to let it read its write, while A sees the updated version in the tmp

directory which is part of V ol(A). X cannot learn any update made by BA,

or any private file of A.

3.3.2 Implementing Maxoid views with Aufs

Aufs4 is a union file system that can provide a merged view of multiple

branches (directories) in a single mount point. If multiple branches contain the

same path name, Aufs presents the file in the branch with highest priority. If

only that branch is writable, the process’ writes are sandboxed in it; modifying

a file which does not exist in the writable branch will result in copying that

4http://aufs.sourceforge.net/

45

http://aufs.sourceforge.net/

file to the writable branch. Therefore, we can use Aufs to implement per-file

copy-on-write.

Maxoid uses the Linux mount namespace to present different views to

different apps. When the app process is created, Maxoid first calls unshare()

in Zygote to create the process’ private mount namespace. Maxoid adds an

Aufs branch manager (Figure 3.5) in Zygote, which selects and mounts the

relevant branches for a new app process.

Internal private directory. Maxoid uses a file system-based solution for

various types of private state, since shared preferences and private databases

are represented as private files. Android assigns each app a private data di-

rectory in internal storage, under /data/data/. We retain this interface as the

private state of an initiator (e.g., Priv(A)) or the normal private state of a

delegate (e.g., nPriv(BA)).

When BA starts, the branch manager mounts Aufs at the location of

B’s private directory as nPriv(BA), with two branches. One branch is read-

only, which is the normal private data directory that the app uses when not

running as a delegate; the other branch is writable, which is a directory only

accessible to this delegate. The writable private branch has higher priority

and is initially empty, thus all writes are redirected to it. The directory of

the writable branch is located in a path that only root can directly access; the

delegate can only use it via the Aufs mount point.

Aufs is not used for initiators’ private directories. B can directly write

46

Priv(B). However, Priv(B) is a branch of Priv(BA), and updates to Priv(B)

are visible to BA; if B and BA run simultaneously, BA would likely observe

inconsistencies in Priv(BA). To avoid inconsistency without creating full snap-

shot of Priv(B) or adding overhead to B, a running instance of B will be killed

when BA is invoked.

As discussed in Section 3.2.2, a delegate may also have persistent private

state (pPriv). It is represented as another directory in internal storage under

/data/data/ppriv. BA and BC use the same path name for persistent private

state, but Maxoid presents them different views of this directory by mounting

independent Aufs branches at this location. For each delegate, a single writable

branch is used.

External storage. Files in external storage, such as an SD card, are world-

accessible in Android. External storage is mounted at a public directory, such

as /storage/sdcard. The mount point varies in different devices, and we use

EXTDIR to denote it.

Naming volatile files. Volatile files caused by delegates’ writes to

external storage are located in the tmp subdirectory under EXTDIR. Specifically,

if a delegate writes to a file EXTDIR/〈path〉, the corresponding volatile copy

can be located by the initiator via path name EXTDIR/tmp/〈path〉. Different

initiators have different views of EXTDIR/tmp.

Allow private files on external storage for backward compatibility. Cur-

rently, Android apps, e.g., Dropbox, often store their files on public external

47

Mount point Branches for A Branches for BA

EXTDIR pub (rw)
A/tmp (rw)
pub

EXTDIR/data/A A/data/A (rw)
A/tmp/data/A (rw)
A/data/A

EXTDIR/data/B N/A
B-A/data/B (rw)
B/data/B

EXTDIR/tmp A/tmp (rw) N/A

Table 3.2: Aufs mount points for A and BA. A and B each specify EXTDIR/A

and EXTDIR/B as a private directory on external storage storage. “rw” means a
read-write branch, and other branches are read-only.

storage to allow other apps to open them, giving up protection. With Maxoid,

Dropbox could store those files in private state and still allow delegates to open

them safely. To support such apps without changing their source code, and to

avoid using too much space on internal storage (which has limited capacity in

many devices), we allow an app A to specify a list of private directories on

external storage as part of Priv(A).

However, we cannot make a directory private to A by simply disallowing

other apps access to it, because apps with access to external storage expect to

have access to all files on it. Instead, A and other apps have different views

of this directory. Other apps can still use it as a public directory, but only A

and its delegates can see A’s private files in it.

The Aufs branch manager divides the external storage into different

branches (subdirectories): a public branch for all apps, and a private branch

for each initiator or delegate. Then it mounts Aufs to EXTDIR, using relevant

48

branches. Table 3.2 shows the mount points for A and BA. Suppose A and B

each specify EXTDIR/data/A and EXTDIR/data/B as a private directory, then

• Files in Pub(all) are located in pub branch.

• EXTDIR/data/A for A is backed by its private branch A/data/A.

• Except EXTDIR/data/A and EXTDIR/tmp, A accesses files in other places

on pub branch.

• BA can read A’s private files in EXTDIR/data/A, because A/data/A is a

read-only branch for it.

• BA’s writes to EXTDIR/data/B are redirected to branch B-A/data/B, which

is not visible to A or B.

• BA’s writes to other places are redirected to branch A/tmp, which are

only visible to A (as V ol(A)) and delegates of A (as Pub(xA)). This

allows A to get the results of BA’s edits, without letting BA directly

overwrite the original version.

Internal private files exposed to delegates. Maxoid allows a delegate

to access its initiator’s private data directory in internal storage. We adopt a

similar approach as for external storage. To the delegate, the internal directory

is part of its view of public state; if it makes modifications, its initiator will

see both the original and modified versions, where the modified versions are

part of the initiator’s volatile state.

Maxoid mounts Aufs for the delegate, with the initiator’s private di-

rectory as a read-only branch, and a tmp directory as a writable branch. We

49

modify Aufs to always allow read access, to allow the delegate to read the

read-only branch (the delegate and its initiator have different UIDs); this is

safe because Maxoid only mounts Aufs when read is allowed, and an app’s

process can no longer mount Aufs after Zygote drops root privilege. Similarly,

the tmp directory is made accessible to the initiator as an Aufs mount.

3.4 System content providers

We describe the views of data in system content providers that Maxoid

presents to apps.

3.4.1 System content providers in Maxoid

System content providers, like Downloads, Media, Contacts and Cal-

ender, are built-in packages that provide standard platform-level APIs. They

typically use SQLite databases as backends. We built a copy-on-write proxy

layer (Section 3.4.2) on top of SQLite, and modify these providers to use the

proxy so that they can switch views for different app instances.

User Dictionary is a simple system content provider that maps URIs to

records in the user dictionary database, the columns of which include ID, Word,

Frequency, etc. A record with ID=n can be retrieved via URI content://-

user_dictionary/words/n. URI content://user_dictionary/words represents

all records in the database.

The ID column is the primary key in the database. This type of URI-to-

ID mapping is generic for many system content providers, including Downloads

50

and Media. Essentially, a URI is mapped to a database row (or a group of

rows). Our proxy layer implements per-row, per-initiator unilateral copy-on-

write, and thus can naturally support these system content providers with

minimal code change.

In Maxoid, the results of write operations (insert or update) by a del-

egate BA are stored as volatile records, as part of V ol(A). BA cannot

overwrite any public records. Similarly, when BA deletes a URI, the public

record is not affected; instead, Maxoid emulates a deletion for BA by creating

a “whiteout” volatile record (Section 3.4.2). For each ID, there is at most one

volatile record in V ol(A). If the volatile record for ID=n doesn’t exist, BA

sees the public record (if it exists) in the result of a query. After the volatile

record is created by a delegate’s insert or update, any operation from BA on

ID=n will happen on the volatile record.

BA’s view of the content provider is transparent. BA always uses nor-

mal URIs. It only sees a single version for each ID and can read its own writes.

On the other hand, if A uses a normal URI, the content provider will oper-

ate on the public records; to access volatile copies, it can use volatile URIs,

which has a tmp component, e.g.,

• content://user_dictionary/tmp/words/〈n〉

• content://user_dictionary/tmp/words/

for a specific ID and all volatile records respectively.

51

SQLite

COW proxy

System content provider

view manager/selector
invoker info

SQL view infoSQL table info

SQL operations

SQLite engine

result

t1(A)

Δt1(A) t1

t2(A)

Δt2(A)t2
v1

v1(A)

t1,t2: tables Δt1(A),Δt2(A): delta tables for A v1: user-defined view
t1(A),t2(A),v1(A): COW views of t1,t2,v1 for A's delegates

Figure 3.7: COW proxy interacts with the content provider and SQLite. Note
that v1 is an SQL view defined by the content provider.

3.4.2 SQLite copy-on-write proxy layer

We built a copy-on-write (COW) proxy layer on top of SQLite API, to

minimize modifications to content providers.

Figure 3.7 shows how the proxy layer interacts with the content provider

and SQLite. It provides the same APIs as SQLite to content providers for

normal database operations, and some additional APIs for administrative op-

erations. It achieves unilateral per-name copy-on-write (Section 3.2.3), where

a name corresponds to a database row.

We call each table defined by the content provider a primary table.

Primary tables only store data that belongs to Pub(all). For each primary

table, the proxy maintains per-initiator delta tables, to store volatile state

of different initiators. We say a COW view for A’s delegates is the view of

a specific primary table in Pub(xA). A COW view is implemented as a SQL

view – a virtual table based on a query result in SQL – defined on the primary

table and the delta table.

52

_id (PK) data

1 a

2 b

3 c

Primary table tab1 – pub(all)

_id (PK) data

1 a

3 d

10000001 e

View for A's delegates tab1_view_A – pub(xA)

_id (PK) data _whiteout

2 b 1

3 d 0

10000001 e 0

A's delta table tab1_delta_A – Vol(A)

CREATE VIEW tab1_view_A AS
SELECT _id,data FROM tab1 WHERE
 _id not in (SELECT _id FROM tab1_delta_A)
UNION ALL
SELECT _id,data FROM tab1_delta_A WHERE
 _whiteout=0

CREATE TRIGGER tab1_A_update
 INSTEAD OF UPDATE ON tab1_view_A
BEGIN
 INSERT OR REPLACE INTO tab1_delta_A
 (_id,data) VALUES(NEW._id, NEW.data);
END;

CREATE TRIGGER tab1_A_delete
 INSTEAD OF DELETE ON tab1_view_A
BEGIN
 INSERT OR REPLACE INTO tab1_delta_A
 (_id,data,_whiteout)
 VALUES(OLD._id, OLD.data, 1);
END;

Figure 3.8: Delta table and the view for delegates maintained by the SQLite
proxy layer.

Per-initiator delta tables and COW views. A delta table has all columns

in the primary table, plus an additional boolean column called _whiteout (Fig-

ure 3.8). When the content provider queries for BA, the result will be generated

from both the primary table and A’s delta table. If a row Rd in the delta ta-

ble has the same primary key as a row Rp in the primary table, Rp will not

appear in the result. If Rd has _whiteout=0 and satisfies the WHERE conditions

in the query, it will be included in the result. _whiteout is thus an indicator

of whether the record has been deleted for delegates; if Rd has _whiteout=1,

the result will include neither Rd nor Rp.

The proxy implements the table’s COW view for an initiator’s dele-

gates, based on a SQL view. The COW view is transparent, which means it

can be used in the same way as a regular table, and can be contained in the

53

definition of other SQL views. It is defined as the compound SELECT state-

ment using UNION ALL in Figure 3.8. Its definition satisfies the constraints for

SQLite’s subquery flattening optimization5, which makes queries on it efficient

because the query planner moves the WHERE clause (if any) on this view into

the two inner subqueries.

However, SQLite views are read-only. To support insert, the proxy

places BA’s inserts into the delta table. Typically, the primary key is generated

by incrementing the current maximum primary key in the table. The primary

table’s primary key starts from 1. To avoid naming collision, the delta table’s

primary key starts at a large number N for newly inserted rows.

To support update and delete, we define INSTEAD OF triggers on the

per-initiator COW views (Figure 3.8). These triggers implement per-row copy-

on-write, which confines modifications in the delta table.

Delta tables and COW views are created on demand. A’s delta table

and COW view are created when the first volatile record is created, by either

A itself or its delegates.

User-defined SQL views. The user of SQLite, i.e., content providers in thie

case, may define their own SQL views over base tables. The proxy maintains

delta tables only for base tables, not for SQLite views which are stateless. But

to support user-defined SQL views, the proxy maintains per-initiator COW

5http://www.sqlite.org/optoverview.html

54

http://www.sqlite.org/optoverview.html

views for each of them, which are created on demand, and defined identically

to the original user-defined SQL views, except that the base tables in the

definition are replaced with their corresponding COW views. Moreover, one

user-defined SQL view may use another user-defined SQL view as one of its

“base tables”; accordingly, the proxy maintains a hierarchy of COW views

(Figure 3.7), and the user-defined view’s COW view can only be created after

the COW views of its base tables are created.

Maxoid view selection. The COW proxy uses a Maxoid API to get the

information about the calling process, which tells whether the caller is a del-

egate and what its initiator is. It then selects the correct Maxoid view. If

the caller is not a delegate, the operation will only involve primary tables as

normal; otherwise, the proxy selects the correct delta tables or COW views,

and creates them if they do not exist.

Additionally, the proxy allows the content provider to select what Max-

oid view it would like to use. This enables the content provider to do admin-

istrative operations and implement new URIs for volatile state. The proxy

defines an administrative view, which contains data in the primary table and

all delta tables, with an additional column that indicates what state a row

belongs to.

55

3.4.3 Modifications to content providers

So far, we have ported three system content providers using the COW

proxy: User Dictionary, Downloads, and Media.

User Dictionary. User Dictionary is purely a passive storage service, which

means it only queries/updates data when a client explicitly requests so. In

this case, porting is trivial, though we add new URIs for volatile state.

Downloads. Although a delegate is not supposed to access the network,

we modify Downloads to allow an initiator to create volatile downloads, e.g.,

for incognito mode. Downloads has not only storage, but also background

threads for downloading files and mechanisms to generate notifications. They

actively query and update data. Thus it needs to use the administrative view

to get all public and volatile records, and track what state a record belongs to.

Downloads has two tables, downloads and request_headers. For a delegate’s

operation, the proxy selects the corresponding views for both tables. For

operations by Downloads itself, Downloads selects the correct view based on

the information it tracks. Downloads stores the path names of downloaded files

in its database, and needs to access those files. Maxoid makes all volatile tmp

directories visible to Downloads, but the path names of the files are different

from those stored in the database (which are transparent to clients). We wrote

a wrapper of Java’s File class to automate locating files.

56

Media. Media defines multiple SQL tables and views. For example, it stores

data for different types of media files in a single base table called files; images,

audio_meta and video are views defined as selections over files. audio is a

view defined on three tables/views, including audio_meta. We use the COW

proxy to manage the hierarchy of COW views. Like Downloads, Media also

has extra services beyond data storage, e.g., creating thumbnails. Similarly,

modified Media keeps track of what state a record/request belongs to.

3.5 API and implementation

Our Maxoid prototype is based on Android 4.3.2.

3.5.1 API summary

Maxoid introduces a few new (sometimes optional) changes for initia-

tors. For delegates, although Maxoid is mostly transparent, it defines new

optional APIs for better usability.

APIs for initiators.

1. An app can specify a list of private directories in external storage

(Section 3.3.2) via an XML file called the Maxoid manifest.

2. When the initiator invokes another app, it can specify whether the

invoked app will be a delegate of it in two ways:

1) A new flag in Intent. When this flag is set, the invoked app will

be a delegate. App developers can modify their code to use this flag when

57

Maxoid is available.

2) Intent filters for invokers. Maxoid allows an app to specify a

whitelist or blacklist of intent filters in its Maxoid manifest. When the initia-

tor sends an intent, Maxoid checks it against the filters to decide whether the

invoked app should be a delegate. Code change is not needed for initiators.

Additionally, we also modify the system’s launcher, to allow BA to

start withoutA’s explicit invocation if this is the user’s intention (Section 3.5.3).

3. An initiator can manage its volatile state (Section 3.3 and Sec-

tion 3.4).

4. When an initiator creates a new record in a system content provider,

Maxoid allows it to specify whether this record is volatile or not. By default,

the new record will be public; if it asserts the isVolatile flag in the Con-

tentValues parameter for this insert call, the new record will be created in its

volatile state. This API can help a browser to implement incognito download

(Section 3.6).

APIs for delegates. First, Maxoid introduces persistent private state, which

is a directory in internal storage (/data/data/ppriv/〈package_name〉) (Sec-

tion 3.2.2, Section 3.3.2). Second, an app can query whether it runs as a

delegate, and what initiator app it runs on behalf of.

Note that Maxoid does not support nested delegation. An app can

only make private invocations or create its own volatile records when it is an

58

initiator.

3.5.2 Tracking app execution context

Section 3.3 and Section 3.4 already cover implementation of Maxoid

views for file system and system content providers. This section discusses how

Maxoid tracks whether an app is running normally or on behalf of others,

which requires modification to the following system components.

1. Activity Manager Service. A delegate can only make normal in-

vocations which make the invoked apps also delegates of the same initiator

(invocation-transitivity in Section 3.2.4). If an initiator invokes another app,

Maxoid checks the flag in the intent and the intent filters to decide whether

it invokes a delegate. (Currently, if the invoked app already has an instance

running, but not on behalf of the current initiator, that instance will be killed.)

An intent’s direct destination may be a system component, like ResolverAc-

tivity which shows a list of candidate apps when the user opens a file. In

this case, ResolverActivity is considered as an intent channel rather than an

app instance. When Activity Manager Service starts a new activity, Maxoid

passes information about the app and its initiator to Zygote.

2. Zygote. When forking a new process, Zygote checks the parameters

and passes them to the kernel sysfs interface. It manages Aufs branches and

mounts Aufs in the process’ mount namespace to switch views of the file system

(see Section 3.3).

3. Kernel. 1) We add a sysfs interface for Zygote to communicate app

59

and initiator information to the process’ task_struct. 2) Maxoid emulates

loss of network connection for delegates by returning error code ENETUNREACH

in the connect system call (similar to AppFence [HHJ+11]). 3) Direct Binder

IPC for a delegate is restricted to trusted system services and system content

providers, its initiator and delegates of the same intiator.

4. System content providers. We modified 3 system content providers

(User Dictionary, Downloads and Media) to support Maxoid (see Section 3.4).

In addition, to fully disable a delegate’s network access, returning an error code

in connect is not sufficient, because a delegate may request Download Provider

to fetch files from the web for it, potentially leaking sensitive data via the

requested URL. Therefore, Maxoid also emulates a network error in Download

Provider for download requests from delegates. Nonetheless, a delegate may

still add or update entries in the database for existing files, because that does

not access network.

5. Other system services. Bluetooth Manager Service and Telephony

Provider are modified to prevent delegates from sending data via Bluetooth

or SMS services. Clipboard Service is modified to create separate clipboard

instances for delegates.

3.5.3 User interface

We modify the system’s Launcher to improve usability. 1) The user

may start a delegate on behalf of an initiator, without the initiator invoking

it. For instance, Maxoid allows the user to start Camera as Email’s delegate by

60

dragging Email’s icon into an “Initiator” drop target before clicking Camera’s

icon. 2) By dragging the icon of A into a “ClearVol” drop target, the user can

clear the volatile state of A. 3) By dragging the icon of A into a “ClearPriv”

drop target, the user can clear Priv(xA) for all x.

3.6 Maxoid use cases

Out of the 77 data processing apps we analyzed in Section 3.1, only

three (DocuSign, EasySign and ThinkTI Document Converter) cannot work

when they run as delegates, due to loss of network connection. We describe

five use cases of Maxoid, where the first four secure initiators to use those

unmodified data processing apps, and the last improves the delegate’s usability

with minimum code change.

Securing Dropbox. Dropbox stores files on a directory in external storage.

We use the Maxoid manifest to specify this directory to be private, and a filter

saying that any intent from Dropbox with VIEW action (indicating the user

clicking a file) is private, i.e., to invoke a delegate. Thus, other apps cannot see

the files unless invoked by the user clicking a file from Dropbox. Dropbox sees

the delegates’ modifications under EXTDIR/tmp. Without modifying Dropbox’s

source code, we require the user to manually upload the modified file if it

is desired, from EXTDIR/tmp. After that, the user can clear V ol(Dropbox) to

remove any undesired changes.

Even though Dropbox does not invoke camera apps, the user can start

61

a camera app as Dropbox’s delegate using the Launcher (Section 3.5.3), and

take a private photo for Dropbox.

Securing Email attachments. We use a filter to specify that VIEW intents

are private. As a result, when the user clicks the “VIEW” button on the

attachment, the invoked app will be Email’s delegate. (The user can still

intentionally save the file to external storage and Downloads Provider, by

clicking the “SAVE” button.)

The user can also start an app via Launcher as Email’s delegate without

Email invoking it.

Enhancing Browser’s incognito mode. The Browser app uses Android’s

DownloadManager API (a wrapper of Downloads Provider’s API) to download

files. We extend this API to allow an initiator to specify whether a requested

download from it should be stored in the public state or its volatile state. Then,

we add 1 line of code for Browser, such that downloads from an incognito tab

are stored in the volatile state, while downloads from a normal tab are stored

in public state. When the user clicks a download complete notification, a

proper app will be started as a delegate of Browser if this download is from

an incognito tab. This functionality is supported by our Downloads Provider.

The downloaded file, the corresponding entry in Downloads Provider, and any

updates by the delegate depending on this download will be discarded when

the user clears V ol(Browser) and Priv(xBrowser). To extend incognito mode to

62

a QR code reader app, the user can start it as Browser’s delegate using the

system’s Launcher.

Wrapper app. We write an app which does nothing but holding sensitive

documents. It can be used as an initiator to force“real apps”into a system-wide

incognito mode by clearing the volatile state after use.

Using delegates’ persistent private state. Maxoid supports unmodified

delegate apps. As discussed in Section 3.2.2, delegate apps that are aware of

Maxoid can also be modified for better usability. EBookDroid6 is an open-

source app for viewing and managing documents. It stores recent documents

and bookmarks in its private database. We modify 45 lines of code to make use

of the persistent private state. When it runs normally, it stores new entries for

recent files or bookmarks to a database in nPriv; when it runs as a delegate, it

stores new entries in pPriv, and shows a list of recent files merged from both

nPriv and pPriv.

3.7 Performance

We measure performance overhead added by Maxoid, on a Nexus 7

tablet, which has 2GB of DDR3L RAM and 1.5GHz quad-core Qualcomm

Snapdragon S4 Pro CPU, and runs Android 4.3.2. Maxoid barely adds any

6 https://code.google.com/p/ebookdroid/

63

https://code.google.com/p/ebookdroid/

Setup
CPU-bound
operations

Internal File System
4KB files 1MB files

read write append read write append

initiator 0 0

delegate 0 7.5% 31.7% 58.7% 4.8% 18.1% 52.8%

Table 3.3: Microbenchmark overheads for CPU-bound operations and file sys-
tem, compared to Android. Read – read files; Write – create and write to files;
Append – append to the original files to double their sizes.

Setup
User Dictionary Provider

insert update query 1 word query 1k words delete

initiator 1.3% 0.4% 0.5% 0.2% 1.0%

delegate 8.1% 16.1% 5.6% 13.7% 17.3%

Table 3.4: Microbenchmark overheads for User Dictionary Provider, compared
to Android. Size of table: 1000 rows. Query 1 word is done by specifying the
word ID in the URI; query 1k words is selecting all words in the database.

overhead to initiators. For delegates, Maxoid does not add overhead for CPU-

intensive computations, only for I/O operations, i.e., file and content provider

operations.

3.7.1 Microbenchmarks

CPU-bound operations. We measure the time for performing matrix mul-

tiplications. Maxoid adds no overhead to initiators and delegates, compared

to unmodified Android.

File system. Maxoid uses a single branch at any internal or external mount

point for initiators, thus incurs no overhead for initiators. However, it uses

64

two branches at each internal or external mount point for delegates, except the

persistent private state. We measure the performance of Aufs for delegates,

on a microbenchmark app that uses its internal file storage. The results are

shown in Table 3.3. We test operations including read, write and append.

Before append operations for delegates, the original files are are on a read-

only branch, and the append operations copy them to the writable branch,

resulting in large overhead. However, the overhead could be reduced if a

block-level copy-on-write file system (as opposed to file-level) were used; we

choose Aufs for features that ease our prototype development.

User Dictionary Provider. We measure the slowdown for content provider

operations, using the User Dictionary Provider as an example. The slowdowns

for both initiators and delegates are shown in Table 3.4. The baseline is an

unmodified Android OS. Slowdowns for the initiator are negligible. For del-

egates, updates are executed before there are entries in the delta table, so

that copy-on-write will happen; queries are executed after updates, so that

both primary and delta tables will be involved. Maxoid adds less than 18%

overhead for delegates.

3.7.2 Macrobenchmarks

Download and Media Providers. We measure the time for 1) download-

ing 100 1KB files, using DownloadManager, and 2) scanning 100 image files and

storing the metadata to Media Provider. Table 3.5 shows the result, where

65

Setup Android
Maxoid

to public state to volatile state

Time download 7.29±0.39 7.13±0.28 7.23±0.21
(s) image 1.54±0.02 1.54±0.02 1.55±0.02

Table 3.5: Times for 1) downloading 100 1KB files, and 2) scanning 100 780KB
image files and storing the metadata to Media Provider.

the baseline is an unmodified Android. For Download Provider, our tester app

can request the downloaded files to be saved in either public or volatile state;

in both cases, the tester app runs as an initiator to access the network. For

Media Provider, the tester app first runs as an initiator to store metadata into

public state, then runs as a delegate to store metadata into volatile state. The

overhead is negligible for all cases.

Application benchmarks. We measure the latency of performing several

application-specific tasks, as listed in Table 3.6. Our experiments show that

Maxoid’s impact on user-perceivable latency of these tasks is very small. This

is because the typical usage of many mobile apps does not involve data-

intensive operations, and Maxoid does not add overhead to UI-related and

CPU-intensive workload. For example, the time for reading a 1.6 MB PDF

file is negligible compared to the time for rendering it.

66

App Task
Latency (ms)

Android
Maxoid

Initiator Delegate

Adobe Reader
open a 1.6 MB file 1213±27 1207±20 1221±14

in-file search 3206±57 3218±80 3197±50

CamScanner process a scanned page 7338±323 7420±298 7446±249

CameraMX
take a photo 1214±41 1251±44 1255±90

save an edited photo 1829±89 1855±59 1897±73

Table 3.6: User-perceivable latency of performing various tasks using different
apps.

3.8 Discussion

We discuss the applicability of Maxoid’s model to other mobile plat-

forms, and the limitations of Maxoid.

3.8.1 Applicability to other platforms

The state model of Maxoid applies to app-centric platforms, which

treat apps as different principals. Such platforms provide storage abstractions

for both private and public storage, where private data can only be accessed

by the owning app, and public data are shared by apps. For example, like

Android, Windows Phone 8 assigns each app an isolated private directory,

and exposes external storage as a shared resource subject to coarse-grained

access control. Similarly, iOS provides each app a private directory for file

storage; it does not have a shared file system, but instead provides high-level,

device-wide shared resources such as photos and contacts. FireFox OS is a

platform that runs mobile apps written in Web code; apps have private storage

67

options such as IndexedDB, and share public resources like the SD card and

contacts.

In principal, Maxoid’s model is generic and can be used in all those plat-

forms. However, implementing the model would be platform-specific. Maxoid

leverages Android’s unified data abstractions – files and content providers –

to minimize modifications. Since iOS does not provide a shared file system,

the Maxoid-style multi-branch external storage solution is unnecessary; on the

other hand, different techniques would be needed to support volatile entries in

the photo gallery.

3.8.2 Scope and limitations

Use cases. Maxoid is targeted at cases where delegates are short-lived fore-

ground tasks, so network disruption and state divergence are not likely to cause

usability issues. Maxoid does not support scenarios where delegates need to

send initiators’ private data to remote servers for processing. Maxoid is an in-

cremental improvement over Android; it provides better security for its target

use cases, while maintaining Android’s legacy behavior for unsupported use

cases, instead of breaking them.

Code changes. Maxoid needs code changes to system content providers,

though with the help of the SQLite proxy. Content providers often involve

specific tasks that are not generic enough to be supported in a unified way.

Maxoid is not totally transparent to initiators, because the concept of volatile

68

state is new. However, the API is simple enough to allow small or no modifica-

tions to initiators in many cases, enabling security enhancements that cannot

be achieved in Android.

App-defined content providers. As opposed to system content providers,

app-defined content providers are not considered shared resources. They are

often backed by private files or databases, which Maxoid treats as the pri-

vate state of their owning apps. Communicating among apps with content

providers can be considered declassification, so Maxoid does not support per-

URI volatile copies for app-defined content providers. In Android, IPC with

content providers is implemented using the low-level Binder interface, and

Maxoid’s restrictions on Binder IPC prevents delegates from leaking data (Sec-

tion 3.2.4). Modifications to data in delegate-defined content providers would

be discarded by Maxoid eventually. However, initiators are responsible for

auditing write requests to their content providers if they want to avoid unau-

thorized modifications. For example, the built-in Email app has a content

provider for attachments, but it only grants temporary, read-only access for

an entry to a document viewer on an explicit invocation; the document viewer

would need to create a copy of the attachment if the user saves changes, which

is the behavior of Adobe Reader.

69

Chapter 4

Earp: abstraction and protection for structured data

Modern mobile apps communicate and exchange data with other apps

almost as much as they do with the operating system. Many popular apps now

occupy essential places in the app “ecosystem” and provide other apps with

services, such as storage, that have traditionally been the responsibility of the

OS. For example, an app may rely on Facebook to authenticate users, Google

Drive to store users’ data, WhatsApp to send messages to other users, Twitter

to publicly announce users’ activities, etc. In platforms like Android, even

some standard APIs are actually implemented in built-in apps (Section 2.3),

like the photo gallery, calendar and contacts.

Traditionally, operating systems have provided abstractions and protec-

tion for storing and sharing data. The data model in UNIX is byte streams,

stored in files protected by owner ID and permission bits and accessed via file

descriptors (Section 2.1). UNIX has a uniform access-control model for both

This chapter is based on previous publication [XHK+16] “Earp: Principled Storage,
Sharing, and Protection for Mobile Apps”, by Yuanzhong Xu, Tyler Hunt, Youngjin Kwon,
Martin Georgiev, Vitaly Shmatikov and Emmett Witchel, in the 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), Santa Clara, CA, March 2016.
My contributions to this publication include designing and implementing the protection
mechanisms for relational data, the descriptor-based APIs, the object graph library, and the
inter-app service framework.

70

storage and inter-process communication: users specify permissions on files,

pipes, and sockets, and the OS dynamically enforces these permissions.

Modern mobile platforms provide higher-level abstractions to manage

structured data, and relational databases have become the de facto hubs for

apps’ internal data [SBL+14]. These abstractions, however, are realized as

app-level libraries. Platform-level access control in Android and iOS inherits

UNIX’s coarse-grained model and has no visibility into the structure of apps’

data. Today, access control in mobile platforms is a mixture of basic UNIX-

style mechanisms and ad hoc user-level checks spread throughout different

system utilities and inter-app services. Apps present differing APIs with ad

hoc access-control semantics, different from those presented by the OS or other

apps. This leaves apps without a clear and consistent model for managing

and protecting access to users’ data and leads to serious security and privacy

vulnerabilities.

In Chapter 3, we have treated some of Android’s built-in content provider

apps (e.g., Media and Downloads) as part of the platform, but also have to

modify each of them individually to support Maxoid’s security model. This is

precisely because Android does not have a platform-level abstraction for high-

level structured data, such that we could not achieve fine-grained protection

at the platform level. We now consider them regular apps, and investigate the

feasibility of using a common abstraction for them.

In this chapter, we explore the benefits and challenges of using the rela-

tional model as the unified, platform-level abstraction of structured data. We

71

design, implement, and evaluate a prototype of Earp, a new mobile platform

that uses this model for both storage and inter-app services, and demonstrate

that it provides a principled, expressive, and efficient foundation for the data

storage, data sharing, and data protection needs of modern mobile apps.

First, we demonstrate how apps can use the relational model not just to

define data objects and relationships, but also to specify access rights directly

as part of the data model. For example, an album may contain multiple photos,

each of which has textual tags; the right to access an album confers the right

to access every photo in it and, indirectly, all tags of these photos.

Second, we propose a uniform, secure data-access abstraction and a new

kind of reference monitor that has visibility into the structure of apps’ data and

can thus enforce fine-grained, app-defined access-control policies. This enables

apps to adhere to the principle of least privilege [Sal74] and expose some, but

not all, of users’ private data to other apps. App developers are thus relieved

of the responsibility for writing error-prone access-control code. The unifying

data-access abstraction in Earp is a subset descriptor. Subset descriptors are

capability-like handles that enable the holder to operate on some rows and

columns of a database, subject to restrictions defined by the data owner. Our

design preserves efficiency of both querying and access control.

Third, we implement and evaluate a prototype of Earp based on Fire-

fox OS, a browser-based mobile platform where all apps are written in Web

languages such as HTML5 and JavaScript. The browser-based design enables

Earp to conveniently add its data abstractions and access-control protections

72

to the platform layer while maintaining support for legacy APIs. While native

platforms like Android have different software architectures that are not ideal

to build a fully-featured Earp prototype on, we show that some of Earp’s core

concepts can be applied to them by designing and implementing Earp-style

protections to Android’s content provider framework.

Fourth, to demonstrate how apps benefit from Earp’s structured access

control, we adapt or convert several essential utilities and apps. We show how

local apps, such as the photo manager, contacts manager, and email client, can

use Earp to impose fine-grained restrictions on other apps’ access to their data.

We also show how remote services, such as Google Drive and an Elgg-based

social-networking service, can implement local proxy apps that use Earp to

securely share data with other apps without relying on protocols like OAuth.

We hope that by providing efficient, easy-to-use storage, sharing, and

protection mechanisms for structured data, Earp raises the standards that app

developers expect from their mobile platforms and delivers frontier justice to

the insecure, ad hoc data management practices that plague existing mobile

apps.

4.1 Inadequacy of existing platforms

In today’s mobile ecosystem, many apps act as data “hubs.” They store

users’ data such as photos and contacts, make this data available to other apps,

and protect it from unauthorized access. The data in question is often quite

complex, involving multiple, inter-related objects.

73

Inadequate protection for storage. The coarse-grained protection for

storage (Section 2.1) in existing platforms do not provide adequate support for

mobile apps’ data management. App developers roll their own and predictably

end up compromising users’ privacy. For example, Dropbox on Android stores

all files in public external storage, giving up all protection. WhatsApp on iOS

automatically saves received photos to the system’s gallery. When the email

app on Firefox OS invokes a document viewer to open an attachment, the

attachment is copied to the SD card shared by all apps.

A systematic study [ZJ13] in 2013 discovered 2,150 Android apps that

unintentionally make users’ data—SMS messages, private contacts, browsing

history and bookmarks, call logs, and private information in instant mes-

saging and social apps (e.g., the most popular Chinese social network, Sina

Weibo)—available to any other app.

Inadequate protection for inter-app services. Services and protocols

that involve multiple apps have suffered from serious security vulnerabilities

and logic bugs [WXWC13, XBL+15, SB12, LZX+14, VGN14]. While vulnera-

bilities in individual apps can be patched, the root cause of this sorry state of

affairs is the inadequacy of the protection mechanisms on the existing mobile

platforms, which cannot support the principle of least privilege [Sal74].

Existing platforms provide limited facilities for sharing data via inter-

app services. Android apps can use content providers to define background

data-sharing services with a database-like API, where data are located via

74

URIs. However, permission-based access control for content providers is coarse-

grained (Section 2.3). If a service app needs fine-grained protection, writing

the appropriate code is entirely the app developer’s responsibility. Unsurpris-

ingly, access control for Android apps is often broken [SH14,ZJ13].

Android’s URI permission mechanism may be fine-grained, but it is

a capability-passing mechanism rather than a policy enforcement mechanism

(Section 2.3). The access-control logic still resides in the application itself,

making URI permissions difficult to use for programmatic access control. An-

droid mostly uses them to involve the user in access-control decisions, e.g.,

when the user clicks on a document and chooses an app to receive it.

As also discussed in Section 2.3, iOS apps cannot directly share data

via the file system or background services.

Without principled client-side mechanisms for protected sharing, mo-

bile developers rely on server-side authentication protocols such as OAuth

that give third-party apps restricted access to remote resources. For example,

Google issues OAuth tokens with restricted access rights, and any app that

needs storage on Google Drive attaches these tokens to its requests to Google’s

servers1. Management of OAuth tokens is notoriously difficult and many apps

badly mishandle them [VGN14], leaving these apps vulnerable to imperson-

ation and session hijacking due to token theft, as well as identity misbinding

and session swapping attacks such as cross-site login request forgery [SB12]. In

1https://developers.google.com/drive/android/auth, https://developers.

google.com/drive/ios/auth

75

https://developers.google.com/drive/android/auth
https://developers.google.com/drive/ios/auth
https://developers.google.com/drive/ios/auth

2015, a bug in Facebook’s OAuth protocol allowed third-party apps to access

users’ private photos stored on Facebook’s servers2.

Inadequate protection model. Protection mechanisms on the existing

platforms are based on permissions attached to individual data objects. These

objects are typically coarse-grained, e.g., files. Even fine-grained permissions

(e.g., per-row access control lists in a database) do not support the protec-

tion requirements of modern mobile apps. The fundamental problem is that

data objects used by these apps are inter-related, thus any inconsistency in

permissions breaks the semantics of the data model.

Per-object permissions fail to support even simple, common data shar-

ing patterns in mobile apps. Consider a photo collection where an individual

photo can be accessed directly via the camera roll interface, or via any album

that includes this photo. As soon as the user wants to share an album with an-

other app, the per-object permissions must be changed for every single photo

in the album. Since other types of data may be related to photos (e.g., text

tags), the object-based permission system must compute the transitive closure

of reachable objects in order to update their permissions. This is a challenge

for performance and correctness.

In practice, writing permission management code is complex and error-

prone. App developers thus tend to choose coarse-grained protection, which

does not allow them to express, let alone enforce their desired policies.

2http://www.7xter.com/2015/03/how-i-exposed-your-private-photos.html

76

http://www.7xter.com/2015/03/ how-i-exposed-your-private-photos.html

4.2 Design goals and overview

Throughout the design of Earp, we rely on the platform (i.e., the mo-

bile OS) to protect the data from unauthorized access and to confine non-

cooperative apps. Earp provides several platform-enforced mechanisms and

abstractions to make data storage, sharing, and protection in mobile apps

simpler and more robust.

• Apps in Earp store and manage data using a uniform, relational

model that can easily express relationships between objects as well as access

rights. This allows app developers to employ standard database abstractions

and relieves them of the need to implement their own data management.

• Apps in Earp give other apps access to the data via structured, fine-

grained, system-provided abstractions. This relieves app developers of the

need to implement ad hoc data-access APIs.

• Apps in Earp rely on the platform to enforce their access-control

policies. This separation of policy and mechanism relieves app developers of

the need to implement error-prone access-control code.

Efficient system-level enforcement requires the platform to have visibil-

ity into the data structures used by apps to store and share data. In the rest

of the chapter, we describe how this is achieved in Earp.

77

4.2.1 Data model

UNIX has a principled approach for protecting both storage and IPC

channels, based on a unifying API—file descriptors. On modern mobile plat-

forms, however, data management has moved away from files to structured

storage such as databases and key-value stores.

In Earp, the unifying abstraction for both storage and inter-app ser-

vices is relational data. This approach (1) helps express relationships between

objects, (2) integrates access control with the data model, and (3) provides a

uniform API for data access, whether by the app that owns the data or by

other apps.

Unifying storage and services is feasible because Earp apps access inter-

app services by reading and writing structured, inter-related data objects via

relational APIs that are similar to those of storage. A service is defined by four

service callbacks (Section 4.4), which Earp uses as the primitives to realize the

relational API.

Earp uses the same protection mechanism for remote resources. For

example, a remote service such as Google Drive can have a local proxy app

installed on the user’s device, which defines an inter-app service that acts as

the gateway for other apps to access Google’s remote resources. Earp enforces

access control on the proxy service in the same way as it does with all inter-app

services, avoiding the need for protocols such as OAuth.

Earp not only makes it easier to manage structured data that is perva-

78

sive in mobile apps, but also maintains efficient, protected access to files and

directories.

4.2.2 Access rights

All databases and services in Earp have an owner app. The owner has

the authority to define policies that govern other apps’ access, making Earp a

discretionary access control system. The names of databases and services are

unique and prefixed by the name of the owner app.

Earp’s protection is fine-grained and captures the relationships among

objects. In the photo gallery example, each photo is associated with some

textual tags, and photos can be included in zero, one, or several albums. Fine

granularity is achieved by simple per-row ACLs, allowing individual photos to

each have different permissions. However, per-object permissions alone can

create performance and correctness problems when apps share collections of

objects (Section 4.1).

To enable efficient and expressive fine-grained permissions for inter-

related objects, Earp introduces capability relationships—relationships that

confer access rights among related data. For example, if an app that has access

rights to an album traverses the album’s capability relationship to a photo, the

app needs to automatically obtain access rights to this photo, too. Capability

relationships only confer access rights when traversed in one direction. For

example, having access to a photo does not grant access to all albums that

include this photo.

79

Capability relationships make it easy for apps to share ad hoc collec-

tions. For example, the photo gallery can create an album for an ephemeral

messaging app like Snapchat, enabling the user to follow the principle of least

privilege and install Snapchat with permissions to access only this album (and,

transitively, all photos in this album and their tags).

Capability relationships also enable Earp to use very simple ACLs with-

out sacrificing the expressiveness of access control. There are no first-class con-

cepts like groups or roles, but they can be easily realized as certain capability

relationships.

4.2.3 Data-access APIs

In Earp, access to data is performed via subset descriptors. A subset

descriptor is a capability “handle” used by apps to operate on a database or

service. The capability defines the policy that mediates access to the under-

lying structured data, allowing only restricted operations on a subset of this

data.

The holder of a subset descriptor may transfer it to other apps, possibly

downgrading it beforehand (removing some of the access rights). Intuitively,

a subset descriptor is a “lens” through which the holder accesses a particular

database or service.

Critically, the OS reference monitor ensures that all accesses comply

with the policy associated with a given descriptor. Therefore, app developers

are only responsible for defining the access-control policy for their apps’ data

80

backend database (or service)

relational
representation

albums photos tags

pl
at

fo
rm

lib
ra

ry

security reference monitor

ap
p

a

p
p

p

t
tt

a

pp

tt

fetchGraph: queryPaths:

fetch all contents in an album find photos in the album with
a certain tag

multiple query operations join on multiple tables

Figure 4.1: Platform- and library-level representations of structured data in
Earp.

but not for implementing the enforcement code.

Capability relationships make access rights for one object dependent on

other objects. This is a challenge for efficiency because transitively computing

access-control decisions would be expensive. To address this problem, apps can

create subset descriptors on demand to buffer access-control decisions for future

tasks. For example, an app can use a descriptor to perform joins (as opposed to

traversal) to find all photos with a certain tag, then create another descriptor

to edit a specific photo based on the result of a previous join. The photo

access rights are computed once and bound to the descriptor upon its creation.

Earp thus enjoys the benefits of both the relational representation (efficient

joins) and the graph representation (navigating a collection to enumerate its

members).

81

To facilitate programming with structured data, Earp provides a library

that presents an object graph API backed by databases or inter-app services

(see an example in Figure 4.1). This API is functionally similar to the Core

Data API in iOS, but each internal node is mapped to a platform-level data

object under Earp’s protection. This API relieves developers of the need to

explicitly handle descriptors or deal with the relational semantics of the un-

derlying data.

4.2.4 Choosing the platform

Web languages such as HTML5 and JavaScript have recently become

popular in mobile app development for their portability across platforms.

Browser-based mobile/Web platforms (e.g., Firefox OS, Chrome, and univer-

sal Windows apps) support this programming model by exposing high-level

resource abstractions such as “contacts” and “photo gallery” to Web apps, as

well as generic structured storage like IndexedDB; they are implemented in

a customized, UI-less browser runtime, instead of app-level libraries. All re-

source accesses by apps are mediated by the browser runtime, although it only

enforces all-or-nothing access control.

For our Earp prototype, we chose a browser-based platform, Firefox OS,

allowing us to easily add fine-grained protection to many new and legacy APIs.

Earp also retains coarse-grained protection on other legacy APIs (e.g., raw

files), allowing us to demonstrate Earp’s power and flexibility with substantial

apps (Section 4.6).

82

It is possible to adapt Earp to a conventional mobile platform like An-

droid. For storage, we could port SQLite into the kernel and add access-control

enforcement to system calls; alternatively, we could create dedicated system

services to mediate database accesses and enforce access-control policies. Non-

cooperative apps would be confined by the reference monitor in either the

kernel, or the services. For content providers, we could modify framework

to support capability relationships, and require apps to provide unforgeable

handles that are similar to subset descriptors when they access data in con-

tent providers. In Section 4.8, we show the design and implementation of a

framework for Earp-style content providers.

4.3 Data storage and protection

UNIX stores byte streams in files protected by owner ID and permission

bits and accessed via file descriptors. Earp stores structured data in relational

databases protected by permission policies and accessed via subset descriptors.

Because structured data is more complex than byte streams, Earp must provide

more sophisticated protection mechanisms than what is needed for files. Before

describing these mechanisms, we give a brief overview of the relational data

model and how it’s used in Earp.

4.3.1 Data model

Earp represents structured data using a relational model. The same

relational API is used for storage and inter-app services (Section 4.4). The

83

album photo tag

Full data

A subset

album_data

1-to-n n-to-1 1-to-n

Figure 4.2: A relational representation of structured data. We show the entire
data set and a subset chosen by a combination of row and column filtering. Re-
lationships across tables are always bidirectional, but capability relationships
are unidirectional as indicated by solid arrows.

back end of this API can be, respectively, a database or a service provided by

another app.

Each data object in Earp is a row in some table, as shown in Figure 4.2.

An object in one table can have relationships with objects in other tables. For

example, a photo object is a row in the photo table with a column for raw image

data, several columns for EXIF data (standard metadata such as the location

where the photo was taken), and a relationship with the tag table, where tags

store textual notes. Storing tags in a separate table allows photos to have

an arbitrary number of tags that can be queried individually. Relationships

in Earp are standard database relationships, as summarized below, but the

concept of a capability relationship (Section 4.3.2) is a new contribution and

the cornerstone of efficient access control in Earp.

Relationships have different cardinalities. For example, the relation-

ship between a photo and its tags is 1-to-n from the photo to its tags, or,

84

equivalently, n-to-1 from the tags to the photo. 1-to-1, or, more precisely

(1|0)-to-1, is a special case of n-to-1. For example, each digital camera has a

single product profile which may or may not be present in the photo’s EXIF.

Logically, the relationship between albums and photos is n-to-n, be-

cause a photo can be included in multiple albums and an album can contain

multiple photos. Like many relational stores, Earp realizes n-to-n relation-

ships by adding an intermediate table. In our example, we call the inter-

mediate table album data. The album-album data relationship is 1-to-n, and

the album data-photo relationship is n-to-1. All four tables are illustrated in

Figure 4.2.

4.3.2 Access rights

Access control lists. Each database in Earp is owned by a single app. Rows

have very simple access control lists (ACLs) to control their visibility to other

apps. Each row is either public, or private to a certain app. If a table does

not have an AppId column, it can be directly accessed only by the owner of the

database. If an Earp table has an AppId column, its value encodes the ACL:

zero means that the row is public, positive n means that the row is private to

the app whose ID is n. Any app can read or write public rows. Without an

appropriate capability relationship (see below), apps can only read or write

their own private rows.

Relationships create challenges for ACLs because they are traversed

at run time and their transitive closure may include many objects. If ACLs

85

were the only protection mechanism, an app that wants to share a photo with

another app would have to modify the ACLs for all tags—either by making

each ACL a list containing both apps, or by creating a group.

Capability relationships. A relationship is logically bidirectional. For ex-

ample, given a photo, it is possible to retrieve its tags, and given a tag, it is

possible to retrieve the photo to which it is attached. In Earp, however, only a

single direction can confer access rights, as specified in the schema definition.

These capability relationships are denoted as solid arrows in Figure 4.2.

We use x 1:n y to denote a 1-to-n capability relationship between tables

x and y, which confers access rights when moving from the 1-side (x) to the

n-side (y). Similarly, x n:1 y denotes an n-to-1 capability relationship that

confers access when moving from the n-side to the 1-side. x n:1y denotes a

non-capability relationship that does not confer access rights.

In the photo gallery example,

• photo 1:n tag. Having a reference to a photo grants the holder the

right to access all of that photo’s tags, but not the other way around. There-

fore, if an app asks for all photos with a certain tag, it will receive only the

matching photos that are already accessible to it (via ownership, ACL, or

capability relationship).

• album 1:n album_data n:1 photo. The intermediate table album_data

realizes an n-to-n relationship with capability direction from album to photo.

86

Having access to an album thus confers access to the related objects in al-

bum_data and photo.

album_data and tag are both on the n-side of some x 1:n y relationship,

and they are intended to be accessed only via capability relationships. For

example, each tag is attached to a single photo and is useful only if the photo

is accessible. Typically, such tables do not need ACLs.

We have not needed bidirectional capability relationships in Earp, and

they would create cycles that make the access-control model confusing. There-

fore, we decided not to support bidirectional capability relationships at the

platform level. Earp prevents capabilities from forming cycles, ensuring that

the transitive closure of all capability relationships is a directed acyclic graph

(DAG).

Groups. A group can be created in Earp by defining a table with an ap-

propriate schema. For example, to support albums that are shared by a

group of apps, the app can define another table album_access, with album_-

access n:1 album. Each row in album_access is owned by one app and confers

access to an album. With this table, even if an album is private to a certain

app, it can be shared with other apps via entries in album_access.

Primary and foreign keys. Earp requires that all tables have immutable,

non-reusable primary keys generated by the platform. The schema can also

define additional keys. Therefore, the (database, table, primary key) tuple

87

uniquely identifies a database row.

Cross-table relationships are represented via foreign keys in relational

databases. A foreign key specifies an n-to-1 relationship: the table that con-

tains the foreign key column is on the n-side, the referenced table is on the

1-side. If the foreign key column is declared with the UNIQUE constraint, the

relationship is (1|0)-to-1.

Earp enforces that a foreign key references the primary key of an-

other table and must guarantee referential integrity when the referenced row

is deleted3.

By default, when a referenced row is deleted, Earp sets the foreign

keys of all referencing rows to NULL. However, when some referencing rows

are no longer accessible or useful without the referenced row, the schema can

explicitly prescribe that they should be deleted. For example, when a photo is

deleted, its tags can be deleted because they are no longer accessible; it is also

reasonable to delete rows referencing the photo in album_data because they no

longer contain useful data.

4.3.3 App-defined access policies

ACLs and capability relationships are generic and enforced by Earp

once the schema of a database or service is defined. To enable more expressive

access control tailored for relational data, Earp also lets apps define schema-

3https://www.sqlite.org/foreignkeys.html

88

https://www.sqlite.org/foreignkeys.html

level permission policies on their databases and services. These policies govern

other apps’ access to the data.

A policy defines the following for each table:

1. AppID and default insert mode.

2. Permitted operations: insert, query, update, and/or delete.

3. A set of accessible columns (projection).

4. A set of columns with fixed values on insert/update.

5. A set of accessible rows (selected by a WHERE clause, in addition to

ACL-based filtering).

The AppID is a number that identifies the controlling app as the basis

for ACLs, much like the user ID identifies the user as the basis for interpreting

file permission bits. The default insert mode indicates if data inserted into the

database is public or private to the inserting app.

Data access in Earp is expressed by four SQL operations—insert, query,

update, and delete—inspired by Android’s SQLite API (omitting administra-

tive functions like creating tables). Read-only access is realized by restrict-

ing the available SQL operations to query only. Control over writing is fine-

grained: for example, an app can limit a client of the API to only insert into

the database, without giving it the ability to modify existing entries.

The permission policy can filter out certain rows (e.g., private photos)

and columns (e.g., phone numbers of contacts), making them “invisible” to the

89

client app. In addition, values of certain columns can be fixed on insert/update.

For example, a Google Drive app can enforce that apps create files only in

directories named by their official identifiers.

Just like the owner ID and permission bits of a file constrain the file

descriptor obtained by a user when opening a file in UNIX, the permission

policy constrains the subset descriptor (see below) obtained by a user when

opening a database. While permission bits specify a policy for all users using

coarse categories (owner, group, others), Earp lets apps specify initial permis-

sion policies for individual AppIDs, as well as the default policy. Figure 4.6 in

Section 4.6 shows examples of policy definitions.

4.3.4 Subset descriptors

Apps in Earp access databases and services via subset descriptors.

When an app opens a database or service that it owns, it obtains a full-

privilege descriptor. If it opens another app’s database or service, it obtains a

descriptor with the owner’s (default or per-app) permission policy.

Subset descriptors are created and maintained by Earp; apps manip-

ulate opaque references to descriptors. Therefore, Earp initializes descriptors

in accordance with the database owner’s permission policy, and apps cannot

tamper with the permissions of a descriptor (though descriptors can be down-

graded, as discussed below).

90

a1 p2

t1

p4 t4

p1

p3 t3

t2 p2

t1

t2

t1

t2

d0: initial descriptor via opening the
database (bold lines denote a join.)

d1: descriptor for a
specific photo

d2: descriptor for
the photo's tags

var d0 = navigator.openDB('sys/gallery');
var cursor = d0.joinTransClosure(['album','album_data',

'photo', 'tag'], where); // join
cursor.onsuccess = function(event) {
 ... // navigate to a row (the first bold line above)
 // d1: descriptor for photo in cursor's current row
 var d1 = cursor.getSelfDesc('photo');
 // d2: descriptor for the current photo's tags
 var d2 = cursor.getRefDesc('photo', 'tag');
}

directly accessible entries indirectly accessible entries

Figure 4.3: A database join using an initial subset descriptor, then creating
new descriptors to represent subsets of the result. The figure includes a visual
depiction of the data accessible from the different descriptors.

Efficiently working with descriptors. An example of working with de-

scriptors is shown in Figure 4.3. The app receives descriptor d0 when it opens

the database. It can use d0 to access albums or photos as permitted by their

ACLs. The code in Figure 4.3 will succeed in performing a join using d0 be-

cause Earp verifies that all tables can be reached by traversing the capability

relationships from a root table (album in this case), and that entries in different

tables are related via corresponding foreign keys.

However, using d0 is not always efficient for all tasks, because access

rights on some objects can only be computed transitively. To minimize ex-

pensive cross-table checks, an app can create more descriptors that directly

encode computed access rights over transitively accessible objects. Once such

91

a descriptor is created, the app can use it to access the corresponding objects

without recomputing access rights. In Figure 4.3, when the app successfully

performs a query, join, or insert for a particular photo via d0, this proves to

Earp that it can access the photo in question. Therefore, Earp lets it obtain a

new descriptor d2, which allows the app to operate only on the entries in the

tag table whose foreign key matches the photo’s primary key. Access rights are

verified and bound to d2 upon its creation, thus subsequent operations on d2

are not subject to cross-table checks. Any tag created using the d2 descriptor

will belong to the same photo because d2 fixes the foreign key value to be the

photo’s primary key. As discussed in Section 4.3.5, the object graph library

automates creation and management of descriptors.

The derived descriptor d2 inherits the AppID, default insert mode, per-

mitted operations, and accessible/fixed columns from d0. However, the set of

accessible rows are recalculated to represent only the tags of a single photo,

and a new fixed-column restriction is added for the foreign key, which must

not be fixed previously.

Transferring and downgrading descriptors. An app can pass its de-

scriptor to another app, a way to delegate access to the receiving app at run

time. Transferring a descriptor generates a new copy of the descriptor in the

receiving app. We say such a copy is derived from the original descriptor.

When delegating its access rights, an app may create a downgraded

descriptor. For example, an app that has full access to an album may create

92

a read-and-update descriptor for a single photo before passing it to a photo

editor. A downgraded descriptor can also deny access to certain relationships

by making the column containing the foreign key inaccessible.

Revoking descriptors. By default, a subset descriptor is valid until closed

by the holding app. However, sometimes an app needs more control over a

descriptor passed to another app. Therefore, Earp supports transitive revo-

cation. When an app explicitly revokes a subset descriptor, all descriptors

derived from it will also be revoked, including descriptors that are copied or

transferred from it, as well as those generated based on query results. In this

way, App A can temporarily grant access to App B by passing a descriptor d

to it, then revoke App B’s copy of d (and derived descriptors) afterwards by

revoking the original copy in App A itself.

Creating relationships. A foreign key in Earp may imply access rights.

For x 1:n y, foreign keys are never specified by the app. For example, inserting

a tag for a photo can only be done via a descriptor generated for that photo’s

tags, i.e., d2 in Figure 4.3, which fixes the foreign key value. This prevents an

app from adding tags to a photo that it cannot access.

For x n:1 y, however, the app needs to provide a foreign key when cre-

ating a new row in x. For example, to add an existing photo to an album, the

app needs to add a row in album_data with a foreign key referencing the photo.

In this case, Earp must ensure that the app has some administrative rights

93

over the referenced photo, because this operation makes the photo accessible

to anyone that has access to the album. An analogy is changing file permis-

sions in UNIX via chmod, which also requires administrative rights (matching

UID or root).

To create such a reference, Earp requires an app to specify the foreign

key value in the form of an unforgeable token. The app can obtain such a token

via a successful insert or query on the referenced row, provided that the row

is public or owned by the app. This proves that the app has administrative

rights over the row.

4.3.5 Object graph library

As mentioned in Section 4.2, Earp provides a library that implements

an object graph API on top of the relational data representation. Rows (e.g.,

photos) are represented as JavaScript objects. Related objects (e.g., photos

and tags) are attached to each other via object references. The corresponding

descriptors are computed and managed internally by the library. As Figure 4.1

illustrates for our running photo gallery example, an album can be retrieved

(or stored) as a graph, and searching for photos with a certain tag can be done

via a path query in this graph.

An app can use this library to conveniently construct a subgraph from

an entry object that has capability or non-capability relationships with other

objects. The lightweight nature of subset descriptors allows the library to

proactively create descriptors as the app is performing queries. Internally, the

94

library automates descriptor management and chooses appropriate descriptors

for each operation. For example, it has dedicated descriptors for simple func-

tion APIs such as addObjectRef to create objects that have relationships with

existing ones, as well as APIs that facilitate more complex operations, such as:

• populateGraph: populate a subgraph from a starting node (e.g., fetch

all data from an album);

• storeGraph: store objects from a subgraph to multiple tables (e.g.,

store a new photo along with its tags);

• queryPaths: find paths in a subgraph that satisfy a predicate (e.g.,

find photos with a certain tag in an album).

4.4 Data sharing via inter-app services

In Earp, sharing non-persistent data between apps relies on the same

relational abstractions as storage. In particular, data is accessed through sub-

set descriptors that control which operations are available and which rows

and columns are visible (just like for storage). The OS in Earp interposes on

inter-app services, presents a relational view of the shared data, and is fully

responsible for enforcing access control.

Figure 4.4 illustrates inter-app services in Earp. The server app is the

provider of the data, the client app is a recipient of the data. In Earp, the

server app defines and registers a named service, implemented with four service

callbacks. To client apps, this service appears as a database with a set of virtual

95

client
app

server
app

Earp services ref. monitor
registered service

callbacks
register

open
subset
desc

DB operations
client
operation

service
callbacks

query list

insert add

update list, alter

delete list, remove

Earp translates DB operations
into service callbacks

Figure 4.4: Inter-app services in Earp.

tables and clients use subset descriptors to access this “database.” Defining

virtual tables via callbacks is a standard idea, and a similar mechanism exists

in SQLite4. Earp uses a subset of this interface tailored for the needs of mobile

apps.

Virtual tables have the same relational model and are accessed through

the same subset descriptors as conventional database tables (Section 4.3). The

server app can define permission policies on virtual tables, in the same way

as for storage databases. Like conventional tables, a virtual table can have

a foreign key to another virtual table, defining a capability or non-capability

relationship.

4.4.1 Implementing a relational service API

A service is implemented by defining four service callbacks: list, add,

alter, and remove. The callbacks operate on virtual tables as follows.

4https://www.sqlite.org/vtab.html

96

https://www.sqlite.org/vtab.html

• list: The server app provides a list of rows in the requested virtual

table. This is the only set operation among the four callbacks. The server app

also supplies values for the ACL column of any directly accessible table. Many

use cases (Section 4.6), however, only rely on schema-level permission policies,

so the server app may simply provide a dummy public value.

• add: Given a single row object, the server app adds it to the requested

virtual table.

• alter: Given a single row object and new values for a set of columns,

the server app updates that row in the requested virtual table.

• remove: Given a single row object, the server app deletes it from the

requested virtual table.

Implementation of the service callbacks is necessarily app-specific. An

app can retrieve data in response to a list invocation from an in-memory data

structure, or fetch it on demand from a remote server via HTTP(S) requests.

For example, list for the Google Drive service may involve fetching files, while

add for the Facebook service may result in posting a status update.

4.4.2 Using a relational service API

Earp interposes on client apps’ accesses to a service and converts stan-

dard database operations on virtual tables (query, insert, update, delete) into

invocations of service callbacks. The reference monitor filters out inaccessible

rows and columns and fixes column values according to the subset descriptor

97

held by the client app.

• query: Earp invokes list, then filters the result set before returning

to the client. Multi-table queries (joins) are converted to multiple list calls.

• insert: Earp sanitizes the client app’s input row object by setting the

values of fixed columns as specified in the descriptor, then passes the sanitized

row to add.

• update: Earp invokes the list callback, performs filtering, sanitizes

the new values, then invokes alter for each row in the filtered result set. This

ensures that only the rows to which the client app has access will be updated,

and that the client cannot modify columns that are inaccessible or whose values

are fixed.

• delete: Earp invokes the list callback, performs filtering, then in-

vokes remove for each row in the filtered result set.

4.4.3 Optimizing access-control checks

Earp’s strategy of active interposition to enforce access control on inter-

app services could reduce performance for certain server implementation pat-

terns. We use several techniques to mitigate the performance impact on im-

portant use cases.

Separate data and metadata. Earp’s filtering for list happens after the

server app provides the data. Therefore, if the server returns a lot of unstruc-

98

tured “blob” data (e.g, raw image data associated with photos), possibly from

a remote host, access control checks could be expensive.

In the common scenario where only metadata columns are used to de-

fine selection and access control criteria, the server app can greatly improve

performance by separating the metadata and the blob data into two tables.

The metadata table is directly visible to the client apps, and Earp performs

filtering on it. The blob table is only accessible via a capability relationship

(i.e., metadata n:1 blob). The client app receives the filtered result from the

metadata table and can only fetch blobs that are referenced by the metadata

rows.

Leverage indexing and query information. Although Earp does not

require the server app to check the correctness or security of the data it returns

in response to list, the server app can significantly reduce the amount of sent

data if it already maintains indices on the data and takes advantage of the

fact that Earp lets it see the actual client operation that invoked a particular

callback.

For example, when a service exports a key/value interface, the server

app can learn the requested key from Earp and return only the value for that

key. Similarly, if the service acts as a proxy for a local database (e.g., a photo

filter for the gallery), Earp sanitizes the client requests based on the client’s

descriptor and passes the sanitized operations to the service. The service uses

Earp’s database layer, which has a safe implementation of the relational model.

99

4.5 Implementation of Earp

We modified Firefox OS 2.1 to create the Earp prototype. The backend

for storage is SQLite, a lightweight relational database that is already used by

Firefox OS internally. Firefox OS supports inter-app communication based on

a general message passing mechanism. It presents low-level APIs to send and

receive JavaScript objects (similar to Android Binder IPC). Earp’s inter-app

service support is built on top of message passing, but presents higher-level

APIs that facilitate access-control enforcement for structured data (similar

to Android content providers which are built on top of Binder IPC). Our

implementation of Earp consists of 7,785 lines of C++ code and 1,472 lines

of JavaScript code (counted by CLOC5) added to the browser runtime and

libraries.

4.5.1 Storing files

There are two ways to store files in Earp. When per-file metadata

(e.g., photo EXIF data and ACLs) is needed, files can be co-located with the

metadata in a database with file-type columns. Apps store large, unstructured

blob data (e.g., PDF files) using file-type columns, and the only way for them

to get handles to these files is by reading from such columns. This eliminates

the need for a separate access-control mechanism for files. Internally, Earp

stores the blob data in separate files and keeps references to these files in the

database. This is a common practice for indexing files, used, for example, in

5http://cloc.sourceforge.net/

100

http://cloc.sourceforge.net/

Android’s photo manager and email client. Inserting a row containing files is

atomic from the app’s point of view. This allows Earp to consistently treat

data and metadata, e.g., a photo and its EXIF.

If per-file metadata and access control are not needed, an app can store

and manage raw files via directory handles. Access control is provided at direc-

tory granularity, and apps can have private or shared directories. Internally,

Earp reuses the access-control mechanism for database rows to implement

per-directory access control, simply by adding a directory-type column which

stores directory references. The permissions on a directory are determined by

the permissions on the corresponding database row.

4.5.2 Events and threads

JavaScript is highly asynchronous and relies heavily on events. There-

fore, the API of Earp is asynchronous and apps get the results of their requests

via callbacks.

Thread pool. Internally, all requests to storage and services are dispatched

to a thread pool to avoid blocking the app’s main thread for UI updates. The

thread pool handles all I/O operations for database access and performs result

filtering for inter-app services. After completing its processing of a request,

Earp dispatches a success or error event to the main thread of the app, which

invokes an appropriate callback.

A request may be processed by multiple concurrent threads to maximize

101

queryqueryinsert

store file

insert

store file

query

update
prepare & wait

DB access

clean-up & notify

Notation

time

req issued

Figure 4.5: Constraints on request processing order in the thread pool.

parallelism. For example, inserting a row that contains n files will be processed

by n + 1 threads, where the first n threads store the files and the last thread

inserts metadata into the database. Although processed concurrently, such an

insert request is atomic to apps, because they are not allowed to access the

files until the insert finishes. If any thread fails, Earp aborts the operation and

removes any written data.

Similarly, a request to a service can also be parallelized. For example,

when processing an update request, Earp first uses a thread to invoke the list

callback of the server app and to filter the result; for each row that passes the

filter, Earp immediately dispatches an event to invoke the alter callback. If

alter has high latency due to remote access, the server app can also parallelize

its processing, e.g., by sending concurrent HTTP(S) requests.

Request ordering. When processing requests, Earp preserves the program

order of all write requests (insert, update and delete) and guarantees that

apps read (query) their writes. The critical section (database access) of a write

waits for all previous requests to complete, while a read waits only for previous

102

writes. Storing blob-type columns, as part of inserts or updates, is parallelized;

however, a read must wait for the previous blob stores to complete. Note that

an app could request an editable file or directory handle from a database

query, but Earp does not enforce the order of reads and writes on the handle.

It enforces the order when storing or replacing the whole blob using inserts or

updates. Figure 4.5 shows an example of runtime request ordering.

4.5.3 Connections and transactions

A subset descriptor is backed by a database connection or a service con-

nection. The program’s order of requests is preserved per connection. When

an app opens a database or a service, Earp creates a new connection for it.

Descriptors that are derived from an existing descriptor inherit the same con-

nection. However, the app can also request a new connection for an existing

descriptor.

Earp exposes SQLite’s support for transactions to apps. An app can

group multiple requests in a transaction. If it does not explicitly use the API

for transactions, each individual request is considered a transaction. Note that

a transaction is for operations on a connection; requests on multiple descriptors

could belong to a same transaction if they share the connection. The object

graph library uses transactions across descriptors to implement the atomic

version of storeGraph.

103

4.5.4 Safe SQL interface

SQL queries require WHERE clauses, but letting apps directly write raw

clauses would create an SQL injection vulnerability. Earp uses structured ob-

jects to represent WHERE clauses and column-value pairs to avoid parsing strings

provided by apps and relies on prepared statements to avoid SQL injection.

4.5.5 Reference monitor

The reference monitor mediates apps’ access to data by creating ap-

propriate descriptors for them and enforcing the restrictions encoded in the

descriptor when processing apps’ requests. Descriptors, requests, and tokens

for foreign keys can only be created by the reference monitor; they cannot be

forged by apps. They are implemented as native C++ classes with JavaScript

bindings so that their internal representation is invisible to apps. These ob-

jects are managed by the reference counting and garbage collection mechanisms

provided by Firefox OS.

App identity. An app (e.g., Facebook) often consists of local Web code,

remote Web code from a trusted origin (e.g., https://facebook.com) specified

in the app’s manifest, and remote Web code from untrusted (e.g., advertising)

origins. Earp adopts the app identity model from PowerGate [GJS15], and

treats the app’s local code and remote code from trusted origins as the same

principal, “the app.” Web code from other origins is considered untrusted and

thus has no access to databases or services.

104

Policy management. Earp has a global registry of policies for databases

and services, specified by their owners. Earp also has a trusted policy manager

that can modify policies on any database or service.

4.6 Earp use cases

To illustrate how Earp supports sharing and access-control require-

ments of mobile apps, we implemented several essential apps based on Firefox

OS native apps and utilities.

Photo gallery and editor. Gallery++ provides a user interface for orga-

nizing photos into albums and applying tags to photos (as in our running ex-

ample). With the schema shown in Figure 4.2, Earp automates access control

enforcement for Gallery++ and lets it define flexible policies for other apps.

For example, when other apps open the photo database, they are granted ac-

cess to their private photos and albums as well as public photos and albums,

but certain fields like EXIF may be excluded.

Gallery++ can also share individual photos or entire albums with other

apps (optionally including EXIF and tag information), by passing subset de-

scriptors. For example, we ported a photo editing app called After Effects to

Earp but blocked it from directly opening the photo database. Instead, this

app can only accept descriptors from Gallery++ when the user explicitly in-

vokes it for the photos she selected in Gallery++. When she finishes editing

and returns from After Effects, Gallery++ revokes the descriptor to prevent

105

further access.

Contacts manager. The Earp contacts manager provides an API identical

to the Firefox OS contacts manager, thus legacy applications interacting with

the manager all continue to work, yet their access is restricted according to

the policies imposed by the Earp contacts manager.

The contacts manager stores contacts using seven tables: the main con-

tact table in which the columns are simple attributes, five tables to manage at-

tributes that allow multiple entries (e.g., contact 1:n phone and contact 1:n email),

and the final table that holds contact categories with category n:1 contact.

Categories can be used to restrict apps’ access to groups of related contacts.

Such a schema enables Earp-enforced custom policies, e.g., a LinkedIn app can

be given access only to contacts in the “Work” category, without home address

information.

Email. The Firefox OS built-in email client saves attachments to the world-

readable device storage (SD card) when it invokes a viewing app to open the

attachment.

The Earp email client allows attachments to be exported only to an

authorized viewing app, which obtain a subset descriptor to the email app’s

database. The Earp email client also supports flexible queries from the viewing

app, such as “show all pictures received in the past week,” or “export all PDF

attachments received two days ago”.

106

Elgg social service and client apps. We use Elgg6, an open-source social

networking framework, to demonstrate Earp’s support for controlled sharing

of app-defined content. We customized Elgg to provide a Facebook-like social

service where users can see posts from their friends. There are three compo-

nents: the Elgg Web server, the Elgg local proxy app, and local client apps.

Client apps are not authorized to directly contact the Elgg Web server. In-

stead, they must communicate with the Elgg local app which defines a service.

This service acts as a local proxy and accesses remote resources hosted on the

Web server.

A post in Elgg is a text message with associated images. The Elgg app

maintains two virtual tables, one for the post text (called post), the other for

the images (called image), with a post 1:n image relationship.

The service callbacks use asynchronous HTTP requests to fetch data.

To optimize bandwidth usage, images are only fetched when the requesting

client app has access to the post with which they are associated.

Local access control in Earp provides a simple and secure alternative

to OAuth. The Elgg local app defines policies for other apps based on user

actions, e.g., via prompts. We implemented several client apps, and the policies

for them are shown in Figure 4.6.

• An “activity map” app can read the location column in post, but

not any textual or image data. The post-to-image capability relationship is

6https://elgg.org/

107

https://elgg.org/

Activity Map:
 {post: {ops: ['query'],
 cols: ['location']},
 image: {ops: [], cols: []}} // no access

Social Collection:
 {post: {ops: ['query'],
 // WHERE clause (group='public') encoded
 // as a JS object to prevent SQL injection
 rows: {op: '=', group: 'public'}},
 image: {}} // image access implied by post
News:
 {post: {ops: ['insert'],
 fixedCols: [{category: 'news'}]},
 image: {}} // image access implied by post

Figure 4.6: Policies defined for Elgg client apps, represented as JavaScript
objects.

unavailable to it, so it cannot fetch images even for accessible posts.

• A“social collection”app gathers events from different social networks.

It can read all posts and associated images from the “public” group.

• A “news” app has insert-only access to the service, which is sufficient

for sharing news on Elgg. The policy fixes the category column of any inserted

post to be “news”, preventing it from posting into other categories.

Google Drive and client apps. The Google Drive proxy app in Earp pro-

vides a local service that mediates other apps’ access to cloud storage, avoiding

the need for OAuth. Client apps enjoy the benefits of cloud storage without

having to worry about provider-specific APIs or managing access credentials.

The proxy app presents a collection of file objects containing metadata (folder

and file name) and data (file contents) to other apps. It services requests from

client apps by making corresponding HTTPS requests to Google’s remote ser-

108

vice. We have ported two client apps to use the service.

• DriveNote is a note-taking app which stores notes on the user’s

Google Drive account via the local proxy. The proxy allows it to read/write

files only in a dedicated folder. Earp enforces this policy, ensuring that queries

do not return files outside of this folder, and fixing the folder column on any

update or insert operation.

• Gallery++ is a system utility, thus the Google Drive proxy app trusts

it with access to all files. Gallery++ can scan and download all images stored

on Google Drive.

4.7 Performance

We evaluate the performance of Earp on a Nexus 7 tablet, which has

2GB of DDR3L RAM and 1.5GHz quad-core Qualcomm Snapdragon S4 Pro

CPU.

4.7.1 Microbenchmarks

We run various microbenchmarks to measure Earp’s performance for

storage and inter-app services. Figure 4.7 shows Earp’s run time relative to

Firefox OS.

DB-only workloads (contacts). We measure the time to insert new con-

tacts, enumerate 500 contacts, and find a single contact matching a name or a

phone number from the 500; the base line is the contacts manager in Firefox

109

Inter−App Service

Get Large Photo
Get Small Photo

Insert Large Photo
Insert Small Photo

Create Large File
Create Small File
Delete Empty File
Create Empty File

Enumerate Contacts

Find Contact By Phone
Find Contact By Name

Insert Contact

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Earp Run Time Normalized to Firefox OS

Figure 4.7: Microbenchmark results for storage and services. Smaller run time
indicates better performance.

OS which uses IndexedDB. Earp outperforms the baseline for all workloads

except enumerating contacts, where it is about only 3% slower.

Earp’ performance is explained by its (1) directly using SQLite, while

Firefox OS uses IndexedDB built on top of SQLite, (2) directly maping an

object’s fields into table columns, whereas IndexedDB uses expensive serial-

ization to store the entire object, (3) using SQLite’s built-in index support,

whereas IndexedDB needs to create rows in an index table for all queryable

fields of every object, (4) more complex data structure for contacts (six tables

as opposed to a single serialized row for the baseline), which affords sophisti-

cated access control but requires a bit more time to perform joins.

110

File-only workloads. We measure the time to create/delete empty files and

write small (18KB)/large (3.4MB) files using Earp’s directory API; the base

line is Firefox OS’ DeviceStorage API. Earp has comparable performance to

the baseline, where the -11%∼4% difference in run time is due to different

implementations of these APIs. Note that the measured times include event

handling, e.g., dispatching to I/O threads and complete notification to the

app.

DB-and-file workloads (photos). The measurements include inserting

small, 18 KB, and large, 3.4 MB, photos with metadata, and retrieving them;

the baseline is inserting/retrieving the same photo files and their metadata

into the MediaDB library in Firefox OS, which uses IndexedDB. Earp largely

outperforms the baseline, mostly because of the differences between SQLite

and IndexedDB, as explained in the contacts experiments. When inserting

large photos the run time is dominated by writing files so performance is very

close (<1%) to the baseline.

Inter-app service. We measure the run time for retrieving 4,000 2 KB

messages from a different app using Earp’s inter-app service framework. The

baseline uses Firefox OS’ raw inter-app communication channel to implement

an equivalent service, where requests are dispatched to Web worker threads

(equivalent to Earp’s thread pool). Figure 4.7 shows that Earp performs

roughly the same as the baseline, and the time spent for access control (result

filtering) is negligible.

111

Baseline Earp slowdown

Elgg: read 50 posts 1623±102 1755± 99 8%
Elgg: upload 50 posts 5748±152 5888±117 2%

Google Drive: read 10 files 1310± 77 1392±120 6%
Google Drive: write 10 files 2828±217 2923±253 3%

Email: sync 200 emails 4725±433 4416±400 -6%

Table 4.1: Latency (msec) measured for macrobenchmarks on Earp applica-
tions.

4.7.2 Macrobenchmarks

Table 4.1 reports end-to-end latency for several real-world workloads

described in Section 4.6.

Remote services. We measure the latency of client apps (Elgg client and

DriveNote) accessing remote services (Elgg and Google Drive) by communi-

cating with local proxy apps for these services. The baseline is the local proxy

apps performing the same tasks by directly sending requests to their remote

servers. The workloads include reading/uploading fifty posts with images via

Elgg and reading/uploading ten 2KB text files via Google Drive. Table 4.1

shows that communicating with local proxy apps adds 3%∼8% latency, due to

extra data serialization and event handling.

Email. We measure the latency of downloading 200 emails. The baseline is

Firefox OS’ email app which stores emails using IndexedDB. As shown in the

“Email: sync” row of Table 4.1, Earp achieves similar performance storing the

emails in an app-defined database.

112

4.8 Applicability to Android

Earp requires providing abstractions for structured data at the plat-

form level, which is not satisfied by more popular platforms like Android and

iOS (Section 2.1). However, this section discusses the feasibility of applying

some of Earp’s core concepts to Android, despite the differences in software

architecture compared to Firefox OS. We demonstrate that Earp’s model could

be partially adopted in an incremental way for native platforms like Android.

Android’s database support is provided by the SQLite library, which

uses a single file to store each entire database. This makes it difficult to directly

achieve fine-grained database access control across apps, because it would re-

quire porting SQLite into the kernel or a system service that implements access

checks, which would be a significant change to the software architecture. We

do not investigate this approach in the dissertation.

On the other hand, Android’s content provider mechanism (Section 2.2)

imposes a standard, database-like API for cross-app communications, with

mostly coarse-grained access control. In this case, the app that implements

the content provider (server app) owns all of the data, and is responsible for

defining the access control requirements when sharing data with other apps.

We can thus apply Earp’s model for inter-app services to Android content

providers.

Once content providers have structure-aware protection, we could cre-

ate wrapper content providers for databases, which run in dedicated system

113

system_server process
(multi-threaded,

contains core services)

client app process content provider app

Kernel

Binder

content resolver

framework libraries
framework libraries Activity

Manager
Service

(run-time
app info)

Package
Manager
Service

(static
app info)

content provider impl

desc1

desc1 handle

EarpCP
library desc2

Figure 4.8: The EarpCP library added to Android’s content provider frame-
work. The states of subset descriptors are maintained by the library, and client
apps only hold references (handles) to descriptors.

services, in order to achieve Earp-style protection for storage. Therefore, in

principle, protecting content providers can be viewed as a general solution for

both inter-app services and storage. However, using a content provider to

mediate database accesses may add significant overhead due to the additional

inter-process communication; also, content providers do not have a strict SQL

interface, which would cause backward-compatibility issues.

4.8.1 Earp for Android content providers

As Figure 2.2 shows, access control is enforced by user-level framework

libraries for content providers. Thus we cannot enforce Earp-style access con-

trol at the platform level. Instead, we choose to add a new framework library,

EarpCP, to implement Earp-style data protection (Figure 4.8). Since the con-

tent provider app owns the data, we do not need to prevent it from bypassing

114

its own access checks. This approach cannot prevent bugs in the owning app

from compromising its own access control logic, but it does prevent client apps

from bypassing the checks, and provides a common framework for structure-

aware access control for content providers.

Data objects and relationships. A data object in a content provider is

represented as a row that has several column values, similar to a row in rela-

tional databases. We say objects of the same type collectively form a virtual

table. Suppose the previous photo gallery example (Figure 4.2) is implemented

as a content provider, then albums, photos and tags can be represented as three

different virtual tables. Note that virtual tables are not necessarily backed by

an SQLite database; even if they are, there may not be a one-to-one mapping

between virtual tables and database tables.

Content providers use different URIs to locate data objects. A URI

either identifies a collection of objects (optionally with query parameters to

filter the result), or a single object (typically with a unique ID as part of

the URI). Normally, each virtual table has one standard format to identify

a single row, with the ID as a path segment in the URI; for example, con-

tent://gallery/photos/12 may represent the photo with ID=12. However,

there are often multiple ways to identify a collection of rows for the same vir-

tual table; for example content://gallery/photos and content://gallery/-

albums/3/photos may represent all photos and photos belonging to the album

with ID=3, respectively. In this way, a cross-table query can be encoded as

115

album

/albums

/albums/<id>

entry URI:

photo

/photos/<id>

entry URI:

tag

/tags/<id>

entry URI:

/albums/<id>/photos /photos/<id>/tags

capability
relationship URI:

capability
relationship URI:

direct access URI: /photosdirect access URI: /tagsdirect access URI:

Figure 4.9: URIs and capability relationships in the photo gallery example.
The common prefix of all URIs (content://gallery) is omitted.

a URI, which allows us to conveniently track relationships between different

types of objects.

The EarpCP library requires the content provider to specify the infor-

mation about virtual tables, including the URI formats for single objects or

collections. Then the content provider needs to annotate cross-table relation-

ships, where each relationship is specified as a rule to generate a cross-table

URI based on an exiting object. The content provider also needs to specify

whether each cross-table relationship confers access rights, i.e., whether it is a

capability relationship. For example, the album-to-photo relationship can be

specified by a rule that allows an album (e.g., content://gallery/albums/3) to

confer access rights to its photos (e.g., content://gallery/albums/3/photos).

All capability relationships should form a DAG. The gallery example is illus-

trated in Figure 4.9.

Unlike foreign keys in databases, the URI-based cross-table relation-

ships only have one direction. The content provider could implement both

album-to-photo and photo-to-album relationships with different URI formats,

116

but only one of them can confer access rights, due to the DAG requirement.

Subset descriptors. In Android, a client app does not explicitly open a

content provider to get a handle for the IPC connection. Instead, it needs

to specify a content URI on every access, which is used by Android to locate

the content provider. However, Earp should allow an app to use different

descriptors to access the same content provider. The app thus needs to know

the IDs (handles) of descriptors in order to differentiate them. We create a

new API for opening, manipulating and closing descriptors, which is a standard

URI path—when the client app queries this URI, it opens the content provider

and gets a subset descriptor ID as the result; when it updates the URI with

a descriptor ID specified in a query parameter, it downgrades this descriptor

according to the new values provided in this update; when it deletes the URI

with a specified descriptor ID, it closes this descriptor.

Subset descriptors encode access rights to the content provider. To

prevent a client app from tampering with the encoded state, EarpCP is re-

sponsible for keeping the descriptor state in the content provider app. When

a descriptor is created, it is assigned a large random number, which is used

as the handle (descriptor ID) for the client app. The client app can transfer

such a descriptor by simply sending the random number to another client app.

Since the probability of correctly guessing a large random number is negligi-

ble, a client app cannot claim the possession of a descriptor unless it actually

receives it.

117

Like in Earp, a subset descriptor in EarpCP encodes per-table restric-

tions including permitted operations, column filtering, fixed columns, and row

filtering. Row filtering is achieved with two mechanisms: a set of directly acces-

sible URIs and additional mandatory query parameters. For example, accessi-

ble URI content://gallery/photos with mandatory query parameter ID=3 is

equivalent to accessible URI content://gallery/photos/3 without mandatory

query parameters.

In order to use a descriptor to access data in the content provider,

the client app must append the descriptor handle as a parameter to the URI.

For each query or insert operation, if requested, EarpCP will create a new

descriptor for each entry in the result that encodes access rights to just that

entry, and append the handle in the result returned to the client app. This

similar to Earp’s mechanism of deriving descriptors as shown in Figure 4.3.

Per-app permission policies. The content provider needs to specify the

access rights carried by the initial descriptor obtained upon open by each

client app. Such initial access rights are the permission policy for the client

app (Section 4.3.3).

4.8.2 Audio library in Media Provider

We use Android’s Media Provider as an example to demonstrate the

usage of EarpCP. It manages the user’s image, audio and video libraries. Since

the image and video libraries have similar and simpler data structures com-

118

artist

/artists

/artists/<id>

entry URI:

audio media

/media/<id>

entry URI:

genre

/genres/<id>

entry URI:

/artists/<id>/media /media/<id>/genres

/media

/genres

album

/albums/<id>

entry URI:

/albums

playlist

/playlists/<id>

entry URI:

/playlists

/artists/<id>/albums

/playlists/<id>/members

/genres/<id>/members

/
a
l
b
u
m
s
/
<
i
d
>
/
m
e
m
b
e
r
s

direct access URI capability relationship URI non-capability relationship URI

Figure 4.10: URIs and capability/non-capability relationships in the au-
dio library of Media Provider. The common prefix of all URIs (con-
tent://external/media/audio) is omitted.

pared to Earp’s photo gallery, we focus on the audio library, which has richer

structures including artists, albums, playlists and genres.

We ported Android’s audio library to use EarpCP, with minor modi-

fications such as adding artist-to-audio and album-to-audio URIs, which are

alternatives to directly using audio URIs with query parameters. The new

URIs make it more convenient for us to implement capability relationships.

The data model is shown in Figure 4.10. There are five virtual tables, con-

nected with five capability relationships and one non-capability relationship

(genre-to-audio). The capability relationships enable collection sharing based

on artists, albums or playlists, which transitively grant access to member audio

files. The non-capability relationship allows query by genres, but the result

will include only the audio files that are already accessible.

119

w/o EarpCP w/ EarpCP slowdown

create audio library 950±31 972±29 2%
browsing audio library 439±30 471±27 7%

Table 4.2: Time (msec) measured for running benchmark workload with and
without EarpCP.

Passing a descriptor for an artist to another app will transitively grant

the receiving app access to the albums and audio files of this artist. These

objects need different URIs to locate, all of which are allowed by the capabil-

ity relationships. In comparison, Android’s URI permission mechanism only

allows passing capability over a particular URI.

Performance. We measure the performance overhead added by EarpCP for

the audio library, on the same Nexus 7 tablet as used in Section 4.7. We use a

benchmarking client app that performs read/write operations. The workload

includes 1) creating an audio library with metatata for 200 fake audio files,

which are organized in 20 albums from 20 artists, and 2) retrieving the entire

audio library created in the previous step by browsing through all artists,

albums and audio files.

Table 4.2 shows the comparison of running the workload with and with-

out EarpCP protection. EarpCP adds 2% overhead for creating the audio li-

brary and 7% for browsing. These overheads are low because EarpCP does

not need extra IPC round trips to communicate the subset descriptors. In-

stead, descriptor handles are piggybacked on regular URIs sent to the content

provider and results returned to the client app.

120

Chapter 5

Related work

Related work of this dissertation includes systems that use information

flow techniques to confine untrusted code, as well as efforts to make access

control fine-grained and more flexible in mobile platforms. We also discuss

systems that use related techniques in scenarios other than mobile platforms.

5.1 Information flow

Maxoid’s confinement model is a form of information flow control that

keeps data secure when processed by untrusted code. In fact, invoking un-

trusted code on sensitive data is a classic security problem that has been

addressed by several desktop/server systems, such as language-level decentral-

ized information flow control (DIFC) [ML97, CF07, LGV+09, AGL+12], OS-

level DIFC [KYB+07, EKV+05, ZBWKM06, JAF+], PL-OS DIFC [RPB+09]

and architectural-OS information flow [TOL+11]. These systems assign secu-

rity labels to sensitive data, and control how labeled data can be propagated

across different domains. For mobile platforms specifically, a DIFC-style sys-

tem for Android is proposed in [JAF+]. Like other DIFC systems, it is not

transparent to untrusted legacy apps, since they need to be written in a way

that explicitly obey the DIFC rules.

121

TaintDroid [EGC+10] is a fine-grained taint tracking system for An-

droid which detects data leakage. In order to achieve fine granularity, it mod-

ifies different layers in Android’s software stack, including the Dalvik VM.

However, the modified Dalvik VM has a security limitation, which is that

it does not detect implicit data leaks through control flows. For example, a

branching statement can leak one bit of information about the branch con-

dition, but TaintDroid does not track such leakage. A malicious app could

accumulate information via a large number of branches, constructing a high-

bandwidth channel. In contrast, Maxoid is more conservative, i.e., a delegate’s

(even in native code) output is always controlled.

There are also systems built on top of TaintDroid. AppFence [HHJ+11]

uses TaintDroid to stop apps from sending the user’s sensitive data over the

network. Like TaintDroid, it identifies system-wide sensitive data such as the

device ID and contacts as the source of sensitive data, rather than per-app

private data as in Maxoid. AppFence uses some heuristic techniques to reduce

disruptions to legacy apps, such as providing a fake value as the device ID

sent over the network. It does not control intra-device taint propagation as

Maxoid does, which would be a more severe problem if per-app private data

were also tracked and protected. CleanOS [TAB+12] uses TaintDroid to track

the propagation of an app’s sensitive data and protects them via encryption.

Unlike Android, its focus is reducing the lifetime of an app’s clear-text sensitive

data on the device.

122

5.2 Flexible access control

A number of recent systems have been proposed to change the coarse-

grained, ineffective access control in existing mobile platforms. Before Android

6.0, apps could only request permissions at install time, but there have been

research systems [OMEM12, NKZ10, CNC10, BRSS11, XSA12, BGH+12] that

enable flexible runtime permission granting or revoking.

SE Android [SC13] and FlaskDroid [BHS13] add mandatory access con-

trol to Android. Systems like ServiceOS [MWL13], Bubbles [TMO+12], IPC

Inspection [FWM+11] and QUIRE [DSP+11] provide apps different access

rights when they execute in different contexts. While these systems improve

security by enforcing stricter access control, they do not provide information

flow control like Maxoid.

FlaskDroid also provides a design pattern for content providers to filter

query results for different client apps, which is based on SQL views. However,

unlike Earp, it is limited to SQLite-based content providers and does not

consider capability relationships across table. By contrast, Earp supports all

types of inter-app services, including proxies for remote servers.

Pebbles [SBL+14] is another TaintDroid-based system, which is closely

related to Earp. It modifies Android’s SQLite and XML libraries and uses

TaintDroid to discover app-level data structures across different types of stor-

age, at the cost of considerable overhead in certain workloads. Pebbles relies

on developers using certain design patterns consistently to infer the structure

123

of data and it is implemented in app-level libraries. In contrast, Earp explicitly

requires apps to expose their structures to the platform, and its enforcement

is part of the platform.

While Pebbles and Earp make data objects fine-grained for protec-

tion purpose, there are also systems that make the security principals fine-

grained, which is a practice of privilege separation. AdSplit [SDW12] and Ad-

Droid [PFNW12] split an app and its untrusted advertising into separate pro-

cesses, while FlexDroid [SKC+16] achieves privilege separation for third-party

libraries using hardware-based fault isolation. These techniques are orthogonal

to Maxoid and Earp, and similar approaches can enable Maxoid delegates to

use advertising in a separate process without network disruption.

πBox [LWG+13] is an Android-based platform that has an extend sand-

box that spans the user’s device and the cloud. It can confine untrusted apps

with network access limited to a trusted cloud. It thus requires that all apps’

servers must be deployed on the trusted cloud. Similar approaches might help

address the limitation that Maxoid must block network for delegates. However,

the required trusted cloud does not exist for commodity mobile platforms.

5.3 Related techniques for other platforms

Maxoid and Earp have also been influenced by some other systems that

are not designed for mobile platforms. We discuss related techniques used in

these systems.

124

Using different views of data for security. Solitude [JSDG08], Api-

ary [PN10] and Mbox [KZ13] use union file systems for application fault con-

tainment or sandboxing in Linux. The design of file system support in Maxoid

is inspired by these systems, but our goals and approaches are suited for mobile

apps’ collaboration on sensitive data.

Fine-grained protection in databases. Earp heavily relies on relational

databases. Traditional access control systems for relational databases [BL08,

BJS96, FSG+01, OSM00, J+09, RMSR04, GB14] are based on users or roles

with relatively static policies. More recently, IFDB [SL13] showed how DIFC

can be integrated with a relational database. Like Earp, IFDB also discusses

foreign key issues, but focuses on potential information leakage due to referen-

tial integrity enforcement. Earp’s capability relationships focus on a different

problem, and they are used to express protection requirements for mobile apps’

inter-related data objects.

Protection on Web platforms. Earp’s prototype is a browser-based plat-

form. For JavaScript code running in Web browsers, there are several sys-

tems that enable flexible policies [CGZ10, ML10, JDRC10], controlled object

sharing [MFM10, PDL+11], or confinement [SYM+14, HPD13, IW12]. While

all these systems improve access control enforcement, they do not provide

platform-level abstractions for relational data.

125

Downgradable and transferable access rights. Google has proposed a

distributed authorization system, Macaroons [BPÃE+14], which allows access

rights to be delegated across protection domains, and access rights can be

downgraded by further restricting the set of accessible objects and the possible

contexts where they can be used. DCAC [XDH+14] uses hierarchically-named

attributes to represent access rights held by processes, where an attribute can

be downgraded to its child attributes and delegated to other processes. While

Earp’s subset descriptors share similarities with these mechanisms, the rela-

tional model and capability relationships can enable more expressive policies.

Native relational stores. Like Earp, there are previous efforts to make

relational data directly supported by the OS, notably Microsoft’s cancelled

project WinFS1. WinFS contains a database engine to natively support SQL,

and files/directories are implemented on top of the database. While WinFS

had fine-grained access control, it was still based on per-object permissions;

WinFS was developed before mobile platforms become popular, and tradi-

tional desktop apps that rely on files suffered performance penalties due to

database-managed metadata. Earp’s database-centric approach suits the cur-

rent practice of mobile development where databases are the de facto hub

for storage [SBL+14]. Finally, because Earp uses an unmodified file system

for raw files (unlike WinFS), it provides compatibility file APIs that have no

performance overhead.

1https://msdn.microsoft.com/en-us/library/Aa479870.aspx

126

https://msdn.microsoft.com/en-us/library/Aa479870.aspx

Chapter 6

Conclusion

Security mechanisms provided by existing mobile platforms often fail to

support requirements of modern apps that frequently interact with each other.

First, existing platforms do not provide information flow control for inter-app

data exchanges, resulting in data leaks in many common scenarios; we present

Maxoid, a system that uses custom views of state to make conservative in-

formation flow confinement transparent, achieving much stronger secrecy and

integrity guarantees with backward compatibility. Second, modern apps heav-

ily rely on structured data with inter-related objects, but existing platforms’

security mechanisms are blind to such structures and relationships, causing

unprincipled, ad hoc data sharing and protection practices; we present Earp, a

new mobile platform which protects structured data—the abstraction used by

apps—at the platform level, enabling principled data protection and sharing.

127

Bibliography

[AGL+12] Owen Arden, Michael D George, Jed Liu, K Vikram, Aslan

Askarov, and Andrew C Myers. Sharing mobile code securely

with information flow control. In IEEE Symposium on Security

and Privacy, 2012.

[BGH+12] Michael Backes, Sebastian Gerling, Christian Hammer, Matteo

Maffei, and Philipp von Styp-Rekowsky. AppGuard – real-time

policy enforcement for third-party applications. Technical Re-

port A/02/2012, MPI-SWS, 2012.

[BHS13] Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. Flex-

ible and fine-grained mandatory access control on Android for

diverse security and privacy policies. In USENIX Security Sym-

posium, 2013.

[BJS96] Elisa Bertino, Sushil Jajodia, and Pierangela Samarati. Sup-

porting multiple access control policies in database systems. In

IEEE Symposium on Security and Privacy, 1996.

[BL08] Ji-Won Byun and Ninghui Li. Purpose based access control for

privacy protection in relational database systems. The VLDB

Journal, 17(4):603–619, 2008.

128

[BPÃE+14] Arnar Birgisson, Joe Gibbs Politz, ÃŽlfar Erlingsson, Ankur

Taly, Michael Vrable, and Mark Lentczner. Macaroons: Cook-

ies with contextual caveats for decentralized authorization in the

cloud. In Network and Distributed System Security Symposium

(NDSS), 2014.

[BRSS11] Alastair R. Beresford, Andrew Rice, Nicholas Skehin, and Rip-

duman Sohan. MockDroid: trading privacy for application func-

tionality on smartphones. In International Workshop on Mobile

Computing Systems and Applications (HotMobile). ACM, 2011.

[CF07] Deepak Chandra and Michael Franz. Fine-grained information

flow analysis and enforcement in a Java virtual machine. In

Annual Computer Security Applications Conference (ACSAC),

2007.

[CGZ10] Ramesh Chandra, Priya Gupta, and Nickolai Zeldovich. Sepa-

rating web applications from user data storage with BSTORE.

In USENIX Conference on Web Application Development (We-

bApps), 2010.

[CNC10] Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo. CRePE:

Context-related policy enforcement for Android. In Information

Security Conference (ISC), 2010.

[DSP+11] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and

Dan S Wallach. QUIRE: Lightweight Provenance for Smart

129

Phone Operating Systems. In USENIX Security Symposium,

2011.

[EGC+10] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,

Jaeyeon Jung, Patrick McDaniel, and Anmol Sheth. Taint-

Droid: An Information-Flow Tracking System for Realtime Pri-

vacy Monitoring on Smartphones. In USENIX Symposium on

Operating Systems Design and Implementation (OSDI), 2010.

[EKV+05] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff

Frey, David Ziegler, Eddie Kohler, David Mazieres, Frans Kaashoek,

and Robert Morris. Labels and event processes in the asbestos

operating system. In ACM Symposium on Operating System

Principles (SOSP), 2005.

[EOMC11] William Enck, Damien Octeau, Patrick McDaniel, and Swarat

Chaudhuri. A study of Android application security. In USENIX

Security Symposium, 2011.

[FSG+01] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard

Kuhn, and Ramaswamy Chandramouli. Proposed nist standard

for role-based access control. ACM Transactions on Information

and System Security (TISSEC), 4(3):224–274, 2001.

[FWM+11] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steve

Hanna, and Erika Chin. Permission re-delegation: Attacks and

defenses. In USENIX Security Symposium, 2011.

130

[GB14] Marco Guarnieri and David Basin. Optimal security-aware

query processing. In International Conference on Very Large

Data Bases (VLDB), 2014.

[GJS14] Martin Georgiev, Suman Jana, and Vitaly Shmatikov. Break-

ing and fixing origin-based access control in hybrid web/mobile

application frameworks. In Network and Distributed System

Security Symposium (NDSS), 2014.

[GJS15] Martin Georgiev, Suman Jana, and Vitaly Shmatikov. Rethink-

ing security of Web-based system applications. In International

World Wide Web Conference (WWW), 2015.

[HHJ+11] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter,

and David Wetherall. These aren’t the Droids you’re looking

for: retrofitting Android to protect data from imperious applica-

tions. In ACM Conference on Computer and Communications

Security (CCS), 2011.

[HPD13] Jon Howell, Bryan Parno, and John R Douceur. Embassies:

radically refactoring the Web. In USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI), 2013.

[IW12] Lon Ingram and Michael Walfish. Treehouse: JavaScript sand-

boxes to help web developers help themselves. In USENIX

Annual Technical Conference, pages 153–164, 2012.

131

[J+09] Sumit Jeloka et al. Oracle Label Security Administrator’s Guide.

Oracle Corporation, release 2 (11.2) edition, 2009.

[JAF+] Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer, Michael

Stroucken, Kazuhide Fukushima, Shinsaku Kiyomoto, and Yu-

taka Miyake. Run-time enforcement of information-flow prop-

erties on Android. In ESORICS 2013.

[JDRC10] Karthick Jayaraman, Wenliang Du, Balamurugan Rajagopalan,

and Steve J Chapin. Escudo: A fine-grained protection model

for web browsers. In IEEE International Conference on Dis-

tributed Computing Systems (ICDCS), 2010.

[JSDG08] Shvetank Jain, Fareha Shafique, Vladan Djeric, and Ashvin Goel.

Application-level isolation and recovery with Solitude. In ACM

European Conference in Computer Systems (EuroSys), 2008.

[KYB+07] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,

E. Kohler, and R. Morris. Information flow control for standard

OS abstractions. In ACM Symposium on Operating System

Principles (SOSP), 2007.

[KZ13] Taesoo Kim and Nickolai Zeldovich. Practical and Effective

Sandboxing for Non-root Users. In USENIX Annual Technical

Conference (ATC), 2013.

132

[LGV+09] Jed Liu, Michael D George, Krishnaprasad Vikram, Xin Qi, Lu-

cas Waye, and Andrew C Myers. Fabric: A platform for secure

distributed computation and storage. In ACM Symposium on

Operating System Principles (SOSP), 2009.

[LWG+13] Sangmin Lee, Edmund L. Wong, Deepak Goel, Mike Dahlin,

and Vitaly Shmatikov. πbox: a platform for privacy-preserving

apps. In USENIX Symposium on Networked Systems Design

and Implementation (NSDI), 2013.

[LZX+14] Tongxin Li, Xiaoyong Zhou, Luyi Xing, Yeonjoon Lee, Muham-

mad Naveed, XiaoFeng Wang, and Xinhui Han. Mayhem in the

push clouds: Understanding and mitigating security hazards in

mobile push-messaging services. In ACM Conference on Com-

puter and Communications Security (CCS), 2014.

[MFM10] Leo A. Meyerovich, Adrienne Porter Felt, and Mark S. Miller.

Object views: Fine-grained sharing in browsers. In Interna-

tional World Wide Web Conference (WWW), 2010.

[ML97] A. C. Myers and B. Liskov. A decentralized model for infor-

mation flow control. In ACM Symposium on Operating System

Principles (SOSP), pages 129–142, October 1997.

[ML10] Leo A. Meyerovich and Benjamin Livshits. Conscript: Speci-

fying and enforcing fine-grained security policies for JavaScript

133

in the browser. In IEEE Symposium on Security and Privacy,

2010.

[MWL13] Alexander Moshchuk, Helen J. Wang, and Yunxin Liu. Content-

based isolation: rethinking isolation policy design on client sys-

tems. In ACM Conference on Computer and Communications

Security (CCS), 2013.

[NKZ10] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex:

extending Android permission model and enforcement with user-

defined runtime constraints. In ACM Symposium on Infor-

mation, Computer and Communications Security (AsiaCCS).

ACM, 2010.

[OMEM12] Machigar Ongtang, Stephen McLaughlin, William Enck, and

Patrick McDaniel. Semantically rich application-centric security

in Android. Security and Communication Networks, 5(6):658–

673, 2012.

[OSM00] Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuring

role-based access control to enforce mandatory and discretionary

access control policies. ACM Transactions on Information and

System Security (TISSEC), 3(2):85–106, 2000.

[PDL+11] Kailas Patil, Xinshu Dong, Xiaolei Li, Zhenkai Liang, and Xux-

ian Jiang. Towards fine-grained access control in JavaScript

134

contexts. In IEEE International Conference on Distributed

Computing Systems (ICDCS), 2011.

[PFNW12] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David

Wagner. Addroid: Privilege separation for applications and

advertisers in Android. In ACM Symposium on Information,

Computer and Communications Security (AsiaCCS), 2012.

[PN10] Shaya Potter and Jason Nieh. Apiary: Easy-to-use desktop

application fault containment on commodity operating systems.

In USENIX Annual Technical Conference (ATC), 2010.

[RMSR04] Shariq Rizvi, Alberto Mendelzon, Sundararajarao Sudarshan,

and Prasan Roy. Extending query rewriting techniques for fine-

grained access control. In ACM SIGMOD International Con-

ference on Management of Data (SIGMOD), 2004.

[RPB+09] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S.

McKinley, and Emmett Witchel. Laminar: Practical fine-grained

decentralized information flow control. In ACM SIGPLAN Con-

ference on Programming Language Design and Implementation

(PLDI), June 2009.

[RT74] Dennis M. Ritchie and Ken Thompson. The UNIX time-sharing

system. Communications of the ACM (CACM), 17(7), 1974.

135

[Sal74] Jerome H. Saltzer. Protection and the control of information

sharing in multics. Communications of the ACM (CACM),

17(7), 1974.

[SB12] San-Tsai Sun and Konstantin Beznosov. The Devil is in the (Im-

plementation) Details: An Empirical Analysis of OAuth SSO

Sytems. In ACM Conference on Computer and Communica-

tions Security (CCS), 2012.

[SBL+14] Riley Spahn, Jonathan Bell, Michael Z. Lee, Sravan Bhamidi-

pati, Roxana Geambasu, and Gail Kaiser. Pebbles: Fine-

Grained Data Management Abstractions for Modern Operating

Systems. In USENIX Symposium on Operating Systems Design

and Implementation (OSDI), 2014.

[SC13] Stephen Smalley and Robert Craig. Security enhanced (SE)

android: Bringing flexible mac to Android. In Network and

Distributed System Security Symposium (NDSS), 2013.

[SDW12] Shashi Shekhar, Michael Dietz, and Dan S Wallach. AdSplit:

Separating smartphone advertising from applications. In USENIX

Security Symposium, 2012.

[SH14] Hossain Shahriar and Hisham M. Haddad. Content provider

leakage vulnerability detection in Android applications. In In-

ternational Conference on Security of Information and Networks

(SIN), 2014.

136

[SKC+16] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Taesoo Kim, and

Insik Shin. FlexDroid: Enforcing in-app privilege separation in

Android. 2016.

[SL13] David Schultz and Barbara Liskov. IFDB: decentralized infor-

mation flow control for databases. In ACM European Confer-

ence in Computer Systems (EuroSys), 2013.

[SYM+14] Deian Stefan, Edward Z Yang, Petr Marchenko, Alejandro Russo,

Dave Herman, Brad Karp, and David Mazieres. Protecting

users by confining JavaScript with COWL. In USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI),

2014.

[TAB+12] Yang Tang, Phillip Ames, Sravan Bhamidipati, Ashish Bijlani,

Roxana Geambasu, and Nikhil Sarda. CleanOS: Limiting mo-

bile data exposure with idle eviction. In USENIX Symposium on

Operating Systems Design and Implementation (OSDI), 2012.

[TMO+12] Mohit Tiwari, Prashanth Mohan, Andrew Osheroff, Hilfi Alkaff,

Elaine Shi, Eric Love, Dawn Song, and Krste Asanović. Context-

centric security. In USENIX Workshop on Hot Topics in Secu-

rity (HotSec), 2012.

[TOL+11] Mohit Tiwari, Jason Oberg, Xun Li, Jonathan K Valamehr,

Timothy Levin, Ben Hardekopf, Ryan Kastner, Frederic T Chong,

137

and Timothy Sherwood. Crafting a usable microkernel, proces-

sor, and i/o system with strict and provable information flow

security. In International Symposium on Computer Architec-

ture (ISCA), 2011.

[VGN14] Nicolas Viennot, Edward Garcia, and Jason Nieh. A measure-

ment study of Google Play. In ACM International Conference

on Measurement and Modeling of Computer Systems (SIGMET-

RICS), 2014.

[WXWC13] Rui Wang, Luyi Xing, XiaoFeng Wang, and Shuo Chen. Unau-

thorized origin crossing on mobile platforms: Threats and miti-

gation. In ACM Conference on Computer and Communications

Security (CCS), 2013.

[XBL+15] Luyi Xing, Xiaolong Bai, Tongxin Li, XiaoFeng Wang, Kai Chen,

Xiaojing Liao, Shi-Min Hu, and Xinhui Han. Cracking app

isolation on Apple: Unauthorized cross-app resource access on

MAC OS X and iOS. In ACM Conference on Computer and

Communications Security (CCS), 2015.

[XDH+14] Yuanzhong Xu, Alan M. Dunn, Owen S. Hofmann, Michael Z.

Lee, Syed Akbar Mehdi, and Emmett Witchel. Application-

defined decentralized access control. In USENIX Annual Tech-

nical Conference (ATC), 2014.

138

[XHK+16] Yuanzhong Xu, Tyler Hunt, Youngjin Kwon, Martin Georgiev,

Vitaly Shmatikov, and Emmett Witchel. Earp: Principled

storage, sharing, and protection for mobile apps. In USENIX

Symposium on Networked Systems Design and Implementation

(NSDI), 2016.

[XSA12] Rubin Xu, Hassen Säıdi, and Ross Anderson. Aurasium: Prac-

tical policy enforcement for Android applications. In USENIX

Security Symposium, 2012.

[XW15] Yuanzhong Xu and Emmett Witchel. Maxoid: Transparently

Confining Mobile Applications with Custom Views of State. In

ACM European Conference in Computer Systems (EuroSys),

2015.

[ZBWKM06] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David

Mazières. Making information flow explicit in HiStar. In

USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI), 2006.

[ZJ13] Yajin Zhou and Xuxian Jiang. Detecting passive content leaks

and pollution in Android applications. In Network and Dis-

tributed System Security Symposium (NDSS), 2013.

139

Vita

Yuanzhong Xu was born in Hebei, China. He graduated from Shanghai

Jiao Tong University in 2011 with a B.E. degree in Information Engineering. In

August 2011, he entered the doctoral program in the Department of Computer

Science at the University of Texas at Austin, where he received an M.S. degree

in Computer Science in December 2015.

Permanent address: yxu@cs.utexas.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

140

	Acknowledgments
	Abstract
	Chapter 1. Introduction
	Information flow control
	Abstraction for structured data

	Chapter 2. Background
	Software architecture
	Inter-app communication
	Basic security model and enforcement

	Chapter 3. Maxoid: transparently information flow confinement
	Motivation and overview
	Private and public state in Android
	Case studies
	Information flow tracking and challenges
	Overview of Maxoid
	Threat model

	State model and Maxoid architecture
	Confining delegates by custom views
	Evolving views of private state
	Public state and volatile state
	IPC and initiator policy specification
	Maxoid system architecture

	File system
	Files in Maxoid views
	Implementing Maxoid views with Aufs

	System content providers
	System content providers in Maxoid
	SQLite copy-on-write proxy layer
	Modifications to content providers

	API and implementation
	API summary
	Tracking app execution context
	User interface

	Maxoid use cases
	Performance
	Microbenchmarks
	Macrobenchmarks

	Discussion
	Applicability to other platforms
	Scope and limitations

	Chapter 4. Earp: abstraction and protection for structured data
	Inadequacy of existing platforms
	Design goals and overview
	Data model
	Access rights
	Data-access APIs
	Choosing the platform

	Data storage and protection
	Data model
	Access rights
	App-defined access policies
	Subset descriptors
	Object graph library

	Data sharing via inter-app services
	Implementing a relational service API
	Using a relational service API
	Optimizing access-control checks

	Implementation of Earp
	Storing files
	Events and threads
	Connections and transactions
	Safe SQL interface
	Reference monitor

	Earp use cases
	Performance
	Microbenchmarks
	Macrobenchmarks

	Applicability to Android
	Earp for Android content providers
	Audio library in Media Provider

	Chapter 5. Related work
	Information flow
	Flexible access control
	Related techniques for other platforms

	Chapter 6. Conclusion
	Bibliography
	Vita

