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Abstract 

 

Performance Improvements of Turbocharged Engines 

with the Use of a PTP Turbo Blanket 

 

Steffen Hans Bickle, MSE 

The University of Texas at Austin, 2016 

 

Supervisor:  Ronald D. Matthews 

 

Efforts in R&D of modern vehicles are highly focused on improvements of the 

overall efficiency.  The engine still has potential for better performance which not only 

implies pure efficiency considerations but also the power output specific to the engine 

size and weight.  Turbochargers are a key technology.  However, a significant amount of 

exhaust energy is lost through the turbine housing, and thus cannot be utilized to boost 

the intake air.  If a certain portion of the lost heat can be conserved, however, the process 

in the turbine can be shifted more towards adiabatic expansion which, in theory, is the 

ideal case. 

The Engines Research Program at The University of Texas at Austin conducted 

comparison tests of a PTP turbo blanket.  The baseline engine was a Cummins 6.7 

Turbocharged Diesel Engine hooked up to a Superflow SF-901 dynamometer.  A series 

of steady-state points were obtained as well as three instantaneous load tip-in scenarios 

(hard acceleration transients) in order to test for changes in transient response due to the 
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turbo blanket.  In addition to seven thermocouples that we installed around the turbine we 

used the open ECU software to log a set of about 30 engine parameters. 

The recorded data was first analyzed with respect to the performance of the 

turbocharger alone.  On the steady-state cases, the temperature increase of the turbine 

housing was significant while we did not measure a major increase of the oil temperature 

in the exit of the center section.  According to these findings, oil “coking” was not a 

concern since the temperature difference of the oil with and without the turbo blanket was 

negligibly small.  The boost pressure increase corresponded well with the higher turbo 

shaft speeds when the turbo blanket was applied. 

Second, tip-in transients were performed to examine the difference in 

performance during a hard acceleration.  The turbo spooled up more rapidly with the 

turbo blanket installed in comparison to the baseline configuration.  In all cases this 

resulted in an improved boost performance in the intake and a significant time-to-torque 

advantage of the engine with a torque benefit of up to 140 Nm while the acceleration was 

improved by 200-250 rpm for most of the tip-in event. 

This report presents detailed data regarding experiments in which the 

turbocharger and the engine are treated as an integrated system with a PTP turbo blanket 

applied in comparison to the baseline configuration for which the turbine housing is not 

insulated. 
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1. INTRODUCTION 

Modern engines still work based on the same thermodynamic principles as their 

progenitors from the beginning of the combustion engine era (1876).  However, their 

complexity has tremendously increased ever since.  No other kind of vehicle has made 

such an impact on mankind as automobiles.  Ongoing demands for higher mobility and 

individualism are the driving forces behind the huge worldwide car population.  Due to 

the increasing sales in the 20th century, pollutant emissions from road vehicles became a 

major impact on the cleanliness of the ambient air.  Therefore, emissions standards were 

established and applied over the years in more and more countries.  Nowadays, our cars 

have reached emissions that are only a tiny fraction of the first standards enacted back in 

the 1960s.  The R&D efforts by the automotive industry have changed in recent years; 

while still having to work to meet increasingly stringent emissions standards, the race is 

now governed by global warming effects which call for rapid improvements in fuel 

economy in order to reduce greenhouse gas emissions (CO2). 

The technology used in today’s vehicles is already well advanced but will have to 

improve much more in order to reach the fuel economy goals set for the near future.  

Everything is under consideration, such as drivetrain efficiency, aerodynamics, kinetic 

energy recovery, and exhaust waste heat recovery.  Car manufacturers have recently 

started to reduce the weight despite the fact that new vehicles will likely always carry 

more weight due to added technology in order to serve demands for safety, comfort, 

emissions, and so forth.  Thus, the overall engine performance must be further improved.  

By increasing the specific power output we can make the engine smaller in order to 

match the initial power output and reduce the fuel consumption thereby.  This is known 

as engine “downsizing”.  Bearing in mind that today’s engines are already well advanced 
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pieces of technology, we can conclude that the future vehicle will require even more 

advanced engine technology than today’s vehicles. 

It is safe to say that all modern compression ignition (Diesel) engines work with 

some sort of pressure boosting device, most often a turbocharger.  The spark ignition 

(gasoline) engine has experienced a vast alteration in the last 10-15 years due to direct 

injection technology which, in turn, gave rise for rejuvenated turbocharger technology to 

come along with it.  Within the next ten years or so, naturally aspirated engines will 

mostly have disappeared from the markets and practically every non-electric passenger 

car will be driven with a boosted engine, most likely with a turbocharger. 

Turbochargers mechanically connect the exhaust stream with the intake system so 

that exhaust energy is transferred to aid in engine aspiration.  The energy (thermal and 

kinetic) contained in the hot exhaust gas leaving the combustion chamber can in this way 

be utilized to get more fresh charge into the cylinders during the intake process.  Most of 

the exhaust energy is thermal energy which can be recuperated by the expansion process 

in the turbine of the turbocharger.  However, due to the big temperature difference of the 

hot turbine surface and the surrounding air – which can be in the order of several hundred 

degrees Celsius – a significant portion of the exhaust energy is lost during the expansion 

process through the turbine section and, thus, cannot be gained as work for the 

compressor to boost the intake air. 

In theory a perfectly insulated turbine would allow for adiabatic expansion.  An 

adiabatic expansion process extracts the most possible work from the hot exhaust gas to 

drive the turbine wheel.  However, in practice it is not possible to have perfect insulation.  

Thus, it is important to find a proper material to keep more thermal energy inside the 

turbine housing to produce increased turbine work, which transfers rotational mechanical 
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energy over to the compressor resulting in higher intake manifold pressures.  In this way, 

the turbocharger efficiency also increases. 

The objective of the ongoing research is to investigate the potential benefits that 

might be derived from insulating the turbine section of a turbocharger using a PTP Turbo 

Blanket.  This report presents the findings when the turbocharger and the engine are 

treated as an integrated system with a PTP Turbo Blanket1 applied in comparison to the 

baseline configuration for which the turbine housing is not insulated.  We primarily show 

how the boost performance of the turbocharger compares and what this means in terms of 

the torque output of the engine.  Furthermore, we briefly discuss additional benefits that 

can mostly be derived from the fact that the turbo blanket significantly reduces the 

temperature influence on other engine parts in its vicinity.  
  

                                                 
1 PTP Turbo Solutions, LLC., Austin TX; Supplier of turbo blankets and heat wraps; www.ptpturboblankets.com 
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2. SETUP AND TEST PROCEDURE 

2.1. Test Cell Setup 

Tests were conducted on a Cummins 6.7 L in-line 6-cylinder engine with a 

variable geometry turbocharger (VGT).  The engine is a 2008 model with common rail 

injection operating with pilot, main, and post injection pulses for combustion control.  

We have open access to the engine control module (ECM) through an interface provided 

by Cummins.  The engine is connected to an engine dynamometer (dyno) from 

SuperFlow, model SF-901.  It is a water brake dyno with a “pressure boost” option that 

allows for higher torque absorption in the low speed range in comparison to the standard 

SF-901.  However, the torque envelope does not enclose the entire speed-torque output 

range of the 6.7 L turbocharged Cummins engine.  At 1600 rpm, the engine has a full 

load torque of τ = 1017 Nm (750 ft-lbf).  However, at this speed the maximum allowable 

torque the dyno can absorb is approximately 300 Nm.  Like most dynos, the SF-901 can 

be operated, via a control switch, in either speed (rpm) control or “load” (torque) control 

mode.  If speed control is selected, the dyno will hold the rpm constant at the user’s 

setpoint independent of what the operator does with the “accelerator pedal”, the EGR 

rate, the fuel injection timing, etc.  Similarly, if load control is selected, the dyno will 

hold the torque constant at the user’s setpoint independent of what the operator does with 

the “accelerator pedal”, the EGR rate, the fuel injection timing, etc.  However, the dyno 

also has a “tip-in” switch.  This allows a hard acceleration transient, but the transient will 

be either variable torque at constant rpm or variable speed at constant torque, depending 

upon whether the dyno is in speed or load control mode. 

Figure 2-1 shows the cylinder head area with the valve covers on top and the 

turbocharger in the foreground.  The turbocharger was equipped with seven 

thermocouples.  Specific locations at and near the turbine give more insight into gas and 
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component temperatures.  This allowed for more in-depth analysis of thermodynamic 

states and also helps to evaluate temperature gradients resulting from internal and 

external surface temperature differences.  Moreover, we could compare the oil 

temperatures of the turbocharger center section and also obtain an estimate of the 

temperature effects on parts in the vicinity of the hot turbine. 
 

Figure 2-1   Temperature measurements around the turbocharger. 

As labelled in Figure 2-1, we measured the temperatures at a location on top of 

the turbine housing surface (T_TH-surf-top), the surface temperature on the side of the 

turbine housing (T_TH-surf-side), and the surface temperature of the exhaust pipe right at 

the turbine exit (T_Tu-exit-surf).  T_2 provides the charge air temperature after the 

compressor but before it enters the charge air intercooler and T4 (T_4) is for the exhaust 

gas temperature directly downstream from the turbine exit.  Furthermore, there are 

 

T_TH-surf-top 
  T4 

T_Tu-exit-surf 
 

T 2 
 

T_TH-surf-side 
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thermocouples installed to measure the temperature of the exhaust flow before it enters 

the turbine as well as the temperature of the engine oil as it leaves the turbocharger center 

section; these are called T3 and T_TC-exit-Oil, respectively. 

As seen in Figure 2-2, the temperature probes were installed such that the PTP 

turbo blanket can be installed in the same way as without the sensors underneath.  This 

helped to keep from influencing the values to be measured by the method chosen (good 

surface contact is crucial; all surface sensors are bolt-on type), and this is also to ensure 

realistic temperature measurements without any alteration of the insulation effect of the 

blanket (no increased gaps between blanket and turbine housing wall). 
 

Figure 2-2   Unchanged tight fit of the PTP turbo blanket with temperature probes 
underneath it. 

A humidity probe was mounted at the inlet of the air filter.  It provided accurate 

readings of the air temperature and humidity and completes the set of measurements 

done externally. 
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2.2. Experiments and Data 

For all runs the ECM settings were not changed between the baseline and the 

operation with a turbo blanket installed around the turbine.  The test results were 

statistically evaluated because engine tests are not precisely repeatable. 

Intake air boosting of an internal combustion engine can be realized with different 

devices.  In the case of an exhaust gas turbocharger the coupling to the engine is done 

thermodynamically.  Thus, the engine and booster can be evaluated separately.  The 

recorded data was first analyzed with respect to the performance of the turbocharger 

alone.  However, not only for the vehicle operator but also for research purposes the 

performance of the entire system is relevant.  Therefore, we will also evaluate the engine 

torque which is the critical parameter to look at for better acceleration. 
 

Figure 2-3   Dynamometer absorption curves.  Our setup corresponds to the curve labeled 
straight vane with pressure boost. 

The first test was a series of steady-state measurements at different engine speeds.  

Due to the limits imposed by the dyno (Figure 2-3), we needed to start with a relatively 

low torque for the low-speed point.  The operating conditions of the following speeds 
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were chosen so that the boost parameters increased in a linear fashion.  We arranged the 

thermocouple wiring such that we were able to mount the TB while the engine was 

running in a certain operating condition which enabled us to conduct back-to-back 

measurements, thereby creating a real blanket vs. no blanket comparison because no 

additional uncertainties were introduced.  This provided the best comparability possible.  

Repeatability is ensured in this case since the dyno controls are left without a single 

human intervention which, in turn, also saves time since cool-down and warm-up periods 

(the turbocharger used with this 6.7 L engine has relatively large dimensions if compared 

to turbo applications for passenger car engines, so the time it takes for heating or cooling 

is a significant factor) can be avoided.  In combination with this, changing weather 

conditions (such as temperature, barometric pressure, relative humidity), that can occur 

within an hour period, can also cause a significant change of the ambient condition inside 

the engine room if pre-conditioning is not available; this presented another strong 

argument for using back-to-back tests for better repeatability. 

Three transient tests were performed.  In the first two tests a load tip-in was 

executed while the dyno is in speed control mode.  Two different speed-load points as the 

initial steady-state condition were chosen; these are 122 Nm (90 ft-lbf) at 1500 rpm and 

136 Nm (100 ft-lbf) at 1750 rpm.  By this approach we wanted to approximate the initial 

portion of a hard acceleration transient out of a cruising speed driving condition where 

the reaction of the engine speed via the acceleration of the vehicle is much slower as 

opposed to the almost instant increase of the load.  Due to limitations of the 

dynamometer at 1500 and 1750 rpm we used the load tip-in and speed tip-in dyno control 

modes simultaneously to obtain another comparison.  This methodology also brought us 

closest to transient scenarios experienced during hard accelerations performed with a 

vehicle on the road. 
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2.3. Statistical Relevance of Logged Data 

Engine experiments are never precisely repeatable, primarily because the 

combustion process is not repeatable.  Therefore, determining the statistical significance 

of the results is crucial.  All steady-state operating conditions were conducted over a 

period of time such that the entire sample size is at least n = 600, in order to allow the 

following analysis.  The mean values were calculated to obtain the standard error of the 

mean (also called the standard uncertainty of the mean), SEM: 

 𝑆𝐸𝑀 = 1.96
𝜎
√𝑛

 (2.1)  

where σ is the standard deviation of the data set, n is the number of data points in 

the data set, and the constant (1.96) yields the 95% confidence interval (CI).  

Specifically: 

 

 
Upper
Lower

95% 𝐶𝐼 = 𝑚𝑒𝑎𝑛
+𝑆𝐸𝑀
−𝑆𝐸𝑀

 (2.2)  

When comparing two sets of data, if the confidence intervals do not overlap, one 

can say, with 95% statistical confidence, that the results are different.  Conversely, if the 

confidence intervals do overlap, one can say, with 95% statistical confidence, that there 

is no difference in the results. 

One can apply this technique either to steady state data or to transient data, such 

as the present tip-in transients.  However, in the case of transient data this technique can 

only be applied to a net result over the transient, such as the total fuel consumed. 

 

The statistical approach for transients is different since values now change over 

time.  We rather need a statistical evaluation of every individual reading along the time 
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axis.  To do this, we repeated a tip-in event multiple times and timed them with a 

stopwatch in order to obtain five events that have an equal duration of the transient as 

well as the settling time in between them.  The turbine housing did not heat up severely 

during the short tip-in.  However, in between them a certain amount of time (depending 

on the amount of heat transferred during the transients) had to elapse for the temperatures 

to settle back to their steady-state condition.  This can certainly change significantly with 

the wall thickness of the turbine, i.e. the size of the turbocharger, so we used the turbine 

surface temperatures (T_TH-surf-top and T_TH-surf-side) as an indicator and started the 

next tip-in after they had dropped by about 2 °C, which can take several minutes.  We 

thereby know that the temperature gradient across the entire turbine wall has changed the 

sign.  And since heat transfer is a relatively slow process we assume that the internal 

surface temperature had approached the exhaust temperature in the turbine by the time 

the outer wall temperatures started to cool down again. 

 

The entire data set was examined with regard to consistency of the heating and 

cooling periods, to ensure a quasi-steady-state characteristic over the course of six to 

eight individual tip-ins.  Then, five events with consistent characteristics were picked and 

aligned using several engine and boost parameters to exactly match the beginning of the 

transient phase.  As a result, we obtained a valid ensemble to create averaged tip-in 

curves as they are presented in Sec. 3.2.  Therefore, for every test and in each case, i.e., 

with and without turbo blanket, five individual transients were aligned.  In the case of the 

simultaneous tip-in we used a parameter called accelerator pedal position (Figure 2-4) 

which provided the most accurate technique for time-alignment here since two tip-in 

modes (speed and load tip-in) had to be triggered simultaneously.  Note that the 

accelerator pedal position is a parameter calculated by the ECU to calculate the fueling 
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according to a set of input parameters that also take intake properties into account.  

Hence, we obtain a curve with different slopes between turbo blanket and baseline 

operation.  The onset of the acceleration is yet always the same since it marks the 

reaction to the tip-in switch which makes this parameter perfect for alignment purposes 

in the post-processing.  

 

Figure 2-4   Alignment of the transient case with simultaneous tip-ins.  Both curves 
depict the mean of five individual tip-in events each. 

All of the logged data acquired during the present experiments were statistically 

analyzed. 

 

2.4. Corrections to SAE Standards 

Because Diesel engines are not throttled, the thermodynamic state of the intake 

air and of the fuel must be corrected to “standard” conditions.  The correction factor for 

Diesel engines is prescribed for the brake power by SAE Standard J1349: 
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 𝑏𝑝𝑐 = 𝑏𝑝𝑚(𝐶𝐹𝑎)𝑓𝑚𝐶𝐹𝑓 (2.3)  

A similar equation for correcting the torque is not specified but one can be 

generated: 

 

 
(2𝜋𝜏𝑁)𝑐 = (2𝜋𝜏𝑁)𝑚(𝐶𝐹𝑎)𝑓𝑚𝐶𝐹𝑓 

𝜏𝑐 = 𝜏𝑐(𝐶𝐹𝑎)𝑓𝑚𝐶𝐹𝑓 
(2.4)  

where the air correction factor is 

 𝐶𝐹𝑎 = �
99

𝑃𝑖𝑇 − 𝑃𝑖𝑣
�
𝛼

�
𝑇𝑖

298�
𝛽

 (2.5)  

In Equation (2.5), Ti is the temperature of the fresh air entering the air filter in K, 

Pi
T is the barometric pressure, and Pi

v is the partial pressure of the moisture in the air.  

The partial pressure of water in the intake air stream is related to the relative humidity, 

Ω, via: 

 

 𝑃𝑣 =
Ω

100
𝑃𝑠𝑎𝑡 (2.6)  

where Psat is the saturation pressure at the temperature of the inlet air, which can 

be obtained from: 

 
log(𝑃𝑠𝑎𝑡) = 6.77405 − 1.31797 ∙ 103 �

1
𝑇�

− 2.0102 ∙ 105 �
1
𝑇�

2

+ 1.08245

∙ 107 �
1
𝑇�

3

 
(2.7)  

where the temperature must be in K, yielding the saturation pressure in kPa. 
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The exponents required for use in Equation (2.5) are also specified by SAE 

Standard J1349.  For turbocharged engines without an intercooler (charge air cooler) or 

with an air-to-air intercooler such as the 6.7 L Cummins turbodiesel has, α=0.7 and 

β=1.2.  The exponent in Equation (2.3), fm, is called the mechanical engine factor and is 

calculated using:  

 𝑓𝑚 = 0.3 if  𝑞
𝑟𝑝

< 37.2 mg/L (2.8)  

 𝑓𝑚 = 0.036�
𝑞
𝑟𝑝
� − 1.14 if  37.2 < 𝑞

𝑟𝑝
< 65 mg/L (2.9)  

 𝑓𝑚 = 1.2 if  𝑞
𝑟𝑝

> 65 mg/L (2.10)  

where 

 𝑞 =
103

60
�̇�𝐹

𝐷(𝑁/𝑥)  [mg/L] (2.11)  

In Equations (2.8)-(2.10), the intake pressure ratio, rP, is defined by:  

 

 𝑟𝑃 ≡
𝑀𝐴𝑃
𝑃𝑖𝑇

 (2.12)  

where MAP is the absolute pressure measured in the intake manifold and the 

denominator is the total pressure (including the partial pressure of the water - humidity) 

of the fresh air at the engine inlet.  The Diesel also requires a correction for variations in 

the fuel density, Heating Value, and the fuel viscosity relative to standard reference 

conditions.  These three properties are accounted for via two terms: 
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 𝐶𝐹𝑓 = 𝑓𝑑𝑓𝑣 (2.13)  

The first factor corrects for both density and Heating Value (energy density of the 

fuel): 

 𝑓𝑑 = 1 + 0.70
𝑠𝑔𝑟𝑒𝑓 − 𝑠𝑔𝑎𝑐𝑡

𝑠𝑔𝑎𝑐𝑡
= 1 + 0.70

0.850 − 𝑠𝑔𝑎𝑐𝑡
𝑠𝑔𝑎𝑐𝑡

 (2.14)  

where 0.70 corrects for the variation of the Lower Heating Value via an empirical 

relationship between the specific gravity and the Lower Heating Value and 0.850 is the 

standard density of Diesel fuel in kg/L (SAE Standard J1349).  The specific gravity of 

the actual Diesel fuel is to be determined at 15 °C. 

 

 𝜌𝑓15.6 𝐶 = 𝜌𝑓𝑇𝑓(𝑎 + 𝑏𝑇𝑓 + 𝑐𝑇𝑓2) (2.15)  

where Tf is in °C and the coefficients depend upon the standard specific gravity 

and, for the ultra-low sulfur Diesel fuel used for on-road vehicles, are a = 0.98626, b= 

8.6875⋅10-4, and c = 8.4745⋅10-7.  In order to determine the specific gravity of the fuel, 

𝜌𝑓𝑇𝑓 , we measured the fuel density for six temperatures between 15 and 45 °C and 

divided these values by the corresponding densities of water (the density of water is well 

known over a wide temperature range).  With these six supporting points we computed a 

curve fit to obtain the intermediate specific gravity values by interpolation.  

 

The viscosity effect is accounted for via: 

 

 𝑓𝑣 =
1 + 𝑆/𝜈𝑎𝑐𝑡
1 + 𝑆/𝜈𝑟𝑒𝑓

=
1 + 𝑆/𝜈𝑎𝑐𝑡
1 + 𝑆/2.6

 (2.16)  
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where the fuel’s kinematic viscosity is to be determined at 40 °C in mm2/s, 2.6 

mm2/s is the standard kinematic viscosity at 40 °C (the standard fuel inlet temperature in 

SAE Standard J1349), and S is the dimensionless viscosity sensitivity coefficient of the 

fuel.  Values for S are to be determined by the engine manufacturer.  An older version of 

SAE J1349 stated that if values for S were not available, the following were to be used: 

0.15 for pump/line/nozzle systems and 0.0 for unit injectors.  This statement is absent in 

the Sept. 2011 version of this standard.  The value for S was used as provided by the 

engine manufacturer.  SAE J1349 specifies that the fuel inlet temperature must be 

between 39 and 41 °C for pump/line/nozzle systems and for common rail systems (such 

as used on the Cummins 6.7 L turbodiesel) and in the range 37-43 °C for unit injectors. 

According to SAE Standard J1349, “The magnitude of the power correction for 

tests run at non-standard conditions should not exceed 3% for inlet air or 3% for inlet 

fuel corrections.  If the correction factor exceeds these values, it shall be noted as a 

nonstandard test.” 

Because the Diesel requires the above correction for fuel properties, the specific 

fuel consumption is corrected in a different manner than is the case for the SI engine: 

 

 𝑏𝑠𝑓𝑐𝑐 =
𝑚𝐹̇ 𝑐

𝑏𝑝𝑐
=
�𝑠𝑔𝑟𝑒𝑓/𝑠𝑔𝑎𝑐𝑡�𝑓𝑣𝑚𝐹̇

𝑚

𝐶𝐹𝑎𝑓𝑑𝑓𝑣𝑏𝑝𝑚
=
�𝑠𝑔𝑟𝑒𝑓/𝑠𝑔𝑎𝑐𝑡�𝑚𝐹̇

𝑚

𝐶𝐹𝑎𝑓𝑑𝑏𝑝𝑚
 (2.17)  

such that the viscosity term cancels. 

To calculate the required correction factors, the humidity and air temperature 

were measured near the inlet to the air filter, the barometric pressure was extracted from 

the Cummins ECM, and the fuel temperature was measured using a thermocouple. 
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3. RESULTS 

3.1. Steady-State Operation 

We first consider the turbocharger alone for our analysis since the thermal impact 

of the turbo blanket takes place on this device.  Effects on the engine are a consequence 

of varying thermodynamic parameters due to the changed turbocharger performance.  

The PTP Turbo Blanket is an insulator, so we wanted to take a look at the temperatures 

first.  Table 3-1 reflects the functionality of the applied TB well.  Almost all temperatures 

have increased due to minimization of heat losses. 

 

Table 3-1   Measured temperatures at 2250 rpm and 271 Nm (200 ft-lbf). 

The insulation effect of the turbo blanket can be seen most obviously from the 

wall temperatures.  In this case they increased by approx. 150 °C and 225 °C for the 

turbine top and the turbine side locations, respectively.  Although not actually covered by 

the blanket, the wall surface temperature at the turbine exit is also tremendously 

increased which does not necessarily explain the higher exhaust gas temperature at the 

turbine exit (∆T4 = 4.7 °C).  This is the result of the energy saved during the expansion 

process through the turbine due to the better insulation on the outside of the turbine, i.e. 

the decreased heat flux through the turbine housing.  The difference of the turbine inlet 

temperature T3 is not significant for the discussion in this section and can be considered 

[°C] T2 T3 
T_TH-
surf-
top 

T_TH-
surf-
side 

T_Tu-
exit-
surf 

T_TC-
exit-Oil T4 

No TB 93.2 535.7 307.8 258.1 366.8 105.4 462.6 

TB 93.9 534.5 457.2 483.5 480.5 105.2 467.3 
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unchanged.  But it can be seen from the values of the boost temperature at the 

compressor exit, T2, that a portion of the recovered exhaust energy was also converted to 

physical work which was used by the compressor.  As a result, effects can be seen on the 

cold side in terms of the boost pressure. 

Higher boost pressures require that the compressor wheel spins faster.  The 

following two plots in Figure 3-1 show these results for a series of low-load operating 

conditions (300, 300, 281, 258, and 246 Nm) at varying engine speeds (1500 – 2500 

rpm); turbo speed values (left) are in units of 1000 rpm and the boost pressure on the 

right is a gage reading and in units of kilo-Pascals. 

 

Figure 3-1   Comparison of the turbocharger shaft speed (left) and boost pressure (right) 
at five different steady-state operating conditions. 
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The torque levels of these speed-load points are approximately 25 – 30 % of the 

maximum engine torque.  At such low loads the engine does not require high boost 

pressure; as we can see it is still below 50 kPa gage at 2500 rpm.  Note that this Diesel 

engine is not equipped with an intake air throttle (compressor inlet pressure ≈ ambient 

pressure). 

However, with the turbo blanket mounted, the turbo shaft speed exceeds the 

speeds of the baseline case for all of these steady-state operating conditions.  The same 

trend is valid for the boost pressure which proves that more energy is converted to shaft 

work inside the turbine.  Hence, this shows that even at a low load level, in which the 

turbine is not provided with an excessive amount of exhaust waste heat, the increased 

boost performance is a direct result of the insulating effect of the PTP Turbo Blanket.  

These improvements are significant because if we consider, for example, that the 

remaining pressure drop across the throttle plate in a gasoline engine is on the order of 

roughly 2-3 kPa when in wide-open-throttle position, we can think of the turbo blanket as 

a way of effectively decreasing the flow resistance.  Similar effects are reached by the 

use of improved air filter technology in an effort to increase the volumetric efficiency.  

For medium to high engine loads we expect more significant boost performance benefits.  

Hence, by operating the engine with a PTP Turbo Blanket we basically increase the 

volumetric efficiency across the entire map. 

Also, if we consider these operating points in the TC compressor map, an 

increase of the turbo speed entails a shift toward higher compressor efficiencies even for 

the cases with high charge flow rates (2250 and 2500 rpm) – relevant for investigations 

to follow regarding the potential engine efficiency gain of a PTP Turbo Blanket. 
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3.2. Transient Response 

TURBOCHARGER SPOOL-UP COMPARISON 

In the prior subsection the benefit of the turbo blanket when the engine is 

operated in steady-state condition was examined.  According to the theory, this was 

expected.  We can see from the temperatures presented in Sec. 3.1 how much heat can be 

preserved within the turbine when a turbo blanket insulates the outer surface.  From a 

thermodynamic standpoint it is clear that additional heat will be lost to the walls if the 

operating condition of the engine is changed to higher loads.  The exhaust gas carries 

more energy out of the combustion chamber that can be expanded in the turbine.  Now, 

from a heat transfer point of view, less heat will be conducted away from the housing 

walls during the expansion process because of the smaller temperature gradients in the 

case of turbo blanket operation.  However, heat transfer is a slow process.  Therefore, we 

want to know if the benefits of the turbo blanket are quantifiable during the relatively fast 

event of a hard acceleration transient.  When the engine runs in low to medium-load 

steady-state condition (here:  1500 rpm, 122 Nm), which simulates a medium vehicle 

cruising speed, the load is suddenly increased to simulate a hard acceleration. 

At the starting point and during the acceleration phase of this transient test the 

variable vanes of the VGT are mostly closed if the engine is operated in standard mode. 

This helps to increase the kinetic energy of the exhaust stream impinging on the turbine 

blades.  The results of such a comparison between baseline and turbo blanket operation 

are less transferable to gasoline engines since almost all turbocharged gasoline engines 

do not use a variable geometry turbine.  Therefore, we set the vanes to zero position so 

that they are completely open during the initial steady-state and the following transient 

acceleration.  Moreover, the maximum engine output cannot be reached for the operating 

conditions presented below.  Especially in the first case, the dyno absorption limit is still 
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so low that the engine almost immediately runs into a “torque derate” mode which slows 

down the load increase rate to protect the dyno (as programmed into the Cummins ECM 

to allow operation using UT’s SF-901 dyno).  This effect shows up as prolonged curves 

that do not represent the actual engine performance in these points if the engine were in a 

vehicle rather than on a dyno. 

 

Figure 3-2   Boost pressure build-up on a load tip-in beginning at 1500 rpm and 122 Nm 
(90 ft-lbf). 

In Figure 3-2 the turbo shaft speed and boost pressure are shown during such a 

tip-in event.  The turbo speed was higher during the entire event when the turbo blanket 

was mounted.  However, the slopes of the TB curves do not appear to be significantly 

steeper than those of the baseline engine/turbocharger.  In this type of chart it cannot 

easily be detected that the turbo spool-up was faster and hence the boost pressure 

advanced more than at steady-state before the tip-in began.  But we can see that, with the 

turbo blanket installed, the turbocharger constantly delivered a pressure benefit of 1 - 1.2 

kPa even though the engine output was derated and the fueling limited accordingly.  The 
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following section will show that the engine torque was significantly improved as a result 

of the effects shown in Figure 3-2. 

Due to the dyno limitations we conducted another test with similar conditions 

(load tip-in at 1750 rpm and 136 Nm) in order to achieve higher boost levels (Figure 

3-3).  However, if this engine is used in a pickup truck, 1750 rpm would likely exceed 

any highway cruising speed.  However, a brake torque of 136 Nm corresponds well to 

such a driving scenario, so one can think of it as a hard acceleration with a preceding 

downshift in order to overtake another vehicle. 

 

Figure 3-3   Load tip-in beginning at 1750 rpm and 136 Nm (100 ft-lbf). 

When we begin the acceleration at a higher engine speed, the turbocharger speed 

is already noticeably higher.  Since this Diesel engine is not equipped with an intake 

throttle (newer Diesels can be and gasoline engines always have a throttle) the turbo is 

required to deliver an increased amount of air which is almost linearly related to the 

engine speed.  This, in turn, brings us closer to the maximum turbo speed which means 

that there is less inertia to overcome during the tip-in event.  Thus, we expect to see a 
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shorter duration for the spool-up and probably a decreased potential for benefits of a 

turbo blanket. 

A comparison of the curve pairs in Figure 3-3 again shows that the compressor 

state has overall increased after the TB was mounted.  For performance considerations it 

is, again, crucial how the boost pressure develops (yellow/TB vs. red curve/NoTB).  In 

this plot the tip-in switch took place at approx. 0.7 s.  We notice that the boost pressure is 

already higher at this point with the turbo blanket, before the transient actually started.  

After about 3 s the yellow curve becomes noticeably steeper, thereby constantly 

increasing the pressure difference between baseline and turbo blanket operation.  Note 

that these curves do not show a shift in the x-direction since they were aligned in time.  

 

Figure 3-4   The pressure difference (TB vs. No TB) history during a load tip-in 
beginning at 1750 rpm. 

We are interested in how much more boost we were able to create with the turbo 

blanket at any given point during the transient.  This is illustrated in Figure 3-4.  The 

curve consists of values smoothened over four consecutive measurement points in order 
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to better show the trend.  The steady-state pressure difference was 0.55 - 0.6 kPa before 

the tip-in began.  The trend in Figure 3-4 reveals the boost benefit gained with the PTP 

Turbo Blanket.  The first data point at ∼0.95 s was the average pressure difference (∆P ≈ 

0.57 kPa) approximately 0.25 s after the beginning of the tip-in with increasing values 

thereafter.  Thus, the turbo blanket produced a boost advantage in less than 0.5 seconds.  

The curve peaks approximately 4 s into the tip-in event with a boost benefit of almost 1 

kPa and continues to deliver a higher pressure – ∆P(TB vs. No TB) ≈ 0.65-0.95 kPa – for 

the next 4 seconds. 

Overall, this might not seem to be a useful benefit at first glance, but if we 

consider these results in comparison with the following examples, we can better gauge 

the practical value.  For performance (power and/or efficiency) purposes, one goal is to 

improve the volumetric efficiency of an engine.  The throttle plate inside the throttle 

body of a gasoline engine is still imposing a 2-3 kPa pressure drop on the intake air flow 

when the throttle is wide open, which cannot easily be decreased by a cost-efficient 

solution.  Another idea is to lower the pressure drop of the intake air filter by using a 

different filter technology.  Some aftermarket products are advertized to gain up to 2 kPa.  

However, such numbers are only valid for the highest air flow rates at wide open throttle 

operation.  For part-load conditions the major pressure drop takes place inside the throttle 

body, thereby leaving much less potential for volumetric efficiency improvements via the 

air filter.  In contrast to these examples, the PTP Turbo Blanket already demonstrated 

that it can provide a useful pressure gain over a much wider area of the engine map.  

These results will be much more pronounced when we take a look at the torque 

comparison in the subsequent section. 

Due to the previously discussed dyno limitations at 1500 and 1750 rpm we used 

the load tip-in and speed tip-in dyno control modes simultaneously to obtain another 
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comparison.  This led to a relatively fast event, so that the first goal here was to find a 

speed and load range that allowed for a sufficient duration during which we did not have 

to operate near the dyno limits over the entire range.  We found that we can switch both 

modes simultaneously if we start from the steady-state speed-load point of 81 Nm (60 ft-

lbf) at 1000 rpm.  As opposed to the first two transient cases the VGT was now 

controlled according to the VGT maps and control logic in the ECU.  This methodology 

is comparable to a hard acceleration performed with a vehicle on the road.  However, due 

to the lack of a transmission in between the engine-dyno setup to simulate a slower 

transient with a high gear ratio, this procedure is a relatively fast event and hence best 

compared to a hard acceleration in first gear on a level road. 

Figure 3-5 shows the comparisons of the turbo shaft speed and the boost pressure.  

We first notice that the boost pressure lagged behind the turbo speed.  A shorter time 

period available for a much wider load sweep (in comparison to the previously shown 

transients) results in much steeper gradients which pronounce the differences much more 

in this chart.  However, the boost pressure started to increase only 0.25 - 0.30 s after the 

turbo speed started to pick up speed.  Furthermore, it must be noted that turbo speeds and 

boost pressures matched closely before the tip-in began.  The reason for that is the low 

steady-state load.  Low-load operating conditions produce relatively small boost 

pressures.  Especially at this low engine speed of 1000 rpm (idle: 700 rpm) it did neither 

result in a significant turbo speed advance nor in a boost pressure difference for the 

steady-state condition between operation with the turbo blanket and baseline operation.  

Hence, we can read the differences of both variables for the following tip-in scenario 

directly from Figure 3-5. 
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Figure 3-5   Load tip-in beginning at 1000 rpm and 81 Nm (60 ft-lbf). 

The turbine/compressor speed advantage with the turbo blanket occurred right 

after the beginning of the tip-in and was as high as 10,000-12,000 rpm after 

approximately 0.5 s.  The wide load sweep (from ∼10% to 100%) in this comparison led 

to a considerably higher pressure difference between operation with the turbo blanket and 

the baseline case in comparison to the other two transient tests.  After one second into the 

event of the baseline engine the application of the PTP Turbo Blanket led to a boost 

advance of about 0.3 s for this type of tip-in.  This time advantage was followed by a 

boost pressure benefit of up to 30 kPa (= 0.3 bar) for the most of the engine acceleration 

so that the peak boost pressure was reached significantly earlier with the turbo blanket. 

The results presented in this section demonstrate well that the PTP Turbo Blanket 

has a considerable impact on the turbocharger behavior and the thermodynamic 

properties of the intake air.  But parameters such as the boost pressure are not something 

a driver can “feel” directly.  The road performance benefit of the turbo blanket is 

important from an R&D perspective as well as from the driver’s point of view.  

Therefore, we examined the brake torque behavior of the engine because of its direct 
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relation to the motive force between tire and road and, thereby, on the acceleration of the 

vehicle. 

TIME-TO-TORQUE COMPARISON 

In the previous section was shown that a thermodynamic advantage was obtained 

via the elevated state of the turbocharger when the turbine was insulated with the PTP 

Turbo Blanket.  Those measures are tangible and very relevant from a R&D point of 

view.  However, we also want to know if the engine output was affected.  Did the time-

to-torque performance improve and if so, by how much?  Or in other words: will the 

driver be able to feel the “extra-boost”? 

 

Figure 3-6   Comparison of the engine-dyno transient torque response on a load tip-in 
scenario at 1500 rpm. 

The torque characteristic of the tip-in scenario at 1500 rpm – as discussed in 

Subsection 3.2 – is depicted in Figure 3-6.  As described in Subsection 2.2, both curves 

were created from average values out of five individual measurements for each case: 
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with and without the turbo blanket.  We notice an initial drop of the baseline engine 

torque.  If it would have occurred during one out of five measurements it would have 

disappeared after the averaging process.  Further investigation is needed to find the cause 

for this behavior, but in this direct comparison it is the first advantage noticeable for the 

case in which the turbo blanket was mounted.  In the following, both curves show very 

similar behavior, e.g. both have a plateau area at 170 Nm.  However, the turbo blanket 

case reached all torque levels before the baseline engine which means that the brake 

torque value at any point of time into the tip-in event is increased with use of the turbo 

blanket. 

After 5-6 s the PTP Turbo Blanket produced a 15-20 Nm benefit.  This is a 

remarkable result which also shows how much difference a seemingly small boost 

benefit (as shown in the previous section) can make.  From then on the trend as well as 

the torque difference continued almost unchanged.  Most transient load or speed 

scenarios cannot be matched to on-the-road driving conditions without the capabilities of 

a modern transient dynamometer, one of which was not available for the present tests.  

The limitations of the presented case, however, can be thought of as a suddenly inclined 

road which was climbed with the accelerator pedal restricted to a certain position.  Both 

together stretch the time-to-torque span for which the case with the PTP Turbo Blanket 

has a clear boost advantage, as was shown in Figure 3-2. 
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Figure 3-7   Comparison of the engine transient torque response (time-to-torque) at 1750 
rpm. 

In the case of the 1750 rpm load tip-in the whole event took place more rapidly 

than the one at 1500 rpm.  Figure 3-7 illustrates, that the turbocharger benefit in the 

previous discussion (Figure 3-2 and Figure 3-3) was also true for the engine torque 

increase.  Since this was a load tip-in, in which the engine speed was controlled to stay 

constant, the volumetric flow rate through the engine did not increase considerably.  In 

addition to that, the VGT was completely open (Sec. 3.2) throughout the whole 

acceleration.  In general, these are reasons for a slower thermodynamic response of the 

system which can be seen at the beginning.  Here, until about 200 Nm was reached, the 

difference between the baseline setup and turbo blanket operation was not significant.  

However, after a sufficient boost pressure benefit was provided by the operation with the 

PTP Turbo Blanket, the torque output also responded with a continuous advantage 

between 15 and 30 Nm until the dyno absorption limit was reached at ∼375 Nm (Figure 

3-7).  Hence, we can now also confidently state that the seemingly small boost advantage 

presented in Figure 3-4 was crucial for the time-to-torque improvement of this transient 

case, even though it took place so quickly. 
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Figure 3-8   Comparison of the engine transient torque response at 1000 rpm.  Top:  
Time-to-torque response.  Bottom: Engine speed acceleration comparison. 

Figure 3-8 shows a comparison of the engine responses on the simultaneous tip-in 

(see pg. 24 for tip-in conditions).  The boost pressure built up faster than the acceleration 

of the system to a sufficiently high engine speed at which the dyno would have been able 

to absorb the instantaneous maximum torque output of the engine, which is why we 

obtained an approximately half second long torque plateau area (∼500 Nm) as can be 

seen in the upper plot of Figure 3-8.  However, when we conducted the test with the PTP 

Turbo Blanket mounted, the torque approached the plateau significantly before the 
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baseline setup did.  Even though this process took only a few tenths of a second the 

torque advantage provided by the turbo blanket was as high as 120 Nm in the meantime.  

Then, during the plateau phase, the two cases (turbo blanket vs. baseline) became leveled 

by the control system in terms of the torque output.  However, the torque benefit of the 

turbo blanket also caused the engine to accelerate considerably faster.  As the bottom 

chart in Figure 3-8 illustrates, the average engine speed was advanced by 200-250 rpm 

for the major portion of the engine acceleration (at 2350 rpm the control system reduced 

the acceleration rate as the engine’s maximum speed was approached rapidly).  Thus, the 

dyno restrictions were passed earlier with the TB applied to the turbo and the constant 

0.2-0.3 bar boost pressure advantage (Figure 3-5) very quickly caused a torque benefit of 

up to 140 Nm until the rated torque of the engine was reached. 

All three transient tests showed a significant engine torque advantage when the 

PTP Turbo Blanket was applied to the turbocharger.  For the first two tip-in transients we 

increased the load instantly which is comparable to suddenly approaching hill with a 

constant gradient during which the driver steps on the accelerator pedal thereby 

increasing the load to 100%.  The dyno limitations were not relevant for the function of 

the turbo blanket.  Operation with the turbo blanket always benefited the turbocharger 

which, in turn, had a significantly positive impact with regard to the time-to-torque 

response of the engine.  The third transient revealed intermediate torque advantages on 

the order of 140 Nm.  However, there was still one dyno limit it had to pass before the 

torque continued to increase. Hence, according to the behavior shown in Figure 3-8, we 

assume that this advantage could be even bigger without the dyno limitations.  We can 

find modern light-duty engines on the passenger car market that have a rated torque of 

180 Nm delivered by a 1.2 L turbocharged Diesel.  If we compare this number to the 

results we obtained by attaching the PTP Turbo Blanket to our 6.7 L Diesel engine, it 
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was equivalent to an increase of the engine displacement on the order of 1 L with respect 

to the acceleration performance. 

 

3.3. Further Observations 

RELEVANCE FOR AFTERTREATMENT TECHNOLOGY 

The previous sections showed that less heat is lost through the walls of the turbine 

housing with use of a turbo blanket.  The data also revealed that a portion of the 

recovered energy was converted to shaft work since the turbocharger speed was 

increased for all turbo blanket cases.  However, a certain amount of the recovered 

exhaust gas energy left the turbine as can be seen from the increased exhaust gas 

temperatures T4. 

Table 3-2   Exhaust gas temperatures at turbine exit. 

Table 3-2 lists the turbine exit temperatures for the following operating 

conditions: 300, 300, 281, 258, and 246 Nm at varying engine speeds from 1500 – 2500 

rpm.  Due to the insulation of the PTP Turbo Blanket the exhaust gas temperature 

downstream of the turbocharger was always higher in comparison to the baseline setup – 

∆T4(TB vs. No TB) ≈ 5-7 °C). 

Note that for all operating conditions presented in this report the setup was not 

substantially changed.  That is, the turbo blanket was applied to the turbine while 

 

T4  [°C] rpm 1500 1750 2000 2250 2500 

No Turbo Blanket 
 

413.1 436.3 447.4 462.6 469.8 

Turbo Blanket 
 

420.1 442.7 454.4 467.3 474.8 
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everything else was kept to baseline conditions.  Thermodynamically speaking, this is not 

the ideal solution for a turbocharged engine that is operated with a turbo blanket.  For an 

integrated application, an even larger effect of the turbo blanket should be attainable if 

the design of the turbine is changed, if not the entire turbocharger design, in order to 

better use the recovered energy – a small part of which showed up as increased turbine 

exit temperature (T4) – that would otherwise be lost for the turbine expansion process.  In 

that way we expect an even better performance in terms of the power output of the 

engine. 

Considerable efforts are made in order to reclaim energy from the hot exhaust gas 

which would otherwise be lost.  Thermal management is a growing field in engines 

research in which exhaust heat recovery (EHR) plays a significant role.  The T4 

temperature difference caused by the application of the PTP Turbo Blanket is remarkable 

and is thus expected to become relevant not only for EHR but also for the purpose of 

pollutant emissions aftertreatment in the future. 

 

INFLUENCE ON INTERNAL OIL TEMPERATURE OF THE TURBOCHARGER 

The measured turbine housing temperatures, as shown in Table 3-1, suggested 

that a significant amount of additional heat was induced on the hot side of the center 

section due to increased component temperatures when insulated with the turbo blanket.  

This raised the concern of potentially increased oil temperatures inside the turbocharger 

that can lead to something often referred to as oil coking or oil baking.  For the steady-

state operating conditions presented in Subsection 3.1 we also recorded the oil 

temperatures at the turbocharger center section exit. 

The values in Table 3-3 show that the heat impact on the turbocharger oil 

temperature was negligible.  Modern turbochargers are well engineered devices 
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involving a heat shield between the turbine wheel and the center section as well as 

separate cooling and lubrication circuits. 

 

Table 3-3   Comparison of measured temperatures of the engine oil leaving the turbo 
center section. 

Our measurements confirmed how well protected the bearings in modern 

turbochargers are.  Even the considerably increased turbine housing temperatures (Table 

3-1) during the operation with the PTP Turbo Blanket did not cause the center section oil 

temperature to rise by a significant amount.  Thus, damage due to oil coking was not a 

concern during all our measurements. 
 

Figure 3-9   The VGT actuator (arrow) is directly attached to the center section. 

T_TC-exit-Oil  
[°C] rpm 1500 1750 2000 2250 2500 

No Turbo Blanket 
 

96.8 99.2 101.8 105.4 108.6 

Turbo Blanket 
 

97.0 99.4 101.8 105.2 108.8 
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VGT INTERNAL TEMPERATURES 

The actuator for the variable geometry of the turbine inlet is located very near the 

hot wall of the turbine housing (Figure 3-9).  For the operating conditions presented in 

Subsection 3.1 we also logged the internal temperatures of the VGT actuator as they are 

also processed by the ECU.  Apparently, a significant heating process in the VGT 

actuator takes place due to the very nearby hot turbine.  Temperatures as high as 80 °C 

(Table 3-4) inside the actuator can hardly be explained otherwise.  The oil temperature 

did not considerably change between the baseline and the turbo blanket operation, as 

discussed in the previous subsection.  Hence, we conclude that the temperature influence 

on the center section via heat conduction is minor, so heat conduction from the center 

section into the attached VGT actuator can also not be the cause for a major difference of 

the actuator’s internal temperature.  The ambient temperature in the engine room 

matched the temperature outside the building closely since the air was well circulated by 

the exhaust gas vents. 

 

Table 3-4   Temperatures inside the VGT actuator. 

However, from Table 3-4 we read a 1-3 °C decrease in the VGT actuator 

temperature when the turbo blanket is mounted.  Thus, the other two heat transfer modes 

(convection and radiation) between the turbine housing and the VGT housing must have 

been the main reasons for these temperature levels inside the actuator.  The nearby 

sidewall of the turbine could not be insulated as well as most of the turbine housing 

VGT temp.  [°C] rpm 1500 1750 2000 2250 2500 

No Turbo Blanket 

 

79.0 80.0 81.0 84.0 86.7 

Turbo Blanket 

 

76.0 78.0 80.0 81.0 84.0 
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because the gap was too narrow.  Therefore, the turbo blanket contained less padding 

material in this location.  However, the relatively small amount of PTP’s padding that 

remained for this narrow gap insulated the turbine section well enough that the VGT 

actuator internal temperature dropped by up to 3 °C.  This indicated that the PTP Turbo 

Blanket helped protect other engine parts against thermal damage, not only in the vicinity 

of the turbocharger but even helped to decrease the thermal load of a part that is directly 

attached to the turbocharger. 
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4. CONCLUSION 

4.1. Summary 

In this first report, we present experimental results concerning the performance 

potential of a baseline engine in comparison with the same setup when a PTP Turbo 

Blanket was applied to the turbocharger.  We measured a series of steady-state cases to 

show how the turbo blanket affected the turbocharger operation.  We then also set up 

different transient scenarios in order to evaluate the impact on the engine torque output.  

Furthermore, we discussed other observations to address further potentials of the PTP 

Turbo Blanket. 

The application of the turbo blanket caused the turbine surface temperatures to 

increase significantly.  This was expected and it is a necessity if a significant 

thermodynamic effect is sought.  Without exception, all steady-state results proved this 

requirement for potential performance improvements.  With the turbo blanket mounted, 

the turbocharger shaft speeds exceeded their baseline counterpart for identical engine 

operating conditions which resulted in increased boost pressures throughout all tested 

steady state speed-load points.  However, since the engine-dyno controls tried to hold the 

system stable at the operating condition it was set to, we could not necessarily use this 

type of steady-state measurement to also test for the impact of the turbo blanket on the 

engine torque output. 

Not only from a R&D perspective, but also from a vehicle operator point of view 

we wanted to know how much the improved steady-state boost results benefited in terms 

of the turbocharger shaft acceleration and, therefore, the advantage in boost pressure as 

well as the transient engine performance.  In other words:  will the turbo blanket provide 

a significant improvement with regard to the spool-up time of the turbocharger and will 
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the vehicle acceleration be improved?  Therefore, we compared the torque output by 

setting up three different hard acceleration transients. 

The time-to-torque improvement with the PTP Turbo Blanket was significant, 

especially for the last case, in which we used a simultaneous tip-in of the speed and the 

load, the time-to-torque improvement was impressive with an instantaneous torque 

improvement of up to 140 Nm.  This led to an acceleration advantage of 250 engine rpm 

in spite of the fact that the duration was less than 2.5 s for the entire event.  The 

improvement of the turbocharger performance provided this engine performance 

advantage because the turbocharger spool-up was faster which resulted in a boost 

pressure advantage of up to 0.3 bar when the PTP Turbo Blanket was mounted.  Note 

that all three tip-in approaches were relatively fast events because they cannot be 

conducted differently with this type of engine-dyno setup.  Thus, for vehicle transients, 

especially when operated in highest gear, we expect significant acceleration benefits with 

the turbo blanket. 

We also observed phenomena that are noteworthy because they indicate further 

potential advantages of the PTP Turbo Blanket. 

The temperature increase of the turbine housing was found to be significant 

which caused the exhaust gas temperature at the turbine exit to rise by about 5-7 °C.  

This was true for the tests as conducted; meaning no substantial change was made to the 

baseline engine setup.  We merely applied the PTP Turbo Blanket to the turbocharger.  

For the case of an integrated application, for which the design of the turbine or the entire 

turbocharger would also be adapted accordingly, theory tells us that further 

improvements with respect to the torque performance are to be expected.  The Engines 

Research Program at UT Austin is strongly interested in such endeavors but this requires 

the participation of a turbocharger manufacturer and/or an engine manufacturer. 
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In addition, higher exhaust temperatures downstream of the turbocharger can also 

be useful for any type of thermal management (particularly for exhaust heat recovery via, 

for example, an organic bottoming cycle) or aftertreatment device. 

Since “oil coking” was a concern due to the significantly increased temperatures 

we measured on the turbine housing surface, we wanted to know if they affected the oil 

temperature in the turbocharger center section.  The measurements showed a negligible 

influence.  Hence, these results confirmed how well-engineered modern turbochargers 

are, so damage due to oil coking was not a concern during all our measurements. 

From our readings of the VGT actuator internal temperature we can say that the 

PTP Turbo Blanket not only provides thermal protection for engine components in the 

vicinity of the turbocharger (such as electric/electronic components, hoses, wires, 

hydraulic lines, etc.) but it can even cause a temperature drop inside the actuator that is in 

direct contact with the center section of the turbocharger.  Packaging is often a challenge 

in modern engine applications where little room is available to place auxiliary units and 

other devices.  In such cases our measurements clearly indicated the potential of the PTP 

Turbo Blanket for improved thermal protection of very nearby parts. 

 

4.2. Outlook 

Our measurements showed that the key feature of the PTP Turbo Blanket was 

improvement of turbocharger performance and engine acceleration which will result in 

improved vehicle acceleration.  At the same time, it provided a heat shield for nearby 

components while it did not significantly impact the heat conditions inside the center 

section of the turbocharger.  The surface temperatures of the turbine housing were 

considerably increased and the exhaust gas temperature at the turbine exit increased 
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somewhat.  The increased turbine exit temperature with the turbo blanket could be 

beneficial with respect to waste heat recovery and emissions aftertreatment. 

Advanced combustion modes with very high EGR rates have the potential for fuel 

consumption improvements of gasoline engines and will likely be seen in the near future.  

Combustion temperatures and hence the exhaust temperatures can drop significantly 

when the engine is operated with those combustion modes.  This reduces the exhaust gas 

enthalpy which means that the time-to-torque performance of a turbocharged engine can 

be compromised below acceptable limits because the energy content of the exhaust gas is 

insufficient.  The PTP Turbo Blanket can help to keep the turbocharger operation within 

acceptable limits when additional exhaust gas temperature is needed that would 

otherwise be lost during the turbine expansion process. 

The requirements of future engines also include the sound emission from a 

turbocharger and its impact on the engine.  During our measurements we were able to 

detect an audible difference between the operation with the PTP Turbo Blanket and the 

baseline engine setup.  Hence, we will also make an attempt to evaluate the difference by 

performing sound pressure level measurements during our continued testing. 

We will first follow-up with measurements on a vehicle dyno in order to obtain a 

better estimate of the presented results in terms of the transferability to vehicle 

performance. 
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APPENDIX: NOMENCLATURE AND ABBREVIATIONS 

 

 
  

Abbreviations  

CO2 Carbon dioxide 

ECM/ECU Engine control unit, engine control 
module (used interchangeably) 

EGR Exhaust gas recirculation 

EHR Exhaust heat recovery 

RPM, rpm Revolutions per minute 

SAE Society of Automotive Engineers 

TB Turbo blanket 

TC Turbocharger 

TH Turbine Housing 

Tu Turbine 

VGT Variable geometry turbocharger 

Variables  

bp Brake power 

bsfc Brake-specific fuel consumption 

CFa Correction factor 

CI Confidence interval 

D Displacement 

f Correction coefficient, SAE J1349 

fm Mechanical engine factor 

MAP Absolute manifold pressure 

mean Arithmetic mean value 

�̇�𝐹  Fuel mass flow rate 

N Number of cylinders 

n number of data points 

P Pressure 

𝑃𝑖𝑇 Barometric pressure 

q Variable in SAE J1349 

rp Intake pressure ratio 

S Viscosity sensitivity coefficient 

SEM Standard error of the mean, standard 
uncertainty of the mean 

sg Specific gravity 

 

T Temperature 

T2, T_2 Air temperature at compressor exit, 
boost temperature 

T3, T_3 Exhaust gas temp. at turbine inlet 

T4, T_4 Exhaust gas temp. at turbine exit 

T_TC-exit-Oil Oil temp. at center section exit 

T_Tu-exit-surf Exhaust pipe surface temperature at 
turbine exit 

T_TH-surf-side Surface temperature on a side location 
of the turbine housing 

T_TH-surf-top Surface temperature on top of the 
turbine housing 

  

α Factor in SAE J1349 

β Factor in SAE J1349 

µ Dynamic viscosity 

ρ Density of the fluid 

σ Standard deviation 

τ Torque 

Ω Relative humidity 

Superscripts  

c Corrected 

m Measured 

v Vapor 

Subscripts  

a Air 

act Actual 

d Density 

f Fuel 

i Intake 

ref Reference 

sat Saturation 

v Viscosity 
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