
Copyright

by

Chao Xie

2016

The Dissertation Committee for Chao Xie
certifies that this is the approved version of the following dissertation:

High-Performance Transactional Storage

Committee:

Lorenzo Alvisi, Supervisor

Emmett Witchel

Keshav Pingali

Marcos Aguilera

High-Performance Transactional Storage

by

Chao Xie, B.E., M.S.C.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2016

Acknowledgments

The five years of my Ph.D. life in Austin is mixed with happiness, anx-

iety, excitement, disappointment and many other feelings. But it is treasure

to me to have a chance to go though this unforgotten part of my life. I am

really lucky to work with and learn from a group of smart, knowledgeable, and

self-motivated people.

My advisor, Lorenzo Alvisi, inspires me with his deep thinking, rigorous

logic and precise expression. He showed me the way to do scientific research

and guided me to present research work clearly. His attention to details also

helped me to realize how important a small thing can be.

My other committee members not only provided great suggestions for

improving this thesis but also inspired me for future works.

I am extremely lucky to work with other fellow graduate students in

LASR group. In particular, I want to thank Prince Mahajan and Chunzhi Su.

As a senior student, Prince gave me a lot of guidance on building systems, and

introduced me the research world of distributed transactions when I started

my Ph.D. program. All these knowledge is quite useful for me when working

on projects. Chunzhi worked with me closely through these years. I can always

get a clearer thought through the discussions between us, though sometimes

it started from disagreements. I also want to thank Manos Kapritsos, Yang

iv

Wang, Navid Yaghmazadeh, Cody Littley, Natacha Crooks, Sebastian Angel,

Trinabh Gupta, Sangmin Lee for providing great advice and help.

I want to thanks the staff of Emulab and Cloudlab. They are very kind

to help me to schedule test machines for experiments and handle hardware

failures quickly even on weekends. Without their help, I cannot finish my

work.

Finally, I want to thank my parents and Wenqian for their understand-

ing and supports. Their accompanying, ignoring the distance, courage me to

pursue my goal, and bring me happiness.

CHAO XIE

The University of Texas at Austin

August 2016

v

High-Performance Transactional Storage

Publication No.

Chao Xie, Ph.D.

The University of Texas at Austin, 2016

Supervisor: Lorenzo Alvisi

Developers face a fundamental tension between performance and ease of

programming when building complex applications. On the one hand, by freeing

developers from having to worry about concurrency and failures, ACID trans-

actions can greatly simplify the task of building applications. These benefits,

however, have a cost: in a distributed setting, ACID transactions can limit

performance and make systems hard to scale in the presence of contention.

On the other hand, the BASE approach can achieve higher performance by

providing weakened semantics. Embracing the BASE paradigm, however, ex-

acts its own heavy price: once one renounces consistency guarantees, it is up

to developers to explicitly code in their applications the logic necessary to en-

sure consistency in the presence of concurrency and faults, making this task

complex and error-prone.

This dissertation aims to resolve this tension by building database sys-

tems that provide both the ease of programming of the ACID approach and

vi

the performance that the BASE approach can provide. Our approach depends

on the observation that different transactions affect overall performance of

applications in different ways.

Traditional ACID databases ignore this diversity: they provide a single

implementation of the same uniform abstraction across all transactions. This

dissertation explores two different ways to leverage the previews key obser-

vation to combine performance and ease of programming, and presents two

systems, Salt and Callas, inspired by them.

vii

Table of Contents

Acknowledgments iv

Abstract vi

List of Tables xi

List of Figures xii

Chapter 1. Introduction 1

Chapter 2. A Stark Choice: ACID vs BASE 7

2.1 ACID transactions . 7

2.1.1 Isolation levels . 10

2.2 BASE . 16

2.3 Choosing between ACID and BASE 19

Chapter 3. Salt: Combining ACID and BASE in Distributed
Database 20

3.1 A grain of Salt . 23

3.2 BASE transactions . 25

3.3 Salt Isolation . 31

3.4 Implementation . 44

3.4.1 Early commit for availability 45

3.4.2 Failure recovery . 46

3.4.3 Transitive dependencies 47

3.4.4 Local transactions . 47

3.5 Case Study: BASE-ifying new-order 49

3.6 Evaluation . 50

3.6.1 Performance of Salt . 53

viii

3.6.2 Programming effort vs Throughput 56

3.6.3 Contention . 58

3.7 Conclusion . 63

Chapter 4. Callas 64

4.1 The cost of uniformity . 66

4.2 A modular approach to isolation 69

4.3 Enforcing isolation across groups 73

4.4 Enforcing isolation within groups 79

4.4.1 Runtime Pipelining . 83

4.5 Implementation . 95

4.5.1 Automated chopping . 95

4.5.2 Automated grouping . 97

4.6 Evaluation . 98

4.6.1 Callas’ performance . 100

4.6.2 Performance impact of various optimizations 104

4.6.3 Performance impact of different groupings 106

4.6.4 Overhead of nexus locks 108

4.6.5 Effect of contention rate on performance 109

4.6.6 Beyond rollback safety 113

4.7 Conclusion . 116

Chapter 5. Related Work 117

5.1 Optimizing ACID transactions 117

5.1.1 Optimizing certain transaction types 117

5.1.2 Optimizing under certain workload conditions 119

5.1.3 Leveraging new hardware 120

5.2 Providing limited transaction 121

5.3 Related Techniques . 122

5.3.1 Combining Different Concurrency Control Mechanisms . 123

5.3.2 Group Mutual Exclusion 124

5.3.3 Transaction Group . 125

5.3.4 Nested Transactions . 126

ix

Chapter 6. Conclusion 128

Bibliography 130

Vita 143

x

List of Tables

2.1 Isolation levels . 13

2.2 Isolation levels . 15

3.1 Conflicting type sets L and S for each of the four isolation levels.
R = Read, RR = Range Read, W = Write. 33

3.2 Conflict table for ACID, alkaline, and saline locks. 34

4.1 Latency under low throughput. 104

xi

List of Figures

2.1 A simple banking application ACID implementation 8

2.2 The ACID implementation of a simple banking application . . 10

2.3 A simple banking application BAEE implementation 18

3.1 A Salt implementation of the simple banking application . . . 27

3.2 Examples of concurrent executions of ACID and BASE trans-
actions in Salt. 36

3.3 ACID1 indirectly reads the uncommitted value of x. 37

3.4 How Salt prevents indirect dirty reads. 38

3.5 A Salt implementation of the new-order transaction in TPC-C.
The lines introduced in Salt are shaded. 49

3.6 Performance of TPC-C. 54

3.7 Performance of Fusion Ticket. 55

3.8 Incremental BASE-ification of TPC-C. 56

3.9 Incremental BASE-ification of FT. 57

3.10 Effect of contention ratio on throughput. 59

3.11 Effect of contention position on throughput. 60

3.12 Effect of read-write ratio on throughput. 61

4.1 A simple banking application. 67

4.2 Circularity can occur if Callas does not regulate the order in
which transactions from the same group release their nexus locks. 74

4.3 Runtime Pipelining for create order transaction in TPC-C. A=order
table, B=item table, C=order line table 83

4.4 Pseudocode of Callas’ transaction chopping algorithm (left) and
its effects on a simple example (right). 84

4.5 Throughput of TPC-C . 100

4.6 Throughput of Fusion Ticket 101

4.7 Throughput of Front Accounting 101

xii

4.8 Effect of different techniques 103

4.9 Effect of different optimizations. 105

4.10 Effect of choosing different groupings. 107

4.11 Overhead of nexus locks . 108

4.12 Effect of execution frequency on performance. 110

4.13 Effect of contention probability across groups. 111

4.14 Effect of application rollback rate on performance. 113

4.15 Effect of Callas adaptive response to high rollback rates. . . . 114

xiii

Chapter 1

Introduction

ACID transactions are a powerful primitive. By freeing developers

from having to worry about concurrency and failures, they can greatly sim-

plify the task of building applications. These benefits, however, have a cost:

in a distributed setting, ACID transactions can limit performance and make

systems hard to scale in the presence of contention. These costs have led

some systems, such as Mega-Store [23], ElasTras [38], and Microsoft’s Cloud

SQL Server [26], to only provide limited transactional support, in the form

of transactions within the same partition. Other systems, like Dynamo [42],

Cassandra [61], HBase [1], and BigTable [33], have opted to give up transac-

tional support completely. Wakening the abstractions available to developers,

however, comes with its own costs. In exchange for the potential for higher

performance and greater scalability, developers are left to wrestle with the

challenge of guaranteeing the correctness of their application in the presence

of concurrency and failures. This is such a complex and error-prone task that

recently several voices have advocated moving back to the simplicity of ACID

transactions, even if that means having to settle for less performance [35, 75].

Moving back and forth between these two approaches, developers actu-

1

ally face a fundamental tension between performance and ease of programming.

This dissertation aims to resolve this tension by building database systems that

provide both the ease of programming of the ACID approach and the perfor-

mance that the BASE approach can provide. Our approaches depend on one

key observation:

• Not all transactions are created equal. Different transactions affect the

overall performance in different ways. For example, conflicts among

transactions happen with different frequency, and when they do, they

limit the concurrency of transactions to different extents.

This dissertation explores two different ways to leverage this key observation

to combine performance and ease of programming, and presents two systems

inspired by them.

Salt: Salt explores the notion that, since transactions have vastly different per-

formance properties, they should export different abstractions. More precisely,

Salt observes that, just as the Pareto Principle [65] would predict, only a small

set of transactions actually challenge the performance limitation of the ACID

paradigm. Therefore, Salt aims to only re-write these performance-critical

transactions to boost their performance, while keeping other transactions un-

modified.

Naively, one could simply increase concurrency by breaking down the

performance-critical transactions into separate transactions. However, doing

so may compromise isolation for the remaining ACID transactions. While

2

breaking down transactions does bring more concurrency to performance-

critical transactions, it also exposes more states to all transactions, possibly

violating their consistency invariants.

Salt solves this problem by introducing BASE transactions. This new

abstraction allows developers to express a performance-critical transaction as

a sequence of ACID subtransactions. The key to ensuring that BASE and

ACID transactions safely coexist is Salt Isolation, a new isolation property

that regulates the interactions between ACID and BASE transactions. For

performance, Salt Isolation allows concurrently-executing BASE transactions

to observe one another’s internal states at the boundaries between consecutive

substransactions; for correctness, it completely prevents ACID transactions

from doing the same. As a result, BASE transactions behave differently when

interacting with different transactions: to ACID transactions, BASE transac-

tions appear like normal monolithic ACID transactions, while to other BASE

transactions they expose specific internal states, increasing concurrency. This

dualism is the key to achieving most of the performance that the BASE ap-

proach can provide at a fraction of the engineering effort. Our experiments

shows that, by “BASE-ifying” just one out of 11 transactions in the open

source ticketing application Fusion Ticket, Salt’s performance is 6.5x higher

than that of an ACID implementation.

Though Salt typically requires to “BASE-ify” only a handful of performance-

critical transactions, this process is not trivial. Developers need to identify a

way to re-write these transactions as BASE transactions and very carefully

3

reason about the correctness of their customized implementation. Our second

system, Callas, aims to remove this extra engineering effort.

Callas: Callas aims to move beyond the ACID/BASE dilemma. Rather than

trying to draw performance from weakening the abstraction offered to the de-

velopers, Callas decouples the concerns of abstraction and implementation: it

unequivocally adopts the ACID paradigm, but uses a novel technique, modular

concurrency control (MCC), to customize the mechanism though which these

guarantees are provided.

MCC makes it possible to think modularly about the enforcement of

any given isolation property I. It enables Callas to partition transactions in

different groups, and it ensures that as long as I holds within each group, it

will also hold among transactions in different groups. Separating concerns frees

Callas to use within each group concurrency control mechanisms optimized for

that group’s transactions. Thus, Callas can find opportunities for increased

concurrency where a generic mechanism might have to settle for a conservative

execution. For example, Callas’ in-group mechanism uses Runtime Pipelining,

a novel technique that, by refining the static analysis approach used by trans-

action chopping [74], creates new chances for concurrency. In our experiments,

for TPC-C, a standard database benchmark, Callas achieves an 8.2x speedup

over MySQL Cluster without requiring any programming effort.

In summary, we make the following contribution:

• We introduce BASE transactions, a new abstraction that lets applica-

4

tions reap most of the performance of the BASE approach while at the

same time limiting the complexity typically associated with it.

• We present a novel isolation property, Salt Isolation, that controls how

ACID and BASE transactions interact. Salt Isolation allows BASE

transactions to achieve high concurrency by observing each other’s in-

ternal states, without affecting the isolation guarantees of ACID trans-

actions.

• We build and evaluate Salt, a prototype developed on top of MySQL

Cluster. Our evaluation suggests that BASE-ifying a handful of transac-

tions can lead to close to an order of magnitude higher throughput than

a fully ACID implementation.

• We propose MCC, a new, modular approach to concurrency control.

By decoupling abstraction from mechanism, MCC retains the simplicity

of a uniform ACID API; by separating concerns, it lets each module

customize its internal concurrency control mechanism to achieve greater

concurrency without sacrificing safety.

• We introduce Runtime Pipelining, a technique that leverages execution-

time information to aggressively weaken within a group the conservative

requirements of the current theory of safe transaction chopping [74] and

gain, as a result, unprecedented opportunities for concurrency. The key

to the effectiveness of Runtime Pipelining is the flexibility offered by

5

MCC, which makes this technique applicable within small groups of well-

suited transactions.

• We build and evaluate Callas, a prototype, once again built on top of

MySQL Cluster, that implements MCC. Our evaluation of Callas sug-

gests that MCC can deliver performance gains comparable of Salt’s to

unmodified ACID applications.

The rest of this dissertation is organized as follows. Chapter 2 provides

some necessary background. It introduces in more detail the ACID and BASE

paradigms and the difficult choice between them that developers face. Chapter

3 discusses how Salt combines both the ACID and BASE paradigms in a

single system. Chapter 4 describes how Callas leverages Modular Concurrency

Control to boost the performance of ACID transactions. Chapter 5 discusses

related work and Chapter 6 concludes.

6

Chapter 2

A Stark Choice: ACID vs BASE

The debate between ACID and BASE is well known [48, 52, 68]. While

ACID transactions provide strong guarantees to ease the task of building appli-

cations, the BASE approach brings better performance and availability. This

chapter explores and compares these two different approaches. Though each

has its own advantages and disadvantages, neither currently offers both per-

formance and ease of programming, leaving developers with a tradeoff that is

hard to negotiate.

2.1 ACID transactions

Database systems organize data to help developers retrieve and analyze

it easily. For this purpose, database systems need to ensure that the organized

data is always in a state that satisfies the consistency constraints of applica-

tions. Though the basic read and write operations performed by the database

are atomic, the database is not guaranteed to be in a consistent state after each

operation. For example, Figure 2.1 shows a simple bank application that only

contains one kind of requests whose purpose is to transfer money between two

accounts. Consistency requires that, at the end of the transfer, the balance of

7

1 // transfer
2 Select bal into @bal from accnts where id = sndr
3 if (@bal >= amt)
4 Update accnts set bal −= amt where id = sndr
5 Update accnts set bal += amt where id = rcvr

Figure 2.1: A simple banking application ACID implementation

the sum of the two accounts be unchanged. In this example, during the trans-

fer, there is a moment when the money has already been deducted from the

first account and not yet added to the second account. If the system fails right

at this moment, the system will be in a inconsistent state. In addition, even

without failures, other users may observe the inconsistent states, and make

decisions based upon them. In this example, two concurrent transfer requests

may read the balance of the sender account before either of them starts to

update the accounts’ balance. If the sender account has enough money for

either request, but not enough money for both of them, both transfer requests

will pass the balance check, resulting a negative balance in the sender account.

Transactions were first proposed to prevent these uncontrolled and un-

desired interactions under multiuser environment, so that the database would

be guaranteed to move from a consistent state to another consistent state [44].

A transaction consists of a sequence of database actions. By grouping these

actions in a transaction, developers can treat all of them as a single logical

unit, freeing them from worrying about concurrent executions and failures.

In order to achieve this nice guarantee, transactions must provide the

following four properties known as ACID [54, 55]:

8

• Atomicity Each transaction is either applied in its entirety, or, if one

action in the transaction fails, the whole transaction needs to be rolled

back, so that the database is left unmodified. This property needs to be

guaranteed even with failures or errors.

• Consistency Each committed transaction moves the database from a

consistent state to another consistent state.

• Isolation Strictly speaking, isolation should ensure that the effect of

executing concurrent transactions is the same as if they executed se-

rially. The actions taken by one transaction should be hidden from

others until the transaction commits. This guarantee comes at a non-

trivial performance cost, however, so, as we will see in more detail in

Section 2.1.1, over time researchers have considered weaker notions of

isolation, in which some effects of an uncommitted transactions may be

visible from other transactions.

• Durability Once a transaction commits, the system must retain the

result of the transaction even if there are failures or errors.

With these four strong properties packed in a single abstraction, trans-

actions greatly simplify the work of building an application. Figure 2.2, for

example, illustrates how ACID transactions can be used to write a simple bank

application. The application consists of only two transactions, transfer and

total-balance, accessing the accnts relation. The ACID guarantees ensure

9

1 // ACID transfer transaction
2 begin txn
3 Select bal into @bal from accnts where id = sndr
4 if (@bal >= amt)
5 Update accnts set bal −= amt where id = sndr
6 Update accnts set bal += amt where id = rcvr
7 end txn

9 // ACID total−balance transaction
10 begin txn
11 Select sum(bal) from accnts

12 end txn

Figure 2.2: The ACID implementation of a simple banking application

that the transfer transaction either commits or is rolled-back automatically,

despite failures or invalid inputs (such as an invalid rcvr id), and it is easy

to add constraints (such as bal ≥ amt) to ensure consistency invariants. In

addition, developers need not worry about the interference from other trans-

actions. For example, the total-balance transaction never reads the inter-

mediate state of the transfer transaction, keeping the total balance as an

invariant.

2.1.1 Isolation levels

To allow developers to trade performance for consistency guarantees,

transactions are allowed to run under different isolation levels. Stronger isola-

tion levels remove risks of exposing intermediate states of uncommitted trans-

actions to other concurrent transactions. Weaker isolation levels, in turn, bring

more concurrency at the cost of allowing more unexpected phenomena that

10

the developers need to take care of. In this section, we introduce two different

definitions of isolation levels. The first definition, introduced by Berenson et

al. [24], expresses isolation guarantees in terms of the unexpected phenomena

they allow. The second definition is introduced by Atul Adya et al. [19].

This definition is based on dependency graphs, and it is implementation-

independent. It gives more flexibility to implementations, which brings more

performance potential.

Berenson’s Definition

We first introduce some notation used in this definition. We write

“w1[w]” to mean that transaction T1 modifies data item x. “c1” and “a1”

mean, respectively, that transaction T1 commits or decides to rollback. If

transaction T1 reads or writes a set of records satisfying predicate P, we write

it, respectively, as “r1[P]” and “w1[P]”.

To define the isolation levels, Berenson et al.[24] first defines four phe-

nomena as following. Each of these phenomena may lead to some unexpected

behaviors violating database consistency.

• P0(Dirty Write): w1[x]...w2[x]...((c1 or a1) and (c2 or a2) in any order)

P0(Dirty Write) refers to executions where transactions T2 modifies

item x after transaction T1 modifies it but before transactions T1 commits or

rollbacks. Assume there is a constraint between x and y (e.g., x = y), and

T1 and T2 each maintain the constraint if run alone. If P0 is allowed, this

11

constraint can be easily broken if T1 and T2 execute concurrently, since the

database may move to a state the final value of x is determined by T1 while

the final value of y is determined by T2.

• P1(Dirty Read): w1[x]...r2[x]...((c1 or a1) and (c2 or a2) in any order)

P1(Dirty Read) refers to executions where transaction T2 reads the

value of x written by transaction T1 before T1 commits or aborts. If P1 is

allowed, what may happen is that transaction T2 reads the value x written

by T1, writes this value to another data item y, and commits. After that, T1

rollbacks. What happens is that the result of T2 depends on an invalid value

of x.

• P2(Fuzzy Read): r1[x]...w2[x]...((c1 or a1) and (c2 or a2) in any order)

P2(Fuzzy Read) refers to executions where transactions T2 modifies

item x after T1 read that item, but before T! commits or rollbacks. if P2 is

allowed, transaction T1 may get different results when reading the same item

twice since T2 may modify the value of this item.

• P3(Phantom): r1[P]...w2[y in P]...((c1 or a1) and (c2 or a2) in any

order)

P3(Phantom) is very similar to P2 except the read request of transac-

tion T1 a predicate read. If P3 is allowed, transaction T1 may get different

12

Isolation level P0 P1 P2 P3

read-uncommitted 7 3 3 3

read-committed 7 7 3 3

repeatable-read 7 7 7 3

serializable 7 7 7 7

Table 2.1: Isolation levels

results when reading on the same predicate twice, since T2 may modify one or

more items that satisfy this predicate.

Based on these four phenomena, Berenson et. al. define four isolation

levels shown in Table 2.1. Stronger isolation levels prevent more unexpected

phenomena: serializability prevents all phenomena. Choosing the isolation

level supported by a given database system then presents a familiar trade-off:

stronger isolation levels make it easier for developers to write applications;

weaker ones, though they allow some unexpected phenomena, have the poten-

tial of bringing more concurrency among transactions.

Adya’s Definition

Berenson’s definition is based on locking and, as such, it fails to meet

the goal of implementation-independence. As a result, this definition rules

out some implementations, such as optimistic and multiversion concurrency

control schemes [28, 60]. To address these concerns, Adya et al. introduced a

new way of formalizing isolation levels. Their formulation refines the classic

approach of leveraging a serializability graph to express whether a history is

serializable: they express necessary conditions that apply to weaker notions of

isolation as requirements on the structure of a new graph they define, called

13

the Direct Serialization Graph (DSG). Each node in the DSG corresponds to

a committed transaction, and each directed edge from transaction Ti to Tj

indicates one of the following types of conflict between them:

• Read dependency. Ti installs a version xi of an object x and Tj reads xi,

or Tj performs a predicate-based read, xi changes the matches of Tj’s

read, and xi is the same or an earlier version of x in Tj’s read.

• Write dependency. Ti installs a version xi of x, and Tj installs x’s next

version.

• Item-anti-dependency. Ti reads a version xk of x, and Tj installs x’s next

version.

• Predicate-anti-dependency. Tj installs a later version of some object that

changes the matches of a predicate based read performed by Tj

The DSG is central to this formulation because the occurrence of some

of the phenomena proscribed by a given isolation level is equivalent to the

DSG exhibiting a refinement of the following condition:

• Circularity. The execution history contains a directed cycle.

The refinement consists of specifying which types of edges can be used

to construct the cycle: the more stringent the isolation level, the larger the set

of cycles to be prevented (and of phenomena to be proscribed). For example,

isolation levels that forbid reading data that has not been committed (dirty

14

Isolation level
Write

dependency
Read

dependency
Item anti-

dependency
Predicate

anti-dependency

read-uncommitted 3 7 7 7

read-committed 3 3 7 7

repeatable-read 3 3 3 7

serializable 3 3 3 3

Table 2.2: Isolation levels

reads) require the flow of information between any two transactions to be

unidirectional—which can be achieved by proscribing DSG cycles consisting

only of write or read dependency edges [19]. Achieving serializability, however,

requires ruling out also cycles that include anti-dependency edges. Table 2.2

illustrates the types of edges considered for building DSG cycles under different

isolation levels.

Though most of the phenomena can be mapped to the dependency cy-

cles, not all of them are covered. In particular, every isolation level that at least

as strong as Read Committed must also avoid the following two phenomena:

• Aborted Reads. A committed transaction T2 reads some object (possibly

via a predicate) modified by an aborted transaction T1.

• Intermediate Reads. A committed transaction T2 reads a version of an

object x (possibly via a predicate) written by another transaction T1

that was not T1’s final modification of x.

Adya’s definition is more general than Berenson’s. For example, con-

sider the following execution:

15

• H: W1[x] R2[x] W1[y] R2[y] c1 c2

This execution is equivalent to a serial one in which T1 executes before

T2. However, according to Berenson’s definition, this execution does not satisfy

the requirements of the Serializable isolation level, since it allows for the P1

phenomenon. On the contrary, Adya’s definition treats the execution as a seri-

alizable since it leads to no dependency cycles, aborted reads, or intermediate

reads.

2.2 BASE

ACID transactions provide strong consistency guarantees. These guar-

antees, however, do not come for free. Ensuring the consistency constrains

at each step reduces the concurrency among transactions and may limit per-

formance. The BASE approach, introduced by Brewer [32], focuses more on

availability and performance. This approach attempts to loose the consistency

constraints (“C” and “I” in ACID) in exchange for higher availability and per-

formance. It allows temporary inconsistent states and gives the responsibility

of tolerating these inconsistent states to applications. The name “BASE” is

an acronym obtained from the following three properties:

• Basically Available Availability has higher priority than consistency.

Therefore, every request should elicit a timely response even if that re-

sponse may return an inconsistent result or a failure notification.

• Soft state The state of systems could change without any input.

16

• Eventual consistency If the system does not receive any more inputs,

the state of the system will eventually satisfy the consistency require-

ments of applications.

Unlike ACID, however, BASE offers more of a set of programming

guidelines (such as the use of partition local transactions [56, 68]) than a

set of rigorously specified properties, and its instantiations take a variety

of application-specific forms. Common among them, however, is a program-

ming style that avoids distributed transactions to eliminate the performance

and availability costs of the associated distributed commit protocol. There

are many NoSQL systems that provide BASE style APIs [1, 17, 33, 34, 42, 61].

These systems partially or completely give up the ACID transaction paradigm.

As a concrete application of the BASE approach, consider Figure 2.3. It

shows a BASE implementation of the same simple banking application shown

in Figure 2.2. All the transactions used in this approach are local transactions.

Now, it is up to the application to ensure consistency and atomicity despite

failures that occur between the first and second transaction. And while the

level of isolation offered by ACID transactions ensures that total-balance

will compute accurately the sum of balances in accnts, in BASE the code

needs to prevent explicitly (lines 30 and 31 of Figure 2.3) total-balance

from observing the intermediate state after the sndr account has been charged

but before the rcvr’s has been credited.

17

1 // transfer using the BASE approach
2 begin local−transaction
3 Select bal into @bal from accnts where id = sndr
4 if (@bal >= amt)
5 Update accnts set bal −= amt where id = sndr
6 // To enforce atomicity, we use queues to communicate
7 // between partitions
8 Queue message(sndr, rcvr, amt) for partition(accnts, rcvr)
9 end local−transaction

11 // Background thread to transfer messages to other partitions
12 begin transaction // distributed transaction to transfer queued msgs
13 <transfer messages to rcvr>
14 end transaction

16 // A background thread at each partition processes
17 // the received messages
18 begin local−transaction
19 Dequeue message(sndr, rcvr, amt)
20 Select id into @id from accnts where id = rcvr
21 if (@id 6= ∅) // if rcvr’s account exists in database
22 Update accnts set bal += amt where id = rcvr
23 else // rollback by sending the amt back to the original sender
24 Queue message(rcvr, sndr, amt) for partition(accnts, sndr)
25 end local−transaction

27 // total−balance using the BASE approach
28 // The following two lines are needed to ensure correctness of
29 // the total−balance ACID transaction
30 <notify all partitions to stop accepting new transfers>
31 <wait for existing transfers to complete>
32 begin transaction
33 Select sum(bal) from accnts

34 end transaction
35 <notify all partitions to resume accepting new transfers>

Figure 2.3: A simple banking application BAEE implementation

18

As we can see in this example, writing applications using the BASE

approach is complex. The code is much longer, and developers are forced to

reason about many corner cases, making it very easy to introduce bugs in

the implementation. What is worse the complexity actually increases expo-

nentially with the size of applications, since the number of combinations of

different concurrent requests increases exponentially.

2.3 Choosing between ACID and BASE

The potential performance gains of the BASE approach are compellingand

indeed, many applications over the last decade have embraced the NoSQL

movement, renouncing the consistency guarantees to achieve high availability

and better performance. However, the complexity of this style of programming

has sparked a recent backlash against the early enthusiasm for BASE [35, 75]—

as Shute et al. put it “Designing applications to cope with concurrency anoma-

lies in their data is very error-prone, time-consuming, and ultimately not worth

the performance gains” [75].

The ACID/BASE dichotomy may appear as yet another illustration

of the “no free lunch” adage: if you want performance, you must give some-

thing up. Indeed—but BASE gives virtually everything up: the entire appli-

cation needs to be rewritten, with no automatic support for either atomicity,

consistency, or durability, and with isolation limited only to partition-local

transactions. Can’t we aim for a more reasonable bill?

19

Chapter 3

Salt: Combining ACID and BASE in

Distributed Database

This chapter1 presents the design, implementation, and evaluation of

Salt, a distributed database that, for the first time, allows developers to reap

the complementary benefits of both the ACID and BASE paradigms within a

single application. In particular, Salt attempts to dispel the false dichotomy

between performance and ease of programming that fuels the ACID vs. BASE

argument.

Salt aims to reclaim most of those performance gains while keeping

complexity in check. The approach that we propose to resolve the tension is

rooted in the Pareto principle [65]. When an application outgrows the per-

formance of an ACID implementation, it is often due to the needs of only a

handful of transactions: most transactions never test the limits of what ACID

can offer. Numerous applications [2, 5, 6, 12, 13] demonstrate this familiar lop-

sided pattern: few transactions are performance-critical, while many others are

1This chapter is based on “Salt: Combing ACID and BASE in Distributed Database” [85],
authored by Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang, Navid Yaghmazadeh,
Lorenzo Alvisi and Prince Mahajan, published in the proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation. Chao designed the protocol
and implemented most of the Salt prototype.

20

either lightweight or infrequent; e.g. administrative transactions. Our experi-

ence confirms this pattern. For example, running the TPC-C benchmark [36]

on a MySQL cluster, we found that, as the load increases, only two trans-

actions take much longer to complete—a symptom of high contention; other

transactions are unaffected. Similarly, we found that the ACID throughput

of Fusion Ticket [8], a popular open source online ticketing application that

uses MySQL as its backend database, is limited by the performance of just

one transaction out of 11.

Motivated by this observation, Salt is tempting to create a database

where the ACID and BASE paradigms can safely coexist within the same ap-

plication, so that ACID applications that struggle to meet their growing perfor-

mance demands to improve their availability and scalability by incrementally

“BASE-ifying” only the few ACID transactions that are performance-critical,

without compromising the ACID guarantees enjoyed by the remaining trans-

actions.

Of course, naively BASE-ifying selected ACID transactions may void

their atomicity guarantees, compromise isolation by exposing intermediate

database states that were previously unobservable, and violate the consistency

invariants expected by the transactions that have not been BASE-ified. To en-

able mutually beneficial coexistence between the ACID and BASE paradigms,

Salt introduces a new abstraction: BASE transactions.

BASE transactions loosen the tight coupling between atomicity and

isolation enforced by the ACID paradigm to offer a unique combination of

21

features: the performance and availability benefits of BASE-style partition-

local transactions together with the ability to express and enforce atomicity

at the granularity called for by the application semantics.

Key to this unprecedented combination is Salt Isolation, a new isola-

tion property that regulates the interactions between ACID and BASE trans-

actions. For performance, Salt Isolation allows concurrently executing BASE

transactions to observe, at well-defined spots, one another’s internal states,

but, for correctness, it completely prevents ACID transactions from doing the

same. It limits the effects of BASE-ifying one transaction only among BASE

transactions.

We have built a Salt prototype by modifying an ACID system, the

MySQL Cluster distributed database [11], to support BASE transactions and

Salt Isolation. Our evaluation confirms that BASE transactions and Salt Iso-

lation together allow Salt to break new ground in balancing performance and

ease of programming. For example, our experiments show that, by BASE-

ifying just one out of 11 transactions in the open source ticketing application

Fusion Ticket, Salt’s performance is 6 .5x higher than that of an ACID imple-

mentation.

The rest of the chapter proceeds as follows. Section 3.1 proposes a

new alternative, Salt, that sidesteps the trade-off between performance and

ease of programming. Section 3.2 introduces the notion of BASE transactions

and Section 3.3 presents the novel notion of Salt Isolation, which allows ACID

and BASE transactions to safely coexist within the same application. Sec-

22

tion 3.4 discusses the implementation of our Salt prototype, Section 3.5 shows

an example of programming in Salt, and Section 3.6 presents the results of our

experimental evaluation. Section 3.7 concludes.

3.1 A grain of Salt

Salt, as we noted in the Introduction, is based on the familiar Pareto

principle: even in applications that outgrow the performance achievable with

ACID solutions, not all transactions are equally demanding. While a few

transactions require high performance, many others never test the limits of

what ACID can offer. This raises an intriguing possibility: could one identify

those few performance-critical transactions (either at application-design time

or through profiling, if an ACID implementation of the application already

exists) and somehow only need to go through the effort of BASE-ifying those

transactions in order to get most of the performance benefits that come from

adopting the BASE paradigm?

Realizing this vision is not straightforward. For example, BASE-ifying

only the transfer transaction in the simple banking application of Figure 2.2

would allow total-balance to observe a state in which sndr has been charged

but rcvr’s has not yet been credited, causing it to compute incorrectly the

bank’s holdings. The central issue is that BASE-ifying transactions, even if

only a few, can make suddenly accessible to all transactions what previously

were invisible intermediate database states. Protecting developers from having

to worry about such intermediate states despite failures and concurrency, how-

23

ever, is at the core of the ease of programming offered by the transactional pro-

gramming paradigm. Indeed, quite naturally, isolation (which regulates which

states can be accessed when transactions execute concurrently) and atomic-

ity (which frees from worrying about intermediate states during failures) are

typically offered at the same granularity—that of the ACID transaction.

We submit that while this tight coupling of atomicity and isolation

makes ACID transactions both powerful and attractively easy to program with,

it also limits their ability to continue to deliver ease of programming when

performance demands increase. For example, splitting an ACID transaction

into smaller transactions can improve performance, but at the cost of shrinking

the original transaction’s guarantees in terms of both atomicity and isolation:

the all-or-nothing guarantee of the original transaction is unenforceable on

the set of smaller transactions, and what were previously intermediate states

can suddenly be accessed indiscriminately by all other transactions, making it

much harder to reason about the correctness of one’s application.

The approach that we propose to move beyond today’s stark choices

is based on two propositions: first, that the coupling between atomicity and

isolation should be loosened, so that providing isolation at a fine granularity

does not necessarily result in shattering atomicity; and second, that the choice

between either enduring poor performance or allowing indiscriminate access

to intermediate states by all transactions is a false one: instead, complexity

can be tamed by giving developers control over who is allowed to access these

intermediate states, and when.

24

To enact these propositions, the Salt distributed database introduces

a new abstraction: BASE transactions. The design of BASE transactions

borrows from nested transactions [83], an abstraction originally introduced

to offer, for long-running transactions, atomicity at a finer granularity than

isolation. In particular, while most nested transaction implementations define

isolation at the granularity of the parent ACID transaction,2 they tune the

mechanism for enforcing atomicity so that errors that occur within a nested

subtransaction do not require undoing the entire parent transaction, but only

the affected subtransaction.

Our purpose in introducing BASE transactions is similar in spirit to

that of traditional nested transactions: both abstractions aim at gently loos-

ening the coupling between atomicity and isolation. The issue that BASE

transactions address, however, is the flip side of the one tackled by nested

transactions: this time, the challenge is to provide isolation at a finer granu-

larity, without either drastically escalating the complexity of reasoning about

the application, or shattering atomicity.

3.2 BASE transactions

Syntactically, a BASE transaction is delimited by the familiar begin

BASE transaction and end BASE transaction statements. Inside, a BASE

2Nested top-level transactions are a type of nested transactions that instead commit or
abort independently of their parent transaction. They are seldom used, however, precisely
because they violate the isolation of the parent transaction, making it hard to reason about
consistency invariants.

25

transaction contains a sequence of alkaline subtransactions—nested trans-

actions that owe their name to the novel way in which they straddle the

ACID/BASE divide.

When it comes to the granularity of atomicity, as we will see in more

detail below, a BASE transaction provides the same flexibility of a traditional

nested transaction: it can limit the effects of a failure within a single alkaline

subtransaction, while at the same time it can ensure that the set of actions

performed by all the alkaline subtransactions it includes is executed atom-

ically. Where a BASE transaction fundamentally differs from a traditional

nested transaction is in offering Salt Isolation, a new isolation property that,

by supporting multiple granularities of isolation, makes it possible to control

which internal states of a BASE transaction are externally accessible, and

by whom. Despite this unprecedented flexibility, Salt guarantees that, when

BASE and ACID transactions execute concurrently, ACID transactions retain,

with respect to all other transactions (whether BASE, alkaline, or ACID), the

same isolation guarantees they used to enjoy in a purely ACID environment.

The topic of how Salt isolation supports ACID transactions across all levels of

isolation defined in the ANSI/ISO SQL standard is actually interesting enough

that we will devote the entire next section to it. To prevent generality from

obfuscating intuition, however, the discussion in the rest of this section as-

sumes ACID transactions that provide the popular read-committed isolation

level.

Independent of the isolation provided by ACID transactions, a BASE

26

1 // BASE transaction: transfer
2 begin BASE transaction
3 try
4 begin alkaline−subtransaction
5 Select bal into @bal from accnts where id = sndr
6 if (@bal >= amt)
7 Update accnts set bal −= amt where id = sndr
8 end alkaline−subtransaction
9 catch (Exception e) return // do nothing

10 if (@bal < amt) return // constraint violation
11 try
12 begin alkaline−subtransaction
13 Update accnts set bal += amt where id = rcvr
14 end alkaline−subtransaction
15 catch (Exception e) //rollback if rcvr not found or timeout occurs
16 begin alkaline−subtransaction
17 Update accnts set bal += amt where id = sndr
18 end alkaline−subtransaction
19 end BASE transaction

22 // ACID transaction: total−balance (unmodified)
23 begin transaction
24 Select sum(bal) from accnts

25 commit

Figure 3.1: A Salt implementation of the simple banking application

transaction’s basic unit of isolation are the alkaline subtransactions it con-

tains. Alkaline subtransactions retain the properties of ACID transactions: in

particular, when it comes to isolation, no transaction (whether ACID, BASE

or alkaline) can observe intermediate states produced by an uncommitted al-

kaline subtransaction. When it comes to observing the state produced by a

committed alkaline subtransaction, however, the guarantees differ depending

on the potential observer.

27

• The committed state of an alkaline subtransaction is observable by other

BASE or alkaline subtransactions. By leveraging this finer granularity

of isolation, BASE transactions can achieve levels of performance and

availability that elude ACID transactions. At the same time, because

alkaline subtransactions are isolated from each other, this design limits

the new interleavings that programmers need to worry about when rea-

soning about the correctness of their programs: the only internal states of

BASE transactions that become observable are those at the boundaries

between its nested alkaline subtransactions.

• The committed state of an alkaline subtransaction is not observable by

other ACID transactions until the parent BASE transaction commits.

The internal state of a BASE transaction is then completely opaque

to ACID transactions: to them, a BASE transaction looks just like an

ordinary ACID transaction, leaving their correctness unaffected.

To maximize performance, we expect that alkaline subtransactions will

typically be partition-local transactions, but application developers are free,

if necessary to enforce critical consistency conditions, to create alkaline sub-

transactions that touch multiple partitions and require a distributed commit.

Figure 3.1 shows how the simple banking application of Figure 2.2 might

look when programmed in Salt. The first thing to note is what has not changed

from the simple ACID implementation of Figure 2.2: Salt does not require any

modification to the ACID total-balance transaction; only the performance-

28

critical transfer operation is expressed as a new BASE transaction. While

the complexity reduction may appear small in this simple example, our current

experience with more realistic applications (such as Fusion Ticket, discussed in

Section 3.6) suggests that Salt can achieve significant performance gains while

leaving untouched most ACID transactions. Figure 3.1 also shows another

feature of alkaline subtransactions: each is associated with an exception, which

is caught by an application-specific handler in case an error is detected. As we

will discuss in more detail shortly, Salt leverages the exceptions associated with

alkaline subtransactions to guarantee the atomicity of the BASE transactions

that enclose them.

There are two important events in the life of a BASE transaction: accept

and commit. In the spirit of the BASE paradigm, BASE transactions, as in

Lynx [87], are accepted as soon as their first alkaline subtransaction commits.

The atomicity property of BASE transactions ensures that, once accepted, a

BASE transaction will eventually commit, i.e., all of its operations will have

successfully executed (or bypassed because of some exception) and their results

will be persistently recorded.

To clarify further our vision for the abstraction that BASE transactions

provide, it helps to compare their guarantees with those provided by ACID

transactions

Atomicity Just like ACID transactions, BASE transactions guarantee that

either all the operations they contain will occur, or none will. In particu-

lar, atomicity guarantees that all accepted BASE transactions will eventually

29

commit. Unlike ACID transactions, BASE transactions can be aborted only if

they encounter an error (such as a constraint violation or a node crash) before

the transaction is accepted. Errors that occur after the transaction has been

accepted do not trigger an automatic rollback: instead, they are handled using

exceptions. The details of our Salt’s implementation of atomicity are discussed

in Section 3.4.

Consistency Chasing higher performance by splitting ACID transactions can

increase exponentially the number of interleavings that must be considered

when trying to enforce integrity constraints. Salt drastically reduces this com-

plexity in two ways. First, Salt does not require all ACID transactions to

be dismembered: non-performance-critical ACID transactions can be left un-

changed. Second, Salt does not allow ACID transactions to observe states

inside BASE transactions, cutting down significantly the number of possible

interleavings.

Isolation Here, BASE and ACID transactions depart, as BASE transactions

provide the novel Salt Isolation property, which we discuss in full detail in

the next section. Appealingly, Salt Isolation on the one hand allows BASE

transactions to respect the isolation property offered by the ACID transactions

they may execute concurrently with, while on the other yields the opportunity

for significant performance improvements. In particular, under Salt Isolation a

BASE transaction BT appears to an ACID transaction just like another ACID

transaction, but other BASE transactions can observe the internal states that

exist at the boundaries between adjacent alkaline subtransactions in BT .

30

Durability BASE transactions provide the same durability property of ACID

transactions and of many existing NoSQL systems: Accepted BASE transac-

tions are guaranteed to be durable. Hence, developers need not worry about

losing the state of accepted BASE transactions.

3.3 Salt Isolation

Intuitively, our goal for Salt isolation is to allow BASE transactions to

achieve high degrees of concurrency, while ensuring that ACID transactions

enjoy well-defined isolation guarantees. Before taking on this challenge in

earnest, however, we had to take two important preliminary steps.

The first, and the easiest, was to pick the concurrency control mech-

anism on which to implement Salt isolation. Our current design focuses on

lock-based implementations rather than, say, optimistic concurrency control,

because locks are typically used in applications that experience high contention

and can therefore more readily benefit from Salt; also, for simplicity, we do

not currently support multiversion concurrency control and hence snapshot

isolation. However, there is nothing about Salt isolation that fundamentally

prevents us from applying it to other mechanisms beyond locks.

The second step proved much harder. We had to crisply characterize

what are exactly the isolation guarantees that we want our ACID transac-

tions to provide. This may seem straightforward, given that the Berenson’s

definition mentioned in Section 2.1.1 already defines the relevant four iso-

lation levels for lock-based concurrency: read-uncommitted, read-committed,

31

repeatable read, and serializable. Each level offers stronger isolation than the

previous one, preventing an increasingly larger prefix of the following sequence

of undesirable phenomena: dirty write, dirty read, non-repeatable read, and

phantom [24].

Where the challenge lies, however, is in preventing this diversity from

forcing us to define four distinct notions of Salt isolation, one for each of the

four ACID isolation levels. Ideally, we would like to arrive at a single, concise

characterization of isolation in ACID systems that somehow captures all four

levels, which we can then use to specify the guarantees of Salt isolation.

The key observation that ultimately allowed us to do so is that all

four isolation levels can be reduced to a simple requirement: if two operations

in different transactions conflict, then the temporal dependency that exists

between the earlier and the later of these operations must extend to the entire

transaction to which the earlier operation belongs. Formally:

Isolation. Let Q be the set of operation types {read, range-read, write} and let

L and S be subsets ofQ. Further, let o1 in transaction1 and o2 in transaction2 ,

be two operations, respectively of type T1 ∈ L and T2 ∈ S, that access the

same object in a conflicting (i.e. non read-read) manner. If o1 completes

before o2 starts, then transaction1 must decide before o2 starts.

With this single and concise formulation, each of the ACID isolation

levels can be expressed by simply instantiating appropriately L and S. For

example, L = {write} and S = {read, write} yields read-committed isolation.

32

Isolation level L S
read-uncommitted W W
read-committed W R,W
repeatable-read R,W R,W

serializable R,RR,W R,RR,W

Table 3.1: Conflicting type sets L and S for each of the four isolation levels.
R = Read, RR = Range Read, W = Write.

Table 3.1 shows the conflicting sets of operation types for all four isolation

levels. For a given L and S, we will henceforth say that two transactions are

isolated from each other when Isolation holds between them.

Having expressed the isolation guarantees of ACID transactions, we are

ready to tackle the core technical challenge ahead of us: defining an isolation

property for BASE transactions that allows them to harmoniously coexist

with ACID transactions. At the outset, their mutual affinity may appear

dubious: to deliver higher performance, BASE transactions need to expose

intermediate uncommitted states to other transactions, potentially harming

Isolation. Indeed, the key to Salt isolation lies in controlling which, among

BASE, ACID, and alkaline subtransactions, should be exposed to what.

Our formulation of Salt isolation leverages the conciseness of the Isola-

tion property to express its guarantees in a way that applies to all four levels

of ACID isolation.

Salt Isolation. The Isolation property holds as long as (a) at least one of

transaction1 and transaction2 is an ACID transaction or (b) both transaction1

and transaction2 are alkaline subtransactions.

33

ACID-R ACID-W alka-R alka-W saline-R saline-W

ACID-R 3 7 3 7 3 7

ACID-W 7 7 7 7 7 7

alka-R 3 7 3 7 3 3

alka-W 7 7 7 7 3 3

saline-R 3 7 3 3 3 3

saline-W 7 7 3 3 3 3

Table 3.2: Conflict table for ACID, alkaline, and saline locks.

Informally, Salt isolation enforces the following constraint gradation:

• ACID transactions are isolated from all other transactions.

• Alkaline subtransactions are isolated from other ACID and alkaline sub-

transactions.

• BASE transactions expose their intermediate states (i.e. states produced

at the boundaries of their alkaline subtransactions) to every other BASE

transaction.

Hence, despite its succinctness, Salt isolation must handle quite a di-

verse set of requirements. To accomplish this, it uses a single mechanism—

locks—but equips each type of transaction with its own type of lock: ACID

and alkaline locks, which share the name of their respective transactions, and

saline locks, which are used by BASE transactions.

ACID locks work as in traditional ACID systems. There are ACID locks

for both read and write operations; reads conflict with writes, while writes

conflict with both reads and writes (see the dark-shaded area of Table 3.2).

34

The duration for which an ACID lock is held depends on the operation type

and the chosen isolation level. Operations in L require long-term locks, which

are acquired at the start of the operation and are maintained until the end of

the transaction. Operations in S \ L require short-term locks, which are only

held for the duration of the operation.

Alkaline locks keep alkaline subtransactions isolated from other ACID and

alkaline subtransactions. As a result, as Table 3.2 (light-and-dark shaded sub-

table) shows, only read-read accesses are considered non-conflicting for any

combination of ACID and alkaline locks. Similar to ACID locks, alkaline locks

can be either long-term or short-term, depending on the operation type; long-

term alkaline locks, however, are only held until the end of the current alkaline

subtransaction, and not for the entire duration of the parent BASE transac-

tion: their purpose is solely to isolate the alkaline subtransaction containing

the operation that acquired the lock.

Saline locks owe their name to their delicate charge: isolating ACID transac-

tions from BASE transactions, while at the same time allowing for increased

concurrency by exposing intermediate states of BASE transactions to other

BASE transactions. To that end, (see Table 3.2) saline locks conflict with

ACID locks for non read-read accesses, but never conflict with either alkaline

or saline locks. Once again, there are long-term and short-term saline locks:

short-term saline locks are released after the operation completes, while long-

term locks are held until the end of the current BASE transaction. In practice,

since alkaline locks supersede saline locks, we acquire only an alkaline lock at

35

(a) BASE waits until ACID commits. (b) BASE2 waits only for alkaline1. . .

(c) . . . but ACID must wait all of BASE
out.

Figure 3.2: Examples of concurrent executions of ACID and BASE transac-
tions in Salt.

the start of the operation and, if the lock is long-term, “downgrade” it at the

end of the alkaline subtransaction to a saline lock, to be held until after the

end of the BASE transaction.

Figure 3.2 shows three simple examples that illustrate how ACID and

BASE transactions interact. In Figure 3.2(a), an ACID transaction holds

an ACID lock on x, which causes the BASE transaction to wait until the

ACID transaction has committed, before it can acquire the lock on x. In

Figure 3.2(b), instead, transaction BASE2 need only wait until the end of

alkaline1, before acquiring the lock on x. Finally, Figure 3.2(c) illustrates the

use of saline locks. When alkaline1 commits, it downgrades its lock on x to a

36

Figure 3.3: ACID1 indirectly reads the uncommitted value of x.

saline lock that is kept until the end of the parent BASE transaction, ensuring

that the ACID and BASE transactions remain isolated.

Indirect dirty reads In an ACID system the Isolation property holds among

any two transactions, making it quite natural to consider only direct interac-

tions between pairs of transactions when defining the undesirable phenomena

prevented by the four isolation levels. In a system that uses Salt isolation,

however, the Isolation property covers only some pairs of transactions: pairs

of BASE transactions are exempt. Losing Isolation’s universal coverage has

the insidious effect of introducing indirect instances of those undesirable phe-

nomena.

The example in Figure 3.3 illustrates what can go wrong if Salt Isolation

is enforced naively. For concreteness, assume that ACID transactions require a

read-committed isolation level. Since Isolation is not enforced between BASE1

and BASE2, w(y) may reflect the value of x that was written by BASE1.

37

Figure 3.4: How Salt prevents indirect dirty reads.

Although Isolation is enforced between ACID1 and BASE2, ACID1 ends

up reading x’s uncommitted value, which violates that transaction’s isolation

guarantees.

The culprit for such violations is easy to find: dirty reads can indi-

rectly relate two transactions (BASE1 and ACID1 in Figure 3.3) without

generating a direct conflict between them. Fortunately, none of the other

three phenomena that ACID isolation levels try to avoid can do the same: for

such phenomena to create an indirect relation between two transactions, the

transactions at the two ends of the chain must be in direct conflict.

Our task is then simple: we must prevent indirect dirty reads. Salt

avoids them by restricting the order in which saline locks are released, in the

following two ways:

Read-after-write across transactions A BASE transaction Br that reads

a value x, which has been written by another BASE transaction Bw,

38

cannot release its saline lock on x until Bw has released its own saline

lock on x.

Write-after-read within a transaction An operation ow that writes a value

x cannot release its saline lock on x until all previous read operations

within the same BASE transaction have released their saline locks on

their respective objects.

The combination of these two restrictions ensures that, as long as a

write remains uncommitted (i.e. its saline lock has not been released) subse-

quent read operations that observe that written value and subsequent write

operations that are affected by that written value will not release their own

saline locks. This, in turn, guarantees that an ACID transaction cannot ob-

serve an uncommitted write, since saline locks are designed to be mutually

exclusive with ACID locks. Figure 3.4 illustrates how enforcing these two

rules prevents the indirect dirty read of Figure 3.3. Observe that transaction

BASE2 cannot release its saline lock on x until BASE1 commits (read-after-

write across transactions) and BASE2 cannot release its saline lock on y before

releasing its saline lock on x (write-after-read within a transaction).

Theorem 1. [Correctness] Given isolation level A, all ACID transactions are

protected (both directly and, where applicable, indirectly) from all the unde-

sirable phenomena prevented by A.

Proof of Theorem 1

39

Lemma 3.3.1. Under salt read uncommitted or higher isolation levels, all

ACID transactions are protected from dirty write.

Formally, suppose w1(x1) ∈ transaction1 and w2(x1) ∈ transaction2,

if either transaction1 or transaction2 is an ACID transaction and w1(x1)→

w2(x1), then transaction1 → w2(x1) (a→ b denotes that a completes before b

starts. a and b can be an operation in a transaction or a whole transaction.).

Proof If both transaction1 and transaction2 are ACID, the property is guar-

anteed by the original ACID implementation. We will prove the following two

cases:

• Case 1: transaction1 is a BASE transaction and transaction2 is an ACID

transaction. In this case, w1(x1) grabs the saline write lock on object

x1 at it starts and holds it until the end of transaction1. w2(x1) of

transaction2 needs to acquire the ACID write lock on object x1 before it

can start. And since the ACID write lock conflicts with the saline write

lock held by w1(x1) and w1(x1) → w2(x1), w2(x1) can not start before

transaction1 completes, which means transaction1 → w2(x1).

• Case 2: transaction1 is an ACID transaction and transaction2 is a BASE

transaction. The proof is similar as that in Case 1.

Because there is no indirect dirty write, salt read uncommitted avoid

dirty write for ACID transactions.

40

Lemma 3.3.2. Under salt read committed or higher isolation levels, all ACID

transactions are protected from dirty read.

Formally, suppose w1(x1) ∈ transaction1, r2(x1) and w2(x2) ∈ transaction2,

r3(x2) and w3(x3) ∈ transaction3, ..., and rN(xN−1) ∈ transactionN , if ei-

ther transaction1 or transactionN is an ACID transaction, and w1(x1) →

r2(x1)→ w2(x2)→ r3(x2)→ ...→ wN−1(xN−1)→ rN(xN−1), then transaction1 →

rN(xN−1)

Proof We only need to prove that this property holds in two cases—transactionN

is ACID and all others are BASE; and transaction1 is ACID and all others are

BASE— because these two cases can combine to form any kinds of sequence

except the all ACID sequence, which is trivial to prove.

• Case 1: transactionN is ACID and all others are BASE. In this case, the

read-after-write across transactions property guarantees that if w1(x1)→

r2(x1), then r2(x1) releases the saline lock on object x1 after w1(x1) re-

leases it. And the write-after-read within a transaction property guar-

antees that if r2(x1)→ w2(x2), w2(x2) releases the saline lock on object

x2 after r2(x1) releases its saline lock on object x1. By induction, we can

prove that w1(x1) releases the saline lock on object x1 before wN−1(xN−1)

releases its saline lock on object xN−1. And since transactionN is ACID,

rN(xN−1) needs to grab the ACID lock, which is conflicting with the

saline lock on object xN−1. This means that rN(xN−1) can not start be-

fore wN−1(xN−1) releases its saline lock on object xN−1. And since w1(x1)

41

releases the saline lock on object x1 before wN−1(xN−1) releases its saline

lock on object xN−1, rN(xN−1) can not start before w1(x1) releases the

saline lock on object x1. And since a write saline lock is released at the

end of a BASE transaction, rN(xN−1) can not start before transaction1

completes, which means transaction1 → rN(xN−1).

• Case 2: transaction1 is ACID and all others are BASE. Since transaction1

is an ACID transaction, w1(x1) holds the ACID write lock on object x1

until the end of transaction1. And since transaction2 is BASE, r2(x1)

needs to acquire the saline read lock on x1 and the saline read lock con-

flicts with the ACID write lock, so transaction1 → r2(x1). And since

r2(x1) → w2(x2) → r3(x2) → ... → wN−1(xN−1) → rN(xN−1), we can

get transaction1 → rN(xN−1).

To conclude, salt read committed or higher isolation levels avoid dirty

read.

Lemma 3.3.3. Under salt repeatable read or higher isolation levels, all ACID

transactions are protected from fuzzy read.

Formally, suppose r1(x1) ∈ transaction1 and w2(x1) ∈ transaction2,

if either transaction1 or transaction2 is an ACID transaction and r1(x1) →

w2(x1), then transaction1 → w2(x1).

Proof If both transaction1 and transaction2 are ACID, this property is

guaranteed by the original ACID implementation, so we only need to prove

42

the following two cases:

• Case 1: transaction1 is ACID and transaction2 is BASE. In this case,

r1(x1) holds the ACID read lock of object x1 to the end of transaction1.

As since transaction2 is BASE, w2(a) needs to acquire the saline write

lock of x1, which conflicts with the ACID read lock. Therefore, transaction1 →

w2(x1).

• Case 2: transaction1 is BASE and transaction2 is ACID. The proof is

similar as that in Case 1.

In conclusion, salt repeatable read of higher salt isolation level avoid

fuzzy read.

Lemma 3.3.4. Under salt serializable level, all ACID transactions are pro-

tected from phantom read.

Formally, suppose r1(P) ∈ transaction1 and w2(x in P) ∈ transaction2,

if either transaction1 or transaction2 is an ACID transaction and r1(P) →

w2(x in P), then transaction1 → w2(x in P). (P denotes a predicate).

Proof The proof is similar to that of Lemma 3 and the only difference is

that r1(P) holds a range lock on predicate P , which conflicts with the write

lock that w2(x in P) needs to acquire for object x.

Proof for Theorem According to Lemmas 1-4, Theorem 1 is proved.

43

Clarifying serializability The strongest lock-based isolation level, locking-

serializable [24], not only prevents the four undesirable phenomena we men-

tioned earlier, but, in ACID-only systems, also implies the familiar definition of

serializability, which requires the outcome of a serializable transaction schedule

to be equal to the outcome of a serial execution of those transactions.

This implication, however, holds only if all transactions are isolated

from all other transactions [24]; this is not desirable in a Salt database, since

it would require isolating BASE transactions from each other, impeding Salt’s

performance goals.

Nonetheless, a Salt database remains true to the essence of the locking-

serializable isolation level: it continues to protect its ACID transactions from

all four undesirable phenomena, with respect to both BASE transactions and

other ACID transactions. In other words, even though the presence of BASE

transactions prevents the familiar notion of serializability to “emerge” from

universal pairwise locking-serializability, ACID transactions enjoy in Salt the

same kind of “perfect isolation” they enjoy in a traditional ACID system.

3.4 Implementation

We implemented a Salt prototype by modifying MySQL Cluster [11], a

popular distributed database, to support BASE transactions and enforce Salt

Isolation. MySQL Cluster follows a standard approach among distributed

databases: the database is split into a number of partitions and each partition

uses a master-slave protocol to maintain consistency among its replicas, which

44

are organized in a chain. To provide fairness, MySQL Cluster places operations

that try to acquire locks on objects in a per-object queue in lock-acquisition

order; Salt leverages this mechanism to further ensure that BASE transactions

cannot cause ACID transactions to starve.

We modified the locking module of MySQL Cluster to add support for

alkaline and saline locks. These modifications include support for (a) managing

lock conflicts (see Table 3.2), (b) controlling when each type of lock should

be acquired and released, as well as (c) a queuing mechanism that enforces

the order in which saline locks are released, to avoid indirect dirty reads. Our

current prototype uses the read-committed isolation level, as it is the only

isolation level supported by MySQL Cluster.

3.4.1 Early commit for availability

To reduce latency and improve availability, Salt supports early com-

mit [87] for BASE transactions: a client that issues a BASE transaction is

notified that the transaction has committed when its first alkaline subtransac-

tion commits. To ensure both atomicity and durability despite failures, Salt

logs the logic for the entire BASE transaction before its first transaction com-

mits. If a failure occurs before the BASE transaction has finished executing,

the system uses the log to ensure that the entire BASE transaction will be

executed eventually.

45

3.4.2 Failure recovery

Logging the transaction logic before the first alkaline subtransaction

commits has the additional benefit of avoiding the need for managing cascad-

ing rollbacks of other committed transactions in the case of failures. Since

the committed state of an alkaline subtransaction is exposed to other BASE

transactions, rolling back an uncommitted BASE transaction would also re-

quire rolling back any BASE transaction that may have observed rolled back

state. Instead, early logging allows Salt to roll uncommitted transactions for-

ward.

The recovery protocol has two phases: redo and roll forward. In the

first phase, Salt replays its redo log, which is populated, as in ACID systems,

by logging asynchronously to disk every operation after it completes. Salt’s

redo log differs from an ACID redo log in two ways. First, Salt logs both

read and write operations, so that transactions with write operations that

depend on previous reads can be rolled forward. Second, Salt replays also

operations that belong to partially executed BASE transactions, unlike ACID

systems that only replay operations of committed transactions. During this

phase, Salt maintains a context hash table with all the replayed operations

and returned values (if any), to ensure that they are not re-executed during

the second phase.

During the second phase of recovery, Salt rolls forward any partially

executed BASE transactions. Using the logged transaction logic, Salt regen-

erates the transaction’s query plan and reissues the corresponding operations.

46

Of course, some of those operations may have already been performed during

the first phase: the context hash table allows Salt to avoid re-executing any of

these operations and nonetheless have access to the return values of any read

operation among them.

3.4.3 Transitive dependencies

As we discussed in Section 3.3, Salt needs to monitor transitive depen-

dencies that can cause indirect dirty reads. To minimize bookkeeping, our

prototype does not explicitly track such dependencies. Instead it only tracks

direct dependencies among transactions and uses this information to infer the

order in which locks should be released.

As we mentioned earlier, MySQL Cluster maintains a per-object queue

of the operations that try to acquire locks on an object. Salt adds for each

saline lock a pointer to the most recent non-ACID lock on the queue. Before

releasing a saline lock, Salt simply checks whether the pointer points to a held

lock—an O(1) operation.

3.4.4 Local transactions

Converting an ACID transaction into a BASE transaction can have sig-

nificant impact on performance, beyond the increased concurrency achieved by

enforcing isolation at a finer granularity. In practice, we find that although

most of the performance gains in Salt come from fine-grain isolation, a signifi-

cant fraction is due to a practical reason that compounds those gains: alkaline

47

subtransactions in Salt tend to be small, often containing a single operation.

Salt’s local-transaction optimization, inspired by similar optimizations

used in BASE storage systems, leverages this observation to significantly de-

crease the duration that locks are being held in Salt. When an alkaline

subtransaction consists of a single operation, each partition replica can lo-

cally decide to commit the transaction—and release the corresponding locks—

immediately after the operation completes. While in principle a similar op-

timization could be applied also to single-operation ACID transactions, in

practice ACID transactions typically consist of many operations that affect

multiple database partitions. Reaching a decision, which is a precondition

for lock release, typically takes much longer in such transactions: locks must

be kept while each transaction operation is propagated along the entire chain

of replicas of each of the partitions touched by the transaction and during

the ensuing two-phase commit protocol among the partitions. The savings

from this optimization can be substantial: single-operation transactions release

their locks about one-to-two orders of magnitude faster than non-optimized

transactions.3 Interestingly, these benefits can extend beyond single operation

transactions—it is easy to extend the local-transaction optimization to cover

also transactions where all operations touch the same object.

3This optimization applies only to ACID and alkaline locks. To enforce isolation between
ACID and BASE transactions, saline locks must still be kept until the end of the BASE
transaction.

48

1 begin BASE transaction

2 Check whether all items exist. Exit otherwise.
3 Select w tax into @w tax from warehouse where w id =

: w id;

4 begin alkaline−subtransaction
5 Select d tax into @d tax, next order id into @o id

from district where w id = : w id and d id =
: d id;

6 Update district set next order id = o id + 1 where
w id = : w id AND d id = : d id;

7 end alkaline−subtransaction
8 Select discount into @discount, last name into @name,

credit into @credit where w id = : w id and d id =
: d id and c id = : c id

9 Insert into orders values (: w id, : d id, @o id, ...);
10 Insert into new orders values (: w id, : d id, o id);
11 For each ordered item, insert an order line, update stock

level, and calculate order total
12 end BASE transaction

Figure 3.5: A Salt implementation of the new-order transaction in TPC-C.
The lines introduced in Salt are shaded.

3.5 Case Study: BASE-ifying new-order

We started this project to create a distributed database where perfor-

mance and ease of programming could go hand-in-hand. How close does Salt

come to that vision? We will address this question quantitatively in the next

section, but some qualitative insight can be gained by looking at an actual

example of Salt programming.

Figure 3.5 shows, in pseudocode, the BASE-ified version of new-order,

one of the most heavily run transactions in the TPC-C benchmark (more about

TPC-C in the next section). We chose new-order because, although its logic

49

is simple, it includes all the features that give Salt its edge.

The first thing to note is that BASE-ifying this transaction in Salt

required only minimal code modifications (the highlighted lines 2, 4, and 7).

The reason, of course, is Salt isolation: the intermediate states of new-order

are isolated from all ACID transactions, freeing the programmer from having

to reason about all possible interleavings. For example, TPC-C also contains

the deliver transaction, which assumes the following invariant: if an order is

placed (lines 9-10), then all order lines must be appropriately filled (line 11).

Salt does not require any change to deliver, relying on Salt isolation to ensure

that deliver will never see an intermediate state of new-order in which lines

9-10 are executed but line 11 is not.

At the same time, using a finer granularity of isolation between BASE

transactions greatly increases concurrency. Consider lines 5-6, for example.

They need to be isolated from other instances of new-order to guarantee that

order ids are unique, but this need for isolation does not extend to the following

operations of the transaction. In an ACID system, however, there can be no

such distinction; once the operations in lines 5-6 acquire a lock, they cannot

release it until the end of the transaction, preventing lines 8-11 from benefiting

from concurrent execution.

3.6 Evaluation

To gain a quantitative understanding of the benefits of Salt with respect

to both ease of programming and performance, we applied the ideas of Salt to

50

two applications: the TPC-C benchmark [36] and Fusion Ticket [8].

TPC-C is a popular database benchmark that models online transaction pro-

cessing. It consists of five types of transactions: new-order and payment (each

responsible for 43.5% of the total number of transactions in TPC-C), as well as

stock-level, order-status, and delivery (each accounting for 4.35% of the total).

Fusion Ticket is an open source ticketing solution used by more than 80

companies and organizations [4]. It is written in PHP and uses MySQL as its

backend database.

Unlike TPC-C, which focuses mostly on performance and includes only

a representative set of transactions, a real application like Fusion Ticket in-

cludes several transactions—from frequently used ones such as create-order

and payment, to infrequent administrative transactions such as publishing and

deleting-event—that are critical for providing the required functionality of a

fully fledged online ticketing application and, therefore, offers a more accurate

view of the programming effort required to BASE-ify entire applications in

practice.

Our evaluation tries to answer three questions:

• What is the performance gain of Salt compared to the traditional ACID

approach?

• How much programming effort is required to achieve performance com-

parable to that of a pure BASE implementation?

51

• How is Salt’s performance affected by various workload characteristics,

such as contention ratio?

We use TPC-C and Fusion Ticket to address the first two questions. To address

the third one, we run a microbenchmark and tune the appropriate workload

parameters.

Experimental setup In our experiments, we configure Fusion Ticket with

a single event, two categories of tickets, and 10,000 seats in each category.

Our experiments emulate a number of clients that book tickets through the

Fusion Ticket application. Our workload consists of the 11 transactions that

implement the business logic necessary to book a ticket, including a single

administrative transaction, delete-order. We do not execute additional ad-

ministrative transactions, because they are many orders of magnitude less

frequent than customer transactions and have no significant effect on perfor-

mance. Note, however, that executing more administrative transactions would

have incurred no additional programming effort, since Salt allows unmodified

ACID transactions to safely execute side-by-side the few performance-critical

transactions that need to be BASE-ified. In contrast, in a pure BASE system,

one would have to BASE-ify all transactions, administrative ones included:

the additional performance benefits would be minimal, but the programming

effort required to guarantee correctness would grow exponentially.

In our TPC-C and Fusion Ticket experiments, data is split across ten

partitions and each partition is three-way replicated. Due to resource limita-

52

tions, our microbenchmark experiments use only two partitions. In addition

to the server-side machines, our experiments include enough clients to saturate

the system.

All of our experiments are carried out in an Emulab cluster [18, 84] with

62 Dell PowerEdge R710 machines. Each machine is equipped with a 64-bit

quad-core Xeon E5530 processor, 12GB of memory, two 7200 RPM local disks,

and a Gigabit Ethernet port.

3.6.1 Performance of Salt

Our first set of experiments aims at comparing the performance gain of

Salt to that of a traditional ACID implementation to test our hypothesis that

BASE-ifying only a few transactions can yield significant performance gains.

Our methodology for identifying which transactions should be BASE-

ified is based on a simple observation: since Salt targets performance bot-

tlenecks caused by contention, transactions that are good targets for BASE-

ification are large and highly-contented. To identify suitable candidates, we

simply increase the system load and observe which transactions experience a

disproportionate increase in latency.

Following this methodology, for the TPC-C benchmark we BASE-ified

two transactions: new-order and payment. As shown in Figure 3.6, the

ACID implementation of TPC-C achieves a peak throughput of 1464 trans-

actions/sec. By BASE-ifying these two transactions, our Salt implementation

achieves a throughput of 9721 transactions/sec—6.6x higher than the ACID

53

 0

 500

 1000

 1500

 2000

 0 2000 4000 6000 8000 10000 12000

La
te

n
cy

 (
m

s)

Throughput (transactions/sec)

TPC-C

ACID Salt

Figure 3.6: Performance of TPC-C.

throughput.

For the Fusion Ticket benchmark, we only BASE-ify one transaction,

create-order. This transaction is the key to the performance of Fusion Ticket,

because distinct instances of create-order heavily contend with each other.

As Figure 3.7 shows, the ACID implementation of Fusion Ticket achieves a

throughput of 1088 transactions/sec, while Salt achieves a throughput of 7090

transactions/sec, 6.5x higher than the ACID throughput. By just BASE-ifying

create-order, Salt can significantly reduce how long locks are held, greatly

increasing concurrency.

In both the TPC-C and Fusion Ticket experiments Salt’s latency un-

der low load is higher than that of ACID. The reason for this disparity lies

in how requests are made durable. The original MySQL Cluster implemen-

54

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000 7000 8000

La
te

n
cy

 (
m

s)

Throughput (transactions/sec)

Fusion Ticket

ACID Salt

Figure 3.7: Performance of Fusion Ticket.

tation returns to the client before the request is logged to disk, providing no

durability guarantees. Salt, instead, requires that all BASE transactions be

durable before returning to the client, increasing latency. This increase is ex-

acerbated by the fact that we are using MySQL Cluster’s logging mechanism,

which—having been designed for asynchronous logging—is not optimized for

low latency. Of course, this phenomenon only manifests when the system

is under low load; as the load increases, Salt’s performance benefits quickly

materialize: Salt outperforms ACID despite providing durability guarantees.

55

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

0 (ACID) 1 2 3 4 5

T
h

ro
u
g

h
p

u
t

(t
ra

n
sa

ct
io

n
s/

se
c)

Number of BASE-ified Transactions

TPC-C

Figure 3.8: Incremental BASE-ification of TPC-C.

3.6.2 Programming effort vs Throughput

While Salt’s performance over ACID is encouraging, it is only one piece

of the puzzle. We would like to further understand how much programming

effort is required to achieve performance comparable to that of a pure BASE

implementation—i.e. where all transactions are BASE-ified. To that end, we

BASE-ified as many transactions as possible in both the TPC-C and Fusion

Ticket codebases, and we measured the performance they achieve as we in-

crease the number of BASE-ified transactions.

Figure 3.8 shows the result of incrementally BASE-ifying TPC-C. Even

with only two BASE-ified transactions, Salt achieves 80% of the maximum

throughput of a pure BASE implementation; BASE-ifying three transactions

56

 0

 2000

 4000

 6000

 8000

 10000

0 (ACID) 1 2 3 RAW OPS

T
h

ro
u
g

h
p

u
t

(t
ra

n
sa

ct
io

n
s/

se
c)

Number of BASE-ified Transactions

Fusion Ticket

Figure 3.9: Incremental BASE-ification of FT.

actually reaches that throughput. In other words, there is no reason to BASE-

ify the remaining two transactions. In practice, this simplifies a developer’s

task significantly, since the number of state interleavings to be considered in-

creases exponentially with each additional transactions that need to be BASE-

ified. Further, real applications are likely to have proportionally fewer perfor-

mance-critical transactions than TPC-C, which, being a performance bench-

mark, is by design packed with them.

To put this expectation to the test, we further experimented with in-

crementally BASE-ifying the Fusion Ticket application. Figure 3.9 shows the

results of those experiments. BASE-fying one transaction was quite manage-

able: it took about 15 man-hours—without prior familiarity with the code—

57

and required changing 55 lines of code, out of a total of 180,000. BASE-ifying

this first transaction yields a benefit of 6.5x over ACID, while BASE-ifying

the next one or two transactions with the highest contention does not produce

any additional performance benefit.

What if we BASE-ify more transactions? This is where the aforemen-

tioned exponential increase in state interleavings caught up with us: BASE-

ifying a fourth or fifth transaction appeared already quite hard, and seven

more transactions were waiting behind them in the Fusion Ticket codebase!

To avoid this complexity and still test our hypothesis, we adopted a different

approach: we broke down all 11 transactions into raw operations. The re-

sulting system does not provide, of course, any correctness guarantees, but at

least, by enabling the maximum degree of concurrency, it lets us measure the

maximum throughput achievable by Fusion Ticket. The result of this experi-

ment is labeled RAW OPS in Figure 3.9. We find it promising that, even by

BASE-ifying only one transaction, Salt is within 10% of the upper bound of

what is achievable with a BASE approach.

3.6.3 Contention

To help us understand how contention affects the performance of Salt,

we designed three microbenchmarks to compare Salt, with and without the

local-transaction optimization, to an ACID implementation.

In the first microbenchmark, each transaction updates five rows, ran-

domly chosen from a collection of N rows. By tuning N , we can control the

58

 100

 1000

 10000

 100000

0 0.0001 0.001 0.01 0.1

T
h

ro
u
g

h
p

u
t

(t
ra

n
sa

ct
io

n
s/

se
c)

Contention Ratio (1/#Rows)

Salt

Salt w/o optimization

ACID

Figure 3.10: Effect of contention ratio on throughput.

amount of contention in our workload. Our Salt implementation uses BASE

transactions that consist of five alkaline subtransactions—one for each update.

Figure 3.10 shows the result of this experiment. When there is no con-

tention, the throughput of Salt is somewhat lower than that of ACID, because

of the additional bookkeeping overhead of Salt (e.g., logging the logic of the

entire BASE transaction). As expected, however, the throughput of ACID

transactions quickly decreases as the contention ratio increases, since contend-

ing transactions cannot execute in parallel. The non-optimized version of Salt

suffers from this degradation, too, albeit to a lesser degree; its throughput is

up to an order of magnitude higher than that of ACID when the contention

ratio is high. The reason for this increase is that BASE transactions contend

on alkaline locks, which are only held for the duration of the current alkaline

59

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9

T
h

ro
u
g

h
p

u
t

(t
ra

n
sa

ct
io

n
s/

se
c)

Operations after contention

Salt

Salt w/o optimization

ACID

Figure 3.11: Effect of contention position on throughput.

subtransactions and are thus released faster than ACID locks. The optimized

version of Salt achieves further performance improvement by releasing locks

immediately after the operation completes, without having to wait for the op-

eration to propagate to all replicas or wait for a distributed commit protocol

to complete. This leads to a significant reduction in contention; so much so,

that the contention ratio appears to have negligible impact on the performance

of Salt.

The goal of the second microbenchmark is to help us understand the

effect of the relative position of contending operations within a transaction on

the system throughput. This factor can impact performance significantly, as

it affects how long the corresponding locks must be held. In this experiment,

each transaction updates ten rows, but only one of those updates contends

60

 1000

 10000

 100000

 0 20 40 60 80 100

T
h

ro
u
g

h
p

u
t

(t
ra

n
sa

ct
io

n
s/

se
c)

Write Ratio (%)

Salt

ACID

Salt w/o optimization

Figure 3.12: Effect of read-write ratio on throughput.

with other transactions by writing to one row, randomly chosen from a col-

lection of ten shared rows. We tune the number of operations that follow the

contending operation within the transaction, and measure the effect on the

system throughput.

As Figure 3.11 shows, ACID throughput steadily decreases as the op-

erations that follow the contending operation increase, because ACID holds

an exclusive lock until the transaction ends. The throughput of Salt, how-

ever, is not affected by the position of contending operations because BASE

transactions hold the exclusive locks—alkaline locks—only until the end of the

current alkaline subtransaction. Once again, the local-transaction optimiza-

tion further reduces the contention time for Salt by releasing locks as soon as

the operation completes.

61

The third microbenchmark helps us understand the performance of

Salt under various read-write ratios. The read-write ratio affects the system

throughput in two ways: (i) increasing writes creates more contention among

transactions; and (ii) increasing reads increases the overhead introduced by

Salt over traditional ACID systems, since Salt must log read operations, as

discussed in Section 3.4. In this experiment each transaction either reads five

rows or writes five rows, randomly chosen from a collection of 100 rows. We

tune the percentage of read-only transactions and measure the effect on the

system throughput.

As Figure 3.12 shows, the throughput of ACID decreases quickly as the

fraction of writes increases. This is expected: write-heavy workloads incur a

lot of contention, and when transactions hold exclusive locks for long periods of

time, concurrency is drastically reduced. The performance of Salt, instead, is

only mildly affected by such contention, as its exclusive locks are held for much

shorter intervals. It is worth noting that, despite Salt’s overhead of logging

read operations, Salt outperforms ACID even when 95% of the transactions

are read-only transactions.

In summary, our evaluation suggests that, by holding locks for shorter

times, Salt can reduce contention and offer significant performance improve-

ments over a traditional ACID approach, without compromising the isolation

guarantees of ACID transactions.

62

3.7 Conclusion

The ACID/BASE dualism has to date forced developers to choose be-

tween ease of programming and performance. Salt shows that this choice is

a false one. Using the new abstraction of BASE transactions and a mecha-

nism to properly isolate them from their ACID counterparts, Salt enables a

tenable middle ground between ACID and BASE paradigms; a middle group

where performance can be incrementally attained by gradually increasing the

programming efforts required.

63

Chapter 4

Callas

Salt achieves most of the ease of programming of ACID and most of

performance of BASE by rewriting performance-critical transactions incremen-

tally. However, the extra programming effort involved is still non-trivial and

can easily introduce bugs. Callas1 aims to move beyond the ACID/BASE

dilemma. Rather than trying to draw performance from weakening the ab-

straction offered to the programmers, Callas unequivocally adopts the familiar

abstraction offered by the ACID paradigm and set its sight on finding a more

efficient way to implement that abstraction.

The key observation that motivates the architecture of Callas is simple.

While ease of programming requests that ACID properties hold uniformly

across all transactions, when it comes to the mechanisms used to enforce these

properties, uniformity can actually hinder performance: a concurrency control

mechanism that must work correctly for all possible pairs of transactions will

necessarily have to make conservative assumptions, passing up opportunities

1This chapter is based on “High-Performance ACID via Modular Concurrency Con-
trol” [86], authored by Chao Xie, Chunzhi Su, Cody Littley, Lorenzo Alvisi, Manos Kaprit-
sos and Yang Wang, published in the proceedings of the 25th ACM Symposium on Oper-
ating Systems Principles. Chao designed the protocol and implemented most of the Callas
prototype.

64

for optimization.

Callas then decouples the concerns of abstraction and implementa-

tion: it offers ACID guarantees uniformly to all transactions, but uses a novel

technique, modular concurrency control (MCC), to customize the mechanism

through which these guarantees are provided.

MCC makes it possible to think modularly about the enforcement of

any given isolation property I. It enables Callas to partition transactions in

separate groups, and it ensures that as long as I holds within each group, it

will also hold among transactions in different groups. Separating concerns frees

Callas to use within each group concurrency control mechanisms optimized for

that group’s transactions. Thus, Callas can find opportunities for increased

concurrency where a generic mechanism might have to settle for a conservative

execution. For example, taking advantages of the flexibility offered by MCC,

Callas in-group concurrency control mechanism, Runtime Pipelining, leverages

execution-time information to aggressively weaken within a group the conser-

vative requirements of the current theory of safe transaction chopping [74] and

gains, as a result, unprecedented opportunities for concurrency.

We have built Callas by modifying MySQL Cluster distributed database.

Our evaluation of Callas suggests that MCC can deliver significant perfor-

mance gains to unmodified ACID applications. For example, we find that,

for TPC-C, Callas achieves an 8.2x speedup over MySQL Cluster without

requiring any programming effort.

65

The rest of Chapter is organized as follows. The next sections describe

the criteria to articulate correctness. After Section 4.1 discusses why an un-

differentiated concurrency control mechanism is undesirable, Section 4.2 intro-

duces MCC and specifies the correctness conditions that any valid instantiation

of MCC must meet. Section 4.3 and Section 4.4 present the mechanisms Callas

uses to ensure isolation across groups and within each group, respectively. The

implementation of Callas is the topic of Section 4.5, while Section 4.6 presents

the results of our experimental evaluation. Section 4.7 concludes.

4.1 The cost of uniformity

The power of the ACID paradigm lies in its simplicity. Developers

need only wrap their code in an ACID transaction, and it is guaranteed to be

executed atomically, to leave the database in a consistent state, to be isolated

from any other transactions, and to be durable. One of the great assets of this

abstraction is that it applies uniformly to all transactions, independent of the

internal logic of other transactions, thus freeing the developer from having to

worry about transaction interleavings.

Current ACID databases support this uniform abstraction with an

equally uniform mechanism. Notwithstanding its simplicity, when it comes

to enforcing isolation this choice can become an obstacle to performance and

scalability. Whether using locking or optimistic concurrency control (OCC),

current ACID databases rely on one-size-fits-all—and thus fundamentally con-

servative —mechanisms to ensure isolation.

66

1 // transfer balance
2 begin transaction
3 bal dest = bal dest + val
4 bal orig = bal orig − val
5 commit

8 // sum balance (infrequent)
9 begin transaction

10 return bal orig + bal dest
11 commit

Figure 4.1: A simple banking application.

For example, when a transaction accesses an object (e.g., a database

row), a lock-based mechanism must acquire a lock that is held until the end

of the transaction, preventing all other transactions from observing interme-

diate states of that transaction. Perhaps surprisingly, given their name, OCC

mechanisms are, in their own way, equally conservative. Although they allow

transactions to speculatively execute in parallel without acquiring locks, they

do not refine the criteria for determining contention, but simply delay the

check: if contention is detected at commit time, they force all but one of the

contending transactions to rollback.

By treating all transactions equally, one-size-fits-all mechanisms cannot

take advantage of workload-specific optimizations. Isolation is uniformly en-

forced to prevent all other transactions from observing intermediate states. In

some circumstances, however, such precautions are excessive: it is quite com-

mon to find transactions that can safely expose some of their intermediate

67

states to some other transactions.

Consider, for example, how a lock-based mechanism would handle the

previous simple banking application in Figure 4.1: transfer balance deducts

some amount from the bal orig account and adds it to bal dest ; sum balance

computes the total assets across the two accounts.

When these transactions can execute concurrently, uniformly enforcing

isolation requires transfer balance to keep the lock on bal dest until the trans-

action commits, to prevent sum balance from computing the wrong total by

observing the intermediate state where bal dest has been credited but bal orig

not yet charged. Keeping the locks for so long, however, also prevents other

instances of the transfer balance transaction from executing concurrently, even

though they could do so safely, since their operations commute.2 Ideally, one

would like to release the lock on bal orig after the amount is deducted from it,

but only for other transfer balance transactions; sum balance should still be

prevented from observing the intermediate state.

Salt shows that leveraging this insight can yield significant performance

benefits. To extract them, Salt forgoes the simplicity of a uniform ACID

paradigm and instead introduces BASE transactions. The cost, as we have

seen, is added complexity for the programmer.

In Salt, abandoning a uniform concurrency control mechanism to in-

2Commutativity is only one example of the missed opportunities for greater concurrency
that constitute the cost of uniformity—we discuss the performance implications for trans-
action chopping [74] in Section 4.4.

68

crease performance has led, as if by necessity, to also surrendering the benefits

of a uniform ACID abstraction. In its own attempts to leverage the same

insight that motivated Salt, Callas strives to stay clear of the pitfall of tightly

coupling the scope of mechanism and abstraction, and comes to a fundamen-

tally different conclusion.

4.2 A modular approach to isolation

Callas aims to offer to unmodified, transactional ACID applications the

kind of performance that previously could only be achieved by rewriting appli-

cations in a BASE/NoSQL style. Such coding exercises are notorious for being

error-prone and time consuming [75], even when backed by Object-Relational

Mapping systems [22]. Callas’ goal is to do away with them completely, with

only a negligible cost in performance.

The design of Callas is based on a simple proposition: that the key

for combining performance and ease of programming is to decouple the ACID

abstraction—which should hold identically for all transactions—from the mech-

anism used to support it—which should instead adapt to the unique charac-

teristics of different transactions. The approach that we propose is rooted in

three main observations.

First, no existing programming paradigm approaches the simplicity of-

fered by ACID. Such is its superiority on this front to bring into question

whether any performance benefit that a BASE alternative can deliver is actu-

ally worth the trouble [35, 75].

69

Second, significant improvements to the performance of ACID are un-

likely to come from techniques that rely on properties that must hold for

all of the transactions in a given application. A case in point is transaction

chopping [74], an elegant technique that can yield greater concurrency while

maintaining serializability, but only if a specific property (which can be for-

malized as the absence of SC-cycles3 [74]) holds across the entire set of an

application’s transactions. In practice, enforcing this property can often sig-

nificantly limit opportunities for concurrency in applications that suffer from

high contention.

Third, as Salt has demonstrated, the potential performance gains to

be had by allowing individual transactions to export multiple granularities of

isolation can be substantial.

The architecture of Callas leverages these observations by supporting

a modular approach to regulating concurrency, realized through a novel tech-

nique we call modular concurrency control (MCC). The vision that motivates

MCC is simple. Instead of relying on a single concurrency control mechanism

for all transactions, MCC partitions transactions in groups and enables the

flexibility to assign to each group its own private concurrency control mech-

anism; being charged with regulating concurrency only for the transactions

within their own groups, these mechanisms can be much more aggressive while

still upholding safety. Finally, MCC offers a mechanism to properly handle

3We will discuss SC-cycles in more detail in Section 4.4.

70

conflicts among transactions in different groups.

An attractive feature of this approach is its generality. First, it imposes

no restrictions on the types of transactions it can handle. In particular, it

does not require to predefine all transactions that will be run in the system:

interactive or external transactions can always be handled by placing them

in a separate group that uses a standard, conservative concurrency control

mechanism. Second, although our current implementation of Callas leverages

modularity only within the context of lock-based mechanisms, MCC does not,

in principle, depend on whether concurrency control is implemented using locks

or OCC, or on whether the targeted isolation level relies on a single version or

a multiversion database—we leave a thorough exploration of the performance

opportunities offered by this generality to future work.

To succeed, this high-level plan must address two complementary con-

cerns: performance and correctness.

The key factor for performance is to group transactions appropriately,

in order for each group to best exploit opportunities for optimizations. Not all

grouping choices are equally sensitive, however: optimizing grouping for trans-

actions that run infrequently or are lightweight is less critical. Callas therefore

heuristically assigns those transactions to a single group, and instead focuses

on determining the most favorable grouping for the transactions that are pri-

marily shaping the performance profile of a given application. We discuss the

policy and mechanism used by Callas to group transactions in Sections 4.3

and 4.5.

71

Establishing correctness involves a two step process: given any of the

traditional ACID isolation guarantees, first prove that each group, separately,

satisfies the guarantee; and then, under the assumption that all groups do,

that the isolation guarantee is upheld globally.

The theoretical underpinnings that Callas uses to discharge these obli-

gations are found in the Adya’s general definition for expressing isolation levels

as we mentioned in Section 2.1.1. According to this definition, for any given

isolation level, an instantiation of the Callas architecture must satisfy the fol-

lowing conditions to guarantee correctness:

• Within each group The concurrency control mechanism for group G

must prevent prevent Circularity (as defined for the targeted isolation

level) when all transactions on the cycle are in G. In addition, for isola-

tion levels except Read Uncommitted, The concurrency control mecha-

nism for group G must prevent Aborted Reads and Intermediate Reads

if T1 and T2 are both in G.

• Across groups Circularity (as defined for the targeted isolation level)

must be prevented if at least two transactions on the cycle are from

different groups. Further, for isolation levels except Read Uncommitted,

Aborted Reads and Intermediate Reads must be prevented if T1 and T2

are from different groups.

The next two sections describe the design of Callas along the two axes

we have used to articulate correctness. Section 4.3 describes how Callas lever-

72

ages a new class of locks, called nexus locks, to prevent Circularity and pro-

scribe Aborted and Intermediate reads across groups.

Section 4.4 introduces a new in-group concurrency control mechanism,

called Runtime Pipelining, designed to leverage the modularity of Callas: since

it regulates concurrency for only a small number of transactions, it can af-

ford to apply aggressive optimizations. Runtime Pipelining owes much of its

performance—as well as its name—to its integration of static analysis with

novel run-time checks that guarantee safety while increasing opportunities for

concurrency.

4.3 Enforcing isolation across groups

The design of the mechanism Callas uses to guarantee inter-group iso-

lation is driven by several considerations. Foremost, of course, is safety: the

mechanism should enforce the correctness conditions identified in Section ??.

Not far behind, however, are performance and liveness. First, we would like

the inter-group mechanism to disrupt as little as possible the ability of the

group-specific mechanisms to extract concurrency from the transactions they

regulate. Second, we would like to guarantee fairness: the eagerness of exploit-

ing performance opportunities within a group should not cause transactions

from a less fortunate group to starve.

Callas meets these requirements using a simple lock-based approach.

This choice is pragmatic: although there is nothing in Callas’ architecture

that would prevent the use of OCC, the MySQL Cluster distributed database

73

T1

T2

W(a)

W(b)

W(b)

W(a)

T3

W(c)

T1 T2

T3

Group 1

Group 2

Dependency

Example 2: Traditional locking
prevents circularity

Example 3: Callas enforces T2 to release
nexus locks after T1 to prevent circularity

Nexus or traditional lock

Waiting to acquire lock

Lock on a
Lock on c

Lock on b
Lock on a

Lock on b
Lock on c

Example 1: Naive handling of nexus
locks does not prevent circularity

W(a)

W(b)

W(b)

W(c)

W(a)

W(b)

W(b)

W(a)

W(c)

W(a)

T1

T2

T3

Group 1

Group 2

Lock on a
Lock on c

Lock on b
Lock on a

Lock on b
Lock on c

T1

T2

T3

Lock on a
Lock on c

Lock on b
Lock on a

Lock on b
Lock on c

W(c)

W(c)

W(c)

T1 T2

T3

T1 T2

T3

Figure 4.2: Circularity can occur if Callas does not regulate the order in which
transactions from the same group release their nexus locks.

74

we modify to implement Callas does not support it.4 Indeed, any reasonable

implementation of the inter-group mechanism that meets the above require-

ment of minimal disruption will do.

At the core of Callas’ inter-group mechanism are nexus locks, a new

type of lock whose role is to regulate conflicts between transactions that be-

long to different groups while leaving transactions within each group relatively

unconstrained. Nexus locks in Callas are ubiquitous: any transaction, before

being allowed to perform a read or write operation on a database row, must

acquire the corresponding nexus lock. This demand may seem to run contrary

to the requirement of making the inter-group mechanism inconspicuous to the

concurrency control mechanisms specific to each group. The key to resolving

this apparent tension lies in the flexibility of nexus locks. When two transac-

tions in different groups try to acquire a nexus lock on a row, the lock functions

as an enforcer: unless both transactions are reading the row, one of them will

have to wait until the other releases the lock. If the transactions belong to

the same group, however, the nexus lock imposes no such constraints: both

transactions can acquire the nexus lock simultaneously.

Forcing transactions to acquire nexus locks on the rows they access

prevents Aborted Reads and Intermediate Reads from occurring across groups.

If two transactions from different groups access the same row and one of them

is a write, only the first will acquire the row’s nexus lock, while the other will

4MySQL Cluster supports only two versions of each object. While this feature guarantees
that reads never block, it falls short of full multiversion concurrency control (MVCC).

75

not be able to acquire the lock until the earlier transaction completes. It is

thus impossible for the later transaction to read aborted or intermediate states

from the earlier one.

Simply acquiring nexus locks, however, is not sufficient to prevent Cir-

cularity. Consider the first example of Figure 4.2: it focuses on write dependen-

cies, since write dependency cycles are forbidden by all ANSI isolation levels.

Assume, in the spirit of MCC, that the concurrency control mechanism of

Group 1 guarantees no dependency cycles between T1 and T2. Although nexus

locks prevent dependency cycles between T1 and T3 (and similarly between T2

and T3), a dependency cycle spanning T1, T2, and T3 can still form.

We extend the enforcement power of nexus locks by refining the way

in which traditional locking prevents Circularity. With traditional locking

(Example 2 of Figure 4.2), the “depends on” relation between transactions is

tied to the “completes before” relation: if T2 depends on T1, then T2 must

wait for T1 to release its lock at the end of its execution, ensuring that T2 will

not start until T1 completes. Since “completes before”, unlike “depends on”,

is inherently acyclic, by tying the two relations traditional locking guarantees

that “depends on” will be acyclic too.

If we now go back to the first example of Figure 4.2, what went wrong

there is clear: Circularity can arise because nexus locks tie “depends on”

to “completes before” only for transactions that belong to different groups.

Although T2 depends on T1, since they are both in the same group T2 is allowed

to start before T1 completes. Were nexus locks to do otherwise, however, and

76

delay T2, they would curb concurrency within Group 1.

To solve this puzzle, Callas refines the condition used by traditional

locking to avoid circularity. Rather than tying “depends on” to “completes

before”, Callas binds it to the weaker (and yet provably sufficient [?]) “releases

locks before” and enforces the following rule:

Nexus Lock Release Order If transaction T2 depends on transaction T1,

and they are from the same group, then T2 cannot release its nexus locks until

T1 does.

The third example of Figure 4.2 illustrates how this rule, which is im-

plied by the stronger “completes before”, prevents dependency cycles without

hampering concurrency. Now, we prove its correctness as following:

Definition 1. We use Ti → Tj to denote Tj depends on Ti.

Lemma 4.3.1. If T1 → T2 → ... → Tn, then Tn cannot release its nexus lock

until T1 does.

Proof. First, we prove that for any Ti → Tj, Tj cannot release its nexus

locks until Ti does. Case 1: Ti and Tj are from the same group. In this case,

Nexus Lock Release Order ensures that Tj cannot release its nexus lock until

Ti does. Case 2: Ti and Tj are from different groups. In this case, since Tj

cannot acquire the nexus lock until Ti releases it, of course Tj cannot release

the lock until Ti does. Then one can easily prove Lemma 1 by induction.

77

Theorem 4.3.2. Nexus locks prevent dependency cycles spanning multiple

groups.

Proof. We prove by contradiction. Assume there exists a dependency cycle

spanning mutiple groups T1 → T2 → ... → Tn → T1. Since it spans multipe

groups, there must exist Tj−1 and Tj such that Tj−1 → Tj and they are from

different groups. This means Tj−1 must release the nexus lock before Tj can

acquire it to finish execution (Fact 1: trelease(Tj−1) < tfinish(Tj)). On the other

hand, the assumption that Tj → Tj+1 → ...Tj−1 means Tj−1 cannot release its

its nexus lock until Tj does (Lemma 1), and Tj only releases its nexus locks

after it finishes (Fact 2: trelease(Tj−1) > tfinish(Tj)). Facts 1 and 2 contradict

with each other and thus it is impossible to form a dependency cycle spanning

multiple groups.

To ensure that every transaction’s nexus locks are eventually released,

Callas makes the simple choice of maintaining a FIFO queue for each nexus

lock. Note that, thanks to MCC, the release of nexus locks is completely decou-

pled from the act of committing the transaction that holds those locks, which

Callas leaves to the concurrency control mechanism of the group to which the

transaction belongs. As soon as a transaction commits, any resource that the

transaction held to control concurrency within its group can be released, even

as the transaction may hold onto its nexus locks in order to release them in

the correct order.

78

Nexus locks, ACID locks, and latency An unobtrusive inter-group mech-

anism is essential to achieving the potential for greater performance of MCC.

A key feature of nexus locks is that any latency overhead they introduce, when

compared with ACID locks, is due solely to their implementation, and not in-

herent to their semantics. Indeed, ignoring implementation overheads, if T2

wants to acquire and then release a nexus lock held by T1, it can always do

so no later than if the lock had been ACID. The reason is simple: if T1 and

T2 are from different groups, then a nexus lock behaves exactly like an ACID

lock; if T1 and T2 are from the same group, then T2 is always allowed to ac-

quire a nexus lock while T1 still holds it, while instead access to ACID locks

is exclusive unless both T1 and T2 seek a read lock. The Nexus Lock Release

Order rule can delay the release of T2’s locks if T2 depends on T1, but never

more than if the locks had been ACID—in which case, T2 would not even be

allowed to acquire the locks until T1 released them.

Of course, implementation overheads cannot in practice be ignored.

However, we find them to be low in most cases (§4.6.4), in particular when

compared with the substantial performance gains nexus locks enable by making

it possible to safely deploy the kind of aggressive in-group concurrency control

mechanisms we are discussing next.

4.4 Enforcing isolation within groups

While the inter-group mechanism’s main goal is to do no harm, the key

to unlocking the performance potential of MCC is in the group-specific concur-

79

rency control mechanisms that it enables. Fulfilling that potential involves two

steps: grouping transactions appropriately, and identifying mechanisms that

can yield greater concurrency within each group, while maintaining safety.

The first of these steps appears hard to complete, as the number of pos-

sible groupings to consider is exponential. In practice, our experience building

Callas is significantly more encouraging. As we already pointed out, the trans-

actions that shape the performance of an application tend to be few [85] and

we found that even just one or two simple specialized mechanisms can produce

significant performance gains (§4.6): with such small numbers, systematically

exploring all interesting groupings becomes a tractable problem (§4.5).

The additional concurrency called for by the second step demands

transactions to expose more intermediate states. This could be done, for in-

stance, by weakening their isolation properties [85], but to do so within a

group would violate our requirement to offer all transactions the same ACID

abstraction.

Transaction chopping (and its limitations) An attractive alternative is

to turn, as several recent systems have done [66, 87], to an elegant theory that

increases concurrency by chopping transactions—but in a way guaranteed to

maintain serializability [74].

To prevent Aborted Reads and guarantee Atomicity, the theory re-

quires transactions to be rollback-safe, meaning that any rollback statement

must lie in the first subtransaction produced by a valid chopping. Since for

80

serializability the absence of Circularity implies no Intermediate Reads, the

theory focuses on preventing the former. It uses static analysis to construct

an SC-graph, whose vertices are candidate transaction pieces, and whose edges,

which are undirected, are of two kinds: S-edges connect the pieces within a

transaction; C-edges connect pieces of different transactions that access the

same object, when at least one of the accesses is a write. The theory shows

that if a candidate chopping gives rise to an SC-cycle, then Circularity might

arise during an execution. Hence, a candidate chopping of a set of transactions

is considered safe (i.e., guarantees serializability) if (i) it is rollback-safe and

(ii) it contains no SC-cycles.

Unfortunately, in practice these two conditions tend to produce chop-

pings too conservative to result in much additional concurrency. To satisfy

rollback safety, the first piece of each transaction must be large enough to in-

clude all rollback statements, limiting the opportunity for new interleavings.5

Relying on SC-cycles for safety has even more significant performance

implications. Applications typically contain so many dependency cycles among

their transactions that the only safe choppings, if any, are very coarse. One

might expect grouping to help here, since it restricts the requirement of being

free of SC-cycles only to the transactions within each group—and it does (§4.6),

but only to a limited extent. We find that SC-cycles tend to arise quite com-

5This problem could be solved by asking application developers to rewrite their trans-
actions to explicitly account for rollbacks at the application level. Our goal, however, is to
achieve high performance with no additional programming effort.

81

monly among the very performance-critical transactions that, if they could be

more finely chopped, would most benefit the application’s performance. An ex-

treme but quite common case of this phenomenon occurs when a performance-

critical transaction cannot be aggressively chopped because multiple instances

of it may conflict with each other if executing concurrently.

Consider, for example, the new order transaction in TPC-C. In first

approximation, it roughly follows the access pattern of Figure 4.3(a): first,

it inserts rows into the order table, then it inserts rows into the item table,

and finally it updates the order line table. As Figure 4.3(a) shows, SC-cycle

analysis would conclude that it is not possible to split this transaction into

subtransactions, as any two instances of the new order transaction have three

dependency edges (C-edges) between them.

Enter MCC These limitations motivate us to explore how to leverage the

modularity of MCC to move beyond the opportunities for concurrency offered

by the current theory of safe transaction chopping. To that end, Callas in-

troduces Runtime Pipelining, a new in-group mechanism whose aggressive ap-

proach to concurrency control proves particularly effective within small groups.

Runtime Pipelining relies on two new techniques: it leverages at execution

time a refinement of the static analysis approach used by traditional transac-

tion chopping to allow concurrency when SC-cycles would prevent it; and it

prevents Aborted Reads and guarantees atomicity while avoiding, whenever

possible, the performance downsides of enforcing rollback safety.

Similar to transaction chains [87], Runtime Pipelining assumes that

82

W A
S

S

C

W B W C
S

W A
S

W B W C
S

C C

(a) SC-cycle analysis cannot chop

W A
S

S

C

W B W C
S

W A
S

W B W C
S

C C

(b) Runtime Pipelining

Figure 4.3: Runtime Pipelining for create order transaction in TPC-C.
A=order table, B=item table, C=order line table

the tables (though not necessarily the rows) accessed by each transaction are

known prior to execution. The scope of this assumption, however, is much

weaker than in transaction chains, since it applies only to the transactions in

the target group. In practice, this assumption needs only to hold for the few

transactions that, being performance critical, can most take advantage of a

more aggressive in-group concurrency control mechanism.

4.4.1 Runtime Pipelining

Shasha et al. prove [74] that their static analysis technique produces the

finest transaction chopping guaranteed to be safe: any more refined chopping

has the potential to create Circularity and violate serializability. This sobering

fact, however, does not imply that renouncing any further concurrency need be

the price of safety. The key insight behind Runtime Pipelining is that, rather

than preemptively inhibiting the possibility of Circularity, it may be feasible in

some circumstances to allow for that possibility, relying instead on run-time

techniques to prevent it from becoming an actuality.

83

5�$� :�%�5�%� :�&�

:�&� 5�%� :�$�

$ %

&

5�'�

7�

7�

GHS

GHS

&URVVLQJ�
&�HGJHV

UDQN�$�� �UDQN�%�� �� UDQN�&�� ��

,QSXW��WUDQVDFWLRQV�ZLWK�GHSHQGHQF\�
LQIRUPDWLRQ

��D��%XLOG�WDEOH�GHSHQGHQF\�JUDSK�*

HDFK�UHDG�ZULWH�WDEOH�LV�D�YHUWH[�LQ�*
IRU�HDFK�WUDQVDFWLRQ�W[Q
��IRU�HDFK�GHSHQGHQF\��RSM��!�RSL��LQ�W[Q
����LI�RSL�WDEOH�DQG�RSM�WDEOH�DUH�UHDG�ZULWH
������DGG�HGJH�RSL�WDEOH��!�RSM�WDEOH

��E��6RUW�JUDSK�YHUWLFHV�DQG�UDQN�WDEOHV

GLYLGH�*�LQWR�VWURQJO\�FRQQHFWHG�FRPSRQHQWV��6&&V�
PHUJH�HDFK�6&&�LQWR�D�VLQJOH�YHUWH[
UHWDLQ�HGJHV�EHWZHHQ�6&&V
WRSRORJLFDOO\�VRUW�UHVXOWLQJ�JUDSK
UDQN�YHUWLFHV�DFFRUGLQJ�WR�RUGHU�RI�6&&�WKH\�EHORQJ�WR

$�DQG�%

&

��F��,Q�HDFK�WUDQVDFWLRQ��SODFH�RSHUDWLRQV����
WKDW�DFFHVV�WDEOHV�RI�WKH�VDPH�UDQNLQJ�

LQWR�D�VLQJOH��UDQNHG��SLHFH

5�$� :�%�5�%� :�&�

:�&�5�%� :�$�

7�

7�

��D��%XLOG�RSHUDWLRQ�GHSHQGHQF\�JUDSK

IRU�HDFK�WUDQVDFWLRQ�W[Q
��HDFK�UDQNHG�SLHFH�RI�W[Q�LV�D�YHUWH[
��HDFK�UHDG�RQO\�RSHUDWLRQ�LQ�W[Q�LV�D�YHUWH[
��DGG�SDWK�IURP�ORZHVW�WR�KLJKHVW�UDQNHG�SLHFH
��IRU�HDFK�SDLU�RI�YHUWLFHV�YL�DQG�YM
����LI�YM�GHSHQGV�RQ�YL
������DGG�HGJH�YL��!�YM

7�����6NLS��QR�UHDG�RQO\�RSHUDWLRQ�

:�&�

5�%� :�$�

7�
5�'�

��E��)RU�HDFK�W[Q��VRUW�YHUWLFHV�WR�RUGHU�����������
SLHFHV��DV�LQ�6WHS���E�

2UGHU�RSHUDWLRQV�ZLWKLQ�HDFK�SLHFH�RI�W[Q�
DFFRUGLQJ�WR�WKHLU�RULJLQDO�RUGHU�LQ�W[Q

5�$� :�%�5�%� :�&�7�

:�&�5�%� :�$�7� 5�'�

1R�FURVVLQJ�
&�HGJHV

6
WH
S�
��
�5
DQ
NL
QJ
�UH
DG
�Z
ULW
H�
WD
EO
HV

6
WH
S�
��
�2
UG
HU
LQ
J�
RS
HU
DW
LR
QV
�WK
DW
�

DF
FH
VV
�UH
DG
�R
QO
\�
WD
EO
HV

Figure 4.4: Pseudocode of Callas’ transaction chopping algorithm (left) and
its effects on a simple example (right).

84

Figure 4.3(a) illustrates the opportunity that Runtime Pipelining tar-

gets. Note how, as long as one can ensure that, during the execution, the top

transaction accesses each table before the bottom one does, all C-edges acquire

the same direction: all cycles are broken, and the transactions can be safely

chopped in three pieces (Figure 4.3(b)). This finer chopping enables a form of

pipelining: while the top transaction accesses the item table, the bottom one

can concurrently access the order table and so forth.

The example suggests a way forward to safely extract greater concur-

rency from transaction chopping: rather than eliminating all SC-cycles, allow,

intuitively, those where C-edges do not cross, since they can be neutralized at

run time by controlling the order of execution of conflicting transaction pieces.

To carry out this plan, we use a combination of static analysis and run-time

mechanisms.

A new static analysis algorithm What prevents C-edges to cross and makes

it safe to chop more aggressively in the example of Figure 4.3(b) is that both

transactions access read-write tables in the same order. Generalizing from

that example, assume that there exists a total ranking of each of the read-

write tables accessed by the transactions in a group.6 Then, the goal of our

new static analysis algorithm is to produce choppings that satisfy the following

two golden rules.

GR1: Operations within a transaction piece are only allowed to access

6If a table is read-only, accessing it does not create C-edges

85

read-write tables of the same rank (read-only tables, which by definition have

no rank, can be also accessed).

GR2: For any pair of pieces p1 and p2 of a given transaction that

access read-write tables, if p1 is executed before p2, then p1 must access tables

of smaller rank than p2 (as in GR1, read-only tables can be also accessed).

Then, by construction, the only C-edges that remain are those that

connect pieces of different transactions that access tables of the same rank.

The two-step algorithm that achieves this goal and an example that

illustrates its unfolding are shown in Figure 4.4. The first step totally ranks

the read-write tables accessed by any of the transactions, and, within each

transaction, groups together in a single piece all operations that access tables

of the same rank. At the end of this step, the relative order of execution of

the operations that, in each transaction, access read-write tables, is set. The

second step then determines the execution order of the read-only operations

of each transaction.

Step 1: Ranking read-write tables. Under the aggressive assumption that all

operations in a transaction can be safely reordered, there is no constraint on

the rank of read-write tables, and finding the finest chopping that does not

have crossing C-edges is simple: we can assign a unique rank to each read-write

table, sort operations in each transaction according to the rank of the table

they access (operations that access read-only tables can be placed anywhere),

and merge in the same piece those operations that access the same table. One

86

can easily prove this chopping satisfies our two golden rules.

In practice, however, there often exist data or control dependencies

that compel the ordering of operations within a transaction and constrain

the ranking of tables. In Figure 4.4, for example, R(A) must happen before

W(B) in T1, which forces rank(A) ≤ rank(B) (GR2), while for T2, R(B) must

happen before W(A), implying rank(B) ≤ rank(A). This means we must

assign the same rank to tables A and B and merge all operations that touch

them into a single piece.

Concretely, we achieve this result with the help of a table-dependency

graph. The graph’s nodes are read-write tables: we consider operations that

access read-only tables in the next step. To add edges to the graph, we proceed

as follows. For every transaction in the group, if there exists a data or control

dependency between two operations op1 and op2 of the transaction, we add a

directed edge between the tables they access (Figure 4.4, Step 1.a), indicating

rank(Tableop1) ≤ rank(Tableop2); we then assign the same rank to all the

tables in the same strongly connected component, and assign ranks to all

read-write tables according to their topological order in the resulting graph

(Figure 4.4, Step 1.b). Within each transaction, operations that access tables

with the same rank are merged into a single piece (Figure 4.4, Step 1.c).

Step 2: Ordering operations that access read-only tables. Transactions that

access read-only tables contain operations that have not yet been ordered. To

do so, we create a new graph for each transaction T , adding a vertex for each

of the ranked pieces of T produced by Step 1 (such vertices acquire the rank

87

of their corresponding piece) and a vertex, with no assigned rank, for each

operation of T that accesses read-only tables. To encode the outcome of Step

1, we create a path that connects ranked vertices, from the least to the highest

ranked; in addition, we add a directed edge between two vertices if there

exists a data or control flow dependency between them (Figure 4.4, Step 2.a).

Next, we proceed as we did in Step 1.b of Figure 4.4: we evolve the graph so

that each strongly connected component is represented as a single new vertex,

joining in parallel the corresponding transaction pieces, and topologically sort

the resulting graph to obtain the definitive order of execution of the pieces

that comprise each transaction. Within each piece, operations are executed

in the order in which they appeared in their transaction, prior to its chopping

(Figure 4.4, Step 2.b).

Next we formally prove that the previous static analysis algorithm can

generate a valid chopping that achieves our two golden rules.

Lemma 4.4.1. Step 2 does not change the chopping generated in Step 1.

Formally, for op1 and op2 that access read-write tables, 1) if op1 and op2 are

placed in a single piece in Step 1, they will also be placed in a single piece in

Step 2; 2) if op1 and op2 are placed in different pieces in Step 1, they will also

be placed in different pieces in Step 2; 3) if op1 is placed before op2 in Step 1,

op1 will also be placed before op2 in Step 2.

Proof. 1) is true because Step 2 never breaks any pieces created by Step

1. 3) is true because in Step 2.a, when the algorithm constructs the graph,

88

it adds a path from lowest to highest ranked piece, ensuring that the order

calculated by Step 1 is respected in Step 2.

We prove 2) by contradiction. Assume in Step 1, op1 is placed in piece

p1, op2 is placed in piece p2, and p1 is placed before p2; in Step 2, op1 and

op2 are placed in the same piece. This means in the graph generated by Step

2.a, p1 and p2 are in the same strongly connected component, and thus there

must be a path from p2 to p1. This means some operation (op′1) in p1 must

depend on some operation (op′2) in p2. In this case, in the graph generated by

Step 1.a, there must be an edge from the table accessed by op′2 to the table

accessed by op′1 and thus it is impossible for Step 1.b to place p1 before p2 and

this contradicts our assumption.

Lemma 4.4.2. The result chopping is valid. Formally, for any two operations

op1 and op2 in a transaction, if there is a data or control dependency from op1

to op2, then in the result chopping, op1 appears before op2.

Proof. First note that since there is a dependency from op1 to op2, op1 must

appear before op2 in the original transaction. Then we prove by cases:

Case 1: both op1 and op2 access read-write tables. In this case, Step

1.a places a directed edge from the table T1 accessed by op1 to the table T2

accessed by op2 and orders them based on the topological order of the graph.

There are two possible subcases:

Case 1.1. T1 and T2 are not in the same strongly connected component.

Step 1.b gives T1 a lower rank than T2 in this case and thus Step 1.c places

89

op1 before op2. Step 2 will not change this result (Lemma 2) and thus finally

op1 will be placed before op2.

Case 1.2. T1 and T2 are in the same strongly connected component.

Step 1.b gives the same rank to T1 and T2 in this case and thus Step 1.c places

op1 and op2 in the same piece. Step 2 will not change this result (Lemma

2) and Step 2.b orders op1 and op2 according to their original order in the

transaction and thus places op1 before op2.

Case 2: at least one of op1 and op2 accesses a read-only table. In this

case, Step 2.a places a directed edge from op1 to op2 and orders them based

on the topological order of the graph. There are also two possible subcases:

Case 2.1: if op1 and op2 are not in the same strongly connected com-

ponent, Step 2.a places op1 before op2.

Case 2.2: if op1 and op2 are in the same strongly connected component,

Step 2.a places them in the same piece and Step 2.b orders them according to

their original order in the transaction and thus places op1 before op2.

Lemma 4.4.3. The resulting chopping satisfies GR1: operations within a

transaction piece are only allowed to access read-write tables of the same rank.

Proof. By construction, Step 1.c merges operations that access tables with

the same rank into a piece. Therefore, the property holds at the end of Step

1. Step 2 does not change the chopping for operations that access read-write

tables (Lemma 2). Therefore, the property still holds.

90

Lemma 4.4.4. The resulting chopping satisfies GR2: for any pair of pieces

p1 and p2 of a given transaction that access read-write tables, if p1 is executed

before p2, then p1 must access tables of smaller rank than p2.

Proof. By construction, Step 1.c sorts operations based on the rankings of

tables they access. Therefore, the property holds at the end of Step 1. Step

2 does not change the chopping for operations that access read-write tables

(Lemma 2). Therefore, the property still holds.

Theorem 4.4.5. The static analysis algorithm generates a valid chopping that

satisfies GR1 and GR2.

Proof. Combining Lemmas 3, 4, and 5, we can prove this theorem.

Enforcing safety at run time Once static analysis produces choppings that

satisfy our golden rules, neutralizing the remaining SC-cycles at run time is

easy. Consider a piece of transaction Ti that accesses a table that involves

a C-edge. If in so doing Ti becomes (anti-)dependent on some uncommitted

transaction Tj that has already accessed that table, then that C-edge and every

subsequent C-edge between Ti and Tj become (logically) directed: thenceforth,

Ti cannot commit until Tj does, and every piece of Ti that accesses tables with

ranking r must wait until Tj either has executed a piece that accesses tables

with ranking at least r, or commits.

In practice, Runtime Pipelining is even more aggressive in pursuing

opportunities for concurrency. It only declares a dependency between Ti and

91

Tj if they access the same row at run time (this is easy for Ti to verify in

Callas by checking if Tj has acquired a nexus lock on the row). If not, Runtime

Pipelining imposes no restrictions on execution ordering.

Although our discussion has focused on enforcing serializability, Run-

time Pipelining can be easily applied to other notions of isolation by simply

weakening the conditions under which it declares a dependency. For exam-

ple, were Runtime Pipelining tuned to enforce read committed isolation, anti-

dependencies would not trigger ordered execution.

We prove its correctness as following:

Theorem 4.4.6. Runtime Pipelining prevents Intermediate Reads.

Proof. If a transaction writes to the same table more than once, static anal-

ysis algorithm puts those operations into a single piece, thus it is impossible

for another piece to observe states made by the earlier writes.

Theorem 4.4.7. Runtime Pipeling prevents dependency cycles.

Proof. We prove by contradiction. Suppose there exists a dependency cycle

T1 → T2 → ...→ Tn → T1.

By construction, only pieces that access tables with the same rank can

generate a dependency edge. Suppose r is the maximum rank of tables that

are involved in any dependency edges in the cycle. We define pi as the first

piece of Ti that accesses a table with a rank not smaller than r, or the commit

92

operation if such a piece does not exist. We define ti as the completion time

of pi.

First, we prove that any transaction Tk must have executed pk when

the cycle forms and tk−1 < tk if Tk−1 → Tk. Based on our assumption, there

must exist at least one transaction Ti that has already executed a piece that

accesses a table with rank r. Then let’s consider Ti−1. There are two possible

cases:

Case 1: The dependency edge Ti−1 → Ti occurs on a table with rank

smaller than r. In this case, Ti has already depended on Ti−1 and thus Run-

time Pipelining ensures that Ti cannot execute pi until Ti−1 completes pi−1.

Therefore, Ti−1 must have executed pi−1 and ti−1 < ti.

Case 2: The dependency edge Ti−1 → Ti occurs on a table with rank

r. In this case, pi−1 and pi must both access tables with rank r. Since the

dependency edge already occurs, Ti−1 must have already finished pi−1 before

Ti executes pi. Therefore, Ti−1 must have executed pi−1 and ti−1 < ti.

By induction, any transaction Tk must have executed pk and tk−1 < tk.

Then by induction, we can get t1 < t2 < ... < tn < t1, which is impos-

sible. Therefore, our assumption—a dependency cycle can form—is wrong.

Beyond rollback safety Runtime Pipelining takes an equally aggressive ap-

proach when it comes to avoiding the Aborted Reads and Atomicity viola-

tions that chopping introduces. Rather than settling for either the loss of

concurrency or programming effort that rollback safety may cause, Runtime

93

Pipelining adopts an optimistic approach: it allows a transaction T1 to read

uncommitted states from T2, but it does not allow T1 to commit until T2

commits. If T2 is rolled back, then T1 must also roll back.

While optimism pays off in finer chopping, no programming effort, and

greater performance in groups when aborts and rollbacks are rare, it raises the

possibility of performance loss in the presence of cascading rollbacks.

To avoid this danger, Runtime Pipelining takes two steps. First, it

leverages MCC to prevent rollbacks from propagating outside of a group.

Thus, misplaced optimism only affects performance in groups that are guilty

of it. Second, it dynamically responds to an unexpected incidence of rollbacks

by becoming increasingly more conservative. When the rollback rate crosses

a threshold, Runtime Pipelining goes temporarily back to enforcing rollback

safety; since we expect high rollback rates to be infrequent, however, it peri-

odically tries to revert to its original optimistic approach.

The option of enforcing rollback safety on demand allows Runtime

Pipelining to enjoy the full benefits of optimism when the rollback rate is

reasonably low and avoid long-term damage from misplaced optimism.

Further, to ensure liveness in the face of rollbacks, Runtime Pipelining

limits the depth of dependency chains composed of uncommitted transactions,

and prevents a transaction that has been rolled back from performing uncom-

mitted reads on retry.

94

4.5 Implementation

The current prototype of Callas is built upon the MySQL Cluster dis-

tributed database [11]. To implement Runtime Pipelining, we detect conflicts

at the MySQL Cluster locking module and notify the transaction coordination

module to enforce ordering between subtransactions, when necessary; to en-

sure isolation across groups, we modify the locking module of MySQL Cluster

to support nexus locks and enforce their release order. Relying on MySQL

Cluster, however, means that the current prototype of Callas must use the

read-committed isolation level, the only one that MySQL Cluster supports.

To combine performance with simplicity, we developed tools that auto-

mate the process of grouping transactions and chopping them into subtrans-

actions.

4.5.1 Automated chopping

The automated-chopping tool closely follows the Runtime Pipelining

algorithm (§4.4) to statically analyze the transaction code and add markers to

indicate the subtransaction boundaries to the run-time system, but introduces

three additional optimizations: (i) it performs static analysis over columns

rather than tables to produce finer choppings; (ii) it removes unnecessary C-

edges; and (iii) it identifies better performing subtransaction orderings. We

discuss the two latter optimizations in greater detail below.

Removing redundant C-edges Since commutative operations can be exe-

cuted in any order without violating isolation, our tool, like Lynx [87], removes

95

C-edges between them.

Additionally, it searches for instances of runtime uniqueness, where

multiple transaction instances modify the same table, but each is guaranteed

to operate on a different row. For example, in TPC-C, the new order trans-

action acquires a unique order ID by incrementing a nextOrderID object, and

then proceeds to modify the corresponding row. Such opportunities are identi-

fiable by searching for “monotonic” objects, i.e., objects, such as counters, that

all transactions modify monotonically before using them as a key in a query.

Runtime uniqueness is yet another example of an optimization whose effective-

ness can be magnified by the modularity of MCC, since runtime uniqueness

is less likely to hold in large groups of transactions. In TPC-C, for example,

uniqueness does not hold globally, as other transactions (e.g., delivery) do not

use nextOrderID and may therefore access the same row as new order.

Identifying more performant orderings Given a transaction T , any topo-

logical order of the pieces of T produced by Step 2.b of the algorithm in Fig-

ure 4.4 yields a safe way to execute T . We then have some freedom in choosing

the order in which T ’s pieces should execute. We leverage this freedom by

having the larger pieces—classified heuristically by the number of queries they

contain—execute as early as possible. The rationale behind this optimization

is that Runtime Pipelining only enforces ordering between transactions once a

dependency manifests at run time. By executing large subtransactions early,

we decrease the chance that they will be subject to ordering, thus increasing

parallelism.

96

4.5.2 Automated grouping

The goal of our grouping tool is to identify groups of transactions that

contend heavily with each other. The user need only provide her workload

of choice; the tool analyzes the performance of the workload using various

groupings and returns the grouping that yields the best performance. Our

current tool does not explore all possible groupings, but rather uses heuristics

to identify groupings that are more likely to increase concurrency. Our eval-

uation suggests that this heuristic approach is enough to provide significant

performance benefits (e.g., 8.2x speedup for TPC-C).

The tool works in iterations. In each iteration it runs the workload and

creates a profile for this iteration’s performance measurements. Based on these

measurements, it tries to identify the most prominent source of contention

and suggests a grouping that could alleviate it. It then runs our chopping

tool on this grouping, and proceeds to measure the performance of this new

configuration in the next iteration. This process terminates if an iteration does

not yield any performance improvement.

To identify sources of contention, we use as a hint the latency of in-

dividual operations. As the load on the system grows, the latency of highly

contending operations tends to increase disproportionately. The correspond-

ing transactions are then our primary candidates for optimization. If there

are only few such transactions, our tool enumerates all possible groupings;

otherwise, it focuses on those that hold locks on contended items for long

intervals.

97

4.6 Evaluation

The goal of Callas is to provide unmodified database applications with

the level of performance that was previously only achievable by manually mod-

ifying all or part of the application code. To assess whether Callas achieves

this goal, we evaluate the performance of Callas using various applications and

workloads. In particular, our evaluation answers the following questions:

• What is the performance gain of Callas over a traditional ACID database?

(§4.6.1)

• How does the performance of Callas compare against that of other ap-

proaches that aim to improve database throughput? (§4.6.1)

• How do various optimizations, groupings, and workload parameters af-

fect the performance of Callas? (§4.6.2, §4.6.3, §4.6.5)

• What is the overhead of nexus locks? (§4.6.4)

• As the rate of rollbacks changes, how effective is it to optimistically

renounce rollback safety to extract performance? (§4.6.6)

We answer these questions by measuring the performance of Callas

using microbenchmarks and three applications: TPC-C [36], Fusion Ticket [8],

and Front Accounting [7].

TPC-C is a database benchmark that models online transaction processing.

It contains three highly-contending read-write transactions and two read-only

transactions.

98

Fusion Ticket is an open source software solution for online ticketing and

advanced sales. To perform a fair comparison with Salt [85], we run the same

workload used in that paper, which includes several transactions critical to the

performance and functionality of an online shop.

Front Accounting is an open source accounting and Enterprise Resource

Planning (ERP) program. It allows a company to manage its sales, purchases,

and stock levels. Our workload includes 17 transactions that simulate the

workload of a retail company: the company purchases goods from suppliers

at a low price and sells them to customers at a higher price. It includes

five read-write transactions: create-order, payment, delivery, pay-supplier, and

stock-adjustment, and 12 read-only transactions to query order information.

Experimental setup In TPC-C, we populate ten warehouses, and assign

each warehouse to a separate partition. Our Fusion Ticket setup mirrors that

of Salt: there is one event and two categories of tickets, with 10,000 seats in

each category. Finally, in Front Accounting, we configure the retail company

to operate on 100 different types of goods, and on average to make a bulk

purchase for every 1,000 sale orders.

For all experiments, we use ten database partitions, each of which is

three-way replicated. All our throughput numbers were calculated while the

system is saturated.

Our experiments are carried out on Dell PowerEdge R320 machines

in CloudLab [3]. Each machine is equipped with a Xeon E5-2450 processor,

99

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 0 500 1000 1500 2000 2500

T
h
ro

u
g
h
p
u
t

(t
x
n
s/

se
c)

Number of clients

TPC-C

MySQL Cluster

Callas

Figure 4.5: Throughput of TPC-C

16 GB of memory, four 7200 RPM SATA disks, and 1 Gb Ethernet.

4.6.1 Callas’ performance

Our first set of experiments uses TPC-C, Fusion Ticket, and Front

Accounting to compare the throughput of Callas to that of MySQL Cluster—

the system from which Callas descends.

As shown in Figure 4.5, the performance of Callas on the TPC-C bench-

mark is about 8.2x higher than that of the original MySQL Cluster.

Callas’ performance improvement is partly due to the ability of the au-

tomated grouping tool to identify highly contending transactions and group

them accordingly. In this case, the tool placed the new order and payment

transactions in one group; the delivery transaction in a second group; and the

100

 0

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t

(t
x
n
s/

se
c)

Number of clients

Fusion Ticket

MySQL Cluster

Callas

Figure 4.6: Throughput of Fusion Ticket

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

T
h
ro

u
g

h
p

u
t

(t
x
n
s/

se
c)

Number of clients

Front Accounting

MySQL Cluster

Callas

Figure 4.7: Throughput of Front Accounting

101

remaining transactions in a third group. This grouping reflects the contention

pattern of these transactions: new order and payment contend heavily for the

warehouse and district tables, but Runtime Pipelining is effective in allowing

them to release their locks early, after acquiring a unique ID. Moreover, al-

though both new order and payment update the district table, they update

different columns, which allows our static analysis to remove the C-edge be-

tween them. This makes them ideal candidates for belonging to the same

group: they contend for the same row lock, but do not have any C-edges be-

tween them, and therefore can be grouped together without introducing any

SC-cycles. Callas uses Runtime Pipelining to chop transactions in the first

two groups, while the third group is left unoptimized, as it does not contain

performance-critical transactions.

Figure 4.6 shows the performance of Callas and MySQL Cluster for the

Fusion Ticket application. Callas outperforms MySQL Cluster by a factor of

5.7x. For this application, our tool generates two groups: the first contains

the checkout transaction and uses Runtime Pipelining for chopping, while the

second contains the remaining transactions and is left unoptimized.

As shown in Figure 4.7, when running the Front Accounting applica-

tion, Callas outperforms MySQL Cluster by a factor of 6.7x. For this ap-

plication, our tool generated four groups: transactions create-order, delivery,

and payment are each placed in their own groups and use Runtime Pipelin-

ing for chopping, while the rest of the transactions are placed in a fourth,

unoptimized, group.

102

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

TPC-C FT

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
)

M
yS

Q
L

S
C

-C
yc

le

S
C

+
G

ro
up

in
g

C
al

la
s

S
al

t

M
yS

Q
L

S
C

-C
yc

le

S
C

+
G

ro
up

in
g

C
al

la
s

S
al

t

Figure 4.8: Effect of different techniques

Comparison with other techniques The next experiment compares the

performance of Callas for TPC-C and Fusion Ticket7 with that of other tech-

niques. We first consider applying the SC-cycle static analysis of traditional

transaction chopping to the entire application (i.e., without grouping). This

step boosts the performance of TPC-C to 3.5x of the MySQL baseline, but

does not help Fusion Ticket at all, since traditional transaction chopping can-

not safely chop the performance-critical transaction of Fusion Ticket. Next,

we combine traditional transaction chopping with our grouping mechanism:

7These were the applications used to evaluate Salt [85].

103

MySQL Callas
Latency(ms) Quantile Quantile

50th 99th 50th 99th
new order (TPC-C) 26 51 28 50.5

checkout (FT) 12 25.3 12 25
delivery (FA) 36.3 69 36.6 66

Table 4.1: Latency under low throughput.

we split transactions into groups and use SC-cycle analysis to chop transac-

tions within each group. This approach further improves the throughput of

TPC-C by 35%, and raises the throughput of Fusion Ticket to 2.6x of the base-

line. Callas, using Runtime Pipelining instead of standard SC-cycle analysis,

achieves a further 74% and 120% throughput boost, respectively. Remark-

ably, the performance of Callas is within 5% of that of Salt [85]. We find

it encouraging that, despite staying true to the ACID paradigm, Callas can

achieve performance similar to approaches that require manual modification

of the application code.

Latency Table 4.1 presents the request latency for our three applications,

when the system is under low load. In all cases, the latency of Callas is similar

to that of the unmodified MySQL Cluster.

4.6.2 Performance impact of various optimizations

Figure 4.9 breaks down the contribution of each optimization to the per-

formance of Callas (using the grouping produced by our heuristic algorithm)

for TPC-C and Fusion Ticket.

104

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

TPC-C FT

T
hr

ou
gh

pu
t (

tx
n/

se
c)

M
yS

Q
L R

un
tim

e
pi

pe
lin

in
g

(T
ab

le
)

R
un

tim
e

pi
pe

lin
in

g
(C

ol
um

n)

+
 c

om
m

ut
at

iv
ity

+
 u

ni
qu

en
es

s

M
yS

Q
L

R
un

tim
e

pi
pe

lin
in

g
(T

ab
le

)

R
un

tim
e

pi
pe

lin
in

g
(C

ol
um

n)

+
 c

om
m

ut
at

iv
ity

+
 u

ni
qu

en
es

s

Figure 4.9: Effect of different optimizations.

The effectiveness of the different optimizations is application-dependent.

In Fusion Ticket, Runtime Pipelining alone, even naively applied at the gran-

ularity of tables, is enough to achieve almost all of Callas’ performance im-

provement. Not so in TPC-C, where Callas gets a significant performance

boost from performing static analysis at the column—rather than the table—

level by identifying several columns that are accessed in read-only mode (even

as the table they belong to is accessed in read-write mode). This allows Callas

to remove conflict edges between transactions and achieve finer-grained chop-

ping. Leveraging commutativity yields only a minor performance improvement

105

in TPC-C, because it only applies to a few individual statements. Runtime

uniqueness instead provides another big boost in the performance of TPC-C by

removing several critical conflict edges in the new order transaction, leading

to finer-grained chopping.

Note that, although it does not explicitly appear in Figure 4.9, MCC

is essential to Callas’ performance gains, because many of its optimizations

would simply not be applicable without MCC. Runtime uniqueness, for exam-

ple, could not be leveraged in TPC-C, since it does not hold for all TPC-C’s

transactions; and Runtime Pipelining itself would prove virtually ineffective if

applied across the entire set of Fusion Ticket’s often-complex transactions.

4.6.3 Performance impact of different groupings

To demonstrate the importance of grouping transactions appropriately,

we measure Callas’ throughput when running TPC-C using different transac-

tion groupings. TPC-C has five transactions: three are read-write transactions

and two are read-only. We first compare our heuristic grouping to two naive

groupings. The first puts all transactions in a single group, while the second

puts each of the five transactions in a separate group. Our heuristic grouping—

the result of running the heuristic algorithm of Section 4.5.2—consists of three

groups: new order and payment are in one group, delivery is in a second, and

the two read-only transactions in a third.

Figure 4.10 shows the results of this experiment. Even with all transac-

tions in the same group, Runtime Pipelining yields a significant performance

106

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

TPC-C

T
hr

ou
gh

pu
t (

tx
n/

se
c)

M
yS

Q
L

1
gr

ou
p 5
gr

ou
ps

C
al

la
s

Figure 4.10: Effect of choosing different groupings.

benefit compared to a traditional ACID implementation. Placing each transac-

tion in a separate group further improves performance by easing the bottleneck

caused by contending read-write transactions. In particular, Runtime Pipelin-

ing can now apply optimizations, such as runtime uniqueness, that were not

applicable when all three read-write transactions were grouped together.

Having each transaction in a separate group, however, is not ideal.

Since new-order and payment conflict frequently, it is preferable to place them

in the same group so that their conflicts can be regulated using a custom in-

group mechanism, instead of the coarse inter-group locks. Indeed, the grouping

107

returned by our heuristic algorithm outperforms this grouping by at least 50%.

To get a sense of how the grouping produced by our algorithm com-

pares to an optimal grouping, we iterated over all the possible grouping strate-

gies: we found that, at least for TPC-C, no other grouping achieved a higher

throughput.

4.6.4 Overhead of nexus locks

Two factors contribute to the overhead of nexus locks: the cost of

maintaining an additional lock and that of correctly enforcing the Nexus Lock

Release Order rule (§4.3). The latter cost is only incurred when transactions

conflict, while the former is always present. To measure separately their effect

on throughput, we designed two microbenchmarks, one with no contention

and one with high contention.

 0

 10000

 20000

 30000

 40000

No Contention

T
hr

ou
gh

pu
t (

tx
n/

se
c)

MySQL
Callas

 0

 200

 400

 600

 800

 1000

 1200

High Contention

T
hr

ou
gh

pu
t (

tx
n/

se
c)

MySQL
Callas

Figure 4.11: Overhead of nexus locks

To eliminate any benefit that may come from using Callas, we run

both microbenchmarks with each transaction instance in a separate group,

108

and enforce isolation within each group using the default MySQL Cluster

locking mechanism. We run both experiments with two shards, each three-way

replicated. In the no-contention experiment, each transaction has exclusive

access to five rows. In the high-contention experiment, all transactions touch

the same two rows, with each row in one shard.

As shown in Figure 4.11, in the no-contention experiment, MySQL

Cluster outperforms Callas by about 19%. Our profiling shows the bottleneck

lies in the additional demands on the CPU to acquire, maintain, and release

nexus locks. In the high-contention experiment, the throughput of MySQL

Cluster is about 13.6% higher than that of Callas.

The CPU overhead of nexus locks is of course still there, but it becomes

relatively less prominent because contention increases the execution time of

transactions. Instead, the additional message exchanges Callas requires to

enforce the Nexus Lock Release Order rule become the dominant factor.

4.6.5 Effect of contention rate on performance

The design of Callas focuses on optimizing in-group contention while

being conservative about contention between transactions in different groups.

While our experience with real applications suggests that it is typically possi-

ble to partition transactions, so that inter-group contention is minimized, we

would like to understand how robust the performance of Callas is to increased

levels of inter-group contention. We design two microbenchmarks, each ex-

ploring a different factor of inter-group contention: execution frequency and

109

 100

 1000

 10000

 100000

 0 0.1 0.2 0.3 0.4 0.5

T
h

ro
u
g

h
p

u
t

(t
x
n
s/

se
c)

Execution frequency ratio of T1

MySQL Cluster

Callas

Figure 4.12: Effect of execution frequency on performance.

contention rate. Both microbenchmarks start by executing operations that

cause conflicts (across groups or inside a group) and end with a sequence of

operations that cause no conflicts. Unlike MySQL Cluster, Callas can chop

contending and non-contending operations in separate pieces and release con-

tending locks early: hence, the longer the sequence of non-conflicting opera-

tions at the end of a transaction, the greater the performance benefits that

Callas can bring.

To separate sufficiently the performance of Callas and that of MySQL

Cluster, in order for us to study the effects of inter-group contention on the

former, both our microbenchmarks use a sequence of five non-conflicting op-

erations.

The first microbenchmark explores the performance repercussions of

110

 100

 1000

 10000

 100000

 0.0001 0.001 0.01 0.1 1

T
h

ro
u
g

h
p

u
t

(t
x
n
s/

se
c)

Contention probability across groups (1/N)

MySQL Cluster

Callas

Figure 4.13: Effect of contention probability across groups.

having two frequently executing transactions in different groups. The mi-

crobenchmark includes two types of transactions, T1 and T2. Each transaction

contains six (1 + 5) operations: the first operation updates one row, randomly

chosen out of ten rows, thus fixing the contention rate between T1 and T2 at

10%. The remaining five operations update non-conflicting rows (i.e., rows

that are private to each transaction instance). We place T1 and T2 in separate

groups that use Runtime Pipelining for chopping, and we tune the relative

execution frequency of these two transactions.

The second microbenchmark explores the effect of inter-group con-

tention rate on the performance of Callas. This microbenchmark is similar

to the first: we use two types of transactions, T1 and T2, each in its own

group, only this time they have the same execution frequency. Each trans-

111

action contains seven (2 + 5) operations: the first operation updates one row

at random, chosen out of N rows, where N is a parameter that controls the

inter-group contention rate. The second operation modifies a random row,

chosen out of ten rows, from a table private to each transaction type, thus

introducing a 10% in-group contention rate. The remaining five operations

update non-conflicting rows (private to each transaction instance).

Figures 4.12 and 4.13 show the results for these two microbenchmarks.

Both experiments show the same trend: when the inter-group contention is

low, the performance of Callas far exceeds that of a traditional ACID database.

For example, when the execution frequency ratio of T1 to T2 is 100:1 (Fig-

ure 4.12), the throughput of Callas is 20.2x that of MySQL Cluster. Similarly,

when T1 and T2 have a low conflict rate of 0.01% (Figure 4.13), the throughput

of Callas is 16.6x that of MySQL.

As the inter-group contention rate increases—because both transac-

tions run frequently or contend heavily— the benefit of Callas decreases. This

is to be expected, as Callas is effectively attempting to regulate heavy con-

tention using traditional locking.

Note, however, that even when the inter-group contention is as high as

the in-group contention, the performance benefit of Callas is still substantial.

In Figure 4.12, even when T1 and T2 are executed with the same frequency,

Callas’ throughput is more than twice that of MySQL’s; in Figure 4.13, when

N=1 (i.e., contention is at 100%), Callas achieves a 60% throughput gain.

The reason behind this performance increase is that, even when the workload

112

 0

 1000

 2000

 3000

 4000

 5000

 0 0.1 0.2 0.3 0.4 0.5

T
h

ro
u
g

h
p

u
t

(t
x
n
s/

se
c)

Application rollback rate

MySQL Cluster

Callas

Rollback-safe chopping

Always agressive chopping

Figure 4.14: Effect of application rollback rate on performance.

is uniform (e.g., both transactions have the same frequency), this does not

mean that a T1 is always followed by a T2 (and vice versa). As long as two

T1s (or T2s) are executed consecutively, Runtime Pipelining can optimize their

execution. Interestingly, increasing in-group concurrency implicitly increases

inter-group concurrency as well, since transactions hold their locks for shorter

times.

4.6.6 Beyond rollback safety

Our final set of experiments measure the performance of Runtime Pipelin-

ing’s adaptive approach for preventing Aborted Reads and Atomicity viola-

tions.

We design a microbenchmark that can trigger cascading rollbacks in a

113

 0

 500

 1000

 1500

 2000

 40 80 120 160 200

T
h

ro
u
g

h
p

u
t

(t
x
n
s/

se
c)

Number of clients

MySQL Cluster

Callas

Callas without AS

Figure 4.15: Effect of Callas adaptive response to high rollback rates.

controlled manner. It uses three tables—A, B, and C—with ten rows each,

and contains one transaction with 11 operations. The first operation picks a

number i at random between 1 and 10, and checks a condition on the ith row

in table A and the second operation updates that row if the check succeeds.

The third and fourth operation do the same for the ith row of table B; and the

fifth and sixth do the same for the ith row of table C. The last five operations

update non-conflicting rows (private to that transaction instance). Runtime

Pipelining splits this transaction into the following eight subtransactions: 〈1, 2〉

〈3, 4〉 〈5, 6〉 〈7〉 〈8〉 〈9〉 〈10〉 〈11〉, the first subtransaction containing the first

two operations, etc. The check of the fifth operation has a probability to

fail and cause a rollback, triggering a cascading rollback if other transactions

already depend on this transaction.

114

In our first experiment, we tune the probability of the third subtrans-

action triggering a rollback. As shown in Figure 4.14, the throughput of

both Callas and MySQL Cluster decreases as the rollback rate increases. The

throughput of Callas is always higher than that of MySQL Cluster, but the im-

provement decreases from 2.9x to 60%. When the rollback rate is low, Callas

can execute all eight subtransactions in a pipeline, but when the rollback

probability increases, Callas’ adaptive control mechanism falls back to “safe

mode” by merging the first three subtransactions—thus placing the rollback

statement in the first subtransaction. Even in safe mode, however, Callas can

still parallelize the execution of the last five subtransactions. In Figure 4.14,

the switch to safe mode happens when the rollback rate is higher than 7%. For

reference, we also measured the throughput of Callas with safe mode always

on, and with safe mode always off. In the former case we lose parallelism

when the rollback rate is low, whereas in the latter we incur significant over-

head when the rollback rate is high. Thanks to Runtime Pipelining’s adaptive

mechanism, Callas comes close to the best of both worlds.

In practice, since real applications have low rollback rates most of the

time, we expect safe mode to be triggered only infrequently; the rest of the

time Callas would still be aggressively optimizing transactions.

Figure 4.15 takes a closer look at the performance of Callas under

stress. We fix the rollback rate to a high value (50%) and increase the load

of the system until we reach saturation. We observe that under low load, it

is not critical for Runtime Pipelining to adaptively fall back to safe mode; in

115

fact, an always-aggressive version of Callas performs slightly better. As the

load—and, hence, parallelism—increases, however, the adaptivity of Runtime

Pipelining prevents cascading rollbacks from causing a performance collapse,

while allowing Callas to continue leveraging some parallelism.

4.7 Conclusion

Separating concerns and decoupling abstraction from mechanism are

basic tenets of sound system design—and for good reasons. We confirm their

benefits yet again, by applying them to the long-standing problem of improving

the performance of ACID applications. The flexibility of the modular concur-

rency control architecture at the core of Callas allows the applications we have

tested, to obtain, unmodified, the kind of performance previously achievable

only by manually rewriting all or part of the applications’ code.

116

Chapter 5

Related Work

Many database systems [9–11, 14–16, 67] provide ACID guarantees to

greatly simplify applications’ development. On the other hand, in order to

achieve higher performance and availability, other systems [1, 17, 33, 34, 42, 61]

give up the ACID paradigm, and instead, adopt the BASE approach [32]. Sev-

eral efforts have tried to relieve the tension between ease of programming and

performance by finding alternatives to the ACID/BASE duality. We review

them in this chapter.

5.1 Optimizing ACID transactions

Frustrated with ACID performance, researchers have tried different ap-

proaches to improve the performance of ACID databases.

5.1.1 Optimizing certain transaction types

A popular approach is to optimize certain types of transactions. By

so doing, systems can leverage the characteristics of these transactions to find

more efficient mechanisms. Read-only transactions is a target. These transac-

tions are quite common in applications, and, because they do not include write

117

operations, they need not to pay the overhead of the mechanisms required to

handle general transactions. Multiversion two-phase locking [29], for example,

avoids conflicts between read-only transactions and read-write transactions

by allowing read-only transactions to read committed versions consistently

according to a timestamp assigned at the beginning of the execution. Span-

ner [35], for another example, can avoid the two-phase commit(2PC) protocol

for read-only transactions, assuming clocks are well synchronized.

Other systems have explored ways to optimize other types of trans-

actions. H-Store [77], for example, optimizes transactions that contain only

queries that can be executed on just one site in the cluster. H-Store leverages

this feature to avoid unnecessary network communication across different sites

and improve its performance. H-Store also optimizes one-shot transactions, in

which, though different queries may touch different sites, each individual query

executes on just one site. Besides transactions that operate on a single site,

Granola [37] also optimizes independent distributed transactions, i.e., transac-

tions where each site can reach the same decision even without communication.

For these transactions, Granola can eliminate the 2PC protocol.

Though these optimizations are helpful for specific types of transac-

tions, they can’t, unlike Salt and Callas, provide more opportunities for con-

currency to generic transactions.

118

5.1.2 Optimizing under certain workload conditions

Another approach to improving ACID performance is to optimize trans-

actions when certain conditions hold for the workload. For example, Sagas [50]

lets developers chop long-running transactions into pieces when such chop-

ping does not affect the application semantics. Transaction chopping [74] and

Lynx [87] use SC-cycles discussed in Section 4.4 to identify transactions eligible

for chopping.

Like Callas, Lynx observes that executing transaction pieces in a well-

defined order can avoid conflicts: its origin ordering technique ensures that if

two transactions T1 and T2 start on the same server, and T1 starts before T2,

then, to guarantee safety, T1 pessimistically executes before T2 at every server

where they both execute. However, since it is hard in practice to anticipate

the specific servers where user transactions will execute, origin ordering can

only prevent conflicts among the predictable internal transactions used for

updating secondary indexes and joint tables. In contrast, Callas’ Runtime

Pipelining is widely applicable, since it relies on information (the order in

which transactions access tables) that can be easily established through static

analysis, and only enforces ordering if it detects an actual conflict at run time,

leaving significantly greater opportunities for concurrency.

Rococo [66] relaxes Lynx’s eligibility condition by reordering transac-

tion operations and applying additional run-time mechanisms. Calvin [78]

avoids using 2PC by predefining an execution schedule for transactions, but

119

again under the assumption that the system can predict which server a trans-

action will access when it is executed.

In general, such optimizations have the potential to yield significant

performance improvements, but the assumptions on which they rely are usually

hard to satisfy in real applications. Modular Concurrency Control can help

increase the applicability of these techniques by requiring those assumptions

to only hold within each group, rather than globally.

5.1.3 Leveraging new hardware

The development of new hardware also provides new opportunities to

improve the performance of ACID transactions. These improvements are or-

thogonal to the work presented in this dissertation, which focuses on reducing

the cost of handling contention. Indeed, the techniques used in the system

surveyed below could be leveraged in combination with Salt and Callas.

Remote Direct Memory Access (RDMA) is a hardware feature that al-

lows users to access other machines in the same cluster with low latency and

CPU cost. It gives developers a chance to reduce the messaging overhead of

distributed transactions. For example, DrTM[81] first uses restricted trans-

actional memory (RTM), a hardware feature provided by Intel that allows

users to execute a group of memory accesses in an atomic way, to handle local

transactions. Then, leveraging RDMA, it extends RTM to handle distributed

transactions efficiently. Combining these two new hardware features, DrTM

can achieve higher performance and scalability. There are, however, limita-

120

tions. First, DrTM must know the read/write set and the memory transactions

touch before the execution to properly implement its locking protocol. Second,

because RDMA makes it hard to maintain replicas consistent, DrTM forgoes

replications, thus reducing the availability of the system. Similarly, FaRM

[43] uses RDMA to reduce the overhead of handling distributed transactions.

In addition, to efficiently support durability, FaRM takes advantage of non-

volatile DRAM. However, due to their optimistic approach, both DrTM and

FaRM cannot handle well workloads with high contention. In contrast, Salt

and Callas can bring significant performance improvement for high-contention

workloads.

Given the trend of having more cores and larger memory in one ma-

chine, Silo[79], a single-node database, aims to fully use the resources provided

by a single machine. To do it, Silo designs a new protocol to reduce the local

conflicts. It demonstrates that a machine with many cores and large memory

can actually achieve comparable performance compared to a cluster.

5.2 Providing limited transaction

A further way for applications to balance ease of programming and per-

formance is to limit the scope of transactional guarantees. For example, Elas-

TraS [38], MegaStore [23], G-Store [39], and Microsoft’s Cloud SQL Server [26],

only provide ACID transactions within a single partition or key group. G-

Store and ElasTraS further allow dynamic modification of such key groups, so

that users can change data partition at runtime to support more transactions.

121

When compared to the pure BASE approach, partition-local transactions can

simplify the applications; at the same time, avoiding distributed transactions

can increase their performance. Unfortunately, it is not always easy to parti-

tion data, so that applications can simply avoid distributed transactions. For

requests that touch multiple partitions, these systems rely on the developers

to ensure correctness, which is tedious and error-prone [35, 75].

With a different take to address the same challenges, Sinfonia [20] intro-

duces minitransactions. In minitransactions, all actions that the coordinator

requires a site to perform are required to not depend on any actions that are

executed on other sites. Therefore, it is possible to piggyback the entire set

of actions that the coordinator requires a site to perform into the first phase

of 2PC. As a result, Sinfonia can start, execute, and commit a minitrans-

action with two network round-trips, significantly reducing the overhead of

distributed transactions. As the authors of Sinfonia point out, however, mini-

transactions do not easily fit general applications, since the requirements that

minitransactions depend upon are not easy to satisfy.

5.3 Related Techniques

Some of the techniques used by Salt and Callas are similar to those

used in other systems. In this section, we discuss these techniques and the

unique ways in which Salt and Callas use them to resolve the tension between

ease of programming and performance.

122

5.3.1 Combining Different Concurrency Control Mechanisms

Researchers have explored several approaches to apply different con-

currency control mechanisms in the same system. For example, transactional

federated database systems [31, 41, 51, 70, 72] support global transactions that

touch different database systems. Each database in the federated system can

use its own concurrency control mechanisms. Federated systems then guar-

antee the serializability for these global transactions. Unlike Callas, the per-

formance of federated systems is typically worse than that of the database

systems since they focus on achieving more functionality (such as supporting

global transactions) rather than greater performance.

Local atomicity properties [82] have been proposed as a way to enable

developers to enforce serializability of transactions by enforcing serializability

at each shared data object. This work makes it possible to combine different

concurrency control mechanisms that satisfy the same atomicity property. By

encapsulating the synchronization in the implementations of shared objects,

the system can improve modularity, and like Callas, increases the chance of

finding more efficient mechanisms specialized for each data object. This ap-

proach, however, does not allow developers to combine arbitrary concurrency

control mechanisms. For example, using two-phase locking and multi-version

concurrency control for different shared data objects may violate the require-

ments of cross-object serializability. Further, this approach still requires all

conflicts that involve a given data object to be handled using the same con-

currency control mechanism. Callas, instead, allows different conflicts on the

123

same data item to be regulated by different concurrency control mechanisms,

creating opportunities for greater concurrency.

Bernstein introduces mixed concurrency control mechanisms, in which

write-write conflicts and read-write conflicts can be handled by different con-

currency control mechanisms [27]. This flexibility can potentially achieve

higher concurrency. However, the conflicts in this model can be only divided

into two types. The same type of conflicts, such as all write-write conflicts,

have to use the same concurrency control mechanism. In addition, this ap-

proach only allows specific combinations, such as multiversion two-phase com-

mit. Instead, MCC allows us to combine arbitrary concurrency control mech-

anisms.

5.3.2 Group Mutual Exclusion

The goal of Callas’ cross-group mechanism is to prevent dependency

cycles that span multiple groups. To accomplish it, the cross-group mech-

anism enforces two properties. First, Nexus locks allow transactions from

the same group to access the same data object concurrently while prevent-

ing transactions from different groups from doing so. Second, the cross-group

mechanism enforces Nexus Lock Release Order, the order in which the locks

can be released. Nexus locks solve the problem of group mutual exclusion, first

formalized by Joung [58]. Group mutual exclusion is a generalization of the

mutual exclusion problem. Similar to Nexus locks, group mutual exclusion

allows different processes from the same group to enter the critical section

124

concurrently while preventing processes that belong to different groups from

doing so. Note however that group mutual exclusion is only one of the two

properties that Callas’ cross-group mechanism enforces: Nexus Lock Release

Order is key to preventing circularity, while the group mutual exclusion spec-

ification puts no requirement on the order in which processes must leave the

critical section.

5.3.3 Transaction Group

To reduce the overhead of determining whether two transactions may

conflict at run time, SDD-1 [30] introduces the notion of transaction classes,

which bear an intriguing but ultimately passing similarity to Callas’ trans-

action groups. In SDD-1, each transaction class is defined statically by the

database administrator, and it is formally identified by a logical read and

write set. A transaction T fits in any class whose read and write set are a su-

perset of the corresponding sets for T : the class to which a specific instance of

T is actually assigned is not decided until run time. SSD-1 simplifies concur-

rency control by first using static analysis to identify conflicts within classes

(rather than transactions), and by then leveraging the observation that trans-

actions that are assigned at run time to different classes can conflict only if

their classes conflict. In Callas, transaction groups are instead the key mech-

anism that enables the separation of concerns that is at the core of MCC. By

delimiting the scope of each in-group concurrency control mechanism, they

allow them to aggressively seek opportunities for greater concurrency.

125

5.3.4 Nested Transactions

Nested transactions, transactions that consisting of a sequence of sub-

transactions, were first proposed by Davies under the name spheres of con-

trol [40]. Typically, nested transactions continue to provide isolation at the

granularity of the whole transaction; however, each subtransaction can be

aborted independently. Therefore, if one subtransaction fails, the transaction

can simply restart from the last committed subtransaction. Though BASE

transactions are structured as nested transactions, they use their inner struc-

ture to address different issues. Nested transactions tune the granularity of

atomicity so that errors occurring within a nested transaction do not require

undoing the entire parent transaction, but only the affected subtransaction.

BASE transactions, instead, tune the granularity of isolation. They use sub-

transactions to define the states that could be exposed among BASE transac-

tions to increase concurrency.

Several other works use the structure of nested transaction to increase

concurrency. [46, 49, 63]. These works weaken the usual notion of serializabil-

ity by permitting additional user-defined interleavings. However, as in the

BASE approach, when defining these interleavings, users need to reason about

the consistency constrains that applications require by considering all trans-

actions. Salt, instead, uses BASE transactions only for performance critical

transactions, and guarantees that the remaining ACID transactions are not af-

fected, limiting complexity. In addition, since BASE transactions are accepted

as soon as their first alkaline subtransaction commits and will eventually com-

126

mits, BASE transactions also improve availability of applications.

127

Chapter 6

Conclusion

This dissertation shows that, by specializing the mechanisms used to

handle different transactions, database systems can achieve both performance

and ease of programming.

In Chapter 3, we explored the implications of specializing the ACID

abstraction. Salt introduces BASE transactions to express performance critical

transactions, and creates the conditions under which they can safely coexist

with other ACID transactions.

In Chapter 4, we instead explored the implications of maintaining the

same, unchanged ACID transaction for all transactions, while instead special-

izing its implementation. Callas’ MCC allows developers to provide isolation

properties by enforcing these properties within each group modularly. This

modularity enables Callas to customize the concurrency control mechanisms

for different sets of transactions.

Although the vision of modular concurrency control is compelling and

Callas makes a strong case for it, the implementation of this vision in Callas

is still partial. Callas can customize the concurrency control mechanism for

in-group conflicts, but all cross-group conflicts in Callas can only be han-

128

dled by a single cross-group mechanism based on two-phase locking. This

limitation prevents us from seeking aggressive optimizations for cross-group

conflicts, limiting the ability to leverage opportunities for concurrency. Real-

izing the vision of modular concurrency control in its fullness remains an open

challenge. One possible approach we are currently exploring is to combine dif-

ferent concurrency control mechanisms in a hierarchical structure. This way,

each cross-group mechanism need only handle the cross-group conflicts among

its subgroups in the hierarchy, allowing us to seeking specialized optimizations

also for these cross-group conflicts.

129

Bibliography

[1] Apache HBase. http://hbase.apache.org/.

[2] AuctionMark. http://hstore.cs.brown.edu/projects/auctionmark/.

[3] Cloud Lab. http://www.cloudlab.us/.

[4] Current users of Fusion Ticket. http://www.fusionticket.com/hosting/

our-customers.

[5] Dolibarr. http://www.dolibarr.org/.

[6] E-venement. http://www.e-venement.org/.

[7] Front Accounting. http://frontaccounting.com/.

[8] Fusion ticket. http://www.fusionticket.org/.

[9] MemSQL. http://www.memsql.com/.

[10] Microsoft SQL Server. http://www.microsoft.com/sqlserver/.

[11] MySQL Cluster. http://www.mysql.com/products/cluster/.

[12] Ofbiz. http://ofbiz.apache.org/.

[13] Openbravo. http://www.openbravo.com/.

130

[14] Oracle Database. http://www.oracle.com/database/.

[15] Postgres SQL. http://www.postgresql.org/.

[16] SAP Hana. http://www.saphana.com/.

[17] SimpleDB. http://aws.amazon.com/simpledb/.

[18] Utah Emulab. http://www.emulab.net/.

[19] Atul Adya, Barbara Liskov, and Patrick O’Neil. Generalized Isolation

Level Definitions. In Proceedings of the IEEE 16th International Confer-

ence on Data Engineering, pages 67–78. IEEE, 2000.

[20] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and

Christos Karamanolis. Sinfonia: A new paradigm for building scalable

distributed systems. In Proceedings of Twenty-first ACM SIGOPS Sym-

posium on Operating Systems Principles, SOSP ’07, pages 159–174, New

York, NY, USA, 2007. ACM.

[21] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N.

Gray, P. P. Griffiths, W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl,

G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson. System r:

Relational approach to database management. ACM Trans. Database

Syst., 1(2):97–137, June 1976.

[22] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M.

Hellerstein, and Ion Stoica. Feral Concurrency Control: An Empirical

131

Investigation of Modern Application Integrity. In Proceedings of the

2015 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’15, New York, NY, USA, 2015. ACM.

[23] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin,

James Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim

Yushprakh. Megastore: Providing scalable, highly available storage for

interactive services. In Proceedings of the Conference on Innovative Data

system Research (CIDR), pages 223–234, 2011.

[24] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil,

and Patrick O’Neil. A Critique of ANSI SQL Isolation Levels. In Pro-

ceedings of the 1995 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’95, pages 1–10, New York, NY, USA, 1995.

ACM.

[25] A. J. Bernstein, P. M. Lewis, and S. Lu. Semantic conditions for correct-

ness at different isolation levels. In Data Engineering, 2000. Proceedings.

16th International Conference on, pages 57–66, 2000.

[26] Philip A Bernstein, Istvan Cseri, Nishant Dani, Nigel Ellis, Ajay Kalhan,

Gopal Kakivaya, David B Lomet, Ramesh Manne, Lev Novik, and Tomas

Talius. Adapting Microsoft SQL Server for Cloud Computing. In Data

Engineering (ICDE), 2011 IEEE 27th International Conference on, pages

1255–1263. IEEE, 2011.

132

[27] Philip A. Bernstein and Nathan Goodman. Concurrency control in dis-

tributed database systems. ACM Comput. Surv., 13(2):185–221, June

1981.

[28] Philip A Bernstein and Nathan Goodman. Multiversion concurrency

control-theory and algorithms. ACM Transactions on Database Systems

(TODS), 8(4):465–483, 1983.

[29] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-

rency control and recovery in database systems. 1987.

[30] Philip A Bernstein, David W Shipman, and James B Rothnie Jr. Con-

currency Control in a System for Distributed Databases (SDD-1). ACM

Transactions on Database Systems (TODS), 5(1):18–51, 1980.

[31] Yuri Breitbart, Hector Garcia-Molina, and Avi Silberschatz. Overview of

multidatabase transaction management. The VLDB Journal, 1(2):181–

240, October 1992.

[32] Eric A Brewer. Towards robust distributed systems. In PODC, volume 7,

2000.

[33] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-

rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and

Robert E. Gruber. Bigtable: a distributed storage system for struc-

tured data. In Proceedings of the 7th USENIX Symposium on Operating

133

Systems Design and Implementation - Volume 7, OSDI ’06, pages 15–15,

Berkeley, CA, USA, 2006. USENIX Association.

[34] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silber-

stein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver,

and Ramana Yerneni. Pnuts: Yahoo!’s hosted data serving platform.

Proceedings of the VLDB Endowment, 1(2):1277–1288, 2008.

[35] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-

pher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christo-

pher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-

gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,

David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito,

Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Wood-

ford. Spanner: Google’s Globally-distributed Database. In Proceedings

of the 10th USENIX Conference on Operating Systems Design and Imple-

mentation, OSDI’12, pages 251–264, Berkeley, CA, USA, 2012. USENIX

Association.

[36] Transaction Processing Performance Council. TPC benchmark C, Stan-

dard Specification Version 5.11, 2010.

[37] James Cowling and Barbara Liskov. Granola: Low-Overhead Distributed

Transaction Coordination. In Proceedings of the 2012 USENIX Annual

Technical Conference, Boston, MA, USA, June 2012. USENIX.

134

[38] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. Elastras: an

elastic transactional data store in the cloud. In Proceedings of the 2009

conference on Hot topics in cloud computing, HotCloud’09, Berkeley, CA,

USA, 2009. USENIX Association.

[39] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-Store: A

Scalable Data Store for Transactional Multi Key Access in the Cloud.

In Proceedings of the 1st ACM Symposium on Cloud Computing, pages

163–174. ACM, 2010.

[40] Charles T. Davies, Jr. Recovery semantics for a db/dc system. In

Proceedings of the ACM Annual Conference, ACM ’73, pages 136–141,

New York, NY, USA, 1973. ACM.

[41] A. Deacon, H. J. Schek, and G. Weikum. Semantics-based multilevel

transaction management in federated systems. In Data Engineering,

1994. Proceedings.10th International Conference, pages 452–461, Feb

1994.

[42] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-

manian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly

available key-value store. In Proceedings of twenty-first ACM SIGOPS

symposium on Operating systems principles, SOSP ’07, pages 205–220,

New York, NY, USA, 2007. ACM.

135

[43] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale,

Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro.

No compromises: Distributed transactions with consistency, availability,

and performance. In Proceedings of the 25th Symposium on Operating

Systems Principles, SOSP ’15, pages 54–70, New York, NY, USA, 2015.

ACM.

[44] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of

consistency and predicate locks in a database system. Commun. ACM,

19(11):624–633, November 1976.

[45] M. J. Bertin et al. Pisot and Salem Numbers. user Verlag, Berlin, 1992.

[46] Abdel Aziz Farrag and M. Tamer Özsu. Using semantic knowledge

of transactions to increase concurrency. ACM Trans. Database Syst.,

14(4):503–525, December 1989.

[47] Alan Fekete. Allocating isolation levels to transactions. In Proceedings

of the Twenty-fourth ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems, PODS ’05, pages 206–215, New York,

NY, USA, 2005. ACM.

[48] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, and

Paul Gauthier. Cluster-based scalable network services. In Proceedings

of the sixteenth ACM symposium on Operating systems principles, SOSP

’97, pages 78–91, New York, NY, USA, 1997. ACM.

136

[49] Hector Garcia-Molina. Using semantic knowledge for transaction process-

ing in a distributed database. ACM Trans. Database Syst., 8(2):186–213,

June 1983.

[50] Hector Garcia-Molina and Kenneth Salem. Sagas. In SIGMOD, 1987.

[51] D. Georgakopoulos, M. Rusinkiewicz, and A. P. Sheth. Using tickets to

enforce the serializability of multidatabase transactions. IEEE Transac-

tions on Knowledge and Data Engineering, 6(1):166–180, Feb 1994.

[52] Seth Gilbert and Nancy Ann Lynch. Perspectives on the CAP Theorem.

Institute of Electrical and Electronics Engineers, 2012.

[53] James N Gray. Notes on data base operating systems. Springer, 1978.

[54] Jim Gray. The transaction concept: Virtues and limitations (invited

paper). In Proceedings of the Seventh International Conference on Very

Large Data Bases - Volume 7, VLDB ’81, pages 144–154. VLDB Endow-

ment, 1981.

[55] Theo Haerder and Andreas Reuter. Principles of transaction-oriented

database recovery. ACM Comput. Surv., 15(4):287–317, December 1983.

[56] Pat Helland. Life beyond distributed transactions: an apostate’s opinion.

In Third Biennial Conference on Innovative Data Systems Research, pages

132–141, 2007.

137

[57] George Roy Hill and William Goldman. Butch Cassidy and the Sun-

dance Kid. Clip at https://www.youtube.com/watch?v=1IbStIb9XXw,

October 1969.

[58] Yuh-Jzer Joung. Asynchronous group mutual exclusion. Distributed

Computing, 13:51–60, 1998.

[59] Donald K. Knuth. The TEXbook. Addison-Wesley, 1984.

[60] Hsiang-Tsung Kung and John T. Robinson. On Optimistic Methods for

Concurrency Control. ACM Transactions on Database Systems (TODS),

6(2):213–226, 1981.

[61] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized

structured storage system. ACM SIGOPS Operating Systems Review,

44:35–40, April 2010.

[62] Leslie Lamport. LATEX: A document preparation system. Addison-

Wesley, 2nd edition, 1994.

[63] Nancy A. Lynch. Multilevel atomicity—a new correctness criterion

for database concurrency control. ACM Trans. Database Syst., 8(4):484–

502, December 1983.

[64] F Mittelbach M Goosens and A Samarin. The LATEXCompanion. Addison-

Wesley, 1994.

138

[65] Michael McLure. Vilfredo Pareto, 1906 Manuale di Economia Polit-

ica, Edizione Critica, Aldo Montesano, Alberto Zanni and Luigino Bruni

(eds). Journal of the History of Economic Thought, 30(01):137–140, 2008.

[66] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. Extract-

ing More Concurrency from Distributed Transactions. In 11th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 14),

pages 479–494, Broomfield, CO, October 2014. USENIX Association.

[67] Michael A Olson, Keith Bostic, and Margo I Seltzer. Berkeley db. In

USENIX Annual Technical Conference, FREENIX Track, pages 183–191,

1999.

[68] Dan Pritchett. Base: An acid alternative. Queue, 6:48–55, May 2008.

[69] Dan Pritchett. Base: An acid alternative. Queue, 6(3):48–55, May 2008.

[70] W. Schaad, H. J. Schek, and G. Weikum. Implementation and perfor-

mance of multi-level transaction management in a multidatabase envi-

ronment. In Research Issues in Data Engineering, 1995: Distributed

Object Management, Proceedings. RIDE-DOM ’95. Fifth International

Workshop on, pages 108–115, Mar 1995.

[71] Ralf Schenkel and Gerhard Weikum. Integrating snapshot isolation into

transactional federation. In Proceedings of the 7th International Con-

ference on Cooperative Information Systems, CooplS ’02, pages 90–101,

London, UK, UK, 2000. Springer-Verlag.

139

[72] Ralf Schenkel and Gerhard Weikum. Integrating Snapshot Isolation into

Transactional Federations, pages 90–101. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2000.

[73] Lui Sha, John P. Lehoczky, and E. Douglas Jensen. Modular concurrency

control and failure recovery. IEEE Trans. Computers, 37:146–159, 1988.

[74] Dennis Shasha, François Llirbat, Eric Simon, and Patrick Valduriez. Trans-

action Chopping: Algorithms and Performance Studies. ACM Transac-

tions on Database Systems (TODS), 20(3):325–363, 1995.

[75] Jeff Shute, Mircea Oancea, Stephan Ellner, Ben Handy, Eric Rollins, Bart

Samwel, Radek Vingralek, Chad Whipkey, Xin Chen, Beat Jegerlehner,

Kyle Littleeld, and Phoenix Tong. F1 - The Fault-Tolerant Distributed

RDBMS Supporting Google’s Ad Business. In Proceedings of the 2012

ACM SIGMOD International Conference on Management of Data, pages

777–778. ACM, 2012.

[76] Michael Spivak. The joy of TEX. American Mathematical Society,

Providence, R.I., 2nd edition, 1990.

[77] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Hari-

zopoulos, Nabil Hachem, and Pat Helland. The End of an Architectural

Era (It’s Time for a Complete Rewrite). In Proceedings of the 33rd

international Conference on Very Large Data Bases, VLDB ’07, pages

1150–1160, 2007.

140

[78] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,

Philip Shao, and Daniel J. Abadi. Calvin: Fast Distributed Transactions

for Partitioned Database Systems. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data, SIGMOD

’12, pages 1–12, 2012.

[79] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel

Madden. Speedy transactions in multicore in-memory databases. In

Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles, SOSP ’13, pages 18–32, New York, NY, USA, 2013. ACM.

[80] Alf J. van der Poorten. Some problems of recurrent interest. Technical

Report 81-0037, School of Mathematics and Physics, Macquarie Univer-

sity, North Ryde, Australia 2113, August 1981.

[81] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. Fast

in-memory transaction processing using rdma and htm. In Proceedings

of the 25th Symposium on Operating Systems Principles, SOSP ’15, pages

87–104, New York, NY, USA, 2015. ACM.

[82] W. E. Weihl. Local atomicity properties: Modular concurrency control

for abstract data types. ACM Trans. Program. Lang. Syst., 11(2):249–

282, April 1989.

[83] Gerhard Weikum and Gottfried Vossen. Transactional Information Sys-

tems: Theory, Algorithms, and the Practice of Concurrency Control and

Recovery. Morgan Kaufmann, 2002.

141

[84] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad,

Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An Inte-

grated Experimental Environment for Distributed Systems and Networks.

pages 255–270, Boston, MA, December 2002.

[85] Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang, Navid Yaghmazadeh,

Lorenzo Alvisi, and Prince Mahajan. Salt: Combining ACID and BASE

in a Distributed Database. In 11th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 14), pages 495–509, Broom-

field, CO, October 2014. USENIX Association.

[86] Chao Xie, Chunzhi Su, Cody Littley, Lorenzo Alvisi, Manos Kapritsos,

and Yang Wang. High-performance acid via modular concurrency con-

trol. In Proceedings of the 25th Symposium on Operating Systems Prin-

ciples, SOSP ’15, pages 279–294, New York, NY, USA, 2015. ACM.

[87] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K Aguil-

era, and Jinyang Li. Transaction chains: achieving serializability with

low latency in geo-distributed storage systems. In Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles, pages

276–291. ACM, 2013.

142

Vita

Chao Xie was born in GuiYang, a beautiful city in Southeast China.

He lived there until he graduated from Guiyang No.1 high school in 2004.

Then he attended Tsinghua University, and received his bachelor’s degree of

Computer Science and Technology in 2011. He jointed the Department of

Computer Science at University of Texas at Austin as a Ph.D. student in the

fall of 2011.

Email address: xiechao89@gmail.com

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

143

