
Copyright

by

Lane Thomas Holloway

2016

The Dissertation Committee for Lane Thomas Holloway
certifies that this is the approved version of the following dissertation:

Modeling and Formal Verification of Gaming Storylines

Committee:

Donald Fussell, Supervisor

Anne C. Elster, Co-supervisor

Jacob Abraham

Craig Chase

Risto Miikkulainen

Modeling and Formal Verification of Gaming Storylines

by

Lane Thomas Holloway, B.S.E.E.; M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2016

Dedicated to my family.

Acknowledgments

I wish to thank the multitudes of people who helped me. First and

foremost my two advisors: Profs. Donald S. Fussell and Anne C. Elster who

have put up with me and my stubbornness and taught me the black arts of

academic research over what seems to be a lifetime. Next, the rest of my

committee: Profs. Craig Chase, Jacob Abraham, and Risto Miikkulainen

participating on the committee and providing valuable feedback.

I’d like to thank colleagues from the gaming industry whom include:

Royal McGraw for insight and details into how writers think about and test

storylines in production games. Rich Vogel for answering questions at the be-

ginning of my quest toward a PhD that allowed this research to move forward.

Matt Boudreaux for providing a developer’s perspective on how story a↵ects

game development. Jason Frueh, a former QA developer for BioWare who

helped refine and enlighten me to the software development life cycle of large

games as such Star Wars: The Old Republic.

I’d like to thank Nadeem Malik, Walid Kobrosly, and Fred Hudson (my

Master’s advisor) for pushing me down the path of becoming a PhD.

Last, but not least, my family for putting up with me during this

colossal undertaking.

v

Modeling and Formal Verification of Gaming Storylines

Publication No.

Lane Thomas Holloway, Ph.D.

The University of Texas at Austin, 2016

Supervisors: Donald Fussell
Anne C. Elster

Video games are becoming more and more interactive with increasingly

complex plots. These plots typically involve multiple parallel storylines that

may converge and diverge based on player actions. This may lead to situa-

tions that are inconsistent or impassable. Current techniques for planning and

testing game plots involve naive means such as text documents, spreadsheets,

and critical path testing. Recent academic research [1] [2] [3] examines the

design planning problems, but neglect testing and verification of the possible

plot lines. These complex plots have thus until now been handled inadequately

due to a lack of a formal methodology and tools to support them.

In this dissertation, we describe how we develop methods to 1) charac-

terize storylines (SChar), 2) define a story line description language (SDL), and

3) create a storyline verification tool based in formal verification techniques

(StoCk) that use our SDL as input. SChar (Storyline Characterization) help

game developers characterize the category of story line they are working on

vi

(e.g. linear, branching and plot) through a tool that give a set of guided ques-

tions. Our SDL allows its users to describe storylines in a consistent format

similar to how they reason about storylines, but in such a way that it can be

used for formal verification. StoCk accepts storylines, described in SDL, to be

formally verified using SPIN for errors. StoCk is also examined in three com-

mon use cases found in the gaming industry used as a tool 1) during storyline

creation 2) during quality assurance and 3) during storyline implementation.

The combination of SChar, SDL, and StoCk provides designers, writers, and

developers a novel methodology and tools to verify consistency in large and

complex game plots.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xii

List of Figures xiii

Chapter 1. Introduction 1

1.1 Motivation . 1

1.1.1 Do players care about engaging stories? 2

1.1.2 Managing Design Complexity 3

1.1.3 Preventing Inconsistent Game Plots 5

1.1.4 Game Development and Tooling 7

1.2 Research Questions . 7

1.3 Contributions . 8

1.4 Outline . 9

Chapter 2. Background and Related Work 11

2.1 Storyline Models . 11

2.1.1 Linear Storyline . 12

2.1.2 Branching and Foldback Storyline 13

2.1.3 Threaded Storyline . 14

2.1.4 Dynamic Hierarchical Storylines 17

2.1.5 Emergent Storyline . 19

2.2 Formal Verification . 20

2.2.1 Theorem Provers . 20

2.2.2 SAT Solvers . 23

2.2.3 Model Checking . 25

viii

2.3 How Storylines are Implemented in Current Games and Inter-
active Dramas . 28

2.3.1 Search-based Drama Management and Facade 28

2.3.2 AI Controlled Emergent Storylines 30

2.3.3 Triggers and Actions . 32

2.4 Software Development Process for Video Games 33

2.4.1 Software Development Life Cycle 36

Chapter 3. Modeling Techniques 41

3.1 Finite-State Machines . 41

3.2 Petri-nets . 45

3.3 Condensed Graphs . 47

3.4 UML State Machines . 51

3.5 SAGA - Story as an Acyclic Graph Assembly 52

Chapter 4. Categorizing and Describing Storylines 53

4.1 SChar - Storyline Characterization Framework 53

4.2 Our Storyline Description Language 56

4.2.1 Arc . 56

4.2.2 Plot Point . 57

4.2.3 Plot Object . 58

4.2.4 Conditions . 59

4.2.5 Branch . 60

4.2.6 Quest . 60

4.2.7 Side Quests . 62

4.2.8 Atomic Sections . 63

4.3 Implementation Issues . 64

4.4 SDL Output . 68

Chapter 5. StoCk: Storyline Checker 71

5.1 Formal Verification Methods and Their Trade-O↵s 72

5.2 Direct Finite State Machines Representation versus Leveraging
Pomelea’s FSM Abstractions 74

5.2.1 Using a Non-deterministic Finite State Machine 74

ix

5.2.2 Leveraging Promela’s Abstractions 79

5.2.3 Analysis . 80

5.3 Implementation of StoCk . 80

5.4 Running StoCk . 84

5.5 Returning Results to the User 85

Chapter 6. StoCk Case Studies 86

6.1 Quality Assurance for Writers 87

6.1.1 Where the Data Was Obtained 87

6.1.2 How the SDL Files Were Created 88

6.1.3 Findings . 90

6.2 Quality Assurance for Implementation 95

6.2.1 Where the Data was Obtained 95

6.2.2 SDL File Creation . 96

6.2.3 Findings . 96

6.3 Fallout 3 Quest Developer . 100

6.3.1 Where Data was Obtained 100

6.3.2 SDL File Creation . 100

6.3.3 Findings . 101

Chapter 7. Conclusion and Future Work 109

7.1 Future Work . 110

Appendices 112

Appendix A. Exploratory Survey 113

Appendix B. History of Storytelling 115

B.1 Live Action Storytelling . 115

B.1.1 Traditional Storytelling 115

B.1.2 Improvisational Theater 116

B.1.3 Tabletop Role-Playing 116

B.1.4 Live-Action Role-Playing 117

B.2 Computational Story Creation 117

x

B.2.1 TALESPIN . 118

B.2.2 MINSTREL . 118

B.2.3 BRUTUS . 119

B.3 From Computation Story Creation to Interactive Drama . . . 119

B.3.1 Interactive Storytelling System 119

Appendix C. Video Game Ontology 120

C.1 Gameplay Points-of-View . 120

C.2 Number of Players . 122

C.3 Game Types . 123

C.3.1 Action Games . 123

C.3.2 Adventure Games . 124

C.3.3 Puzzle Games . 125

C.3.4 Role Playing Games . 125

C.3.5 Simulation Games . 126

C.3.6 Sports Games . 126

C.3.7 Strategy . 127

C.3.8 Hybrids . 127

C.4 Examples of Number-of-players, Game types and plots 128

C.4.1 Single and multi-player action linear plot 128

C.4.2 Single player RPG linear plot 129

C.4.3 Single player Hybrid (RPG/Action) sandbox plot 129

C.4.4 Massively Multiplayer RPG branching and foldback plot 130

Bibliography 131

Index 138

Vita 139

xi

List of Tables

1.1 Research Questions to Contributions Matrix 9

2.1 Recent games and their story line models 12

2.2 Development Plan Goals Matrix 37

4.1 Categorized Games . 56

6.1 Quests with Interactions . 91

6.2 Fallout 3 Quests and Averge Time to Validate 94

xii

List of Figures

2.1 Linear Plot Example . 13

2.2 Branching and Foldback Storyline Example 15

2.3 A Threaded Storyline Example 16

2.4 A Dynamic Hierarchical Example 18

2.5 Example of Search Based Drama Management Algorithm based
on [77] . 29

2.6 Example Facade Graph based on [80] 31

3.1 Example Finite State Machine 42

3.2 Example Petri-net . 45

3.3 Example Condensed Graph 49

4.1 SChar Decision Flowchart . 54

4.2 Example Arc and Plot Point 57

4.3 Example Plot Object and Condition 59

4.4 Example Branch . 60

4.5 Example Parallel Quest . 61

4.6 Example Serial Quest . 62

4.7 Example Side Quest . 63

4.8 Example Atomic Section . 63

5.1 Parallel Quest Example modeled in the SDL 76

5.2 Parallel Quest Example as an NDFSM 77

5.3 Error message for FSM . 78

5.4 Error Trail for FSM . 79

6.1 Fallout 3 Storyline based on Guides and FAQs 89

6.2 Fallout 3 Quests as Implemented 97

6.3 Fallout 3 Quests Assumming Common Glitches 99

xiii

6.4 Intial Three Dog’s Ultimate Stash Quest 101

6.5 Second Attempt of Three Dog’s Ultimate Stash Quest 102

6.6 Player locating note to start quest 103

6.7 Player beginning quest . 103

6.8 Contents of note . 104

6.9 Asking Three Dog about the weapons stash 104

6.10 Three Dog’s Response to the question 105

6.11 Asking Doctor Li about the weapons stash 105

6.12 Doctor Li’s Response to the question 106

6.13 The player about to pick up Three Dog’s Ultimate Stash note 106

6.14 The player completing the quest 107

6.15 Contents of Three Dog’s Ultimate Stash Log 107

xiv

Chapter 1

Introduction

In the past five years, the video game market has grown from $65 billion

dollars in total revenue to $83.6 billion dollars in 2014 with a 2015 estimate

exceeding $100 billion dollars1 2. The cost of producing a video game is on the

order of $100 million and involves teams of over 100 (sometimes up to 600)

developers, artists, managers, and marketers 3 4. From the mainframes of the

past to the video game consoles of today, games have always taken advantage

of computational power for improved, refined, and realistic graphics, physics,

and gameplay; however, the storylines have been left in the dark ages [4].

1.1 Motivation

The advent of massively-multiplayer online (MMO) games, the evo-

lution of role-playing games, and the addition of role-playing elements into

often linear storylines has spawned larger complex stories and worlds involv-

1http://www.statista.com/statistics/278181/video-games-revenue-

worldwide-from-2012-to-2015-by-source/
2http://www.newzoo.com/insights/us-and-china-take-half-of-113bn-games-

market-in-2018/
3http://gamers.blogs.challenges.fr/archive/2013/06/18/watch-dogs-le-

tres-gros-budget-d-ubisoft.html
4http://documents.latimes.com/bungie-activision-contract/

1

ing multiple paths and choices to complete the story. However, these advances

are often so complex that the game designers cannot possibly verify all pos-

sible story lines given the lack-luster tools they currently have available. My

conversations with Mr. Rich Vogel, the former producer of Star Wars: The

Knights of the Old Republic MMO for BioWare, inspired this work. He and

the members of the BioWare Mass E↵ect design team along with Mr. Royal

McGraw, a producer and writer at Pixelberry Studios, have all confirmed their

designers currently lack the ability to manage, understand the complexity, and

verify correctness of the plots they design.

1.1.1 Do players care about engaging stories?

As games such as Mass E↵ect, The Witcher 3, and Fallout 4 have

shown, companies are attempting to push the boundaries of interactivity in

various ways: storyline, world interactivity, and scale of the world where the

game takes place. However, this does not answer the question if the players

themselves like or enjoy these advances. To confirm this, we created a survey

that asked respondents about the current state of video games, the games

they enjoy playing, and what they would think of playing games that are

more dynamic in the storylines to validate the trends seen by these games.

Over two weeks, the survey (see Appendix A) received 603 responses

from across the United States and a few other countries. Action, adventure,

and role-playing games were the top three game types chosen and 86% of the

respondents considered story to be an important part of the game experience.

2

The survey di↵erentiated between static storylines and dynamic (user interac-

tive) storylines; 95% responded that they would play a game with a dynamic

storyline and 84% said they would prefer playing a game with a dynamic

storyline to one with a static storyline.

When asked why they would prefer a dynamic storyline to a static

storyline, users responded with three main ideas: first, dynamic storylines

can allow for a more engaging experience; secondly, there is more to discover

and more replayability to an interactive game; thirdly, dynamic storylines can

allow players to think outside the box and allow creative thinking on how to

solve problems they are confronted with during the course of the game.

Our ten questions revealed that players want more interactive stories

with the ability to truly feel that their interactions meant something to the

storyline. They validate the motivation behind the research and exhibit the

need for tools to support the creation of such storylines. Tackling the problem

facing the game developers, designers, and writers can be divided into three

goals: managing design complexity, preventing inconsistencies in game plots,

and integrating tools into the software development life cycle.

1.1.2 Managing Design Complexity

Tooling and robust methodologies are used by both hardware and soft-

ware teams to manage the complexities of their designs. There are a few

di↵erences between the two domains in general.

In hardware design, complexity is managed using methodology and

3

automated tools. The methodology pushes for well-defined subsystems and

well-known constraints on these systems. The automated testing tools can

then verify the sub-systems and guarantee working sub-systems. However,

full-system verification is still a major issue [5].

Software, on the other hand, has methodology but very limited tools.

The use of formal verification for a piece of software is often impossible and

various additional tools are used in their place. Software often lacks well-

defined sub-systems and is not as easily constrained and understood as the

hardware domain [6] [7]. Video games have large amounts of variability based

upon their game type, hardware, human interactions, and stories [8]. Some of

the variability is controlled through the use of game engines. However, there

is still a large amount of complexity and variability associated with each game

[9].

The game designer’s methods and tools attempt to address this problem

but are still failing [10]. In order for designers to contain the complexity,

they implement ideas such as foldbacks and instance dungeons within the

game. They also attempt to track all the storylines using Microsoft Excel

and Microsoft Word to design, model, and version their stories and conditions

for storylines to branch or open new lines of dialog for users (BioWare PAX

Panel, pers. comm.). They rely on the typical software engineering processes

and quality assurance (QA) testing the critical path of the storylines (R. Vogel,

pers. comm.). The designers lack the proper tooling to master the complexity

of non-trivial storylines and worlds in which the games occur.

4

1.1.3 Preventing Inconsistent Game Plots

The game industry is including more user interactivity within their

stories, which can cause issues when the player does something unexpected.

On a small scale or a story with very little branching these problems can be

caught with typical software processes, such as quality assurance and unit

testing although many inconsistencies are still missed.

An example of an inconsistent plot can be seen in the well-received

Action-Role Playing Game, Star Wars: Knights of the Old Republic5 6 7. It

exhibits quite a few instances but an encounter that occurs early on in the

game is representative of multiple inconsistencies found throughout the game.

As players arrive on a new planet they are warned that two prominent

families in the area (the Sandrals and the Matales) are feuding, which might

overflow into a violent conflict. When speaking to the head of the Sandral

estate, Nurik, he relates his sadness over the disappearance of the young Matale

heir, Shen; however, he claims to know nothing about the event. Nurik also

states his own son, Casus, has been missing for some time and speculates the

two might have met similar fates. Nurik then dismisses the player.

Shortly thereafter, the user meets Nurik’s daughter, Rahasia. Rahasia

reveals that her father has kidnapped Shen because she and Shen were in love.

5BioWare, Star Wars: Knights of the Old Republic, Console, 2003.
6https://grandtextauto.soe.ucsc.edu/2008/02/06/ep-33-an-example-star-

wars-knights-of-the-old-republic/
7http://www.metacritic.com/game/xbox/star-wars-knights-of-the-old-

republic

5

The player receives a key to rescue Shen. Once Shen is rescued, he refuses to

leave without Rahasia, which leads to a confrontation between both families’

patriarchs and their battle droids. After some discussion, the two lovers run

o↵ to safety.

Later, while exploring the planet, the player comes upon the Matale

compound where the guard droid grants the player an audience with the pa-

triarch (who had last watched his son, Shen, elope with Rahasia Sandral). He

then asks the player to find his son who he believes was kidnapped by the

Sandral family.

A second example occurs afterward in the samequest. As the player is

wandering the world, he happens upon the body of Casus Sandral, who was

killed by wild animals in a dangerous area. Heading back to the Sandral estate

with Casus’ diary, the player finds the compound shut down entirely with no

possibility of completing the quest.

These two inconsistencies occurred because the designers assumed the

player would experience the world in a particular sequence and did not plan

any deviations. There are even more examples within the game Knights of the

Old Republic, and it isn’t from poor work. The inability to track and test all

the interactions is a problem as the size, interactivity, and scale of the stories

increase.

6

1.1.4 Game Development and Tooling

Game development is a large process often consisting of many teams

with disparate skill sets. The last goal is to create a model and tools that can

be used by everyone and not just someone with the knowledge of programming,

computer science or engineering. This means creating a plot model that can

succinctly model all possible storylines and be understandable by all but also

translatable into another form for verification. Next, there needs to be a tool

that can fit into the typical software development lifecycle used by teams.

1.2 Research Questions

Our research questions are as follows:

• RQ1: Can we model storylines generically used in industry and aca-

demics?

– RQ1.1: What are the defining characteristics of each storyline type?

– RQ1.2: What characteristics and concepts can be used in a domain

specific language or model?

• RQ2: Can an automated system be made that prevents inconsistent

storylines?

– RQ2.1: What approach makes the most sense?

– RQ2.2: How do we transform a model for understanding storylines

onto it?

7

– RQ2.3: Can the system fit into the software development lifecycle

used in industry?

1.3 Contributions

The goals of this dissertation are to show that formal verification of

video game plots can prevent inconsistencies in the plots, manage design com-

plexity by integrating into the software development process, and can be done

using a model game designers and developers can understand. Speaking with

many writers, designers, quality assurance managers, testers, and developers

in the industry about this problem, they all said it could not be solved and

what they are doing is the best way to mitigate the problem. After learn-

ing of this proposed solution, they were very interested to learn more and see

this solution come to fruition. To allow designers to create larger and more

complex worlds, we propose a tool that applies formal verification to the do-

main of game worlds and storylines. The workflow is to translate stories into

a graph then validate the states and transitions. This tool can be used at

multiple levels: with the designers themselves and within the software devel-

opment process handled by developers and quality assurance. Once complete,

we believe stories can be dramatically more engaging, interactive, and grander

in scale.

The proposal addresses the inconsistent state problems found in current

and future games. We propose the following contributions:

8

Table 1.1: Research Questions to Contributions Matrix
RQ1.1 RQ1.2 RQ2.1 RQ2.2 RQ2.3

RC1 X
RC2 X X
RC3 X
RC4 X X X

• RC1: A storyline categorization framework to categorize storyline type

• RC2: Map interactive game storylines and worlds to formal verification

• RC3: Define an abstract game plot model that can be used and under-

stood by the layperson for storyline verification

• RC4: Create a working embodiment of the system

1.4 Outline

The rest of this dissertation is outlined as follows:

• Chapter 2: provides background information on storyline models and

implementations, formal verification techniques, and game development

• Chapter 3: provides background information on modeling techniques

• Chapter 4: introduces our storyline characterization framework, story-

line description language, and case studies on implementing our storyline

description language in a formal verification program

• Chapter 5: discusses the implementation of StoCk

9

• Chapter 6: provides three case studies that are typical game develop-

ment tasks

• Chapter 7: summarizes the dissertation and discusses potential future

work

• Appendix A: the exploratory survey concerning games with storylines

• Appendix B: the history of storytelling

• Appendix C: provides an ontology of video games

10

Chapter 2

Background and Related Work

This dissertation addresses the challenges of preventing inconsistent

storylines in narrative-driven games and preventing inconsistent storylines. In

this chapter we highlight the main disparate subjects this thesis is built on:

storyline models, formal verification, the typical software development lifecy-

cle, and how storylines are implemented in practice. Chapter 3 will discuss

the most relevant modeling techniques.

2.1 Storyline Models

Given the multitude of ways in which to implement storylines, they

can be placed into roughly a few storyline models. Much has changed in video

games since the first flashing screen of Pong1 appeared over 40 years ago; the

interactive nature of games allows players varied stories that can be as shallow

or as deep as they would like. The storyline models presented are refinements

and additions based on storyline models discussed in previous works [13], [14],

[15], [16], [4], and storytelling (see Appendix B). The table below, Table 2.1,

shows some of the most popular games in recent history with their game style

1Atari Inc., Pong, Arcade, 1972.

11

Table 2.1: Recent games and their story line models
Game Release Year Style Model
Final Fan-
tasy XIII

2010 RPG Linear

Half-Life 2 2004 FPS Linear
DooM 1993 FPS Linear
Super
Mario
Bros.

1985 Platformer Linear

Zork 1980 Puzzle Branching and Foldback
Fallout 3 2008 Action RPG Threaded
Grand
Theft
Auto V

2013 Action-adventure Dynamic Hierarchical

Sim City 1989 Simulation Emergent
Gran Tur-
ismo 5

2010 Racing Emergent

(see Appendix C for descriptions of game styles) and storyline models.

2.1.1 Linear Storyline

Linear storyline representation is the simplest to understand. It is like

reading a book: there is a single plot line and the player plays through the

story from beginning to end. An abstracted linear plot figure can be seen

in Figure 2.1; each node can be thought of as a plot point and the edges

as the players path to the next plot point. The story never branches and is

straightforward. There can be goals and sub-goals within the game, such as

“press all switches to open a door,” however, the player cannot continue the

story without completing the task given to them.

12

Figure 2.1: Linear Plot Example

Linear storyline games are some of the most popular even today. Final

Fantasy2 and Lost Odyssey3 are examples of games with a linear story line

in the role-playing games (RPGs) genre where the player controls multiple

characters within a group that travel together along a linear story. Half-life4,

Doom5, and Quake6 are popular first person shooter action games that have

linear stories. Finally, some of the oldest style of games are the side-scrolling

platformers with linear storylines such as: R-Type7, Streets of Rage8, and

Super Mario Brothers9.

2.1.2 Branching and Foldback Storyline

Branching schemes are the next logical extension to the linear storyline.

These are analogous to the Choose Your Own Adventure style of books. At

points in the story, the players are allowed to make a choice that changes the

2Square Enix, Final Fantasy, Console, 1987.
3Mistwalker, Lost Odyssey, Console, 2008.
4Valve Software, Half-Life, CD-ROM, 1998.
5iD Software, DooM, Floppy, 1993.
6iD Software, Quake, CD-ROM, 1996.
7IREM Software, R-Type, Arcade, 1987.
8SEGA, Streets of Rage, Console, 1991.
9Nintendo Entertainment, Super Mario Brothers, Console, 1985.

13

story. In a branching story, the tree becomes larger and larger as the choices

expand [13]. A foldback scheme works to contain the expansion of the tree

by allowing various paths to join at a later point in the game. An example of

branching and foldback representation can be seen in Figure 2.2. In these story

graphs, all transitions from one plot event to another are explicit. There are

goals and sub-goals that can contain multiple choices and, depending upon the

users choice, the next plot point can change. The foldback of the plot would

be when the branches merge at a common plot point in the future. The best

known example of branching storyline games are the Zork series10 where the

player controls a nameless adventurer looking for treasure in a labyrinth.

2.1.3 Threaded Storyline

The threaded storyline involves multiple paths that develop on their

own regardless of what else is happening within the game. As the game is

nearing the end of the story, threads converge to create the final events. Often,

there is a single thread that represents the main story and additional threads

that constitute additional quests the player can choose to complete. These

additional threads are often called side-quests since they do not a↵ect the

main story and are not necessary for the completion of the game; however,

completing them can change the game in not-so-subtle ways. Figure 2.3 shows

a possible threaded storyline. The main story is the center linear path with

side-quests that can occur after the second and third plot points.

10Infocom, Zork, Disk, 1980.

14

Figure 2.2: Branching and Foldback Storyline Example

15

Figure 2.3: A Threaded Storyline Example

16

There are many threaded storyline style games that are very popular

and some recent examples include the following: Fallout11, The Elder Scrolls12,

and Discworld Noir 13. In each of the games, the player is given a simple

backstory and a starting point. From this starting point missions and quests

appear for the player to complete. The player can complete the missions

and quests and continue the storyline, or they are free at any point to stop

completing the quests and interact with the world around them until they wish

to continue the story.

2.1.4 Dynamic Hierarchical Storylines

Dynamic hierarchical storylines are an extension of threaded storylines

in that there is an abstraction to group certain story elements together to

help manage some of the story complexity. Each level of the hierarchy is

usually small and manageable, but still make up a larger complex storyline

when assembled. The nesting of sections could be very deep, but in practice

it is normally only two levels deep. Figure 2.4 shows a possible two level

dynamic hierarchical game. In the academic space, SBDM and Facade would

be considered a dynamic hierarchical storyline.

Assassin’s Creed14 and Grand Theft Auto15 are two popular games that

use a dynamic hierarchical storyline. As certain quests are completed new

11Interplay, Fallout, CD-ROM, 1997.
12Bethesda Softworks, The Elder Scrolls, Disk, 1994.
13Perfect Entertainment, Discworld Noir, CD-ROM, 1999.
14Ubisoft, Assassin’s Creed, Console, 2007.
15Rockstar Games, Grand Theft Auto, Disk, 1997.

17

Figure 2.4: A Dynamic Hierarchical Example

18

areas of the world are opened up and new quests are added to the game for

the user to complete. Dragon Age: Origins16 also uses this style but in a

di↵erent manner: at given points in the game, the user is given the choice as

to which city they travel to, and when they arrive at the city, new quests are

provided to the player.

2.1.5 Emergent Storyline

In emergent storyline games, there is little or no back-story and often

no predefined quests or goals. The player is interacting within a simulation;

the best example of this style of game is Sim City17. The starting state of the

game is a blank world and the rules of the simulation. The rules or goals of the

game can change as the users meet certain requirements. Other games with

emergent storylines are racing games such as Gran Turismo18; puzzle games

like Tetris19, Columns20, or Candy Crush Saga21; and arcade games such as

Asteroids22, Pong23, and Q*bert24. In the academic research space, OPIATE

and PaSSAGE are emergent storylines since their storylines are generated as

a response to the how the user interacts with the world and characters.

16BioWare, Dragon Age: Origins, CD-ROM, 2009.
17Maxis, Simcity, Disk, 1989.
18Polyphony Digital, Gran Turismo, Console, 1997.
19Nintendo, Tetris, Console, 1984.
20SEGA, Columns, Console, 1990.
21King, Candy Crush Saga, Internet, 2012.
22Atari, Asteroids, Arcade, 1979.
23Atari Inc., Pong, Arcade, 1972.
24Gottlieb, Q*bert, Arcade, 1982.

19

2.2 Formal Verification

Formal verification is the process of determining the correctness of pro-

grams or systems using mathematical constructs. The most common method-

ologies for formal verification that are possible in our use case are: theorem

provers, SAT solvers, and model checking.

2.2.1 Theorem Provers

Theorem provers are programs that attempt to prove mathematical

theorems by derivating sound conclusions from a set of facts. These systems

can be human-directed or automated [39]; however, in the confines of the

proposed research, only automated techniques that operate on first-order logic

and are not covered by SAT solvers or model checking, which are covered in

later sections will be described.

First-Order Resolution

First-order resolution with unification is one of the oldest techniques

of theorem proving proposed by Robinson in 1965 [40]. The resolution prin-

ciple works on sets of first-order logic equations by combining the steps of

performing substitutions of terms for variables and applying truth-functional

analysis to the resulting equations into a single step. Continually applying the

resolution rule to a set of propositional statements and a statement to verify

creates and resolves new statements until a determination can be made about

the statement under test. This technique can be automated using a search

20

algorithm following a few simple steps. First, all axioms and the negation of

the statement to be proved are conjunctively connected. The resulting state-

ment is transformed into conjunctive normal form where a set of clauses is

formed. The resolution rule is then continually applied until an empty clause

is derived or there are no new clauses. If there is an empty clause, the original

statement to be proven is true; or if no empty clause can be derived and there

are no new clauses to which to apply the resolution rule then the statement

to be proven is invalid. First order resolution has a few issues that can occur

such as Godels incompleteness theorems, the halting problem, an explosion of

generated clauses, and the possibility of looping in an infinite branch without

finding a contradiction[41] [42].

Model Elimination

Model elimination [43] [44] is another technique for theorem proving. It

was designed to prevent the explosion of created clauses that can occur through

resolution by attempting to prune clauses that will not result in verification of

the statement under test. Model elimination attempts to lessen the number of

candidate statements created by searching through partially false statements

already contained within the clauses. From these partially false statements, it

further searches these for a completely false statement by refining the partially

false statements. However, like the resolution procedure it faces the same

problems, although the explosions of generated clauses does not expand as

rapidly. Model elimination is the basis for the Selective Linear Definite clause

21

resolution [45] procedure found within Prolog.

Lean Theorem Proving

Another technique to solve theorems, lean theorem proving, uses the

specifications and abilities of the implementing language to create theorem

provers in a minimal amount of code [46]. These are often implemented using

Prolog due to its grounding in first-order logic and backtracking engine and

can be implemented in a few lines of code. The issues for lean theorem provers

change based upon the language in which it is implemented.

Analytic Tableaux

Analytic tableaux [47] [48] methods continually apply a set of rules to

a formula and the resultant sub-formulas creating a tree-like structure that

determines the satisfiability of a given first-order logic formula. A branch on

the tableaux is considered closed if a path contains a literal and its negation.

If all branches are closed then the formula is not satisfiable; otherwise it can

be satisfied. An issue that can arise with analytic tableaux methods is that

certain tableaus cannot be closed even when they are non-satisfiable when

handling first-order logic.

Superposition Calculus

Superposition calculus is considered state-of-the-art for many theorem

provers [49] [50] [51] [52] and like the other methods described, it is a set of

22

operators operating on first-order logic. However, it utilizes Knuth-Bendix

completion in addition to first-order resolution [53] [54] [55]. The operators

used are: deduction, deletion, and simplification. Deduction adds clauses that

logically follow the given clauses, deletion removes clauses that are composites

of other clauses, and simplification allows for a subset of clauses to be created

from multiple sets of clauses. When applied programmatically it is refutation-

complete, meaning that given unlimited resources and a fair derivation strategy

every unsatisfiable clause set can eventually be proven unsatisfiable.

2.2.2 SAT Solvers

SAT Solvers, or satisfiability solvers, are programs that determine if the

variables of a boolean formula can be assigned in a way to evaluate to true.

There are three main approaches for modern SAT solvers: brute-force, look-

ahead, and conflict-driven. Brute-force and look-ahead solvers use a breadth-

first search algorithm, normally based on the DPLL algorithm, as their base;

whereas, conflict-driven SAT solvers use a depth-first search.

Brute Force

Brute force is the most näıve solution, and grows exponentially as the

SAT equation increases in size. Brute force creates the entire truth table for

the equation and attempts to find the first solution that is true. This attempt

at solving SAT problems is unrealistic because of the computational time and

is easily surpassed by the look-ahead and conflict-driven methods discussed

23

next.

Look-Ahead

DPLL, an acronym for Davis-Putnam-Logemann-Loveland [56] and the

basis for two methods of SAT solving, is a backtracking-based search algorithm

for determining the satisfiability of propositional logic in conjunctive normal

form as an extension to an algorithm by Davis and Putnam [57]. The algo-

rithm runs by choosing a literal, assigning a truth value to it, simplifying the

formula, and recursively checking if the simplified formula is satisfiable. If not,

the same recursive check is done with the opposite truth value. There are addi-

tional rules that enhance the normal backtracking algorithm: unit propagation

and pure literal elimination. Unit propagation occurs when there is a single

unassigned literal and there is only one choice to make the clause true. Pure

literal elimination occurs when a propositional variable only has one polarity

to make all clauses containing them true. Brute-force algorithms complete the

tree näıvely looking for a solution, whereas look-ahead algorithms use heuris-

tics to drive the search down branches that are more probable to have solutions

[58].

Conflict-Driven

The third method, conflict-driven SAT solving, which is currently the

most successful SAT solving architecture, takes a di↵erent approach. It per-

forms a random depth-first search and when a conflict occurs a heuristic is

24

invoked and a backjump is performed to an assignment further up the depth-

first search where the depth-first search restarts. Some of the most popular

conflict-driven SAT solvers are: zCha↵ [59], Minisat [60], and Rsat [61].

2.2.3 Model Checking

Model checking, a field of research pioneered by [62] [63] and [64], is

the act of proving correctness of a system or algorithm with respect to a

set of properties using formal mathematical methods. Some areas in which

formal verification is used are protocol, software, and hardware validation

and verification [6]. Software applications and systems, however, present a

problem to current model checking techniques. The large and often times

unconstrained, state-space make verifying fully a piece of software within a

development time-line impossible [65].

Compared to theorem provers, model checking requires no human rea-

soning; once a model is to be created, it creates a decidable problem [66].

Current research in model checking has focused on the state-space explosion

problem and there has been a large improvement in the past years using new

techniques such as bitstate hashing, BDD, on-the-fly, compositional, and par-

tial order techniques. These developments reduce the memory requirements

and allow the model checking software to move from the realm of toy to real-life

tool.

25

Bitstate Hashing

Bitstate hashing is a technique used to increase the quality of verifi-

cation by reachability analyses that normally fail due to their size. It can

perform high coverage verification within a memory space that may be orders

of magnitude smaller than what is needed for an exhaustive verification. Each

state is represented by a number and is then passed to a hash function whose

result is then passed to a bit field to store if the state has been checked. There

are trade-o↵s that must be made due to hash-collisions in the hashing func-

tion, the size of the memory in which to operate, and the number of states

that must be checked [67].

Binary Decision Diagrams

Another method of reducing memory usage is to represent Boolean

functions e�ciently using ordered binary decision diagrams (BDDs). Boolean

functions are turned into binary trees rooted at a given variable and having

other nodes as their leaves. At the bottom of the tree are terminal nodes

that specify the output of the function. Then two methods are applied to the

binary trees: first, all terminal nodes are merged and second, all isomorphic

subgraphs are merged. The reduced binary decision diagrams are functionally

equivalent to the original function, but can often be many times smaller than

the original representation [68] [69].

26

On-the-Fly

The next technique used in reachability analysis is on-the-fly algo-

rithms. This style of algorithm only expand the state-space as needed and

reduce the amount of randomly accessed memory used and instead use sequen-

tially accessed memory such as stacks. The largest problem with on-the-fly

algorithms is that they do not always check the entire state-space, meaning

that not every state is checked [70].

Compositional

Compositional algorithms view the problem as a composition of smaller

finite-state machines such that only FSMs that are needed are kept in memory

at one time. As these smaller combinations are verified their results can be used

within the larger machine. It decouples independent states and collapses states

that behave similarly. Additionally, in some cases the verification questions

can be answered without involving all of the machines [71] [72].

Partial Order Reduction

Partial order reduction exploits the fact that concurrently executed

transitions can result in the same state when executed in di↵erent orders. The

algorithms determine a representative subset of transitions for the concurrently

executed transitions to prevent the entire state-space having to be explored

[73] [74] [75].

27

2.3 How Storylines are Implemented in Current Games
and Interactive Dramas

Video games and interactive dramas implement storylines models using

various techniques. These are driven by constraints of time, scope, and goals

of the game. Examined below is a cross section of interactive storytelling

and real-time storyline generation. Interactive storytelling attempts to create

meaningful stories based upon user inputs for dramatic purposes. Drama is

achieved by maximizing metrics either as an overall value or as a local value.

The initial design of an interactive storytelling system was by Laurel [76] and

the first attempt at such a system was the search-based drama management

work by Weyhrauch. Real-time storylines are those created by OPIATE and

PaSSAGE which use an underlying theory such as Propp’s Morphology for

fairy tales or the hero’s journey to create a never-ending storyline based on

the methodology.

2.3.1 Search-based Drama Management and Facade

Search-based drama management (SBDM) was the first drama manager

used to control a story and is based on two fundamental assumptions: an

evaluation function can encode an author’s aesthetic and a search mechanism

can be used e↵ectively in guiding a storyline [77]. Weyhrauch proved the two

assumptions in his dissertation with the simple interactive game, Tea for Three.

The drama manager (in this research, MOE) uses these two assumptions to

place values upon plot points within the plot by abstracting the plot into

28

Figure 2.5: Example of Search Based Drama Management Algorithm based
on [77]

a series of user and drama manager moves. The drama manager views the

story as an adversarial game with the user and drama manager making moves

toward an end game. The algorithm is a modified minimax algorithm used in

many checkers, chess, and tic-tac-toe games to guide the story. The evaluation

function uses multiple factors that each have their own ideal graph for the story.

Figure 2.5 shows an example of each factor of the algorithm. SBDM has been

examined and extended by various research groups [78], [79] and found to be

lacking in usefulness. However, the overall method was refined in Facade.

Mateas’ dissertation introduced Facade [80], the first fully implemented

interactive drama system. It o↵ers a complete, real-time dramatic experience

with a highly interactive, character-driven story. Facade places the user in the

role of a friend of Grace and Trip who have invited the player over to dinner. It

becomes apparent that Grace and Trip’s marriage is crumbling. The user can

29

interact with Grace and Trip through dialog and simple actions, although the

emphasis is on dialog. Facade’s story is broken down into beats, that are the

smallest bit of drama that causes a change in dramatic tension and a change in

a character. The beats tightly integrate the story and actions for the artificial

intelligence (AI) controlled characters. Unlike SBDM, Facade views each beat

as an individual object having a set of conditions that determine when it can

be enacted, as opposed to a set of moves to be taken by the player and the

AI director. A director agent coordinates the behavior of the AI characters

with the beat enacted and makes the decisions on which beat to enact next by

attempting to have the story follow an ideal dramatic tension graph using the

beats available to it at a given time. Figure 2.6 shows how a completed story

might look when the ideal line versus the actual line are graphed. Magerko

[81] notes some of Facade’s problems; the user can provide non-sequitur inputs

and the story will still go toward a logical conclusion, ignoring the users input.

Its scalability is poor because of the high entanglement between AI characters,

plot associated with the characters, and the authorial burden to generate the

numerous beats to create a story.

2.3.2 AI Controlled Emergent Storylines

Another interactive storytelling approach is introduced by Fairclough’s

research (OPIATE), which is di↵erent from both SBDM and Facade because

it has no notion of overall story. It uses a database of templated encounters

to create an emergent story for the user [82]. These encounters are based

30

Figure 2.6: Example Facade Graph based on [80]

upon Propp’s 31 functions and five character archetypes found in his analysis

of Russian folk tales [83]. The virtual world contains non-player characters

(NPCs), items and di↵erent settings. The NPCs have an array of likeness

variables that describe how the NPCs perceive the user (sometimes called

Player Character or PC) and the other characters. The NPCs also have a

simple vocabulary that allows them to gossip with one another and a↵ect

each other’s perceptions of the other characters. During play, a case-based

reasoning system chooses an encounter based upon the state of the characters

and items within the world. The reasoner compares the state of the world

with its database to give the player a quest.

Bulitko, et al. introduces PaSSAGE [84], which, like OPIATE, has

31

an emergent story line. Users progress through the world interacting with

characters and completing encounters in order to be given a new one. Unlike

OPIATE, the next encounter given to the user is based upon a user model and

the position in the hero’s journey that the user has just completed, instead of

the characters and items within the world as in OPIATE. The metrics within

PaSSAGE’s user model are then matched against the encounters stored within

the encounter database and the encounter with the best match is selected. If

the virtual world lacks NPCs that fit conditions for the encounter, the en-

gine continues to scan the world until the conditions are met, and then the

encounter is started.

2.3.3 Triggers and Actions

In the video game industry, game storylines are most often implemented

by decomposing the storyline into a series of triggers with optional gating

functions and actions that change behaviors of characters and global state as

the storyline progresses. Fallout 3 and The Elder Scrolls V: Skyrim both have

threaded storylines. These storylines are decomposed into a series of triggers

that activate when the user crosses a boundary, examines or picks up an object,

or talks with another character within the world. These triggers then change

the state of a global object that a↵ects the game world in some way.

32

2.4 Software Development Process for Video Games

The creation of a video game can be split into three building blocks:

story development and writing, art, and coding. All of these building blocks

are held together by a software development process.

Story Development and Writing

The writers of the story team will define the world that the player will

interact with in the final game. This includes creating and developing the

storyline and dialog within the game. As mentioned earlier, the tools used

by writers are often simplistic such as Microsoft Word and Excel and text

documents shared on a company wiki page. The writers will also use the game

development toolkits provided by the developers (a.k.a. coders) e.g., GECK

or a scripting language that defines the dialog (pers. comm. Royal McGraw,

Pixelberry Studios).

Art

The artwork is needed throughout the game development process. With-

out the artwork, there would nothing interesting to display on the screen.

Artists use a variety of art programs depending on the style of game being

created. However, drawing and animation tools such as Maya25, zBrush26,

25http://www.autodesk.com/products/maya/overview
26https://pixologic.com/

33

and Photoshop27 are standard tools seen in the industry28. These tools are

used to create and edit the artwork as well as handle modeling, animation,

and applying texture to the models. The artwork is thus placed into the game

in order to be tested and verified during the development process.

Coding

The creation of video games often have three levels of code: scripting,

gameplay, and engine code. Scripting and gameplay code define the high-level

behavior of the game and the game engine provides the building blocks for

them to work.

Scripting The scripting code is often the most accessible and used

by the majority of developers and writers involved to create what most peo-

ple consider the game. This often includes anything related to the storyline

such as: narration, conversation, and quests. Narrative-driven games, such

as point-and-click adventure games and many mobile games are written us-

ing scripting languages such as Lua29, JavaScript30, or a custom language like

GECK Script31 used in Fallout 3 that abstract the low-level hardware inter-

actions such as rendering images on the screen and higher level functions such

as object clipping and physics from becoming a concern.

27http://www.adobe.com/products/photoshop.html
28http://travestychandler.kinja.com/video-game-artists-what-do-i-use-

821327309
29http://www.lua.org/
30http://www.ecmascript.org/
31http://geck.bethsoft.com/index.php?title=Scripting_for_Beginners

34

Gameplay A level below the scripting code is the gameplay code that

often handles gameplay mechanics such as controlling non-player characters

(NPCs), populating the game world, and handling collision detection. Unlike

the scripting code, gameplay code could be written in a programming language

such as C. As an example, Unreal32 allows the use of C, C++, and their own

scripting language called Blueprints.

Game Engine The game engine handles input and output, physics,

and the low level processing for the game to run on the given device. Game

engines often come with most of the related tools needed to create a game

and provide a game creation pipeline to handle managing art assets, code,

and deployment. Unity3D33 and Unreal come bundled with visual tools that

can act as an integrated development environment (IDE) for new game de-

velopment. Playmaker is used by Unity3D to provide a visual editor for AI

behavior, animation, interactive objects, cut scenes, prototypes, and interac-

tive walkthroughs. It provides an environment that novices can quickly grasp

but also provides the ability to dig deeper into the scripting language as neces-

sary for more advanced users. The Unreal engine provides a user interface for

users to create games with the system along with the ability to create games

for a variety of platforms all using one workflow. Gamemaker: Studio34 and

RPGMaker 35 are tools that provide easier interfaces and the ability to create

32https://www.unrealengine.com/what-is-unreal-engine-4
33https://unity3d.com/
34http://www.yoyogames.com/gamemaker
35http://www.rpgmakerweb.com/

35

cross-platform games quickly, although they are focused on games that are

simpler than those that can be created by Unity3D or Unreal.

2.4.1 Software Development Life Cycle

In the majority of software development firms they have a date at which

the software must be released to stakeholders and customers, and because of

this, a release date is given. This release date forces a timeline for a feature

complete program that is in direct conflict with a strict agile methodology

that believes in only solving immediate problems and not doing any long term

planning. As such, milestones for development are put into place. These

milestones provide incremental goals in a waterfall-style process. Between

these milestones, the development teams use an agile process that uses scrum

with kanban boards and a backlog. Once the product is released, it turns into

an agile process using bugs and additional features as the backlog for the agile

process.

As an example, we’ll use a hypothetical game that is scheduled to be

released a year from now. The initial planning meetings for the game would

involve the heads of the respective departments: writing, art, development,

test, development operations (dev ops), and stakeholders. This meeting would

have high-level goals set for the project. In this case, it would be goals that

must be met by the end of each quarter. The groups would then set deliverables

for each quarter as in Table 2.2.

36

Table 2.2: Development Plan Goals Matrix
Q1 Q2 Q3 Q4

Writing Create story
outline,
characters ,
and world

Flesh out
story, work
with dev. to
implement
story

fine tune
story, add
lore

fix grammar,
spelling, and
bugs found
by test

Art Create place-
holder assets
and design
characters,
worlds, and
weapons

implement
assets

finish assets touch up any
assets

Development create base
code (menu,
world, fight-
ing)

refine code
and work
with DevOps
and test for
pipelines

complete
engine code,
begin testing

debug and
performance

Test create test-
ing frame-
works and
determine
team in-
volvement

setup testing
pipelines,
begin testing
for game

play test-
ing and
installers

test critical
path

DevOps determine
hardware
needs, de-
ployment
processes

large scale
testing on
platforms

provide
support for
test and de-
velopment,
prepare
distribution

prepare for
release

37

First Quarter

Initially, test, development, and dev ops must determine how they will

collaborate with one another. In some cases, it might be better to collabo-

rate with one another; in other cases, working alone then integrating before a

checkpoint date might be a better choice. In our hypothetical case, develop-

ment operations sprinting separately from test and development is the correct

decision since the dev ops group must plan on purchasing hardware and deter-

mining how to deploy the game to the various test instances. Development and

test sprint together because test will be working on testing frameworks that

will be tied to the interfaces developed by the developers and also planning

for the game play test in the fourth quarter. As the first quarter is coming

to a close, the teams meet again and begin to adjust the plans for the second

quarter milestones based on their work in the first quarter. In this example,

we’ll assume that the first quarter goals are all met.

Second Quarter

Testing e↵orts in this quarter will need to start merging and multiple

teams must coordinate with one another to get pipelines in place for this test-

ing e↵ort. Development, testing, art, and dev-ops must all work together to

accomplish multiple tasks while still striving toward finishing the game. At

this point, the development team will be spread out interacting with these

teams in various ways. It means that team members coordinating with other

teams will attend multiple status meetings and work toward a common goal.

38

Additionally, since these shared goals often run into road blocks, the backlog

of work will have to be decomposed in fine enough granularity that the devel-

opers can take work o↵ the backlog and complete it while waiting to become

unblocked. In this quarter, once multiple pipelines are set up, each depart-

ment can begin to see results of their work. The pipelines allow departments

to test independently of one another and then push completed work to the

other pipelines once they are released at the end of a sprint.

Third Quarter

Now, some of the teams will work closely together while others will

begin preparing for the launch of the game. Development and test will continue

working closely together and art will be working with the development team to

ferret out graphical glitches in the engine based on the artwork. The dev ops

team will keep the pipelines in working order while preparing auxiliary systems

for the expected load to be placed on their servers during the launch of the

game. Test will spend time testing the game of various hardware combinations

and work with development to profile and enhance the speed of the game. In

the third quarter many of the tasks are winding down in creating the game as

testing and debugging tasks begin to spin up for the large push that occurs

before the game goes gold, or releases, in the fourth quarter.

39

Fourth Quarter

Everyone’s e↵ort is placed into finding bugs and quickly fixing them.

The writers comb over all dialog and make sure everything has been recorded.

The art department verifies all art assets are complete and the final graphical

tweaks have been made. Development wraps up the game engine work and

starts focusing solely on bug reports sent to them by the test department. The

test department adds a large amount of temporary labor to help them playtest

the game. The playtesters play through the game beginning to end attempting

to finish the game. Any place the playtesters find an error, bugs are submitted

to the correct teams and triaged immediately by the scrum masters. The dev-

op teams implements the strategy for how the game is to be delivered to the

users: Steam, disc, ordered and downloaded from the company’s store, or

downloaded using a purchase key. These strategies all need enough hardware

to scale horizontally during peak times. The groundwork done in the third

quarter to determine the extra load is tested early in this quarter with 4x load

tests against the hardware and software platform to make sure the distribution

platform performs correctly. As the fourth quarter comes to a close, all teams

are working furiously, often long into the night to make the release candidate

deadline. Once the release candidate has been accepted the game is considered

completed and sent o↵ for manufacturing and to the services selling the game.

40

Chapter 3

Modeling Techniques

Modeling is a very important aspect of computer science since the abil-

ity to abstractly represent an idea or process using a model allows for deeper

understanding and analysis. When deciding how to model problems encoun-

tered in this dissertation a few common models kept arising: finite state ma-

chines, petri-nets, condensed graphs, UML state machines, and SAGA.

3.1 Finite-State Machines

Finite-state machines (FSMs), or finite-state automata, are a model of

computation used in computer science and engineering. They are consistent,

easily debugged, allow better understanding of processes, and represent a way

of thinking about computation. There are two types of FSMs: deterministic

and non-deterministic. Deterministic means there is one and only one tran-

sition given an input to a next state where with non-deterministic, there are

multiple possible next states.

FSMs at the formal level are defined as a 5-tuple consisting of a set of

states, an alphabet, transition functions, a starting state, and a set of accepting

states [41]. Graphically, a FSM is a graph containing arcs, labeled arcs, and

41

Figure 3.1: Example Finite State Machine

circles. An arc is a transition, a labeled arc is a transition with its definition

for transition defined, and circles are the various states. A state made of an

outer circle and an inner circle is the accepting state.

Examining the values in the 5-tuple more, the set of states describes the

system being modeled at some point in time where inputs and transitions have

occurred transitioning the system into the particular state. The alphabet, or

input alphabet, is the set of inputs allowed for the system. Next is the start

state, which specifies the state the system begins in. The accept states specify

when the machine no longer accepts input and is done processing. Finally, the

42

transition functions are a set of functions with each function associated with

a state and inputs accepted at the state that describe the next state for the

system.

Now that a FSM has been defined formally, computation of a FSM must

be defined. Assume we have a FSM 5-tuple, M, and a sequence of characters

in the alphabet, referred to as w. M accepts w if there is exists a sequence of

states in the FSM with the following conditions:

1. The machine starts in the start state

2. The machine goes from state to state according to the transition function

3. The machine accepts the input if the last state is in the set of accept

states

A non-deterministic finite-state machine (NFA) is a super set of de-

terministic FSMs. The di↵erence is that in any state a NFA could have a

plurality of inputs that are acceptable for moving to di↵erent states through a

transition function. When a NFA performs computation, at any point where

there is a non-deterministic transition, the state machine copies itself and pro-

ceeds with computation for each copy. When a copy can no longer execute, it

destroys itself and its computation. Formally, a NFA is defined the same as a

deterministic finite-state machine with the exception of the transition function

being a power set of the possible sets due to the non-determinism. In terms of

formally defining computation, an NFA, N, with a sequence of characters in

43

the alphabet, w, N accepts w if there exists a sequence of states in the FSM

with the following conditions:

1. The machine starts in the start state

2. The next state is in the set of allowable states for the current state

3. The machine accepts the input if the last state is an accept state

FSMs, and specifically, NFAs, appear to be a good choice to model game

plots because they are the basis of computation for many concepts. FSMs can

work for generating a model for the plot; however, it would be very verbose

and hard for a layperson to create and understand. Take, for instance, a very

simple scenario where a player may or may not find a key, and at some point

in the future, having the key may open up an additional path that the player

can take. In this case, there must be a doubling of states from the point where

the player has the key, or does not have the key. As more possible paths are

made based upon items or choices taken, the state machine must create copies

of these nodes. Doing this a few times does not seem that bad, but one must

consider, the average game contains over two megabytes of state and asking

someone not skilled in the art of creating FSMs to create a FSM that can cover

all possible cases becomes a very poor choice. The FSMs grow exponentially in

size for what is a very simple case that appears in many video games: finding

a key or object that a↵ects the outcome of the game at a later time.

44

Figure 3.2: Example Petri-net

3.2 Petri-nets

Petri-nets, described by Carl Petri in his dissertation [85], are a math-

ematical modeling language for the description of distributed systems. Petri

nets have been used to model parallel and distributed computing, workflow

management, and network theory such as coordination models and theories of

interaction.

Petri-nets are a directed graph containing two types of nodes: bars,

representing transitions; and circles, representing places or conditions. The

directed arcs associate pre- and post-conditions with the transitions. In addi-

45

tion to the bars, circles, and arcs, there are also tokens. Tokens are stored in

the places and when su�cient tokens are contained in a pre-condition place,

the associated transitions can fire, consuming the tokens and emitting a new

token into the post-condition place.

In order for Petri-nets to become useful, a rule of how they are manip-

ulated must be defined. That rule is the transition, or firing rule. This rule

has three parts:

1. A transition, t, is said to be enabled if each input place, p, of t is marked

with at least as many tokens as the weight of the arc between p and t

2. An enabled transition may or may not fire

3. A firing of an enabled transition t and removes the tokens from each

input place of t ands them to the output place of t

A transition without any input place is called a source transition and

one without any output is called a sink transition.

Petri-nets have been used to model various other systems. The most

common are: finite-state machines, parallel activities, dataflow computation,

communication protocols, synchronization control, producer-consumer systems,

formal languages, and multi-processor systems. The wide range of modeling

choices means they also have many properties that can be used for analysis

of these systems, the most important in the case of formal verification are:

reachability, boundedness, liveness, persistence, and fairness [86].

46

Comparing Petri-nets to FSMs appears to be an unfair comparison;

however, even though Petri-nets can model FSMs, it does not make sense

to do that. Petri-nets are more concise at modeling coordination between

asynchronous systems whereas FSMs can model discrete behavior of a system

over time much more concisely than a Petri-net. Petri-nets are very good

at modeling interactions between systems, but aren’t very good at modeling

interactions within a system or modeling interactions where there are gating

factors such as selecting a key or not. Describing this example in Petri-nets

would cause both branches to be executed concurrently and could still not ac-

count for issues succinctly, such as where completing one quest before another

could cause another quest not to complete if an invariant was invalid due to

how Petri-nets execute. Changing the entire execution model then grafting

additional features to handle specifics of how game plots can operate would,

like in the case of FSMs, be problems for someone not skilled in the art to

understand a heavily modified version of Petri-nets. Petri-nets, like FSMs,

can have exponential blow up; although, it will occur when trying to describe

serial and parallel quests.

3.3 Condensed Graphs

Condensed graphs provide a way to express complex dependencies in

a program task graph or workflow [87] [88]. These directed-acyclic graphs

consist of nodes and edges, where nodes are tasks and edges are sequencing

constraints. Through some simple transformations, various execution models

47

such as availability, coercion, and imperative can be represented.

Condensed graphs have the notion of a computation triple that contain

three prerequisite requirements for the evaluation of a function: a set of inputs,

a function description, and a destination. Associating these graphs creates new

condensed graphs and once the graph is executed, it represents the result of

the computation triple.

Node themselves can contain other graphs; these nodes are referred to

as condensed nodes. There is no limit to the nesting of the graphs in the

condensed node and are helpful in abstracting computational methods being

described by a condensed graph. In condensed graph terminology, these are

H-graphs since they hierarchically describe an algorithmic process at various

levels of abstraction.

The operations available to coerce and modify condensed graphs into

the three computing models are: stemming and grafting, node deconstruction,

and mutual reduction. Stemming is the process of breaking the connection

between the output of a node and the input into another to change a static as-

sociation into a dynamic one. Grafting, of course, is the opposite of stemming.

Node deconstruction is the method of combining exact sub-graphs between

graphs such that they can be shared. Finally, mutual reduction is a process

to simplify the execution of condensed graphs by providing rules to combine

disparate execution models.

In Figure 3.3, it shows a condensed graph, F, that represents the func-

48

Figure 3.3: Example Condensed Graph

49

tions below, where F accepts two Boolean parameters and returns an integer.

F (x, y) = C(x,B(y, A(2))) (3.1)

A(x) = x+ x (3.2)

B(r, s) = if r then 1 else s (3.3)

C(p, q) = if p then 2 else q (3.4)

Condensed graphs have many concepts that are helpful to modeling

plots. The H-graphs allow one to create nesting quests and the execution

model of the nodes provides a method to introduce quests that must be com-

pleted before the next plot point can begin. The limitations of the condensed

graphs have to do with a few things, including the execution of parallel or

series quests. With quests in games, there are times that not all quests have

to complete in order to continue to the next plot point; three out of five would

need to complete before continuing the story. When quests have to be com-

pleted serially, there is no method for easily representing a series of quests

that happen sequentially versus in parallel. Finally, there is no way to easily

represent contention and dependencies on NPCs or objects or a state within

the storyline to check based on the plot when dealing with complex situations

like side quests, parallel or serial quests or even di↵erent a branch. It could be

created but for someone not skilled in condensed graphs, it would be di�cult

to understand condensed graphs, their execution model, and how to relate it to

a plot graph. Again, like FSM and Petri-nets, seeing an exponential explosion

can occur.

50

3.4 UML State Machines

Unified Modeling Language (UML) state machines are an extension

of Harel statecharts[89] that are object-based and adapted to UML[90]. The

UML state machines introduce new concepts such as: guards, hierarchically

nested states, orthogonal regions, and extending the notion of an action. Ad-

ditionally, they support entry and exit actions and actions that depend on the

state of the machine and the triggering event. The state machine specification

defines two types of state machines: behavioral and protocol. The behavioral

model is used to model behavior of entities while the protocol model is used

to express usage scenarios of classifiers, interfaces, and ports.

Of interest to us is the behavioral model since it captures the dynamics

of a computer program. UML state diagrams are directed graphs with nodes

that are states and vertices that are transitions. A state is represented with a

rounded rectangle and transitions are represented as arrows that are labeled

with triggers for the event and a list of executed actions. Guard conditions

are boolean expressions based on values of extended state variables and event

parameters. An action is enabled when the guard transition evaluates to true.

The state machines uses a run-to-completion model that assumes the state

machine finishes processing each event before another event can occur.

UML state machines are the best at modeling software processes we

care about when compared to the previous modeling techniques. The largest

problem with UML state machines is the pure size of the specification and

verbosity in cases when there are multiple actions occurring on an event. Ad-

51

ditionally, it is a visual formulation for complex systems so it cannot easily be

separated from it’s graphical representation. It also requires a large amount of

textual information as well to truly understand the system. Finally, the UML

notation and semantics make it geared toward computerized UML tools and

not a true formal model, although the specification does make a distinction

between the notation and the state machine semantics.

3.5 SAGA - Story as an Acyclic Graph Assembly

SAGA, introduced by [14], is a domain-specific language (DSL) for

story management that views storylines as an acyclic graph. It attempts to

provide a language for story designers that is easy to use and integrate into

existing games. SAGA provides the users with a simple syntax that operates

at the plot point level in an attempt to shield the designer and writer from the

implementation details and focus only on the higher level story events. SAGA

was designed with the help of an unnamed game studio who validated some

of the design choices.

SAGA was designed for representing storylines at a high level when

writing a game. Due to this, the domain specific language is ill-suited to

handle the lower-level abstraction that is required to model a storyline that

involves interactions between characters, objects, and overall game state.

52

Chapter 4

Categorizing and Describing Storylines

In this chapter, we describe how to categorize storylines in video games

quickly though our tool SChar. We also present our Storyline Description

Language (SDL), which allows us to abstract the storyline from the imple-

mentation. These will then be used as input to our storyline checker, SToCk,

presented in Chapter 5. Our methods and tools target narrative-driven games

with complex storylines such as Fallout 3, The Elder Scrolls V: Skyrim, and

Grand Theft Auto V that may let the player a↵ect the direction of the story-

line.

4.1 SChar - Storyline Characterization Framework

Our storyline characterization framework, SChar, draws upon the char-

acteristics of the storyline models in order to separate implementation from

the model that exists, and categorizes them into the model they most closely

resemble. Our framework consists of simple true/false questions that help cat-

egorize the games. Figure 4.1 shows the decision flow for categorizing a game’s

storyline model, based on the storyline models described in Chapter 2.

53

Figure 4.1: SChar Decision Flowchart

As shown in Figure 4.1 there are four main questions:

• Pre-existing Narrative. SimCity and racing games such as Gran Tur-

ismo do not have narratives since there is no history a↵ecting the game-

play or story. Similarly, with OPIATE and PaSSAGE the story starts

when the player starts the game. On the other hand, in games such as

Super Mario Brothers, the game does have a pre-existing narrative e.g.,

Bowser has captured the Princess and Mario hears her cry for help.

• Player Choice. If the player’s choices do not impact the storyline or

there are no choices, the story is a linear story.

• Independent Narrative. Independent narrative exists when there are

multiple storylines that progress at di↵erent speeds and allows the player

54

choice in how the story completes. However, if the stories can merge

after a choice, then it is categorized as branching and foldback. For

instance, theMass E↵ect series is a very good example of a branching and

foldback storyline whereas Discworld Noir is an example of independent

narrative.

• Narrative is Added in Sections. The last aspect is how narrative is

added to stories: if selected sections of the story are added based on a

player choice, then the storyline model is dynamic hierarchical; if it is

not, it is a threaded story. Discworld Noir and Fallout 3 are examples of

threaded storylines whereas games such as Grand Theft Auto and Dragon

Age: Origins are dynamic hierarchical because additional narrative is

added by a triggering function, such as competing a story in one section

of the world.

Examples of Categorized Games

Iteratively refining the framework for determining storyline models

through simple questions required us to categorize games. In our study, we

categorized over 85 games to ensure that our framework was valid, in Table

4.1 we’ve listed some of the representative games. The ability to succinctly

characterize all storyline models provides a starting point for the next next

step: a language that can model storylines free of the storyline model or im-

plementation context.

55

Table 4.1: Categorized Games
Game Storyline Model

Grand Theft Auto V Dynamic Hierarchical
Fallout 3 Threaded

Final Fantasy Linear
Mass E↵ect Branching and Foldback
PaSSAGE Emergent

Super Mario Brothers Linear

4.2 Our Storyline Description Language

Discussions with developers, testers, writers, and designers in the in-

dustry have led to the creation of the Storyline Description Language (SDL).

It represents a storyline as a directed graph and uses non-deterministic finite

state machines (NDFSMs) as its basis. The edge and vertex graph is aug-

mented with additional constructs to succinctly describe a variety of plots.

These constructs are used to handle cases where certain vertices are or aren’t

available based on a set of conditions. These conditions use plot objects that

are boolean values describing a global state within the game. There are ac-

tions that can modify a boolean object when exiting a vertex. Additionally,

when a player must be constrained to a subset of vertices and edges, an atomic

construct is introduced.

4.2.1 Arc

The arc, or edge, represents a directed transition between plot points

and also specifies the start points of the game plots and side quests. The

specifics of the arc will be discussed more in depth with the various scenarios

56

Figure 4.2: Example Arc and Plot Point

that can be created in the game plot graph.

Figure 4.2 shows a starting arc and an arc connecting two plot points

together. The first plot point is a standard plot point while the second plot

point is an ending plot point.

A second type of arc that will be used is the implicit arc. An implicit

arc, is an arc not specified by the user but is determined by the rules of

movement through the plot description model. An implicit arc is visually

represented as a dashed arc between two plot points. These dashed arcs can

be seen in the description of the parallel quest below.

The third style of arc is one that connects a plot object to a condition.

It is represented in the same fashion as the first arc, as a normal line with

an arrow pointing toward the condition or conditions associated with it. This

style of arc is described more in the conditions and plot objects sections.

4.2.2 Plot Point

The plot point is the centerpiece of the plot model. It represents a point

in the storyline where the user interacts with an NPC, item, or boundary that

causes the story to move forward. All plot points will have arcs entering and

57

leaving the plot point, with the exception of ending plot points which mark

the end of the story. This concept is drawn from the state of a state machine,

the place in a Petri-net, and a node in a condensed graph. The plot point can

be annotated with additional information such as the number of times a player

can enter the plot point, the node type, and if the plot point is an ending plot

point. The node type is used when describing branches, serial quests, and

parallel quests. The ending plot point is shown in Figure 4.2. Visually, it is a

plot point with an additional smaller circle inside of it. Figure 4.2 shows the

typical plot point visual representation with the entry and exit arcs.

4.2.3 Plot Object

Plot objects are objects or NPCs in the game world that are modified

by a transition into or out of a plot point. The plot objects are Boolean and

are combined in various ways using the conditions object in the graph model.

The plot object draws inspiration from condensed graph’s idea of static inputs

into nodes.

In Figure 4.3, the plot object is visually described as a box containing

the name of the plot object and its default value. Arcs are used to connect

conditions to plot objects and they are described in more detail in the next

section.

58

Figure 4.3: Example Plot Object and Condition

4.2.4 Conditions

Conditions came from the idea of place tokens needed to fire a transition

in Petri-nets and also as a way to simplify the state machine situation of

modeling having picked up a key or not at some point in the past. Conditions

are tied to resources and specify a gating Boolean function of the associated

resources or the modification of resources along an arc. The two cases are,

of course, pre- and post-conditions. In the pre-condition state, the conditions

check a Boolean function created using resources. As a post-condition, they

modify a resource or resources. In the graph model, a pre-condition state

is modeled as a 45-degree rotated rectangle located before the plot point,

accepting all incoming arcs. A post condition is a 45-degree rotated double

rectangle occurring directly after a plot point and is the source for all outgoing

arcs.

59

Figure 4.4: Example Branch

4.2.5 Branch

A branch decision occurs when a player has the choice of which plot

point to transition to next. Described by the model, a branch is described

by multiple arcs leaving a plot point and the plot point being annotated as a

“branch”. If the plot graph is created in a way that a cycle occurs with the

main branch node, an additional annotation specifying the number of times

the user can enter the node can be added, otherwise it assumes the user can

enter it an infinite number of times. The branch can be thought of as a state

in an NFA with a few enhancements to make it easier for a person not skilled

in the art of state machines to model a game plot. An example of a branch

can be seen in Figure 4.4.

4.2.6 Quest

In games, there are times where multiple quests are given to the user

and the user has the ability to finish them in any order they see fit. From this

there are two possibilities: the user can complete them in parallel switching

60

Figure 4.5: Example Parallel Quest

between the tasks of each quest or they must choose one, complete it, and

start on the next one. The simple modeling case is modeling parallel quests;

serial quests require the use of atomic sections (described in a section below).

All quests must end at a common point denoted as a quest endpoint.

Figure 4.5 depicts a simple parallel quest and the implicit transitions

that can take place when completing a parallel quest. In the case of a series

quest, as each quest is completed the player must return to the starting plot

point and begin from there again. Whereas, in a parallel quest, the user can

visit all the plot points and complete all the quests before returning to the start

plot point to receive all the rewards and quest completions before moving onto

the plot point after all quests are done. In the serial quest case, it is still the

same as the parallel case except that each quest in the serial quest is enclosed

in an atomic section. Figure 4.6 depicts a serial quest.

61

Figure 4.6: Example Serial Quest

4.2.7 Side Quests

Side quests are a single quest or set of quests that do not pertain to

the main plot line. These quests normally become available after a certain

plot point or criterion are met within the game and can be completed until

another point or criterion has been fulfilled in the main plot line. A side

quest is specified just like the main plot graph; however, the starting arc is

annotated with name or number of the plot point that must be completed in

order to start following the side quest plot graph and the arc exiting the last

plot point of the side quest is labeled with the plot point name that the side

quest must be completed by. As an example, in Figure 4.7, the side quest

can be started after B has completed and D must be completed before C is

completed, otherwise, the side quest will be shut o↵ from the user.

Side quests are very much like a condensed graph in that it is another

graph that can be executed and is self-contained when discussing itself. It can

still have e↵ects on plot objects in the main quest.

62

Figure 4.7: Example Side Quest

Figure 4.8: Example Atomic Section

4.2.8 Atomic Sections

There are some cases where once a player begins a quest or section of

the story, they should not be able to interact with other plot points from side

quests or a parallel quest. In order to visually show an atomic section, as in

Figure 4.8, a box is drawn around the section of the plot graph that must be

completed before the player can interact with other valid plot points.

In the example above, once the user completes the first side quest plot

point, D, they must continue with the side quest and complete E before re-

turning to the main plot line.

Atomic sections can be thought of like a more powerful H-graph seen

63

in condensed graphs. They are a sub section of computation, or in this case,

plot, that the user can interact with and must finish before continuing on in

further computation.

4.3 Implementation Issues

The two most obvious solutions are XML and JSON (JavaScript Object

Notation). After again speaking to many testers and engineers, we chose to

implement our SDL based on JSON file, a lightweight data exchange format,

that is user readable and easy for machines to parse and generate. It is a

well-understood format used in many tools within the industry and allows for

simple debugging when problems occur.

The JSON file has two top-level elements: a string element name and

an object named plot. The name corresponds to the name of the plot and

the plot object contains objects for plot points, plot objects, conditions, and

atomic sections.

Plot Point

The plot point is the base element of the plot model and in this repre-

sentation encapsulates other concepts in the plot model described in the pre-

vious chapter. A plot point has the previously described values: attributes,

pre-conditions, post-conditions, outgoing arcs, the number of times the user

can re-enter the plot point, and, if it is a side quest plot point, the gating node

names as to when it can be accessed. Additionally, it has name, description,

64

start point, and end point attributes so the user of the tool can annotate the

plot point with additional information and describe a plot point as the starting

point of the story or an acceptable end to the story.

Attributes is a list of attributes for the plot point and it can have the

following values: normal, branch, quest start, quest end, loop back, start, end,

side quest start, and side quest end. If there are no attributes defined, it is

assumed to be a normal plot point.

The pre-conditions and post-conditions are an array of strings that are

the names of conditions defined in the conditions subsection. The outgoing

arcs are defined as an array of strings that contains the names of each plot

point that is a possible next plot point. Finally, the number of times the user

can re-enter a plot point is considered to be one unless the type of the plot

point is changed to serial or parallel, which at that time it becomes equal to

the number of outgoing arcs from the plot point.

The side quest start gate plot point and side quest end gate plot point

attributes are only needed if the plot point is going to be involved in a side

quest. In the standard case of a game not containing any side quests, these

values will not be set.

Arcs

An arc is represented inside of the plot point as an array of strings.

Each explicitly defined next plot point for the current plot point is placed into

this array with the name outgoing.

65

Branches

Creating a branch for the branch and foldback is very simple. All that

has to be done is provide the explicit next nodes for the branch in the outgoing

attribute and set an attribute for branch. If there is a case where the user could

constantly go through this plot point multiple times, but the game requires it

to be constrained, the number of times allowed attribute will have to be set

to prevent it from being able to be an infinite loop-back.

Quests

Quests are defined by a quest start and quest end nodes. There are

two types of quests that must be supported: parallel quests and serial quests.

A parallel quest is represented by defining a quest start point and a quest end

point then providing the quest plot points between the quest start and quest

end points.

A serial quest is defined in much the same was as the parallel quest,

except each quest becomes part of an atomic section. The plot points are much

the same as the parallel quest but the addition of atomic sections creates the

serial quests.

Plot Object

A plot object, as described, is an object that has a value of true or false.

When representing one using JSON, it must have a name and a value. Op-

tionally, it can contain a description. It is then placed within the plotObjects

66

subsection.

Condition

Pre- and post-conditions are both defined within the condition subsec-

tion. They become pre- or post-conditions when they are defined in the plot

point precondition or postcondition attribute. Conditions have four attributes:

name, description, check, and action. Name and description are both strings

that provide a name and human readable description to the condition. Check

is an array of strings that provides a list of statements that must all be true.

The statements are boolean statements that reference plot objects defined in

the plot objects subsection. Finally, action is an array of strings with simple

assignment statements such as manIsOutsideTheHouse == false.

Side Quests

Side quests are represented through a side quest object defined in the

JSON file. Side quests are objects that contain the following information:

name, description, a starting gate plot point, an ending gate plot point, and a

list of plot points that represent the side quest. The starting gate and ending

gate plot points are plot points that specify when the side quest becomes

available and when it is no longer available.

67

Atomic Section

The last concept that has to be modeled is atomic sections. Atomic

sections are defined within another sub section called atomic. Each subsection

is defined as arrays of string that contain the list of plot points and other

atomic sections associated with the atomic section. Atomic sections cannot

have circular references.

4.4 SDL Output

The output of our SDL is a JSON file that will be used as input into our

formal verification tool for complex game plots, discussed in the next chapter.

An example out of SDL is shown below and is representative of the Star

Wars: Knights of the Old Republic quest which has been referenced within

this dissertation.

{

"name": "Star Wars Example",

"plot": {

"plotPoints": {

"startPoint": {

"attributes" : ["START","QUEST_START"],

"name" : "Starting Point",

"description" : "A man gives two quests",

68

"outgoing" : ["findDaughter", "findSon"]

},

"findDaughter": {

"name" : "Found daughter",

"outgoing" : ["reportDaughter"]

},

"reportDaughter": {

"name" : "Report Daughter",

"postcondition" : ["moveManInsideHouse"],

"outgoing" : ["endPoint"]

},

"findSon": {

"name" : "Found son",

"outgoing" : ["reportBackAboutSon"]

},

"reportBackAboutSon": {

"name" : "Report Son",

"precondition" : ["isManOutsideHouse"],

"outgoing" : ["endPoint"]

},

"endPoint": {

"name" : "End Point",

"attributes" : ["END", "QUEST_END"]

69

}

},

"plotObjects": {

"manIsOutsideTheHouse" : {

"name" : "Man is outside the house",

"value" : true

}

},

"conditions" : {

"isManOutsideHouse" : {

"name" : "Man is outside his house",

"check" : ["manIsOutsideTheHouse == TRUE"]

},

"moveManInsideHouse" : {

"name" : "Move man inside his house",

"action" : ["manIsOutsideTheHouse = FALSE"]

}

}

}

}

70

Chapter 5

StoCk: Storyline Checker

In this chapter, we analyze several formal verification techniques and

discuss our choice of methodology for verifying complex game plots and how

we map it to our problem domain. We then use this methodology to create

a Storyline Checker (StoCk) tool based on SPIN, a well-known open source

model checker.

The story lines are described by the story line description language

(SDL) presented in the previous chapter. StoCk takes the storyline descrip-

tion language SDL files to formally verify that the storyline does not contain

inconsistencies. This chapter describes: choosing a formal verification tech-

nique, how to represent an SDL to the formal verification tool, and how the

StoCk ties all the previous work together into a usable tool for the gaming

industry.

Finally, we present a case study for representing our storyline descrip-

tion language in SPIN[91] using a storyline sample from Star Wars: Knights

of the Old Republic.

71

5.1 Formal Verification Methods and Their Trade-O↵s

As described in Chapter 2, the following three techniques for formal

verification seemed the best choice for storyline verification: theorem proving,

SAT solving, and model checking.

Theorem provers are often human-driven and the automated meth-

ods are often slow due to the methods used to solve the equations. However,

theorem provers do not map easily to our problem domain. So using them

would be a very poor fit. Additionally, theorem provers rely upon equations

to be solved; if these equations are written incorrectly, they become either

impossible to solve in a reliable amount of time or become unsolvable.

SAT solvers are not human-driven and are automated, but they do op-

erate on the same formulas as the theorem prover techniques discussed above.

Although they can be faster, SAT solvers can become much slower if the equa-

tions are created in a particular method that does not align to the strength

of SAT solvers. Again, like theorem provers, SAT solvers are not designed to

solve pathfinding problems easily; which leaves model checking.

Model checking has been used to solve many problems in the software

and hardware domain. These problems, specifically distributed and parallel

software execution verification, map nicely to the plot description model. Ad-

ditionally, model checkers work by providing a counter-example when they

fail, which provides the user with a path that proves the logic does not work.

The model checker’s ability to work well within constrained problem spaces

72

has also been proven through many domain spaces such as: protocol verifica-

tion, algorithm verification, parallel and distributed system verification, and

software execution. Additionally, since model checkers operate on finite state

machines, the use of a model checker for validating storylines makes more

sense because storylines are often modeled as directed graphs or flowcharts.

On the downside, much like SAT solvers and theorem provers, model checkers

are based on heuristics and can explode under some circumstances. However,

model checkers work on finite state machines and match very closely the sto-

ryline description language. Model checkers provide a solid foundation upon

which to build a storyline verification tool.

The SPIN model checker is our formal verification tool of choice

because the problems SPIN verifies: parallel and multi-threaded computation

and software execution, align closely with the storyline models we want to ver-

ify. SPIN uses state-of-the-art model checking techniques such as on-the-fly,

partial order reduction, and BDD-like state storage to handle exploding state

space1. It also provides a modeling language, Promela, that matches the typ-

ical execution of a storyline since it is user-driven and thus nondetermenistic.

Finally, SPIN has a large support community, is actively developed, and can

run on any computing environment which is important for development tools.

1http://spinroot.com/spin/what.html

73

5.2 Direct Finite State Machines Representation versus
Leveraging Pomelea’s FSM Abstractions

Formal verification of protocols, models, and algorithms are often done

to verify correctness and whether the systems are stable under all inputs.

In the case of storyline verification, this means being able to complete the

storyline no matter the path taken through the story. This section describes

how to represent storylines described in SDL in SPIN. This can be done either

directly as finite state machines (FSM) or leveraging Pomela’s higher-level

state descriptions.

5.2.1 Using a Non-deterministic Finite State Machine

In order to prove that storyline validation is possible, we will examine

the example problem from the introduction modeling it as a non-deterministic

finite state machine that will be used as input into the SPIN model checker.

The SPIN model checker uses partial order reduction, bit-state hashing, and

bounded context switching to prevent the state space of the problem from

becoming too large and constraining the state space to a computational space

that can be searched in a time acceptable to the majority of companies within

the hardware and software verification domain. Using a non-deterministic

finite state machine should be straightforward since model checkers operate

on finite state machines.

The example is quite simple. It starts with a parallel quest where the

quest giver gives the player two quests: find his daughter and find his son.

74

Looking at Figure 5.1, the upper path is the quest of finding the quest giver’s

daughter. In the plot point Find Daughter the user has found the daughter,

which then gives the player the ability to return to the quest giver where a

check is done to make sure the quest giver is outside his house. If the check

passes, the user is given a cutscene where the quest giver expresses gratitude

for finding his daughter then goes inside the house. Leaving the cutscene,

the resource of the man being outside is set to false, where it was initially

true. In the second quest, the player is asked to find the man’s son who has

mysteriously disappeared. Following the man’s request, the player eventually

will find the mans son in the desert dead from a nasty fall and will want to

report back to the man. Before beginning the cutscene revealing the fate of the

man’s son, there is a check to see if the man is outside the house. If he is not,

the cut scene cannot move forward. Finally, when both quests are complete,

the man tells the user of another person they will want to speak to so they

can leave the village safely.

With the parallel quest understood, the next step is to convert the

plot model into a non-deterministic finite state machine. The resultant state

machine is shown in Figure 5.2. This state machine is modeled in Promela

using a do-od loop with a gating check on previous states and potential next

states that non-deterministically chooses the next statement to execute based

on available statements.

Running the encoded FSM results in the following snippet seen in Fig-

ure 5.3, showing that an accepting state cannot be found and where the prob-

75

Figure 5.1: Parallel Quest Example modeled in the SDL

lem occurs.

The image above shows the output after running the FSM through the

SPIN model checker, in which there is an error and a trail file is created.

Invoking SPIN again with an option to read the trail file produces the shown

output in Figure 5.4.

Figure 5.4 shows the eight steps it took to find an invalid endpoint in

the finite state machine. Of course, in the state machine, it moves from state

1, to state 2, to state 4, to state 3, at which point it could not go any further.

This example shows that our plot model can be encoded as a FSM, checked

for validity, and errors found.

76

Figure 5.2: Parallel Quest Example as an NDFSM

77

Figure 5.3: Error message for FSM

78

Figure 5.4: Error Trail for FSM

5.2.2 Leveraging Promela’s Abstractions

In the previous section it was shown that the plot description model

could be accurately described as a non-deterministic finite state machine. How-

ever, this is not the best fit for implementation since FSMs have exponential

blow up in many common game situations. The SPIN model checker, used

above, has a modeling language, Promela. Promela provides a syntax and

constructs to more easily model more complex algorithms and processes, and

a storyline can be thought of as a process.

The conversion into Promela for the software description language shown

in Figure 5.1 is close to the non-deterministic finite state machine method in

that a do-od loop is used to represent each state; however, the gating state-

ment makes use of the plot objects and the actions taken in each state can

involve adjusting the value of the plot object.

79

Running the Promela version of the scenario again shows that there is

an error and that it occurs in the same manner as the first case study. This

proves that storylines can be encoded using the Promela language, checked for

validity, and errors found. Thus, we can convert storylines described in SDL

to Promela to be formally verified using SPIN.

5.2.3 Analysis

Both methods have shown that they are valid. However, encoding our

SDL directly into FSMs results in larger file size and more states that must

be converted . It also does not take advantage of SPIN’s Promela modeling

language, which also provides a higher-level abstraction of FSM which lets

our SDL be described more succinctly. We therefore chose to convert our

SDL using Promela’s abstractions to prevent larger file sizes, allow for easier

conversion, and easier error analysis when a problem arises.

5.3 Implementation of StoCk

There are some large design decisions that need to be done before coding

up a verification system. The first is choosing the programming language.

After speaking with multiple testing and quality assurance engineers(pers.

comm. Jason Frueh), it was found that Java is the underlying language that

most of the tools they use on a daily basis are written in. We thus chose Java

as the language of choice since it makes it easier for game developers to provide

customizations and integrations in a language they are already familiar with.

80

The verification system has some important tasks: reading the plot

information from disk, parsing that information into objects in memory, con-

verting it into a file that can be used by the underlying verification system,

running the verification system, and finally, reporting to the user the results

of the verification. The rest of this section describes the processes in each of

these steps.

Converting Storyline Description Language into Promela Code

Once a plot has been defined in the JSON format, it must be converted

into a Promela file to be executed by SPIN and a C compiler. This process can

be divided into two steps: 1) reading in the SDL from a file and then parsing

the JSON file into the plot model and 2) creating a Promela file from the plot

model data.

Reading and Parsing JSON

Reading and parsing JSON can be accomplished with a Java library

named Jackson2. The Jackson library provides the output in a tree format

that is used by the verification system to transform the branches and leaves

into the various Java objects representing the plot model. The Java objects

are almost exact replicas of the JSON format described above; however, a few

changes have been made in order for the creation of the Promela files to be

done with less hassle.

2http://wiki.fasterxml.com/JacksonHome

81

The first simplification is moving the conditions for a plot point into

the plot point structure itself instead of representing it as an object in the

path toward the plot point. This allows the code to easily reference any pre-

or post-condition associated with itself when it is time to create the Promela

file.

The next enhancement is to create the explicit arcs between the plot

points in both incoming and outgoing directions even though the flow is purely

a single direction. This enhancement allows the program to determine its posi-

tion accurately enough for the creation of atomic sections and other positional

attributes needed when creating a Promela file.

The final enhancement to the classes is including a reference to the

name provided for each object in the JSON file to the class associated with it.

Using these references, Map interfaces are used to quickly lookup the objects

during processing.

Creating a Promela File

After the JSON file has been read and parsed into the plot model

objects, a Promela file must be created. In order to do this, we again have to

map our data model onto a model that works in Promela. The model we are

using is based o↵ of a finite state machine. Instead of determining which plot

point to go to next after getting to that state, the state is determined as a set

of preconditions and SPIN will randomly choose the next state based on these

preconditions when formally verifying.

82

The Setup

In order to create the Promela file, there is a basic framework that

must be set up for every file. This includes defining true and false as 1 and

0, respectively; creating a list of all plot points completed that is initialized

to false and is the same size as the number of plot points in the plot model;

creating an end game flag initialized to false; creating flags for each atomic

section specifying if the atomic section is active; creating a proctype named

gameRunner which contains the contents of our plot model to be model checked;

and finally, the init block which causes our storyline definition checker to be

started. Each plot point will have a row in this method and it consists of: a

preconditions blocking statement, actions, and setting the plot point to being

run as true.

Creating the Plot Point

Plot points, as mentioned above, are defined by a blocking statement,

actions, and setting the plot point to being run as true. If it is an end game

plot point, it must also set the end game to flag true. There are, of course, a

few di↵erent cases for each plot point, but the process is close to the same for

each type of plot point be it a starting plot point, or a branching plot point.

We will examine each of the components of the plot point within the Promela

file.

The first section is the pre-condition blocking statement. These state-

ments prevent plot points from being chosen as a possible next point to be run

83

by SPIN when being executed. If multiple plot points are available, SPIN will

randomly pick one. The first part of the blocking statement to be generated is

making sure the explicitly specified incoming plot points are completed. De-

pending on the type of plot point, this could either be a Boolean OR or an

AND. Next, atomic blocks are checked to see if the plot point is either starting

an atomic block, ending an atomic block, or simply inside an atomic block.

Following the atomic blocks, the pre-conditions are checked if any exist for the

plot point. After that, side quest specific options are checked. If the plot point

is in a side quest, then the gating plot point conditions have to be applied.

Finally, a check is put in place to make sure this plot point has not already

been completed.

After the blocking statement has been created, the actions that occur

after the user acts upon the plot point are done. The first step is to set the

plot point as being run. The next is to set the end game flag, if the plot point

is an ending plot point. After this, the atomic section processing takes place.

The plot point is checked if entering or leaving an atomic section and setting

atomic section flags correctly. Finally, the post actions are created in the same

way as the pre-conditions are done in the blocking statement.

5.4 Running StoCk

After converting the JSON file into the plot model then generating the

Promela file, it must be run by SPIN. This is accomplished by using Java’s

ProcessBuilder classes to execute external program commands.

84

The first step is to write the Promela file to a temporary directory,

then use the SPIN compiler to create the associated C files to create the

model checker. After the C files are created, the C compiler is run to create an

executable. Next, the executable model checker is run and its output stored

to a Java String. If the return code for the model checker execution shows an

error state, SPIN’s trace facility is run against the file to generate the counter

example of a condition not holding.

5.5 Returning Results to the User

StoCk has two results that must be returned to the user: the verification

was successful or the verification failed. In the failure cases there are a few

di↵erent cases. These cases are: failure to execute the tool, failure to execute

all the steps, or failure from the verification tool. In each of these cases, the

result is returned in a VerificationResult class that stores the output of the

raw results to the console. The data within this object are then displayed to

the user.

The next chapter provides three case studies on using StoCk in a game

development setting.

85

Chapter 6

StoCk Case Studies

The previous chapter described the implementation of StoCk, this chap-

ter provides case studies for the three main use cases of StoCk using a real

world example. In our case: Fallout 3. Fallout 3 is one of the best examples

of style of games this research is aiming to help: it is well known, has many

resources freely available on how to complete the game, and has many walk-

throughs and guides to reference when creating the plot model. Additionally,

it is an action adventure RPG with a threaded storyline with 11 quests for

the main plot and 16 side quests. There are three case studies that each

build upon one another: quality assurance for the writer’s storyline, quality

assurance for the developer’s implementation of the storyline, and the devel-

opment of a quest within Fallout 3. The last case study most closely resembles

how a storyline is developed in industry and by consumers modding (editing)

the game to create new content or fix bugs found within the game that the

developers have not fixed.

86

6.1 Quality Assurance for Writers

One use of the plot verification tool is as a quality assurance tool for

the writers when they are creating the storyline for the game. In this case

study, we examine the complete storyline from Fallout 3 from the writer’s

perspective after the work as been complete. The data for the storyline will

come only from external sources and not examine the implementation of the

storyline within the game. This section will describe: how data was obtained

to create the storyline, how the storyline description language (SDL) files were

created, and the results of the study.

6.1.1 Where the Data Was Obtained

The data to create the storyline definition language files were gathered

from various sources. First, Fallout 3 itself, since Fallout 3 displays the name

of the quests the player is currently on. Secondly, through the o�cial strategy

guide written in conjunction with the Fallout 3 development team [92]. Finally,

the multiple walkthroughs and frequently asked question guides that are found

on the Internet through GameFAQs 1. The most referenced was the Fallout

Wiki2 because it was the most up-to-date resource and contained a list of all

glitches and errors found within Fallout 3 on each platform it is available on.

1http://www.gamefaqs.com/pc/918428-fallout-3/faqs
2http://fallout.wikia.com/wiki/Portal:Fallout_3

87

6.1.2 How the SDL Files Were Created

The storyline description language files were created by transcribing a

single quest at a time through first using the o�cial walkthrough then supple-

menting and verifying the paths. During transcription a few choices had to be

made as to what level of abstraction to use when modeling the quests. It was

decided that:

• A character that can be killed will have a plot object relating to their

aliveness

• If a quest relies on another quest being complete to be a trigger, a plot

object is made to specify if the quest is complete

• Dialog is not modeled but plot points arising from conversations are

• If an item is required for a quest a plot object is created to specify if the

user has the item

The transcriptions were done on a per quest basis since iteration is the

standard way game content is created. Additionally, each quest was tested

individually at multiple points to verify the creation of the Promela file and

that the storyline being encoded matched that in the walkthroughs and FAQs.

After completing the quests according to the guides, the overall Fallout story-

line appears to be a straight line with many side quests that have very little

interaction with one another as seen in Figure 6.1.

88

Figure 6.1: Fallout 3 Storyline based on Guides and FAQs
89

The next section presents in-depth findings about the interactions be-

tween the quests during their creation and results of the verification process.

6.1.3 Findings

The key findings of this study can be broken down into three parts:

• SDL file creation process

• discovering inconsistencies between the game guides and the game

• developing a tool to validate SDL files with acceptable performance

SDL File Creation During the SDL creation it was found that there

was not much interaction between any quest, be it a side quest or a main

story quest. Each quest was insulated from one another with a few exceptions

(see Table 6.1). The interaction between Following and Galaxy News Radio

is that of a plot object. If the player has killed a person that gives them

information at the end of the Galaxy News Radio Quest, the information

must be retrieved in a di↵erent manner. Galaxy News Radio interacting with

the Scientific Pursuits / Tranquility Lane is a di↵erent style of interaction but

still modeled as a plot object. If the player finishes the Scientific Pursuits /

Tranquility Lane quest before a given point in Galaxy News Radio, the player

is given a di↵erent reward since the information given to the player is how

to begin the Scientific Pursuits / Tranquility Lane quest. Next, Finding the

Garden of Eden and The American Dream interact on a plot object of a given

90

Table 6.1: Quests with Interactions
Following Galaxy News Radio
Galaxy News Radio Following, Scientific Pursuits / Tran-

quility Lane
Rescue from Paradise Strictly Business
Finding The Garden of Eden The American Dream
Tenpenny Tower You Gotta Shoot ’em in the Head

character being alive like Following and Galaxy News Radio. However, in this

case, having the character alive allows the player to gain them as an ally for

the last quest of the storyline. Finally, Tenpenny Tower and You Gotta Shoot

’em in the Head again have the same interaction with a plot point based on

a character being alive. If the character is not alive, then a possible quest

branch is not allowed.

When the SDL files were first being created, the decision was initially

made to model the entire storyline in a single file. However, when validat-

ing the storyline after each additional quest was added, it was found that the

validation process would not complete when left running for over twenty-four

hours once the main quest chain of Escape, Following, Galaxy News Radio,

and Scientific Pursuits / Tranquility Lane existed. Two di↵erent approaches

were taken to alleviate the problem: allow SPIN to run in parallel breadth-

first-search mode and using SWARM [93]. Allowing SPIN to run in parallel

breadth-first search (BFS) mode did not work because the memory require-

ments to complete the validation were greater than what the machine had on

which it was running (16GB). The second approach was to use SWARM, an

91

extension of SPIN that can break large verification problems down into many

small verification jobs that run in parallel. In this case, the job would complete

but the results returned were incomplete in that some jobs reported that they

could not verify some paths and others jobs verified the path. As a judgement

call at the time, it did not appear appropriate to use SWARM because all

jobs did not report completely correct verifications. The decision was made

to implement each quest individually and combine quests where interactions

between them existed.

Discovering Inconsistencies The validation code found inconsisten-

cies in the FAQs and game guides in the interaction between the Tenpenny

Tower and You Gotta Shoot ’em in the Head side quests. A character, Al-

listair Tenpenny, is central in both of these quests. If Allistair Tenpenny is

killed during You Gotta Shoot ’em in the Head, one possible path from the

Tenpenny Tower quest becomes unavailable or is automatically ended if it was

already started. If Allistair Tenpenny is killed during Tenpenny Tower, a path

in You Gotta Shoot ’Em in the Head becomes unavailable. In the o�cial strat-

egy guide, no mention is made of Allistair Tenpenny’s involvement between

the two quests causing an issue; however, playing the game shows it to be an

issue.

Otherwise, the plot of Fallout 3 was found to not have any inconsisten-

cies using our tool in this scenario. The reasons for this are that many of the

techniques discussed in the abstract, such as immortal characters and quest

isolation are heavily used. There are no side quests that interact with the main

92

quest in any way. Another aspect to missing possible inconsistencies is due to

the after-the-fact process upon how this case study was done. Unfortunately,

besides the inconsistencies found when creating the storyline description files

based on the data available there was no method for us to truly put ourselves

into the designers shoes.

Creating the tool The verification tool must be able to verify quests

quickly or else it loses much of its utility to game writers. As a guideline, we

believed it should be able to verify a quest within ten seconds. As part of the

testing, the tool was run 1000 times to ensure the results were consistent and

to generate a large enough number of runs to accurately calculate the run time

of each quest. The statistics of the runs can be seen in Table 6.2. The longest

running quest to test was The Wastelands Survival Guide which took about

four seconds on average to verify.

It was found out during the creation of the plot files that the largest plot

verification file that can be solved within a reasonable time by the underlying

program is approximately 130 plot points with a few branches on a modern

machine (2.7GHz Intel i7, 16GB RAM). As mentioned above, the storyline

had to be broken down into individual quests and quests that have interactions

between them. The longest quest to verify was The Wasteland Survival Guide

which was not the largest quest in terms of plot points but it was the most

complex having multiple branches that had to be explored. Although not ideal

to have to break the storyline down into multiple quests files, it does fall in line

with industry practices (pers. comm. Royal McGraw); quests are proofread

93

Table 6.2: Fallout 3 Quests and Averge Time to Validate
Quest Time (ms)
Agatha’s Song 292.11
Blood Ties 245.33
Big Trouble in Little Town 244.95
Escape! 253.19
Following 253.24
Finding the Garden of Eden 282.98
Galaxy New Radio 252.44
Head of State 244.91
Oasis 241.84
Picking up the Trail 249.82
Rescue from Paradise 246.81
Reilly’s Rangers 242.63
Strictly Business 281.86
Stealing Independence 249.98
Scientific Pursuits and Tranquility Lane 266.67
The American Dream 244.92
Those 259.75
Take it Back 246.87
The Nuka-Cola Challenge 241.24
Trouble on the Homefront 260.87
The Power of the Atom 240.94
The Replicated Man 243.85
The Superhuman Gambit 244.62
Tenpenny Tower 245.80
The Waters of Life 248.77
The Wastelands Survival Guide 4154.13
You Gotta Shoot ’Em in the Head 243.35

94

and logically tested by designers on an individual basis. Some companies do

no such proofreading and testing and assume a critical path check will catch

the issues. The ability to allow a designer to easily verify that their quest can

be completed based on formal verification is very powerful and can provide

additional safety around quests that cannot be completed.

6.2 Quality Assurance for Implementation

The second case we explore is the use of the tool as a software developer

in test verifying the implementation of the story. In this case, the SDL files

will be created from the implementation and then verified using the tool. As

in the first case study section, where the data was obtained, how the files were

created, and results will all be discussed.

6.2.1 Where the Data was Obtained

The data was obtained from Fallout 3: Game of the Year Edition on the

PC using G.E.C.K.3, the world editing tool from Bethesda, the game’s creator.

G.E.C.K. provides a GUI for creating, modifying, and browsing all assets of

the game. Using this tool we were able to examine each quest in detail. This

included all in-game scripts and variables used to track the quests completion

status and world state. We also used the Fallout Wiki4 to determine what

glitches existed within the PC version of the game.

3http://geck.bethsoft.com/index.php?title=Main_Page
4http://fallout.wikia.com/wiki/Portal:Fallout_3

95

6.2.2 SDL File Creation

The Storyline Description Language files were created by examining

the data within the G.E.C.K. toolkit. The first step was modeling the full

storyline then creating each quest as need be if it deviated from the already

created storyline quests from the first use case.

6.2.3 Findings

The first step was to model the full storyline as implemented to see if

it matched the storyline as specified by the writers. We did not assume any

bugs or inconsistencies due to game engine bugs and glitches such as warping

between zones and going though walls and doors – which is a vast majority

of the bugs reported and still found within the game 5. The quests the player

could get to were determined by how the player could get to the quest within

the game world. The storyline as implemented can be seen in Figure 6.2, the

side quests are the same so they are not repeated in the figure. Obviously, this

does not match what the writers created.

From this it can be seen that the user can circumvent all quests between

Escape and Tranquility Lane by going directly to Tranquility Lane. In terms

of game play, when Escape! is completed, the player is outside the starting

vault instead of heading to the closest town, the player can find Vault 112 and

sit in a lounger in the vault to begin Tranquility Lane.

5http://fallout.wikia.com/wiki/Fallout_3_quests

96

Figure 6.2: Fallout 3 Quests as Implemented
97

To fix this problem, the use of a plot object and pre- and post-conditions

must be used to only allow the starting of a quest after the player has finished

the correct quests. Inside the game, the problem can be fixed by modifying (or

adding) scripts associated with the quests to not allow the quest to start until

the preceding quest has moved into the completed state. We verified that this

can be fixed by adding plot objects and condition checks such that when each

quest is complete, that check is used to prevent the player from going to the

next quest unless the previous one is complete. The next step was to verify

the implementation of the quest matched the writers’ designs. It was found

that the implementation of the quest matched the models that were created

in the previous use case.

The next step is to analyze the storylines and quests based on glitches

that are known. Assuming the commonly known glitches that can be used

within Fallout 3 easily, the reexamination of the storyline looks like Figure

6.3. Notice that the user can now access up to the Picking Up the Trail quest

without completing the other quests and the quest Escape can also not be

completed. As with the initial storyline examination, the reason the player

can access the quest is due to the implementors not inserting gating functions

into the quest’s scripts for Fallout 3. Again, following the same process, we

can verify that storyline is now unable to be circumvented by using glitches

within the game engine.

Finally, if we assume the player can access any section on the map

with no problems, the issues seen in the first two iterations are seen again and

98

Figure 6.3: Fallout 3 Quests Assumming Common Glitches
99

the storyline becomes an almost point to point map since there is no way to

stop a player from starting the quest (we have omitted this graph since it is

hard to make heads or tails of it). As in the first two iterations, we apply the

same routine and verify that using a gating function based on previous quests

completing will prevent the player from skipping the storyline.

6.3 Fallout 3 Quest Developer

This case study is an example of where the tool would be most useful,

allowing a team of writers and developers or a single developer to create a

quest for the game. The tool can be used at each step in the process to verify

the quest will not cause a conflict or error within the quest itself or with any

quest in the game.

6.3.1 Where Data was Obtained

The data used was obtained from the same sources as the previous two

use cases. In this use case, we are also creating an entirely new quest that will

integrate into the Fallout 3 storyline.

6.3.2 SDL File Creation

In this case, we rely upon the SDL files from the previous two use cases

to be the basis for the work in this use case. The creation of any new files will

be based on the quest which is being created.

100

Figure 6.4: Intial Three Dog’s Ultimate Stash Quest

6.3.3 Findings

This case starts with the idea for a quest. In this case, a simple side

quest that requires finding Three Dog’s ultimate stash is designed. It is a

simple quest that has the player finding a note in Three Dog’s stash, which is

found during the Galaxy News Radio quest. This note directs the player to

talk to Three Dog about his ultimate stash whereupon discussing it, Three Dog

will give the player the location of the stash and the player must go retrieve

its contents for a reward. Figure 6.4 shows the quest as a flowchart.

The next step is to convert this quest into a SDL file and verify that it

does not cause problems using StoCk. It does have interactions with the

quest Galaxy News Radio since it can start during this quest. Running

the verification tool results in a failure stating: “Time Taken: 3040ms, File

../src/test/resources/json/fallout3/three-dog-ultimate-stash/tdus.json is invalid”

meaning we cannot complete all plot points because our second plot point is

talking to Three Dog to find out the location of his ultimate stash. This means

we need to provide a route that if Three Dog is dead, the player can still find

out about the ultimate stash. The new plot with this change can be seen in

figure 6.5. Again, an SDL file is created and tested to prove that no errors

101

Figure 6.5: Second Attempt of Three Dog’s Ultimate Stash Quest

can occur; on this run StoCk returns a passing message “Time Taken: 765ms,

File: ../src/test/resources/json/fallout3/three-dog-ultimate-stash/tdus.json is

valid”, there are no errors meaning we are not breaking any quest that is

currently made and that our quest is able to be completed by the player.

Now, the quest can be created using Fallout 3 ’s developer tool, G.E.C.K.,

that allows developers and users to create and modify elements of Fallout 3.

The figures following show the various stages of the quest while playing it in

Fallout 3. Figure 6.6 shows the player finding the note from Three Dog inside

of the weapons cache inside of Hamilton’s Hideaway. The next image (Figure

6.7) shows the game starting the quest and the next figure (Figure 6.8) is the

contents of the note. The next figures: Figure 6.9, Figure 6.10, Figure 6.11,

and Figure 6.12 show the conversations that are had with Three Dog if he is

alive or with Doctor Li if Three Dog has been killed. The last few figures then

show the completion of the quest (Figures 6.13 and 6.14) and the contents of

the last note left by Three Dog in Figure 6.15.

102

Figure 6.6: Player locating note to start quest

Figure 6.7: Player beginning quest

103

Figure 6.8: Contents of note

Figure 6.9: Asking Three Dog about the weapons stash

104

Figure 6.10: Three Dog’s Response to the question

Figure 6.11: Asking Doctor Li about the weapons stash

105

Figure 6.12: Doctor Li’s Response to the question

Figure 6.13: The player about to pick up Three Dog’s Ultimate Stash note

106

Figure 6.14: The player completing the quest

Figure 6.15: Contents of Three Dog’s Ultimate Stash Log

107

This use case shows how using the plot verification tool can save time

and e↵ort through quick feedback loops on the ability to test and verify the

quest’s ability to be completed without harming the pre-existing storyline.

Without this tool, after the author had spent time creating the quest, playing

the quest, and deciding that it works correctly enough, they’d receive a com-

plaint or bug report that the quest could not be completed if Three Dog was

dead when they received the quest. This would lead to the developer having

to replay the quest, verify the bug exists, change the quest, and test again.

Even with a simplistic quest, this is a lot of additional work. If a quest existed

that had more dependencies that the creator did not know about, this process

could be repeated multiple times, each time the developer having to make sure

the changes fix the problem and do not regress on the problems that had been

fixed.

108

Chapter 7

Conclusion and Future Work

The recent developments in gaming has spawned larger complex sto-

ries and worlds involving multiple paths and choices to complete the story.

However, these storylines are often so complex that game designers with their

current tools could not verify all possible story lines. The application of for-

mal verification to video game storylines is an unexplored research topic that

can have an impact on the video game market by unburdening the design-

ers, writers, and developers from constraining their designs based on in-game

interactions becoming too di�cult to test in a timely manner.

In this dissertation, we addressed the following research questions: how

can complex storylines be modeled using formal verification methods, and

what techniques are needed to map story lines to implement these methods

into a usable and practical tool for game developers. Our work resulted in the

following three tools:

1. SChar which provides a method to categorize the storyline model of a

game base on simple questions

2. Our Storyline Description Language (SDL) which provides an implemen-

tation agnostic way for designers, writers, and developers to describe a

109

game storyline

3. StoCk which provides a tool to verify the correctness of a storyline

We then presented three case studies using StoCk to examine all of

the storylines in Fallout 3. We examined the usefulness of our research from

three di↵erent perspectives: the writers and designers, quality assurance, and

developers. These case studies showed that a quick feedback loop can be

achieved during all the use cases and integrated into an existing process. The

work presented in this dissertation thus provides a solid base for storyline

verification, and we look forward to seeing what can come from the work.

7.1 Future Work

Although inspired by many people in the industry and their input has

been invaluable in shaping the work done. Our use cases were determined by

speaking with them and the design and features of both the SDL and StoCk

were also influenced by discussions with them. This groundwork provides

a solid base but there are areas that must be addressed: user studies, user

friendliness, and implementation refinement.

StoCk and the SDL has not yet been tested as a part of the game

development process in the gaming industry. First, studies with companies

in the gaming industry would provide valuable information on how to best

integrate our tools. For instance, this could mean developing StoCk as a

110

plugin for Maven, Gradle, Visual Studio, or even a game development toolkit

such as GECK.

Secondly, user friendliness was not a factor in our design, as it stands

our toolset works for developers who are willing to put the time in to make

it work within their process. To be even more useful, however, there are

many tasks to undertake. should provide better correlation between the model

checker output and the storyline description language input. For instance, the

ability to present the results of the model checker in a visual tool or report

that pin-points the exact problem would be very helpful. Additionally, the

ability to generate the quests visually or from an implementation or other

tooling used by developers could increase the interest and usage. Lastly is the

refinement of the implementation.

Lastly, in this dissertation we focused on one game from both the de-

signer or writer perspective and from the developer perspective. Additional

testing with other real world games can provide insight that could drive the

adoption of another model checker or formal verification method. Another

aspect to test is other model checking programs to find the best match for the

goal. This could mean a change from SPIN to another tool or, even, a model

checker written specifically for our game testing use case.

111

Appendices

112

Appendix A

Exploratory Survey

This contains the survey and tabulated results from the running of the

survey.

1. Preliminaries

(a) What sex are you?

Male Female
532 68

(b) How old are you?

18-20 21-30 31-40 41-50 51-60 60 and older
202 340 46 9 3 2

(c) What is the highest level of education you have attained?

High school some college bachelors masters phd
39 282 157 102 23

2. Now, lets talk about video games

(a) Do you play video games? Which type of video games?

113

Type Number
Action 483
Adventure 424
Puzzle 309
Role Playing 419
Simulation 199
Sports 197
Strategy 406
I don’t play games 20

(b) How important is story to you within a game?

0 1 2 3 4 5
18 15 43 96 242 181

(c) Would you play a game that has a dynamic storyline?

Yes No
575 24

(d) Would you prefer a static or dynamic game?

Static Dynamic
91 506

(e) Given your answer from above, why did you choose static or dy-

namic?
Selected Answers
It simulates more of a realistic realm.
It allows the storyline to be played multiple times.
More realism, more immersion.
I feel like it’s easy to miss content in games with dynamic stories.

114

Appendix B

History of Storytelling

The background work presented in the dissertation is directly related

to the work presented within the document. However, there is more work that

also relates to the history of video games and academic dramatic storytelling.

B.1 Live Action Storytelling

Live action storytelling can be used to convey information, tell an en-

tertaining anecdote, pass along tradition, or entertain an audience or partici-

pants. It can be as simple as telling a story to a single child or a group; it can

involve a cast of many, each fulfilling a di↵erent role with pre-determined mo-

tivations. Storytelling is diverse and has many di↵erent aspects, but four main

styles of storytelling stand out: traditional storytelling, dinner mysteries and

improvisational theater, tabletop role-playing, and live-action role-playing.

B.1.1 Traditional Storytelling

Traditional storytelling, according to the National Storytelling Net-

work, is four things: interactive, uses words and gestures, presents a story

and encourages the imagination of its listeners [94]. Storytelling is interactive

115

because it involves two-way interaction between the teller and the listeners. It

can tightly connect the storyteller and the audience and help with the impact

of the story. Using words and gestures di↵erentiates storytelling from other

forms of interaction such as dance, miming, or reading text in a computer

game. Storytelling always presents a narrative; this again di↵erentiates it from

stand-up comedy or poetry readings in which narratives are not necessary to

understand the underlying messages. Finally, it encourages the imagination

of its listeners. The narrative and some details may be supplied by the story-

teller, but the world in which the story is taking place is fully fleshed out by

the listeners.

B.1.2 Improvisational Theater

Improvisational Theater is another form of storytelling which can en-

courage user feedback to drive the action. In its most pure form it is a method

in which the actors play a dramatic scene with minimal or no predetermined

activity [95]. In another form improvisational theater is often comedic and

takes cues from the audience to create impromptu scenes. This form of impro-

visational theater can be seen on shows such as ”Whose Line is it Anyway?”

or in person at various theaters.

B.1.3 Tabletop Role-Playing

Tabletop role-playing games involve a group of people with one person

acting as the game master and the others playing characters within the game.

116

The game master defines the world, its inhabitants, outcomes of player actions

with the inhabitants and guides (hopefully discreetly) the players through the

narrative. The players are allowed to improvise within the world and with their

actions inside of the world, helping to shape the full narrative of the story. An

example of a tabletop role-playing game would be Dungeons & Dragons, which

is still the most dominant table-top role playing game on the market [96].

B.1.4 Live-Action Role-Playing

Live-action role-playing (LARPing) can be thought of as a combination

of improvisational theater and tabletop role-playing. Players in a live-action

role-playing setting act out their character’s actions physically and undertake

their character’s goals in a fictional setting in the real world while interacting

with one another [97]. As with tabletop role-playing, LARPing requires a game

master (or game masters depending on the size of the group) to define rules

and settle disputes between players during play. The players in live-action

role-playing are much like the actors in an improvisational play since they

must act out goals given to them by an audience (the GM) while remaining

in character.

B.2 Computational Story Creation

Computational story creation, although not interactive, can be consid-

ered the impetus for much of the research today into interactive storytelling.

TALESPIN, MINSTREL and BRUTUS are classic examples of this research.

117

All computational story creation systems create a story based upon a set of ini-

tial conditions and logic statements and attempt to solve the logic statements

in order to create a story.

B.2.1 TALESPIN

TALESPIN [98] attempted to derive stories based upon the goals of

simulated characters. The content of the story was represented as character

goals and operators to achieve the goals. The storylines in TALESPIN were

driven entirely by the characters’ motivations. This neglected any storylines

that involved cooperation or portrayals of characters for dramatic e↵ect1.

B.2.2 MINSTREL

Turner’s MINSTREL [99] is a step forward from TALESPIN in that

it augmented TALESPIN’s story planning with meta-level goals and plans

that represent what the author is trying to achieve. It views authoring a

story as a problem solving exercise and uses a case-based reasoner to write the

stories. The process used by MINSTREL is: first, identify a problem to solve;

secondly, recall a past solution similar to the current problem; next, adapt the

past solution; finally, apply the adapted solution to the current problem.

1http://grandtextauto.org/2007/10/30/scott-turner-on-minstrel/

118

B.2.3 BRUTUS

BRUTUS [100] generates stories based upon rigorous logical definitions

of betrayal and heartbreak. BRUTUS’ goal is to create stories that are suf-

ficiently distant from an initial knowledge representation of the logical defi-

nitions and vary independently across dimensions such as characters, setting,

and themes.

B.3 From Computation Story Creation to Interactive
Drama

While much academic research has been done with computational sto-

rytelling, it was not until the mid-1980s that academic research started into

interactive storytelling.

B.3.1 Interactive Storytelling System

Laurel’s work [76] was the design of an interactive storytelling system.

Her work defined a playwright, now called a drama manager, along with a

list of thirteen functions required to make the system complete. Laurel’s work

o↵ered no ideas as to how these functions would be implemented, and, in

Crawford’s [13] words, “it’s a wish list and not a plan” however, it set the

stage for all academic interactive fiction research.

Laurel’s work is the genesis for the current academic research such as

search-based drama management [77], Facade [80], OPIATE [82], and PaS-

SAGE [84] among many others.

119

Appendix C

Video Game Ontology

Video games have a few characteristics upon which they are normally

described. This section describes the common attributes used to describe most

games.

C.1 Gameplay Points-of-View

We need to categorize the point-of-view of the player. There are three

main points-of-view: text-based, third person and first person.

Text-based points-of-view were very popular before computers and video

game systems had the power to display graphics. The Zork series of games

is considered to be one of the greatest adventure games of all time, and it

is text-based. As a text-based game, the world, characters, and objects are

described as blocks of text on the screen and the player provides input via the

keyboard.

Third-person is a superset of di↵erent perspectives. These perspectives

are: top-down, side, tile-based isometric, and 3D isometric. The top-down

perspective is used in shooter-style games with the player’s character centered

120

on the screen. Some examples of the top-down view are: The Legend of Zelda1,

Asteriods2, and Galaga3. Side, or profile, view displays the player’s character

from a profile perspective and is often used in beat ’em up and early action

games. Metroid4, Streets of Rage5, Super Mario Brothers6 and Mega Man7

are all examples of games that use the side perspective. Finally, tile-based and

3D isometric views often display the player’s character or characters from a

3/4 view. In tile-based isometric views, the camera never changes its position

on the world since the world is comprised of sprites (images) and does not use

polygons to create the world. In 3D isometric views, the player has the ability

to spin, zoom in or out, and position the camera however they choose since the

world is made of polygons and is a true 3D representation. Civilization IV 8,

Ultima 6 9 and Crusader: No Remorse10 are examples of tile-based isometric

viewpoints. Dead Space11 and Mass E↵ect12 are examples of 3D isometric

views.

The first-person viewpoint displays the world as it is seen through the

1Nintendo, The Legend of Zelda, Console, 1987.
2Atari, Asteroids, Arcade, 1979.
3Namco, Galaga, Arcade, 1981.
4Nintendo, Metroid, Console, 1986.
5SEGA, Streets of Rage, Console, 1991.
6Nintendo Entertainment, Super Mario Brothers, Console, 1985.
7Capcom, Mega Man, Console, 1987.
8Civilization 4, Firaxis Games, 2005.
9Origin Systems, Ultima VI: The False Prophet, CD-ROM, 1990.

10Origin Systems, Crusader: No Remorse, CD-ROM, 1995.
11Visceral Games, Dead Space, Console, 2008.
12BioWare, Mass E↵ect, Console, 2007.

121

eyes of the character the player is controlling. Wolfenstein 3D13, Doom, Half-

Life14, Quake and Unreal Tournament15 are all examples of the first-person

viewpoint.

C.2 Number of Players

Another aspect of all games is the number of players allowed to play

the game at one time. The four categories are: single player, two player,

multiplayer, and massively multiplayer (MM). Single player games are designed

to allow only one player to play the game. Donkey Kong16, Metroid, and Dead

Space are all examples of single player games. Two player games are designed

for two players - usually at the same time although there are some exceptions

such as Super Mario Brothers, where the players alternate playing the game.

Beat ’em ups like Streets of Rage and fighting games such as Street Fighter

II 17 are quintessential examples of two player games where the players play

at the same time. Multiplayer games are games where two to 64 or more

(depending on the game) players can play at the same time. The multiplayer

option in the game Halo18 is a great example of this - it pits multiple teams

against one another. Massively multiplayer games allow thousands of players

in a single persistent virtual world. They are di↵erent than multiplayer games

13id Software, Wolfenstein 3D, Disk, 1992.
14Valve Software, Half-Life, CD-ROM, 1998.
15Epic Games, Unreal Tournament, CD-ROM, 1999.
16Nintendo, Donkey Kong, Arcade, 1981.
17Capcom, Street Fighter II, Arcade, 1991.
18Bungie, Halo, Console, 2001.

122

due to the massive number of players that can play at the same time. Another

distinguishing feature of massively multiplayer games is the persistent world -

even as players log in and out of the game, the world continues without them.

This is in stark contrast to other multiplayer games where, when the players

leave, the world is destroyed. The most popular massively multiplayer game

is World of Warcraft19.

C.3 Game Types

Video and computer games can be divided by type into a few major

categories: action, adventure, puzzle, role playing, simulation, sports, strategy,

and hybrids. Below we will look at each of the types briefly and give examples

of each type.

C.3.1 Action Games

Action games are games that challenge a player’s speed, dexterity and

reaction times when responding to on-screen stimulus. These place a premium

on exciting actions such as shooting, fighting, and dodging. Under the um-

brella of action games are the many sub-genres such as fighting, beat ’em ups,

platformers, and shooters. Fighting games normally pit the user in on-screen

hand-to-hand combat against one or more enemies at a time within an arena.

Some popular fighting games are: Street Fighter II, Soul Calibur IV 20, and

19Blizzard, Wold of Warcraft, CD-ROM, 2004.
20Namco, Soul Calibur 4, Console, 2008.

123

Dead or Alive 4 21. Beat ’em ups focus again on hand-to-hand fighting, but in

this case, it is one (or two) versus many across multiple levels. The players

fight through hordes of enemies to arrive at the end of the level where a fight

with a much harder enemy (a boss) occurs. When the players defeat the boss

they are allowed to move to the next level. Examples of beat ’em up games

include Streets of Rage and Double Dragon. Platformers are similar to beat

’em ups but place more emphasis on gymnastic feats such as jumping. Super

Mario Brothers, Metroid, and Mega Man are examples of platformer games.

Finally, there are shooters; these games are like beat ’em ups but instead of

hand-to-hand combat you are shooting enemies with various weapons. Doom,

R-Type, and Half-Life are all shooters.

C.3.2 Adventure Games

Adventure games focus on exploration, puzzle solving, and interaction

with characters inside the story world to solve the puzzles. The player navi-

gates through the story and puzzles are used to continue the story. Popular

adventure games include the Zork series, King’s Quest22, Quest for Glory23,

Under a Killing Moon24, and Sam & Max Hit the Road25. The adventure

game as described today is no longer the juggernaut it was in the ’90s; it

is now a niche genre with action-adventure games taking their place. The

21Tecmo, Dead or Alive 4, Console, 2005.
22Sierra On-line, King’s Quest, Disk, 1984.
23Sierra On-line, Quest for Glory, Disk, 1989.
24Access Software, Under a Killing Moon, CD-ROM, 1994.
25LucasArts, Sam and Max Hit the Road, CD-ROM, 1993.

124

action-adventure games will be discussed in the hybrids section.

C.3.3 Puzzle Games

Puzzle games emphasize the player solving a puzzle. For instance,

Tetris26 requires the player to create solid horizontal lines out of falling pieces

that are di↵erent shapes, and the goal is to continue making these lines and

clearing the board for as long as possible. Other game types like action,

adventure, and role playing might have puzzle elements inside of them but

puzzle solving is not the goal of the game. Some other popular puzzle games

are: Columns27, Lumines28, Dr. Mario29, and The Incredible Machine30.

C.3.4 Role Playing Games

Role playing games share much in common with the tabletop role play-

ing games like Dungeons and Dragons. The player takes control of a single

person or group and controls them in a story. An emphasis is placed on the

statistical improvement of the characters while playing the game. However,

computer and console role playing games do not have a human guiding the

story. The story’s plot is most often linear or has very few branches so the

player only guides his group through quests and interactions defined by the

game. The battles are done in a turn-based style with the user allowed to pick

26Nintendo, Tetris, Console, 1989.
27SEGA, Columns, Console, 1990.
28Bandai, Lumines, Console, 2004.
29Nintendo, Dr. mario, Console, 1990.
30Dynamix, The Incredible Machine, Disk, 1993.

125

an action per character per turn. Examples of this style of game are Final

Fantasy, Neverwinter Nights31, and Lost Odyssey.

C.3.5 Simulation Games

Simulation games try to model some aspect of reality so that the user

can interact within this programmed reality. An example of a simulation game

would be Sim City. In Sim City, the program simulates the workings of a city

and its population, and the user can decide to strive to head a successful

city or become a slumlord. There are multiple other simulation subtypes;

some of the most popular are: vehicle simulations like Gran Turismo32 and

Forza Motorsports33, life simulations such as The Sims and Nintendogs34, and

management simulations such as Sim City and NFL Head Coach35.

C.3.6 Sports Games

Sports games attempt to simulate playing a typical real-world sport

such as football, basketball, or soccer. These games would not be considered

simulation games since they focus on playing the sport as opposed to handling

the management aspects of the sport. However, since many of the sports games

are beginning to merge many of the back o�ce dealings into the games, this

would not change the classification of the game since the point of the game is

31BioWare, Neverwinter Nights, CD-ROM, 2002.
32Sony Computer Entertainment, Gran Turismo, Console, 1998.
33Microsoft Game Studios, Forza Motorsport, Console, 2005.
34Nintendo, Nintendogs, Console, 2005.
35Electronic Arts, NFL Head Coach, Console, 2006.

126

to play the sport against another opponent.

C.3.7 Strategy

Strategy games are characterized by the need for the user to think and

plan in order to achieve victory. The game itself can be either turn-based

or real-time. In turn-based strategy, the player and all opponents take turns

moving and manipulating their forces, whereas in real-time strategy all moves

and manipulations are done by all players at the same time. Some examples

of strategy games are Civilization, StarCraft36, Galactic Civilizations37, and

X-COM 38.

C.3.8 Hybrids

Many games have now begun to exhibit qualities found in multiple game

types. For instance, action-adventure games have over adventure games in

terms of popularity. Action-adventure games often combine the puzzles found

in adventure games with the speed and dexterity needed to defeat enemies

within the game. Some popular action-adventure games are Resident Evil39,

Metroid, and Castlevania40. Another hybrid genre is the strategy-role playing

game. In this style of game, the normal battle sequence is replaced with a

tiled field populated with enemies and the player’s group where the player

36Blizzard, StarCraft, CD-ROM, 1998.
37StarDock, Galactic Civilizations, CD-ROM, 2003.
38MicroProse, X-COM: UFO Defense, Disk, 1993.
39Capcom, Resident Evil, Console, 1996.
40Konami, Castlevania, Console, 1986.

127

must command their troops to victory versus the enemies. The other aspects

of the role-playing game are kept intact such as the emphasis on statistically

increasing the player’s party. A hybrid game is one that exhibits traits found

within multiple game types.

C.4 Examples of Number-of-players, Game types and
plots

Now that number-of-players, game types and plot representations have

been examined we can explore how they interact with one another in cur-

rent games. The three factors (number-of-players, game type and plot type)

usually interact with one another and a↵ect the type of game that is being cre-

ated. The primary player-type-plot combinations seen today are: single and

multi player action linear plot, single player RPG linear plot, single player

Hybrid action-RPG sandbox plot and massively multiplayer RPG branching

and foldback plot.

C.4.1 Single and multi-player action linear plot

The single player action game with a linear plot is a fairly standard

choice for many games. Classic arcade games such as Donkey Kong and Pac-

Man are of this type. Many side scrolling shooter games such as R-Type and

Gradius are as well. In these games, the plot is an excuse to transport the

player from world to world, conquering the enemies that appear on the screen.

The interactions with the world are normally minimal, such as opening a door,

128

pressing a switch, or collecting an item from a box.

C.4.2 Single player RPG linear plot

RPGs such as Final Fantasy, Lost Odyssey, and Chrono Trigger 41 ex-

emplify single player RPG games. The player is given control of a group of

characters who are the main characters within a highly constrained narrative.

The stories often begin with a simple goal that soon expands into a story

about saving the world or a kingdom by defeating another character and his

powerful minions. The player is given no choices on how the story is going to

be completed; they merely level up their characters in order to fight the next

boss character and finally, defeat the last boss and see the ending. Interactions

in this type of RPG expand from what is allowed in the typical action game

to include simple dialog with NPCs and the ability to buy and sell items at a

set price from defined NPCs.

C.4.3 Single player Hybrid (RPG/Action) sandbox plot

The Fallout series and The Elder Scrolls games are prime examples

of the single player hybrid sandbox plot game. In both of these games, the

player is given a straightforward first quest to get them familiar with the game

and establish the backstory for the rest of the game. After the first quest is

completed, the player is then allowed to enter the larger world and continue

with the game as they see fit. As quests are completed, other quests are

41Square, Chrono Trigger, Console, 1995.

129

revealed that can be completely unrelated to the main storyline. Interactions

within this style of game are similar to the single player RPG linear plot but,

sometimes, speaking with NPCs can uncover additional quests unrelated to

the main quest that the player can participate in.

C.4.4 Massively Multiplayer RPG branching and foldback plot

The massively multiplayer RPG branching foldback plot style games

are often called Massively Multiplayer Online RPGs (MMORPGs) and allow

a player to interact with many other players in the same virtual world as

themselves. The most popular game of this type is World of Warcraft, in

which the player is allowed to create a character who is then placed into the

world in a starting town and given simple tasks to become acclimated with the

world. As the quests are completed, more zones and quests are opened to the

player. The player can, at any time, party with other players and complete

quests together. The interactions in an MMORPG are the same as the single

player RPG linear plot, but the human controlled players can talk and sell

items to one another in addition to speaking with the NPCs that inhabit the

world.

130

Bibliography

[1] M. S. O. Almeida and F. S. C. da Silva, “A systematic review of game
design methods and tools,” in Entertainment Computing–ICEC 2013,
Springer, 2013, pp. 17–29.

[2] S. Kriglstein, R. Brown, and G. Wallner, “Workflow patterns as a means
to model task succession in games: a preliminary case study,” in En-
tertainment Computing–ICEC 2014, Springer, 2014, pp. 36–41.

[3] K. Neil, D. de Vries, and S. Natkin, “A tool for evaluating, adapting
and extending game progression planning for diverse game genres,” in
Entertainment Computing–ICEC 2014, Springer, 2014, pp. 60–65.

[4] J. Lebowitz and C. Klug, Interactive Storytelling for Video Games:
A Player-centered Approach to Creating Memorable Characters and
Stories. Focal Press, 2011, isbn: 9780240817170. [Online]. Available:
https://books.google.com/books?id=QUrarEcvaO8C.

[5] T. Kropf, Introduction to Formal Hardware Verification. Springer Berlin
Heidelberg, 2010, isbn: 9783642084775. [Online]. Available: https://
books.google.com/books?id=usAHkgAACAAJ.

[6] C. Baier and J.-P. Katoen, Principles of Model Checking (Represen-
tation and Mind Series). The MIT Press, 2008, isbn: 026202649X,
9780262026499.

[7] M. Jaring and J. Bosch, “Representing variability in software product
lines: a case study,” in Software Product Lines, Springer, 2002, pp. 15–
36.

[8] S. Kent, The Ultimate History of Video Games: from Pong to Pokemon
and beyond... the story behind the craze that touched our li ves and
changed the world. Three Rivers Press, 2010.

[9] V Sarinho and A Apolinário, “A feature model proposal for computer
games design,” in VII Brazilian Symposium on COmputer games and
Digital entertainment, Belo horizonte, 2008, pp. 54–63.

[10] J. Blow, “Game development: harder than you think,” Queue, vol. 1,
no. 10, pp. 28–37, Feb. 2004, issn: 1542-7730. doi: 10.1145/971564.
971590. [Online]. Available: http://doi.acm.org.ezproxy.lib.
utexas.edu/10.1145/971564.971590.

131

[13] C. Crawford, Chris Crawford on Interactive Storytelling, ser. New Rid-
ers Games. Pearson Education, 2005, isbn: 9780132582254. [Online].
Available: https://books.google.com/books?id=_SnhNhcNGr4C.

[14] L. Beyak and J. Carette, “Saga: a dsl for story management,” arXiv
preprint arXiv:1109.0776, 2011.

[15] I. G. D. Association, Scriptwriting for games: part 1: foundations for
interactive storytelling. [Online]. Available: http://aii.lgrace.com/
documents/IDGA_Foundations_of_Interactive_Storytelling.pdf.

[16] ——, Scriptwriting for games: part 2: advanced plot story structures.
[39] G. Sutcli↵e and C. Suttner, “Evaluating general purpose automated

theorem proving systems,” Artificial intelligence, vol. 131, no. 1, pp. 39–
54, 2001.

[40] J. A. Robinson, “A machine-oriented logic based on the resolution prin-
ciple,” Journal of the ACM (JACM), vol. 12, no. 1, pp. 23–41, 1965.

[41] M. Sipser, Introduction to the Theory of Computation. Cengage Learn-
ing, 2012.

[42] V. Vychodil, “On generating of proofs,” in SCIS & ISIS, Japan Society
for Fuzzy Theory and Intelligent Informatics, vol. 2006, 2006, pp. 1071–
1078.

[43] D. W. Loveland, “Mechanical theorem-proving by model elimination,”
Journal of the ACM (JACM), vol. 15, no. 2, pp. 236–251, 1968.

[44] D. W. Loveland, “A simplified format for the model elimination theorem-
proving procedure,” J. ACM, vol. 16, no. 3, pp. 349–363, Jul. 1969,
issn: 0004-5411. doi: 10.1145/321526.321527. [Online]. Available:
http://doi.acm.org/10.1145/321526.321527.

[45] R. Kowalski and D. Kuehner, “Linear resolution with selection func-
tion,” Artificial Intelligence, vol. 2, no. 3, pp. 227–260, 1972.

[46] J. Otten, “Leancop 2.0 and ileancop 1.2: high performance lean theo-
rem proving in classical and intuitionistic logic (system descriptions),”
in Proceedings of the 4th international joint conference on Automated
Reasoning, Springer-Verlag, 2008, pp. 283–291.

[47] E. W. Beth, “Semantic entailment and formal derivability,” in Med-
edelingen van de Koninklijke Nederlandse Akademie van Wetenschap-
pen, 1955, pp. 309–342.

[48] R. M. Smullyan, First-order logic. Courier Corporation, 1995.

132

[49] S. Schulz, “System Description: E 1.8,” in Proc. of the 19th LPAR,
Stellenbosch, K. McMillan, A. Middeldorp, and A. Voronkov, Eds., ser.
LNCS, vol. 8312, Springer, 2013.

[50] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P.
Wischnewski, “Spass version 3.5,” in Automated Deduction–CADE-22,
Springer, 2009, pp. 140–145.

[51] L. Kovács and A. Voronkov, “First-order theorem proving and vam-
pire,” in Computer Aided Verification, Springer, 2013, pp. 1–35.

[52] T. Hillenbrand, “Superposition and decision procedures – back and
forth,” PhD thesis, Universität des Saarlandes, 2008.

[53] D Knuth and P Bendix, Simple word problems in universal algebra.
computational problems in abstract algebra, conference held at oxford
in 1967, 1970.

[54] L. Bachmair and H. Ganzinger, “Rewrite-based equational theorem
proving with selection and simplification,” Journal of Logic and Com-
putation, vol. 4, no. 3, pp. 217–247, 1994.

[55] R. Nieuwenhuis and A. Rubio, “Paramodulation-based theorem prov-
ing.,” Handbook of automated reasoning, vol. 1, pp. 371–443, 2001.

[56] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem-proving,” Communications of the ACM, vol. 5, no. 7, pp. 394–
397, 1962.

[57] M. Davis and H. Putnam, “A computing procedure for quantification
theory,” Journal of the ACM (JACM), vol. 7, no. 3, pp. 201–215, 1960.

[58] A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability. ios
press, 2009, vol. 185.

[59] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Cha↵: engineering an e�cient sat solver,” in Proceedings of the 38th
annual Design Automation Conference, ACM, 2001, pp. 530–535.

[60] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and
applications of satisfiability testing, Springer, 2004, pp. 502–518.

[61] K. Pipatsrisawat and A. Darwiche, “Rsat 2.0: sat solver description,”
Automated Reasoning Group, Computer Science Department, UCLA,
Tech. Rep. D–153, 2007.

[62] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchro-
nization skeletons using branching-time temporal logic,” in Logic of
Programs, Workshop, London, UK, UK: Springer-Verlag, 1982, pp. 52–

133

71, isbn: 3-540-11212-X. [Online]. Available: http://dl.acm.org/
citation.cfm?id=648063.747438.

[63] E. A. Emerson and E. M. Clarke, “Characterizing correctness prop-
erties of parallel programs using fixpoints,” in Proceedings of the 7th
Colloquium on Automata, Languages and Programming, London, UK,
UK: Springer-Verlag, 1980, pp. 169–181, isbn: 3-540-10003-2. [Online].
Available: http://dl.acm.org/citation.cfm?id=646234.682526.

[64] J.-P. Queille and J. Sifakis, “Specification and verification of concur-
rent systems in cesar,” in International Symposium on Programming,
Springer, 1982, pp. 337–351.

[65] R. Jhala and R. Majumdar, “Software model checking,” ACM Com-
puting Surveys (CSUR), vol. 41, no. 4, p. 21, 2009.

[66] M. Ouimet and K. Lundqvist, “Formal software verification: model
checking and theorem proving,” Embedded Systems Laboratory, MIT,
2007.

[67] G. J. Holzmann, “An analysis of bitstate hashing,” Formal methods in
system design, vol. 13, no. 3, pp. 289–307, 1998.

[68] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” Computers, IEEE Transactions on, vol. 100, no. 8, pp. 677–691,
1986.

[69] ——, “Symbolic boolean manipulation with ordered binary-decision di-
agrams,” ACM Computing Surveys (CSUR), vol. 24, no. 3, pp. 293–318,
1992.

[70] C Courcoubetis, M Vardi, P Wolper, and M Yannakakis, “Memory-
e�cient algorithms for the verification of temporal properties,” Formal
Methods in System Design, vol. 1, no. 2-3, pp. 275–288, 1992.

[71] J. Staunstrup, H. R. Andersen, H. Hulgaard, J. Lind-Nielsen, K. G.
Larsen, G. Behrmann, K. Kristo↵ersen, A. Skou, H. Leerberg, and N. B.
Theilgaard, “Practical verification of embedded software,” Computer,
no. 5, pp. 68–75, 2000.

[72] J. Lind-Nielsen, H. R. Andersen, G. Behrmann, H. Hulgaard, K. Kris-
toifersen, and K. G. Larsen, “Verification of large state/event systems
using compositionality and dependency analysis,” in Tools and Algo-
rithms for the Construction and Analysis of Systems, Springer, 1998,
pp. 201–216.

[73] G. J. Holzmann and D. Peled, “An improvement in formal verifica-
tion.,” in FORTE, vol. 6, 1994, pp. 197–211.

134

[74] A. Valmari, “A stubborn attack on state explosion,” in Computer-Aided
Verification, Springer, 1991, pp. 156–165.

[75] D. Peled, “Combining partial order reductions with on-the-fly model-
checking,” in Computer aided verification, Springer, 1994, pp. 377–390.

[76] B. K. Laurel, “Toward the design of a computer based interactive
fantasy system,” PhD thesis, Ohio State University, 1986. [Online].
Available: https://etd.ohiolink.edu/rws\textunderscoreetd/
document/get/osu1240408469/inline.

[77] P. Weyhrauch, “Guiding intreactive drama,” PhD thesis, Carnegie Mel-
lon University (CMU), 1997. [Online]. Available: gel.msu.edu/classes/
TC848/papers/Weyhrauch.GuidingInteractiveDrama.pdf.

[78] M. J. Nelson and M. Mateas, “Search-based drama management in the
interactive fiction anchorhead.,” in AIIDE, 2005, pp. 99–104.

[79] M. Sharma, S. Ontanón, C. R. Strong, M. Mehta, and A. Ram, “To-
wards player preference modeling for drama management in interactive
stories.,” in FLAIRS Conference, 2007, pp. 571–576.

[80] M. Mateas, “Interactive drama, art and artificial intelligence,” 2002.
[81] B. S. Magerko, “Player modeling in the interactive drama architecture,”

PhD thesis, University of Michigan, 2006.
[82] C. R. Fairclough, “Story games and the opiate system: using case-based

planning for structuring plots with an expert story director agent and
enacting them in a socially simulated game world,” PhD thesis, Uni-
versity of Dublin, Trinity College, 2004. [Online]. Available: https:
//www.cs.tcd.ie/publications/tech-reports/reports.05/TCD-
CS-2005-59.pdf.

[83] V. Propp, Morphology of the Folktale. University of Texas Press, 2010,
vol. 9.

[84] D. Thue, “Player-informed interactive storytelling,” Master’s thesis,
University of Alberta, 2007. [Online]. Available: https : / / sites .
google.com/a/ualberta.ca/ircl/projects/passage/thue07-
thesis.pdf.

[85] C. A. Petri, “Kommunikation mit automaten,” 1962.
[86] T. Murata, “Petri nets: properties, analysis and applications,” Proceed-

ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.
[87] J. P. Morrison, D. A. Power, and J. J. Kennedy, “A condensed graphs

engine to drive metacomputing.,” in PDPTA, 1999, pp. 902–908.

135

[88] S. Pakdel and A. C. Elster, “Enhancing the performance of condensed
graph’s computation in distributed systems by using numerical libraries
as super nodes,” in Proceeding of the International Conference on Com-
puter Science, Computer Engineering, and Social Media (CSCESM 2014),
London, UK, UK: SDIWC Publications, 2014, pp. 86–93, isbn: ISBN:
978-1-941968-04-8.

[89] D. Harel, “Statecharts: a visual formalism for complex systems,” Sci-
ence of computer programming, vol. 8, no. 3, pp. 231–274, 1987.

[90] O. OMG, “Unified modeling language (omg uml),” Superstructure, 2013.
[91] G. Holzmann, The Spin Model Checker: Primer and Reference Man-

ual. Addison-Wesley, 2011, isbn: 9780321773715. [Online]. Available:
https://books.google.com/books?id=1F1HYgEACAAJ.

[92] F. Press, Fallout 3, ser. The o�cial strategy guide. Future Press Verlag
und Marketing GmbH, 2008, isbn: 9783940643223. [Online]. Available:
https://books.google.com/books?id=carlOgAACAAJ.

[93] G. J. Holzmann, R. Joshi, and A. Groce, “Swarm verification tech-
niques,” Software Engineering, IEEE Transactions on, vol. 37, no. 6,
pp. 845–857, 2011.

[94] E. Ellis, From Plot to Narrative: A Step-by-step Process of Story Cre-
ation and Enhancement. Parkhurst Brothers Publishers Incorporated,
2012, isbn: 9781935166818. [Online]. Available: https://books.google.
com/books?id=8bmepwAACAAJ.

[95] V. Spolin, Improvisation for the Theater: A Handbook of Teaching and
Directing Techniques, ser. Drama and Performance Studies. Northwest-
ern University Press, 1999, isbn: 9780810140080. [Online]. Available:
https://books.google.com/books?id=W24B26mGvQkC.

[96] W. R. Team, Player’s Handbook, ser. D&D Core Rulebook Series. Wiz-
ards of the Coast, 2014, isbn: 9780786965601. [Online]. Available: https:
//books.google.com/books?id=ZjzjoAEACAAJ.

[97] D. Mackay, The Fantasy Role-Playing Game: A New Performing Art.
McFarland & Company, 2001, isbn: 9780786450473. [Online]. Avail-
able: https://books.google.com/books?id=s8YRVbDknyUC.

[98] J. Meehan, “The metanovel: writing stories by computer,” PhD thesis,
Yale University, 1976.

[99] S. R. Turner, “Minstrel: a computer model of creativity and story-
telling,” 1993.

136

[100] S. Bringsjord and D. Ferrucci, Artificial intelligence and literary cre-
ativity: Inside the mind of brutus, a storytelling machine. Psychology
Press, 1999.

137

Index

Abstract, vi
Acknowledgments, v
Appendices, 114

Background and Related Work, 11
Bibliography, 134

Categorizing and Describing Story-
lines, 55

Conclusion and Future Work, 111

Dedication, iv

Exploratory Survey, 115

History of Storytelling, 117

Introduction, 1

Modeling Techniques, 42

StoCk Case Studies, 88
StoCk: Storyline Checker, 73

Video Game Ontology, 123

138

Vita

Lane Thomas Holloway was born July 21, 1978 to James Lovis Hol-

loway and Patricia Wilkinson Holloway. He grew up loving computers, video

games, and basketball. He received a B.S.E.E. from The University of Texas

at Austin in December of 2001 and a M.S.E.E. from The University of Texas

at San Antonio in September 2003. He has worked as a software developer and

software architect for IBM, Sotera Defense Solutions, and HomeAway. He is

currently Principal Portfolio Architect in the O�ce of the CTO at Rapid7 re-

searching topics related to computer security and vulnerabilities, and scalable

architectures.

Permanent address: 1101 Brown Drive
Pflugerville, Texas 78660

This dissertation was typeset with LATEX
† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

139

