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Abstract

Building on previous work in the field of language modeling information retrieval (IR), this paper
proposes a novel approach to document ranking based on statistical model selection. The proposed
approach offers two main contributions. First, we posit the notion of a document’s “null model,” a
language model that conditions our assessment of the document model’s significance with respect to the
query. Second, we introduce an information-theoretic model complexity penalty into document ranking.
We rank documents on a penalized log-likelihood ratio comparing the probability that each document
model generated the query versus the likelihood that a corresponding “null” model generated it. Each
model is assessed by the Akaike information criterion (AIC), the expected Kullback-Leibler divergence
between the observed model (null or non-null) and the underlying model that generated the data. We
report experimental results where the model selection approach offers improvement over traditional LM

retrieval.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval-retrieval models; H.3.4 [Information Storage and Retrieval]: Systems and
Software—performance evaluation (efficiency and effectiveness).

Keywords: Information retrieval models, Language modeling, Model selection, Akaike information

criterion (AIC)

1 Introduction

In the context of applied statistics, the term model selection refers to the choice of a single model from a pool

of candidate models. Most formal model selection techniques balance a measure of model goodness of fit
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with a penalty for model complexity. During model selection we favor models that fit the data well. But to
avoid overfitting, we employ Occam’s razor and seek models that describe the data simply. Balancing these
mandates—good fit and simplicity—has given rise to many methods of comparing models such as Mallows’ C,
[Neter et al., 1996], the Bayesian information criterion [Schwarz, 1978] and the Akaike information criterion
(AIC) [Burnham and Anderson, 2002].

In this paper we propose a novel method of ranking documents against a query during information
retrieval (IR). The proposed approach, which we call model selection information retrieval (MSIR), ranks
documents on a statistic closely related to AIC-the AIC difference between the document model and its
corresponding null model.

Given a document d; we derive a statistic corresponding to a test on the null hypothesis, Hy: It is no
more likely that the language model that generated document d; generated the query than it is that a model
generating terms at the rate we expect due to chance generated the query. In this setup, each hypothesis, null
and non-null is represented as a generative language model, and thus we rank documents on the evidence
against the null using standard model selection criteria. Specifically, we rank documents on the difference in
the Akaike information criterion (AIC) between the non-null and null models. AIC is the expected Kullback-
Leibler divergence between a given model and the unknown model that generated the data. Thus ranking
documents by AIC difference offers a theoretically sound method of conducting IR.

The approach we pursue shares the strengths of standard language modeling IR. But it also offers several
benefits. The role of a null model is quite general. Using an explicit null model separates language model
smoothing from inverse document frequency (IDF) term weighting. Because our approach decouples model
estimation from IDF, the role of the null in the proposed framework also admits information such as relevance
feedback or personalization data.

The second benefit of the proposed model selection IR theory lies in the application of AIC to document
ranking. AIC balances the bias/variance tradeoff in model selection by considering two factors: model
goodness of fit (i.e. the likelihood) and model complexity. In IR this translates to considering a language
model’s fit to the query while explicitly applying length normalization. An interesting result of this paper
is that length normalization applies not only to documents, but to the number of query terms matched
by each document. We argue that we can improve retrieval performance by mitigating the role of query-
document term coordination. Instead of rewarding documents that match many query terms, we argue, we
should reward documents that match the best query terms. Using AIC differences affords a natural means
of operationalizing this intuition.

After Section 2’s overview of our notation and experimental data sets, we turn to a review of language

modeling IR. In section 4 we discuss a potentially harmful bias in the log-likelihood ratio that forms the



core of most probabilistic IR models. Our discussion here focuses on log-likelihood ratios in the context of
language modeling. Section 5 outlines the model selection IR framework (MSIR). To test the merits and the
motivation for MSIR, we report the results of several experiments in Section 6. Finally, Section 7 summarizes

our findings and suggests avenues for future research in model selection-based IR.

2 Preliminaries

To clarify our exposition, Table 1 summarizes the notation used throughout our discussion. As we proceed,

we will introduce a small amount of additional notation as needed to clarify our discussion.

Table 1: Notation used Throughout this Paper

n(C) Grand total of word tokens in the collection (word count for C')

n(w) Total number of times word w occurs in the collection

n(D) Total number of documents in the collection

n(d) Number of word tokens in document d (document length)

v(d) Number of unique words in document d (i.e. the vocabulary)

n(w;d) Number of times word w occurs in document d

n(q) Number of word tokens in query ¢ (query length)

v(q) Number of unique words (i.e. the vocabulary) in query ¢

m(q;d) Number of unique query words that are also in d (number of matches)

Throughout this paper will give examples and test hypotheses using data collected to support the National
Institute for Standards and Technology’s Text REtrieval Conference (TREC) [NIST, ]. Each dataset consists
of three parts: a corpus of documents, a collection of queries (called “topics” in TREC), and a list of all

documents that are relevant to each query.

Table 2: Datasets Used for Experimentation

Corpus # Docs Text Type TREC Topics Name

LA 272,880 Newswire  351-400 LA.S (short); LA.L (long)

TREC-7 527,004  Mixed 351-400 TREC-7.S (short); TREC-7.L (long)
TREC-8 527,094  Mixed 401-450 TREC-8.S (short); TREC-8.L (long)
wt10g 1,692,096 Web data  401-450 wt10g.S (short); wt10g.L (long)

The LA dataset consists of Los Angeles Times articles from 1993-1994 and appears on TREC disk 5.
TREC-7 and TREC-8 contain the data from TREC disks 4-5 minus the Congressional record; this is a
mixture of news and governmental text. These corpora were used for the ad hoc retrieval tasks in the
seventh and eighth TREC conferences. The wt10g dataset is a sample of the World Wide Web containing

primarily HTML data.



As shown in the rightmost column of Table 2 we present results using two types of queries. Short queries
use brief keyword statements of information need taken from the title field of each topic. Long queries utilize
the title, description and narrative topic fields.

All experiments we report were undertaken using the Lemur IR toolkit [Project, ]. During experimenta-

tion we did not apply any stoplists or stemming.

3 Standard Language Modeling IR

Methods based on statistical language modeling (LM) are among the most studied and the most successful
modern information retrieval (IR) techniques [Ponte and Croft, 1998, Croft and (eds.), 2003, Zhai and Lafferty, 2004,
Lafferty and Zhai, 2001, Berger and Lafferty, 1999]. The most common approach to language modeling in-
formation retrieval (LMIR) is the so-called unigram query generation model. Under this framework a proba-
bilistic language model D; is induced on each document in a corpus. Documents are then ranked in decreasing
order of the likelihood that their corresponding models generated a user’s query. The intuition is that a doc-
ument whose model is likely to have generated the query has a pattern of word usage that is similar to the
query’s, and therefore it is likely that such a document is relevant to the query.

Usually D; is a multinomial over the v(d) unique words that occur in the document. Thus D; is specified
by a v(d)-vector of parameters @ where 6; is the probability that an observation from D; generates word w;.

Given a query and a corpus of documents, we rank the documents according to the likelihood that their

corresponding models generated the query:

Pr(q/D;) = ] Pr(w;|Ds). (1)

w;€q

More typically, we rank by the log-likelihood

log Pr(q|D;) = Z log Pr(w;|D;). (2)
w;Eq
Here q is the set of words in the query.

In order to improve the ranking method of Eq. 2, the standard approach to language model-based IR
relies on models that are smoothed in some fashion. Our discussion of model smoothing draws from the
exposition offered in [Zhai and Lafferty, 2004].

Typically the smoothed model relies on two distributions. One distribution Pr(w|D$) gives the probabil-

ities for “seen” words—i.e. for query words that do appear in document d;. The other distribution Pr(w|D})



gives the probabilities for “unseen” words: words that appear in the query but are not in document d;. This

gives the log-probability

log Priqld;) = Y logPr(w;|Dj)+ > logPr(w;|D}) (3)
w; €qNd; wjEqN—d;
Pr(w;|Dy)
= log —— 12 log P D). 4
Z 0g Pr(w]|D“) + Z 0og T(wjl ’L) ( )
wj€qNd; ¢ w;€q

Usually we take the probability of an unseen word to be proportional to the frequency of the word in the
collection at large. Thus we have Pr(w;|D}) = aPr(w;|C), where C indicates the “collection language
model”—the probability of the word in the entire collection. The term « is a document-specific factor that
ensures that 8“ sums to one. This allows us to rewrite Eq. 4 as

Pr(w;| D7)

RSVia(g;d;) =log Pr(qld;) = Z og W

wj€qNd

+ v(d) log « (5)

plus an addendum 3 log Pr(w,;|C') that is constant for each query and thus does not affect ranking (we

wjeq
ignore it).

Equation 5 is the basic language modeling ranking function. We will refer to it often in the discussion
below. We will refer to log Pr(q|d;) as the retrieval status value (RSV) under the standard language modeling

approach (LM).

3.1 Language Modeling Smoothing using Bayesian Bayesian Updating

The problem that remains is estimating D;, the smoothed language model for d;. Though a variety of
smoothing methods have been proposed, we focus on a single smoothing method in this paper—Bayesian
updating. We limit discussion to a single smoothing method in the interest of brevity and clarity. We choose
Bayesian updating because this method constitutes the state of the art in language modeling IR.

A multinomial language model has a Dirichlet distribution as its conjugate prior. Typically we choose

the parameters of the Dirichlet to be proportional to the collection language model Pr(w,|C):

(HPr(w1|C), pPr(ws|C), .., 1 Pr(w,w|C)) (6)

with g being a hyperparameter whose magnitude governs the strength of the smoothing.

Having specified the prior distribution, the updated estimate for the probability of a matched (seen)



query word wj; in the model corresponding to document d; is

n(wy; d;) + pPr(w;|C)

0(w;|D;) = () 1

: (7)
In order to assure that all probabilities sum to 1, this leads to o = m.

Though other methods of smoothing exist, the results of this section give us all of the estimates we need
in order to instantiate the query likelihood retrieval model shown in Eq. 5. Retrieval proceeds by selecting
a value for the smoothing parameter p. We then fit a smoothed language model to each document in the

collection, ranking documents by their models’ log-probability of having generated the query.

4 Bias in the Log-Likelihood Ratio

A log-likelihood ratio forms the basis of almost all probabilistic IR techniques [Roelleke and Wang, 2006].
The log-likelihood ratio between the document probability and the collection probability of a word is at the
heart of the language modeling approach, as we see in Eq. 5. However, the log-likelihood ratio tends to
exhibit a possibly problematic behavior in the context of IR. The simple log-likelihood ratio tends to be
biased towards documents that match many query terms. Because Pr(w;|C) is almost always much smaller
than the probability of w; under the document model, the log-likelihood ratio tends to grow as more query
terms are matched.

Rewarding documents that match query terms seems like a good idea. However, favoring high match
counts is not necessarily to our advantage. Long queries, for instance, tend to have many words that are
tangential to the query topic, and thus rewarding documents for matching many query words may inflate
document scores based on weak evidence.

Figure 1 shows the distribution of matched query terms m(g; d) in relevant and non-relevant documents
in the LA dataset (long topics 351-400) and wt10g (long topics 401-450). The mean long query length for
topics 351-400 is 57.5 words. The mean long query length for topics 401-450 is 51.66 words.

The figure suggests that on average relevant documents match slightly more terms than non-relevant
documents do, but the difference between relevant and non-relevant documents is slim. The median number
of matched terms for relevant LA documents is 15, with a median of 12 for non-relevant (standard devia-
tion=7.046 for relevant and standard deviation=5.156 for non-relevant). The median number of matched
terms for wt10g is 13 for both relevant and non-relevant documents (standard deviation=6.043 for relevant
and standard deviation 6.081 for non-relevant). We found similar results for other data sets. It seems that

we might like a small reward for the number of terms matched in a document, but that this reward should



Data: LA Data: wt10g

©
- o N
© --- Relevant © N\ - -- Relevant
S —— Non-Rel. 8 — Non-Rel.
o ) |
o
n <t
o
< o
2 2 =y
2 ° S
o} o o
a} — e}
N
N S
o o
o
-
O_ —
] o
o o
© S
© | | | | | © | | | | |
-10 0 10 20 30 40 50 -10 0 10 20 30 40
# Matching Terms # Matching Terms

Figure 1: Distribution of # Matched Terms m(g; d) for Two Data Sets

not be too great.

To understand how the log-likelihood’s bias is related to language modeling IR let us re-write Eq. 5:

Pr(w;|D?
ogPr(gDy) = 30 ong(q)loga ®)
w; €EqNd; J
_ Pr(w;|D;) o
= ) log Pr(ay]C) + (v(g) — m(q; d)) log a 9)
ijqmdi

Eq. 9 shows that under the standard LM approach to retrieval, from the log-likelihood ratio we subtract a
penalty for the number of query terms a document misses. Conversely, we reward documents proportionally
to the number of query terms they match.

Given our earlier argument that the log-likelihood ratio can become inflated when a document matches
many query terms, this reward seems risky; it will magnify what may already be a liability in the log-
likelihood ratio. An interesting factor to consider in this light is the quantity «. It bears mentioning that

in the case of Dirichlet smoothing where o = the penalty for missed terms will vary with document

T
ptn(d)’
length.

The model selection approach to IR that we advance in the following discussion addresses the matter of

bias from model complexity directly.



5 A Model Selection Approach to IR

We propose ranking documents on the difference in AIC between two language models. One model is the
language model that generates query words at the rate responsible for creating the document. The other
model generates query words at the rate corresponding to some null condition. In this paper we take the
null condition to be the rate of query word generation that we expect due to chance. The difference in AIC

between these two models amounts to a statistic on the hypothesis test:

Hy: It is no more likely that the document model generated the query than it is that the null
model generated the query
Hy: It s more likely that the document language model generated the query than it is that the

null model generated the query.

Instead of using the raw likelihoods to assess each model (null and non-null) we use the Akaike information
criterion. AIC conditions model likelihood on a measure of model complexity. In the following discussion

we argue that this conditioning mitigates the bias due to query-document coordination described above.

5.1 The Akaike Information Criterion (AIC) in Model Selection IR

To operationalize the comparison of each model’s likelihood, we use the measure known as the Akaike

information criterion (AIC) of each model [Akaike, 1973]. The AIC of a model M is
AIC(M) =2log L(M) — 2k (10)

where L is the likelihood of the model given the data and k is the number of parameters in the model. Intu-
itively, AIC balances model goodness of fit with the principal of parsimony, avoiding models of unnecessarily
high complexity.

AIC is one of many methods used to balance the bias/variance tradeoff in statistical model selection
(cf. [Hastie et al., 2001]). In addition to AIC, measures such as Mallows’ C, [Neter et al., 1996], and the
Bayesian information criterion [Schwarz, 1978] (to name only a few) condition a model’s goodness of fit on
its complexity. The intuition behind such measures is that we favor models that explain the data well. But,
following Occam’s razor, we prefer models that fit the data well without recourse to numerous parameters.

However, AIC is not simply a heuristic measure. In fact Akaike shows that -1 times AIC! is the expected
Kullback-Leibler divergence between M and the unknown model that generated the data (the factor of 2

in AIC leads this to be true) [Burnham and Anderson, 2002]. Thus AIC offers a principled way to compare

LAIC is sometimes written differently so that 1 times AIC is the expected KL divergence.



the relative merits of two competing models. Given two models M; and M ; we prefer the model with lower
KL divergence (i.e. higher AIC) from the underlying model that generated the data.

With this result in mind, we define the scoring formula for the model selection IR approach:
RSVusir(di, q) = AIC(D;) — AIC(N)). (11)

Of course if our two models, null and non-null, have an equal number of parameters, then Eq. 11 is simply
the log-likelihood ratio between them. However, in the following discussion we shall define our models in

such a way that they are not of equal complexity.

5.2 Poisson Language Models

In this subsection we formalize our two models, null and non-null. Without altering the results of our previous
discussion, it is convenient to define our models as independent Poisson language models, as opposed to the
more typical multinomials. This is the case because Poisson language models relax the constraint that all
parameters sum to 1. Mei, Fang, and Zhai offer a thorough discussion of Poisson language models for IR in
[Mei et al., 2007]. The following discussion draws on their exposition.

Whereas the multinomial is specified by a parameter vector 8, giving the probabilities of each word in
the vocabulary V', the independent Poisson model is specified by a vector A, whose elements are the rates
at which each word is generated per unit of text.

Let d; be a piece of text (a document or a query). If ¢ is a unit of time taken to write d;, we assume
that the count of a word w; in d; follows a Poisson distribution with mean A;t, where A; gives the expected

number of w; seen per unit of time. Thus the probability of w; follows

Pr(c(uy.d;) = k) = SPEMIANT (12)

Given a vocabulary of V' words, we have V' corresponding independent Poisson processes that comprise
A ={)\,...,A\v}. The parameter vector A and the Poisson density constitute a Poisson language model.

With this setup, the maximum likelihood estimator for A\; in document d; is simply %, precisely
the estimate for the corresponding multinomial.

Standard smoothing methods also translate easily into the Poisson framework. Jelinek-Mercer smoothing
operates in the same fashion for Poissons that it does for multinomials. Bayesian updating for Poissons uses

the gamma distribution instead of the Dirichlet. However, it has been shown that the log-probabilities

derived for a hyperparater p are the same under a Dirichlet-smoothed multinomial and a Gamma-smoothed



Poisson. Using Bayesian updating we have the rate of a seen word under a Poisson language model for

document d;:
[ n(w; d;) + pPr(w;|C)
o n(di) + p

(13)

which is the same as the probability for a seen word w; under the multinomial.
So long as we do not deviate from these estimation methods, by using Poisson language models our results
will be the same as we expect from multinomial models. The only difference germane to our discussion is

that a Poisson language model’s parameters need not sum to 1.

5.3 Null and Non-Null Models

In this section we define the models that comprise the null and non-null conditions for the model comparison
operation described earlier. Let m(g;d;) be the number of query words matched by document d;. Both
models, null and non-null, are Poisson language models with m(q; d;) dimensions, defined over each matching
query word. This is in contrast to the standard LMIR approach where the document language model is
specified over the v(d;) documents in d;.

Before beginning our definitions a high-level comment will make things clearer. The goal in the following
discussion is to induce for each document d; a pair of language models. One language model is very similar
to the models induced during standard LMIR. The other model, the null model, is of the same dimension
as the document model. But the null model generates text at a rate corresponding to a null condition. For
simplicity we take the null condition as equal to the rate of generation in the corpus at large.

If we assume that the null model generates matched query terms at the rate we would expect due to
chance, the entire collection is an obvious source of data for the null model. Thus we estimate the null rate

parameter for word w; with \jo = n&UCC;) The log-likelihood that the null model corresponding to document

d; generated the query is thus

log Pr(glNi) = ) log Pr(w;|\;) (14)
ijqr‘nd,i

= Y logPois(n(wy;q)|\;on(q)) (15)
’quGqﬂdi

The non-null model is defined as the language model corresponding to the document under consideration.
The MLE for word w;’s rate in document d;’s model is, of course the number of times w; occurs in d; divided
by the length of d;. However, in practice we will smooth the document model using Bayesian updating with
Gamma priors.

Eq. 13 gives our estimated rate parameter for word w; in document d;. This leads to the log-probability

10



of the query ¢ under the document model:

log Pr(q|D;) = > log Pr(w;|D;) (16)
UJquﬁdi,

= Y logPois(n(w;; q)|A;m(q)) (17)
’wjeqﬁdi

Because our models, null and non-null, are defined over seen query terms, the log-probability of the query
given D; (our smoothed model) is simply a sum over the log-likelihoods, as opposed to the quantity shown

in Eq. 5 which allocates likelihood over unseen words as well.

5.4 Interpreting the Models

The model D; is the language model that generated the expression of query terms in document d;. Through-
out our experimental evaluation we assume that D; is a smoothed estimate. However, under the MSIR
framework we need make no assumption that the reference model used for smoothing is the null model.
Thus MSIR decouples smoothing in service to document model estimation and the influence of inverse
document frequency (IDF).

The query likelihood on D; quantifies the similarity between the query and the document. However, it is
not the raw magnitude of £(D;) that interests us. Rather it is the magnitude of the likelihood with respect
to our null condition. In this paper the null condition corresponds to the hypothesis that D; generates query
terms that the rate we expect due to chance. Thus we take the rate parameters for the null model N; as
equal to the rates in the collection language model C.

Equating our null condition with the likelihood of the collection language model invites a comparison
between MSIR and the divergence from randomness model proposed in [Amati and Rijsbergen, 2002] and
[Amati, 2006]. In both MSIR and divergence from randomness, a document’s RSV depends on the observed
difference between the observed likelihood and the likelihood expected due to chance. However, two points
distinguish MSIR from the divergence from randomness model. First, MSIR depends on query generation
likelihoods, while divergence from randomness is concerned with document generation probabilities. Sec-
ondly, choosing the background rate as our null is only one method of proceeding under MSIR; a different
null would mitigate the similarity between MSIR and divergence from randomness.

The log-likelihood ratio log i:gg‘lfflg = log Pr(q|D;) —log Pr(q|N;) can be viewed as a test statistic on the

null hypothesis that D; and N; have equal likelihood with respect to the query. However our test statistic
has a problem if we wish to compare its magnitude on a document d; to the statistic derived for another

document d;. Since m(g;d;) may not equal m(q;d;) the likelihoods are not directly comparable. From

11



a model selection standpoint, D; may be of different complexity than D;, making a comparison of their
likelihoods ill posed. Model selection theory counsels us to “normalize” likelihood on model complexity
before comparing goodness of fit. This is the role that AIC’s penalty for model degrees of freedom plays in

our discussion.

5.5 Model Degrees of Freedom

Since the null model and the non-null model are both defined over m(q;d;) terms, it is intuitive that they
should have the same number of parameters, and thus the difference in their AIC’s would reduce to the
simple log-likelihood between them. However, in this section we define each model’s degrees of freedom in a
way that takes document length and query length into account.

With respect to the non-null model D;, the obvious estimate for the number of free parameters is the
dimension of the model, m(q;d;). However, we assume that m(q;d;) is a statistic that corresponds to an
unknown parameter M. A document similar to d; might show a different observed number of matched query
terms. Thus we take the number of parameters in D; to be the expected value of M, that is, the expected
number of matched query terms given ¢ and d;.

To find this expectation we begin by considering the random variable X, the number of missed query
terms in d;. The expected value of X given ¢ and d; is
E(X)=) (1- M)"<di>. (18)
n(C)

wjeq

Thus E(M), the expected number of matching terms, is v(q) — E(X). We take the degrees of freedom of the
non-null model to be E(M), which is a function of the query and the document length.

We take the degrees of freedom in the null model to be v(g). Our motivation in this choice is twofold. First,
we assume that the null models for all documents will have very low likelihood and will thus be comparable.
Therefore defining the null degrees of freedom as a query-specific constant makes sense. Additionally, our
number of non-null degrees of freedom (Eq. 18) is computed over all v(q) query terms, inviting a v(q)-
dimensional null.

These definitions lead to our final definition of the model selection RSV
RSVumsir(q;d;i) = log L(D;) — E(M) — log L(N;) — v(q) (19)

which is the difference in AIC between the null and non-null language models.

12



5.6 Relationship between LM and MS Retrieval Status Values

To understand the close relationship between the standard LM approach and the MSIR technique developed

here we may rewrite Eq. 19

Pr(w;|D;)
RSV, id;) = log ——2—~ — E(M). 20
ms1r(¢; di) Z 0g Pr(w,|N,) +v(q) (M) (20)
wj€qNd;
In this paper we have defined the parameters of the null model in terms of the collection language model C.
Thus, if we compare this quantity with Eq. 5 we see that both the standard LM approach and MSIR yield
a retrieval status value that can be written

Pr(w;|D;)

P, 21
PT‘(U)J|01)+ @ ( )

RSVp(q;d;) = Z log
w; EqNd;
where P, ; is a penalty for document d; on query g. The difference between the two methods, then, lies in the
penalty that is applied to the log-likelihood ratio. If we omit consideration of smoothing-specific penalization,
the standard LM approach penalizes documents for each query term d; fails to match. However, smoothing
methods such as Bayesian updating will bring document length into play. The penalty in MSIR depends on
E(M), which depends on document length and query length but not directly on m(q;d;) (Eq. 18).

The similarity we have just derived stems from our tight coupling of the null condition and the collection
language model. This corresponds to a null hypothesis that the non-null model is no more likely to have
generated the query than a model that generates terms at the rate we expect due to chance. Defining the null
in terms of the collection probabilities makes sense and will make the following evaluation easy to interpret.
However, it is important to note that the null model need not be derived from the collection language model.
As an example of an alternative, we might consider a case where we have relevance feedback information.
Here we might consider the null as a mixture between the collection language model and a language model

that emits query words at a rate inversely proportional to the user’s relevance model.

6 Experimental Results

We undertook a series of experiments to test the proposed model selection IR framework. During experimen-
tation our goals were twofold. We aimed to test whether MSIR offers improvement over standard LM-based
IR. We reason that the proposed framework is itself interesting. However, we also hypothesized that using
AIC differences to rank documents would improve retrieval over standard LMIR due to an improved penalty

for model complexity. Besides a standard evaluation of IR effectiveness, then, we addressed the question:

13



does model complexity detract from the effectiveness of standard LM-based retrieval?

In the experiments that follow we test the model selection retrieval approach described above, using Eq.
19 as our ranking function. As a baseline of comparison we test MSIR against standard language modeling
IR, using Eq. 5 as described in [Zhai and Lafferty, 2004]. We abbreviate this baseline to LM.

To simplify our analysis we have tested each model using only a single form of smoothing: Bayesian
updating. Thus standard LMIR uses Dirichlet smoothing and MSIR is tested using Gamma smoothing. We

have tested each method using a variety of smoothing parameters as discussed below.

6.1 Retrieval Effectiveness Using Model Selection IR

One of our main arguments is that using AIC differences between document models and null models offers
an improvement over standard language modeling IR. To test this hypothesis we performed ad hoc retrieval
experiments using the data and queries shown in Table 2.

Summary statistics from these experiments appear in Tables 3-6. These tables report results obtained
from runs using LM and MSIR. Each row of the tables corresponds to a dataset/query set pairing (i.e. a
retrieval run). Columns correspond to observed retrieval effectiveness measures. We report four measures,
mean average precision (MAP) taken over 11 recall levels, precision at 5 documents retrieved (P5), precision
at 10 documents retrieved (P10) and R-precision [Aslam and Yilmaz, 2005, Buckley and Voorhees, 2000].
R-precision is precision observed at r documents retrieved, where 7 is the number of documents relevant to
a query. Overviews of precision and recall-based evaluation metrics are available in [Manning et al., 2008,
Losee, 2000, Cleverdon and Mills, 1963].

To give a sense of the role that smoothing plays in our experiments we report results at three levels of
smoothing: low (4 = 100), medium (p = 2000), and high (x = 10000).

Italicized entries indicate that MSIR performed worse than LM. Runs in which MSIR performed better
than LM at a statistically significant level are marked with a +. Runs marked with a — indicate that MSIR
was significantly worse than LM. Statistical significance is measured here using the Wilcoxon rank sum test
(paired and one-directional) with a p-value less than 0.05.

Tables 3-6 report results from a total of 96 experimental conditions (8 corpus/query pairs, three levels of
smoothing, four effectiveness measures). In 28 of these instances, MSIR performed significantly better than
the standard language modeling approach. MSIR was significantly worse on 3 conditions.

Of particular interest is the performance observed at low levels of smoothing. When p was low, MSIR
performed decisively better than standard LMIR. This makes sense because the penalty applied to the log-

likelihood ratio under MSIR does not depend on the smoothing-specific a. The relatively poor performance
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Table 3: Retrieval Effectiveness (MAP) of Standard Language Modeling (LM) and Model Selection IR
(MSIR)

Low Smoothing Medium Smoothing High Smoothing

LM MS LM MS LM MS
LA.S 0.1669  0.1774+ | 0.2244 0.2135 0.2141 0.2139
LA.L 0.1346  0.2164+ | 0.2401  0.2417 0.2378 0.2342
TREC-7.S 0.1657  0.1710 0.1891 0.1877 0.1860  0.1866
TREC-7.L.  0.1362  0.1871+ | 0.2087  0.2089 0.2099  0.2109
TREC-8.S 0.2010  0.2040 0.2106 0.2100 0.1950 0.1942
TREC-8.L.  0.1751  0.2094+ | 0.2274  0.2315+ 0.2133  0.2272+
wt10g.S 0.1229  0.1229 0.1686  0.1693 0.1655  0.1678
wt10g.L 0.0836  0.1099+ | 0.1638  0.1642 0.1630 0.1625

Table 4: Retrieval Effectiveness (Precision at 10) of Standard Language Modeling (LM) and Model Selection
IR (MSIR)

Low Smoothing Medium Smoothing High Smoothing

LM MS LM MS LM MS
LA.S 0.2360  0.2400 0.2960  0.2960 0.2760  0.2780
LA.L 0.2300  0.3000+4 | 0.3420 0.8500 0.3300 0.3200
TREC-7.S 0.3740  0.3780 0.4300  0.4320 0.4080  0.4100
TREC-7.L.  0.3700  0.4200+ | 0.4740 0.4640 0.4460  0.4480
TREC-8.S 0.4340  0.4440+ | 0.4260 0.4240 0.3760  0.3780
TREC-8.L.  0.3580  0.4460+ | 0.4280  0.4380 0.3860  0.4020+
wt10g.S 0.2104 0.2062 0.2354  0.2417 0.2354 0.2312
wt10g.L 0.1580  0.2060 0.3020 0.2820- 0.2660 0.2620

Table 5: Retrieval Effectiveness (Precision at 5) of Standard Language Modeling (LM) and Model Selection
IR (MSIR)

Low Smoothing Medium Smoothing High Smoothing

LM MS LM MS LM MS
LA.S 0.2800 0.2720 0.3440  0.3600+ 0.3480  0.3600
LA.L 0.2840  0.3480+ | 0.3880  0.4000 0.3960 0.3680-
TREC-7.S 0.4200 0.4080- 0.4720  0.4720 0.4400 0.4360
TREC-7.L  0.3920 0.4600+ | 0.5040  0.5080 0.5200  0.5200
TREC-8.S 0.4720  0.4880+4 | 0.4840 0.4760 0.4440 0.4320
TREC-8.L.  0.4160 0.4760+ | 0.4640  0.4680 0.4280  0.4720+
wt10g.S 0.2500 0.2458 0.2792 0.2917 0.2875  0.2875
wt10g.L 0.1640  0.2560+ | 0.3240 0.3160 0.3320 0.3200

Table 6: Retrieval Effectiveness (R-precision) of Standard Language Modeling (LM) and Model Selection IR
(MSIR)

Low Smoothing Medium Smoothing High Smoothing

LM MS LM MS LM MS
LA.S 0.1792  0.2013+ | 0.2495 0.2509 0.2224 0.2150
LA.L 0.1559  0.2381+ | 0.2591 0.2570 0.2624 0.2479
TREC-7.8 0.2148  0.22384 | 0.2465 0.2487 0.2380  0.2387
TREC-7.L.  0.1837  0.2387+ | 0.2571  0.2576 0.2580  0.2590
TREC-8.S 0.2502 0.2494 0.2524 0.2495 0.2304  0.2347
TREC-8.L.  0.2240  0.2542+ | 0.2744  0.2785+ 0.2603  0.2816+
wt10g.S 0.1511 0.1486 0.2109 0.2039- 0.2006  0.2011
wt10g.L 0.1074  0.12394 | 0.1899 0.1847 0.1871  0.1978+
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of LM under low smoothing suggests that when p is small Bayesian updating applies an improper penalty
to the log-likelihood ratio.

In the case of low smoothing, the LM penalty will be heavily driven by document length. This raises
the more general question of how a document length-based penalty fits into the scheme of retrieval per-
formance. To see if a length-based penalty would improve the performance of LM (thus mitigating the
gains seen using MSIR) we tested retrieval using length-based priors as described by Losada and Azzopardi
[Losada and Azzopardi, 2008]. Most language modeling IR assumes uniform document priors. However,

Losada and Azzopardi suggest using a non-uniform prior, where a document’s prior probability is given by

This leads to a factor of log Pr(d;) being added to log Pr(g|d;) during document ranking. Table 7 shows
retrieval effectiveness (as measured by MAP) using standard language modeling with non-uniform docu-
ment priors (NUDP) and model selection retrieval (MSIR). For the experiments summarized in Table 7 we

smoothed models using Bayesian updating with p = 2000.

Table 7: Retrieval Effectiveness (MAP) of Non-Uniform Document Priors (NUDP) and Model Selection IR
(MSIR)

MAP P10
NUDP  MSIR NUDP  MSIR
LA.S 0.2027 0.2135+ | 0.2700 0.2960+
LA.L 0.2422 0.2417 0.3520 0.3300-

TREC-7.S 0.1703 0.1877+ | 0.3900 0.4320+
TREC-7.L  0.2086 0.2089 0.4760 0.4640
TREC-8.S 0.1857 0.2100 0.3840 0.4240+
TREC-8.L.  0.2222 0.2315 0.4260 0.4380
wt10g.S 0.1329 0.1693+ | 0.2208 0.2417
wt10g.L 0.1634 0.1642 0.3000 0.2820

By using AIC differences to condition its model likelihoods, MSIR induces a penalty that depends directly
on document length (Eq. 18). Interestingly, MSIR penalizes long documents, while the method pursued
in [Losada and Azzopardi, 2008] rewards longer documents. Table 7 shows an advantage to MSIR; we see
that MSIR enjoys stronger performance relative to the (non-uniform) LM model than it saw versus the LM

model with uniform priors (Table 3).

6.2 Effect of Model Smoothing

Tables 3-6 suggest that a key difference between standard language modeling IR and MSIR lies in each
approach’s sensitivity to model smoothing. Figures 2 and 3 give more detail on the relationship between

smoothing and performance under each approach.
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Figure 2: Effect of Smoothing Parameter on MAP Retrieval Performance (Short Queries)
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The z-axis of Figure 2 shows mean average precision for short queries. The y-axis is u, the Bayesian
updating smoothing parameter. In this case it appears that MSIR and LM retrieval operate at similar levels
of effectiveness as p changes. However, in Figure 3 we see that MSIR is notably stronger than LM at low
levels of smoothing. These results suggest that MSIR offers a level of safety with respect to smoothing; MSIR
is rarely worse than LM and is often significantly better. In contexts where we lack relevance judgments to

tune g this safety would be very appealing.

6.3 Relationship Between LM and MSIR Retrieval Status Values

The results we have reported show very similar retrieval effectiveness for LM and MSIR in many experimental
conditions. The similarity we see at middling and high levels of smoothing is somewhat surprising given the
different penalties applied under each technique. Nonetheless, the similarities in retrieval effectiveness beg
the question, is MSIR yielding a substantively different RSV than standard LM? Of course the results shown
in Tables 3-6 demonstrate statistically significant differences between the methods. However, we can glean
more detail on the relationship between the models’ RSVs by looking at Figures 4-6. In these figures we plot
the RSV obtained by model selection IR against the RSV from standard LM on nine queries (long topics
451-459 run against the wt10g data). These topics and data were selected because they are representative
of the patterns we found across a wide spectrum of query/data plots.

Figure 4 shows the RSVs with a middling level of smoothing (1 = 2000). We can see that some queries
(e.g. 451 and 455) give RSVs that are quite similar under both IR models. Other topics (e.g. 453 and 456)
exhibit different RSV distributions under each model.

Figures 5 and 6 plot RSVs obtained from runs using low and high smoothing, respectively. It is interesting
to note that under both low and high smoothing conditions, the relationship between MSIR and LM’s scores
is much looser than it is under moderate smoothing. While we expected to see such a difference under light
smoothing, we were surprised to find a similar difference using strong smoothing. We plan to pursue this
issue in future work, along with an analysis of the performance obtained for topics with high correlation
between MSIR and LM documents scores, versus topics with low correlation.

Returning to the question of how strongly related the scores given by MSIR and LM are, we offer a point of
comparison. The correlation between the RSV obtained by MSIR and LM on the wt10g data with long queries
was 0.796. The correlation between LM and Okapi [Robertson and Walker, 1994, Robertson et al., 1995]
(with default weights from the Lemur toolkit) on the same data and queries was 0.761. This suggests that
MSIR’s retrieval status value is not much more correlated with LM than the RSV from a qualitatively

different IR model.
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6.4 RSV Correlation with Query-Document Coordination

A principle argument we have made is that language models should be penalized for the number of query
terms matched by a document. We make this argument in efforts to find an RSV that is uncorrelated (or
weakly correlated) with m(q;d;). This translates to conditioning model likelihoods on the complexity they
incur. We have argued that using AIC differences to rank documents will reduce the bias in the log-likelihood

ratio towards documents with high query term coordination.

Table 8: Correlations Between RSV’s and Number of Terms Matched

Low Smoothing Medium Smoothing High Smoothing

MS LM MS LM MS LM
LAL 0.184 -0.376 0.307 0.364 | -0.014 0.496
TREC-7.LL 0.059 -0.206 0.228 0.311 | -0.027 0.398
TREC-8.L -0.044  -0.205 0.126 0.269 | -0.137 0.361
wt10g.L -0.216* -0.063 | -0.0512 0.270 | -0.253 0.334

Table 8 helps us understand the relationship between the number of terms a document matches and the
document’s retrieval status value. The table shows observed correlations between the number of matched
terms and the RSV obtained under the standard LM approach and using our model selection approach.
The correlations were obtained by iterating over each of the 50 queries applied to each of our data sets.
During each iteration we calculated the coefficient of correlation between each document’s RSV using each
model and the number of query words the document matched. The cell values contain the mean correlation,
averaged over 50 queries. The table shows results for three levels of smoothing.

In all cases but two (italicized), MSIR yields a statistic that is less correlated with term coordination
than LM. In all cases except the asterisked one, MSIR was significantly closer to zero than LM (using a
one-tailed ¢-test with p = 0.01 as the cutoff for significance). In many cases we can see that the correlation
between MSIR’s retrieval status value and document-query coordination is very close to zero.

The correlation between RSV and coordination under MS also appears less related to smoothing than
the standard language modeling’s RSV. When p = 100 we can see that LM yields strongly negative RSV-
coordination correlations (with the exception of the wt10g data). This is understandable since the document
penalty under LM with Dirichlet priors is length-dependent. With a low u, a Dirichlet-smoothed LM
approach would favor long documents. However, documents are also penalized for low coordination. On
average, long documents have a better chance of scoring a high coordination. Thus in the case of low Dirichlet
smoothing the document length penalty and the coordination reward work at cross purposes. This result

suggests why the MS approach outperforms standard LM retrieval for low values of u.
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7 Summary and Conclusion

This paper has proposed a novel approach to document ranking based on statistical model selection. For
each document d; in our collection we define a language model and a null model over the query words that
appear in d;. We then rank documents by the difference in AIC between the non-null and null models with
respect to the query. This amounts to ranking documents on a statistic that gauges the evidence against
the null hypothesis Hy : it is no more likely that the model that generated d; also generated the query than
it is that null model generated the query. In this paper we take the null model to be the collection model,
though this is not necessary, and exploring alternative nulls will occupy future research.

AIC is the expected Kullback-Leibler divergence between a model M and the unknown model that
generated the data. Thus ranking documents by the difference in AIC between the non-null model D; and
the null model A; provides a novel, principled extension of the language modeling approach to information
retrieval. The experimental results reported in this paper suggest that model selection IR offers significant
benefit to retrieval across a variety of experimental conditions.

Our contributions in this paper include
e A theoretical extension to language modeling IR based on statistical model selection

e An argument that RSV’s should be uncorrelated or weakly correlated with query-document term

coordination m(q; d;)
e An experimental evaluation of the proposed model selection IR technique.

Our experiments suggest that MSIR is a promising method of ranking documents. We found that MSIR rarely
performed significantly worse than LM. Additionally, MSIR frequently performed at a level significantly
better than LM, especially when a small amount of smoothing was applied to language models.

In subsequent work, we plan to follow several avenues of research related to MSIR. For instance, in this
paper we have equated the null model with the collection language model. However, we argue that the
idea of a null model is quite flexible. In future work we will test methods for applying different sources
of evidence and different semantics to the null model. We hypothesize that such an approach will allow
MSIR to admit relevance feedback and personalization information retrieval. Additionally, in the interests
of brevity we have limited our analysis here to language models smoothed with Bayesian updating. While
Bayesian updating constitutes the state of the art in language modeling IR, it will be of interest to pursue the
relationship between MSIR and other smoothing methods, such as Jellinek-Mercer and two-stage smoothing
[Zhai and Lafferty, 2002, Zhai and Lafferty, 2006]. Finally, we plan to pursue methods of improving the

model selection retrieval approach described here. While Section 5 gives a strong motivation for MSIR, we
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suspect that pursuing alternative interpretations of model degrees of freedom and language model definitions

will reward future research.
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