
Copyright

by

Jeffrey Michael Napper

2008

The Dissertation Committee for Jeffrey Michael Napper
certifies that this is the approved version of the following dissertation:

Robust Multithreaded Applications

Committee:

Lorenzo Alvisi, Supervisor

Michael Dahlin

Keith Marzullo

Harrick Vin

Emmett Witchel

Robust Multithreaded Applications

by

Jeffrey Michael Napper, B.S.; M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2008

To my Mother and Father.

Acknowledgments

All good stories start somewhere. Mine begins with a happy job where I was glad

to have a friend for my boss. Pat Pitt has always been someone with a much more

intelligent view and a great lunch partner. And yet, I still wanted more research in

my job. So, I talked to one of my old teachers, and that’s when things got a bit out

of hand. Little did I know then that I would gain a good friend and advisor in the

course of such a long journey.

I would like to thank sincerely Lorenzo Alvisi for taking the advisor role

seriously. Not only has he helped me along the path to becoming a better scientist

and writer, but also, I believe, taught me to appreciate elegance and good design in

all things.

Mike Dahlin has also been a source of productive inspiration and instruction

for me. Although I can’t say that I ever beat him in an argument, I can say that

I had fun trying. The rest of my committee: Emmett Witchel, Harrick Vin, and

Keith Marzullo also gave me helpful feedback, both on the beginning of this thesis

and on career advice afterwards.

What a long, strange trip it’s been at UT Austin. After many, many years

(and three degrees!) I can’t possibly thank all the people that have made it so much

fun. In the beginning of graduate school there were many students: Jayaram, Ravi,

Stefano, Paolo, Arun, Alison, Suvrit, and Sergei, but by the end they were almost

all new: Taylor, Allen, Harry, and Brian. You have all helped me survive. So long,

v

and thanks for all the Thai (food). Good luck to those still on the way!

Not to be missed, I must thank Sara Strandtman, without whom our group

certainly would not function, for saving me from many tough situations and for

acquiring our beloved Gaggia. Further thanks also go to Gloria and Katherine who

always provided help and advice when trapped by bureaucracy.

There have been many friends elsewhere too. Every internship (on both

coasts and in the middle!) was a chance to meet new, great people. Although most

were wonderful, a few have become good friends. I will especially look forward to

further ski trips with Apu and Phoebe (and next time including Ana). Then, there

are my fellow Austinites who make the city so hard to leave. I will always miss the

food, music, people, and city attitude: especially, my long friends Stephen, Maggie,

and Mat. I will not, however, ever miss the August temperatures.

I would like to thank my wonderful wife for helping me through the end times

and for waiting through all the previous. I would definitely still be coasting along

without you. Although you have the degree in math, I can still prove that one plus

one is greater than two.

I would like to close by thanking my parents. Without their unending support

and concern, I could not have finished. To my Mother, who showed me how to work

hard by always working harder, I would like to say thanks for all the unconditional

love and support. To my Father, who taught me patience by listening to me (and

others) rant, I would like to say thanks for ignoring my faults and for always giving

me good advice. This thesis is dedicated to you both. Further, I am happy to say

that my family has grown (before and after graduate school), and I welcome(d) both

Barbara and Ken as parents. I love you all and wish you all the happiness you’ve

brought to me.

vi

Jeffrey Michael Napper

The University of Texas at Austin

May 2008

vii

Robust Multithreaded Applications

Publication No.

Jeffrey Michael Napper, Ph.D.

The University of Texas at Austin, 2008

Supervisor: Lorenzo Alvisi

This thesis discusses techniques for improving the fault tolerance of multithreaded

applications. We consider the impact on fault tolerance methods of sharing address

space and resources. We develop techniques in two broad categories: conserva-

tive multithreaded fault-tolerance (C-MTFT), which recovers an entire application

on the failure of a single thread, and optimistic multithreaded fault-tolerance (O-

MTFT), which recovers threads independently as necessary. In the latter category,

we provide a novel approach to recover hung threads while improving recovery time

by managing access to shared resources so that hung threads can be restarted while

other threads continue execution.

viii

Contents

Acknowledgments v

Abstract viii

Chapter 1 Introduction 1

1.1 Contributions . 5
1.2 Outline of the Thesis . 6

Chapter 2 Modeling Multithreaded Applications 8

2.1 Capricious Failure Model . 9
2.2 Non-determinism . 10
2.3 The JVM as a State Machine . 11

Chapter 3 Conservative MT Fault-Tolerance 13

3.0.1 Asynchronous Commands . 14
3.0.2 Non-deterministic Commands 16
3.0.3 Non-deterministic Read Sets 17
3.0.4 Output to the Environment 19
3.0.5 A Note on Restrictions R0–R6 20

3.1 Implementation . 21
3.1.1 Nondeterministic Commands 22
3.1.2 Nondeterministic Read Sets 22
3.1.3 Garbage Collection . 27
3.1.4 Environment Output . 28

3.2 Experiments . 30
3.3 Related Work: JVM . 35

ix

3.4 Summary . 37

Chapter 4 Optimistic MT Fault-Tolerance 38

4.1 Related Work: Software Data Isolation 39
4.2 Related Work: Detecting Faults . 41
4.3 Reducing the Effective Recovery Unit 42
4.4 Summary . 43

Chapter 5 Software Transactional Memory 45

5.1 Related Work: STM . 46
5.2 System Model . 48

5.2.1 Serializability vs. Linearizability 50
5.3 Lock-Free Transactions . 51

5.3.1 Ensuring One-Copy Serializability 57
5.3.2 Ensuring Lock-Freedom . 59

5.4 Evaluation . 63
5.5 Using Timestamps . 65

5.5.1 Ensuring One-Copy Serializability 71
5.5.2 Ensuring Lock-Freedom . 73

5.6 Evaluation of Timestamps . 76
5.7 Summary . 82

Chapter 6 Mayfly: O-MTFT and Leases 84

6.1 Hung Threads . 84
6.2 Design . 86
6.3 Lock-free Resource Access . 87
6.4 Recovery . 88
6.5 When Optimism Fails . 90

Chapter 7 Conclusions 93

Bibliography 95

Vita 108

x

Chapter 1

Introduction

Highly concurrent services, such as internet services or transaction processing, in-
creasingly use servers built on multicore processors that are designed to provide
hardware parallelism. Reliability is an extremely important metric for internet
services—downtime incurs significant costs per hour in lost revenue [56, 95] and
often has unforeseen consequences such as canceled airline flights or ATM network
outages [81]. Although much downtime can be attributed to human error [89],
software and hardware faults persist.

This thesis details how to design and build highly concurrent services that
tolerate both hardware and software errors. Highly concurrent services are con-
structed using application processes (we also use the simplified application) that
maintain pools of several threads to exploit increasing available hardware concur-
rency in order to maximize throughput [90, 110, 114]. Although highly concurrent
services could be implemented using several single-threaded application processes,
using threads yields multiple advantages. First, because all threads share an address
space within an application process, context switching is faster (cooperative user-
level threads can achieve context switches on the order of nanoseconds [13]) and
cached data and allocated resources (files, sockets, etc.) are easier to share. Second,
thread creation requires less time than application process creation. Third, threads
maintain less state, making them scalable; for example, Capriccio [111] supports up
to 100K threads in a single application process.

While the multithreaded (MT) applications composing highly concurrent ser-
vices are increasingly important, concerns for reliability remain. Higher chip densi-

1

ties, lower voltage requirements, and combinatorial logic susceptible to single event
upset (SEU) radiation errors due to cosmic rays are predicted to increase transient
hardware errors in the performance-oriented server architectures used in data centers
to support high-concurrency services [25, 82, 102, 118]. Indeed, transient hardware
errors have been seen to outnumber hard errors by an order of magnitude [103].

Fault-tolerance techniques can improve the reliability of highly concurrent
services. For example, the reliability of a service can be improved by moving its im-
plementation from a single, centralized server to a collection of coordinated identical
replicas through a technique known as State Machine Replication (SMR) [63, 99].
The idea is that, as long as faulty replicas are eventually recovered, one replica
will always be available to provide the service. The unit of recovery in fault-
tolerance techniques—called the recovery unit—such as SMR consists traditionally
of the entire application process running on a replica (perhaps containing several
threads). We call the resulting application conservative multithreaded fault-tolerant
(C-MTFT) because an error requires recovery of the entire process.

Conservative multithreaded fault-tolerance. We discuss in this thesis several
techniques for building C-MTFT multithreaded services, and we describe an imple-
mentation of these techniques for the Java Virtual Machine. Our techniques achieve
C-MTFT without significant modifications to the application. C-MTFT addresses
the non-determinism introduced by multithreading: access to shared data is made
deterministic so that the entire application can be reliably replicated as a single
recovery unit.

SMR tolerates both software and hardware failures, as replicas of components
can execute on physically distinct machines. However, hardware is relatively reli-
able; in fact, software errors dominate the downtime of applications [37, 60, 68, 108].
Significant reductions in hardware costs can hence be achieved by using an approach
that protects only against software faults. Rollback recovery [28] leverages the avail-
ability of correct hardware by replicating processes in time rather than space: the
application is restarted on the same hardware (that is assumed to be correct) and
the entire process is recovered to a pre-failure state. Simply restarting the applica-
tion often restores service [18], while using the same hardware reduces the financial
costs of fault-tolerance.

2

Current MT applications must rely on C-MTFT for reliability because the
failure of even a single thread can leave the data shared among threads in an incon-
sistent state. Consequently, all threads must restart, and the application can lose
all pending requests although correct threads could continue if provided consistent
data. Subsets of the threads in an application that share data can be restarted
independently to ensure data consistency, and this technique has been shown ef-
fective [18]. However, this approach easily degenerates into restarting the entire
application as it does not address the problem of shared memory access. For ex-
ample, in event-driven programming, thread pools share input and output event
queues, implying that transitively all application threads share data.

To reduce the time spent on recovery, this thesis explores scaling down the
size of the recovery unit to a single thread so that an MT service may contain
many recoverable components tolerant to transient errors. We call this approach
optimistic multithreaded fault-tolerance (O-MTFT) because it attempts to improve
the performance of recovery by reducing the state recovered, but does not succeed
in all cases.

Optimistic multithreaded fault-tolerance. O-MTFT approaches maintain some
availability during a thread failure because application-specific data consistency
checks (for example, range value checks) can often limit errors to a single thread,
and correct threads need not participate in recovery. Access to consistent shared
memory is available to correct threads with O-MTFT recovery techniques, allowing
cheaper protocols for some failures because correct threads may continue execution.
Hence, O-MTFT overcomes a significant limitation of the conservative approach, as
C-MTFT requires the entire application to recover on a single thread fault.

O-MTFT enables threads in an application to fail independently without (in
most cases) stopping or requiring a restart of other threads, changing the granu-
larity of recovery unit from the entire application to threads. Many software faults
(such as segmentation faults or race conditions) can be addressed at this level. Our
approach can provide fine-grained robustness to transient errors (or, heisenbugs [38])
by restarting faulty threads. Further, allowing correct threads to continue execution
rather than forcing them to restart can achieve graceful degradation to persistent
errors (or, bohrbugs [38]). For example, an approach to error handling in a web-

3

server with continuous service might be to learn which requests activate faults (that
is, those that trigger a bohrbug). The system could refuse these requests while con-
tinuing to provide service to requests that don’t activate faults or lead to occasional
heisenbugs.

We enable independent thread recovery by regulating resource sharing through
a transactional, non-blocking communication channel, providing faster thread re-
covery and tolerance to hung threads. Transactions [36] can provide simple fault
recovery for shared data, requiring only an abort of the faulty thread’s transaction so
that shared data is always consistent, and only the faulty thread must be recovered.
Though transactions provide the appearance of atomicity, they are traditionally im-
plemented using data locking primitives that require complex system support and
are generally conservative. If a thread fails while holding a crucial system lock,
the full application must restart because the system lock will not be obtainable by
correct threads.

Software Transactional Memory (STM) [101] provides a transactional inter-
face to shared data that also has progress guarantees, ensuring the desirable prop-
erties of O-MTFT: 1) shared memory is always consistent for correct threads, and
2) correct threads can always access shared memory. These two properties allow
correct threads to continue without recovering shared memory when a thread fails.
We describe a novel STM design [83] that implements these two properties using
serializability (transactions appear to occur in some serial order) and lock-freedom
(some transaction by a correct thread eventually will commit).

Using an STM to access shared memory enables nonblocking communication
between threads to facilitate independent recovery even in the presence of hung
threads. Hung threads perform no work—for example, in the case of deadlock if a
lock is unobtainable—or useless work—for example, when a thread is caught in an
infinite loop because of inconsistent data. These errors can result from transient
conditions (such as race conditions or SEU errors due to cosmic rays) or persistent
conditions (such as software bugs).

In addition to tolerating hung threads by guaranteeing access to shared mem-
ory for correct threads, we attempt to recover them to ensure overall progress. We
detect hung threads caused by an infinite loop or deadlock by leasing [35] cpu time
and wall-clock time, respectively, to threads. By enabling the recovery of single
hung threads, we 1) increase the fault coverage of multithreaded systems to include

4

hung threads, 2) increase the application’s performance by keeping correct threads
performing useful work where possible, and 3) reduce recovery time by bounding
downtime due to hung threads.

Finally, by managing access to shared memory, O-MTFT techniques enable
faster and cheaper thread-specific recovery so that an application can recover each
thread using application semantics rather than recovering a large group of threads as
in C-MTFT. For example, knowing that a client can retry the request, a webserver
can simply drop the request processed by a failed thread and start a new worker
thread to maintain concurrency without worry that the correct threads will deadlock
waiting for the faulty thread to perform an action.

1.1 Contributions

The main contribution of this thesis is to explore techniques for enabling and im-
proving the recovery of multithreaded services. We developed two broad approaches
that target recovery units at different scales. Our conservative multithreaded fault-
tolerant techniques recover the entire application to ensure consistency even if the
failed thread corrupts shared data, but do so at the expense of availability: a single
fault in any thread can bring down the entire application. Our optimistic multi-
threaded fault-tolerant techniques instead provide focused recovery of small groups
or even individual threads, allowing application-specific recovery strategies. Fur-
ther, optimistic multithreaded fault-tolerance approaches enable recovery from hung
threads that perform no useful work by leasing execution resources, bounding the
time lost to such failures.

Specific contributions are:

• Replicating MT Applications. We demonstrate an implementation of the State
Machine Replication technique applied to MT applications. We modify the
Java Virtual Machine (JVM) according to our multithreaded C-MTFT model
to provide primary-backup fault-tolerance transparently to applications [85]
(though the system can be modified for other forms of hardware replication).
No modifications to the application are required, though we provide different
replication mechanisms depending upon the application’s use of shared data.
Assuming access to all shared data is guarded by critical sections (and execu-
tion is otherwise piecewise deterministic [106]), we replicate the entry order to

5

critical sections between the primary and backup to ensure that shared data
is consistent between the replicas (similar to [10, 34, 61, 66]). In a different ap-
proach, we replicate thread scheduling, ensuring piecewise determinism even
in the presence of double-checked locking (similar to [1, 104]).

• Software Transactional Memory. We describe the first lock-free, serializ-
able [91] STM. Our multiversion STM provides for more concurrency than
linearizable [53] STM while maintaining a strong progress guarantee: even-
tually some transaction will commit. Under a model in which threads can
fail by halting arbitrarily, some correct thread will always eventually commit
a transaction (although starvation can still occur where a particular correct
thread is never able to commit a transaction). Maintaining multiple versions
provides both more opportunities for concurrency and previous data values
that can be used for recovery of individual threads.

• MT-specific Recovery Techniques. We develop novel optimistic fault-tolerant
recovery techniques to improve the availability of MT services. Our techniques
involve: 1) leasing thread execution to bound downtime due to hung threads,
2) using transactions to ensure consistency of data shared between threads
in the presence of failures, and 3) using obstruction-free data structures to
improve the availability of shared data in the presence of failures. These three
techniques allow our implementation, called Mayfly, of O-MTFT for the Java
Virtual Machine to provide good throughput in the presence of a stream of
faulty requests that cause errors in a webserver. Mayfly enables the developer
to use application semantics to recover individual threads.

1.2 Outline of the Thesis

The rest of this thesis is organized as follows.
Chapter 2 provides the system model and background on which we base

discussion of our multithreaded recovery techniques.
Chapter 3 discusses our approach to conservative multithreaded fault-tolerance.

We describe our primary-backup implementation of the Java Virtual Machine and
several techniques for implementing C-MTFT in the Java language.

6

Chapter 4 describes a novel optimistic approach to multithreaded fault-
tolerance, reducing the size of the recovery unit to improve the availability of MT
services.

Chapter 5 gives the details of our implementation of a lock-free, serializable,
multiversion STM. Our STM provides progress guarantees to ensure that correct
threads can continue to access shared data, while the serializability correctness cri-
terion provides for safe and concurrent execution of transactions. Multiple versions
compose a history that can be used during recovery of single threads for replay of
shared data accesses.

Chapter 6 discusses our implementation of O-MTFT called Mayfly. Mayfly
implements leased execution for threads in the Java Virtual Machine. In this way,
hung threads can be recovered using lease expiration as a failure detector. We
provide evaluation results to show the low cost of recovery in the system.

Finally, Chapter 7 summarizes the thesis and proposes directions for future
research.

7

Chapter 2

Modeling Multithreaded

Applications

We begin by describing a model of multithreaded applications. This model provides
a foundation for our discussion of fault-tolerance. A system provides a service to
clients and is built as a set of recovery units. Although we will be more precise
shortly, roughly speaking, a recovery unit contains the data required to recover
from a fault and may contain any number of threads and their state. Each thread
is an execution context that is modeled by a state machine (we will use the terms
thread and state machine interchangeably). Threads may execute concurrently (as
on a multiprocessor). The relative speed between threads is unbounded, and correct
threads may stop temporarily at any time for a finite, but unbounded, period (for
example, when a page fault occurs).

A state machine is a set of state variables and commands, which respectively
encode and modify the machine’s state. A command reads a subset of the state
variables, called the read set, plus, possibly, other inputs obtained from the environ-
ment (a set of state variables whose values are unpredictable and are not necessarily
determined by the state machine); it then modifies a subset of state variables called
the write set, and potentially produces some output to the environment. For a given
command, the read and write sets are fixed. However, the values that these vari-
ables assume at each invocation of the command can change and depend upon the
current state of the system and the precise memory consistency condition (for exam-
ple, sequential consistency [64]) in effect for variables accessed by multiple threads.

8

Henceforth, we refer to the values of the variables as read-set values and write-set
values. The sequence of commands, along with the corresponding read and write
sets and their values, executed by a thread is called an execution. We call the set
of all read-set (write-set) (values) of all the commands in an execution simply the
read-set (write-set) (values) of the execution. A variable is shared between threads
if it is present in either the read or write sets of at least two threads; otherwise, if
a variable is not shared between any threads, it is local to a specific thread.

2.1 Capricious Failure Model

Faults cause a faulty thread to deviate from a failure-free execution, which is simply
an execution in which no failures occur. A fault can cause a thread to commit
two kinds of errors: 1) an erroneous write occurs when the write-set values of a
command in an execution with a failure contain values different from those produced
in a failure-free execution with the same sequence of commands (for example, when
a bit in a value is flipped by an SEU error) and 2) an errant write occurs when
the write-set contains variables different from that of a failure-free execution (for
example, when a bit in an address is flipped by an SEU error). Further, the faulty
thread may crash by halting unexpectedly. After a thread commits an error but has
not yet crashed, the thread performs an erroneous execution.

Our model is similar to the Byzantine failure model [65], but lacks the al-
lowance for intentional misbehavior. Threads in our model may exhibit arbitrary
behavior (for example, by writing arbitrary values at arbitrary locations) but we
explicitly do not consider the possibility that these faults may be caused by a ma-
licious adversary who may alter the a priori probability of an arbitrary fault. We
call this new model Capricious to distinguish it from the weaker Byzantine model.

While a faulty thread can always be determined by an omniscient observer, an
erroneous execution may not be immediately identifiable by an application, allowing
an erroneous execution to affect other threads. To recover from an error, both the
faulty thread and the threads affected by the failure must be rolled back to a correct
state corresponding to some pre-failure state. To determine the set of threads to
roll back, we define which threads are affected by a failure:

Capricious orphan: a thread whose read set includes a variable whose value has
been set by a faulty thread.

9

Now, we simply add the faulty thread to obtain the set of threads that must be
rolled back after a failure:

Recovery unit: a set of threads containing the thread that executes the error
causing the failure and all resulting Capricious orphans.

We discuss the correct state to which a recovery unit rolls back in later chapters as
we describe different MT fault-tolerance techniques.

Determining the members of the recovery unit may incur significant overhead.
Fault-tolerance techniques may, in a performance tradeoff, include more threads
than necessary to reduce the need to track all Capricious orphans. We call the
set recovered by a fault-tolerance technique the effective recovery unit. To ensure
correctness, the effective recovery unit must be a superset of the recovery unit. A
fault-tolerance technique must identify Capricious orphans in order to determine the
effective recovery unit. In this thesis, we will consider two different techniques for
determining such orphans—a conservative approach in Chapter 3 that considers all
threads to be in the effective recovery unit, and an optimistic approach in Chapter 4
that attempts to minimize the recovery unit by reducing the length of erroneous
execution.

2.2 Non-determinism

Fault-tolerance is concerned with replication used to recover or mask faults and thus
with the read- and write-set values associated with commands to ensure that an exe-
cution of a state machine can be replicated. A deterministic command produces the
same output and write-set values when given the same read-set values. Hence, two
state machines started from the same initial state and executing identical sequences
of deterministic commands with identical read-set values undergo the same sequence
of state transitions and produce the same outputs. However, not all commands or
read-sets are deterministic.

We identify three types of non-determinism in our model: 1) non-determinis-
tic commands whose write-set values or output to the environment are not uniquely
determined by their read-set values (for example, if the command produces an un-
predictable sequence of events on the environment), 2) asynchronous commands that
can appear anywhere in the sequence of commands executed by a state machine (for

10

example, if the command is the result of a non-deterministic interrupt), and 3) non-
deterministic read sets where any of the read-set values of the command are not
uniquely determined by the previous sequence of commands executed by the state
machine (for example, when the read-set contains input from the environment).

The piecewise-deterministic assumption [106] states that all non-determinis-
tic events in the state machine can be identified. We make this assumption that the
three types of non-determinism we have discussed encompass the sources of non-de-
terminism in the MT applications we consider. These non-deterministic events can
be characterized by a determinant [2] that can be used to determine the read-set
values used during recovery. For example, if a command includes the current time
as input from the environment (that is, it has a non-deterministic read set), the
determinant might contain the precise time read as input so that during recovery
the same value can be used regardless of the current time. Generally, from the previ-
ous description of the types of non-determinism, we characterize the corresponding
determinants, respectively, to contain: 1) the write-set values or output to the en-
vironment that is not uniquely determined by the read-set values, 2) the order in
which the asynchronous command appears in the sequence of commands executed
by the state machine, and 3) the subset of non-deterministic read set values that
are not uniquely determined by the sequence of commands executed previously by
the state machine.

2.3 The JVM as a State Machine

We use the Java Virtual Machine (JVM) to explore our fault-tolerance techniques.
Java programs are compiled into an architecture-independent bytecode instruction
set. The compiled code is organized into classfiles, containing class definitions and
methods according to the Java Virtual Machine Specification [72]. The JVM also de-
fines standard libraries that provide supporting classes for various tasks (e.g., data
containers, I/O, and windowing components). The JVM and standard libraries
comprise the Java Runtime Environment (JRE). Java provides language-level sup-
port for multithreading, mutual exclusion (synchronized methods) and conditional
synchronization (wait and notify methods).

We model the JVM as a set of cooperating state machines, each roughly
corresponding to a Java thread. In particular, we choose as our state machines a

11

set of bytecode execution engines (BEE) inside the JVM. Although BEEs do not
explicitly exist as components of the JVM (for example, the bytecodes might be
compiled into processor-specific machine code), we can conceptually associate a
BEE with the set of functions that perform bytecode execution and track the state
of each thread.

The commands of the BEE state machine are bytecodes, and the state vari-
ables are the values of memory locations accessible to the BEE. Each BEE has
exclusive access to its own local variables and may share with other BEEs access to
shared variables. The rest of this thesis discusses methods to ensure that each BEE
replica processes the same sequence of commands, whether the replicas execute si-
multaneously as with a primary-backup system (Chapter 3) or later in time during
recovery (Chapter 4).

12

Chapter 3

Conservative MT

Fault-Tolerance

Conservative MT fault-tolerance (C-MTFT) describes techniques for multithreaded
applications wherein the unit used for recovery or replication contains many threads
that share data. In this chapter, we discuss C-MTFT while considering the entire
application as a single fault-tolerant recovery unit. The salient characteristic that
distinguishes C-MTFT from the optimistic techniques discussed later in Chapter 6
is that C-MTFT recovery units do not communicate through shared data. Threads
that access the same shared variables belong to the same recovery unit in our con-
servative approach.

This chapter demonstrates the C-MTFT approach through the design and
implementation of a fault-tolerant Java Runtime Environment that tolerates fail-
stop failures. Our technique is based on the well-known work on State Machine
Replication [63, 99]. This approach involves 1) defining a deterministic state machine
as the unit of replication, 2) implementing independently failing replicas of the
state machine, 3) ensuring that all replicas start from identical states and perform
the same sequence of state transitions (replica coordination), and 4) guaranteeing
the replication is transparent: each output-producing transition results in a single
output to the environment, rather than a collection of outputs, one for each replica.

Our approach to C-MTFT is inspired by, and extends, the work of Bressoud
and Schneider on Hypervisor-based fault-tolerance [17], which presents a strong case
for achieving transparent fault-tolerance by 1) building a software layer (the hyper-

13

visor) that implements a virtual state machine over the underlying hardware and
2) implementing replica coordination in the hypervisor. To demonstrate their ap-
proach, Bressoud and Schneider had to build an hypervisor for (a subset of) the HP
PA-RISC architecture because the architecture itself was not modifiable. Our focus
on the Java Virtual Machine allows us to implement replica coordination directly
into the JVM rather than building a hypervisor over unmodifiable hardware.

State machines must be deterministic for replication to work. Multithreaded
applications are not typically deterministic. The focus of this thesis is how to manage
the added non-determinism present in MT applications. We therefore systematically
identify and eliminate the effects of non-determinism within the JVM in order to
apply State Machine Replication. In doing so, we face the same issues (asynchronous
exceptions, output to the environment, etc.) identified in [17]. However, we identify
additional sources of non-determinism in our model as they pertain to C-MTFT:
asynchronous commands, non-deterministic commands and non-deterministic read
sets (see Section 2.2).

After we discuss these different sources of non-determinism, we present and
evaluate two techniques for eliminating the non-determinism. The first technique
forces each replica to perform the same sequence of monitor acquisitions; the second
technique guarantees the same sequence of thread scheduling decisions. Both tech-
niques ensure identical accesses to shared data at all replicas in order to eliminate
non-determinism.

3.0.1 Asynchronous Commands

A command is asynchronous if it can appear anywhere in the sequence of com-
mands processed by a BEE. Replicas of the same BEE might encounter a given
asynchronous command at different points in their command sequences. In [17],
hardware interrupts are asynchronous commands. Although there are interrupts in
the JVM, they do not give rise to asynchronous commands. For example, our JVM
performs I/O synchronously,1 and any I/O completion interrupt that corresponds
to a given bytecode is delivered before the execution of that bytecode completes.
Programmers can use Java’s multithreading to perform asynchronous I/O or events,
and subsequent to our work, Sun has done exactly that. The New I/O [59] (NIO)

1This work was performed on Java 1.2 before the introduction of asynchronous I/O.

14

R0: Fatal environment and JVM implementation exceptions are not raised at all
replicas.

R1: A thread must not invoke java.lang.Thread.stop.

R2: Native methods must produce only deterministic output to the environment.

R3: Native methods must invoke other methods deterministically.

R4A: All access to shared data is protected by a monitor (i.e., Java’s synchronized
keyword).

R4B: A thread has exclusive access to all shared variables while scheduled.

R5: All native method output to the environment is either idempotent or testable.

R6: If a native method produces volatile state in the environment, then a side
effect handler is provided to recover the state.

Table 3.1: Restrictions placed on applications and execution environment.

package released by Sun implements asynchronous I/O, but still does not give rise
to asynchronous commands; instead, NIO can be addressed using the techniques for
non-deterministic commands discussed in the next section.

Asynchronous commands in the JVM correspond to asynchronous Java ex-
ceptions that are not interesting sources of non-determinism. All but one of these
exceptions are raised by fatal errors in the run-time environment (e.g., resource ex-
haustion) or in the implementation of the JVM (e.g., locks in inconsistent states).
Such errors are intrinsic to the run-time environment of the application and would
repeat themselves if all replica environments were identical. Our implementation
must not replicate these exceptions, or all replicas will deterministically fail. Repli-
cation is effective only if we assume that either such errors never occur or that the
replicas’ run-time environments are sufficiently different. We assume the latter in
R0 in Table 3.1.

The stand-out non-fatal asynchronous exception is delivered to a thread when
it is killed by another thread. However, beginning with the Java Development
Kit version 1.2, use of this exception is deprecated. Applications that use this
method might not work on future releases of the JVM and should be rewritten using
condition variables. We therefore place restriction R1 in Table 3.1 upon applications

15

prohibiting the use of the deprecated exception.

3.0.2 Non-deterministic Commands

A command is non-deterministic if its write-set values or its output to the envi-
ronment are not uniquely determined by its read-set values. The only non-deter-
ministic bytecode executed by the JVM invokes a native method. Java includes the
Java Native Interface (JNI) [70] to invoke methods that execute platform-specific
code written in languages other than Java. Native methods have direct access to the
underlying operating system and other libraries. By accessing the operating system,
for instance, native methods implement windowing components, I/O, and read the
hardware clock.

Native methods therefore may take input values from the environment as
well as from the read set. In conventional State Machine Replication, replicas run
an agreement protocol to make their read sets and the input from the environment
identical. It is generally impossible to have the BEEs agree on input values from the
environment, since input is performed outside the control of the JVM. Instead, we
make sure that differences in input values (e.g., different local clock values) do not
result in different write-set values for the command. By simply forcing the backup to
adopt the write-set values produced by the primary. However, since native methods
execute beyond the purview of the JVM, an agreement protocol cannot ensure that
replicas executing a native method will behave identically. We therefore restrict the
behavior of native methods as given in R2 and R3 of Table 3.1 to achieve identical
results at all replicas.

R2 restricts the native method behavior visible to the environment; however,
it is often possible to relax this restriction and still obtain the same functionality
provided by the offending method. For example, a method that reads the current
time and then prints it could be split into two methods. The first method reads the
local time and writes it to a local variable lc, which constitutes the method’s write
set. Our agreement protocol ensures that executing the first method at the primary
and the backup results in the same value for lc. The second method, which prints
the value of lc, now produces deterministic output to the environment.

R3 restricts the ways in which a native method invokes other methods. While
executing outside of the state machine, a native method can invoke Java methods,

16

1 class Example {
// Accessible from all threads.

2 static Formatter shared_data = null;
3 String toString() {

// Guard not protected by monitor!
4 if(null == shared_data) {
5 shared_data = new Formatter();
6 synchronized_method();

// code continues...

Figure 3.1: A common data race in Java. If the Formatter constructor and synchro-
nized method are idempotent the data race has no semantic effect.

causing the BEE to execute commands. If a native method calls a Java method
non-deterministically (e.g., if the native method decides to acquire a lock depending
on the value of the local clock) then the sequence of commands processed by a BEE
could be different at each replica. We rule out this possibility by forbidding native
methods from making non-deterministic calls to Java methods.

We do not consider R3 a significant restriction, but rather a better program-
ming paradigm: to avoid debugging nightmares, it is wise to restrict non-deter-
minism in native methods to input methods. Just as R2, R3 might be upheld by
splitting an offending method into a non-deterministic input method and a deter-
ministic method. For instance, the clock example would be handled by placing the
clock read in a different method and allowing our replicas to agree on the local clock
values before invoking the (now deterministic) method that acquires a lock. Native
methods must use the JNI interface to invoke other Java methods; thus, a program
can be inspected for compliance with R3 by checking native methods that use the
JNI interface.

3.0.3 Non-deterministic Read Sets

Shared memory among threads creates the possibility of deterministic commands
reading different read-set values at different replicas of a given BEE. We call a
read set non-deterministic if it contains at least one shared variable. Java allows
data to be shared both explicitly, by invoking methods on a shared object, and
implicitly, through static data references. We could keep track of all shared data or

17

perform data race detection as in Eraser [98]. Generally the bookkeeping necessary
to determine which objects are actually shared can result in a significant source of
overhead: for example, an order of magnitude in time for Eraser.

Note that with C-MTFT, two fault-tolerant recovery units may not share
variables so that read sets cannot overlap across recovery unit boundaries. The non-
deterministic read-set values are solely determined by accesses from BEEs within a
single recovery unit. We address data shared between recovery units using thread-
fault tolerance in Chapter 4.

We explore two restrictions to make this problem manageable. One is to
assume R4A in Table 3.1, which requires every access to a shared variable to be
protected by a monitor (i.e., that the program is free of data races). Another way
to achieve the same result is to assume R4B, which requires a run-time environment
that enforces exclusive access to shared variables while a thread is scheduled (e.g.,
on a uniprocessor). Relaxing both restrictions for the general case might require a
combination of the approaches above and agreement on the shared data values.

A Java monitor guarantees exclusive access to shared variables. In practice,
the monitor allows the invoking BEE to transform temporarily a shared variable
into a local variable. To a BEE that invokes a monitor and acquires its associated
lock, however, the values stored in these temporary local variables appear to be
non-deterministic since they have been last modified by some arbitrary BEE. One
way to eliminate this non-determinism would be for the replicas to agree on the
values of the variables associated with every lock they acquire. This approach is
hard to implement, however, because Java does not express or enforce the associa-
tion between a lock and the variables it protects, leaving this responsibility to the
programmer through annotations or the use of statistical measures.

Our solution is instead to achieve agreement on the sequence of BEEs that
acquire each lock. Reaching agreement on a lock acquisition sequence ensures that
the corresponding BEEs at the primary and the backup access the variables associ-
ated with the lock in identical order. Combined with identical initial values, identical
lock acquisition sequences guarantee all commands executed by corresponding BEEs
have identical read-set values.

Unfortunately, many real programs do not satisfy R4A: even the JRE pro-
vided by Sun does not meet this restriction for all shared data. In particular, static
data members are often shared between threads without explicit shared method in-

18

vocations. As BEE replicas reach agreement on the sequence of lock acquisitions,
these data races can cause the state of the primary and backup to diverge, even
when the races do not affect the semantics of the program.

Figure 3.1 shows a use of static data members without acquiring a lock.
Object shared data, a static data member, is shared by all Example objects. The
guard on line 4 is not protected by a monitor, which allows different thread schedules
at the primary and the backup to invoke synchronized method a different number
of times, preventing agreement on the sequence of lock acquisitions. Testing our
implementation of replicated lock acquisitions required removing these race condi-
tions in the JRE by hand! Although the code in Figure 3.1 contains a data race, we
wanted to find a less labor-intensive way to handle this common (mal)practice.

We also consider an approach for handling shared data that does not rely on
R4A, but assumes R4B instead. It eliminates non-deterministic read sets by repli-
cating at the backup the order in which threads are scheduled at the primary. When
R4B holds on a uniprocessor, the BEE whose thread is being scheduled effectively
changes all its shared variables to local variables because no other BEE is allowed
to execute commands. By replicating the order in which threads are scheduled,
our implementation ensures that the order of access to shared data is replicated
regardless of whether data races exist.

3.0.4 Output to the Environment

State Machine Replication strives to hide replication from the environment by re-
quiring output to the environment to be indistinguishable from what a single correct
state machine would produce. To meet this requirement, we distinguish between out-
put to the environment that affects volatile state (i.e., state that does not survive
failure of the state machine) and stable state (i.e., state that does). A particular
command can produce multiple outputs to the environment, each of which is either
volatile or stable. We discuss each of the types in turn.

Hiding replication of output to stable state is easy if the output is either
idempotent or testable. In the former case, the output is independent of the number
of times the corresponding command is executed, while in the latter the environment
can be tested to ascertain whether the output occurred prior to failure. For example,
seeking to an absolute offset in a file is an idempotent operation, while seeking to

19

a relative offset is not. If the current offset can be read, a relative seek becomes a
testable operation. Except for these cases, it is impossible to maintain the “single
correct machine” abstraction in the presence of failures. For instance, in a primary-
backup system a backup cannot in general determine whether the primary failed
before or after performing an output command, and executing the command again
could produce different results. This impossibility result forces us to introduce a
further restriction R5 in Table 3.1 that requires all native method output to the
environment be either idempotent or testable.

Replication of output to volatile state might be necessary for correct oper-
ation. For example, the OS underneath the JVM is considered part of the envi-
ronment. Opening a file at the primary creates OS state that disappears when the
primary fails and that the backup must replicate if it is to execute correctly. Some
volatile state could be restored simply by replaying the output (i.e., if the meth-
ods are idempotent), but volatile state generally requires special treatment. For
instance, replaying messages on a socket would not recover the state at the backup
because sending messages is in general not an idempotent operation. An extra layer
must be added to make sending messages either an idempotent or testable operation
as in [3].

Our protocol uses a novel interface, called side effect handlers, to replicate
the lost volatile state of the primary. Native methods can create volatile state as
an effect of producing output to the environment. Using JNI, any application may
call native methods supplied by the application. Our interface allows an application
programmer to include methods that replicate the volatile state of the primary
created by the additional native methods. For example, through the interface we
have included methods to handle file I/O in the standard JRE libraries. Restriction
R6 in Table 3.1 requires applications to use this interface whenever they invoke a
native method that creates volatile state.

3.0.5 A Note on Restrictions R0–R6

The restrictions that we impose on applications are manageable. R0, R2, and R5
must hold for any replicated application. R1 is for convenience as we could replicate
the special case for backwards compatibility. We introduce R4A/B to provide a
natural foundation to handle multithreading. R4B does not require any programmer

20

effort, while R4A requires good programming practice. R5 is inevitable if we limit
ourselves only to modifying the JVM because native methods execute outside of the
JVM, but as discussed previously it is not difficult to follow. R6 allows us to work
around the limited control over native methods, requiring some extra knowledge
and programming effort.

Though we assume the restrictions are followed, we could easily enforce R1
and R6 at runtime. We could not enforce R6 directly as the JVM cannot distinguish
which native method will output to the environment. Instead we would enforce a
stronger restriction that holds for all native methods (instead of only those that
output to the environment). Clearly R3 cannot be enforced automatically, but
requires programmer assistance. The areas of code to inspect are well-defined: native
methods that read input from the environment and invoke other methods through
the JNI interface. R4A could be enforced using techniques as in Eraser [98]. The
system could enforce R4B by adding an extra shared lock at the cost of reduced
concurrency.

It is interesting to note other methods to work around our restrictions. We
discuss approaches other than R4A or R4B for handling replication of multithreaded
applications in Section 3.3. We could circumvent R6 using approaches outside of
the JVM (e.g., TFT [16]). However, the JVM alone cannot identify native methods
with output to volatile state. As such, we would need some form of annotation from
the programmer.

3.1 Implementation

Sun’s JVM 1.2 provides two implementations of multithreading. The native threads
version provides thread scheduling in the underlying OS, while the green threads
version implements a user-level thread library for a uniprocessor inside the JVM.
Since R4A depends upon the application’s use of locks and not the low-level thread
implementation, both libraries can take advantage of techniques that achieve replica
coordination by replicating the sequence of lock acquisitions. Indeed, multiprocessor
applications running with native threads on an SMP can take immediate advantage
of the technique described in Section 3.1.2.

Enforcing R4B, however, requires changes in the thread library. Since our
first goal is to maximize portability, we have focused on implementing a replicated

21

thread scheduler for green threads. Our approach could be extended to native
threads (see [104])—we leave this as future work.

We add two system threads to the JVM. One performs failure detection to
allow the backup to initiate recovery. The other is concerned with the transfer of
logging information, either by sending it (at the primary) or by receiving it (at the
backup). These additional threads join the several system threads that perform
tasks such as garbage collection and finalizing objects. We next discuss how our
implementation addresses the challenges (non-deterministic commands, non-deter-
ministic read sets, and output to the environment) that we identified in Section 2.3.

3.1.1 Nondeterministic Commands

We checked by direct inspection and categorized all native methods in the standard
libraries of the JRE: fewer that 100 native methods are non-deterministic. We store
the signature of these methods, composed of their class name, method name, and
argument types, in a hash table. Generally, every time a native method is invoked
at the primary, its signature is checked against those stored in the hash table. If
there is a match, then the method’s return values (including arguments, if they are
modified) and the exceptions raised are sent to the backup, which keeps an identical
hash table. Before executing a method during recovery, the backup checks if it is
stored in the hash table. If so, the backup always uses the corresponding return
values and exceptions, whether or not it actually invokes the method. If the method
is indeed invoked in order to reproduce volatile output, the backup discards the gen-
erated return values and exceptions. The side effect handlers discussed later provide
an extra layer to handle specific cases where the return value may reflect volatile
environment state (e.g., returning a file descriptor from a file open command).

3.1.2 Nondeterministic Read Sets

Data races and scheduling differences among the JVM’s threads can make read sets
containing shared variables return different values at the primary and the backup.
We use two different approaches to make read sets deterministic.

Replicated Lock Synchronization. The first approach relies on assump-
tion R4A: all shared data is protected by locks that, if correctly acquired and re-
leased, ensure mutual exclusion. Under this assumption, we create a mechanism

22

that guarantees that threads acquire locks in the same order at the primary and at
the backup.

Replicating the order in which threads acquire locks requires identifying the
locking thread, the lock, and the relative order of each lock acquisition. We store
this information in a lock acquisition record, which is a tuple of the form (t id, t asn,
l id, l asn) where:

t id is the thread id of the locking thread.

t asn is the thread acquire sequence number recording the number of locks acquired
so far by thread t id.

l id is the lock id.

l asn is the lock acquire sequence number recording the number of times lock l id

has been acquired so far.

These records are created by the primary, but they are used during recovery
by the backup. Therefore, for each thread and lock, the primary needs to generate
virtual t ids and l ids that are unambiguous across replicas. For instance, although
in the JVM each lock is uniquely associated with an object, the primary cannot
simply use the object’s address as the lock’s l id, because this address is meaningless
at the backup. Further, any scheme that assigns ids according to the order in which
events—such as thread and object creation—occur at the primary is dangerous,
since these events might be scheduled differently at the primary and the backup.

We then define recursively the id of a thread t as consisting of two values:
1) the id of the parent thread of t (the parent of the first thread has by convention
t id = 0) and 2) an integer that represents the relative order in which t is created
with respect to its siblings. This definition is well founded because, although the
absolute order in which t is created does depend on the order in which threads
are scheduled, t’s parent spawns its descendants in the same relative order at the
primary and the backup, independent of scheduling.

To assign a lock its l id, we observe that threads execute deterministic pro-
grams. Hence, the sequence of locks acquired by a thread with a given virtual t id

is identical at the primary and the backup. We can then uniquely identify a lock
by specifying the t id and the t asn of the first thread that acquires the lock at

23

the primary. We get an even simpler l id as follows. When the primary acquires
a lock for the first time, it assigns to the lock a locally unique value (our l id is
simply a counter); it then creates an id map, which is a tuple of the form (l id, t id,
t asn) that associates the l id with the appropriate t id and t asn. Each map is
then logged at the backup.

During failure-free execution, whenever the primary acquires lock l id, it
generates a corresponding lock acquisition record and logs it at the backup. If the
primary fails, then the backup’s threads use the logged id maps and acquisition
records to reproduce the sequence of lock acquisitions performed by the correspond-
ing threads at the primary.

When a backup thread t tries to acquire a lock with id l, it checks if the log
contains a lock acquisition record with t id = t and l id = l, and t asn equal to the
current value of t’s acquire sequence number. If such a record r exists, then t waits
for its turn for acquiring lock l—that is, t waits until l’s acquire sequence number is
equal to the value of l asn stored in r, acquires the lock, and removes r from the log.
If the log contains no such record, then t waits until the log contains no more lock
acquisition records (indicating the end of recovery at the backup) before it acquires
lock l.

The case in which a backup thread t attempts to acquire a lock that still has
no l id requires special treatment. First, t checks if it is its responsibility to assign
the id to the lock. The thread looks for an id map with t id = t and matching t asn;
a match implies that, before the primary failed, thread t at the primary assigned to
that lock the l id stored in the id map. If a match is found, the corresponding map
is removed from the log and the id of the lock is set to l id.

If a match is not found, then either 1) the lock was assigned its l id at the
primary by a different thread t′, or 2) no primary thread logged an id map for
the lock before the primary failed. Thread t handles these two cases by waiting,
respectively, until either t′ assigns the l id at the backup or until the log contains
no more maps, in which case t can safely assign a new l id to the lock.

This approach only replicates the lock acquisition sequence, which may re-
quire extra synchronization when ordering is important. If multiple threads are
interacting with the environment (e.g., reading or writing a log) and the interleaved
order is important, then synchronization is required to ensure an identical order
between the primary and the backup even if the synchronization is not required for

24

correctness at the primary.

Replicated Thread Scheduling. The second approach relies on assump-
tion R4B: the scheduling lock protects all shared data. Whenever the primary
interrupts the execution of a thread t to schedule a new thread, it sends a thread
scheduling record to the backup, which uses it during recovery to enforce the pri-
mary’s schedule. A record is comprised of (br cnt, pc off, mon cnt, l asn, t id),
where:

br cnt counts the control flow changes (e.g., branches, jumps, and method invoca-
tions) executed.

pc off records the bytecode offset of the PC within the method currently executed
by t.

mon cnt counts the monitor acquisitions and releases performed by t.

l asn records the lock acquisition sequence number when t is rescheduled while
waiting on a lock.

t id is the thread id of the next scheduled thread.

The basic scheme for tracking how much Java code t executed before being
rescheduled is simple, and it is implemented by the first two entries in the schedule
record. Rather than counting the number of bytecodes, which would add over-
head to every instruction, we instrumented the JVM to increment br cnt for each
branch, jump, and method invocation. Further, since the program counter address
is meaningless across replicas, we store in pc off the last bytecode executed by t as
an offset within the last method executed by t. Unfortunately, in our implemen-
tation this requires an update to the thread object after executing every bytecode
because it is hard to determine, when t is rescheduled, where the JVM is storing
its program counter, whose value is needed to calculate pc off. However, storing the
offset is still simpler updating a counter. Future implementations may by able to
remove the pc off member if it can be determined from the state of t saved when t

is rescheduled.
A first complication over this simple scheme arises when t is rescheduled

while executing a native method. Native methods are opaque to the JVM: we

25

have no way of determining precisely when t is rescheduled. Often this is not a
problem: when repeating t’s schedule during recovery, the backup reschedules t

right before the native method is invoked. This is unacceptable, however, if t, while
executing within the native method, acquires one or more locks: reproducing the lock
acquisition sequence is necessary for correct recovery, because it is this sequence that
determines the value of shared variables. Fortunately, whenever a lock is acquired or
released, control is transferred back inside the JVM. Our implementation intercepts
all such events, independent of their origin, allowing us to correctly update the
value stored in mon cnt. In this case, instead of rescheduling t during recovery
before invoking the native method, we allow t to execute within the native method
until it performs the number of lock acquisitions stored by the primary in mon cnt.

Further complications come from the interaction of application threads and
system threads. System threads do not correspond to a BEE executing application
code, and several do not execute Java code at all (e.g., the garbage collector).
As was the case for native threads, we cannot reproduce scheduling events that
involve system threads. 2 Ignoring system thread scheduling creates problems when
application and system threads share resources, such as the heap, because both
types of threads can contend for the same locks.

In particular, interaction with system threads might result in either of two
events occurring during the recovery of an application thread t:

1. t is forced to wait at the backup for a lock that was acquired without

contention at the primary. In this case, t runs the risk of being rescheduled
by the backup before it can complete the sequence of instructions executed by
its counterpart at the primary. We solve this problem by adding a separate
scheduler thread and a private runnable queue (as in user-level thread libraries)
to guarantee that t will continue to be scheduled, without being interleaved
with other application threads, until necessary.

2. t acquires without contention at the backup a lock for which it was

forced to wait at the primary. So, while t was rescheduled at the primary,
it might not be rescheduled at the backup. It is easy to use mon cnt to enforce

2Replicating thread scheduling at the OS level in the native threads library would allow us to
handle all threads, but at the cost of reduced portability. Further, we would still have to modify
the JVM to handle other sources of non-determinism.

26

the correct scheduling.

Threads can also perform wait operations on a monitor, blocking the thread
until a corresponding notify or notifyAll is performed. If multiple threads are awak-
ened, we need to guarantee that they will acquire the monitor in the same order at
the primary and the backup. To do so, we store the l asn of the monitor lock as
part of the thread scheduling record.

A final subtle point arises when the backup completes recovery, i.e. when it
finishes processing the sequence of thread scheduling records logged by the primary
before failing. The last scheduling record in this sequence contains the t id t′ of
the next thread that the primary intended to schedule—the primary failed before
recording at the backup the scheduling record for t′. Nevertheless, the backup must
schedule t′ because at the primary t′ might have interacted with the environment.
t′ will execute at the backup until these interactions are reproduced.

3.1.3 Garbage Collection

Garbage collection in Sun’s JVM is both asynchronous and synchronous. Any thread
can synchronously collect garbage by invoking a JRE native method. Asynchronous
garbage collection is performed periodically by a garbage collector thread and dur-
ing memory allocation when memory pressure indicates collection is needed. Since
garbage is unused memory by definition, we initially avoided replicating the behav-
ior of the asynchronous collector thread. However, asynchronous garbage collection
can be a source of non-deterministic read sets. Indeed, both soft references and
finalizer methods create paths for non-deterministic input to application threads.

Soft references are used to implement caches. By fudging the definition of
garbage, the referenced objects are guaranteed to be garbage collected before an
out-of-memory error is returned to the application. Because R0 prevents such an
error from being raised at all replicas, collection of soft references might occur at
different times at different replicas. For instance, the primary might find an object in
its cache, while the backup might not, leading the execution of primary and backup
to diverge. 3 Although we could replicate the behavior of the asynchronous garbage
collector by recording when it locks the heap, we use a much simpler solution: all

3Similar arguments also apply to weak references [19], which we treat similarly.

27

soft references are simply treated as strong references, which represent active objects
and are therefore never collected. This shortcut has no effect on our experiments
because there is never enough memory pressure to dictate the collection of soft
references.

Another possible source of non-determinism is improper use of finalizer meth-
ods. These methods are intended to allow objects to reclaim resources that cannot
be freed automatically by the garbage collector (e.g., if memory was allocated in
a native method). The Java language specification states that finalizer methods
are invoked on objects before the memory allocated to the object is reused, but
does not specify exactly when, allowing different behaviors at the primary and the
backup. Our current implementation assumes that finalizer methods only free un-
used memory or perform other deterministic actions on local memory. Since no data
is shared between the thread that runs the finalizer on dead objects and any threads
that previously used those objects, no new source of non-determinism is introduced.
However, it is possible to write improper finalizer methods that do more than free
unused memory: in fact, they can perform arbitrary actions, possibly with non-
deterministic side effects. Although we don’t currently replicate the invocation of
finalizers, it would be easy to do so using one of the approaches discussed previously.

3.1.4 Environment Output

We deal with output commands in native method through a novel approach based
on what we call side effect handlers (SE handlers). SE handlers are used to store
and recover volatile state of the environment and to ensure exactly-once semantics
for output commands. A handler consists of five separate methods that are called
at various stages of execution at each replica.

register This method registers with the JVM information about the native meth-
ods that the handler will manage, including the signature of the method,
whether the method is a non-deterministic command and/or an output com-
mand, and whether its arguments should be logged (i.e., if they are also output
arguments).

test The backup calls this method to test during recovery whether an output com-
mand succeeded. For example, the first output command after recovery is
terminated is uncertain—we cannot in general decide whether the command

28

has completed. test is called on an uncertain command to determine whether a
testable output completed before failure, guaranteeing exactly-once semantics.
Commands for which the test method is not defined are considered idempotent
and are simply replayed.

log The primary calls this method after executing an output command. The system
provides log with the arguments to the native method that performed the
output (including the class instance object), the return value from the native
method, and extra information about the internal state of the JVM. log saves
and returns in a message all state necessary to recover the output of the
command. For example, on a file write this message might store the file
descriptor and the amount written (or the current file pointer offset).

receive The backup calls this method to receive the state stored by the primary
through the log method. Before saving the state, receive can compress it: for
example, receive could compress the results of several file writes into one offset
for the file pointer.

restore The backup calls this method during recovery. It is invoked only once.
restore recovers the volatile state affected by output commands. If receive
has compressed the results of multiple commands, restore might be able to
recover the appropriate state directly instead of replaying the commands. For
example, to recover an open file restore would open the file and set the file
pointer to the appropriate offset.

Each SE handler can manage a set of related native methods. For example,
we have one handler for all native file I/O methods. The handlers we have written
for the standard libraries are automatically added to the system during startup.
Applications can incorporate their own handlers using the same functions. Using SE
handlers allowed us to add support for file I/O in the standard libraries. The same
approach can be used by application writers to incorporate user-supplied output
commands.

29

3.2 Experiments

Our experimental setup consists of two Sun E5000 servers, each with 15 400MHz
UltraSPARC II cpus and 2GB memory running SunOS 5.8 connected by a 100
Mbps Ethernet. The primary runs on one machine and logs events at the backup
running on the other. On performing an output, the primary waits until the backup
acknowledges having logged all events up to the output event. The backup keeps
its log in volatile memory.

Sun’s JVM did not include the source code for Just-In-Time (JIT) bytecode
compilation for Java 1.2. JIT compilation dynamically converts methods from byte-
codes into native machine code instructions. Without the source we cannot use JIT
compilation because we cannot include our modifications to some bytecode execu-
tions (e.g., interception of native method invocations). Hence, all of our experiments
are performed in interpreted mode (i.e., without JIT compilation). JIT compilation
reduces the execution time of CPU intensive code but has little effect on communi-
cation, which is our primary source of overhead. Hence, although the overhead on a
JVM using JIT compilation is hard to predict, we believe that probably it wouldn’t
change significantly except for compress, which is two times faster on Sun’s HotSpot
JVM with JIT compilation. The other benchmarks vary from 20% faster to 20%
slower execution time, probably resulting in comparable changes to the overhead.

To estimate the costs of adding fault-tolerance to the JVM, we run the SPEC
JVM98 benchmark on the replicated lock acquisition implementation, the replicated
thread scheduling implementation, and the original Sun JVM. The programs in
the benchmark vary widely in their characteristics. Compress is a CPU-intensive
Lempel-Ziv compression application. Jack is a parser generator which is run on
input to generate a parser for itself. Db contains a memory-resident database that
is queried multiple times. Jess is an expert shell system that computes on a set
of common puzzles with progressively larger rule sets. Mpegaudio decompresses
MPEG-Layer 3 audio files. Mtrt is the only multithreaded application in the bench-
mark and consists of a ray-tracer rendering a scene of a dinosaur. Though mtrt is
the only multithreaded application, several other applications (notably, db) contain
much synchronized code. We did not include results for javac (included in SPEC
JVM98) because we could not get the application to run on Sun’s original JVM.

Table 3.2 summarizes the properties of the benchmark applications with

30

Implementation Event jess jack compress db mpegaudio mtrt
Both Intercepted NM 64088 631295 419 96011 10031 1473

NM Output Commits 763 34 102 703 10 133
Replicated Logged Messages 4873592 12833046 2355 53492759 14717 701738

Lock Locks Acquired 4809503 12201750 1935 53396747 4685 700264
Acquisition Objects Locked 4515 505223 102 15612 21 161

Largest l asn 1410798 746136 633 5286641 1955 34738
Replicated Logged Messages 64089 631296 420 96012 10032 30638

Thread Scheduling Avg. Reschedules 0 0 0 0 0 29163

Table 3.2: Properties of benchmarks pertinent to our implementation.

respect to our implementation. Database queries in db result in the most lock
acquisitions by far, while jack locks more unique objects. All applications have
few intercepted native methods and even fewer output commits. The largest l asn
shows that the lock acquisitions are skewed—few locks are responsible for most
acquisitions. The average number of reschedules in the last row shows that though
many locks are acquired in all of the benchmarks, only mtrt actually requires them
for multithreading.

We implemented replicated lock acquisition for both the green threads li-
brary supporting user-level threads on uniprocessors and the native threads library
supporting multithreading on an SMP. We only implemented thread scheduling for
green threads. We found the overheads exhibited by the two implementations of
replicated lock acquisitions to be qualitatively similar. We thus only report re-
sults from our implementation using green threads. All experiments are performed
on lightly loaded machines running in multi-user mode; experiments were repeated
until 95% confidence intervals were within 1% of the mean.

Figure 3.2 shows the overall execution times of the benchmark applications
using each of our replication approaches normalized to the corresponding times
without any replication. The primary columns are the execution times of the pri-
mary logging events to the backup, while the backup columns give the times for
the backup to replay events from the log. Although our implementation was not
tuned aggressively (we only optimized some in the replicated thread scheduler), we
observed under 100% overhead for most applications. Replicating lock acquisitions
has an average of 140% overhead (skewed by db) for green threads, well above the
replicated thread scheduling’s 60% average.

The overhead for replicated lock acquisitions (Figure 3.3) ranges from 5%
(mpegaudio) to 375% (db). The large overhead in db is a result of processing its
more than 53 million lock acquisitions. In Figure 3.3, Communication Overhead rep-

31

jess jack compress db mpegaudio mtrt0

1

2

3

4

5

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

)

TS primary
TS backup
Lock primary
Lock backup

Figure 3.2: Comparison of our implementations using green threads normalized
to our JVM without replication. The TS columns represent our replicated thread
scheduler implementation, and the Lock columns represent the replicated lock ac-
quisition implementation. The execution times of each benchmark are (in seconds):
jess (167), jack (182), compress(541), db (354), mpegaudio (419), mtrt (163).

32

jess jack compress db mpegaudio mtrt0

1

2

3

4

5

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

)
Pessimistic Overhead
Misc. Overhead
Lock Acquire Overhead
Communication Overhead
Original JVM

Figure 3.3: Normalized overhead for replicated lock acquisition implementation us-
ing green threads library.

jess jack compress db mpegaudio mtrt0

1

2

3

4

5

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

)

Pessimistic Overhead
Misc. Overhead
Rescheduling Overhead
Communication Overhead
Original JVM

Figure 3.4: Normalized overhead for replicated thread scheduling implementation
using green threads library.

33

resents the time spent sending messages to the backup, and Lock Acquire Overhead
measures the time spent storing information on lock acquire. Pessimistic Overhead
represents the time spent waiting for acknowledgments from the backup on output
commit events.

In our implementation lock acquisition messages are very small (36 bytes).
The primary buffers such messages and sends them to the backup either periodi-
cally or on an output commit; in the latter case, the primary sends the buffered
messages and waits for an acknowledgment. Similarly, the backup only sends an
acknowledgment message after processing a burst of incoming logging messages.

The sources of overhead for the replicated thread scheduling implementation
are detailed in Figure 3.4. Communication Overhead and Pessimistic Overhead
are as in Figure 3.3, while Rescheduling Overhead measures time spent updating
counters and storing scheduling decisions. The overhead varies from 100% (jack) to
15% (compress).

Replicating thread scheduling yields a lower communication overhead than
replicating lock acquisition: only mtrt logs any thread schedule records to the
backup. Further, to reduce the number of records created, a record is sent only
when a new thread is scheduled. All other benchmarks are single-threaded; hence,
they do not involve transmission of any records. The replicated lock acquisition
implementation does not take advantage of this single-threaded case, sending many
unnecessary messages.

For such applications, we expect replicated thread scheduling to incur smaller
overhead than replicated lock acquisition. In practice, however, we observe that this
is not always the case (see Figure 3.2), because storing thread progress incurs signif-
icant overhead. As seen in Figure 3.4, the overhead of replicated thread scheduling
is dominated by the Misc. Overhead, which captures the overhead resulting from
extra bookkeeping. In an earlier version of our implementation, the bookkeeping
overhead for the replicated thread scheduler overwhelmed any communication ad-
vantages. To reduce these costs, we were forced to add about 12 instructions that
update counters and keep track of the virtual machine’s PC to the hand-written op-
timized assembly loop that executes bytecodes at the heart of the JVM. We believe
significant additional reductions could be achieved by optimizing the code further.
Also, using a deterministic scheduler as in the Jikes RVM [33, 55] or Jalapeño [22]
might result in lower overhead substantially because the progress indicators would

34

be simplified.
The two approaches to handling multithreading present different tradeoffs.

Replicating lock acquisitions may be less effective if a thread acquires or releases
objects several times before being rescheduled. Further, replicating thread schedul-
ing handles automatically the single-threaded case as no extra messages are sent.
Nonetheless, replicating lock acquisitions is still a compelling approach because it
works on multiprocessor systems, and may provide better performance, as in the
case of mtrt.

As communication overhead is the dominant source of overhead in our ex-
periments, the amount of communication for a given application created by each
technique is an effective predictor of their performance.

3.3 Related Work: JVM

Replica coordination [63, 99] can be implemented at any level of a system’s architec-
ture, from the application level [12] all the way down to the hardware [7]. Systems
that implement replica coordination at intermediate levels include TFT [16] (at the
interface above the operating system) and Hypervisor-based fault tolerance [17], in
which replica coordination is implemented above a virtual machine that exports the
same instruction set architecture as HP’s PA-RISC.

We first reported on our fault-tolerant JVM in [84]. Since then, we have
become aware of other concurrent and independent efforts that address some of
the same issues discussed in this paper. Basile and others report on replicating
multithreaded applications in [9]. They develop a leader-follower replicated lock
acquisition algorithm that assumes R4A and a Byzantine failure model for a web-
server application. Their algorithm for replicated lock acquisition is similar to ours;
however, they do not explore scenarios where R4A doesn’t hold.

Friedman and Kama have also explored the idea of modifying the JVM (in
their case, the Jikes RVM [55]) to achieve transparent fault-tolerance [33] using
semi-active replication. Although we share the same goals, our approaches differ in
three fundamental ways. First, their approach only applies to systems where R4A
holds, while we explore multiple ways to handle the non-determinism introduced by
multithreading. Second, they do not address applications with non-deterministic
native methods, though they do address I/O within the JRE. Finally, they report

35

experiments using JIT, while all our experiments are performed in interpreted mode
because we require access to the source code for JIT.

Prior work on debugging multithreaded applications addressed non-deter-
minism. LeBlanc and Mellor-Crummey first introduced recording lock synchroniza-
tion and shared memory accesses for debugging replay [66]. More recently, Choi and
Srinivasan apply this approach to Java in the DejaVu tool for debugging assuming
R4A in [24] and R4B in [22]. DejaVu records logical thread intervals wherein a thread
performs non-deterministic events such as monitor entry/exit and shared variable
accesses. The intervals include thread schedules for the underlying deterministic
thread scheduler of the Jalpeño JVM.

As our focus is fault-tolerance, our implementation differs in several ways.
First, we include a general approach to handling application-provided native meth-
ods. Second, DejaVu does not address output to the environment. Third, the
Jalapeño scheduler reschedules at deterministic yield points, simplifying thread ex-
ecution progress tracking.

Their trace sizes are much smaller than ours by clever use of intervals, but
the overhead incurred is still 40%-80%, comparable to ours without pessimism. Our
implementation could benefit from the use of intervals. For the multithreaded Mtrt
application there would only be 56 intervals instead of 700258 lock acquisitions—
four orders of magnitude fewer events, resulting in a significant saving in space and
probably also time.

To the best of our knowledge, replicating lock acquisitions for handling multi-
threading was first proposed by Goldberg, et al., for Mach applications in [34].
When replicating lock acquisitions, correctness depends on the absence of data races.
By augmenting the type system, Boyapati and Rinard developed race-free Java
programs which meet R4A [15]. Data race detection mechanisms [21, 98] could also
be used to verify R4A holds for a given program.

Our implementation of replicated thread scheduling is based on Slye and
Elnozahy [104]. They record thread progress during normal execution using a count
of control flow changes (branches, jumps, function calls). Our solution differs in
two ways: 1) the JVM cannot track all control flow changes (for example, while
executing a native method) and 2) we do not recover all threads (for example, the
garbage collector).

36

3.4 Summary

We built a process-fault tolerant JVM using the State Machine Approach. We
implement and evaluate two techniques for eliminating the non-determinism intro-
duced by multithreading in C-MTFT. The first technique allows the threads at the
backup to reproduce the exact sequence of monitor acquisitions performed by the
threads at the primary. The second technique replicates at the backup the thread
scheduling decisions performed at the primary. Our results suggest that this is a
viable solution for providing process-fault tolerance to Java applications.

Highlights to take away from this chapter:

• We identified two sources of non-determinism in the JVM, including non-de-
terministic commands from native methods and non-deterministic read sets
from multithreaded access to shared data.

• Access to shared data (that is, non-deterministic read sets) can be determined
either by lock acquisition order [34] or by thread scheduling order.

• Native methods can be replicated using a framework of side-effect handlers
that characterize the non-determinism of each native method for purposes of
recovery.

37

Chapter 4

Optimistic MT Fault-Tolerance

The previous chapter describes techniques to improve the reliability of multithread-
ed applications, but these improvements require all threads to be in the effective
recovery unit. In this chapter, we advocate a new approach for optimistic MT
fault-tolerance (O-MTFT) that increases availability by reducing the size of the
effective recovery unit. The key insight of this approach is to manage access to
shared memory to reduce the likelihood of erroneous writes by identifying them
early. Combined with the rarity of errant writes, managing shared memory using
consistency checks limits the erroneous execution of a faulty thread, enabling the
application to use the minimal effective recovery unit. However, errant writes may
still occur in the Capricious model so that the complete approach 1) uses O-MTFT
to optimistically produce a small effective recovery unit (Chapters 5–6), 2) detects
if the effective recovery unit is too small to complete recovery (Section 4.2), and 3)
triggers C-MTFT if necessary in order to finish recovery (Section 6.5).

Before we address techniques to manage shared memory for O-MTFT, we
discuss the feasibility of reducing the effective recovery set size in multithreaded
applications. We first consider evidence of errant writes between threads because
these writes are by their nature difficult to detect (leading us to fall back on the
conservative approach discussed in the previous chapter). In our Capricious model,
errant writes may occur between threads, but the frequency of such writes can
be determined experimentally rather than arbitrarily often (as would occur in the
Byzantine model).

We refer to field studies of software faults in existing systems to judge the

38

likelihood and impact of errant writes. The Tandem studies [37, 67] evaluate the
source of software faults in the Tandem OS itself and how the faults are tolerated.
These studies show that errant writes to memory due to software failures are fairly
rare, and erroneous writes typically do not cause further errors. Of interest is the
categorization of first errors, which are the first effects of a fault. Though 23% of
first errors resulted in bad addresses, only 7% could be classified as errant writes
unrelated to the data structure under operation. Further, only 18% of all first
errors propagated to cause further errors, implying corruption is typically contained
by the operating system. Half of the first errors studied were detected by observing
references to illegal addresses; otherwise, consistency checks performed by the OS
itself detected the errors.

These results suggest that for many applications errant writes are rare and
that consistency checks can effectively prevent most erroneous and errant writes.
As we will show in later chapters, the O-MTFT technique imposes little overhead
to the application so that the improvements in availability provided by the reduced
effective recovery unit can be favorably weighed against the unlikely probability
of errant writes between threads. Indeed, some consistency checks may even be
automatically generated, similar to the method for generating program invariants
in Daikon [31]. Since most processors do not guarantee memory protection between
threads, our O-MTFT technique is only optimistic and may underestimate the size
of the effective recovery unit. If an errant write affects another thread, it will be
necessary to fall back on the C-MTFT techniques discussed in the previous chapter
to ensure correct recovery. In the next section, we discuss related work that can
further reduce the likelihood of errant writes to increase the applicability of O-
MTFT.

4.1 Related Work: Software Data Isolation

We focus on techniques for protecting memory regions from errant writes, which
we call data isolation, that are implemented in software and do not require special
hardware support. All of the following techniques can reduce the possibility of errant
writes either by extending the hardware memory protection mechanisms available
on general-purpose commodity processors or by sandboxing execution. Reducing
the likelihood of errant writes increases the chance that O-MTFT techniques will be

39

able to use a smaller effective recovery unit than the C-MTFT techniques discussed
previously.

Sullivan and Stonebraker study several techniques to protect a database man-
ager’s buffer pools [109]. Guarding shared pages marks them read-only until an
update operation is executed. This technique incurs only a few percent overhead
for update-intensive workloads. Write-protecting pages improves the consistency of
memory after failures even though other objects on the same page remain vulnerable
during an update because memory access is protected only at the page granularity.

The Rio project resulted in several papers related to software data isola-
tion [20, 74, 86]. Rio provides persistent memory that survives operating system
crashes using virtual memory protection. Although Rio relies on special hardware
to survive power outages, the memory protection techniques do not require special
hardware. Initially, Rio was used as a replacement for the operating system’s file
cache [20]. A memory segment is kept read-only until it is updated in a manner
similar to the guarding technique of Sullivan and Stonebraker. A special API marks
the page writeable before update and read-only afterwards. Further, the operating
system is modified to ensure the buffer pages are protected during initialization.
Without memory protection from writes (that is, with the file cache always write-
able), corruption is rare (1.5%) but higher than with a simple write-through to
disk system (1.1%). With write protection, Rio achieves improvements in reliability
(0.6%), while performance is significantly better than a write-through system (4–22
times as fast as UFS).

Ng and Chen show that using Rio to hold database buffer caches provides
similar reliability to using disk for persistent storage, while providing much faster
access times [86]. In the experiments, as previously with the file cache, buffer cache
pages are kept read-only until a transaction locks an object contained in the page for
update. However, fault injection experiments show that protecting memory does not
significantly increase reliability: errors due to memory corruption decreased from
2.7% to 2.5% of errors. The authors attribute the limited benefit of protection to
the fact that few writes intentionally go to the buffer cache and errant writes are
unlikely to hit randomly the buffer cache in the 64-bit address space used.

The Recovery Box [6] uses a kernel memory segment to backup important
OS data in order to protect that data during failure and recovery, but provides no
access protection from errors that occur in the kernel.

40

Wahbe et al. [112] designed fault domains to contain the erroneous and errant
writes of the executable code that comprises a domain from causing memory faults
in other domains. Fault domains are implemented in software by sandboxing code to
ensure that it cannot access memory outside of its fault domain. Executable code
is scanned (largely statically) to verify this property before execution. Similarly,
the Java Runtime Environment (JRE) provides security policies to limit loading
of trusted code and access to different objects. These approaches can limit the
corruption caused by errant writes due to bugs in software, but static checks cannot
prevent code mutated by SEU errors from affecting memory. It remains necessary
to check for consistency of shared data during execution to minimize the damage
that may occur from errant writes.

4.2 Related Work: Detecting Faults

While consistency checks can find corruption of shared data, other techniques can
detect errors before data is corrupted, reducing the length of erroneous execution and
the likelihood of Capricious orphans. Memory protection hardware can detect some
errant writes to bad locations. Datarace detection [23, 29, 88, 98, 117] can detect
unprotected accesses to shared memory that may be the result of errant writes or
software bugs.

Several projects attempt to correlate invariants with particular failures in
an effort to help fix software bugs. We can instead apply these approaches to
predict imminent failures by assuming anomalous behavior is an early indicator
of a failure. Depending on the false positive rate, these techniques can be used
to reduce erroneous execution by triggering O-MTFT recovery before a failure is
observed by memory protection hardware or other consistency checks. Further, if
O-MTFT recovery has already been attempted, these techniques can signal a failure
of the optimistic approach and trigger fall back on C-MTFT as discussed in the next
section.

Using sampling of different runs, Liblit et al. use statistical bug isolation [71]
to find predicates that correlate with failures. DIDUCE [44] dynamically develops
invariants to detect anomalous program behavior to assist developers in finding
the root cause of a failure. The Multivariate State Estimation Technique (MSET)
used in [39] can be used reliably to predict failure conditions due to overload using

41

domain-specific telemetry such as the average time to commit a transaction in an
OLTP system. Other approaches [14, 43, 73, 93] use machine learning techniques
to automatically generate a statistical model of the application to classify program
behavior using such metrics as counting control flow or basic block execution counts.

Finally, the replication used in C-MTFT can also be used to detect faults as
replicas diverge. For example, when replicating thread scheduling, threads at two
replicas might acquire locks with different ids or at different points of execution (as
measured by control flow changes) signaling a divergent execution due to an error.

4.3 Reducing the Effective Recovery Unit

Although errant writes are rare, we must still address erroneous writes to shared
memory both to reduce the number of Capricious orphans and to identify the or-
phans. In many MT applications, synchronization primitives (for example, mutexes
and semaphores [27]) maintain the consistency of shared data by forcing threads to
wait for atomic access to shared data. Failures exacerbate the problem of waiting
as some threads may be forced to wait indefinitely for a faulty thread that will
never release the lock. Further, the shared data protected by a lock can be left
in an inconsistent state when the thread holding the lock fails. Transactions [36]
have long been used in fault-tolerance to provide safety guarantees in the presence
of failures. Under concurrent access, a transaction provides atomic access to data
that can be committed or aborted so that all updates are visible to other threads or
not, respectively. Consistency checks can be performed on the transaction to reduce
the likelihood of committing erroneous values. Further, the transactional system
can track the propagation of erroneous values. The precise view of memory pro-
vided by a transactional system—that is, the collection of safety properties that it
guarantees—depends on the particular correctness condition used. We discuss two
such correctness conditions, serializability [91] and linearizability [53], in the next
chapter when we present our own solution to managing shared data for O-MTFT.

While transactions and consistency checks ensure the safety of shared mem-
ory in the presence of failed threads, correct threads still need access to shared
memory in order to make progress. Without providing progress guarantees to the
threads outside the effective recovery unit, O-MTFT could only reduce the recov-
ery time, but if the threads outside the effective recovery unit can make progress,

42

O-MTFT can increase availability during recovery. Software transactional memory
(STM) [101] combines a transactional interface to shared memory with the robust-
ness of nonblocking data structures [49, 51]. There are several nonblocking progress
guarantees: obstruction-freedom guarantees progress only when a single thread at-
tempts to commit a transaction (admitting livelock); lock-freedom guarantees some
thread will eventually be able to commit a transaction (admitting starvation, but
not livelock); and, wait-freedom guarantees every correct thread eventually commits
a transaction. Although all of these progress guarantees tolerate halted threads, we
restrict our use of STM in O-MTFT to lock-free and wait-free STM because we will
also use the STM to tolerate hung threads (see Chapter 6), which can occur in the
case of livelock and deadlock. In the following chapter, we present an STM that
meets our criteria to manage shared memory between fault-tolerant components: it
provides both a lock-free progress guarantee and ensures a consistent serializable
view of memory for all threads. Our STM also maintains a history of changes to
shared memory that can be used during recovery.

4.4 Summary

Our optimistic MT fault-tolerance approach provides for independent thread recov-
ery. Unlike C-MTFT, O-MTFT applications can utilize a minimal effective recovery
unit containing as few as a single thread, but can fall back on C-MTFT techniques
to guarantee consistency as we will discuss in Chapter 6.

Highlights to take away from this chapter include:

• O-MTFT differs from C-MTFT in that the effective recovery unit may contain
fewer threads (possibly only one) because O-MTFT limits erroneous writes
using consistency checks on shared memory.

• Errant writes overwrite data not accessed by a thread during fault-free exe-
cution, but occur rarely and can be mitigated by consistency checks during
access to shared memory.

• Management of shared data for O-MTFT must guarantee consistency—provide
a reasonable view of memory in the presence of concurrent access and thread
failures—and ensure progress—provide access guarantees to correct threads.

43

Both provisions enable threads outside the effective recovery unit to make
progress during recovery.

44

Chapter 5

Software Transactional Memory

Software transactional memory (STM) combines transactions with the robustness
of nonblocking data structures [49, 51, 78, 101]. An STM frees users from concerns
about the atomicity of multi-object operations, and in turn its implementation is
freed from the disadvantages of using locks for concurrency control: deadlock, pri-
ority inversion, difficult fault management, and the undesirable tradeoff between
complexity and achievable concurrency. Recently, STM using mutual exclusion
locks have been designed that are guaranteed to be deadlock-free, but they tradeoff
nonblocking access for performance gains [30]. While concurrent programmers are
primarily concerned with deadlock [30], this thesis addresses the fault-tolerance of
multithreaded applications. We focus on non-blocking STM to demonstrate their
use in O-MTFT.

While most transactional systems use serializability [91] as their correctness
criterion for handling concurrent transactions, most STM implementations [32, 46,
52, 96] provide linearizability [53]. Extending linearizability to transactions with
multi-object operations requires these transactions to appear to take effect instan-
taneously, or in “one-at-a-time” order respecting the real-time order in which the
operations occur [52]. Transactions must then operate simultaneously on the most
recently written versions of all objects to ensure a consistent view of objects under
concurrent modification. To ensure this in nonblocking STM, transactions acquire
exclusive ownership (albeit using no physical locks) of all objects they operate upon,
limiting concurrency.

To increase the opportunity for concurrent execution of transactions, we

45

demonstrate our stm, SSTM, that provides serializable, rather than linearizable,
executions. An earlier version can be found in [83]. Serializability does not im-
pose a real-time ordering on committed transactions; thus, transactions need not
acquire ownership of all objects simultaneously. For example, a long-running read-
only transaction may be serializable using previously written versions, which is not
possible in a linearizable system where the real-time ordering of events requires op-
erations to access current values of data, forcing any update transactions to wait for
the long-running transaction.

Our SSTM has many of the desirable properties of modern STM. First, lock-
freedom, which guarantees that as long as at least one correct thread continuously
attempts to commit transactions, an infinite sequence of transactions will commit: in
other words, livelock or deadlock can never occur even in an environment with crash
failures, although starvation is still possible for a single thread. Second, support for
dynamic transactions, which do not need to know in advance the set of objects they
will access. Third, isolation, where transactions are guaranteed to see serializable
data, eliminating the spurious errors generated by some STM [47]. Fourth, a single
read and write object interface for all transactions: read-only transactions need no
special treatment. Fifth, disjoint-access parallelism [57], which ensures transactions
on disjoint sets of objects do not compete. Finally, increased concurrency through
the support of multiversioned objects: specifically, SSTM enforces one-copy serializ-
ability [11]. We use abstract operations encoded in blind writes to exploit the more
liberal consistency constraints on blind writes under serializability over those under
linearizability. Blind writes reduce the frequency of transactions aborted due to con-
sistency conflicts with other transactions. In the rest of this document, we describe
our algorithm, the implementation, and performance evaluation. In the performance
evaluation we contrast Fraser’s OSTM [32] and a mutual-exclusion lock-based STM
(both implementing linearizability) with our timestamped STM that implements
serializability. Using a mix of different transactions on a concurrent object, we
demonstrate the advantages and disadvantages of our approach.

5.1 Related Work: STM

Shavit and Touitou propose the first example of nonblocking software transactional
memory [101]. Their STM is lock-free, but requires static transactions: a transaction

46

must declare before executing the set of objects on which it will operate. Building
on their work, Herlihy, et al., present the first dynamic software transactional mem-
ory (DSTM) [52]. DSTM however relaxes the progress guarantee: instead of lock-
freedom, it offers obstruction freedom [51], which guarantees progress only in the
absence of contention. Fraser [32] combines the best characteristics of these earlier
works by proposing an object-based STM that provides dynamic, lock-free trans-
actions [32]. Many other STM explore different tradeoffs: access or commit time
acquisition of objects (ASTM) [77], different validation techniques (RSTM) [105],
and contention management for conflicting transactions (SXM) [41, 115].

Our STM provides the same properties as Fraser’s (it is object-based and
supports dynamic lock-free transactions) but departs from nearly all existing STM
in choosing serializability, rather that linearizability, as its correctness criterion.

Lock-free transactional objects have been extensively studied in real-time
environments [4, 92] where threads have priorities that constrain preemption, sim-
plifying shared data synchronization. Our work assumes a different computational
model wherein threads do not have priorities and no bounds are placed on the
relative speed of threads.

Transactional monitors [113] have been proposed as an alternative to tra-
ditional monitors in Java. While Java monitors regulate access to shared data
using mutual exclusion, transactional monitors do so using lightweight transac-
tions. Transactional monitors provide serializability, but do not address nonblocking
access—for example, a thread is not allowed to halt inside a monitor. We instead
guarantee serializability while ensuring nonblocking access to shared data—in our
STM, threads may halt arbitrarily without preventing the progress of other threads.

Conditional critical regions (CCR) [54] are an elegant approach to man-
age shared data. Recent work [45, 46] explores implementing nonblocking access
to shared data using an obstruction-free, multi-word compare-and-swap primitive,
while providing programmers with the familiar CCR interface. Since this interface
is independent of the mechanism used to regulate access to shared data, we believe
our approach could be used underneath a CCR interface.

Finally, our system is similar to optimistic concurrency control [62] as it
does not use locks to regulate which transactions should be executing concurrently,
but rather aborts transactions to enforce serializability. However, while in opti-
mistic concurrency control locks are used to enforce serializability at commit time,

47

1 atomic procedure CAS (addr , expected value , new value) returns V
2 l et old value := value of (addr)
3 // S to re new va l u e on l y i f o l d v a l u e s matches e x p e c t e d
4 i f (old value = expected value)
5 value of (addr) := new value
6 return old value

Figure 5.1: Pseudocode implementing Compare-And-Swap operation. The set V
encompasses the possible values of a variable that is modifiable using CAS (typically
both 32-bit and 64-bit CAS are supported).

our system guarantees serializability without locks while providing strong progress
guarantees. Further, our optimistic system guarantees serializable reads during ex-
ecution so that errors are not introduced by the use of the STM.

5.2 System Model

We assume only a finite number of threads exist in the system at any time, though
new threads may be created at any time. In this chapter, we aggregate the shared
data associated with read and write sets into objects that support read and write
operations. As discussed in Section 2.1, threads may run simultaneously (as on
a multiprocessor) and be arbitrarily delayed (for example, by a page fault). We
also assume no bounds on the relative speed between threads. In contrast to the
Capricious presented in Chapter 2, in this chapter we restrict threads to fail by
halting; a thread that does not halt is considered correct. Chapter 6 addresses the
full Capricious failure model.

We assume that shared data is modified by threads only through the STM
and that the Compare-And-Swap (CAS) primitive is available to operate on shared
data—CAS can be implemented on all major modern processor architectures. CAS
atomically and conditionally modifies a shared memory location (as described in
Figure 5.1) and has been shown by Herlihy [49] to be sufficient to achieve nonblocking
synchronization. We assume that a correct thread may complete a CAS operation
in a finite number of steps, though the CAS may fail if the expected value is not
present.

A transaction is an ordered sequence of read and/or write operations on a
set of objects that may be determined dynamically. Read and write operations on
different objects may be interleaved within a transaction. Once all operations are

48

complete, a thread either attempts to commit or abort the transaction so that all
operations are either visible or not, respectively, to other transactions. We do not
address nested transactions (that is, a single thread does not interleave or nest op-
erations of different transactions); hence, only operations belonging to transactions
performed by different threads may be interleaved. We assume any transaction exe-
cuted in isolation transfers the system from a correct state to another correct state,
and require committed transactions to be view serializable [91], meaning that there
exists a sequential execution of the set of committed transactions (that may have
in reality executed concurrently) such that each operation returns the same value
in both executions. Transactions are uniquely identified. A thread p executes the
transaction Ti from the set T of all possible transactions on the set O of all possible
objects. Until a transaction commits or aborts, it is considered undecided (denoted
Ti ∈ U); whereas a decided transaction is either aborted (Ti ∈ A) or committed
(Ti ∈ C).

We take special care in allowing read-only transactions to proceed concur-
rently with writes. Borrowing from multiversion databases, we keep several versions
of an object so that reads can proceed in parallel as new versions are written. Main-
taining multiple versions allows reads of past versions, permitting read-only trans-
actions to commit concurrently with read/write transactions. A version is uniquely
associated with the transaction that creates it, and to distinguish between versions,
the corresponding version is noted in the operation. For example, Tk creates version
xk of object x with the write wk[xk]. A read operation is then denoted rj [xk] if
Tj reads version xk. There is a total order, called the history, to versions of an
object such that for all versions xj and xk, either xj � xk or xk � xj where �
represents the history order. All writes to a specific object within a transaction are
considered to be a single write operation. Each write operation on an object could
generate a complete copy of the object. Alternatively, in Section 5.4 we explore an
implementation where each update holds the abstract operation to be performed on
the object or the portion of the object that has changed, requiring a read to perform
the operations in the history to generate the relevant version of the object.

In a multiversion system, serializability alone is insufficient to enforce ex-
ecutions consistent with the one-copy semantics assumed by many multithreaded
applications. We thus require transactions to be one-copy serializable (1-SR), that
is, serializable with the added constraint that a read always sees the latest write

49

in a serialize ordering. A multiversion serialization graph (MVSG) [11] provides
the framework to determine whether a set of concurrent transactions over multiple
versions of objects can be equivalent to a set of sequential transactions over a single
copy of each object. The MVSG is composed of vertices T0, . . . , Tn from T and
edges Ti → Tj (where i 6= j) if rj [xi] is in Tj for some object x previously written
by Ti. Such reads-from edges ensure that a version is written before it can be read.
To ensure that the version read corresponds to the latest write, the MVSG contains
two other types of edges—for each rk[xj] and wi[xi] operation (Tk 6= Ti), we add
a write-read edge Ti → Tj if xi � xj , and a read-write edge Tk → Ti if xj � xi.
In the MVSG(T ,�) we thus have either Ti → Tj → Tk or Tj → Tk → Ti for the
operations rk[xj] and wi[xi], ensuring that no other write operation (in this case,
wi[xi]) is ordered between a write operation (wj [xj]) and the corresponding read
operation (rk[xj]). In [11], a set of transactions T is shown to be 1-SR if and only
if there exists a history order � such that MVSG(T ,�) is acyclic.

To simplify discussion, we shorten MVSG(C,�) to CMVSG, and we use
PMVSG for the MVSG(T ,�) where T contains all public transactions (either com-
mitted or undecided, but with all operations enqueued). We say that Ti Tj if
there is a path from Ti to Tj in the corresponding MVSG. To achieve 1-SR execu-
tions, before committing an undecided transaction Ti our algorithm checks for cycles
in the PMVSG containing Ti and aborts transactions to ensure that the CMVSG
will be acyclic upon commit of Ti.

5.2.1 Serializability vs. Linearizability

Here we present an example illustrating the difference between the serializability
and linearizability correctness criteria. Linearizability was originally specified as a
local correctness criterion for concurrent access to single objects [53]. Extending the
condition to transactions that span multiple objects requires concurrent ownership
of all objects. A linearizable system of multi-object transactions does not allow
stale data whereas a multiversion serializable transactional system allows read-only
summary transactions—those that may read many objects, but write none—to read
stale data. Figure 5.2 demonstrates a set of transactions that is not linearizable, but
is serializable and applies to read-only summary transactions across many objects.
Since any linear order is also a serial order, serializability allows more executions, and

50

Ti Tk Tm To

rk[xg]

rk[yi]

wm[xm]

ro[xm]
wi[yi]

tim
e

Figure 5.2: Linearizability vs. Serializability. In this example time flows down, and
Tg ∈ C before these transactions begin. In any linearizable execution, if Ti, Tm, To ∈
C, then Tk ∈ A since there is no point in time time at which both xg and yi are
valid. A valid serialization of the transactions is Ti, Tk, Tm, To, as shown.

can thus be said to allow more concurrency. However, implementing a serializable
system that exploits this extra concurrency is difficult; we show later in this chapter
the performance of our serializable STM versus current linearizable STM.

5.3 Lock-Free Transactions

Figure 5.3 shows the data structures used by our algorithm. Our STM’s API,
shown in Figure 5.4, provides methods to read, write, and create objects as well
as to commit, abort, and validate transactions.1 Only the thread that initiates a
transaction can invoke on it the methods in the API; however, the helper functions
called by some of these methods (shown in Figure 5.6) can also be called by other
threads—we will discuss the helper functions and how they are invoked shortly.

A thread p begins a transaction by calling begin-transaction, which re-
turns a data structure representing the transaction. This data structure is private to
p until p calls commit-transaction: we call the transaction private until then. If p

calls abort-transaction, the data structure never becomes shared, and the trans-
action is aborted privately. As a transaction executes, this data structure records
the versions read and written by the transaction and its status.

1Validation returns a boolean indicating whether the transaction will be required to abort be-
cause of conflicting transactions.

51

1 // G loba l t imestamp o f t r a n s a c t i o n s enqueued
2 int trans tstamp

4 // Transac t ion data
5 transaction Ti
6 int ts // Timestamp o f enqueue
7 transaction status // 2 LSB i n d i c a t e s t a t u s
8 obj version ∗ reads // L i s t o f v e r s i o n s read
9 obj version ∗ writes // Cache o f w r i t e s

11 // Data o b j e c t
12 object x
13 obj version ∗ history // Sequence o f v e r s i o n s

15 // Vers ion o f o b j e c t w r i t t e n by t r a n s a c t i o n
16 obj version xk
17 obj version ∗ next // Next v e r s i o n in h i s t o r y
18 trans l i s t ∗ read set // Trans . s r ead ing xk
19 transaction ∗ creator // Trans . w r i t i n g xk
20 void ∗ data // Ob j ec t r e p r e s e n t a t i o n

Figure 5.3: Overview of data structures used by TS-STM.

To read an object o, p calls read-object, which searches the history of o for
the latest version that is consistent with the previous operations of the transaction.
Our algorithm checks at read time that the version being read maintains 1-SR. The
procedure is-readable checks whether the current PMVSG would remain acyclic
if p’s transaction reading the given version were allowed to be published. Since
objects are modified concurrently, that version could later become inconsistent with
the other operations. If a cycle is detected in the corresponding MVSG at commit
time, transactions in the cycle are aborted as needed to ensure acyclicity. Each
version stores in its reading transaction set the identifiers of the transactions that
have read that particular version—the identifier of a transaction is added to the
appropriate reading transaction sets when the transaction attempts to commit.

To perform an update, p calls write-object, which keeps all writes local
until commit to reduce cache contention and support fast aborts. During the commit
procedure new versions are added to objects’ histories to generate the history order
of versions. To create an object, p calls create-object then write-object to
create the initial version.

A thread attempts to commit a transaction T by invoking commit-trans-

action. In Step 1, for each read operations performed by T , the algorithm attempts
to add T to the reading transaction set of the version being read. Our implementa-
tion of the reading transaction set uses an ordered lock-free list [48], ensuring that
T is added no more than once for every read operation and that the loop in Step
1 eventually terminates successfully. Step 2 adds the write operations in T to the

52

1 // Record v e r s i o n w r i t t e n in p r i v a t e t r a n s a c t i o n data .
2 procedure write−object (Ti , xi)
3 xi . read set := ∅
4 xi . creator := Ti
5 < Add wi[xi] t o Ti . writes >

7 // Read l a t e s t v e r s i o n o f o b j e c t t h a t doesn ’ t c r e a t e a
8 // c y c l e in PMVSG and record v e r s i o n in t r a n s a c t i o n .
9 procedure read−object (Ti , x) returns xk ∈ x.history

10 // Loop backwards th rough h i s t o r y f o r l a t e s t v e r s i o n .
11 foreach {xk : xk ∈ x.history : Tk ∈ C)}
12 i f (is−readable (xk))
13 < Add ri[xk] t o Ti.reads >
14 return xk

16 // Create new o b j e c t .
17 procedure create−object () returns x ∈ O
18 < Create and i n i t . o b j e c t da ta s t r u c t u r e x >
19 return x

21 // Mark o b j e c t f o r d e l e t i o n i f t r a n s a c t i o n commits .
22 procedure destroy−object ()
23 < Mark o b j e c t f o r d e l e t i o n >

25 // Abort t r a n s a c t i o n by marking s t a t u s . This t rans ’ s
26 // op e r a t i o n s w i l l not be v i s i b l e to any o t h e r t r an s .
27 procedure abort−transaction (Ti)
28 CAS(&(Ti.status) , undec ided , abo r t e d | mark−aborter (⊥))

30 // Ass ign a unique t r a n s a c t i o n number and i n i t i a l i z e t r a n s a c t i o n data .
31 procedure begin−transaction () returns T ∈ T
32 < Create and i n i t . t r a n s a c t i o n data s t r u c t u r e Ti >
33 T . published := fa l se
34 Ti.ts := ⊥
35 return Ti

37 // Check whether t r an s . i s pa r t o f a c y c l e in PMVSG.
38 procedure validate−transaction (Ti) returns boolean
39 return Ti 6 Ti

41 // Use h e l p e r f u n c t i o n to commit t r a n s a c t i o n .
42 procedure commit−transaction (Ti)
43 // Step 1 . Enqueue read op e r a t i o n s
44 foreach {x : x ∈ O : ri[xk] ∈ Ti}
45 l et L := wk[xk] . read l i st
46 do
47 l i s t−insert−operation (L , Ti)
48 until (Ti ∈ L)
49 // Step 2 . Enqueue w r i t e o p e r a t i o n s
50 l et S := < Ti > // LIFO queue c on t a i n i n g Ti
51 while (S not empty)
52 l et Tj := top o f S

53 l et Tq := help−enqueue−transaction (Tj)

54 i f (Tq 6= Tj)

55 push(S , Tq)
56 i f (∃Tk | Tk ∈ S : Tk . published)
57 < pop s t a c k u n t i l Tk removed >
58 // Step 3 . Attempt to commit p u b l i s h e d t r a n s a c t i o n .
59 help−commit−transaction (Tk)

Figure 5.4: API procedures to read and write versions of objects and commit, abort,
and validate transactions. The procedure list-insert-operation adds the oper-
ation to the ordered list ([48] can be used provided each operation can be added
only once). The enqueue procedure must return the element enqueued successfully
or the argument if the element is already enqueued ([80] can be modified for this
purpose). Finally, the &() operator returns the address of the argument.

53

Tk
undecided

[reads]
[writes]

x -12 35 68

y 3 97 71

x: 6

y: 7

Tk
undecided

[reads]
[writes]

x -12 35
rts: Tk

68

y 3 97 71
rts: Tk

x: 6

y: 7

Tk
undecided

[reads]
[writes]

x -12 35
rts: Tk

68

y 3 97 71
rts: Tk

6

7

1.

2.

3.

Tk
undecided

[reads]
[writes]

x -12 35
rts: Tk

68
[creator]

y 3 97 71
rts: Tk

6

7

4. Ti
undecided

[reads]
[writes]

Tk
undecided

[reads]
[writes]

x -12 35
rts: Tk

68
[creator]

y 3 97 71
rts: Tk

6

7

5. Ti
committed

[reads]
[writes]

Tk
aborted
[reads]
[writes]

x -12 35
rts: Tk

68
[creator]

y 3 97 71
rts: Tk

6

7

6. Ti
committed

[reads]
[writes]

Figure 5.5: The lifetime of a transaction. 1. Transaction Tk after execution has
read and written both x and y. 2. Tk adds read operations to the relevant versions’
reading transaction sets (rts) This step is guaranteed to complete eventually because
the set is implemented as an ordered list where eventually Tk can be added without
contention. 3. Tk enqueues write operations to the relevant histories. This step
requires help from other threads in the presence of contention to guarantee that
some transaction will be published successfully. After 3, Tk has been published and
can be committed or aborted by any thread. 4. Transaction Tk finds a write by Ti

enqueued that would create a cycle when it examines the PMVSG. 5. If Ti is earlier,
the thread commits Ti. 6. Finally, Tk must be aborted to prevent the cycle since Ti

has already been committed.

54

1 // Help commit t r a n s a c t i o n s begun by any th r ead .
2 procedure help−commit−transaction (Ti)
3 // Step 1 . Ensure t h e r e are no c y c l e s w i th Ti in CMVSG.
4 i f (Ti ∈ U)
5 decide−mvsg−reachable (Ti)
6 // Step 2 . Ensure t h e r e are no c y c l e s from wr i t e−read edge s .
7 foreach {Tj : Tj ∈ C : ri[xj] ∈ Ti}
8 i f (¬ is−readable (xj , Ti.ts))

9 CAS(&(Ti.status) , undec ided , abo r t e d | mark−aborter (Ti))
10 return
11 // Step 3 . Commit w i th Compare−and−Swap s t a t u s .
12 CAS(&(Ti.status) , undec ided , committed)
13 // Step 4 . Help abor t e r , as needed .
14 i f (Ti ∈ A)
15 l et Tj := get−aborter (Ti)

16 // Recurse on l y i f new t r a n s a c t i o n
17 i f (Tj 6= Ti)

18 help−commit−transaction (Tj)

20 // Help undec ided t r a n s a c t i o n s begun by any th r ead .
21 procedure help−decide−transaction (Ti , Th)
22 // Help commit on l y e a r l i e r t r a n s a c t i o n s .
23 i f (Ti.ts < Th.ts)
24 help−commit−transaction (Ti)
25 else
26 CAS(&(Ti.status) , undec ided , abo r t e d | mark−aborter (Th))

28 // Help d e c i d e e a r l i e r , r e a c h a b l e t r a n s a c t i o n s in PMVG.
29 procedure decide−mvsg−reachable (Th)
30 foreach {Ti : Ti ∈ T : (Th Ti) ∧ (Ti.ts ≤ Th.ts)}
31 i f (Ti ∈ U)
32 help−decide−transaction (Ti , Th)

34 // Help t r a n s a c t i o n to enqueue op e r a t i o n s
35 procedure help−enqueue−transaction (Tm) returns T ∈ T
36 foreach {x : x ∈ O : wi[xi] ∈ Ti}
37 l et Q := x.history
38 // enqueue r e t u rn s t r a n s a c t i o n co r r e spond ing to s u c c e s s f u l enqueue .
39 l et Tq := enqueue (Q , wi[xi])
40 i f (Tq 6= Ti)
41 return Tq
42 Ti . published := true
43 CAS(&(Ti.ts) , ⊥ , trans tstamp)
44 inc−timestamp ()
45 return Tm

47 // Get f i n i t e s e t o f t r a n s a c t i o n s t h a t have read v e r s i o n xi
48 procedure get−readers (xi , ts) returns T
49 return {Tj : Tj ∈ T : (rj [xi] ∈ Tj) ∧ (Tj .ts ≤ ts)}

51 // Return a l i g n e d p o i n t e r to t r a n s a c t i o n .
52 procedure mark−aborter (Th) returns &(T ∈ T)
53 return < a l i g n e d &(Th) >

55 // Return t r a n s a c t i o n p o i n t e r masked from s t a t u s f i e l d .
56 procedure get−aborter (Ti) returns T ∈ T
57 return < Ti.status wi th c l e a r e d 2 l e a s t s i g n i f i c a n t b i t s >

59 // Determine whether r ead ing v e r s i o n c r e a t e s a c y c l e .
60 procedure is−readable (xm , Ti) returns boolean
61 return Tm 6 Tm ∈ CMVSG∪{Ti}

63 // Increment g l o b a l t r a n s a c t i o n timestamp f o r TPO.
64 procedure inc−timestamp ()
65 l et ts := trans tstamp
66 CAS(&(trans tstamp) , ts , ts+1)

Figure 5.6: Procedures to help commit transactions. Aborted transactions are im-
plicitly ignored. The procedures decide-mvsg-reachable and is-readable are
simplified for presentation.

55

history of the corresponding objects to determine version order. At this point, we
say that the transaction is published, and as such can be aborted or committed by
any thread.2 The loop in Step 2 uses a lock-free queue to hold object histories: the
stack records threads competing to update object histories, and the size of the stack
is limited by the finite number of threads in the system. Every time a correct thread
invokes help-enqueue-transaction, an update is successfully enqueued, and up-
dates can be enqueued only once—this ensures that eventually all updates of some
transaction will be enqueued. Finally, in Step 3 the thread invokes help-commit-

transaction on the public transaction at the top of the stack.3

The procedure help-commit-transaction in Figure 5.6 checks for cycles in
the current PMVSG in Steps 1 and 2, and in Step 3 attempts to commit T using
CAS to change the transaction’s status field if the observed PMVSG is acyclic. If
the commit of T fails, Step 4 of the procedure recursively helps to commit any
transaction responsible for aborting T . No special API is needed for committing
read-only transactions: their only distinction is that they can do away with Step 2
of commit-transaction.

We say that a transaction Ti is committed if the CAS of the status of Ti

to committed succeeds. Conversely, Ti is aborted if the CAS of the status of Ti

to aborted succeeds. To allow transactions to abort while guaranteeing progress,
we save the id of the transaction responsible for the abort (using the mark-aborter

function of Figure 5.6) in the status field of the aborted transaction. If a transaction
Ti initiated by thread pi is aborted by another thread pj attempting to commit Tj ,
pi can identify pj by using get-aborter (see Figure 5.6) and can help pj commit
Tj . Helping ensures progress even if new threads perpetually abort pi’s transactions
and then promptly fail before ever successfully committing their own transactions.

To ensure that marking the aborted transaction occurs atomically with the
successful abort, we use only the two least significant bits of the status field to show
the committed, aborted, or undecided status.4 If the transaction is aborted, the
remaining bits represent an aligned pointer to the transaction responsible for the

2There is no guarantee that a given transaction will become public. The lock-free progress
property only requires a sequence of transactions to become public.

3Because we implement object histories using lock-free rather than wait-free [49] queues, the
transaction at the top of the stack may not be the one that the thread has finished executing.

4If we may reasonably assume that 0 is an invalid pointer and that pointers are aligned, we can
use a single bit. If the status is 0, the transaction is undecided; 1 implies committed; any other
value represents the pointer to the aborting transaction.

56

abort.5

Our STM is consistent with current approaches to garbage collection for
objects, versions, or transaction data structures [50, 79]. A prefix of the object
history can be pruned provided the history contains a committed version for future
reads. Pruning risks causing slow transactions to abort because a suitable version
cannot be found to read. If all operations of a transaction have been garbage
collected, the transaction itself can be collected. Objects can only be garbage-
collected after a committed transaction has invoked destroy-object.

Because threads may help commit transactions that they have not initiated,
different threads may end up performing identical operations on the data structures
that represent object histories, e.g. adding the same object version multiple times
to an object’s history. Fortunately, it is easy to modify existing data structures,
such as ordered lists [48] or FIFO-queues [80], to return success if the update has
already been added to the list or return an error if, because of garbage collection,
it cannot be determined whether the update has been added to the list.

5.3.1 Ensuring One-Copy Serializability

Threads help commit or abort public transactions not only to guarantee progress,
but also to ensure one-copy serializability. We prevent cycles in the CMVSG despite
concurrent modifications of object histories in two steps. First, whenever p calls
commit-transaction(Ti), we let the undecided Ti add its operations to the object
histories, making them visible to other threads—this results in new edges being
added to the PMVSG. Second, we only attempt to commit an undecided transaction
after we can be sure that the CMVSG that would result from committing Ti is
acyclic. The procedure responsible for enforcing this check is decide-mvsg-reach-
able, shown in Figure 5.6 and invoked in Step 1 of help-commit-transaction.

Intuitively, decide-mvsg-reachable identifies all transactions that are reach-
able from Ti along a path of committed transactions in the PMVSG. If Ti is reachable
from itself, then it should be aborted. Checking for the presence of such a cycle,
however, presents a challenge. It is not sufficient to check for the absence of a cycle
involving Ti in the current CMVSG. That check would cover only transactions that
are already committed, while the cycle may involve transactions that are going to

5We are similar in this to others who have used the least significant bits of pointers to mark, for
example, the logical deletion of a member from a list [48].

57

commit concurrently with Ti—when we perform the check, the cycle may not yet
have appeared in the CMVSG. On the other hand, it is not necessary to require that
the PMVSG contain no cycles involving Ti as a precondition for committing Ti. If
such a cycle is detected in the PMVSG, the cycle may include undecided transac-
tions other than Ti—to prevent a cycle in the CMVSG it is sufficient to abort any
one of those transactions.

The approach we use in decide-mvsg-reachable is to consider, for each ob-
ject o that Ti reads or writes, the transactions reachable from Ti in the PMVSG by
following edges that correspond to operations on o. The procedure decide-mvsg-

reachable performs a breadth-first search of the transactions with earlier times-
tamps that are transitively reachable from Ti. By searching earlier transactions, the
procedure is guaranteed to terminate because timestamps are assigned with increas-
ing value. When an undecided transaction TU is found, the transaction is decided by
attempting either to commit or to abort TU (we are going to discuss the appropriate
course of action in a moment). If in so doing we return to Ti on a path that includes
only committed transactions, then to guarantee an acyclic CMVSG, we abort Ti.

We prove below that the set of transactions committed is 1-SR using the
history order as the version order �. As a shorthand in the proofs, we use hct as
an abbreviation of help-commit-transaction, hdt for help-decide-transaction,
and dmr instead of decide-mvsg-reachable.

Theorem 1. The set of committed transactions is one-serializable.

Proof. The theorem holds if and only if the CMVSG is acyclic [11]. Suppose, by
way of contradiction, that a cycle existed in the CMVSG, and consider the set Tcy

of all transactions that appear in the cycle and those that define edges in the cycle.
Note that this set may be larger than just the set of transactions that appear as
vertices in the cycle: for instance, a transaction Trd that executes a read operation
rrd[xj] defines, if xi � xj , a write-read edge Ti → Tj even though Trd is not an
vertex corresponding to the edge.

Assume that each committed transaction has a timestamp, that timestamps
are totally ordered,6 and that Tl is the transaction in Tcy with the highest timestamp.

6The timestamps are assigned by get-timestamp of Figure 5.6. The total order is discussed in
Section 5.3.2.

58

To establish the contradiction, we show that Tl does not appear as a vertex in the
cycle, nor creates a write-read edge.
Tl is not a vertex: Consider the time at which a thread p invokes dmr(Tl, Tl.ts) from
within hct(Tl) in the invocation that leads to Tl being committed. By this time, all
transactions that will appear as vertices in the CMVSG have already enqueued
their operations, because transactions are assigned timestamps only after all of
their operations are enqueued, and Tl has the latest timestamp. Therefore, when
dmr(Tl, Tl.ts) is invoked, the PMVSG already contains a cycle with Tl as a vertex.
Since Tl Tl and Tl is not committed until dmr returns, p executes hdt(Tl, Tl),
and, since Tl.ts 6< Tl.ts, p executes the CAS (to abort Tl) at the end of hdt. Since
Tl is still undecided, the CAS will succeed and abort Tl. Hence, assuming a cycle of
committed transactions including Tl implies that Tl is aborted—a contradiction.
Tl does not create a write-read edge: Suppose for contradiction that a read
rl[xj] by Tl defines a write-read edge Ti → Tj in the cycle in the CMVSG. Again,
consider the execution of hct(Tl, T.ts) by the thread p that successfully commits Tl

in Step 3 of hct. In Step 2, for each version read by Tl, p invokes is-readable on the
version; we focus on the invocation is-readable(xj , Tl.ts). The invocation finds
the cycle Tj Tj , which includes the edge Ti → Tj , because all operations causing
the cycle have already become public by the time Tl is assigned its timestamp.
Thus, is-readable returns false, and the thread executes the CAS following. By
construction Tl is not yet decided—indeed, not yet committed—until Step 3 of hct.
Hence, the CAS will succeed, aborting Tl and providing the contradiction.

5.3.2 Ensuring Lock-Freedom

We can now go back to the problem of deciding what the thread p that initiated
transaction Ti should do when, as it visits the transactions reachable from Ti in the
PMVSG, reaches another undecided transaction, Tj . It is tempting, in the interest
of ensuring progress, to always have p try to commit Tj . Unfortunately, helping to
commit all undecided transactions reachable in the PMVSG does not work. Suppose
two transactions Ti and Tj by threads pi and pj respectively, both add updates to
the histories of objects x and y in the opposite order—without loss of generality,
consider xj � xi and yi � yj . Thread pi may then help commit Tj as Ti → Tj from
object y, while pj helps to commit Ti because Tj → Ti from object x. Clearly, one

59

of the transactions must abort to guarantee no cycles in the CMVSG.
To choose in general which transaction to abort, we introduce a total order on

undecided transactions, called the transaction priority order (TPO).7 We say that
Ti < Tj (or that Ti has higher priority than Tj) if and only if Ti precedes Tj in the
TPO; further, we define the distance between Ti and Tj as the number of transactions
Tk such that Ti < Tk < Tj . We require two properties of our total order: first, it
must have a minimum; and second, the distance between any two transactions must
be finite. A simple way to achieve both properties is to order transactions according
to an increasing timestamp at commit as shown in Figure 5.4. Using a single CAS
to increment a counter suffices—though multiple transactions by different threads
may receive identical counters, ties can be broken using the id of the thread that
initiates the transaction.

Note that the TPO is not used to determine the order in which transactions
will eventually commit—transactions with higher priority may well commit after
transactions with lower priority. Rather, the TPO is used to determine the fate of
any undecided transactions Tj that a thread p encounters as it checks the PMVSG
for cycles involving the transaction Ti, that p is trying to commit. Specifically, p will
attempt to commit only those Tj that have higher priority than Ti and attempt to
abort the rest. The two properties of the TPO ensure that any recursion triggered
while applying this policy will terminate.

We prove that our algorithm is lock-free by showing that all threads agree
to help commit the minimum transaction (according to TPO) in any given set of
conflicting transactions. Since no thread will abort the transaction, eventually some
transaction will commit, providing a lock-free progress guarantee.

Lemma 2.1. If there is at least one correct thread, then there exists an infinite
sequence of decided transactions T p such that for each transaction Ti ∈ T p, some
thread executes hct(Ti).

Proof. We consider the sequence of transactions T p such that a single correct thread
p invokes hct(Ti) for each transaction Ti in the sequence. The assumption that p

is correct implies that p will always attempt a new transaction by calling commit-

transaction. The execution of commit-transaction(Ti) executes hct(Tj) on a
7A similar order is required in other STM. For example, in FSTM [32] the address of objects is

used as a total order to prevent the cycle described.

60

sequence of transactions until commit-transaction terminates, implying the se-
quence T p is infinite as long as hct(Tj) terminates. We note that every invocation
of hct terminates because all loops are over finite sets and recursion only occurs
on earlier transactions in timestamp order, which has a minimum initial timestamp
by construction. Finally, since p is correct, each invocation of hct ensures that the
corresponding transaction is decided in either Step 2 or 3 where the CAS either
succeeds in aborting or committing the transaction, respectively, or fails in either
case because the transaction is already decided.

Note that the lemma refers only to decided transactions—lock freedom re-
quires us to show that within T p there exists an infinite subsequence of committed
transaction. Towards this goal, we define two subsets over T p: 1) helped(Ti) ≡
{Th | hct(Th) was recursively called during the execution of hct(Ti)} and 2) bene-
factors(Ti) ≡ {Tp | Ti ∈ helped(Tp)}. Informally, helped(Ti) includes the transac-
tions that Ti helped towards a decision, while benefactors(Ti) includes the trans-
actions that Ti was helped by.

Lemma 2.2. For any decided transaction Ti, benefactors(Ti) is finite.

Proof. The proof easily follows from the two observations that there exists a fi-
nite number of threads in the system before Ti is decided and that only undecided
transactions can be helped.

Next, we introduce a method to map each transaction in T p to a finite
number of committed transactions in T p using the following lemmas.

Lemma 2.3. Consider an execution of hct(Tp) that terminates, and let Ti be the
earliest transaction in helped(Tp) according to the transaction priority order. If Ti

is aborted, then there exists a committed transaction Tj such that Ti Tj in the
PMVSG, and Tj is committed after Ti begins.

Proof. We first note that Ti cannot be aborted as a result of some thread executing
hdt(Ti, Tk) because the Lemma assumes Ti is the earliest transaction in helped(Tp).
If an earlier transaction aborts Ti, it will also appear in helped(Ti) by Step 4 of
hct. Therefore, Ti must have been aborted in Step 2 of hct(Ti). The abort occurs
if there is a cycle in the graph CMVSG ∪ {Ti}. The graph CMVSG is acyclic by

61

1 procedure find−committed−transaction (Tp) returns T ∈ T
2 l et Tb := < e a r l i e s t t r an s . in helped (Tp) >
3 i f (Tb ∈ C)
4 return Tb
5 else
6 return Tc ∈ C : (Tb Tc) ∧ (Tc i s committed after Tb begins)

Figure 5.7: The definition of fct that converts an infinite sequence of attempted
(and decided) transactions to an infinite sequence of committed transactions.

Theorem 1 implying the cycle must contain Ti. As the graph is irreflexive, there
must also exist a committed transaction Tj in the cycle.

As argued above, Ti must have been uncommitted after Tp began in real-
time. Further, consider the read that results in the cycle (containing Tj) for which
Ti is aborted. The read-object method searches for cycles in the same manner.
Since the cycle did not exist at the time Ti performed the read-object procedure,
some transaction along the path must have committed since Ti began. Let that
transaction be Tj , completing the proof.

We are now ready to prove that our algorithm is lock-free.

Theorem 2. There exists an infinite sequence of committed transactions T c pro-
vided there is at least one correct thread.

Proof. By Lemma 2.1, there exists an infinite sequence T p of decided transactions
such that for each transaction Ti in the sequence, hct(Ti) is executed by some
correct thread. We generate from T p a (possibly disjoint) sequence of committed
transactions T c by applying to T p the procedure find-committed-transaction

(abbreviated fct) of Figure 5.7. By Lemma 2.3 fct is well-defined—that is, for any
Tp either Ti (line 1) or Tj (line 5) exists.

A transaction Ti in T p is mapped to Ts in T c at either line 3 or line 5
of fct. A transaction that maps to Ts ∈ T c because of line 3 must belong to
benefactors(Ts)—by Lemma 2.2, benefactors(Ts) is finite. Hence the set of pos-
sible transactions Ti that can map to Ts is bounded.

A transaction Ti that maps to Ts ∈ T c because of line 5 implies the existence
of a Tb such that Ti ∈ benefactors(Ts), Tb Ts, Ts ∈ C, and Ts is committed after
Tb begins. Since the transaction Tb must begin before Ts is committed, only a finite
number of possible transactions Tb can lead to a particular committed transaction Ts.

62

Further, the number of possible benefactors Ti of Tb is bounded as argued previously.
Since only a finite number of transactions in T p can map to any transaction in T c,
the sequence T c is also infinite.

5.4 Evaluation

Our testbed consists of a Sun E5000 server with 15 400MHz UltraSPARC II cpus and
2GB memory running SunOS 5.8. We tested our serializable STM (SSTM) against
the lock-free FSTM [32] and an STM implemented using mutual exclusion locks. The
test application (from the FSTM implementation) operates on an integer set stored
as a red-black tree implemented in each different STM. Each element in the tree is
maintained by a block of memory provided by the STM, and no garbage collection is
performed. Elements in the set are found using a lookup in the tree within a read-
only transaction, while insert and delete operations require update transactions.
Every transaction in our experiments performs a single insert, delete, or lookup
operation on the set, but may require multiple reads and/or writes to different
transactional memory blocks. SSTM-n is a version of SSTM where complete insert
or delete operations are encoded in an update to the root of the tree—here, n

represents the maximum number of abstract operations we allow before we coalesce
these logical updates and create a new, updated copy of the tree. This bound
prevents the tree from becoming flattened into a linear linked-list of set operations.

Figure 5.8 shows the average time to commit a single transaction (insert,
delete or lookup on the set) given different numbers of threads under all STM on
a tree with 256 keys and 20% read-only transactions. Though our STM imple-
mentation is not optimized, the experiments indicate that our STM pays a signifi-
cant performance price during contention. Figure 5.9 demonstrates the number of
aborted conflicting transactions during the attempt to commit 100,000 transactions
each by varying numbers of threads. This figure evaluates our SSTM-Bn with a
modified red-black tree that does not require reading previous values of the memory
blocks before updating, allowing blind writes to encode n abstract operations before
a comprehensive update. No transactions are aborted unless there is conflict with
a concurrent transaction that may violate transactional consistency.

The figures show the tradeoff to encoding abstract operations: when n is large
the data structure representing the set degenerates into a linked list and performance

63

1 2 3 4
Number of Threads

0

100

200

300

400

500

600

700

A
vg

. T
im

e
to

 C
om

m
it

(u
s

pe
r

th
re

ad
)

Mutex Locks
Fraser STM
SSTM
SSTM-1
SSTM-2
SSTM-3
SSTM-4
SSTM-5
SSTM-7
SSTM-10

Figure 5.8: Average time to commit a transaction (per thread) with a mix of 20%
read-only (lookup) transactions and 40% each of update (insert and delete) trans-
actions.

1 2 3 4
Number of Threads

0

500

1000

1500

2000

N
um

be
r

of
 A

bo
rt

ed
 T

ra
ns

ac
tio

ns
 (

pe
r

th
re

ad
) Fraser STM

SSTM
SSTM-B1
SSTM-B2
SSTM-B3
SSTM-B4
SSTM-B5
SSTM-B7
SSTM-B10

Figure 5.9: Average number of aborts (per thread) while attempting to commit
100,000 transactions (per thread) with a mix of 20% read-only (lookup) transactions
and 40% each of update (insert and delete) transactions.

64

suffers, though fewer aborts occur if we allow write-only updates that do not first
read the current state of the set. The tradeoff worsens as the percentage of read-only
transactions increases because lookups are not improved by encoded operations,
while there are fewer update transactions to cause aborts. SSTM suffers more
aborts than FSTM: it is not clear how much this depends on the different overhead
experienced by these two STM, although faster performance is likely to generate
fewer opportunities for transactions to overlap.

5.5 Using Timestamps

Given the performance limitations of TS-STM in Section 5.4, we developed a differ-
ent STM, called TS-STM, that maintains the lock-free and serializable properties of
TS-STM, but uses a timestamp mechanism to provide these properties. In an effort
to improve the performance, we add a constraint to eliminate blind writes, resulting
in a linearizable STM8 that achieves significant performance improvements as we
show in Section 5.6.

Although LSA-STM by Riegel, et al. [96] use timestamps to provide lineariz-
ability and obstruction-freedom, the use of timestamps makes the LSA-STM quite
similar to TS-STM that provides serializability and lock-freedom. Indeed, an earlier
version SI-STM [97] provides snapshot isolation instead of linearizability, which can
be extended to full serializability. Direct comparisons of the implementations are
not viable since they are written in different languages.

Figure 5.10 shows the data structures used by our algorithm. A transaction
Ti ∈ T contains 1) a status field equal to undecided, committed, or aborted to indicate
whether Ti ∈ U , Ti ∈ C, or Ti ∈ A, respectively, 2) the set of read and write opera-
tions, 3) a timestamp, TS(i), used to order transactions, and iv) a unique identifier
i composed of the thread’s unique id and a count of the thread’s transactions.9

Timestamps are further composed of 1) a counter, 2) a thread id to differen-
tiate timestamps with identical counters, and 3) local bits that otherwise order read-
only and update transactions. Logical time represented by a global counter, GTS, is
assigned to the counter field of a timestamp of a transaction before the transaction

8The set of linearizable executions is a subset of the view-serializable executions.
9The counters can be rolled over during a quiescent period by resetting the counters on the

latest committed versions of objects.

65

1 // Transac t ion i d
2 xid t pad : 2 // unused (matches s t a t u s t)
3 tid : 7 // th r ead i d
4 x count : 23 // t r a n s a c t i o n coun te r

6 // Timestamps are coun te r and th r ead i d
7 timestamp t local : 2 , // order read−on l y and upda t e s
8 tid : 7 // i d b r ea k s t i e s w i th coun te r
9 ts count : 23 // coun te r

11 // S t a t u s i s counter , t h r ead id , and s t a t u s b i t s
12 status t local : 2 , // in prog re s s , abor ted , committed ?
13 tid : 7 , // a b o r t i n g t h r ead i d
14 x count : 23 // a b o r t i n g t h r ead coun te r

16 // Transac t ion data
17 transaction Ti
18 xid t i // Transac t ion i d
19 timestamp t ts // Timestamp
20 status t status // 2 LSB i n d i c a t e s t a t u s
21 obj version ∗ reads // L i s t o f v e r s i o n s read
22 obj version ∗ writes // Cache o f w r i t e s
23 timestamp t cts // Commit ts tamp .

25 // Data o b j e c t
26 object x
27 obj version ∗ history // Sequence o f v e r s i o n s by TS

29 // Vers ion o f o b j e c t w r i t t e n by t r a n s a c t i o n
30 obj version xk
31 obj version ∗ next // Next v e r s i o n in h i s t o r y
32 timestamp t readcert // Hi ghe s t TS o f r ead ing t r an s .
33 transaction ∗ creator // Tk
34 void ∗ data // Ob j ec t r e p r e s e n t a t i o n

36 // G loba l coun te r to a s s i g n to t imestamps
37 int GTS := 0

Figure 5.10: Data structures used by TS-STM.

1 // Read l a t e s t v e r s i o n o f o b j e c t t h a t doesn ’ t c r e a t e a
2 // c y c l e in PMVSG and record v e r s i o n in t r a n s a c t i o n .
3 procedure read−object (Ti , x) returns xk ∈ x.history
4 // In r e v e r s e x.history order
5 foreach {xk : xk ∈ x.history : (Tk /∈ A) ∧ (TS(k) < TS(i))} do
6 i f Tk ∈ U then
7 help−commit−transaction (Tk)
8 i f ((Tj ∈ C) ∧ (CTS(k) < TS(i))) then

9 Ti . reads + = xk
10 return xk
11 return error

13 // Get new v e r s i o n to ho l d update
14 procedure write−object (Ti , x) returns xi
15 xi := al loc new version
16 xi.readcert := TS(i)
17 // Ass ign p r e v i o u s l y read v a l u e s
18 i f (∃xk : xk ∈ x.history : ri[xk] ∈ Ti . reads) then
19 xi := xk
20 Ti . writes + = xi
21 return xi

23 // Create a new o b j e c t
24 procedure create−object (Ti) returns o ∈ O
25 o := al loc new object
26 o.history := ⊥

28 // Mark o b j e c t f o r d e l e t i o n i f t r a n s a c t i o n commits .
29 procedure destroy−object (o)
30 < Mark object for deletion. >

Figure 5.11: API algorithm to access objects.

66

reads any objects. The global counter GTS is later incremented before an update
transaction is committed, ensuring update transactions obtain unique timestamps.
In this manner, the algorithm can quickly deduce which versions were created after
a transaction began execution because the corresponding update transactions will
have later timestamps. It is not necessary to distinguish between read-only trans-
actions because they do not modify any data, but we do use two bits to distinguish
between read-only and update transactions. Many read-only transactions by the
same thread may share a timestamp.

Our algorithm uses timestamps in a tradeoff between concurrency and per-
formance. Timestamps can summarize progress with a simple counter, allowing easy
detection of conflicting transactions. Although this simplification improves perfor-
mance, it may lead to false conflicts, resulting in transactions that are unnecessarily
aborted. We use these timestamps to prove that the set of committed transactions
is 1-SR in Section 5.5.1.

In our implementation (see Figure 5.10), an object o ∈ O contains only
a history, represented by a lock-free list of object versions. Each object version
ok ∈ o.history contains 1) pointers to other versions used to implement the history
list, 2) a readcert timestamp representing the highest timestamp of a committed
transaction that has read the version, 3) a pointer to the creating transaction, and
iv) the object data interpreted by the application.

The API of TS-STM, shown in Figure 5.12, provides the same methods to
read, write, and create objects as well as to commit, abort, and validate transactions.
A thread p begins a transaction by calling begin-transaction, which returns a data
structure representing the transaction, initially undecided, with a timestamp equal
to the current value of the global counter GTS.

The read procedure returns the latest committed version ok that is com-
mitted before the reading transaction Ti begins as determined by TS(k) < TS(i).
Our algorithm prevents inconsistent reads, but does not use incremental validation
wherein all previous objects read are checked for consistency with the new object
read. To prevent incremental validation, we make a simplifying assumption: there
are no blind writes. Every write requires a corresponding read of the object that
creates a reads-from dependency:

Condition 1 (No blind writes.). If wi[xi] ∈ Ti, then ri[xk] ∈ Ti.

67

1 procedure begin−transaction (thread id) returns T ∈ U
2 Ti . version . tid := thread id
3 Ti . version . count := i
4 Ti . status . local := undecided
5 TS(i) . tid := thread id
6 TS(i) . local := 0
7 TS(i) . count := GTS+1
8 CTS(i) := 0
9 return Ti

11 // Abort t r a n s a c t i o n by marking s t a t u s .
12 // This t rans ’ s o p e r a t i o n s w i l l not be
13 // v i s i b l e to any o t h e r t r an s .
14 procedure abort−transaction (Ti)
15 status t newstatus := (aborted , ⊥ , ⊥)
16 CAS(Ti . status , undecided , newstatus)

18 // Read−on l y t r an s . are l o c a l l y committed .
19 procedure commit−transaction (Ti)
20 i f (¬∃x : wi[xi] ∈ Ti)
21 status t newstatus := (committed , ⊥ , ⊥)
22 CAS(Ti . status , undecided , newstatus)
23 else
24 help−commit−transaction (Ti)

26 // Va l i d a t e t r a n s a c t i o n .
27 procedure validate−transaction (Ti) returns boolean
28 foreach {x : x ∈ O : (ri[xk], wi[xi]) ∈ Ti} do
29 i f ((∃xj : (xj ∈ x.history) ∧ (Tj ∈ C) ∧ (TS(j) < TS(i))) ∨ (xk.readcert > TS(i))) then

30 return fa l se
31 return true

33 // Return t r a n s a c t i o n taken from abo r t e d
34 // s t a t u s f i e l d .
35 procedure get−aborter (Ti) returns T ∈ T
36 xid t j = (0 , Ti . status . tid , Ti . status . x count)
37 return Tj

39 // Abort t r a n s a c t i o n by marking s t a t u s .
40 procedure help−abort−transaction (Ti , Th)
41 status t newstatus := (aborted , Th . version . tid , Th . version . x count)
42 CAS(Ti . status , undecided , newstatus)

44 // Decide a l l t r a n s a c t i o n s t h a t have
45 // marked a r e a d c e r t .
46 procedure decide−readcert (xk , Ti)
47 l et tentative := xk.tentative
48 foreach {Tl : Tl ∈ U : Tl ∈ tentative} do
49 i f Ti ∈ U then
50 i f TS(l) < TS(i) then
51 help−commit−transaction (Tl)
52 else
53 help−abort−transaction (Tl , Ti)

Figure 5.12: API procedures to commit, abort, and validate transactions. The
enqueue procedure must return the element enqueued successfully or the argument
if the argument is already enqueued ([80] can be modified for this purpose). Finally,
the &() operator returns the address of the argument.

68

1 // Attempt to h e l p commit t r a n s a c t i o n .
2 procedure help−commit−transaction (Ti)
3 // Step 1 : Read c on s i s t e n c y check
4 foreach {x : x ∈ O : ri[xk] ∈ Ti} do
5 xk.tentative+ = Ti
6 i f (∃xj : xj ∈ x.history : (TS(k) < TS(j)) ∧ (TS(j) < TS(i))) then

7 help−commit−transaction (Tj)

8 i f Tj ∈ C then

9 abort−transaction (Ti)
10 return

12 // Handle w r i t e o p e r a t i o n s
13 foreach {x : x ∈ O : wi[xi] ∈ Ti} do
14 // Step 2 : Enqueue new v e r s i o n s
15 do xj := enqueue (x , xi) while (xj 6= xi)

17 // Step 3 : Decide p r e v i o u s t r an s . h i s t o r y
18 foreach {xj : xj ∈ x.history : TS(j) < TS(i)} do

19 help−commit−transaction (Tj)

21 // Step 4 : Check l a t e s t w r i t e
22 i f (∃xj : (xj ∈ x.history) ∧ (TS(j) < TS(i)) : (Tj ∈ C)

23 ∧(¬∃xl : (xl ∈ x.history) ∧ (TS(j) < TS(l)) ∧ (Tl ∈ C) : (TS(l) < TS(i)))) then
24 i f (∃xk : (xk ∈ x.history) ∧ (ri[xk] ∈ Ti) : TS(k) < TS(j)) then
25 // D i f f . w r i t e in between read and w r i t e
26 abort−transaction (Ti)
27 return
28 decide−readcert (xj , Ti)

29 i f (xj .readcert > TS(i)) then

30 abort−transaction (Ti)
31 return

33 // Step 5 : Change s t a t u s and update g l o b a l t imestamp
34 FAI(GTS , 1)
35 status t newstatus := (committed , ⊥ , ⊥)
36 CAS(Ti . status , undecided , newstatus)

38 // Step 6 : Help a b o r t e r s
39 i f Ti ∈ A then
40 l et Tj := get−aborter (Ti)

41 while ((Tj 6= ⊥) ∧ (Tj /∈ C)) do

42 i f (Tj ∈ U) then

43 help−commit−transaction (Tj)

44 i f (Tj ∈ A) then

45 Tj := get−aborter (Tj)

47 // Step 7 : Update r e a d c e r t s
48 i f Ti ∈ C then
49 timestamp t newcts := (1 , Ti . version . tid , GTS)
50 CAS(Ti . cts , 0 , newcts)

52 foreach {x : x ∈ O : ri[xk] ∈ Ti} do
53 l et rc old := xk.readcert
54 while rc old < TS(i) do
55 rc old := CAS(&(xk.readcert) , rc old , TS(i))
56 xk.tentative− = Ti

Figure 5.13: API procedure to help commit a transaction. A thread invokes this
procedure on an earlier transaction by a different thread to ensure progress among
a set of conflicting transactions.

69

Condition 1 allows us to implement an optimization using timestamps that
eliminates incremental validation.10 Further, read-only transactions can commit
locally because all reads are already shown to be consistent. In addition to the
timestamp TS(i) assigned at transaction begin, an additional timestamp CTS(i)
is assigned at commit. A transaction Ti then reads the latest version xk of an
object such that CTS(k) < TS(i). We prove that this approach ensures one-copy
serializability in Section 5.5.1.

As previously with SSTM, concurrent modification of objects can create cy-
cles in the MVSG that must be detected at commit time. To simplify detection
of conflicts, each version ok contains a read certification timestamp (or readcert),
ok.readcert, that represents the latest read timestamp among the set of commit-
ted update transactions that have read ok as suggested in [11]. The procedure
decide-readcert is used by transactions during the commit procedure to ensure
the latest readcert value is obtained given concurrent possible updates to the read-
cert of the version read. The create-object and write-object procedures have
similar purposes as in SSTM.

The commit-transaction procedure attempts to commit a transaction T .
A read-only transaction commits immediately since no versions must be made
public. Update transactions proceed through a series of steps in the function
help-commit-transaction. Step 1 checks for read consistency by searching for a
version later than that read but earlier than the transaction timestamp order—this
version would conflict with the updated readcert. Step 2 adds the write operations in
T to the history of the corresponding objects in timestamp order. The enqueue even-
tually succeeds because update transactions have increasing timestamps, bounding
the number of conflicts that concurrent inserts may encounter by the number of
threads. At this point, we say that the transaction is published in TS-STM, and
hence can be aborted or committed by any thread. Step 3 ensures that the previ-
ous versions are all committed so T can check write consistency in the Step 4. In
Step 5, the global counter GTS is increased to mark progress, and the status of T is
changed to committed. Step 6 guarantees progress by attempting to commit another
transaction if T is aborted. Finally, if T is committed, Step 7 updates the readcert
timestamps of the versions read by T .

10The assumption of no blind writes changes serializability from an NP-complete problem to an
efficiently decidable one [91].

70

We say that a transaction Ti is committed if the CAS of the status of Ti to
committed succeeds in Step 5. Conversely, Ti is aborted if a CAS of the status of Ti

to aborted succeeds. We continue to save the id of the transaction responsible for
an abort in the same memory location as the status field of the aborted transaction
to provide for helping by threads whose transaction was aborted.

5.5.1 Ensuring One-Copy Serializability

To prove the set of committed transactions is 1-SR, we must show that there exists a
history order “�” to all versions of an object where the MVSG(�, C) is acyclic. We
define the history order “�” to be xj � xk if and only if TS(j) < TS(k). This order
is well-defined over update transactions because TS(j) 6= TS(k) by construction. We
prove the MVSG is acyclic by showing that for each type of edge in the graph, the
transactions are ordered.

Lemma 2.4 (reads-from). If ri[xk], then TS(k) < TS(i).

Proof. The read-object function only returns xk such that TS(k) < TS(i).

Lemma 2.5 (write-read). If wj [xj] and ri[xk] where xj � xk, then TS(j) < TS(k).

Proof. Direct from definition of the history order “�”.

Lemma 2.6 (read-write). Suppose Ti is an update transaction. If ri[xk] and wj [xj]
where xk � xj, then TS(i) < TS(j) if i 6= j.

Proof. Assume the transactions Ti, Tj , and Tk are committed. During the com-
mit of transaction Ti, xk.readcert is increased to at least TS(i), implying TS(i) ≤
xk.readcert (xk.readcert may be further increased by other transactions). We show
that xk.readcert ≤ TS(j), providing TS(i) < TS(j) if i 6= j.

We prove xk.readcert ≤ TS(j) holds by induction on the finite number of
versions xl such that TS(k) < TS(l) < TS(j). In the base case, there are no
versions in the history of x such that TS(k) < TS(l) < TS(j); that is, xk is the
latest committed version before xj . During Step 3 of hct(Tj), xk is committed if still
undecided. Tj is then aborted in Step 4 (after concurrent transactions are committed
by decide-readcert(xk)) unless xk.readcert ≤ TS(j). If another transaction Ti

attempts to later increase xk.readcert after Tj completes decide-readcert, then xj

is already enqueued. Hence, during Step 1 of hct(Ti), the later enqueued version

71

xj is found such that TS(j) < TS(i), forcing Ti to abort; that is, Ti cannot change
xk.readcert ≤ TS(j).

For the induction step, we assume that two transactions Tk and Tl are com-
mitted with a finite number of transactions Tm such that TS(k) < TS(m) < TS(l).
Then, xk � xl and TS(k) < TS(l) imply that xk.readcert ≤ TS(l). We show that
the Lemma holds for Tj where xl � xj , and xl is the latest previous version of x

such that TS(l) < TS(j). We extend the induction hypothesis, xk.readcert ≤ TS(l),
with TS(l) ≤ xl.readcert since Tl is committed. The argument of the base case
applies to show that xl.readcert ≤ TS(j), completing the proof.

The following Lemma provides a useful property of the read-object function
that states later versions beyond that read by a transaction necessarily commit later
in timestamp order.

Lemma 2.7. If xk � xj and ri[xk] (where Tj , Tk ∈ C), then TS(i) < CTS(j).

Proof. When Ti reads x, either xj was not enqueued or Ti must have found TS(i) <

CTS(j) directly. The former case also implies TS(i) < CTS(j). If xj is enqueued
during the read operation but is not yet committed, then Ti helps to decide Tj

before checking TS(i) < CTS(j) directly. If xj is not yet enqueued, the global
counter GTS is incremented after xj is enqueued (after Ti reads xk) when Tj is
committed, providing CTS(j) > TS(i).

Theorem 3 (1-SR). The set of committed transactions C is one-serializable.

Proof. We first consider the subset CU of C containing only update transactions.
Lemmas 2.4–2.6 show that Ti → Tj implies TS(i) < TS(j). The edges in the
MVSG(�, CU) are thus in increasing timestamp order. The total order of the
corresponding timestamps implies that the MVSG is acyclic and the log is 1-SR
by [11].

Next we consider C = CU ∪ CRO that also contains the set of committed,
read-only transactions CRO. We provide an algorithm for generating a serialization
S to show that the corresponding log is 1-SR. We first form a total order of the set
CRO using timestamp order, breaking ties (which are possible only among read-only
transactions) arbitrarily. For each member Ti of CRO in this order, add the subset
{Tk : Tk ∈ CU : CTS(k) ≤ TS(i)} to S in timestamp order, then add Ti to S.

72

S is 1-SR, as follows. First, Tk appears before Ti in the log for each operation
ri[xk] because CTS(k) < TS(i) by definition. Second, a simple induction on the
sequence of versions between xj and xk implied by TS(j) < TS(k) given Condition 1
shows that CTS(j) < TS(k) so that Tj must appear before Tk in S. Third, Ti

appears before any Tj where xk � xj and ri[xk] by construction. If Ti ∈ CU , then
TS(i) < TS(j) by Lemma 2.6 so that Ti appears before Tj by timestamp ordering.
If instead Ti ∈ CRO, we infer TS(i) < CTS(j) by Lemma 2.7, so that Tj cannot be
included before Ti.

5.5.2 Ensuring Lock-Freedom

TS-STM commits read-only transactions locally. If consistent versions are available
to read (that is, they have not been garbage-collected), then a read-only transaction
will always commit. However, update transactions must schedule writes to objects
in such a way that 1-SR is maintained. During concurrent updates to objects several
transactions may conflict in their order of reads and writes. To choose in general
which transaction to abort, our algorithm uses the total order on update transactions
given by the timestamps of the transactions. Our use of timestamps maintain two
important properties: first, there is a minimum; and second, dist(i,j) is finite for
any two update transactions Ti and Tj where dist(i,j) is the number of timestamps
between TS(i) and TS(j). Both properties are evident from the construction and
assignment of timestamps.

Note that the timestamp order is not used to determine the order in which
transactions will eventually commit—transactions with earlier timestamps may well
commit after transactions with later timestamps. Rather, timestamps are used
to determine the fate of any undecided transaction Tj that a thread p encounters
as it checks the read and write consistency of the transaction Ti, that p is trying
to commit. Specifically, p will attempt to commit only those Tj that have earlier
timestamps than Ti and attempt to abort the rest. The two properties of timestamps
ensure that any recursion triggered while applying this policy will terminate.

We prove that our algorithm is lock-free by showing that for any given times-
tamp, there is always a committed transaction with a later timestamp. The proof
relies on all threads agreeing to help commit the minimum update transaction (in
timestamp order) in any given set of conflicting transactions. Note that since read-

73

only transactions commit locally, we restrict our attention to the set of update
transactions.

Lemma 3.8. If there is at least one correct thread, then there exists an infinite
sequence of decided transactions T p such that for each transaction Ti ∈ T p, some
thread executes hct(Ti).

Proof. The lemma follows from termination of the commit-transaction procedure,
allowing a single thread to attempt to commit an infinite sequence of transactions,
each of which is decided when commit-transaction completes. Before the commit-
transaction procedure terminates, CAS is used to set the status to committed
or aborted (lines 21, 63, 82, 86, and 91). The procedure terminates because 1)
the recursive invocations of hct terminate with the transaction with the minimum
timestamp, 2) the enqueue procedure eventually succeeds because the versions are
enqueued in timestamp order and dist(i,j) between any conflicting enqueued version
xj is finite, 3) all other invocations are simple, non-recursive functions, and 4) all
loops are over the finite number of operations in a transaction.

Note that the lemma refers only to decided transactions—lock freedom re-
quires us to show that within T p there exists an infinite subsequence of committed
transactions. The focus of the proof is necessarily on aborted transactions. We con-
sider separately two classes: forced-aborts, if get-aborter(Ti) 6= Ti and self-aborts,
otherwise. First, we prove a useful lemma over each class.

Lemma 3.9. For any self-aborted transaction Ti, there exists a transaction Tj ∈ C
such that TS(j) < TS(i) and TS(i) < CTS(j).

Proof. There are three points at which a transaction is aborted in hct resulting
in get-aborter(Ti) = Ti (lines 63, 82, and 86). Each occurs precisely when a
transaction Tj is observed such that TS(j) < TS(i). We further infer TS(i) <

CTS(j) from the read operation given at line 57 or implied by Condition 1 and the
write wi[xi]. Lemma 2.7 then provides TS(i) < CTS(j) given TS(k) < TS(j).

Lemma 3.10. For any forced-aborted transaction Ti, there exists a transaction Tj ∈
C such that TS(j) < TS(i) and either 1) TS(i) < CTS(j) or 2) in addition, there
exists an intermediate aborted transaction Tn such that TS(j) < TS(n) < TS(i),
TS(n) < CTS(j), and TS(i) < CTS(n).

74

Proof. An aborted transaction where get-aborter(Ti) 6= Ti occurs only in the con-
text of the procedure decide-readcert where get-aborter(Ti) < Ti. Hence, in
Step 6 of hct when the thread recurses on get-aborter(Ti), it only invokes hct on
an earlier transaction. The minimum transaction Tm guaranteed by our assignment
of timestamps bounds the recursion, and the minimum transaction is either com-
mitted or self-aborted. If Tm is committed, TS(m) < TS(i) by the requirements for
recursion. Otherwise, Lemma 3.9 provides for the existence of Tj where transitivity
ensures TS(j) < TS(m) < TS(i).

Next, we show TS(i) < CTS(j). When the transaction Ta (= get-aborter(Ti))
aborts Ti during the procedure decide-readcert, Ti must already be added to
xk.tentative. If Ta is committed, TS(i) < CTS(a) because CTS(a) is set after GTS
is incremented. If instead Ta is also aborted by another transaction Tb, then we note
that Ti must also have been added to xk.tentative before Ta was aborted since Ta

must be undecided before aborting Ti in decide-readcert. By a simple induction,
TS(i) < CTS(n) for transaction Tn in the sequence Ti, Ta, Tb, . . . , Tn such that Tk is
aborted by Tk+1 (k ∈ {i, a, . . . , n}) in the sequence and Tn is not force-aborted. Tn

is either committed or self-aborts. In the former case, part 1) of the lemma holds,
while the latter implies the more complicated part 2). Lemma 3.9 provides that
there exists some committed Tj where TS(j) < TS(n) and TS(n) < CTS(j).

Next, we place some bounds on concurrent transactions so that we can infer
infinite sequences.

Lemma 3.11. For any decided transaction Tj, there is a bound n − 1 (where n is
the number of threads) on the size of the set of concurrent transactions: {Ti : i ∈
T : TS(i) < TS(j) < CTS(i)}.

Proof. Each transaction Ti ends after Tj begins so that the next transaction by the
same thread will necessarily have a timestamp greater than Tj . Hence, the set is
bounded by the number of concurrent threads.

Finally, we can prove that there is eventually a new committed transaction
if a correct thread continues to execute transactions.

Theorem 4. If there is at least one correct thread t, then there exists an infinite
sequence of committed transactions.

75

Proof. By Lemma 3.8 we infer the existence of an infinite sequence of decided trans-
actions with timestamps greater than some bound TS. We consider the subsequence
of these decided transactions that are executed by t, which is necessarily infinite
given that t is correct. We consider an infinite suffix of this sequence consisting
entirely of aborted transactions (otherwise, the Theorem is direct).

By Lemmas 3.9 and 3.10 (part 1)), when t attempts to commit each trans-
action Ti in the infinite aborted sequence beginning after TS (that is, TS< TS(i)),
there exists a corresponding committed transaction Tj such that TS(j) < TS(i) and
TS(i) < CTS(j). Lemma 3.11 provides that only a finite number of Ti correspond
to any specific committed Tj so that there must also be an infinite sequence of
committed Tj . A similar argument holds for the final case of Lemma 3.10 (part
2)). In that case, there must be an infinite sequence of Tn, which further implies
an infinite sequence of committed transactions Tj by the concurrency requirement
TS(j) < TS(n) < CTS(j).

5.6 Evaluation of Timestamps

Our testbed consists of a Sun E5000 server with 15 400MHz UltraSPARC II cpus
and 2GB memory running SunOS 5.8. We tested our serializable STM (TS-STM)
against a lock-free OSTM [32] and an STM implemented using mutual exclusion
locks (LOCK), all of which are implemented in C. The test application (from the
OSTM implementation) operates on an integer set stored as a red-black tree imple-
mented in each different STM. Each element in the tree is maintained by a block
of memory provided by the STM, and no garbage collection is performed by TS-
STM. Elements in the set are found using a lookup in the tree within a read-only
transaction, while insert and delete operations require update transactions. Every
transaction in our experiments performs a single insert, delete, or lookup operation
on the set, but may require multiple reads and/or writes to different transactional
memory blocks. We introduced new longer lookup and insert operations in which
every node in the tree is read or written, respectively, up to the value being looked
up or inserted. In our experiments with a tree of 256 elements, on average a long op-
eration accesses two orders of magnitude more memory blocks. Longer transactions
have been shown to evoke quite different behavior in STMs in STMBench7 [42].

Figures 5.14 and 5.15 demonstrate the scalability of TS-STM. The y-axis

76

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6 7 8 9 10

M
ic

ro
se

co
nd

s
pe

r
T

ra
ns

ac
tio

n
(a

vg
.)

Number of Threads

Time to Commit (short lookups/short inserts, 20% read-only)

Lock
Fraser

TS

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6 7 8 9 10

M
ic

ro
se

co
nd

s
pe

r
T

ra
ns

ac
tio

n
(a

vg
.)

Number of Threads

Time to Commit (long lookups/short inserts, 20% read-only)

Lock
Fraser

TS

Figure 5.14: Average time to commit a transaction (per thread) of short and long
operations with varying number of threads. 20% of the transactions are read-only
lookups. The remaining are evenly split update transactions between insert and
delete transactions. Long operations typically operate on two orders of magnitude
more blocks than short operations. In the first graph all operations are short while
the lower graph includes long reads (but short writes). Delete transactions are
always short. OSTM is denoted by the primary author, Fraser.

77

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0 1 2 3 4 5 6 7 8 9 10

M
ic

ro
se

co
nd

s
pe

r
T

ra
ns

ac
tio

n
(a

vg
.)

Number of Threads

Time to Commit (short lookups/long inserts, 20% read-only)

Lock
Fraser

TS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0 1 2 3 4 5 6 7 8 9 10

M
ic

ro
se

co
nd

s
pe

r
T

ra
ns

ac
tio

n
(a

vg
.)

Number of Threads

Time to Commit (long lookups/long inserts, 20% read-only)

Lock
Fraser

TS

Figure 5.15: Average time to commit a transaction (per thread) of long and short
operations with varying number of threads. 20% of the transactions are read-only
lookups. The remaining are evenly split update transactions between insert and
delete transactions. Long operations typically operate on two orders of magnitude
more blocks than short operations. In the first graph reads are short while writes
are long while all reads and writes in the lower graph are long. Delete transactions
are always short. OSTM is denoted by the primary author, Fraser.

78

 0

 50

 100

 150

 200

 0 20 40 60 80 100

M
ic

ro
se

co
nd

s
pe

r
T

ra
ns

ac
tio

n
(a

vg
.)

Read-Only Transactions (%)

Time to Commit (short lookups/short inserts, 3 threads)

Lock
Fraser

TS

 0

 50

 100

 150

 200

 0 20 40 60 80 100

M
ic

ro
se

co
nd

s
pe

r
T

ra
ns

ac
tio

n
(a

vg
.)

Read-Only Transactions (%)

Time to Commit (long lookups/short inserts, 3 threads)

Lock
Fraser

TS

Figure 5.16: Average time to commit a transaction (per thread) of short/long oper-
ations with varying percentage of read-only (lookup) transactions. The remaining
transactions are update transactions evenly split between insert and delete trans-
actions. Long operations typically operate on two orders of magnitude more blocks
than short operations. Delete transactions are always short. There are three threads,
and the trends with different numbers of threads are similar. In the first graph both
reads and writes are short while in the lower graph includes long reads and short
writes. OSTM is denoted by the primary author, Fraser.

79

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0 20 40 60 80 100

M
ic

ro
se

co
nd

s
pe

r
T

ra
ns

ac
tio

n
(a

vg
.)

Read-Only Transactions (%)

Time to Commit (short lookups/long inserts, 3 threads)

Lock
Fraser

TS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0 20 40 60 80 100

M
ic

ro
se

co
nd

s
pe

r
T

ra
ns

ac
tio

n
(a

vg
.)

Read-Only Transactions (%)

Time to Commit (long lookups/long inserts, 3 threads)

Lock
Fraser

TS

Figure 5.17: Average time to commit a transaction (per thread) of short/long oper-
ations with varying percentage of read-only (lookup) transactions. The remaining
transactions are update transactions evenly split between insert and delete trans-
actions. Long operations typically operate on two orders of magnitude more blocks
than short operations. Delete transactions are always short. There are three threads,
and the trends with different numbers of threads are similar. In the first graph reads
are short and writes are long while in the lower graph both reads and writes are
long. OSTM is denoted by the primary author, Fraser.

80

shows the average time to commit a single transaction (insert, delete or lookup on
the set) given different numbers of threads. All STM operate on a tree with 256 keys
and 20% read-only (lookup) transactions. TS-STM clearly has significant overhead
when transactions are short because all threads are searched for conflicting trans-
actions. OSTM registers conflicting transactions using logical locks, while LOCK
uses wait queues. Both approaches scale much better on short transactions, but
begin to suffer as we introduce longer transactions. The long transactions perform a
significant number of updates (usually the entire tree is read and/or updated in the
transaction) in order to demonstrate the scalability of the transaction size. Using
TS-STM, committing long transactions scales better with the number of threads.
Both OSTM and LOCK will serialize accesses to the tree by logically locking the
entire tree whereas TS-STM provides more opportunity for concurrency by per-
forming consistency checks on transactions that executed concurrently. These extra
opportunities to execute a transaction only offset the overhead of the consistency
checks when the transactions become long and the logical locking used by OSTM
inhibits concurrency.

Figures 5.16 and 5.17 demonstrate the effects of varying the percentage of
read-only transactions. In the experiments we report, the number of threads is fixed
at three. Both figures show that for workloads with short transactions, the over-
heads of OSTM and MSTM are smaller than for TS-STM, but as the transactions
become longer (that is, operate on more objects), TS-STM processes concurrent
transactions faster. As one would expect, the average time to commit a transaction
decreases as the overall percentage of read-only transactions increases because there
are fewer conflicts. However, in the case of long lookups and short inserts, the aver-
age actually increases because the long lookups are significantly longer than the the
short update transactions. Two trends are in effect: 1) the average time to commit a
read transaction is decreasing because of fewer conflicts with update transactions re-
sulting in fewer aborted transactions and 2) the number of long transactions—where
long transactions are significantly longer than the short transactions—is increasing
steadily. Because of the large discrepancy in the execution time of long and short
transactions, the latter trend dominates, and the average time-to-commit increases
for TS-STM.

Although our experiments appear to provide support for the belief that the
additional executions admitted by the serializability correctness criteria can result

81

in better throughput, note that TS-STM also provides linearizable executions (if Ta

ends before Tb begins, TS(a) < TS(b)). The logical locking used by linearizable STM
provides an efficient mechanism to limit concurrency to those executions that are
linearizable. Our implementation of serializability instead allows more concurrent
execution that results in more aborted transactions, but admits more concurrency
when transactions involve many objects because reads are allowed to return stale
data. Without timestamps (or other versioning information), logical locks cannot
determine which previous version should be read, requiring instead reads to return
the most recent committed version.

5.7 Summary

This chapter describes the first one-copy serializable, lock-free software transactional
memory (SSTM) and our timestamped, lock-free serializable STM (TS-STM). Both
are based on multiversion objects. Multiple versions allow read-only transactions to
read previous data values, increasing the likelihood that they will commit under con-
tention. Threads help commit transactions to provide progress and to ensure the
one-copy serializability property, although because of concurrent execution some
transactions may be aborted to guarantee one-copy serializability. We implemented
both STM and evaluated the performance against other STM—the benefit of allow-
ing higher concurrency is only seen for long-running transactions with many objects
because our implementation of serializability has significant overhead. Although
using timestamps reduces this overhead significantly, the approach also limits con-
currency by assuming no blind writes (Condition 1).

Highlights to take away from this chapter:

• The lock-free progress guarantee can be implemented with the serializability
correctness criterion using only the CAS primitive.

• Serializability can admit more executions—providing more concurrency—than
linearizability, but requires checking concurrent executions for consistency. In
our SSTM implementation that is not linearizable, checking incurs high over-
head. Our implementation of TS-STM using timestamps reduces the overhead
but also admits only the subset of executions that are linearizable.

82

• Our assumption of no blind writes (Condition 1) allows for simpler consistency
checks, eliminating incremental validation of reads. Further performance im-
provements may be possible. It remains an open question whether Condition 1
can be relaxed without requiring incremental validation of reads.

83

Chapter 6

Mayfly: O-MTFT and Leases

In this chapter, we present our design of O-MTFT fault-tolerance for Java, which we
call Mayfly. To recover as many threads as possible, we address an overlooked type of
error in multithreaded applications: hung threads. Hung threads perform no work—
for example, in the case of deadlock if a lock is unobtainable—or useless work—for
example, when a thread is caught in an infinite loop because of inconsistent data.
In this chapter, we propose techniques that we believe will, by enabling the recovery
of hung threads, 1) broaden the fault coverage of multithreaded systems (increasing
the likelihood that the application can make progress), 2) improve the application’s
performance by keeping correct threads performing useful work where possible, and
3) reduce recovery time by bounding downtime due to hung threads.

6.1 Hung Threads

The incidence of hung threads is difficult to quantify. OS dependability studies often
do not consider hangs as a type of failure [5, 8, 40, 60, 75, 100, 103, 108]. However,
in [107] Sullivan and Chillarege report 11% of all failures and 49% of a subset of
high impact failures (as judged by the users) to be due to hangs. On the other hand,
work with Ballista [26], testing the dependability of the OS (and system library)
interface, has shown few hangs resulting from OS API errors. Typically, input to
this interface is checked for consistency violations better than internal functions in
order to maintain consistency of the kernel and supporting libraries. While Jarboui,
et al. [58] corroborate the result, they also show that bits flipped using fault injection

84

1 public class ThreadLease {
2 /∗ Cons t ruc t o r s ∗/
3 public ThreadLease (long wall clock timeout , boolean auto restart) ;
4 public ThreadLease (long cpu timeout , long wall clock timeout , boolean auto restart) ;

6 /∗ Acces sor s (ms) ∗/
7 public long getCPUTimeout() ;
8 public long getClockTimeout () ;

10 /∗ Wil l t h i s t h r ead r e s t a r t a t t imeou t ? ∗/
11 public boolean isAutoRestarted () ;

13 /∗ I s t h i s t h r ead l e a s e d ? ∗/
14 public boolean isTimed () ;

16 /∗ Lease i n f o (d e f a u l t 0 i s no t imeou t) . ∗/
17 private long cpuTimeout = 0;
18 private long clockTimeout = 0;
19 private boolean restart = fa l se ;
20 }

22 class Thread {
23 /∗ Res t a r t t h r ead b e f o r e t imeou t (renew l e a s e) . ∗/
24 public void restart () ;

26 /∗ Create CPU−l e a s e d t h r ead . ∗/
27 public Thread(ThreadLease to) ;
28 public Thread(Runnable target , ThreadLease to) ;
29 . . .

31 /∗ Period f o r thread ’ s CPU−based l e a s e . ∗/
32 private volat i le ThreadLease lease ;
33 }

Figure 6.1: Overview of Mayfly Lease API. The library class java.lang.Thread
is modified to add constructors that take leases. The auto restart flag specifies
whether the corresponding thread should be restarted (with identical arguments)
upon timeout.

on internal functions arguments (as may occur with SEU errors) manifest 30% hang
failures in the Linux kernel and applications, implying that transient errors are
likely to result in hung threads since they may occur within the well-checked kernel
interface. Madeira, et al. [76] provide further support showing a significant number
of hang failures using injected faults.

We detect hung threads caused by an infinite loop or deadlock by leasing [35]
cpu time and wall-clock time, respectively, to threads. Leasing execution time and
using an STM to manage shared memory go hand-in-hand to help the application
make progress. The STM provides access guarantees even if a thread’s lease expires
early; shared memory remains always accessible. Detecting and recovering hung
threads provides more threads to help the application make progress.

85

1 boolean retry = fa l se ;
2 do {
3 ThreadLease lease = thread . lease ;

5 try {
6 i f ((null != lease) && lease . isTimed ()) {
7 /∗ Set t imeou t s based on l e a s e ∗/
8 startTimeoutTimers (lease) ;
9 }

11 /∗ Invoke thread−s p e c i f i c e x e c u t i o n ∗/
12 thread . run () ;
13 retry = fa l se ;
14 } catch (ThreadTimeoutException tte) {
15 i f (null != lease) {
16 retry = lease . getRestart () ;
17 }
18 } catch (ThreadRestartException tre) {
19 retry = true ;
20 } catch (RuntimeException re) {
21 retry = lease . getRestart () ;
22 }
23 } while (retry) ;

Figure 6.2: Overview of thread exception handling. We replace the invocation of
thread.run with the above timeout loop. Note that this code example does not
include recovery-specific code.

6.2 Design

Mayfly supports measuring the lifetime of a thread using two metrics: computing
time and wall-clock time. A thread can simultaneously have both deadlines set,
expiring when the first is reached. To enable leasing of the CPU, we introduce a
ThreadLease object and modify the java.lang.Thread class that represents Java
threads to use our leases. Figure 6.1 shows these changes. A ThreadLease object is
created by either specifying a wall-clock timeout or a cpu usage timeout, both given
in milliseconds. A zero value for a timeout disables that lease so that a thread can
be created with any combination of wall-clock and cpu usage leases. The restart

method added to the java.lang.Thread class implements an early renewal of the
thread’s lease—the thread will be restarted immediately rather than waiting for lease
expiration. Using the restart method, threads can implement loops for perpetual
execution such as occurs in a typical event-processing thread.

Figure 6.2 provides the changes to the algorithm to invoke a thread’s run

method that represents the code that a Java thread executes. We implement time-
outs (and early restarts) using Java exceptions that can be caught by the program-
mer to perform application-specific recovery at timeout.

In order to set the expiration time of threads, the application writer must
both design for restartable threads and estimate the lifetime of the thread. In order

86

to provide support for estimating both lifetimes of a thread, we refer to the field
of Worst-Case Execution Time analysis (WCET) [69], which provides a measure
of the estimated maximum execution time of code segments for the purpose of
designing applications with realtime constraints. WCET analysis uses models of
processors and a set of possible inputs to deduce the maximum execution time of
a code segment by exploring the space of possible executions using the processor
model. Although WCET analysis is not mature enough to provide tight bounds on
worst-case execution times for Java programs (especially with multithreading), we
note that especially conservative bounds should be sufficient. A lease that expires
after the true WCET can still provide a useful bound on the time lost to hung
threads.

6.3 Lock-free Resource Access

O-MTFT specifies lock-free access to shared memory using an STM to ensure that
correct threads can continue to make progress where data is available even in the
presence of failures. However, threads may need access to other resources besides
shared memory in order to make progress. Perhaps more fundamental than shared
memory is access to the CPU to perform execution of bytecodes. The Java pro-
gramming language provides for access to the CPU by guaranteeing multithreaded
support. Eventually, a correct thread that is not waiting for a lock will be scheduled.
Access to other resources such as the filesystem or network are not guaranteed. To
ensure access to these resources, we also utilize the STM to mediate access to shared
resources.

Using the side-effect handlers discussed in Chapter 3, we can intercept ac-
cesses to shared resources such as files and network connections. We convert the
reads and writes to these resources to requests to a pool of system threads that
actually perform the reads and writes. The input queue to the pool is implemented
using the lock-free STM to guarantee that if any application thread fails, remaining
threads will be able to enqueue new requests. Since the system pool only removes
requests from the queue after they have been submitted to the operating system,
the threads contain no state and are easily recovered by restarting. Java threads
that perform synchronous access to shared resources are redirected by the side-effect
handler to wait on their own condition variables that are not shared. When the re-

87

quest is completed by the operating system, the Java thread is woken up in order to
retrieve the result. Although it would be feasible to use a single condition variable
(or one variable for each type of resource), this approach depends heavily on Java’s
ability to cleanly release locks on failure. By using a condition variable per thread,
locks are not shared between application threads. Our architecture uses the STM
to distribute access to the shared resources so that the system maintains the goal
of independent thread recovery.

6.4 Recovery

Figure 6.3 provides an overview of the support API of Mayfly for recovery. Each
exception is wrapped into a FailureEvent class that attempts to encapsulate infor-
mation useful for recovery. A log of all failures in the FailureLog object is provided
to recovering threads to allow for online or offline data mining of failures. For exam-
ple, a thread can determine that many of its previous failures had identical input,
indicating recovery has failed. On the other hand, the inputs may be the same
except come from different sources, possibly indicating that the input was recov-
ered successfully, but is a good candidate for filtering due to its high probability of
failure.

The recover method is invoked upon failure to allow a Recoverable object
(simply a subclass of java.lang.Runnable) to recover from an error in an object-
specific manner. For a thread that does not require any recovery of thread-local
state to be consistent with shared memory, the recover method can simply call
the method’s run to restart execution. Many threads will require more complicated
recovery to ensure that the thread-local state, which does not necessarily survive
failure because it can be corrupted, is consistent with the shared data that other
threads can observe. To this end, we utilize the multiversion nature of our STM
implementations. Each transaction has a log of the versions used for reads and pro-
duced by writes. Using this log, a recovering thread can re-execute the transactions
while recovering the thread-local state as well. Any transactions executed during
recovery read from the log, and all writes are discarded. The STM can detect such
recovery execution by simply checking a flag in the Thread object set by Mayfly
during recovery.

As we discussed in Chapter 3, there are events that output to the environ-

88

1 class FailureEvent
2 {
3 /∗ Locat ion o f f a i l u r e ∗/
4 public Method getMethod () ;
5 public int getLocation () ;
6 public Object getInput () ;
7 public Thread getThread () ;

9 /∗ ∗/
10 public boolean fuzzyEquals (Method method , int location) ;

12 /∗ Thread t h a t f a i l e d ∗/
13 private Thread thread ;
14 /∗ Inpu t to t h r ead t h a t f a i l e d ∗/
15 private Object input ;

17 /∗ Des c r i p t i on o f f a i l u r e ∗/
18 Error error ;
19 RuntimeException runtime exception ;
20 Exception exception ;
21 } ;

23 class FailureLog {
24 /∗ I n s e r t new f a i l u r e ∗/
25 public void addFailure (FailureEvent event) ;
26 /∗ Get l a t e s t f a i l u r e ∗/
27 public FailureEvent lastFailure () ;
28 /∗ Get p a r t i c u l a r thread ’ s l a s t f a i l u r e ∗/
29 public FailureEvent lastFailure (Thread thread) ;
30 /∗ Get a l l f a i l u r e s f o r g i v en th r ead ∗/
31 public Vector getFailures (Thread thread) ;
32 /∗ Get a l l f a i l u r e s known to have occurred a t l o c a t i o n ∗/
33 public Vector getFailures (Method method , int location) ;

35 /∗ Map o f i n f o on f a i l u r e s ∗/
36 private HashMap internalMap ;
37 } ;

39 interface Recoverable
40 extends java . lang .Runnable {
41 /∗ Target f o r r e c o v e r a b l e o b j e c t s ∗/
42 public abstract void recover (FailureLog log) ;
43 } ;

45 class ThreadRecoverable
46 extends Thread
47 implements Recoverable {
48 /∗ Drop−in r ep l a c emen t s f o r j a va . l ang . Thread c o n s t r u c t o r s ∗/
49 public ThreadRecoverable () ;
50 public ThreadRecoverable (String name) ;
51 public ThreadRecoverable (ThreadGroup group , String name) ;
52 . . .

54 /∗ Add re cov e r y t a r g e t to c o n s t r u c t o r s ∗/
55 public ThreadRecoverable (Recoverable target) ;
56 public ThreadRecoverable (String name, Recoverable target) ;
57 public ThreadRecoverable (ThreadGroup group , Recoverable target) ;
58 . . .

60 /∗ Add re cov e r y t a r g e t and l e a s e s to c o n s t r u c t o r s ∗/
61 public ThreadRecoverable (Recoverable target , ThreadLease to) ;
62 public ThreadRecoverable (String name, Recoverable target , ThreadLease to) ;
63 public ThreadRecoverable (ThreadGroup group , Recoverable target , ThreadLease to) ;
64 . . .

66 /∗ Invoke r e co v e r y t a r g e t as nec e s sa r y ∗/
67 public void recover (FailureLog log) ;

69 /∗ Poin t e r to r e co v e r y t a r g e t ∗/
70 private Recoverable recoverTarget ;
71 } ;

Figure 6.3: Overview of Mayfly object support for recovery. Note that the run
method example given in Figure 6.2 is modified to invoke the recover method after
adding a FailureEvent to the log for any uncaught exceptions.

89

ment, and a failed thread must recover to a state consistent with this output. These
output commit events are handled in C-MTFT by our side-effect handlers that ensure
that the state of the threads is consistent with output commit events by managing
access to the file system and network connections. The O-MTFT approach can also
utilize side-effect handlers for output commit events. We can treat all output as
access to shared resources (easily so for files and network connections) so that the
side-effect handlers are invoked by our system thread pools that process read and
write requests for shared resources. As discussed above, individual threads can re-
cover using the STM transaction logs while the pool threads can use the side-effect
handlers. We discuss recovering the entire application below when we discuss what
to do when optimism fails.

Although Mayfly does not provide support for them, checkpoints can be
used to provide a quicker path to recover the state of a failed thread instead of re-
execution using saved transactions from the STM. A multithreaded checkpoint [116]
saves a consistent state of an multithreaded application by saving the values of all
the state variables and which commands are being executed by which threads. Con-
sistency is typically defined according to the happens-before relation representing
causality [63] so that an application that recovers from a checkpoint by restoring
all of the state variables and execution of threads from the points saved in the
checkpoint is indistinguishable with respect to the happens-before relation from the
application when the checkpoint was saved. However, due to the use of logs for the
STM, we believe independent checkpoints can be taken as a means of truncating the
logs of shared data access maintained by the STM. Since the STM logs all accesses
to shared memory by assumption, the independent checkpoints will not suffer from
the domino effect [94] that requires correct threads to rollback.

6.5 When Optimism Fails

In this section, we discuss what to do when optimism fails and the entire application
requires recovery—possibly because a hard error requires a restart or even because
shared data is corrupted. The O-MTFT approach depends upon shared memory
consistency being maintained even through thread failures, which cannot be guar-
anteed under the Capricious failure model. The techniques discussed in Section 4.2
can be used to determine when optimism has failed and C-MTFT, which does not

90

depend on the assumption that shared memory remains consistent, is required to
recover. The C-MTFT approach is transparent to the application and can be run
simultaneously with O-MTFT, albeit with the significant overhead demonstrated in
Chapter 3. Integration between the two approaches is required because C-MTFT
uses Java synchronization mechanisms to determine access to shared memory while
O-MTFT requires use of an STM to access shared memory. The C-MTFT approach
could be modified to use the transaction commits to determine the order of access
to shared memory, or if complete transparency was required, could replicate the use
of CAS as the synchronization primitive (although this would presumably incur a
significant performance penalty).

We believe that a better approach to recover when optimism fails is instead
to maintain the transaction logs on stable storage. These logs need to be stable
only when an output commit occurs (as identified by the side-effect handlers). The
performance of such an approach depends primarily on the form of stable storage,
which depends upon the failure model because stable storage must survive all possi-
ble failures. If we constrain the failures to the Capricious—that is, we are concerned
with only corruption of shared memory when optimism fails—we can save the trans-
action logs on NVRAM [87], in the filesystem, or even in separate memory regions
to provide high probability that the logs do not suffer from corruption due to errant
writes. Further, during recovery writes of transactions can be compared with the
logs to detect erroneous writes in order to clean the logs. In this manner, O-MTFT
can be improved to recover from both errant and erroneous writes that occur with
low probability.

Checkpointing can also be used to recover when optimism fails. However, it is
not sufficient in general to replace C-MTFT with checkpointing unless a checkpoint
is taken before every output commit. A checkpoint alone cannot guarantee that the
state of the application at the output commit can be recovered if any non-determinis-
tic events occur between the checkpoint and the output commit event. Checkpoints
can still be used to reduce the recovery time of C-MTFT or as a summary of the
transaction logs in O-MTFT in the case when optimism fails by moving forward the
initial state from which replay begins. Instead of beginning replay at the initial state
of the application, replay can begin from the checkpoint, which guarantees a correct
and consistent state of the application. Care must be taken when the checkpoint is
used as a shortcut for re-execution of the transaction logs that the checkpoint does

91

not included corrupted shared data. In this case, it may be useful to keep several
checkpoints in order to roll back further if corruption is detected in the most recent
checkpoint.

92

Chapter 7

Conclusions

This thesis presents methods to improve the fault tolerance of multithreaded applica-
tions. We develop a model of multithreaded applications along with the Capricious
failure model. Our failure model describes the complex failures of multithreaded ap-
plications provide some defensive programming techniques—that is, that erroneous
writes of bad data can be detect and that errant writes to bad locations are un-
likely. Under this model we develop two approaches to improve the fault-tolerance of
multithreaded applications: conservative multithreaded fault-tolerance (C-MTFT)
and optimistic multithreaded fault-tolerance (O-MTFT).

The C-MTFT technique applies transparently to multithreaded applications
to replicate access to shared data. The replication can occur over time (as with
a stable log) or over space (as with multiple hardware machines). Our approach
captures the access to shared data to capture the non-determinism inherent in the
access order of multithreaded applications. By either replicating the synchronization
order or the order in which threads are scheduled, C-MTFT ensures that all replicas
modify shared data in identical orders, resulting in the same values for all commands.
We also describe our side-effect handlers that capture the necessary information to
handle output commit events that are observed by the environment outside of the
application. These handlers ensure that (for certain classes of output commit events)
the state of the application after recovery will be consistent with the environment.

Although the C-MTFT technique is transparent, it incurs high overhead to
capture and replicate the non-determinism with which it is concerned. Our O-MTFT
technique assumes some parts of memory can be used as stable storage and uses an

93

STM to manage and record access to shared data. We discuss several implementa-
tions of multiversion STM that provide threads with lock-free access guarantees even
in the presence of failed threads. Although our STM have higher overhead than us-
ing simple locks, they provide much stronger access guarantees. We also discuss the
design of Mayfly, which uses the multiple versions of our STM are during recovery
of single threads. A single thread re-executes transactions as necessary to recreate
a local state that is consistent with the current shared state of the correct threads.
Further, threads are created with leases on their execution time—both in CPU time
and in wall-clock time—allowing hung threads to be detected and recovered.

94

Bibliography

[1] B. Alpern, J.-D. Choi, T. Ngo, M. Sridharan, and J. M. Vlissides. A
perturbation-free replay platform for cross-optimized multithreaded applica-
tions. In Proceedings of the Fifteenth Annual IEEE International Parallel and
Distributed Processing Symposium (IPDPS), page 23, Apr. 2001.

[2] L. Alvisi. Understanding the message logging paradigm for masking process
crashes. PhD thesis, Cornell University, 1996.

[3] L. Alvisi, T. C. Bressoud, A. El-Khashab, K. Marzullo, and D. Zagorodnov.
Wrapping server-side TCP to mask connection failures. In Proceedings of the
Twentieth Annual Conference of the IEEE Communications Society, pages
329–337, Apr. 2001.

[4] J. H. Anderson, S. Ramamurthy, and K. Jeffay. Real-time computing with
lock-free shared objects. ACM Transactions on Computer Systems (TOCS),
15(2):134–165, May 1997.

[5] J. Arlat, J.-C. Fabre, M. Rodŕıguez, and F. Salles. Dependability of COTS
microkernel-based systems. IEEE Transactions on Computers, 51(2):138–163,
Feb. 2002.

[6] M. Baker and M. Sullivan. The recovery box: Using fast recovery to provide
high availability in the UNIX environment. In Proceedings of the Summer
1992 USENIX Annual Technical Conference, pages 31–43, June 1992.

[7] J. Bartlett, J. Gray, and R. Horst. Fault tolerance in tandem computer sys-
tems. In A. Avizienis, H. Kopetz, and J.-C. Laprie, editors, The Evolution of
Fault-Tolerant Systems, pages 55–76. Springer-Verlag, Vienna, Austria, 1987.

95

[8] J. H. Barton, E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek. Fault injection
experiments using FIAT. IEEE Transactions on Computers, 39(4):575–582,
Apr. 1990.

[9] C. Basile, Z. Kalbarczyk, K. Whisnant, and R. Iyer. Active replication of mul-
tithreaded applications. Technical Report CRHC-02-01, University of Illinois
at Urbana-Champaign, 2002.

[10] C. Basile, K. Whisnant, Z. Kalbarczyk, and R. K. Iyer. Loose synchronization
of multithreaded replicas. In Proceedings of the Twenty-First Annual IEEE
Symposium on Reliable Distributed Systems, pages 250–255, Oct. 2002.

[11] P. A. Bernstein and N. Goodman. Multiversion concurrency control—theory
and algorithms. ACM Transactions on Database Systems (TODS), 8(4):465–
483, 1983.

[12] K. P. Birman. The process group approach to reliable distributed computing.
Communications of the ACM, 36(12):37–53, 1993.

[13] M. Boosten, R. W. Dobinson, and P. D. V. van der Stok. MESH: MEssaging
and ScHeduling for fine-grain parallel processing on commodity platforms.
In Proceedings of the International Conference on Parallel and Distributed
Techniques and Applications (PDPTA), June 1999.

[14] J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active learning for automatic
classification of software behavior. In Proceedings of the International Sym-
posium on Software Testing and Analysis (ISSTA 2004), pages 195–205, July
2004.

[15] C. Boyapati and M. Rinard. A parameterized type system for race-free Java
programs. In Proceedings of the Sixteenth Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 56–69, 2001.

[16] T. C. Bressoud. TFT: A Software System for Application-Transparent Fault
Tolerance. In Proceedings of the Twenty-Eighth Annual International Sympo-
sium on Fault-Tolerant Computing (FTCS), pages 128–137, 1998.

96

[17] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault tolerance. In
Proceedings of the Fifteenth Annual ACM Symposium on Operating Systems
Principles, Dec. 1995.

[18] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Microreboot:
A technique for cheap recovery. In Proceedings of the Sixth Symposium on
Operating System Design and Implementation (OSDI), December 2004.

[19] P. Chan, R. Lee, and D. Kramer. The Java Class Libraries: 2nd Ed, Vol 1
Supplement for the JavaTM 2 Platform, Std Ed, v1.2. Addison-Wesley, June
1999.

[20] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani, and D. Lowell.
The rio file cache: surviving operating system crashes. In Proceedings of the
Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 74–83, Oct. 1996.

[21] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark. De-
tecting data races in cilk programs that use locks. In Proceedings of the Tenth
Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA),
June 1998.

[22] J.-D. Choi, B. Alpern, T. Ngo, M. Sridharan, and J. Vlissides. A perturbation-
free replay platform for cross-optimized multithreaded application. In Pro-
ceedings of the Fifteenth Annual IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Apr. 2001.

[23] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan.
Efficient and precise datarace detection for multithreaded object-oriented pro-
grams. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 258–269, June 2002.

[24] J.-D. Choi and H. Srinivasa. Deterministic replay of java multithreaded ap-
plications. In SIGMETRICS Symposium on Parallel and Distributed Tools,
pages 48–59, Aug. 1998.

[25] C. Constantinescu. Trends and challenges in vlsi circuit reliability. IEEE
Micro, 23(4):14–19, July-August 2003.

97

[26] J. DeVale and P. Koopman. Robust software - no more excuses. In Proceedings
of the Annual IEEE International Conference on Dependable Systems and
Networks, pages 145–154, 2002.

[27] E. W. Dijkstra.

[28] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey
of rollback-recovery protocols in message-passing systems. ACM Computing
Surveys (CSUR), 34(3):375–408, 2002.

[29] D. Engler and K. Ashcraft. Racerx: Effective, static detection of race condi-
tions and deadlocks. In Proceedings of the Nineteenth Annual ACM Sympo-
sium on Operating Systems Principles, pages 237–252, Oct. 2003.

[30] R. Ennals. Software transactional memory should not be obstruction-free.
Technical Report IRC-TR-06-052, Intel Research Cambridge, Jan. 2005.

[31] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically dis-
covering likely program invariants to support program evolution. IEEE Trans-
actions on Software Engineering, 27(2):99–123, 2001.

[32] K. Fraser. Practical lock freedom. PhD thesis, Cambridge University Computer
Laboratory, Sept. 2003.

[33] R. Friedman and A. Kama. Transparent fault-tolerant java virtual machine.
In Proceedings of the Twenty-Second Annual IEEE Symposium on Reliable
Distributed Systems, pages 319–328, Oct. 2003.

[34] A. P. Goldberg, A. Gopal, K. Li, R. E. Strom, and D. F. Bacon. Transpar-
ent recovery of mach applications. In Proceedings of the 1990 Usenix Mach
Workshop, pages 169–183, 1990.

[35] C. G. Gray and D. R. Cheriton. Leases: An efficient fault-tolerant mechanism
for distributed file cache consistency. In Proceedings of the Twelfth Annual
ACM Symposium on Operating Systems Principles, pages 202–210, Dec. 1989.

[36] J. Gray. The transaction concept: Virtues and limitations. In Proceedings
of the Seventh International Conference on Very Large Data Bases (VLDB),
pages 144–154, Sept. 1981.

98

[37] J. Gray. A census of tandem system availability between 1985 and 1990. IEEE
Trans. on Reliability, 39(4):409–418, Oct 1990.

[38] J. Gray and D. P. Siewiorek. High-availability computer systems. IEEE Com-
puter, 24(9):39–48, 1991.

[39] K. C. Gross, S. McMaster, A. Porter, A. Urmanov, and L. G. Votta. Towards
dependability in everyday software using software telemetry. In Proceedings
of the Third IEEE International Workshop on Engineering of Autonomic and
Autonomous Systems (EASE’06), pages 9–18. IEEE Computer Society Press,
2006.

[40] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z. Yang. Characterization of linux
kernel behavior under errors. In Proceedings of the Annual IEEE International
Conference on Dependable Systems and Networks, pages 459–468, 2003.

[41] R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic contention manage-
ment. In Proceedings of the Nineteenth Annual IEEE International Symposium
on Distributed Computing (DISC), volume 3724, pages 303–323, Sept. 2005.

[42] R. Guerraoui, M. Kapalka, and J. Vitek. Stmbench7: A benchmark for soft-
ware transactional memory. In Proceedings of the Second European Systems
Conference (EuroSys’07), pages 315–324, Mar. 2007.

[43] J. Ha, C. J. Rossbach, J. V. Davis, I. Roy, H. E. Ramadan, D. E. Porter,
D. L. Chen, and E. Witchel. Improved error reporting for software that uses
black-box components. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 101–111,
June 2007.

[44] S. Hangal and M. S. Lam. Tracking down software bugs using automatic
anomaly detection. In Proceedings of the Twenty-Second Annual International
Conference on Software Engineering (ICSE), pages 291–301, May 2002.

[45] T. Harris. Exceptions and side-effects in atomic blocks. In PODC Workshop
on Concurrency and Synchronization in Java Programs (CSJP), July 2004.

[46] T. Harris and K. Fraser. Language support for lightweight transactions. ACM
SIGPLAN Notices, 38(11):388–402, 2003.

99

[47] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory trans-
actions. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 14–25, June 2006.

[48] T. L. Harris. A pragmatic implementation of non-blocking linked-lists. In
Proceedings of the Fifteenth Annual IEEE International Symposium on Dis-
tributed Computing (DISC), volume 2180, pages 300–314. Oct. 2001.

[49] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems (TOPLAS), 13(1):124–149, 1991.

[50] M. Herlihy, V. Luchangco, and M. Moir. The repeat offender problem: A
mechanism for supporting dynamic-sized, lock-free data structure. In Proceed-
ings of the Sixteenth Annual IEEE International Symposium on Distributed
Computing (DISC), volume 2508, pages 339–353. Oct. 2002.

[51] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization:
Double-ended queues as an example. In Proceedings of the Twenty-Third In-
ternational Conference on Distributed Computing Systems (ICDCS), pages
522–529, May 2003.

[52] M. Herlihy, V. Luchangco, M. Moir, and W. N. S. III. Software trans-
actional memory for dynamic-sized data structures. In Proceedings of the
Twenty-Second Annual ACM Symposium on Principles of Distributed Com-
puting (PODC), pages 92–101, July 2003.

[53] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990.

[54] C. Hoare and R. H. Perrott, editors. Towards a theory of parallel programming,
volume 9 of Operating Systems Techniques, pages 61–71. Academic Press,
1972.

[55] IBM. Jikes RVM, 2002. http://www.ibm.com/developerworks/oss/jikesrvm/.

[56] B. Igou and R. Silliman. User survey: High-availability and
mission-critical services, north america. Published on WWW, Apr.

100

2005. http://www.gartner.com/resources/127000/127016/user survey

highavailability 127016.pdf.

[57] A. Israeli and L. Rappoport. Disjoint-access-parallel implementations of strong
shared memory primitives. In Proceedings of the Thirteenth Annual ACM
Symposium on Principles of Distributed Computing (PODC), pages 151–160,
Aug. 1994.

[58] T. Jarboui, J. Arlat, Y. Crouzet, and K. Kanoun. Experimental analysis of the
errors induced into linux by three fault injection techniques. In Proceedings
of the Annual IEEE International Conference on Dependable Systems and
Networks, pages 331–336, 2002.

[59] Java specification request 51: New i/o apis for the javaTM platform (final
release). Published on WWW, May 2002. http://www.jcp.org/en/jsr/

detail?id=51.

[60] M. Kalyanakrishnam, Z. Kalbarczyk, and R. Iyer. Failure data analysis of a
lan of windows nt based computers. In Proceedings of the Eighteenth Annual
IEEE Symposium on Reliable Distributed Systems, pages 178–187, Oct. 1999.

[61] R. Konuru, H. Srinivasan, and J.-D. Choi. Deterministic replay of distributed
java applications. In Proceedings of the Fourteenth Annual IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 219–228, May
2000.

[62] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency
control. ACM Transactions on Database Systems (TODS), 6(2), June 1981.

[63] L. Lamport. Time, clocks, and the ordering of events in distributed systems.
Communications of the ACM, 21(7):558–565, July 1978.

[64] L. Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Transactions on Computers, 28(9):690–
691, Sept. 1979.

[65] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.
ACM Trans. Program. Lang. Syst., 1982.

101

[66] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programs with
instant replay. IEEE Transactions on Computers, 36(4):471–482, 1987.

[67] I. Lee and R. K. Iyer. Faults, symptoms, and software fault tolerance in the
tandem GUARDIAN operating system. In Proceedings of the Twenty-Third
Annual International Symposium on Fault-Tolerant Computing (FTCS), pages
20–29, 1993.

[68] I. Lee and R. K. Iyer. Software dependability in the tandem GUARDIAN
system. IEEE Transactions on Software Engineering, 21(5):455–467, May
1995.

[69] Y.-T. S. Li and S. Malik. Performance Analysis of Real-Time Embedded Soft-
ware. Kluwer Academic Publishers, Jan. 1999.

[70] S. Liang. The JavaTM Native Interface: Programmer’s Guide and Specifica-
tion. Addison-Wesley, June 1999.

[71] B. Liblit, A. X. Zheng, M. Naik, A. Aiken, and M. I. Jordan. Scalable sta-
tistical bug isolation. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), June 2005.

[72] T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification, 2nd
Ed. Addison-Wesley, April 1999.

[73] C. Liu, X. Yan, H. Yu, J. Han, and P. S. Yu. Mining behavior graphs for ”back-
trace” of noncrashing bugs. In Proceedings of SIAM Data Mining Conference
(SDM 05), 2005.

[74] D. E. Lowell and P. M. Chen. Free transactions with rio vista. In Proceedings
of the Sixteenth Annual ACM Symposium on Operating Systems Principles,
pages 92–101, Oct. 1997.

[75] W. lun Kao, R. K. Iyer, and D. Tang. FINE: A fault injection and moni-
toring environment for tracing the unix system behavior under faults. IEEE
Transactions on Software Engineering, 19(11):1105–1118, Nov. 1993.

[76] H. Madeira, D. Costa, and M. Vieira. On the emulation of software faults
by software fault injection. In Proceedings of the Annual IEEE International
Conference on Dependable Systems and Networks, pages 417–426, 2000.

102

[77] V. J. Marathe, W. N. S. III, and M. L. Scott. Adaptive software transactional
memory. In Proceedings of the Nineteenth Annual IEEE International Sym-
posium on Distributed Computing (DISC), volume 3724, pages 354–368, Sept.
2005.

[78] V. J. Marathe and M. L. Scott. A qualitative survey of modern software
transactional memory systems. Technical Report TR 839, Department of
Computer Science, University of Rochester, June 2004.

[79] M. M. Michael. Safe memory reclamation for dynamic lock-free objects using
atomic reads and writes. In Proceedings of the Twenty-First Annual ACM
Symposium on Principles of Distributed Computing (PODC), pages 21–30,
July 2002.

[80] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In Proceedings of the Fifteenth
Annual ACM Symposium on Principles of Distributed Computing (PODC),
pages 267–275, May 1996.

[81] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver.
Inside the slammer worm. IEEE Magazine of Security and Privacy, pages
33–39, July/August 2003.

[82] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin. A
systematic methodology to compute the architectural vulnerability factors for
a high performance microprocessor. In Proceedings of the Thirty-Sixth Annual
International Symposium on Microarchitecture (MICRO), pages 29–42, Dec.
2003.

[83] J. Napper and L. Alvisi. Lock-free serializable transactions. Technical Report
CS-TR-05-04, The University of Texas at Austin, Department of Computer
Sciences, Feb. 2005.

[84] J. Napper, L. Alvisi, and H. Vin. A fault-tolerant java virtual machine. Tech-
nical Report TR02-56, University of Texas, Dept. of Computer Sciences, May
2002.

103

[85] J. Napper, L. Alvisi, and H. Vin. A fault-tolerant java virtual machine. In Pro-
ceedings of the Annual IEEE International Conference on Dependable Systems
and Networks, pages 425–434, 2003.

[86] W. T. Ng and P. M. Chen. Integrating reliable memory in databases. In
Proceedings of the Thirty-First International Conference on Very Large Data
Bases (VLDB), pages 76–85, Aug. 1997.

[87] W. T. Ng and P. M. Chen. The systematic improvement of fault tolerance in
the rio file cache. In Proceedings of the Twenty-Ninth Annual International
Symposium on Fault-Tolerant Computing (FTCS), 1999.

[88] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In Pro-
ceedings of the ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPOPP), pages 167–178, June 2003.

[89] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do internet services
fail, and what can be done about it? In Proceedings of the Fourth USENIX
Symposium on Internet Technologies and Systems (USITS), Mar. 2003.

[90] J. K. Ousterhout. Why threads are a bad idea (for most purposes). Presen-
tation given at the 1996 USENIX Annual Technical Conference, Jan 1996.

[91] C. H. Papadimitriou. The serializability of concurrent database updates. Jour-
nal of the ACM, 26(4):631–653, 1979.

[92] F. Pizlo, M. Prochazka, S. Jagannathan, and J. Vitek. Transactional lock-free
objects for real-time java. In PODC Workshop on Concurrency and Synchro-
nization in Java Programs, July 2004.

[93] A. Podgurski, D. Lean, P. Francis, W. Masri, M. Minch, J. Sun, and B. Wang.
Automated support for classifying software failure reports. In Proceedings of
the Twenty-Third Annual International Conference on Software Engineering
(ICSE), pages 465–475, May 2003.

[94] B. Randell. System structure for software fault tolerance. IEEE Transactions
on Software Engineering, 1(2):220–232, 1975.

104

[95] C. P. Research. 2001 cost of downtime online survey. Published on WWW,
2001. http://www.contingencyplanningresearch.com/2001Survey.pdf.

[96] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with eager
validation. In Proceedings of the Twentieth Annual IEEE International Sym-
posium on Distributed Computing (DISC), volume 4167, pages 284–298, Sept.
2006.

[97] T. Riegel, C. Fetzer, and P. Felber. Snapshot isolation for software trans-
actional memory. In Proceedings of the First ACM SIGPLAN Workshop on
Languages, Compilers, and Hardware Support for Transactional Computing
(TRANSACT ’06), New York, NY, USA, June 2006. ACM Press.

[98] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser:
A dynamic race detector for multi-threaded programs. ACM Transactions on
Computer Systems (TOCS), 15(4):391–411, Oct. 1997.

[99] F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: a tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[100] B. Schroeder and G. A. Gibson. A large-scale study of failures in high-
performance computing systems. In Proceedings of the Annual IEEE Inter-
national Conference on Dependable Systems and Networks, pages 249–258,
2006.

[101] N. Shavit and D. Touitou. Software transactional memory. In Proceedings of
the Fourteenth Annual ACM Symposium on Principles of Distributed Com-
puting (PODC), pages 204–213, Aug. 1995.

[102] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi. Model-
ing the effect of technology trends on soft error rate of combinational logic.
In Proceedings of the Annual IEEE International Conference on Dependable
Systems and Networks, pages 389–398, 2002.

[103] D. P. Siewiorek, R. Chillarege, and Z. T. Kalbarczyk. Reflections on industry
trends and experimental research in dependability. IEEE Transactions on
Dependable and Secure Computing, 1(2):109–127, Apr. 2004.

105

[104] J. H. Slye and E. N. Elnozahy. Support for software interrupts in log-based
rollback-recovery. IEEE Transactions on Computers, 47(10):1113–1123, 1998.

[105] M. Spear, V. Marathe, W. S. III, and M. Scott. Conflict detection and val-
idation strategies for software transactional memory. In Proceedings of the
Twentieth Annual IEEE International Symposium on Distributed Computing
(DISC), volume 4167, Sept. 2006.

[106] R. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM
Transactions on Computer Systems (TOCS), 3(3):204–226, 1985.

[107] M. Sullivan and R. Chillarege. Software defects and their impact on system
availability - a study of field failures in operating systems. In Proceedings of the
Twenty-First Annual International Symposium on Fault-Tolerant Computing
(FTCS), pages 2–9, 1991.

[108] M. Sullivan and R. Chillarege. A comparison of software defects in
database management systems and operating systems. In Proceedings of the
Twenty-Second Annual International Symposium on Fault-Tolerant Comput-
ing (FTCS), pages 475–484, July 1992.

[109] M. Sullivan and M. Stonebraker. Using write protected data structures to
improve software fault tolerance in highly available database management sys-
tems. In G. M. Lohman, A. Sernadas, and R. Camps, editors, Proceedings of
the Seventeenth International Conference on Very Large Data Bases (VLDB),
pages 171–180, Sept. 1991.

[110] R. von Behren, J. Condit, and E. Brewer. Why events are a bad idea (for high-
concurrency servers). In Proceedings of the Ninth Workshop on Hot Topics in
Operating Systems, May 2003.

[111] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer. Capriccio:
scalable threads for internet services. In Proceedings of the Nineteenth Annual
ACM Symposium on Operating Systems Principles, pages 268–281, Oct. 2003.

[112] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient software-
based fault isolation. In Proceedings of the Fourteenth Annual ACM Sympo-
sium on Operating Systems Principles, pages 203–216, Dec. 1993.

106

[113] A. Welc, S. Jagannathan, and A. L. Hosking. Transactional monitors for
concurrent objects. In European Conference on Object-Oriented Programming
(ECOOP), June 2004.

[114] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for well-
conditioned, scalable internet services. In Proceedings of the Eighteenth Annual
ACM Symposium on Operating Systems Principles, pages 230–243, Oct. 2001.

[115] I. William N. Scherer and M. L. Scott. Advanced contention management for
dynamic software transactional memory. In Proceedings of the Twenty-Fourth
Annual ACM Symposium on Principles of Distributed Computing (PODC),
pages 240–248, July 2005.

[116] J.-M. Y. D.-F. Z. X.-D. Yang. User-level implementation of checkpointing for
multithreaded applications on windows nt. In 12th Asian Test Symposium
(ATS), pages 496–499, Nov. 2003.

[117] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: Efficient detection of data
race conditions via adaptive tracking. In Proceedings of the Twentieth Annual
ACM Symposium on Operating Systems Principles, pages 221–234, Oct. 2005.

[118] J. F. Zeigler. Terrestrial cosmic rays. IBM Journal of Research and Develop-
ment, 40(1):19–39, Jan. 1996.

107

Vita

Jeff Napper was born in Houston, Texas in the 1970s, which one might think puts

a certain stamp on a person. He attended the University of Texas for his under-

graduate and as is to be expected, got stuck in wonderful Austin, Texas. After

graduation in 1997, he worked a year at Applied Research Labs for the University of

Texas when he decided to go to graduate school to seek his fortunes. Clearly immune

to fiduciary gain, he remained in graduate school throughout the Internet boom of

the early 2000s. Luckily, he met the wonderful Sarah Brown, and she graciously

accepted his other proposal. After graduation, he will take a postdoc position at

Vrije Universiteit Amsterdam.

Contrary to the expectations of most people outside of Texas that he meets,

Jeff has no discernible Texas accent.

Permanent Address: 2215 S. Belmont
Richmond, TX 77469
USA

This dissertation was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended

108

by Bert Kay, James A. Bednar, and Ayman El-Khashab.

109

