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Abstract 

 

A Model Based Approach for Evaluating Human Neuromusculoskeletal 

System Performance 

 

Yu Yang Xie, M.S.E 

The University of Texas at Austin, 2016 

 

Supervisor:  Dragan Djurdjanovic 

 

In the thesis, a model based approach is proposed for monitoring the performance of a 

human neuromusculoskeletal (NMS) system. It utilizes a linear dynamic model with 

exogenous inputs (ARMAX model) to link multiple features extracted from surface 

electromyographic (sEMG) signals as model inputs, and measurable physiological outputs, 

such as forces produced by the limbs or limb velocities, as model outputs. This multiple-

input and multiple-output (MIMO) model is then utilized to quantify and track changes in 

the NMS system dynamics over time. The changes in NMS system dynamics were modeled 

using distance between the distribution of 1-step ahead model prediction errors observed 

at the beginning of the exercise, when the subject was rested, and 1-step ahead prediction 

errors observed at any other time during exercise. The distance, referred to as the Freshness 

Similarity Index (FSI), was expressed via the Kullback Leibler (KL) divergence measure 

between the aforementioned distributions of 1-step ahead prediction errors. As the subjects 

proceeded with their exercises and got increasingly tired, the modeling errors were 

expected to increase, leading to an increase in FSI. Such behavior of FSIs enables it to act 

as a quantitative measure of the level of changes in NMS system performance, in other 

words, as a measure of NMS system performance degradation due to fatigues. The 

methodology has been evaluated on two data sets, one collected from an activity related to 
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lower limb muscles and the other collected from temporomandibular joint (TMJ) muscles. 

In both cases, an increasing trend in the FSI clearly illustrated changes in NMS system 

performance, as exercise progressed. Furthermore, after rest, FSI observed in both 

exercises recovered to their original levels, quantitatively and meaningfully showing that 

the corresponding NMS systems of the two subjects indeed rested. 
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Chapter 1.   

Introduction 

 

Condition-based monitoring of machines has been an indispensable component to many 

engineering systems for preventing machine downtime and optimizing system operations [1]. 

Human bodies can be seen as exceptionally complicated machines and there could be great benefits 

in applying the well-developed methodologies from machine monitoring to facilitate continuous 

quantitative monitoring of the performance and health of human body systems. Furthermore, recent 

development and proliferation of wearable non-intrusive biosensor systems, wireless 

communication and powerful pervasive computing platforms are enabling even further the vision 

of continuous on-line monitoring of human bodies, using similar concepts to what we see today in 

machine monitoring and maintenance.  

Typically, machine monitoring employs one of the two philosophies: symptom-based 

methods or model-based methods [2]. Symptom-based methods focus on detecting variations in 

the collected signals to identify performance changes of the corresponding systems, with abnormal 

signal patterns being associated with abnormal system behaviors. An implicit assumption 

underlying this concept is stationarity of system inputs, which then leads to consistency of system 

behavior and changes when degradation occurs. Nevertheless, this is not true for virtually all 

biomedical systems and hence, the use of symptom-based methods is greatly limited for 

applications in monitoring of human body systems. 

Model-based methods for monitoring of system performance and condition are alternatives 

that rely on the use of both inputs and outputs of the underlying systems. With this paradigm, we 

need to build dynamic models between system inputs and outputs, and the system performance 

changes are tracked by quantitatively capturing changes in the model, or in other words, changes 

in system dynamics. By exploiting the dynamic relationships between system inputs and outputs, 
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model-based methods can robustly monitor system performance even when the inputs are non-

stationary. Such a monitoring paradigm is capable of distinguishing between system behavior 

changes caused by actual changes in system dynamics, and the changes caused by changes in input 

regimes. In addition, tracking the model rather than relevant signals provides information about 

what portions of system dynamics (what model parameters) are responsible for changes of system 

behavior, which could be of tremendous diagnostic value (important for identifying the root causes 

why the system degradation is occurring). Therefore, model-based methods have overwhelming 

advantages for monitoring human body systems and systems in general, when compared to 

symptom based methods [3]. 

While model-based diagnostics remains impractical or even impossible for many 

biomedical systems, the neuromusculoskeletal (NMS) system is ripe for this diagnostic paradigm 

shift because its inputs and outputs are more or less measurable using available sensing 

technologies, and significant work has already been done to relate the two. Namely, limb force and 

movement arise from muscle contractions, which are induced via electrical signals from the central 

and peripheral nervous system. Effects of these electrical stimulations of the muscles are indirectly 

measurable through surface electromyography (sEMG) electrodes, which can therefore be seen as 

inputs into the NMS system. Furthermore, kinematics and motion variables in terms of limb output 

force and velocities constitute the outputs from the NMS system and are also measurable via 

dynamometers, accelerometers or vision based motion capture systems. A model-based monitoring 

scheme for the NMS system could continuously track and characterize changes in the NMS system 

dynamics without the need to necessarily prescribe motion patterns that a subject needs to perform. 

Such capability could facilitate personalizing and customizing of training regimens for athletes and 

patients undergoing rehabilitation by prescribing exercises that target the muscles and joints with 

the greatest deficits for a given person, at a given time, as assessed via the system model. 

Furthermore, therapeutic exercise regimens for patients with NMS impairments can thus be more 
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precisely tailored toward returning the patient to a nominally healthy set of joint dynamics. In 

addition, such input-output dynamics based approaches to detection and characterization of NMS 

changes could more reliably indicate when to stop training or rehabilitation before the onset of 

injury. 

When it comes to performance condition monitoring of various portions of the NMS 

system, prior research was almost exclusively symptom based, focused on tracking changes in 

either EMG signatures [4], or kinematic trajectories [5], or limb forces [6], independently. A 

notable exception is a recent publication [7], where a model-based method for monitoring human 

NMS system is devised and applied to monitor NMS system performance in repetitive sawing 

motion. Time frequency features (instantaneous intensity and mean frequency) are extracted from 

sEMG signals to serve as system inputs. These features are then linked to measured joint velocities 

by using autoregressive model with exogenous outputs (ARX model) to describe NMS system 

dynamics [7]. The level of NMS system performance degradation is quantified by calculating 

overlaps between the distributions of 1-step ahead prediction errors corresponding to the current or 

most recent system behaviors, as evaluated using the model corresponding to the least degraded 

(“fresh”) system state. This model-based monitoring approach combining both EMG signatures 

and joint velocities successfully tracked fatigue induced changes in the behavior of the NMS system 

of 12 different human subjects completing repetitive sawing motions until voluntary exhaustion.  

Despite the aforementioned advancements in model-based monitoring of NMS system, 

there are several issues the previous research has not addressed. Firstly, though the system 

degradation was clearly visible in the changes in model coefficients and modeling errors in [7], 

recovery of the system due to rest was not analyzed using the model-based monitoring paradigm. 

Furthermore, the approach is only applied to a specific repeatable cyclic motion, while the 

feasibility to non-cyclic motions, such as static force outputs are not discussed. To deal with the 

aforementioned issues, in this thesis, a slightly modified model-based monitoring method from [7] 
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was employed for NMS system performance monitoring during fatiguing and resting stages, using 

sEMG signal and limb force/movement from several portions of the human NMS system.  

The remainder of this thesis is structured as follows. A literature review of current research 

in monitoring of NMS system performance is given in Chapter 2. In Chapter 3, methods for 

extraction of informative signatures from relevant signals, dynamic modeling of NMS systems 

using those signatures and the model-based monitoring method based on those models are 

described. Chapter 4 details results of applying the aforementioned methods to two different data 

sets corresponding to two portions of the NMS system. Finally, Chapter 5 outlines the research 

findings of this thesis and gives potential directions for future work. 

 

  



5 

 

Chapter 2.   

Literature Review 

 

This chapter attempts to summarize existing health monitoring techniques and modeling 

methods for human NMS systems. A general introduction to biomechanics based monitoring will 

be covered first, followed by an overview of sEMG signature based monitoring. Finally, reviews 

of mathematical models for capturing NMS system dynamics are presented. 

 

2.1. Biomechanics Based Monitoring 

The characteristic of fatigue (cause of NMS system performance degradation) can be described 

as a difficulty of continuing the execution of physical exercises. Formally, the neuromuscular 

fatigue is defined as “the inability of a group of muscles to sustain the required or expected force” 

[8]. Therefore, the degradation processes of NMS system performances can be studied through 

biomechanical model, more exactly, through NMS system dynamics and kinematics. Bini et al. [9] 

evaluated the effect of fatigue on coordinative patterns during cycling and reported a decay of 

pedaling cadence during performance degradation. Chappell et al. [10] conducted experiments on 

stop-jump tasks for athletes and showed that both peak proximal tibial anterior shear forces and 

valgus moments increased when fatigue happened. Christina et al. [11] demonstrated that localized 

muscle fatigue of invertors and dorsiflexors would affect loading rates, peak magnitudes and ankle 

joint motions during running. Gates and Dingwell [12] studied how muscle fatigue affected 

repetitive upper extremity task performance and reported reductions in both temporal persistence 

of movement speed and timing errors. Although these biomechanical models were capable of 

quantifying NMS system performance degradation, the main purpose of these studies was to reveal 

relevant fatigue mechanisms in biomechanics, and therefore, the aforementioned fatigue measures 

are task-specific and not suitable for our purposes. 
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2.2. sEMG Signature Based Monitoring 

Monitoring of NMS system performance degradation can also be facilitated by the use of 

surface electromyographic (sEMG) signals and has been well-studied for decades. sEMG signals 

can provide information of underneath neuromuscular activities in the muscle [13]. More exactly, 

during muscle activities (contraction/relaxation), the control signals from nerve system are 

transmitted along nerve fibers and across neuromuscular junctions, which then activate muscle 

fibers in the motor units (MUs) and, after complicated biomedical events, finally produce limb 

forces and generate motions [14]. The collected sEMG signals reveal a train of the motor unit action 

potentials (MUAPs), where MUAPs are the sum of a group of muscle fiber action potential (MFAP) 

that represents a superposition of muscle and neuron firing signals [15]. Due to these complicated 

ingredients, the sEMG signals are highly noisy and non-stationary that need further processing for 

the purpose of NMS system monitoring. In the literature, different signatures, also called features 

or indicators, are extracted from sEMG signals to quantitatively monitor NMS system performance 

degradation. Generally, these signatures can be categorized into two types: time domain signatures 

and frequency domain signatures, as listed in Table 1. A concise description of different types of 

signatures and relevant signal processing methods are given next. 

 

2.2.1. Time Domain Signatures 

Neural communication with muscle can be characterized by both amplitude modulation 

and frequency modulation [16]. For time domain signatures, the changes in the amplitude 

modulation are tracked to evaluate NMS system performance degradation due to fatigue. Gerdle et 

al. [17] utilized isometric fatigue experiments to verify that root mean square (RMS) of EMG 

magnitude was a proper measure for muscle fatigue and, it showed an increasing trend during 

fatigue process. Merletti et al. [17] performed an experiment on sustained isometric voluntary 

contractions of tibialis anterior muscles and validated that average rectified value (ARV) could be 
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used as a fatigue indicator. Morlock et al. [18] reported that the zero crossing rate (ZCR) of the 

sEMG signal could be used as a fatigue identifier during dynamic trunk flexion/extension 

movements, which gave properties similar to frequency domain signatures. However, ZCR were 

found sensitive to signal to noise ratio (SNR) and not used in the later research [19]. In general, 

time domain signatures are less popular in monitoring of NMS system performance during dynamic 

tasks. 

2.2.2. Frequency Domain Signatures 

Frequency domain signatures, namely median frequency (MDF) and mean frequency 

(MNF), are the most widely accepted signatures in monitoring of muscle fatigue during dynamic 

tasks. Gerdle et al. [17] collected EMG signals in maximum repeated isokinetic knee extensions 

and suggested MNF shifted to lower frequency during fatigue phase. Ament et al. [20] reported an 

decreasing trend in the MDF of the calf muscles during an exhausting treadmill exercise. As MDF 

and MNF have been widely validated by numerous researchers, we will not list all the papers 

relevant to MDF and MNF. Interested readers could find more literatures in [21]. Other than MDF 

and MNF, a spectral index that considered the bandwidth of sEMG signals was recently proposed 

by Dimitrov et al. [22]. This new spectral index was validated in dynamic knee-extension exercises 

and reported to have higher sensitivities to fatigue than MDF [22]. Though Dimitrov’s spectral 

index is not as popular as MDF and MNF, it is gaining more attentions in the recent years. 

When it comes to frequency domain signatures, choosing appropriate signal processing 

algorithms plays a vital role in the signature extraction. Typical methods include Fourier-based 

spectral estimators [23] and parametric based spectral estimators [24]. However, these methods did 

not address to the non-stationary properties of sEMG signals. As a result, the use of time frequency 

techniques was proposed to alleviate this issue, which enables extraction of the so-called 

instantaneous mean/median frequency (IMNF, IMDF) that evaluates MNF and MDF at each instant 

of time. These time frequency methods include short time Fourier transform (STFT) [25], Wigner 
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distribution (WD) [26], Cohen’s class of time frequency distribution [27], wavelet methods [28], 

time varying autoregressive approach [29], etc. Although there are many advancements in sEMG 

signature based monitoring, these methods are still in the category of symptom-based monitoring 

and limited for the applications in monitoring of human body systems, as explained in Chapter 1. 

Table 1 sEMG signatures and corresponding calculation methods 

Type Signature Calculation Method 

T
im

e 
D

o
m

ai
n
 

Average rectified value (ARV) 1

𝑇
∑|𝑠𝑡|

𝑇

𝑡=1

 

Root mean square (RMS) 
√
1

𝑇
∑ 𝑠𝑡

2𝑇
𝑡=1 , where 𝑠𝑡 is the signal 

Zero crossing rate (ZCR) 1

𝑇−1
∑ 𝐼{𝑠𝑡𝑠𝑡−1 < 0}𝑇
𝑡=2 , where 𝐼{𝐴} is 1 if A is true and 0 otherwise 

F
re

q
u
en

cy
 D

o
m

ai
n
 

Median frequency (MDF) 
∑ 𝑃(𝑓)

𝑀𝐷𝐹

𝑓=0

= ∑ 𝑃(𝑓)

𝑓𝑠/2

𝑓=𝑀𝐷𝐹

 

Mean frequency (MNF) ∑ 𝑓𝑗𝑃𝑗
𝑀
𝑗=1

∑ 𝑃𝑗
𝑀
𝑗=1

, where 𝑓𝑗  the frequency value of sEMG power spectrum at jth 

index and 𝑃𝑗 is the power spectrum at 𝑓𝑗  

Dimitrov’s spectral index ∫ 𝑓−1𝑃(𝑓)𝑑𝑓
𝑓𝐻
𝑓𝐿

∫ 𝑓5𝑃(𝑓)𝑑𝑓
𝑓𝐻
𝑓𝐿

, where 𝑓𝐿 and 𝑓𝐻 are the lowest and highest frequency of 

sEMG signals 

 

2.3. Modeling of NMS Systems 

To implement model-based monitoring to NMS systems, it is necessary to develop sEMG 

driven musculoskeletal models to describe overall NMS system dynamics. In the field of prosthetic 

limb control, different types of models have been developed to link sEMG signals to NMS system 

outputs, e.g. limb forces or velocities, for better control of prosthetic limbs. These mathematical 

models could roughly be categorized as physics-based models or data driven models. 

Physics-based models are dynamic models derived from biological structures of relevant 

portions of NMS system, with model parameters calibrated for each individual. These models are 

generally based on Hill’s muscle model [30] to evaluate muscle output forces. Manal and Buchanan 

[31] combines a one-parameter A-model and Hill-type model to estimate isometric joint moments 
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from EMG signals. Moosavi et al. [32] implemented a hybrid EMG-driven Hill-type model to 

predict muscle force from elbow flexors and extensors during weight training exercises with 

dumbbells. Lloyd and Besier [33] utilized a modified EMG driven Hill type model to evaluate 

muscle force and knee joint moments. However, developing physics-based models requires deep 

understanding to the relevant biomechanical process, which potentially limit their popularities.  

Conversely, data driven models do not incorporate the use of biomechanics and learn the NMS 

system dynamics solely based on data (sEMG signals and physiological outputs). Arslan et al. [34] 

extracted higher order frequency moments from sEMG signals and trained an artificial neural 

network to predict externally applied forces to human hands. Zhange et al. [35] utilized polynomial 

Hammerstein model (PHM) to predict generated torque based on the measured sEMG signals. 

Artemiadis and Kyriakopoulos [36] employed an autoregressive moving average model with 

exogenous outputs (ARMAX model) to link sEMG signals to elbow joint angles. Since data driven 

models rely heavily on the collected data, the performance of data driven models will be largely 

affected by data quality and data selection. 

To conclude, both biomechanics based monitoring methods and sEMG signature based 

monitoring methods have been proposed to monitoring NMS system performance, which have 

achieved successes in different portions of the NMS system. Biomechanics based monitoring 

methods are normally applied to a specific portion of NMS system and require deep understanding 

of biomechanics, which limits their popularity. As mentioned in Chapter 1, sEMG signature based 

monitoring methods fall into the category of symptom-based monitoring methods, and have their 

intrinsic defects in monitoring human NMS systems, when compared to the model-based 

monitoring methods. However, to the best of author’s knowledge, only a recent publication [7] 

applies model-based monitoring methods to human NMS system. Therefore, this thesis attempts to 

extend the model-based method presented in [7] to monitor NMS system performance during 

exercise and recovery processes. The detailed methodologies are presented in Chapter 3.  
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Chapter 3.   

Methodology 

 

The proposed model-based method tracks changes in NMS system dynamics, which 

enables continuous monitoring of NMS system performance. The general framework is 

summarized in the Figure 1. The model-based monitoring starts with the processing of sEMG 

signals to extract informative features for building models of NMS system dynamics. It is well-

established that sEMG signals are highly noisy and non-stationary, with their frequency contents 

significantly changing over time [13]. This brings the need for their joint time frequency analysis, 

rather than using more traditional purely frequency or time domain techniques [37]. In this thesis, 

Cohen's class of time frequency analysis [38] is used to generate joint distributions of signal energy 

in time and frequency domains. The time frequency distribution (TFD) 𝐶(𝑡, 𝜔) of a signal 𝑠(𝑡) is 

determined as follows. 

 
* ( ( ) )

2

1 1 1
( , ) ( ) ( ) ( , )

4 2 2

j t uC t s u s u e d dud        


      (1) 

where 𝑠∗(𝑡) represent the complex conjugate of 𝑠(𝑡) and 𝜙(𝜃, 𝜏) is the so-called time frequency 

kernel. Kernel characteristics can endow the resulting TFD with desirable mathematical properties 

and significant research on the design and selection of kernels took place in the 1980s and early 

1990s, as nicely summarized in [39]. 
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Figure 1. Model-based monitoring of NMS system 

Following [7], the binomial kernel [40] is used in this thesis. It is a signal independent member 

of the reduced interference distribution family of kernels, which enables faster calculation of TFDs 

compared to signal dependent kernels, and delivers desirable mathematical properties, such as 

strong time and frequency support, upholding time and frequency marginal, as well as providing 

instantaneous frequency and group delay while reducing the interference of signals in the time-

frequency plane [38]. Due to these favorable mathematical properties, the binomial kernel based 

TFD can be used to efficiently extract time frequency features that indicate instantaneous intensity, 

frequency, 2nd order moment and entropy, as listed in Table 2. Specifically, instantaneous intensity 

< 𝑓0|𝑡 > and instantaneous frequency < 𝑓1|𝑡 > are two features that have been widely shown to 

be related to muscle fatigue and performance [7,41,42]. The remaining two features, instantaneous 

2nd order moment < 𝑓2|𝑡 >, and instantaneous entropy < 𝑆|𝑡 >, are also used to provide a more 

accurate statistical representation of instantaneous features of the TFD. An example of a sEMG 

signal from human Soleus muscle performing isometric contraction and the corresponding 

binomial kernel TFD are presented in Figure 2, while the corresponding extracted time series of 

instantaneous features are shown in Figure 3. 
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Table 2. Instantaneous features used to represent sEMG signal 

Temporal 

Features 

Formula Physical Interpretation Literature 

< f 0|t > ∫C(t, ω)dω 
Intensity: Directly related to muscle voluntary contraction force [7], [41], [42] 

< f1|t > 
∫

C(t, ω)

< f0|t >
ωdω 

Mean frequency: Most widely accepted indicators to NMS system performance [7], [41], [42] 

< f 2|t > 
∫

C(t, ω)

< f0|t >
ω2dω 

2nd order moment: Related to variance of normalized mean frequency [43], [44] 

< S|t > 
∫

C(t, ω)

< f0|t >
ln

C(t, ω)

< f0|t >
dω 

Entropy: Describe the non-Gaussianity of instantaneous TFD [43], [45] 

 

 

Figure 2. Example of sEMG signals and corresponding TFD 
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Figure 3. Extracted time series of features from TFD 

In order to capture his/her least degraded dynamics, an ARMAX model is built using the data 

collected at the beginning of his/her exercise or activity. This ARMAX model utilizes time series 

of temporal features extracted from sEMG signals as system inputs, and the measurements of the 

relevant limb forces and movements as system outputs. The model learnt in the least degraded (least 

fatigued) state will be referred to as “fresh model” and the corresponding data will be termed “fresh 

data”. After obtaining the fresh model, a distribution of 1 step ahead prediction errors produced by 

the model, denoted by P, can be generated using the fresh data. This distribution describes how 

well the inferred fresh model approximates the least degraded NMS system dynamics and will be 

used as a reference distribution of modeling errors in model-based monitoring.  

As newly collected data becomes available, a distribution of most recent 1-step ahead 

prediction errors is generated using the fresh model. Let this distribution be denoted by 𝑄𝑇, where 

𝑇 denotes the time interval over which the NMS system performance is evaluated. If the NMS 

system dynamics remains unchanged, the distributions P and 𝑄𝑇 are expected to be similar to each 
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other. However, when there is degradation in the NMS system, e.g. due to fatigue or injury, the 

distribution 𝑄𝑇  will deviate from the fresh distribution P and this deviation can be used to 

quantitatively differentiate the degradation process. Similarity between distribution 𝑃 and 𝑄𝑇 will 

be evaluated via the Kullback Leibler (KL) Divergence measure. 

 
1

( )
( ) ( ) ln

( )

N

KL T

i T

P i
FSI D P Q P i

Q i

   (2) 

and referred to as the freshness similarity index (FSI). It can be viewed as a quantitative measure 

describing the discrepancy between the original and degraded system dynamics. Additionally, the 

model-based monitoring method enables more granular performance characterization at muscle 

level. When at a new time interval T, new sEMG features 𝑢𝑇 and physiological measurements 𝑦𝑇 

are observed. The ARMAX model between muscle signatures and the corresponding limb 

movement/force variables can be updated to track changes in the NMS system dynamics. In this 

thesis, the newly learned model, referred to as “updated model”, is estimated using steepest gradient 

descent, initialized from the parameters of the fresh model [46]. 

Based on the updated model, the performance of an individual muscle i over time interval T 

can be assessed by the similarity of dynamic responses from sEMG inputs1 to system output 

between the fresh model and the updated model. Following [7], corresponding frequency responses 

obtained from fresh and updated models will be used for this purpose. Let 𝐻𝑇0
𝑖,𝑘(𝑗𝜔) denote the 

frequency response of the fresh model between the kth instantaneous feature of muscle i to the 

system output (limb force or velocity), where 𝜔 ∈ [0, 𝜔𝑁], 𝜔𝑁  is the Nyquist frequency, 𝑘 ∈

{1,2,3,4}, since we extract 4 instantaneous features from each muscle’s sEMG signals. Similarly, 

let 𝐻𝑇
𝑖,𝑘(𝑗𝜔) denote the frequency response of the updated model between the kth instantaneous 

feature of muscle i to the system output. Following [7], a measure of similarity between these two 

                                                           
1 instantaneous features relevant to the muscle i 
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frequency responses relating kth feature of muscle i and the system output over time interval T can 

be expressed as 

 
0
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, 0
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 
 




 (3) 

where: 

 c is the smallest value of 𝐻𝑇
𝑖,𝑘(𝑗𝜔) and 𝐻𝑇0

𝑖,𝑘(𝑗𝜔) evaluated in the interval [0,ωN]; 

 

This measure 𝐷𝑇
𝑖,𝑘

 reflects changes in the model parameters relevant to the kth feature of muscle i, 

which can be seen as the overlap between 𝐻𝑇0
𝑖,𝑘(𝑗𝜔) and 𝐻𝑇

𝑖,𝑘(𝑗𝜔). Nevertheless, in order to analyze 

performance degradation of muscle i, all the relevant 𝐷𝑇
𝑖,𝑘

  should be combined to evaluate changes 

in all the model parameters that are relevant to muscle i. In this thesis, a newly defined measure of 

similarity, characterizing the performance of muscle i over time interval T, is referred to as “muscle-

level freshness similarity index” (MFSI) and defined as  

 
 ,1 ,2 ,3 ,4

2
, , ,

2

i i i i

T T T T
i

T

D D D D
MFSI   

(4) 

where: 

 𝑀𝐹𝑆𝐼𝑇
𝑖  is the MFSI of muscle i evaluated over time interval T 

 

This measure (MFSI) ranges from 0 to 1, with 1 suggesting perfect match between dynamic 

interactions relating the sEMG inputs from muscle i to system output for the fresh model and that 

corresponding to the updated model.  
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Chapter 4.   

Experiment Result and Discussion 

 

In this section, we evaluate the effectiveness of the proposed model-based approach to NMS 

system performance monitoring using 2 data sets2: one collected from an activity related to lower 

part of the leg and the other collected from a temporomandibular joint (TMJ) system. 

4.1. Lower Limb Muscle Constant Contraction Data Set 

4.1.1. Experiment Setup and Experimental Protocol 

In this data set, sEMG signals were collected from a calf muscle Soleus (SO). Illustrated 

in Figure 4, SO is an important and strong muscle in the leg, which was active in the isometric 

plantar flexion the subject performed [47]. As sEMG signals from SO are accessible and the output 

plantar flexion force is measurable, the experiment provided us an opportunity to study NMS 

system dynamics changes during exercise and recovery. 

 

Figure 4. Leg muscle Soleus 

                                                           
2 These data sets were recorded to validate the proposed algorithms and not used for human subjects’ research. 

Relevant documents are provided as supplemental files. 
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One male subject with no neuromuscular diseases participated the experiment. During the 

signal collection process, the subject was seated in a chair with the right thigh fixed. At the same 

time, the subject’s lower leg was fully supported on a pedal, with the right knee flexed at 90 degree, 

as shown in Figure 5. The plantar flexion force was recorded using S beam load cell (ANYLOAD 

Company [48]), while the sEMG signals from SO were collected simultaneously through pre-gelled 

silver/silver chloride disposable electrodes, with the subject’s knee serving as reference. The data 

acquisition was facilitated by Lab Linc V system (Coulbourn Instruments [49]), at the sampling 

rate of 1212Hz. Frequencies below 8Hz were filtered out by an inbuilt high pass filter to remove 

influence from the human body and the environment. Multiple notch filters implemented in 

MATLAB were used to filter out the power line noise (60Hz) and its harmonics. 

 

 

Figure 5. Experiment setup for plantar flexion data set 

 

Before the experiment, the maximum voluntary contraction (MVC) force of the subject 

was firstly estimated as a reference level. During the experiment, the subject tried to maintain 75% 

of his maximum voluntary contraction (MVC) by observing output force on the computer screen. 

The subject would end the exercise when he could not maintain the force above 60% of his MVC 
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force. After that, the subject repeatedly rested for a minute, followed by a brief 6 ~ 8 second long 

constant plantar flexion contraction. This cycle of rest-brief plantar flexion contractions was 

repeated 6 times and the relevant sEMG and force data were collected throughout. Figure 6 

illustrates how the plantar flexion contraction force changed with respect to time, with force being 

normalized by the maximum contraction force in the process.  

 

 

Figure 6. Normalized contraction force over time 

4.1.2. Feature Extraction 

Figure 7 depicts the sEMG features < 𝑓0|𝑡 >, < 𝑓1|𝑡 >, < 𝑓2|𝑡 > and < 𝑆|𝑡 > for the 

subject in the study. We can observed a statistically significant decreasing trend 3 in the 

instantaneous mean frequencies < 𝑓1|𝑡 > of the SO sEMG signals, which is not a surprise, since 

it is a classic indicator of muscular fatigue [20]. Furthermore, statistically significant increasing 

trend in instantaneous intensities < 𝑓0|𝑡 > is yet another, perhaps less widely accepted indicator 

of muscular fatigue [51].  

                                                           
3 Statistical significance was assessed via a one-sided T test, at the 95% confidence interval [50]. 
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Figure 7. sEMG signatures for data set 1. From top to bottom, the rows of plots in this figure represent 

features < f0|t >, < f1|t >, < f2|t > and < S|t > respectively. In all the rows, statistically significant 

negative trends are indicated with a red dash line while statistically significant positive trends are indicated 

with a green dash line. The area shaded in gray represents the fresh data. All the features are normalized to 

the range [0,1] 

 

4.1.3. Monitoring Results 

The initial 4s of data in the 75% MVC period was used to train the fresh model. The rest 

of data were cut into multiple non-overlapping segments, with each segment containing 4s of data. 

Following [52], the relevant NMS system is modeled as a 2nd order dynamic system, yielding 2nd 

order ARMAX models. As a result, the fresh model had AR order of 2, input order of 1 and MA 

order of 1. The FSI was evaluated in each segment to quantify NMS system performance. For the 

recovery period, we evaluated FSI for each brief plantar flexion contractions period, which gave 

NMS system performance over that period. 
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Figure 8 illustrates how FSI changed with respect to time. A statistically significant 

increase in FSI (p<0.05) was observed during the constant contraction stage, while a statistically 

significant decline in FSI (p<0.05) was also observed in the recovery stage. This behavior supported 

the intuition that, the subject gradually fatigued while maintaining the constant force level, while 

the subject’s NMS system slowly regained normal performance during the recovery stage. The 

bottom part of Figure 8 depicts the movements of the underlying modeling error distributions 

generated by the fresh model in the relevant data sections. During the constant contraction period, 

a shift of the distributions of 1 step ahead prediction errors was clearly visible. Conversely, during 

the recovery stage, the distribution of 1 step ahead prediction errors gradually returned to again 

match to a large degree the fresh error distribution. The aforementioned observations match the 

intuition of expected NMS system changes during exercise and recovery stages.  

 

 

Figure 8. FSI during constant contraction and recovery process 
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Continuing with the results given above, the MFSI during constant plantar flexion 

contraction period shows a statistically negative trend (p<0.05) as can be seen in Figure 9. This 

indicates gradual increasing degradation in the performance of incorporated muscle (SO) over time.  

 

 

Figure 9. MFSI during constant plantar flexion. Gray patches represent fresh data. 

 

4.2. Temporomandibular Joint (TMJ) Cyclic Motion Data Set 

4.2.1. Experiment Setup and Experimental Protocol  

sEMG signals from the following six facial muscles were collected from one subject: right 

temporalis (TA-R), left temporalis (TA-L), right depressor (DA-R), left depressor (DA-L), right 

masseter (MM-R) and left masseter (MM-L). Figure 10 shows locations of the muscles. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCsQFjABahUKEwj0uq-Dp-DGAhWRe5IKHXl5B1o&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTemporomandibular_joint&ei=LfunVbTwIZH3yQT58p3QBQ&usg=AFQjCNF1DUx-CeuZHP3-NNJgqMvhXL8Yiw&sig2=tqWeONrmwLRHxlLwCvzcKg&bvm=bv.97949915,d.aWw
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Figure 10. Muscles incorporated in the experiment 

One male subject with no neuromuscular diseases participated in the experiment. During 

the signal collection process, the subject was seated in a chair with a magnet-based 3 dimensional 

jaw tracker (BioResearch Associates, Inc. [53]) installed to the subject’s head for recording jaw 

motions, as shown in Figure 11. Concurrently, sEMG signals were collected through BioFlex EMG 

electrodes (BioResearch Associates, Inc. [53]). Both the sEMG signals and jaw velocity were 

collected at the sampling rate of 2000 Hz. In the experiment, the subject continuously opened and 

closed mouth without any constraint for 2 minutes. After taking sufficient rest for muscle pain to 

go away, the subject conducted the experiment again for around half a minute. A set of off-line 

notch filters, implemented in BioPAK (BioResearch Associates, Inc. [53]), was used to filter out 

power line noise (60 Hz) and its harmonics. 
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Figure 11. Experiment setup for TMJ cyclic motion data set. The left figure shows the subject involved in 

the experiment, while the right figure presents the magnet-based 3D jaw tracker 

4.2.2. Feature Extraction  

Figure 12 shows the collected sEMG signals for different muscles and their corresponding 

TFDs. The corresponding jaw velocity is presented in the bottom plot of left column in this figure.  
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Figure 12. Signals and their TFDs for data set 2.The upper 6 plots in the left column of this figure shows 

TFD of all incorporated muscles while the bottom plot of left column presents jaw velocity during the 

motion. The right column of plots shows original sEMG signals collected from different muscles. 

  

Figure 13 depicts the sEMG features < 𝑓0|𝑡 > and < 𝑓1|𝑡 > for the subject in the study. 

It can be seen that 5 out of 6 muscles had shown statistically significant positive trend (p<0.05) in 

< 𝑓0|𝑡 >, while all of the muscles show statistically significant negative trend (p<0.05) in <

𝑓1|𝑡 >. This is consistent with < 𝑓1|𝑡 > and < 𝑓0|𝑡 > being classic indicators of muscle fatigue 

[20]. 
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Figure 13. sEMG signatures < f0|t > and < f1|t > for data set 2.The left column of plots in this figure 

shows < f0|t > features, while the right column of plots shows < f1|t > features. In both columns, 

statistically significant negative trends are indicated with a red dash line while statistically significant 

positive trends are indicated with a green dash line. The area shaded in gray represents the fresh data. All 

the features are normalized to the range [0,1] 

 

Figure 14 depicts the sEMG features < 𝑓2|𝑡 > and < 𝑆|𝑡 > for the subject in the study. It 

was noticed that < 𝑓2|𝑡 > in all the muscles had shown statistically significant negative trends 

(p<0.05), while < 𝑆|𝑡 > had shown statistically significant positive trends (p<0.05) in TA-R DA-

R, DA-L MM-L, and statically significant negative trends (p<0.05) in TA-L and MM-R. Current 

literature does not seem to be able to establish a consistent link between trends in  < 𝑓2|𝑡 > and 

< 𝑆|𝑡 > to muscle fatigue. 
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Figure 14. sEMG signatures < f2|t > and < S|t > for data set 2. The left column of plots in this figure 

shows < f2|t > features, while the right column of plots shows < S|t > features. In both columns, 

statistically significant negative trends are indicated with a red dash line while statistically significant 

positive trends are indicated with a green dash line. The area shaded in gray represents the fresh data. All 

the features are normalized to the range [0,1] 

 

4.2.3. Monitoring Results 

The first 8s of the data was used to train the fresh model. The rest of data were cut into 

multiple non-overlapping segments in 6 second time horizon, with FSI evaluated in each segment 

of data. We modeled each pair of muscles as a 2nd order system (mass spring dashpot system), 

yielding a 6th order ARMAX model. Therefore, the fresh model had AR order of 6, input order of 

5 and MA order of 5. 
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Figure 15 illustrates how FSI changed with respect to time. A statistically significant 

increase in FSI (p<0.05) was observed when the subject was performing the 1st cyclic motion. It is 

also evident that after taking sufficient rest, FSI went back to its original level. This behavior again 

supports the intuition that during continuous cyclic motion, the subject gradually got fatigued, while 

the subject’s NMS system regained normal performance after rest. The bottom part of Figure 15 

depicts the changes in modeling error distribution. In the 1st round of cyclic jaw opening and closing, 

a gradual changes in the error distribution of 1 step ahead model predictions is obviously observed 

(points labeled 1, 2 and 3). After rest, the error distribution of 1 step ahead predictions returned 

back to again match with the fresh error distribution (the point labeled 4). The aforementioned 

observations also match the intuition of NMS system changes during continuous cyclic motions 

and recovery processes.  

 

Figure 15. FSI for the 1st and 2nd cyclic motion 
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In this data set, there were 6 muscles (3 pairs of muscles) associated the motion. The 

relevant muscle-level performance indices MFSI are shown in Figure 16. Statistically significant 

negative trends (p<0.05) in MFSI were observed among all the muscles, illustrating performance 

degradation of corresponding muscles. Specifically, it was noticed that MM-R and MM-L had more 

significant decreasing trend (p<0.001) in MFSI compared to other muscles, as evident from Table 

3. This behavior is consistent with the fact that MM-R and MM-L contributed the most (work the 

most) in the performed cyclic motion.  

 

Figure 16. MFSI for the 1st cyclic motion. Gray patches represent fresh data.  

 

Table 3. Slopes of MFSI over time in the 1st cyclic motion 

Muscle TA-R TA-L MM-R MM-L DA-R DA-L 

Slope  -8.9825e-04 -7.5230e-04 -0.0012 -0.0022 -6.4292e-04 -6.8751e-04 
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Chapter 5.   

Conclusion & Future Work 

 

5.1. Conclusions 

Research presented in this thesis focused on developing model based approaches for 

monitoring performance degradation and recovery of different portions of NMS system. 

Furthermore, the proposed method enabled characterization of NMS system performance 

degradation at muscle level. Monitoring of NMS system performance was realized via statistical 

analysis of modeling error generated by the ARMAX model relating instantaneous intensities, 

expected frequencies, 2nd order moments and entropies extracted from each muscle’s sEMG signals 

with physiological outputs. At the muscle level, performance degradation of a specific muscle in 

the NMS system was characterized by tracking changes in the transfer functions related to that 

muscle.  

This thesis discussed the findings coming from two different data sets, one collected from an 

activity related to lower limb muscles and the other collected from TMJ muscles. In both data sets, 

the model-based approach successfully detected statistically significant trends representing NMS 

system performance degradation as exercise progressed. Furthermore, recoveries to original system 

performance were observed after subjects had sufficient rest. In addition, the model-based muscle-

level performance characterization successfully demonstrated degradation in all the relevant 

muscles and identified those muscles that degraded the most in the designated motions. 

 

5.2. Future Work 

Advancements in the model-based monitoring of NMS system could facilitate personalizing 

and customizing of training regimens for athletes and patients undergoing rehabilitation by 

prescribing exercises. E.g., for athletes, detection and characterization of NMS system performance 
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degradation and recovery can be used as an indication to stop training before the onset of injury, 

and start training again when muscles recover. Potential future works can further concentrate on 

the following three aspects. Firstly, the dynamic model used in this thesis assume linear 

relationships between system inputs and outputs, which is analytically tractable but not appropriate 

for NMS system modeling. Therefore, developing nonlinear dynamic models could better 

approximate NMS system dynamics and enable more accurate performance monitoring. 

Furthermore, as muscles coordinate with each other during movement [54], modeling coordination 

between different muscles in the dynamic models could further enhance the muscle-level 

performance characterization, such as linking instantaneous features between different muscles. 

Finally, as the number of participants, incorporated motions and portions of NMS system were 

limited in our two data sets, the model-based monitoring techniques should be further explored on 

larger data sets corresponding to different portions of NMS system and rapidly changing motions, 

such as monitoring leg muscles during cycling.  
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