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CHAPTER I 

INTRODUCTION 

Pavements are civil engineering structures used for the purpose of carrying 

vehicular traffic safely and economically. Since the first hot mixed asphalt was placed 

on Pennsylvania Avenue in Washington, D.C., in 1876, flexible pavements have 

increased to 94% of the 12.9 million lane kilometers (8 million lane miles) paved roads 

in the U.S. (FHWA, 1990).  

 A conventional flexible pavement consists of a prepared subgrade or foundation 

and layers of subbase, base and surface courses (AASHTO 1993). The layers are 

selected to spread traffic loads to a level that can be withstood by the subgrade without 

failure. The surface course consists of a mixture of mineral aggregates cemented by a 

bituminous material. The base and subbase course usually consists of unbound granular 

materials. In flexible pavements, and especially for thinly surfaced pavements, the 

unbound granular layers serve as major structural components of the pavement system. 

1.1 Problem Statement 

 Existing and past pavement design procedures have generally taken a very 

conservative view of the relative strength properties of unbound granular materials. 

There has been a recent move towards the use of mechanistic-empirical approaches to 

design and analyze pavement structures. 

 

     

The format of this dissertation follows that of the Journal of Transportation Engineering 

of the American Society of Civil Engineers. 
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 Conventional flexible pavements have been analyzed as layered elastic systems 

resting on a homogeneous semi-infinite half-space. The development of the layered 

elastic system solution started when Boussinesq (1885) solved for the stress, strain and 

displacement in a semi-infinite linear elastic homogeneous half-space due to a point load 

acting on the surface. Burmister (1943) developed a true layered elastic theory for a two-

layer system and extended it to a three-layer system (Burmister, 1945). With the advent 

of computers, the theory has been applied to multilayer system with any number of 

layers with specified moduli and Poisson’s ratios. 

The mechanical properties of unbound granular layers in flexible pavements are 

important to the overall structural integrity of the pavement structure. The resilient 

(elastic) properties of unbound granular materials are non-linear and stress dependent 

(Hicks and Monismith, 1971; Uzan, 1985). 

Linear elastic analysis can be used with reasonable confidence for pavements 

with full depth asphalt layers, but it is inappropriate for unsurfaced or thinly surfaced 

flexible pavements unless the nonlinear behavior of unbound granular materials are 

properly taken into account (Brown, 1996). To account for the nonlinear behavior of 

unbound granular materials, the layers are usually subdivided into sub-layers to 

accommodate variation in resilient modulus caused by the change in stress which occur 

with depth as a result of both traffic and overburden loads. There are different sub-

layering methods available for assigning moduli to granular materials. The sub-layering 

methods depend on the design method or pavement structure and are totally different 

from each other (Wardle et. al., 1998). This multiple layered elastic process can account 

for variation in vertical stress but cannot effectively account for variation in lateral or 

horizontal stresses. Due to the non-linear behavior of unbound granular materials, and 

the variation of vertical and horizontal stresses within a pavement profile, the finite 

element method has recently been preferred to analyze pavements over the layered 

elastic method (Brown, 1996).  

 Due to the large amount of computer time and storage required of most finite 

element method programs, they have been used primarily for research analysis instead of 
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routine design. With the advent of faster and larger memory computers, it has become 

possible to use finite element method programs to analyze pavements on personal 

computers. 

One of the problems encountered by researchers developing finite element 

method programs for pavement systems with compacted unbound granular materials 

concerns the tendency for horizontal stresses to be computed in the granular layers. 

Since unbound granular materials have negligible tensile strength aside from that 

induced by suction and particle interlock, adjustments are usually applied to avoid 

predicting false failure conditions in the granular layers (Brown, 1996). 

Recent developments in pavement materials research suggest that directional or 

anisotropic elastic modeling can reduce and even reverse horizontal tensile stresses 

predicted in unbound granular layers with isotropic elastic properties (Tutumluer, 1995). 

However, the determination of cross-anisotropic elastic properties using a conventional 

triaxial setup is difficult. 

1.2 Objectives 

The main objectives of this study are to: 

• identify and assess the most accurate models used to characterize unbound granular 

layers which can be effectively incorporated into a layered  (non-linear) elastic or 

finite element model 

• develop improved characterization protocols and models to provide a more accurate 

assessment of the contribution of unbound granular layers to the overall structural 

integrity of flexible pavements 

• evaluate the revised characterization model to aggregate variables through a 

laboratory study and assess the impact of these variables on performance. 

1.3 Outline of Dissertation 

This dissertation consists of eight chapters. An extensive literature survey on the 

characterization of unbound granular materials is included in Chapter II. The literature 

review summarizes existing laboratory, analysis, resilient modeling and permanent 
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deformation modeling used to characterize the behavior of unbound granular materials in 

flexible pavements. Based on the findings of the literature review, nonlinear cross-

anisotropic resilient modeling was identified to be the best available model to 

characterize granular materials.  

The development of a new laboratory testing protocol to determine the nonlinear 

cross-anisotropic resilient response of unbound granular materials is presented in 

Chapter III. The testing protocol involves applying dynamic stress regimes within static 

stress levels and measuring material response (strains). The measured strains are used as 

input into a system identification method to determine five stress dependent cross-

anisotropic properties of unbound granular materials. 

A comprehensive laboratory test matrix was developed to study the resilient and 

permanent deformation behavior of four granular materials. Chapter IV includes 

description of the laboratory characterization phase of this study. The laboratory test 

results are presented and discussed in Chapter V. The effect of moisture, gradation, and 

material type on the deformational response of granular materials are also discussed. 

A finite element program was modified to include cross-anisotropic material 

modeling in pavement layers. Chapter VI contains the development and modifications 

made to the finite element program. The finite element program was used to analyze 

resilient pavement response for 27 different pavement sections. Pavement response in 

the form of stress distributions was obtained for different material models. Chapter VI 

also discusses the pavement sections analyzed and evaluates the effect of different 

material models on the distribution of stresses within the pavement sections. 

Chapter VII presents field validation of the resilient response. The pavement 

sections and data collection methods are detailed in this chapter. Falling Weight 

Deflectometer and Multi-Depth Deflectometer data were used to backcalculate material 

properties of two pavement sections. Comparisons were made between field deflection 

bowls and deflection bowls predicted by different material models using the finite 

element program. 
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The major findings of this research are outlined in Chapter VIII. 

Recommendations are also made in this chapter for future research. 
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CHAPTER II 

LITERATURE REVIEW 

Unbound granular materials are multi-phase materials comprised of aggregate 

particles, air voids and water. The mathematical characterization of unbound granular 

materials should ideally be based on the behavior of the individual constituent elements 

and their interaction. This calls for the use of particulate mechanics techniques to 

characterize the behavior of unbound granular materials. However, such an approach can 

be rather complex and would not be particularly suitable in pavement engineering 

applications. As faster computers become available, particulate mechanics becomes a 

more suitable means to characterize the behavior of unbound granular materials. Also, 

since the scale of practical interest is in the range of tens to hundreds of feet, the 

microscopic effects of unbound granular materials can be averaged and treated as a 

continuum (Chen and Mizuno, 1990). 

 The mechanical behavior of unbound granular materials, like soils, is influenced 

by factors such as density, stress history, void ratio, temperature, time, and pore water 

pressure. It is difficult to adequately incorporate these factors in a simple mathematical 

model and then to implement the model realistically into a computer-based numerical 

analysis, within the framework of continuum mechanics. 

 Existing pavement design and analysis methods rely on empirical procedures 

developed through long-term experience with specific types of pavement structure and a 

limited number of types of pavement construction material under limited conditions. 

These empirical methods have generally taken a very conservative view of the relative 

strength properties of granular materials used as base and subbase layers in conventional 

flexible pavements. 

Use of empirical models should be limited to the conditions on which they are 

based and cannot usually account for changes in loading and environmental conditions. 

There has been a recent emphasis on the use of mechanistic-empirical approaches to 

design and analyze pavement structures.  In mechanistic-empirical procedures, models 
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based on physics and engineering principles are used to predict pavement response.  This 

is adjusted, or calibrated, to fit observed performance, or empirical data. Understanding 

the behavior of pavement materials and their accurate characterization are important to 

the successful implementation of any mechanistic-empirical procedure. 

2.1 Characterization of Unbound Granular Materials 

The purpose of laboratory methods is to subject a representative pavement 

material sample to an environment (consisting of simulated traffic loading and 

environmental conditioning) that closely simulates field conditions.  The general stress 

regime experienced by an element of material within a pavement structure as a result of 

a moving wheel load on the surface consists of pulses of vertical and horizontal stresses 

accompanied by a double pulse of shear stress.  Also, the principal stresses in an element 

of pavement material rotate with the approach and departure of a wheel load (Lekarp et 

al., 2000). 

 Laboratory testing equipment must be capable of applying a load which 

accurately simulates the effects of traffic.  For pavements, this could demand complex 

facilities.  However, laboratory testing methods must also be simple and repeatable 

enough so that highway agencies can perform them routinely and quickly acquire 

necessary material parameters. 

 It has been reported that a close match to field conditions can be obtained by the 

use of a Hollow Cylinder Apparatus (Alavi, 1992, Chan et al 1994), with which the 

rotation of principal stresses can be accommodated.  The use of a Hollow Cylinder 

Apparatus (HCA) is complex and has only been used for research.  However, simpler 

testing protocols exist which involve the use of stress invariants and which express stress 

regimes in terms of octahedral shear and normal stresses (Brown, 1996).  The invariant 

approach has been applied in conjunction with repeated load triaxial testing to 

characterize the response of granular materials in recent years. The deformation of 

unbound granular materials under repeated traffic loading is defined by a resilient 

response which is important for the load carrying ability of the pavement and a 
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permanent strain response, which characterizes rutting and long-term pavement 

deformation (Lekarp et. al., 2000). 

          Granular material base and subbase layers are generally partially saturated in 

pavements.  Varying the moisture regime in laboratory triaxial test specimens is 

straightforward, and the effects of moisture changes on material response parameters can 

be easily measured.  Appropriate models can be constructed from the results.  Pappin et. 

al. (1992) showed that the resilient response modeled for dry granular material is equally 

applicable to saturated and partially saturated conditions, provided the principle of 

effective stress is observed.  In practice, although laboratory modeling of moisture 

effects is readily accomplished, estimation of the effective stress state in a pavement 

granular layer in the field may not be straightforward (Brown, 1996). 

2.2 Repeated Load Triaxial Testing 

  The study of the mechanical properties of unbound granular materials calls for a 

test in which principal stresses and strains that span the range of expected conditions can 

be evaluated so that extrapolations used by structural models are kept to a minimum. The 

most convenient standard test, which allows for the direct measurement of principal 

stresses and strains, is the cylindrical triaxial test (Figure 2.1). The shape of the sample 

required is simple and practical for both field representation and easy laboratory 

preparation. The minor principal stress, σ3, and intermediate principal stress, σ2, are 

equal to the confining stress applied to the sample. The triaxial test has been used with 

notable success in the field of geotechnical engineering and its principles have been 

extended to the field of pavement engineering. 
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σ1 

σ3 

σ2 

 

Figure 2.1 Cylindrical Triaxial Test. 

 

In geotechnical engineering the triaxial test is used to determine the shear 

strength parameters of soils. The problem being analyzed usually dictates the rate of 

shear and drainage conditions applied to the cylindrical sample. 

Some modifications have been made to the traditional triaxial test for pavement 

engineering applications. In pavement engineering, the repeated load triaxial test is 

preferred to the triaxial shear test. The measurement of principal stresses and strains are 

maintained, but unlike the traditional triaxial shear test, transient loads, which are well 

below material failure stresses, are applied to a cylindrical sample of pavement material. 

Also, strict drainage conditions and sample consolidation are not enforced. Triaxial 

testing data have been used to provide input for the material properties in pavement 

structural models to determine the stresses and strains that lead to performance 

predictions. 

In the repeated load triaxial test, a constant confining stress is usually applied to 

the cylindrical samples and a deviatoric stress is axially cycled for a predetermined 
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number of times. Allen (1973) used variable confining stresses and reported higher 

values of Poisson’s ratio compared to the constant confining stress. 

The transient loads are chosen so that they best represent typical stress conditions 

within a pavement. Charts are available that can be used to select the cycle of a transient 

load (Barksdale, 1971). A typical transient load consists of a 1.0-second cycle sinusoidal 

load consisting of 0.1-second load duration and a 0.9-second rest. This load cycle was 

established to simulate the application of traffic loads on the pavement (Barksdale, 

1971). 

The repeated load triaxial test has been used extensively to study the behavior of 

unbound granular materials, despite its inability to simulate the rotation of principal 

stresses associated with shear stress reversal under a rolling wheel load.  Allen (1973) 

conducted triaxial tests in which the chamber confining pressure was varied 

simultaneously with the deviator stress.  While the technique did not account for the 

rotation of principal planes, it attempted to better simulate conditions under a moving 

wheel load.  Stress pulse duration was 0.15 seconds for the primary test series.  Results 

of the variable confining pressure tests yielded slightly lower values of the resilient 

modulus than did the constant confining pressure tests.  However, the difference was not 

constant and did not appear to be significant.  Using a Hollow Cylinder Apparatus 

(HCA), Chan (1990) demonstrated that resilient strains were unaffected by the rotation 

of principal stress phenomenon.  He also showed that the principal planes of strain 

remained coincident with those of stress.  These findings support the use of an invariant 

approach for pavement analysis and the use of relatively simple resilient strain models 

derived from triaxial tests rather than a more complex apparatus such as the HCA. 

          There has been extensive work in the development of the repeated load triaxial test 

in both Europe and North America.  The test has been used in the U.S. since the 1950's 

(Seed et al., 1955).  The American Association of State Highway and Transportation 

Officials (AASHTO) have adopted three procedures for measuring the resilient modulus 

of granular materials in the past.  The recent AASHTO standard procedure (AASHTO 

T294-94; “Resilient Modulus of Unbound Granular Base/Subbase Materials and 
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Subgrade Soils” - SHRP Protocol P46) includes method for measuring axial 

deformations on the specimen using externally mounted Linear Variable Differential 

Transducers (LVDTs).  The procedure does not provide methods for measuring the 

lateral/radial strains.  Also, confining stresses are not cycled and only deviator stresses 

are cycled. 

 Other researchers (Nazarian, 1996 and Tutumluer, 1998) have recommended 

changes to AASHTO T-294-94 to include measurement of lateral strains and specimen 

conditioning.  In Europe, a triaxial apparatus was developed at Nottingham University 

(Boyce 1976) which has a system for cycling both deviator and confining stresses.  Pore 

water pressure is also measured during the test.  Details of the Nottingham apparatus are 

outlined in Boyce (1976), Pappin (1979), Boyce et. al. (1976), and Brown et. al. (1989).  

It can be seen that a single testing protocol has not been universally adopted. 

 For pavement applications the strains measured in a repeated load triaxial test are 

separated into elastic or resilient part, for resilient modulus, and a plastic part, for 

permanent deformation (Lekarp et. al., 2000). 

2.3 Behavior of Unbound Granular Layers in Pavements 

Consolidation, distortion and attrition occur when a granular material deforms 

under load (Lekarp, et. al. 2000). The response of an element of granular material in a 

pavement depends on its stress history, the current stress level, and the degree of 

saturation. Granular materials are not elastic but experience some non-recoverable 

deformation after each load application.  In the case of transient loads, and after the first 

few load applications, the increment of non-recoverable deformation is much smaller 

compared to the increment of resilient/recoverable deformation. This resilient behavior 

of granular layers is the main justification for using elastic theory to analyze their 

response to traffic loads (Brown, 1996).  The engineering parameter generally used to 

characterize this behavior is resilient modulus (MR).  The resilient modulus is obtained 

from repeated load triaxial tests, and it is calculated based on the axial recoverable strain 

under repeated axial loads. 
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The nonlinear stress-strain relationship of unbound aggregates at strain levels 

existing in pavements has been represented through the application of stress-dependent 

models of the resilient modulus and Poisson’s ratio. The factors affecting the resilient 

modulus and Poisson’s ratio have been studied by many researchers including Hicks 

(1970), Hicks and Monismith (1971), Allen (1973), Uzan (1985), Barksdale and Itani 

(1989) and Sweere (1990). Factors identified to influence the resilient modulus and 

Poisson’s ratio of unbound granular materials include stress levels, density, gradation, 

moisture, stress history, aggregate type and particle shape. Lekarp et. al (2000) provided 

an extensive literature review on resilient modeling and factors affecting the resilient 

properties of unbound granular materials. Although researchers seem to agree on the 

influence of stress and moisture on modulus, there are conflicting reports on the other 

factors. 

  Moduli variations due to moisture changes can be quantified in the laboratory.   

Anticipated seasonal variations in moisture content of granular layers must be included 

in the design process, so that appropriate laboratory derived model can be used properly.   

 The term “resilient” has a precise meaning.  It refers to that portion of the energy 

that is put into a material while it is being loaded that is completely recovered when it is 

unloaded.  As noted in the SHRP A-005 project (Report A357), the Poisson’s ratio of a 

resilient material is also stress dependent and is tied to the same material constants as the 

resilient modulus.  The importance of this fact is that immediately beneath a tire load, an 

unbound aggregate generates its own lateral confining pressure and becomes very stiff, 

almost as if it were forming a moving vertical column that travels along immediately 

beneath the load (Lytton, 1998).  How large the confining pressure and how stiff the 

aggregate base becomes depend strongly upon how large the Poisson’s ratio becomes.  

Contrary to linear elastic materials in which the Poisson’s ratio cannot rise above 0.5, in 

unbound aggregate bases, the Poisson’s ratio has been measured in the laboratory and 

the field to be above 0.5 (Allen, 1973).  This is possible because both the resilient 

modulus and the Poisson’s ratio depend upon the stress level instead of being 

independent of it as in a linearly elastic material.  
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 A Poisson’s ratio of 0.5 means that when a load is applied to a material it may 

change in shape but not in volume.   A Poisson’s ratio less than 0.5 mean that when a 

material is loaded in compression, it may change in shape but it also decreases in volume 

(consolidation).  A Poisson’s ratio larger than 0.5 means that the material may change in 

shape, but it will also increase in volume (dilate).  It is this tendency to increase in 

volume under load, dilatancy, which makes unbound granular base layers so useful in a 

pavement structure (Lytton, 1998).  When a collection of particles (aggregate) is loaded, 

the individual particles will try to wedge or rotate past the other particles.  If the particles 

have been well compacted, this wedging and rotating action will force the particle apart, 

causing the overall volume to change. 

 This volume change will occur even if all of the particles are spheres, that is , 

perfectly round (Lytton, 1998).  A different amount of volume change will occur if the 

particles are oblong or flat or plate shaped.  Naturally, if the volume change depends 

upon the shape of the particles, then the Poisson’s ratio depends on their shape.  

Similarly, the range and distribution of the individual particle sizes also affect what the 

Poisson’s ratio will be under different states of stress (Lytton, 1998).  The impact of 

particle shape and gradation on the Poisson’s ratio and the effect of the Poisson’s ratio 

on the performance of unbound aggregates in a pavement under load should be 

accommodated by granular material constitutive models in mechanistic pavement 

design. 

 Unbound granular materials like most geologic materials exhibit anisotropic 

behavior.  During compaction, some anisotropy is induced in the granular layers before 

traffic loads impose further anisotropy. After incorporating anisotropic elastic modeling 

in the GT-PAVE finite element code, Tutumluer (1995) reported that cross-anisotropic 

elastic modeling can predict the behavior of unbound granular layers better than 

isotropic elastic model. The significance of this directional-dependent nature of the 

modulus and Poisson’s ratio will be discussed in detail later. 
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2.4 Resilient Behavior Modeling of Unbound Granular Materials 

 Resilient response of unbound granular materials is usually characterized by 

resilient modulus and Poisson’s ratio or by shear and bulk modulus. For repeated load 

triaxial tests with constant confining stress, the resilient modulus and Poisson’s ratio are 

defined as (Lekarp et. al., 2000): 
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where; 

 MR = Resilient modulus, 

 ν = Resilient Poisson’s ratio, 

σ1 = Major principal or axial stress, 

 σ3 = Minor principal or confining stress, 

 ε1 = Major principal or axial resilient strain, and 

 ε3 = Minor principal or radial resilient strain. 

 For repeated load triaxial test with variable confining stress, resilient modulus 

and Poisson’s ratio are defined as (Lekarp et. al., 2000): 
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Many researchers have used laboratory data to model the nonlinear stress-

dependence of resilient modulus and Poisson’s ratio. The following discussion of 

selected models is intended to highlight the importance of stress levels to describe the 

resilient behavior of unbound granular materials.   
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2.4.1 Confining Pressure Model 

Seed et al., (1967) subjected sand and gravel, both saturated and dry, to repeated 

load triaxial testing and expressed the results in the form: 

231
k

R kM σ=        (2.5) 

where k1 and k2 are regression constants. They used Equation 2.5 with success to predict 

the deflections in prototype pavements. 

2.4.2 k-θ Model 

 A practical nonlinear description of the resilient modulus of unbound granular 

materials was reported by Hicks and Monismith (1971) and implemented in the 

AASHTO Guide for the Design of Pavement Structures. The resilient modulus was 

described as depending upon the sum of the principal stresses (Equation 2.6). 

21
k

R kM θ=          (2.6) 

where θ = sum of principal stresses or first stress invariant (σ1 + 2σ3). 

Equation 2.6 has become the most common representation of the resilient 

modulus, relating effects of the state of stress to layer stiffness for use in pavement 

design. Allen (1973) compared the results from constant confining pressure triaxial tests 

with those from variable confining pressure tests. Similar results were obtained from 

each test type, although constant confining pressure conditions yielded higher values for 

Poisson’s ratio.  The data showed that Equation 2.6 fit the data better than Equation 2.5. 

 Uzan (1988) discusses a shortcoming of the k-θ resilient model (Equation 2.6).  

He points out that the model fails to account for the effects of shear stress on the resilient 

modulus and is therefore applicable over a small range of stress paths.  This discrepancy 

is illustrated by Figure 2.2 from Uzan (1988), where the value of the resilient modulus 

predicted by equation 2.6 is plotted against axial strain and the relation is compared with 

test data.   The predicted values of the modulus increase with increasing axial strain, in 

contrast to the test data, which shows the modulus to be decreasing.  Other models have 

been proposed which yield more accurate predictions of the effects of shear stress and 

strain. 
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Figure 2.2 Test Results versus Modulus/Strain Relation from Equation 2.6 [after Uzan 

(1988)]. 

2.4.3 Uzan Model 

 Uzan (1985) proposed a modification to the model k-2 model, which accounts for 

shear behavior by the addition of a deviator stress term.  The model is defined by: 

321
k

d
k

R kM σθ=       (2.7) 

where σd = Deviator Stress (σ1 -σ3) and k1, k2, and k3 are regression constants. 

Figure 2.3, from Uzan (1988), compares measured values for the modulus with 

predictions from Equation 2.7.  The Uzan model appears to adequately account for shear 

and dilation effects and to fit the test data better than does the k-2 model (Equation 2.6). 
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Figure 2.3 Experimental Results Compared to Uzan Model. [After Uzan (1988)]. 

 

 Witczak and Uzan (1988) modified Equation 2.7 by replacing the deviator stress 

term with octahedral shear stress and non-dimensionalized the model (Equation 2.8) to 

facilitate easy conversion between different units. The Uzan model has been accepted as 

a universal material model for pavement materials and has become popular in routine 

pavement analysis. 

33
1

1

k

a

oct
k

a
aR PP

IPkM 















=

τ
    (2.8) 

where; 

 I1= First stress invariant (sum of principal stresses), 

τoct = Octahedral shear stress, and 

Pa = Atmospheric pressure. 



 18

2.4.4 Lytton Model 

Lytton (1995) argues that unbound granular materials in pavements are normally 

unsaturated and applied the principles of unsaturated soil mechanics to the Uzan model. 

To determine the effective resilient properties of unsaturated granular materials Lytton 

(1995) added a suction term to the Uzan model and expressed the resilient modulus as: 
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where 

 θ = Volumetric water content, 

 hm = matric suction, 

 f = function of the volumetric water content, and 

 k4 = θ fhm . 

2.4.5 Contour Model 

The nonlinear stress-strain behavior of unbound granular materials have also 

been modeled by decomposing both stresses and strains into volumetric and shear 

components (Boyce, 1976). Brown and Papin (1981) modified the contour model 

originally developed by Boyce (1976) to account for stress path effects. The model uses 

bulk and shear moduli to describe material properties.   Equations 2.10, 2.11, and 2.12 

are used to calculate volumetric and shear strains. 
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where  

Ki and Gi are initial bulk and shear moduli, 

I1 = σ1 + σ2 + σ3,  

σd = σ1 -σ3, 

po = reference pressure,  

I11, σd1 and I12, σd2 are I1 and σd at stress states 1 and 2 respectively, 

1 = (∆I1
2 + ∆σd

 2)½, and 

β, k1, k2 , and k3 are statistical material constants.  This model yields accurate 

values for the resilient modulus over a wide range of stress paths.  However, since the 

model requires determination of four material constants, laboratory and analytical 

procedures may be too complicated for routine design use (Tutumluer, 1995). Other 

models based on the contour models have also been proposed (Jouve et al., 1987; Thom, 

1988; Sweere, 1990). 

A review of the literature reveals that while the Uzan type of model is highly 

favored in the U.S., the bulk and shear moduli models are popular in Europe. 

The resilient Poisson’s ratio has also been modeled to depend on stress levels by 

a few researchers. Hicks and Monismith (1971) observed that the resilient Poisson’s 

ratio increases with decreasing confining pressure and used a third-order polynomial to 

describe resilient Poisson ratio (Equation 2.13). 
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where A, B, C and D are regression coefficients. 

 Lytton et al. (1993) derived a partial differential equation based on 

thermodynamic principles to relate the resilient Poisson’s ratio with stress (Equation 

2.14). 
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where 

 J2
/ is second stress invariant of the deviatoric stress tensor, and 

 Ki are the regression coefficients from the Uzan model. 

The solution to this partial differential equation led to two more regression coefficients 

including the three coefficients from the Uzan model. This model was termed the k1-k5 

model. There are infinite number of solutions to this partial differential equation. Lytton 

et al. observed from laboratory data that for pavement materials, the particular solution 

can be expressed as: 
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where 

 x = I1, 

y = J2
/ ,  

u1 = 3y-x2, 

Bv(c,d) is the incomplete Beta function, 

K3
/ = k3 / 2, 

k1, k2, k3 are regression coefficients determined from the Uzan model, and 

k4, k5 are new regression coefficients. 

2.5 Permanent Deformation Models 

Resilience characteristics of paving materials are most important in fatigue 

cracking analyses.  However, predictive procedures for rutting in flexible pavements 

require the assessment of the permanent deformation potential of granular layers. 

 Energy is put into a material when it is loaded. The resilient energy is that part of 

the applied energy that can be recovered when the material is unloaded.  The rest of the 

energy that is not recovered is capable of doing work on the material.  In unbound 

aggregates, most of the work goes into permanent strain that accumulates with repeated 

loading and unloading.  It is this accumulating permanent strain in an aggregate base 
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course that creates rutting.  Rutting is made up of two parts, permanent volumetric 

compression and permanent lateral shearing movements.  An unbound aggregate base 

course contributes to both of these (Lytton, 1998).  

 The criterion of mechanistic design methods for flexible pavements are usually to 

control the resilient tensile strain at the bottom of the asphalt layer in order to limit 

fatigue damage and resilient vertical compressive strain at the top of the subgrade for 

overall pavement rutting.  Rutting (permanent deformation) in granular base and subbase 

layers is generally assumed to be negligible.  This assumption is not always true because 

serious rutting can occur within the granular base and subbase layers if they are not 

properly designed, constructed or characterized (Park, 2000).  Repeated load triaxial 

tests are capable of characterizing both the resilient and permanent deformation 

behaviors of unbound granular materials.  The measurement of permanent deformation 

characteristics of unbound aggregates has received relatively less experimental attention 

than resilient modulus, although some notable contributions have been made.  This is 

partly because the experiments are inherently destructive and require many specimens to 

be tested compared to the lower stress level, essentially non-destructive, resilient strain 

tests (Lekarp et. al., 2000).  Aggregate characteristics including shape, angularity, 

surface texture, and roundness have an important influence on the resilient and 

permanent deformation response of an unbound aggregate (Barksdale, 1991).  The 

permanent deformation accumulation in an unbound aggregate also depends on the stress 

level as well as the stress history.  Moisture content, principal stress rotation and density 

also affect the accumulation of plastic strains in unbound granular materials (Lekarp, et. 

al., 2000). Like resilient behavior, the importance of applied stress is strongly 

emphasized in the literature. Permanent strain is related directly to deviator stress and 

inversely to confining stress. Many researchers have demonstrated that insignificant 

permanent deformation develops at low stress levels.  Limiting the repeated stresses to 

about 60% of the triaxial shear strength of a granular material limits permanent 

deformation to acceptable levels.  Thompson (1998) states that permanent deformation is 

primarily related to ultimate shear strength and not resilient modulus.  Lekarp and 
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Dawson (1996) argue that failure in granular materials under repeated loading is a 

gradual process and not a sudden collapse as in static failure tests.  

 Barksdale (1972) observed after studying the behavior of granular materials that 

a 5% decrease in density was accompanied by an average of 185% increase in plastic 

strain. Allen (1973) reported a reduction in total plastic strain of 80% in crushed 

limestone and 22% in gravel as the specimen density was increased from Proctor to 

modified Proctor density. 

 The flow theory of plasticity has been used with much success in the 

geotechnical engineering field to predict plastic strains in soils. Several researchers 

(Mroz et al., 1978; Dafalias et al, 1982; Desai et al., 1986) have worked in the 

development of isotropic and anisotropic hardening models to predict the behavior of 

soils under cyclic and monotonic loading. 

In pavement engineering, several researchers have studied the permanent 

deformation characteristics of unbound granular materials and proposed simpler models 

to characterize them. Plastic strains are usually related to the number of load applications 

or stress condition. The following discussion examines models for characterizing the 

permanent deformation behavior of unbound aggregates. 

2.5.1 Hyperbolic Model  

 The hyperbolic plastic stress-strain model developed by Duncan and Chang is 

suitable for predicting plastic deformation properties over a very wide range of stress 

states under static loading only.  The hyperbolic model relates confining stress, cohesion, 

angle of internal friction, and ratio of measured strength to ultimate hyperbolic strength. 

The model is expressed as: 
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where, 

 εp  = Axial plastic strain, 

  k1σ3 k2 = Relationship defining the initial tangent modulus as a function of  
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 Confining pressure with k1 and k2 as constants, 

 C = Cohesion, 

 φ = Angle of internal friction, and 

 Rf = Ratio of measured strength to ultimate hyperbolic strength. 

 Barksdale (1972) used the hyperbolic model to fit experimental data for different 

material types and number of load repetitions. 

2.5.2 VESYS Model 

 The VESYS computer program (FHWA, 1978) incorporated a method for 

predicting the rut depth in a pavement.  This method is based on the assumption that the 

permanent strain is proportional to the resilient strain by: 

αεµε −= NNp )(       (2.17) 

where 

εp(N) = permanent or plastic strain due to single load or Nth application, 

ε = the elastic/resilient strain at the 200th repetition, 

N = the number of load application, 

µ = Parameter representing the constant of proportionality between permanent and 

elastic strain, and 

α = Parameter indicating the rate of decrease in permanent strain with number of load 

applications. 

2.5.3 Exponential/ Log N Model 

 The most commonly used model for characterizing permanent deformation 

behavior of granular material was developed by Lentz and Baladi (1981).  They 

indicated that the change in permanent strain is large during the first few cycles and then 

gradually decreases as load repetitions continue.  The accumulation of permanent 

deformation in an unbound aggregate can be expressed as: 

NbaorAN p
b

p loglog +== εε    (2.18) 

where: 
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N = number of repeated load application, 

εp = permanent strain, 

a and b = experimentally determined factors, and 

A = Antilog of a. 

2.5.4 Ohio State University (OSU) Model 

Researchers from Ohio State University (OSU) proposed a permanent deformation 

prediction model for the Ohio Department of Transportation (Majidzadeh, 1991).  The 

OSU model is: 

mp AN
N

=
ε

       (2.19) 

where 

 εp and N are as defined above 

A = experimental constant dependent on material and state of stress conditions; and 

m = experimental constant depending on material type. 

If the b term from the exponential/log N model is known, m is equal to b-1. 

Various data indicate that for reasonable stress states (considerably below material 

failure strength), the b term for soils and unbound granular materials is generally within 

the range of 0.12 to 0.2.  The lower values are for soils.  The A term is variable and 

depends on material type, repeated stress state, and factors influencing material shear 

strength. 

2.5.5 Texas A&M Model 

 Tseng and Lytton (1986) characterized permanent deformation in pavement 

materials with a three-parameter model as:  
βρεε 
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where 

 εp = Permanent axial strain, and 

 ε0, β, and ρ = material parameters. 
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The material parameters are different for each material and also depend upon test 

conditions such as confining and deviator stresses and density. 

2.5.6 Rutting Rate (RR) Model 

 Thompson and Naumann (1993) introduced the rate of rutting (RR) model and 

validated it by analyzing the AASHO road test data. The rate of rutting is given by: 

BN
A

N
RDRR ==       (2.21) 

where: 

 RR = Rutting Rate, 

 RD = Rut depth, inches, and 

A, B = terms developed from field calibration testing data and information. 

 

Thompson (1993) indicated that stable pavement rutting trends were related to estimated 

pavement structure responses, particularly the Subgrade Stress Ratio (SSR).  He 

summarized that since stress ratio is a valid indicator of rutting potential, the factors 

influencing the stress state and strength of the in-situ granular materials are important for 

characterizing permanent deformation of granular materials.  Garg and Thompson 

(1997) used equation (2.21) to determine rutting potential in MnRoad bases and 

subbases.  They reported the parameter, A, to be a function of the material shear strength 

and recommended determining shear strength from results of the rapid shear test 

performed with a confining pressure of 15 psi.  Thompson (1998) states that the 

University of Illinois testing protocol for evaluating granular base/subbase materials 

includes this type of shear testing for categorizing rutting potential.  Prior to rapid shear 

testing, this specimen is conditioned by application of 1000 repetitions of 310-kPa (45-

psi) deviator stress at 103-kPa (15-psi) confining pressure. Conditioning at lower stress 

ratios appeared to be insufficient for establishing rutting potential.  The University of 

Illinois procedure adequately differentiated among aggregates with excellent to 

inadequate rutting resistance (Thompson (1998)). 
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2.5.7 Yield Surface Model 

 Bonaquist and Witczak (1998) developed a method for incorporating permanent 

deformation of unbound granular base and subbase layers in the design of conventional 

flexible pavements.  This method employs the use of yield surfaces from a flow theory 

model as design criteria for limiting permanent deformations in granular layers.  The 

model is based on a hierarchical approach for constitutive modeling of geologic 

materials (Desai 1986).  The model consists of a series of yield surfaces that expand with 

increasing plastic strains. 

The yield surfaces define the magnitude of permanent deformation occurring on 

the first cycle of loading.  Bonaquist and Witczak used the exponential type model to fit 

a set of repeated load triaxial test data and observed that the permanent strain at a load 

cycle is related to the permanent strain induced on the first cycle and the number of load 

cycles: 

iN
N

ξξ 06.1
1=       (2.22) 

where: 

ξN = Permanent strain for load cycle N; 

N = number of load cycles; and 

ξi = permanent strain for the first load cycle. 

The accumulated permanent strain is then the sum of the permanent strain on 

each cycle as given by: 
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where Σξ is the accumulated permanent strain. 

Thus, minimizing the first-cycle permanent deformation strain provides a 

reasonable criterion for minimizing the permanent deformation throughout the life of the 

pavement. The concept used in developing this model is consistent with the flow theory 

of plasticity. Bonaquist and Witzak (1997) used the isotropic hardening model in the 

development of Equation 2.23. However, for repetitive action of loads when hysteric 
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phenomena are of essential importance, the anisotropic hardening model would be more 

appropriate. 

2.5.8 Shakedown Model 

At low levels of stress the accumulation of permanent deformation with load 

application eventually reaches a stable asymptotic value. At high stresses, however, 

permanent deformation is likely to accumulate continuously with load repetition, 

resulting in eventual failure (Lekarp, et. al., 2000). This has raised the possibility of the 

existence of critical stress level separating the stable and failure conditions in a 

pavement. 

Some researchers (Sharp and Booker, 1984; Raad et al., 1989) have developed 

computational procedures for pavement analysis based on the so-called shakedown 

theory. The shakedown theory states that, a pavement will develop a progressive 

accumulation of permanent deformation under repeated loading if the magnitude of the 

applied loads exceeds a limiting value, called the shakedown load. On the other hand, if 

the applied loads are lower than the shakedown limit, a stable accumulation of 

permanent deformation will be developed and the response of the pavement will be 

resilient under additional load applications. 

The shakedown theory is usually applied to the whole pavement structure. Using 

repeated load triaxial tests on different granular materials, Lekarp and Dawson (1998) 

according to Lekarp et al., (2000), applied the principles of shakedown theory and 

derived an expression for permanent strain (Equation 2.24). 
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where; 

 L = stress path, and 

 a, b are material properties. 
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2.6 Analysis of Pavements with Unbound Granular Materials 

 Conventional flexible pavements are usually analyzed as elastic layered systems 

resting on a homogeneous semi-infinite half-space.  The wheel load applied on the 

surface of the pavement is considered as a uniform load distributed over a circular area 

where the contact pressure is taken as the tire pressure (Huang, 1993). 

          Several computer programs based on the Burmister’s (1845) layered elastic theory 

have been developed over the years for analyzing pavement systems.  One of the earliest 

and best known is the CHEVRON program develop by the Chevron Research Company 

(Warren and Dieckmann, 1963).  The program was modified by the Asphalt Institute in 

the DAMA program to account for non-linear elastic behavior of granular materials 

(Hwang and Witczak, 1979).  Another well-publicized program is BISAR developed by 

Shell, which considers not only vertical loads but also horizontal loads (De Jong et al., 

1973).  The University of California, Berkeley (Kopperman et al., 1986) also developed 

a program called ELSYM5.  This program has become very popular in the U.S. and is 

used by many highway agencies for routine flexible pavement design. A recent addition 

to the layered elastic computer programs is CIRCLY (Wardle et al., 1998). The latest 

version, CIRCLY4 was programmed in windows environment and it can automatically 

divide layers into sub-layers for material non-linearity. It is the only layered elastic 

computer program that incorporates granular material anisotropy. 

The limitation of the layered elastic is that elastic moduli must be constant within 

each horizontal layer and thus, the method cannot effectively deal with material non-

linearity exhibited by unbound granular materials. The layered elastic process can 

account for variation in vertical stress through the iteration approach but cannot 

effectively account for variation in lateral stresses. Since the variation of lateral stresses 

within a pavement profile is as important as the variation of vertical stresses, the finite 

element method (FEM) has recently been preferred to analyze pavements. 

          A number of computer programs have been developed based on the finite element 

method that accommodates nonlinear stress-strain models. Due to the large amount of 

computer time and storage required of most finite element method programs, they have 
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not been used for routine design purposes. With the advent of faster and larger memory 

computers, it has become possible to use finite element method programs to analyze 

pavements on personal computers. 

 Work done by some researchers (Jouve and Elhannani; 1993, Tutumluer and 

Barksdale; 1995, Tutumuluer and Thompson; 1996) have suggested that incorporating 

anisotropic behavior of granular materials significantly improves models and drastically 

reduces the tensile stresses computed within granular layers. Some finite element 

programs have incorporated anisotropic modeling to characterize the behavior of 

unbound granular materials. However, the laboratory determination of anisotropic 

properties of unbound granular materials has been a difficult task for researchers. One of 

the research objectives of this study is the development of a reliable laboratory protocol 

to determine the anisotropic properties of granular materials. 
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CHAPTER III 

DEVELOPMENT OF ANISOTROPIC RESILIENT MODEL AND 

LABORATORY TESTING 

3.1 Background 

One of the problems encountered in the analysis of flexible pavement systems 

with compacted unbound granular layers is the tendency for horizontal stresses to be 

computed in the granular layers.  If the models were precise, this situation (false failure) 

would not occur, because granular materials have negligible tensile strength.  Work done 

by several researchers (Jouve and Elhannani, 1993; Tutumluer, 1995; Tutumuluer and 

Thompson, 1997; Hornych et al., 1998) has suggested that incorporating cross-

anisotropic behavior of granular materials significantly improves isotropic models and 

drastically reduces the tensile stresses computed within granular layers. 

 An unbound granular layer in a flexible pavement provides load distribution 

through aggregate interlock.  The load transfer is achieved through compression and 

shear forces among the particles.  Because tensile forces can not be transferred from 

particle to particle, when such forces act in the horizontal direction, the behavior of the 

granular layer is significantly affected by a directional dependency of material stiffness 

which can be accommodated by using anisotropic approach (Tutumluer, 1995). 

  The word anisotropy is a synthesis of the Greek word anisos, which means 

unequal, and tropos, which means manner. As the derivation of the word indicates, it 

means in general a different (unequal) manner of response. The mechanical properties of 

an anisotropic elastic material depend on direction. 

 The behavior of granular layers, like most geologic materials, depends on particle 

arrangement which is usually determined by aggregate characteristics, construction 

methods, and loading conditions.  An apparent anisotropy is induced in an unbound 

granular layer during construction, becoming stiffer in the vertical direction than in the 

horizontal direction even before traffic loads impose further anisotropy. Tutumuluer and 
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Thompson (1997) indicated that the non-linear anisotropic approach can effectively 

account for the dilative behavior of unbound granular layers observed under wheel loads 

and the effects of compaction induced residual stresses.  The main advantage of using 

anistropic modeling in unbound granular layers is the drastic reduction or elimination of 

significant tensile stresses generally predicted by using an isotropic approach. 

          Barksdale, Brown and Chan (1989) observed from instrumented test sections that 

a linear cross-anisotropic modeling of unbound granular base is equal to or better than 

more complicated nonlinear isotropic models for predicting general pavement response.  

A cross-anisotropic representation has different material properties in the vertical and 

horizontal directions.  The conventional isotropic models have the same material 

properties in all directions. 

          Tutumluer (1995) developed a finite element computer program (GT-PAVE) to 

predict the resilient response of flexible pavements.  The program accounts for: 

• Material non-linearity, 

• Horizontal residual stresses due to initial compaction, and 

• Correction of tensile stresses at the bottom of unbound granular layers obtained in 

isotropic elastic analysis. 

Finite element predictions of response variables such as stress, strain, and 

deformation at different locations in the pavement were compared to the results obtained 

from experiments with full-scale test sections.  The comparison shows very good 

agreement when a non-linear elastic analysis is performed with cross-anisotropic 

material behavior in the unbound granular layers (Tutumluer, 1995). 

          A cross-anisotropic representation of the unbound granular layers was shown to 

reduce the predicted tensile stresses from isotropic elastic analysis in these layers by up 

to 75%.  Tutumluer (1995) observed that using 15% of the vertical resilient modulus as 

the horizontal resilient modulus was necessary to correctly predict the horizontal and 

vertical measured strain in the unbound granular base.  A constant Poisson’s ratio was 

assumed for the analysis. 
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 Porter et. al.(1999) characterized granular layers as cross-anisotropic in the 

CIRCLY computer program and observed that measured deflection bowls were narrower 

than those estimated from elastic layer analysis with isotropic characterization. After 

performing a finite element method (FEM) analysis, Porter obtained similar response 

when granular materials were modeled as non-linear (stress-dependent) isotropic and 

linear anisotropic. Upon recommendations from Porter et. al. (1999) The National 

Association of Australian State Road Authorities (NAASRA) adopted a modular ratio 

(Ex/Ey) of 0.5 for unbound granular layers in their Guide to the Structural Design of 

Road Pavements. NAASRA also assumes that vertical and horizontal Poisson’s ratios 

are the same. 

Five material properties are needed to define anisotropy under conditions of axial 

symmetry.  Tutumluer and Thompson (1997) defined cross-anisotropic response from 

triaxial test data with measured vertical and radial strains as follows: 
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where 

 Ey = Vertical resilient modulus, 

 Ex = Horizontal resilient modulus, 

 Gxy = Resilient shear modulus, 

 εaxial = resilient axial strain, and 

 εradial = resilient radial strain. 

Tutumluer and Thompson (1997) then used the Uzan type model to relate each 

modulus to the bulk and deviator stress as: 
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where: 

 I1 = first stress invariant (bulk stress), 

 J/
2 = second stress invariant of the deviatoric stress tensor, and 

 ki = material parameters. 

 Tutumluer and Thompson (1997) used triaxial test data, and the fit was good for 

all the above definitions.  They selected constant vertical and horizontal Poisson’s ratios 

to satisfy the requirements of positive strain energy.  The parameters were then used as 

input into GT-PAVE to analyze the anisotropic model in different types of unbound 

granular layers in conventional flexible pavements.  The horizontal resilient modulus 

generally varied from 3% to 21% of the vertical resilient modulus, and the resilient shear 

modulus varied from 18% to 35% of the vertical.  Computed tensile stresses in the 

granular layers were drastically reduced. 

 Hornych et al., (1998) studied the resilient behavior of granular materials and 

observed that the non-linear isotropic model developed by Boyce (1976) did not 

adequately characterize the behavior of granular materials. Hornych et al., (1998) 

introduced a coefficient of anisotropy into the Boyce model and obtained a good fit for 

laboratory data. 

          Sweere (1990) noted that, if resilient properties are defined in terms of stress 

dependent moduli; then a corresponding value of Poisson’s ratio is required which 

should itself be stress dependent.  Lytton (1998) proposed that a full description of the 

anisotropic behavior of unbound granular materials should include stress-dependent 

Poisson’s ratio models. 

          Perhaps the most significant example of material behavior that can not be modeled 

by standard layered elastic programs is the dilation observed under shearing in 

particulate media in a dense state of packing.  Because of the assumption of an isotropic, 
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homogeneous material, traditional layered elastic programs can only accommodate 

materials with Poisson’s ratio below 0.5.  For most granular materials, a fixed Poisson’s 

ratio is normally used.  A typical value of Poisson’s ratio lies within the range 0.30 to 

0.40.  However, when a material dilates, Poisson’s ratios can be as high as 1.20 or higher 

(Crockford et al., 1990; Uzan et al, 1992; Allen, 1973). This tendency to dilate is caused 

by the motion of particles that tend to roll over one another when a shearing stress is 

applied.  Most researchers agree that dense graded granular materials start to dilate when 

the principal stress ratio exceeds a certain value. Allen (1973) expressed the relationship 

between Poisson’s ratio and stress state. Chen and Saleeb (1982), Lade and Nelson 

(1987) derived relationships between the Poisson’s ratio and the resilient modulus based 

on thermodynamic constraints. 

 Although there is strong evidence in the literature that nonlinear cross-

anisotropic elastic models are superior to isotropic models in characterizing granular 

materials, it has been extremely difficult to determine the cross-anisotropic material 

properties of unbound granular materials using the conventional triaxial setup. To obtain 

the cross-anisotropic parameters of granular materials, a truly triaxial setup with multi-

axial devices must be used instead of the conventional cylindrical triaxial setup. The 

truly triaxial device permits application of three independent principal stresses on six 

faces of a cubical specimen of a material. 

Graham et al., (1983) proposed a mathematical technique using elasticity theory 

to determine anisotropic material parameters from triaxial test data. The technique 

proposed by Graham et al., (1983) is not suitable for unbound granular materials because 

the material is assumed to be linearly elastic. 

Tutumluer et al., (2000) modified the standard AASHTO 294-94 to determine 

cross-anisotropic parameters of several granular materials. In the modified test, 

Tutumluer et al., (2000) used both triaxial compression and extension tests. The stress 

states recommended in AASHTO 294-94 is maintained but the principal stresses are 

interchanged after each triaxial compression, to induce a triaxial extension. This way, 
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there is enough data to determine the vertical and horizontal moduli. However, the 

resilient shear modulus cannot be determined from the modified AASHTO 294-94 test. 

One the objective of this study is to develop an improved testing protocol based 

on traditional elasticity theories. The developments of anisotropic resilient model and 

testing method for unbound granular materials are discussed in the following sections. 

3.2 Constitutive Model 

For a linear, elastic, homogeneous and continuous material, the general 

constitutive relation relating stress and strain tensors can be written as: 

klijklij C εσ =          (3.7) 

where: 

σij = stress tensor; 

Cijkl = tensor of elastic constants; and 

εij = strain tensor. 

Repeated indices imply summation.  Indices i, j, k take the values 1, 2, 3. 

In the most general three-dimensional case, the tensor of elastic constants Cijkl has 81 

independent components.  However, due to the symmetry of both the strain and stress 

tensors, there are at most 36 distinct elastic constants.  This number is reduced to 21 if a 

strain energy function is applied. Equation 3.7 can be rewritten as: 

klijklij A σε =          (3.8) 

where: 

Aijkl = a tensor of compliance with 21 distinct components, and 

Aijkl and Cijkl are symmetric and are inverse to each other in the sense that; 

)(
2
1

jrisjsirklrsijkl AC δδδδ +=       (3.9) 

where δij is the Kronecker Delta. 

If we consider the matrix representation of the tensor εij, σkl, and Aijkl in an 

arbitrary x, y, z coordinate system, Equation 3.8 is equivalent to (Amadei, 1983): 

[ ]{ } xyzxyz A σε =         (3.10) 
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or 
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The coefficient aij play different roles and have different physical meanings.  

If the material possesses symmetry of any kind, then symmetry can be observed in its 

elastic properties and the number of independent components of the tensor of 

compliance or elastic constants is less than 21. 

3.2.1 Orthogonal Planes of Elastic Symmetry 

A plane of elastic symmetry exists at a point if the elastic constants or 

compliance have the same values for every pair of coordinate systems that are the 

reflected image of one another with respect to the plane (Amadei, 1983).  Assuming that 

the Cartesian xOz plane (Figure 3.1) is a plane of elastic symmetry and assuming that 

three orthogonal planes of elastic symmetry pass through each point of the material, and 

each one is perpendicular to x, y, or z, then Equation 3.11 reduces to: 
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The number of independent elastic constants or compliance is reduced to 9.  There are 

three Young’s moduli Ex, Ey, Ez, three shear moduli Gyz, Gxz, Gxy, and three Poisson’s 

ratios νyx, νzx, and νzy.  A material that possesses this type elastic symmetry is called 

orthotropic (Amadei, 1983). 

x

y

z

o

Axis of Symmetry

 

Figure 3.1 Three-Dimensional Cartesian Coordinate System. 

 

An axis of elastic symmetry g of order n exists at a point when there are sets of 

equivalent elastic directions that can be superimposed by a rotation through an angle of 

2π/n.  An axis of the second order is equivalent to a plane of elastic symmetry.  For an 

axis of the third or fourth order, the number of independent elastic constants or 

compliances is reduced to 7.  For an axis of order larger than or equal to 6, all directions 

in the planes normal to it are equivalent with respect to the elastic properties.  If the y-

axis coincides with the axis of elastic symmetry g, the material is isotropic within the 

xOz plane.  The y-axis is defined as axis of radial elastic symmetry of axis of elastic 

symmetry of rotation.  A material with this type of elastic symmetry is called 

transversely isotropic (Amadei, 1983).  Geotechnical engineers popularly refer to a 

transversely isotropic material as cross-anisotropic. In this report anisotropic and cross-
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anisotropic material have been used interchangeably to describe a transversely isotropic 

material. Unbound granular materials in pavements can be assumed to possess this type 

of elastic symmetry. The xOz plane and each plane perpendicular to it are planes of 

elastic symmetry.  Thus, the number of elastic constants is reduced to 5 as follows 

(Pickering, 1970): 
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    (3.13) 

where: 

 Ey = vertical elastic modulus, 

 Ex = horizontal elastic modulus, 

 Gxy = shear modulus, 

 νxy = vertical Poisson’s ratio, and 

 νxx = horizontal Poisson’s ratio. 

The elastic constants have ranges of possible variation that are limited since 

thermodynamic considerations require that the strain energy be positive.  The strain 

energy is given by (Pickering, 1970): 

{ } [ ]{ } xyzxyz
T A σσΩ

2
1=        (3.14) 

If this quadratic form is positive definite, the strain energy will be positive as 

required by thermodynamics.  The necessary and sufficient conditions that the quadratic 

form should be positive definite are that all the principal minors of [A] should be positive 

(Pickering, 1970). The following conditions must then be satisfied: 

11;0;0;0 ≤≤−>>> xxxyxy GEE ν     (3.15) 
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 The constitutive relations defined by Equations 3.7 or 3.8 together with the 

elastic symmetries can be used to model the response of unbound granular layers in 

pavements.  The unbound granular layers which are assumed to be homogeneous, 

continuous and transversely isotropic, thus need 5 elastic independent parameters to 

fully describe their behavior in pavements. Two parameters, Poisson’s ratio and a 

modulus are needed if the material is assumed to be isotropic. 

3.2.2 Anisotropic Work Potential 

 The elastic work per unit volume (dW) can be expressed as (Lytton, 1998): 

∫ ∫= )()( εσ ddW T         (3.16) 

The law of energy conservation requires that the total work be path independent and  

Equation 3.16 can also be written as (Lytton, 1998): 
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According to Green’s theorem this can be written as (Lytton, 1998): 

( )∫ ∫∫ 
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where: 

P = dW/dx, and 

Q = dW/dy. 

The work potential can thus be written as: 
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and, 
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xyGdJ
dW

2
1

/
2

=          (3.21) 

But, 

1
/
2

2

/
21

2

dIdJ
Wd

dJdI
Wd =         (3.22) 

 Based on the requirements that total work be path independent, Equations 3.22, 

3.4, 3.5 and 3.6 can be combined to generate a partial differential equation for the 

vertical and horizontal Poisson’s ratios as (Lytton, 1998): 
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where: 

 φi(I1, J2
/) = functions of I1, J2

/. 

 

This set of equations will be needed to obtain the five parameters which fully 

describe the anisotropic behavior of unbound granular materials. The five elastic 

properties are assumed to be stress dependent. 

3.3 Testing Protocol 

A truly triaxial device that permits the application of three independent principal 

stresses on six faces of a cubical specimen of a material is desirable for use in the 

laboratory. The setup of a truly triaxial device is complex, and preparation of the cubical 

specimen is extremely difficult. Laboratory testing devices must be simple enough so 

that highway agencies can use them routinely and quickly to acquire necessary material 

parameters. The most convenient standard test which allows for the direct measurement 

of principal stresses and strains is the cylindrical triaxial test. 

 The triaxial testing protocol permits the application of both confining and 

deviatoric stresses on a compacted cylindrical sample. These stresses can be manipulated 
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to obtain a variety of stress combinations. The direction of the principal stresses (σ1, σ2, 

and σ3) and strains (ε1, ε2, and ε3) are forced to coincide, and this allows for simple 

analysis. The particular order of the principal stresses as major, intermediate, and minor 

stresses depends on the type of triaxial test performed. 

 The stress tensor, T in a triaxial test is given by: 
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where: 

 σ1, σ2 , and σ3 are the principal stresses. 

Let directions 1, 2, and 3 be equal to y, x, z in the Cartesian coordinates system, 

respectively, then the stress tensor can be expressed as: 
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In a conventional triaxial test on compacted cylindrical samples, the intermediate 

and minor principal stresses (σ2, and σ3) are the same and the stress tensor becomes: 
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This simplification unfortunately reduces the number of equations in Equation 

3.13 from 4 to 3. Also, since the shear stress and strain (τxy, and γxy) can not be measured 

in a cylindrical triaxial set up, only 2 equations are available to solve for 4 of the 5 

material properties of a cross-anisotropic elastic material (Equation 3.28). 
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Equation 3.28 can be written in stress-strain incremental form as: 
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 To numerically solve for the five anisotropic elastic properties, a new testing 

protocol was developed. A programmed loading sequence involving ten stress states that 

represent typical stresses within unbound granular layers in pavements is used in the 

testing protocol. Three different triaxial regimes were established and implemented 

within each stress state in the development of the new testing protocol. The following 

assumptions were made in developing the testing protocol: 

•  The elastic moduli obey the Uzan (1988) model, 

•  The non-linear tangential moduli are smooth functions of the isotropic stress 

invariants (Equations 3.4, 3.5, 3.6), 

•  Variations of these tangential moduli are negligible within infinitesimal changes in 

stress at a particular stress state, 

•  The material is assumed to behave linearly elastic within a small excursion of 

stresses. 

 The three triaxial regimes implemented within each stress state are discussed in 

the following sections. 

3.3.1 Triaxial Compression Regime 

 In this test regime, a sample is loaded statically to a target stress state (axial 

stress σy, and radial stress, σx). Then radial stress is kept constant while the axial stress is 

dynamically cycled in stress increments of ∆σy. Equation 3.29 can then be expressed as: 
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where: 

∆εx
c is a change in radial strain due to an infinitesimal change in axial stress 

∆σy
c in triaxial compression, 

∆εy
c is a change in axial strain due to an infinitesimal change in axial stress ∆σy

c 

in triaxial compression, and 

 ∆σx
c = 0 

3.3.2 Triaxial Shear Regime 

 After a sample is loaded to a static stress state (axial stress σy, and radial stress 

σx), a small dynamic axial stress increment of ∆σy
S is applied to the sample while the 

radial stress is reduced by a small change in dynamic stress of ∆σx
S such that: 
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The change in first stress invariant, ∆I1 is zero: 
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The change in second invariant of the deviatoric stress tensor, ∆J/
2 is given by: 
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Substituting Equation 3.31 into 3.34, 
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The change in strain energy, ∆ES is given by: 
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Substituting Equation 3.31 into 3.36 yields, 
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But from Equation 3.17 and since the change in first stress invariant, ∆I1, is zero, the 

change in strain energy can be written as: 
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Substituting Equations 3.35 and 3.37 into 3.38 yields, 
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Thus the triaxial shear regime can be used to determine the shear modulus, Gxy at any 

stress state by Equation 3.39. 

3.3.3 Triaxial Extension Regime 

 In this triaxial regime, the static axial stress, σy is reduced by a small change in 

dynamic stress, ∆σy
e while the radial stress, ∆σx is increased by a small dynamic stress 

of ∆σx
e . Thus, the net change in stress state is in an extension mode but the principal 

stresses are not reversed. Here, Equation 3.29 is expressed as: 



















=





































−−

−−

e
y

e
x

e
x

e
y

e
x

x

xy

yx

xy
x

xx

x

xy

x

EEE

EEE

ε∆

ε∆

σ∆
σ∆
σ∆

νν

νν

1

1

     (3.40) 

where: 

∆εx
e is a change in radial strain due to an infinitesimal change in axial stress ∆σy

c 

and radial stress ∆σx
e, and 
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∆εy
c is a change in axial strain due to an infinitesimal change in axial stress ∆σy

c 

and radial stress ∆σx
e. 

 The stresses applied and the strains obtained from the three stress regimes 

described are used in a system identification scheme to determine the five cross-

anisotropic parameters. 

3.4 System Identification Method 

The objective of the system identification (SID) process is to estimate the system 

characteristics using only input and output data from the system to be identified (Wang 

and Lytton, 1993). The simplest method for representing the behavior of a physical 

process is to model it with a mathematical representation, for example Equation 3.29. 

The model is said to be ‘identified’ when the error between the model and the real 

process is minimized to some level. Otherwise the model must be modified until the 

desired level of agreement is achieved. 

Figure 3.2 is a schematic diagram of the SID procedure. The model response, Yk, 

is compared to the actual response of the system, Y, and the error, e, between the two is 

used to adjust the parameters of the model by means of an algorithm, which optimizes 

some prescribed criterion. 
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Figure 3.2 System Identification Scheme. 

 

The SID method requires accurately measured output data of the unknown 

system, a suitable model to represent the behavior of the system, and an efficient 

parameter adjustment algorithm that converges accurately and rapidly. 

An algorithm can be developed for adjusting model parameters on the basis of 

Taylor’s series expansion. Let the mathematical model of some process be defined by n 

parameters: 

),;,,,( 21 txpppff nL=        (3.41) 

where x and t are independent spatial and temporal variables. 

Then any function fk(p1 , p2 , … , pn ; xk , tk) may be expanded in a Taylor’s series as: 

2)()( δ∆∆ +⋅∇+=+ pfpfppf kkk       (3.42) 

where the parameters have all been collected into a vector 

[ ]Tnpppp ,,, 21 K=  
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If we assume fk(p+)p) to be the actual output of the system and fk(p) the output of the 

model for the most recent set of parameters, the error between the two outputs becomes: 
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It should be noted that ek represents the difference between the actual system 

output and the model output for each observed point k. If the error is evaluated at m 

values (m ≥ n) of the independent variables, m equations will be generated as: 
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Equation 3.44 can be conveniently non-dimensionalized by dividing both sides by fk to 

give: 
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Matrix values r, F, and α  are defined as: 
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[ ]Tnαααα K21=  

 
i

i p
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Then, Equation 3.45 can be written as: 

αFr =          (3.46) 

 The vector r is completely determined from the outputs of the model and the real 

system. The matrix F is usually called the sensitivity matrix, because its elements Fki 

reflect the sensitivity of the output fk to the parameter pi (Wang and Lytton, 1993). It is 

generated by the differentials of the output fk with respect to the parameter pi. 

 The unknown vector α reflects the relative changes of the parameters. It can be 

obtained by using a generalized inverse procedure to solve equation 3.46. However, 

there might be column degeneracy in the sensitivity matrix F (Wang and Lytton, 1993). 

This condition may occur when two or more parameters have similar effects, or any 

parameter has a negligible effect on the behavior of the model. In these cases Equation 

3.46 may be ill conditioned and more powerful numerical techniques such as the 

singular value decomposition (Lytton, 1998) and Han’s method (Han, 1976) must be 

used to give meaningful solutions. 

 Once the vector  α is obtained, a new set of parameters is determined as: 

)1(1 α+=+ r
i

r
i pp         (3.47) 

where r is the iteration number. 

 The iteration process is continued until the desired convergence is reached. In 

order to avoid convergence problems, the new set of parameters are not changed by 

more than 60% of the adjustment vector α. The value 0.6 acts as a relaxation factor for 

smooth convergence. 

 Applying the procedure described above to the triaxial model expressed in 

Equation 3.29, there are 4 parameters (Ey , Ex , νxy , νxx ) and 2 outputs (∆εx , ∆εy). The 

actual system outputs are the measured axial and radial strains. The model strains (model 

output) can be determined from the values of the parameters, which can be guessed 
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initially from the system output. The difference between the measured strains and the 

model strains (model output) represents the error, which can be improved through the 

parameter adjustment routine until a desired criterion is achieved. 

 The matrices in Equation 3.46 may be defined as: 
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m = measured (actual system) radial strain, 

∆εy
m = measured (actual system) axial strain, 

∆εx
^ = calculated (model) radial strain, and 

∆εy
^ = calculated (model) axial strain. 

 In order to generate enough elements in the sensitivity matrix (F) and to control 

row degeneracy, the three stress regimes (triaxial-compression, -shear, and -extension) 

were combined to give one F-matrix and one r-matrix at each stress state. Thus, at each 

stress state, Equation 3.46 can be rewritten as: 
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where: 

FTC = the sensitivity matrix for triaxial compression regime, 

FTS = the sensitivity matrix for triaxial shear regime, 

FTE = the sensitivity matrix for triaxial extension regime, 

rTC = the r-vector for triaxial compression regime, 

rTS = the r-vector for triaxial shear regime, and 

rTE = the r-vector for triaxial extension regime. 

At a particular stress state, Equation 3.51 is needed by the parameter adjustment 

algorithm to determine vertical and horizontal moduli, as well as the vertical and 

horizontal Poisson’s ratios. The shear modulus can be determined from Equation 3.39. 
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CHAPTER IV 

LABORATORY TESTING 

4.1 Equipment 

The triaxial test cell was used for testing samples in this study. Triaxial testing 

data have been traditionally used to provide input for the material properties in pavement 

structural models. The triaxial test has been used with notable success in the field of 

geotechnical engineering for applications such as earthquake and tunnel modeling as 

well as pavements. 

 Tests are performed on materials to establish their engineering properties and 

these properties are then used in a structural model to determine the stresses and strains 

that lead to performance predictions. By setting boundary conditions in the structural 

model, it is not necessary for a material property test to exactly mimic the field 

condition. However, the testing should, if practical, span a range of expected conditions 

so that extrapolations used by the structural model are kept to a minimum. 

 In the past, the traditional fluid-filled geotechnical type triaxial cell, that enables 

confining pressure to be applied to a specimen while a range of vertical loads are 

applied, has been the major apparatus used in this type of testing. However, the amount 

of time and attention to detail necessary to set up and carry out tests with this equipment 

make it unsuitable for production use in the field for Quality-Control/Quality-Assurance 

purposes (QC/QA). One other problem associated with the traditional triaxial cell is that 

the membrane around the sample is secured to top and bottom platens with rubber bands 

(O-rings). This assembly system induces high shear stresses at the top and bottom of 

samples tested. To eliminate this problem, it is highly encouraged that sample sizes be 

maintained at a 2.0 height to diameter ratio. 

 In this study, the Rapid Triaxial Testing (RaTT) cell system developed by 

Industrial Process Controls (IPC) Melbourne, Australia, was used for testing. The RaTT 

cell system is based on a concept that was conceived in Texas Transportation Institute 
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(TTI) and has been in use with the Texas Department of Transportation (TxDOT). 

Unlike the traditional triaxial cell, the RaTT cell uses a larger diameter confining 

cylinder around the specimen, which is fitted with an internal rubber membrane that can 

be inflated to apply confining pressure to the specimen. The rubber membrane is not 

rigidly fastened to the top and bottom platens and thus there is a relatively uniform 

distribution of stresses within the height of samples during testing. 

 The IPC system provides automated control of cell movement to simplify 

specimen handling, and computer control of both confining and axial stress, together 

with Linear Variable Differential Transducers (LVDTs) for vertical and horizontal 

strains. Figures 4.1 and 4.2 are pictures with the cell lowered and raised, respectively of 

the RaTT cell. 

 

Figure 4.1 Lowered RaTT Cell. 
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Figure 4.2 Raised RaTT Cell. 

 Automated control of the physical movement of the cell turns the extremely 

tedious job of getting a specimen in and out of a standard geotechnical cell and 

positioning all the instrumentation in the standard cell into a quick and easy operation 

taking less than a minute. Servo-control of the cell pressure enables a vacuum to be 

applied to the cell, which draws the pressure membrane and the horizontal LVDT away 

from the sides of the specimen. Once the vacuum has been applied, a pneumatic actuator 

lifts the entire cell up out of the way so that the previously tested specimen may be 

removed and the next specimen may be placed in position. The cell may then be lowered 

over a new specimen on the command of the operator using a single keystroke command 

to the software. 

 The apparatus can perform tests at multiple frequencies as well as multiple stress 

states. This capability enables the machine to quantify not only time-dependent 

responses, but also stress-dependent responses of the material, two features that are 

required for flexible pavement materials characterization. 

 The IPC RaTT cell is supported by software that provides researchers and 

engineers with a tool capable of conducting a range of uniaxial or multiaxial loading 
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tests on both bound and unbound construction materials. The software can be 

specifically customized to provide the operator with a unique testing sequence and 

output. Other researchers have customized the RaTT cell to fit their specific needs and 

purposes. Examples are the University of Illinois Fast Cell (UIFC) and the TUDelft (The 

Netherlands) cell. 

4.2 Materials 

Four base material types, California granite, Texas crushed limestone, Texas 

gravel and Minnesota gravel were tested in the laboratory to determine their cross-

anisotropic elastic properties. 

 These materials were selected based on material variability, usage, and on-going 

research. The California granite and the Texas limestone are rough textured, angular 

crushed rock, the Texas gravel is rounded pit gravel, and the Minnesota gravel is 

rounded glacial sandy gravel. A comprehensive laboratory study was performed to 

determine the cross-anisotropic elastic properties of the four materials. Three different 

gradations, well-graded, fine-graded and coarse-graded, were prepared for all aggregate 

types and the samples were tested at optimum, wet of optimum, and dry of optimum 

moisture contents. Table 4.1 and Figure 4.3 show the three gradations batched. Three 

sample replicates were prepared at each moisture and gradation condition. Table 4.2 is a 

laboratory test matrix that was generally followed to complete the testing phase of this 

study. 

Thus, in the original test matrix, a total of 108 samples (4 materials by 3 

gradations by 3 moisture levels by 3 replicates) were to be prepared. A few samples 

were abandoned because they were both difficult to compact at the levels of moisture 

and gradation or were too soft and unstable to test. 
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Table 4.1 Gradation 

Percent Passing (%) Sieve Size 

(mm) Fine Graded Well Graded Coarse Graded 

25.00 100 100 100 

19.00 85 85 85 

12.50 74 74 72 

9.50 70 66 62 

4.75 67 54 40 

2.36 62 41 25 

1.18 52 30 18 

0.60 42 23 14 

0.30 34 18 10 

0.15 28 14 8 

0.075 20 10 7 
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Figure 4.3 Gradation on a 0.45 power Sheet. 
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Table 4.2 Test Matrix. 

Aggregate Source  

Texas Limestone Texas Gravel Minnesota Gravel California Granite 

Gradation Moisture 

Conditions C W F C W F C W F C W F 

Wet 3 3 3 3 3 3 3 3 3 3 3 3 

Optimum 3 3 3 3 3 3 3 3 3 3 3 3 

Dry 3 3 3 3 3 3 3 3 3 3 3 3 

Key: 

C- Coarse-graded 

W- Well-graded 

F- Fine-graded. 

4.3 Sample Size 

The implication of preparing samples with height to diameter ratio of 1:1 instead 

of the traditional 2:1 ratio used in triaxial testing was investigated. In geotechnical 

engineering the triaxial test is used to determine the shear strength parameters of soils. 

The problem being analyzed usually dictates the rate of shear and drainage conditions 

applied to the cylindrical sample. 

Some modifications have been made to the traditional triaxial test for pavement 

engineering applications. In pavement engineering, the repeated load triaxial test is 

preferred to the triaxial shear test. 

In the repeated load triaxial test, a static confining stress is usually applied to the 

cylindrical sample and a deviatoric stress is axially cycled for a predetermined number 

of times. The transient loads are chosen so that they best represent typical stress 

conditions within a pavement. Charts are available that can be used to select the cycle of 

a transient load (Barksdale, 1971). A typical transient load consists of a 1.0-second cycle 

sinusoidal load consisting of 0.1-second load duration and a 0.9-second rest. This load 

cycle simulates the application of traffic loads on the pavement. 
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The main disadvantage of the cylindrical triaxial test is the non-uniform 

distribution of stresses and deformations within specimens. This non-uniformity is 

mainly caused by the presence of friction at the soil-platen interface (Figure 4.4). The 

friction is a result of soil-platen interaction and it is compounded by rubber bands (O-

rings) used to rigidly secure the membrane around the sample to the top and bottom 

platens. This problem has been addressed in past by using lubricated platens for triaxial 

test. 

Rod

Polished Platen

Specimen

Rubber Membrane

O-Ring

Pedestal

Friction

 

Figure 4.4 Triaxial Tests Set-up. 

 

Experimental work done by Taylor (1941) indicates that reliable results could be 

obtained with soil specimens having regular ends provided the slenderness (height to 

diameter ratio, l/d) is in the range of 1.5 to 3.0. According to Lee (1978) this study 

established the standard that the slenderness (l/d) of triaxial specimens for soil be limited 

to 2.0-2.5 for tests with regular ends. Since then, many researchers (Rowe et al., 1964; 

Bishop et al., 1965; Duncan et al., 1968; Lee, 1978) have studied end restraint effects on 

the shear strength of soils and concluded that sample slenderness can be reduced to 1.0 if 

frictionless platens are used. Rowe and Barden (1964) concluded that if the friction 
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angle between the soil and the end platen can be kept below 1°, end restraint effects can 

be considered negligible and the end platens can be considered to be ‘‘frictionless’’. 

The drained shear strength of soils using regular ends and l/d = 2.0 are reduced 

by up to 10% when frictionless ends are used. For an undrained test, the shear strength is 

reduced by about up to 5% when frictionless ends are used. Consider a failed cylindrical 

soil sample with φ-value of 40°, where the failure plane makes an angle θ with the 

horizontal (Figure 4.5), then fundamentals of geometry suggests that the height to 

diameter ratio of the sample must be tan (45+φ/2) = 2.1. 

Failure Plane

Tan(45+φ/2)

θ

 

Figure 4.5 Failed Cylindrical Sample. 

 

Frictionless ends allow the use of shorter sample sizes (l/d = 1) in a triaxial test. 

Laboratory samples with a height to diameter ratio of 1:1 appear to be more stable and 

practical for unbound granular layers in pavements. Unbound granular layers in 

pavements are usually compacted in lifts of 150-mm (6-in) to reduce the existence of 

density gradients. However, the conventional 2:1 sample height to diameter ratio in 

traditional triaxial shear test has been maintained in the development of repeated load 
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triaxial test for pavement application. It is important to know whether maintaining a 2:1 

sample size is better than the more stable and practical 1:1 sample size. 

Unlike the traditional triaxial cell, the RaTT cell shown in Figure 4.6 uses a 

larger diameter confining cylinder around the specimen, which is fitted with an internal 

rubber membrane that can be inflated to apply confining pressure to the specimen. A 

smooth plastic coated paper is placed between the soil-platen interfaces to facilitate easy 

lateral displacement of the sample during testing. The rubber membrane is not rigidly 

fastened to the top and bottom platens by O-rings, and this produces a relative reduction 

in friction at the soil-platen interface. 

Rod

Polished 

Specimen

Rubber 

Confining 

Smooth Plastic Coated 

 

Figure 4.6 Rapid Triaxial Tester. 
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4.3.1 Stress Distribution in a Cylindrical Sample 

Balla (1960) analytically solved for stresses and strains in a cylindrical specimen 

with any height to diameter ratio and subjected to axial and radial loads. Balla also 

studied the influence of end restraint at different degrees of roughness. The modern 

computer and finite element method have now made it easier to numerically study the 

distribution of stresses within a triaxial specimen with different sizes. 

A finite element method was used to numerically determine the distribution of 

stresses in a cylindrical sample subjected to unconfined compression, which is illustrated 

in Figure 4.7. The material property was assumed to be linear isotropic. The distribution 

of stresses was determined for both fixed and frictionless platens. 

410 kPa (60 psi)

 

Figure 4.7 Unconfined Compression. 

 

Figures 4.8 and 4.9 are axisymmetric finite element meshes for a frictionless 

platen and a fully fixed platen, respectively. The frictionless mesh represents a sample 

with fully lubricated end platens, and the fixed mesh represents a sample with maximum 

friction. The platen conditions of a traditional triaxial sample with regular end caps are 
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assumed to be very similar to the fixed mesh, and the RaTT cell is assumed to be more 

similar to the frictionless mesh. 

q = 410 kPa

 

Figure 4.8 Axisymmetric Mesh for a Frictionless Platen. 

 

 

Figure 4.9 Axisymmetric Mesh for a Fixed Platen. 



 62

Figures 4.10 and 4.11 show the distribution of vertical and shear stresses, 

respectively, obtained from the finite element analysis of samples with a 1:1 height to 

diameter ratio. Figures 4.12 and 4.13 are plots of vertical and shear stresses, 

respectively, obtained for samples with a 2:1 height to diameter ratio. No shear stresses 

develop in samples with frictionless platens, and the distributions of vertical stresses are 

uniform within the sample. The frictionless platen allows the sample setup to fulfill the 

main purpose of producing principal stresses and measuring strains in a sample. High 

shear stresses develop at the ends and diminish at the mid-height of a sample with 

regular end platens. The developments of high shear stresses at the ends of a regular 

platen induce a non-uniform distribution of vertical stresses within the sample. The 

vertical stresses at the ends increase and converge to a uniform value in the middle of the 

specimen. For a frictionless platen, the distribution of shear and vertical stresses remain 

the same when the sample dimension is increased from 1:1 to 2:1 height to diameter 

ratio. When the sample size is changed from 1:1 to 2:1, the portion in the sample where 

shear stresses diminish for a uniform distribution of vertical stresses increases, as shown 

in Figures 4.10 to 4.13. 
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Figure 4.10 Distribution of Vertical Stresses in 1:1 Sample Size. 
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Figure 4.11 Distribution of Shear Stresses in a 1:1 Sample Size. 
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Figure 4.12 Distribution of Vertical Stresses in a 2:1 Sample Size. 
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Figure 4.13 Distribution of Shear Stresses in a 2:1 Sample Size. 

 

Figures 4.10 through 4.13 suggest that the presence of friction at the end platens 

of a triaxial specimen induce non-uniform stresses within the sample. However, if a 

uniform stress distribution can be induced in the middle portion of the sample, the end 

restraint effect can be acceptable. Increasing the height to diameter ratio does not 

eliminate the non-uniform stress distribution but rather increase the portion where shear 

stresses are acceptably diminished. Lubricating the end platens eliminates non-uniform 

stress distributions and development of shear stresses. 

4.3.2 Preliminary Testing 

 The effect of reducing the sample height to diameter ratio from 2.0 to 1.0 in the 

repeated load triaxial test was investigated through laboratory testing. Since stresses and 

strains induced in a sample are well below the failure stress, it is expected that reducing 

the sample size would not have significant effects on the resilient modulus. 

A base material was tested in general accordance with AASHTO T-294. Two 

sample sizes were prepared at the same moisture content in accordance with AASHTO 
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T-180. The sample sizes were 300-mm high by 150-mm diameter (2:1) and 150-mm 

high by 150-mm diameter (1:1). The samples were tested using the standard triaxial cell 

with regular end platens. Testing was performed at the University of Wisconsin and the 

University of Illinois. 

Figure 4.14 shows plots of resilient modulus versus bulk stress for both sample 

sizes. A dummy variable analysis was performed on the resilient modulus values plotted 

in Figure 4.14 to determine whether the use of 1:1 sample size significantly affects the 

resilient modulus values. A summary of the statistic obtained is given as (Milton and 

Arnold, 1995): 

22110 xxy βββ ++=       (4.1) 

where 

 y = resilient modulus, 

 x1 = bulk modulus, 

 x2 = 1 if 1:2 sample size is used, and 0 if 1:1 sample size is used. 

 β0 = 165.1,  β1 = 0.361, and β2 = 1.284 

and, 

 Sum of squares error, SSE = 25122.74 

 Variance, σ = 30.5 

 T27 = 0.115 

Based on this statistic, we do not reject the hypothesis that H0: β2 = 0 at the 

99.9% level of confidence.  It can be concluded that the sample size used is not an 

important factor in predicting the resilient modulus of the samples tested. This suggests 

that even in a standard triaxial cell with regular end platens where friction is assumed to 

exist, resilient modulus values were not affected by the sample size. This observation 

may be due to the fact that the stresses applied in the resilient triaxial test are well below 

the failure stress. 

As a result, the maximum particle size of a base material must be the limiting 

factor in choosing sample size in a repeated load triaxial test. Instead of the traditional 

2:1 sample height to diameter ratio, the more stable and practical size of 1:1 can be used 
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in repeated load triaxial test. Throughout this study, 1:1 height to diameter ratio samples 

was prepared for testing. The selection of 1:1 height to diameter ratio samples is further 

justified by the fact that the level of end friction in RaTT is relatively lower than the 

traditional triaxial cell with regular platens. 
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Figure 4.14 Resilient Modulus versus Bulk Stress. 

4.4 Preparation of Samples 

The mechanical properties of unbound granular layers are improved through 

compaction. Compaction forces the individual particles of unbound granular materials 

together and enhances increased particle-to-particle contact. Increasing densities through 

compaction increases the load carrying capacity of unbound granular layers. Allen 

(1973) and Marek et al. (1974) demonstrated that the decrease in permanent deformation 

for small increases in density through compaction is very significant. 
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The laboratory compaction characteristics of unbound granular materials are 

important to the behavior and performance of a flexible pavement. Three different 

compaction methods; impact, vibratory and gyratory shear were investigated in this 

study to determine their effects on the anisotropic properties of unbound granular 

materials. For each compaction method, two different compactive efforts were 

investigated. 

4.4.1 Compaction Methods 

There are five major compaction methods that are commonly used to fabricate 

unbound aggregate specimens for laboratory testing. These methods are briefly 

described below (Milberger et. al., 1966). 

4.4.1.1 Impact Compaction 

The first scientific approach to determine laboratory compaction characteristics 

of soils is credited to R.R Proctor (1933). His procedure was slightly revised and 

adopted as a standard by the American Association of State Highway Officials in 1939 

(AASHTO Designation: T-99). It was later modified to allow higher compaction effort 

(AASHTO Designation: T-180). In these methods, the sample is compacted in a rigid 

mold by dropping a hammer of known weight from a specified height.  One of the main 

disadvantages of the impact compaction method is that aggregate orientation and 

distribution are dissimilar to that achieved in field compaction. As a result, it is difficult 

to achieve reproducible results, and there are some disparities in the stress-strain 

distributions predicted in the pavement structure based on the laboratory-derived 

resilient moduli. The primary variables that can be controlled in impact compaction are 

the weight of the hammer, the height of hammer drop, and the number of blows per 

layers. If any of these are increased to achieve high densities at low moisture contents, 

much of the additional compactive energy is spent in degrading the material rather than 

in compacting it. 
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4.4.1.2 Static Compaction 

As the name suggests, samples are compacted in a rigid mold by applying static 

compressive stresses to plungers on one or both ends of a specimen. There is no standard 

method for applying this method to unbound granular materials. The compaction 

characteristics and particle orientation achieved by this method do not reproduce field 

compaction. Also, friction between the particles and the mold walls tend to produce 

significant density gradients within the sample (Milberger et. al., 1966). 

4.4.1.3 Kneading Compaction 

Conventional field compaction equipment such as the sheepsfoot and rubber-

tired rollers apply loads with little or no impact, but they produce some kneading action. 

According to Milberger et. al. (1966) the California Highway Department developed a 

mechanical kneading laboratory compactor in 1937. A revised design of this compactor 

was adopted in a standard procedure (AASHO T-173). This method of compaction is not 

widely used by highway agencies. Although particle distribution and orientation closely 

matches field compaction, some hand finishing is required to prepare samples for testing 

in the laboratory (Milberger et. al., 1966). 

4.4.1.4 Vibratory Compaction 

In this method, the material is confined in a rigid mold, and a surcharge weight is 

placed on the surface of the material.  Either the wall of the mold is tapped or the entire 

mold is placed on a vibrating mechanism. Vibratory compaction has been successfully 

applied to the compaction of dry cohesionless soils, primarily sands. The advent of hand 

held vibratory equipment has increased the use of vibratory compaction methods for 

preparing unbound granular material specimens. Here, layers of material, usually 50-mm 

(2-in layers), are compacted to predetermined densities using hand held vibrators in a 

rigid mold. Material degradation is reduced using vibratory compaction (Milberger et. 

al., 1966). 
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4.4.1.5 Shear Gyratory Compaction 

In the early 1940's the Texas Highway Department began compacting specimens 

by gyratory shear action (Milberger et. al., 1966). In this method a known stress is 

applied to a sample in a rigid mold after the mold has been inclined at an angle. The 

mold is rotated at an angle with a stress applied to the sample until the desired density is 

achieved. Application of gyratory compaction to asphalt concrete mixtures was one of 

the major contributions of the Strategic Highway Research Program (SHRP). This 

method is also widely used in Texas to compact unbound granular materials and 

bituminous-stabilized bases. The Texas Department of Transportation (TxDOT) has a 

standard procedure (Test Method Tex-126-E) for compacting unbound granular and 

bituminous base materials with a gyratory compactor. The applied stress and time or 

number of gyrations can be varied to achieve a desired density at specific moisture 

contents. Researchers at Texas Transportation Institute (Moore and Milberger 1968) 

investigated the issue of density gradient, and it was concluded that if the sample height 

to diameter ratio is kept below about 1.4, a uniformly compacted specimen is generally 

achieved. 

Figure 4.15 shows a picture of the gyratory compactor. The development and 

validation of the gyratory compactor for use in molding unbound granular materials can 

be found in Milberger and Dunlop (1966) and Moore and Milberger (1968). According 

to Milberger and Dunlop (1966) the particle distribution and orientation in samples 

compacted with the gyratory compaction method closely matches field compaction. 
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Figure 4.15 Texas Gyratory Compactor. 

 

In this study, 150-mm (6-in) diameter and 150-mm (6-in) height samples were 

molded with the Texas Gyratory Compactor for testing. Some samples were prepared 

using the gyratory, vibratory and impact compaction methods. The specimens in the text 

matrix (Table 4.2) were prepared using the gyratory compactor. Only a few samples 

were compacted using the impact and vibratory compactors. The purpose of using the 

impact and vibratory compactors is to evaluate the effect of compaction type and effort 

on the cross-anisotropic properties of unbound granular materials. It is assumed that the 

level of cross-anisotropy in a sample is related to particle orientation and thus different 

compaction methods and efforts would result in different levels of anisotropy. The static 

and kneading compactors were not used on preparing any of the samples tested because 

these compactors were not available in the laboratory at the time of this study. 

Two materials, well-graded Texas limestone and well-graded Texas gravel, were 

used to study the effect of compaction on cross-anisotropic properties. The other 

materials, Minnesota gravel and California granite, were yet to be acquired during the 

compaction study phase. For each compaction method studied, a low and a high 

compaction effort were used. 
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Samples prepared with the impact compaction method were compacted in 

general accordance with AASHTO T-180, using a 4.54-kg hammer and a 457-mm drop. 

The samples with high compaction effort were prepared by applying either 50 blows per 

50-mm thick layers, and the samples with low compaction effort were compacted using 

25 blows per 50-mm thick layers. 

For the vibratory compaction method, the higher compaction effort samples were 

prepared in three lifts (50-mm thick per lift). A hand vibrator was used to compact each 

lift until AASHTO T-180 density was achieved. The lower compaction effort samples 

were prepared in two lifts (75-mm thick) until 90% of the AASHTO T-180 density was 

achieved. 

Samples prepared with a high compaction effort using the gyratory compaction 

method were fabricated by applying 275-kPa pressure on samples inclined at 3° and 

gyrated for 60 seconds. Lower compaction effort samples were prepared by applying 

137-kPa pressure on samples inclined at 3° and gyrated for 45 seconds. The gyratory 

compactor was set to a constant speed of 30 gyrations per minute. Three lifts of the 

specimen were compacted statically and then the entire specimens were compacted 

dynamically. After compaction, the top of the samples was leveled with the same 

pressure applied during gyrations. 

The specimens prepared with the impact and gyratory compaction methods were 

tested with the Rapid Triaxial Tester (RaTT) using the testing protocol developed in this 

project in which the anisotropic properties of an unbound granular material are 

backcalculated using system identification. Details of the testing protocol are discussed 

in Section 4.5. The specimens prepared with the vibratory compaction method were 

tested with the University of Illinois FastCell (UIFC). The differences between these two 

triaxial cells are the mode of application of confining pressure and the range of linear 

variable differential transformers (LVDTs). The RaTT uses air for confinement and the 

UIFC uses oil. Also, the LVDTs on the UIFC have a wider deflection range and need to 

be adjusted for small and large deflections. 
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4.5 Resilient Testing Protocol 

The stresses used in the triaxial testing were chosen to represent the stress 

conditions induced in a typical base layer of a flexible pavement by traffic loads. The 

testing protocol itself involves a programmed loading sequence employing ten static 

stress states. At each static stress state, small dynamic changes in stresses are applied to 

obtain three triaxial stress regimes such that the net stress changes represent triaxial 

compression, triaxial shear, and triaxial extension. The resilient axial and radial strains 

are determined for each stress regime and implemented in the system identification 

scheme to backcalculate the five anisotropic elastic properties at that particular stress 

state. 

 Before each test is started, the specimen is mounted in the RaTT cell as described 

in the operator’s test procedure manuals (IPC, 1998). The loading sequence is outlined in 

the following steps: 

1. A mounted sample is loaded to a static stress state (axial stress σy, and confining 

stress σx, shown as static stress in Table 4.3). The confining stress is then kept 

constant while the axial stress is given a small dynamic stress increment of ∆σy, 

shown as triaxial compression in Table 4.3.  The incremental loading is applied 

for 25 repetitions until a stable resilient strain is achieved. A cycle of loading 

consists of 1.5 seconds loading followed by 1.5 seconds rest period. Since the 

RaTT cell uses air for confinement, the loading cycle was selected to allow for 

easy application of variable confinement. 

2. At the same static stress state (σx, σy) as in step 1, the axial stress is changed by a 

small dynamic stress increment of ∆σy for 25 repetitions as before, while the 

radial stress is reduced by ∆σx such that the change in the first stress invariant 

(∆I1) is zero in each load cycle. This is shown as triaxial shear in Table 4.3. 

3. At the same controlled static stress state (σx, σy) as in step 1, the axial stress is 

reduced by a small amount, ∆σy, while the radial stress is increased by ∆σx. Thus, 

the net change in stress state is in an extension mode but the principal stresses are 
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not reversed. The dynamic stresses are applied for 25 repetitions as before until 

stable resilient strains are achieved. This is shown as triaxial extension in Table 

4.3. 

4. These steps are repeated for the ten different stress states shown in Table 4.3. At 

each stress state, the resilient axial and radial strains are measured for use as 

input into the SID scheme. 

At the frequencies tested (1.5 seconds loading and 1.5 seconds rest), it takes about 

one and a half hours to complete testing on one sample at all ten stress states. The 

measured axial and radial strains at each stress state are used as input to the parameter 

adjustment routine, Equation 3.51, of the system identification scheme. A computer 

program was developed that systematically backcalculates the five anisotropic elastic 

material properties based on the SID method. 

After each resilient test, part of the sample is tested for soil potential (suction) in 

general accordance with ASTM designation D-5298-94. The moisture content of each 

sample was determined before and after the resilient test in accordance with ASTM D 

2216-92. 
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Table 4.3 Static and Dynamic Stresses. 

Dynamic Stress (kPa)  

Static Stress 

(kPa) 

Triaxial 

Compression 

Triaxial 

Shear 

Triaxial 

Extension 

 

 

Stress 

State σy σx ∆σy
c ∆σx

c ∆σy
s ∆σx

s ∆σy
e ∆σx

e 

1 40 25 5 0 10 -5 -5 5 

2 50 25 10 0 10 -5 -10 5 

3 70 40 10 0 10 -5 -10 10 

4 130 60 20 0 20 -10 -10 10 

5 150 70 20 0 20 -10 -10 10 

6 170 100 20 0 20 -10 -20 20 

7 220 120 30 0 30 -15 -20 20 

8 250 140 30 0 30 -15 -20 20 

9 250 120 30 0 30 -15 -20 20 

10 250 105 30 0 30 -15 -20 20 

 

 

4.6 Permanent Deformation Testing 

 The repeated load triaxial test was also used to study the permanent deformation 

characteristics of the four aggregate types. The permanent deformation study was 

performed on only well graded samples compacted at optimum moisture. 

Samples of 150-mm height by 150-mm diameter were compacted using the 

Texas Gyratory Compactor at high compaction effort. The permanent deformation 

behavior of the materials was studied at four stress levels shown in Table 4.4. At each 

stress level, static confining stresses were applied to the samples and deviatoric stresses 

were axially cycled for 10,000 times. The confining and deviatoric stress values are 

tabulated in Table 4.4. Strains measured are separated into resilient and plastic strains. 

Plastic strains are then used to characterize the permanent deformation behavior of the 
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material. The deviatoric stress consists of a haversine pulse-load applied for 0.1 seconds 

with a 0.9 seconds rest at a frequency of 1 cycle per second. This load cycle was used for 

the permanent deformation test because the confining pressure was not cycled. 

 

Table 4.4 Confining and Deviatoric Stresses for Permanent Deformation. 

 Stress Levels 

Stress 1 2 3 4 

Confining, σ3, kPa 70 35 105 70 

Deviatoric, (σ1-σ3), kPa 70 105 145 180 
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CHAPTER V 

LABORATORY TEST RESULTS AND ANALYSIS 

5.1 General 

The liquid limits and plasticity indices (ASTM D 4318-95) of the material tested 

are tabulated in Table 5.1. The original materials were separated by size down to the 

#200 sieve, and the individual particle sizes were recombined to obtain well-graded, 

fine-graded, and coarse-graded samples. The screen sizes used for separation were the 

same as those given in Table 4.1. It was difficult to compact coarse graded samples of 

materials with low plasticity indexes (California granite and Minnesota gravel), so 

coarse graded samples were not molded for these materials. 

 

Table 5.1 Atterberg’s Limits. 

Specimen Liquid Limit (%) Plasticity Index (%) 

Texas Gravel 20.2 11.8 

Texas Limestone 14.9 4.4 

Minnesota Gravel 18.4 2.0 

California Granite 11.6 NP 

 

 

 A three-parameter equation (Fredlund and Xing, 1994) was used to fit the three 

gradations. This equation allows for a continuous fit and proper definition of the 

extremes of the gradation curve and is given by: 
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where: 

Pp = percent passing a particular grain-size, d, 

ga = fitting parameter corresponding to the initial break in the grain-size curve, 

gn = fitting parameter corresponding to the maximum slope of the grain-size curve, 

gm = fitting parameter corresponding to the curvature of the grain-size curve, 

d = particle diameter (mm), 

dr = residual particle diameter (mm), and 

dm = minimum particle diameter (mm). 

 Non-linear regression analysis was used to obtain the three parameters of 

Equation 5.1 that fit the three gradations considered. The values of the parameters are 

tabulated in Table 5.2. 

 

Table 5.2 Gradation Parameters. 

Parameter Coarse Graded Well Graded Fine Graded 

ga 13.272 11.997 4.726 

gn 0.988 0.976 1.361 

gm 2.414 1.544 0.685 

 

 

At each gradation, three moisture levels were used in molding the samples. The 

samples were compacted dry of optimum, at optimum and wet of optimum. Three 

replicate samples were compacted at each moisture and gradation combination. Some 

samples were abandoned because they were both difficult to compact at the levels of 

moisture and gradation or were too soft and unstable to test. 

The samples were compacted with the Texas Gyratory Compactor (TGC). A few 

of the samples were compacted with the impact hammer and the vibratory compactor. 

The purpose of using the impact and vibratory compaction methods was to investigate 

the effect of compaction method and level on the mechanical properties of the materials. 
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The average values and standard deviation (in brackets) of dry densities, molding 

moisture contents and matric suction are tabulated in Table 5.3 through Table 5.6. 

Table 5.3 Moisture Content and Dry Densities for Texas Limestone. 

Coarse Well Fine  

Optimum Dry Optimum Wet Dry Optimum Wet 

Moisture Content 

(%) 

2.8 

(0.2) 

3.5 

(0.1) 

4.1 

(0.04) 

4.9 

(0.1) 

4.7 

(0.1) 

5.4 

(0.3) 

5.9 

(0.2) 

Matric Suction (kPa) 19.3 49.0 17.9 12.7 55.7 20.5 16.2 

Dry Density (kg/m3) 2144 

(3.5) 

2260 

(11.7)

2350 

(7.9) 

2315 

(2.6) 

2251 

(18.7) 

2302 

(16.7) 

2334 

(8.3) 

 

 

Table 5.4 Moisture Content and Dry Densities for Texas Gravel. 

Coarse Well Fine  

Optimum Dry Optimum Wet Dry Optimum 

Moisture Content (%) 5.5 

(0.7) 

5.5 

(0.1) 

7.7 

(0.2) 

9.3 

(0.1) 

5.4 

(0.2) 

7.5 

(0.1) 

Matric Suction (kPa) 14.8 29.6 15.4 8.9 94.7 51.2 

Dry Density (kg/m3) 2020 

(78.9) 

2062 

(60.2) 

2240 

(54.5) 

2079 

(13.4) 

2075 

(14.5) 

2210 

(9.2) 
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Table 5.5 Moisture Content and Dry Densities for Minnesota Gravel. 

Well Fine  

Dry Optimum Wet Dry Optimum 

Moisture Content (%) 4.5 (0.2) 6.2 (0.1) 7.7 (0.2) 4.7 (0.2) 7.6 (0.1) 

Matric Suction (kPa) 1179.8 21.8 8.9 3705.3 50.6 

Dry Density (kg/m3) 2139 

(37.9) 

2167 

(11.3) 

2240 

(7.2) 

2159 

(14.7) 

2296 

(8.1) 

 

 

 

Table 5.6 Moisture Content and Dry Densities for California Granite. 

Well Fine  

Dry Optimum Wet Dry Optimum Wet 

Moisture Content (%) 3.5 

(0.2) 

4.0 

(0.1) 

4.6 

(0.2) 

4.1 

(0.3) 

4.6 

(0.1) 

5.9 

(0.1) 

Matric Suction (kPa) 116.2 28.0 21.5 268.4 26.7 10.3 

Dry Density (kg/m3) 2179 

(31.4)

2218 

(7.5) 

2192 

(5.1) 

2177 

(11.4) 

2215 

(4.8) 

2278 

(6.7) 

 

5.2 Resilient 

Samples, 150-mm diameter by 150-mm height, were compacted and tested in the 

IPC RaTT cell. Each sample was tested at the ten static stress states described in the 

previous Section 4.5. At each stress state, small stress changes were applied to the 

sample so that the net changes in stresses are a triaxial compression, triaxial shear and 

triaxial extension. The static stresses applied are typical stresses induced in an unbound 

granular base layer due to traffic loads. These static stresses are well below the failure 

envelope of unbound granular materials. Figures 5.1 and 5.2 are plots of static stresses 
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and small stress changes applied to a single sample at the ten stress-states in a σ1-σ3 and 

√J2
/-I1 stress space, respectively. 
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Figure 5.1 Applied Stresses in a σ1-σ3 Stress Space. 
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Figure 5.2 Applied Stesses in a √J2
/-I1 Stress Space. 

 

The resilient axial and radial strains due to small stress changes were measured at 

each stress state and used as input into the system idenfication scheme to compute the 

resilient moduli and Poisson's ratios. The values of static stresses and average resilient 

strains (axial and radial) due to small stress changes are tabulated in Table 5.7 for a well 

graded Texas limestone compacted at optimum moisture. The corresponding standard 

deviation are tabulated Table 5.8. Similar results were obtained for the other 

combination of gradations and moisture levels in the test matrix and are tabulated in 

Appendix A. 
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Table 5.7 Average Resilient Strains for Texas Limestone at Optimum Moisture. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial  Radial  Axial  Radial  Axial  Radial  Axial  Radial  

40.0 25.0 28.6 -12.4 98.0 -78.1 -72.4 51.1 

50.0 25.0 51.0 -24.6 78.7 -72.3 -100.3 74.9 

70.0 40.0 38.7 -16.7 54.1 -41.5 -97.1 75.4 

130.0 60.0 50.5 -22.2 74.4 -67.0 -49.2 46.3 

150.0 70.0 44.2 -19.2 64.5 -55.3 -42.7 39.3 

170.0 100.0 41.6 -16.2 57.1 -39.3 -89.3 68.1 

220.0 120.0 53.7 -19.0 73.4 -53.3 -67.9 53.0 

250.0 140.0 47.7 -15.9 64.0 -43.1 -57.6 42.1 

250.0 120.0 49.0 -17.4 66.6 -52.9 -60.2 51.5 

250.0 105.0 48.3 -19.7 68.8 -63.1 -54.6 49.0 
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Table 5. 8 Standard Deviation of Resilient Strains for Texas Limestone at Optimum 

Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Standard Deviation Standard Deviation Standard Deviation 

Axial  Radial  Axial  Radial  Axial  Radial  Axial  Radial  

40.0 25.0 0.6 0.4 1.0 0.3 1.2 0.4 

50.0 25.0 3.0 1.8 6.2 11.1 7.7 9.7 

70.0 40.0 1.7 1.3 3.7 4.6 5.5 5.5 

130.0 60.0 1.8 1.6 4.7 6.8 4.2 4.2 

150.0 70.0 0.7 0.8 4.4 6.3 1.4 3.0 

170.0 100.0 2.8 0.6 4.0 2.8 4.7 3.3 

220.0 120.0 2.0 2.1 4.7 6.4 6.5 3.8 

250.0 140.0 1.9 1.3 3.9 4.6 4.4 3.9 

250.0 120.0 1.9 1.0 2.2 4.2 2.5 3.4 

250.0 105.0 2.9 2.4 5.4 11.0 3.7 7.2 

 

 The measured axial and radial resilient strains are the actual system outputs of 

the system identification method. The measured resilient strains act as a nerve center of 

the parameter adjustment algorithm of the SID scheme. Therefore, it is very important to 

obtain accurate measurements of the resilient strains. In this study, the resilient strains 

were measured with externally mounted Linear Variable Differential Transducers 

(LVDTs). The LVDTs used are very sensitive to changes in deflection and were suitable 

for this study. Two LVDTs each were used to measure axial and radial resilient strains, 

respectively and the results are reported as the mean value of these measurements. 

 A computer program was developed to determine the anisotropic resilient 

properties of each sample in the test matrix at the ten stress states using the system 

identification method. Figure 5.3 is a schematic of the program structure for the system 

identification method. The input parameters include the static and dynamic stresses and 
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the axial and radial resilient strains. Initial values of the five anisotropic resilient 

properties are then computed from the dynamic stresses and measured strains. The 

computed initial properties are then used to calculate the model output (calculated 

strains) from Equations 3.30, 3.32 and 3.40.  

The sensitivity matrices F and the r-vectors can then be obtained from Equations 

3.48 and 3.50, respectively, for the three triaxial regimes. The three F matrices and three 

r-vectors are then combined to obtain one F matrix and one r-vector (Equation 3.51). 

The α-vector is then determined from Equation 3.46 and used to compute a new set of 

model properties. If the initial values of the five anisotropic properties are precise they 

will be equivalent to the new set of model properties and the measured strains, and 

calculated strains will also be equivalent to each other. When this occurs, the system is 

termed ‘identified’. The criterion for identification is based on the components of the α-

vector. In this study, the criterion is 1%, and this means that the system and model 

properties are equivalent whenever the difference between the measured and calculated 

strains is less than 1% of the calculated strain. If the 1% criterion is not satisfied, a new 

set of model output is calculated and the iteration process is continued until the desired 

criterion is reached. 
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Figure 5.3 Program Structure for the System Identification Method. 
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As an example, consider the strains obtained at the first stress state for a well-

graded Texas crushed limestone at optimum moisture content (Table 5.7). 

 

Step 1 Input Data 

Static Axial Stress, σy = 40.0 kPa 

Static Radial Stress, σx = 25.0 kPa 

Dynamic Change in Axial Stress for Triaxial Compression, ∆σy
c, = 5 kPa 

Dynamic Change in Radial Stress for Triaxial Compression, ∆σx
c, = 0 kPa 

Dynamic Change in Axial Stress for Triaxial Shear, ∆σy
s, = 10 kPa 

Dynamic Change in Radial Stress for Triaxial Shear, ∆σx
s, = -5 kPa 

Dynamic Change in Axial Stress for Triaxial Extension, ∆σy
e, = -5 kPa 

Dynamic Change in Radial Stress for Triaxial Extension, ∆σx
e, = 5 kPa 

Axial Resilient Strain for Triaxial Compression, ∆εy
c = 28.6E-06 

Radial Resilient Strain for Triaxial Compression, ∆εx
c = -12.4E-06 

Axial Resilient Strain for Triaxial Shear, ∆εy
s = 98.0E-06 

Radial Resilient Strain for Triaxial Shear, ∆εx
s = -78.1E-06 

Axial Resilient Strain for Triaxial Extension, ∆εy
e =  -72.4E-06 

Radial Resilient Strain for Triaxial Extension, ∆εx
e = 51.1E-06 

 

Step 2 Initial Model Parameters: 

kPa
E

E c
y

c
y
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Step 3 Model Output (Calculated Strains): 

Calculated Axial Resilient Strain for Triaxial Compression, ∆εy
c^  

0660.28
17.174825

5
49.64020

)0)(261.0)(2(2^ −=+−=+−= E
EE y

c
y

x

c
xxyc

y
σ∆σ∆ν

ε∆  

Calculated Radial Resilient Strain for Triaxial Compression, ∆εx
c^  

064.20
49.64020
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Calculated Axial Resilient Strain for Triaxial Shear, ∆εy
s^  
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Calculated Radial Resilient Strain for Triaxial Shear, ∆εx
s^  
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Calculated Axial Resilient Strain for Triaxial Extension, ∆εy
e^  

0640.69
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Calculated Radial Resilient Strain for Triaxial Extension, ∆εx
e^  
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Step 4 Determine F-matrix, Equations 3.48 and 3.51: 
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Step 5 Determine r-vector, Equations 3.50 and 3.51: 
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Step 6 Solve for α-vector: 

From Equations 3.46 and 3.51, 

αFr =  

and, 
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Step 7 Compute New Set of Model Properties: 

The new anisotropic properties, αr+1 are thus: 

( ) kPaEEE r
x

r
x 04.66782))0219.7)(6.0(1)(49.64020())1()(6.0(11 =−+=+=+ α  

( ) 233.0))0226.18)(6.0(1)(261.0())2()(6.0(11 =−−+=+=+ Er
xy

r
xy ανν  

( ) 481.0))0233.13)(6.0(1)(522.0())3()(6.0(11 =−−+=+=+ Er
xx

r
xx ανν  

( ) kPaEEE r
y

r
y 20.174825))0236.9)(6.0(1)(17.174825())4()(6.0(11 =−−+=+=+ α

 

Since all the components in the α-vector are not less than 1% for this iteration, 

the new set of parameters are used to compute a new model output (calculated strains) 

and steps 3 through 7 are repeated until the convergence criteria is reached (α ≤1%). 

For this particular example, convergence is reached after seven iterations. The α-

values and adjusted model properties are tabulated in Table 5.9. The shear modulus Gxy 

was not included in the parameter adjustment algorithm because its value, once 

computed from Equation 3.39 does not need further adjustment. Typical SID converging 

processes for moduli, and Poisson’s ratios at the stress-state in the example are shown in 

Figures 5.4 and 5.5, respectively. Here, the initial estimates of the moduli and Poisson’s 

ratio were close to the system values and the optimum values were achieved after 7 

iterations.
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Table 5.9 Model Properties and Parameter Adjustment Values at Stress State 1 for Well 

Graded Texas Limestone at Optimum Moisture. 

Iteration α(1) α(2) α(3) α(4) Ex 

(MPa) 

νxy νxx Ey 

(MPa) 

1 0.072 -0.183 -0.133 -0.094 64.0 0.261 0.522 175.0 

2 0.039 -0.116 -0.098 -0.054 66.8 0.233 0.481 165.0 

3 0.020 -0.068 -0.064 -0.033 68.3 0.216 0.452 160.0 

4 0.010 -0.038 -0.039 -0.020 69.1 0.208 0.435 157.0 

5 0.005 -0.021 -0.023 -0.012 69.6 0.203 0.425 155.0 

6 0.003 -0.011 -0.013 -0.007 69.8 0.200 0.419 154.0 

7 0.001 -0.006 -0.007 -0.004 69.9 0.199 0.416 153.0 
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Figure 5.4 Converging Process for Moduli. 
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Figure 5.5 Converging Process for Poisson’s Ratios. 

 

The parameter adjustment algorithm described in steps 1 through 7 was 

performed on the stresses and average strains from all the ten stress states to determine 

the stress dependent cross-anisotropic resilient properties for all samples. The stresses, 

moduli and Poisson’s ratios obtained using the SID program for a well-graded Texas 

crushed limestone at optimum moisture are tabulated in Table 5.10. Similar values were 

obtained for the other samples and are tabulated in Appendix B. Figures 5.6 through5.9 

are plots of moduli and Poisson’s ratio with normalized stress states (√J/
2/Pa and I1/Pa). 

Moduli values generally increase with increasing stress levels. Although, the moduli 

values increase with increasing I1, the moduli tend to peak at high levels of J/
2. This 

means that resilient moduli values will not increase indefinitely with increasing bulk 

stresses but will peak at high octahedral shear stresses (Uzan’s model). 
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Table 5.10 Moduli and Poisson’s Ratios for Texas Crushed Limestone at Optimum 

Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal

40.0 25.0 153.0 69.9 42.6 0.199 0.416 

50.0 25.0 176.0 69.7 49.7 0.181 0.336 

70.0 40.0 241.0 116.0 78.5 0.206 0.385 

130.0 60.0 391.0 154.0 106.0 0.176 0.402 

150 70.0 448.0 185.0 125.0 0.182 0.406 

170 100.0 462.0 249.0 156.0 0.207 0.396 

220 120.0 544.0 285.0 178.0 0.187 0.402 

250 140.0 616.0 352.0 210.0 0.192 0.417 

250 120.0 602.0 288.0 188.0 0.172 0.388 

250 105.0 632.0 250.0 171.0 0.166 0.441 
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Figure 5.6 Modulus versus √J/
2/Pa. 
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Figure 5.7 Modulus versus I1/Pa. 
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Figure 5.8 Poisson’s Ratio versus Square Root of (J/
2)/Pa. 
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Figure 5.9 Poisson’s Ratio versus I1/Pa. 

 

In general, resilient modulus values were higher in the vertical direction than in 

the horizontal direction for all samples. The resilient shear modulus values were the 

lowest among the three resilient moduli. Also, the horizontal Poisson’s ratio always 

remained greater than the vertical Poisson’s ratio. 

Gradation, moisture level and material type have different effects on the resilient 

moduli. For both well- and fine-graded materials compacted at optimum moisture 

content, increased resilient moduli were observed for increasing plasticity index. Figures 

5.10 and 5.11 are plots of vertical modulus versus √(J/
2)/Pa for well-graded and fine-

graded materials at optimum moisture content, respectively. California gravel (non-

plastic) and Minnesota gravel (PI = 2.0%) recorded lower resilient moduli than Texas 

gravel (PI = 11.8%) and Texas limestone (PI = 4.4%). However, Texas limestone 

recorded higher moduli than Texas gravel for both well-graded and for fine graded 

samples. Thus, although moduli values increase with increasing plasticity index, there is 

an optimum plasticity index above which moduli will decrease, especially for fine 

gradation at moisture levels wet of optimum. 
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Figure 5.10 Vertical Modulus for Well-Graded Materials Compacted at Optimum 

Moisture Content. 
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Figure 5.11 Vertical Modulus for Fine-Graded Materials Compacted at Optimum 

Moisture Content. 
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Well-graded samples generally have higher resilient moduli values than coarse 

graded samples followed by fine graded samples (Figures 5.12, 5.13, 5.14 and 5.15). The 

variation in resilient moduli with gradation is more significant in high plasticity 

materials. Between well graded and fine graded samples compacted at optimum 

moisture content, vertical resilient modulus values of fine graded Texas gravel varied 

between 60% to 85% of the well graded samples at all the stress states. The variation 

was between 80% to 95% for Texas limestone, 80% to 99.5% for Minnesota gravel and 

only 90% to 99.7% for California granite. Similar variations were observed with respect 

to horizontal and shear resilient moduli. For California granite, there were increases in 

the horizontal and shear moduli values. Coarse graded samples of Minnesota gravel and 

California granite could not be compacted and tested because of their low plasticity. 
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Figure 5.12 Variation of Vertical Modulus with Gradation for Texas Limestone at 

Optimum Moisture Content. 
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Figure 5.13 Variation of Vertical Modulus with Gradation for Texas Gravel at Optimum 

Moisture Content. 
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Figure 5.14 Variation of Vertical Modulus with Gradation for Minnesota Gravel at 

Optimum Moisture Content. 
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Figure 5.15 Variation of Vertical Modulus with Gradation for California Granite at 

Optimum Moisture Content. 

 

For a particular gradation, samples compacted at optimum and dry of optimum 

generally recorded higher resilient moduli than samples compacted at wet of optimum. 

The effect of moisture on resilient moduli depends on material and gradation. An 

increase in plasticity and fine content are generally accompanied by a significant 

variation in moduli due to moisture. Fine graded Texas gravel and Minnesota gravel 

samples could not be tested because they were too soft and unstable for the stress levels 

applied. Figures 5.16 through 5.21 illustrate the effect of moisture on resilient moduli. 

Similar effects were observed for horizontal and shear resilient moduli. The modular 

ratios, horizontal to vertical modulus, n, and shear to vertical modulus ratios, m, at all 

stress states was fairly constant for a particular sample. The average n-value for well 

graded Texas limestone at optimum moisture is about 0.5 and the m-value is about 0.3. 

The Poisson’s ratio values varied with the level of stress applied to the sample. 

The advantage of using the system identification method is that the parameters obtained 
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satisfy traditional theories of elasticity. As an example, consider Table 5.7 and at stress 

level 1. 

Static Axial Stress, σy = 40.0 kPa 

Static Radial Stress, σx = 25.0 kPa 

Dynamic Change in Axial Stress for Triaxial Compression, ∆σy
c, = 5 kPa 

Dynamic Change in Radial Stress for Triaxial Compression, ∆σx
c, = 0 kPa 

Dynamic Change in Axial Stress for Triaxial Shear, ∆σy
s, = 10 kPa 

Dynamic Change in Radial Stress for Triaxial Shear, ∆σx
s, = -5 kPa 

Dynamic Change in Axial Stress for Triaxial Extension, ∆σy
e, = -5 kPa 

Dynamic Change in Radial Stress for Triaxial Extension, ∆σx
e, = 5 kPa 

Axial Resilient Strain for Triaxial Compression, ∆εy
c = 28.6E-06 

Radial Resilient Strain for Triaxial Compression, ∆εx
c = -12.4E-06 

Axial Resilient Strain for Triaxial Shear, ∆εy
s = 98.0E-06 

Radial Resilient Strain for Triaxial Shear, ∆εx
s = -78.1E-06 

Axial Resilient Strain for Triaxial Extension, ∆εy
e =  -72.4E-06 

Radial Resilient Strain for Triaxial Extension, ∆εx
e = 51.1E-06 

Then from Equations 2.2, 

Poisson’s ratio for the triaxial compression regime = 0.43 

Poisson’s ratio for the triaxial shear regime = 0.80 

Poisson’s ratio for the triaxial extension regime = 0.71 

 

Thus the material dilated during the triaxial shear and extension regimes. 

However, after integrating the changes in stresses and strains into the system 

identification scheme, the vertical and horizontal Poisson’s ratio values were 0.2 and 

0.42, respectively. Vertical Poisson’s ratio values determined for all the samples were 

below 0.5 as required by traditional theories of elasticity. Horizontal Poisson’s ratio 

values can be higher than 0.5 according to elasticity theories (Equation 3.15). 
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Figure 5.16 Variation of Vertical Modulus with Moisture for Well Graded Texas 

Limestone. 
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Figure 5.17 Variation of Vertical Modulus with Moisture for Fine Graded Texas 

Limestone. 
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Figure 5.18 Variation of Vertical Modulus with Moisture for Well Graded Texas Gravel. 
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Figure 5.19 Variation of Vertical Modulus with Moisture for Well Graded Minnesota 

Gravel. 
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Figure 5.20 Variation of Vertical Modulus with Moisture for Well Graded California 

Granite. 
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Figure 5.21 Variation of Vertical Modulus with Moisture for Fine Graded California 

Granite. 
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5.2.1 Regression Analysis 

It is assumed that the resilient moduli obey the Uzan model and thus, the non-

linear tangential moduli are smooth functions of the isotropic stress invariants 

(Equations 3.4, 3.5 and 3.6). It is also assumed that the variations of these tangential 

moduli are negligible under infinitesimal changes in stresses at a particular stress state. 

Thus, the elastic strains generated due to small changes in stresses at a particular stress 

state depend on the elastic properties at that stress state. 

Regression analysis was used to determine the k-values for each gradation and 

moisture condition. The data fitted well with the Uzan-type model (Equations 3.4, 3.5, 

and 3.6) and the R-square values determined for the elastic parameters at all conditions 

were above 0.90. Tables 5.11, 5.12, 5.13 and 5.14 are summaries of average k-values for 

the gradation and moisture conditions tested. The negative values of k6 and k9 indicate 

that the horizontal and shear moduli were more sensitive to high shear stress softening. 

The k-values, k1, k4 and k7, are indications of how well a material can spread traffic 

loads. The other k-values are shape parameters and they indicate how stress levels affect 

the resilient moduli (Lytton, 1998). 

The resilient moduli values also fitted well with Lytton’s model (Equation 2.9). 

Lytton’s Model 
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The k-values are related to each other. The standard deviation of k1-values (Uzan 

model) was about twice the standard deviation of k/
1-values (Lytton’s model). The k-

values of all the materials could not be explained by gradation parameters (ga, gn and 

gm), suction and dry density. However, the k-values of the individual materials are 

related to the gradation parameters. 

 

321 368830273332 kkk ++=   R2 = 0.60 
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654 61614722158 kkk +−=    R2 = 0.66 

6636.01042

65
4 −−=

kk
k    R2 = 0.87 

987 54310711329 kkk +−=    R2 = 0.70 

4707.0698

98
7 −−=

kk
k     R2 = 0.76 

( ) ( ) 76.1
7

56.0
14 kkk −=    R2 = 0.90 

( ) ( ) 56.0
4

32.0
17 kkk =     R2 = 0.83 

 

Texas Limestone: 

321 3.2435.114029.0 kkkga ++−=   R2 = 0.64 

321 0.433.19005.0 kkkgm ++−=   R2 = 0.65 

321 4.109.2001.0 kkkgn −−=   R2 = 0.64 

 

Minnesota Gravel: 

321 8.646.39008.0 kkkga ++−=   R2 = 0.91 

321 8.79.4001.0 kkkgm ++−=   R2 = 0.92 

321 5.22.0001.0 kkkgn −+=   R2 = 0.69 

 

California Granite: 

654 4.5705.004.0 kkkga −−−=   R2 = 0.96 

654 8.608.0005.0 kkkgm −+−=   R2 = 0.96 

654 2.313.1004.0 kkkgn ++=   R2 = 0.86 
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Table 5.11 Average k-Values for Texas Limestone. 

Coarse Graded Well Graded Fine Graded  

Optimum Dry Optimum Wet Dry Optimum Wet 

k1 3670 4171 3860 3839 3783 5629 5734 

k2 0.398 0.354 0.398 0.369 0.370 0.217 0.186 

k3 0.314 0.362 0.326 0.344 0.334 0.568 0.576 

k4 426 429 316 364 443 210 230 

k5 1.058 1.198 1.281 1.174 1.120 1.328 1.275 

k6 -0.001 -0.254 -0.372 -0.303 -0.197 -0.265 -0.052 

k7 444 452 380 430 467 296 318 

k8 0.878 0.910 0.964 0.867 0.841 0.993 0.943 

k9 -0.068 -0.060 -0.136 -0.068 -0.057 -0.057 0.097 

 

 

 

 



 106

 

Table 5.12 Average k-Values for Texas Gravel. 

Coarse Graded Well Graded Fine Graded  

Optimum Dry Optimum Dry Optimum 

k1 3779 4245 4152 3010 6250 

k2 0.301 0.306 0.299 0.330 0.015 

k3 0.332 0.242 0.316 0.190 0.645 

k4 803 2589 824 1151 416 

k5 0.625 0.483 0.694 0.526 0.961 

k6 -0.053 -0.001 -0.140 -0.247 -0.240 

k7 586 1219 627 680 496 

k8 0.601 0.507 0.642 0.524 0.667 

k9 0.009 0.055 -0.024 -0.103 0.042 

 

 

Table 5.13 Average k-Values for Minnesota Gravel. 

Well Graded Fine Graded  

 Dry Optimum Wet Dry Optimum 

k1 3879 2834 3232 3779 3462 

k2 0.217 0.360 0.302 0.301 0.248 

k3 0.513 0.310 0.388 0.332 0.372 

k4 169 273 180 280 803 

k5 1.227 1.188 1.267 1.080 0.625 

k6 -0.204 -0.412 -0.405 -0.376 -0.053 

k7 217 322 232 586 331 

k8 0.945 0.861 0.957 0.601 0.791 

k9 -0.066 -0.145 -0.165 0.009 -0.125 
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Table 5.14 Average k-Values for California Granite. 

Well Graded Fine Graded  

Dry Optimum Wet Dry Optimum Wet 

k1 3179 2934 3251 3572 2872 3500 

k2 0.329 0.326 0.313 0.289 0.326 0.262 

k3 0.372 0.366 0.417 0.344 0.376 0.458 

k4 266 266 215 406 366 246 

k5 1.136 1.136 1.229 0.997 0.970 1.123 

k6 -0.404 -0.404 -0.349 -0.356 -0.363 -0.273 

k7 315 277 250 419 379 283 

k8 0.854 0.871 0.951 0.759 0.729 0.866 

k9 -0.146 -0.087 -0.141 -0.132 -0.085 -0.068 

 

5.2.2 Compaction Results 

The molding moisture contents and the resulting dry densities for each 

combination of compaction type and effort are shown in Table 5.15. The k-values are 

shown in Tables 5.16 and 5.17 for Texas gravel and Texas limestone, respectively.  The 

recorded moduli values at low, medium and high stress states are tabulated in Tables 

5.18 and 5.19 for Texas gravel and Texas limestone, respectively. 

In this study a low stress state is equivalent to a confining stress of 40 kPa and a 

deviator stress of 30 kPa. A medium stress state is equivalent to a confining stress of 100 

kPa and a deviator stress of 70 kPa. A high stress state is equivalent to a confining stress 

of 120 kPa and a deviator stress of 130 kPa. 
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Table 5.15 Molding Moisture Content and Dry Density. 

 Texas Limestone 

 Impact Vibratory Gyratory 

 Low  High Low High Low High 

Moisture Content, % 6.0 6.0 6.0 6.0 5.0 5.0 

Dry Density, kg/m3 2150 2160 1944 2160 2180 2200 

 Texas Gravel 

 Impact Vibratory Gyratory 

 Low High Low High Low High 

Moisture Content, % 5.0 5.0 5.0 5.0 4.0 4.0 

Dry Density, kg/m3 2300 2350 2115 2350 2350 2360 

 

 

Table 5.16 Model Parameters for Siliceous Gravel. 

 Impact Vibratory Gyratory 

 Low Effort High Effort Low Effort High Effort Low Effort High Effort

k1 2553 3736 3910 2517 4726 4057 

k2 0.327 0.220 0.058 0.378 0.218 0.269 

k3 0.071 0.103 0.148 0.080 0.139 0.061 

k4 1195 838 465 771 358 992 

k5 0.637 0.797 0.745 0.652 1.242 0.556 

k6 -0.089 -0.083 -0.036 -0.031 -0.057 -0.030 

k7 696 695 621 559 500 754 

k8 0.550 0.593 0.449 0.638 0.799 0.522 

k9 -0.012 -0.004 0.060 0.019 0.019 -0.005 

νxy 0.18 0.17 0.06 0.14 0.16 0.17 

νxx 0.36 0.35 0.11 0.32 0.31 0.40 
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Table 5.17 Model Parameters for Crushed Limestone. 

 Impact Vibratory Gyratory 

 Low Effort High Effort Low Effort High Effort Low Effort High Effort

k1 3112 4663 2315 2109 4533 5085 

k2 0.312 0.344 0.452 0.604 0.257 0.241 

k3 0.124 0.084 0.062 0.057 0.134 0.099 

k4 441 639 271 622 267 781 

k5 1.053 1.068 0.925 0.899 1.254 0.960 

k6 0.019 -0.063 -0.058 -0.028 -0.025 -0.044 

k7 447 635 319 676 366 691 

k8 0.785 0.813 0.793 0.666 0.895 0.736 

k9 0.042 -0.011 -0.007 0.046 0.026 -0.003 

νxy 0.15 0.20 0.05 0.12 0.19 0.18 

νxx 0.30 0.42 0.09 0.27 0.41 0.40 
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Table 5.18 Resilient Moduli for Siliceous Gravel. 

 Vertical Resilient Modulus, MPa 

Impact Vibratory Gyratory Stress 

State Low Effort High Effort Low Effort High Effort Low Effort High Effort

Low 192.0 208.0 148.0 169.0 232.0 305.0 

Medium 305.0 349.0 258.0 321.0 411.0 464.0 

High 394.0 449.0 315.0 415.0 531.0 581.0 

 Horizontal Resilient Modulus, MPa 

Low 277.0 201.0 91.1 152.0 111.0 152.0 

Medium 376.0 306.0 160.0 200.0 232.0 214.0 

High 395.0 345.0 142.0 225.0 263.0 258.0 

 Resilient Shear Modulus, MPa 

Low 105.0 99.3 55.0 71.8 78.3 101.0 

Medium 152.0 157.0 99.8 134.0 145.0 159.0 

High 173.0 183.0 101.0 146.0 167.0 178.0 
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Table 5.19 Resilient Moduli for Crushed Limestone. 

 Vertical Resilient Modulus, MPa 

Stress Impact Vibratory Gyratory 

State Low Effort High Effort Low Effort High Effort Low Effort High Effort

Low 161.0 326.0 174.0 174.0 231.0 323.0 

Medium 298.0 550.0 349.0 391.0 428.0 503.0 

High 411.0 707.0 421.0 514.0 588.0 642.0 

 Horizontal Resilient Modulus, MPa 

Low 64.9 165.0 70.9 120.0 104.0 178.0 

Medium 156.0 312.0 121.0 247.0 232.0 310.0 

High 238.0 391.0 127.0 250.0 271.0 387.0 

 Resilient Shear Modulus, MPa 

Low 54.3 111.0 49.6 71.2 71.5 111.0 

Medium 112.0 198.0 99.8 147.0 145.0 189.0 

High 145.0 234.0 108.0 178.0 180.0 222.0 

 

 

It is observed from Table 5.15 that compaction method and effort generally affect 

the dry density of a compacted sample. These increases in density obtained going from a 

lower compactive effort to a higher one resulted in higher values of resilient moduli. 

Samples prepared with the vibratory compaction method at low compaction effort 

recorded the lowest values in moduli. The highest vertical moduli values were recorded 

from samples prepared with gyratory compaction method at high compaction effort.  

The materials were generally stiffer in the vertical direction. However, the 

horizontal resilient modulus values were slightly higher at each stress state than the 

vertical resilient modulus for gravel samples compacted with impact compaction method 

at low effort (25 blows per layer). When the compaction effort was increased to 50 

blows per layer the horizontal resilient moduli were lower, but the average value was 
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80% of the vertical modulus as compared to 46%-60% in the case of the other 

compaction methods and efforts. The degree of anisotropy is defined as the ratio of 

horizontal to vertical modulus. It is assumed that the degree of anisotropy is related to 

particle orientation in the unbound granular material. Thus, the induced anisotropy by 

the impact compaction method was not significant. Samples compacted with the 

vibratory compaction method recorded unusually low Poisson's ratios. This may be due 

to the differences in LVDT range between RaTT and UIFC as mentioned earlier. 

The non-linear anisotropic properties (k-values) are useful in determining 

pavement response with a finite element code. The anisotropic model generally reduces 

and/or reverses the horizontal tensile stresses predicted in the base course with isotropic 

elastic properties. Although using impact compaction results in acceptable densities, 

distribution and orientation of individual particles makes the material to behave like an 

isotropic material. The orientation of particles in a compacted unbound granular material 

is important to its load carrying capabilities. Further study needs to be done to establish 

how the compaction methods considered are related to compaction levels achieved in the 

field. Field cores of unbound granular materials should be obtained and tested in the 

laboratory to confirm the observations made on compaction methods. 

5.3 Permanent Deformation 

The repeated load triaxial test was used to study the permanent deformation 

characteristics of the four aggregate types. The permanent deformation study was 

performed only on well graded samples compacted at optimum moisture. 

Samples, 150-mm in height by 150-mm diameter, were compacted using the 

Texas Gyratory Compactor with the high compaction effort. One sample was prepared 

for each stress level because this test is destructive in nature. The permanent deformation 

behavior of the materials was studied at four stress levels. At each stress level, static 

confining stresses were applied to the samples and deviatoric stresses were axially 

cycled for 10,000 times. A haversine pulse-load was applied for 0.1 seconds with a 0.9 

seconds rest at a frequency of 1 cycle per second. 
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The strain values at first load cycle are tabulated in Table 5.20. The plastic 

strains measured are plotted against the number of load applications in Figures 5.22 

through 5.25. 

 

Table 5.20 Plastic Strain at First Load Cycle 

 Plastic Strain at First Load Cycle (µε) 

Stress Level Stress (kPa) TX Limestone TX Gravel MN Gravel CA Granite

σ3 = 70 
1 

σd = 70 
365.2 584.4 672.2 389.4 

σ3 = 35 
2 

σd = 105 
792.7 3535.4 2664.2 807.2 

σ3 = 105 
3 

σd = 145 
655.2 3090.2 1619.0 656.5 

σ3 = 70 
4 

σd = 180 
598.2 3036.2 4826.2 1886.3 
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Figure 5.22 Plastic Strain versus Number of Load Applications for Texas Limestone. 
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Figure 5.23 Plastic Strain versus Number of Load Applications for Texas Gravel. 
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Figure 5.24 Plastic Strain versus Number of Load Applications for Minnesota Gravel. 
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Figure 5.25 Plastic Strain versus Number of Load Applications for California Granite. 
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 Plastic strains generally accumulate with increasing number of load applications. 

However, the rates at which plastic strains accumulate with load applications are 

different for the four materials considered.  

The highest plastic strains at first load cycle were observed in Texas gravel, but 

the rates of accumulation of plastic strains after the first few cycles reached an 

equilibrium state for all stress levels.  

The lowest plastic strains at first load cycle were observed in Texas limestone. 

However, there was a continuous increase in plastic strain accumulation with load cycles 

for stress levels 2, 3 and 4. The accumulation of plastic strains stabilized after the first 

few cycles for stress level 1. 

Equilibrium state at stress levels 1 and 3 was established in the accumulation of 

plastic strains after approximately 1,000 load applications for both Minnesota gravel and 

California granite. However, at stress levels 2 and 4 there was continuous increase in 

plastic strain accumulation for both Minnesota gravel and California granite. 

Figures 5.22 to 5.25 suggest that different materials behave differently under 

repeated load applications. Stress level is the most important factor that affects the 

accumulation of plastic strains with load application. An increase in deviatoric stress is 

generally accompanied by an increase in plastic strain. A decrease in confining stress 

results in an increase in plastic strain. 

Permanent deformation parameters were determined for the materials by fitting 

the repeated load triaxial data with the Vesys model (Equation 2.17) and the Three-

Parameter model (Equation 2.20). The model parameters, µ, α, εo, ρ and β are included 

in Tables 5.21, 5.22, 5.23 and 5.24 for stress levels 1, 2, 3 and 4, respectively. 

Vesys Model   αµε −= NNp )(  

 

Three-Parameter model 
βρεε 





−=

Nop exp  
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Table 5.21 Permanent Deformation Parameters for Stress Level 1. 

Model  TX Limestone TX Gravel MN Gravel CA Granite 

Parameter Vesys Model 

µ 560.7 3051.9 532.3 570.3 

α -0.152 -0.053 -0.080 -0.083 

 Three-Parameter Model 

εo 8415.9 55018.0 1938.7 2184.5 

ρ 160.7 E03 5.6 61.6 87.6 

β 0.099 0.448 0.113 0.112 

 

 

 

Table 5.22 Permanent Deformation Parameters for Stress Level 2. 

Model  TX Limestone TX Gravel MN Gravel CA Granite 

Parameters Vesys Model 

µ 1575.5 4837.3 2399.7 2092.2 

α -0.271 -0.034 -0.087 -0.144 

 Three-Parameter Model 

εo 65563.6 6858.5 6458.4 11788.1 

ρ 32740.7 0.2 18.6 239.8 

β 0.180 0.276 0.250 0.230 
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Table 5.23 Permanent Deformation Parameters for Stress Level 3. 

Model TX Limestone TX Gravel MN Gravel CA Granite 

Parameters Vesys Model 

µ 487.9 4541.2 1356.3 854.2 

α -0.332 -0.034 -0.073 -0.125 

 Three-Parameter Model 

εo 647885.1 6457.0 3802.0 16414.2 

ρ 1.85E12 0.37 10.3 158.28E6 

β 0.0745 0.289 0.144 0.062 

 

 

 

Table 5.24 Permanent Deformation Parameters for Stress Level 4. 

Model  TX Limestone TX Gravel MN Gravel CA Granite 

Parameters Vesys Model 

µ 1695.9 10702.9 4291.1 4144.9 

α -0.254 -0.044 -0.083 -0.107 

 Three-Parameter Model 

εo 36815.3 16137.6 11457.0 14775.7 

ρ 3233.8 3.9 14.6 54.2 

β 0.239 0.467 0.222 0.228 

 

 A small α-value indicates that the material that has low resistance to permanent 

deformation (Lytton, 1998). These model parameters can be used to predict the 

accumulation of permanent deformation within unbound granular layers in flexible 

pavements. It is easy to determine model parameters to characterize the permanent 

deformation behavior of unbound granular materials. However, the process is time 
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consuming because a new specimen has to be prepared for each stress level to eliminate 

the effect of stress history. 

 Although the laboratory setup for characterizing permanent deformation is 

simple, the levels of stresses that need to be applied must be determined accurately. This 

is because stress levels, especially confining stress, have a significant impact on the rate 

and magnitude of accumulation of plastic strain. 

 The stresses within a pavement structure can be determined by analytical 

methods. Layered linear elastic methods are usually used to determine the stresses in a 

pavement. The limitation of the layered elastic model is that elastic moduli must be 

constant within each horizontal layer and thus, the method cannot effectively deal with 

material non-linearity exhibited by unbound granular materials. 

The layered elastic process can account for variation in vertical stress but cannot 

effectively account for variation in lateral (confining) stresses. Since the variation of 

lateral stresses within a pavement profile is as important as the variation of vertical 

stresses, the finite element method (FEM) has recently been preferred to analyze 

pavements. A finite element computer program was developed in this study and the 

details are discussed in the next chapter. 

5.3.1 Accelerated Rutting Parameters 

Park (2000) developed a finite element computer program (FERUT) to predict 

the accumulation of permanent deformation in granular materials. FERUT uses the 

Vesys and Three Parameter models. 

 The formulation of the Vesys model implies that the plastic strain is an 

exponential function of the number of load cycles. The Three-Parameter model states 

that the plastic strain has a limit, εo, and a logarithmic rate of work hardening and also 

that the plastic strain increases with the number of load applications. 

  One mechanism that can seriously affect the performance of unbound granular 

layers is accelerated rutting due to fatigue from load repetitions. The repeated load 

action of traffic does not allow the build up of pore water pressure on the soil skeleton to 
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dissipate. Accelerated rutting is assumed to occur under repeated load when the effective 

stress in unbound granular layers become equal to zero (Lytton, 1998). 

 Unbound granular materials are in an unsaturated state in most of the time. 

Unbound granular materials like soils have a property called suction, which is a measure 

of the tendency of the soil to undergo change in moisture content. Soil suction is defined 

as the affinity of the soil for pure water (Lytton, 1995). The same value of soil suction 

leads to different values of moisture content in soils of different textures (Lytton, 1995). 

The more clayey the soil, the higher the value of its moisture content at a given suction. 

 The α-value in the Vesys model will decrease, as the pore water pressure 

becomes less and less negative (Lytton, 1998). The α-value has been determined to be 

(Lytton, 1998): 
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where 

 θ = volumetric water content, 

 n = porosity, 

 N = number of load applications after water enters the granular layer, 

    







∂
∂
θ
h  = the slope of the soil-volumetric water content curve, 

 k = the unsaturated permeability, 

 tv = the time between vehicles, 

 K = bulk modulus of the granular layer, 

 D10 = the particle diameter that is lager than 10% of all the particles, 

 dm = the maximum particle size, and 

f = a moisture lead factor that is equal to 1.0 when the granular layer is at or drier 

than optimum and 0.5 when saturated. 
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 Park (2000) determined α-values for accelerated rutting and used them in a 

comparative analysis to determine accelerated rutting potential of three granular 

materials, Caliche, Iron Ore (IO) gravel, and limestone. The variations of alpha values 

with load application based on Equation 5.2 are shown in Figure 5.26 for the three 

granular materials. The accelerated rutting is assumed to occur when there is ingress of 

water into the base layer. The analytical technique was able to closely duplicate the field 

behavior of the materials under accelerated loading device as shown in Figure 5.27 for a 

Caliche base layer. 

 

 

Figure 5.26 Variation of Accelerated Rutting Parameter with Load Application [After 

Park, (2000)]. 
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Figure 5.27 Variation of Rut Depth with Ingress of Water in Caliche Base Layer [After 

Park, (2000)]. 
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CHAPTER VI 

DEVELOPMENT OF FINITE ELEMENT PROGRAM 

6.1 Background 

The finite element method has evolved in the past 40 years from a specialized 

technique for aircraft frame analysis to a general numerical solution to a broad range of 

physical problems. The historic paper written by Turner, Clough, and Topp (1956) is 

credited by many for having established the method. Clough (1960) coined the term 

‘finite element method’. The finite element method represents an approximate numerical 

solution of a boundary-value problem described by a differential equation. 

Typically engineering problems in mechanics are addressed by deriving 

equations relating the variables of interest to basic principles of physics. These principles 

include equilibrium, potential energy, strain energy, conservation of total energy, virtual 

work, thermodynamics, conservation of mass, and many more. Finding a solution that 

satisfies a differential equation throughout a region, and also yields the boundary 

conditions, is a very difficult and often an impossible task for all but the most 

elementary problems. The finite element method addresses this difficulty by dividing a 

region into small sub-regions so that the solution within each sub-region can be 

represented by a simplified function compared to that required for the entire region. The 

sub-regions are joined mathematically by enforcing sub-region to sub-region boundary 

compatibility while satisfying the entire region boundary requirements (Owen and 

Hinton, 1980). 

The finite element method is capable of including material and element non-

linearity, as well as different types of loading and interface conditions in the solution. 

This highly efficient and versatile numerical technique has been applied to pavements 

since the late 1960’s. However, one problem that has been identified by many 

researchers (Duncan et al., 1968; Hicks, 1970) is the false prediction of horizontal tensile 

stresses within unbound granular layers in flexible pavements. Unbound granular 
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materials are known to have negligible tensile strength aside from that induced by 

suction and particle interlock. Therefore, they cannot accommodate the high tensile 

stresses predicted. Contrary to the predicted horizontal tensile stresses, conventional 

flexible pavements with granular layers have been used to carry traffic loads for decades 

with a remarkable performance history. 

Much research has been directed at improving pavement response models to 

explain the performance of flexible pavements and to reverse the prediction of horizontal 

tensile stresses in the unbound granular layers. Three primary approaches have been 

used to correct the predicted horizontal tensile stresses in unbound granular layers in 

flexible pavements (Tutumluer, 1995). These are: 

• A no tension analysis based on stress transfer or failure envelop limitations, 

• The presence of overburden and compressive residual stresses, and 

• Improved constitutive models. 

The stress transfer method to correct tension was proposed by Zienkiewicz et al. (1968). 

In this procedure, equal compressive stresses are applied to counteract predicted 

horizontal tensile stresses so that equilibrium is maintained. To improve inherent 

convergence problems in the original stress transfer method, Doddihal and Pandey 

(1984) modified the technique for pavements. 

 The Mohr-Coulomb failure envelope criterion has also been incorporated into 

finite element method programs (ILLI-PAVE and MICH-PAVE) to reverse the 

prediction of horizontal tensile stresses in unbound granular layers. Here, predicted 

stresses are adjusted such that they remain within the Mohr-Coulomb failure envelope in 

the compressive zone. 

Residual compressive stresses have also been incorporated into some finite 

element programs to correct predicted horizontal tensile stresses. Crockford and 

Bendana (1990) and Tutumluer (1995) successfully incorporated this technique into the 

TTI-PAVE and GT-PAVE finite element computer programs, respectively. It is believed 

that residual stresses exist in compacted unbound granular layers. Many researchers 

(Stewart et al., 1985; Uzan, 1985; Barksdale et al., 1993; Tutumluer, 1995) have 
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investigated the existence of residual stresses. The residual compressive stresses are 

believed to be in the range of 13.8-kPa to 27.6-kPa (2 to 4-psi). 

Some researchers have also worked on improving constitutive models used to 

describe the dilation behavior of unbound granular materials. Lytton et al. (1993) 

derived a differential equation describing the variation of Poisson's ratio with stress state. 

The solution to this differential equation resulted in what is known as the k1-k5 model. 

This model was incorporated in a finite element program (Liu, 1993) and the results 

were very impressive. Cross-anisotropy has also been incorporated into finite element 

programs to improve materials response in unbound granular materials (Zienkiewicz, 

1966; Crockford et al., 1990; Tutumluer, 1995). After incorporating cross-anisotropic 

elastic modeling in the GT-PAVE finite element code, Tutumluer (1995) reported that 

cross-anisotropic elastic modeling can reduce and even reverse horizontal tensile stresses 

predicted in unbound granular layers with isotropic elastic model. In his work, 

Tutumluer (1995) assumed modular ratios and Poisson's ratios to satisfy strain energy 

conditions. 

Although the no tension correction techniques have been used successfully to 

reverse predicted horizontal tensile stresses in unbound granular layers, if the 

constitutive models were accurate enough, such corrections would not be necessary. This 

research focused much of its attention on improving the cross-anisotropic elastic model 

(Tutumluer, 1995) with stress dependent Poisson's ratios (Lytton et al., 1993; Liu, 1993). 

Instead of assuming modular ratios, one of the main objectives of this study was the 

development of a laboratory testing protocol for determining the anisotropic elastic 

parameters of unbound granular materials. A triaxial laboratory testing protocol to 

determine the five cross-anisotropic elastic parameters, which has been elusive to many 

researchers until now, was developed in this study and discussed in Chapters III and IV. 

6.2 Finite Element Formulation 

A finite element program was developed to model a flexible pavement’s response 

to traffic loads. The finite element procedures and code are derived from the elasto-

plastic formulation, originally developed by Owen and Hinton (1980). The code was 
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developed to analyze an axisymmetric problem with material non-linearity. Liu (1993) 

was the first to modify the original program to analyze pavements. The modification 

included mesh generation, the implementation of different constitutive models 

(hypoelastic, hyperelastic, k1-k5, and elasto-plastic models), non-symmetric solutions 

and the flexible boundary conditions. Park (2000) also made modifications to the code 

for pavement applications. Both of these modifications included stress dependent 

Poisson's ratio and non-linear analysis using load increments. The major modification 

made in this research was to incorporate cross-anisotropic material properties in the code 

developed by Park (2000). 

 The principle of virtual work can be used to formulate the finite element method. 

Consider a solid body, Ω, in which the internal stresses, σ, the distributed loads per unit 

volume, b, and external applied force, f, form an equilibrium field, to undergo an 

arbitrary virtual displacement pattern, δ d*, which results in compatible strains, δε*, and 

internal displacements, δ u*. The principle of virtual work requires that (Liu, 1993): 

∫ =−−
Ω

δΩδσεδ 0*)**( fddbu TTT      (6.1) 

The expressions for the displacements and strains within any discrete finite element are 

given by (Liu, 1993): 

**** dBdNu δεδδδ ==      (6.2) 

where N is the matrix of shape functions, and B is the elastic strain matrix. Substituting 

Equation 6.2 into Equation 6.1 yields: 

∫ =−−
Ω

δΩσδ 0*)(* fddbNBd TTTT      (6.3) 

The volume integration over the solid represents the sum of the individual element 

contributions. Since Equation 6.3 is true for any arbitrary δd*, then (Liu, 1993); 

∫ ∫ =−−
Ω Ω

ΩΩσ 0bdNfdB TT       (6.4) 
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Rewriting Equation 6.4 in incremental form, 

∫ ∫ =−−
Ω Ω

ΩΩσ 0dbdNdfddB TT       (6.5) 

But the incremental stress-strain relationship is given by (Liu, 1993): 

CBduCd == εδσ         (6.6) 

where C is the material constitutive matrix. For an axisymmetric isotropic material 

model, the matrix C can be written as (Tutumluer, 1995): 
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where E is the elastic modulus and ν is the Poisson's ratio. For an axisymmetric 

anisotropic material model, the C matrix is given by: 
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Substituting Equation 6.6 into Equation 6.5 gives: 

∫+=
Ω

ΩdbdNdfduK T
T        (6.10) 
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and, 

∫=
Ω

ΩCBdBK T
T         (6.11) 

In Equation 6.10, KT is the global stiffness matrix, and the displacement vector 

du is the only unknown. The solution to Equation 6.5 can then be solved by conventional 

matrix inversion methods. The finite element program developed uses an axisymmetric, 

isoparametric 8-node elements and a 3rd order quadrature with 9 integration points 

(Park, 2000). The material parameters needed for the finite element analysis are the non-

linear vertical resilient modulus k-values (k1, k2, k3), the moduli ratios (n, m) and the 

value of the vertical Poisson's ratio as well as the ratio of the horizontal to vertical 

Poisson's ratios. For the materials tested during this study, the moduli ratios were 

different for each material but were fairly constant for a particular material at all stress 

states. Based on this observation, moduli ratios were rather used as input to the finite 

program instead of k1 through k9. 

 The vertical Poisson's ratio was assumed to be stress-dependent (Lytton et al., 

1993; Liu, 1993) as expressed by Equation (2.14): 
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A numerical solution to Equation 2.14 based on the backward difference method 

was included in the finite element code by Park (2000). Park (2000) described the 

numerical stepwise solution in detail. 

Equation 6.5 will not generally be satisfied at any stage of computation. An 

iteration algorithm is included in the program to ensure convergence.  There are two 

convergence criteria in the finite element program. The equilibrium criteria are based on 

residual force values such that (Park, 2000): 
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where, 

N = the total number of nodal points, 

r = the iteration number, 

ψ = the total applied force, 

f = the applied nodal force, and 

TOLLER = tolerance in convergence (percent). 

 Park (2000) describes the equilibrium criterion in detail. In order to prevent 

unreasonable predicted moduli values at low stress levels, cutoff values for both the first 

stress invariant and octahedral shear stress are specified as input in the program. Also the 

value of the vertical Poisson's ratio was not allowed to exceed 0.48. Although it is 

common to observe Poisson's ratios above 0.5 for unbound granular materials in the 

laboratory, the presence of confinement in field conditions prompted the use of 0.48 as 

the maximum vertical Poisson's ratio. 

 The finite element program was used to analyze a set of pavement sections. The 

unbound granular base layers were modeled as linear isotropic, nonlinear isotropic, 

linear anisotropic and nonlinear anisotropic. 

6.3 Pavement Analysis 

The elasto-plastic finite element solutions have been observed to be unstable and 

divergent when the friction angle of a material is greater than 50º (Liu, 1993). Since the 

friction angle of unbound granular materials can be greater than 50º, the Uzan's non-

linear elastic model (Equation 2.8) was implemented in the finite element program 

instead of the elasto-plastic model. 
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The formulation of Equation 2.8 is general. It can easily be downgraded to a 

linear elastic model when the material parameters, k2, and k3 are set to zero. Apart from 

the non-linear material parameters, the modular ratios (n, m) and the ratio of horizontal 

to vertical Poisson's ratio (µ) are needed as input parameters. 
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A matrix of 27 different pavement sections was analyzed using the finite element 

program. The pavement sections were selected to investigate the effect of layer 

thicknesses and subgrade moduli on pavement response using different constitutive 

models within the unbound granular base course. The pavement matrix is a combination 

of 50-, 100-, and 150-mm thick hot mix asphalt (HMA) layers on 150-, 300-, and 450-

mm thick base courses resting on sub-grades with stiffness of 20.7-, 103.4-, and 206.8-

MPa. The pavement structure is shown in Figure 6.1.  A standard wheel load of 40 kN 

was modeled on the surface of each pavement. The loads are assumed to be uniformly 

distributed over circular areas with radii of 136-mm each. 

The pavements were analyzed using linear isotropic, non-linear isotropic, linear 

anisotropic and non-linear anisotropic constitutive models for the base course. The base 

material properties used in the analysis are those of a well-graded crushed limestone, 

compacted at optimum moisture. For all the pavements analyzed in the matrix, the HMA 

layers and sub-grades were assumed to be non-linear isotropic. Thus, a total of 108 

computer runs were performed using the finite element program to predict the 
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pavements’ response to a standard wheel load. Table 6.1 is a summary of the material 

properties used in the analysis. 

HMA (50-mm, 100-mm, 150-mm)

Base (150-mm, 300-mm, 450-mm)

Subgrade (20.7-MPa, 103.4-MPa, 206.8-MPa)

Tire Radius = 136-mm
Tire Pressure = 690-kPa

Stiff Layer
 

Figure 6.1 Pavement Structure for Finite Element Analysis. 
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Table 6.1 Pavement Material Properties. 

HMA Layer (Linear Isotropic Model) 

k1 = 28,000   k2 = 0.100   k3 = 0.001      n = 1.00   m = 0.38    νxy = 0.35   µ = 1.00 

Base Course 

Linear Isotropic Non-Linear Isotropic Linear Cross-

Anisotropic 

Non-Linear Cross-

Anisotropic 

k1 = 3,500 

k2 =0.0,  k3=0.0 

n =1.0,   m=0.38 

νxy=0.2, µ = 1.0 

k1=3,500 

k2=0.455,  k3=0.295 

n=1.0,        m=0.38 

νxy=0.2,     µ = 1.0 

k1=3,500 

k2=0.0,     k3=0.0 

n=0.5,      m=0.38 

νxy=0.2,    µ = 1.5 

k1=3,500 

k2=0.455,     k3=0.295 

n=0.5,          m=0.38 

νxy=0.2,       µ = 1.5 

Sub-grade (Non-linear Isotropic Model) 

k1 = 207, 1035, 2070           k2 = 0.001             k3 = 0.300 

n = 1.00       m = 0.38            νxy = 0.35              µ = 1.00 

 

A typical axisymmetric finite element mesh used in the finite element analysis is 

shown Figure 6.2. The nodal radial strains were assumed to be negligible at 

approximately 10 times R (radius of loaded area) from the area of applied wheel load. 

Also, the nodal stresses and displacements were assumed to be negligible at 20 times R 

below the pavement surface. 
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Figure 6.2 Typical Finite Element Mesh for Pavement Analysis. 

 

 Typical plots of vertical and horizontal stress distribution within the unbound 

granular base course at the center of loaded area are plotted in Figures 6.3 through 6.8 

for a pavement section with 50-mm HMA layer, 300-mm base layer and 20.7-MPa, 

103.4-MPa, and 206.8-MPa moduli sub-grades. Similar trends were obtained on the 

other pavement sections and the plots are shown in Appendix C. The finite element 

program adopts a compression-is-negative sign convention. Gravity stresses due to 

overburden load and residual compaction stresses were not included in the finite element 

analysis because more emphasis was placed on constitutive modeling. 
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Figure 6.3  Vertical Stress for 50-mm HMA, 300-mm Base and 20.7-MPa Sub-grade. 
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Figure 6.4  Horizontal Stress for 50-mm HMA, 300-mm Base and 20.7-MPa Sub-grade. 
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Figure 6.5  Vertical Stress for 50-mm HMA, 300-mm Base and 103.4-MPa Sub-grade. 
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Figure 6.6 Horizontal Stress for 50-mm HMA, 300-mm Base and 103.4-MPa Sub-grade. 



 136

50

100

150

200

250

300

350

-500.0 -400.0 -300.0 -200.0 -100.0 0.0
Vertical Stress (kPa)

D
ep

th
 (m

m
)

Linear Isotropic
Linear Anisotropic
Non-Linear Isotropic
Non-Linear Anisotropic

 

Figure 6.7 Vertical Stress for 50-mm HMA, 300-mm Base and 206.8-MPa Sub-grade. 
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Figure 6.8 Horizontal Stress for 50-mm HMA, 300-mm Base and 206.8-MPa Sub-grade. 
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Different trends were observed in the distribution of vertical and horizontal 

stresses within the unbound granular base course. Variation in layer thickness, the 

constitutive model used to characterize the base layer, and sub-grade moduli have a 

significant effect on the distribution of stresses. The contributions of these factors to the 

way stresses are distributed in the base layer are discussed in the following sections. 

6.3.1 Constitutive Models 

Pavement sections were analyzed using different material constitutive models within 

the unbound granular base layer. The models considered were: 

•  Linear isotropic, 

•  Non-linear isotropic, 

•  Linear cross-anisotropic, and 

•  Non-linear cross-anisotropic. 

The distributions of vertical compressive stresses within the base layers do not 

follow an exact trend with respect to the models considered for the pavement sections. In 

a majority of the pavement sections evaluated, lower vertical stresses were observed 

with the linear anisotropic model. The layer thickness and sub-grade moduli more 

significantly affect the distribution of vertical stresses than material constitutive models. 

The effect of material constitutive models on pavement response is more pronounced 

in the distribution of horizontal stresses within the unbound granular base layer. 

Horizontal stress distribution within the base layer follows a particular trend with respect 

to material constitutive modeling. The magnitude of the horizontal stress at a point 

within the base course depends on the layer thickness and subgrade modulus but, 

whether the stress is compressive or tensile is dictated by the material constitutive model 

used. 

In all the pavement sections analyzed, cross-anisotropic models eliminated the false 

tension zones predicted by isotropic models. The linear isotropic model always predicted 

increasing horizontal tensile stresses within the depth of the unbound granular base 

layer. Although non-linear isotropic modeling significantly reduced the magnitude of the 

tensile horizontal stresses predicted by linear isotropic modeling, tension zones still 
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existed in the base layer for most of the pavement sections. The only pavement sections 

where some compressive stresses were observed with the non-linear isotropic model 

were pavements with very high sub-grade modulus. Increasing the base layer thickness 

decreased the magnitude of the horizontal tensile stresses but did not remove the 

presence of tension zones. 

Except for a few pavement sections, especially those with weak subgrades, 

horizontal compressive stresses were predicted with linear cross-anisotropic modeling. 

Non-linear cross-anisotropic model was observed to always predict compressive 

horizontal stresses, and the magnitudes of these stresses were higher than those predicted 

by linear cross-anisotropic model. 

Modeling the unbound granular base layer as linear isotropic, non-linear isotropic, 

linear anisotropic and non-linear anisotropic in that order, gradually shifts the horizontal 

stresses from a tension zone to a compressive zone. This observation implies that if 

appropriate models are used to characterize the behavior of unbound granular materials, 

the base layers are capable of mobilizing enough confinement to withstand wheel loads. 

This is in agreement with the observation made by Barksdale, Brown and Chan (1989) 

that linear cross-anisotropy is equal to or better than a more complicated non-linear 

isotropic model for predicting unbound granular layer response to traffic loads. It is the 

ability of unbound granular layers to develop confinement that can be used to explain 

their historic performance in flexible pavements. The confinement can be used to 

confirm a comment made by Lytton (1998) that immediately beneath a tire load an 

unbound granular layer generates its own lateral confining pressure and becomes very 

stiff almost as if it were forming a moving vertical column that travels along with the 

load. This is illustrated in Figure 6.9. The presence of confinement within the unbound 

granular base layer means that a tension zone does not exist as predicted by isotropic 

modeling. Also, there is an increase in bulk stress and modulus to facilitate the spread of 

wheel loads. 

Determining the stress profile within a pavement is important for accurate prediction 

of permanent deformation. Researchers and Engineers agree on the existence of 
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confinement in unbound granular base layers for spreading wheel loads. Non-linear 

cross-anisotropic modeling has recently been reported (Adu-Osei et al., 2000; 

Tutumluer, 1995, 1999) as a superior model for predicting the behavior of unbound 

granular materials. It has been difficult to absolutely establish and quantify the extent of 

confinement in base layers but the non-linear cross-anisotropic elastic model with stress 

dependent Poisson’s ratio can be used to explain this important phenomenon in unbound 

granular layers.  

The material properties used to characterize unbound granular materials were 

determined based on established elastic theories. During laboratory testing, dilation was 

observed in the materials. After incorporating strains measured into the system 

identification method and resolving material response into five cross-anisotropic 

properties, vertical Poisson’s ratios were generally determined to be below 0.5 as 

required by theories of elasticity. The dilation observed has been explained by the 

development of self-confinement in the granular base layers. 

Direction of Travel

Direction of Travel

HMA

Base

Sub-grade

Compresion Zone

 

Figure 6.9 Illustration of Compressive Zone in Unbound Granular Layer. 
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6.3.2 Layer Thickness 

 For a given base layer thickness and subgrade modulus, increasing the thickness 

of the HMA layer decreases the magnitude of the vertical and horizontal stresses at any 

point in the base layer. Similar trends were observed in increasing the base layer 

thickness for a given HMA layer and sub-grade modulus. 

 Increasing the HMA or base layer thickness did not explain the existence of 

tension or compression zone in the unbound granular base layer. Thus the design 

philosophy in which the thickness of the unbound granular base layer is increased until 

the tension zone, as predicted by isotropic elastic methods, diminishes is very 

conservative. This design practice would result in pavement sections that are much 

thicker than needed. 

6.3.3 Subgrade Modulus 

The subgrade moduli values of 20.7-, 103.4-, and 206.8-MPa used in this study 

represent a weak, strong, and chemically stabilized subgrade, respectively. Increasing 

the subgrade modulus did not significantly change the distribution of vertical stresses 

within the base layer. 

For a given pavement section, an increase in subgrade modulus did not 

significantly change the horizontal compressive stresses predicted with the non-linear 

cross-anisotropic model. However, the following were observed for the other material 

models: 

•  Increasing the subgrade modulus shifted the few tension zones in the base layer 

predicted by the linear cross-anisotropic model into compression zones. 

•  Increasing subgrade modulus shifted most of the tension zones in the base layer 

predicted by the non-linear isotropic model into compression zones. 

•  Although the magnitudes of the stresses in the tension zones in the base layer 

predicted by linear isotropic modeling were significantly reduced, increasing the 

subgrade modulus did not remove the presence of tension zones in the base layer 
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It must also be noted that the magnitudes of the horizontal compressive stresses 

predicted by the linear cross-anisotropic and non-linear isotropic models, as a result of 

subgrade improvement, were still lower than the stresses predicted by the non-linear 

cross-anisotropic model. 

 The higher compressive stresses predicted by the nonlinear cross-anisotropic 

model predicts not only a stiffer base course under load but also the potential for 

accelerated rutting due to ingress of water and an incremental build-up of pore water 

pressure with repeated traffic loading. This tendency will be greater in those base 

courses with higher percent of fines (Lytton, 1998). 
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CHAPTER VII 

FIELD VALIDATION OF RESILIENT RESPONSE 

7.1 Background 

The cross-anisotropic resilient model developed in this study was verified with 

field data collected on two pavement sections at the TTI Research Annex. The data used 

in the field validation was originally collected in a study conducted by Uzan and 

Scullion (1990) to verify backcalculation procedures. The pavement sections were 

instrumented with Multi-Depth Deflectometers (MDD). Falling Weight Deflectometer 

(FWD) loads were applied to the pavement surfaces and pavement response (deflections) 

were collected. Pavement deflections were determined with the finite element program 

developed in this study and compared to deflections measured in the field. The effect of 

using different material models to characterize unbound granular layers on deflections 

was also studied. 

 The National Institute for Transport and Road Research (NITRR) in South Africa 

developed the MDD (Basson, 1981; Scullion et al., 1988). It is used to measure the 

resilient deflection and permanent deformation in pavement layers. Figure 7.1 is a 

schematic diagram of the MDD sensor. The MDD consists of modules with LVDTs that 

are positioned at different depths in the pavement to measure vertical movement in the 

layers. A maximum of six MDD sensors may be located in a single hole. The field 

installation and calibration are described elsewhere (Basson, 1981; Scullion et al., 1988).  

 The two pavement sections have different layer thicknesses. Section 11 has a thin 

surfacing over a thick crushed limestone base over a sandy gravel subgrade. Section 12 

has a thick surface layer over a thick crushed limestone base over a sandy gravel 

subgrade. The MDD anchors are located at 1.625 and 2.025 meters in the thin and thick 

sections, respectively. The thin pavement had two MDD sensors and the thick pavement 

had four. The pavement layer thicknesses and MDD sensor locations are shown in 

Figure 7.2. 
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Figure 7.1 The Multi-Depth Deflectometer Sensor (After Basson 1981). 
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Figure 7.2 Pavement Sections with MDD Sensor Locations. 

 The FWD load plate was placed close to the MDD hole and four different load 

levels (approximately 28.9, 40.0, 46.7 and 64.5-kN) were applied. Surface deflections 

(FWD sensors), depth deflections (MDD sensors) and MDD anchor movement were 

recorded. The MDD anchor movement was measured with a FWD sensor placed on the 

MDD setup. Replicate readings were taken at each load level. 

 The FWD load plate was then repositioned at several distances from the MDD 

hole and the test repeated. Thus, two-dimensional deflection bowls were recorded using 

this technique. 

 The average FWD results for the thick pavement (section 12) are shown in Table 

7.1 and the corresponding MMD depth deflections (40.0-kN level only) and anchor 

movements are shown in Table 7.2. The values in the bracket are normalized deflections, 

in deflection per unit load. Similar results for the thin pavement (section 11) are shown 

in Tables 7.3 and 7.4. The FWD and MDD data are plotted in Figures 7.3 and 7.4 for 

sections 12 and 11, respectively. 
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Table 7.1 Falling Weight Deflectometer Data on Section 12. 

Load 

(kN) 

FWD Surface Deflections, in µm and (µm/kN) 

Radial Distance (m) 

 0.0 0.3 0.6 0.9 1.2 1.8 

28.9 140.7 (4.9) 91.9 (3.2) 52.8 (1.8) 36.6 (1.3) 27.7 (1.0) 16.8 (0.6)

40.0 196.1 (4.9) 131.1 (3.3) 77.7 (1.9) 52.1 (1.3) 40.4 (1.0) 25.9 (0.6)

46.7 234.7 (5.0) 159.5 (3.4) 94.7 (2.0) 64.5 (1.4) 48.3 (1.0) 33.5 (0.7)

64.5 323.6 (5.0) 216.7 (3.4) 131.1 (2.0) 90.4 (1.4) 67.1 (1.0) 47.0 (0.7)

 

 

 

Table 7.2 Multi-Depth Deflectometer Data on Section 12. 

Deflection at Depth (µm) 

MDD Location (m) 

 

Anchor 

 

Load 

(kN) 

 

Distance From 

Load to MDD (m) 0.125 0.425 0.725 0.900 2.025 

40.0 0.2 152.1 114.8 92.5 78.0 37.6 

40.0 0.4 116.3 98.0 84.3 72.9 37.1 

40.0 0.5 95.0 84.1 75.9 67.1 35.3 

40.0 0.7 61.7 60.2 60.7 55.9 32.8 

40.0 1.1 43.7 45.0 47.8 45.5 30.5 
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Table 7.3 Falling Weight Deflectometer Data on Section 11. 

Load 

(kN) 

FWD Surface Deflection, in µm and (µm/kN) 

Radial Distance (m) 

 0.0 0.3 0.6 0.9 1.2 1.8 

28.9 324.6 (11.2) 125.2 (4.3) 57.4 (2.0) 38.1 (1.3) 30.5 (1.1) 26.2 (0.9) 

42.8 449.8 (10.5) 193.8 (4.5) 87.4 (2.0) 59.2 (1.4) 47.8 (1.1) 40.6 (0.9) 

64.5 632.2 (9.8) 289.6 (4.4) 132.1 (2.0) 90.4 (1.4) 73.7 (1.1) 62.2 (1.0) 

 

 

 

 

Table 7.4 Multi-Depth Deflectometer Data on Section 11. 

Deflection at Depth (µm) 

MDD Location (m) 

 

Anchor 

 

Load 

(kN) 

 

Distance From Load 

to MDD (m) 0.225 0.575 1.625 

42.8 0.23 295.4 185.9 67.6 

42.8 0.48 150.1 142.5 68.3 

42.8 0.78 76.2 79.0 51.3 

64.5 0.23 428.8 299.5 106.9 

64.5 0.48 215.9 206.5 99.6 

64.5 0.78 117.3 123.7 82.3 
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Figure 7.3 Measured Surface and Depth Deflections on Section 12. 
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Figure 7.4 Measured Surface and Depth Deflections on Section 11. 
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7.2 Data Analysis 

 In figure 7.3 the MDD deflections decrease with depth and are less than the FWD 

surface deflections in the thick pavement (section 12). In the thin pavement (section 11), 

the MDD deflections measured within the base layer and subgrade are greater than those 

measured on the pavement surface (Figure 7.4). This indicates that dilation takes place in 

the granular layers. The dilated material acts like an internal pressure to uplift the surface 

and pushes the subbase and subgrade down. Thus, the deflection bowl observed at 

section 11 can not be explained by standard linear elastic techniques. 

 Tables 7.1 and 7.3 include absolute surface deflections in µm and normalized 

surface deflection in µm/kN (deflection per unit load). The deflection per unit load is a 

good indicator of nonlinear response of the pavement (Uzan and Scullion, 1990). The 

following observations were made with regard to the absolute and normalized 

deflections on both pavement sections. 

• the absolute deflections (µm) generally increase with increasing load, 

• the normalized center deflections (µm/kN) are almost constant in section 12 

and decrease with increasing load in section 11, and 

• the other normalized deflections (µm/kN) are almost independent of the load. 

It is therefore expected that the pavement response is more load-dependent in 

section 11 than in section 12. The surface and depth deflections were used to 

backcalculate the material property (moduli) of the pavement layers. Based on the FWD 

surface deflections and MDD depth deflections, several computer runs were made using 

the finite element program with different material properties until the average percent 

error in deflections were less than 10%. In the finite element computer runs, the surface 

layer and subgrade were assumed to be linearly elastic and the base layer was assumed 

to be nonlinear cross-anisotropic. The base layer was then analyzed as linear isotropic, 

nonlinear isotropic and linear cross-anisotropic and the deflections computed were 

compared to the measured deflection. Tables 7.5 and 7.6 are summaries of the 

backcalculated material properties used in the finite element program for sections 12 and 
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11, respectively. The average percent errors of measured deflections are tabulated in 

Tables 7.7 and 7.8 for the material properties considered in the granular layer. 

 

Table 7.5 Backcalculated Material Properties for Section 12. 

Pavement Layer Material 

Property HMA Base Subbase Subgrade 

k1 138000 5860 5170 2070 

k2 0.000 0.255 0.255 0.000 

k3 0.000 0.255 0.255 0.000 

n 1.00 0.50 0.50 1.00 

m 0.35 0.30 0.30 0.35 

µ 1.00 1.50 1.50 1.00 

 

 

 

Table 7.6 Backcalculated Material Properties for Section 11. 

Pavement Layer Material 

Property HMA Base Subbase Subgrade 

k1 69000 4480 5170 1930 

k2 0.000 0.255 0.255 0.000 

k3 0.000 0.255 0.255 0.000 

n 1.00 0.50 0.50 1.00 

m 0.35 0.30 0.30 0.35 

µ 1.00 1.50 1.50 1.00 
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Table 7.7 Average Percent Error of Deflections for Section 12. 

Average % Error in  

Base Layer Material Model FWD MDD 

Linear Isotropic 39.9 35.7 

Linear Anisotropic 34.6 38.6 

Nonlinear Isotropic 4.8 10.1 

Nonlinear Anisotropic 6.3 4.4 

 

 

 

Table 7.8 Average Percent Error of Deflections for Section 11. 

Average % Error in  

Base Layer Material Model FWD MDD 

Linear Isotropic 48.6 41.9 

Linear Anisotropic 47.2 41.0 

Nonlinear Isotropic 6.6 7.0 

Nonlinear Anisotropic 4.9 7.8 

 

 The error values in Tables 7.7 and 7.8 suggest that the behavior of unbound 

granular materials can not be explained by linear analysis. Nonlinear isotropic and cross-

anisotropic material models in the base layer predicted vertical deflections that are close 

to field deflections in the pavements analyzed. 
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CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

 An apparent anisotropy is induced in an unbound granular layer during 

construction, becoming stiffer in the vertical direction than in the horizontal direction 

even before traffic loads impose further anisotropy. 

Existing pavement design and analysis methods rely on empirical procedures 

which have generally taken a very conservative view of the relative strength properties 

of granular materials used as base and subbase layers in conventional flexible 

pavements. The contribution of unbound granular layers to the overall structural 

integrity of flexible pavements is significant, especially for thinly surfaced low volume 

roads. 

Until particulate mechanics are developed to a level where it can reasonably be 

applied to characterize unbound granular materials, nonlinear and cross-anisotropic 

models can be used to characterize the behavior of granular materials in pavements. 

There is strong evidence in the literature that nonlinear cross-anisotropic elastic 

models are superior to isotropic models in characterizing granular materials. However, it 

has been extremely difficult to determine the cross-anisotropic material properties of 

unbound granular materials using the conventional triaxial setup. 

A laboratory testing protocol has been developed to determine the cross-

anisotropic material properties of unbound granular materials in flexible pavements. The 

testing protocol was developed based on theories of elasticity. The protocol uses three 

incremental stress regimes in ten stress levels to determine stress sensitivity and cross-

anisotropy. A system identification method is used as an analytical technique to compute 

the five cross-anisotropic material properties. The material properties, once determined 

from the testing protocol satisfy the requirements elastic work potential. 
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The testing protocol is an excellent tool for both unbound granular material 

characterization and comparative analysis of materials. A compaction study on two very 

different granular materials (rounded river gravel and crushed limestone) was performed 

in which the aggregates were subjected to impact and gyratory shear compaction. The 

level of anisotropy in a material is assumed to depend on particle orientation. The 

differences in the tendency of the compaction method to produce varying levels of 

particle orientation, which affects anisotropy was evident in the degree of anisotropy 

measured. 

Samples used in this study were compacted for height to diameter ratios of 1:1. 

This is contrary to the conventional height to diameter ratios of 2:1 used in triaxial 

testing. The resilient behavior of 1:1 and 2:1 samples were studied. It was observed that 

difference in sample size did not significantly affect the resilient behavior of the samples 

tested. 

The resilient and permanent deformation behaviors of four granular materials 

were studied. Material type, gradation, moisture content and stress levels affect the 

deformation of granular materials. The effect of moisture on resilient moduli depends on 

material type and gradation. An increase in plasticity and fine content is generally 

accompanied by a significant variation in moduli due to changes in moisture content. 

The moduli ratios, horizontal to vertical modulus, n, and shear to vertical 

modulus ratios, m, were fairly constant for a particular material at all stress levels. The 

Poisson’s ratio values varied with the level of stress applied to the sample. Instead of 

using k1 through k9 coefficients to describe a granular material, the moduli and Poisson’s 

ratios, together with k1, k2 and can be used. This way, there is no need to write separate 

subroutines for the convergence of horizontal and shear resilient moduli in the finite 

element program. Once a subroutine is written for the convergence of vertical resilient 

modulus, the moduli ratios (m and n) account for the convergence of horizontal and 

shear resilient moduli. 

Nonlinear regression analysis was used to obtain good fits of the resilient moduli 

with Uzan and Lytton models. The R-square determined for each material was above 
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0.90. Regression coefficients, which indicate how well a material can spread traffic 

loads, were obtained. The regression coefficients are related. 

The permanent deformation data was used to fit the Vesys and Three-Parameter 

models. Model parameters, which indicate the permanent deformation potential of each 

material, were obtained. 

Different granular materials behave differently under repeated loading. At low 

stress levels, accumulation of permanent deformation may stabilize. At high stress levels 

however, plastic strains will continuously accumulate. Applied stress levels have 

significant effect on how permanent strains will accumulate with repeated loading. 

Although it is easy to study the permanent deformation behavior of granular materials in 

the laboratory, it is important that stress levels expected in the field be applied to 

laboratory samples. 

Existing analytical techniques use layered elastic procedures, which fall short of 

accurately predicting horizontal stresses in flexible pavements. A finite element program 

was modified to incorporate nonlinear cross-anisotropic material behavior and stress 

dependent Poisson’s ratio. Different pavement sections were analyzed with the finite 

element program. Nonlinear cross-anisotropic modeling was observed to predict self-

confinement within granular layers. 

The resilient model was validated with data collected form the field. Finite 

element runs were performed on pavement sections and it was observed that linear 

elastic modeling was not adequate to explain the behavior unbound granular layers. The 

errors in measured pavement deflections predicted using nonlinear cross-anisotropic and 

isotropic models in the base layers were less than 10%. 

8.2 Recommendations 

 In the development of the testing protocol it was assumed that the material would 

behave linearly elastic under small stress changes. The stress changes used in the stress 

regimes were small and do not simulate the stress path under a moving wheel load. It is 

recommended that larger stress changes be used and compared to the small changes used 

in this study. 
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 Further testing needs to be done on other granular materials to confirm the 

general-purpose nature of the system identification method to analyze laboratory data. 

More instrumented pavement sections need to be built to obtain a large field 

database for further validation of the finite element program. Existing modulus 

backcalculation methods use linear layered elastic techniques. It is extremely difficult to 

use finite element methods to backcalculate layer material properties. Further research 

needs to be done to incorporate material non-linearity in backcalculation methods to 

account for the behavior of unbound granular layers. 

Further study needs to be done to establish how the compaction methods 

considered are related to compaction levels achieved in the field. Undisturbed field cores 

of unbound granular materials must be obtained and tested in the laboratory to confirm 

the material properties and the observations made on compaction methods. 
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Table A1 Average Resilient Strains for Well Graded Texas Limestone at Dry of 

Optimum Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 29.6 -10.9 103.7 -84.7 -71.3 46.6 

50.0 25.0 50.2 -23.7 79.5 -72.3 -98.8 69.0 

70.0 40.0 39.1 -14.8 53.8 -38.3 -93.6 68.8 

130.0 60.0 49.0 -21.2 74.1 -65.4 -51.1 43.5 

150.0 70.0 43.8 -17.3 63.4 -51.6 -41.7 35.8 

170.0 100.0 41.6 -15.2 56.1 -35.4 -87.1 61.7 

220.0 120.0 53.3 -18.0 74.1 -49.5 -67.3 48.8 

250.0 140.0 49.9 -14.7 64.4 -40.0 -57.5 39.5 

250.0 120.0 47.6 -15.8 65.8 -46.9 -59.8 45.4 

250.0 105.0 47.2 -16.1 66.9 -54.2 -53.8 42.2 
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Table A2 Average Resilient Strains for Well Graded Texas Limestone at Wet of 

Optimum Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 30.8 -14.4 105.3 -85.7 -81.1 56.3 

50.0 25.0 53.7 -26.4 81.4 -72.5 -105.5 76.8 

70.0 40.0 41.2 -19.4 58.8 -43.6 -107.7 81.5 

130.0 60.0 53.3 -25.3 77.4 -69.7 -54.1 49.1 

150.0 70.0 46.7 -20.0 65.4 -54.9 -45.7 39.1 

170.0 100.0 43.6 -18.2 62.1 -40.8 -97.3 72.0 

220.0 120.0 56.8 -20.3 77.4 -56.6 -74.1 56.7 

250.0 140.0 51.4 -17.4 68.5 -46.8 -62.4 47.5 

250.0 120.0 51.1 -19.3 72.3 -58.6 -67.4 58.8 

250.0 105.0 50.7 -20.0 72.6 -63.5 -58.4 50.6 
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Table A3 Average Resilient Strains for Fine Graded Texas Limestone at Optimum 

Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 36.7 -24.6 137.7 -163.3 -123.2 119.6 

50.0 25.0 57.1 -36.9 93.1 -111.4 -133.6 126.0 

70.0 40.0 44.1 -24.3 67.6 -65.5 -150.6 143.1 

130.0 60.0 54.1 -30.6 88.4 -103.0 -64.1 70.3 

150.0 70.0 48.0 -24.2 75.2 -79.7 -53.4 55.8 

170.0 100.0 45.6 -21.2 66.5 -54.6 -120.1 104.7 

220.0 120.0 57.3 -25.6 85.1 -75.4 -83.8 75.7 

250.0 140.0 53.3 -20.6 74.5 -59.7 -70.5 59.7 

250.0 120.0 50.6 -22.4 75.6 -74.0 -73.3 73.6 

250.0 105.0 48.8 -23.1 74.8 -84.0 -63.2 65.1 
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Table A4 Average Resilient Strains for Fine Graded Texas Limestone at Dry of 

Optimum Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 29.5 -11.9 107.4 -82.9 -68.8 46.7 

50.0 25.0 53.1 -24.1 74.0 -62.9 -83.0 56.9 

70.0 40.0 39.3 -16.4 56.0 -39.3 -95.2 71.0 

130.0 60.0 53.4 -22.9 78.6 -68.0 -52.4 44.0 

150.0 70.0 46.3 -19.1 66.4 -54.3 -43.9 37.3 

170.0 100.0 44.1 -16.5 58.1 -39.1 -93.3 67.8 

220.0 120.0 55.4 -20.5 77.3 -53.3 -70.1 53.1 

250.0 140.0 50.4 -16.8 67.1 -43.6 -59.0 43.3 

250.0 120.0 50.0 -17.3 70.2 -50.3 -61.6 48.7 

250.0 105.0 49.4 -18.3 71.1 -58.3 -57.1 45.1 
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Table A5 Average Resilient Strains for Fine Graded Texas Limestone at Wet of 

Optimum Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 58.1 -53.6 226.4 -343.1 -479.5 545.4 

50.0 25.0 69.9 -60.8 121.1 -190.1 -249.9 291.7 

70.0 40.0 52.6 -37.3 88.4 -105.6 -279.0 295.6 

130.0 60.0 58.0 -37.9 98.8 -137.3 -80.5 98.6 

150.0 70.0 49.5 -29.4 81.8 -105.3 -64.1 77.2 

170.0 100.0 50.3 -27.1 76.6 -73.3 -165.7 155.7 

220.0 120.0 59.9 -30.8 94.8 -97.7 -105.8 103.3 

250.0 140.0 55.2 -24.6 80.8 -75.5 -85.4 78.0 

250.0 120.0 51.8 -25.2 79.0 -87.4 -82.9 89.8 

250.0 105.0 47.5 -25.3 75.5 -94.6 -65.6 73.6 
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Table A6 Average Resilient Strains for Coarse Graded Texas Limestone at Optimum 

Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 34.9 -11.0 113.5 -84.1 -82.9 51.5 

50.0 25.0 59.2 -24.1 87.7 -73.7 -109.7 69.2 

70.0 40.0 44.1 -16.0 61.6 -42.3 -102.1 72.1 

130.0 60.0 55.4 -21.4 78.8 -68.8 -54.0 48.3 

150.0 70.0 49.4 -18.1 68.6 -56.6 -47.3 41.3 

170.0 100.0 47.3 -15.2 61.2 -40.1 -92.0 67.9 

220.0 120.0 60.4 -18.6 76.6 -55.0 -58.2 44.6 

250.0 140.0 53.8 -16.7 71.6 -46.5 -63.2 48.4 

250.0 120.0 53.5 -16.8 71.2 -53.8 -63.6 54.9 

250.0 105.0 52.7 -17.8 71.8 -60.1 -58.4 48.8 
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Table A7 Average Resilient Strains for Well Graded Texas Gravel at Optimum Moisture 

Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 28.5 -7.3 86.6 -48.8 -44.5 29.4 

50.0 25.0 51.4 -16.3 67.6 -43.8 -67.4 38.5 

70.0 40.0 39.2 -14.5 51.7 -32.1 -73.1 57.5 

130.0 60.0 53.5 -21.9 76.3 -62.9 -44.9 41.5 

150.0 70.0 49.5 -16.8 65.9 -51.4 -37.6 35.6 

170.0 100.0 45.3 -17.6 56.5 -39.1 -83.8 73.2 

220.0 120.0 59.0 -20.4 79.3 -60.0 -68.2 60.6 

250.0 140.0 54.6 -17.7 70.7 -49.8 -59.0 51.3 

250.0 120.0 53.5 -17.0 70.3 -55.5 -58.9 55.9 

250.0 105.0 51.7 -17.3 68.9 -60.9 -51.3 46.3 

 



 172

 

Table A8 Average Resilient Strains for Well Graded Texas Gravel at Dry of Optimum 

Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 24.6 -3.8 60.7 -21.8 -34.5 13.1 

50.0 25.0 39.8 -7.4 47.8 -19.4 -47.3 16.8 

70.0 40.0 32.6 -6.0 37.0 -14.3 -47.4 23.6 

130.0 60.0 45.7 -9.6 57.5 -28.5 -32.1 19.9 

150.0 70.0 40.2 -9.0 52.2 -23.3 -28.6 17.9 

170.0 100.0 38.6 -7.7 44.5 -19.4 -55.9 33.1 

220.0 120.0 54.2 -9.0 63.8 -28.5 -53.5 29.5 

250.0 140.0 48.5 -8.6 56.5 -25.6 -46.0 27.7 

250.0 120.0 48.6 -7.6 57.1 -26.8 -44.2 28.7 

250.0 105.0 48.3 -7.8 56.3 -28.4 -43.0 22.6 
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Table A9 Average Resilient Strains for Fine Graded Texas Gravel at Optimum Moisture 

Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 39.0 -14.9 146.0 -103.9 -97.1 67.8 

50.0 25.0 57.5 -20.0 87.2 -68.8 -109.3 73.2 

70.0 40.0 41.2 -14.6 62.3 -46.1 -127.1 109.3 

130.0 60.0 58.1 -20.6 94.1 -90.9 -59.4 60.1 

150.0 70.0 51.2 -16.9 79.3 -69.7 -48.9 50.8 

170.0 100.0 51.9 -14.9 73.8 -49.8 -137.3 116.3 

220.0 120.0 65.7 -19.9 100.0 -80.5 -96.0 84.5 

250.0 140.0 62.7 -17.8 89.2 -63.2 -83.8 67.8 

250.0 120.0 60.3 -17.8 84.4 -75.4 -79.9 76.8 

250.0 105.0 56.8 -16.8 81.4 -83.0 -63.7 62.7 
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Table A10 Average Resilient Strains for Fine Graded Texas Gravel at Dry of Optimum 

Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 29.8 -6.8 74.5 -26.7 -38.1 16.8 

50.0 25.0 49.7 -11.5 59.9 -23.5 -67.6 23.4 

70.0 40.0 38.7 -10.1 47.0 -19.0 -63.6 31.7 

130.0 60.0 64.6 -18.0 83.4 -43.4 -44.4 27.9 

150.0 70.0 58.1 -16.6 74.2 -39.3 -41.0 25.2 

170.0 100.0 51.6 -14.5 62.8 -31.6 -82.5 50.3 

220.0 120.0 72.9 -21.2 92.3 -50.3 -72.2 45.7 

250.0 140.0 67.3 -18.6 83.6 -44.1 -66.9 40.3 

250.0 120.0 64.8 -20.0 85.7 -50.5 -67.6 46.0 

250.0 105.0 64.9 -19.9 84.1 -55.7 -63.6 40.0 
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Table A11 Average Resilient Strains for Coarse Graded Texas Gravel at Optimum 

Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 31.8 -10.6 93.5 -60.0 -54.1 35.0 

50.0 25.0 54.0 -17.2 71.1 -50.1 -77.0 45.8 

70.0 40.0 42.6 -14.7 54.0 -36.5 -83.4 66.8 

130.0 60.0 59.9 -25.6 86.8 -83.2 -55.9 56.8 

150.0 70.0 52.7 -19.9 72.2 -63.7 -46.0 46.4 

170.0 100.0 50.0 -20.1 65.6 -50.7 -103.4 93.3 

220.0 120.0 64.2 -23.8 87.6 -70.8 -80.6 75.2 

250.0 140.0 59.7 -20.8 79.5 -61.1 -70.5 63.9 

250.0 120.0 58.7 -21.4 81.5 -68.8 -71.6 72.4 

250.0 105.0 56.9 -20.5 79.6 -69.2 -59.7 57.5 
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Table A12 Average Resilient Strains for Well Graded Minnesota Gravel at Optimum 

Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 42.3 -18.2 131.6 -121.9 -98.4 80.7 

50.0 25.0 68.5 -37.9 111.7 -121.4 -140.7 121.2 

70.0 40.0 49.2 -23.7 75.2 -67.9 -136.0 122.1 

130.0 60.0 70.5 -36.5 114.1 -120.5 -76.3 80.3 

150.0 70.0 64.6 -29.7 96.8 -95.7 -62.3 66.7 

170.0 100.0 61.8 -25.9 84.5 -66.6 -128.7 112.5 

220.0 120.0 79.1 -31.6 113.4 -92.3 -103.1 90.9 

250.0 140.0 71.3 -27.1 98.0 -75.9 -85.8 75.3 

250.0 120.0 68.8 -29.4 99.8 -93.3 -88.8 91.8 

250.0 105.0 67.9 -32.0 101.7 -108.9 -81.2 84.1 
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Table A13 Average Resilient Strains for Well Graded Minnesota Gravel at Dry of 

Optimum Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 42.7 -12.4 122.8 -82.4 -84.7 55.0 

50.0 25.0 67.2 -23.4 95.3 -74.8 -110.8 69.8 

70.0 40.0 48.3 -16.0 65.2 -44.9 -104.8 78.0 

130.0 60.0 70.5 -25.7 99.3 -85.7 -60.8 57.4 

150.0 70.0 62.3 -21.9 88.5 -68.9 -52.3 49.0 

170.0 100.0 58.4 -19.5 76.8 -49.6 -110.4 82.3 

220.0 120.0 76.3 -23.6 102.8 -69.6 -88.9 67.9 

250.0 140.0 70.2 -20.5 93.1 -57.5 -75.6 58.0 

250.0 120.0 68.8 -21.0 93.0 -67.5 -76.2 67.1 

250.0 105.0 68.2 -23.9 95.0 -84.5 -77.0 64.7 
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Table A14 Average Resilient Strains for Well Graded Minnesota Gravel at Wet of 

Optimum Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 96.1 -77.4 311.8 -395.6 -483.4 534.8 

50.0 25.0 105.5 -83.3 180.7 -262.0 -364.3 413.7 

70.0 40.0 88.0 -73.2 151.7 -218.8 -497.1 604.3 

130.0 60.0 99.2 -86.2 186.1 -327.6 -171.1 269.8 

150.0 70.0 87.5 -69.2 151.8 -259.0 -128.0 216.6 

170.0 100.0 87.9 -61.7 151.1 -206.2 -354.0 431.5 

220.0 120.0 105.4 -60.9 174.0 -237.6 -203.7 262.5 

250.0 140.0 93.5 -52.6 153.2 -196.4 -168.7 215.4 

250.0 120.0 90.5 -54.7 149.5 -224.3 -175.1 253.4 

250.0 105.0 84.2 -56.2 137.6 -228.5 -129.9 199.4 
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Table A15 Average Resilient Strains for Fine Graded Minnesota Gravel at Optimum 

Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 51.7 -31.8 175.7 -221.0 -189.8 216.1 

50.0 25.0 68.4 -42.1 111.5 -156.2 -178.4 195.8 

70.0 40.0 52.6 -30.6 82.1 -97.6 -202.6 229.7 

130.0 60.0 70.1 -43.6 120.3 -170.2 -91.5 128.5 

150.0 70.0 64.4 -37.7 103.9 -135.0 -76.4 99.8 

170.0 100.0 63.1 -30.8 92.0 -91.0 -176.1 175.7 

220.0 120.0 78.6 -35.7 117.2 -123.6 -123.0 128.0 

250.0 140.0 71.0 -30.7 103.2 -98.3 -102.6 102.1 

250.0 120.0 68.2 -33.1 106.7 -121.5 -106.5 125.5 

250.0 105.0 66.7 -32.5 102.2 -128.1 -89.1 105.2 
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Table A16 Average Resilient Strains for Fine Graded Minnesota Gravel at Dry of 

Optimum Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 40.2 -12.0 116.4 -86.0 -72.2 56.2 

50.0 25.0 63.0 -23.5 89.2 -77.0 -104.1 69.8 

70.0 40.0 46.4 -17.1 65.7 -49.2 -101.1 87.1 

130.0 60.0 70.5 -30.5 101.4 -98.5 -62.3 63.3 

150.0 70.0 63.2 -26.6 90.3 -81.2 -53.1 54.4 

170.0 100.0 60.1 -20.8 79.7 -57.1 -114.9 95.5 

220.0 120.0 79.5 -27.9 109.6 -83.3 -94.6 80.0 

250.0 140.0 70.8 -24.6 97.3 -68.7 -82.9 67.2 

250.0 120.0 70.2 -24.8 97.0 -80.2 -85.2 76.9 

250.0 105.0 67.9 -27.0 98.3 -94.2 -76.1 70.1 

 



 181

 

Table A17 Average Resilient Strains for Well Graded California Granite at Optimum 

Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 47.1 -18.8 148.0 -130.4 -97.4 76.6 

50.0 25.0 70.4 -32.9 107.9 -112.2 -141.3 110.1 

70.0 40.0 49.7 -19.9 73.7 -62.6 -131.6 111.7 

130.0 60.0 76.0 -35.9 113.2 -120.8 -76.3 82.2 

150.0 70.0 67.5 -31.3 98.6 -97.3 -65.7 68.4 

170.0 100.0 63.0 -23.9 88.0 -68.7 -134.7 111.9 

220.0 120.0 79.7 -30.7 113.5 -92.8 -103.6 90.0 

250.0 140.0 72.1 -24.8 101.3 -75.7 -90.9 75.6 

250.0 120.0 73.0 -26.7 102.7 -88.3 -91.7 88.6 

250.0 105.0 69.6 -29.7 103.5 -103.5 -84.1 81.8 
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Table A18 Average Resilient Strains for Well Graded California Granite at Dry of 

Optimum Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 40.4 -11.0 118.8 -84.4 -90.2 61.1 

50.0 25.0 62.5 -20.9 90.2 -77.5 -120.5 77.9 

70.0 40.0 46.8 -15.0 64.5 -47.0 -116.3 92.5 

130.0 60.0 66.7 -24.1 99.8 -96.8 -65.8 66.2 

150.0 70.0 62.0 -25.4 88.5 -77.4 -54.8 58.7 

170.0 100.0 56.0 -18.2 74.4 -54.7 -112.9 96.5 

220.0 120.0 73.5 -23.0 100.5 -77.9 -90.6 78.6 

250.0 140.0 67.5 -19.4 89.8 -64.9 -78.2 67.7 

250.0 120.0 64.5 -21.4 91.0 -77.8 -79.5 79.5 

250.0 105.0 66.3 -25.2 91.6 -87.9 -72.9 70.7 
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Table A19 Average Resilient Strains for Well Graded California Granite at Wet of 

Optimum Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 42.0 -16.2 140.4 -124.8 -108.5 82.8 

50.0 25.0 67.8 -33.2 111.3 -117.5 -155.8 124.0 

70.0 40.0 52.2 -21.7 76.0 -64.1 -142.5 123.2 

130.0 60.0 70.1 -32.9 109.5 -111.9 -74.0 76.5 

150.0 70.0 62.1 -25.7 92.7 -91.3 -62.0 64.9 

170.0 100.0 60.5 -20.9 82.2 -61.6 -127.9 106.7 

220.0 120.0 75.2 -27.3 108.2 -87.2 -98.7 85.9 

250.0 140.0 69.4 -23.5 93.7 -71.8 -83.4 72.6 

250.0 120.0 68.0 -25.2 100.8 -88.2 -88.7 85.8 

250.0 105.0 66.2 -28.3 97.6 -97.6 -77.5 76.2 
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Table A20 Average Resilient Strains for Fine Graded California Granite at Optimum 

Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 47.7 -10.8 134.2 -74.7 -99.1 48.4 

50.0 25.0 74.3 -20.9 103.2 -68.2 -131.0 66.1 

70.0 40.0 55.7 -15.7 72.6 -42.4 -116.7 73.5 

130.0 60.0 74.2 -24.2 107.3 -81.3 -65.6 53.3 

150.0 70.0 67.3 -20.0 91.5 -68.0 -53.5 47.6 

170.0 100.0 61.8 -17.6 80.5 -49.1 -114.9 83.4 

220.0 120.0 79.0 -23.3 107.7 -68.1 -91.8 67.8 

250.0 140.0 77.4 -25.2 105.5 -69.1 -91.3 68.5 

250.0 120.0 75.7 -25.4 105.0 -80.3 -92.7 79.1 

250.0 105.0 71.9 -25.9 100.4 -84.1 -79.4 68.7 
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Table A21 Average Resilient Strains for Fine Graded California Granite at Dry of 

Optimum Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 33.6 -9.2 93.8 -62.1 -61.7 43.0 

50.0 25.0 54.7 -15.1 72.4 -55.6 -91.4 53.9 

70.0 40.0 42.9 -11.9 55.7 -36.9 -91.4 68.4 

130.0 60.0 62.2 -21.7 87.8 -71.7 -52.2 50.7 

150.0 70.0 55.1 -18.6 77.7 -59.8 -45.3 42.5 

170.0 100.0 53.2 -15.4 66.7 -45.7 -98.8 80.5 

220.0 120.0 68.2 -20.5 93.2 -64.4 -78.3 64.3 

250.0 140.0 62.2 -17.6 81.8 -54.1 -70.1 54.8 

250.0 120.0 63.0 -18.6 84.7 -66.0 -71.6 64.3 

250.0 105.0 61.8 -22.0 83.7 -75.2 -65.4 59.7 
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Table A22 Average Resilient Strains for Fine Graded California Granite at Wet of 

Optimum Moisture Content. 

Stress State Triaxial Compression Triaxial Shear Triaxial Extension 

Stress (kPa) Strain (µε) Strain (µε) Strain (µε) 

Axial Radial Axial Radial Axial Radial Axial Radial 

40.0 25.0 47.4 -23.3 151.1 -136.6 -118.1 91.3 

50.0 25.0 67.4 -33.8 113.1 -110.7 -149.7 118.7 

70.0 40.0 53.0 -21.0 76.5 -67.7 -145.3 123.8 

130.0 60.0 69.8 -31.4 112.3 -116.3 -72.9 81.3 

150.0 70.0 63.8 -27.4 99.3 -98.2 -66.1 68.1 

170.0 100.0 61.1 -22.2 87.4 -68.0 -139.5 121.7 

220.0 120.0 76.1 -29.4 112.6 -95.9 -104.5 95.8 

250.0 140.0 72.5 -23.9 99.1 -78.7 -89.4 79.1 

250.0 120.0 67.4 -26.5 101.1 -92.0 -90.6 92.5 

250.0 105.0 67.9 -28.2 99.9 -105.6 -79.5 81.6 
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APPENDIX B 

TABLES OF MODULI AND POISSON’S RATIO 
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Table B1 Moduli and Poisson’s Ratios for Well Graded Texas Crushed Limestone at 

Dry of Optimum Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 144.0 68.1 40.1 0.173 0.403 

50.0 25.0 177.3 72.0 49.7 0.180 0.350 

70.0 40.0 237.7 128.0 81.9 0.202 0.373 

130.0 60.0 393.3 160.0 107.7 0.180 0.414 

150.0 70.0 447.7 200.7 130.3 0.181 0.404 

170.0 100.0 460.3 275.7 164.0 0.216 0.405 

220.0 120.0 543.3 311.0 182.7 0.196 0.407 

250.0 140.0 592.3 377.3 215.3 0.189 0.414 

250.0 120.0 604.3 329.7 199.7 0.182 0.392 

250.0 105.0 625.3 296.3 185.7 0.166 0.425 
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Table B2 Moduli and Poisson’s Ratios for Well Graded Texas Crushed Limestone at 

Wet of Optimum Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 143.7 63.2 39.4 0.207 0.438 

50.0 25.0 169.7 68.7 48.8 0.190 0.359 

70.0 40.0 227.3 109.8 73.5 0.225 0.404 

130.0 60.0 374.7 145.3 102.1 0.186 0.430 

150.0 70.0 426.7 183.3 125.0 0.186 0.430 

170.0 100.0 435.0 241.3 145.7 0.228 0.409 

220.0 120.0 512.3 266.7 168.0 0.189 0.406 

250.0 140.0 575.3 322.0 195.0 0.191 0.407 

250.0 120.0 568.3 261.7 172.0 0.176 0.374 

250.0 105.0 595.3 250.0 165.3 0.170 0.435 
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Table B3 Moduli and Poisson’s Ratios for Fine Graded Texas Crushed Limestone at 

Optimum Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 124.0 33.6 25.3 0.185 0.402 

50.0 25.0 156.3 44.5 36.9 0.175 0.325 

70.0 40.0 203.3 72.8 56.8 0.202 0.319 

130.0 60.0 360.0 102.2 78.7 0.166 0.390 

150.0 70.0 404.3 131.3 97.0 0.167 0.384 

170.0 100.0 407.7 179.0 124.0 0.203 0.354 

220.0 120.0 503.7 204.7 140.7 0.183 0.392 

250.0 140.0 549.7 256.3 168.0 0.182 0.394 

250.0 120.0 571.7 210.0 151.0 0.166 0.362 

250.0 105.0 211.3 232.3 142.3 0.152 0.412 
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Table B4 Moduli and Poisson’s Ratios for Fine Graded Texas Crushed Limestone at Dry 

of Optimum Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 145.7 69.8 39.4 0.191 0.421 

50.0 25.0 189.3 75.5 55.6 0.182 0.455 

70.0 40.0 237.0 124.3 78.7 0.218 0.390 

130.0 60.0 368.7 153.0 102.3 0.182 0.434 

150.0 70.0 428.0 189.3 124.3 0.186 0.425 

170.0 100.0 437.3 245.7 154.7 0.208 0.411 

220.0 120.0 531.0 284.3 172.3 0.202 0.420 

250.0 140.0 589.7 345.7 203.3 0.198 0.424 

250.0 120.0 581.7 307.7 187.0 0.186 0.395 

250.0 105.0 602.3 274.0 174.0 0.174 0.442 
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Table B5 Moduli and Poisson’s Ratios for Fine Graded Texas Crushed Limestone at Wet 

of Optimum Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 75.5 11.8 13.2 0.217 0.222 

50.0 25.0 116.0 23.3 24.1 0.166 0.216 

70.0 40.0 163.0 41.4 38.9 0.208 0.240 

130.0 60.0 331.7 74.9 63.7 0.152 0.361 

150.0 70.0 389.0 97.7 80.4 0.154 0.354 

170.0 100.0 357.0 129.7 100.7 0.198 0.317 

220.0 120.0 468.0 156.7 117.3 0.176 0.362 

250.0 140.0 522.3 200.3 144.0 0.175 0.375 

250.0 120.0 553.7 174.3 135.3 0.157 0.343 

250.0 105.0 627.7 168.3 132.3 0.146 0.404 
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Table B6 Moduli and Poisson’s Ratios for Coarse Graded Texas Crushed Limestone at 

Optimum Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 119.3 67.7 38.1 0.171 0.369 

50.0 25.0 151.3 70.1 46.6 0.177 0.355 

70.0 40.0 208.0 117.7 72.3 0.203 0.380 

130.0 60.0 351.0 149.7 101.8 0.167 0.384 

150.0 70.0 394.0 180.7 120.0 0.169 0.380 

170.0 100.0 407.0 244.7 148.3 0.190 0.381 

220.0 120.0 526.0 281.0 171.3 0.173 0.467 

250.0 140.0 543.7 327.0 190.7 0.187 0.382 

250.0 120.0 547.7 283.7 180.3 0.164 0.355 

250.0 105.0 570.0 262.7 171.0 0.160 0.415 
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Table B7 Moduli and Poisson’s Ratios for Well Graded Texas Gravel at Optimum 

Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 173.5 120.0 58.6 0.180 0.375 

50.0 25.0 205.5 116.5 69.8 0.187 0.427 

70.0 40.0 261.0 149.0 90.6 0.216 0.408 

130.0 60.0 383.0 164.0 108.0 0.180 0.427 

150.0 70.0 416.5 199.0 128.0 0.166 0.393 

170.0 100.0 452.5 232.0 157.0 0.199 0.409 

220.0 120.0 507.5 252.5 161.5 0.174 0.378 

250.0 140.0 557.0 300.5 187.0 0.177 0.387 

250.0 120.0 562.0 274.0 178.5 0.158 0.352 

250.0 105.0 601.0 259.0 173.5 0.150 0.424 
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Table B8 Moduli and Poisson’s Ratios for Well Graded Texas Gravel at Dry of 

Optimum Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 195.0 250.0 90.9 0.200 0.453 

50.0 25.0 250.0 264.0 112.0 0.198 0.429 

70.0 40.0 305.0 333.0 146.0 0.199 0.425 

130.0 60.0 434.0 368.0 174.0 0.180 0.392 

150.0 70.0 489.0 450.0 199.0 0.204 0.382 

170.0 100.0 519.0 493.0 235.0 0.188 0.389 

220.0 120.0 537.0 533.0 244.0 0.165 0.348 

250.0 140.0 612.0 583.0 274.0 0.167 0.351 

250.0 120.0 607.0 572.0 268.0 0.148 0.304 

250.0 105.0 621.0 555.0 266.0 0.148 0.406 
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Table B9 Moduli and Poisson’s Ratios for Well Graded Texas Gravel at Wet of 

Optimum Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 48.2 25.6 14.3 0.160 0.212 

50.0 25.0 88.1 36.1 26.1 0.140 0.250 

70.0 40.0 106.0 50.5 36.9 0.145 0.109 

130.0 60.0 240.0 82.9 59.7 0.138 0.362 

150.0 70.0 261.0 135.0 83.1 0.125 0.250 

170.0 100.0 238.0 121.0 85.4 0.155 0.132 

220.0 120.0 294.0 198.0 115.0 0.162 0.169 

250.0 140.0 318.0 298.0 142.0 0.152 0.053 

250.0 120.0 376.0 464.0 188.0 0.152 0.174 

250.0 105.0 470.0 546.0 238.0 0.118 0.406 
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Table B10 Moduli and Poisson’s Ratios for Fine Graded Texas Gravel at Optimum 

Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 104.0 56.1 30.0 0.193 0.348 

50.0 25.0 147.0 76.6 48.1 0.162 0.236 

70.0 40.0 192.0 107.0 69.2 0.180 0.168 

130.0 60.0 308.0 123.0 81.1 0.137 0.299 

150.0 70.0 356.0 157.0 101.0 0.141 0.278 

170.0 100.0 310.0 199.0 121.0 0.165 0.147 

220.0 120.0 393.0 202.0 125.0 0.147 0.259 

250.0 140.0 428.0 251.0 148.0 0.159 0.289 

250.0 120.0 455.0 210.0 141.0 0.134 0.280 

250.0 105.0 504.0 201.0 137.0 0.119 0.332 
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Table B11 Moduli and Poisson’s Ratios for Fine Graded Texas Gravel at Dry of 

Optimum Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 172.0 192.0 74.1 0.266 0.571 

50.0 25.0 196.0 208.0 90.0 0.239 0.502 

70.0 40.0 255.0 253.0 114.0 0.251 0.487 

130.0 60.0 319.0 238.0 118.0 0.213 0.486 

150.0 70.0 356.0 260.0 132.0 0.215 0.501 

170.0 100.0 392.0 304.0 159.0 0.219 0.463 

220.0 120.0 422.0 300.0 158.0 0.212 0.483 

250.0 140.0 457.0 340.0 176.0 0.211 0.485 

250.0 120.0 466.0 304.0 165.0 0.205 0.455 

250.0 105.0 478.0 281.0 161.0 0.190 0.513 
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Table B12 Moduli and Poisson’s Ratios for Coarse Graded Texas Gravel at Optimum 

Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 152.0 90.9 49.3 0.202 0.469 

50.0 25.0 181.5 101.5 62.4 0.173 0.380 

70.0 40.0 230.5 128.0 83.3 0.191 0.382 

130.0 60.0 337.0 124.0 88.8 0.162 0.388 

150.0 70.0 385.0 158.5 111.0 0.160 0.371 

170.0 100.0 396.0 186.0 129.0 0.189 0.370 

220.0 120.0 465.0 211.0 142.5 0.172 0.362 

250.0 140.0 505.5 245.5 161.5 0.173 0.372 

250.0 120.0 507.5 224.5 151.5 0.162 0.337 

250.0 105.0 541.0 229.5 153.0 0.158 0.401 
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Table B13 Moduli and Poisson’s Ratios for Well Graded Minnesota Gravel at Optimum 

Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 110.0 43.2 29.6 0.175 0.403 

50.0 25.0 131.0 41.7 32.2 0.168 0.324 

70.0 40.0 186.0 72.4 52.4 0.191 0.347 

130.0 60.0 276.0 87.0 63.9 0.168 0.389 

150.0 70.0 308.0 108.0 77.9 0.164 0.378 

170.0 100.0 318.0 146.0 99.3 0.192 0.389 

220.0 120.0 371.0 165.0 109.0 0.182 0.389 

250.0 140.0 420.0 199.0 129.0 0.182 0.398 

250.0 120.0 431.0 164.0 117.0 0.165 0.366 

250.0 105.0 449.0 145.0 107.0 0.156 0.423 
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Table B14 Moduli and Poisson’s Ratios for Well Graded Minnesota Gravel at Dry of 

Optimum Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 106.0 65.4 36.6 0.178 0.385 

50.0 25.0 137.0 69.1 44.1 0.168 0.336 

70.0 40.0 192.0 110.0 68.2 0.188 0.354 

130.0 60.0 282.0 122.0 81.1 0.160 0.380 

150.0 70.0 318.0 151.0 95.3 0.170 0.371 

170.0 100.0 333.0 198.0 119.0 0.198 0.394 

220.0 120.0 383.0 221.0 131.0 0.180 0.388 

250.0 140.0 422.0 267.0 149.0 0.186 0.386 

250.0 120.0 428.0 229.0 140.0 0.165 0.354 

250.0 105.0 438.0 189.0 125.0 0.155 0.420 
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Table B15 Moduli and Poisson’s Ratios for Well Graded Minnesota Gravel at Wet of 

Optimum Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 47.3 10.6 10.6 0.209 0.281 

50.0 25.0 75.3 17.1 16.9 0.166 0.186 

70.0 40.0 102.0 19.3 20.2 0.193 0.242 

130.0 60.0 195.0 30.2 29.2 0.142 0.314 

150.0 70.0 226.0 37.9 36.5 0.136 0.303 

170.0 100.0 206.0 45.6 42.0 0.170 0.282 

220.0 120.0 268.0 63.4 54.7 0.145 0.299 

250.0 140.0 304.0 77.0 64.4 0.149 0.305 

250.0 120.0 312.0 66.7 60.2 0.135 0.281 

250.0 105.0 361.0 67.3 61.5 0.127 0.358 
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Table B16 Moduli and Poisson’s Ratios for Fine Graded Minnesota Gravel at Optimum 

Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 85.9 21.9 18.9 0.169 0.287 

50.0 25.0 122.0 30.6 28.0 0.142 0.208 

70.0 40.0 166.0 46.6 41.7 0.174 0.245 

130.0 60.0 275.0 60.2 51.6 0.143 0.314 

150.0 70.0 304.0 75.5 62.8 0.148 0.344 

170.0 100.0 293.0 105.0 82.0 0.176 0.318 

220.0 120.0 362.0 123.0 93.4 0.157 0.341 

250.0 140.0 407.0 154.0 112.0 0.166 0.355 

250.0 120.0 418.0 127.0 98.6 0.150 0.320 

250.0 105.0 446.0 123.0 97.7 0.138 0.373 
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Table B17 Moduli and Poisson’s Ratios for Fine Graded Minnesota Gravel at Dry of 

Optimum Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 116.0 63.2 37.1 0.161 0.362 

50.0 25.0 148.0 66.5 45.1 0.162 0.344 

70.0 40.0 200.0 102.0 65.3 0.185 0.330 

130.0 60.0 288.0 105.0 75.0 0.161 0.408 

150.0 70.0 323.0 127.0 87.5 0.168 0.404 

170.0 100.0 324.0 173.0 110.0 0.183 0.369 

220.0 120.0 372.0 184.0 117.0 0.177 0.391 

250.0 140.0 419.0 223.0 136.0 0.188 0.400 

250.0 120.0 419.0 192.0 127.0 0.164 0.371 

250.0 105.0 446.0 170.0 117.0 0.156 0.428 
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Table B18 Moduli and Poisson’s Ratios for Well Graded California Granite at Optimum 

Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 99.0 41.8 26.9 0.171 0.419 

50.0 25.0 126.0 45.2 34.1 0.158 0.310 

70.0 40.0 178.0 79.8 55.1 0.179 0.319 

130.0 60.0 261.0 85.2 64.1 0.157 0.383 

150.0 70.0 297.0 105.0 76.6 0.166 0.393 

170.0 100.0 307.0 146.0 95.7 0.183 0.368 

220.0 120.0 365.0 166.0 109.0 0.177 0.388 

250.0 140.0 400.0 204.0 127.0 0.177 0.372 

250.0 120.0 401.0 174.0 118.0 0.162 0.348 

250.0 105.0 430.0 154.0 109.0 0.157 0.411 
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Table B19 Moduli and Poisson’s Ratios for Well Graded California Granite at Dry of 

Optimum Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 105.0 64.6 36.9 0.157 0.309 

50.0 25.0 136.0 66.9 44.7 0.148 0.255 

70.0 40.0 185.0 105.0 67.3 0.173 0.269 

130.0 60.0 282.0 110.0 76.3 0.143 0.328 

150.0 70.0 324.0 131.0 90.4 0.168 0.359 

170.0 100.0 340.0 181.0 116.0 0.171 0.327 

220.0 120.0 391.0 198.0 126.0 0.161 0.341 

250.0 140.0 429.0 237.0 145.0 0.159 0.330 

250.0 120.0 444.0 201.0 133.0 0.150 0.312 

250.0 105.0 462.0 178.0 125.0 0.151 0.411 
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Table B20 Moduli and Poisson’s Ratios for Well Graded California Granite at Wet of 

Optimum Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 101.0 44.0 28.3 0.166 0.354 

50.0 25.0 122.0 43.7 32.8 0.158 0.261 

70.0 40.0 170.0 75.9 53.5 0.185 0.311 

130.0 60.0 276.0 93.4 67.8 0.163 0.375 

150.0 70.0 311.0 114.0 81.5 0.155 0.349 

170.0 100.0 313.0 161.0 104.0 0.178 0.341 

220.0 120.0 381.0 178.0 115.0 0.172 0.365 

250.0 140.0 424.0 211.0 136.0 0.170 0.370 

250.0 120.0 418.0 179.0 119.0 0.159 0.339 

250.0 105.0 457.0 163.0 115.0 0.157 0.417 
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Table B21 Moduli and Poisson’s Ratios for Fine Graded California Granite at Optimum 

Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 88.9 74.2 35.9 0.177 0.374 

50.0 25.0 116.0 77.2 43.8 0.169 0.300 

70.0 40.0 164.0 117.0 65.2 0.196 0.364 

130.0 60.0 258.0 132.0 79.5 0.169 0.383 

150.0 70.0 293.0 155.0 94.1 0.158 0.356 

170.0 100.0 308.0 203.0 116.0 0.186 0.355 

220.0 120.0 364.0 229.0 128.0 0.184 0.378 

250.0 140.0 378.0 222.0 129.0 0.193 0.403 

250.0 120.0 383.0 192.0 121.0 0.170 0.366 

250.0 105.0 419.0 188.0 122.0 0.165 0.420 
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Table B22 Moduli and Poisson’s Ratios for Fine Graded California Granite at Dry of 

Optimum Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 138.0 86.2 48.1 0.170 0.363 

50.0 25.0 164.0 92.1 58.6 0.144 0.280 

70.0 40.0 210.0 134.0 80.9 0.170 0.297 

130.0 60.0 318.0 145.0 94.0 0.162 0.361 

150.0 70.0 359.0 175.0 109.0 0.166 0.364 

170.0 100.0 362.0 212.0 133.0 0.167 0.334 

220.0 120.0 425.0 242.0 143.0 0.171 0.357 

250.0 140.0 471.0 283.0 166.0 0.173 0.363 

250.0 120.0 463.0 236.0 149.0 0.152 0.337 

250.0 105.0 498.0 209.0 142.0 0.154 0.421 
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Table B23 Moduli and Poisson’s Ratios for Fine Graded California Granite at Dry of 

Optimum Moisture Content. 

Stress (kPa) Moduli (MPa) Poisson’s Ratio 

Axial Radial Vertical Horizontal Shear Vertical Horizontal 

40.0 25.0 99.0 37.9 26.1 0.197 0.443 

50.0 25.0 124.0 46.7 33.5 0.171 0.272 

70.0 40.0 166.0 72.6 52.0 0.173 0.312 

130.0 60.0 272.0 91.6 65.6 0.153 0.338 

150.0 70.0 298.0 108.0 75.9 0.157 0.353 

170.0 100.0 299.0 147.0 96.6 0.177 0.311 

220.0 120.0 372.0 162.0 108.0 0.170 0.354 

250.0 140.0 402.0 195.0 127.0 0.163 0.350 

250.0 120.0 422.0 170.0 117.0 0.159 0.330 

250.0 105.0 442.0 151.0 110.0 0.146 0.398 
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APPENDIX C 

VERTICAL AND HORIZONTAL STRESS DISTRIBUTION 
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Figure C1 Vertical Stress for 50-mm HMA, 150-mm Base, and 20.7-MPa Subgrade. 
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Figure C2 Horizontal Stress for 50-mm HMA, 150-mm Base, and 20.7-MPa Subgrade. 

 



 213

50

100

150

200

-600.0 -500.0 -400.0 -300.0 -200.0 -100.0 0.0

Vertical Stress (kPa)

D
ep

th
 (m

m
)

Linear Isotropic
Linear Anisotropic
Non-Linear Isotropic
Non-Linear Anisotropic

 

Figure C3 Vertical Stress for 50-mm HMA, 150-mm Base and 103.4-MPa Subgrade. 
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Figure C4 Horizontal Stress for 50-mm HMA, 150-mm Base and 103.4-MPa Subgrade. 
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Figure C5 Vertical Stress for 50-mm HMA, 150-mm Base and 206.8-MPa Subgrade. 
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Figure C6 Horizontal Stress for 50-mm HMA, 150-mm Base and 206.8-MPa Subgrade. 
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Figure C7 Vertical Stress for 50-mm HMA, 450-mm Base and 20.7-MPa Subgrade. 
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Figure C8 Horizontal Stress for 50-mm HMA, 450-mm Base and 20.7-MPa Subgrade. 
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Figure C9 Vertical Stress for 50-mm HMA, 450-mm Base and 103.4-MPa Subgrade. 
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Figure C10 Horizontal Stress for 50-mm HMA, 450-mm Base and 103.4-MPa Subgrade. 
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Figure C11 Vertical Stress for 50-mm HMA, 450-mm Base and 206.8-MPa Subgrade. 
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Figure C12 Horizontal Stress for 50-mm HMA, 450-mm Base and 206.8-MPa Subgrade. 
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Figure C13 Vertical Stress for 100-mm HMA, 150-mm Base and 20.7-MPa Subgrade. 
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Figure C14 Horizontal Stress for 100-mm HMA, 150-mm Base and 20.7-MPa Subgrade. 
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Figure C15 Vertical Stress for 100-mm HMA, 150-mm Base and 103.4-MPa Subgrade. 
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Figure C16 Horizontal Stress for 100-mm HMA, 150-mm Base and 103.4-MPa 

Subgrade. 
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Figure C17 Vertical Stress for 100-mm HMA, 150-mm Base and 206.8-MPa Subgrade. 
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Figure C18 Horizontal Stress for 100-mm HMA, 150-mm Base and 206.8-MPa 

Subgrade. 
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Figure C19 Vertical Stress for 100-mm HMA, 300-mm Base and 20.7-MPa Subgrade. 
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Figure C20 Vertical Stress for 100-mm HMA, 300-mm Base and 20.7-MPa Subgrade. 
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Figure C21 Vertical Stress for 100-mm HMA, 300-mm Base and 103.4-MPa Subgrade. 
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Figure C22 Horizontal Stress for 100-mm HMA, 300-mm Base and 103.4-MPa 

Subgrade. 
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Figure C23 Vertical Stress for 100-mm HMA, 300-mm Base and 206.8-MPa Subgrade. 
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Figure C24 Horizontal Stress for 100-mm HMA, 300-mm Base and 206.8-MPa 

Subgrade. 
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Figure C25 Vertical Stress for 100-mm HMA, 450-mm Base and 20.7-MPa Subgrade. 
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Figure C26 Horizontal Stress for 100-mm HMA, 450-mm Base and 20.7-MPa Subgrade. 

 



 225

100

250

400

550

-300.0 -200.0 -100.0 0.0

Vertical Stress (kPa)

D
ep

th
 (m

m
)

Linear Isotropic
Linear Anisotropic
Non-Linear Isotropic
Non-Linear Anisotropic

 

Figure C27 Vertical Stress for 100-mm HMA, 450-mm Base and 103.4-MPa Subgrade. 
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Figure C28 Horizontal Stress for 100-mm HMA, 450-mm Base and 103.4-MPa 

Subgrade. 
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Figure C29 Vertical Stress for 100-mm HMA, 450-mm Base and 206.8-MPa Subgrade. 
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Figure C30 Horizontal Stress for 100-mm HMA, 450-mm Base and 206.8-MPa 

Subgrade. 
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Figure C31 Vertical Stress for 150-mm HMA, 150-mm Base and 20.7-MPa Subgrade. 
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Figure C32 Horizontal Stress for 150-mm HMA, 150-mm Base and 20.7-MPa Subgrade. 
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Figure C33 Vertical Stress for 150-mm HMA, 150-mm Base and 103.4-MPa Subgrade. 
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Figure C34 Horizontal Stress for 150-mm HMA, 150-mm Base and 103.4-MPa 

Subgrade. 

 



 229

150

200

250

300

-200.0 -150.0 -100.0

Vertical Stress (kPa)

D
ep

th
 (m

m
)

Linear Isotropic
Linear Anisotropic
Non-Linear Isotropic
Non-Linear Anisotropic

 

Figure C35 Vertical Stress for 150-mm HMA, 150-mm Base and 206.8-MPa Subgrade. 
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Figure C36 Horizontal Stress for 150-mm HMA, 150-mm Base and 206.8-MPa 

Subgrade. 
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Figure C37 Vertical Stress for 150-mm HMA, 300-mm Base and 20.7-MPa Subgrade. 
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Figure C38 Horizontal Stress for 150-mm HMA, 300-mm Base and 20.7-MPa Subgrade. 
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Figure C39 Vertical Stress for 150-mm HMA, 300-mm Base and 103.4-MPa Subgrade. 
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Figure C40 Horizontal Stress for 150-mm HMA, 300-mm Base and 103.4-MPa 

Subgrade. 
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Figure C41 Vertical Stress for 150-mm HMA, 300-mm Base and 206.8-MPa Subgrade. 
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Figure C42 Horizontal Stress for 150-mm HMA, 300-mm Base and 206.8-MPa 

Subgrade. 
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Figure C43 Vertical Stress for 150-mm HMA, 450-mm Base and 20.7-MPa Subgrade. 
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Figure C44 Horizontal Stress for 150-mm HMA, 450-mm Base and 20.7-MPa Subgrade. 
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Figure C45 Vertical Stress for 150-mm HMA, 450-mm Base and 103.4-MPa Subgrade. 
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Figure C46 Horizontal Stress for 150-mm HMA, 450-mm Base and 103.4-MPa 

Subgrade. 
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Figure C47 Vertical Stress for 150-mm HMA, 450-mm Base and 206.8-MPa Subgrade. 
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Figure C48 Horizontal Stress for 150-mm HMA, 450-mm Base and 206.8-MPa 

Subgrade. 
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