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Abstract 

Lithofacies, Biostratigraphy, Chemostratigraphy, and Stratal 

Architecture of the Boquillas Formation and Eagle Ford Group: A 

Comparison of Outcrop and Core Data from Big Bend National Park to 

Maverick Basin, Southwest Texas, USA 

Kathryn O’Rourke Fry, M.S.Geo.Sci.  

The University of Texas at Austin, 2015 

Supervisor:  Robert Loucks 

Co-Supervisor:  Gregory Frébourg 

The late Cretaceous-aged Eagle Ford and Boquillas Formations were deposited on 

the Texas paleoshelf during a major transgressive sequence wherein organic-rich 

mudrocks accumulated across the paleoshelf. This study investigates lithofacies; 

biostratigraphy, chemostratigraphy, and stratal architecture of the Eagle Ford and 

Boquillas Formations to characterize the depositional environment present during 

deposition, as well as define and describe the Cenomanian-Turonian (C-T) stage 

boundary and the Oceanic Anoxic Event II (OAE2). Comprehensive, high-resolution data 

sets compare geologic and geochemical interpretations of subsurface Eagle Ford Group 

conventional core from the Maverick Basin and chrono-synchronous Boquillas 

Formation outcrop strata from Big Bend National Park.  
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 Results from core and outcrop show a dynamic depositional environment 

regularly influenced by bottom-currents, debris-flows, and deposition during anoxic 

bottom-water conditions. Elemental and biostratigraphic data show that the water-column 

was stratified – surface-waters experienced high levels of primary productivity while 

deeper waters were anoxic to euxinic. The Eagle Ford strata are divided into a lower and 

upper group defined geochemically by the appearance of a titanium-rich chemofaceis 

correlative to massive argillaceous claystone. This change in deposition has been defined 

to occur concurrently with the C-T boundary (identified biostratigraphically) and OAE2 

(identified chemostratigraphically and isotopically). The OAE2 as documented within 

both cores shows an ‘oxygenated’ anoxic event, wherein burrowing and low 

molybdenum are documented during the positive δ
13

C isotope excursion. Outcrop and

core data comparison demonstrate a similar depositional system between Big Bend 

National Park and Maverick Basin; bottom-currents, debris-flows, and periodic anoxia 

are all documented within both sections, however, further investigations are needed to 

correlate the sections.  
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INTRODUCTION 

The Eagle Ford Group (South Texas) and Boquillas Formation (Trans-Pecos 

Texas) represent chronosynchronous deposition on the South Texas Shelf (Fig. 1) during 

the Late Cretaceous (Barnes, 1977). The Eagle Ford Group and Boquillas Formation 

contain unburrowed skeletal wackestones and argillaceous to calcareous laminated 

mudrocks and wackestones. Lack of burrowing and benthic fauna, as well as preservation 

of original sedimentary features demonstrates deposition in a potentially anoxic 

environment. After the discovery of the Eagle Ford Group as an unconventional resource 

play in 2008 (Railroad Commission of Texas), both academia and industry have focused 

studies on better understanding the play in order to efficiently utilize the system for 

economic development.  

 Both the Eagle Ford Group and Boquillas Formation were deposited during a 

widespread marine transgression (Barnes, 1977), creating a major unconformity between 

the Eagle Ford Group (Boquillas Formation) and the underlying Buda Formation. The 

Buda Formation was deposited during a time of healthy carbonate production on the 

South Texas Shelf (Fig. 2). The shift in deposition style from healthy marine to anoxic 

demonstrates a major change in sediment deposition and water habitability. The Eagle 

Ford Group is overlain by the Austin Chalk, demonstrating a depositional change to a 

more habitable, carbonate shelfal environment as documented by a change in sedimentary 

features, preserved fauna, and burrowing. The Boquillas Formation of Trans-Pecos Texas 

displays this same depositional regime shift: the lower Ernst Member represents ‘Eagle-

Ford-style deposition,’ whereas the overlying San Vicente Member represents a healthier, 

carbonate shelf system. Deposition of the Ernst Member of the Boquillas Formation and 

the Eagle Ford Group occurs across the Cenomanian-Turonian stage boundary (Fig. 2). 
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This boundary is defined by the occurrence of the Oceanic Anoxic Event II (Schlanger, 

1987; Jenkyns, 20130; Phelps et al., 2013).   

Increasing industry interest in resource play utilization has created a need to 

properly characterize and understand the geology and depositional environment of the 

Eagle Ford Group. This study integrates petrography, stratigraphy, biostratigraphy, and 

chemostratigraphy to characterize the subsurface resource play using core (Eagle Ford 

Group) and outcrop (Boquillas Formation). Objectives include (1) defining and 

describing lithofacies within the Eagle Ford Group, (2) documenting fauna and 

biostratigraphic markers throughout the Cenomanian-Turonian-age succession, (3) 

characterizing the geochemistry and chemostratigraphy of the Eagle Ford Group and 

Boquillas Formation (4) defining and describing the Oceanic Anoxic Event II (5) 

integrating subsurface (Eagle Ford Group) and outcrop (Boquillas Formation) data for 

correlativity.  

Problem and Objectives 

The Late Cretaceous (Cenomanian-Turonian) Eagle Ford and Boquillas 

Formations were deposited on a drowned carbonate shelf as the result of a major 

transgression (Galloway, 2008) on the South Texas Shelf (Fig. 1). The Boquillas and 

Eagle Ford have been defined as age-equivalent units deposited during the same 

transgression (Barnes, 1977). Strata deposited west of the Devils River are described as 

the Boquillas Formation, while those east of the Devils River are named Eagle Ford 

Group. Deposition on the drowned shelf was laterally expansive, however, local 

structures such as the San Marcos Arch, Maverick Basin, Coahuila Platform, and 

Chihuahua Trough created different types of deposition and variation in unit thickness 

within time-equivalent strata (Hentz and Ruppel, 2011). Heterogeneities within 
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lithofacies, sedimentary features, geochemical data, and lateral connectivity have caused 

inconsistent conclusions defining the paleodepositional environment and 

paleoceanographic conditions at the time Eagle Ford deposition.  

 

 

Figure 1: Paleogeography of the southern Western Interior Seaway and Texas paleoshelf 

in the Late Cretaceous. Color shading shows different geologic systems 

present. The light blue “Drowned Carbonate Shelf” contains the study area. 

Illustrations after Goldhammer, 1999; map from Blakey, 2011. 

During the Cretaceous time, the world oceans experienced several major 

disturbances that impacted the global carbon cycle (Jenkyns, 2010). One of the most 

significant events occurred at the Cenomanian-Turonian (C-T) stage boundary, 

documented as the Oceanic Anoxic Event 2 (OAE2) (Jenkyns, 1980; Fig. 2). The OAE2 

is defined and identified within the rock record by a positive excursion of δ
13

C 

(Schlanger, 1987; Phelps et al., 2013). The occurrence of the OAE2 coincides with Eagle 

Ford and Boquillas deposition on the Texas paleoshelf (Fig. 2). While anoxic events are 
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generally documented as condensed, black shales deposited under anoxic conditions 

resulting in organic matter accumulation (Schlanger and Jenkyns, 1976), documentation 

of the OAE2 within the Eagle Ford Group has shown a range of lithofacies and 

mineralogies. OAE2 strata documented within the Eagle Ford within the Maverick Basin 

deviate from the condensed black shales defined within the classic definition.  

 

 

Figure 2: General Eagle Ford Group stratigraphy with accepted OAE2 and C-T boundary 

as defined only from the specific localities discussed within this study. The 

wavy line represents a major unconformity and separates the Buda 

Limestone from overlying formations. Data considered: Schlanger et al. 

(1976), Jenkyns (1980), Cooper et al. (2005), Lock et al. (2010), Donovan et 

al. (2012), Cooper (2014) 

This study incorporates visual geologic, geochemical, and chemostratigraphic 

data from both outcrop and core to define the paleodepositional and paleoceanographic 
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conditions present during Eagle Ford deposition on the South Texas Shelf. Locations 

have been selected within the Maverick Basin, as well as near the Chihuahua Trough – 

data from different localities are compared to understand changes in deposition across the 

South Texas Shelf. Lithofacies and chemofacies are used to describe conditions of Eagle 

Ford deposition at each locality. The Eagle Ford Group is divided into an upper and 

lower member using gamma ray, elemental, facies, and fauna data. Using isotopic and 

biostratigraphic data, the C-T boundary and OAE2 are identified in the Eagle Ford 

Group. Identification of both C-T boundary and OAE2 produce a paleoceanographic and 

lithofacies description of the OAE2 as it appears in the Eagle Ford Group deposited 

within the Maverick Basin. Lithofacies, chemofaceis, and chemostratigraphy are used in 

tandem to describe and define the paleoceanic conditions impacting deposition of the 

Eagle Ford Group during the OAE2.  

Geographic Setting 

Three individual Eagle Ford and Boquillas sections are used for this study, one 

outcrop (Boquillas) and two cores (Eagle Ford) (Fig. 3). All locations are located on the 

Cretaceous-age South Texas Shelf.  
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Figure 3: Map of study locations. Red stars on the right show locations of core from 

Maverick Basin. Green star represents location of outcrop section in Big 

Bend National Park. Names of each section are within the grey boxes. 

The Boquillas outcrop section, located in Brewster County, Trans-Pecos Texas, 

represents Cenomanian-Santonian aged strata. The observed section at the Hot Springs 

outcrop locality within Big Bend National Park contains the Buda Limestone and the 

overlying Boquillas Formation (Fig. 2). The Boquillas Formation is divided into two 

units: the Ernst Member (Cenomanian-Turonian) and the San Vicente Member 

(Turonian-Santonian). The Ernst Member is the age-equivalent, Eagle Ford Group strata 

in south and East Texas (Barnes, 1977). This study will focus on observations of the 

Ernst Member. Paleogeographically, this area is located along the Coahuila Platform east 

of the Chihuahua Trough.  
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The two cores used in this study are located within the Maverick Basin (Fig. 3). 

The Maverick Basin in south Texas represents the thickest succession of Eagle Ford 

Group deposits on the drowned Late Cretaceous shelf (Hentz and Ruppel, 2011). The 

Winterbotham J.M. Jr. #1, operated by Prairie Producing Co., is located in the southeast 

corner of Zavala County. The Core-X (actual well name has been withheld for privacy), 

operated by Strata-X, is located in southwestern Maverick County along the Texas-

Mexico border. Both cores will be referred to within the text using only well name. These 

two cores create an approximate dip-profile, where the Winterbotham J.M. Jr. #1 is 

proximal and the Core-X is distal to the basin edge.  

Previous Studies 

Interpretation of the depositional regime present during accumulation of the 

Boquillas Formation and the Eagle Ford Group has been a topic of debate for the past 

century. While there is no argument that there are carbonate and clastic influences, 

almost every other aspect, such as depth of deposition, depositional environment, ocean 

chemistry, and lithofacies, has been discussed in opposing directions. Most common 

topics of debate include but are not limited to: water depth at time of deposition, depth to 

storm -wave base, the occurrence of and subsequent levels of anoxia, the potential for an 

unconformity between Eagle Ford or Boquillas Formations and the Buda Limestone 

below, and interpretation of fauna presence and abundance. The following section aims to 

give a fair representation of influential works from the past century, paying attention to 

different hypotheses. 

TRANS-PECOS TEXAS 

The Boquillas Formation within Big Bend National Park has been the subject of 

several prior investigations. The Boquillas Formation first appeared in literature in 1907 
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when Udden compiled documentation regarding the geologic units present within the 

“Chisos Country.” The Boquillas Formation was originally named the Boquillas Flags by 

Udden for the old Boquillas post office in Tornillo Creek. Udden noted that the Boquillas 

Formation section marks a stark contrast to the underlying "heavy-bedded limestones" 

and that the unit is rich in organic matter. Udden also described the presence of 

foraminifera and Inoceramus, and correlated the Boquillas Formation to the Eagle Ford 

Group in the east. The Boquillas Formation was later divided into two distinct units, the 

lower Ernst Member and upper San Vicente Member, by Maxwell in 1965 and 1967. 

Maxwell created a geologic map of units within Big Bend National Park and Brewster 

County, compiling stratigraphic descriptions of each unit from several localities within 

the area. Maxwell (1965, 1967) described the Ernst Member of the Boquillas Formation 

as an alternating flagstone and clay succession with an abrupt, unconformable contact 

with the underlying Buda Formation. Maxwell defined the contact between the Ernst 

Member and overlying San Vicente Member by the appearance of the ammonite 

Allocrioceras hazzardi.  

Fossil identification by W. A. Cobban from outcrop studies was summarized by 

Freeman in 1961. Classification of fossils placed the Boquillas Formation within the 

Cenomanian to Turonian ages. Freeman summarized the lithologies within the outcrops 

of Boquillas strata in Val Verde, Terrell and Brewster Counties, and divided the 

Boquillas strata into four units based on rock components and weathering character. 

Powell (1965) compared the Boquillas Formation to two other neighboring, laterally 

equivalent units (Ojinaga and Chispa Summit). He characterized those facies within the 

Boquillas as being shelfal, rather than basinal as are the Ojinaga and Chispa Summit 

Formations. Powell pushed his shelfal interpretation even further, making the hypothesis 

that the Boquillas strata may even represent a tidal flat. Work by Pessagno (1969) divided 
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the Late Cretaceous into six different zones based on planktonic foraminifera 

assemblages and zonation. He divided the Boquillas strata into two distinct members: the 

Rock Pens Member and the Austin Chalk. Pessagno also divided eastern Eagle Ford 

deposits into three substages: the Lozerian (lowest Eagle Ford and upper Cenomanian), 

the Bocian (middle Eagle Ford – commonly absent in Texas, early Turonian), and the 

Sycamorian (uppermost Eagle Ford, late Turonian). The comparison of planktonic 

foraminifera assemblages and ammonite assemblages (Adkins, 1951) show that the 

Lozerian and Sycamorian stages are unconformable in most areas of central and East 

Texas; the middle Bocian (early Turonian) stage is absent (Pessagno, 1969).  

The investigation of the Boquillas strata had a renaissance in the late eighties to 

early nineties, with several Master's theses covering topics such as sedimentology and 

isotope geology (Sanders, 1988) and facies and depositional environments (Trevino, 

1988) of Boquillas Formation outcrops in West Texas. Sanders (1988) illustrated a 

deepening paleoenvironment with normally anoxic bottom-waters at the Hot Springs 

outcrop location in Big Bend National Park using light microscopy, outcrop 

lithostratigraphy, and geochemical methods (x-ray diffraction, total organic carbon, stable 

isotopes). Sanders concluded that the Ernst Member of the Boquillas Formation is 

composed of open-marine carbonates, deposited disconformably below storm-wave base 

onto the Buda Limestone. Trevino (1988) concluded that the Buda-Boquillas contact is 

conformable and represents no significant lapse of time based on the study of several 

outcrop locations in southwest Texas near the Rio Grande River (Note: this conclusion 

has since been retracted by Trevino through verbal communication). Trevino explained 

that the outcrops appear to illustrate that the Boquillas was deposited in moderately deep 

shelfal conditions with anoxic ocean bottom sediments. Hummocky cross-stratification is 

described in specific intervals within the Boquillas Formation; such intervals are 
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described as deposited at approximately 50 meters water depth under anoxic conditions. 

(Note: the identification of hummocky cross stratification within the Boquillas has also 

been retracted by Trevino). Miller (1990) compared strata deposited at the Hot Springs 

outcrop location within Big Bend National Park and strata within the Maverick Basin, 

concluding that deposition in the Chihuahua Trough and within Maverick Basin may 

have been similar. Deposits at both localities are defined as being deposited in density 

stratified anoxic basins. Miller also compared the Hot Springs outcrops in Big Bend and 

Maverick Basin deposits to Lozier Canyon outcrops. Miller concluded that Lozier 

Canyon outcrops exhibit a completely different depositional environment that was 

interpreted to have been located on a topographic high. The deposits in Lozier Canyon 

may have been deposited in a much shallower environment between 100-200 feet. 

Utilization of unconventional plays initiated a new wave of geologic research in 

the Boquillas Formation. Barnes (1977) concluded that the Boquillas Formation west of 

the Devils River is time-equivalent to the hydrocarbon producing Eagle Ford Group to 

the east. A geochemical investigation of central Texas outcrops by Liro (1994) revisited 

the idea that the Eagle Ford near the San Marcos Arch is possibly interdeltaic or lagoonal 

and was deposited in 60-100 feet water depth. Lock and Peschier (2006) and Lock et al. 

(2010) redefined the interpretation of the Boquillas section in Val Verde and Terrell 

counties as slope deposits, rather than shallow-shelf or tidal-flat deposits. Lock et al. 

divided the Boquillas section into three distinct units (a lower, middle, and upper 

member) that represent a transgressive-regressive sequence. Donovan and Staerker 

(2010) concluded that the Boquillas and Langtry Formations in the nearby subsurface can 

be correlated to local outcrops. Donovan and Staerker proposed that the contact between 

the Rock Pens and overlying Langtry actually represents the unconformable contact 

between the Eagle Ford and Austin Chalk units as documented in East Texas. Donovan 
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and Staerker (2010) did not discuss the relationship between the Rock Pens and Langtry 

as compared to the Ernst and San Vicente Members of the Boquillas Formation. Donovan 

et al. (2012) used outcrops near Del Rio, Texas to overturn the conventional mindset that 

Eagle Ford style reservoirs are homogenous. The Eagle Ford is separated into five 

distinct units that create the lower Eagle Ford upper Eagle Ford, and Austin Chalk. 

Donovan et al. (2012) placed the OAE2 in the middle of the lower, upper Eagle Ford. 

Forkner (2014) correlated outcrop and core near Del Rio, Texas. He compared weathered 

outcrop and unweathered core facies to define “cycle motifs.” Forkner’s study has 

potential to connect studies in the Big Bend region to those in the Maverick Basin region. 

In recent years, Cooper and Cooper (2007, 2008, 2014) published field guides 

dealing with the Allocrioceras hazzardi zone (AHZ) within the Boquillas Formation in 

and around Big Bend National Park. They proposed and defined the type section of the 

Ernst Member of the Boquillas Formation at the Hot Springs Trail (2007). Cooper and 

Cooper (2008) created a composite section of the AHZ, linking several measured 

Allocrioceras hazzardi zones throughout Big Bend National Park. Allocrioceras hazzardi 

is used as an index fossil representing the early Coniacian. The AHZ marks the boundary 

between the Ernst and San Vicente Members of the Boquillas Formation, as well as the 

Turonian-Coniacian boundary. The field guide by Cooper and Cooper (2014) is the 

culmination of approximately two decades work mapping Turonian-Coniacian contact 

between the Ernst and San Vicente Members, defining the type Ernst Member section, 

creating a composite-section of the AHZ zone throughout the park, biostratigraphy of the 

Boquillas Formation, and mapping structures within the formations. The field guide 

proposes the Cenomanian-Turonian Stage boundary and OAE2 as being located 23 

meters above the Buda-Ernst contact. Cooper and Cooper (2014) used chronocorrelation 

of the AHZ zone and biostratigraphy of ammonites and cephalopods to define a shallow 
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depositional environment (the lowest Ernst being supratidal, the upper Ernst being below 

storm-wave base), periodically influenced by strong currents, on an isolated bathymetric 

high.  

MAVERICK BASIN AND EAST TEXAS STUDIES 

The Eagle Ford Group has been a topic of many geologic studies in this area for 

over a century, with recent research expanding and increasing exponentially following 

the unconventional energy boom. Most studies focus on Eagle Ford deposits within the 

East Texas Basin and near the San Marcos Arch, or Eagle Ford Group outcrops in Dallas 

and Austin area. Very few published studies have focused on subsurface Eagle Ford 

Group within Maverick Basin; hence, the following section will summarize significant 

findings from East Texas. 

Eagle Ford strata were first mentioned by Roemer in 1852, but the formation was 

not labeled the Eagle Ford until 1887 by Hill when he established the type locality within 

the Eagle Ford village in Dallas County, Texas. Regional observations by Stephenson 

(1929) concluded that the unconformity between Eagle Ford and Austin Chalk that 

appears near the San Marcos Arch and East Texas Basin is substantial and marks a 

significant event. Early work in the Eagle Ford by Adkins (in Sellards, 1933) discussed 

the stratigraphic and formation changes throughout the succession ranging from deposits 

near the San Marcos Arch to Austin to Dallas and into Trans-Pecos Texas. Adkins (1933) 

summarized that the Eagle Ford strata in East Texas is far thinner and contains a much 

different biota than the substantially thicker deposits in West Texas. Adkins and Lozo 

(1951) divided the Eagle Ford Group into several divisions based on ammonite 

assemblages. McNulty (1964) used foraminfera assemblages to hypothesize that the 

depositional system of the Eagle Ford Group was toxic (anoxic) and occurred in a deeper 
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water setting, as compared to the shallower water deposited and oxygenated Austin 

Chalk. The author inferred that there is stratigraphic importance of the lag deposits that 

contain abundant phosphate and other biogenic debris at the Eagle Ford-Austin Chalk 

contact in East Texas. A complete analysis of regional East Texas Basin lithology and 

stratigraphy was conducted by Surles (1987). Surles concluded that the Eagle Ford Group 

in East Texas is composed of mostly shale and is correlative to other time-equivalent 

units on the South Texas Shelf.  

Many studies of the Eagle Ford Group in central and East Texas have attempted 

to break the Eagle Ford section into several subdivisions based on locality, potential age, 

and lithologic variation. Several studies (Adkins, 1951; Brown and Pierce, 1963; 

Pessagno, 1969; Surles, 1987; Jiang, 1989; Dawson, 2010) concluded that the Eagle Ford 

is both laterally and vertically heterogeneous because of depositional variability of the 

mudrock systems. Adkins (1951) divided the Eagle Ford Group into numerous 

subdivisions based on ammonite assemblages, giving defined ages to the group 

biostratigraphically. Brown and Pierce (1963) considered the possibility of correlating the 

Eagle Ford Group on the basis of palynology, or pollen, in the area near Dallas, Waco, 

and the East Texas Basin. Wireline logs and ammonite biostratigraphy were used in 

tandem with palynology to conclude that there is one perfectly correlative interval near 

one large bentonite, and that the ages of the Eagle Ford is late Cenomanian to middle 

Turonian. Pessagno (1969) created a three stage division of the Eagle Ford Group in 

central and East Texas based on planktonic foraminifera assemblages. Surles (1987) 

studied Eagle Ford deposits in East Texas, attempting to interpret depositional changes 

between four accepted subdivisions (subdivisions are as follows: Tarrant, Woodbine, 

Britton, Arcadia Park). Jiang (1989) compiled several of the numerous different 

divisions, including his own Eagle Ford Group subdivisions for the purposes of his study. 
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Dawson (2010) conducted a study defining micro-scale variability in Eagle Ford facies, 

noting that the Eagle Ford strata is composed of high-frequency alternations of both high- 

and low-energy deposits (e.g., pelagic mud versus turbidity flow deposits). 

Unfortunately, there have been few efforts to consolidate or agree upon formation 

divisions. 

Denne et al. (2014) conducted a paleontological study on subsurface Eagle Ford 

deposits from the East Texas Basin. Denne et al. (2014) demonstrated that thin-section 

based foraminifera identification is a better method for foraminifera documentation as 

compared to the standard use of residue samples. The paper disagrees with the conclusion 

made by Fairbanks (2012) that the dominant limestone facies are related to planktonic 

foraminifera test accumulation. The dominant foraminifera accumulations are in the 

muddier; marl layers and the limestone layers are composed of diagenetic calcite and 

calcified radiolarians. Denne et al. (2014) divides the Eagle Ford Group into thirteen 

distinct groups that are defined by planktonic foraminifera, benthic foraminifera, and 

Inoceramus filaments (filaments refer to the planktonic Inoceramus larvae stage). The 

study concluded that the majority of the Eagle Ford was deposited under anoxic to 

euxinic conditions, and that production of the limestone-marl interval of the Eagle Ford is 

dominantly because of ocean mixing. 

Only recently have studies begun focusing on the Maverick Basin. Hentz and 

Ruppel (2011) presented stratigraphic interpretations from gamma ray correlations 

throughout East and south Texas that \defined the occurrence and thickness of the Eagle 

Ford Group, as well as laterally equivalent units east of the San Marcos Arch. The Eagle 

Ford section in East Texas (as divided by Hentz and Ruppel, 2011) is composed of a 

consistent, thin deposit of the lower Eagle Ford and varied intervals of the upper Eagle 

Ford. The upper Eagle Ford in East Texas pinches out to the west, and is not present in 
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some areas. The Austin Chalk unconformably overlies the Eagle Ford in this region. This 

is in contrast with Eagle Ford Group deposition in west/southwest Texas where the 

Maverick Basin is located. In this area, the lower Eagle Ford section creates a relatively 

consistent blanket, followed by a greatly thickened and continuous upper Eagle Ford 

section. Hentz and Ruppel (2011) concluded that the Eagle Ford in this region forms a 

gradational contact with the overlying Austin Chalk (so much so that a transitional or 

pseudo-Austin Chalk unit could be added). Driskill et al. (2012) used a suite of both 

geological and geochemical data to define the depositional systems in the Maverick Basin 

area. His work concluded that the Eagle Ford strata were deposited in deepwater (300-

600 feet) under low-energy conditions with periods of anoxia. The author proposed an 

upward shallowing depositional cycle, wherein marl grades to limestone, TOC decreases, 

and lamination turns to bioturbation. 

Increased economic interest in the Eagle Ford Group in recent years has provided 

topics for several Master’s theses. Harbor (2011) identified nine facies from cores 

between the San Marcos Arch and Maverick Basin. Harbor separated the facies into an 

upper and lower Eagle Ford; facies within the upper Eagle Ford section displays 

increased facies variability, more energetic, and proximal deposits as compared to the 

facies within the lower Eagle Ford section. Fairbanks (2012) investigated facies 

variability across the San Marcos Arch. He used closely spaced cores to show that facies 

variability impacts lithologic and regional correlation – even on a lateral scale of a few 

hundred feet. Additionally, Fairbanks used x-ray fluorescence (XRF) data to conclude 

that the Bouldin Member of the Eagle Ford represents maximum basinal restriction. 

McGarity (2013) used lithofacies descriptions of several cores from East and south Texas 

in tandem with wireline logs to conclude that the Eagle Ford strata were deposited in very 

shallow water. McGarity included and interpreted geochemical data from Liro (1994), 
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concluding that the Eagle Ford Group could not have been deposited within an anoxic 

environment.  

Many recent Master’s theses have focused on the geochemistry of the Eagle Ford 

Group. Moran (2010) concludes that TOC is highest in areas associated with basin 

restriction and inhospitable conditions. Kearns (2011) used enrichment of phosphorous 

and manganese to determine that upwelling was prevalent during Eagle Ford deposition. 

Kearns also established that the Eagle Ford strata are geochemically heterogeneous, and 

therefore difficult to correlate laterally. Wokasch (2014) used chemostratigraphy (XRF) 

coupled with core description from two wells in south Texas to conclude that Eagle Ford 

depositional conditions were probably suboxic to anoxic, and in some areas, euxinic. 

Wokasch also used trace metal abundance to define depositional conditions; however, he 

did not consider circulation patterns or restriction as potential influences on 

sedimentation and oxygen levels. Boling (2014) investigated accumulation of organic 

matter in the Pepper Shale, Eagle Ford Group, and South Bosque Member of the Eagle 

Ford Group using outcrop and geochemical data. According to Boling, the Pepper Shale 

is clay-rich, has low TOC, and low redox metals. The Eagle Ford Group is calcareous, 

has high TOC, enriched redox metals, and high carbon over nitrogen (C/N) ratios; the 

paleoenvironment was anoxic and allowed for accumulation of organic matter. Lastly, the 

South Bosque is distinguished by a positive carbon isotope excursion; this is interpreted 

to be the Cenomanian-Turonian boundary.  
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GEOLOGIC SETTING 

The following section will introduce the regional depositional environment and 

local and regional stratigraphy that preceded and occurred during Boquillas and Eagle 

Ford Group deposition. 

Tectonics 

The Mesozoic Era constituted a time of major tectonic change for North America. 

Two significant events began in the Early Jurassic which impacted the South Texas 

Shelf: 1. Rifting of the Laurentia craton initiated the opening of the proto-Gulf of Mexico 

(Pearson, 2010) and 2. Subduction of the Farallon plate below the continental craton west 

of present day California created thrusting, folding, volcanism, and crustal flexure (Fig. 

1).  

At the start of the Cretaceous 144 million years ago, the super continent Pangaea 

had already rifted into two smaller sub-supercontinents: Laurasia in the northern 

hemisphere and Gondwana in the southern hemisphere (Encyclopedia Brittanica online, 

2014). By the mid-Cretaceous, Laurasia and Gondwana had also begun to separate into 

smaller continents; the North American craton was named Laurentia. Entering the upper 

Cretaceous, high sea level inundated Laurasia drowning the South Texas Shelf and 

creating the Western Interior Seaway. Subsequent transgression and regression sequences 

on the flooded South Texas Shelf are divided into three distinct groups: the Coahuilan 

Series, Comanchean Series, and Gulfian Series (Murray, 1961; McFarlan, 1991). 
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South Texas Shelf 

The Western Interior of North America during the Early Cretaceous was 

dominated by healthy, carbonate shelf systems and reef trends. Within Texas, two 

dominant reef trends have helped to physically shape the proto- and present-day Gulf of 

Mexico, as well as impacted later sedimentation and deposition. The Coahuilan series 

represents Neocomian to Aptian time and the Comanchean series represents late Aptian 

through Cenomanian time (Murray, 1961; McFarlan, 1991) (Fig. 4). A major 

transgression in the Cenomanian drowned the Stuart City carbonate reef system, caused 

for transitional deposition of non-reef formations (Del Rio Clay and Buda Limestone), 

and then allowed for deposition of organic-rich mudrocks to be deposited onto the pre-

existing Coahuilan and Comanchean shelves. 

The regional stratigraphy (Fig. 4) highlights the interval of Eagle Ford within the 

Maverick Basin used for this study. The Eagle Ford is divided into a lower and upper 

member based on chemostratigraphy, bioturbation, lithofacies, depositional environment, 

and age. The initiation of the upper Eagle Ford strata is defined elementally by a major 

increase in titanium and manganese. The resultant massive argillaceous mudrock shows a 

lack of fauna, sedimentary features, and weathering character (extremely friable). In 

some cases, the highest lower Eagle Ford strata show a thin interval of fabric-destructive 

bioturbation; this interval is missing in the Winterbotham J.M. Jr. #1. The lower Eagle 

Ford strata are dominantly composed of carbonate-dominated mudrocks and wackestones 

with thin, starved ripples and few fauna. The upper Eagle Ford strata are dominantly 

composed of packstones and grainstones and displays well developed sedimentary 

features and much higher faunal abundances.  
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Figure 4: Stratigraphic break out of south Texas and proto-Gulf series. Paleotopography 

present during the Coahuilan and Comanchean influenced Gulfian series 

deposition. The red box highlights stratigraphy documented in cores used 

for this study. WB stands for Winterbotham J.M. Jr. #1, CX stands for Core-

X, HS stands for Hot Springs outcrop s. After Wilson and Ward (1993) and 

Gray (2008), Tiedemann (2010), Cooper (2014).   

COMANCHEAN SERIES 

The Comanchean series is composed of a thick package of progradational 

carbonates deposited during the latest Aptian, Albian, and early Cenomanian. The shelf 

was composed of several different profiles of carbonate platforms: raised rim, ramp and 

flat-top (Harbor, 2011). Each carbonate package is composed of deposition during 

several transgressive-regressive sequences. In Trans-Pecos Texas, the start of the 

Comanchean series is marked by a lower conglomerate. The Comanchean series in East 

Texas is identified by the Pearsall Formation. The Pearsall Formation is a transgressing 

organic-rich mudrock deposited onto the Coahuilan series carbonate reefs. Backstepping 

of the Pearsall Formation caused the following progradational reef sequences to be 

slightly landward of the older Coahuilan series platform margin (Salvador, 1989). This 
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younger, landward margin is called the Stuart City shelf margin. The dominant reef facies 

in Trans-Pecos Texas is the Del Carmen Limestone and the equivalent dominant reef 

facies in East Texas is the Edwards Limestone (McCormick, 1996). In some areas of 

south Texas, the combination of the Coahuilan and Comanchean margins created a “two-

step” continental margin (Donovan, 2010); in some cases the Coahuilan and Comanchean 

reef systems are stacked. In other areas on the shelf, progradation of the Comanchean 

series continued moving basinward creating a “physiographic break” between the shelf 

and continental slope (Fairbanks, 2012). The rudist reefs of the Stuart City shelf margin 

created a carbonate rim around the Gulf of Mexico and helped to protect the inner shelf 

from wave action (Scott, 2010).   

GULFIAN SERIES 

The Gulfian series comprises the middle and late Cenomanian, Coniacian, 

Santonian, Campanian, and Maastrichtian stages. The Gulfian Series began with a major 

transgression that caused carbonate mudrock deposition on the Comanchean series shelf. 

This caused for a shift in dominant deposition from the shelf margin to the intrashelf 

(Winker and Buffler, 1988; Wu et al., 1990; Sohl et al., 1991; Mancini and Puckett, 1995; 

Goldhammer and Johnson, 2000; Liu, 2004; Galloway, 2008). The Coahuilan and 

Comanchean series reef trends influenced deposition on the drowned shelf where the 

Eagle Ford Group was deposited. The reef trends created a silled basin, producing basinal 

restriction and decreased water mass renewal (Algeo and Rowe, 2012). Organic-rich 

mudrocks were deposited onto the drowned carbonate shelf until a regression in the 

Coniacian brought back healthy, shelfal limestones (Austin Chalk in East Texas and San 

Vicente Member of the Boquillas Formation in Trans-Pecos). Following deposition of the 
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Boquillas Formation and Austin Chalk, nonmarine sediments become dominant in Trans-

Pecos Texas while marine sediments remained dominant in central Texas. 
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STRUCTURES 

 

Figure 5: Paleogeography and structures of the Cenomanian-Turonian on the South Texas 

Shelf and in the Western Interior Seaway in Texas. The red stars show the 

core locations from Maverick Basin. The green star shows the location of 

the outcrop section. Structures after Adkins (1932), Shepard and Walper 

(1982), Wilson et al. (1984), Rose (1986), Goldhammer (1999, 2001), 

Driskill et al. (2012), Ruppel (2012), Denne (2014) 

Several local structures and paleotopographic features within Texas have 

impacted Eagle Ford and Boquillas deposition (Fig. 5). The proto-Gulf of Mexico margin 

in Texas, as well as present day Gulf of Mexico, is bound by the Late Paleozoic Ouachita 

structural front (Driskill et al., 2012). The Ouachita structural front trends southward 
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through east-central Texas, turning abruptly westward just below the Llano Uplift and 

San Marcos Arch, and takes an abrupt turn southward through the Big Bend region. The 

propagation of the Ouachita structural front was impeded and essentially stopped because 

of the intersection with Grenville-age Van Horn mobile belt (Shepard and Walper, 1982). 

The Llano Uplift is the result of the 1.0 Ga Grenville orogeny during the assemblage of 

the supercontinent Rodinia (Dalziel, 1991; Moores, 1991; Borg, 1994). The orogeny 

uplifted and exposed deformed core and metavolcanics (Culotta, 1992). The uplift 

extends further into Texas as a northwest-southeast trending arch separating the East 

Texas and Maverick Basins; this arch has been dubbed the San Marcos Arch (Dravis, 

1980; Young, 1986). The San Marcos Arch remained a topographic high during 

deposition of Coahuilan, Comanchean, and Gulfian series.  

The Maverick Basin has been a persistent topographic low since at least the 

Aptian evidenced by thickening of Pearsall Formation deposits (Loucks, 1978; Driskill et 

al., 2012). The basin has been poorly resolved because of its location along the Texas-

Mexico border and may have changed shape over time. Subsurface studies in Texas 

suggest that the basin is ovate and has developed as the result of crustal thinning from the 

rifting of the Gulf of Mexico margin. Intrabasinal and shelfal deposition are the dominant 

forms of sedimentation within the Maverick Basin; siliciclastic influx from the Woodbine 

Delta to the east was blocked by the San Marcos Arch.    

The Chittum Arch (also spelled Chittim) trends northwest-southeast through the 

Maverick Basin and was a product of the Laramide Orogeny that occurred between 70-40 

Ma (Rose, 1986). This structure occurred after the deposition of the Eagle Ford and 

Boquillas and is not relevant to interpretation of depositional environment at the time of 

Eagle Ford deposition.   
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Both reef margins developed within the Coahuilan and Comanchean series have 

created a barrier and topographic high (Driskill et al., 2012). These have allowed for the 

Boquillas and Eagle Ford to be deposited on a shallow shelf and separated from deeper 

Gulf of Mexico deposits (Driskill et al., 2012).  

The Terrell Arch is a north-northwest trending arch located in Terrell and Val 

Verde Counties (Adkins, 1932). Deposition over the arch thickens towards the flanks and 

pinches out towards the arch axis. Strata of the Del Rio Formation (unit stratigraphically 

below the Buda Limestone, Fig. 4) are eroded across the arch (Freeman, 1968). The 

processes that created the paleogeographic positive feature that formed the Terrell Arch 

are poorly understood, but are believed to have solely impacted deposition of Cretaceous 

strata (Freeman, 1986).  

The Late Proterozoic Van Horn mobile thrust belt created a topographic high 

trending approximately south-southeast through Trans-Pecos Texas (Shepard and 

Walper, 1982). This ancient thrust belt is the base of a positive topographic area termed 

the Diablo Platform (King, 1942). The Diablo Platform serves as the southwestern 

margin of the Late Paleozoic Delaware (Permian) Basins (Galley, 1958; Adams, 1965). 

The southern-most extension of the Van Horn mobile belt and Diablo Platform provide 

the foundation for the Coahuila Platform (Shepard and Walper, 1982).  

The Coahuila Block is a positive topographic feature located approximately 

south-southeast of the tip of the Coahuila Platform. This feature represents the roots of an 

Ouachita-Marathon orogeny island arc system that is supported by Permo-Triassic age 

granite and granodiorite intrusions (Wilson et al., 1984). The topographic high persisted 

through upper Jurassic through Cretaceous, strongly influencing deposition, facies, and 

stratigraphy within the Trans-Pecos area of the South Texas Shelf (Goldhammer, 2001).  
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Early Mesozoic subduction of the Farallon plate beneath the North American 

craton caused the development of a volcanic arc and subsequent backarc basin (Fig. 2) 

(Coney, 1978; Shepard and Walper, 1982; Golhammer, 1999). Two main volcanic arcs 

influenced basin development: the Jurassic to Late Cretaceous Sinaloa Arc and the latest 

Cretaceous Alisitos Arc (Goldhammer, 2001). The backarc basin, or Chihuahua Trough, 

trended approximately northwest-southeast, bordered by the Diablo and Coahuila 

Platforms on the east and a narrow coastal plain to the west. The location of the 

Chihuahua Trough plays an integral role in deposition on the South Texas Shelf. Clastic 

sediments from the volcanic arc and coastal plain are deposited within the trough; the 

topographic low collects clastic sediments inhibiting them from deposition on the Diablo 

or Coahuila Platforms. This features kept clastic, coastal sediments from reaching 

Boquillas depocenters. 

OCEANIC ANOXIC EVENTS 

Schlanger and Jenkyns (1976) coined the term Oceanic Anoxic Event to refer to 

any period of wide-spread, low-oxygen events that in some situations result in source 

rock generation. The Cretaceous period represented a time of major disturbance in the 

global oceans, containing at least nine individual oceanic anoxic events (Jenkyns, 1980; 

Jenkyns, 2010). Low-oxygen and anoxic to euxinic conditions within the ocean allow for 

organic matter accumulation and slow to no degradation of organic matter before burial. 

Identification of the OAE2 is important for geologic interpretation, mapping, age dating, 

as well as identifying potential intervals of viable TOC-rich sections for industrial 

utilization.  

The Cenomanian-Turonian boundary is associated with a major anoxic event: the 

Oceanic Anoxic Event 2 (OAE2) (Jenkyns, 1980; Schlanger et al., 1987). Additionally, 
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the Cenomanian-Turonian boundary represents one of the more prominent extinction 

events since the Permian-Triassic extinction event 250 m.y. (Raup and Sepkoski, 1984). 

The OAE2 is documented to have lasted approximately 500 kyr (Sageman et al. 2006; 

Voigt et al., 2008). The OAE2 that occurs in the Cretaceous near the Cenomanian-

Turonian stage boundary (Jenkyns, 1980) is defined by a positive excursion of δ
13

C. The 

global ocean became enriched in δ
13

C because of lack of recycling of 
12

C trapped within 

organic material accumulating on the sea floor (Schlanger et al., 1987). An oxygenated 

system would have allowed for 
12

C within marine plankton and organic material to be 

recycled back into the global ocean by bacteria and degradation, keeping the δ
13

C/
12

C 

ratio near -27 (accepted value of δ
13

C/
12

C isotopic data in an oxygenated system). 

Documentation of the OAE2 in recent years has focused on defining features and 

potential causes of the event in order to better understand the OAE2 as it impacted the 

global ocean. Lithofacies attributed to the OAE2 consist of widespread black shale 

deposition (Schlanger and Jenkyns, 1976; Arthur et al., 1987; Jarvis et al. 2011). While 

the single defining feature of the OAE2 is a positive excursion of δ
13

C, new, high-

resolution studies have documented three individual peak events that make up the 

positive excursion event (Jarvis et al. 2011). Causes for the OAE2 are widely debated 

with hypotheses ranging from upwelling, increased nutrient availability, increased 

volcanism, increase in world temperature, basin restriction, poor water oxygenation, poor 

water circulation, and density stratification of the water-column (Jarvis et al., 2011; 

Jenkyns, 2010).  

Anoxic events allow for an enrichment of redox sensitive trace metals such as 

molybdenum, vanadium, and uranium (Rowe et al., 2008; Algeo and Rowe, 2012). 

Redox sensitive trace metals are forced to precipitate out of the water-column if no 
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oxygen is present to form bonds; enrichment in such elements effectively demonstrates 

oceanic anoxia sediment (Algeo and Lyons, 2006; Algeo et al., 2007; Algeo et al., 2008).  

Recent studies (Negra et al., 2011; Denne et al., 2014) have identified a filament 

event related to the Cenomanian-Turonian boundary and associated OAE2 (Jenkyns, 

1980). Filaments (the planktonic larvae stage of Inoceramus bivalves) appear draping 

sediments in an apparent death assemblage. The submillimeter calcareous shells cannot 

be identified in core slab and require petrographic identification. Positive identification of 

this filament event can help with correlation between data sets, as well as help to locate 

the OAE2 and possibly the C-T boundary. 
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METHODS 

The following section details descriptive, sampling, preparatory, and analytical 

methodologies used within this study.  

Core and Outcrop Data Summary 

Three locations were used for this study, one outcrop and two cores. Table 1 

graphically summarizes location information and analysis types, as well as quantities of 

each analysis. X-ray fluorescence (XRF), x-ray diffraction (XRD), total organic carbon 

(TOC), and stable carbon and nitrogen isotopes analyses were conducted under the 

direction of Dr. Harry Rowe at the Core Research Center. Gamma ray scans were 

collected at the field site in Big Bend National Park. All methods listed within Table 1 

will be described individually within the following sections.  

 

 

Table 1: Summary of core and outcrop data. Latitude, longitude, and API of Core-X are 

proprietary and have been removed.  
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Facies Definition and Stratigraphy 

OUTCROP 

Samples for thin-sectioning and geochemical testing were collected at a minimum 

one per six foot interval. Samples were collected using guidelines outlined in a Scientific 

Research and Collecting Permit issued by the National Parks Service. Gamma ray scans 

were collected one per foot within the Ernst Member and one per three feet in the lower 

San Vicente Member.  

Outcrops at the Hot Springs outcrop locality range in age from late Cenomanian-

Santonian and contain the Buda Limestone and the Boquillas Formation (Maxwell et al., 

1932; Turner et al., 2011; Cooper, 2014; Figs. 2, 4). The full section of the Ernst Member 

was logged at a scale of one inch equals ten feet along the Hot Springs Trail from the 

upper 15 feet of the underlying Buda Limestone through the Ernst-San Vicente contact 

(the Allocrioceras hazzardi zone), and into the lowest San Vicente Member (Fig. 6). For 

the purposes of logging, individual units and facies divisions in the field were separated 

largely by the physical character of each individual bed, whether fissile/recessive or 

indurated. Additionally, attention was paid to bed continuity, faunal assemblage, 

sedimentary structures, mineralogy, and diagenetic features. Stratigraphic units were 

divided using overall appearance of sections, similar to the division method used by 

Sanders (1988). Individual facies names have been delineated using petrographic 

description and mineralogy. Each lithofacies is named using Dunham’s (1964) carbonate 

classification or Folk’s (1980) classification as a general guide. Local structures, such as 

small thrust faults and folds, were accounted for during logging. 
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Figure 6: Map of Hot Springs outcrop locality in Big Bend National Park, Trans-Pecos, 

Texas. The red trail shows the path traversed to collect samples and data for 

a measured section. The base of the section is picked where the Buda 

Limestone is identified in the river bed; the top of the section is identified by 

a large fold visible on the south bank, wherein Ernst and San Vicente 

Member strata begin to repeat.  

CONVENTIONAL CORE DATA 

Cores were described at the Bureau of Economic Geology’s Austin Core 

Research Center at the J. J. Pickle Research Facility. Cores were logged at a one inch 

equals ten foot scale. Cores are described at higher resolution than outcrop data because 

detail was lacking in weathered outcrops.  

Mudrock variability on a lamination (millimeter) scale causes obstacles when 

delineating precise facies names and groupings. Contacts between facies are gradational 

below the resolution of logging. Facies have been defined by describing features visible 

in the core: appearance of fauna, type of fauna, laminations (or lack thereof), lamination 

constituents, lamination frequency, lamination thickness, color, sedimentary features, 

deformation structures, authigenic minerals and cements, differential compaction, small-

scale facies alternations, and ratio of alternating facies. Each facies has been named using 
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Dunham (1964) as a general guide; most samples contain varied amounts of muddy 

matrix and grains or fauna. Dunham’s (1964) classification scheme was used for naming 

samples based on the matrix to allochem ratio. Individual lithofacies defined in this study 

are similar to ‘motifs’ defined in other studies (Forkner, 2014) to illustrate small-scale 

lamination heterogeneity. Individually defined lithofacies have been compiled to create 

the stratigraphic column. X-ray fluorescence and x-ray diffraction data were used while 

logging the core to help separate distinct chemical and mineralogical boundaries where 

appropriate.  

Volcanic ash is a dominant component within the Eagle Ford and Boquillas 

Formation depositional systems. Ashes are present as either discrete beds or mixed with 

fauna and carbonate matrix. To accurately document individual ash occurrences, 

ultraviolet light was used to identify deposits. Volcanic ash fluoresces a bright yellow-

green when viewed under ultraviolet light. Ash beds greater than two millimeters have 

been documented individually within the stratigraphic description. Submillimeter, 

individual ash beds are incorporated into the volcanic ash stratigraphy. Ash stratigraphy 

is documented using a histogram displaying ash occurrence (both greater than and less 

than 2 mm) versus depth per bin interval (with bin sizes of 9 or 10 feet per bin) through 

the length of each core.  

Petrography 

Thin-section rock stubs were prepared at the Core Research Center. Grinding, 

mounting, and polishing of thin-sections were outsourced.  
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Name Sample 

Frequency 

Total Thin-

sections 

Thin-section Preparation 

Winterbotham J.M. Jr. #1 1 per 9 feet, 

inconsistent 

34 National Petrographic 

Service, Inc. 

Core-X Minimum 1 per 

10 feet 

93 Spectrum Petrographics, 

Inc. 

Hot Springs outcrop Minimum 1 per 

Outcrop Sample 

50 National Petrographic 

Service, Inc. 

Table 2: Thin-section sampling frequency.  

Thin-section stubs were cut perpendicular to bedding from core or outcrop sample 

using a water lubricated rock saw. Stubs were cut to approximately 1 inch by 2¾ inch. 

Winterbotham J.M. Jr. #1 and Hot Springs outcrop stubs were sent to National 

Petrographic Service, Inc. Core-X stubs were sent to Spectrum Petrographics, Inc. All 

stubs were ground to 30µm, polished, and impregnated with blue fluorescent epoxy.  

Light microscopy was conducted using a petrographic microscope. Thin-sections 

were described using plane-polarized light, cross-polarized light, ultra-violet light with a 

yellow filter, and reflected light. All thin-sections were analyzed for allochem variety and 

abundance, ratio of matrix to grains, presence of ash, presence of phosphate, sedimentary 

features, compactional features, diagenetic alterations, and authigenic mineral growth. 

Qualitative amounts were assigned to each present allochem variety on a scale of zero to 

five, zero being non-existent in the slide and five being highly abundant. Special attention 

is given to divisions of planktonic foraminifera. Qualitative abundance data has been 

used to create a visual representation of biostratigraphy (nontraditional biostratigraphy).  
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Portable Gamma-Spectrometer 

A Radiation Solution Incorporated RS-230 BGO Super-SPEC portable gamma-

spectrometer was used to collect percent potassium, uranium parts per million, and 

thorium parts per million at the Hot Springs outcrops in Big Bend National Park. Each 

sixty second scan was collected with the detector held flush against a flat surface and 

orthogonal to bedding (commonly along a joint surface). Portable gamma ray data was 

collected in the park by Joseph Smitherman (Bureau of Economic Geology, Core 

Research Center). Table 3 shows frequency of scans through differing formations, as well 

as the formula used to convert raw data to API units.  
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Lithologic Unit Scan Duration Scan Frequency Total Scans 

Buda Limestone 60 seconds 1 scan per foot 12 

Ernst Member, 

Boquillas Formation 

60 seconds 1 scan per foot 216 

San Vicente 

Member, Boquillas 

Formation 

60 seconds 1 scan per 3 feet 21 

API CONVERSION FORMULA 

API = 18 * K% + 10 * U (ppm) + 5 * Th (ppm) 

Table 3: Portable gamma-spectrometer-data summary. 

The Radiation Solution Incorporated RS-230 BGO Super-SPEC is documented by 

the manufacturer to function in temperatures between -4
o
F to 120

o
F. Unfortunately, field 

use has demonstrated that using the instrument in inconsistent in the sun or in ‘hot’ 

locations causes the instrument to not calibrate (Robert Loucks, personal 

communication). At the time of collection, temperatures at the Hot Springs outcrop 

locality were in the area of 100
o
F to 115

o
F. Lack of proper calibration to natural gamma 

ray background noise can negatively impact collected outcrop data. Additionally, outcrop 

specimens have much higher potential for contamination. Volcanic ash beds within the 

Big Bend area, hydrothermal alteration while subsurface, close locality of the Rio Grande 

River and other such factors may impact the accuracy of collected data. While the 

collected data and converted API data show changes in measured quantities, it is advised 

that the data be considered qualitative and should not be directly related to downhole 

gamma ray data. There is no current calibration of this instrument or other gamma ray 

data for the Big Bend area available to potentially check or compare collected results. 
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Further calibration and control group studies must be conducted to develop a better 

understanding of the relationship between the two data types.  

Energy Dispersive X-Ray Fluorescence (XRF) 

XRF data was collected using a Bruker TRACER-III-V AXS Handheld XRF 

Analyzer. Instrument settings must be adjusted for either trace or major elemental data 

(Table 4), and are scanned once in the same location marked by a numbered sticker for 

each energy level. Both cores were scanned at 2 inch intervals through the length of the 

core. Each outcrop sample was scanned a minimum of one time, with additional scans 

representing lamination, lithology, or weathering heterogeneities. Scanning involves 

placing each sample directly on the detector, flush with the 3 x 4 mm screen. Samples are 

prepared by insuring that the area to be scanned is flat, clean, and devoid of chlorides 

(salts), drill mud, or dust. XRF data collected from weathered outcrop samples will not be 

perfectly correlative to freshly cut, unweathered core samples. This is because calcium is 

leached from exhumed outcrops related to rain water, ground water, or other chemical 

weathering processes present at the surface. This occurs because rainwater, groundwater, 

and hydrothermal fluids are mildly acidic. Leached calcite components are commonly 

reprecipitated elsewhere within the system.  
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Data Type Elements Scan Time Voltage Amps Vacuum Filter 

Major Mg, Al, Si, 

P. S, K, Ca, 

Ba, Ti, V, 

Cr, Mn, Fe 

60 seconds 15.00 kV 20.70 µA Yes None 

Trace Ni, Cu, Zn, 

Th, Rb, U, 

Sr, Y, Zr, 

Nb, Mo 

90 seconds 40.00 kV 14.00 µA No Al-Ti-

Cu 

Table 4: XRF-scan type and energy summary. 

METHODS FOR XRF DATA CALIBRATION 

Raw XRF data are calibrated using ninety shale and limestone standards (Rowe et 

al., 2012). The sample population consists of international standards, Devonian-

Mississippian Ohio Shale, Pennsylvanian Smithwick Formation, Devonian-Mississippian 

Woodford Formation, late Cretaceous Eagle Ford Shale, and Mississippian Barnett 

Formation. A full list of standards can be found in Rowe (2012). Standardized reference 

material is pulverized using a TM Engineering pulverizer using stainless steel cups and 

pucks. Eight grams of 200 mesh powders are pressed to forty tons on a Carver press 

using a 40mm die and boric acid backing. Each reference standard was scanned three 

times for major elements and three times for trace elements. The cumulative 270 x-ray 

spectrum analyses were compared to accepted elemental concentration data for each 

sample using Bruker CalProcess software. A 95% confidence interval was implemented 

to eradicate outlier data that did not correlate with the slope or background inter-element 
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correction of accepted elemental concentration data. This standardized calibration 

technique is applied to all scans included within this study. 

Pressed and measured standard pucks are scanned twice daily during the 

collection of new XRF data. Ideally, two standards will be scanned 4-8 times each for a 

duration of 180 seconds. The two standards will represent opposite ends of the 

compositional mudrock spectrum – one representing a clay-rich, siliceous mudrock and 

one representing a calcite-rich mudrock. (Note: The term mudrock used here refers to 

artificially pressed peloids composed of clay-sized particles. Clay-sized particles that 

compose each mudrock calibration pellet are composed of a distinct mineralogic 

composition and elemental spectra.) Spectra from these standards are compared to known 

and accepted measurements for each standard in order to observe potential 

inconsistencies in daily collected data. Any inconsistency between accepted and 

measured values is used to calibrate and correct raw data collected that day.  

METHODS FOR XRF APPLICATION 

Elemental data can be used as a proxy for paleoceanographic settings and 

depositional environment. For the purpose of this study, XRF data is considered in 

several ways. After calibration, elemental data can be plotted by depth to create a 

chemostratigraphic model of elemental abundance in ppm, percent, or enrichment factor 

throughout the length of the core. An elemental enrichment factor defines a sample’s 

abundance relative to the average abundance for the data set. Enrichment factor values 

greater than one show enrichment of the measured element relative to the average, 

whereas values less than one demonstrate element depletion relative to the measured 

average.  
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X-Ray Diffraction (XRD) 

Powder samples were drilled using a drill press loaded with either a one-fourth-

inch or tile drill bit. XRD powder samples are analyzed using an InXitu BTX 308 

Portable XRD Analyzer. The inner chamber of the instrument is maintained at a 

temperature of -10
o
C to -35

o
C and operates at 30kV and 10W. Approximately 15 

milligrams of <150µm powder are analyzed 30 times to constitute one complete XRD 

data spectrum. Raw XRD spectra analyses are interpreted using XPowder mineral 

identification software (Martin, 2008). Mineral spectra have been selected and matched 

under the guidance of Dr. Harry Rowe (Bureau of Economic Geology). Each sample’s 

spectrum is compared to accepted mineral spectra within the database. Spectra peaks are 

matched to the accepted mineral information with the best-fit spectra to identify minerals 

present within the sample. Individually matched minerals are combined to create a total 

mineral composition for each sample. Total matched mineralogy has an error of <10% 

amorphous (unidentifiable) material.   

Carbon and Isotope Data 

Total organic carbon (TOC), total nitrogen (TN), and stable isotopic total organic 

carbon (δ
13

C) and nitrogen (δ
15

N) were analyzed at the University of Texas at Austin in 

Dr. Harry Rowe’s Geochemistry Laboratory located at the Bureau of Economic 

Geology’s Core Research Center on the J. J. Pickle Research Campus. All δ
13

C referred 

to after this point refers to the organic carbon isotopic fraction. 

Total inorganic carbon (TIC) was determined using a UIC, Inc. CM5015 

Coulometer and a UIC, Inc. CM5230 Acidification Unit. Four to six milligrams of 

sample powder were loaded into a flat-bottom glass vile and acidified using 8% 
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phosphoric acid solution. TIC for each sample is used to determine the quantity of sample 

required for TOC.  

TOC powder samples <150µm were measured using a Sartorius Cubis series scale 

and loaded into Costech 5 x 9mm pressed silver capsules; darker colored samples require 

12-15mg, lighter samples require 40-50 mg. Samples were acidified using 37% fuming 

hydrochloric acid in a closed chamber. Acid vapor was allowed to dissolve inorganic 

carbon within each cup for up to two weeks. To ensure all inorganic carbon has been 

dissolved, samples were doused with 6% sulfurous acid (Verardo, 1990). After 

acidification, silver capsules were transferred into Costech 5 x 9mm pressed tin capsules. 

Tin-wrapped samples were pressed into small cubes using metal tweezers. Samples were 

analyzed using a Costech 4010 Elemental Analyzer coupled with a Thermo Finnigan 

Conflo IV device and Thermo Finnigan Delta-V Isotopic Ratio Mass Spectrometer 

(IRMS). Output data from the instrument were reported in per mille (‰) relative to air 

for δ
15

N and the Vienna Pee Dee Belemnite standard (V-PDB) for δ
13

C.  
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RESULTS 

The following section describes data collected and presents interpretation for each 

data set. Data sets will be discussed individually for each locality.  

Facies, Facies Successions, and Chemostratigraphy 

The below section presents data and discusses interpretations for each data set per 

locality. Chemostratigraphy and elemental data is presented in the Mineralogy and 

Paleoceanography sections. Mineralogy as defined by x-ray diffraction and x-ray 

fluorescence will be introduced to understand the variety of rocks present in each system. 

Next, the oceanographic conditions will be discussed using x-ray fluorescence elemental 

data. After discussing mineralogy and ocean conditions, lithofacies will be defined and 

described using visual and petrographic attributes. The aforementioned attributes are then 

discussed in regards to 2D architecture.  

MINERALOGY 

Graphs showing XRD and XRF mineralogy are presented below to identify the 

mineralogy of each section. Table 5 shows mineral and correlative line color on each 

XRD weight percent graph. Minerals are also labeled within the individual graphs. 

Gamma ray logs have been included with each XRD and XRF plot for reference. 

Provenance defined geochemically refers to whether discussed elements or minerals are 

intrabasinal or extrabasinal (terrestrial/detrital). Similarities within individual locality 

data sets may be compared and used to distinguish commonalities and differences 

between depositional environments (Manning et al., 2008). Because of general sea water 

chemistry similarities, these individually processed data sets can be compared. 

Chemostratigraphy is used to show dominant environmental factors at the time of 
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deposition such as dominant mineralogy, level of oxygenation, nutrient flux, and 

intrabasinal or extrabasinal origin.  

Chemofacies herein are defined using XRF elemental data. Several studies have 

defined depositional interpretations for individual elements or element groups (Calvert 

and Pedersen, 1993; Van Cappellen and Ingall, 1994; Ingall and Jahnke, 1997; 

Tribovillard et al., 2006; Rowe et al., 2008; Algeo and Tribovillard, 2009; Boling, 2014). 

Many different elements can originate within the detrital fraction of the rock. Major 

elements such as calcium and silicon are generally detrital as either extra-basinal grains 

or intra-basinal biogenic tests or skeletal debris (Rowe et al., 2008). Trace elements such 

as titanium, aluminum, and zirconium are generally associated with the detrital fraction 

and are rarely mobile during diagenesis (Calvert and Pedersen, 1993). These trace 

elements are generally found within clay minerals or feldspars in volcanic ash. Silicon 

over aluminum is plotted against depth to investigate silica enrichment (Algeo and 

Tribovillard, 2009). Elemental quantities of silicon and aluminum will have a one to one 

ratio (or a slope of one if plotted against each other) if both exist within clays. Deviation 

from the one to one slope in the positive direction (an increase in Si/Al ratio) represents 

silicon enrichment is not related to increase in clay mineral content or enrichment, rather 

it is related to quartz enrichment. This increased silicon may be related to terrestrial 

detrital material or biogenic debris, the origin of the silicon must be investigated using 

visual (petrographic) analytical methods. 
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Mineral XRD Line Color 

Calcite Maroon 

Quartz Red 

Dolomite Orange 

Albite Yellow 

Pyrite Light green 

Fluorapatite Dark green 

Illite Light blue 

Kaolinite Navy 

Montmorillinite Purple 

Table 5: XRD color key. Each mineral is assigned a specific color on XRD weight 

percent graphs. 

Hot Springs Outcrop 

Figure 7 contains XRD-based mineralogy for the Hot Springs outcrop section in 

Big Bend National Park. Calcite is the dominant mineral within the samples with lesser 

amounts of quartz, dolomite, and clay (Fig. 7). Dolomite is highest within the Buda 

Limestone section and the basal Ernst Member (Fig.7). Quartz content varies relative to 

different quantities of radiolarians and terrestrial silica content (Fig. 7, petrographic 

description). The two dominant quartz peaks at 200 ft represent a very small amount of 

chert within concretions (this phenomenon is an outlier and has not been further 

investigated in this study, except for testing mineralogy). The anomalous sample with 

abundant albite at 302 ft represents an igneous intrusion. 
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Figure 7: XRD for outcrop samples from the Hot Springs outcrop section. Nine minerals 

are presented in weight percent. CGR and SGR are provided in the center. 

An interpreted mineralogy/lithology is provided on the right. 
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Figure 8 contains predominantly major elemental data representing sediment 

provenance. Calcium is associated with biogenic intrabasinal sediments (Rowe et al., 

2008). Aluminum, potassium, and titanium are associated with detrital clay minerals that 

come from exposed terrain (Calvert and Pedersen, 1993). Silicon and zirconium are 

associated with detrital clay or other grains. Silicon to aluminum ratio shows silicon 

enrichment outside of clay minerals, indicating potential increase in silica minerals 

(biogenic, detrital, or authigenic; Algeo and Tribovillard, 2009). Molybdenum is plotted 

on the far right as a proxy for redox sensitive trace elements (discussed in 

Paleoceanography).  

 

 

Figure 8: XRF data showing proxies for mineralogy for Hot Springs outcrop samples. 

Gamma ray response and interpreted mineralogy/lithology is included on the 

right. 
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Interpretation 

Buda Limestone 

The Buda Limestone from 0-13 ft (Fig. 7) is pervasively dolomitized documented 

in both thin-section and confirmed by XRD. Thin-section documentation will be shown 

in lithofacies and facies successions. Stacking patterns in the Buda Limestone defined 

mineralogically and elementally demonstrates little heterogeneity. The section described 

at the Hot Springs outcrops in Big Bend National Park is composed of limestone with 

diagenetic dolomite. 

 

Boquillas Formation 

Mineral composition defined by XRD (Fig. 7) shows that the Boquillas Formation 

is composed dominantly of calcite with varying amounts of quartz, feldspar, dolomite and 

clay. Calcite is most dominant in massive limestone beds and peloidal crystalline 

mudrock (discussed in Lithofacies). Calcic tests of foraminifera and inoceramid also add 

to the high calcite content. Because calcite is dominant in muddier or peloidal facies, it is 

interpreted that matrix material may be composed largely of nanometer-sized calcite 

material (potentially coccoliths; Pommer, 2014) making these facies dominated by 

carbonate mud.  

Increased quartz (Fig. 7) is concluded to be the result of diagenesis representing a 

discrete, discontinuous interval of microcrystalline quartz (confirmed through field 

description and petrography). This sample is not representative of surrounding lithology 

because of small size, discontinuity, and amygdaloidal shape (supported by field 

descriptions). 

Major elemental data with stratigraphic breakouts (Fig. 8) shows poorly defined 

chemostratigraphic trends. This is largely related to a less populous sample set compared 

to the size of the measured section.  
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Calcium values throughout the section are high (Fig. 8), aside from five individual 

data points with less than 20% calcium content. These individual data points each 

correspond with increased aluminum, potassium, titanium, and silicon. All three of these 

elements are interpreted as increases in detrital clay minerals. These observations show 

that the Boquillas Formation strata are calcite-dominated rocks with irregular and 

uncommon punctuated intervals of detrital, clay mineral input. This trend infers calcite 

content dilution occurs when clay minerals or detrital sediments are introduced into the 

system. The Si/Al curve should follow a 1:1 trend unless there is enrichment in silicon 

outside of clay minerals. The upper Ernst and San Vicente Members (as defined by 

Cooper, 2014) shows terrestrial silica enrichment (Figs. 7, 8). This observation shows 

that while clay minerals may not be largely impacting the depositional environment, 

increased quartz content is causing a dilution of calcite content. 

 

Ernst Member of the Boquillas Formation 

The Ernst Member shows two main trends. Cenomanian-age, lower Ernst 

Member is influenced by detrital clay input that dilutes intrabasinal calcium 

accumulation. This is shown using the Si/Al plot (Fig. 8). The aluminum to silicon ratio 

remains 1:1, indicating no substantial enrichment of silicon from quartz. High silicon 

values in the lower Ernst Member are solely related to clay mineral enrichment. 

Zirconium values in the lower Ernst Member vary. Enrichment may be related to 

volcanic ash. 

The upper Ernst Member has less aluminum, potassium, and titanium when 

compared to the lower Ernst Member (Fig. 8). Slight enrichment in those three elements 

imply clay mineral or detrital input to the system, however, it is on a lesser scale than that 
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of the lower Ernst Member. Additionally, the upper Ernst Member contains silicon 

enrichment not documented in the lower Ernst Member.  

Stacking patterns defined mineralogically and elementally in the Ernst Member 

show a calcite and calcium dominated system with minor increases in phyllosilicate 

amount (Figs. 7, 8). The upper Ernst Member maintains a similar pattern of calcite and 

calcium dominated intervals with thin, punctuated phyllosilicate-rich intervals (Figs. 7, 

8). The upper Ernst differs from the lower Ernst Member because the more dominant 

calcite and calcium dominated intervals contain more phyllosilicate minerals than in the 

lower Ernst Member.  

 

San Vicente Member of the Boquillas Formation  

The San Vicente Member contains the highest amount of calcite within the 

Boquillas Formation (Fig. 7). This implies that there has been either a decrease in 

phyllosilicate input or that calcite production has increased and is effectively diluting any 

phyllosilicates entering the system. Poor sampling resolution for mineralogic and 

elemental data cannot be used to define stacking patterns in this interval. 

Core-X Conventional Core 

Figure 9 contains XRD mineralogy for the Core-X core from Maverick County 

(Fig. 3). Calcite is the most abundant mineral in the system based on weight percent. 

Volcanic ash beds are defined by increases in clay mineral weight percent (illite, 

kaolinite, montmorillinite) and significant decrease in calcite content. The Buda 

Limestone, below 4,032.5 ft, contains the most consistently abundant dolomite. 

Argillaceous solution seams within the Buda Limestone are enriched in clay minerals, 

especially kaolinite.  
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The interval from 3,843-4,032 ft in the lower Eagle Ford strata has the most 

frequent and high enrichments of quartz within the section. Quartz within this interval 

can be up to 23%. At 3,833 ft and 3,843 ft dolomite is highly enriched with 34% and 

45%, respectively. These samples contain decreased calcite content, and minor 

enrichment is quartz and albite. Above 3,833ft in the upper Eagle Ford Group, overall 

weight percent of quartz decreases. 

The Austin Chalk section demonstrates higher calcite weight percent than in the 

underlying Eagle Ford Group. Quartz abundance is minimal.  
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Figure 9: XRD for conventional core samples from Core-X. Nine minerals are presented 

in weight percent. CGR and SGR are provided in the center. Interpreted 

mineralogy/lithology is shown on the right. 
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Figure 10 displays elemental data against depth. Calcium, aluminum, potassium, 

silicon, titanium and zirconium content can be used to interpret mineralogy and 

provenance of sediments. Calcium content is associated with intrabasinal and biogenic 

carbonates (Rowe et al., 2008). Aluminum, potassium, and titanium are associated with 

detrital clays (Calvert and Pedersen, 1993). Silicon and zirconium are used as a proxy for 

detrital influx, either associated with clay or another grain variety. Silicon versus 

aluminum ratio highlights areas where silicon is enriched and not bound within a 

phyllosilicate mineral structure (Algeo and Tribovillard, 2009). Molybdenum has been 

included on the far right as a proxy for paleoceanographic conditions.  

 

 

Figure 10: XRF data showing proxies for mineralogy for Core-X conventional core 

samples. Samples are plotted as either ppm or weight percent. Gamma ray 

response and interpreted mineralogy/lithology is included on the right. 
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Interpretation 

XRD data (Fig. 9) confirm that the Eagle Ford Group is composed dominantly of 

calcite with lesser contributions from an assortment of quartz, dolomite, feldspar, or clay. 

 

Buda Limestone 

The Buda Limestone contains the highest quantity of consistent dolomite 

throughout the section (Fig. 9). Increased clay mineral content within the Buda 

Limestone occurs along pressure solution seams. Elemental data collected from the Buda 

Limestone demonstrate a system with high calcium content and punctuated siliciclastic 

influence (Fig. 10). Calcium in a marine setting is interpreted to be intrabasinal. 

Punctuated, mirrored increases in aluminum, potassium, silicon, zirconium, and titanium 

define detrital clay minerals. Each detrital clay mineral deposit correlates with a cluster of 

horsetail solution seams (Appendix A); it can be concluded that pressure solution seams 

form along detrital clay mineral beds deposited within the Buda Limestone. 

Silicon/aluminum values are extremely high throughout the purer limestones within the 

Buda. This shows that silicon within the system is not associated with clay minerals and 

is related to quartz enrichment. 

The thin clay mineral deposits within the calcium and calcite rich system (Fig. 9, 

10) likely represent sequence boundaries and possible sea-level changes that caused a 

thin drape of clay minerals to be deposited.  

 

Eagle Ford Group 

The lower and upper Eagle Ford strata are generally similar, containing high 

quantities of calcite and variable amounts of quartz (silt) and dolomite (Fig. 9). Calcite is 

the dominant mineral throughout the system. These data show that carbonaceous 

mudrock is dominant in the Eagle Ford Group; all samples (other than volcanic ash or 
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those altered by diagenesis) are greater than 50% calcite. The carbonate mud can be 

divided by considering the lesser quantities of other minerals present in the system (Figs. 

9, 10). Quartz is more abundant in the lower Eagle Ford strata than in the upper Eagle 

Ford strata (Fig. 9). Increased clay mineral and feldspar content occurs within volcanic 

ash deposits and in a thicker interval at the base of the upper Eagle Ford. Variations in 

calcite levels are related to stratigraphic position– higher calcite content intervals are 

correlative to peloidal crystalline mudrock (Fig. 31). The contact between the lower and 

upper Eagle Ford strata is marked by a major increase in dolomite abundance (Fig. 9).  

The lower Eagle Ford exhibits greater influence by extrabasinal sedimentation 

than the underlying Buda Limestone or the overlying upper Eagle Ford. Calcium values 

are high because of intrabasinal carbonate sedimentation (Fig. 10). Major decreases in 

calcium content are matched by major increases in aluminum, potassium, zirconium, and 

titanium (Fig. 10). These increases represent detrital sedimentation in lower Eagle Ford 

strata. Silicon/aluminum values are low throughout the lower Eagle Ford strata indicating 

that silicon abundance is related to clay mineral content (Fig. 10). The basal 15 ft of the 

lower Eagle Ford strata are more densely enriched in elements that indicate terrestrial 

clay mineral sedimentation (Fig. 10). This indicates a more consistent terrestrial input at 

the initiation of Eagle Ford Group deposition.  

The contact between the lower and upper Eagle Ford strata as defined in this 

study using gamma ray, mineralogic, fauna, and facies data has several interesting 

characteristics. Calcium values in the lower Eagle Ford strata gradually decrease 

approaching the contact from the lower Eagle Ford to the upper Eagle Ford, and slowly 

increase again shortly after the initial deposition of the upper Eagle Ford strata (Fig. 10). 

Aluminum, potassium, silicon, and titanium are greatly increased in the basal upper Eagle 

Ford strata (Fig. 10). This enrichment in terrigenous detrital elements correlates with the 
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massive argillaceous claystone lithofacies (Fig. 23) indicating that the massive 

argillaceous claystone signifies detrital influx at the base of the upper Eagle Ford strata. 

This deposit is very different from the surrounding carbonate mud and should be 

considered a marker of the base of the upper Eagle Ford member. The contact between 

the lower-upper Eagle Ford strata is defined by a gradual decrease in calcium content and 

molybdenum values and a sharp increase in titanium, aluminum, potassium, and silicon 

values (Fig. 10). These elemental proxies define intrabasinal carbonate sedimentation in 

lower Eagle Ford strata and a change to brief detrital, terrigenous (titanium-rich) 

sedimentation in the basal upper Eagle Ford strata. This is in agreement with the major 

enrichment in kaolinite, illite, and montmorillinite in the basal upper Eagle Ford strata 

(Fig. 9). 

The upper Eagle Ford strata contain high calcium content and punctuated 

intervals of increased aluminum, potassium, silicon, zirconium, and titanium content 

(Fig. 10). Calcium values respond inversely to elemental proxies for detrital terrigenous 

sedimentation (Fig. 10). This pattern is similar to that of the lower Eagle Ford strata 

suggesting normal intrabasinal carbonate sedimentation is mixed with moderate detrital 

terrigenous clay mineral influx. The uppermost upper Eagle Ford strata from 3,600-3,720 

ft depict greater titanium enrichment as well as silicon/aluminum enrichment (Fig. 10). 

This zone is more heavily influenced by detrital sedimentation causing for a dilution of 

carbonate amount. The increase in silicon/aluminum indicates that not all silicon 

enrichment in this zone is related to clay mineral content (confirmed in Fig. 9); silicon 

enrichment may be related to increased volumes of detrital quartz silt (documented in 

thin section).  

 

Austin Chalk 
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The Austin Chalk defined using mineralogic, gamma ray, lithofacies, and 

petrographic data different from the upper and lower Eagle Ford strata. Calcite has an 

even greater abundance in the Austin Chalk than in the carbonate-dominated underlying 

Eagle Ford Group. XRF data best display the elemental change between the Eagle Ford 

Group and Austin Chalk by the decreased frequency and quantity of clay mineral proxies 

(Fig. 10). Quartz content is the lowest in the Austin Chalk as compared to the underlying 

section (Fig. 9). Quartz and dolomite systematically increase correlative to lithofacies 

alternations to laminated argillaceous planktonic foraminifera wackestone (Fig. 19). The 

Austin Chalk has a very different elemental character than the underlying upper and 

lower Eagle Ford strata (Fig. 10). Calcium content is higher than the upper and lower 

Eagle Ford strata with fewer intervals of detrital clay influx (evidenced by aluminum, 

potassium, silicon, zirconium, and titanium increases; Calvert and Pedersen, 1993). 

Increased detrital clay zones correlate roughly with laminated argillaceous planktonic 

foraminifera wackestone (Fig. 10). Silicon/aluminum values show that not all present 

silicon is contained within clay material; increased silicon is from increased quartz or 

other non-clay minerals (Algeo and Tribovillard, 2009).  

Winterbotham J.M. Jr. #1 Conventional Core 

Figure 11 contains XRD weight percent data for the Winterbotham J.M. Jr. #1 

core from Zavala County (Fig. 3). Calcite is the most abundant mineral by weight 

percent. XRD results show that the section is composed over 50% calcite, and is therefore 

limestone. Quartz, dolomite, albite, pyrite, and fluorapatite occur in varying amounts with 

a relatively constant background of clay minerals, showing that the section is not a clean 

limestone. Quartz enrichment occurs from either terrestrial quartz silt or biogenic quartz 

(radiolarians) – variety of quartz causing enrichment must be further investigated visually 
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for each depth with documented enrichment. Clay minerals and pyrite increases in 

volcanic ash beds because of original igneous composition and provenance. At 6,246 ft 

and 6,251 ft there is significant enrichment in quartz to 57% and 43%, respectively. This 

enrichment may be related to quartz – thin sections are inconclusive as to the exact 

variety of quartz causing the enrichment. In general, quartz decreases above 6,245 ft. 
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Figure 11: XRD for conventional core samples from Winterbotham J.M. Jr. #1 Nine 

minerals are presented in weight percent. SGR are provided in the center. 

The SGR curves have been created using XRF elemental data – not 

downhole instruments or handheld gamma-spectrometer. An interpreted 

mineralogy/lithology is provided on the right.  
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Figure 12 displays major elemental data for elements associated with detrital 

input. Aluminum, potassium, silicon, titanium, and zirconium are used to show detrital 

sediment provenance (Calvert and Pedersen, 1993; Algeo and Tribovillard, 2009). 

Calcium content represents intrabasinal carbonates (Rowe et al., 2008). Aluminum, 

potassium, and titanium demonstrate detrital phyllosilicate influx. Silicon versus 

aluminum ratio emphasizes areas of enriched silicon not attached to clay mineral 

structure (Algeo and Tribovillard, 2009).  

 

 

Figure 12: XRF data showing proxies for mineralogy for Winterbotham J.M. Jr. #1 

conventional core samples. Data are plotted in either ppm or weight percent. 

SGR and interpreted mineralogy/lithology has been provided on the right. 
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Interpretation 

Eagle Ford Group 

XRD data with proposed divisions is provided in Figure 11. Mineralogy of the 

Eagle Ford Group is dominated by calcite with variable quantities of quartz, dolomite, 

feldspar, and clay. Calcite abundance increases through the section, with an average of 

44.5% in the lower Eagle Ford strata, 49.5% in the upper Eagle Ford strata, and 58.8% in 

the Austin Chalk (Fig. 11). This increasing upward calcite content trend demonstrates 

that the lower Eagle Ford has more influence from terrigenous material; the section is not 

a limestone, rather a lime-dominated mudrock succession with varying levels of 

phyllosilicate influence. The upper Eagle Ford strata contains a sizeable quartz silt 

increase right before the boundary with the Austin Chalk (Fig. 11).The lower Eagle Ford 

strata contains more quartz with an average of 9.7% compared to the upper Eagle Ford 

strata containing 8.5% quartz and the Austin Chalk containing 3.0% quartz. Albite and 

dolomite decrease throughout the section. Quantity of clay minerals remains relatively 

consistent, with the most notable change in illite content diminishing up section – likely 

diluted from increased carbonate input. 

The lower Eagle Ford strata is composed of dominantly carbonate as shown by 

high calcium percent (Fig. 12). Aluminum, potassium, silicon, and titanium at the top of 

the lower Eagle Ford strata show an increase in detrital clay minerals entering the system 

(Fig. 12). Silicon/aluminum values are very low; indicating the majority of silicon is 

contained within clay minerals. These data show that detrital phyllosilicate sedimentation 

has increased as is diluting the amount of carbonate within the system. This change may 

be tied to a change in sea level representing a transgressive systems tract and 

retrogradational parasequence set, similar to that described by Lock et al. (2010). 
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The transition from the lower to upper Eagle Ford is identifiable in several ways. 

Calcium percent gradually deceases upward towards the contact and then increases away 

from it, creating a slight divot appearance (Fig. 12). Decreased intrabasinal calcium 

accumulation is accounted for by increased terrigenous detrital sedimentation. A very 

distinct, titanium- and aluminum-rich chemofacies straddles the contact between lower 

and upper Eagle Ford strata at 6,362 ft (Fig. 12). This section may represent an 

aggradational parasequence set as described by Lock et al. (2010). 

The rest of the upper Eagle Ford strata are dominated by calcium sedimentation 

with punctuated detrital influence. Detrital zones are identified by a slight decrease in 

calcium content and increases in aluminum, potassium, titanium, and zirconium content 

(Fig. 12). These zones are likely composed of terrigenous clay minerals. More magnified 

increases of detrital elements commonly represent discrete volcanic ash deposits (i.e., 

6,332 ft and 6,292 ft; Fig. 12). These increased phyllosilicate zones can be matched to 

volcanic ash deposits in the core (see Facies Successions); the samples were collected 

directly from volcanic ash beds in the core to serve as calibration. While the XRD (Fig. 

11) and XRF (Fig. 12) data show several thin intervals of phyllosilicate or aluminum, 

potassium, and titanium enrichment, the sample spacing of collected samples do not 

define every individual occurrence of volcanic ash. This is because of the size of the 

individual volcanic ash beds or laminations.  

 

Austin Chalk  

The Austin Chalk has a significantly different elemental signature as compared to 

the underlying Eagle Ford strata (Fig. 12). Calcium values are more consistently high 

(averaging 58.8% carbonate), demonstrating the increase in intrabasinal carbonate 

sedimentation and a major decrease in detrital clay mineral sedimentation and 
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accumulation. High carbonate production has diluted detrital sediment accumulation. 

This change in calcium signature related to carbonate sediment abundance is the defining 

feature for the separation of the upper Eagle Ford strata and the Austin Chalk (Fig. 12); 

the Austin Chalk contains, on average, 10% more carbonate than the upper Eagle Ford 

member. 

PALEOCEANOGRAPHY  

The following section provides data and interpretation regarding the 

paleoceanographic conditions present during deposition of the Boquillas Formation and 

Eagle Ford Group.  

Paleoproductivity can be evaluated using copper, zinc, uranium, and nickel 

(Boling, 2014). These elements are essential for animal and plant life. Phosphorous may 

also be considered a proxy for paleoproductivity; however, it can mobilize under anoxic 

conditions (Van Cappellen and Ingall, 1994; Ingall and Jahnke, 1997). Molybdenum, 

vanadium, and uranium are redox sensitive trace metals used as indicators of anoxic 

conditions. Redox sensitive trace metals are mobile in an oxic system and are forced to 

precipitate in an oxygen depleted or anoxic system (Tribovillard et al., 2006). 

Additionally, when compared to TOC, these trace elements can be used to interpret 

basinal restriction (Algeo and Rowe, 2012). Manganese and iron are also redox sensitive 

elements; however, these elements behave inversely to molybdenum, vanadium, and 

uranium. Manganese and iron are generally mobile in an anoxic environment and 

precipitate in an oxic environment (Tribovillard et al., 2006). This rule can be untrue in 

reducing environments where iron is stored in pyrite or other sulfides and manganese is 

precipitated in carbonate (authigenic calcite, dolomite, etc.). 
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Hot Springs Outcrop 

Figure 13 contains enrichment factors for redox sensitive elements with degree of 

enrichment on the x-axis and relative elevation on the y-axis. Molybdenum, zinc, 

vanadium, and uranium can become enriched in oxygen deficient environment, while 

manganese (abundant in deep ocean environments) can become enriched in sediments in 

oxygen-rich environments.  

 

 

Figure 13: XRF data showing trace elements and proxies for paleoceanographic 

conditions for Hot Springs outcrop samples. Gamma ray response and 

interpreted mineralogy are included on the right. 

Interpretation 

Boquillas Formation 

Redox sensitive elements (Fig. 13) show scattered patterns for the Ernst Member 

of the Boquillas Formation. The lower Ernst Member contains the highest enrichment (up 
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to 50 ppm, Fig. 13) of molybdenum documented throughout the entire section. 

Molybdenum enrichment indicates an oxygen-depleted or anoxic environment. 

Manganese values remain low, confirming lack of oxygenation (Tribovillard et al., 2006). 

Enrichment in uranium and zinc confirm moderate to high productivity occurring during 

deposition (Boling, 2014). Anoxia coincident with high productivity denotes water-

column stratification –nutrients and oxygen are required to sustain life.  

The upper Ernst Member has slight enrichment in molybdenum; however values 

never reach as high as those documented in the lower Ernst Member (Fig. 13). Slight 

enrichment of molybdenum is followed by enrichment in manganese, signaling a 

reintroduction of oxygen into the water-column (Tribovillard et al., 2006). The highest 

enrichment of zinc occurs directly after the manganese, mirroring the increased 

oxygenation and increased productivity levels (Fig. 13).  

The lack of molybdenum in the San Vicente Member potentially indicates 

oxygenated bottom-waters at the sediment water interface (Fig. 13) – molybdenum 

remained in an aqueous state and did not precipitate in sediments (Algeo and Lyons, 

2006; Algeo et al., 2007; Algeo et al., 2008). Presence of zinc demonstrates productivity; 

however levels remain low because the nutrient is recycled while oxygen is in the system. 

Oxygen-presence and nutrient recycling is supported by burrowing documented in the 

San Vicente Member (Fig. 35).  

Core-X Conventional Core 

Figure 14 displays the enrichment factors of redox sensitive elements plotted 

against depth. Enrichment factors highlight areas that are higher than that of the average 

background shale. Vanadium, uranium, molybdenum, and zinc increase in oxygen-

depleted environments. Manganese increases in oxygen-rich environments.  
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Figure 14: XRF data showing trace elements and proxies for paleoceanographic 

conditions for Core-X. Redox sensitive elements are plotted as enrichment 

factors to show increase of element in terms of elemental concentration in 

the rest of the section. Gamma ray response and interpreted mineralogy are 

included on the right. 

Interpretation 

Buda Formation 

. Water chemistry (as well as sediments subsequent to burial) in the Buda 

Limestone is defined using redox sensitive elements (Fig. 14). Molybdenum, zinc, 

vanadium, and uranium maintain low values, indicating an oxygenated environment. 

Manganese is present, suggesting regularly oxygenated bottom-waters. 

The abrupt change in elemental character in both major and trace elements 

highlights the abruptness of the unconformity between the Buda Limestone and Eagle 

Ford Group (Fig. 14; see Fig. 37 for photographic documentation of an unconformity 

between the Buda Limestone and the Eagle Ford Group).Several changes occur across 



 64 

the contact: gamma ray API increases, molybdenum increases, calcium decreases. The 

change in character demonstrates the great difference in both sediment deposition type 

and water chemistry present during deposition of the Eagle Ford Group. The Buda 

Limestone shows oxygenated, homogenized carbonate sediments, while the Eagle Ford 

Group shows anoxic, heterogeneously laminated, mixed-mineralogy sediments. 

 

Eagle Ford Group 

Paleoceanographic data in the lower Eagle Ford (the unit deposited above the 

Buda Limestone) defines an anoxic environment with brief periods of oxygenation. 

Molybdenum and vanadium are extremely sensitive to lack of oxygen within the water-

column, both have increased enrichment factor values in the base of the lower Eagle Ford 

strata (Fig. 14). Molybdenum values are extremely high, up to 559 ppm. Zinc and 

uranium nutrient enrichment indicate bottom-water anoxia; however, they suggest that 

productivity elsewhere in the water-column was moderate. Values of molybdenum 

gradually decrease – this trend could suggest lack of deep-water renewal wherein the 

amount of molybdenum in the water-column is never renewed. Enrichment in zinc 

throughout the section suggests productivity higher in the water-column, suggesting that 

water-column was density stratified. 

Molybdenum values near the lower-upper Eagle Ford strata contact decreases 

towards the contact (Fig. 14). The contact between lower and upper Eagle Ford is defined 

by API value decreases, molybdenum decreases, and a change in facies. This can indicate 

a depletion of molybdenum in the water-column because of slow water renewal times or 

dilution of molybdenum from increased sedimentation. Manganese is greatly enriched in 

the basal upper Eagle Ford strata (Fig. 14) indicating oxygen introduction into bottom-

waters. This shows oxygenation in the basal upper Eagle Ford strata. 
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Paleoceanic water chemistry in the upper Eagle Ford strata contains low values of 

molybdenum signaling an oxygenated depositional environment. Molybdenum and 

vanadium are enriched from 3,600-3,720 ft from values in the lower portion of the upper 

Eagle Ford strata (Fig. 14). Enrichment of redox sensitive elements in this section is far 

lower than the values displayed by the lower Eagle Ford strata. Manganese is also 

enriched in this section suggesting that bottom-waters were alternating between anoxic 

and oxic. Oxygen depletion in this zone may be linked to increased productivity (as 

identified by zinc enrichment). 

 

Austin Chalk 

Molybdenum and vanadium remain relatively low throughout the Austin Chalk 

indicating oxygenation of bottom-waters (Fig. 14). Enrichment of molybdenum within 

the Austin Chalk in this succession shows a period of anoxia. Enriched zinc and uranium 

show high productivity throughout the Austin Chalk. 

Winterbotham J.M. Jr. #1 Conventional Core 

Figure 15 displays redox sensitive trace elements for the Winterbotham J.M. Jr. 

#1. Molybdenum, zinc, vanadium, and uranium can become enriched in oxygen-depleted 

or anoxic environment. Manganese reacts inversely, becoming enriched in oxygenated 

environments.  
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Figure 15: XRF data showing trace elements and proxies for paleoceanographic 

conditions for Winterbotham J.M. Jr. #1. Redox sensitive elements are 

plotted as enrichment factors to show increase of element in terms of 

elemental concentration in the rest of the section. Gamma ray response and 

interpreted mineralogy are included on the right. 

Interpretation 

Oceanographic conditions during deposition of the lower Eagle Ford strata were 

anoxic as shown by high molybdenum, up to 71ppm (Fig. 15). Vanadium and uranium 

enrichment factor values in the lower Eagle Ford strata are in agreement with enriched 

molybdenum values, defining an anoxic environment.   

Molybdenum values across the boundary between lower and upper Eagle Ford 

significantly drop off while manganese becomes significantly enriched as compared to 

adjacent strata (Fig. 15). The variation in molybdenum and manganese shows a switch in 
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redox sensitive environments form anoxic in the lower Eagle Ford strata to oxic in the 

upper Eagle Ford strata. Molybdenum will precipitate out of solution when oxygen is 

absent in a system, whereas manganese will precipitate out of solution when oxygen is 

re-introduced into a previously oxygen deficient system (Algeo and Lyons, 2006; Algeo 

et al., 2007; Algeo et al., 2008). This change between redox sensitive trace metals has 

been used as the dominant factor in determining the contact between lower and upper 

Eagle Ford strata.  

Molybdenum is used to identify three thinner intervals deposited during anoxic 

conditions within the upper portion of the upper Eagle Ford strata (Fig. 15). A zone from 

6,284-6,298 ft and another from 6,271-6,279 ft show some moderate molybdenum 

enrichment indicating low-oxygen or anoxic conditions. Molybdenum values remain low, 

either indicating short lived periods of anoxia, or possible low molybdenum content in 

the water. The third thin anoxic, molybdenum-rich event at the top of the upper Eagle 

Ford strata occurs from 6,236-6,264ft. This interval exhibits a greater increase in 

molybdenum, as well as a major increase in silicon/aluminum relative to the two 

underlying thin molybdenum-rich intervals. This association infers that during this minor 

anoxic event there was a minor influx of quartz silt (Figs. 12, 15). Quartz silt is 

documented in this interval in thin section; however, increased skeletal debris (biogenic 

silica) might contribute to the elevated silicon content as well. This zone also correlates 

with a major increase in zinc, inferring increased surface productivity relative to the 

underlying upper Eagle Ford strata. Anoxia here may be the result of high productivity 

and the subsequent depletion of oxygen in the water-column. 

Redox and trace elements in the Austin Chalk have a very different character as 

compared to signatures demonstrated throughout the underlying section. Redox sensitive 
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elements such as molybdenum and vanadium in this unit are low indicating normally 

oxygenated waters with moderate primary productivity (Fig. 15).  

TOTAL ORGANIC CARBON 

The following section displays graphs showing measured total organic carbon 

(TOC) within each individual section. Organic matter preservation allows for meaningful 

conclusions to be made regarding oceanographic conditions present during sediment 

accumulation as well as productivity levels. TOC is also important for potential industrial 

utilization of the Eagle Ford Group for economic hydrocarbon recovery. All carbon 

presented here and within is measured from the organic carbon fraction. 

C/N atomic ratios for algae are between 4 and 10, while the ratio for land-plants is 

greater than 20 (Premuzic et al., 1982; Jasper and Gagosian, 1990; Meyers, 1994; Prahl et 

al., 1994). Greater values of C/N, potentially 40-60, demonstrate contributions from 

cellulosic land-plants to the organic matter content (Ertel and Hedges, 1985). C/N ratios 

lower than 4 may be the result of organic matter degradation. Nitrogen compounds break 

down producing ammonia that becomes contained in clay minerals while CO2 is released 

during organic matter oxidation (Müller, 1977). 

Hot Springs Outcrop 

Figure 16 contains TOC, C/N atomic ratio, molybdenum ppm, and uranium ppm 

versus depth for the Buda Limestone and Boquillas Formation at the Hot Springs outcrop 

in Big Bend National Park. The C/N atomic ratio has an average value of 13.6 with a 

minimum value of 2.5 and a maximum value of 35.6. TOC has an average 0.3wt% with a 

maximum value of 1.6wt%. Molybdenum parts per million is included on the far right. 
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Figure 16: C/N atomic ratio, TOC, molybdenum ppm, uranium ppm, and gamma ray data 

for outcrop samples from the Hot Springs outcrop. Exposure to weathering 

can decrease the amount of preserved organic matter.  

 

Interpretation 

Buda Limestone 

The Buda Limestone has an average C/N is 4.8 and indicates the dominant form 

of organic matter accumulating is from algae (Fig. 16). Average TOC is extremely low in 

the Buda Limestone.  

 

Boquillas Formation 
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C/N values in the lower Ernst Member have an average of 11.8, just outside of the 

accepted range for marine algae (Fig. 16). While there may have been some influence 

from airborne terrestrial organic matter, this value is most likely because of some 

degradation of marine-organic matter while settling through an oxygenated water-

column. TOC values are low, likely related to weathering and poor preservation at the 

surface. Gamma ray (CGR and SGR) values increase greatly from the Buda Limestone 

into the Boquillas Formation. This increase is because of increased organic matter, as 

well as increase in argillaceous material.  

The upper Ernst Member has a C/N value of 16.7 (Fig. 16). Additionally, the C/N 

value is outside of the accepted ratio for sole algal organic matter. Mixing of vascular 

land-plant matter with intrabasinal algal material has increased the C/N ratio towards the 

accepted value for land-plants. Average TOC for the upper Ernst Member is 0.46wt% 

(Fig. 16). Preservation of organic matter is better in the upper Ernst Member than in the 

lower Ernst Member.  

The San Vicente Member of the Boquillas Formation contains an average C/N 

ratio of 7.05 (Fig. 16). The average C/N value of 7.05 falls within the accepted ratio for 

algae. TOC preservation is lowest within the measured section, with an average of 

0.07wt%. 

All data show that the succession at the Hot Springs outcrops within Big Bend 

National Park is dominated by marine-organic matter with low values of TOC. 

Comparatively, the Ernst Member is influenced more by terrestrial, vascular plant input 

than the Buda Limestone or San Vicente Member of the Boquillas Formation. The lower 

Ernst Member demonstrates more marine and algal organic matter accumulation when 

compared to the upper Ernst Member, which contains slightly more terrestrial plant 

material. Greater influence from terrestrial organic matter was likely in the form of 
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airborne material. Increased molybdenum in the Ernst Member defines an anoxic 

environment that allowed for slightly better preservation of organic matter reflected by 

higher TOC weight percent. The San Vicente Member and the Buda Limestone are 

similar and predominantly contain marine-organic matter.  

Core-X Conventional Core 

Figure 17 contains δ
13

C, C/N atomic ratio, and TOC versus depth for the Core-X 

core. The atomic ratio of C/N has an average value of 28.1, with a minimum value of 

0.69 and a maximum value of 60.4. The average value of TOC in the core is 1.97 wt%. 

The lowest TOC documented is 0.103 wt% and the highest TOC documented is 6.5 wt%. 

 

 

Figure 17: C/N atomic ratio, TOC, molybdenum ppm, uranium ppm, and gamma ray for 

Core-X conventional core samples.  
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Interpretation 

The Buda Limestone contains dominantly marine-organic matter. A majority of 

marine carbon has been normally degraded, causing for an increased ratio in C/N values. 

An average C/N ratio of 15.2 suggests algae are prominent with very little influence from 

terrestrial material (Fig. 17). TOC weight percent in the Buda Limestone are less than 1% 

and are the lowest within the Core-X core. Because the Buda Limestone accumulated 

during oxic conditions, it is determined that organic matter was not preserved. Both CGR 

and SGR for the Buda are low because of low quantities of clay mineral content in a 

dominantly calcite section.  

The lower Eagle Ford strata has an average C/N ratio of 28.3, suggesting greater 

terrestrial organic matter influence than in the Buda Limestone (Fig. 17). While terrestrial 

organic matter may have been more prevalent in the lower Eagle Ford strata, marine-

organic matter is still dominant. The increased C/N ratio may simply reflect increased 

marine-organic matter degradation during particle settling. C/N values range from 0.69 to 

46.1; the minimum value indicates degradation of deposited organic matter and the 

maximum value represents land-plant matter (Fig. 17). TOC weight percent on average in 

the lower Eagle Ford strata is the highest within the core, up to 6.5 wt%. Molybdenum 

enrichment in the lower Eagle Ford strata signals anoxic bottom-waters; lack of oxygen 

allows for organic matter preservation and thusly higher TOC values. Both CGR and 

SGR values greatly increase from the Buda Limestone and into the Eagle Ford. The 

increase in API supports the major increase in argillaceous material and increased 

preserved organic matter because of the impact that clay minerals have on water flow and 

circulation of water in sediments.  

C/N values in the upper Eagle Ford strata have an average of 26.2 and a range 

from 1.49 to 52.3 (Fig. 17). This set of values describes a similar system to the lower 
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Eagle Ford strata – algal material is the dominant organic matter type with some mild 

influence from a terrestrial organic matter source. The low C/N value of 1.49 suggests 

algal matter degradation (Fig. 17). TOC averages 1.52% showing moderate preservation 

of organic matter (Fig. 17). The increase in terrigenous, argillaceous material is mirrored 

within the high gamma ray values. Spectral gamma ray values increase through zones of 

increased molybdenum, confirming increased uranium and TOC preservation during 

anoxic conditions.  

The Austin Chalk shows C/N values with an average of 38.09 and a range from 

17.5 to 60.4 (Fig. 17). Nitrogen is commonly a limiting factor within marine systems; 

degradation of settling algal organic matter can cause for an increased C/N ratio, even 

though dominant organic matter type is marine. TOC values in the Austin Chalk average 

1.10%, but can be as much as 4.13% (Fig. 17). TOC preservation is greater within the 

thin intervals of laminated argillaceous planktonic foraminifera wackestone (Figs. 17, 

20). Periods of oxygenation within the water-column have allowed for degradation of 

organic matter, causing increased C/N values and lower preserved TOC (Fig. 17). 

Argillaceous, mineral seams allow for preservation of trapped organic matter. CGR and 

SGR decrease from the Eagle Ford into the Austin Chalk, this is because of the decrease 

in TOC and argillaceous minerals.  

Winterbotham J.M. Jr. #1 Conventional Core 

Figure 18 contains C/N atomic ratio, TOC weight percent, molybdenum ppm, and 

uranium versus depth for the Winterbotham J.M Jr. #1. The C/N ratio has an average 

value of 27.9 and a minimum value of 0.613 and a maximum values 71.5. Total organic 

carbon within the Winterbotham J.M. Jr. #1 has an average of 2.01wt%, with a minimum 

0.15wt% and a maximum 6.57wt%.  
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Figure 18: C/N atomic ratio, TOC, molybdenum ppm, uranium ppm, and gamma ray for 

Winterbotham J.M. Jr. #1 conventional core samples. Gamma ray values 

have been computed using XRF data.  

Interpretation 

C/N values within lower Eagle Ford strata are the lowest amongst all stratigraphic 

divisions within the section with an average ratio of 22.9 (Fig. 18). The C/N confirms 

mixed provenance of organic matter, with a dominant contribution from marine-organic 

matter. TOC values are highest on average within the lower Eagle Ford strata. TOC 

preservation potential is enhanced because of anoxic conditions present during deposition 
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(Figs. 15, 18). SGR values within the lower Eagle Ford strata are high, showing the 

dominance of argillaceous material and uranium abundance.  

The C/N atomic ratio in the upper Eagle Ford strata is 28.8, indicating dominance 

of marine-organic matter with some minor influence from land plant matter (Fig. 18). 

The C/N value may also be higher than expected because of degradation of original algal 

organic matter as it settled through an oxygenated water-column. TOC preservation 

within the upper Eagle Ford strata is lower than that of the lower Eagle Ford strata. This 

is related to oxygenation of bottom-water and sediments allowing for degradation of 

accumulated organic matter. Lower organic matter values for the upper Eagle Ford strata 

may additionally be impacted by lower rates of accumulation.  

The C/N atomic ratio in the Austin Chalk has an average of 39.1 (Fig. 18). The 

extremely high C/N atomic ratio indicates degradation while settling of primary marine-

organic matter within an oxygenated environment. TOC values are lowest in the Austin 

Chalk, averaging 1.7%. Oxygenation and bioturbation of sediments allows for 

degradation of original organic matter.  

LITHOFACIES 

Ten lithofacies, two pseudolithofacies, and one diagenetic lithofacies have been 

identified and described from both core and outcrop. Each described lithofacies has an 

accompanying photo plate. Table 6 lists each lithofacies abbreviation, name and gives a 

short summary of each defined lithofacies. Fissility as mentioned below refers to the 

outward character of a rock and the ability to easily split along bedding planes (Ingram, 

1963). XRD and XRF data have shown a calcite-dominated system; the majority of 

‘muds’ discussed herein are calcareous, but may demonstrate variable levels of 

argillaceous or siliciclastic material. Eagle Ford Group lithofacies generally contain 
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similar mineralogic composition, but may show changes in sedimentary 

features/structures or fauna. An average mineralogic composition based only on 

carbonate, quartz, and clay mineral content is provided for each lithofacies (not included 

for unsampled pseudolithofacies or diagenetic lithofacies). Lithofacies described herein 

are named using either Dunham (1962) or Folk (1980) classification styles. 
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Table 6 (cont.) 
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Table 6: Summary of lithofacies. The table contains lithofacies name, in which locations 

it occurs, what formations it occurs in, the weathering character if 

applicable, dominant fauna per lithofacies, sedimentary structures, and a 

brief summary of the lithofacies. Mineralogy and TOC values included for 

each facies represent an average of values. 



 79 

Burrowed Skeletal Wackestone  

The burrowed skeletal wackestone facies is found within the Buda Limestone and 

is observed with Core-X in the Maverick Basin and in outcrop at the Hot Springs locality 

in Big Bend National Park.  

The burrowed skeletal wackestone is a white-grey burrowed limestone with 

abundant fauna (Figs. 19A, 19B). Average mineralogy is 71% carbonate, 2% quartz, and 

11% clay minerals. Fauna are matrix-supported and consist of calcispheres, oyster 

fragments, nektonic echinoid fragments (saccocomids), and some planktonic foraminifera 

(Fig. 19C). Bedding and primary depositional fabric has been destroyed by burrowing. 

Individual burrows can rarely be identified, among which rare Planolites or subhorizontal 

burrows can be observed. Authigenic pyrite and equant calcite spar have replaced select 

grains and burrows.  

Argillaceous horsetail solution seams are extremely common throughout 

burrowed skeletal wackestone (Fig. 19B). Solution seams are a dark grey and wispy; 

seams generally concentrate through a short interval and subsequently feather outwards. 

Seams are commonly accompanied by euhedral, authigenic dolomite precipitation (Fig. 

19D). Stylolites with teeth are also present but are less abundant. Authigenic mineral 

precipitation is common along solution seam and stylolite pathways, dominated by 

rimmed, euhedral dolomite and small pyrite framboids.  

Mineralogy discussed above, shows that this facies (which composes the Buda 

Limestone), is a calcite dominated facies. This facies contains 35-39% calcium and up to 

75% carbonate. The dark grey, wispy seams (Fig. 19B) are dominated by terrigenous, 

argillaceous clay minerals. Redox sensitive trace elements show that the burrowed 

skeletal wackestone is deposited during oxygenated conditions.  
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Figure 19: Burrowed skeletal wackestone: A) Burrowed skeletal wackestone in core slab 

in Buda Limestone. B) Horsetail stylolites are dark grey in burrowed 

skeletal wackestones in Buda Limestone. C) Photomicrograph of burrowed 

skeletal wackestone with abundant calcispheres, echinoid fragment (C1), 

and planktonic foraminifera (C2) in Buda Limestone. D) Stylolite with 

dolomitization along seam in Buda Limestone. 
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 Laminated argillaceous planktonic foraminifera wackestone  

This lithofacies is most common in the lower Eagle Ford strata. It appears at the 

base of the upper Eagle Ford strata. Additionally, thin argillaceous intervals in the 

transitional Austin Chalk are classified as the laminated argillaceous planktonic 

foraminifera wackestone. This facies is observed in both outcrop and core at the Hot 

Springs and within Core-X and Winterbotham J.M. Jr. #1. 

The laminated argillaceous planktonic foraminifera wackestone facies is 

composed of a muddy, peloidal matrix with winnowed and reworked planktonic 

foraminifera lags (Fig. 20A). The mud in this facies is carbonaceous (65% calcite on 

average) with a distinctive argillaceous signature (average 12%) as noted in the 

lithofacies name. Lags are either small accumulations of planktonic foraminifera or have 

been reworked into small, winnowed ripples. Millimeter-scale grain laminations are 

subparallel to bedding and are both continuous and discontinuous (Fig. 20B). Fauna are 

concentrated within laminations and lags, however, planktonic foraminifera appear 

sometimes within the pelagic, peloidal matrix. Fauna are dominantly planktonic 

foraminifera, with rare inoceramid fragments and fish bones.  

Small soft-sediment folds and slumps occur within laminated argillaceous 

planktonic foraminifera wackestone. Coherent laminations are folded plastically and are 

overturned. Slumps show no sign of brittle breakage or individual clasts. Fauna within 

folded beds are similar to the surrounding in-situ population.  

The laminated argillaceous planktonic foraminifera wackestone facies is 

commonly interbedded with the laminated argillaceous inoceramid wackestone, as well 

as volcanic ash and the diagenetic facies peloidal crystalline mudrock. 
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Figure 20: Laminated argillaceous planktonic foraminifera wackestone: A) Core slab 

Laminated argillaceous planktonic foraminifera wackestone with interval of 

diagenetic calcite and volcanic ash in lower Eagle Ford strata. B) 

Photomicrograph with planktonic foraminifera laminations (outline by 

dashed red lines) in lower Eagle Ford strata.  

Laminated argillaceous inoceramid wackestone  

This facies occurs most commonly in the lower Eagle Ford strata and sometimes 

in the upper Eagle Ford strata. It is observed within both cores (Core-X and 

Winterbotham J.M. Jr. #1) located within the Maverick Basin. This facies is rich in clay 

minerals in the matrix and calcite in the matrix, cement, and skeletal debris. This facies is 

documented in molybdenum-rich environments.  

Laminated argillaceous inoceramid wackestone is composed primarily of 

peloidal, argillaceous mud matrix with inoceramid shells and shell fragments parallel to 
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bedding (Fig. 21A). The average mineralogy is composed of 66% carbonate, 9% quartz, 

and 11% clay minerals. Broken inoceramid columnals accumulate as small lag deposits 

or create a shell hash (Fig. 21B). Inoceramid filaments are abundant within pelagic, 

peloidal layers (Fig. 21C). Up to 1-inch thick shell pavements of inoceramid and oysters 

develop parallel to bedding. Equant calcite spar forms as a cement within interparticle 

pores within the shell pavement. Crushed ammonites are present but are extremely rare. 

Planktonic foraminfera (and rare agglutinated foraminifera) are present within pelagic, 

peloidal muds (carbonate) but are not reworked into lags or laminations (Fig. 21D).  

Thin grain accumulations occur along bedding surfaces (Figs. 21A, 21B). Grain 

accumulations are composed of inoceramid columnals and shell fragments, as well as 

phosphatic fish bones. Debris-flow accumulations have a basal scour into underlying 

peloidal carbonate mud and generally fine upward. Laminations are millimeter scale and 

grains show evidence of reworking.  

Cone-in-cone cement is present within laminated argillaceous inoceramid 

wackestone (Fig. 21E). The calcite cement occurs subhorizontal or parallel to bedding, 

ranging in thickness from 1-10mm. Calcite cones form perpendicular to bedding. 

The laminated argillaceous inoceramid wackestone facies occurs interbedded with 

laminated argillaceous planktonic foraminifera wackestone and contains thin intervals of 

volcanic ash and diagenetic peloidal crystalline mudrock. Radiolarians are common in 

some intervals of diagenetic calcite. Radiolarians within the laminated argillaceous 

inoceramid wackestone intervals were first pyritized then calcitized.  
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Figure 21: Laminated argillaceous inoceramid wackestone: A) Core slab showing 

dominant inoceramid along bedding planes in lower Eagle Ford strata. B) 

Accumulation of inoceramid prisms in lower Eagle Ford strata. C) 

inoceramid filament in lower Eagle Ford strata. D) Cone-in-cone cement in 

lower Eagle Ford strata. 
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Weakly laminated wackestone  

This facies is found in the upper, lower Eagle Ford strata, and within the middle 

and lower portions of the upper Eagle Ford strata. This facies is observed within core 

(Core-X and Winterbotham J.M. Jr. #1) located within the Maverick Basin. Mineralogy 

shows that this facies is composed of both argillaceous and calcareous matrix. 

Weakly laminated wackestone is a peloidal mudrock with few to no developed 

grain laminations or grain accumulations (Fig. 22A) and commonly contains argillaceous 

mud. The average mineralogy is 65% carbonate, 9% quartz, and 12% clay minerals. 

Horizontal, parallel laminations 1-2cm apart are visible, but are created by a darkened 

argillaceous mud seam rather than grains as in other defined facies (Fig. 22B). Planktonic 

foraminifera are common, but are extremely small and difficult to photograph (Fig. 22C). 

Foraminifera are matrix-supported and do not accumulate in lag deposits or show signs of 

reworking. The matrix is composed of argillaceous clay with small, silt grains, and 

peloids (Fig. 22D). Authigenic pyrite framboids are common within the matrix. Larger 

fossils are rare. 

The weakly laminated wackestone facies does not occur commonly interbedded 

with any other facies. Volcanic ash beds are rarely interbedded within this facies. 

Diagenetic facies (peloidal crystalline mudrock) do not occur interbedded within this 

facies.  
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Figure 22: Weakly laminated wackestone: A) Weakly laminated wackestone core slab in 

lower Eagle Ford strata. B) Photomicrograph of horizontal mud laminations 

outlined in white in lower Eagle Ford strata. C) Photomicrograph of 

Heterohelix sp. foraminifera in lower Eagle Ford strata. D) UV + yellow 

filter photomicrograph of weakly laminated wackestone with clay matrix 

and peloids (D1) in lower Eagle Ford strata.  
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Massive argillaceous claystone  

The massive argillaceous claystone occurs in the lowermost, upper Eagle Ford 

strata, at the contact with the lower Eagle Ford strata. This facies is observed within the 

Core-X and Winterbotham J.M Jr. #1 conventional cores. This lithofacies coincides with 

the zone of titanium enrichment that serves as the dividing marker between upper and 

lower Eagle Ford (Figs. 10, 12).  

Massive argillaceous claystone has few to no depositional structures or 

sedimentary features (Fig. 23A). The average mineralogy is 28% carbonate, 7% quartz, 

and 15% clay minerals – this facies also contains up to 45% dolomite. This dolomite is 

diagenetic. The rocks are friable in core slab. Massive argillaceous claystone grades and 

interfingers into the overlying planktonic foraminifera laminated facies until it eventually 

disappears. Light microscopy demonstrates a yellow, aphanitic, clay-rich matrix that is 

extinct when viewed in cross-polarized light (Fig. 23B). Fauna are almost exclusively 

contained within thin, peloid-rich laminations with matrix-supported radiolarians or 

planktonic foraminifera (Fig. 23C). Planktonic foraminifera are rarely found within 

massive argillaceous claystone; however, those that are have undergone pervasive 

recrystallization (Fig. 23D). Small, silt grains contained within the dominant yellow clay 

matrix suggest a potential detrital origin. 

Deposits of massive argillaceous claystone are thickest in the first bed (Fig. 23A); 

beds gradationally thin upward and begin to interfinger with laminated argillaceous 

planktonic foraminifera wackestone as that facies becomes the primary depositional 

facies (Fig. 23A). Volcanic ash deposits and peloidal crystalline mudrock occur adjacent 

to massive argillaceous claystone (Fig. 23).  
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Figure 23: Massive argillaceous claystone: A) Core slab shows massive argillaceous 

claystone (red boxes) interfingering with laminated argillaceous planktonic 

foraminifera wackestones in upper Eagle Ford strata. B) Photomicrograph of 

argillaceous mud lamination with planktonic foraminifera below massive 

argillaceous claystone in upper Eagle Ford strata. C) Photomicrograph of 

abundant, calcified radiolarians (C1) and calcispheres (C2) within mud 

matrix in upper Eagle Ford strata. D) Photomicrograph in XPL of 

recrystallized planktonic foraminifera within extinct, argillaceous matrix in 

upper Eagle Ford strata. 
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Laminated calcisphere grainstone  

The laminated calcisphere grainstone facies is found within the upper Eagle Ford 

in the Core-X conventional core from Maverick Basin. Volcanic ash beds and diagenetic 

peloidal crystalline mudrock are commonly found adjacent to the laminated calcisphere 

grainstone facies. This facies may be correlative to Motif 4B (defined as Nodular Cycles 

by Forkner, 2013). 

Well-developed ripples composed of fauna dominate the laminated calcisphere 

grainstone; ripples interlaminated with possibly argillaceous mud have produced 

extensive differential compaction giving the laminated calcisphere grainstone a wavy, 

nodular appearance (Fig. 24A). Average mineralogy is 68% carbonate, 5% quartz, and 

12% clay minerals. Compaction around nodules has caused cracking and syn-

compactional fracturing of underlying and overlying beds. Reworked and accumulated 

fauna are a bright white compared to the much darker, muddy laminations (Fig. 24B). 

Developed ripples have a sharp basal contact and scour of the underlying laminations.  

Soft-sediment deformation and folding are common within the laminated 

calcisphere grainstone (Fig. 24C). Deposits are characterized by basal accumulations of 

subangular, pebble-sized, lithified intraclasts composed of calcisphere and calcite cement. 

Small-scale, lamination-sized flows are also present. Such debris-flows have an increase 

in fish bones and inoceramid fragments. Soft-sediment deformation is present in mud 

laminations as well as small flame structures in allochem-dominated grain laminations. 

Slumping is characterized by plastically folded and overturned, semi-coherent beds. 

Laminations in folded beds show some signs of contortion, but remain relatively intact.  

Grain accumulations (ripples and laminations) displaying the least compaction are 

composed dominantly of calcisphere accumulations (Fig. 24D). inoceramid prisms and 

echinoid fragments are also common to abundant within calcisphere laminations. 
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Compaction is most extensive in areas lacking calcispheres. Planktonic foraminifera are 

rarely present in calcisphere accumulations; however, foraminifera are common within 

peloidal layers (Fig. 24E). Muddier layers sometimes contain foraminifera lags. 
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Figure 24: Laminated calcisphere grainstone: A) Core slab with calcisphere bed forms 

outlined in orange in upper Eagle Ford strata. B) Photomicrograph of 

inclined calcisphere lamina (yellow) with differential compaction in upper 

Eagle Ford strata. C) Photomicrograph of semi-coherent ductile fold, 

bedding outlined in yellow in in upper Eagle Ford strata. D) 

Photomicrograph of inoceramid (D1) in calcisphere grain lamination in 

upper Eagle Ford strata. E) Heterohelicidae planktonic foraminifera (E1) 

within possibly argillaceous muddy lamination in upper Eagle Ford strata. 



 92 

Laminated skeletal grain-dominated packstone 

The laminated skeletal grain-dominated packstone facies is observed in both Hot 

Springs outcrop samples from Brewster County and Winterbotham J.M. Jr. #1 core 

samples from Zavala County. This facies is found within the upper Eagle Ford strata 

(core) and within the Boquillas Formation (mostly San Vicente and rare occurrence in the 

Ernst Member) in outcrop.   

Laminated skeletal grain-dominated packstone is a pale to dark grey carbonate 

mudstone dominated by grain-dominated allochem laminations (Fig. 25A). Average 

mineralogy is 56% carbonate, 8% quartz, and 17% clay minerals. Because this facies is 

only documented in outcrop, average mineralogic values may not be correlative to values 

of the same facies documented in the subsurface. Laminations are up to 1 cm thick and 

commonly have an erosive base and contain allochem lags and ripples (Fig. 25B). Fauna 

within laminations are dominantly planktonic foraminifera; accompanied by calcispheres, 

oysters, fish bones, phosphates, echinoids, inoceramid fragments, and angular quartz silt 

(Figs. 25C, 25D). Grains are winnowed and show evidence of transport and re-working. 

Some laminations are truncated because of burrowing. Planolites are present but 

infrequent. 

Soft-sediment deformation is common in carbonate mud-laminated skeletal 

planktonic foraminifera grain-dominated packstone. Flame structures, water escape 

structures, and differential compaction are present on the laminations scale (Fig. 25A). 

Large-scale deformation, folding, and mass-transport deposits are also present. Semi-

lithified beds are ductily folded and remain semicoherent. Mass-transport deposits 

commonly have basal intraclasts of brittle, angular laminated mudstone. Lithified 

intraclasts are composed of planktonic foraminifera and calcisphere accumulations (Fig. 

25E).  
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Figure 25: Laminated skeletal grain-dominated packstone: A) Core slab with flame 

structure in carbonate mud lamination in upper Eagle Ford strata. B) 

Photomicrograph of grain laminations outlined in red in upper Eagle Ford 

strata. C) inoceramid (C1), oyster (C2), and fish bones (C3) in grain 

lamination in upper Eagle Ford strata. D) Saccocomid echinoid fragments 

(D1) have a fuzzy, angular appearance compared to white, globular 

planktonic foraminifera (D2) in upper Eagle Ford strata. E) Core slab with 

angular intraclasts in in upper Eagle Ford strata.   
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Burrowed foraminifera wackestone 

The burrowed foraminifera wackestone facies is found within both outcrop and 

core. Outcrop samples from the Hot Springs locality at Big Bend National Park are from 

the San Vicente Member of the Boquillas Formation. Core samples of borrowed 

foraminifera wackestone are found within Core-X and Winterbotham J.M. Jr. #1 from the 

Maverick Basin. This facies (with argillaceous alternations) constitutes the transitional 

Austin Chalk and Austin Chalk.  

The burrowed foraminifera wackestone facies interfingers with laminated 

mudstone intervals (these mudstone intervals are grouped as laminated argillaceous 

planktonic foraminifera wackestone) (Fig. 26A). The average mineralogy is 74% 

carbonate, 9% quartz, and 11% clay minerals. Bioturbation within more calcic, limestone 

layers has erased any primary bedding structures, fauna are unsorted and matrix 

supported. Burrows are approximately 1 cm wide and several centimeters long (Fig. 

26B). They may be vertical, subvertical, or subhorizontal and cut perpendicular to 

bedding. The faunal assemblage consists of a variety of planktonic foraminifera, echinoid 

fragments, and rare to uncommon calcispheres or inoceramid fragments (Figs. 26C, 

26D). Laminated mudstone intervals appear similar to and are concluded to be the same 

as laminated argillaceous planktonic foraminifera wackestone (Fig. 20). Laminations are 

parallel to bedding and composed of small allochem lags and starved ripples. Contacts 

between the burrowed intervals and laminated mudrock intervals are either sharp or 

gradational. 

Authigenic dolomite is common within this facies as documented in thin section 

and supported by XRD data. Some burrowed limestone layers are pervasively 

dolomitized, destroying any primary depositional fabric (Fig. 26E). Individual peloids are 



 95 

commonly not dolomitized. Relic fauna are rare. Volcanic ash is present within burrowed 

foraminifera wackestone.  
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Figure 26: Burrowed foraminifera wackestone: A) Core slab with red line dividing 

burrowed zone and laminated zone in Austin Chalk. B) Burrow in 

unlaminated interval in Austin Chalk. C) Keeled (C1 Marginotruncana 

(poss.) sp.) and globular (C2 Whiteinella (poss.) sp.) planktonic foraminifera 

in burrowed interval in Austin Chalk. D) Imbricated keeled planktonic 

foraminifera Marginotruncana (poss.) sp. (D1), oyster fragment (D2), and 

globular foraminifera (D3) in grain lamination in Austin Chalk. E) 

Abundant dolomitization and unaltered peloids (E1) in Austin Chalk. 
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Laminated skeletal packstone-grainstone 

This facies is found in outcrop at the Hot Springs locality. It is documented within 

the lowest Ernst Member of the Boquillas Formation above the contact with the Buda 

Limestone. It is accompanied by thin beds of peloidal crystalline mudrock (Fig. 27A). 

The laminated skeletal packstone-grainstone facies consists of discrete grain-

supported, allochem laminations and mud laminations (Fig. 27A). The average 

mineralogy consists of 52% carbonate, 7% quartz, and 17% clay minerals. The average 

mineralogy for this lithofacies will likely differ from similar facies documented in the 

subsurface because all samples for this facies have been exposed to surface conditions. 

This facies is exclusively documented in outcrop. Mud laminations are richer in 

argillaceous material but still have a dominant calcite signature. Beds are centimeter scale 

and are never thicker than fifteen centimeters. Alternating laminations are discrete. Grain 

laminations are interbedded and do not contain mud-size particles or matrix within 

primary pore space (Fig. 27B). Fauna within grain laminations are dominantly planktonic 

foraminifera mixed with inoceramid prisms and fish bones (Fig. 27C). Mud laminations 

contain radiolarians (Fig. 27D). Laminations are generally planar and continuous.  

Soft-sediment deformation on lamination to bed-scale is abundant within 

laminated skeletal packstone-grainstone (Fig. 27E). Laminations have been deformed but 

remain coherent. Grain laminations are reworked into ripples and show scour along bed 

forms.  
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Figure 27: Laminated skeletal packstone-grainstone: A) Outcrop photo of laminated 

skeletal packstone-grainstone with white grain laminations and brown 

carbonate mud laminations in lower Boquillas strata. B) Photomicrograph of 

laminated skeletal packstone-grainstone in lower Boquillas strata. C) 

Photomicrograph of grain lamination with relic fish bones (C1), calcispheres 

(C2), globular planktonic foraminifera (C3), and an echinoderm with calcite 

overgrowth (C4) in lower Boquillas strata. D) Photomicrograph of carbonate 

mud lamination with matrix-supported radiolarians (D1) in lower Boquillas 

strata. E) Photomicrograph of deformed grain and mud laminations from 

water escape in lower Boquillas strata. 
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Volcanic ash  

Volcanic ash deposits are found in both outcrop and core. Outcrop samples from 

the Hot Springs outcrop section are recessive and fissile, and are identifiable by 

weathering character and distinct yellow, orange, or red colors. Volcanic ash at the Hot 

Springs outcrop section is dominantly found within the Ernst Member of the Boquillas 

Formation. Volcanic ash is observed in both Core-X and Winterbotham J.M. Jr. #1 cores. 

Yellowish ashes are friable and are associated with secondary pyrite. Beds are observed 

throughout the Eagle Ford Group. 

Volcanic ash (Fig. 28A) deposits occur as discrete beds or mixed with 

surrounding marine lithofacies. The average mineralogy is 5% carbonate, 4% quartz, and 

52% clay. Clay mineral composition is dominated by illite with lesser amounts of 

montmorillinite and kaolinite. This is different from Pierce (2014); however, samples 

used in said study were from outcrop deposits and may not be correlative to subsurface 

mineralogy because of instability of minerals under surface weathering conditions. 

Discrete ash deposits range in thickness from submillimeter to 25 centimeters. Volcanic 

ash most commonly forms discrete beds with a sharp basal contact and are friable (Fig. 

28A). Phenocrysts at the base of volcanic ashes are generally unsorted and unoriented 

(Fig. 28B); grains within the ash become aligned parallel to bedding throughout the 

deposit. Phenocrysts within the ash beds vary in abundance. Light microscopy reveals 

that phenocrysts of anhedral flakes of a clay mineral are the most common grain variety, 

closely followed by angular beta quartz (Figs. 28C, 28D). Zircon and apatite can 

sometimes be identified in thin-section. The ash matrix is aphanitic and composed of 

dominantly clay minerals (Fig. 28B). Unaltered clay mineral matrix goes to extinction in 

cross-polarized light. Diagenesis of some ash beds has produced irregular, patchy calcite 

within the clay matrix (Fig. 28D).  
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Volcanic ash is mixed within the matrix of mudrock samples. Small grains of beta 

quartz stand out as heterogeneities within the dark brown matrix. Examination with ultra-

violet light and a yellow filter allows for the ash matrix to be distinguished from 

individual peloids (Fig. 28E). Ash-rich matrix (as well as discrete beds) fluoresces bright 

yellow-green when viewed under ultraviolet light.  

Because of the thicknesses and frequency of ash beds, deposits have been 

recorded stratigraphically in two ways. Beds thicker than 2 mm were documented as 

individual deposits within the stratigraphic log (Figs. 35, 36, 38). Thin ash beds less than 

2 mm in thickness were not documented individually on the stratigraphic log because of 

the scale of documentation on the log. All volcanic ash beds (both greater and less than 2 

mm) were counted by depth and recorded graphically in the form of a histogram for 

subsurface sections (Figs. 36, 38). The histogram displays individual ash bed occurrence 

against depth to graphically display the frequency of ash beds and the relative distribution 

of volcanic ash throughout the cored intervals.  
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Figure 28: Volcanic ash: A) Outcrop slab of volcanic ash is grey-yellow and fissile in 

Eagle Ford strata. B) Photomicrograph has pale yellow clay matrix with 

various phenocrysts in Eagle Ford strata. C) Photomicrograph with beta 

quartz (C1), globular planktonic foraminifera (C2), and inoceramid prisms 

(C3) in ash in Eagle Ford strata. D) Phyllosilicate grain within calcitized ash 

matrix in Eagle Ford strata. E) UV + yellow filter photomicrograph of 

globular planktonic foraminifera (E1) and peloids (E2) in fluorescing ash 

matrix in Eagle Ford strata. 
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Massive limestone  

Heterogeneity of indurated outcrop beds observed in thin-section has shown that 

while beds may have a similar outcrop profile, matrix and faunal assemblage differ on a 

fine scale that cannot be explicitly defined using weathering characteristics. This 

pseudolithofacies exclusively pertains to outcrop beds that were not sampled for thin-

sections.  

Massive limestone is defined as nonrecessive, calcite dominant beds observed in 

Big Bend National Park (Fig. 29A). Massive limestone is well cemented and withstands 

erosion. Beds vary in thickness (foot scale) and geometry. Indurated beds are planar, 

tabular, or discontinuous. Discontinuous indurated beds occur along the same bedding 

plane as irregular, lensoid deposits (Fig. 29B). There are sometimes grain laminations 

contained within indurated beds, but such laminations are contained within the base of 

bed.  
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Figure 29: Massive limestone pseudolithofacies: Black arrows show massive limestone 

beds. A) Outcrop photo in the upper Ernst Member of plane-bedded 

indurated limestone outlined in red, color alternations on staff equal 1ft. B) 

Outcrop photo in the lower Ernst Member of planar and lenticular laminated 

limestone interbedded with recessive argillaceous mudrock. 
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Recessive argillaceous mudrock 

This pseudolithofacies represents unsampled, recessive outcrop beds in Big Bend 

National Park. Heterogeneity observed in sampled intervals (thin-section analyses) 

reveals that unsampled beds (those not observed in thin-section) cannot be grouped into 

specific lithofacies by outcrop appearance and relative weathering.  

Recessive argillaceous mudrock is defined as any poorly cemented section at the 

Hot Springs locality in Big Bend National Park (Fig. 30A). Recessive beds are fissile and 

break into small chips along bedding planes, suggesting moderate clay mineral content. 

Considering high carbonate content in other lithofacies, it is likely that the recessive 

argillaceous mudrock pseudolithofacies are composed of carbonate-dominated mud with 

moderate amounts of argillaceous material. Deposits are soft and easily eroded. Deposits 

may be considered laminated because of fissile parting of the recessive units along 

bedding planes.  
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Figure 30: Recessive argillaceous mudrock pseudolithofacies: Black arrow highlights 

recessive argillaceous mudrock beds. A) Outcrop photo of alternating 

recessive marl and massive limestone in upper Boquillas Member, staff 

equals 6ft. B) Outcrop photo of recessive argillaceous mudrock with small 

thrust fault in lower Boquillas Member. 

Peloidal crystalline mudrock  

Peloidal crystalline mudrock is a robust, completely crystalline diagenetic facies 

documented in both outcrop and core (Figs. 31, 32). This facies is documented 

throughout the Eagle Ford and Boquillas Formation, with highest abundances lower in 

the sections (lower Eagle Ford and Ernst Member strata). The thick bedded peloidal 

crystalline mudrock facies observed in outcrop show evidence that the primary 

depositional fabrics have been erased by pervasive subhedral calcite spar. Beds may have 

different appearances in outcrop and weathering expression (Figs. 31A, 31B), but can be 

identified as similar in thin-section. Fauna are rare to common, and are dominated by 

radiolarians (Fig. 31C). Planktonic foraminifera are present but are not common (Fig. 
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31D). Peloids present within peloidal crystalline mudrock are not recrystallized (Fig. 

31C). Original mud matrix in this facies was likely carbonaceous. 

 

  

Figure 31: Peloidal crystalline mudrock: A and B) Peloidal crystalline mudrock in lower 

Boquillas strata as it appears in discrete beds at outcrop. Beds can have 

different outward appearance but look comparable when observed in thin-

section. C) Small interlocking calcite crystals within the matrix with 

recrystallized radiolarians, planktonic foraminifera, and unaltered peloids in 

lower Boquillas strata. D) Hedgergellid planktonic foraminifera within 

secondary calcite crystals in lower Boquillas strata. 

Peloidal crystalline mudrock observed in core is present within several different 

defined lithofacies including laminated argillaceous planktonic foraminifera mudrock, 

laminated argillaceous inoceramid wackestone, weakly laminated wackestone, massive 
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argillaceous claystone, laminated calcisphere grainstone, burrowed foraminifera 

wackestone, and laminated skeletal packstone-grainstone (Fig. 32A). In core slab, 

peloidal crystalline mudrock is a fuzzy, light grey color and overprints primary 

sedimentary laminations. Peloidal crystalline mudrock is defined by authigenic calcite 

growth within argillaceous matrix (Fig. 32B) and commonly contains subvertical ductile 

deformation or folded fractures cemented with equant calcite spar. Relic laminations can 

be seen in some cases but are faint. Peloidal crystalline mudrock beds generally have a 

sharp basal contact that parallels bedding. Authigenic calcite growth that creates the 

peloidal crystalline mudrock facies shows crystallization within the matrix and 

commonly avoids peloids (Fig. 32C). Calcite crystals are not euhedral and create a 

patchy, interlocking network within the matrix. Peloidal crystalline mudrock intervals 

commonly contain abundant, calcitized radiolarians (Fig. 32B). In some samples, 

radiolarians were first pyritized and later calcitized (defined by crosscutting relationships; 

Fig. 32C). Sometimes planktonic foraminifera are found within diagenetic calcite 

intervals, but are rare.   

Timing of the diagenetic calcite is relatively early within the compactional history 

of the system. Laminations overprinted by diagenetic limestone are thicker and far less 

compacted as compared to laminations outside of a diagenetic calcite zone.  
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Figure 32: Peloidal crystalline mudrock in core: A) Core slab in lower Eagle Ford strata 

of diagenetic calcite has sharp base and gradational top. Laminations in 

peloidal crystalline mudrock (A1) are less compacted than compacted 

lamina (A2). B) Pervasive crystallization of matrix and radiolarians (B1) in 

lower Eagle Ford strata. C) Pyritized radiolarians (C1) and peloids (C2) 

within diagenetic calcite crystals in lower Eagle Ford strata. 

 

FACIES SUCCESSIONS 

Facies successions have been logged and compiled for each individual location 

(see Fig. 3). Lithostratigraphies included in this section integrate visual and 
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chemostratigraphic data with gamma ray data from borehole and handheld devices. Two-

dimensional (2D) facies profiles have been created showing the succession as logged per 

core or outcrop section, with proposed stratigraphic divisions. Expanded outcrop and core 

stratigraphies can be viewed in Appendix A. Figure 33 contains a legend to lithofacies 

colors and symbols that are presented in the following section.  
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Figure 33: Legend for stratigraphic sections included within this chapter and within the 

appendix. 
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Hot Springs Outcrop 

Figure 34 contains outcrop photos that pertain to elements discussed in the drafted 

lithostratigraphy. Figure 35 contains handheld gamma-spectrometer and facies profiles 

for the Hot Springs locality in Big Bend National Park (Figs. 3, 6). The measured section 

is dominated by alternating recessive and robust beds with interbedded volcanic ash 

deposits. The gamma ray data displays high-frequency fluctuations in amplitude because 

of high-frequency alternations between clay-mineral-rich mudrocks (high gamma) and 

calcite-dominated limestone (lower gamma).  

The mapped section at the Hot Springs locality within Big Bend National Park 

begins with the uppermost Buda Limestone as it outcrops along the Rio Grande north 

river bank. The following Boquillas Formation was mapped following the river and 

moving upward in the section along dip. 



 112 

 

Figure 34: Outcrop photos from the Hot Springs locality in Big Bend National Park. A) 

Base of measured section with the Buda Limestone (burrowed skeletal 

wackestone, 0 ft) outcropping in the Rio Grande river bed. B) Boquillas 

Formation as it appears in outcrop (13 ft). Contact between the Buda (lower 

bed, burrowed skeletal wackestone) and Ernst Member of the Boquillas 

Formation (upper bed, laminated skeletal packstone-grainstone). C) Contact 

between the Ernst and San Vicente Members of the Boquillas Formation 

(275 ft) marked by the Allocrioceras hazzardi zone outlined in red (note 

cyclicity of massive limestone and recessive argillaceous mudrock). D) 

Large in situ inoceramid in the Ernst Member of the Boquillas Formation on 

the bedding plane of laminated skeletal packstone-grainstone (24 ft). 
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Figure 35: Hot Springs outcrops, Big Bend National Park lithostratigraphy. Color blocks 

refer to facies defined in Fig. 33.  
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The basal 13 feet is the Buda Limestone (Fig. 34A). At 13 feet, the Buda 

Limestone unconformably underlies the Ernst Member of the Boquillas Formation. The 

top of the Buda Limestone is composed of one lithofacies, burrowed skeletal wackestone. 

The basal Ernst Member is composed of thin-bedded, laminated skeletal packstone-

grainstone. The contact between the two units is abrupt. This observation agrees with the 

gamma ray data; the change from the Buda Limestone to the Ernst Member of the 

Boquillas Formation is marked by an abrupt increase in gamma ray response (Fig. 35). 

This abrupt shift is confirmed in outcrop by the abrupt contact and facies change from the 

Buda Limestone to the Boquillas Formation (Fig. 34B). This change is also documented 

by the shift in outcrop profile from Buda (Fig. 34A) to Boquillas (Fig. 34C). The Buda 

Limestone is a mottled, relatively massive limestone while the Boquillas is flaggy, well-

bedded, and regularly alternates between massive limestone and recessive argillaceous 

mudrock.  

A prominent inoceramid pavement is located at 27 ft (Fig. 35) from the base of 

the section (Fig. 34D). Inoceramid are in-situ, intact and range from several millimeters 

thick and up to thirty centimeters in diameter. The deposit is planar and continuous across 

the exposed inoceramid pavement. 

An interval from 75-110 ft (Fig. 35) represents a section of relatively few ash 

deposits as compared to the lower Ernst Member. The gamma ray gradually decreases 

through this interval.  

At 168 ft (Fig. 35), the first petrographic observation of burrowed foraminifera 

wackestone is documented. This example of the facies at this depth is unbedded. This 

observation serves as the lower-most observation of the burrowed foraminifera 

wackestone facies that is generally associated with Austin Chalk deposition within the 

Maverick Basin.  
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The interval from 220-240 ft (Fig. 35) coincides with an area where the outcrop 

was inaccessible for a comprehensive description or collection of gamma ray data. The 

undefined section is dominated by a relatively uniform section of massive limestone.  

The Allocrioceras hazzardi zone as defined by Cooper and Cooper (2014) 

correlates to 271-276 ft (Fig. 35). This boundary is composed of 4 lenticular peloidal 

crystalline mudrock beds in a recessive argillaceous mudrock (Fig. 34C) – these 

lenticular bodies correlate to the iron-stained beds discussed by Cooper (2014). This 5 ft-

thick marker zone represents the contact between the Ernst and San Vicente Members of 

the Boquillas Formation, as well as the stage boundary between the Turonian and 

Coniacian. Gamma ray values in the AHZ are far higher than beds below or above.  

At 302 ft (Fig. 35), a planar igneous intrusion is documented parallel to bedding. 

The intrusion does not appear to greatly deform or alter surrounding sedimentary beds. 

No contact metamorphism is documented. The igneous intrusion may, however, display 

quenched margins.  

Interpretation 

Buda Limestone 

The Buda Limestone is composed of burrowed skeletal wackestone. Petrographic 

analysis shows that burrowing is pervasive and all original sedimentary fabric and 

depositional structures have been obscured. Low gamma ray API values indicate the lack 

of clay minerals within the matrix of the Buda Limestone. Fauna present (gastropods, 

echinoids, planktonic foraminifera) indicate a habitable, normal marine, drowned shelfal 

environment. Stacking in the Buda Limestone shows massive-bedded limestone units 

(burrowed skeletal wackestone) with thin parting layers between beds. Parting layers are 

recessive and cannot be sampled, and are likely composed of clay minerals and represent 

a possible flooding surface.  
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The contact between the Buda Limestone and the Boquillas Formation is abrupt 

(Figs. 34B, 35). Lithofacies on both sides of the contact have different sedimentary 

structures, fauna, composition, and gamma ray values. Because of the substantial 

heterogeneity between the two formations, this contact is interpreted as an unconformity.  

 

Boquillas Formation 

The Ernst Member of the Boquillas Formation is composed of cyclic beds 

consisting of indurated (calcite) and recessive (argillaceous) mudrocks (Fig. 34C). 

Several facies appear within the Ernst Member: laminated skeletal packstone-grainstone, 

laminated argillaceous planktonic foraminifera wackestone, mud-laminated skeletal 

planktonic foraminifera grain-dominated packstone, burrowed foraminifera wackestone, 

and peloidal crystalline mudrock. The recessive argillaceous mudrock beds are thicker 

(several feet) than the indurated massive limestone beds (approximately one foot). The 

massive limestone beds show preferential diagenesis (recognized in thin section as 

peloidal crystalline mudrock). These beds may represent cemented primary depositional 

fabrics such as ripples or dunes. Changes in pseudolithofacies may indicate cementation 

of primary sedimentary fabrics rather than sequence tops.  

Laminated skeletal packstone-grainstone crops out within the lowest Ernst 

Member (Fig. 35) – exhibiting cyclic laminations varying between winnowed grain 

laminations and carbonate-dominated with some argillaceous material within mud 

laminations. Soft-sediment deformation (dewatering structures or flame structures) on a 

lamination-scale infers rapid deposition of sediments that exceeded the rate of 

lithification, compaction, and dewatering (Fig. 27). This succession is thin-bedded and 

does not follow the same indurated-recessive lithofacies motif observed in the rest of the 
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Ernst Member. Laminated skeletal packstone-grainstone stops abruptly after the 

appearance of the inoceramid pavement (Fig. 34D). 

Laminated argillaceous planktonic foraminifera wackestone is recessive in 

outcrop and contains thin grain laminations when observed in thin-section (Fig. 21). 

Fauna in this facies show evidence of reworking into thin, starved ripples Lack of 

burrowing in sediments suggests that sediments were not habitable. Grain quantity is far 

lower than matrix within this lithofacies, implying either low grain accumulation rates or 

high peloid and detrital matrix accumulation rates.  

Laminated skeletal grain-dominated packstone contains a more diverse preserved 

fauna and higher quantity of fauna present. This lithofacies is most likely composed of 

discrete gravity-flows and high energy reworking events because of complete winnowing 

of clay-size material in grain layers. The appearance of this lithofacies coincides with a 

gradational decrease in gamma ray values and an increase in faunal abundance and 

variety (Figs. 25, 35). This documented decrease in gamma ray API confirms winnowing 

of clay minerals within this facies and section.  

Burrowed foraminifera wackestone documented in the upper Ernst Member 

signifies the transitional change to a more habitable depositional environment (Figs. 26, 

35) from the increase in burrowing. Laminated skeletal packstone-grainstone, laminated 

argillaceous planktonic foraminifera wackestone, and mud-laminated skeletal planktonic 

grain-dominated packstone are either not burrowed, or contain rare, short-lived, 

lamination scale burrowing episodes. Burrowed calcisphere packstone is burrowed and 

contains few preserved primary sedimentary structures. Lack of burrowing in underlying 

sediments suggests that sufficient oxygen or nutrients may not have been present, 

whereas pervasive burrowing in the burrowed foraminifera wackestone shows that both 

oxygen and nutrients were available to sustain a habitable environment. 
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Peloidal crystalline mudrock documented in the Ernst Member is concluded to be 

a result of pervasive diagenesis of the original rock matrix (Fig. 31). While this facies has 

been interpreted as an Inoceramite (inoceramid fragment-dominated rock, Sanders, 

1988), relic laminations and 180
o
, 3-way interlocking calcite crystals imply that the fabric 

is diagenetic (Fig. 31).  

The dominant facies documented within the Ernst Member are well bedded and 

well laminated. Fauna are commonly reworked into thin, starved ripples and are 

undisturbed by burrowing. Above 150ft (Fig. 35), burrowing appears within the Ernst 

Member showing a gradational change into the San Vicente Member above.  

The contact between Turonian and Coniacian age strata defined by the appearance 

of the AHZ zone (Figs. 34C, 35) is coincident with an abrupt spike in gamma ray API 

values. Gamma ray values in the Coniacian-age, San Vicente Member have a lower base 

line than the underlying Ernst Member. This contact is defined biostratigraphically by the 

appearance of the Allocrioceras hazzardi by Cooper (2014). The ratio of indurated 

massive limestone and recessive argillaceous mudrock changes into the Coniacian 

section. The ratio essentially switches from that observed in the underlying Ernst 

Member: massive limestone and burrowed calcisphere packstone has units several feet 

thick, and thinner recessive argillaceous mudrock beds (approximately 4:1 ratio). This 

change to dominant massive limestone beds, as well as the presence of burrowed 

calcisphere packstone, suggests that the Coniacian represents a time of better nutrient and 

oxygen availability in an environment capable of supporting life. 

The San Vicente Member is composed of thick to massive-bedded cycles of 

indurated and recessive limestone (massive limestone) and marl beds (recessive 

argillaceous mudrock; Fig. 35). The lithofacies present within the San Vicente Member is 
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burrowed calcisphere packstone. Burrowing is generally pervasive, implying an 

environment with habitable bottom-water sediments.   

The Cenomanian-Coniacian section (Fig. 4) documented at the Hot Springs 

outcrop section demonstrates a variable depositional environment. The Buda Limestone 

represents a time where sediments were oxygenated and habitable based on burrowing 

and fauna documented in petrographic analyses completed for this study. The Ernst 

Member is deposited unconformably onto the Buda Limestone. Deposition in the lower 

~140 ft of the Ernst Member is dominated by reworked grain accumulations and peloids 

as shown laminated argillaceous planktonic foraminifera wackestone and recessive 

argillaceous mudrock. Pristine preservation of laminations, primary sedimentary 

structures, and lack of burrows imply that sediments were not oxygenated but anaerobic 

or dysaerobic. Above 150 ft in the Ernst Member of the Boquillas Formation, burrowing 

is present, showing increased habitability and oxygenation at the sea floor. A gradational 

transition from the Turonian to Coniacian strata at the contact between the Ernst and San 

Vicente Members (Cooper, 2014) demonstrates the interplay of habitable (burrowed) and 

uninhabitable sediments. Sediments in the Coniacian are burrowed and contained enough 

oxygen to sustain life. Alternations between indurated and recessive facies within the 

succession likely represent the impact of detrital argillaceous sedimentation and dilution 

by carbonate sedimentation. The change from well-laminated sediments in the Ernst 

Member to burrowed sediments in the San Vicente Member is linked to a change in 

oxygen and nutrient availability, and possible circulation or upwelling patterns (rather 

than a sea level change).  
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Core-X Conventional Core 

Figure 36 shows gamma ray data, lithofacies stratigraphy, and a histogram of 

volcanic ash abundance for Core-X. Volcanic ash is abundant within the Core-X core, 

containing 328 individual beds. Ashes thicker than 2 millimeters have been documented 

within the stratigraphic section. Volcanic ash deposits thinner than 2 millimeters have 

been documented within the ash abundance histogram (Fig. 36). Gamma ray data shows 

high-frequency variability because of lamination scale heterogeneity and has four 

different motifs: 1) 4,100-4,032 ft, 2) 4,032-3,845 ft, 3) 3,845-3,599 ft, 4) 3.599-3,498 ft. 

The Buda Limestone CGR and SGR trends show a low baseline with small, infrequent 

peaks. The lower Eagle Ford gamma ray data exhibits an abrupt shift to a new, increased 

baseline with very large jumps in API value. Gamma ray data (CGR and SGR) show a 

gradual decrease in API values at the contact between the upper Eagle Ford strata. The 

upper Eagle Ford strata exhibit a lower API baseline reading than the underlying lower 

Eagle Ford strata. CGR and SGR readings show high-frequency alternations in increase 

and decreased API with lower amplitude variability than displayed by the lower Eagle 

Ford strata. The Austin Chalk exhibits a baseline that is slightly lower than the 

underlying Eagle Ford Group. Increased amplitude in gamma ray signal correlates with 

thin clay-mineral-rich deposits of laminated argillaceous planktonic foraminifera 

wackestone.  
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Figure 36: Core-X lithostratigraphy. A key to lithologies can be found in Fig. 33. Ash 

abundance histogram (center) represents number of ashes present per 10 ft 

bin. Gamma (right) is from downhole logs.  
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The Buda Limestone from 4,032.5-4,100 ft (Fig. 36) is burrowed and contains 

wispy, horsetail solution seams. Argillaceous solution seams correspond with increased 

gamma ray API (both CGR and SGR). Gamma ray values remain relatively low in the 

Buda Limestone, with an average reading of 54.46 API. There are no volcanic ash 

deposits within the Buda Limestone.  

The upper 17.5 ft of the Buda Limestone, from 4,032.5-4,050 ft (Fig. 36), is 

composed of a prominent debris-flow. The debris-flow is composed of disrupted beds, as 

well as pebble- to cobble-sized soft-mud intraclasts. Table 7 details the debris-flow at the 

top of the Buda Limestone.  
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Thickness Description 

4,032.5-

4,033.5 

feet 

Massive grey-white limestone. Pebble-sized clasts and Planolites. 

Contact with overlying Eagle Ford is unconformable and 

stylolitized.  

4,033.5-

4,038 feet 

Breccia zone. Pebble- to cobble-sized, subround to subangular 

matrix supported limestone intraclasts. Compactional horsetail 

pressure solution seams form within matrix between clasts.    

4,038-

4,044 feet 

Matrix color is mottled brown and white. Brown matrix is more 

crystalline with common, subvertical calcite-spar filled ptygmatic 

fractures. Rare burrow or clasts.  

4,044-

4,048 feet 

Dark grey-brown lime mudstone with pervasive to common 

horsetail solution seams. Argillaceous seams are densely clustered. 

Sharp-peak or seismogram stylolites are rare. 

4,048-

4,050 feet 

Clasts have irregular outer contacts have experienced some 

burrowing. Ductile lime mud matrix shows soft-sediment 

deformation and differential compaction. 

 Table 7: Description of debris-flow at the top of the Buda Limestone. The Buda 

Limestone is composed of burrowed skeletal wackestone; the debris flow 

described above is composed of brecciated clasts of the same facies.   

The contact between the Buda Limestone and Eagle Ford Group (Fig. 37) occurs 

at 4,032.5ft. The contact is abrupt, jagged, and stylolitized with small, angular clasts of 

Buda Limestone in the basal Eagle Ford Group. Sediment fabrics shift from burrowed 

strata in the Buda Limestone to laminated and unburrowed strata in the Eagle Ford 

Group. The total gamma ray data shows abrupt increase defining the shift from Buda 
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Limestone (54 API) to Eagle Ford Group (191 API; Fig. 36). The transition from the 

Buda Limestone to the Eagle Ford Group also marks a change in discrete volcanic ash 

bed preservation; ash beds are abundant in the Eagle Ford Group, whereas they do not 

appear in the Buda Formation contained within this core (Fig. 36). While volcanic ash is 

not documented in the Buda Limestone, the lack of documented deposits does not 

necessarily mean volcanism did not occur during deposition, simply that discrete beds 

were not preserved (either from lack of accumulation, lack of volcanism, increased 

dilution, or homogenization of sediments from burrowing).  

 

 

Figure 37: Contact between Buda Limestone and Eagle Ford Group at 4,032.5 ft. A) Core 

slab showing the stark color contrast between the Buda Limestone 

(burrowed skeletal wackestone) and Eagle Ford Group (laminated 

argillaceous planktonic foraminifera wackestone). B) Photomicrograph 

showing Buda Limestone lithoclasts within the Eagle Ford Group. The 

contact is outlined in red.  

The interval from 3,973-3,979 ft (Fig. 36) contains the highest abundance of in-

situ inoceramid shells within a shell pavement and transported inoceramid prisms. 
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Oysters also appear attached to the top of some in-situ inoceramid shells. Within the 

lower Eagle Ford there is an increase in clay mineral abundance captured in gamma ray 

API – CGR values gradually increase above 3,950 ft (Fig. 36). 

The contact between lower and upper Eagle Ford occurs at 3,842.5 ft (Fig. 36). 

The contact is represented by a change in gamma ray response and coincides with the 

appearance of burrowed foraminifera wackestone. Gamma ray values decrease (Fig. 36) 

from the lower into the upper Eagle Ford, mirroring the decrease in clay mineral 

abundance in the upper Eagle Ford member. The interval of burrowed foraminifera 

wackestone from 3,842.5-3,844.5ft (Fig. 36) marks the lowest documented occurrence of 

fabric destructive burrowing within the Eagle Ford Group. Volcanic ash abundance 

below the burrowed foraminifera wackestone is much lower compared to the rest of the 

Eagle Ford Group (Fig. 36). The massive argillaceous claystone facies overlies the 

burrowed foraminifera wackestone. This is the single occurrence of this lithofacies in 

Core-X (Fig. 36). This lithofacies shift marks a change from burrowed to unburrowed 

rocks.  

At a depth of 3,773 ft (Fig. 36) there is a pronounced change in fauna and 

sedimentary features. Grain laminations above this depth (shallower) are more abundant 

than mud laminations (carbonaceous or argillaceous), which have been the dominant 

lamination variety throughout the underlying Eagle Ford section. This change in 

lamination is documented in the facies changes from laminated argillaceous planktonic 

foraminifera wackestone (Fig. 20) and laminated argillaceous inoceramid wackestone 

(Fig. 21) to laminated calcisphere grainstone (Fig. 24). This is supported by the dominant 

facies shift from laminated argillaceous planktonic foraminifera wackestone and 

laminated argillaceous inoceramid wackestone to laminated calcisphere grainstone. Total 

gamma ray data in this section of the upper Eagle Ford (Fig. 36) show variation in 



 126 

frequency, but have low-magnitude amplitude changes in API values – showing 

relatively consistent uranium, potassium, and thorium values and therefore consistent 

clay mineral content. Volcanic ash beds start to increase in abundance (Fig. 36). 

An interval from 3,727-3,748 ft (Fig. 36) contains non-in-situ, transported beds 

that have experienced soft-sediment deformation. This interval contains pebble-size 

intraclasts as well as common, bed-scale folding of the laminated calcisphere grainstone 

facies (Fig. 24). The sediments were semi-coherent at the time of deformation; beds 

contain intact laminations that have been ductily deformed. Volcanic ash layers (Fig. 28) 

documented within this interval are bedded and contained within the folded and deformed 

units. 

At 3,631 ft (Fig. 36), occurs the thickest volcanic ash deposit within the Eagle 

Ford Group in Core-X. The eight inch thick deposit is grey-yellow, friable, and parts 

easily along bedding planes. The deposit contains phenocrysts of beta quartz and 

phyllosilicate grains, as well as authigenic pyrite (Fig. 28). SGR and CGR data across the 

ash bed show increase values related to increase clay mineral volume increase.  

At a depth of 3,599 ft (Fig. 36) marks the contact between the Eagle Ford Group 

and the overlying Austin Chalk. The gamma ray response shows a decrease in API values 

(Fig. 36). Lithofacies styles shift above 3,599 ft (Fig. 36) (shallower) to pervasive 

burrowing that has obliterated any primary depositional fabric. Lithofacies below 3,599 ft 

such as laminated argillaceous planktonic foraminifera wackestone (Fig. 20), laminated 

argillaceous inoceramid wackestone (Fig. 21), and laminated calcisphere grainstone (Fig. 

24) are well laminated and contain well-preserved sedimentary features. Burrowed 

foraminifera wackestone (Fig. 26) above 3,599 ft (Fig. 36) contains fewer primary 

sedimentary features and fewer volcanic ash (Fig. 28) deposits.   
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Interpretation 

Buda Limestone 

The Buda Limestone is composed of burrowed skeletal wackestone (Fig. 19). 

Burrowing, abundant calcispheres and skeletal fragments, and lack of bedding features 

lead to the conclusion the depositional setting was that of an open-marine carbonate shelf. 

While pressure solution seams occur as a product of compaction, the density and 

thickness of solution seams in the Buda Limestone infer that there may be a lithologic 

change across these zones. It is proposed that stylolite seams represent phyllosilicate-rich 

sediment deposition within the Buda Limestone. These phyllosilicate deposition events 

may represent a storm deposit or a flooding surface. Pressure solution seams show 

preferential nucleation of authigenic minerals (Fig. 19). API values in the Buda are the 

lowest within the Core-X succession (Fig. 36); this is related to low redox sensitive 

uranium and low quantities of clay minerals. 

The upper Buda Limestone is capped with a prominent mass-transport deposit 

composed of eroded intraclasts (Fig. 36, Table 7). Intraclasts are similar to the burrowed 

skeletal wackestone but containing fewer fauna. Intraclasts are subrounded to subangular 

with distinct, rounded edges. These observations suggest that clasts may have been semi-

lithified, or soft rather than brittle during the high-energy mass-transport deposit. 

The contact between the Buda Limestone and Eagle Ford Group represents a 

prominent unconformity (Fig. 36, 37) because of the change in facies type, mineralogy, 

oxygen-level, stylolitization, abruptness of the change, and bioturbation. Lithofacies shift 

from bioturbated (burrowed skeletal wackestone; Fig. 19) in the Buda Limestone to 

laminated carbonate-dominated mudstones such as laminated argillaceous planktonic 

foraminifera wackestone (Fig. 20), laminated argillaceous inoceramid wackestone (Fig. 

21), massive argillaceous claystone (Fig. 23), and laminated calcisphere grainstone (Fig. 
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24) in the Eagle Ford Group. These facies changes show the change from a habitable, 

oxygen-rich environment to an oxygen-poor environment because sediments were not 

habitable (Fig. 14). The abrupt increase in gamma ray values agrees with the abrupt 

increase in clay mineral volume and uranium volume (Fig. 36).  

 

Eagle Ford Group 

The lower Eagle Ford strata are dominated by alternating laminated argillaceous 

planktonic foraminifera wackestone and laminated argillaceous inoceramid wackestone 

(Figs. 20, 21, 36). While the dominant fauna in these facies differ between planktonic 

foraminifera and inoceramids, sedimentary structures, mineralogy, and grain abundance 

remain similar. Laminations are composed of lags and winnowed ripples composed of 

fauna, indicating that there were active bottom-current reworking fauna. Alternation 

between grain laminations and argillaceous mud laminations suggests cyclic processes in 

deposition or change in current speed that allowed or disallowed the deposition of mud-

size particles (Schieber et al., 2013). Lack of burrowing suggests that sediments were 

uninhabitable. Appearance of in-situ, intact, bedding parallel inoceramid shells (no 

evidence of transport) indicates varying levels of low-oxygen above the sediment because 

inoceramid bivalves have adapted specifically in morphology and anatomy to survive in 

oxygen-depleted or “chemically deleterious” environments (Kaufmann, 1988; Kauffman 

and Harries, 1992; MacLeod and Hoppe, 1992; Harries et al., 1996). Some laminations 

contain broken inoceramid fragments, suggesting shells have also been transported or re-

worked; this also confirms that the surrounding environment was oxygen-depleted. This 

is confirmed by molybdenum enrichment throughout the interval (Fig. 10). Alternations 

between these two lithofacies are likely related to water chemistry and ability for 

inoceramid bivalves to live on the sea floor in the surrounding environment. Nutrients 
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and oxygen, while not in high quantities, were more available during deposition of the 

laminated argillaceous inoceramid wackestone (Fig. 21) than during the deposition of 

laminated argillaceous planktonic foraminifera wackestone (Fig. 20). API values 

throughout the lower Eagle Ford section display the greatest difference between CGR and 

SGR (Fig. 36) – this observation is supported by the increased quantities of volcanic ash 

and clay minerals in the lower Eagle Ford strata (Fig. 9, 10). 

Weakly laminated wackestone in the upper portion of the lower Eagle Ford strata 

has parallel laminations and lacks grain accumulations or ripples (Figs. 22, 36). 

Deposition in this lithofacies is similar to that of the laminated argillaceous planktonic 

foraminifera wackestone (Fig. 20) and laminated argillaceous inoceramid wackestone 

(Fig. 21). Bottom-currents can help procure planar laminations (Schieber and Southard, 

2009). Observed decrease in grain content is most likely related to an increase in mud-

size material rather than a decrease in grain contribution (Figs. 20, 21).  

A total 168 individual ash beds were documented in the lower Eagle Ford strata 

(Fig. 36). Volcanic ash in the lower Eagle Ford strata creates an approximate bell curve 

with the greatest number of preserved ashes in the middle of the lower Eagle Ford strata. 

Volcanic ash gradually increases from the Buda Limestone-Eagle Ford Group contact 

and decreases towards the lower-upper Eagle Ford strata contact. Volcanic ash (Fig. 28) 

is commonly adjacent to peloidal crystalline mudrock (Fig. 31) and abundant 

radiolarians. While there may be a relationship between these features (peloidal 

crystalline mudrock Fig. 31, volcanic ash Fig. 28, radiolarian abundance), evidence from 

this study is not conclusive as to how they are interrelated.  

The contact between the lower and upper Eagle Ford strata has several defining 

features. Gamma ray values in the lower Eagle Ford strata gradually decrease to a new 

baseline representing the upper Eagle Ford strata (Fig. 36). Decrease in gamma ray 
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values is supported by decrease in clay mineral volume (Fig. 9, 10) and mirrors a 

decrease in TOC weight percent (Fig. 17). Lithofacies dominant in the upper Eagle Ford 

strata such as laminated calcisphere grainstone (Fig. 24) have greater grain abundance 

and less clay-rich matrix, explaining the decrease in gamma ray values. Approximately 

1.5 ft of burrowed foraminifera wackestone (Fig. 26) appears at the contact between 

lower and upper Eagle Ford strata (Fig. 26, 36). This lithofacies represents a substantially 

different depositional environment than had been present in the underlying lower Eagle 

Ford strata. Sediments are burrowed, indicating habitable and oxygenated sediments and 

water-column (Fig. 17). This substantial change may be linked to water depth; however, 

no evidence explicitly shows this. This change may be related to water chemistry and 

circulation. Volcanic ash abundance decreases towards the contact and increases away 

from the contact.  

The upper Eagle Ford strata are composed of four main lithofacies: massive 

argillaceous claystone (Fig. 23), laminated argillaceous planktonic foraminifera 

wackestone (Fig. 20), weakly laminated wackestone (Fig. 22), and laminated calcisphere 

grainstone (Figs. 24, 36). The massive argillaceous claystone occurs as a lithofacies that 

grades into laminated argillaceous planktonic foraminifera wackestone. Beds and 

laminations are planar, suggesting that bottom-currents and sediment deposition is similar 

between these lithofacies. The massive argillaceous claystone deposits may represent a 

change in deposition or regional climate impacting sedimentation within the basin for a 

brief period. The grain-dominated laminations within laminated argillaceous planktonic 

foraminifera wackestone are winnowed of mud-size material and reworked into starved 

ripples. Ash abundance in the upper Eagle Ford demonstrates a different character than 

that of the lower Eagle Ford (Fig. 36). Ashes are still very common within the upper 

Eagle Ford but are more dispersed (more evenly distributed) than the bell-curve pattern 
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of ash abundance in the lower Eagle Ford. This may be related to more consistent 

volcanism during deposition. 

Laminated calcisphere grainstone is the most distinctive lithofacies of the upper 

Eagle Ford strata (Fig. 36). Calcisphere laminations are reworked into ripples (Fig. 24). 

Compaction of ripples and bars has produced substantial differential compaction around 

each feature, creating the nodular and wavy appearance preserved in core (Fig. 24). Soft-

sediment deformation, flame structures, and water escape structures demonstrate 

sediments were deformed after sediment accumulation and deposition (Fig. 24). Well-

developed ripples indicate the presence of bottom-current influence on grain 

accumulations (Fig. 24). Pristine preservation of primary sedimentary structures implies 

that sediments were not habitable and were not pervasively bioturbated. Brief appearance 

of millimeter-size, lamination-scale burrows imply that ‘doomed pioneer’ fauna may 

have attempted to colonize the area but were unable.  

The shift between laminated argillaceous planktonic foraminifera wackestone 

(Fig. 20), weakly laminated wackestone (Fig. 22), and laminated calcisphere grainstone 

(Fig. 24) represents a shift in sediment supply and depositional processes (Fig. 36). 

Winnowing of starved ripples in laminated argillaceous planktonic foraminifera 

wackestone (Fig. 20), planar beds in weakly laminated wackestone (Fig. 22), and well-

developed ripples in laminated calcisphere grainstone (Fig. 24) is strong evidence that 

bottom-current were an important and active feature of deposition in the upper Eagle 

Ford strata. It is proposed that the change in preserved structures (ripple variety) is 

largely related to the quantity of fauna versus the quantity of mud (clay matrix, peloids, 

peloidal material, carbonate or siliciclastic or argillaceous). Matrix clay minerals and 

peloids are the dominant deposited sediment within weakly laminated wackestone (Fig. 

22); grains are diluted by matrix material. In laminated calcisphere grainstone, high 
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quantity of fauna dilutes the amount of matrix material (Fig. 24). Additionally, the variety 

of fauna present is a function of changing water habitability.  

The upper Eagle Ford strata have several bed- to lamination-scale episodes of 

soft-sediment deformation, folding, and transported material (Fig. 36). These styles of 

deposits are interpreted as mass-transport slumps of intrabasinal material from a slightly 

more proximal location. Plastic deformation of semi-coherent beds can be used to 

interpret that slumping occurred in ductile sediments (Fig. 24). Many grain-dominated 

laminations composed of mixed fauna could be interpreted as individual gravity-flow 

deposits, wherein nonlithified grains have been transported from other locations within 

the basin.  

Volcanic ash (Fig. 28) in the upper Eagle Ford strata is less consistently abundant 

than in the lower Eagle Ford strata (Fig. 36). A total of 147 individual volcanic ash beds 

are observed in the upper Eagle Ford strata. The thickest volcanic ash deposit is located at 

the top of the upper Eagle Ford strata (Fig. 36). This 17 cm ash should be considered a 

marker indicating the nearness of the contact between upper Eagle Ford strata and the 

Austin Chalk.  

The contact between the upper Eagle Ford the Austin Chalk can be identified 

several ways. Gamma ray values gradationally decrease to a new baseline within the 

Austin Chalk (Fig. 36) indicating a decrease in clay mineral volume (Figs. 9, 10). 

Preserved, discrete volcanic ash beds significantly decrease into the Austin Chalk (Fig. 

36). Lithofacies and associated depositional environment change from well-laminated 

and well-preserved sedimentary features to fabric destructive bioturbation.  

The Austin Chalk is composed of burrowed foraminifera wackestone with thin 

layers of laminated argillaceous planktonic foraminifera wackestone (Figs. 20, 26, 36). 

Bioturbation in burrowed foraminifera wackestone (Fig. 26) is pervasive; the bioturbation 
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destroys any primary sedimentary features. This lithofacies indicates that the depositional 

environment was habitable and able to support life within the sediment and water-column 

(Fig. 17). Cyclic interbeds of laminated argillaceous planktonic foraminifera wackestone 

represents periods wherein sediments were not habitable (Fig. 36). The thin intervals of 

laminated argillaceous planktonic foraminifera wackestone (Fig. 36) shows a period of 

gradational transition from the underlying Eagle Ford Group to the Austin Chalk above. 

Winterbotham J.M. Jr. #1 Conventional Core 

Figure 38 illustrates the gamma ray, lithofacies, and volcanic ash stratigraphy for 

the Winterbotham J.M. Jr. #1 core from Zavala County, Texas (Fig. 3). Gamma ray data 

documented in a photo of the original 1971 drilling document does not have calibrated 

numerical data to accompany the curve; thusly, CGR and SGR have been calculated 

using XRF data. The high-frequency alternations of the gamma curves is most likely 

related to small-scale lamination heterogeneity from calcite-dominated to clay-mineral-

dominated laminations within the core. The core contains 152 appearances of volcanic 

ash. The majority of volcanic ash within this core is mixed with matrix sediments 

(discrete beds are less common). Computed gamma ray from XRF data is more accurate 

in the SGR curve. 
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Figure 38: Winterbotham J.M. Jr. #1 lithostratigraphy. Ash abundance is displayed as a 

histogram showing ash beds per nine foot interval. Gamma ray values have 

been computed using XRF data. Key is contained in Fig. 33. 
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The lowest documented occurrence of burrowing within the Eagle Ford Group is 

documented at a depth of 6,339 ft (Fig. 38). Burrows are up to 1 cm in diameter and 

disrupt and truncate original sedimentary laminations.  

The thickest volcanic ash layer in the Winterbotham J.M. Jr. #1 core is 

documented at a depth of 6,332 ft (Fig. 38). The 10 cm thick volcanic ash is composed of 

a clay-rich, yellow groundmass with various phenocrysts including beta quartz, 

phyllosilicate flakes, plagioclase feldspar, as well as authigenic pyrite (Fig. 39). The 

gamma ray log at 6,332 ft (Fig. 38) shows an increase in API related to increased 

potassium content and increased clay mineral volume within the ash.  

The interval from 6,295-6,285 ft (Fig. 38) highlights a section of transported 

intraclasts and beds. This unit contains angular, pebble- to cobble-sized lithoclasts of 

cemented, calcisphere and planktonic foraminifera laminations and contains laminated 

skeletal grain-dominated packstone lithofacies (Figs. 25, 38). Above the intraclast 

deposit, beds are folded and contorted. Laminations remain coherent and are plastically 

deformed without brittle breakage. Volcanic ash beds (Fig. 28) are contained within the 

folded and contorted beds. The section from 6,260-6,238 ft (Fig. 38) delineates a section 

of laminates skeletal grain-dominated packstone (Fig. 25) containing by both large-scale 

and small-scale soft-sediment deformation. Bed-scale folds remain coherent with 

identifiable laminations. Deformation is ductile. Lamination-scale deformation of 

laminated skeletal grain-dominated packstone is documented by uneven scour of 

siliceous, argillaceous, or carbonate mud laminations, differential compaction, and flame 

structures (Fig. 25).  

A change in dominant lithofacies from laminated argillaceous planktonic 

foraminifera wackestone (Fig. 20) to burrowed foraminifera wackestone (Fig. 26) occurs 

at a depth of 6,238 ft (Fig. 38). This change documents a change in habitability of 



 136 

sediments as documented in shift from no bioturbation to pervasive bioturbation. The 

gamma ray log at this point shows a small increase in API 6,245 ft (Fig. 38) followed by 

a gradational decrease to a new, lower baseline.  

 

 

Figure 39: Winterbotham J.M. Jr. #1 photographs and photomicrographs. A) Thickest 

volcanic ash bed in the core at 6,332 ft I the upper Eagle Ford strata. The 

small dark patches are authigenic pyrite. B) Brittle lithified intraclasts in a 

debris-flow deposit in the upper Eagle Ford Group at 6,293 ft (overlain by 

laminated skeletal grain-dominated packstone).  
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Interpretation 

Eagle Ford Group 

Fourteen feet of the lower Eagle Ford strata are preserved in the Winterbotham 

J.M. Jr. #1 (Fig. 38). The division between lower and upper Eagle Ford in the 

Winterbotham J.M. Jr. #1 core was defined by a decrease in API values (Fig. 38), a 

decrease in redox sensitive elements (Fig. 15), and increase in manganese (Fig. 15), and 

the appearance of the titanium-rich massive argillaceous claystone (Fig. 23). This section 

contains laminated argillaceous planktonic foraminifera wackestone (Fig. 20), laminated 

argillaceous inoceramid wackestone (Fig. 21), volcanic ash (Fig. 28), and peloidal 

crystalline mudrock (Fig. 31). Laminated argillaceous planktonic foraminifera 

wackestone contains winnowed starved ripples (Fig. 20). Winnowing and reworking of 

allochem-rich laminations support the influence of bottom-current processes within the 

section. Inoceramid shells located within bedding planes express an environment that is 

oxygen-poor (Kaufmann, 1988; Kauffman and Harries, 1992; MacLeod and Hoppe, 

1992; Harries et al., 1996). Lack of bioturbation indicates poor living conditions within 

the sediment supported by increased molybdenum (Fig. 15). Volcanic ash abundance 

within the lower Eagle Ford strata is low in comparison to the ash content observed in the 

upper Eagle Ford (Fig. 38). Because the lower Eagle Ford section in this core is 

incomplete, a relationship between ash abundance in the lower and upper Eagle Ford 

strata cannot be derived. The decrease in ash in the upper portion of the lower Eagle Ford 

documented in the Winterbotham J.M. Jr. #1 parallel the trend documented in the upper, 

lower Eagle Ford in Core-X. Less volcanic ash documented in the lower Eagle Ford 

strata as compared to the upper Eagle Ford strata in the Winterbotham J.M. Jr. #1 cannot 

be related to increased volcanism in the upper Eagle Ford strata. The transition between 

the lower and upper Eagle Ford is signaled by a gradual decrease in SGR values 
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representing the decrease in clay mineral volume from the lower to upper Eagle Ford 

strata. SGR gamma ray values show high variability in readings because of high cyclicity 

and changing of laminations (Fig. 38).  

The upper Eagle Ford strata is more diverse than the lower Eagle Ford strata (Fig. 

38) and contains laminated argillaceous planktonic foraminifera wackestone (Fig. 20), 

laminated argillaceous inoceramid wackestone (Fig. 21), laminated skeletal grain-

dominated packstone (Fig. 25), weakly laminated wackestone (Fig. 22), massive 

argillaceous claystone (Fig. 23), volcanic ash (Fig. 28), and peloidal crystalline mudrock 

(Fig. 31). Laminated argillaceous planktonic foraminifera wackestone contains winnowed 

allochem laminations indicating the presence of an active bottom-current. Parallel-

laminated mudrock may have been deposited under similar bottom-current conditions; 

however, peloidal and matrix material accumulation rates or input would have been high 

enough to prohibit the accumulation and reworking of grains on a bedding plane. 

Burrowing within the upper Eagle Ford strata is present within the laminated skeletal 

grain-dominated packstone (Figs. 25, 38). Burrowing is generally contained within a 

single lamination (~5 mm); indicating sediment was not completely habitable. The 

laminated skeletal grain-dominated packstone contains allochem supported laminations 

that are poorly sorted and contain a broad assortment of fauna (saccocomid fragments, 

planktonic foraminifera, fish bones). Soft-sediment deformation in the vicinity of these 

laminations and poor sorting of grains leads to the interpretation that laminations are the 

result of gravity-flows or small mass-wasting deposits. Larger, soft-sediment deformation 

is also present within the section interpreted as slumping (Fig. 39). The succession of 

well-laminated, matrix sediments with no burrowing and restricted fauna (planktonic 

foraminifera and inoceramids) changes to grain-supported laminations and a larger 

variety of fauna (planktonic foraminifera, echinoids, calcispheres) documents the gradual 
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change to a more nutrient-rich, habitable environment in the upper Eagle Ford. This may 

be related to increased circulation introducing more nutrients into the system.  

 

Austin Chalk 

The Austin Chalk in the Winterbotham J.M. Jr. #1 is composed of burrowed 

foraminifera wackestone (Fig. 26) with thin intervals of laminated argillaceous 

planktonic foraminifera wackestone (Fig. 20). This section contains less volcanic ash 

than the underlying section. Pervasive burrowing has erased original sedimentary features 

and suggests oxygenation of sediments (Fig. 15). Thin intervals of planktonic 

foraminifera wackestone show reworked foraminifera laminations and starved ripples 

indicating deposition under the influence of bottom-currents.  

Peloidal crystalline mudrock (Fig. 31) within the lower and upper Eagle Ford 

strata (Fig. 38) is concluded to be the result of diagenesis. Calcite crystals pervasively 

precipitate within the clay matrix and do not affect peloids. Peloidal crystalline mudrock 

appearance is generally coincident with abundant radiolarians.  

Fauna and Biostratigraphy 

Seven faunal divisions have been described: three different groups of planktonic 

foraminifera, radiolarians, calcispheres, inoceramid, and inoceramid filaments. The 

biostratigraphy has been created by assigning relative abundance values based on 

abundance of each individual groups of biologic fauna collected using petrographic 

description. The majority of faunal identifications were done under the guidance of Dr. 

Richard Denne. 
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FAUNAL DESCRIPTIONS 

The following section contains a brief evaluation of each different faunal group 

used for biostratigraphic analyses. Each faunal group has been selected because of 

occurrence within the section and potential relationship to environmental conditions. The 

following defined faunal taxa do not represent the total diversity of fossils found within 

the Buda Limestone, Boquillas Formation, Eagle Ford Group, or Austin Chalk, but are 

the most significant for this study.  

Planktonic Foraminifera 

Planktonic foraminifera have been divided into three classes based on depth of 

living environment. Major changes occur within test morphology and geometry with 

increasing depth as planktonic foraminifera adapt to exploit oxygen at deeper water 

depths. Three main divisions were defined using classifications described by Boudagher-

Fadel (2013) and Denne et al. (2014) (Fig. 41). The first family, Hedbergellidae, contains 

Hedbergella and Whiteinella. The tests of these planktonic foraminifera are trochospiral, 

with rounded and/or globular chambers. These genera dwell in the shallow, surface zone 

and are eutrophic (Boudagher-Fadel, 2013). The second family, Heterohelicidae, contains 

the genus Heterohelix. These planktonic foraminifera lived in deeper surface to 

intermediate water depths and are mesotrophic (Boudagher-Fadel, 2013). A 

morphological change occurs in Heterohelix genus from the Cenomanian to Turonian. In 

the Cenomanian, some tests are narrow and chambers are small (Heterohelix moremani), 

whereas some tests in the Turonian are larger more obtuse tests with globular chambers 

(Heterohelix globulosa; Boudagher-Fadel, 2013). The third division, keeled planktonic 

foraminifera, contains Rotalipora cushmani, Rotalipora greenhornensis, Rotalipora sp., 

and Globotruncana. The last group contains any evolutionarily complex planktonic 

foraminifera that dwell in deep neritic waters (Boudagher-Fadel, 2013). This taxon of 
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foraminifera is commonly oligotrophic (Boudagher-Fadel, 2013). Rotalipora cushmani is 

specifically important because it is the marker species for the end of the Cenomanian 

stage (Boudagher-Fadel, 2013).  

For the purposes of this study, depth of habitation of planktonic foraminifera will 

be discussed in terms of habitation zone and relative nutrient availability. Planktonic 

foraminifera will be characterized by eutrophic, mesotrophic, or oligotrophic.  
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Figure 40: Generalized distribution of Cretaceous planktonic foraminifera within the 

water-column. This image is a visual model and should not be read to scale. 

Modified from Boudagher-Fadel (2013) and Denne et al. (2014). 

Hedbergellidae represents surface-dwelling planktonic foraminifera and are 

eutrophic (1: Hedbergella sp. in Core-X lower Eagle Ford strata in 

laminated argillaceous planktonic foraminifera wackestone at 4,008 ft and 2: 

Whiteinella in Hot Springs upper Ernst Member strata in laminated skeletal 

grain-dominated packstone at 168 ft). Heterohelicidae represents 

intermediate water-depth planktonic foraminifera and generally exist in 

eutrophic to mesotrophic water conditions (3: Heterohelix sp. in Core-X in 

lower Eagle Ford strata laminated argillaceous planktonic foraminifera 

wackestone at 3,9551 ft and 4: Heterohelix sp. in Core-X upper Eagle Ford 

strata at 3,720 ft). Keeled planktonic foraminifera represent deep-dwelling 

planktonic foraminifera that can live in more specialized conditions (5: 

Rotalipora cushmani in Core-X lower Eagle Ford strata in laminated 

argillaceous planktonic foraminifera wackestone at 3,851 ft and 6 

Globotruncana sp. in the Core-x Austin Chalk strata in burrowed 

foraminifera wackestone at 3,550 ft). 



 143 

CLASS FORAMINIFERA Lee, 1990 

ORDER GLOBIGERINIDA Lankaster, 1885 

Superfamily GLOBIGERINOIDEA Carpenter, Parker and Jones, 1862 

 This superfamily contains members with a trochospiral test. Chambers 

appear rounded to angular. The keel is peripheral or occurs as an imperforate band with a 

double keel. The primary aperture may be either covered by tegilla or umbilical with 

portici. If covered by tegilla, it may have accessory apertures. The surface of the chamber 

wall may be muricate, spinose, with perforation cones, without perforation cones, or 

smooth. The wall can be either macro- or microperforate. Aperture may be intra-

extraumbilical, umbilical, or interiomarginal. Intra-extraumbilical apertures may be 

bordered by a lip.  

Family Hedbergellidae Loeblich and Tappan, 1961 

 The family Hedbergellidae test is trochospiral and macroperforate. 

Irregular rugosities may be formed through fusing of the muricate and muricae on the 

first whorls. Imperforate, irregular ridges may form on early chambers of the last whorl 

because of coalescing of perforation cones. The umbilicus has small unfused portici. The 

aperture is intra-extraumbilical. The family exists from Cretaceous (Late Aptian) to 

Paleocene.  

 Hedbergella Brönniman and Brown 1958 (Type species: Anomalina 

lorneiana d’Orbigny variation trocoidea Gandolfi, 1942). Cretaceous 

(Late Albian) to Paleocene (Danian) with four to four and one half 

chambers per whorl. Short portici cover the umbilicus.  

 Whiteinella Pessagno, 1967 (Type species: Whiteinella 

archaeocretacea Pessagno, 1967). Cretaceous (Middle Cenomanian to 

Early Campanian) age with relict apertures and a weak keel on periphery 
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of late chambers and does not extend to dorsal features. The aperture has 

no tegillum and broad, long portici, as well as a broad umbilicus. The test 

is generally similarly muricate and biconvex.  

Family Rotaliporidae Sigal, 1958 

 The family Rotaliporidae test has a single keel and is macroperforate and 

trochospiral. Long portici cover the central umbilicus and may sometimes fuse together 

to form additional apertures. The main aperture has a prominent apertural lip and is 

intraextraumbilical. The family exists from Cretaceous Late Aptian to Cenomanian.  

 Rotalipora Brotzen 1942 (Type species: Rotalipora turonica Brotzen, 

1942). Cretaceous Middle Cenomanian to Late Cenomanian with angular 

chambers and a single keel. Sutures are elevated on umbilical and spiral 

sides. Extensions from the chambers can form sutural, supplementary 

apertures.  

Family Globotruncanellidae Maslakovae, 1964 

 The family Globotruncanellidae test has compressed chambers that is 

either plano- or concavo-convex and is trochospiral. Tegilla or portici cover the 

umbilicus and the test has intra-extraumbilical apertures. Chamber walls have well-

developed muricae and are macroperforate. The family exists from Cretaceous Late 

Albian to Maastrichtian.  

 Dicarinella Porhault 1970 (Type species: Globotruncana indica Jacob 

and Sastry, 1950). Cretaceous Turonian to Santonian with a compressed 

test with closely placed keels on the periphery. Short portici are associated 

with an open umbilicus. Sutures can be either compressed (umbilical) or 

raised (spiral).  

Family Globotruncanidae Brotzen, 1942 
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 The family Globotruncanidae test is trochospiral and macroperforate, and 

has irregularly arranged rugosities formed by muricae fusing on the first whorls. Unfused 

portici or tegillum occur with the widely open umbilicus. The test may have a peripheral 

keel or two keels with an angular truncated peripheral margin. The family exists from 

Cretaceous Turonian to Maastrichtian.  

 Globotruncana Cushman 1927 (Type species: Pulvinulina 

Cushman, 1927). Cretaceous Late Coniacian to Maastrichtian with a 

biconvex test with circular to lobate outline and crescentic to globular 

chambers. It is double keeled with a possible intermediate imperforate 

band; the keels may be reduced to a single keel towards the final chamber. 

The primary aperture is covered by a tegillum and is intraumbilical.  

 Marginotruncana Hofker, 1956 (Type species: Rosalina marginata 

Reuss1 1845). Cretaceous-aged (Middle Turonian to Santonian) plano- to 

biconvex test with keeled spiral sutures and umbilical, as well as an intra-

extraumbilical primary aperture with portici. An imperforate band (part of 

the periphery) is located between the two keels.   

ORDER HETEROHELICIDAE FURSENKO, 1958 

Superfamily HETEROHELICOIDEA Cushman, 1927 

 This superfamily contains members with a biserial or triserial test (early 

stages may be uniserial). The apertures may have either a high to low arch in the final 

stage. Apertures may also be terminal within the uniserial stage. Test walls can be 

muricate or smooth, and are composed of radial calcite. Cretaceous (Aptian) to present 

day.  

Family Heterohelicidae Cushman, 1927 
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 The family Heterohelicidae test is biserial, triserial, or multiserial in later 

stages. Early stages are commonly uniserial. Chamber walls of the test can be either 

macroperforate or microperforate. The aperture is asymmetrical. Asymmetry occurs 

along the equatorial axis. The family exists from Cretaceous (Late Albian) to Eocene 

(Priabonian).  

 Heterohelix Ehrenberg, 1843 (Type species: Textilaria Americana 

Ehrenberg, 1843). Cretaceous (Late Albian to Maastrichtian). Test is 

biserial with possible multiserial terminal stage and no planispiral coil. 

The chambers are subglobular and microperforate. A simple aperture is 

symmetrical with a lip.  

 Pseudotextularia Rzehak, 1891 (Type species: Cuneoolina elegans 

Rzehak, 1843). Cretaceous (Coniacian to Maastrichtian). The 

macroperforate test is initially planispiral, and is later biserial. Chambers 

greatly increase in thickness. A lip borders broad apertures.  

 Pseudoguembelina Brönniman and Brown, 1953 (Type species: 

Guembelina excolata Cushman, 1926). Cretaceous (Coniacian to 

Maastrichtian). A portici or plate separates opposed chambers of the 

macroperforate, biserial test. When viewed in the axial plane, chambers 

are thinner than when observed in the equatorial plane. Secondary 

apertures may occur in later chambers.  

Radiolarians 

Radiolarians are a siliceous microfossil within the superorder Polycystina 

(Scholle, 2003).The radiolarians discussed herein are not sorted into family, genus, or 

species because of their poor state of preservation. Radiolarians are marine plankton and 
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are found at varied depths within the water-column (Scholle, 2003). Occurrence of 

radiolarians within deposits indicates pelagic sedimentation (Scholle, 2003). Because of 

the original skeletal composition of opaline silica and the highly porous skeletal structure, 

radiolarian tests are commonly heavily recrystallized. Samples within this study show 

both pyritization of original siliceous material, and calcite replacement and growth within 

the originally open, porous structure.  

Calcispheres 

Calcispheres are considered a microproblematica; however, have more recently 

been defined as an algal cyst (Flügel, 2010). Calcispheres are observed in thin-section as 

small calcite globular or spherical microfossils, generally less than 100 microns. The 

calcitic wall of the test is much thicker than those calcitic test walls observed in 

planktonic foraminifera and are multi-layered (Flügel, 2010). Calcispheres are also far 

smaller than foraminifera observed within the sample set presented herein. Calcispheres 

found within wackestones are indicative of open marine environments, and are 

considered to be resultant from deep shelf, slope, and basinal setting deposition (Flügel, 

2010).  

Inoceramids and Filaments 

Inoceramids are an evolved, specialized variety of bivalve within Class 

Pelecypoda (Scholle, 2003).Inoceramid genera and species are not interpreted within this 

study and are documented within the same ‘inoceramid’ classification. Inoceramid 

bivalves have adapted specifically to live in oxygen-depleted or “chemically deleterious” 

environments (Kaufmann, 1988; Kauffman and Harries, 1992; MacLeod and Hoppe, 

1992; Harries et al., 1996). Inoceramids can be identified in thin-section by the columnar 
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structure within the shell wall composed of monocrystalline, porous calcite hexagonal 

prisms (Fig. 21). 

Inoceramid filaments are defined as the planktonic larval stage of the adult 

inoceramid bivalve (Negra et al., 2011). Filaments can be identified in thin-section as 

very thin, generally bedding parallel, wisps of calcite (Fig. 21; Denne, 2014). 

BIOSTRATIGRAPHY 

The following sections show graphically the biostratigraphy for each individual 

locality. Each defined faunal group is documented in where it appears, as well as in 

general abundance. Biostratigraphic markers and interpretations were made following the 

work and advice of Dr. Richard A. Denne (Denne et al., 2014).  

Hot Springs Outcrop 

Figure 41 shows biostratigraphy for the Hot Springs outcrop section and Figure 

42 shows examples of described fauna. Planktonic foraminifera are the most represented 

organisms. Radiolarians, calcispheres, and inoceramids are also abundant.  
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Figure 41: Hot Springs outcrop section biostratigraphy. Bubble size denotes general 

abundance, smaller bubbles correlate to rare or lesser abundance, larger 

bubbles correlate to commonly abundant to dominant. FAD = first 

appearance datum; LAD – last appearance datum.  
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Figure 42: Photo plate of Hot Springs outcrop section biostratigraphy microfossils. A) 

Buda Limestone (burrowed skeletal wackestone) with large hedbergellid 

planktonic foraminifera and small calcispheres. B) Lower Ernst Member 

(laminated argillaceous planktonic foraminifera wackestone) with small 

Heterohelix sp. (B1) and possible R. greenhornensis (B2). C) Heterohelix 

globulosa in the upper Ernst Member (laminated skeletal grain-dominated 

packstone). (D) Undifferentiated hedbergellid and heterohelicid foraminifera 

in the San Vicente Member (burrowed foraminifera wackestone).  

In the Buda Limestone from 0-13 ft, the present types of organisms are quite 

different from the overlying Boquillas Formation (Fig. 41). The Buda Limestone is 

dominated by calcispheres and Hedbergellidae; no keeled planktonic foraminifera are 
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observed within the Buda Limestone (Fig. 41). Tests are randomly oriented because of 

intense burrowing of the sediments.  

The first keeled planktonic foraminifera are observed at 45.5 ft in the Boquillas 

section (Fig. 41). Rotalipora greenhornensis was identified along with other 

undifferentiated, keeled planktonic foraminifera (rotaliporid).  

At 68.5 ft, there is an abundance of inoceramid filaments (Figs. 41, 42). Lags of 

thin calcareous shells of the inoceramid filaments drape sediments. Filaments appear in 

one other documented location within the section as observed from the collected sample 

set.  

The first Heterohelicidae with globular chambers (Heterohelix globulosa) are 

observed at 106 ft (Figs. 41, 42). All observed Heterohelicidae observed prior are narrow 

and have small chambers (Heterohelix moremani; Fig. 41).  

Fauna begins to diversify at 168 ft (Fig. 41). Burrowing has scattered preserved 

skeletal fragments so that they do not appear to accumulate solely along bedding planes 

in the form of grain laminations. Keeled planktonic foraminifera (possibly 

Marginotruncana sp.) are abundant in addition to radiolarians, calcispheres, and 

inoceramid (Fig. 41).  

Above the Allocrioceras hazzardi zone (AHZ) at 276 ft, the quantity of any 

observed fauna greatly decreases (Fig. 41). Faunal abundance within San Vicente 

Member samples are far lower than faunal abundances observed in the Ernst Member or 

in the Buda Limestone.  

Interpretation 

The assemblage of preserved fauna (especially the appearance of planktonic 

foraminifera types and presence of inoceramids) in the Ernst Member of the Boquillas 
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Formation demonstrates a depositional environment with continually productive surface-

waters and rare to sometimes oxygenated bottom-waters.   

The enrichment of filaments (inoceramid larvae; Fig. 41) is interpreted as the 

filament event documented elsewhere in the global oceans during the Cenomanian 

(Negra et al., 2011; Denne et al., 2014). This event is documented to have occurred prior 

to the OAE2 and the Cenomanian-Turonian boundary (Negra et al., 2011; Denne et al., 

2014).  

The first Heterohelix globulosa are documented at 106 ft (Figs. 41, 42). The 

appearance of the Turonian-style Heterohelicidae test first appears within the mud-

laminated skeletal planktonic foraminifera grain-dominated packstone. Because of gaps 

in sampling, the closest lower sample containing Heterohelicidae is at 71.5 ft; 

Heterohelicidae within this sample are narrow with small test chambers (Heterohelix 

moremani, Fig. 41). The change in Heterohelicidae test morphology is used to propose 

that the Cenomanian-Turonian transition occurs between 71.5-106 ft.  

Handheld gamma-spectrometer data demonstrates a gradational decrease in 

gamma ray readings beginning at 100 ft (Figs. 41, 42). This gamma ray response, in 

correlation with the FAD of Heterhelix globulosa is used to propose that the 

Cenomanian-Turonian boundary occurs near 100 ft in the measured section (Fig. 41) and 

defined the boundary between lower and upper Ernst Member. Poor sampling resolution 

and outcrop weathering disallows for a more precise proposal of the C-T boundary.  
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Core-X Conventional Core 

 

Figure 43: Core-X biostratigraphy. Bubble size denotes general abundance, smaller 

bubbles correlate to rare or lesser abundance, larger bubbles correlate to 

common or extremely abundant. FAD = first appearance datum, LAD = last 

appearance datum. The red box shows the position of the OAE2. 
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Figure 44: Photo plate of Core-X biostratigraphy microfossils. A) Planktonic 

foraminifera (hedbergellids) and calcispheres in Buda Limestone (burrowed 

skeletal wackestone). B) Two red arrows show inoceramid filaments in 

lower Eagle Ford. C) Rotalipora (poss.) greenhornensis in the lower Eagle 

Ford (laminated argillaceous planktonic foraminifera wackestone). D) 

Rotalipora cushmani in the lower Eagle Ford (laminated argillaceous 

planktonic foraminifera wackestone). E) Heterohelix globulosa (red arrow) 

in upper Eagle Ford (laminated argillaceous planktonic foraminifera 

wackestone). F) Inoceramid fragment (red arrow) in calcispheres in the 

upper Eagle Ford (laminated calcisphere grainstone). G) Heterohelix 

globulosa (bottom left) and unidentified keeled planktonic foraminifera 

(possibly a globotruncanid, top middle) in burrowed foraminifera 

wackestone in the Austin Chalk. H) Unidentified keeled planktonic 

foraminifera (left, globotruncanid) and hedbergellid foraminifera (right) in 

Austin Chalk (burrowed foraminifera wackestone). 
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Burrowed skeletal wackestone in the Buda Limestone from 4,032.5-4,100 ft 

contains a very different faunal assemblage as compared to the overlying Eagle Ford 

Group (Fig. 43). The Buda Limestone is dominated by calcispheres and Hedbergellidae 

(Fig. 44). No Heterohelicidae or keeled planktonic foraminifera were found in this 

interval. 

The greatest enrichment of inoceramid filaments (Fig. 44) occurs from 3,909-

3,905 ft (Fig. 43). Filaments and radiolarians comprise the dominant assemblage in this 

interval, while all varieties of foraminifera are rare or absent. Heterohelicidae are narrow 

with very little test size increase between chambers, and have been identified as 

Heterohelix moremani.  

Depth 3,851.4 ft contains a diverse assemblage of keeled planktonic foraminifera, 

as well as Hedbergellidae, Heterohelicidae, calcispheres, and inoceramid filaments. 

Rotalipora greenhornensis and Rotalipora cushmani are both identified in the thin-

section (Figs. 43, 44). The first documentation of Heterohelix globulosa is observed at 

3,827 ft.  

The interval from 3,600-3,700 ft contains different faunal abundances when 

compared to other portions of the Eagle Ford Group (Fig. 43). Radiolarians and 

calcispheres are the dominant fossil type, with fewer amounts of planktonic foraminifera 

(Fig. 43). Unidentified keeled planktonic foraminifera through the interval are rare to 

absent.  

Above 3,583 ft, the faunal assemblage and abundance changes compared to 

underlying Eagle Ford Group deposits (Fig. 43). In this section, all documented faunal 

abundances decrease, while variety of fauna and diversity remain high. Radiolarians do 

not appear above 3,583ft (Fig. 43). Keeled planktonic foraminifera (globotruncanids) in 
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this section are the most commonly observed fauna and the most abundant – this trend is 

not observed anywhere else within the core.  

Interpretation 

The Buda Limestone is dominantly composed of coccoliths and assorted fauna 

(Kerans and Loucks, 2013) Two main fauna can be identifies in thin-section (Fig. 44): 

Hedbergellidae planktonic foraminifera and calcispheres. Both fauna indicate high levels 

of productivity at the surface. Absence of Heterohelicidae and keeled planktonic 

foraminifera imply that water conditions were not preferable for intermediate and 

bottom-water dwelling planktonic foraminifera (Figs. 40, 44). Pervasive burrowing 

throughout the Buda Limestone supports well-oxygenated bottom sediment. 

The lower Eagle Ford strata contain relatively persistent Hedbergellidae and 

Heterohelicidae (Fig. 43). Appearances of both indicate that surface-waters and 

intermediate water depths had moderate levels of productivity; water in these intervals 

was oxygenated. Heterohelicidae present are narrow with small test chambers 

(Heterohelix moremani). Sporadic appearances of keeled planktonic foraminifera and 

inoceramid bivalves indicate that deepwaters were periodically suboxic (oxygen levels 

rose above what would be defined as anoxic). Inoceramid filament enrichment (Figs. 43, 

44) at 3,905-3,909 ft is interpreted as the inoceramid filament event that occurs prior to 

the OAE2 (Negra et al., 2011; Denne et al., 2014). A brief period of deep-water 

oxygenation is documented at 3,851 ft by a diverse assemblage of deep dwelling, 

oligotrophic (BouDagher-Fadel, 2013; Denne, 2014), matrix-supported keeled planktonic 

foraminifera (Fig. 44). Within this lamination, both marker foraminifera Rotalipora 

greenhornensis and Rotalipora cushmani have been identified signaling the upper 

Cenomanian.  



 157 

Documentation of Heterohelix globulosa observed at 3,827 ft helps to define the 

boundary between Cenomanian and Turonian and between the upper and lower Eagle 

Ford strata (Figs. 43, 44). This stage transition is coincident with the documented OAE2 

(see Isotope Data, Fig. 49) 

The upper Eagle Ford strata contain Hedbergellidae, Heterohelicidae, 

calcispheres, inoceramid, and inoceramid filaments (Fig. 43). Hedbergellidae and 

Heterohelicidae occur in greater abundance within the upper Eagle Ford strata than in the 

lower Eagle Ford strata, suggesting that intermediate and surface-waters may have been 

better oxygenated (Figs. 14, 43). Keeled planktonic foraminifera are rare and commonly 

coincide with the appearance of inoceramid bivalves, indicating rare deep-water dysoxia. 

A substantial fauna shift occurs at the top of the upper Eagle Ford strata (Fig. 43). 

Abundance of planktonic foraminifera decrease substantially; radiolarians and 

calcispheres become the dominant preserved fauna. Both radiolarians and calcispheres 

suggest open marine deposition on slope or shelf environment (Berkyova, and Munnecke, 

2010; Flügel, 2004).  

Both Hedbergellidae and Heterohelicidae are common (Fig. 43) throughout the 

upper and lower Eagle Ford strata suggesting generally consistent surface level 

productivity and common intermediate water-depth productivity. Rare appearances of 

keeled planktonic foraminifera indicate sporadic occurrences of increased levels of 

oxygen at depth. These trends suggest a stratified water-column.  

The Austin Chalk (defined lithologically) contains the lowest general abundances 

of fauna (Fig. 43). Hedbergellidae and Heterohelicidae are present but rare, and keeled 

planktonic foraminifera (possibly globotruncanids) become the more common variety of 

planktonic foraminifera (Fig. 44). This shift in dominant planktonic foraminifera variety 
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(Fig. 43) indicates a more consistently oxygenated deep-water environment, or 

potentially better circulation and renewal of oxygen to deepwaters. 
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Winterbotham J.M. Jr. #1 Conventional Core 

 

Figure 45: Winterbotham J.M. Jr. #1 core biostratigraphy. Bubble size denotes general 

abundance, smaller bubbles correlate to rare or lesser abundance, larger 

bubbles correlate to common or extremely abundant. FAD = first 

appearance datum, LAD = last appearance datum. The red box shows the 

position of the OAE2. 
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Figure 46: Photo plate of Winterbotham J.M. Jr. #1 core biostratigraphy microfossils. A) 

Calcite recrystallization within the remnant of a radiolarian in the lower 

Eagle Ford (laminated argillaceous planktonic foraminifera wackestone). B) 

Possible Rotalipora sp. in the lower Eagle Ford. C) Heterohelix globulosa ? 

(red arrow) in the upper Eagle Ford (laminated argillaceous planktonic 

foraminifera wackestone). D) Calcite-cemented, undifferentiated Hebergella 

sp. and calcispheres in the upper Eagle Ford (in mass transport unit similar 

to laminated skeletal grain-dominated packstone). E) Unidentified keeled 

planktonic foraminifera (E1) and Heterohelix globulosa ? (E2) in the Austin 

Chalk (burrowed foraminifera wackestone).  
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The sole substantial documentation of common radiolarians occurs at 6,377 ft 

(Fig. 46A). Heterohelicidae, keeled planktonic foraminifera, calcispheres, inoceramid, 

and filaments are absent from this individual core sample.  

At 6,372 ft, the core contains moderate abundances of several different faunal 

groups (Fig. 45). Heterohelicidae tests are narrow with small chambers. Filaments are 

common draping lamination surfaces. Keeled planktonic foraminifera are documented 

but cannot be identified to acute certainty. 

Heterohelicidae documented at 6,355 ft are globular and obtuse and interpreted as 

Turonian-age, Heterohelix globulosa (Figs. 45, 46).  

The deformed and transported unit from 6,286-6,295 ft contains very abundant 

calcispheres (Figs. 45, 46). This is the first documented appearance of abundant 

calcispheres within the Winterbotham J.M. Jr. #1 core; calcispheres as a dominant 

bioclast does not agree with deposited beds immediately above or below.  

Faunal abundance decreases sharply above 6,238ft (Fig. 45). Undifferentiated 

keeled planktonic foraminifera are more commonly observed through the upper portion 

of the core. 

Interpretation 

Biostratigraphy with proposed stratigraphic divisions is presented in Figure 45. 

The lower and upper Eagle Ford strata contain several different fauna (Fig. 45). 

Hedbergellidae planktonic foraminifera are the most common and most abundant taxon 

observed in this section. This shows that primary productivity was present and active 

within surface and shallow waters. Abundant calcispheres also support high surface level 

productivity (Fig. 45). Calcispheres within slumped beds show that more proximal 

sediments where slumps originated also have high primary productivity at the surface 
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(Fig. 46). Heterohelicidae are also common, suggesting some oxygen was available (not 

anoxic). At a depth of 6,372 ft (Figs. 45, 46) the last Heterohelix moremani is 

documented. At a depth of 6,355 ft (Figs. 45, 46), the lowest Turonian Heterohelix 

globulosa are documented. The observance of Heterohelix globulosa at 6,355 ft allows 

for the placement of the Cenomanian-Turonian boundary between 6,355-6,372 ft. The C-

T transition zone as defined here, in addition to change in molybdenum concentration 

(Figs. 12, 15), has been used to define the boundary between lower and upper Eagle Ford 

strata. Rare appearances of keeled planktonic foraminifera show that deeper water depths 

were only rarely subjected to increases of oxygen concentrations. Periodic inoceramid 

documentation infer that oxygen levels were low near the sediment-water interface. The 

majority of inoceramid fragments documented are broken because of transport and do not 

represent their in-situ conditions; unbroken, bedding-parallel shells may have been in 

situ. Radiolarians are present within peloidal crystalline mudrock. 

The Austin Chalk contains Hedbergellidae, Heterohelicidae, undifferentiated 

keeled planktonic foraminifera (possibly globotruncanids), and inoceramids (Fig. 45). 

Abundances of each fauna are low compared to the underlying Eagle Ford strata, possibly 

because of sediment homogenization related to burrowing. The presence of oligotrophic 

planktonic foraminifera (rotaliporids and globotruncanids) indicates nutrient availability 

or nutrient levels were low or restricted, as well as potential low levels of oxygen in 

deepwater. This is in agreement with documented inoceramids within the section (Fig. 

45). The presence of inoceramids indicate oxygen levels were low at the sediment-water 

interface. 
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Isotope Data 

Measurements of δ
13

C can be helpful in determination of organic matter 

provenance, as well as identifying the OAE2. By definition, the OAE2 is defined by a 

positive excursion of δ
13

C (Schlanger, et al., 1976). δ
15

N has been omitted from this 

sample set because nitrogen values were too low within these samples to produce a 

reliable δ
15

N data set. All carbon discussed is from the organic carbon fraction, not 

inorganic carbon.  

Land-plants use atmospheric CO2 to produce organic matter with δ
13

C values near 

-27 
o
/oo whereas marine algae use dissolved bicarbonate to produce organic matter with 

δ
13

C values between -20 
o
/oo to -22 

o
/oo. (O'Leary, 1988; von Breymann et al., 1991; 

Meyers, 1994; Meyers, 1997). The atomic ratio of C/N for vascular land-plants is 20 or 

greater, whereas the atomic C/N ratio for algae is between 4 and 10 (Premuzic et al., 

1982; Jasper and Gagosian, 1990; Meyers, 1994; Prahl et al., 1994).  

HOT SPRINGS OUTCROP 

The average δ
13

C value is -27.83 
o
/oo. The most positive excursion of δ

13
C occurs 

at 65.5ft with a value of -21.91. These data are plotted against depth in Figure 47. 

Figure 48 contains two cross plots. Graph A shows δ
13

C versus C/N. Graph B 

contains TOC weight percent plotted against molybdenum parts per million. Correlation 

is poor; the slope of a trend line plotted through the data is 1.27. 
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Figure 47: Hot Springs outcrops isotope stratigraphy. Data points are plotted individually 

without a trend line because of poor data resolution. Gamma ray is included 

for correlation. 
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Figure 48: Hot Springs outcrops organic carbon crossplots. A) Annotations after Meyers 

(1997) help delineate organic matter variety. B) Annotations after Algeo and 

Lyons (2006) and Rowe et al. (2008) showing basin restriction.  

Interpretation 

The Buda Limestone has an average δ
13

C of -26.5 
o
/oo (Fig. 47). This value is 

more positive than the accepted value for pure terrestrial organic matter, indicating that 

marine algal organic matter is present. Marine and algal matter dominance in the Buda 

Limestone is in agreement with fauna and facies discussed in previous chapters. 

The lower Ernst Member of the Boquillas Formation has an average δ
13

C of -27.2 

o
/oo (Fig. 47). Two data points demonstrate a positive excursion from the average δ

13
C 

baseline, one at 30 ft with a value of -25.7 
o
/oo and one at 65.5 ft with a value of -21.9 

o
/oo. 

The first excursion at 30 ft may be interpreted as the OAE2; however, with poor data 

resolution this footage is not confirmed as the OAE2. The second excursion at 65.5 ft is 

in the accepted range for marine-organic matter; however, because this excursion is not 

acknowledged in adjacent data, this excursion cannot be interpreted as the OAE2. 
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The upper Ernst Member has an average δ
13

C of -28.5 
o
/oo (Fig. 47). The δ

13
C 

value is nearest that of terrestrial land-plants; however, this value is largely because of 

degradation of organic material during settling. Comparing lithofacies and fauna, it can 

be concluded that the organic carbon accumulated within the system is from marine 

organisms. 

The San Vicente Member of the Boquillas Formation has an average δ
13

C of -26.8 

o
/oo (Fig. 47). The δ

13
C is the most positive value within the section, signaling more input 

of marine-organic matter.  

The slope of the C vs. N trend line (Fig. 48) is outside of the traditional Redfield 

Ratio slope for accepted C/N slope (Redfield et al., 1934; Hecky et al., 1993). The 

accepted Redfield Ratio for marine phytoplankton is between 3-8 defined by the C:N:P, 

106:16:1 ratio. While the slope may be skewed because of terrestrial plant organic matter 

influence and organic matter degradation, outcrop weathering may have also greatly 

impacted the accuracy of the ratio. Extremely low quantities of Mo ppm and TOC % 

(Fig. 48) cause the slope and y-intercept to not correlate with basins reported on by Algeo 

and Rowe (2006) or Rowe et al. (2008).  

Figure 48 includes annotated cross plots for the Hot Springs outcrop samples. The 

red line in both graphics shows the trend line for each cross plot’s dataset. Low sample 

quantity and sample weathering has caused poor correlativity of measured data. Data 

show that organic matter at the Hot Springs outcrops is composed of algae (Fig. 48). Data 

plotted in Figure 48 show a negative slope displaying poor correlation of the data set. 

Because TOC is greatly decreased because of surface weathering, these data cannot be 

used to confidently draw a conclusion regarding degree of basinal restriction.  
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CORE-X CONVENTIONAL CORE 

The average value of δ
13

C in the core is -26.76 
o
/oo (Fig. 49). Two positive 

excursions of δ
13

C are outlined within the red boxes. Excursions have a magnitude of 

between 2 and 5 points. 

Figure 50 contains two cross plots. The graph on the left shows δ
13

C versus C/N. 

The crossplot on the right compares molybdenum parts per million to weight percent total 

organic carbon. A trend line of the data has a slope of 0.27. 
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Figure 49: Core-X conventional core isotope stratigraphy. Two red boxes outline areas of 

positive excursions of δ
13

C. The OAE2 encompasses the lower positive 

isotope excursion. Gamma ray is included for correlation. 
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Figure 50: Core-X conventional core organic carbon crossplots. A) Annotations after 

Meyers (1997) help to delineate organic matter variety. B) Annotations after 

Algeo and Lyons (2006) and Rowe et al. (2008) show basin restriction.  

Interpretation 

The Buda Limestone has an average δ
13

C of -27.2
 o

/oo and a range of -27.8 
o
/oo to -

25.9 
o
/oo (Fig. 49). The average δ

13
C values are acceptable for marine carbon organic 

material. Values may be skewed because of degradation of organic material during 

settling. 

The lower Eagle Ford strata an average δ
13

C of -27.1 
o
/oo and a range of -28.9

 o
/oo 

to -25.0
 o

/oo (Fig. 49). These values suggest relatively normal marine carbon cycling with 

some possible input of terrestrial and dominant algal matter being preserved. 

A red box traces the contact between the lower and upper Eagle Ford strata in the 

δ
13

C curve (Fig. 49). This highlighted area from 3,795-3,851 ft contains a positive 

excursion of δ
13

C to the most positive value of -23.04 
o
/oo. This represents a 4 

o
/oo positive 

excursion. This zone is interpreted as the OAE2 using the initial definition defined by 

Schlanger and Jenkyns (1976). The positive excursion contains three peaks and two 
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troughs, consistent with OAE2 descriptions from around the world (Pearce et al., 2009; 

Jarvis et al., 2011). More positive values of δ
13

C are meant to reflect increased 

preservation of marine-organic matter. Considering molybdenum and manganese values 

within the same interval (Figs. 10, 14), it can be concluded that at least one period of the 

OAE2 was oxygenated. Oxygenation during an anoxic event is counter intuitive; 

however, elemental data and bioturbated lithofacies coincident with the event confirm 

sediment and bottom-water oxygenation. C/N values increase during the third (youngest) 

peak of the OAE2 suggesting that more terrestrial organic matter was also being buried 

(Fig. 50). Positive δ
13

C suggests a strong marine algal signal. Preserved TOC deceases 

into the OAE2, slightly increasing during the third (youngest) peak.  

The upper Eagle Ford strata has an average δ
13

C is -26.8 
o
/oo with a range from -

29.4
 o

/oo to -23.04
 o

/oo (Fig. 49). The extremely positive maximum δ
13

C value represents 

the third stage (last and broadest peak) of the OAE2. The more negative minimum of -

29.4
 o
/oo and an average of -26.4 

o
/oo show burial of algal organic matter. 

The second red box, outlining the area from 3,590-3,646 ft (Fig. 49), contains a 

second, smaller positive δ
13

C excursion. This section has a net excursion of 2.15
o
/oo away 

from the baseline. This interval correlates with an increase redox sensitive trace metals 

molybdenum and vanadium. This section appears to represent a secondary anoxic event 

at the top of the upper Eagle Ford strata.  

The Austin Chalk has an average δ
13

C of -26.9 with a range from -25.9 to -27.5 

(Fig. 49). These values suggest influence from land-plant and marine algal preservation. 

Figure 50 contains annotated cross plots. Figure 50A is used to determine the 

variety of organic matter presented in the Core-X core. The trend shows that organic 

matter may be mixed in provenance. Figure 50B shows Core-X core data plotted against 

other known restricted and low-oxygen basins (Algeo and Lyons, 2006; Rowe et al., 
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2008). The Core-X trend line plots nearly parallel to that of the Black Sea. The Black Sea 

has experienced extreme hydrographic restriction and very slow deep-water renewal time 

between 500-4000 years (Algeo and Lyons, 2006). Data show that the depositional 

environment of the lower Eagle Ford strata in Core-X within the Maverick Basin was 

extremely restricted with very slow deep-water renewal times.  

 

WINTERBOTHAM J.M. JR. #1 CONVENTIONAL CORE 

Figure 51 shows δ
13

C data for the Winterbotham J.M. Jr. #1 conventional core. 

The average value of δ
13

C within the core is -25.51 
o
/oo. δ

13
C vs. depth displays a positive 

δ
13

C excursion of 2-4 points within the red outlined box. 

Figure 52 contains two cross plots. The cross plot of the left shows δ
13

C versus 

C/N. The cross plot on the right shows molybdenum parts per million plotted against 

TOC weight percent. A trend line through the data has a slope of 6.66. 
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Figure 51: Winterbotham J.M. Jr. #1 conventional core isotope stratigraphy. The red box 

outlines a zone of positive excursions of δ
13

C. The OAE2 occurs during the 

boxed positive isotope excursion. Gamma ray is included for correlation. 
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Figure 52: Winterbotham J.M. Jr. #1 conventional core organic carbon crossplots. A) 

Annotations after Meyers (1997) help to delineate organic matter variety. B) 

Annotations after Algeo and Lyons (2006) and Rowe et al. (2008) show 

basin restriction.  

Interpretation 

The lower Eagle Ford strata contain the most negative values of δ
13

C, with an 

average of -26.1
 o

/oo (Fig. 51). These values are associated with carbon that was preserved 

that was dominantly from marine algal carbon with minor contributions from land plant 

material. 

A red box outlines an interval from 6,338-6,368 ft (Fig. 51). This 30 ft interval 

contains a three peak, two trough pattern that defines the overall positive δ
13

C excursion. 

The excursion is between 2-3
 o

/oo from the underlying baseline average. This isotopic 

shift is interpreted as the OAE2 based on the Schlanger (1987) definition. The first of the 

three peaks occurs within the Cenomanian stage lower Eagle Ford strata. The following 

two peaks occur within the Turonian stage upper Eagle Ford strata (stage boundaries 

have been defined previously within Biostratigraphy). The positive excursion of δ
13

C 

implies increased burial of marine or algal organic matter (Schlanger, 1987). Dissimilar 
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to the original definition of an OAE, the event that occurs within the Winterbotham J.M. 

Jr. #1 appears to be oxygenated. Oxygenation during the OAE2 in this study is defined by 

manganese enrichment, molybdenum depletion, and δ
13

C troughs. The onset of the 

second (middle) δ
13

C peak is coincident with the detrital element enrichment (Fig. 12). 

C/N atomic ratio averages 18.2 during the excursion, indicating increased algal organic 

matter influence as compared to adjacent rocks (Fig. 51). 

After the OAE2 positive δ
13

C excursion, values of δ
13

C return back to a more 

negative baseline, with an average of -25.8 (Fig. 51). This value is consistent with normal 

marine-organic matter.  

The Austin Chalk is influenced the most by algal organic matter. δ
13

C has an 

average of -25.7, which is an accepted value for a marine-dominated system (Fig. 51). 

This is in agreement with observed fauna.  

Figure 52 contains annotated cross plots for the Winterbotham J.M. Jr. #1. δ
13

C 

plotted against C/N atomic ratio (Fig. 52A) demonstrates that the majority of organic 

matter within the system originated from C3 land-plants, with lesser marine algal organic 

matter influence (Meyers, 1997). A trend line plotted through molybdenum versus TOC 

demonstrates basinal restriction using methods developed by Algeo and Lyons (2006) 

and Rowe et al. (2008). A trend line of the data collected in this study shows that the 

depositional environment present during Eagle Ford Group deposition was highly 

restricted – plotting between the Black Sea and Barnett Shale.  

 

CARBON ISOTOPE REGIONAL COMPARISON 

Investigation of the OAE2 has been ongoing since its identification (Schlanger et 

al., 1987). The OAE2 by definition is the ‘Cenomanian-Turonian stage boundary anoxic 
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event’ (Schlanger et al., 1987); however, the event has been documented to occur during 

an approximately 500 kyr period (Sageman et al., 2006; Voigt et al., 2008). The OAE2 as 

defined by a positive δ
13

C excursion (Schlanger and Jenkyns, 1976) and is documented in 

this study to contain three main excursion δ
13

C peaks (Figs. 49, 51). The localities herein 

present the C-T boundary occurring (as identified biostratigraphically) within the OAE2. 

This study has also documented burrowing (Figs. 26, 36, 38) and planktonic foraminifera 

(Figs. 43, 44, 45, 46) that present oxygenation during the OAE2 (Figs. 49, 51). This 

finding differs from the classic understanding of an anoxic event (Schlanger and Jenkyns, 

1976) as being ‘anoxic’ and having specific deposition/lithologic style (extremely 

condensed, OM-rich resulting from such conditions). 

Figure 53 displays δ
13

C data as recorded in this study compared with the δ
13

C data 

presented by Phelps (2011) and Donovan et al. (2012). The carbon isotope data provided 

in Phelps (2011) displays a similar positive excursion as that defined by this study (Figs. 

49, 51, 53). The Wilson County data set (east of Maverick and Zavala Counties) uses 5-8 

ft sample spacing, whereas this study uses a 2 ft sample spacing (Table 1). Larger sample 

spacing effectively decreases resolution of the data and may cause for a ‘smoothing’ of 

the main OAE2 excursion. While Phelps (2011) does not recognize the three individual 

peaks documented in the positive δ
13

C excursion as shown in this study (Figs. 49, 51, 53), 

the duration of the OAE2 event and position in relation to the C-T boundary is very 

similar: the OAE2 begins in the late Cenomanian and the maximum positive δ
13

C 

excursion occurs at the C-T boundary. The Terrell County isotope data (located west of 

Maverick and Zavala Counties) shown in Donovan et al. (2012) defines the OAE2 as 

younger than the C-T boundary using carbon isotope data and nannofossils. The OAE2 

described by Donovan et al. (2012) is younger than that defined by this study (Figs. 49, 

51, 53). Additionally, while the OAE2 in Terrell County (Fig. 53; Donovan et al., 2012) 
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shows two peaks during the δ
13

C excursion, a third older, positive δ
13

C excursion is no 

included in the interpreted OAE2. Including this older, positive δ
13

C excursion into the 

defined OAE2 would create a δ
13

C curve profile more similar to those presented within 

this study. Lowery et al. (2014) uses a similar Terrell County (Lozier Canyon) data set 

and defines the OAE2 to be a more extensive event as compared to what Donovan et al. 

(2012) proposes. Lowery et al. (2014) contains the first, older positive excursion that 

occurs at the C-T boundary (Fig. 53). Considering the defined position of the OAE2 in 

Terrell County, it is suggested that the OAE2 may have started earlier in Maverick, 

Zavala, and Wilson Counties. This observation suggests that the OAE2 may have begun 

earlier in the Cenomanian in the east and central portions of the Texas paleoshelf, and did 

not impact areas of West Texas until the early Turonian. 
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Figure 53: Comparison of δ
13

C Data. Carbon isotope data is provided from Phelps (2011) 

and Donovan (2012) for comparison of the interpreted OAE2 shown in this 

study.  
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INTEGRATION OF MULTIDISCIPLINARY DATA SETS 

Lithofacies, biostratigraphy, chemostratigraphy, and stratal architecture are 

integrated to create a comprehensive data set used to best define environmental and 

depositional conditions during accumulation of the Boquillas Formation and Eagle Ford 

Group.  

Hot Springs Outcrop 

The Hot Springs outcrop section within Big Bend National Park demonstrates a 

dynamic environment (Fig. 54). The Buda Limestone represents a burrowed, open-

marine, shelfal limestone with little influence from detrital sediment deposition or 

terrestrial organic matter. δ
13

C and C/N indicate that organic matter is dominantly algal. 

A major unconformity separates the Buda Limestone and the Boquillas Formation (Fig. 

54).  

The Cenomanian-age lower Ernst Member was deposited under anoxic conditions 

indicated by molybdenum enrichment (Fig. 54). Keeled planktonic foraminifera are rare, 

indicating deepwater was rarely oxygenated (Fig. 41). Burrowing is non-existent to rare 

and sedimentary features are well-preserved (Fig. 54). Preserved ripples and winnowed 

laminations indicate that deposition was influenced by bottom-currents (Figs. 20, 54). 

Organic matter was better preserved within the lower Ernst Member (as compared to 

underlying and overlying strata) because of anoxic conditions at the time of sediment and 

organic matter accumulation (Figs. 13, 16). Organic matter consists of a mix between 

algae and land-plants; however, algae are the more dominant organic matter variety (Figs. 

16, 47, 48). High productivity near the ocean surface is indicated by organic-matter 

accumulation and the persistent appearance of Hedbergellidae.  
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Figure 54: Hot Springs outcrop composite stratigraphy. Graphic integrates data from 

individual data sets to show correlation. Color keys for lithofacies and 

biostratigraphy are included in Fig. 35 and Fig. 41. 
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The upper Ernst Member represents deposition during the Turonian stage as 

identified by the appearance of Heterohelix globulosa planktonic foraminifera (Figs. 41, 

42, 54). The morphological change from narrow tests (Heterohelix moremani) to globular 

tests (Heterohelix globulosa) indicates the transition into the Turonian section (Fig. 54). 

The upper Ernst Member has more commonly oxygenated deepwater as indicated by the 

presence of keeled planktonic foraminifera; however, the depositional setting was 

commonly anoxic at the sediment-water interface demonstrated by lack of burrowing and 

molybdenum enrichment (Figs. 8, 13, 41, 42, 54). Anoxia allowed for preservation of 

TOC (Figs. 13, 16). δ
13

C and C/N show that terrestrial plant organic matter increased in 

the upper Ernst Member when compared to the lower Ernst Member (Figs. 16, 47, 48). 

The contact with the overlying San Vicente Member is gradational – burrowed, shelfal 

limestone alternates with laminated lithofacies until the burrowed limestone is the 

dominant lithofacies (Fig. 54).  

The contact between the Ernst Member and the San Vicente Member is indicated 

by the AHZ zone and represents the Turonian-Coniacian stage boundary (Fig. 54). 

Deposition in the Coniacian is represented by healthy, shelfal limestone with little to no 

influence by terrestrial plant organic matter (Figs.16, 41, 42). Marine algae are the 

dominant organic matter type (Fig. 16, 47). TOC is poorly preserved because of an 

oxygenated water-column (Fig. 16, 47, 48).  
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Core-X Conventional Core 

The Eagle Ford Group (as represented by the Core-X) was deposited in a dynamic 

environment under the influence of bottom-waters and variable ocean-water oxygenation. 

The documented succession contains the OAE2 and the C-T boundary, shown both 

chemically and biologically. Figure 55 contains a composite section of important and 

defining curves for the Core-X.  

  



 182 

 

 

 

Figure 55: Core-X composite stratigraphy. Graphic integrates data from individual data 

sets to show correlation. Color keys for lithofacies and biostratigraphy are 

included in Fig. 36 and Fig. 43.  



 183 

The Buda Limestone underlying the Eagle Ford Group represents a normal, open-

marine shelfal limestone dominated by intrabasinal carbonate sedimentation (Fig. 55). 

Detrital clay sedimentation occurs as discrete beds that have been pervasively undergone 

pressure solution and were partially dolomitized (Figs. 9, 10). Lack of sedimentary 

features, with the exception of burrowing, documents homogenization of sediments as a 

result of bioturbation (Fig. 19).  

The contact between the Buda Limestone and Eagle Ford Group represents a 

major unconformity (Fig. 37). Striking changes are documented in gamma ray data, 

lithofacies, volcanic ash abundance, and elemental composition (Figs. 9, 10, 14, 17, 55). 

The depositional environment shifts from that of a normal, open-marine, carbonate 

platform to an anoxic, stratified shelf (Fig. 55). 

Cenomanian stage deposition in the lower Eagle Ford strata occurs under 

dominantly anoxic bottom-water conditions (Fig. 55). Major basinal restriction of the 

deepwater mass caused slow deep-water renewal times (Fig. 50). The water-column 

remained density stratified throughout Cenomanian time (Figs. 14, 43, 44). A gradational 

decrease observed in molybdenum values nearing the upper Eagle Ford strata is related to 

depletion of molybdenum within the stagnant water-column, not the introduction of 

oxygenated bottom-waters (Fig. 14). Intermediate and surface depth waters remained 

oxygenated and able to support primary producers as documented redox sensitive 

elements (Fig. 14), as well as the appearance of Hedbergellidae and Heterohelicidae 

planktonic foraminifera tests (Figs. 43, 44). Heterogeneity is preserved in lithofacies 

laminations and in elemental alternations (Figs. 9, 10, 14, 36); lack of burrowing allows 

for original lamination-scale heterogeneity to be preserved. TOC is preserved best in the 

lower Eagle Ford strata related to the perpetuation of anoxic bottom-water conditions 

(Figs. 14, 17). Carbon and nitrogen data show that the dominant preserved TOC is marine 
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with some possible influence from land plants, possibly transported through the air/dust 

(Figs. 10, 49, 50). Deeper water oxygenation occurs in the top of the lower Eagle Ford 

strata observed by the appearance of keeled planktonic foraminifera such as Rotalipora 

cushmani (Figs. 43, 44).  

The Cenomanian-Turonian stage boundary, as well as the OAE2, occurs at the 

contact between the lower-upper Eagle Ford strata (Fig. 55). The OAE2 is a 56 ft interval 

defined by a positive δ
13

C excursion of 4
 o

/oo. (Figs. 49, 55) The excursion is composed of 

three peaks and two troughs, and demonstrates an increased preservation of marine 

carbon (Figs. 49, 55). The excursion documented within the Core-X is an oxygenated (at 

least partially) event documented by a 1.5 ft interval of pervasive bioturbation and oxic 

chemofacies dominated by manganese enrichment (Figs. 10, 14, 26). Water-column 

mixing introduces oxygen and renews trace metals shown by manganese enrichment 

within the OAE2 at the base of the upper Eagle Ford strata (Figs. 10, 14, 26). The C-T 

boundary is identified using Cenomanian and Turonian marker planktonic foraminifera. 

Rotalipora cushmani is identified at the top of the lower Eagle Ford strata (Figs. 43,44). 

Heterohelicidae morphology can be traced across the boundary (Figs. 43, 44) – tests in 

the Cenomanian are acute (Heterohelix moremani), tests in the Turonian are globular 

(Heterohelix globulosa).  

The upper Eagle Ford strata display an immense degree of depositional 

heterogeneity both in lithofacies, chemofacies, and ocean chemistry (Fig. 55). The base 

of the upper Eagle Ford strata is defined by the influx of a detrital, manganese and 

titanium-rich chemofaceis (Figs. 9, 10, 14). This distinct elemental character correlates 

with massive argillaceous claystone deposits (Figs. 10, 23, 36). The majority of the upper 

Eagle Ford strata is well-laminated and contains well-preserved ripples in the upper 

laminated calcisphere grainstone (Fig. 24, 36). Well-developed ripples infer the presence 
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of periodic, if not constant, bottom-current interaction at the sediment-water interface 

(Fig. 36). Burrowing occurs at the lamination-scale (~5 mm), exhibiting brief periods of 

habitability at the sea floor (Fig. 36). Planktonic foraminifera and calcispheres suggest 

that surface level primary productivity was moderate to high during deposition (Figs. 14, 

36). Sporadic appearances of keeled planktonic foraminifera infer deep-water 

oxygenation and enough nutrient availability to support oligotrophic habitation (Figs. 43, 

44). Elemental abundances within the upper Eagle Ford strata demonstrate an immense 

amount of heterogeneity (Figs. 10, 14). While described lithofacies are dominantly 

marine, chemofacies show that 10-15% of sediment (Table 6) is derived from 

extrabasinal, terrigenous sedimentation in the form of clay minerals and quartz (Figs. 10, 

14). Primary productivity is high, reflected in nutrient enrichment (Fig. 14). A secondary 

anoxic event is present in the uppermost upper Eagle Ford strata confirmed by lack of 

burrowing or deep-water fauna, molybdenum enrichment, and a positive δ
13

C (Figs. 10, 

14, 36, 43, 49). 

The Austin Chalk represents the gradational transition from the anoxic, laminated 

lower and upper Eagle Ford strata to a normal, open-marine carbonate platform present 

during Austin Chalk deposition (Fig. 55). Burrowing within the sediment has erased the 

majority of sediment heterogeneity (Figs. 26, 36). Increased molybdenum values at the 

top of Core-X in the Austin Chalk document a third period of low oxygen (Figs. 10, 14). 

Presence of keeled planktonic foraminifera throughout the Austin Chalk confirms 

deposition within an oxygenated deepwater mass (oligotrophic habitability) with brief 

periods of anoxia, likely driven by high-primary productivity shallower in the water-

column (Figs. 10, 14, 43, 44).  
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Winterbotham J.M. Jr. #1 Conventional Core 

The Winterbotham J.M. Jr. #1 was deposited in an environment under the 

influence of bottom-currents and variable ocean chemistry. The core has been divided 

into three distinct depositional systems defined using chemofacies and biostratigraphy. 

The C-T boundary and OAE2 are both present and definable within the system. Figure 56 

compares different data sets used for interpretation.  
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Figure 56: Winterbotham J.M. Jr. #1 composite stratigraphy. Graphic integrates data 

from individual data sets to show correlation. Color keys for lithofacies and 

biostratigraphy are included in Fig. 38 and Fig. 45.  
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The lower Eagle Ford strata in the Winterbotham J.M. Jr. #1 represent deposition 

in a restricted basinal environment under anoxic conditions (Fig. 56). Winnowed, starved 

ripples demonstrate bottom-current influence through the reworking of deposited fauna 

(Figs. 20, 21). Heterohelicidae within the lower Eagle Ford strata exhibit test 

morphologies indicative of Cenomanian planktonic foraminifera Heterohelix moremani 

(Figs. 45, 46). Presence of Hedbergellidae and Heterohelicidae planktonic foraminifera in 

tandem with high-nutrient levels express an environment with high productivity at 

intermediate and surface level water depths (Figs. 45, 46, 56). Oxygenation at 

intermediate depths and anoxia at deeper depths (lack of burrowing and increased 

molybdenum) infers a density stratified body of water present during Cenomanian 

deposition of the lower Eagle Ford strata (Figs. 12, 15, 45, 46).  

The contact between lower and upper Eagle Ford strata marks a major change in 

depositional environment, as well as the C-T boundary and onset of the OAE2 (Fig. 56). 

The OAE2 within the Winterbotham J.M. Jr. #1 is a partially oxygenated event defined 

by a positive excursion of δ
13

C (Figs. 15, 51). The OAE2 consists of three peaks, the 

lowermost beginning within the lower Eagle Ford strata during dominantly anoxic 

conditions (Figs. 15, 51). The upper two δ
13

C excursions occur within the upper Eagle 

Ford strata and occur during a major oxygenation event as defined by increased 

manganese and decreased molybdenum (Figs. 12, 15, 51).  Heterohelicidae tests observed 

in the lowest upper Eagle Ford strata exhibit test morphologies indicative of Turonian 

species (Heterohelix globulosa); thusly, marking the lowest Turonian in the 

Winterbotham J.M. Jr. #1 (Figs. 45, 46). The base of the upper Eagle Ford strata is 

defined by a titanium-rich detrital influx indicating a major change in sediment 

provenance (Fig. 12).  
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 The upper Eagle Ford strata exhibit Turonian-stage deposition dominated by 

punctuated detrital influence, an increase in land-plant organic matter, and slope 

instability (Figs. 12, 15, 45, 46, 56). Lack of major or pervasive bioturbation within the 

upper Eagle Ford strata has allowed for preservation of heterogeneity in lithofacies and 

chemofacies (Fig. 56). Elemental abundances demonstrate that the detrital terrigenous 

influx commonly impacted the system and primary productivity remained high (Fig. 12). 

Slumping, folding, gravity-flows, and intraclasts demonstrate instability at a more 

proximal location during upper Eagle Ford strata deposition (Fig. 38). High primary 

productivity defined by nutrient-rich chemofacies and abundance of Hedbergellidae and 

Heterohelicidae is interpreted as the catalyst for low oxygenation, shown by increased 

molybdenum ppm (Figs. 12, 15) documented at the top of the upper Eagle Ford strata. 

Periods of low-oxygen and nutrient levels in deeper water (oligotrophic zone, sediment-

water interface, or within the sediment) demonstrate periodic stratification of the water 

mass (Figs. 12, 15, 45, 46).  

The Austin Chalk represents a transitional depositional environment from 

variably anoxic in the lower and upper Eagle Ford strata to that of an open-marine, 

carbonate platform present during Austin Chalk deposition (Fig. 56). Fauna are less 

abundant within the Austin Chalk; however, keeled planktonic foraminifera are more 

common, indicating a mixed and oxygenated body of water compared to the density 

stratified water-column present during underlying Eagle Ford deposition (Figs. 45, 46). 

Elemental abundances record sediment homogenization dominated by oxic, intrabasinal 

carbonates (Figs. 12, 15).  
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REGIONAL STRATIGRAPHY AND CORRELATION 

Correlation between individual data sets is difficult because of the distance 

between each data set, and issues correlating outcrop and subsurface data. The following 

is an attempt to discuss the correlations between data sets, as well as short-comings in the 

data presented within this study. The following figure (Fig. 57) graphically represents 

correlation between the three data sets discussed herein.  

A regional comparison of the data presented and discussed within this study 

shows that time-line correlation and formation correlation can be traced between locality 

data sets. The thickness and coverage of each section is variable, causing problems for 

reliable correlations. The Hot Springs outcrops and Core-X section both contain a full 

section from the Buda Limestone through the San Vicente Member and Austin Chalk. 

This section encompasses Cenomanian-Coniacian-age strata. The section presented 

within Core-X is thicker than that presented at the outcrops in Brewster County. The 

Zavala County data set does not represent a full ‘Eagle Ford’ section; the Buda 

Limestone and a portion of the lower Eagle Ford are missing. Comparing general 

thickness of the sections demonstrates a thickening of the section, and subsequent 

deposition, within the Maverick Basin in Maverick County.  
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Figure 57: Regional cross section comparing all three data sets. CGR, SGR, calcium, 

silica, titanium, molybdenum (ppm), and δ13C have been included for 

comparison. Cross section is not to scale and represents suggested 

correlations.  
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Outcrop versus Subsurface Data  

Correlativity of outcrop to subsurface data is difficult because of outcrop 

weathering, degradation of original elemental signatures, and poor sampling resolution. 

Lithofacies defined petrographically demonstrate similarities in sedimentary features and 

faunal assemblages (Figs. 54, 55, 56). Laminated lithofacies in the lower Eagle Ford 

strata and lower Ernst Member show lack of burrowing within the original sediment and 

reworking of fauna by bottom-currents (Figs. 21, 22). Faunal assemblage similarities in 

planktonic foraminifera and inoceramids found within outcrop and subsurface deposits 

agree that deposition occurred during oxygen-deficient to anoxic water conditions with 

high productivity within surface-waters (Figs. 54, 55, 56). Molybdenum enrichment 

documented in outcrop and core confirms that the lower Ernst and Eagle Ford strata are 

deposited under anoxic conditions (Figs. 54, 55, 56). Simultaneous high surface-water 

productivity and anoxic bottom-waters suggests a stratified water-column (Figs. 54, 55, 

56). While maximum basin restriction occurred within the lower Eagle Ford strata within 

both cores, degradation of organic matter at the outcrop has inhibited for a concrete 

interpretation to be made regarding restriction of the lower Ernst Member (Figs. 47, 49, 

51). This unit is concluded to be an analog to subsurface lower Eagle Ford depositional 

environments.  

The upper Eagle Ford strata and upper Ernst Member show agreement in 

changing sedimentary processes and fauna (Figs. 54, 55, 56). Both units contain 

increased detrital sediment, as well as gravity-flows, folded and deformed beds, and 

slumps (Figs. 8, 10, 12, 54, 55, 56). Keeled planktonic foraminifera become more 

common indicating better oxygenation of deepwaters (Figs. 41, 43, 45). Burrowing 

increases through the section, but is rarely pervasive (Figs. 54, 55, 56). Burrows are 
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contained to discrete laminations (Fig. 24, 25, 27). Molybdenum values indicate periodic 

anoxia during deposition of upper Ernst and Eagle Ford strata (Figs. 13, 14, 15). While 

there are several similarities regarding generalizations, exact lithofacies and chemical 

signatures do not correlate between outcrop and core using the data presented in this 

study (Fig. 57). This is because of differences in sampling scales, degradation of outcrop 

chemical and elemental signatures, and discrepancy of visual characteristics based on 

weathering have sufficiently obscured relatable data to inhibit accurate conclusions. 

While the Austin Chalk and San Vicente Members are not chrono-synchronous, a 

major deviation can be seen in variety of sedimentation occurring in the units above the 

Ernst and lower/upper Eagle Ford strata (Fig. 57). While both units are pervasively 

bioturbated, there is a contrast in organic matter provenance. Isotopic data for the San 

Vicente Member depicts a strongly marine, algal-dominated environment with minimal 

land-plant organic matter contribution (Figs. 48, 50, 52). The Austin Chalk, while also 

demonstrating a marine-organic matter dominated environment, contains more (if only a 

small amount) land-plant matter contribution (Figs. 48, 50, 52). 

From the data collected in this study, it can be concluded that outcrop and core 

sections from different intervals on the South Texas Shelf can be correlated on a broad, 

general scale (Fig. 57). The lower Eagle Ford Group or Ernst Member is laminated, 

shows influence of bottom-currents, has similar lithofacies, and was deposited during 

water-mass stratification and deep-water anoxia (Fig. 57). The upper Eagle Ford Ernst 

Members contain a more diverse faunal assemblage, substantial increase in grain 

abundance, periodic mass-wasting episodes on both multiple scales and increased 

oxygenation (Fig. 57). Because of immense, small-scale heterogeneity, these units cannot 

be correlated on a bed or lithofacies scale between wells. Additionally, poor resolution 
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and degradation of organic matter at the surface has caused for incompatible data sets 

between outcrop and subsurface.  

Comparison between Core-X and Winterbotham J.M. Jr. #1 Cores 

Both the Core-X and Winterbotham J.M. Jr. #1 cores contain three main 

stratigraphic divisions defining different depositional environments (Fig. 57). These two 

localities provide evidences of very similar depositional systems mineralogically, 

chemically, and lithologically (Figs. 55, 56). Core-X and the Winterbotham J.M. Jr. #1 

also show similar character of the OAE2 defined isotopically and biostratigraphically 

(Fig. 53). The Winterbotham J.M. Jr. #1 is missing almost the entire lower Eagle Ford 

strata; however, the portion that is there can help to correlate the Zavala County section 

to Core-X in Maverick Basin using elemental, biostratigraphic, and isotopic data (Fig. 

57).  

The lower Eagle Ford represents Cenomanian-age sediments deposited in a 

dominantly anoxic setting under maximum basinal restriction (Figs. 14, 15, 50, 52). 

Deep-water renewal was extremely slow (Figs. 50, 52). The water-column was density 

stratified – oxygen-levels at intermediate and shallow-water depths were high enough to 

support biologic productivity (Figs. 43, 45). The presence of inoceramids demonstrates 

that the sediment-water interface sometimes contained minimal levels of oxygen (Figs. 

43, 45). Bottom-currents influenced sediment accumulation by reworking fauna into 

starved ripples (Figs. 20, 21). Differences between organic matter results in the lower 

Eagle Ford of Core-X and Winterbotham J.M. Jr. #1 is may reflect increased degradation 

of marine-organic matter before settling. Nitrogen is the limiting component while carbon 

is abundant; as bacteria degrades settling marine-organic matter; it will deplete the 

sample of nitrogen, leaving a remaining amount of carbon (Harry Rowe, personal 
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communication). Because the majority of the lower Eagle Ford section is missing (not 

cored) from the Winterbotham J.M. Jr. #1, data may be skewed to represent the 

uppermost lower Eagle Ford strata and may not be representative of the full stratigraphic 

section (Fig. 57). Dominant anoxic conditions during deposition caused high organic 

matter preservation, reflected by the highest TOC values within both cores (Figs. 17, 18).  

The contact between the lower and upper Eagle Ford strata is defined by a major 

detrital influx of titanium-rich sediment (Figs. 10, 12). This detrital lithofacies (massive 

argillaceous claystone; Fig. 23) coincides with a zone of manganese enrichment (Figs. 

10, 12). The distinct lithofacies is documented within both cores (Fig. 57). These two 

chemical signatures serve as the main defining attributes of the lower-upper Eagle Ford 

strata contact (Figs. 10, 12, 57). The contact can also be described by observing a gradual 

decrease in gamma ray values (decrease in clay minerals), a slight decrease and 

subsequent increase in calcium percent, a major decrease in molybdenum concentration, 

and bioturbation (Figs. 55, 56). Secondary dolomitization occurs at the lower-upper Eagle 

Ford strata contact within the Core-X; however, this trait does not appear within the 

Winterbotham J.M. Jr. #1 (Figs. 55, 56).  

The C-T boundary as identified in Core-X and the Winterbotham J.M. Jr. #1 

coincides with the contact between lower and upper Eagle Ford strata (Figs. 43, 45, 57). 

The transition from Cenomanian to Turonian is defined by the appearance of the 

Cenomanian-stage-biomarker keeled planktonic foraminifera Rotalipora cushmani and 

Rotalipora greenhornensis (Figs. 43, 45). The morphologic change of Heterohelicidae 

planktonic foraminifera tests from acute (Cenomanian-age Heterohelix moremani) to 

globular (Turonian-age Heterohelix globulosa) is used to identify the lowest Turonian 

(Figs. 43, 45).  
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The OAE2 occurs within both cores (Fig. 53). The positive δ
13

C excursion creates 

three dominant peaks (Fig. 53). The positive excursion of δ
13

C reflects enhanced algal 

organic matter preservation, reflected in decreased C/N atomic ratios (Figs. 17, 18, 49, 

51). The first and lowest peak begins within the Cenomanian and lower Eagle Ford strata 

(Fig. 53). The latter two peaks are both larger (more positive and broader), and occur in 

the lowest Turonian in the upper Eagle Ford strata (Fig. 53). The second and third peaks 

represent the most positive excursion and coincide with deposition of the massive 

argillaceous claystone lithofacies, titanium enrichment, and manganese enrichment (Figs. 

10, 12, 53, 57). Enrichment of manganese and initiation of burrowing indicates that 

periods of the OAE2 were in fact oxygenated (Figs. 26, 55).  

The upper Eagle Ford strata display an immense degree of heterogeneity both 

within itself and between the two cores. Elemental abundances within both cores (Figs. 9, 

10, 11, 12) show contrasting oxygenated and anoxic environments, while also 

demonstrating dominant intrabasinal carbonate sedimentation, dominant detrital clay 

mineral sedimentation, and nutrient-rich sediments resultant from high levels of primary 

productivity. Lack of intense bioturbation has allowed for pristine preservation of original 

laminations and sedimentary features, as well as original sediment and water chemistry 

heterogeneities (Fig. 57). When compared to the lower Eagle Ford strata, the upper Eagle 

Ford strata in both cores has a more diverse faunal assemblage, increased grain 

abundance, better developed primary sedimentary structures, increased detrital 

sedimentation, and increased slope instability/failure (Fig. 57).  

While both cores contain ductile deformation of firm beds, soft-sediment 

deformation, and gravity-flows, lithofacies in the uppermost section of the upper Eagle 

Ford strata are dissimilar (Fig. 57). The upper Eagle Ford section in Core-X (Fig. 55) is 

dominated by calcisphere-rich ripples, whereas the Winterbotham J.M. Jr. #1 (Fig. 56) 
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contains laminations of a mixed skeletal assemblage (saccocomid fragments, inoceramid 

fragments, planktonic foraminifera, and fish bones). Detrital clay sedimentation in the 

upper Eagle Ford is present within the both Core-X and Winterbotham J.M. Jr. #1 (Fig. 

10, 12). Detrital signals originate within the matrix of the measured samples, indicating 

an additional source of terrigenous influence not in the form of discrete ash beds (Figs. 

10, 12). Discrete volcanic ash beds in the two cores display a yellow, clay-rich aphanitic 

groundmass with varying quantities and varieties of phenocrysts (Fig. 28). Beta quartz 

and plagioclase feldspar phenocrysts are present in moderate to high quantities within 

discrete volcanic ash deposits within the Winterbotham J.M. Jr. #1, but are rare to absent 

within the #1 Core-X (Fig. 28).  

Water conditions varied during Eagle Ford deposition (Figs. 14, 15). While the 

lower, upper Eagle Ford strata contain elements evidencing an oxygen-rich, habitable 

environment, the uppermost, upper Eagle Ford strata demonstrate periodic anoxia (Figs. 

14, 15). While three individual anoxic events can be identified in the Winterbotham J.M. 

Jr. #1 at the top of the upper Eagle Ford strata, one broad event is observed in the Core-X 

(Figs. 53, 57). Because of location and paleogeographic difference in depositional 

location, it is proposed that the three smaller events described within the Winterbotham 

J.M. Jr. #1 are equivalent to the single, larger event within the Core-X (Fig. 53). The 

upper Eagle Ford strata anoxic event is defined by a positive excursion of δ
13

C, 

enrichment of molybdenum, enrichment of vanadium, and increased silicon/aluminum 

values (Figs. 10, 12, 14, 15, 53). Faunal assemblages preserved within this anoxic event 

define extremely high productivity from shallow to intermediate water depths (Figs. 43, 

45). Lack of keeled planktonic foraminifera demonstrates an uninhabitable deeper (outer 

neritic) water mass (Figs. 43, 45). Elemental abundances alternate between anoxic and 

nutrient-rich confirming high surface level productivity (Figs. 14, 15). It is proposed that 
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high primary productivity created an oxygen-minimum zone and subsequently stratified 

the water-column (Figs. 14, 15). While abundant radiolarians within the Core-X could 

explain the increase in silicon/aluminum values, no radiolarians are documented in the 

upper Eagle Ford strata anoxic event in the Winterbotham J.M. Jr. #1 (Figs. 10, 12, 43). 

Terrigenous or volcanic quartz silt may have played a role in the increased silicon values; 

however, data are inconclusive as to the origin of silicon enrichment during the upper 

Eagle Ford strata anoxic event.  

The Austin Chalk in both cores represents the gradational change in depositional 

environment from Eagle Ford-style deposition to that of a carbonate platform represented 

by the Austin Chalk Group (Fig. 57). Lithofacies variety decreases, as do elemental 

abundances. Intense bioturbation in certain intervals homogenized sediment (Fig. 55, 56, 

57). Bottom-currents were still active, definable by ripples contained within thin, 

laminated sections (Figs. 21, 22). A minor anoxic event is documented in the Austin 

Chalk of the Core-X that is not documented within the Winterbotham J.M. Jr. #1 (Figs. 

55, 56). Because neither core contains a complete section of the Austin Chalk, results are 

inconclusive as to whether this event was local to the Core-X or had regional 

representation (Figs. 55, 56). The faunal assemblage within the Austin Chalk depicts a 

very different depositional environment than the underlying lower and upper Eagle Ford 

strata (Figs. 43, 45). Keeled planktonic foraminifera are more common in the Austin 

Chalk demonstrating better nutrient availability within the oligotrophic (deepwater) 

habitation zone (Figs. 43, 45). This distinction demonstrates oxygenation of the 

deepwater mass and a potential change in water mass stratification and decrease of 

basinal restriction (Figs. 50, 52). Organic matter preserved within the Austin Chalk 

indicates marine-plant matter influx and preservation (Figs. 50, 52).  
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CONCLUSIONS 

Analyses from this study show a range of depositional environments influenced 

by bottom-currents, detrital sedimentation, high primary productivity, and variable levels 

of oceanic oxygenation (or the lack thereof).  

The Buda Limestone represents high-productivity and high-levels of available 

nutrients on a healthy carbonate platform. This is shown in the increased nutrients 

preserved in the sediment, low molybdenum values, and pervasive bioturbation. The 

contact between the Buda Limestone and overlying Eagle Ford Group represents a major 

unconformity. This contact represents a substantial shift in deposition style (from shelf to 

drowned shelf) and faunal habitability (high-nutrient levels and oxygenated sediments to 

low-nutrient levels and anoxic to euxinic sediments). 

The lower Eagle Ford represents maximum basinal restriction and slow bottom-

water renewal rates. High concentration of molybdenum confirms anoxia. Nutrient-rich 

elements and the appearance of Hedbergellidae and Heterohelicidae confirm a stratified 

water mass with oxygenated surface and intermediate waters and anoxic deepwaters.  

The contact between the lower and upper Eagle Ford strata is coincident with the 

Cenomanian-Turonian Boundary and occurs during the three-stage, positive δ
13

C 

excursion defining the OAE2. The first stage of the OAE2 occurred within the 

Cenomanian-age lower Eagle Ford strata. The second stage of the OAE2 occurs 

simultaneously with the base of the Turonian-age upper Eagle Ford strata defined by the 

influx of a titanium-rich detrital chemofacies and major manganese enrichment. The third 

and last stage of the OAE2 is both the most positive and most vertically expansive. 

Manganese enrichment and burrowing within the OAE2 section depict periodic 

oxygenation during the event. The C-T boundary is defined biostratigraphically by the 
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documentation of Rotalipora cushmani, Rotalipora greenhornensis, and morphologic 

changes in Heterohelicidae test geometries.  

Following the OAE2, deposition within the upper Eagle Ford strata is, for a short 

time, oxygenated. Elemental abundance heterogeneity demonstrates a changing 

depositional environment. Excellent preservation of original laminations and ripples 

document the lack of intense bioturbation, poor sediment oxygenation, and influence of 

bottom-currents. Detrital sedimentation is decreased from that observed within the lower 

Eagle Ford strata, represented within both the matrix fraction of the deposited sediments 

as well as in less abundant discrete volcanic ash beds. Sediment slumping and plastic 

deformation of firm beds is common within the upper Eagle Ford strata, as well as 

burrowing. Surface level primary productivity was extremely high and was the catalyst 

for a second anoxic event that occurs at the top of the upper Eagle Ford strata. This event 

differs from the OAE2 in several ways. The second event is defined by a positive 

excursion of δ
13

C (less positive than that of the OAE2), enrichment of molybdenum (less 

than that of the OAE2), and enrichment of silicon not bound within clay minerals (found 

in the upper Eagle Ford strata anoxic event).  

The Austin Chalk represents the gradational shift between classic Eagle Ford 

deposition (anoxic, laminated) to that of the Austin Chalk Group (bioturbated, healthy 

carbonate). Renewed deep-water oxygenation is defined by the prevalence of keeled 

planktonic foraminifera, as well as potentially decreased basinal restriction. Elemental 

abundances depict homogenization of bioturbated sediments and detrital phyllosilicate 

dominance of thin, laminated sediments.  

The studied successions are correlative on a broad scale. Similarities are 

documented in both ocean chemistry and depositional environment. Because of common, 

small-scale heterogeneity, individual lithofacies packages cannot be correlated at the bed-
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scale. Correlation of Eagle Ford Group stratigraphic and prospects should be considered 

based on geochemistry and definition of the three defined stratigraphic intervals.  

Characterization of lithofacies and chemofacies within the Eagle Ford Group help 

to better define and interpret the depositional system present on the Texas shelf during 

the Cenomanian-Turonian stages. High-resolution chemostratigraphy, isotope 

stratigraphy, and lithofacies analyses of the OAE2 and subsequent Late Cretaceous 

anoxic events provides insight into understanding the Eagle Ford and Boquillas 

depositional history. 
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Appendices 

 

Appendix A: Description of Core and Outcrop Sections 

Appendix A contains original, hand-drafted stratigraphies and notes for each data 

set presented herein. Please refer to the symbol definitions presented in Figure 33. Width 

of each drafted lithofacies package is defined within the header of each drafting page.  

HOT SPRINGS OUTCROP SECTION, BIG BEND NATIONAL PARK DESCRIPTION 
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CORE-X CONVENTIONAL CORE 
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WINTERBOTHAM J.M. JR. #1 CONVENTIONAL CORE DESCRIPTION 
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