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The use of randomized algorithms and protocols is ubiquitous in computer science. Ran-

domized solutions are typically faster and simpler than deterministic ones for the same problem. In

addition, many computational problems (for example in cryptography and distributed computing)

are impossible to solve without access to randomness.

In computer science, access to randomness is usually modeled as access to a string of un-

correlated uniformly random bits. Although it is widely believed that many physical phenomena

are inherently unpredictable, there is a gap between the computer science model of randomness

and what is actually available. It is not clear where one could find such a source of uniformly

distributed bits. In practice, computers generate random bits in ad-hoc ways, with no guarantees

on the quality of their distribution. One aim of this thesis is to close this gap and identify the

weakest assumption on the source of randomness that would still permit the use of randomized

algorithms and protocols.

This is achieved by building randomness extractors. A randomness extractor is an algorithm

vii



that computes a function Ext : {0, 1}n → {0, 1}m, with the property that for any defective source

of randomness X satisfying minimal assumptions, Ext(X) is close to uniformly distributed. Such

an algorithm would allow us to use a compromised source of randomness to obtain truly random

bits, which we could then use in our original application.

Randomness extractors are interesting in their own right as combinatorial objects that look

random in strong ways. They fall into the class of objects whose existence is easy to check using

the probabilistic method (i.e., almost all functions are good randomness extractors), yet finding

explicit examples of a single such object is non-trivial. Expander graphs, error correcting codes,

hard functions, epsilon biased sets and Ramsey graphs are just a few examples of other such objects.

Finding explicit examples of extractors is part of the bigger project in the area of derandomization

of constructing such objects which can be used to reduce the dependence of computer science

solutions on randomness. These objects are often used as basic building blocks to solve problems

in computer science.

The main results of this thesis are:

Extractors for Independent Sources The central model that we study is the model of indepen-

dent sources. Here the only assumption we make (beyond the necessary one that the source

of randomness has some entropy/unpredictability), is that the source can be broken up into

two or more independent parts. We show how to deterministically extract true randomness

from such sources as long as a constant (as small as 3) number of sources is available with a

small amount of entropy.

Extractors for Small Space Sources In this model we assume that the source is generated by

a computationally bounded processes — a bounded width branching program or an algorithm

that uses small memory. This seems like a plausible model for sources of randomness produced

by a defective physical device. We build on our work on extractors for independent sources

to obtain extractors for such sources.

Extractors for Low Weight Affine Sources In this model, we assume that the source gives a

random point from some unknown low dimensional affine subspace with a low-weight basis.

This model generalizes the well studied model of bit-fixing sources. We give new extractors

for this model that have exponentially small error, a parameter that is important for an

viii



application in cryptography. The techniques that go into solving this problem are inspired

by the techniques that give our extractors for independent sources.

Ramsey Graphs A Ramsey graph is a graph that has no large clique or independent set. We

show how to use our extractors and many other ideas to construct new explicit Ramsey graphs

that avoid cliques and independent sets of the smallest size to date.

Distributed Computing with Weak Randomness Finally, we give an application of extrac-

tors for independent sources to distributed computing. We give new protocols for Byzantine

Agreement and Leader Election that work when the players involved only have access to

defective sources of randomness, even in the presence of completely adversarial behavior at

many players and limited adversarial behavior at every player. In fact, we show how to sim-

ulate any distributed computing protocol that assumes that each player has access to private

truly random bits, with the aid of defective sources of randomness.
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Chapter 1

Introduction

This thesis is about finding efficient ways to extract randomness from defective sources of random-

ness. A randomness extractor is an efficient algorithm computing a function

Ext : {0, 1}n → {0, 1}m

that takes as input bits that come from a defective source of randomness and outputs bits that

are close to uniformly random. There are at least two reasons why designing good randomness

extractors is a worthwhile goal.

First, randomness is an essential resource for solving computational problems. Randomized

algorithms and protocols play key roles in data structures, cryptography, distributed computing,

load balancing and many other areas. We direct the interested reader to the book [MR95] for many

examples. These algorithms are typically faster and simpler than their deterministic counterparts.

In addition, problems often admit randomized solutions even though no deterministic solution is

possible. For example, many problems that arise in cryptography and distributed computing are

impossible to solve without access to randomness.

Unfortunately, there is a big gap between the computer science model of randomness and

what is actually available. In computer science, it is usually assumed that we have access to a long

string of unbiased uniformly random bits. Although it is widely acknowledged that the universe

is unpredictable, and physicists believe that many natural phenomena contain randomness, it is

unclear where such a string of uniformly distributed bits can be obtained. In practice, computers
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are programmed to generate “random” bits in some ad-hoc way with no provable guarantee on

the quality of the randomness. Even worse, applications in computer science often make stronger

assumptions on the randomness that they use. For example, public key cryptography is based on

the assumption that keys can be generated by sampling a uniformly random secret element from

some set. But what happens if an adversary can subvert this assumption? Can we ensure that

security is not compromised even if the adversary is able to learn some information about the

randomness that goes into the system?

These kinds of questions illustrate the importance of determining the weakest assumption

on the source of randomness under which we can still perform the task at hand. A randomness

extractor would give a generic way to weaken these assumptions and close the gap between how

randomness is modeled in computer science and what is physically available. We could use the

extractor to extract truly random bits from the compromised source of randomness, and then use

the extracted bits in the original application.

A second reason for finding explicit constructions of randomness extractors is that these are

functions that satisfy strong random-like combinatorial properties — non-trivial properties that

random functions satisfy with high probability. When the model for the weak source is one that

makes extraction feasible, a random function is typically a good extractor with high probability

(i.e., most functions turn out to be good extractors). Expander graphs, samplers, hard functions,

error-correcting codes, pseudorandom generators and epsilon biased sets are other examples of

such objects. Finding explicit extractors is part of the larger project of constructing objects that

exhibit such combinatorial properties. These objects give generic ways to derandomize randomized

solutions to problems; they are useful in reducing the amount of randomness used in randomized

solutions. This project relates to some of the central questions in complexity theory and computer

science. For instance, showing that P 6= NP amounts to giving an example of a hard function

in NP which is not computable in P . Giving an example of another kind of hard function would

show that BPP = P [NW94] (i.e., that every randomized algorithm has an efficient deterministic

counterpart), another central open question in computer science.

Not surprisingly, explicit constructions of these objects have found a wide variety of appli-

cations in computer science. These objects tend to have close connections with each other. Explicit

constructions of extractors thus give insight into building deterministic objects that look random.

2



Constructions of randomness extractors have been used to get constructions of communica-

tion networks and good expander graphs [WZ99, CRVW02], error correcting codes [TZ04, Gur03],

cryptographic protocols [Lu04, Vad04], data structures [MNSW98] and samplers [Zuc97]. In

this thesis we use our extractors for independent sources to get constructions of Ramsey graphs

(Chapter 7) and new protocols in distributed computing (Chapter 8).

1.1 Toy Examples

Before diving into discussing our research, we give a few examples that give a feel for extractor

problems. Our discussion will be vague and will leave out many details, but we hope that it will

help build a picture for what an extractor problem is, and how it can arise (at least in toy worlds).

The reader may choose to skip this section if she’d rather get to the actual models we consider.

Biased coin Say two people are trying to settle a dispute by tossing a coin, yet each of them

doesn’t trust the other to use a coin which is fair. Can they simulate a fair coin toss with the

aid of a defective biased coin?

One solution to this problem is to toss the coin n times and then compute the parity of the

coin tosses, i.e., they decide that the outcome of the simulated coin toss is heads exactly when

an even number of the n coin tosses give heads. It can be shown that if the original coin had

a 1/2 + ǫ chance of giving heads, the simulated coin has a 1/2 + (2ǫ)n/2 chance1 of giving

heads. We can choose n to be so large that the adversary’s advantage is reduced to something

that might be insignificant, assuming we know what ǫ is.

An alternate solution due to von-Neumann [vN51] is cleaner: we group the sequence of coin

tosses into pairs of coin tosses. We ignore all pairs which are of the form tail-tail or head-head

and consider the first pair which isn’t of this form. The simulated coin is a head exactly when

this first pair is a tail-head. It is easy to check that now the simulated coin is completely

unbiased, regardless of what the bias of the original coin was, since tail-head is as likely as

head-tail regardless of the original bias. Of course there is a small chance that we will have

to wait a very long time to get an output for the simulated coin. von-Neumann’s solution

seems particularly appealing because to use it we require a weaker assumption on the source

1This is an exercise.
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of randomness. It is sufficient that all coin tosses are independent and have the same bias,

we need not know what the actual bias of the coins is.

On the other hand, suppose we tried to speed up this process by tossing n different coins,

presumably with different biases, at the same time and then do some computation to simulate

a single coin toss. In this case von-Neumann’s approach no longer works, since it relied

crucially on each toss (or at least pairs of tosses) having the same bias. However, it’s easy

to see that the original approach of computing the parity of the coins still gives that the

probability of the simulated coin being heads is 1/2 + (1/2)
∏n
i=1(2ǫi), if the i’th coin has a

1/2+ ǫi probability of showing a head. Thus which solution should be used crucially depends

on the type of defect in the coins.

What if we had loaded dice instead of coins to work with? Would computing the sum of n

loaded dice modulo 6 generate a value that is close to uniform?2

Exposure Resilience Suppose Alice and Bob are in different locations and are trying to agree

on a password for a joint bank account that they are trying to create. One way for them to

do this would be for Alice to generate a random password (say a random n-bit string) and

transmit this to Bob. A third person, Charlie, may intercept their communication and learn

their password. Alice and Bob could prevent this via cryptography — Alice could encrypt

the password and transmit the encryption to Bob, who would then decrypt it. But is there

some way for them to agree on a password in a way that’s information theoretically secure?

Of course if Charlie intercepts all of their communication, this is impossible to achieve, since

he’d be able to learn whatever Bob can learn. But what if Charlie only gets to see some t of

the transmitted bits? In this case something can be done — Alice and Bob can agree that

their password is the parity of the transmitted bits. If Charlie manages to miss a single bit

of the transmission, then the parity remains completely unpredictable to him.

This is a pretty good solution, except that it only gives Alice and Bob a way to generate

a single bit password. We could get 2 bits by breaking up the n transmitted bits into two

n/2-bit strings and computing the parity of each part. This would work as long as Charlie

gets to see less than n/2 total bits of the transmission. In this way we can get a scheme that

2Yes, barring pathological cases (for instance every one of the dice could only give values from the same subgroup
of Z6, in which case the sum will also lie in the subgroup). This is a harder exercise. A hint is to use Lemma D.0.11.
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generates n/t bits as long as Charlie only gets to see t bits of the transmission.

Another idea is to use polynomials over a finite field F. Let x1, x2, . . . , x2h−t be distinct

points in a finite field. We could interpret the transmitted bits as the evaluations of a random

degree h polynomial f at h + 1 points: f(x1), f(x2), . . . , f(xh+1). Then we could make the

real password f(xh+2), . . . , f(x2h+2−t). Now if the adversary learns the evaluations at any t

points, the evaluations at any other h + 1 − t points look uniform, so this would work. The

problem with this approach is the alphabet size: to find so many distinct point in a finite

field, the size of the field has to be at least log h. If n is the number of bits in the transmission,

the adversary can read just n/|F| ∼ n/ log n bits to ruin our solution. This scheme does have

the advantage that we can even allow for the adversary to corrupt some of the bits of the

transmission and recover (by choosing the degree of the transmitted polynomial to be smaller

than h, so that we are transmitting a Reed Solomon codeword).

A smarter way to solve this problem was proposed by Kamp and Zuckerman [KZ03] — the

final password is simply the sum of the bits modulo M , where M is some integer of size

roughly
√
n− t. It can be shown that for any fixing of the t bits that Charlie receives, the

sum of the bits modulo M corresponds to taking a random walk on a cycle of size M , with

an adversarially chosen starting point. Such a walk mixes to close to uniform in roughly M2

steps. This gives m = logM = Ω(log(n − t)) bits which are 2−m close to uniform, for any

t. No other result with exponentially small error was known for the case when n − t < √n.

In Chapter 6 we give a new scheme that gives m = (n − t)Ω(1) bits which are 2−m close to

uniform, when n− t is polylogarithmic in n.

Leader Election Suppose a group of c people want to play a board game and need to pick the

person who gets to start the game. Unfortunately, they have no access to a public source of

randomness that they can all trust. How can they select who gets to start in a fair manner?

One possible solution is this: they could each write down a secret integer on separate pieces

of paper and fold them. Then they could gather all the pieces of paper and compute the

sum of these integers modulo c to determine which of the players gets to start. This solution

guarantees that no group of c− 1 players can control who gets to start3.

3This is different from the standard full information model often used in distributed computing, since we are
forcing all players to commit to values before revealing any of their integers.
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Now what if we even want to tolerate the players getting additional information about the

numbers that other players selected? If some player manages to learn the last digit of each of

the integers that the other players selected by sneaking quick glances while they’re writing,

he could potentially use this information to give himself an edge. For instance, if c is even,

knowing whether the last digits are even or odd would be enough for the player to control

whether the final sum is even or odd modulo c. Of course we cannot hope to do anything if

any player manages to learn everything about the other players’ secret numbers. Can we find

a protocol whose outcome cannot be controlled by a large coalition of players, even if they

learn a lot of information about the honest players’ numbers?

The problem with our last solution was that the even integers in Zc form a subgroup of Zc.

A coalition can use just a small amount of information (whether or not the secret integers lie

in this even subgroup) to get a lot of information about the sum. This suggests the following

solution: we could ask that each player write down an integer and then compute the sum

of the integers modulo p, for a very large prime p. We could then reduce this sum modulo

c to pick the winning player. Since the additive group of integers modulo p doesn’t have

any non-trivial subgroups, cheating players shouldn’t be able to force the outcome to lie in

a subgroup. This seems like it might be a step in the right direction; certainly as long as

an adversary doesn’t learn enough information about each of the honest players’ integers,

he cannot force the final outcome into a small set (note that any single integer that’s not 0

mod p generates the entire group). Unfortunately, this solution has a pretty bad quantitative

performance.

To see this, suppose the first c−1 players write down the integers x1, x2, . . . , xc−1. Fix a large

constant c < T < p and consider the integers yi = c−1Txi mod p. We can express every such

yi = aiT + bi, where here 0 ≤ bi < T and 0 ≤ ai < p/T . Note that xi = cai + cT−1bi mod p.

Suppose the c’th player manages to learn or guess b1, . . . , bc−1, which is only (c − 1) log T

bits of information. He can then set xc = −cT−1
∑c−1

i=1 bi mod p. This guarantees that
∑c

i=1 xi = c
∑c−1

i=1 ai + 0 mod p. Since each ai < p/T , we get that c
∑c−1

i=1 ai < cp/T < p,

which guarantees that the result is a multiple of c even after reducing it modulo p. Thus,

even learning a constant number of the bits about each player’s number can allow one player
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to control the outcome4.

It turns out that there is a simple protocol for this problem. We require each player to pick

an integer which is not 0 mod p. Then we multiply each of the integers in Zp and reduce

this product modulo c to pick the winning player. It can be shown that this works, even if

all but a constant (independent of c) number of the players collude together, and even if the

cheating players learn 99% of the information about each of the honest players’ secrets5. In

fact, if c− 2 players collude and learn less than 49% of the other two players’ numbers, then

the result is still uniformly distributed from their point of view6.

This solution is discussed more thoroughly in Chapter 5.

Each of these examples involved constructing a randomness extractor for a specific class of

sources. In the case of our first example (the biased coin), the source was a defective or maliciously

set up device. In the case of our other two examples, the source was a distribution obtained by

conditioning the uniform distribution on some type of event.

1.2 Our Main Results

Let us now be more precise about the actual problems that we solve in this thesis. We are interested

in building randomness extractors — efficient algorithms computing a function

Ext : {0, 1}n → {0, 1}m

that takes as input bits that come from a defective source of randomness and outputs bits that are

close to uniformly random.

To formalize the problem of randomness extraction, we must decide on a model for the

types of defective sources that the extractors can handle. If we intend to extract m random bits,

information theoretic considerations show that the source must contain at least m bits of entropy.

4 The intuition for this example is that giving the value of x ∈ Zp modulo c is the same as giving which of the
intervals [1, p/c], [p/c, 2p/c], . . . , [p(c − 1)/c, p] contains c−1x. If the cheating player finds out where each c−1xi lies
upto a 1/T accuracy, she can predict where the sum will lie accurately enough to control the outcome of the protocol.
It is easy to modify the scheme so that the last player can force any outcome she wants.

5We are not aware of an easy proof of this fact. It is implied by Theorem 5.3.3.
6This fact seems to have a much easier proof — Theorem C.2.1.
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The goal is to construct extractors which output the most number of random bits for a source with

given entropy, have small error and work for very general classes of sources.

We start with a very general (in fact, we shall soon see that it’s too general) class: weak

sources [CG88]. The only constraint on a weak source is a necessary constraint — that the source

has some entropy. We say that a source that supplies n-bit samples has min-entropy k if the

probability of getting any particular string from the source is at most 2−k. Such a source is called

an (n, k)-source. Unfortunately, it is easy to see that there is no deterministic extractor that can

extract from any weak source. If Ext : {0, 1}n → {0, 1} is any such purported extractor, let S be

the bigger set from the pre-images Ext−1(0) and Ext−1(1). We see that Ext must fail to extract

from the distribution which is uniform over the set S, even though this source has min-entropy at

least n− 17.

Given that it is impossible to find a single extractor that works for every source with sufficient

entropy, our goal is to look for additional constraints on the source of randomness that will make

randomness extraction feasible, yet be general enough to still be useful.

1.2.1 Seeded Extractors

Much work has focussed on the task of simulating probabilistic algorithms with weak random

sources [VV85, CG88, Zuc96, SSZ98, ACRT99]. This work resulted in the introduction, by Nisan

and Zuckerman [NZ96], of what we shall refer to in this thesis as a seeded extractor. Here the

assumption is that the source consists of a sample from a weak source and an additional much

shorter independent seed of truly uniformly random bits.

When simulating probabilistic algorithms with weak random sources, the need for truly

random bits can be eliminated by enumerating over all choices of the seed. Seeded extractors have

turned out to have a wide variety of other applications and were found to be closely related to

many other important pseudorandom objects. Thus, they were the main focus of attention in the

area of randomness extraction in the 90’s, with a variety of very efficient constructions. For any

n, k ∈ N we now know how to construct extractors that can extract a constant fraction of k bits

which are almost uniformly random using a very short (only a constant multiple of logn) length

7If the min-entropy is significantly larger (not that there’s much room to play with) than n − 1, then the input
itself must be statistically close to uniform. For instance if the min-entropy is n − ǫ, the input is (2ǫ − 1)-close to
uniform.
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seed from any (n, k)-source [LRVW03, GUV07].

Unfortunately, the trick of running over all seeds to a seeded extractor does not give a

generic way to make any protocol or algorithm that needs access to randomness (for more than

efficiency) function with the aid of a weak source. These extractors cannot be used in applications

like cryptography or distributed computing protocols.

We direct the interested reader to [Nis96, NT99, Sha02] for surveys of the origins, applica-

tions and constructions of seeded extractors.

1.2.2 Independent Sources

Perhaps the most natural restriction on the randomness (first considered by [SV86, Vaz85, CG88])

is to assume that we have access to two or more independent sources of randomness. Finding

extractors for this class of sources is the central topic of this thesis. It is conceivable that we could

find truly independent sources of randomness in nature. For instance, perhaps the bits coming

from the operation of the operating system of the computer are independent of the bits coming

from the computer’s clock. At the very least, the assumption of independence between a few parts

of the source is much weaker than the assumption that the source gives bits that are really close

to uniform (which asserts in particular that every single bit of the source is independent of every

other one).

Another way to model sources of randomness, that is relevant to cryptography, is to imagine

that the source is the result of some partial information being revealed to an adversary. Suppose

we are in the situation where for some function f : {0, 1}n → {0, 1}t, the adversary is capable of

learning f(x) of our truly random string x. This may give the adversary some information, but if

t is smaller than n, we expect that the adversary doesn’t know everything about x. Can we then

find a function Ext : {0, 1}n → {0, 1}m with the property that Ext(x) looks completely random to

the adversary? This task turns out to be closely related to the problem of constructing randomness

extractors for arbitrary sources with some entropy. Indeed, just like above, we can easily prove

that it is impossible to find such an Ext that works for every f — the adversary can simply choose

f to be the function Ext itself, then it is clear that she can predict the bits that we extract.

In this view, assuming that the source consists of several independent parts turns out to

correspond to constraining the adversary’s function f to be a function of low communication com-

9



plexity — we assume that the sample x is broken into several parts and we are dealing with several

adversaries, each of whom have access to only one part of the source. Then we bound the total

number of bits they can communicate with each other to compute f . We discuss this view further

in Chapter 8, where we use it to get distributed computing protocols that cannot be disrupted by

such adversaries.

In Chapter 4, we discuss our work in constructing extractors for independent sources,

showing how to extract randomness from as few as 3 independent sources, even when the en-

tropy is polynomially small in the length of each of the sources. The results in this chapter are

based on work with Boaz Barak, Xin Li, Ronen Shaltiel, Avi Wigderson and David Zuckerman

[Rao06, BRSW06, LRZ07].

1.2.3 Small Space Sources

Another natural way to constrain the source is to assume that it was generated by some computa-

tionally bounded process. This type of source was first considered by Trevisan and Vadhan [TV00],

who gave extractors for sources that are generated by small circuits. In our work, we consider the

model where the source is generated by a bounded width branching program or an algorithm with

a small amount of memory. This seems to be a plausible model for physical random sources since

it seems believable that a defective physical device has only a small amount of state that creates

correlations across the random bits that it is generating. This model also generalizes a number

of previously studied models for sources. In the “adversarial” view discussed above, this model

corresponds to constraining the adversary’s function f to be a function that can be computed by

a machine with small memory and one way access to the random string.

In Chapter 5 we show how to build extractors for this model. We give polynomial-time,

deterministic randomness extractors for sources generated in small space, where we model space s

sources on {0, 1}n as sources generated by width 2s branching programs. For every constant δ > 0,

our algorithm extracts .99δn bits that are exponentially close to uniform (in variation distance) from

space s sources of min-entropy δn, where s = Ω(n). In addition, assuming an efficient deterministic

algorithm for finding large primes, there is a constant η > 0 such that for any ζ > n−η, our

algorithm extracts m = (δ − ζ)n bits that are exponentially close to uniform from space s sources

with min-entropy δn, where s = Ω(β3n). Previously, nothing was known for δ ≤ 1/2, even for
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space 0.

Our results are obtained by reducing the problem to that of extracting from a class of sources

that is very close to independent sources. These results are based on work with Jesse Kamp, Salil

Vadhan and David Zuckerman [KRVZ06].

1.2.4 Affine Sources

This is a source that gives a uniform point from some unknown low dimensional subspace. In

the “adversarial” view, this corresponds to constraining the adversary’s function f to be a linear

function. For example, the adversary might have gotten access to some t of the bits of our random

string. We make partial progress towards building an extractor for such sources in Chapter 6, where

we construct an extractor for a smaller class of sources called low weight affine source. Here the

assumption is that the affine subspace has a basis which has many low weight vectors. In particular,

our extractors give the best known extractors for bit-fixing sources, which are weight one sources.

Although there isn’t a direct connection to the case of independent sources, our extractors are

obtained using techniques that are very similar to those used to get extractors for independent

sources. These extractors have applications in cryptography.

1.3 From Extractors to Ramsey Graphs

One important reason why the independent sources model is interesting is its connection to explicit

constructions of Ramsey Graphs. A graph onN vertices is called aK-Ramsey Graph if it contains no

clique or independent set of size K. In 1947 Erdős published his paper inaugurating the Probabilistic

Method with a few examples, including a proof that most graphs on N = 2n vertices are 2n-Ramsey.

The quest for constructing such graphs explicitly has existed ever since and led to some beautiful

mathematics.

Another way to view 2-source extractors is as boolean matrices that look random in a strong

sense: Every 2-source extractor for entropy k gives an N ×N boolean matrix in which every K×K
minor has roughly the same number of 1’s and 0’s, with N = 2n,K = 2k. When the matrix satisfies

the weaker property that every such minor is not monochromatic (the fraction of 1’s and 0’s need

not be roughly the same), we call the function a 2-source disperser. Viewed as the adjacency matrix

of a bipartite graph, every 2-source disperser gives a construction of a K-Ramsey bipartite Graph,
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since there cannot be any bipartite cliques or independent sets of size K × K. It turns out that

there is a simple way to turn every bipartite Ramsey Graph into a Ramsey graph with almost the

same parameters.

The best explicit Ramsey Graph construction to date before the results in this thesis was

obtained in 1981 by Frankl and Wilson [FW81], who used intersection theorems for set systems

to construct N -vertex graphs that are 2
√
n logn-Ramsey. The best explicit 2-source disperser was

a construction that worked for min-entropy k = o(n), by Barak, Kindler, Shaltiel, Sudakov and

Wigderson [BKS+05].

In Chapter 7 of this thesis, we give an explicit disperser for two independent sources on

n bits, each of min-entropy k = 2log1−α0 n, for some small constant α0 > 0. Put differently,

setting N = 2n and K = 2k, we construct explicit N × N Boolean matrices for which no K ×K
submatrix is monochromatic. Viewed as adjacency matrices of bipartite graphs, this gives an

explicit construction of K-Ramsey bipartite graphs of size N . Thus we give explicit construction

of both Ramsey graphs and 2-source dispersers that give better bounds.

These results were made possible by our earlier work on constructing good extractors for

independent source. A key ingredient which allows us to beat the barrier of k =
√
n is a new

(and more complicated) variant of the challenge-response mechanism of Barak et al. [BKS+05]

that allows us to find the min-entropy concentrations in a source of low min-entropy.

Our results are based on work with Boaz Barak, Ronen Shaltiel and Avi Wigderson [BRSW06].

1.4 An Application — Protocols in Distributed Computing

Finally, in Chapter 8, we discuss how to use ideas that go into our extractor constructions to design

new distributed computing protocols.

We design several efficient one-round network extractor protocols, which extract private

randomness over a network with faulty players when each player has a single, weak random source

of sufficient min-entropy. As a corollary, we derive efficient protocols for Byzantine agreement and

leader election (and hence the equivalent collective coin-flipping) in the full information model.

Our robust protocols run in just one more round than the corresponding protocols with perfect

randomness.

In a synchronous network, if each player’s weak source has min-entropy rate greater than 1/2,
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then we essentially match the bounds for perfect randomness: Byzantine agreement tolerating a

1/3− α fraction faulty players, and leader election tolerating a 1/2− α fraction faulty players, for

any constant α > 0. In a synchronous network, if each player’s n-bit source of randomness has

nΩ(1) min-entropy, then the bounds drop to 1/4−α and 1/3−α, respectively. In an asynchronous

network, if each player has access to a source with polynomial min-entropy (though 1/3 of the

players need shorter sources than the others), then our Byzantine agreement protocol tolerates a

1/18 − α fraction of faulty players.

These results are based on work with Xin Li and David Zuckerman [LRZ07].

1.5 Structure of This Thesis

In Chapter 2 we give some basic definitions and results from previous works that our results depend

on. We recommend that the reader skim this chapter on the first reading, returning to it whenever

clarification is needed about a particular definition.

Many of our results rely on new ways to manipulate a special class of sources called some-

where random sources. In Chapter 3 we discuss these techniques. The rest of the chapters are

devoted to presenting the constructions we have discussed above.
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Chapter 2

Basic Definitions and Building Blocks

This chapter is intended to be a comprehensive listing of the formal definitions and basic facts

that will be used throughout this thesis. We also list here many technical lemmas that are used

repeatedly in this thesis. We recommend that the reader skim this chapter in a first reading, and

return to it when a concept needs clarification in later chapters. We will usually repeat definitions

in the later chapters when concepts are used for the first time.

Throughout this thesis, we will use capital letters to denote distributions and sets. We will

usually use the same lowercase letter to denote an instantiation of the capital letter, for e.g. for a

set X, we would use x to denote an element in X.

We use the convention that N = 2n, M = 2m and K = 2k.

All logarithms are meant to be base 2, unless we explicitly state otherwise.

We will use Um to denote the uniform distribution on the set {0, 1}m.

Often in technical parts of this thesis, we will use constants like 0.9 or 0.1 where we could

really use any sufficiently large or small constant that is close to 1 or 0. We do this because it

simplifies the presentation by reducing the number of additional variables we will need to introduce.

2.1 Min-Entropy and Sources of Randomness

We will be concerned with the treatment of various kinds of distributions that are nice in that they

contain a sufficient amount of usable randomness. Early works on extractors went through several

ways to measure how much usable randomness a source contains, until they eventually converged
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onto a definition suggested by Chor and Goldreich [CG88].

Definition 2.1.1. [CG88] The min-entropy of a distributionX, denotedH∞(X), is k if the heaviest

point under X has weight 2−k, i.e.,

H∞(X)
def
= min

x∈supp(X)
log

(

1

X(x)

)

The min-entropy rate of a distribution X on {0, 1}n is H∞(X)/n.

Definition 2.1.2. An (n, k)-source is a distribution X over {0, 1}n with H∞(X) ≥ k.

Note that for any deterministic function f : {0, 1}n → {0, 1}m and any distribution X,

H∞(f(X)) ≤ H∞(X), since the image of every point under f is at least as heavy as the point in

X. Thus, if we intend to extract m bits of randomness from a source, the source must necessarily

have min-entropy m1.

It is worthwhile to compare the notion of min-entropy with the more familiar notion of

Shannon entropy: H(X) =
∑

x∈supp(X)
X(x)

log(X(x)) . The difference between the two measures is that

the min-entropy of X gives a bound on the amount of information that every point in the support

of the distribution carries, while the Shannon entropy measures the average amount of information

that points in the support of a distribution carry. Clearly we have that H∞(X) ≤ H(X), thus min-

entropy is a more stringent measure of the amount of randomness in a source. Still, it turns out that

min-entropy shares many nice properties that Shannon entropy has. For instance, it is clear that

for two random variables X,Y in the same probability space, H∞(XY ) ≥ max{H∞(X),H∞(Y )}.
Many of our arguments will involve conditioning random variables on certain events and then

arguing about the corresponding conditional distribution. It will be useful to have the following

definition:

Definition 2.1.3 (Subsource). Given random variables X and X ′ on {0, 1}n we say that X ′ is a

deficiency d subsource of X and write X ′ ⊆ X if there exists a set A ⊆ {0, 1}n such that (X|A) = X ′

and Pr[X ∈ A] ≥ 2−d.

Fact 2.1.4 (Deficiency of sub-subsources.). Let X ′ be a subsource of X with deficiency d′ and let

X ′′ be a subsource of X ′ with deficiency d′′. Then X ′′ is a subsource of X with deficiency d′ + d′′.

1If the source has min-entropy m − log(1/ǫ), the output of our distribution must be (1 − ǫ)-far from the uniform
distribution in terms of statistical difference.
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Sometimes the distributions we get are not exactly the distributions we want, but they may

be close enough. We will measure how close distributions are by their statistical distance:

Definition 2.1.5. Let D and F be two distributions on a set S. Their statistical distance is

|D − F | def= max
T⊆S

(|D(T )− F (T )|) =
1

2

∑

s∈S
|D(s)− F (s)|

If |D − F | ≤ ǫ we shall say that D is ǫ-close to F .

This measure of distance is nice because it is robust in the sense that if two distributions

are close in this distance, then applying any functions to them cannot make them go further apart.

Proposition 2.1.6. Let D and F be any two distributions over a set S s.t. |D − F | ≤ ǫ. Let g be

any function on S. Then |g(D)− g(F )| ≤ ǫ.

Proposition 2.1.7. Let A,B be two independent random variables over {0, 1}n. Then |A ⊕ B −
Un| ≤ max{|A,Un|, |B,Un|}, where here ⊕ is the bitwise xor function.

Lemma 2.1.8. Let X, Y , and V be distributions over Ω such that X is ǫ-close to uniform and

Y = γ · V + (1− γ) ·X. Then Y is (γ + ǫ)-close to uniform.

A fact that we will often use is that any typical event cannot steal a lot of min-entropy from

a source, in the following sense:

Proposition 2.1.9. Let X be a random variable with H∞(X) = k. Let X ′ ⊂ X be a subsource of

deficiency d corresponding to some set A ⊂ {0, 1}n. Then H∞(X ′) = k − d.

Proof. For every point x ∈ supp(X|A), note that Pr[X = x|X ∈ A] = Pr[X = x]/Pr[A], from

which the proposition is obvious.

More generally, we have the statement that conditioning on typical values of any function

cannot reduce the min-entropy of our source by much more than we expect.

Proposition 2.1.10 (Fixing a function). Let X be a distribution over {0, 1}n, F : {0, 1}n →
{0, 1}m be a function, and ℓ ≥ 0 some number. For every s ∈ supp(F (X)), define Xs to be the
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subsource X|F (X) = s. Then there exists s ∈ {0, 1}m for which Xs has deficiency at most m.

Furthermore, we have that

Pr
s←RF (X)

[deficiency of Xs ≤ m+ ℓ] < 2−ℓ

Proof. Let S be the set of s ∈ {0, 1}m such that Pr[F (x) = s] < 2−m−ℓ. Since |S| ≤ 2m, we have

that Pr[F (X) ∈ S] < 2−ℓ. If we choose s ←R F (X) and s /∈ S, we get that X|F (X) = s has

deficiency ≤ m + ℓ. Choosing ℓ = 0 we get the first part of the proposition, and choosing ℓ = m

we get the second part.

The following lemma will also be useful:

Lemma 2.1.11. Let X be an (n, k) source. Let S ⊆ [n] with |S| = n′. Let X|S denote the projection

of X to the bit locations in S. Then for every l, X|S is 2−l-close to a (n′, k − (n − n′)− l) source.

Proof. Let S be the complement of S.

Then X|S is a convex combination over X|S. For each setting of X|S = h, we induce the

distribution X|S|X|S = h.

Define H = {h ∈ {0, 1}n−n′ |H∞(X|S |X|S = h) < n′−n+k− l}. Notice that H∞(X|S |X|S =

h) = H∞(X|X|S = h). Then by Proposition 2.1.9, for every h ∈ H, Pr[X|S = h] < 2k−(n−n′)−l−k =

2−(−n′+n+l). Since |H| ≤ 2n−n
′

, by the union bound we get that Pr[X|S ∈ H] ≤ 2−l].

In some situations we will have a source that is statistically close to having high min-entropy,

but not close enough. We can use the following lemma to lose something in the entropy to get 0

error on some subsource.

Lemma 2.1.12. Let X be a random variable over {0, 1}n s.t. X is 1/4-close to an (n, k) source.

Then there is a deficiency 2 subsource X ′ ⊆ X s.t. X ′ is a (n, k − 3) source.

Proof. Let t be a parameter that we will pick later. Let H ⊆ Supp(X) be defined as H
def
= {x ∈

Supp(X)|Pr[X = x] > 2−t}. H is the set of heavy points of the distribution X. By the definition

of H, |H| ≤ 2t.
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Now we have that Pr[X ∈ H] − 2−k|H| ≤ 1/4, since X is 1/4-close to a source with min-

entropy k. This implies that Pr[X ∈ H] ≤ 1/4 + 2−k|H| ≤ 1/4 + 2t−k.

Now consider the subsource X ′ ⊆ X defined to be X|X ∈ (Supp(X) \ H). For every

x ∈ Supp(X ′), we get that

Pr[X ′ = x] = Pr[X = x|X /∈ H] ≤ Pr[X=x]
Pr[X/∈H] ≤ 2−t

1−(1/4+2t−k)

Setting t = k − 2, we get that Pr[X ′ = x] ≤ 2−k+2

1−(1/4+2−2)
≤ 2−k+3.

We will need the following lemma to reduce the error in the constructions.

Lemma 2.1.13 ([BIW04]). Let Z1, . . . , Zv be independent distributions over {0, 1}k with |Zi −
Uk| < ǫ for every i = 1, . . . , v. Then

|Z1 ⊕ Z2 ⊕ · · · ⊕ Zv − Uk| < ǫv

The following lemma gives a sufficient condition to lowerbound the min-entropy of a source.

Lemma 2.1.14 ([GUV07]). Let X be a random variable taking values is a set of size larger than

2k such that for every set S of size less than ǫ2k, Pr[X ∈ S] < ǫ. Then X is ǫ-close to having

min-entropy k.

Proof. First note that |supp(X)| ≥ ǫ2k, or else the hypothesis of the lemma is contradicted by

setting S = supp(X).

Let S be the ǫ2k heaviest elements under X. Then for every x /∈ S we must have that

Pr[X = x < 2−k], or else every element in S would have weight greater than 2−k, which would

contradict the hypothesis. Thus, the set of elements that have weight more than 2−k are hit with

probability at most ǫ, which implies that X is ǫ-close to having min-entropy k.

2.1.1 Block Sources and Conditional entropy.

A block source is a source broken up into a sequence of blocks, with the property that each block

has min-entropy even conditioned on previous blocks.

Definition 2.1.15 (Block sources). A distribution X = X1,X2, · · · ,XC is called a (k1, k2, . . . , kC)-

block source if for all i = 1, . . . ,C, we have that for all x1 ∈ X1, . . . , xi−1 ∈ Xi−1, H∞(Xi|X1 =
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x1, . . . ,X
i−1 = xi−1) ≥ ki, i.e., each block has high min-entropy even conditioned on the previous

blocks. If k1 = k2 = · · · = kC then we say that X is a k-block source.

If X = X1, · · · ,Xt is a random variable (not necessarily a block source) over {0, 1}n divided

into t blocks in some way, and x1, . . . , xi are some strings with 0 ≤ i < t, we use the notation

X|x1, . . . , xi to denote the random variable X conditioned on X1 = x1,. . .,Xi = x1. For 1 ≤ i <

j ≤ t, we denote by Xi,...,j the projection of X into the blocks Xi, . . . ,Xj . We have the following

facts about such sources:

Lemma 2.1.16 (Typical prefixes). Let X = X1, · · · ,Xt be a random variable divided into t blocks,

let X ′ = X|A be a deficiency d subsource of X, and let ℓ be some number. Then for every 1 ≤ i ≤ t,

with probability at least 1 − 2−ℓ, a random prefix x1, . . . , xi in X ′ satisfies Pr[X ∈ A|x1, . . . , xi] ≥
2−d−ℓ.

Proof. We denote by X1 the first i blocks of X. Let B be the event over X1 that Pr[X ∈ A|X1] <

2−d−ℓ. We need to prove that Pr[B|A] < 2−ℓ but this follows since Pr[B|A] = Pr[A∩B]
Pr[A] ≤ 2d Pr[A∩B].

However Pr[A ∩B] ≤ Pr[A|B] =
∑

x∈B Pr[A|X1 = x]Pr[X1 = x|B] < 2−d−ℓ.

As a corollary we get the following

Corollary 2.1.17 (Subsource of block sources). Let X = X1, · · · ,XC be a k1, k2, . . . , kC-entropy

C-block source (i.e., for every x1, . . . , xi ∈ Supp(X1,...,i), H∞(Xi+1|X1,...,i = x1, . . . , xi) ≥ ki+1) and

X ′ be a deficiency d subsource of X. Then X ′ is C2−l statistically close to being a k1 − d− l, k2 −
d− l, . . . , kC − d− l block source. In fact, there is a subsource Y ⊂ X ′ of density 1− C2−l which is

such a block source.

Proof. Let X ′ = X|A and define B to be following the event over X ′: x = x1, . . . , xC ∈ B if for

some i ∈ [C], Pr[X ∈ A|x1, . . . , xi] < 2−d−l. By Lemma 2.1.16, Pr[X ′ ∈ B] < C2−l. However,

for every x = x1, . . . , xC ∈ B̄ = A \ B, we get that Y ′ = X ′i+1|x1, . . . , xi−1 is a source with

H∞(Y ′) ≥ H∞(Y )− d− l ≥ k− d− l. Hence X ′|B̄ is a k− d− l-block source of distance C2−l from

X ′.

If X = X1, · · · ,Xt is a source divided into t blocks then in general, the entropy of Xi

conditioned on some prefix x1, . . . , xi−1 can depend on the choice of prefix. However, the following

lemma tells us that we can restrict to a low deficiency subsource on which this entropy is always
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roughly the same, regardless of the prefix. Thus we can talk about the conditional entropy of a

block Xi without referring to a particular prefix of it.

Lemma 2.1.18 (Fixing entropies). Let X = X1,X2, · · · ,Xt be a t-block random variable over

{0, 1}n, and let 0 = τ1 < τ2 < · · · < τc+1 = n be some numbers. Then, there is a deficiency t2 log c

subsource X ′ of X and a sequence ē = e1, . . . , et ∈ [c]t such that for every 0 < i ≤ t and every

sequence x1, . . . , xi−1 ∈ Supp(X ′1,...,i−1), we have that

τei ≤ H∞(X ′i|x1, . . . , xi−1) ≤ τei+1 (2.1)

Proof. We prove this by induction. Suppose this is true for up to t − 1 block and we’ll prove it

for t blocks. For every x1 ∈ Supp(X1) define the source Y (x1) to be X2,...,i|x1. By the induction

hypothesis there exists a (t−1)2 log c deficiency subsource Y ′(x1) of Y (x1) source and ē(x1) ∈ [c]t−1

the sequence such that Y ′(x1) satisfies Equation 2.1 with respect to ē(x1). Define the function f :

X1 → [c]t−1 that maps x1 to ē(x1) and pick a subsource X ′1 of X1 of deficiency (t−1) log c such that

f is constant on X ′1. That is, there are some values e2, . . . , et ∈ [c]t−1 such that F (x1) = e2, . . . , et

with probability 1. We let the source X ′ be X conditioned on the event that for x1, . . . , xt ∈ X ′,
x1 ∈ X ′1 and x2, . . . , xt ∈ Y (x1).

The deficiency of X ′ is indeed at most (t− 1) log c+ (t− 1)2 log c < t2 log c.

Corollary 2.1.19. If X in the lemma above is a k-source, and ē is as in the conclusion of the

lemma, we must have that
∑t

i=1 τei+1 ≥ k − t2 log c.

Proof. If this was not the case, we could find some string in the support of X which is too heavy

(simply take the heaviest string allowed in each successive block).

The following lemma is useful to prove that a distribution is close to being a block source.

Lemma 2.1.20. Let X = X1, . . . ,Xt be t dependent random variables. For every i = 1, 2, . . . , t,

let Xi denote the concatenation of the first i variables. Suppose each Xi takes values in {0, 1}ni

and for every i = 1, 2, . . . , t, Xi is ǫi-close to having min-entropy ki, with
∑

i ǫi < 1/10. Then for

every ℓ > 10 log t we must have that X is t(
∑t

i=1 ǫi + 2−ℓ+1)-close to being a block source, where

each block Xi has min-entropy ki − ni−1 − 1− 2ℓ.
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Proof. We will need to define the notion of a submeasure. Say that M : {0, 1}n → [0, 1] is a

submeasure on {0, 1}n if
∑

m∈{0,1}n M(m) ≤ 1.

Note that every probability measure is a submeasure.

Given a submeasure on {0, 1}n, we say that it is ǫ-close to having min-entropy k, if

∑

m∈{s:M(s)≥2−k}
M(m) ≤ ǫ

Note that when M is a probability measure, the above corresponds to saying that M is

ǫ-close to having min-entropy k.

As usual, for any event A ⊂ {0, 1}n, we denote Pr[M ∈ A] =
∑

m∈AM(m).

Returning to the lemma, let us define some submeasures: define Mt+1 = X.

For i = t, t− 1, t− 2, . . . , 1, define

Mi(m) =











0 Pr[M i
i+1 = mi] > 2−ki+ℓ ∨ Pr[M i

i+1 = mi] < 2−ni−ℓ)

Mi+1(m) otherwise

Define M = M1. Now note that for every j < i, M j
i is ǫj-close to having min-entropy kj ,

since we only made points lighter in the above process. Further, for all m and i ≤ j, Pr[M j
i =

mj] ≤ 2−kj+ℓ, since we reduced the weight of all m’s that violated this to 0. We also have that for

every m, i, Pr[M i = mi] = 0 or Pr[M i = mi] ≥ 2−ni−ℓ by our construction.

Now define the sets Bi = {m ∈ {0, 1}nt : Mi(m) 6= Mi+1(m)}. Set B = ∪iBi. Then note

that Pr[X ∈ B] ≤∑t
i=2 Pr[Mi+1 ∈ Bi].

If Ci = {m : Mi+1(m
i) > 2−k1+ℓ}, we see that Pr[Mi+1 ∈ Ci] ≤ ǫi + 2−ℓ, since M i

i+1 is

ǫi-close to min-entropy ki. If Di = {m : Mi+1(m
i) < 2−ni−ℓ}. Get also get Pr[Mi+1 ∈ Di] < 2−ℓ

by the union bound.

Thus, by the union bound, we get that Pr[X ∈ B] ≤∑t
i=1 Pr[Mi+1 ∈ Bi] ≤

∑t
i=1 Pr[Mi+1 ∈

Ci] + Pr[Mi+1 ∈ Di] ≤ t
∑

i ǫi + 2t2−ℓ.

Now define the distribution Z = X|X /∈ B. Then Z is t
∑

i ǫi + 2t2−ℓ-close to X. For

every i and z ∈ supp(Z), we have that Pr[Zi = zi|Zi−1 = zi−1] = Pr[Zi = zi]/Pr[Zi−1 = zi−1] ≤
2−ki+ℓ+1/2−ni−1−ℓ (since every point at most doubles in weight over M), which proves the lemma.
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2.1.2 Somewhere Random Sources

Much of our work relies on ways to manipulate a class of sources called somewhere random sources.

We discuss these in more detail in Chapter 3.

Definition 2.1.21 (Somewhere P sources). Let P be a property of sources. A source X is t × r
somewhere-P if it is a distribution on t× r boolean matrices such that there is an i for which the

i’th row Xi has property P. If the property P is that the source is uniformly random, we will call

the source somewhere random (SR-source for short).

Note that every t× r somewhere random source must have min-entropy at least r, since the

random row itself has min-entropy r.

Definition 2.1.22. We will say that a collection of somewhere-P sources is aligned if there is some

i for which the i’th row of every SR-source in the collection is uniformly distributed.

Definition 2.1.23 (Weak somewhere random sources). A source X is (t×r) k-somewhere-random

(k-SR-source for short) if it is a somewhere P source where a source has property P if it has

min-entropy k.

Often we will need to apply a function to every row of a somewhere source. We will adopt

the following convention: if f : {0, 1}r × {0, 1}r → {0, 1}m is a function and a, b are samples from

t× r somewhere sources, f(~a,~b) refers to the t×m string whose first row is obtained by applying

f to the first rows of a, b and so on. Similarly, if a is an element of {0, 1}r and b is a sample from

a t× r somewhere source, f(a,~b) refers to the t×m matrix whose ith row is f(a, bi).

Many times we will treat a sample of a somewhere random source as a set of strings, one

string from each row of the source.

Sometimes our constructions will need to take a small subset of the bits of a somewhere

random source, called a slice:

Definition 2.1.24. Given ℓ strings of length n, x = x1, . . . , xn, define Slice(x,w) to be the string

x′ = x′1, . . . , x
′
n such that for each i x′i is the prefix of xi of length w.

2.1.3 Affine Sources

Definition 2.1.25 (Affine Source). A source X is called an affine source if it gives uniformly

random point in some affine subspace V ⊂ Fn of a vector space over a finite field F.
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Note that for an affine source X, H∞(X) = H(X), i.e., the min-entropy and entropy are

the same.

Definition 2.1.26 (Affine Somewhere Random Source). A source X is called an affine t × r

somewhere random source if it is a distribution over t× r matrices with entries from a finite field

F, such one row Xi of the source is uniformly distributed.

The following basic lemma will be key to our results about affine sources:

Lemma 2.1.27 (Affine Conditioning). Let X be any affine source on {0, 1}n with entropy k. Let

L : {0, 1}n → {0, 1}m be any linear function. Then there exist independent affine sources A,B such

that:

• H(A) ≤ m.

• H(B) ≥ k −m.

• X = A+B.

• For every b ∈ supp(B), L(b) = 0.

Proof. Without loss of generality, assume the support of X is a linear subspace (if not, we can do

the analysis for the corresponding linear subspace). Let B be the linear source whose support is

{x ∈ supp(x) : L(x) = 0}. Let b1, . . . , bt be a basis for B. Then we can complete this basis to get a

basis for X. Let A be the span of the basis vectors in the completed basis that are not in B. Thus

X = B +A.

Note that H(A) ≤ H(L(A)) since L(a) 6= 0 for every a ∈ supp(A). Thus, H(A) ≤ m. This

then implies that H(B) ≥ H(X)−H(A) ≥ k −m.

2.1.4 Small Space Sources

Definition 2.1.28. A space s source X on {0, 1}n is a source generated by a width 2s branching

program. That is, the branching program is viewed as a layered graph with n + 1 layers with a

single start vertex in the first layer and 2s vertices in each subsequent layer. Each edge is labeled

with a probability and a bit value. From a single vertex we can have multiple edges corresponding

to the same output bit. The source is generated by taking a random walk starting from the start

vertex and outputting the bit values on every edge.
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2.2 Convex Combinations

We say that a distribution X is a convex combination of distributions X1,X2, . . . if there exist

positive constants α1, α2, . . . with the property that

• ∑i αi = 1

• For every x ∈ supp(X),Pr[X = x] =
∑

i αi Pr[Xi = x]

For example, if X,Y are random variables in the same probability space, then we see that

the distribution of X is a convex combination of the distributions X|Y = y, for every y ∈ supp(Y ).

A key observation that is essential to many of our results is that random variables that

are convex combinations of sources with some good property are usually good themselves. This is

captured in the following easy propositions:

Definition 2.2.1. Let P be a property of sources. Let X be some random variable over some

universe. We will say that X is a convex combination of sources with property P if there exists

some random variable I over an arbitrary universe s.t. for all i ∈ supp(I), X|I = i has property P.

The following proposition is used implicitly in many of our arguments:

Proposition 2.2.2 (Preservation of properties under convex combination). Let A,B,Q be random

variables over the same finite probability space such that

Pr
q←RQ

[|(A|Q = q)− (B|Q = q)| ≥ ǫ1] < ǫ2

then |A−B| < ǫ1 + ǫ2.
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Proof.

|A−B|

=
∑

x∈Supp(A)∪Supp(B)

∣

∣

∣

∣

∣

Pr[A = x]− Pr[B = x]

∣

∣

∣

∣

∣

≤
∑

q∈Supp(Q)

Pr[Q = q]
∑

x∈Supp(A)∪Supp(B)

∣

∣

∣

∣

∣

Pr[A = x|Q = q]− Pr[B = x|Q = q]

∣

∣

∣

∣

∣

≤ ǫ2 +
∑

good q∈Supp(Q)

Pr[Q = q]ǫ1

≤ ǫ1 + ǫ2

This proposition will be used to simply the proofs that many of our constructions are strong.

Usually it is easy to show that our output distributions are convex combinations of distributions

that are close to having the strong property. Here we show that this implies that the output actually

has the strong property. Think of X in the lemma below as one of the inputs, Q as some internal

random variable, O as the output of our extractor/disperser and U as some independent random

variable that is uniformly distributed. Then the following lemma is just a special case of the above

proposition. In words it just says that if X is close to being independent of O for each subsource

in the convex combination, it is fact close to being independent of O after the convex combination.

Lemma 2.2.3 (Preservation of strongness under convex combination). Let X,O,U,Q be random

variables over the same finite probability space, with U,O both random variables over {0, 1}m. Let

ǫ1, ǫ2 < 1 be constants s.t. :

Pr
q←RQ

[|(X|Q = q), (O|Q = q)− (X|Q = q), (U |Q = q)| ≥ ǫ1] < ǫ2

i.e., conditioned on Q being fixed and good, X,O is statistically close to X,U .

Then we get that |X,O −X,U | < ǫ1 + ǫ2.
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To see why this last proposition is useful, imagine that X is the output of some extractor

and Z is the uniform distribution. Then the proposition asserts that to show that the output of

the extractor is close to uniform, it is sufficient to argue that the output is a convex combination

of distributions that are close to uniform.

Proposition 2.2.4. Let X, I be random variables s.t. X is a convex combination of random

variables {Xi}i∈I . Let f be some function s.t. for all i ∈ I, f(Xi) is a convex combination of

sources that have some property P. Then f(X) is a convex combination of sources that have

property P.

Typically, f in the above proposition will be an extractor or some intermediate algorithm.

We use the proposition to argue that if we need to argue that the output of the distribution of the

extractor is close to uniform, it suffices to break the input source into a convex combination of nice

sources, and then argue that on each of these nice sources, the function does what we want it to do.

Then the above proposition implies that the final output is a convex combination of distributions

that are close to uniform, and hence the entire output distribution is close to uniform.

Given any set S ⊂ {0, 1}n, and a distribution

Pr[X = x] =











1/|S| x ∈ S

0 x /∈ S

we call this distribution the flat distribution over S. The following fact will sometimes be

useful:

Fact 2.2.5. Every distribution X with min-entropy at least k is a convex combination of flat

distributions with min-entropy k.

This implies in particular that any extractor that is designed to work for min-entropy k will

work even if the min-entropy is greater than k.

26



2.3 Extractors, Dispersers and other Manipulators of Indepen-

dent Sources

In this section we define some of the objects we will later use and construct. All of these objects

will take one or more inputs and produce one output, such that under particular guarantees on the

distribution of the input, we’ll get some other guarantee on the distribution of the output. Various

interpretation of this vague sentence lead to objects called extractors and dispersers.

Definition 2.3.1 (C-source extractor). Let n1, n2, . . . , nC , k1, k2, . . . , kC ,m, ǫ be some numbers.

A function Ext : {0, 1}n1 × {0, 1}n2 × · · · × {0, 1}nC → {0, 1}m is called a C-source extractor with

k1, k2, . . . , kC min-entropy requirement, and error ǫ if for every independent sources X1,X2, . . . ,XC

over {0, 1}n1 × {0, 1}n2 × · · · × {0, 1}nC satisfying

∀i,H∞(Xi) ≥ ki (2.2)

it holds that
∣

∣

∣
Ext(X,Y )− Um

∣

∣

∣
≤ ǫ (2.3)

We will say that a function is a C-source extractor for min-entropy k if it satisfies the above

definition with k1 = k2 = · · · = kC = k.

A seeded extractor is just a special case of the above definition:

Definition 2.3.2 (Seeded Extractor). A function Ext : {0, 1}n1×n2 → {0, 1}m is called a seeded ex-

tractor for min-entropy k and error ǫ if it is a 2-source extractor with k, n2 min-entropy requirement

and error ǫ.

A non-trivial construction will satisfy of course n2 ≪ m (and hence also n2 ≪ k1 < n).

Thus, two source extractors are strictly more powerful than seeded extractors. However, the reason

seeded extractors are more popular is that they suffice for many applications, and that (even after

the work in this thesis) the explicit constructions for seeded extractors have much better parameters

than the explicit constructions for 2-source extractors with k1 ≪ n1 , k2 ≪ n2. (Note that this

is not the case for non-explicit construction, where 2-source extractors with similar parameters to

the best possible seeded extractors can be shown to exist using the probabilistic method.)
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Variants. We’ll use many variants of extractors in this thesis to various similar combinato-

rial objects. Most of the variants are obtained by giving different the conditions on the input

(Equation 2.2) and the guarantee on the output (Equation 2.3). Some of the variants we will

consider will be:

Dispersers. In dispersers, the output guarantee (Equation 2.3) is replaced with |Supp(Ext(X,Y ))| ≥
(1− ǫ)2m,

Somewhere extractors. In somewhere extractors the output guarantee (Equation 2.3) is re-

placed with the requirement that |Ext(X,Y )− Z| < ǫ where Z is a somewhere random source

of t×m rows for some parameter t.

Extractors for block sources. In extractors for block sources the input requirement (Equation 2.2)

is replaced with requirement that X and Y are block sources of specific parameters. Similarly

we will define extractors for other families of inputs (i.e., somewhere random sources) and

extractors where each input should come from a different family.

Strong extractors. Many of these definition have also a strong variant, and typically construc-

tions for extractors also achieve this strong variant. A 2-source extractor is strong in the first

input if the output requirement (Equation 2.3) is replaced with Prx←RX [|Ext(x, Y ) − Um| ≥
ǫ] ≤ ǫ. This is equivalent (upto replacing ǫ by

√
ǫ) to the statement:

|(X,Ext(X,Y ))− (X,Um)| < ǫ

where here X is independent of Um.

We define an extractor to be strong in the second input similarly. If the extractor is strong

in both inputs, we simply say that it is strong.

We say that a seeded extractor is strong if it is strong in the second input. Another way to

view a strong seeded extractor is as a family of 2t deterministic extractors, one for each seed

in {0, 1}t. In this view, the strong seeded extractor property asserts that for any fixed source

X, most functions in the family are good deterministic extractors for the source.

We say that a seeded extractor is linear if for every fixing of the seed, the resulting function

is a linear function over GF (2).
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Remark 2.3.3 (Input lengths). Whenever we have a C-source extractor Ext : {0, 1}n1 ×{0, 1}n2 ×
· · ·×{0, 1}nC → {0, 1}m with inputs lengths n1, n2, . . . , nC and min-entropy requirement k1, k2, . . . , kC

we can always invoke it on shorter sources with the same entropy, by simply padding it with zeros.

For example if we have an extractor with n1 = · · · = nC we can still invoke it on inputs of unequal

length by padding one of the inputs. The same observation holds for the other source types we’ll

use, namely block and somewhere random sources, if the padding is done in the appropriate way

(i.e., pad each block for block sources, add all zero rows for somewhere random sources), and also

holds for all the other extractor-like objects we consider (dispersers, somewhere extractors, and

their subsource variant). In the following, whenever we invoke an extractor on inputs shorter than

its “official” input length, this means that we use such a padding scheme.

The following proposition is immediate:

Proposition 2.3.4. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a strong seeded extractor for min-

entropy k with error ǫ. Let X be any (n, k) source. Let {0, 1}d = {s1, s2, . . . , s2d}. Then the matrix

whose i’th row is Ext(X, si) is ǫ-close to a 2d ×m somewhere random source.

Observe that if we use a strong seeded extractor to turn several general sources into some-

where random sources, doing this actually gives us aligned somewhere random sources. If the strong

extractor that we used to convert the input general sources to SR-sources has error ǫ, at most ǫ

fraction of the rows in each source are not ǫ-close to uniform. Thus, if we are given u sources,

as long as uǫ < 1, we will have one aligned row in every source that is ǫ-close to uniform. These

sources are uǫ-close to being the distribution of independent aligned SR-sources. This gives us the

following proposition:

Proposition 2.3.5. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a seeded (k, ǫ) strong extractor. Let

X1, . . . ,Xu be independent (n, k) sources, with uǫ < 1. Let {0, 1}d = {s1, s2, . . . , s2d}. Let Zi

denote Ext(Xi, s1),Ext(Xi, s2), · · · ,Ext(Xi, s2d). Then Z1, · · · , Zu is uǫ-close to the distribution of

u independent aligned 2d ×m SR-sources.

If Ext is a strong seeded extractor with seed length O(log n) and output length m, we can

use Proposition 2.3.5 to convert u independent sources into u independent aligned poly(n) × m

SR-sources.

It will be useful to have the following proposition:
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Proposition 2.3.6. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a strong linear seeded extractor with

error ǫ < 1/2. Let X be any affine source with entropy k. Then,

Pr
u←RUd

[|Ext(X,u)− Um| = 0] ≥ 1− ǫ

Proof. Note that if X is an affine source, for every linear function L : {0, 1}n → {0, 1}m, L(X) is

also an affine source. Thus we have that |L(X) − Um| = 0 or |L(X) − Um| ≥ 1/2. Since for every

fixed u, Ext(·, u) is a linear function, this implies that:

Pr
u←RUd

[|Ext(X,u) − Um| = 0]

= Pr
u←RUd

[|Ext(X,u) − Um| < 1/2]

≥ Pr
u←RUd

[|Ext(X,u) − Um| < ǫ]

≥ 1− ǫ

2.4 Network Extractors

In Chapter 8, we discuss the construction of network extractors.

Before defining this, we fix some notation. Player i begins with an input weakly-random

sample xi ∈ {0, 1}n and ends in possession of a hopefully-random sample zi ∈ {0, 1}m. Let b be the

concatenation of all publicly broadcasted strings in the protocol. Capital letters such as Zi and B

denote these strings viewed as random variables.

Definition 2.4.1 (Network Extractor). A protocol is a (t, g, ǫ) network extractor for min-entropy

k if for any min-entropy k independent sources X1, . . . ,Xn over {0, 1}n and any choice of t faulty

players, after running the protocol, the number of players i for which

|(B,Zi)− (B,Um)| < ǫ

is at least g. (Here Um is the uniform distribution on m bits, independent of B, and the absolute
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value of the difference refers to variation distance).

We say that a protocol is a synchronous extractor if it is a network extractor that operates

over a synchronous network. We say that it is an asynchronous extractor if it is a network extractor

that operates over an asynchronous network.

We say that a protocol is a network extractor for block sources if each player is assumed to

have access to a block source.

2.5 Extractors via The Probabilistic Method

In this section we give a standard argument that shows that a randomly chosen function is an

extractor for any class of sources that has low complexity in some sense, as long as the sources in

the class are close to having high min-entropy.

Theorem 2.5.1. Suppose we have a set X of random sources on {0, 1}n and ǫ > 0 such that

∀X ∈ X , there is a source X ′ with |X ′ − X| ≤ ǫ
2 and H∞(X ′) ≥ k. Then, with probability

1− 1/22m |X | a function chosen uniformly at random is an extractor for X as long as k ≥ log(2m+

log |X |) + 2 log(1/ǫ) + O(1). In particular, as long as k ≥ log log |X | + 2 log(1/ǫ) + O(1), we can

extract m = k − 2 log(1/ǫ) −O(1) bits.

We need the following Chernoff bound to prove Theorem 2.5.1.

Lemma 2.5.2. Let Z1, . . . , Zr be independent indicator random variables such that Pr[Z1 = 1] = pi.

Let Z =
∑n

i=1 aiZi where 0 ≤ ai ≤ 1 for all i, and let µ = E[Z]. Then for any 0 < ǫ ≤ 1

Pr[|Z − µ| ≥ ǫµ] < 2 exp(−µǫ2/3).

Proof. (of Theorem 2.5.1) We’ll first use Lemma 2.5.2 to show that a random function is a good

extractor for a single source, and then apply the union bound.

Let f : {0, 1}n → {0, 1}m be chosen uniformly at random from all functions from n bits to

m bits. Fix X ∈ X and S ⊂ {0, 1}m. Let X ′ be such that |X ′ −X| ≤ ǫ/2 and H∞(X ′) ≥ k. Let

Zx be the indicator random variable for whether f(x) ∈ S. Let

Z = 2k Pr
x←RX′

[f(x) ∈ S] = 2k
∑

x∈supp(X′)

Pr[X ′ = x]Zx
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Since the function f is chosen uniformly at random, E[Z] = 2k|S|/2m. Thus we can apply

Lemma 2.5.2 to get

Pr
f

[∣

∣

∣

∣

Pr
x∈X′

[f(x) ∈ S]− |S|
2m

∣

∣

∣

∣

≥ ǫ′ |S|
2m

]

= Pr
f

[∣

∣

∣

∣

Z − 2k|S|
2m

∣

∣

∣

∣

≥ ǫ′ 2
k|S|
2m

]

≤ 2 exp

(

−ǫ′2 2k|S|
3 · 2m

)

Making the change of variables ǫ′ = ǫ2m/|S|, we get that for any fixed set S, we proved that

Pr
f

[|Pr[f(X ′) ∈ S]− Pr[Um ∈ S]| ≥ ǫ/2] ≤ 2 exp

(

−
(

ǫ2m

2|S|

)2 2k|S|
3 · 2m

)

= 2exp

(

−ǫ
22k2m

12|S|

)

Recall that |f(X ′)− Um| = maxS{|Pr[f(X ′) ∈ S]− |S|/2m|}. By the union bound over all

sets S ⊂ {0, 1}m and all X ∈ X , and since 2m/|S| ≥ 1,

Pr
f

[max
S
{|f(X ′)− Um| ≥ ǫ/2}] ≤ 2 exp

(

−ǫ22k/12
)

22m |X |

Now whenever f does satisfy |f(X ′)−Um| < ǫ/2, we have that |f(X)−Um| < ǫ/2+ ǫ/2 = ǫ.

Setting the above error to 1/22m |X | and solving for k, we get that a function chosen uniformly at

random is an extractor for |X | with probability 1 − 1/22m |X | as long as k ≥ log(2m + log |X |) +

2 log(1/ǫ) + O(1). In particular, as long as k ≥ log log |X | + 2 log(1/ǫ) + O(1), we can extract

m = k − 2 log(1/ǫ) −O(1) bits.

2.6 Previous Work that We Use

2.6.1 Seeded Extractors

Here we list the previous constructions of seeded extractors that we will use in this thesis.

Theorem 2.6.1 ([LRVW03]). For any constant α ∈ (0, 1), every n ∈ N and k ≤ n and ev-

ery ǫ ∈ (0, 1) where ǫ > exp(−
√
k), there is an explicit (k, ǫ) seeded extractor Ext : {0, 1}n ×

{0, 1}O(log n+log(n/k) log(1/ǫ)) → {0, 1}(1−α)k .

Theorem 2.6.2 ([Tre01, RRV02]). For every n, k,m ∈ N and ǫ > 0, such that m ≤ k ≤ n, there

is an explicit (k, ǫ)-strong seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O
(

log2(n/ǫ)
log(k/m)

)

.
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We shall be interested in the following two instantiations of this theorem, obtained by setting

the parameters appropriately:

Corollary 2.6.3 ([Tre01, RRV02] ). For every n ∈ N, constants r > 0, γ < 1, there is an explicit

(nγ , n−r)-strong seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}nγ′

with d = O(log(n)).

Corollary 2.6.4 ([Tre01, RRV02]). For every n, k ∈ N , there is an explicit (k, ǫ)-strong seeded

extractor Ext : {0, 1}n × {0, 1}d → {0, 1}Ω(k) with d = O(log2(n/ǫ)).

The first instantiation will be used when we need an extractor that has a good seed length.

The second will be used when we need an extractor that has good output length.

If we need to get almost all of the randomness in the source out, the following corollary is

available. This extractor also happens to be a linear seeded extractor over GF (2), i.e., for every

fixing of the seed, the extractor is a linear function on the source.

Corollary 2.6.5 ([Tre01, RRV02]). For every n, k ∈ N, ǫ > 0, there is an explicit strong seeded

extractor Ext : {0, 1}n × {0, 1}d → {0, 1}k−O(log3(n/ǫ)) for min-entropy k and error ǫ, with d =

O(log3(n/ǫ)).

2.6.2 Extractors for Two Independent Sources

Theorem 2.6.6 ([Raz05]). For any n1, n2, k1, k2,m and any 0 < δ < 1/2 with

• n1 ≥ 6 log n1 + 2 log n2

• k1 ≥ (0.5 + δ)n1 + 3 log n1 + log n2

• k2 ≥ 5 log(n1 − k1)

• m ≤ δmin[n1/8, k2/40] − 1

There is a polynomial time computable strong 2-source extractor Raz : {0, 1}n1 ×{0, 1}n2 →
{0, 1}m for min-entropy k1, k2 with error 2−1.5m.

Bourgain constructed a strong 2-source extractor for min-entropy rate slightly less than half,

for which we have written an exposition in Appendix C.
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Theorem 2.6.7 ([Bou05]). There exists a universal constant γ > 0 and a polynomial time com-

putable function Bou : ({0, 1}n)2 → {0, 1}m s.t. if X,Y are two independent (n, (1/2−γ)n) sources,

EY [‖Bou(X,Y )− Um‖ℓ1 ] < ǫ, with ǫ = 2−Ω(n),m = Ω(n).

In fact, it’s easy to show that Bourgain’s extractor can be extended to the more general

case when we have several independent sources, but only two of them have entropy. We sketch the

proof for this in Appendix C.

Theorem 2.6.8. There exists a universal constant γ > 0 and a polynomial time computable func-

tion Bou : ({0, 1}n)2 → {0, 1}m s.t. if X1,X2, . . . ,Xt are t independent n-bit sources with min-

entropies k1, k2, . . . , kt and ki + kj ≥ 2n(1/2 − γ) for some i, j ∈ [t],

EXi [‖Bou(X1, . . . ,Xt)− Um‖ℓ1 ] < ǫ

EXj [‖Bou(X1, . . . ,Xt)− Um‖ℓ1 ] < ǫ

with ǫ = 2−Ω(n),m = Ω(n).

2.6.3 Extractors for Affine sources

Theorem 2.6.9 ([Bou07]). For every constant δ > 0, there exist constants γ, β > 0 and a polyno-

mial time computable function Bou : {0, 1}n → {0, 1}βn s.t. for every affine source X of entropy

δn, Bou(X) is 2−γn-close to uniform.
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Chapter 3

Condensers for Somewhere Random

Sources

A common theme in most of the results in this thesis is that they all rely on ways to manipulate a

special class of sources of randomness, called somewhere random sources. In this chapter we discuss

these basic techniques. The reader may choose to skip ahead to one of the later chapters where

the techniques from this chapter are applied, to get more motivation for the algorithms designed

in this chapter.

We start with the definition of a somewhere random source.

Definition 3.0.10 (Somewhere Random Sources). [TS96]1 A source X is t× r somewhere-random

(SR-source for short) if it is a distribution on t × r boolean matrices, s.t. one of the rows in the

matrix is uniformly random.

Every other row in the matrix may depend on the random row in arbitrary ways. To give

some motivation for this definition, let us step back and reexamine our ultimate goal. What we

are trying to do is find the most general class of sources of randomness that would admit a single

deterministic polynomial time extractor algorithm. Consider the following informal definition:

Informal Definition 3.0.11 ((d, ǫ)-extractable sources). We say that randomness is (d, ǫ)-extractable

from a class of sources C, if there exists a polynomial time algorithm that computes a function

1This definition is slightly different from the original one used by Ta-Shma [TS96]. The original definition consid-
ered the closure under convex combinations of the class defined here (i.e., convex combinations of sources that have
one random row). We use this definition because we can do so without loss of generality and it considerably simplifies
the presentation.
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F : {0, 1}n × {0, 1}d → {0, 1}m such that for every source X ∈ C, there exists an advice string

a ∈ {0, 1}d such that F (X,a) is ǫ-close to uniform.

We can rephrase the extractor project as trying to come up with the most general class

of sources C from which randomness is (0, ǫ)-extractable. Somewhere random sources are inti-

mately connected with this definition, since they are complete for the class of sources from which

randomness is (d, ǫ)-extractable, in the following sense:

• For every class C from which randomness is (d, ǫ)-extractable, there exists a polynomial time

algorithm that converts every X belonging to C into a 2d ×m somewhere random source (or

at least something that is ǫ-close). We can do this by running F on the sample from the

source 2d times, once with every possible advice string a, i.e., the a’th row of the somewhere

random source is F (X,a).

• The class of 2d × m somewhere random sources is itself a class from which randomness is

trivially (d, 0)-extractable — the required advice string a simply tells the algorithm F which

row of the somewhere random source to output.

Given the above discussion, it is natural to lower our goals and ask only for a class of sources

from which randomness is (d, ǫ) extractable for small d, with the hope that we can incrementally

lower the required d, until we bring it down to 0. Indeed, this broad idea, which we refer to as

condensing2 somewhere random sources, plays an important role in most of our results.

Luckily, earlier work on constructing strong seeded extractors (Section 2.3) already gives us

a starting point to turn this vague idea into reality. Any polynomial time computable strong seeded

extractor can be seen as evidence that randomness is (d, ǫ)-extractable from every (n, k) source,

for small d, ǫ. This is captured in the following proposition, which is immediate from definitions:

Proposition 3.0.12. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a strong seeded (k, ǫ) extractor. Let

X be any (n, k) source. Let {0, 1}d = {s1, s2, . . . , s2d}. Then Ext(X, s1),Ext(X, s2), · · · ,Ext(X, s2d)

is ǫ-close to a 2d ×m SR-source.

Using any good seeded strong extractor with seed lengthO(log n) (for instance Theorem 2.6.1),

we can turn any (n, k) source into a somewhere random source with poly(n) rows.

2The term condensing is adapted from the literature on seeded extractors (see [RSW00]). In that context it was
used to denote the analogous operation of increasing the min-entropy rate of a weak random source.
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In the rest of this chapter we give several constructions involving somewhere random sources.

The common theme in all of them will be exactly as we discussed above. We will build simple

algorithms that can turn somewhere random sources that have many rows into somewhere random

sources with fewer rows. Sometimes we will even be able to reduce the number of the rows in the

output to 1, which means the algorithm is an extractor.

3.1 Condensing Aligned Independent Somewhere Random Sources

Now we discuss how to build condensers for multiple independent somewhere random sources. We

will give ways to combine several such independent sources into fewer somewhere random sources

that have fewer rows.

An important concept we will need is that of aligned somewhere random sources.

Definition 3.1.1. We will say that a collection of t× r SR-sources X1, . . . ,Xu is aligned if there

is some i for which the i’th row of every SR-source in the collection is uniformly distributed.

3.1.1 A simple condenser for 2 somewhere random sources

The first condenser we consider is extremely simple — we use the xor function to condense two

independent aligned t× r somewhere random sources into one t/2× r somewhere random source.

Algorithm 3.1.2 (XORCondense(x, y)).

Input: x, y two t× r matrices.

Output: z, a ⌈t/2⌉ × r matrix.

1. For all i = 1, 2, . . . , ⌈t/2⌉ and j = 1, 2, . . . , r, set zi,j = x2i−1,j ⊕ ymin{2i,t},j .

Proving that the above algorithm is a condenser is easy:

Proposition 3.1.3. If X,Y are two independent aligned t× r somewhere random sources,

XORCondense(X,Y ) is a ⌈t/2⌉ × r somewhere random source.

Proof. Since X,Y are aligned, there must be an index h for which h’th rows Xh and Yh are both

uniform. Then we get that the ⌈h/2⌉’th row of XORCondense(X,Y ) is uniform, since it is obtained
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Aligned Row

Figure 3.1: XORCondense — A condenser for two independent aligned somewhere random sources.
Black rows correspond to rows that are uniform.

by computing the bitwise xor of a sample that is uniform with something that is independent of

it.

Remark 3.1.4. Of course, we could have used any group operation (instead of the bitwise xor) to

achieve the same effect for this algorithm.

The above construction suggests a general approach to building condensers for somewhere

random sources — given any extractor for C independent aligned c × r SR-sources, we can get a

condenser that condenses C independent aligned t×r SR-sources into a single ⌈t/c⌉×m SR-source,

where m is the output length of the extractor. We simply break up the rows of the somewhere

random sources into ⌈t/c⌉ equal groups, each containing at most c rows, and apply the extractor

to each group to get each of the rows of the output.

3.1.2 Better Condensers

In this section we show how to use the basic condensers that we have developed so far to get a

much better condenser for aligned independent somewhere random sources. We will construct a

condenser that can condense just two independent aligned t× r somewhere random sources into a

single ⌈t/r0.7⌉ × (r − r0.9) somewhere random source. To illustrate the main ideas, we first give a

somewhat simpler condenser for three independent aligned somewhere random sources. As we saw

in our previous discussion, to do this, it suffices to build an extractor for three independent aligned

r0.7×r somewhere random sources that outputs r−r0.9 bits. If we had such an extractor, we could

get the promised condenser by breaking up the rows of our somewhere random sources into groups

of r0.7 rows and then applying our extractor to each group.
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Our extractor itself will be built by repeatedly condensing the sources we are working with,

with a crucial difference from our previous constructions — each step will retain as many inde-

pendent sources as it started out with. In each step we will manipulate the three independent

SR-sources we are working with to get three new SR-sources that are still (essentially) indepen-

dent, aligned and have fewer rows than we started out with. Repeating this procedure, we will

eventually be left with three somewhere random sources each having only one row.

C
Slice(B,w)

Slice(C,w)

B

A

   Ext(A,S  )

SA

A

Figure 3.2: Using two sources to condense one source

Now let us describe one condensing step. Assume we are given three aligned independent

t×r somewhere random sources A,B,C, with t ≤ r0.7. We first describe our construction in words.

A precise description of the algorithm follows our word description. Given the three matrices

coming from A,B,C, we output 3 new matrices. Each of the output matrices will be associated

with one of the inputs, in the sense that the entropy for that output will come from the associated

input source. To condense the source A, we take small slices Slice(B,w) and Slice(C,w) of the

other two sources and then combine them together by XORCondense(Slice(B,w),Slice(C,w)) to get
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a single somewhere random source with t/2 rows. We then use each row of this somewhere random

source as a seed to a strong seeded extractor, to extract from A. In this way, we turn A into a

somewhere random source with half the number of rows that we started out with.

In the same way, we use the slices Slice(B,w) and Slice(A,w) to condense C, and the slices

Slice(A,w) and Slice(C,w) to condense A.

Conditioned on all the small sections of the sources that we’ve used as seed, we show that the

condensing succeeds, we obtain 3 new SR-sources that have half the number of rows as the original

sources. Since we’re conditioning on the only part that’s involved in the interactions between the

sources, after conditioning, the output of the condensing step is a collection of independent sources.

Iterating this condensing process, we will eventually obtain a single string that is statistically close

to uniformly distributed.

Now let us be more precise.
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Algorithm 3.1.5 (ThreeCondense(a, b, c)).

Input: a, b, c three t× r matrices with t ≤ r0.7

Output: x, y, z three ⌈t/2⌉ ×m matrices with m ≥ r − r0.9.
Sub-Routines and Parameters:

Let w = r0.1.

Let Ext : {0, 1}rt × {0, 1}w → {0, 1}m be the strong seeded extractor from Corollary 2.6.5, set

up to extract m = r − r0.9 bits from a min-entropy r − 100wr0.7 source with error ǫ = 2−r
Ω(1)

.

We will use Algorithm 3.1.2 — XORCondense, set up to condense two t× r somewhere random

sources.

1. Set sa = XORCondense(Slice(B,w),Slice(C,w)).

2. Set sb = XORCondense(Slice(A,w),Slice(C,w)).

3. Set sc = XORCondense(Slice(B,w),Slice(A,w)).

4. Let x be the ⌈t/2⌉ ×m matrix whose i’th row is Ext(a, sai ), i.e., it is obtained by applying

Ext to a with the i’th row of sa as seed.

5. Let y be the ⌈t/2⌉ ×m matrix whose i’th row is Ext(b, sbi )

6. Let z be the ⌈t/2⌉ ×m matrix whose i’th row is Ext(c, sci )

Lemma 3.1.6. If A,B,C are three independent aligned t × r somewhere random sources with

t ≤ r0.7, the output of ThreeCondense(A,B,C) is 2−r
Ω(1)

-close to a convex combination of three

independent aligned ⌈t/2⌉ ×m somewhere random sources.

Proof. Define A′ = Slice(A,w), B′ = Slice(B,w), C ′ = Slice(C,w).

We will show that for typical a′, b′, c′, the output of ThreeCondense(A,B,C)|A′ = a′, B′ =

b′, C ′=c′ is 2−r
Ω(1)

-close to three independent aligned somewhere random sources.

We will bound the probability of several bad events. The first bad event is that a slice could

steal too much entropy from the corresponding source. Since, each slice is a distribution on only

tw < r0.7w bits, Proposition 2.1.10 implies that the probability that this happens is small:
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Pr
a′←RA′

[H∞(A|A′= a′) ≤ r − 100wr0.7] < 2−99wr0.7

Note that A′, B′, C ′ are three independent aligned ⌈t/2⌉ × w somewhere random sources.

We get that Sa, Sb, Sc are three aligned ⌈t/2⌉ ×w somewhere random sources (though they aren’t

independent). Further, we have that Sa is independent of A, Sb is independent of B, and Sc is

independent of C. Let h be the index of a good aligned row in these sources. Now for any a′ that does

not steal too much entropy, we call sa ∈ supp(Sa) a bad seed for a′, if |Ext(A|A′=a′, sah)−Um| ≥ ǫ.
Then, since Sa is completely independent of A, by the definition of the strong seeded extractor Ext,

we have that

Pr
sa←RSa

[|Ext(A|A′=a′, sah)− Um| ≥ ǫ] < ǫ

Thus, by the union bound, our arguments imply that with probability at least 1 − (3ǫ +

3 · 2−99wr0.7
) = 1− 2−r

Ω(1)
, each of a′, b′, c′ doesn’t steal too much entropy from the corresponding

source and each of sa, sb, sc are good seeds for a′, b′, c′ respectively. We get that with probability

1 − 2−r
Ω(1)

over the choice of a′, b′, c′, the output of ThreeCondense(A,B,C)|A′=a′, B′= b′, C ′= c′

is 2−r
Ω(1)

-close to three independent aligned ⌈t/2⌉ ×m somewhere random sources.

Given this lemma, it’s easy to see how to get the extractor. We repeatedly condense the

three sources until the number of rows drops to one. Since we reduce the number of rows by a

factor of 2 every time, we only need to repeat this process log r times. Thus the error does not go

up by a significant amount. Similarly, the output length remains at least r − r0.95. We obtain the

following thm:

Theorem 3.1.7 (Good Condenser). There exists a polynomial time computable function Cond :

({0, 1}tr)3 → {0, 1}tm with the property that given any A,B,C — three independent aligned t × r
somewhere random sources, the output Cond(A,B,C) is 2−r

Ω(1)
-close to a ⌈t/r0.7⌉ ×m somewhere

random source, with m = 3r − r0.95.
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3.1.3 A strong condenser for 2 somewhere random sources

One weakness of the above constructions is that they aren’t strong, i.e., they guarantees nothing

about the output if we fix one of the inputs3. Some of our results will crucially rely on having a

good strong condenser for two sources.

Definition 3.1.8 (Strong Condenser). We say that a function Cond that takes two t× r boolean

matrices as input and outputs a t′ × r′ boolean matrix is a strong condenser for two independent

aligned somewhere random sources with error ǫ if for every two independent aligned t×r somewhere

random sources X,Y it holds that,

Pr
x←RX

[Cond(x, Y ) is ǫ-close to a t′ × r′ somewhere random source] ≥ 1− ǫ

and

Pr
y←RY

[Cond(X, y) is ǫ-close to a t′ × r′ somewhere random source] ≥ 1− ǫ

In this section, we will build a strong condenser that can condense two independent aligned

t×r somewhere random sources into a single ⌈t/r0.7⌉×r somewhere random source. As we discussed

above, any extractor for two independent aligned r0.7× r somewhere random sources would give us

a condenser for two independent aligned t× r somewhere random sources with the parameters we

need, so we will just construct such an extractor.

As in our last construction, we will obtain our extractor by repeated condensing, except

this time we will not use XORCondense from Algorithm 3.1.2. Instead, we will need to use a strong

extractor — Theorem 2.6.7. This gives a strong extractor for any two independent sources with

min-entropy rate 1/2; in particular it gives an extractor for two independent aligned 2×r somewhere

random sources. The following algorithm is essentially obtained (at least conceptually), by replacing

the use of XORCondense in Algorithm 3.1.5 with the two source extractor from Theorem 2.6.7.

3The 3 source condenser can be modified slightly to get a strong variant.
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Algorithm 3.1.9 (TwoCondense(a, b)).

Input: a, b — two t× r matrices with t ≤ r0.7.
Output: x, y — two ⌈t/2⌉ ×m matrices, with m = r − r0.9.
Sub-Routines and Parameters:

Let w = r0.1.

Let Ext : {0, 1}rt × {0, 1}w → {0, 1}m be the strong seeded extractor from Corollary 2.6.5, set

up to extract m = r − r0.9 bits from a min-entropy r − 100wr0.7 source with error ǫ = 2−r
Ω(1)

.

Let Bou : {0, 1}2w × {0, 1}2w → {0, 1}d be the extractor from Theorem 2.6.7.

Recall the definition of a slice of a somewhere random source — Definition 2.1.24.

1. Let za be the ⌈t/2⌉× 2r matrix obtained by concatenating pairs of rows in Slice(a,w), i.e.,

the i’th row is Slice(a,w)2i−1,Slice(a,w)min{2i,t}. Similarly, let zb be the ⌈t/2⌉× 2r matrix

whose i’th row is Slice(b, w)2i−1,Slice(b, w)min{2i,t}.

2. Let s be the ⌈t/2⌉ × d matrix whose i’th row is Bou(zai , z
b
i ).

3. Let x be the ⌈t/2⌉×m matrix whose i’th row is Ext(a, si). Similarly let y be the ⌈t/2⌉×m
matrix whose i’th row is Ext(b, si).

The following lemma shows that indeed, for any A,B as above, the output X is essentially

the result of condensing A, and the output Y is the result of condensing B.

Lemma 3.1.10. For any two independent aligned t × r somewhere random sources A,B, with

t ≤ r0.7, let X,Y be the outputs of TwoCondense(A,B). Then there exists a random variable Z and

ǫ = 2−r
Ω(1)

with the property that:

• X is a deterministic function of Z and A.

• Y is a deterministic function of Z and B.

• Prz←RZ [(X,Y )|Z=z are ǫ-close to two aligned somewhere random sources] ≥ 1− ǫ.

Proof. Let A,B be any two independent aligned t× r SR-sources.
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As in the algorithm, set Za to be the distribution on ⌈t/2⌉ × 2r matrices obtained by

concatenating pairs of rows in Slice(A,w), i.e., the i’th row is Slice(A,w)2i−1,Slice(A,w)min{2i,t}.

Similarly, let Zb be the ⌈t/2⌉ × 2r matrix whose i’th row is Slice(B,w)2i−1,Slice(B,w)min{2i,t}.

Then we see immediately thatX is a deterministic function of (Z,A) and Y is a deterministic

function of (Z,B). To prove the remaining conclusion, we once again use the union bound.

First we bound the probability that the slices Za, Zb steal too much entropy from the corre-

sponding sources. As before, since Za and Zb are distributions on only wt bits Proposition 2.1.10

gives

Pr
za←RZa

[H∞(A|Za=za) ≤ r − 100wr0.7] < 2−99wr0.7

Pr
zb←RZb

[H∞(B|Zb=zb) ≤ r − 100wr0.7] < 2−99wr0.7

Observe that since A,B were independent aligned somewhere random sources, there must

exist an index h for which Zah , Z
b
h are two independent sources with min-entropy rate at least 1/2.

Fix such an h.

Set β = 2−Ω(w) to be the error of Bourgain’s extractor. Call zb ∈ supp(Zb) a bad slice for

Bou, if |Bou(Zah , z
b
h)− Um| ≥ β. Since Bou is a strong extractor, we get that

Pr
zb←RZb

[|Bou(Zah, z
b
h)− Um| ≥ β] < β

Similarly,

Pr
za←RZa

[|Bou(Zbh, z
a
h)− Um| ≥ β] < β

Set γ to be the error of the seeded extractor Ext. For any zb for which zb is not a bad slice

for Bou and zb does not steal too much entropy, we see that

Pr
u←RUd

[|Ext(B|Zb=zb, u)− Um| ≥ γ] < γ

⇒ Pr
za←RZa

[|Ext(B|Zb=zb,Bou(zah, z
b
h))− Um| ≥ γ] < β + γ
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since |Bou(Zah , z
b
h)− Um| < β.

Now, as long as zb doesn’t steal too much entropy from Zb, and Bou(zah, z
b
h) gives a good

seed to extract from B|Zb= zb, we get that Ext(B|Zb= zb,Bou(zah, z
b
h)) is close to uniform. Thus,

by the union bound, our previous discussion gives the bound

Pr
z←RZ

[|Ext(Xh|Z=z,Bou(zah, z
b
h))− Um| ≥ γ]

= Pr
z←RZ

[|Ext(B|Z=z,Bou(zah, z
b
h))− Um| ≥ γ]

= Pr
za←RZa,zb←RZb

[|Ext(B|Zb=zb,Bou(zah, z
b
h))− Um| ≥ γ]

< γ + 2−99rw + β + γ

< 2−r
Ω(1)

By the union bound, we get this conclusion holds for both sources, simultaneously with

probability at least 1− 2−r
Ω(1)

, as desired.

Given this condenser, we can simply apply it repeatedly to get an extractor.

Algorithm 3.1.11 (StrongSRExt(a, b)).

Input: a, b — two t× r matrices with t ≤ r0.7.
Output: z — an m bit string, with m ≥ r − r0.95.

1. If a, b have only one row each, output the bitwise xor a⊕ b.

2. Else, set x, y to be the output of TwoCondense(a, b).

3. Set a = x, b = y and go to the first step.

Note that the loop runs at most log t times, since after that, the number of rows is reduced

to 1. Thus the output has the promised length.

Given our work so far, the following theorem is easy:
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Theorem 3.1.12. Let A,B be two independent aligned t × r somewhere random sources with

t ≤ r0.7. Then we have that

Pr
a←RA

[|StrongSRExt(a,B)− Um| ≥ γ] < γ

and

Pr
b←RB

[|StrongSRExt(A, b)− Um| ≥ γ] < γ

for γ = 2−r
Ω(1)

.

Proof. Let ǫ be the error in Lemma 3.1.10.

We prove that the theorem holds with γ = 3ǫ log t by induction on t. When t = 1, the

theorem is trivially true.

When t > 1, by Lemma 3.1.10, we get that there exists a random variable Z such that

• X is a deterministic function of Z and A.

• Y is a deterministic function of Z and B.

• Prz←RZ [(X,Y )|Z=z are ǫ-close to two aligned somewhere random sources] ≥ 1− ǫ.

Then we have that

Pr
a←RA

[|StrongSRExt(a,B)− Um| ≥ 3ǫ log t]

Pr
a←RA

[|StrongSRExt(X,Y )|A=a− Um| ≥ 3ǫ log t]

=
∑

z∈supp(Z)

Pr[Z = z] Pr
x←RX|Z=z

[|StrongSRExt(x, Y |Z=z)− Um| ≥ 3ǫ log t] (3.1)

Now, when z is such that (X,Y )|Z=z are ǫ-close to two aligned somewhere random sources,

we get by induction that

Pr
x←RX|Z=z

[|StrongSRExt(x, Y |Z=z)− Um| ≥ 3ǫ log t]

≤ Pr
x←RX|Z=z

[|StrongSRExt(x, Y |Z=z)− Um| ≥ 3ǫ log ⌈t/2⌉]

≤ 3ǫ log ⌈t/2⌉+ ǫ (3.2)

47



Since Prz←RZ [(X,Y )|Z=z are ǫ-close to two aligned somewhere random sources] ≥ 1− ǫ,
Equation 3.1 and Equation 3.2 imply that

Pr
a←RA

[|StrongSRExt(a,B)− Um| ≥ 3ǫ log t] < 3ǫ log ⌈t/2⌉+ ǫ+ ǫ < 3ǫ log t

The proof that the extractor is strong with respect to the other input is similar.

Given this extractor and our discussion above, we get a strong condenser for aligned some-

where random sources.

Theorem 3.1.13 (Strong Condenser). There exists a polynomial time computable function Cond

that maps two t× r matrices to a single ⌈t/r0.7⌉× r− r0.95 matrix, and a constant α > 0 such that

for every two independent aligned t× r somewhere random sources X,Y , we have that

Pr
x←RX

[Cond(x, Y ) is 2−r
α
-close to a somewhere random source] ≥ 1− 2−r

α

and

Pr
y←RY

[Cond(X, y) is 2−r
α
-close to a somewhere random source] ≥ 1− 2−r

α

Remark 3.1.14. We note that in this last theorem the constant 0.7 can be replaced with any

constant 0 < γ < 1. This would simply have the effect of changing the constants 0.9 and α to some

other constants in the interval (0, 1).

Theorem 3.1.15. For every constant γ < 1 and n, n′, t with t = t(n, n′) s.t. t < nγ and t < n′γ

there exists a constant α < 1 and a polynomial time computable strong extractor 2SRExt : {0, 1}tn×
{0, 1}tn′ → {0, 1}m s.t. that succeeds when X is a t×n SR-source and Y is an independent aligned

t× n′ SR-source, with m = min[n, n′]−min[n, n′]α and error 2−min[n,n′]1−α
.

3.2 Condensing When Only Some Sources Are Good

In this section, we will use a slight twist on the main ideas from Section 3.1 to get a condenser that

is strictly stronger than the one we obtained there — the condenser will function even if only some
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of the sources in the input have entropy. The theorem we will prove is this one:

Theorem 3.2.1 (Strong Condenser). For every t, r, C, with C ≤ r100, there exists a polynomial

time computable function Cond : ({0, 1}tr)C → {0, 1}⌈t/r0.7⌉(r−r0.95) that maps a C tuple of t × r
matrices to a single ⌈t/r0.7⌉ × r − r0.95 matrix, and a constant α > 0 such that if X1, . . . ,XC are

independent random variables over t×r matrices with the property that some Xi,Xj are independent

aligned somewhere random sources, then

Pr
xh←RXh,h 6=j

[Cond(x1, . . . ,Xj , . . . , xC) is 2−r
α
-close to a somewhere random source] ≥ 1− 2−r

α

and

Pr
xh←RXh,h 6=j

[Cond(x1, . . . ,Xi, . . . , xC) is 2−r
α
-close to a somewhere random source] ≥ 1− 2−r

α

The algorithm Cond above is just a slight variation of the algorithm that we developed

for Theorem 3.1.13. As usual, it will suffice for us to build an extractor for a C tuple of t × r
independent sources when we only have the promise that two of them are aligned independent

somewhere random sources. It turns out, that Bourgain’s extractor can be modified to give an

extractor that can extract from any number of sources

Our extractor will be built exactly as in Subsection 3.1.3, except that at the bottom, we will

use Theorem 2.6.8 instead of Theorem 2.6.7. To clarify, let us give the algorithm that corresponds

to Algorithm 3.1.9 in the last section.
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Algorithm 3.2.2 (ManyCondense(x1, x2, . . . , xC)).

Input: x1, x2, . . . , xC — C tuple of t× r matrices with t ≤ r0.7.
Output: y1, y2, . . . , yC — C tuple of ⌈t/2⌉ ×m matrices, with m = r − r0.9.
Sub-Routines and Parameters:

Let w = r0.1.

Let Ext : {0, 1}rt × {0, 1}w → {0, 1}m be the strong seeded extractor from Corollary 2.6.5, set

up to extract m = r − r0.9 bits from a min-entropy r − 100wr0.7 source with error ǫ = 2−r
Ω(1)

.

Let Bou : {0, 1}2w × {0, 1}2w → {0, 1}d be the extractor from Theorem 2.6.8.

Recall the definition of a slice of a somewhere random source — Definition 2.1.24.

1. For each i = 1, 2, . . . , C, let zi be the ⌈t/2⌉ × 2r matrix obtained by concatenating pairs

of rows in Slice(xi, w), i.e., the j’th row is Slice(xi, w)2j−1,Slice(xi, w)min{2j,t}.

2. Let s be the ⌈t/2⌉ × d matrix whose j’th row is Bou(z1
j , z

2
j , . . . , z

C
j ).

3. For each i = 1, 2, . . . , C, let yi be the ⌈t/2⌉ ×m matrix whose j’th row is Ext(xi, sj).

Just as in the previous subsection, we have the analogous lemma:

Lemma 3.2.3. For any C independent sources on t× r matrices X1, . . . ,XC , with t ≤ r0.7 ,C ≤
r100 and the guarantee that at least two of them Xi,Xj are aligned somewhere random sources, let

Y 1, . . . , Y C be the outputs of ManyCondense(X1, . . . ,XC). Then there exists a random variable Z

and ǫ = 2−r
Ω(1)

with the property that:

• For every h = 1, 2, . . . , C, Y h is a deterministic function of Z and Xh.

• Prz←RZ [(Y i, Y j)|Z=z are ǫ-close to two aligned somewhere random sources] ≥ 1− ǫ.

The proof of the lemma is essentially the same as the proof of Lemma 3.1.10, so we omit it.

Just as in that case, we can define Z to be the concatenation of all the slices used in the interaction

between the sources. Then we can use the union bound over O(C) events to bound the probability

in the last item of the conclusion.

Next, we define the following algorithm, analogous to Algorithm 3.1.11.
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Algorithm 3.2.4 (StrongSRExt(a, b)).

Input: x1, . . . , xC — a C tuple of t× r matrices with t ≤ r0.7.
Output: z — an m bit string, with m ≥ r − r0.95.

1. If x1, . . . , xC have only one row each, output the bitwise xor x1 ⊕ x2 ⊕ · · · ⊕ xc.

2. Else, set y1, . . . , yc to be the output of ManyCondense(x1, . . . , xc).

3. For i = 1, 2, . . . , C, set xi = yi and go to the first step.

The proof for the following theorem is the analogue of Theorem 3.1.12:

Theorem 3.2.5. Let X1, . . . ,XC be C independent distributions on t × r matrices with t ≤ r0.7,

C ≤ r100, and the guarantee that (Xi,Xj) are aligned somewhere random sources for some i, j.

Then we have that

Pr
For every h 6= j,xh←RXh

[|StrongSRExt(x1, . . . ,Xj , . . . , xC)− Um| ≥ γ] < γ

and

Pr
For every h 6= i,xh←RXh

[|StrongSRExt(x1, . . . ,Xj , . . . , xC)− Um| ≥ γ] < γ

for γ = 2−r
Ω(1)

.

Again, the proof is omitted since it is essentially the same as the proof of Theorem 3.1.12.

Given this theorem, Theorem 3.2.1 follows.

3.3 Condensing Affine Somewhere Random Sources

Recall that we say that a source is affine with entropy k, if it is uniformly distributed on some

k dimensional affine subspace of an dimensional vector space over a finite field F. We say that a

source is an t× r affine somewhere random source, if it is an affine source over t× r matrices with

entries in F, with the property that one of the rows of the matrix is uniformly random. The formal

definitions are in Section 2.1.3. Throughout this section, we work over the finite field GF (2).
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In this section, we show how the technique of condensing independent somewhere random

sources can be extended to apply to affine somewhere random sources. The final theorem we will

prove is the following:

Theorem 3.3.1 (Affine Somewhere Random Extractor). There exists a polynomial time com-

putable function Ext : {0, 1}rt → {0, 1}r−r0.9
with the property that for every affine t× r somewhere

random source X with t ≤ r0.7, AffineExt(X) is 2−r
Ω(1)

-close to uniform.

The arguments that will go into proving this theorem are reminiscent of the arguments we

used in the previous sections of this chapter. We shall rely on two earlier works to get our results.

The first is a construction of a linear seeded extractor, mentioned in Corollary 2.6.5. The second

is a construction of an affine source extractor for any constant entropy rate — Theorem 2.6.9.

As in the previous sections, we will obtain our extractor by repeatedly condensing the source

we are working with. We do this with the following algorithm:

Algorithm 3.3.2 (AffineCondense(x)).

Input: x — a t× r matrix with t ≤ r0.7.
Output: y — a ⌈t/2⌉ ×m matrix, with m = r − r0.9.
Sub-Routines and Parameters:

Let w = r0.1.

Let Ext : {0, 1}rt × {0, 1}w → {0, 1}m be the strong seeded extractor from Corollary 2.6.5, set

up to extract m = r − r0.9 bits from a min-entropy r − 100wr0.7 source with error ǫ = 2−r
Ω(1)

.

Let Bou : {0, 1}2w × {0, 1}2w → {0, 1}d be the extractor from Theorem 2.6.9, set up to extract

from entropy rate 1/2.

Recall the definition of a slice of a somewhere random source — Definition 2.1.24.

1. Let z be the ⌈t/2⌉ × 2r matrix obtained by concatenating pairs of rows in Slice(x,w), i.e.,

the i’th row zi is Slice(x,w)2i−1,Slice(x,w)min{2i,t}

2. Let s be the ⌈t/2⌉ × d matrix whose i’th row is Bou(zi).

3. Let y be the ⌈t/2⌉ ×m matrix whose i’th row is Ext(x, si).
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We can then show that the output of this algorithm is close to a convex combination of

affine somewhere random sources:

Lemma 3.3.3. For any affine t×r somewhere random source X, with t ≤ r0.7, then AffineCondense(X)

is 2−r
Ω(1)

-close to a convex combination of affine somewhere random sources.

Proof. Let Z = Slice(X,w) as in the algorithm. Then note that Slice(·, w) is a linear function.

Thus, by Lemma 2.1.27, there must exist affine sources A,B with X = A + B, H(B) ≥ r − tw,

and Slice(B,w) is the all zero matrix with probability 1. In particular, this implies that Z =

Slice(X,w) = Slice(A,w) is independent of B.

Now, since X was somewhere random, there must exist an index h for which Zh is an affine

source with min-entropy rate 1/2. Then, if β is the error of Bou, we get that:

|Bou(Zh)− Ud| < β (3.3)

Since Ext is a linear seeded extractor, for any u ∈ {0, 1}d we have that Ext(X,u) = Ext(A+

B,u) = Ext(A,u) + Ext(B,u). Note that for every fixing of Z, the output the algorithm is a linear

function of the rest of the source. Thus Y |Z=z is affine. All that remains to be shown is that with

high probability over the choice of z ←R Z, the source Y |Z=z is also somewhere random.

By Proposition 2.3.6, we get that

Pr
u←RUd

[|Ext(B,u)− Um| > 0] < ǫ

⇒ Pr
sh←RBou(Zh)

[|Ext(B, sh)− Um| > 0] < ǫ+ β (3.4)

Since B is independent of Z, we have that for any z ∈ supp(Z), u ∈ {0, 1}d, Ext(X,u)|Z =

z = Ext(B,u)+(Ext(A,u)|Z=z. Since A is completely determined by Z, Ext(X,u)|Z=z is uniform

exactly when Ext(B,u) is uniform.
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Pr
z←RZ

[|Ext(X|Z=z,Bou(zh))− Um| > 0]

≤ Pr
z←RZ

[|Ext(B,Bou(zh))− Um| > 0]

< ǫ+ β by Equation 3.4

= 2−r
Ω(1)

This completes the proof.

Given this condenser, we can use it repeatedly to get an extractor.

Algorithm 3.3.4 (AffineSRExt(x)).

Input: x — a t× r matrix with t ≤ r0.7.
Output: z — an m bit string, with m ≥ r − r0.95.

1. If x has only one row, output x.

2. Else, set y to be the output of AffineCondense(x).

3. Set x = y and go to the first step.

It’s clear that the extractor succeeds. We will need to run AffineCondense at most log t

times, which is insignificant compared to the error in each step and the reduction in the length of

each of the rows. This completes the proof of Theorem 3.3.1.
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Chapter 4

Extractors for Independent Sources

A natural model for a source that would allow extraction to be feasible is to assume that the source

consists of two or more independent parts, each with sufficient entropy. We say that a function Ext

is a C-source extractor for entropy k if given any C independent sources with entropy k, X1, . . . ,XC,

Ext(X1, . . . ,XC) is close to being uniformly random.

Definition 4.0.5. A function IndepExt : ({0, 1}n)C → {0, 1}m is an extractor for C independent

sources with min-entropy k and error ǫ if for any independent (n, k) sources X1, . . . ,XC we have

|IndepExt(X1, . . . ,XC)− Um| < ǫ

Another way to view 2-source extractors is as boolean matrices that look random in a strong

sense: Every 2-source extractor for entropy k gives an N ×N boolean matrix in which every K×K
minor has roughly the same number of 1’s and 0’s, with N = 2n,K = 2k.

The independent sources model is one of the earliest models studied [SV86, Vaz85, CG88].

The probabilistic method shows that most functions are 2-source extractors requiring entropy that

is just logarithmic in the total length of each of the sources (we give the proof in Section 4.2).

Explicit constructions are still very far from achieving this kind of performance. The classical

Lindsey Lemma gives a 2-source extractor for sources on n bits with entropy n/2 (we revisit this

theorem in the appendix – Theorem C.2.1). No significant progress was made in improving the

entropy requirements over this, until recently. In the last few years, sparked by new results in

arithmetic combinatorics [BKT04], there were several results.
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One important reason why this model is interesting is its connection to explicit constructions

of Ramsey Graphs. Every function with two inputs can be viewed as a coloring of the corresponding

complete bipartite graph. When the function is an extractor for 2 independent sources, the extractor

property guarantees that this coloring gives a bipartite Ramsey Graph, i.e., a two colored complete

bipartite graph with no large monochromatic bipartite clique. It is easy to convert any bipartite

Ramsey Graph into a regular Ramsey Graph, so this immediately gives explicit constructions of

Ramsey Graphs. When the extractor requires a few (say constant u) number of sources, the

corresponding coloring can be used to efficiently construct a u-uniform Ramsey Hypergraph. This

connection is discussed in Section 4.3.

4.1 Previous Results and Overview of Our Results

The problem of extracting from several independent sources was first considered by Chor and

Goldreich [CG88]1. They demonstrated extractors for 2 independent (n, (1/2 + α)n)-sources, for

all constant α ∈ (0, 1/2].

Since then there had not been much success in improving the entropy requirements until

Barak, Impagliazzo and Wigderson [BIW04] showed how to extract from a constant number of

independent (n, δn)-sources, where δ (the min-entropy rate of the source) is allowed to be any

arbitrarily small constant. The number of sources used depends on δ. Subsequently Barak et al.

[BKS+05] showed how to extract a constant number of bits with constant error from 3 (n, δn)-

sources, where δ is an arbitrarily small constant. In this work they also present 2-source dispersers

(a disperser is an object similar to but somewhat weaker than an extractor) that output a constant

number of bits with constant error and work for min-entropy rate δ where δ is an arbitrarily small

constant.

Raz [Raz05] gave an extractor for 2 independent sources where one source needs to have

min-entropy rate greater than and bounded away from 1/2 and the other source may have poly-

logarithmically small min-entropy. In this case his extractor can extract a linear fraction of the

min-entropy with exponentially small error. Improving the 3 source extractor of Barak et al., he

constructed an extractor for 3 independent sources where one source must have constant min-

1Santha and Vazirani [SV86, Vaz85] also considered extracting from independent sources, but the sources had
additional restrictions placed on them.
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Construction Min-Entropy k Output Error Ref

poly(1/δ)-source
extractor

δn Θ(n) 2−Ω(n) [BIW04]

3-source extractor δn, any constant δ Θ(1) O(1) [BKS+05]

3-source extractor One source: δn, any constant
δ. Other sources may have
polylog(n) min-entropy.

Θ(1) O(1) [Raz05]

2-source extractor One source: (0.5+α)n, α > 0.
Other source may have k =
polylog(n) min-entropy.

Θ(k) 2−Ω(k) [Raz05]

2-source extractor (0.5−α0)n for some universal
constant α0 > 0

Θ(n) 2−Ω(n) [Bou05], Appendix C

O(1/δ)-source
extractor

nδ Θ(k) k−Ω(1) This thesis [Rao06]

O(1/δ)-source
extractor

nδ Θ(k) 2−k
Ω(1)

This thesis [BRSW06]

3-source extractor
(with constraints
on input lengths)

nδ for any constant δ (addi-
tional constraints apply)

k − o(k) 2−k
Ω(1)

This thesis [LRZ07]

Table 4.1: Performance of recent extractors for independent sources

entropy rate and the other two need polylogarithmic min-entropy. In this case his extractor can

extract a constant number of bits with constant error.

Bourgain [Bou05] (an exposition of this result is in Appendix C gave another extractor for

2 independent sources. His extractor can extract from 2 (n, (1/2−α0)n)-sources, where α0 is some

small universal constant. This is the first extractor to break the 1/2 min-entropy rate barrier for 2

sources. His extractor outputs a linear fraction of the min-entropy, with exponentially small error.

Other than Raz’s extractor for 2 sources, all of these recent results were made possible by new

breakthroughs on the sum-product estimate for finite fields [BKT04, Kon03], a result from additive

number theory. A common feature of the work of Raz (in the case of 3 sources) [Raz05] and Barak

et al. [BKS+05] is that they reduce the general problem of extracting from independent sources to

the problem of extracting from independent sources that come from a much more restricted class,

called somewhere-random sources. They then build extractors for these sources. A key step in our

construction is building much better extractors for independent somewhere-random sources.
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4.1.1 Results in This Chapter

In this chapter, we give several constructions of extractors for independent sources. These results

are based on work with Boaz Barak, Xin Li, Ronen Shaltiel, Avi Wigderson and David Zuckerman

[Rao06, BRSW06, LRZ07]. Here we list each of our results:

• We give a polynomial time computable extractor that extracts k random bits from O( logn
log k )

independent (n, k)-sources with error 2−k
c

for any k(n) > log4 n and some universal constant

c > 1. An interesting setting of parameters is when k = nγ for some 0 < γ < 1. In this case

we get an extractor for a constant number of sources that extracts a constant fraction of the

total min-entropy with exponentially small error. Formally, the theorem we will prove2 is the

following:

Theorem 4.1.1. There exist constants c > 0 and c′ such that for every n, k with k > log4 n

there exists a polynomial time computable function IndepExt : ({0, 1}n)C → {0, 1}k with C ≤
c′ lognlog k s.t. if X1,X2, . . . ,Xu are independent (n, k) sources then

|IndepExt(X1, . . . ,XC)− Uk| < 2−k
c

• We give an extractor for 2 sources, under the assumption that just one of the sources is a block

source. Block sources have been involved in many earlier works in extractors. Informally, a

source is a block source if it can broken up into several blocks, such that every block has high

enough min-entropy even conditioned on the event that all the previous blocks in the source

are fixed to some value in their support. Two blocks in a block source aren’t completely

independent, but they do satisfy the property that the second block is hard to predict even

if we know what the value of the first block is. The concatenation of several independent

sources is of course a block source. Thus block-sources are a strictly more general class of

sources than independent sources. It can be shown that there is no deterministic extractor

for a single block source.

Theorem 4.1.2 (Block vs General Source Extractor Theorem 4.5.1). There is a polynomial

time computable extractor B : ({0, 1}n)2 → {0, 1}m for 2 independent sources, one of which

2We note that independent of this work, Chung and Vadhan [CV06] discovered how to improve the error of the
original extractor in [Rao06] to make it exponentially small.

58



is a c-block-sources with block min-entropy k and the other a source of min-entropy k, with

m = Ω(k), c = O((log n)/(log k)) and error at most 2−k
Ω(1)

.

• Finally, we show how to extract from just 3 sources when they have polynomially small

entropy, as long as the sources satisfy some constraints on their sizes.

Theorem 4.1.3. There exists a constant h such that for every constant γ > 1, there is a

polynomial time computable function 3Ext : {0, 1}n × {0, 1}n × {0, 1}nγ/h → {0, 1}nγ−o(nγ)

which is an extractor for three sources with min-entropy requirements k1 = k2 ≥ nγ , k3 ≥
log10 n and error 2−Ω(k3) + 2−k

Ω(1)
1 .

Remark 4.1.4. Ronen Shaltiel showed how to improve the output length of any strong extractor

[Sha06]. His techniques show how to get extractors which output k − o(k) output bits, where now

k is the total entropy in all sources, by paying a small price in the error of the extractors.

Several ideas go into our final extractor construction. There are essentially three construc-

tions in this chapter. The first gives the basic extractor for O(log n/ log k) sources of min-entropy

k with polynomially small error. The second is a twist on the first, that achieves the same param-

eters, but with exponentially small error. The final construction uses significantly different ideas

(but still relies on the second result in a black box way) to give an extractor for just 3 sources, even

when the min-entropy is low.

4.2 2-Source Extractors via the Probabilistic Method

Here we show that almost all functions are good 2-source extractors. Recall that every distribution

with min-entropy k is a convex combination of of flat distributions with min-entropy k. Thus, it

will suffice to show that most functions are good extractors for 2 independent flat sources.

We will do this via Theorem 2.5.1. Let X be the class of two independent flat (n, k) sources.

Note that every source in this class has min-entropy 2k. Then we get that |X | =
(

2n

2k

)2 ≤ 22n2k
.

Thus log |X | ≤ 2n2k. The theorem then implies that as long as ǫ22k ≥ 6 log e(2m−k + 2n), there

exists a 2 source extractor with output length m and error ǫ. We see that we can afford to even

set k to as low as 2 log n to extract m = 2k − log k − log n random bits with constant error.
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4.3 Multisource Dispersers vs Ramsey Hypergraphs

Closely related to extractors for independent sources is the notion of a disperser for independent

sources.

Definition 4.3.1. A function IDisp : ({0, 1}n)u → {0, 1}m is an (k, ǫ) u-source disperser if for all

sets A1, A2, . . . , Au ⊆ {0, 1}n, with |A1|, |A2|, . . . , |Au| ≥ 2k, |IDisp(A1, . . . , Au)| ≥ (1− ǫ)2m.

Here we outline how to convert any efficiently computable multisource disperser into an

explicit Ramsey Hypergraph.

Proposition 4.3.2. Let IDisp : ({0, 1}n)u → {0, 1} be a (k, ǫ) u-source disperser. Then IDisp can

be used to give an explicit u-uniform Ramsey Hypergraph on 2n vertices that avoids monochromatic

cliques of size u2k.

Proof Sketch: Consider the u-uniform hypergraph defined as follows: given any potential edge

{a1, a2, . . . , au} of the graph, first sort the vertices according to some predetermined total order to

ensure that a1 ≥ a2 ≥ · · · ≥ au in this order. Then color the edge red if IDisp(a1, a2, . . . , au) = 0,

else color it blue.

Now let S be any subset of the vertices of this graph of size u2k. Then we can use the total

order to partition the vertices of S into u sets S1, . . . , Su of size 2k by taking the highest 2k vertices

in the total order as S1, then the next 2k vertices as S2 and so on. By the disperser property of

IDisp, IDisp(S1, . . . , Su) = {0, 1}. Thus S contains hyperedges of both colors.

4.4 The Basic Construction

In this section, we discuss the simplest of our extractors for independent sources. Many extractor

constructions in the past have been based on the paradigm of iterative condensing [RSW00, TUZ01,

CRVW02, LRVW03, BIW04]. The idea is to start with some distribution that has low min-entropy

and apply a function (called a condenser) whose output has a better min-entropy rate. Repeating

this process, we eventually obtain a distribution that has very high min-entropy rate. Then we can

apply some other extractor which works for such a high min-entropy rate to obtain random bits.

The extractor in this thesis can also be viewed as an example of this paradigm, with a slight twist.
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We make progress by considering a more restricted model for sources called somewhere

random sources (SR-sources for short), which we discussed extensively in Chapter 3. SR-sources

were first introduced by by Ta-Shma [TS96]. An important concept that we introduced in that

chapter is that of aligned SR-sources. Two SR-sources with the same number of rows are said to

be aligned if there is an i such that the i’th row of both sources are distributed uniformly.

We will think of the number of rows of an SR-sources as a measure of the quality of the

source. The fewer the number of rows, the better the quality is. Our construction will manipulate

SR-sources. We will iteratively improve the quality (reduce the number of rows) of the SR-sources

that we are working with until extracting randomness from them becomes easy.

Our construction will use strong seeded extractors as a basic tool. A strong seeded extractor

can be viewed as a small family of deterministic functions (each function in the family indexed

by a unique seed), such that for any fixed adversarially chosen source of randomness, almost all

functions from the family are good extractors for that source. Several constructions of strong seeded

extractors with seed length O(log n) (giving a family of polynomially many functions) are known

(e.g. [LRVW03, Tre01]).

Now we describe some basic observations that go into the construction. We will then show

how to put these together to get the high level view of our extractor construction (Figure 4.1).

Idea 1: General Sources can be turned into aligned SR-sources. A strong seeded extractor can be

used to convert any general weak source into an SR-source. Given a sample from the weak

source, we simply evaluate the extractor on the sample with all possible seeds, getting one row

of the output for each fixed seed. For any fixed weak source, the strong extractor property

guarantees that most seeds will give a distribution that is statistically close to uniform. As

long as the seed length required by the extractor is O(log n), we get a polynomial time

algorithm to convert any weak source to a distribution that is statistically close to an SR-

source with poly(n) rows. A simple union bound argument can be used to show that if we

convert a constant number of independent sources to independent SR-sources in this way, the

SR-sources we obtain are also aligned.

Idea 2: Extraction is easy from high quality independent aligned SR-sources. It is easy to extract

from independent SR-sources when each source has very few rows relative to the length of

each of the rows. In the extreme case, when an SR-source has just one row, it is a uniformly

61



Aligned
SR−Sources

Condense

General Sources

Repeat
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Figure 4.1: High level picture of the extractor

random string. A slightly more non-trivial example is when we have two independent aligned

SR-sources, each with two rows. In this case it is easy to see that if we output the bitwise

XOR of the first row of the first source with the second row of the second source, we get

uniformly random bits. Building on these simple ideas, we will show how to build extractors

for just 2 aligned SR-sources even when the number of rows is superconstant. We will be

able to extract from such sources as long as the number of rows is significantly less than the

length of each row. These results are discussed in Section 3.1 of Chapter 3.

Idea 3: Condensers for low quality SR-sources can be obtained via Idea 2. We build condensers

for SR-sources in the following sense: given a few input independent aligned SR-sources,

our condenser’s output is essentially the distribution of independent aligned SR-sources with

fewer rows. Suppose we have a construction of an extractor for c aligned SR-sources with
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t′ rows. Suppose we are given c aligned SR-sources, each with t > t′ rows. We can run our

extractor with the first t′ rows of all of the SR-sources to get a single output. Then we can

repeat this with the next t′ rows of each of the SR-sources. In this way we obtain t/t′ outputs,

one of which is guaranteed to be uniformly random, i.e., we obtain a new SR-source with t/t′

rows. In this way, we obtain a condenser which given c independent SR-sources, outputs one

SR-source with fewer rows. Again, this idea is discussed in depth in Section 3.1 of Chapter 3.

Idea 4: The quality of SR-sources can be transferred. A single SR-source S with t rows can be

used to convert many other independent sources into SR-sources with t rows. Simply use

the t rows of S as seeds with a strong seeded extractor to extract from each of the other

independent sources. With high probability, the random row of S is a good seed to extract

from all the other independent sources simultaneously. It turns out that the output we obtain

in this way is close to a convex combination of independent aligned SR-sources, each with t

rows. This observation can be interpreted as a way to transfer quality from a single SR-source

to many other independent sources.

Given these observations, the high level informal view of our extractor construction is the following:

1. Use Idea 1 to convert a constant number of independent sources into SR-sources with t =

poly(n) rows each.

2. Use Idea 3 to condense these sources to get 1 SR-source S with much fewer rows t′. If t′ = 1,

stop and output the random row, else continue.

3. Using Idea 4, take a constant number of input independent sources and transfer the quality

of S to these sources, to get a constant number of independent SR-sources with t′ rows each.

4. Go to step 2.

The number of sources required depends on how quickly the number of rows in the SR-

sources we are working with drop down to 1. We will give two condenser constructions. The first

one is simpler (essentially based on the XOR extractor discussed in Idea 2), but only gives an

extractor for log n sources. The second one is more involved, but gives an extractor for a constant

number of sources when the min-entropy is polynomially small.
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Now we describe our algorithm more precisely. The algorithm for our extractor is:

Algorithm 4.4.1 (IndepExt(x1, . . . , x3u)).

Input: x1, . . . , xu — a u tuple of n bit strings.

Output: z — an m bit string, with m = k − o(k).
Sub-Routines and Parameters:

Let Ext1 : {0, 1}n × {0, 1}d → {0, 1}m be a strong seeded extractor from Corollary 2.6.5, set up

to extract m = k − k0.5 bits from a min-entropy k source with error ǫ1 = 1/poly(n) and seed

length d = O(log n).

Let Ext2 : {0, 1}n × {0, 1}k/2 → {0, 1}m be a strong seeded extractor from Corollary 2.6.5, set

up to extract m = k − k0.5 bits from a min-entropy k source with error ǫ2 = 2−k
Ω(1)

.

Let Cond be the condenser from Theorem 3.1.7, set up to condense three independent aligned

t×m somewhere random sources.

1. For i = 1, 2, 3, j = 1, 2, . . . , 2d, let ai be the 2d×mmatrix whose jth row is aij = Ext1(x
i, j),

i.e., ai is obtained from xi by evaluating the seeded extractor Ext1 on it with every possible

seed.

2. For l = 1, 2, . . . , u repeat the following steps

(a) Let s be the matrix Cond(a1, a2, a3).

(b) Let t′ be the number of rows in s. If t′ = 1, output s and terminate.

(c) For i = 1, 2, 3, j = 1, 2, . . . , t′, let aij = Ext2(x
3l+i, sj).

Note that every time Cond is used, the number of rows in the somewhere random source

we are working with get reduced by a factor of m0.7. Thus in O(log n/ log k) steps, the number of

rows is brought down to 1 and the algorithm terminates. This means that u = O(log n/ log k) for

the algorithm to terminate.

Theorem 4.4.2. Let X1, . . . ,Xu be independent (n, k) sources. Then IndepExt(X1, . . . ,Xu) is

1/poly(n) close to uniform.
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Proof. Let γ be the error of Cond. Recall that ǫ1 is the error of Ext1 and ǫ2 is the error of Ext2.

We’ll prove that during that during the l’th iteration of the loop, S is ǫ1 + l(γ+ 6ǫ2) close to being

somewhere random.

We do this by induction. When l = 1 this is clearly true, by the properties of Cond.

For higher l, note that S is obtained by using each row of the old S to extract from three new

independent sources. The resulting 3 sources are then a convex combination of independent aligned

somewhere random sources. The use of Ext2 adds an error of 2ǫ2 for each source. The use of Cond

then adds another γ to the error.

4.5 Extractor for one block source and one general source

In this section we build on the ideas of the previous section to get an extractor that works for two

sources, given an assumption on one of the sources. The assumption is that the first source is a

block source (Definition 2.1.15), which means that it is divided into C blocks such that each block

has entropy above a certain threshold even conditioned on all previous blocks. In particular, we

note that the concatenation of independent sources is a block source. Thus, our algorithm is also

an extractor for a few independent sources.

This algorithm has the added advantage that it gives an extractor with extremely small

error — 2−k
Ω(1)

.

We will prove the following theorem:

Theorem 4.5.1 (Block vs General Source Extractor ). There exists constants c1, c2 such that for

every n, n, k, with k > log10 n there exists a polynomial time computable function BExt : {0, 1}Cn ×
{0, 1}n → {0, 1}m with C = O( logn

log k ) s.t. , if X = X1, · · · ,XC is a k-block source and Y is an

independent k-source

|BExt(X,Y )− Um| < 2−k
c1

with m = c2k.

The low error guaranteed by this theorem is important for applications that require a negligi-

ble error. Since the concatenation of independent sources is a block source, an immediate corollary

of the above theorem is a new extractor for independent sources with exponentially small error.
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Corollary 4.5.2 (Independent Source Extractor ). There exists constants c1, c2 such that for every

n, , k, with k > log10(n) there exists a polynomial time computable function BExt : ({0, 1}n)C →
{0, 1}m with C = O( logn

log k ) s.t. , if X1, . . . ,XC are independent (n, k) sources,

|BExt(X1, . . . ,XC)− Um| < 2−k
c1

with m = c2k.

We will obtain our extractor by reducing the problem to the one of constructing an extractor

for two independent aligned somewhere random sources, a problem that was solved in Chapter 3.

The remainder of this section is devoted to proving Theorem 4.5.1. We start with elaborating

on the ideas that enable us to get lower error.

4.5.1 Achieving Small Error

We remark that the technique we apply towards achieving low error could also be applied to our

earlier extractor construction. A somewhat similar observation was made by Chung and Vadhan

[CV06], who noted that our extractor from [Rao06] for independent sources can more directly be

shown to have low error.

We will first prove the following theorem, which gives an extractor for a block source and

an independent somewhere random source. This extractor has low error.

Theorem 4.5.3 (Somewhere random vs Block Source Extractor). There exist constants α, β, γ < 1

such that for every n, t, k, with k > log10 t, k > log10 n there is a polynomial time computable

function SRvsBExt : {0, 1}Cn × {0, 1}tk → {0, 1}m with C = O( log t
log k ) s.t. , if X = X1, · · · ,XC is a

(k, . . . , k) block source and Y is an independent t× k (k − kβ)-SR-source,

|X,SRvsBExt(X,Y )−X,Um| < ǫ

|Y,SRvsBExt(X,Y )− Y,Um| < ǫ

where Um is independent of X and Y , m = k − kα, ǫ = 2−k
γ
.

We defer the proof of this theorem to the next section.
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Note that we can get an extractor for a block source and a general independent source

from Theorem 4.5.3 by using the fact that a general source can be transformed into a somewhere

random source (Proposition 2.3.4). However, this transformation seems to spoils the error as when

transforming a general source into a somewhere random source with poly(n) rows it only guarantees

that the random row is 1/poly(n)-close to uniform (and this error is inherited by the final extractor).

Nevertheless, we will use this transformation and provide a better analysis for the final

extractor (resulting in smaller error). In order to so that we will first prove a weaker version of

Theorem 4.5.3 in which the success of the extractor is only guaranteed on a large subsource Y ′ of

Y . We will then show how to use this to prove Theorem 4.5.1.

Theorem 4.5.4 (Block vs General Subsource Extractor ). There exist absolute constants c1, c2, c3 >

0 such that for every n, k, with k > log10 n there exists a polynomial time computable function

BExt : {0, 1}Cn × {0, 1}n → {0, 1}m with C = c1
logn
log k s.t. , if X = X1, · · · ,XC is a k block source

and Y is an independent (n, k)-source, there is a deficiency 2 subsource Y ′ ⊆ Y s.t.

|X,BExt(X,Y ′)−X,Um| < ǫ

|Y ′,BExt(X,Y ′)− Y ′, Um| < ǫ

where Um is independent of X and Y , and for m = c2k and ǫ = 2−k
c3 .

Proof. The idea is to reduce to the case of Theorem 4.5.3. We convert the general source Y into

an SR-source. To do this we will use a strong seeded extractor and Proposition 2.3.4. If we use

a strong seeded extractor that requires only O(log n) bits of seed, the SR-source that we get will

have only poly(n) rows, and one of the rows is 1/n-close to uniform. By Lemma 2.1.12, we can go

to a deficiency 2 subsource Y ′ ⊆ Y which has high entropy in some row. This is good enough to

use our extractor from Theorem 4.5.3 and get the better error.

Proof of Theorem 4.5.1. We prove the theorem by showing that any extractor that satisfies the

conclusions of Theorem 4.5.4 (i.e., low strong error on a subsource), must satisfy the seemingly

stronger conclusions of Theorem 4.5.1.

Let BExt be the extractor from Theorem 4.5.4, set up to extract from a k/2 block source

67



and a k/2 − 2 general source. Then we claim that when this extractor is run on a k block source

and a k general source, it must succeed with much smaller error (on sources with min-entropy k).

Given the source X let BX ⊂ {0, 1}n be defined as BX
def
= {y : |BExt(X, y) − Um| ≥ ǫ}.

Then,

Claim 4.5.5. |BX | < 2k/2

Proof. The argument for this is by contradiction. Suppose |BX | ≥ 2k/2. Then define Z to be the

source which picks a uniformly random element of BX . By the definition of BX , this implies that

|Z ′,BExt(X,Z ′)− Z ′, Um| ≥ ǫ for any subsource Z ′ ⊂ Z. This contradicts Theorem 4.5.4.

Thus Pr[Y ∈ BX ] < 2k/2−k = 2−k/2.

This implies that |BExt(X,Y )− Um| < ǫ+ 2−k/2, where ǫ is the ǫ from Theorem 4.5.4.

Remark 4.5.6. In fact the above proof actually implies the extractor from Theorem 4.5.1 is strong

with respect to Y , i.e., |Y,BExt(X,Y )− Y,Um| < ǫ+ 2−k/2.

4.5.2 Extractor for general source and an SR-source with few rows

Here we will construct the extractor for Theorem 4.5.3. The main step in our construction is the

construction of an extractor for a general source and an independent SR-source which has few rows.

Once we have such an extractor, it will be relatively easy to obtain our final extractor by iterated

condensing of SR-sources.

First, we prove the following theorem:

Theorem 4.5.7. There exist constants α, β < 1 such that for every n, k(n) with k > log10 n,

and constant 0 < γ < 1/2, there is a polynomial time computable function BasicExt : {0, 1}n ×
{0, 1}kγ+1 → {0, 1}m s.t. if X is an (n, k) source and Y is a kγ × k (k − kβ)-SR-source,

|Y,BasicExt(X,Y )− Y,Um| < ǫ

and

|X,BasicExt(X,Y )−X,Um| < ǫ

where Um is independent of X,Y , m = k − kΩ(1) and ǫ = 2−k
α
.
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Proof. We are trying to build an extractor that can extract from one kγ × k k − kβ-SR-source Y

and an independent (n, k) source X. We will reduce this to the case of two independent aligned

SR-sources with few rows, for which we can use Theorem 3.1.15. More precisely, the plan is to use

the structure in the SR-source Y to impose structure on the source X and obtain two independent

aligned somewhere random sources.

In the following discussion, the term slice refers to a subset of the bits coming from an SR-

source that takes a few bits of the SR-source from every row (Definition 2.1.24). We also remind

the reader of the following notation: if f : {0, 1}r × {0, 1}r → {0, 1}m is a function and a, b are

samples from t× r somewhere sources, f(~a,~b) refers to the t×m matrix whose ith row is f(ai, bi).

Similarly, if c is an element of {0, 1}r and b is a sample from a t× r somewhere source, f(c,~b) refers

to the (t×m) matrix whose ith row is f(c, bi).

The idea is to use a small slice of the somewhere random source to convert the general

source into a somewhere random source. When we fix the slice that we used, we are left with two

independent sources, both of which are (almost) somewhere random. We will then show we have

essentially reduced the problem to the case of extracting from two independent somewhere random

sources.

We first describe our algorithm in words, giving more intuition for why it should succeed.

High level description of the algorithm We first explain the high level intuition behind the

algorithm. The first target in the above algorithm is to generate a list of candidate seeds (S) from

the two sources, one of which will be close to uniformly random. To generate the list of seeds that we

want, we will first take a small slice (Definition 2.1.24) of the bits from Y , i.e., we take Slice(Y,w),

where w is a parameter that we will pick later (think of w as kµ for small µ). We will be able to

guarantee that at least one of the rows of Slice(Y,w) has high entropy (this follows from the fact

that Y is somewhere high entropy). We can then use Raz’s extractor Theorem 2.6.6 with these bits

to extract from X. This gives us a kγ ×w′ SR-source Q, where w′ = kθ(1) ≫ w is some parameter

that we will pick later. The two sources that we have now (Q and Y ) are not independent. However,

note that when we fix the slice of bits (S) that we used, we get two independent sources. In other

words, Q and Y can be written as a convex combination of independent distributions.

We now turn our attention to the effect of fixing S on the randomness in Q and Y . We note

that Y conditioned on the value of S could potentially lose entropy in its high entropy row. Still,
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we can expect this high entropy row to have about k−kβ−wkγ bits of entropy, since we fixed only

wkγ bits of Y in S. Furthermore, as Raz’s extractor is strong for a typical fixing of S the good row

has a good seed that extracts randomness from X. This means that Q is (close to) a somewhere

random source for a typical fixing of S.

In the next step we take a wider slice of Y and call it R = Slice(Y,w′′). Note that on fixing

S to a typical value, we get that Q,R are two independent aligned somewhere high entropy sources.

We then use Raz’s extractor again to convert Q,R into a somewhere random source H, by applying

the extractor to each pair of rows from Q,R. We indeed get that H has a row that is close to

uniform. Furthermore, since Raz’s extractor is strong, we will be able to guarantee that one of the

rows in the resulting SR-source is independent of any of the two input sources X and Y . Thus,

once we have H, we can use it with a strong seeded extractor to extract from both X and Y to get

independent aligned SR-sources of the type that Theorem 3.1.15 can handle.

More precisely, it follows that for any fixing of Q and R, the distributions X ′ and Y ′ are

independent. Thus it remains to be shown that both X ′ and Y ′ are somewhere random sources (at

least for a typical fixing of Q and R). Let us consider the case of of X ′: For typical fixings of S

we have that Q and R are independent sources. By the strongness of Raz’s extractor we have that

for a typical fixing of Q, the distribution H is (close to) somewhere random and is independent of

X. Furthermore for a typical fixing of Q, X retains most of its entropy, thus the seeds in H can

be used to extract from X and for a typical fixing of R the good row in H provides a seed that

can extract randomness from X even conditioned on the previous fixings and thus we get that X ′

is (close to) somewhere random. Moving over to the case of Y ′, for typical fixings of S, Q and R

are independent somewhere high entropy sources. Thus, for a typical fixing of R we have that H

is a somewhere random source that is independent of Y . Furthermore for a typical such fixing Y

still retains most of its entropy and thus we get that Y ′ is (close to) a somewhere random source.

More formally, the algorithm for our extractor is the following:
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Algorithm 4.5.8 (BasicExt(x, y)).

Input: x, a sample from an (n, k) source and y a sample from a (kγ ×k) kβ-somewhere random

source.

Output: z

Sub-Routines and Parameters:

Let w,w′, w′′, l, d, β1 be parameters that we will pick later. These will satisfy w′′ > w > kγ and

w − kγ > w′.

Let Raz1 : {0, 1}n×{0, 1}w → {0, 1}w′

be the extractor from Theorem 2.6.6 set up to extract w′

bits from an (n, k) source, using a (w, 0.9w) source as seed.

Let Raz2 : {0, 1}w′ × {0, 1}w′′ → {0, 1}d be the extractor from Theorem 2.6.6, set up to extract

d bits from a (w′, w′) source and an independent (w′′, 0.9w′′) source.

Let Ext1 : {0, 1}n×{0, 1}d → {0, 1}k−kβ1 and Ext2 : {0, 1}k1+γ ×{0, 1}d → {0, 1}k−2kβ1 be strong

seeded extractors from Corollary 2.6.5, each set up to extract from min-entropy k − kβ1 with

error 2−k
Ω(1)

.

Let 2SRExt : {0, 1}kγ (k−2kβ1 )×{0, 1}kγ (k−2kβ1) → {0, 1}m be the extractor from Theorem 3.1.15,

set up to extract from two aligned kγ × k − 2kβ1 SR-sources.

Let Slice be the function defined in Definition 2.1.24.

1. Set s = Slice(y,w).

2. Treating s as a list of kγ seeds, use it to extract from x to get q = Raz1(x,~s). The result

is a string with kγ rows, each of length w′.

3. Set r = Slice(y,w′′).

4. Let h = Raz2(~q,~r), i.e., h is a list of kγ strings, where the ith string is Raz2(qi, ri).

5. Let x′ = Ext1(x,~h), y′ = Ext2(y,~h).

6. Use 2SRExt to get z = 2SRExt(x′, y′).

Proof of correctness We will prove the following lemma:
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Lemma 4.5.9. For every (n, k) source X and a kγ × k kβ-somewhere random source Y as in

Theorem 4.5.7, we can pick w,w′, w′′, l, d, β1 and a constant β s.t. (X,Y ) is 2−k
Ω(1)

-close to a

convex combination of sources s.t. for any source in the convex combination, (X ′, Y ′) in step 5

above:

1. X ′ is independent of Y ′

2. X ′ is a kγ × k − kβ SR-source

3. Y ′ is a kγ × k − kβ SR-source

Given the lemma, we have reduced the problem to one of extracting from aligned somewhere

random sources. Theorem 4.5.7 then follows by the properties of 2SRExt.

Proof of Lemma 4.5.9. We assume that we have some fixed random variables X,Y that satisfy the

hypotheses of the lemma. We will make several claims about the various random variables involved

in the construction, setting w,w′, w′′, l, d, β1 along the way to ensure that our lemma is true. In

the rest of this proof, a capital letter represents the random variable for the corresponding small

letter in the construction above.

Recall that kβ (we are allowed to set β < 1 to anything we want) is the randomness deficiency

of the random row in Y . Note that:

Claim 4.5.10. For any w > 2kβ , S is 2−k
β

close to a kγ × w (w − 2kβ)-SR-source

Proof. This follows from an application of Lemma 2.1.11.

We set w = kα1 for some constant α1 s.t. α1 + γ < 1 and α1 > β and set w′ = w/10.

Note that Theorem 2.6.6 does give an extractor for a (w,w−2kβ) source and an independent (n, k)

source with output length w/10.

Now Q is correlated with both X and Y . However, when we fix S, Q becomes independent

of Y , i.e.: (X,Q)|S=s is independent of Y |S=s for any s. Since Raz1 is a strong extractor, Q still

contains a random row for a typical fixing of S.

Claim 4.5.11. There exists some constant α2 < 1 s.t. Prs←RS [Q|S = s is 2−k
α2 close to a kγ ×

w′ SR-source] > 1− 2−k
α2 .

72



Thus with high probability Q is independent upto convex combinations from Y .

Next, set w′′ = kα3 , where 1 > α3 > α1 + γ is any constant. Now consider the random

variable R.

Claim 4.5.12. R is 2−k
β

close to a kγ × w′′ (w′′ − 2kβ)-SR-source.

Proof. This follows from an application of Lemma 2.1.11.

Now we assume that R is in fact a w′′− 2kβ-SR-source (we will add 2−k
β

to the final error).

After we fix S, R can lose entropy in its random row, but not much. We can expect it to lose

as many bits of entropy as there are in S, which is only kα1+γ . Since we picked w′′ = kα3 ≫ kα1+γ ,

we get that R still contains entropy.

Claim 4.5.13. Prs←RS [R|S=s is a kγ × w′′ (w′′ − 2kα3)-SR-source ] > 1− 2−k
α3 .

Proof. By Proposition 2.1.9, we get that Prs←RS [R|S=s is a kγ × w′′ (w′′ − kα1+β − l)-SR-source ] >

1− 2l. Setting l = kα3 gives the claim.

Thus, upto a typical fixing of S, (Q,R) are statistically close to two aligned sources, Q a

kγ × w′ SR-source, and R an independent kγ × w′′ (0.1w′′)-SR source. If we set d = w′/10, we see

that our application of Raz2 above succeeds. In the aligned good row, Raz2 gets two independent

(after fixing S) sources which are statistically close to having extremely high entropy.

The result of applying Raz2 is the random variable H.

Claim 4.5.14. H is 2−Ω(d) close to a (kγ ,Ω(d)) SR-source.

In addition, we argue that the random row of H is independent of both X and Y . Without

loss of generality, assume that H1 is the random row of H. Let α4 > 0 be a constant s.t. 2−k
α4 is

an upperbound on the error of Ext1,Ext2. Then for a typical fixing of Q,R, we get that X,Y are

independent sources, and the random row of H (which is determined by (Q,R)) is a good seed to

extract from both sources.

Claim 4.5.15. With high probability H contains a good seed to extract from each of the sources:

Pr
(q,r)←R(Q,R)

[|Ext2((Y |R=r), h1(q, r))− Um| ≥ 2−k
α4

]] < 2−k
α4

and
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Pr
(q,r)←R(Q,R)

[|Ext1((X|S=s(r), Q=q), h1(q, r))− Um| ≥ 2−k
α4

] < 2−k
α4

Proof. There are two ways in which the claim can fail. Either S,Q,R steal a lot of entropy from

X,Y , or they produce a bad seed in H to extract from X|S = s,Q= q or Y |R= r. Both events

happen with small probability.

Specifically, we have that there exist constants β1, β2 s.t.

• By Proposition 2.1.10, Prr←RR[H∞(Y |R = r) < k − kβ1 ] < 2−k
β2

• By Proposition 2.1.10, Pr(q,r)←RR[H∞(X|R = r,Q = q) < k − kβ1] < 2−k
β2

• By our earlier claims, Prr←RR[H|R = r is 2−k
β2 -close to being somewhere random]

• By our earlier claims, Pr(s,q)←R(S,Q)[H|S = s,Q = q is 2−k
β2 -close to being somewhere random]

• By the properties of the strong seeded extractor Ext1, for any s, q such that H∞(X|S = s,Q =

q) ≥ k − kβ1 and H|S = s,Q = q is 2−k
β2 -close to being somewhere random,

Pr
h←RH|Q=q,S=s

[|Ext1((X|S = s,Q = q), (H|S = s,Q = q))− Um| ≥ 2−k
β2

] < 2 · 2−kβ2

• By the properties of the strong seeded extractor Ext2, for any r such that H∞(Y |R = r) ≥
k − kβ1 and H|R = r is 2−k

β2 -close to being somewhere random,

Pr
h←RH|R=r

[|Ext2((Y |R = r), (H|R = r))− Um| ≥ 2−k
β2

] < 2 · 2−kβ2

Thus we can use the union bound to get our final estimate.

This concludes the proof of Theorem 4.5.7.

4.5.3 Proof of the main theorem

We are finally ready to prove Theorem 4.5.3. We are given a block-wise source X and a somewhere

high entropy source Y that has many rows (more than k rows). The high level idea is to run
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“condensing steps” where each condensing step consumes one block of X while reducing the number

of rows in Y by dividing it by kΩ(1). The precise details follow:

Proof of Theorem 4.5.3. As in Chapter 3, the theorem is obtained by repeated condensing of SR-

sources. In each condensing step, we will consume one block of X to reduce the number of rows

of the SR-source by a factor of kΩ(1). Thus after O(log t/ log k) steps, we will have reduced the

number of rows to just 1, at which point extraction becomes trivial.

Algorithm 4.5.16 (Cond(x, y)).

Input: x = x1, x2, · · · , xC, a sample from a block source and y a sample from a t×k SR-source.

Output: z = x2, x3, · · · , xC and y′ a t/kγ×m sample that we will claim comes from a SR-source.

Sub-Routines and Parameters:

Set γ ≪ 1/2 to some constant value. Let β be the constant guaranteed by Theorem 4.5.3.

For these γ, β, let BasicExt be the function promised by Theorem 4.5.7. Let m, ǫ be the output

length and error of BasicExt respectively.

1. Partition the t rows of y equally into t/kγ parts, each containing kγ rows. Let y(j) denote

the j’th such part.

2. For all 1 ≤ j ≤ t/kγ , let y′j = BasicExt(x1, y(j)).

3. Let y′ be the string with rows y′1, y
′
2, . . . , y

′
t/kγ .

Given X = X1, · · · ,XC and Y , the above algorithm uses X1 to condense Y . Even though

this introduces dependencies between X and Y , once we fix X1, the two output distributions are

once again independent. Formally we will argue that after applying the condenser, the output

random variables Z and Y ′ above are statistically close to a convex combination of independent

sources, where Z is a block source with one less block than X, and Y ′ is an SR-source with much

fewer rows than Y .

Lemma 4.5.17. Let X,Y be as above. Let ǫ be the error of BasicExt. Then (Z = X2, . . . ,XC, Y ′)

is 2
√
ǫ-close to a convex combination of sources where each source in the combination has
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1. Z is a (k, . . . , k) block source

2. Y ′ is a (t/kγ ,m) SR-source

3. Z is independent of Y ′

Proof. Let h ∈ [t/kγ ] be such that Y (h) contains the random row. Consider the random variable

X1. We will call x1 good if |BasicExt(Y (h), x1)− Um| <
√
ǫ, where m, ǫ are the output length and

error of BasicExt respectively.

Then we make the following easy claims:

Claim 4.5.18. For good x1,

1. Z|X1 = x1 is a (k, . . . , k) block source

2. Y ′|X1 = x1 is a
√
ǫ-close to being a ((t/kγ)×m) SR-source

3. Z|X1 = x1 is independent of Y ′|X1 = x1

Proof. The first and third property are trivial. The second property is immediate from the definition

of good.

Claim 4.5.19. Pr[X1 is not good ] <
√
ǫ

Proof. This is an immediate consequence of Theorem 4.5.7.

These two claims clearly imply the lemma.

Now we use Cond repeatedly until the second source contains just one row. At this point

we use the one row with Raz’s extractor from Theorem 2.6.6 with X to get the random bits.

To see that the bits obtained in this way are strong, first note that Raz’s extractor is strong

in both inputs. Let O be the random variable that denotes the output of our function BExt(X,Y ).

Let Q denote the concatenation of all the blocks of X that were consumed in the condensation

process. Let Um denote a random variable that is independent of bothX,Y . Then we see that these

variables satisfy the hypothesis of Lemma 2.2.3, i.e., on fixing Q to a good value, Raz’s extractor

guarantees that the output is independent of both inputs, thus we must have that the output is
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close to being independent of both inputs. The dominant error term in BExt comes from the first

step, when we convert Y to an SR-source.

4.6 3-source Extractors for Polynomially Small Min-entropy

In this section we build on the results from the last section to give a new extractor for just 3

independent sources, even when the min-entropy is polynomially small. One way to use our results

to obtain a new extractor for just 3 sources was noticed by Avi Wigderson. We have outlined that

approach in Appendix A.

We shall now describe another 3 source extractor which can handle a much lower entropy

level, under the assumption that one of the sources is much shorter than the others. Our extractor

uses as a key component a randomness condenser, constructed by Guruswami, Umans and Vadhan

[GUV07], which is in turn based on recent constructions of good list decodable codes ([GR06,

PV05]), though we give a self contained proof of everything we need in this section.

First let us give a high level description of our algorithm and analysis. As we saw in the last

section, although it seems hard to build extractors for two independent sources, the problem seems

considerably easier when one of the sources is a block source. Indeed, our new algorithm will be

obtained by reducing to this case. We will give an algorithm that given two independent sources,

can turn them into a single block source, with many blocks. Once we have this algorithm, we will

simply use one additional source and our extractor from the previous section to get random bits.

4.6.1 Converting Two Independent Sources Into A Block Source

Fix a finite field F. The following algorithm is from [GUV07].
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Algorithm 4.6.1 (Cond(f, y)).

Input: f ∈ Ft, y ∈ F and an integer r.

Output: z ∈ Fr.

Sub-Routines and Parameters:

Let g ∈ F[X] be an irreducible polynomial of degree t + 1. Set h = |F|0.8α for some parameter

α.

1. For every i = 0, 1, . . . ,m− 1, let fi ∈ F[x] be the polynomial fh
i

mod g.

2. Output f0(y), f1(y), . . . , fr−1(y).

Guruswami et al. were interested in building seeded condensers. So they used the above

algorithm with y sampled uniformly at random. Below, we show that the algorithm above is useful

even when y is a high min-entropy source. We can prove the following lemma, which is a slight

generalization of a lemma in [GUV07]:

Lemma 4.6.2. If F is a distribution on Ft with min-entropy k and Y is an independent distribution

on F with min-entropy rate α and

• rt < ǫ|F|0.1α

• k > log(2/ǫ) + (0.8αr) log(|F|)

Cond(F, Y ) is ǫ-close to having min-entropy rate 0.7α.

Remark 4.6.3. In order to avoid using too many variables, we have opted to use constants like

0.1 and 0.7 in the proof. We note that we can easily replace the constants 0.7, 0.8 with constants

that are arbitrarily close to 1, at the price of making 0.1 closer to 0.

Proof of Lemma 4.6.2. We will repeatedly use the basic fact that any non-zero polynomial of degree

d can have at most d roots.

By Fact 2.2.5, it suffices to prove the lemma when F and Y are flat sources.

We will prove that the output is close to having high min-entropy via Lemma 2.1.14. To do

this, we need to show that for every set S ⊂ Fr of size ǫ|F|0.7αr, Pr[Cond(F, Y ) ∈ S] < ǫ. Fix such

a set S.

78



Let Q(Z1, . . . , Zr) ∈ F[Z1, . . . , Zr] be a non-zero r variate polynomial whose degree is at

most h − 1 in each variable, such that Q(s) = 0 for every s ∈ S. Such a polynomial must exist

since the parameters have been set up to guarantee hr = |F|0.8αr > |S| = ǫ|F|0.7rα.

Now call f ∈ supp(F ) bad for S if

Pr
y←RY

[Cond(f, y) ∈ S] ≥ ǫ/2

We will bound the number of bad f ’s. Fix any such bad f . Then consider the univariate

polynomial

R(X) = Q(f0(X), f1(X), . . . , fr−1(X)) ∈ F[X]

This polynomial has degree at most tr(h − 1). But tr(h − 1) < ǫ|F|0.1α|F|0.8α < ǫ|F|α/2 =

(ǫ/2)|supp(Y )|, thus this polynomial must be the zero polynomial. In particular, this means that

R(X) = 0 mod g(X). This in turn implies that f must be a root of the polynomial

Q′(Z) = Q(Z,Zh, Zh
2
, . . . , Zh

r−1
) ∈ (F[X]/g(X))[Z]

which is a univariate polynomial over the extension field F[X]/g(X), since Q′(f(X)) = R(X)

mod g(X) by our choice of f0, . . . , fr−1.

Recall that Q had degree at most h− 1 in each variable. This means that Q′ has degree at

most hr − 1 and is non-zero, since no two monomials can clash when making the substitution Zi

for Zi in Q. The number of bad f ’s can be at most hr − 1 < |F|0.8αr, since every bad f is a root of

this low degree non-zero polynomial. This implies that Pr[F is bad] < |F|0.8αr/2k < ǫ/2, since the

constraint on k implies that 2k > |F|0.8αr2/ǫ.
By the union bound, Pr[Cond(F, Y ) ∈ S] ≤ Pr[F is bad]+Pr[Cond(F, Y ) ∈ S|F is not bad] <

ǫ/2 + ǫ/2 = ǫ.

Guruswami et al. [GUV07] were interested in constructing a seeded condenser, so they were

interested in the special case of α = 1 in the above lemma. When α is small, it seems like the

lemma doesn’t say anything useful, since the min-entropy rate of the output is bounded above by

α. But note that the lemma works for a very wide range of r’s. The above function is more than
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a condenser, it spreads the entropy out across the output. Specifically, if we look at the first r′

symbols in the output, they must also have min-entropy rate close to 0.7α. We can use this to

construct a block source with geometrically increasing block lengths, as in the following lemma:

Lemma 4.6.4. Let Cond, F, Y, α, r, t, ǫ be as in Algorithm 4.6.1 and Lemma 4.6.2. Let r1, r2, . . . , rC =

r be positive integers. For i = 1, 2, . . . ,C, set Zi to be the first ri field elements in the output

of Cond(F, Y ). Then let Z1, . . . , ZC be such that Zi = Z1, . . . , Zi for every i. Then for every

ℓ > 10 log C we have that Z1, Z2, . . . , ZC is C(Cǫ+ 2−ℓ+1)-close to being a block source with entropy

(0.7αri − ri−1) log(|F|)− 1− 2ℓ in each block.

Proof. We will apply Lemma 2.1.20.

Note that for each i, Zi is simply the output of the condenser upto the first ri elements.

Since ri ≤ r, ri satisfies the constraints of Lemma 4.6.2, so Zi is ǫ close to having min-entropy rate

0.7α.

We set parameters to get the following theorem:

Theorem 4.6.5. There exists a polynomial time computable function BlockConvert : {0, 1}n1 ×
{0, 1}n2 → {0, 1}m1 × {0, 1}m2 × · · · × {0, 1}mC , such that for every min-entropy k1 source X over

{0, 1}n1 and every min-entropy k2 source Y over {0, 1}n2 satisfying

• C(log 10n2
k2

) + 2 log(n1) < 0.095k2

•
√
k1 > k2(10n2/k2)

C,

BlockConvert(X,Y ) is C22−Ω(k2)+2−k
Ω(1)
1 -close to being a block source with

∑

imi ≤ (10n2/k2)
C
√
k1

and min-entropy 2
√
k1 in each block.

Proof. We show how to set parameters and apply Lemma 4.6.4.

Set F to be the finite field of size 2n2 . Set t = n1/n2, ǫ = 2−0.05k2 and k = k1.

Set ri = (10n2/k2)
i
√
k1, so

∑

imi = r = k
1/2
1 (10n2/k2)

C.

Using the first assumption,

rt =
√

k1

(

10n2

k2

)C n1

n2
≤ n2

1

(

10n2

k2

)C

< 20.095k2 = 2−0.05k220.1k2 = ǫ|F|0.1α

to satisfy the first constraint of Lemma 4.6.2.
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We have that

k1 = k > 1 + 0.05k2 + 0.8 · 10Ck2

√

k1(n2/k2)
C−1 = log(2/ǫ) + (0.8rα) log(|F|)

to satisfy the second constraint of Lemma 4.6.2.

Set ℓ = k0.1
1 . Note that the second constraint implies that C < log k1.

Then let us use the algorithm Cond as promised by Lemma 4.6.4 with the above settings.

We get that the final output is C(Cǫ+2−ℓ+1) ≤ 2−Ω(k2) +2−k
Ω(1)
1 - close to being a block source with

min-entropy (0.7αri − ri−1) log(|F|)− 1− 2ℓ in each block. We can lower bound this as follows:

(0.7αri − ri−1) log(|F|)− 1− 2ℓ

=

(

0.7
k2

n2

(

10n2

k2

)i
√

k1 −
(

10n2

k2

)i−1
√

k1

)

n2 − 1− 2k0.1
1

= (0.7 · 10 − 1)

(

10n2

k2

)i−1

n2

√

k1 − 1− 2k0.1
1

= 6

(

10n2

k2

)i−1

n2

√

k1 − (1 + 2k0.1
1 )

≥ 2
√

k1

4.6.2 Putting it all together

All that remains is to put together the various components to get our extractor.
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Algorithm 4.6.6 (IndepExt(a, b, c)).

Input: a ∈ {0, 1}n1 , b ∈ {0, 1}n2 , c ∈ {0, 1}n3 .

Output: z ∈ {0, 1}m for a parameter m that we will set.

Sub-Routines and Parameters:

Let BlockConvert be the algorithm promised by Theorem 4.6.5, set up to operate on two sources

with entropy k1, k2 and lengths n1, n2 respectively.

Let BExt be the algorithm promised by Theorem 4.5.1, set up to extract from a block source

with C blocks of length (10n2/k2)
C
√
k1, each with entropy

√
k1 conditioned on previous blocks,

and an independent source with length n3 and min-entropy k3.

1. Run BlockConvert(a, b) to get the blocks x = x1, x2, . . . , xC.

2. Output BExt(x, c).

We can then prove the following theorem.

Theorem 4.6.7 (Three Source Extractor). There exists a constant d and a polynomial time com-

putable function 3Ext : {0, 1}n1 × {0, 1}n2 × {0, 1}n3 → {0, 1}m which is an extractor for three

sources with min-entropy requirements k1, k2, k3 =
√
k1, error 2−Ω(k2) + 2−k

Ω(1)
1 and output length

m = k1 − o(k1) as long as:

• log k1
logn2

> d log(n1+n3)
log k1

• k2 > d log n1

Proof. Let t be a constant so that BExt requires C = t log(n1 + n3)/ log(k1) blocks to extract bits

from an (n3, k3 =
√
k1) source and an independent block source with blocks of length n1, each with

entropy
√
k1 conditioned on previous blocks. The error of this extractor is promised to be 2−k

Ω(1)
1 .

We check each of the constraints needed for BlockConvert to succeed.
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First we have that

C

(

log
10n2

k2

)

+ log n1

< C10 log n2 + log n1

≤ t log(n1 + n3)

log k1
log n2 + log n1

≤ (t/d) log k1 + log n1 by the first assumption

< 0.095d log n1 for d large enough

< 0.095k2 by the second assumption

For the next constraint,

log(k2(10n2/k2)
C)

= C log(10n2/k2) + log k2

≤ t log(n1 + n3)

log k1
(log(n2) + log 10) + log n1

< 3(t/d) log k1 by the first assumption

< (1/2) log k1 for d large enough

We are not yet done, since the algorithm above will only output m1 =
√
k1 − o(

√
k1) bits.

However, we do have that:

Pr
x1←RX1

[|IndepExt(x1, Y, Z)− Um1 | > 2−Ω(k2) + 2−k
Ω(1)
1 ] < 2−Ω(k2) + 2−k

Ω(1)
1

since BExt is strong.

Thus we have that |X, IndepExt(X,Y,Z)−X,Um1 | < 2−Ω(k2) +2−k
Ω(1)
1 , which implies that if

Ext is any strong seeded extractor set up to extract from a min-entropy k1 source with seed length

m2, Ext(X,Um1) is 2−Ω(k2) + 2−k
Ω(1)
1 close to Ext(X, IndepExt(X,Y,Z)). This is our final extractor.

One example of how to set parameters is in the following corollary:

Corollary 4.6.8. There exists a constant h such that for every constant γ > 1, there is a polynomial
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time computable function 3Ext : {0, 1}n×{0, 1}n×{0, 1}nγ/h → {0, 1}nγ−o(nγ) which is an extractor

for three sources with min-entropy requirements k = nγ , nγ , log10 n, error 2−Ω(log10 n).

When the min-entropy of the sources gets lower, the first constraint in the theorem forces

the length of the shorter source to be much shorter than the other two sources.
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Chapter 5

Extractors for Small Space Sources

Trevisan and Vadhan [TV00] proposed the study of extraction from weak random sources that

are generated by a process that has a bounded amount of computational resources. This seems

to be a plausible model for physical random sources and generalizes a number of the previously

studied models. They focused on the case that the source is sampled by either a small circuit or

an algorithm with a limited running time. Their main result is a construction of polynomial-time

extractors for such sources based on some strong but plausible complexity assumptions. It would

be nice to have unconditional constructions (as well as ones that are more efficient and have better

error). However, they showed that complexity assumptions are needed for the original model of

sources generated by time-bounded algorithms. Thus, they suggested, as a research direction, that

we might be able to construct unconditional extractors for sources generated by space-bounded

algorithms. This model is our focus.

Small space sources are very general in that most other classes of sources that have been

considered previously can be computed with a small amount of space. This includes von Neumann’s

model of a coin with unknown bias [vN51], Blum’s finite Markov chain model [Blu84], symbol-fixing

sources [KZ03], and sources that consist of many independent sources. Strong results in this last

model will not follow directly from strong results in the small-space model, but our results do

generalize, for example, the results of [BIW04]. In fact, the only model for which deterministic

extractors have been given that appears unrelated to our model is “affine sources”. Yet despite the

small-space model being so natural, very little in the way of explicit constructions for such sources

was known.
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The first example of an explicit construction was due to Blum [Blu84], who showed how

to extract from sources generated by a finite Markov chain with a constant number of states. His

results generalized the earlier results of von Neumann [vN51] for extracting from an independent

coin with unknown bias. However, the finite Markov chain model is very restricted; it has a

constant-size description and the transitions must be the same at each time step.

The model for small-space sources we consider is similar to the one previously considered

by Koenig and Maurer [KM04, KM05]. It is a generalization of the Markov chain model to time-

dependent Markov chains, which yields a much richer class of sources. Our model of a space s

source is basically a source generated by a width 2s branching program. The exact model we

consider is that at each step the process generating the source is in one of 2s states. This can be

modelled by a layered graph with each layer corresponding to a single time-step and consisting of

vertices corresponding to each of the states. From each node v in layer i, the edges leaving v (going

to layer i+ 1) are assigned a probability distribution as well as an output bit for each edge. Unlike

in Blum’s model [Blu84], the transitions can be different at each time-step.

n

.25, 1

.15, 0

.4, 1

.8, 0

.2, 1

.3, 0

.2, 0

.1, 1

.4, 0

.2, 1

2s

Figure 5.1: Part of a space s = 2 source

It can be shown using the probabilistic method that there exist extractors even when the

space s is a constant fraction of the min-entropy k, even when the min-entropy is logarithmically

small. Our goal is to provide efficient and deterministic constructions with parameters that come

as close to these bounds as possible.

Koenig and Maurer [KM04, KM05] gave the first explicit constructions of extractors for

space-bounded sources. Their extractors require the min-entropy rate to be least 1/2. We do not

know of any other constructions for space-bounded sources, even space 0 sources, which are simply
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Table 5.1: Small space extractors for sources on {0, 1}n that extract 99% of the min-entropy. In
this table c and C represent sufficiently small and large constants, respectively.

Reference Min-entropy Rate Space Error

Theorem 5.0.9 δ ≥ n−c cδ3n exp(−nc)
Theorem 5.0.11 Any constant δ cn exp(−Ω̃(n))

Theorem 5.0.12 δ ≥ C/ log n cδ log n exp(−n.99)

sources of independent bits each of which has a different, unknown, bias.

Our Results

The results in this chapter are based on work with Jesse Kamp, Salil Vadhan and David Zuckerman

[KRVZ06].

For space s sources with min-entropy k = δn, we have several constructions, all of which

are able to extract almost all of the entropy in the source. These extractors are summarized in

Table 5.1. The first extracts whenever δ > n−η for some fixed constant η and extracts almost all

of the entropy.

Theorem 5.0.9. Assume we can find primes with length in [r, 2r] deterministically in time poly(r).

Then there is a constant η > 0 such that for every n ∈ N, and δ > ζ > n−η, there is an polynomial-

time computable ǫ-extractor Ext : {0, 1}n → {0, 1}m for space s sources with min-entropy rate δ,

where s = Ω(ζ3n), m = (δ − ζ)n, and ǫ = 2−n
Ω(1)

.

Remark 5.0.10. The assumption about finding primes follows from Cramer’s conjecture on the

density of primes [Cra37], together with the deterministic primality test of [AKS04].

We also have constructions that do not depend on the ability to find large primes. Though

the parameters of these constructions are mostly subsumed by the previous construction, they are

considerably simpler and achieve somewhat better error. For constant min-entropy rate sources,

we have a construction that extracts any constant fraction of the entropy.

Theorem 5.0.11. For any constants δ > ζ > 0 and every n ∈ N, there is a polynomial-time

computable ǫ-extractor Ext : {0, 1}n → {0, 1}m for space s sources with min-entropy rate δ, where

s = Ω(n), m = (δ − ζ)n, and ǫ = 2−Ω(n/ log3 n).

The last extractor works with min-entropy rate as low as δ = Ω(1/ log n) and spaceO(δ log n).
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Theorem 5.0.12. For every n ∈ N and δ > ζ > 28/ log n and s ≤ (ζ log n)/28, there is a

polynomial-time computable ǫ-extractor Ext : {0, 1}n → {0, 1}m for space s sources with min-entropy

rate δ, where m = (δ − ζ)n and ǫ = exp(−n/(2O(s/ζ) · log5 n)).

In comparison to the previous results (e.g. [KM04, KM05]) we have reduced the min-

entropy required from n/2 to n1−Ω(1) (in Theorem 5.0.9). However, we are still far from what can

be achieved nonconstructively, where we can extract when the min-entropy is logarithmically small.

We also have a gap in terms of the space tolerated. Nonconstructively we can get s to be almost

δn/2 while our results require s to be smaller than δ3n.

In a partial attempt to close the entropy gap for the case of space 1 sources, we also have

an extractor that extracts about Ω(k2/n) bits from a more restricted model when k > n0.81. The

extra restriction is that the output bit is required to be the same as the state.

5.0.3 Total-Entropy Independent Sources

Our extractors for small-space sources are all obtained via a reduction from a new model of sources

we introduce called total-entropy independent sources. The reduction we use is based on that

of Koenig and Maurer [KM04, KM05], who used it to generalize extractors for two independent

sources. Total-entropy independent sources consist of a string of r independent sources of length ℓ

such that the total min-entropy of all r sources is at least k. Our reduction shows that optimal ex-

tractors for total-entropy independent sources are also essentially optimal extractors for small-space

sources. In addition to being a natural model, these sources are a common generalization of two

of the main models studied for seedless extraction, namely symbol-fixing sources and independent

sources , which we proceed to discuss below.

Independent Sources

One of the most well-studied models of sources is that of extracting from a small number of

independent sources, each of which has a certain amount of min-entropy. We have given several

extractors for this model in Chapter 4.

However, this model requires that all of the sources have large entropy. This motivates our

generalization of independent sources to total-entropy independent sources, where we only require

that the total min-entropy over all of the sources is high. Another difference between what we
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consider is that the usual independent source model consists of few sources that are long, whereas

total-entropy independent sources are interesting even if we have many short sources.

Oblivious Bit-Fixing and Symbol-Fixing Sources

Another particular class that has been studied a great deal is that of bit-fixing sources, where some

subset of the bit-positions in the source are fixed and the rest are chosen uniformly at random.

The first extractors for bit-fixing sources extracted perfectly random bits [CFG+85, CW89] and

required the source to have a large number of random positions. Kamp and Zuckerman [KZ03]

constructed extractors that worked for sources with a much smaller number of random bits, and

we have improved their results in Chapter 6. They also generalized the notion of bit-fixing sources

to symbol-fixing sources, where instead of bits the values are taken from a d symbol alphabet.

Gabizon, Raz and Shaltiel [GRS04] gave a construction that converts any extractor for bit-fixing

sources into one that extracts almost all of the randomness.

Total-entropy independent sources can be seen as a generalization of symbol-fixing sources,

where each symbol is viewed as a separate source.1 The difference is that instead of each symbol

being only fixed or uniformly random, the symbols (sources) in total-entropy independent sources

are allowed to have any distribution as long as the symbols are independent. Naturally, we place a

lower bound on the total min-entropy rather than just the number of random positions. Usually,

symbol-fixing sources are thought of as having many symbols that come from a small alphabet (e.g.

{0, 1}). This restriction is not necessary to the definition, however, and here we consider the full

range of parameters, including even the case that we have a constant number of symbols from an

exponentially large “alphabet” (e.g. {0, 1}ℓ).

Our Results

Our extractors for total-entropy independent sources are all based on generalizing various techniques

from extractors for independent and symbol-fixing sources.

Koenig and Maurer [KM04, KM05] showed how any extractor for two independent sources

with certain algebraic properties can be translated into an extractor for many sources where only

1Though for ease of presentation we define total-entropy independent sources only over sources with alphabet size
2ℓ, more generally the sources could be over alphabets of any size d, as with symbol-fixing sources. All of our results
naturally generalize to this more general case.
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two of the sources have sufficient entropy. Their result generalizes to extractors for more than two

sources. We show that this also yields extractors for independent-symbol sources. In particular, we

apply this to extractors for independent sources that follow from the exponential sum estimates of

Bourgain, Glibichuk, and Konyagin [BGK06] (see Bourgain [Bou05]), and thereby obtain extractors

for total-entropy independent sources of any constant min-entropy rate. These extractors are quite

simple. Each source is viewed as being an element of a finite field, and the output of the extractor

is simply the product of these finite field elements.

We also show how to use ideas from Chapter 4 for extracting from several independent

sources to get extractors for total-entropy independent sources that extract from sources of min-

entropy (rℓ)1−Ω(1).

When the smaller sources each have short length ℓ, we use ideas from the work of Kamp and

Zuckerman [KZ03] about bit-fixing sources to construct extractors for total-entropy independent

sources with min-entropy k. We can extract many bits when k > 2ℓ
√
rℓ, and for k = Ω(22ℓℓ) we can

still extract Ω(log k) bits. The base extractor simply takes the sum of the sources modulo p for some

p > 2ℓ, similar to the cycle walk extractor in [KZ03]. Using this extractor we can extract Ω(log k)

bits. To extract more bits when k is sufficiently large, we divide the source into blocks, apply the

base extractor to each block, and then use the result to take a random walk on an expander as in

[KZ03].

Unlike the first two extractors, the extractors obtained using this technique use the full

generality of the total-entropy independent sources. In the first two constructions, using a Markov

argument we can essentially first reduce the total-entropy independent sources into sources where

some of the input sources have sufficiently high min-entropy while the rest may or may not have

any min-entropy. These reductions also cause some entropy to be lost. In this last construction,

however, we benefit even from those sources that have very little min-entropy. Thus we are able to

take advantage of all of the entropy, which helps us extract from smaller values of k.

We also show how to generalize the construction of Gabizon et al. [GRS04] to total-entropy

independent sources to enable us to extract more of the entropy. Note that we use it to improve not

only the extractors based on [KZ03] (analogous to what was done in [GRS04] for bit-fixing sources),

but also our extractors based on techniques developed for independent sources. Independently of

our work, Shaltiel [Sha06] has recently generalized the ideas in [GRS04] to give a framework for
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Table 5.2: Total-entropy independent source extractors for sources on ({0, 1}ℓ)r that extract 99% of
the min-entropy. In this table c and C represent sufficiently small and large constants, respectively.

Reference Min-entropy Rate Error

Theorem 5.0.13 δ = (rℓ)−c exp(−(rℓ)c)

Theorem 5.0.14 Any constant δ exp(−Ω̃(rℓ))

Theorem 5.0.15 δ = C d log3/2 r

(rℓ)
1
2−γ

exp(−(rℓ)2γ)

Theorem 5.0.16 δ = (2ℓ log r)C/r (δrℓ)−c

constructing deterministic extractors which extract almost all of the entropy from extractors which

extract fewer bits. Our extractor can be seen to fit inside this framework, although we cannot

directly use his results as a black box to obtain our results.

Applying the technique based on [GRS04] to our extractors that use the independent sources

techniques of Chapter 3, the results of [BGK06], and the bit-fixing source extractor from [KZ03],

respectively, we get the following three theorems. These theorems are directly used to obtain

the small-space extractors from Theorem 5.0.9, Theorem 5.0.11, and Theorem 5.0.12. Table 5.2

presents a summary of these extractors.

Theorem 5.0.13. Assuming we can find primes with length in [r, 2r] deterministically in time

poly(r), there is a constant η such that for every r, ℓ ∈ N and δ > ζ > (rℓ)−η, there is a polynomial-

time computable ǫ-extractor Ext : ({0, 1}ℓ)r → {0, 1}m for sets of r independent sources over {0, 1}ℓ

with total min-entropy rate δ > ζ where m = (δ − ζ)rℓ and ǫ = exp(−(rℓ)Ω(1)).

We note that in the independent sources model this extractor gives comparable results to

the extractor from [BIW04] as a corollary.

The following extractor extracts a constant fraction of the entropy from any constant rate

source.

Theorem 5.0.14. For any constants δ > ζ > 0 and every r ∈ N, there is a polynomial-time

computable ǫ-extractor Ext : ({0, 1}ℓ)r → {0, 1}m for sets of r total min-entropy rate δ independent

smaller sources over {0, 1}ℓ, where m = (δ − ζ)rℓ and ǫ = 2−Ω((rℓ)/ log3(rℓ)).

For the following extractor we can take ζ = Õ(1/
√
r) and can then extract randomness from

sources with min-entropy rate as small as δ = Õ(1/
√
r).
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Theorem 5.0.15. For every r ∈ N, 1 ≤ ℓ ≤ 1
2 log r and ζ >

√

22ℓ log3 r/rℓ there is a polynomial-

time computable ǫ-extractor Ext : ({0, 1}ℓ)r → {0, 1}m for r total min-entropy rate δ > ζ indepen-

dent smaller sources over {0, 1}ℓ where m = (δ − ζ)rℓ and ǫ = exp(−Ω((ζ2rℓ)/(22ℓ log3 r))).

Gabizon et al. also give a technique which improves the output length of extractors that

extract only Ω(log k) bits. We show that this technique also generalizes to total-entropy independent

sources, so we use it together with our extractor based on ideas from [KZ03] that extracts Ω(log k)

bits to get the following theorem. This theorem shows that even for polylogarithmic k, for small

enough ℓ we can extract almost all of the min-entropy.

Theorem 5.0.16. There exists a constant C > 0 such that for every r ∈ N, ℓ ≥ 1, k ≥ (2ℓ log r)C ,

there exists a polynomial-time computable ǫ-extractor Ext : ({0, 1}ℓ)r → {0, 1}m for r independent

smaller sources over {0, 1}ℓ with total min-entropy k, where m = k − k1−Ω(1) and ǫ = k−Ω(1).

Using the probabilistic method, we show that there exist (nonconstructive) extractors that

extract even when the min-entropy k is as small asO(ℓ+log r). Note that we always need k > ℓ, since

otherwise all of the entropy could be in a single source, and thus extraction would be impossible.

The extractor from Theorem 5.0.16 comes closest to meeting this bound on k, but only works for

small ℓ and has suboptimal error, so there is still much room for improvement.

5.0.4 Organization

In Section 5.2 we describe our reduction from small-space sources to total-entropy independent

sources. We then restrict our focus to extracting from total-entropy independent sources, starting

with the basic extractors. In Section 5.3 we describe the extractor that provides the basis for the

extractor from Theorem 5.0.14. In Section 5.4 we describe the extractor that provides the basis

for the extractor from Theorem 5.0.13. In Section 5.5 we describe the extractors that provide the

basis for the extractors from Theorem 5.0.15 and Theorem 5.0.16. Then in Section 5.6, we describe

how to generalize the techniques of Gabizon et al. [GRS04] so that we can extract almost all of the

entropy, and so achieve the theorems described in the introduction. Next, in Section 5.7, we give

nonconstructive results on extractors for both small-space and total-entropy independent sources.

Finally, in Section 5.8, we give the improved extractor for our more restrictive model of space 1

sources.
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5.1 Preliminaries

5.1.1 Classes of Sources

We formally define the various classes of sources we will study.

Definition 5.1.1. A space s source X on {0, 1}n is a source generated by a width 2s branching

program. That is, the branching program is viewed as a layered graph with n + 1 layers with a

single start vertex in the first layer and 2s vertices in each subsequent layer. Each edge is labeled

with a probability and a bit value. From a single vertex we can have multiple edges corresponding

to the same output bit. The source is generated by taking a random walk starting from the start

vertex and outputting the bit values on every edge.

This definition is very similar to the general Markov sources studied by Koenig and Maurer

[KM04, KM05]. This is not quite the most general model of such sources imaginable, because we

could consider sources that output a variable number of bits depending on which edge is chosen at

each step, including possibly not outputting any bits. However, this restriction makes sense in light

of the fact that we are primarily interested in sources of fixed length. In this case, the sources in

the more general model can be transformed into our model by modifying the states appropriately.

The other important class of sources we study are independent sources.

Definition 5.1.2. A source consisting of r smaller sources on {0, 1}ℓ is an independent source on

({0, 1}ℓ)r if each of the r smaller sources are independent. An independent source on ({0, 1}ℓ)r has

total-rate δ if the total min-entropy over all of the sources is δrℓ and total-entropy k if the total

min-entropy is k.

Definition 5.1.3. A source on {0, 1}ℓ is flat if it is uniformly distributed over a non-empty subset

of {0, 1}ℓ.

Note that when ℓ = 1, a flat independent source is the same as an oblivious bit-fixing source.

Definition 5.1.4. Let X be a random variable taking values in {0, 1}t×a, viewed as t× a matrices

with entries in {0, 1}. We say that X on ({0, 1}a)t is (t × a) somewhere-random 2 (SR-source for

2This definition is slightly different from the original one used by Ta-Shma [TS96]. The original definition consid-
ered the closure under convex combinations of the class defined here (i.e., convex combinations of sources that have
one random row). We use this definition because we can do so without loss of generality and it considerably simplifies
the presentation.
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short) if it is a random variable on t rows of r bits each such that one of the rows of X is uniformly

random. Every other row may depend on the random row in arbitrary ways. We will say that a

collection X1, . . . ,Xm of (t × a) SR-sources is aligned if there is some i for which the i’th row of

each Xj is uniformly distributed.

We will also need a relaxed notion of the previous definition to where the “random” row is

not completely random, but only has some min-entropy.

Definition 5.1.5. We say that a (t × a) source X on ({0, 1}a)t has somewhere-min-entropy k,

if X has min-entropy k in one of its t rows. We will say that a collection X1, . . . ,Xm of (t × a)
somewhere-min-entropy k sources is aligned if there is some i for which the i’th row of each Xj has

min-entropy k.

5.1.2 Seeded Extractors

We will also need to define what it means to have a seeded extractor for a given class of sources.

Definition 5.1.6. A polynomial-time computable function Ext : {0, 1}n × {0, 1}s → {0, 1}m is

a seeded ǫ-extractor for a set of random sources X , if for every X ∈ X , Ext(X,Us) is ǫ-close to

uniform. The extractor is called strong if for Y chosen according to Us, Y,Ext(X,Y ) is also ǫ-close

to uniform.

We use the following seeded extractor in our constructions, which allows us to get almost

all the randomness out.

Theorem 5.1.7 ([Tre01, RRV02]). For every n, k ∈ N, ǫ > 0, there is a polynomial-time computable

strong seeded ǫ-extractor Ext : {0, 1}n × {0, 1}t → {0, 1}k−O(log3(n/ǫ)) for sources with min-entropy

k, with t = O(log3(n/ǫ)).

5.2 Small-Space Sources As Convex Combinations Of Indepen-

dent Sources

Here we show how small-space sources can be converted into convex combinations of independent

sources. Thus we will be able to use our extractor constructions from subsequent sections to extract
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from small-space sources. The idea is simple: to extract from a space s source X, we divide the

n bits in X into n/t blocks of size t. We view each block as a source on t bits. If we condition

on the states of the source at the start of each block, all of the blocks become independent, so we

end up with a set of n/t independent smaller sources on {0, 1}t. We show, using techniques similar

to Koenig and Maurer [KM04, KM05], that with high probability these sources will have sufficient

min-entropy.

Lemma 5.2.1. Let X be a space s source on {0, 1}n with min-entropy rate δ. Then for any

0 < α < 1, X is 2−αδn/2-close to a convex combination of independent sources on ({0, 1}ℓ)r with

total-rate δ′, where ℓ = 2s/(αδ), r = αδn/2s and δ′ = (1− α)δ.

All of our extractors for small-space sources are obtained by combining Lemma 5.2.1 with

the corresponding extractor for total-entropy independent sources. We note that the reduction

in this lemma is only interesting when the min-entropy rate δ > 1/
√
n, since otherwise the total

entropy of the independent sources would be less than the length of an individual source. In this

case all of the entropy could be in a single source and thus extraction would be impossible.

To prove Lemma 5.2.1 we use the following standard lemma (for a direct proof see Lemma 5

in Maurer and Wolf [MW97], although it has been used implicitly earlier in, e.g., [WZ99]).

Lemma 5.2.2. Let X and Y be random variables and let Y denote the range of Y . Then for all

ǫ > 0

Pr
Y

[

H∞(X|Y = y) ≥ H∞(X)− log |Y| − log

(

1

ǫ

)]

≥ 1− ǫ

Proof of Lemma 5.2.1. Divide X into αδn/2s blocks of size 2s/αδ. Let Y represent the values of the

initial states for each block. Then each (X|Y = y) is a set of independent smaller sources with each

block viewed as a smaller source of length 2s/(αδ). By Lemma 5.2.2, since |Y| = (2s)(αδn)/(2s) =

2αδn/2, with probability 1 − 2−αδn/2 the sources (X|Y = y) have min-entropy (1 − α)δn and thus

min-entropy rate (1− α)δ.

5.3 Extracting From Total-Entropy Independent Sources

In this section, we show how to construct extractors for total-entropy independent sources using

techniques from standard independent sources.
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The following Markov-like lemma will be used to show that if we divide a source into blocks,

many of the blocks will have a large entropy rate.

Lemma 5.3.1. For any partition of a total-rate δ independent source on ({0, 1}ℓ)r into t blocks of

r/t smaller sources each, the number b of blocks with min-entropy rate greater than δ/2 satisfies

b > δt/2.

Therefore we can view this source as a set of t independent smaller sources on {0, 1}ℓr/t

where at least δt/2 of the smaller sources have min-entropy rate greater than δ/2.

Proof. We know that b blocks have min-entropy rate greater than δ/2 and at most 1. In each of

the remaining blocks the min-entropy rate is at most δ/2. Since the total entropy rate is δ and

min-entropies add for independent sources, δ ≤ (b+(t−b)(δ/2))/t, which after a simple calculation

gives the desired result.

Once we are in this model, we can generalize the result from Koenig and Maurer [KM04,

KM05] that states that any two source extractor of the form f(x1 ·x2), where the xi are elements of

some group, can be extended to any number of sources where only two of the sources have sufficient

min-entropy.

Lemma 5.3.2. Let (G, ∗) be a group and let Ext(x1, x2, . . . , xb) := f(x1 ∗ x2 · · · · ∗ xb) be an

extractor for b independent sources over G, each of which has min-entropy rate at least δ. Then

F (x1, . . . , xr) := f(x1 ∗ · · · ∗ xr) is an extractor for r independent sources over G, b of which have

min-entropy rate at least δ.

The proof is simple and is the same as in [KM04, KM05]. The key idea is that the r sources

can be divided into b blocks, each of which contains exactly one of the high entropy sources, since

the group operation cannot lower the entropy.

Bourgain, Glibichuk, and Konyagin [BGK06] gave bounds on the exponential sums of the

function f(x1, . . . , xb) =
∏b
i=1 xi over large subsets of fields without large subfields, in particular

GF (p) and GF (2p). This estimate gives an extractor for b independent sources where each source

has high entropy via Vazirani’s XOR lemma [Vaz86].

Theorem 5.3.3 ([BGK06]). Let the finite field K be either GF (p) or GF (2p) for some prime

p. Let f(x1, . . . , xb) =
∏b
i=1 xi and view the output of the function as an integer from 0 to
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|K| − 1. Then there exist functions B(δ) and c(δ) such that the function BGK(x1, . . . , xb) =

⌊(2mf(x1, . . . , xb))/|K|⌋ (i.e., taking the m most significant bits of f(x1, . . . , xb)/|K|) is an ǫ-

extractor for b independent min-entropy rate δ sources over K for b ≥ B(δ), m = Θ(c(δ) log |K|),
and ǫ = 2−Ω(m).

Note that for constant δ, we can extract Θ(log |K|) bits with only a constant number of

sources. For GF (p), [BGK06] make explicit the relationship between δ and the number of sources

and entropy. It turns out in this case that we can handle slightly subconstant δ, down to δ =

Ω(1/(log log |K|)(1/C)) for some constant C. For GF (2p), it’s not clear whether or not a similar

result can be achieved.

Combining this theorem with Lemma 5.3.2, restricting the sources to be over the multiplica-

tive group K∗, we get the following corollary.

Corollary 5.3.4. Let the finite field K be either GF (p) or GF (2p) for some prime p. Let

f(x1, . . . , xr) =
∏r
i=1 xi and view the output of the function as a number from 0 to |K| − 1. Then

there exist functions B(δ) and c(δ) such that the function BGK(x1, . . . , xr) = ⌊(2mf(x1, . . . , xr))/|K|⌋
is an ǫ-extractor for r independent sources over K∗, at least B(δ) of which have min-entropy rate

at least δ, and with m = Θ(c(δ) log |K|) and ǫ = 2−Ω(m).

It will also be useful to formulate the following corollary.

Corollary 5.3.5. For every constant δ > 0, there exists a constant v(δ) and a polynomial time

computable function BGK : ({0, 1}ℓ)r → {0, 1}m that is an ǫ-extractor for r independent sources

on {0, 1}ℓ, such that at least v(δ) of the sources have min-entropy rate δ where m = Ω(ℓ) and

ǫ = 2−Ω(ℓ).

Proof. Find the next smallest prime p > ℓ (we know p ≤ 2ℓ), and apply the extractor from

Corollary 5.3.4 over GF (2p), viewing each source as being embedded in GF (2p)∗.

Now we can combine this extractor with Lemma 5.3.1 to get an extractor for independent

sources with constant total min-entropy rate.

Theorem 5.3.6. For any constant δ, we can construct a polynomial-time computable ǫ-extractor

Ext : ({0, 1}ℓ)r → {0, 1}m for total-rate δ independent sources on ({0, 1}ℓ)r, with m = Θ(rℓ) and

ǫ = 2−Ω(m). This extractor can be computed in time poly(r, ℓ).
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Proof. Given an independent source X = X1, . . . ,Xn on ({0, 1}ℓ)r, divide it into t = 2B(δ/2)/δ

blocks of r/t smaller sources each, where B(δ) is the constant from Corollary 5.3.4. Then by

Lemma 5.3.1, we can view X as an independent sources on ({0, 1}ℓr/t)t, where at least δt/2 =

B(δ/2) of the smaller sources have min-entropy rate at least δ/2. Find the smallest prime p > (rℓ)/t.

By Bertrand’s postulate, p ≤ 2(rℓ)/t, we can find such a prime in time poly(r, ℓ) by brute force

search. Then we can embed each of our smaller sources into GF (2p)∗ and apply the extractor from

Corollary 5.3.4 to get the stated result.

5.4 Extracting From Polynomial Entropy Rate

In this section we will show how to extract from total-entropy independent sources when the min-

entropy of the sources is polynomially small. As in the previous section, we will reduce the problem

to another model: we will try to extract from a few independent sources when just some of them

have a polynomial amount of entropy, but we don’t know exactly which ones. The probabilistic

method shows that extractors exist for this model even when just two sources contain logarithmic

min-entropy and the total number of sources is polynomially large. Our main theorem is as follows.

Theorem 5.4.1. Assuming we can find primes with length in [r, 2r] in time poly(r), there is a

constant β such that there exists a polynomial-time computable ǫ-extractor Ext : ({0, 1}ℓ)r → {0, 1}m

for total-rate δ ≥ ℓ−β independent sources on ({0, 1}ℓ)r, where n = Θ(1/δ2), m = ℓΩ(1) and

ǫ = 2−ℓ
Ω(1)

.

We can also get the following corollary for when we have a larger number of smaller sources.

Corollary 5.4.2. Assuming we can find primes with length in [r, 2r] in time poly(r), there exists

a constant η such that for any δ ≥ (rℓ)−η, there exists a polynomial-time computable ǫ-extractor

Ext : ({0, 1}ℓ)r → {0, 1}m for total-rate δ independent sources on ({0, 1}ℓ)r, where m = (δ2rℓ)Ω(1)

and ǫ = 2−(δ2rℓ)Ω(1)
.

Proof. Divide the source into Θ(1/δ2) blocks of Θ(δ2n) smaller sources each and apply Theorem 5.4.1.

In this section we will describe a generic technique to turn any extractor for the model

where a few smaller sources have min-entropy rate less than half into an extractor that can extract
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when the min-entropy is as small as ℓ1−α0 for some universal constant α0. There are two major

ingredients that will go into our construction:

• The first ingredient is based on recent constructions of randomness efficient condensers [BKS+05,

Raz05]. We use these condensers to transform a set of sources with polynomial min-entropy

rate into a set of aligned sources with somewhere-min-entropy rate 0.9. An important prop-

erty that we will need is that the length of each of the rows is much higher than the number

of rows. We prove the following theorem in Section 5.4.2.

Theorem 5.4.3. Assume we can find primes with length in [r, 2r] in time poly(r). Let

X1, . . . ,XB all be sources on {0, 1}ℓ, for B a constant. Then for any small enough constant

α > 0 there exist constants γ = γ(α) and µ(α) > 2γ and a polynomial time computable

function ACond : {0, 1}ℓ → ({0, 1}ℓµ )ℓ
γ

such that if each Xi has min-entropy rate δ = ℓ−α,

then

ACond(X1),ACond(X2), . . . ,ACond(XB)

is 2−Ω(ℓ1−2α) close to a convex combination of sets of aligned somewhere-min-entropy rate 0.9

sources.

• The second ingredient is the technique of condensing independent SR-sources from Chapter 3.

There we showed how to extract from independent sources with only a few of them being

aligned SR-sources that have rows that are much longer than the number of rows. Formally,

we get the following, proved in Section 3.2.

Theorem 5.4.4. For every constant γ < 1 there exists a polynomial time 2−ℓ
Ω(1)

-extractor

SRExt : ({0, 1}ℓγ+1
)u → {0, 1}m for u independent sources, of which v are independent aligned

(ℓγ × ℓ) SR-sources, where m = ℓ− ℓΩ(1).

We will first describe how to use these two ingredients to extract from an intermediate model.

Then we will see that total-entropy independent sources can be easily reduced to this intermediate

model to prove Theorem 5.4.1.

5.4.1 Extracting From The Intermediate Model

The intermediate model we work with is defined as follows.
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Definition 5.4.5. A (u, v, α) intermediate source X consists of u2 smaller sources X1, . . . ,Xu2
,

each on {0, 1}ℓ. These smaller sources are partitioned into u sets S1, . . . , Su such that v of the sets

have the property that v of their sources have min-entropy at least ℓ1−α.

Now we show that for certain constant v and α > 0 we can extract from this model.

Theorem 5.4.6. Assuming we can find primes with length in [r, 2r] in time poly(r), for some

constants v and α > 0 there exists a polynomial time computable 2−ℓ
Ω(1)

-extractor IndepExt for

(u, v, α) intermediate sources, where m = ℓΩ(1).

Using this theorem together with Lemma 5.3.1, we can prove Theorem 5.4.1.

Proof of Theorem 5.4.1. Let X = X1, . . . ,Xr be an independent source on ({0, 1}ℓ)r with total

min-entropy rate δ ≥ 4ℓ−α, where α is the constant from Theorem 5.4.6 and n = u2 where u will

be chosen later. Divide the source into u blocks with u smaller sources each. By Lemma 5.3.1,

δu/2 of the blocks have min-entropy rate at least δ/2. Now further divide each of the blocks into

u sub-blocks of one smaller source each. By Lemma 5.3.1, for the blocks with min-entropy rate at

least δ/2, at least δu/4 of the sub-blocks have min-entropy rate δ/4 ≥ ℓ−α. Let u = 4v/δ, where

v is the constant from Theorem 5.4.6. Then X is a (u, v, α) intermediate source satisfying the

conditions of Theorem 5.4.6, which immediately gives us the theorem.

Here is the algorithm promised by Theorem 5.4.6:
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Algorithm 5.4.7 (IndepExt(x1, . . . , xu
2
)).

Input: x1, . . . , xu
2

partitioned into sets S1, . . . , Su.

Output: z.

Sub-Routines and Parameters:

Let v be a constant that we will pick later.

Let BGK be as in Corollary 5.3.5 - an extractor for independent sources when v−1 of the smaller

sources have min-entropy.

Let ACond be as in Theorem 5.4.3, letting B = v2 - a condenser that converts sources with

sublinear min-entropy into a convex combination of aligned sources with somewhere-min-entropy

rate 0.9.

Let SRExt be as in Theorem 5.4.4 - an extractor for independent sources that works when just

v of the inputs come from aligned SR-sources.

Set ǫ = 1/v3. Let α be a small enough constant to apply Theorem 5.4.3 with α in the hypothesis.

Let γ be as in the conclusion of the theorem.

1. Compute yi = ACond(xi) for every source in the input. Let yij denote the jth row of yi.

2. For every l ∈ [u], and every j ∈ [2ℓ
γ
], let blj be the string obtained by applying BGK using

the yij from all i ∈ Sl as input.

We think of bl as a sample from an SR-source with ℓγ rows, one for each seed si.

3. Output SRExt(b1, . . . , bu).

Proof of Theorem 5.4.6. If we restrict our attention to the v2 high min-entropy smaller sources,

from Theorem 5.4.3 we know that from the first step from these smaller sources is 2−Ω(ℓ1−2α) close

to a convex combination of sets of aligned somewhere-min-entropy rate 0.9 sources.

Then in the second step, for each distribution in the convex combination BGK succeeds in

extracting from the aligned min-entropy rate 0.9 row in each set.

Remark 5.4.8. Actually, we don’t really need the Bourgain-Glibichuk-Konyagin extractor for this

step. If the min-entropy is so high, it is easy to see that the generalized inner product function is
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an extractor. Still we use BGK since we will need it later on in the construction.

Thus the result of the first step in the algorithm is a distribution that is 2−ℓ
Ω(1)

-close to

a convex combination of collections of u independent smaller sources, v of which are independent

aligned SR-sources.

Our extractor SRExt then extracts from each distribution in the convex combination, and

thus extracts from the entire convex combination. So our algorithm succeeds in extracting from

the input.

5.4.2 Condensing To Aligned Sources With High Somewhere-Min-Entropy

In this section we give the condenser from Theorem 5.4.3. The first ingredient we’ll need is the

following condenser from [Zuc06], which improves on the condenser from [BKS+05].

Lemma 5.4.9 ([Zuc06]). Assuming we can find primes with length in [r, 2r] in time poly(r),

there exists a constant α > 0 such that for any t, ℓ > 0 there exists a polynomial-time computable

condenser Zuck : {0, 1}ℓ → ({0, 1}(2/3)tℓ)2
t

such that if X has rate δ, Zuck(X) is t2−Ω(αδℓ) close to

somewhere-min-entropy rate min((1 + α)tδ, 0.9).

We’ll also need to use the condenser from Raz’s work [Raz05] with the improved analysis of

Dvir and Raz (Lemma 3.2 in [DR05]), which shows that most of the output rows are statistically

close to having high min-entropy.

Lemma 5.4.10 ([DR05]). For any constant c > 0, there is a polynomial-time computable func-

tion Raz : ({0, 1}ℓ)r → ({0, 1}Θ(ℓ))2
Θ(r)

such that the following holds. If the input source X has

somewhere-min-entropy rate δ, the output Raz(X) is 2−Ω(δℓ) close to a convex combination of dis-

tributions, each of which has the property that at least a (1−c) fraction of its rows have min-entropy

rate at least 0.9δ.

Now we can apply the functions from the previous two lemmas in succession to transform

any source with min-entropy rate δ into a convex combination of sources with high somewhere-

min-entropy sources where almost all of the rows in the sources have high min-entropy.

Lemma 5.4.11. Assuming we can find primes with length in [r, 2r] in time poly(r), there exists

a constant α > 0 such that for any constants t > 0 and c > 0 there exists a polynomial-time
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computable function Cond : {0, 1}ℓ → ({0, 1}Θ((2/3)t ℓ))2
Θ(2t)

such that the following holds. If the

input source X has min-entropy rate δ, the output Cond(X) is 2−Ω(δℓ) close to a convex combination

of distributions, each of which has the property that at least a (1− c) fraction of its rows have min-

entropy rate at least min(0.9δ(1 + α)t, 0.9).

Proof. Let Cond(x) = Raz(Zuck(x)).

Corollary 5.4.12. Assuming we can find primes with length in [r, 2r] in time poly(r), there is a

constant C such that for any constant c > 0 there exists a polynomial-time computable function

Cond : {0, 1}ℓ → ({0, 1}Θ(ℓ))C such that the following holds. If the input source X has min-entropy

rate δ, then the output Cond(X) is 2−Ω(δℓ) close to a convex combination of distributions where

each source in the convex combination has the property that at least a (1 − c) fraction of its rows

have min-entropy rate at least min(2δ, 0.9).

Proof. Pick t large enough (but still constant) in Lemma 5.4.11 so that 0.9(1 + α)t ≥ 2. Then

C = 2Θ(2t).

Now we can use this basic condenser to help prove Theorem 5.4.3. To do this, we apply

this condenser to our input smaller sources and then recursively apply it to the outputs. We might

think we could just apply the union bound to show that most of the output rows are aligned,

but that is not true. However, we only need that one single row in the output is aligned, which

we can accomplish by ensuring that at each step we have an aligned row, and then concentrating

recursively on that aligned row.

Proof of Theorem 5.4.3. First, apply the function Cond from Corollary 5.4.12 to each Xi, choosing

c < 1
B . Then the output 〈Cond(X1),Cond(X2), . . . ,Cond(XB)〉 is 2−Ω(δℓ) close to a convex combi-

nation of distributions Y =
∑

j βjY
(j), where Y (j) = 〈Y (j)

1 , Y
(j)
2 , . . . , Y

(j)
B 〉 and

∑

j βj = 1. Each

smaller source Y
(j)
i has the property that at least a (1 − c) fraction of its rows have min-entropy

rate at least 2δ. Now we restrict our attention to a single source in the convex combination Y (j).

In this source at most cB < 1 fraction of the rows have a smaller source Y
(j)
i with min-entropy

rate less than 2δ in that row. Thus there is at least one row where the min-entropy rate for all the

smaller sources is at least 2δ, i.e., the output is aligned with somewhere-min-entropy rate 2δ. Now

we recursively apply Cond to each row in each output source. When we apply it to the aligned row,
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we’ll get another aligned row with min-entropy rate 4δ. If we recursively do this t times, we end

up close to a convex combination of a set of aligned sources with somewhere-min-entropy rate 2tδ.

If we let t = log(0.9/δ) = log(0.9ℓα), then these sources have somewhere-min-entropy rate 0.9. If

we choose α small enough (depending on the constants in Corollary 5.4.12), then we can achieve

µ > 2γ, as desired.

5.5 Extractors For Total-Entropy Independent Sources With Many

Short Smaller Sources

Now we show how for sources consisting of many smaller sources of length ℓ we can do better than

the constructions in the previous sections by generalizing earlier constructions for symbol-fixing

sources. The base extractor simply takes the sum of the smaller sources modulo p for some prime

p > 2ℓ. Then we divide the source into blocks, apply the base extractor to each block, and then

use the result to take a random walk on an expander as in [KZ03].

We will need the following definition from [KZ03].

Definition 5.5.1. An independent source on ({0, 1}ℓ)r is a (k, ǫ)-approximate symbol-fixing source

if k of the r smaller sources have distributions within an ℓ2 distance ǫ of uniform.

These sources will be used as intermediate sources. We will transform the sources we wish to

extract from into approximate symbol-fixing sources and then use the results of [KZ03] to extract

from these sources.

5.5.1 Random Walks

Let λ(P ) be the second largest eigenvalue in absolute value of the transition matrix P for a random

walk on a graph G. It is well known that the ℓ2 distance from the uniform distribution decreases

by a factor of λ(P ) for each uniform step of the random walk (see e.g. [Lov96]).

We will also need the following Lemma from [KZ03], which shows that we can use a random

walk to extract from approximate symbol-fixing sources.

Lemma 5.5.2 ([KZ03]). Let G be an undirected non-bipartite d-regular graph on M vertices with

uniform transition matrix P . Suppose we take a walk on G for r steps, with the steps taken
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according to the symbols from a (k, ǫ)-approximate oblivious symbol-fixing sources on [d]r. For any

initial probability distribution , the variation distance from uniform at the end of the walk is at

most 1
2(λ(P ) + ǫ

√
d)k
√
M .

Note that if λ(P ) + ǫ
√
d is bounded above by a constant, as would happen if G were an

expander and ǫ was small enough, then this immediately gives us a good extractor for approximate

symbol-fixing sources. This is shown in the following proposition, which follows immediately from

Lemma 5.5.2.

Proposition 5.5.3. Let G be an undirected non-bipartite d-regular graph on 2m vertices with

uniform transition matrix P . Then we can construct a polynomial-time computable ǫ′-extractor for

the set of (k, ǫ)-approximate oblivious symbol-fixing sources on [d]r, where ǫ′ = 1
2(λ(P )+ǫ

√
d)k2m/2.

This extractor simply uses the input from the source to take a random walk on G and outputs the

label of the final vertex.

5.5.2 Reducing to Flat Total-Entropy Independent Sources

It will be simpler to analyze our extractor for flat total-entropy independent sources. We show that

any extractor that works for flat total-entropy independent sources also works for general total-

entropy independent sources because any total-entropy independent source is close to a convex

combination of flat independent sources with high total-entropy.

Lemma 5.5.4. Any ǫ-extractor for the set of flat independent sources on ({0, 1}ℓ)r with total min-

entropy k/(2 log 3) is also an (ǫ + e−k/9)-extractor for the set of independent sources on ({0, 1}ℓ)r

with min-entropy k.

This lemma follows directly from the following lemma.

Lemma 5.5.5. Any independent source X = X1, . . . ,Xr on ({0, 1}ℓ)r with total min-entropy k is

e−k/9-close to a convex combination of flat independent sources on ({0, 1}ℓ)r with total min-entropy

k/(2 log 3).

Proof. Let H∞(Xi) = ki for all i. If ki ≥ 1, we can write Xi as a convex combination of flat sources

with support size ⌊2ki⌋. Each of these flat sources has min-entropy log ⌊2ki⌋ > ki
log 3 , since we lose

the largest fraction of min-entropy from taking the floor when 2ki is nearly 3.
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If ki < 1, then we must have constant sources in our convex combination, so if we did as

above, we’d lose up to a bit of entropy for each such i. Instead, suppose k′ of the total entropy is

contained in Xi with less than a bit of entropy each. Call this set S ⊆ [r]. Now suppose k′ ≤ k/2.

In this case, we can write XS as a convex combination of constant sources and we are still left with

(k − k′)/ log 3 ≥ k/(2 log 3) bits of entropy in each of our sources, as desired.

From now on we will assume k′ ≥ k/2. We will show we can write XS as a convex combina-

tion of sources that with probability 1− ǫ have min-entropy k′/3. For each i ∈ S, we can write Xi

as a convex combination of flat sources with one or zero bits of entropy. The one bit sources are

obtained by choosing uniformly between the most probable value and each of the other values for

Xi. Each of these sources occurs with probability equal to twice the probability of the less probable

value. Since the most probable value occurs with probability 2−ki , we get one bit of entropy with

probability 2(1− 2−ki). Otherwise, Xi is fixed to the most probable value.

Now we can use a Chernoff bound to bound the entropy in the sources in the overall convex

combination of sources for XS . Let Yi be an indicator random variable for the ith source having

one bit of entropy. Then Y =
∑

Yi is a random variable representing the total entropy. Note that

E[Y ] =
∑

E[Yi] =
∑

2(1− 2−ki) ≥∑ ki = k′, where the inequality is true because ki < 1. Now we

are ready to apply the Chernoff bound (Theorem A.1.13 in Alon and Spencer [AS92]).

Pr[Y < (1 − λ)k′] ≤ Pr[Y < (1− λ)E[Y ]] < e−λ
2(

P

(1−2−ki )) ≤ e−λ2 k′

2 ≤ e−λ2 k
4

Setting λ = 2/3 we get the desired error bound ǫ = e−
k
9 . Then with probability 1 − ǫ we

have at least (k − k′)/ log 3 + k′/3 ≥ k/(2 log 3) bits of entropy, as desired.

5.5.3 Extracting From Flat Total-Entropy Independent Sources

Now we show how to extract from flat total-entropy independent sources for small ℓ. Our initial

extractor simply takes the sum modulo p of the individual sources, for some prime p ≥ 2ℓ

Theorem 5.5.6. Let ℓ ≥ 1 and p ≥ 2ℓ a prime. Then Sump : ({0, 1}ℓ)r → [p], where Sump(x) =
∑

i xi mod p, is an ǫ-extractor for the set of flat independent sources on ({0, 1}ℓ)r with total min-

entropy k, where ǫ = 1
22−2k/p2√p.
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Combining Theorem 5.5.6 with Lemma 5.5.4 we get an extractor for total-entropy indepen-

dent sources.

Corollary 5.5.7. Suppose p ≥ 2ℓ is a prime. Then Sump is an ǫ-extractor for the set of indepen-

dent sources on ({0, 1}ℓ)r with total min-entropy k ≥ Ω(p2 log p), where ǫ = 2−Ω(k/p2).

We will prove Theorem 5.5.6 via the following lemma, which will be useful later.

Lemma 5.5.8. Let ℓ ≥ 1 and p ≥ 2ℓ a prime. Then for all sets of flat independent sources

X = X1, . . . ,Xr on ({0, 1}ℓ)r with min-entropy k, Sump(x) has ℓ2 distance from uniform at most

2−2k/p2 .

It is well known that if X and Y are both distributed over a universe of size p, then

|X − Y | ≤ 1
2

√
p||X − Y ||2. Theorem 5.5.6 then follows by combining this lemma with this relation

between ℓ2 and variation distance.

To analyze the distance from uniform of the sum modulo p, we use the following lemma that

relates this distance to the additive characters of Zp. For Zp, where p is a prime, the ith additive

character is defined as χj(a)
def
= e

2πija
p .

Lemma 5.5.9. For any function f : {0, 1}r → Zp and random variable X over {0, 1}r,

||f(X) − Up||22 =
1

p

p−1
∑

j=1

|E[χj(f(X))]|2 < max
j 6=0
|E[χj(f(X))]|2,

where Up denotes the uniform distribution over Zp.

Proof. Let Y = f(X)−Up. The jth Fourier coefficient of Y is given by Ŷj =
∑p−1

y=0 Y (y)χj(y). By

Parseval’s Identity and using the fact that
∑p−1

y=0 χj(y) = 0 when j 6= 0 we get

||Y ||22 =
1

p

p−1
∑

j=0

|Ŷj |2 =
1

p

p−1
∑

j=0

∣

∣

∣

∣

∣

∣

p−1
∑

y=0

Y (y)χj(y)

∣

∣

∣

∣

∣

∣

2

=
1

p

p−1
∑

j=0

∣

∣

∣

∣

∣

∣

p−1
∑

y=0

Pr[f(X) = y]χj(y)−
1

p

p−1
∑

y=0

χj(y)

∣

∣

∣

∣

∣

∣

2

=
1

p

p−1
∑

j=1

|E[χj(f(X))]|2

< max
j 6=0
|E[χj(f(X))]|2.
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Using the previous lemma we can now prove Theorem 5.5.6.

Proof. Let f(X) =
∑r

i=1Xi and fix j 6= 0. Then |E[χj(f(X))]|2 =
∏r
i=1 |E[χj(Xi)]|2. Suppose Xi

has min-entropy ki, so k =
∑

i ki. Then since each Xi is a flat source, Xi is uniformly distributed

over Ki = 2ki values. Our goal is to upper bound |E[χj(Xi)]|2 over all possible choices of Xi. Doing

so, we get

|E[χj(Xi)]|2 ≤ max
Xi:Zp→{0,1/Ki},

P

x Xi(x)=1
|E[χj(Xi)]|2

= max
Xi:Zp→{0,1/Ki},

P

x Xi(x)=1

∣

∣

∣

∣

∣

∣

∑

x∈Zp

Xi(x)χj(x)

∣

∣

∣

∣

∣

∣

2

= max
y,|y|=1



 max
Xi:Zp→{0,1/Ki},

P

x Xi(x)=1









∑

x∈Zp

Xi(x)χj(x)



 ⊙ y





2



= max
Xi:Zp→{0,1/Ki},

P

x Xi(x)=1



 max
y,|y|=1





∑

x∈Zp

Xi(x)(χj(x)⊙ y)





2

 ,

where ⊙ denotes the complex dot product, where the complex numbers are viewed as two dimen-

sional vectors, and the third line follows from the observation that the dot product is maximized

when y is in the same direction as (
∑

x∈Zp
Xi(x)χj(x)), in which case we get exactly the square

of the length. Now we further note that χj(x) ⊙ y is greatest for values of x for which χj(x) is

closest to y. Thus we achieve the maximum when Xi is distributed over the Ki values closest to

y. Without loss of generality we can assume these values correspond to x = 0 to Ki − 1 (since we
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only care about the magnitude). Thus

|E[χj(Xi)]|2 ≤

∣

∣

∣

∣

∣

∣

1

Ki

Ki−1
∑

j=0

e
2πij

p

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

1

Ki

1− e
2πijKi

p

1− e
2πi
p

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

1

Ki

e
πiKi

p (e
−πiKi

p + e
πiKi

p )

e
πi
p (e

−πi
p + e

πi
p )

∣

∣

∣

∣

∣

∣

2

=

(

1

Ki

sin(πKi
p )

sin(πp )

)2

=





1

Ki

πKi
p

∏∞
m=1(1−

K2
i

p2m2 )

π
p

∏∞
m=1(1− 1

p2m2 )





2

=

( ∞
∏

m=1

(

1− K2
i − 1

p2m2 − 1

)

)2

<

(

1− K2
i − 1

p2 − 1

)2

< e−2(K2
i −1)(p2−1),

where in the fifth line we use the infinite product representation of sine.

So

|E[χj(f(X))]|2 =

r
∏

i=1

|E[χj(Xi)]|2

<

r
∏

i=1

e−2(K2
i −1)/(p2−1)

< e2r/p
2
e−2(

P

i K
2
i )/p2 .

By the power mean inequality,
∑r

i=1K
2
i ≥ r · (

∏r
i=1Ki)

2/r = r22k/r. Thus

|E[χj(f(X))]|2 < e
− 2r(22k/r

−1)

p2

Let k = δr. Then this quantity is e−(2k/p2)((22δ−1)/δ). Since (22δ − 1)/δ is an increasing function of

δ and goes to 2 ln 2 as δ goes to 0, we have
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|E[χj(f(X))]|2 < e−(2k/p2)((22δ−1)/δ) < e−4(ln 2)k/p2 = 2
−4 k

p2

Then since by Lemma 5.5.9 ||f(X)− Up||22 < maxj 6=0 |E[χj(f(X))]|2, ||f(X)− Up||2 < 2−2k/p2 .

Now we show that if we divide the source into blocks and take the sum modulo p for each

block, we get a convex combination of approximate symbol-fixing sources, which we can then use

an expander walk to extract from.

Lemma 5.5.10. For any prime p ≥ 2ℓ and any t, any flat independent source X on ({0, 1}ℓ)r with

total min-entropy k can be transformed in polynomial-time into a (k′, 1/p)-approximate oblivious

symbol-fixing source f(X) on [p]r
′

, where r′ = k/(2p2 log p) and k′ = k2/(4np2 log2 p).

Proof. First divide X into k
2t blocks consisting of 2t

k r smaller sources, for t = p2 log p. Then for each

block take the sum modulo p of the smaller sources in the block. Then f(X) is the concatenation

of the resulting symbols for each block.

By Lemma 5.3.1, the number of blocks with min-entropy at least t is greater than k2

4trℓ >

k2

4tr log p . For each of these blocks, by Lemma 5.5.8, we mix within 2−t/p
2

= 1
p of uniform.

Now, as in [KZ03], we use f(X) as defined above to take a random walk on an expander

graph, which will mix to uniform by Lemma 5.5.2 and thus give us our extractor.

Theorem 5.5.11. There exists an ǫ-extractor for the set of flat independent sources on ({0, 1}ℓ)r

with total min-entropy k that outputs m = Ω(k2/(r22ℓℓ)) bits and has error ǫ = 2−m. This extractor

is computable in time poly(r, 2ℓ).

Proof. Let p be the least prime greater than 2ℓ. Since by Bertrand’s Postulate p < 2 · 2ℓ, this can

easily be done in polynomial time in 2ℓ by exhaustive search. Given a source X, first apply f(X)

from Lemma 5.5.10 to get a (k′, 1/p)-approximate oblivious symbol-fixing source on [p]r
′

, where

r′ = k/(2p2 log p) and k′ = k2/(4rp2 log2 p). Then apply the extractor from Proposition 5.5.3 to

f(X), taking the graph G to be a p regular expander graph on 2m vertices (for m to be given later).

Specifically, assume G has λ(G) ≤ 1
pα − 1√

p for some constant α < 1/2. This can be achieved, for

example, by taking G to be an O(log p) power of a constant degree expander with self loops added
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to make it degree p. Then by Proposition 5.5.3 f(X) is within

ǫ ≤ 1

2

(

λ(G) +
1√
p

)(k2/4rp2 log2 p)

2m/2

< p−(αk2/4rp2 log2 p)2m/2

= 2−((αk2/4rp2 log p)−(m/2))

of uniform. Then let m = αk2/6rp2 log p so then ǫ < 2−m.

Combining this theorem with our reduction from general to flat sources, we get that this

same extractor works for general total-entropy independent sources.

Theorem 5.5.12. There exists an ǫ-extractor for the set of independent sources on ({0, 1}ℓ)r with

total min-entropy k that outputs m = Ω(k2/r22ℓℓ) bits and has error ǫ = 2−m. This extractor is

computable in time poly(r, 2ℓ).

Proof. Combine Theorem 5.5.11 and Lemma 5.5.4.

5.6 Extracting More Bits From Total-Entropy Independent Sources

5.6.1 Seed Obtainers

Now that we have extractors for total-entropy independent sources, we can extract even more bits

using the techniques that Gabizon et al. [GRS04] used to extract more bits out of oblivious bit-

fixing sources. Assuming the entropy is high enough to use the extractors from Theorem 5.5.12,

Theorem 5.3.6, or Corollary 5.4.2, we can extract almost all of the entropy. Their construction

works by using an extractor for bit-fixing sources and a sampler to construct a seed obtainer. This

seed obtainer outputs a source and a seed that is close to a convex combination of independent

bit-fixing sources and uniform seeds. We generalize their definition of seed obtainer to total-entropy

independent sources.

Definition 5.6.1. A function F : ({0, 1}ℓ)r → ({0, 1}ℓ)r × {0, 1}d is a (k′, ρ)-seed obtainer for all

independent sources X on ({0, 1}ℓ)r with total min-entropy k if the distribution R = F (X) can

be expressed as a convex combination of distributions R = ηQ +
∑

a αaRa (where the coefficients
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η and αa are nonnegative and η +
∑

a αa = 1) such that η ≤ ρ and for every a there exists an

independent source Za on ({0, 1}ℓ)r with min-entropy k′ such that Ra is ρ-close to Za ⊗ Ud.

Now, as in the bit-fixing case, we can use a seeded extractor for total-entropy independent

sources together with a seed obtainer to construct a deterministic extractor for total-entropy inde-

pendent sources. The proof for the following Theorem is the same as the proof for the bit-fixing

case in [GRS04]. We include it here for the sake of completeness.

Theorem 5.6.2. Let F : ({0, 1}ℓ)r → ({0, 1}ℓ)r ×{0, 1}t be a (k′, ρ)-seed obtainer for independent

sources X on ({0, 1}ℓ)r with total min-entropy k. Let E1 : ({0, 1}ℓ)r×{0, 1}d → {0, 1}m be a seeded

ǫ-extractor for independent sources on ({0, 1}ℓ)r with total min-entropy k. Then E : ({0, 1}ℓ)r →
{0, 1}m defined by: E(x)

def
= E1(F (x)) is a deterministic (ǫ+ 2ρ)-extractor for independent sources

on ({0, 1}ℓ)r with total min-entropy k.

Proof. By the definition of a seed obtainer we have that E(X) = ηE1(Q) +
∑

a αaE1(Ra) for some

η ≤ ρ. For each a we have that Ra is ρ-close to Za⊗Ud, so E1(Ra) is ρ-close to E1(Za⊗Ud), which

is itself ǫ-close to Um since E1 is an ǫ-extractor. Thus E1(Ra) is (ǫ+ ρ)-close to Um, which implies

that E(X) is (ǫ+ ρ)-close to ηE1(Q) + (1 − η)Um. Therefore by Lemma 2.1.8 we have that E(X)

is (η + ǫ+ ρ)-close to uniform. The lemma follows because η ≤ ρ.

To construct seed obtainers, we need to extend the definition of averaging samplers from

[GRS04] to general functions as follows. This definition is similar in spirit to that of Vadhan in

[Vad04], except the sample size is not fixed and we both upper and lower bound the total value of

the sample.

Definition 5.6.3. A function Samp : {0, 1}t → P ([r]) is a (δ, θ1, θ2, γ) averaging sampler if for

every function f : [r]→ [0, 1] with average value 1
r

∑

i f(i) = δ, it holds that

Pr
w←Ut



θ1 ≤
∑

i∈Samp(w)

f(i) ≤ θ2



 ≥ 1− γ.

When applying these samplers to total-entropy independent sources, we get the following

lemma.
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Lemma 5.6.4. Let Samp : {0, 1}t → P ([r]) be a (δ, δ1r, δ2r, γ) averaging sampler. Then for any

independent source X on ({0, 1}ℓ)r with total min-entropy k = δrℓ, we have

Pr
w←Ut

[δ1rℓ ≤ H∞(XSamp(w)) ≤ δ2rℓ] ≥ 1− γ.

Proof. Let f(i) = H∞(Xi)/ℓ.

Given these definitions, we can show that essentially the same construction from Gabizon et

al. [GRS04] for bit-fixing seed obtainers works for total-entropy independent source seed obtainers.

Theorem 5.6.5. Let Samp : {0, 1}t → P ([r]) be a (δ, δ1r, δ2r, γ) averaging sampler and E :

({0, 1}ℓ)r → {0, 1}m be an ǫ-extractor for independent sources on ({0, 1}ℓ)r with total min-entropy

k = δ1rℓ. Then F : ({0, 1}ℓ)r → ({0, 1}ℓ)r × {0, 1}m−t defined as follows is a (k′, ρ)-seed obtainer

for independent sources on ({0, 1}ℓ)r with total min-entropy k = δrℓ with k′ = (δ − δ2)rℓ and

ρ = max(ǫ+ γ, ǫ · 2t+1).

The Construction of F:

• Given x ∈ ({0, 1}ℓ)r compute z = E(x). Let E1(x) denote the first t bits of E(x) and E2(x)

denote the remaining m− t bits.

• Let T = Samp(E1(x)).

• Let x′ = x[r]\T . If |x′| < n we pad it with zeroes to get an r source long string.

• Let y = E2(x). Output x′, y.

The proof of this theorem is almost exactly the same as the proof in [GRS04], except

substituting independent sources and the associated sampler and extractor for bit-fixing sources,

so we omit it here. This theorem also follows from the main theorem of [Sha06].

5.6.2 Constructing Samplers

In order to use the seed obtainer construction to extract more bits, we first need a good averaging

sampler. We will show that the same sampler construction given in Gabizon et al. [GRS04] general-

izes to our definition. Our sampler works by generating d-wise independent variables Z1, . . . , Zr ∈ [b]

and letting Samp(Ut) = {i|Zi = 1}.
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Lemma 5.6.6. For all δ and integers r, b, t such that b/r ≤ δ ≤ 1 and 6 log r ≤ t ≤ δr log r
20b there is

a polynomial-time computable (δ, δr2b ,
3δr
b , 2

−Ω(t/ log r)) averaging sampler Samp : {0, 1}t → P ([r])

The following tail inequality for d-wise independent variables is due to Bellare and Rompel

[BR94].

Theorem 5.6.7. [BR94] Let d ≥ 6 be an even integer. Suppose that X1, . . . ,Xr are d-wise in-

dependent random variables taking values in [0, 1]. Let Y =
∑

1≤i≤r Yi, µ = E[Y ], and A > 0.

Then

Pr[|Y − µ| ≥ A] ≤ 8

(

dµ+ d2

A2

)d/2

Proof. (of Lemma 5.6.6) Let d be the largest even integer such that d log r ≤ t and let q = ⌊log b⌋ ≤
log r. Use d log r random bits to generate r d-wise independent random variables Z1, . . . , Zr ∈
{0, 1}q using the construction from [CW79]. Fix a ∈ {0, 1}q . Let the random variable denoting the

output of the sampler be Samp(Ut) = {i|Zi = a}. For 1 ≤ i ≤ r, define a random variable Yi that

is set to f(i) if i ∈ Samp(Ut) and 0 otherwise. Let Y =
∑

i Yi (note that Y is exactly the sum we

wish to bound). Note that µ = E[Y ] = δr/2q and that the random variables Y1, . . . , Yr are d-wise

independent. Applying Theorem 5.6.7 with A = δr/2b,

Pr[|Y − µ| ≥ A] ≤ 8

(

d δr2q + d2

A2

)d/2

.

Note that

{|Y − µ| < A} ⊆ {δr
2q
−A < Y <

δr

2q
+A} ⊆ {δr

b
−A < Y <

2δr

b
+A}

⊆ {δr
2b
≤ Y ≤ 3δr

b
} = {δr

2b
≤

∑

i∈Samp(w)

f(i) ≤ 3δn

b
}.

Note that d ≤ t
log r ≤ δr

20b by assumption. We conclude that

Pr
w←Ut





δr

2b
≤

∑

i∈Samp(w)

f(i) ≤ 3δr

b



 ≥ 1− 8

(

d δr2q + d2

(δr/2b)2

)d/2

≥ 1− 8

(

4b2

(δr)2

(

2dδr

b
+
dδr

20b

))d/2

≥ 1− 8

(

10db

δr

)d/2

≥ 1− 2−(d/2+3) ≥ 1− 2−Ω(t/ log r)
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5.6.3 Extractors From Seed Obtainers

As in [GRS04] it will be convenient to combine Theorem 5.6.2 and Theorem 5.6.5 to get the fol-

lowing theorem.

Theorem 5.6.8. Assume we have the following:

• A (δ, δ1r, δ2r, γ) averaging sampler Samp : {0, 1}t → P ([r]).

• A deterministic ǫ∗-extractor for total-rate δ1 independent sources E∗ : ({0, 1}ℓ)r → {0, 1}m′

.

• A seeded ǫ1-extractor for total-rate δ − δ2 independent sources E1 : ({0, 1}ℓ)r × {0, 1}s →
{0, 1}m, where m′ ≥ s+ t.

Then we get a deterministic ǫ-extractor for total-rate δ independent sources E : ({0, 1}ℓ)r →
{0, 1}m where ǫ = ǫ1 + 3 ·max(ǫ∗ + γ, ǫ∗ · 2t+1).

We will use the following seeded extractor from Raz, Reingold, and Vadhan [RRV02].

Theorem 5.6.9. [RRV02] For any r,k, and ǫ > 0, there exists a ǫ-extractor Ext : {0, 1}r ×
{0, 1}s → {0, 1}m for all sources with min-entropy k, where m = k and s = Θ(log2 r·log(1/ǫ)·logm).

Combining the extractor from [RRV02] with the sampler from the previous section, we

get the following general corollary, which shows how to transform a deterministic extractor that

extracts just some of the min-entropy into one that extracts almost all of the min-entropy.

Corollary 5.6.10. Let δ, δ1, ǫ1 and integers r, t be such that δ1 ≥ 1/2r and 6 log r ≤ t ≤ δ1r log r
10 .

Also let m = (δ − 6δ1)rℓ and s = Θ(log2(rℓ) · log(1/ǫ1) · logm). Then given any deterministic

ǫ∗-extractor for total-rate δ1 independent sources E∗ : ({0, 1}ℓ)r → {0, 1}m′

with m′ ≥ s + t, we

can construct an ǫ-extractor for total-rate δ independent sources E : ({0, 1}ℓ)r → {0, 1}m where

ǫ = ǫ1 + 3 ·max(ǫ∗ + 2−Ω(t/ log r), ǫ∗ · 2t+1).

Proof. Combine Lemma 5.6.6 with b = δ/2δ1, Theorem 5.6.9, and Theorem 5.6.8.

Now we can use Corollary 5.6.10 together with our previous deterministic extractor construc-

tion from Theorem 5.5.12 to show how we can extract nearly all of the entropy from total-entropy

independent sources with sufficiently high min-entropy, proving Theorem 5.0.15.
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Proof of Theorem 5.0.15. Use the construction from Corollary 5.6.10 with the extractor from Theorem 5.5.12

as E∗ and let ǫ1 = 2−Ω((δ21rℓ)(2
2ℓ log3 r)) and t = Ω(

δ21
22ℓ rℓ). Then it’s not hard to see that (choosing

appropriate constants) these values satisfy 6 log r ≤ t ≤ δ1r log r
10 and m′ ≥ s+ t for sufficiently large

r.

The extractor for small-space sources from Theorem 5.0.12 is then obtained by combining

Theorem 5.0.15 with Lemma 5.2.1.

We could also use a seed obtainer together with the extractor for constant rate sources from

Theorem 5.3.6. This lets us extract any constant fraction of the entropy and proves Theorem 5.0.14.

Proof of Theorem 5.0.14. Use the construction from Corollary 5.6.10 with the extractor from

Theorem 5.3.6 as E∗ and let ǫ1 = 2−Ω((rℓ)/(log3(rℓ))) and t = Θ(r log(min(2ℓ, r))). Then it’s not hard

to see that (choosing appropriate constants) these values satisfy 6 log r ≤ t ≤ δ1r log r
10 and m′ ≥ s+ t

for sufficiently large r.

The extractor for small-space sources from Theorem 5.0.11 is then obtained by combining

Theorem 5.0.15 with Lemma 5.2.1.

We can also apply this construction to the polynomial entropy rate extractor from Corollary 5.4.2,

which proves Theorem 5.0.13.

Proof of Theorem 5.0.13. Use the construction from Corollary 5.6.10 with the extractor from

Corollary 5.4.2 as E∗ and let ǫ1 = 2−(δ21rℓ)
Ω(1)/(log3(rℓ)) and t = (δ21rℓ)

Ω(1). Then it’s not hard to see

that (choosing appropriate constants) these values satisfy 6 log r ≤ t ≤ δ1r log r
10 and m′ ≥ s + t for

sufficiently large r.

The extractor for small-space sources from Theorem 5.0.9 is then obtained by combining

Theorem 5.0.13 with Lemma 5.2.1.

5.6.4 Extractors For Smaller Entropy

Gabizon et. al [GRS04] also showed how to use seed obtainers to extract more bits even when the

initial extractor only extracts Θ(log k) bits, which they’re able to get from the cycle walk extractor

from [KZ03]. We can generalize their construction to work for total-entropy independent sources,
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which together with our generalization of the cycle walk extractor allows us to extract more bits

from smaller entropy rates.

In order to get a seed obtainer that can use only Θ(log k) bits, we need both a sampler

and a seeded extractor for total-entropy independent sources. To do so, as in [GRS04], we use

d-wise ǫ-dependent random variables to both sample and partition. The proofs of the following

two lemmas easily generalize the construction from [GRS04] in a similar way to our earlier sampler

construction.

Lemma 5.6.11. For any constant 0 < α < 1, there exist constants c > 0 and 0 < b < 1/2 (both

depending on α) such that for any r ≥ 16 and k = δrℓ ≥ logc r, the following holds. There is

a polynomial-time computable (δ, δr/2kb, 3δr/kb, O(k−b)) sampler Samp : {0, 1}t → P ([r]) where

t = α · log k.

Lemma 5.6.12. Fix any constant 0 < α < 1. There exist constants c > 0 and 0 < b < 1/2 (both

depending on α) such that for any r ≥ 16 and k = δrℓ ≥ logc r, we can use α · log k random bits to

explicitly partition [r] into m = Θ(kb) sets T1, . . . , Tm such that for every function f : [r] → [0, 1]

with average value 1
r

∑

i f(i) = δ,

Pr



∀i, δr/2kb ≤
∑

j∈Ti

f(j) ≤ 3δr/kb



 ≥ 1−O(k−b).

As in Lemma 5.6.6, this lemma implies that if we partition a total-rate δ independent source,

with high probability each Ti has some min-entropy.

Corollary 5.6.13. For any constant 0 < α < 1, there exist constants c > 0 and 0 < b < 1/2 (both

depending on α) such that for any r ≥ 16 and k ≥ logc r, the following holds. We can use α · log k
random bits to explicitly partition [r] into m = Θ(kb) sets T1, . . . , Tm such that for any independent

sources X on ({0, 1}ℓ)r with total min-entropy k,

Pr
[

∀i, k1−b/2 ≤ H∞(XTi) ≤ 3k1−b
]

≥ 1−O(k−b).

Now we will use this partitioning to construct a seeded extractor for total-entropy inde-

pendent sources that uses a small seed. As in [GRS04] once we partition the source, we apply an

extractor to each part. The extractor we will use is our sum mod p extractor.
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Theorem 5.6.14. For any constant 0 < α < 1, there exist constants c > 0 and 0 < b < 1/2 (both

depending on α) such that for any r ≥ 16, k ≥ logc r, 0 < δ ≤ 1 and ℓ ≤ log(k(1−b)/2/
√

log k2b), the

following holds. There is a polynomial-time computable seeded ǫ-extractor E : ({0, 1}ℓ)r×{0, 1}s →
{0, 1}m for independent sources on ({0, 1}ℓ)r with total min-entropy k = δrℓ, with s = α · log k,
m = Θ(kbℓ) and ǫ = O(k−b).

Proof. As stated above, E works by first partitioning the input x into m′ = Θ(kb) parts T1, . . . , Tm′

using Corollary 5.6.13. Next we find the next largest prime p ≥ 2ℓ, which by Bertrand’s postulate

is at most 2 · 2ℓ, so we can find it efficiently by brute force search. Then for each Ti we compute

zi =
∑

j∈Ti
xj mod p and output z = zi, . . . , zm].

Let Z be the distribution of the output string z. Let A be the “good” event that all sets Ti

have entropy at least k1−b/2. Then we decompose Z as

Z = Pr[Ac] · (Z|Ac) + Pr[A] · (Z|A).

Now by Corollary 5.6.13, Pr[A] ≥ 1−O(k−b). By Corollary 5.5.7, (Z|A) is m′ ·2−Ω(k1−b/22ℓ) close to

uniform. Since ℓ ≤ log(k(1−b)/2/
√

log k2b), (Z|A) is O(k−b) close to uniform. Thus by Lemma 2.1.8,

Z is O(k−b) close to uniform.

Now we are ready to combine these ingredients using Theorem 5.6.8 to get an improved

extractor.

Theorem 5.6.15. There exist constants c > 0 and 0 < b < 1/2 such that for k ≥ logc r and 2ℓ ≤
O(k(1−b)/2/

√

log k2b), the following holds. There exists a polynomial-time computable ǫ-extractor

E : ({0, 1}ℓ)r → {0, 1}m for independent sources on ({0, 1}ℓ)r with min-entropy k, where m =

Θ(kbℓ) and ǫ = O(k−b).

Proof. Use Theorem 5.6.8 together with the sampler from Lemma 5.6.11, the deterministic extrac-

tor from Corollary 5.5.7, and the seeded extractor from Theorem 5.6.14

This still doesn’t get all of the entropy out of the source, but now we have a long enough

output that we can use the seeded extractor from Theorem 5.6.9 to get the rest of the entropy,

which proves Theorem 5.0.16.
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Proof of Theorem 5.0.16. Use Theorem 5.6.8 together with the sampler from Lemma 5.6.11, the

deterministic extractor from Theorem 5.6.15, and the seeded extractor from Theorem 5.6.9.

5.7 Extractors For Small Space Sources via The Probabilistic Method

In this section, we describe nonconstructive results for both small-space and total-entropy indepen-

dent sources. We will use Theorem 2.5.1.

5.7.1 Small-Space Sources

Since the probabilities on the edges in small-space sources can be any real number in [0, 1], there

are an infinite number of such sources, and so we cannot directly apply Theorem 2.5.1. We instead

introduce a more restricted model to which we can apply Theorem 2.5.1, and show that general

small-space sources are close to convex combinations of this more restricted model. The more

restricted model we consider restricts all probabilities to be a multiple of some α.

Definition 5.7.1. An α-approximate space s source is a space s source where the probabilities on

all edges are multiples of α.

We’ll show that any rate δ small-space source is a convex combination of α-approximate

small-space sources, each of which is close to the original source. Thus any extractor that works on

α-approximate sources that are close to having rate δ will also be an extractor for rate δ small-space

sources.

Lemma 5.7.2. Let X be a space s source on {0, 1}n with min-entropy rate δ. The source X is a

convex combination of α-approximate space s sources, each of which has distance at most αn2s to

X.

Proof. We can write X as a convex combination of sources Xa such that each Xa is obtained from

X by replacing each edge probability p with either ⌊ pα⌋α or (⌊ pα⌋+ 1)α.

We will show that Xa is close to X via a hybrid argument. Let Xi
a be the hybrid obtained

by the first i bits having probabilities from Xa and the rest of the bits having probabilities from

X. So X = X0
a and Xa = Xn

a . Then |X −Xa| = |
∑n

i=1(X
i−1
a −Xi

a)| ≤
∑n

i=1 |Xi−1
a −Xi

a|.
For each term |Xi−1

a −Xi
a| the only difference is in the probabilities on the edges in the ith

layer, which each differ by at most α. We fix i and calculate this distance. Let vi,j denote the jth

119



vertex in the ith layer. Let qi−1,j denote the probability of reaching vi−1,j in Xa and p0
j,j′ (p1

j,j′)

denote the probability on the 0 (1) edge from vi−1,j to vi,j′ in X. Then

|Xi−1
a −Xi

a| ≤
1

2

∑

j,j′

qi−1,j((p
0
j,j′ + α− p1

j,j′) + (p1
j,j′ + α− p1

j,j′)) ≤ α
∑

j′

∑

j

qi−1,j = α
∑

j′

1 = α2s.

So the overall error is bounded by |X −Xa| ≤
∑n

i=1 α2s = αn2s.

Lemma 5.7.3. The number of α-approximate space s sources on {0, 1}n is less than 2(s+1)2sn/α.

Proof. First count the number of possible edge configurations from any given vertex. There are

2s+1 possible edges, since there is a 0 edge and a 1 edge for each of the 2s vertices in the next layer.

Since all probabilities are multiples of α, there are less than 2(s+1)/α ways to allocate probabilities

to these edges. Since there are n layers and 2s vertices at each layer, the total number of possible

sources is 2(s+1)2sn/α.

Now we invoke Theorem 2.5.1 to show that a random function is a good extractor for small-

space sources.

Theorem 5.7.4. For space s sources with min-entropy k, a function f : {0, 1}n → {0, 1}m chosen

uniformly at random is an ǫ-extractor with output length m = k− 2 log(1/ǫ)−O(1) with probability

at least 1− 1/22m
2(s+1)n222s+1/ǫ, as long as k ≥ 2s+ 1 + log(s+ 1) + 2 log n+ 3 log(1/ǫ) +O(1).

This theorem says that extractors exist for sources with space almost as large as k/2 and

with min-entropy as low as Θ(log n).

Proof. First apply Lemma 5.7.2 with α = ǫ/n2s+1 to show that the each small-space source X is a

convex combination of α-approximate sources that are ǫ/2 close to X. Then apply Theorem 2.5.1

to the set of α-approximate sources that are ǫ/2 close to having min-entropy k, using Lemma 5.7.3

as the bound on the number of such sources (since this set is a subset of all α-approximate space s

sources). Since each min-entropy k space s source is a convex combination of these α-approximate

sources, the extractors given by Theorem 2.5.1 also work with these sources.

5.7.2 Total-Entropy Independent Sources

We can also apply Theorem 2.5.1 to total-entropy independent sources. Similarly to the small-space

case, we define an intermediate model to reduce the number of sources.
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Definition 5.7.5. An α-approximate independent source X1, . . . ,Xr on ({0, 1}ℓ)r is an indepen-

dent source such that ∀y ∈ {0, 1}ℓ and ∀i, Pr[Xi = y] is a multiple of α.

We use this model rather than flat independent sources because as we saw in Lemma 5.5.5,

we can lose a constant fraction of the min-entropy when viewing an independent source as a convex

combination of flat independent sources.

This lemma allows us to restrict our attention to α-approximate independent sources. We’ll

show that any total-rate δ independent-symbol source is a convex combination of α-approximate

independent sources, each of which is close to the original source.

Lemma 5.7.6. Let X = X1, . . . ,Xr be an total-rate δ independent source on ({0, 1}ℓ)r. The source

X is a convex combination of α-approximate independent sources, each of which has distance at

most 1
2αr2

ℓ to X.

Proof. We can write X as a convex combination of sources X ′ = X ′1, . . . ,X
′
r such that each X ′i is

obtained from Xi by replacing each output probability Pr[Xi = y] with either ⌊ pα⌋α or (⌊ pα⌋+ 1)α.

Now the distance

|X ′ −X| =
r
∑

i=1

|X ′i −Xi| =
1

2

r
∑

i=1

∑

x∈({0,1}ℓ)
|Pr[X ′i = x]− Pr[Xi = x]|

≤ 1

2

r
∑

i=1

α2ℓ =
1

2
αr2ℓ,

where the first inequality is because each string x ∈ {0, 1}ℓ contributes at most α error for each

Xi.

Lemma 5.7.7. The number of α-approximate independent sources on ({0, 1}ℓ)r is less than 2
1
α
rℓ.

Proof. Let X = X1, . . . ,Xr be an α-approximate total-rate δ independent source on ({0, 1}ℓ)r.
Since there are 2ℓ possible values for each Xi, each of which has a probability that is a multiple

of α, there are less then 2
ℓ
α possible distributions for Xi. Thus there are less than (2

ℓ
α )r = 2

1
α
rℓ

possible distributions for X.

Now we can apply Theorem 2.5.1 to show that a random function is a good extractor for

total-rate δ independent sources.
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Theorem 5.7.8. For total-entropy k independent sources, a function f : ({0, 1}ℓ)r → {0, 1}m

chosen uniformly at random is an ǫ-extractor with output length m = k − 2 log(1/ǫ) − O(1) with

probability 1− 1/22m
2r

2ℓ2ℓ/ǫ as long as k ≥ ℓ+ log ℓ+ 2 log r + 3 log(1/ǫ) +O(1).

Note that the k > ℓ is necessary because otherwise all of the entropy could be contained

within a single source, which we know is impossible to extract from. Thus, the bound in this

theorem is close to the best we could hope for.

Proof. First apply Lemma 5.7.6 with α = ǫ/r2ℓ to show that the each total-entropy k independent

source X is a convex combination of α-approximate total-entropy k independent sources that are

ǫ/2 close to X. Then apply Theorem 2.5.1 to the set of α-approximate total-entropy k independent

sources that are ǫ/2 close to having min-entropy k, using Lemma 5.7.7 as the bound on the number

of such sources (since this set is a subset of all α-approximate independent sources). Since each

total-entropy k independent source is a convex combination of these α-approximate sources, the

extractors given by Theorem 2.5.1 also work with these sources.

5.8 Doing Better For Width Two

We consider the case of space 1 (width 2) sources where the output bit is restricted to be the same

as the label of the next state, which we will call restricted width two sources. For such sources, we

can improve our results by decreasing the alphabet size in the total-entropy independent sources.

This will allow us to extract from smaller entropy rates. We will need the following class of sources.

Definition 5.8.1. A previous-bit source on {0, 1}n with min-entropy k has at least k uniformly

random bits and the rest of the bits are functions of the previous bit.

We will show that restricted width two sources are close to a convex combination of previous-

bit sources, and then show that these previous bit sources can be converted into total-entropy

independent sources with small alphabet size.

5.8.1 Extracting From Previous-Bit Sources

To convert a previous-bit source to a total-entropy independent source, we first divide the source

into blocks as before, but instead of simply viewing each block as a binary number, we apply a
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function to reduce the alphabet size while still maintaining some of the entropy. Specifically, we

will show that if a block has at least one random bit, then the output symbol will have at least one

bit of entropy. The main lemma is as follows.

Lemma 5.8.2. Any length n previous-bit source X with min-entropy k can be converted in poly-

nomial time to a convex combination of flat independent sources on ({0, 1}ℓ)r with min-entropy k′,

where r = k
2 , k′ = k2/4n and ℓ = ⌈log

(

2n
k + 1

)

⌉.

The following lemma shows that any block that contains at least one random bit will give

a random source.

Lemma 5.8.3. We can construct a function f : {0, 1}t → {0, 1}⌈log(t+1)⌉ so that for any previous-

bit source Y on {0, 1}t with exactly one random bit, f attains different values depending on whether

the random bit in Y is set to 0 or 1.

Proof. For 0 ≤ i ≤ t, let zi ∈ Z⌈log(t+1)⌉
2 be the standard representation of i as a vector over Z2.

(More generally, we only require the zi to be distinct vectors.) Then f(y) =
∑t

i=1 yi(zi − zi−1).

Let y0 (y1) be Y with the random bit set to 0 (1). Now we show that f(y0) 6= f(y1). We

see that

f(y0)− f(y1) =

t
∑

i=1

(y0i − y1i)(zi − zi−1).

It’s easy to see that y0i − y1i will be 0 for all fixed bits and 1 whenever the random bit or its

negation appears. For our sources, all appearances of the random bit must appear consecutively.

This means that if the random bit appears from positions j through k, f(y0)− f(y1) = zk − zj−1,

since all of the other terms cancel. Thus since zk 6= zj−1, f(y0)− f(y1) 6= 0.

Now we can prove Lemma 5.8.2.

Proof. Divide X into r = k/2 blocks of size n/r = 2n/k. Then apply the function f from

Lemma 5.8.3 to each block to get Y .

To see that this works, fix all of the random bits that cross between blocks. Also, for

each block fix all but one of the random bits that are contained within the block. Now X is a

convex combination of all of the sources given by every possible such fixing. Let X ′ be a source

corresponding to one particular fixing. We will show that if we apply f to every block of X ′, we will

get a source with enough random blocks. Any block of X ′ with a random source is a previous-bit
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source with one random bit, so we can apply Lemma 5.8.3 to see that the output of f on this block

is uniformly chosen from among two different sources, as desired.

Now we just need to see how many blocks with at least one random bit there are. There

can be at most r random bits that cross between blocks. So removing those bits we are left

with at least k − r = k/2 random bits. These k/2 random bits must be contained in at least

k′ = (k/2)/(n/r) = k2/4n different blocks, which gives us the desired bound.

Now we can combine Theorem 5.0.15 and Lemma 5.8.2 to get an extractor for previous-bit

sources.

Theorem 5.8.4. There exists a polynomial-time computable ǫ-extractor for the set of previous-bit

sources of length n with min-entropy k that outputs m = k2

8n bits and has error

ǫ = exp(−Ω(k5/(n4 log(n/k) log3 k))).

Proof. Given a source X, apply Lemma 5.8.2 to convert X into a convex combination of flat

independent sources on ({0, 1}ℓ)r with total min-entropy k′, where r = k
2 , k′ = k2

4n , and ℓ′ =

⌈log
(

2n
k + 1

)

⌉. Then apply the extractor from Theorem 5.0.15 with ζ = k2/(48n · rℓ).

5.8.2 Restricted Width Two Sources vs Previous-Bit Sources

To show we can extract from restricted width two sources, we will prove that these sources can be

viewed as convex combinations of previous bit sources. With high probability, these previous-bit

sources will have sufficient entropy so that our extractor from the previous section will work.

Lemma 5.8.5. Any length n restricted width two source X with min-entropy k is a convex combi-

nation of length n previous bit sources Zj so that with probability at least 1− 2−k/4− e−9k′2/2n, the

sources Zj have at least k′ = min(k/48 log(n/k), k/96) random bits.

To get our extractor, we just combine this lemma with the extractor from Theorem 5.8.4.

Theorem 5.8.6. There exists a polynomial-time computable ǫ-extractor for the set of length n

restricted width two sources with min-entropy k that outputs m = Ω(k2/n(max(log(n/k), 1))2) bits

and has error ǫ = 2−Ω((k′)5/(n4 log(n/k′) log3 k′, where k′ = min(k/48 log(n/k), k/96).

Proof. By Lemma 5.8.5 our source X is 2−k/4 + e−9k′2/2n close to a convex combination of length

n previous-bit sources with k′ = min(k/48 log(n/k), k/96) random bits. We can then apply the

extractor from Theorem 5.8.4 to get out m = (k′)2

8n = Ω(k2/n(max(log(n/k), 1))2) bits.

124



Notice that here we only need k ≫ n4/5 whereas before we required k ≫ n1−η for some

small constant η.

Now we describe how we express the restricted width two source X as a convex combination

of previous-bit sources Zj . This is done recursively on the layers of the branching program for the

source. We say we are in a given state at each layer; either “open”, “closed at 0”, or “closed at 1”.

Each sequence of states corresponds to a previous-bit source. The way we divide the next layer up

depends on the state we are in. The high level picture is that each random bit corresponds to going

into the open state, which we are in until we get a fixed bit, which takes us to the corresponding

closed state. We stay closed until another random bit occurs. An example is shown in Figure 5.8.2.

0

1

Closed at 0 Open Closed at 1 Closed at 0

Figure 5.2: A previous-bit source viewed as a restricted width two source. This source consists of
the bits 0, 0, r, r, r, 1, 0, where r is a random bit.

More formally, we define the following probabilities, shown in Figure 5.8.2.

pi0 = Pr[Xi = 0|Xi−1 = 0]

pi1 = Pr[Xi = 1|Xi−1 = 0]

qi0 = Pr[Xi = 0|Xi−1 = 1]

qi1 = Pr[Xi = 1|Xi−1 = 1]

First, we describe what happens if we are currently in the open state. The next bit is fixed

to 0 (resp. 1) and the state becomes closed at 0 (1) with probability min(pi0, qi0) (min(pi1, qi1)).

Else we stay in the open state and the next bit is either equal to the previous bit or the negation

of the previous bit depending on which edges have the remaining probability.

If we are closed at 0, the next bit is random and we go into the open state with probability

2min(pi0, pi1). If pi0 < pi1, the next bit is fixed to 1 and we go into the closed at 1 state with

probability 1 − 2pi0. Else the next bit is fixed to 0 and we go into the closed at 0 state with
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0

1

pi0

pi1

qi0

qi1

Figure 5.3: The probabilities for a single bit of a restricted width two source.

probability 1− 2pi1.

If we are closed at 1, the next bit is random and we go into the open state with probability

2min(qi0, qi1). If qi0 < qi1, the next bit is fixed to 1 and we go into the closed at 1 state with

probability 1 − 2qi0. Else the next bit is fixed to 0 and we go into the closed at 0 state with

probability 1− 2qi1.

Now we show that with high probability, the sources in the convex combination have suffi-

cient min-entropy. We do this by looking at the relationships between paths in the original source

X and the min-entropy of the Zj . First, note that each path in the branching program corresponds

to an output value of X, so each path has probability at most 2−k. Note that the min-entropy of

Zj is equal to the number of openings in Zj .

Each path can be divided into edges that are the most probable edge coming out of a node

and those that are the least probable. We will show how the number of least probable edges on

a path in X relates to the min-entropy of a Zj that contains this path. First note that every

least probable edge corresponds to either an opening, a closing, or what we call a “false closing”.

A false closing is defined as transitioning from the open state to the open state yet still taking a

least probable edge. Let C(Zj) denote the number of closings in Zj, A(Zj) denote the number of

openings, and B(Zj) denote the number of false closings.

If we could ignore the false closings, showing that with high probability we take the least

probable edge a large number of times would be enough. Since C(Zj) ≤ A(Zj), this would imply

that with high probability A(Zj) is large, and thus the Zj have large min-entropy with high prob-

ability. To take account of the false closings, we also have to show that there aren’t too many of

them, which we will do by a martingale argument.
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First, we show that with high probability over all paths in X, we take the least probable

edge a large number of times.

Lemma 5.8.7. For any length n restricted width two source with min-entropy k, the total probability

of all paths that have at most t = min(k/8 log(n/k), k/16) least probable edges is less than 2−k/4.

Proof. Since the source has min-entropy k, each path has probability at most 2−k. There are
(n
i

)

paths that have i least probable edges. Thus the total probability of all paths that have at most t

least probable edges is at most

2−k
t
∑

i=0

(

n

i

)

≤ 2−k2nH(t/n) < 2−k+2t log(n/t)

where H(t/n) is the standard Shannon entropy H(p) = −p log p− (1− p) log(1− p).
Suppose k ≤ n/4. Then s = k/8 log(n/k), so

2s log
n

t
=
k

4

(

1 +
log(8 log n

k )

log n
k

)

≤ 3k

4
.

If k > n/4, then t = k
16 , so

2t log
n

t
=
k

8

(

4 + log
n

k

)

≤ 3k

4
.

Thus the probability of taking at most t least probable edges is at most 2−k+2t log(n/t) ≤ 2−k/4.

To show that the number of false closings is small, we first define a submartingale that is

equal to the number of closings minus the number of false closings after the first i bits. Then we

use the following simple variant of Azuma’s inequality for submartingales (see [Wor99] for a proof).

Definition 5.8.8. A submartingale with respect to a random process G0, G1, . . ., with G0 fixed, is

a sequence Y0, Y1, . . . of random variable defined on the random process such that

E[Yi+1|G0, G1, . . . , Gi] ≥ Yi

for all i ≥ 0.

Lemma 5.8.9. Let Y0, Y1, . . . , Yn be a submartingale with respect to G0, G1, . . . , Gn where Y0 = 0
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and |Yi − Yi−1| ≤ 1 for i ≥ 1. Then for all α > 0,

Pr[Yn ≤ −α] ≤ e−α2

2n .

Now we are ready to prove that with high probability the number of false closings can’t be

too large.

Lemma 5.8.10. For all α > 0,

Pr[B(Zj) ≥ C(Zj) + α] ≤ e−α2

2n .

Proof. Let Yi be the number of closings from X1, . . . ,Xi minus the number of false closings from

X1, . . . ,Xi and let Y0 = 0. Let G0, G1, . . . , Gn be the random process for dividing X into previous-

bit sources, so Gi is the state after the first i bits have been divided.

Now we show that Y0, . . . , Yn is a submartingale with respect to G0, G1, . . . , Gn. If we are in a

closed state after i bits, then we have no closings or false closings at i+1, so E[Yi+1|G0, G1, . . . , Gi] =

Yi. If we are in an open state at i, we show that if we have the possibility of a false closing at i+1,

then the probability of closing is greater than 1/2, and in particular is greater than the probability

of a false closing. This would imply that E[Yi+1|G0, G1, . . . , Gi] ≥ Yi, as desired. First, note that

the probability of closing at i+ 1 is

min(pi+1,0, qi+1,0) + min(pi+1,1, qi+1,1) = min(pi+1,0 + qi+1,1, qi+1,0 + pi+1,1).

Suppose without loss of generality that pi+1,0 + qi+1,1 ≥ qi+1,0 + pi+1,1, so we close with probability

qi+1,0 + pi+1,1. In this case, the edges we would take in a false closing are the 00 and 11 edges. So

if we have a false closing, either pi+1,0 ≤ 1/2 or qi+1,1 ≤ 1/2, which implies either pi+1,1 ≥ 1/2 or

qi+1,0 ≥ 1/2, and thus the probability of closing is at least 1/2.

By the definition of Yi, |Yi − Yi−1| ≤ 1, so we can apply Lemma 5.8.9 to get

Pr[Yn ≤ −α] ≤ e−α2

2n ,

which implies the desired result.
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Now we are finally ready to prove Lemma 5.8.5.

Proof of Lemma 5.8.5. First, express the restricted width two source X as a convex combination

of previous-bit sources Zj as described previously, so X =
∑

j αjZj . Now look at a randomly

chosen Zj , chosen with probability αj. The number of random bits in Zj is equal to the number

of openings A(Zj). Since the number of closings is either equal to or one less than the number of

openings, either C(Zj) = A(Zj) or C(Zj) = A(Zj) − 1. So if we can prove with high probability

that C(Zj) is large, then with high probability the number of random bits in Zj is also large. For

every path in Zj, every least probable edge on the path corresponds to either an opening, a closing,

or a false closing. Thus the probability that A(Zj) +B(Zj) +C(Zj) ≥ s is at least the probability

over all paths that the path has at least s least probable edges. Thus we can apply Lemma 5.8.7

and get

Pr[B(Zj) + 2C(Zj) ≥ s− 1] ≥ Pr[A(Zj) +B(Zj) + C(Zj) ≥ s] > 1− 2−k/4

for s = min(k/8 log(n/k), k/16).

By Lemma 5.8.10,

Pr[B(Zj) < C(Zj) +
s

2
] ≥ 1− e− s2

8n .

With high probability both of these events occur, so

Pr[C(Zj) ≥
s

6
] ≥ 1− 2−k/4 − e− s2

8n .
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Chapter 6

Extractors for Low-Weight Affine

Sources

Fix a vector space over a finite field Fn. Then an affine source is a distribution which is uniform

over some affine subspace of Fn. An affine source extractor is an extractor that can extract from

any affine source.

Affine sources are thus a generalization of bit-fixing sources, which correspond to the special

case of affine subspaces that have a basis consisting only of weight one vectors. A weight w affine

source is an affine source in which every basis vector has at most w non-zero coordinates. A

bit-fixing source is thus just a weight 1 affine source.

One reason why bit-fixing sources are interesting is an application in cryptography, where

they can be used to tolerate adversaries that are capable of learning or altering some bits of a

long secret key. This application is referred to as exposure resilient cryptography. There has been a

significant body of work [CFG+85, Riv97, Boy99, CDH+00, Dod00, DSS01] involved in constructing

and using such extractors.

6.1 Extractors for Affine Sources via the Probabilistic Method

The number of affine sources with entropy k is determined by the choice of k/ log(|F|) basis elements

and so is at most
( |F|n
k/ log(|F|)

)

≤ 2nk.
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Theorem 2.5.1 thus implies that a random function that outputs m bits is an extractor for

affine sources with entropy k and error ǫ as long as ǫ22k ≥ 6 log e(2m+nk), which is easily satisfied

as long as k > 2 log n and m < k − log(1/ǫ) −O(1).

6.2 Previous Work and Our Results

Construction Min-Entropy Error Output Ref

Extractor for bit-fixing
sources over GF (2)

any k 1/poly(k) log k
4 [KZ03]

Extractor for bit-fixing
sources over GF (2)

k >
√
n 2−Ω(k2/n) Ω(k2/n) [KZ03]

Extractor for bit-fixing
sources over GF (2)

k > logc(n) for
some constant c

1/poly(k) k − o(k) [GRS04]

Extractor for bit-fixing
sources over GF (2)

k >
√
n 2−Ω(k2/n) k − o(k) [GRS04]

Extractor for affine
sources over GF (2)

(0.5 + α)n, for pos-
itive constant α

2−Ω(n) Ω(n) [KZ]

Extractor for affine
sources over a large
field, |F| > n20

Any k 1/poly(|F|) k − 1 field elements [GR05]

Disperser for affine
sources over GF (2)

δn for any constant
δ

Any constant Θ(1) [BKS+05]

Extractor for affine
sources over GF (2)

δn for any constant
δ

2−Ω(n) Ω(n) [Bou07]

Extractor for low-weight
affine sources over
GF (2)

k > logc(n) for
some constant c

2−k
Ω(1)

k − o(k) This chapter

Table 6.1: Performance of extractors for affine and bit-fixing sources

Table 6.1 highlights some previous work for this type of problem. When the field is small

(as in the case of GF (2)), the best known affine source extractor is due to Bourgain, who gives an

extractor for any linear min-entropy with exponentially small error. When the field is sufficiently

large, Gabizon and Raz [GR05] show how to extract many random bits, even when the entropy is

arbitrarily small. For the case of bit-fixing sources (which as we mentioned above are important

for the application to exposure resilient cryptography), the only earlier extractor with negligible

error for k <
√
n is due to [KZ03] and gives only O(log k) random bits. Our results in particular

imply an improvement to this, giving extractors that output almost all of the bits of entropy with
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negligible error, as long as k is polylogarithmically large in n.

Our main result is:

Theorem 6.2.1. There exist constants c, ǫ s.t. for every k > logc n, there exists a polynomial time

computable function AffExt : {0, 1}n → {0, 1}m that is an extractor for weight w < nǫ affine sources

over GF (2) with min-entropy k and output length m = k − o(k).

6.3 Techniques

Our techniques bear a striking resemblance to the techniques used to get our basic extractor for

independent sources, discussed in Chapter 4.

We make progress by considering a more restricted class of affine sources, called somewhere

random affine sources. This is merely an affine source that is also somewhere random. We discussed

these sources in Chapter 3. SR-sources were first introduced by by Ta-Shma [TS96].

We will think of the number of rows of an affine SR-sources as a measure of the quality of

the source. The fewer the number of rows, the better the quality is. We will iteratively improve the

quality (reduce the number of rows) of the SR-sources that we are working with until extracting

randomness from them becomes easy. We will need two basic tools:

• Our construction will use linear strong seeded extractors as a basic tool. This is simply a

strong seeded extractor which is a linear function for every fixing of the seed. A strong

seeded extractor can be viewed as a small family of deterministic functions (each function in

the family indexed by a unique seed), such that for any fixed adversarially chosen source of

randomness, almost all functions from the family are good extractors for that source. Linear

strong seeded extractors simply give a family of linear functions with the same property. One

example of a good linear strong seeded extractor is Trevisan’s extractor [Tre01].

• Another basic tool we will use is a good linear error correcting code. This a linear subspace

C ⊂ {0, 1}n with the property that every non-zero element of the subspace has a high weight.

We will use such a code to get a linear function H : {0, 1}n → {0, 1}t (this is simply the parity

check matrix of such a code) with the property that P (c) = 0 if and only if c is a codeword.

Here t will be extremely small (say polylog(n)).
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Given these two basic tools, we can describe some basic observations that go into the con-

struction. We will then show how to put these together to get the high level view of our extractor

construction.

Idea 1: There is a simple linear condenser for low-weight affine sources. If P is the linear function

(the parity check matrix) associated with the code we mentioned above, and X is any weight

d/l−1 affine source, P (X) is another affine source with entropy at least l. To see this, observe

that P is an injective function over any low-weight subspace of X of dimension l, since any

such subspace only has vectors of weight a most (d/l− 1)l < d. Thus the dimension of P (X)

must be at least l.

Idea 2: Extraction is easy from high quality affine somewhere random sources. It is easy to extract

from affine SR-sources when the source has very few rows relative to the length of each of the

rows. In the extreme case, when the SR-source has just one row, it is a uniformly random

string. When the number of rows is only a constant, we can simply use Bourgain’s extractor

Theorem 2.6.9 to get random bits. Building on this simple ideas, we will show how to build

extractors for affine SR-sources even when the number of rows is superconstant. We will be

able to extract from such sources as long as the number of rows is significantly less than the

length of each row. These results are discussed in Section 3.3 of Chapter 3.

Idea 3: The quality of affine SR-sources can be transferred, even when they are dependent. A

single affine SR-source S with t rows can be used to convert another affine source into an

affine SR-source with t rows, even if the two sources are dependent, as long as the number of

bits that S gives is less than the entropy of the other source. We simply use the t rows of S

as seeds with a linear strong seeded extractor to extract from each of the other affine sources.

Although the sources are dependent, we can show that the second affine source can be written

as the sum of two affine sources, one of which is independent of S. With high probability, the

random row of S is a good seed to extract from this independent affine source. It turns out

that the output we obtain in this way is close to a convex combination of affine SR-sources,

each with t rows. This observation can be interpreted as a way to transfer quality from a

single affine SR-source to another dependent affine source.

Given these observations, the high level informal view of our extractor construction is the following:
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1. Use Idea 1 to convert the input affine source into a much shorter affine source which still

has entropy.

2. Use a linear strong seeded extractor to convert this short affine source into an affine SR source

with few (≪ k) rows.

3. Use Idea 3 to transfer the quality of this affine somewhere random source back to the original

affine source to get a new affine source whose rows are much longer than the length of each

row.

4. Use Idea 2 to extract from the new high quality affine somewhere random source.

6.4 Preliminaries

We will need to use some very basic, well studied concepts from the theory of error correcting codes.

Definition 6.4.1. An [n, k, d] linear error correcting code over F is a linear subspace C ⊂ Fn

which is the image of an injective linear function E : Fk → Fn, called the encoding function with

the property that every non-zero element of C has weight at least d (i.e., the number of non-zero

coordinates is at least d). Given such a code, k = dimC is called the message length or dimension

of the code.

Given any such error correcting code, it’s easy to see that we can find a linear map H :

Fn → Fn−k with the property that H(c) = 0 if and only if c ∈ C. An ǫ-Biased distribution is a

distribution that is pseudorandom for linear functions.

Definition 6.4.2 (ǫ-Biased Distribution). A distribution X over {0, 1}n is ǫ-biased if for every

non-zero element v ∈ {0, 1}n, v ·X is ǫ-close to uniform.

Another concept we will need is the concept of ǫ-biased distributions for low weight tests.

Definition 6.4.3 (ǫ-Biased for Low-Weight). A distribution X over {0, 1}n is ǫ-biased for linear

tests of size w if for every non-zero element v of {0, 1}n whose weight is at most w, v ·X is ǫ-close

to uniform.
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Typically, we are interested in finding ǫ-biased distributions which can be generated with

a very small seed length. These objects have turned out to be very useful theoretical computer

science. We study the notion of being ǫ-biased further in Appendix D.

Constructions have been given in [NN93, AGHP92]. A construction in [AGHP92] gives a

distribution that is ǫ-biased for weight w tests with seed length 2 · ⌈log(1/ǫ) + logw + log log n⌉.
Given any such ǫ-biased distribution with small seed length, we can immediately get a good

code. Let P : {0, 1}n → {0, 1}t be the linear map whose i’th bit is the dot product of the input

with the i’th element of the ǫ-biased distribution. Then we see that if P (x) = 0, x must have

weight larger than w. Thus P is the parity check of some good error correcting code.

6.5 Converting Low-Weight Affine Sources into Affine Somewhere

Random Sources

In this section, we show how to use linear error correcting codes to convert any low-weight affine

source, into an affine source over fewer bits that still has entropy. We simply apply the parity check

matrix of a good linear error correcting code to the sample from the affine source. Suppose we are

dealing with an affine source of weight w and entropy k.

Lemma 6.5.1. Let P : {0, 1}n → {0, 1}t be the parity check function for any linear error correcting

code of distance greater than wkα. Let X be any weight w affine source. Then P (X) is an affine

source with entropy at least kα.

Proof. First note that P (X) is clearly an affine source, since it is obtained by applying a linear

function to an affine source. It remains to show that P (X) has the promised entropy. To see this,

let v1, . . . , vk be a weight w basis for X. Then we see that every vector in the span of v1, . . . , vkα

has weight at most wkα. Thus, P is injective over this subspace. P (X) is thus an affine source

with a support of size at least 2k
α
, which means that P (X) has entropy at least kα.

As our discussion in Section 6.4 shows, we can find such a function P that outputs

t = 22⌈log(1/ǫ)+log(wkα)+log logn⌉ ≤ O(w2k2α log2 n)

bits for ǫ = 1/4.
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Now let Ext : {0, 1}t × {0, 1}d → {0, 1}m be a linear seeded extractor for min-entropy kα.

Then we can apply Ext to X using every possible seed to get a somewhere random source. By

Proposition 2.3.6, the source we get in this way has 0 error.

If we use the extractor promised by Corollary 2.6.3, we get a seed length of at most h log t.

If k > log2 n, we can set w = kΩ(1) and α to be small enough so that this seed length is less than

log k/2. Our discussion gives us the following lemma:

Lemma 6.5.2. There exists a constant l < 1/2 and a polynomial time computable function L :

{0, 1}n → {0, 1}k1/2+l
such that if X is any weight kl affine source with entropy k, L(X) is an affine

√
k × kl somewhere random source.

Unfortunately, this affine somewhere random source is not good enough, since its rows are

not long enough for us to apply the extractor from Theorem 3.3.1. Still, we can use this source to

turn our original source into a somewhere random source via the following algorithm:

Algorithm 6.5.3 (AffineCondense).

Input: x ∈ {0, 1}n.
Output: z a

√
k ×m matrix with m = k − o(k).

Sub-Routines and Parameters:

Let L, l be as in Lemma 6.5.2, set up to work with entropy k.

Let Ext : {0, 1}n × {0, 1}l → {0, 1}m be a linear seeded extractor set up to extract m bits from

entropy k − k1/2−l.

1. Let z be the matrix whose i’th row is Ext(x,L(x)i)

We will then prove the following theorem:

Theorem 6.5.4. Let X be a weight kl affine source over {0, 1}n with entropy k. Then

AffineCondense(X) is 2−k
Ω(1)

-close to being a convex combination of affine somewhere random

sources.

Note that L(X)i is not independent of X, in fact it is completely determined by X! Thus it

seems strange that we can prove anything about the distribution of Z. The key point is that L(X)i
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is a linear function of X. We can use this to show that even though these two are not independent,

we can analyze them as if they are independent.

Proof. We will use Lemma 2.1.27. By the lemma, we can writeX = A+B whereH(B) ≥ k−k1/2+l,

and B is completely independent of L(X) = L(A).

Note that for any fixing of L(X) = L(A) = s, the output of our algorithm is an affine source.

Let h be an index such that L(X)h is uniformly random. Then we see that

Pr
s←RL(A)

[|Ext(B, s)− Um| = 0] < 2−k
Ω(1)

But this implies that

Pr
s←RL(X)

[|Ext(X, s)|L(X) = s− Um| = 0] < 2−k
Ω(1)

since Ext(X, s) = Ext(A, s) + Ext(B, s) and so is uniform as long as Ext(B, s) is uniform.

Thus for 1− 2−k
Ω(1)

fraction of s, the output is a somewhere random affine source.

6.6 The Extractor

To get the final extractor, we simply compose the algorithm from the last section with our extractor

for somewhere random sources, which we discussed in Section 3.3.

This gives us the following theorem:

Theorem 6.6.1. There exist constants α, l > 0 and a polynomial time computable function AffineExt :

{0, 1}n → {0, 1}m which is an extractor for affine sources with entropy k, weight kl, error 2−k
Ω(1)

and output length k − k1−α.
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Chapter 7

Explicit Ramsey Graphs

Definition 7.0.2. A graph on N vertices is called a K-Ramsey Graph if it contains no clique or

independent set of size K.

In 1947 Erdős published his paper inaugurating the Probabilistic Method with a few ex-

amples, including a proof that most graphs on N = 2n vertices are 2n-Ramsey. The quest for

constructing such graphs explicitly has existed ever since and led to some beautiful mathematics.

The best record to date was obtained in 1981 by Frankl and Wilson [FW81], who used

intersection theorems for set systems to construct N -vertex graphs which are 2
√
n logn-Ramsey.

This bound was matched by Alon [Alo98] using the Polynomial Method, by Grolmusz [Gro00] using

low rank matrices over rings, and also by Barak [Bar06] boosting Abbot’s method with almost

k-wise independent random variables (a construction that was independently discovered by others

as well). Remarkably all of these different approaches got stuck at essentially the same bound. In

recent work, Gopalan [Gop06] showed that other than the last construction, all of these can be

viewed as coming from low-degree symmetric representations of the OR function. He also shows

that any such symmetric representation cannot be used to give a better Ramsey graph, which gives

a good indication of why these constructions had similar performance. Indeed, as we will discuss

in a later section, the
√
n min-entropy bound initially looked like a natural obstacle even for our

techniques, though eventually we were able to surpass it.

The analogous question for bipartite graphs seemed much harder.

Definition 7.0.3. A bipartite graph on two sets of N vertices is a K-Ramsey Bipartite Graph if

it has no K ×K complete or empty bipartite subgraph.
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While Erdős’ result on the abundance of 2n-Ramsey graphs holds as is for bipartite graphs

(we discussed this in Section 4.2), until recently the best explicit construction of bipartite Ramsey

graphs was 2n/2-Ramsey, using the Hadamard matrix. This was improved recently, first to o(2n/2)

by Pudlak and Rődl [PR04] and then to 2o(n) by Barak, Kindler, Shaltiel, Sudakov and Wigderson

[BKS+05].

It is convenient to view such graphs as functions f : ({0, 1}n)2 → {0, 1}. This then gives

exactly the definition of a disperser.

Definition 7.0.4. A function f : ({0, 1}n)2 → {0, 1} is called a 2-source disperser for min-entropy

k if for any two sets X,Y ⊂ {0, 1}n with |X| = |Y | = 2k, we have that the image f(X,Y ) is {0, 1}.

This allows for a more formal definition of explicitness: we simply demand that the function

f is computable in polynomial time. Most of the constructions mentioned above are explicit in this

sense.1

Our main result (stated informally) significantly improves the bounds in both the bipartite

and non-bipartite settings:

Theorem 7.0.5. For every N we construct polynomial time computable bipartite graphs which are

22log1−α0 n
-Ramsey, for some universal constant α0 > 0.

A standard transformation2 of these graphs can be used to convert any bipartite Ramsey-

graph into a Ramsey-graph. Thus we obtain the following corollary.

Corollary 7.0.6. For every N we construct polynomial time computable graphs which are 22log1−α0 n
-

Ramsey, for some universal constant α0 > 0.

In this thesis we continue the work initiated in [BKS+05], showing how to use extractors

for more than 2 sources to get dispersers for 2 sources. The seminal paper of Bourgain, Katz and

Tao [BKT04] proved the so-called “sum-product theorem” in prime fields, a result in arithmetic

combinatorics. This result has already found applications in diverse areas of mathematics, includ-

ing analysis, number theory, group theory and extractor theory. Their work implicitly contained

1The Abbot’s product based Ramsey-graph construction of [BIW04] and the bipartite Ramsey construction of
[PR04] only satisfy a weaker notion of explicitness.

2The standard transformation is this one: Let the bipartite graph have 2N vertices, N on each side, with edge set
E. Then define a new graph with vertex set [N ] and edge set {{a, b} : a ≥ b and (a, b) ∈ E}. It’s easy to check that
if the bipartite graph was K-Ramsey, the new graph is K

2
-Ramsey.
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dispersers for c = O(log(n/k)) independent sources of min-entropy k (with output m = Ω(k)). The

use of the “sum-product” theorem was then extended by Barak et al. [BIW04] to give extractors

with similar parameters. Note that for linear min-entropy k = Ω(n), the number of sources needed

for extraction c is a constant!

Relaxing the independence assumptions via the idea of repeated condensing allowed the

reduction of the number of independent sources. This gave extractors for just c = 3 independent

sources of any linear entropy k = Ω(n), by Barak et al. [BKS+05] and independently by Raz

[Raz05].

For 2 sources Barak et al. [BKS+05] were able to construct dispersers for sources of min-

entropy o(n). To do this, they first showed that if the sources have extra block source structure

(Definition 2.1.15), even extraction is possible from 2 sources. The notion of block-sources, captur-

ing ”semi independence” of parts of the source, was introduced by Chor and Goldreich [CG88]. It

has been fundamental in the development of seeded extractors and as we shall see, is essential for

us as well.

This definition allowed Barak et al. [BKS+05] to show that their extractor for 4 independent

sources, actually performs as well with only 2 independent sources, as long as both are 2-block-

sources.

Theorem 7.0.7 ([BKS+05]). There exists a polynomial time computable extractor f : ({0, 1}n)2 →
{0, 1} for 2 independent 2-block-sources with min-entropy o(n).

There is no reason to assume that the given sources are block-sources, but it is natural to

try and reduce to this case. This approach has been one of the most successful in the extractor

literature. Namely try to partition a source X into two blocks X = X1,X2 such that X1,X2

form a 2-block-source. Barak et al. introduced a new technique to do this reduction called the

challenge-response mechanism, which is crucial for this chapter. This method gives a way to “find”

how min-entropy is distributed in a source X, guiding the choice of such a partition. This method

succeeds only with small probability, dashing the hope for an extractor, but still yielding a disperser.

Theorem 7.0.8 ([BKS+05]). There exists a polynomial time computable 2-source disperser f :

({0, 1}n)2 → {0, 1} for min-entropy o(n).

Reducing the min-entropy requirement of the above 2-source disperser, which is what we

achieve in this chapter, again needed progress on achieving a similar reduction for extractors with

140



more independent sources, which was achieved in a result discussed in Chapter 4. There we im-

proved all the above results for c ≥ 3 sources. Our result improves the results of Barak et al.

[BIW04] to give c = O((log n)/(log k))-source extractors for min-entropy k. Note that now the

number c of sources needed for extraction is constant, even when the min-entropy is as low as nδ

for any constant δ!

The following theorem, which we proved in Chapter 4, will be crucial to our results.

Theorem 7.0.9 (Chapter 4). There is a polynomial time computable extractor f : ({0, 1}n)2 →
{0, 1}m for a source with min-entropy k and an independent c-block-source with block min-entropy

k as long as c = O((log n)/(log k)).

7.0.1 Our Results

The results in this chapter are based on work with Boaz Barak, Ronen Shaltiel and Avi Wigderson

[BRSW06].

The main result of this chapter is a polynomial time computable disperser for 2 sources

of min-entropy no(1), improving the results of Barak et al. [BKS+05] (o(n) min-entropy). It also

improves on Frankl and Wilson [FW81], who built Ramsey Graphs (which in our terms is a disperser

for two identically distributed sources) for min-entropy Õ(
√
n).

Theorem 7.0.10 (Main theorem, restated). There exists a constant α0 > 0 and a polynomial time

computable 2-source disperser D : ({0, 1}n)2 → {0, 1} for min-entropy 2log1−α0 n.

This result is obtained via a variant of the challenge-response mechanism. We generalize

and extend this technique so that it can be used in a recursive manner. There are many technical

complications that we need to deal with to accomplish this. In the next section, we give a very high

level abstract overview of the challenge-response mechanism. A more detailed informal overview

of the high level ideas in our construction, followed by a formal description and analysis, are in

Section 7.2.

Several constructions of Barak et al. [BKS+05] and Raz [Raz05] worked by first reducing the

extractor/disperser problem they were solving to the case of extracting from independent somewhere

random sources. Then they used brute force search to construct an extractor for this case. In this

thesis we obtain much better explicit extractors for independent somewhere random sources. This
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allows us to improve some of the results from earlier works. In particular, we obtain a polynomial

time computable 2-source disperser that outputs a linear number of bits with exponentially small

error when the min-entropy rate of the source is an arbitrarily small constant, by modifying the

construction of Barak et al. [BKS+05], which had constant output length.

7.0.2 Techniques

In this section we give an overview of the high level structure of our argument. Most of the

concepts below were introduced by Barak et al. [BKS+05]. Here we will not say much about how

these techniques are adapted to our application, leaving that for Section 7.2 (where there is also

an informal discussion before the formal proof).

A basic concept we will need is that of a subsource of a source. This is the analogue of a

subset of a set and indeed, given a source X, we will write X̂ ⊂ X to denote that X̂ is a subsource of

X. Given a source of randomness X, we say that X̂ is a subsource of X if X̂ is defined as X|X ∈ A,

where A is some set. So a subsource is just a new source which gives the same distribution as the

original source conditioned on giving a point from some set. Throughout this chapter we will need

to make sure that the subsources we are working with have a large density in the original source.

We measure this density by measuring Pr[X ∈ A]. If this probability is 2−d, we call d the deficiency

of the subsource X̂ . It is immediate that if X has min-entropy k and X̂ ⊂ X has deficiency d, X̂

must have min-entropy k − d.
It turns out that although it seems hard to build good extractors for two independent sources,

we can, with some effort, build a subsource extractor. This is an extractor which is only guaranteed

to work on subsources of the original source. Barak et al. manage to construct a function SExt

with the property that for any linear min-entropy independent sources X,Y , there exist subsources

X̂ ⊂ X, Ŷ ⊂ Y such that SExt(X̂, Ŷ ) is close to uniformly random. Given such a function, we see

that it must be a disperser! Indeed, if A,B are the defining sets for the subsources X̂, Ŷ , for any

string c we have:

Pr[SExt(X,Y ) = c]

≥ Pr[SExt(X,Y ) = c|X ∈ A,Y ∈ B] Pr[X ∈ A ∧ Y ∈ B]

= Pr[SExt(X̂, Ŷ ) = c] Pr[X ∈ A ∧ Y ∈ B]
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Thus, if the string c is hit with positive probability in the subsources, then it is hit with

positive probability in the original sources.

The point is that while it may be hard to build an extractor for two general sources, by

moving to subsources we can weed out problematic points in our sources. For example, although

block sources (Definition 2.1.15) are much more restricted than general sources, it can be shown

that every general source X with linear min-entropy has a low deficiency subsource X̂ ⊂ X which

can be partitioned to get a block source!

More precisely, given any source X with some min-entropy δn, [BKS+05] showed that if X

is broken into equally sized parts X1, . . . ,Xt with t≫ 1/δ, there is a subsource X̂ and an index i

such that (X1, . . . ,Xi), (Xi+1, . . . ,Xt) is a block source. It is then natural to try and find this index

i. Indeed this is what Barak et al. manage to do. They design an efficiently computable function

Test(X,Y, i) which outputs a bit and when given two sources X and Y of linear min-entropy and

an index 1 ≤ i ≤ t distinguishes (this will be made more precise below) between two cases:

1. X1, . . . ,Xi has no entropy and

2. X1, . . . ,Xi has a lot of entropy

More formally, Test has the following properties: If X and Y are independent sources of

high entropy then:

1. If X1, . . . ,Xi is fixed then there exist (low deficiency) subsources X̂ ⊂ X, Ŷ ⊂ Y such that

Test(X̂, Ŷ , i) = 0.

2. If X1, . . . ,Xi has high entropy then there exist (low deficiency) subsources X ′ ⊂ X,Y ′ ⊂ Y

such that Test(X ′, Y ′, i) = 1 with high probability.

Thus, when given two sources X,Y from one of the two cases, there are subsources (X̂, Ŷ )

or (X ′, Y ′) which have roughly the same structure as the initial sources and on which Test decides

correctly. By applying Test iteratively, we can locate high entropy regions of the initial sourcesX,Y .

We can then use this knowledge to design an extractor that succeeds on the relevant subsources.

As explained earlier such an extractor yields a disperser for the initial sources.

Next we give some intuition for how this function Test is constructed.
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The Challenge-Response Mechanism

We now describe abstractly a mechanism which is used, both in the work of Barak et al. [BKS+05]

and in our work, to detect entropy concentrations in sources. The reader may decide, now or in

the middle of this section, to skip ahead to Section 7.2, which describes the construction of the

disperser that extensively uses this mechanism. Then this section may seem less abstract.

Using the challenge-response mechanism, one can partition a given source into blocks in a

way which make it a block source, or alternatively, focus on a part of the source which has an

unusually high concentration of entropy– two cases which may simplify the extraction problem.

Though the use of the challenge-response mechanism is more involved in this chapter than in

[BKS+05], the basic idea behind the mechanism is the same:

Let Z be a source and Z ′ a part of Z (Z projected on a subset of the coordinates). We know

that Z has entropy k, and want to distinguish two possibilities: Z ′ has no entropy (it is fixed) or it

has at least k′ entropy. In the context of the initial 2 sources X,Y we will operate on, think of Z

as a part of X, so Y is independent of Z and Z ′. To execute the test, we will define two functions:

The Challenge A function Challenge : {0, 1}n′′ × {0, 1}n → ({0, 1}clen)ℓ. The output is viewed as

a set of ℓ strings of length clen.

The Response A function Response : {0, 1}n′ ×{0, 1}n → ({0, 1}clen)poly(n). The output is viewed

as a set of poly(n) strings of length clen.

We will decide that Z ′ has low entropy if Challenge(Z ′, Y ) ⊂ Response(Z, Y ) and we will

decide that it has high entropy otherwise.

The key to the usefulness of this mechanism is the following lemma, which states that what

should happen does happen, at least on some subsources of Z and Y . We state it and then explain

how the functions Challenge and Response are chosen to accommodate its proof.

Informal Lemma 7.0.11. Assume Z, Y are sources of entropy k.

1. If Z ′ has entropy k′ +O(clen), then

Pr[Challenge(Z ′, Y ) ( Response(Z, Y )] ≥ 1− poly(n)2−clen
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2. If Z ′ is fixed (namely, has zero entropy), then there exist subsources Ẑ ⊂ Z and Ŷ ⊂ Y , such

that

Pr[Challenge(Ẑ ′, Ŷ ) ⊆ Response(Ẑ, Ŷ )] = 1

Once we have such a mechanism, we will design our disperser algorithm assuming that the

challenge-response mechanism correctly identifies parts of the source with high or low levels of

entropy. Then in the analysis, we will ensure that our algorithm succeeds in making the right

decisions, at least on subsources of the original input sources.

Now let us talk about how we obtain such functions Challenge and Response. The response

set Response(Z, Y ) is chosen to be the output of a somewhere extractor with a polynomial number

of rows. This is a function which on input two sources of low entropy, produces a polynomial sized

set of outputs, one of which is guaranteed to be uniformly random. The response function that we

use will have two additional properties:

1. Given any sources Z, Y and any fixed index i, (Z, Y ) is a convex combination of O(clen)

deficiency subsources Z ⊂ Z, Y ⊂ Y s.t. the ith element of Response(Z, Y ) is fixed for every

subsource (Z, Y ) in the combination.

2. Given any fixed string c and sources Z, Y , there are low deficiency subsources Z, Y s.t.

Pr[c ∈ Response(Z, Y )] = 1.

It turns out that it’s not too hard to construction an efficiently computable function Response

with these properties.

The challenge set Challenge(Z ′, Y ) is chosen to be the output of another somewhere extractor

with very few, say constant number ℓ of outputs. The challenge function is only required to succeed

when the sources it operates on have high entropy (for this case we can build a somewhere extractor

with few outputs).

Why does it work? We explain each of the two claims in the lemma in turn.

1. Z ′ has high entropy. We will point to the output string in Challenge(Z ′, Y ′) which avoids

Response(Z, Y ) with high probability as follows. In the analysis we will use the union bound

on several events, one associated with each (poly(n) many) string in Response(Z, Y ). We

note that by the first property of the response function, we can break (Z, Y ) into a convex
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combination such that for every element of the combination (Z, Y ), the first element of the

response set is fixed. However, even in this element of the convex combination, we will be

able to ensure that one of the outputs of Challenge(Z, Y ) is uniform. The probability that

this output will equal any fixed value is thus 2−clen. Repeating this for each of the poly(n)

elements of the response set completes the argument.

2. Z ′ has no entropy. We now need to guarantee that in the subsources that we choose (Ẑ, Ŷ ),

all strings in Challenge(Ẑ ′, Ŷ ) are in Response(Ẑ, Ŷ ). First notice that since Z ′ = z′ is fixed,

Challenge(Z ′, Y ) is only a function of Y . We set Ỹ to be the subsource of Y that fixes all

strings in Challenge(z′, Y ) to their most popular values (losing only ℓ · clen entropy from Y ).

We take care of including these fixed strings in Response(Z, Ỹ ) one at a time, by using the

second property of the response function. This is repeated successively ℓ times, and results

in the final subsources Ẑ, Ŷ on which Pr[Challenge(Ẑ ′, Ŷ ) ⊂ Response(Ẑ, Ŷ )] = 1. Note that

we keep reducing the entropy of our sources ℓ times, which necessitates that this ℓ be tiny.

Initially it seemed like the challenge-response mechanism as used in [BKS+05] could not be

used to handle entropy that is significantly less than
√
n (which is approximately the bound that

many of the previous constructions got stuck at). The techniques of [BKS+05] involved partitioning

the sources into t pieces of length n/t each, with the hope that one of those parts would have a

significant amount of entropy, yet there’d be enough entropy left over in the rest of the source (so

that the source can be partitioned into a block source).

However it is not clear how to do this when the total entropy is less than
√
n. On the one

hand we will have to partition our sources into blocks of length significantly more than
√
n (or the

adversary could distribute a negligible fraction of entropy in all blocks). On the other hand, if our

blocks are so large, a single block could contain all the entropy. Thus it was not clear how to use

the challenge-response mechanism to find a block source. In this chapter, we resolve this issue by

finding a way to use it recursively. The details are in Section 7.2.

7.1 A Somewhere Extractor with exponentially small error

A technical tool that we will need is a somewhere extractor which has a polynomial number of

output rows, but exponentially small error. This will be used to generate the responses throughout
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our disperser construction. Note that we can get a polynomial number of output rows by using a

seeded extractor with just one of the sources, but in this case the error would not be small enough.

In addition, in this section we will prove some other technical properties of this construction which

will be critical to our construction.

Theorem 7.1.1 (Low Error Somewhere Extractor). There is a constant γ such that for ev-

ery n, k(n) > log10 n, log4 n < m < γk, there is a polynomial time computable function SE :

({0, 1}n)2 → ({0, 1}m)l with the property that for any two (n, k) sources X,Y ,

Few rows l = poly(n).

Small error SE(X,Y ) is 2−10m-close to a convex combination of somewhere random distributions

and this property is strong with respect to both X and Y . Formally:

Pr
y←RY

[SE(X, y) is 2−10m-close to being SR ] > 1− 2−10m

Hitting strings Let c be any fixed m bit string. Then there are deficiency 2m subsources X̂ ⊂
X, Ŷ ⊂ Y such that Pr[c ∈ SE(X̂, Ŷ )] = 1.

Fixed rows on low deficiency subsources Given any particular row index i, there is a 20m

deficiency subsource (X̂, Ŷ ) ⊂ (X,Y ) such that SE(X̂, Ŷ )i is a fixed string. Further, (X,Y )

is 2−10m-close to a convex combination of subsources such that for every (X̂, Ŷ ) in the com-

bination,

• X̂, Ŷ are independent.

• SE(X̂, Ŷ )i is constant.

• X̂, Ŷ have min-entropy ≥ k − 20m

Proof. The algorithm SE is the following:
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Algorithm 7.1.2 (SE(x, y)).

Input: x, y ∈ {0, 1}n.
Output: A nd ×m boolean matrix.

Sub-Routines and Parameters:

• A seeded extractor Ext with O(log n) seed length (for example by Theorem 2.6.1), set up

to extract from entropy threshhold 0.9k, with output length m and error 1/100.

• Raz’s extractor with weak random seeds (Theorem 2.6.6) set up to extract m bits from an

(n, k) source using a weak seed of length m bits with entropy 0.9m. We can get such an

extractor with error 2−10m.

1. For every seed i to the seeded extractor Ext, output Raz(x,Ext(y, i)).

2. For every seed i to the seeded extractor Ext, output Raz(y,Ext(x, i)).

We will prove each of the items in turn.

Few rows By construction.

Small error We will argue that the strong error with respect to Y is small. By symmetry the

same argument can be used to prove that the strong error for X is strong. Consider the set

of bad y’s,

B = {y : ∀i s.t. |Raz(X,Ext(y, i)) − Um| ≥ 2−γ
′k}

where here γ′ is the constant that comes from the error or Raz’s extractor.

We would like to show that this set is very small.

Claim 7.1.3. |B| < 20.9k

Suppose not. Let B denote the source obtained by picking an element of this set uniformly at

random. Since Ext has an entropy threshhold of 0.9k, there exists some i such that Ext(B, i)
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is 1/100 close to uniform. In particular, |Supp(Ext(B, i))| ≥ 0.99 · 2m > 20.9m. This is a

contradiction, since at most 20.9m seeds can be bad for Raz.

Thus we get that

Pr
y←RY

[|Raz(X,Ext(y, i)) − Um| < 2−γ
′k] < 20.9k/2k = 2−0.1k

Setting γ = min{γ′/10, 0.1}, we get that 10m < 10γk < γ′k and 10m < 0.1k.

Hitting strings The proof for this fact follows from the small error property. Let Ỹ = Y |Y /∈ B,

where B is the set of bad y’s from the previous item. Then we see that for every y ∈ Supp(Ỹ ),

there exists some i such that |Raz(X,Ext(y, i)) − Um| < 2−10m. By the pigeonhole principle,

there must be some seed s and some index i such that:

Pr
y←RỸ

[Ext(y, i) = s] ≥ 1

l2m

Fix such an i and seed s and let Ŷ = Ỹ |Ext(Ỹ , i) = s. This subsource has deficiency at most

1 + m + log l < 2m from Y . Thus Ext(Ŷ , i) is fixed and |Raz(X,Ext(y, i)) − Um| < 2−10m.

Note that the i’th element of the output of SE(X, Ŷ ) is a function only of X. Thus we can

find a subsource X̂ ⊂ X of deficiency at most 2m such that this i’th row is equal to c.

Fixed rows on low deficiency subsources We will first make the argument for the first half of

the rows (where Y is used to generate the seeds to Raz). The argument for the other rows

will follow by symmetry. Let i be any fixed row in the first half of the rows. For any m bit

string a, let Ya ⊂ Y be defined as Y |Ext(Y, i) = a. By Proposition 2.1.10, for any ℓ > 1,

Pra←RExt(Y,i)[Ya has deficiency more than m+ ℓ ] < 2−ℓ.

Let A = {a : Ya has deficiency more than m+ ℓ}. Then, by the lemma, we see that Y is

2−ℓ-close to a source Y , where Pr[Ext(Y , i) /∈ A] = 1, and Y has min-entropy at least k − 1.

We break up Y into a convex combination of variables Ŷa = Y |Ext(Y , i) = a, each of deficiency

at most m+ ℓ.

Similarly we can argue that X is 2−ℓ-close to a random variable Xa with min-entropy k − 1,

where Xa is a convex combination of subsources X̂a,b with deficiency at most m+ ℓ such that
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Raz(X̂a,b, a) is constant and equal to b.

Thus we obtain our final convex combination. Each element X̂a,b, Ŷb of the combination

is associated with a pair (a, b) of m bit strings. By construction we see that the i’th row

SE(X̂a,b, Ŷb)i = a and that X̂a,b, Ŷb each have min-entropy k −m− ℓ.

7.2 The Disperser

First we give an informal high level overview of the construction and analysis. The goals of this

overview are to highlight the main ideas that go into the construction and analysis and assist the

reader in reading the formal proof that appears after it. In order to highlight the main ideas and

techniques, we sometimes ignore technical details, but give pointers to the places in the formal

proof where the details are explained.

7.2.1 Informal Overview of Construction and Analysis

We are given two input sources X,Y which have some min-entropy and would like to output a

non-constant bit.

The idea behind the construction is to try to convert the first source X into a block source

or at least find a subsource (Definition 2.1.3) Xgood ⊂ X which is a block source. Once we have

such a block source, we can make use of some of the technology we have developed for dealing with

block sources (for instance the extractor BExt of Theorem 4.5.1).

One problem with this approach is that there is no deterministic procedure that transforms

a source into a block-source, or even to a short (e.g. of length much less than n
k ) list of block sources.

Still, as we will explain shortly, we will manage to use the second source Y to “convert” X into a

block source. Loosely speaking, we will show that there exist independent subsources Xgood ⊂ X

and Y good ⊂ Y such that Xgood is a block source and our construction “finds” this block-source when

applied on Xgood, Y good. This task of using one source to find the entropy in the other source while

maintaining independence (on subsources) is achieved via the challenge-response mechanism.

We will describe our construction in two phases. As a warmup, we will first discuss how to

use the challenge-response mechanism in the case when the two sources have linear min-entropy (this
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was first done by Barak et al. [BKS+05]). Then we describe how to adapt the challenge-response

mechanism for the application in this chapter.

Challenge-Response Mechanism for Linear Min-Entropy

The challenge-response mechanism was introduced in [BKS+05] as a way to use one source of

randomness to find the entropy in another source. Since they were only shooting for 2 source

dispersers that could handle linear min-entropy, they avoided several complications that we will

need to deal with here. Still, as an introduction to the challenge-response mechanism, it will be

enlightening to revisit how to use the mechanism to get dispersers for linear min-entropy. Below

we will give a sketch of how we might get such a disperser using the technology that is available

to us at this point. Note that the construction we discuss here is slightly different from the one

originally used by Barak et al.

We remind the reader again of the high level scheme of our construction. We will con-

struct a polynomial time computable function Disp with the property that for any independent

linear entropy sources X,Y , there exist subsources Xgood ⊂ X,Y good ⊂ Y with the property that

Disp(Xgood , Y good) is both 0 and 1 with positive probability. Since Xgood , Y good are subsources of the

original sources, this implies that Disp is a disperser even for the original sources. Now let us

describe the construction.

Let us assume that for linear min-entropy our extractor BExt requires only 2 blocks; so we

have at our disposal a function BExt : {0, 1}n × {0, 1}n → {0, 1} with the property that if X1,X2

is a block source with linear min-entropy, and Y is an independent block source, BExt(X1,X2, Y )

is exponentially close to being a uniform bit.

We are given two sources X,Y which are independent sources with min-entropy δn, where

δ is some small constant. We would be in great shape if we were given some additional advice in

the form of an index j ∈ [n] such that X[j],X is a block source with min-entropy say δn/10 (i.e.,

the first j bits of X have min-entropy δn/10 and conditioned on any fixing of these bits the rest of

the source still has min-entropy at least δn/10). In this case we would simply use our block source

extractor BExt and be done. Of course we don’t have any such advice, on the other hand, the good

news is that it can be shown that such an index j does exist.
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Step 1: Existence of a structured subsource We associate a tree of parts with the source X.

This a tree of depth 1, with the sample from X at the root of the tree. We break the sample from

the source X into a constant t≫ 1/δ number of equally sized parts x = x1, . . . , xt, each containing

n/t bits. These are the children of the root. Our construction will now operate on the bits of the

source that are associated with the nodes of this tree.

The first step of the analysis is to show (via applications of Lemma 2.1.18 and Corollary 2.1.19)

that

Informal Lemma 7.2.1. If X has min-entropy δn, there is a j ∈ [t] and a subsource X̂ ⊂ X in

which:

• X̂i is fixed for i < j.

• H∞(X̂j) ≥ δ2(n/t).

• (X̂j+1, . . . , X̂t) has conditional min-entropy at least δ2n given any fixing of X̂j .

Given this lemma, our goal is to find this index j (which is the ’advice’ that we would like

to obtain). We will be able to do so on independent subsources of X̂, Y . This is achieved via the

challenge-response mechanism.

Step 2: Finding the structure using the challenge-response mechanism Here are the

basic pieces we will use to find the index j:

1. A polynomial time computable function Challenge : {0, 1}n × {0, 1}n → {0, 1}clen . In view of

the final construction, we view the output of this function as a matrix with 1 row of length

clen. We also require the following properties:

Output length is much smaller than entropy clen≪ δ20n.

Output has high min-entropy Given X̂, Ŷ which are independent sources with min-entropy

δn/100 each, Challenge(X̂, Ŷ ) is statistically close to having min-entropy Ω(clen).

In extractor terminology, these conditions simply say that Challenge is a condenser for 2

independent sources. In [BKS+05] such a function (in fact a somewhere random extractor)

was constructed using results from additive number theory.
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2. A polynomial time computable function Response : {0, 1}n × {0, 1}n → ({0, 1}clen)ℓ. We

interpret the output as a list of ℓ matrices that have the same dimensions as the challenge

matrix given by the Challenge function above. This function must satisfy:

Few matrices ℓ = poly(n)3.

Hitting matrices Given X̂, Ŷ , independent sources with min-entropy δ3n each and any

fixed matrix α ∈ {0, 1}clen , there there exists i and low deficiency subsources X ′ ⊂
X̂, Y ′ ⊂ Ŷ such that in these subsources Response(X ′, Y ′)i = α with probability 1.

Fixed matrices on low deficiency subsources Given any index i and any independent

sources X̂, Ŷ , we can decompose (X̂, Ŷ ) into a convex combination of low deficiency inde-

pendent sources such that for every element of the combination X ′, Y ′, Response(X ′, Y ′)i

is fixed to a constant.

Note that these are exactly the properties we have proved about our somewhere extractor

(Theorem 7.1.1). Indeed this is the function that we will use (both here and later) in our

construction to generate responses.

Given the explicit functions Challenge and Response satisfying the properties above, we can

now discuss how to use them to find the index j given samples x←R X and y ←R Y .

Definition 7.2.2. Given a challenge matrix and a list of response matrices, we say that the

challenge is responded by the response if the challenge matrix is equal to one of the matrices in the

response.

Note that throughout construction, every row of the challenge matrix will always be of

length clen. In every challenge matrix we will encounter, our analysis will maintain the invariant

that either the entire matrix is fixed under the subsources that we are currently working with, or

one of the rows of the matrix is uniformly random.

To find the index j:

1. Compute the response Response(x, y).

2. For every i ∈ [t], compute a challenge Challenge(xi, y).

3In [BKS+05] the component they use for this step has an ℓ which is only constant. We can tolerate a much larger
ℓ here because of the better components available to us.
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3. Set r to be the smallest i for which Challenge(xi, y) was not responded by Response(x, y).

We remind the reader that we will prove that the disperser works by arguing about sub-

sources of the original adversarially chosen sources X,Y . Recall that we are currently working with

the subsource X̂ ⊂ X which has the properties guaranteed by Informal Lemma 7.2.1. Using the

functions Challenge and Response, we can then prove the following lemma:

Informal Lemma 7.2.3. There exist low deficiency subsources Xgood ⊂ X̂, Y good ⊂ Y s.t. in these

subsources r = j with high probability.

Proof Sketch: The lemma will follow from two observations.

Informal Claim 7.2.4. There are subsources Xgood ⊂ X̂, Y good ⊂ Y in which for every i < j,

Challenge(Xgood

i , Y good) is responded by Response(Xgood, Y good) with probability 1. Furthermore Xgood

is a block source (with roughly the same entropy as X) and Y good has roughly the same entropy as

Y .

Proof Sketch: Note that for i < j, X̂i is fixed to a constant, so Challenge(X̂i, Y ) is a function only

of Y . Since the output length of Challenge is only clen bits, this implies (by Proposition 2.1.10)

that there exists a subsource Ŷ ⊂ Y of deficiency at most clen · t such that Challenge(X̂i, Ŷ ) is fixed

for every i < j.

We can then use the {Hitting matrices} property of Response to find smaller subsources

X ′ ⊂ X̂, Y ′ ⊂ Y s.t. there exists an index h1 for which Pr[Challenge(X ′1, Y
′) = Response(X ′, Y ′)hi

] =

1. Repeating this, we eventually get subsources Xgood ⊂ X̂, Y good ⊂ Y s.t. for every i < j, there

exists an index hi such that s.t. Pr[Challenge(Xgood

i , Y good) = Response(Xgood , Y good)hi
] = 1, i.e., the

challenge of every part of the source before the jth part is responded with probability 1 in these

subsources.

The fact that Xgood remains a block source follows from Corollary 2.1.17.

Informal Claim 7.2.5. Challenge(Xgood

j , Y good) is not responded by Response(Xgood, Y good) with high

probability.

Proof Sketch: The argument will use the union bound over ℓ events, one for each of the ℓ matrices

in the response. We want to ensure that each matrix in the response is avoided by the challenge.
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Consider the ith matrix in the response Response(Xgood , Y good)i. By the {Fixed matrices on low

deficiency subsources} property of Response, we know that Xgood, Y good is a convex combination

of independent sources in which the ith matrix is fixed to a constant. For every element of this

convex combination, the probability that the challenge is equal to the ith response is extremely

small by the property that the output of Challenge has high min-entropy.

Step 3: Computing the output of the disperser The output of the disperser is then just

BExt(x[r], x, y). To show that our algorithm outputs a distribution with large support, first note that

BExt(Xgood

[r] ,X
good , Y good) is a subsource of BExt(X[r],X, Y ). Thus it is sufficient to show that that

BExt(Xgood

[r] ,X
good , Y good) has a large support. However, by our choice of r, r = j with high probability

in Xgood, Y good. Thus BExt(Xgood

[r] ,X
good , Y good) is statistically close to BExt(Xgood

[j] ,X
good , Y good) and

hence is statistically close to being uniform.

The Challenge-Response Mechanism in Our Application

Let us summarize how the challenge-response mechanism was used for linear min-entropy. The

first step is to show that in any general source there is a small deficiency subsource which has

some “nice structure”. Intuitively, if the additional structure (in the last case the index j) was

given to the construction, it would be easy to construct a disperser. The second step is to define a

procedure (the challenge-response mechanism) which is able to “find” the additional structure with

high probability, at least when run on some subsource of the good structured subsource. Thus, on

the small subsource it is easy to construct a disperser. Since the disperser outputs two different

values on the small subsource, it definitely does the same on the original source.

Now we discuss our disperser construction. In this discussion we will often be vague about

the settings of parameters, but will give pointers into the actual proofs where things have been

formalized.

There are several obstacles to adapting the challenge-response mechanism as used above to

handle the case of min-entropy k = no(1), which is what we achieve in this chapter. Even the first

step of the previous approach is problematic when the min-entropy k is less than
√
n. There we

found a subsource of X which was block source. Then we fixed the leading bits of the source to get

a subsource which has a leading part which is fixed (no entropy), followed by a part with significant
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(medium) entropy, followed by the rest of the source which contains entropy even conditioned on

the medium part.

When k <
√
n, on the one hand, to ensure that a single part of the source Xi cannot contain

all the entropy of the source (which would make the above approach fail), we will have to make each

part be smaller than
√
n bits. On the other hand, to ensure that some part of the source contains

at least one bit of min-entropy, we will have to ensure that there are at most
√
n parts, otherwise

our construction will fail for the situation in which each part of the source contains k/
√
n bits of

entropy. These two constraints clearly cannot be resolved simultaneously. Thus it seems like there

is no simple deterministic way to partition the source in a way which nicely splits the entropy of

the source.

The fix for this problem is to use recursion. We will consider parts of very large size (say

n0.9), so that the parts may contain all the entropy of the source. We will then develop a finer

grained challenge-response mechanism that we can use to handle three levels of entropy differently:

low, medium or high, for each part of the source. If we encounter a part of the source that has low

entropy, as before we can fix it and ensure that our algorithm correctly identifies it as a block with

low entropy. If we encounter a part which has a medium level of entropy, we can use the fact that

this gives a way to partition the source into a block source to produce a bit which is both 0 and

1 with positive probability. We will explain how we achieve this shortly. We note that here our

situation is more complicated than [BKS+05] as we do not have an extractor that can work with

a block source with only two blocks for entropy below
√
n. Finally, if we encounter a part of the

source which has a high entropy, then this part of the source is condensed, i.e., its entropy rate is

significantly larger than that of the original source. Following previous works on seeded extractors,

in this case we run the construction recursively on that part of the source (and the other source

Y ). The point is that we cannot continue these recursive calls indefinitely. After a certain number

of such recursive calls, the source that we are working with will have to have such a high entropy

rate that it must contain a part with a medium level of entropy.

Although this recursive description captures the intuition of our construction, to make the

analysis of our algorithm cleaner, we open up the recursion to describe the construction and do the

analysis.

Now let us give a more concrete description of our algorithm. Let C(δ) be the number of
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blocks the extractor BExt of Theorem 4.5.1 requires for entropy k = nδ and let t be some parameter

to be specified later (think of t as a very small power of k).

We define a degree-t tree with depth log n/ log t < log n tree Tn,t that we call the n, t partition

tree. The nodes of Tn,t are subintervals of [1, n] defined in the following way:

1. The root of the tree is the interval [1, n].

2. If a node v is identified with the interval [a, b] of length greater than k1/3, we let v1, . . . , vt

denote the t consecutive disjoint length-|v|/t subintervals of v. That is, vi = [a + b−a
t (i −

1), a + b−a
t i]. We let the ith child of v be vi.

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������

�������
�������
�������

������
������
������

������
������
������

����
����
����

����
����
����

high

med

high

med

V
med

X med

Fixed parts

V b

par(V       )med

Figure 7.1: Finding two related medium parts in Xmed

For a string x ∈ {0, 1}n and a set S ⊆ [1, n] we’ll denote by xS the projection of x onto the

coordinates of S. If v is a node in Tn,t then xv denotes the projection of x onto the interval v.

Step 1 of analysis In analogy with our discussion for the case of linear min-entropy, we can show

that any source X with min-entropy k contains a very nice structured low deficiency subsource X̂ .
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We will show that there is a vertex vb in the tree s.t.:

• Every bit of X̂ that precedes the bits in vb is fixed.

• There are C children i1, . . . , iC of vb s.t. X̂i1 , X̂i2 , . . . , X̂iC is a C-block source with entropy at

least
√
k in each block (even conditioned on previous blocks).

• There is an ancestor vmed of vb such that X̂vmed , X̂ is a block source with k0.9 entropy in each

block.

These three properties are captured in Figure 7.1.

This is done formally in Step 1 of the analysis.

As in the case of linear min-entropy, we would be in great shape if we were given vb, vmed, i1, . . . , iC.

Of course we don’t know these and even worse, this time we will not even be able to identify all

of these with high probability in a subsource. Another obstacle to adapting the construction for

linear min-entropy to the case of k = no(1) is that we don’t have a simple replacement for the

function Challenge that we had for the case of linear min-entropy. However we will be able to use

the components that are available to us to compute challenge matrices which are still useful.

The construction will proceed as follows:

1. For every vertex v of the tree, we will compute a small nrows × clen challenge matrix

Challenge(xv, y) of size len = nrows · clen, that is a function only of the bits that correspond

to that vertex in x and all of y.

2. For every vertex v of the tree, we will associate a response Response(xv, y) which is interpreted

as a list of poly(n) matrices each of size len = nrows · clen.

For every vertex v in the tree, we will call the set of vertices whose intervals lie strictly

to the left of v (i.e., the interval does not intersect v and lies to the left of v), and whose parent

is an ancestor of v, the left family of v. In Step 2 of the formal analysis, we will find low

deficiency subsources Xgood ⊂ X̂, Y good ⊂ Y s.t. for every vertex v which is in the left family of vb,

Challenge(Xgood
v , Y good) is a fixed matrix that occurs in Response(Xgood

par(v), Y
good) with probability 1.

In Step 3 of the formal analysis, we will show that for every vertex v which lies on the path

from vb to the root Challenge(Xgood
v , Y good) is statistically close to being somewhere random. For
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technical reasons we will actually need a property which is stronger than this. We will actually show

that for every vertex v which lies on the path from vb to the root and all low deficiency subsources

X ′ ⊂ Xgood, Y ′ ⊂ Y good, Challenge(X ′v, Y
′) is statistically close to being somewhere random.

At this point we will have made a lot of progress in the construction and analysis. We have

found subsources Xgood, Y good s.t. the challenges for all the vertices that occur to the left of the path

to vb have been fixed. Moreover the challenges for vertices on this good path have high min-entropy,

even if we move to any subsources of small deficiency X ′, Y ′. In some sense we will have identified

the good path that goes to vb in these subsources, though we still don’t know where vb, vmed are

on this path. From here we will need to do only a little more work to compute the output of the

disperser.

Now let us describe how we compute the challenges and ensure the properties of Xgood, Y good

that we discussed above more concretely. We will need the following components:

1. To generate the challenges, we will need a polynomial time computable function BExt :

({0, 1}n)C × {0, 1}n → {0, 1}clen that is an extractor for a (C,
√
k) block source and an inde-

pendent
√
k source. Here think of clen as roughly k0.9.

2. The second component is exactly the same as the second component from the case of linear

min-entropy and will be used to generate the responses. We need a polynomial time com-

putable function Response : {0, 1}n×{0, 1}n → ({0, 1}len)ℓ (the output is interpreted as a list

of ℓ nrows× clen matrices) with the property that:

Few outputs ℓ = poly(n).

Hitting matrices Given X̂, Ŷ , independent sources with min-entropy
√
k each and any fixed

nrows× clen matrix c, there there exists i and low deficiency subsources X ′ ⊂ X̂, Y ′ ⊂ Ŷ
such that in these subsources Response(X ′, Y ′)i = c with probability 1.

Fixed matrices on low deficiency subsources Given any independent sources X̂, Ŷ , and

an index i, (X̂, Ŷ ) is a convex combination of low deficiency independent sources such

that for every element (X ′, Y ′) of the combination, Response(X ′, Y ′)i is fixed to a con-

stant.

As before, we will use the function SE promised by Theorem 7.1.1 for this component.
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We define for every node v of the tree a relatively small challenge matrix Challenge(xv, y)

with nrows rows of length clen each. We will set up the size of these challenge matrices as roughly

len = k0.9.

Let xv1 , . . . , xvt be the division of xv to t sub-parts. Then, we let Challenge(xv, y) contain

one row that is equal to BExt(xvi1
, . . . , xviC

, y) for every possible C-tuple 1 ≤ i1 < i2 < · · · < iC ≤ t.
If v is a leaf then Challenge(xv, y) has no other rows and we will pad the matrix with 0’s to make

it of size nrows · clen. If v is a non-leaf then we let Challenge(xv1 , y), . . . ,Challenge(xvt , y) be the

challenges of all the children of v in the tree. We will append the rows of Challenge(xvi , y) to

Challenge(xv , y) where i is the smallest index such that Challenge(xvi , y) does not equal any of the

matrices in Response(xv, y). Again, if the matrix we obtain contains fewer than nrows rows, we pad

it with 0s to ensure that it is of the right size.

Note that in this way every challenge Challenge(xv , y) is indeed only a function of the bits

in xv, y. This will be crucial for our analysis.

Step 2 of analysis: ensuring that challenges are responded in left family The following

claim is proved in Step 2 of the analysis (Claim 7.2.24).

Informal Claim 7.2.6 (Left family challenges are responded). There are subsources Xgood ⊂
X̂, Y good ⊂ Y in which for every vertex w to the left of vb whose parent par(w) lies on the path from

vb to the root, Challenge(Xgood
w , Y good) is responded by Response(Xgood

par(w)
, Y good) with probability 1.

Proof Sketch: Note that for w which is to the left of vb, X̂w is fixed to a constant, so Challenge(X̂w, Y )

is a function only of Y . Since the output length of Challenge is only len bits, this implies (by

Proposition 2.1.10) that there exists a subsource Ŷ ⊂ Y of deficiency at most len · t log n such that

Challenge(X̂w, Ŷ ) is fixed for every such w. Then, since X̂v, Ŷ are still high entropy sources for

every v on the path from vb to the root, we can repeatedly use the {Hitting matrices} property

of Response to find smaller subsources Xgood ⊂ X̂, Y good ⊂ Ŷ s.t. for every w to the left of v,

∃l s.t. Pr[Challenge(X̂w, Ŷ ) = Response(X̂par(w), Ŷ )l] = 1.

Step 3 of analysis: ensuring that challenges along the good path are somewhere random

We argue that the challenges along the good path are statistically close to being somewhere random

in Xgood, Y good. This is done formally in Step 3 in Lemma 7.2.25. The intuition for this is that first
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the challenge associated with the vertex vb is somewhere random since vb has children that form

a block source. We will then show that with high probability this challenge of vb appears in the

challenge matrix of every ancestor of vb.

Informal Claim 7.2.7 (Challenges along path to vb are somewhere random). For all low defi-

ciency subsources X ′ ⊂ Xgood, Y ′ ⊂ Y good and any vertex v that’s on the path from vb to the root,

Challenge(X ′v , Y
′) is statistically close to being somewhere random.

Proof Sketch: We will prove this by induction on the distance of the vertex v from vb on the

path. When v = vb, note that Challenge(X ′
vb , Y

′) contains BExt(xvi1
, . . . , xviu

, y) for every C-tuple

of children vi1 , . . . , viC of vb. By the guarantee on X̂, we know that there exist i1, . . . , iC s.t.

X̂vi1
, . . . , X̂viC

is a C-block source. Since X ′ is a low deficiency subsource of X̂, X ′vi1
, . . . , X̂ ′viC

must also be close to a C block source by Corollary 2.1.17. Thus we get that Challenge(X ′
vb , Y

′) is

statistically close to somewhere random.

To do the inductive step we show that Challenge(X ′
par(v), Y

′) is close to being somewhere

random given that Challenge(X ′′v , Y
′′) is somewhere random for even smaller subsources X ′′ ⊂

X ′, Y ′′ ⊂ Y ′.
The argument will use the union bound over ℓ events, one for each of the ℓ strings in the

response. We want to ensure that each string in the response is avoided by the challenge. Consider

the ith string in the response Response(X ′
par(v), Y

′)i. By the {Fixed matrices on low deficiency

subsources} property of Response, we know that X ′, Y ′ is a convex combination of independent

sources in which the ith string is fixed to a constant.

Now every element of this convex combination X ′′, Y ′′ is a subsource of the original sources,

the probability that Challenge(X ′′v , Y
′′) is equal to the ith response is extremely small by the

property that the output of Challenge(X ′′v , Y
′′) has high min-entropy. Thus with high probability

Challenge(X ′
par(v), Y

′) contains Challenge(X ′v , Y
′) as a substring. This implies that Challenge(X ′

par(v), Y
′)

is statistically close to being somewhere random.

Step 4 of analysis: ensuring that the disperser outputs both 0 and 1 The output for

our disperser is computed in a way that is very different from what was done for the case of linear

min-entropy. The analysis above included two kinds of tricks:

• When we encountered a part of the source which had a low amount of entropy, we went to
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a subsource where the part was fixed and the corresponding challenge was responded with

probability 1.

• When we encountered a part of the source which had a high level of entropy, we went to a

subsource where the corresponding challenge is not responded with high probability

The intuition for our disperser is that if we encounter a part of source (such as vmed above)

which both has high min-entropy and such that fixing that part of the source still leaves enough

entropy in the rest of the source, we can ensure that the challenge is both responded and not

responded with significant probability. We will elaborate on how to do this later on. This is very

helpful as it gives us a way to output two different values! By outputting “0” in case the challenge

is responded and “1” in case it is not we obtain a disperser. Now let us be more concrete.

Definition 7.2.8. Given two nrows × clen matrices and an integer 1 ≤ q ≤ clen, we say that one

matrix is q-responded by the other if the first q columns of both matrices are equal.

The first observation is the following claim which is proved formally in Step 4 (Lemma 7.2.26).

The claim will be used with q ≪ clen, len.

Below we use the symbol ∼< to denote an inequality that is only approximate in the sense

that in the formal analysis there are small error terms (which may be ignored for the sake of

intuition) that show up in the expressions.

Informal Claim 7.2.9. For every vertex v on the path from vb to the root,

Pr[Challenge(Xgood

v , Y good) is q-responded by Response(Xgood

par(v), Y
good)] ∼< 2−q

Proof Sketch: As before, we will use the {Fixed matrices on low deficiency subsources}

property of Response and the fact that Challenge(X ′v, Y
′) is somewhere random for any low deficiency

subsources X ′ ⊂ Xgood, Y ′ ⊂ Y good to argue that the probability that for every index q,

Pr[Challenge(Xgood

v , Y good) is q-responded by Response(Xgood

par(v), Y
good)q] ∼< 2−q

Then we just apply a union bound over the poly(n) response strings to get the claim.
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Next we observe that for the vertex vmed, its challenge is responded with a probability that

behaves very nicely. In particular, note that we get that the challenge is both responded and not

responded with noticeable probability. This is Lemma 7.2.28 in the formal analysis.

Informal Claim 7.2.10.

2−q·nrows
∼< Pr[Challenge(Xgood

vmed , Y
good) is q-responded by Response(Xgood

par(vmed)
, Y good)] ∼< 2−q

Proof Sketch: The idea is that Xgood

par(vmed)
is a convex combination of sources X ′

par(vmed)
in which

X ′
par(vmed)

is fixed, but X ′ still has a significant amount of entropy. Thus we are in the situation

where we proved Claim 7.2.6. We can then show that X ′, Y good are a convex combination of sources

X ′′, Y ′′ s.t. Challenge(X ′′
vmed , Y

′′) is fixed to a constant. Thus

Pr[Challenge(X ′′vmed , Y
′′) is q-responded by Response(X ′′

par(vmed), Y
′′) ∼> 2−q·nrows

This implies that

Pr[Challenge(Xgood

vmed , Y
good) is q-responded by Response(Xgood

par(vmed)
, Y good) ∼> 2−q·nrows

The upper bound is just a special case of Claim 7.2.9.

Given these two claims, here is how we define the output of the disperser:

1. We define a sequence of decreasing challenge lengths: clen ≫ clen1,0 ≫ clen1,1 ≫ clen1,2 ≫
clen2,0 ≫ clen2,1 ≫ clen2,2 ≫ clen3,0 · · · .

2. If v is not a leaf, let v1, . . . , vt be v’s t children. Let q be the depth of v. If for every i

Challenge(xvi , y) is clenq,0-responded by Response(xvi , y), set val(xv, y) = 0, else let i0 be the

smallest i for which this doesn’t happen. Then,

(a) If Challenge(xvi0
, y) is clenq,1-responded by Response(xv , y), set val(xv, y) = 1.

(b) Else if Challenge(xvi0
, y) is clenq,2-responded but not clenq,1-responded by Response(xv, y),

set val(xv, y) = 0.

(c) Else set val(xv, y) = val(xvi0
, y).
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3. The disperser outputs val(x, y).

Let h be the depth of vmed. The correctness is then proved by proving two more claims:

Informal Claim 7.2.11. The probability that val(Xgood

vmed , Y
good) differs from val(Xgood , Y good) is

bounded by 2−clenh,0 .

Proof Sketch: In fact, we can argue that with high probability,

val(Xgood

vmed , Y
good) = val(Xgood

par(vmed)
, Y good) = val(Xgood

par(par(vmed))
, Y good) = · · · = val(Xgood , Y good)

The reason is that by Claim 7.2.9, for any vertex v on the path from vmed to the root at depth q,

Pr[val(Xgood

v , Y good) 6= val(Xgood

par(v))] ∼< 2−clenq,0 ≪ 2−clenh,0

Thus, by the union bound, we get that with high probability all of these are in fact equal.

Next, we will argue that val(Xgood

vmed , Y
good) is both 0 and 1 with significant probability. This

will complete the proof, since this will show that val(Xgood , Y good) is both 0 and 1 with significant

probability.

Informal Claim 7.2.12.

Pr[val(Xgood

vmed , Y
good)] = 1] ∼> 2−clenh,1

Pr[val(Xgood

vmed , Y
good)] = 0] ∼> 2−clenh,2

Proof Sketch: This follows from Claim 7.2.10. The probability that val(Xgood

vmed , Y
good) = 1 is lower-

bounded by the probability that Challenge(Xgood

vmed , Y
good) is clenh,1-responded by Response(Xgood

par(vmed)
, Y good)

minus the probability that Challenge(Xgood

vmed , Y
good) is clenh,0-responded by Response(Xgood

par(vmed)
, Y good).

By Claim 7.2.10, we can ensure that this difference is significantly large.

The argument for the 0 output is very similar.

These two claims then ensure that overall Pr[val(Xgood , Y good) = 1] ∼> 2−clenh,1 and Pr[val(Xgood, Y good) =

0] ∼> 2−clenh,2 .

Thus val(X,Y ) = {0, 1} as required.
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7.2.2 Parameters

Setting the parameters We will first list the various parameters involved in the construction

and say how we will set them.

• Let n be the length of the samples from the sources.

• Let k be the entropy of the input sources. Set k = 2log0.9 n.

• Let c1 be the error constant from Theorem 4.5.1.

• Let C = O
(

logn
log k

)

be the number of blocks that the extractor BExt of Theorem 4.5.1 requires

to extract from
√
k entropy. (See Corollary 7.2.14 below for the precise parameters we use

BExt for.) Without loss of generality, we assume that c1 ≫ 1/C.

• We use t to denote the branching factor of the tree. We set t = n1/C4
.

• We use nrows = tC log n to denote the maximum number of rows in any challenge matrix.

• We use clen to denote the length of every row in a challenge matrix. We set clen = n1/C2
.

• We use len = nrows · clen to denote the total size of the challenge matrices.

• We use clenq,r to denote smaller challenge lengths and analogously define lenq,r = nrows·clenq,r.
We set clenq,r = n

1
(3q+r)C2

.

Constraints needed in analysis Here are the constraints that the above parameters need to

satisfy in the analysis.

• t1/C
4 ≥ 20C, used in the proofs of Lemma 7.2.21 and Lemma 7.2.22.

• k
(10t2·C)2 ≥ k0.9, used at the end of Step 1 in the analysis.

• clen3 = o(k0.9), use at the end of Step 1 in the analysis and in the proof of Lemma 7.2.25.

• clen = o(kc1), used in the proof of Lemma 7.2.27.

• t · len · log n = o(clen2.1)⇔ tC+1 · log2 n = o(clen1.1), used at the end of Step 2 in the analysis.

• For any positive integers q, r, nrows = o(clenq,r/clenq,r+1) and nrows = o(clenq,r+2/clenq+1,r),

used in the proof of Lemma 7.2.29.
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Name Description Restrictions Notes

n Input length

k Entropy k Assume k ≥ 2log0.9 n

C Number of blocks for BExt O(log n/ log k) We always invoke BExt with
entropy ≥

√
k

t Degree of partition tree t = n1/C4

c1 Error parameter of BExt Inherited from BExt

Corollary 7.2.14.

nrows No. of rows in challenges and
responses

nrows ≤ (log n)tC

clen Length of each row in chal-
lenges and responses

clen = n1/C2

clenq,r Shorter challenge lengths clenq,r = n
1

(3q+r)C2

Table 7.1: Parameters used in the construction

7.2.3 Formal Construction

Definition 7.2.13. Given a challenge string Challenge interpreted as a d× len boolean matrix with

d ≤ nrows, a response string Response interpreted as a nrows× len boolean matrix, and a parameter

q, we say that Challenge is q-responded by Response, if the d × q submatrix of Challenge obtained

by taking the first q bits from each row is equal to the d × q submatrix of Response obtained by

taking the first q bits each from the first d rows of Response.

Components

Block extractor We’ll use the following corollary of Theorem 4.5.1:

Corollary 7.2.14 (Block Extractor). There is a constant c1 s.t. if the parameters C, n, k are

as above, there is a polynomial-time computable function BExt : {0, 1}Cn×{0, 1}n → {0, 1}out

satisfying:

For every every independent sources X ∈ {0, 1}Cn and Y ∈ {0, 1}n with H∞(Y ) ≥
√
k and

X = X1, · · · ,XC a
√
k block source,4

∣

∣

∣BExt(X,Y )− Uclen

∣

∣

∣ < 2−k
c1

Somewhere extractor with small error We will use the following corollary of Theorem 7.1.1

4That is, for every i < C and x1, . . . , xi ∈ Supp(X1,...,i), H∞(Xi+1|x1, . . . , xi) > 10clen5.
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to generate our responses. We will set up SE to work on strings with entropy
√
k with output

length clen. For every string x of length at most n (if the input is shorter we will pad it to

make it long enough), string y ∈ {0, 1}n, we define Response(x, y) to be the list of strings

obtained from SE(x, y), by interpreting each row of the output of SE(x, y) as an nrows× clen

boolean matrix.

Corollary 7.2.15 (Somewhere Extractor to generate Responses). For every n, k, len that

satisfy the constraints above, there is a polynomial time computable function Response :

({0, 1}n)2 → ({0, 1}len)ℓ (here the output is interpreted as a nrows × clen matrix) with the

property that for any two (n,
√
k) sources X,Y ,

Few outputs ℓ = poly(n).

Small error Response(X,Y ) is 2−10len-close to a convex combination of somewhere random

distributions and this property is strong with respect to both X and Y . Formally:

Pr
y←RY

[Response(X, y) is 2−10len-close to being SR ] > 1− 2−10len

Hitting matrices Let c be any fixed nrows × clen matrix. Then there are deficiency 2len

subsources X̂ ⊂ X, Ŷ ⊂ Y such that Pr[c ∈ SE(X̂, Ŷ )] = 1.

Fixed matrices on low deficiency subsources Given any particular index i, there are

20len deficiency subsources X̂ ⊂ X, Ŷ ⊂ Y such that Response(X̂, Ŷ )i is a fixed matrix.

Further, X,Y is 2−10len-close to a convex combination of subsources such that for every

X̂, Ŷ in the combination,

• X̂, Ŷ are independent.

• Response(X̂, Ŷ )i is constant.

• X̂, Ŷ are of deficiency at most 20len.

The Tree of Parts

We define a degree-t with depth log n/ log t < log n tree Tn,t that we call the n, t partition tree. The

nodes of Tn,t are subintervals of [1, n] defined in the following way:

1. The root of the tree is the interval [1, n].
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2. If a node v is identified with the interval [a, b] of length greater than k1/3, we let v1, . . . , vt

denote the t consecutive disjoint length-|v|/t subintervals of v. That is, vi = [a + b−a
t (i −

1), a + b−a
t i]. We let the ith child of v be vi.

For a string x ∈ {0, 1}n and a set S ⊆ [1, n] we’ll denote by xS the projection of x onto the

coordinates of S. If v is a node in Tn,t then xv denotes the projection of x onto the interval v.
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Operation of the algorithm Disp

Algorithm 7.2.16 (Disp(x, y)).

Input: x, y ∈ {0, 1}n.
Output: 1 bit.

1. On inputs x, y ∈ {0, 1}n, the algorithm Disp, working from the leaves upwards, will define

for each node v in the tree Tn,t a boolean challenge matrix (Challenge(xv, y)) with at most

nrows rows, each of length clen in the following way:

(a) If v is a leaf then Challenge(xv, y) is the matrix with a single all 0s row.

(b) If v is not a leaf then Challenge(xv, y) is computed as follows:

i. For each C-tuple 1 ≤ i1 < i2 < · · · < iC ≤ t let S = vi1 ∪vi2 ∪· · ·∪viC and append

the row BExt(xS , y) to the matrix Challenge(xv, y).

ii. Let v1, . . . , vt be v’s t children. If there exists an i such that Challenge(xvi , y) is

not clen-responded by Response(xv, y), let i0 be the smallest such i and append

all the rows of Challenge(xvi0
, y) to Challenge(xv, y).

2. Next Disp will make a second pass on the tree, again working from the leaves upwards.

This time it will define for each node v in the tree Tn,t a bit val(xv, y) in the following way:

(a) If v is a leaf then val(xv, y) = 0.

(b) If v is not a leaf, let v1, . . . , vt be v’s t children. Let q be the depth of v. If for every

i Challenge(xvi , y) is clenq,0-responded by Response(xvi , y), set val(xv, y) = 0, else let

i0 be the smallest i for which this doesn’t happen. Then,

i. If Challenge(xvi0
, y) is clenq,1-responded by Response(xv, y), set val(xv , y) = 1.

ii. Else if Challenge(xvi0
, y) is clenq,2-responded but not clenq,1-responded by

Response(xv, y), set val(xv, y) = 0.

iii. Else set val(xv, y) = val(xvi0
, y).

3. The output of Disp is val(x[1,n], y).
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7.2.4 Formal Analysis

The analysis proceeds in several steps. In each step we make a restriction on one or both of the

input sources. When we’re done, we’ll get the desired subsources Xgood, Y good.

Definition 7.2.17 (Path to a vertex). Given a partition tree Tn,t and a vertex v, let Pv to denote

the path from the vertex v to the root in the tree Tn,t. That is, the set of nodes (including v) on

the path from v to the root.

Definition 7.2.18 (Parent of a vertex). Given a partition tree Tn,t and a vertex v, let par(v) denote

the parent of v.

Definition 7.2.19 (Left family of v). Given a partition tree Tn,t and a vertex v, let Lv denote the

left family of v, i.e., if v is the interval [c, d], define Lv = {[a, b] ∈ Tn,t : a ≤ c and par(w) ∈ Pv}.

Note that for every vertex v, |Lv| = O(t log n), since the number of vertices in Pv is at most

log n.

Step 1: Preprocess X

The first step involves only the first source X. We’ll restrict X to a subsource Xmed that will have

some attractive properties for us: we will ensure that in Xmed there are a couple of parts which

have entropy but do not have all the entropy of the source. We first prove a general lemma —

Lemma 7.2.20 — and then use it to prove Lemma 7.2.21 and Lemma 7.2.22 to show that we obtain

the desired subsource Xmed.

Lemma 7.2.20 (Two-types lemma.). Let X be a general k source over {0, 1}n divided into t parts

X = X1, · · · ,Xt. Let C be some positive integer and let k′ < k be such that (C + 1)k′ + 4t2 ≤ k.

Then, there exists a subsource X ′ ⊆ X of deficiency at most d = Ck′ + 2t2 that satisfies one of the

following properties:

Either

Somewhere high source — one high part There exists i ∈ [t] such that the first i− 1 parts of

X ′ (namely X ′1, . . . ,X
′
i−1) are constant, and H∞(X ′i) ≥ k′.

or
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Somewhere block-source — C medium parts There exist 0 < i1 < i2 < · · · < iC ≤ t such that

the first i1 − 1 parts of X ′ are constant for every j ∈ [C], and X ′i1 ,X
′
i2
, . . . ,X ′iC is a (C, k′/t)

block-source.

Proof. We let τ1 = 0, τ2 = k′/t, τ3 = k′ and τ4 = n and use Lemma 2.1.18 to reduce X to a

deficiency 2t2 source X ′′ such that for every i ∈ [t] and every x1, . . . , xi−1 ∈ Supp(X ′′1,...,i−1), the

conditional entropy H∞(X ′′i |x1, . . . , xi−1) always falls into the same interval of [0, k′/t], [k′/t, k′]

and [k′, n] regardless of the choice x1, . . . , xi.

We call parts where this conditional entropy falls into the interval [0, k′/t) low, parts where

this entropy falls into the interval [k′/t, k′) medium and parts where it is at least k′ high. We divide

to two cases:

Case 1: if there are at most C− 1 medium parts before the first high part, we let i be the position

of the first high part and fix the first i− 1 parts to their most typical values. The conditional

entropy X1 given this prefix is still at least k′. Furthermore, since we fixed at most t low

parts and at most C medium parts the overall deficiency is at most (C− 1)k′ + tk′/t = Ck′.

Case 2: If there are at least C medium parts in the source, we let i be the position of the first

medium part and fix the first i− 1 parts to their most typical value. All medium parts remain

medium conditioned on this prefix and the entropy we lose is at most tk′/t ≤ k′.

We’ll now use Lemma 7.2.20 to show that we can restrict the input source X to a subsource

X sb (for “somewhere block”) satisfying some attractive properties:

Lemma 7.2.21. Let X be a source over {0, 1}n with min-entropy k. Let C, t be values satisfying

t1/C
4 ≥ 20C. Then, there exists a deficiency k/10 + 4t2 log n subsource X sb of X and a vertex vmed

of Tn,t with the following properties:

• For every v ∈ Lvmed, X sb
v is fixed to a constant.

• The source X sb

par(vmed)
is a (C, k

20tCn1/C4 )-somewhere block source.

• X sb

vmed is the first block of the block source in X sb

par(vmed)
.
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Figure 7.2: Finding a medium part in X sb

Proof. We prove the lemma by induction on ⌈log(n/k)⌉ = ⌈log n− log k⌉. If n = k then this

is the uniform distribution and everything is trivial. We invoke Lemma 7.2.20 with parameter

k′ = k/(20C) to obtain a deficiency k/20 + 4t2 subsource X ′ that is either k′-somewhere high or

(C, k′/t)-somewhere block source.

If X ′ is (C, k′/t)-somewhere block source then set X sb = X ′, par(vmed) = [1, n] and vmed

corresponding to the first part of the block source given by Lemma 7.2.20. Since k′/t = k/(20tC)

we have that X sb, vmed satisfy the properties in the conclusion of the lemma.

The second possibility is that X ′ is a k′-somewhere high source. We let i be the index of

the high block of entropy k′, and let vi be the corresponding interval. Note that X ′vj
attains some

fixed value with probability 1, for all j < i. Let n′ = |vi| = n/t. Since n′

k′ = n
k

20C
t
< n

4k we have that

log(n′/k′) < log(n/k)− 2 and so can assume by the induction hypothesis that the statement holds

for the source Z = X ′vi
. This means that we have a subsource Z ′ ⊂ Z of deficiency k′/10+4t2 log n′

of Z and a node par(vmed) in the tree Tn′,t such that (below we use that t1/C
4 ≥ 20C):

• For every v ∈ Lvmed , Z ′v is fixed to a constant.

• The source Z ′
par(vmed)

is a (C, k′

20tCn′1/C4 = k

20tCn1/C4 · t
1/C4

20C ≥ k

20tCn1/C4 )-somewhere block source.

• Z ′
vmed is the first block of the block source in Z ′

par(vmed)
.
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We define X sb to be the natural extension of the subsource Z ′ to a subsource of X ′. Then

we see that X sb ⊂ X ′ is of deficiency at most k′/10 + 4t2 log n′. Since log n′ ≤ log n − 1 and

k′/10 < k/20, k′/10 + 4t2 log n′ ≤ k/20 + 4t2(log n− 1). Hence X sb ⊂ X is a source of deficiency at

most k/10 + 4t2 log n. It is clear that X sb and par(vmed) satisfy our requirements.

Note that by our setting of parameters, the entropy of the medium part promised by the

above lemma is actually k

20tCn1/C4 = k
20t2C

.

Next we show that by invoking the above lemma twice, we can move to a subsource Xmed

that has even more structure.

Lemma 7.2.22. Let X be a source over {0, 1}n with min-entropy k. Let C, t be as above. Then,

there exists a deficiency k/5 + 8t2 log n subsource Xmed of X and three vertices par(vmed), vmed and

vb = [a, b] of Tn,t with the following properties:

• vmed is an ancestor of vb.

• The source Xmed

par(vmed)
is a (C, k

40tCn1/C4 )-somewhere block source, and Xmed

vmed is the first medium

block in this source.

• The source Xmed

vb is a (C, k

(20tCn1/C4
)2

)-somewhere block source.

• There is a value x ∈ {0, 1}a−1 such that Xmed

[1,a−1] = x with probability 1.

Proof. We prove this lemma by invoking Lemma 7.2.21 twice. We start with our source X and

invoke Lemma 7.2.21 to find a subsource X sb and vertices par(vmed), vmed as in the conclusion of the

lemma. Next we apply the lemma again to X sb

vmed .

Since X sb

vmed is a source on n′ < n bits with min-entropy k

20tCn1/C4 , we get that there is

a subsource Xmed ⊂ X sb with deficiency at most k

400tCn1/C4 + 4t2 log n and a vertex vb which is

a somewhere block source. Since X sb ⊂ X was of deficiency at most k/10 + 4t2 log n, we get

that Xmed ⊂ X is a subsource of X with deficiency at most k/5 + 8t2 log n. Further note that

H∞(Xmed

vmed) ≥ k

20tCn1/C4 − k

400tCn1/C4 − 4t2 log n ≥ k

30tCn1/C4 − 4t2 log n ≥ k

40tCn1/C4 by our choice of

parameters.
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Figure 7.3: Finding two related medium parts in Xmed

We apply Lemma 7.2.22 to the input source X with our parameters k, t as chosen in

Section 7.2.2. We obtain a deficiency k/4 subsource (since 4t2 = o(k)) Xmed of X, and three

nodes par(vmed), vmed, vb = [a, b] in the tree Tn,t satisfying (by our choice of parameters):

Result of Step 1: A deficiency k/4 subsource Xmed ⊂ X satisfying:

vmed is the leading block in a block source: Xmed

par(vmed)
is a (C, k

40tCn1/C4 ≥ k0.9)-somewhere block

source, with a sub-block Xmed

vmed which is the first non-constant “good” sub-block.

Xmed

vb has a block source: The source Xmed

vb is a (C, k
(10t2C)2

≥ k0.9)-somewhere block source.

Fixed left family: For every w ∈ Lvb (Definition 7.2.19), Xmed
w is fixed.

Step 2: Ensuring that challenges from the left family are properly responded.

Our desired good subsources Xgood and Y good will be deficiency clen3 subsources of Xmed and Y .

We will ensure that in the final subsources, for every element w ∈ Lvb , Challenge(Xgood
w , Y good) is
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clen-responded by the response Response(Xgood

par(w), Y
good) with probability 1.

First we will show that we can move to a subsource where the relevant challenges are fixed.

Claim 7.2.23. There is a subsource Y ′ ⊂ Y of deficiency at most t · len · log n s.t. every challenge

Challenge(Xmed
w , Y ′) for w ∈ Lvb is fixed to a constant string in the subsources Xmed, Y ′.

Proof. By the {Fixed left family} property after Step 1, we have that for every w ∈ Lvb , Xmed
w

is fixed. Note that Challenge(Xmed
w , Y ) is a function only of Xmed

w and Y . Thus, for every w ∈ Lvb ,

Challenge(Xmed
w , Y ) is a function only of Y .

There are at most |Lvb | ≤ t log n challenges to consider, each of length len bits. Thus by

Proposition 2.1.10, we can ensure that there is a deficiency t · len · log n subsource Y ′ ⊂ Y in which

all the challenges are also fixed.

Next we will prove that there are even smaller subsources in which each of these challenges

is responded with probability 1.

Claim 7.2.24. There are subsources Xgood ⊂ Xmed and Y good ⊂ Y ′ of deficiency at most O(t · len ·
log n) in which every challenge Challenge(Xgood

w , Y good), w ∈ Lvb is clen-responded with probability 1

by the response Response(Xgood

par(w)
, Y good) .

Proof. Let Lvb = {w1, w2, . . . , wd}. We will prove the stronger statement that for every i with

1 ≤ i ≤ d, there are subsources X ′′ ⊂ Xmed, Y ′′ ⊂ Y ′ of deficiency at most 2leni in which each

Challenge(X ′′wj
, Y ′′) is clen-responded by Response(X ′′

par(wj)
, Y ′′) for 1 ≤ j ≤ i. We prove this by

induction on i.

For the base case of i = 1, note that Challenge(Xmed
w1
, Y ′) is fixed to a constant in the

source Xmed. Since H∞(Xmed

par(w1)
) ≥ H∞(Xmed

vb ) ≥ k0.9 and H∞(Y ′) ≥ k − t · len · log n ≥ k0.9,

we get that Xmed

par(w), Y
′ are sources that have enough entropy for our somewhere extractor SE to

succeed. By the {Hitting matrices} property of Corollary 7.2.15, we can then ensure that there

are deficiency 2len subsources X ′′ ⊂ Xmed, Y ′′ ⊂ Y ′ in which Challenge(X ′′w1
, Y ′′) is clen-responded

by the Response(X ′′
par(w1),Y ′′ with probability 1.

For i > 1, we use the inductive hypothesis to find subsources X̂ ⊂ Xmed, Ŷ ⊂ Y ′ of defi-

ciency at most 2len(i − 1) on which all the previous challenges are clen-responded. Then, since

H∞(X̂par(wi)) ≥ H∞(Xmed

vb )−2len(i−1) ≥ k0.9 and H∞(Ŷ ) ≥ k− t · len · log n−2len(i−1) ≥ k0.9, we

get that X̂par(w), Ŷ are sources that have enough entropy for our somewhere extractor SE to succeed.
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Thus we can find deficiency 2len·i subsourcesX ′′ ⊂ Xmed, Y ′′ ⊂ Y ′ in which even Challenge(X ′′wi
, Y ′′)

is clen-responded by Response(X ′′
par(wi)

, Y ′′).

Together the claims give that Xgood ⊂ Xmed, Y good ⊂ Y are subsources in which all the

challenges of the left family are responded with probability 1 and are of deficiency at most O(t ·
len · log n) < clen2.1 by our choice of parameters.

Since we only went down to a clen2.1 deficiency subsource of Xmed in all of these steps, by

Corollary 2.1.17, we still retain the block source structure of Xmed

vb . In particular, the corollary

implies that Xgood

vb is 2−19clen3
close to being a (C, k0.9 − 20clen3 ≥ k0.8)-somewhere block source.

Similarly H∞(Xgood

vmed) ≥ H∞(Xmed

vmed)−clen3 ≥ k0.9−clen3 ≥ k0.8 and conditioned on any fixing

of Xgood

vmed , H∞(Xgood

par(vmed)
) ≥ k0.9, since Xmed

par(vmed)
was shown to be a block source with min-entropy

k0.9.

Result of Step 2: At this point we have Xgood and Y good, which are deficiency k/4 + clen3

subsources of the sources X and Y satisfying:

Xgood

vmed ,X
good is a block source: H∞(Xgood

vmed) ≥ k0.8 and Xgood

par(vmed)
has entropy greater than k0.9

even conditioned on any fixing of Xgood

vmed .

Xgood

vb has a block source: The source Xgood

vb is 2−19clen3
close to being a (C, k0.8)-somewhere block

source.

Low blocks are correctly identified: For every w ∈ Lvb Challenge(Xgood
w , Y good) is clen-responded

with probability 1 by Response(Xgood

par(w), Y
good).

Step 3: Ensuring that challenges along the path are somewhere random

We argue that in Xgood, Y good, for every w ∈ Pvb , Challenge(Xgood
w , Y good) is 2log2 n(2−k

c1 +2−clen)-close

to having min-entropy clen. In fact something even stronger is true:

Lemma 7.2.25 (The challenges along the good path are somewhere random). Let X ′ ⊂ Xgood, Y ′ ⊂
Y good be any deficiency 20len subsources. Then in these subsources, if w ∈ Pvb is an ancestor of vb,

Challenge(X ′w, Y
′) is 2log2 n(2−k

c1 + 2−clen)-close to being somewhere random.
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Proof. We will prove the lemma by induction on the vertices in Pvb , starting from vb and moving

up the path.

Let h be the depth of vb in the tree (note that h = O(log n)). Let ℓ be the number of

matrices in the output of Response (note that ℓ = poly(n) by Corollary 7.2.15). For w ∈ Pvb at a

distance of i from vb, we will prove that as long as X ′ ⊂ Xgood , Y ′ ⊂ Y good are of deficiency at most

(h− i− 1)20len, Challenge(X ′w, Y
′) is (2ℓ)i(2−k

c1 + 2−clen)-close to being somewhere random.

For the base case note that by Corollary 2.1.17, X ′
vb is 2−19clen3

+ 2−20clen3
< 2−18clen3

-close

to being a (C, k0.8− (h−1)20len−20clen3 >
√
k) somewhere block source and Y ′ is an independent

source with min-entropy k − (k/4 + clen3 + (h − 1)20len) >
√
k. Thus, in the subsources X ′, Y ′,

Challenge(X ′
vb , Y

′) is 2−18clen3
+ 2−k

c1 < (2−clen + 2−k
c1 )-close to being somewhere random by

Corollary 7.2.14.

Now let w be an ancestor of vb and let w′ be its child on the path to vb. We want to show

that the challenge has entropy even on deficiency (h− i−1)20len subsources X ′ ⊂ Xgood, Y ′ ⊂ Y good.

We will show that with high probability Challenge(X ′w, Y
′) contains Challenge(X ′w′ , Y ′) as a

substring. By the induction hypothesis we will then get that Challenge(X ′w, Y
′) must be statistically

close to being somewhere random also. By our construction, to ensure that this happens we merely

need to ensure that Challenge(X ′w′ , Y ′) is clen unresponded by Response(X ′w, Y
′). We will argue this

using the union bound. Fix an index j and consider the j’th response string Response(X ′w, Y
′)j .

By the {Fixed matrices on low deficiency subsources} property of Corollary 7.2.15,

we get that X ′, Y ′ is 2−10len close to a convex combination of independent sources X̂, Ŷ , where

each element of the convex combination is of deficiency at most 20len and the j’th response string

Response(X̂w, Ŷ )j is fixed to a constant on these subsources. Each element of this convex com-

bination then has a deficiency of at most (h − i − 1)20len + 20len = (h − (i − 1) − 1)20len from

Xgood, Y good.

By the induction hypothesis, we get that Challenge(X̂w′ , Ŷ ) is (2ℓ)i−1(2−k
c1 +2−clen)-close to

being somewhere random. Thus, the probability that Challenge(X ′w′ , Y ′) i responded by Response(X ′w, Y
′)

is at most 2−clen + (2ℓ)i−1(2−k
c1 + 2−clen) < 2 · (2ℓ)i−1(2−k

c1 + 2−clen). Thus by the union bound

over the ℓ response strings, we get that the probability that the challenge is responded is at most

(2ℓ)i(2−k
c1 + 2−clen).

Note that the length of the path to vb from the root is o(log(n)), so we will need to repeat
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the induction only log(n) times. We get that the challenge is (2ℓ)h(2−k
c1 +2−clen) < 2log2 n(2−k

c1 +

2−clen)-close to being somewhere random.

Result of Step 3: At this point we have Xgood and Y good, which are deficiency k/4 + clen3

subsources of the sources X and Y satisfying:

Challenges along the path are somewhere random, even on subsources IfX ′ ⊂ Xgood, Y ′ ⊂
Y good are deficiency 20clen subsources, Challenge(X ′w, Y

′) is 2log2 n(2−k
c1 +2−clen) close to being

somewhere random in X ′, Y ′, for every vertex w ∈ Pvmed .

Step 4: Ensuring that Disp outputs both 0 and 1

We will ensure that our disperser outputs both 1 and 0 with significant probability. There are two

remaining steps:

• We will ensure that in our good subsources Xgood , Y good, with high probability (say 1 − γ)

val(Xgood

[1,n], Y
good) = val(Xgood

vmed , Y
good).

• We will ensure that in our good subsources Xgood, Y good, val(Xgood

vmed , Y
good) is both 0 and 1 with

significant probability (say γ1/10).

By the union bound these two facts imply that the disperser outputs both 0 and 1 with

positive probability.

Lemma 7.2.26. For every vertex v on the path from vmed to the root and for any 1 ≤ q ≤ clen,

Pr[Challenge(Xgood

v , Y good) is q-responded by Response(Xgood

par(v), Y
good)] ≤ 2−q + 2log2 n(2−k

c1
+ 2−clen)

Proof. By the {Fixed matrices on low deficiency subsources} property of Corollary 7.2.15,

we get that Xgood, Y good is 2−10len-close to a convex combination of independent sources, where each

element X ′, Y ′ of the convex combination is of deficiency at most 20len and the j’th response string

Response(X ′
par(v), Y

′)j is fixed to a constant on these subsources. Thus by Lemma 7.2.25,

Pr[Challenge(X ′v , Y
′) is q-responded by Response(X ′par(v), Y

′)] < 2−q + 2log2 n(2−k
c1

+ 2−clen)
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Lemma 7.2.27 (val(Xgood

vmed , Y
good) propagates to the root). Let h be the depth of vmed in the tree.

Then

PrXgood ,Y good [val(xvmed , y) 6= val(x[1,n], y)] < 2−clenh,0

Proof. We will show that for every w ∈ Pvmed , w 6= [1, n], Pr[val(Xgood
w , Y good) 6= val(Xgood

par(w), Y
good)] <

2−clenh,0/ log2 n. Then we will apply a union bound over all the edges in the path from the root to

vmed to get the bound for the lemma.

Let h′ be the depth of w in the tree. Now note that by our construction

Pr[val(Xgood

w , Y good) 6= val(Xgood

par(w), Y
good)]

< Pr[Challenge(Xgood

w , Y good) is clenh′,2-responded by Response(Xgood

par(w), Y
good)]

≤ 2−clenh′,2 + 2log2 n(2−k
c1

+ 2−clen)

Where the last inequality is by Lemma 7.2.26. Using the union bound over all poly(n)

response strings, we then get that the probability that the challenge is responded is at most

poly(n)(2−clenh′,2 +2log2 n(2−k
c1 +2−clen)+2−10len) < (1/ log2 n)2−clenh,0 by our choice of parameters.

Applying a union bound over the path from the root of the tree to vmed, we get the bound claimed

by the lemma.

Finally we argue that the probability that val(xvmed , y) is 0 or 1 is significantly higher than

2−clenh,0 . We do this by showing that for any q, the probability that Challenge(Xgood

vmed , Y
good) is q-

responded by

Response(Xgood

par(vmed)
, Y good) can be bounded from above and below:

Lemma 7.2.28. Let p = Pr[Challenge(Xgood

vmed , Y
good) is q-responded by Response(Xgood

par(vmed)
, Y good)].

Then,

2−q·nrows − 2−10len − 2−20len ≤ p ≤ 2−q + 2log2 n(2−k
c1

+ 2−clen)

Proof. In Step 2 of the analysis we showed that Xgood

vmed ,X
good

par(vmed)
is block source with block entropy

k0.9. Thus Xgood is a convex combination of sources where for every element of the combination X̂ ,
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• X̂vmed is fixed

• X̂par(vmed) has min-entropy k0.8

For every such subsource X̂, Challenge(X̂med
v , Y good) is a function only of Y good. Thus by

Proposition 2.1.10, for every such subsource X̂, Y good is 2−20len close to a convex combination of

sources where for each element of the combination Ŷ is of deficiency at most 21len and Challenge(X̂med
v , Ŷ )

is fixed to a constant. Thus overall we get a convex combination of sources where for each element

of the convex combination:

• In X̂, Ŷ , Challenge(X̂med
v , Ŷ ) is fixed.

• X̂par(vmed), Ŷ are independent sources with min-entropy k0.8 each.

By Corollary 7.2.15 we get that Response(X̂par(vmed), Ŷ ) is 2−10len-close to being somewhere

random, implying that the challenge is q-responded with probability at least 2−q·nrows − 2−10len in

these subsources. Thus we get that Pr Challenge(Xgood

vmed , Y
good) is q-responded by Response(Xgood

vmed , Y
good)] ≥

2−q·nrows − 2−10len − 2−20len.

The upper bound follows from Lemma 7.2.26.

This lemma then implies that val(Xgood

vmed , Y
good) takes on both values with significant proba-

bility:

Lemma 7.2.29 (val(Xgood

vmed , Y
good) is both 0 and 1 with significant probability).

Pr[val(Xgood

vmed , Y
good) = 1] > (0.5)2−lenh,1

Pr[val(Xgood

vmed , Y
good) = 0] > (0.5)2−lenh,2

Proof. Note that
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Pr[val(Xgood

vmed , Y
good) = 1]

≥ Pr[Challenge(Xgood

vmed , Y
good) is clenh,1-responded by Response(Xgood

par(vmed)
, Y good)]

− Pr[Challenge(Xgood

vmed , Y
good) is clenh,0-responded by Response(Xgood

par(vmed)
, Y good)]

≥ 2−clenh,1·nrows − 2−10len − 2−20len

− 2−clenh,0 + 2log2 n(2−k
c1

+ 2−clen)

≥ 2−lenh,1 − 2−10len − 2−20len − 2 · 2−clenh,0

≥ (0.5)2−lenh,1

Similarly,

Pr[val(Xgood

vmed , Y
good) = 0]

≥ Pr[Challenge(Xgood

vmed , Y
good) is clenh,2-responded by Response(Xgood

vmed , Y
good)]

− Pr[Challenge(Xgood

vmed , Y
good) is clenh,1-responded by Response(Xgood

vmed , Y
good)]

≥ 2−lenh,2 − 2−10len − 2−20len − 2 · 2−clenh,1

> (0.5)2−lenh,2
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Chapter 8

Distributed Computing with Weak

Randomness

Distributed computing is rich with examples of problems that have efficient solutions under the

assumption that we have access to truly random bits, yet are impossible to solve deterministically.

The object of our work in this chapter is to find the weakest assumption on the source of

randomness that would still be sufficient to design efficient distributed computing protocols. This

question was first considered by Goldwasser, Sudan and Vaikuntanathan [GSV05]. They showed

that Byzantine agreement, a fundamental problem in distributed computing, can be solved even

if each player only has defective sources of randomness available to them. However, the sources

they considered are fairly restrictive, and their main open question was whether similar results can

be obtained for general weak sources. In this chapter, we show that, indeed, strong results can be

obtained for general weak random sources.

Note that any extractor already gives a generic way to weaken the assumption that we

have access to truly random bits — we can simply apply an extractor to the defective sources of

randomness to get true random bits, and then run the protocols that work under the stronger

assumption. For instance, if we have an efficient construction of a 2 source extractor, we can use

it get distributed computing protocols as long as each player has access to 2 independent sources

with sufficient entropy.

It turns out that we can do much better than this. We will use our extractor constructions

to get protocols that operate under much weaker assumptions. For instance, we will be able to
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give protocols that operate even under the assumption that each player only has access to a single

weak source with extremely small entropy, even though it is impossible to deterministically extract

randomness from a single such source. We will be more precise about the exact parameters that

we achieve soon.

First we discuss the models of distributed computing that we consider. We assume p total

players communicate with each other in order to attain some (common or individual) computational

goal with the aid of the other players. We assume that an unknown t of the players are faulty. We

allow Byzantine faults: faulty players may behave arbitrarily and even adversarially1. Not only do

the players seek random bits, but they want their randomness to be private.

We focus on the full information model: communication between the players is by broadcast.

Most of our results are for synchronous networks: communication between players takes place in

rounds and every message transmitted at the beginning of a round is guaranteed to reach its

destination at the end of the round. In this case we allow rushing: the faulty players may wait

for all good players to transmit their messages for a particular round, before transmitting their

own messages. We also have results on asynchronous networks: the only guarantee is that every

message will eventually be received.

8.0.5 Network Extractors

Following the strategy outlined in [GSV05], we obtain our results by considering the problem of

extracting private randomness for players in a network. We design protocols that allow players to

communicate with each other in order to obtain private truly random bits, even if they only have

access to defective sources of randomness to start with.

We will be interested in designing protocols which guarantee that at least g of the non-faulty

players will end up with distributions that look close to uniform, even to a player who observes all

of the transmissions that are made during the running of the protocol (i.e., the distributions are

private). We call such a protocol a network extractor2.

1It turns out that the protocols in this chapter can withstand a stronger form of adversarial action — we can
even withstand bounded bandwidth adversaries at every player. It is easy to show that even if the faulty players have
access to a small number of bits of information about the sources of randomness of the non-faulty players, they cannot
disrupt these protocols. This follows from the fact that if X is any source with min-entropy k and f : {0, 1}n → {0, 1}t

is any function, conditioning on the value of f(X) essentially reduces the entropy of X by t. If X is a block source,
a similar fact can be shown.

2This concept was introduced by Goldwasser et al. [GSV05], though they didn’t assign it a name.
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Before defining this, we fix some notation. Player i begins with an input weakly-random

sample xi ∈ {0, 1}n and ends in possession of a hopefully-random sample zi ∈ {0, 1}m. Let b be the

concatenation of all publicly broadcasted strings in the protocol. Capital letters such as Zi and B

denote these strings viewed as random variables.

Definition 8.0.30 (Network Extractor). A protocol is a (t, g, ǫ) network extractor for min-entropy

k if for any min-entropy k independent sources X1, . . . ,Xn over {0, 1}n and any choice of t faulty

players, after running the protocol, the number of players i for which

|(B,Zi)− (B,Um)| < ǫ

is at least g. (Here Um is the uniform distribution on m bits, independent of B, and the absolute

value of the difference refers to variation distance).

We say that a protocol is a synchronous extractor if it is a network extractor that operates

over a synchronous network. We say that it is an asynchronous extractor if it is a network extractor

that operates over an asynchronous network.

We say that a protocol is a network extractor for block sources if each player is assumed to

have access to a block source. We say that a protocol is polynomial time computable if the protocol

can be run by players who can only evaluate polynomial time computable functions.

Once we have designed a good network extractor, we can use it to ensure that a large number

of non-faulty players in the network end up with private randomness. We can then run any of the

distributed computing protocols that were designed to work under the assumption that players

have access to private randomness. Our gains in our paper over Goldwasser et al. are obtained by

building better network extractors than they manage to build.

We focus on two basic distributed computing problems: leader election/collective coin-

flipping and Byzantine agreement.

8.0.6 Leader Election and Collective Coin Flipping

The goal of a protocol for leader election is to select a uniformly random leader from a distributed

network of n players. In the presence of faulty players, we would like bound the probability that

one of the faulty players gets selected as the leader.
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Leader election is known to be roughly equivalent to the problem of collective coin-flipping.

The goal of a protocol for collective coin flipping is to simulate access to a trusted public coin —

the outcome of the protocol is a bit (or bits) that is supposed to be uniform, even if many of the

participants in the protocol are faulty or even malicious.

Collective coin-flipping was first considered in the full information model by Ben-Or and

Linial [BOL78]. A result of Kahn, Kalai and Linial [KKL88] shows that if among p players there

are ω(p/ log p) faulty players, there is no one round protocol for this problem in this model. A long

sequence of work [Sak89, AN93, BN00, CL95, ORV94, Zuc97, RZ01, Fei99] has resulted in a protocol

which requires only log∗(p) + O(1) rounds to elect a leader (and hence perform a collective coin

flip) under the assumption that each player has access to private truly random bits [RZ01, Fei99]

in a synchronous full information network.

8.0.7 Byzantine Agreement

In the Byzantine agreement problem, introduced by Pease, Shostak and Lamport [PSL80], the goal

is to design a protocol that would allow the n players to agree on the result of some computation,

even if some t of them are faulty. As in the case of leader election, Byzantine agreement has been

studied under several models for the distributed computing environment.

Following the work of Ben-Or [BO83], a series of randomized protocols for asynchronous as

well as synchronous networks appeared, some of which assume the existence of private communi-

cation channels between pairs of players (for instance [Rab83]) while others do not require secret

communication (for instance [CC85]).

In the full information model, there are protocols that tolerate t < p/3 faulty players using

O(log p) rounds [GPV06] in synchronous networks, while the best asynchronous protocols require

an exponential number of rounds [BO83].

8.0.8 Previous Work and Our Results

The results in this chapter are based on work with Xin Li and David Zuckerman [LRZ07].

First we summarize the results of Goldwasser et al. [GSV05].

Restricted Sources Under the assumption that the players have access to sources that are more
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restricted than block sources3 of length n with min-entropy that is larger than n/2, they give

private channel protocols that operate in O(1) expected rounds and tolerate t < p/3 faulty

players in synchronous networks. In the full information model, they give an O(t/ log p)

expected round protocol tolerating t < p/3 faulty players and an O(2p) expected round

protocol tolerating t < p/3 faulty players in asynchronous networks.

General Sources Under the assumption that the players have access to general sources, they give

results only for the case of private channels. They give an O(1) expected round protocol that

tolerates t < p/3 faulty players in synchronous networks and a O(1) expected round protocol

that tolerates t < p/5 faulty players for asynchronous networks.

They posed the open question of whether protocols can be designed in the full information

model assuming only that each player has access to general weak sources of randomness. We answer

this question in this paper. We have many new results. We highlight some of them below. All of

these results are in the full-information model, assuming that each player only has access to weak

sources.

Using Weak Random Sources Without Loss As long as the min-entropy rate of the sources

is greater than 1/2, we give protocols for Leader Election and Byzantine Agreement that

match the best protocols for these problems under the assumption that true randomness is

available. In fact, as long as the fraction of faulty players t is bounded by a constant less

than 1, we show how to build a 1 round synchronous network extractor which leaves almost

every non-faulty player with private randomness. We prove the following theorem:

Theorem 8.0.31 (High Entropy Network Extractor). There exists a constant c > 0 such

that for every γ > δ > 0, constant β > 0 and p large enough, there exists a polynomial

time computable 1 round (δp, (1− γ)p, 2−kc
+ 2−cβnp) synchronous extractor for min-entropy

k ≥ (1
2 + β)n in the full-information model.

This theorem allows us to simulate any distributed computing protocol that operates under

the assumption that each player has access to truly random bits with the aid of general weak

sources.
3They refer to these sources as block sources, though they are not as general as block sources are defined in this

paper and the extractor literature.
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In particular, using the Byzantine agreement protocol of Goldwasser et al. [GPV06], we obtain

the following theorem:

Theorem 8.0.32 (Byzantine Agreement Without Loss). Let α, β > 0 be any constants. Then

there exists a constant γ > 0 such that if each player has access to a (n, (1/2 + β)n) source

and γ log n > log log p and p is large enough, there exists a polynomial time computable

synchronous O(log p) round protocol for Byzantine Agreement tolerating (1/3 − α)p faulty

players in the full information model.

For Leader Election, using the protocol of Feige [Fei99], gives us the following theorem:

Theorem 8.0.33 (Leader Election Without Loss). Let α, β > 0 be any constants. Then

there exists a constant γ > 0 such that if each player has access to a (n, (1/2 + β)n) source

and γ log n > log log p and p is large enough, there exists a polynomial time computable

synchronous log∗ p + O(1) round protocol for Leader Election tolerating (1/2 − α)p faulty

players in the full information model.

Results for Low Entropy in Synchronous Networks In the case that the min-entropy of the

general sources is much lower, we can still design a network extractor, though we suffer a loss

in terms of the number of non-faulty players that end up with private truly random bits. We

can show that if t players are faulty to start off with, roughly p− 2t of the good players end

up with private randomness. We get the following theorem:

Theorem 8.0.34 (Low Entropy Network Extractor). There exists a constant c > 0 such

that for every γ > δ > 0, β > 0 and p large enough, there exists a polynomial time com-

putable 1 round (δp, (1 − 2γ)p, 2−k
c
) synchronous extractor for min-entropy k ≥ nβ in the

full-information model.

Note that the number of players that end up with private randomness is much smaller that the

number of non-faulty players. Luckily, it turns out that some of the protocols for Byzantine

Agreement only require that a few of the non-faulty players have access to good random bits.

The rest need to just follow the instructions of the protocol.

Using the best available results for Byzantine Agreement and Leader Election when players

have access to truly random bits gives us the following theorems:
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Theorem 8.0.35 (Byzantine Agreement for Low Entropy). Let α, γ > 0 be any constants.

There exists a constant β > 0 such that if each player has access to a (n, nγ) source, with

γβ log n > log log p and p is large enough, there exists a polynomial time computable syn-

chronous O(log p) expected round protocol for Byzantine Agreement tolerating (1/4 − α)p

faulty players in the full information model.

Theorem 8.0.36 (Leader Election for Low Entropy). Let α, γ > 0 be any constants. There

exists a constant β > 0 such that if each player has access to a (n, nγ) source, with γβ log n >

log log p and p is large enough, there exists a polynomial time computable synchronous log∗ p+

O(1) round protocol for Leader Election tolerating (1/3− α)p faulty players in the full infor-

mation model.

Results for General Sources in Asynchronous Networks In the case of asynchronous net-

works, we can use our new extractor construction to build a network extractor that works

as long as the number of faulty players is bounded by p/6 and one third of the sources are

significantly shorter than the others.

Theorem 8.0.37 (Asynchronous Extractor). There exist constants β, c > 0 such that for

every α, γ > 0, if our network has 2p/3 players with access to (n, nγ) sources and the remain-

ing players have access to a (nγβ, k = nαγβ) source, then as long as p is large enough and

t < p/6, there exists a polynomial time computable 1 round (t, p/6 − t, 2−kc
) asynchronous

extractor in the full-information model.

We use this extractor to obtain the following theorem:

Theorem 8.0.38 (Asynchronous Byzantine Agreement). There exists a constant β > 0 such

that for every α, γ > 0, if our network has p players of which 2p/3 players with access to

(n, nγ) sources and the remaining players have access to a (nγβ, k = nαβγ) source, then as

long as p is large enough and the number of faulty players t satisfies 18t+ 3 < p, there exists

a polynomial time computable O(2p) expected round protocol for Byzantine Agreement in the

full-information model.
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8.0.9 Techniques

Given a C-source extractor, we can immediately get some kind of network extractor. We could

designate p/C of the players as receivers, and each receives the weak random strings from a distinct

set of C−1 other players. The player can then apply a C-source extractor to these C−1 strings plus

her own. If an honest player receives strings from only honest players, then the extractor output

will be close to uniform. This is the basis for our asynchronous extractor.

For synchronous networks, we can do much better. The idea is to allow a player to receive

several C-tuples. We then apply a C-source extractor to each C-tuple (for now the received player

doesn’t use her own string). If at least one of these C-tuples contain strings only from honest

players, then the output Y will be a somewhere random (Chapter 3).

In Chapter 4 we constructed an extractor for two independent sources as long as one of the

sources is a somewhere random source with a small number of rows. By applying this extractor to

the above string Y plus the player’s own string, the output will be close to uniform.

Now the issue is how to choose the C-tuples. To choose them, we use two ingredients. The

first ingredient is what we call an AND-disperser. This is a bipartite graph with low left degree

such that for any large enough set S on the right, there are several vertices on the left all of whose

neighbors lie in S. Intuitively, such vertices on the left correspond to good C-tuples.

However, the AND-disperser by itself doesn’t give good results. This is because it doesn’t use

somewhere random sources. So our second ingredient is a disperser. The disperser will allow us to

pick several C-tuples and obtain a somewhere-random source. Since we only need a constant-degree

disperser, it’s enough to use a constant-degree expander.

8.1 Synchronous Network Extractors

In this section we discuss how to build network extractors (Definition 8.0.30) in a full-information

synchronous network. Our best results in this section will work even in the case that a broadcast

channel is not available. If we do need a broadcast channel, we explicitly state this.

We assume that each of the p players has access to an (n, k) source, and that each of

these sources is independent of each other. Our constructions will use constructions of extractors

for independent sources and other intermediate objects. Although we have already seen several
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constructions of such extractors in Chapter 4, we abstract out our dependence on these objects in

this chapter.

Assumption 8.1.1. We assume we have access to a C-Source extractor IndepExt : ({0, 1}n)C →
{0, 1}m with error ǫ for (n, k) sources. Throughout this section, we reserve C for the number of

sources that IndepExt needs to function, which is assumed to be a constant. We further assume

that IndepExt is strong in the sense that for any (n, k) sources X1, Y2, . . . , YC, we have that

|(IndepExt(X1, Y2, . . . , YC), Y2, . . . , YC)− (Um, Y2, . . . , YC)| < ǫ

where here Um is independent of Y2, . . . , YC.

Another object that turns out to be relevant to this problem is an extractor for a somewhere

random source (Definition 2.1.21) and an independent general source, which we constructed in

Chapter 4 (Theorem 4.5.7).

Assumption 8.1.2. We assume we have access to a function SRExt : {0, 1}n×{0, 1}k1.9 → {0, 1}m

such that if X is an (n, k) source and Y is a k0.9 × k0.1 somewhere random source,

|(Y,SRExt(X,Y ))− (Y,Um)| < ǫ

where Um is independent of Y .

To get concrete results, we shall simply plug in one of the extractors that we have constructed

in Chapter 4.

8.1.1 General Weak Sources

First Attempts

To show how extractors for independent sources can be used to construct network extractors, we

start with some simple protocols. We shall just sketch the arguments for why these protocols are

good network extractors, reserving formal proofs for our best protocols.

We see that if X1, . . . ,Xp are independent (n, k) sources, and the network contains t faulty

players. We see that for every j, the distribution Y j (note that Y j may be different for different
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Protocol 8.1.3. For a synchronous network

Player Inputs: Player i has xi ∈ {0, 1}n
Player Outputs: Player i ends up with zi ∈ {0, 1}m

Sub-Routines and Parameters:

Let IndepExt,m, ǫ, k be a C = 2 source extractor for (1.1tn,min{0.1tk, k}) sources as in
Assumption 8.1.1.

We break up the players into two sets, A = [1, 1.1t] and the rest of the players in B.

Round 1 :

1. Every player i ∈ A announces their string xi.

2. Let yj = x1, . . . , x1.1t denote the concatenation of these strings received by j.

3. For every j ∈ B, j’th player computes zj = IndepExt(yj , xj).

j, since the faulty players may transmit different strings to the non-faulty players) in the running

of the above protocol has min-entropy at least 0.1tk. Further, Y j is independent of Xj for every

j ∈ B. Thus Zj is in fact ǫ-close to uniform and independent of Y j by the properties of IndepExt.

This means that every non-faulty player in the set B ends up with private randomness. We get that

the above protocol is a (t, p − 2t, ǫ) synchronous network extractor in the full-information model,

as long as t < p/2.

There are two problems with the above protocol. First, the best known polynomial time

2-source extractor construction at the time of this writing is Bourgain’s extractor (Appendix C),

which can only extract from sources when the min-entropy rate is close to half. This means we only

get explicit protocols for such high entropy. Secondly, the above network extractor only guarantees

that p − 2t players get private randomness, while we can hope that as many as p − t players can

get private randomness. We shall improve our results on both these fronts. First, we show to use

Assumption 8.1.2 to get results for low entropy.

Again, the analysis is quite simple. Since the set A contains t + C players, at least C of

them must be non-faulty. Thus, after the first round, Y j is ǫ1 close to being a somewhere random

source, for every j ∈ B. Thus, for every j ∈ B, Y j independent of Xj and by the properties of

SRExt, all non-faulty players in B get truly random bits. The above protocol is a (t, p− 2t, ǫ1 + ǫ2)

synchronous extractor in the full-information model, as long as t < p/2.

The problem with this approach is that our extractor SRExt from Theorem 4.5.7 only works
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Protocol 8.1.4. For a synchronous network

Player Inputs: Player i has xi ∈ {0, 1}n
Player Outputs: Player i ends up with zi ∈ {0, 1}m

Sub-Routines and Parameters:

Let SRExt, n1,m1, ǫ1, k1 be an extractor with parameters as in Assumption 8.1.2. Let IndepExt

be a C source extractor with parameters n2, k2,m2, ǫ2 as in Assumption 8.1.1. We assume that
m0.9

1 ≥
(t+C

C

)

.

We break up the players into two sets, A = [1, t+ C] and the rest of the players in B.

Round 1 :

1. Every player i ∈ A announces their string xi.

2. Let yi be the
(

t+C
C

)

× m1 matrix whose j’th row is obtained by computing yij =

IndepExt(xii1 , x
i
i2
, . . . , xiiC), where xi1, . . . , x

i
C+t are the strings received by player i.

3. For every j ∈ B, player j computes zj = SRExt(xj , y
j).

when the somewhere random source has much fewer rows than the length of each row. Thus, this

protocol only succeeds in the case that the entropy of the sources is much larger than
(t+C

C

)

. On

the other hand, this protocol does work for polynomially small entropy, since Theorem 4.5.7 and

Theorem 4.1.1.

Protocol for Low Entropy

Now we describe our best result for the case of low entropy sources. Our protocol will be a variation

on Protocol 8.1.4. Instead of trying every possible C-tuple of strings from the set A, we shall use

a derandomized sample of these tuples.

We shall need the concept of an AND-disperser :

Definition 8.1.5 (AND-disperser). An (l, r, d, δ, γ) AND-disperser is a bipartite graph with left

vertex set [l], right vertex set [r], left degree d s.t. for every set V ⊂ [r] with |V | = δr, there exists

a set U ⊂ [l] with |U | ≥ γl whose neighborhood is contained in V .

Each vertex on the left identifies a d-tuple of vertices on the right. Thus when l =
(r
d

)

, we

can easily build an AND-disperser with great performance, just by considering every possible such

tuple. We shall construct a much better AND disperser, i.e., one where l, r are much closer to each

other.
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In our application, we shall need a (l, r,C, δ) AND-disperser with l as small as possible, δ as

small as possible and γ as large as possible. We shall prove the following lemma:

Lemma 8.1.6. For every C, δ > 0, there exist constants h, γ > 0 and a polynomial time con-

structible family of (hr, r,C, δ, γ) AND-dispersers.

Before we see how to prove this lemma, we describe the rest of our construction.

Another well studied object that we need is a construction of a bipartite expander.

Definition 8.1.7 (Bipartite Expander). A (l, r, d, β) bipartite expander is a bipartite graph with

left vertex set [l], right vertex set [r], left degree d and the property that for any two sets U ⊂
[l], |U | = βl and V ⊂ [r], |V | = βr, there is an edge from U to V .

Pippenger proved the following theorem:

Theorem 8.1.8 (Explicit Bipartite Expander [Pip87, LPS88]). For every β > 0, there exists

a constant d(β) < O(1/β2) and a family of polynomial time constructible (l, l, d(β), β) bipartite

expanders.

We shall actually need unbalanced expanders, which can easily obtained just by deleting

vertices from the above graph. We get the following corollary:

Corollary 8.1.9. For every 1 > β > 0 and constant h > 0, there exists a constant d(β, h) and a

family of polynomial time constructible (r, hr, d(β, h), β) bipartite expanders.

We use these objects to design Protocol 8.1.10. We can show that Protocol 8.1.10 is a

network extractor for entropy k.

Theorem 8.1.11 (Low Entropy Network Extractor). There exists a constant c > 0 such that for

every γ > δ > 0, β > 0 and p large enough, there exists a 1 round (δp, (1− 2γ)p, 2−k
c
) synchronous

extractor for min-entropy k ≥ nβ in the full-information model.

Proof. Let SRExt be as in Theorem 4.5.7, set up to extract from an (n, k = nγ) source and

an independent k0.9 × k somewhere random source with error 2−k
Ω(1)

. Let IndepExt,C be as in

Theorem 4.1.1, set up to extract k random bits from C independent (n, k) sources with error

2−k
Ω(1)

.
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Protocol 8.1.10 (Network Extractor for Low Entropy). For a synchronous network

Player Inputs: Player i has xi ∈ {0, 1}n
Player Outputs: Player i ends up with zi ∈ {0, 1}m

Sub-Routines and Parameters:

Let 1 > γ > δ > 0 be any constants.
Let SRExt, n,m, ǫ1, k be an extractor with parameters as in Assumption 8.1.2. Let IndepExt be
a C source extractor with parameters n, k,m2 = k, ǫ2 as in Assumption 8.1.1.
Set r = γp.
Let G1, γ

′, h be such that there is a (hr, r,C, γ−δγ , γ′)-AND-disperser promised by Lemma 8.1.6.

Set λ = min{γ′, γ−δ1−γ }.
Let G2 denote the (p − r, hr, d, λ) bipartite expander given by Corollary 8.1.9.

We break up the players into two sets, A = [1, r] and the rest of the players in B. We identify
every player in A with a vertex in the right vertex set of the graph G1 and identify every player
in B with a vertex in the left vertex set of the graph G2. We identify the left vertex set of G1

with the right vertex set of G2.

Round 1 :

1. Every player i ∈ A announces his string xi.

2. For every vertex g in the left vertex set of G1, every remaining player j computes
the string yjg = IndepExt(xjg1, x

j
g2 , . . . , x

j
gC

), where here xjg1, x
j
g2 , . . . , x

j
gC

are the strings
announced by the C neighbors of g.

3. Every player j ∈ B computes the d× k matrix sj whose w’th row is yjjw , where here
jw is the w’th neighbor of j in G2.

4. Every player j ∈ B computes the private string SRExt(xj , s
j).

Let X1, . . . ,Xp be any independent (n, k) sources. Since there are at most t = δp faulty

players in the set A, at least a γp−δp
r = γ−δ

γ fraction of the strings xi for i ∈ A must be samples

from an (n, k) source. Since G1 is a (hr, r,C, γ−δγ , γ′) AND-disperser, we must have that at least a

γ′ fraction of the vertices g in the left vertex set of G1 are such that Yg is ǫ2 close to uniform.

Now every non-faulty player j ∈ B who has at least one such g as a neighbor, ends up with

a distribution Sj that is ǫ2 close to being a d × k somewhere random source. Let H denote the

set of non-faulty players in B that don’t get such a somewhere random source. Then we see that

|H| < λ(p − r) = λ(1 − γ)p < (γ − δ)p, since G2 is a (p − r, hr, d, λ, γ′}) expander and by the

definition of λ. Thus, all but (γ − δ)p + t = γp of the players in B compute a somewhere random

source. Then, by the properties of the extractor SRExt, each of these players computes a private
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random string with an additional error of ǫ1. Since both of these errors are 2−k
Ω(1)

, we get that the

final error is also 2−k
Ω(1)

.

Next, we complete the proof by showing how to prove Lemma 8.1.6.

Proof of Lemma 8.1.6. We break up [r] into equally sized disjoint sets S1, . . . , S δr
2C

, so that for every

i, |Si| = 2C/δ. Then consider all subsets T ⊂ Si, with |T | = C. The number of such subsets is
(2C/δ

C

)

δr
2C = hr for some constant h.

We define the bipartite graph with left vertex set [hr], right vertex set [r] and left degree

C, by connecting every vertex on the left with the corresponding subset of elements of [r]. To see

that this graph is an AND-disperser, let V ⊂ [r] be any subset of density δ. Then, by averaging, we

must have that V is at least δ/2-dense in at least a δ/2 fraction of the Si’s. But every Si in which

V is δ/2 dense has at least 2C
δ
δ
2 = C elements of V . For every such Si, there is a vertex in the left

vertex set of the graph whose neighbors all lie in V .

Thus, there must be at least δ
2
δr
2C = γhr such vertices.

Protocol 8.1.10 addresses the issue of getting network extractors with low entropy (we can

at least handle polynomially small entropy). However, it only guarantees that close to p− 2t of the

p − t non-faulty players end up with useable randomness. We shall soon see that we cannot hope

to give a one round protocol which does better than this, for low min-entropy.

Protocol for Block Sources

Next we show that in the case that each player has access to a block source with just 2 blocks

(Definition 2.1.15), we can give protocols that guarantee that almost all non-faulty players end up

with useable randomness. The idea is that in this case, we can essentially run multiple copies of

the above protocol at the same time. We partition the players into a constant number of sets. We

can argue that most of the partitions must have a significant number of non-faulty players. We

then run the previous protocol on every set in the partition.

Then, we can prove the following theorem.

Theorem 8.1.13 (Low Entropy Network Extractor for Block Sources). There exists a constant c >

0 such that for every γ > δ > 0, β > 0 and p large enough, there exists a 1 round (δp, (1−γ)p, 2−kc
)
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Protocol 8.1.12 (Network Extractor for Block Sources). For a synchronous network

Player Inputs: Player i has xi, x
′
i ∈ {0, 1}n

Player Outputs: Player i ends up with zi ∈ {0, 1}m

Sub-Routines and Parameters:

Let 1 > γ > δ > 0 be any constants.
Let SRExt, n,m, ǫ1, k be an extractor with parameters as in Assumption 8.1.2. Let IndepExt be
a C source extractor with parameters n, k,m2 = k, ǫ2 as in Assumption 8.1.1.
Set α = (1− δ)/2. Set r = αp.
Let G1, γ

′, h be such that there is a (hr, r,C, 1−δ
1+δ , γ

′)-AND-disperser promised by Lemma 8.1.6.
Set λ = min{γ′, γ − δ}.
Let G2 denote the (p − r, hr, d, λ) bipartite expander given by Corollary 8.1.9.

We partition the players into 1/α equally sized sets B1, . . . , B1/α, each of size r. Let A1, . . . , A1/α

denote the corresponding complements, i.e., Ai = [p] \Bi.

Round 1 :

1. Every player i announces xi.

2. For i = 1, 2, . . . , 1/α,

(a) We identify every player in Ai with a vertex in the right vertex set of the graph
G1 and identify every player in Bi with a vertex in the left vertex set of the graph
G2. We identify the left vertex set of G1 with the right vertex set of G2.

(b) For every vertex g in the left vertex set of G1, each player j ∈ Bi compute the
string yjg = IndepExt(xjg1 , x

j
g2, . . . , x

j
gC

), where here xjg1 , x
j
g2, . . . , x

j
gC

are the strings
received by j for the C neighbors of g.

(c) Every player j ∈ Bi computes the d× k matrix sj whose w’th row is yjjw , where
here jw is the w’th neighbor of j in G2.

(d) Every player j ∈ Bi computes the private string SRExt(x2
j , s

j).

synchronous extractor for (k, k) block sources with min-entropy k ≥ nβ in the full-information

model.

Proof. The analysis is only slightly more complicated than before.

Let SRExt be as in Theorem 4.5.7, set up to extract from an (n, k = nγ) source and

an independent k0.9 × k somewhere random source with error 2−k
Ω(1)

. Let IndepExt,C be as in

Theorem 4.1.1, set up to extract k random bits from C independent (n, k) sources with error

2−k
Ω(1)

.

Let X1, . . . ,Xp be any independent (n, k) sources. Note that for every i, there are at least

(1− α− δ)p = (1− δ)p/2 non-faulty players in the set Ai. This is at least a (1− α− δ)/(1 − α) =
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(1− δ)/(1 + δ) fraction of the number of players in this set.

By the properties of G1 and G2, this means that at most a λ fraction of the players in each

of the Bi’s wouldn’t compute strings that are close to uniformly random, if each of them computed

these strings correctly. However, a δ fraction of the players are faulty. Thus we get that at least

1−λ− δ ≥ 1−γ fraction of the players end up with randomness that is ǫ1 + ǫ2 close to uniform.

A special case of this above protocol is when the players all have access to a source with

min-entropy rate greater than half. In this case, we can show that the players can easily get a block

source, just by splitting their sources into two equal parts. This gives us the following theorem:

Theorem 8.1.14 (High Entropy Network Extractor). There exists a constant c > 0 such that for

every γ > δ > 0, constant β > 0 and p large enough, there exists a 1 round (δp, (1 − γ)p, 2−kc
+

2−cβnp) synchronous extractor for min-entropy k ≥ (1
2 + β)n in the full-information model.

Proof. Let X be any (n, (1/2 + β)n) source. Let X1 be the first n/2 bits of X and X2 be the

remaining bits.

Then we have that:

Claim 8.1.15. X1,X2 is 2−Ω(βn) close to being a block source with min-entropy 3βn/5 in each

block.

To see this, first observe that by Lemma 2.1.11 (setting l = βn/10), we get that X1 is 2−βn/10

close to having min-entropy (1/2 + β)n− n/2− βn/10 = 9βn/10. Then, by Lemma 2.1.20, setting

ℓ = βn/10, we get that X1,X2 is 2(2−βn/10 + 2−betan/10+1)-close to being a block source with min-

entropy 9βn/10−1−2βn/10 ≥ 6βn/10 in the first block and (1/2+β)n−n/2−1−2βn/10 ≥ 3βn/5

in the second block.

Thus, all of the sources are simultaneously 2−Ω(βn)p-close to being block sources. We can

now run Protocol 8.1.12 to get random bits.

8.2 Asynchronous Network Extractors

We turn to the case of asynchronous networks in the full-information model. The first protocol we

consider is a generalization of one due to Goldwasser et al. [GSV05].

We can prove the following theorem about Protocol 8.2.1.
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Protocol 8.2.1 (Asynchronous Extractor). For an asynchronous network

Player Inputs: Player i has xi ∈ {0, 1}n
Player Outputs: Player i ends up with zi ∈ {0, 1}m

Sub-Routines and Parameters:

Let IndepExt be a C source extractor with parameters n, k,m, ǫ as in Assumption 8.1.1.

Partition the p players into p/C sets S1, ...Sp/C, each of size C. In each set Si we set a special
player i.

1. For every i = 1, 2, . . . , p/C, each player j ∈ Si sends xj to i.

2. Each special player i waits to receive C− 1 strings from other players in her set Si.

3. Every special player i that receives C−1 strings computes zi = IndepExt(xi, . . . , xiC), where
i, . . . , iC are the players in Si. She then sends the message “complete” to all other special
players.

4. If any special player receives p/C − t “complete” messages before she receives the C − 1
messages from players in her set, she aborts.

Theorem 8.2.2. For every constant β > 0, there exist a constants c,C such that for every t < p/2C,

Protocol 8.2.1 is a 2 round (t, (p/C − 2t), 2−k
c
) asynchronous network extractor for min-entropy k

in the full-information model.

Proof. First note that at most t of the sets Si can contain a faulty player. In every set that doesn’t

contain a faulty player, the special player will eventually receive C− 1 messages from other in his

set, and then send out a “complete” message. Since there are at least p/C− t sets which contain no

faulty players, every special player eventually receives p/C− t “complete” messages and terminates.

To see that this protocol leaves at least p/C− 2t players with private randomness, consider

the first special player that receives p/C− t “complete” messages. Since at most t of the players are

faulty, this means that at least p/C − t− t = p/C − 2t of the complete messages were sent to this

special player from sets Si that contain no faulty players. The special players in each of these sets

received strings only from non-faulty players, thus they each succeed in extracting randomness.
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8.3 A Lower Bound

In this section, we show that there is no one round network extractor protocol that can do much

better than our construction for the case of general sources over synchronous networks in the full

information model.

Theorem 8.3.1. There is no one round (t, p− 2t, 1/4) synchronous extractor protocol for general

(n, n/2− 1) sources, in the full information model.

Proof. For the purpose of contradiction, let us assume that such a protocol exists for min-entropy

k < n/2.

This protocol must call for some number of players to transmit messages in the first round

of the protocol. Let us assume that each player starts with strings xi ∈ {0, 1}n and that in the first

round player i transmits some function fi(xi) of the input, where fi : {0, 1}n → {0, 1}mi .

We say that i transmits k bits if the size of the image |fi({0, 1}n)| ≥ 2k.

We note that if i does not transmit k bits, then there must be some point a ∈ {0, 1}mi such

that |f−1
i (a)| ≥ 2n−k ≥ 2k. Setting Xi to be the flat distribution over f−1

i (a), we get a source Xi

with min-entropy at least k s.t. fi(Xi) is a constant.

On the other hand, if i transmits k bits, then we pick 2k points {x1, . . . , x2k} such that fi

is injective on this set. If we set Xi to be the flat distribution on this set, we get a source with

min-entropy k for which for every a ∈ supp(fi(Xi)), H∞(Xi|fi(Xi) = a) = 0, i.e. the source has no

entropy left over after conditioning on the output of fi.

There are now two cases:

At most t players transmit n/2 bits. In this case, by our discussion above, the adversary can

replace every player that transmits at least n/2 bits with a faulty player and choose min-

entropy n/2 weak sources Xi for every other player, in such a way that the transcript of the

first round transmissions is a constant. The private random string that player i generates is

then just a deterministic function of Xi. We can then find a deficiency 1 subsource X ′i ⊂ Xi

such that the first bit of this private string is constant. Note that X ′i has min-entropy at least

n/2− 1, which means the protocol must fail in this case.

More than t players transmit n/2 bits. In this case, by our discussion above, for each player

i that transmits n/2 bits, we can pick a k-source Xi such that the entropy of the source

199



conditioned on the first round transcript is 0. Thus every such player cannot generate any

private randomness. We pick some other t players to be faulty. Thus at most p − 2t − 1

players will end up with private randomness.

8.4 Applications to Distributed Computing

In this section we use our network extractors to get new protocols for Byzantine agreement, leader

election and collective coin flipping using weak random sources.

8.4.1 Collective Coin-Flipping and Leader Election

We use the following theorem as a black box.

Theorem 8.4.1 ([RZ01, Fei99]). For every β < 1/2, there exists a polynomial time computable

log∗ p + O(1) round protocol for leader election tolerating t ≤ βp faulty players, as long as each

player has O(log p) truly random bits, in the full-information model with a broadcast channel.

Given this theorem, the obvious protocol in the case that each player only has access to a

weak random source is to first run a network extractor and then run the protocol for leader election

assuming that each player has access to truly random bits. We can do slightly better than this by

observing that our network extractor for low entropy sources (Theorem 8.1.11) actually separates

the players into two sets, and guarantees that at most roughly t of the players in a set of size

roughly p− t don’t have access to private randomness.

Theorem 8.4.2 (Leader Election for Low Entropy). Let α, γ > 0 be any constants. There exists

a constant β > 0 such that if each player has access to a (n, nγ) source, with γβ log n > log log p

and p is large enough, there exists a polynomial time computable synchronous log∗ p +O(1) round

protocol for Leader Election tolerating (1/3 − α)p faulty players in the full information model.

Proof Sketch. Let t = δp and let 1/3 > γ > δ be a constant very close to δ. We start by running

Protocol 8.1.10 on the players. This leaves us with a set of players of size 1− γp, of which at most

γp players have access to bits which are p2−k
Ω(1)

close to being truly random. Since we can choose

β in the theorem, we can make this error an arbitrarily small constant.
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Since γ < 1/3, this set of players has a γ
1−γ < 1/2 fraction of faulty players. The rest of the

players have randomness that is close to being private and uniform.

We then run the protocol promised by Theorem 8.4.1 on this set to elect a leader.

In the case that we have access to sources of randomness with min-entropy rate greater than

1/2 or access to block sources with 2 blocks each, we can use our much better network extractors

for these situations to get results that match the best results for the case that each player has

access to truly random bits.

8.4.2 Byzantine Agreement

First we state the best protocols that are available for the case of Byzantine agreement when

each player has access to truly random bits. For synchronous networks, the following theorem is

available:

Theorem 8.4.3 ([GPV06]). For every β < 1/3, there exists a O( log p
ǫ2

) round protocol for Byzantine

agreement in a synchronous network tolerating βp Byzantine faults in the full information model.

In the case of asynchronous networks, we have the following theorem:

Theorem 8.4.4 ([BO83]). For every t < p/3, there exists a O(2p) round protocol for Byzantine

agreement in an asynchronous network tolerating t faulty players in the full information model.

Now we discuss how to achieve Byzantine agreement when each player only has access to

weak sources. We observe that for Byzantine agreement, it suffices that more than 2p/3 of the

players achieve consensus. Once we have a protocol that guarantees this, we can easily guarantee

that all non-faulty players share the consensus, simply by taking a majority vote.

Theorem 8.4.5 (Byzantine Agreement for Low Entropy). Let α, γ > 0 be any constants. There

exists a constant β > 0 such that if each player has access to a (n, nγ) source, with γβ log n >

log log p and p is large enough, there exists a polynomial time computable synchronous O(log p)

expected round protocol for Byzantine Agreement tolerating (1/4 − α)p faulty players in the full

information model.

Proof Sketch. Let t = δp and let 1/4 > γ > δ be a constant very close to δ. We start by running

Protocol 8.1.10 on the players. This leaves us with a set of players of size 1− γp, of which at most
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γp players have access to bits which are p2−k
Ω(1)

close to being truly random. Since we can choose

β in the theorem, we can make this error an arbitrarily small constant.

Since γ < 1/4, this set of players has a γ
1−γ < 1/3 fraction of faulty players. The rest have

randomness that is close to being private and uniform.

We then run the protocol promised by Theorem 8.4.3 on this set. This guarantees that we

achieve consensus on this set. Finally, we have one more round where every player in this special

set transmits their agreed value to the rest of the players. Everybody takes a majority vote to

decide on their final value. Since at most 1/3’rd of the players in the set transmit a value that is

not the consensus value, we terminate with a consensus for every non-faulty player.

As before, in the case that the players have access to sources with min-entropy rate greater

than half, or block sources with two blocks, we use our network extractors to obtain protocols that

are as good as the best protocols when the players have access to truly random bits.

Finally, we discuss the case of asynchronous networks.

Theorem 8.4.6 (Asynchronous Byzantine Agreement). There exists a constant β > 0 such that for

every α, γ > 0, if our network has p players of which 2p/3 players with access to (n, nγ) sources and

the remaining players have access to a (nγβ, k = nαβγ) source, then as long as βγ log n ≥ log log p

and p is large enough and the number of faulty players t satisfies 18t < p, there exists a polynomial

time computable O(2p) expected round protocol for Byzantine Agreement in the full-information

model.

Proof Sketch. We use the independent source extractor promised by Theorem 4.1.3. We first run

Protocol 8.2.1 on the players, using this extractor as a subroutine. This leaves us with a set of

p/3 players, of which at most p/3 − 2t do not have access to bits which are close to uniform.

Since 2t
p/3 = 6t/p < 1/3, we can then run the protocol of Ben Or et al. (Theorem 8.4.4) to achieve

consensus on this set. We can then have one more round to take a majority vote on this set to the

rest of the players.
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Chapter 9

Conclusions and Future Directions

As we mentioned in the introduction, this thesis is part of the larger project in derandomization

of finding the weakest assumption on the physical resources available to us that will still allow us

to use randomized solutions to problems in computer science. Building extractors is an attempt

at finding a generic way to weaken the assumptions about the availability of randomness for all

applications in computer science by using extractors in a black box fashion.

Although some of the types of sources of randomness that we considered (such as indepen-

dent sources and small space sources) are plausible as models for distributions coming from nature,

it is not at all clear if these are the models that best capture physical reality. One future research

direction would be to come up with other models for sources that are general enough to capture

physical processes, but still permit the design of randomness extractors for them.

Another motivation for designing extractor algorithms is that they give efficient construc-

tions of objects with strong combinatorial properties that may be useful tools to solve other prob-

lems. While past research has given many such applications for seeded extractors, most of the

extractors in this thesis haven’t yet found many good applications in this sense. Of course, a two

source extractor is a strictly stronger object than a seeded extractor, so every application of seeded

extractors can also be seen as an application of two source extractors, but most of the applications

seem to gain nothing useful from using two source extractors instead of seeded extractors1.

In Chapter 8 of this thesis, we gave protocols for distributed computing problems that can

1The network extractors discussed in Chapter 8 give one example of an applications of independent source extrac-
tors, though this application is pretty direct
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successfully operate when each player has access to a single weak source of randomness, even though

no extractor for such a source of randomness can be designed. These protocols specifically exploited

the fact that we can build very good extractors in the case that one or more of the sources involved

are somewhere random sources. A future research direction might be to find other important

problems in computer science where the dependence on truly random bits can be reduced in non-

black box ways, perhaps using one of the many intermediate objects that have been built on the

path to constructing extractors.

An area where an application may be hiding is in derandomizing randomized small space

algorithms. Nisan and Zuckerman [NZ96] used constructions of seeded extractors to prove that any

randomized small space algorithm that uses a polynomial number of random bits can be simulated

by one that uses a linear number of random bits. This seems to be a natural place where our

extractors for small space sources may be used to get improvements, but we have not yet been

successful at improving older results.

9.0.3 Potential Improvements to Our Constructions

In addition to new research problems that may be lurking in this area, even the questions we have

addressed in this thesis are far from resolved.

Independent Sources The best known construction for independent sources (in terms of the

tradeoff between entropy requirements and the number of sources) at the time of the writing

of this thesis is our 3 source extractor for polynomially small entropy from Chapter 4. This

extractor is not very satisfying since it places a strange unnatural condition on the lengths of

the sources. In addition, there is no reason to believe that 2-source extractors for logarithmi-

cally small entropy cannot be efficiently constructed, so there is a big gap between what we

know how to do and what can potentially be done.

Small Space Sources Our best construction only gives an extractor for a slightly sublinear en-

tropy rate n−ξ0 for an absolute constant ξ0. Again, there is a big gap, since the probabilistic

method gives extractors even for logarithmic entropy.

Affine Sources We were unable to give a new construction for this model in its full generality. Our

results worked for a very restricted case (though this case is still a generalization of the well
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studied model of bit-fixing sources). The best known extractor for true affine sources again

requires linear entropy [Bou07], though a random function would extract from logarithmic

entropy.

Ramsey Graphs While our disperser is polynomial time computable, it is not as explicit as one

might have hoped. For instance the Ramsey Graph construction of Frankl-Wilson is extremely

simple: For a prime p, let the vertices of the graph be all subsets of [p3] of size p2 − 1. Two

vertices S, T are adjacent if and only if |S ∩ T | ≡ −1 mod p. It would be nice to find a

good disperser that beats the Frankl-Wilson construction, yet is comparable in simplicity. As

usual, there is also the issue of improving the parameters of our construction.

Distributed Computing Many of our network extractors were obtained by reducing to the case

of extractors for somewhere random sources. It would be interesting to see if we can construct

network extractors by considering some weaker model of source.

9.0.4 New Techniques

Many of the results in this thesis relied on the technique of condensing somewhere random sources

(Chapter 3). The idea of incrementally improving the quality of a distribution by increasing the

min-entropy rate was well established [SZ99, NT99, ISW99, ISW00, RSW00] in the extractor lit-

erature. We were able to achieve our constructions by changing our measure of quality. Instead

of measuring the min-entropy rate, we measured the somewhere randomness, or alternatively, the

number of advice bits needed to extract from the source2.

This raises the possibility that there are other measures of quality that might be even more

productive for constructing extractors. Finding such a measure is another research direction.

2See the introductory comments in Chapter 3.
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Appendix A

A 3-Source Extractor for slightly

sublinear entropy

One way to compose our techniques with previous work to get something new was noticed by Avi

Wigderson. The results in this appendix are due to him. He observed that recent constructions of

randomness efficient condensers [BKS+05, Raz05] immediately imply the following theorem:

Theorem A.0.7. For every sufficiently small constant γ > 0 there exist constants α = α(γ) > 0,

β(γ) > 2γ and a polynomial time computable function Cond : {0, 1}n → ({0, 1}nβ
)n

γ
s.t. for any

(n, n1−α) source X, Cond(X) is 2−n
Ω(1)

-close to a source with somewhere min-entropy rate 0.9.

Once we have this condenser, we can compose it with Theorem 2.6.6 to get the following

theorem:

Theorem A.0.8. There exists a polynomial time computable function Ext : ({0, 1}n)3 → {0, 1}Ω(nδ)

s.t. for any sufficiently small constant δ > 0 there exists a constant α = α(δ) > 0 so that if X1

is an (n, n1−α) source and X2,X3 are (n, nδ) sources, with all sources independent of each other,

Ext(X1,X2,X3) is ǫ-close to the uniform distribution with with ǫ < 2−n
Ω(1)

.

Proof Sketch: Set γ = δ/2. Let α(γ) be as in Theorem A.0.7. We first apply the function Cond

promised by Theorem A.0.7 to convert the first source to a source with nγ rows, so that the source

has somewhere-min-entropy rate 0.9. We now interpret this source as nγ candidate 0.9-min-entropy

rate seeds. We use these seeds with Raz’s strong extractor from Theorem 2.6.6 and one of the other

206



sources to obtain two sources which, conditioned on the seeds, are statistically close to independent

aligned (nγ × nδ) somewhere random sources. Since δ > γ = δ/2, we can then use our extractor

from Theorem 4.5.7 to get Ω(nδ) bits which are exponentially close to uniformly distributed.

In this way we obtain an extractor that can extract from just 3 sources which need have

only polynomial min-entropy (the polynomial cannot be arbitrarily small).

Remark A.0.9. Note that the above construction would even work if we had two sources, where

one of them is a block source with 2 blocks.
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Appendix B

Basic Fourier Analysis

In this appendix, we introduce basic concepts from Fourier Analysis that will be needed to under-

stand the rest of the appendices.

B.1 Notation

We reserve the variable p to denote primes.

Fp will denote the field of size p.

C will denote the complex numbers.

Um will denote the uniform distribution on m bits.

G will denote a finite abelian group.

We use the convention that N = 2n,M = 2m.

For two elements of a vector space x, y, we will use x · y to denote the dot product
∑

i xiyi.

For a complex number x, we will use x to represent its complex conjugate.

In this section we set up some basic background. We state several facts without proof though

all of them can be worked out easily.

B.2 Inner product and Norms

Let f : G → C and g : G → C be two functions from a finite abelian group G to the complex

numbers.

We define the inner product 〈f, g〉 def= (1/|G|)∑x∈G f(x)g(x).
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The ℓp norm of f is defined to be ‖f‖ℓp
def
= (

∑

x∈G |f(x)|p)1/p.
The Lp norm of f is defined to be ‖f‖Lp

def
= (

P

x∈G |f(x)|p
|G| )1/p = |G|−1/p‖f‖ℓp .

The ℓ∞ norm is defined to be ‖f‖ℓ∞
def
= maxx |f(x)|.

We have the following basic relations between the norms:

Fact B.2.1. ‖f‖ℓ∞ ≥ (1/
√

|G|)‖f‖ℓ2 .

Fact B.2.2. ‖f‖ℓ2 ≥ (1/
√

|G|)‖f‖ℓ1 .

Fact B.2.3 (Triangle Inequality). |〈f, g〉| ≤ ‖f‖L1‖g‖ℓ∞ .

B.3 The Cauchy Schwartz Inequality

The Cauchy Schwartz inequality will play a central role in the proof.

Proposition B.3.1 (Cauchy Schwartz). For any two functions f, g as above, |〈f, g〉| ≤ ‖f‖L2‖g‖L2 .

B.4 Characters and Discrete Fourier Basis

Let F be any field. Let ψ : G → F∗ be a group homomorphism. Then we call ψ a character. We

call ψ non-trivial if ψ 6= 1. Unless we explicitly state otherwise, in this chapter all characters will

map into the multiplicative group of C.

Definition B.4.1 (Bilinear maps). We say a map e : G×G→ C is bilinear if it is a homomorphism

in each variable (for every ξ, both e(·, ξ) and e(ξ, ·) are homomorphisms). We say that it is non-

degenerate if for every ξ, e(ξ, ·) and e(·, ξ) are both non-trivial. We say that it is symmetric if

e(x, y) = e(y, x) for every x, y ∈ G.

Let Zr denote the ring Z/(r). It is easy to check that if we let e be the map that maps

(x, y) 7→ exp(2πxyı/r), then e is a symmetric non-degenerate bilinear map. Let G = H1 ⊕H2 be

the direct sum of two finite abelian groups. Let e1 : H1 × H1 → C and ǫ2 : H2 × H2 → C be

symmetric non-degenerate bilinear maps. Then it is easy to see that the map (x1 ⊕ y1, x2 ⊕ y2) 7→
e1(x1, x2)e2(y1, y2) is a symmetric non-degenerate bilinear map.

By the fundamental theorem of finitely generated abelian groups, every finitely generated

abelian group is isomorphic to a direct sum of cyclic groups. Thus the previous discussion gives

that:
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Fact B.4.2. For every finite abelian group G, there exists a symmetric non-degenerate bilinear

e : G×G→ C.

It can be shown that the characters of a finite abelian group G themselves form a finite

abelian group G∧ (called the dual group of G), where the group operation is point-wise multiplica-

tion. Now fix any symmetric, non-degenerate, bilinear map e. For every ξ ∈ G, let eξ denote the

character e(ξ, ·). The map ξ 7→ eξ can then be shown to be an isomorphism from G to G∧.

Fact B.4.3 (Orthogonality). For any two characters ex, ey, we have that 〈ex, ey〉 =











1 x = y

0 x 6= y

.

We define the fourier transform of f (with respect to the above e) to be the function

f̂ : G→ C to be: f̂(ξ) = 〈f, eξ〉. Then it is easy to check that this is a linear, invertible operation

on the space of all such functions. We get that:

Fact B.4.4 (Parseval). ‖f‖L2 = ‖f̂‖ℓ2 .

Proposition B.4.5. ‖f‖ℓ1 ≤ |G|3/2‖f̂‖ℓ∞ .

Proof.

‖f‖ℓ1

≤
√

|G|‖f‖ℓ2

= |G|‖f‖L2

= |G|‖f̂‖ℓ2 by Parseval(Fact B.4.4)

≤ |G|3/2‖f̂‖ℓ∞

Fact B.4.6 (Fourier Inversion). f(x) = |G| ˆ̂f(−x) =
∑

ξ∈G f̂(ξ)eξ(x).

Fact B.4.7 (Preservation of Inner Product). 〈f, g〉 = |G|〈f̂ , ĝ〉.

By the additive characters of a vector space over a finite field, we mean the characters of

the additive group of the vector space. In our applications for 2-source extractors, the characters

will always be additive characters of some such vector space. The following proposition is easy to

check:
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Proposition B.4.8. Let Fl be a vector space over a finite field F. Let ψ be any non-trivial additive

character of F. Then the map e(x, y) = ψ(x · y) = ψ(
∑

i xiyi) is symmetric, non-degenerate and

bilinear.

B.5 Distributions as Functions

Note that we can view every distribution on the group G as a function that maps every group

element to the probability that the element shows up. Thus we will often view distributions as real

valued functions in the natural way: X(x) = Pr[X = x].

Fact B.5.1. Let X be any random variable over G. Then H∞(X) ≥ k simply means that ‖X‖ℓ∞ ≤
2−k and implies that ‖X‖ℓ2 ≤ 2−k/2.

Fact B.5.2. Let X be any random variable over G, then EX(f(X)) = |G|〈f,X〉.

Fact B.5.3. If X is a distribution, X̂(0) = 1/|G|.

Let U denote the uniform distribution. Then note that |G|U is simply the trivial character

e0. Thus:

Fact B.5.4. Û(ξ) =











1/|G| ξ = 0

0 ξ 6= 0

.
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Appendix C

Bourgain’s 2-Source Extractor

In this appendix, we describe Bourgain’s 2-source extractor [Bou05], which is crucial to some of

our results.

C.1 Line Point Incidences

Let F be a finite field.

We will call a subset ℓ ⊂ F × F a line if there exist two elements a, b ∈ F s.t. the elements

of ℓ are exactly the elements of the form (x, ax+ b) for all x ∈ F.

Let P ⊆ F × F be a set of points and L be a set of lines. We say that a point (x, y) has

an incidence with a line ℓ if (x, y) ∈ ℓ. A natural question to ask is how many incidences can we

generate with just K lines and K points. Bourgain, Katz and Tao [BKT04] proved a bound on

the number of incidences for special fields when the number of lines and points is high enough.

Konyagin [Kon03] improved the bound to eliminate the need for K to be large.

Theorem C.1.1 (Line Point Incidences). [BKT04, Kon03] There exists universal constants β, α >

0 such that for any prime field Fp, if L,P are sets of K lines and K points respectively, with

K ≤ p2−β0, the number of incidences I(L,P ) is at most O(K3/2−α).

An interesting thing to note is that the theorem above does not hold for pseudolines (sets

with small pairwise intersections) over finite fields, though a similar theorem does hold over the

reals.
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When the field is of size 2p for a prime p a weaker version of the line point incidences theorem

holds.

Theorem C.1.2 (Line Point Incidences). [BKT04, Kon03] There exists a universal constant β > 0

such that for any field F2p of size 2p for prime p, if L,P are sets of K lines and K points respectively

with 2(1−β)p ≤ K ≤ 2(1−β)p, the number of incidences I(L,P ) is at most O(K3/2−α).

C.2 Bourgain’s Extractor

In this section we describe Bourgain’s construction. We start by revisiting the argument for why

the hadamard matrix gives a good 2 source extractor for higher min-entropy.

C.2.1 Review: The Hadamard Extractor

First let us recall how to extract from two sources when the min-entropy is high. For a finite field

F, let Had : Fl × Fl → F be the dot product function, Had(x, y) = x · y.
Let us review the following theorem.

Theorem C.2.1 ([CG88, Vaz85]). For every constant δ > 0, there exists a polynomial time algo-

rithm Had : ({0, 1}n)2 → {0, 1}m s.t. if X,Y are independent (n, (1/2 + δ)n) sources,

EY [‖Had(X,Y )− Um‖ℓ1 |] < ǫ with m = Ω(n) and ǫ = 2−Ω(n).

Proof. For a convenient l, we treat both inputs as elements of Fl (so |F|l = N) and then use the

dot product function as described above.

We can view the random variable X as a function X : Fl → [0, 1], which for each element of

Fl assigns the probability of taking on that element. We will prove the theorem by using the XOR

lemma (Appendix D). To use the lemma, we need to bound biasψ(X,Y ) = |E[ψ(Had(X,Y ))]| for
every non-trivial character ψ.

Fix such a character ψ and let e(x, y) be the symmetric non-degenerate bilinear map

e(x, y) = ψ(x · y) (Proposition B.4.8). Recall that ex denotes the character e(x, ·). Below we

will use Fourier analysis according to e.
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Note that

biasψ(X,Y ) =

∣

∣

∣

∣

∣

∑

y∈Fl

Y (y)
∑

x∈Fl

X(x)ψ(x · y)
∣

∣

∣

∣

∣

(C.1)

Now observe that
∑

x∈Fl X(x)ψ(x · y) = |F|l〈ey,X〉 = |F|lX̂(y). Thus we get that

biasψ(X,Y ) = |F|l
∣

∣

∣

∣

∣

∑

y∈Fl

Y (y)X̂(y)

∣

∣

∣

∣

∣

= |F|2l|〈Y, X̂〉|

Using the Cauchy Schwartz inequality and the fact that ‖f‖2ℓ2 = |F|l‖f‖2L2 for every f :

Fl → C, we obtain the bound:

biasψ(X,Y )2 ≤ |F|4l‖Y ‖2L2‖X̂‖2L2

= |F|2l‖Y ‖2ℓ2‖X̂‖2ℓ2

= |F|2l‖Y ‖2ℓ2‖X‖2L2 by Parseval(Fact B.4.4)

= |F|l‖Y ‖2ℓ2‖X‖2ℓ2

≤ 2n2−k12−k2

Where the last inequality is obtained by Fact B.5.1, assuming X,Y have min-entropy k1, k2.

Thus, as long as k1 + k2 > n, the bias is less than 1.

Set l so that N1/l = M = |F|. By the XOR lemma Lemma D.0.11 we get m bits which are

2(n−k1−k2+m)/2 close to uniform. The fact that the extractor is strong follows from Theorem E.0.15.

Remark C.2.2. If we use the more general XOR lemma Lemma D.0.10, we can even afford to

have l = 1. The final extractor function would then be σ(Had(X,Y )).

One question we might ask is: is this error bound just an artifact of the proof? Does the

Hadamard extractor actually perform better than this bound suggests? If l = 1, the answer is

clearly no, since the output must have at least n bits of entropy to generate a uniformly random

point of F. If l is large the answer is still no; there exist sources X,Y with entropy exactly n/2 for

which the above extractor does badly. For example let X be the source which picks the first half of
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its field elements at random and sets the rest to 0. Let Y be the source that picks the second half

of its field elements at random and sets the rest to 0. Then each source has entropy rate exactly

1/2, but the dot product function always outputs 0.

C.2.2 Bourgain’s Extractor

A key observation of Bourgain’s is that the counterexample that we exhibited for the Hadamard

extractor is just a pathological case. He shows that although the Hadamard function doesn’t extract

from any sources with lower entropy, there are essentially very few counterexamples for which it

fails. He then demonstrates how to encode any general source in a way that ensures that it is not a

counterexample for the Hadamard function. Thus his extractor is obtained by first encoding each

source in some way and then applying the Hadamard function.

For instance, consider our counterexamples from the last subsection. The counterexamples

were essentially subspaces of the original space. In particular, each source was closed under addition,

i.e., the entropy of the sourceX+X obtained by taking two independent samples ofX and summing

them is exactly the same as the entropy of X. We will argue that when the source grows with

addition (we will define exactly what we mean by this), the Hadamard extractor does not fail.

Our proof of Bourgain’s theorem will be obtained in the following steps:

• First we will argue that for sources which grow with addition, the Hadamard extractor suc-

ceeds.

• Then we will show how to encode any source with sufficiently high entropy in a way that

makes it grow with addition.

Hadamard succeeds when the sources grow with addition

To show that the Hadamard extractor succeeds, we were trying to bound the bias of the output

distribution of the extractor biasψ(X,Y ) Equation C.1:

biasψ(X,Y ) =

∣

∣

∣

∣

∣

∑

y∈Fl

Y (y)
∑

x∈Fl

X(x)ψ(x · y)
∣

∣

∣

∣

∣

(C.2)

Now for any source X, let X−X be the source that samples a point by sampling two points

independently according to X and subtracting them.
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Lemma C.2.3. biasψ(X,Y )2 ≤ biasψ(X −X,Y )

Proof.

biasψ(X,Y ) =

∣

∣

∣

∣

∣

∑

y∈Fl

Y (y)
∑

x∈Fl

X(x)ψ(x · y)
∣

∣

∣

∣

∣

≤
∑

y∈Fl

Y (y)

∣

∣

∣

∣

∣

∑

x∈Fl

X(x)ψ(x · y)
∣

∣

∣

∣

∣

Then by convexity,

biasψ(X,Y )2 ≤
∑

y∈Fl

Y (y)

∣

∣

∣

∣

∣

∑

x∈Fl

X(x)ψ(x · y)
∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∑

y∈Fl

Y (y)
∑

x1,x2∈Fl

X(x1)X(x2)ψ(x1 · y)ψ(−x2 · y)
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

y∈Fl

Y (y)
∑

x1,x2∈Fl

X(x1)X(x2)ψ((x1 − x2) · y)
∣

∣

∣

∣

∣

Now let X ′ denote the sourceX−X. Then by grouping terms, we see that the last expression

is simply:

biasψ(X,Y )2 ≤
∣

∣

∣

∣

∣

∑

y∈Fl

Y (y)
∑

x∈Fl

X ′(x)ψ(x · y)
∣

∣

∣

∣

∣

= bias(X −X,Y )

Notice the magic of this “squaring the sum” trick. By squaring the sum for the expectation

via Cauchy Schwartz, starting with our original bound for the error of the extractor, we obtained a

bound that behaves as if our original source was X ′ = X −X instead of X! If X ′ has much higher

entropy than X, we have made progress; we can follow the rest of the proof of Theorem C.2.1 in

the same way and obtain an error bound that is a bit worse (because we had to square the bias),

but now assuming that our input source was X ′ instead of X.
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Let us explore how else we might use this trick. For one thing, we see that we can easily

compose this trick with itself. Applying the lemma again we obtain biasψ(X,Y )4 ≤ biasψ(X −
X,Y )2 ≤ biasψ(X −X −X +X,Y ) = biasψ(2X − 2X,Y ).

Applying the lemma with respect to Y (by symmetry), we obtain biasψ(X,Y )8 ≤ biasψ(2X−
2X,Y − Y ).

In general, we obtain the following lemma:

Lemma C.2.4. There exists a polynomial time computable function Had : Fl × Fl → {0, 1}m

s.t. given two independent sources X,Y taking values in Fl and constants c1, c2 with the property

that the sources 2c1X − 2c1X and 2c2Y − 2c2Y have min-entropy k1, k2, then |E[ψ(Had(X,Y ))]| ≤
(|Fl|2−(k1+k2))1/2

c1+c2+2
for every non-trivial character ψ.

Note that X − X has at least as high min-entropy as X, thus if it is convenient we may

simply ignore the subtraction part of the hypothesis; it is sufficient to have that 2c1X, 2c2Y have

high min-entropy to apply the above lemma.

Encoding sources to give sources that grow with addition

Given Lemma C.2.4 our goal will be to find a way to encode X,Y in such a way that the resulting

sources grow with addition. Then we can apply the dot product function and use the lemma to

prove that our extractor works. How can we encode a source in a way that guarantees that it grows

with addition? Our main weapon to do this will be bounds on the number of line point incidences

(Theorem C.1.1 or Theorem C.1.2). We will force the adversary to pick a distribution on lines and

a distribution on points with high entropy. Then we will argue that if our encoding produces a

source which does not grow with addition, the adversary must have picked a set of points and a set

of lines that violates the line point incidences theorem.

We will use the following corollary of Theorem C.1.1, which is slightly stronger than a

theorem due to Zuckerman [Zuc06]. We will follow his proof closely.

Corollary C.2.5. Let F and K = 2(2+α)k be such that a line point incidences theorem holds for

F,K, with α the constant from Theorem C.1.1. Suppose L,X are two independent sources, with

min-entropy 2k, k with L picking an element of F2 and X picking an element of F independently.

Then the distribution (X,L(X))1 where L(X) represents the evaluation of the L’th line at X is

1Zuckerman [Zuc06] proved the slightly weaker fact that the distribution L(X) has higher entropy.

217



2−Ω(k)-close to a source with min-entropy (1 + α/2)2k.

Proof. Every source with min-entropy k is a convex combination of sources with min-entropy k and

support of size exactly 2k. So without loss of generality we assume that supp(L) is of size 22k and

that supp(X) has size 2k.

Suppose (X,L(X)) is ǫ-far from any source with min-entropy (1 + α/2)2k in terms of sta-

tistical distance. Then there must exist some set H of size at most 2(1+α/2)2k s.t. Pr[(X,L(X)) ∈
H] ≥ ǫ.

Then we have

• A set of points H : 22k+kα points

• A set of lines supp(L): 22k lines.

Now we get an incidence whenever (X,L(X)) ∈ H. Thus the number of incidences is at

least

Pr[(X,L(X)) ∈ H]|supp(L)||supp(X)| ≥ ǫ23k

However, by the line point incidences theorem (Theorem C.1.1), the number of incidences

is at most 2(3/2−α)(2k+kα) = 23k+3kα/2−2kα−kα2
< 23k(1−α/2) = 2−(3kα/2)23k.

These two inequalities imply that ǫ < 2−(3kα/2).

Remark C.2.6. The above proof would work even if L,X is a blockwise source with the appropriate

min-entropy.

Given this corollary, we now describe several ways to encode a source so that it grows

with addition. It suffices to understand any one of these encodings to complete the proof for the

extractor.

Encoding 1: x 7→ (x, gx) We treat the input x from the source as an element of F∗ for a field in

which a version of the line point incidences theorem holds. Then we encode it into an element of

F2 as (x, gx) where g is a generator of the multiplicative group F∗. Now fix an adversarially chosen

source X. Consider the source X obtained by performing the above encoding.
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X is a distribution on points of the form (x, gx) where x 6= 0. By doing a change of variables,

we think of every such point as (logg x, x).

First consider the distribution of 2X . An element of supp(2X) is of the form (logg(x1x2), x1+

x2) for some x1, x2 in the support of X. Notice that for each a, b with a = x1x2 and b = x1 + x2,

there are at most two possible values for (x1, x2), since for the solutions for x1 must satisfy some

quadratic equation in a, b. This means that the min-entropy of 2X is at least 2k − 1 since the

probability of getting a particular (a, b) is at most twice the probability of getting a single pair

from X,X . By changing k, in the rest of this discussion we assume that the min-entropy of 2X is

2k.

Now for each a, b ∈ F with a, b 6= 0 define the line

ℓa,b = {(ax, b + x) ∈ F2|x ∈ F}

= {(x, x/a + b) ∈ F2|x ∈ F}

Every (a, b) in our encoding then determines the line ℓa,b. Let L = 2X be a random variable

that picks a line according to 2X .

Every element of supp(3X) is of the form (logg(x1x2x3), x1 + x2 + x3) and determines the

point (x1x2x3, x1 + x2 + x3) ∈ F2.

Now think of the distribution of 3X as obtained by first sampling a line according to 2X

and then evaluating that line at an independent sample from X and outputting the resulting point.

Then we see that we are in a position to apply Corollary C.2.5 to get that the encoding does grow

with addition.

Encoding 2: x 7→ (x, x2) Again we treat x as an element of the multiplicative group of a field

F∗ with characteristic not equal to 2 in which a version of the line point incidences theorem holds.

Now fix an adversarially chosen source X. Let X denote the source obtained by encoding X in the

above way.

First consider the distribution of 2X . An element of supp(2X) is of the form (x1+x2, x
2
1+x2

2)

for some x1, x2 in the support of X. Notice that for each a, b with a = x1 + x2 and b = x2
1 + x2

2,

there are at most two possible values for (x1, x2). This means that the min-entropy of 2X is at

least 2k − 1 since the probability of getting a particular (a, b) is at most twice the probability of
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getting a single pair from X,X . By changing k, in the rest of this discussion we assume that the

min-entropy of 2X is 2k.

Now for each a, b ∈ F with a, b 6= 0 define the line

ℓa,b = {(2ax+ a2 − b, a+ x) ∈ F2|x ∈ F}

= {(x, x/(2a) + (a2 + b)/(2a)) ∈ F2|x ∈ F}

Every (a, b) in our encoding then determines a unique line ℓa,b. Let L = 2X be a random

variable that picks a line according to 2X .

Every element of supp(3X) is then of the form (x1 + x2 + x3, x
2
1 + x2

2 + x2
3) and determines

the point

((x1 + x2 + x3)
2 − (x2

1 + x2
2 + x2

3), x1 + x2 + x3)

= (2(x1 + x2)x3 + (x1 + x2)
2 − (x2

1 + x2
2), (x1 + x2) + x3)

= (2ax3 + a2 − b, a+ x3)

Now think of the distribution of 3X as obtained by first sampling a line according to 2X

and then evaluating that line at an independent sample from X and outputting the resulting point.

Then we see that we can apply Corollary C.2.5 to get that the encoding does grow with addition.

Conclusion By picking an appropriate constant γ, we obtain the following lemma:

Lemma C.2.7. There is a universal constant γ s.t. if X is any source that picks an element of F

with min-entropy (1/2−γ) log |F|, 3X is |F|−Ω(1)-close to a source with min-entropy (1/2+γ) log |F2|.

Putting things together

Putting together the results from the two previous sections and applying Lemma D.0.10, we obtain

the theorem for Bourgain’s extractor.

Theorem C.2.8 ([Bou05]). There exists a universal constant γ > 0 and a polynomial time com-

putable function Bou : ({0, 1}n)2 → {0, 1}m s.t. if X,Y are two independent n-bit sources with min-

entropies k1, k2 and k1+k2 ≥ 2n(1/2−γ), EY [‖Bou(X,Y )− Um‖ℓ1 ] < ǫ, with ǫ = 2−Ω(n),m = Ω(n).
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Another nice theorem that we get as a consequence of the structure of Bourgain’s proof is

the following:

Theorem C.2.9. There exists a universal constant γ > 0 and a polynomial time computable

function Bou : ({0, 1}n)2 → {0, 1}m s.t. if X1,X2, . . . ,Xt are t independent n-bit sources with

min-entropies k1, k2, . . . , kt and ki + kj ≥ 2n(1/2 − γ) for some i, j ∈ [t],

EXi [‖Bou(X1, . . . ,Xt)− Um‖ℓ1 ] < ǫ

EXj [‖Bou(X1, . . . ,Xt)− Um‖ℓ1 ] < ǫ

with ǫ = 2−Ω(n),m = Ω(n).

Proof Sketch: Treating each xi as non-zero elements of GF (2p) for prime p, define f(x1, . . . , xt) =
∏

i xi +
∏

i x
2
i .

Without loss of generality, assume we know that k1 +k2 ≥ 2n(1/2−γ). Then for every non-

trivial character ψ ofGF (2p), we can bound |E[ψ(f(x1, . . . , xt))]| ≤ EX3,...,Xt |EX1,X2[ψ(f(X1, . . . ,Xt))]|.
For every fixing ofX3, . . . ,Xt, the inner expectation is small by our analysis of Bourgain’s extractor.

Thus the overall expectation is just as small.

Then, just as before, we can use the XOR lemma to get random bits.

221



Appendix D

XOR lemma for abelian groups

In this subsection we will prove a generalization of Vazirani’s XOR lemma. This lemma appears to

be folklore, but we were unable to find a proof written down anywhere.

Throughout this section we reserve G for a finite abelian group.

The lemma we will prove is the following:

Lemma D.0.10 (XOR lemma for cyclic groups). For every cyclic group G = ZN and every integer

M ≤ N , there is an efficiently computable function σ : ZN → ZM = H with the following property:

Let X be any random variable taking values in ZN s.t. for every non-trivial character ψ : ZN → C∗,

we have |E[ψ(X)]| < ǫ, then σ(X) is O(ǫ logN
√
M) +O(M/N) close to the uniform distribution.

It turns out that it is easy to extend this result to work for any abelian group G, though it’s

hard to state the result for general abelian groups in a clean way. In this section we will discuss the

proof of the above lemma and just make a few remarks about how to extend it to general abelian

groups.

Before we move on to prove Lemma D.0.10, let us first prove a special case of this lemma

which is a generalization of Vazirani’s XOR lemma. For the proof of this case below, we essentially

follow the proof as in Goldreich’s survey [Gol95].

Lemma D.0.11. X be a distribution on a finite abelian group G s.t. |E[ψ(X)]| ≤ ǫ for every

non-trivial character ψ. Then X is ǫ
√

|G| close to the uniform distribution: ‖X − U‖ℓ1 ≤ ǫ
√

|G|.

Proof. By the hypothesis, for every non-trivial character ψ of G, |〈ψ,X〉| = (1/|G|)|EX [ψ(X)]| ≤
ǫ/|G|.
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Then note that if ψ 6= 1, |〈ψ,X − U〉| = |〈ψ,X〉 − 〈ψ,U〉| = |〈ψ,X〉| ≤ ǫ/|G|. Also, since

X,U are distributions, 〈1,X − U〉 = 〈1,X〉 − 〈1, U〉 = 0.

Thus we have shown that ‖X̂ − U‖ℓ∞ ≤ ǫ/|G|. Proposition B.4.5 then implies that ‖X − U‖ℓ1 ≤
ǫ
√

|G|.

In Lemma D.0.11, given a bound of ǫ on the biases, the statistical distance blows up by a

factor of
√

|G|. This is too much if ǫ is not small enough. Lemma D.0.10 gives us the flexibility

to tradeoff this blowup factor with the number of bits that we can claim are statistically close to

uniform. As M is made smaller, the blowup factor is reduced, but we get “less” randomness. Our

proof for the general case will work (more or less) by reducing to the case of Lemma D.0.11.

Note that if σ is an onto homomorphism, for every non-trivial character φ of H, φ ◦ σ is

a non-trivial character of G. Thus the bounds on the biases of X give bounds on the biases of

σ(X) and we can reduce to the case of Lemma D.0.11. The problem is that we cannot hope to find

such a homomorphism σ for every M . For instance, if G = Zp for p a large prime, G contains no

non-trivial subgroup and so σ cannot be a homomorphism for M = ⌈p/2⌉. Instead, we will show

that we can find a σ which approximates a homomorphism in the sense:

• For every non-trivial character φ of H, φ ◦ σ is approximated by a few characters of G.

Formally, this is captured by bounding ‖φ̂ ◦ σ‖L1 (observe that if σ is a homomorphism, this

quantity is 1/|G|).

• We’ll ensure that σ(U) is the close to the uniform distribution on H.

Then we will be able to use the bounds on the biases of X to give bounds on the biases of

σ(X)−σ(U), where U is the uniform distribution. This will allow us to apply Proposition B.4.5 to

conclude that X is a pseudorandom generator for σ, i.e., ‖σ(X) − σ(U)‖ℓ1 is small, which implies

that σ(X) is close to uniform, since σ(U) is close to uniform.

The following lemma asserts that every ǫ-biased distribution is pseudorandom for any func-

tion σ that satisfies the first condition above.

Lemma D.0.12. Let G,H be finite abelian groups. Let X be a distribution on G with |EX [ψ(X)]| ≤
ǫ for every non-trivial character ψ of G and let U be the uniform distribution on G. Let σ : G→ H
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be a function such that for every character φ of H, we have that

‖φ̂ ◦ σ‖L1 ≤ τ/|G|

Then ‖σ(X) − σ(U)‖ℓ1 < τǫ
√

|H|.

Proof. First note that the assumption on X is equivalent to ‖X̂ − U‖ℓ∞ ≤ ǫ/|G|. Let φ be any

non-trivial character of H. Then

|〈φ, σ(X) − σ(U)〉| = |〈φ, σ(X)〉 − 〈φ, σ(U)〉|

=
|Eσ(X)[φ(σ(X))] − Eσ(U)[φ(σ(U))]|

|H| by Fact B.5.2 applied to σ(X) and σ(U)

=
|EX [φ(σ(X))] − EU [φ(σ(U))]|

|H|

=
|G|
|H| |〈φ ◦ σ,X〉 − 〈φ ◦ σ,U〉| by Fact B.5.2 applied to X and U

=
|G|
|H| |〈φ ◦ σ,X − U〉|

=
|G|2
|H| |〈φ̂ ◦ σ, X̂ − U〉| by preservation of inner product (Fact B.4.7)

≤ |G|
2

|H| ‖φ̂ ◦ σ‖L1‖X̂ − U‖ℓ∞ by the triangle inequality (Fact B.2.3)

≤ τǫ/|H| since ‖φ̂ ◦ σ‖L1 ≤ τ/|G| and ‖X̂ − U‖ℓ∞ ≤ ǫ/|G|

On the other hand, 〈1, σ(X)− σ(U)〉 = 0, since σ(X) and σ(U) are distributions. Thus, we

have shown that ‖ ̂σ(X) − σ(U)‖ℓ∞ ≤ τǫ/|H|, which by Proposition B.4.5 implies that ‖σ(X) − σ(U)‖ℓ1 ≤
τǫ
√

|H|.

Note that when σ is the identity function (or any surjective homomorphism onto a group

H), τ = 1. Thus Vazirani’s XOR lemma corresponds exactly to the case of σ being the identity

function.

Next we show that in the special when G is a cyclic group, we can find a σ which satisfies

the hypothesis of Lemma D.0.12 with small τ .
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Lemma D.0.13. Let M,N be integers satisfying N > M . Let σ : ZN → ZM be the function

σ(x) = x mod M . Then for every character φ of ZM , ‖φ̂ ◦ σ‖L1 ≤ O(logN)/N

Proof. Note that if M divides N , the statement is trivial, since σ is a homomorphism. Below we

show that even in the general case, this expectation is small. Define the function ρ(x) = exp(2πıx).

Then note that ρ(a+ b) = ρ(a)ρ(b).

First let φ be any character of ZM . Then φ(y) = ρ(wy/M) for some w ∈ ZM . Clearly,

φ(σ(x)) = ρ(wx/M).

‖φ̂ ◦ σ‖L1

= (1/N2)
∑

t∈ZN

∣

∣

∣

∣

∣

∑

x∈ZN

ρ(tx/N)ρ(−wx/M)

∣

∣

∣

∣

∣

= (1/N2)
∑

t∈ZN

∣

∣

∣

∣

∣

∑

x∈ZN

ρ

(

x(tM − wN)

NM

)∣

∣

∣

∣

∣

Recall that for any geometric sum
∑N

i=0 br
i = brN−b

r−1 , as long as r 6= 1. The inner sum in

this expression is exactly such a geometric sum. Thus we get:

‖φ̂ ◦ σ‖L1

≤ (1/N2)
∑

t∈ZN ,t6=wN/M

∣

∣

∣

∣

∣

∑

x∈ZN

ρ

(

x(tM −wN)

NM

)∣

∣

∣

∣

∣

+ 1/N

= (1/N2)
∑

t∈ZN ,t6=wN/M

∣

∣

∣

∣

∣

ρ(N(tM−wN)
NM )− 1

ρ( tM−wNNM )− 1

∣

∣

∣

∣

∣

+ 1/N by simplifying the geometric sum

≤ (1/N2)
∑

t∈ZN ,t6=wN/M

∣

∣

∣

∣

∣

2

ρ( tM−wNNM )− 1

∣

∣

∣

∣

∣

+ 1/N since

∣

∣

∣

∣

∣

ρ

(

N(tM − wN)

NM

)

− 1

∣

∣

∣

∣

∣

≤ 2

≤ (1/N2)
∑

t∈ZN ,t6=wN/M

∣

∣

∣

∣

∣

2

ρ( t−(wN/M)
N )− 1

∣

∣

∣

∣

∣

+ 1/N

Now write wN/M = c+ d, where c is an integer, and d ∈ [0, 1]. Then, by doing a change of

variable from t to t− c, we get that the above sum is
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(1/N2)
∑

t∈ZN ,t6=d

∣

∣

∣

∣

∣

2

ρ( t−dN )− 1

∣

∣

∣

∣

∣

+ 1/N

We will bound two parts of this sum separately. Let r be a constant with 0 < r < 1/4. Now

note that |ρ( t−dN )− 1| ≥ Ω(1) when rN < t < (1 − r)N , since in this situation the quantity is the

distance between two points on the unit circle which have an angle of at least 2πr between them.

When t is not in this region, |ρ( t−dN )− 1| ≥ | sin(2π(t− d)/N)|, since the sin function gives

the vertical distance between the two points. This is at least (t−d)/100N for r small enough, since

we have that | sinx| > |x| for −π/2 < x < π/2. Thus, choosing r appropriately, we can bound the

sum:

(1/N2)
∑

t∈ZN ,t6=d

∣

∣

∣

∣

∣

2

ρ( t−dN )− 1

∣

∣

∣

∣

∣

+ 1/N

= (1/N2)

(

∑

t6=d,t∈[rN,(1−r)N ]

∣

∣

∣

∣

∣

2

ρ( t−dN )− 1

∣

∣

∣

∣

∣

+
∑

t6=d,t/∈[rN,(1−r)N ]

∣

∣

∣

∣

∣

2

ρ( t−dN )− 1

∣

∣

∣

∣

∣

)

+ 1/N

≤ (1/N2)

(

∑

t6=d,t∈[0,rN ]

800N

t− d +
∑

t6=d,t/∈[rN,(1−r)N ]

O(1)

)

+ 1/N

≤ (1/N2)(O(N logN) +O(N)) + 1/N

Here the last inequality used the fact that
∑n

i=1 1/i = O(log n). Overall this gives us a

bound of τ ≤ O(logN/N).

On uniform input the distribution σ(U) is quite close to uniform. Specifically, if N =

qM + r, with q, r the quotient and remainder of N on dividing by N , we have that σ(U) is

2r((q + 1)/N − 1/M) = (2r/M)(M(q + 1)/N − 1) = (2r/M)(M − r)/N = 2M/N close to the

uniform distribution. Thus, overall we get that this σ turns any distribution which fools characters

with bias at most ǫ into one that is ǫ logN
√
M +O(M/N) close to uniform.

Now we discuss the situation for general abelian groups. The basic observation is that
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approximate homomorphisms can be combined to give a new approximate homomorphism:

Lemma D.0.14. Let G = G1 ⊕G2 and H = H1 ⊕H2 be finite abelian groups. Let σ1 : G1 → H1

and σ2 : G2 → H2 be two functions that satisfy the hypotheses of Lemma D.0.12 with constants τ1

and τ2 respectively. Then the function σ : G → H defined as σ(x ⊕ y) def
= σ1(x) ⊕ σ2(y) satisfies

the hypotheses of the lemma with parameters τ1τ2.

Given this lemma, it is clear how to get an xor lemma for every abelian group. Simply write

the abelian group as a direct sum of cyclic groups. Then depending on how much randomness

is needed, we can compose several homomorphisms with approximate homomorphisms to get a

function σ that does the job.
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Appendix E

Every 2-Source Extractor is Strong

In this section we give an argument due to Boaz Barak showing that every 2 source extractor which

has sufficiently small error is in fact strong.

Theorem E.0.15. Let IndepExt : ({0, 1}n)2 → {0, 1}m be any two source extractor for min-entropy

k with error ǫ. Then IndepExt is a strong two source extractor for min-entropy k′(strong with respect

to both sources) with error 2m(ǫ+ 2k−k
′

).

Proof. Without loss of generality, we assume that X,Y have supports of size k′. Then we need to

bound:

∑

y∈supp(Y )

2−k
′‖IndepExt(X, y) − Um‖ℓ1

For any z ∈ {0, 1}m, define the set of bad y’s for z

Bz = {y : |Pr[IndepExt(X, y) = z]− 2−m| ≥ ǫ}

Claim E.0.16. For every z, |Bz| < 2k

Suppose not, then the flat distributions on Bz,X are two independent sources for which the

extractor IndepExt fails. Now let B = ∪zBz. We see that |B| < 2k2m. Thus,
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∑

y∈supp(Y )

2−k
′‖IndepExt(X, y) − Um‖ℓ1

=
∑

y∈supp(Y )∩B
2−k

′‖IndepExt(X, y)q − Um‖ℓ1 +
∑

y∈supp(Y )\B
2−k

′‖IndepExt(X, y) − Um‖ℓ1

≤ 2−k
′

2k+m + ǫ2m

= 2m(2k−k
′

+ ǫ)
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