## Copyright

by
Stéphanie Villard
2015

The Dissertation Committee for Stéphanie Villard certifies that this is the approved version of the following dissertation:

# The Phonology and Morphology of Zacatepec Eastern Chatino 

Committee:

Anthony C. Woodbury, Supervisor

Nora C. England

Patience L. Epps

Danny Law

Mark A. Sicoli

# The Phonology and Morphology of Zacatepec Eastern Chatino 

by

Stéphanie Villard, B.A.; M.A.

## DISSERTATION

Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
May 2015

## Acknowledgments

When I ponder this endeavour which has absorbed the past eight years of my life, the one thought that keeps recurring is that I have been very fortunate to be able to spend so much time with a group of people who are the most hospitable, most generous, most fun to be around.

I have received important help and support in various ways from many people. Some spent literally hundreds of hours working patiently with me through what must have sometimes felt like an agonizingly tedious chore, while others cooked for us (my daughter and I), cared for us, offered us a comfortable place in their home, included us in their daily life by inviting us to parties, dinners and more. I have always felt welcome, included, and cared for.

This project involved so many people at various stages of the documentation process that I cannot possibly name them all. Among those many people who have helped me in numerous ways, I particularly wish to acknowledge:

Margarita González Hernández for being involved in this project from the get go. Year after year, she was present and available to work with me. I knew I could count on her. Over the years, we have spent many many hours together, working on multiple tasks related to the documentation project.

She has shown a great deal of patience and dedication. She showed constant enthusiasm even in the difficult times when, for whatever reason, we would get frustrated at each other, or feel discouraged because we could not figure out one particular aspect of the grammar we would be working on. In those moments, we would take a break, eat a delicious mango or some other sweet local delicacy, enjoy a few minutes of sharing the local gossip, and then we would be ready to get back to work, refreshed.

Another person who showed constant dedication to this project from the time he started is Anatolio Soriano Cortés. It was amazing to witness his dedication to learning to read and write in his native language. His level of reliability and commitment to his part and role within the project was invaluable.

Julia González Hernández and Mago González Hernández (with her husband Pedro Franco) opened their houses to us, and really put into practice the Spanish saying mi casa es th casa. Both of them gave us a warm home to look forward to coming back to, and made us feel part of their family.

I am also especially thankful to the following people for many reasons: Margarita González Hernández' husband, Toribio, Ana-Lilia González Hernández, Anel Franco, Judi Franco, Josefina Hernández, Isabel Cortés, Mari de Jésus Hernández, Matilde Hernández, Javier Ayuso and his wife Luci, and many more....

I also want to thank my husband, Darien Ligarde, for his support all these years. He is by now probably the most linguistically savvy architect around, as he has painstakingly proof read most of my academic work. I am sure that it has not been easy for him to be away from Emma and I for such long periods of time, I know he must have secretly worried a lot about me travelling with our infant daughter, and travelling to such a remote place. But he has always shown support for my work and I can't thank him enough for that.

I want to thank my daughter Emma Ligarde for being such a wonderful travel companion. She came along with me to Zacatepec for the first time when she was 7 months old and has spent a lot of time there since then. I know that it was hard for her to have to be separated from her dad for long periods of time, so often in the year. I am so grateful for her amazing adaptation abilities and her constant good spirits in times when she was constantly shlepped around along with me or left behind in the village with a friend care giver. I hope she remembers those times fondly. I could not have achieved any of this if I had left her behind in the US.

I wish to thank my supervisor, Tony Woodbury for his constant support all these years, for reading and re-reading many drafts and revisions of this particular work, but also many other written pieces, including presentations, articles, grant proposals etc. His comments and suggestions have always been a tremendous help, and contributed to greatly improving my work.

I also wish to thank the administration and staff of the University of Texas at Austin, and more specifically Ben Rapstine and Leslie Crooks for their help navigating all the bureaucracy related to the administrative part of my project. I would also like to take the opportunity to thank Richard Meier who was the Chair of the Linguistics Department for many years during my years of graduate school. He was a tremendous Chair who really showed interest in every single student in the department. I always felt I could turn to him for advice with any concerns related to department life.

Thanks to the other members of my committee: Nora England, Patience Epps, Danny Law and Mark Sicoli for all the feedback and comments on this dissertation.

Many thanks to my colleagues and dear friends Gabriela Salido and Emilie Destruel who have made these years in graduate school so special and fun. Thanks also to Leah Velleman (and Ryan Sullivant) who acted as my own private LaTeX consultants. It was such a relief knowing that I could ask them about technical issues instead of having to agonize through all the possible solutions posted on nerdy blogs.

Thanks to my colleagues and friends from the Chatino Language Documentation Project: Ryan Sullivant, Adam Hammick, Justin McIntosh, Eric Campbell, Emiliana Cruz, Hilaria Cruz, Lynn Hou, and Kate Mesh. All together, we shared data, references, advice, fieldwork and much more.

My research has been supported in part by two grants from the Endangered Language Documentation Programme at the Hans Rausing Endan-
gered Languages Programme at the School of Oriental and Asian Studies at the University of London (MDP0153, IGS0102), as well as some fellowships and small grants from the University of Texas at Austin.

# The Phonology and Morphology of Zacatepec Eastern Chatino 

Publication No.<br>$\qquad$<br>Stéphanie Villard, Ph.D.<br>The University of Texas at Austin, 2015

Supervisor: Anthony C. Woodbury

This dissertation presents an analysis of the phonology and some aspects of the morphology of Zacatepec Eastern Chatino (ISO 639-3: ctz), an Otomanguean language of the Zapotecan branch spoken near the Pacific coast of the State of Oaxaca, Mexico.

It is based on primary data obtained from fieldwork conducted by the author (from 2006 to 2013) in the community of San Marcos Zacatepec, district of Juquila, Oaxaca, Mexico. Zacatepec Chatino is only spoken in that small community of about one thousand inhabitants. There are only about 300 speakers left, all above 50 years old. This variety of Chatino finds itself in an advanced language shift to Spanish, and as a result its vitality status is considered severely endangered.

The description of Zacatepec Chatino is important within the study of Chatino languages in general, as contrary to most other Chatino varieties, it conserves all non-final syllables of its roots. This fact makes it a centerpiece for the Chatino language puzzle as its transparent morphology tells the story of the evolution of more innovative Chatino varieties. Indeed, beyond simply revealing lost segments/morphemes, it provides polymoraic structures that host clear sequences of tones that are not discernable in the monosyllabic/monomoraic varieties.

The phonological analysis begins with a presentation of the segmental sound system, including two of the three contrastive supra-segmental features: nasalization and vowel length. Nasal vowels and long vowels are described together with oral vowels whereas tone, is dealt with in detail in a separate chapter. Directly following the segmental analysis, a chapter is devoted to the phonotactics of the language.

Tone, being the hallmark of Otomanguean languages, is an area of the phonology that is described in great detail. The tonal system is intricate as it involves four levels of pitch represented in five mora-linked tones and three unlinked (floating) tones arranged in many tonal sequences which become the signatures for lexical classes. Furthermore, polysyllabicity allows for many moraic shapes resulting in a variety of possible phonetic realizations of the tonal sequences which mark the tonal Classes.

The other highlight of this dissertation is a chapter dedicated to the description of the inflectional system, an area revealed to be quite com-
plex at the morphological and the morphophonological level. Nevertheless, despite its prima facie maze of irregularities, this intricate inflectional system actually presents a high rate of predictability in its segmental (aspect prefixes) and tonal conjugation Classes. This chapter describes the different patterns of inflection (segmental and tonal) for three different parts of speech: the verb, the inalienable noun, and the predicative adjective.

The last chapter is devoted to the description of the numerical system which is interesting because the numerical phrases do not always follow the tonal sandhi rules of the language, and often result in idiosyncratic tonal patterns. It is important to document and describe this ancient numerical system as the language is in advanced language shift to Spanish. Its usage is loosing ground very rapidly and usually, when speakers need to count or utter a number (especially one above 15), they code-switch to Spanish.

This work is a first step towards a comprehensive documentation of Zacatepec Chatino, which as of today, includes a large corpus of natural discourse recorded within the community by native speakers (about 170 hours), a collection of transcribed and translated texts, and a lexicon and verb database with full paradigms for more than 300 verb roots. The corpus is archived with open access at the Archive of Indigenous Languages of Latin America, University of Texas at Austin, and at the Endangered Languages Archive, School of Oriental and African Studies, London.

## Table of Contents

Acknowledgments ..... iv
Abstract ..... ix
List of Tables ..... xviii
List of Figures ..... xX
Chapter 1. Introduction ..... 1
1.1 Zacatepec Chatino and its speakers ..... 3
1.1.1 Ethnographic information ..... 3
1.1.2 Sociolinguistic situation ..... 12
1.1.2.1 Vitality and endangerment status ..... 12
1.1.3 Genetic affiliation ..... 16
1.1.3.1 External and internal classification ..... 16
1.2 Typological profile ..... 20
1.3 Previous work on Zacatepec Chatino ..... 23
1.4 Fieldwork narrative ..... 25
1.4.1 Zacatepec Chatino Documentation Project ..... 25
1.5 Corpus and data collection ..... 32
1.6 Theoretical framework ..... 37
Chapter 2. Segmental phonology ..... 43
2.1 Practical orthography ..... 44
2.2 Vocalic system ..... 49
2.2.1 Oral vowels ..... 52
2.2.1.1 /a/ ..... 52
2.2.1.2 /e/ ..... 54
2.2.1.3 /i/ ..... 56
2.2.1.4 /u/ ..... 58
2.2.1.5 /o/ ..... 60
2.2.2 Nasal vowels ..... 62
2.2.2.1 /ã/ ..... 62
2.2.2.2 /ẽ/ ..... 64
2.2.2.3 / $\mathrm{I} /$ ..... 66
2.2.2.4 /ũ/ ..... 67
2.2.3 Vowel length ..... 69
2.2.4 Vowel harmony ..... 72
2.2.4.1 Translaryngeal Vowel Harmony ..... 72
2.2.4.2 Nasal spreading ..... 76
2.3 Consonantal system ..... 78
2.3.1 Bilabial consonants ..... 81
2.3.1.1 /p/ ..... 82
2.3.1.2 /b/ ..... 82
2.3.1.3 /m/ ..... 83
2.3.2 Apico-dental consonants ..... 84
2.3.2.1 /t/ ..... 85
2.3.2.2 /d/ ..... 87
2.3.2.3 /ts/ ..... 88
2.3.2.4 /s/ ..... 89
2.3.2.5 /n/ ..... 90
2.3.2.6 /l/ ..... 93
2.3.2.7 / $/$ / ..... 95
2.3.2.8 /r/ ..... 96
2.3.3 Lamino-alveolar consonants ..... 96
2.3.3.1 /t/ ..... 98
2.3.3.2 /t $\mathrm{t} /$ ..... 99
2.3.3.3 / $/ /$ ..... 100
2.3.3.4 /n/ ..... 101
2.3.3.5 /l/ ..... 102
2.3.4 Palatal consonants ..... 104
2.3.4.1 /j/ ..... 104
2.3.5 Velar consonants ..... 106
2.3.5.1 /k/ ..... 107
2.3.5.2 /kw/ ..... 108
2.3.5.3 /w/ ..... 110
2.3.6 Glottal consonants ..... 113
2.3.6.1 / $\mathrm{Z} /$ ..... 113
2.3.6.2 /h/ ..... 115
2.3.7 The phonological status of laryngeals ..... 117
Chapter 3. Phonotactics ..... 122
3.1 Syllable structure ..... 125
3.1.1 Syllable onsets ..... 125
3.1.1.1 Simple onsets ..... 125
3.1.1.2 Complex onsets ..... 126
3.1.2 Syllable nuclei ..... 134
3.2 Phoneme distribution within the word ..... 138
Chapter 4. Tone in simplex words ..... 142
4.1 Introduction ..... 142
4.2 The tonal inventory ..... 148
4.3 The mora as the Tone Bearing Unit ..... 149
4.4 Prosodic shapes of words ..... 153
4.5 Tone realization at the sentence level ..... 153
4.5.1 Moras unspecified for tone and spreading ..... 154
4.5.2 Linking and realization of floating tones in subsequent tonally unspecified moras ..... 163
4.5.3 Phonetic data illustrating the Spreading and Floating Tone Linking rules ..... 172
4.6 The Lexical Tone Classes ..... 177
4.6.1 Tone Classes in dimoraic disyllables ..... 179
4.6.1.1 Tone Classes in isolation ..... 179
4.6.1.2 Tone Classes preceded by a word ending in /LS/ ..... /181
4.6.1.3 Tone Classes followed by /X-X/ ..... 186
4.6.2 Tone Classes in dimoraic monosyllables ..... 190
4.6.3 Tone Classes in monomoraic monosyllables ..... 193
4.6.4 Tone Classes in trimoraic trisyllables ..... 199
4.6.5 Tone Classes in trimoraic disyllables ..... 203
4.7 Formal representation of linking rule for mora-linked tones ..... 204
4.8 Distribution of Tone Classes according to word shape ..... 207
4.9 Distribution of tone within the word ..... 210
4.10 Tonal Sequences as Lexical Tone Classes ..... 211
4.11 Tone realization at the sentence level revisited ..... 216
4.11.1Description of Spreading revisited ..... 216
4.11.2Description of floating tone realization revisited ..... 222
4.11.2.1Floating /LS/ followed by all Tone Classes ..... 222
4.11.2.2Floating /H/ followed by all Tone Classes ..... 232
4.11.2.3Floating /L/ followed by all Tone Classes ..... 245
4.11.2.4Formal representation of Linking Rules for float- ing tones ..... 257
4.11.3Phonetic pitch lowering ..... 263
4.12Conclusion ..... 270
Chapter 5. Inflectional morphology ..... 275
5.1 Introduction ..... 275
5.2 Generalities about verbal inflection ..... 276
5.3 Aspectual verbal inflection ..... 282
5.3.1 Segmental aspectual conjugation Classes ..... 282
5.3.1.1 Aspect markers ..... 283
5.3.1.2 The vowel hierarchy ..... 285
5.3.1.3 The aspect prefix Classes ..... 286
5.3.1.3.1 Class A ..... 288
5.3.1.3.1.1 Subclass $A_{u}$ ..... 289
5.3.1.3.1.2 Subclass $\mathrm{A}_{\mathrm{c}}$ ..... 291
5.3.1.3.1.3 Subclass A2 ..... 293
5.3.1.3.2 Class B ..... 298
5.3.1.3.2.1 Subclass $B_{c}$ ..... 298
5.3.1.3.2.2 Subclass $B_{k}$ ..... 302
5.3.1.3.2.3 Subclass $B_{\text {post }}$ ..... 304
5.3.1.3.2.4 Subclass $B_{y}$ ..... 306
5.3.1.3.3 Class C ..... 310
5.3.1.3.3.1 Subclass $\mathrm{C}_{\mathrm{a}}$ ..... 310
5.3.1.3.3.2 Subclass C2 ..... 313
5.3.1.4 Conclusion ..... 315
5.3.2 Tonal aspectual conjugation Classes ..... 317
5.3.2.1 Composed TS's in progressive verb forms ..... 318
5.3.2.2 Tone Class 1 aspectual conjugation ..... 322
5.3.2.3 Tone Class 3 aspectual conjugation ..... 325
5.3.2.4 Tone Class 13 aspectual conjugation ..... 327
5.3.2.5 Tone Class 4 aspectual conjugation ..... 329
5.3.2.6 Tone Class 8 aspectual conjugation ..... 331
5.3.2.7 Tone Class 9 aspectual conjugation ..... 335
5.3.2.8 Tone Class 10 aspectual conjugation ..... 337
5.3.2.9 Tone Class 11 aspectual conjugation ..... 342
5.3.2.10Tone Class 12 aspectual conjugation ..... 349
5.3.2.11Conclusion ..... 351
5.4 Subject person marking ..... 354
5.4.1 Person marking on inalienable nouns ..... 354
5.4.2 Subject person marking on predicative adjectives ..... 359
5.4.3 Subject person marking on verbs ..... 365
5.4.3.1 2 s subject person marking on verbs ..... 365
5.4.3.1.1 Tone Class 1 person conjugation ..... 365
5.4.3.1.2 Tone Class 3 person conjugation ..... 369
5.4.3.1.3 Tone Class 13 person conjugation ..... 374
5.4.3.1.4 Tone Class 4 person conjugation ..... 376
5.4.3.1.5 Tone Class 8 person conjugation ..... 379
5.4.3.1.6 Tone Class 9 person conjugation ..... 383
5.4.3.1.7 Tone Class 10 person conjugation ..... 387
5.4.3.1.8 Tone Class 11 person conjugation ..... 390
5.4.3.1.9 Tone Class 12 person conjugation ..... 398
5.4.3.1.10Conclusion ..... 402
5.4.3.2 1 s subject person marking on verbs ..... 402
5.4.3.3 Plural subject marking on verbs ..... 416
5.5 Conclusion ..... 420
Chapter 6. The numerical system: an extended demonstration of tone in phrasal lexemes ..... 424
6.1 Numbers 1 to 10 ..... 425
6.2 Numbers 11-30 ..... 426
6.3 Numbers 31-40 ..... 430
6.4 Numbers from 41-60 ..... 431
6.5 Numbers from 61-80 ..... 434
6.6 Numbers from 81-100 ..... 437
6.7 Conclusion ..... 440
Appendix ..... 442
Appendix 1. Abbreviations ..... 443
References ..... 444

## List of Tables

2.1 Practical orthography: consonants ..... 46
2.2 Phonemic inventory: consonants ..... 46
2.3 Phonemic inventory: consonants ..... 78
2.4 Practical orthography: consonants ..... 79
2.5 The distribution of laryngeals ..... 120
2.6 The characteristics of laryngeals ..... 120
3.1 Two-consonant clusters ..... 133
3.2 Phoneme distribution within the word ..... 140
4.1 Tonal representation ..... 145
4.2 The ZAC Tone Classes ..... 147
4.3 The ZAC Tone Classes ..... 178
4.4 Distribution of Tone Classes according to word shape ..... 207
4.5 Distribution of tones in simplex words ..... 210
4.6 Prevalence of tonal sequences in the lexicon ..... 213
5.1 Example of a complete verbal paradigm for a Tone Class 8 verb278
5.2 Independent and dependent subject pronouns ..... 279
5.3 Aspect allomorphs ..... 284
5.4 Vowel hiatus resolution ..... 286
5.5 Aspect prefix Classes ..... 287
5.6 Characteristics of the prefix Classes ..... 288
5.7 Prefix Classes statistics ..... 315
5.8 Example of a complete verbal paradigm for a Tone Class 8 verb318
5.9 Tone conjugation Classes statistics ..... 353
5.10 Tonal ablaut patterns for person marking on inalienable nouns358
5.11 Example of a paradigm for the predicative adjective tsa?wě 'be good, generous' ..... 359
5.12 Tonal ablaut patterns for person marking on predicative ad- jectives ..... 363
5.13 Tonal ablaut patterns for person marking on inalienable nouns and predicative adjectives ..... 364
5.14 Tonal ablaut patterns for subject marking on verbs ..... 403
5.15 3s and 1 s tonal ablaut patterns across aspects ..... 408
5.16 Independent and dependent plural subject pronouns ..... 416
5.17 Example of a complete verbal paradigm for $u$-lukwă 'sweep it' ..... 418
5.18 Subject plural marking on verbs ..... 419
5.19 Verbal, nominal and adjectival tonal ablaut patterns for per- son marking ..... 423

## List of Figures

1.1 Map of the Chatino languages. (Villard and Sullivant (under review)) ..... 5
1.2 Map of the village of San Marcos Zacatepec by Javier Ayuso ..... 6
1.3 A palm house in San Marcos Zacatepec (photo by Tony Wood- bury) ..... 11
1.4 Scenery of San Marcos Zacatepec showing palm houses (photo by Stéphanie Villard) ..... 12
1.5 Chatino vitality in San Marcos Zacatepec (modified from Vil- lard and Sullivant (under review)) ..... 15
1.6 The Chatino varieties: External and internal relationships (E. Cruz \& Woodbury, 2014) ..... 18
1.7 Internal structure of Chatino including the now extint Teojo- mulco (Sullivant, under review) ..... 19
1.8 Autosegmental representation of prosodic features: nkasiín? 'he/she squeezed it' ..... 38
2.1 Practical orthography: vowels ..... 45
2.2 Phonemic inventory: vowels ..... 45
2.3 Autosegmental representation of prosodic features: nkasiín? 'he/she squeezed it' ..... 51
2.4 Phonemic vowel inventory ..... 51
2.5 Regressive Translaryngeal Vowel Harmony rule ..... 73
2.6 Progressive Translaryngeal Vowel Harmony rule ..... 73
2.7 Autosegmental representation of Progressive Translaryngeal Vowel Harmony rule: jo?ō' [ho? $]$ ..... 75
2.8 Autosegmental representation of Nasal Spreading rule: $n k u \bar{u} w e \bar{n}$ [ngũw ] ..... 77
2.9 Voicing assimilation rule ..... 80
2.10 Place assimilation rule ..... 81
3.1 Autosegmental representation of prosodic features: nkasiín? 'he/she squeezed it' ..... 124
4.1 Monomoraic words with level outcomes ..... 148
4.2 The ZAC rising tones on monomoraic words ..... 149
4.3 Autosegmental representation of prosodic features: nkasiín? 'he/she squeezed it' ..... 150
4.4 Linking of tone in a disyllabic dimoraic word: kwiná 'snake' . ..... 153
4.5 Prosodic shapes of simplex words (Modified from (Villard \& Woodbury, 2012)) ..... 154
4.6 Sentence where all words are unspecified for tone ..... 155
4.7 Persistence of high pitch [H] (from /M-H/) into subsequent tonally unspecified moras ..... 156
4.8 Persistence of the final high pitch [H] (from /LH/) into sub- sequent unspecified moras ..... 157
4.9 Persistence of super high pitch [S] (from /L-LS/) into subse- quent tonally unspecified moras ..... 158
4.10 [M] pitch (from /M/) does not persist in subsequent tonally unspecified moras ..... 159
4.11 [L] pitch (from /M-L/) has no effect on subsequent tonally unspecified moras ..... 160
4.12 Persistence of [H] pitch (from /M-H/) in subsequent unspec- ified moras until it reaches the TS /M-M/ in lyūwā, which is realized on each mora with [M] pitch. ..... 162
4.13 Spreading rule ..... 163
4.14 Autosegmental representation of the word xunī? 'dog' ..... 164
4.15 Floating /LS/ in subsequent tonally unspecified moras ..... 166
4.16 Floating $/ \mathrm{H} /$ in subsequent tonally unspecified moras ..... 168
4.17 Floating /L/ in subsequent tonally unspecified moras ..... 170
4.18 Preliminary Floating Tone Linking rule 1 ..... 171
4.19 Averaged pitch for kula (/X-X/) AFTER each tone ..... 174
4.20 Averaged pitch for kula (/X-X/) AFTER each floating tone ..... 175
4.21 Monomoraic words pronounced in sequence and overlaid ..... 197
4.22 ne? (/X/) after /X/ and after /LS/ VERSUS nkùn" (/L (LS)/) after /X/ and after /LS/ ..... 198
4.23 Linking rule for lexically linked tones ..... 199
4.24 Linking rule for each Tone Class according to word shape ..... 206
4.25 Averaged pitch tracks for falling melodies in long stems ..... 209
4.26 Persistence of [H] pitch (from /LH/) in subsequent unspeci- fied moras until /M/ (from /M-M/) ..... 217
4.27 Persistence of [S] pitch (from /L-LS/) in subsequent unspec- ified moras until /M/ (from /M-M/) ..... 218
4.28 Persistence of [H] pitch (from $/ \mathrm{M}-\mathrm{H} /$ ) in subsequent tonally unspecified moras until /L/ (from /X-L (LS)/) ..... 219
4.29 Persistence of [H] pitch (from /X-LH/) in subsequent tonally unspecified moras until /L/ (from /X-L (LS)/) ..... 220
4.30 Persistence of [S] pitch (from /L-LS/) in subsequent tonally unspecified moras until /L/ (from /X-L (LS)/) ..... 221
4.31 Preliminary Floating Tone rule 2 ..... 232
4.32 Final Floating Tone Linking rule for /H/ and /LS/ ..... 256
4.33 Final Floating Tone Linking rules for /L/ ..... 256
4.34 Floating /LS/ linking mode ..... 258
4.35 Floating /H/ linking mode ..... 260
4.36 Floating /L/ linking mode ..... 262
4.37 Summary of tonal typological features (Modified from Villard and Woodbury (2012)) ..... 272
5.1 Simplex Verb template ..... 276
5.2 The vowel hierachy ..... 286
5.3 Tone deletion rule in progressive forms ..... 320

## Chapter 1

## Introduction

This dissertation presents an analysis of the phonology and some aspects of the morphology of Zacatepec Eastern Chatino (ISO 639-3: ctz), a severely endangered indigenous language spoken near the Pacific coast of the State of Oaxaca, Mexico. This work is a first step towards a comprehensive documentation of Zacatepec Chatino, and these chapters represent the first parts of a descriptive grammar which will eventually cover all main areas of the language.

One focus of this work is to describe the complexities of the language's tonal system. The approach taken here, takes the reader through the methodology and the discovery path, and by doing so, unveils the fine mechanics and the dynamic characteristics of the system.

This work also aims to shed light on the inflectional system of ZAC, an area revealed to be quite complex at the morphological and the morphophonological level, by demonstrating that despite its prima facie maze of irregularities, the system presents some order, and even an important degree of predictability.

This dissertation is organized as follows: the remainder of this chap-
ter gives general information about Zacatepec Chatino and its speakers, offering ethnographic information as well as sociolinguistics insights looking at its vitality and endangerment status. It also lays out the language's genetic affiliation and more precisely the external and internal classification. A highlight of this chapter is a narrative about the Zacatepec Documentation Project including speakers' etiquettes describing their respective role in the project. This chapter ends with a presentation of the theoretical framework upon which the phonological representations are based through out this work.

Chapter 2 describes in detail ZAC's segmental sound system. It discusses the distribution of each phoneme and its allophonic variations to show their contrastiveness, and also discusses their respective distributional constraints.

Chapter 3 deals with the non-tonal phonemic inventory showing that the segmental contrastive system consists of vowels and consonants, and that the autosegmental inventory includes vowel nasality and vowel length. This chapter describes the distributions of those contrastive elements within the syllable first and then within the word.

Chapter 4 describes the phonology of the ZAC tonal system, discussing the distribution of tone as well as describing in detail all the phonetic realizations for each Tone Class for simplex words only. Furthermore, it documents and illustrates all of the sandhi processes occurring in connected speech in the language.

Chapter 5 describes the inflectional system of ZAC, and presents the different patterns of inflection (segmental and tonal) for three different parts of speech: the inalienable noun, the predicative adjective, and the verb. The data and the analysis presented in that chapter reinforce the claim already made in chapter 4 that the TS's are morphological entities that pertain to simplex words, whereas the tonal elements are phonological entities that pertain to moras.

Finally, chapter 6 presents ZAC's numerical system which has nearly fallen out of use. The data presented in that chapter is an extended demonstration of the tonal system in phrasal lexemes. The number system demonstrates compounding and the formation of phrasal lexemes, as well as the sandhi system, but it also shows unexpected changes in tonal patterns and tone sandhi.

### 1.1 Zacatepec Chatino and its speakers

### 1.1.1 Ethnographic information

The Chatino speaking area occupies the coastal ranges of Oaxaca's Southern Sierra Madre in Mexico. It is is contained within a quadrant from $15^{\circ} 39^{\prime}$ to $16^{\circ} 35^{\prime} \mathrm{N}$ latitude and from $97^{\circ} 04^{\prime}$ to $97^{\circ} 40^{\prime} \mathrm{W}$ longitude, from relatively low lands and river valleys to high mountaintop communities. As shown in map 1.1, to the west and southwest the Chatino languages border Coastal Mixtec-speaking towns and to the east lie Southern Zapotecspeaking communities. Not included in the map but still worth mentioning,
to the north are Papabuco Zapotec and West Zapotec languages. West appears to have older contact with Chatino, and Papabuco less older contact (Mark Sicoli, p. c., April 2015).

Zacatepec Chatino (henceforth ZAC) is only spoken in the town of San Marcos Zacatepec (kichen tsiī' 'pueblo del zacate' 'the village of grassy weeds' ) located in the lowlands of the Chatinophone area, at about 820 meters above sea level, about thirty minutes from the commercial town of Rio Grande on the Pacific coast. It has a population of approximately one thousand people (according to the 2013 local clinic data). The population's ethnicity is almost exclusively Chatino, as few (non-Chatino) outsiders have settled in the community. It is a highly endangered Chatino variety as it is only spoken by about 300 people all above 50 years of age.

Figure 1.2 presents a map of the community drawn by a community member, Javier Ayuso. It shows all the important sites within the village, the demarcations for the different neighborhoods as well as all the names of the surrounding rivers and mountains. This map has a corresponding soundfile where one of the village's elder named Silviano Cortés discusses (in Spanish) all the various points on the map telling the history of the community. It is archived at the Archive of the indigenous languages of Latin America ${ }^{1}$ (AILLA), and at the Endangered languages Archive (ELAR).

[^0]

Figure 1.1: Map of the Chatino languages. (Villard and Sullivant (under review))

Figure 1.2: Map of the village of San Marcos Zacatepec by Javier Ayuso

Even if the village's ethnicity is almost exclusively Chatino, women do not wear the typically Chatino modern clothing which consists of a colorful synthetic skirt with layers of underskirts topped with a cotton apron and an embroided cotton shirt. This type of clothing is found in neighboring Chatino communities such as Santiago Yaitepec, San Juan Quiahije or Cieneguilla. In Zacatepec, a few elders still wear the older traditional outfit which consists of white cotton pants and shirt for men, and white skirts with colorful or white underskirts and a white cotton embroided shirt for women.

The tropical climate and low altitude of Zacatepec is ideal for growing all sorts of fruits and vegetables. Economic activities in San Marcos Zacatepec include growing corn and beans, but also sweet potatoes and squash at a subsistence farming scale. Some people also raise chickens for eggs and meat, also principally for their own consumption. A few raise a hand full of turkeys with the intent of selling them, which can be quite lucrative as they can be sold for about MX\$500 each. People buy turkeys over Christmas time or for large parties such as weddings, quinceñeras, cabo de $a \tilde{n} o$ (death anniversary celebration) etc.

Many village men and women work in near-by commercial towns like Rio Grande, Puerto Escondido, and Santa Catarina Juquila. Since the 1980's the village has been experiencing mass migration by the younger generation of men, and recently even by young women, to Mexican cities and the US (Villard \& Sullivant, under review).

Coffee cultivation is also an important aspect of the community's economy. As recounted in El café amargo (Hernández Días Jorge, 1987), the region was transformed in the 1950s by large scale coffee production. Zacatepec has known a coffee growing boom during that period, but today most coffee production comes from small parcels of land. At that time, Zacatepec experienced waves of temporary migration from other surrounding communities at the time of harvest in December and January, but nowadays all the harvesting is done by community members.

Another cultivation in decline compared to past production, is the cohune nut, a small type of nut which grows on the cohune palm tree. The production and processing of cohune nuts was a major source of revenue for San Marcos Zacatepec 30-50 years ago. It is still harvested today, but it is so labor intensive and gets sold so cheaply that it is no longer economically viable for most people. The processing of the cohune nut is physically very demanding. It is done manually with a couple of stones: one flat and the other round in order to break the shell. People who worked processing cohune nuts have their left thumb and first finger damaged from being smashed by the round stone over and over. Their back is also generally damaged from sitting on the ground for long hours smashing nuts. The processed nuts get sold for the production of lubricant, cooking oil and soap. People still enjoy consuming cohune nuts in many type of sweets such as tortilla de corrozo 'cohune tortillas', as well as a type of drink made with cohune nuts and bananas.

Cacao is also grown in the area. It is a very small scale production. I only know a few people who have cacao trees and harvest the nuts for their own consumption, or to sell to other community members. Cacao is an important ingredient in many regional dishes and the most popular one is probably the traditional drink called champurrado whose main ingredients are corn and cacao. It is particularly consumed over Todos Santos and the Christmas holidays.

Oranges, bananas, nances, pineapple and mangos are plentiful in Zacatepec. Nances (from the Byrsonima Crassifolia tree) and oranges are particularly appreciated by Chatino people in general. As those fruits, do not grow at high altitude (Zacatepec is only at about 800 m above sea level), many Chatino people from other close by communities such as Juquila, Yaitepec or San Juan Quihije often come to Zacatepec to buy some and sell them in their own community. Banana plants and mango trees can be found everywhere in the community, along the main road, and in the surrounding forests, in fact, there are so many of them, that the fruits often end up rotting on the trees or cover the ground. There is a very small pineapple production farm near by the village whose harvest is mainly sold to local or regional grocers.

Most women do not work outside of home for a salary. Nevertheless, they have a very important role as they take care of all things related to the household. They are generally in charge of the household's finances. They get up at around 4 am to go to the mill and make the tortilla dough for their
family's lunch. They are a few privately owned mills dispersed in the village so most people have a mill they can go to near by. Traditionally women are the ones who go and collect wood for cooking purposes, but I have often seen couples go together in order to collect as much as possible and go less often. Women also forage for edible plants such as chepil (Crotalaria Longirostrata), pie de gallo (a mustardy tasting type of green which is steamed, ground and served with tortillas), purslane (Verdolaga Portulaca Oleracea), and wild mushrooms. They also complement the family's income by selling prepared food within the village. In Zacatepec, there is a constant flow of food items being sold all through the day, tamales, warm sweet potatoes, steamed hearts of palm, enchiladas during lunch time, and freshly baked sweet breads in the late afternoon. Besides, this array of local delicacies, street vendors from the coast also often come up to Zacatepec to sell freshly caught fish and seafood.

Men often go hunting or fishing to complement their family's meals: squirrels, deer, iguanas, doves, and crawfish from near by forests and rivers are consumed regularly. Men may work as village taxi drivers, masons, day laborers, cantina owners or handy men. As some neighboring communities such as San Juan Quiahije have known a construction boom in the last 10 years from the remittances sent from people who have migrated to the US, many men from Zacatepec have found construction work there. They usually stay there for the entire week and come back home for the weekend.

The community of San Marcos Zacatepec is among the very last com-
munities in the region to still build houses made of palms. Most houses are made out of concrete blocks or adobe but people still appreciate the esthetics and insolation qualities of palm houses. They can be built in a couple of days, and it is always a community enterprise. The owner of the house calls a few villagers for help and the women prepare meals for everybody involved in the process. At the end, the owner always organizes a party for the blessing of the house. A short video showing a house being built as well as a text transcription describing the entire building process are archived at AILLA ${ }^{2}$, and ELAR.


Figure 1.3: A palm house in San Marcos Zacatepec (photo by Tony Woodbury)

San Marcos Zacatepec is governed locally in part by a civil-religious hierarchy also referred as usos y costumbres or cargo system. The yearly

[^1]

Figure 1.4: Scenery of San Marcos Zacatepec showing palm houses (photo by Stéphanie Villard)
ceremony ratifying the installation of new appointees is one of the only instances of official use of Chatino. Most of the ceremony is conducted in Spanish except when one of the village's elders gives a ritual speech to bless all new entering cargo-holders. A recording of the annual ceremony including the speech of one of the community's elder during the ceremony can be found archived at AILLA ${ }^{3}$, and ELAR.

### 1.1.2 Sociolinguistic situation

### 1.1.2.1 Vitality and endangerment status

In the last forty years, the community of San Marcos Zacatepec has developed important commercial ties with near-by non-Chatino communi-

[^2]ties thanks to improved access to the coast through a direct paved road system. It is a very open and welcoming community to visiting foreigners (although there aren't many of them) and outsiders in general. People easily welcomed me into their home (even at first), and were very curious about me and my life. I noticed the same attitude with visiting outsiders (generally Mexican nationals who passed by on their way to visit the Catholic religious site in Santa Catarina Juquila).

First visitors to San Marcos Zacatepec quickly realize that Spanish is the dominant language. It is spoken in all households and all public domains. The town's loudspeakers (both those used by the municipal authorities as well as those used by private announcement services) make their announcements in Spanish only. However, a stroll along the village's main street during the quiet time of the afternoon's comida gives an impression that ZAC is still very much present as one can hear the animated conversations in ZAC through every wide open door. Furthermore, a peak within the municipality's building during the busy late afternoon time when many of the village's elders gather to discuss political matters, offers an image of a thriving body of ZAC speakers.

Spanish is the language of governance, but government officials often chat with one another in Chatino in municipal buildings. As already mentioned, the yearly ceremony ratifying the installation of new appointees is one of the only instances of official use of Chatino.

During conversations about the state of the language, non-fluent speak-
ers often deplore the loss of ZAC, and often express regret or blame their parents for not teaching them. One can sense a budding feeling of nostalgia. For example, a local credit union Caja Solidaria Ki'che-Tzi uses the Chatino name of the community, and has it painted in large print on its facade. However, despite the laments, many in the community still feel that ZAC is very much part of their daily life.

In the community, the younger generation is monolingual in Spanish, the language of education, media and modern life. Some members of the older generation between 30 to 40 years of age are passive ZAC speakers. Only the elder group, over 40, still consists of bilingual Chatino-Spanish speakers. Unfortunately, there are no ZAC monolinguals left.

The Ethnologue (Lewis, Gary F. Simons, \& Charles D. Fennig, 2015) gives the vitality of ZAC as 7 in the EGIDS scale (Shifting: the child-bearing generation can use the language among themselves, but it is not being transmitted to children). My own assessment of ZAC's vitality according to the EGIDS scale is 8a (Moribund: the only remaining active users of the language are members of the grandparent generation and older).

Figure 1.5 shows the distribution of the population according to age and ZAC fluency in the community. The number of individuals is listed on the x axis and age cohort in years on the y axis. Blue indicates Chatinophone persons and orange indicates Spanish monolinguals.

ZAC fluency is related to age, but naturally individual linguistic skills


Figure 1.5: Chatino vitality in San Marcos Zacatepec (modified from Villard and Sullivant (under review))
vary according to the internal composition of a household. Figure 1.5 gives a general picture of the linguistic landscape of the community: the vast majority of the population up to 39 years of age refers to itself as Spanish monolinguals, and the population above that age cohort refers to itself as either semi-speakers (40-50 years old) or full (native) speakers (50 and up) of ZAC.

However, my long term presence in the community allowed me to understand and assess the various linguistic layers with more accuracy than shown in the simple graph in figure 1.5. As far as ZAC monolinguals are concerned, as of 2014, I am fairly sure that there are none left. This was not true when I first visited the community in 2006, but they have all passed away since. The middle aged population characterizes itself as Spanish speakers
only, but the vast majority of them are actually at least passive speakers of ZAC as they often take care of their aging parents within their home. In this case, conversations between the aging parent and the son or daughter take place in Spanish, but the level of exposure to spoken ZAC is very important through the parent's social network consisting of native ZAC speakers. The community still has a socially integrated body of ZAC speakers consisting of oldsters only. Conversations among themselves always occur in ZAC whether at home or outside, and even within governmental buildings in the community.

The younger generation between 25 and 35 represents the age cohort with the most variety as far as ZAC skills are concerned. They all refer to themselves as Spanish speakers only, but the reality is more complex. Again, based on the characteristics of their respective household, many of them are actually ghost speakers (Grinevald \& Bert, 2011) as they deny their ZAC linguistics skills whereas facts prove the contrary. Furthermore, one important fact about ghost speakers is that their non-performance profoundly affects their children, who will not learn the language even covertly.

### 1.1.3 Genetic affiliation

### 1.1.3.1 External and internal classification

Chatino refers to three closely related languages (Eastern Chatino, Tataltepec Chatino and Zenzontepec Chatino) of the Zapotecan branch within the Otomanguean language family (Boas, 1913; Campbell, 2013; Wood-
bury, 2009). All the Chatino languages are spoken in the Southern Sierra Madre in the State of Oaxaca by about 28,000 people of chatino ethnicity (E. Cruz \& Woodbury, 2014).

Eastern Chatino ${ }^{4}$, which includes ZAC, is internally diverse, with about fifteen distinct topolects, many of which are mutually unintelligible, and are substantially different from each other. Campbell (2013) agrees with the claim of a tripartite division made early by Boas (also sustained by Woodbury (2009)), and furthermore demonstrates, via phonological, morphological, lexical isoglosses and shared innovations, that all the Eastern Chatino varieties form a distinct genetic unit. Furthermore, he shows that Eastern Chatino and Tataltepec Chatino form a proper subgroup, Coastal Chatino, that is coordinate with Zenzontepec Chatino, the family's most divergent variety. Figure 1.6 shows the external and internal relationships of the Chatino varieties.

Eastern Chatino groups together about fifteen different topolects (including ZAC) which vary considerably from each other with regard to phonological structure including tone and non-final syllable loss (E. Cruz, 2011; McIntosh, 2009; Pride \& Pride, 2004; Rasch, 2002; Villard \& Woodbury, 2012) preventing mutual intelligibility. However, no divisions or

[^3]subgrouping within Eastern Chatino have been demonstrated at this point ${ }^{5}$.

- Otomanguean (Many subfamilies)
o Zapotecan
- Zapotec (Many varieties)
- Chatino
- Zenzontepec Chatino [ISO 639-3 czn] (ZEN)
- Coastal Chatino
o Tataltepec Chatino [cta] (TAT)
o Eastern Chatino
- San Juan Quiahije Eastern Chatino [ctp] (SJQ)
- Santiago Yaitepec Eastern Chatino [ctp] (YAI)
- San Marcos Zacatepec Eastern Chatino [ctz] (ZAC)
- Santa Lucía Teotepec Eastern Chatino [cya] (TEO)
- Santa María Yolotepec Eastern Chatino [cly] (YOL)
- San Miguel Panixtlahuaca Eastern Chatino [ctp] (PAN)
- (About 9 others)

Figure 1.6: The Chatino varieties: External and internal relationships (E. Cruz \& Woodbury, 2014)

Recently, Sullivant (under review) looked into the historical classification of Chatino in light of data from now-extinct Teojomulco Chatino that had not hitherto ever been considered in work on Chatino classification. He demonstrates that the now-extinct Teojomulco Chatino represents a more divergent Chatino language resulting in the internal relationship presented in figure 1.7.

[^4]

Figure 1.7: Internal structure of Chatino including the now extint Teojomulco (Sullivant, under review)

### 1.2 Typological profile

As just noted, Chatino is an Otomanguean language, and as such falls within the the Mesoamerican language area (Campbell, Terrence Kaufman, \& Thomas C. Smith Stark, 1986). It possesses all five features that define the Mesoamerican linguistic area : nominal possession of the form 'his-noun ${ }_{1}$ noun $_{2}$ ', relational nouns expressing locative and related notions (often derived from body part nouns), vigesimal numeral system ${ }^{6}$, non-verb-final basic word order (ZAC's basic word order is VSO), and several widespread semantic calques (door: mouth of the house; wrist: neck of the hand etc.).

The Chatino language family is spread out in a fairly small area in the state of Oaxaca, and ZAC is only spoken in the small village of San Marcos Zacatepec. It is among the most morphologically conservative varieties of Chatino (together with Zenzontepec Chatino). Indeed, unlike all other documented Eastern Chatino varieties, ZAC conserves all non-final syllables of its roots.

Phonologically, ZAC presents voicing of non-continuant after nasals (§2.3), vowel harmony (§2.2.4), and contrastive nasal vowels (§2.2.2). Its phoneme inventory includes a set of typologically rather uncommon laminoalveolar sounds (§2.3.3), lacks labial phonemes in its native inventory (§2.3.1), and its tonal inventory shows 4 levels of pitch (Low, Mid, High, and Super high). From these levels, there are five tones: /L,M, H, LH, LS/. These tones

[^5]link to moras ${ }^{7}$, but not all moras bear a linked tone, nor are all lexicallypresent tones linked to moras: instead, some lexically-present tones are unlinked or floating tones ${ }^{8}$ that link, under certain conditions, to tonally unspecified moras in the following word. ZAC presents fifteen specific Tonal Sequences that define fifteen Lexical Classes. These link only to available moras in the word (or if they contain a floating tone, the latter link forward to the next word). The Tonal Sequences are also among the entities that mark aspect and person in the inflectional system, so that alternations from one Tonal Sequence to another mark differences in the aspect or in person category of the inflected word.

Morphologically, ZAC is a head-marking language ${ }^{9}$. It is rather synthetic and somewhat analytic. Some functions are handled by mixed means; for example, person marking can be signaled through tone contrast and /or nasalization, encliticization, or also by a separate word. Verbal morphology is concatenative for aspect marking (typical of synthetic languages). The majority of ZAC morphemes are free morphemes rather than agglutinated particles (typical of analytic languages). Its verbal morphology features a large inventory of allomorphs of its aspectual morphemes, which makes

[^6]its verbal paradigms appear extremely irregular, but most of the irregularities can be explained through morphophonological processes (§5.3). Verbal paradigms also present tonal conjugation patterns which also appear at first to be unpredictable but which in fact, are quite orderly when examined taking into account a particular verb form (3s) considered the basis for deriving tonal paradigms (§5.3.2).

Syntax and meaning are shaped by use of particles and word order rather than by inflection (except for verbs, inalienable nouns, and predicative adjectives which can be inflected for person). The basic word order is VSO but other orders are present, and have specific pragmatic motivations. Juxtaposition is the preferred strategy for constructions such as alienable possession and non-verbal predication (adjectival, nominal and quantificational). Some morphemes such as the marker Rin (§2.3.7) have various functions in the grammar, i.e, it is a dative marker that introduces human objects, indirect objects, and also marks alienable possession. Furthermore, the language uses a final particle á (§3.1.1) rather than rising intonation for polar questions.

As a somewhat analytic language, compounding patterns play an important role in word formation. Furthermore, the use of combinations of 'light nouns' or semantically poor nouns and semantically rich adjectives (or nouns, although very rarely) is very prolific in the language. For example, the light noun $n u$ 'the one who', often occurs as a head noun in noun phrases, as in nu kī?yó 'man' (the one who is male) or nu kunāPán 'woman'
(the one who is female).

### 1.3 Previous work on Zacatepec Chatino

Up to recently, there was relatively little work on Chatino in general. In the past, some varieties were more studied than others, and bibliographies of such older studies may be found in respective Chatino varieties' recently published work, such as for Yaitepec Chatino (Rasch, 2002), San Juan Quiahije Chatino (E. Cruz, 2011; H. Cruz, 2014), Zenzontepec Chatino (Campbell, 2014), Tataltepec Chatino (Sullivant, 2015), and Teotepec Chatino (McIntosh, 2015).

As far as ZAC is concerned, outside of a few lexical items included in a dictionary of Panixtlahuaca Chatino (Pride \& Pride, 2004), no prior work has been found.

Work on ZAC started in 2005 when Emiliana Cruz, Hilaria Cruz, and Anthony Woodbury began recording texts and wordlists, publishing an analysis of surface tone in the context of other Eastern Chatino cognates, and a preliminary orthography (H. Cruz \& Woodbury, 2006). This analysis offered some insight into the surface tonal patterns of words in isolation but did not treat the sandhi patterns in phrasal context.

In 2008, a survey of ZAC was conducted as part of the Project for the Documentation of the Languages of Mesoamerica (PDLMA). The native speaker was Margarita González Hernández and the researchers were Hi-
laria Cruz and Emiliana Cruz. This is archived in the Zapotec and Chatino Survey Archive at the Max Plank Institute (Sicoli Mark A \& Kaufman Terrence, 2010).

In the summer of 2006, I joined The Chatino Language Documentation Project (henceforth CLDP) at the University of Texas at Austin directed by Tony Woodbury, and continued the work he, with Emiliana Cruz and Hilaria Cruz, had initiated. A narrative of the CLDP's earlier work on ZAC can be found in E. Cruz and Woodbury (2014).

Since then, I have been documenting the language, and studying many areas of its grammar.

Its phonology presents a rich tonal system with a large inventory of phonemic tonal sequences as well as intricate sandhi patterns which have been the focus of various papers and presentations. A first study of ZAC's tonal system appeared in 2007 (Villard, 2007). It established most of the sandhi patterns but failed (along with the previous study) to distinguish low mora-linked tones versus unspecified moras. Subsequent studies (Villard, 2012; Villard \& Woodbury, 2012) did account for that contrast, established a more complete tonal inventory, and demonstrated most sandhi patterns encountered in the language.

At the morphological level, ZAC verbal paradigms reveal, prima facie, a maze of irregularities which would provide any linguist endless endeavor. Villard (2009) applied Campbell's (Campbell, 2011) verb classifica-
tion for Zenzontepec Chatino to ZAC, and established a verbal classification system which was found to closely correspond to an older zapotecan classification system documented in Kaufman (2006). Villard (2012) established conjugation classes based on tonal patterns of the 3 s completive verb forms. Furthermore, contrary to most other Chatino varieties, ZAC conserves all non-final syllables of its roots. The latter makes it the center piece of the Chatino language puzzle as its transparent morphology tells the story of the evolution of more innovative Chatino varieties: beyond simply revealing lost segments, it provides polymoraic structures that host clear sequences of tones that are not discernable in the simpler, monosyllabic/monomoraic varieties.

In the area of syntax, an early grammatical sketch was published in 2008 (Villard, 2008), followed by a study on non-verbal predicates (McIntosh \& Villard, 2011), and a study on property concepts (adjectives and related constructions) (Villard, 2013).

In the area of fieldwork and language endangerment, a recent study describes the issues related to language documentation in a community with a high migration rate (Villard \& Sullivant, under review).

### 1.4 Fieldwork narrative

### 1.4.1 Zacatepec Chatino Documentation Project

As already mentioned, my fieldwork started in 2006 with an exploratory trip along with other CLDP researchers in the Chatino region,
visiting a few communities in addition to San Marcos Zacatepec. One of the reasons why I picked Zacatepec as my field site in the first place was due to the immediate and overwhelming interest and willingness of the community members to share their knowledge of their language with the total stranger that I was. One way to meet people and bond with the community in general was to hold daily public workshops in the center of town where I would share, with whomever wanted to attend, my little knowledge of the language. Sometimes, the topic would divert to my native French language or English about which they were very curious. The main purpose of these meetings was to demonstrate to the community members that contrary to what they may have been led to believe, ZAC indeed was a full-fledged language, that it could be written if one wanted to, just as the languages of wider communication. This venue was also helping me identify individual community members particularly interested in language documentation and maintenance issues.

From 2007 to 2010, my fieldwork was funded by Woodbury's Major Documentation Project grant (MDP0153 Woodbury) from the Endangered Languages Documentation Programme (ELDP) major grant from the School of Oriental and African Studies (SOAS) at the University of London, United Kingdom. It allowed me to spend every summer in the field during those three years. Then, in June 2010, I was awarded an Individual Graduate Scholarship (IGS0102 Villard) from ELDP to fund my research and fieldwork for the next three years (Nov 2010-Nov 2013). During those years, I spent
a significant amount of time in San Marcos Zacatepec at various times of the year, collecting natural discourse data and training native speakers to conduct linguistics documentation of their own language. Those two grants allowed for a sustained (intermittent) presence in the field for a period of more than six years.

Over the years, I have become friends with many people in the community, and nurtured close relationships with a few. I worked closely with four individuals who ended up being central to the documentation project. To follow is a presentation of each of them ${ }^{10}$.

Margarita González Hernández is 71 years old, and has been working with me on the documentation of her native language since 2006. She is a fluent speaker according to Grinevald and Bert (2011). Chatino is still her main medium of communication as her social circle is mainly composed of people her age with a similar language profile. In that way, she represents the ideal language consultant typically sought by linguists working on the description of endangered languages. Margarita is very social and enjoys a constant flow of visitors who come to sit down at her house to chat for a while. She joined the project in 2006, first as a language consultant, i.e. helping me figure out the grammar of the language sitting through long hours of elicitation and transcription sessions. After a year of learning about various aspects of field linguistics research by attending linguistics

[^7]workshops and conferences in Oaxaca, by accompanying me to different recording locations within the community, and by participating in numerous conversations about the grammar of her native language, Margarita was ready to be a documentary linguist herself. She was trained to collect natural speech using a digital recorder and to keep metadata records for all sound files in a notebook. She was also responsible for compensating all participants to the text collection and keeping a detailed accounting book. Margarita has been the principal language documenter for the Zacatepec language documentation project and has excelled at her mission.

Anatolio Soriano Cortés is 65 years old, and he has been involved in the documentation project since he asked me to teach him to write ZAC in the summer of 2011. He is also a fluent speaker of Chatino. His speech is characteristic of male fluent speakers in that it tends to be conservative, and his attitude and commentaries are prescriptive. Soriano is an autodidact, having taught himself as a young man to earn a living fixing radios and all kinds of small appliances. He is a detail-oriented person, he is very patient and he can sit for hours trying to fix electric circuits even in the smallest objects. He met with me every day so that I could teach him how to write his native language. The learning process was difficult but his patience and his dedication allowed him to succeed in his new endeavor, and within a year he was a fluent reader and writer of ZAC. When I first met Anatolio, I had certain reservations about succeeding in teaching him to transcribe and translate natural discourse because of his advanced age. I decided to
train him in text collection as well, so that he could collect texts involving men only since Margarita was often collecting texts with women. Anatolio collected a few hours of texts with some of his acquaintances in the village but it became clear to me that he did not really enjoy this activity, and that he seemed to be a lot more interested in writing. Anatolio started focusing solely on his writing, and I trained him to transcribe and translate natural speech using a CD player and a simple notebook. During the period between 2011 and 2013, Anatolio spent endless hours listening to ZAC conversations on a CD player and has filled thirteen entire notebooks (all scanned and archived as part of the collection) with transcriptions and translations of many folktales and conversations from various members of the community.

María de Jesús Barrada is a 22-year-old ghost speaker of ZAC (Grinevald \& Bert, 2011) who approached me during the summer of 2012 to be part of the ongoing documentation project in Zacatepec. I had known María for a couple of years because her mother Matilde Barrada had been involved in the project as a prolific story teller. María had always hidden her ZAC skills from me (as well as others) who assumed they were non existent just as was apparently the case of all people her age within the community. One day, Matilde told me that María wanted to learn how to write ZAC to become a language transcriber like Anatolio. At first, I thought teaching her would be difficult if not impossible since I was not aware of her language skills, having never heard her utter a word in ZAC, and more importantly, she had always led me to believe that she did not speak ZAC at all. Never-
theless, I invited her to sit down with me everyday that summer so that she could start to learn a little about the language. We worked on individual ZAC words and how they could be written, and fairly quickly I realized that she could understand pretty much everything that was being uttered in the recordings we would listen to. We started working on transcriptions fairly quickly. I had a lot of recordings of her mother, I picked one of them and figured that she would understand her mother's speech best. At first, we had Matilde sit with us and repeat each utterance at a slower pace so that María could transcribe the words. We spent the summer working together on transcribing the story, and by the end of my stay María was competent at transcribing without my assistance. She was transcribing and translating in a notebook just like Anatolio. It turns out she is a much better speaker of ZAC than she initially advertised.

Then, the next year, I asked María if she would be interested in learning how to transcribe texts with a computer instead of a notebook. She had been interested in learning to use a computer, but the nearest computer classes were in the town of Río Grande and too far away to attend. I gave her a small notebook computer and taught her how to use the ELAN transcription software. ${ }^{11}$ María transcribed and translated some three hours of speech and in doing has increased her own skills and fluency in ZAC. As a result of this additional exposure and interaction with ZAC, María has be-

[^8]come less inclined to hide her ZAC skills around her peers--though she is still too shy to claim to ZAC around older community members. She reported to me that she talks about her work with her friends and that the majority of them say that they would also like to be trained to read and write in ZAC. Economic opportunities for young people are practically nonexistent within the community and language documenting could be seen as a lucrative non-manual part-time job.

Javier Ayuso González is a 42-year-old semi-speaker of ZAC (Grinevald \& Bert, 2011). Javier predominantly speaks Spanish but has very high levels of ZAC comprehension. As a semi-speaker, Javier is socially fully integrated within the ZAC fluent speakers group despite the fact that they know he is not a fluent speaker. Fluent speakers (who are all bilingual in Spanish and ZAC) will switch to Spanish to accommodate ghost speakers, but will not switch to accommodate semi-speakers, despite the fact that semi-speakers in these conversations may produce only Spanish. I have witnessed many such conversations where Javier was a Spanish-speaking participant in otherwise ZAC conversations.

He is very interested in and knowledgeable of the community's history. He is part of the local authorities and he enjoys spending time with elders talking about local history and traditions. He knows the geography of the area very well because he has traveled through the region extensively, and he entered the project as a cultural consultant and cartographer. He drafted a map of the community with its surroundings (see map 1.2), which
served as a stimulus in interviews with elders about local geography and history. Language use in these particular interviews varies. The usual scenario is that Javier speaks Spanish and the interlocutor responds in ZAC, there is a lot of code-switching that occurs during these interviews. Despite the fact that he is not a fluent speaker, he is the ideal candidate for this type of research because of his excellent relationship with most elders in the community and also because of his genuine passion for the region's history and geography.

The Zacatepec documentation project unfolded in ways that I had not anticipated. Each new participant would steer the project in exciting new directions. The participation of María was unexpected, as she is the youngest person ever to learn to read and write ZAC. She was the first ghost speaker to openly show interest in learning more Chatino. Her story motivated others in the community to want to follow in her footsteps.

### 1.5 Corpus and data collection

To date, the corpus of texts contains 195 hours of natural discourse with a total of 116 speakers, men and women ranging from 40 to 87 years old. ${ }^{12} 95 \%$ of these recordings were collected independently by Margarita González Hernández while I was away from Zacatepec. The large number of

[^9]speakers means that about one third of the ZAC speakers in the community have participated in the documentation of Zacatepec Chatino. The range of genres and topics includes among other things, conversations, personal narratives, folk tales, descriptions of traditional political system, culinary practices, and ritual speech. This breadth and volume of documentation could not have been achieved without the involvement of native speakers and community insiders who had been trained as language documenters. Many community members were eager to share and preserve their personal narrative. Most recordings in this corpus represent a particular individual's tranche de vie or 'slice of life'.

In the last three years of the documentation project, I collected about 6 hours of videos of conversations with about 10 different speakers. At first I was not sure whether speakers would be willing to be filmed at all, but it turned out that they did not seem to be bothered at all by the camera. The setting is always the same: they are sitting on low chairs, not quite facing each other, as Chatino people in general would rather not directly face each other when having a conversation. Instead they sit side by side, slightly turned toward each other, and don't generally look at each other either when they speak. The angle is wide enough to capture hand gestures, and the sound is captured by both the external mike of video camera as well as by an independent digital recorder. This participation formation is well documented in Mesoamerica from Zapotec to Mayan (Brown (2010); Brown, Sicoli, and LeGuen (2010)), and seems to represent a broader dis-
course feature in Mesoamerica. Furthermore, the fact that backchanneling uses repetition instead of head nods, can function to show involvement where visible backchannels afforded by mutual gaze like head nods are not ecologically afforded by the side-by-side participant formation (Mark Sicoli, p. c., April 2015).

The work of transcription and translation was achieved by five different people all introduced in the previous section: Anatolio Soriano Cortés, María de Jesús Barrada with her mother Matilde Barrada, and me with Margarita González Hernández.

As noted in the previous section, I trained Anatolio Soriano Cortés to read and write ZAC over the summer of 2011. After that training period, when I was away from the field, he transcribed/translated texts alone, using a CD player to listen to the recordings, and a notebook to transcribe texts (Anatolio is an older person and is not familiar with computers). Between 2011 and 2013, he transcribed about eight hours of texts (without tones), of which about five hours were reviewed and revised together during my stay in the field.

As also noted earlier, María de Jesús Barrada was trained to write ZAC over the summer of 2012. She transcribed texts that feature her mother's voice only. At first, she transcribed with her mother's help who repeated every utterance at a slower pace but little by little she was able to work by herself, and only asked for her mother's help occasionally. The translation work is also done with her mother's help when needed. María started tran-
scribing/translating on notebooks and then moved on to transcribing using Elan. She has transcribed about three hours of text (without tones) of which about two hours were reviewed and revised together.

As for me, the work of transcription and translation was always done with the help of Margarita González Hernández. Because of ZAC's intricate tonal system, this is an exercise that has to be done with the help of a native speaker whose task is to re-speak each utterance at a slow pace, and also to repeat each word in isolation first, and then in a specific tonal environment in order to consider the effect of the floating tones and determine the tonal class of the word in question. This process was very slow and tedious at first when a lot of new words kept coming up, but became less so over time when new words were only encountered every so often. Together, Margarita and I have transcribed about five hours of texts but reviewed and revised about seven hours of Anatolio's and María's work for a total of eleven hours of transcriptions.

As of 2015, my ZAC lexicon includes about one thousand non-verbal words, and a verb database counting about 320 simplex and complex verb roots conjugated in all four aspects (Completive, Progressive, Habitual and Potential) and six persons (1s, 2s, 3s, 1PLIN, 1PLEX, 2PL) amounting to a total of about six thousand recorded verb forms (not all paradigms are complete).

The variety of the data and width of the genres collected offer not only an excellent base for linguistic documentation but also a good glance
at the cultural environment of the language. One way of documenting the culture in question was achieved through the variety of texts recorded including genres and topics such as description of culinary, agricultural, and ritualistic practices. Documenting of culture is also achieved through the information found in the lexical database. As often as possible, both the basic and the derived meaning of a word are provided. For example, body parts often function as relational nouns, or designate specific parts of the structure of the house. The lexicon also contains terms specific to certain activities related for example to different phases of cultivation of plants and processing of harvest, etc. This information would allow the ethnographer to obtain information on the various stages of agricultural work.
"The Zacatepec Chatino Documentation Project's Collection" archived at AILLA (http://www.ailla.utexas.org) is among the largest archived corpora of natural discourse collected by native speakers in Mesomerica, and it has the potential to fuel an indefinite number of scholarly studies in linguistics and related fields in the future. It includes 195 hours of audio, 5 hours of video, and 597 pages of digital text with $0 \%$ restricted access.

There are other very large Mesoamerican collections which have also been collected by native speakers and can be found archived at AILLA such as the "Tojolab'al Collection" which includes 40 hours of audio, 62 hours of video, and 2076 pages of digital text with $83 \%$ restricted access, or the "Oxlajuuj Keej Maya' Ajtz'iib' Mayan Languages Collection" which includes 520 hours of audio, 15 hours of video, and 20042 pages of digital text with
$0 \%$ restricted access.

### 1.6 Theoretical framework

Before delving into the description of the contrastive phonemic inventory, it is important to first present the theoretical background on which ZAC's surface phonological representation is based. The principles of Autosegmental phonology (Goldsmith, 1976) are helpful to describe ZAC's surface representation because they allow phonological processes such as tone and vowel harmony to be independent of, and extend beyond individual consonants and vowels. Autosegmental phonology treats phonological representations as multi-dimensional by showing multiple tiers which are linked to each other by association lines which indicate how the segments on each tier are to be pronounced at the same time.

The way ZAC's surface phonological representation is treated in this work is inspired by the analysis of the structure of tone in Japanese in Pierrehumbert and Beckman (1988). The surface phonological representation they propose is an autosegmental prosodic tree, to which substantive elements such as tones are linked by autosegmental association. In their prosodic trees, a node can have any number of daughter nodes, and only nodes of phonologically distinguished types (such as the mora, the syllable, the word, and the various levels of intonation phrase) appear in the tree. Furthermore, autosegmental links can be made not only to minimal tone bearing units at the bottom of the tree but also to any higher-level node.

A multi-dimentional representation of the prosodic features of ZAC allows us to distinguish between the domain of (or hosting of) a given feature, versus the actual locus of realization of that feature. For example, as is shown in figure 1.8, the domain of the mora for the extra vowel in the case of long vowels is the $\omega^{13}$, but its locus of realization is the final syllable.


Figure 1.8: Autosegmental representation of prosodic features: nkasiín? 'he/she squeezed it'

[^10]The autosegmental representation in figure 1.8 includes four different tiers. The prosodic tier (in black), the nasal tier (in green), the segmental tier (in blue), and finally the tonal tier (in red).

In the representation, some lines are solid and some are dotted. The solid lines are linkages pre-defined in the lexical representations (and might be termed "hosting"); the dotted lines are filled in by Linking rules, and are variable from one lexical representation to another. For example, the /M/ tone of the Tonal Sequence ${ }^{14}$ (henceforth TS) /M-H/ may or may not actually get linked ${ }^{15}$ depending on the moraic shape of the word.

In ZAC, the * marks the final linkable tone in the TS, and the tone after it (if one) is a lexically unlinked floating tone. The rule is to link the linkable tones, from right to left ${ }^{16}$, starting with the * marked tone, to the moras of the lexeme in a one-to-one fashion.

The prosodic tier (in black) includes the word $(\omega)$, the mora $(\mu)$, and the syllable ( $\sigma$ ).

- $\omega$ hosts syllables, the final mora, the [ + Nasal] feature, as well as the

[^11]tone sequence (TS). The $\omega$-hosted extra mora (in the case of long vowels), and the [ + nasal] feature both link (dotted line) to the last syllable.

- $\sigma$ hosts moras, and consonants including $?$ (only one $?$ allowed per simplex word).

The nasal tier (in green) includes the [ + Nasal] feature which links (dotted line) to the final syllable, and which is hosted by the $\omega$.

The segmental tier (in blue) includes all segments but the mora hosts only vowel segments.

The tone tier (in red) includes the tonal elements (in this case /M/ and $/ \mathrm{H} /$ ), and each link to a mora (dotted line) in the last syllable. The tonal elements form the TS which is hosted by the $\omega$.

As shown in figure 1.8, the moras are at the lowest level in the prosodic tree, and the mora is the minimal element which can be associated to a segment. In the tonal analysis presented in this work, the mora is also the minimal Tone Bearing Unit (henceforth TBU). We will see in Chapter 4 that not all moras are linked to a tone despite the fact that their surface $\mathrm{F}_{0}$ contour looks like a well-defined tone. Indeed, as discussed in detail in chapter 4, a tone may phonetically spread rightward to all adjacent tonally unspecified moras in the next word and beyond, creating a slight contour (a slight downdrift of the $\mathrm{F}_{0}$ ). In this case, the structural change
makes reference to phonetic parameters (i.e. the pitch level) requiring it to be maintained with a slight declination.

Chapter 4 explains in depth the surface representation of the tonal system in ZAC, but for the sake of clarity, the tonal tier is explained a bit more here also. As already mentioned, the TBU is the mora, as opposed to the syllable as the language has both monomoraic as well as dimoraic syllables, and the latter differ in the number of tones they can bear. Words with more than one mora may have a tone on each mora. It doesn't matter if the two moras are in separate syllables or in the same syllable (as in the example shown in figure 1.8). Monomoraic syllables can only have one tonal element ${ }^{17}$ but dimoraic syllables can bear two tonal elements.

As we can observe in figure 1.8, the word nkasiîn? 'he/she squeezed it' is a trimoraic disyllabic word where the antepenultimate mora in the penultimate syllable is not linked to any tone, the penultimate mora is linked to a /M/ tone (dotted line), and the final mora is linked to a $/ \mathrm{H} /$ tone (dotted line). This shows that a mora can be tonally linked or unlinked (unspecified for tone). Tonally unspecified moras can be affected by preceding tones, but when unaffected, they surface with a default [L] pitch, and sound the same as a /L/ tone (see figure 4.1 on page 148 on page 148).

[^12]Now that the phonological representation for the prosodic features has been presented and discussed, we may turn to the description of the contrastive phonemic inventory.

## Chapter 2

## Segmental phonology

This chapter describes in detail ZAC's segmental sound system. ZAC also presents three contrastive supra-segmental features: nasalization, vowel length and tone. Nasal vowels and long vowels are described in this chapter together with oral vowels whereas tone, is dealt with in detail in chapter 4.

This chapter is organized as follows: §2.1 describes the general orthographical conventions in the practical orthography. §2.1 also allows for comments about the use of the practical orthography by native speakers during the documentation project. §2.2 discusses the vocalic system of ZAC presenting all vowel qualities as illustrated in figure 2.4. It describes the distribution of each phoneme and its allophonic variations. It also presents examples of all vowel types (oral, nasal, long and short) to show their contrastiveness, and discusses their respective distributional constraints. The consonant inventory which consists of twenty-two consonants (six of which almost exclusively occur in Spanish loans) as shown in table 2.3 is dealt with in §2.3. The consonant phonemes and their allophones are described grouped by place of articulation instead of by manner of articulation, because this mode of grouping leads to more generalizations about the con-
sonantal system in general. For example, we will see that the category of bilabials is vacant in the native sound system, the lamino-alveolars are copies of the apico-dentals, and finally the velars are asymmetrical.

Finally, all examples in this chapter are presented using both the practical orthography and IPA transcriptions. The latter are broad transcriptions in so far as they only show the pronunciation of segments and do not include tone pronunciation. The mora-linked tones are marked with diacritics on the vowels in the words written in the practical orthography.

### 2.1 Practical orthography

Because I rely on the practical orthography to express the phonemic representations, the relationship between the symbols and phonemics of the language ought to be made clear from the beginning.

The practical orthography reflects the phonemic system of the language, as a result, the examples in this chapter are presented using the practical orthography only, as opposed to using a conventional phonemic representation using the forward slashes $(/ /)^{1}$. In this work, the examples in plain Roman type (i.e not in italic) show the underlying (phonemic) representations, and the examples in brackets are phonetic representations.

Each graph is also introduced along with the description of each

[^13]phoneme in §2.2 and §2.3. This section describes the main characteristics of the practical orthography used in this work, and also allows for the discussion of some issues the proposed orthography presents to speakers.

All graphs used in the practical orthography are presented in figure 2.1 for the vowels, and in table 2.1 for the consonants. In figure 2.1, the vowel digraphs including an $n$ represent the nasal vowels.

Figure 2.2 presents the phonemic vocalic inventory, and table 2.3 shows the phonemic consonant inventory.


Figure 2.1: Practical orthography: vowels


Figure 2.2: Phonemic inventory: vowels

|  | Bilabial | Apico- <br> dental | Lamino- <br> alveolar | Palatal | Velar | Labio- <br> velar | Glottal |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stops | $p b$ | $t d$ | $t^{y}$ |  | $k$ | $k w$ | $?$ |
| Affricates |  | $t s$ | $c h$ |  |  |  |  |
| Fricatives |  | $s$ | $x$ |  |  |  | $j$ |
| Nasals | $m$ | $n$ | $n^{y}$ |  |  |  |  |
| Laterals |  | $l$ | $l^{y}$ |  |  |  |  |
| Tap | $r$ |  |  | $w$ |  |  |  |
| Trill | $r r$ |  | $y$ |  |  |  |  |
| Approximant |  |  |  | $y$ |  |  |  |

Table 2.1: Practical orthography: consonants

|  | Bilabial | Apicodental | Laminoalveolar | Palatal | Velar | Labiovelar | Glottal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stops | (p) (b) | t (d) | t |  | k | $\mathrm{k}^{\mathrm{w}}$ | $?$ |
| Affricates |  | ts | t5 |  |  |  |  |
| Fricatives |  | s | $\int$ |  |  |  | h |
| Nasals | (m) | n | n |  |  |  |  |
| Laterals |  | 1 | 1 |  |  |  |  |
| Tap |  | (r) |  |  |  |  |  |
| Trill |  | (r) |  |  |  |  |  |
| Approximant |  |  |  | j |  | w |  |

Table 2.2: Phonemic inventory: consonants

Many of the graphs are also found in the Spanish alphabet. For the sounds lacking in the Spanish inventory, new graphs (or digraphs) are introduced. The palatal fricative $/ \mathrm{S} /$ is written $x$ following traditional Spanish practice and many other writing systems in Mesoamerica. The laminoalveolar counterparts of the apico-dentals (/t/, /l/, /n/) are written $t^{y}, l^{y}$, $n^{y}$ respectively, and the consonant clusters composed of $/ \mathrm{t}, \mathrm{l} /+/ \mathrm{j} /$ are written ty, ly respectively.

This solution is ideal in this work or in scientific work in general
because it allows for a clear distinction between consonant clusters and single phonemes, but it is less than ideal anywhere else as the superscript symbol is hard to make with a keyboard. An easy solution to this issue that speakers have been using is writing the laminal sounds followed by a simple $y$, and the consonant clusters are written separated by an apostrophe as in : silyáp [sila2] 'cotton' and sil'y $\vec{a}^{\prime \prime}$ [silja] 'police'.

Contrastive vowel length is represented by doubling the vowel graph of the vowel in question. Although nasalization is a vowel feature, nasal vowels are written using the same grapheme $n$ used for the nasal stop $/ n /$, and it is placed after the vowel. This solution is more esthetically pleasing as well as easier to process for the reader (as opposed to using an ogonek under the vowel) because it avoids crowding the vowels with many different diacritics (tones are marked with up to two diacritics on the vowel already). Nasal vowel digraphs do not present any particular ambiguity in the orthography as firstly, the glottal stop is the only syllable final consonant allowed in native words in the language (word finally only), and secondly, nasal vowels only occur underlyingly in word final position (see §2.2 on nasal vowels). Any vocalic nasalization occurring in non-final syllables is the result of the Translaryngeal Vowel Harmony or of Nasal Spreading (§2.2.4.1, §2.2.4.2).

All word-initial non-continuants in native words undergo a voicing assimilation process when preceded by $/ \mathrm{n} /$. Nevertheless, a contrast exists between $/ \mathrm{t} /$ and $/ \mathrm{d} /$ and $/ \mathrm{p} /$ and /b/ in this environment in Spanish loans
so it is necessary to include a graph in the practical alphabet for these voiced consonants.

Finally, ZAC presents an intricate tonal system bearing lexical and grammatical functions. It has an inventory of five contrastive mora-linked tones which are represented in the orthography with a diacritic on the vowels where the grave accent marks a low tone /L/, the macron marks a mid-tone $/ \mathrm{M} /$, the acute accent marks a high tone $/ \mathrm{H} /$, the inverted caret marks a rising contour tone /LH/, and finally the double acute accent marks a super-high tone /LS/. The language also presents floating tones which are marked on the right edge of words also with diacritics: a /L/ floating tone is marked with a grave accent , a /H/ floating tone is marked with an acute accent , a /LS/ floating tone is marked with a double acute accent

For example: kiū (/M (H)/) 'grass' where marks a mora-linked mid-tone $/ \mathrm{M} /$, and marks a high floating tone $/ \mathrm{H} /$.

An in-depth description of the tonal system of ZAC is discussed in chapter 4. In the following sections, each phoneme is discussed describing its distribution and its allophonic variations. First, the vowels are discussed followed by the consonants.

### 2.2 Vocalic system

ZAC has a phonemic segmental inventory of five non-nasal vowels, and corresponding to them, 4 nasal vowels, as illustrated in figure 2.4. However, when vowel length is considered, then the contrastive vocalic inventory is even larger. As shown in the autosegmental representation in figure 2.3 (which was already presented and discussed in detail in $\S 1.6$ as figure 1.8), nasalization and vowel length only occur underlyingly in a very restricted domain, i.e the (final) prominent syllable ${ }^{2}$, and may stretch over different segments or even different syllables, they are better analyzed as supra-segmental features. Nevertheless, in order to demonstrate their contrastiveness and the restrictions on their distribution, all vowel types are introduced and described in detail in this chapter.

For clarity and convenience purposes, some of the concepts related to the autosegmental analysis of the vocalic system which were already explained in §1.6 are reiterated here.

The autosegmental representation in figure 2.3 (which was already introduced in chapter 1 as figure 1.8) includes four different tiers. The prosodic tier (in black), the nasal tier (in green), the segmental tier (in blue), and finally the tonal tier (in red).

In the representation, some lines are solid and some are dotted. The solid

[^14]lines are linkages pre-defined in the lexical representations (and might be termed "hosting"); the dotted lines are filled in by Linking rules, and are variable from one lexical representation to another.

In ZAC, the * marks the final linkable tone in the TS, and the tone after it (if one) is a lexically unlinked floating tone. The rule is to link the linkable tones, from right to left, starting with the * marked tone, to the moras of the lexeme in a one-to-one fashion.

The prosodic tier (in black) includes the word $(\omega)$, the mora $(\mu)$, and the syllable ( $\sigma$ ).

- $\omega$ hosts syllables, the final mora, the [+ Nasal] feature (as well as the TS). The $\omega$-hosted extra mora (in the case of long vowels), and the [ + nasal] feature both link (dotted line) to the last syllable.
- $\sigma$ hosts moras, and consonants including $?$.

The nasal tier (in green) includes the [ + Nasal] feature which links (dotted line) to the final syllable, and which is hosted by the $\omega$.

The segmental tier (in blue) includes all segments but the mora hosts only vowel segments.

The tone tier (in red) includes the tonal elements (in this case /M/ and $/ \mathrm{H} /$ ), and each link to a mora (dotted line) in the last syllable. The tonal elements form the TS which is hosted by the $\omega$.


Figure 2.3: Autosegmental representation of prosodic features: nkasiín? 'he/she squeezed it'

Figure 2.4 presents the nine vowel phonemes. This figure was already presented in $\S 2.1$ for convenience when discussing the corresponding graph for each vowel phoneme in the practical orthography.


Figure 2.4: Phonemic vowel inventory

Each vowel is discussed separately by stating first, its distribution, second, its allophones and the rules that govern them, and third by giving
minimal pairs or near minimal pairs to distinguish it from other vowels.
Examples of each vowel are presented below in a variety of environments, i.e, in final as well as non-final syllables of roots followed or not by a /R/. Furthermore, examples of each vowel in prefixes in antepenultimate syllables in prefixes are also included when applicable.

### 2.2.1 Oral vowels

### 2.2.1.1 /a/

/a/ does not present any restrictions in its distribution. It occurs in final as well as non-final syllables of roots followed or not by a/R/ as well as in prefixes in antepenultimate syllables. As was shown in figure 2.3, only word-final syllables can be long, and as a result /a/ may be long in final syllables but is always short in non-final syllables. /a/ is pronounced [a] and may be slightly nasalized and surface as [ã] after an /n/ but this slight phonetic change is not marked in the phonetic transcriptions as the latter are broad transcriptions.

| nǎ [na] | thing |
| :--- | :--- |
| pa̋ [pa] | dad |
| kwā̃ $\left[\mathrm{k}^{\mathrm{w}} \mathrm{a}\right]$ | already |
| mpaà" [mba:] | godfather |
| Wyàá [bja:] | Santos Reyes Nopala, Oaxaca |
| chǎ? [t]a?] | word |


| jakwa [ $\mathrm{hak}^{\mathrm{w}} \mathrm{a}$ ] | four |
| :---: | :---: |
| tu?wa [tu?wa] | his/her mouth |
| mòjā" [moha] | nun |
| mùly ${ }^{\text {a }}$ " [mula] | mule |
| sit ${ }^{\text {y }}$ a [sit ${ }^{\text {y }}$ a] | his/her fontanelle |
| ntsuwaà? [ndzuwa:?] | hierba santa (piper auritum) |
| papàyä' [papaja] | papaya |
| tatsin [tatsĩ] | empty |
| kwana [ $\mathrm{k}^{\mathrm{w}}$ ana] | mirror |
| pàn ${ }^{\text {y }} \mathrm{u}^{\prime \prime}$ [pañũ] | rebozo |
| màl ${ }^{-1}{ }_{\text {í }}$ [mali] | godmother |
| waRā' [bapa] | tamarind |
| naPan' [nã?ã] | house |
| watà" [bata] | cattle |
| yaka [jaka] | tree, wood |
| tra?wē [tra?we] | middle |
| yùwā" [juwa] | mare |
| ja?wẵ [ha?wa] | banana |
| tijl ${ }^{\text {ª àkwa̋ [tijlak }}{ }^{\text {a }}$ ] | fourteen |
| ntikyākwén [ndikjak ${ }^{\text {w }}$ ] | he/she is raising it |
| nka-y-ata [刀gajata] | he/she bathed |
| nka-yūjwī [ygajuhmi] | he/she killed it |
|  | he/she got married |
| kutùna̋? [kutuna?] | he/she will lose it |
| nkutyáā tī? ' [ggutja: tip] | he/she liked it |

Notice that /a/ in naPan [nã?ã] 'house' surfaces as [ã]. This results from Translaryngeal Vowel Harmony which is discussed in more detail in §2.2.4.1.

Below are presented minimal or near minimal pairs for /a/ versus all other vowels:

| $/ \mathrm{a} / \neq / \mathrm{e} /$ : | kaa [ka:] | nine | kee [ke:] | stone |
| :---: | :---: | :---: | :---: | :---: |
| /a/ $\neq / \mathrm{i} /:$ | kaa [ka:] | nine | kiî [ki:] | grass |
| /a/ $\neq /$ / $/$ : | $\mathrm{t}^{\mathrm{y}}$ [ [ta] | corn cob | $\mathrm{T}^{\mathrm{y}} \mathrm{O}^{\prime \prime}$ [to] | Pedro |
| /a/ $\neq / \mathrm{u} /$ : | nkalukwǎ [ngaluk ${ }^{\text {wa] }}$ | he/she swept | nkulukwǎ [gguluk ${ }^{\text {w }}$ a] | it got swept |
| /a/ $=/$ ã/: | kaa [ka:] | nine | kaàn` [kã:] | he/she goes home |
| $/ \mathrm{a} / \neq / \mathrm{e} /$ : | xāá [ [a:] | luminosity | xēēn [ $\left.\int \tilde{\varepsilon}:\right]$ | wide |
| /a/ $\neq / \mathrm{l} /$ / | kaa [ka:] | nine | kiin [kĩ:] | hematoma |
| /a/ $\neq / \mathrm{u} /$ / | kaa [ka:] | nine | kūūn [kũ:] | sweet potato |

### 2.2.1.2 /e/

/e/ has a restricted distribution in ZAC. Firstly, it never occurs after the nasal stop /n/, and secondly it never occurs underlyingly in non-final syllables of simplex roots ${ }^{3}$. As a result there is no prefix in the language presenting /e/.

This restriction is due to a historical sound change. Campbell (2013) demonstrates comparing data from conservative Zenzontepec Chatino with ZAC as well as with other Chatino varieties, that "a historical sound change occurred in ZAC where the penultimate *e became $i$, and the antepenultimate *e became $a^{\prime \prime}$ (p406).

Spanish borrowings with /e/ in penultimate syllables in the donor language present an /i/ in that position, as in the word misā" 'table' (from Spa. mesa) ${ }^{4}$. Furthermore, /e/ only surfaces in penultimate syllables result-

[^15]ing from the Translaryngeal Vowel Harmony across a laryngeal (§2.2.4.1) as shown in che $2 \bar{e}{ }^{\prime}$ [t]eRe] 'rooster' and nkweje [ $\mathrm{yg}{ }^{\mathrm{w}} \mathrm{ehe}$ ] 'epazote'.
/e/ may be long in final syllables but is always short in non-final syllables as shown in autosegmental representation in figure 2.3.

| chē [t]e] | buddy |
| :---: | :---: |
| kē [ke] | his/her head |
| wa nteē [ba nde:] | 1PLEX |
| kee [ke:] | stone |
| che?ē' [t]eRe] | rooster |
| nkweje [ $\mathrm{gg}^{\text {w }}$ ehe] | epazote |
| melònī" [meloni] | melon |
| lutse? [lutse?] | his/her tongue |
| ntukè? [nduke?] | he/she cooks it |
| skuwe [skuwe] | his/her penis/vagina |
| tikēé [tike:] | his/her stomach |
| $\sin ^{\mathrm{y}} \mathrm{e}$ 2 [siñe?] | his/her sons/daughter |
|  | its wing |
| $j^{\mathrm{y}}$ ākē [hnake] | his/her head |
| tra?wé [tra?we] | middle |
| tikè? [tike?] | aroused |
| siyě? [sije?] | dressed up |
| tsa?wě [tsa?we] | good |
| nkyase? [ygjase?] | it got deflated |
| nkyanè [ngjanẽ] | he/she sprayed it |
| nkya?wè [ŋgja?we] | it got split |

Because of the restricted distribution of $/ \mathrm{e} /$ and $/ \mathrm{u} /(\S 2.2 .1 .4$ ) in the language, it is difficult to find a minimal pair that would contrast them in the same environment. Indeed, /e/ generally occurs in final syllables whereas $/ \mathrm{u}$ / generally occurs in non-final syllables. Below are presented minimal or near minimal pairs for /e/ versus other vowels:

| /e/ $\neq / \mathrm{a} /$ : | kee [ke:] | stone | kaa [ka:] | nine |
| :---: | :---: | :---: | :---: | :---: |
| /e/ $=1 \mathrm{i} /:$ | kwee? [ ${ }^{\mathrm{w}} \mathrm{e}$ :?] | crab | kwiì? $\left.{ }^{\text {[ }}{ }^{\mathrm{w}} \mathrm{i}: 2\right]$ | ring |
| /e/ $=1 \mathrm{o} /$ : | kee [ke:] | stone | kōō [ko:] | fog |
| /e/ $=1$ ã/: | kee [ke:] | stone | kaàn` [kã:] | he/she goes home |
| /e/ $=1$ ẽ/: | kiche [kit]e] | agave fiber | kichen [kitd $\tilde{\varepsilon}$ ] | village |
| /e/ $\neq / \mathrm{I} /$ : | kee [ke:] | stone | kiin [kĩ:] | hematoma |
| /e/ $\neq / \mathrm{u} /$ : | kee [ke:] | stone | kūūn [kũ:] | sweet potato |

### 2.2.1.3 /i/

/i/ occurs in final as well as non-final syllables of roots followed or not by a /R/ as well as in prefixes in antepenultimate syllables. It is slightly restricted in its distribution as it does not occur after the nasal stop $/ \mathrm{n}$ / nor the palatal glide $/ \mathrm{j} /$. As was demonstrated in the autosegmental representation in figure 2.3, only word-final syllables can be long, and as a result /i/ may be long in final syllables but is always short in non-final syllables.

| píl [pi] | poult |
| :---: | :---: |
| piî' [pi:] | fair skinned, pale |
| $1^{\text {yî̀n }}$ [li2] | parrot |
| mpî́l [mbi?] | dram |
| kii? [ki:?] | fire |


| tiji [tihi] | stingy |
| :---: | :---: |
| chit ${ }^{\text {y }}$ [ [t]iti] | his/her village village |
| suti [suti] | his/her father |
| ntujwì [nduhmi] | he/she kills it |
| $\sin ^{\mathrm{y}} \mathrm{e}$ ? [siñe?] | his/her son/daughter |
| $j^{1}{ }^{\text {y }}$ iwē ē [jlißeRe] | its wing |
| tikè? [tike?] | aroused |
| kwīné? [ $\mathrm{k}^{\mathrm{w}}$ in $\mathrm{c}^{2}$ ] | young |
| siyě? [sije?] | dressed up |
| kwil ${ }^{\text {y }}$ ORo [ $\mathrm{k}^{\mathrm{w}} \mathrm{i} 1 \mathrm{O}$ O ] | his/her spouse |
| liPya [li2ja] | his/her tooth |
| sit ${ }^{\text {y }}$ [ [sita] | his/her fontanelle |
| chikǎn? [t ${ }^{\text {chikã}}$ ] | his/her shirt |
| tījn ${ }^{\text {y }}$ an [tî̃hnã] | his/her bone |
| yānī [janĩ] | his/her neck |
| ku?wǐ [ku?wi] | drunk |
| kuliyǎ2 [kulija?] | rich |
| melònī" [melonĩ] | melon |
| nkaticho? [ngatitfor] | he/she defecated |
| nti-1yaja [ndilaja] | it gets emptied |
| nti-kùtî [ndikuti] | it gets softer |

Notice that /i/ in tijjn ${ }^{y} \bar{a} n$ [tĩhnnã] 'his/her bone' surfaces as [ĩ]. This results from Nasal Spreading which is discussed in more detail in §2.2.4.2.

Below are presented minimal or near minimal pairs for /i/versus all other vowels:

| /i/ $\neq / \mathrm{a} /$ : | tiPi [tiPi] | sick | taia [taPa] | party |
| :---: | :---: | :---: | :---: | :---: |
| /i/ $\neq / \mathrm{e} /$ : | kwiì? [ $\left.\mathrm{k}^{\mathrm{w}} \mathrm{i}: 2\right]$ | ring | kwee? [ $\mathrm{k}^{\mathrm{w}} \mathrm{e}$ : l ] | crab |
| /i/ $=1 \mathrm{o} /$ : | kiī [ki:] | grass | kōō [ko:] | fog |
| $/ \mathrm{i} / \neq / \mathrm{u} /:$ | chiī [t]i:] | chicken rump | chūú [t]u:] | Jesus |
| $/ \mathrm{i} / \neq / \mathrm{a} /:$ | kiī [ki:] | grass | kaàn [kã:] | he/she goes home |
| /i/ $=1$ ẽ/: | kichi [kitfi] | metate | kichen [kit] ${ }^{\text {c }}$ ] | village |
| $/ \mathrm{i} / \neq / \mathrm{I} /:$ | kiī [ki:] | grass | kiin [kĩ:] | hematoma |
| $/ \mathrm{i} / \neq / \mathrm{u} /$ : | kiī [ki:] | grass | kūūn [kũ:] | sweet potato |

### 2.2.1.4 /u/

The distribution of $/ \mathrm{u} /$ is highly restricted. $/ \mathrm{u} /$ in final syllables in monosyllabic words is very rare ( 2 examples only in the whole corpus), and there is no $/ \mathrm{u}$ / in final syllables of polysyllabic words in native words. So $/ \mathrm{u} /$ is pretty much reserved for non-final syllables ${ }^{5}$. But because it is found in contrastive environments in regard to all other vowels (even if in very few examples), $/ \mathrm{u}$ / is analyzed as a phoneme just like all other vowels in the inventory. Similarly to the fact that /i/ does not occur after the palatal glide $/ \mathrm{j} /$, / $\mathrm{u} /$ does not occur after the labio-velars $/ \mathrm{k}^{\mathrm{w}} / \mathrm{or} / \mathrm{w} /(\S 2.3 .5) . / \mathrm{u} /$ does not occur either after the nasal stop $/ \mathrm{n} /$, just like all the other non-low oral vowels in the inventory (/e, i, o/). /u/ may be long in final syllables but is always short in non-final syllables.

[^16]Examples below present /u/ in final (1 native example only: xǔ?) as well as non-final syllables of roots followed or not by a/R/ as well as in prefixes in antepenultimate syllables. In Spanish borrowings $/ \mathrm{u}$ / does appear in final syllable as shown in the words for 'donkey' and 'asunto' presented below. So a clearer phonemic status of /u/ may be a recent phenomenon.

| xǔ ${ }^{\text {[ }}$ [up] | oldster |
| :---: | :---: |
| chūú [t]u:] | Jesus |
| sùntī̈" [suntu] | issue (from Spa. asunto) |
| bùrrū" [buru] | donkey (from Spa. burro) |
| ku?wǐ [ku?wi] | drunk |
| suti [suti] | his/her father |
| tu?wa [tu?wa] | his/her mouth |
| lutse? [lutse?] | his/her tongue |
| skuwe [skuwe] | his/her penis/vagina |
| kyula [kjula] | male |
| kula [kula] | old |
| xul ${ }^{\text {a }}$ a [ [ $\left.u 1 a\right]$ | jealous |
| nkūjwī [gguhmi] | he/she died |
| nkūjwīn [ g gũhmî] | I died |
| nkūwēn [ $\dagger \mathrm{gũ} w \tilde{\varepsilon}$ ] | ripe |
| kuliyǎ2 [kulija?] | rich |
| nkayūkwīn? [ngajuk ${ }^{\text {win }}$ ] | he/she smelled it |
| tuku?wà [tuku?wa] | cold |
| lukūtí [lukuti] | soft |
| nkasuwǐ2 [ngasuwi?] | he/she turned it off |
| ntikùtí [ndikuti] | it gets softer |
| nku-laja [ngulaha] | it got emptied |
| nku-lukwǎ [gguluk ${ }^{\text {w }}$ ] | it got swept |
| nku-nu?un [ggunũ?ũ] | it got broken |

 surfaces as [ũ]. This results from Nasal Spreading which is discussed in more detail in §2.2.4.2.

Below are presented minimal or near minimal pairs for $/ \mathrm{u} /$ versus all other vowels. Because of the restrictions on the distribution of $/ \mathrm{u} /(/ \mathrm{u} /$ tends to occur in non-final syllables) and nasal vowels (final syllables) minimal pairs to contrast them are not available:

| $/ \mathrm{u} / \neq / \mathrm{a} / \mathrm{:}$ | nkulukwǎ | it got swept | nkalukwǎ | he/she swept |
| :---: | :---: | :---: | :---: | :---: |
|  | [gguluk ${ }^{\text {a }}$ ] |  | [ $\mathrm{ggaluk}^{\mathrm{w}} \mathrm{a}$ ] |  |
| $/ \mathrm{l} / \neq / \mathrm{i} /:$ | kunà [kuna] | he/she will cry | kina [kina] | sandal |
| $/ \mathrm{u} / \neq / \mathrm{o} /$ : | xǔ2 [¢uP] | oldster | xò? [x>?] | broody |

### 2.2.1.5 /o/

/o/ has quite a restricted distribution also ${ }^{6}$ : it does not occur after the nasal stop $/ \mathrm{n} /$, and it may occur in non-final syllables only if ALL vowels in ALL syllables are also /o/ ${ }^{7}$. /o/ surfaces as [〕] when followed by a /R/. Furthermore, /o/, just as is the case for $/ \mathrm{u} /$, does not occur after the labiovelars $/ \mathrm{k}^{\mathrm{w}}$ / or $/ \mathrm{w} /(\S 2.3 .5)$. /o/ may be long in final syllables but is always short in non-final syllables.

[^17]| lo [lo] | type |
| :---: | :---: |
| Ty ${ }^{\text {cos }}$ [to] | Pedro |
| kōō [ko:] | fog |
| yo [jo] | guy |
| yoo [jo:] | soil |
| pixoö' [pijo] | peso (from Spa. peso) |
| nkālôò [ngalo:] | he/she removed it |
| nkayoō [ŋgajo:] | he/she ground it |
| tyèmpō" [tjempo] | time (from Spa. tiempo) |
| sumìlō" [sumilo] | hat (from Spa. sombrero) |
| rrumèyō" [rome:jo] | remedy (from Spa. remedio) |
| sundàö' [sundao] | soldier (from Spa. soldado) |
| mòjấ [mõha] | nun |
| melònī" [melonĩ] | melon |
| nkayako [ngajako] | he/she ate |

When /o/ is followed by a glottal stop it is realized as [ p ] (no other vowel is affected by an adjacent glottal stop). In cases where the glottal stop is also followed by an /o/, a Progressive Translaryngeal Vowel Harmony (§2.2.4.1) process takes place where the final /o/ also lowers to [〕] as shown in examples below:

```
/o/ --> [ว] / --- /?/:
xòT [\\supset२] oldster
nkaticho? [\etagatit[\rho?] he/she defecated
Examples of Progressive Translaryngeal Vowel Harmony:
jo\ö' [ho?o] saint
kwilyo?o [kwilo?o] his/her spouse
nkotō?ó [ngots?3] he/she went out
```

/o/ can only surface in non-final syllables of words (prefixes included) if and only if ALL syllables are also /o/. In the words presented below, nko-tso 'it burst', nko-tō?ó 'he/she went out', the underlying form of
the prefix is /nku/, but the latter surfaces as [o] because of the /o/ Vowel Harmony. Then in the words nt-olòő 'he/she scratches it' and $k$-olòő' 'he/she will scratch it' , it is the $u$ - causative morpheme (§5.3.1.3.1) which surfaces as [ o ] instead of [ u ] because of the /o/ Harmony Rule.

```
Examples of /o/ Vowel Harmony:
    kolō" [kolo] color (from Spa. color)
    nko-tso [ngotso] it burst
    nt-olòő [ndolo:] he/she scratches it
    k-olòö [kolo:] he/she will scratch it
    nko-tō?ó [ygoto?`] he/she went out
```

Below are presented minimal or near minimal pairs for /o/ versus all other vowels:

| /o/ $\neq / \mathrm{a} / \mathrm{S}$ | kōō [ko:] | fog | kaa [ka:] | nine |
| :---: | :---: | :---: | :---: | :---: |
| /o/ $=1 \mathrm{e} /$ : | kōō [ko:] | fog | kee [ke:] | stone |
| /o/ $\neq / \mathrm{i} /:$ | kōō [ko:] | fog | kiī' [ki:] | grass |
| /o/ $\neq / \mathrm{u} /$ : | xò? ${ }^{\text {[ }}$ ¢ P ] | broody | xǔ2 [Jup] | oldster |
| /o/ $=/$ ã/: | kōō [ko:] | fog | kaàn` [kã:] | he/she goes home |
| /o/ $=1$ ẽ/: | kwītō [ $\mathrm{k}^{\mathrm{w}}$ ito] | hen | kwītēn? [ $\mathrm{k}^{\mathrm{w}} \mathrm{it}$ 的 P ] | possum |
| /o/ $\neq / \mathrm{l} /$ : | kōō [ko:] | fog | kiin [kĩ:] | hematoma |
| $/ \mathrm{o} / \neq / \mathrm{u} /$ : | kōō [ko:] | fog | kūūn [kũ:] | sweet potato |

### 2.2.2 Nasal vowels

### 2.2.2.1 /ã/

/ã/ (written an in the practical orthography) may only occur underlyingly in final syllables of roots, and /ã/ may be long in final syllables but is always short in non-final syllables as illustrated in figure 2.3 on page 51 .

It may be followed or not by a / $2 /$. Nasalization changes the quality of the vowel and as a result /ã/ surfaces phonetically as [ã].

| nan [nã] | 1PLINCL SUBJ |
| :---: | :---: |
| kaàn` [kã:] | he/she goes home |
| $\mathrm{n}^{\mathrm{y}}$ āān [ñã:] | poison |
| nkaàn ${ }^{\prime \prime}$ [ g ã: P ] | booger |
| rā' kān? [ra kã?] | then |
| tsaan [tsã:] | day |
| tāān [tã:] | lard |
| kītán [kitã] | hammock |
| tījn ${ }^{\text {a }}$ n [tîhnnã] | his/her bone |
| $\operatorname{kin}^{\mathrm{y}}$ an? [kiñã?] | my feet |
| ntin ${ }^{\text {y }}$ an [ndiñã] | comal |
| tuPwān [tu?wã] | my mouth |
| $\operatorname{sit}^{\mathrm{y}} \mathrm{ab}^{\text {a }}$ [ $\operatorname{sit}^{\text {y }} \tilde{\mathrm{a}}$ ] | my fontanelle |
| ntixikwan [ntijik ${ }^{\text {w }}$ a] | he/she plucks it |
| nkayātán [ŋgajatã] | I bathed |

[ã] may occur in penultimate syllables resulting from Nasal Spreading across a /w/ (§2.2.4.2) and Translaryngeal Vowel Harmony across a laryngeal (§2.2.4.1) as shown in examples below.

| kawen [kãw ${ }^{\text {c }}$ ] | it will ripen |
| :---: | :---: |
| $\mathrm{n}^{\mathrm{y}}$ a ${ }^{\text {àn }}$ [ñã2ã] | how |
| na?an [nãఇã] | house |
| $\mathrm{n}^{\mathrm{y}}$ ajan [nãhã] | year |
|  | my mother |
| kina?an [kinãPã] | a lot |
|  | he/she changed clothes |
| ntātsà?ăn [ntatsã ${ }^{\text {a }}$ a ] | he/she is changing clothes |

Below are presented minimal or near minimal pairs for /ã/ versus all other vowels (except /ã/ versus /u/ which has not been encountered):

| $/ \mathrm{a} / \neq / \mathrm{a} /:$ | kaàn` [kã:] & he/she goes home & kaa [ka:] & nine \\ \hline \(/ \mathrm{a} / \neq / \mathrm{e} /:\) & kaàn` [kã:] | he/she goes home | kee [ke:] | stone |
| :---: | :---: | :---: | :---: | :---: |
| $/ \mathrm{a} / \neq / \mathrm{i} /:$ | kaàn` [kã:] & he/she goes home & kiī ' [ki:] & grass \\ \hline \(/ \mathrm{a} / \neq / \mathrm{o} /:\) & kaàn` [kã:] | he/she goes home | kōō [ko:] | fog |
| $/ \mathrm{a} / \neq / \mathrm{e} /:$ | kīchān? [kitfã?] | his/her hair | kichen [kit] ${ }^{\text {c }}$ ] | village |
| $/ \mathrm{a} / \neq / \mathrm{l} /:$ | kaàn` [kã:] & he/she goes home & kiin [kĩ:] & hematoma \\ \hline \(/ \mathrm{a} / \neq / \mathrm{u} /:\) & kaàn` [kã:] | he/she goes home | kūūn [kũ:] | sweet potato |

### 2.2.2.2 /ẽ/

/ẽ/ (written en in the practical orthography) may only occur underlyingly in final syllables of roots, and /ẽ/ may be long in final syllables but is always short in non-final syllables as illustrated in figure 2.3 on page 51. It may be followed or not by a / $\mathrm{i} /$. Nasalization changes the quality of the vowel and as a result /ẽ/ surfaces phonetically as [ $\tilde{\varepsilon}]$.

| ne? [n $\tilde{\sim}$ ] | person |
| :---: | :---: |
| nēē [ň̃:] | he/she said |
| xēēn [ $\int \tilde{\varepsilon}$ :] | wide |
| kwīné? [kwinc̃?] | young |
| saně [sanc̃] | guitar |
| nkyanè [ $\mathrm{\eta g} \mathrm{jan}$ ] $]$ | he/she sprayed it |
| lutsen? [luts ${ }^{\text {ch}}$ ] | my tongue |
| skuwen [skũw ${ }^{\text {c }}$ ] | my penis/vagina |
| tikēén [tikẽ:] | my stomach |
| ntùkên? [nduk $\mathrm{\varepsilon}^{\text {a }}$ ] | I cook it |
| kichen [kit] ${ }^{\text {c }}$ ] | village |
| nkūwēn [ทgũwẽ] | ripe |
| kwītēn? [ $\mathrm{k}^{\mathrm{w} i t z} \mathrm{\varepsilon}$ ] $]$ | possum |
| lūwēn [lũwẽ] | I am little |
| natèn" [natz] | people |
| kutīxēn [kutijẽ] | daughter in law |

[ $\tilde{\varepsilon}$ ] may occur in penultimate syllables resulting from Translaryngeal
Vowel Harmony across a laryngeal (§2.2.4.1) as shown in examples below.

```
se?en [s\tilde{\varepsilon}{\tilde{\varepsilon}] place
xūné?èn [Jun\tilde{2q]}] scorpion
tixē?èn [ti\int\tilde{\varepsilon}\tilde{\varepsilon}] his/her intestines
jn}\mp@subsup{}{}{y}\mathrm{ eRen [hnnc̃}z}] its tai
nkate?en [ngat\tilde{\varepsilon}\\tilde{\varepsilon}] he/she got married
```

Below are presented minimal or near minimal pairs for /ẽ/ versus all other vowels (except /ẽ/ versus /u/ which has not been encountered):

| $/ \mathrm{e} / \neq / \mathrm{a} /:$ | xēēn [¢̃̃:] | wide | xaá [ja.] | 位 |
| :---: | :---: | :---: | :---: | :---: |
| $/ \mathrm{e} / \neq / \mathrm{e} /:$ | lūwēn [lũw $]$ | I am little | lūwē [luwe] | he/she is little |
| /ẽ/ $\neq / \mathrm{i} /:$ | tē?ēn [tž $2 \tilde{\varepsilon}$ ] | jug | ti3i [tiPi] | sick |
| /ẽ/ $=1 \mathrm{o} /:$ | kwītēn? [ $\mathrm{k}^{\mathrm{w}} \mathrm{it}$ c̃ ?] | possum | kwītō [ $\mathrm{k}^{\mathrm{w}}$ ito] | hen |
| /ẽ/ $=1 / \mathrm{a} /:$ | kichen [kitt ${ }^{\text {c }}$ ] | village | kīchān? [kiţã2] | his/her hair |
| $/ \mathrm{e} / \neq / \mathrm{I} /:$ |  | jug | tiPin [tĩ?ĩ] | heavy |
| /ẽ/ $\neq /$ ũ/: | xēēn [¢¢̃:] | wide | xūùn [ $\int$ ũ:] | you will figh |

### 2.2.2.3 /ĩ/

/ $/$ (written in in the practical orthography) may only occur underlyingly in final syllables of roots, and / /̃/ may be long in final syllables but is always short in non-final syllables as illustrated in figure 2.3 on page 51. It may be followed or not by a / $2 /$. Nasalization changes the quality of the vowel and as a result /ĩ/ surfaces phonetically as [ĩ].

| kiin [kĩ:] | hematoma |
| :---: | :---: |
| jiìn" [hĩ:] | music |
| $\operatorname{sion}$ [sĩ:] | dinner |
| tsīīn? [tsĩ:?] | small insect |
| yānī [janĩ] | his/her neck |
| xunǐ [ [Junĩ?] | dog |
| chit ${ }^{\text {y }}$ in [ t [itíic] | my village village |
| sutin [sutĩ] | my father |
| ntujwin [ndũhmĩ] | I kill it |
| tatsin [tatsin] | empty |
| nkūjwīn [ŋgũhmĩ] | I died |
| Kinixīn' [kinĩ̃ĩ] | Santiago Yaitepec |
| nu?win [nu?wĩ] | you (sg) |
| $\mathrm{n}^{\mathrm{y}}$ ikwin [ $\mathrm{n}^{\text {ik }}{ }^{\mathrm{w}}$ İ] | he/she will say it |
| nkayūkwīn? [ygajuk ${ }^{\text {win }}$ ] | he/she smelled it |

[ĩ] may occur in penultimate syllables resulting from Translaryngeal Vowel Harmony across a laryngeal (§2.2.4.1) and Nasal Spreading across a /w/ (§2.2.4.2) as shown in examples below.

| kijin [kîhî] | leather |
| :---: | :---: |
| tiPin [tĩ?Ĩ] | heavy |
| nkajī?ín [ggahĩ?ĩ] | he/she hit it |
| nkajiwin [ngahĩßũ] | I whistled |

Below are presented minimal or near minimal pairs for / $/$ / versus all other vowels (except / $/ \mathbf{I} /$ versus $/ \mathrm{u}$ / which has not been encountered):

$$
\begin{aligned}
& / \mathrm{i} / \neq / \mathrm{a} /: \text { kiin [kĩ:] hematoma kaa [ka:] nine } \\
& / \tilde{1} / \neq / \mathrm{e} /: \text { kiin [kĩ:] hematoma kee [ke:] stone } \\
& / \tilde{1} / \neq / \mathrm{i} /: \text { tiPin [tĩ?ĩ] heavy tiPi [tiPi] sick } \\
& / \overline{1} / \neq / \mathrm{o} /: \text { kiin [kĩ:] hematoma kōō [ko:] fog } \\
& / \overline{\mathrm{l}} / \neq / \mathrm{ã} /: \text { kiin [kĩ:] hematoma kaàn [kã:] he/she goes } \\
& \text { home } \\
& / \tilde{\mathbf{1}} / \neq / \mathrm{ẽ} /: \text { tiPin [tĩ?ĩ] heavy tē?ēn [tẽ? } \mathrm{c}] \text { jug } \\
& / \overline{\mathrm{l}} / \neq / \mathrm{u} /: \text { kiin [kĩ:] hematoma kūūn [kũ:] sweet potato }
\end{aligned}
$$

### 2.2.2.4 / $\tilde{\mathbf{u}} /$

/ $\mathrm{u} /$ (written un in the practical orthography) may only occur underlyingly in final syllables of roots, and / ũ/ may be long in final syllables but is always short in non-final syllables as illustrated in figure 2.3 on page 51. It may be followed or not by a $/ 2 /$.

| chūn? [t]ũ?] | because |
| :---: | :---: |
| nkùn" [ g g u] | turtoise |
| kūūn [kũ:] | sweet potato |
| jūún [hũ:] | thread |
| rrsuùn' [rssũ:] | message (from Spa. razón) |
| xùứn [ $\int$ ũ:] | he/she will fight |
| kwitun [ $\mathrm{k}^{\mathrm{w}} \mathrm{it}$ ũ] | bee |
| tīchūn? [titfũ?] | his/her back |
| tiPn ${ }^{\text {y }}$ un [tiPñũ] | fifteen |
| mìxt ${ }^{\text {y ún }}$ [miftiou] | cat |
| lìstūn' [listũ] | ribbon (from Spa. listón) |
| stānù [stanũ] | grapefruit |
| nkayuūn' [ygajũ:] | I ground it |
| nkālúù̀n [ yg gaũ:] | I removed it |
| nkayākún [ŋgajakũ] | $I$ ate it |

[ũ] may occur in penultimate syllables resulting from Translaryngeal Vowel Harmony across a laryngeal (§2.2.4.1) or Nasal Spreading across a /w/ (§2.2.4.2) as shown in examples below.

| $\mathrm{n}^{\mathrm{y}}$ uPun [ñũ) ${ }^{\text {a }}$ ] | it will break down |
| :---: | :---: |
| lū?ún [lũ2ũ] | with me |
| kwil ${ }^{\text {y }}$ uPun [ $\mathrm{k}^{\mathrm{w}}$ ilıũ2ũ] | my spouse |
| nkutū?ún [ggutũ)ũ] | he/she went out |
| nkunu?un [ggunũ?ũ] | it got broken |
| nkūwēn [ngũwẽ] | ripe |

Below are presented minimal or near minimal pairs for / $\tilde{\mathrm{u}} /$ versus all other vowels:

| $/ \mathrm{u} / \neq / \mathrm{a} /:$ | kūūn [kũ:] | sweet potato | kaa [ka:] | nine |
| :---: | :---: | :---: | :---: | :---: |
| $/ \mathrm{u} / \neq / \mathrm{e} /:$ | kūūn [kũ:] | sweet potato | kee [ke:] | stone |
| $/ \tilde{\mathrm{u}} / \neq / \mathrm{i} /:$ | kūūn [kũ:] | sweet potato | kiī [ki:] | grass |
| $/ \mathrm{u} / \neq / \mathrm{o} /:$ | kūūn [kũ:] | sweet potato | kōō [ko:] | fog |
| $/ \mathrm{u} / \neq / \mathrm{a} /:$ | kūūn [kũ:] | sweet potato | kaàn` [kã:] | he/she goes home |
| $/ \mathrm{u} / \neq / \mathrm{l} /:$ | kūūn [kũ:] | sweet potato | kiin [kĩ:] | hematoma |
| $/ \mathrm{u} / \neq / \mathrm{e} /:$ | xūùn [ $\int$ ũ:] | you will fight | xēēn [¢ $\check{c}$ :] | wide |

### 2.2.3 Vowel length

Vowel length is contrastive in ZAC but at a very limited level, and only occurs in final syllables ${ }^{8}$. The autosegmental representation of prosodic features presented in figure 2.3 accounts for vowel length as an extra mora hosted by the $\omega$. This extra mora can extend the length of the $\omega$-final vowel but not of any other vowel. So distributionally speaking, vowel length is a property of the simplex word, since it only pertains to a $\omega$-final vowel. Thus, a word can be considered long if its final vowel is long; and short if it's final vowel is short. As illustrated in figure 2.3 , long words are represented by an extra mora linked to long stems, and that extra mora is linked to the final syllable, making it long. Short stems are represented without that extra mora.

Vowel length plays an important role in the tonal phonology because the tones are mora-linked, and long stems and short stems may differ in

[^18]tonal patterns (chapter 4 §4.6.2)
In his description of Zenzontepec Chatino, Campbell offers some historical information about how vowel length constrastiveness came about in Chatino from proto-Chatino (Campbell, 2014):
'Despite the presence of long versus short monosyllables, vowel length was not distinctive in Proto-Chatino because it was predictable based on word class. Contrastive vowel length has come about in Zenzontepec Chatino due to some sporadic clippings of words and a sound change in which non-final syllables consisting of a simple coronal obstruent followed by a high vowel have reduced to /h/.'(p97)

The sound change mentioned above encountered in Zenzontepec Chatino did not occur in ZAC, but clipping of a couple of words whose penultimate syllable consisted of a glottal fricative /h/followed by /i/, did occur, resulting in a minimal pair for vowel length: $k \bar{e}[\mathrm{ke}]$ (from $j \bar{i} k \bar{e}$ which is still encountered in the lexicon) 'his/her head' Versus keē [ke:] 'flower'. This clipping phenomenon is actually extremely rare in ZAC. Another example of clipping is Pin [?Ĩ] 'DAT' (from jiPin which is not encountered in the lexicon anymore). The latter did not result in any vowel length minimal pairs but did produce a word with an initial glottal stop which is extremely rare.

Below are presented examples of minimal or near-minimal pairs for length to demonstrate its contrastiveness in $\mathrm{ZAC}^{9}$ :

[^19]| nkūlá | [ggula] | he/she was born | nkulāá | [ygula:] | he/she escaped |
| :--- | :--- | :--- | :--- | :--- | :--- |
| kē | $[\mathrm{ke}]$ | his/her head | keē' | [ke:] | flower |
| pï | $[\mathrm{pi}]$ | poult | pì̈ | [pi:] | white, fair |
| yo | $[j o]$ | guy | yoo | [jo:] | soil |
| xǔ? | $[\mathrm{ju}]$ | oldster | chūú | [t]u:] | Jesus |

Below are presented examples of long vowels in monosyllabic as well as disyllabic words:

| mpaà" [mba:] | godfather |
| :---: | :---: |
| Wyàá [bja:] | Santos Reyes Nopala, Oaxaca |
| kaa [ka:] | nine |
| $\mathrm{t}^{\mathrm{y}} \mathrm{aa}$ ? ${ }^{\text {a }}$ [ta:?] | molasses |
| kaàn [kã:] | he/she goes |
| nkaàn? ${ }^{\text {[ngã:2] }}$ | booger |
| $\mathrm{n}^{\mathrm{y}}$ āān [ñã:] | poison |
| kee [ke:] | stone |
| kwee? [ $\mathrm{k}^{\mathrm{w}} \mathrm{e}$ :?] | crab |
| xēēn [ $\tilde{\varepsilon}_{\text {c }}$ ] | wide |
| chii' ${ }^{\prime}$ [ f i :] | chicken rump |
| kiī ${ }^{\text {² }}$ [ki:] | grass |
| jiìn" [hĩ:] | music |
| kiin [kĩ:] | hematoma |
| kwiì? [ $\mathrm{k}^{\mathrm{w}} \mathrm{i}$ : P ] | ring |
| tsīin? [tsĩ:?] | small insect |
| $\mathrm{t}^{\mathrm{y}} \mathbf{\text { óó }}$ [to:] | adobe |
| kōō [ko:] | fog |
| kūūn [kũ:] | sweet potato |
| jūún [hũ:] | thread |
| chūú [t]u:] | Jesus |

nkutyáā tīi ' [ngutja: tip] he/she liked it
ntsuwaà? [ndzuwa:2] hierba santa (piper auritum)
tikēé [tike:]
tikēén [tikẽ:]
nkasiín [ $\mathrm{g} \mathrm{gasĩ}:]$
nkasuwī́ [ngasußi:]
nkālőò [ygalo:]
nkayoō [ygajo:]
nkālû́ùn [ggalũ:]
nkayuūn' [ygajũ:]
his/her stomach
my stomach
he/she squeezed it
he/she sorted it
he/she removed it
he/she ground it
I removed it
I ground it
NB: Note that there are no words in which a non-final vowel is ever long.

### 2.2.4 Vowel harmony

### 2.2.4.1 Translaryngeal Vowel Harmony

Translaryngeal Vowel Harmony is partly a morpheme structure constraint, and a phonetic rule that works both progressively and regressively. As was discussed in §2.2, the only existing vocalic phonemic contrast in penultimate syllables is between $/ \mathrm{i} / \mathrm{/} / \mathrm{a} /$ and $/ \mathrm{u} /$. However, the oral vowels /e/ and /o/ do surface in penultimate syllables through a vowel harmony rule across laryngeals. Furthermore, as was mentioned in §2.2.2, nasal vowels do not occur underlyingly in penultimate syllables. This was discussed in the autosegmental phonological representation in figure 2.3. However, nasal vowels do surface in penultimate syllables through a vowel harmony rule across laryngeals. Figure 2.5 presents the Regressive Translaryngeal Vowel Harmony rule ${ }^{10}$.

[^20]\[

$$
\begin{gathered}
\{\mathrm{i}, \mathrm{u}\} \rightarrow\{\mathrm{e}, \mathrm{o}\} / \ldots \mathrm{G}_{\text {lottal }}\{\mathrm{e}, \mathrm{o}\} \\
\{\mathrm{a}, \mathrm{i}, \mathrm{u}\} \rightarrow\{\tilde{\mathrm{a}}, \tilde{\mathrm{e}}, \tilde{\mathrm{u}}\} / \mathrm{G}_{\text {lottal }}\{\tilde{\mathrm{a}}, \tilde{\mathrm{e}}, \tilde{\mathrm{u}}\}
\end{gathered}
$$
\]

Figure 2.5: Regressive Translaryngeal Vowel Harmony rule

For example, in a word like /tihe? $/{ }^{11}$ [tehe?] 'salt', the /e/ in the final syllable is mirrored across $/ \mathrm{h}$ / into the penultimate syllable. In a word like /tuho/ [toho] 'squash plant' the /o/ in the final syllable is mirrored across /h/ into the penultimate syllable.

In a word like /si2ẽ/ ${ }^{12}$, /ẽ/ is mirrored across the laryngeal surfacing phonetically as [s $\tilde{\varepsilon} \tilde{\varepsilon} \tilde{\varepsilon}]$. In a word like /naקã/, /ã/ is mirrored across the laryngeal surfacing phonetically as [nã?ã].

In the examples just discussed, the vowel harmony work regressively, from the final syllable to the penultimate syllable. However, this effect can also work progressively.

$$
/ \mathrm{o} / \rightarrow[\supset] / \rho \mathrm{G}_{\text {lottal }}---
$$

Figure 2.6: Progressive Translaryngeal Vowel Harmony rule

For example, in the word /hu?ō' / [hっ? ] 'saint', the [כ] in the penul-

[^21]timate syllable is mirrored across $/ \mathrm{R} /$ into the final syllable．As mentioned earlier（§2．2．1．5），when／o／is followed by a glottal stop it is realized as ［〕］（no other vowel is affected by an adjacent glottal stop）as in xò？［ऽэ？］ ＇oldster＇．In this particular case，the ordering of the rules is as follows：

1．Regressive Vowel Harmony：$/ \mathrm{u} / \rightarrow[\mathrm{o}] /$＿－－ $\mathrm{G}_{\text {lottal }} \mathrm{o}$

$$
/ \text { huRō' / } \rightarrow \text { [ho?o] }
$$

2．Pre－glottal Stop Lowering：／o／$\rightarrow$［ o ］／－－－ ？

$$
[\text { ho?o }] \rightarrow[\mathrm{hoPo}]
$$

3．Progressive Vowel Harmony：$/ \mathrm{o} / \rightarrow[\supset] / \rho \mathrm{G}_{\text {lottal }}-$

$$
\text { [hっRo] } \rightarrow \text { [hっใo] }
$$

This type of ordering of the three of the Harmony rules only occurs in cases similar to／hu？ō＇／［ho？$]$＇saint＇，i．e．when a stem presents the same ／huRo／vowel configuration．In fact，the Progressive Harmony rule only occurs in this particular context because／o／is the only vowel which gets affected when followed by a／R／．

Figure 2.7 shows an autosegmental figure of the two processes（the Pre－glottal stop Lowering and the Progressive Tranlaryngeal Vowel Har－ mony）involved resulting in the surface phonetic output for the word jo？ $\bar{o}^{\prime}$ ［ho？$].$

On the other hand，Regressive Vowel Harmony，occurs in all cases where the initial vowel is $\{i, u\}$ ，and the vowel across the glottal consonant


Figure 2.7: Autosegmental representation of Progressive Translaryngeal Vowel Harmony rule: joº̄ [hっ? ]
is $\{\mathrm{e}, \mathrm{o}\}$; or in all cases where the initial vowel is $\{\mathrm{a}, \mathrm{i}, \mathrm{u}\}$, and the vowel across the glottal consonant is $\{\tilde{\mathrm{a}}, \tilde{\mathrm{e}}, \tilde{\mathrm{u}}\}$. The list below presents more examples of words presenting a $/ \mathrm{CVG}_{\mathrm{lottal}} \mathrm{V}$ / shape showing their underlying phonemic representation and their respective phonetic output:

| /taPa/ [taPa] | his/her relative |
| :---: | :---: |
| /na2ã/ [nã2ã] | house |
| /tihe?/ [tehe?] | salt |
| /tiPi/ [tiPi] | sick |
| /tiPa/ [tiPa] | water |
| /tiRî / [tĩ̃ĩ] | heavy |
|  | place |
| /juPō' / [hว? ${ }^{\text {c }}$ | saint |
| /tūhó/ [toho] | squash plant |
|  | my spouse |

The domain of this constraint is the root, and as a result it is sensitive to morpheme boundaries. Translaryngeal Vowel Harmony does not apply
to the form presented below where the glottal consonant starts the root and the vowel just before is part of the aspect morpheme:

## ntī-Rō [ndißo] he/she is drinking it

### 2.2.4.2 Nasal spreading

Nasalization from final nasal vowels regressively spreads from final syllables to penultimate syllables when the medial consonant is a/w/ or a cluster of the type $/ \mathrm{h}+\mathrm{w} /$. This rule accounts for a lot of allophony for the underlyingly non-nasal penultimate vowels /u, i , a/ when they occur in a penultimate syllable in a word with a final nasal vowel. Note that this process is sensitive to morpheme boundaries as shown in example for 'I whistled' where the /a/ in the aspect prefix is not nasalized from spreading from final vowel across, first, across the $/ \mathrm{w} /$, then across the $/ \mathrm{h} /$, because the $/ \mathrm{a} /$ is not part of the verb stem:

| kawen [kãw ${ }^{\text {c }}$ ] | it will ripen |
| :---: | :---: |
| nkūwēn [ $\dagger \mathrm{gũ} \mathrm{w}$ ̃] | ripe |
| nk-ūjwīn [ŋgũhmĩ] | I died |
| nka-jiwin [ngahĩß̧̃] | I whistled |

In terms of autosegmental analysis, the [+ nasal] links to both a final syllable and a non-final syllable, if certain conditions are met, i.e, if the medial consonant is a $/ \mathrm{w} /$, or a cluster of the type $/ \mathrm{h}+\mathrm{w} /$. Note the two dotted lines leaving from the [+ nasal] feature in figure 2.8. If those conditions are not met, by default, the [ + nasal] autosegment only links to
the final syllable only as was shown in figure 2.3.


Figure 2.8: Autosegmental representation of Nasal Spreading rule: nkūwēn [ngũwẽ]

Also, final nasal vowels nasalize the palatal glide $/ \mathrm{j}$ / when encountered within the same syllable as shown in the pairs for 'his/her hand' and 'my hand', as well as across syllable boundaries as shown in the pairs for 'his/her feet' and 'my feet'. This constraint is parallel to the Vowel Harmony (2.2.4.1) just discussed, and is also sensitive to morpheme boundaries as shown in example for 'I ground it' where the glide is not nasalized because it is not part of the verb stem:

```
yaāर [ja:2] his/her hand
n}\mp@subsup{}{}{y}\mathrm{ àán? [nã:2] my hand
ki.ya? [ki.ja?] his/her feet
ki.n}\mp@subsup{}{}{y}\mathrm{ an? [ki.nnã?] my feet
nkay-uūn' [\etaga.jũ:] I ground it
```


### 2.3 Consonantal system

The ZAC consonant inventory is shown in table 2.3, and the corresponding symbols in the practical orthography are presented in table 2.4 (the latter was already presented in $\S 2.1$ but is reintroduced here for convenience). ZAC has twenty-two consonant phonemes, six of which are more marginal because they generally occur in Spanish borrowings. The latter appear in table 2.3 in between parentheses. As Spanish loans are a fullfledged part of the lexicon, they are presented along with native phonemes. However, it is worth noting that the bilabials, which are often considered to be universal, do not occur in native words.

|  | Bilabial | Apicodental | Laminoalveolar | Palatal | Velar | Labiovelar | Glottal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stops | (p) (b) | t (d) | t |  | k | $\mathrm{k}^{\text {w }}$ | $?$ |
| Affricates |  | ts | t5 |  |  |  |  |
| Fricatives |  | S | $\int$ |  |  |  | h |
| Nasals | (m) | n | n |  |  |  |  |
| Laterals |  | 1 | 1 |  |  |  |  |
| Tap |  | (r) |  |  |  |  |  |
| Trill |  | (r) |  |  |  |  |  |
| Approximant |  |  |  | j |  | w |  |

Table 2.3: Phonemic inventory: consonants

In this section, the phonemes are presented according to their place of articulation, instead of by manner of articulation, because as was already mentioned in the introduction, this mode of grouping leads to more generalizations about the consonantal system in general. For example, we will

|  | Bilabial | Apico- <br> dental | Lamino- <br> alveolar | Palatal | Velar | Labio- <br> velar | Glottal |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stops | $p b$ | $t d$ | $t^{y}$ |  | $k$ | $k w$ | $?$ |
| Affricates |  | $t s$ | $c h$ |  |  |  | $j$ |
| Fricatives |  | $s$ | $x$ |  |  |  |  |
| Nasals | $m$ | $n$ | $n^{y}$ |  |  |  |  |
| Laterals |  | $l$ | $l^{y}$ |  |  |  |  |
| Tap | $r$ |  |  | $w$ |  |  |  |
| Trill |  | $r r$ |  | $y$ |  |  |  |
| Approximant |  |  |  | $y$ |  |  |  |

Table 2.4: Practical orthography: consonants
see that the category of bilabials is vacant in the native sound system, the velars are asymmetrical, and the lamino-alveolars are historically related to the apico-dentals ${ }^{13}$. Furthermore, minimal pairs or near-minimal pairs are presented to illustrate contrast between phonemes. Each phoneme is discussed in terms of its distribution with respect to both vowels and consonants, as well as its corresponding allophonic variations. The examples in this section show the distribution of phonemes when they occur as single consonants as well as when they are part of consonant clusters. A summary of all consonant clusters allowed in the language is presented in §3.1.1.2.

Because of multi-syllabicity and tonal feature, true minimal pairs are scarce; as a result most pairs presented below differ in tone as well as in contrasting consonants. In any case, the phonemes are always presented in many different environments within the word in order to demonstrate their

[^22]contrastiveness against other phonemes.
The non-continuants $/ \mathrm{p}, \mathrm{t}, \mathrm{ts}, \mathrm{t}$, $\mathrm{k}, \mathrm{k}^{\mathrm{w}} /$ always undergo voicing assimilation in word-initial consonant clusters following a nasal segment as shown below in figure 2.9. As a result, $\left[\mathrm{b}, \mathrm{d}, \mathrm{dz}, \underline{d} 3, g, g^{w}\right]$ are allophones of $/ \mathrm{p}, \mathrm{t}, \mathrm{ts}, \mathrm{t}, \mathrm{k}, \mathrm{k}^{\mathrm{w}} /$ respectively.

Figure 2.9: Voicing assimilation rule

| mpaà" [mba:] | godfather |
| :--- | :--- |
| ntaa [nda:] | bean |
| ntsil ${ }^{\text {y }}$ [ [ndzile] | bumblebee |
| nt $^{\text {u uùn [ndũ:] }}$ | he/she stands |
| nchakan [ndzakã] $^{\text {nkùn" [ngũ] }}$ | his/her ear |
| turtoise |  |
| nkweje [ng ${ }^{\text {w }}$ ehe] | epazote |

Many Spanish borrowings do present a contrast between /t/ and /d/, $/ \mathrm{p} /$ and $/ \mathrm{b} /$, and $/ \mathrm{k} /$ and $/ \mathrm{g} /$ after a nasal. If the consonant is voiced in the donor language, it will generally also be voiced in ZAC. Note that syllabification in Spanish loans allows for syllable final nasal consonants (and other consonant types) word-medially (§3.1.1.2).
tyèmpő" [tjem.po] time (from Spa. tiempo)
mintìle" [min.ti.le] napkin (from Spa. mantél)
sandìyă" [san.di.ja] watermelon (from Spa. sandía)
sundàō [sun.dao] soldier (from Spa. soldado)
dimìngō" [di.min.go] sunday (from Spa. domingo)

Furthermore, /n/ undergoes a place assimilation process when occurring in word-initial consonant clusters in front of the bilabial stop /p/, the velar stops $/ \mathrm{k}, \mathrm{k}^{\mathrm{w}}$ / and the laminal stop $/ \mathrm{t} /$.

$$
/ \mathrm{n} /-->[\alpha \text { PLACE }] /---\mathrm{C}_{[\text {PLosive] }}[\alpha \text { PLACE }] ~
$$

Figure 2.10: Place assimilation rule

```
mpí́? [mbi`] dram (of liquor)
nkasūkwá? [ngasukwa?] he/she shelled it
nkwichà?a̋n [\g"it]ã?\tilde{a}] he/she changed clothes
nt }\mp@subsup{}{}{\textrm{y}}\mathrm{ á [nda:] he/she turns it in
```


### 2.3.1 Bilabial consonants

Bilabial stops are scarce in ZAC, and are generally encountered in non-native words and sound symbolic words. Most of them correspond to a bilabial sound in Spanish words.

Minimal and near-minimal pairs for all bilabial consonants include the following:

| /p/ | vs | /m/ | pa̋ [pa] | dad | ma̋ [ma] | mom |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| /p/ | vs | $/ \mathbf{k}^{\mathbf{w}}$ / | pî̀ [pii] | fair (color) | kwî́ [ ${ }^{\text {w }} \mathrm{ii}$ ] | star |
| /p/ | vs | /w/ | pä [pa] | dad | wa [ba] | 1PLEX SUBJ |
| /m/ | vs. | /n/ | ma̋ [ma] | mom | nǎ [na] | thing |
| m/ | vs. | /w/ | ma̋ [ma] | mom | wa [ba] | 1PLEX SUBJ |

### 2.3.1.1 /p/

/p/ has two phonetic realizations: [p] and [b]. /p/ surfaces as [b] in word-initial consonant clusters after a /n/ (see figure 2.9).
/p/ occurs as a single consonant in all syllables, word-initially as well as post-vocalically:

```
pa̋ [pa] dad
pàny"ūn" [panaũ] shawl (from Spa. pañuelo)
papàyă" [papaja] papaya
pîï [pi:] fair (color)
pìxơ" [pijo] peso (from Spa. peso)
tyèmpơ" [tjempo] time (from Spa. tiempo)
lăpi [lapi] pencil (from Spa. lapiz)
```

/p/ surfaces as [b] in word-initial consonant clusters following a homorganic nasal (see figure 2.9 and figure 2.10) as in:

```
mpaä" [mba:] godfather
mpî́l [mbi?] dram (of liquor)
```


### 2.3.1.2 /b/

/b/ is an emerging sound in ZAC and it is found in Spanish loans, often in names where it corresponds to /b/ in donor language. It has two phonetic realizations: $[\mathrm{b}]$ and $[\beta]$ :

```
/b/ --> [\beta] / V _-- V
/b/ --> [b] / elsewhere
```

| běto [be:to] | Alberto (from Spa. alberto [alberto]) |
| :---: | :---: |
| bakà" [baka] | cow (from Spa. vaca [ßaka]) |
| batà" [bata] | cattle (from Spa. vaca [ßaka]) |
| běta [be:ta] | Alberta (from Spa. alberta [alberta]) |
| bùrrū" [buru] | donkey (from Spa. burro [ $\beta$ uro]) |
| byerne [bjerne] | friday (from Spa. viernes [bjernes]) |
| byolìn" [bjoli:n] | violin (from Spa. violín [bjolin]) |
| àbrí' [abri] | April (from Spa. abril [abril]) |
| làmbrë' [lambre] | telephone (from Spa. alambre [alambre]) |
| jwè̀ ${ }^{\text {er }}$ [hмеßе] | thursday (from Spa. jueves [hweßes]) |
| jwabŏ" [hмаßо] | favor (from Spa. favor [faßor])) |
| disyèmbrë' [disjembre] | December (from Spa. diciembre [disjembre]) |

### 2.3.1.3 /m/

$/ \mathrm{m}$ / is also rather scarce, and like /p/, it does not usually occur in any native words $. / \mathrm{m} /$ occurs as a single consonant word-initially as well as post-vocalically. It may also surface in consonant clusters resulting from a place assimilation process of phoneme /n/ in front of the bilabial stop /p/ (see figure 2.9 and figure 2.10):

```
ma̋ [ma] mom
mìi" [mi:] thousand (from Spa. mil)
me̋n? [m\tilde{\varepsilon}] puppy
màl }\mp@subsup{}{\overline{1}}{\prime\prime}[\mathrm{ [mali] godmother
melònī" [melonĩ] melon (from Spa. melón)
manse? [manse?] regional foreign language
mintìlē" [mintile] napkin (from Spa. mantél)
mòjā" [moha] nun (from Spa. monja)
mùlyā" [mula] mule(from Spa. mula)
dimìngō" [dimingo] sunday (from Spa. domingo)
sumìlō" [sumilo] hat (from Spa. sombrero)
rrumèyō" [rome:jo] remedy (from Spa. remedio)
```

$/ \mathrm{m} /$ occurs in homorganic consonant clusters with /p/:
mpaà" [mba:] godfather (from Spa. compadre)
mpíí [mbi?] dram of liquor
tyèmpő [tjempo] time (from Spa. tiempo)

### 2.3.2 Apico-dental consonants

There are eight apico-dental consonants, three of which are rather marginal in the language ( $/ \mathrm{d} /, / \mathrm{f} /$ and $/ \mathrm{r} /$ ) as they are only encountered in borrowings (/d/ and / $\mathrm{r} /$ ) or as a free variant of $/ \mathrm{nt} /(/ \mathrm{r} /)$.

Minimal and near-minimal pairs for all apico-dentals versus other consonants include the following:

| ／t／ | vs． | ／n／ | tī？${ }^{\prime}$［tiP］ | his／her essence | nī？${ }^{\prime}$［ $n$ Ĩ？$]$ | his／her bowels |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ／t／ | vs． | ／s／ | tukwa［tukwa］ | two | sukwa［sukwa］ | six |
| ／t／ | vs． | ／t／ | tītā［tita］ | shrimp | $\mathrm{t}^{\mathrm{y}} \mathrm{i}^{\text {y }}$ á ［tita］ | squirrel |
| ／t／ | vs． | ／ts／ | tii［ti：］ | ten | tsiî＇［tsi：］ | San Marcos <br> Zacatepec |
| ／t／ | vs． | ／t 5 | kita［kita］ | tobacco | kicha［kit］a］ | disease |
| ／t／ | vs． | ／k／ | tichen［tit］${ }^{\text {c }}$ ］ | scary | kichen［kit］${ }^{\text {c }}$ ］ | village |
| ／n／ | vs． | ／1／ | kunà［kuna］ | he／she will run | kula［kula］ | old |
| ／n／ | vs． | ／n／ | naPan［nãPã］ | house | $\mathrm{n}^{\mathrm{y}}$ aアàn｀［ñãఇã］ | how |
| ／1／ | vs． | ／1／ | leè＇［le：］ | law | 1Yèê？［le：？］ | infant |
| ／n／ | vs． | ／r／ | nǎ［na］ | thing | rā＂kān？［ra kã？］ | then |
| ／f／ | vs． | ／r／ | nteē［re：］ | this | rrễ［rie］ | king |
| ／s／ | vs． | ／$/$ | ska［ska］ | one | xkà［ $[\mathrm{ka}$ ］ | other |

## 2．3．2．1／t／

／t／has two phonetic realizations：［t］and［d］．／t／surfaces as［d］ after／n／in word－initial consonant clusters（see figure 2.9 on page 80）．It may occur as a single consonant word－initially as well as post－vocalically， as well as in consonant clusters after／n／．

| tāān［tã：］ | lard |
| :---: | :---: |
| ti［ti］ | just |
| tōō？［to：？］ | cough |
| tanu［tanũ］ | large |
| teje？［tehe？］ | salt |
| tichǒ？［tit〕〕？］ | pineapple |
| tōjó［toho］ | squash plant |
| tùn ${ }^{\text {y }}$ í ${ }^{\text {a }}$［tuni］ | money |
| late？［late？］ | fabric |
| nkatakǐn［ngatakĩ］ | he／she burned it |
| nkatePen［ngatz̃ $2 \tilde{\varepsilon}$ ］ | he／she got married |
| kutīxēn［kutifẽ］ | daughter in law |
| nkotō？ó［ngoto？$]$ | he／she went out |
| kutùna̋？［kutuna？］ | he／she lost it |
| nkiwita［ทgißita］ | he／she waited for it |

$/ \mathrm{t}$ / undergoes a voicing assimilation process and occurs as [d] after in consonant clusters after /n/ (see figure 2.9 on page 80):

| ntaa [nda:] | bean |
| :--- | :--- |
| ntātsī [ndatsi] | bean (yellow type) |
| ntin ${ }^{\text {yan }}$ [ndiñã] | comal |
| ntolòő [ndolo:] | he/she removes it |
| ntulā [ndula] | peach |

In Spanish borrowings, when $/ \mathrm{t}$ / occurs after /n/ reflecting a /t/ in the donor language and when it occurs in a different syllable, it does not undergo the voicing assimilation process (see figure 2.9 on page 80 ):
kwèntő" [k ${ }^{\mathrm{w}}$ en.to] tale (from Spa. cuento[kwento])
sùntū" [sun.tu] issue (from Spa. asunto [asunto])
As discussed in §2.3.3 on page 96, the phonemes /t, n, l, ts, s/ all have lamino-alveolar counterparts /t, n, l, t [ , S/ which began as allophones of $/ \mathrm{t}, \mathrm{n}, \mathrm{l}, \mathrm{ts}, \mathrm{s} /$ after / $\mathrm{i} /$ but phonologized due to the loss of the conditioning environment.

This palatalization process is no longer active in ZAC, but it does occur systematically in the verb forms when a prefix ends with /i/ and a root starts with $/ \mathrm{t}, \mathrm{n}, \mathrm{l}, \mathrm{ts}, \mathrm{s} /$. In verb forms, one can still observe the conditioning environment for the old palatalization process of /t/ to [t] after /i/. The phoneme / t / also exists in the language and is discussed in §2.3.3: ${ }^{14}$

[^23]```
nti-t}\mp@subsup{\textrm{t}}{}{\textrm{y}}\mathrm{ a [ndita] he/she bathes
Versus
k-ata [kata] he/she will bathe
nti-tyi? [nditii] he/she sucks
Versus
k-at}\mp@subsup{}{}{\textrm{y}}\textrm{i}\mathrm{ [ [kati?] he/she will suck
```

$/ \mathrm{t}$ / can also occur in consonant clusters before $/ \mathrm{f} /$ and before the glide $/ \mathrm{j} /$.
Examples with these types of clusters are rare.

```
tra?wē [traPwe] middle
tyèmpơ" [tjempo] time
nkutyáá' tī?' [ygutjaa ti?] he/she liked it
```

$/ \mathrm{t} /$ can also occur in consonant clusters after $/ \mathrm{s} /$ and $/ \mathrm{s} /$ :

| lìstūn" [listũ] | ribbon |
| :--- | :--- |
| stānù [stanũ] | grapefruit |
| stijo?ō' [stiho?o] | priest |
| stilyä" [stilja] | Castille |
| nkwïxtìkwí [yg ${ }^{\text {wiftikwi] }}$ | he/she hung it |

### 2.3.2.2 /d/

/d/ is an emerging sound in ZAC and it is found in Spanish borrowings. It often corresponds to [d] in donor words:

```
dimìngō" [di.min.go] sunday
sundàơ' [sun.dao] soldier (from Spa. soldado [soldado])
sandìyä" [san.di.ja] watermelon (from Spa. sandía [sandija])
```


### 2.3.2.3 /ts/

/ts/ represents a single sound as opposed to a combination of /t/ and $/ \mathrm{s} /$, and is written $t$ in the practical orthography. Since the inventory only allows $/ \mathrm{t}$ / to be combined with fricatives $/ \mathrm{s} /$ or $/ \mathrm{S} /$, then it makes sense to analyze /ts/ and /t $\underline{\text { / } / \text { as single sounds allowing for a simpler syllable }}$ structure.
/ts/ has two phonetic realizations: [ts] and [dz]. /ts/ surfaces as [dz] after $/ \mathrm{n}$ / in consonant clusters (see figure 2.9 on page 80). It may occur as a single consonant word-initially as well as post-vocalically, as well as in consonant clusters after /n/.
/ts/ as a single consonant word-initially as well as post vocalically:

| tsaan [tsã:] | day |
| :---: | :---: |
| tsiī [tsi:] | San Marcos Zacatepec |
| tsoo? [tss:?] | his/her side |
| tsa?wě [tsa?we] | good |
| tsin' ${ }^{\text {a }}$ n? [tsinã2] | tick |
| kitsà? [kitsa?] | he/she will warn |
| titsāPán [titsã?ã] | saucepan |
| tsòkว̋? [tsoko?] | grasshopper |
| tsuna [tsuna] | three |
| kutsě? [kutse?] | pus |
| ntātsī [ndatsi] | bean (yellow) |
| nkotsò ${ }^{\prime \prime}$ [ngotss?] | mud |
| kutsìkwín [kutsikwĩ] | he/she will shake it |

/ts/ undergoes a voicing assimilation process after /n/ in word-initial consonant clusters and surfaces as [dz]:

```
ntsakwa [ndzakwa] chayote squash
ntsilye [ndzile] bumblebee
ntsukwà```[ndzukwa?] corn
```

In verb forms, one can still observe the conditioning environment for the old palatalization process of /ts/ to [t]] after /i/. The phoneme /t $\mathrm{t} /$ also exists in the language and is discussed in §2.3.3. It occurs in verb forms when a prefix ending with /i/ and the /ts/ from the verb root get combined:
nkwi-chà?a̋n [ng"itfã?ã] he/she changed clothes
Versus
ntā-tsà?a̋n [ntatsã?ã] he/she is changing clothes

### 2.3.2.4 /s/

/s/ has only one phonetic realization [s]. It occurs as a single consonant word-initially as well as post-vocalically, and also occurs in consonant clusters before $/ \mathrm{k}, \mathrm{k}^{\mathrm{w}}, \mathrm{t}, \mathrm{l}, \mathrm{j} /$.

| sion [sĩ:] | dinner |
| :---: | :---: |
| soo [so:] | beard |
| saně [san ${ }^{\text {c }}$ ] | guitar |
| seRen [sž̃ ${ }^{\text {c }}$ ] | place |
| sīlyá? [silja?] | cotton |
| sokò" [soko] | small fish |
| suly ${ }^{\text {y }}$ " [suli] | pants |
| mìs ${ }^{\text {² }}$ [misa] | table |
| nkyase? [ygjase?] | he/she deflated it |
| lusǐ [lusi] | butterfly |
| kisō' [kiso] | avocado |
| tūsīn ${ }^{\text {y }}$ e [tusiñe?] | his/her nostril |
| ntusàla̋ [ndusala] | he/she opens it |
| nkasūkwá? [ŋgasukwa?] | he/she shelled it |

In verb forms, one can still observe the conditioning environment for the old palatalization process of $/ \mathrm{s} /$ to [ $[\mathrm{J}]$ after $/ \mathrm{i} /$. The phoneme $/ \mathrm{S} /$ also exists in the language and is discussed in §2.3.3. It occurs in verb forms when a prefix ending with /i/ and the /s/ from the verb root get combined:

```
nti-xikwan [ntijikwã] he/she plucks it
Versus
nka-sikwan [\etagasik}\mp@subsup{}{}{\textrm{w}}\tilde{\textrm{a}}]\mathrm{ ] he/she plucked it
```

$/ \mathrm{s} /$ can also occur in consonant clusters before $/ \mathrm{k}, \mathrm{k}^{\mathrm{w}}, \mathrm{t}, \mathrm{l}, \mathrm{j} /$ :

| ska [ska] | one |
| :---: | :---: |
| skina [skina] | his/her sandal |
| skoko? [skoko?] | his/her elbow |
| skuwe [skuwe] | egg |
| skwalà? [sk ${ }^{\text {w }}$ ala?] | its hoof |
| stijo ō' [stihっ? ${ }^{\text {a }}$ | priest |
| stìlyă' [stilja] | Castilla |
| slākó [slako] | 'maw' |
| karàsyă" [karasja] | heart |

### 2.3.2.5 /n/

$/ \mathrm{n}$ / is among the most widespread phonemes in the language as it occurs as a single consonant but also in many types of consonant clusters with non-continuants (/p, t, ts, t, t], k, $\mathrm{k}^{\mathrm{w}} /$ ) as well as with $/ \mathrm{h} / . / \mathrm{n} /$ has various phonetic realizations: $[\mathrm{n}],[\mathrm{m}],[\mathrm{n}]$ and $[\mathrm{n}]$ as it assimilates to the place of articulation of the following consonant in word-initial consonant clusters (see figure 2.10 on page 81 ).

Examples of /n/ as a single consonant word-initially and post-vocalically are presented below:

| nǎ [na] | thing |
| :---: | :---: |
| nāā? [na:3] | I |
| ne? [ n 己̃] | people |
| ni [nĩ] | 3 SACRED |
| nu [nũ] | the one who |
| natèn" [natz̃] | people |
| nī2án [nĩ?ã] | inside the house |
| nu?win [nũ?wĩ] | you (sg) |
| kina [kina] | sandal |
| kinaPan [kinã?ã] | a lot |
| tīnē [tinc̃] | blood |
| xūné ${ }^{\text {èn }}\left[\int\right.$ un $\left.\tilde{\varepsilon} 7 \tilde{\varepsilon}\right]$ | scorpion |
| xunī [ ${ }^{\text {chnin? }}$ | dog |
| Kinixīn' [kinĩ) | Santiago Yaitepec |
| $\operatorname{tanu}$ [tanũ] | large |
| nkunuPun [ggunũ2ũ] | he/she broke it |

In borrowings (mostly from Spanish) /n/ may close a syllable:

```
sundàö" [sun.dao] soldier (from Spa. soldado)
sandìyä" [san.dija] watermelon (from Spa. sandía)
kwèntö" [k w
sùntū" [sun.tu] issue (from Spa. asunto)
```

In verb forms, one can still observe the conditioning environment for the old palatalization process of $/ \mathrm{n} /$ to $[\mathrm{n}]$ after $/ \mathrm{i} /$. The phoneme $/ \mathrm{n} /$ also exists in the language and is discussed in §2.3.3. It occurs in verb forms when a prefix ending with $/ \mathrm{i}$ / and the $/ \mathrm{n} /$ from the verb root get combined:

```
nti-n}\mp@subsup{}{}{y}\mathrm{ aPàn` [ndiñãPã] he/she sees it
Versus
ntā-nāPàn [ndanãPã] he/she is seeing it
nti-n}\mp@subsup{}{}{y}\mathrm{ ee [ndiñe:] he/she confesses
Versus
ntā-ne̋è [ndanz̃:] he/she is confessing
```

$/ \mathrm{n} /$ may occur in consonant clusters after / $\mathrm{I} /$. The latter is the only consonant allowed in clusters with /n/ (the other glottal consonant /h/does not occur in clusters with $/ \mathrm{n} /$ ).
$/$ / is analyzed as part of the onset of the following syllable because in the phonotactics of the language, / $\mathrm{i} /$ can only close a syllable in wordfinal position (see figure 2.3 on page 51). In the examples below, a period is used in the phonetic transcriptions in order to show the syllabification patterns.

$$
\begin{array}{ll}
\text { tya?nan [ta.?nã] } & \text { poor } \\
\text { ki?nā́ [ki.?na] } & \text { plate } \\
\text { na?ni [na.?nĩ] } & \text { animal } \\
\text { ku?nî̀ [ku.?nĩ] } & \text { he/she will do it }
\end{array}
$$

/n/ can also occur as the first consonant in clusters in word-initial position with $/ \mathrm{p}, \mathrm{t}, \underline{\mathrm{ts}}, \mathrm{t}$, $\mathrm{t}, \mathrm{k}, \mathrm{k}^{\mathrm{w}} /$, and the latter undergo voicing assimilation (see figure 2.9 on page 80). Also, /n/ assimilates to the place of articulation of the following consonant and surfaces as [ y ] before $/ \mathrm{k} /$, as [m] before $/ \mathrm{p} /$ or as [n] before $/ \mathrm{t} /$ (see figure 2.10 on page 81 ).

| ntaa [nda:] | bean |
| :---: | :---: |
| ntātsī [ndatsi] | bean (yellow type) |
| ntin ${ }^{\text {y }}$ an [ndiñã] | comal |
| ntolòô [ndolo:] | he/she removes it |
| ntulā [ndula] | peach |
| ntusàla̋ [ndusala] | he/she opens it |
| ntsakwa [ndzakwa] | chayote squash |
| $\mathrm{ntsil}{ }^{\text {y }}$ [ [ndzile] | bumblebee |
| ntsukwà ${ }^{\prime}$ [ndzukwa?] | corn |
| nchakan [ndzakã] | his/her ear |
| mpaà" [mba:] godfather mpî́ [mbi2] dram (of liquor) |  |
|  |  |
| nkasūkwá? [ŋgasukwa?] <br> nkyase? [ngjase?] <br> nkwichà $1 a ̋ n\left[1 g^{w}\right.$ it $]$ ã2ã] | he/she shelled it |
|  | he/she deflated it |
|  | he/she changed clothes |
| nt ${ }^{\text {ya }}$ á [ndada:] he/she turns it in $n^{\text {y }}$ ikaa [ndika:] all |  |
|  |  |

### 2.3.2.6 / $/$

/1/ has two phonetic realizations: [1] and the very rare devoiced counterpart [1]. Unlike the other sonorant $/ \mathrm{n} / \mathrm{h} / \mathrm{l} /$ does not occur after / $\mathrm{i} /$, and does not usually occur after the glottal fricative /h/ either. The only examples of /hl/ encountered so far are the verbs 'jump' and 'weave' as in nkajlakā?' [ngahlaka?] 'he/she jumped', and nkatājlá? [ngatahla?] 'he/she weaved it' where $/ \mathrm{l} /$ gets devoiced after $/ \mathrm{h} /$.

Furthermore, /l/ occurs after /s/ in one example only: slākó [slako] 'maw'.

Examples of /l/ word-initially as well as post-vocalically are presented below:

| lāā [la:] | church |
| :---: | :---: |
| loo [lo:] | its surface |
| late? [late?] | fabric |
| lita [lita] | couple |
| lō?ó [lכ? ] | with it |
| lūwē [luwe] | little |
| kila [kila] | corn field |
| yalǎ [jala] | mean |
| rrkàlë' [rikale] | mayor |
| talōó [taloo] | his/her face |
| ntulakwà [ndulakwa] | he/she counted it |
| nkālěRè [ngaleRe] | he/she licked it |
| xkalìyő" [Jkalijo] | mezcal |
| melònǐ" [melonĩ] | melon |
| nkalukwǎ [ngalukwa] | he/she swept it |

In verb forms, one can still observe the conditioning environment for the old palatalization process of $/ 1 /$ to [1] after $/ \mathrm{i} /$. The phoneme $/ \mathrm{l} /$ also exists in the language and is discussed in §2.3.3. It occurs in verb forms when a prefix ending with $/ \mathrm{i} /$ and the $/ \mathrm{l} /$ from the verb root get combined:

## nti-1 ${ }^{\mathrm{y}} \mathrm{e}$ ?è [ndile?e] he/she licks it

Versus
nkā-le̋?è [ngale?e] he/she licked it
/l/ can occur in consonant clusters preceding a palatal glide /j/ but the latter generally occurs in Spanish loans. In the ZAC word, /j/ corresponds to the [j] in the Spanish word. It also seems to occur in a contracted
compounded form lyōò [ljo:] 'in the ground' where yoo means 'ground' and the $/ \mathrm{l} /$ may be the first consonant from first element loo 'on':
lyōò [ljo:] in the ground
silyaă [silja:] police (from Spa. policía [polisija]
stilya [stilja] Castille (from Spa. Castilla [kasija]

### 2.3.2.7 /f/

The alveolar tap /f/ has only one phonetic realization [r]. It is written $r$ in the practical orthography. It never occurs in native words, except as an alternative pronunciation of a common demonstrative nteē [re:] 'here' . It occurs in Spanish borrowings also corresponding to the alveolar tap [r] in the donor language. /f/ may occur as a single consonant and in consonant clusters after /b, t/. In the adverbial expression /rā" kān?/ then, [ra] actually derives from the Spanish borrowing /wrā"/ [bra] hour (from Spa. hora).
/f/ occurs as a single consonant word-initially as well as post-vocallically:

```
rä" kān? [ra kã?] then
karàsyä" [karasja] heart (from Spa. corazón [korason])
kurùsí' [kurusi] cross (from Spa. cruz [krus])
eněro [ene:ro] January (from Spa. enero [enero])
```

$/ \mathrm{f} /$ may also occur in consonant clusters after $/ \mathrm{b} /$ and $/ \mathrm{t} /$ :
àbrî́ [abri] April (from Spa. abril [abril])
disyèmbrë' [disjembre] December (from Spa. diciembre [disjembre])
làmbrē [lambre] telephone (from Spa. alambre [alambre])
tra?we [tra?we] middle

### 2.3.2.8 / $\mathrm{r} /$

The voiceless trill /r/ has only one phonetic realization: [r]. It is written $r r$ in the practical orthography. It only occurs in Spanish borrowings and usually reflects the single sound [r] in the donor language. It occurs as a single consonant word-initially and post vocalically as well as in wordinitial consonant clusters before $/ \mathrm{s} /$ and $/ \mathrm{k} / . / \mathrm{r} /$ is better analyzed as a single consonant as opposed to a cluster made of $/ \mathrm{h} /+/ \mathrm{f} /$ because of the fact that it may be followed by $/ \mathrm{s} /$ or $/ \mathrm{k} /$. An analysis as a cluster would complicate the otherwise straight forward syllable structure which only allows two consonant clusters.

| rrè" [re] | king (from Spa. rey [rej]) |
| :---: | :---: |
| rrumeyo [riume:jo] | remedy (from Spa. remedio [remedjo]) |
| bùrrư̄' [buru] | donkey (from Spa. burro [buro]) |
| rrsoòn" [rsũ:] | message (from Spa. razón [rason]) |
| rrkàlē" [rıale] | mayor (from Spa. alcalde [alkalde]) |

### 2.3.3 Lamino-alveolar consonants

The phonemes /t, n, l, ts, s/ all have lamino-alveolar counterparts /t, n, l, tf, $\mathrm{f} /$ which began as allophones of /t, n, l, ts, s/after /i/ but phonologized due to the loss of conditioning environment. Campbell (2014) offers historical information about how this process came about in Zenzontepec Chatino stating that " It began as an allophone of /t/ after /i/, during or around the time of proto-Chatino. At some point in time, this allophone phonologized due to the loss of the conditioning environment and some

Spanish loans (p59)."
Like in Zenzontepec Chatino, in ZAC, the lamino-alveolar phonemes originate from an ancient palatalization rule after /i/. The process is not active anymore but the conditioning environment is still visible in some verb forms as shown in section §2.3.2.

ZAC has five lamino-aveolar phonemes: /t, n, la, f, tf/ ([t, n, la, f, t[]]. Lamino-alveolar sounds are made with the blade of the tongue on the alveolar ridge and the tip of the tongue resting on the ridge of the lower teeth. The first three (/t, n, l, /) are represented in the practical orthography by a combination of the corresponding coronal consonant letter with the superscript letter ${ }^{y}\left(t^{y}, n^{y}, l^{y}\right) . / S /$ and $/ t \mathrm{f} /$ each have a separate grapheme $(x$, $c h$, respectively) following the general tendencies in practical orthographies for indigenous language in Mesoamerica.

Minimal and near-minimal pairs for all lamino-alveolar sounds are presented below:

| /t | vs. | /t/ | $\mathrm{t}^{\mathrm{y}} \mathrm{i}^{\text {y }}$ áa [tita] | squirrel | tītā [tita] | shrimp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| /n/ | vs. | /n/ | $\mathrm{n}^{\mathrm{y}}$ a2ān [nã2ã] | I will see it | naPān [nã2ã] | I saw it |
| /1/ | vs. | /1/ | tilyà [tila] | early morning | tilă" [tila] | noche |
| / $/$ | vs. | /s/ | kìxơ' [kijo] | cheese | kisō' | avocado |
| /t 5 | vs. | / $/$ | tīchōn? [titfũ?] | his/her back | tixòn? [tifũ?] | tasty |

### 2.3.3.1 / $\mathrm{t} /$

$/ \mathrm{t} /$ is written $t^{y}$ in the practical orthography. It can occur as a single consonant as well as in consonant clusters after $/ \mathrm{n} /$ and $/ \mathrm{S} /$.
$/ \mathrm{t} /$ has two phonetic realizations: [d] and [ t ]. Similarly to other noncontinuants, in consonant clusters after $/ \mathrm{n} /$, / $\mathrm{t} /$ undergoes a voicing assimilation process and surfaces as [d] (see figure 2.9 on page 80 ).

Examples below present $/ \mathrm{t} /$ occurring as a single consonant word-initially as well as post vocalically:

| $t^{\text {y }}$ àá [taa:] | intelligent |
| :---: | :---: |
| $t^{\mathrm{y}}$ ii [tii:] | it will end |
|  | adobe |
| līt ${ }^{\text {yá [lita] }}$ | amaranth |
| kit ${ }^{\text {y }}{ }^{\boldsymbol{r}}$ [kiți] | paper |
| $\mathbf{t}^{\mathbf{y}}$ olo? [tolo?] | cricket |
| $\mathbf{t}^{\mathrm{y}}$ ūnū [tıunũ] | crawfish |
| $\mathbf{t}^{\mathrm{y}} \mathrm{it}^{\mathbf{y}}$ un [tititũ] | many |
| $\mathbf{t}^{\text {y }}$ a?an [ttã2ã] | he/she will walk around |
| $t^{\text {y }}$ ikwà [tik ${ }^{\text {w }}$ ] | he/she will ride it |
| katyàka̋n? [katakã?] | he/she will get seen |
|  | surroundings |
| tit ${ }^{\text {y }}$ ùkwa̋ [tițuk ${ }^{\text {w }}$ ] | twelve |
|  | he/she resembled |

Examples below present / t / occurring preceded by $/ \mathrm{n} /$ where $/ \mathrm{t} /$ undergoes a voicing assimilation process and surfaces as [d], and /n/ also assimilates in place of articulation with / $\mathrm{t} /$ and surfaces as [n] (see figure 2.10 on page 81 ):

| $n t^{\mathrm{y}}{ }^{\text {a }}$ [nda:] | he/she turns it in |
| :---: | :---: |
|  | he/she stands |
| $n t^{\text {y }}$ ikaa [ndikaa] | all |
| $n t^{\text {y }}$ ikè? [ñdike?] | it gets cooked |
| nt ${ }^{\text {y }}$ iku?wà [ñiku?wa] | it cools down |
|  | it gets lowered |

Examples below present / $\mathrm{t} /$ in consonant clusters after $/ \mathrm{S} /$ :

```
nī}}\mp@subsup{\textrm{xt}}{}{\mathbf{y}
màxtyíl [mafti] machete
kixt}\mp@subsup{}{}{\mathbf{y}}\mathrm{ áá [kifta:] he/she will put it
mìxt*őn [mi\inttũ] cat
```


### 2.3.3.2 /t $\mathrm{J} /$

/t f / is written ch in the practical orthography. It has two phonetic realizations: [ t$]$ ] and [d3]. It may occur as a single consonant and very rarely in consonant clusters after /n/. It undergoes a voicing assimilation process and surfaces as [d3] when preceded by $/ \mathrm{n}$ / (see figure 2.9 on page 80). Examples below show /t $\mathrm{t} /$ as a single consonant word-initially as well as post-vocalically:

| chǎp [t]ap] | word |
| :---: | :---: |
| chiir [t]i:] | chicken rump |
| chōn? [tfũ?] | because |
| kūchā [kuţa] | sun |
| kichi [kitfi] | metate |
| tichǒ? [tifo?] | badger |
| chayō? [t ${ }^{\text {ajojo? }}$ | hummingbird |
| chìnyûn [t]inũ] | turkey hen |
| chu?wi [t]u?wi] | there will be |
|  | he/she changed clothes |

Below the only example of / t // occurring preceded by $/ \mathrm{n} /$ :
nchakan [ndzakã] his/her ear

### 2.3.3.3 / $/$

$/ \int /$ is written $x$ in the practical orthography and has only one phonetic realization [J]. It can occur as a single consonant as well as in consonant clusters after $/ \mathrm{t}, 1, \mathrm{k}, \mathrm{k}^{\mathrm{w}} /$. Contrary to its affricate counterpart $/ \mathrm{t} \mathrm{t} / \mathrm{s} / \mathrm{S} /$ does not occur after /n/.

Examples below show $/ \mathrm{S}$ / as a single consonant word-initially as well as post-vocalically:

```
xǔ2 [\intuP]
x\grave{T [{`?]}
xēēn [\int\tilde{\varepsilon}:]
xāá [Ja:]
xòőn [Jũ:]
lìxă" [lija]
    nkwíxì [ngwifi]
    jàxō" [haSo]
    xa\àn` [\intãPã]
    xi?n}\mp@subsup{}{}{y
    xunà [Juna]
    kwixātō [ }\mp@subsup{\textrm{k}}{}{\textrm{w}}\textrm{i
    tixēTèn [ti\int\tilde{\varepsilon}}\tilde{\varepsilon}]
    ntixiłì [ndifiPi]
    nkwīxű?wà [ngwifu?wa] he/she turned it in
```

Examples below show $/ \mathrm{J} /$ in consonant clusters after $/ \mathrm{t}, \mathrm{l}, \mathrm{k}, \mathrm{k}^{\mathrm{w}} /$ :

```
nī? xtȳ
màxt\íl
kixtỳáa̋ [kifta:]
machete
mìxt}\mp@subsup{}{}{\prime
he/she will put it
mixtyoon [mi\inttnũ] cat
xt}\mp@subsup{}{}{\textrm{y}}\mathrm{ āā
nkwixlyàkwíl [yg}\mp@subsup{}{}{\textrm{w}
xkùlä" [Jkula]
xkwì? [JkwiP]
xkwēé [[k }\mp@subsup{}{}{\textrm{W}}\textrm{e}:] man (vocative
xkwìlä" [\intk wila] school
```


### 2.3.3.4 /n/

/n/ is written $n^{y}$ in the practical orthography. It may occur as a single consonant as well as in consonant clusters after $/ \mathrm{j} /$ and after $/ \mathrm{R} /$. This sound also occurs from another source: nasalization of the glide /j/ through regressive spreading from a final nasal vowel (see §2.2.4.2 for a more in-depth description of the phenomenon).

Examples below show /n/ as a single consonant word-initially as well as post-vocalically:

| $\mathbf{n}^{\text {y }}$ āā [[ñã:] | poison |
| :---: | :---: |
| $\mathbf{n}^{\text {y }}$ ajan [nãhã] | year |
| $\operatorname{tin}^{\text {y }}$ ăn [tinã] | work |
| $\operatorname{kin}^{\text {y }}$ ® [kini] | bird |
| tīn ${ }^{\text {y }}$ e? [tiñ ${ }^{\text {c }}$ 2] | salty |
|  | turkey hen |
| $\mathbf{n}^{\mathrm{y}}$ ikwin [nik ${ }^{\text {w }}$ ] | he/she will say it |
| $\mathbf{n}^{\text {y }}$ uPun [nũ) ${ }^{\text {a }}$ ] | it will break down |
| ntin ${ }^{\text {a }}$ aàn [ ${ }^{\text {adiñã } 2 \text { ã] }}$ | he/she sees it |
| ntin ${ }^{\text {y }}$ upun [ndiñũ2ũ] | it breaks down |

Examples below show /n/ in consonant clusters after /h/ word-initially as well as post-vocalically:

```
jn }\mp@subsup{}{}{y}\mathrm{ āán [hnãa:] culture
jn}\mp@subsup{}{}{\mathrm{ y eë " [[hñe:] snail}
jn}\mp@subsup{}{}{y}\mathrm{ ākē [hñake] his/her head
jn}\mp@subsup{}{}{y}\mathrm{ ātén [hnatz̃] mosquito
jn}\mp@subsup{}{}{y}āPán [jñãPã] his/her mother
nījn}\mp@subsup{}{}{y}\mathrm{ ān [nĩhñã] palm tree vein
tījn}\mp@subsup{}{}{\mathrm{ ān [tîhnãa]] his/her bone}
```

Examples below show /n/ after / $\mathrm{i} /$ :

| Pn ${ }^{\text {y }}$ án [ $\mathrm{nn}^{\text {a }}$ ] | DAT.1s (contraction of Pin nāā? 'DAT I) |
| :---: | :---: |
| kiPn ${ }^{\text {y }}$ an [ki2nã] | bed |
| tiPn ${ }^{\text {y }}$ un [tiPñũ] | fifteen |
| xi?n ${ }^{\text {y }}{ }^{\prime}{ }^{\prime}$ [xi2ñã] | bottle |

Examples below show the sound [n] surfacing from regressive nasal spreading from a final nasal vowel:

| kiya? [kija?] | his/her foot |
| :---: | :---: |
| Versus |  |
| $\operatorname{kin}^{\text {y }}$ an2 [kiñã2] | my foot |
| yaā? [ja:?] | his/her hand |
| Versus |  |
| n ${ }^{\text {y }}$ àán? [ñã: P ] | my hand |

### 2.3.3.5 / $/$

/l/ has two phonetic realizations: [1] and [1] (devoiced [1]). It is written ${ }^{l y}$ in the practical orthography. Unlike the other sonorant $/ \mathrm{n} /, / \mathrm{l} /$
does not occur after $/ \mathrm{h} /$, but does occur after the glottal fricative $/ \mathrm{h}$ / as well as the laminal fricative $/ \int /$ (although extremely rare). When $/ 1 /$ occurs following the glottal fricative $/ \mathrm{h} /$ in consonant clusters, $/ / /$ gets devoiced and surfaces as [l] $]$.

Examples below show / $1 /$ as a single consonant word-initially as well as post-vocalically:

| $1^{\text {y }}$ āā? [laa:?] | bitter |
| :---: | :---: |
| $1^{\text {y }}$ ee [lie:] | very much |
| $l^{\text {y }}$ èé? [le:2] | baby |
| 1Yı̂́? [lỉ] | parrot |
|  | small |
| till ${ }^{\text {ax }}$ [tila] | lunch time |
| ntsil ${ }^{\text {y }}$ [ [ndzile] | bumble bee |
| $\mathrm{til}^{\mathrm{y}} \overline{o ̛}^{\prime}$ [tilo] | large |
| ntsùl ${ }^{\text {y }}$ î? [ndzuli?] | swing |
|  | lime |
| $1^{\text {y }}$ eRè [leRe] | he/she will lick it |
| $1^{\text {y }}$ ūwā [lıawa] | annona, custard apple |
| ntil ${ }^{\text {y }}$ aPà [ndilapa] | it got split |
| ntily ${ }^{\text {y }}$ eRè [ndile?e] | he/she licks it |
| kwily ${ }^{\text {y }}$ Oo [ $\mathrm{k}^{\mathrm{w}} \mathrm{i} \mathrm{l}$ O O ] | his/her spouse |

Examples below show /l/ in consonant clusters after the glottal fricative /h/:

|  | he/she knows it |
| :---: | :---: |
| $j^{\text {y }}$ akà? [hlıaka?] | he/she will jump |
| $j^{\text {y }}$ akwa [hlak ${ }^{\text {wa }}$ ] | even, flat |
| jly ${ }_{\text {y }}^{\text {iwē }}$ ēe [hlißeRe] | its wing |
|  | fourteen |

The only examples of / $/$ / in consonant clusters after the laminal fricative $/ \mathrm{S} /$
are found in the verb forms of 'to boil' where $x$ corresponds to the causative morpheme -ix as in:
$\mathrm{xl}^{\mathrm{y}}$ ākwí [ऽlakwi] he/she will boil it

### 2.3.4 Palatal consonants

Minimal and near-minimal pairs for palatal phonemes are presented below:

| /j/ | vs. | /t 5 | ya? [ja?] | occurence | chǎ? [t]ap] | word |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| /j/ | vs. | / $/$ | yāá [ja:] | cactus | xāá [ ${ }_{\text {a }}$ :] | luminosity |
| /j/ | vs. | /1/ | yaā? [ja:2] | his/her hand | $1^{\text {y }}$ āā? [la:2] | bitter |
| /j/ | vs. | /n/ | yā?àn [jã?ã] | I am going | $\mathrm{n}^{\text {y }}$ aàn` [ñã2ã] | how |
| /j/ | vs. | /w/ | yā?ā [ja?a] | green | waRä [ba?a] | tamarind |

### 2.3.4.1 /j/

The palatal glide can occur as a single consonant word-initially as well as post-vocalically. It is written $y$ in the practical orthography. One distributional restriction: / j / does not occur before /i/ (refer to §2.3.5 where the labio-velar approximant /w/ has a similar distributional restriction with regard to $/ \mathrm{o} /$ and $/ \mathrm{u} /$ ). Similarly to other non-lateral sonorants in the inventory, $/ \mathrm{j} /$ may also occur in consonant clusters after the glottal consonants $/ \mathrm{h} /$ and $/ \mathrm{h} /$. Furthermore, $/ \mathrm{j} /$ can also occur in clusters after /w/, /b/, /l/, $/ \mathrm{t} /$ and $/ \mathrm{s} / . / \mathrm{j} /$ may undergo a regressive nasalization process before nasal vowels, in which case it surfaces as /n/ (§2.2.4.2).

Examples below show $/ \mathrm{j}$ / as a single consonant word-initially as well as
post-vocalically:

| yāá [ja:] | nopal |
| :---: | :---: |
| yeè [je:] | orange (color) |
| yoo [jo:] | soil |
| tīyē? [tije?] | sour |
| kwàyö" [k ${ }^{\text {w }}$ ajo] | horse |
| yaka [yaka] | tree |
| yùsín [jusĩ] | turtle |
| papàyă" [papaja] | papaya |
| xkalìyơ" [ [kkalijo] | mezcal |
| rrumèyō" [rume:jo] | remedy |
| nkayojo? [ngajoho?] | he/she poked it |
| nkayulǎ [ygayula] | he/she danced |

Examples below present /j/ in consonant clusters after the glottal consonants $/ \mathrm{h} /$ and $/ \mathrm{R} /$ :

| Chijya? [t f ihja?] | Mexico |
| :---: | :---: |
| lijya [lihja] | sugar cane |
| tijyō' [tihjo] | comet |
|  | he/she is embarrassed |
| ka?yo [ka?jo] | five |
|  | moutain |
| sī?yó [si2jo] | seed |
| nku2ya [yguija] | cohune |
| kusī? yā [kusi2ja] | large shrimp |

Examples below present $/ \mathrm{j}$ / in consonant clusters after /w/ (only one example), /b/, /t/, /s/ and /l/:

| Wyàa̋ [bja:] | Santos Reyes Nopala, Oaxaca |
| :--- | :--- |
| byèrnē" [bjerne] | friday (from Spa. viernes [bjernes]) |
| nkutyáá tī? ${ }^{\prime}$ [ngutjaa ti?] | he/she liked it |
| tyèmppō" [tjempo] | time |
| karàsyä́ [karasja] | heart |
| stilyă' [stilja] | Castille |
| silyaă" [silja] | police |
| lyōò [ljo:] | in the ground |

Examples below present examples of nasalized $/ \mathrm{j}$ / due to regressive nasal spreading from final nasal vowels (see §2.2.4.2 for a more detailed description of phenomenon):

| yaā? [ja:?] | his/her hand |
| :--- | :--- |
| n$^{\text {y âa̋n? [nã:?] }}$ | my hand |
| ki.ya? [ki.ja?] | his/her feet |
| ki.ny an? [ki.ñã?] | my feet |

### 2.3.5 Velar consonants

There are three velar consonants in the language: the widespread velar plosive $/ \mathrm{k} /$, the labio-velar plosive $/ \mathrm{k}^{\mathrm{w}} /$, and the labio-velar approximant /w/.

Minimal and near-minimal pairs for velar phonemes are presented below:

| $/ \mathbf{k} /$ | vs. | $/ \mathbf{k}^{\mathrm{w}} /$ | kiī [kii] | grass | $\mathrm{kwií}\left[\mathrm{k}^{\mathrm{w} i i}\right]$ | ring |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $/ \mathbf{w} /$ | vs. | $/ \mathbf{k}^{\mathrm{w}} /$ | wanā $[$ bana $]$ | secretly | $\mathrm{kwanā}\left[\mathrm{k}^{\mathrm{w}}\right.$ ana $]$ | thief |

### 2.3.5.1 /k/

$/ \mathrm{k} /$ is the most widespread phoneme in the language. It can occur as a single consonant word-initially as well as post-vocalically. Like other non-continuants in the language, $/ \mathrm{k} /$ has two phonetic realizations: [k] and [g]. When it occurs in word-initial clusters preceded by $/ \mathrm{n} /$, it undergoes a voicing assimilation process (see figure 2.9 on page 80). It can also occur in consonant clusters preceded by $/ \mathrm{s} /$ or $/ \mathrm{S} /$ as well as followed by $/ \mathrm{j} /$.

Examples below show $/ \mathrm{k} /$ as a single consonant word-initially and postvocalically:

| kaa [ka:] | nine |
| :---: | :---: |
| kee [ke:] | rock |
| kiî [ki:] | grass |
| kōō [ko:] | fog |
| ntyikaa [ndika:] | all |
| $j^{\text {n }}$ ākē [hnake] | his/her head |
| nkyakīn' [ g j akî] | it got burned |
| kati [kati] | seven |
| kōkō [koko] | dove |
| kicha [kitfa] | disease |
| kiko [kiko] | comb |
| kula [kula] | old |
| kokò?ő [koko ${ }^{\text {co] }}$ | he/she will paint it |
| ntikaPan [ndikãPã] | it sits |
| ntsukùwí? [ndzukuwi?] | charcoal |
| tīkílà [tikila] | hard |

Examples below show $/ \mathrm{k} /$ in consonant clusters preceded by $/ \mathrm{n} /$ where it undergoes a voicing assimilation process and surfaces as [g] (see figure 2.9 on page 80):

```
nkyāān [\etagjã:] he/she is arriving
nkùn" [\etagũ] turtoise
nkìlyă" [\etagila] unit of measure (around 4kg
nkotso [ggotso] it bursted
nkūlá [ngula] he/she was born
nkūwēn [!gũw\tilde{\varepsilon}] ripe
nkasūkwá? [\etagasukw}\mp@subsup{}{}{W}\textrm{a}\mathrm{ ] he/she shelled it
```

Examples below show $/ \mathrm{k} /$ in word-initial consonant clusters preceded by $/ \mathrm{s} /$ and $/ \mathrm{S} /$ as well as followed by $/ \mathrm{j} /$ :

| ska [ska] | one |
| :---: | :---: |
| skichǎ? [skit]ap] | his/her language |
| skoko? [skokJ?] | his/her elbow |
| skuwe [skuwe] | egg |
| xkalìyő' [¢kalijo] | mezcal (from Spa. mezcal) |
| xkà [ $[\mathrm{ka}$ ] | another |
| kyoo [kjo:] | rain |
| kyo?o [kjo ${ }^{\text {a }}$ ] | lime |
| kyūkwén [kjuk ${ }^{\text {w }}$ ] | bug |
| kyula [kjula] | male |
| nkyase? [ygjase?] | it got deflated |
| ntikyākwén [ndikjak ${ }^{\text {w }}$ ] | he/she is raising it |

### 2.3.5.2 $/ \mathrm{k}^{\mathrm{w}} /$

The labio-velar plosive $/ \mathrm{k}^{\mathrm{w}}$ / is written $k w$ in the practical orthography. It may occur as a single consonant word-initially as well as postvocalically. Like other non-continuants $/ \mathrm{k}^{\mathrm{w}}$ / has two phonetic realizations: $\left[k^{w}\right]$ and $\left[g^{w}\right]$. When it occurs in word-initial clusters preceded by $/ \mathrm{n} /$, it undergoes a voicing assimilation process (see figure 2.9 on page 80) and surfaces as $\left[\mathrm{g}^{\mathrm{w}}\right]$. Similarly to the labio-velar approximant $/ \mathrm{w} /, / \mathrm{k}^{\mathrm{w}} /$ does
not occur before the rounded vowel /o/ nor /u/. It may also occur in consonant clusters preceded by $/ \mathrm{s} /$ or $/ \mathrm{S} /$. This fact is the basis on which $/ \mathrm{k}^{\mathrm{w}} /$ is analyzed as a single phoneme instead of a cluster of $/ \mathrm{k} /+/ \mathrm{w} /$. This analysis allows for a simple syllable structure in native words where only two-consonants clusters occur.

Examples below show $/ \mathrm{k}^{\mathrm{w}}$ / as a single consonant word-initially and postvocalically:

| kwā [ ${ }^{\text {w }} \mathrm{a}$ ] | already |
| :---: | :---: |
| kwee? [ $\mathrm{k}^{\mathrm{w}} \mathrm{e}$ : P ] | crab |
| kwîí [ $\mathrm{k}^{\mathrm{w} i \mathrm{i}}$ ] | star |
| kweēn' [ $\mathrm{k}^{\mathrm{w}} \tilde{\varepsilon}$ :] | bat |
| jakwa [hak ${ }^{\text {a }}$ ] | four |
| tukwa [tuk ${ }^{\text {a }}$ ] | two |
| jlyakwa [hlak ${ }^{\text {Ta }}$ ] | even, flat |
| ntsukwà ${ }^{\text {c }}$ [ $\mathrm{ndzuk}^{\text {w }}$ a?] | corn |
| kyūkwén [ $\mathrm{kjuk}^{\mathrm{w}} \tilde{\varepsilon}$ ] | bug |
|  | it will get boiled |
| lukwi [luk ${ }^{\text {w }}$ ] | tepache |
| kwana [ $\mathrm{k}^{\mathrm{w}}$ ana] | mirror |
| kwīkā [ $\mathrm{k}^{\mathrm{w}} \mathrm{ika}$ ] | left |
| tijl ${ }^{\text {²a }}$ a wa̋ [tijlak ${ }^{\text {w }}$ ] | fourteen |
| ntikyākwén [ndikjak ${ }^{\text {w }}$ ] $]$ | he/she is raising it |
| kwixātō [ $\mathrm{k}^{\mathrm{w}} \mathrm{i}$ ¢ato] | viper |
|  | my spouse |
| lakwichî [lak ${ }^{\text {w }}$ it ${ }^{\text {di] }}$ | rabbit |
| kutsìkwîn [kutsik ${ }^{\text {wi }}$ ] | he/she will shake it |

Examples below show $/ \mathrm{k}^{\mathrm{w}}$ / in word-initial consonant clusters preceded by $/ \mathrm{n} /$ where $/ \mathrm{k}^{\mathrm{w}}$ / undergoes a voicing assimilation process and surfaces as [ $\left.\mathrm{g}^{\mathrm{w}}\right]$ :

```
nkweje [\etag\mp@subsup{g}{}{W}ehe] epazote
nkwíxì [ng*iji] tomato
nkwīxú{wà [ng*ifu?wa] he/she turned it in
nkwíxtìkwíl[gg\mp@subsup{}{}{W}\textrm{iftik}\mp@subsup{}{}{\textrm{w}}\textrm{i}] he/she hung it
nkwichàPân [ngwit\intã?ã] he/she changed clothes
nkwityölò [ng*ito?o] he/she resembled
nkwixlyàkwí [ng*iflakwi] he/she boiled it
```

Examples below show $/ \mathrm{k}^{\mathrm{w}}$ / in word-initial consonant clusters preceded by /s/ or / $\mathrm{S} /$ :

```
skwalà? [skwala?] its hoof
xkwì? [\intk wi}\textrm{w}] onl
xkwēé [\intk }\mp@subsup{}{}{\textrm{w}}\textrm{e}:] man (vocative
xkwìlä" [\intk wila] school
```


### 2.3.5.3 /w/

The labio-velar approximant/w/ is widespread. It is written $w$ in the practical orthography. /w/ is the most difficult segment to describe in the language because the environments for its allophones are very restricted. This is not a peculiarity of ZAC as Campbell (2014) presents similar issues and similar solutions to account for the complex distribution of $/ \mathrm{w} /$ for Zenzontepec Chatino.
/w/ has four phonetic realizations: [ $\beta$ ], [b], [M] and [w]. /w/ may occur as a single consonant word-initially as well as post-vocalically. As a glide, and similarly to the other glide $/ \mathrm{j} /$, it occurs following the glottal consonants $/ \mathrm{R} /$ and $/ \mathrm{h} / . / \mathrm{w} /$ may even be followed by the palatal glide $/ \mathrm{j} /$ in a rare native example: /Wyàä/ [bja:] Santos Reyes Nopala, Oaxaca.

Furthermore, like the other labio-velar consonant $/ \mathrm{k}^{\mathrm{w}}$ / (see §2.3.5.2 for the description of phoneme $/ \mathrm{k}^{\mathrm{w}} /$ ), $/ \mathrm{w} /$ may be followed by all vowels except /o, $u, \tilde{u} /$ due to a restriction on rounded/labial segments within the same syllable. However, one exception to this rule was encountered in the corpus lawo?ō' [laßo? ] 'coyote'.

```
/w/ -> [\beta] / V _-- V
    jìwíl[hißi] whistle
    jlyiwēRē [j]lißeRe] its wing
    lawo?ō [laßว?๖] coyote
```

The rule stated above needs to be restricted a bit more for the /uw/ cases. When /w/ is preceded by the vowel / $\mathrm{u} /$, it surfaces as [w]. Note that even if the $/ \mathrm{u}$ / and the $/ \mathrm{w} /$ are separated by the glottal fricative $/ \mathrm{h} /$, the rule still applies:

| nkayūjwī [nkajuhmi] | he/she killed it |
| :--- | :--- |
| yùwā" [juwa] | mare |
| ntsuwaà? [ndzuwa:1] | hierba santa (piper auritum) |
| lūwē [luwe] | little |
| kūwē? [kuwe?] | pig |
| kùwí? [kuwi?] | baby |
| luwin $^{\text {y }}$ i [luwini] | straight |

One counter example (presented below) was encountered in the corpus, and this could be considered evidence for a phonemic distinction between $/ \mathrm{v} /([\beta])$ and $/ \mathrm{w} /$ but because this is the only one, I decided not to create a new phoneme $/ \mathrm{v} /$ to account for it. So despite the fact that it seems that ZAC should have a phoneme $/ \mathrm{v} /$, neither the phonemic analysis nor the
practical orthography includes it.
In the first example presented below, the vowel $/ \mathrm{u} /$ is not root internal and $/ \mathrm{w} /$ surfaces as $[\beta]$ whereas in the second one $/ \mathrm{u}$ / is part of the root and surfaces as [w]. The two following verb forms show a nice minimal pair for this contrast:
nka-s-u-wií [ŋkasußii] he/she sorted it Versus
nka-s-uwǐ2 [ 1 kasuwi?] he/she turned it off

```
/w/ -> [\beta] / # _-- /i/
    wit i'i
    wīxī?[\betaifi2] blue
    wikee? [\betaike:?] ice
```

```
/w/ -> [b] / # _-- /a/, /C/
    waPā [baPa] tamarind
    wa nteē [ba ndee] 1PLEXCL
    Wyàá [bja:] Santos Reyes Nopala, Oaxaca
    wrä" [bra] hour (from Spa. hora)
/w/ -> [M] / /h/ ---
    jwèbë" [hмеße] thursday (from Spa. jueves [hmeßes])
    jwabǒ" [hмаßо] favor (from Spa. favor [faßor]))
    kajwè" [kаhме] coffee (from Spa. café [kafe]))
```

$/ \mathrm{w} / \rightarrow[\mathrm{w}] /$ elsewhere
yaka wēn [jaka wẽ] gumbo-limbo tree (bursera simaruba)
ja?wắ [ha?wa] banana
sku?wě [sku?we] Juquila, Oaxaca
tra?wē [tra?we] center

### 2.3.6 Glottal consonants

ZAC's consonantal inventory includes two glottal consonants: the glottal stop / $\mathrm{i} /$ and the glottal fricative $/ \mathrm{h} /$. The phonological status of the glottal stop and the characteristics of laryngeal consonants in general are discussed in detail in §2.3.7. This section presents examples of the distribution of laryngeals.

Minimal and near-minimal pairs for glottal phonemes are presented below:

| /3/ | vs. | /h/ | kyo?o [kjo ${ }^{\text {a }}$ ] | lime | kyōjō [kjoho] | squash |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| /3/ | vs. | /k/ | lō?ō [lכ? $]$ | with you $(s g)$ | lòkō' [loko] | crazy |
| /?/ | vs. | /t/ | yaPa [jaPa] | unripe | yata [jata] | he/she bathed |
| /3/ | vs. | $\emptyset$ | ko?ô [kJ?〕] | he/she will | koô [ko:] | he/she will |
| /h/ | vs. | $\emptyset$ | kyōjō [kjoho] | drink it squash | kyoo [kjo:] | grind it rain |

### 2.3.6.1 / $/$

/ $/$ / is widespread in the language but its distribution is highly restricted: it (almost) never occurs word-initially, and only one $/ \mathrm{R} /$ stop is allowed per word. It is the only consonant that can close a syllable wordfinally (this constraint is accounted for by the autosegmental analysis presented in figure 2.3 on page 51). / $\mathrm{Z} /$ is written $?$ in the practical orthography.

In this work, / $\mathrm{R} / \mathrm{is}$ analyzed as a consonant as opposed to a feature of the vowel nucleus. Evidence for this analysis is discussed in detail in
§2.3.7.
The only word presenting a word-initial /R/ is the dative morpheme Pin along with a form that is derived from it that marks the 1 s dative $? n^{y}$ än.

Furthermore, When / $1 /$ is intervocalic within the same root, restrictions apply to the vowels surrounding / / / (see §2.2.4.1 for a detailed account of this phenomenon).

When / 1 / is intervocalic, it is analyzed as part of the onset of the following syllable because in the phonotactics of the language, / $/$ / can only close a syllable in word-final position (see figure 2.3 on page 51).

Furthermore, /glottal + non-lateral sonorant/ clusters are the only type of clusters involving glottal consonants allowed in the language. In the examples below, a period is used in the phonetic transcriptions in order to show the syllabification patterns.

Examples below show / $/$ / in word-final position and word-initial position, as well as inter-vocalically as a single consonant as well as in /glottal + non-lateral sonorant/ clusters:
ne2 [n $\tilde{2}$ ] people

Pin [?ĩ] DAT
nī? [ñ̃?] his/her bowels
xò? [ऽכ?] recent mother
xǔ? [Ju?] old person
chǎ? [t]a?] word
laPa [la.1a] side
che?ē [t]e.Re] rooster
tiPì̀ [ti.2ì] poor
lūPún [lũ.2ũ] with me

| Pn ${ }^{\text {y }}$ án [ 2 n ã] | DAT.1s |
| :---: | :---: |
| na?ni [na.?nĩ] | animal |
| $\mathrm{t}^{\mathrm{y}} \mathrm{a}$ ? ${ }^{\text {anan [ta.?nã] }}$ | poor |
|  | bottle |
| kiPnā [ki.?na] | plate |
| kusiPn ${ }^{\text {y }}$ un [ku.si.2ñũ] | he/she will cut it |
| liPya [li.2ja] | his/her tooth |

Examples of the Translaryngeal Vowel Harmony involving a /?/ (§2.2.4.1):

| laPa [la.Ra] | side |
| :--- | :--- |
| che? $\left.\bar{e}^{\prime}[\mathrm{t}] \mathrm{e} .2 \mathrm{e}\right]$ | rooster |
| tiPì [ti.Pi] | poor |
| lū?ún [lũ.2ũ] | with me |

### 2.3.6.2 /h/

The glottal fricative $/ \mathrm{h}$ / is also widespread in the language, and its distribution is slightly less restricted than $/ \mathrm{R} /$. It is written $j$ in the practical orthography ${ }^{15}$. Unlike $/ \mathrm{h} /$, /h/ may occur occur word-initially, but similarly to $/ \mathrm{h} /$, only one $/ \mathrm{h}$ / may occur in a phonological word. It may also occur in consonant clusters preceding sonorants. /h/ never occurs as $\mathrm{C}_{2}$ in consonant clusters.

When $/ \mathrm{h}$ / is intervocalic within the same root, the same restriction applies to the vowels surrounding $/ \mathrm{h} /$ as for the glottal stop (see §2.2.4.1 for a detailed account of this phenomenon).

[^24]Examples below show /h/ in word-initial position as well as post-vocalically as a single consonant:

| jāā? [ha:?] | mat |
| :---: | :---: |
| jūún [hũ:] | thread |
| jīī [hi:] | ash |
| laja [laha] | single |
| teje? [tehe?] | salt |
| tiji [tihi] | new |
| tōjó [toho] | squash plant |
| jàxő' [haso] | garlic |
| jīkē [hike] | his/her head |
| jo $\bar{o}^{\prime}$ [ho? $]$ | saint |
| julāā [hulaa] | civil servant |
| nka-jī?ín [ŋgahĩ?ĩ] | he/she hit it |
| nko-jō?ó [ ykoh ¢ว〕] | he/she was ashamed |

Examples of the Translaryngeal Vowel Harmony involving a/h/ (§2.2.4.1).
Note that because this is a constraint which is restricted to the root, when the vowels across /h/ are in different morphemes, the constraint does not apply as demonstrated in the example for he/she hit it:

| laja [laha] | single |
| :---: | :---: |
| teje? [tehe?] | salt |
| tiji [tihi] | new |
| jorō' [hว?o] | saint |
| tōjó [toho] | squash plant |
| nka-jī?ín [ŋgahĩ?ĩ] | he/she hit it |

Examples below show /h/ in /glottal + sonorant/ clusters. Note that unlike $/ \mathrm{R} /$, /h/ occurs in /glottal + lateral/ clusters in which case the lateral gets devoiced and surfaces as [1] or [l] $]$ (a devoiced [1]) (see §2.3.2.6
and §2.3.3.5). Furthermore, when $/ \mathrm{h} /$ occurs before $/ \mathrm{w} /$, the latter also gets devoiced and surfaces as [ $M$ ] (see §2.3.5.3):

|  | he/she knows it |
| :---: | :---: |
| $\mathrm{jn}^{\mathrm{y}}$ eè" [hjne:] | snail |
| chijya? [tJihja] | Mexico |
|  | he/she will get embarassed |
| jn ${ }^{\text {y }}$ ąán [hnã2ã] | his/her mother |
| $j^{\text {n }}$ ªkē [hnake] | his/her head |
| tījn ${ }^{\text {y }}$ an [tîhñã] | his/her bone |
| $\mathrm{jn}^{\mathrm{y}}$ eRen [hñẽ $\left.\int \tilde{\varepsilon}\right]$ | its tail |
| tijl ${ }^{\text {y }}$ àkwa̋ $\left[\mathrm{tihl}_{8}{ }^{\text {a }} \mathrm{a}\right.$ ] | fourteen |
| j1 ${ }^{\text {y }}$ iwē?ē [jlißeRe] | its wing |
| nkayūjwī [ngajuhmi] | he/she killed it |

### 2.3.7 The phonological status of laryngeals

In the descriptions of various Otomanguean languages, laryngeals have been analyzed with different statuses in their respective languages. They have been analyzed as segments in Trique (intervocalically) (DiCanio, 2008), as features of vowels in certain Zapotec varieties (Coatlán-Loxicha Zapotec, Beam de Azcona (2004)) as features of tones (in final position, Trique, DiCanio (2008)), as features of a morpheme for a Mixtec variety (Macaulay and Salmons (1995)), or finally as features of a prosodic unit (syllable, foot) for some other Mixtec variety (Macken and Salmons (1997)).

In ZAC, the glottal stop is analyzed as a true consonant in the glottalfinal syllables (/CV2/). It is also analyzed as such when found intervocalically (/V?V/) as opposed to being considered a type of vowel nucleus. This
analysis is supported by several kinds of evidence.
The best evidence for the segmental analysis is found in the prosody of the language.

In ZAC, certain tone Classes do not occur on long stems (/CVV/). For example, the tone Class 6 (/L-M/) only occurs on short stems (/CV.CV/) as shown with the verb form nkalè2e /L-M/ 'you licked it' (CV.?V). The mere fact that this /CV. PV / stem occurs with tone Class 6 is a proof that at the prosodic level, the glottal stop is treated as a segment, and not as a characteristic of the vowel.

Furthermore, tone Class 8 (/LH/) includes short stems (/CV.CV/) only, and no long stems (/CVV/). It marks the final syllable of short stemswhich is always monomoraic-with a rising tone (/LH/), as in lutǐ 'rope'. But tone Class 8 includes many words of the shape /CV.?V/, such as nkala?ă 'he/she blew in it'. The inclusion of such stem types in tone class 8 , and the fact that the rising tone lands after the glottal stop show that /CV.3V/ is being treated as two monomoraic syllables and not as one dimoraic syllable proving that $/ \mathrm{R} /$ is being treated as a consonant.

Some other facts of the phonotatics also favor the segmental analysis of the $/$ / $/$.

If /VRV/ represented a single vowel nucleus, then ZAC should have CV.CV.CVPV words. The absence of such a pattern suggests that /VPV/ sequences are parsed into distinct syllables. DiCanio (2008) uses this ar-
gument to support his analysis of /V?V/ as separate syllables for Itunyoso Trique.

Comparing the laryngeals in the language, $/ \mathrm{h} /$ and $/ \mathrm{h} /$ are somewhat different-they also have some unique commonalities.
/R/ does not occur word initially except in one case: Pin 'DAT'. However, this word comes from the historically dissyllabic word jiPin 'DAT' still encountered in Zenzontepec Chatino (Campbell, 2014). While /h/ occurs in onsets of both final and non-final syllables, /R/ occurs in onsets of final syllables only. /R/ is the only consonant allowed word finally.

Another distribution issue regarding laryngeals in ZAC is the fact that they are the only consonants allowed as onsets of clusters where $\mathrm{C}_{2}$ is a sonorant. This is not entirely surprising as we have seen that laryngeals are indeed attracted by other high sonority segments such as vowels. Considering $/ 2+C /$ a sequence of two segments, is unproblematic because there already exists a large series of complex onsets in ZAC. In Table 3.1 on page 133, all the consonant clusters allowed in the language are presented, and one can note that, again, the glottal stop and the glottal fricative do not occur necessarily with the same consonant: / $1 /$ does not occur with /l/ nor /1/.

The characteristics of the glottal stop and the glottal fricative are very similar. They are contrastive in the consonant inventory, they both obey the Translaryngeal Vowel Harmony (§2.2.4.1), but only /h/ is transparent to

Nasal Spreading (§2.2.4.2). They both form similar types of clusters (except that $/ \mathrm{R} /$ does not occur with lateral sonorants). Vowel harmony rules across laryngeals are well attested in a number of Otomanguean languages (Zenzontepec Chatino (Campbell, 2014); Mixtec (Macaulay \& Salmons, 1995). As stated in Macaulay and Salmons (1995), this phenomenon is based on the fact that "the glottal stop does not have any supralaryngeal specifications at all, so it can easily be transparent to other features in adjacent segments". In ZAC, the distribution and characteristics of laryngeals are presented in table 2.5 and table 2.6 respectively:

| Onset <br> of <br> words | Onset <br> of non-final <br> syll. | Onset <br> of final <br> syll. | clusters <br> with <br> sonorants | Word <br> final <br> coda | Only <br> one <br> per word |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| /R/ | 1 ex | X | $\checkmark$ | (non-lateral <br> sonorants <br> only) | $\checkmark$ | $\checkmark$ |
| /h/ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | X | $\checkmark$ |

Table 2.5: The distribution of laryngeals


Table 2.6: The characteristics of laryngeals

This chapter has presented the segmental phonemic inventory of ZAC describing each phoneme's distribution as well as its allophonic variations. It contains historical information about the historical development of some phonemes when available, which for the most part came from the description of the conservative Zenzontepec Chatino (Campbell, 2014). Two of the three autosegmental features (nasalization and vowel length; except tone, which is discussed in Chapter 4) have also been fully described here in order to demonstrate the contrastiveness of long and nasal vowels as well as to discuss the restrictions on their distribution. Now that the segmental phonemic system has been established, we can turn to the basic phonotactics of the language.

## Chapter 3

## Phonotactics

The previous chapter dealt with the non-tonal phonemic inventory showing that the segmental contrastive system consists of vowels and consonants, and that the autosegmental inventory includes vowel nasality and vowel length. This chapter describes the distributions of those contrastive elements within the syllable first and then within the word. Although many of the distributional patterns were discussed in the previous chapter in order to show their contrastiveness, this chapter aims at providing a more unified analysis by combining the information already discussed together with a few more facts about the constraints applying to the contrastive system.

This chapter is organized as follows: §3.1 discusses the syllable structure describing syllable onsets (§3.1.1) including simple onsets (§3.1.1.1) and consonant clusters (§3.1.1.2). §3.1.2 presents the types of syllable nuclei, and gives examples of all possible simplex word shapes present in the language. Finally, §3.2 describes the phonemes distribution within the simplex word.

Since the autosegmental analysis presented and discussed in detail in chapter $1 \S 1.6$ is quintessentially phonotactic, it is crucial to reiterate
some of the important concepts it aims to convey. Indeed, it accounts for many of the existing phonotactic constraints in the language. It explains the distribution of vowel nasality (§2.2.2) and vowel length (§2.2.3), as well as the distribution of the glottal stop.

Figure 3.1 shows that the $\omega$-hosted extra mora (in the case of long vowels), and the [ + nasal] autosegment both link (dotted line) to the last syllable which is the locus of realization for these two features. Both the [ + nasal] autosegment and the extra mora are hosted (solid line) by the $\omega$ showing that it is their domain of realization. Long vowels and nasal vowels only occur underlyingly in word-final position.

Furthermore, the (optional) word-final glottal stop is hosted by the final syllable (only one $?$ allowed per simplex word)


Figure 3.1: Autosegmental representation of prosodic features: nkasiín? 'he/she squeezed it'

### 3.1 Syllable structure

### 3.1.1 Syllable onsets

ZAC's native lexicon prefers syllables with onsets, and / $/$ / is the only consonant allowed to close a syllable (word-finally only) as shown in figure 3.1. Spanish borrowings on the other hand, allow syllable final consonants word-medially but do not allow word final consonants. As a result, the Spanish word sandía [san.di.ja] 'watermelon' gets borrowed as sandìyā " [san.di.ja] in ZAC where $/ \mathrm{n} /$ is part of the first syllable. Furthermore, onsetless syllables are also generally confined to Spanish borrowings, and there is considerable variation among speakers (and even within an individual's speech) for the pronunciation of those words. For example, the Spanish word alma [alma] 'soul' may be borrowed in ZAC as: lyìmä' [lima] or $3 a l^{y}$ lìmā" [?alima] or even (more rarely) alyìmā" [alima]. The only native onsetless syllable is encountered in the polar question particle á which always occurs sentence finally, and as a result never really starts a syllable.

### 3.1.1.1 Simple onsets

All consonants may occur as a simple onset word-initially as well as word-medially. The column on the left shows each consonant in the inventory as a word-initial onset and the right column shows it as a wordmedial onset. A period is used in the phonetic transcription to show the syllable boundary:

| pixoơ' [pi. Co ] | peso | lǎpi [la.pi] | pencil |
| :---: | :---: | :---: | :---: |
| bùrrū" [bu.rou] | donkey | jwabŏ" [hma.ßo] | favor |
| melònī" [me.lo.nĩ] | melon | rrumèyō" [ro.me:.jo] | remedy |
| teje? [te.he?] | salt | late? [la.te?] | fabric |
| dimìngő' [di.min.go] | sunday | sandìyä" [san.di.ja] | watermelon |
| natèn" [na.t $\tilde{\varepsilon}$ ] | people | kina [ki.na] | sandal |
| wa reē [ba re:] | 1 PLEX | karàsyä" [ka.ra.sja] | heart |
| rrumeyo [riu.me:.jo] | remedy | bùrrū̃' [buru] | donkey |
| loo [lo:] | its surface | talōó [ta.lo:] | his/her face |
| $\mathbf{n}^{\text {y }}$ ajan [nã.hã] | year | tin ${ }^{\text {y }}$ an [ti.ñã] | work |
| $\mathbf{t}^{\text {y }}$ a ${ }^{\text {an }}$ [tã. $2 \tilde{\mathrm{a}}$ ] | he/she will walk around | līt ${ }^{\text {y }}$ á [li.ta] | amaranth |
| $1{ }^{\text {yāā? [la:?] }}$ | bitter | ntil ${ }^{\text {y }}$ a?à [ndi.la.2a] | it got split |
| tsaan [tsã:] | day | titsāPán [ti.tsã.1ã] | saucepan |
| saně [sa.nẽ] | guitar | mìsä' [mi.sa] | table |
| chǎ? [t]a?] | word | kūchā [ku.ța] | sun |
| xa?àn` [¢ã.2ã] | bad | nkwíxì [nk ${ }^{\text {i }}$. j ] | tomato |
| yāá [ya:] | nopal | yaka [ya.ka] | tree |
| kōō [ko:] | fog | kiko [ki.ko] | comb |
| gùsyă' [gu.sja] | justice | dimìngő' [di.min.go] | sunday |
| kwixātō [k ${ }^{\text {wi. }}$. a .to] | viper |  | it will get boiled |
| Pin [^ĩ] | DAT | joPō [ho. 3 J ] | saint |
| ja?wă [ha.?wa] | banana | laja [la.ha] | single |

### 3.1.1.2 Complex onsets

ZAC does not allow syllable final consonants in native words (except word-final /R/), so all consonant clusters occur as syllable onsets.

In native words, three major types of clusters which always syllabify as complex onsets occur: /GS/ (Glottal consonant followed by a Sonorant), /N n-C/ (Nasal consonant followed by a non-Continuant) and /kj/. A fourth type, more marginal and not found too often is a Sibilant followed by any non-Sibilant non-Nasal consonant. Then, some isolated examples of clusters like /tj/, /wj/ and /tr/ have been encountered in the lexicon.

Below are presented examples of each type of cluster in final as well
as non-final syllables when allowed. The column on the left shows clusters in final syllables and the column on the right presents them in non-final syllables.

Glottal consonant + Sonorant: /h, $\mathrm{i}+\mathrm{l}, \mathrm{l}, \mathrm{n}, \mathrm{n}, \mathrm{j}, \mathrm{w} /$
As the distribution of $/ \mathrm{h} /$ is more restricted than $/ \mathrm{h} /$ (§2.3.7), and since clusters only occur as onsets, when this type of cluster includes a glottal stop as its first consonant, it is only found word-medially (the only exception is $2 n^{y}$ ân 'DAT.1s'). Furthermore, not all combinations of a glottal consonant with a sonorant occur. Indeed, the following clusters never occur: / $\mathrm{im} /$, /hm/, /Rs/, /hr/, /hn/, /Rl/, / $\mathrm{ll} /$.

The dashes --- mean that a particular cluster is not found in a specific position within word:

| nkatājlá? [nga.ta.hla?] | he/she weaved | --- |  |
| :---: | :---: | :---: | :---: |
| $\mathbf{j l}^{\mathbf{y}}$ O$\overline{o ̄ ~ t i ̄ ? ~[h l o: ~ t i p] ~}$ | he/she knows it | $\mathbf{j l}^{\text {y }}$ iwēRē [hli.ße.Re] | its wing |
| tījn ${ }^{\text {y }}$ ān [tî.hnãa] | his/her bone | jnyātén [hña.tž] | he/she came |
| chijya [tfi.hja] | Mexico | jyò ${ }^{\text {ö tī? }}$ [hjo.3o ti2] | he/she will get embarrassed |
| nkūjwī [ngu.hmi] | he/she died | --- |  |
| ? ${ }^{\text {y }}$ án [?ñã] | DAT.1s | --- |  |
| jaPwà [ha.?wa] | banana | --- |  |
| na?ni [na.?ni] | animal | --- |  |
| liPya [li.3ja] | his/her tooth | --- |  |

Nasal stop + non-Continuant: $/ \mathrm{n}+\mathrm{p}, \mathrm{t}, \underline{\mathrm{t}}, \mathrm{t}, \underline{\mathrm{t}}, \mathrm{k}, \mathrm{k}^{\mathrm{w}} /$
This type of cluster only occurs word-initially in native words. As it was discussed earlier (see figure 2.9 on page 80 ), when a word-initial nasal stop is followed by a non-continuant, the latter undergoes a voicing
assimilation process, and the nasal assimilates to the place of articulation of the following consonant (see figure 2.10 on page 81).

```
mpaà" [mba:] godfather ---
ntaa [nda:] bean ntaPan [ndã.2\tilde{a}] corncob
ntsiìn" [ndzĩ:] guava 
nt }\mp@subsup{}{}{\textrm{a}}\mathrm{ á [nda:] he/she turns it in nt }\mp@subsup{}{}{\textrm{y}}\mathbf{ikaa [ndi.ka:] all
---
nkùn" [ngũ] turtoise
nkwä' [ng*a] he/she was
```

```
nchakan [ndza.kã] his/her ear
```

nchakan [ndza.kã] his/her ear
nkatǎ [ngata] black
nkatǎ [ngata] black
nkweje [\etag\mp@subsup{}{}{\textrm{W}}\mathrm{ e.he] epazote}

```
nkweje [\etag\mp@subsup{}{}{\textrm{W}}\mathrm{ e.he] epazote}
```

/kj/:

This type of cluster is widespread in ZAC. It has been analyzed as a single phoneme for Zenzontepec Chatino by Campbell (Campbell, 2014) despite its restricted distribution in order to keep a very straight forward syllable structure in native words. All of ZAC's clusters are two-consonants only, but /kj/ does occur in three consonant clusters with /n/ in word initial position making /nkj/ the only three-consonant cluster allowed in the language's native lexicon. However, when /kj/ occurs word-medially or preceded by a nasal stop, the complex onset $/ \mathrm{nkj} /$ and word-medial $/ \mathrm{kj} /$ are always heteromorphemic as $/ \mathrm{j} /$ corresponds to a derivational prefix (85.3.1.3). /kj/ does not occur followed by /e/ nor /ẽ/. Unlike the single phoneme $/ \mathrm{k}^{\mathrm{w}} /$, the cluster $/ \mathrm{kj} /$ is not found following $/ \mathrm{s} /$ or $/ \mathrm{J} /$.

| kyoō? [kjos?] | century plant |
| :---: | :---: |
| kyula [kju.la] | male |
| kyūkwén [kju.k ${ }^{\mathrm{w}}$ ] $]$ | bug |
| kyoio [kjo.? ${ }^{\text {a }}$ | lime |
| nkyaà [ ygja ] | he/she left |
| nkyaàn [ทgjã:] | he/she came |
| nkyase? [ngja.se?] | it got deflated |
| nkyanè [ŋgja.nz̃] | he/she sprayed it |
| nkya?wè [ngja.?we] | it got split |
| nkyunǎ [ngju.na] | he/she is crying |
| ntī-k-y-āsè? [nti.kja.se?] | it is getting deflated |
| ntī-k-y-ākwén [ndi.kja.k ${ }^{\text {r}}$ ] | it is getting raised |

The following types of clusters are more marginal as they only occur in very rare examples, and some of them result from morphophonological processes.

$$
/ \mathrm{s}, \mathrm{\int}+\mathrm{t}, \mathrm{t}, \mathrm{l}, \mathrm{l}_{\mathrm{n}} \mathrm{k}, \mathbf{k}^{\mathrm{w}} /:
$$

Not all combinations of $/ \mathrm{s}, \int+\mathrm{t}, \mathrm{t}, 1,1 \mathrm{k}, \mathrm{k}^{\mathrm{w}} /$ occur. For example, $/ \mathrm{st} /$, /sl/ or $/ \mathrm{Sl} /$ never occur. Furthermore, the clusters $/ \mathrm{Sl}_{\mathrm{D}} /$ and $/ \mathrm{sk}^{\mathrm{w}} /$ are fairly rare such as in $x l^{y} a \bar{a} k w i ́ ~ ' i t ~ w i l l ~ g e t ~ b o i l e d ' ~ a n d ~ x k w a \bar{a} n^{\prime}$ 'he/she will throw it away'. These two examples result from an ancient palatalization process where the root consonants $/ 1 /$ and $/ \mathrm{s} /$ respectively were historically preceded by a prefix ending with $i$ and palatalized to $/ 1 /$ and $/ \mathrm{S} /$. Others, are morphologically complex and include the causative prefix $x i-$ as in $n k w i-$ $\boldsymbol{x}$ (i)-k-ākō 'he/she fed it' and $\boldsymbol{x}(i)-t^{y} i y \bar{e} \bar{P}^{\prime}$ 'lemon', or the possessive prefix $s$ as in $\boldsymbol{s}$-kwalà?' 'its hoof'.

| lìstūn" [li.stũ] | ribbon | stānù [sta.nũ] | grapefruit |
| :---: | :---: | :---: | :---: |
| --- |  | slākó [sla.ko] | maw |
| --- |  | nkwixtìkwíl [ $\mathrm{ng}^{\mathrm{w}} \mathrm{i}$. $\int$ ti.k ${ }^{\mathrm{w}} \mathrm{i}$ ] | he/she hung it |
| mìxt ${ }^{\text {y unn }}$ [mi. $\int$ tiũ] | cat |  | lemon |
| --- |  |  | it will get boiled |
| mi̋xkùn` ke?ēn' | junebug | nkwixkākō [ $\mathrm{yg}^{\text {wi}}$. $\left.5 k a . k o\right]$ | he/she fed it |
|  | [mi. $\int k u$ ũn kẽ.12̃] |  |  |
| nkūské? tī? [ngu.ske? tip] | he/she had a bad feeling | sku?wě [sku.?we] | Juquila, Oaxaca |
| nkaskwaān' [ ${ }^{\text {nga.sk }}{ }^{\text {w }}$ a :] | he/she threw | skwalà? [sk ${ }^{\text {w }}$ a.la?] | its hoof |
|  | it away |  |  |
| xkwaān' [Jk ${ }^{\text {w }}$ a :] | he/she will throw | ntixkwaān' [ndi.fkwa ${ }^{\text {a }}$ ] | he/she throws |
|  | it away |  | it away |

## /tj/:

$/ \mathrm{tj}$ / is only encountered in three verb roots: arrive here (at base), arrive there (not base) and like it as shown in the examples below. One may wonder if this cluster is not actually the syllable /tij/ where the vowel /i/ is particularly short. If it were the case, the medial consonant $/ \mathrm{j} /$ would sound slightly geminated just as any other consonant in that position.

| nkutyāà [ygu.tja:] | he/she arrived (at base) |
| :--- | :--- |
| nkutyāàn [ygu.tjã:] | he/she arrived (not base) |
| nkutyāà tī? [ngu.tja: tip] | he/she liked it |

$$
/ \mathbf{w}+\mathbf{j} /:
$$

The word presented below is the only example of a /wj/ cluster encountered in the lexicon. Since it is a toponym, it may actually be a borrowing.

Wyàa̋ [bja:] Santos Reyes Nopala, Oaxaca

$$
/ \mathbf{t}+\mathbf{f} /:
$$

Another isolated example of a cluster (/tr/) was encountered in the corpus occurring in a possibly native noun.

```
tra?wë [tra?we] center, middle
```

As ZAC finds itself in a stage of advanced language shift, it has a large inventory of Spanish loans in its lexicon, and for this reason, they should not be omitted from this synchronic phonological description of the language. Nevertheless, Spanish loans obey different phonotactic constraints than native words as they allow up to two consonants to occur syllable final word-medially as found in: instrumēntō" [ins.tru.men.to] instrument, and also present cluster types not found in native words ${ }^{1}$. Following this demarcation, clusters which only occur in Spanish loans are treated separately from clusters in native words.

Often, the phonological processes affecting Spanish words when entering the language give an insight into the phonotactics of ZAC. For example, the fact that escuela 'school' gets borrowed as $x k w i l{ }^{\prime}{ }^{\prime}\left[\int \mathrm{k}^{\mathrm{w}} \mathrm{ila}\right.$ ], or alcalde 'mayor' as rrkálëe [rikale], shows that ZAC present a constraint against vocalic onsets, and also that the most widespread and basic word shape is a disyllabic word. Furthermore, the Spanish word dios gets adapted in ZAC

[^25]as ntyòsǐ" [ndjo.si] 'god' which shows that the language disfavors word-final consonants (other than $/ \mathrm{R} /$ ).

The consonant clusters only present in Spanish borrowings are presented below (/pr/, /np/, /ns/, /br/, /ndj/, /bj/, /sj/, /lj/, /ro

| presidèntē" [pre.si.den.te] | president (from Spa. presidente) |
| :---: | :---: |
| mpà" [mba] | godfather (from Spa. compadre) |
| instrumèntơ' [ins.tru.men.to] | instrument (from Spa. instrumento) |
| lambrë" [lam.bre] | wire (from Spa. alambre) |
| ntyòsî' [ndjo.si] | god |
| byèrnë [bjer.ne] | Friday (from Spa. viernes) |
| karàsyă" [ka.ra.sja] | heart (from Spa. corazón) |
| syèntū" [sjen.tu] | hundred (from Spa. cien) |
| sìlyă [si.lja] | police (from Spa. policía) |
| rrkàle" [rıa.le] | mayor (from Spa. alcalde) |
| rrsòn" [risũ] | message (from Spa. razón) |

Table 3.1 below summarizes the two-consonant sequences allowed in the language ${ }^{2}$.

The clusters in between () only occur in Spanish borrowings:

[^26]

### 3.1.2 Syllable nuclei

The only allowed syllable nucleus in ZAC is the vowel. The latter is accounted for in the autosegmental representation in figure 3.1 where moras only host vowel segments and not consonants. A nucleus may be monomoraic or dimoraic (in the case of long vowels). There are no syllabic consonants in the language. Even the nasal stop $/ \mathrm{n} /$ preceding noncontinuants in word-initial position is not considered syllabic. The evidence of the non-syllabicity of those nasal stops is encountered in the prosody of the language, and more precisely in the the tonal system. As the system is mora-linked, if it were the case that those word-initial nasals were syllabic, tones would link to the syllabic nasal but this does not occur.

Any vowel type (long, short, nasal, oral) occurs as a syllable nucleus. Note that the glottal stop is not analyzed as part of the syllable nucleus but rather as a coda consonant (§2.3.7). This is accounted for in the autosegmental representation in figure 3.1 by the fact that $/ \mathrm{R} /$ is hosted by the syllable just as any other consonant in the language, but also that $/ 2$ / is hosted by the final syllable only. Furthermore, phonemic nasal vowels only occur in the final syllable of a word. The latter is accounted for in figure 3.1 by the fact that the [+ nasal] feature links (dotted line) to the final syllable and is hosted by the $\omega$ (solid line). Nasalization occur in non-final syllables through Nasal Spreading (§2.2.4.2) or Translaryngeal Vowel Harmony (§2.2.4.1).

Below, examples of different types of syllable nuclei are presented:

## Monomoraic non-nasal:

| $\mathrm{t}^{\mathrm{y}}$ a [ta] | corncob | yaka [ja.ka] | ee |
| :---: | :---: | :---: | :---: |
| ne? [n $\tilde{2}$ ] | person | teje? [te.he?] | salt |
| $1^{\text {y/î? }}$ [lii2] | parrot | sit ${ }^{\text {y }} \mathbf{i}$ ? [si.tip] | milk |
| lo [lo] | type | kōkō [ko.ko] | dove |
| xǔ [ [ $u$ ?] | oldster | kula [ku.la] | old |

## Monomoraic nasal:

| kān? [kãP] | DEM | naPan [nã.2ã] | house |
| :---: | :---: | :---: | :---: |
| mên? [mẽ?] | puppy | tē\}ēn [tז̌. $3 \tilde{\varepsilon}$ ] | jug |
| chìn? [tโĨ?] | few | kijin [kĩ.hĩ] | leather |
| nkùn" [ ygu ] | tortoise | $\mathrm{t}^{\mathrm{y}}$ ūnū [țu.nũ] | crawfish |

## Dimoraic non-nasal:

| xāá [ $[\mathrm{a}:]$ | clarity | kwitaā? [kwi.ta:?] | fox |
| :---: | :---: | :---: | :---: |
| nteë [nde:] | here | kwixēē? [ $\mathrm{k}^{\mathrm{w}} \mathrm{i} . \mathrm{Se}$ : 2 ] | racoo |
| í [hi:] | ash | nkutyii [ngu.ti:] | it ended |
| ōō [ko:] | fog | talōó [ta.lo:] | his/her fac |
| hūú [t]u:] | Jesus | --- |  |

Dimoraic nasal:

| tāān [tã:] | lard | nkataan [nga.tã:] | I gave it |
| :---: | :---: | :---: | :---: |
| kweēn' [ $\mathrm{k}^{\mathrm{w}} \tilde{\mathrm{c}}$ :] | bat | tixēēn [ti. $\left.\int \tilde{\varepsilon}:\right]$ | daughter in law |
| kiin [kĩ:] | hematoma | tukwiî́n [tu.kwĩ:] | path |
| jūún [hũ:] | thread | nkasūún [gga.sũ:] | they argued |

ZAC presents asymmetries in the distribution of its consonant and vowel types. In effect, the greatest phonemic contrast exists within final syllables. Table 3.2 on page 140 summarizes the distribution of phonemes within the word.

The syllable minimally consists of a consonant, a vowel. In native words, syllables may contain a set of onset clusters as shown in table 3.1 on page 133. Spanish loans may present three-consonant clusters wordmedially. A word may contain up to two different laryngeal elements (such as $/ \mathrm{h} /$ and $/ \mathrm{h} /$ that is to say not $/ \mathrm{h} /$ and $/ \mathrm{h} /$ nor $/ \mathrm{h} /$ and $/ \mathrm{h} /{ }^{3}$ ), but the distribution of the glottal stop is more restricted than the glottal fricative (§2.3.7). Only one glottal consonant per word is allowed in the language, and it generally only occurs in the final syllable (see figure 3.1). ${ }^{4}$

Examples showing all possible simplex word shapes are presented below:

## Short monosyllabic words ${ }^{5}$ :

| Pin [2ĩ] | DAT |
| :---: | :---: |
| nǎ [na] | thing |
| nkùn` [nkũ] | tortoise |
| nī? [nĩ?] | his/her bowels |
| mên? [m̃?] | puppy |
| chìn? [t f Ti? $]$ | a little |
| mpî́? [mbi?] | dram of liquor |
| wrä" [bra] | hour |
| ? $\mathrm{n}^{\text {y }}$ an [ $\mathrm{Pn}^{\text {a }}$ ] | DAT.1s |
| xkwì̀ [ ${ }^{\text {k }}{ }^{\text {w }} \mathrm{i}$ ] $]$ | only |
| nkwān' [ $n k^{\text {w }}$ a $]$ | I was |

## Long monosyllabic words:

[^27]```
kaa [kaa] nine
nkāán [ngã:] cohune
ntsee [ndze:] suddenly
ntsiìn" [ndzĩ:] guava
kōō [ko:] fog
kūūn [kũ:] sweet potato
xaā? [Ja:?] luxurious
nkaàn?' [\etagã:?] booger
nkyaà [nkja:] he/she left
nkyaā? [nkja:?] it got made
ntyūūn [ndjũ:] I grind it
nkyaàn` [nkjã:] he/she came
kyoō? [kjo:?] century plant
nkyaà? [nkja:?] it gets made
xkwaān' [Jkwã:] he/she will throw it away
```


## Short disyllabic words:

| sokơ" [so.ko] | small fish |
| :---: | :---: |
| yānán [ja.nã] | copal |
| bùrrü' [bu.riu] | donkey |
| yawèr [ja.we?] | curse |
| loRǒ [19.2〕] | cattle pen |
| kwīná? [k ${ }^{\text {wi.na? }}$ ] | his/her flesh |
| nkyunǎ [nkju.na] | he/she is crying |
| xkwìlă" [ ${ }^{\text {k }}{ }^{\text {wi}}$ i.la] | school |
| ntsul ${ }^{\text {y }}$ 亿1? [nd3u.li2] | swing |
| la?wě" [la.2we] | sapote |
| tra?wě' [tra.2we] | center |

## Long disyllabic words:

```
nkatāá [nga.ta:] he/she gave it
tixeen [ti.\int\tilde{c}:] daughter in law
tilōō [ti.lo:]
nkasūún [yga.sũ:]
kwit}\mp@subsup{}{}{\textrm{y}}\mp@subsup{\textrm{i}}{}{\prime
nkasiín? [nka.sĩ:?]
tukwiín [tu.kwĩ:]
nkaskwaān' [nga.skw}\mp@subsup{}{}{\textrm{a}}:] he/she threw it away
```


## Short trisyllabic words:

| $t^{\mathrm{y}}$ ūkùwî [tu.ku.wi] | magpie |
| :---: | :---: |
| titsā?án [ti.tsã. 2 ã] | saucepan |
| ntīkyāsè? [ndi.kja.se?] | it is getting deflated |
| nkayākún [ŋga.ja.kũ] | I ate |
| kusi?n ${ }^{y}$ un [ku.si.3ñũ] | I will cut it |

### 3.2 Phoneme distribution within the word

Table 3.2 shows the distribution of phonemes according to manner of articulation within the word. It clearly shows how the final syllable is the most prominent, as it is the position in the Word where the most contrast occurs.

Many of the phonotactic constraints are best captured with reference to the autosegmental analysis presented and discussed in detail in chapter 1. The autosegmental representation was reintroduced again in this chapter for convenience, as figure 3.1 on page 124.

The Word $(\omega)$ is the domain at the end of which the optional coda (/R/) may occur. There is a constraint against two identical glottal conso-
nants occurring within the Word (§2.3.6). There are very few examples of words starting with /R/: Pin 'DAT' and $\mathrm{Pn}^{y}$ ä́n 'DAT.1s', another example is the negation $? a ̆$, and finally the emphatic particle ?á.

Moreover, the distributions of mid vowels (/e/ and /o/), nasal vowels, and long vowels are also best described in reference to the position within the Word (i.e. word-finally). /e/ never occurs underlyingly in nonfinal syllables of roots (§2.2.1.2), and /o/ may occur in non-final syllables only if ALL vowels in ALL syllables are also /o/ (§2.2.1.5). Furthermore, the only example of a vowel initial word in the native lexicon is the question particle $a$ which always occurs at the end of sentences. Nasal vowels only occur underlyingly word-finally, but may surface in penultimate syllables because of the Translaryngeal Vowel Harmony (§2.2.4.1) and Nasal Spreading (§2.2.4.2). As for long vowels (§2.2.3), they similarly only occur word-finally.

Syll. Syll. Antepenult. Penult. Final onset coda syll. syll. syll.

| Stops (excl. /R/) | $\checkmark$ | --- | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| /2/ | 3 ex | $\checkmark$ | --- | --- | $\checkmark$ |
| /h/ | $\checkmark$ | --- | --- | $\checkmark$ | $\checkmark$ |
| /N + non-Continuant/ | $\checkmark$ | --- | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Affricates | $\checkmark$ | --- | --- | $\checkmark$ | $\checkmark$ |
| Fricatives (excl. /h/) | $\checkmark$ | --- | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Approximants | $\checkmark$ | --- | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Oral vowels | 1 ex | --- | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Nasal vowels |  |  | (not /e/, /o/) | (Not /e/, /o/) |  |
| Long vowels | --- | --- | --- | --- | $\checkmark$ |

Table 3.2: Phoneme distribution within the word

This chapter together with chapter 2 provided an in-depth account of the distribution, as well as the restrictions on the distribution of the contrastive elements of ZAC (except tone which is dealt with next in chapter 4). The analysis presented in chapter 2 for the contrastive features of vowel nasality and vowel length, and the analysis presented here for the phonotactics of the language are guided by a proposal of an autosegmental representation of the prosodic features (see chapter $1 \S 1.6$ for a detailed description of this theoretical framework). This mode of representation proves to be the most elegant for the overall phonological analysis for ZAC because it allows for the entire contrastive system which includes twenty-two consonant phonemes, five non-nasal vowels and, corresponding to them, 4 nasal vowels, vowel length, vowel nasalization and five tones to be encapsulated in one single analysis of phonological representation. This autosegmental analysis is also particularly useful to represent the tonal system which is addressed next.

## Chapter 4

## Tone in simplex words

### 4.1 Introduction

The hallmark of Otomanguean languages is tone, and within the family, the diversity of the tonal inventories is particularly great. Some languages show as few as two or three tones, such as Zenzontepec Chatino (Campbell, 2014), Pame (Berthiaume, 2012), some Zapotec varieties (Sicoli, 2007), while others offer inventories with as many as fourteen, like San Juan Quiahije Chatino (E. Cruz, 2011) or even nineteen, like for Chicahuaxtla Trique as cited in DiCanio (2008). Chatino languages present a great diversity in tonal inventories, but also vary in their typological features such as whether or not tones form tonal sequences, whether or not the inventory includes floating tones, or whether tones align to moras or to syllables/stems.

This chapter describes the phonology of the ZAC tonal system, discussing the distribution of tone as well as describing in detail all the phonetic realizations for each Tone Class for simplex words only. The terminology 'simplex word' (or even just 'word') and 'simplex inflected stem' is used interchangeably to mean the same thing, i.e. non-compound words. This chapter only deals with tone distribution in simplex words because they are
the natural domain for the TS. It excludes inflected complex stems (compound words), because in the latter, each component word is a separate tonal domain. It also excludes enclitics, because enclitics too, form their own separate tonal domain.

Before delving into the description of ZAC's tones, the reader should be informed that this chapter takes him through the methodology and the discovery path of the complexities of this tonal system, as opposed to solely exposing the facts and its characteristics. What is being demonstrated here, is how an entire system works, how each part of the 'machine' functions in some semi-autonomous way. Ultimately, the whole system is exposed. At times, some special complexities have to be left out in order to establish the basic patterns. Moreover, there are points which overgeneralize on the basis of the data presented, but which get revisited and modified further on as needed to account for the data newly presented. What is being shown by taking this approach is the dynamic characteristics of the system.

As a result, at first, the contrastiveness of some elements have to be taken on face value. The following discussions and demonstrations of data emphasize that tonal contrasts can only be established after controlling for all of the factors that can affect how a tone is realized. ZAC's tonal inventory is represented in a complex system which cannot be described and established by means of minimal pairs for various reasons. First of all, lexical tonal constrastiveness cannot be proven through a series of words placed in isolation because this context results in tonal neutralization of various Tone

Classes. Secondly, ZAC presents floating tones which are only revealed in specific environments, so that as a result, supporting underlying tonal contrast with minimal pairs would not only be inaccurate but absolutely misleading (Snider (2014) likewise gives arguments against the use of minimal pairs for establishing tonal contrasts, for many of the same reasons).

Instead, because the contrasts are based on actual comparable data which has been controlled for all the factors affecting underlying tone patterns, they allow for a more convincing generative analysis.

However, the conclusions and the main facts of the analysis are presented here so that the reader is aware of where he is eventually taken to, and so that he may keep those facts in mind along the way as the system is being exposed.

The ZAC tonal system is intricate because it involves four levels of pitch represented in five tones arranged in many tonal sequences (TS) ${ }^{1}$ which become the signatures for Lexical Tone Classes. Furthermore, polysyllabicity allows for many moraic shapes resulting in a variety of possible phonetic realizations of the TS's which mark the Tone Classes. Once the linking rules and the alignment of the tones in different word shapes are understood, establishing the tones of individual lexemes at the context-free word level is a fairly straight forward matter. What is challenging, and yet

[^28]possible, is fully accounting for the surface tonal realization of ZAC's lexemes, since they are significantly affected by surrounding tones in phrasal context.

ZAC presents five mora-linked tones ${ }^{2}$ (/L/, /M/, /H/, /LH/ and /LS/) realizing four levels of pitch (Low, Mid, High and Super High), and three floating tones ${ }^{3}(/(\mathrm{L}) /, /(\mathrm{H}) /, /(\mathrm{LS}) /$. Not all moras in a specific word are linked to a tone, some are unspecified for tone (marked as $X$ in table 4.1). When a mora is unspecified for tone, it surfaces phonetically with a default low pitch, which may be altered by a preceding tone in phrasal context. As a result, a mora may occur with one of the six tonal possibilities, i.e. either one of the five tonal elements (/L/, /M/, /H/, /LH/ and /LS/) or as a tonally unspecified mora.

| Tonal <br> representation | Notation | Mora-linked realization |
| :---: | :---: | :--- |
| X | v | mora is low, slightly falling (by default) |
| L | v | mora is low, slightly falling |
| M | $\overline{\mathrm{v}}$ | mora is mid, leveled |
| H | v́ | mora is high, leveled |
| LH | v̌ | mora rises from low to mid-high |
| LS | $\overline{\mathrm{v}}$ | mora rises from low to super-high |

Table 4.1: Tonal representation

[^29]The five tonal elements, are combined to form TS's which in turn define Lexical Tone Classes in the lexicon. Some TS's include floating tones ${ }^{4}$ (marked in between parentheses in table 4.2). There are a total number of fifteen Tone Classes in the language as shown in table 4.2. Note that Tone Class 1 is actually unspecified for tone as the TS shows no mora-linked tonal elements (/ /).

Now that the basic facts about this tonal system have been exposed, we can turn to demonstrating how the whole system actually works.

This chapter is organized as follows: §4.2 presents the language's tonal inventory; §4.3 establishes the mora as the Tone Bearing Unit (henceforth TBU) for the tones, and the Word as the domain for the TS; $\S 4.4$ describes the prosodic shapes of simplex words; §4.5 describes tonal realization at the sentence level, discussing the main post-lexical tonal rules of the language, including the rules that account for tone sandhi ${ }^{5} ; \S 4.6$ presents the occurrence of the TS according to prosodic shapes; §4.7 abstracts the TS for each Tone Class, and demonstrates how they link to words of various prosodic shapes; §4.8 describes the distributions of the different prosodic shapes per Tone Class; §4.9 summarizes the distribution of all tones within words; $\S 4.10$ discusses all of the fifteen Lexical Tone Classes indicating their

[^30]| Class | Word | Gloss | TS |
| :---: | :---: | :---: | :---: |
| 1 | nkajin ${ }^{\text {a }}$ an | I asked for it | / / |
| 2 | ntikală' | cloud | /L (LS)/ |
| 3 | ntusanè | he/she sprays it | /L (L)/ |
| 4 | nkayakwēn ${ }^{\prime}$ | he/she vomited it | /M (H)/ |
| 5 | nkajil ${ }^{\text {y }}$ an | I farted | /M/ |
| 6 | nkajil ${ }^{\text {y }}$ | you farted | /L-M/ |
| 7 | mintillë' | napkin | /L-M (LS)/ |
| 8 | nkalukwǎ | he/she swept it | /LH/ |
| 9 | ntijìn ${ }^{\text {y }}$ n | he/she asks for it | /L-LS/ |
| 10 | nkayūjwī | he/she died | /M-M/ |
| 11 | nkajīn ${ }^{\text {y }}$ án | he/she asked for it | /M-H/ |
| 12 | ntāsālàn | I am opening it | /M-M-L/ |
| 13 | ntāsa̋nè | he/she is spray--ing it | /M-LS-L (L)/ |
| 14 | $n t a ̄ j i ́ n ~ y a ̄ n ~$ | he/she is asking for it | /M-H-M/ |
| 15 | ntòlōò | you remove it it | /L-M-L/ |

Table 4.2: The ZAC Tone Classes
prevalence in different areas of the lexicon; $\S 4.11$ presents a more complete description of tonal realization at the sentence level, including a more detailed description of Spreading when the subsequent word is linked with (associated to) tone, and an account of floating tone behavior in subsequent words linked with tone; and finally $\S 4.12$ offers a grand summary of the characteristics of ZAC's tonal system offering a typological perspective.

### 4.2 The tonal inventory

Figures 4.1 and 4.2 illustrate the realization of each of the five tones on monomoraic monosyllabic words ${ }^{6}$. The line labelled X shows the default low pitch level of unspecified moras. In figure 4.1, the pitch level of the unspecified mora labelled /X/ is a little bit higher than the pitch level of /L/ tone mora labelled /L/. In fact, when looking at pitch tracks, their respective $F_{0}$ are not discernible from each other.


Figure 4.1: Monomoraic words with level outcomes

[^31]

Figure 4.2: The ZAC rising tones on monomoraic words

### 4.3 The mora as the Tone Bearing Unit

This section establishes two important facts regarding ZAC's tonal system: (1) the mora is the TBU for the tones; but (2) the Word ( $\omega$ ) is the domain for tonal sequences.

Figure 4.3 below was first introduced and discussed in detail in chapter 1 (as figure 1.8) to discuss the theoretical framework used in this work. Then, it was re-introduced in chapter 2 (as figure 2.3) to discuss the suprasegmental features of the vocalic system. It was presented again in chapter 3 (as figure 3.1) to discuss some contrastive elements' distributional constraints, and finally it is included here again (as figure 4.3) to discuss the different domains and loci of realization of the tonal system.

As was discussed in more detail in §1.6, this autosegmental representation allows for the distinction between the domain of (or hosting of) a given feature, versus the actual locus of realization of that feature. For example, the $\omega$ is the domain for the tonal sequence (TS), but its tonal element(s) are realized on the mora. In other words, tone is specified at the word level and realized on the mora.


Figure 4.3: Autosegmental representation of prosodic features: nkasiín? 'he/she squeezed it'

For convenience, the way the phonological representation is expressed within figure 4.3 is explained again here. It includes four different tiers. They are: the prosodic tier (in black), the nasal tier (in green), the segmental tier (in blue), and finally the tonal tier (in red).

In the representation, some lines are solid and some are dotted. The
solid lines are linkages pre-defined in the lexical representations (and might be termed "hosting"); the dotted lines are filled in by Linking rules, and are variable from one lexical representation to another. For example, the /M/ tone of the TS /M-H/ may or may not actually get linked depending on the moraic shape of the word (§4.7).

In ZAC, the * marks the final linkable tone in the TS, and the tone after it (if one) is a lexically unlinked floating tone. The rule is to link the linkable tones, from right to left, starting with the * marked tone, to the moras of the lexeme in a one-to-one fashion.

The prosodic tier (in black) includes the word $(\omega)$, the mora $(\mu)$, and the syllable $(\sigma)$.

- $\omega$ hosts syllables, the final mora, the [ + Nasal] feature, as well as the Tone Sequence (TS). The $\omega$-hosted extra mora (in the case of long vowels), and the [+ nasal] feature both link (dotted line) to the last syllable.
- $\sigma$ hosts moras, and consonants including 3.

The nasal tier (in green) includes the [ + Nasal] feature which links (dotted line) to the final syllable, and which is hosted by the $\omega$.

The segmental tier (in blue) includes all segments but the mora hosts only vowel segments.

The tone tier includes the tonal elements (in this case $/ \mathrm{M} /$ and $/ \mathrm{H} /$ ), and each link to a mora (dotted line) in the last syllable. The tonal elements form the Tone Sequence (TS) which is hosted by the $\omega$.

As we can observe in figure 4.3, the word nkasiín? 'he/she squeezed it' is a trimoraic disyllabic word where the antepenultimate mora in the penultimate syllable is not linked to any tone, the penultimate mora is linked to a /M/ tone (dotted line), and the final mora is linked to a $/ \mathrm{H} /$ tone (dotted line). The latter shows that a mora can be tonally linked or unlinked, i.e unspecified for tone. Tonally unspecified moras can be affected by preceding tones, but when unaffected, they surface with a default [L] pitch, and sound the same as or similar to an $/ \mathrm{L} /$ tone (see figure 4.1 on page 148).

The TBU is the mora, as opposed to the syllable as the language has both monomoraic as well as dimoraic syllables, and the latter differ in the number of tones they can bear. Words with more than one mora may have a tone on each mora. It doesn't matter if the two moras are in separate syllables (as in the example shown in figure 4.4) or in the same syllable (as in the example shown in figure 4.3). Monomoraic syllables can only have one tonal element ${ }^{7}$ but dimoraic syllables can bear two tonal elements.

[^32]

Figure 4.4: Linking of tone in a disyllabic dimoraic word: kwīná 'snake'

### 4.4 Prosodic shapes of words

The majority of simplex words are dimoraic, and most inflected verbs are dimoraic or trimoraic whereas monomoraic words are very rare in the language, and are generally limited to function words. Figure 4.3 showed how moras link to syllables taking as an example a trimoraic disyllabic word. Figure 4.5 shows how the moras link to syllables in words of various shapes. Simplex words in ZAC have all the shapes presented below.

### 4.5 Tone realization at the sentence level

In the lexicon, the majority of words are associated with a TS whose tonal elements may be linked (associated) or unlinked (not associated, also called floating). Before delving into the TS's and how they associate to different prosodic shapes, it is essential to show the realization of the tones themselves in connected speech. In this section, the sentence examples presented show the three major processes in effect: the behavior of moras un-

|  | Monomoraic | Dimoraic | Trimoraic |
| :---: | :---: | :---: | :---: |
| Monosyllabic | $\begin{array}{\|c\|} \hline / \sigma / \\ \mid \\ \mu \\ \hline \end{array}$ | $\begin{gathered} 1 \sigma / \\ \wedge \mu \\ \wedge \end{gathered}$ | -- |
| Disyllabic | -- | $\begin{array}{c\|} \hline 1 \sigma \sigma / \\ \left\lvert\, \begin{array}{c\|c\|} \hline & \mid \\ \mu & \mu \\ \hline \end{array}\right. \\ \hline \end{array}$ | $\begin{array}{\|cc\|} \hline \sigma & \sigma / \\ 1 & \wedge \\ \mu & \mu \mu \\ \hline \end{array}$ |
| Trisyllabic | -- | -- |  |

Figure 4.5: Prosodic shapes of simplex words (Modified from (Villard \& Woodbury, 2012))
specified for tone, the persistence or spreading of /H/, /LH/ and /LS/ tones into moras unspecified for tone, and finally the behavior of three of the five tones as lexically unlinked or floating tones into subsequent words with tonally unlinked moras.

Because this section describes tonal realization at the sentence level, the main post-lexical tonal rules of the language, including the rules that account for tone sandhi are discussed here.

### 4.5.1 Moras unspecified for tone and spreading

The pitch track with the corresponding autosegmental representation in figure 4.6 presents a sentence where all words are unspecified for tone, illustrating the default low pitch level (slightly descending) of unlinked moras when undisturbed. This sentence serves as a frame for all the subsequent
examples where each of the five tones is introduced to this frame in order to observe the behavior of the posited unspecified moras.


Figure 4.6: Sentence where all words are unspecified for tone

The pitch track with the corresponding autosegmental representation in figure 4.7 illustrates the persistence (with a slight decline) of high pitch [H] from the last mora of word kwiná 'snake' (/M-H/) into all subsequent words made of tonally unlinked moras until the end of the utterance.

[M H]

[ H H H ]

[H H]

[H H]

[H H]

[HH H]

[H H]


Figure 4.7: Persistence of high pitch [H] (from $/ \mathrm{M}-\mathrm{H} /$ ) into subsequent tonally unspecified moras

The pitch track with the corresponding autosegmental representation in figure 4.8 demonstrates the persistence from the final high pitch $[\mathrm{H}]$ from /LH/ tone that is linked to the last mora of word lusǐ 'butterfly' (/X-LH/) into all subsequent words made of tonally unlinked moras just as it occurred for the word kwiná 'snake' (/M-H/) in figure 4.7.


Figure 4.8: Persistence of the final high pitch [H] (from /LH/) into subsequent unspecified moras

The pitch track with the corresponding autosegmental representation in figure 4.9 exemplifies the persistence of the final super high [S] pitch from the last mora of the word yùsín 'turtle' (/L-LS/) into all subsequent words consisting of tonally unlinked moras similarly to the examples presented for the words kwīná 'snake' (/M-H/) and luš̌ 'butterfly' (/X-LH/). The [S] pitch declines earlier and a bit more than [H] through the sentence.


Figure 4.9: Persistence of super high pitch [S] (from /L-LS/) into subsequent tonally unspecified moras

The pitch track in figure 4.10 presents a sentence starting with the demonstrative (DEM) $k \bar{a} n$ ? 'that one' (/M/) followed by the same words unspecified for tone. We can observe that after the initial $/ \mathrm{M} /$ tone, the pitch goes back down to its default low level in all subsequent tonally unlinked moras. This shows that /M/ does not spread into tonally unspecified moras.


Figure 4.10: [M] pitch (from /M/) does not persist in subsequent tonally unspecified moras

The pitch track in figure 4.11 shows another example of no effect in all subsequent tonally unspecified moras. We can observe that after the final low pitch [L] from (/M-L/) of word lāxò 'vulture' all unspecified moras surface with the default [L] pitch.


Figure 4.11: [L] pitch (from /M-L/) has no effect on subsequent tonally unspecified moras

The pitch track with the corresponding autosegmental representation in figure 4.12 illustrates the spreading of the high pitch [H] (from /M-H/) from the final mora of word $k w i n a ́$ 'snake' into all subsequent words made of tonally unlinked moras until a tone-linked mora is encountered in the word $l^{y} u \bar{u} w a \bar{a}$ 'annona ${ }^{18}$ (/M-M/). The latter is realized as [M-M], and all subsequent tonally unspecified moras are realized with the default [L] pitch since /M/ (from $/ \mathrm{M}-\mathrm{M} /$ ) does not spread. This shows that spreading only occurs in tonally unlinked moras and that spreading gets interrupted by a tone-linked mora.

[^33]

Figure 4.12: Persistence of [H] pitch (from $/ \mathrm{M}-\mathrm{H} /$ ) in subsequent unspecified moras until it reaches the TS /M-M/ in lyūwā, which is realized on each mora with [M] pitch.

Now that spreading has been demonstrated in various environments, the rule can be stated as follow:

The final pitch level of tones $/ H /$ / /LH/ and /LS/ persists through subsequent tonally unlinked moras until encountering a tone-linked mora or reaching the end of the utterance.

Figure 4.13: Spreading rule

### 4.5.2 Linking and realization of floating tones in subsequent tonally unspecified moras

Among the five tones present in the inventory, three of them can be realized as floating tones: $/ \mathrm{L} / \mathrm{I} / \mathrm{H} /$ and /LS/. These tones are unlinked but still they are part of certain TS's tonal representation.

This section demonstrates what happens when a floating /L/, /H/ and /LS/ is directly followed by tonally unlinked moras in subsequent words.

It is important to point out that the data just presented in §4.5.1 and the data shown in this section show that Spreading and floating tone behavior are different processes. Spreading involves the persistence of a pitch target from preceding word into subsequent tonally unspecified moras until the end of a utterance. The floating tone behavior involves the actual linking of a previously unlinked tone to a tonally unspecified mora in a subsequent word only (i.e the domain of realization of a floating tone is the subsequent word and no further). The environments for Spreading (and blocking of Spreading) and for floating tone realization are phonological, they both obey phonological rules, but their entity and their respective do-
main are different. As a result, Spreading is analyzed as a phonetic process (as in Pierrehumbert and Beckman (1988)), whereas floating tone behavior is considered phonological.

Figure 4.14 shows the representation of floating tones in the autosegmental analysis. The final mora of the word $x u n \bar{i} P^{\prime}$ is linked to a $/ \mathrm{M} /$ tone but the word also presents a/H/floating tone (which is unlinked). It shows that the TS consisting of $/ M(H) /$ is hosted by the $\omega$, but that only the $/ M /$ links to the final mora and the $/ \mathrm{H} /$ floating tone is left unlinked.


Figure 4.14: Autosegmental representation of the word xunī? 'dog'

In the practical orthography, the floating tones are marked on the right edge of words with diacritics (/L/: word' ; /H/: word'; /LS/: word"). In tonal representations, the floating tones are marked in between parentheses such as: /M (H)/.

We now turn to observing floating tone behavior in pitch tracks illustrating their realization in tonally unspecified moras using the same sentence frame as in the previous section.

The pitch track with its corresponding autosegmental representation in figure 4.15 demonstrates how the floating /LS/ of word natèn" 'people' (/X-L (LS)/) links to the rightmost tonally unlinked mora in subsequent word nkayako (/X-X-X/) 'he/she ate'. Then, it also shows how all subsequent tonally unlinked moras (after nkayako) undergo spreading from the newlylinked /LS/ that had originated as a floating tone.

Finally, one can observe that the antepenultimate and the penultimate tonally unlinked moras in nkayako surface with a mid level pitch that suggests a mid tone.


Figure 4.15: Floating /LS/ in subsequent tonally unspecified moras

The pitch track in figure 4.16 shows how the floating /H/ of word $\operatorname{kin}^{y} \bar{\imath}^{\prime}$ 'bird' (/M(H)/) links to the rightmost mora in word nkayako (/X-X$\mathrm{X} /$ ) 'he/she ate', and how all subsequent unlinked moras in following words undergo spreading and surface with a [H] pitch. As we observed in the previous pitch track, the antepenultimate and penultimate mora in nkayako surface with a [M] pitch level suggesting a mid tone $/ \mathrm{M} /$.


Figure 4.16: Floating /H/ in subsequent tonally unspecified moras

The pitch track with its corresponding autosegmental representation in figure 4.17 shows how the floating /L/ of word $3{ }^{2}$ ' 'no' (/L (L)/) links to the rightmost mora in word nkayako (/X-X-X/) 'he/she ate it'. Again, the antepenultimate and penultimate mora in nkayako surface with a [M] pitch level suggesting a mid tone $/ \mathrm{M} /{ }^{9}$.

[^34]

Figure 4.17: Floating /L/ in subsequent tonally unspecified moras

Now that we have observed the realization of the three floating tones in the sentence frame consisting of words unspecified for tone, a preliminary ${ }^{10}$ version of the rule for the linking of the floating tones can be formulated as follow:

In a sequence of words where W1 hosts a floating tone and W2 is unspecified for tone, the floating tone links to the rightmost mora in W2. All moras to the left of the (newly linked) floating tone in W2 are assigned a/M/ tone.

Figure 4.18: Preliminary Floating Tone Linking rule 1

The data presented in this section showed that floating tone behavior involves the actual linking of a previously unlinked tone to a tonally unspecified mora in a subsequent word only (i.e the domain of realization of a floating tone is the subsequent word and no further). However, as show in §4.5.1 a tone may phonetically spread onto adjacent tonally unspecified moras, creating a slight contour (a slight downdrift of the $\mathrm{F}_{0}$ ). In this case, the structural change makes reference to phonetic parameters (i.e. the pitch level) requiring it to be maintained with a slight declination. As a result, Spreading is analyzed as phonetic process (as in Pierrehumbert and Beckman (1988)), whereas floating tone behavior is considered phonological.

[^35]
### 4.5.3 Phonetic data illustrating the Spreading and Floating Tone Linking rules

This section presents data from a phonetic study conducted in the field by the author with Anthony Woodbury. It discusses averaged pitches for the word kula 'old' (unspecified for tone: /X-X/) placed after words ending in the five possible tones a mora can bear (plus an example of word where moras are unspecified for tone so showing a total of six possibilities), as well as after each of the three floating tones. Words whose final mora ends with each of the six possibilities are placed within a frame consisting of words unspecified for tone: tsaka TARGET WORD kula: one TARGET WORD old, meaning 'one old TARGET WORD'. The actual TARGET WORDS used for the experiment are the following:

- /X/: kwana 'mirror', yaka 'tree', kee 'stone', ntaa 'bean', ne? 'person'
- /L/: xūnēPèn (/M-M-L/) 'scorpion', stānù (/M-M-L/) 'grapefruit', tōyōò (/M-M-L/) 'hole', jn $n^{y}$ ākè (/M-M-L/) 'your head'
- /M/: kwitoō (/M-M/) 'hen', jny ākē (/M-M/) 'his/her head', kōō (/M-M/) 'mist', lāā (/M-M/) 'church'
- /H/: kwīná (/M-H/) 'snake', jn $n^{y}$ ātén (/M-H/) 'mosquito', xāá (/M-H/) 'daylight', nkāán (/M-H/) 'coconut'
- /LH/: yanǎn (/LH/) 'corn cob', kalǎ (/LH/) 'dream', lutǐ (/LH/) 'rope'
- /LS/: pî (/L-LS/) 'poult', più (/L-LS/) 'fair', yùsín (/L-LS/) 'turtle', mixty ûn (/L-LS/) 'cat', kyàâ (/L-LS/) 'tomorrow', kwisàä (/L-LS/) 'weevil'

Words ending in the three possible floating tones (unlinked tones):

- /(L)/: sîty ùn (/M-LS-L (L)/) 'dove', nkwíxì (/M-LS-L (L)/) 'tomato'
- /(H)/: kwanā' (/X-M (H)/) 'thief' , kitä' (/X-M (H)/) 'flour, dust' , kweēn' (/X-M (H)/) 'bat', keē (/X-M (H)/) 'flower'
- /(LS)/: muly ${ }^{y} \bar{a}^{\prime \prime}(/ \mathrm{L}-\mathrm{M}(\mathrm{LS}) /)$ 'mule' , mansanā" (/L-M (LS)/) 'apple', tasā" (/L-M (LS)/) 'cup', tilà" (/L (LS)/) 'night' , ntsuwaàr' (/L (LS)/) 'Piper Auritum', natèn" (/L (LS)/) 'person', ntulaà" (/L (LS)/) 'peach', ja?wă" (/L (LS)/) 'banana', nkùn" (/L (LS)/) 'tortoise'

Figure 4.19 presents averaged pitch tracks for the word kula 'old' after the five tonal possibilities (plus the example of unspecified mora) (/X/, /L/, /M/, /H/, /LH/, /LS/) and illustrates the Spreading rule stated in figure 4.13 on page 163. One can observe that when kula is placed after $/ \mathrm{H} /, / \mathrm{LH} /$ and /LS/, it undergoes spreading whereas when it is placed after /X/, /L/ or /M/ it surfaces in its default low pitch.


Figure 4.19: Averaged pitch for kula (/X-X/) AFTER each tone

Figure 4.20 presents averaged pitch tracks for the word kula 'old' after the three floating tones $/ \mathrm{L} /$, /H/ and /LS/. The pitch tracks illustrate the Floating Tone Linking rule stated in figure 4.18 on page 171, i.e. how the floating tones link to the final mora of the word kula and how a /M/ tone inserts to the left of newly linked tone in all three cases ${ }^{11}$. After floating tone linkage, the word kula (/X-X/) surfaces as /M-LS/ (after floating tone /LS/, as /M-H/ (after floating tone /H/), and as /M-L/ (after floating tone /L/).


Figure 4.20: Averaged pitch for kula (/X-X/) AFTER each floating tone

[^36]This section described two major processes in connected speech: the behavior of tonally unspecified moras when directly preceded by a $/ \mathrm{H} /$, /LH/ or /LS/ mora-linked tone, as well as their behavior when preceded by each of the three floating tones (/L/, /H/ and /LS/). We observe that when a tonally unspecified mora is preceded by a mora-linked /H/, /LH/ or /LS/ tone, the pitch level of the mora-linked tone ([H] for /H/ and /LH/ and [S] for /LS/) is maintained in all subsequent tonally unlinked moras until a TS is encountered.

Furthermore, we observed that floating /L/, /H/ and /LS/ link to the rightmost mora of subsequent tonally unspecified words, and that the pitch of /H/ and /LS/ is maintained in all subsequent tonal unlinked mora until a TS is encountered. However, in this case, all tonally unlinked moras before the newly linked floating tone get assigned a /M/ tone.

This floating tone analysis will need to be refined since it only accounts for cases when the subsequent word is tonally unspecified. Section 4.11.2 revisits this floating tone analysis taking into account cases when W2 is linked to a TS.

### 4.6 The Lexical Tone Classes

As mentioned earlier in §4.1, the ZAC five tones are arranged in Tone Classes each defined by one of the fifteen existing TS's. A TS may consist of up to three linked tones, and may also be followed by an unlinked tone (a floating tone). TS's pertain to words and have different surface realizations depending on the number of moras in the word. Table 4.3 (already introduced in $\S 4.1$ as table 4.2) present the fifteen Tone Classes in the language. Some TS's include floating tones (marked in between parentheses). Note that Tone Class 1 is actually unspecified for tone as the TS shows no mora-linked tonal elements (/ /).

| Class | Word | Gloss | TS |
| :---: | :---: | :---: | :---: |
| 1 | nkajin ${ }^{\text {a }}$ an | I asked for it | / / |
| 2 | ntikalà" | cloud | /L (LS)/ |
| 3 | ntusanè | he/she sprays it | /L (L)/ |
| 4 | nkayakwēn ${ }^{\prime}$ | he/she vomited it | /M (H)/ |
| 5 | nkajil ${ }^{\text {y }}$ an | I farted | /M/ |
| 6 | nkajill ${ }^{\text {a }}$ | you farted | /L-M/ |
| 7 | mintile ${ }^{\prime}$ | napkin | /L-M (LS)/ |
| 8 | nkalukwǎ | he/she swept it | /LH/ |
| 9 | ntijìn ${ }^{\text {ªnn }}$ | he/she asks for it | /L-LS/ |
| 10 | nkayūjwī | he/she died | /M-M/ |
| 11 | $n k a j i ̄ n{ }^{\text {y }}$ án | he/she asked for it | /M-H/ |
| 12 | ntāsālàn | I am opening it | /M-M-L/ |
| 13 | ntāsa̋nè | he/she is spray--ing it | /M-LS-L (L)/ |
| 14 | ntājín ${ }^{\text {y }}$ an | he/she is asking for it | /M-H-M/ |
| 15 | ntòlōò | you remove it it | /L-M-L/ |

Table 4.3: The ZAC Tone Classes

The following sections present the occurrence of the TS's according to prosodic shapes, starting with the most common shape i.e. dimoraic disyllables, followed by the dimoraic monosyllables which are then compared with the most restricted word shape, i.e monomoraic words. Examples of the TS's in trimoraic words are presented last as this word shape is generally restricted to inflected verb forms or to Spanish borrowings.

First, the pitch sequences ${ }^{12}$ are introduced on the basis of their realization on words pronounced in isolation, and then each sequence is placed within a frame allowing for the unveiling of its underlying tonal components.

### 4.6.1 Tone Classes in dimoraic disyllables

### 4.6.1.1 Tone Classes in isolation

Example (1) shows that ZAC has eight TS's audible in isolation in dimoraic disyllables. The first column 'Class' gives the Class number corresponding to a particular TS, and the third column gives the phonetic realization in isolation for each TS.

[^37]| (1) | Tone Sequences in isolation |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class | TS | Phonetic realization | Form | Gloss |
|  | 1 | /X-X/ | [L-L] | kwana | mirror |
|  | 4 | /X-M/ | [L-M] | kwanā | thief |
|  | 8 | /X-LH/ | [L-LH] | yanǎn | corncob |
|  | 9 | /L-LS/ | [L-LS] | yùsín | sea turtle |
|  | 10 | /M-M/ | [M-M] | kwītō | hen |
|  | 11 | /M-H/ | [M-H] | kwīná | snake |
|  | 12 | /M-L/ | [M-L] | jn ${ }^{\text {y }}$ āè | your head |
|  | 13 | /LS-L/ | [LS-L] | nkwîxì | tomato |

The underlying tonal element(s) of each TS will reveal themselves through a test based on the Spreading rule discussed and illustrated in §4.5.1, and stated in figure 4.13 on page 163.

Furthermore, in example (1), in order to avoid information overload, the tonal representations are not complete yet and do not include the floating tones since they are not relevant yet. Nevertheless, the forms show the marking of floating tones with diacritics on the right edge of the words. The tonal representation of some Classes will be revised when trimoraic words are considered. For convenience, and in order for the reader to easily understand the underlying tonal representation for each example, the /X/ in the TS notation is used as a place holder for tonally unspecified moras.

One can also observe the linking mode of the tonal element(s) for the various TS's. In the autosegmental representation presented in figure 4.3 we saw how the TS links to moras in the prominent syllable (final) in a one-to-one fashion starting from the starred (*) tonal element from right-to-left. Outside of autosegmental representations, the linking mode does not need
to be marked on tonal representations as it is the right most tonal element in the TS that links to the rightmost mora in the prominent syllable (final) in a one-to-one fashion. When we get to discuss TS's including floating tones, this statement gets revised slightly.

### 4.6.1.2 Tone Classes preceded by a word ending in /LS/

In example (2) below, each TS presented in example (1) is placed in a frame where the preceding word ends with a /LS/ tone ( $\left.t i t^{y} u ̀ k w a ̈\right)$. This test unveils the underlying tonal elements of the postponed TS.

Placing a word whose final mora is super high (/LS/), directly preceding words belonging to Tone Class 1 (/X-X/: unspecified for tone) found in example (1), results in a [S-S] surface tonal pattern. This phenomenon results from the Spreading rule stated in figure 4.13 on page 163. Among other words that present a [L-L] phonetic realization in isolation, some words are found to occur with a different tonal pattern when placed after a word ending in /LS/. In example (2), the word natèn" 'people' shows a surface phonetic realization as [L-L] in isolation (just like the word belonging to Tone Class 1 kwana (unspecified for tone)), but when natèn" is placed after a word ending in /LS/, its surface phonetic realization is [S-L], as opposed to [S-S] for kwana. In both cases, [S] results from the spreading of the super high pitch from the last mora of 'twelve' tity ùkwä. This shows that despite the fact that those two words have the same phonetic realization in isolation ([L-L]), they actually belong to two different Tone Classes.
kwana belongs to Tone Class 1, and natèn" belongs to Tone Class 2. natèn" is underlyingly /X-L/ whereas kwana is underlyingly /X-X/.

Placing a word whose final mora is super high (/LS/), directly preceding words belonging to Tone Class 4 (phonetically [L-M] in isolation) $k w a n \vec{a}{ }^{\prime}$ 'thief' found in example (1), results in a [S-M] surface tonal pattern. This phenomenon results from the Spreading rule stated in figure 4.13 on page 163.

Among other words that present a [L-M] phonetic realization in isolation, some words are found to occur with a different tonal pattern when placed after a word ending in /LS/. In example (2), the word kwan $\vec{a}^{\prime \prime}$ 'thief' shows a surface phonetic realization as [L-M] in isolation, but when another word with the same surface phonetic realization as $[\mathrm{L}-\mathrm{M}]$ in isolation ( $m u{ }^{y}{ }^{y} \vec{a}^{\prime \prime}$ ) is placed after a word ending in /LS/, its surface phonetic realization is [L-M] when placed after a word ending with /LS/ as opposed to [S-M] for kwanā " where [S] results from the spreading of the super high pitch from the last mora of 'twelve' tity $\mathbf{u} k w a ̈$. This shows that despite the fact that those two words have the same phonetic realization in isolation ([L-M]), they actually belong to two different Tone Classes. kwanā́ belongs to Tone Class 4, and $m u{ }^{y} \vec{a}^{\prime}$ belongs to Tone Class 7. $m u l^{y} \vec{a}^{\prime \prime}$ is underlyingly /L-M/ whereas kwan $\bar{a}$ ' is underlyingly /X-M/ as shown in example (2).

Furthermore, placing a word whose final mora is super high (/LS/), directly preceding words belonging to Tone Class 8 yanǎn 'corncob' (phonetically [L-LH] in isolation) found in example (1), results in a [S-LH] surface
tonal pattern as shown in example (2). This phenomenon results from the Spreading rule stated in figure 4.13 on page 163. The Spreading test reveals that yanăn 'corncob' (which surfaces as [L-LH] in isolation) turns out to be /X-LH/ underlyingly.

The sandhi changes are highlighted in bold face in example (2) below.

The fact that in example (2), the phonetic realization after /LS/ of examples for Tone Classes 9, 10, 11, 12, and 13 matches their respective underlying tonal representation proves that those tones are actually moralinked tones. Indeed, the example for Tone Class 9 yùsín which surfaces in isolation as [L-LS] is underlyingly /L-LS/ and not /X-LS/. If it were the case that the first mora were $/ \mathrm{X} /$ instead of $/ \mathrm{L} /$, the spreading test would have caused that tonally unspecified mora to surface as [S]. For Tone Classes, $10,11,12$, and 13 , the Spreading test does not affect the subsequent moralinked tones, and their respective phonetic realization matches their underlying tonal representation.

The fact that mora-linked tones block Spreading was demonstrated in §4.5.1.
(2) Tone Sequences preceded by /LS/

| Class | Phrase | Gloss | TS | Phonetic realization after /LS/ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | tity ${ }^{\text {y }}$ kwa̋ kwana | twelve mirrors | /X-L-LS/ /X-X/ | [L-L-LS] [S-S] |
| 2 | tit ${ }^{\text {y }}$ ùkwa̋ natèn" | twelve people | /X-L-LS/ /X-L/ | [L-L-LS] [S-L] |
| 4 | tity ${ }^{\text {y }}$ kwa̋ kwanā | twelve thiefs | /X-L-LS/ /X-M/ | [L-L-LS] [S-M] |
| 7 | tit ${ }^{\text {y }}$ ùkwa̋ mù ${ }^{\mathrm{y}} \widetilde{a}^{\prime \prime}$ | twelve mules | /X-L-LS/ /L-M/ | [L-L-LS] [L-M] |
| 8 | tit ${ }^{\text {y }}$ ùkwa̋ yanǎn | twelve corncobs | /X-L-LS/ /X-LH/ | [L-L-LS] [S-LH] |
| 9 | tit ${ }^{\text {y }}$ ùwa̋ yùsín | twelve sea turtles | /X-L-LS/ /L-LS/ | [L-L-LS] [L-LS] |
| 10 | tit ${ }^{\text {y }}$ ukwa̋ kwītō | twelve hens | /X-L-LS/ /M-M/ | [L-L-LS] [M-M] |
| 11 | tit ${ }^{\text {y }}$ ùkwa̋ kwīná | twelve snakes | /X-L-LS/ /M-H/ | [L-L-LS] [M-H] |
| 12 | tit ${ }^{\text {y }}$ ukwa̋ jn ${ }^{\text {yākè }}$ | twelve of your heads | /X-L-LS/ /M-L/ | [L-L-LS] [M-L] |
| 13 | tit ${ }^{\text {y }}$ ùkwa̋ nkwíxì | twelve tomatoes | /X-L-LS/ /LS-L/ | [L-L-LS] [LS-L] |

This Spreading test into the left edge of words presenting the same phonetic realization in isolation as each of the eight pitch sequences presented in example (1) allowed for the positing of ten different Tone Classes. Among those ten Tone Classes, only eight are discernible in isolation.

The figures below present pitch tracks for all the Tone Classes presented in example (2).

In each graph, the speckled line illustrates the F0 tracking of the word undisturbed, i.e, in its default phonetic realization as encountered when in isolation or when preceded by a word whose tone does not spread or float. The sentence frame for the undisturbed forms is the following: tsaka (/X-X/) noun kula (/X-X/) 'one NOUN old'.

The fine line shows the word's pitch track when preceded by a word ending with [S]. The sentence frame for the disturbed forms is the following: tity ùkwä (/X-L-LS/) NOUN kula (/X-X/) 'twelve NOUN old'.

The pitch tracks clearly show that only unlinked moras (/X/) get raised by the spreading of the [S] pitch ${ }^{13}$.



100


100

400 ..........................

100


300 …...........................................................................


100

[^38]300 -............................................................................



100




100


300

200

100

### 4.6.1.3 Tone Classes followed by /X-X/

In this section, a similar type of test gets applied to each of the ten Tone Classes encountered so far, but in this case, the test reveals the effect of each Tone Class on tonally unlinked moras in subsequent words (as shown in figures 4.19 and 4.20 on page 175). The words kula 'old' and $k$ wila 'fish' are not specified for tone, so their underlying tonal representation is $/ \mathrm{X}-\mathrm{X} /$, and their default phonetic realization is [L-L]. Again, in the examples below,
when a Tone Class affects subsequent unlinked moras, the sandhi changes are marked in bold face. Now that the floating tones are relevant, they are included in the representations of TS's in example (3).
(3) Tone Classes followed by /X-X/

| Class | Phrase | Gloss | TS | Phonetic real. |
| :---: | :---: | :---: | :---: | :---: |
| 1 | kwana kula | old mirror | /X-X/ /X-X/ | [L-L][L-L] |
| 2 | natèn" kula | old people | /X-L (LS)/ /X-X/ | [L-L ] [M-LS] |
| 3 | kakwèn` kwila | he/she will vomit fish | /X-L (L)/ /X-X/ | [L-L] [M-L] |
| 4 | kwanā kula | old thief | /X-M (H)/ /X-X/ | [L-M] [M-H] |
| 5 | nkanān kwila | I looked for fish | /X-M/ /X-X/ | [L-M][L-L] |
| 6 | kàkwēn kwila | you will vomit fish | /L-M/ /X-X/ | [L-M][L-L] |
| 7 | mùly ${ }^{\text {an' }}$ kula | old mule | /L-M (LS)/ /X-X/ | [L-M] [M-LS] |
| 8 | yanǎn kula | old corncob | /X-LH/ /X-X/ | [L-LH ] [H-H] |
| 9 | yùsín kula | old sea turtle | /L-LS/ /X-X/ | [L-LS] [S-S] |
| 10 | kwītō kula | old hen | /M-M/ /X-X/ | [M-M][L-L] |
| 11 | kwīná kula | old snake | /M-H/ /X-X/ | [M-H] [H-H] |
| 12 | jn ${ }^{\text {y }}$ akè kula | old head of yours | /M-L/ /X-X/ | [M-L] [L-L] |
| 13 | nkwîxî̀ kula | old tomato | /LS-L (L)/ /X-X/ | [LS-L ] [M-L] |

Placing an /X-X/ (Tone Class 1) word directly following each of the ten Tone Classes presented in example (2) revealed the presence of unlinked tones (or floating tones) after some TS's. As was discussed in §4.5.2 there are three floating tones, $/ \mathrm{L} / \mathrm{l} / \mathrm{H} /$, and /LS/; but they are present only after certain TS's. The data presented in example (3) just above reveals which TS's are followed by a /L/, a /H/ or a /LS/ floating tone, and which ones present no floating tone at all.

This test shows that Tone Class 2 (natèn" /X-L (LS)/) includes the floating tone /LS/ as the subsequent word kula (/X-X/ unspecified for tone)
surfaces phonetically as [M-LS] instead of as [L-L] (its undisturbed default phonetic realization).

It also shows that among the words with a phonetic realization as [L-L] in isolation (like Tone Class 1 and 2), an additional Tone Class has to be posited (Tone Class 3). The word kakwèn 'he/she will vomit it' sounds in isolation like the words belonging to Tone Classes 1 and 2 ([L-L]), but when followed by the word kwila (/X-X/), its /L/ floating tone gets revealed, and $k w i l a ~ s u r f a c e s ~ a s ~[M-L] . ~$

This test shows that Tone Class 4 (kwanä' 'thief' /X-M (H)/) includes the floating tone $/ \mathrm{H} /$ as the subsequent word kula (/X-X/ unspecified for tone) surfaces phonetically as [M-H] instead of as [L-L] (its undisturbed default phonetic realization).

It also shows that among the words with a phonetic realization as [L-M] in isolation (like Tone Class 4 (/X-M (H)/ and Tone Class 7 (/L-M (LS)/), two additional Tone Classes have to be posited (Tone Class 5, and Tone Class 6).

The word nkanān 'I looked for it' sounds in isolation like the words belonging to Tone Class 4 (kwanā 'thief') and Tone Class 7 ( $m u l^{y} \vec{a}^{\prime \prime}$ 'mule'): [L-M]. However, when nkanān is followed by the word kwila (/X-X/), kwila surfaces as [L-L] (its default phonetic realization) proving that the word nkanān belongs to a Tone Class which does not include a floating tone (contrary to Tone Class 4 and Tone Class 7). This new Tone Class is Class 5 and nkanān's tonal representation is $/ \mathrm{X}-\mathrm{M} /$.

Furthermore, the word kàkwēn 'you will vomit it' sounds in isolation like the words belonging to Tone Class 4 (kwanā" 'thief), Tone Class 7 ( $m u^{y} \bar{a}^{\prime \prime}$ 'mule', and Tone Class 5 (nkanān 'I looked for it'): [L-M]. However, when kàkwēn is followed by the word kwila (/X-X/), kwila surfaces as [L-L] (its default phonetic realization) proving that the word kàkwēn also belongs to a Tone Class which does not include a floating tone. However, because the penultimate mora of kàkwēn is actually linked to a /L/ tone, another new Tone Class has to be posited: Class 6 where kàkwēn's tonal representation is $/ \mathrm{L}-\mathrm{M} /$.

Tone Classes 8 (/X-LH/), 9 (/L-LS/), and 11 (/M-H/) all end with a final [H] or [S] whose pitch is maintained in subsequent unlinked moras due to the effect of the Spreading rule. So the word kwila surfaces with as [M-H] after words belonging to Tone Classes 8 and 11, and as [M-LS] after Tone Class 9.

Class 10 (/M-M/) ends in a /M/ tone which does not spread into subsequent tonally unlinked moras, and is not followed by any floating tone. As a result, the word $k$ wila surfaces as [L-L] (its default phonetic realization) after a word belonging to Tone Class 10.

Class 12 (/M-L/) ends in a /L/ tone which does not spread into subsequent tonally unlinked moras, and is not followed by any floating tone. So the word kwila surfaces with as [L-L] after a word belonging to Tone Classes 12.

Finally, Class 13 (/LS-L/) ends in a /L/ tone which does not spread into subsequent unlinked moras but which is followed by a /L/ floating tone. So the word $k$ wila surfaces with as [M-L] instead of [L-L] after a word belonging to Tone Class 13.

In summary, this test which consisted in placing a word unspecified for tone after each of the ten Tone Classes presented in example (2) revealed that some TS's are followed by a floating tone which affect all subsequent tonally unspecified moras.

This test frame 'twelve NOUN old' test frame allowed for the distinction of thirteen TS's (3 more than with the 'twelve NOUN' test frame in §4.6.1.2), defining in turn thirteen Tone Classes. Both this 'twelve NOUN old' test frame and the 'twelve NOUN' test frame are crucial, since in an isolation context, only eight distinct TS's are discernible.

The goal of this section was to distinguish the various Tone Classes and the TS's that mark them. What happens to W2 in every single possible W1W2 sequence is dealt with at a later stage in §4.11.

### 4.6.2 Tone Classes in dimoraic monosyllables

In the previous section the realization of the Tone Classes in disyllabic dimoraic words was demonstrated, and we will now explore how those TS's are realized in dimoraic monosyllables. Example (4) shows that out of thirteen Tone Classes encountered in dimoraic disyllables, only nine occur in dimoraic monosyllables.

Again, one can observe the linking mode of the tonal element(s) for the various TS's: the rightmost tonal element (after the floating tone marked in between parentheses) in the TS links to the rightmost mora in the word from right to left in a one-to-one fashion. When there are more tones than moras to be linked to a word, all left over tones are unrealized.
(4) Tone Classes in dimoraic monosyllables

| Class | Word | Gloss | TS | Phonetic <br> real. | Phonetic <br> real. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| after /X/ |  |  |  |  |  |
| after /LS/ |  |  |  |  |  |

The three following pitch tracks present an overlay of disyllabic dimoraic words (fine line) and monosyllabic dimoraic words (speckled line) belonging to the same Tone Class in order to demonstrate that they occur with the same TS:

Class 11 (/M-H/): kwīná 'snake' versus nkāán 'coconut':
kwiná (/M-H/) versus nkāán (/M-H/)


Class 9 (/L-LS/): yùsín 'turtle' versus kyàâ 'tomorrow':
yùsîn ( / L-LS/) versus kyàa ( / L-LS/)


100 -

Class 4 (/X-M (H)/): keē 'flower' versus kwanā' 'thief:
kwanā́ (/X-M/ /H/) versus keēe (/X-M/ /H/)


The next pitch track presents an overlay of a dimoraic monosyllabic word from Class $4(/ X-M(H) /)$ undisturbed, with the same word when placed after a word ending in /LS/ (speckled line). This figure shows that the word $k e e^{-}$'flower' resembles the word $k w a n \bar{a}{ }^{\prime}$ 'thief' presented above as it also has a linked / $\mathrm{M} /$ tone to its final mora. The pitch track below shows that only the first mora gets affected by the preceding /LS/ tone:
tsaka keē 'one flower' versus tity ùkwá keē 'twelve flowers':
keē (/X-M/ /H/)


Similar effects exist for all the other seven monosyllables (out of eight total) encountered in example (4) as they all behave exactly like their disyllabic companions. This correspondence is explained by the fact that tones link to moras as opposed to syllables as was shown in figure 4.3 on page 124 and figure 4.4 on page 153.

### 4.6.3 Tone Classes in monomoraic monosyllables

Data presented in example (5) illustrates two important phenomena: (1) how alignment of the tonal elements of each TS works in monomoraic
words, and (2) how the predictions of a simple one-tone one-mora alignment scheme may fail to predict the results in a few cases (as in Tone Class 12). Indeed, the linking mode for the TS belonging to Tone Class 12 represents an exception to the more general rule which predicts a one-to one alignment. In this case, both tonal elements /M/ and /L/ link to the same mora. Furthermore, data shown in example (5) shows that the general mode of alignment results in the neutralization of many of the Tone Classes in isolation.

| (5) | Tone Classes in monomoraic monosyllables <br> Class |  |  |  |  | Word |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | Gloss | TS | Phonetic <br> real. | Phonetic <br> real. |  |
| after /X/ |  |  |  |  |  |  |
| after [S] |  |  |  |  |  |  |

For example, Tone Classes 4 (/M (H)/), 7 (/L-M (LS)/ and 10 (/M$\mathrm{M} /$ ) all surface with a single [M] in monomoraic words, and similarly, Tone Classes 1 (/X/), 2 (/L (LS)/), and 3 (/L (L)/) all surface with a single [L] tone in monomoraic words. However, when placed in phrasal context (with subsequent tonally unlinked moras), the presence and the type of floating tone after Tone Class 4 and Tone Class 7 makes all three Tone Classes distinct
from each other. Similarly, Tone Classes 1, 2 and 3 are all distinct from each other based on the presence or not (and the type) of floating tone.

Tone Classes 1, 2 and 3 all have different effect in subsequent tonally unlinked moras: Tone Class 1 which does not have a floating tone does not affect subsequent tonally unlinked moras, Tone Class 2 has a /LS/ floating tone which gets realized on subsequent tonally unlinked moras, and finally Tone Class 3 has a /L/ floating tone which gets realized on subsequent tonally unlinked moras.

Similarly Tone Class 4 has a /H/ floating tone, Tone Class 7 has a /LS/ floating tone, and Tone Class 10 has no floating tone. The effect of each floating tone on subsequent tonally unlinked moras was discussed and illustrated in §4.5.2.

Nevertheless, when monomoraic words with Tone Classes 1, 2, 3, 4, 7 or 10 find themselves in a phrasal context where the subsequent mora is linked to a tone (which blocks spreading or the realization of a floating tone), in this case, the distinction between Tone Class 1, 2, 3 and between 4, 7 and 10 is neutralized because their distinctive feature (i.e the presence or not of a floating tone and if so the type of floating tone) does not get realized. This phenomenon is described and illustrated further on in detail further on in §4.11.1.

Furthermore, the simple one-tone one-mora alignment scheme discussed in $\S 4.3$ fails in monomoraic words with Tone Class 12 which is un-
derlyingly /M-L/ and should link to monomoraic stems as /L/. In fact, monomoraic words with Tone Class 12 (which are extremely rare, so far only one example) surface with both tonal elements /M-L/ on the single mora as shown in example (5). A detailed account of how alignment works in different word shapes is presented in §4.7 and also (cite R-L alignment)

Finally, example (5) shows that certain TS's are not attested for monomoraic monosyllables, leading to the conclusion that the Classes which those TS's would define do not exist for monomoraic monosyllables. Section $\S 4.8$ further on discusses the distribution of Tone Classes according to word shape.

In the section describing the ZAC tonal inventory (§4.2), figure 4.1 and figure 4.2 on page 148 illustrated the realization of each of the five tones on monomoraic words. Here, a similar graph is presented in figure 4.21 showing pitch tracks representing the different pitch contours occurring in monomoraic words. The monomoraic words were pronounced in sequence, and each of their respective pitch tracks were overlaid in order to make comparison of each tone easier. The lowest speckled line represents the word $t^{y} a$ 'cob' (/X/); the fine line just above represents the word $n k w \bar{a}^{\prime}$ 'he/she was' (/M (H)/); the dotted line represents the word nkwá 'you were' (/H/); the dashed line represents the word nǎ 'thing' (/LH/), and finally the dashed and dotted line at the top represents the word pí 'poult' (/LS/).

Figure 4.22 presents an overlay of monomoraic words undisturbed (ne? 'person' /X/ (dashed line) and nkùn" 'turtle' /L (LS)/ (fine line)), with the


Figure 4.21: Monomoraic words pronounced in sequence and overlaid same words when placed after a word ending in /LS/. This figure shows that the word ne? is underlyingly ( $/ \mathrm{X} /$ ) as the final [S] pitch of preceding word is maintained in ne? [S] (dashed and dotted line) whereas nkùn" 'turtle' is underlyingly /L/ since it does not get affected by the preceding [S] (speckled line):

So far the data presented has shown that tones link to the prominent mora (the final mora) in the stem, from right to left, in a one to one fashion. When there are more tones than moras to be linked to a word, all left over tones are left unrealized. Floating tones are always preserved as part of the TS but may or may not be realized, depending on whether or not the subsequent moras are linked with a tone or not. If they are, then the floating tone is left unrealized.


Figure 4.22: ne? (/X/) after /X/ and after /LS/ VERSUS nkùn" (/L (LS)/) after /X/ and after /LS/

### 4.6.4 Tone Classes in trimoraic trisyllables

This word shape is generally restricted to inflected verb forms and Spanish loans. Furthermore, example (6) includes one more Tone Class which only occurs in trimoraic trisyllabic second person singular progressive verb forms (Class 14).

In trimoraic trisyllables, the complete TSs get realized as shown in examples for Tone Class 12, 13, and 14 which all occur with a / $\mathrm{M} /$ tone on the antepenultimate syllable.

In light of the data presented in example (6), we can now formulate the final linking rule:

Tones link to the prominent mora (the final mora) in the stem, from right to left, in a one to one fashion. When there are more tones than moras to be linked to a word, all left over tones are left unrealized. When there are more moras than tones, any left-over moras are unspecified for tone. Floating tones are always preserved. There can only be a maximum of 3 linked tones per word.

Figure 4.23: Linking rule for lexically linked tones
(6) Tone Classes in trimoraic trisyllables

| Class | Word | Gloss | TS | Phonetic real. after /X/ | Phonetic real. <br> after /LS/ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | nkajin ${ }^{\text {y }}$ an | I asked for it | /X-X-X/ | [L-L-L] | [S-S-S] |
| 2 | ntikală | cloud | /X-X-L (LS)/ | [L-L-L] | [S-S-L] |
| 3 | ntusanè | he/she sprays it | /X-X-L (L)/ | [L-L-L] | [S-S-L] |
| 4 | nkayakwēń | he/she vomited it | /X-X-M (H)/ | [L-L-M] | [S-S-M] |
| 5 | nkajilyān | I farted | /X-X-M/ | [L-L-M] | [S-S-M] |
| 6 | nkajilyā | you farted | /X-L-M/ | [L-L-M] | [S-L-M] |
| 7 | mintilē' | napkin | /X-L-M (LS)/ | [L-L-M] | [S-L-M] |
| 8 | nkalukwǎ | he/she swept it | /X-X-LH/ | [L-L-LH] | [S-S-LH] |
| 9 | ntijìn ${ }^{\text {yann }}$ | he/she asks for it | /X-L-LS/ | [L-L-LS] | [S-L-LS] |
| 10 | nkayūjwī | he/she died | /X-M-M/ | [L-M-M] | [S-M-M] |
| 11 | nkajī̀ ${ }^{\text {yán }}$ | he/she asked for it | /X-M-H/ | [L-M-H] | [S-M-H] |
| 12 | ntāsālàn | I am opening it | /M-M-L/ | [M-M-L] | [M-M-L] |
| 13 | ntāsa̋nè | he/she is spray--ing it | /M-LS-L (L)/ | [M-LS-L] | [M-LS-L] |
| 14 |  | he/she is asking for it | /M-H-M/ | [M-H-M] | [M-H-M] |

In example (6), Classes 1 through 11 all undergo spreading of [S] from preceding /LS/ tone into the antepenultimate mora which is tonally unlinked. On the other hand, words from Classes 12-14 all have a antepenultimate mora linked to a /M/ tone which blocks spreading of [S] from preceding /LS/. As it was demonstrated in a similar example with a pitch track and its corresponding autosegmental diagram in figure 4.12 on page 162 , the $[\mathrm{S}]$ pitch of preceding /LS/ tone spreads into tonally unlinked moras until a TS is reached, at which point all subsequent tonally unlinked moras surface with their default [L] pitch.

The pitch tracks below show a word undisturbed (in isolation) (fine line) superposed with the surface pattern for the same word when preceded
by a word ending in /LS/ (speckled line) ${ }^{14}$. The stimulus sentence frame for the disturbed target word is ni syấ? VERB 'despite VERB' where the final mora of the expression ni syấp bears a /LS/ which affects all subsequent tonally unlinked moras. One can observe that only /X/ moras get affected by preceding /LS/.


[^39]



100 $\qquad$

400 ntājínyān / M-H-M/ 'you are asking for it'


100

Furthermore, data in example (6) as well as the pitch tracks above demonstrate that in the antepenultimate syllable, only a two way contrast exists between a $/ \mathrm{M} /$ tone or nothing (i.e a tonally unlinked mora). The distribution of tonal elements within the word is discussed in §4.9.

### 4.6.5 Tone Classes in trimoraic disyllables

Example (7) shows examples of trimoraic disyllabic words for all Tone Classes. The same changes occur in the long syllables presented here as in the dimoraic monosyllables presented in example (4) on page 191. Indeed, trimoraic disyllabic words belonging to Tone Class 6 (/L-M/) surface as /L-M-L/. The latter is in fact an additional Tone Class (Class 15) which only occurs in disyllabic stems with long vowels marking a 2s subject. Again, one can observe that Classes 7 and 8 do not occur either in trimoraic disyllables.


### 4.7 Formal representation of linking rule for mora-linked tones

This section explicitly abstracts the TS's for each Tone Class, and demonstrates how they link to words of various prosodic shapes. Furthermore, it shows that the sequence-defined Classes cut across all prosodic shapes, despite a few gaps that have been shown in preceding sections. The empty space in between the slashes for Tone Class 1 symbolizes the fact that this class is unspecified for tone. The latter is a change from the earlier notation where X is a place holder symbol that characterizes a tonally unspecified mora. The diacritic * shows which tonal element in the TS links
to the prominent mora in the final syllable. When the TS only includes one tonal element and a floating tone marked in between parentheses, then the notation is not used because it would be redundant.

Figure 4.23 formulates the linking rule, and figure 4.24 illustrates how the tonal elements of TS's link to the mora in different word shapes. In figure 4.24, the cells shaded in grey signal the non-occurrence of words of a certain shape with the corresponding Tone Class. Furthermore, note that as was discussed in §4.6.3 with example (5), monomoraic words occurring with Tone Class 12 represent an exception to the linking rule stated above as both tones link to a single mora.

| Class | TS | Trimoraic | Dimoraic | Monomoraic |
| :---: | :---: | :---: | :---: | :---: |
| 1 | / / | $\mu \mu \mu$ | $\begin{array}{c\|} \mu \mu \\ 1 \mid \end{array}$ | $\begin{aligned} & \mu \\ & 1 \end{aligned}$ |
| 2 | /L (LS)/ | $\begin{gathered} \mu \mu \mu \\ \text { I } \\ \text { L(LS) } \\ \hline \end{gathered}$ | $\begin{gathered} \mu \mu \\ \text { I } \\ \text { L(LS) } \\ \hline \end{gathered}$ | $\begin{aligned} & \mu \\ & \text { I } \\ & \mathrm{L}(\mathrm{LS}) \end{aligned}$ |
| 3 | $/ \mathrm{L}(\mathrm{L}) /$ | $\begin{gathered} \mu \mu \mu \\ \quad \\ \quad \mathrm{L}(\mathrm{~L}) \\ \hline \end{gathered}$ |  | $\begin{aligned} & \mu \\ & \text { I } \\ & L(L) \end{aligned}$ |
| 4 | /M (H)/ | $\begin{gathered} \mu \mu \mu \\ \mathrm{I} \\ \mathrm{M}(\mathrm{H}) \\ \hline \end{gathered}$ | $\begin{gathered} \mu \mu \\ \quad \mathrm{I} \\ \mathrm{M}(\mathrm{H}) \\ \hline \end{gathered}$ | $\begin{aligned} & \hline \mu \\ & 1 \\ & \mathrm{M}(\mathrm{H}) \\ & \hline \end{aligned}$ |
| 5 | /M/ | $\begin{array}{r} \mu \mu \mu \\ 1 \\ \mathrm{M} \end{array}$ | $\begin{gathered} \mu \mu \\ \text { I } \\ \mathrm{M} \\ \hline \end{gathered}$ | $\begin{gathered} \mu \\ \mathrm{I} \\ \mathrm{M} \end{gathered}$ |
| 6 | /L-M*/ | $\begin{gathered} \mu \mu \mu \\ \mid \\ \text { L } \\ \text { L } \end{gathered}$ | $\begin{array}{cc} \mu \mu \\ 1 & 1 \\ \text { L } M \end{array}$ | $\begin{array}{r} \mu \\ 1 \\ \mathrm{~L} M \end{array}$ |
| 7 | /L-M* (LS)/ | $\begin{gathered} \mu \mu \mu \\ 1 \\ \text { L M (LS) } \\ \hline \end{gathered}$ | $\begin{array}{\|l\|l\|} \hline \mu \mu \\ l & 1 \\ \text { L M (LS) } \\ \hline \end{array}$ | $\mu$ । L M (LS) |
| 8 | /LH/ | $\begin{gathered} \mu \mu \mu \\ \text { I } \\ \text { LH } \end{gathered}$ | $\begin{gathered} \hline \mu \mu \\ 1 \\ L H \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \mu \\ \mathrm{I} \\ \mathrm{LH} \\ \hline \end{array}$ |
| 9 | /L-LS*/ | $\begin{array}{cc} \mu \mu \mu \\ 1 & 1 \\ \text { L } & \text { LS } \end{array}$ | $\begin{aligned} & \mu \mu \\ & \text { I I } \\ & \text { L LS } \end{aligned}$ | $\begin{gathered} \mu \\ \text { I } \\ L S \end{gathered}$ |
| 10 | /M-M*/ | $\begin{gathered} \mu \mu \mu \\ \text { I I } \\ \mathrm{M} \mathrm{M} \end{gathered}$ | $\begin{aligned} & \mu \mu \\ & 1 \quad 1 \\ & \mathrm{Mm} \end{aligned}$ | $\begin{gathered} \mu \\ \mathrm{I} \\ \mathrm{MM} \\ \hline \end{gathered}$ |
| 11 | /M-H*/ | $\begin{gathered} \mu \mu \mu \\ 1 \text { I } \\ \text { M H } \\ \hline \end{gathered}$ | $\begin{array}{c\|} \hline \mu \mu \\ \text { I I } \\ \text { M H } \end{array}$ | $\begin{gathered} \mu \\ 1 \\ \mathrm{MH} \end{gathered}$ |
| 12 | /M-M-L*/ | $\begin{aligned} & \mu \mu \mu \\ & 111 \\ & \text { MML } \\ & \hline \end{aligned}$ | $\begin{array}{r} \mu \mu \\ 1 \mid \\ \text { MML } \\ \hline \end{array}$ | $\begin{array}{r} \mu \\ \stackrel{\mu}{\mathrm{MML}} \\ \hline \end{array}$ |
| 13 | /M-LS-L*(L)/ | $\begin{array}{lll} \hline \mu & \mu & \mu \\ 1 & 1 & 1 \\ M & L S & L \\ \hline \end{array}$ | $\begin{array}{\|c\|c\|} \hline \mu & \mu \\ 1 & 1 \\ M \operatorname{LS} & \text { L (L) } \\ \hline \end{array}$ |  |
| 14 | /M-H-M*/ | $\begin{gathered} \mu \mu \mu \\ 1 \quad \mid \quad 1 \\ \text { M H M } \end{gathered}$ | $\begin{array}{r\|r} \mu \mu \\ 1 & 1 \\ \text { M H M } \\ \hline \end{array}$ | $\begin{array}{r}\mu \\ \text { M H M } \\ \text { I } \\ \hline\end{array}$ |
| 15 | /L-M-L*/ |  | $\begin{array}{r} \mu \mu \\ 1 \\ \text { L M L } \\ \hline \end{array}$ | $\mu$ L L L |

Figure 4.24: Linking rule for each Tone Class according to word shape

### 4.8 Distribution of Tone Classes according to word shape

This section describes the distributions of the different prosodic shapes per Tone Class. It shows how independent the Classes are in relation to the shapes. Indeed, as the Linking rule shows, the TS of (nearly) any Class can fit any prosodic shape.

Table 4.4 presents the phonological gaps per Tone Class. The numbers represent percentages and data includes inflected verb forms, nouns, adjectives, adverbs etc. Row 1 of the table should be read as follow: 9 percent of the lexicon is a dimoraic disyllabic lexeme with Tone Class 1, 5 percent of the lexicon is a trimoraic trisyllabic lexeme with Tone Class 1 etc.

| Class | TS | $\mu \cdot \mu$ | $\mu \cdot \mu \cdot \mu$ | $\mu \cdot \mu \mu$ | $\mu \mu$ | $\mu$ |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | // | 9 | 5 | .7 | .6 | .3 |
| $\mathbf{2}$ | /L (LS)/ | .3 | .2 | 0 | .2 | .2 |
| $\mathbf{3}$ | /L (L)/ | 5 | 3 | .5 | .9 | 0 |
| $\mathbf{4}$ | /M (H)/ | 3 | .6 | .6 | .2 | .03 |
| $\mathbf{5}$ | /M/ | .1 | .2 | .6 | .1 | 0 |
| $\mathbf{6}$ | /L-M/ | 5 | 4 | 0 | 0 | 0 |
| $\mathbf{7}$ | /L-M (LS)/ | 1 | .4 | .03 | 0 | .03 |
| $\mathbf{8}$ | /LH/ | 3 | 1 | 0 | 0 | .01 |
| $\mathbf{9}$ | /L-LS/ | 6 | 8 | 1 | .6 | .6 |
| $\mathbf{1 0}$ | /M-M/ | 5 | 4 | .5 | .8 | .1 |
| $\mathbf{1 1}$ | /M-H/ | 4 | .3 | 1 | .7 | .1 |
| $\mathbf{1 2}$ | /M-M-L/ | 2 | 2 | 1.5 | 1.1 | .03 |
| $\mathbf{1 3}$ | /M-LS-L (L)/ | .2 | 1 | .2 | 0 | 0 |
| $\mathbf{1 4}$ | /M-H-M/ | .03 | 1 | 0 | 0 | 0 |
| $\mathbf{1 5}$ | /L-M-L/ | 0 | 0 | .7 | 0 | 0 |

Table 4.4: Distribution of Tone Classes according to word shape

One can observe from data in table 4.4 that there is no monomoraic word associated with Tone Classes $3,5,6,13,14$ and 15 . These phonological gaps are motivated by the lexicon as these Tone Classes are restricted to morphologically complex forms in the lexicon, none of which have this shape. The latter is discussed in detail in §4.10.

Tone Class 6 (/L-M/) and Tone Class 14 (/M-H-M/) only occur in stems with short vowels.

Tone Class 15 (/L-M-L/) only occurs in stems with long vowels (trimoraic disyllabic).

Figure 4.25 below shows averaged normalized pitch tracks for the final dimoraic syllable in prosodic words of the shapes $\mu$. $\mu \mu$ and $\mu \mu$. It contrasts Tone Classes 12 (/M-M-L/), 13 (/M-LS-L (L)/), 14 (/M-H-M/) and 15 (/L-M-L/) in order to illustrate how some of them actually merge, and how some surface with a slightly different tonal pattern.

Because Tone Class 14 (/M-H-M/) does not occur on long stems, the stimulus for this Class is a long stem which is part of Tone Class 14 conjugation class, i.e, a stem which is expected to occur with Tone Class 14 according to its aspectual tonal ablaut pattern (see chapter 5 for a detailed account of conjugation Classes)

Since this graph only takes into consideration the final dimoraic syllable, it compares how the two final tonal elements of each TS surfaces phonetically. So for Class 12 it shows /M-L/ only, for Class 13, it shows
/LS-L/ only, for Class 14 (/H-M/) only, and finally for Class 15 (/M-L/) only.

The graph shows that Tone Class 13 (/M-LS-L (L)/) and Tone Class 15 (/L-M-L/) are definitely distinct classes ${ }^{15}$, and that Tone Class 12 and 14 merge.

So long stems expected to occur with Tone Class 14 actually occur with Tone Class 12 instead.


Figure 4.25: Averaged pitch tracks for falling melodies in long stems

[^40]
### 4.9 Distribution of tone within the word

Just as is the case for segments, the final mora is the position within the word where most tonal contrast occurs. Some restrictions exist regarding the occurrence of certain tones within the word. The antepenultimate syllable is the position where most restrictions occur. Indeed, in that position there is a only a contrast between /M/, /L/ or nothing (/ /: mora unspecified for tone). The /LS/ tone may surface in the antepenultimate syllable of a verb form (on the aspect prefix) only and only if the verb stem bears a /L-LS/ tone. So, the occurrence of a /LS/ tone in the antepenultimate syllable results from a highly restricted phonological rule: M—> LS / _-- L-LS

Furthermore, as shown in table 4.5, /L/ and /M/ are the only tonal elements allowed (underlyingly) in all positions of the word. Another interesting fact about the distribution of tone is that the contour /LH/ only occurs in final monomoraic syllables.

Table 4.5 summarizes the distribution of all tones within the word:

| Tone | Antepenult $\mu$ | Penult $\mu$ | Ultimate $\mu$ |
| :---: | :---: | :---: | :---: |
| /L/ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| /M/ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| /H/ | X | $\checkmark$ | $\checkmark$ |
| /LS/ | X | $\checkmark$ | $\checkmark$ |
| /LH/ | X | X | $\checkmark$ |

Table 4.5: Distribution of tones in simplex words

Typologically, it is unusual to have such a large inventory of tones
(five) and so few tonal sequences. Indeed, the only allowed combination of tonal elements occur in fifteen tonal sequences only. The main argument in support of such a large tonal inventory is that the tones actually show no alternation in sandhi context. A /H/ tone always stays a /H/ tone, a /LS/ is always an /LS/ tone etc. However, the /L/ tone is a little bit trickier because as it is demonstrated in section 4.11.2.3 later on, they are mutable when hit by a floating tone.

### 4.10 Tonal Sequences as Lexical Tone Classes

The TS's are composed of a combination of tones or tonal elements and are associated with words. As illustrated in the sections to follow, not all combinations of tones occur as a TS. As was discussed in the preceding section, some restrictions exist in the combinatoric possibilities, as for example, only /L/ and /M/ tones occur in the antepenultimate position; /LH/ tone occurs in the final mora only; and only /L/, /H/, and /LS/ tones occur as floating tones.

This section discusses all of the fifteen Lexical Tone Classes indicating their prevalence in different areas of the lexicon. The Classes highlighted in dark grey are 'major Classes', they include major open-ended Classes of stems while 'the minor Classes' (white background) have important restrictions as some can be the result of historical tonal combinations or fulfill specific grammatical functions in the language.

Major Classes occur in most or all areas in lexicon, and will be fairly well-populated such as Classes $1,2,3,4,8,9,10,11$. Some Classes are borderline major Classes because they are very restricted to one specific area in lexicon but have many lexemes associated with them such as Class 7 (Spanish loans are numerous in the lexicon). On the other hand, Class 12 is a borderline major Class for opposite reasons as it covers a wider range of functions in the lexicon, but lexemes associated with Class 12 are rather scarce in the lexicon.

Table 4.6: Prevalence of Tonal Sequences in the lexicon. (Modified from (Villard \& Woodbury, 2012)

Class 1 which is unspecified for tone occurs on about 10 percent of lexemes in the lexicon. It also occurs in the numerical system but only on the numbers from 1 to 10 .

Class 2 and 3 have different floating tones for different parts of speech. Class 2 only includes nouns (and a couple of numbers: ntiln ${ }^{y}$ òn" 'fifteen' and $^{\prime}$ nka?yò" 'five' (when added to a base number) whereas Class 3 includes lexemes belonging to verb, adverb, and adjective classes including the number twenty kală.

Class 5 and class 6 are unique to 1 sg and 2 sg inflected $\mathrm{N} / \mathrm{Adj} / \mathrm{V}$ stems respectively.

Class 7 marks the majority of Spanish loan nouns and is exclusively restricted to this word class.

Class 9, which is a major Tone Class, does not present any particular restrictions as far as word class is concerned; it may occur on nouns, on inflected verb forms as well as on adjectives. One interesting fact to note, is that adjectives describing small things or nouns referring to small animals or babies bear this Tone Class. For example, ly ơ? 'little', ly ${ }^{\text {y }}$ èe 'baby', kùwí? 'baby' (endearing), mpî̉ 'dram of liquor', ly̌ỉ? 'parakeet', and chèrêe 'cockerel' and chere' 'cock' which form a doublet. Campbell and Woodbury (2010) speculates that this phenomenon is a sound symbolic effect resulting from Tone Class 1 words (unspecified for tone) shifting to the Tone Class with the cute sounding rise i.e. Tone Class 9.

Class 12 is the result of historic tone combinations involving a mid tone progressive prefix / $\mathrm{M} /$ (possibly with a some type of high floating tone) and a/X/ stem (Campbell \& Woodbury, 2010) . Only a few nouns occur with this tone and some examples are ntsātin 'plum' and tāàn 'people from the valley of Oaxaca'. Many progressive verb forms occur with this Tone Class when the stem unspecified for tone is combined with the progressive prefix bearing a /M/ tone. For example, nka-sikwan 'he/she plucked it' (/X-X-X/) becomes ntā-sīkwàn 'he/she is plucking it' (/M-M-L/).

Class 13 is the result of historic tone combinations involving the progressive prefix /M/ (possibly with some type of high floating tone) being combined to a stem with a /L (L)/ tone (Tone Class 3). This Tone Class also extends to some completive verb forms where it mainly occurs with transitive stems that are underlyingly Tone Class 3 . As illustrated in §4.8, this Tone Class tends to occur on trimoraic stems ${ }^{16}$ as in nkwixxákwèn' 'he/she responded' and ntīxákwèn 'he/she is responding'. This class may also occur in very few dimoraic lexemes, as in nkwíxì 'tomato' and sîty òn` 'dove'.

Class 14 is solely restricted to 2 sg progressive verb forms occurring with a stem of Class 11 tone (/M-H/) in their corresponding 3rd person completive form. It only occurs on trimoraic stems.

Class 15 is about as restricted in its distribution as Class 14 as it only

[^41]occurs on 2 sg verb forms whose stems are either dimoraic monosyllabic or trimoraic disyllabic.

### 4.11 Tone realization at the sentence level revisited

At the beginning of this chapter, section $\S 4.5$ discusses tone realization at the sentence level describing three major processes: the behavior of moras unspecified for tone, the persistence or spreading of /H/, /LH/ and /LS/ tones into moras unspecified for tone, and finally the behavior of three of the five tones as lexically unlinked or floating tones, and their effect on tonally unlinked moras in subsequent words. By presenting the realization of the tones in connected speech, §4.5 exposed the main post-lexical tonal rules of the language (i.e. the behavior of tonally unlinked moras, the Spreading rule (figure 4.13), and a preliminary floating tone linking rule (figure 4.18). However, what was lacking from that description were two important phenomena: 1) a more detailed description of spreading when W2 is linked with tone, and 2) an account of floating tone behavior in W2 linked with tone. This section offers a complete description and illustration of these two phenomena.

### 4.11.1 Description of Spreading revisited

Section 4.5.1 earlier illustrated the spreading of /H/, /LH/ and /LS/ tones into subsequent tonally unspecified moras. It also briefly discussed with just one example how Spreading gets interrupted when a tonally linked
mora is encountered. This section has the sole purpose of providing more examples of this phenomenon where W2 is tonally linked to different tone Classes in order to illustrate the Spreading rule stated in figure 4.13 on page 163.

The pitch tracks in figure 4.26 and figure 4.27 show the same phenomenon as figure 4.12 on page 162 (i.e Spreading interrupted by a tonally linked mora), but for Spreading of the high pitch [H] (from /LH/) lusǐ 'butterfly' and Spreading of the super high pitch [S] (from /L-LS/) yùsín 'turtle' into tonally unspecified moras until a tone-linked mora is encountered in the word $l^{y} \bar{u} w \bar{a}$ 'annona' (/M-M/). The $/ \mathrm{M} /$ tone does not spread in subsequent unlinked moras, so as a result all subsequent words to $l^{y} \bar{u} w \bar{a}$ 'annona' (/M-M/) surface with their default low pitch.


Figure 4.26: Persistence of [H] pitch (from /LH/) in subsequent unspecified moras until /M/ (from /M-M/)


Figure 4.27: Persistence of [S] pitch (from /L-LS/) in subsequent unspecified moras until /M/ (from /M-M/)

The pitch track in figure 4.28 shows the spreading of final $[H]$ pitch of word kwinná 'snake' (/M-H/) into all subsequent words made of tonally unlinked moras until a tone-linked mora is encountered in the word ja?wä" 'banana' (/X-L (LS)/). The word kula 'old' (/X-X/) hosts the preceding word's floating tone /LS/, and gets realized as [M-LS], because of the /M/ tone insertion rule (as stated in figure 4.18 on page 171). All following words made of tonally unlinked moras undergo spreading of the final [S] pitch from floating tone /LS/.


Figure 4.28: Persistence of [H] pitch (from $/ \mathrm{M}-\mathrm{H} /$ ) in subsequent tonally unspecified moras until /L/ (from /X-L (LS)/)

The pitch track in figure 4.29 illustrates the spreading of final [H] pitch of word lusǐ 'butterfly' (/X-LH/) into all subsequent words made of tonally unlinked moras until a tone-linked mora is encountered in the word ja?wă" 'banana' (/X-L (LS)/). The word kula 'old' (/X-X/) hosts the preceding word's floating tone /LS/, and gets realized as [M-LS], because of the /M/ tone insertion rule. All following words made of tonally unlinked moras
undergo spreading of the final [S] pitch from floating tone /LS/.


Figure 4.29: Persistence of [H] pitch (from /X-LH/) in subsequent tonally unspecified moras until /L/ (from /X-L (LS)/)

The pitch track in figure 4.30 shows the spreading of final [S] pitch of word yùsín 'turtle' (/L-LS/) into all subsequent words made of unlinked moras until a linked mora is encountered in the word ja?wă' 'banana' (/X-L (LS)/). The word kula 'old' (/X-X/) hosts the preceding word floating tone /LS/, and gets realized as [M-LS], because of the /M/ tone insertion rule. All following words made of unlinked moras undergo spreading of the final [S] pitch from floating tone /LS/.


Figure 4.30: Persistence of [S] pitch (from /L-LS/) in subsequent tonally unspecified moras until /L/ (from /X-L (LS)/)

### 4.11.2 Description of floating tone realization revisited

Section §4.5 earlier discussed the behavior of the three floating tones on tonally unlinked moras in subsequent words. This section's main goal is to provide a complete description and illustration of the behavior of all floating tones in phrasal context with W2 of all Tone Classes (as opposed to only showing tonally unspecified W2). It also presents a final floating tone linking rule building up on previously stated 'preliminary floating tone rules' offered in figure 4.18 on page 171 and in figure 4.31 on page 232.

Just for convenience, the 'Preliminary Floating Tone Rule 1' is reiterated below:

In a sequence of words where W1 hosts a floating tone and W2 is unspecified for tone, the floating tone links to the rightmost mora in W2. All moras to the left of the (newly linked) floating tone in W2 are assigned a/M/ tone.

### 4.11.2.1 Floating /LS/ followed by all Tone Classes

Example 8 below, presents the word tily $a^{\prime \prime}$ 'early' ${ }^{17}$ (/L (LS)/) followed by different verb forms each bearing a different Tone Class. The dashes --signal the lack of an example to illustrate the sandhi pattern in question.

[^42](8) Realization of floating tone/LS/ in all Tone Classes

| Class | Word | Gloss |  | Phonetic realization of W2 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | til $^{\text {y }}$ a ${ }^{\prime \prime}$ nkajin ${ }^{\text {y }}$ an | early I asked for it | /X/ | [M-M-LS] |
| 2 | --- | --- | /L (LS)/ | --- |
| 3 | tilyă" ntusanè | early he/she sprays it | /L (L)/ | [M-LS-L] |
| 4 | $t i l^{\text {y }}$ ă" nkayakwēn' | early he/she vomited it | /M (H)/ | [M-LS-M] |
| 5 | till ${ }^{\text {a }}$ " $n k a j i l^{\text {l }}$ ān | early I farted | /M/ | [M-LS-M] |
| 6 | til ${ }^{\text {y }}$ ă ${ }^{\text {nkasàlō }}$ | early you threw | /L-M/ | [LS-L-M] |
| 6 |  | it away |  |  |
| 7 | --- | --- | /L-M (LS)/ | --- |
| 8 | $\mathrm{til}^{\mathrm{y}} \mathrm{a}^{\prime \prime}$ nkalukwǎ | early he/she swept it | /LH/ | [M-LS-LH] |
| 9 | til $^{\text {y }}$ á ntusàla̋ | early he/she opens it | /L-LS/ | [LS-L-LS] |
| 10 | $t i l^{\text {y }}$ ă" nkajīnyān | early you asked for it | /M-M/ | [LS-M-M] |
| 11 | til ${ }^{\text {y }}$ ă ${ }^{\text {nkajīnyán }}$ | early he/she asked for it | /M-H/ | [LS-M-H] |
| 12 | $\mathrm{til}^{\mathrm{y}}$ à ${ }^{\text {ntājīnyàn }}$ | early I am asking for it | /M-M-L/ | [M-M-L] |
| 13 | tily ${ }^{\text {y }}$ " ntāsa̋lò | early he/she is throwing it away | /M-LS-L (L)/ | [M-LS-L] |
| 14 | $t i l^{\text {l }}$ à ${ }^{\text {a }}$ ntāsálā | early you are opening it | /M-H-M/ | [M-H-M] |
| 15 | til ${ }^{\text {y }}$ ă kòlōò | early you will remove it | /L-M-L/ | [L-M-L] |

The following pitch tracks illustrate and explain the data presented in example (8).
The pitch track below shows how the floating /LS/ from tily ${ }^{\text {a }}$ (/L (LS)/) gets realized on the
rightmost mora of subsequent word $n k a j i n^{y}$ an (/X-X-X/), and it also demonstrates how all the moras to
the left of the newly linked tone /LS/are assigned a/M/ tone:

The next one shows how the floating /LS/ from tily ${ }^{\text {à" }}$ gets realized on the rightmost unlinked
mora (penultimate mora) of subsequent word ntusanë (/L (L)/, and it also demonstrates how the mora
to the left of the newly linked tone /LS/ (the antepenultimate mora of ntusanè) gets assigned a /M/
tone:
ntusanè 'he/she sprays it' /X-X-L (L)/: [L-L-L] $\rightarrow$ [M-LS-L]

The next two present the same phenomena described in the preceding pitch track but instead

All of the following pitch tracks show more examples of the linking of the floating tone /LS/ to

## words bearing different Tone Classes.



The pitch tracks below show how the floating tone /LS/ does not get realized as all the moras
in subsequent words are already linked to a tone:



The data presented in this section showed that when W2 is linked to a tone, the floating tone from W1 links to the rightmost available (tonally unlinked) mora in W2. Furthermore, it also demonstrated how the mora to the left of the newly linked tone gets assigned a / M/ tone. However, in the case where W2 has no available moras left after the linkage of the floating tone, the $/ \mathrm{M} /$ tone insertion does not occur. Finally, in the case where all moras in W2 are already linked to a tone, the floating tone from W1 does not get realized at all.

In light of the data just presented the 'Preliminary Floating Tone Rule 1 ' may now be revised from:

In a sequence of words where W1 hosts a floating tone and W2 is unspecified for tone, the floating tone links to the rightmost mora in W2. All moras to the left of the (newly linked) floating tone in W2 are assigned a/M/ tone.

To the following statement:
In a sequence of words where W1 hosts a floating tone, the floating tone links to the rightmost tonally unlinked mora in W2 (if any available). All moras (if any available) to the left of the newly linked floating tone in W2 are assigned $a / M /$ tone.

Figure 4.31: Preliminary Floating Tone rule 2

### 4.11.2.2 Floating /H/ followed by all Tone Classes

Example (9) below, presents the word $k w \bar{a}^{\prime}$ 'already' (Tone Class 4: /M (H)/) followed by different verb forms bearing all tonal sequences
present in the language. The dashes --- signal the lack of an example to illustrate the sandhi pattern in question.
(9) Realization of floating tone /H/ in all Tone Classes

| Class | Word | Gloss | Underlying rep. of W2 | Phonetic realization of W2 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | kwā́ nkajinyan | already I asked for it | /X/ | [M-M-H] |
| 2 | --- | --- | /L (LS)/ | --- |
| 3 | kwā' ntusanè | already he/she sprays it | /L (L)/ | [M-H-L] |
| 4 | kwā nkayakwēn' | already he/she vomited it | /M (H)/ | [M-H-M] |
| 5 | kwā nkajilyān | already I farted | /M/ | [M-H-M] |
| 6 | kwā’ nkasàlō | already you threw it away | /L-M/ | [H-L-M] |
| 7 | --- | --- | /L-M (LS)/ | --- |
| 8 | kwā nkalukwǎ | already he/she swept it | /LH/ | [M-H-LH] |
| 9 | kwā ntusàla̋ | already he/she opens it | /L-LS/ | [H-L-LS] |
| 10 | kwā’ nkajīnyān | already you asked for it | /M-M/ | [H-M-M] |
| 11 | kwā nkajīn ${ }^{\text {y }}$ a | already he/she asked for it | /M-H/ | [H-M-H] |
| 11 |  | for it |  |  |
| 12 | kwā ntājīnyàn | already I am opening it | /M-M-L/ | [M-M-L] |
| 13 | kwā ntāsálò | already he/she is throwing it away | /M-LS-L (L)/ | [M-LS-L] |
| 14 | kwā ntāsálā | already you are opening it | /M-H-M/ | [M-H-M] |
| 15 | kwā' kòlōò | already you will remove it | /L-M-L/ | [L-M-L] |

All of the following pitch tracks illustrate and explain the data presented in example (9). The
pitch tracks demonstrate the 'Preliminary Floating Tone Linking Rule 2' stated on page 232:
The pitch track below shows how the floating $/ \mathrm{H} /$ from $k w \bar{a}^{\prime}(/ \mathrm{M}(\mathrm{H}) /$ ) gets realized on the
rightmost mora of subsequent word $n k a j i n^{y}$ an (/X-X-X/), and it also demonstrates how all the moras to
the left of the newly linked tone $/ \mathrm{H} /$ are assigned a $/ \mathrm{M} /$ tone:
$n k a j i n^{y}$ an 'I asked for it' /X-X-X/: [L-L-L] $\rightarrow$ [M-M-H]

The next one shows how the floating $/ \mathrm{H} /$ from $k w \bar{a}^{\prime}(/ \mathrm{M}(\mathrm{H}) /$ ) gets realized on the rightmost unlinked mora (penultimate mora) of subsequent word ntusanë (/L (L)/, and it also demonstrates how
the mora to the left of the newly linked tone $/ \mathrm{H} /$ (the antepenultimate mora of ntusanè) gets assigned

The next two pitch tracks present the same phenomena described in the preceding pitch track

This next pitch track shows how the floating $/ H /$ from $k w \bar{a}^{\prime}(/ M(H) /$ ) gets realized on the right-
most unlinked mora (the penultimate mora as the final mora is linked to a /LH/) of subsequent word
nkalukwǎ. After the linkage of the floating tone to the rightmost available tonally unlinked mora in
penultimate mora of word nkalukwǎ, the mora to the left of the newly linked tone $/ \mathrm{H} /$ gets assigned a

## /M/ tone:

nkalukwă 'he/she sweeps it' /X-X-LH/: [L-L-LH] $\rightarrow$ [M-H-LH]

This next pitch track shows how the floating /H/ from $k w \bar{a}^{\prime}(/ \mathrm{M}(\mathrm{H}) /$ ) gets realized on the right-
most unlinked mora (the antepenultimate mora as both the penultimate and the final mora are linked
to a $/ \mathrm{M} /$ and a $/ \mathrm{M} /$ tone respectively) of subsequent word $n k a j i \bar{n} n^{y} \bar{a} n$. After the linkage of the floating
tone to the only available tonally unlinked mora in antepenultimate mora of word $n k a j i ̄ n a ̄ n$, the /M/
tone insertion does not occur:
$n k a j i ̄ n^{y} \bar{a} n$ 'you asked for it' /X-M-M/: [L-M-M] $\rightarrow$ [H-M-M]

This next pitch track shows how the floating $/ H /$ from $k w \bar{a}^{\prime}(/ M(H) /$ ) gets realized on the right-
most unlinked mora (the antepenultimate mora as both the penultimate and the final mora are linked
to a /M/ and a /H/ tone respectively) of subsequent word nkajīn ${ }^{y}$ án. After the linkage of the floating tone to the only available tonally unlinked mora in antepenultimate mora of word nkajīn án, the /M/
tone insertion does not occur:
$n k a j i ̄ n{ }^{y}$ án 'he/she asked for it' /X-M-H/: [L-M-H] $\rightarrow$ [H-M-H]

The pitch tracks below show how the floating tone $/ \mathrm{H} /$ does not get realized as all the moras in



The data in this section shows that the Preliminary Floating Tone rule 2 stated in 4.31 applies to all examples presenting a floating $/ \mathrm{H} /$. As a result, in light of floating $/ \mathrm{H} /$, the rule does not need to be revised.

To conclude these two sections about the description of the high floating tones realization, the figure below presents an overlay of both floating /H/ and floating /LS/ realized on a /X-X-X/ word: $k w \bar{a}^{\prime} n k a j i n^{y}$ an 'I already asked for it' (/M (H)/ /X-X-X/) versus tily ${ }^{\prime \prime}$ nkajin ${ }^{y}$ an (/L (LS)/ /X-X-X/) 'early I asked for it'. We can clearly see that both floating tones get realized on the right most mora of the word $n k a j i i^{y}$ anand that all the tonally unlinked moras to the left of the newly linked tone are assigned a/M/ tone.


### 4.11.2.3 Floating /L/ followed by all Tone Classes

This section presents the behavior of floating /L/, we will see that it behaves differently from the two other floating tones $/ \mathrm{H} /$ and /LS/. As a result, in light of the data presented here, the 'Preliminary Floating Tone Linking Rule 2' will need to be revised.

Example (10) below, presents the words 1 ă 'not' or kalä 'twenty' (/L (L)/) followed by different verb forms (or by a noun in the case of kalà) each bearing a different Tone Class. In example (10), the column representing the phonetic realization of the target words show new sandhi patterns which have not been discussed before and which will be the basis for the revision of the 'Preliminary Floating Tone linking rule 2'. The dashes --signal the lack of an example to illustrate the sandhi pattern in question.
(10) Realization of floating tone /L/ in all Tone Classes

| Class | Word | Gloss |  | Phonetic realization of W2 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1à nkajinyan | I did not ask for it | /X/ | [M-M-L] |
| 2 | --- | --- | /L (LS)/ | --- |
| 3 | Pà ntusanè | he/she sprays it | /L (L)/ | [M-M-M] |
| 4 | 1à nkayakwēń | he/she did not vomit it | /M (H)/ | [M-M-M] |
| 5 | ?ă nkajilyān | I did not fart | /M/ | [M-M-M] |
| 6 | 2à nkasàlō | you did not throw it away | /L-M/ | [M-M-M] |
| 7 | kalà mansànă" | twenty apples | /L-M (LS)/ | [M-L-M] |
| 8 | 1à nkalukwǎ | he/she did not sweep it | /LH/ | [M-M-LH] |
| 9 | Pà ntusàla̋ | he/she does not open it | /L-LS/ | [M-L-LS] |
| 10 | 1à nkajīnyān | you did not ask for it | /M-M/ | [M-M-M] |
| 11 | 1à nkajīn ${ }^{\text {yán }}$ | he/she did not ask for it | /M-H/ | [M-M-H] |
| 12 | Pà ntājīnyàn | $I$ am not asking for it | /M-M-L/ | [M-M-L] |
| 13 | Pà ntāsa̋lò | he/she is throwing it away | /M-LS-L (L)/ | [M-LS-L] |
| 14 | Pà ntāsálā | you are not opening it | /M-H-M/ | [M-H-M] |
| 15 | Tà" kòlōò | you will not remove it | /L-M-L/ | [L-M-L] |

All of the following pitch tracks illustrate and explain the data presented in example (10).
The pitch track below shows the expected sandhi pattern as stated in the 'Preliminary Floating
Tone Linking Rule 2'. It illustrates how the floating /L/ from $3{ }^{\prime}$ (/L (L)/) links to the rightmost mora
on subsequent tonally unlinked word, and how all the unlinked moras to the left of the newly linked

The following four pitch tracks present a floating tone behavior that has not been discussed yet.
It seems that the floating /L/ tone from $3 \dddot{a}$ (/L $(\mathrm{L}) /$ ) does not get realized at all
In the case of ntusanè 'he/she sprays it' /X-X-L (L)/, the final linked/L/ tone of ntusanè gets
replaced by a $/ \mathrm{M} /$ tone resulting in a $[\mathrm{M}-\mathrm{M}-\mathrm{M}]$ surface pattern instead of [M-L-L] if the 'preliminary
floating tone rule 2 ' were applied:
ntusaně 'he/she sprays it' /X-X-L (L)/: [L-L-L] $\rightarrow$ [M-M-M]

In the example just below, the floating /L/ from $2 a^{`}(/ L(L) /$ ) does not get realized either, and
the linked /L/ tone in the penultimate syllable in nkasàlō (/X-L-M/) gets replaced by a/M/ tone. The
tonally unlinked mora to the left of the newly linked $/ \mathrm{M} /$ tone gets assigned a $/ \mathrm{M} /$, just as it is the case
for ntusanè 'he/she sprays it' /X-X-L (L)/ above. The surface realization pattern for nkasàlō is [M-M-M] instead of the expected [L-L-M]:
nkasàlō 'you threw it away' /X-L-M/: [L-L-M] $\rightarrow$ [M-M-M]


In the next three examples below, the floating /L/ tone from $1 \underset{a}{ }$ (/L (L)/) does not get realized

$n k a j i ̄ n^{y} \bar{a} n$ 'you asked for it' /X-M-M/: [L-M-M] $\rightarrow$ [M-M-M]


In the example below, the floating /L/ tone from $2 \dddot{a}(/ L(L) /$ ) does not get realized either and the
mora-linked /L/ tone on the penultimate mora of word ntusàlá /X-L-LS/ stays a /L/ (instead of being
replaced by a / $\mathrm{M} /$ as we have seen on other previous examples). Then, the tonally unlinked mora in the antepenultimate syllable is assigned a/M/ tone:
ntusàla̋ 'he/she opens it' /X-L-LS/: [L-L-LS] $\rightarrow$ [M-L-LS]

The three pitch tracks below illustrate the expected sandhi patterns according to the 'Preliminary
Floating Tone Linking rule 2 ' as the floating tone does not get realized at all since all the subsequent
moras are already linked to a tone:
$n t a ̄ j i ̄ n y$ yàn 'I am asking for it' $/ \mathrm{M}-\mathrm{M}-\mathrm{L} /:[\mathrm{M}-\mathrm{M}-\mathrm{L}] \rightarrow[\mathrm{M}-\mathrm{M}-\mathrm{L}]$

$n t a ̄ s a ́ l a ̄ ~ ' y o u ~ a r e ~ o p e n i n g ~ i t ' ~ / M-H-M /: ~[M-H-M] ~ \rightarrow ~[M-H-M] ~$


The data presented in this section showed that the floating /L/ has a completely different behavior than the two other floating tones $(/ \mathrm{H} /$ and /LS/) when realized in W2 which have at least one tonally unlinked mora. We saw earlier in section 4.5 .2 on page 163 that when W2 are tonally unspecified, the expected pattern arises, i.e. the floating /L/ links to the rightmost mora in the subsequent word, and all the moras to the left of the newly linked tone are assigned a/M/ tone.

We also observed in this section that when W2 have no tonally unlinked moras available, as expected, the floating /L/ does not get realized at all. In order to account for the behavior of the /L/ floating tone in W2 which has at least one tonally unlinked mora, the final floating tone linking rule ought to be stated in separate rules. One rule should be posited to account for the fairly straightforward behavior of floating $/ \mathrm{H} /$ and floating /LS/ which is basically the same as 'the Preliminary Floating Tone Linking rule 2 ', and other separate rules to account for the various sandhi patterns of floating /L/ in different Tone Classes ${ }^{18}$. The final version of the Floating Tone Linking rules is formulated in figures 4.32 and 4.33 below:

[^43]In a sequence of words where W1 hosts a/H/ or a /LS/ floating tone, the floating tone links to the rightmost tonally unlinked mora in W2 (if any available). All moras (if any available) to the left of the newly linked floating tone in W2 are assigned a/M/ tone.

Figure 4.32: Final Floating Tone Linking rule for /H/ and /LS/

General Rule: In a sequence of words where W1 hosts a /L/ floating tone and W2 belongs to Tone Class 1 (unspecified for tone), the floating tone links to the rightmost mora in W2. All moras to the left of the newly linked floating tone in W2 are assigned a/M/ tone.
Subrule A: In a sequence of words where W1 hosts a /L/ floating tone and W2 occurs with Tone Class 2 (/L (LS)/, 3 (/L (L)/, 6 (/L-M/) or 15 (/L-M-L/), the mora-linked $/ L /$ tone gets replaced by $a / M /$ tone, and all moras (if any available) to the left of the newly linked /M/ tone in W2 are assigned a/M/ tone.
Subrule B: In a sequence of words where W1 hosts a /L/ floating tone and W2 occurs with Tone Class 4 (/M (H)/, 5 (/M/), 10 (/M-M/) or 11 (/M-H/), the floating /L/ does not get realized at all, and all tonally unlinked moras to the left of the leftmost mora-linked tone are assigned a/M/ tone.
Subrule C: In a sequence of words where W1 hosts a /L/ floating tone and W2 occurs with Tone Class 9 (/L-LS/), the floating tone links to the rightmost tonally unlinked mora in W2 (if any available). All moras (if any available) to the left of the newly linked floating tone in W2 are assigned a /M/ tone.
Subrule D: In a sequence of words where W1 hosts a/L/ floating tone and W2 is dimoraic and occurs with Class 7 (/L-M (LS)/, the mora-linked /L/ tone gets replaced by a $/ M /$ tone. If $W 2$ is a trimoraic Tone Class 7, then the surface pattern is the same as Subrule C ([M-L-M]).

Figure 4.33: Final Floating Tone Linking rules for /L/

### 4.11.2.4 Formal representation of Linking Rules for floating tones

Figure 4.34 shows a formal representation of the Linking Rule for floating /LS/, and demonstrates all the various linking modes according to word shape. One important fact to notice is that for monomoraic W2 occurring with Tone Class 2 and 3, the floating /LS/ actually links to the final mora which is then linked to two tonal elements. There are very few instances of this phenomenon: these two cases just mentioned here, and also the case of monomoraic Tone Class 12 word, where both tonal elements /M/ and /L/ of the TS /M-M-L/ link to the final mora as shown in the figure 4.34 below.

In figure 4.34, the cells shaded in grey signal the non-occurrence of words of a certain shape with the corresponding Tone Class.

| W1 | W2 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Floating tone rep. | Class | Tone rep. | Trimoraic | Dimoraic | Monomoraic |
| /LS/ | 1 | / / | $\begin{array}{cc} \hline \mu \mu \mu \\ 1 & 1 \\ \text { M M LS } \end{array}$ | $\begin{array}{\|l\|} \hline \mu \mu \\ 11 \\ \text { MLS } \end{array}$ | $\begin{aligned} & \hline \mu \\ & 1 \\ & L S \end{aligned}$ |
|  | 2 | /L (LS)/ | $\begin{array}{\|lll\|} \hline \mu & \mu & \mu \\ 1 & 1 & 1 \\ \text { M LSS L (LS) } \\ \hline \end{array}$ | $\begin{array}{ccc} \mu & \mu \\ 1 & 1 \\ \text { LS L (LS) } \end{array}$ |  |
|  | 3 | $/ \mathrm{L}(\mathrm{L}) /$ | $\begin{array}{lll} \hline \mu & \mu \mu \\ 1 & 1 & 1 \\ \text { MLS L (L) } \end{array}$ | $\begin{array}{cc} \hline \mu & \mu \\ 1 & 1 \\ \text { LS } & \text { L (L) } \end{array}$ | $\hat{\Lambda}_{\mathrm{LS}_{\mathrm{L}(\mathrm{~L})}}$ |
|  | 4 | /M (H)/ | $\begin{array}{\|lll} \hline \mu & \mu & \mu \\ 1 & 1 & 1 \\ \text { M LS M } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \mu \mu \\ 1 \\ \text { I } \\ \text { LS } \mathrm{M}(\mathrm{H}) \\ \hline \end{array}$ | $\begin{aligned} & \hline \mu \\ & 1 \\ & \mathrm{M}(\mathrm{H}) \\ & \hline \end{aligned}$ |
|  | 5 | /M/ | $\begin{aligned} & \mu \mu \mu \\ & \prime \operatorname{l} \mid \\ & \text { MLS } \end{aligned}$ | $\begin{array}{cc} \hline \mu & \mu \\ 1 & 1 \\ \text { LS } \mathrm{M} \end{array}$ | $\begin{gathered} \hline \mu \\ \text { I } \\ \mathrm{M} \end{gathered}$ |
|  | 6 | /L-M/ | $\begin{array}{\|lll} \hline \mu & \mu & \mu \\ 1 & I & 1 \\ \text { LS } & \text { L M } \\ \hline \end{array}$ | $\begin{array}{\|l\|l\|} \hline \mu \mu \\ 1 & 1 \\ \text { L M } \\ \hline \end{array}$ | $\begin{array}{r} \mu \\ 1 \\ \mathrm{~L} M \\ \hline \end{array}$ |
|  | 8 | /LH/ | $\begin{array}{ccc} \mu & \mu & \mu \\ 1 & 1 & 1 \\ \text { MLS LH } \end{array}$ | $\begin{array}{\|cc\|} \hline \mu & \mu \\ 1 & 1 \\ \text { LS LH } \\ \hline \end{array}$ | $\begin{gathered} \mu \\ 1 \\ \text { LH } \end{gathered}$ |
|  | 9 | /L-LS/ | $\begin{gathered} \mu \mu \mu \\ \text { I \| \| } \\ \text { LS L LS } \end{gathered}$ | $\begin{aligned} & \mu \mu \\ & \hline \mu 1 \\ & \text { L LS } \end{aligned}$ | $\begin{gathered} \mu \\ \hline 1 \\ \text { L LS } \end{gathered}$ |
|  | 10 | /M-M/ | $\begin{array}{ll} \hline \mu \mu \mu \\ 1 & 1 \\ \text { LS M M } \\ \hline \end{array}$ | $\begin{array}{\|l\|l\|} \hline \mu \mu \\ 1 & 1 \\ \mathrm{MM} \\ \hline \end{array}$ | $\begin{gathered} \mu \\ 1 \\ \mathrm{M} \mathrm{M} \end{gathered}$ |
|  | 11 | /M-H/ | $\begin{array}{ccc} \mu & \mu \mu \\ 1 & 1 & 1 \\ \text { LS } & \text { M } \end{array}$ | $\begin{aligned} & \mu \mu \\ & 11 \\ & \mathrm{MH} \\ & \hline \end{aligned}$ | $\begin{array}{r} \mu \\ 1 \\ \mathrm{MH} \\ \hline \end{array}$ |
|  | 12 | /M-M-L/ | $\begin{array}{ll} \mu \mu \mu \\ 1 & 1 \\ \text { M M L } \end{array}$ | $\begin{gathered} \mu \mu \\ 11 \\ \mathrm{MML} \end{gathered}$ | $\begin{gathered} \mu \\ \wedge \\ \mathrm{MML} \end{gathered}$ |
|  | 13 | /M-LS-L (L)/ | $\begin{array}{\|lll\|} \hline \mu & \mu & \mu \\ 1 & 1 & 1 \\ M \operatorname{MSS} & \\ \hline \end{array}$ | $\begin{array}{cc} \mu & \mu \\ 1 & 1 \\ M \operatorname{LS} & \text { L (L) } \\ \hline \end{array}$ |  |
|  | 14 | /M-H-M/ | $\begin{array}{\|l\|ll\|} \hline \mu & \mu & \mu \\ 1 & 1 & 1 \\ M & H \\ \hline \end{array}$ | $\begin{array}{r} \mu \mu \\ 11 \\ \text { MHM } \end{array}$ |  |
|  | 15 | /L-M-L/ | $\begin{array}{ll} \mu \mu \mu \\ 1 & 1 \\ L & \text { M L } \end{array}$ | $\begin{array}{r} \mu \mu \\ 11 \\ \mathrm{LML} \end{array}$ | $\begin{array}{r} \mu \\ 1 \\ \mathrm{~L} M \mathrm{~L} \\ \hline \end{array}$ |

Figure 4.34: Floating /LS/ linking mode

Figure 4.35 shows a formal representation of the Linking Rule for floating $/ \mathrm{H} /$, and demonstrates all the various linking modes according to word shape.

In figure 4.35, the cells shaded in grey signal the non-occurrence of words of a certain shape with the corresponding Tone Class.

| W1 | W2 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Floating tone rep. | Class | Tone rep. | Trimoraic | Dimoraic | Monomoraic |
| /H/ | 1 | / / | $\begin{array}{\|ccc} \hline \mu & \mu & \mu \\ 1 & 1 & 1 \\ \mathrm{M} & \mathrm{M} & \mathrm{H} \end{array}$ | $\begin{aligned} & \mu \mu \\ & 1 \\ & \text { M } \\ & \text { H } \end{aligned}$ | $\begin{aligned} & \hline \mu \\ & 1 \\ & \mathrm{H} \end{aligned}$ |
|  | 2 | /L (LS)/ | $\begin{array}{\|lll} \hline \mu & \mu & \mu \\ 1 & 1 & 1 \\ M & H & L \\ \text { (LS) } \end{array}$ | $\begin{aligned} & \hline \mu \mu \\ & 1! \\ & \text { HL(LS) } \end{aligned}$ | $\begin{aligned} & \hline \mu \\ & \text { L (LS) } \end{aligned}$ |
|  | 3 | $/ \mathrm{L}(\mathrm{L}) /$ |  | $\begin{array}{ll} \hline \mu & \mu \\ 1 & 1 \\ H & L(L) \end{array}$ | $\begin{aligned} & \mu \\ & \mathrm{L}(\mathrm{~L}) \end{aligned}$ |
|  | 4 | /M (H)/ | $\begin{array}{lll} \hline \mu & \mu & \mu \\ 1 & 1 & 1 \\ \text { M } & \text { H } \end{array}$ | $\begin{aligned} & \hline \mu \mu \\ & I \quad \text { I } \\ & \text { H M (H) } \end{aligned}$ | $\begin{aligned} & \hline \mu \\ & \text { I } \\ & \mathrm{M}(\mathrm{H}) \end{aligned}$ |
|  | 5 | /M/ | $\begin{array}{\|lll} \hline \mu & \mu & \mu \\ 1 & 1 & 1 \\ \text { M } & \text { M } \\ \hline \end{array}$ | $\begin{array}{ccc} \hline \mu & \mu \\ 1 & 1 \\ H & M \end{array}$ | $\begin{gathered} \hline \mu \\ \mathrm{I} \\ \mathrm{M} \end{gathered}$ |
|  | 6 | /L-M/ | $\begin{array}{lll} \mu & \mu & \mu \\ 1 & 1 & 1 \\ H & \text { I } \end{array}$ | $\begin{aligned} & \mu \mu \\ & \mu \quad 1 \\ & \text { L M } \end{aligned}$ | $\begin{array}{r} \mu \\ 1 \\ \text { L M } \end{array}$ |
|  | 7 | /L-M (LS)/ | $\begin{array}{ll\|l\|l\|} \hline \mu & \mu & \mu \\ 1 & 1 & 1 \\ \text { H L M (LS) } \\ \hline \end{array}$ | $\begin{array}{\|l\|l\|} \hline \mu \mu \\ 1 & 1 \\ \text { L M (LS) } \end{array}$ | $\begin{gathered} \mu \\ \mid \\ \text { L M (LS) } \\ \hline \end{gathered}$ |
|  | 8 | /LH/ | $\begin{array}{ccc} \hline \mu & \mu & \mu \\ 1 & 1 & 1 \\ \text { M } & \text { HLH } \end{array}$ | $\begin{array}{\|cc\|} \hline \mu & \mu \\ 1 & 1 \\ \text { LS LH } \\ \hline \end{array}$ | $\begin{gathered} \hline \mu \\ 1 \\ \mathrm{LH} \end{gathered}$ |
|  | 9 | /L-LS/ | $\begin{gathered} \hline \mu \mu \mu \\ 111 \\ H L \text { LS } \end{gathered}$ | $\begin{aligned} & \hline \mu \mu \\ & \text { I I } \\ & \text { L LS } \end{aligned}$ | $\begin{gathered} \mu \\ 1 \\ \text { L LS } \end{gathered}$ |
|  | 10 | /M-M/ | $\begin{array}{\|ccc} \hline \mu & \mu & \mu \\ 1 & 1 & 1 \\ \text { HM M } \\ \hline \end{array}$ | $\begin{array}{\|ll\|} \hline \mu \mu \\ 1 & 1 \\ \mathrm{MM} \\ \hline \end{array}$ | $\begin{gathered} \mu \\ 1 \\ \mathrm{Mm} \end{gathered}$ |
|  | 11 | /M-H/ | $\begin{array}{\|ccc} \hline \mu & \mu \mu \\ 1 & 1 & 1 \\ H & \text { I } & \text { H } \end{array}$ | $\begin{array}{\|c\|} \hline \mu \mu \\ 11 \\ \text { M H } \\ \hline \end{array}$ | $\begin{gathered} \mu \\ \text { I } \\ \text { M H } \end{gathered}$ |
|  | 12 | /M-M-L/ | $\begin{aligned} & \mu \mu \mu \\ & 1 \\ & 1 \\ & \text { MML } \\ & \hline \end{aligned}$ | $\begin{array}{r} \mu \mu \\ 1 \\ \text { MML } \\ \hline \end{array}$ |  |
|  | 13 | /M-LS-L (L)/ | $\begin{array}{\|lll\|} \hline \mu & \mu & \mu \\ 1 & 1 & 1 \\ M & \\ M & \text { LS } & \text { (L) } \\ \hline \end{array}$ | $\begin{array}{\|cc\|} \hline \mu & \mu \\ 1 & 1 \\ M \operatorname{LS} & \text { L (L) } \\ \hline \end{array}$ |  |
|  | 14 | /M-H-M/ | $\begin{array}{c\|c\|} \hline \mu \mu \mu \\ 1 & 1 \\ \text { M } & 1 \\ \text { M M } \end{array}$ | $\begin{array}{r} \mu \mu \\ 1 \\ \text { I } 1 \\ \text { M M } \end{array}$ |  |
|  | 15 | /L-M-L/ | $\begin{aligned} & \mu \mu \mu \\ & 1 \\ & \text { I I I I } \\ & \text { LML } \\ & \hline \end{aligned}$ | $\begin{array}{r} \mu \mu \\ 11 \\ \mathrm{LML} \\ \hline \end{array}$ | $\begin{array}{r} \mu \\ 1 \\ \text { LML } \\ \hline \end{array}$ |

Figure 4.35: Floating /H/ linking mode

Figure 4.36 shows a formal representation of the Linking Rules for floating $/ \mathrm{L} /$, and demonstrates all the various linking modes according to word shape. One can observe the linking mode for monomoraic Tone Class 1, where both tonal elements $/ \mathrm{M} /$ and /L/ link to the final mora. Also, as it was mentioned earlier in this section, when preceded by a word with a /L/ floating tone, a trimoraic word occurring with Tone Class 7, Subrule C applies resulting in a [M-L-M] surface pattern. However, it is worth noting that the mid tone in the antepenultimate syllable is slightly higher than a regular /M/ tone, but not high enough to be a /H/.

| W1 | W2 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Floating tone rep. | Class | Tone rep. | Trimoraic | Dimoraic | Monomoraic |
| $/ \mathbf{L}$ | 1 | / / | $\begin{array}{ccc} \hline \mu & \mu & \mu \\ 1 & 1 & 1 \\ \mathrm{M} & \mathrm{M} & \mathrm{~L} \end{array}$ | $\begin{aligned} & \mu \mu \\ & 11 \\ & \mathrm{ML} \\ & \hline \end{aligned}$ | $\begin{gathered} \hline \mu \\ \Lambda \\ M \mathrm{~L} \end{gathered}$ |
|  | 2 | /L (LS)/ | $\begin{array}{llll} \mu & \mu & \mu \\ 1 & 1 & 1 \\ \text { M } & \text { M } & \text { M (LS) } \end{array}$ | $\begin{array}{ll} \hline \mu \mu \\ 11 \\ \text { M M (LS) } \end{array}$ | $\mu$ I $\mathrm{M}(\mathrm{LS})$ |
|  | 3 | $/ \mathrm{L}(\mathrm{L}) /$ | $\begin{array}{cccc} \hline \mu & \mu & \mu \\ 1 & 1 & 1 \\ \mathrm{M} & \mathrm{M} & \mathrm{M}(\mathrm{~L}) \\ \hline \end{array}$ | $\begin{array}{ll} \mu & \mu \\ 1 & 1 \\ \mathrm{M} \text { M (L) } \end{array}$ | $\begin{aligned} & \hline \mu \\ & \mathrm{g} \\ & \mathrm{M}(\mathrm{~L}) \end{aligned}$ |
|  | 4 | /M (H)/ | $\begin{array}{\|lll} \hline \mu & \mu & \mu \\ 1 & 1 & 1 \\ \mathrm{M} & \mathrm{M} & \mathrm{M}(\mathrm{H}) \end{array}$ | $\begin{aligned} & \hline \mu \mu \\ & 1 \quad 1 \\ & \mathrm{M} \mathrm{M}(\mathrm{H}) \end{aligned}$ | $\begin{aligned} & \hline \mu \\ & 1 \\ & \mathrm{M}(\mathrm{H}) \end{aligned}$ |
|  | 5 | /M/ | $\begin{array}{lll} \hline \mu \mu & \mu \\ 1 I & 1 \\ \text { M M M } \\ \hline \end{array}$ | $\begin{array}{cc} \hline \mu & \mu \\ 1 & 1 \\ \mathrm{M} & \mathrm{M} \end{array}$ | $\begin{gathered} \hline \mu \\ \mathrm{I} \\ \mathrm{~m} \\ \hline \end{gathered}$ |
|  | 6 | /L-M/ | $\begin{array}{ccc} \hline \mu & \mu \mu \\ 1 & 1 & 1 \\ \text { M } & \text { M M } \end{array}$ | $\begin{array}{cc} \mu \mu \\ 1 & 1 \\ \mathrm{M} \text { M } \end{array}$ | $\begin{array}{r} \mu \\ 1 \\ \mathrm{~L} M \end{array}$ |
|  | 7 | /L-M (LS)/ | $\begin{array}{\|l\|l\|} \hline \mu & \mu \mu \\ 1 & 1 \\ \text { ML M (LS) } \\ \hline \end{array}$ | $\begin{aligned} & \mu \mu \\ & 1 \text { । } \\ & \text { M M (LS) } \end{aligned}$ | $\begin{gathered} \mu \\ \mid \\ \mathrm{L} M(\mathrm{LS}) \\ \hline \end{gathered}$ |
|  | 8 | /LH/ | $\begin{array}{ccc} \hline \mu & \mu \mu \\ 1 & 1 & 1 \\ \text { M } & \text { M } & \text { LH } \end{array}$ | $\begin{array}{\|cc\|} \hline \mu & \mu \\ 1 & 1 \\ \text { M LH } \\ \hline \end{array}$ | $\begin{gathered} \hline \mu \\ \text { I } \\ \text { LH } \end{gathered}$ |
|  | 9 | /L-LS/ | $\begin{gathered} \mu \mu \mu \\ 1 \\ \text { I I } \\ \text { M L LS } \end{gathered}$ | $\begin{aligned} & \hline \mu \mu \\ & \text { I I } \\ & \text { L LS } \end{aligned}$ | $\begin{gathered} \mu \\ 1 \\ \text { L LS } \end{gathered}$ |
|  | 10 | /M-M/ | $\begin{array}{llll} \hline \mu & \mu & \mu \\ 1 & 1 & 1 \\ \text { M M M } \end{array}$ | $\begin{aligned} & \hline \mu \mu \\ & 1 \quad 1 \\ & \mathrm{Mm} \end{aligned}$ | $\begin{gathered} \mu \\ 1 \\ \mathrm{Mm} \\ \hline \end{gathered}$ |
|  | 11 | /M-H/ | $\begin{array}{ccc} \hline \mu & \mu \mu \\ 1 & 1 & 1 \\ \text { M } & \text { M } & \mathrm{H} \end{array}$ | $\begin{array}{ll} \hline \mu \mu \\ 1 & 1 \\ \text { M H } \end{array}$ | $\begin{array}{r} \mu \\ 1 \\ \mathrm{M} \mathrm{H} \end{array}$ |
|  | 12 | /M-M-L/ | $\begin{aligned} & \mu \mu \mu \\ & 1!1 \\ & \text { MML } \end{aligned}$ | $\begin{gathered} \mu \mu \\ 1 \\ \mathrm{MML} \end{gathered}$ | $\stackrel{\mu}{\wedge}$ |
|  | 13 | /M-LS-L (L)/ | $\begin{array}{\|lll} \hline \mu & \mu & \mu \\ 1 & 1 & 1 \\ M & \text { MS } \\ \hline \end{array}$ | $\begin{array}{cc} \mu & \mu \\ 1 & 1 \\ M \operatorname{LS} & \text { L (L) } \end{array}$ |  |
|  | 14 | /M-H-M/ | $\begin{gathered} \mu \mu \mu \\ 1 \\ 1 \\ \text { M } 1.1 \\ \text { H M } \end{gathered}$ | $\begin{array}{r} \mu \mu \\ 11 \\ \mathrm{MHM} \\ \hline \end{array}$ | $\begin{array}{r} \mu \\ 1 \\ \text { MHM } \end{array}$ |
|  | 15 | /L-M-L/ | $\begin{array}{cc} \hline \mu \mu \mu \\ 1 & 1 \\ \mathrm{Mm} \\ \hline \end{array}$ | $\begin{gathered} \mu \mu \\ 11 \\ \mathrm{LML} \\ \hline \end{gathered}$ | $\begin{array}{r} \mu \\ 1 \\ \text { LML } \end{array}$ |

Figure 4.36: Floating /L/ linking mode

### 4.11.3 Phonetic pitch lowering

As far as surface tone realization is concerned, there still exists one phenomenon which ought to be discussed before wrapping up the description of the tonal system: phonetic pitch lowering.

In ZAC, the pitch of each mora associated with a tone directly following a [H] or a [S] gets slightly lowered. This phenomenon affects the tonal domain (which in ZAC is the Word as discussed in chapter 1 §1.6) rather than single tonal element. For example, in the case of a sequence of words where W1 is linked to a /L-LS/ tone, and W2 is linked to a /M-M/ tone, the pitch of the tonal domain after /LS/ gets lowered and surfaces phonetically as $[\mathrm{M} \downarrow-\mathrm{M} \downarrow]$. It is important to note that the reference point for the second down arrow in this notation system is the normal /M/ pitch (i.e. not lowered) as phonetic pitch lowering in ZAC does not result in a staircase effect.

This phenomenon does not result in a change in tone category. A lowered $/ \mathrm{M} /$ does not become a $/ \mathrm{L} /$, and a $/ \mathrm{H} /$ does not become a /M/ etc. The pitch levels of the moras in the affected tonal domain just get slightly lowered in that particular environment. The range observed is about 2040 Hz . Also, the lowering effect tends to be more accentuated by preceding /LS/ than by preceding /H/, but this is not always the case. Even if this phenomenon does not affect the tonemic system, it is a phonetic effect that is clearly audible to the (linguist's) trained ear as well as to the language learner's.

This phenomenon is illustrated by the pitch tracks presented below.
The two pitch tracks below present examples of phonetic pitch lowering of a mora-linked /M/
after a /LS/ tone. If we observe the pitch level of the /M/ tone on the final mora for both examples
in isolation, and compare it to the pitch level of that same final mora $/ \mathrm{M} /$ in the same word when preceded by a /LS/ tone, one can note a slight difference in pitch levels. The pitch of the mora-linked /M/ tone is lower when preceded by a /LS/ tone than when encountered in isolation.
nkayakwēn' 'he/she vomits it' /X-X-M (H)/: [L-L-M] $\rightarrow$ [M-LS-M $\downarrow]$

These next pitch tracks show how phonetic pitch lowering affects the entire tonal domain. The
target words presented are linked to a tonal sequence including two tonal elements. When the words
are preceded by an /LS/ tone, the entire tonal domain including the tonal sequence gets lowered.


The pitch tracks below show the phenomenon of phonetic pitch lowering when the preceding
tone is a $/ \mathrm{H} /$ tone instead of an $/ \mathrm{LS} /$ tone as presented in preceding examples. A preceding $/ \mathrm{H} /$ tone
has the same lowering effect on subsequent tonal domains.

## nkayakwēn' 'he/she vomits it' /X-X-M (H)/: [L-L-M] $\rightarrow$ [M-H-M $\downarrow]$




### 4.12 Conclusion

This chapter has demonstrated that ZAC's tonal system shows a wide range of tonal phenomena, making it a rich and complex system.

At the phonological level, it presents five mora-linked tones (/L/, /M/, /H/, /LH/ and /LS/) realizing four levels of pitch (Low, Mid, High and Super High), and three floating tones $(/(\mathrm{L}) /, /(\mathrm{H}) /$, $/(\mathrm{LS}) /$. It also presents moras unspecified for tone. Furthermore, the final pitch of $/ \mathrm{H} /$ and /LS/ tones persists into moras unspecified for tone until the end a utterance (Spreading). Once linked, the High or Super High-ending floating tones also cause Spreading into subsequent tonally unspecified moras.

At the lexical and morphological level, there are fifteen Lexical Tone Classes defined by fifteen TS's hosted by the Word which have different realizations depending on the number of moras in the word. The TS's are morphological entities because some are specialized by part-of-speech, by inflectional category, or loan provenance, while others are open ended and general. ${ }^{19}$ Furthermore, it is the identity of the TS, not the tonal elements themselves which determines tonal ablaut pattern and tonal inflectional classes (as is demonstrated in chapter 5). Finally, in the Progressive, the aspect morpheme occurs with a /M/ tone which produces composed tonal melodies of the TS's beyond the extant fifteen TS's.

[^44]Typologically, it is unusual to have such a large inventory of tones (five) and so few TS's. Indeed, the only allowed combination of tonal elements occur in fifteen TS's only. The main argument in support of such a large tonal inventory is that the tones actually show (almost) no alternation in sandhi context. A /H/ tone always stays a /H/ tone, a /LS/ is always an /LS/ tone etc. However, the /L/ tone is a little bit trickier because it is mutable when hit by a floating tone (as demonstrated in §4.11.2.3). Moreover, the fact that Spreading is maintained till the end of a utterance seems to be typologically unusual. For example, in Lachíxio Zapotec (Sicoli, 2007) the high tone only spreads till the end of the phonological word, and similarly to ZAC, the /L/ and /M/ tones do not spread.

Furthermore, this work makes important contributions to Chatino tone studies-both at the level of Eastern Chatino, and for Chatino in general. Contrary to most other Chatino varieties, ZAC conserves all non-final syllables of its roots, making it a centerpiece for the Chatino language puzzle as its transparent morphology tells the story of the evolution of more innovative Chatino varieties: beyond simply revealing lost segments/morphemes, it provides polymoraic structures that host clear sequences of tones that are not discernable in the monosyllabic/monomoraic varieties.

Villard and Woodbury (2012) offers typological observations about ZAC's tonal system. Some concepts (some of which are from Hyman (2011)) in table 4.37 are explained below:

| ITEM | FEATURE | ZAC |
| :--- | :--- | :--- |
|  | InVENTORY \& ALIGNMENT FEATURES |  |
| $\mathbf{1}$ | Lexical tone Classes | 15 |
| $\mathbf{2}$ | Classes audible in isolation | 10 |
| $\mathbf{3}$ | Tonal elements | $5+$ null |
| $\mathbf{4}$ | TBU | mora |
| $\mathbf{5}$ | Tonal Sequences | y |
| $\mathbf{6}$ | Restrictedness | y |
| $\mathbf{7}$ | Tonal Sequences' persistence | y |
| $\mathbf{8}$ | Duality of patterning | emergent |
|  | TonE LINKED ALTERNATIONS |  |
| $\mathbf{9}$ | Spreading into toneless TBU's | y |
| $\mathbf{1 0}$ | Floating tones | y |
| $\mathbf{1 1}$ | Tone-conditioned tone changes | few |
|  | FUNCTIONAL FEATURES |  |
| $\mathbf{1 2}$ | Word class specialization | y |
| $\mathbf{1 3}$ | Inflectional specialization | y |
| $\mathbf{1 4}$ | Provenance specialization | y |
| $\mathbf{1 5}$ | Unique grammatical function | 2 s |
| $\mathbf{1 6}$ | Contributing gram. function | $1 \mathrm{~s} ;$ Aspect |
|  | MorpHoLOGICAL FEATURES |  |
| $\mathbf{1 7}$ | Tonal prefixation | $\mathrm{M}-$ |

Figure 4.37: Summary of tonal typological features (Modified from Villard and Woodbury (2012))

Item 6: Restrictedness (Hyman, 2011): Not all theoretically possible elements sequences occur. There are five tonal elements but only fifteen possible Tonal Sequences.

Item 7: Tonal Sequences persistence (Hyman, 2011): Major Class Tonal Sequences associate with stems regardless of mora length. Even (relatively rare) monomoraic stems show all Major Class TS's (§4.10).

Item 8: Duality of patterning (Hyman, 2011): there is a strong distinction between TS's and tonal elements.

Item 11: Tone-conditioned tone changes: sandhi patterns do not result in tonal changes except in the case of the /L/ floating tone as demonstrated in §4.11.2.3.

Item 12: Word-class specialization: $\S 4.10$ discussed all of the fifteen Lexical Tone Classes indicating their prevalence in different areas of the lexicon. It showed how some Tone Classes are restricted or more prevalent in certain areas of the lexicon.

Item 14: Provenance specialization: $\S 4.10$ showed how Tone Class 7 is unique to Spanish loans.

Item 17: Tonal prefixation: the progressive aspect morpheme nt $\bar{a}-$ bears a $/ \mathrm{M} /$ tone which gets prefixed to verb stems resulting in composed TS's (§5.3.2.1).

Villard and Woodbury (2012) also offers typological observations for other studied Chatino varieties such as Zenzontepec Chatino and other

Eastern Chatino varieties. It demonstrates that the Chatino family as a whole presents a great variety of tonal phenomena. Cross-linguistically, the study of Chatino tone is very valuable because it provides ideal exploration grounds for studying rapidly evolving tonal systems within a single shallow language family. The level of diversity encountered could then be compared to other shallow tonal language families within or outside Mesoamerica.

## Chapter 5

## Inflectional morphology

### 5.1 Introduction

This chapter describes the inflectional system of ZAC, an area revealed to be quite complex at the morphological and the morphophonological level. Nevertheless, despite its prima facie maze of irregularities, this intricate inflectional system actually presents a high rate of predictability in its segmental (aspect prefixes) and its tonal conjugation Classes.

The data and the analysis presented in this chapter reinforce the claim already made in chapter 4 in $\S 4.10$ that the TS's are morphological entities that pertain to simplex words, whereas the tonal elements are phonological entities that pertain to moras (see chapter 4, figure 3.1). Indeed, it is the Tone Class (which corresponds to a specific TS) to which a particular verb belongs that determines tonal ablaut. For example, knowing the Tone Class of a $3 s$ verb form (base), an inalienable noun or a predicative adjective allows for a fairly accurate prediction of the Tone Class for the corresponding 2 s form.

This chapter presents the different patterns of inflection (segmental and tonal) for three different parts of speech: the inalienable noun, the
predicative adjective, and the verb. Furthermore, the analysis for segmental inflection in verbs only deals with the four basic aspects (Completive, Progressive, Habitual, and Potential) and does not include stative and imperative mood ${ }^{1}$.

It is organized as follows: $\S 5.2$ presents some generalities regarding verbal inflection; $\S 5.3$ discusses aspectual verbal inflection presenting the prefix Classes and unveiling the tonal conjugation Classes marking aspect; §5.4 describes person marking first for inalienable nouns, followed by predicative adjectives; and finally, §5.4.3 illustrates subject person marking on verbs first discussing 2 s , followed by 1 s , and ending with a basic account of plural person marking.

### 5.2 Generalities about verbal inflection

$$
\text { ASP- (CAUS-) (DERIV-) root }(=\text { SBJ })
$$

Figure 5.1: Simplex Verb template

The simplex Verb minimally consists of a root with an obligatory aspect prefix. In addition to an aspect prefix, a verb may also occur with two possible types of causative prefixes ( $u$-, ix-) as well as with three possible types of derivational prefixes closest to the root: $t$-, $s$ - transitivizer prefixes,

[^45]and $y$ - intransitivizing prefix. The root and all the possible prefixes constitute the simplex Word which was first introduced in the tone chapter (chapter 4). The optional plural subject enclitics following the root represented as ( $=$ SBJ) in figure 5.1 are a separate phonological entity as they form their own tonal domain, but inflectionally speaking they are part of the simplex Verb.

Verbal inflection in ZAC's consists in prefixation (aspect only), tonal alternation, final vowel nasalization (1s marking) and encliticization (plural persons marking). A particular inflected verb form may show as many as three of these features. Verbs are the only words that inflect for aspect, and the latter is obligatory although for a few verbs (Subclass $\mathrm{A}_{\mathrm{c}}$ verbs whose root begins with $/ \mathrm{h} /$ ), the potential marker is zero. Prefixation with or without tonal ablaut marks four categories of aspect: Completive, Progressive, Habitual, and Potential. As a strong head-marking language, the majority of the morphology occurs on the verb which is the head of the clause.

Tonal ablaut, final-vowel nasalization, and encliticization mark subject person.
$2 s$ is usually marked by stem tone alternation only, $3 s$ is unmarked, and 1 s is marked by nasalization of the final vowel with or without stem tone alternation. All plural subjects are indicated by appending a person clitic to the verb which is represented by the optional $(=s u b j)$ in figure 5.1. Plural person marking generally only consists of encliticization of plural clitics on the 3s stem, although in some cases, it also involves a tonal change as well
as encliticization (§5.4.3.3). As was demonstrated in chapter 4, the simplex word is the natural domain for the TS's. The pronominal enclitics are a separate phonological entity and form their own separate tonal domain. Because the plural clitics are unspecified for tone, their surface tonal pattern is affected by the tone of the verb stem (§5.4.3.3).

Table 5.1 presents an example of a complete verbal paradigm for the verb -u-lukwǎ 'to sweep it', Tone Class 8 (/LH/). For the completive, habitual and potential paradigms, the general plural marking rule applies: the plural forms are based on the tone of the 3 s stem followed by the plural clitics. For the progressive paradigm, the 3s bears Tone Class 11 which marks 1plin, 1plex, and 2pl based on the tone of 2 s stem which in this case is Tone Class 11 (and actually happens to be the same as 3 s ).

|  | COMPL | PROG | HAB | POT |
| :---: | :---: | :---: | :---: | :---: |
| 1s | lùkwấn | ntālùkwấn | tulùkwân | kulùkwấn |
| 2s | nkalūkwá | ntālūkwá | ntulùkwā | kulùkwā |
| 3s | nkalukwă | ntālūkwá | ntulukwà | kulukwă |
| 1PLINCL | nkalukwǎ nan | ntālūkwá nan | ntulukwă nan | kulukwă nan |
| 1PLEX | nkalukwǎ wa | ntālūkwá wa | ntulukwă wa | kulukwă wa |
| 2PL | nkalukwǎ wan | ntālūkwá wan | ntulukwă wan | kulukwă wan |
| 3PL | nkalukwǎ ne? | ntālūkwá ne? | ntulukwă ne? | kulukwă ne |

Table 5.1: Example of a complete verbal paradigm for a Tone Class 8 verb

Pronouns have independent and dependent forms. The plural dependent pronouns are derived from the independent pronouns as shown in table 5.2:

| 1s | Independent pronouns <br> nāā? | Dependent pronouns <br> (tonal alternation), stem vowel nasalization |
| :--- | :--- | :--- |
| 2s | nu?win | tonal alternation |
| 3s | yukwi? |  |
| 1PLINCL | nan ntēē | (tonal alternation), nan |
| 1PLEX | wa nte $\bar{e}^{\prime}$ | (tonal alternation), wa |
| 2PL | nkuPwan | (tonal alternation), wan |
| 3PL | yukwi? ne? | ne? |

Table 5.2: Independent and dependent subject pronouns

The dependent forms occur mainly with four lexeme classes, verbs, predicative adjectives, inalienable nouns and relational noun Pin. As subjects, they attach to verbs and predicative adjectives, as possessors, they attach to inalienable nouns or to the relational noun Pin in alienable possession constructions.

Subject marking may involve as many as two of these three features: vowel nasalization (1s), tonal alternation, and encliticization (plural forms). Syntactically speaking, all of those are markers of the subject argument (as opposed to agreement markers) because in the case where the verb is directly followed by an independent pronoun (subject position) as shown in examples (11) and (13), then the verb shows no person marking (tonal alternation).

When a verb is preceded by an independent pronoun (topic position), then it shows tonal alternation because in this case, the independent pronoun is not a subject but a topic as illustrated in examples (12) and (14).

However, 1s subject marking on verbs is anomalous, because the verb
is marked for person marking through vowel nasalization with or without tonal alternation even when the independent pronoun is placed directly after the verb (in subject slot) as illustrated in examples (15) and (16)

Consequently, for the non-1s person forms, there is no hint of double marking; because as was just demonstrated, the inflectional apparatus is the marker of the argument.

However, for the 1 s person forms, nasalization and tonal ablaut remain as argument markers, but the 1 s subject pronoun works like an optional, double subject marker (possibly having enclitic status).
(11) nka-lukwǎ yukwi?

COMPL-sweep he/she
he/she swept
(12) yukwi?
nka-lukwǎ
he/she
COMPL-sweep
her/him, he/she swept
(13) nka-lukwǎ nu?win

COMPL-sweep you(sg)
you(sg) swept

| nu?win | nka-lūkwá |
| :--- | :--- |
| you(sg) <br> you(sg), you swept |  |

nka-lùkwa̋n nāā?
COMPL-sweep.1s I
I swept

```
nāā? nka-lùkwa̋n
I
COMPL-sweep.1s
me, I swept
```

The underlying form of the verb stem is quite complex as it involves various morphological elements or formatives which are associated to various functions but not necessarily on a 'one-to-one fashion'. For example, the category 1s may be marked with two formatives: final vowel nasalization and tonal ablaut.

To follow is an illustration of the underlying form of a particular 1s progressive verb form. Some of the characteristics presented as part of the underlying form have not been discussed yet (such as the prefix Class), and are treated in this chapter.
ntā-lùkwân 'I am sweeping it'

- The verb root' segmental elements: /u-lukwa/
- *The verb root's Tone Class: [Tone Class 8 (/LH/)]
- *The verb root's prefix Class: $\mathrm{A}_{\mathrm{u}}$
- The aspect morpheme' segmental elements: /nta-/
- The aspect morpheme's tone: /M/
- Nasal feature of final vowel marking 1s: [ + nasal]
- *Tone Class marking 1s for verb stems in completive aspect with Tone Class 8 is Tone Class 9 (/L-LS/)
*The tonal ablaut rule replaces the root's inherent Tone Class 8 by Tone Class 9.

Before delving into the subject of conjugation Classes, two very important clarifications about the terminology used in the rest of this chapter ought to be made in order to avoid confusion. The following sections deal with two different types of conjugation classifications. One type of conjugation classification based on the segmental characteristics of the verb stem, and more precisely on which aspect allomorph a specific verb root takes. This conjugation classification is referred to as 'the prefix conjugation Class'. The other type of conjugation classification is based on the tonal characteristics of a particular verb stem, and more precisely, with which Tone Class a verb form occurs. This type of conjugation classification is referred to as 'the tonal conjugation Class'. The prefix conjugation Class determines the segmental aspectual paradigm of a verb whereas the tonal conjugation Class determines the tonal ablaut pattern of a verb. We will see that these two types of conjugations are somewhat independent from each other, but that some relationship between the two can be established when examining tonal ablaut for 1s especially.

### 5.3 Aspectual verbal inflection

### 5.3.1 Segmental aspectual conjugation Classes

Aspect is obligatorily marked on simplex verb forms. Considerable allomorphy exists in each category of aspect morphemes. A study by Campbell (Campbell, 2011) extended Kaufman's framework for verbal conjugation Classes of Zapotec languages (Kaufman, 1987) to aspect prefixa-
tion in segmentally conservative Zenzontepec Chatino. Following Kaufman (1987), Campbell (2011) classifies verbs based on which allomorphs of the potential, progressive, habitual, and completive prefixes they select, which is based both on valency as well as the phonological shape of the stem. That study offers extensive historical information and traces back most of the Zenzontepec aspect morphemes to proto-Zapotecan.

Following that study, in Villard (2009), I applied Campbell's analysis to ZAC chatino, and found that ZAC's prefix Classes largely aligned to Zenzontepec prefix Classes (and indirectly also corresponded well with the reconstructions presented in Kaufman (1987)). Indeed, Zenzontepec Chatino and ZAC share a conservative system which conserves nearly all non-final syllables of their roots (including aspect prefixes) allowing for the distinction of conjugation Classes on the basis of stem shape and prefix allomorphy. Just as is the case for Zenzontepec Chatino, in ZAC, the conjugation Classes based on prefix characteristics have functional integrity, especially with respect to causativity, transitivity and intransitivity.

### 5.3.1.1 Aspect markers

The surface forms of all aspect markers encountered in ZAC are presented in table 5.3:

The following comments about the aspect morphemes presented in table 5.3 will be discussed again later on when presenting actual data illus-

$$
\begin{array}{ll}
\text { COMP } & n k u-, n k a-, n k w i-, n k a y-\sim y- \\
\text { PROG } & n t \bar{a}, n t i \overline{-k-} \\
\text { HAB } & n t i-, n-, n-+[L A M] \\
\text { POT } & k-, t^{y} i-,[\text { LAM }], \emptyset
\end{array}
$$

Table 5.3: Aspect allomorphs
trating aspect marking.
They are introduced here despite the fact that the data has not been presented yet, only to give a general idea of their historical origin when available.

In ZAC, all aspect morphemes, except for the potential aspect, present an initial /n/. Zenzontepec Chatino shows very similar aspectual morphemes, and Campbell (2011) states that the origin of this nasal in Chatino may come from a proto-Otomanguean adverb *na meaning 'now' (including for the completive marker).

Only one aspect morpheme bears a tone, i.e. the progressive morpheme $n t \bar{a}$ - (and its allomorph $n t \bar{t})$.

The notation [LAM] stands for laminalization, which corresponds to an ancient palatalization process which occurred in ZAC when apico-dental sounds $/ \mathrm{t}, \mathrm{ts}, \mathrm{n}, \mathrm{l}, \mathrm{s} /$ were preceded by the vowel / $\mathrm{i} /$. This process is not productive anymore but is still visible in potential and habitual verb forms when a root starts with an apico-dental sound and a prefix ends with a vowel /i/ (§2.3.2). Synchronically, [LAM] results in /t, ts, n, l, s/becoming /t, tf, n, 1, S/ respectively.

Furthermore, the $t^{y} i$ - potential marker is also a trace of the historic *ki- as it is the underlying form for $t^{y} i$-; $t^{y} i$ - is the result of a dissimilation process when two velar sounds co-occur in a word. This phenomenon may be an ancient phonological rule because the dissimilation does not always occur synchronically. This phenomenon is also found in Yaitepec, another Eastern Chatino variety (Rasch, 2002).

The $n t i \overline{-} k$ - progressive marker seems to be a combination of progressive $n t \bar{a}$ - and potential $k$ - morphemes. Since the potential marker $k$ - was historically ki-, it could be one way to explain why ntā- surfaces as nti-, i.e. to satisfy a historic vowel harmony rule across syllables (also encountered in Zenzontepec Chatino (Campbell (2011)). ntī- only occurs instead of ntāwhen the verbal root starts with a $y$ - (Prefix Class $B_{y}$ ).

Finally, the nkay- and $y$-completive markers freely alternate. The morpheme nkay- appears to be a combination of nka- $+y$-, which then represents completive double marking. It seems to be loosing ground as speakers prefer using just the $y$ - morpheme instead.

### 5.3.1.2 The vowel hierarchy

As we can see in table 5.3, most aspect markers end with vowels. As a great number of ZAC's verb stems also begin with vowels, and ZAC disallows vowel sequences (§2.2.3), one is deleted in hiatus. Which vowel
gets deleted is dictated by the vowel hierarchy presented in figure $5.2^{2}$ :

$$
u>i>a, o
$$

Figure 5.2: The vowel hierachy

There is no need to include /e/ in the hierarchy as there is no morpheme including it, nor there are any verb roots starting with /e/ (see §2.2.1 for the restricted distribution of $/ \mathrm{e} /$ ). The highest ranked vowel is $/ \mathrm{u} /$ and the lowest ranked are both $/ \mathrm{a} /$ and $/ \mathrm{o} /$. The latter are not rankable with respect to one another because they never co-occur in hiatus. $/ \mathrm{u} /$ and $/ \mathrm{o} / \mathrm{do}$ not co-occur in hiatus either because the only o-initial roots in the language (only 6 have been encountered) do not take the aspect morpheme $n k u$ - but instead they take the aspect morpheme nkay-

Table 5.4 illustrates the hierarchy presented in figure 5.2:

| Prefix | Stem | Verb | Gloss | Ranking |
| :--- | :--- | :--- | :--- | :--- |
| $n k u-$ | $-\bar{a} t s a ́$ | $n k \bar{u}-t s a ́$ | it got split | $u>a$ |
| nti- | -u-lakwă | nt-ulakwă | he/she counts it | $u>i$ |
| nti- | $-\bar{a} t s a ́ ~$ | nti-cha | it gets split | $i>a$ |
| nti- | $-o$ o?o | nti-Pyo | he/she drinks it | $i>0$ |

Table 5.4: Vowel hiatus resolution

### 5.3.1.3 The aspect prefix Classes

The ZAC aspect prefix Classes and their respective aspect markers are presented in table 5.5.

[^46]|  | A |  |  | B |  |  | C |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ac | Au | A2 | Bc | Bk | By | $\mathbf{B}_{\text {post }}$ | Ca | C2 |
| POT | [LAM] | $k$ - | [LAM], $k$ - | [LAM] | $t^{y} i$ - | $k$ - | [LAM] | $k$ - | $k$ - |
| HAB | nti- | $n t i-$ | $n t i-$ | $n t i-$ | $n t^{Y} i^{-}$ | $n t i-k$ - | nti- | nti- | $n t i-$ |
| PROG | $n t \bar{a}-$ | nti-k- | $n t \overline{-}-$ | nky- | nky- |
| COMPL | $n k a-$ | nka- | nkwi- | nku- | nku- | $n k u-$ | nku- | $n k u$ - | nkay- |

Table 5.5: Aspect prefix Classes (slighlty modified from Villard 2009)

Because the completive aspect morpheme is where the most allomorphy occurs, the verb classification takes the completive aspect marker as its basis. By looking at the completive form of the verb, one can get the most precise idea of the prefix Class. However, the prefix Class is not the only characteristic to consider as it is also important to consider the morphemes for the habitual and the potential forms. On the other hand, the habitual morpheme presents the least allomorphy, and most of its surface forms are due to morphophonological processes (dissimilation and haplology), and as a result they are derived from nti-, except for the Subclasses $B_{k}$ and $B_{y}$ where the underlying habitual form is not solely nti- but nti-*ki-.

Below table 5.6 roughly describes the characteristics of all aspect prefix Classes. The characteristics of each Class align very well to the characteristics of Zenzontepec Chatino verb Classes presented in Campbell (2011). Furthermore, table 5.6 also shows that these Classes correlate with certain morphological, semantic and argument structure characteristics of the verbs.

| Class | Stem characteristics | COMPL | PROG | HAB | POT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}_{\mathbf{u}}$ | derived $u$ - causative verbs | $n k a-$ | ntā- | nti- | $k$ - |
| $\mathbf{A}_{\mathbf{c}}$ | unergative or transitive verbs | $n k a-$ | $n t \bar{a}-$ | $n t i-$ | [LAM] |
| A2 | transitive, derived $i x$ causative verbs and all $i$ - initial | nkwi- | $n t \bar{a}-$ | $n t i-$ | [LAM], $k$ - |
| $\mathrm{B}_{\mathbf{c}}$ | unaccusative verbs | nku- | $n t \bar{a}-$ | $n t i-$ | [LAM] |
| $\mathrm{B}_{\text {post }}$ | posture and motion verbs | nku- | $n t \bar{a}-$ | nti- | [LAM] |
| $\mathrm{B}_{\mathrm{k}}$ | $k$ - initial verb roots mostly unaccusative | nku- | $n t \bar{a}-$ | $n t^{y} i-$ | $t^{y} i$ - |
| $\mathrm{B}_{\mathrm{y}}$ | $y$ - initial verb roots mostly unaccusative | nku- | $n t i-k$ - | nti-k- | $k$ - |
| Ca | unaccusative, $a$ - initial verb roots | nku- | nky- | $n t i-$ | $k$ - |
| C2 | unergative or transitive begin in $a-, o-, u-$ | nkay- | nky- | $n t i-$ | $k$ - |

Table 5.6: Characteristics of the prefix Classes
(slighlty modified from Villard 2009)

### 5.3.1.3.1 Class A

This Class includes both intransitives as well as transitive roots but the latter are far more numerous. Subclass $\mathrm{A}_{\mathrm{u}}$ consists of verb roots that are made transitive by adding the causative morpheme $u$-. They each have an intransitive counterpart occurring with the detransitivizer morpheme $-y$ in Subclass $\mathrm{B}_{\mathrm{c}}$. Class A verbs share the same aspect markers except for Subclass A2 which take nkwi- in the completive. When $\mathrm{A}_{\mathrm{c}}$ and A2 stems start with a coronal, the latter gets laminalized because of the $i$ of the habitual marker $n t i-$ or from the historic vowel $i$ of the potential marker *ki-. All $j$-initial roots take a $\emptyset$ marker in the potential because only coronal consonants can get laminalized.

### 5.3.1.3.1.1 Subclass $A_{u}$

By looking at the data presented in example (17) below, one can observe that Subclass $A_{u}$ verbs represent an exception to the vowel hierarchy presented in figure 5.2. Indeed, in the completive forms, the /a/ from the aspect morpheme remains, and the $/ \mathrm{u}$ / from the causative morpheme $u$ - gets deleted. This phenomenon is also recorded by Campbell (2011) for Subclass $A_{u}$ verbs. Furthermore, a couple of verbs present irregularities (which can be explained): $-u-2 n i \bar{l}$ 'do it' and $-u$-tāá 'give it' . The first one takes the nkymorpheme which belongs to Subclass C2 (unergative or transitive, begin in $a$-, $o$-, $u$-). The second form suffers a common Chatino process of syllable deletion. Haplology often occurs in habitual forms whose verb roots start with $/ \mathrm{t} /$. So in this particular case, nti-u-tàáa $\rightarrow$ ntu-tàá $\rightarrow n$-tàä.

Furthermore, this work uses similar terminology to Campbell (2011) which calls this derivational pattern the $u$-causative derivation, and uses the terminology less transitive and more transitive (causative) to refer to derivationally related verb pairs such as Subclasses $\mathrm{A}_{\mathrm{u}}, \mathrm{B}_{\mathrm{c}}$, and $\mathrm{B}_{\mathrm{y}}$ :
> "The ZEN u-causative derivational pattern is just one of several formal manifestations of a system of verb pairs found in Zapotecan languages.Although many verb pairs consist of a syntactically transitive (causative) stem derived from a syntactically intransitive, inchoative stem, some pairs consist of two syntactically transitive verbs where one is more active than the other. Therefore, I use the terminology more transitive versus less transitive,[...] that aligns features such as higher agentivity with higher transitivity, and not solely the number of core arguments of a verb."

Example (17) presents examples of Subclass $A_{u}$ verbs:

$$
\begin{aligned}
& \text { PROG } \\
& \text { ntā-lākwá } \\
& \text { ntā-tīkwá } \\
& \text { ntā-lūkwá } \\
& \text { ntā-sa̋nē } \\
& \text { ntā-lā?á } \\
& \text { ntā-nakwǎn } \\
& \text { ntā-tī̄Yán } \\
& \text { ntā-s-ākwén } \\
& \text { ntā-t-ākón } \\
& \text { ntā-s-akǎn? } \\
& \text { nky-ū?nì } \\
& \text { ntā-tēèn } \\
& \text { ntā-sīn }{ }^{\text {y }} \text { án? } \\
& \text { nta-tī?yá } \\
& \text { ntā-nán } \\
& \text { ntā-sī?yó } \\
& \text { ntā-kāPán } \\
& \text { ntā-jīín } \\
& \text { ntā-tājlá? } \\
& \text { ntā-tāá }
\end{aligned}
$$

(17)

### 5.3.1.3.1.2 Subclass $A_{c}$

Subclass $\mathrm{A}_{\mathrm{c}}$ verbs are consonant initial so there is no hiatus resolution occurring. The aspect morphemes appear in their unaltered form for all aspects except for the potential where the morpheme $k$-, historically *ki, has disappeared leaving traces of laminalization of the initial consonant when it is a coronal. When the initial consonant is a glottal fricative, the laminalization process does not occur since only coronals can undergo this process. Some verbs are unergative, others transitive. This Subclass usually includes verbs that semantically relate to bodily functions such as 'defecate', 'fart', 'laugh', 'scream' etc. $\mathrm{A}_{\mathrm{c}}$ verbs represent a different Subclass from $\mathrm{A}_{\mathrm{u}}$ verbs because $A_{c}$ verbs do not have intransitive counterparts like the $A_{u}$ verbs. The verb see it is irregular because it lost the aspect morpheme in the completive. Furthermore, the verb 'walk' -ta?an starts with $t$ and undergoes haplology: nti-ta?an $\rightarrow$ nti-t $t^{y} a$ ?an $\rightarrow n-t^{y} a$ ?an.

Example (18) presents examples of Subclass $\mathrm{A}_{\mathrm{c}}$ verbs:




(18)

$$
\begin{aligned}
& \text { ASP } \\
& \text { Class } \\
& \mathrm{A}_{\mathrm{c}} \\
& \mathrm{~A}_{\mathrm{c}} \end{aligned}
$$

| uncpl- | YाDM |
| :---: | :---: |
| puns- | und |
| pKels- | uпวлวs |
| , L2l? ${ }^{-}$ | !? Knq |
| 1, 1717 ${ }^{\text {S }}$ | 487 l |
|  | 7? บวําง |
| идму!s- | 7? צวmpd |
| วәи | ssafuos |
| upqpu- | 7? $\partial \partial s$ |
| adal | 7! Yว! |
|  | dun! |
| <lıu!? | $7!$ moııoq |
|  | ? 1 dof ysp |
| ¿очэฺ- | әұрวд孔әр |
| $p_{\text {All }}$ - | Iupf |
| <иาму?- | ท? мопррмs |
| ?MY? ${ }^{\text {c- }}$ | ท! ว8psspu |
| ирму?- | $7!d p l s$ |
| Шəヤs | SSOID |
| sq. | , ${ }^{\text {TV }}$ Sse[D |

### 5.3.1.3.1.3 Subclass A2

Subclass A2 verbs form a separate Subclass within the Class A verbs because they take the completive aspect morpheme nkwi-. The majority of these roots have an unusual progressive morpheme which surfaces as nti instead of $n t \bar{a}-$.

Zenzontepec chatino shows a similar phenomenon in this particular Class except that all the progressive forms belonging to Subclass A2 verbs also present an additional $k$ - (potential aspect morpheme) right after the progressive marker. Campbell (2011) explains that "the progressive of these verbs is formed by prefixing the progressive marker onto a verb in the potential".

In ZAC, the majority of the progressive forms occur with the marker $n t \bar{i}-$ as opposed to the usual $n t \bar{a}-$. The fact that $n t \bar{a}$-surfaces as ntī- may be the result of an ancient vowel harmony rule. The forms may have been historically: *ntā-ki-tāá $\rightarrow$ ntī-ki-tāá $\rightarrow n t i ̄-t^{y} a ̄ a ́ ~(w h e r e ~ * k i-~ w a s ~ l o s t ~ b u t ~ l e f t ~$ a trace of itself with the vowel $i$ in the prefix and also with the laminalization of the root).

However, all the roots that include the causative morpheme $i x$ - are part of the Subclass A2, and they also occur with the potential marker $k$ - in all aspect. Another interesting fact about A2 is that it is the Subclass where there is a tendency for the forms to have the same tone across all aspects. The roots including the causative morpheme $i x$ - are examined further in
example (20).
Furthermore, the verbs 'turn it in' -tāá and 'look alike' -tō?ó start with /t/ and undergo haplology in the habitual: nti- $t^{y} \bar{a} a ́ \rightarrow n-t^{y} \bar{a} a ́$ and nti-ty $\bar{o} ? o ́$ $\rightarrow n-t^{y} \bar{o}$ ?ó.

Example (19) presents examples of Subclass A2 verbs:
(19) Class A2 verbs

As observed in example (19), Subclass A2 includes verb roots occurring with the causative morpheme $i x$ - which generally are the causative counterparts of C 2 verb roots. By observing the tonal pattern of the causative forms (A2 forms), one can notice that they always surface with the same tone across the board. The causative morpheme ix- seems to bear a high tone (at least historically) which sometimes affects the tone of the roots. This can be seen in the verb bathe it or feed it where the roots are not specified for tone -ata and -ako respectively, and the 3s completive form surfaces as $n k w i x k a ̄ t a ́ ~ a n d ~ n k w i x k a ̄ k o ́ ~ w h e r e ~ t h e ~ h i g h ~ t o n e ~ o f ~ i x-~ s e e m s ~ t o ~ h a v e ~ s p r e a d ~$ into the stem giving a tonal pattern of $[\mathrm{M}-\mathrm{H}]$ on the final moras of verb stem.

Furthermore, all causative forms occur with the potential marker $k$ in all aspects as opposed to just in the progressive for the non-causative A2 verbs presented in example (19) above.

Example (20) presents examples of A2 verbs occurring with causative morpheme $i x$ - together with their respective intransitive forms:


PROG
ntī-x-k-akō?
nky-ākō?
nky-ātà
ntī-x-k-ātá
nky-ākò
ntī-x-k-ākó
ntī-x-k-ūtsēn
nky-ūtsèn
ntī-x-kūtí
ntā-kūtí
ntī-x-lyākwí
ntā-lākwí
COMPL
nkwi-x-k-akōP'
nkay-akō
nkay-ata
nkwi-x-k-ātá
nkay-ako
nkwi-x-k-ākó
nkwi-x-k-ūtsēn
nkay-ūtsēn
nkwi-x-kūtí
n-kyūtí
nkwi-x-ly ākwí
nku-lākwí
 (20) Class A2 verbs with ix-

### 5.3.1.3.2 Class B

Class B is a large Class which includes consonant-initial (but not all consonant-initial verbs), all $y$-initial, and generally intransitive verbs. There are three Subclasses of Class $B: B_{c}, B_{k}, B_{\text {post }}$ and $B_{y}$. They take the completive aspect morpheme $n k u$ - as opposed to $n k a-$ and $n k w i-$ for Class A.

### 5.3.1.3.2.1 Subclass $B_{c}$

Subclass $\mathrm{B}_{\mathrm{c}}$ (labelled c for consonant) includes the less transitive counterparts of the Class $\mathrm{A}_{\mathrm{u}}$ verbs ${ }^{3}$ (the one with consonant initial roots except $/ \mathrm{k} /$-initial roots). $\mathrm{B}_{\mathrm{c}}$ verbs are inchoative verbs (verbs that reflect a change of state) which are translated as passives in English with the verb get, as in it got swept where the agent is unknown to the speaker. Also, because Subclass $B_{c}$ verbs are consonant initial, there is no vowel conflict to be resolved and as a result, the aspect morphemes appear in their full forms.

Example (21) presents examples of Subclass $B_{c}$ verbs, and example

[^47](22) presents examples of $B_{c}$ verbs together with their less transitive counterparts ( $\mathrm{A}_{\mathrm{u}}$ roots).
会会
(21)
\[

$$
\begin{aligned}
& \text { Subclass } B_{c} \text { verbs } \\
& \text { Gloss }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { get counted } \\
& \text { get strained } \\
& \text { get swept } \\
& \text { get blessed } \\
& \text { get cut } \\
& \text { get peeled } \\
& \text { get broken } \\
& \text { escape (irreg.) } \\
& \text { get boiled } \\
& \text { get born } \\
& \text { get scraped } \\
& \text { get shaken } \\
& \text { get shaken (earth) } \\
& \text { get emptied }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Stem } \\
& \text {-lakwǎ } \\
& \text {-tikwă } \\
& \text {-lukwă } \\
& \text {-nakwăn } \\
& \text {-sī̌yó } \\
& \text {-tūkwín? } \\
& \text {-nu?un } \\
& \text {-lāá } \\
& \text {-lākwí } \\
& \text {-tỉin } \\
& \text {-la?ä } \\
& \text {-tsikkwín } \\
& \text {-nākwín } \\
& \text {-laja }
\end{aligned}
$$

$$
\begin{aligned}
& \text { COMPL } \\
& \text { nku-lakwǎ } \\
& \text { nku-tikwǎ } \\
& \text { nku-lukwǎ } \\
& \text { nku-nakwǎn } \\
& \text { nku-sī?yó } \\
& \text { nku-tūkwín? } \\
& \text { nku-nu?un } \\
& \text { nku-lāá } \\
& \text { nku-lākwí } \\
& \text { nku-ti?in } \\
& \text { nku-la?à } \\
& \text { nku-tsīkwín } \\
& \text { nku-nākwín } \\
& \text { nku-laja }
\end{aligned}
$$

(22)

### 5.3.1.3.2.2 Subclass $B_{k}$

Subclass $\mathrm{B}_{\mathrm{k}}$ labelled as such because the roots are $/ \mathrm{k} /$-initial. They form a separate Subclass within Class B because they take the potential aspect morpheme $t^{\forall} i$ - which is actually derived from *ki-, and results from a dissimilation process between syllables starting with $/ \mathrm{k} /$. Despite the fact that the dissimilation process is mostly a phonological matter, $\mathrm{B}_{\mathrm{k}}$ is a subcategory for convenience, or ease of analysis. It is a small class of verbs, and the data presented in example (23) is exhaustive.

The habitual morpheme $n t i-$ surfaces as $n t^{y} i$ - because the habitual is formed by adding the habitual morpheme nti- to the potential form, then haplogy deletes the ti- as such: 'it gets painted' *nti-ki-kò?ő $\rightarrow$ nti-tyi-kò?ő $\rightarrow$ n-tyi-kò ő .

Another interesting fact to notice is the haplogy in the completive which is unusual because haplology in ZAC usually occurs in the habitual forms when the root starts with /t/. The loss of the $k u$-from the completive morpheme $n k u$ - probably occurs in order to satisfy the dissimilation rule between two $k$ initial syllables. As a result nku-kūná? 'get lost' $\rightarrow n$ - $k u ̄ n a ́ ?$. One can note that this dissimilation rule does not occur in the form for nko-kō?ó 'get painted'. Furthermore, in the form nkwaPan 'live in the countryside', the $/ \mathrm{u} /$ from the completive morpheme $n k u$ - remains but is moved to the subsequent first syllable of the root: $n k u-k a P a n \rightarrow n$-kwa?an.

Example (23) presents examples of Subclass $B_{k}$ verbs:




| $\begin{aligned} & \text { E } \\ & \text { E } \end{aligned}$ |  |
| :---: | :---: |
| $\stackrel{\sim}{0}$ |  |
| $\bar{J}$ |  |
| $>$ | § |
|  | ST 刃 |
| 8 | , |
|  | - 8 - |

(23)

### 5.3.1.3.2.3 Subclass $B_{\text {post }}$

Subclass $\mathrm{B}_{\text {post }}$ is labelled as such because it mostly includes posture or motion verbs. So this Subclass is separated from subclass $B_{c}$ solely on a semantic basis. Because most roots start with /t/ the habitual forms have undergone haplogy but the initial coronal still surfaces laminalized from the /i/ of habitual morpheme nti-. Furthermore, the first two verbs presented in example (24) below show unusual progressive forms which include the prefix $t \bar{a}$ - right after the completive aspect prefix $n k u$-. This $t \bar{a}-$ prefix has not been encountered in any other forms and its origin is unknown, although one may easily and logically speculate that it actually comes from the progressive prefix ntā-.

Example (24) presents examples of Class SubClass $B_{\text {post }}$ verbs:

 PROG
nku-tā-sūtí
nku-tā-sūkwǎ
ntā-túkwà
ntā-tyāà
ntā-tyāàn
ntā-tākwí
---
ntā-tīkwí
ntā-tīlýó
ntā-tīly $\bar{o}$
ntā-tūūn
ntā-tō?ó


 (24)

### 5.3.1.3.2.4 Subclass $B_{y}$

Subclass $\mathrm{B}_{\mathrm{y}}$ is labelled as such because all its verb roots start with $/ \mathrm{j} /$. In fact, all the $y$-initial roots in ZAC belong to Subclass $\mathrm{B}_{\mathrm{y}}$. Many of the roots are the less transitive counterparts of the other derivationally derived roots from Subclass $\mathrm{A}_{\mathrm{u}}$. Some roots are $y$-initial but are not members of the derivational pairs $A_{u} / B_{y} . / j /$ conflicts with the vowel $/ u /$ in the completive aspect morpheme so this Subclass only offers an altered form of $n k u$ - as $n k$-.

The progressive is formed by adding the progressive marker ntā- to the potential forms. Again, a vowel harmony process occurs in these forms and ntā- surfaces as ntī- as in 'get looked for' ntī-k-y-ānán from *ntā-ki-y-ānán.

The habitual forms are also formed by adding the habitual marker ntito the potential forms. Despite the fact that the roots do not start with /t/ (which is generally the trigger for haplology), the habitual forms undergo haplology and the habitual morpheme surfaces as $n$ - only.

The segmentation of $y$ - in the first five examples in (25) is based on the alternation presented next in example (26).

Example (25) presents examples of Subclass $\mathrm{B}_{\mathrm{y}}$ verbs:
 HAB
n-k-y-àlá
n-k-y-uwì?
n-k-y-àna̋n
n-k-yakàn?
n-k-yùkwa̋?
n-k-yàjä
n-kyaà?
n-k-yatèn`
n-kyală
n-k-yānú
n-k-yùwí PROG
ntī-k-y-ālá
ntī-k-y-uwî?
ntī-k-y-ānán
ntī-k-y-akǎn?
ntī-k-y-ūkwá?
ntī-k-yājá
ntī-k-yaā?
ntī-k-yātén
ntī-k-yälă
ntī-k-yānú
ntī-k-yūwí



| Subclass $\mathrm{B}_{\mathrm{y}}$ verbs |  |
| :---: | :---: |
| Gloss | Stem |
| get opened | -y-ālá |
| get turned off | -y-uwž? |
| get looked for | -y-ānán |
| get tied | -y-akǎn? |
| get threshed | -y-ūkwá |
| sneeze | -yājá |
| become | -yaā? |
| enter | -yatěn |
| arrive | -yālā |
| stay | -yānú |
| lighten | -yūwí |



Some $\mathrm{B}_{\mathrm{y}}$ verbs are the less transitive counterparts of $\mathrm{A}_{\mathrm{u}}$ roots. The verbs -yaāp' 'become', -yatěn 'enter', and -yānú 'stay' are cognate with the Zenzontepec Chatino's forms, -yāá? 'to be made', -y-atēn 'enter', and -y-ánō 'stay', and Campbell (2011) offers a clear explanation of these derivationally related pairs which is also valid for ZAC data: "These pairs are equipollent, since their more transitive and less transitive stems are both derived by prefixes on uninflectable roots. The more transitive verb is derived by a transitivizing prefix, either $t$ - or $s$-, on a root that begins in either $a$ or $u$. The transitivizer in turn is often preceded by the causative $u$-. Like other ucausatives, the more transitive verbs derived in these pairs fall into Subclass $A_{u}$. The Subclass $B_{y}$, less transitive verb stems of these pairs are formed by adding an intransitivizing prefix $y$ - to the root."

Example (26) presents examples of these pairs showing the $y-/ u-t-$ and $y$-/u-s-derivations:

PROG
ntī-k-y-ālá
ntā-s-ālá
ntī-k-y-uwǐ?
ntā-s-uwǐ?
ntī-k-y-ānán
ntā-nán
ntī-k-yakǎn?
ntā-s-akǎn?
ntī-k-y-ūkwá?
ntā-s-ūkwá?
ntī-k-y-akīn
ntā-t-ākín
COMPL
nk-y-ālá
nka-s-ālá
nk-y-uwǐ?
nka-s-uwǐ?
nk-y-ānán
nkā-nán
nk-y-akǎn?
nka-s-akǎn?
nk-y-ūkwá?
nka-s-ūkwá?
nk-y-akīn'
nka-t-akīn'
会


| $B_{y}$ and $A_{u}$ verbs |  |
| :---: | :---: |
| Gloss | Stem |
| get opened | -y-ālá |
| open it | -u-s-ālá |
| get turned off | -y-uwǐ? |
| turn it off | -u-s-uwǐ? |
| get looked for | -y-ānán |
| look for it | -u-ānán |
| get tied | -y-akǎn? |
| tie it | -u-s-akǎn? |
| get threshed | -y-ūkwá? |
| thresh it | -u-s-ūkwá? |
| get burned | -y-akin' |
| burn it | -u-t-akin' | $\stackrel{6}{6}$

### 5.3.1.3.3 Class C

Class C includes transitive and intransitive roots. It distinguishes itself from the other Classes A and B by taking the progressive marker nky-. Subclass $\mathrm{C}_{\mathrm{a}}$ only includes intransitive roots and $a$-initial roots which in the completive aspect all take the marker nku-. Subclass C2 roots are also all vowel-initial $(a, o, u)$ but take the marker nkay-in the completive, and only includes transitive verbs.

Despite the fact that the progressive marker nky-lacks a vowel, the /M/ tone of the progressive marker (like in $n t \bar{a}-$ ) seems to be present. Indeed, most progressive forms in example (27) are composed TS's combining a /M/ tone linked to the penultimate mora with the inherent tone of the root linked to the final mora of the stem.

### 5.3.1.3.3.1 Subclass $C_{a}$

Subclass $C_{a}$ verbs are all intransitive inchoative verbs. Some of them have more transitive counterparts which are part of the Subclass $A_{u}$. The verb 'to die' -aji is very irregular because the completive form uses the root -ujwi 'kill it', the progressive marker is nti- instead of nky-, and finally the potential form undergoes Progressive Laryngeal Harmony and surfaces as kaja instead of kaji.

Also, the habitual form of the verb 'to be' is actually a stative form so the $l$ - is not an allomorph of the habitual aspect morpheme.

Example (27) presents examples of Subclass $C_{a}$ verbs:
(27)

$$
\begin{array}{ll}
\text { Subclass } \mathrm{C}_{\mathrm{a}} \text { verbs } \\
\text { Gloss } & \text { Stem } \\
& \\
\text { die } & -a j i \\
\text { be } & -a k \bar{a}^{\prime} \\
\text { be born } & -a l a ́ \\
\text { get broken } & -\bar{a} t s a ́ \\
\text { rot } & -a k w \grave{~} \\
\text { ripen } & -\bar{a} w e \bar{n} \\
\text { grow } & -a l o ̌ \\
\text { explode } & -a t s o ̄ \\
\text { get wet } & -a t s \bar{a} ? \\
\text { drip } & -a k w \bar{a} ? \\
\text { get cooked } & -a k e ̌ ? \\
\text { grow old } & -a s o ̌ ? \\
\text { get distinguished } & -a t a \grave{k a ̈ n ? ~}
\end{array}
$$

$$
\begin{aligned}
& \text { PROG } \\
& \text { ntī-jà } \\
& \text { nky-ākā’ } \\
& \text { nky-ālá } \\
& \text { nky-ātsà } \\
& \text { nky-ākwī } \\
& \text { nky-āwèn } \\
& \text { nky-ālǒ } \\
& \text { nky-ātsò } \\
& \text { nky-ātsà? } \\
& \text { nkyā-kwà? } \\
& \text { nky-ākě? } \\
& \text { nky-āsǒ? } \\
& \text {----- }
\end{aligned}
$$

### 5.3.1.3.3.2 Subclass C2

Subclass C2 roots are all transitive (except 'to cry' and 'get scared'). They are all vowel-initial ( $a, o, u$ ). They take the same aspect morphemes as Subclass $\mathrm{C}_{\mathrm{a}}$ except for the completive where they show an alternation with nkay- and $y$-. Speakers tend to prefer using the shorter form using $y$ but both forms are in free alternation with nkay- loosing ground.

The verb 'to vomit it' is irregular in the progressive $n t^{\Downarrow} i$-kwèn because $n t i-$ surfaces as $n t^{y} i$ - without any trigger for laminalization (preceding vowel /i/). Furthermore, the verb to grind it also presents some irregularities in the progressive where it takes the morpheme nty-instead of ngy-, and in the habitual the palatal glide gets inserted between the aspect morpheme and the root as in nti-y-oò.

Example (28) presents examples of Subclass C2 verbs:

$$
\begin{aligned}
& \text { PROG } \\
& \text { nky-ūlǎ } \\
& \text { nky-ūnà } \\
& \text { nky-ūnǎ } \\
& \text { nky-ātà } \\
& \text { nk-ūjwì } \\
& \text { nky-ūtsèn } \\
& \text { nky-ākwēn } \\
& \text { nky-ākò } \\
& \text { nty-òṓ․ } \\
& \text { ntī-Rō } \\
& \text { nky-ūjwī? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { HAB } \\
& \text { nt-ulà } \\
& \text { nt-unà } \\
& \text { nt-unà } \\
& \text { nti-tya } \\
& \text { nt-ujwì } \\
& \text { nt-utsèn } \\
& \text { ntyi-kwèn } \\
& \text { nky-ako } \\
& \text { nti-y-oō } \\
& \text { nky-alò } \\
& \text { nt-ujwì? }
\end{aligned}
$$

$$
\underset{\substack{\infty \\ \hline}}{ }
$$

### 5.3.1.4 Conclusion

ZAC shows a fairly regular verbal system despite a prima facie maze of allomorphy in the aspect markers. Almost all surface allomorphy can be explained by morphophonological processes such as haplology and vowel harmony. As expected, the most irregular verbs are the high frequency roots such as want, like, speak, be etc., and also all the deictic motion verbs. The ZAC prefix Classes reflect older patterns of inflectional and derivational prefixation, and correlate with valency (especially causativity).

Table 5.7 shows how the database counting 218 simplex roots is divided among the Classes and Subclasses. It shows that Class B is the largest Class, and Class $C$ the least populated:

| A | B |  |  |  |  |  |  | C |  | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 88 |  |  | 95 |  |  |  | 35 |  |  |  |
| $\mathrm{~A}_{\mathrm{c}}$ | $\mathrm{A}_{\mathrm{u}}$ | A 2 | $\mathrm{~B}_{\mathrm{c}}$ | $\mathrm{B}_{\text {post }}$ | $\mathrm{B}_{\mathrm{k}}$ | $\mathrm{B}_{\mathrm{y}}$ | $\mathrm{C}_{\mathrm{a}}$ | C 2 |  |  |
| 28 | 57 | 14 | 14 | 19 | 10 | 41 | 15 | 20 | 218 |  |

Table 5.7: Prefix Classes statistics

Despite the high functional load of tone in ZAC in general (tone has both a lexical and grammatical function), aspect is almost never solely marked by tone. One prefix Class does present exceptions to this tendency. Subclass $B_{y}$ often has the same forms for the completive and the habitual aspects because of the fact that all its verb roots start with $y$ - which conflicts with the vowel in the aspect morphemes so the completive morpheme nkusurfaces as $n k$ - giving forms such as nkyālá. The habitual forms are formed
by adding the habitual marker nti- to the potential forms. Despite the fact that the roots do not start with $t$ (which is generally the trigger for haplology), the habitual forms undergo a similar process of segmental deletion, and the habitual morpheme surfaces as n- only, giving forms such as nkyàlä. Both forms end up being the same segmentally and differing solely in the tone.

When the data presented in this section is reviewed again, but this time examining tonal patterns for each prefix Class, it shows that prefixdefined and tone-defined conjugational Classes are largely independent from each other. Indeed, prefixation and tonal patterns each define conjugational Classes-but they do so largely separately.

One exception to this fact is found in Subclass A2 which shows a clear correlation between tonal characteristics and prefix Class. This was demonstrated and discussed in examples (19) and (20).

As was observed in examples (19) and (20), Subclass A2 includes verb roots occurring with the causative morpheme $i x$-. The tonal pattern of the causative forms always surface with the same tone across aspects. The morpheme $i x$ - seems to bear a high tone (at least historically) which may affect the tonal pattern of the roots.

In the sections to follow, this question of orthogonality between the prefix Classes and the tonal patterns is examined further.

### 5.3.2 Tonal aspectual conjugation Classes

We have seen in the previous section that ZAC groups verbs into three main prefix Classes based on which completive aspect marker a verb root selects, and secondarily, its marking for other aspects. As a result the segmental aspectual paradigm of a verb can be fairly accurately predicted by looking at which aspect morpheme a particular root selects for the 3s completive form. This section shows that ZAC also classifies conjugations based on the tone pattern marking aspect, and more precisely the Tone Class for the 3s completive form. Thus, the tonal paradigm of a verb for all aspects can be narrowed down by looking at which Tone Class a particular root occurs with in the 3 s completive aspect.

The potential and habitual tonal conjugation pattern, i.e. the pattern that holds from one element in a paradigm to another, is always the same, and since the aspect prefixes for these aspects do not bear a tone, the roots are never tonally disturbed due to aspect prefixation. As a result, in the data presented in the examples to follow, the Tone Class for the habitual and potential forms is marked only once (just after the potential forms).

On the other hand, the tone pattern for the completive and progressive forms is also generally (underlyingly) the same but because the progressive aspect prefix bears a mid tone, the surface tonal patterns of progressive forms are different from the completive forms, and in some cases the progressive surface pattern is not among the fifteen TS's that define the fifteen Tone Classes. These particular tonal patterns are composed TS's because
they consist of a /M/ tone prefixed to a stem with a completive tonal pattern.

Below is an example of a complete verbal paradigm for the verb -ulukwǎ 'to sweep it', Tone Class 8 (/LH/), which was already presented in $\S 5.2$, but is included here again for convenience:

|  | COMPL | PROG | HAB | POT |
| :--- | :--- | :--- | :--- | :--- |
| 1s | nkalükwấn | ntālùkwấn | ntulùkwấn | kulùkwấn |
| 2s | nkalūkwá | ntālūkwá | ntulùkwā | kulùkwā |
| 3s | nkalukwă | ntālūkwá | ntulukwă | kulukwă |
| 1PLINCL | nkalukwă nan | ntālūkwá nan | ntulukwă nan | kulukwă nan |
| 1PLEX | nkalukwǎ wa | ntālūkwá wa | ntulukwă wa | kulukwă wa |
| 2PL | nkalukwă wan | ntālūkwá wan | ntulukwă wan | kulukwă wan |
| 3PL | nkalukwǎ ne? | ntālūkwá ne? | ntulukwă ne? | kulukwă ne? |

Table 5.8: Example of a complete verbal paradigm for a Tone Class 8 verb

### 5.3.2.1 Composed TS's in progressive verb forms

Some progressive tonal patterns can be accounted for among the inventory of the fifteen Tone Classes. For example, Tone Class 12 (/M-M-L/) often occurs on progressive forms whose 3s completive tonal pattern is Tone Class 1 (unspecified for tone); or Tone Class 13 (/M-LS-L (L)/) often occurs on progressive forms whose 3s completive tonal pattern is Tone Class 3 (/L (L)/). However, Tone Class 12 and Tone Class 13 are not exclusive to the progressive aspect marking because they are also encountered in other parts of speech such as noun, adverbs or adjectives (although somewhat rare). One may speculate that this tonal composition process may be how
new tonal Classes arose in the lexicon. Some TS's originated as composed tonal patterns which spread to other parts of speech in the lexicon and as a result became lexicalized over time.

One progressive tonal pattern (Tone Class 14 (/M-H-M/) is accounted for among the fifteen Lexical Tone Classes but is generally exclusive to 2 s progressive forms whose 3 s completive tonal pattern is Tone Class 11 (/M$\mathrm{H} /$ ). This shows that ZAC presents inflectional specialization because a tonal Class may have a specialized function dedicated to a particular type of inflected forms (see chapter $4 \S 4.10$ ).

Example (29) shows that for some progressive forms the tonal pattern is not among the fifteen TS's that define the fifteen Tone Classes and for some others, the progressive tonal pattern corresponds to an actual TS. The composed TS's are marked with an M- before the Class number.

In example (29), items $g, h, i, j, k, l$ and $n$ are composed TS's, and all the other progressive forms occur with tonal patterns which fall under an existing Tone Class.

However, one phenomenon still remains in need of an explanation: What happens when the tone of the progressive prefix (/M/) and the tone of the stem collide, as they do in progressive forms in items $a, f, m, p$ and $q$ ?

In item $a$, the stem tone of progressive form occurs with Tone Class 12 whose tonal representation is /M-M-L/. Since the tonal domain of TS's
is the simplex word (which includes the aspect prefix), the $/ \mathrm{M} /$ tone of the aspect prefix nt $\bar{a}$ - collides with the antepenultimate /M/ of Tone Class 12.

In item $f$, the stem tone of progressive form occurs with Tone Class 13 whose tonal representation is /M-LS-L (L)/. In this case, the /M/ tone of the aspect prefix nt $\bar{a}$ - collides with the antepenultimate $/ \mathrm{M} /$ of Tone Class 13.

In item $m$, the stem tone of progressive form occurs with Tone Class 12 whose tonal representation is /M-M-L/. In this case, the /M/ tone of the aspect prefix collides with the penultimate $/ \mathrm{M} /$ tone of Tone Class 10 (/M-M/).

In items $p$ and $q$, the stem tone of progressive forms occur with Tone Class 12 whose tonal representation is $/ \mathrm{M}-\mathrm{M}-\mathrm{L} /$. In this case, the $/ \mathrm{M} /$ tone of the aspect prefix collides with the antepenultimate $/ \mathrm{M} /$ tone of Tone Class 12.

In order to account for this phenomenon, a deletion rule is needed:
When in the process of aspectual prefixation in progressive verb forms, one of the tonal element of the stem's TS collides with the /M/ of the aspect prefix, the tonal element of the stem gets deleted, and the $/ M /$ tone of the aspect marker is always preserved.

Figure 5.3: Tone deletion rule in progressive forms
(29) TS's and composed TS's in progressive forms

| Item | Gloss | Root | 3s COMPL | Tone | 3s PROG | Tone |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a$ | get emptied | -laja | nkulaja | 1 | ntālājà | 12 |
| $b$ | bathe | -ata | nkayata | 1 | nkyātà | 12 |
| c | get cracked | -lapă | nkula?à | 3 | ntāla̋Pà | 13 |
| $e$ | get sprayed | -y-anè | nkyanè | 3 | ntīkya̋nè | 13 |
| $f$ | distribute it | -u-titsà | nkātî́tà | 13 | ntātî́ssà | 13 |
| $g$ | find it | -y-ajä | nkyajā' | 4 | ntīkyajā | M-4 |
| $h$ | drink it | -opō | nkayo?ō' | 4 | ntī?ō' | M-4 |
| i | melt | -y-ală | nkyalǎ | 8 | ntīkyalǎ | M-8 |
| j | play it | -ulă | nkayulǎ | 8 | nkyūlǎ | M-8 |
| $k$ | change clothes | -tsàPa̋n | nkwichà ${ }^{\text {án }}$ | 9 | ntātsà $1 a ̋ n$ | M-9 |
| $l$ | hurt | -kū?wā | nkū?wā | 10 | ntākū?wā | M-10 |
| $m$ | get lower | -īPyā | nkwī?yā | 10 |  | 12 |
| $n$ | spend it | -u-lijí | nkalījí | 11 | ntālījí | M-11 |
| 0 | weave it | -tājlá? | nkatājlá? | 11 | ntātàjlā? | 14 |
| $p$ | get ground | -y-āà | nkyāà | 12 | ntīkyāà | 12 |
| $q$ | arrive there (base) | -tyāàn | nkūtyāàn | 12 | ntātyāàn | 12 |

To follow is a series of examples which consist of a list of verb paradigms in 3 s for all four aspects. Each example is dedicated to a specific Tone Class in completive 3 s verb stems.

The following data shows that there are two substantial conjugation subclasses that are revealed by the relationship between the completive tonal pattern and the habitual/potential tonal pattern. The generalization is that for almost every conjugation class, there is an invariant-potential pattern (where the completive forms and the habitual/potential forms show the same tonal pattern) and a changed-potential pattern (where the completive forms and the habitual/potential forms have a different tonal pattern). The changed-potential forms have potential/habitual forms marked with Tone Class 3 or Tone Class 9.

Some rows show --- and lack the corresponding aspectual form either for semantic reasons or just because the verb form in question could not be elicited at the time of data collection.

### 5.3.2.2 Tone Class 1 aspectual conjugation

Example (30) shows that if a completive verb form bears Tone Class 1 (/X/), the progressive form occurs with Tone Class 12 (/M-M-L/), and the potential and habitual forms also bear Tone Class 1(only one exception 'spread it). As a result, the aspectual tonal pattern of this conjugation class can be predicted on the basis of the completive tonal pattern alone. We are going to see that this is generally not the case for other conjugation classes.

Tone Class 12 probably emerged historically from an internal sandhi process resulting from the prefixation of a morpheme bearing a mid tone and a root bearing Tone Class 1 (unspecified for tone). This Tone Class 12 is prominent in progressive forms because it marks the progressive aspect of Tone Class 1 completive stems, but it is not exclusive to those forms. It is also encountered in other parts of speech in the language, although quite rarely.
 웅

### 5.3.2.3 Tone Class 3 aspectual conjugation

Example (31) shows that if a 3s completive verb form bears Tone Class 3 (/L (L)/), the 3s progressive form occurs with Tone Class 13 (/M-LS-L (L)/), and the potential and habitual 3s forms also bear Tone Class 3. Again, as was the case for the preceding Tone Class 1 conjugation, the aspectual tonal pattern of this conjugation class can be predicted on the basis of the completive tonal pattern alone.

Tone Class 13 probably emerged historically from the prefixation of a morpheme bearing a mid tone with a floating tone and a root bearing Tone Class 3 (/L (L)/). Just as is the case for Class 12 (/M-M-L/), Class 13 is now lexicalized as the language presents other part of speech with this tonal pattern, although also quite rare, and even more so than Class 12 nouns, adjectives or adverbs.Verbs with Tone Class 3 in the completive are quite rare. However, Tone Class 3 is widespread to mark the potential or habitual aspects.

The list presented below is exhaustive. As a result, it is not the optimal set of data to make generalizations but still one fact is quite salient: all (except one) completive 3s forms occurring with Tone Class 3 belong to prefix Class $\mathrm{B}_{\mathrm{y}}$, and as a result includes mostly intransitive verbs. Tone Class 3 and Tone Class 13 verbs represent a set since the former are mostly intransitives and the latter (as shown in the next section 5.3.2.4) are generally transitives.


### 5.3.2.4 Tone Class 13 aspectual conjugation

Example (32) shows a list of verbs that occur with Tone Class 13 (/M-LS-L (L)/) in the 3s completive forms. Since Tone Class 3 and Tone Class 13 are historically related, it is important to present the data for Tone Class 13 right after Tone Class 3 in order to show their relationship. This tonal conjugation Class is also rather small and very regular. Tone Class 3 and Tone Class 13 present the same tonal ablaut pattern. The 3 s completive and progressive forms both occur with Tone Class 13 and both have the same surface tonal pattern because of the fact that Class 13 has a mid tone that links to the antepenultimate mora in trimoraic forms. The completive forms probably surface with Tone Class 13 by analogy with the progressive forms. The 3s habitual and potential forms occur with Tone Class 3.

This conjugation Class only includes Class A verbs, particularly from Subclass $A_{u}$ and A2.The outliers that show the invariant-potential pattern (where the completive forms and the habitual/potential forms show the same tonal pattern) are the A2 forms including the causative morpheme $i x$-.

As a result, the aspectual tonal pattern of this conjugation class cannot be predicted on the basis of the completive tonal pattern alone. Two characteristics ought to be considered: the 3s completive Tone Class AND the prefix Class. As opposed to the verb forms occurring with Tone Class 3 presented in example (31), the verb forms occurring with Tone Class 13 are mostly transitive.
 た

### 5.3.2.5 Tone Class 4 aspectual conjugation

Examples (33) and (34) show that if a completive verb form bears Tone Class $4(/ \mathrm{M}(\mathrm{H}) /$ ), the conjugation presents two patterns: the invariantpotential pattern (33) and the changed-potential pattern (34).

The progressive forms with a tone M- 4 (mid tone prefixed to a Tone Class 4 root (/M (H)/) are phonetically [M-L-M] (with an unrealized high floating tone in isolation) when trimoraic, and they are [M-M] (with an unrealized high floating tone) when dimoraic. The dimoraic progressive forms surface as [M-M] (with an unrealized high floating tone) which in isolation sounds exactly like Tone Class 10 (/M-M/) but when placed in phrasal context, the high floating tone gets realized on subsequent unspecified moras.

The aspectual tonal pattern of this conjugation class cannot be predicted on the basis of the completive tonal pattern alone. Which of the two patterns a verb shows seems to be unpredictable. Nevertheless, if we examine the prefix Class of the verbs showing the invariant-potential pattern presented in example (33), we may want to note that most of them belong to Subclass $\mathrm{B}_{\mathrm{y}}$. Furthermore, as expected the habitual/potential forms showing the changed-potential pattern occur with Tone Class 3.

Example (34) presents two irregular progressives forms, one of them belonging to Subclass $\mathrm{A}_{c}-j i i^{y} \bar{u} \boldsymbol{\imath}$ ' 'borrow it', and the other belonging to Subclass $\mathrm{B}_{\mathrm{c}}-t u \bar{u} n^{\prime}$ 'stand'. This irregularity cannot be based on the prefix Class nor on the stem shape (in the case of the long vowel stem).


### 5.3.2.6 Tone Class 8 aspectual conjugation

Examples (35) and (36) show that if a 3s completive verb form bears Tone Class 8 (/LH/), the general rule is that a $3 s$ progressive form occurs with Tone Class 8 on the stem prefixed with a mid tone (M-8) or the progressive form may also surface with a different tonal pattern (M-11). The potential and habitual forms bear Tone Class 3 (/L (L)/). Completive verb forms with Tone Class 8 are widespread in the lexicon. One important fact to note is that this conjugation class does not present a potential-invariant pattern as is the case for most other conjugation classes.

Most progressive forms bear a M-8 tone (mid tone prefixed to a Tone Class 8 root (/LH/)), but others bear a M-11 (mid tone prefixed to a Tone Class 11 root (/M-H/). The first pattern mentioned (M-8) is phonetically [M-L-LH] in trimoraic forms and it is [M-LH] in dimoraic forms. The second progressive tonal pattern (M-11) is $[\mathrm{M}-\mathrm{M}-\mathrm{H}]$ in trimoraic forms and is $[\mathrm{M}-\mathrm{H}]$ in dimoraic forms. Both composed TS's sound fairly similar although they are discernible on the basis of the middle mora in trimoraic forms which sounds low in one tonal pattern and high in the other.

The difference in tonal ablaut patterns in the progressive forms seems to be random. However, one may notice that the M-11 tonal pattern occurs on roots belonging to prefix Class (mostly $A_{u}$, some $B_{c}$ and only one $B_{y}$ ). The M-8 tonal pattern also occurs on roots belonging to these particular prefix Classes but also on $\mathrm{C} 2, \mathrm{C}_{\mathrm{a}}$ and $\mathrm{A}_{\mathrm{c}}$ roots. So there seem to be no clear relationship where between the tonal ablaut pattern and the prefix Class.

Example (35) presents two irregular verbs 'rot' -akwǐ and 'sleep' ajă?. The irregular tone pattern of the first verb cannot be explained by its moraic shape nor its prefix Class since we can see that there are other dimoraic verb forms belonging to Subclass $C_{a}$ that occur with the regular progressive tonal pattern for this conjugation class (M-8). As for the second verb 'sleep', the form indicated in the progressive column is actually a stative form.
(35) Verbs with Tone Class 8 (/LH/) in the completive aspect and M-8 in the progressive aspect



### 5.3.2.7 Tone Class 9 aspectual conjugation

Example (37) shows that if a completive verb form bears Tone Class 9 (/L-LS/), all 3s forms also bear the same tone (underlingly) across aspects. This conjugation class only shows the potential-invariant pattern. The progressive forms occur with a mid tone prefix and as a result surface as /M-L-LS/. Roots with Tone Class 9 are very rare in the language and the list presented in example (37) is exhaustive. Tone Class 9 is widespread to mark potential and habitual forms.

$\stackrel{\overparen{ }}{\underset{\sim}{~}}$

### 5.3.2.8 Tone Class 10 aspectual conjugation

Data in this section shows that Tone Class 10 conjugation is not as straightforward as most other conjugation classes. It presents one invariantpotential pattern (38) and three different changed-potential pattern labelled for convenience as pattern a, b, and c, illustrated in (39), (40) and (41) respectively.

The invariant-potential pattern shown in example (38) only includes Class B verbs, and mostly from Subclass $\mathrm{B}_{\mathrm{y}}$.

The changed-potential pattern a shown in example (39) also mostly includes Class B verbs, and two irregular forms 'cool down' and slim down'. The progressive forms occur with Tone Class 13 (and not with a composed TS as is the case for the progressive forms in (example (38): M-10).

The changed-potential pattern b shown in example (40) also mostly includes Subclass $A_{u}$ and Class $C$ verbs with a few Class $B$. The progressive forms occur with Tone Class 12, and the habitual and potential forms occur with Tone Class 3.

The changed-potential pattern c shown in example (41) only includes Subclass $C_{a}$ verbs. The progressive forms occur with Tone Class 12, and the habitual and potential forms occur with Tone Class 1. Tone Class 1 does not usually occur on habitual and potential verb forms showing a changedpotential pattern, the more widespread Tone Classes are Tone Class 3 or Tone Class 9. In this case, it seems that the prefix Class is the basis for the
split in conjugation pattern.
$\stackrel{\circ}{0}$

| (39) | Verbs with Tone Class 10 (/M-M/) in the completive aspect: changed-potential pattern a |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Gloss | Root | COMPL | Tone | PROG | Tone | нав | Рот | Tone |
|  | cough | $-t o \bar{o}$ ? $\left(\mathrm{A}_{\mathrm{c}}\right)$ | nkatōō? | 10 | ntātőò? | 13 | $\mathrm{nt}^{\text {y }}$ oòr | $\mathrm{t}^{\mathrm{y}} \mathrm{oò}$ ¢ | 3 |
|  | get rung | -y-ānē ( $\mathrm{B}_{\mathrm{y}}$ ) | nkyānē | 10 | ntîkya̋nề | 13 | nkyanề | kyanè | 3 |
|  | arrive | -yālā ( $\mathrm{B}_{\mathrm{y}}$ ) | nkyālā | 10 | nti̇kya̋là | 13 | nkyalà | kyalà | 3 |
|  | come here (to base) | -yāān ( $\mathrm{B}_{\mathrm{y}}$ ) | nkyāān | 10 | ntîkya̋àn` | 13 | $\mathrm{n}^{\text {y }}$ aàn | kyaàn | 3 |
|  | cool down | $-k u \bar{u} p w \bar{a}\left(\mathrm{~B}_{\mathrm{k}}\right)($ irreg.) | nkū?wā | 10 | ntākū?wā | M-10 | $n^{\text {ty }}$ iku?wà | $\mathrm{t}^{\text {y }}$ iku? wà | 3 |
|  | slim down | -lâtu ( $\mathrm{B}_{\mathrm{c}}$ ) (irreg.) | nkulātī | 10 | ntālātī | M-10 | --- | $1^{\text {y }}$ atï | 3 |

$\underset{q}{ }$


### 5.3.2.9 Tone Class 11 aspectual conjugation

Examples (42), (43) and (44) show that when a completive verb form bears Tone Class 11 (/M-H/), the changed-potential pattern across aspects is the most widespread. It occurs on verbs of all prefix Classes except Subclass A2. The progressive forms also occur with Tone Class 11 but surface as [M-M-H] for trimoraic forms (they are composed TS's) and as [M-H] for dimoraic forms. The potential and habitual forms occur with Tone Class 9.

With such a large set of data within a conjugation Class, it is easy to note that Subclass $\mathrm{A}_{\mathrm{u}}$ is the most prevalent prefix Class. All prefix Classes occur except Subclass $\mathrm{A}_{\mathrm{c}}$ and Subclass A2.

Example (43) shows a different type of changed-potential pattern (pattern b) where the habitual and potential forms occur with Tone Class 1 instead of Tone Class 9. Also, it seems that this pattern only occurs on verbs belonging to prefix Class $C_{a}$. Interestingly, example (41) in preceding section also presents the same split in pattern based on the prefix Class $C_{a}$.
(42) Verbs with Tone Class 11 (/M-H/) in the completive aspect: changed-potential pattern a

| (42) | Verbs with Tone Class 11 (/M-H/) in the completive aspect: changed-potential pattern a |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Gloss | Root | COMPL | Tone | PROG | Tone | HAB | POT | Tone |
|  | open it | -u-s-ālá ( $\mathrm{A}_{\mathrm{u}}$ ) | nkasālá | 11 | ntāsālá | M-11 | ntusàla̋ | kusàlă | 9 |
|  | tighten it | -u-siny ${ }^{\text {a }}$ án $\left(\mathrm{A}_{\mathrm{u}}\right)$ | nkasīn ${ }^{\text {y a }}$ n? | 11 | ntasīn ${ }^{\text {y a }}$ ? | M-11 | ntusìn ${ }^{\text {y }}$ an? | kusìn ${ }^{\text {ªnn? }}$ | 9 |
|  | take it down | -u-tịyá ( $\mathrm{A}_{\mathrm{u}}$ ) | nkatī?yá | 11 | ntatī?yá | M-11 | ntutì ya̋ | kutì?ya̋ | 9 |
|  | look for it | -u-ānán ( $\mathrm{A}_{\mathrm{u}}$ ) | nkānán | 11 | ntānán | M-11 | ntùna̋n | kùna̋n | 9 |
|  | squeeze it | -u-siľn? ( $\mathrm{A}_{\mathrm{u}}$ ) | nkasîín? | 11 | ntāsīín? | M-11 | ntusìin? | kusiìn? | 9 |
|  | spend it | -u-liji ( $\mathrm{A}_{\mathrm{u}}$ ) | nkalījí | 11 | ntālījí | M-11 | ntulìjí | kulìjí | 9 |
|  | cut it | -u-sī̌yó ( $\mathrm{A}_{u}$ ) | nkasī?yó | 11 | ntāsī?yó | M-11 | ntusì?yő | kusì?yő | 9 |
|  | give it | -u-tāá ( $\mathrm{A}_{\mathrm{u}}$ ) | nkatāá | 11 | ntātāá | M-11 | ntàa̋ | kutàa̋ | 9 |
|  | say bye | -u-s-ālá? ( $\mathrm{A}_{\mathrm{u}}$ ) | nkasālá? | 11 | ntāsālá? | M-11 | ntusàla̋? | kusàla̋? | 9 |
|  | sort it | -u-s-uwií ( $\mathrm{A}_{u}$ ) | nkasuwî́ | 11 | ntāsuwî́ | M-11 | ntusuwî̀ | kusuwì | 9 |
|  | write it | -u-kā?án ( $\mathrm{A}_{\mathrm{u}}$ ) | nkakā?án | 11 | ntākāPán | M-11 | ntukà $1 a ̋ n$ | kukà?a̋n | 9 |
|  | spread it | -tā?án ( $\mathrm{A}_{\mathrm{u}}$ ) | nkatāPán | 11 | ntātā?án | M-11 | ntutà?án | kutà ${ }^{\text {án }}$ | 9 |
|  | incline it | -u-s-ākí ( $\mathrm{A}_{\mathrm{u}}$ ) | nkasākí | 11 | ntāsākí | M-11 | ntusàkí | kusàkí | 9 |
|  | clean it | -u-nî́ ( $\mathrm{A}_{\mathrm{u}}$ ) | nkanî́ | 11 | ntānīí | M-11 | ntunìi | kunìl | 9 |
|  | rock it | -u-s-āpnán ( $\mathrm{A}_{\mathrm{u}}$ ) | nkasā?nán | 11 | ntāsā?nán | M-11 | ntusà?na̋n | kusà?na̋n | 9 |
|  | hit it | -u-jī̧ín ( $\mathrm{A}_{\mathrm{u}}$ ) | nkajī2ín | 11 | ntājī ${ }^{\text {ańn }}$ | M-11 | ntujì?în | kujì?ín | 9 |
|  | peel it | -u-tūkwín? ( $\mathrm{A}_{\mathrm{u}}$ ) | nkatūkwín? | 11 | ntātūkwín? | M-11 | ntutùkwîn? | kutùkwîn? | 9 |
|  | lie | $-u n^{y}$ í ( $\left.\mathrm{A}_{\mathrm{u}} / \mathrm{C} 2\right)$ | nkān ${ }^{\text {y }}$ | 11 | nkyūn ${ }^{\text {y }}$ í | M-11 | ntùn ${ }^{\text {y }}$ İ | kùn ${ }^{\text {y }}$ İ | 9 |
|  | loose it | -u-kūná? ( $\mathrm{A}_{\mathrm{u}}$ ) | nkatūná? | 11 | ntātūná? | M-11 | ntutùna̋? | kutùna̋? | 9 |
|  | peck it | -u-tijyáp ( $\mathrm{A}_{\mathrm{u}}$ ) | nkatījyá? | 11 | ntātījyá? | M-11 | ntutìjyä? | kutìjya̋? | 9 |
|  | paint it | -u-kō?ó ( $\mathrm{A}_{u}$ ) | nkakō?ó | 11 | ntākō?ó | M-11 | ntokò?ő | kokò?ő | 9 |
|  | turn it on | -u-kāpán ( $\mathrm{A}_{\mathrm{u}}$ ) | nkakāPán | 11 | ntākāPán | M-11 | ntukà $2 a ̋ n$ | kukà?a̋n | 9 |
|  | break it | -u-āchá ( $\left.\mathrm{A}_{\mathrm{u}} / \mathrm{C} 2\right)$ | nkāchá | 11 | nkyūchá | M-11 | ntùcha̋ | kùcha̋ | 9 |
|  | repass it | -u-tilín ( $\mathrm{A}_{u}$ ) | nkatī?ín | 11 | ntātī?ín | M-11 | ntutì 1 ín | kutì?ín | 9 |
|  | shake it | -u-tsikwín ( $\mathrm{A}_{\mathrm{u}}$ ) | nkatsīkwín | 11 | ntātsīkwín | M-11 | ntutsìkwî́n | kutsìkwín | 9 |
|  | let it loose | -u-lāá ( $\mathrm{A}_{\mathrm{u}}$ ) | nkalāá | 11 | ntālāá | M-11 | ntulàa̋ | kulàa̋ | 9 |
|  | weave it | -u-tājlá? $\left(\mathrm{A}_{\mathrm{u}}\right)$ | nkatājlá? | 11 | ntātājlá? | M-11 | ntutàjla̋? | kutàjla̋? | 9 |
|  | toast it | -u-kîpí ( $\mathrm{A}_{\mathrm{u}}$ ) | nkakī?í | 11 | ntākī?í | M-11 | ntukì?i̋ | kukì?ǐ | 9 |


$\stackrel{\Im}{\circlearrowleft}$

Example (44) presents a list of Subclass A2 verbs presenting the invariant-potential pattern. In this case, it is obvious that the split in pattern is based on the prefix Class. Most of the verbs occur with the causative morpheme $i x$-. The fact that causative verbs including the prefix $i x$ - are always part of Subclass A2 was already discussed in §5.3.1.3 in example (20).
$\ddagger$

### 5.3.2.10 Tone Class 12 aspectual conjugation

Example (45) shows a list of the only three verbs that occur with Tone Class 12 in the completive aspect. As this list shows Tone Class 12 is very rare in completive forms but as was shown in example (30), it is a Tone Class that is widespread in progressive forms whose 3s completive forms occur with Tone Class 1 (/X/). All verbs belong to prefix Class B, and two of them are motion verbs.
(45) Verbs with Tone Class 12 (/M-M-L/) in the completive aspect

| (45) | Verbs with Tone Class 12 (/M-M-L/) in the completive aspect |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Gloss | Root | COMPL | Tone | Prog | Tone | HAB | рот | Tone |
|  | get ground | $-\mathrm{y}-\mathrm{a}$ à ( $\mathrm{B}_{\mathrm{y}}$ ) | nkyāà | 12 | ntîkyāà | 12 | ntīkyāà | kyāà | 12 |
|  | arrive there (not base) | -tyăà ( $\mathrm{B}_{\text {post }}$ ) | nkutyāà | 12 | ntātyāà | 12 | ntyaă | tyaă | 3 |
|  | arrive there (base) | -tyāàn ( $\mathrm{B}_{\text {post }}$ ) | nkutyāàn | 12 | ntātyāàn | 12 | ntyaàn` | tyaàn | 3 |

### 5.3.2.11 Conclusion

Table 5.9 on page 353 presents statistics for each tone conjugation Class. It shows that the habitual and potential forms always have the same stem tone, and that the tonal pattern for progressive forms is usually derived from the completive tonal pattern with a mid tone prefix, sometimes resulting in composed TS's. Furthermore, the habitual/potential forms showing the changed-potential pattern are usually marked with Tone Class 3 or Tone Class 9.

As a result, the relationship that proves to be most relevant for describing tonal conjugational patterns is the one between the completive and the potential/habitual forms.

Each conjugation class includes two general patterns: the invariantpotential pattern and the changed-potential pattern (except Tone Class 8 conjugation). In some cases, which of the two patterns occurs on a specific verb is based on the prefix Class.

The rows highlighted in grey show the invariant versus changedpotential pattern for each of conjugation Class. By examining the number of forms showing the invariant pattern, one can note that the latter tend to be the minor pattern as opposed to the changed-potential pattern which tend to be more widespread. Nevertheless, this is not true for Tone Class 1 conjugation since the invariant pattern occurs on most of the verbs belonging to this conjugation class. This is not true either for Tone 3 and 9
conjugation Classes since all verbs show the invariant pattern.
What is unique about Tone Classes 1, 3 and 9 is that their aspectual tonal ablaut is predictable solely based on the 3s completive form. As for the other Tone Classes, we have to rely on multiple characteristics such as 3s completive tone, prefix Class, and other characteristics to derive the conjugation class.

Now that we have examined the different tonal conjugation classes, the following question may be answered: What is the relationship between the prefix Class and the Tone Class of the 3s completive form, since the latter is the base form to derive the tonal aspectual paradigm for a verb?

A couple of Tone Classes showed a clear prevalence of a specific prefix Class: subClass $B_{y}$, subClass $A_{u}$, and subClass A2. Tone Class 3 was largely dominant on roots belonging to subClass $\mathrm{B}_{\mathrm{y}}$, and Tone Class 11 was quite prevalent on roots occurring with causative prefix $i x$ - belonging to subClass A2. Furthermore, the majority of roots belonging to subClass $A_{u}$ occurred with Tone Class 11.

Since Subclass $A_{u}$ is the most populated prefix Subclass, it is important to note which of its tonal ablaut patterns across aspects is the most prevalent. Examples (42), (43) and (44) showed that the most widespread tonal ablaut pattern is the changed-potential pattern: Tone Class 11 (3s completive and progressive forms) and Tone Class 9 (3s habitual and potential forms).

| COMPL | PROG | HAB | POT | Count |  <br> Characteristics |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 12 | 1 | 1 | $29 / 30$ |  |
| 1 | 12 | 9 | 9 | $1 / 30$ |  |
|  |  |  |  |  |  |
| 3 | 13 | 3 | 3 | $8 / 8$ | mostly intransitive; By |

Table 5.9: Tone conjugation Classes statistics

### 5.4 Subject person marking

Before delving into the topic of subject person marking on verbs, it is helpful to quickly examine person marking on nouns and adjectives. The system being quite straightforward and regular, it provides a good orienting point for discussing the much trickier subject person marking patterns of the verb.

The two sections to follow only provide the basic tonal ablaut patterns for person marking on nouns and on adjectives, and do not intend to cover the topic in depth. Including data on nouns and adjectives allows for a more holistic picture of how person marking generally works in the language.

### 5.4.1 Person marking on inalienable nouns

In ZAC, there are two main Classes of nouns: alienable and inalienable nouns. The latter are intrinsically marked for person. The person a noun is inflected for indicates its possessor rather than its subject. Person marking for the 2 s is done by tone alternation only, whereas 1 s marking involves nasalization of the final vowel, with or without tonal ablaut.

The examples in this section only include 3 s forms occurring with Tone Classes, 1, 2, 4, 8, 10 and 11 because other Tone Classes do not seem to occur on inalienable nouns.

Examples (46), (47), (48), (49), (50), and (51) below show the tonal
ablaut patterns for 2 s and 1 s person marking according to 3 s Tone Class. The tonal ablaut patterns for 2 s and 1 s are predictable based on 3 s forms.

As shown in example (46), if a 3 s noun form occurs with Tone Class 1 , the corresponding 2 s form occurs with Tone Class 6 (Tone Class 12 for dimoraic monosyllables and Tone Class 15 for trimoraic disyllables), and the 1 s form occurs with Tone Class 1 . There is only one exception to this tonal ablaut rule which is found in 'your elbow'.

Only inalienable nouns occurring with Tone Class 1 in 3s, occur with the same Tone Class in 1s. As a result, when the final syllable of an inalienable noun includes a nasal segment, the nasalization marking 1 s becomes vacuous, and both 3s and 1s forms are homophonous (see 'tail of', 'skin of', 'tall' and 'ear of' etc. in example (46)).

| Person marking on inalienable nouns with Tone Class 1 in 3s |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gloss | 3s | Tone | 2s | Tone | 1s | Tone |
| tooth of | lipya | 1 | lìyyā | 6 | $l^{1 i 2}{ }^{\text {y }}$ an | 1 |
| village of | chit ${ }^{\text {y }}$ | 1 | chit ${ }^{\text {y }}$ | 6 | chit ${ }^{\text {in }}$ in | 1 |
| tail of | jn ${ }^{\text {y }}$ elen | 1 | $\mathrm{jn}^{\text {y }}$ èēn | 6 | jn ${ }^{\text {y }}$ eRen | 1 |
| skin of | kijin | 1 | kijīn | 6 | kijin | 1 |
| feet of | kiya? | 1 | kìyā? | 6 | kin ${ }^{\text {y }}$ an? | 1 |
| spouse of | kwily ${ }^{\text {opo }}$ | 1 | kwily ${ }^{\text {ono }}$ | 6 | kwily ${ }^{\text {a }}$ un | 1 |
| ear of | nxakan | 1 | nxàkān | 6 | nxakan | 1 |
| offspring of | $\sin ^{\text {y }}$ e? | 1 | $\sin ^{\text {y }}{ }^{\text {en }}$ ? | 6 | $\sin ^{\text {y }}$ e? | 1 |
| father of | suti | 1 | sùtī | 6 | sutin | 1 |
| mouth of | tu? wa | 1 | tù?wā | 6 | tu?wan | 1 |
| tongue of | lutse? | 1 | lùtsē? | 6 | lutsen? | 1 |
| feather of | skity ${ }^{\text {in }}$ | 1 | skity ${ }^{\text {in }}$ | 6 | skit ${ }^{\text {in }}$ | 1 |
| home of | nat ${ }^{\text {y }}$ i | 1 | nà ${ }^{\text {y }}$ ī | 6 | nat ${ }^{\text {y }}$ in | 1 |
| fontanelle of | sit ${ }^{\text {y }}$ a | 1 | sit $^{\text {y }}$ a | 6 | sity ${ }^{\text {an }}$ | 1 |
| penis/vagina of | skuwe | 1 | skùwē | 6 | skuwen | 1 |
| leg of | ntaan | 1 | ntāàn | 12 | ntaan | 1 |
| liver of | loo | 1 | lōò | 12 | luun | 1 |
| eye of | kiloo | 1 | kìlòo | 15 | kiluun | 1 |
| elbow of | skoko? | 1 | skokō? | 5 | skukun? | 1 |

Example (47), shows a 3 s inalienable noun occurring with Tone Class 2, and its corresponding 2 s and 1 s Tone Class are Tone Class 6 and Tone Class 5 respectively. No other example of an inalienable noun with Tone Class 2 has been encountered so far.
Person marking on inalienable nouns with Tone Class 2 in 3 s

| Gloss | 3s | Tone | 2s | Tone | 1s | Tone |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| hoof of | skwalàr' | 2 | skwàlā? | 6 | skwalān? | 5 |

Example (48), shows a 3 s inalienable noun occurring with Tone Class 4, and its corresponding 2 s and 1 s Tone Class are Tone Class 11 and Tone Class 9 respectively. One exception to this tonal ablaut rule is found in word for 'your plate' which occurs with Tone Class 12.

| Person marking on inalienable nouns with Tone Class 4 in 3s |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gloss | 3s | Tone | 2s | Tone | 1 s | Tone |
| hand of | yaāY | 4 | yāá? | 11 | $\mathrm{n}^{\text {y }}$ àán? | 9 |
| excrement of | se?ēn' | 4 | sē?én | 11 | sère̋n | 9 |
| arm of | sikūń | 4 | sikún | 11 | sìkűn | 9 |
| plate of | ski?nā | 4 | skî?nà | 12 | skì?na̋ | 9 |

Example (49), shows a 3 s inalienable noun occurring with Tone Class 8, and its corresponding 2 s and 1 s Tone Class are Tone Class 11 and Tone Class 9 respectively.
(49) Person marking on inalienable nouns with Tone Class 8 in 3 s

| Gloss | 3s | Tone | 2s | Tone | 1s | Tone |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| calf of | xuty̌̌2? | 8 | xūtyı́n? | 11 | xùt ${ }^{\text {²\% }}$ n? | 9 |
| shirt of | chikăn? | 8 | chîkán? | 11 | chika̋n? | 9 |

Example (50), shows a $3 s$ inalienable noun occurring with Tone Class 10 , and its corresponding 2 s and 1 s Tone Class are Tone Class 12 and Tone Class 5 respectively. One exception to this tonal ablaut rule is found in word for 'my wing' which occurs with Tone Class 10.

| Person marking on inalienable nouns with Tone Class 10 in 3s |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gloss | 3s | Tone | 2s | Tone | 1 s | Tone |
| forehead of | jn ${ }^{\text {y }}$ akāān | 10 | jn ${ }^{\mathrm{y}}$ akāàn | 12 | jn ${ }^{\text {y }}$ akaān | 5 |
| head of | jn'ākē | 10 | jnª̄kè | 12 | jn ${ }^{\text {y }}$ akēn | 5 |
| sandal of | skīnā | 10 | skīnà | 12 | skinā | 5 |
| nail of | skītān? | 10 | skītàn? | 12 | skitān? | 5 |
| bone of | tījn ${ }^{\text {y }}$ an | 10 | tījn ${ }^{\text {y }}$ ān | 12 | tijn ${ }^{\text {y }}$ ān | 5 |
| sibling of | tā?ā | 10 | tā?à | 12 | taPān | 5 |
| neck of | yānī | 10 | yānì | 12 | yanī | 5 |
| hair of | kīchān? | 10 | kīchàn? | 12 | kichān? | 5 |
| back of | tīchūn? | 10 | tīchùn? | 12 | tichūn? | 5 |
| wing of | jly ${ }^{\text {iwē}}$ ēe | 10 | $\mathrm{jl}^{\mathrm{y}}$ ̄wē?è | 12 | $j^{\text {l }}$ iwē ēen | 10 |

Example (50), shows a 3s inalienable noun occurring with Tone Class 11 , and its corresponding 2 s and 1 s Tone Class are Tone Class 10 (or Tone Class 12 for long vowel forms) and Tone Class 9 respectively.
(51) Person marking on inalienable nouns with Tone Class 11 in 3s

| Gloss | 3s | Tone | 2s | Tone | 1s | Tone |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mother of | jn ${ }^{\text {y }}$ a'án | 11 | jn ${ }^{\text {y }}$ ā a | 10 | jn ${ }^{\text {y }}$ àán | 9 |
| flesh of | kwīná? | 11 | kwīnā? | 10 | kwìna̋? | 9 |
| maw of | slākó | 11 | slākō | 10 | slàkűn | 9 |
| stomach of | tikēé | 11 | tīkēè | 12 | tikèe̋n | 9 |

Table 5.10 summarizes the tonal ablaut patterns for inalienable nouns.
The Tone Classes in () are for long vowel stems.

| 3s | 2s | 1s |
| :---: | :---: | :---: |
| 1 | 6 | 1 |
|  | $(12 / 15)$ |  |
| 2 | 6 | 5 |
| 4 | 11 | 9 |
|  | $(10 / 12)$ |  |
| 8 | 11 | 9 |
| 10 | 12 | 5 |
| 11 | 10 | 1 |

Table 5.10: Tonal ablaut patterns for person marking on inalienable nouns

### 5.4.2 Subject person marking on predicative adjectives

In ZAC, predicative adjectives are marked for subject person resulting in non-verbal predicates. Similarly to verbs and inalienable nouns, subject marking on predicative adjectives for the 2 s is also done by tone alternation only, but unlike inalienable nouns, 1s subject marking only involves nasalization of the final vowel without tonal ablaut (except for 3s adjectives occurring with Tone Class 3).

Table 5.11 presents an example of a paradigm for the predicative adjective tsa?wě 'be good, generous' (Tone Class 8: /LH/). In this case the general rule for plural marking applies: the plural forms are based on the tone of the 3s stem followed by the plural clitics.

|  | Form | Gloss |
| :--- | :--- | :--- |
| 1s | tsa?wěn | I am generous |
| 2s | tsā?wé | you are generous |
| 3s | tsa?wě | he/she is generous |
| 1PLINCL | tsa?wě nan | we are generous |
| 1PLEX | tsa?wě wa | we are generous |
| 2PL | tsa?wě wan | you are generous |
| 3pL | tsa?wě ne? | they are generous |

Table 5.11: Example of a paradigm for the predicative adjective tsa?wě 'be good, generous'

Examples (52), (53), (54, (55), (56), (57), (58), and (59) below show the tonal ablaut patterns for 2 s person marking grouped by Tone Class in 3s. The 1 s forms occur with the 3 s Tone Class. As a result, when the final syllable of a predicative adjective includes a nasal segment, the nasalization
marking 1 s becomes vacuous, and both 3 s and 1 s forms are homophonous (see 'pregnant', 'tired', 'tall' and 'large' in example (52)).

One interesting fact to notice about the 2 s marking on predicative adjectives is that Tone Class 5 which usually exclusively serves the function of marking 1s on verbs, marks 2 s as well as 1 s on predicative adjectives.

Furthermore, the examples in this section only include 3 s forms occurring with Tone Classes, 1, 2, 4 (only one example), 8, 10, 11 and 12 (only one example) because other Tone Classes do not seem to occur on predicative adjectives.

Example (52) shows that if a 3s predicative adjective occurs with Tone Class $1,2 \mathrm{~s}$ is marked with Tone Class 5 , and 1 s also occurs with Tone Class 1.
(52) Person marking on predicative adjectives with Tone Class 1 in 3s

| Gloss | 3s | Tone | 2s | Tone | 1s | Tone |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pregnant | tana | 1 | tanā | 5 | tana | 1 |
| tired | $\operatorname{tin}^{\mathrm{y}}$ an? | 1 | $\operatorname{tin}^{\mathrm{y}} \mathrm{a}^{\text {a }}$ ? | 5 | $\operatorname{tin}^{\text {y }}$ an? | 1 |
| fast | lakasa | 1 | lakasā | 5 | lakasan | 1 |
| male | kyula | 1 | kyulā | 5 | kyulan | 1 |
| old | kula | 1 | kulā | 5 | kulan | 1 |
| tall | tikwin | 1 | tikwīn | 5 | tikwin | 1 |
| large | tanu | 1 | tanū | 5 | tanu | 1 |
| stingy | tiji | 1 | tijī | 5 | tijin | 1 |

Example (53) shows that if a 3s predicative adjective occurs with Tone Class 3 , 2 s is marked with Tone Class 5 , and 1 s occurs with Tone Class 5. Only predicative adjectives occurring with Tone Class 3 in 3s show a tone alternation for the 1 s .

| Person marking on predicative adjectives with Tone Class 3 in 3s |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gloss | 3s | Tone | 2s | Tone | 1s | Tone |
| pretty | ntiPyà | 3 | nti?yā | 5 | nti?n ${ }^{\text {y }}$ an | 5 |
| bad | xalàn | 3 | xaPān | 5 | xaPān | 5 |
| dark skinned | nkatà | 3 | nkatā | 5 | nkatān | 5 |
| poor | ti?î | 3 | ti2ī | 5 | tiPīn | 5 |
| jealous | xul ${ }^{\text {y à }}$ | 3 | xul ${ }^{\text {y }}$ | 5 | xuly ${ }^{\text {y }}$ a | 5 |
| frigid | tuku?wà | 3 | tuku?wā | 5 | tuku?wān | 5 |
| aroused | tikè? | 3 | tikē? | 5 | tikēn? | 5 |
| heavy | tiPìn | 3 | tiPīn | 5 | tiPīn | 5 |

Example (54) shows that if a 3s predicative adjective occurs with Tone Class 4, 2 s is marked with Tone Class 11 , and 1 s also occurs with Tone Class 4. This is the only example of a predicative adjective with Tone Class 4 encountered so far.
(54) Person marking on predicative adjectives with Tone Class 4 in 3s

| Gloss | 3 s | Tone | 2s | Tone | 1 s | Tone |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| big | tily $^{\text {O}}{ }^{\prime}$ | 4 | tilyó | 11 | tily $^{\text {lu}}{ }^{\text {un' }}$ | 4 |

Example (55) shows that if a 3s predicative adjective occurs with Tone Class 8,2 s is marked with Tone Class 11 , and 1 s also occurs with Tone Class 8.
(55) Person marking on predicative adjectives with Tone Class 8 in 3 s

| Gloss | 3 s | Tone | 2s | Tone | 1 s | Tone |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| drunk | ku?wǐ | 8 | kū?wí | 11 | ku?wǐn | 8 |
| blind | kwit ${ }^{\text {y }}$ n? | 8 | kwit ${ }^{\text {y }}$ ín? | 11 | kwity ${ }^{\text {y }}$ n? | 8 |
| delicate | tikatǐ | 8 | tikātí | 11 | tikatın | 8 |
| dressed up | siyě? | 8 | siyé? | 11 | $\sin ^{\text {y }}$ ěn? | 8 |
| good | tsa?wě | 8 | tsāawé | 11 | tsa?wěn | 8 |
| rich | kuliyǎ? | 8 | kulīyá? | 11 | kulin ${ }^{\text {y }}$ an? | 8 |
| fierce | yalǎ | 8 | yālá | 11 | yalǎn | 8 |
| naughty | chiyǒ? | 8 | chīyó? | 11 | chin ${ }^{\text {y }}$ un? | 8 |

Example (56) shows that if a 3s predicative adjective occurs with Tone Class 9, 2 s is marked with Tone Class 10 (or Tone Class 12 in the case of long vowel stems), and 1s also occurs with Tone Class 9.
(56) Person marking on predicative adjectives with Tone Class 9 in 3s

| Gloss | 3s | Tone | 2s | Tone | 1 s | Tone |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| small | $1^{\mathrm{y}}$ O ? | 9 | $1^{\mathrm{y}}$ - ? | 10 | $1^{\mathrm{y}}$ űn? | 9 |
| fair skinned | pî̀ | 9 | pî̀ | 12 | pî̀n | 9 |
| intelligent | tyàa̋ | 9 | tyāà | 12 | tyàa̋n | 9 |

Example (57) shows that if a 3s predicative adjective occurs with Tone Class 10,2 s is marked with Tone Class 12 , and 1 s also occurs with Tone Class 10.
(57) Person marking on predicative adjectives with Tone Class 10 in 3s

| Gloss | 3s | Tone | 2 s | Tone | 1s | Tone |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| skinny | tījn ${ }^{\text {y }}$ an | 10 | tījn ${ }^{\text {y }}$ àn | 12 | tījn ${ }^{\text {y }}$ an | 10 |
| dirty | kōō? | 10 | kōò? | 12 | kūūn? | 10 |
| bitter | $1^{\mathrm{y}} \mathrm{a}^{\text {a }}$ ? | 10 | $1^{\mathrm{y}}$ àà? | 12 | $1^{\text {y }}$ āān? | 10 |

Example (58) shows that if a 3s predicative adjective occurs with Tone Class 11 , 2 s is marked with Tone Class 10 , and 1 s also occurs with Tone Class 11.

| Person marking on predicative adjectives with Tone Class $\mathbf{1 1}$ in 3s |  |  |  |  |  |  |
| :--- | :--- | :---: | :--- | :---: | :--- | :---: |
| Gloss | 3s | Tone | 2s | Tone | 1s | Tone |
| young | kwīné? | 11 | kwīné? | 10 | kwīné? | 11 |
| lazy | tājá | 11 | tājā | 10 | tāján | 11 |
| soft | lukūtí | 11 | lukūtí | 10 | lukūtín | 11 |

Example (59) shows that if a 3s predicative adjective occurs with Tone Class 12, 2s and 1s also occur with Tone Class 12.

Person marking on predicative adjective with Tone Class 12 in 3s

| Gloss | 3 s | Tone | 2s | Tone | 1s | Tone |
| :--- | :--- | :---: | :--- | :---: | :--- | :---: |
| hard | tīkīlà | 12 | tīkīlà | 12 | tīkī̀n | 12 |

Table 5.12 summarizes the tonal ablaut patterns for person marking on predicative adjectives. The Tone Classes in () are for long vowel stems. As the data presented in this section has demonstrated, person marking on predicative adjectives is very straightforward, and seems to have no exceptions. The tonal ablaut pattern for 2 s and 1 s can be derived solely on the basis of the 3s Tone Class.

| 3s | 2s | 1s |
| :---: | :---: | :---: |
| 1 | 5 | 1 |
| 3 | 5 | 5 |
| 4 | 11 | 4 |
| 8 | 11 | 8 |
| 9 | 10 | 9 |
|  | $(12)$ |  |
| 10 | 12 | 10 |
| 11 | 10 | 11 |
| 12 | 12 | 12 |

Table 5.12: Tonal ablaut patterns for person marking on predicative adjectives

Table 5.13 summarizes the tonal ablaut patterns for person marking for both inalienable nouns and predicative adjectives. The Tone Classes in () are for long vowel stems. The data in the table below shows that 2s marking functions similarly in nouns and in adjectives as the tonal ablaut patterns are similar.

|  | 3s | 2s | 1s |
| :---: | :---: | :---: | :---: |
| IN | 1 | 6 | 1 |
|  |  | (12/15) |  |
| PA | 1 | 5 | 1 |
| IN | 2 | 6 | 5 |
| PA | --- | --- | --- |
| IN | --- | --- | --- |
| PA | 3 | 5 | 5 |
| IN | 4 | $\begin{gathered} 11 \\ (10 / 12) \end{gathered}$ | 9 |
| PA | 4 | 11 | 4 |
| IN | 8 | 11 | 9 |
| PA | 8 | 11 | 8 |
| IN | --- | --- | --- |
| PA | 9 | $\begin{gathered} 10 \\ (12) \end{gathered}$ | 9 |
| IN | 10 | 12 | 5 |
| PA | 10 | 12 | 10 |
| IN | 11 | 10 | 1 |
| PA | 11 | 10 | 11 |
| IN | --- | --- | --- |
| PA | 12 | 12 | 12 |

Table 5.13: Tonal ablaut patterns for person marking on inalienable nouns and predicative adjectives

### 5.4.3 Subject person marking on verbs

As already discussed earlier in §5.2, subject person is marked on the verb by tonal ablaut alone (2s), final vowel nasalization with or without tonal ablaut (1s) or by encliticization with or without tonal ablaut (plural persons). We just saw in the previous section that the tonal paradigm for a verb for all aspects can be narrowed down based on the Tone Class for the 3 s completive form. Section $\S 5.4 .3 .1$ demonstrates that tonal ablaut pattern for 3 s to 2 s can be very accurately predicted based on the Tone Class of 3s. However, §5.4.3.2 demonstrated this relationship is not maintained between the 3 s and the 1 s , and that a more accurate way of predicting the 1 s tonal pattern for a particular verb across aspects is to look at the tonal pattern for 3s across aspects. §5.4.3.3 deals with a brief description of subject plural marking on verbs.

To follow, the verb database (about 220 verb roots) is organized by Tone Class unveiling the regular ablaut patterns marking 2s subject based on 3s.

### 5.4.3.1 2 s subject person marking on verbs

### 5.4.3.1.1 Tone Class 1 person conjugation

Example (60) shows that if a 3s verb form occurs with Tone Class 1 (/X/), 2s always occurs with Tone Class 6 (/L-M/). As was discussed in chapter $4 \S 4.10$, Tone Class 6 (/L-M/) serves the exclusive function of marking 2 s on verbs (or nouns and predicative adjectives). Example (60) only
present verb forms in the completive, habitual or potential aspects because Tone Class 1 never occurs on progressive forms because the progressive prefix bearing a mid tone and affects the stem tonal pattern.

If we examine the tonal ablaut patterns from $3 s$ to $2 s$, it seems that there is no relationship between the prefix Class a root belongs to and the tonal ablaut pattern. All roots regardless of the prefix Class present the same tonal ablaut pattern.

Furthermore, the data in this example also shows that aspect does not matter since the completive, habitual and potential forms all show the same ablaut pattern. What matters is the Tone Class of the 3s.
(60) Verb forms with Tone Class 1 (/X/) in 3s

| Gloss | ASP | 3s | Stem <br> tone | 2s | Stem <br> tone |
| :--- | :--- | :--- | :---: | :--- | :---: |
| catch it | COMPL | nkasinini | 1 | nkasiǹ ${ }^{\text {yni }}$ |  |


| Gloss | ASP | 3s | Stem <br> tone | 2s | Stem tone |
| :---: | :---: | :---: | :---: | :---: | :---: |
| poke it | COMPL | nkayojo? | 1 | nkayòjō? | 6 |
| (C2) | HAB | nd ${ }^{\text {y }}$ jyo? | 1 | nd ${ }^{\text {y }}$ ijy ${ }^{\text {a }}$ ? | 6 |
|  | POT | kojo? | 1 | kòjō? | 6 |
| suck it (C2) | COMPL | nkayati? | 1 | nkayàtī? | 6 |
|  | HAB | ntit ${ }^{\text {i }}$ ? | 1 | ntìt ${ }^{\text {Ti }}$ ? | 6 |
|  | POT | kati? | 1 | kàtī? | 6 |
| speak | COMPL | nkayakwi? | 1 | nkayàkwī? | 6 |
| (C2) | HAB | $n t^{\text {y }}$ ikwi? | 1 | $n t^{\text {y }}$ ikwī ${ }^{\text {a }}$ | 6 |
|  | POT | kikwi? | 1 | kìkwī? | 6 |
| eat it | COMPL | nkayako | 1 | nkayàkō | 6 |
| (C2) | HAB | nkyako | 1 | nkyàkō | 6 |
|  | POT | kako | 1 | kàkō | 6 |
| touch it (C2) | COMPL | nkayala? | 1 | nkayàlā? | 6 |
|  | HAB | $n t i l^{\text {y }}$ a? | 1 | ntìl ${ }^{\text {y }}$ a ? | 6 |
|  | POT | kala? | 1 | kàlā? | 6 |
| bathe (C2) | COMPL | nkayata | 1 | nkayàtā | 6 |
|  | HAB | ntit ${ }^{\text {y }}$ a | 1 | ntìt ${ }^{\text {y }}$ a | 6 |
|  | POT | kata | 1 | kàtā | 6 |

### 5.4.3.1.2 Tone Class 3 person conjugation

Examples (61), (62), (63), (64) present examples of verb forms occurring with Tone Class 3 (/L (L)/) in 3s organized by prefix Classes. Example (61) present the prefix Class A verb forms, (62) shows prefix Class B verb forms, and (63) illustrates prefix Class C verb forms occurring with Tone Class 3. Example (64) groups all the long vowel stems occurring with Tone Class 3.

Again, data in these examples show that tonal ablaut patterns for person marking of verb forms with Tone Class 3 in the 3 s is very straight forward. All roots regardless of the prefix Class present the same tonal ablaut pattern: 3s: Tone Class 3; 2s: Tone Class 6.

Furthermore, because Tone Class 6 does not occur on long vowel stems, verb forms featuring long vowels occurring with Tone Class 3 in 3s mark 2s with Tone Class 12 (/M-M-L/) in monomoraic disyllabic forms, and Tone Class 15 (/L-M-L/) in dimoraic disyllabic verb forms as shown in example 64). The latter was also discussed in chapter 4 in $\S 4.6 .2$ and §4.6.5.

As the extent of data presented suggests it, Tone Class 3 (/L (L)/) is a prominent Tone Class in 3s verb forms, and in particular in habitual and potential 3s forms. This Tone Class is not reserved exclusively for marking these forms but it is the preferred Tone Class for marking habitual and potential aspects.
(61) Class A verb forms with Tone Class 3 (/L (L)/) in 3s Gloss ASP 3s Stem 2s Stem

|  |  |  | tone |  | tone |
| :---: | :---: | :---: | :---: | :---: | :---: |
| play | HAB | ntijyà | 3 | ntìjyā | 6 |
| ( $\mathrm{A}_{\mathrm{c}} / \mathrm{A}_{u}$ ) | POT | kajyà | 3 | kàjyā | 6 |
| borrow it | HAB | ntijin ${ }^{\text {y }}$ ' ${ }^{\text {c }}$ | 3 | ntijìn ${ }^{\text {y }}$ ì? | 6 |
| ( $\mathrm{A}_{\text {c }}$ ) | POT | jin ${ }^{\text {y }}$ ¢ ${ }^{\text {c }}$ | 3 | jìn ${ }^{\text {y }}$ i ? | 6 |
| jump | HAB | ntijl ${ }^{\text {y }}$ akà? | 3 | ntijly ${ }^{\text {a }}$ kā? | 6 |
| ( $\mathrm{A}_{\mathrm{c}}$ ) | POT | j1 ${ }^{\text {y }}$ akà? | 3 | jlyàkā? | 6 |
| run | HAB | ntixunà | 3 | ntixùnā | 6 |
| ( $\mathrm{A}_{\text {c }}$ ) | POT | xunà | 3 | xùnā | 6 |
| buy it | HAB | ntixi?î̀ | 3 | ntixì ${ }^{\text {i }}$ | 6 |
| ( $\mathrm{A}_{\text {c }}$ ) | POT | xi々ì | 3 | xì $\overline{1}$ | 6 |
| ( $\mathrm{A}_{\mathrm{u}}$ ) | POT | kusakwèn | 3 | kusàkwēn | 6 |
| close it | HAB | ntutakùn` & 3 & ntutàkūn & 6 \\ \hline ( \(\mathrm{A}_{\mathrm{u}}\) ) & POT & kutakùn & 3 & kutàkūn & 6 \\ \hline cook it & HAB & ntukè? & 3 & ntùkē? & 6 \\ \hline ( \(\left.\mathrm{A}_{\mathrm{u}} / \mathrm{C} 2\right)\) & POT & kukè? & 3 & kùkē? & 6 \\ \hline \end{tabular} \begin{tabular}{\|c|c|c|c|c|c|} \hline Gloss & ASP & 3s & \begin{tabular}{l} Stem \\ tone \end{tabular} & 2s & Stem tone \\ \hline burn it & HAB & ntutakìn` | 3 | ntutàkīn | 6 |
| ( $\mathrm{A}_{\mathrm{u}}$ ) | POT | kutakìn` & 3 & kutàkīn & 6 \\ \hline count it & HAB & ntulakwà & 3 & ntulàkwā & 6 \\ \hline ( \(\mathrm{A}_{\mathrm{u}}\) ) & РОт & kulakwà & 3 & kulàkwā & 6 \\ \hline strain it & HAB & ntutikwà & 3 & ntutìkwā & 6 \\ \hline ( \(\mathrm{A}_{\mathrm{u}}\) ) & РОT & kutikwà & 3 & kutìkwā & 6 \\ \hline sweep it & HAB & ntulukwà & 3 & ntulùkwā & 6 \\ \hline ( \(\mathrm{A}_{\mathrm{u}}\) ) & РOT & kulukwà & 3 & kulùkwā & 6 \\ \hline water it & HAB & ntujilyà & 3 & ntujill \({ }^{\text {a }}\) & 6 \\ \hline ( \(\mathrm{A}_{\mathrm{u}}\) ) & РОт & kujilyà & 3 & kujil \({ }^{\text {y }}\) a & 6 \\ \hline carry it & HAB & ntu?yà & 3 & ntù?yā & 6 \\ \hline ( \(\left.\mathrm{A}_{\mathrm{u}} / \mathrm{C} 2\right)\) & РОT & ku?yà & 3 & kù?yā & 6 \\ \hline blow it & HAB & ntula?à & 3 & ntulà \({ }^{\text {a }}\) & 6 \\ \hline ( \(\mathrm{A}_{\mathrm{u}}\) ) & РОт & kula?à & 3 & kulà?ā & 6 \\ \hline make it & HAB & ntutin \({ }^{\text {y }}\) à & 3 & ntutìn \({ }^{\text {a }}\) n & 6 \\ \hline ( \(\mathrm{A}_{\mathrm{u}}\) ) & РОт & kutin \({ }^{\text {y }}\) à & 3 & kutìn \({ }^{\text {y }}\) an & 6 \\ \hline raise it & HAB & ntusakwèn` | 3 | ntusàkwēn | 6 |
| ( $\mathrm{A}_{\mathrm{u}}$ ) | POT | kusakwèn` & 3 & kusàkwēn & 6 \\ \hline ( \(\left.\mathrm{A}_{\mathrm{u}} / \mathrm{C} 2\right)\) & POT & kukè? & 3 & kùkē? & 6 \\ \hline burry it & HAB & ntukwatsì? & 3 & ntukwàtsī? & 6 \\ \hline ( \(\mathrm{A}_{\mathrm{u}}\) ) & РОт & kwatsì? & 3 & kwàtsī? & 6 \\ \hline turn it off & HAB & ntusuwì? & 3 & ntusùwī? & 6 \\ \hline ( \(\mathrm{A}_{\mathrm{u}}\) ) & РОТ & kusuwì? & 3 & kusùwī? & 6 \\ \hline tie it & HAB & ntusakàn? & 3 & ntusàkān? & 6 \\ \hline ( \(\mathrm{A}_{\mathrm{u}}\) ) & РОт & kusakàn? & 3 & kusàkān? & 6 \\ \hline do it & HAB & ntu?nî & 3 & ntù?nī & 6 \\ \hline ( \(\left.\mathrm{A}_{\mathrm{u}} / \mathrm{C} 2\right)\) & РОT & ku?nï & 3 & kù?nī & 6 \\ \hline see it & HAB & ntin \({ }^{\text {a }}\) àà & 3 & ntin \({ }^{\text {y }}\) āān & 6 \\ \hline ( \(\mathrm{A}_{\mathrm{u}}\) ) & РОT & \(\mathrm{n}^{\mathrm{y}}\) a?àn & 3 & \(n^{\text {y }}\) à \({ }^{\text {ān }}\) & 6 \\ \hline burn it & HAB & ntutakìn` | 3 | ntutàkīn | 6 |
| ( $\mathrm{A}_{\mathrm{u}}$ ) | POT | kutakìn` & 3 & kutàkīn & 6 \\ \hline count it & HAB & ntulakwà & 3 & ntulàkwā & 6 \\ \hline ( \(\mathrm{A}_{\mathrm{u}}\) ) & РОт & kulakwà & 3 & kulàkwā & 6 \\ \hline \end{tabular} \begin{tabular}{\|c|c|c|c|c|c|} \hline Gloss & ASP & 3s & Stem tone & 2s & Stem tone \\ \hline strain it & HAB & ntutikwà & 3 & ntutìkwā & 6 \\ \hline ( \(\mathrm{A}_{\mathrm{u}}\) ) & POT & kutikwà & 3 & kutìkwā & 6 \\ \hline sweep it & HAB & ntulukwà & 3 & ntulùkwā & 6 \\ \hline ( \(\mathrm{A}_{\mathrm{u}}\) ) & POT & kulukwà & 3 & kulùkwā & 6 \\ \hline water it & HAB & ntujil \({ }^{\text {a }}\) à & 3 & ntujil \({ }^{\text {y }}\) a & 6 \\ \hline ( \(\mathrm{A}_{\mathrm{u}}\) ) & POT & kujilyà & 3 & kujil \({ }^{\text {y }}\) a & 6 \\ \hline carry it & HAB & ntuPyà & 3 & ntù?yā & 6 \\ \hline ( \(\left.\mathrm{A}_{\mathrm{u}} / \mathrm{C} 2\right)\) & POT & ku?yà & 3 & kù?yā & 6 \\ \hline blow it & HAB & ntula?à & 3 & ntulà?ā & 6 \\ \hline ( \(\mathrm{A}_{\mathrm{u}}\) ) & POT & kula?à & 3 & kulà?ā & 6 \\ \hline make it & HAB & ntutin \({ }^{\text {ª̀n }}\) & 3 & ntutìn \({ }^{\text {y }}\) n & 6 \\ \hline ( \(\mathrm{A}_{\mathrm{u}}\) ) & POT & kutin \({ }^{\text {y }}\) à & 3 & kutìn \({ }^{\text {a }}\) a & 6 \\ \hline raise it & HAB & ntusakwèn` | 3 | ntusàkwēn | 6 |
| ( $\mathrm{A}_{\mathrm{u}}$ ) | POT | kusakwèn | 3 | kusàkwēn | 6 |
| warn | HAB | ntitsà? | 3 | ntìtsā? | 6 |
| (A2) | POT | kitsà? | 3 | kìtsā? | 6 |

(62) Class B Verb forms with Tone Class 3 (/L (L)/) in 3s

| Gloss | ASP | 3s | Stem <br> tone | 2s | Stem <br> tone |
| :--- | :--- | :--- | :---: | :--- | :---: |
| bless it | HAB | ntunakwàǹ | 3 | ntunàkwān | 6 |
| $\left(\mathrm{~B}_{\mathrm{c}}\right)$ | POT | kunakwàn` & 3 & kunàkwān & 6 \\ enter & HAB & nkyatèn` | 3 | nkyātēn | 6 |
| $\left(\mathrm{~B}_{\mathrm{y}}\right)$ | POT | kyatèǹ | 3 | kyàtēn | 6 |
| arrive | HAB | nkyalà | 3 | nkyàā | 6 |
| $\left(\mathrm{~B}_{\mathrm{y}}\right)$ | POT | kyalà | 3 | kyàlā | 6 |
| wash it | HAB | nkyalàǹ | 3 | nkyàrān | 6 |
| $\left(\mathrm{~B}_{\mathrm{y}}\right)$ | POT | kya?àn | 3 | kyàrān | 6 |

(63) Class C Verb forms with Tone Class 3 (/L (L)/) in 3s

| Gloss | ASP | 3s | Stem <br> tone | 2s | Stem tone |
| :---: | :---: | :---: | :---: | :---: | :---: |
| burst | HAB | ntochò | 3 | ntòchō | 6 |
| $\left(\mathrm{C}_{\mathrm{a}}\right)$ | POT | kochờ | 3 | kòchō | 6 |
| grow old | HAB | ntixò? | 3 | ntìxō? | 6 |
| $\left(\mathrm{C}_{\mathrm{a}}\right)$ | POT | kasò? | 3 | kàsō? | 6 |
| grow | HAB | ntilyò | 3 | ntili ${ }^{\text {y }}$ - | 6 |
| $\left(\mathrm{C}_{\mathrm{a}}\right)$ | POT | kalò | 3 | kàlō | 6 |
| cry | HAB | ntunà | 3 | ntùnā | 6 |
| (C2) | POT | kunà | 3 | kùnā | 6 |
| sleep | HAB | ntijyà? | 3 | ntìjyā? | 6 |
| (C2) | POT | kajà? | 3 | kàjā? | 6 |
| chew it | HAB | $n t^{\text {y }} \mathrm{t}^{\text {y }}$ à ? | 3 | $n t^{y}{ }^{\text {it }}{ }^{\text {a }}$ ? ? | 6 |
| (C2) | POT | katà | 3 | kàtā? | 6 |
| hear it | HAB | ntunà | 3 | ntùnā | 6 |
| (C2) | POT | kunà | 3 | kùnā | 6 |
| kill it | HAB | ntujwì | 3 | ntùjwī | 6 |
| (C2) | POT | kujwî | 3 | kùjwī | 6 |
| get scared | HAB | ntutsèn | 3 | ntùtsēn | 6 |
| (C2) | POT | kutsèn | 3 | kùtsēn | 6 |
| vomit it | HAB | nt ${ }^{\text {y }}$ ikwèn | 3 | ntyìkwên | 6 |
| (C2) | POT | kakwèn | 3 | kàkwēn | 6 |
| drink it | HAB | ntiPyò | 3 | ntì?yō | 6 |
| (C2) | POT | ko?ö | 3 | kò?ō | 6 |
| sell it | HAB | ntujwì? | 3 | ntùjwī? | 6 |
| (C2) | POT | kujwì? | 3 | kùjwī? | 6 |
| get dressed | HAB | $n{ }^{\text {y }}$ ikò? | 3 | $n t^{\text {y }}$ ìkō? | 6 |
| (C2) | POT | kakò? | 3 | kàkō? | 6 |
| play it (music) | HAB | ntulà | 3 | ntùlā | 6 |
| (C2) | POT | kulà | 3 | kùlā | 6 |
| live | HAB | lo?ò | 3 | lò?ō | 6 |
| (C2) | POT | ko?ơ | 3 | kò?ō | 6 |


| (64) | Long vowel verb stems with Tone Class 3 (/L (L)/) in 3s |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Gloss | ASP | 3s | Stem <br> tone | 2s | Stem tone |
|  | shoot | HAB | ntukuùn` & 3 & ntùkūùn & 15 \\ \hline & ( \(\mathrm{A}_{\mathrm{u}}\) ) & РОT & kukuùn & 3 & kùkūùn & 15 \\ \hline & transport it & HAB & ntuteèn` | 3 | ntùtēèn | 15 |
|  | ( $\mathrm{A}_{\mathrm{u}}$ ) | РОт | kuteèn | 3 | kùtēèn | 15 |
|  | stand | HAB | nt ${ }^{\text {y }}$ uùn | 3 | $n t^{y}$ ūùn | 12 |
|  | ( $\mathrm{B}_{\text {post }}$ ) | РОт | $t^{\text {y }}$ uùn | 3 | $t^{\mathrm{y}}$ ūùn | 12 |
|  | leave base | HAB | nkyaà | 3 | nkyāà | 12 |
|  | ( $\mathrm{B}_{\mathrm{y}}$ ) | РОт | kyaà | 3 | kyāà | 12 |
|  | grind it | HAB | ntiyoò | 3 | ntìyōò | 15 |
|  | (C2) | РОт | koò | 3 | kōò | 12 |

### 5.4.3.1.3 Tone Class 13 person conjugation

Examples (65) and (66) present the tonal ablaut patterns for 3 s verb forms occurring with Tone Class 13 (/M-LS-L (L)/). Tone Class 13 is historically related to Tone Class 3 which was just discussed, and all 3s verb forms occurring with Tone Class 13 or Tone Class 3 show the same tonal ablaut patterns.

All verb forms (except long vowel stems) present the same tonal ablaut pattern: 3s: Tone Class 3; 2s: Tone Class 6. Furthermore, because Tone Class 6 does not occur on long vowel stems, verb forms featuring long vowels occurring with Tone Class 13 in 3 s mark 2s with Tone Class 15 (/L-M-L/).

This conjugation Class is quite small and only includes prefix Class A roots.
(65) Verb forms with Tone Class 13 (/M-LS-L (L)/) in 3s

| Gloss | ASP | 3s | Stem tone | 2s | Stem tone |
| :---: | :---: | :---: | :---: | :---: | :---: |
| fart | COMPL | nkājílyà | 13 | nkajill ${ }^{\text {a }}$ | 6 |
| $\left(A_{c}\right)$ | PROG | ntājíly ${ }^{\text {y }}$ à | 13 | ntājìl ${ }^{\text {y }}$ | 6 |
| lick it | COMPL | nkālê?è | 13 | nkalè? $\overline{\text { e }}$ | 6 |
| ( $A_{c}$ ) | PROG | ntāle̋Rè | 13 | ntālè?ē | 6 |
| distribute it | COMPL | nkātîtsà | 13 | nkatìtsā | 6 |
| ( $A_{u}$ ) | PROG | ntātî́ssà | 13 | ntātìtsā | 6 |
| shatter it | COMPL | nkālâ?à | 13 | nkalà?ā | 6 |
| ( $A_{u}$ ) | PROG | ntāla̋Pà | 13 | ntālà?ā | 6 |
| split it | COMPL | nkāsä?wè | 13 | nkasà?wē | 6 |
| ( $A_{u}$ ) | PROG | ntāsa̋?wè | 13 | ntāsà?wē | 6 |
| throw it away | COMPL | nkāsa̋lò | 13 | nkasàlō | 6 |
| ( $A_{u}$ ) | PROG | ntāsálò̀ | 13 | ntāsàlō | 6 |
| teach it | COMPL | nkālő?ơ | 13 | nkalò?ō | 6 |
| ( $A_{u}$ ) | PROG | ntālő?ờ | 13 | ntālò?ō | 6 |
| scrape it | COMPL | nkāsûwè̀ | 13 | nkāsùwē? | 6 |
| ( $A_{u}$ ) | PROG | ntāsû́wè? | 13 | ntāsùwē? | 6 |
| put it | COMPL | nkāsű?wà | 13 | nkasù?wā | 6 |
| ( $A_{u}$ ) | PROG | ntāsű?wà | 13 | ntāsù?wā | 6 |
| spray it | COMPL | nkāsa̋nè | 13 | nkasànē | 6 |
| ( $A_{u}$ ) (irreg.) | PROG | ntāsa̋nè | 13 | ntāsāné | 11 |
| heat it up | COMPL | nkwa̋tsùn | 13 | nkwàtsūn | 6 |
| ( $A_{u}$ ) | PROG | ntākwâtsùn | 13 | ntākwàtsūn | 6 |
| untie it | COMPL | nkwīxa̋tìn? | 13 | nkwixàtīn? | 6 |
| (A2) | PROG | ntīxa̋tìn? | 13 | ntīxàtīn? | 6 |
|  | HAB | ntīxa̋tìn? | 13 | ntīxàtīn? | 6 |
|  | POT | xa̋tìn? | 13 | xàtīn? | 6 |
| answer | COMPL | nkwīxa̋kwèn | 13 | nkwīxàkwēn | 6 |
| (A2) | PROG | ntīxákwèn` & 13 & ntīxàkwēn & 6 \\ \hline & HAB & ntīxa̋kwèn` | 13 | ntīxàkwēn | 6 |
|  | POT | xa̋kwèn` & 13 & xàkwēn & 6 \\ \hline sew it & COMPL & nkwīxíkwàn` | 13 | nkwixìkwān | 6 |
| (A2) | PROG | ntīxíkwàǹ | 13 | ntīxìkwān | 6 |

(66) \begin{tabular}{lllclc}

\multicolumn{5}{l}{| Long vowel verb stems with Tone Class 13 |
| :--- |
| Gloss |} \& ASP


 3s 

in <br>
Stem <br>
tone

 2s 

Stem <br>
tone
\end{tabular}

### 5.4.3.1.4 Tone Class 4 person conjugation

Examples (67), (68), and (69) present examples of verb forms in 3s occurring with Tone Class 4 (/M (H)/) organized according to prefix Class. Example (67) shows Class A verb forms, (68) presents Class B verb forms, and (69) illustrates Class C verb forms occurring with Tone Class 4.

3s verb forms occurring with this Tone Class 4 are not too frequent in the lexicon, and their tonal ablaut from $3 s$ to $2 s$ is very regular. All roots regardless of the prefix Class present the same tonal ablaut pattern: 3s: Tone Class 4; 2s: Tone Class 11.

The 3s progressive forms which occur with the aspect prefix $n t \bar{a}-$-, are composed TS's, i.e., the verb stem occurs with the TS for Tone Class 4 and the aspect prefix occurs with a / $\mathrm{M} /$ tone. Their surface pattern depends on the moraic shape of the verb form. If the verb is trimoraic, the surface pattern is [M-L-M] (H) and the dimoraic forms surface as [M-M] (H).

The dimoraic progressive forms merge with another Tone Class with the same surface tone pattern (Tone Class $10 / \mathrm{M}-\mathrm{M} /$ ) but the two distinguish
themselves in phrasal context where the progressive verb forms with Tone Class 4 are followed by a floating tone whereas the verb forms occurring with Tone Class 10 do not have a floating tone. Of course, these two Tone Classes are only distinguishable in phrasal context if and only if they are followed by a tonally unlinked moras which would allow the high floating tone of Tone Class 4 to be realized. Otherwise, they are indistinguishable from each other (see chapter $4 \S 4.5 .2$ ).

| (67) | Class A verb forms with Tone Class 4 (/M (H)/) in 3s |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Gloss | ASP | 3s | Stem tone | 2s | Stem tone |
|  | borrow it | COMPL | nkajin ${ }^{\text {T }}$ ¢ ${ }^{\text {r }}$ | 4 | nkajīn ${ }^{\text {y }}$ í? | 11 |
|  | ( $A_{c}$ ) |  |  |  |  |  |
|  | buy it | COMPL | nkasi1ī | 4 | nkasīpí | 11 |
|  | ( $A_{c}$ ) |  |  |  |  |  |
|  | throw it away | COMPL | nkaskwaān | 4 | nkaskwāán | 11 |
|  | ( $A_{c}$ ) | PROG | ntāskwaān' | 4 | ntāskwāán | 11 |
|  |  | HAB | ntixkwaān' | 4 | ntixkwāán | 11 |
|  |  | POT | xkwaān' | 4 | xkwāán | 11 |
|  | play | COMPL | nkajyā | 4 | nkājyá | 11 |
|  | ( $A_{c}$ ) | PROG | ntājyā | 4 | ntājyá | 11 |
|  | shoot it | COMPL | nkakuūn | 4 | nkakūún | 11 |
|  | ( $A_{u}$ ) | PROG | ntākuūn' | 4 | ntākūún | 11 |
|  | burn it | COMPL | nkatakīn | 4 | nkatākín | 11 |
|  | ( $A_{u}$ ) | PROG | ntātakīn' | 4 | ntātākín | 11 |
|  | pick it up | COMPL | nkwixoō? | 4 | nkwixōó? | 11 |
|  | (A2) | PROG | ntāsoō? | 4 | ntāsōó? | 11 |
|  |  | HAB | ntixoō? | 4 | ntixōó? | 11 |

(68) Class B verb forms with Tone Class 4 (/M (H)/) in 3s

| Gloss | ASP | 3s | Stem tone | 2s | Stem <br> tone |
| :---: | :---: | :---: | :---: | :---: | :---: |
| find it$\left(B_{y}\right)$ | COMPL | nkyajā' | 4 | nkyājá | 11 |
|  | PROG | ntīkyajā | 4 | ntīkyājá | 11 |
|  | HAB | nkyajā | 4 | nkyājá | 11 |
|  | POT | kyajā | 4 | kyājá | 11 |
|  | POT | xoō? | 4 | xōó? | 11 |
| heal <br> ( $B_{y}$ ) | COMPL | nkyakā | 4 | nkyāká | 11 |
|  | PROG | ntīkyakā | 4 | ntīkyāká | 11 |
|  | HAB | nkyakā | 4 | nkyāká | 11 |
|  | POT | kyakā | 4 | kyāká | 11 |
| pick it up$\left(B_{y}\right)$ | COMPL | nkyukwān' | 4 | nkyūkwán | 11 |
|  | PROG | ntīkyukwān' | 4 | ntīkyūkwán | 11 |
|  | HAB | nkyukwān' | 4 | nkyūkwán | 11 |
|  | POT | kyukwān' | 4 | kyūkwán | 11 |
| revive $\left(B_{y}\right)$ | COMPL | nkyo?ō | 4 | nkyō?ó | 11 |
| stand $\left(B_{p o s t}\right)$ | COMPL | nkutuūn | 4 | nkutūún | 11 |

(69) Class C verb forms with Tone Class 4 (/M (H)/) in 3s

| Gloss | ASP | 3s | Stem tone | 2s | Stem tone |
| :---: | :---: | :---: | :---: | :---: | :---: |
| be | COMPL | nkwā | 4 | nkwá | 11 |
| ( $C_{a}$ ) | PROG | nkyākā | 4 | nkyāká | 11 |
| jump | COMPL | nkajlakā? | 4 | nkajlāká? | 11 |
| $\left(C_{a}\right)$ | PROG | ntājlakāY | 4 | ntājlāká? | 11 |
| vomit it | COMPL | nkayakwēn | 4 | nkayākwén | 11 |
| (C2) | PROG | nkyākwēn' | 4 | nkyākwén | 11 |
| grind it | COMPL | nkayoō' | 4 | nkayōó | 11 |
| (C2) | PROG | ntyóó | 4 | ntyōó | 11 |
| drink it | COMPL | nkayo?ō' | 4 | nkayō?ó | 11 |
| (C2) | PROG | ntī?ō | 4 | ntī?ó | 11 |
| sell it | COMPL | nkayujwī? | 4 | nkayūjwí? | 11 |
| (C2) | PROG | nkyūjwī | 4 | nkyūjwí? | 11 |
| get dressed | COMPL | nkayakō? | 4 | nkayākó? | 11 |
| (C2) | PROG | nkyākō? | 4 | nkyākó? | 11 |

### 5.4.3.1.5 Tone Class 8 person conjugation

Examples (70) and (71) present verb forms occurring with Tone Class 8 (/LH/) in 3s. 3s verb forms occurring with this Tone Class are not too widespread, out of about 220 roots, only 23 bear Tone Class 8 . Their tonal ablaut is very regular. All roots (except one) regardless of the prefix Class present the same tonal ablaut pattern: 3s: Tone Class 8; 2s: Tone Class 11.

Furthermore, example (70) presents verb roots that occur with Tone Class 8 in the completive aspect, and do not show the corresponding progressive forms. This is due to the fact that the 3s progressive forms occur with a different Tone Class (Tone Class 11). If we examine the prefix Class
to which the roots in question belong to, we can see that most of them belong to prefix Class $A_{u}$. Although if we look at the data in example (70), we can also note that there are a couple of roots belonging to subClass $A_{u}$ which show a regular tonal ablaut, i.e progressive forms with a composed TS consisting of a mid tone on the prefix and Tone Class 8 on the final mora of the stem.

The fact that some prefix Class $A_{u}$ progressive forms belonging to tonal conjugation of Tone Class 8 migrated to Tone Class 11 is not totally surprising as we have seen in section 5.3.2 that Tone Class 11 is the most prevalent tonal pattern in subClass $\mathrm{A}_{\mathrm{u}}$ roots.


| Gloss | ASP | 3s | Stem tone | 2s | Stem tone |
| :---: | :---: | :---: | :---: | :---: | :---: |
| sweep it ( $\mathrm{A}_{\mathrm{u}}$ ) | COMPL | nkalukwǎ | 8 | nkalūkwá | 11 |
| water it $\left(\mathrm{A}_{\mathrm{u}}\right)$ | COMPL | nkajil ${ }^{\text {ya }}$ | 8 | $n k a j i ̄ 1 l^{\text {Ya }}$ | 11 |
| blow it $\left(\mathrm{A}_{u}\right)$ | COMPL | nkalaPǎ | 8 | nkalāPá | 11 |
| make it $\left(\mathrm{A}_{u}\right)$ | COMPL | nkatin ${ }^{\text {yǎn }}$ | 8 | nkatīn ${ }^{\text {y }}$ a | 11 |
| raise it $\left(\mathrm{A}_{u}\right)$ | COMPL | nkasakwěn | 8 | nkasākwén | 11 |
| close it ( $\mathrm{A}_{\mathrm{u}}$ ) | COMPL | nkatakǔn | 8 | nkatākún | 11 |
| burry it $\left(\mathrm{A}_{\mathrm{u}}\right)$ | COMPL | nkwatsǐ? | 8 | nkwātsí? | 11 |
| enter $\left(B_{y}\right)$ | COMPL | nkayatěn | 8 | nkayātén | 11 |

(71) Class C verb forms with Tone Class 8 (/LH/) in 3s

| Gloss | ASP | 3s | Stem <br> tone | 2s | Stem <br> tone |
| :--- | :--- | :--- | :---: | :--- | :---: |
| grow | COMPL | nkolǒ | 8 | nkōló | 11 |
| $\left(\mathrm{C}_{\mathrm{a}}\right)$ | PROG | nkyālǒ | 8 | nkyāló | 11 |
| grow old | COMPL | nkosǒ? | 8 | nkōsó? | 11 |
| $\left(\mathrm{C}_{\mathrm{a}}\right)$ | PROG | nkyāsǒ? | 8 | nkyāsó? | 11 |
| play it | COMPL | nkayulǎ | 8 | nkayūlá | 11 |
| (C2) | PROG | nkyūlǎ | 8 | nkyūlǎ | 11 |
| cry | COMPL | nkayunǎ | 8 | nkayūná | 11 |
| (C2) | PROG | nkyūnă | 8 | nkyūná | 11 |
| sleep | COMPL | nkayajǎ? | 8 | nkayājá? | 11 |
| (C2) |  |  |  |  |  |
| chew it | COMPL | nkayatǎ? | 8 | nkayātá? | 11 |
| (C2) | PROG | ntāyatǎ? | 8 | ntāyātá? | 11 |

### 5.4.3.1. 6 Tone Class 9 person conjugation

Examples (72), (73), and (74) present examples of verb forms occurring with Tone Class 9 (/L-LS/) in 3s organized according to prefix Class. 3s verb forms occurring with this Tone Class are frequent in the lexicon, and their tonal ablaut from $3 s$ to $2 s$ is very regular. All short vowel roots regardless of the prefix Class (except prefix Class A2) present the same tonal ablaut pattern: 3s: Tone Class 9; 2s: Tone Class 10.

If one examines the prefix Classes of the roots occurring with Tone Class 9, one can note that they are overwhelmingly subClass $A_{u}$. This fact is not surprising as was noted earlier in example (42) on page 343 that the aspectual tonal ablaut for roots occurring with Tone Class 11 (/M-H/) in the 3 s completive aspect is: Tone Class 11 in the 3 s progressive and Tone Class 9 in the 3 s habitual and potential forms. Furthermore, as was also noted then, Tone Class 11 is the most widespread tonal pattern in roots belonging to prefix subClass $\mathrm{A}_{\mathrm{u}}$. Tone Class 9 is the preferred Tone Class to mark potential and habitual aspects.

Furthermore, example (72) presents verb forms belonging to subClass A2 with an irregular tonal ablaut pattern. One of the forms occurs with the causative morpheme $i x$ - ('hang it') . One may notice that in the completive, habitual and potential forms, when the stem occurs with Tone Class 9, the antepenultimate mora surfaces with a high tone (/H/). This phenomenon only happens when a causative verb stem bears Tone Class 9.

Example (74) presents all the long vowel stems occurring with Tone Class 9. Verb forms featuring long vowels occurring with Tone Class 9 in 3s mark 2s with Tone Class 12 (/M-M-L/) in dimoraic forms, and Tone Class 15 (/L-M-L/) in trimoraic verb forms.
(72) Class A verb forms with Tone Class 9 (/L-LS/) in 3s

| Gloss | ASP $3 s$ | Stem <br> tone | Stem <br> tone |
| :--- | :--- | :--- | :--- | :--- |


| open it | HAB | ntusàlá | 9 | ntusālā | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\left(\mathrm{~A}_{\mathrm{u}}\right)$ | POT | kusàla̋ | 9 | kusālā | 10 |

tighten it HAB ntusìn ${ }^{\text {y ản? }} \quad 9 \quad$ ntusīn ${ }^{\text {y }}$ ān? 10
( $\mathrm{A}_{\mathrm{u}}$ ) РOT kusìn ${ }^{\text {yán? }} \quad 9$ kusīn ${ }^{\mathrm{y}}$ ān? 10
take it down HAB ntutì?yä 9 ntutī?yā 10
$\left(\mathrm{A}_{\mathrm{u}}\right) \quad$ РОт kutì?ya̋ 9 kutī?yā 10
say bye $\quad \mathrm{HAB}$ ntusàlă? 9 ntusālā? 10
$\left(\mathrm{A}_{\mathrm{u}}\right) \quad$ РОт kusàla̋? 9 kusālā? 10
write it HAB ntukà?a̋n 9 ntukā?ān 10
$\left(\mathrm{A}_{\mathrm{u}}\right) \quad$ РOT kukà?a̋n 9 kukāPān 10
spend it HAB ntulìjí 9 ntulījī 10

| $\left(\mathrm{A}_{\mathrm{u}}\right)$ | РОт | kulìjí | 9 | kulījī | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- |

spend it HAB ntixì?yă 9 ntixī?yā 10
$\left(\mathrm{A}_{\mathrm{u}}\right)$ РОт xì?ya̋ 9 xī?yā 10
spread it HAB ntutàrân 9 ntutā?ān 10
$\left(\mathrm{A}_{\mathrm{u}}\right) \quad$ РOT kutà?ân 9 kutā?ān 10
incline it $\quad$ HAB ntusàkí 9 ntusākī 10

| $\left(\mathrm{A}_{\mathrm{u}}\right)$ | POT | kusàkī | 9 | kusākī |
| :--- | :--- | :--- | :--- | :--- |


| Gloss | ASP | 3s | Stem tone | 2s | Stem <br> tone |
| :---: | :---: | :---: | :---: | :---: | :---: |
| rock it | HAB | ntusà?na̋n | 9 | ntusā?nān | 10 |
| $\left(\mathrm{A}_{\mathrm{u}}\right)$ | POT | kusà?na̋n | 9 | kusā?nān | 10 |
| lie | HAB | ntùn ${ }^{\text {y }}$ ¹ | 9 | ntūn ${ }^{\text {y }}$ | 10 |
| ( $\left.\mathrm{A}_{\mathrm{u}} / \mathrm{C} 2\right)$ | POT | kùn ${ }^{\text {y }}$ | 9 | kūn ${ }^{\text {y }}$ ī | 10 |
| hit it | HAB | ntujì 1 ín | 9 | ntujī2īn | 10 |
| ( $\mathrm{A}_{\mathrm{u}}$ ) | РОT | kujì 1 ín | 9 | kujī?īn | 10 |
| peel it | HAB | ntutùkwín? | 9 | ntutūkwīn? | 10 |
| ( $\mathrm{A}_{\mathrm{u}}$ ) | POT | kutùkwîn? | 9 | kutūkwīn? | 10 |
| loose it | HAB | ntutùná? | 9 | ntutūnā? | 10 |
| ( $\mathrm{A}_{\mathrm{u}}$ ) | POT | kutùna̋? | 9 | kutūnā? | 10 |
| paint it | HAB | ntokò?ő | 9 | ntokō?ō | 10 |
| ( $\mathrm{A}_{\mathrm{u}}$ ) | POT | kokò?ő | 9 | kokō?ō | 10 |
| turn it on | HAB | ntukà?a̋n | 9 | ntukāPān | 10 |
| ( $\mathrm{A}_{\mathrm{u}}$ ) | РОT | kukà?a̋n | 9 | kukāRān | 10 |
| look for it | HAB | ntùna̋n | 9 | ntūnān | 10 |
| ( $\mathrm{A}_{\mathrm{u}}$ ) | POT | kùna̋n | 9 | kūnān | 10 |
| break it | HAB | ntùcha̋ | 9 | ntūchā | 10 |
| ( $\left.\mathrm{A}_{\mathrm{u}} / \mathrm{C} 2\right)$ | POT | kùcha̋ | 9 | kūchā | 10 |
| repass it | HAB | ntutìrîn | 9 | ntutī?īn | 10 |
| ( $\mathrm{A}_{\mathrm{u}}$ ) | POT | kutì?ín | 9 | kutī?īn | 10 |
| shake it | HAB | ntutsìkwîn | 9 | ntutsīkwīn | 10 |
| ( $\mathrm{A}_{\mathrm{u}}$ ) | POT | kutsìkwín | 9 | kutsīkwīn | 10 |
| weave it | HAB | ntutàjlâ? | 9 | ntutājlā? | 10 |
| ( $\mathrm{A}_{\mathrm{u}}$ ) | POT | kutàjla̋? | 9 | kutājlā? | 10 |
| toast it | HAB | ntukì?í | 9 | ntukī?ī | 10 |
| ( $\mathrm{A}_{\mathrm{u}}$ ) | РОт | kukì?í | 9 | kukī?ī | 10 |
| peck it | HAB | ntutìjya̋? | 9 | ntutījyā? | 10 |
| ( $\mathrm{A}_{\mathrm{u}}$ ) | РОт | kutijya̋? | 9 | kutījyā? | 10 |


| Gloss | ASP | 3s | Stem <br> tone | 2s | Stem <br> tone |
| :---: | :---: | :---: | :---: | :---: | :---: |
| slap it | HAB | ntijìkwa̋n? | 9 | ntijīkwān? | 10 |
| ( $\mathrm{A}_{\mathrm{c}}$ ) | POT | jìkwa̋n? | 9 | jīkwān? | 10 |
| swallow it | HAB | ntijìkwín? | 9 | ntijīkwīn? | 10 |
| ( $\mathrm{A}_{\mathrm{c}}$ ) | POT | jìkwîn? | 9 | jīkwīn? | 10 |
| whitle | HAB | ntijìwî | 9 | ntijīwī | 10 |
| ( $\mathrm{A}_{\text {c }}$ ) | POT | jìwî | 9 | jīwī | 10 |
| cut it | HAB | ntusì?yő | 9 | ntusī?yō | 10 |
| ( $\mathrm{A}_{\mathrm{c}}$ ) | POT | kusì?yő | 9 | kusī?yō | 10 |
| thresh it | HAB | ntixùkwa̋? | 9 | ntixūkwā? | 10 |
| ( $\mathrm{A}_{\mathrm{c}}$ ) | POT | xùkwâ? | 9 | xūkwā? | 10 |
| laugh | HAB | ntixìt ${ }^{\text {¹ }}$ | 9 | ntixī ${ }^{\text {y }}$ ¢ | 10 |
| ( $\mathrm{A}_{\mathrm{c}}$ ) | POT | xit ${ }^{\text {y }}$ í | 9 | $\mathrm{xic}^{\text {¢ }}{ }^{\text {i }}$ | 10 |
| massage it | HAB | ntijìkwí | 9 | ntijīkwī | 10 |
| ( $\mathrm{A}_{\mathrm{c}}$ ) | POT | jìkwí | 9 | jīkwī | 10 |
| ask for it | HAB | ntijìn ${ }^{\text {ªnn }}$ | 9 | ntijīn ${ }^{\text {y }}$ an | 10 |
| ( $\mathrm{A}_{\text {c }}$ ) | POT | jìn ${ }^{\text {ya̋n }}$ | 9 | jīn ${ }^{\text {y }}$ an | 10 |
| marry | HAB | $n t^{\text {y }}$ è ¢en | 9 | $n t^{y}$ è ¢ēn | 10 |
| ( $\mathrm{A}_{\mathrm{c}}$ ) | POT | $t^{\text {y }}$ èeen | 9 | $\mathrm{t}^{\mathrm{y}}$ ē e ¢ n | 10 |
| hang it | COMPL | ngwíxtìkwî́ | 9 | ngwixtìkwī | 6 |
| (A2) (irreg.) | PROG | ntīxtìkwí | 9 | ntīxtìkwī | 6 |
|  | HAB | ntíxtìkwí | 9 | ntixtìkwī | 6 |
|  | POT | kíxtìkwí | 9 | kixtìkwī | 6 |
| change clothes | COMPL | nkwichà ${ }^{\text {án }}$ | 9 | nkwichà ${ }^{\text {ann }}$ | 6 |
| (A2) (irreg.) | PROG | ntātsà $1 a ̋$ n | 9 | ntātsà 1 ān | 6 |
|  | HAB | ntichà ${ }^{\text {ann }}$ | 9 | ntichā?ān | 10 |
|  | POT | chà $\frac{a}{}$ n | 9 | chāPān | 10 |

(73) Class B verb forms with Tone Class 9 (/L-LS/) in 3s

| Gloss | ASP | 3s | Stem <br> tone | 2s | Stem tone |
| :---: | :---: | :---: | :---: | :---: | :---: |
| sneeze | HAB | nkyàjá | 9 | nkyàja̋ | 10 |
| ( $\mathrm{B}_{\mathrm{y}}$ ) | POT | kyàjá | 9 | kyājā | 10 |
| fall | HAB | ntill ${ }^{\text {\% }}$ | 9 | $n t i ̄{ }^{\text {y }} \bar{O}$ | 10 |
| ( $\mathrm{B}_{\text {post }}$ ) | РОт | till ${ }^{\text {¢ }}$ | 9 | tīl ${ }^{\text {y }} \overline{0}$ | 10 |
| go out | HAB | nt ${ }^{\text {y }}$ őő | 9 | $n t^{\text {y }}$ ô?ō | 10 |
| ( $\mathrm{B}_{\text {post }}$ ) | РОт | $\mathrm{t}^{\text {y }}$ ò ${ }^{\text {¢ }}$ | 9 | $\mathrm{t}^{\mathrm{y}} \mathrm{O}$ O o | 10 |

(74) Long vowel verb forms with Tone Class 9 (/L-LS/) in 3s Gloss ASP 3 s Stem 2s Stem


### 5.4.3.1.7 Tone Class 10 person conjugation

Examples (75), (76), and (77) present 3s verb forms occurring with

Tone Class 10 (/M-M/). They show that 3s verb forms bearing Tone Class 10 are present in all three prefix Classes, but they are not widespread. All roots regardless of the prefix Class present the same tonal ablaut pattern: 3s: Tone Class 10; 2s: Tone Class 12.

| (75) | Class A verb forms with Tone Class 10 (/M-M/) in 3s |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Gloss | ASP | 3s | Stem tone | 2 s | Stem tone |
|  | cough | COMPL | nkatōō? | 10 | nkātōò? | 12 |
|  | ( $\mathrm{A}_{\text {c }}$ ) |  |  |  |  |  |
|  | see it | COMPL | nāTān | 10 | nā?àn | 12 |
|  | $\left(\mathrm{A}_{\mathrm{c}}\right)$ ) 12 |  |  |  |  |  |
|  | transport it | COMPL | nkatēēn | 10 | nkātēèn | 12 |
|  | $\left(\mathrm{A}_{u}\right)$ |  |  |  |  |  |
|  | do it | COMPL | nkā?nī | 10 | nkā?nì | 12 |
|  | ( $\mathrm{A}_{\mathrm{u}} / \mathrm{C} 2$ ) |  |  |  |  |  |
|  | overthrow it | COMPL | $n k \overline{a r t}^{\text {y }}$ ēn | 10 | $n k a \bar{t}{ }^{\text {² }}$ en | 12 |
|  | ( $\left.\mathrm{A}_{\mathrm{u}} / \mathrm{C} 2\right)$ |  |  |  |  |  |
|  | burst | COMPL | nkāchō | 10 | nkāchò | 12 |
|  | ( $\left.\mathrm{A}_{\mathrm{u}} / \mathrm{C} 2\right)$ |  |  |  |  |  |
|  | pull it out | COMPL | nkasōō | 10 | nkāsōò | 12 |
|  | ( $\mathrm{A}_{\mathrm{u}}$ ) |  |  |  |  |  |
|  | wet it | COMPL | nkāchā? | 10 | nkāchà? | 12 |
|  | ( $\left.\mathrm{A}_{\mathrm{u}} / \mathrm{C} 2\right)$ |  |  |  |  |  |

(76) Class B verb forms with Tone Class 10 (/M-M/) in 3s

| Gloss | ASP | 3s | Stem tone | 2s | Stem tone |
| :---: | :---: | :---: | :---: | :---: | :---: |
| turn around | COMPL | nkutī ${ }^{\text {l }}$ \% $\overline{\text { a }}$ | 10 | nkūtīl ${ }^{\text {º̀ }}$ | 12 |
| ( $\mathrm{B}_{\text {post }}$ ) | PROG | ntātīl ${ }^{\text {y }} \bar{O}$ | 10 | ntātīl ${ }^{\text {y }}$ ò | 12 |
|  | HAB | ntīl ${ }^{\text {y }}{ }_{\bar{O}}$ | 10 | ntīl ${ }^{\text {y }}$ ò | 12 |
|  | РОT | tīl ${ }^{\text {y }}$ | 10 | tīly ${ }^{\text {l }}$ | 12 |
| slim down $\left(B_{c}\right)$ | COMPL | nkulātī | 10 | nkūlātì | 12 |
| arrive | COMPL | nkyālā | 10 | nkyālà | 12 |
| ( $\mathrm{B}_{\mathrm{y}}$ ) |  |  |  |  |  |
| wash it | COMPL | nkyā?ān | 10 | nkyāPàn | 12 |
| ( $\mathrm{B}_{\mathrm{y}}$ ) |  |  |  |  |  |
| come here | COMPL | nkyāān | 10 | nkyāàn | 12 |
| (to base) ( $\mathrm{B}_{\mathrm{y}}$ ) |  |  |  |  |  |
| leave there | COMPL | yāā | 10 | yāà | 12 |
| ( not base) ( $\mathrm{B}_{\text {post }}$ ) |  |  |  |  |  |


| (77) | Class C verb forms with Tone Class 10 (/M-M/) in 3s |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Gloss | ASP | 3s | Stem tone | 2s | Stem <br> tone |
|  | come here (not base) $\left(\mathrm{C}_{\mathrm{a}}\right)$ | COMPL | $\mathrm{n}^{\mathrm{y}}$ āān | 10 | $\mathrm{n}^{\mathrm{y}}$ āàn | 12 |
|  | die $\left(\mathrm{C}_{\mathrm{a}}\right)$ | COMPL | nkūjwī | 10 | nkūjwì | 12 |
|  | explode <br> ( $\mathrm{C}_{\mathrm{a}}$ ) | COMPL | nkōtsō | 10 | nkōtsò | 12 |
|  | hear it (C2) | COMPL | nkayūnā | 10 | nkāyūnà | 12 |
|  | kill it (C2) | COMPL | nkayūjwī | 10 | nkāyūjwì | 12 |
|  | get scared (C2) | COMPL | nkayūtsēn | 10 | nkāyūtsèn | 12 |
|  | smell it (C2) | COMPL | nkayūkwīn? | 10 | nkāyūkwìn? | 12 |

### 5.4.3.1.8 Tone Class 11 person conjugation

Examples (78), (79), (80), (81), and (82) present the tonal ablaut patterns for 3 s verb forms occurring with Tone Class 11 (/M-H/). As suggested by the large amount of data presented in the examples to follow, 3 s verb stems with Tone Class 11 are among the most widespread in the lexicon (3s verb stems occurring with Tone Class 9 may be the second most widespread tonal pattern).

The most salient fact revealed here is that the majority 3s stems with Tone Class 11 belong to the prefix Class A and particularly to SubClass $\mathrm{A}_{\mathrm{u}}$.

Example (78) presents a list of SubClass $\mathrm{A}_{u}$ and $\mathrm{A}_{\mathrm{c}}$ verb forms occurring with Tone Class 11. Their tonal ablaut pattern is very regular: 3s completive forms occur Tone Class 11, 2s completive forms occurs with Tone Class 10 (/M-M/). The corresponding 3s progressive forms occur with Tone Class 11 (because of the $/ \mathrm{M} /$ tone prefix, the surface pattern is a composed TS), 2s occurs with Tone Class 14 (/M-H-M/).
(78) SubClasses $A_{u}$ and $A_{c}$ verb forms with Tone Class 11 in $3 s$ Gloss ASP $3 s$ Stem 2s Stem

|  |  |  | tone |  | tone |
| :---: | :---: | :---: | :---: | :---: | :---: |
| open it | COMPL | nkasālá | 11 | nkasālā | 10 |
| ( $A_{u}$ ) | PROG | ntāsālá | 11 | ntāsálā | 14 |
| tighten it | COMPL | nkasīn ${ }^{\text {y }}$ n? | 11 | nkasīn ${ }^{\text {y }}$ n? | 10 |
| ( $A_{u}$ ) | PROG | ntāsīn ${ }^{\text {y án? }}$ | 11 | ntāsín ${ }^{\text {y }}$ an? | 14 |
| take it down | COMPL | nkatī?yá | 11 | nkatī?yā | 10 |
| ( $A_{u}$ ) | PROG | ntātī? yá | 11 | ntātí?yā | 14 |
| hit it | COMPL | nkajī?ín | 11 | nkajī2īn | 10 |
| ( $A_{u}$ ) | PROG | ntājī?ín | 11 | ntājî\īn | 14 |
| paint it | COMPL | nkakō?ó | 11 | nkakō?ō | 10 |
| ( $A_{u}$ ) | PROG | ntākō?ó | 11 | ntākó?ō | 14 |
| say bye | COMPL | nkasālá? | 11 | nkasālā? | 10 |
| ( $A_{u}$ ) | PROG | ntāsālá? | 11 | ntāsálā? | 14 |
| write it | COMPL | nkakāPán | 11 | nkakāPān | 10 |
| ( $A_{u}$ ) | PROG | ntākā?án | 11 | ntāká?ān | 14 |
| weave it | COMPL | nkatājlá? | 11 | nkatājlā? | 10 |
| ( $A_{u}$ ) | PROG | ntātājlá? | 11 | ntātàjlā? | 14 |
| toast it | COMPL | nkakī?í | 11 | nkakī?̄ | 10 |
| ( $A_{u}$ ) | PROG | ntākī?í | 11 | ntākípī | 14 |


| Gloss | ASP | 3s | Stem tone | 2s | Stem tone |
| :---: | :---: | :---: | :---: | :---: | :---: |
| peel it | COMPL | nkatūkwín? | 11 | nkatūkwīn? | 10 |
| ( $A_{u}$ ) | PROG | ntātūkwín? | 11 | ntātúkwīn? | 14 |
| loose it | COMPL | nkatūná? | 11 | nkatūnā? | 10 |
| ( $A_{u}$ ) | PROG | ntātūná? | 11 | ntātúnā? | 14 |
| peck it | COMPL | nkatījyá? | 11 | nkatījyā? | 10 |
| ( $A_{u}$ ) | PROG | ntātījyá? | 11 | ntātìjyā? | 14 |
| shake it | COMPL | nkatsīkwín | 11 | nkatsīkwīn | 10 |
| ( $A_{u}$ ) | PROG | ntātsīkwín | 11 | ntātsíkwīn | 14 |
| cut it | COMPL | nkasī?yó | 11 | nkasī?yō | 10 |
| ( $A_{u}$ ) | PROG | ntāsī?yó | 11 | ntāsí?yō | 14 |
| spend it | COMPL | nkalījí | 11 | nkalījī | 10 |
| ( $A_{u}$ ) | PROG | ntālījí | 11 | ntālíjī | 14 |
| incline it | COMPL | nkasākí | 11 | nkasākī | 10 |
| $\left(A_{u}\right)$ | PROG | ntāsākí | 11 | ntāsákī | 14 |
| rock it | COMPL | nkasā?nán | 11 | nkasā?nān | 10 |
| ( $A_{u}$ ) | PROG | ntāsā?nán | 11 | ntāsá?nān | 14 |
| pinch it | COMPL | nkatīxó | 11 | nkatīxō | 10 |
| $\left(A_{u}\right)$ | PROG | ntātīxó | 11 | ntātíxō | 14 |


| Gloss | ASP | 3s | Stem <br> tone | 2s | Stem <br> tone |
| :---: | :---: | :---: | :---: | :---: | :---: |
| swallow it | COMPL | nkajīkwín? | 11 | nkajīkwīn? | 10 |
| ( $A_{c}$ ) | PROG | ntājīkwín? | 11 | ntājíkwīn? | 14 |
| laugh | COMPL | nkasìt ${ }^{\text {y }}$ í | 11 | nkasiti ${ }^{\text {Ti }}$ | 10 |
| ( $A_{c}$ ) | PROG | ntāsīt ${ }^{\text {y }}$ í | 11 | ntāsít ${ }^{\text {y }}$ ī | 14 |
| slap it | COMPL | nkajīkwán? | 11 | nkajīkwān? | 10 |
| ( $A_{c}$ ) | PROG | ntājīkwán? | 11 | ntājíkwān? | 14 |
| ask for it | COMPL | nkajīn ${ }^{\text {y }}$ án | 11 | nkajīn ${ }^{\text {ann }}$ | 10 |
| ( $A_{c}$ ) | PROG | ntājīn ${ }^{\text {y a }}$ a | 11 | ntājín ${ }^{\text {y }}$ ān | 14 |
| scream | COMPL | nkasī?yá | 11 | nkasī?yā | 10 |
| ( $A_{c}$ ) | PROG | ntāsī?yá | 11 | ntāsí?yā | 14 |
| massage it | COMPL | nkajīkwí | 11 | nkajīkwī | 10 |
| ( $A_{c}$ ) | PROG | ntājīkwí | 11 | ntājíkwī | 14 |
| thresh it | COMPL | nkasūkwá? | 11 | nkasūkwā? | 10 |
| ( $A_{c}$ ) | PROG | ntāsūkwá? | 11 | ntāsúkwā? | 14 |
| marry | COMPL | nkatē?én | 11 | nkatē?ēn | 10 |
| ( $A_{c}$ ) | PROG | ntātē?én | 11 | ntāté?ēn | 14 |
| whistle | COMPL | nkajīwí | 11 | nkajīwī | 10 |
| ( $A_{c}$ ) | PROG | ntājīwí | 11 | ntājíwī | 14 |

Example (79) presents a small group of verb forms occurring with Tone Class 11 which present an irregular tonal ablaut pattern. Some of those forms are irregular because the progressive forms occur with the same Tone Class as the completive forms. Others are irregular because the 2s progressive forms occur with Tone Class 6. This irregularity cannot be explained on the basis of the prefix Class since it includes $\mathrm{A}_{\mathrm{u}}$ roots nor the stem shape since it includes dimoraic as well as trimoraic verb forms
(79) Irregular Class $\mathrm{A}_{\mathbf{u}}$ verb forms with Tone Class 11 in 3s

| Gloss | ASP | 3s | Stem <br> tone | 2s | Stem tone |
| :---: | :---: | :---: | :---: | :---: | :---: |
| break it | COMPL | nkāchá | 11 | nkāchā | 10 |
| ( $A_{u} / C 2$ ) | PROG | nkyūchá | 11 | nkyūchā | 10 |
| lie | COMPL | nkān ${ }^{\text {y }}$ | 11 | nkān ${ }^{\text {® }}$ | 10 |
| ( $A_{u} / C 2$ ) | PROG | nkyūn ${ }^{\text {y }}$ | 11 | nkyūn ${ }^{\text {y }}$ | 10 |
| look for it | COMPL | nkānán | 11 | nkānān | 10 |
| $\left(A_{u}\right)$ | PROG | ntānán | 11 | ntānān | 10 |
| turn it on | COMPL | nkakā?án | 11 | nkakā?ān | 10 |
| $\left(A_{u}\right)$ | PROG | ntākā?án | 11 | ntākà?ān | 6 |
| repass it | COMPL | nkatī?ín | 11 | nkatī?īn | 10 |
| ( $A_{u}$ ) | PROG | ntātī?ín | 11 | ntātì2īn | 6 |
| burry it $\left(A_{u}\right)$ | PROG | ntākwātsí? | 11 | ntākwàtsī? | 6 |
| water it $\left(A_{u}\right)$ | PROG | $n t a ̄ j i ̄ 1{ }^{\text {y }}$ á | 11 | $n t a ̄ j i 1 l^{y}$ à | 6 |

Example (80) presents a small group of irregular progressive forms occurring with Tone Class 11 both for the 3 s and 2 s . Those forms are irregular for two reasons: first because their corresponding 3s completive forms do not occur with Tone Class 11 as expected but with Class 8 (/LH/) or Class $4(/ M(H) /)$, and that's the reason why those completive forms are not shown here; second, because they do not show any tonal alternation between the 3 s and 2 s .
(80) Irregular SubClass $A_{u}$ progressive verb forms

| Gloss | ASP | 3s | Stem <br> tone | 2s | Stem <br> tone |
| :--- | :--- | :--- | :---: | :--- | :---: |
| count it <br> $\left(A_{u}\right)$ | PROG | ntālākwá | 11 | ntālākwá | 11 |
| strain it <br> $\left(A_{u}\right)$ | PROG | ntātīkwá | 11 | ntātīkwá | 11 |
| sweep it <br> $\left(A_{u}\right)$ | PROG | ntālūkwá | 11 | ntālūkwá | 11 |
| blow it <br> $\left(A_{u}\right)$ | PROG | ntālāPá | 11 | ntālā?á | 11 |
| raise it <br> $\left(A_{u}\right)$ <br> close it | PROG | ntāsākwén | 11 | ntātā̄ón | 11 |
| $\left(A_{u}\right)$ |  |  |  |  |  |

Example (81) groups all the A2 roots. As was discussed in §5.3.1.3 SubClass A2 includes all the causative verb forms occurring with causative morpheme $i x$-. It was also shown that the tonal ablaut pattern across aspects for these causative forms is unusual because the tone is invariant, i.e, the tone is the same for all 3 s aspectual forms. Another interesting fact to point out is that these causative forms present the only examples of tone 14 (/M-H$\mathrm{M} /$ ) in dimoraic stems. This Tone Class is usually exclusive to 2 s progressive forms whose corresponding 3s completive form occurs with Tone Class 11 and usually only occurs on trimoraic stems.
(81) Class A2 verb forms with Tone Class 11 (/M-H/) in 3s

| Gloss | ASP | 3s | Stem tone | 2s | Stem <br> tone |
| :---: | :---: | :---: | :---: | :---: | :---: |
| bathe it $\left(A_{2}\right)$ | COMPL | nkwixkātá | 11 | nkwixkātā | 10 |
|  | PROG | ntīxkātá | 11 | ntīxkátā | 14 |
|  | HAB | ntixkātá | 11 | ntīxkátā | 14 |
|  | POT | xkātá | 11 | xkátā | 14 |
| feed it$\left(A_{2}\right)$ | COMPL | nkwixkākó | 11 | nkwixkākō | 10 |
|  | PROG | ntīxkākó | 11 | ntīxkákō | 14 |
|  | HAB | ntixkākó | 11 | ntīxkákō | 14 |
|  | POT | xkākó | 11 | xkákō | 14 |
| soften it$\left(A_{2}\right)$ | COMPL | nkwixkūtí | 11 | nkwixkūtī | 10 |
|  | PROG | ntīxkūtí | 11 | ntīxkútī | 14 |
|  | HAB | ntixkūtí | 11 | ntīxkútī | 14 |
|  | POT | xkūtí | 11 | xkútī | 14 |
| boil it$\left(A_{2}\right)$ | COMPL | nkwixl ${ }^{\text {a }}$ aw ${ }^{\text {a }}$ | 11 | nkwixl ${ }^{\text {y }}$ akwī | 10 |
|  | PROG | ntīxl ${ }^{\text {y }}$ a kí | 11 | ntīxl ${ }^{\text {y ákwī }}$ | 14 |
|  | HAB | ntixl ${ }^{\text {y }}$ àkwí | 11 | ntīxl ${ }^{\text {y a }}$ kwī | 14 |
|  | POT | $x^{\text {l }}$ ª̀kwí | 11 | $\mathrm{xl}^{\text {l }}$ ákwī | 14 |
| $\begin{aligned} & \text { return } \\ & \left(A_{2}\right) \end{aligned}$ | COMPL | nkwixtīkwí | 11 | nkwixtīkwī | 10 |
|  | PROG | ntīxtīkwí | 11 | ntīxtíkwī | 14 |
|  | HAB | ntixtīkwí | 11 | ntīxtíkwī | 14 |
|  | РОT | xtīkwí | 11 | xtíkwī | 14 |
| look alike$\left(A_{2}\right)$ | COMPL | nkwit ${ }^{\text {y }}$ O ¢ó | 11 | nkwit ${ }^{\text {y }}$ O ¢ $\overline{0}$ | 10 |
|  | PROG | ntīt ${ }^{\text {y }}$ ō?ó | 11 |  | 14 |
|  | HAB | ntyō?ó | 11 | $n \mathrm{t}^{\mathrm{y}} \mathrm{O}$ O$\overline{0}$ | 10 |
|  | POT |  | 11 | $\mathrm{t}^{\mathrm{y}} \mathrm{o}^{\text {¢ }}$ ¢ō | 10 |
| leave it$\left(A_{2}\right)$ | COMPL | nkwixānú | 11 | nkwixānū | 10 |
|  | PROG | ntīxānú | 11 | ntīxánū | 14 |
|  | HAB | ntīxānú | 11 | ntixānū | 10 |
|  | POT | xānú | 11 | xānū | 10 |

Example (82) groups verbs from prefix Classes B and C which occur with Tone Class 11 in 3s forms. As shown by the small amount of data presented, these prefix Classes do not include a lot of verbs with Tone Class 11
in 3s forms. Their tonal ablaut pattern is similar to all verb forms presented above in example (78) for prefix Class A.
(82) Class B and C verb forms with Tone Class 11 (/M-H/) in 3s Gloss ASP 3s Stem 2s Stem

|  |  | tone |  |  | tone |
| :---: | :---: | :---: | :---: | :---: | :---: |
| fall | COMPL | nkutīl ${ }^{\text {Y }}$ Ó | 11 | nkutī ${ }^{\mathrm{y}} \overline{\bar{O}}$ | 10 |
| ( $B_{\text {post }}$ ) | PROG | ntātīl ${ }^{\text {y }}$ ó | 11 | ntātíly ${ }^{\text {¢ }}$ | 14 |
| go out | COMPL | nkotō?ó | 11 | nkotō?ō | 10 |
| ( $B_{\text {post }}$ ) | PROG | ntātō?ó | 11 | ntātóरō | 14 |
| sneeze | COMPL | nkyājá | 11 | nkyājā | 10 |
| ( $B_{y}$ ) | PROG | ntīkyājá | 11 | ntīkyájā | 14 |
| enter it $\left(B_{y}\right)$ | PROG | ntīkyātén | 11 | ntīkyātén | 11 |
| stay | COMPL | nkyānú | 11 | nkyānū | 10 |
| ( $B_{y}$ ) | PROG | ntīkyānú | 11 | ntīkyánū | 14 |
|  | HAB | nkyānú | 11 | nkyānū | 10 |
|  | POT | kyānú | 11 | kyānū | 10 |
| be born | COMPL | nkūlá | 11 | nkūlā | 10 | ( $C_{a}$ )

Example (83) presents all the long vowel stems occurring with Tone Class 11. Long vowel stems occurring with Tone Class 11 in 3s completive occur with the same Tone Class in the progressive (because of the /M/ tone prefix $n t \bar{a}-$ the verb forms occur with a composed TS: [M-M-H]). Furthermore, the 2 s and 3 s progressive forms occur with Tone Class 14 when trimoraic and Tone Class 12 when dimoraic.
(83) Long vowel verb stems with Tone Class 11 (/M-H/) in 3s
Gloss ASP 3s Stem 2s Stem

| let it loose | COMPL | nkalāá | 11 | nkāláā | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(A_{u}\right)$ | PROG | ntālāá | 11 | ntāláā | 14 |
| squeeze it | COMPL | nkasiín? | 11 | nkāsí̄̄n? | 14 |
| ( $A_{u}$ ) | PROG | ntāsīin? | 11 | ntāsíīn? | 14 |
| sort it | COMPL | nkasuwî́ | 11 | nkāsūwíl̃ | 14 |
| ( $A_{u}$ ) | PROG | ntāsuwî́ | 11 | ntāsūwíī | 14 |
| give it | COMPL | nkatāá | 11 | nkātáā | 14 |
| ( $A_{u}$ ) | PROG | ntātāá | 11 | ntātáā | 14 |
| clean it | COMPL | nkanīí | 11 | nkāníi | 14 |
| $\left(A_{u}\right)$ | PROG | ntānīí | 11 | ntāníi | 14 |
| fight | COMPL | nkasūún | 11 | nkāsúūn | 14 |
| ( $A_{c}$ ) | PROG | ntāsūún | 11 | ntāsúūn | 14 |
| turn it in | COMPL | nkwit ${ }^{\text {y }}$ á | 11 | nkwīt ${ }^{\text {y a a }}$ | 14 |
| $\left(A_{2}\right)$ | PROG | ntīit ${ }^{\text {a a a }}$ | 11 | ntīt ${ }^{\text {y a a }}$ a | 14 |
|  | HAB | $n{ }^{\text {y }}$ áá | 11 | $n t^{\text {y }}$ àà | 12 |
|  | POT | $\mathrm{t}^{\mathrm{y}}$ a ${ }^{\text {a }}$ | 11 | $\mathrm{t}^{\mathrm{y}}$ āà | 12 |
| escape | COMPL | nkulāá | 11 | nkūláa | 14 |
| $\left(B_{c}\right)$ | PROG | ntālāá | 11 | ntāláā | 14 |

### 5.4.3.1.9 Tone Class 12 person conjugation

Examples (84), (85), and (86) present the tonal ablaut patterns for 3s verb forms occurring with Tone Class 12 (/M-M-L/). As mentioned earlier, this Tone Class often marks progressive aspect of 3s completive forms occurring with Tone Class 1 and Tone Class 10. Because many of the verbs presented in the following examples are progressive forms, many of the corresponding 2 s are composed TS's presenting a progressive mid tone prefix appended to a stem marked for 2 s .

Example (84) shows that one possible pattern for 2 s person marking
on 3s Tone Class 12 forms is Tone Class 6 (/L-M/). All of the 2 s forms are composed TS's. The trimoraic forms present no collision of tone as there are enough moras to host all tonal elements: the mid-tone of the progressive prefix (on antepenultimate mora) and both tonal elements of Tone Class 6 (/L-M/) yielding: /M-L-M/. However, the dimoraic forms do present a collision of tones, resulting in the deletion of penultimate tonal element of TS (/L-M/) as stated in figure 5.3. The surface tonal pattern is /M-M/ which is composed of a mid-tone from progressive prefix appended to a stem marked for 2 s with Tone Class 6 (/L-M/) where only the final tonal element (/M/) links to the stem.

(84) Class A verb forms with Tone Class 12 (/M-M-L/) in 3s | Gloss | ASP | 3s | $\begin{array}{c}\text { Stem } \\ \text { tone }\end{array}$ | 2s | $\begin{array}{c}\text { Stem } \\ \text { tone }\end{array}$ |
| :--- | :--- | :--- | :---: | :---: | :---: |
| pluck it | PROG | ntāsikwàn | 12 | ntāsikwān | 6 | ( $\mathrm{A}_{\mathrm{c}}$ ) walk PROG ntātāPàn 12 ntātà?ān 6 ( $\mathrm{A}_{\mathrm{c}}$ ) catch it PROG ntāsīn ${ }^{\text {y }}$ ì 12 ntāsìn ${ }^{\mathrm{y}}{ }^{\mathrm{I}} \quad 6$ ( $\mathrm{A}_{\mathrm{c}}$ ) defecate PROG ntātīchò? 12 ntātìchō? 6 ( $\mathrm{A}_{\mathrm{c}}$ ) wait for it PROG ntāwītà 12 ntāwìtā 6 ( $\mathrm{A}_{\mathrm{u}}$ ) speak PROG nkyākwì? 12 nkyākwī? 6 ( $\mathrm{B}_{\mathrm{c}}$ ) bathe PROG nkyātà 12 nkyātā 6 (C2) suck it PROG nkyātì? 12 nkyātī? 6 (C2)

eat it PROG nkyākò 12 nkyākō 6 (C2) touch it PROG nkyālà? 12 nkyālā? 6 (C2) $\begin{array}{llllll}\text { poke it } & \text { PROG } & n t^{\mathrm{y}} \text { ōjò? } & 12 & \mathrm{nt}{ }^{\mathrm{y}} \mathrm{oj} \mathrm{jō} ? & 6\end{array}$ (C2)
die PROG ntījà 12 ntījā 6 ( $\mathrm{C}_{\mathrm{a}}$ )

Example (85) presents a set of 3 s progressive forms which mark 2 s with Tone Class 12 also. So both 3 s and 2 s are homophonous. This irregularity does not seem to be based on the prefix Class since it includes verbs from Subclasses which are also present in example (84) above, nor on the stem shape since it includes dimoraic as well as trimoraic stems.
(85) Irregular progressive forms with tone Class 12 (/M-M-L/) in 2 s

| Gloss | ASP | $3 s$ | Stem <br> tone | $2 s$ | Stem <br> tone |
| :--- | :--- | :--- | :---: | :--- | :---: |
| see it | PROG | ntānā?àn | 12 | ntānā?àn | 12 |

( $\mathrm{A}_{\mathrm{c}}$ )
do it PROG nkyū?nì 12 nkyū?nì 12
( $\mathrm{A}_{\mathrm{u}} / \mathrm{C} 2$ )
wet it PROG nkyūchà? 12 nkyūchà? 12
( $\mathrm{B}_{\mathrm{c}}$ )
hear it PROG nkyūnà 12 nkyūnà 12
(C2)
$\begin{array}{lllll}\text { kill it } & \text { PROG } & \text { nkūjwì } & 12 & \text { nkūjwì }\end{array}$
(C2)
get scared PROG nkyūtsèn 12 nkyūtsèn 12
(C2)
smell it PROG nkyūkwìn? 12 nkyūkwìn? 12 (C2)

Example (86) groups all the long vowel stems occurring with Tone Class 12 in 3 s . In this case also, the 3 s form is homophonous with 2 s
(86) Long vowel verb stems with Tone Class 12 (/M-M-L/) in 3s

| Gloss | ASP 3 s | Stem <br> tone | Stem <br> tone |
| :--- | :--- | :--- | :--- | :--- |


| transport it <br> $\left(\mathrm{A}_{\mathrm{u}}\right)$ | PROG | ntātēèn | 12 | ntātēèn | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| pull it out <br> $\left(\mathrm{A}_{\mathrm{u}}\right)$ | PROG | ntāsōò | 12 | ntāsōò | 12 |
| arrive there <br> (not base) | COMPL | nkūtyāà | 12 | nkūtyāà | 12 |
| ( $\mathrm{B}_{\text {post }}$ ) | ntātyāà | 12 | ntātyāà | 12 |  |
| arrive there <br> (base) | COMPL | nkūtyāàn | 12 | nkūtyāàn | 12 |
| $\left(\mathrm{B}_{\text {post }}\right)$ | PROG | ntātyāàn | 12 | ntātyāàn | 12 |
| stand <br> $\left(\mathrm{B}_{\mathrm{c}}\right)$ | PROG | ntātūùn | 12 | ntātūùn | 12 |

Tone Class 12 presents two different tonal ablaut patterns for 2 s :
3s: 12; 2s: 6
3s: 12; 2s: 12

### 5.4.3.1.10 Conclusion

As demonstrated by the data presented in this section, the tonal ablaut pattern from $3 s$ to $2 s$ is quite predictable based on the tonal Class of the 3s. Table 5.14 summarizes the patterns for all Tone Classes occurring on 3s verb forms and shows that aspect does not matter, what matters is the Tone Class of the 3 s verb form. One exception to this generalization is for the tonal ablaut pattern for verb forms occurring with Tone Class 11. Indeed, the completive forms occur with Tone Class 10, and the progressive forms occur with Tone Class 14. Tone Class 12 is the only Class which presents 2 different patterns on short vowel stems for marking 2 s .

Furthermore, stem shape matters as we have seen that long vowel stems whose corresponding 3 s forms occur with Tone Class 1, 3, 13, 9, 11, and 12 occur in the 2 s with Tone Class 12 or 15 depending on the moraic shape of the stem.

### 5.4.3.2 1 s subject person marking on verbs

We have seen in the previous section that if one knows the Tone Class of the 3 s form of a verb, one can pretty accurately predict the Tone Class

Stem tone in 3s Stem tone in 2s Long vowel Stem tone in 2s

| 1 | 6 | $12 / 15$ |
| :---: | :---: | :---: |
| 3 | 6 | $12 / 15$ |
| 13 | 6 | $12 / 15$ |
| 4 | 11 | 11 |
| 8 | 11 | --- |
| 9 | 11 | $12 / 15$ |
| 10 | 12 | 12 |
| 11 | 10 COMPL; 14 PROG | $14 / 12$ |
| 12 | $6 / 12$ | 12 |

Table 5.14: Tonal ablaut patterns for subject marking on verbs
for the corresponding 2 s form.
However, this relationship is not maintained between the 3s and the 1s. A more accurate way of predicting the 1 s tonal pattern for a particular verb across aspects is by considering the tonal pattern for 3 s across aspects.

Before examining those patterns, a couple of phenomenon regarding 1s person marking on verbs ought to be mentioned. 1s is marked on verbs with final vowel nasalization with or without tonal ablaut, and which verbs are marked by both processes may seem to be random, although as will be demonstrated in this section, the prefix Class to a which a verb belongs is actually important for predicting tonal ablaut in 1 s .

Examples (87) and (88) present irregular 1 s verb forms. Example (87) shows a couple of verbs where the 1 s is suppletive, and as a result the 1s segmental form cannot be derived simply by nasalizing the final vowel of stem.

Suppletive 1s verb forms

| Gloss | Root | Prefix <br> Class | Aspect | 1s form | Tone |
| :--- | :--- | :--- | :--- | :--- | :---: |
| go there to base | -yaa | $\mathrm{B}_{\mathrm{y}}$ | COMPL | ngya2ān | 5 |
| go there not base | -aa | $\mathrm{B}_{\text {post }}$ | COMPL | yā?àn | 12 |
|  |  |  | HAB | ntà?a̋n | 9 |
|  |  |  | POT | tså?a̋n | 9 |

Example (88) shows segmentally irregular potential 1 s forms that obey the regular nasalization rule but they also occur with a/u/ just before the root. Most of these verbs belong to Subclass $\mathrm{A}_{\mathrm{c}}$, and only a few belong to Suclasses $\mathrm{B}_{\mathrm{c}}$, $\mathrm{B}_{\text {post }}$ and C2. The only $u$ - prefix known is the causative $u$ encountered in Subclass $A_{u}$ verbs. It is unclear why it would appear in these potential 1s forms.
(88) Segmentally irregular 1s potential verb forms

| Gloss | Root | Prefix <br> Class | 1 s form | Tone |
| :---: | :---: | :---: | :---: | :---: |
| pluck it | -sikwan | $\mathrm{A}_{\mathrm{c}}$ | kusikwan | 1 |
| thresh it | -sūkwá? | $\mathrm{A}_{\mathrm{c}}$ | kusukwan? | 1 |
| massage it | -jīkwín | $\mathrm{A}_{\text {c }}$ | kujikwin | 1 |
| slap it | -jīkwán? | $\mathrm{A}_{\text {c }}$ | kujikwan? | 1 |
| swallow it | -jīkwín? | $\mathrm{A}_{\text {c }}$ | kujikwin? | 1 |
| ask for it | -jīn ${ }^{\text {y }}$ án | $\mathrm{A}_{\text {c }}$ | kujin ${ }^{\text {y }}$ an | 1 |
| whistle | -jīwí | $\mathrm{A}_{\text {c }}$ | kujiwin | 1 |
| laugh | -sītyí | $\mathrm{A}_{\text {c }}$ | kusit ${ }^{\text {y }}$ in | 1 |
| scream | -sī?yá | $\mathrm{A}_{\text {c }}$ | kusiPn ${ }^{\text {y }}$ an | 1 |
| fight | -sūún | $\mathrm{A}_{\text {c }}$ | kusuun | 1 |
| walk | -ta?an | $\mathrm{A}_{\text {c }}$ | kutà $a$ án | 9 |
| defecate | -ticho? | $\mathrm{A}_{\text {c }}$ | kutìchűn? | 9 |
| buy it | -si2ī | $\mathrm{A}_{\text {c }}$ | kusìiı̂n | 9 |
| throw it away | -skwaān' | $\mathrm{A}_{\text {c }}$ | kuskwàa̋n | 9 |
| marry | -tē?én | $\mathrm{A}_{\text {c }}$ | kutèrên | 9 |
| be born | -tiPin | $\mathrm{B}_{\mathrm{c}}$ | kutì 1 ín | 9 |
| go out | -tō?ó | $\mathrm{B}_{\text {post }}$ | kutù ${ }^{\text {unn }}$ | 9 |
| lie down off the ground | -sukwǎ | $\mathrm{B}_{\text {post }}$ | kusùkwân | 9 |
| lay down on the ground | -suti | $\mathrm{B}_{\text {post }}$ | kusùtín | 9 |
| speak | -akwi? | C2 | kùkwîn? | 9 |
| see | -tō?ō | $\mathrm{A}_{\text {c }}$ | kuna?ān | 5 |

Now that all the segmentally irregular 1s verb forms have been discussed, we can turn to solely examining the most salient tonal ablaut patterns across aspects to demonstrate that the 3s aspect tonal ablaut pattern is crucial in predicting the 1 s tone. In Table 5.15 , the table headings $\mathbf{C}$, Pr, $\mathbf{P}$ stand for Completive, Progressive, and Potential aspects. The data presented should be read as follows:

For verbs with 3 s tonal pattern $\alpha$ across aspects, all forms belonging to Subclass C2 present a 11119 tonal ablaut pattern for 1 s . Verbs belonging to prefix classes A and B, may present a: $1121 ; 199$; or a 999 tonal ablaut pattern for 1 s .

For verbs with 3 s tonal pattern $\beta$ across aspects, all forms present a 555 tonal ablaut pattern for 1 s . All forms with this 1 s tonal ablaut pattern belong to prefix Class B.

Verbs with 3s tonal pattern $\gamma$ across aspects, present a 999 or a 12 129 tonal ablaut pattern. Prefix class is not a factor in determining which one of the two occurs on a particular verb.

Verbs with 3s tonal pattern $\delta$ across aspects, present a 999 or a 44 4 tonal ablaut pattern. Prefix class is not a factor in determining which one of the two occurs on a particular verb.

For verbs with 3 s tonal pattern $\epsilon$ across aspects, all forms present a 5 55 or a 999 tonal ablaut pattern for 1 s . All forms with this 1 s tonal ablaut pattern belong to prefix Subclass A2.

For verbs with 3 s tonal pattern $\zeta$ across aspects, Subclass $A_{u}$ and Subclass $A_{c}$ forms present a 555 , and some Subclass $A_{u}$ forms only present a 999 tonal ablaut pattern for 1 s .

For verbs with 3s tonal pattern $\eta$ across aspects, all forms present a 999 tonal ablaut pattern for 1 s . All forms with this 1 s tonal ablaut pattern belong to prefix Subclass A2.

Verbs with 3 s tonal pattern $\theta$ across aspects, present a 151 pattern for Subclass $A_{u}$ and $A_{c}$ forms, or a 555 pattern for some $A_{u}$ forms only. All Class B forms show a 999 tonal ablaut pattern for 1 s .

For verbs with 3 s tonal pattern $\kappa$ across aspects, all forms present a 999 tonal ablaut pattern for 1 s . Almost all forms with 3 s tonal ablaut pattern $\kappa$ belong to prefix Class A and in particular Subclass A2.

For verbs with 3s tonal pattern $\lambda$ across aspects, all forms present a 999 tonal ablaut pattern for 1s. All forms with this 1 s tonal ablaut pattern belong to prefix Subclass $A_{u}$.

For verbs with 3 s tonal pattern $\mu$ across aspects, all forms present a 101010 tonal ablaut pattern for 1 s . All forms with this 1 s tonal ablaut pattern belong to prefix Subclass A2.

For verbs with 3 s tonal pattern $\nu$ across aspects, all forms present a 1 121 tonal ablaut pattern for 1 s . All forms with this 1 s tonal ablaut pattern belong to prefix Subclass C2.

For verbs with 3s tonal pattern $\xi$ across aspects, all forms present a 999 tonal ablaut pattern for 1 s . All forms with 1 s tonal ablaut pattern belong to prefix Subclass A2.

Table 5.15 shows that by considering the 3s tonal ablaut patterns across aspects, the prediction for 1 s tonal ablaut is narrowed down to a few options. For some 3s patterns, the prefix Class actually predicts exactly which 1 s tonal ablaut pattern a form occurs with. This is an important

| Ablaut | C | Pr | P | C | Pr | P |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pattern | 3s | 3s | 3s | 1s | 1s | 1s | Prefix Class |
| $\alpha$ | 1 | 12 | 1 | 11 | 11 | 9 | C2 |
|  |  |  |  | 1 | 12 | 1 | A |
|  |  |  |  | 1 | 9 | 9 | A, B |
|  |  |  |  | 9 | 9 | 9 | A, B |
| $\beta$ | 3 | 13 | 3 | 5 | 5 | 5 | B |
| $\gamma$ | 4 | 4 | 3 | 9 | 9 | 9 | all Classes |
|  |  |  |  | 12 | 12 | 9 | all Classes |
| $\delta$ | 4 | 4 | 4 | 9 | 9 | 9 | all Classes |
|  |  |  |  | 4 | 4 | 4 | all Classes |
| $\epsilon$ | 13 | 13 | 13 | 5 | 5 | 5 | A2 |
|  |  |  |  | 9 | 9 | 9 | A2 |
| $\zeta$ | 13 | 13 | 3 | 5 | 5 | 5 | $\mathrm{A}_{\mathrm{u}}, \mathrm{A}_{\mathrm{c}}$ |
|  |  |  |  | 9 | 9 | 9 | $\mathrm{A}_{\mathrm{u}}$ |
| $\eta$ | 11 | 11 | 11 | 9 | 9 | 9 | A2 |
| $\theta$ | 11 | 11 | 9 | 1 | 5 | 1 | $\mathrm{A}_{\mathrm{c}}, \mathrm{A}_{\mathrm{u}}$ |
|  |  |  |  | 5 | 5 | 5 | $\mathrm{A}_{\mathrm{u}}$ |
|  |  |  |  | 9 | 9 | 9 | B |
| $\kappa$ | 8 | 8 | 3 | 9 | 9 | 9 | Mainly A2, $\mathrm{A}_{\mathrm{c}}, \mathrm{A}_{u}$, a few C |
| $\lambda$ | 8 | 12 | 3 | 9 | 9 | 9 | $\mathrm{A}_{\mathrm{u}}$ |
| $\mu$ | 10 | 10 | 10 | 10 | 10 | 10 | A2 |
| $\nu$ | 10 | 12 | 3 | 1 | 12 | 1 | C2 |
| $\xi$ | 9 | 9 | 9 | 9 | 9 | 9 | A2 |

Table 5.15: 3 s and 1 s tonal ablaut patterns across aspects
discovery in Chatino studies because so far the prefix Classes and the tonal ablaut patterns have been considered independent to each other by previous studies (Campbell, 2011; Sullivant, 2011; Villard, 2009).

The examples below illustrate some of the patterns from table 5.15.



| (91) | Pattern $\theta$ : 3s (11 11 9); 1s (1 5 1) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Gloss | COMPL | Tone | PROG | Tone | HAB | POT | Tone |
|  | thresh it ( $A_{c}$ ) |  |  |  |  |  |  |  |
|  | 3s | nkasūkwá? | 11 | ntāsūkwá? | 11 | ntixùkwa̋? | xùkwa̋? | 9 |
|  | 1 s | nkasukwan? | 1 | ntāsukwān? | 5 | ntixukwan? | kusukwan? | 1 |
|  | peel it $\left(A_{u}\right)$ |  |  |  |  |  |  |  |
|  | 3s | nkatūkwín? | 11 | ntātūkwín? | 11 | ntutùkwín? | kutùkwîn? | 9 |
|  | 1 s | nkatukwin? | 1 | ntātukwīn? | 5 | ntutukwin? | kutukwin? | 1 |
|  | massage it $\left(A_{c}\right)$ |  |  |  |  |  |  |  |
|  | 3s | nkajīkwí | 11 | ntājīkwí | 11 | ntijikwí | jikwí' | 9 |
|  | 1 s | nkajikwin | 1 | ntājikwīn | 5 | ntijikwin | kujikwin | 1 |


| (92) | Pattern $\alpha$ : 3s (1 12 1); 1s (9 9 9) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Gloss | COMPL | Tone | PROG | Tone | HAB | Рот | Tone |
|  | exist ( $\mathrm{B}_{\text {post }}$ ) |  |  |  |  |  |  |  |
|  | 3s | yu?wi | 11 | ntātū?wì | 12 | ntsu?wi | chu?wi | 1 |
|  | 1s | yù?wîn | 9 | ntātù?wín | 9 | ntsù?wîn | chù?wîn | 9 |
|  | walk ( $\mathrm{A}_{\mathrm{c}}$ ) |  |  |  |  |  |  |  |
|  | 3s | nkata?an | 1 | ntātāPàn | 12 | $n t^{\text {y }}$ a ${ }^{\text {an }}$ | $\mathrm{t}^{\mathrm{y}}$ a?an | 1 |
|  | 1s | nkatà ${ }^{\text {án }}$ | 9 | ntātà?a̋n | 9 | $n t^{\text {y }}$ à ${ }^{\text {ann }}$ | kutà ${ }^{\text {án }}$ | 9 |


| (93) | Pattern $\zeta$ : 3s (1313 3); 1s (5 5 5) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Gloss | COMPL | Tone | PROG | Tone | HAB | POT | Tone |
|  | teach it $\left(A_{u}\right)$ leat |  |  |  |  |  |  |  |
|  | 3s | nkālőPờ | 13 | ntālő?ơ | 13 | ntolo?ơ | kolo?ö | 3 |
|  | 1s | nkalu?ūn | 5 | ntāluPūn | 5 | ntulurūn | kulupūn | 5 |
|  | scrape it $\left(A_{u}\right)$ |  |  |  |  |  |  |  |
|  | 3s | nkāsűwè? | 13 | ntāsû́wè? | 13 | ntusuwè? | kusuwè? | 3 |
|  | 1 s | nkasuwēn? | 5 | ntāsuwēn? | 5 | ntusuwēn? | kusuwēn? | 5 |
|  | fart $\left(A_{c}\right)$ |  |  |  |  |  |  |  |
|  | 3s | nkājíl ${ }^{\text {yà }}$ | 13 | ntājíly ${ }^{\text {a }}$ à | 13 | ntijily ${ }^{\text {a }}$ | jil ${ }^{\text {y }}$ à | 3 |
|  | 1 s | nkajil ${ }^{\text {y }}$ an | 5 | ntājil ${ }^{\text {y }}$ ān | 5 | $n t i j i l^{\text {y }}$ a | $j i^{\text {y }}$ ān | 5 |
|  | lick it $\left(A_{c}\right)$ |  |  |  |  |  |  |  |
|  | 3s | nkāle̋rè | 13 | ntāle̋Rè | 13 | ntil ${ }^{\text {y }}$ e?è | $1^{\mathrm{y}}$ e?è | 3 |
|  | 1s | nkale?ēn | 5 | ntāle?ēn | 5 | ntily ${ }^{\text {y }}$ e?ēn | $1^{\text {y }}$ e?ēn | 5 |



| Pattern $\epsilon$ : 3s (13 13 13); 1s (5 5 5) |  |  |
| :---: | :---: | :---: |
| Gloss | COMPL | Tone |
| sew it (A2) |  |  |
| 3s | nkwīxíkwàn | 13 |
| 1s | nkwixikwān | 5 |
| untie it (A2) |  |  |
| 3s | nkwīxa̋tìn? | 13 |
| 1s | nkwixatīn? | 5 |
| move it (A2) |  |  |
| 3s | nkwīxkiín ${ }^{\text {y }}$ àn | 13 |
| 1s | nkwixkin ${ }^{\text {y }}$ an | 5 |

(94)


### 5.4.3.3 Plural subject marking on verbs

Plural person marking generally only consists of encliticization of plural clitics on the 3 s verb form, although in some cases, it also involves a tonal change as well as encliticization.

Pronouns have independent and dependent forms. The plural dependent pronouns are derived from the independent pronouns which are unspecified for tone (tone Class 1) as shown in table 5.16:

Independent pronouns Dependent pronouns
1PLINCL nan nteē (tonal alternation), nan
1PLEX wa nte $\bar{e}$ (tonal alternation), wa
2PL nku?wan (tonal alternation), wan
3PL yukwi? ne? ne?
Table 5.16: Independent and dependent plural subject pronouns

All clitics appear to be unspecified for tone and form a separate tonal domain. As was demonstrated in chapter 4 the simplex word is the natural domain for the TS's. So phonologically, the enclitics form their own separate tonal domain, but morphologically the enclitics are still part of the simplex verb.

Because the plural clitics are unspecified for tone, their surface tonal pattern is affected by the tone of the verb stem.

As previously mentioned, the general rule for subject plural marking on verbs is that all the plural forms are based on the tone of 3s stem with an appended subject pronoun enclitic. However, some Tone Classes cannot
be bases for 1Plincl, 1PLEX, and 2pl, and those are: Tone Class 1, 5, 9, 11, and 12 .

As a result, if the 3 s stem tone is Tone Class 11,12 or 9 , then the 1PLIN, 1PLEX, and 2Pl plural forms are based on 2s stem tone, and the 3PL form is based on 3s stem tone.

If the 3 s stem tone is Tone Class 1 , then the 1plin, 1plex, and 2pl plural forms are formed with a Tone Class 5 stem, and the 3PL form is based on 3s stem tone.

Table 5.17 was already introduced in $\S 5.2$ but is presented here again for clarity and convenience. It presents an example of a complete verbal paradigm for the verb -u-lukwǎ 'to sweep it', Tone Class 8 (/LH/). For the completive, habitual and potential paradigms, the general plural marking rule applies: the plural forms are based on the tone of the 3s stem followed by the plural clitics. For the progressive paradigm, the 3 s bears Tone Class 11 which marks 1plin, 1PLEX, and 2Pl based on the tone of 2 s stem which in this case is Tone Class 11 (and actually happens to be irregular and the same as 3 s ).

Table 5.18 illustrates the plural marking rules on verbs presenting examples of 3s stems occurring with different Tone Classes.

1s
2s
3s
1PLINCL
1PLEX
2PL
3PL

COMPL
nkalùkwân nkalūkwá nkalukwă nkalukwǎ nan nkalukwǎ wa nkalukwă wan nkalukwă ne? ntālūkwá ne?

HAB ntulùkwấn ntulùkwā ntulukwă kulukwă ntulukwă nan kulukwă nan ntulukwă wa kulukwă wa ntulukwă wan kulukwă wan ntulukwă ne? kulukwà ne?

Table 5.17: Example of a complete verbal paradigm for $u$-lukwǎ 'sweep it'
2PL STEM
$\underbrace{1}_{i}$ 3PL STEM 2S STEM 2PL STEM 2PL STEM
 Table 5.18: Subject plural marking on verbs

| Gloss | ASP | 3s FORM |
| :---: | :---: | :---: |
| eat it | COMPL | nkayako |
| speak | COMPL | nkayakwi? |
| grab it | COMPL | nkasin ${ }^{\text {y }}$ |
| poke it | COMPL | nkayojo? |
| wait for it | COMPL | nkiwita |
| sweep it | POT | kulukwà |
| transport it | POT | kuteèn |
| pull it up | COMPL | kosoò |
| heat it up | COMPL | nkwătsùn |
| remove | COMPL | nkālőò |
| spray it | COMP | nkāsa̋nè |
| move it | COMPL | kwīxki̋n ${ }^{\text {y }}$ |
| sell it | COMPL | nkayujwi? |
| buy it | COMPL | nkasi2i |
| be | COMPL | kwa |
| ask for it | HAB | ntijìn ${ }^{\text {a án }}$ |
| turn around | COMPL | nkutil ${ }^{\text {y }}$ O |
| ask for it | COMPL | nkajīn ${ }^{\text {ª }}$ n |
| sweep | COMPL | kalukwǎ |
| receive it | PROG | ntāsīn ${ }^{\text {y }}$ |

### 5.5 Conclusion

This chapter has shown that the complexity of the ZAC inflectional system emerges from many factors.

At the segmental level, determining a verb's prefix Class is partly based on which aspectual allomorph a verb takes in the 3 s completive aspect. Based on this knowledge, to which of the 9 prefix Classes a verb belongs, gets narrowed down to only one option if it takes the completive aspect morpheme nkwi- or nkay-, to two options, it takes nka-, and to five options if it takes nku-. In order to narrow the choice further, one has to consider the phonological shape of the stem, as well as its valency and semantic characteristics. Furthermore, the constraint on vowel hiatus at the prefix-stem boundary adds some level of abstraction by obscuring the underlying segmental shape of the stem.

At the tonal level, complexities arises at various levels also: phonologically, how the Tone Classes made of TS's are associated to moras in stems with different moraic shapes, and how the progressive prefix bearing a mid tone gets combined to the stem's inherent tonal pattern and produces a composed TS. Inflectionally, the tonal pattern for aspectual inflection is generally independent from the segmental layer (prefix Classes). The irregularities encountered in the progressive forms creates even more conjugation subClasses within the major tonal conjugation Classes.

Data in this chapter demonstrated that the aspectual tonal paradigm
of a verb may be narrowed down to a few possible patterns by considering the 3 s completive form as the base form to derive tonal ablaut across aspects. Furthermore, 3s and 2s tonal ablaut for person marking can be quite accurately predicted by considering the 3 s as the base for deriving the 2 s tonal pattern. However, it was shown that this relationship did not hold for predicting the corresponding 1s. Indeed, a more accurate way of predicting the 1 s tonal pattern of a verb form can be achieved by considering the 3 s tonal ablaut pattern across aspects, and in this case, the prefix Class and the 1s tonal patterns have shown to present some relationship to each other.

Although a tonal/segmental paradigm for a particular verb is not fully predictable, this chapter has demonstrated that the possibilities can be narrowed down in many cases. For example, a verb always shows the same tonal pattern in the habitual and the potential aspect. If a verb occurs with Tone Class 1 in the completive aspect, it will occur with Tone Class 12 in the progressive aspect and Tone Class 1 in the potential and habitual aspects. If a verb occurs with Tone Class 9 in the completive aspect, it occurs with the same Tone Class across aspects. if a verb occurs with Tone Class 11 in the completive it most likely occurs with Tone Class 11 in the progressive aspect, and Tone Class 9 in the potential and habitual aspects.

There are many more similar observations that can be made regarding the conjugation patterns in the language, which tend to lessen the prima facie overwhelming complexity of the system. One could assume that native speakers group verbs according to these general restrictions, but also
memorize a great number of forms.
Table 5.19 presents the same type of data shown in tables 5.10 and 5.12, but this time compares the most salient tonal ablaut patterns for person marking on verbs with the tonal ablaut patterns for inalienable nouns and predicative adjectives. 1 s tone pattern is omitted for verbs as it is is not predictable from 3 s form. the triple dash (---) means that the syntactic category in question does not occur with that particular Tone Class.

This table demonstrates that if we consider the tonal ablaut patterns for all three syntactic categories only from $3 s$ to 2 s, they are are almost always match each other. For example, a $3 s$ verb, inalienable noun or predicative adjective occurring with Tone Class 4 or Tone Class 8 all mark 2s with Tone Class 11. A 3s verb, inalienable noun or predicative adjective occurring with Tone Class 9 or Tone Class 11 all mark 2s with Tone Class 10.

|  | $3 s$ | $2 s$ | $1 s$ |
| :--- | :---: | :---: | :---: |
| V | 1 | 6 |  |
| I N | 1 | 6 | 1 |
| P A | 1 | 5 | 1 |
|  |  |  |  |
| V | --- | --- | -- |
| I N | 2 | 6 | 5 |
| P A | 2 | 5 | 5 |
|  |  |  |  |
| V | 4 | 11 |  |
| I N | 4 | 11 | 9 |
| P A | 4 | 11 | 4 |
|  |  |  |  |
| V | 8 | 11 |  |
| I N | 8 | 11 | 9 |
| P A | 8 | 11 | 8 |
|  |  |  |  |
| V | 9 | 10 |  |
| I N | --- | --- | -- |
| P A | 9 | 10 | 9 |
|  |  |  |  |
| V | 10 | 12 |  |
| I N | 10 | 12 | 5 |
| P A | 10 | 12 | 10 |
| V | 11 | 10 |  |
| I N | 11 | 10 | 1 |
| P A | 11 | 10 | 11 |
| V | 12 | 12 |  |
| I N | --- | --- | -- |
| P A | 12 | 12 | 12 |

Table 5.19: Verbal, nominal and adjectival tonal ablaut patterns for person marking

## Chapter 6

## The numerical system: an extended demonstration of tone in phrasal lexemes

The goal of this chapter is two-fold: first, document and preserve an ancient numerical system on the verge of disappearing as it has fallen out of use, and has been replaced by the Spanish numerical system instead; second, extend the demonstration of the tonal system to phrasal lexemes. The numerical system demonstrates compounding process and the formation of phrasal lexemes. Moreover, it further illustrates the sandhi system, but it also shows unexpected changes in tone and tone sandhi.

Like many other numerical systems in Mesoamerica, ZAC's system is vigesimal, i.e. based on the number 20. In fact, vigesimal is one of the features that define the Mesoamerican linguistic area (Campbell et al., 1986). Other numbers such as 10,15 and 40 are secondary bases as they can be added to the numbers 1-9 or to number 20 to form higher numbers.

The first 10 numbers are monomorphemic and unspecified for tone. Higher numbers may be monomorphemic, and include 15, 20 and 40 only. All others are complex forms, compounds or phrases. As just mentioned, the compounds or the numerical phrases do not always follow the tonal sandhi
rules existing across words in the language (as described in chapter 4), and these particular word formation processes often result in idiosyncratic tonal patterns.

The number system is not used very much by speakers anymore and has been replaced by the Spanish system. So when a speaker needs to count or utter a number (especially one above 15), they would usually code-switch to Spanish.

In this chapter the columns labelled 'Tone pronunciation' are pronunciation guides for tone where the diacritics illustrate the surface tonal patterns. There, the grave accent represents a surface low pitch, the acute accent represents a surface high pitch, the macron represents a surface mid pitch, the caret represents a surface low high pitch contour, and finally, the double acute accent represents a surface low super high pich contour. The phonemic tones are marked directly on the example words.

### 6.1 Numbers 1 to 10

All numbers from 1 to 10 are unspecified for tone in ZAC, so their default pitch level is low.

| Number | Tone pronunciation | Gloss |
| :--- | :--- | :--- |
| tsaka | tsàkà | 1 |
| tukwa | tùkwà | 2 |
| tsuna | tsùnà | 3 |
| jakwa | jàkwà | 4 |
| ka?yo | kàPyò | 5 |
| sukwa | sùkwà | 6 |
| kati | kàtì | 7 |
| sunu? | sùnù? | 8 |
| kaa | kàà | 9 |
| tii | tì | 10 |

### 6.2 Numbers 11-30

Numbers 11 to 14 are formed by combining the word tii 'ten' and the numbers 1 to 4 respectively. This compounding process results in three phonological changes: vowel syncope in first element of compound, laminalization of onset consonant of second element along with a tonal change. The vowel syncope in the form for number 10 tii results from the phonological restriction on long vowels in the language which only allows them word finally (§1.6). The laminalization of onset consonants in the forms for numbers 1 to 4 is explained by Campbell, E. and E. Cruz (2009) as resulting from the historic presence of a morpheme between the word tii and the numbers (1-4) (reconstructed as *li for Zenzontepec Chatino). The latter is still present in ZAC only in tijly $\bar{a} k w \bar{a}$ 'fourteen'. The exact meaning or the tone of this morpheme *li was not reconstructed by Campbell, E. and E. Cruz (2009). Its tone is also unclear for ZAC as it seems to affect the forms for numbers 1 to 4 differently: tsaka and jakwa (unspecified for tone) become
chāk $\bar{a}$ and $j^{j} \bar{y} \bar{a} k w \bar{a}$ respectively, and tukwa and tsuna (also unspecified for tone) become $t^{y} u ̀ k w a ́$ and chùná. It is worth noting that these two numbers (2 and 3 ) had a high tone in the first syllable in proto-Chatino which was an unusual tonal pattern in the language (Campbell \& Woodbury, 2010). So the forms for number 2 and 3 found in the numbers 12 and 13 in ZAC could be reflexes of those historic forms.

Number $15 t i 2 n^{y}$ un could be quickly analyzed as being a compound involving the number 10 tii and the number 5 ka?yo except that tiPn un shows nasalization in its last mora which is lacking in the number 5 ka?yo. For that reason, Campbell, E. and E. Cruz (2009) analyze it as monomorphemic. 15 serves as a base for the formation of numbers 16 to 19. tiPn ${ }^{y} u n$ is unspecified for tone in ZAC, and Campbell, E. and E. Cruz (2009) reconstruct the number 15 in proto-Chatino as toneless also.

Number 20 kalä (Tone Class $3(/ \mathrm{L}(\mathrm{L}) /$ ) is also monomorphemic, and serves as a base to form numbers 21 to 39. Campbell, E. and E. Cruz (2009) reconstruct the number 20 in proto-Chatino as toneless.

Starting at 21, the predicate ntukwă combines the numerical elements to form subsequent numbers. ntukwà is a stative form of the positional verb sit.

If we consider the tone pronunciation for the word ntukwà in numbers 21-29, we can see that its surface tonal pattern changes from [ntùkwà] to [ntūkwā] after kală. The latter is a regular sandhi pattern between two Tone Class 3 words (see figure 4.36). But when we observe the tonal pat-
terns for the forms for numbers 1 through 9 following the word ntukwă in numbers 21 through 29, the surface tonal patterns vary. The forms for the numbers 1,4 and 8 in numbers 21,24 and 28 present a [M-L] surface pattern which obeys regular sandhi rules between a/L (L)/ word and a unspecified word (see figure 4.36). Whereas, the forms for the numbers 2,3 , 6,7 and 9 in 22, 23, 26, 27 and 29 show a [L-S] surface pattern. The forms tùkwä and tsùná in the numbers 21 and 23 occur with the same tonal pattern as the laminalized forms in numbers 12 and 13 whose tone is affected by the historic *li morpheme. Possibly, the forms for 6, 7 and 9 in numbers 26, 27 and 29 show the same tonal pattern as 21 and 23 by analogy.

Another notable tonal change is found in the form for 5 in number 25. It changes from ka?yo (Tone Class 1, unspecified for tone) to nka?yò" (Tone Class $2 /(\mathrm{L}(\mathrm{LS}) /$ ). This nasalized form of the number 5 is only found as part of a complex number. It never occurs in isolation. Its tone is unusual because Tone Class 2 usually only occurs in nouns in the language.

A couple of phonological changes occur in the number 10 tii when it is combined to number 20 to form number 30. tii changes to $t^{y}$ 'il so it suffers a laminalization of its onset consonant along with a change of Tone Class 1 to Tone Class 9 (/L-LS/). This laminalization of /t/ in 30 is similar to the laminalization process occurring in numbers $11,12,13$ and 14 which results from the historic presence of the vowel /i/from morpheme *li between the form for 10 and forms for $1,2,3$ and 4 . To explain the laminalization of $/ \mathrm{t}$ / in 30 , one would also have to posit the presence of this morpheme
historically in between the form for 20 and 10 for number 30 and above.

| Number | Tone pronunciation | Gloss | Base |
| :---: | :---: | :---: | :---: |
| tichākā | tìchākā | 11 | $10(+1)$ |
| tit ${ }^{\text {y }}$ ùkwa̋ | tìt ${ }^{\text {y }}$ ùkwa̋ | 12 | $10(+2)$ |
| tichùna̋ | tìchùna̋ | 13 | $10(+3)$ |
| tijly ${ }^{\text {a }}$ kwā | tìjly ${ }^{\text {ankwā }}$ | 14 | $10(+4)$ |
| tiPn ${ }^{\text {y }}$ un | tì?n ${ }^{\text {y }}$ ùn | 15 | 15 |
| tiPn ${ }^{\text {y }}$ un chākā | tì?n ${ }^{\text {y }}$ ùn chākā | 16 | $15(+1)$ |
| tion ${ }^{\text {y }}$ un $t^{\text {y }}$ ùkwa̋ | tìnn ${ }^{\text {y }}$ un $t^{\text {y }}$ ùkwa̋ | 17 | $15(+2)$ |
| tiPn ${ }^{\text {y }}$ un chùna̋ | tì?n ${ }^{\text {y }}$ ùn chùna̋ | 18 | $15(+3)$ |
| ti?n ${ }^{\text {y }}$ un j1 ${ }^{\text {y }}$ akwā | tì?n ${ }^{\text {y }}$ un jlyākwā | 19 | $15(+4)$ |
| kalà | [kàlà] | 20 | 20 |
| kalà ntukwà tsākà | kàlà ntūkwā tsākà | 21 | $20(+1)$ |
| kalà ntukwà tùkwa̋ | kàlà ntūkwā tùkwa̋ | 22 | $20(+2)$ |
| kalà ntukwà tsùna̋ | kàlà ntūkwā tsùna̋ | 23 | $20(+3)$ |
| kalà ntukwà jākwà | kàlà ntūkwā jākwà | 24 | $20(+4)$ |
| kalà nka?yǒ" | kàlà nkā?yō | 25 | $20(+5)$ |
| kalà ntukwà sùkwa̋ | kàlà ntūkwā sùkwa̋ | 26 | $20(+6)$ |
| kalà ntukwà kàtí | kàlà ntūkwā kàtí | 27 | $20(+7)$ |
| kalà ntukwà sūnù? | kàlà ntūkwā sūnù? | 28 | $20(+8)$ |
| kalà ntukwà káa̋ | kàlà ntūkwā káá | 29 | $20(+9)$ |
| kalà ty ${ }^{\text {y }}$ İ | kàlà $\mathrm{t}^{\mathrm{y}}$ iol | 30 | $20(+10)$ |

### 6.3 Numbers 31-40

Numbers 31 through 39 are formed by adding the base 20 to 10 and then adding the numbers 1 to 9 . The form for 15 in 35 changes from $t i n^{y} u n$ to ntiPn ${ }^{y}$ ùn", just like the word for 5 changed from kayo to nkaryò" in 25, where both nasalized versions change from being unspecified for tone (Tone Class 1) to Tone Class 2 (/L (LS)/).

The number 40 is monomorphemic and unspecified for tone. It is another secondary base (along with 10 and 15 in the system) as the numbers from 41-60 are formed by adding 40 to numbers 1 to 10 .

Different speakers may form numbers above 35 differently. Some use the number 15 as a secondary base added to base 20 for numbers 36-39 and others use the secondary base 10 added to base 20 to form those numbers.

| Number | Tone pronunciation | Gloss | Base |
| :---: | :---: | :---: | :---: |
| kală ty ${ }^{\text {y }}$ ií ntukwà tsākà | kàlà tyyî́ ntűkwà tsākà | 31 | $20(+10)(+1)$ |
| kală ty ${ }^{\text {y irin }}$ ntukwà tùkwa̋ | kàlà tyîin ntűkwà tùkwa̋ | 32 | $20(+10)(+2)$ |
| kalà tyiî ntukwă tsùna̋ | kàlà tyiî ntûkwà tsùna̋ | 33 | $20(+10)(+3)$ |
| kală tyî̀ ntukwầ jākwà | kàlà tyî̃ ntűkwà jākwà | 34 | $20(+10)(+4)$ |
| kalà ntipn ${ }^{\text {y }}$ unń | kàlà ntī?n ${ }^{\text {y }}$ un | 35 | $20(+15)$ |
| kală nti?ny ${ }^{\text {y }}$ ñ́n ntukwà tsākà | kàlà ntī?n ${ }^{\text {y }}$ un ntűkwà tsākà | 36 | $20(+15)(+1)$ |
| kalà nti?n ${ }^{\text {y }}$ ùń" ntukwà tùkwa̋ | kàlà ntī?n ${ }^{\text {y }}$ un ntűkwà tùkwa̋ | 37 | $20(+15)(+2)$ |
| kalà nti?ny ${ }^{\text {ann }}$ ntukwà tsùna̋ | kàlà ntī?n ${ }^{\text {y }}$ un ntúkwà tsùna̋ | 38 | $20(+15)(+3)$ |
| kalà nti?n ${ }^{\text {y }}$ uní ntukwà jākwà | kàlà ntī?n ${ }^{\mathrm{y}} \mathrm{u}^{\text {n }}$ ntûkwà jākwà | 39 | $20(+15)(+4)$ |
| OR |  |  |  |
| kală $\mathrm{t}^{\text {y }}$ îir ntukwà sùkwa̋ | kàlà tyî̃ ntûkwà sùkwa̋ | 36 | $20(+10)(+6)$ |
| kală ty'ī ntukwà kàtí | kàlà tyiil ntûkwà kàtí | 37 | $20(+10)(+7)$ |
| kală tyyil̃ ntukwă sūnù? | kàlà tyiỉ ntưkwà sūnù? | 38 | $20(+10)(+8)$ |
| kală ty'îl ntukwà káa̋ | kàlà tyîin ntûkwà káá | 39 | $20(+10)(+9)$ |
| tu?wa | tù?wà | 40 | 40 |

### 6.4 Numbers from 41-60

The numbers 41 through 50 are formed by adding the numbers 1 to 10 to the base 40 , and then numbers 51 to 59 are formed by adding the base 40 to 10 and then adding numbers 1 to 9 . Number 60 is a phrase which literally means 3 twenties ( 3 veintenas in Spa.). yalǎ 'one set of twenty' may be a derived from kală' 'twenty' but their relationship is not transparent in synchronic terms (Campbell, E. \& E. Cruz, 2009).

The same phonological changes described in previous numbers occur in numbers 41 to 60 .

Again, different speakers may form numbers above 45 differently. Some use the number 15 as a secondary base added to base 40 for numbers 46-49, and others use the secondary base 10 added to base 40 to form those numbers.

| Number | Tone pronunciation | Gloss | Base |
| :---: | :---: | :---: | :---: |
| tuPwa ntukwà tsākà | tù?wà ntùkwà tsākà | 41 | $40(+1)$ |
| tu?wa ntukwà tùkwa̋ | tù?wà ntùkwà tùkwa̋ | 42 | $40(+2)$ |
| tuPwa ntukwà tsùna̋ | tù?wà ntùkwà tsùna̋ | 43 | $40(+3)$ |
| tu?wa ntukwà jākwà | tù?wà ntùkwà jākwà | 44 | $40(+4)$ |
| tu?wa nka?yơ' | tù?wà nkà?yò | 45 | $40(+5)$ |
| tu?wa ntukwà sùkwa̋ | tù?wà ntùkwà sùkwa̋ | 46 | $40(+6)$ |
| tupwa ntukwà kàtí | tù?wà ntùkwà kàtí | 47 | $40(+7)$ |
| tu?wa ntukwà sūnù? | tù?wà ntùkwà sūnù? | 48 | $40(+8)$ |
| tu?wa ntukwà kàá | tù?wà ntùkwà kàá | 49 | $40(+9)$ |
| tupwa tyìl | tù?wà tyî́l | 50 | $40(+10)$ |

### 6.5 Numbers from 61-80

Starting number 61, the habitual form of predicate ntsu?wi 'live, exist' is used in the formation of subsequent higher numbers. All speakers start using ntsu?wi starting at number 60, but its usage versus the other predicate $n t u k w a ̆$ varies per speaker. Some may opt for always using ntsu?wi as the first predicate in the numerical phrase, or some may mix both ntukwă and ntsu?wi, or others may use the latter for both predicates in all numbers after 60. The lack of use may be the reason why there is so much variation among speakers.

In this number sequence, the interesting tonal patterns to notice are found in numbers 62,63 and 65 . The forms corresponding to 2,3 , and 5 , respectively tukwa, tsuna, ka?yo seem to be unspecified for tone because they undergo spreading from preceding final high tone in yalǎ which spreads through ntupwi and as a result they surface as [túkwá], [tsúná], [ká?yó]; while the forms for number, 1, 4, 8, and 10 do not show Spreading from preceding word.

The number 80 is a phrase which literally means 4 twenties.

| Number | Tone pronunciation | Gloss | Base |
| :---: | :---: | :---: | :---: |
| tsuna yalǎ ntukwà tsākà | [tsùnà yalǎ ntúkwà tsākà] | 61 | $20+20+20(+$ |
| OR |  |  |  |
| tsuna yalǎ ntsu?wi tsākà | tsùnà yàlǎ ntsú?wí tsākà | 61 | $20+20+20(+1)$ |
| tsuna yalǎ ntsu?wi tukwa | tsùnà yàlǎ ntsú?wí túkwá | 62 | $20+20+20(+2)$ |
| tsuna yalǎ ntsu?wi tsuna | tsùnà yàlǎ ntsú?wí tsúná | 63 | $20+20+20(+3)$ |
| tsuna yalǎ ntsu?wi jā?wà | tsùnà yàlǎ ntsú?wí jā?wà | 64 | $20+20+20(+4)$ |
| tsuna yalǎ ntsu?wi ka?yo | tsùnà yàlǎ ntsú?wí ká?yó | 65 | $20+20+20(+5)$ |
| tsuna yalǎ ntukwà sùkwa̋ | tsùnà yàlǎ ntúkwà sùkwa̋ | 66 | $20+20+20(+6)$ |
| tsuna yalǎ ntukwà kàtí | tsùnà yàlǎ ntúkwà kàtí | 67 | $20+20+20(+7)$ |
| tsuna yalǎ ntukwà sūnù? | tsùnà yàlǎ ntúkwà sūnù? | 68 | $20+20+20(+8)$ |
| OR |  |  |  |
| tsuna yalǎ ntsu?wi sūnù? | tsùnà yàlǎ ntsú?wí sūnù? | 68 | $20+20+20(+8)$ |
| tsuna yalǎ ntukwà kàa̋ | tsùnà yàlǎ ntúkwà kàa̋ | 69 | $20+20+20(+9)$ |
| tsuna yalǎ ntsu?wi tió | tsùnà yàlǎ ntsú?wí tió | 70 | $20+20+20(+10)$ |

Number

| umber | Tone pronunciation | Gloss | as |
| :---: | :---: | :---: | :---: |
| tsuna yalǎ ntsu?wi tiol ntukwà tsākà | tsùnà yàlǎ ntsú?wí tiol ntứkwà tsākà | 71 | $20+20+20(+10)(+1)$ |
| tsuna yalǎ ntsu?wi tî̀ ntukwà tùkwa̋ | tsùnà yàlǎ ntsú?wí tiol ntúkwà tùkwa̋ | 72 | $20+20+20(+10)(+2)$ |
| tsuna yalǎ ntsu?wi tî̀ ntukwà tsùna̋ | tsùnà yàlǎ ntsú?wí tiô ntúkwà tsùna̋ | 73 | $20+20+20(+10)(+3)$ |
| tsuna yalǎ ntsu?wi tî̀ ntukwà jā?wà | tsùnà yàlǎ ntsú?wí tiô ntúkwà jā?wà | 74 | $20+20+20(+10)(+4)$ |
| tsuna yalǎ ntsu?wi tî̀ ntsu?wi ka?yo | tsùnà yàlǎ ntsú?wí tiô ntsű?wí ka̋?yő | 75 | $20+20+20(+10)(+5)$ |
| tsuna yalǎ ntsu?wi tî̀ ntukwà sùkwa̋ | tsùnà yàlǎ ntsú?wí tiô ntúkwà sùkwa̋ | 76 | $20+20+20(+10)(+6)$ |
| tsuna yalǎ ntsu?wi tî̆ ntukwà kàtí | tsùnà yàlǎ ntsú?wí tîi ntűkwà kàtí | 77 | $20+20+20(+10)(+7)$ |
| tsuna yalǎ ntsu?wi tî̀ ntukwà sūnù? | tsùnà yàlǎ ntsú?wí tiô ntúkwà sūnù? | 78 | $20+20+20(+10)(+8)$ |
| tsuna yalǎ ntsu?wi tì? ntukwà kàá | tsùnà yàlǎ ntsú?wí tiô ntúkwà kàa̋ | 79 | $20+20+20(+10)(+9)$ |
| jakwa yalǎ | jàkwà yàlǎ | 80 | $20+20+20+20$ |

### 6.6 Numbers from 81-100

The numbers 81 to 89 are formed by adding 4 'set of twenty' to numbers 1 to 9 . Numbers 90 to 99 are formed by adding 4 'set of twenty' to 10 and then adding numbers 1 to 9. Again, the use of ntukwà versus ntsu?wi varies according to speaker.

Number 100 is a Spanish borrowing syèntō". The chatino number system is virtually endless as all numbers above 100 would be formed using the same system as the one described in this chapter. So 121 is tsaka syèntō " ntukwă kală ntukwă tsākà, and 500 is kaPyo syèntō". The number 1000 is also a Spanish borrowing miü", and 4000 is jakwa miü".
Number

| mber | Tone pronunciation | Gloss | Base |
| :---: | :---: | :---: | :---: |
| jakwa yalǎ ntukwà tsākà | jàkwà yàlǎ ntúkwà tsākà | 81 | 20 |
| jakwa yalǎ ntukwà tùkwa̋ | jàkwà yàlǎ ntúkwà tùkwa̋ | 82 |  |
| jakwa yalǎ ntukwà tsùna̋ | jàkwà yàlǎ ntúkwà tsùna̋ | 83 |  |
| jakwa yalǎ ntsu?wi jākwà | jàkwà yàlǎ ntsúpwí jākwà | 84 |  |
| jakwa yalǎ ntsu?wi ka?yo | jàkwà yàlǎ ntsú?wí ká?yó | 85 |  |
| jakwa yalǎ ntsu?wi sukwa | jàkwà yàlǎ ntsú?wí súkwá | 86 |  |
| jakwa yalǎ ntsu?wi kati | jàkwà yàlǎ ntsú?wí kátí | 87 |  |
| jakwa yalǎ ntsu?wi sūnù? | jàkwà yàlǎ ntsú?wí sūnù? | 88 |  |
| jakwa yalǎ ntsu?wi káa̋ | jàkwà yàlǎ ntsú?wí káa̋ | 89 |  |
| jakwa yalǎ ntsu?wi tiò | jàkwà yàlǎ ntsú?wí tiol | 90 | 20 |


| Number | Tone pronunciation | Gloss | Base |
| :---: | :---: | :---: | :---: |
| jakwa yalǎ ntsu?wi tiî ntukwầ tsākà | tsùnà yàlă ntsú?wí tiĭ ntứkwà tsākà | 91 | $20+20+20+20(+10)(+1)$ |
| jakwa yalǎ ntsu?wi tiil ntukwà tùkwa̋ | tsùnà yàlǎ ntsú?wí tiĭ ntűkwà tùkwa̋ | 92 | $20+20+20+20(+10)(+2)$ |
| jakwa yalǎ ntsu?wi tiil ntukwà tsùna̋ | tsùnà yàlǎ ntsú?wí tiî ntúkwà tsùna̋ | 93 | $20+20+20+20(+10)(+3)$ |
| jakwa yalǎ ntsu?wi tîl ntukwà jākwà | tsùnà yàlǎ ntsú?wí tiĭ ntűkwà jākwà | 94 | $20+20+20+20(+10)(+4)$ |
| jakwa yalǎ ntsu?wi tîl ntsu?wi ka?yo | tsùnà yàlǎ ntsú?wí tiô ntsû?wí ka̋?yő | 95 | $20+20+20+20(+10)(+5)$ |
| jakwa yalǎ ntsu?wi tîl ntukwà sùkwâ | tsùnà yàlǎ ntsú?wí tiî ntűkwà sùkwa̋ | 96 | $20+20+20+20(+10)(+6)$ |
| jakwa yalǎ ntsu?wi tiî ntukwà kàtí | tsùnà yàlă ntsúpwí tiî ntûkwà kàtí | 97 | $20+20+20+20(+10)(+7)$ |
| jakwa yalǎ ntsu?wi tiri ntukwà sūnù? | tsùnà yàlǎ ntsú?wí tiĭ ntúkwà sūnù? | 98 | $20+20+20+20(+10)(+8)$ |
| jakwa yalǎ ntsu?wi tiĭ ntukwă kàả | tsùnà yàlă ntsú?wí tiỉ ntúkwà kàă | 99 | $20+20+20+20(+10)(+9)$ |
| tsaka syèntơ' | tsàkà syèntơ' | 100 |  |

### 6.7 Conclusion

The data in this chapter has shown that various numerical phrases present some idiosyncratic tonal patterns that do not fit into the general sandhi rules of the language as described in chapter 4.

The numbers that seem to present the most variety in tonal patterns are the first 10 numbers. In isolation, they belong to Tone Class 1 (unspecified for tone), but when they are part of numerical phrases, their surface pattern vary:

The forms for the numbers 1, 4 and 8 in numbers 21,24 and 28 present a [M-L] surface pattern which obeys the regular sandhi rules between a Tone Class 3 word (/L (L)/) kalä 'twenty' and a Tone Class 1 word (unspecified for tone) (see figure 4.36).

However, the forms for the numbers 2, 3, 6, 7 and 9 in 22, 23, 26, 27 and 29 show a [L-S] surface pattern following the word ntukwà (which belongs to Tone Class 3 (/L (L)/, just like the word kală 'twenty') instead of the expected [M-L].

Another notable tonal change is found in the form for 5 in number 25. It changes from ka?yo (Tone Class 1, unspecified for tone) to nka?yò" (Tone Class 2 /(L (LS)/). This nasalized form of the number 5 is only found as part of a complex number. It never occurs in isolation. Its tone is unusual because Tone Class 2 usually only occurs in nouns in the language.

The number 10 tii (Tone Class 1, unspecified for tone) when it is
combined to number 20 to form number 30 changes to Tone Class 9 (/LLS/) instead of showing an [M-L] tonal pattern as expected between a word belonging to Tone Class 3 (/L (L)/ followed by a word belonging to Tone Class 1.

Precisely because of these idiosyncratic patterns, it is important to document and record this system, as unfortunately it is on the verge of disappearing. Numerical systems in general are of interest for typological studies because they often reveal ancient processes in the language in question which may shed light on synchronic phenomena.

## Appendix

## Appendix 1

## Abbreviations

Here is an alphabetically sorted list of the abbreviations used in this dissertation.

| 3 | third-person |
| :--- | :--- |
| 1PLEX | first person plural exclusive |
| 1PLINCL | first-person plural inclusive |
| 1s | first-person singular |
| 2PL | second-person plural |
| 2s | second-person singular |
| 3PL | third-person plural |
| ASP | aspect |
| CAUS | causative |
| COMPL | Completive Aspect |
| DEM | demonstrative |
| DAT | demonstrative |
| HAB | Habitual Aspect |
| LAM | Laminalization |
| POT | Potential Aspect |
| PL | plural |
| POT | Potential Aspect |
| PROG | Progressive Aspect |
| S | singular |
| SUBJ | subject |
| TBU | Tonal Bearing Unit |
| TS | Tonal Sequence |
| ZAC | San Marcos Zacatepec Eastern Chatino |

## References

AILLA. (n.d.). Retrieved 04/01/2015, from http://www.ailla.utexas . org

Beam de Azcona, R. (2004). A Coatlán-Loxicha Zapotec Grammar. Unpublished doctoral dissertation, UC Berkeley, Berkeley, CA.

Berthiaume, S. (2012). A Phonological Grammar of Northern Pame (Vol. SIL e-Books 37). SIL international, Dallas Texas.

Boas, F. (1913). Notes on The Chatino Language. American Anthropologist N.S., 15, 78-86.

Brown, P. (2010). Questions and their responses in Tzeltal. Journal of Pragmatics, 42, 2627-2648.

Brown, P., Sicoli, M. A., \& LeGuen, O. (2010). Cross-speaker repetition in Tzeltal, Yucatec, and Zapotec conversation. Paper presented at ICCA 10: International Conference on Conversation Analysis session CA in Non-Mother Tongue Settings, Mannheim, Germany.

Campbell, E. (2011). Zenzontepec Chatino Aspect Morphology and Zapotecan Verb Classes. International Journal of American Linguistics, 77(2), 219-246.

Campbell, E. (2013). The Internal Diversification and Subgrouping of Chatino. International Journal of American Linguistics, 79(3), 395-420.

Campbell, E. (2014). The Phonology and Morphology of Zenzontepec Chatino. Unpublished doctoral dissertation, University of Texas at Austin.

Campbell, E., \& Woodbury, A. C. (2010). The comparative tonology of Chatino: A prolegomenon. Paper presented at SSILA winter meeeting, Baltimore, MD.

Campbell, L., Terrence Kaufman, \& Thomas C. Smith Stark. (1986). MesoAmerica as a linguistic area. Language, 62(3), 530-570.

Campbell, E., \& E. Cruz. (2009). El sistema numérico del proto-chatino. In CILLA-IV-09. University of Texas at Austin: Archive of the Indigenous Languages of Latin America - www.ailla.utexas.org.

Cruz, E. (2011). Phonology, tone, and the functions of tone in San Juan Quiahije Chatino. Unpublished doctoral dissertation, University of Texas at Austin.

Cruz, E., \& Woodbury, A. C. (2014). Finding a way into a family of tone languages: The story and methods of the Chatino Language Documentation Project. Language Documentation Conservation, 8, pp.490-524.

Cruz, H. (2014). Persuasive speech of governmental authorities: a comprehensive analysis of poetic, rhetorical, and linguistic structure of traditional Chatino oratory. Unpublished doctoral dissertation, University of Texas at Austin, Austin, Texas.

Cruz, H., \& Woodbury, A. C. (2006). La fonología y tonología comparativa del chatino: un informe de campo en Zacatepec. In Las memorias del Congreso de Idiomas Indígenas de Latinoamérica-II. Archive of the

Indigenous Languages of Latin America.
DiCanio, T., Christian. (2008). The Phonetics and Phonology of San Martín Itunyoso Trique. Unpublished doctoral dissertation, University of California, Berkeley.

Edmondson, T., \& Bendor-Samuel, J. (1966). Tone patterns of Etung. Studies in African Linguistics, 5, 1-6.

Egland, S. D. B., \& Ramos, S. C. (1983). La inteligibilidad interdialectal en méxico: Resultados de algunos sondeos.

ELAR. (n.d.). Retrieved 04/01/2015, from http://www. elar-archive.org
Goldsmith, J. (1976). Autosegmental Phonology. Unpublished doctoral dissertation, MIT.

Grinevald, C., \& Bert, M. (2011). Speakers and communities. In P. K. Austin \& J. Sallabank (Eds.), The Cambridge Handbook of Endangered Languages (p. 45-65). Cambridge University Press.

Hernández Días Jorge. (1987). El café amargo: Los procesos de diferenciación y cambio social entre los chatinos. Oaxaca, Mexico: Universidad Autonoma Benito Juarez de Oaxaca, Instituto de Investigaciones Sociologicas.

Hyman, L. (2011). Towards a canonical typology of prosodic systems. In Annual Meeting of the Australian Linguistic Society, Canberra.

Kaufman, T. (1987). Otomanguean tense/aspect/mood, voice, and nominalization markers. unpublished monograph.

Kaufman, T. (2006). Oto-manguean languages. In K. Brown (Ed.), Encyclopedia of languages \& linguistics (Vol. 9, p. 118-124). Oxford: Elsevier.

Lewis, M. P., Gary F. Simons, \& Charles D. Fennig (Eds.). (2015). Ethnologue: Languages of the world (Eighteenth edition ed.). Dallas, Texas: SIL International.

Macaulay, M., \& Salmons, J. C. (1995). The Phonology of Glottalization in Mixtec. International Journal of American Linguistics, 61, 38-61.

Macken, M., \& Salmons, J. C. (1997). Prosodic templates in sound change. Diachronica, 14, 33-66.

McCawley J. (1970). A note on Tiv Conjugation. Studies in African Linguistics, 1, 123-129.

McIntosh, J. D. (2009). Los tonos del chatino de Santa Lucía Teotepec. In CILLA-IV. University of Texas at Austin: Archive of the Indigenous Languages of Latin America - www.ailla.utexas.org.

McIntosh, J. D. (2015). Aspects of Phonology and Morphology of Teotepec Eastern Chatino. Unpublished doctoral dissertation, University of Texas at Ausitn, Austin, Texas.

McIntosh, J. D., \& Villard, S. (2011). Existencia, localización, posesión y estados de 'ser' en dos lenguas chatinas. In CILLA-V. University of Texas at Austin: Archive of the Indigenous Languages of Latin America - www.ailla.utexas.org.

Nichols, J. (1986). Head-marking and dependent-marking grammar. Language, 62, 56-119.

Pierrehumbert, J., \& Beckman, M. (1988). Japanese tone structure (Vol. 15). Cambridge, MA: MIT Press.

Pride, K., \& Pride, L. (2004). Diccionario chatino de la zona alta : Panixtlahuaca, Oaxaca y otros pueblos. México, D.F.: Instituto Lingüístico de Verano, A.C.

Rasch, J. (2002). The Basic Morpho-syntax of Yaitepec Chatino. Unpublished doctoral dissertation, Rice University, Houston, TX.

Sicoli, M. A. (2007). Tono: A linguistic ethnography of tone and voice in a Zapotec region. Unpublished doctoral dissertation, University of Michigan.

Sicoli Mark A, \& Kaufman Terrence. (2010). Zapotec and Chatino Survey Archive. Max Planck Institute, Archive for Linguistic Resources.

Snider, k. (2014). On Establishing Underlying Tonal Contrast. Language Documentation Conservation, 8, 707-737.

Sullivant, J. R. (2011). Tataltepec Chatino Verb Classification and Aspect Morphology. Unpublished master's thesis, University of Texas at Austin.

Sullivant, J. R. (2015). The phonology and Inflectional Morphology of Chá?knyá, Tataltepec de Valdés Chatino, a Zapotecan Language. Unpublished doctoral dissertation, University of Texas at Austin, Austin, Texas.

Sullivant, J. R. (under review). Reintroducing Teojomulco Chatino. International Journal of American Linguistics.

Villard, S. (2007). Los tonos del chatino de San Marcos Zacatepec. In Cillaiii. University of Texas at Austin: Archive of the Indigenous Languages of Latin America - www.ailla.utexas.org.

Villard, S. (2008). Grammatical Sketch of Zacatepec Chatino. Unpublished master's thesis, University of Texas at Austin, Austin, Texas.
Villard, S. (2009). Zacatepec Chatino verb classification and aspect morphology. In CILLA-VI. University of Texas at Austin: Archive of the Indigenous Languages of Latin America - www.ailla.utexas.org.

Villard, S. (2012). La tonología verbal en el chatino oriental de Zacatepec. In XII Encuentro Internacional de Lingüistica en el Noreste. Sonora, México.

Villard, S. (2013). Los conceptos de propiedad en el chatino oriental de Zacatepec. In Las memorias del congreso de idiomas indígenas de latinoamérica-vi. University of Texas at Austin: Archive of the Indigenous Languages of Latin America - www.ailla.utexas.org.

Villard, S., \& Sullivant, J. R. (under review). Language documentation in two communities with high migration rates. In G. P. Báez, C. Rogers, \& J. R. Labrada (Eds.), Latin American Contexts for Language Documentation and Revitalization. Berlin: de Gruyter Mouton.

Villard, S., \& Woodbury, A. C. (2012). The typology of tone in San Marcos Zacatepec Eastern Chatino.. (Presented at the Annual Meeting of the Society for the Study of the Indigenous Languages of the Americas, Portland, OR.)

Woodbury, A. C. (2009). On Internal Classification of Chatino. (UT Austin Unpublished ms.)
b


[^0]:    ${ }^{1}$ AILLA Resource: CTZ0005R136: Village map

[^1]:    ${ }^{2}$ AILLA Resources: CTZ0005R135 and CTZ0003R023

[^2]:    ${ }^{3}$ AILLA Resource: CTZ0005R061

[^3]:    ${ }^{4}$ The Ethnologue (Lewis et al., 2015) splits Eastern Chatino in four: Western Highland Chatino (ctp), Eastern Highland Chatino (cly), Nopala Chatino (cya) and Zacatepec Chatino (ctz), and presents no subgrouping among the six Chatino languages it identifies. These divisions were based on researcher intuitions and input from a 1983 mutual intelligibility survey (Egland \& Ramos, 1983), but have not been proven by application of the comparative method.

[^4]:    ${ }^{5}$ The bullet types (squares, dots, and circles) in this figure do not express hierarchy, it is just a way of presenting the data in an organized fashion. The subgrouping is shown by degree of indentation instead.

[^5]:    ${ }^{6}$ ZAC also has a secondary base number which is fifteen (see chapter 6)

[^6]:    ${ }^{7}$ The term 'link' means that the phonology specifies that the tone occurs simultaneously with any phoneme segments associated to that mora (§1.6).
    ${ }^{8}$ In ZAC, a floating tone is a tone that is underlyingly unassociated to any mora, but which is nevertheless postulated to exist because of its surface tonal effect on subsequent tonally unspecified moras.
    ${ }^{9}$ A head-marking language according to Nichols (1986) shows morphological marking of grammatical relations on 'the head' (nucleus) of the constituent rather than on the modifiers or dependents.

[^7]:    ${ }^{10}$ Some parts of these individuals' descriptions can also be found in Villard and Sullivant (under review).

[^8]:    ${ }^{11}$ Max Planck Institute for Psycholinguistics, http://tla.mpi.nl/tools/tla-tools/ elan/.

[^9]:    ${ }^{12}$ This corpus is archived at the Endangered Languages Archive (ELAR) (http:// elar.soas.ac.uk/deposit/0256) and at the Archive of Indigenous Languages of Latin America (AILLA) (http://www.ailla.utexas.org/search/view_resource.html?lg_id= 231 CTZ005).

[^10]:    ${ }^{13}$ For now I am assuming a morphological/morphophonological domain " $\omega$ " which is basically any simplex (non-compound) word (minus enclitics). The $\omega$ is the domain for the tonal sequence (TS) discussed in chapter 4.

[^11]:    ${ }^{14} \mathrm{~A}$ Tonal Sequence (TS) is composed of up to three mora-linked tonal elements and may include a floating tone. TS's define Lexical Classes in the lexicon, they are morphological entities that pertain to simplex words whereas tones are phonological entities that pertain to moras (§4.6).
    ${ }^{15}$ All through this work, when it is said of a tone that it is linked to (associated with) a mora, it means that the phonology specifies that it occurs simultaneously with any phoneme segments associated to that mora.
    ${ }^{16}$ It is common in linguistics to use the terms 'right' and 'left' when referring to processes that actually occur in time rather than space. The statement in question could also be stated in terms of time, using the term 'preceding'. Both types of referents are used in this work.

[^12]:    ${ }^{17}$ There is one Tone Class that is defined by the sequence /M-M-L/, and in that Tone Class alone, two tones link to a single mora when the associated word is monomoraic as on the word $x k \bar{a}$ 'another' (§4.7). Since there is no room on the vowel to mark both tones, the diacritic for the low tone is placed on top of the diacritic for the mid tone. Furthermore, $x k \bar{a}$ is a contraction of the word chikkà where the mid tone is associated to the first vowel and the low tone is associated with the final vowel.

[^13]:    ${ }^{1}$ Phonemic representations are used to present examples in §2.2.4.1 because in the cases discussed, the practical orthography is not entirely faithful to the actual phonemic representation.

[^14]:    ${ }^{2}$ The prominence is based on the level of contrastiveness. The final syllable is the most prominent syllable in ZAC because this is where the most contrast occurs at the segmental level as well as at the prosodic level.

[^15]:    ${ }^{3} / \mathrm{e} /$ may occur in antepenultimate syllables of compounds as in 'bees wax' kejoгō'. /ke/ corresponds to the first element of the compound (first element could be kee 'stone').
    ${ }^{4}$ The borrowed word for 'melon' melònĭ" [meloni] does not present an /a/ as expected. May be in this particular case, the word was borrowed after the sound change had run its course, or may be the word is reanalyzed as a compound like the word for 'bees wax'.

[^16]:    ${ }^{5}$ Campbell (2013) offers some historical information about the status of $/ \mathrm{u} /$ in Chatino languages: "The infrequency of /o/ in penultimate syllables is probably due to a very old change where / $\mathrm{o} /$ merged with $/ \mathrm{u}$ / in non-final syllables. No known Chatino language significantly contrasts $/ \mathrm{o} /$ and $/ \mathrm{u} /$ outside of root-final syllables. The picture of $/ \mathrm{o} /$ and $/ \mathrm{u}$ / is not all clear in Zapotec either, so the pattern is possibly as old as proto-Zapotecan or earlier" (p88).

[^17]:    ${ }^{6}$ As was mentioned in a footnote in §2.2.1.4, the infrequency of /o/ in penultimate syllables is probably due to a very old change where /o/ merged with /u/ in non-final syllables (Campbell, 2013)
    ${ }^{7}$ An exception to this rule is the word borrowed from Spanish monja 'nun': mòjā" [mõha]

[^18]:    ${ }^{8}$ Sometimes, when Spanish words with a penultimate stress pattern are borrowed, the stressed syllable in Spanish gets lengthened in Chatino. For example, rrumèyö" 'medicine' becomes [rume:jo]. This is not a phonological rule but a loan accommodation process which does not apply to all Spanish borrowings.

[^19]:    ${ }^{9}{ }^{p} i ́$ 'poult' refers to a young turkey.

[^20]:    ${ }^{10}$ The curly brackets in the rule indicate "either/or".

[^21]:    ${ }^{11}$ In this particular case, i.e. when the penultimate vowel is /i/but surfaces as [e], or when the penultimate vowel is $/ \mathrm{u}$ / but surfaces as [o] as in /tūhó/ [toho] 'squash plant', the practical orthography is not entirely faithful to the actual phonemic representation as they are actually underlyingly respectively: /tihe?/ and /tūhó/ but are written teje? and tōjó respectively. These words have these representations because underlyingly only $\{\mathrm{i}, \mathrm{u}$, a \} are available in non-final syllables, as there are no minimal pairs of /i/versus /e/, or /u/ vs /o/ in non-final syllables.
    ${ }^{12}$ In those cases also, when nasal vowels surface in the penultimate syllable, the practical orthography is not entirely faithful to the actual phonemic representation as [s $\tilde{\varepsilon}\} \tilde{\varepsilon}]$ 'place' is phonemically /si?ẽ/ but spelled se?en.

[^22]:    ${ }^{13} \mathrm{~A}$ single historical rule of laminalization after /i/ applied to all the apicals, which created the laminal class.

[^23]:    ${ }^{14}$ In the verb forms nti-ty $a$ and $n t i-t^{y} i ?$ both verb roots start with the vowel /a/ but following the vowel elision rule in hiatus, the /a/ gets deleted against the /i/. Refer to §5.3.1.2 for a more detailed description of the vowel hierarchy.

[^24]:    ${ }^{15}$ Despite the fact that the script representing this sound $j$ is the same as the one use in the Spanish orthography to represent the velar fricative, there is absolutely no velar aspect to this glottal fricative in ZAC.

[^25]:    ${ }^{1}$ This is true of all loans. As far as tone is concerned, loans are easily recognizable and they usually occur with tone Class 7 which is exclusive to Spanish borrowings.

[^26]:    ${ }^{2}$ The only three-consonants complex onsets are /ntj/ as in: ntyòsī" [ndjo.si] god, and /nkj/ as in: nk-y-unǎ [ngju.na] he/she is crying. (the latter is heteromorphemic)

[^27]:    ${ }^{3}$ One Spanish loan contains two /h/: jojòlī' 'sesame seeds' from Spanish ajonjolì
    ${ }^{4}$ The only words with a glottal stop as an onset are 3 in 'DAT' and $2 n^{y}$ än 'DAT.1s'.
    ${ }^{5}$ There seems to be no examples for nCV ? word in the lexicon.

[^28]:    ${ }^{1}$ As already explained in chapter $1 \S 1.6$, a Tonal Sequence is composed of up to three mora-linked tonal elements and may include a floating tone. TS's define Lexical Tone Classes in the lexicon, they are morphological entities that pertain to simplex words (whereas tones are phonological entities that pertain to moras)

[^29]:    ${ }^{2}$ As already explained in chapter $1 \S 1.6$, all through this work, when it is said of a tone that it is linked to (associated with) a mora, it means that the phonology specifies that it occurs simultaneously with any phoneme segments associated to that mora.
    ${ }^{3}$ In ZAC, a floating tone is a tone that is underlyingly unassociated to any mora, but which is nevertheless postulated to exist because of its surface tonal effect on subsequent tonally unspecified moras.

[^30]:    ${ }^{4}$ The floating tones marked on the right edge of words also with diacritics: a /L/ floating tone is marked with a grave accent , a /H/ floating tone is marked with an acute accent
    , a /LS/ floating tone is marked with a double acute accent
    ${ }^{5}$ Sandhi: a phonological process which happens between words resulting in a tonal change.

[^31]:    ${ }^{6}$ Graphs are time-normalized averages of pitch over five words per tone, six tokens per word.

[^32]:    ${ }^{7}$ There is one Tone Class that is defined by the sequence /M-M-L/, and in that Tone Class alone, two tones link to a single mora when the associated word is monomoraic as on the word $x k \frac{a}{a}$ 'another'. Since there is no room on the vowel to mark both tones, the diacritic for the low tone is placed on top of the diacritic for the mid tone. Furthermore, $x k \bar{a}$ is a contraction of the word chikà where the mid tone is associated with the first vowel and the low tone is associated with the final vowel.

[^33]:    ${ }^{8}$ Annona is a generic name and here the exact translation for this word is 'custard apple'.

[^34]:    ${ }^{9}$ Although the penultimate mora seem to be raised a bit higher than the antepenultimate mora, it is not as high as high tones in penultimate position.

[^35]:    ${ }^{10}$ It is preliminary because it does not account for when there are tones linked to W2. This phenomenon is treated in §4.11.2

[^36]:    ${ }^{11}$ One can observe that the /M/ surfaces a little lower when followed by /LS/.

[^37]:    ${ }^{12}$ The term 'pitch' refers to phonetic values and the terms 'tone' and 'TS' are reserved for underlying tonal representations.

[^38]:    ${ }^{13}$ The fine line showing the $\mathrm{f}_{0}$ tracking for the word 'sea turtle' yùsín when preceded by a word ending with $[\mathrm{S}]$ appears to present some phonetic effect at the beginning of the word. However, the tone is still interpreted as a /L/ as it comes together with the /L/ of the unperturbed track.

[^39]:    ${ }^{14}$ In some instances, such as for the examples representing TS's /M-M-L/, /M-LS-L/ or /M-H-M/, the pitch tracks don't match each other well. This is due to the phonetic pitch lowering phenomenon after [S] which affects the entire tonal domain (§4.11.3)

[^40]:    ${ }^{15}$ The penultimate mora /LS/ on word for Tone Class 13 (/M-LS-L (L)/) is not as high as usual, it is usually much higher than 250 Hz .

[^41]:    ${ }^{16}$ Inflected verb forms tend to be trimoraic because they are normally-dimoraic stems bearing a monomoraic/monosyllabic prefix. Refer to Chapter 5 §5.3.1.1 for a discussion about prefixes. In most cases the progressive forms are trimoraic whereas the completive forms and especially the potential forms may be dimoraic.

[^42]:    ${ }^{17}$ tily ${ }^{2}$ a' is translated in Spanish as 'early' but it is not an adverb in Chatino, it is a noun which literally means 'in the night' referring to early morning when it is still dark.

[^43]:    ${ }^{18}$ The General Rule for floating /L/ is the same as the Rule for floating /H/ and /LS/

[^44]:    ${ }^{19}$ Sequences of tones associated with some grammatical category is familiar within the tradition of africanist studies and more precisely for languages such as Tiv (McCawley J., 1970) and Etung (Edmondson \& Bendor-Samuel, 1966).

[^45]:    ${ }^{1}$ The segmental morphology of the completive and potential aspects are used to mark imperative mood.

[^46]:    ${ }^{2}$ ZAC's vowel hierarchy is very similar to Zenzontepec Chatino hierarchy presented in Campbell (2011) except that the Zenzontepec vowel hierarchy includes the vowel /e/

[^47]:    ${ }^{3}$ This work uses similar terminology as Campbell (2011): less transitive and more transitive, causative to refer to derivationally related verb pairs such as Subclasses $\mathrm{A}_{\mathrm{u}}, \mathrm{B}_{\mathrm{c}}$ and $\mathrm{B}_{\mathrm{y}}$ :
    "The ZEN u-causative derivational pattern is just one of several formal manifestations of a system of verb pairs found in Zapotecan languages.Although many verb pairs consist of a syntactically transitive (causative) stem derived from a syntactically intransitive, inchoative stem, some pairs consist of two syntactically transitive verbs where one is more active than the other. Therefore, I use the terminology more transitive versus less transitive,[...] that aligns features such as higher agentivity with higher transitivity, and not solely the number of core arguments of a verb."

