Copyright
by
Eric Charles Quinnell

2007

The Dissertation Committee for Eric Charles Quinnell
certifies that this is the approved version of the following dissertation:

Floating-Point Fused Multiply-Add Architectures

Committee:

Earl E. Swartzlander, Jr., Supervisor

Jacob Abraham

Tony Ambler

Jason Arbaugh

Adnan Aziz

Floating-Point Fused Multiply-Add Architectures

by

Eric Charles Quinnell, B.S.E.E.; M.S.E.E.

Dissertation
Presented to the Faculty of the Graduate School of
the University of Texas at Austin
in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2007

For my wife
Eres mi vida, mi alma, y mi corazon.

Acknowledgements

This work on the design and implementation of the new floating-point fused multiply-add
architectures would not be possible without the knowledge, expertise, and support of the
following people:

First and foremost
Leslie K. Quinnell, my wife — for her unwavering patience, understanding, and support
throughout the lifetime of this project.

Supervisors
Dr. Earl E. Swartzlander, Jr., The University of Texas at Austin — for his wisdom and
unparalleled knowledge in the field of computer arithmetic,
as well as for single-handedly convincing a student to
pursue a wild new idea.

Carl Lemonds, Advanced Micro Devices — for his vast experience and expertise in the
field of x86 floating-point design, as well as his uncanny
ability to plainly identify the benefits and flaws of any idea,
without which these new architectures would never have
been conceived.

The Committee Advanced Micro Devices
Dr. Earl E. Swartzlander, Jr. Carl Lemonds
Dr. Jacob Abraham Dimitri Tan
Dr. Tony Ambler Albert Danysh
Dr. Adnan Aziz Derek Urbaniak

Dr. Jason Arbaugh
Legal
Rick Friedman, The University of Texas at Austin
Brian Spross, Advanced Micro Devices
Antony Ng, Dillon & Yudell

Family and Friends
Leslie K. Quinnell
Don and Patricia Maclver
Charlie and Denise Quinnell
Chris and Janet King
Brig General & Mrs. Philip J. Erdle USAF (Ret)
Mrs. Marianne Quinnell
and countless others...

v

Floating-Point Fused Multiply-Add Architectures

Publication No.

Eric Charles Quinnell, Ph.D.
The University of Texas at Austin, 2007

Supervisor: Earl E. Swartzlander, Jr.

This dissertation presents the results of the research, design, and implementations
of several new architectures for floating-point fused multiplier-adders used in the x87
units of microprocessors. These new architectures have been designed to provide
solutions to the implementation problems found in modern-day fused multiply-add units.

The new three-path fused multiply-add architecture shows a 12% reduction in
latency and a 15% reduction in power as compared to a classic fused multiplier-adder.
The new bridge fused multiply-add architecture presents a design capable of full
performance floating-point addition and floating-point multiplication instructions while
still providing the functionality and performance gain of a classic fused multiplier-adder.

Each new architecture presented as well as a collection of modern floating-point
arithmetic units that are used for comparison have been designed and implemented using
the Advanced Micro Devices (AMD) 65 nanometer silicon on insulator transistor
technology and circuit design toolset. All designs use the AMD ‘Barcelona’ native quad-
core standard-cell library as an architectural building block to create and contrast the new

architectures in a cutting-edge and realistic industrial technology.

vi

Table of Contents

ACKNOWIEAZEIMENLS ...ceiviieeiiieeiie ettt eetee et e et e et e et e e etaeeesaeesssneesssneessseeesnsneesseeens v
Floating-Point Fused Multiply-Add Archit€Cturesccoeveeeriieeniiieiniieeieeeieeeeeeeae vi
TaDIE OF CONENLS ..c...eeiiiiiieeiiie ettt ettt ettt e st et e s bbbt esaeeebeesaeeens vii
LISE Of FIGUIES ...ttt ettt ettt e st e st esabee e sabeeesabeeeas X
LSt OF TADIES ...ttt ettt sttt et e e s xiii
CRAPLET 1.ttt et e et e sttt e st e e sabte e st e e sabeeesabeeesabeeenas 1
An Introduction to the Floating-Point Fused Multiply-Add URitccccceueeeeeeeecrenannne. 1
1.1 INErOAUCTION ..c..eiiiieiiieiceeee ettt e 1
1.2 The Floating-Point Fused Multiply-Add Unitcccceeeeiieiniiieeiiieeieeeeeeeen 2
1.3 Overview of the DiSSErtationcoceereerrieenieriieinienieeee et 4

(@] 1 F:1 01 <) SRS 6
Previous Work on the Floating-Point Fused Multiply-Add Architecture........................... 6
2.1 INEOAUCTION ...ttt ettt 6
2.2 The IEEE-754 Floating-Point Standard............ccccceeeviiiiiiienniieniieeiieeeieeeeeenn 7
2.3 The IBM RISC System/6000 Fused Multiplier-Adder.............cccceveerueeuennenne 10
2.4 The PowerPC 603e and Dual-Pass Fused Multiplier-Adderc...cccoueen.... 14
2.5 The Pseudo-Fused Multiplier-Addercooveriiniiniiiniiiieiiceceeeeeee, 19
2.6 Reduced Power Fused Multiplier-Adders.........cccceeeviierniiennieeniiienieenieee 20
2.7 A Fused Multiplier-Adder with Reduced Latency..........ccccceeeeveiveieencieeninnnns 22
2.8 Multiple Path Fused Multiplier-Adder..........cccceeeiiiiiiiieniiiiiiienieeeieeeeeee 24
2.9 3-Input LZA for Fused Multiplier-Adders........c..ccoceenieriienieineenieeeenieeee, 28
2.10 A Fused Multiplier-Adder with Floating-Point Adder Bypass...........cccecueeun..e. 29
2.11 A Comparison Of LIteratureccceeeeurieriiieeriiieeiiieesieeesreeeeveeeiveeeseeesnee e 32
CRAPLET 3 ...ttt ettt e et e et e st e e s bt e e st e e st e e sabeeesabee s 34
Methods and Components using AMD 65111 SOIcccooecuveeicieenciieeiieeeeieeecieeeeens 34
3.1 INErOAUCTIONeiiiieiiieiie et 34
3.2.1 Design and Implementation Method OVerviewcccceeeveeeeieencnveenneeennne. 35
322 High-Level Design — Verilog RTLcocccoiiiiiiiiiiiiieeeeeee 37
3.2.2.1 Verilog 2K HDL and the VCS COMPILEr.........ccccuueeecueeeeciieacieeecreeeeireennnes 37
3.2.2.2 Novas Debussy DebDUGEerccccuueeeeeueeeeeeiiieeeeeieeeeeireeeeesaseeeennnns 43
323 Front-End Implementation — The AMD AXE Flow.......ccccccoveiviveieenieeennne. 45
3.2.3.1 Gate Level Verilog using the ‘Barcelona’ libraryccccccevvveenne... 46
3.2.3.2 Flattening the Netlist — AXe ~flAtcccueeeeeeevcreeeeiieeiiieeeiee e eiee e 50
3.2.3.3 Translating for Verification — axe -U2Vcccocueeeeecueeeeecirieeeenireeeeeennnns 52
3.2.3.4 Equivalency Checking — axe -formalcccoeecueeeevuieeicueeseieenireennne 52
3.2.3.5 Floorplan Layout — axe -place and axe -Vpcccoueeeeevuveeeescveeeennnns 55
3.2.3.6 Placement-Based Estimated Timing — axe -espftimecccceeeuveenne.. 62
3.2.3.7 Power Estimation — HSim with axe-extracted SPICE netlist.................... 64

vii

33 Floating-Point COMPONENLScccueiiriiieriiieeiiieeiiee ettt e sree e 66

3.3.1 Radix-4 53-bit x 27-bit Multiplier Treeccceeeueeecveeeecrieeeieeeeieennnenn 68
3.3.2 Kogge-Stone Adders, Incrementers, and Carry Treesccuueeenn.... 73
3.3.3 Leading-Zero Anticipators (LZA)cuueeeueeecieeeiieeeieeeeieeeeiee e 77
3.3.4 Miscellaneous COMPONENLSccceecuueeeeeciuieeeesiieeeesiieeeeesiaeeeeessseeaannns 82
(@] 1 F:1 0] 1<) U USSR 83
References for Comparison: A Floating-Point Adder, a Floating-Point Multiplier, and a
Classic Fused MUltiplier-Adder.................cccoueeeuiieiiuieeiiieeiieesieeeeieeesieeeaeessaeeesseee e 83
4.1 INErOAUCTIONeiniiieiiieiie et 83
4.2 Double-Precision Floating-Point Addercceeceeeviieiiieeeiiieeieeeieeeieeens 84
4.2.1 TRE FAT PO ...ttt et 85
4.2.2 TRE ClOSE PAtN .c......coeeeeeeeiee et sae et e eaae e seae e 87
4.2.3 The AdA/ROUNA STAGE............cccoeeeeeeeeaciiieeeeieieeeeieee e eitee e e e eaea e 89
4.2.4 Floating-Point Adder Exponent and Sign LOGIC..............ccccccuvueevuenuennnee. 90
4.2.5 Floating-Point Adder RESUILScocccueeeeeeciuiieieeiiieeeeciieeeesvee e 92
4.3 Double-Precision Floating-Point Multiplierccccceeveeniinieiniiniiiiicnicnen, 94
4.3.1 The AdA/ROUNA STAGE............cccoeeeeeeeaiiieeeeiieeeeeiieeeeeitee e e e eaee e 96
4.3.2 Exponent and Sign LOGICccccooueeveiniiiiiiiiiiiieteeeeee et 98
4.3.3 Floating-Point Multiplier ReSUILScccueeeeecueieeeeiiieeeeciieeeesieee e 99
4.4 Double-Precision Classic Fused Multiplier-Adder...........cccceeeveeveveencnveennnnn. 101
4.4.1 Addition to Rounding Stage SpecifiCscccccovueieeeviieeeeeiiiieeeeciieeeeenne 102
4.4.2 Exponent and Sign LOGICc..ccevueeeeeeeeiiieeiieeeiieeeeeesieeeevee e 105
4.4.3 Floating-Point Classic Fused Multiplier-Adder Results 107
(0] 1 F:1 01 1<) e OSSPSR 110
The Three-Path Fused Multiply-Add ArCRIECIUTEccceecveeeeeeciieeeeicieeeeeecieee e 110
5.1 INEOAUCTION ...ttt 110
5.2 Three-Path Fused Multiply-Add Architecture.............cceeveeriieervieeniieenneenne 111
5.2.1 THE ANCROT PATAS ..ot veeesaeeeeveeeaaeesaee e 113
5.2.2 The ClOSE PAtH.......cc...coovueiiiiiiiiiiiaiiieeieeee ettt 116
5.2.3 The AdA/ROUNA STAGE.........cccovveeeeeaiiieeiiieeiieeeieeeeieeesaee e e enaeeeaeee e 117
5.24 Exponent and Sign LOGICoooeecueeeeeeeiiie e eecieee e sveee e aee e 119
5.3 Three-Path Fused Multiplier-Adder with Multiplier Bypass........cccccccveennie... 121
5.4 Three-Path Fused Multiplier-Adder Results..........ccccceeriiiiiiieiniieeniieenieens 122
(@] 1 F:1 01 1<) S ¢ F TSRS 127
The Bridge Fused Multiply-Add ArcRiteCture...............cccuueeeeecuveeeeeciieeeeeiieeeeeecieee e 127
6.1 INEOAUCTION ...ttt 127
6.2 The Bridge Fused Multiply-Add Architecture............cceeeveervieeniieenieeenineenne 129
6.2.1 TRE MULLIPLIET ..ottt e e sae e e eae e e aaeeeaee e e 130
6.2.2 TRE BFIAGE.....c..ueeeeaaieee et et e e aaee e e aae e e aaee e e e naaaae s 131
6.2.3 TRE AQACT ...ttt ave e e aaeesaee e 133
6.2.4 The AdA/ROUNA URITco..eevieiiiiiiiiieeieeeiee ettt 134
6.3 The Bridge Fused Multiplier-Adder Results..........c.ccoecveeviiieniieeniieeeieeeen 135
CRAPLET 7 ettt ettt e et e et e st e st e e sabb e e sabeeesabeeenane 142
Conclusions And FUIUFE WOTKc..coccueeiuieeiieeesieeeee et eeieeesveeesvee e e saneesane e 142

7.1 CONCIUSIONScuuuviiriieeeeeeeiiiirreeeeeeeeeeecitreeeeeeeeeeesetarrereeeeeeeeesrrrreeeseeseesensrnrees
7.2 FULUIE WOTK ...ttt e et
BibLOZIAPRY ...ttt
VT A ettt ettt e e e et e e e et e e e e e eata e e e e eaaeeeeeentaeeeeeenaaeeeeanes

X

List of Figures

Figure 1.2.1 Simple block diagram of a floating-point fused multiplier-adder.................. 3
Figure 2.2.1 The IEEE-754 single and double precision floating-point data types [20] 9
Figure 2.3.1 Block diagram showing the combination of add and multiply (right,

TEATAWIL) [L] coeiiiiiiiieeee et e e et e e e e e e e e tabbereeeeeeeeeeetrssereeaeeeeaenanes 11
Figure 2.3.2 Alignment range for the 3rd operand in a multiply-add fused operation

(FEATAWTL) [1] evrrieeieiee et e e e e et e e e e e e e eeeettbaeeeeeeeeeesnaarsseeeeaaeens 12
Figure 2.3.3 Original fused multiply-add unit (redrawn) [2]......ccccceevevieriieencieencieenneen. 13
Figure 2.8.1 The fused multiply-add 5 data range possibilities [29]cccceevvverveenncnns 26

Figure 2.8.2 Suggested implementation for a 5-case fused multiply-add (redrawn) [28] 27
Figure 2.10.1 Lang/Bruguera fused multiply-add with floating-point adder capabilities

L6RSTe b A4 1) I 1R 322 PR 31
Figure 3.2.2.1 Radix-4 Booth MUltipleXer.........ccoouieiiiiiiiiieniiieiiieeeieeeeeeee e 38
Figure 3.2.2.2 Verilog code for a radix-4 Booth multipleXer...........ccocceeviirniinicnneennen. 39
Figure 3.2.2.3 A Verilog input/output stimulus file.........c..cccoceeiiiniiiiiiniiiiiiiecnes 41
Figure 3.2.2.4 UNIX output of VCS compile and simulationc.cccceeeveereieenneeennnenn. 42
Figure 3.2.2.5 Novas Debussy debuggercooouieiiiiiiiiiiniiiiiiccieeeeeeeeeeen 44
Figure 3.2.2.6 Verilog behavioral checkpoint code...........ccceeevieeviienciieniieeeieeeieeeeeen 44
Figure 3.2.2.7 Debussy behavioral checkpoint screenshot...........ccoceeveeriieiiienicnneennens 45
Figure 3.2.3.1 Gate-level schematic of a 3-bit aligner..........ccccceeevveeeeieeniieeniieeeeeeeen 48
Figure 3.2.3.2 Gate-level Verilog of a 3-bit alignercccoeeveeriiiiniiieniieenieeeiieeeen 49
Figure 3.2.3.3 UNIX output of axe -flat (part 1)ccccueeeviiieerieeeiieeeieeeieeeee e 50
Figure 3.2.3.4 UNIX output of axe -flat (part 2)ccceeeviieriieiniiienieeeieeeieeeeeeeeeen 51
Figure 3.2.3.5 UNIX output Of @X€ -U2V......eeeviiieiiieeiieciieciieeeeree e eireesveeesveeesnee s 52
Figure 3.2.3.6 UNIX output of axe —formalccoooueeriiiiniiiiniiiinieeieeeeeeeeeen 53
Figure 3.2.3.7 LEC €ITOT VECIOT SCIEEM.....cuvvieriireerirreeriieeenreeeireeesereessreessreessneesseeesssees 54
Figure 3.2.3.8 LEC schematic debugger............coovvieiiiiiiiiiiniiiiiiieciceeceeeeee e 55
Figure 3.2.3.9 UNIX output of axe -place (Part 1)cccceeveeniiniieniieiiiiniceienieeieeeee 56
Figure 3.2.3.10 UNIX output of axe -place (Part 2)ccccueeevveeriveeniiieeniieenieenieeenieenn 57
Figure 3.2.3.11 PX placement code for an adder sum block...........cccccveeevieenciiencineennnenn. 58
Figure 3.2.3.12 VP output of a cell with I/O flyline interconnects.........c...cccceevcuervveennnns 59
Figure 3.2.3.13 VP output of a cell with a Steiner output interconnect................ceeeu..... 60
Figure 3.2.3.16 UNIX output of axe —eSptimeccoveerviieriiieeiiiieniieeeiieeeieeeieeeeen 63
Figure 3.2.3.17 A segment from a parsed Primetime report..........c.ceeeveeevveencnieenieeennnenn. 63
Figure 3.2.3.18 A segment from a re-SiZing SCIIPL ...cccuveerruveerriveeriiieeniieeniieenieeesieeenieens 63
Figure 3.2.3.19 A segment from a edgerate reportcocceeveeeieenieinieenieenieenieeieeeeens 63
Figure 3.2.3.20 UNIX output of a HSim power simulation..........ccccccocceervieeniinienneennnens 65
Figure 3.2.3.21 Spice Explorer power simulation screenshotccccoeeveeveieencieeennnenn. 66
Figure 3.3.1 Booth encoded digit passed to a Booth multipleXer..........cccccceeeenvierneennenns 69

X

Figure 3.3.2 Multiplier 27-term partial product array..........ccecceeeevveerriveeniveeniieenieeeenneenn 70

Figure 3.3.3 “Hot one” and “‘sign encoding” of a partial product...........c.ccccevevreererveennnen.. 71
Figure 3.3.4 Floating-point radiX-4 multiplier tre€..........coccverieriiierieriienieeeenee e 72
Figure 3.3.5 Multiplier tree floorplancocuvveriieeiiieeniie e 73
Figure 3.3.6 Kogge-Stone prefix adder and its components [34]......c.ccccovveeveenverneenncnns 74
Figure 3.3.7 Kogge-Stone 109-bit adder............cooieiiiiniiiiiiiiiiieieeeeeceeee e 76
Figure 3.3.8 Block view of the 109-bit adderccocueeriiieniiiiniiiiiiieeeeeeeeeen 76
Figure 3.3.9 Kogge-Stone 52-bit INCIEMENLETeeeveeruiirrieeniieeiienieeieesiteeree e eieesieens 76
Figure 3.3.10 Kogge-Stone 13-bit adder............coovuieiiiiiiiiieniiiiiieceieeeeeeee e 76
Figure 3.3.11 LZA 9-bit floating-point €Xampleccccceveerieeiienieiieenieeieesie e 78
Figure 3.3.12 Leading one's prediction (LOP) equations in Verilog..........cccccecuerveennnn. 79
Figure 3.3.13 Priority encoder 16-Dit.........ccccoociiviriiieiiieeiie e 80
Figure 3.3.14 Priority encoder 64-Dif.........c.cooviiiiiiiiiiiieiiiieeiieeeeeeeeeee e 81
Figure 3.3.15 LZA 57-bit floOrplanccceeeeiiiiiiieeiieciie e 82
Figure 3.3.16 LZA 57-DIt BIOCKScooiuiiiiiiiiiiiieeieeeeeeeteeeeeee et 82
Figure 4.2.1 Double-precision floating-point adder top VIEW.......cc.ceeeuveerrveencieenireennneen. 85
Figure 4.2.2 Floating-point adder far pathcccccoooviiiiiiiiniiiieen 86
Figure 4.2.3 Floating-point adder close pathc.ccooovieeviiieiiiiieiiieceeeee e 88
Figure 4.2.4 Floating-point adder add/round Stage...........ccueevviveeriiieriiieeniieenieeeiieeeeenn 90
Figure 4.2.5 Floating-point adder exponent and Sign l0ZICcceevieiviiniiiiiinieniieennees 92
Figure 4.2.6 Floating-point adder floorplan.............ccooceeiiiiiniiiiniiiiiiieeeeeeeen 93
Figure 4.2.7 Floating-point adder critical pathccccccoiiiiiiiiiiniiiiiiceceeceee 94
Figure 4.3.1 Floating-point multiplier tOP VIEW........ccccueeiriieriiieeniiieniieeeiieeeee et 96
Figure 4.3.2 Floating-point multiplier add/round Stagecccccevvueriieniienniiniennieenens 97
Figure 4.3.3 Floating-point multiplier exponent and sign 10gICcccceerveeiiiiniernieennenns 98
Figure 4.3.4 Floating-point multiplier floorplan.............ccoceeiiiiiiiniiiiniiieiceeeee 99
Figure 4.3.5 Floating-point multiplier critical pathc.cccooceriiiiiniiiniineceneeee, 100
Figure 4.4.1 Floating-point fused multiply-add tOp VIEWccccevvveeriiieniieeniieeeieeee 102
Figure 4.4.2 Floating-point fused multiply-add addition and rounding..........ccc.cccoc...... 104
Figure 4.4.3 Floating-point fused-multiply add exponent and sign logic....................... 106
Figure 4.4.4 Floating-point classic fused multiply-add floorplan...........c.ccoceeviennenee. 107
Figure 4.4.5 Floating-point classic fused multiply-add critical pathcc.ccceeuneennnee. 108
Figure 5.2.1 Three-path fused multiplier-adder architecture...........cccccccevvveeriieenueennnne. 112
Figure 5.2.2 The Adder Anchor Path............ccocviiiiiiiniiiieeceeceeeecee e 114
Figure 5.2.3 The Product Anchor Path ..o 115
Figure 5.2.4 The Close Path.........cccoiiiiiiiiiiicece e 117
Figure 5.2.5 The No Round Path (left) and Add/Round Stage (right).........cccccceevueenneee. 118
Figure 5.2.6 Exponent and Sign LOZICcccvvieiiiiiriieeiie e 120
Figure 5.3.1 Three-path fused multiply-add with FPM bypasscccccccevvveiniieiniiennne. 121
Figure 5.4.1 Three-path fused multiply-add floorplan..........ccccceevveeriiieniieeniieeniieeee, 123
Figure 5.4.2 Three-path fused multiply-add critical pathccccccoeviiiniiiiniiinniinnne. 125
Figure 6.2.1 The bridge fused multiply-add block diagramcccccceevvveercireenneeennne. 130
Figure 6.2.2 The MUIPIIET.......eiiiiiiiiiiiiieeete et 131
Figure 6.2.3 The BridZeccueeeouiiiiiiieeiieeeiee ettt 132

Figure 6.2.4 The Adder.......cocuioiiiiiiiiiieceeee e 134

Figure 6.2.5 The Add/RoUNd UnNit.......ccceeviiiiiiiiieiiieeiiecieeeeeeeeee e 135
Figure 6.3.1 The bridge fused multiply-add floorplan...............ccooveeriiiiniiiiniieiniienne. 137
Figure 6.3.2 The bridge fused multiply-add critical pathc..ccocceviiiiiniinnnnenen. 139

Xii

List of Tables

Table 2.2.1 The IEEE-754 table of formats [20]ouuuiiiiiiiiiiiiiieiiiiieieeeieeeeeeeeeeeeeeeeeeeeeeeees 8
Table 2.11.1 Comparison of proposed fused multiply-add architecturescccccu..e. 33
Table 3.3.1 Radix-4 Booth encoding for a multiplier tre€...........ccceeveveereieencieerciieeennenn 68
Table 3.3.2 Multiplier color IeZendc.cooviiiiiiiiiiiieiiieeeeeeeeee e 73
Table 4.2.1 Floating-point adder color legend............cooceiiiiniiiiiiniiiiiieeeeeeeee 93
Table 4.2.2 Floating-point adder reSUILScc.eeeriieiiiieiiiiieiieeeeeeeeeeeeee e 94
Table 4.3.1 Floating-point multiplier color legend..........c..ccoooueiiiiniiiiiiniiiniiniceeeee 99
Table 4.3.2 Floating-point multiplier reSultsccovvvieiriiiriiieniieenieereeeeeeeeeee 100
Table 4.4.1 Floating-point classic fused multiply-add color legend............ccceeeuneenn.ee. 108
Table 4.4.2 Floating-point classic fused multiply-add resultsccoceeveerieeneenncnnnen. 109
Table 5.4.1 Floating-point fused multiply-add color legendcccccvevveuveenciieennneennne. 124
Table 5.4.2 Floating-point three-path fused multiplier-adder resultsccccceeeenneee. 126
Table 5.4.3 Floating-point fused multiplier-adder comparative results................c......... 126
Table 6.3.1 Bridge fused multiply-add color legendcccceeviiiiiiiiiniiiiniieiniieee 138
Table 6.3.2 Bridge fused multiplier-adder reSultsccceeeviieriieeeiieeeieeeie e 141
Table 6.3.3 Raw results from various floating-point UNitsc..cceeeeveeriieerieeencieennnne 141
Table 6.3.4 Results Normalized to an FPA Stand-Alone Addition.cccceeveennennnee. 141
Table 6.3.5 Results Normalized to an FPM Stand-Alone Multiplication....................... 141
Table 6.3.6 Results Normalized to a Classic Fused Multiply-Add.c.ccceevevveennnenee. 141
Table 7.1.1 Comparison of proposed fused multiply-add architectures......................... 144

xiil

Chapter 1

An Introduction to the Floating-Point Fused Multiply-Add Unit

This chapter presents a brief introduction to the floating-point fused multiply-add arithmetic unit, its recent
spike in interest due to 3D graphics and multimedia demands, and the problems found in its architectural

implementation. The chapter finalizes with a short overview of this dissertation’s research.

1.1 Introduction

This dissertation presents the results of the research, design, and implementation of
several new architectures for floating-point fused multiplier-adders used in the x87 units
of microprocessors. These new architectures have been designed to provide solutions to
the implementation problems found in modern-day fused multiply-add units,

simultaneously increasing their performance and decreasing their power consumption.

Each new architecture, as well as a collection of modern floating-point arithmetic units
used as reference designs for comparison, have been designed and implemented using the
Advanced Micro Devices (AMD) 65 nanometer silicon on insulator transistor technology
and circuit design toolset. All designs use the AMD ‘Barcelona’ native quad-core
standard-cell library as an architectural building block to create and contrast the new

architectures in a cutting-edge and realistic industrial technology.

This chapter presents an introduction to the floating-point fused multiply-add

architecture, a brief discussion of its implementation benefits and problems, and a

description of the recent spike in its academic and industrial use. The chapter finishes

with an overview of the dissertation.

1.2 The Floating-Point Fused Multiply-Add Unit

In 1990, IBM unveiled implementation of a floating-point fused multiply-add arithmetic
execution unit on the RISC System 6000 (IBM RS/6000) chip [1], [2]. IBM recognized
that several advanced applications, specifically those with dot products, routinely
performed a floating-point multiplication, A x B, immediately followed by a floating-
point addition, (A X B)esut + C, ad infinitum. To increase these applications’
performances, IBM design engineers created a new unit that merged a floating-point
addition and floating-point multiplication into a single hardware block—the floating-
point fused multiplier-adder. This floating-point arithmetic unit, seen in Figure 1.2.1,

executes the equation (A x B) + C in a single instruction.

The floating-point fused multiply-add unit has several advantages in a floating-point unit
design. Not only can a fused multiplier-adder improve the performance of an application
that recursively executes a multiplication followed by an addition, but the unit may

entirely replace an x87 co-processor’s floating-point adder and floating-point multiplier.

A fused multiplier-adder may emulate a floating-point adder and floating-point multiplier
by inserting fixed constants into its data path. A floating-point addition is executed by
replacing the equation operand B with 1.0, forming the equation (A x 1.0) + C. Likewise,
a floating-point multiplication is executed by replacing operand C with 0.0, forming the
equation (A x B) + 0.0. This simple injection of constants allows a floating-point fused
multiplier-adder to be built as the stand-alone, all-purpose execution unit inside a

floating-point co-processor.

However, such advantages do not come without a cost. Although an application may
experience increased performance when a program requires multiplications followed by

additions, others that require single-instruction additions or single-instruction
2

multiplications without the cross-over experience a significant decrease in performance.
A fused multiply-add unit may be able to emulate a floating-point adder or floating-point
multiplier, but the block’s additional hardware imposes extra latency on the stand-alone

instructions as compared to their original units.

C_[63:0] ‘ ‘ A _[63:0] ‘ ‘ B_[63:0]

Multiplier Tree

437:1

LZA

Adder

Complement

Normalize \%
“ﬂ

Round
& Post-Normalize

FMA_result[63:0] ‘

Figure 1.2.1 Simple block diagram of a floating-point fused multiplier-adder

Single instruction latencies are not the only disadvantage to a floating-point fused
multiplier-adder. The unit’s internal components require bit-widths and
interconnectivities commonly more than double that of components found in floating-
point adders and floating-point multipliers. With the increasing presence of the parasitic

constraints found in designs with massive interconnectivity [3] - [5], the fused multiply-
3

add architecture is quickly becoming not only a design with difficult timing goals, but

also one with heavy power consumption.

The pros and cons of the fused multiplier-adder are well known, and the list of
disadvantages has historically driven industry to avoid the unit’s use in x87 designs.
However, modern-day applications have grown in complexity, requiring a noticeably

increased use of the fused multiply-add equation (A x B) + C.

For instance, the fused multiply-add is now used in applications for DSP and graphics
processing [6], [7], FFTs [8], FIR filters [6], division [9], and argument reductions [10].
To accommodate this increased use of the fused multiply-add instruction, several
commercial processors have implemented embedded fused multiply-add units in their
silicon designs. These chips include designs by IBM [1], [11]-[13], HP [14], [15], MIPS
[16], ARM [6], and Intel [17], [18].

With the continued demand for 3D graphics, multimedia applications, and new advanced
processing algorithms, not to mention the IEEE’s consideration of including the fused
multiply-add into the 754p standard [19], the performance benefits of the fused multiply-
add unit is beginning to out-weigh its drawbacks. Even though the fused multiply-add
architecture has troublesome latencies, high power consumption, and a performance
degradation with single-instruction execution, it may be fully expected that more and

more x87 designs will find floating-point fused multiply-add units in their silicon.

1.3 Overview of the Dissertation

Chapter 2 presents the complete history, advancement, and academic design suggestions
of the floating-point fused multiply-add architecture presented by published literature.
The chapter begins with the IEEE-754 standard [20] followed by an original description
of the IBM RS/6000 unit and finishes with the most recent fused multiply-add

publication.

Chapter 3 provides the details of how a circuit is designed and implemented in the AMD
65nm silicon on insulator technology and toolset environment. Following the toolset
description, the chapter also presents the results of a custom-implemented floating-point

component library which was used by each design in this dissertation.

Chapter 4 presents the design and implementation results of three standard floating-point
units created as a reference for comparison. The designs include a floating-point adder,
floating-point multiplier, and a modern implementation of a floating-point classic fused

multiplier-adder.

Chapter 5 presents the design and implementation of a new floating-point three-path
fused multiply-add architecture created to simultaneously increase the performance and
reduce the power consumption of a fused multiply-add instruction. The results of the
implementation are directly compared to the results from the floating-point classic fused

multiply-add unit from Chapter 4.

Chapter 6 presents the design and implementation of a new floating-point bridge fused
multiply-add architecture created to allow full-performance executions of single floating-
point instructions while still providing the performance benefits of a fused multiply-add
architecture. The results of this implementation are directly compared to the results of the
floating-point adder, floating-point multiplier, and floating-point classic fused multiplier-

adder from Chapter 4.

Chapter 7 summarizes the design results and highlights the benefits and disadvantages of
the two new floating-point fused multiply-add architectures. This chapter concludes the

dissertation.

Chapter 2

Previous Work on the Floating-Point Fused Multiply-Add Architecture

This chapter provides a description of previous significant works on the floating-point fused multiply-add

architecture, including an overview of the original IBM RS/6000.

2.1 Introduction

Several works for the reduction of latency or power consumption in floating-point fused
multiply-adders have been published since IBM’s original papers on the RS/6000 [1], [2].
This chapter presents the invention and proposed advancements or implementations of
the fused multiply-add unit in chronological order. These publications come from both

industry circuit implementations and academic architecture proposals.

While not all suggestions for improved fused multiplier-adders have actually been
implemented, much of the already completed research provides insight to the variety of
complications found in the original architecture. Each paper listed in this section after the
original provides a different approach to the design of floating-point fused multiply-add
units in an attempt to deviate from the industry-wide acceptance of IBM RS/6000 style
architectures. The research presented is fully comprehensive and presents all major

advancements to the fused multiply-add architecture to date.

The chapter begins with a brief summary of the IEEE-754 standard [20], followed by the
research papers on floating-point fused multiply-add units. Papers that do not present
changes to the original fused multiply-add architecture or those that are only industry

implementation reports are not described in this chapter.

2.2 The IEEE-754 Floating-Point Standard

The field of floating-point computer arithmetic is a sub-section of computer engineering
that concentrates on the development and execution of complex mathematics in modern-
day microprocessors. The family of floating-point chips and co-processors are the units in
a microprocessor that execute advanced applications such as 3D graphics, multimedia,
signal processing, Fourier transforms, and just about every variety of scientific,

engineering, and entertainment solutions that require complex mathematics.

The floating-point notation is the electronic world’s binary equivalent form of scientific
notation for decimal values. A binary floating-point number may represent a vast range of
real numbers, including values approaching the infinitely large to those approaching the
infinitely small—all in a compact and finite bit-width. In a floating-point number, a
selection of binary bits representing an integer fraction hold a numerical position in the
real number plane based on another selection of binary bits representing an exponent. The
rules that define and govern this floating-point format are enumerated in the Institute of
Electrical and Electronics Engineers (IEEE) specification document reference number

754, known as the IEEE-754 floating-point standard [20].

The IEEE-754 standard sets down specific rules and formats for any electronic
processing system that uses floating-point arithmetic. The 754 begins by defining

precision and exponent parameters for its description of floating-point formats as follows:

p = the number of significant bits (precision)
Eax = the maximum exponent
Enin = the minimum exponent

It then specifies all binary numeric floating-point numbers to be represented by bits in the
following three fields:
1) 1-bit sign s

2) Biased exponent e = E+bias
3) Fraction f = - b;b, ... b,

where

s=0orl
E = any integer between Emin and Emax, inclusive
bj=0or1

These bits represent an actual number by listing them in the following form:

Number = (—1)* x 2° x (1.bb,..D,)
The standard goes on to list the parameter values and their respective names, all listed in
Table 2.2.1. For example, a “single precision” floating point format uses 24 bits to
represent an implicit one and 23 fraction bits (i.e., 1.fraction), 8 bits to represent
exponents from the range 2127 1o 27126 (approximately 1.7 x 10°* and 1.18 x 107*
respectively) and one bit for the sign (i.e., O for positive or 1 for negative). The standard
lists single, double, and extended precisions as floating-point data type options, each

respectively increasing in numerical range and precision.

Table 2.2.1 The IEEE-754 table of formats [20]

Format
Parameter Single Single Extended Double Double Extended
p 24 =32 53 = 64
Emax 127 = +1023 1023 = +16383
Emin -126 <-1022 -1022 =-16382
Exponent bias 127 unspecified 1023 unspecified
Exponent width in bits 8 =11 11 215
Format width in bits 32 =43 64 =79

In the standard’s data type definition of “single precision,” the 23 fraction, 8 exponent,
and 1 sign bit may be stored in a single 32-bit register or memory location. The implicit
‘1’ from the fraction is just that, and does not need to be included in the register. “Double
precision” is stored in a 64-bit register or memory location. Figure 2.2.1 shows the bit

partitioning of the stored binary words.

msb Isb msb Isb

Single Format

msb Isb msb Isb
Double Format

Figure 2.2.1 The IEEE-754 single and double precision floating-point data types [20]

After the enumeration of formats and precisions, the IEEE 754 standard lists a set of
requirements for rounding methods. In a floating-point arithmetic calculation, (i.e., a
floating-point addition) the result, since it is a fractional representation, may have bits
that are too small to include in the format specified. However, leaving them out will alter

the correct answer, creating error.

To consider calculation errors, the 754 standard requires any compliant application to
support four rounding methods: round to nearest even, round toward plus infinity, round
toward minus infinity, and round toward zero. These methods give application
programmers the power to determine what kind of rounding error correction is best for
their design. In hardware designs conforming to this requirement, generally the rounding

stage is at the end of an execution block.

Following the section on rounding, the 754 standard enumerates the required
mathematical functions that must be supported in a floating-point machine. The list
requires the implementation of the following operations: add; subtract; multiply; divide;

square root; remainder; round to integer in floating-point format; convert between

9

floating-point formats; convert between floating-point and integer; convert binary to
decimal; and compare. In the recent meetings of the IEEE-754 committee, currently
known as the IEEE 754r, the inclusion of the fused multiply-add function,z=a +b x c,

is being considered as an addition to the floating-point operation standard [19].

The formats, rounding, and operation requirements of the IEEE-754 standard listed here
are important for the complete understanding of the project described in this and
following chapters. All designs, simulations, implementations, as well as most previous
publications are in IEEE-754 double precision, 64-bit format and conform to the

rounding methods described.

2.3 The IBM RISC System/6000 Fused Multiplier-Adder

In January of 1990, a paper by Robert K. Montoye, Erdem Hokenek, and S. L. Runyon
was published in the IBM Journal of Research and Development on the design of the
RISC System/6000 floating-point execution unit [1]. The journal publication was
followed by an IEEE Journal of Solid-State Circuits paper published in October 1990 [2].
These papers included details on the invention of the multiply-add fused unit, or what
later became more commonly known as the same name rearranged: the fused multiply-

add unit, or the multiply-accumulate chained (MAC) unit.

The original paper [1] states that “the most common use of floating-point multiplication
is for ‘dot-product’ operations” and that “a single unit which forms the multiply-
accumulation operation D = (A x B) + C would produce a significant reduction in internal

busing requirements.”

What the paper states is that the equation D = (A x B) + C was at the time a highly-used
group of operations in the floating-point unit. The problem with the operation is that a
floating-point multiplication and round must first take place before the floating-point

addition and round is performed. If a single unit were produced that performs the whole

10

operation in one block, several benefits could be realized. The original block diagram

describing the combination is shown in Figure 2.3.1.

A B C A B C
AxB AxB AxB+C
A A A
‘ Round ‘ ‘ Round/normalize ‘ ‘ Round/normalize ‘
v l l
D D

Figure 2.3.1 Block diagram showing the combination of add and multiply (right, redrawn) [1]

The papers go on to describe additional benefits of combining the floating-point adder
and floating-point multiplier into a single functional unit. First, the latency for a multiply-
add fused mathematical operation is reduced significantly by having an addition
combined with a multiplication in hardware. Second, the precision of the final result is
increased, since the operands only go through a single rounding stage. Third, there is a
decrease in the number of required input/output ports to the register file and their
controlling sub-units. Finally, a reduced area of both the floating-point adder and
floating-point multiplier may be realized since the adder is only wired to the output

connections of the multiplier.

Reference [1] follows these enumerated points with a basic description of the architecture
required for a fused multiply-add unit. Since three operands are used in the fused
multiply-add operation, the floating-point data must be handled in a range of
normalization different than that found in the standard floating-point adder or floating-

point multiplier.

11

In multiplication, the product word size is double the bit-width of the operands. In a
floating-point addition, the addition operand (i.e., the addend) is shifted to align the
implicit binary point so that the operands are properly aligned when they are added. In an
extreme case of addition, the addend’s binary point may line up at any position with
respect to the product. To cover all of the addition and multiplication cases without losing
precision, a fused multiply-add operation must be a full three times the size of the
original operator bit widths to correctly normalize the data. Figure 2.3.2 shows the

required alignment data-range.

AxB

Increment

Figure 2.3.2 Alignment range for the 3rd operand in a multiply-add fused operation (redrawn) [1]

Reference [2] describes this normalization problem as one of the tradeoffs required in a
fused multiply-add unit. The large bit range requires a very large shifter which can add a
significant latency to the operation. The solution presented is the pre-alignment of the

addend in parallel with the multiplication.

The second challenge in combining a floating-point multiplication with a floating-point
addition comes again from the large precision range. To perform an addition in double
precision format, a fused multiply-add unit requires a 161-bit adder. This creates a very
difficult timing arc in implementation.

For the adder’s case of massive cancellation, which is a case when lots of leading ‘0’s
result from a subtraction of nearly identical operands, the leading ‘1’ must be found and
the data normalized. To do this, a leading-zero detector (LZD) is included in the fused

multiply-add unit and runs in parallel with the massive adder. The LZD is built to find the

12

first ‘1’ position in the result before the addition is completed, allowing a pre-calculated

normalization control to immediately shift the output data from the adder.

Paper [2] presents the original fused multiply-add architecture as built on the IBM
RS/6000 shown in Figure 2.3.3. The IBM RS/6000 was implemented in 1pum CMOS
silicon technology at IBM.

MUX MUX

MPY Bit Alignment ‘

A

‘ LATCH ‘ ‘ LA"I'CH ‘

[/¢

ADDER

|

Postnormalize ‘4—

A
LATCH

Norm./Round

»i

A
Reg. File

Figure 2.3.3 Original fused multiply-add unit (redrawn) [2]

13

2.4 The PowerPC 603e and Dual-Pass Fused Multiplier-Adder

The first papers of note after the RS/6000 on fused multiply-add units are [12] and [13].

Both are on the same subject and contribute the same ideas, just in different detail.

Paper [12] is on the implementation of the PowerPC 603e microprocessor. This paper
provides three main contributions for the fused multiply-add architecture: first, the paper
provides far better detail and descriptions of the original IBM RS/6000 architecture with
slight improvements; second, it uses a dual-pass iterative technique in the multiplier to
reduce the area and power consumption of the overall fused multiply-add unit; third, the
adder/complement stage uses an iterative dual-pass end around carry (EAC) adder that
reduces the overall adder size by replacing bit ranges with incrementors. The PowerPC

603 fused multiply-add architecture is shown in Figure 2.4.1.

14

M B mant ‘ M A mant ‘ M C mant ‘

A A
143-bit Booth recoder
alignment
shifter and v
sticky logic 53 x 28 multiplier array b
(4-to-2 CSAs)

vy v

‘ 88-bit 3-to-2 CSA ‘

Aligr‘1edB M Carrys ‘M Sums ‘M tmp ‘

v

y

88-bit carry-lookahead adder INC ‘

56-bit INC

A

LZD

A
161-bit mantissa ‘

A
63-bit normalization shifter ‘

A
‘ Rounder ‘

A
70-bit result

Figure 2.4.1 Block diagram of the PowerPC 603e fused multiply-add unit (redrawn) [12]

The fused multiply-add architecture presented is in essence the same as the IBM
RS/6000. First, a large addend aligner that runs in parallel to the multiplier array meets
up with the product data in a 3:2 carry-save adder (CSA). The operands are added
together in a 161-bit adder while an LZD calculates the shift amount for the

normalization shifter. The result is then rounded and passed out of the block.

15

Although the general architecture is the same as that of the IBM RS/6000, the PowerPC
603e uses far less area and power in exchange for additional cycles. Specifically, each
double-precision fused multiply-add instruction must pass through the multiplier block

twice before a correct carry save product is calculated.

The details of the iterative components are described thoroughly in [13]. These
components are specifically designed to accelerate the performance of single-precision
data types. The iterative multiplier scheme reduces the logic in the CSA critical path by a
full half. While this makes the tree too small for double-precision numbers, a single-

precision instruction is able to produce a product in one multiplier cycle.

To implement this scheme, both the adder and multiplier have the ability to hold for a
second cycle during a double-precision fused multiply-add instruction. The iterative
multiplier, shown in Figure 2.4.2, adds together partial products like any standard CSA
tree for the first cycle. For the second cycle, the partial product result from the first

iteration is fed back into the tree and combined with the new partial products.

The dual-pass EAC adder, shown in Figure 2.4.3, performs an addition in every cycle
regardless of the data type. In the first pass of a double-precision calculation, a selection
of the lower product bits are added together and fed-back to the addition stage. Since
many of the low-end partial products are complete in the first iteration, they do not need
to be re-combined with the higher-order product from the multiplier second pass. Instead,

the bits are passed to an incrementer for the case of EAC 2’s complementation.

16

A MANTISSA C MANTISSA

|

Booth Mux Select

Encoder 0 0
OxA 1xA 1xA 2xA 2xA

T e T T T T T Ly L

EVASSARERNANRYRE

4:2 CSA ‘ ‘ 4:2 CSA ‘ 4:2CSA ‘ ‘ 4:2CSA
‘ 4:2CSA ‘ ‘ 4:2 CSA ‘
[]

I

4:2CSA ‘
B MANTISSA ﬁ a _¢
‘ 3:2 CSA ‘
[\

Figure 2.4.2 Tterative Booth radix-4 multiplier CSA tree [13]

ALIGNED B CARRY SUM PASS-TWO

A
INC « CLA

A

INVERT INVERT_LOW

pipeline register ‘

Figure 2.4.3 Dual-pass, iterative EAC adder [13]
17

In any fused multiply-add case, the high 55-bits of the 161-bit adder input range may
only come from the addend and never the multiplier product. Since the product result has
a fixed internal bit position, the addend must align with respect to the product. If the
addend is much greater than the product, only the top 55-bits of the 161-bit adder result
are required. In this case, the product is only used in carry propagation and rounding, so
the top 55-bits only come from the addend. If the product is much larger than the addend,
the top 55-bits of the 161-bit internal range are all ‘0’s due to the fixed position of the
product, so the 161-bit addition result discards the top 55-bits and normalizes the product

instead.

Since the design only requires carry propagation in the high 55-bits of the 161-bit adder
range, an incrementer is used instead of an adder. The carry-out from this high-end
incrementer is passed back to the carry-in of the low-end incrementer, completing the
EAC scheme. In total, the 161-bit CPA from the RS/6000 fused multiply-add architecture
is reduced in the 603e to an 88-bit EAC CPA with incrementers on each side.

To finalize, the iterative, dual-pass fused multiply-add architecture provides lower single-
precision latency, as well as a large reduction in area and power by its creative
implementation of the adder and multiplier array. The cost of these gains comes from the
taxation of double-precision operations with an extra cycle. These data types can

therefore only get half the throughput of single-precision instruction vectors.
The floating-point fused multiply-add architecture described in [12] and [13] has been

physically implemented on the IBM PowerPC 603e floating-point unit in 0.5um CMOS

silicon technology.

18

2.5 The Pseudo-Fused Multiplier-Adder

Naini, Dhablania, James, and Das Sarma presented a paper in 2001 on the
implementation of the HAL SPARC64 [21]. The paper is not specifically about a fused
multiply-add unit, but does provide a very interesting idea on an architectural

arrangement named the “pseudo-fused multiply-add.”

In the implementation of the HAL SPARC64, the FPU architecture provides support for a

fused multiply-add instruction via two pseudo-fused multiply-add instructions:

¢ unfused-floating-point multiply-add (uFMADD)
¢ unfused-floating-point multiply-subtract (WuFMSUB)

The SPARC chip itself has two floating-point execution pipelines that can calculate up to
two independent fused multiply-add instructions. The pipelines each include a standard
floating-point adder (floating-point adder) and floating-point multiplier (floating-point
multiplier) with pseudo-fused multiply-add bus handling. This pseudo-fused multiply-add
handler is simply a forwarding bus that takes the result from a pipeline’s floating-point
multiplier and sends it directly to the pipeline’s floating-point adder, bypassing the
register file. Although bypass buses are now common place in modern FPUs, the bus

presented is specifically for pseudo-fused multiply-add instructions.

The pseudo-fused multiply-add does not combine the hardware of the floating-point
multiplier and adder. Instead, each floating-point multiplication performs rounding on the
data before forwarding the result to the adder on the reserved fused multiply-add bus. The
floating-point adder unit uses a third operand from the register file and adds it to the
forwarded result. The final pseudo-fused multiply-add is rounded and sent back to the
FPU register file. The dual pipe SPARC FPU architecture is shown in Figure 2.5.1 in its

original form.

19

FRS
Floating Point
Reservation Station

srcl | ‘ A ‘ I srcl

src2 src2
src3 AN N src3

AN NV
R —
YYVY YYVY i l
FMUL FADD FADD FMUL
FMA bus FMA bus
A A 64 64
FPA Result Bus FPB Result Bus

Figure 2.5.1 Dual unit floating-point unit with pseudo-fused multiply-add forwarding buses [21]

The results presented for the SPARC FPU show a latency of 3 cycles for a floating-point
addition or floating-point multiplication, and a latency of 4 cycles for a pseudo-fused
multiply-add instruction. The HAL SPARC64 has been implemented on 0.15pum CMOS

silicon technology.

2.6 Reduced Power Fused Multiplier-Adders

Later in 2001, Pillai, Shah, A. J. Al-Khalili, and D. Al-Khalili presented a paper that
compares the IBM RS/6000 architecture with a proposed architecture specifically
designed for power reduction [22]. The general philosophy of the architecture is to
provide two parallel computation paths (as well as a bypass for floating-point multipliers)
that process under different data range assumptions. Early in the pipeline, as soon as the
correct path is known via the exponent difference, the other path pipeline is gated and the

inputs hold the previous state, saving power.

Figure 2.6.1 (redrawn for clarity) shows the paper’s proposed architecture—the
Concordia fused multiplier-adder. The Concordia architecture uses alignment blocks

before the multiplier array in a move to pre-shift the operands into alignment. This allows

20

the resulting product terms to be immediately forwarded to two separate paths, each of
which may be turned off via pre-calculation. The chosen path which matches the aligned
data range of the operands goes on to complete the fused multiply-add instruction. As an
added feature, a third partial bypass path is allowed for floating-point multiplier single

instructions to have reduced latency.

‘ Exponents ‘ Input Floating
Point Numbers

Y v oY
‘ Exponent Logic H Control Logic

2nd
A A
Pre-alignment Logic
A A A A A
‘ Product Sticky ‘ ‘ Bypass Logic
Significand Multiplier Logic
(Partial Product
Processing)
.
3rd |
A v i * v
3:2 Compression 3:2 Compression \
P
LZA LZB
. N
\ 4 A } A A

CPA/Rounding CPA/Rounding CPA/Rounding
LZA LZB Partial Bypass

Result Selector/ Result Selector/ Result Selector/

Normalization-LZA Normalization MUXs Normalization MUXs
(LZC, Barrel Shifter) LZB Partial Bypass
A

Result Integration/ Flag Logic

Figure 2.6.1 Concordia fused multiplier-adder (redrawn) [22]

21

A complication of the Concordia architecture comes from the alignment before the
multiplier array. An operand aligned before the multiplier widens the multiplier tree input
range, requiring either a larger variable multiplier tree or a loss of precision by parsing
lower bits for power savings and latency reduction. The paper’s description and
arguments for the acceptance of small ulp errors in digital signal processing applications
suggest that the Concordia fused multiplier-adder uses the in-accurate multiplier

implementation option in pursuit of lower power consumption and latencies.

The paper finalizes by presenting a 44% reduction in power consumption and a 9%
latency reduction in the Concordia architecture as compared to the IBM RS/6000 design
(re-built on the same technology for comparison). The architecture was synthesized on
both 0.35 pm CMOS silicon technology as well as a FPGA and simulated with digital

signal processing application data to produce the results.

2.7 A Fused Multiplier-Adder with Reduced Latency

The greatest deviation from the original IBM RS/6000 architecture comes from a paper
by T. Lang and J.D. Bruguera on a reduced latency fused multiplier-adder [23]. This
proposal claims to achieve a significant increase in fused multiply-add unit performance
by the combination of the addition and rounding stage into one block. Although the
add/round stage is a widely used component in modern floating-point adder and floating-
point multiplier architectures as seen in [24] — [27], its use in a fused multiplier-adder

proves to be more difficult.

Lang and Bruguera describe that in order to combine the addition and rounding stages in
a fused multiply-add unit, the add/round block must follow the leading-zero anticipator
(LZA) normalization stage. Much like a floating-point adder in cases of massive
cancellation, the location of the floating-point itself must be determined before any
rounding is performed. If the addition and rounding occur simultaneously, then the

required compound adder must logically follow the normalization.

22

The reduced latency fused multiply-add architecture is shown in Figure 2.7.1. In this
design, the aligned addend combines with the multiplier product much in the same way
as in the IBM RS/6000. However, immediately after the CSA, the data enter two
complementary half adder (HA) paths. Sign detection logic determines the correct

inversion, selects the correct HA result, and passes the data to the normalization stage.

The correctly inverted data stall at the normalization stage and waits for LZA shift
control. In this architecture, the LZA itself is on the critical path. To reduce the time
between the multiplier output and the first normalization shift, the authors design a
special LZA encoder that produces the control signals on an accelerated path. These
signals exit the LZA one bit at a time as they are calculated, as opposed to a standard
encoder which selects all the outputs from a parallel multiplexer simultaneously. As each

control exits the block, it drives its respective multiplexer normalization.

When the data exit the normalization stage, it is split between a 51-bit compound adder
and a 108-bit carry/sticky block. The carry/sticky block creates and passes the rounding
information bits to rounding control, which then selects the correct augmented adder

output. The data are post-normalized, and the fused multiply-add is complete.
The paper claims an estimated 15-20% reduction in latency as compared to a standard

fused multiply-add [23]. This result is calculated theoretically, and the actual architecture

has yet to be implemented in either a synthesized or a custom CMOS silicon design.

23

A

recod

161-bits
alignment CSA tree
shifter
. S
e I i
| s2CsA |
sign
detection L¢
" v
Complement
HAs and LZA
complement part of adder

—

"

shifters

normalization

Rest of
53-bits
dual adder

sum+1 sum

round bit

guard bit
carry

and sticky

selection

24

2.8 Multiple Path Fused Multiplier-Adder

Figure 2.7.1 Lang/Bruguera combined addition/rounding stage fused multiply-add (redrawn) [23]

Peter-Michael Seidel wrote a paper in 2003 that proposes a multiple path fused multiply-
add architecture to selectively execute on different data ranges for increased performance

[28]. Much like the architecture of a common dual-path floating-point adder, the

proposed architecture uses pre-determined data range assumptions that perform different

operations on parallel hardware.

Seidel specifically suggests that a fused multiply-add may be split up into 5 distinct

cases, all based on the difference in the exponents (6 = [Acy + Bexp] — Cexp + BIAS):

1. 0 <-54, where the addend is far greater than the multiplication product. The
product only affects the post-normalization, depending on rounding mode.

2. -54 < < -3, where the addend is greater than the product. The product operands
are aligned and added.

3. -2<6 <1, where the product and addend may cause massive cancellation during
a subtraction. This case is handled like the close path in a dual-path adder.

4. 2 <0< 53, where the product dominates the upper digits of the result. The addend
is aligned and added.

5. 53 <6, where the product term is much greater than the addend. The addend only

affects rounding.

Each fused multiply-add range case listed is seen in Figure 2.8.1. The bit descriptions are

all for IEEE double-precision operands.

25

£e L Zap

i+ 52hit addend

-~

000 000 | stcky

T B
—| ! 1 intermediate result

Eint = €+ 1 is the intermediate result exponent
Case #1
€s v overlap

[i+52bitaddend |
1 1

+ | 244 'I04I bit product |

Eprad < Ep

intermediate result |

€int = € + 1 is the intermediate result exponent
Case #2
|l' Eint

. . i i farout
| intermediate result 1+ frac o sticky

nlz = #leading zeros | 33b+1guard °

shift by sha := max{nlz, ein:} |

'

|f=m: = -ﬂ'hm| Jrac i

sticky

Based on the guard, sticky, and rounding mode, the
significand is incremented. A carry-out is
+1 propagated into the exponent.

Eint — th}.| Jrae |
L 1 |

T T 1
result exponent + fraction Case #3

F{:
{1i+ 52 bit addend
! i
i | 121+ 104 bit product d |
*"Fprrx.l' ey w

intermediate result

Eint = Eprad + 2 15 the intermediate result exponent

Case #4
f"\':
P
i 1L+ 52 bit addend
Iyl h L IE“F‘I fllll
+ | i2:+ 104 bit product |-—-J, f
leIJI'rA‘.II Foee E I ll."lll
1 i
—| {11 intermediate result 1000U'CIU| sticky

N 1
Eint = Eprod + 2 is the intermediate result exponent

Case #5

Figure 2.8.1 The fused multiply-add 5 data range possibilities [29]

26

The paper goes on to suggest an implementation for a fused multiply-add unit that

considers the ranges of the five cases as shown in Figure 2.8.2. The implementation uses

two parallel hardware paths—one for the far exponent differences and one for the close

exponent difference. Much like [22], the far path uses two aligner blocks to selectively

shift operands based on the specific data range. For range case 1 and 2, one of the

multiplier operands is shifted before entering the multiplier tree. For case 4 and 5, the

addend is aligned to the position of the multiplier product.

The hardware suggestion for the implementation of the close exponent difference case

performs an alignment on the addend to match the significand product. The data are

passed to a combined add and round stage that processes in parallel to a LZA block. The

add/round result is complemented if necessary, and normalized by the LZA.

The multiple path fused multiply-add paper claims around a 30% gain in performance as

compared to a IBM RS/6000 architecture [28]. These performance gains are estimated

based on theoretical calculations.

Cases 4,5 Cases 1,2

l

. Align &
Exp Diff [~ Recode 3x fa
Adder Tree
Align fc
Significand Addition & Rounding

v

Post-normalization

Cases 3

Exp Diff
Prediction

Significand Product
Align fc b—y

v

Significand Add & Round » LZ Count
\ Complementation
v v

L‘

"

Normalization & Post-normalization & Select

Figure 2.8.2 Suggested implementation for a 5-case fused multiply-add (redrawn) [28]

27

2.9 3-Input LZA for Fused Multiplier-Adders

In 2005, Xiao-Lu presented a paper [30] for the specific improvement of the critical path
found in the Lang and Bruguera fused multiply-add architecture [23]. Specifically, the
paper presents a new algorithm for accelerating the LZA stage in the fused multiply-add,

since the LZA block is the critical path in Lang and Bruguera’s scheme.

Modern architectures design LZA blocks to predict the leading ‘1’ in a massive
cancellation subtraction based on the derivation of a set of equations [31]. These leading
one’s prediction (LOP) equations, as seen in Figure 2.9.1, pass to an encoder which
generates normalizing signals correct to within one digit. These equations (f;) are

generated on the assumption that the predicted result consists of two operands.

t,=a, ®Db,
g =a;-b
z=a;-b

Ji=t (8 2 2 8) F 1y (2 2y + 80 i)

Figure 2.9.1 A two-input LZA algorithm [30]

The Lang/Bruguera fused multiply-add architecture is unique, as it provides three inputs
to the LZA block. In the original Lang/Bruguera paper, the three inputs are combined
with a 3:2 CSA before entering the LOP unit. The Xiao-Lu paper presents new equations,
shown in Figure 2.9.2, that allow this three input string to predict the leading ‘1°. A three-
input LOP removes the requirement for a 3:2 CSA and therefore decreases the number of
logic stages in a LZA. A comparison of two- and three-input LZAs is shown in Figure

2.9.3.

28

s —a-b-c
e.=a.-b -c+(a®b) c
t,=a;-b, c_

w, =a,®b Dc,

X, =ai-bi+(ai+bi)-c_i

f‘(pos) =€l W, t WXy,

fi(neg)=s,-x, +w ty

i+l

Figure 2.9.2 A three-input LZA algorithm [30]

v v v

Generate functions S,
E, T,W,X

v vy

Generate functions T,

T}

‘ Generate indicator F ‘

‘ Generate indicator F ‘

v

Encode most
significant bit of F

v

Encode most
significant bit of F

|

Leading digit position

Figure 2.9.3 A comparison of two- and three-input LZA algorithms [30]

Paper [30] claims the three-input LZA scheme shows a 17% reduction in latency and

20% reduction in required area as compared to a two-input scheme. The results come

from a Synopsis 0.13 pm synthesis. The reduction in the LZA latency directly improves

the critical path delay for a Lang/Bruguera fused multiply-add architecture.

2.10 A Fused Multiplier-Adder with Floating-Point Adder Bypass

The final paper included in this section is a second paper by Lang and Bruguera [32]. The

paper describes a fused multiply-add architecture that enhances the functionality of their

original proposal for a reduced-latency fused multiply-add unit. While in their original

29

paper [23] the reduced-latency fused multiplier-adder is designed to accelerate the
performance of a fused multiply-add unit, the architecture shares the same disadvantage
as the IBM RS/6000 design—the fused multiply-add architecture increases the latency of

stand-alone floating-point additions.

The new Lang/Bruguera architecture is designed to allow a floating-point addition
instruction to bypass the blocks in the fused multiply-add unit that add to its single-
instruction latency. In the first Lang/Bruguera fused multiply-add unit, a floating-point
adder instruction has to use the constant ‘1.0’ (A x ‘1.0” + C) to propagate a multiplier
input through the CSA tree, producing an addition operation. Meanwhile, the addend is
sent through an aligner unit too large for a floating-point adder range, adding unnecessary

latency to the data.

As shown in Figure 2.10.1, the new architecture uses selection multiplexers after the
multiplier stage to choose different operands based on the instruction input. Mimicking
common floating-point adder designs, an additional “far” path is added to the
Lang/Bruguera fused multiply-add scheme for cases where the floating-point addend
must still be aligned by a significant amount. This path is processed in parallel to the
“close” path, which is a slight deviation from the first Lang/Bruguera fused multiply-add
scheme. For floating-point adder data with close exponents, the large LZA and
normalization hardware already found in the fused multiply-add path handles the
operations correctly. Both paths are merged after normalization and passed to the

add/round stage.

30

A B c
|

recod

CSA tree
- 9 PN N g
— 1] [[p——g
v ¢ \ 2
‘ switch ‘ ‘ mux ‘
}
bit-inv | 4 ¢ F
3b right | 106-bit
shift alignment shifters
vV VY A \ 4 YV V ¥ |
3:2CSA
sign J |
detection —
Y —
Complement | ‘ case logic/invert ‘
HAs and LZA
complement part of adder 37 GSA
' Far Path
Close Path . \ | |
normalization | HAs and small
shifters part of adder size
| LZA
3-bit norm
shifter

Rest of round bit
53-bits guard bit

dual adder carry
and sticky

sum+1 sum

selection

Figure 2.10.1 Lang/Bruguera fused multiply-add with floating-point adder capabilities (redrawn) [32]

However, the new architecture makes changes to how a fused multiply-add instruction is
processed. In the design, the multiplier and aligner data from the head of the unit pass to

both the far and close paths. The fused multiply-add data in the far path are assumed to
31

have a large exponent difference, so the use of a dual path parallel inversion is not
required. Instead, only a single operand is needed for inversion during a subtraction, and
the data may pass to a smaller size LZA. For the fused multiply-add close path, the fused
multiply-add scheme follows the algorithm originally provided by Lang and Bruguera
with the addition of a 3-bit aligner used in floating-point adder cases. Like the floating-
point adder operation, both paths are merged after each normalization. The fused

multiply-add data are added, rounded, and post-normalized, completing the instruction.

Much like the original Lang and Bruguera paper, this paper concludes by claiming a 40%
acceleration of floating-point adder instructions as compared to an IBM RS/6000 fused
multiply-add unit handling the same [32]. Additionally, the fused multiplier-adder
provides a 10% reduction in latency compared to the IBM RS/6000. This result is
calculated theoretically, and the actual architecture has yet to be implemented in either a

synthesized or a custom CMOS silicon design.

The fused multiply-add unit latency reduction is lower than the original Lang and
Bruguera improvements due to additional logic stages supporting a single-instruction

floating-point addition. The results were calculated by theoretical delay analysis.

2.11 A Comparison of Literature

Table 2.11.1 shows a comparison of the various floating-point fused multiply-add
architectures presented in this chapter against the original IBM RS/6000. Each design is
compared against the IBM RS/6000 in the categories of latency reduction, power
reduction, implementation, numerical accuracy, and whether the unit is capable of a
maximum-performance single-instruction execution of a floating-point adder or floating-

point multiplier.

32

Table 2.11.1 Comparison of proposed fused multiply-add architectures

Latency | Power | Implemented . Max- Max-
. Numerically
Design \& Vs or Correct? performance | performance
RS/6000 | RS/6000 | Theoretical ' FPM? FPA?
IBN;II]{%?OOO N/A N/A Implemented Yes No No
Faster
IBM PowerPC SP, V5 size
604e [12],(13] | Slower | Mul tree | [mplemented Yes No No
DP
HAL SPARC64 Rounded
(pseudo FMA) Slower N/A Implemented . Yes Yes
[21] Twice
Conco[rzd;z]l FMA -9% -44% Implemented No Yes No
Lang/Bruguera -(15- .
[23] 20%) N/A Theoretical Yes No No
Seidel Multi- .
Path [28] -30% N/A Theoretical unclear No No
Xiao-Lu LZA
improvement (15- LZA
20%) - Implemented,
of N/A Yes No No
Lane/B (0.17 x FMA
ang/bruguera | 7 Theoretical
[30]
Lang/Bruguera
w/ FPA -10% N/A Theoretical Yes No No'

bypass [32]

" 40% faster floating-point add performance as compared to a classic FMA execution of the same

33

Chapter 3

Methods and Components using AMD 65nm SOI

This chapter begins by detailing the implementation methods and tools used to create a circuit in the AMD
65nm silicon on insulator design flow. Following that, the chapter lists the architectures and

implementations of shared floating-point arithmetic components used in several of the final designs.

3.1 Introduction

This chapter provides a detailed description of the methods and components used to
design, implement, and test the floating-point fused multiply-add circuits presented in
this dissertation. The designs have been implemented using the AMD 65nm silicon on

insulator (SOI) transistor models and implementation design flow.

The AMD 65nm SOI circuit design flow used is also known as the AMD “axe” flow. The
axe flow is a collection of industry tools and software linked together with AMD
transistor libraries and databases organized in such a fashion that the progression of a
circuit from RTL to GDSII “flows” through the necessary CAD tools in a logical order.
This implementation flow, as well as the RTL tools and compilers that were used for

designing the behavioral models, are described in detail in the first half of this chapter.

The second half of this chapter includes detailed descriptions of the floating-point

components and libraries built specifically for this dissertation’s floating-point fused
multiply-add designs. The components, ranging from multiplier arrays and adders to
barrel shifters and sticky trees, are shared in a common floating-point library that has

been created to keep the components used by the designs consistent in their

34

implementation. These macro components are all original designs and have not been

downloaded from any AMD IP database.

At AMD, the CAD tools, manufacturing models, and standard cell libraries are in a
volatile consistently evolving developmental state. All of the models and tools are
subjected to frequent, rapid and drastic fundamental changes to meet the demands of
whatever AMD project is currently under development. Since this dissertation is intended
to compare high-level architectural changes alone, a specific “snapshot” of the standard
cells and tools for 65nm SOI development was taken on July 30" of 2006. This flow
snapshot uses the most up to date models and libraries as of that specific date, and has
ignored any further changes since then to keep the implementations consistent from
origin to completion. It should be noted that the axe flow used for this dissertation is now

an outdated and retired CAD system at AMD.

3.2.1 Design and Implementation Method Overview

A wide variety of CAD tools are used at AMD to bring a design from concept on paper to
GDSII mask data. These tools include both in-house CAD developments as well as
externally written design software. Depending on the technology and goals of the design,
this arrangement of tools varies in functionality and what models it considers. For the
specific fused multiply-add designs considered here, this section describes in detail each
step used to take the fused multiply-add architectural concepts to “front-end” design

completion.

When considering the design flow at a high-level, the toolsets may be split into three
major categories. The first category of CAD systems is the register transfer level (RTL)
Verilog code used to describe the architecture at a purely digital level. At this highest-
level behavioral model, the circuit is designed and tested for digitally functional
correctness, using virtual logic analyzers to debug and adjust the inputs and outputs of the

block. The RTL models are also passed into a set of verification procedures during

35

development that use custom test benches and already proven legacy vectors to ensure

the formal verification of the digital model.

The second level of design, commonly called the “front-end” design, is the translation of
the digital RTL into a transistor-level description. The transistor-level model is coupled
with the manufacturing models to create and simulate the circuit in an analog
environment, producing accurate simulation estimates of timing, power, and area. The
front-end is considered complete when the model has acceptable results based on a true

floor plan and pessimistic Steiner routing parasitic calculations.

The final level of design, called the “back-end” design, is the fine-tuning and physical
routing of the circuit. This level uses pre-routing, auto-routers, and routing editors to
physically add and adjust the interconnection of the circuit in a model that may “tape-
out” to the GDSII manufacturing mask standard. The circuit’s final transistor model is
coupled with the routing model and the circuit undergoes a series of fine-grain electrical
tests, including electromagnetic simulations, IR calculations, local heating, noise, and a
full chip-level analog timing simulation. A model that passes all of the back-end checks,
as well as provides acceptable electrical power, timing, and area results, is ready for
GDSII tape-out. Any errors or unacceptable results require design iterations at either the

back-end, front-end, or RTL levels, depending on the errors and their severity.

This section includes descriptions of the RTL and front-end design methods used in this
dissertation’s fused multiplier-adders. The back-end design was not included in the
implementations, as the intended results are only for architectural comparisons and not
for immediate industrial tape-outs. A design in the back-end of the flow requires an
enormous amount of resources, effort, and time to fine-tune the circuit and prepare it for

manufacturing.

36

The decision to keep all designs in the front-end of the flow was made early in the
project, concluding that the results produced by the back-end design, such as
electromagnetic reports, local heating, timing results that are equal to or slightly better
than the Steiner front-end estimations, and mask layers of the metal interconnects would
provide little additional useful information for an academic architectural comparison.
Additionally, the back-end design has more focus on connecting up various front-end
blocks and fixing bad route netlists than evaluating architecture, so a line was drawn and
the fused multiplier-adder designs concluded at a transistor-level with a floor plan and

Steiner routing parasitics.

3.2.2 High-Level Design — Verilog RTL

The first step in the design of the fused multiply-add units was the translation of the block
diagram to an RTL description via the Verilog2K high-level design language (HDL).
Each design has been coded in Verilog2K RTL, compiled by Synposys Chronologic VCS
compiler tools, and debugged using the Novas Debussy logic analysis software.
Verification has been performed by a collection of test vectors and test benches which
include comprehensive corner cases, as well as built-in Verilog behavioral checks within
the RTL models themselves to ensure a more formal level of functional verification. A
description, screenshots, and examples of each RTL toolset are described in the following

sub-sections.

3.2.2.1 Verilog 2K HDL and the VCS Compiler

The Verilog 2K RTL HDL language is a syntax coding standard most recently updated in
2005 [33]. This language is written so that every line of code is executed simultaneously,
simulating electrical components with multiple inputs and outputs that execute on
multiple signals at the same time. The code may be written in any text-based editor
compliant with the user’s operating system, and must be compiled with a tool conforming

to the Verilog 2K standard.

37

An example of the Verilog HDL syntax used for the fused multiply-add designs is
provided in the RTL design of a Booth multiplexer. In this example, Verilog code is
written using the UNIX-based XEMACS program to create the Booth multiplexer in a

format that is accepted by the debugging and simulation software.

The Booth multiplexer seen in Figure 3.2.2.1 is a block used in a radix-4 multiplier tree
that accepts inputs from both a Booth encoder block and an un-processed multiplier
operand. The Booth encoder block outputs signals from the radix-4 Booth encoding of
the other multiplier operand input that determine if the partial product bits created for a
specific position in the multiplier tree require an inversion or shifting, i.e., if the operand
is multiplied by {-2,-1,0,1,2}. The behavioral code of this architectural block is realized

in the Verilog code seen in Figure 3.2.2.2.

\ M [52:0] |
A
‘ X-2 ‘ ‘ x-1 ‘ ‘ x0 ‘ ‘ X1 ‘ ‘ X2 ‘
5301, 8301/ [530]/ 5301/ [63:0]
—Vi T Sel2, St‘al1, Sign
5:1 P
[2:0]
PP [53:0]

Figure 3.2.2.1 Radix-4 Booth multiplexer

38

/!
/l (#1) Booth Mux
/!
module fma_lib_boothmux

(

M,

Sel2,

Sell,

Sign,

/| =====

input Sell ;
input Sel2 ;
input Sign;
input [52:0] M;

/| ======

reg [53:0] PP_Shift;

always @* begin
PP_Shift[53:0] = ({54{Sell}} & {1'b0, M[52:0]}) | ({54{Sel2}} & {M[52:0], 1'b0});
PP[53:0] = PP_Shift[53:0] » {54{Sign}};

end

endmodule

Figure 3.2.2.2 Verilog code for a radix-4 Booth multiplexer

After a Verilog block like the Booth multiplexer is combined with all the blocks required
for a design, the total model is not yet ready for compilation and simulation in a debug
tool. A functional block or collection of blocks may be syntactically correct according to
the Verilog standard, but without an input/output file that produces vectors as stimuli, a

debugger will provide no useful information on the design.

39

Figure 3.2.2.3 shows the syntax of an input/output file that creates two test vectors for the
FMA_Classic collection of Verilog modules. The vectors are latched to virtual registers
in an initialization statement, and time increments are described by numerical statements
following a ‘#” sign (in this case, a 100ps increment from the initial state to the following
state). After the test vectors are described, the file makes a call to the top level of the

fused multiply-add model that connects vectors to the various inputs.

When a Verilog collection has been coded along with an input/output file for stimulus,
the code needs to be compiled and ported to a format that can be read by a debugging
tool. For the fused multiply-add designs, the Synposys Chronologic VCS compiler is
used to collect all the Verilog files and combine them into a si