
Copyright

by

Eric Charles Quinnell

2007

The Dissertation Committee for Eric Charles Quinnell
certifies that this is the approved version of the following dissertation:

Floating-Point Fused Multiply-Add Architectures

Committee:

Earl E. Swartzlander, Jr., Supervisor

Jacob Abraham

Tony Ambler

Jason Arbaugh

Adnan Aziz

Floating-Point Fused Multiply-Add Architectures

by

Eric Charles Quinnell, B.S.E.E.; M.S.E.E.

Dissertation

Presented to the Faculty of the Graduate School of

the University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2007

For my wife
Eres mi vida, mi alma, y mi corazón.

v

Acknowledgements

This work on the design and implementation of the new floating-point fused multiply-add
architectures would not be possible without the knowledge, expertise, and support of the
following people:

First and foremost
Leslie K. Quinnell, my wife – for her unwavering patience, understanding, and support

throughout the lifetime of this project.

Supervisors
Dr. Earl E. Swartzlander, Jr., The University of Texas at Austin – for his wisdom and

unparalleled knowledge in the field of computer arithmetic,
as well as for single-handedly convincing a student to
pursue a wild new idea.

Carl Lemonds, Advanced Micro Devices – for his vast experience and expertise in the
field of x86 floating-point design, as well as his uncanny
ability to plainly identify the benefits and flaws of any idea,
without which these new architectures would never have
been conceived.

The Committee
Dr. Earl E. Swartzlander, Jr.

Dr. Jacob Abraham
Dr. Tony Ambler
Dr. Adnan Aziz

Dr. Jason Arbaugh

Advanced Micro Devices
Carl Lemonds
Dimitri Tan

Albert Danysh
Derek Urbaniak

Legal
Rick Friedman, The University of Texas at Austin

Brian Spross, Advanced Micro Devices
Antony Ng, Dillon & Yudell

Family and Friends
Leslie K. Quinnell

Don and Patricia MacIver
Charlie and Denise Quinnell

Chris and Janet King
Brig General & Mrs. Philip J. Erdle USAF (Ret)

Mrs. Marianne Quinnell
and countless others…

vi

Floating-Point Fused Multiply-Add Architectures

Publication No. _____________________

Eric Charles Quinnell, Ph.D.
The University of Texas at Austin, 2007

Supervisor: Earl E. Swartzlander, Jr.

This dissertation presents the results of the research, design, and implementations

of several new architectures for floating-point fused multiplier-adders used in the x87

units of microprocessors. These new architectures have been designed to provide

solutions to the implementation problems found in modern-day fused multiply-add units.

The new three-path fused multiply-add architecture shows a 12% reduction in

latency and a 15% reduction in power as compared to a classic fused multiplier-adder.

The new bridge fused multiply-add architecture presents a design capable of full

performance floating-point addition and floating-point multiplication instructions while

still providing the functionality and performance gain of a classic fused multiplier-adder.

Each new architecture presented as well as a collection of modern floating-point

arithmetic units that are used for comparison have been designed and implemented using

the Advanced Micro Devices (AMD) 65 nanometer silicon on insulator transistor

technology and circuit design toolset. All designs use the AMD ‘Barcelona’ native quad-

core standard-cell library as an architectural building block to create and contrast the new

architectures in a cutting-edge and realistic industrial technology.

vii

Table of Contents

Acknowledgements... v
Floating-Point Fused Multiply-Add Architectures .. vi
Table of Contents.. vii
List of Figures ... x
List of Tables ... xiii
Chapter 1... 1
An Introduction to the Floating-Point Fused Multiply-Add Unit 1

1.1 Introduction... 1
1.2 The Floating-Point Fused Multiply-Add Unit .. 2
1.3 Overview of the Dissertation .. 4

Chapter 2... 6
Previous Work on the Floating-Point Fused Multiply-Add Architecture 6

2.1 Introduction... 6
2.2 The IEEE-754 Floating-Point Standard .. 7
2.3 The IBM RISC System/6000 Fused Multiplier-Adder..................................... 10
2.4 The PowerPC 603e and Dual-Pass Fused Multiplier-Adder 14
2.5 The Pseudo-Fused Multiplier-Adder .. 19
2.6 Reduced Power Fused Multiplier-Adders... 20
2.7 A Fused Multiplier-Adder with Reduced Latency.. 22
2.8 Multiple Path Fused Multiplier-Adder.. 24
2.9 3-Input LZA for Fused Multiplier-Adders.. 28
2.10 A Fused Multiplier-Adder with Floating-Point Adder Bypass......................... 29
2.11 A Comparison of Literature .. 32

Chapter 3... 34
Methods and Components using AMD 65nm SOI .. 34

3.1 Introduction... 34
3.2.1 Design and Implementation Method Overview.. 35
3.2.2 High-Level Design – Verilog RTL... 37

3.2.2.1 Verilog 2K HDL and the VCS Compiler... 37
3.2.2.2 Novas Debussy Debugger ... 43

3.2.3 Front-End Implementation – The AMD AXE Flow..................................... 45
3.2.3.1 Gate Level Verilog using the ‘Barcelona’ library 46
3.2.3.2 Flattening the Netlist – axe -flat ... 50
3.2.3.3 Translating for Verification – axe -u2v .. 52
3.2.3.4 Equivalency Checking – axe -formal .. 52
3.2.3.5 Floorplan Layout – axe -place and axe -vp .. 55
3.2.3.6 Placement-Based Estimated Timing – axe -espftime 62
3.2.3.7 Power Estimation – HSim with axe-extracted SPICE netlist.................... 64

viii

3.3 Floating-Point Components .. 66
3.3.1 Radix-4 53-bit x 27-bit Multiplier Tree .. 68
3.3.2 Kogge-Stone Adders, Incrementers, and Carry Trees 73
3.3.3 Leading-Zero Anticipators (LZA) ... 77
3.3.4 Miscellaneous Components .. 82

Chapter 4... 83
References for Comparison: A Floating-Point Adder, a Floating-Point Multiplier, and a
Classic Fused Multiplier-Adder.. 83

4.1 Introduction... 83
4.2 Double-Precision Floating-Point Adder ... 84

4.2.1 The Far Path ... 85
4.2.2 The Close Path .. 87
4.2.3 The Add/Round Stage.. 89
4.2.4 Floating-Point Adder Exponent and Sign Logic....................................... 90
4.2.5 Floating-Point Adder Results ... 92

4.3 Double-Precision Floating-Point Multiplier ... 94
4.3.1 The Add/Round Stage.. 96
4.3.2 Exponent and Sign Logic .. 98
4.3.3 Floating-Point Multiplier Results ... 99

4.4 Double-Precision Classic Fused Multiplier-Adder... 101
4.4.1 Addition to Rounding Stage Specifics ... 102
4.4.2 Exponent and Sign Logic .. 105
4.4.3 Floating-Point Classic Fused Multiplier-Adder Results 107

Chapter 5... 110
The Three-Path Fused Multiply-Add Architecture ... 110

5.1 Introduction... 110
5.2 Three-Path Fused Multiply-Add Architecture .. 111

5.2.1 The Anchor Paths.. 113
5.2.2 The Close Path .. 116
5.2.3 The Add/Round Stage.. 117
5.2.4 Exponent and Sign Logic .. 119

5.3 Three-Path Fused Multiplier-Adder with Multiplier Bypass.......................... 121
5.4 Three-Path Fused Multiplier-Adder Results... 122

Chapter 6... 127
The Bridge Fused Multiply-Add Architecture... 127

6.1 Introduction... 127
6.2 The Bridge Fused Multiply-Add Architecture.. 129

6.2.1 The Multiplier ... 130
6.2.2 The Bridge... 131
6.2.3 The Adder.. 133
6.2.4 The Add/Round Unit ... 134

6.3 The Bridge Fused Multiplier-Adder Results... 135
Chapter 7... 142
Conclusions and Future Work .. 142

ix

7.1 Conclusions... 142
7.2 Future Work .. 145

Bibliography ... 146
VITA... 150

x

List of Figures

Figure 1.2.1 Simple block diagram of a floating-point fused multiplier-adder 3
Figure 2.2.1 The IEEE-754 single and double precision floating-point data types [20] 9
Figure 2.3.1 Block diagram showing the combination of add and multiply (right,
redrawn) [1] .. 11
Figure 2.3.2 Alignment range for the 3rd operand in a multiply-add fused operation
(redrawn) [1] ... 12
Figure 2.3.3 Original fused multiply-add unit (redrawn) [2].. 13
Figure 2.8.1 The fused multiply-add 5 data range possibilities [29] 26
Figure 2.8.2 Suggested implementation for a 5-case fused multiply-add (redrawn) [28] 27
Figure 2.10.1 Lang/Bruguera fused multiply-add with floating-point adder capabilities
(redrawn) [32] ... 31
Figure 3.2.2.1 Radix-4 Booth multiplexer .. 38
Figure 3.2.2.2 Verilog code for a radix-4 Booth multiplexer ... 39
Figure 3.2.2.3 A Verilog input/output stimulus file.. 41
Figure 3.2.2.4 UNIX output of VCS compile and simulation .. 42
Figure 3.2.2.5 Novas Debussy debugger .. 44
Figure 3.2.2.6 Verilog behavioral checkpoint code.. 44
Figure 3.2.2.7 Debussy behavioral checkpoint screenshot ... 45
Figure 3.2.3.1 Gate-level schematic of a 3-bit aligner.. 48
Figure 3.2.3.2 Gate-level Verilog of a 3-bit aligner ... 49
Figure 3.2.3.3 UNIX output of axe -flat (part 1) .. 50
Figure 3.2.3.4 UNIX output of axe -flat (part 2) .. 51
Figure 3.2.3.5 UNIX output of axe -u2v... 52
Figure 3.2.3.6 UNIX output of axe –formal ... 53
Figure 3.2.3.7 LEC error vector screen... 54
Figure 3.2.3.8 LEC schematic debugger... 55
Figure 3.2.3.9 UNIX output of axe -place (part 1) ... 56
Figure 3.2.3.10 UNIX output of axe -place (part 2) ... 57
Figure 3.2.3.11 PX placement code for an adder sum block .. 58
Figure 3.2.3.12 VP output of a cell with I/O flyline interconnects................................... 59
Figure 3.2.3.13 VP output of a cell with a Steiner output interconnect............................ 60
Figure 3.2.3.16 UNIX output of axe –espftime .. 63
Figure 3.2.3.17 A segment from a parsed Primetime report... 63
Figure 3.2.3.18 A segment from a re-sizing script ... 63
Figure 3.2.3.19 A segment from a edgerate report ... 63
Figure 3.2.3.20 UNIX output of a HSim power simulation.. 65
Figure 3.2.3.21 Spice Explorer power simulation screenshot .. 66
Figure 3.3.1 Booth encoded digit passed to a Booth multiplexer..................................... 69

xi

Figure 3.3.2 Multiplier 27-term partial product array... 70
Figure 3.3.3 “Hot one” and “sign encoding” of a partial product..................................... 71
Figure 3.3.4 Floating-point radix-4 multiplier tree... 72
Figure 3.3.5 Multiplier tree floorplan ... 73
Figure 3.3.6 Kogge-Stone prefix adder and its components [34] 74
Figure 3.3.7 Kogge-Stone 109-bit adder... 76
Figure 3.3.8 Block view of the 109-bit adder ... 76
Figure 3.3.9 Kogge-Stone 52-bit incrementer .. 76
Figure 3.3.10 Kogge-Stone 13-bit adder... 76
Figure 3.3.11 LZA 9-bit floating-point example .. 78
Figure 3.3.12 Leading one's prediction (LOP) equations in Verilog................................ 79
Figure 3.3.13 Priority encoder 16-bit.. 80
Figure 3.3.14 Priority encoder 64-bit.. 81
Figure 3.3.15 LZA 57-bit floorplan .. 82
Figure 3.3.16 LZA 57-bit blocks .. 82
Figure 4.2.1 Double-precision floating-point adder top view... 85
Figure 4.2.2 Floating-point adder far path .. 86
Figure 4.2.3 Floating-point adder close path .. 88
Figure 4.2.4 Floating-point adder add/round stage... 90
Figure 4.2.5 Floating-point adder exponent and sign logic .. 92
Figure 4.2.6 Floating-point adder floorplan.. 93
Figure 4.2.7 Floating-point adder critical path ... 94
Figure 4.3.1 Floating-point multiplier top view.. 96
Figure 4.3.2 Floating-point multiplier add/round stage .. 97
Figure 4.3.3 Floating-point multiplier exponent and sign logic 98
Figure 4.3.4 Floating-point multiplier floorplan... 99
Figure 4.3.5 Floating-point multiplier critical path .. 100
Figure 4.4.1 Floating-point fused multiply-add top view... 102
Figure 4.4.2 Floating-point fused multiply-add addition and rounding.......................... 104
Figure 4.4.3 Floating-point fused-multiply add exponent and sign logic....................... 106
Figure 4.4.4 Floating-point classic fused multiply-add floorplan................................... 107
Figure 4.4.5 Floating-point classic fused multiply-add critical path 108
Figure 5.2.1 Three-path fused multiplier-adder architecture .. 112
Figure 5.2.2 The Adder Anchor Path.. 114
Figure 5.2.3 The Product Anchor Path ... 115
Figure 5.2.4 The Close Path.. 117
Figure 5.2.5 The No Round Path (left) and Add/Round Stage (right)............................ 118
Figure 5.2.6 Exponent and Sign Logic ... 120
Figure 5.3.1 Three-path fused multiply-add with FPM bypass 121
Figure 5.4.1 Three-path fused multiply-add floorplan.. 123
Figure 5.4.2 Three-path fused multiply-add critical path ... 125
Figure 6.2.1 The bridge fused multiply-add block diagram ... 130
Figure 6.2.2 The Multiplier... 131
Figure 6.2.3 The Bridge .. 132

xii

Figure 6.2.4 The Adder... 134
Figure 6.2.5 The Add/Round Unit .. 135
Figure 6.3.1 The bridge fused multiply-add floorplan.. 137
Figure 6.3.2 The bridge fused multiply-add critical path ... 139

xiii

List of Tables

Table 2.2.1 The IEEE-754 table of formats [20] .. 8
Table 2.11.1 Comparison of proposed fused multiply-add architectures 33
Table 3.3.1 Radix-4 Booth encoding for a multiplier tree.. 68
Table 3.3.2 Multiplier color legend .. 73
Table 4.2.1 Floating-point adder color legend.. 93
Table 4.2.2 Floating-point adder results ... 94
Table 4.3.1 Floating-point multiplier color legend... 99
Table 4.3.2 Floating-point multiplier results .. 100
Table 4.4.1 Floating-point classic fused multiply-add color legend............................... 108
Table 4.4.2 Floating-point classic fused multiply-add results .. 109
Table 5.4.1 Floating-point fused multiply-add color legend .. 124
Table 5.4.2 Floating-point three-path fused multiplier-adder results 126
Table 5.4.3 Floating-point fused multiplier-adder comparative results.......................... 126
Table 6.3.1 Bridge fused multiply-add color legend .. 138
Table 6.3.2 Bridge fused multiplier-adder results .. 141
Table 6.3.3 Raw results from various floating-point units ... 141
Table 6.3.4 Results Normalized to an FPA Stand-Alone Addition. 141
Table 6.3.5 Results Normalized to an FPM Stand-Alone Multiplication....................... 141
Table 6.3.6 Results Normalized to a Classic Fused Multiply-Add. 141
Table 7.1.1 Comparison of proposed fused multiply-add architectures 144

1

Chapter 1

An Introduction to the Floating-Point Fused Multiply-Add Unit

This chapter presents a brief introduction to the floating-point fused multiply-add arithmetic unit, its recent

spike in interest due to 3D graphics and multimedia demands, and the problems found in its architectural

implementation. The chapter finalizes with a short overview of this dissertation’s research.

1.1 Introduction

This dissertation presents the results of the research, design, and implementation of

several new architectures for floating-point fused multiplier-adders used in the x87 units

of microprocessors. These new architectures have been designed to provide solutions to

the implementation problems found in modern-day fused multiply-add units,

simultaneously increasing their performance and decreasing their power consumption.

Each new architecture, as well as a collection of modern floating-point arithmetic units

used as reference designs for comparison, have been designed and implemented using the

Advanced Micro Devices (AMD) 65 nanometer silicon on insulator transistor technology

and circuit design toolset. All designs use the AMD ‘Barcelona’ native quad-core

standard-cell library as an architectural building block to create and contrast the new

architectures in a cutting-edge and realistic industrial technology.

This chapter presents an introduction to the floating-point fused multiply-add

architecture, a brief discussion of its implementation benefits and problems, and a

2

description of the recent spike in its academic and industrial use. The chapter finishes

with an overview of the dissertation.

1.2 The Floating-Point Fused Multiply-Add Unit

In 1990, IBM unveiled implementation of a floating-point fused multiply-add arithmetic

execution unit on the RISC System 6000 (IBM RS/6000) chip [1], [2]. IBM recognized

that several advanced applications, specifically those with dot products, routinely

performed a floating-point multiplication, A x B, immediately followed by a floating-

point addition, (A x B)result + C, ad infinitum. To increase these applications’

performances, IBM design engineers created a new unit that merged a floating-point

addition and floating-point multiplication into a single hardware block—the floating-

point fused multiplier-adder. This floating-point arithmetic unit, seen in Figure 1.2.1,

executes the equation (A x B) + C in a single instruction.

The floating-point fused multiply-add unit has several advantages in a floating-point unit

design. Not only can a fused multiplier-adder improve the performance of an application

that recursively executes a multiplication followed by an addition, but the unit may

entirely replace an x87 co-processor’s floating-point adder and floating-point multiplier.

A fused multiplier-adder may emulate a floating-point adder and floating-point multiplier

by inserting fixed constants into its data path. A floating-point addition is executed by

replacing the equation operand B with 1.0, forming the equation (A x 1.0) + C. Likewise,

a floating-point multiplication is executed by replacing operand C with 0.0, forming the

equation (A x B) + 0.0. This simple injection of constants allows a floating-point fused

multiplier-adder to be built as the stand-alone, all-purpose execution unit inside a

floating-point co-processor.

However, such advantages do not come without a cost. Although an application may

experience increased performance when a program requires multiplications followed by

additions, others that require single-instruction additions or single-instruction

3

multiplications without the cross-over experience a significant decrease in performance.

A fused multiply-add unit may be able to emulate a floating-point adder or floating-point

multiplier, but the block’s additional hardware imposes extra latency on the stand-alone

instructions as compared to their original units.

Round
& Post-Normalize

A_[63:0] B_[63:0]

FMA_result[63:0]

C_[63:0]

Multiplier Tree

3:2 CSA

Align

Invert

Adder
LZA

Complement

Normalize

Figure 1.2.1 Simple block diagram of a floating-point fused multiplier-adder

Single instruction latencies are not the only disadvantage to a floating-point fused

multiplier-adder. The unit’s internal components require bit-widths and

interconnectivities commonly more than double that of components found in floating-

point adders and floating-point multipliers. With the increasing presence of the parasitic

constraints found in designs with massive interconnectivity [3] - [5], the fused multiply-

4

add architecture is quickly becoming not only a design with difficult timing goals, but

also one with heavy power consumption.

The pros and cons of the fused multiplier-adder are well known, and the list of

disadvantages has historically driven industry to avoid the unit’s use in x87 designs.

However, modern-day applications have grown in complexity, requiring a noticeably

increased use of the fused multiply-add equation (A x B) + C.

For instance, the fused multiply-add is now used in applications for DSP and graphics

processing [6], [7], FFTs [8], FIR filters [6], division [9], and argument reductions [10].

To accommodate this increased use of the fused multiply-add instruction, several

commercial processors have implemented embedded fused multiply-add units in their

silicon designs. These chips include designs by IBM [1], [11]-[13], HP [14], [15], MIPS

[16], ARM [6], and Intel [17], [18].

With the continued demand for 3D graphics, multimedia applications, and new advanced

processing algorithms, not to mention the IEEE’s consideration of including the fused

multiply-add into the 754p standard [19], the performance benefits of the fused multiply-

add unit is beginning to out-weigh its drawbacks. Even though the fused multiply-add

architecture has troublesome latencies, high power consumption, and a performance

degradation with single-instruction execution, it may be fully expected that more and

more x87 designs will find floating-point fused multiply-add units in their silicon.

1.3 Overview of the Dissertation

Chapter 2 presents the complete history, advancement, and academic design suggestions

of the floating-point fused multiply-add architecture presented by published literature.

The chapter begins with the IEEE-754 standard [20] followed by an original description

of the IBM RS/6000 unit and finishes with the most recent fused multiply-add

publication.

5

Chapter 3 provides the details of how a circuit is designed and implemented in the AMD

65nm silicon on insulator technology and toolset environment. Following the toolset

description, the chapter also presents the results of a custom-implemented floating-point

component library which was used by each design in this dissertation.

Chapter 4 presents the design and implementation results of three standard floating-point

units created as a reference for comparison. The designs include a floating-point adder,

floating-point multiplier, and a modern implementation of a floating-point classic fused

multiplier-adder.

Chapter 5 presents the design and implementation of a new floating-point three-path

fused multiply-add architecture created to simultaneously increase the performance and

reduce the power consumption of a fused multiply-add instruction. The results of the

implementation are directly compared to the results from the floating-point classic fused

multiply-add unit from Chapter 4.

Chapter 6 presents the design and implementation of a new floating-point bridge fused

multiply-add architecture created to allow full-performance executions of single floating-

point instructions while still providing the performance benefits of a fused multiply-add

architecture. The results of this implementation are directly compared to the results of the

floating-point adder, floating-point multiplier, and floating-point classic fused multiplier-

adder from Chapter 4.

Chapter 7 summarizes the design results and highlights the benefits and disadvantages of

the two new floating-point fused multiply-add architectures. This chapter concludes the

dissertation.

6

Chapter 2

Previous Work on the Floating-Point Fused Multiply-Add Architecture

This chapter provides a description of previous significant works on the floating-point fused multiply-add

architecture, including an overview of the original IBM RS/6000.

2.1 Introduction

Several works for the reduction of latency or power consumption in floating-point fused

multiply-adders have been published since IBM’s original papers on the RS/6000 [1], [2].

This chapter presents the invention and proposed advancements or implementations of

the fused multiply-add unit in chronological order. These publications come from both

industry circuit implementations and academic architecture proposals.

While not all suggestions for improved fused multiplier-adders have actually been

implemented, much of the already completed research provides insight to the variety of

complications found in the original architecture. Each paper listed in this section after the

original provides a different approach to the design of floating-point fused multiply-add

units in an attempt to deviate from the industry-wide acceptance of IBM RS/6000 style

architectures. The research presented is fully comprehensive and presents all major

advancements to the fused multiply-add architecture to date.

The chapter begins with a brief summary of the IEEE-754 standard [20], followed by the

research papers on floating-point fused multiply-add units. Papers that do not present

changes to the original fused multiply-add architecture or those that are only industry

implementation reports are not described in this chapter.

7

2.2 The IEEE-754 Floating-Point Standard

The field of floating-point computer arithmetic is a sub-section of computer engineering

that concentrates on the development and execution of complex mathematics in modern-

day microprocessors. The family of floating-point chips and co-processors are the units in

a microprocessor that execute advanced applications such as 3D graphics, multimedia,

signal processing, Fourier transforms, and just about every variety of scientific,

engineering, and entertainment solutions that require complex mathematics.

The floating-point notation is the electronic world’s binary equivalent form of scientific

notation for decimal values. A binary floating-point number may represent a vast range of

real numbers, including values approaching the infinitely large to those approaching the

infinitely small—all in a compact and finite bit-width. In a floating-point number, a

selection of binary bits representing an integer fraction hold a numerical position in the

real number plane based on another selection of binary bits representing an exponent. The

rules that define and govern this floating-point format are enumerated in the Institute of

Electrical and Electronics Engineers (IEEE) specification document reference number

754, known as the IEEE-754 floating-point standard [20].

The IEEE-754 standard sets down specific rules and formats for any electronic

processing system that uses floating-point arithmetic. The 754 begins by defining

precision and exponent parameters for its description of floating-point formats as follows:

p = the number of significant bits (precision)
Emax = the maximum exponent
Emin = the minimum exponent

It then specifies all binary numeric floating-point numbers to be represented by bits in the

following three fields:

1) 1-bit sign s
2) Biased exponent e = E+bias
3) Fraction f = · b1b2 … bp-1

8

where

s = 0 or 1
E = any integer between Emin and Emax, inclusive
bi = 0 or 1

These bits represent an actual number by listing them in the following form:

Number =)....1(2)1(121 −××− p
es bbb

The standard goes on to list the parameter values and their respective names, all listed in

Table 2.2.1. For example, a “single precision” floating point format uses 24 bits to

represent an implicit one and 23 fraction bits (i.e., 1.fraction), 8 bits to represent

exponents from the range 2+127 to 2-126 (approximately 1.7 x 1038 and 1.18 x 10-38

respectively) and one bit for the sign (i.e., 0 for positive or 1 for negative). The standard

lists single, double, and extended precisions as floating-point data type options, each

respectively increasing in numerical range and precision.

Table 2.2.1 The IEEE-754 table of formats [20]

In the standard’s data type definition of “single precision,” the 23 fraction, 8 exponent,

and 1 sign bit may be stored in a single 32-bit register or memory location. The implicit

‘1’ from the fraction is just that, and does not need to be included in the register. “Double

precision” is stored in a 64-bit register or memory location. Figure 2.2.1 shows the bit

partitioning of the stored binary words.

9

Figure 2.2.1 The IEEE-754 single and double precision floating-point data types [20]

After the enumeration of formats and precisions, the IEEE 754 standard lists a set of

requirements for rounding methods. In a floating-point arithmetic calculation, (i.e., a

floating-point addition) the result, since it is a fractional representation, may have bits

that are too small to include in the format specified. However, leaving them out will alter

the correct answer, creating error.

To consider calculation errors, the 754 standard requires any compliant application to

support four rounding methods: round to nearest even, round toward plus infinity, round

toward minus infinity, and round toward zero. These methods give application

programmers the power to determine what kind of rounding error correction is best for

their design. In hardware designs conforming to this requirement, generally the rounding

stage is at the end of an execution block.

Following the section on rounding, the 754 standard enumerates the required

mathematical functions that must be supported in a floating-point machine. The list

requires the implementation of the following operations: add; subtract; multiply; divide;

square root; remainder; round to integer in floating-point format; convert between

10

floating-point formats; convert between floating-point and integer; convert binary to

decimal; and compare. In the recent meetings of the IEEE-754 committee, currently

known as the IEEE 754r, the inclusion of the fused multiply-add function, z = a + b x c,

is being considered as an addition to the floating-point operation standard [19].

The formats, rounding, and operation requirements of the IEEE-754 standard listed here

are important for the complete understanding of the project described in this and

following chapters. All designs, simulations, implementations, as well as most previous

publications are in IEEE-754 double precision, 64-bit format and conform to the

rounding methods described.

2.3 The IBM RISC System/6000 Fused Multiplier-Adder

In January of 1990, a paper by Robert K. Montoye, Erdem Hokenek, and S. L. Runyon

was published in the IBM Journal of Research and Development on the design of the

RISC System/6000 floating-point execution unit [1]. The journal publication was

followed by an IEEE Journal of Solid-State Circuits paper published in October 1990 [2].

These papers included details on the invention of the multiply-add fused unit, or what

later became more commonly known as the same name rearranged: the fused multiply-

add unit, or the multiply-accumulate chained (MAC) unit.

The original paper [1] states that “the most common use of floating-point multiplication

is for ‘dot-product’ operations” and that “a single unit which forms the multiply-

accumulation operation D = (A x B) + C would produce a significant reduction in internal

busing requirements.”

What the paper states is that the equation D = (A x B) + C was at the time a highly-used

group of operations in the floating-point unit. The problem with the operation is that a

floating-point multiplication and round must first take place before the floating-point

addition and round is performed. If a single unit were produced that performs the whole

11

operation in one block, several benefits could be realized. The original block diagram

describing the combination is shown in Figure 2.3.1.

Figure 2.3.1 Block diagram showing the combination of add and multiply (right, redrawn) [1]

The papers go on to describe additional benefits of combining the floating-point adder

and floating-point multiplier into a single functional unit. First, the latency for a multiply-

add fused mathematical operation is reduced significantly by having an addition

combined with a multiplication in hardware. Second, the precision of the final result is

increased, since the operands only go through a single rounding stage. Third, there is a

decrease in the number of required input/output ports to the register file and their

controlling sub-units. Finally, a reduced area of both the floating-point adder and

floating-point multiplier may be realized since the adder is only wired to the output

connections of the multiplier.

Reference [1] follows these enumerated points with a basic description of the architecture

required for a fused multiply-add unit. Since three operands are used in the fused

multiply-add operation, the floating-point data must be handled in a range of

normalization different than that found in the standard floating-point adder or floating-

point multiplier.

12

In multiplication, the product word size is double the bit-width of the operands. In a

floating-point addition, the addition operand (i.e., the addend) is shifted to align the

implicit binary point so that the operands are properly aligned when they are added. In an

extreme case of addition, the addend’s binary point may line up at any position with

respect to the product. To cover all of the addition and multiplication cases without losing

precision, a fused multiply-add operation must be a full three times the size of the

original operator bit widths to correctly normalize the data. Figure 2.3.2 shows the

required alignment data-range.

Figure 2.3.2 Alignment range for the 3rd operand in a multiply-add fused operation (redrawn) [1]

Reference [2] describes this normalization problem as one of the tradeoffs required in a

fused multiply-add unit. The large bit range requires a very large shifter which can add a

significant latency to the operation. The solution presented is the pre-alignment of the

addend in parallel with the multiplication.

The second challenge in combining a floating-point multiplication with a floating-point

addition comes again from the large precision range. To perform an addition in double

precision format, a fused multiply-add unit requires a 161-bit adder. This creates a very

difficult timing arc in implementation.

For the adder’s case of massive cancellation, which is a case when lots of leading ‘0’s

result from a subtraction of nearly identical operands, the leading ‘1’ must be found and

the data normalized. To do this, a leading-zero detector (LZD) is included in the fused

multiply-add unit and runs in parallel with the massive adder. The LZD is built to find the

13

first ‘1’ position in the result before the addition is completed, allowing a pre-calculated

normalization control to immediately shift the output data from the adder.

Paper [2] presents the original fused multiply-add architecture as built on the IBM

RS/6000 shown in Figure 2.3.3. The IBM RS/6000 was implemented in 1µm CMOS

silicon technology at IBM.

MPY
ARRAY

A B

LATCH

ADDER

LZA

C

Bit Alignment

Postnormalize

LATCH

Norm./Round

Reg. File

MUX

LATCH

MUX

Figure 2.3.3 Original fused multiply-add unit (redrawn) [2]

14

2.4 The PowerPC 603e and Dual-Pass Fused Multiplier-Adder

The first papers of note after the RS/6000 on fused multiply-add units are [12] and [13].

Both are on the same subject and contribute the same ideas, just in different detail.

Paper [12] is on the implementation of the PowerPC 603e microprocessor. This paper

provides three main contributions for the fused multiply-add architecture: first, the paper

provides far better detail and descriptions of the original IBM RS/6000 architecture with

slight improvements; second, it uses a dual-pass iterative technique in the multiplier to

reduce the area and power consumption of the overall fused multiply-add unit; third, the

adder/complement stage uses an iterative dual-pass end around carry (EAC) adder that

reduces the overall adder size by replacing bit ranges with incrementors. The PowerPC

603 fused multiply-add architecture is shown in Figure 2.4.1.

15

B mant A mant C mant

Booth recoder143-bit
alignment
shifter and
sticky logic 53 x 28 multiplier array

 (4-to-2 CSAs)

88-bit 3-to-2 CSA

Carrys SumsAligned B

88-bit carry-lookahead adder INC56-bit INC

tmp

161-bit mantissa

LZD

Shift

63-bit normalization shifter

Rounder

70-bit result

Figure 2.4.1 Block diagram of the PowerPC 603e fused multiply-add unit (redrawn) [12]

The fused multiply-add architecture presented is in essence the same as the IBM

RS/6000. First, a large addend aligner that runs in parallel to the multiplier array meets

up with the product data in a 3:2 carry-save adder (CSA). The operands are added

together in a 161-bit adder while an LZD calculates the shift amount for the

normalization shifter. The result is then rounded and passed out of the block.

16

Although the general architecture is the same as that of the IBM RS/6000, the PowerPC

603e uses far less area and power in exchange for additional cycles. Specifically, each

double-precision fused multiply-add instruction must pass through the multiplier block

twice before a correct carry save product is calculated.

The details of the iterative components are described thoroughly in [13]. These

components are specifically designed to accelerate the performance of single-precision

data types. The iterative multiplier scheme reduces the logic in the CSA critical path by a

full half. While this makes the tree too small for double-precision numbers, a single-

precision instruction is able to produce a product in one multiplier cycle.

To implement this scheme, both the adder and multiplier have the ability to hold for a

second cycle during a double-precision fused multiply-add instruction. The iterative

multiplier, shown in Figure 2.4.2, adds together partial products like any standard CSA

tree for the first cycle. For the second cycle, the partial product result from the first

iteration is fed back into the tree and combined with the new partial products.

The dual-pass EAC adder, shown in Figure 2.4.3, performs an addition in every cycle

regardless of the data type. In the first pass of a double-precision calculation, a selection

of the lower product bits are added together and fed-back to the addition stage. Since

many of the low-end partial products are complete in the first iteration, they do not need

to be re-combined with the higher-order product from the multiplier second pass. Instead,

the bits are passed to an incrementer for the case of EAC 2’s complementation.

17

Figure 2.4.2 Iterative Booth radix-4 multiplier CSA tree [13]

Figure 2.4.3 Dual-pass, iterative EAC adder [13]

18

In any fused multiply-add case, the high 55-bits of the 161-bit adder input range may

only come from the addend and never the multiplier product. Since the product result has

a fixed internal bit position, the addend must align with respect to the product. If the

addend is much greater than the product, only the top 55-bits of the 161-bit adder result

are required. In this case, the product is only used in carry propagation and rounding, so

the top 55-bits only come from the addend. If the product is much larger than the addend,

the top 55-bits of the 161-bit internal range are all ‘0’s due to the fixed position of the

product, so the 161-bit addition result discards the top 55-bits and normalizes the product

instead.

Since the design only requires carry propagation in the high 55-bits of the 161-bit adder

range, an incrementer is used instead of an adder. The carry-out from this high-end

incrementer is passed back to the carry-in of the low-end incrementer, completing the

EAC scheme. In total, the 161-bit CPA from the RS/6000 fused multiply-add architecture

is reduced in the 603e to an 88-bit EAC CPA with incrementers on each side.

To finalize, the iterative, dual-pass fused multiply-add architecture provides lower single-

precision latency, as well as a large reduction in area and power by its creative

implementation of the adder and multiplier array. The cost of these gains comes from the

taxation of double-precision operations with an extra cycle. These data types can

therefore only get half the throughput of single-precision instruction vectors.

The floating-point fused multiply-add architecture described in [12] and [13] has been

physically implemented on the IBM PowerPC 603e floating-point unit in 0.5µm CMOS

silicon technology.

19

2.5 The Pseudo-Fused Multiplier-Adder

Naini, Dhablania, James, and Das Sarma presented a paper in 2001 on the

implementation of the HAL SPARC64 [21]. The paper is not specifically about a fused

multiply-add unit, but does provide a very interesting idea on an architectural

arrangement named the “pseudo-fused multiply-add.”

In the implementation of the HAL SPARC64, the FPU architecture provides support for a

fused multiply-add instruction via two pseudo-fused multiply-add instructions:

• unfused-floating-point multiply-add (uFMADD)

• unfused-floating-point multiply-subtract (uFMSUB)

The SPARC chip itself has two floating-point execution pipelines that can calculate up to

two independent fused multiply-add instructions. The pipelines each include a standard

floating-point adder (floating-point adder) and floating-point multiplier (floating-point

multiplier) with pseudo-fused multiply-add bus handling. This pseudo-fused multiply-add

handler is simply a forwarding bus that takes the result from a pipeline’s floating-point

multiplier and sends it directly to the pipeline’s floating-point adder, bypassing the

register file. Although bypass buses are now common place in modern FPUs, the bus

presented is specifically for pseudo-fused multiply-add instructions.

The pseudo-fused multiply-add does not combine the hardware of the floating-point

multiplier and adder. Instead, each floating-point multiplication performs rounding on the

data before forwarding the result to the adder on the reserved fused multiply-add bus. The

floating-point adder unit uses a third operand from the register file and adds it to the

forwarded result. The final pseudo-fused multiply-add is rounded and sent back to the

FPU register file. The dual pipe SPARC FPU architecture is shown in Figure 2.5.1 in its

original form.

20

FMUL FADD

FRS
Floating Point

Reservation Station

FADD FMUL

src1
src2

src3

FMA bus

FPA Result Bus FPB Result Bus

src3
src2

src1

FMA bus

64 64

Figure 2.5.1 Dual unit floating-point unit with pseudo-fused multiply-add forwarding buses [21]

The results presented for the SPARC FPU show a latency of 3 cycles for a floating-point

addition or floating-point multiplication, and a latency of 4 cycles for a pseudo-fused

multiply-add instruction. The HAL SPARC64 has been implemented on 0.15µm CMOS

silicon technology.

2.6 Reduced Power Fused Multiplier-Adders

Later in 2001, Pillai, Shah, A. J. Al-Khalili, and D. Al-Khalili presented a paper that

compares the IBM RS/6000 architecture with a proposed architecture specifically

designed for power reduction [22]. The general philosophy of the architecture is to

provide two parallel computation paths (as well as a bypass for floating-point multipliers)

that process under different data range assumptions. Early in the pipeline, as soon as the

correct path is known via the exponent difference, the other path pipeline is gated and the

inputs hold the previous state, saving power.

Figure 2.6.1 (redrawn for clarity) shows the paper’s proposed architecture—the

Concordia fused multiplier-adder. The Concordia architecture uses alignment blocks

before the multiplier array in a move to pre-shift the operands into alignment. This allows

21

the resulting product terms to be immediately forwarded to two separate paths, each of

which may be turned off via pre-calculation. The chosen path which matches the aligned

data range of the operands goes on to complete the fused multiply-add instruction. As an

added feature, a third partial bypass path is allowed for floating-point multiplier single

instructions to have reduced latency.

Result Integration/ Flag Logic

Significand Multiplier
(Partial Product

Processing)

3:2 Compression
LZA

Exponent Logic Control Logic

Pre-alignment Logic

Product Sticky
Logic

Bypass Logic

CPA/Rounding
LZA

Result Selector/
Normalization-LZA

(LZC, Barrel Shifter)

3:2 Compression
LZB

CPA/Rounding
LZB

Result Selector/
Normalization MUXs

LZB

CPA/Rounding
Partial Bypass

Result Selector/
Normalization MUXs

Partial Bypass

Input Floating
Point Numbers

Exponents

Flags Sum

1st

2nd

3rd

Figure 2.6.1 Concordia fused multiplier-adder (redrawn) [22]

22

A complication of the Concordia architecture comes from the alignment before the

multiplier array. An operand aligned before the multiplier widens the multiplier tree input

range, requiring either a larger variable multiplier tree or a loss of precision by parsing

lower bits for power savings and latency reduction. The paper’s description and

arguments for the acceptance of small ulp errors in digital signal processing applications

suggest that the Concordia fused multiplier-adder uses the in-accurate multiplier

implementation option in pursuit of lower power consumption and latencies.

The paper finalizes by presenting a 44% reduction in power consumption and a 9%

latency reduction in the Concordia architecture as compared to the IBM RS/6000 design

(re-built on the same technology for comparison). The architecture was synthesized on

both 0.35 µm CMOS silicon technology as well as a FPGA and simulated with digital

signal processing application data to produce the results.

2.7 A Fused Multiplier-Adder with Reduced Latency

The greatest deviation from the original IBM RS/6000 architecture comes from a paper

by T. Lang and J.D. Bruguera on a reduced latency fused multiplier-adder [23]. This

proposal claims to achieve a significant increase in fused multiply-add unit performance

by the combination of the addition and rounding stage into one block. Although the

add/round stage is a widely used component in modern floating-point adder and floating-

point multiplier architectures as seen in [24] – [27], its use in a fused multiplier-adder

proves to be more difficult.

Lang and Bruguera describe that in order to combine the addition and rounding stages in

a fused multiply-add unit, the add/round block must follow the leading-zero anticipator

(LZA) normalization stage. Much like a floating-point adder in cases of massive

cancellation, the location of the floating-point itself must be determined before any

rounding is performed. If the addition and rounding occur simultaneously, then the

required compound adder must logically follow the normalization.

23

The reduced latency fused multiply-add architecture is shown in Figure 2.7.1. In this

design, the aligned addend combines with the multiplier product much in the same way

as in the IBM RS/6000. However, immediately after the CSA, the data enter two

complementary half adder (HA) paths. Sign detection logic determines the correct

inversion, selects the correct HA result, and passes the data to the normalization stage.

The correctly inverted data stall at the normalization stage and waits for LZA shift

control. In this architecture, the LZA itself is on the critical path. To reduce the time

between the multiplier output and the first normalization shift, the authors design a

special LZA encoder that produces the control signals on an accelerated path. These

signals exit the LZA one bit at a time as they are calculated, as opposed to a standard

encoder which selects all the outputs from a parallel multiplexer simultaneously. As each

control exits the block, it drives its respective multiplexer normalization.

When the data exit the normalization stage, it is split between a 51-bit compound adder

and a 108-bit carry/sticky block. The carry/sticky block creates and passes the rounding

information bits to rounding control, which then selects the correct augmented adder

output. The data are post-normalized, and the fused multiply-add is complete.

The paper claims an estimated 15-20% reduction in latency as compared to a standard

fused multiply-add [23]. This result is calculated theoretically, and the actual architecture

has yet to be implemented in either a synthesized or a custom CMOS silicon design.

24

CSA tree

recodbit invert

161-bits
alignment

shifter

3:2 CSA
sign

detection

Complement
HAs and

 part of adder
LZA

normalization
shifters

Rest of
53-bits

dual adder

sum+1 sum

round bit
guard bit

carry
and sticky

selection

complement

A B C

Figure 2.7.1 Lang/Bruguera combined addition/rounding stage fused multiply-add (redrawn) [23]

2.8 Multiple Path Fused Multiplier-Adder

Peter-Michael Seidel wrote a paper in 2003 that proposes a multiple path fused multiply-

add architecture to selectively execute on different data ranges for increased performance

[28]. Much like the architecture of a common dual-path floating-point adder, the

25

proposed architecture uses pre-determined data range assumptions that perform different

operations on parallel hardware.

Seidel specifically suggests that a fused multiply-add may be split up into 5 distinct

cases, all based on the difference in the exponents (δ = [Aexp + Bexp] – Cexp + BIAS):

1. δ ≤ -54, where the addend is far greater than the multiplication product. The

product only affects the post-normalization, depending on rounding mode.

2. -54 < δ ≤ -3, where the addend is greater than the product. The product operands

are aligned and added.

3. -2 ≤ δ ≤ 1, where the product and addend may cause massive cancellation during

a subtraction. This case is handled like the close path in a dual-path adder.

4. 2 ≤ δ < 53, where the product dominates the upper digits of the result. The addend

is aligned and added.

5. 53 ≤ δ, where the product term is much greater than the addend. The addend only

affects rounding.

Each fused multiply-add range case listed is seen in Figure 2.8.1. The bit descriptions are

all for IEEE double-precision operands.

26

Figure 2.8.1 The fused multiply-add 5 data range possibilities [29]

27

The paper goes on to suggest an implementation for a fused multiply-add unit that

considers the ranges of the five cases as shown in Figure 2.8.2. The implementation uses

two parallel hardware paths—one for the far exponent differences and one for the close

exponent difference. Much like [22], the far path uses two aligner blocks to selectively

shift operands based on the specific data range. For range case 1 and 2, one of the

multiplier operands is shifted before entering the multiplier tree. For case 4 and 5, the

addend is aligned to the position of the multiplier product.

The hardware suggestion for the implementation of the close exponent difference case

performs an alignment on the addend to match the significand product. The data are

passed to a combined add and round stage that processes in parallel to a LZA block. The

add/round result is complemented if necessary, and normalized by the LZA.

The multiple path fused multiply-add paper claims around a 30% gain in performance as

compared to a IBM RS/6000 architecture [28]. These performance gains are estimated

based on theoretical calculations.

Figure 2.8.2 Suggested implementation for a 5-case fused multiply-add (redrawn) [28]

28

2.9 3-Input LZA for Fused Multiplier-Adders

In 2005, Xiao-Lu presented a paper [30] for the specific improvement of the critical path

found in the Lang and Bruguera fused multiply-add architecture [23]. Specifically, the

paper presents a new algorithm for accelerating the LZA stage in the fused multiply-add,

since the LZA block is the critical path in Lang and Bruguera’s scheme.

Modern architectures design LZA blocks to predict the leading ‘1’ in a massive

cancellation subtraction based on the derivation of a set of equations [31]. These leading

one’s prediction (LOP) equations, as seen in Figure 2.9.1, pass to an encoder which

generates normalizing signals correct to within one digit. These equations (fi) are

generated on the assumption that the predicted result consists of two operands.

)()(111111 ++−++− ⋅+⋅⋅+⋅+⋅⋅=

⋅=

⋅=
⊗=

iiiiiiiiiii

iii

iii

iii

ggzztgzzgtf

baz

bag

bat

Figure 2.9.1 A two-input LZA algorithm [30]

The Lang/Bruguera fused multiply-add architecture is unique, as it provides three inputs

to the LZA block. In the original Lang/Bruguera paper, the three inputs are combined

with a 3:2 CSA before entering the LOP unit. The Xiao-Lu paper presents new equations,

shown in Figure 2.9.2, that allow this three input string to predict the leading ‘1’. A three-

input LOP removes the requirement for a 3:2 CSA and therefore decreases the number of

logic stages in a LZA. A comparison of two- and three-input LZAs is shown in Figure

2.9.3.

29

11

2111

)(

)(

)(

)(

++

++++

⋅+⋅=

⋅+⋅+⋅=

⋅++⋅=

⊕⊕=
⋅⋅=

⋅⊕+⋅⋅=

⋅⋅=

iiiii

iiiiiii

iiiiii

iiii

iiii

iiiiiii

iiii

twxsnegf

xwewteposf

cbabax

cbaw

cbat

cbacbae

cbas

Figure 2.9.2 A three-input LZA algorithm [30]

Figure 2.9.3 A comparison of two- and three-input LZA algorithms [30]

Paper [30] claims the three-input LZA scheme shows a 17% reduction in latency and

20% reduction in required area as compared to a two-input scheme. The results come

from a Synopsis 0.13 µm synthesis. The reduction in the LZA latency directly improves

the critical path delay for a Lang/Bruguera fused multiply-add architecture.

2.10 A Fused Multiplier-Adder with Floating-Point Adder Bypass

The final paper included in this section is a second paper by Lang and Bruguera [32]. The

paper describes a fused multiply-add architecture that enhances the functionality of their

original proposal for a reduced-latency fused multiply-add unit. While in their original

30

paper [23] the reduced-latency fused multiplier-adder is designed to accelerate the

performance of a fused multiply-add unit, the architecture shares the same disadvantage

as the IBM RS/6000 design—the fused multiply-add architecture increases the latency of

stand-alone floating-point additions.

The new Lang/Bruguera architecture is designed to allow a floating-point addition

instruction to bypass the blocks in the fused multiply-add unit that add to its single-

instruction latency. In the first Lang/Bruguera fused multiply-add unit, a floating-point

adder instruction has to use the constant ‘1.0’ (A x ‘1.0’ + C) to propagate a multiplier

input through the CSA tree, producing an addition operation. Meanwhile, the addend is

sent through an aligner unit too large for a floating-point adder range, adding unnecessary

latency to the data.

As shown in Figure 2.10.1, the new architecture uses selection multiplexers after the

multiplier stage to choose different operands based on the instruction input. Mimicking

common floating-point adder designs, an additional “far” path is added to the

Lang/Bruguera fused multiply-add scheme for cases where the floating-point addend

must still be aligned by a significant amount. This path is processed in parallel to the

“close” path, which is a slight deviation from the first Lang/Bruguera fused multiply-add

scheme. For floating-point adder data with close exponents, the large LZA and

normalization hardware already found in the fused multiply-add path handles the

operations correctly. Both paths are merged after normalization and passed to the

add/round stage.

31

CSA tree

recod

3:2 CSA
sign

detection

Complement
HAs and

 part of adder
LZA

normalization
shifters

Rest of
53-bits

dual adder

sum+1 sum

round bit
guard bit

carry
and sticky

selection

complement

A B C

3b right
shift

bit-inv

mux

switch mux

106-bit
alignment shifters

case logic/invert

HAs and
part of adder

small
size
LZA

3-bit norm
shifter

3:2 CSA
Close Path Far Path

Figure 2.10.1 Lang/Bruguera fused multiply-add with floating-point adder capabilities (redrawn) [32]

However, the new architecture makes changes to how a fused multiply-add instruction is

processed. In the design, the multiplier and aligner data from the head of the unit pass to

both the far and close paths. The fused multiply-add data in the far path are assumed to

32

have a large exponent difference, so the use of a dual path parallel inversion is not

required. Instead, only a single operand is needed for inversion during a subtraction, and

the data may pass to a smaller size LZA. For the fused multiply-add close path, the fused

multiply-add scheme follows the algorithm originally provided by Lang and Bruguera

with the addition of a 3-bit aligner used in floating-point adder cases. Like the floating-

point adder operation, both paths are merged after each normalization. The fused

multiply-add data are added, rounded, and post-normalized, completing the instruction.

Much like the original Lang and Bruguera paper, this paper concludes by claiming a 40%

acceleration of floating-point adder instructions as compared to an IBM RS/6000 fused

multiply-add unit handling the same [32]. Additionally, the fused multiplier-adder

provides a 10% reduction in latency compared to the IBM RS/6000. This result is

calculated theoretically, and the actual architecture has yet to be implemented in either a

synthesized or a custom CMOS silicon design.

The fused multiply-add unit latency reduction is lower than the original Lang and

Bruguera improvements due to additional logic stages supporting a single-instruction

floating-point addition. The results were calculated by theoretical delay analysis.

2.11 A Comparison of Literature

Table 2.11.1 shows a comparison of the various floating-point fused multiply-add

architectures presented in this chapter against the original IBM RS/6000. Each design is

compared against the IBM RS/6000 in the categories of latency reduction, power

reduction, implementation, numerical accuracy, and whether the unit is capable of a

maximum-performance single-instruction execution of a floating-point adder or floating-

point multiplier.

33

Table 2.11.1 Comparison of proposed fused multiply-add architectures

Design
Latency

vs
RS/6000

Power
vs

RS/6000

Implemented
or

Theoretical

Numerically
Correct?

Max-
performance

FPM?

Max-
performance

FPA?
IBM RS/6000

[1],[2]
N/A N/A Implemented Yes No No

IBM PowerPC
604e [12],[13]

Faster
SP,

Slower
DP

½ size
Mul tree

Implemented Yes No No

HAL SPARC64
(pseudo FMA)

[21]
Slower N/A Implemented

Rounded
Twice

Yes Yes

Concordia FMA
[22]

-9% -44% Implemented No Yes No

Lang/Bruguera
[23]

-(15-
20%)

N/A Theoretical Yes No No

Seidel Multi-
Path [28]

-30% N/A Theoretical unclear No No

Xiao-Lu LZA
improvement

of
Lang/Bruguera

[30]

-(15-
20%) -
(0.17 x
LZA)

N/A

LZA
Implemented,

FMA
Theoretical

Yes No No

Lang/Bruguera
w/ FPA

bypass [32]
-10% N/A Theoretical Yes No No†

† 40% faster floating-point add performance as compared to a classic FMA execution of the same

34

Chapter 3

Methods and Components using AMD 65nm SOI

This chapter begins by detailing the implementation methods and tools used to create a circuit in the AMD

65nm silicon on insulator design flow. Following that, the chapter lists the architectures and

implementations of shared floating-point arithmetic components used in several of the final designs.

3.1 Introduction

This chapter provides a detailed description of the methods and components used to

design, implement, and test the floating-point fused multiply-add circuits presented in

this dissertation. The designs have been implemented using the AMD 65nm silicon on

insulator (SOI) transistor models and implementation design flow.

The AMD 65nm SOI circuit design flow used is also known as the AMD “axe” flow. The

axe flow is a collection of industry tools and software linked together with AMD

transistor libraries and databases organized in such a fashion that the progression of a

circuit from RTL to GDSII “flows” through the necessary CAD tools in a logical order.

This implementation flow, as well as the RTL tools and compilers that were used for

designing the behavioral models, are described in detail in the first half of this chapter.

The second half of this chapter includes detailed descriptions of the floating-point

components and libraries built specifically for this dissertation’s floating-point fused

multiply-add designs. The components, ranging from multiplier arrays and adders to

barrel shifters and sticky trees, are shared in a common floating-point library that has

been created to keep the components used by the designs consistent in their

35

implementation. These macro components are all original designs and have not been

downloaded from any AMD IP database.

At AMD, the CAD tools, manufacturing models, and standard cell libraries are in a

volatile consistently evolving developmental state. All of the models and tools are

subjected to frequent, rapid and drastic fundamental changes to meet the demands of

whatever AMD project is currently under development. Since this dissertation is intended

to compare high-level architectural changes alone, a specific “snapshot” of the standard

cells and tools for 65nm SOI development was taken on July 30th of 2006. This flow

snapshot uses the most up to date models and libraries as of that specific date, and has

ignored any further changes since then to keep the implementations consistent from

origin to completion. It should be noted that the axe flow used for this dissertation is now

an outdated and retired CAD system at AMD.

3.2.1 Design and Implementation Method Overview

A wide variety of CAD tools are used at AMD to bring a design from concept on paper to

GDSII mask data. These tools include both in-house CAD developments as well as

externally written design software. Depending on the technology and goals of the design,

this arrangement of tools varies in functionality and what models it considers. For the

specific fused multiply-add designs considered here, this section describes in detail each

step used to take the fused multiply-add architectural concepts to “front-end” design

completion.

When considering the design flow at a high-level, the toolsets may be split into three

major categories. The first category of CAD systems is the register transfer level (RTL)

Verilog code used to describe the architecture at a purely digital level. At this highest-

level behavioral model, the circuit is designed and tested for digitally functional

correctness, using virtual logic analyzers to debug and adjust the inputs and outputs of the

block. The RTL models are also passed into a set of verification procedures during

36

development that use custom test benches and already proven legacy vectors to ensure

the formal verification of the digital model.

The second level of design, commonly called the “front-end” design, is the translation of

the digital RTL into a transistor-level description. The transistor-level model is coupled

with the manufacturing models to create and simulate the circuit in an analog

environment, producing accurate simulation estimates of timing, power, and area. The

front-end is considered complete when the model has acceptable results based on a true

floor plan and pessimistic Steiner routing parasitic calculations.

The final level of design, called the “back-end” design, is the fine-tuning and physical

routing of the circuit. This level uses pre-routing, auto-routers, and routing editors to

physically add and adjust the interconnection of the circuit in a model that may “tape-

out” to the GDSII manufacturing mask standard. The circuit’s final transistor model is

coupled with the routing model and the circuit undergoes a series of fine-grain electrical

tests, including electromagnetic simulations, IR calculations, local heating, noise, and a

full chip-level analog timing simulation. A model that passes all of the back-end checks,

as well as provides acceptable electrical power, timing, and area results, is ready for

GDSII tape-out. Any errors or unacceptable results require design iterations at either the

back-end, front-end, or RTL levels, depending on the errors and their severity.

This section includes descriptions of the RTL and front-end design methods used in this

dissertation’s fused multiplier-adders. The back-end design was not included in the

implementations, as the intended results are only for architectural comparisons and not

for immediate industrial tape-outs. A design in the back-end of the flow requires an

enormous amount of resources, effort, and time to fine-tune the circuit and prepare it for

manufacturing.

37

The decision to keep all designs in the front-end of the flow was made early in the

project, concluding that the results produced by the back-end design, such as

electromagnetic reports, local heating, timing results that are equal to or slightly better

than the Steiner front-end estimations, and mask layers of the metal interconnects would

provide little additional useful information for an academic architectural comparison.

Additionally, the back-end design has more focus on connecting up various front-end

blocks and fixing bad route netlists than evaluating architecture, so a line was drawn and

the fused multiplier-adder designs concluded at a transistor-level with a floor plan and

Steiner routing parasitics.

3.2.2 High-Level Design – Verilog RTL

The first step in the design of the fused multiply-add units was the translation of the block

diagram to an RTL description via the Verilog2K high-level design language (HDL).

Each design has been coded in Verilog2K RTL, compiled by Synposys Chronologic VCS

compiler tools, and debugged using the Novas Debussy logic analysis software.

Verification has been performed by a collection of test vectors and test benches which

include comprehensive corner cases, as well as built-in Verilog behavioral checks within

the RTL models themselves to ensure a more formal level of functional verification. A

description, screenshots, and examples of each RTL toolset are described in the following

sub-sections.

3.2.2.1 Verilog 2K HDL and the VCS Compiler

The Verilog 2K RTL HDL language is a syntax coding standard most recently updated in

2005 [33]. This language is written so that every line of code is executed simultaneously,

simulating electrical components with multiple inputs and outputs that execute on

multiple signals at the same time. The code may be written in any text-based editor

compliant with the user’s operating system, and must be compiled with a tool conforming

to the Verilog 2K standard.

38

An example of the Verilog HDL syntax used for the fused multiply-add designs is

provided in the RTL design of a Booth multiplexer. In this example, Verilog code is

written using the UNIX-based XEMACS program to create the Booth multiplexer in a

format that is accepted by the debugging and simulation software.

The Booth multiplexer seen in Figure 3.2.2.1 is a block used in a radix-4 multiplier tree

that accepts inputs from both a Booth encoder block and an un-processed multiplier

operand. The Booth encoder block outputs signals from the radix-4 Booth encoding of

the other multiplier operand input that determine if the partial product bits created for a

specific position in the multiplier tree require an inversion or shifting, i.e., if the operand

is multiplied by {-2,-1,0,1,2}. The behavioral code of this architectural block is realized

in the Verilog code seen in Figure 3.2.2.2.

Figure 3.2.2.1 Radix-4 Booth multiplexer

39

Figure 3.2.2.2 Verilog code for a radix-4 Booth multiplexer

After a Verilog block like the Booth multiplexer is combined with all the blocks required

for a design, the total model is not yet ready for compilation and simulation in a debug

tool. A functional block or collection of blocks may be syntactically correct according to

the Verilog standard, but without an input/output file that produces vectors as stimuli, a

debugger will provide no useful information on the design.

// ===
// (#1) Booth Mux
// ===
module fma_lib_boothmux

(
M,
Sel2,
Sel1,
Sign,

PP,
);

// =====
// Inputs
// =====
input Sel1 ;
input Sel2 ;
input Sign;
input [52:0] M;

// ======
// Outputs
// ======
output reg [53:0] PP;

// =========
// Booth Mux
// =========
reg [53:0] PP_Shift;

always @* begin
PP_Shift[53:0] = ({54{Sel1}} & {1'b0, M[52:0]}) | ({54{Sel2}} & {M[52:0], 1'b0});
PP[53:0] = PP_Shift[53:0] ^ {54{Sign}};

end

endmodule

40

Figure 3.2.2.3 shows the syntax of an input/output file that creates two test vectors for the

FMA_Classic collection of Verilog modules. The vectors are latched to virtual registers

in an initialization statement, and time increments are described by numerical statements

following a ‘#’ sign (in this case, a 100ps increment from the initial state to the following

state). After the test vectors are described, the file makes a call to the top level of the

fused multiply-add model that connects vectors to the various inputs.

When a Verilog collection has been coded along with an input/output file for stimulus,

the code needs to be compiled and ported to a format that can be read by a debugging

tool. For the fused multiply-add designs, the Synposys Chronologic VCS compiler is

used to collect all the Verilog files and combine them into a single object file database. If

the code compiles without errors, the object code may be simulated and prepared for

debugging.

To follow with the same example of the input/output file, a UNIX terminal output of the

VCS compilation and simulation tools for the fused multiply-add Classic test is shown in

Figure 3.2.2.4. The first command is the call to the VCS compiler, and the second

‘./simv’ command is the tool that passes the vectors through the Verilog models and

dumps the outputs to a database for the debugger. If both tools complete successfully, the

models may be viewed in the virtual logic analyzer.

41

Figure 3.2.2.3 A Verilog input/output stimulus file

initial begin

// ==
// Initial Design Tests
// ==

A = 64'h4030_0000_0000_0000;
B = 64'h4030_0000_0000_0000;
C = 64'h4060_0000_0000_0000;
fp_op = 1'b0;
RNE_sel = 1'b0;
RPI_sel = 1'b0;
RMI_sel = 1'b0;
$fsdbDumpvars;

#100

A = 64'h4030_ABCD_1234_4445;
B = 64'h402C_4321_ABCD_AAAF;
C = 64'h4080_0000_0000_0000;

$fsdbDumpvars;

end

wire [63:0] FMA_round_result;
wire [63:0] FMA_unround_result;
wire inexact;

FMA_Classic UU_FMA_Classic
(
.A(A[63:0]),
.B(B[63:0]),
.C(C[63:0]),

.RNE_sel(RNE_sel),

.RPI_sel(RPI_sel),

.RMI_sel(RMI_sel),

.fp_op(fp_op),

.FMA_round_result(FMA_round_result[63:0]),

.FMA_unround_result(FMA_unround_result[63:0]),

.inexact(inexact)

);

42

Figure 3.2.2.4 UNIX output of VCS compile and simulation

pcslw126:/proj/bobcat/user/equinnel/FMA/FMA_Classic --> vcs +v2k +vcsd -P
$DEBUSSY/share/PLI/vcsd_latest/LINUX/vcsd.tab $DEBUSSY/share/PLI/vcsd_latest/LINUX/pli.a FMA_Classic_test2.v

Chronologic VCS (TM)
Version X-2005.06-SP1-16 -- Sun Mar 18 16:45:36 2007

Copyright (c) 1991-2005 by Synopsys Inc.
ALL RIGHTS RESERVED

This program is proprietary and confidential information of Synopsys Inc.
and may be used and disclosed only as authorized in a license agreement
controlling such use and disclosure.

***** Warning: ACC/CLI capabilities have been enabled for the entire design.
For faster performance enable module specific capability in pli.tab file

Parsing design file 'FMA_Classic_test2.v'
Parsing included file 'FMA_Classic_top.v'.
Parsing included file 'FMA_Classic_Mul.v'.
Back to file 'FMA_Classic_top.v'.
Parsing included file 'FMA_Classic_exp.v'.
Back to file 'FMA_Classic_top.v'.
Parsing included file 'FMA_Classic_aligner.v'.
Back to file 'FMA_Classic_top.v'.
Parsing included file 'FMA_Classic_add.v'.
Back to file 'FMA_Classic_top.v'.
Parsing included file 'FMA_Classic_lza.v'.
Back to file 'FMA_Classic_top.v'.
Parsing included file 'FMA_Classic_normalizer52.v'.
Back to file 'FMA_Classic_top.v'.
Parsing included file 'FMA_Classic_normalizer109.v'.
Back to file 'FMA_Classic_top.v'.
Parsing included file 'FMA_Classic_complement.v'.
Back to file 'FMA_Classic_top.v'.
Parsing included file 'FMA_Classic_rnd.v'.
Back to file 'FMA_Classic_top.v'.
Parsing included file 'FMA_Classic_sign.v'.
Back to file 'FMA_Classic_top.v'.
Parsing included file 'FMA_Classic_lib.v'.
Back to file 'FMA_Classic_top.v'.
Back to file 'FMA_Classic_test2.v'.
Top Level Modules:

FMA_Classic_test
TimeScale is 1 ps / 1 ps
Starting vcs inline pass...
6 modules and 0 UDP read.

However, due to incremental compilation, only 1 module needs to be compi led.
recompiling module FMA_Classic_test because:

This module or some inlined child module(s) has/have been modified.
if [-x ../simv]; then chmod -x ../simv; fi
g++ -o ../simv 5NrI_d.o 5NrIB_d.o 1u9E_1_d.o MmII_1_d.o ynMm_1_d.o m0nb_1_d.o ToFd_1_d.o KHnE_1_d.o SIM_l.o
/tool/cbar/apps/sim/vcs-2005.06-SP1-16/redhat30/lib/libvirsim.a /tool/cbar/apps/sim/debussy-
6.1v1p1/share/PLI/vcsd_latest/LINUX/ pli.a /tool/cbar/apps/sim/vcs-2005.06-SP1-16/redhat30/lib/libvcsnew.so
/tool/cbar/apps/sim/vcs-2005.06-SP1-16/redhat30/lib/ctype-stubs_32.a -ldl -lm -l c -ldl
../simv up to date
CPU time: 3.120 seconds to compile + 12.440 seconds to link
[2] - Done xemacs FMA_Classic_test2.v
pcslw126:/proj/bobcat/user/equinnel/FMA/FMA_Classic --> ./simv
Chronologic VCS simulator copyright 1991-2005
Contains Synopsys proprietary information.
Compiler version X-2005.06-SP1-16; Runtime version X-2005.06-SP1-16; Mar 18 16: 46 2007
Novas FSDB Dumper for VCS2005.06-DKI, Release 6.1v2_RD (Linux) 01/19/2006
Copyright (C) 1996 - 2006 by Novas Software, Inc.
Novas Create FSDB file 'verilog.fsdb'
Novas Begin dumping the top modules, layer(0).
Novas End dumping the top modules.

43

3.2.2.2 Novas Debussy Debugger

After a selection of Verilog HDL has been compiled and simulated in the VCS software

tools, the data are ready for viewing via Novas Debussy debugging GUI. Although the

VCS CAD package allows for a debugging method via a text-based output, the models

used in this dissertation are so large that such a debugging interface is excessively

tedious. The Novas GUI debugger provides an easier visual analysis to debug and verify

the Verilog RTL code.

A screenshot of the Debussy debugger tool is shown in Figure 3.2.2.5. The debugger has

an array of options and colors that allow analysis from overall views of the Verilog

system to specific bit-items of individual blocks. The tool itself is directly connected to

the VCS compiler software, so that changes to the Verilog may be compiled and directly

updated on the debugging screen. This live updating functionality between all the RTL

tools allows for an efficient environment to develop and test RTL Verilog code capable

of immediate digital testing feedback.

The verification of the behavioral Verilog models is conducted two-fold. First, the

input/output Verilog files previously described allow for user-generated test cases to be

input and tested, with outputs seen on the Debussy viewer. However, since user-

generated test cases cannot cover all the internal cases of an architecture, behavioral

statements have been embedded within the Verilog code to verify the functionality of

various blocks.

As an example, Figure 3.2.2.6 shows the behavioral code for the output of a multiplier

tree. The Verilog multiplier design uses a collection of blocks to produce a product in

sum/carry format. To verify that the sum/carry vectors are correct, the multiplier outputs

are combined with a behavioral adder and compared bit-by-bit in Debussy, shown in the

screenshot in Figure 3.2.2.7, to a single-line behavioral multiplier statement using the

same precision.

44

Figure 3.2.2.5 Novas Debussy debugger

Figure 3.2.2.6 Verilog behavioral checkpoint code

// ===
// (#7) Check results
// ===

reg [105:0] Result_verilog;
reg [105:0] Result_behavior;

always @ * begin
Result_verilog[105:0] = Mul_mantissa_sum[105:0] + {Mul_mantissa_carry[105:1],1'b0};
Result_behavior[105:0] = A_mantissa[52:0] * B_mantissa[52:0];

end

45

Figure 3.2.2.7 Debussy behavioral checkpoint screenshot

Any Verilog design in the fused multiply-add design process had to pass every user- and

randomly-generated test vector with both the test bench block outputs and internal

behavioral checkpoints before exiting the RTL stage. While all these checks do not

replace formal verification, the behavioral and vector verification tests conducted has

been as comprehensive as possible.

True circuit verification at the RTL level involves a series of test benches and checks

against units already in silicon, all conducted by a full team of verification engineers.

Such staffing was not available for these designs, so all tests were performed iteratively

until the new units passed all available behavioral and vector cases.

3.2.3 Front-End Implementation – The AMD AXE Flow

The AMD “axe” flow is the implementation CAD toolset used to take a design from

Verilog RTL to GDSII mask-layer tape-out data. The flow itself is split into two halves in

a front-end and back-end partition. The front-end of the flow deals with what the system

calls “system-level modules,” (SLMs), and the back-end uses higher-level blocks (which

are essentially a collection of SLMs) called “route-level modules,” (RLMs), and “top-

level modules” (TLMs).

A completed front-end design in the axe flow consists of a SLM block database model

containing all the information on a full-level transistor- and gate-level floor plan, Steiner

routing parasitics, flattened internal format and SPICE netlists, parasitic timing runs, and

SLM power simulations. The transistor-level SLMs are connected to a variety of

46

manufacturing models that vary in process corners and threshold voltages. A completed

back-end design consists of RLMs and a TLM that have passed every possible electrical,

timing, and other analysis checkpoint in the flow. The complete TLM is the database of

the GDSII mask layers.

As mentioned in the introduction, the fused multiply-add designs are all at front-end

completion, meaning full SLM models that pass the flow’s checkpoints. The back-end

RLMs and TLMs were not created as the models do not provide much more valuable

information for an architectural comparison than a complete SLM can already provide.

Back-end models concentrate on stitching up SLMs, auto-routing, and fixing dirty

netlists, and such information is not essential for the comparisons at hand.

The following sub-sections provide the steps and details of the front-end AMD axe

design flow. While all the details of each step are too numerous to list here, each step in

the SLM flow is described with a brief overview, example, and screenshot to provide a

basic understanding of a circuit’s transformation from RTL Verilog code to a transistor-

and gate-level electrical models.

3.2.3.1 Gate Level Verilog using the ‘Barcelona’ library

The first step in the AMD axe flow is a circuit designer’s translation of architectural RTL

code into its “gate-level” equivalent using a standard cell library. The gate-level

description is a Verilog equivalent to the RTL as described by small Verilog modules that

make up basic digital logic components, such as inverters, NAND gates, MUXes, and so

on. These gate-level Verilog modules are each individually linked to a Cadence-based

schematic, layout, and technology library that describes the component at an electrical

and manufacturing level.

The standard cell library used for a circuit’s implementation is both process and project

dependent. At AMD, entire teams of engineers are employed to build and layout these

building block components. Each team is geared to design components that fulfill the

47

needs and performance targets as requested by the project’s implementation engineers.

Additionally, any engineer may custom-design a library component, perform layout and

characterization runs, and enter the block into the standard cell project database. This

custom block design procedure is not covered here.

The library database chosen to implement the fused multiply-add designs comes from the

AMD ‘Barcelona’ project, which is a 65nm silicon on insulator (SOI) design of an x86

native quad-core processor. When the fused multiply-add design began, the ‘Barcelona’

library was the most cutting-edge and comprehensive library available, so it was a natural

choice to implement a design involving brand new floating-point architectures.

Additionally, the AMD quad-core is already at the silicon level, which largely verifies the

accuracy and functionality of the library simulation models.

An example of the transition of a block from architecture, to RTL, to gate-level Verilog is

provided showing the construction of a 3-bit aligner block. A 3-bit aligner takes an input

string and shifts the data to the right between 0- and 3-bit positions based on the 2-bit

aligner control input. The architectural diagram and Verilog code are shown in Figure

3.2.3.1 and Figure 3.2.3.2, respectively.

Figure 3.2.3.1 3-bit aligner architecture

48

Figure 3.2.3.2 3-bit aligner Verilog RTL

The gate-level equivalent of the 3-bit aligner must first consider what components are

needed to logically create the architectural block – in this case, a series of 4:1 MUXes.

When basic components are decided, a circuit designer then must consider what loads the

cells drive, as well as whether any control signals need a fan-out to drive components that

perform work on a string of inputs. Since the example 3-bit aligner works on an incoming

53-bit string, a total of 56 MUXes must be used – one per bit alignment possibility. The

incoming control signals are probably too weak to individually drive 56 different 4:1

MUXes, so the controls are buffered with inverter trees before input selection. The gate-

level schematic and gate-level Verilog are shown in Figure 3.2.3.3 and Figure 3.2.3.4.

Figure 3.2.3.1 Gate-level schematic of a 3-bit aligner

// ===
// (#2) Align 0, 1, 2, 3 ctl bits [1:0]
// ===

reg [160:105] align_stg1;

always @ * begin

case(1'b1)
shift_1 & ~shift_3 : align_stg1[160:105] = {1'b0, C_mantissa[52:0], 2'b0};
shift_2 & ~shift_3 : align_stg1[160:105] = {2'b0, C_mantissa[52:0], 1'b0};
shift_3 : align_stg1[160:105] = {3'b0, C_mantissa[52:0]};
default : align_stg1[160:105] = {C_mantissa[52:0], 3'b0};

endcase // case(1'b1)

end

49

Figure 3.2.3.2 Gate-level Verilog of a 3-bit aligner

// ===
// (#2) Align 0, 1, 2, 3 ctl bits [1:0]
//
// Trees must drive 56 mux inputs. 3-stages for
// fanout with inverted drivers
// ===

wire shift_1_X;
wire [1:0] shift_1_P;
wire [6:0] shift_1_PX;

inx4 UU_shift_1_X (.A(exp_difference_aligner_ctl[0]), .Z(shift_1_X));
inx3_5 UU_shift_1_P[0] (.A(shift_1_X), .Z(shift_1_P[0]));
inx4_5 UU_shift_1_P[1] (.A(shift_1_X), .Z(shift_1_P[1]));
inx4 UU_shift_1_PX[6:0] (.A(shift_1_P[1/4,0/3]), .Z(shift_1_PX[6:0]));

wire shift_2_X;
wire [1:0] shift_2_P;
wire [6:0] shift_2_PX;

inx4 UU_shift_2_X (.A(exp_difference_aligner_ctl[1]), .Z(shift_2_X));
inx3_5 UU_shift_2_P[0] (.A(shift_2_X), .Z(shift_2_P[0]));
inx4_5 UU_shift_2_P[1] (.A(shift_2_X), .Z(shift_2_P[1]));
inx4 UU_shift_2_PX[6:0] (.A(shift_2_P[1/4,0/3]), .Z(shift_2_PX[6:0]));

wire [160:105] align_stg1_X;

imux4ux1 UU_align_stg1_X[160:105] (.D0({3'b0, C_mantissa_P[52:0]}),
.D1({2'b0, C_mantissa_P[52:0], 1'b0}),
.D2({1'b0, C_mantissa_P[52:0], 2'b0}),
.D3({C_mantissa_P[52:0], 3'b0}),

.S0(shift_1_PX[6:0/8]),

.S1(shift_2_PX[6:0/8]),

.Z(align_stg1_X[160:105]));

wire [160:105] align_stg1;

inx4 UU_align_stg1[160:105] (.A(align_stg1_X[160:105]), .Z(align_stg1[160:105]));

50

3.2.3.2 Flattening the Netlist – axe -flat

After creating a gate-level Verilog description of the RTL, the first step in the axe flow is

to flatten the netlist. Gate-level Verilog is commonly written in hierarchical format,

allowing the engineer to organize the design in logical and readable code. However, the

axe flow requires gate-level data to be in several single file descriptions, including a

placement file, standard cell, and transistor level models. The code is “flattened” into a

single description and translated into these formats. Additionally, like any code, the

Verilog must be checked by a compiler and be free from errors in order to translate the

data correctly. The step “axe –flat” removes the gate-level hierarchy, compiles the code,

and translates data into the required data formats and model descriptions.

After the code is flattened and compiled, axe –flat step runs a series of connectivity tests

to verify that the cells and transistors are interconnected in a way providing a clean

netlist. For example, the step checks to make sure that every input and output of every

block has a driver and a receiver. If a cell does not drive anything, the gate-level Verilog

should explicitly state “UNUSED” in the output net to meet AMD flow requirements.

Another example of the net check is the use of buffers before MUXes with pass-gate

transistors. Classic noise analysis and transmission studies always single out the problems

of a pass-gate transistor that is driven from a far away or weak source. The axe –flat step

requires that pass-gate transistors are always buffered locally.

A sample output from a UNIX prompt running the axe –flat step is shown in Figure

3.2.3.5 and continued in Figure 3.2.3.6.

Figure 3.2.3.3 UNIX output of axe -flat (part 1)

pcslw126:/proj/bt/users/equinnel/FMA_axe/FMA_Classic --> axe -flat

** START FormalVer,clear_flags 1.48 03/18/2007 21:14:56 equinnel pcslw126 Linux 2.4.21-47.ELsmp i686
Axe run dir: /proj/bt_users/equinnel/FMA_axe/FMA_Classic

** START Flat 1.59 03/18/2007 21:14:58 equinnel pcslw126 Linux 2.4.21-47.ELsmp i686
chdir gate
Running xnlw on all the top-level schematics:
Successfully added (FMA_Classic_Mul(macrolib) to /proj/bt_users/equinnel/FMA_axe/FMA_Classic//gate/StopChunkList.txt
Successfully created FMA_Classic.sourcelist.xnlw

51

Figure 3.2.3.4 UNIX output of axe -flat (part 2)

Running v92udb on tmp.9019.v9.FMA_Classic.vlist (FMA_Classic_Mul.v9 FMA_Classic_aligner.v9 FMA_Classic_exp.v9
FMA_Classic_lib.v9 FMA_Classic_sign.v9 FMA_Classic_add.v9 FMA_Classic_lza.v9 FMA_Classic_normalizer52.v9
FMA_Classic_complement.v9 FMA_Classic_normalizer109.v9 FMA_Classic_rnd.v9 FMA_Classic_top.v9 FMA_Classic.v9).
Running design->subdesign pin consistency check
Archiving sources
Fixing up $ and # characters in instance and net names
Checking tsize vs sfx for consistency
Tying off unconnected scan pins
Tying off macro repeater pins
Hooking up cell power/ground pins to default power/ground net
Flattening design
Running unique sizer
Fixing up udb unused nets
No DC Object Waivers file exists...
Running gater topology check...
Designcheck Revision Information
Revision: 1.16
Date: 2006/03/02 16:43:28
Author: franks

Passed gater topology check
Running names check...
Designcheck Revision Information
Revision: 1.23
Date: 2005/12/14 22:30:32
Author: carlob

Passed names check.
Running clock gater expansion
Estimated area usage: 42.67%
** FINISH Flat 1.59 03/18/2007 21:15:49 equinnel pcslw126 Elapsed 00:00:51

** START DesignCheck,flat_slm 1.72 03/18/2007 21:15:55 equinnel pcslw126 Linux 2.4.21-47.ELsmp i686
Now Running Check(s) : flat_slm
No DC Object Waivers file exists...
Running Check(s): driver cellsize illegalcell flop_clock tristateconx unbufmux cgnames cgnetnames clkgtr clkconx
DC#2 Rule Check driver =>Passed<= Severity =>SAFE<=
DC#25 Rule Check cellsize =>Passed<= Severity =>SAFE<=
DC#30 Rule Check illegalcell =>Passed<= Severity =>SAFE<=
DC#19 Rule Check flop_clock =>Passed<= Severity =>SAFE<=
DC#33 Rule Check tristateconx =>Passed<= Severity =>SAFE<=
DC#16 Rule Check unbufmux =>Passed<= Severity =>SAFE<=
DC#21 Rule Check cgnames =>Passed<= Severity =>SAFE<=
DC#22 Rule Check cgnetnames =>Passed<= Severity =>SAFE<=
DC#18 Rule Check clkgtr =>Passed<= Severity =>SAFE<=
DC#5 Rule Check clkconx =>Passed<= Severity =>SAFE<=

Designchecks Passed. See results files in verif/designcheck for details
driver is the check to be run
cellsize is the check to be run
illegalcell is the check to be run
flop_clock is the check to be run
tristateconx is the check to be run
unbufmux is the check to be run
cgnames is the check to be run
cgnetnames is the check to be run
clkgtr is the check to be run
clkconx is the check to be run
** FINISH DesignCheck,flat_slm 1.72 03/18/2007 21:16:15 equinnel pcslw126 Elapsed 00:00:20

52

3.2.3.3 Translating for Verification – axe -u2v

The “axe –u2v” step is a simple and quick format conversion from a database created by

the axe –flat step into a single-file gate-level Verilog file used by the formal

verification software. This step also creates single-file Verilog capable of translating into

a SPICE netlist for power simulations. A UNIX output of the axe –u2v step is shown in

Figure 3.2.3.7.

Figure 3.2.3.5 UNIX output of axe -u2v

3.2.3.4 Equivalency Checking – axe -formal

When a gate-level Verilog module is coded using an AMD standard-cell library, the most

important step in the SLM front-end flow is to verify that the transistor and gate-level

description matches the RTL exactly. This step requires absolute matching for every

possible input combination, so the verification must be the highest-level possible. To

meet this equivalence requirement on a formal level, the axe flow uses the command “axe

–formal” to call a process that collects the various Verilog files, RTL, and any constraints

required, and passes them to the Cadence/Verplex logical equivalence checker (LEC)

software tool.

The Cadence/Verplex LEC CAD suite acts both as a UNIX tool that can process quickly

with the axe flow as well as a slower GUI debugger should an error occur in the RTL vs.

gate-level Verilog test. The GUI debugger is called on command and has a variety of

features ranging from a gate-level schematic viewer and generated test vectors that

induce a failure. An example of the UNIX output of the LEC check tool with a dirty

pcslw126:/proj/bt/users/equinnel/FMA_axe/FMA_Classic --> axe -u2v

** INVOCATION by equinnel: -u2v : /proj/bt_users/equinnel/FMA_axe/FMA_Classic/

** START Udb2Verilog 1.23 03/18/2007 21:39:27 equinnel pcslw126 Linux 2.4.21-47.ELsmp i686
Generating gate/derived/FMA_Classic.gate.v
Generating gate/derived/FMA_Classic.flat.v
Generating gate/derived/FMA_Classic.flatnomove.v
** FINISH Udb2Verilog 1.23 03/18/2007 21:39:44 equinnel pcslw126 Elapsed 00:00:17

53

netlist is shown in Figure 3.2.3.8. The same dirty list is shown as on the GUI vector

generation screen in Figure 3.2.3.9 and the debugging GUI screen in Figure 3.2.3.10.

Figure 3.2.3.6 UNIX output of axe –formal

Contents of Ladner_73.parsed.stats:
Adjusted Statistics, originals in /proj/bt_users/equinnel/axe/bt_fpa/verif/verplex/rtl2gate/Ladner_73.verplex.log:
==

Compare Result Golden Revised
--
Primary inputs 148 148

Mapped 148 148
Extra 0 0
Not-mapped 0 0

No Tri-state (Z) key points

Primary outputs 75 75
Mapped 75 75

Equivalent 74
Inverted-equivalent 0
Non-equivalent 1 ERROR !!!!!
Abort 0

Unmapped 0 0
Extra 0 0
Not-mapped 0 0

No Black-box key points

No Cut key points

State key points 0 0
Mapped 0 0

Equivalent 0
Inverted-equivalent 0
Abort 0
Non-equivalent 0

Unmapped 0 0
Extra 0 0
Unreachable 0 0
Not-mapped 0 0

==
Duplicate checks (removed from above)
==
Compared points PO DFF DLAT Total
--
Equivalent 0 0 0 0
Inverted-equivalent 0 0 0 0
Non-equivalent 0 0 0 0
==
Gaters removed Golden = 0
Gaters removed Revised = 0
Duplicates removed Golden = 0 PO, 0 State points
Duplicates removed Revised = 0 PO, 0 State points

ERROR !!!!! LEC DIRTY -- NOT SETTING FLAG ERROR !!!!!
Non-equivalent Primary outputs

54

Figure 3.2.3.7 LEC error vector screen

55

Figure 3.2.3.8 LEC schematic debugger

3.2.3.5 Floorplan Layout – axe -place and axe -vp

After the equivalency checking of a gate-level implementation, the design is ready to be

floorplanned in the in-house placing toolset. This placement tool is very advanced and

has a huge number of features, including an in-house syntax for floorplanning capable of

live updating right as code is written, on-demand connectivity information, and

interfacing with timing tool results. The entire CAD placement system is called the “px”

placer tool, and is used throughout the front-end and back-end axe flow.

56

To initialize the placer tool, the “axe –place” command is used to setup a bounding box,

identify clock rows, and place the cells that have been written in the in-house placer code.

This step also identifies any floorplanning violations, including cells outside the

boundary, unconnected design for test (DFT) scan chains, and unplaced cells. A UNIX

output of the axe –place routine with unstitched scan-chains is shown in Figure 3.2.3.11

and continued in Figure 3.2.3.12.

Figure 3.2.3.9 UNIX output of axe -place (part 1)

pcslw126:/proj/bt/users/equinnel/FMA_axe/FMA_Classic --> axe -place

** INVOCATION by equinnel: -place : /proj/bt_users/equinnel/FMA_axe/FMA_Classic/

** START Place 1.256 03/18/2007 22:43:10 equinnel pcslw126 Linux 2.4.21-47.ELsmp i686
Copying flat design to place
Updating boundary information from fplan.data
WARNING(Place): Can't find FMA_Classic in global fplan file
Annotating placement information
Postplacing clockgaters.pp
Archiving sources
Running placement checks

Placement check summary:
multiple instantiations: 0
overplaced instances: 0

** FINISH Place 1.256 03/18/2007 22:43:21 equinnel pcslw126 Elapsed 00:00:11

** START DesignCheck,place_slm 1.72 03/18/2007 22:43:22 equinnel pcslw126 Linux 2.4.21-47.ELsmp i686
Now Running Check(s) : place_slm
No DC Object Waivers file exists...
Running Check(s): grid gater_to_load_dist clockrow clkcell_placement
grid is the check to be run
DC#14 Rule Check grid =>Passed<= Severity =>SAFE<=
DC#22 Rule Check gater_to_load_dist =>Passed<= Severity =>SAFE<=
gater_to_load_dist is the check to be run
clockrow is the check to be run
DC#20 Rule Check clockrow =>Passed<= Severity =>SAFE<=
DC#24 Rule Check clkcell_placement =>Passed<= Severity =>SAFE<=

57

Figure 3.2.3.10 UNIX output of axe -place (part 2)

Designchecks Passed. See results files in verif/designcheck for details
clkcell_placement is the check to be run

Placement check summary:
grid failures: 0
gater_to_load_dist failures: 0
clockrow failures: 0
clkcell_placement failures: 0

** FINISH DesignCheck,place_slm 1.72 03/18/2007 22:43:36 equinnel pcslw126 Elapsed 00:00:14

** START ScanStitch 1.62 03/18/2007 22:43:39 equinnel pcslw126 Linux 2.4.21-47.ELsmp i686
Removing AUTOBUFFERS
Stitching using scan files from place/scan
AUTOBUFFERING TURNED OFF
Saving hard order files to place/scan/derived
** FINISH ScanStitch 1.62 03/18/2007 22:43:49 equinnel pcslw126 Elapsed 00:00:10

** START SpareRepeaters 1.9 03/18/2007 22:43:49 equinnel pcslw126 Linux 2.4.21-47.ELsmp i686
** FINISH SpareRepeaters 1.9 03/18/2007 22:43:49 equinnel pcslw126 Elapsed 00:00:00

** START DesignCheck,scan_slm 1.72 03/18/2007 22:43:49 equinnel pcslw126 Linux 2.4.21-47.ELsmp i686
Now Running Check(s) : scan_slm
No DC Object Waivers file exists...
Running Check(s): overlaps bounds unplaced scan
DC#13 Rule Check overlaps =>Passed<= Severity =>SAFE<=
overlaps is the check to be run
bounds is the check to be run
DC#12 Rule Check bounds =>Passed<= Severity =>SAFE<=
DC#11 Rule Check unplaced =>Passed<= Severity =>SAFE<=
DC#37 Rule Check scan =>Failed<= Severity =>WARNING<=

One or more Designchecks Failed. See results files in verif/designcheck for details
ERROR: check(s) failed. See summary verif/designcheck/dc.summary.
unplaced is the check to be run
scan is the check to be run

Placement check summary:
overlaps failures: 0
bounds failures: 0
unplaced failures: 0
scan failures: 652

** FINISH DesignCheck,scan_slm 1.72 03/18/2007 22:44:03 equinnel pcslw126 Elapsed 00:00:14

** START PlaceScanSummary 1.2 03/18/2007 22:44:03 equinnel pcslw126 Linux 2.4.21-47.ELsmp i686
Placement check summary:

multiple instantiations: 0
overplaced instances: 0
grid failures: 0
gater_to_load_dist failures: 0
clockrow failures: 0
clkcell_placement failures: 0

Post ScanStitch Placement check summary:
overlaps failures: 0
bounds failures: 0
unplaced failures: 0
scan failures: 652

** FINISH PlaceScanSummary 1.2 03/18/2007 22:44:03 equinnel pcslw126 Elapsed 00:00:00

58

When the axe flow initializes the floorplan boundary and creates a file with cell

placement information, the in-house floorplanning syntax files may then be coded to start

placement visible in what is known as the “VP” floorplan GUI tool. The command “axe –

vp” starts the VP GUI and links the in-house placement files for a live update as code is

written.

To provide an example of the VP GUI and the px placer syntax, Figure 3.2.3.13 shows

the placement code for the sum block of a 109-bit adder. The syntax itself is simple,

including information such as color, relative or absolute row placement, and how strings

of cells are unrolled via stacking, stacks with skips, or interleaving with other cells.

Figure 3.2.3.11 PX placement code for an adder sum block

######################
Sum Block
######################

module SumBlock {

color thistle

row 0
$name_SD_54 skip=1
$name_SH_54 skip=1
$name_SI_54 skip=1

row 1
$name_SA_[53:0] skip=1
$name_SG_[53:0] skip=1
$name_SF_[53:0] skip=1

row 2
$name_SD_[53:0] skip=1
$name_SC_[53:0] skip=1
$name_SB_[53:0] skip=1
$name_SE_[53:0] skip=1
$name_SH_[53:0] skip=1
$name_SI_[53:0] skip=1

row 109
$name_LOA
$name_LOB

}

UU module=SumBlock row=$bottom

59

The VP GUI interface tool shows the gate-level cell placements as instructed by the px

file code. The VP tool masks the internal layouts of the standard cells for ease of viewing

and shows their various interconnects using either color-coded flylines or Steiner route

estimations. The viewer is also capable of hierarchical placement, allowing the user to

place modules and use different levels of files to organize the code into a more readable

format. A zoomed-in screenshot of the VP GUI tool displaying a piece of the example

sum block code is shown in Figure 3.2.3.14 and Figure 3.2.3.15. The first figure shows a

cell’s input and output flylines to other cells, while the second figure shows the same cell

with a Steiner routed output net.

Figure 3.2.3.12 VP output of a cell with I/O flyline interconnects

60

Figure 3.2.3.13 VP output of a cell with a Steiner output interconnect

As previously mentioned, the VP GUI tool is also capable of interfacing with the timing

files produced by the axe timing steps. This interface allows for a visual identification of

the circuit’s critical paths, as well as any other timing paths the user wishes to single-out

and visualize. This tool, like the interconnection feature when highlighting individual

cells, is capable of showing the flylines or Steiner routes of the path. Additionally, the

incremental latencies of each cell stage are optionally listed under their respective units

when the timing interface is activated. Figure 3.2.3.17 and Figure 3.2.3.18 show selected

screenshots of both the flyline and Steiner route schemes when activated with a timing

tool critical path.

61

Figure 3.2.3.15 VP timing interface with Steiner routes

Figure 3.2.3.14 VP timing interface with flylines

62

3.2.3.6 Placement-Based Estimated Timing – axe -espftime

When a placement is complete and all cells described in the gate-level Verilog occupy a

space in the floorplan, the implementation is ready for placement-based estimated timing.

This step, called by the command “axe –espftime”, uses the Synopsys Primetime timing

software along with a variety of internal algorithms and models to provide a very

accurate and overly-pessimistic timing report. Aside from the power estimation, this step

represents the final command in the front-end SLM design flow. A block that does not

meet timing requirements in this step will in most cases not be accepted into the RLM

flow. Timing requirements must be met in this timing model, and designs that do not

meet the required specifications are re-iterated either in the SLM design or RTL model.

The placement-based timing model is considered pessimistic due to the way routing

parasitics are calculated. Each net is routed with a Steiner estimate, or a Manhattan-style

route designed for the shortest path on the lowest-level metal layer possible. While RLM

designs may increase in actual routing distance, typically critical paths for long flylines

are routed manually at the highest metal layer for minimal interconnect resistance,

making the Steiner estimate, for the most part, pessimistic.

The axe command itself, like many of the steps in the flow, includes a long list of

features. The Primetime reports from the timing run are parsed and processed with

internal scripts to provide information on edgerates, effective fan-outs (EFOs) from cells

(or the combined load of input cap and routing cap seen by a cell output), and even a

recommended re-sizing script for cells identified having transistors with too little or to

much physical width for current sourcing/sinking.

An example of the timing tool is shown in Figure 3.2.3.18 showing the UNIX output of

the axe –espftime command executed on a full fused multiply-add Classic placement and

gate-level model. Following, Figure 3.2.3.19 shows a segment from the Primetime parsed

timing report, including EFO calculations, timing increments, and routing latency

63

increments. Figure 3.2.3.20 displays a report of suggested re-sizing of cells based on EFO

calculation. Finally, Figure 3.2.3.21 shows a report of edgerates for various nets.

Figure 3.2.3.16 UNIX output of axe –espftime

Figure 3.2.3.17 A segment from a parsed Primetime report

Figure 3.2.3.18 A segment from a re-sizing script

Figure 3.2.3.19 A segment from a edgerate report

UU_FMA_Classic_top/UU_FMA_fmul/UU_PP_25/Sel2_X[0] 35 rise inx6
UU_FMA_Classic_top/UU_FMA_fmul/PP_7[56] 32 fall inx7
UU_FMA_Classic_top/UU_FMA_fmul/UU_PP_20/Sign_X[0] 32 rise inx8
UU_FMA_Classic_top/UU_FMA_align/shift_BIG 32 rise nd3x1
UU_FMA_Classic_top/UU_FMA_fmul/PP_11[56] 31 rise inx7

##
Gates with greater than desired EFO.
##
UU_FMA_add/UU_CPA_109/UU_G2_8 Z (oai21x4) EFO= 5.948 worstslack= -894 EFO_range=(4.77, 2.77)
UU_FMA_add/UU_CPA_109/UU_P1_8 Z (oai22x4) EFO= 5.940 worstslack= -894 EFO_range=(4.77, 2.77)
UU_FMA_exp/UU_exp_diff_sum4 Z (inx2) EFO= 5.076 worstslack= -894 EFO_range=(4.77, 2.77)
UU_FMA_exp/UU_exp_cout_X Z (inx9) EFO= 4.842 worstslack= -894 EFO_range=(4.77, 2.77)

Path 1: C_X[56]:R FMA_round_result_X[6]:R cycles=1
Prev Slack: 262 Next Slack: 299 Total Delay: 1224
collapsed 207 similar paths.

Path Incr Dir Fanout Tran TotC Ceff GatC Instance or Net (arc)
--
...
#

261 7 F inx4 10 ES 68% 13% UU_FMA_Classic_top/UU_FMA_align/UU_shift_1_X (A -> Z) EFO=2.057
261 0 F 2 10 18 18 17 UU_FMA_Classic_top/UU_FMA_align/shift_1_X
272 10 R inx4_5 14 ES 100% 96% UU_FMA_Classic_top/UU_FMA_align/UU_shift_1_P1 (A -> Z) EFO=3.686
274 2 R 4 14 43 36 34 UU_FMA_Classic_top/UU_FMA_align/shift_1_P[1]
284 10 F inx4 14 ES 85% 80% UU_FMA_Classic_top/UU_FMA_align/UU_shift_1_PX3 (A -> Z) EFO=4.091
285 1 F 8 14 40 36 32 UU_FMA_Classic_top/UU_FMA_align/shift_1_PX[3]
#

** START Timing,espf,setup,0,0 1.115 02/28/2007 20:53:21 equinnel pcslw126 Linux 2.4.21-47.ELsmp i686
Running: RM Old PT Session...
Running: Netlist Generation...
Running: Timing Analysis...
Running: Post Process...
Running: Saving Session SynDbs...
Timing Analysis completed.
** FINISH Timing,espf,setup,0,0 1.115 02/28/2007 21:02:33 equinnel pcslw126 Elapsed 00:09:12

64

3.2.3.7 Power Estimation – HSim with axe-extracted SPICE netlist

The final simulation in the front-end design flow is estimated power consumption via

SPICE netlists simulated in Synopsys HSim software. This step is not directly integrated

into the axe flow and requires a small amount of user-generated files and controls.

However, the base SPICE netlist comes directly from the axe –u2v Verilog single-file

derivation as well as the standard-cell library extraction of SPICE models. Additionally,

the Steiner routing parasitics are imported from the axe –espftime step and included in

the total power simulation.

The first part of generating the files required for a HSim run is to convert the axe –u2v

Verilog file and axe –espftime route parasitics into a single SPICE netlist via an internal

script called “v2spi”. Much like the RTL debugging simulations, a HSim run is

meaningless without an input stimulus file, so the second step of the power simulation is

to create a series of randomly generated inputs that is compatible with the SPICE netlist

via an internal Python script. Finally, a HSpice technology file and process corner must

be included in the set of files, a fixed frequency and temperature selected, and all the

various HSim options changed to meet the requirements of the run.

When all files are prepared, the HSim program is executed and results are ready for

viewing in a Spice Explorer waveform viewer GUI after the long simulation is finished.

Simulations for the fused multiply-add designs averaged between 4 and 10 hours per 20

vector inputs running over simulation periods up to 30ns on AMD server farms. Figure

3.2.3.22 shows the UNIX output of such a HSim execution.

When the results of the simulation are viewed in the Spice Explorer, as shown in Figure

3.2.3.23, power is calculated by manual calculation and observation. Specifically, the

integrated total current is observed over the various random-input clock periods, and the

maximum total current found in a single cycle is selected (among other simulation runs as

65

well), normalized according to frequency, and multiplied by the simulation voltage.

Specifically, the equation used for max power is as follows:

DD
period

t

t

V
T

dtVssiP
1

})(max{
1

0

max ∫= (1)

Figure 3.2.3.20 UNIX output of a HSim power simulation

Synopsys Inc.
HSIMplus Linux 2.4.21 Version Z-2006.06-SP2-ENG3 - 194302162007
Tracking No - HSIMplus 2007.07.6
Copyright (C) 1998 - 2007. All rights reserved.

Simulation started on Sun Mar 11 15:47:28 2007
…
Subckt Defined/Used : 146/79
Subckt with parameterized elem : 0
Subckt instantiated with param : 0
Maximum Circuit Level : 2
Circuit Statistics

CAP Elements : 427375
GCAP Elements : 21604
VSRC_VS Elements : 197
VSRC_DC Elements : 2
SOI Elements : 177338

Total # of Elements : 604912
Total # of Nodes : 83453

DC initialization completes after 1000 iterations

End of operating point solution, CPU time used: 302.81 sec
Memory usage Physical: 103 MB, Virtual: 136 MB

Simulation Statistics

Comparison Errors : 0
Accepted Time Steps : 18757
Repeated Time Steps : 31
Minimum Time Steps : 17843
MOS evaluations : 1904964001

Simulation Parameters
Circuit Temperature : 100
Transient Time : 3e-08

End of transient, CPU time used: 20592.77 sec

End of circuit analysis, CPU time used: 20907.77 sec

66

Figure 3.2.3.21 Spice Explorer power simulation screenshot

3.3 Floating-Point Components

In any floating-point arithmetic unit, the architecture itself is in essence a combination of

smaller arithmetic components arranged in a way conducive to the functionality and

performance desired from the overall design. While an architecture spends a great deal of

focus on how the various components are arranged, a critical part of the design is how the

components themselves are designed. A poor selection of internal component designs

will guarantee a poor resulting architecture, no matter its organization.

When comparing architectures on their organizational merit alone, it is crucial to keep the

internal components identical in design and execution. A new architecture may claim

better results in performance, area, or power savings, but if this architecture is built with

higher-performance blocks than the original, the true results are inconclusive.

Architectures with different builds of similar units will always raise the question as to

67

whether the new architecture presented is better or whether the unit just had better

execution.

For this reason, the components used in all the fused multiply-add designs have been

built with identical component architectures and implementations into a pseudo-common

floating-point library. If the bit-width needs of any single component requirement did not

match a design in the collection of components, the implementation would simply expand

the unit while keeping the design consistent. Naturally, various fine-tuning is required

when a component is placed and drives actual loads which are heavily dependent on the

architecture, but the basic philosophy has been to keep internal pieces as consistent as

possible—so that results of the fused multiply-add simulations come from an

architectural comparison, and not changes in components.

This section lists the major component designs and implementations used in the fused

multiply-add designs. Each component is described with an overview of its architecture,

screenshots of an implemented floorplan, and identification of its global use in various

architectures. While undoubtedly some of the design selections may later be questioned,

inciting a discussion that a different design would boost the performance of the fused

multiply-add units, such disagreements do not affect the final results. As long as the

components are consistent from design to design, the relative comparisons should be

sound.

This does not mean however, for example, that all adders selected for the designs are

ripple-carry architectures, nor does it mean that there was no thought put into the building

of components. Each unit was built to be the highest-performance unit possible with all

variables considered, including complexity and the time required to implement and

debug. Additionally, every component used has been built only if it has actually been

implemented in an industrial design. Highly abstract and theoretical versions of the same

68

components were not selected, as the goals of the fused multiply-add designs seek to

narrow the number of original design comparisons.

3.3.1 Radix-4 53-bit x 27-bit Multiplier Tree

The first common component developed for the fused multiply-add designs is the largest

of the floating-point library—a radix-4 53-bit x 27-bit double-precision multiplier tree.

The design was chosen to be radix-4 due to the area and power savings as compared to a

radix-2 multiplier, as well as the simplicity in design as compared to a radix-8 or higher,

which requires the complex execution of an operand multiplied by ±3.

To begin the construction of the multiplier, one of the input operands must be radix-4

Booth encoded. This multiplier’s Booth encoding, shown in Table 3.3.1, allows the

number of partial products required to be cut in half. A Booth encoding does this by

doubling the range of each bit in the multiplier – allowing a digit to represent a number

anywhere in the range {-2,-1,0,1,2}. This set of numbers is very convenient, as the bit-

level multiplication of each number in this set requires at most a 1-bit shift, inversion, or

NAND masking when used in a partial product array.

Table 3.3.1 Radix-4 Booth encoding for a multiplier tree

Input[2:0] Booth Value Sel2 Sel1 Sign

000 0 0 0 0

001 +1 0 1 0

010 +1 0 1 0

011 +2 1 0 0

100 -2 1 0 1

101 -1 0 1 1

110 -1 0 1 1

111 0 0 0 1‡

‡ This encoding represents “negative” zero. The actual sign of this encoding should have a sign bit equal to
‘0’, but leaving it a ‘1’ allows for easy correction via “hot-ones” and “sign-encoding” within the multiplier
tree.

69

A multiplier tree is created by Booth encoding one of the multiplier input operands into

27 unique encodings. The untouched 53-bit operand is sent to a Booth multiplexer, where

it is multiplied by any number in the number range {-2, -1, 0, 1, 2} according to the

incoming Booth encoding, shown in Figure 3.3.1. As a result of each Booth encoding,

these operations create 27 uniquely multiplied strings, known as the “partial products”,

which span the numerical range exactly double of the inputs. An array of multiplier

partial products is shown in Figure 3.3.2.

Figure 3.3.1 Booth encoded digit passed to a Booth multiplexer

70

Figure 3.3.2 Multiplier 27-term partial product array

One of the unique problems presented by a radix-4 multiplier tree with a “negative zero”

option, as seen in the encoding of ‘111’ in Table 3.3.1 is the problem of correct 2’s

complementation. If the partial product array is left untouched with this encoding, any

negative numbers will produce an incorrect result. To correct this error, the concepts of

“hot ones” and “sign encoding” are introduced at the extremities of each partial product

in the array.

If a partial product has a Sign bit set to ‘1’, the result is an inversion produced by a Booth

multiplexer. To make the product inversion a correct 2’s complement, the following

partial product term introduces a hot ‘1’ into the LSB position of the preceding term.

Additionally, sign bits are appended to the MSB of each partial product term based on the

Sign bit of that term itself, allowing a propagation or cancellation of correct carries

during compression. Every partial product in Figure 3.3.2 may include a hot one or sign

71

encoding, save for the first and last products which are special cases. Figure 3.3.3 shows

the Verilog code describing a partial product with hot ones and sign encoding.

Figure 3.3.3 “Hot one” and “sign encoding” of a partial product

After all the Booth multiplexer selections and 2’s complement corrections, the partial

products begin compression using large arrays of 4 input, 2 output carry-save adders (4:2

CSA). At each bit position, a 4:2 CSA takes up to 4-bits of partial product inputs,

produces a sum on the same bit line, and passes a carry 1-bit position higher. This

compression allows each CSA stage to exactly half the number of partial products. For 27

terms, 4 stages are required to produce a product in carry-save, or a carry vector and sum

vector that need only be added for a complete multiply.

Although multiplier compression is commonly performed with a 3:2 CSA, the 4:2 CSA

was selected specifically for the fused multiply-add design multiplier compression, as a

custom circuit 4:2 CSA standard cell has been included in the ‘Barcelona’ library. This

4:2 CSA compression scheme, as well as the Booth encoding and Booth multiplexer

partial product generation all combined as a multiplier is shown in Figure 3.3.4. Finally,

the floorplan of the floating-point multiplier tree is seen in Figure 3.3.5 with a color

legend in Table 3.3.2.

fma_lib_boothmux UU_PP_8 (
.M(A_mantissa[52:0]),
.PP(PP_8[55:2]),
.Sel2(Sel2[8]),
.Sel1(Sel1[8]),
.Sign(Sign[8])
);

assign PP_8[57:56] = {1'b1, ~Sign[8]}; //sign encode
assign PP_8[1:0] = {1'b0, Sign[7]}; //hot one

72

A_significand[52:0] B_significand[52:0]

Radix-4
Booth Encoder

27-termx-2 x-1 x0 x1 x2

5:1 5:1

PP x27

5:1 5:1

4:2 CSA

4:2 CSA

4:2 CSA

4:2 CSA

4:2 CSA

4:2 CSA

4:2 CSA
Stage 1 CSAx7

Stage2 CSA x3

Stage3 CSA x2

Mul_carry[105:1]

Mul_sum[105:0]
Figure 3.3.4 Floating-point radix-4 multiplier tree

73

Figure 3.3.5 Multiplier tree floorplan

Table 3.3.2 Multiplier color legend

3.3.2 Kogge-Stone Adders, Incrementers, and Carry Trees

In any floating-point arithmetic architecture, an array of adders of varying bit-width is

always required for numerous functions. For example, a floating-point adder requires not

only the main adders in the add/round stage, but also needs smaller adders and

incrementers to correctly calculate the exponent in parallel. Floating-point multipliers

Color/Shape Component

Tan/Brown Booth Encoder

Yellow/Gold Buffering

Dark Blue (small cell) Booth MUX

Cyan 4:2 CSA Stage 1

Blue 4:2 CSA Stage 2

Dark Blue (big cell) 4:2 CSA Stage 3

Blue-Green 4:2 CSA Stage 4

Large Horizontal Splits Clock Rows

74

require a carry tree, or an adder that calculates only the MSB output, in addition to

several other adder structures for exponent, rounding, etc. Since there is such a high

adder count for all floating-point arithmetic operations, the adder architecture selected for

the units is of great importance.

A popular class of adders used in industrial design today is the “parallel-prefix” family

[34]. A parallel-prefix adder is a Ling factored carry-look-ahead style architecture that

uses basic AOI/OAI and NAND/NOR components in a one-way parallel and uniform

structure. Among the most widely known of the prefix adders is the Kogge-Stone

architecture. This architecture, shown in Figure 3.3.6, is a uniform and exponentially

decaying tree of propagate/generate (PG) terms that determine if a partitioned number of

bits, referred to as the “sparseness” of the tree, see an incoming carry propagation to

increment locally added bits. The final PG term arrives as a multiplexer selection signal

representing an incoming carry, and the correct sum bits are selected as outputs.

Figure 3.3.6 Kogge-Stone prefix adder and its components [34]

75

A prefix structure like the Kogge-Stone does not apply only to adders. Incrementers,

carry trees, and compound adders may all use the same architecture with different nodes.

A Kogge-Stone incrementer uses the exact design from Figure 3.3.6, except that all nodes

are only propagate terms. A Kogge-Stone carry tree again uses the same architecture, but

only the final left-most term PG term and the inputs that feed it is required (term 15 in the

figure). Finally, a Kogge-Stone compound adder uses the architecture, but replaces all

white circle nodes with full propagate terms (NAND/NOR), and replicates the sum

multiplexer with an augmented sum multiplexer (sum+1) that is selected by the total

carry propagate term.

In the fused multiply-add designs, the Kogge-Stone prefix architecture is used for all

adders, incrementers, carry trees, and compound adders. The specific design was selected

due to its low logic stage count, uniform layout, and ease of design when expanding to

multiple bit-widths for multiple functions. While the Kogge-Stone may not be the best

selection for every single possible function in every type of floating-point architecture, its

consistency allows for a uniform and controlled design conducive to architectural

comparisons.

The largest implementation of a Kogge-Stone adder in the fused multiply-add designs is a

109-bit adder in a 1-bit/1-row configuration found in the fused multiply-add Classic

architecture, while the smallest is a 13-bit adder used in exponent logic over all designs.

All adder designs follow a “snake” style implementation, where a single bit path starts in

a row and weaves back and forth from cell to cell, creating a tight-fitted interlacing of

cells. Additionally, all adders are designed with the PG Tree spanning the entire top of an

adder, with the partitioned sum block cells in parallel at the bottom.

Figure 3.3.7 and Figure 3.3.8 show the 109-bit Kogge-Stone sparse-2 adder in floorplan

and block format. Figure 3.3.9 shows the floorplan of a more-compact 52-bit incrementer

(The adders shown in this dissertation all use purple as a color base). Following, a 13-bit

76

adder is shown in Figure 3.3.10 (All adders in the exponent paths use orange as the color

base).

Figure 3.3.7 Kogge-Stone 109-bit adder

Figure 3.3.8 Block view of the 109-bit adder

Figure 3.3.9 Kogge-Stone 52-bit incrementer

Figure 3.3.10 Kogge-Stone 13-bit adder

77

3.3.3 Leading-Zero Anticipators (LZA)

A major component in floating-point add and fused multiply-add architectures is the

leading-zero anticipator (LZA). This block, commonly used in parallel with an adder,

takes two input strings and uses a set of logical equations, cited in Chapter 2.9, to predict

the bit position of the leading ‘1’ after a subtraction that causes massive cancellation.

When the position is found, the result is encoded with a priority encoder block, and

output to the normalization stage.

A small example is provided in Figure 3.3.11 to display a case when a floating-point

subtraction operation would use a leading-zero anticipator. In the figure, two 9-bit

operands that require a subtraction operation are passed to both the adder and the LZA

block. The adder begins its operation, while in parallel the leading one’s prediction

(LOP) block identifies the foremost ‘1’ as located in the 21 position. This bit position is

passed to the priority encoder, which encodes the 8-bit input string (the place before the

decimal is ignored) into a 3-bit selection control. The priority encoder, in this case, sends

a ‘111’ to the normalizer, and the result is shifted left by 7 positions, just as the result

from the adder completes. The shift control then updates the exponent logic with the

normalization amount.

78

Figure 3.3.11 LZA 9-bit floating-point example

As described by the example, a leading zero anticipator is split into two functional

blocks—the leading one’s predictor and the priority encoder. The leading one’s predictor

is a simple block that takes two adder input operands and creates logic terms using the

LZA equations coded in Verilog as shown in Figure 3.3.12. The implementation of the

LOP terms is elementary, only requiring basic NAND, NOR and XOR cell combinations

to generate the prediction terms.

79

Figure 3.3.12 Leading one's prediction (LOP) equations in Verilog

The second half of the LZA block takes the output vector generated by the LOP block

and priority encodes it into control signals based on the first ‘1’ found in the string. The

logic making up the priority encoder block is neither uniform nor simplistic, and is one of

the more complex pieces to design and implement in a floating-point unit.

The basic building block of a priority encoder used in the fused multiply-add designs is a

4-bit priority encoder cell. As shown in the following equations, encoding a four bit cell

will create a 2-bit position vector, named X, as well as a ‘1’s detection signal, named Y.

If the LZA desired is only 4-bits, the X variable would be the shift count, and the Y

variable could go unused. However, the Y variable serves an important function when

expanding the bit count of an LZA.

// ==
// (#1) Leading one's prediction generation
// ==

reg [107:0] LOP_T;
reg [107:0] LOP_G;
reg [107:0] LOP_Z;

reg [108:1] LOP;

always @ * begin

LOP_T[107:0] = OpA[107:0] ^ OpB[107:0];
LOP_G[107:0] = OpA[107:0] & OpB[107:0];
LOP_Z[107:0] = ~(OpA[107:0] | OpB[107:0]);

LOP[108:1] = { 1'b0,
(LOP_T[107:2] & LOP_G[106:1] & ~LOP_Z[105:0]) |
(~LOP_T[107:2] & LOP_Z[106:1] & ~LOP_Z[105:0]) |
(LOP_T[107:2] & LOP_Z[106:1] & ~LOP_G[105:0]) |
(~LOP_T[107:2] & LOP_G[106:1] & ~LOP_G[105:0]),
~LOP_T[0] };

// LOP[0] = 1'b1;

end // always @ *

80

]0[]1[]2[]3[

)]1[]3[(])2[]3[(]0[

])2[]3[(]1[

LOPLOPLOPLOPY

LOPLOPLOPLOPX

LOPLOPX

+++=

⋅+⋅=

+=

)4(

)3(

)2(

When priority encoders need to exceed 4-bits using these equations, the best expansion of

bit-size is in multiples of 4. As shown in Figure 3.3.13, five total 4-bit priority encoders

may be organized to encode a 16-bit LOP vector. Four of the 4-bit encoders are used

directly to encode the LOP vector, and the fifth is used to encode the Y signals from each

other 4-bit block. The resulting X vector output is the correct high-order bits of the 16-bit

encoding, as well as the multiplexer select signals for the low-order bits.

Figure 3.3.13 Priority encoder 16-bit

The next size priority encoder block is 64-bits. As shown in Figure 3.3.14, the 64-bit

encoder has exactly the same architecture as a 16-bit encoder, only with larger buses and

components. In the case when an encoder less than 64-bits be desired, the lowest order

81

16-bit priority encoder either need not exist, or be fed a string of ‘0’s to emulate no data

in the undesired bit positions.

Figure 3.3.14 Priority encoder 64-bit

A floorplanned screenshot and block level of an implemented 57-bit LZA block is shown

in Figure 3.3.15 and Figure 3.3.16 (Green is used throughout the dissertation to denote

LZA blocks). As shown in the figures, the leading one’s prediction cells are very uniform

and capable of high densities, as the components required for each bit in the datapath

need exactly the same amount of standard cells. However, the priority encoder, seen in

the bottom half of the unit, has unusual sizing requirements and cell counts, and can be at

best organized in a pseudo-random spread of gates. While a better organization of the

priority cell placements is possible, the selected floorplan has more to do with the

requirements of critical path flylines and localized placements than area saving efforts.

82

Figure 3.3.15 LZA 57-bit floorplan

Figure 3.3.16 LZA 57-bit blocks

3.3.4 Miscellaneous Components

While there are several other miscellaneous components that make up the building blocks

of the fused multiply-add designs, their design and implementation is on a lower-order of

complexity than the multiplier, adders/incrementers, and leading-zero anticipators

presented in this chapter. The components already described may be built in a variety of

architectures and methods, so there is importance to identifying the arithmetic algorithms

used to build an original design for architectural comparison.

The remaining components not described include in the Chapter are items such as

shifters, sticky trees (large OR trees), buffer fan outs, basic logic operations, and random

control logic. Each of these components, along with others not mentioned, does provide a

necessary and important contribution to the execution of the implemented circuits. These

components are also not without cost in terms of area, delay, and power consumption.

However, there are no complex methods to the remaining components and a better

understanding of their use and presence will come from the understanding of the

architectural design at a higher level.

83

Chapter 4

References for Comparison: A Floating-Point Adder, a Floating-Point Multiplier, and a
Classic Fused Multiplier-Adder

This chapter provides the design and implementation details of a floating-point adder, floating-point

multiplier, and classic floating-point fused multiply-adder created using the AMD 65nm silicon on

insulator circuit design flow. These units provide the base implementation references against which the new

fused multiply-add architectures are compared.

4.1 Introduction

In order to make a fair and relevant proposal of any new architectural circuit design, a

comparison of performance must be made between the new architecture and an

architecture that is already established. In some cases, no previous architecture exists.

Regardless, a new design must provide a solution or improvement to the status quo.

The first step in the fused multiply-add design process was to establish a basis for

comparison by designing, implementing, and observing modern arithmetic units.

Specifically, a floating-point adder, floating-point multiplier, and floating-point fused

multiply-adder have been created and implemented using high-performance architectures.

Furthermore, to keep all implementations consistent in design and method, each base unit

has been developed in the same environment and technology as the proposed designs.

The following sections of this chapter present the design and implementation details of a

double-precision floating-point adder, multiplier, and fused multiply-adder using the

AMD 65nm silicon on insulator technology library and circuit design flow. These units

84

have been created specifically to provide a basis for comparison in performance, area,

and power consumption against those realized by the proposed designs.

4.2 Double-Precision Floating-Point Adder

The floating-point adder is one of the most fundamental units used in floating-point co-

processors. The unit is designed to take two input floating-point operands and perform an

addition or subtraction. The result is rounded according to the IEEE-754 specifications

and passed out of the block. In some designs, more common in the x86 market, the

floating-point adder also produces an un-rounded result so that the control units may

detect special cases, denormals, exceptions, and various other data for trap handling.

A modern day floating-point adder is nearly always designed using the Farmwald dual-

path architecture [35]. This general scheme, which has been selected as the floating-point

adder design here, splits the addition datapath into two separate parallel cases. As

identified by the literature, the hardware required to handle data for operands with large

exponent values is different than that for exponents that are very close. Floating-point

adders now build two paths to handle these different data ranges, commonly known as

the “far path” and the “close path”.

In cases with large exponent differences, or what is called the far path, the operands must

align their floating-points via a large shifter before addition or subtraction may occur. In

cases with matching exponents, or the close path, a subtraction of very similar numbers

may result in massive cancellation, where the resulting number may be much smaller

than the original data range and must be normalized.

Figure 4.2.1 shows the top-view architecture of the dual-path floating-point adder that has

been designed and implemented as a reference design. This architecture uses the

Farmwald split, employing a far path and close path in parallel. When the correct path is

chosen by the exponent logic, the selected path sends its data to the combined add/round

stage, and both an un-rounded and rounded result are produced.

85

The following sub-sections provide the details of each block used in this floating-point

adder design. Following these descriptions are the complete results of the floating-point

adder implementation.

Far Path Close Path

Exponent
Difference
& Select

Sign Logic

Exponent
Adjust

2:1 2:1

Add/Round
& Post-Normalize

FPA_unrnd_result[63:0]

A_[63:0] B_[63:0]

[51:0] [51:0] [51:0] [51:0][62:52] [62:52]

[63]
[63]

A > B

far_select

δ

exp[11:0] exp_adjust[11:0]
op_greater[55:0] op_smaller[55:0]

comp

[63] [62:52] [51:0]

FPA_rnd_result[63:0]

[63] [62:52] [51:0]

inexact

inc

[55:0][55:0][55:0]
[55:0]

Figure 4.2.1 Double-precision floating-point adder top view

4.2.1 The Far Path

A floating-point adder far path is the significand datapath for all additions and for all

subtractions when exponents differ by more than two. This path, shown in Figure 4.2.2, is

86

set up to determine how far apart the operand exponents are and to align the significands

so that correct floating-point addition/subtraction occurs. Additionally, if the smaller

operand is out of the range of what these designs refer to as the “anchor,” or the larger

operand which has a static position, then the smaller operand’s data are collected in a

sticky bit for rounding.

Figure 4.2.2 Floating-point adder far path

The implemented architecture of the far path scheme uses a comparator in the exponent

logic to determine which operand is larger. When the large operand is identified, the

significands of the inputs pass through the “swap” multiplexer stage, which is the stage

that chooses which input is the anchor and which is the one for alignment. In double-

precision, the smaller operand enters a 54-bit aligner, and passes any bits that exceed 54-

bits to the sticky tree. The stage is complete when the smaller operand is aligned to the

anchor and the far path results are passed out of the block.

87

4.2.2 The Close Path

The floating-point adder close path is the significand data path for all subtractions with

operand exponents within the difference range of {-1,0,1}. In this data range, a

subtraction may cause massive cancellation, requiring a large normalization before the

result may be correctly rounded. Massive cancellation cases, like the floating-point adder

design presented here, are commonly handled by leading zero anticipator blocks (LZAs).

Chapter 3.3.3 provides a description and example of an LZA block handling massive

cancellation.

The close-path architecture is shown in Figure 4.2.3. The input significands are passed to

a multitude of blocks, including a swap block, a comparator, and three leading-one’s

predictors (LOPs). The block begins by determining which exponent, if any, is greater.

Once the exponent difference is determined, the operands are swapped, putting the

greater exponent in the “greater operand” path. Three LOPs are used: one for A > B, one

for A = B, and one for A < B. The exponent control selects the correct LOP at the same

time as the shift swap. The operands are sorted and the LOP is sent to a priority encoder.

88

2:1 2:1

2:1 2:1

3:1

LOPLOPLOP x 3 52-bitExp
Predict

Compare 52-bit

Normalize 53-bit Normalize 53-bit

Penc 53-bit

>>1>>1

[52:0]

[52:0]

[53:52] [53:52]

{1'b1, [51:0]}

{1'b1, [51:0]}

[55:0][55:0]

shift_swap

signif_swap

[52:0] [52:0] [52:0]

[52:0]

close_op_smaller[55:0]close_op_greater[55:0]

A_[63:0] B_[63:0]

A >= B

Asignif > Bsignif

Figure 4.2.3 Floating-point adder close path

However, in the case when the exponents are equal, the greater operand is still unknown.

To resolve this, a second swap stage uses a significand compare select to determine the

greater operand. When the swap stages are over, the priority encoder pre-normalizes both

operands and the results are passed to the round stage. Pre-normalization is valid because

cases of massive cancellation will wipe out any leading ‘1’ bits when the numbers are

subtracted, so shifting them out early merely saves a stage after the actual subtraction

occurs.

89

4.2.3 The Add/Round Stage

Following the parallel processing of the floating-point adder far and close path, the

greater and smaller operands from each merge paths in two parallel multiplexers.

Exponent control has by this point determined the correct numerical path, and the

operands from the selection are passed to the combined addition and rounding stage.

The add/round stage architectures used in the implemented adder is shown in Figure

4.2.4. The scheme uses two parallel adders, one unbiased and one with a constant, to

compute both a rounded and un-rounded case similar to the suggestions by Quach [24],

[25], and the implementation of the SPARC64 [21]. The scheme uses the reported

concept that a correct IEEE-754 rounded result may be obtained by operating on the LSB

in an adder sum or an adder sum + 2.

In this implementation, the two input operands are passed to dual 59-bit adders. One of

the adders pre-combines the two operands with a constant: a +2 constant for additions

and a +1 constant for subtractions. The MSBs and LSBs of both results are sent to a

rounding table, where the correct rounding decision is made based on rounding control.

The final rounded significand is selected by the final multiplexer, and both the rounded

and un-rounded floating-point addition results are passed out of the block.

90

Figure 4.2.4 Floating-point adder add/round stage

4.2.4 Floating-Point Adder Exponent and Sign Logic

The exponent and sign logic in a floating-point adder architecture using a dual-path

system is not trivial. The exponent and sign paths must both use parallel prediction paths

to calculate their respective results for both far and close path possibilities. Additionally,

even after the correct floating-point adder path is known, the exponent logic must

continue parallel path processing, as the possibility of an add/round stage overflow or

normalization could result in a very late-arriving control signal.

91

The architecture used in the implemented floating-point adder design is shown in Figure

4.2.5. This block begins by a dual-adder subtraction/comparison of the operand

exponents. Two adders, one for Aexp – Bexp and one for Bexp – Aexp, operate in parallel,

with the overflow of Aexp – Bexp selecting the correct exponent difference. This exponent

difference is sent out of the block to the far path swap and alignment stage for immediate

use.

When the greater exponent is determined, the operand is selected and passed to another

adder to subtract out any incoming close-path normalization adjustment. This difference

then splits into four paths which pre-calculate this exponent result by adding {-1, 0, 1, 2},

for all cases of rounding overflow, normalizing, or double overflows. When the rounding

stage executes, the correct alignment is known and the exponent result selected.

The sign logic has a simpler path than the exponent operands. Each operand sign bit is

passed to parallel logic blocks, each executing under the assumption of either the far path

or close path selections. When the path is determined, the correct block is selected and

passed to the rounding stage.

92

Add 13-bit

A_exp[62:52] B_exp[62:52]

Add 13-bit

2:1

Path Select
Logic

∆[11:0] Add 13-bit

exp_adjust[11:0]

INC 12-bit INC 12-bit

>> 1

Add 13-bit

-1

exp_inc_ctl [4:0]

4:13:1

True Op
Logic

Close Path
Sign Logic

Far Path
Sign Logic

2:1

A_sign[63] B_sign[63]

compliment

[62:52]
[62:52]

[62:52]
[62:52]

[63]
[63] [63]

A > B

true_op

far_selectsign_result

exp_unrnd[62:52] exp_rnd[62:52]

[11:0] [11:0]

[11:0]

[11:0]

[11:0] [11:0]

[11:0]

2:1

Figure 4.2.5 Floating-point adder exponent and sign logic

4.2.5 Floating-Point Adder Results

The floating-point adder has been designed and implemented with the AMD 65nm silicon

on insulator (SOI) technology and design flow. A full floorplan screenshot is shown in

Figure 4.2.6 with the floating-point adder in an orientation where data flows from top-to-

bottom with bit-positions starting at 63 and going to 0 left-to-right. The data use a pitch

of 2-rows / 1-bit to interface with multi RD/WR port register file.

93

Table 4.2.1 provides the color-key legend for the floorplan in Figure 4.2.6, identifying

major components of the floating-point adder.

Figure 4.2.6 Floating-point adder floorplan

Table 4.2.1 Floating-point adder color legend

A screenshot of the critical path is shown in Figure 4.2.7 during a circuit simulation at

1.3V 100°C in a typical VT (TypVT) process corner.

Color Component

Dark Green LOP/Penc

Light Green Dual Normalizers

Red Aligner

Brown CSA/HA

Purple Dual Adders

Blue Round/Post-Norm

Orange Exponent

94

Figure 4.2.7 Floating-point adder critical path

Critical Path: Comp � Penc53 � Normalize53 � Merge � Add59 � Round � ExpInc

Table 4.2.2 shows the results from two timing runs performed at 1.3V 100°C TypVT and

0.7V 100°C LowVT respectively. The area calculations come from the actual dimensions

of the floorplan, and the power results from HSim power simulations from the floorplan’s

extracted netlist.

Table 4.2.2 Floating-point adder results

Design
Latency

1.3V 100°C
TypVT

Latency
0.7V 100°C

LowVT

Area
65nm AMD SOI

Power (max)
666 MHz 1.3V

TypVT

Transistors

FPA_DP 946ps 2556ps
155µm x 465µm

= 72,075µm2 118mW 60,526

4.3 Double-Precision Floating-Point Multiplier

The floating-point multiplier is commonly the largest logical block in a floating-point

unit, built to take two input operands and provide a multiplied and rounded result. The

unit itself, when compared to a floating-point adder, has a simpler overall architecture,

but contains very complex components that use large amounts of area and power.

Adding to the floating-point multiplier’s size and latency is an array of complex

arithmetic functions beyond simple multiplication. A common floating-point unit uses the

multiplier to process transcendental, divide, and square root algorithms that use ROM

95

tables and multiplicative iterations. Without this additional burden, the floating-point

multiplier has a very fast performance with low latency. However, with the additional

instructions that must be handled by the unit, the latency increases and the unit’s cycle

count becomes similar to that of a floating-point adder.

The floating-point multiplier described here has been designed without the burden of

transcendental, square root, or division algorithms. While these algorithms are necessary

in a floating-point unit wishing to comply with the IEEE-754 standard, the design is

intended to provide the implementation details of a pure floating-point multiplication

instruction without the extra overhead. The proposed fused multiply-add units described

in later chapters also do not support these extra functions, keeping the relative

calculations consistent in method. These extra functions have been removed in an effort

to make the comparison between arithmetic units as direct and straight forward as

possible.

The floating-point multiplier implemented architecture is shown in Figure 4.3.1. The unit

begins processing data in a 53 x 27-bit radix-4 multiplication tree. The multiplier tree

product result passes to a combined add/round stage, where the carry/save product is

combined and rounded. The stage outputs both an un-rounded and rounded result, and the

floating-point multiplication is complete. Both sign and exponent datapaths run in

parallel to the significand processing.

96

Figure 4.3.1 Floating-point multiplier top view

The following sub-sections describe the details of each major block in the floating-point

multiplier from Figure 4.3.1, save the multiplier tree which is already described in

Chapter 3.3.1. Following, the results from the implementation floorplanning and

simulation are presented.

4.3.1 The Add/Round Stage

The addition and rounding stage in a floating-point multiplier requires a rounding stage

more complex than that of a floating-point adder. The multiplier needs unique hardware

to produce a rounded result half the size of its input operands, all while correctly

propagating data from the parsed lower-half.

The implemented floating-point multiplier stage, shown in Figure 4.3.2, uses an

architecture similar to those suggested by [26], [27]. The upper half of the input

carry/save product is passed to two half-adder (HA) stages, where the LSB from each

97

stage is stripped off and sent to a constant 2-bit adder. The remaining upper half enters a

compound adder, where the sum and augmented sum (sum + 1) is calculated.

HA 54-bit

HA 53-bit

Carry/Sticky
53-bit

Round
Logic

Round Select and
Post-Norm

RC[2:0]

[105:52] [105:52] [52:0][52:1]

[0][1]
C

LSB,R

[51:0] [51:0]

V

inc

Mul_sum[105:0]Mul_carry[105:1]

52-bit
Cpnd Add

Constant
Add 2-bit Inexact

Logic

Carry-In Select and
Post-Norm

FPM_rnd_significand[52:0]FPM_unrnd_significand[52:0]

[52:0][52:0]

inc

exp_adjust[1:0]

inexact

Figure 4.3.2 Floating-point multiplier add/round stage

The lower half of the add/round stage input is sent to a carry and sticky tree, where the

LSB, round (R), and sticky (S) bits are produced. These bits combine with rounding

control and select the correct increment of the final result’s lower 2-bits. Depending on

the bit sequence selection of the lower 2-bit constant adder output, the upper half of the

result will either be ready for post-normalization or will require the augmented selection.

Both the lower 2-bits and the selected compound adder output are post-normalized, and

the stage is over.

98

4.3.2 Exponent and Sign Logic

The exponent and sign logic in a floating-point multiplier is far simpler than that of a

floating-point adder. In a floating-point multiplier, the two exponent operands must be

added to correctly represent a multiplication. However, since the exponent format

specified by the IEEE standard is represented in a form with a BIAS, this BIAS will

become double the value when the two operands are added together (e.g. [EA + BIAS] +

[EB + BIAS] = [EA + EB] + [2 * BIAS]). To correct this error, the BIAS itself must be

subtracted out of the addition.

The implemented floating-point multiplier exponent architecture is shown in Figure

4.3.3. The exponent operands are combined with a negative BIAS term, in this case hex

C01 for double-precision, in a 3:2 carry-save adder (CSA) followed by a 13-bit add. The

result is incremented in anticipation of a rounding increment, and the late arriving

increment control signals select the correct exponent un-rounded and rounded result.

A_[63:52] B_[63:52]

3:2 CSA

12'hC01

Add 13-bit

INC 12-bit

2:1

exp_inc_ctl [1:0]

sign_result

unrnd_exp[62:52]

2:1

rnd_exp[62:52]

[12:0] [12:0]

[62:52]
[62:52]

[63] [63]

[12:0]

12

[11:0] [11:0] [11:0] [11:0]

Figure 4.3.3 Floating-point multiplier exponent and sign logic

99

4.3.3 Floating-Point Multiplier Results

The floating-point multiplier implementation results are presented in the same form as the

floating-point adder in Section 4.2.5. The full floorplan of the floating-point multiplier is

shown in Figure 4.3.4. Table 4.3.1 provides the color-code legend for the component

identification in the floorplan.

Figure 4.3.4 Floating-point multiplier floorplan

Table 4.3.1 Floating-point multiplier color legend

Color Component

Brown/Tan Booth Encoding/Buffering

Blues Multiplier Array

Purple Compound Adder

Red Carry Tree

Yellow Sticky Tree

Orange Exponent

100

The critical path signal from a 1.3V 100°C TypVT run is shown in Figure 4.3.5.

Figure 4.3.5 Floating-point multiplier critical path

Critical Path : BoothEnc � MulTree � 3:2 CSA � Cpnd52 � Post-Norm

Table 4.3.2 provides the timing simulation, area, and power results. The timing results,

like the adder, are from a 1.3V 100°C TypVT corner and a 0.7V 100°C LowVT corner

respectively. The maximum power calculation comes from a HSim floorplan extraction

simulation that is held at the same frequency as the simulation from the floating-point

adder.

Table 4.3.2 Floating-point multiplier results

Design
Latency

1.3V 100°C
TypVT

Latency
0.7V 100°C

LowVT

Area
65nm AMD SOI

Power (max)
666 MHz 1.3V

TypVT

Transistors

FPM_DP 701ps 1950ps
282µm x 465µm
= 131,130µm2 187mW 125,302

101

4.4 Double-Precision Classic Fused Multiplier-Adder

The “classic” (IBM RS/6000), serialized floating-point fused multiply-add unit is the

centerpiece of this entire design. Since the fused multiplier-adders in this dissertation are

new architectures, it is imperative that the comparison base design be both accurate and

have the highest performance possible so that the new design data are not skewed with

comparative error. The selected architecture for the classic fused multiplier-adder, shown

in Figure 4.4.1, is the IBM RS/6000 [1], [2] design with implementation improvements

from later builds described in Chapter 2.

The IBM RS/6000 base architecture was selected over newer suggestions found in

Chapter 2 due to the practicality and the wide acceptance of the original design. As

indicated in the introduction, all major industrial builds of the unit to this day still use the

IBM RS/6000 base design, making this architecture the floating-point fused multiply-add

standard. Newer suggestions have been too archaic or complex to physically build, so

none have been adopted. Since there is no new solution that provides an acceptable

deviation from the IBM RS/6000 architecture, it remains the standard for comparison.

The following sections provide a detailed specific look at some of the generalized

components shown in Figure 4.4.1. Specifically, the stages from the 161-bit addition

component all the way to the add/round stage are generalized in Figure 4.4.1 to simplify

understanding, whereas the next few sections show their actual implementation.

However, few details are provided on the functionality of the IBM RS/6000 base fused

multiply-adder architecture, as the description of a fused multiply-add instruction

execution is already provided in Chapter 2.

The section concludes with the implementation results of the classic floating-point fused

multiply-adder designed with an IBM RS/6000 base architecture.

102

Exponent
Difference

Sign Logic

Exponent
Adjust Round

& Post-Normalize

FMA_unrnd_result[63:0]

A_[63:0] B_[63:0]

FMA_rnd_result[63:0]

C_[63:0]

Multiplier Tree

3:2 CSA 106-bit

161-bit Align

Invert

Add 161-bit
LZA

109-bit

Compliment

Normalize 161-bit

Sign Adjust

inexact

{1,b1, [51:0]} {1,b1, [51:0]}
{1,b1, [51:0]}[62:52][63]

[160:0]
[105:1] [105:0]

[105:0]

[11:0]

comp

norm_52

[11:0] [11:0]

[160:106]

[160:0] [160:0] [108:0] [108:0]

[63] [63][62:52] [62:52][51:0] [51:0]

Figure 4.4.1 Floating-point fused multiply-add top view

4.4.1 Addition to Rounding Stage Specifics

The implemented double-precision classic fused multiply-adder uses much of the base

IBM RS/6000 architecture at the head of the block. The unit begins with a 53 x 27 radix-

4 multiplier in parallel with a 161-bit aligner/inverter used by the third operand. The

103

lower 106-bits are combined in a 3:2 CSA and passed to a generalized 161-bit adder

stage.

The actual implementation of this adder stage splits the datapath into a 109-bit adder and

a 52-bit incrementer, as shown in Figure 4.4.2. The carry-out of the 109-bit adder is used

to select the correct increment of the upper 52-bits, and the total 161-bit significand

enters a 52-bit normalization. This first normalization is a single 2:1 multiplexer

selection, as the exponent logic knows by this stage whether the addend or product

operand is larger. The correct 109-bit remainder is selected, and the bottom 52-bits fall to

sticky.

Following the 52-bit normalizer/selection, the data enter a 109-bit incrementer 2’s

complement stage. A 2’s complement solution has been selected, as it provided less

latency in early simulations than a complementation solution that uses an end-around-

carry (EAC) 109-bit adder. While this result may be counter-intuitive, as an incrementer

requires more stages than a EAC adder, the increased parasitics seen by the scaling of

interconnects [3] - [5] in the presence of weak drive strengths from AOI/OAI cells used

in prefix adders created a critical path worse than that of the 2’s complement method.

Therefore, a 109-bit incrementer is used in this scheme.

104

LZA
109-bit

Sticky
83-bit

Normalize 52-bit

INC 52-bit

2:1

Sticky
53-bit

Normalize 109-bit

Sticky
55-bit

FMA_unrnd_significand[51:0]

Add 109-bit

INC 109-bit

INC 54-bit

Round Logic

add_in_carry[160:0] add_in_sum[108:0]

aligner_falloff[82:0]

2:1

norm_52

2:1

FMA_rnd_significand[51:0]

inexact
inc

exp_adjust[11:0]

[160:109] [160:109]
[108:0] [108:0] [108:0] [108:0] [82:0]

[51:0]
align_sticky

norm52_sticky

[53:0]

[108:0]

[108:0]

[108:0]
[160:109]

compliment

compliment

[108:56] [108:56]

[56:54][107:56]

Figure 4.4.2 Floating-point fused multiply-add addition and rounding

The 2’s complemented 109-bit vector is passed to a 109-bit normalization stage

controlled by the LZA block. The resulting data are split into two paths, with the upper

half entering a 54-bit incrementer stage and the lower bits falling to sticky and round

logic. A rounding block calculates the round and selects the correctly rounded fused

multiply-adder output, completing the instruction.

105

4.4.2 Exponent and Sign Logic

The exponent logic implemented in the double-precision fused multiply-adder is far more

complex than either the stand-alone adder or multiplier schemes. Several paths are

required for pre-computation and large normalization values may happen in a variety of

cases. However, the sign logic for the stage is rather simple, following that of a floating-

point adder.

The fused multiply-add exponent scheme, shown in Figure 4.4.3, requires three separate

parallel calculations at the beginning of the block. The first calculation required is the

exponent difference between A * B and C to provide an alignment control to the 161-bit

align stage. As described in the floating-point multiplier exponent section, the exponent

sum for the product A * B must be offset by the BIAS, which is done here. Additionally,

the C exponent begins un-aligned 55 places above the multiplier product, so this range

must be added in for a correct alignment value. Finally, the C value is inverted, and

requires a 2’s complement—adding 1. Therefore, the final equation of the first pipe is

Aexp + Bexp – Cexp + 55 + 1 – 1023 = Aexp + Bexp – Cexp – 967.

The second required calculation is the difference of the exponents for the product A * B

and C without alignment, so that a comparator flag may be generated for path selection.

For this combination, the BIAS must still be subtracted off and the 2’s complement still

added. This calculation equation is Aexp + Bexp – Cexp + 1 – 1023 = Aexp + Bexp – Cexp –

1022.

The third calculation is the exponent value of the product A * B itself. When the correct

path is found from the comparator exponents, the base exponent value for the final

solution will be either that of A * B or C. This correct value, when selected, adds to a

normalized alignment value from the 161-bit aligner control and waits for the

normalization stage.

106

Figure 4.4.3 Floating-point fused-multiply add exponent and sign logic

The two normalization stages and the LZA from the significand datapath send a

combined control to adders used for a normalization offset needed in the final exponent

calculation. First, a 52-bit normalize may occur, requiring a fixed value to be added to

any LZA shifting. Second, the 109-bit LZA is split into two 64-bit halves, with the first

half only really consisting of 45 bits. This 45-bit shift is easy to detect, and can also be

added to the 52-bit constant for another normalization option. The remaining 6-bits of

LZA control are added into the selected constant, and a normalization offset is calculated.

107

The exponent stage finalizes by subtracting the normalization constant from the aligned

exponent value, and an incrementer/multiplexer stage makes an adjustment for rounding

overflows.

4.4.3 Floating-Point Classic Fused Multiplier-Adder Results

The double-precision floating-point classic fused multiplier-adder results are presented in

the same format as that of the multiplier and adder. The classic fused multiplier-adder

floorplan is shown in Figure 4.4.4. Table 4.4.1 provides the floorplan component color

legend.

Figure 4.4.4 Floating-point classic fused multiply-add floorplan

108

Table 4.4.1 Floating-point classic fused multiply-add color legend

The floating-point classic fused multiplier-adder 1.3V 100°C TypVT critical path is

shown in Figure 4.4.5.

Figure 4.4.5 Floating-point classic fused multiply-add critical path

Crit Path: ExpDiff � Align161 � 3:2 CSA � Add109 � Inc52Sel � Norm52 � Comp � Norm109 � Inc54 �
Post-Norm

Color Component

Brown/Tan (top) Booth Encoding/Buffering

Blues Multiplier Array

Red Aligner

Brown/Tan (mid) 3:2 CSA

Purples Adders/Incrementer

Green LZA

Yellow Normalizer

Orange Exponent

109

Table 4.4.2 shows the results of the 1.3V 100°C TypVT and 0.7V 100°C LowVT timing

runs, area calculation, and maximum power consumption at the normalized frequency.

All simulations have been performed with AMD 65nm SOI technology.

Table 4.4.2 Floating-point classic fused multiply-add results

Design

Latency
1.3V

100°C
TypVT

Latency
0.7V

100°C
LowVT

Area
65nm AMD SOI

Power (max)
666 MHz 1.3V

TypVT

Transistors

FMA_Classic 1224ps 3363ps
402µm x 465µm
= 186,930µm2 416mW 177,338

110

Chapter 5

The Three-Path Fused Multiply-Add Architecture

This chapter provides the design and implementation details of a new floating-point three-path fused

multiplier-adder created using the AMD 65nm silicon on insulator circuit design flow. The three-path

architecture shows an approximate reduction of 12% in latency as well as a reduction of about 15% in

power consumption relative to the classical fused multiply-adder.

5.1 Introduction

Since its public introduction in 1990, industrial implementations of the floating-point

fused multiply adder have seen little architectural change from the original IBM RS/6000

[1], [2]. As reported in Chapter 2, several proposals for the improvement of fused

multiply-add execution units have been made. However, these new proposals for the

reduction of latency or power consumption have either never actually been implemented,

or were built at the cost of a loss in arithmetic precision and original functionality.

This chapter presents the design and implementation of a new architecture that reduces

both the latency and power consumption of fused multiply-add instructions without any

loss in functionality or precision. This new three-path fused multiply-add unit uses

parallel hardware paths designed to reduce latency by returning to the floating-point

arithmetic fundamentals presented in Farmwald’s dual-path floating-point adder [35].

The new architecture’s parallelism is not an attempt to force a fused multiply-add into a

floating-point adder dual-path system, as suggested by previous works. Instead it uses

Farmwald’s analysis (not implementation) for different data cases, which logically leads

111

to a three-path system for a fused multiply-add design. Finally, a three-case hardware

system that turns on paths for selected arithmetic data ranges provides a unique

opportunity for power savings. In this design, only one of the three paths is ever turned

on for any possible instruction.

The following sections include the design philosophies and architectural details of the

floating-point three-path fused multiply-adder, including an architecture with an optional

floating-point multiplication bypass. After the architectural description, a results section

presents the implementation results of the three-path fused multiply-adder that has been

built in AMD 65nm silicon on insulator (SOI) technology. The chapter finalizes by

comparing the three-path results against the classic fused multiply-adder implementation

presented in Chapter 4. When compared, the three-path architecture shows about a 12%

reduction in latency and about a 15% reduction in power consumption relative to the

classical fused multiply-adder design.

5.2 Three-Path Fused Multiply-Add Architecture

The design concept of the three-path fused multiply-add architecture followed a complete

study of the classic fused multiply-add architecture, implementation, and critical paths, as

described in Chapter 4, as well as a full review of the academic literature, seen in Chapter

2, with its push for fused multiply-adder parallelism. The conclusion from this extended

study on fused multiply-adder units is that a new multiply-add architecture should

consider several basic design philosophies for architectural improvement:

1. Parallelize fused multiply-add hardware so the data are not subjected to prediction

stages that, for most cases, provide little computational benefit.

2. When designing parallel hardware paths, follow the basic concept of the

Farmwald dual-path floating-point adder [35].

3. Fix the fused multiply-add wire dominance problem [3] - [5] by reducing the size

of the critical path components or by completely removing them.

112

4. Use the front-end multiplier CSA delay as an opportunity to pre-compute the

necessary parallel fused multiply-add path.

5. Design the parallel hardware paths so that they are logically exclusive, allowing

for path pre-computation logic to shut them down in a power-reduction effort if

incoming data will not use them.

The three-path fused multiply-adder shown in Figure 5.2.1 has been designed to follow

these guidelines. The global design splits the data-path following the CSA multiplier

array into three case specific blocks, each designed with different data “anchors.” This

partitioning of anchor cases removes the need for a massive aligner as well as a

complementing stage. Instead, the design partitions alignments and inversions at local

levels.

Figure 5.2.1 Three-path fused multiplier-adder architecture

113

Following the path selection, the appropriate block processes and prepares the numerical

data for a combined add/round stage. As in many modern arithmetic unit designs, a

combined add/round stage removes the requirement for a massive adder followed by

another addition/increment unit for the purpose of IEEE-754 compliant rounding.

The specifics of each path, as well as an explanation of the selected add/round scheme,

are described in detail in the following sections.

5.2.1 The Anchor Paths

The three-path fused multiply-adder uses two “anchor” paths for data dependent

processing. As shown in Figure 5.2.1, these two blocks are the adder anchor path and

product anchor path. The use of the term “anchor” is a reference to the design philosophy

found in the Farmwald floating-point adder designs.

As seen in Chapter 4, a dual-path floating-point adder uses a “far” path that always

begins by finding the larger number and locking its position, i.e., using it as an “anchor.”

Once the larger operand is known, the second operand may be aligned and inverted in the

case of subtraction without ever needing a corrective complement.

For the case of a fused multiply-add unit, a similar use of a far path is not feasible, as the

range of positions in double-precision format spans 161-bits as compared to 52-bits in a

floating-point adder. Additionally, if such a system were applied to a fused multiplier-

adder, both 161-bit ranges of addition and product operands would need to have the

option of inversion and swapping. Applying this system to something as massive as the

fused multiply-add data range is not realistic.

A better solution for dealing with the fused multiply-add data range is by splitting the

anchor-based algorithm into two cases. To start, a benefit of a fused multiply-adder unit

is that the exponent difference is known well ahead of the significand product, so a

logical data-range may be selected early in the circuit. In cases of large exponent

114

differences, either the addend or the product will be larger and always without ambiguity.

The three-path fused multiply-add unit design takes this early-known exponent difference

and anchors whichever operand is larger, forcing the other operand to invert and align.

This anchoring method requires partitioning of the 161-bit data range into two smaller

sets.

Figure 5.2.2 shows the adder anchor path in detail. This path is selected when the

exponent difference detects that the addend is larger (specifically by >= 1 for additions,

and > 2 for subtractions). For this case, the addend is anchored. The later arriving product

terms are then aligned over a 57-bit range and inverted for subtracts. Following inversion

stages, all three operands are combined in 3:2 carry save adders (CSAs) or half adders

(HAs) to produce two 163-bit numbers. The most significant bits of both results are used

for corner-case correction, and the lower 55-58 bits are sent to a carry/sticky tree, as the

least significant bits will never be selected in the final result.

Figure 5.2.2 The Adder Anchor Path

115

The adder anchor path finalizes with two 106-bit operators ready for addition and

rounding as well as an input carry and sticky bit generated by the discarded lower bits.

The adder anchor unit is not on the critical path, so there is sufficient time to normalize

the product terms over a 57-bit range.

Figure 5.2.3 shows the product anchor path. This path is the complement of the adder

anchor path and is enabled when the exponent difference determines that the product is

larger than the addend (specifically by >1 for all operations). Much like the classic fused

multiply-add, the addend is aligned and inverted against the position of the product.

However, in this design the data need only cover a 106-bit range as opposed to the

original 161-bit range. When the product terms arrive from the multiplier, all the data are

combined in a 3:2 carry save adder (CSA), adjusted and sent in 106-bit sum/carry form to

the add/round stage.

Figure 5.2.3 The Product Anchor Path

116

5.2.2 The Close Path

For cases when the exponent difference between the addend and the product is too close

to easily determine a larger operand, all data are passed to the close path. This path only

handles fused multiply-add subtraction operations and is geared specifically for massive

cancellation.

To follow suit with the two anchor paths, the close path is designed to remove the

requirement of a complementation stage. As shown in Figure 5.2.4, the close path

accomplishes this via significand swapping. First, the path uses 3:2 CSAs and HAs to

combine an inverted aligned addend with the product. Likewise, the logically opposite

term is also created with inverted product operands and an un-complemented adder term.

The first 3:2 combination is passed to a 57-bit comparator (57-bits is selected since all

bits after position 57 in the aligned adder term are always ‘0’s) to determine which

operands are larger. The comparator signals the swap multiplexers to choose the correct

inversion combination and the results are normalized in preparation for addition and

rounding. The LZA that controls this normalization is passed only one combination of

inversion inputs, as its functionality is not affected by which operand is larger.

Depending on the addition/rounding scheme selected, the one-bit LZA correction shift

may be handled in the add/round block.

117

Figure 5.2.4 The Close Path

Timing simulations early in the design of the three-path fused multiply-add unit quickly

identified the close path as the critical timing arc. As a result the design was changed to

reduce the critical path by shrinking the bit-sizes of the high-latency components.

Specifically, the original 109-bit LZA and 109-bit normalizers were reduced to a 57-bit

range. Logically, this reduction is a legal move, as cases of massive cancellation

exceeding 57-bits in length will produce a result that needs no rounding. This “no round”

case is triggered by the 57-bit LZA ‘1’s detection’ term. If selected, data enter the no

round path (described in detail in the next section) and performs the remaining addition

and normalization in parallel with the add/round stage.

5.2.3 The Add/Round Stage

All three middle stage paths in the three-path fused multiply-add design prepare the data

for the 106-bit add/round stage. The combined addition and rounding stage algorithm

combines various suggestions for the add/round stages of a floating-point multiplier [26],

118

[27] with modifications to the control logic, signals, and multiplexer sizes to account for

the fused multiply-add functionality. Finally, a “no round” path block has also been

added in parallel to the scheme to handle the extra output case from the close path.

The combined fused multiply-add add/round stage is shown in Figure 5.2.5. The stage

begins with a control block that selects the correct three path output and directs the data

to the add/round scheme. The upper 54-bits of the selected data enter two half adder

stages that remove least significant bits for rounding control. The lower 53-bits are

passed to a carry and sticky block that produces the round and carry bits for the final

round logic. One of the stage input bits is mutual to both.

Figure 5.2.5 The No Round Path (left) and Add/Round Stage (right)

The data from the half adder stages enter a 52-bit compound adder, which produces a

sum and an augmented sum (i.e., sum+1). Meanwhile, the rounding logic adjusts the

119

lower 2 bits of the half adders and sends a carry out select signal to choose the correct

adder output. The selected result is post-normalized and latched.

In the case of a close path selection with the no round signal assertion, the no round data

inputs are added and normalized in a path separate from and parallel to the add/round

stage. The result from this “no round” path is forwarded to the add/round result

multiplexer, post-normalized, and latched.

When either the no round path result or add/round result is latched, the fused multiply-

add instruction is complete and data exit the unit.

5.2.4 Exponent and Sign Logic

The exponent and sign stage architecture in a three-path fused multiply add unit is very

similar to that used by a classic fused multiply-add unit, only showing two major

differences. The first difference, shown in Figure 5.2.6, is the use of four initial exponent

calculations. Three of these four exponent paths are used for alignment, comparison, and

multiplier exponent values, much like a classic fused multiply-add unit. The fourth

exponent path is needed in the three-path architecture to generate the alignment value

specifically for the close path.

The close path alignment calculation is done in the sign/exponent block for timing

reasons. Unlike the anchor paths, which have localized exponent adjustments, the close

path is in the critical timing arc of the entire fused multiply-add unit. According to

simulations, adding local exponent handlers in the close path block increases the unit’s

total delay, so the difference calculation has been moved further up the datapath.

The second major difference found in the three-path exponent architecture is the removal

of the classic fused multiply-add normalization adjustment adders. In a three-path

architecture, the exponent normalization constant is selected at the path merger along

with the correct operands. Since each path already takes exponent adjustment into

120

account, no additional parallel processing is needed in the exponent logic block. Instead,

the selected path passes the already calculated normalization vector to the final exponent

adder. After this final exponent adder, the path is again similar that used by a classic

fused multiply-add unit.

The sign logic used in a three-path architecture is a simple design. Combinational logic

takes the true operand control signal, the complement signal generated in the close path,

the final path selection signal, and the exponent comparison result signal to determine the

final sign bit. The only block dependent on the sign result signal is the three-path

rounding logic, but the signal arrives early enough that it does not affect the latency of

any critical path before exiting the unit.

Figure 5.2.6 Exponent and Sign Logic

121

5.3 Three-Path Fused Multiplier-Adder with Multiplier Bypass

The three-path fused multiply-add unit presents a unique additional option due to the

configuration of its components—a floating-point multiplication bypass. Since a fused

multiply-add unit always begins with a multiplication array, the hardware capable of

handling the first half of a stand-alone floating-point multiply is already in place.

Additionally, since the three-path add/round stage is designed from architectures intended

for floating-point multipliers, all the necessary hardware for the optional instruction is

present. Therefore, to allow for a stand-alone floating-point multiplication in the three-

path fused multiply-add unit architecture, only a small update to exponent logic and the

introduction of a simple bypass connecting the multiplication array to the add/round stage

is needed. This optional configuration is shown in Figure 5.3.1.

Figure 5.3.1 Three-path fused multiply-add with FPM bypass

122

5.4 Three-Path Fused Multiplier-Adder Results

The floating-point three-path fused multiply-add unit has been designed and implemented

on the AMD 65nm silicon on insulator (SOI) technology and design flow. To provide a

comparison of the three-path architecture’s capabilities and improvements, a classic

floating-point fused multiply-add unit has also been designed and implemented in the

same technology as described in Chapter 4.

A floorplan screenshot of the three-path architecture is shown in Figure 5.4.1 in an

orientation where data flow from top-to-bottom with bit-positions starting at 63 and going

to 0 from left-to-right. The data use a pitch of 2-rows / 1-bit at the input and output to

interface with a multiple RD/WR port register file, but compresses to a 1-row / 1-bit pitch

internally due to the folding of the multiplier array.

Table 5.4.1 provides the color-key legend for the three-path floorplan from Figure 5.4.1,

identifying the major components of the new fused multiply-adder.

123

Figure 5.4.1 Three-path fused multiply-add floorplan

124

Table 5.4.1 Floating-point fused multiply-add color legend

A screenshot of the critical path is shown in Figure 5.4.2, captured during a circuit

simulation at1.3V 100°C in a TypVT process corner. Below the critical path figure is

brief identification of the critical path block sequence.

Color Component

Brown/Tan (top) Booth Encoding/Buffering

Blues Multiplier Array

Reds Adder Anchor Path

Yellow/Gold Product Anchor Path

Greens Close Path

Brown/Tan (mid) Buffering/Muxing

Olive Greens Close Path/No Round Normalize

Purples Adder/Comparator/Carry Tree

Orange Exponent

125

Figure 5.4.2 Three-path fused multiply-add critical path

Critical Path: BoothEnc � Mul Array � Close Path LZA � Normalize57 � 2 x HA � CpndAdd52 � Post-norm

Table 5.4.2 provides the results from two timing runs performed at 1.3V 100°C TypVT

and 0.7V 100°C LowVT respectively. The area calculations come from the actual

126

dimensions of the floorplan, and the power results from HSim power simulations from

the floorplan’s extracted netlist.

Table 5.4.3 compares the classic fused multiply-add and the three-path fused multiply-

add designs in the categories of latency, area, and power consumption. The comparison

results provide absolute as well as relative results. The difference row provides the

increase/decrease of the three-path fused multiply-add relative to the classic fused

multiply-add.

As shown in Table 5.4.3, the three-path fused multiply-add design shows about a 12%

decrease in latency as compared to a classic fused multiply-add. Additionally, when

clocked at the same frequency, the three-path fused multiply-add design provides an

about a 15% reduction in the maximum power consumption. Both the power and latency

gains of the three-path fused multiply-add architecture come at the price of a nearly 40%

increase in area.

Table 5.4.2 Floating-point three-path fused multiplier-adder results

Design

Latency
1.3V

100°C
TypVT

Latency
0.7V

100°C
LowVT

Area
65nm AMD SOI

Power (max)
666 MHz 1.3V

TypVT

Transistors

FMA_3Path 1081ps 2959ps
557µm x 465µm
= 259,005µm2 354mW 246,914

Table 5.4.3 Floating-point fused multiplier-adder comparative results.

Design
Latency

1.3V 100°C
TypVT

Latency
0.7V 100°C

LowVT

Area
65nm AMD SOI

Power (max)
666 MHz 1.3V

TypVT

Classic FMA 1224ps 3363ps 186,930µm2
416mW

Three-Path FMA 1081ps 2959ps 259,005µm2
354mW

Difference –11.7% –12.0% 38.6% –14.9%

127

Chapter 6

The Bridge Fused Multiply-Add Architecture

This chapter provides the design and implementation details of a new floating-point bridge fused

multiplier-adder created using the AMD 65nm silicon on insulator circuit design flow. The bridge

architecture provides a hardware configuration that may dynamically operate in either a dual-pipeline mode

that executes full-performance floating-point addition and floating-point multiplication instructions in

parallel or a single-pipeline mode that executes a floating-point fused multiply-add instruction.

6.1 Introduction

A great advantage of a classic floating-point fused multiply-add architecture is its ability

to execute all arithmetic instructions in a single unit. Not only does a fused multiplier-

adder show increased performance of the instruction (A x B) + C as compared to a

floating-point multiplier followed by a floating-point adder, but it may entirely replace

them in hardware.

A fused multiply-add unit may emulate a floating-point adder and floating-point

multiplier by inserting fixed constants into its data path. A floating-point addition is

executed by replacing operand B with 1.0, forming the equation (A x 1.0) + C. Likewise,

a floating-point multiplication is executed by replacing operand C with 0.0, forming the

equation (A x B) + 0.0. This simple injection of constants allows a floating-point fused

multiply-add unit to be built as the stand-alone, all-purpose execution unit inside a

floating-point co-processor.

128

However, the greatest advantage of the modern fused multiply-add is also the greatest

argument against its use. Fused multiply-add units make significant gains in multiply-add

instruction performance by combining the hardware of a floating-point multiplier and

floating-point adder into a tighter datapath, as well as by removing the requirement for an

intermediate rounding unit. Due to the faster, yet higher complexity of the fused

multiply-add unit, normal addition and multiplication instructions are subject to greater

latencies than if they were processed in their original arithmetic unit (i.e., floating-point

adder or floating-point multiplier). For developers that do not wish to re-compile their

existing code or for algorithms that are nor amenable to implementation with a fused

multiply-add instruction, the replacement of a floating-point adder and floating-point

multiplier with a fused multiply-add unit may be an unattractive endeavor.

A few possible solutions to this problem have been presented in literature, as seen in

Chapter 2. However, though such proposals have been made, they have yet to be

implemented. Additionally, no study has yet been presented that identifies the relative

costs of creating a floating-point unit capable of performing all three basic floating-point

arithmetic instructions in hardware.

This chapter presents a new architecture that builds hardware fused multiply-add unit

functionality into the middle of a unit containing a floating-point adder and a floating-

point multiplier unit, creating a “bridge” that connects the two. The architecture is

designed to re-use as much hardware as possible from both the floating-point multiplier

and floating-point adder units to minimize the area and the power consumption. This

design is intended to provide an identification of the implementation costs in a floating-

point arithmetic unit capable of adds, multiplies, and fused multiply-add operations

completely processed by hardware.

The following sections provide the architectural details of the bridge fused multiply-add

unit design. After the architectural description, a results section presents the

129

implementation results of a bridge fused multiply-add unit that has been designed in the

AMD 65nm silicon on insulator technology. The chapter finalizes by comparing the

bridge results against the implementations of a classic fused multiply-add unit, a floating-

point multiplier, and a floating-point adder. The designs and implementations of the units

used as the basis for comparison are each presented in Chapter 4.

6.2 The Bridge Fused Multiply-Add Architecture

The bridge fused multiply-add architecture has been created with the intention to find a

solution to the performance degradation of single additions and multiplications in current

fused multiply-add units. The architecture has also been designed to provide a realistic

study of the implementation costs involved when building an arithmetic unit capable of

all three fundamental floating-point mathematical instructions.

Figure 6.2.1 shows a high level block diagram of the bridge fused multiply-add

architecture. The design begins with common floating-point multiply and floating-point

add units capable of independent execution. Several blocks are added between the two

arithmetic units, creating a “bridge” capable of carrying data from one unit to the other to

perform a fused multiply-add.

130

Figure 6.2.1 The bridge fused multiply-add block diagram

The bridge fused multiply-add architecture does not require an entire independent fused

multiply-add hardware implementation. Pieces from both the floating-point multiplier

and floating-point adder are modified and reused for dual functionality. Specifically, the

floating-point adder’s add/round unit is used for both single adds and fused multiply-

adds, while the multiplier re-uses the largest component block of any arithmetic unit, the

multiplier array. The remaining hardware requirements for a complete fused multiply-add

instruction are implemented in the bridge unit.

6.2.1 The Multiplier

The bridge fused multiply-add architecture uses a floating-point multiplier that executes

stand-alone multiplications as well as the first stage of a fused multiply-add. As shown in

Figure 6.2.2, the double-precision multiplier unit takes two 64-bit operands as inputs. The

significands are processed in a 53 x 53-bit multiplier, while the exponent and sign bits are

processed in parallel. For a multiplication instruction, the multiplier array forwards the

131

106-bit sum and carry results to a floating-point multiplier rounding unit designed from

the suggestions of several multiplication rounding schemes [26], [27].

Multiplier Array

[51:0]

Exp Logic

Exp
Adjust

Sign Logic

[105:1] [105:0]

[62:52]

sign_result [11:0]

exp_inc_ctl[1:0]

[63] [63] [62:52][62:52]

{1'b1, [51:0]}{1'b1, [51:0]}

Add/Round
& Post-Normalize

FPM_unrnd_result[63:0] FPM_rnd_result[63:0]

A_[63:0] B_[63:0]

[62:52][51:0][63] [63]

inexact

Mul_carry[105:1]
Mul_sum[105:0]

Figure 6.2.2 The Multiplier

When the required operation is a fused multiply-add instruction, the unit begins execution

in the same way as a floating-point multiplication. However, when the multiplier array

produces a sum/carry result, the data are forwarded outside the unit to the bridge and the

floating-point multiplier rounding scheme is shut down.

6.2.2 The Bridge

The bridge unit is shown in Figure 6.2.3. This block is essentially the classic fused

multiply-add architecture described in Section 2 without the multiplier array, rounding, or

post-normalization units. Instead, the bridge unit begins by accepting the product bits

from the floating-point multiplier and combining them with a pre-aligned 161-bit addend.

132

Figure 6.2.3 The Bridge

The combined data enter a 161-bit adder stage (specifically a 109-bit adder with a 52-bit

incrementer in the implementation) as well as a 109-bit leading-zero anticipator (LZA)

that executes in parallel to the addition. The resulting addition enters a 52-bit

normalization stage and is shifted with a single multiplexer based on the range of the

final exponent. The remaining 109-bits are complemented if necessary and finally enter a

133

109-bit normalization stage controlled by the output of the LZA unit. After

normalization, the data are ready for rounding, and exits the bridge.

6.2.3 The Adder

The bridge fused multiply-add architecture uses a common Farmwald [35] dual-path

floating-point adder design to execute stand-alone addition instructions. As shown in

Figure 6.2.4, the addition unit uses a far and close path to handle the two classical

floating point addition cases. The far path, shown on the left side of Figure 6.2.4, is used

to process input significands for either an addition or a subtraction if their exponents

differ by more than 1. For this path, the significands of both inputs are passed to a swap

multiplexer that awaits the results of a comparison of the exponents. When the larger

significand is detected, it is anchored and the smaller significand is aligned until the

exponents match.

For cases of subtraction where the exponents are equal or differ by ±1, the input data are

processed in the addition unit close path that is shown on the right side of Figure 6.2.4.

The close path pre-shifts both input significands by one and inputs both shifted and non-

shifted operands to a swap multiplexer. Meanwhile, a comparator is used to determine the

larger significand in the case of no exponent difference, all while three leading one

predictors (LOP) operate in parallel on each possible exponent difference case.

The exponent prediction logic and significand comparator drive the select lines on several

sets of swap multiplexers. The resulting LOP selection enters a 53-bit priority encoder

and is reduced to a 5-bit normalization control. Both the larger and smaller significands

in the close path are normalized by up to 54-bits.

Upon each path’s completion, the larger and smaller operands from both the far and close

path exit the block and are forwarded to the bridge fused multiply-add unit round stage

for path merging, rounding, and instruction completion.

134

Figure 6.2.4 The Adder

6.2.4 The Add/Round Unit

The bridge fused multiply-add architecture’s addition and rounding unit is designed to

perform several roles. When a stand-alone addition instruction is required, the add/round

unit first acts as a common floating-point adder dual-path merging stage, selecting input

operands from either the far path or the close path. For a fused multiply-add instruction,

this same multiplexer is expanded to select the fused multiply-add unit’s un-rounded

result. In this case, the second input operand is passed a null string, as another operator is

not needed for the multiply-add rounding completion.

The bridge add/round unit is shown in Figure 6.2.5. The block uses a floating-point

addition combined add/round scheme that comes from several suggestions as seen in

[24], [25]. The two add/round stage selected double-precision input operands are passed

to dual 59-bit adders that produce a result and a result plus 2 (or plus 1 for subtraction).

135

Providing these arithmetic results, as better explained by the literature, allows for an easy

LSB fix-up, shift, post-alignment, and final result selection. The controls for the shifts

come from the overflow bits of the adders, and the rounding selections are decided by

combinational rounding logic.

Add 59-bit

3:2 CSA/HA 57-bit

{2'b0, [55:0], op}

{2'b0, [55:0], op}

3:1 3:1

Add 59-bit

Round-Up Logic

3:1 3:1Round Table

2:1

2:1

{1'b0, [56:0], op}
{1'b0, [56:0], op}

add_result[56:0]
add_result_cnst[57:3]

V, LSBs V, LSBs

align/norm

MSB

MSB

Path Select
Logic

over under
norm over under

norm

post-norm

far_op_greater[55:0] far_op_smaller[55:0] FMA_unround_signif[55:0] close_op_greater[55:0] close_op_smaller[55:0] 56'b0

FMA_op FPA_exp_diff

RC[2:0]

FPA/FMA_round_significand[52:0]
Figure 6.2.5 The Add/Round Unit

6.3 The Bridge Fused Multiplier-Adder Results

The floating-point bridge fused multiplier-adder has been designed and implemented on

the AMD 65nm silicon on insulator technology and design flow. To provide a

136

comparison of the bridge architecture’s capabilities and execution options, a classic

floating-point fused multiply-adder, a floating-point multiplier, and a floating-point adder

have also been designed and implemented in the same environment. Full reports on the

design and implementation of these floating-point units are presented in Chapter 4.

A floorplan screenshot of the bridge architecture is shown in Figure 6.3.1 in an

orientation where data flow from top-to-bottom with bit-positions starting at 63 and going

to 0 left-to-right. The data use a pitch of 2-rows / 1-bit at the input and output to interface

with a multiple RD/WR port register file. Flop boundaries (grey cells) may be seen

separating the major functional units.

Table 6.3.1 provides the color-key legend for the bridge architecture floorplan from

Figure 6.3.1, identifying the major components of the different units.

137

Figure 6.3.1 The bridge fused multiply-add floorplan

138

Table 6.3.1 Bridge fused multiply-add color legend

A screenshot of the critical path is shown in Figure 6.3.2, captured during a circuit

simulation at1.3V 100°C in a TypVT process corner. Below the critical path figure is

brief identification of the fused multiplier-adder critical path sequence.

Color Component

Brown/Tan (top) Booth Encoding/Buffering

Blues Multiplier Array

Reds
Aligner FMA
Far Path FPA

Yellow/Gold
FMA Normalize

Sticky/Round FPM/FPA

Greens Close Paths FMA/FPA

Brown/Tan (mid) Buffering/CSAs

Olive Greens Close Path/No Round Normalize

Purples Adder/Comparator/Carry Tree

Orange Exponent FMA/FPM/FPA

Grey Flops/Unit Boundaries

139

Figure 6.3.2 The bridge fused multiply-add critical path

Critical Path: ExpDiff � Align161 � 3:2 CSA � Add109 � Inc52Sel � Norm52 � Comp �

Norm109 � floating-point add/FMA Merge � Add59 � ExpInc

140

Table 6.3.2 provides the bridge results from two timing runs performed at 1.3V 100°C

TypVT and 0.7V 100°C LowVT respectively. The area calculations are from the actual

dimensions of the floorplan, and the power results are from HSim power simulations

using the floorplan’s extracted netlist.

The bridge fused multiply-add unit implementation is compared in Tables 6.3.3-6.3.6 to a

floating-point adder, floating-point multiplier, and classic fused multiply-add unit

implementation over the categories of latency, area, and power consumption. The

comparison results provide the absolute simulation calculations as well as the relative

performance of all architectures in stand-alone addition, multiplication, and fused

multiply-add instructions. The ‘∆’ rows provide the increase/decrease of an

implementation’s results relative to the first row of the table.

As seen in Tables 6.3.4-6.3.5, the bridge fused multiply-add architecture provides delay

and power consumption comparable to stand-alone floating-point adders and floating-

point multipliers for individual instructions. The bridge fused multiply-add architecture is

about 40% larger than the combination of a stand-alone floating-point adder and a stand-

alone floating-point multiplier. The bridge architecture is 30% to 70% faster and 50% to

70% lower in power consumption than a classic fused multiplier-adder when executing

single-unit instructions. The bridge fused multiply-add architecture is about 50% larger

than a classic fused multiply-add unit.

As shown by Table 6.3.6, when compared to a classic fused multiply-add architecture

executing a fused multiply-add instruction, the bridge fused multiply-add unit shows 20%

lower speed at 20% higher power consumption. The bridge fused multiply-add unit is

about 50% larger than a classic fused multiply-add unit.

141

Table 6.3.2 Bridge fused multiplier-adder results

Design
Latency

1.3V 100°C
TypVT

Latency
0.7V 100°C

LowVT

Area
65nm AMD SOI

Power
(max)

666 MHz
1.3V TypVT

Transistors

FMA_Bridge
FPA: 978ps
FPM: 708ps

FMA: 1454ps

FPA: 2625ps
FPM: 1979ps
FMA: 3973ps

610µm x
465µm

= 283,650µm2

FMA:
501mW

249,694

Table 6.3.3 Raw results from various floating-point units

Design
Latency

1.3V 100°C RVT

Latency
0.7V 100°C LVT

Area
65nm AMD SOI

Peak Power
666 MHz 1.3V

RVT

FPA_DP 946ps 2556ps 72,075µm2 118mW
FPM_DP 701ps 1950ps 131,130µm2 187mW

Classic FMA 1224ps 3363ps 186,930µm2 416mW

Bridge FMA
FPA: 978ps
FPM: 708ps

FMA: 1454ps

FPA: 2625ps
FPM: 1979ps
FMA: 3973ps

283,650µm2
FPA: 118mW
FPM: 187mW
FMA: 501mW

Table 6.3.4 Results Normalized to an FPA Stand-Alone Addition.

Design
Latency

Difference
1.3V 100°C RVT

Latency
Difference

0.7V 100°C LVT

Area Difference
65nm AMD SOI

Power Difference
666 MHz 1.3V

RVT

FPA 0% 0% 0% 0%

Classic FMA ∆ 29.4% 31.6% 159.4% 252.5%

Bridge FMA ∆ 3.4% 2.7% 293.6% 0%

Table 6.3.5 Results Normalized to an FPM Stand-Alone Multiplication.

Design
Latency

Difference
1.3V 100°C RVT

Latency
Difference

0.7V 100°C LVT

Area Difference
65nm AMD SOI

Power Difference
666 MHz 1.3V

RVT

FPM 0% 0% 0% 0%

Classic FMA ∆ 74.6% 72.5% 42.6% 122.5%

Bridge FMA ∆ 1.0% 1.5% 116.3% 0%

Table 6.3.6 Results Normalized to a Classic Fused Multiply-Add.

Design
Latency

Difference
1.3V 100°C RVT

Latency
Difference

0.7V 100°C LVT

Area Difference
65nm AMD SOI

Power Difference
666 MHz 1.3V

RVT

Classic FMA 0% 0% 0% 0%

FPA + FPM ∆ 34.6% 34.0% 8.7% -26.7%

Bridge FMA ∆ 18.8% 18.1% 51.7% 20.4%

142

Chapter 7

Conclusions and Future Work

This final chapter presents the concluding remarks on the construction and comparison of the new floating-

point fused multiply-add architectures. Following, the chapter ends with a brief summary of the suggested

future works that could enhance the design and functionality of the new fused multiply-add architectures.

7.1 Conclusions

This dissertation has presented the results of the research, design, and implementations of

several new architectures for floating-point fused multiplier-adders used in the floating-

point units of microprocessors. These new architectures have been designed to provide

solutions to the implementation problems found in modern-day fused multiply-add units.

The new three-path fused multiply-add architecture shows a 12% reduction in latency and

a concurrent 15% reduction in power as compared to a classic fused multiply-add unit.

The new bridge fused multiply-add architecture presents a design capable of full

performance floating-point addition and floating-point multiplication instructions while

still providing the functionality and performance gain of a fused multiplier-adder.

The difficult latency, power consumption, and single-instruction performance

degradation problems facing a standard floating-point fused multiply-add design are well

known problems and have not gone unnoticed by the floating-point design engineering

community. As presented in the literature review in Chapter 2, the two new architectures

presented in this dissertation are not the first to attempt a resolve of the disadvantages

found in a fused multiply-add unit. Both theoretical and implemented solutions have been

143

presented previous to this work in an attempt to improve the architecture of a fused

multiply-add unit.

However, the new designs presented in this dissertation show a clear advantage over all

previous fused multiply-add designs. The three-path architecture is the fastest and lowest

power numerically correct floating-point fused multiply-add unit implemented to-date.

Unlike many of its predecessors, the three-path results are not based on pure theoretical

analysis, as the architecture has been designed and implemented in a real industrial

strength technology. Additionally, for those previous designs that were synthesized into

physical models, the three-path architecture provides its benefits without the introduction

of additional mathematical error, massive variable-width multiplier arrays, or archaic

specialized components.

The bridge fused multiply-add architecture is the first of its kind to present a complete

solution to the problem of single-instruction performance degradation. Previous works

have suggested methods of accelerating either a floating-point multiplication or floating-

point addition, but never before has an implemented design been capable of executing all

three fundamental floating-point operations each in their original form.

To summarize the benefits of the two new architectures presented in this dissertation as

compared to previous proposals, Table 2.10.1 from Chapter 2 has been modified in Table

7.1.1 to include the three-path and bridge designs. The table compares each fused

multiply-add architecture against the original IBM RS/6000 [1], [2] in the categories of

latency, power reduction, implementation, numerical correctness, and whether the design

supports max-performance single-instruction execution.

144

Table 7.1.1 Comparison of proposed fused multiply-add architectures

Design
Latency

vs
RS/6000

Power
vs

RS/6000

Implemented
or

Theoretical

Numerically
Correct?

Max-
performance

FPM?

Max-
performance

FPA?
IBM RS/6000

[1],[2]
N/A N/A Implemented Yes No No

IBM PowerPC
604e [12],[13]

faster
SP,

slower
DP

½ size
Mul tree

Implemented Yes No No

HAL SPARC64
(pseudo-FMA)

[21]
slower N/A Implemented

rounded
twice

Yes Yes

Concordia FMA
[22]

-9% -44% Implemented No Yes No

Lang/Bruguera
[23]

-(15-
20%)

N/A Theoretical Yes No No

Seidel Multi-
Path [28]

-30% N/A Theoretical unclear No No

Xiao-Lu LZA
improvement

of
Lang/Bruguera

[30]

-(15-
20%) -
(0.17 x
LZA)

N/A

LZA
Implemented,

FMA
Theoretical

Yes No No

Lang/Bruguera
w/ FPA

bypass [32]
-10% N/A Theoretical Yes No No§

Three-Path
FMA

-12% -15% Implemented Yes Yes No

Bridge FMA 20% 20% Implemented Yes Yes Yes

Each new architecture presented in this dissertation as well as a collection of modern

floating-point arithmetic units used for comparison have been designed and implemented

using the Advanced Micro Devices 65 nanometer silicon on insulator transistor

technology and circuit design toolset. All designs use the AMD ‘Barcelona’ native quad-

core standard-cell library as an architectural building block to create and contrast the new

architectures in a realistic and cutting-edge industrial technology.

§ 40% faster floating-point add performance as compared to a classic FMA execution of the same

145

7.2 Future Work

While the three-path and bridge fused multiply-add architectures provide solutions to the

major disadvantages of the floating-point fused multiply-add unit, each new design

cannot resolve every problem as a single block. The three-path architecture, while lower

in power consumption and higher in performance than a classic fused multiply-add unit,

still has the disadvantage of single-precision performance degradation. While the optional

floating-point multiplier bypass orientation of the three-path design allows for a single-

instruction multiplication, the unit continues to add latency to a floating-point addition.

Likewise, while the bridge architecture may solve the performance degradation problems

of single instructions, the fused multiply-add operation itself is still plagued by high

power consumption and difficult timing arcs.

The next logical step for the improvement of these fused multiply-add architectures

would be to combine the two solutions into a single unit that reduces latency, lowers

power consumption, and allows for maximum performance of single floating-point

instructions. While such a combination has not yet been fully executed, the three-path

architecture has already been partially designed with this next step in mind.

The three-path add/round stage intentionally uses a rounding scheme from a floating-

point multiplier so that a simple floating-point single-instruction multiplication may use

the bypass orientation to execute a multiply at no extra latency cost. A future project

investigating this architecture could add a maximum performance floating-point addition

configuration to this optional configuration. Since the three-path architecture already uses

two anchor paths and a close path, a dual-path floating-point adder could be integrated

into the design with some creativity and re-use of existing components. In a successfully

executed design, this modified three-path architecture could solve each major problem of

the floating-point fused multiply-add unit as a stand-alone processor.

146

Bibliography

[1] R.K. Montoye, E. Hokenek and S.L. Runyon, “Design of the IBM RISC
System/6000 floating-point execution unit,” IBM Journal of Research &
Development, Vol. 34, pp. 59-70, 1990.

[2] E. Hokenek, R. Montoye and P.W. Cook, “Second-Generation RISC Floating
Point with Multiply-Add Fused,” IEEE Journal of Solid-State Circuits, Vol. 25,
pp. 1207-1213, 1990.

[3] J. A. Davis, R. Venkatesan, A. Kaloyeros, M. Beylansky, S. J. Souri, K. Banerjee,
K. C. Saraswat, A. Rahman, R. Reif and J. D. Meindl, “Interconnect Limits on
Gigascale Integration (GSI) in the 21st Century,” Proceedings of the IEEE, Vol.
89, pp. 305-324, 2001.

[4] S. Natarajan and A. Marshall, “Technological Innovations to Advance Scalability
and Interconnects in Bulk and SOI,” Proceedings of the 15th International
Conference on VLSI Design, pp. 297-298, 2002.

[5] R.K. Krishnarnurthy, A. Alvandpour, V. De and S. Borkar, “High-Performance
and Low-Power Challenges for Sub-70 nm Microprocessor Circuits,”
Proceedings of the IEEE 2002 Custom Integrated Circuits Conference, pp. 125-
128, 2002.

[6] C. Hinds, “An Enhanced Floating Point Coprocessor for Embedded Signal
Processing and Graphics Applications,” Conference Record of the Thirty-Third
Asilomar Conference on Signals, Systems, and Computers, pp. 147-151, 1999.

[7] Y. Voronenko and M. Puschel, “Automatic Generation of Implementations for
DSP Transforms on Fused Multiply-Add Architectures,” International
Conference on Acoustics, Speech and Signal Processing, pp. V-101-V-104, 2004.

[8] E. N. Linzer, “Implementation of Efficient FFT Algorithms on Fused Multiply-
Add Architectures,” IEEE Transactions on Signal Processing, Vol. 41, pp. 93-
107, 1993.

[9] A. D. Robison, “N-Bit Unsigned Division Via N-Bit Multiply-Add,” Proceedings
of the 17th IEEE Symposium On Computer Arithmetic, pp. 131-139, 2005.

147

[10] R.-C. Li, S. Boldo and M. Daumas, “Theroems on Efficient Argument
Reductions,” Proceedings of the 16th IEEE Symposium on Computer Arithmetic,
pp. 129-136, 2003.

[11] F. P. O’Connell and S. W. White, “POWER3: The Next Generation of PowerPC
Processors,” IBM Journal of Research and Development, Vol. 44, pp. 873-884,
2000.

[12] R. Jessani and C. Olson, “The Floating-Point Unit of the PowerPC 603e,” IBM
Journal of Research and Development. Vol. 40, pp. 559-566, 1996.

[13] R.M. Jessani and M. Putrino, “Comparison of Single- and Dual-Pass Multiply-
Add Fused Floating-Point Units,” IEEE Transactions on Computers, Vol. 47, pp.
927-937. 1998.

[14] A. Kumar, “The HP PA-8000 RISC CPU,” IEEE Micro Magazine, Vol. 17, Issue
2, pp. 27-32, April, 1997.

[15] D. Hunt, “Advanced Performance Features of the 64-bit PA-8000,” Proceedings
of Compcon, pp. 123-128, 1995.

[16] K. C. Yeager, “The MIPS R10000 superscalar microprocessor,” IEEE Micro
Magazine, Vol. 16, No. 2, pp. 28-40, March, 1996.

[17] B. Greer, J. Harrison, G. Henry, W. Li and P. Tang, “Scientific Computing on the
Itanium Processor,” Proceedings of the ACM/IEEE SC2001 Conference, pp. 1-8,
2001.

[18] H. Sharangpani and K. Arora, “Itanium Processor Microarchitecture,” IEEE
Micro Magazine, Vol. 20, No. 5, pp. 24-43, Sept-Oct, 2000.

[19] DRAFT Standard for Floating-Point Arithmetic P754, IEEE Standard (proposed),
Aug 18, 2006.

[20] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-
1985.

[21] A. Naini, A. Dhablania, W. James and D. Das Sarma, “1 GHz HAL Sparc64 Dual
Floating Point Unit with RAS Features,” Proceedings of the 15th Symposium on
Computer Arithmetic, pp.173-183.

148

[22] R.V.K. Pillai, S.Y.A. Shah, A.J. Al-Khalili and D. Al-Khalili, “Low Power
Floating Point MAFs – A Comparative Study,” Sixth International Symposium on
Signal Processing and its Applications, Vol. 1, pp. 284-287, August, 2001.

[23] T. Lang and J. D. Bruguera, “Floating-Point Fused Multiply-Add with Reduced
Latency,” Proceedings of the 2002 IEEE International Conference on Computer
Design: VLSI in Computers and Processors, pp. 145-150, 2002.

[24] N. Quach, N. Takagi and M. Flynn, On Fast IEEE Rounding, Technical Report
CSL-TR-91-459, Stanford University, Jan. 1991.

[25] N. Quach and M.J. Flynn, An Improved Algorithm for High-Speed Floating Point
Addition, Technical Report CSL-TR-90-442, Computer Systems Laboratory,
Stanford University, Aug. 1990.

[26] G. Even and P. M. Seidel, “A Comparison of Three Rounding Algorithms for
IEEE Floating-Point Multiplication,” IEEE Transactions on Computers, Vol. 49,
pp. 638-650, 2000.

[27] R. K. Yu and G. B. Zyner, “167 MHz Radix-4 Floating-Point Multiplier,”
Proceedings of the 12th Symposium on Computer Arithmetic, pp. 149-154, 1995.

[28] P.-M. Seidel, “Multiple Path IEEE Floating-Point Fused Multiply-Add,”
Proceedings of the 46th IEEE International Midwest Symposium on Circuits and
Systems, pp. 1359- 1362, 2003.

[29] C. Jacobi, K. Weber, V. Paruthi and J. Baumgartner, “Automatic Formal
Verification of Fused-Multiply-Add FPUs,” Proceedings of Design, Automation
and Test in Europe, Vol. 2, pp. 1298-1303, March, 2005.

[30] M. Xiao-Lu, “Leading Zero Anticipation for Latency Improvement in Floating-
Point Fused Multiply-Add Units,” 6th International Conference on ASIC, pp. 53-
56, 2005.

[31] M.S. Schmookler and K.J. Nowka, “Leading Zero Anticipation and Detection – A
Comparison of Methods,” Proceedings of the 15th IEEE Symposium on Computer
Arithmetic, pp. 7-12, 2001.

[32] J.D. Bruguera and T. Lang, “Floating-Point Fused Multiply-Add: Reduced
Latency for Floating-Point Addition,” Proceedings of the 17th IEEE Symposium
on Computer Arithmetic. pp. 42-51, June, 2005.

[33] IEEE Standard for Verilog Hardware Description Language, IEEE Standard
1364 -2005.

149

[34] G. Dimitrakopoulos and D. Nikolos, “High-Speed Parallel-Prefix VLSI Ling
Adders,” IEEE Transactions on Computers, Vol. 54, pp. 225-231, 2005.

[35] M. P. Farmwald, On the Design of High Performance Digital Arithmetic Units,
Ph.D. thesis, Stanford University, 1981.

150

VITA

Eric Charles Quinnell was born in Colorado Springs, Colorado on April 25, 1982,

the son of Patricia Erdle MacIver and Charles Wallace Quinnell. After completing his

work at Lewis-Palmer High School, Monument, Colorado, in 2000, he entered the

University of Texas at Austin. He received the degrees of Bachelor of Science in

Electrical Engineering and Master of Science in Electrical Engineering from the

University of Texas at Austin in May 2004 and May 2006 respectively. During the

following months, while continuing his studies in the Graduate School of the University

of Texas, he began employment as an x86 floating-point circuit designer at Advanced

Micro Devices in Austin, Texas.

Permanent Address: 11350 Four Points Dr. Apt 438, Austin, Texas 78726

This dissertation was typed by the author.

