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This thesis focuses on applications of classical tools from probability theory

and convex analysis such as limit theorems to problems in theoretical computer

science, specifically to pseudorandomness and learning theory.

At first look, limit theorems, pseudorandomness and learning theory

appear to be disparate subjects. However, as it has now become apparent,

there’s a strong connection between these questions through a third more

abstract question: what do random objects look like. This connection is best

illustrated by the study of the spectrum of Boolean functions which directly

or indirectly played an important role in a plethora of results in complexity

theory. The current thesis aims to take this program further by drawing on

a variety of fundamental tools, both classical and new, in probability theory

and analytic geometry. Our research contributions broadly fall into three

categories.

Probability Theory: The central limit theorem is one of the most important

results in all of probability and richly studied topic. Motivated by questions
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in pseudorandomness and learning theory we obtain two new limit theorems

or invariance principles. The proofs of these new results in probability, of

interest on their own, have a computer science flavor and fall under the niche

category of techniques from theoretical computer science with applications in

pure mathematics.

Pseudorandomness: Derandomizing natural complexity classes is a funda-

mental problem in complexity theory, with several applications outside com-

plexity theory. Our work addresses such derandomization questions for natural

and basic geometric concept classes such as halfspaces, polynomial threshold

functions (PTFs) and polytopes. We develop a reasonably generic framework

for obtaining pseudorandom generators (PRGs) from invariance principles and

suitably apply the framework to old and new invariance principles to obtain

the best known PRGs for these complexity classes.

Learning Theory: Learning theory aims to understand what functions can

be learned efficiently from examples. As developed in the seminal work of

Linial, Mansour and Nisan (1994) and strengthened by several follow-up works,

we now know strong connections between learning a class of functions and how

sensitive to noise, as quantified by average sensitivity and noise sensitivity, the

functions are. Besides their applications in learning, bounding the average and

noise sensitivity has applications in hardness of approximation, voting theory,

quantum computing and more. Here we address the question of bounding the

sensitivity of polynomial threshold functions and intersections of halfspaces

and obtain the best known results for these concept classes.
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Chapter 1

Introduction

An important theme in theoretical computer science over the last decade

has been the usefulness of translating a combinatorial problem over a discrete

domain to a problem in continuous space. The notion of convex relaxation, for

example, is now a standard approach in combinatorial optimization. More re-

cently, understanding the behavior of Boolean functions in the Gaussian space

has played a crucial role in the recent breakthroughs in hardness of approxi-

mation [57], [76], [88] and social choice theory [76]. A core concept in these

results is an “invariance principle” or “limit theorem” that relates and helps

reduce problems over a discrete domain (typically, the hypercube) to the con-

tinuous domain (typically, Rn equipped with the Gaussian measure), which

are often more tractable. The present work develops this high-level approach

further by applying invariance principles to two basic questions in computer

science:

1. Is randomness necessary for efficient computing?

2. What can we learn efficiently?

We first give an overview of the three broad topics we concern ourselves

with - invariance principles, pseudorandomness and learning theory, highlight-
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ing the main questions relevant to us.

Invariance Principles The classical central limit theorem says that for

any sequence X1, . . . , Xn of independent and identical random variables with

finite mean µ and variance σ2, the random variable (X1 + · · · + Xn)/
√
n ap-

proaches the standard Gaussian distribution with mean µ and variance σ2

in distribution. In particular, in the limit as n → ∞, the distribution of

(X1 + · · · + Xn)/
√
n is invariant of the particular choice of the random vari-

ables X1, . . . , Xn apart from their mean and variance.

More generally, given a collection of functions F : Rn → R, and a

collection of distributions D over Rn, we will be interested in statements of

the form E[f(X)] ∼ E[f(Y )], where X, Y are random variables over Rn with

distributions in D and f ∈ F . For instance, the classical Berry-Esséen theorem

(Theorem 2.2.4) applies to the case where F is the class of regular halfspaces

and D is the set of all reasonable product distributions over Rn.

Given the above setup, it is natural to ask for what classes F and D

can we have invariance principles as above and with what asymptotic error.

Pseudorandomness The use of randomness is fundamental in all of com-

puter science and provably so for distributed computing, communication com-

plexity and more. In spite of the ubiquity of randomness and randomized al-

gorithms in particular, it is still unknown if the use of randomness is necessary

for the design of efficient algorithms. One of the foremost open problems in
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computer science is whether the complexity class BPP (the class of languages

with efficient randomized algorithms) is the same as P (the class of languages

with efficient algorithms). By and large, evidence suggests that indeed BPP

= P.

A natural approach to the BPP vs P question is to ask for efficient pseu-

dorandom generators (PRGs) that would “fool” polynomial time computable

functions. Unfortunately, the task of constructing unconditional PRGs for all

polynomial time computable functions is out of reach of current techniques.

As a result, much attention has been given to the problem of constructing

PRGs for simpler classes of functions. Besides being of importance on their

own, explicit PRGs for simple complexity classes have found applications far

beyond the goal of fooling the corresponding classes of functions.

For instance, the seminal work of Nisan [80] constructing PRGs with

seed length O(log2 n) for the class of small space machines has found applica-

tions in constructions of extractors, space efficient streaming algorithms and

so on. Another prominent example is the work of Naor and Naor [78], Alon

et al. [4] on explicit constructions of small-bias spaces (PRGs that fool lin-

ear functions modulo primes) that has found applications in error-correcting

codes, PCP constructions and more.

The above remarks motivate the task of obtaining explicit PRGs for

natural, simpler complexity classes. In this context, the present work addresses

the question of designing pseudorandom generators for basic geometric concept

classes such as halfspaces, polynomial threshold functions and polytopes.
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Computational Learning Theory Learning theory aims to understand

what functions can be learned efficiently from examples. Since its formalization

in the seminal work of Valiant, learning theory has greatly impacted both

the practical design of algorithms for real-world learning tasks, as well as the

theoretical understanding of properties of functions that make them learnable.

Often, learning algorithms exploit a deep structural property of the

function being learned. One such property is the Fourier spectrum of the

function. Pioneered by the work of Linial, Mansour and Nisan [65], several

prominent learning theory works exploit this concrete connection via two fun-

damental properties of Boolean functions: average sensitivity and noise sensi-

tivity. Roughly speaking, the average sensitivity and noise sensitivity quantify

the noise tolerance of functions. Besides, their applications in learning the-

ory, understanding average sensitivity and noise sensitivity has applications in

hardness of approximation, social choice theory, circuit complexity and quan-

tum complexity.

In this context, the present work studies the sensitivity of the classes

of polynomial threshold functions and intersections of halfspaces, leading to

efficient algorithms for learning these classes even in the presence of noise.

1.1 Our Results

1.1.1 Invariance Principles

Viewed geometrically, the central limit theorem or more precisely its

quantitative version, the Berry-Esséen theorem says the following. For a hy-
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perplane in Rn, and any product distribution over Rn, the probability that a

random point from the distribution lies on one side of the hyperplane is invari-

ant in the sense of being approximately the same for all “reasonable” product

distributions.

Since its first appearance in the 1940’s, there have been many extensions

of the Berry-Esséen theorem in the probability community. Motivated by

their applications in pseudorandomness and learning theory, we obtain two

generalizations of the classical Berry-Esséen theorem.

An Invariance Principle for Polytopes One class of powerful extensions

of the Berry-Esséen theorem is the case where there are several hyperplanes

that define a polytope, and we are interested in the probability that a random

vector in Rn lies inside the polytope. In work with Harsha and Klivans [42],

we show an invariance principle for polytopes analogous to the Berry-Esséen

theorem for a single hyperplane. The novelty of our result is that the final

error bound is only poly-logarithmic in the number of bounding hyperplanes

(or faces) of the polytope. Previous results had at least a linear dependence

on the number of faces of the polytope.

Discrete Central Limit Theorems Another class of well studied gener-

alizations of the classical central limit theorem are the discrete central limit

theorems [8, 7]. These results show, for instance, that a sum of independent

indicator-valued random variables (or more generally, integer-valued random

5



variables) converges to the appropriate binomial distribution in total variation

or statistical distance. In contrast, the Berry-Esséen theorem only shows con-

vergence in the Kolmogorov-Smirnov (or cdf) distance. Most previous results

from the probability community use Fourier techniques or Stein’s method and

are somewhat complicated. In work with Gopalan, Reingold and Zuckerman

[36], we use tools developed for constructing pseudorandom generators to give

a different proof of the discrete central limit theorem. Our proof relies only

on the classical Berry-Esséen theorem and some elementary properties of the

binomial distribution.

1.1.2 Pseudorandomness

The starting point for our results for questions related to pseudoran-

domness is a framework for obtaining PRGs from invariance principles for

geometric concept classes. We then carefully develop this framework along

with appropriate invariance principles to obtain pseudorandom generators for

polynomial threshold functions, halfspaces and polytopes.

PRGs for Threshold Functions Polynomial threshold functions (PTFs)

are a well studied class of functions with many applications in complexity

theory [13], learning theory [61], quantum computing [11] and more. The case

of degree one threshold functions, or halfspaces, have been instrumental in the

development of standard learning theory tools such as perceptrons, support

vector machines and boosting.
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In joint work with Zuckerman, we address the natural question of con-

structing PRGs for PTFs and obtain the first nontrivial result for the problem.

We give an explicit PRG with a seed-length of log n/εO(d) that fools degree d

PTFs with error at most ε. Previously, no constructions with seed-length o(n)

were known even for degree two threshold functions. We also achieve substan-

tial improvements for halfspaces obtaining a seed-length ofO(log n+log2(1/ε)).

This was the first result to obtain a logarithmic dependence on the error rate

ε for halfspaces.

PRGs for Polytopes Understanding the structure of integer points in poly-

topes (that is, solutions to integer programs) is a fundamental topic in com-

puter science. An important problem in this area is to estimate the fraction

of points on the hypercube that lie inside a given polytope. In joint work with

Harsha and Klivans [42], we addressed the question of estimating the Boolean

volume of polytopes in an oblivious manner. That is, we wanted to find a

small explicit set S of points on the hypercube such that for every polytope,

the fraction of points from S that lie inside the polytope is close to the fraction

of points on the hypercube that lie inside the polytope.

Building on the invariance principle for polytopes, we give the first

construction of an explicit set of quasi-polynomial size which preserves the

Boolean volume up to an additive error ε for a broad-class of regular polytopes.

Our notion of regular polytopes captures several common integer programs

that arise in optimization such as dense covering problems, contingency tables.

7



Previous constructions had at least an exponential dependence on the number

of faces of the polytope.

PRGs for Combinatorial Shapes Some of the most influential results in

pseudorandomness are the PRGs for space-bounded computations. In par-

ticular, the PRGs of Nisan [80] and Impagliazzo, Nisan, and Wigderson [46]

use a seed of length O(log2 n) to fool polynomial-width branching programs.

Despite much effort, these constructions have not been improved in nearly two

decades. However, logarithmic-seed PRGs for weaker classes of distinguishers

have been previously constructed and found many applications. In joint work

with Gopalan, Reingold and Zuckerman [36], we define a natural common gen-

eralization and significant extension of many of these distinguisher classes such

as small-bias spaces [78], combinatorial rectangles [32, 6, 68], 0/1 halfspaces,

0/1 modular sums [73, 67]. We name the new class combinatorial shapes.

Combinatorial shapes look at their inputs in consecutive chunks of logm

bits (m is typically polynomial in n). On each chunk of bits the combinatorial

shape may apply an arbitrary Boolean function. Nevertheless, these Boolean

functions are combined into a single output by a symmetric (i.e., order inde-

pendent) function. Our main result is a construction of PRGs with seed length

O(logm+log n+log2(1/ε)) that fools combinatorial shapes with error at most

ε, where m denotes the size of the universe and n the number of dimensions.

Our construction is interesting in its own right even for the special case

of m = 2: we give the first generator of seed length O(log n) which fools all

8



weight-based tests, meaning that the distribution of the weight of any subset

is ε-close to the appropriate binomial distribution in statistical distance. In

particular, even for the special case of m = 2, combinatorial shapes strengthen

the ever so versatile ε-biased spaces [78].

1.1.3 Computational Learning Theory

Our learning theory results stem from analyzing the noise tolerance, as

quantified by average sensitivity and noise sensitivity of the concept classes we

study. Roughly speaking, the average sensitivity of a function measures the

expected number of bit positions needed to be flipped to change the value of

the function. The noise sensitivity on the other hand measures the probability

that a random perturbation of the input changes the value of the function.

Our sensitivity bounds along with the known connections between sen-

sitivity bounds and learning [50] lead to efficient algorithms for learning the

classes of PTFs and intersections of halfspaces with respect to the uniform

distribution in the agnostic model.

Gotsman-Linial Conjecture: Sensitivity of PTFs Gotsman and Linial

[39] conjectured that the average sensitivity of degree d PTFs is at most

O(d
√
n). In work with Harsha and Klivans [41], [27], we obtain the first

nontrivial bounds for the average and noise sensitivity of low-degree PTFs.

Our work makes the first progress on the conjecture in over 15 years.

We also introduce a new regularity lemma about random restrictions
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of PTFs. The regularity result we obtain can be seen as part of the high

level “randomness vs structure” approach that has played a crucial role in

many recent breakthroughs in additive number theory and combinatorics. Our

lemma roughly says that either the behavior of the PTF under the uniform

distribution over the hypercube is similar to its behavior under the Gaussian

distribution, or the PTF essentially depends on only a few variables. The

regularity lemma relies on the invariance principle for low-degree polynomials

of Mossel et al. [76] and plays an important role in our construction of a PRG

for PTFs.

Sensitivity of Intersections of Halfspaces In work with Harsha and Kli-

vans [42] we show that the noise sensitivity of intersections regular halfspaces

is poly-logarithmic in the number of halfspaces. Here, a halfspace is regular

if none of its coefficients is much larger than the others. The previous best

bound [59] had at least a linear dependence on the number of halfspaces, even

for strongly regular halfspaces such as reoriented majorities (i.e., halfspaces

with coefficients in {1,−1}). The bound on noise sensitivity is obtained by

using our invariance principle for polytopes to translate the problem to the

Gaussian space and invoking a nontrivial result of Nazarov [79] who essen-

tially studies the same problem in the Gaussian setting.

Learning intersections of halfspaces is a central open problem in learn-

ing theory. Combined with the known connection between sensitivity and

learning, our result gives the first quasi-polynomial time algorithm for agnos-

10



tically learning intersections of halfspaces under the uniform distribution for

regular halfspaces. Previous algorithms had an exponential dependence on

the number of halfspaces even for learning reoriented majorities without any

errors.

1.1.4 Organization of the thesis

We start by discussing some preliminaries and notation in Chapter 2.

Most of the definitions and other content in this chapter can be read as and

when needed in the remainder of the thesis. However, we recommend reading

Section 2.2.1 which gives a high level description of the Replacement method

that plays a prominent role in many of our results. The remaining content

broadly falls into three parts:

1. Invariance principles - Chapters 3, 4.

2. Sensitivity bounds and applications in learning theory - Chapters 5, 6.

3. Pseudorandom generators - Chapters 7, 8, 9.

We finish with a discussion of relevant open problems.

The results in Chapters 3, 8, 6 are based on joint work with Prahladh

Harsha and Adam Klivans [42]. The results in Chapter 5 are based on joint

work with Prahladh Harsha and Adam Klivans, [41, 27]. The results in Chap-

ter 7 are based on joint work with David Zuckerman [74]. The results in

Chapters 4, 9 are based on joint work with Parikshit Gopalan, Omer Reingold

and David Zuckerman [36].
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Chapter 2

Preliminaries

In this chapter we review the basic tools from probability theory, pseu-

dorandomness and learning theory that we use. Before going into details we

first highlight some notations.

2.1 Notation

The following list summarizes our frequently used conventions.

• We typically denote real-valued random variables by upper case letters

X, Y, . . . ,.

• For a real-valued random variable X, we let E[X] (or µ(X)), σ(X),

Var[X] denote it’s mean, standard deviation and variance respectively.

• For a real-valued random variable X, p > 0, the `p norm of X (if finite)

is defined by ‖X‖p = E[|X|p]1/p.

• For two real-valued random variables X, Y , the Kolmogorov-Smirnov

distance or cdf distance is defined by dcdf(X, Y ) = supt∈R |Pr[X < t] −

Pr[Y < t]|.
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• For two integer-valued random variables X, Y , the statistical distance is

defined by:

dTV(X, Y ) ≡ sup
A⊆Z
|Pr[X ∈ A]−Pr[Y ∈ A]| = 1

2

∑
i

|Pr[X = i]−Pr[Y = i]|.

• For a multi-set S, x ∈u S denotes a uniformly random element of S.

• We typically use {1,−1} to denote bits. In particular, unless otherwise

specified, the n-dimensional hypercube will be the graph G = (V,E)

indexed by vertex set V = {1,−1}n and edge set E obtained by joining

two strings u, v ∈ {1,−1}n if they differ in a single coordinate.

• For vectors u, v ∈ Rn, we let 〈u, v〉 =
∑

i uivi denote the inner product

between u, v. For u ∈ Rn, we denote its Euclidean norm by ‖u‖2 =

(
∑

i u
2
i )

1/2 (we often drop the suffix 2 when its clear from context).

• For a vector u ∈ Rn and S ⊆ [n], uS ∈ RS denotes the vector u restricted

to the coordinates in the set S.

• N n (where N = N (0, 1)) denotes the standard multivariate spherical

Gaussian distribution over Rn with mean 0 and identity covariance ma-

trix. N (a, b) denotes the Gaussian distribution with mean a and stan-

dard deviation b.

We now start with basic notions from probability theory.
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2.2 Probability Theory

We repeatedly use three fundamental tools from probability theory:

hypercontractivity, Berry-Eséen theorem and the replacement method. We

review these concepts below.

Definition 2.2.1. A polynomial P : Rn → R is a function formally defined

by

P (x1, . . . , xn) =
∑

I⊆[n],I 6=∅

aI
∏
i∈I

xi.

The degree of the polynomial P is defined as degree(P ) = max{|I| : aI 6= 0}.

For a polynomial P as above and p > 0, we define the p’th norm of P by

‖P‖p = Ex∈u{1,−1}n [|P (x)|p]1/p.

Note that by definition, polynomials for us are multilinear and that

‖P‖2
2 =

∑
I⊆[n] a

2
I . As we are mainly interested in the case where the in-

puts take values in {1,−1}, the assumption is without loss of generality. We

next introduce the notion of regular polynomials. Intuitively, a polynomial

is regular if none of the variables has too much influence on the value of the

polynomial compared to the others.

Definition 2.2.2. A polynomial P : Rn → R, P (x) =
∑

I⊆[n] aI
∏

i∈I xi is

ε-regular if for every i ∈ [n],

n∑
i=1

 ∑
I⊆[n],I3i

a2
I

2

≤ ε2‖P‖4
2.

14



Observe that for any polynomial P as above and 0 < p < q, by the

power-mean inequality, ‖P‖p ≤ ‖P‖q. However, we cannot in general ob-

tain a meaningful bound on ‖P‖q in terms of ‖P‖p. On the other hand, the

hypercontractivity inequality (also known in literature as Bonami-Beckner in-

equality or Gross inequality or Khintchine inequalities for the case of linear

polynomials) says that when P is a low-degree polynomial, we get a reverse

inequality bounding ‖P‖q in terms of ‖P‖p:

Theorem 2.2.1 (Hypercontractivity, [62]). For 1 < p < q < ∞, and P :

Rn → R a degree d polynomial, the following holds:

‖P‖q ≤
(
q − 1

p− 1

)d/2
‖P‖p. (2.2.1)

The above inequality and it’s closely related variants have played a very

important role in several recent breakthroughs in analysis of Boolean functions

and its applications in hardness of approximation, social choice theory among

others. In this thesis, our use of hypercontractivity will be limited to the cases

where p = 2, q = 4 or P has degree one. We state these special cases below.

Lemma 2.2.2. [(2, 4)-Hypercontractivity] For any degree d polynomial P :

Rn → R, ‖P‖4 ≤ 3d/2‖P‖2.

Lemma 2.2.3. [Khintchine Inequalities] For any w1, . . . , wn ∈ R,

E
x∈u{1,−1}n

[ |〈w, x〉|p ]1/p ≤ √p · ‖w‖2.
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We next state the Berry-Esséen theorem which gives a quantitative

form of the classical central limit theorem and can be seen as an invariance

principle for halfspaces.

Theorem 2.2.4 (Theorem 1, XVI.5, [34], [93]). Let Y1, . . . , Yt be independent

random variables with E[Yi] = 0,
∑

iE[Y 2
i ] = σ2,

∑
iE[|Yi|3] ≤ ρ. Let random

variable Sn = (Y1 + . . . Yn)/σ, and let Z ← N (0, 1). Then,

dcdf(Sn, Z) <
ρ

σ3
.

The Berry-Esséen theorem along with the invariance principle for PTFs

of Mossel et al. [76] play an important role in our constructions of PRGs for

PTFs. In fact, the above theorem serves us as a model invariance principle and

much of this thesis is geared toward obtaining extensions and derandomizations

of the theorem. We next state the invariance principle for PTFs of Mossel et

al. which can be viewed as generalizing the Berry-Esséen theorem which is

applicable only to linear threshold functions (halfspaces).

Theorem 2.2.5 (IP for PTFs, Mossel et al.). There exists a universal constant

C such that the following holds. Let P : Rn → R be a degree d ε-regular (multi-

linear) polynomial. Then, for x ∈u {0, 1}n and y ← N (0, 1)n,

dcdf(P (x), P (y)) ≤ C d ε2/(4d+1).

The result stated in [76] uses maxiw
2
i (P ) as the notion of regularity

instead of
∑

iw
4
i (P ) as we do. However, their proof extends straightforwardly

to the above.
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Finally, we use the following anti-concentration bound for low-degree

polynomials due to Carbery and Wright several times (the following is a special

case of Theorem 8 of [21]; in their notation, set q = 2d and the log-concave

distribution µ to be N n).

Theorem 2.2.6 (Carbery-Wright anti-concentration bound). There exists an

absolute constant C such that for any polynomial Q of degree at most d with

‖Q‖ = 1 and any interval I ⊆ R of length α, PrX←Nn [Q(X) ∈ I] ≤ Cdα1/d.

2.2.1 The Replacement Method

Next, we briefly discuss a technique for proving invariance principles

such as the Berry-Esséen theorem. Our discussion here will by choice be

lacking in detail and is only meant to highlight one of the central ideas that

we use recurrently in this thesis.

The original proof of the Berry-Esséen theorem (from 1942) was through

Fourier analysis and made use of Esséen’s inequality that gives a quantitative

way of converting a bound on the (essentially, L1-)distance between the char-

acteristic functions of real-valued random variables to Kolmogorov-Smirnov

distance between the random variables. The Fourier theoretic arguments are

very precise in the sense of yielding optimal error bounds. However, they are

quite intricate and are not amenable to obtaining extensions for instance, to

more general classes of functions or to the case with dependencies between

variables.

Of relevance to us in this context is the alternate proof of the cen-
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tral limit theorem due to Lindeberg ([64]) from 1922. His proof was later

refined to obtain quantitative versions of the central limit theorem in analogy

to the Berry-Esséen theorem, although the exact bounds were slightly weaker.

However, the Lindeberg method is much more versatile and was used in the

seminal work of Mossel et al. [76] who among others things, used it to show

an invariance principle for polynomial threshold functions. We roughly follow

the description of the Lindeberg method due to Mossel et al., and Mossel et

al. [75].

To describe the Lindeberg method, which we refer to from now on as

Replacement Method (for reasons that will be clear later) or hybrid argument,

let’s first set up some notation. Let f : Rn → {0, 1} be a Boolean function

that we seek to show an invariance principle for. That is, we have two vector-

valued product distributions (the coordinates are independent of one another)

D1, D2 on Rn, samples x ← D1 and y ← D2 and we wish to show that

E[f(x)] ∼ E[f(y)]. The Replacement method then involves two modular steps.

Step One: The first step involves proving an invariance principle for the

distributions D1, D2 with respect to smooth functions. By this, we mean

proving that ∣∣∣∣ E
x←D1

[ψ(x)]− E
y∈←D2

[ψ(y)]

∣∣∣∣ ≤ εn(ψ),

where ψ : Rn → R is a smooth function with well-behaved derivatives (for

instance, with a universal bound on infinity norm of the first few derivatives)

and εn(ψ) is a quantity that goes to zero. The idea being that as ψ has well-
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behaved derivatives, changing the input to ψ a little should not change the

output too much. We can then exploit this by showing that

E[ψ(y1, . . . , yi−1, xi, . . . , xn)] ∼ E[ψ(y1, . . . , yi−1, yi, xi+1, . . . , xn)],

for i = 1, . . . , n. The above description motivates the label replacement

method, as we are showing that replacing each xi from (x1, . . . , xn) with yi

from (y1, . . . , yn) iteratively does not change the distribution too much. Note

that the above approach is similar in spirit to the traditional hybrid argument

from cryptography.

Step Two: The second step involves finding a suitable smooth approximat-

ing function ψ for the original function f . Obtaining smooth approximations

ψ for test functions f is a well-studied problem in approximation theory and

almost optimal bounds are known for various interesting classes f .

Finally, one needs to combine the above two steps to obtain the desired

invariance principle.

Our proof of the invariance principle for polytopes and the analysis of

the generator for PTFs follow the above approach at a high level. However,

in both cases we need a more versatile form of the replacement method that

we term block-replacement method where we replace whole blocks of variables

(instead of one at a time) for a fewer number of iterations.
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2.3 Pseudorandomness

We now review some of the standard tools in derandomization that we

use.

Definition 2.3.1 (k-wise independent Hash Families). For α ≥ 0, a family of

hash functions H = {h : [n] → [t]} is α-almost k-wise independent if for all

distinct i1, . . . , ik ∈ [n] and `1, . . . , `k ∈ [t],

Pr
h∈uH

[h(i1) = `1 ∧ h(i2) = `2 ∧ · · · ∧ h(ik) = `k ] ≤

1 + α

tk
.

We say theH is k-wise independent if the above inequality holds as an equality

with α = 0.

Efficient constructions of H as above with |H| = O(nk) are known [22].

A family of k-wise independent permutations H = {h : [n] → [n]} is defined

similarly, with the additional requirement that the hash functions h : [n]→ [n]

be permutations.

Definition 2.3.2 (k-wise independent spaces). A generatorG : {0, 1}r → [m]n

is said to generate a k-wise independent space if for y ∈u {0, 1}r, for all distinct

i1, . . . , ik ∈ [n], b1, . . . , bk ∈ [m],

Pr[ (G(y))i1 = b1 ∧ (G(y))i2 = b2 ∧ · · · ∧ (G(y))ik = bk ] =
1

mk
.

It is easy to see that k-wise independent spaces are essentially a differ-

ent view of k-wise independent hash functions and efficient constructions of
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generators G as above with r = O(k(logm + log n)) are known. For the case

when m = 2, we have better constructions when the equality constraint above

is relaxed by allowing an error margin:

Definition 2.3.3 (Almost k-wise independent spaces). For 0 < δ < 1, a gen-

erator G : {0, 1}r → {0, 1}n is said to generate a δ-almost k-wise independent

space if for y ∈u {0, 1}r, for all distinct i1, . . . , ik ∈ [n], b1, . . . , bk ∈ {0, 1},

Pr

∣∣∣∣[ (G(y))i1 = b1 ∧ (G(y))i2 = b2 ∧ · · · ∧ (G(y))ik = bk ]− 1

2k

∣∣∣∣ < δ.

Efficient generators G as above with r = O(k + log n + log(1/δ)) [78]

are known. We also use the following generalization of k-wise independence

to arbitrary non-uniform distributions.

Definition 2.3.4. A collection of random variables (X1, . . . , Xn) over a uni-

verse U is k-wise independent if for all i1, . . . , ik ∈ [n], u1, . . . , uk ∈ U ,

Pr[Xi1 = u1 ∧Xi2 = u2 ∧· · ·∧Xik = uk ] = Pr[Xi1 = u1 ]·Pr[Xi2 = u2 ] · · ·Pr[Xik = uk ].

Much of this thesis deals with constructing pseudorandom generators

(PRGs) for various classes of functions. We define PRGs in a general context

below and specialize to the appropriate class when needed.

Definition 2.3.5. Let C : {0, 1}n → {0, 1} be a class of functions. A function

G : {0, 1}r → ({0, 1}D)T is said to ε-fool C if, for all f ∈ C,

| Pr
x∈u{0,1}n

[f(x) = 1]− Pr
y∈u{0,1}r

[f(G(y)) = 1] | ≤ ε.
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The pseudorandom generators (PRGs) for polynomial-width read once

branching programs (ROBPs) of Nisan [80], Impagliazzo et al. [46] play an

important role in many of our constructions. We review them below.

Definition 2.3.6 (ROBP). An (S,D, T )-branching program M is a layered

multi-graph with a layer for each 0 ≤ i ≤ T and at most 2S vertices (states)

in each layer. The first layer has a single vertex v0 and each vertex in the last

layer is labeled with 0 (rejecting) or 1 (accepting). For 0 ≤ i < T , a vertex v in

layer i has exactly 2D outgoing edges each labeled with an element of {0, 1}D

and ending at a vertex in layer i+ 1.

Note that by definition, an (S,D, T )-branching program is read-once.

We also use the following notation. Let M be an (S,D, T )-branching program

and v a vertex in layer i of M .

1. For z = (zi, zi+1, . . . , zT ) ∈ ({0, 1}D)T+1−i call (v, z) an accepting pair if

starting from v and traversing the path with edges labeled z in M leads

to an accepting state.

2. For z ∈ ({0, 1}D)T , let M(z) = 1 if (v0, z) is an accepting pair, and

M(z) = 0 otherwise.

3. AM(v) = {z : (v, z) is accepting in M} and PM(v) is the probability

that (v, z) is an accepting pair for z chosen uniformly at random.

4. For brevity, let U denote the uniform distribution over ({0, 1}D)T .
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Nisan [80] and Impagliazzo et al. [46] gave PRGs that δ-fool (S,D, T )-

branching programs with seed length r = O((S + D) log T + log(T/δ) log T ).

For T = poly(S,D), the PRG of Nisan and Zuckerman [81] fools (S,D, T )-

branching programs with seed length r = O(S + D). We state the bounds of

the generators of Impagliazzo et al. and Nisan and Zuckerman below.

Theorem 2.3.1 (Impagliazzo et al. [46]). There exists an explicit generator

GINW : {0, 1}r → ({0, 1}D)T that δ-fools (S,D, T )-branching programs with

seed-length r = O(D + (S + log(T/δ) log T )).

Theorem 2.3.2 (Nisan and Zuckerman [81]). For all 0 < γ < 1 and c >

0, there exists a constant C = C(c, γ) such that the following holds. There

exists an explicit generator GNZ : {0, 1}r → ({0, 1}D)T that δ-fools (S,D, T )-

branching programs with error δ = 2log1−γ(S+D) and seed-length r = C(S +D)

when T ≤ (S +D)c.

2.4 Learning Theory

We next review some of the basic notions from learning theory that we

use.

Average sensitivity [15] and noise sensitivity [49, 16] are two fundamen-

tal quantities that arise in the analysis of Boolean functions. Roughly speak-

ing, the average sensitivity of a Boolean function f measures the expected

number of bit positions that change the sign of f for a randomly chosen input,

and the noise sensitivity of f measures the probability over a randomly cho-
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sen input x that f changes sign if each bit of x is flipped independently with

probability δ.

We begin by defining the (Boolean) noise sensitivity of a Boolean func-

tion:

Definition 2.4.1 (Noise Sensitivity). Let f be a Boolean function f : {1,−1}n →

{1,−1}. For any δ ∈ (0, 1), let X be a random element of the hypercube

{1,−1}n and Z a δ-perturbation of X defined as follows: for each i indepen-

dently, Zi is set to Xi with probability 1− δ and −Xi with probability δ. The

noise sensitivity of f , denoted NSδ(f), for noise δ is then defined as follows:

NSδ(f) = Pr [f(X) 6= f(Z)].

We also study the closely related notion of average sensitivity (also

known as total influence). We first define the ith influence of a Boolean func-

tion:

Definition 2.4.2 (Average Sensitivity). Let f be a Boolean function, and

let X be a random element of the hypercube {1,−1}n. Define X(i) to be an

element of {1,−1}n chosen as follows: X
(i)
i = −Xi and X

(i)
j = Xj for j 6= i.

The influence of the ith variable, denoted by Ii(f) is defined as follows:

Ii(f) = Pr
[
f (X) 6= f

(
X(i)

)]
.

The sum of all the influences is referred to as the average sensitivity of the

function f :

AS(f) =
∑
i

Ii(f).
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Bounds on the average and noise sensitivity of Boolean functions have

direct applications in hardness of approximation [44, 57], hardness amplifica-

tion [82], circuit complexity [65], the theory of social choice [51], and quantum

complexity [94].

In this thesis, we focus on applications in learning theory, where it is

known that bounds on the noise sensitivity of a class of Boolean functions

yield learning algorithms for the class that succeed in harsh models of noise,

such as the agnostic model of learning, [50]. We define the agnostic model of

learning of Haussler [45] and Kearns, Schapire and Sellie [56] below.

Definition 2.4.3. Let D be an arbitrary distribution on X and C a class of

Boolean functions f : X → {−1, 1}. For δ, ε ∈ (0, 1), we say that algorithm A

is a (δ, ε)-agnostic learning algorithm for C with respect to D if the following

holds. For any distribution D′ on X ×{−1, 1} whose marginal over X is D, if

A is given access to a set of labeled examples (x, y) drawn from D′, then with

probability at least 1 − δ algorithm A outputs a hypothesis h : X → {−1, 1}

such that

Pr
(x,y)∼D′

[h(x) 6= y] ≤ opt + ε

where opt is the error made by the best classifier in C, that is,

opt = inf
g∈C

Pr
(x,y)∼D′

[g(x) 6= y].

Kalai, Klivans, Mansour and Servedio [50] showed that the existence

of low-degree real valued polynomial l2-approximators to a class of functions,
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implies agnostic learning algorithms for the class. In an earlier result, Klivans,

O’Donnell and Servedio [59] gave a precise relationship between polynomial

approximation and noise sensitivity, essentially showing that small noise sensi-

tivity bounds imply good low-degree polynomial l2-approximators. Combining

these two results, it follows that bounding the noise sensitivity of a concept

class C yields an agnostic learning algorithm for C with respect to the uniform

distribution on the hypercube. We state their results (using our notation) for

reference.

Theorem 2.4.1 ([50]). Let C be a class of functions mapping X to {−1, 1}.

Let D be a distribution on X × {−1, 1} with marginal distribution DX . As-

sume that for each f ∈ C, there exists a polynomial P of degree d such that

EDX [(P (x)− f(x))2] ≤ ε2. Then C is agnostically learnable to accuracy ε in

time poly(nd/ε).

Theorem 2.4.2 ([59]). Let f : {1,−1}n → {1,−1} with NSδ(f) ≤ m(δ) for

some (invertible) function m : (0, 1)→ (0, 1). Then there exists a constant C

and polynomial P of degree at most C · (1/m−1(δ)) such that

E
x∈u{1,−1}n

[
(P (x)− f(x))2] ≤ δ.

Finally, it is implicit from a recent paper of Blais, O’Donnell and Wim-

mer [19] that bounding the Boolean noise sensitivity for a concept class C

yields non-trivial learning algorithms for a very broad class of discrete and

continuous product distributions. We believe this is additional motivation for

obtaining bounds on a function’s Boolean noise sensitivity.
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Chapter 3

An Invariance Principle for Polytopes

3.1 Introduction

The main result of this chapter is an invariance principle for charac-

teristic functions of polytopes generalizing the Berry-Esséen theorem. Recall

that a polytope K is a (possibly unbounded) convex set in Rn formed by the

intersection of some finite number of supporting halfspaces. We refer to K as a

k-polytope if it is equal to the intersection of k halfspaces. The main theorem

of this section is as follows (see Theorem 3.3.1 for exact statement):

Theorem 3.1.1 (Invariance Principle for Polytopes). For K a k-polytope,∣∣∣∣ Pr
x∈u{−1,1}n

[x ∈ K]− Pr
x←Nn

[x ∈ K]

∣∣∣∣ ≤ log8/5 k ·∆.

The parameter ∆ depends on the coefficients of the bounding hyper-

planes of K and is small if these coefficients are sufficiently regular. In partic-

ular, if K equals {x | W Tx ≤ θ} for W ∈ Rn×k and θ ∈ Rk, and each column

u of W is ε-regular, i.e., satisfies
∑n

i=1 u
4
i ≤ ε2‖u‖2

2, then ∆ is less than ε1/6.

Note that there is no restriction on the vector θ. The invariance principle also

holds more generally for any product distribution that is hypercontractive and

whose first four moments are appropriately bounded.
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The novelty of our theorem is the dependence of the error on k. Ap-

plying a recent result due to Mossel [75], it is possible to obtain a statement

similar to Theorem 3.1.1 with an error term that has a polynomial dependence

on k. Achieving polylogarithmic dependence on k, however, is much harder,

and we need to use some nontrivial results from the analysis of convex sets in

Gaussian space.

The case k = 1, a single halfspace, corresponds to the Berry-Esséen the-

orem Theorem 2.2.4. We can therefore view our principle as a generalization

of the Berry-Esséen theorem for polytopes. Further, understanding the struc-

ture of integer points in polytopes (that is, solutions to integer programs) is an

important topic in computer science [9], optimization [100], and combinatorics

[12], and we believe our invariance principle will find many applications.

As mentioned in the introduction, we use the invariance principle to de-

rive new results in learning theory (bounding the noise sensitivity of intersec-

tions of halfspaces, sec:nsinths) and pseudorandomness (PRGs for polytopes,

sec:prgpolytopes).

3.1.1 Proof Outline

In this section, we give a high level outline of the proof of our invariance

principle and contrast it with the replacement method as used in the works of

Mossel et al. [76] and Mossel [75]. As outlined at a high level in Section 2.2.1,

the proof proceeds in two steps.
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Step One: We first prove an invariance principle for smooth functions.

By this we mean proving that∣∣∣∣ E
X∈{−1,1}n

[Ψ(`1(X), . . . , `k(X))]− E
Y ∈Nn

[Ψ(`1(Y ), . . . , `k(Y ))]

∣∣∣∣ ≤ γ, (3.1.1)

where `1, . . . , `k are linear functions (corresponding to the normals of the faces

of the k-polytope) and Ψ is a smoothing function. The value γ will depend

on k, the coefficients of the `p’s and the derivatives of Ψ. The function Ψ is

can be viewed as a “test” function and is smooth if there is a uniform bound

on its fourth derivative. Notice here that Ψ maps Rk to R; in [76], they

were concerned with the value Ψ(Q(X)) for a low-degree polynomial Q and a

univariate test function Ψ.

At this point, we could take Ψ to be the k-wise product of a test func-

tion constructed by Mossel et al. to approximate the logical AND function.

Further, Mossel provides a very general framework for obtaining multivariate

test functions and gives bounds for the overall error incurred by the replace-

ment method. Here we run into our first difficulty: the standard replacement

method as used by Mossel et al. and Mossel results in a bad dependence on

the coefficients of the `p’s. In particular, the resulting error term is not small

even for polytopes formed by the intersection of regular halfspaces.

To solve this problem, we use a non-standard hybrid argument that

groups the input variables into blocks. We observe that in the replacement

method it is irrelevant in which order we replace Xi’s with Yi’s – in fact a

random order would suffice. Further, we can group the Xi’s into blocks and
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proceed blockwise with the replacement method. To implement this intuition,

we partition [n] randomly into a set of blocks and replace all the Xi’s within a

block by the corresponding Yi’s one block at a time. Proceeding in this fashion

with a random partitioning has a “smoothing effect” on the coefficients of the

linear functions resulting in a much better bound on the error in terms of the

coefficients.

Roughly speaking, if `pi denotes the i’th coefficient of `p, then the

standard replacement methods of [84], [76], [75] incur an error proportional to∑
i∈[n]

(
maxp∈[k] |`pi|4

)
, which can be as large as Ω(k) even for regular functions

`p. In contrast, our randomized-blockwise-replacement method only suffers an

error of (log k) ·maxp∈[k]

∑
i |`pi|4, which is small for regular functions. It turns

out that in the above analysis, we can choose the random partitioning into

blocks in a Θ(log k)-wise independent manner, instead of uniformly at ran-

dom, and this is crucial for our PRG constructions.

Step Two: Given the above invariance principle for smooth func-

tions, we now aim to translate the closeness in expectation for smooth func-

tions to closeness in cdf distance. Here the smoothness of the test func-

tion Ψ becomes important, and we run into our second problem: the nat-

ural choice of test function Ψ (the multivariate version of the test function

from Mossel et al.) leads to an error bound on the order of k, rather than

poly(log k). To get around this problem, we first observe that in Mossel’s

proof of the multivariate invariance principle as in our randomized-blockwise-
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hybrid argument, it suffices to bound the ‘l1-norm’ of the fourth derivative

supx∈Rk(
∑

p,q,r,s∈[k] |∂p∂q∂r∂sΨ(x)|), instead of uniformly bounding the fourth

derivative supx∈Rk,p,q,r,s∈[k](|∂p∂q∂r∂sΨ(x)|). Thus, it suffices to obtain a smooth

approximation of the AND function for which the former quantity is small.

Fortunately for us, we uncovered a beautiful result due to Bentkus [17], who

constructs a smooth approximation of the AND function with precisely this

property.

The final difficulty for translating closeness in expectation as in Equa-

tion 3.1.1 to closeness in cdf distance is to prove that Ψ differs from the charac-

teristic function only on a set of small Gaussian measure. To this end, we show

that it suffices to bound the Gaussian measure of l∞-neighborhoods around the

boundary of k-polytopes. For an l∞-neighborhood of width λ, a union bound

would imply Gaussian measure on the order of kλ. At this point, however,

we can apply a nontrivial result due to Nazarov [79] on the Gaussian surface

area of k-polytopes to get the much better bound of
√

log k λ. This result

of Nazarov was used before by Klivans et al. [60] in the context of learning

intersections of halfspaces with respect to Gaussian distributions.

3.1.2 Related Work

As mentioned earlier, the classical Berry-Esséen theorem, Theorem 2.2.4,

gives an invariance principle for the case of a single halfspace (i.e., k = 1).

Bentkus [18] proves a multidimensional Berry-Esséen theorem for sums

of vector-valued random variables each with identity covariance matrix, whose
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error term depends on the Gaussian surface area of the test set. Although

his paper deals with topics related to our work, his result seems to have no

implications in our setting.

Before stating our main result formally we first set up some notations.

3.2 Notation and Preliminaries

We use the following notation.

1. For W ∈ Rn×k, θ ∈ Rk, K(W, θ) denotes the polytope K(W, θ) = {x :

W Tx ≤ θ}. We say a polytope K(W, θ) as above has k faces.

2. Unless stated otherwise, throughout this chapter we work with the same

polytope K(W, θ) and assume that the columns of the matrix W have

norm one. We often shorten K(W, θ) to K if W, θ are clear from context.

We assume that k ≥ 2.

3. For A ∈ Rm1×m2 , AT denotes the transpose of A and for p ∈ [m2], Ap

denotes the p’th column of A.

4. The all ones vector in Rk is denoted by 1k.

5. For u ∈ Rk, define rectangle

Rect(u) = (−∞, u1]× (−∞, u2]× · · · × (−∞, uk].

Note that x ∈ K(W, θ) if and only if W Tx ∈ Rect(θ).
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6. For a smooth function ψ : Rk → R, let

‖ψ(4)‖1 = sup {
∑

p,q,r,s∈[k]

| ∂p∂q∂r∂s ψ(a1, . . . , ak) | : (a1, . . . , ak) ∈ Rk }.

7. In this chapter, we shall not to try to be overtly specific about the

universal constants and denote all universal constants by c, C, even when

we have in mind different constants in the same equation.

Below we recall the definition of regular polynomials, Definition 2.2.2,

specialized to the case of halfspaces.

Definition 3.2.1. A vector u ∈ Rn is ε-regular if
∑

i u
4
i ≤ ε2‖u‖2. A matrix

W ∈ Rn×k is ε-regular if every column of W is ε-regular. A polytope K =

K(W, θ) is ε-regular if W is ε-regular 1.

Our main invariance principle is applicable to a large class of product

distributions that satisfy the following two properties.

Definition 3.2.2 (Proper Distributions). A distribution µ over R is proper if

for X ← µ, E[X] = 0, E[X2] = 1 and E[X3] = 0.

Definition 3.2.3 (Hypercontractive Distributions). A distribution µ over R

is hypercontractive, if there exists a constant cµ such that the following holds.

For any m, vector u ∈ Rm, and any p ≥ 2,(
E

X←µm
[ |〈u,X〉|p ]

)1/p

≤ cµ
√
p

(
E

X←µm
[ |〈u,X〉|2 ]

)1/2

.

1“Regular polytopes” have a different meaning in combinatorics, but for the purpose of
this chapter, we will abuse notation and say a polytope is ε-regular if it is formed by the
intersection of ε-regular halfspaces as in Definition 3.2.1.
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Note that the above property is a direct analogue of the Khintchine

inequalities for the uniform distribution over the hypercube {1,−1}n, Corol-

lary 2.2.3. It is well known that the spherical Gaussian distributionN n satisfies

Khintchine inequalities with constant cµ = 1.

3.3 Invariance Principle for Polytopes

Our main invariance principle for polytopes K(W, t) is as follows:

Theorem 3.3.1 (Invariance Principle for Polytopes). For any proper and

hypercontractive distribution µ over R and any ε-regular k-polytope K,∣∣∣∣ Pr
X←µn

[X ∈ K]− Pr
Y←Nn

[Y ∈ K]

∣∣∣∣ ≤ C c2
µ (log8/5 k) (ε log(1/ε))1/5. (3.3.1)

The proof of the theorem can be divided into three parts.

1. We establish an invariance principle for smooth functions on polytopes

(Theorem 3.3.2) using an extension of Replacement method; Section 3.4

is devoted to proving this part.

2. We prove that for random variables A,B over Rk, closeness with respect

to smooth functions and anti-concentration bounds for one of the vari-

ables imply closeness with respect to rectangles (Lemma 3.3.3). To do

so, we use a nontrivial result of Bentkus [17] on smooth approximations

for the l∞ norm.

3. We use a result of Nazarov [79] on Gaussian surface area of polytopes to

34



bound the Gaussian measure of “l∞-neighborhoods” of polytopes in Rn

(Lemma 3.3.4).

We begin by stating an invariance principle for smooth functions ψ :

Rk → R. The proof is involved, making use of the randomized-blockwise-

hybrid argument alluded to in the introduction. For clarity we present the

proof in the next section (Section 3.4).

Theorem 3.3.2 (Invariance Principle for Smooth Functions). For any proper

and hypercontractive distribution µ over R and any ε-regular W and smooth

function ψ : Rk → R,∣∣∣∣ E
X←µn

[ψ(W TX)]− E
Y←Nn

[ψ(W TY )]

∣∣∣∣ ≤ C c2
µ ‖ψ(4)‖1 (log3 k) (ε log(1/ε)).

The following lemma shows that for two random variables A,B over

Rk, closeness with respect to smooth functions and anti-concentration bounds

for the variable B imply closeness with respect to rectangles. Note that to use

the lemma we do not need anti-concentration bounds for the random variable

A.

Lemma 3.3.3 (Smooth Approximation of AND). Let A,B be two random

variables over Rk satisfying the following conditions:

• For all smooth functions ψ : Rk → R, |E[ψ(A)]−E[ψ(B)]| ≤ ∆ ‖ψ(4)‖1.

• For a function gk : [0, 1]→ [0, 1] the following holds:

for all λ ∈ [0, 1], supθ∈Rk (Pr[B ∈ Rect(θ + λ1k) \ Rect(θ) ]) ≤ gk(λ).
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Then, for all θ ∈ Rk, 0 < λ < 1, |Pr[A ∈ Rect(θ)] − Pr[B ∈ Rect(θ)] | ≤

C∆ log3 k/λ4 + Cgk(λ).

Finally, we use the following anti-concentration bound that follows from

Nazarov’s estimate on the Gaussian surface area of polytopes [79]:

Lemma 3.3.4 (Anti-concentration bound for l∞-neighborhood of rectangles).

For 0 < λ < 1,

Pr
x←Nn

[
W Tx ∈ Rect(θ) \ Rect(θ − λ1k)

]
= O(λ

√
log k).

We first prove Theorem 3.3.1 using the above three results and then

prove Lemmas 3.3.3 and 3.3.4 in Sections 3.3.1 and 3.3.2. Theorem 3.3.2 is

then proved in Section 3.4.

Proof of Theorem 3.3.1. Let X ← µn, Y ← N n and let random variables

A = W TX, B = W TY . Then, by Lemma 3.3.4 and Theorem 3.3.2,

Pr [B ∈ R(θ + λ1k) \ R(θ)] ≤ C
√

log k λ,

|E[ψ(A)]− E[ψ(B)]| ≤ C c2
µ (log3 k) ε log(1/ε) ‖ψ(4)‖1,

where ψ : Rk → R is any smooth function, θ ∈ Rk and λ ∈ (0, 1). Therefore,

by Lemma 3.3.3, for θ ∈ Rk,

|Pr [A ∈ Rect(θ)]− Pr [B ∈ Rect(θ)]| ≤ C (log6 k) log(1/ε)ε/λ4 + C
√

log k λ.

The theorem now follows by setting λ = (log11/10 k) (ε log(1/ε))1/5.
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3.3.1 Smooth Approximation of AND

We now prove Lemma 3.3.3. For this, we use the following nontrivial

result of Bentkus [17] on smooth approximations for the l∞ norm.

Theorem 3.3.5 (Bentkus [17]). For every α > 0 and 0 < λ < 1, there exists

a function ψ ≡ ψα,λ : Rk → R such that ‖ψ(4)‖1 ≤ C log3 k/λ4 and

ψ(a) =


1 if ‖a‖∞ ≤ α

0 if ‖a‖∞ > α + λ

∈ [0, 1] otherwise

.

Corollary 3.3.6. For all u ∈ Rk, 0 < λ < 1, T > ‖u‖∞, there exists a

function ψ ≡ ψu,λ,T : Rk → R such that ‖ψ(4)‖1 ≤ C log3 k/λ4 and

ψ(a) =


1 if ∀l ∈ [k],−T + ul ≤ al ≤ ul

0 if ∃l ∈ [k], al > ul + λ

∈ [0, 1] otherwise

.

Proof. Let ψT/2,λ be the function from Theorem 3.3.5 with α = T/2. Define

ψ ≡ ψu,λ,T : Rk → R by

ψu,λ,T (a1, . . . , ak) = ψT/2,λ(a1 + T/2− u1, a2 + T/2− u2, . . . , ak + T/2− uk).

It is easy to check that ψ satisfies the conditions of the theorem.

Proof of Lemma 3.3.3. Fix θ ∈ Rk, 0 < λ < 1. Choose T ∈ R large enough so

that T > ‖θ‖∞, Pr[‖A‖∞ ≥ T ] < ∆ and Pr[‖B‖∞ ≥ T ] < ∆. Let ψ : Rk → R

be the function obtained from applying Corollary 3.3.6 to θ, λ, T . Then,

|Pr [A ∈ Rect(θ)]− Pr [A ∈ RectT (θ)]| ≤ ∆,

|Pr [B ∈ Rect(θ)]− Pr [B ∈ RectT (θ)]| ≤ ∆, (3.3.2)
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where RectT (θ) = [−T + θ1, θ1] × [−T + θ2, θ2] × · · · × [−T + θk, θk] ⊆ Rk.

Observe that from the definition of ψ in Corollary 3.3.6 and Equation 3.3.2

Pr [A ∈ Rect(θ)] ≤ E[ψ(A)] + ∆ ≤ E[ψ(B)] + ∆‖ψ(4)‖1 + ∆.

Similarly,

E[ψ(B)] ≤ Pr[B ∈ Rect(θ + λ1k)]

= Pr[B ∈ Rect(θ)] + Pr[B ∈ Rect(θ + λ1k) \ Rect(θ)]

≤ Pr[B ∈ Rect(θ)] + gk(λ),

where the last inequality follows from the definition of gk. Combining the

above two equations we get

Pr[A ∈ Rect(θ)] ≤ Pr[B ∈ Rect(θ)] + 2∆‖ψ(4)‖1 + gk(λ) ≤

Pr[B ∈ Rect(θ)] +
C∆ log3 k

λ4
+ gk(λ).

Proceeding similarly for the function ψL : Rk → R obtained by applying

Corollary 3.3.6 to t− λ1k, λ, T , we get

Pr [A ∈ Rect(θ)] ≥ Pr [B ∈ Rect(θ)]− C∆ log3 k

λ4
− gk(λ).

Therefore,

|Pr [A ∈ Rect(θ)]− Pr [B ∈ Rect(θ)]| ≤ C∆ log3 k

λ4
+ gk(λ).
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3.3.1.1 Discussion of the Result of Bentkus

We now give some intuition for the smooth approximation for `∞-norm

result of Bentkus, Theorem 3.3.5.

Bentkus [17] obtains his smooth approximation function ψ as in The-

orem 3.3.5 by first constructing an intermediary smooth function ϕ ≡ ϕλ :

Rk → R that approximates the `∞-norm in the following sense:

• For every x ∈ Rk,

|ϕ(x)− ‖x‖∞| < λ. (3.3.3)

• For every r > 0, there exists a constant C(r) such that

‖ϕ(r)‖1 = sup
x∈Rk
{
∑

i1,...,ir∈[k]

|∂i1∂i2 · · · ∂irϕ(x)|} < C(r) logr/2 k

λr
. (3.3.4)

Bentkus’s construction of the function ϕ is quite ingenious: for a parameter ε

to be chosen later define ϕ : Rk → R by

ϕ(x) = E
y←N k

[ ‖x+ εy‖∞ ].

That is, ϕ(x) is the expected `∞ norm of a Gaussian perturbation of magnitude

ε of the input vector x. The intuition is that for ε small enough, the point-

wise deviation would be small due to strong concentration properties of the

Gaussian distribution. Moreover, the function ϕ should be sufficiently smooth

for ε not too small, as we are averaging over a ball around every point x.
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We can bound the point-wise deviation of ϕ(x) from ‖x‖∞ by using the

following standard estimate on the tail of a random Gaussian distribution:

Pr
y←N k

[ ‖y‖∞ > t ] ≤ k · exp(−t2/4).

The above estimate along with a simple integration implies that:

E
y←N k

[‖y‖∞] = O(
√

log k).

Therefore,

ϕ(x) = E
y←N k

[ ‖x+ εy‖∞ ] = ‖x‖ ± ε E
y←N k

[‖y‖∞] = ‖x‖∞ ±O(ε
√

log k).

Thus, by choosing ε = Ω(λ/
√

log k) sufficiently small, ϕ can be made

to satisfy the first property from Equation 3.3.3. We now need to ensure that

ϕ also satisfies the second property, Equation 3.3.4. This step turns out to be

quite nontrivial and Bentkus shows the property by carefully calculating the

partial derivatives of the function ϕ. We refer the reader to Bentkus’s paper

for the proof of Equation 3.3.4.

We believe that the (
√

log k)r bound in Equation 3.3.4 is not a coinci-

dence and there may be a connection to the Gaussian surface area of polytopes,

which by Theorem 3.3.7 is at most O(
√

log k). Unfortunately, we are not able

to present any rigorous argument relating the two. Nevertheless, the plausi-

ble connection suggests that perhaps Bentkus’s construction can be used to

obtain smooth approximations for more general families of norms and convex

sets with final error bounds depending only on the Gaussian surface area of

corresponding sets.
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3.3.2 Anti-concentration bound for l∞-neighborhood of rectangles

Lemma 3.3.4 follows straightforwardly from the following result of Nazarov

[79]. For a convex body K ⊆ Rn with boundary ∂K, let Γ(K) denote the

Gaussian surface area of K defined by

Γ(K) =

∫
y∈∂K

e
−‖y‖2

2 dσ(y),

where dσ(y) denotes the surface element at y ∈ ∂K.

Theorem 3.3.7 (Nazarov (see [60, Theorem 20])). For a polytope K with at

most k faces, Γ(K) ≤ C
√

log k.

Proof of Lemma 3.3.4. Consider an increasing (under set inclusion) family of

polytopes Kρ for 0 ≤ ρ ≤ λ such that K0 = {x : W Tx ∈ Rect(θ − λ1k)} and

Kλ = {x : W Tx ∈ Rect(θ)}. Then,

Pr
x←Nn

[
W Tx ∈ Rect(θ) \ Rect(θ − λ1k)

]
=

∫ λ

ρ=0

Γ(Kρ)dρ ≤ C
√

log k λ,

where the last inequality follows from Theorem 3.3.7.

3.4 Invariance principle for Smooth Functions over Poly-
topes

We now prove Theorem 3.3.2. The proof of the theorem is based on the

replacement method for proving limit theorems with explicit error bounds. Let

t = 1/ε and let H = {h : [n] → [t]} be a family of (2 log k)-wise independent

functions as defined in Definition 2.3.1.
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We remark that to prove Theorem 3.3.2 we could take the hash family to

be the set of all functions. However, we work with a (2 log k)-wise independent

family as the analysis is no more complicated and we need to work with such

hash families while constructing pseudorandom generators. For S ⊆ [n], let

WS be the matrix formed by the rows of W with indices in S. Define

H(W )
def
=

t∑
i=1

(
E
h

[
k∑
p=1

‖W p
h−1(i)‖

4 log k

])1/ log k

.

Theorem 3.3.2 follows immediately from the following two lemmas.

Lemma 3.4.1. For ε-regular W , H(W ) ≤ C log k (ε log(1/ε)).

Lemma 3.4.2. For any smooth function ψ : Rk → R,∣∣∣∣ E
X←µn

[
ψ(W TX)

]
− E

Y←Nn

[
ψ(W TY )

]∣∣∣∣ ≤ 4 c2
µ (log2 k)H(W )‖ψ(4)‖1.

Proof of Lemma 3.4.1. Fix a l ∈ [t], p ∈ [k]. For i ∈ [n], let Xi be the indicator

random variable that is 1 if h(i) = l and 0 otherwise. Then, Pr[Xi = 1] = 1/t

and the variables X1, . . . , Xn are (2 log k)-wise independent. Further,

Z ′p ≡ ‖W
p
|h−1(l)‖

2 =
n∑
i=1

W 2
ipXi.

Let Yi be i.i.d indicator random variables with Pr[Yi = 1] = 1/t and let

Zp =
∑n

i=1 W
2
ipYi. Observe that Z ′p and Zp have identical d’th moments for

d ≤ 2 log k. Moreover, by Hoeffding’s inequality applied to Zp, for any γ > 0,

Pr

[ ∣∣∣∣Zp − 1

t

∣∣∣∣ ≥ γ

]
≤ 2 exp

(
− 2γ2∑n

i=1 W
4
ip

)
≤ 2 exp

(
−2γ2

ε2

)
= 2 exp(−2t2γ2).
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The above tail bound for Zp implies strong bounds on the moments of Zp by

standard arguments. Setting γ =
√

2 log k log t/t in the above equation, we

get

Pr

[
|Zp| ≥

√
3 log k log t

t

]
≤ 1

t2 log k
.

Therefore, from the above equation and the fact that Zp ≤ 1

E[Z2 log k
p ] ≤ (3 log k log t)log k

t2 log k
+ Pr

[
|Zp| ≥

√
3 log k log t

t

]
≤ (4 log k log t)log k

t2 log k
.

Therefore,

E
h∈uH

[
‖W p

|h−1(l)‖
4 log k

]
= E

[
(Z ′p)

2 log k
]

= E
[
Z2 log k
p

]
≤ (4 log k log t)log k

t2 log k
.

Therefore, from the definition of H(W ) and the above equation,

H(W ) =
t∑
i=1

(
k∑
p=1

E
h

[
‖W p

h−1(i)‖
4 log k

])1/ log k

≤ t
4 log k log t

t2
=

4(log k)(ε log(1/ε)).

The proof of Lemma 3.4.2 uses a blockwise hybrid argument and careful

applications of hypercontractivity as sketched in the proof outline in the intro-

duction. To gain some intuition of the advantage of our randomized blockwise

hybrid argument over the standard replacement method, it might be helpful

to compare both arguments for the following cases:
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Example 1: The bounding hyperplanes of K are oriented majorities:

W ∈ {1/
√
n,−1/

√
n}n×k. In this case, the standard replacement method in

conjunction with Bentkus’s smoothing function and Nazarov’s surface area

bound as used in Lemmas 3.3.3, 3.3.4 can be adapted (without having to do

a blockwise hybrid argument) to get a bound as in Theorem 3.3.1.

Example 2: The bounding hyperplanes of K are oriented majorities

on disjoint sets of variables: For m = n/k and each p ∈ [k], m = n/k,

W p
i = 1/

√
m, (p − 1)m + 1 ≤ i ≤ pm and W p

i = 0 otherwise. In this case,

when m ≥ 1/ε2 and each bounding hyperplane is regular, the replacement

method even when used with Lemmas 3.3.3, 3.3.4 leads to an error bound

that is at least linear in k.

We use the following form of the standard Taylor series expansion. For

a smooth function ψ : Rk → R, x ∈ Rk and p1, . . . , pr ∈ [k], let ∂p1,...,prψ(x) =

∂p1∂p2 · · · ∂pr ψ(x). For indices p1, . . . , pr ∈ [k], let (p1, . . . , pr)! = s1!s2! . . . sk!,

where, for l ∈ [k], sl denotes the number of occurrences of l in (p1, . . . , pr).

Fact 3.4.3 (Multivariate Taylor’s Theorem). For any smooth function ψ :

Rk → R, and x, y ∈ Rk,

ψ(x+ y) = ψ(x) +
∑
p∈[k]

∂pψ(x) yp +
∑
p,q∈[k]

1

(p, q)!
∂p,qψ(x) ypyq+

∑
p,q,r∈[k]

1

(p, q, r)!
∂p,q,rψ(x) ypyqyr + err(x, y),

where |err(x, y)| ≤ ‖ψ(4)‖1 ·maxp∈[k] |yp|4.
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Proof of Lemma 3.4.2. Let X ← µn and Y ← N n. We first partition [n] into

blocks using a random hash function h ∈u H and then use a blockwise-hybrid

argument. Fix a hash function h ∈ H. View X as X1, . . . , X t, where each

X l = Xh−1(l) is chosen independently and uniformly from µ|h
−1(l)|. Similarly,

view Y as Y 1, . . . , Y t where each Y l = Y h−1(l) is chosen independently and

uniformly from N |h−1(l)|. We prove the claim via a hybrid argument where we

replace the blocks X1, . . . , X t with Y 1, . . . , Y t one at a time.

For 0 ≤ i ≤ t, let Zi be the distribution with Zi
|h−1(j) = Xj for i < j ≤ t

and Zi
|h−1(j) = Y j for 1 ≤ j ≤ i. Then, Z0 is distributed as µn and Zt is

distributed as N n. For l ∈ [t], let

h(W, l) =

(
k∑
p=1

‖W p
h−1(l)‖

4 log k

)1/ log k

.

Claim 3.4.4. For 1 ≤ l ≤ t, and fixed h ∈ H,∣∣∣∣ E
X,Y

[
ψ(W TZ l)

]
− E

X,Y

[
ψ(W TZ l−1)

] ∣∣∣∣ ≤ C cµ log2 k ‖ψ(4)‖1 h(W, l).

Proof. Without loss of generality, suppose that h−1(l) = {1, . . . ,m}. Note

that Z l, Z l−1 have the same random variables in positions m + 1, . . . , n. Let

Z l−1 = (X1, . . . , Xm, Zm+1, . . . , Zn) and Z l = (Y1, . . . , Ym, Zm+1, . . . , Zn) where

(X1, . . . , Xm) is uniform over µm and (Y1, . . . , Ym) is uniform over Nm. Note

that (Zm+1, . . . , Zn) is independent of (X1, . . . , Xm), (Y1, . . . , Ym).

Let W1 ∈ Rm×k be the matrix formed by the first m rows of W and

similarly let W2 ∈ R(n−m)×k be the matrix formed by the last n −m rows of
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W . Lastly, let V = W T
2 (Zm+1, . . . , Zn) and U be one of X = (X1, . . . , Xm) or

Y = (Y1, . . . , Ym). Now, by using a Taylor expansion of ψ at V as in Fact 3.4.3,

ψ(W T (U1, . . . , Um, Zm+1, . . . , Zn)) = ψ(W T
1 U + V )

= ψ(V ) +
∑
p∈[k]

∂pψ(V ) 〈W p
1 , U〉+

∑
p,q∈[k]

1

(p, q)!
∂p,qψ(V ) 〈W p

1 , U〉 〈W
q
1 , U〉

+
∑

p,q,r∈[k]

1

(p, q, r)!
∂p,q,rψ(V ) 〈W p

1 , U〉 〈W
q
1 , U〉 〈W r

1 , U〉+ err(V,W T
1 U).

(3.4.1)

Now, using the fact that ‖z‖∞ ≤ ‖z‖log k for z ∈ Rk,

∣∣err(V,W T
1 U)

∣∣ ≤ ‖ψ(4)‖1·max
p∈[k]
|〈W p

1 , U〉|4 ≤ ‖ψ(4)‖1

(
k∑
p=1

|〈W p
1 , U〉|4 log k

)1/ log k

.

(3.4.2)

Now, by hypercontractivity of µ,

E
X

( k∑
p=1

|〈W p
1 , X〉|4 log k

)1/ log k
 ≤ (E

X

[
k∑
p=1

|〈W p
1 , X〉|4 log k

])1/ log k

(by power-mean inequality)

=

(
k∑
p=1

E
X

[
|〈W p

1 , X〉|4 log k
])1/ log k

≤

(
k∑
p=1

(cµ log k)2 log k ‖W p
1 ‖4 log k

)1/ log k

(by hypercontractivity of µ)

≤ Cc2
µ(log2 k)h(W, l). (3.4.3)
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Similarly, by hypercontractivity of N ,

E
Y

( k∑
p=1

|〈W p
1 , Y 〉|4 log k

)1/ log k
 ≤ C(log2 k)h(W, l). (3.4.4)

Since µ is proper, for any u1, u2, u3 ∈ Rm,

E[〈u1, X〉] = E[〈u1, Y 〉], E[〈u1, X〉 〈u2, X〉] = E[〈u1, Y 〉 〈u2, Y 〉]

E[〈u1, X〉 〈u2, X〉 〈u3, X〉] = E[〈u1, Y 〉 〈u2, Y 〉 〈u3, Y 〉].

From the above equations, Equations (3.4.1), (3.4.2), (3.4.3), (3.4.4) and the

fact that X, Y, V are independent of one another, it follows that

∣∣E [ψ(W TZ l)− ψ(W TZ l−1)
]∣∣ ≤ Cc2

µ(log2 k) ‖ψ(4)‖1h(W, l).

Lemma 3.4.2 now follows from the above claim, summing from l =

1, . . . , t, and taking expectation with respect to h ∈u H.
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Chapter 4

Discrete Central Limit Theorems

4.1 Introduction

The classical Central Limit Theorem (CLT) says that a sum of inde-

pendent random variables should be close, in Kolmogorov distance, to the cor-

responding Gaussian or Binomial random variable. The Kolmogorov distance

is weaker than statistical (total variation) distance dTV, since Kolmogorov dis-

tance allows only special types of statistical tests, namely threshold functions.

Nevertheless, if the random variables are integer-valued, then under some rea-

sonable conditions it is known that a sum of independent variables approaches

the appropriate binomial distribution in statistical distance. Such theorems

are called discrete central limit theorems.

For clarity, We first state our discrete central limit theorem for the case

of multinomial distributions.

Theorem 4.1.1. Let X1, . . . , Xn be independent indicator random variables

with Pr[Xi = 1] = pi. Let X =
∑

iXi, E[X] = µ,Var(X) =
∑

i pi(1 − pi) =

σ2. Then, for Z ← BIN(m, q), where m = µ2/(µ − σ2), q = (µ − σ2)/µ,

dTV(X,Z) = O
(√

log(σ)/σ
)

.

The parametersm, q above are chosen so that E[Z] = E[X] and Var[Z] =
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Var[X]. (A similar statement holds with m = bµ2/(µ− σ2)c and q = µ/m; we

avoid this minor technicality.) Limit theorems as above with almost optimal

error estimates (Θ(1/σ)) are known in the probability literature (see [8, 7] and

references therein). However, most previous results use Fourier techniques or

Stein’s method and appear more complicated, at least from a computer science

perspective. In contrast our proof is elementary, relying only on the classical

Berry-Esséen theorem and few simple properties of the binomial distribution.

We also obtain a more general invariance principle, Theorem 4.4.2, for the case

of sums of integer-valued random variables.

Discrete central limit theorems as above have, at least implicitly, been

used before in computer science. Two prominent instances are the works of

Daskalakis and Papadimitriou [24, 25]. A main technical result in these works

can be viewed as a discrete limit theorem and roughly says the following: given

a multinomial distribution (or more generally, a multivariate-multinomial dis-

tribution), the probabilities of each of the indicator variables can be rounded

to multiples of a parameter 1/ε, so as to not incur too much of a loss in statisti-

cal distance. Their arguments for showing the discrete CLT are quite involved

and use a variety of sampling and Poisson approximation techniques. Given

the generality of our argument for proving Theorem 4.1.1, it is conceivable

that a similar argument can be extended to the more nuanced discrete limit

theorems of [24, 25].
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4.2 Preliminaries

We start with some basic properties of the binomial and multi-nomial

distributions.

Corollary 4.2.1 (Berry-Esséen for Multinomials). For Y =
∑

i Yi a sum of

independent indicator variables, Z ← N(0, 1),

dcdf ( (Y − E(Y ))/σ(Y ), Z ) ≤ 1/σ(Y ).

Proof. Follows from Theorem 2.2.4, as for 0, 1 valued Yi,
∑

i E[|Yi−E[Yi]|4] ≤∑
i E[|Yi − E[Yi]|2].

Fact 4.2.2. For Z1 ← N(µ1, σ1), Z2 ← N(µ2, σ2), for σ1 ≥ 1,

dcdf(Z1, Z2) = O

(
|µ1 − µ2|

σ1

+

√
|σ2

1 − σ2
2| log(σ1)

σ1

)
.

Proof. We’ll use the following anti-concentration property of Gaussians: for

Z ← N(0, σ), δ > 0, Pr[Z ∈ [θ, θ+ δ]] = O(δ/σ). Suppose that µ2 > µ1. Then,

dcdf(Z1,N(µ2, σ1)) ≤ Pr[Z1 ∈ [µ1, µ2]] = O(|µ2 − µ1|/σ1).

Thus, it suffices to study the case when µ1 = µ2 = 0. Let σ2 > σ1 and

λ =
√
σ2

2 − σ2
1. Observe that Z2 can be generated as Z2 = Z1 +Z ′, where Z ′ is

an independent N(0, λ) random variable. Now, Pr[|Z ′| > 3λ
√

log σ1] ≤ 1/σ1.
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Therefore, for any θ ∈ R,

Pr[Z2 < θ] = Pr[Z1 + Z ′ < θ]

≤ Pr[Z1 < θ + 3λ
√

log σ1] + Pr[|Z ′| > 3λ
√

log σ1]

≤ Pr[Z1 < θ] + Pr[Z1 ∈ [θ, θ + 3λ
√

log σ1] + 1/σ1

≤ Pr[Z1 < θ] +O(3λ
√

log σ1/σ1) + 1/σ1.

The claim now follows from a similar argument by starting from Z1 instead of

Z2.

Fact 4.2.3. Any multinomial distribution X with Var(X) = σ2 is (2/σ)-shift

invariant.

Proof. A simple induction shows that multinomial distributions are unimodal,

with the density function being maximized either at a unique value j or at j

and j+1. For this value j, it holds that dTV(X,X+1) = Pr[X ≤ j]−Pr[X+1 ≤

j] = Pr[X = j]. We now use the anti-concentration of X, which follows from

the Berry-Esséen theorem. Indeed by Theorem 2.2.4, if Z ← N(0, 1), then

Pr[X = j] ≤ Pr [Z = (j − µ)/σ] + 2/σ = 2/σ.

Finally we use the following inequality that follows, for instance, from

Bernstein’s large deviation bound.

Fact 4.2.4. For any multinomial distribution X, and δ > 0, Pr[ |X −E[X]| ≥

3σ(X)
√

log(1/δ) ] ≤ δ.
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4.3 Main Convolution Lemma

We say that a random variable Y is α-shift invariant if dTV(Y, Y + 1) ≤

α. Several common distributions, such as binomial, Gaussian, and multinomial

distributions, are all shift-invariant, roughly, inversely proportional to their

standard deviation.

The starting point for our results is the following lemma, which says

that two distributions that are close in Kolmogorov distance when convolved

with a shift-invariant distribution become close in statistical distance. The

lemma also plays a central role in our construction of a PRG for combinatorial

shapes from Chapter 9.

Lemma 4.3.1 (Main Convolution Lemma). Let X be a α-shift invariant dis-

tribution and let Y, Z be integer-valued distributions with support contained in

[a, a+ b] for some a ∈ R, b > 0 ∈ R. Then,

dTV(X + Y,X + Z) ≤ 4
√
αbdcdf(Y, Z).

Proof. Without loss of generality suppose that Y, Z are supported in [0, b). For

d ∈ Z+ to be chosen later, let Yd be the integer random variable with support

over Sd = {id : i ∈ Z+, i ≤ bb/dc}, with pdf pd defined by, pd(id) = Pr[Y ∈

[id, (i+ 1)d)]. We first show that

dTV(X + Y,X + Yd) ≤ αd. (4.3.1)

There is a natural coupling of Y and Yd: we set Yd = id with probability pd(id)

and then sample Y = Yd + Ȳ from the interval [id, (i + 1)d) according to the
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marginal distribution of Y conditioned on the event that Y ∈ [id, (i + 1)d).

Note that Ȳ ∈ {0, 1, . . . , d− 1} and it is an integer. We have

dTV(X + Y,X + Yd) = dTV(X + Yd + Ȳ , X + Yd).

Further, conditioned on a particular value of Yd = id,

dTV(X + Yd + Ȳ , X + Yd) = dTV(X + Ȳ , X) ≤ αd,

where the last inequality follows from the shift invariance of X and the fact

that Ȳ ∈ {0, . . . , d− 1}. Therefore,

dTV(X + Y,X + Yd) = dTV(X + Yd + Ȳ , X + Yd) ≤ αd.

We define Zd similarly. It follows that dTV(X + Z,X + Zd) ≤ αd. Next we

bound dTV(Yd, Zd).

Observe that Yd, Zd both have supports of size at most b/d. For any i,

| Pr[Yd = id]−Pr[Zd = id] | = | Pr[Y ∈ [id, (i+1)d) ]−Pr[Z ∈ [id, (i+1)d) ] | ≤

2dcdf(Y, Z).

Hence dTV(Yd, Zd) ≤ (2b/d)dcdf(Y, Z). Combining the above equations,

dTV(X + Y,X + Z) ≤ dTV(X + Y,X + Yd) + dTV(X + Yd, X + Zd)+

dTV(X + Zd, X + Z)

≤ 2αd+
2bdcdf(Y, Z)

d
.

The lemma now follows by setting d = d
√
bdcdf(Y, Z)/αe.
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One can weaken the boundedness requirement to say that Y and Z

rarely exceed b. We record the following easy corollary without proof.

Corollary 4.3.2. Let X be a α-shift invariant distribution and let Y, Z be two

integer-valued distributions. Then, for a ∈ R and b ∈ R+

dTV(X + Y,X + Z) ≤ 4
√
αbdcdf(Y, Z) + Pr[Y 6∈ [a, a+ b)] + Pr[Z 6∈ [a, a+ b)].

4.4 Discrete Central Limit Theorems

We now prove the discrete central limit theorem, Theorem 4.1.1. The

proof proceeds by partitioning the variables appropriately and using the con-

volution lemma. We partition the variables into two sets S and T such that

XS =
∑

i∈S Xi and XT =
∑

j∈T Xi have approximately the same mean and

variance. We introduce variables YS and YT which are two independent copies

of BIN(m/2, q). Then, the Berry-Esséen theorem, which is a quantitative form

of the classical central limit theorem, guarantees the closeness of XS, YS and

XT , YT in Kolmogorov distance. Secondly, multinomial distributions are shift-

invariant. Hence we bound the statistical distance between XS + XT and

YS + YT , by using our Convolution lemma to show that each of them is close

to XS + YT in statistical distance.

The following easy fact (whose proof we omit) is used to partition the

variables.

Fact 4.4.1. Let 0 ≤ a1 ≤ · · · ≤ an ≤ 1. Let S ⊂ [n] consist of all odd indices.

Then |
∑

i∈S ai − (
∑

j aj)/2| ≤ an/2.
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Proof of Theorem 4.1.1. Without loss of generality suppose that σ1 ≤ σ2 ≤

· · · ≤ σn, where σi = σ(Xi). Let S and T consist of odd and even indices

respectively. Let XS =
∑

i∈S(Xi − E[Xi]) and XT =
∑

i∈T (Xi − E[Xi]). Let

σ2
S = Var(XS). Then, from Fact 4.4.1 |σ2

S − σ2/2 | ≤ 1/2.

Let YS, YT denote two independent copies of (BIN(m/2, q)−µ/2) form, q

as in the theorem statement. Note that YS +YT has distribution BIN(m, q)−µ

and that E[YS] = E[YT ] = 0 and Var(YS) = Var(YT ) = σ2/2.

We proceed to bound the various quantities (α,B and dcdf) required to

apply the convolution lemma. By Fact 4.2.3, XS, YS, XT , YT are all α = (2/σ)-

shift invariant. By Theorem 2.2.4 and Fact 4.2.2,

dcdf(XS, YS) ≤ dcdf(XS,N(0, σ2
S)) + dcdf(YS,N(0, σ2/2))+ (4.4.1)

dcdf(N(0, σ2
S),N(0, σ2/2))

≤ 1

σ
+

1

σ
+O

(√
log(σ)

σ

)
= O

(√
log(σ)

σ

)
. (4.4.2)

A similar bound holds for dcdf(XT , YT ).

Next we show that XS, XT , YS, YT are bounded in a range [−B,B] with

probability (1 − 1/σ). By Fact 4.2.4, for B = 12(σ
√

log σ), Pr[ |XS| > B ] ≤

1/4σ, and a similar statement holds for XT , YS, YT . We then apply the union

bound. Therefore, applying Corollary 4.3.2,

dTV(XS +XT , YS + YT ) ≤ dTV(XS +XT , XS + YT ) + dTV(XS + YT , YS + YT )

≤ 4
√
αBdcdf(XT , YT ) + 4

√
αBdcdf(XS, YS) +

1

σ

= O
(√

log(σ)/σ
)
. (By Equation 7.2.1)
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We next generalize Theorem 4.1.1 to sums of independent integer-

valued variables (as opposed to indicator random variables). The error term in

the statistical distance guarantee we get depends on the Kolmogorov distance

guarantee given by the Berry-Esséen theorem and on the shift invariance of

the individual random variables. The dependence on these terms is in some

sense unavoidable (as explained below). As for the case of indicator random

variables our bound is weaker those those of the more fine-grained results of

[8, 7]. However, the arguments and exact technical conditions of [8, 7] are

complicated and the parameters we get are comparable up to Ω(1) factors in

the exponents.

Theorem 4.4.2. Let X̄ = (X1, . . . , Xn), Ȳ = (Y1, . . . , Ym) be two sets of

independent integer-valued variables. Let X =
∑

iXi, Y =
∑

i Yi and let

E[X] = E[Y ], σ2 = Var(X) = Var(Y ). Further, let

max
i
{Var(Xi),Var(Yi)} ≤ σ2/2, max(

∑
i

E[ |Xi−E[Xi]|3 ],
∑
i

E[ |Yi−E[Yi]|3 ]) ≤ ρ,

4 ≤ U = min(
∑
i

(1− dTV(Xi, Xi + 1)),
∑
j

(1− dTV(Yj, Yj + 1)) ).

Then,

dTV(X, Y ) = O

((
ρ log(1/σ)

σ2U1/2

)1/2

+
ρ

σ3
+

1

σ

)
.

Note that for a limit theorem as above to hold, we need assumptions on

X, Y stronger than matching means and variances which was enough for the
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Berry-Esséen theorem. For instance, the Xi’s could be supported on even inte-

gers and Yi’s on odd integers with X, Y having the same mean and variances.

In this case the statistical distance between X, Y is 1, whereas the Kolmogorov

distance could still be small. Thus, the additional assumption that Xi’s, Yi’s

have some shift-invariance is a natural restriction to have.

We use the following tricky generalization of Fact 4.4.1 whose proof

uses Hall’s theorem.

Lemma 4.4.3. Given a1, . . . , an > 0 and b1, . . . , bn > 0, there exists a set

S ⊆ [n] such that

|
∑
i∈S

ai −
∑

j aj

2
| ≤ maxi ai −mini ai

2
, |

∑
i∈S

bi −
∑

j bj

2
| ≤ maxi bi −mini bi

2
.

Proof. Let n be even, the case of n odd is similar. Let A =
∑

i ai, B =
∑

i bi.

Suppose that a1 ≤ a2 ≤ · · · an and let π : [n]→ [n] be such that bπ(1) ≤ bπ(2) ≤

· · · ≤ bπ(n). Form a bipartite graph G = (L,R,E), where |L| = |R| = [n/2]

with vertices on left corresponding to pairs {(a1, a2), (a3, a4), . . . , (an−1, an)}

and vertices on right corresponding to {(bπ(2i−1), bπ(2i)) : i ∈ [n/2]}. Finally,

add an edge in G between vertices (ai, ai+1) and (bπ(j), bπ(j+1)) if and only if

{i, i+ 1} ∩ {π(j), π(j + 1)} 6= ∅.

Observe that G is a 2-regular graph and hence by Hall’s theorem there

exists perfect matching M in G. For each i ∈ [n/2], let M connect vertex

(a2i−1, a2i) ∈ L to a vertex (bj, bj′) ∈ R so that index ri ∈ {2i− 1, 2i}∩ {j, j′}.

Let S = {ri : i ∈ [n/2]}. We claim that S satisfies the required properties.
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Note that

Ao =
∑
i∈[n/2]

a2i−1 ≤
∑
i∈[n/2]

ari ≤
∑
i∈[n/2]

a2i = Ae.

Further, Ae − Ao ≤ an − a1. Thus,

A− (an − a1)

2
≤ Ao ≤

∑
i

ari ≤ Ae ≤
A+ (an − a1)

2
.

The lemma now follows by a similar argument applied to bri for i ∈ [n/2].

We also use the following elegant lemma of Barbour and Xia [8] which

they show using an elementary coupling argument. Intuitively, the lemma says

that shift-invariance amplifies when taking sums of independent shift-invariant

variables.

Lemma 4.4.4 (Barbour and Xia, Proposition 4.6). Let Z1, . . . , Zn be integer

valued random variables, Z =
∑

i Zi and UZ =
∑

i(1− dTV(Zi, Zi + 1)). Then

dTV(Z,Z + 1) ≤ 2/
√
UZ.

Proof of Theorem 4.4.2. Let ν = maxi(Var(Xi),Var(Yi)). Let UX =
∑

i(1 −

dTV(Xi, Xi+1)) and let UY be defined similarly. Now, by Lemma 4.4.3 applied

to V ar(X1), . . . , V ar(Xn) and (1−dTV(X1, X1 +1)), . . . , (1−dTV(Xn, Xn+1)),

there exists a subset S ⊆ [n] such that

|
∑
i∈S

V ar(Xi)−
σ2

2
| ≤ ν

2
, |

∑
i∈S

(1− dTV(Xi, Xi + 1))− UX
2
| ≤ 1

2
.

Similarly, there exists a subset T ⊆ [n] such that

|
∑
i∈T

V ar(Yi)−
σ2

2
| ≤ ν

2
, |

∑
i∈T

(1− dTV(Yi, Yi + 1))− UY
2
| ≤ 1

2
.
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LetXS =
∑

i∈S Xi, X
′
S =

∑
i/∈S Xi and let YT , Y

′
T be defined similarly. Without

loss of generality suppose that E[XS] = E[YT ] = E[X ′S] = E[Y ′T ] = 0 (if not,

we can translate the variables accordingly). Then, by the above equations and

Lemma 4.4.4 it follows that XS, X
′
S, YT , Y

′
T are α-shift invariant for α = 4/

√
U .

Let δ = ρ/(σ2 − ν)3/2. Now, by an argument similar to that of Equa-

tion 7.2.1 and the Berry-Esséen theorem,

dcdf(XS, YT − E[YT ]) ≤ dcdf(XS,N (0, V ar(XS))) + dcdf(YT ,N (0, V ar(YT )))

+ dcdf(N (0, V ar(XS)),N (0, V ar(YT )))

≤ 2ρ

(σ2 − ν)3/2
+

2ρ

(σ2 − ν)3/2
+O

(√
log σ

σ

)
.

≤ 4δ +O

(√
log σ

σ

)
.

Now, by the Berry-Esséen theorem, for B = O(σ
√

log(σ)),

Pr[|XS − E[XS]| > B] ≤ 2δ + 1/σ, Pr[|YT − E[YT | > B] ≤ 2δ + 1/σ.

Further, similar inequalities hold for X ′S, Y
′
T as well. Therefore, by

Corollary 4.3.2, and the above inequalities,

dTV(XS +X ′S, YT + Y ′T ) ≤ dTV(XS +X ′S, XS + Y ′T ) + dTV(XS + Y ′T , YT + Y ′T )

≤ 4
√
αBdcdf(X ′S, Y

′
T ) + 4

√
αBdcdf(XS, YT )+

O(δ) +O(1/σ)

= O

(
σ log(1/σ)ρ

(σ2 − ν)3/2U1/2

)1/2

+O(δ) +O(1/σ).

The theorem now follows as ρ ≤ σ2/2.
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Chapter 5

Gotsman-Linial Conjecture and Random

Restrictions of PTFs

5.1 Introduction

As mentioned in the introduction, average and noise sensitivity are two

fundamental notions in the analysis of Boolean functions with a variety of

important applications. In this chapter we study the sensitivity of threshold

functions and give the first nontrivial bounds for low-degree PTFs. We then

use our results along with existing learning theory machinery to get better

agnostic learning algorithms for these classes. In spirit of most of our results,

the results in this chapter will essentially be obtained by using the invariance

principles for polynomials of Mossel et al. to translate the problem to the

Gaussian setting and solve the Gaussian problem directly.

Recall the definition of noise sensitivity and average sensitivity from

Section 2.4. It is well known (and easy to prove via elementary methods) that

the noise sensitivity of linear threshold functions is at most O(
√
δ) [85]. On the

other hand, we do not know of any nontrivial bounds on the noise sensitivity

and average sensitivity for degrees 2 and higher.

Our results give the first nontrivial bounds for degrees 2 and higher.
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Theorem 5.1.1 (Boolean Noise Sensitivity). For any degree d PTF f : {1,−1}n →

{1,−1} and δ ∈ (0, 1),

NSδ(f) = Od

(
δ1/(4d+6)

)
.

The subscript d in the Od(·) notation indicates that the hidden constant

depends on d.

Our next set of results bound the average sensitivity of degree d PTFs.

Clearly, for any function f , AS(f) is at most n (the parity function on n

variables achieves this bound). It is well known that the average sensitivity

of linear threshold functions is O(
√
n) (the Majority function has average

sensitivity Θ(
√
n)).

In 1994, Gotsman and Linial [39] conjectured that the average sensi-

tivity of any degree d polynomial threshold function f is O(d
√
n). We are not

aware of any progress on this conjecture until now.

We give two upper bounds on the average sensitivity of degree d PTFs.

We first use a simple translation lemma for bounding average sensitivity in

terms of noise sensitivity of a Boolean function and Theorem 5.1.1 to obtain

the following bound.

Theorem 5.1.2 (average sensitivity). For a degree d PTF f : {1,−1}n →

{1,−1}, AS(f) = 2O(d) (n1−1/(4d+6)).

We also give an elementary combinatorial argument, to show that the

average sensitivity of any degree d PTF is at most 3n1−1/2d . The combi-
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natorial proof is based on the following lemma for general Boolean func-

tions that may prove useful elsewhere. For x ∈ {1,−1}n, and i ∈ [n], let

x−i = (x1, . . . , xi−1, xi+1, . . . , xn).

Lemma 5.1.3. For Boolean functions fi : {1,−1}n → {1,−1} with fi not de-

pending on the i’th coordinate xi, and X ∈u {1,−1}n, EX [ |
∑

iXifi(X−i) | ]2 ≤

2
∑

iAS(fi) + n.

We believe that when the functions fi in the above lemma are LTFs,

the above bound can be improved to O(n), which in turn would imply the

Gotsman-Linial conjecture for quadratic threshold functions.

5.1.1 Random Restrictions of PTFs – a structural result

An important ingredient of our sensitivity bounds for PTFs are new

structural theorems about random restrictions of PTFs obtained via hyper-

contractivity. The structural results we obtain can be seen as part of the high

level “randomness vs structure” paradigm that has played a fundamental role

in many recent breakthroughs in additive number theory and combinatorics.

Specifically, we obtain the following structural result (Theorem 5.3.4): arbi-

trary low-degree PTFs can be approximated by small depth decision trees in

which the leaf nodes either compute a regular PTF or a function with high

bias.

We remark that our structural results, though motivated by similar

results of Servedio [92] and Diakonikolas et al. [26] for the simpler case of
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LTFs, do not follow from a generalization of their arguments for LTFs to PTFs.

The structural results for random restrictions of low-degree PTFs provide a

reasonably generic template for reducing problems involving arbitrary PTFs to

ones on regular PTFs. In fact, these structural properties are used precisely for

the above reason both in this work and in our construction of pseudorandom

generators for PTFs, Chapter 7.

5.1.2 Related Work

Independent of this work, Diakonikolas, Raghavendra, Servedio, and

Tan [29] have obtained nearly identical results to ours for both the average

and noise sensitivity of PTFs. The broad outline of their proof is also similar

to ours.

Regarding our structural result described in Section 5.1.1, Diakonikolas,

Servedio, Tan and Wan [30] have independently obtained similar results to

ours. As an application, they prove the existence of low-weight approximators

for polynomial threshold functions.

In a beautiful result, Daniel Kane [52] showed that the Gotsman-Linial

conjecture is true in the Gaussian setting. Specifically, define Gaussian noise

sensitivity as follows:

Definition 5.1.1 (Gaussian Noise Sensitivity). Let f : Rn → {−1, 1} be any

Boolean function on Rn. Let X, Y be two independent random variable drawn

from the multivariate Gaussian distribution N n (where N = N (0, 1) is the

univariate Gaussian distribution on R with mean 0 and variance 1) and Z
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a δ-perturbation of X defined as follows: Z = (1 − δ)X +
√

2δ − δ2Y . The

Gaussian noise sensitivity GNSδ(f) of f for noise δ is defined as follows:

GNSδ(f) = Pr [f(X) 6= f(Z)] .

Daniel Kane showed that for any degree d PTF f (even those not nec-

essarily defined by multi-linear polynomials as assume in the Boolean setting),

GNSδ(f) ∼ d
√

2ε/π.

5.1.3 Proof Outline

The proofs of our theorems are inspired by the use of the invariance

principle in the proof of the “Majority is Stablest” theorem [76]. As in the

proof of the “Majority is Stablest” theorem, our main technical tools are the

invariance principle and the anti-concentration bounds (also called small ball

probabilities) of Carbery and Wright [21].

Bounding the probability that a threshold function changes value ei-

ther when it is perturbed slightly (in the case of noise sensitivity) or when a

variable is flipped (average sensitivity) involves bounding probabilities of the

form Pr [|Q(X)| ≤ |R(X)|] where Q(X), R(X) are low degree polynomials and

R has small l2-norm relative to that of Q. The event |Q(X)| ≤ |R(X)| implies

that either |Q(X)| is small or |R(X)| is large. In other words, for every γ

Pr [|Q(X)| ≤ |R(X)|] ≤ Pr [|Q(X)| ≤ γ] + Pr [|R(X)| > γ] .

Since R has small norm, the second quantity in the above expression can be

easily bounded using a tail bound (even Markov’s inequality suffices). Bound-
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ing the first quantity is trickier. Our first observation is that if the random

variable X were distributed according to the Gaussian distribution as opposed

to the uniform distribution on the hypercube, bounds on probabilities of the

form Pr [|Q(X)| ≤ γ] immediately follow from the anti-concentration bounds

of Carbery and Wright [21]. We then transfer these bounds to the Boolean

setting using the invariance principle.

Unfortunately, the invariance principle holds only for regular polyno-

mials (i.e., polynomials in which no single variable has large influence). We

thus obtain the required bounds on noise sensitivity and average sensitivity for

the special case of regular PTFs. We then extend these results to an arbitrary

PTF f using our structural results on random restrictions of the PTF f . The

structural results state that either the restricted PTF is a regular polynomial

or is a very biased function. In the former case, we resort to the above argu-

ment for regular PTFs and bound the noise sensitivity of the given PTF. In

the latter case, we merely note that the noise sensitivity of a biased function

can be easily bounded. This in turn lets us extend the results for regular PTFs

to all PTFs.

5.1.4 Learning Theory Applications

In this section, we briefly elaborate on the learning theory applications

of our results. As noted earlier, our bounds on noise sensitivity imply learning

results in the challenging agnostic model of learning (see Section 2.4 for the

definition of the model).
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Combining our noise sensitivity bound, Theorem 5.1.1 and the results

of Klivans et al. [59] (Theorem 2.4.2), Kalai et al. [50] (Theorem 2.4.1) we

obtain the following:

Theorem 5.1.4. The concept class of degree d PTFs is agnostically learnable

to within ε with respect to the uniform distribution on {−1, 1}n in time n1/εO(d)
.

These are the first polynomial-time algorithms for agnostically learning

constant degree PTFs with respect to the uniform distribution on the hyper-

cube (to within any constant error parameter).

Finally, using the results of Blais et al. [19], our learning result can be

extend a very broad class of discrete and continuous product distributions.

We do not delve into these details here.

5.2 Notation and Preliminaries

1. For a subset I ⊆ [n], the monomial XI is defined by XI =
∏

i∈I Xi.

2. Unless otherwise stated, we work with a PTF f of degree d and a degree

d polynomial P (X) =
∑

I aIX
I with zero constant term (i.e., a∅ = 0)

such that f(X1, . . . , Xn) = sign(P (X1, . . . , Xn)−θ). In case of ambiguity,

we will refer to the coefficients aI as aI(P ).

3. For i ∈ [n], xi = (x1, . . . , xi) ∈ {1,−1}i, fxi : {1,−1}n−i → {1,−1} is

defined by fxi(Xi+1, . . . , Xn) = sign(P (x1, . . . , xi, Xi+1, . . . , Xn)− θ).
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4. For i ∈ [n], P|i(X1, . . . , Xi) =
∑

I⊆[i] aIX
I is the restriction of P to the

variables X1, . . . , Xi.

5. For clarity, we suppress the exact dependence of the constants on the

degree d in this chapter; a more careful examination of our proofs shows

that all constants depending on the degree d are at worst 2O(d).

Definition 5.2.1. A partial assignment xi = (x1, . . . , xi) is ε-determining for

f , if there exists b ∈ {1,−1} such that Pr(Xi+1,...,Xn)∈u{1,−1}n−i [ fxi(Xi+1, . . . , Xn) 6=

b ] ≤ ε.

Recall the notion of regular polynomials Section 2.2. We shall use

the following notation for this chapter: For a polynomial Q, the weight of

the ith coordinate is defined by w2
i (Q) =

∑
I3i a

2
I . For i ∈ [n], let σi(Q)2 =∑

j≥iw
2
j (Q). Observe that, from Definition 2.2.2, Q is ε-regular if

∑
iw

4
i (P ) ≤

ε2 (
∑

iw
2
i (P ))

2
= ε2σ4

1(P ). We also assume without loss of generality that

the variables are ordered such that w1(P ) ≥ w2(P ) ≥ · · · ≥ wn(P ).

In addition, (2, 4)-hypercontractivity, the invariance principle of Mos-

sel et al. [76] and the anti-concentration bounds of Carbery and Wright [21]

described in Section 2.2 will play a prominent role in this chapter.

5.3 Random Restrictions of PTFs

We now establish our structural results on random restrictions of low-

degree PTFs. The use of critical indices (K(P, ε)) in our analysis is motivated
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by the results of Servedio [92] and Diakonikolas et al. [26] who obtain similar

results for LTFs. At a high level, we show the following.

Given any ε > 0, define the ε-critical index of a multilinear polynomial

P , K = K(P, ε), to be the least index i such that w2
j (P ) ≤ ε2 σ2

i+1(P ) for all

j > i. We consider two cases depending on how large K(P, ε) is and roughly,

show the following (here c, α > 0 are some universal constants).

1. K ≤ 1/εcd. In this case we show that for xK = (x1, . . . , xK) ∈u {1,−1}K ,

the PTF fxK is ε-regular with probability at least α.

2. K > 1/εcd. In this case we show that with probability at least α, the

value of the threshold function is determined by the top L = 1/εcd vari-

ables.

More concretely, we show the following.

Lemma 5.3.1. For every integer d, there exist constants ad ∈ R, γd > 0 such

that for any multilinear polynomial P of degree at most d and K = K(P, ε)

as defined above, the following holds. The polynomial PxK (Yk+1, . . . , Yn)
def
=

P (x1, . . . , xK , YK+1, . . . , Yn) in variables YK+1, . . . , Yn obtained by randomly

choosing xK = (x1, . . . , xK) ∈u {1,−1}K is adε-regular with probability at

least γd.

Lemma 5.3.2. For every d, there exist constants bd, cd ∈ R, δd > 0, such that

for any multilinear polynomial P of degree at most d the following holds. If
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K(P, ε) ≥ cd log(1/ε)/ε2 = L, then a random partial assignment (x1, . . . , xL) ∈u

{1,−1}L is bdε-determining for P with probability at least δd.

By repeatedly applying the above lemmas, we show that arbitrary low-

degree PTFs can be approximated by small depth decision trees in which

the leaf nodes either compute a regular PTF or a function with high bias.

We first introduce some notation to this end. Though, we do not need it in

this section, we state our main structural lemma for a more general class of

distributions with limited independence as this will be important later on in

our construction of PRGs for PTFs in Chapter 7.

Lemma 5.3.3. There exist universal constants c, cd, δd > 0 such that for

K(P, ε) ≥ c log(1/ε)/ε2 = L, the following holds for all θ ∈ R. For a ran-

dom partial assignment (x1, . . . , xL) ∈u {1,−1}L with probability at least δd

the following happens. There exists b ∈ {1,−1} such that

Pr
(YL+1,...,Yn)←D

[ sign(P (x1, x2, . . . , xL, YL+1, . . . , Yn)− θ) 6= b ] ≤ cdε, (5.3.1)

for any 2d-wise independent distribution D over {1,−1}n−L.

When D is the uniform distribution over {1,−1}n−L, the above lemma

is equivalent to Lemma 5.3.2. However, the argument for Lemma 5.3.2 ex-

tends straightforwardly to 2d-wise independent distributions D and we skip

the details.

Definition 5.3.1. A block decision tree T with block-size L is a decision tree

with the following properties. Each internal node of the decision tree reads at

69



most L variables. For each leaf node ρ ∈ T , the output upon reaching the leaf

node ρ is a function fρ : {1,−1}Vρ → {1,−1}, where Vρ is the set of variables

not occurring on the path to the node ρ. The depth of T is the length of the

longest path from the root of T to a leaf in T .

Definition 5.3.2. Given a block decision tree T computing a function f , we

say that a leaf node ρ ∈ T is (ε, d)-good if the function fρ satisfies one of the

following two properties.

1. There exists b ∈ {1,−1}, such that for any 2d-wise independent distri-

bution D over {1,−1}Vρ ,

Pr
Y←D

[fρ(Y ) 6= b] ≤ ε.

2. fρ is a ε-regular degree d PTF.

We are ready to state and prove our main structural result on writing

low-degree PTFs as a “decision tree of regular PTFs” assuming Lemmas 5.3.1,

5.3.3. As mentioned before, Diakonikolas et al. [30] obtain a similar result to

ours (although, their definition regularity is technically a bit different from

ours).

Theorem 5.3.4 (Main Restriction Theorem). There exist universal constants

c′d, c
′′
d such that the following holds for any degree d polynomial P and PTF

f = sign(P ( )− θ). There exists a block decision tree T computing f of block-

size L = c′d log(1/ε)/ε2 and depth at most c′′d log(1/ε), such that with probability
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at least 1− ε a uniformly random walk on the tree leads to an (ε, d)-good leaf

node.

Proof. The proof is by recursively applying Lemmas 5.3.1 and 5.3.3. Let

c, cd, γd, δd be constants from the above lemmas. Let L be defined as in

Lemma 5.3.2 and let α = min(γd, δd). For S ⊆ [n] and a partial assignment

y ∈ {1,−1}S, let Py : {1,−1}[n]/S → R be the degree at most d polynomial

defined by Py(Y ) = P (Z), where Zi = yi for i ∈ S and Zi = Yi for i /∈ S.

Let L(y) = min(K(Py, ε), L) and let I(y) be the L(y) largest influence coordi-

nates in the polynomial Py. We now define a block-decision tree computing f

inductively.

Let y0 = ∅ and let I0 = I(y0). The root of the decision tree reads the

variables in I0. For 0 ≤ q ≤ log1/(1−α)(1/ε) suppose that after q steps we are at

a node β having read the variables in S(β) ⊆ [n] and a corresponding partial

assignment y. Then, if Py is cdε-regular or if Py satisfies Equation (5.3.1) we

stop. Else, we make another step and read the values of variables in I(y).

For any leaf node ρ, let y(ρ) denote the partial assignment that leads

to ρ. Then the leaf node ρ outputs the function fρ(Y ) = sign(Py(ρ)(Y )− θ).

It follows from the construction that T is a block-decision tree com-

puting f with block-size L and depth at most log1/(1−α)(1/ε). Further, for

any internal node β ∈ T , by Lemmas 5.3.1, 5.3.2 at least α fraction of its

children are (cdε, d)-good. Since any leaf node that is not (cdε, d)-good is at

least log1/(1−α)(1/ε) far away from the root of T , it follows that a uniformly
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random walk on T leads to a (cdε, d)-good node with probability at least 1−ε.

The lemma now follows.

To prove the main lemmas we use the following simple results.We use

the following lemma of Alon et al. [5].

Lemma 5.3.5 ([5, Lemma 3.2]). Let A be a real valued random variable sat-

isfying E[A] = 0, E[A2] = σ2 and E[A4] ≤ bσ4. Then, Pr[A ≥ σ/4
√
b ] ≥

1/44/3b.

Lemma 5.3.6. For d > 0 there exist constants αd, βd > 0 such that for

any degree at most d polynomial Q, and X ∈u {1,−1}n, Pr[Q(X) ≥ E[Q] +

αdσ(Q) ] ≥ βd, where σ2(Q) is the variance of Q(X) = ‖Q‖2 − (EX [Q])2. In

particular, Pr[Q(X) ≥ E[Q] ] ≥ βd.

Proof. Let random variable A = Q(X)−EX [Q(X)]. Then, E[A] = 0, E[A2] =

σ2(Q) and by (2, 4)-hypercontractivity, E[A4] ≤ 9d E[A2] = 9dσ4(Q). The

claim now follows from Lemma 5.3.5.

5.3.1 Proof of Lemma 5.3.1

Proof. Let X ≡ (X1, . . . , XK). We prove the lemma as follows: (1) Bound

the expectation of
∑

j>K w
4
j (PX) using hypercontractivity and use Markov’s

inequality to show that with high probability
∑

j>K w
4
j (PX) is small. (2) Use

the fact that σ2
K+1(PX) =

∑
j>K w

2
j (PX) is a degree at most 2d polynomial in

X and Lemma 5.3.6 to lower bound the probability that σ2
K+1(PX) is large.
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Let

PX(YK+1, . . . , Yn) = P (X1, . . . , XK , YK+1, . . . , Yn) =

R(X1, . . . , XK) +
∑

J⊆[K+1,n],0<|J |≤d

QJ(X1, . . . , XK)
∏
j∈J

Yj.

We now bound E[
∑

j>K w
4
j (PX)]. Fix a j > K and observe that

w2
j (PX) =

∑
J3j Q

2
J(X). Thus,

E
X

[
w2
j (PX)

]
=
∑
J3j

E
X

[
Q2
J(X)

]
=
∑
J3j

‖QJ‖2 = w2
j (P ). (5.3.2)

Further, by (2, 4)-hypercontractivity, Corollary 2.2.2,

E
X

[
w4
j (PX)

]
= E

X

[ ∑
J1,J23j

Q2
J1

(X)Q2
J2

(X)

]
=
∑

J1,J23j

E
X

[
Q2
J1

(X)Q2
J2

(X)
]

≤
∑

J1,J23j

9d E
X

[
Q2
J1

(X)
]
· E
X

[
Q2
J2

(X)
]

=
∑

J1,J23j

9d ‖QJ1‖2 ‖QJ2‖2 = 9dw4
j (P ).

Hence, E[
∑

j>K w
4
j (PX) ] ≤ 9d

∑
j>K w

4
j (P ). Now, from the definition of

K(P, ε), w2
j (P ) ≤ ε2σ2

K+1(P ) for all j > K. Thus,

∑
j>K

w4
j (P ) ≤ ε2σ2

K+1(P )
∑
j>K

w2
j (P ) = ε2σ4

K+1(P ).

Combining the above inequalities and applying Markov’s inequality we get

Pr
X

[
∑
j>K

w4
j (PX) ≥ γ9dε2σ4

K+1(P ) ] ≤ 1/γ. (5.3.3)

Observe that Q(X) =
∑

j>K w
2
j (PX) is a degree at most 2d polynomial in

X1, . . . , Xk and by (5.3.2), E [Q] =
∑

j>K w
2
j (P ) = σ2

K+1(P ). Thus, by ap-

plying Lemma 5.3.6 to Q, Pr [
∑

j>K w
2
j (PX) ≥ σ2

K+1(P ) ] ≥ β2d. Setting
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γ = 2/β2d in (5.3.3) and using the above equation, we get

Pr
X

∑
j>K

w4
j (PX) ≤ a2

dε
2

(∑
j>K

w2
j (PX)

)2
 ≥ β2d/2,

where a2
d = 2 · 9d/β2d. Thus, the polynomial PX(YK+1, . . . , Yn) is (adε)-regular

with probability at least γd = β2d/2.

5.3.2 Proof of Lemma 5.3.2

Proof of Lemma 5.3.2. Suppose that K(P, ε) ≥ L = c log(1/ε)/ε2 for a con-

stant c to be chosen later and letQ(X1, . . . , Xn) = P (X1, . . . , Xn)−P|L(X1, . . . , XL).

The proof proceeds as follows. We first show that ‖Q‖ is significantly smaller

than ‖P|L‖. We then use Lemma 5.3.6 applied to P|L − θ and Markov’s in-

equality applied to |Q(X)| to show that |P|L(X1, . . . , XL) − θ| is larger than

|Q(X)|, so that Q(X) cannot flip the sign of P|L(X1, . . . , XL)−θ, with at least

a constant probability. We first bound ‖Q‖.

Lemma 5.3.7. For 1 ≤ i < j < K(P, ε), σ2
j (P ) ≤ (1− ε2)j−iσ2

i (P ).

Proof. For 1 ≤ i < K(P, ε), we have

σ2
i (P ) = w2

i (P ) + σ2
i+1(P ) ≥ ε2σ2

i (P ) + σ2
i+1(P ).

Thus, σ2
i+1(P ) ≤ (1− ε2)σ2

i (P ). The lemma follows.

Claim 5.3.8. For a suitably large enough constant cd, ‖Q‖ ≤
√
ε αd ‖P|L‖.
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Proof. Let αd, βd be the constants from Lemma 5.3.6. By definition ‖Q‖2 =∑
I:I 6⊆[L] a

2
I ≤ σ2

L(P ). Now,

σ2
1(P ) =

∑
j<L

w2
j (P ) + σ2

L(P )

≤ d
∑

I:I∩[L]6=∅

a2
I + σ2

L(P )

≤ d
∑

I:∅6=I⊆[L]

a2
I + d

∑
I:I 6⊆[L]

a2
I + σ2

L(P )

≤ d
∑

I:∅6=I⊆[L]

a2
I + d

∑
j>L

w2
j (P ) + σ2

L(P )

≤ d
∑

I:∅6=I⊆[L]

a2
I + (d+ 1)σ2

L(P ).

Further, by Lemma 5.3.7,

σ2
L(P ) ≤ (1− ε2)L−1σ2

1(P ).

Combining the above inequalities we get,

σ2
L(P ) ≤ Od

(
(1− ε2)L−1

) ∑
I:∅6=I⊆[L]

a2
I = Od

(
(1− ε2)L−1

)
σ2(P ). (5.3.4)

Choosing L = cd log(1/ε)/ε2 for large enough cd, we get the claim.

By Claim 5.3.8 and Markov’s inequality,

Pr
x∈u{1,−1}n

[
|Q(x1, . . . , xn)| ≥ αd ‖P|L‖

]
≤

Pr
x∈u{1,−1}n

[
|Q(x1, . . . , xn)| ≥ ‖

Q
‖/
√
ε

]
≤ ε. (5.3.5)

Let S ⊆ {1,−1}L be the set of all bad xL ∈ {1,−1}L such that,

Pr
(XL+1,...,Xn)∈u{1,−1}n

[
|Q(x1, . . . , xL, XL+1, . . . , Xn)| ≥ αd ‖P|L‖

]
≥ 2ε/βd.
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Then, from (5.3.5) and the above equation, PrxL∈u{1,−1}L
[
xL ∈ S

]
≤ βd/2.

Now, let T ⊆ {1,−1}L be such that for xL ∈ T , |P|L(x1, . . . , xL) − θ | ≥

αd ‖PL‖ and xL /∈ S. Observe that all xL ∈ T are (2ε/βd)-determining and by

Lemma 5.3.6 and the above equations,

Pr
xL∈u{1,−1}L

[
xL ∈ T

]
≥

Pr
xL∈u{1,−1}L

[
∣∣P|L(x1, . . . , xL)− θ

∣∣ ≥ αd ‖PL‖]− Pr
xL∈u{1,−1}L

[
xL ∈ S

]
≥ βd/2.

The lemma now follows.

5.4 Noise sensitivity of PTFs

We now bound the noise sensitivity of PTFs and prove Theorem 5.1.1.

We do so by first bounding the noise sensitivity of regular PTFs and then use

the results of the previous section to reduce the general case to the regular

case.

5.4.1 Noise sensitivity of Regular PTFs

At a high level, we bound the noise sensitivity of regular PTFs as fol-

lows: (1) Reduce the problem to that of proving certain anti-concentration

bounds for regular PTFs over the hypercube. (2) Use the invariance prin-

ciple of Mossel et al. [76] to reduce proving anti-concentration bounds over

the hypercube to that of proving anti-concentration bounds over Gaussian

distributions. (3) Use the Carbery-Wright anti-concentration bounds [21] for

polynomials over log-concave distributions.
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For the rest of this section, we fix degree d multilinear polynomial P and

a corresponding degree d PTF f . Recall that it suffices to consider multilinear

polynomials as we are working over the hypercube. We first reduce bounding

noise sensitivity to proving anti-concentration bounds.

Lemma 5.4.1. For 0 < ρ < 1, δ > 0, NSρ(f) ≤ (d+1) δ+Prx∈{1,−1}n [ |P (x)−

θ| ≤ 2
√
ρ/δ ].

Proof. Let S be a random subset S ⊆ [n] where each i ∈ [n] is in S inde-

pendently with probability ρ. From the definition of noise sensitivity it easily

follows that

NSρ(f) = Pr
X∈u{1,−1}n,S

[ sign (P (X)− θ) 6= sign(P (X)− 2
∑

I:|I∩S| is odd

aIX
I − θ ) ]

= Pr
X∈u{1,−1}n,S

[ |P (x)− θ| ≤ 2 |
∑

I:|I∩S| is odd

aIX
I | ]

≤ Pr
X∈u{1,−1}n,S

[ |
∑

I:|I∩S| is odd

aIX
I | ≥ √ρ/δ ]+

Pr
X∈u{1,−1}n

[ |P (X)− θ | ≤ 2
√
ρ/δ ] (5.4.1)

Define a non-negative random variable PS as follows: P 2
S =

∑
I:|I∩S| is odd a

2
I .

We can then bound the first quantity in the above expression using PS as

follows:

Pr
X∈u{1,−1}n,S

[ |
∑

I:|I∩S| is odd

aIX
I | ≥ √ρ/δ ] ≤

Pr
X∈u{1,−1}n,S

[ |
∑

I:|I∩S| is odd

aIX
I | ≥ PS/

√
δ ] + Pr

S
[PS ≥

√
ρ/
√
δ ] (5.4.2)
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Since EX(
∑

I|I∩S| is odd aIX
I )2 = P 2

S , by Markov’s inequality, we have

Pr
x∈u{1,−1}n

[ |
∑

I:|I∩S| is odd

aIX
I | ≥ PS/

√
δ ] ≤ δ. (5.4.3)

Now, note that P 2
S ≤

∑
i∈S w

2
i (P ). Thus, ES[P 2

S ] ≤ ES[
∑

i∈S w
2
i (P ) ] =

ρ
∑

iw
2
i (P ) ≤ d ρ. Hence, by Markov’s inequality, PrS[PS ≥

√
ρ/
√
δ ] ≤ d δ.

The lemma now follows by combining Equations (5.4.1), (5.4.2), (5.4.3) and

the above equation.

We now prove an anti-concentration bound for regular PTFs.

Lemma 5.4.2. If P is ε-regular, then for any interval I ⊆ R of length at most

α, PrX∈u{1,−1}n [P (X) ∈ I ] = Od(α
1/d + ε2/(4d+1) ).

Proof. Let Z1 = P (X), Z2 = P (Y ) for X ∈u {1,−1}n, Y ← N n. Then, since

P is ε-regular, by Theorem 2.2.5, for all t ∈ R, | Pr[Z1 > t] − Pr[Z2 > t] | =

Od(ε
2/(4d+1)). Now, by the above equation and Theorem 2.2.6 applied to the

random variable Y for interval I, Pr[Z1 ∈ I] = Pr[Z2 ∈ I] + Od( ε
2/(4d+1) ) =

Od(α
1/d + ε2/(4d+1) ).

We can now obtain a bound on noise sensitivity of regular PTFs.

Theorem 5.4.3. If f is an ε-regular PTF of degree d, then NSε(f) ≤ Od

(
ε1/(2d+2)

)
.

Proof. Let δ > 0 to be chosen later. Then, by Lemma 5.4.1 and Lemma 5.4.2

above, NSε(f) = Od( δ + ε2/(4d+1) + ε1/2d/δ1/d ). Choosing δ = ε1/(2d+2) we get

NSε(f) = Od( ε
1/(2d+2) ).
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5.4.2 Noise Sensitivity of arbitrary PTFs

We prove Theorem 5.1.1 by recursively applying the following lemma.

Lemma 5.4.4. For every d there exist universal constants cd,∆d ∈ N, αd ∈

(0, 1) such that for M = min(K(P, ε), cd log(1/ε)/ε2) and XM = (X1, . . . , XM) ∈u

{1,−1}M ,

Pr
XM

[
NSε(fXM ) ≤ ∆dε

1/(2d+2)
]
≥ αd. (5.4.4)

Proof. Let ad, bd, cd, γd, δd be the constants from Lemmas 5.3.1, 5.3.2. Let

αd = min(γd, δd). We consider two cases.

Case (i): M = K(P, ε). Then, by Lemma 5.3.1 and Theorem 5.4.3, for

XK ∈u {1,−1}K , with probability at least αd, NSε(fxK ) ≤ ∆dε
1/(2d+2) for

some constant ∆d.

Case (ii): M = cd log(1/ε)/ε2. Then, by Lemma 5.3.2, XM ∈u {1,−1}M is bdε-

determining with probability at least αd. Further, if XM is bdε-determining,

with fXM biased towards b ∈ {1,−1}, then

NSε(fXM ) = Pr
Z1∈u{1,−1}n−M ,Z2∈εZ1

[ fXM (Z1) 6= fXM (Z2) ] ≤

2 Pr
Z∈u{1,−1}n−M

[ fXM (Z) 6= b ] ≤ 2bdε,

where Z2 ∈ε Z1 is an ε-perturbation of Z1. The lemma now follows.

Proof of Theorem 5.1.1. Let cd,∆d, αd be as in the above lemma and let L =

cd log(1/ε)/ε2, t = log1−αd(1/ε). We will show that for δ = ε1/(2d+2)/(L t) =
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Od(ε
(4d+5)/(2d+2)/ log2(1/ε)),

NSδ(f) = Od( ε
1/(2d+2) ).

For S ⊆ [n] and x ∈ {1,−1}n let Px,S : {1,−1}S̄ → R be the de-

gree at most d polynomial defined by Px,S(XS̄) = P (x|S, XS̄).. Fix a x =

(x1, . . . , xn) ∈ {1,−1}n and define Sx,i ⊆ [n] for i ≥ 1, recursively as follows.

Sx,1 is the set of M1 ≤ L largest weight coordinates in P given by applying

Lemma 5.4.4 to P . For i ≥ 1, let Sx,i = Sx,1 ∪ Sx,2 ∪ . . . ∪ Sx,i.

For i > 1, let Sx,i+1 be the set of Mi+1 ≤ L largest weight coordinates

in Px,Sx,i given by applying Lemma 5.4.4 to the polynomial Px,Sx,i . Define fx,i

by fx,i(·) ≡ sgn(Px,Sx,i(·)− θ). Note that the definition of fx,i only depends on

xj for j ∈ Sx,i and that |Sx,i| ≤ L · i.

Call x ∈ {1,−1}n (ε, f)-good if there exists an i, 1 ≤ i ≤ t such that

NSε(fx,i) ≤ ∆d ε
1/(2d+2) and let tx be such an i for a (ε, f)-good x. Then, from

the definition of fx,i and Lemma 5.4.4,

Pr
x∈u{1,−1}n

[x is (ε, f)-good ] ≥ 1− ε. (5.4.5)

Let y ∈δ x be a δ-perturbation of x ∈u {1,−1}n. Then, since |Sx,tx| ≤

L t,

Pr
x,y

[x|Sx,tx 6= y|Sx,tx ] ≤ L t δ = ε1/(2d+2). (5.4.6)

Also note that for any i ≥ 1, conditioned on an assignment for the

values in x|Sx,i and x|Sx,i = y|Sx,i , Prx,y[f(x) 6= f(y)] = NSδ(fx,i) ≤ NSε(fx,i).
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Thus, conditioned on x being (ε, f)-good and x|Sx,tx = y|Sx,tx ,

Pr
x,y

[ f(x) 6= f(y) ] ≤ NSε(fx,tx) ≤ ∆d ε
1/(2d+2). (5.4.7)

Combining (5.4.5), (5.4.6), (5.4.7), we get

NSδ(f) ≤ ε+ L t δ + ∆dε
1/(2d+2) = Od

(
ε1/(2d+2)

)
.

Since δ = Od

(
ε

4d+5
2d+2/ log2(1/ε)

)
and the above is applicable for all ε > 0, we

get that for all ρ > 0,

NSρ(f) = Od

(
log(1/ρ)ρ1/(4d+5)

)
= Od

(
ρ1/(4d+6)

)
.

5.5 Average sensitivity of PTFs

In this section we bound the average sensitivity of PTFs on the Boolean

hypercube, proving Theorem 5.1.2. We first prove a lemma bounding the av-

erage sensitivity of a Boolean function in terms of its noise sensitivity. Theo-

rem 5.1.2 follows immediately from Theorem 5.1.1 and the following lemma:

Lemma 5.5.1 (noise sensitivity to average sensitivity). For any Boolean func-

tion f : {1,−1}n → {1,−1}, AS(f) ≤ 2neNS(1/n)(f).

Proof. Let δ = 1/n. Let X ∈u {1,−1}n and let S ⊆ [n] be a random set

with each element i ∈ [n] present in S independently with probability δ. Let

X(S) be the vector obtained by flipping the coordinates of X in S. Then,
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NS(f) = PrX,S[f(X) 6= f(X(S))]. Observe that for i ∈ [n], Pr[S = i] =

δ(1− δ)n−1 = (1/n) (1− 1/n)n−1 > 1/2ne. Therefore,

NSδ(f) = Pr
X,S

[f(X) 6= f(X(S))]

=
∑
i

Pr
S

[S = {i} ] · Pr
X

[ f(X) 6= f(X(S)) |S = i ]+

Pr
S

[ |S| 6= 1 ] · Pr
X,S

[ f(X) 6= f(X(S)) | |S| 6= 1 ]

>
∑
i

1

2ne
Pr
X

[f(X) 6= f(X({i})] =
1

2ne
AS(f).

5.6 Average sensitivity using a combinatorial argument

In this section, we give a combinatorial argument for the following

bound on average sensitivity.

Theorem 5.6.1. For any degree d PTF f : {1,−1}n → {1,−1}, AS(f) ≤

3n1−2−d.

We first show the theorem using Lemma 5.1.3.

Proof. Let P (x) = xiPi(x−i) +Qi(x−i), where Pi( ), Qi( ) are degree d− 1 and

degree d polynomials respectively that do not depend on xi. Define fi(x−i) =

sgn(Pi(x−i)) and gi(x) = f(x)fi(x−i). Then,

Ii(f) = Pr
X∈u{1,−1}n

[f(X) 6= f(X(i))] = Pr
X∈u{1,−1}n

[f(X)fi(X−i) 6= f(X(i))fi(X−i)]

= Pr
X∈u{1,−1}n

[f(X)fi(X−i) 6= f(X(i))fi((X
(i))−i)] = Pr

X∈u{1,−1}n
[gi(X) 6= gi(X

(i))]

= Ii(gi).
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Observe that gi is monotone increasing in xi for i ∈ [n] and hence

Ii(gi) = EX [Xigi(X)]. Thus,

AS(f) =
∑
i

Ii(f) =
∑
i

Ii(gi) =
∑
i

E
X

[Xigi(X)] =
∑
i

E
X

[Xif(X)fi(X−i)] =

E
X

[
f(X)

∑
i

Xifi(X−i)

]
.

Since |f(x)| ≤ 1 for all x, we have

AS(f) ≤ E
X

[ ∣∣∣∣∣∑
i

Xifi(X−i)

∣∣∣∣∣
]
. (5.6.1)

We now use induction and Lemma 5.1.3. For an LTF f , fi as defined

above are constants. Therefore, by Equation (5.6.1),

AS(f) ≤ E
X

[ ∣∣∣∣∣∑
i

Xifi(X−i)

∣∣∣∣∣
]

= E
X

[∣∣∣∣∣∑
i

Xi

∣∣∣∣∣
]

= O(
√
n).

Suppose the theorem is true for degree d PTFs and let f be a degree d+1 PTF

and let fi be as defined before. Then, by Equation (5.6.1) and Lemma 5.1.3

AS(f)2 ≤ 2
∑
i

AS(fi) + n ≤
∑
i

6n1−2−d + n ≤ 7n2−2−d .

Therefore, AS(f) ≤ 3n1−2−(d+1)
. The theorem follows by induction.

Proof of Lemma 5.1.3. For brevity, let fi(x) = fi(x−i). By Cauchy-Schwarz,
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for any random variable Z we have E[|Z|]2 ≤ E[Z2]. Thus,

E
X

[ ∣∣∣∣∣∑
i

Xifi(X−i)

∣∣∣∣∣
]2

≤ E
X

(∑
i

Xifi(X−i)

)2


= E
X

[
∑
i,j

XiXjfi(X)fj(X) ]

= n+
∑
i 6=j

E
X

[XiXjfi(X)fj(X) ]. (5.6.2)

For i 6= j ∈ [n], let x−ij = (xk : k ∈ [n], k 6= i, j) and let Sji = {x ∈ {1,−1}n :

fi(x) 6= fi(x⊕ ej)}. Note that Ij(fi) = PrX [X ∈ Sji ]. Now,

E
X

[XiXjfi(X)fj(X) ] =
∑

x∈Sji∪Sij

µ(x)xixjfi(x)fj(x) +
∑

x/∈Sji∪Sij

µ(x)xixjfi(x)fj(x),

(5.6.3)

where µ(x) = 1/2n is the probability of choosing x under the uniform dis-

tribution. We bound the first term in the above expression by the average

sensitivity of the fi’s and show that the second term vanishes. Observe that,

∑
x∈Sji∪Sij

µ(x)xixjfi(x)fj(x) ≤ µ(Sji ∪ Sij) ≤ µ(Sji ) + µ(Sij) = Ij(fi) + Ii(fj).

(5.6.4)

Note that for x /∈ Sji ∪Sij, fi(x), fj(x) are both independent of the values

of xi, xj. For such x (abusing notation) let fi(x−ij) = fi(x), fj(x−ij) = fj(x)

and let Tij = {(xk : k 6= i, j) : x /∈ Sji ∪ Sij}. Then, since for x /∈ Sji ∪ Sij,

fi(x), fj(x) depend only on x−ij, we get that x /∈ Sji∪Sij if and only if x−ij /∈ Tij.
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Therefore,

∑
x/∈Sji∪Sij

µ(x)xixjfi(x)fj(x) =
∑

x/∈Sji∪Sij

µ(x−ij)µ(xi)µ(xj) fi(x−ij) fj(x−ij)xixj

=
∑

x−ij /∈Tij

µ(x−ij)fi(x−ij) fj(x−ij) E
xi,xj

[xixj] = 0.

(5.6.5)

From Equations (5.6.2), (5.6.3), (5.6.4),(5.6.5) we have,

E
X

[ ∣∣∣∣∣∑
i

Xifi(X−i)

∣∣∣∣∣
]2

≤ n+
∑
i 6=j

(Ij(fi) + Ii(fj)) = n+ 2
∑
i

∑
j:j 6=i

Ij(fi) =

n+ 2
∑
i

AS(fi).

Remark 5.6.1. The bound of Lemma 5.1.3 is tight up to a constant factor if we

only have bounds on the average sensitivity of the fi’s to go with. For example,

consider fi defined as follows. Divide [n] into m =
√
n blocks B1, . . . , Bm of

size m each and for 1 ≤ j ≤ m, i ∈ Bj, let fi =
∏

k∈Bj :k 6=i xk. Then, the left

hand side of the lemma is Θ(n3/2) and AS(fi) = m− 1 = Θ(
√
n) for all i.
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Chapter 6

Noise Sensitivity of Polytopes

In this chapter we use our invariance principle for polytopes to bound

the noise sensitivity of polytopes or intersections of halfspaces.

6.1 Introduction

As discussed in Section 2.4, noise sensitivity of Boolean functions intro-

duced in the seminal works of [49], [16] is an important notion in the analysis

of Boolean functions with a variety of applications in complexity theory.

A direct application of our invariance principle Theorem 3.1.1 gives

the following new bound on the noise sensitivity of intersections of regular

halfspaces:

Theorem 6.1.1 (noise sensitivity of intersections of halfspaces). Let f be

computed by the intersection of k, ε-regular halfspaces. Then the Boolean

noise sensitivity of f for noise rate ε is at most (log k)O(1) · ε1/6.

Applying the results of Kalai et al. [50] and Klivans et al. [59] (see

Section 2.4), the above theorem implies that intersections of k, ε-regular half-

spaces are agnostically learnable with respect to the uniform distribution on
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{−1, 1}n in time n(logO(1) k) for any constant error parameter. In particular,

intersections of {−1, 1} halfspaces (oriented majorities) are ε-regular and fall

into this class. The previous best algorithm for learning this concept class,

even in the easier PAC model, ran in time nO(k2) ([59, 50]).

The current best bound for the noise sensitivity of intersection of k

arbitrary halfspaces is O(k
√
ε). This bound is obtained by starting with the

√
ε noise sensitivity bound for a single halfspace due to Peres [85] and ap-

plying a union bound over k halfspaces. On the other hand, optimal bounds

of Θ(
√

log k
√
ε) for the related Gaussian noise sensitivity were obtained re-

cently by Klivans et al. [60]. We believe that the right order for Boolean noise

sensitivity of intersection of k halfspaces is Θ(
√

log k
√
ε) as well.

Improving the bounds for Boolean noise sensitivity would be of consid-

erable interest, particularly for the learning theory applications, as learning the

class of intersections of halfspaces even with respect to specific distributions

such as the uniform distribution over {1,−1}n is an important open problem

in learning theory. We feel that our result is an important step towards im-

proving noise sensitivity bounds for intersections of arbitrary (not necessarily

regular) halfspaces.

6.2 Noise Sensitivity of Intersections of Regular Halfs-
paces

We now describe how our invariance principle yields a bound on the

average and noise sensitivity of intersections of regular halfspaces. We ask
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the reader to recall the definition of noise sensitivity, Definition 2.4.1, from

Section 2.4. For W ∈ Rn×k and p ∈ [k], let W p denote the p’th column of

W . We will assume throughout that the matrix W is normalized so that each

column has `2 norm 1.

Let f 1, . . . , fk : {1,−1}n → {1,−1} be halfspaces with fp(x) = sign(〈W p, x〉−

θp) and let f∧k : {1,−1}n → {1,−1} be their intersection, f∧k = f 1 ∧ f 2 ∧

. . . ∧ fk.

Theorem 6.2.1. For f∧k ε-regular, NSδ(f∧k) ≤ C(log1.6(k/δ)) (ε1/6 + δ1/2).

We prove the theorem by first reducing bounding noise sensitivity of

f∧k to bounding the Boolean volume of l∞-neighborhoods of polytopes. We

then use our invariance principle, Theorem 3.3.1, to prove the required bounds

on the Boolean volume of boundaries of polytopes.

As mentioned before, the above theorem implies a nlogO(1) k algorithm

for learning intersections of regular halfspaces in the agnostic model for any

constant error rate.

We use the following tail bound that follows from Pinelis’s subgaussian

tail estimates [86].

Fact 6.2.2. There exist absolute constants c1, c2 > 0 such that all w ∈ Rm,

t > 0,

Pr
x∈u{1,−1}m

[ |〈w, x〉| > t‖w‖ ] ≤ c1 exp(−c2t
2).
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The following claim says that for W ε-regular, random x ∈u {1,−1}n,

and a δ-perturbation y of x, W Tx is close to W Ty in l∞ distance.

Claim 6.2.3. For x ∈ {1,−1}n, let y(x) be a random δ-perturbation of y(x)

of x. Then,

Pr
x∈u{1,−1}n,y(x)

[
‖W Tx−W Ty(x)‖∞ ≥ λ

]
≤ 2δ,

where λ = C log(k/δ)1/2δ1/2 + C log(k/δ)3/4ε1/2.

Proof. Let Y = (Y1, . . . , Yn) be i.i.d indicator variables with Pr[Yi = 1] = δ.

Let S(Y ) = support(Y ). Now, for p ∈ [k], ‖W p
S(Y )‖2 =

∑n
i=1W

2
ipYi and

E[‖W p
S(Y )‖2] = δ. Further, since W is ε-regular, by Hoeffding’s inequality, for

all t > 0,

Pr
[
|‖W p

S(Y )‖
2 − δ| ≥ γ

]
≤ 2 exp

(
−2γ2∑
iW

4
ip

)
≤ 2 exp

(
−2γ2

ε2

)
.

Thus, by a union bound

Pr
Y

[
∃p ∈ [k], ‖W p

S(Y )‖
2 ≥ δ + 2

√
log(k/δ) ε

]
≤ δ. (6.2.1)

Note that for a fixed Y and sufficiently large C, by Fact 6.2.2 and a

union bound,

Pr
x∈u{1,−1}n

[
∃p ∈ [k], |〈W p

S(Y ), xS(Y )〉| ≥ C
√

log(k/δ) ‖W p
S(Y )‖

]
≤ δ.

From Equation 6.2.1 and the above equation, we get that for a sufficiently

large constant C

Pr
x∈u{1,−1}n,Y

[
∃p ∈ [k], |〈W p

S(Y ), xS(Y )〉| ≥ C log(k/δ)1/2δ1/2 + C log(k/δ)3/4ε1/2
]
≤

2δ. (6.2.2)
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Now, observe that that for x ∈ {1,−1}n, to generate a δ-perturbation of x,

y(x), we can first generate a random Y as above and flip the bits of x in the

support of Y . Thus, from Equation 6.2.2,

Pr
x∈u{1,−1}n,Y

[∃p ∈ [k] |〈W p, x〉 − 〈W p, y(x)〉| ≥ λ ] =

Pr
x∈u{1,−1}n,Y

[
∃p ∈ [k] | 〈W p

S(Y ), xS(Y )〉| ≥ λ
]
≤ 2δ,

where λ = C log(k/δ)1/2δ1/2 + C log(k/δ)3/4ε1/2. Therefore,

Pr
x∈u{1,−1}n,Y

[
‖W Tx−W Ty(x)‖∞ ≥ λ

]
≤ 2δ.

The following claim can be seen as an anti-concentration bound for

regular polytopes over the hypercube and could be of use elsewhere.

Claim 6.2.4. For ε-regular W ∈ Rn×k, θ ∈ Rk, and 0 < λ < 1,

Pr
x∈u{1,−1}n

[W Tx ∈ Rect(θ + λ 1k) \ Rect(θ − λ 1k) ] ≤

C(log1.6 k) (ε log(1/ε))1/5 +
√

log k λ.

Proof. Follows directly from Theorem 3.3.1 and Lemma 3.3.4.

We can now prove Theorem 6.2.1.
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of Theorem 6.2.1. Note that for x, y ∈ Rn, f∧k(x) 6= f∧k(y) implies that

W Tx ∈ Rect(θ + γ1k) \ Rect(θ − γ1k), where γ = ‖W Tx−W Ty‖∞. Hence,

NSδ(f∧k) = Pr
x∈u{1,−1}n,Y

[ f∧k(x) 6= f∧k(y(x)) ]

≤ Pr
x∈u{1,−1}n,Y

[ f∧k(x) 6= f∧k(y(x)) | ‖W Tx−W Ty(x)‖∞ ≤ λ ] + 2δ

(Claim 6.2.3)

≤ Pr
x∈u{1,−1}n

[W Tx ∈ Rect(θ + λ 1k) \ Rect(θ − λ 1k) ] + 2δ

≤ C(log1.6 k) (ε log(1/ε))1/5 +
√

log k λ+ 2δ.

(Claim 6.2.4)

The theorem now follows.
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Chapter 7

Pseudorandom Generators for Polynomial

Threshold Functions

7.1 Introduction

In this chapter we study the question of constructing PRGs for PTFs

and present the first nontrivial generators for low-degree PTFs. Along the way

we will develop pretty generic framework for obtaining PRGs from invariance

principles and develop these techniques further to obtain PRGs for polytopes

Chapter 8 and combinatorial shapes Chapter 9. .

We first recall the definition of a PRG specialized for the class of PTFs.

Definition 7.1.1. A function G : {0, 1}r → {1,−1}n is a PRG with error ε

for (or ε-fools) PTFs of degree d, if

| E
x∈u{1,−1}n

[f(x)]− E
y∈u{0,1}r

[f(G(y))] | ≤ ε,

for all PTFs f of degree at most d.

We refer to the parameter r as the seed-length of the generator G and

say the generator is explicit if it is computable by a (deterministic) polynomial

time algorithm. It can be shown by the probabilistic method that there exist

PRGs that ε-fool degree d PTFs with seed length r = O(d log n + log(1/ε))
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(see Section 7.8). However, despite their long history, until recently very little

was known about explicitly constructing such PRGs, even for the special class

of halfspaces.

In this work, we present a PRG that ε-fools degree d PTFs with seed

length log n/εO(d). Previously, PRGs with seed length o(n) were not known

even for degree 2 PTFs and constant ε.

Theorem 7.1.1. For 0 < ε < 1, there exists an explicit PRG fooling PTFs of

degree d with error at most ε and seed length 2O(d) log n/ε8d+3.

Independent of our work, Diakonikolas et al. [28] showed that bounded

independence fools degree 2 PTFs and in particular give a PRG with seed-

length (log n) · Õ(1/ε9) for degree 2 PTFs (here Õ hides poly-logarithmic

factors). In another independent work, Ben-Eliezer et al. [14] showed that

bounded independence fools certain special classes of PTFs.

For the d = 1 case of halfspaces, Diakonikolas et al. [26] constructed

PRGs with seed length O(log n) for constant error rates. PRGs with seed

length O(log2 n) for halfspaces with polynomially bounded weights follow eas-

ily from known results. However, nothing nontrivial was known for general

halfspaces, for instance, when ε = 1/
√
n. In this work we construct PRGs

with exponentially better dependence on the error parameter ε.

Theorem 7.1.2. For all constants c, ε ≥ 1/nc, there exists an explicit PRG

fooling halfspaces with error at most ε and seed length O(log n+ log2(1/ε)).
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We also obtain results similar to the above for spherical caps. The

problem of constructing PRGs for spherical caps was brought to our atten-

tion by Amir Shpilka; Karnin et al. [55] were the first to obtain a PRG with

similar parameters using different methods. They achieve a seed-length of

(1 + o(1)) log n+O(log2(1/ε)).

Theorem 7.1.3. There exists a constant c > 0 such that for all ε > c log n/n1/4,

there exists an explicit PRG fooling spherical caps with error at most ε and

seed length O(log n+ log2(1/ε)).

We briefly summarize the previous constructions for halfspaces.

1. Halfspaces with polynomially bounded integer weights can be computed

by polynomial width read-once branching programs (ROBPs). Thus,

the PRGs for ROBPs such as those of Nisan [80] and Impagliazzo et

al. [46] fool halfspaces with polynomially bounded integer weights with

seed length O(log2 n). However, a simple counting argument ([69], [43])

shows that almost all halfspaces have exponentially large weights.

2. Diakonikolas et al. [26] showed that k-wise independent spaces fool half-

spaces for k = O(log2(1/ε)/ε2). By using the known efficient construc-

tions of k-wise independent spaces they obtain PRGs for halfspaces with

seed length O(log n log2(1/ε)/ε2).

3. Rabani and Shpilka [87] gave explicit constructions of polynomial size

hitting sets for halfspaces.
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The overarching theme behind all our constructions is the use of in-

variance principles to get pseudorandom generators. Intuitively, invariance

principles could be helpful in constructing pseudorandom generators as we

can hope to exploit the invariance with respect to product distributions by re-

placing a product distribution with a “smaller product distribution” that still

satisfies the conditions for applying the invariance principle. We believe that

the above technique could be helpful for other derandomization problems.

Another aspect of our constructions is what we call the “monotone

trick”. The PRGs for small-width read-once branching programs (ROBP)

from the works of Nisan [80], Impagliazzo et al. [46], and Nisan and Zuck-

erman [81], have been a fundamental tool in derandomization with several

applications [95], [90], [38]. An important ingredient in our PRG for halfs-

paces is our observation that any PRG for small-width ROBPs fools arbitrary

width “monotone” ROBPs. Roughly speaking, we say an ROBP is monotone

if there exists an ordering on the nodes in each layer of the program so that

the corresponding sets of accepting strings respect the ordering (see Defini-

tion 7.2.1). We believe that this notion of monotone ROBP is quite natural

and combined with the “monotone trick” could be useful elsewhere.

We now give a high level view of our constructions and their analyses.

7.1.1 Outline of Constructions

Our constructions build mainly on the hitting set construction for half-

spaces of Rabani and Shpilka. Although the constructions and analyses are
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similar in spirit for halfspaces and higher degree PTFs, for clarity, we deal

with the two classes separately, at the cost of some repetition. The analysis is

simpler for halfspaces and provides intuition for the more complicated analysis

for higher degree PTFs.

7.1.1.1 PRGs for Halfspaces

Our first step in constructing PRGs for halfspaces is to use our “mono-

tone trick” to show that PRGs for polynomial width read-once branching

programs (ROBPs) also fool halfspaces. Previously, PRGs for polynomial

width ROBPs were only known to fool halfspaces with polynomially bounded

weights. Although the natural simulation of halfspaces by ROBP may require

polynomially large width, we note that the resulting ROBP is what we call

monotone (see Definition 7.2.1). We show that PRGs for polynomial width

ROBP fool monotone ROBPs of arbitrary width.

Theorem 7.1.4. A PRG that δ-fools monotone ROBP of width log(4T/ε) and

length T fools monotone ROBP of arbitrary width and length T with error at

most ε+ δ.

See Theorem 7.2.1 for a more formal statement. As a corollary we get

the following.

Corollary 7.1.5. For all ε > 0, a PRG that δ-fools width log(4n/ε) and length

n ROBPs fools halfspaces on n variables with error at most ε+ δ.
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The above result already improves on the previous constructions for

small ε, giving a PRG with seed length O(log2 n) for ε = 1/poly(n). However,

the randomness used is O(log2 n) even for constant ε.

We next improve the dependence of the seed length on the error pa-

rameter ε to obtain our main results for fooling halfspaces. Following the

approach of Diakonikolas et al. [26] we first construct PRGs fooling regular

halfspaces. A halfspace with coefficients (w1, . . . , wn) is regular if no coefficient

is significantly larger than the others. Such halfspaces are easier to analyze

because for regular w, the distribution of 〈w, x〉 with x uniformly distributed

in {1,−1}n is close to a normal distribution by the Central Limit Theorem.

Using a quantitative form of the above statement, the Berry-Esséen theorem,

we show that a simplified version of the hitting set construction of Rabani and

Shpilka gives a PRG fooling regular halfspaces.

Having fooled regular halfspaces, we use the structural results on halfs-

paces of Servedio [91] and Diakonikolas et al. [26] to fool arbitrary halfspaces.

The structural results of Servedio and Diakonikolas et al. roughly show that

either a halfspace is regular or is close to a function depending only on a

small number of coordinates. Given this, we proceed by a case analysis as in

Diakonikolas et al.: if a halfspace is regular, we use the analysis for regular

halfspaces; else, we argue that bounded independence suffices.

The above analysis gives a PRG fooling halfspaces with seed length

O(log n log2(1/ε)/ε2), matching the PRG of Diakonikolas et al. [26]. However,

not only is our construction simpler to analyze (for the regular case), but
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we can also apply our “monotone trick” to derandomize the construction.

Derandomizing using the PRG for ROBPs of Impagliazzo et al. [46] gives

Theorem 7.1.2.

For spherical caps, we give a simpler more direct construction based

on our generator for regular halfspaces. We use an idea of Ailon and Chazelle

[1] and the invariance of spherical caps with respect to unitary rotations to

convert the case of arbitrary spherical caps to regular spherical caps. We defer

the details to Section 7.6.

7.1.1.2 PRGs for PTFs

We next extend our PRG for halfspaces to fool higher degree polyno-

mial threshold functions. The construction we use to fool PTFs is a natural

extension of our underandomized PRG for halfspaces. The analysis, though

similar in outline, is significantly more complicated and at a high level proceeds

as follows.

As was done for halfspaces we first study the case of regular PTFs. The

mainstay of our analysis for regular halfspaces is the Berry-Esséen theorem for

sums of independent random variables. By using the generalized Berry-Esséen

type theorem, or invariance principle, for low-degree multi-linear polynomials,

proved by Mossel et al. [76], we extend our analysis for regular halfspaces to

regular PTFs. We remark that unlike the case for halfspaces, we cannot use

the invariance principle of Mossel et al. directly, but instead adapt their proof

technique for our generator. In particular, we crucially use the fact that most
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of the arguments of Mossel et al. work even for distributions with bounded

independence.

We then use structural results for PTFs of Diakonikolas et al. [30] and

Harsha et al. [41] that generalize the results of Servedio [91] and Diakonikolas

et al. [26] for halfspaces. Roughly speaking, these results show the following:

with at least a constant probability, upon randomly restricting a small number

of variables, the resulting restricted PTF is either regular or has high bias.

However, we cannot yet use the above observation to do a case analysis as was

done for halfspaces; instead, we give a more delicate argument with recursive

application of the results on random restrictions.

We first present our result on fooling arbitrary width monotone ROBPs

with PRGs for small-width ROBPs.

7.2 PRGs for Monotone ROBPs

We refer the reader to Section 2.3 to recall the definitions of read once

branching programs, Definition 2.3.6 and the PRGs of Nisan [80] and Impagli-

azzo, Nisan and Wigderson [46], Theorem 2.3.1.

We also recall the following notations from Section 2.3. Let M be an

(S,D, T )-branching program and v a vertex in layer i of M .

1. For z = (zi, zi+1, . . . , zT ) ∈ ({0, 1}D)T+1−i call (v, z) an accepting pair if

starting from v and traversing the path with edges labeled z in M leads

to an accepting state.
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2. For z ∈ ({0, 1}D)T , let M(z) = 1 if (v0, z) is an accepting pair, and

M(z) = 0 otherwise.

3. AM(v) = {z : (v, z) is accepting in M} and PM(v) is the probability

that (v, z) is an accepting pair for z chosen uniformly at random.

4. For brevity, let U denote the uniform distribution over ({0, 1}D)T .

Here we show that the PRGs for small-width ROBPs in fact fool arbi-

trary width monotone branching programs as defined below.

Definition 7.2.1 (Monotone ROBP). An (S,D, T )-branching program M is

said to be monotone if for all 0 ≤ i < T , there exists an ordering {v1 ≺

v2 ≺ . . . ≺ vli} of the vertices in layer i such that for 1 ≤ j < k ≤ li,

AM(vj) ⊆ AM(vk).

Theorem 7.2.1. Let 0 < ε < 1 and G : {0, 1}R → ({0, 1}D)T be a PRG that δ-

fools monotone (log(2T/ε), D, T )-branching programs. Then G fools monotone

(S,D, T )-branching programs for arbitrary S with error at most ε+ δ.

In particular, for δ = 1/poly(T ) the above theorem gives a PRG fooling

monotone (S,D, T )-branching programs with error at most δ + ε and seed

length O(D + log(T/ε) log T ). Note that the seed length does not depend on

the space S. Given the above result, Corollary 7.1.5 follows easily.

Proof of Corollary 7.1.5. A halfspace with weight vector w ∈ Rn and thresh-

old θ ∈ R can be naturally computed by an (S, 1, n)-branching program Mw,θ,
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for S large enough, by letting the states in layer i correspond to the partial

sums
∑i

j=1 wjxj. It is easy to check that Mw,θ is monotone. The theorem now

follows from Theorem 7.2.1.

We now prove Theorem 7.2.1. The proof is based on the simple idea of

“sandwiching” monotone branching programs between small-width branching

programs. To this end, let M be a monotone (S,D, T )-branching program

and call a pair of (s,D, T )-branching programs (Mdown,Mup), ε-sandwiching

for M if the following hold.

1. For all z ∈ ({0, 1}D)T , Mdown(z) ≤M(z) ≤Mup(z).

2. Prz←U [Mup(z) = 1]− Prz←U [Mdown(z) = 1] ≤ ε.

We first show that to fool monotone branching programs it suffices to fool

small-width sandwiching programs between which the monotone branching

program is sandwiched. We then show that every monotone branching pro-

gram can be sandwiched between two small-width branching programs.

Lemma 7.2.2. If a PRG G δ-fools (s,D, T )-branching programs, and there

exist (s,D, T )-branching programs (Mdown,Mup) that are ε-sandwiching for M ,

then G (ε+ δ)-fools M .

Proof. Let D denote the output distribution of G. Then,

Pr
z←U

[Mdown(z) = 1] ≤ Pr
z←U

[M(z) = 1], Pr
z←D

[M(z) = 1] ≤ Pr
z←D

[Mup(z) = 1].
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Further, since D δ-fools Mup,

Pr
z←D

[Mup(z) = 1] ≤ Pr
z←U

[Mup(z) = 1] + δ.

Thus,

Pr
z←D

[M(z) = 1]− Pr
z←U

[M(z) = 1] ≤ Pr
z←U

[Mup(z) = 1]− Pr
z←U

[Mdown(z) = 1]+δ ≤ ε+δ.

By a similar argument with the roles of Mup,Mdown interchanged, we get

| Pr
z←D

[M(z) = 1]− Pr
z←U

[M(z) = 1]| ≤ ε+ δ.

Lemma 7.2.3. For any monotone (S,D, T )-branching program M , there exist

(log(2T/ε), D, T )-branching programs (Mdown,Mup) that are ε-sandwiching for

M .

Proof. We first set up some notation. For 0 ≤ i ≤ T , let the vertices in layer

i of M be V i = {vi1 ≺ vi2 ≺ . . . ≺ vili}. For J ⊆ V i, let min(J),max(J) denote

the minimum and maximum elements of J under ≺. Call J ⊆ V i an interval

if there exist indices p ≤ q such that J = {vip, vip+1, . . . , v
i
q}.

For each 1 ≤ i ≤ T , partition the vertices of layer i into at most

ti ≤ 2T/ε intervals J i1, J
i
2, . . . , J

i
ti

so that for any interval J ik and v, v′ ∈ J ik,

|PM(v)− PM(v′)| ≤ ε

2T
. (7.2.1)

Let s = log(2T/ε) and define an (s,D, T )-branching program Mup as follows.

The vertices in layer i of Mup are Bi = {max(J i1),max(J i2), . . . ,max(J iti)} and
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the edges are placed by rounding the edges ofM upwards as follows. For v ∈ Bi

suppose there is an edge labeled z between v and a vertex w ∈ J = J i+1
k . Then,

we place an edge labeled z between v and max(J). Mdown is defined similarly

by using min(J) instead of max(J) as above. We claim that Mup,Mdown are

ε-sandwiching for M . We analyze Mup below; the analysis for Mdown is similar.

Claim 7.2.4. For 0 ≤ i ≤ T and v ∈ Bi, AM(v) ⊆ AMup(v). In particular,

for any z, M(z) ≤Mup(z).

Proof. Follows from the monotonicity of M .

Claim 7.2.5. For 0 ≤ i ≤ T , and v ∈ Bi, PMup(v) − PM(v) ≤ (T − i) ε
2T

.

In particular, for z chosen uniformly at random, Pr[Mup(z) = 1]−Pr[M(z) =

1] ≤ ε/2.

Proof. The second part of the claim follows from the first. The proof is by

downward induction on i. For i = T , the statement is true trivially. Now,

suppose the claim is true for all j ≥ i + 1. Let v ∈ Bi and let z = (zi+1, z̄)

be uniformly chosen from ({0, 1}D)T−i with zi+1 ∈u {0, 1}D. Let Γ(v, zi+1) ∈

J(v, zi+1) = J i+1
k for one of the intervals of layer i+ 1. Then, the edge labeled
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zi+1 from v goes to max(J(v, zi+1)) in Mup. Now,

PM(v) =
∑

u∈{0,1}D
Pr[zi+1 = u]PM(Γ(v, u))

≥
∑

u∈{0,1}D
Pr[zi+1 = u]

(
PM(max(J(v, u)))− ε

2T

)
(Equation (7.2.1))

≥
∑

u∈{0,1}D
Pr[zi+1 = u]

(
PMup(max(J(v, u)))− (T − i− 1)ε

2T
− ε

2T

)
(Induction hypothesis)

=
∑

u∈{0,1}D
Pr[zi+1 = u]PMup(max(J(v, u)))− (T − i)ε

2T

= PMup(v)− (T − i)ε
2T

.

(Definition of Mup)

The claim now follows from the above equation and induction.

Lemma 7.2.3 now follows from Claims 7.2.4, 7.2.5 and similar arguments

for Mdown.

7.3 Main Generator Construction

We now describe our main construction G that serves as a blueprint

for our constructions in this chapter as well as the next. The generator G

is essentially a simplification of the hitting set construction for halfspaces by

Rabani and Shpilka [87]. We use the following as building blocks. We refer to
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Section 2.3 for the appropriate definitions.

• A family H = {h : [n]→ [t]} of hash functions that is α-almost pairwise

independent (see Definition 2.3.1).

• A generator Gk : {0, 1}r0 → {1,−1}m of a δ-almost k-wise independent

space over {1,−1}m (see Definition 2.3.2).

Although efficient constructions of hash families H and generators Gk

as above are known even for α = 0, δ = 0 and constant k, we work with small

but non-zero α, δ, as we will need the more general objects for our analyses.

The basic idea behind the generator is as follows. We first use the hash

functions to distribute the coordinates ([n]) into buckets. The purpose of this

step is to spread out the “influences” of the coordinates across buckets. Then,

for each bucket we use an independently chosen sample from a δ-almost k-

wise independent distribution to generate the bits for the coordinate positions

mapped to the bucket. The purpose of this step is, roughly, to “match the

first few moments” of functions restricted to the coordinates in each bucket.

The hope then is to subsequently use invariance principles to show closeness

in distribution.

Fix the error parameter ε > 0 and let t at most poly(log(1/ε))/ε2

to be chosen later. Let m = n/t (assuming without loss of generality that t

divides n) and let H be an α-pairwise independent hash family. To avoid some

technicalities that can be overcome easily, we assume that every hash function
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h ∈ H is evenly distributed, meaning ∀h, i ∈ [t], |{j : h(j) = i, j ∈ [n]}| = n/t.

Let Gk : {0, 1}r0 → {1,−1}m generate a δ-almost k-wise independent space

for δ ≥ poly(ε, 1/n) to be chosen later.

Define G ≡ GH,k,t : H× ({0, 1}r0)t → {0, 1}n by

G(h, z1, . . . , zt) = x, where x|h−1(i) = Gk(z
i) for i ∈ [t]. (7.3.1)

The generator GH,k,t will be used again in our construction of PRGs

for polytopes, Chapter 8 and Chapter 9 as well. In this chapter we focus on

fooling PTFs using GH,k,t.

We will show that for the parameters t, α, δ, k and H, Gk chosen ap-

propriately, the above generator fools halfspaces as well as degree d PTFs. In

particular, we fool progressively stronger classes, from halfspaces to degree d

PTFs by choosing H and Gk progressively stronger. The table below gives a

simplified summary of the results we get for different choices of H, Gk. We

define balanced hash functions in Definition 7.4.2.

Hash Family H Generator Gk Fooling class
Pairwise independent 4-wise independent Regular halfspaces,

Theorem 7.4.2
Pairwise independent,
Balanced

Θ(log t)-wise independent Halfspaces, Theo-
rem 7.4.8

Pairwise independent 4d-wise independent Regular degree d
PTFs, Theorem 7.5.1

Pairwise independent,
Balanced

Θ(t)-wise independent Degree d PTFs, Theo-
rem 7.5.9.
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7.4 PRGs for Halfspaces

In this section we show that for appropriately chosen parameters, G

fools halfspaces. We first show that G fools “regular” halfspaces to obtain

a PRG with seed length O(log n/ε2) for regular halfspaces. We then ex-

tend the analysis to arbitrary halfspaces to get a PRG with seed length

O(log n log2(1/ε)/ε2) and apply the monotone trick to prove Theorem 7.1.2.

In the following let Hw,θ : {1,−1}n → {1,−1} denote a halfspace

Hw,θ(x) = sign(〈w, x〉 − θ). Unless stated otherwise, we assume through-

out that a halfspace Hw,θ is normalized, meaning ‖w‖ = 1 (here ‖ · ‖ is the

l2-norm). In the following, we say two real-valued distributions P,Q are

ε-close if dcdf(P,Q) ≤ ε. We use the fact that Kolmogorov-Smirnov distance

is convex.

Lemma 7.4.1. For fixed Q, the distance function dcdf(P,Q) defined for prob-

ability distributions over R is a convex function.

For σ > 0, let N (0, σ) denote the normal distribution with mean 0

and variance σ2. We also assume that ε > 1/n.49 as otherwise, Theorem 7.1.2

follows from Corollary 7.1.5.

7.4.1 PRGs for Regular Halfspaces

As was done in Diakonikolas et al. we first deal with regular halfspaces.

Definition 7.4.1. A vector w ∈ Rn ε-regular if |wi| ≤ ε‖w‖ for all i. A

halfspace Hw,θ is ε-regular if w is ε-regular.
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Let t = 1/ε2. We claim that for H pairwise independent and Gk gen-

erating an almost 4-wise independent distribution, G fools regular halfspaces.

Note that the randomness used by G in this setting is O(log n/ε2).

Theorem 7.4.2. Let H be an α-almost pairwise independent family for α =

O(1) and let Gk generate a δ-almost 4-wise independent distribution for δ =

ε2/4n5. Then, G defined by Equation 7.3.1 fools ε-regular halfspaces with error

at most O(ε) and seed length O(log n/ε2). In particular, for x ∈ {1,−1}n

generated from G and ε-regular w with ‖w‖ = 1, the distribution of 〈w, x〉 is

O(ε)-close to N (0, 1).

To prove the theorem we will need the following corollary of the Berry-

Esséen theorem, Theorem 2.2.4.

Corollary 7.4.3. Let Y1, . . . , Yt be independent random variables with E[Yi] =

0,
∑

iE[Y 2
i ] = σ2,

∑
iE[|Yi|4] ≤ ρ4. Let F (.) denote the cdf of the random

variable Sn = (Y1+. . . Yn)/σ, and Φ(.) denote the cdf of the normal distribution

N (0, 1). Then,

‖F − Φ‖∞ = sup
z
|F (z)− Φ(z)| ≤

√
ρ4

σ2
.

Proof. For 1 ≤ i ≤ n, by Cauchy-Schwarz, E[|Yi|3] ≤
√
E[Y 2

i ] ·
√
E[Y 4

i ].

Therefore,

∑
i

E[|Yi|3] ≤
∑
i

√
E[Y 2

i ] ·
√
E[Y 4

i ] ≤

(∑
i

E[Y 2
i ]

)1/2(∑
i

E[Y 4
i ]

)1/2

.

The claim now follows from Theorem 2.2.4.
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Lemma 7.4.4. For ε-regular w with ‖w‖ = 1 and x ∈u {1,−1}n, the distri-

bution of 〈w, x〉 is ε-close to N (0, 1).

Proof. Let Yi = wixi. Then,
∑

i E[Y 2
i ] = 1 and

∑
i E[Y 4

i ] =
∑

iw
4
i ≤ ε2. The

lemma now follows from Corollary 7.4.3.

The following lemma says that for a pairwise-independent family of

hash functions H and w ∈ Rn, the weight of the coefficients is almost equidis-

tributed among the buckets.

Lemma 7.4.5. Let H be an α-almost pairwise independent family of hash

functions from [n] to [t]. For ε-regular w with ‖w‖ = 1,
∑t

i=1 E[‖wh−1(i)‖4] ≤

(1 + α)ε2 + 1+α
t

.

Proof. Fix i ∈ [t]. For 1 ≤ j ≤ n, let Xj be the indicator variable that is 1 if

h(j) = i and 0 otherwise. Then, E[‖wh−1(i)‖2] = 1/t and

‖wh−1(i)‖4 =

(
n∑
j=1

(Xjwj)
2

)2

=
n∑
j=1

X4
jw

4
j +

∑
j 6=k

X2
jX

2
kw

2
jw

2
k.

Now, E[X4
j ] ≤ (1 + α)/t and for j 6= k, E[X2

jX
2
k ] ≤ (1 + α)/t2. Thus,

taking expectations of the above equation,

E[‖wh−1(i)‖4] ≤ 1 + α

t

∑
j

w4
j +

1 + α

t2

∑
j 6=k

w2
jw

2
k

≤ 1 + α

t
(max

i
|wi|2) +

1 + α

t2

≤ (1 + α) ε2

t
+

1 + α

t2
.

The lemma follows by summing over all i ∈ [t].
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Proof of Theorem 7.4.2. Fix a hash function h ∈ H. Let wi = w|h−1(i) for

i ∈ [t]. Then,

〈w,G(h, z)〉 =
t∑
i=1

〈wi, Gk(z
i)〉.

Let random variables Y h
i ≡ Yi ≡ 〈wi, Gk(z

i)〉 and Y h = Y1 + . . . + Yt.

Then, E[Yi] = 0 and since Gk(z
i) is δ-almost 4-wise independent, |E[Y 2

i ] −

‖wi‖2| ≤ δn2. Further, for 1 ≤ i ≤ t,

E
x∈u{1,−1}m

[ 〈wi, x〉4 ] =
m∑
j=1

(wij)
4 + 3

∑
p 6=q∈[m]

(wip)
2(wiq)

2 ≤ 3‖wi‖4.

Since, the above equation depends only on the first four moments of

random variable x and Gk(Z
i) is δ-almost 4-wise independent, it follows that

E[Y 4
i ] ≤ 3‖wi‖4 + δn4. Thus,

∑
i E[Y 2

i ] ≥ 1 − δn2t ≥ 1/2 and
∑t

i=1 E[Y 4
i ] ≤

3
∑t

i=1 ‖wi‖4 + δn5. Let ρh =
∑

i ‖wi‖4. Then, by Corollary 7.4.3, since

δ ≤ ε2/4n5, for a fixed h the distribution of Y h is (
√

3ρh + ε)-close to N (0, 1).

Observe that for random h, z the distribution of Y = 〈w,G(h, z)〉 is

a convex-combination of the distributions of Y h for h ∈ H. Thus, from

Lemma 7.4.1, the distribution of Y is O(E[
√
ρh]+ε)-close to N (0, 1). Now, by

Cauchy-Schwarz E[
√
ρh] ≤

√
E[ρh]. Further, since w is ε-regular and t = 1/ε2,

it follows from Lemma 7.4.5 that E[ρh] =
∑

i E[‖wi‖4] =
∑

i E[‖wh−1(i)‖4] ≤

2(1 + α)ε2. Thus, the distribution of Y is O(ε)-close to N (0, 1). The theorem

now follows from combining this with Lemma 7.4.4.
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7.4.2 PRGs for Arbitrary Halfspaces

We now study arbitrary halfspaces and show that the generator G fools

arbitrary halfspaces if the family of hash functions H and generator G0 satisfy

certain stronger properties. We use the following structural result on halfs-

paces that follows from the results of Servedio [91] and Diakonikolas et al. [26].

Theorem 7.4.6. Let Hw,θ be a halfspace with w1 ≥ . . . ≥ wn,
∑
w2
i = 1.

There exists K = K(ε) = O(log2(1/ε)/ε2) such that one of the following two

conditions holds.

1. wK = (wK(ε)+1, . . . , wn) is ε-regular.

2. Let w′ = (w1, . . . , wK(ε)) and let Hw′,θ(x) = sgn(
∑K

i=1wixi − θ). Then,

| Pr
x←D

[Hw,θ(x) 6= Hw′,θ(x)]| ≤ 2ε, (7.4.1)

where D is any distribution satisfying the following conditions for x← D.

(a) The distribution of (x1, . . . , xK) is ε-close to uniform.

(b) With probability at least 1 − ε over the choice of (x1, . . . , xK), the

distribution of (xK+1, . . . , xn) conditioned on (x1, . . . , xK) is (1/n2)-

almost pairwise independent.

In particular, for distributions D as above

| E
x←D

[Hw,θ(x)]− E
x←D

[Hw′,θ(x)] | ≤ 2ε. (7.4.2)
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Servedio and Diakonikolas et al. show the above result when D is the

uniform distribution. However, their arguments extend straightforwardly to

any distribution D as above.

Given the above theorem, we use a case analysis to analyze G. If the

first condition of the theorem above holds, we use the results of the previous

section, Theorem 7.4.2, showing that G fools regular halfspaces. If the second

condition holds, we argue that for x distributed as the output of the generator,

the distribution of (x1, . . . , xK(ε)) is O(ε)-close to uniform.

Let t = K(ε). We need the family of hash functions H : [n] → [t]

in the construction of G to be balanced along with being α-almost pairwise

independent. Intuitively, a hash family is balanced if with high probability the

maximum size of a bucket is small.

Definition 7.4.2 (Balanced Hash Functions). A family of hash functionsH =

{h : [n]→ [t] is (K,L, β)-balanced if for any S ⊆ [n], |S| ≤ K,

Pr
h∈uH

[ max
j∈[t]

(|h−1(j) ∩ S|) ≥ L ] ≤ β. (7.4.3)

We use the following construction of balanced hash families due to

Lovett et al. [67].

Theorem 7.4.7 (See Lemma 2.12 in [67]). Let t = log(1/ε)/ε2 and K = K(ε)

as in Theorem 7.4.6. Then, there exists a (K,O(log(1/ε)), 1/t2)-balanced hash

family H : [n]→ [t] that is also pairwise independent with |H| = exp(O(log n+

log2(1/ε))). Moreover, H is efficiently samplable.
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Let m = n/t and fix L to be one of O(log t), O(log n). We also need

the generator G0 : {0, 1}r0 → {1,−1}m to be exactly 4-wise independent and

δ-almost (L + 4)-wise independent for δ = ε3/tn5. From Definition 2.3.2, we

have generators G0 as above with r0 = O(log n+ log(1/δ) +L) = O(log(n/ε)).

We now show that with H, G0 as above, G fools halfspaces with error

O(ε). The randomness used by the generator is log |H|+r0t = O(log n log2(1/ε)/ε2)

and matches the randomness used in the results of Diakonikolas et al. [26].

Theorem 7.4.8. With H, G0 chosen as above, G defined by Equation (7.3.1)

fools halfspaces with error at most O(ε) and seed length O(log n log2(1/ε)/ε2).

Proof. Let Hw,θ be a halfspace and without loss of generality suppose that

w1 ≥ . . . ≥ wn and
∑

iw
2
i = 1. Let S = {1, . . . , K(ε)}. Call a hash function

S-good if for all j ∈ [t], |Sj| = |S ∩ h−1(j)| ≤ L. From Definition 7.4.2, a

random hash function h ∈u H is S-good with probability at least 1 − 1/t2.

Recall that G(h, z1, . . . , zt) = x, where x|h−1(j) = G0(zj) for j ∈ [t]. Let D

denote the distribution of the output of G and let x← D.

Claim 7.4.9. Given an S-good hash function h, the distribution of x|S is ε-

close to uniform. Moreover, with probability at least 1 − ε over the random

choices of x|S, the distribution of x in the coordinates not in S conditioned on

x|S is (ε2/4n5)-almost 4-wise independent.

Proof. Fix an S-good hash function h. Since z1, . . . , zt are chosen indepen-

dently, given the hash function h, x|S1 , . . . , x|St are independent of each other.

113



Moreover, since the output of G0 is δ-almost (L + 4)-wise independent and

|Sj| ≤ L for all j ∈ [t], x|Sj is δ-close to uniform for all j ∈ [t]. It follows

that given an S-good hash function h, x|S is (tδ)-close to uniform. Further,

by a similar argument, for any set I ⊆ [n] \ S with |I| = 4, the distribution of

x|(S∪I) is (tδ)-close to uniform. It follows that, with probability at least 1− ε,

the distribution of x|I conditioned on x|S is (tδ/ε)-close to uniform. The claim

now follows from the above observations and noting that tδ = ε3/4n5.

We can now prove the theorem by a case analysis. Suppose that the

weight vector w satisfies condition (2) of Theorem 7.4.6. Observe that from the

above claim, D satisfies the conditions of Theorem 7.4.6 (2). Let Hw|S ,θ(x) =

sgn(〈w|S, x|S〉 − θ). Then, from Equation (7.4.2),

| E
x←Un

[Hw,θ(x)]− E
x←Un

[Hw|S ,θ(x)] | ≤ 2ε,

| E
x←D

[Hw,θ(x)]− E
x←D

[Hw|S ,θ(x)] | ≤ 2ε.

Moreover, since the distribution of x|S is ε-close to uniform under D and

Hw|S ,θ(x) only depends on x|S,

| E
x←Un

[Hw|S ,θ(x)]− E
x←D

[Hw|S ,θ(x)]| ≤ ε.

Combining the above three equations, we get that

| E
x←Un

[Hw,θ(x)]− E
x←D

[Hw,θ(x)]| ≤ 5ε,

and thus G fools halfspace Hw,θ with error at most 5ε.
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Now suppose that condition (1) of Theorem 7.4.6 holds and wS̄ =

(wK(ε)+1, . . . , wn) is ε-regular. Fix an assignment to the variables x|S = u|S and

let xS̄ = (xk+1, . . . , xn) and Hu(xk+1, . . . , xn) = sgn(〈wS̄, xS̄〉− θu), where θu =

θ − 〈w|S, x|S〉. We will argue that with probability at least 1− ε, conditioned

on the values of x|S, the output of G fools the ε-regular halfspace Hu with

error O(ε). Given the last statement it follows that D fools the halfspace Hw,θ

with error O(ε) since the distribution of x|S under D is ε-close to uniform.

Since H is a family of pairwise independent hash functions and a ran-

dom hash function h ∈u H is S-good with probability at least 1 − 1/t2, even

when conditioned on being S-good, a random hash function h ∈u H is α-

pairwise independent for α = 1. Further, from Claim 7.4.9, conditioned on

the hash function h being S-good, with probability at least 1− ε, even condi-

tioned on x|S, the distribution of x|[n]\S is (ε2/4n5)-almost 4-wise independent.

Thus, we can apply Theorem 7.4.21 showing that with probability at least

1 − ε, conditioned on the values of x|S, the output of G fools Hu with error

O(ε).

7.4.3 Derandomizing G

We now derandomize the generator from the previous section and prove

Theorem 7.1.2. The derandomization is motivated by the fact that for a fixed

hash function h and w ∈ Rn, θ ∈ R, sgn( 〈w,G(h, z1, . . . , zt)〉 − θ ) can be

computed by a monotone ROBP with t layers. Given this observation, by

1Though Theorem 7.4.2 was stated for t = 1/ε2, the same argument works for all t ≥ 1/ε2.
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Theorem 7.2.1, we can use PRGs for small-width ROBP to generate z1, . . . , zt

instead of generating them independently as before.

Let r0, t,m,H, G0 be set as in the context of Theorem 7.4.8. Let s0 =

log(2t/ε) = O(log(1/ε)) and let GBP : {0, 1}r → ({0, 1}s)t be a PRG fooling

(s0, r0, t)-branching programs with error δ. Define GD : H×{0, 1}r → {1,−1}n

by

GD(h, y) = G(h,GBP (y)). (7.4.4)

The randomness used by the above generator is log |H|+ r. We claim that GD

fools halfspaces with error at most O(ε+ δ).

Theorem 7.4.10. GD fools halfspaces with error O(ε+ δ).

Proof. Fix a halfspaceHw,θ and without loss of generality (see [63] for instance)

suppose that w1, . . . , wn, θ are integers. Let N =
∑

j |wj| + |θ|. Observe that

for any x ∈ {1,−1}n, 〈w, x〉 − θ ∈ {−N,−N + 1, . . . , 0, . . . , N}. Fix a hash

function h ∈ H. We define a (log(2N + 1), r0, t)-branching program Mh,w that

for z = (z1, . . . , zt) ∈ ({0, 1}r0)t computes 〈w,G(h, z)〉.

For i ∈ [t], let wi = w|h−1(i). Then, for z = (z1, . . . , zt) ∈ ({0, 1}r0)t, by

definition of G in Equation 7.3.1,

〈w,G(h, z1, . . . , zt)〉 =
t∑
i=1

〈wi, G0(zi)〉.

Define a space-bounded machine Mh,w as follows. For each 0 ≤ i ≤ t, put

N nodes in layer i with labels 1, . . . , N . The vertices in layer i correspond to

the partial sums Zi =
∑i

l=1〈wl, G0(zl)〉. Note that all partial sums Zi lie in
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{−N,−N + 1, . . . , N}. Now, given the partial sum Zi there are 2r0 possible

values for Zi+1 ranging in {Zi+〈wi+1, G0(z)〉 : z ∈ {0, 1}r0}. We add 2r0 edges

correspondingly. Finally, label all vertices in the final layer corresponding to

values less than θ as rejecting and label all other vertices as accepting states.

It follows from the definition of Mh,w that Mh,w is monotone and for

z = (z1, . . . , zt) ∈ ({0, 1}r0)t, Mh,w(z) is an accepting state if and only if

sgn(
∑

i〈wi, G0(zi)〉 − θ) = Hw,θ(G(h, z)) = 1. Thus, from Theorem 7.2.1, for

a fixed h ∈ H,

| Pr
z∈u({0,1}r0 )t

[Hw,θ(G(h, z)) = 1]− Pr
y∈u{0,1}r

[Hw,θ(G(h,GBP (y))) = 1]| ≤ δ + ε.

The theorem now follows from the above equation and Theorem 7.4.8.

By choosing the hash family H from Theorem 7.4.7 and using the PRG

of Impagliazzo et al. we get our main result for fooling halfspaces.

Proof of Theorem 7.1.2. Choose GBP in the above theorem to be the PRG of

Impagliazzo et al. [46]. To ε-fool (S,D, T )-ROBPs, the generator of Impagli-

azzo et al., Theorem 2.3.1, has a seed-length of O(D + (S + log(1/ε)) log T ).

Thus, the seed-length of GBP is r = O(r0 + (s0 + log(1/ε)) log t) = O(log n +

log2(1/ε)). The theorem follows by choosing the hash family H as in Theo-

rem 7.4.7.
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7.5 PRGs for Polynomial Threshold Functions

We now extend our results from the previous sections to construct

PRGs for degree d PTFs. We set the parameters of G as in Theorem 7.4.8, with

the main difference being that we take Gk to generate a k-wise independent

space for k = O(log2(1/ε)/εO(d) + 4d) instead of O(log2(1/ε)/ε2) as was done

for fooling halfspaces. The analysis of the construction is, however, more

complicated and proceeds as follows.

1. We first use the invariance principle of Mossel et al. [76] to deal with

regular PTFs.

2. We then use the structural results on random restrictions of PTFs of

Diakonikolas et al. [30] and Harsha et al. [41], Theorem 5.3.4, to reduce

the case of fooling arbitrary PTFs to that of fooling regular PTFs and

functions depending only on a few variables.

We carry out the first step above by an extension of the hybrid argument

of Mossel et al. where we replace blocks of variables instead of single variables

as done by Mossel et al. For this part of the analysis, we also need the anti-

concentration results of Carbery and Wright [21] for low-degree polynomials

over Gaussian distributions.

The second step relies on properties of random restrictions of PTFs

similar in spirit to those in Theorem 7.4.6 for halfspaces. Roughly speaking,

we use the fact any PTF is a small-depth decision tree with regular PTFs

118



(or constant functions) at the leaves to show that a generator fooling regular

PTFs and having bounded independence also fools arbitrary PTFs.

7.5.1 PRGs for Regular PTFs

Here we extend our result for fooling regular halfspaces, Theorem 7.4.2,

to regular PTFs. We recall the definition of regular PTFs from Definition 2.2.2

to set up some notation.

Definition 7.5.1. Let P (u1, . . . , un) =
∑

I αI
∏

i∈I ui be a multi-linear poly-

nomial of degree d. Let ‖P‖2
2 =

∑
I α

2
I and the influence of i’th coordinate

τi(P ) =
∑

I3i α
2
I . We say P is ε-regular if∑

i

τi(P )2 ≤ ε2‖P‖2
2.

We say a polynomial threshold function f(x) = sgn(P (x) − θ) is ε-regular if

P is ε-regular.

Unless stated otherwise, we will assume throughout that P is nor-

malized with ‖P‖2
2 = 1. Fix d > 0. Let t = 1/ε2,m = n/t and let

H be an α-pairwise independent family as in Theorem 7.4.2. We assume

Gk : {0, 1}r0 → {1,−1}m generates a 4d-wise independent space, generalizing

the assumption of 4-wise independence used for fooling regular halfspaces.

Theorem 7.5.1. Let H be an α-pairwise independent family for α = O(1)

and let Gk generate a 4d-wise independent distribution. Then, G defined by

Equation (7.3.1) fools ε-regular PTFs of degree at most d with error at most

O(dε2/(4d+1)).

119



We first prove some useful lemmas. The first lemma is simple.

Lemma 7.5.2. For a multi-linear polynomial P of degree d with ‖P‖ = 1,∑
j τj(P ) ≤ d.

The following lemma generalizes Lemma 7.4.5 and says that for pairwise

independent hash functions and regular polynomials, the total influence is

almost equidistributed among the buckets.

Lemma 7.5.3. Let H = {h : [n]→ [t]} be a α-pairwise independent family of

hash functions. Let P be a multi-linear polynomial of degree d with coefficients

(αJ)J⊆[n] and ‖P‖ ≤ 1. For h ∈ H let

τ(h, i) =
∑

J∩h−1(i)6=∅

α2
J .

Then, for h ∈u H

E
h

[
t∑
i=1

τ(h, i)2

]
≤ (1 + α)

n∑
j=1

τj(P )2 +
(1 + α)d2

t
. (7.5.1)

Proof. Fix i ∈ [t] and for 1 ≤ j ≤ n, let Xj be the indicator variable that is 1

if h(j) = i and 0 otherwise. For brevity, let τj = τj(P ) for j ∈ [n]. Now,

τ(h, i) =
∑

J∩h−1(i)6=∅

α2
J =

∑
J

α2
J (∨j∈JXj)

≤
∑
J

α2
J

(∑
j∈J

Xj

)
=
∑
j

Xj

∑
J :J3j

α2
J

=
∑
j

Xjτj.
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Thus,

τ(h, i)2 ≤

(
n∑
j=1

Xjτj

)2

=
∑
j

X2
j τ

2
j +

∑
j 6=k

XjXkτjτk.

Note that E[Xj] ≤ (1 + α)/t and for j 6= k, E[XjXk] ≤ (1 + α)/t2.

Thus,

E[ τ(h, i)2 ] ≤ 1 + α

t

∑
j

τ 2
j +

∑
j 6=k

τjτk
1 + α

t2

≤ 1 + α

t

∑
j

τ 2
j +

1 + α

t2
(
∑
j

τj)
2.

The lemma follows by using Lemma 7.5.2 and summing over all i ∈

[t].

We use the following structural result of Mossel et al. [76] that reduces

the problem of fooling threshold functions to that of fooling certain nice func-

tions which are easier to analyze.

Definition 7.5.2. A function ψ : R → R is B-nice, if ψ is smooth and

|ψ′′′′(t)| ≤ B for all t ∈ R.

Lemma 7.5.4 (Mossel et al.). Let X, Y be two real-valued random variables

such that the following hold.

1. For any interval I ⊆ R of length at most α, Pr[X ∈ I ] ≤ Cα1/d, where

C is a constant independent of α.

2. For all 1-nice functions ψ, |E[ψ(X)]− E[ψ(Y )]| ≤ ε2.
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Then, for all t > 0, | Pr[X > t]− Pr[Y > t] | ≤ 2C ε2/(4d+1).

The following theorem is a restatement of the main result of Mossel

et al. who obtain the bound O(d 9d maxi τi(P ))) instead of the one below.

However, their arguments extend straightforwardly to the following.

Theorem 7.5.5 (Mossel et al.). Let P be a multi-linear polynomial of degree

at most d with ‖P‖ = 1, X ← N (0, 1)n and Y ∈u {1,−1}n. Then, for any

1-nice function ψ,

| E[ψ(P (X))]− E[ψ(P (Y ))] | ≤ 9d

12

∑
i

τi(P )2.

We first prove Theorem 7.5.1, assuming the following lemma which says

that the generator G fools nice functions of regular polynomials.

Lemma 7.5.6. Let P be an ε-regular multi-linear polynomial of degree at most

d with ‖P‖ = 1. Let Y ∈u {1,−1}n and Z be distributed as the output of G.

Then, for any 1-nice function ψ,

|E[ψ(P (Y ))]− E[ψ(P (Z))] | ≤ 1 + α

6
d2 9d ε2

Proof of Theorem 7.5.1. Let P be an ε-regular polynomial of degree at most

d and let X ← N (0, 1)n. Let X, Y, Z be real-valued random variables defined

by X = P (X), Y = P (Y ) and Z = P (Z). Then, by Theorem 7.5.5 and

Lemma 7.5.6, for any 1-nice function ψ,

|E[ψ(X)]− E[ψ(Y )]| ≤ 9d

12
ε2, |E[ψ(Y )]− E[ψ(Z)]| ≤ (1 + α) d2 9d ε2

6
.
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Hence,

|E[ψ(X)]− E[ψ(Z)]| = O(d2 9d ε2).

Further, by Theorem 2.2.6, for any interval I ⊆ R of length at most α, Pr[X ∈

I ] = O( dα1/d ). Therefore, we can apply, Lemma 7.5.4 to X, Y and X,Z to

get

|Pr[X > t]−Pr[Y > t]| = O(d ε2/(4d+1)), |Pr[X > t]−Pr[Z > t]| = O(d ε2/(4d+1)).

Thus,

|Pr[Y > t]− Pr[Z > t]| = O(d ε2/(4d+1)).

Proof of Lemma 7.5.6. Fix a hash function h ∈ H. Let Z1, . . . , Zt be t inde-

pendent samples generated from the 4d-wise independent space. Let Y1, . . . , Yt

be t independent samples chosen uniformly from {1,−1}m. We will prove

the claim via a hybrid argument where we replace the blocks Y1, . . . , Yt with

Z1, . . . , Zt progressively.

For 0 ≤ i ≤ t, let X i be the distribution with X i
|h−1(j) = Zj for 1 ≤ j ≤ i

and X i
|h−1(j) = Yj for i < j ≤ t. Then, for a fixed hash function h, X0 is

uniformly distributed over {1,−1}n and X t is distributed as the output of the

generator. For i ∈ [t], let τ(h, i) be the influence of the i’th bucket under h,

τ(h, i) =
∑

J∩h−1(i)6=∅

α2
J .
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Claim 7.5.7. For 1 ≤ i ≤ t,

|E[ψ(P (X i))]− E[ψ(P (X i−1))]| ≤ 9d

12
τ(h, i)2.

We will use the following form of the classical Taylor series.

Fact 7.5.8. For any 1-nice function ψ : R→ R, α, β ∈ R

ψ(α + β) = ψ(α) + ψ′(α)β +
ψ′′(α)

2
β2 +

ψ′′′(α)

6
β3 + err(α, β),

where |err(α, β)| ≤ β4/24.

Proof. Let I = h−1(i) be the variables that have been changed from X i−1 to

X i. Without loss of generality suppose that I = {1, . . . ,m}. Let

P (u1, . . . , un) = R(um+1, . . . , un) +
∑

J :J∩[m]6=∅

αJ

(∏
j∈J

uj

)
,

where R( ) is a multi-linear polynomial of degree at most d. Let S(u1, . . . , um,

um+1, . . . , un) denote the degree d multi-linear polynomial given by the second

term in the above expression.

Observe that X i−1, X i agree on coordinates not in [m]. Let X i =

(Z1, . . . , Zm, Xm+1, . . . , Xn) = (Z,X) andX i−1 = (Y1, . . . , Ym, Xm+1, . . . , Xn) =

(Y,X). Then,

P (X i) = R(X) + S(Z,X), P (X i−1) = R(X) + S(Y,X).
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Now, by using the Taylor series expansion, Fact 7.5.8, for ψ at R(X),

E[ψ(P (X i))]− E[ψ(P (X i−1))] = E[ψ(R + S(Z,X))]− E[ψ(R + S(Y,X))]

= E[ψ(R)+ψ
′
(R)S(Z,X)+

ψ
′′
(R)

2
S(Z,X)2+

ψ
′′′

(R)

6
S(Z,X)3±{≤ 1

24
S(Z,X)4} ]−

E[ψ(R)+ψ
′
(R)S(Y,X)+

ψ
′′
(R)

2
S(Y,X)2+

ψ
′′′

(R)

6
S(Y,X)3±{≤ 1

24
S(Y,X)4} ]

Observe that X, Y, Z are independent of one another and are 4d-wise

independent individually. Since S( ) has degree at most d, it follows that for

a fixed assignment of the variables Xm+1, . . . , Xn in X,

E[S(Z,X)] = E[S(Y,X)], E[S(Z,X)2] = E[S(Y,X)2],

E[S(Z,X)3] = E[S(Y,X)3], E[S(Z,X)4] = E[S(Y,X)4].

Combining the above equations we get

|E[ψ(P (X i))]− E[ψ(P (X i−1))]| ≤ 1

12
E[S(Y,X)4 ]. (7.5.2)

Now, using the fact that S( ) is a multi-linear polynomial of degree at

most d and since (Y,X) is 4d-wise independent, E[S(Y,X)4 ] = E[S(W )4 ],

where W is uniformly distributed over {1,−1}n. Also note that

E[S(W )2] = E

 ∑
J :J∩[m]6=∅

αJ

(∏
j∈J

Wj

)2 
=

∑
J :J∩I 6=∅

α2
J

= τ(h, i).
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Therefore, using the (2, 4)-hypercontractivity inequality, Lemma 2.2.2,

E[S(W )4] ≤ 9d E[S(W )2]2 and Equation (7.5.2),

|E[ψ(P (X i))]− E[ψ(P (X i−1))]| ≤ 1

12
E[S(Y,X)4 ] =

1

12
E[S(W )4 ]

≤ 9d

12
E[S(W )2]2 =

9d

12
τ(h, i)2.

Proof of Lemma 7.5.6 Continued. From Claim 7.5.7, for a fixed hash function

h we have

|E[ψ(P (Y ))]− E[ψ(P (Z))]| ≤
t∑
i=1

|E[ψ(P (X i))]− E[ψ(P (X i−1))]| ≤

9d

12

t∑
i=1

τ(h, i)2.

Therefore, for h ∈u H, using Lemma 7.5.3 and t = 1/ε2,

|E[ψ(P (Y ))]− E[ψ(P (Z))]| ≤ 9d

12
E
h

[∑
i

τ(h, i)2

]
=

9d

12
(1 + α)(1 + d2)ε2 ≤

(1 + α) d2 9d ε2

6
.

7.5.2 PRGs for Arbitrary PTFs

We now study the case of arbitrary degree d PTFs. As was done for

halfspaces, we will show that the generator G of Equation (7.3.1) fools arbi-
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trary PTFs if the family of hash functions H and generator G0 satisfy stronger

properties. For the case of PTFs we shall use Theorem 5.3.4 from Chapter 5.

Let t = cdc
′
d log2(1/ε)/ε2, m = n/t, where cd, c

′
d are the constants from

Theorem 5.3.4. We use a family of hash functions H : [n] → [t] that are α-

pairwise independent for α = O(1). We choose the generator G0 : {0, 1}r0 →

{1,−1}m to generate a (t + 4d)-wise independent space. Generators G0 with

r0 = O(t log n) are known. We claim that with the above setting of parameter

the generator G fools all degree d PTFs.

Theorem 7.5.9. With H, G0 chosen as above, G defined by Equation (7.3.1)

fools degree d PTFs with error at most O(ε2/(4d+1)) and seed length Od(log n

log4(1/ε)/ε4).

The bound on the seed length of the generator follows directly from

the parameter settings. By carefully tracing the constants involved in our

calculations and those in the results of Harsha et al. we need, the exact seed

length can be shown to be ad log n log4(1/ε)/ε4 for a universal constant a.

Fix a polynomial P of degree d and a PTF f(x) = sign(P (x)− θ) and

let T denote the block-decision tree computing f as given by Theorem 5.3.4.

Let DPTF denote the output distribution of the generator G with parameters

set as above. The intuition behind the proof of the theorem is as follows.

1. As DPTF has sufficient bounded independence, the distribution on the

leaf nodes of T obtained by taking a walk on T according to inputs chosen
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from DPTF is the same as the case when inputs are chosen uniformly. In

particular, a random walk on T according to DPTF leads to a (ε, d)-good

leaf node with high probability.

2. As G fools regular PTFs by Theorem 7.5.1, DPTF will fool the function

fρ computed at a (ε, d)-good leaf node. We also need to address the

subtle issue that we really need DPTF to fool a regular PTF fρ even

when conditioned on reaching a particular leaf node ρ.

We first set up some notation. For a leaf node ρ ∈ T , let Uρ = [n] \ Vρ

be the set of variables seen on the path to ρ and let aρ be the corresponding

assignment of variables in Uρ that lead to ρ. Further, given an assignment x,

let Leaf(x) denote the leaf node reached by taking a walk according to x on

T .

Lemma 7.5.10. For any leaf node ρ of T ,

Pr
x←DPTF

[Leaf(x) = ρ] = Pr
x∈u{1,−1}n

[Leaf(x) = ρ].

Proof. Observe that DPTF is a t-wise independent distribution and that for

any ρ, |Uρ| ≤ cdc
′
d log2(1/ε)/ε2 = t. Thus,

Pr
x←DPTF

[Leaf(x) = ρ] = Pr
x←DPTF

[x|Uρ = aρ] =
1

2|Uρ|

= Pr
x∈u{1,−1}n

[x|Uρ = aρ] = Pr
x∈u{1,−1}n

[Leaf(x) = ρ].
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Lemma 7.5.11. Fix an (ε, d)-good leaf node ρ of T . Then,

| Pr
x←DPTF

[fρ(x|Vρ) = 1 |x|Uρ = aρ]− Pr
y←{1,−1}Vρ

[fρ(y) = 1]| = O(ε2/(4d+1)).

Proof. We consider two cases depending on which of the two conditions of

Definition 5.3.2 fρ satisfies.

Case (1) - fρ has high bias. Note that DPTF is a (t + 4d)-wise in-

dependent distribution. Since |Uρ| ≤ t, it follows that for x ← DPTF , even

conditioned on x|Uρ = aρ, the distribution is 2d-wise independent. The lemma

then follows from the fact that for some b ∈ {1,−1}, fρ evaluates to b with

high probability.

Case (2) - fρ is an ε-regular degree d PTF. We deal with this case

by using Theorem 7.5.1. Let x = G(h, z1, . . . , zt) for h ∈u H, z1, . . . , zt ∈u

{0, 1}r0 , so x ← DPTF as in the definition of G. Let hρ : Vρ → [t] be the

restriction of a hash function h to indices in Vρ. For brevity, let x(ρ) = x|Vρ

and let Eρ be the event x|Uρ = aρ. We show that the distribution of x(ρ),

conditioned on Eρ, satisfies the conditions of Theorem 7.5.1.

Observe that conditioning on Eρ does not change the distribution of

the hash function h ∈u H because |Uρ| ≤ t and DPTF is t-wise independent.

Thus, even when conditioned on Eρ, the hash functions hρ are almost pair-

wise independent. For a hash function h, i ∈ [t], let Bρ(h, i) = h−1(i) \ Vρ =

h−1
ρ (i). Now, since G0 generates a (t + 4d)-wise independent distribution,

even conditioned on Eρ, for a fixed hash function h, the random variables

129



x(ρ)|Bρ(h,1), x(ρ)|Bρ(h,2), . . . , x(ρ)|Bρ(h,t) are independent of one another. More-

over, each x(ρ)|Bρ(h,i) is 4d-wise independent for i ∈ [t].

Thus, even conditioned on Eρ, the distribution of x(ρ) satisfies the

conditions of Theorem 7.5.1 and hence fools the regular degree d PTF fρ with

error at most O(ε2/(4d+1)). The lemma now follows.

Proof of Theorem 7.5.9. Observe that

Pr
x←{1,−1}n

[f(x) = 1] =
∑

ρ∈Leaves(T )

Pr
x∈u{1,−1}n

[x|Uρ = aρ] · Pr
y←{1,−1}Vρ

[fρ(y) = 1].

Similarly,

Pr
x←DPTF

[f(x) = 1] =
∑

ρ∈Leaves(T )

Pr
x←DPTF

[x|Uρ = aρ]· Pr
x←DPTF

[fρ(x|Vρ) = 1 |x|Uρ = aρ].

From the above equations and Lemma 7.5.10 it follows that

| Pr
x←{1,−1}n

[f(x) = 1]− Pr
x←DPTF

[f(x) = 1]| ≤∑
ρ∈Leaves(T )

Pr
x←DPTF

[x|Uρ = aρ]·∣∣∣∣ Pr
x←DPTF

[fρ(x|Vρ) = 1 |x|Uρ = aρ]− Pr
y←{1,−1}Vρ

[fρ(y) = 1]

∣∣∣∣ .
Now, by Lemma 7.5.11 for any (ε, d)-good leaf ρ the corresponding term on

the right hand side of the above equation is O(ε2/(4d+1)). Further, from The-

orem 5.3.4 we know that a random walk ends at a good leaf with probability

at least 1− ε. It follows that

| Pr
x←{1,−1}n

[f(x) = 1]− Pr
x←DPTF

[f(x) = 1]| ≤ ε t = O(ε2/(4d+1)).
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Our main theorem on fooling degree d PTFs, Theorem 7.1.1, follows

immediately from the above theorem.

7.6 PRGs for Spherical Caps

We now show how to extend the generator for fooling regular halfspaces

and its analysis from Section 7.4.1 to get a PRG for spherical caps and prove

Theorem 7.1.3.

Let µ be a discrete distribution (if not, let’s suppose we can discretize

µ) over a set U ⊆ R. Also, suppose that for X ← µ, E[X] = 0,E[X2] =

1,E[|X|3] = O(1). Given such a distribution µ, a natural approach for extend-

ing G to µ is to replace the k-wise independent space generator G0 : {0, 1}r →

{1,−1}m from Equation (7.3.1) with a generator Gµ : {0, 1}r → Um that

generates a k-wise independent space over Um. It follows from the analysis

of Section 7.4.1 that for Gµ chosen with appropriate parameters, the above

generator fools regular halfspaces over µn. It then remains to fool non-regular

halfspaces over µn. It is reasonable to expect that an analysis similar to that

in Section 7.4.2 can be applied to µn, provided we have analogues of the results

of Servedio and Diakonikolas et al., Theorem 7.4.6, for µn.

The above ideas can be used to get a PRG for spherical caps by not-

ing that a) the uniform distribution over the sphere is close to a product of

Gaussians (when the test functions are halfspaces) and b) analogues of The-

orem 7.4.6 for product of Gaussians follow from known anti-concentration

properties of the univariate Gaussian distribution. Building on the above ar-
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gument, Gopalan et al. [37] recently obtained PRGs fooling halfspaces over

“reasonable” product distributions. Here we take a different approach and

give a simpler, more direct construction for spherical caps based on an idea

of Ailon and Chazelle [1] and the invariance of spherical caps with respect to

unitary rotations.

Let Sn−1 = {x ∈ Rn : ‖x‖2 = 1} denote the n-dimensional sphere.

By a spherical cap Sw,θ we mean the section of Sn−1 cut by a halfspace, i.e.,

Sw,θ
def
= {x : x ∈ Sn−1, Hw,θ(x) = 1}.

Definition 7.6.1. A function G : {0, 1}r → Sn−1 is said to ε-fool spherical

caps if, for all spherical caps Sw,θ,

| Pr
x∈uSn−1

[x ∈ Sw,θ]− Pr
y∈u{0,1}r

[G(y) ∈ Sw,θ]| ≤ ε.

Note that the uniform distribution over Sn−1, Usp, is not a product

distribution. We first show that Usp is close to N (0, 1/
√
n)n when the test

functions are halfspaces.

Lemma 7.6.1. There exists a universal constant C such that for any halfspace

Hw,θ,

| Pr
x←Usp

[Hw,θ(x) = 1]− Pr
x←N (0,1/

√
n)n

[Hw,θ(x) = 1]| ≤ C log n

n1/4
.

In particular, for x ← Usp, the distribution of 〈w, x〉 is O(
√

log n/n1/4)-close

to N (0, 1/
√
n).
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Proof. Observe that for x ← N (0, 1/
√
n)n, x/‖x‖2 is distributed uniformly

over Sn−1. Thus,

Pr
x∈uSn−1

[Hw,θ(x) = 1] = Pr
x←N (0,1/

√
n)n

[Hw,θ

(
x

‖x‖2

)
= 1].

Now, for any x ∈ Rn,∣∣∣∣〈w, x〉 − 〈w, x〉‖x‖2

∣∣∣∣ =
|〈w, x〉|
‖x‖2

· |‖x‖2 − 1|.

Since for x ← N (0, 1/
√
n), 〈w, x〉 is distributed as N (0, 1/

√
n), for some

constant c1,

Pr
x←N (0,1/

√
n)n

[
|〈w, x〉| ≥ c1

√
log n

n1/2

]
≤ 1

n
.

Further, by well-known concentration bounds for the norm of a random Gaus-

sian vector (see [62], for instance), it follows that for some constant c2 > 0,

Pr
x←N (0,1/

√
n)n

[
|‖x‖2 − 1| ≥ c2

√
log n

n1/4

]
≤ 1

n
,

Combining the above equations we get

Pr
x←N (0,1/

√
n)n

[ ∣∣∣∣〈w, x〉 − 〈w, x〉‖x‖2

∣∣∣∣ ≥ c1c2 log n

n3/4

]
≤ 2

n
.

Therefore, for C = c1c2,

Pr
x←N (0,1/

√
n)n

[
Hw,θ

(
x

‖x‖2

)
6= Hw,θ(x)

]
≤

Pr
x←N (0,1/

√
n)n

[
|〈w, x〉 − θ| ≤

∣∣∣∣〈w, x〉 − 〈w, x〉‖x‖2

∣∣∣∣ ] ≤
Pr

x←N (0,1/
√
n)n

[
|〈w, x〉 − θ| ≤ c1c2 log n

n3/4

]
+

2

n
≤ C log n

n1/4
,

where the last inequality follows from the fact that 〈w, x〉 is distributed as

N (0, 1/
√
n) and for any interval I ⊆ R, Prx←N (0,1)[x ∈ I] = O(|I|).
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Now, by Theorem 7.4.2, for ε-regular w and x generated from G with

parameters as in Theorem 7.4.2, the distribution of 〈w, x/
√
n〉 is O(ε)-close to

N (0, 1/
√
n). It then follows from the above lemma that G ε-fools spherical

caps Sw,θ when w is ε-regular and ε ≥ C log n/n1/4. We now reduce the case

of arbitrary spherical caps to regular spherical caps.

Observe that the volume of a spherical cap Sw,θ is invariant under

rotations: for any unitary matrix A ∈ Rn×n with ATA = In,

Pr
x←Usp

[x ∈ Sw,θ] = Pr
x←Usp

[Ax ∈ Sw,θ].

We exploit this fact by using a family of rotations R of Ailon and

Chazelle [1] which satisfies the property that for any w ∈ Rn and a random

rotation V ∈u R, V w is regular with high probability. Let H ∈ Rn×n be

the normalized Hadamard matrix such that HTH = In and each entry Hij ∈

{±1/
√
n}. For a vector x ∈ Rn, let D(x) denote the diagonal matrix with

diagonal entries given by x. Observe that for x ∈ {1,−1}n, HD(x) is a

unitary matrix. Ailon and Chazelle (essentially) show that for any w ∈ Rn

and x ∈u {1,−1}n, HD(x)w is O(
√

log n/
√
n)-regular. We derandomize their

construction by showing that similar guarantees hold for x chosen from a 8-

wise independent distribution.

Lemma 7.6.2. For all w ∈ Rn, ‖w‖ = 1, and x ∈ {1,−1}n chosen from an

8-wise independent distribution the following holds. For v = HD(x)w, γ > 0,

Pr[
∑
i

v4
i ≥

γ

n
] = O

(
1

γ2

)
.
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Proof. Let random variable Z =
∑

i v
4
i . Observe that each vi is a linear

function of x and

E[v2
i ] = E[ (

∑
j

Hijxjwj )2 ] =
∑
j

H2
ijw

2
j =

1

n
.

Note that since x is 8-wise independent, we can apply (2, 4)-hypercontractivity,

Lemma 2.2.2, to vi. Thus,

E[Z] =
∑
i

E[v4
i ] ≤ 9

∑
i

E[v2
i ]

2 ≤ 9

n
.

Similarly, by (2, 4)-hypercontractivity applied to the quadratics v2
i , v

2
j ,

E[Z2] =
∑
i,j

E[v4
i v

4
j ] ≤

∑
i,j

92 E[v4
i ]E[v4

j ] ≤ 92 E[Z]2 ≤ 94

n2
.

The lemma now follows from the above equation and Markov’s inequality

applied to Z2.

Combining the above lemmas we get the following analogue of Theo-

rem 7.4.2 for spherical caps. Let G be as in Theorem 7.4.2 and let D be a 8-wise

independent distribution over {1,−1}n. Define Gsph : {1,−1}n × {0, 1}r →

Sn−1 by

Gsph(x, y) =
D(x)HTG(y)√

n
.

Theorem 7.6.3. For any spherical cap Sw,θ with ‖w‖ = 1 and ε > C log n/n1/4,

| Pr
z←Usp

[ 〈w, z〉 ≥ θ ]− Pr
x←D,y∈u{0,1}r

[ 〈w,Gsph(x, y)〉 ≥ θ ]| = O(ε).
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Proof. By Lemma 7.6.1, for z ← Usp, 〈w, z〉 is O(ε)-close to N (0, 1/
√
n).

Further, by applying Lemma 7.6.2 for γ = 1/
√
ε, we get that v = HD(x)w is

δ-regular with probability at least 1− O(ε) for δ = 1/(
√
nε1/4) < ε. Now, by

Theorem 7.4.2 for v ε-regular and y ∈u {0, 1}r, the distribution of 〈v,G(y)〉

is O(ε)-close to N (0, 1). The theorem now follows from combining the above

claims and noting that 〈v,G(y)/
√
n〉 = 〈w,Gsph(x, y)〉.

Theorem 7.1.3 now follows from the above theorem and derandomizing

G as done in Section 7.4.3 for proving Theorem 7.1.2.

7.7 Discussion on Bounded Independence Fooling PTFs

In this section we briefly discuss the approach of fooling PTFs by

bounded independence. Here we focus only on the case of regular PTFs as

given that bounded independence fools regular PTFs, it is easy to extend the

result to arbitrary PTFs by arguments similar to those used in Sections 7.4.2,

7.5.2.

As mentioned in the introduction, Diakonikolas et al. [26] show that

Õ(1/ε2)-wise independent distributions fool halfspaces and Diakonikolas, Kane

and Nelson [28] show that Õ(1/ε9)-wise independent distributions fool degree

two threshold functions. Unfortunately, we do not know any such results for

degrees three and higher. This leads us to the following conjecture:

Conjecture 7.1. There exists a constant C such that the following holds. For

d > 0, ε ∈ [0, 1], let D be a k(d, ε)-wise independent distribution for k(d, ε) =
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(d/ε)C. Then, for every degree d polynomial P : Rn → R and x ← D,

y ∈u {1,−1}n, dcdf(P (x), P (y)) < ε.

The bound k(d, ε) = (d/ε)C is probably the best possible: Diakonikolas

et al. show a Ω(1/ε2) lower bound to ε-fool halfspaces. We remark that a result

like the above with any reasonable function k(d, ε) that does not depend on n

would be interesting. The closest result we have in this direction is that of Kane

[53] who shows that k-wise independent Gaussian distributions ε-fool degree

d polynomial threshold functions in the Gaussian world for k = O(ε−2O(d)
).

In this section we review two old results in probability literature and

use them to show that bounded independence suffices to fool degree 1 and 2

threshold functions. For degree 1 we get the optimal bound of k(ε) = O(1/ε2),

whereas for degree 2 we get a bound of k(ε) = 21/εO(1)
.

7.7.1 Fooling Halfspaces through Characteristic Functions

In this section, we give a Fourier theoretic proof that O(1/ε2)-wise

independence fools ε-regular halfspaces. This bound was first achieved by Di-

akonikolas, Kane and Nelson [28]. However, our approach is arguably simpler

and uses a classical generalization of Esséen’s inequality due to Fǎinlěib [33].

For a real-valued random variable X, define the characteristic function

ϕX : R→ R as follows:

ϕX(t) = E[e−itX ],

where i =
√
−1. Note that if X is symmetric ϕX(t) ∈ R for every t ∈ R.
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For a real-valued random variable Y , define the anti-concentration function

AC : R+ → R+ by ACY (α) = supt∈R{Pr[Y ∈ [t, t+ α]]}.

Lemma 7.7.1 (Theorem 1, Fǎinlěib [33]). There exists a universal constant

C1 > 0 such that for any real-valued random variables X, Y and T > 0,

dcdf(X, Y ) < C1

(
ACY (1/T ) +

∫ T

0

|ϕX(t)− ϕY (t)|
t

dt

)
.

Theorem 7.7.2. There exist universal constants C,C ′ such that the following

holds. Let D be an m-wise independent distribution over {1,−1}n for m =

C/ε2 even. Then, for every ε-regular w ∈ Rn with ‖w‖ = 1 and x ← D,

y ∈u {1,−1}n,

dcdf(〈w, x〉, 〈w, y〉) < C ′ε.

In other words, O(1/ε2)-wise independence O(ε)-fools ε-regular halfspaces.

Proof. Let X = 〈w, x〉 for x ← D and let Y = 〈w, y〉 for y ∈u {1,−1}n. To

avoid the minor technicality of dealing with complex numbers, we assume that

X is symmetric about 0. We can use the same argument for the general case,

incurring only an additional factor of two in the error bound. For any symmet-

ric real-valued random-variable Z with finite moments, by Taylor expansion,

for m even, ∣∣∣∣∣ϕZ(t)−
m−1∑
j=0

irtr E[Zr]

r!

∣∣∣∣∣ < |t|m E[Zm]

m!
.

Applying the above equation to X, Y and noting that by Khintchine’s inequal-

ity, Lemma 2.2.3, E[Xr] = E[Y r] < rr/2 for r ≤ m, we get

|ϕX(t)− ϕY (t)| < 2|t|mmm/2

m!
.
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By Stirling’s approximation, m! > (m/e)m. Therefore,∫ T

0

|ϕX(t)− ϕY (t)|
t

dt <
2mm/2

m!

∫ T

0

tm−1dt

=
2mm/2

m!
· T

m

m
<

2

m
·
(
T · e√
m

)m
.

Further, by Lemma 7.4.4 and Theorem 2.2.6, ACY (α) = O(α + ε). Thus, by

Lemma 7.7.1, and the above equation applied to T = 1/ε, and m = C/ε2, we

get

dcdf(X, Y ) = O(ε).

The statement now follows.

7.7.2 Relation to the Classical Moment Problem

We first observe that there is a strong connection between the question

of fooling PTFs by bounded independence and the classical moment prob-

lem in probability. The classical moment problem (or more specifically, the

Hamburger moment problem) can be phrased as follows: Given a sequence of

numbers M = (M1,M2, . . . , ) ∈ RN, when is there a unique distribution µ over

R such that the moments of µ match the corresponding entries of M . That is,

for every i ∈ N,

Mi =

∫ ∞
−∞

xidµ(x).

We refer to the excellent book [2] for a detailed history and results on

this problem. Here we only discuss the work of Klebanov and Mkrtchyan [58]

who give quantitative bounds for the truncated moment problem where we
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only know the first few moments as opposed to knowing all the moments as

above.

For two real-valued random variables X, Y define the Lévy distance

between them as follows:

dL(X, Y ) = inf{ε > 0 : Pr[X < t−ε]−ε < Pr[Y < t] < Pr[X < t+ε]+ε, ∀t ∈ R}.

The following result of Klebanov and Mkrtchyan gives quantitative

bounds on the Lévy distance between two random variables whose first few

moments are identical.

Theorem 7.7.3 (Theorem 1, [58]). Let X, Y be real-valued random variables

with E[X i] = E[Y i] for 1 ≤ i ≤ 2m. Then, there exists a constant Cσ that

depends only on E[X2] = σ2 such that

dL(X, Y ) ≤ Cσ · ln(1 + βm)

β
1/4
m

,

where

βm =
m∑
i=1

1

(E[X2i])1/2i
.

To go from Lévy distance to cdf distance we use the following simple

lemma.

Lemma 7.7.4. For any two real-valued random variables X, Y ,

dcdf(X, Y ) < ACY (dL(X, Y )) + dL(X, Y ).
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Proof. From the definition of dL, for any t ∈ R,

Pr[Y < t] < Pr[X < t+ dL(X, Y )] + dL(X, Y ) < Pr[X < t]+

ACY (dL(X, Y )) + dL(X, Y ).

Similarly, we get that Pr[X < t] < Pr[Y < t] + ACY (dL(X, Y )) + dL(X, Y ).

The lemma follows.

We now use Theorem 7.7.3 to show that bounded independence fools

degree 2 threshold functions. We remark that a similar argument when applied

to halfspaces shows that Õ(1/ε8)-wise independence fools halfspaces. However,

we do not delve on this as we already saw how to get the optimal bound in

the previous section.

Note that the bounds implied by Theorem 7.7.3 are worse than those

of Diakonikolas et al. [26], Diakonikolas, Kane and Nelson [28]. However,

we believe the argument is still interesting as the results of Klebanov and

Mkrchtyan use completely different techniques and appeared before the above

works.

Corollary 7.7.5. There exist constants C,C ′ such that the following holds.

Let D be a m-wise independent distribution over {1,−1}n for m = 2C/ε
2
.

Then, for every ε-regular degree 2 polynomial P : Rn → R, and x ← D,

y ∈u {1,−1}n,

dcdf(P (x), P (y)) < C ′ε2/9.

In other words, (2O(1/ε2))-wise independence O(ε2/9)-fools ε-regular degree two

threshold functions.
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Proof. It suffices to show the statement when D is 4m-wise independent for

m = 2C/ε
2

for C to be chosen later. Without loss of generality suppose that

‖P‖ = 2. Let random variables X = P (x), for x ← D and Y = P (y), for

y ∈u {1,−1}n. Then, E[X i] = E[Y i] for i ≤ 2m as x is 4m-wise independent

and P is a degree 2 polynomial. Now, for i ≤ m, by hypercontractivity,

Theorem 2.2.1, applied to q = i, d = 2,

E[X2i] = E[Y 2i] < (2i)2i.

Therefore,

βm =
m∑
i=1

1

E[X2i]1/2i
>

m∑
i=1

1

2i
= Ω(logm).

By Theorem 7.7.3,

dL(X, Y ) = O

(
log logm

(logm)1/4

)
.

Now, by Theorem 2.2.5 and Theorem 2.2.6 applied to degree d = 2, ACY (α) =

O(ε2/9 +
√
α). Therefore, by Lemma 7.7.4

dcdf(X, Y ) = O

(
ε2/9 +

√
log logm

(logm)1/8

)
.

The statement now follows by choosing C to be sufficiently large.

Remark 7.7.1. Note that the above approach does not work for degrees three

and higher. This is because βm does not grow to infinity as m becomes larger

for higher degrees. For instance, in the degree three case, for X, Y as above,

using Theorem 2.2.1,

βm =
m∑
i=1

1

E[X2i]1/2i
∼

m∑
i=1

1

(2i)3/2
= Θ(1).
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7.8 Non-Explicit Bounds

It is known ([63], [89]) that the number of distinct halfspaces on n bits is

at most 2n
2
. One way of extending this bound to degree d PTFs is as follows. It

is known that the Fourier coefficients of the first d+1 levels of a degree d PTF,

also known as the Chow parameters, determine the PTF completely (see [83]).

Thus, a PTF f is completely determined by ChowParam(f) = (E[f · χI ] : I ⊆

[n], |I| ≤ d ), where χI(x) =
∏

i∈I xi denotes the parity over the coordinates

in I. Observe that for any I ⊆ [n], E[ f · χI ] ∈ {i/2n : i ∈ Z, |i| ≤ 2n}.

Therefore, the number of distinct degree d PTFs is at most the number of

distinct sequences ChowParam( ), which in turn is at most (2n)n
d
.

The non-explicit bound now follows by observing that any class of

Boolean functions F can be fooled with error at most ε by a set of size at

most O(log(|F|)/ε2). Thus, degree d PTFs can be fooled by a sample space

of size at most O(nd+1/ε2).
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Chapter 8

Pseudorandom Generators for Polytopes

In this chapter we construct pseduorandom generators for polytopes.

Our constructions use the invariance principle for polytopes from Chapter 3

and the main generator construction from Section 7.3. Together with the re-

sults in Chapter 7, these results illustrate (by examples) a rough framework

for combining invariance principles and the construction of Section 7.3 to ob-

tain pseudorandom generators. This theme will be further emphasized in the

following chapter.

8.1 Introduction

Recall the definition of pseudorandom generators (PRGs) for polytopes:

Definition 8.1.1. Let µ be a distribution over R. A function G : {0, 1}r →

{1,−1}n is said to δ-fool a polytope K with respect to µ if the following holds.∣∣∣∣ Pr
y∈u{0,1}r

[G(y) ∈ K]− Pr
X←µn

[X ∈ K]

∣∣∣∣ ≤ δ.

Combining our invariance principle with the main generator of Sec-

tion 7.3 appropriately, we obtain a black-box algorithm for approximately

counting the number of {−1, 1}n points in polytopes formed by the intersec-
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tion of regular halfspaces. Recall the definitions of proper and hypercontractive

distributions, Definition 3.2.2, Definition 3.2.3.

Theorem 8.1.1 (PRGs for regular polytopes and approximate counting).

For all δ ∈ (0, 1), there exists an explicit PRG G : {0, 1}r → {1,−1}n with

r = O((log n log k)/ε) that δ-fools all polytopes formed by the intersection of k

ε-regular halfspaces with respect to all proper and hypercontractive distributions

µ for ε = δ5/(log8.1 k)(log(1/δ)).

The constants above depend on the hypercontractivity constants of µ.

Note that the uniform distribution over {−1, 1}n and the Gaussian distribution

are examples of proper and hypercontractive distributions.

Theorem 8.1.1 implies quasi-polynomial time, deterministic, approxi-

mate counting algorithms for a broad class of integer programs. For example,

dense covering programs such as dense set-cover, and {0, 1}-contingency ta-

bles correspond to polytopes formed by the intersection of ε-regular halfspaces.

For these types of integer programs, we can deterministically approximate, to

within an additive error ε, the number of integer solutions in quasi-polynomial

time.

As stated, our invariance principle applies to polytopes whose bounding

hyperplanes have coefficients that are sufficiently regular. In some cases, how-

ever, we can randomly rotate an arbitrary polytope so that all the bounding

hyperplanes become regular. As such, after applying a suitable random trans-

formation (which we derandomize), we can build PRGs for arbitrary polytopes
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if the underlying distribution is spherically symmetric (e.g., Gaussian):

Theorem 8.1.2 (PRGs for Polytopes in Gaussian space). For a universal

constant c > 0 and all δ > c log2 k/n1/11, there exists an explicit PRG GN :

{0, 1}r → Rn with r = O((log n)(log9.1 k)/δ5.1) that δ-fools all k-polytopes with

respect to N .

Additionally, we prove an invariance principle for polytopes with re-

spect to the uniform distribution over the n-dimensional sphere Sn−1. This

allows us to easily modify our PRG for polytopes in Gaussian space and build

PRGs for intersections of spherical caps:

Theorem 8.1.3 (PRGs for intersections of spherical caps). For a universal

constant c > 0 and all δ > c log2 k/n1/11, there exists an explicit PRG Gsp :

{0, 1}r → Sn−1 with r = O((log n)(log9.1 k)/δ5.1) that δ-fools all k-polytopes

with respect to the uniform distribution over Sn−1.

An immediate consequence of the above PRG construction is a polyno-

mial time derandomization of the Goemans-Williamson approximation algo-

rithm for Max-Cut [35] and other similar hyperplane based randomized round-

ing schemes. Observe that this derandomization is a black-box derandomiza-

tion as opposed to some earlier derandomizations of the Goemans-Williamson

algorithm, which are instance-specific (e.g., [70]).
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8.1.1 Related Work

There is a long history of research on approximately counting the num-

ber of solutions to integer programs, especially with regard to contingency

tables [48, 23]. However, not much is known in terms of deterministic algo-

rithms, and we believe that our deterministic quasi-polynomial time algorithms

for dense covering problems and dense set cover instances is the first result of

its kind.

Regarding contingency tables, Dyer [31] gave a randomized relative-

error approximation algorithm for counting solutions to contingency tables

that runs in time exponential in the number of rows. In contrast, we obtain an

algorithm that runs in quasi-polynomial time in the number of rows (however,

we do not give a relative-error approximation). Although not stated explicitly

before, it is easy to see that the pseudorandom generator for small space

machines of Impagliazzo et al. [46] yields a deterministic algorithm for counting

n×k contingency tables with additive error at most ε and run time 2O(log2(nk/ε)).

This is incomparable to our algorithm for contingency tables which has run

time 2(logn)·poly(log k,1/ε). In our case, we obtain a polynomial-time, black-box

derandomization for contingency tables with a constant number of rows (for

ε = O(1)).

For PRGs for intersections of halfspaces, recently Gopalan et al. [37]

and Diakonikolas et al. [28] gave results incomparable to ours. Gopalan et

al. give generators for arbitrary intersections of k halfspaces with seed length

linear in k but logarithmic in 1/δ. Diakonikolas et al. show that bounded inde-
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pendence fools intersections of quadratic threshold functions and in particular,

get generators with seed length O((log n) · poly(k, 1/ε)) fooling intersections

of k halfspaces. Due to the at least linear dependence on k, the results of the

above works do not yield good algorithms for counting solutions to integer

programs, as in this setting k is typically large (e.g., poly(n)).

8.2 Pseudorandom Generators for Polytopes

We now prove our main theorems for constructing pseudorandom gen-

erators for polytopes with respect to a variety of distributions (Theorems 8.1.1,

8.1.2, and 8.1.3).

The results in this section are based on the main generator from Sec-

tion 7.3. We remark that although the PRG construction is essentially the

same, the analysis is not immediate (even given our invariance principle) and

requires a careful application of hypercontractivity.

We next describe the parameter settings for the generator from Sec-

tion 7.3 that we use. We redefine the generator here again to be consistent

with the notations of this chapter and that of our invariance principle for

polytopes (which used k as the number of halfspaces).

Given δ ∈ (0, 1), let ε = Ω(δ6/ log9.6 k) be such that log1.6 k(ε log(1/ε))1/5 =

δ. Let t = 1/ε and let H = {h : h : [n]→ [t]} be a (2 log k)-wise independent

family of hash functions. Efficient constructions of hash families H as above

with |H| = O(n2 log k) are known. To avoid some technical issues that can be
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overcome easily, we assume that every hash function h ∈ H is equi-distributed

in the following sense: for all j ∈ [t], |{i : h(i) = j}| = n/t.

Let m = n/t and let G0 : {0, 1}s → {1,−1}m generate a (4 log k)-wise

independent distribution over {1,−1}m. Efficient constructions of generators

G0 as above with s = O(log k log n) are known [78].

Given a hash family and generator G0 as above, we consider the fol-

lowing generator. Define G : H× ({0, 1}s)t → {1,−1}n by

G(h, z1, . . . , zt) = x, where x|h−1(i) = G0(zi) for i ∈ [t].

8.2.1 Pseudorandom Generators for Regular Polytopes

We now argue that the generator G defined above fools regular poly-

topes and prove Theorem 8.1.1.

Proof of Theorem 8.1.1. The bound on the seed length of the generator G

follows from the construction. The following statement follows from an argu-

ment similar to that of the proof of Theorem 3.3.2: for any smooth function

ψ : Rk → R and ε-regular W ,∣∣∣∣ E
y∈u{0,1}r

[ψ(W TG(y))]− E
Y←Nn

[ψ(W TY )]

∣∣∣∣ ≤ C log3 k (ε log(1/ε)) ‖ψ(4)‖1.

(8.2.1)

Indeed, to observe that Lemma 3.4.1 holds for any (2 log k)-wise indepen-

dent family of hash functions and the proof of Lemma 3.4.2 relies only on

two key properties of X ← µn: (1) For a fixed hash function h, the blocks

Xh−1(1), Xh−1(2), . . . , Xh−1(t) are independent of one another. (2) For a fixed
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hash function h, and j ∈ [t], the distribution of each block Xh−1(j) satisfies

(2, 2 log k)-hypercontractivity for all j ∈ [t]. In other words, we used the prop-

erty that for all j ∈ [t], u ∈ R|h−1(j)|,

E[|〈u,Xh−1(j)〉|4 log k] ≤ (C log k)2 log k ‖u‖4 log k. (8.2.2)

Note that X generated according to the generator G satisfies both the above

conditions: 1) For a fixed function h, the blocks are independent by definition

and 2) the hypercontractivity inequality 8.2.2 only involves the first (4 log k)-

moments of the distribution of Xh−1(j). As a consequence, inequality 8.2.2

holds for any (4 log k)-wise independent distribution over {1,−1}|h−1(j)|.

We can now move from closeness in expectation to closeness in cdf

distance by an argument similar to the proof of Theorem 3.3.1, where we use

Equation 8.2.1 instead of Theorem 3.3.2, to get

| Pr
y∈u{0,1}r

[G(y) ∈ K]− Pr
Y←Nn

[Y ∈ K]| ≤ δ.

The theorem now follows from the above equation and Theorem 3.3.1.

8.2.1.1 Approximate Counting for Integer Programs

The PRG from Theorem 8.1.1 coupled with enumeration over all pos-

sible seeds immediately implies a quasi-polynomial time, deterministic algo-

rithm for approximately counting, within a small additive error, the number

of solutions to “regular” {0, 1}-integer programs. It turns out that “regular”

integer programs correspond to a broad class of well-studied combinatorial
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problems. For example, we obtain deterministic, approximate counting algo-

rithms for dense set cover problems and {0, 1}-contingency tables. We obtain

quasi-polynomial time algorithms even when there are a polynomial number

of constraints (or polynomial number of rows in the contingency table set-

ting). As far as we know, there is no prior work giving nontrivial deterministic

algorithms for counting solutions to integer programs with many constraints.

Here we discuss the case of dense set cover instances and remark that

we get similar results for the special case of counting contingency tables. Cov-

ering integer programs are a fundamental class of integer programs and can

be formulated as follows.

min
∑
i

Xi

s.t.
∑
i

aijXi ≥ cj, j = 1, . . . , k, (8.2.3)

X ∈ {0, 1}n,

where the coefficients of the constraints aij and cj are all non-negative. An

important special class of covering integer programs is set cover, which in turn

is a generalization of many important problems in combinatorial optimization

such as edge cover and multidimensional {0, 1}-knapsack.

In the standard set cover problem, the input is a family of sets S1, . . . , Sn

over a universe U of size k and an integer t. The goal is to find a subfam-

ily of sets C such that |C| ≤ t and the union of all the sets in C equals U .

This corresponds to a covering program as above with k constraints and n

unknowns from {0, 1}. Call an instance of set cover ε-dense if each element in
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U appears in at least 1/ε2 of the different sets Si. It is easy to verify that with

this restriction, after translating from {0, 1} to {1,−1} and appropriate nor-

malization, all the linear constraints in the corresponding integer program as

in Equation 8.2.3 are ε-regular. Thus, using the generator from Theorem 8.1.1

and enumerating over all seeds to the generator, we have the following:

Theorem 8.2.1. There exists a deterministic algorithm that, given instance

of an ε-dense set covering problem with k constraints over a universe of size

n, approximates the number of solutions to within an additive factor of δ in

time npoly(log k,1/δ) as long as ε ≤ δ5/(log8.1 k)(log(1/δ)).

We now briefly elaborate on approximately counting the number of

{0, 1} contingency tables. The problem of counting {0, 1}-contingency tables

is the following. Given, positive integers n, k n > k, r = (r1, . . . , rn) ∈ Zn,

c = (c1, . . . , ck) ∈ Zk we wish to count the number of solutions, CT(r, c), to

the following integer program whose solutions are matrices X ∈ {0, 1}n×k with

row and column sums given by r, c.

Find X ∈ {0, 1}n×k

s.t.
∑
j

Xij = ri, 1 ≤ i ≤ n,∑
i

Xij = cj, 1 ≤ j ≤ k.

Observe that, after translating from {0, 1} to {1,−1} and appropriately

normalizing, solutions to the above integer program correspond to points from

{1,−1}n×k that lie in an intersection of 2(n + k)-halfspaces each of which is
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(1/
√
k)-regular (recall that the notion of regularity does not depend on the

value of the ci’s or rj’s). Thus, as with dense instances of set cover, we can

use Theorem 8.1.1 to count the number of {0, 1}-contingency tables:

Theorem 8.2.2. There exists a deterministic algorithm that on input r ∈ Zn,

c ∈ Zk, approximates CT(r, c)/2nk, the fraction of {0, 1}-contingency tables

with sums r, c, to within additive error δ, and runs in time npoly(log k,1/δ).

We remark that using results of Wolff [99], who shows hypercontractiv-

ity for various discrete distributions, we can approximately count number of

solutions to dense set cover instances and contingency tables over most natural

domains.

8.2.2 Pseudorandom Generators for Polytopes in Gaussian Space

We now prove Theorem 8.1.2. We use an idea of Ailon and Chazelle

[1] and the invariance of the Gaussian measure to unitary rotations to obtain

PRGs with respect to N n for all polytopes. The basic idea is similar to

that of the PRG for spherical caps from Section 7.6. In the current setting,

we must prove that, with respect to a random rotation, all of the bounding

hyperplanes become regular with high probability. Such a tail bound requires

applying hypercontractivity.

LetH ∈ Rn×n be the normalized Hadamard matrix withHHT = In and

Hij ∈ {1/
√
n,−1/

√
n}. Ailon and Chazelle show that for any w ∈ Rn, and a

random diagonal matrix D with uniformly random {1,−1} entries, the vector
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HDw is regular with high probability. We derandomize their observation using

hypercontractivity. For a vector x ∈ Rn, let D(x) ∈ Rn×n be the diagonal

matrix with diagonal entries x.

Lemma 8.2.3. There exists a constant C > 0 such that the following holds.

For any w ∈ Rn, ‖w‖ = 1 , 0 < δ < 1 and any (C log(k/δ))-wise independent

distribution D over {1,−1}n,

Pr
x←D

[
‖HD(x)w‖4

4 ≥ C log2(k/δ)/n
]
≤ δ/k.

Proof. Fix a w ∈ Rn and a C log(k/δ)-wise independent distribution D for

constant C to be chosen later. Let random variable Z = ‖HD(x)w‖4
4 =∑

i (
∑

lHilxlwl)
4 for x← D. Note that x satisfies (2, q)-hypercontractivity for

q ≤ C log(k/δ). Now,

E[Z2] =
∑
i,j

E

(∑
l

Hilxlwl

)4(∑
l′

Hjl′xl′w
′
l

)4


≤
∑
ij

√√√√√E

(∑
l

Hilxlwl

)8
 · E

(∑
l

Hjlxlwl

)8


Cauchy-Schwarz inequality

≤
∑
i,j

84

E

(∑
l

Hilxlwl

)2
2E

(∑
l

Hjlxlwl

)2
2

(2, 8)-hypercontractivity

= 84
∑
i,j

1

n4
=

c

n2
.
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Observe that Z is a degree 4 multilinear polynomial over x1, . . . , xn. Therefore,

by (2, q)-hypercontractivity, Theorem 2.2.1, applied to the random variable Z,

for q ≤ C log(k/δ)/4,

E[|Z|q] ≤ q2q(E[Z2])q/2 ≤ cq/2 q2q

nq
.

Hence, by Markov’s inequality, for γ > 0,

Pr[ |Z| > γ ] = Pr[ |Z|q > γq ] ≤
(
c1/2 q2

γn

)q
.

The lemma now follows by taking q = 2 log(k/δ) and γ = 2 c1/2 q2/n.

Let G : {0, 1}r → {1,−1}n be the generator from Theorem 8.1.1 for

r = O((log n log k)/ε). Let G1 : {0, 1}r1 → {1,−1}n generate a C log(k/δ)-

wise independent distribution, for constant C as in Lemma 8.2.3. Generators

G1 as above with r1 = O(log(k/δ) log n) are known. Define GN : {0, 1}r1 ×

{0, 1}r → Rn as follows:

GN (x, y) = D(G1(x))HG(y).

We claim that GN δ-fools all polytopes with respect to N n.

Proof of Theorem 8.1.2. Recall that ε = Ω(δ5.1/ log8.1 k) > 1/n.51. The seed

length of GN is r1 + r = O(log n log k/ε). Fix W ∈ Rn×n. Observe that

W TGN (x, y) = (HD(G1(x))W )TG(y). Now, from Lemma 8.2.3 and a union

bound it follows that

Pr
x∈u{0,1}r1

[HD(G1(x))W is not ε-regular ] ≤ δ. (8.2.4)
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Further, from the invariance of N n with respect to unitary rotations, for any

x ∈ {0, 1}r1 ,

Pr
z←Nn

[(HD(G1(x))W )T z ∈ Rect(θ)] = Pr
z←Nn

[W T z ∈ Rect(θ)].

Thus, from Theorem 8.1.1 applied to N , we get that for HD(G1(x))W ε-

regular,

| Pr
y∈u{0,1}r

[ (HD(G1(x))W )TG(y) ∈ Rect(θ) ]− Pr
z←Nn

[W T z ∈ Rect(θ)]| ≤ δ.

(8.2.5)

The theorem now follows from Equations (8.2.4), (8.2.5).

8.2.3 Pseudorandom Generators for Intersections of Spherical Caps

Theorem 8.1.3 follows from Theorem 8.1.2 and the following new in-

variance principle for polytopes over Sn−1:

Lemma 8.2.4. For any polytope K with k faces,∣∣∣∣ Pr
X∈uSn−1

[X ∈ K]− Pr
Y←Nn

[
Y/
√
n ∈ K

]∣∣∣∣ ≤ C log n log k√
n

.

The proof uses Nazarov’s bound on Gaussian surface area and the fol-

lowing classical large deviation bound for the norm of a random Gaussian

vector (for a nice exposition of the bound see [96])

Lemma 8.2.5. For Y ← N n,

Pr[ |‖Y ‖ −
√
n| > t ] ≤ a exp(−b t2),

where a, b > 0 are universal constants.

156



Proof of Lemma 8.2.4. Fix a polytope K(W, θ). Let X ∈u Sn−1 and Y ← N n.

Note that Y/‖Y ‖ is uniformly distributed over Sn−1. Fix δ = c/n1/2 for a

constant c to be chosen later. Observe that for Y ← N n, and u ∈ Rn,

‖u‖ = 1, 〈u, Y 〉 is distributed as N . Hence, for any u ∈ Rn, ‖u‖ = 1,

Pr[ |〈u, Y 〉| ≥
√

log(k/δ) ] ≤ δ

k
.

Therefore, by a union bound,

Pr[ ‖W TY ‖∞/
√
n >

√
log(k/δ)/

√
n ] ≤ δ.

Further, by using Lemma 8.2.5 and the fact that Y/‖Y ‖ is uniformly dis-

tributed over Sn−1,

Pr[ ‖W TX‖∞ >
√
C log(k/δ)/

√
n ] ≤ 2δ,

for a sufficiently large constant C. From the above two equations, it follows

that to prove the theorem we can assume that

‖θ‖∞ <
√
C log(k/δ)/n.

Now, from Lemma 8.2.5 and the above equation it follows that

Pr[ |‖Y ‖ −
√
n| ‖θ‖∞ ≥

√
C log(1/δ) log(k/δ)/n ] ≤ δ. (8.2.6)
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Let λ =
√
C log(1/δ) log(k/δ)/n. Then, since Y/‖Y ‖ ∈u Sn−1

| Pr[X ∈ K]− Pr[Y/
√
n ∈ K] |

= | Pr[W TX ∈ Rect(θ)]− Pr[W TY/
√
n ∈ Rect(θ)] |

= | Pr[W TY ∈ ‖Y ‖Rect(θ)]− Pr[W TY ∈
√
nRect(θ)] |

≤ Pr[ |‖Y ‖ −
√
n| ‖θ‖∞ ≥ λ ]

+ Pr[W TY ∈ Rect(
√
nθ + λ1k) \ Rect(

√
nθ − λ1k) ]

≤ δ +O(λ
√

log k ). (Equation 8.2.6, Lemma 3.3.4)

The lemma now follows by choosing δ = c/n1/2 for a sufficiently large constant

c.

Proof of Theorem 8.1.3. Define Gsp : {0, 1}r1 ×{0, 1}r → Sn−1 by Gsp(x, y) =

GN (x, y)/
√
n. It follows from Theorem 8.1.2 and Lemma 8.2.4 that Gsp fools

polytopes over Sn−1 as in the theorem.
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Chapter 9

Pseudorandom Generators for Combinatorial

Shapes

In this chapter we introduce the class of combinatorial shapes and con-

struct PRGs for the class. In the spirit of the previous two chapters our PRG

constructions can be viewed as (implicitly) using the discrete central limit the-

orems from Chapter 4 in conjunction with a more sophisticated form of the

PRG construction from Section 7.3.

9.1 Introduction

The starting point of our results in this chapter are the PRGs for space-

bounded computations of Nisan [80] and Impagliazzo, Nisan and Wigderson

[46]. are PRGs for space-bounded computations. These PRGs use a seed

of length O(log2 n) to fool polynomial-width branching programs and have

played a central role in studying the relative strength of randomness vs. mem-

ory. In particular, reducing their seed length to O(log n)-bit would show that

RL=L, namely every randomized algorithm can be derandomized with only a

multiplicative constant blow-up in its memory. Improving [80, 46] is a central

open question, not only for the possibility of proving RL=L, but also for other
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important applications [47, 95, 54, 40]. Despite much effort, the above seed

lengths have not been improved in nearly two decades.

While PRGs with logarithmic-seed that fool polynomial-width branch-

ing programs are still not known, logarithmic-seed PRGs for weaker classes of

distinguishers have been previously constructed and found many applications.

In this paper we define a natural common generalization and significant ex-

tension of many of these distinguisher classes, which we name combinatorial

shapes. Combinatorial shapes look at their inputs in consecutive chunks of

logm bits (usually m would be at most polynomial in n). On each chunk of

bits the combinatorial shape may apply an arbitrary boolean function. Nev-

ertheless, these Boolean functions are combined into a single output by a

symmetric (i.e., order independent) function. Combinatorial shapes gener-

alize combinatorial rectangles, halfspaces with 0/1 coefficients, and modular

sums. Our main result is a construction of PRGs with seed length O(log n)

that fools combinatorial shapes.

Definition 9.1.1. A function f : [m]n → {0, 1} is an (m,n)-combinatorial

shape if there exist sets A1, . . . , An ⊆ [m] and a symmetric function h :

{0, 1}n → {0, 1} such that f(x1, . . . , xn) = h(1A1(x1), . . . , 1An(xn)). We de-

note the class of such functions by CShape(m,n).

We call them combinatorial shapes because they generalize combinato-

rial rectangles, which are simply the subset of CShape(m,n) where the symmet-

ric function h is the AND function. PRGs for combinatorial rectangles have

160



received considerable attention [32, 6, 68], and have applications to numerical

integration.

The class CShape(2, n) is interesting in its own right, as it comprises

all Boolean functions f : {0, 1}n → {0, 1} that are symmetric functions of a

subset S ⊆ [n] of variables. In order to fool CShape(2, n), the distribution

of
∑

i∈S xi needs to be ε-close to BIN(|S|, 1
2
) in statistical distance for every

S ⊆ [n]. 1 Prior to our work, the best known generator for this problem

was Nisan’s generator [80] which gives seed-length O(log2 n). Similarly, PRGs

for CShape(m,n) imply generators that can fool such tests under multinomial

distributions, by choosing the set Ai so that 1Ai(xi) = 1 with probability pi.

Parities of subsets are a special case of CShape(2, n); hence PRGs that

fool CShape(2, n) are a strengthening of the ever so versatile ε-biased genera-

tors [77]. Recently, a different strengthening of ε-biased generators was con-

sidered, where bit-generators were given that fool sums modulo larger primes

or even composites [67, 72]. The seed-length of these constructions is super-

logarithmic unless the moduli is constant. It is easy to argue that a generator

that fools CShape(2, n) also fools sums modulo an arbitrary moduli, or even

non-modular sums.2

Note that in the above examples of combinatorial shapes, the symmetric

function h could be computed by a constant width branching program. In this

1For n > 0, p ∈ [0, 1], BIN(n, p) denotes the binomial distribution of order n and bias p.
2Note that [67, 72] gives generators that fool sums with arbitrary coefficients. Generators

that fool CShape(2, n) also fool modular (and non-modular) sums with 0/1 coefficients.
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sense, combinatorial shapes seem significantly more powerful. Halfspaces with

0/1 coefficients are also special cases of CShape(2, n), where the symmetric

function cannot be evaluated by a constant width branching program. PRGs

which fool halfspaces were first given in [26, 74] and we saw constructions

with better seed-length in Chapter 7. Note however that these results only

guarantee that
∑

i∈S xi is close to BIN(|S|, 1
2
) in Kolmogorov distance, whereas

our goal is to get closeness in statistical distance.

9.1.1 Main Results

Our main result is a PRG construction which fools CShape(m,n).

Theorem 9.1.1 (Main). For every ε > 0, there exists a PRG that ε-fools

CShape(m,n) with seed-length O(logm+ log n+ log2(1/ε)).

When m is polynomial in n, these PRGs have seed length O(log n +

log2(1/ε)). Previously, the best known PRGs had seed length O(log2 n), even

for m = 2; these were the PRGs for space-bounded computation by Nisan and

Impagliazzo, Nisan and Wigderson.

Along the way we also give a new PRG for combinatorial rectangles with

seed-length O(log3/2 n) and error 1/poly(n). This matches the parameters of

the previous best generator due to Lu [68] for polynomially small ε.

Theorem 9.1.2. For every ε > 0, there exists a generator that ε-fools (m,n)-

combinatorial rectangles with seed-length O(log n
√

log(1/ε)).
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9.1.2 Outline of Constructions

Our constructions are based on the simple convolution lemma, Lemma 4.3.1,

that we used in showing discrete central limit theorems in Chapter 4. (In fact,

the PRG construction was the original motivation for the lemma). We restate

the lemma below for convenience. Recall that a random variable Y is α-shift

invariant if dTV(Y, Y + 1) ≤ α.

Lemma 9.1.3 (Main Convolution Lemma, cf. Lemma 4.3.1). Let X be a

α-shift invariant distribution and let Y, Z be integer-valued distributions with

support contained in [a, a+ b] for some a ∈ R, b > 0 ∈ R. Then,

dTV(X + Y,X + Z) ≤ 4
√
αbdcdf(Y, Z).

For intuition, it is easier to work with the equivalent goal of fooling

combinatorial sums in statistical distance.

Definition 9.1.2. A function f : [m]n → [n] is an (m,n)-combinatorial sum if

there exist sets A1, . . . , An ⊆ [m] such that f(x1, . . . , xn) ≡ 1A1(x1)+1A2(x2)+

· · ·+ 1An(xn). We denote this class of functions by CSum(m,n).

It is straightforward to verify that fooling combinatorial shapes is equiv-

alent to fooling combinatorial sums in the stronger, statistical distance.

The basic building block for our constructions is the generator GH,k,t

from Section 7.3 that we used to fool polynomial threshold functions. Our

high level approach to fooling combinatorial sums is as follows:
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1. We first show that GH,k,t fools combinatorial sums with small variance in

statistical distance. We show that since the combinatorial sum restricted

to each bucket has very small variance, bounded independence fools the

sum restricted to a bucket in statistical distance. We then take a union

bound across the different buckets. A weak bound for fooling the sum in

each bucket is easy; however to apply the union bound requires a much

stronger bound, which we prove using the “sandwiching polynomials”

technique introduced by Bazzi [10].

2. We then show that GH,k,t fools combinatorial sums with high variance in

Kolmogorov distance. We use the pairwise independence of H to argue

that the total variance is well spread among the t buckets and then apply

the Berry-Esséen theorem to show that the distribution is close to the

right distribution in Kolmogorov distance. The analysis for this case is

similar to the argument in Section 7.4.1.

3. We construct a generator Hm,n fooling n dimensional combinatorial sums

in statistical distance by recursively combining a generator fooling n/2

dimensional sums in Kolmogorov distance with a generator fooling n/2

dimensional sums in statistical distance. Unfolding this recursion, the

generator Hm,n hashes variables into log n buckets of geometrically in-

creasing sizes and applies the generator GH,k,t to each bucket. We an-

alyze this generator by exploiting the recursive construction to apply

Lemma 4.3.1 at every step. We view this recursive construction and
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analysis of the Hm,n as the most novel part of our PRG construction.

The analysis, while similar in spirit to our proof of the discrete central

limit theorem Theorem 4.1.1 is more involved.

4. Finally, we show that one can generate the seeds for each bucket using

the PRGs for small-space sources of [46], [81] rather than independently.

This is done by constructing small-width sandwiching branching pro-

grams for combinatorial sums.

We obtain our result on fooling combinatorial rectangles by setting the

parameters of GH,k,t appropriately and then derandomizing the construction

using [80, 46] as above. The analysis however is different and uses a simple

application of the principle of inclusion-exclusion and few properties of k-wise

independent hash functions.

9.1.3 Related Work

Independently and simultaneously, Watson [98] studied the special case

of combinatorial shapes where the symmetric function h is the parity function

which are called combinatorial checkerboards by Watson. Watson obtains a

seed-length of O(logm+ log n log log n+ log3/2(1/ε)) which is better than the

seed-length we get for small ε.

As indicated earlier, PRGs for several special cases of combinatorial

shapes have been studied previously. There was a lot of classical work on
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low-discrepancy sets for axis-parallel rectangles in low dimension; see for ex-

ample [71]. Even, Goldreich, Luby, Nisan, and Velickovic [32] were the first to

give good constructions in high dimension; they gave PRGs for combinatorial

rectangles which used an O(log2 n) bit seed to achieve error 1/poly(n) when

m = poly(n). Armoni, Saks, Wigderson, and Zhou [6] improved the parame-

ters to achieve a seed of length O(logm+log n+log2(1/ε)). The best construc-

tion is by Lu [68], who achieved a seed length of O(logm+log n+log3/2(1/ε)).

Diakonikolas, Gopalan, Jaiswal, Servedio, and Viola [26] showed that

O(log2(1/ε)/ε2)-wise independence ε-fools halfspaces, which gives a seed of

length O((log n) log2(1/ε)/ε2). Our constructions from Chapter 7 gave a dif-

ferent PRG with seed-length O(log n+ log2(1/ε)).

The notion of ε-biased spaces was introduced by Naor and Naor [77],

who gave a PRG using O(log n + log(1/ε)) bits. Alon, Goldreich, Hastad,

and Peralta [3] gave alternate constructions matching this bound. Lovett,

Reingold, Trevisan, and Vadhan [67] gave a PRG over bits that fools sums

modulo m, requiring a seed of length O(log n + log(m/ε) log(m log(1/ε))). A

similar, somewhat weaker construction was found independently by Meka and

Zuckerman [72].

9.2 PRGs for Combinatorial Shapes

We ask the reader to recall the definition of GH,k,t from Section 7.3. In

this chapter we work with the following extension of the generator so as to

output values in [m]n instead of {1,−1}n. Fix k, t > 0 and let d = n/t. Let

166



H = {h : [n] → [t]} be a pairwise independent family of hash functions. Let

Gk : {0, 1}rk → [m]d generate a k-wise independent space over [m]d. Define

GH,k,t : H× ({0, 1}rk)t → [m]n as follows:

GH,k,t(h, z
1, . . . , zt) = x, where xh−1(i) = Gk(z

i) for i = 1, . . . , t. (9.2.1)

As sketched in the introduction we work with fooling combinatorial sums in

statistical distance and first study the case of combinatorial sums with small

variance.

Definition 9.2.1. A generator G : {0, 1}r → [m]n ε-fools CSum(m,n) in

statistical distance if for any f ∈ CSum(m,n), the random variables X =

f(G(x)), x ∈u {0, 1}r and Y = f(y), y ∈u [m]n satisfy dTV(X, Y ) ≤ ε. Sim-

ilarly, we say that G ε-fools CSum(m,n) in Kolmogorov (cdf) distance if X

and Y satisfy dcdf(X, Y ) ≤ ε.

We first set up some notation to be used henceforth. Let f : [m]n → [n]

be an (m,n)-combinatorial sum with f(x) =
∑n

i=1 1Ai(xi) for Ai ⊆ [m]. For

xi ∈u [m], define the indicator variable Xi = 1Ai(xi). Let

pi = E[Xi], σ
2
i = Var[Xi] = pi(1− pi), µ =

n∑
i=1

pi, σ
2 =

n∑
i=1

σ2
i

Let X =
∑n

i=1Xi, so E[X] = µ and σ2(X) = σ2 provided the Xi’s are pairwise

independent.

9.2.1 Fooling Small Combinatorial Sums

We now study the case of combinatorial sums with small variance. The

strategy is as follows: since Var[f ] is small, there is a small set L ⊆ [n] of large
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variance variables, such that all other indicator random variables Xi = 1Ai(xi),

i 6∈ L, have small variance. To handle variables in L, we argue that they will

each be hashed into a different bucket. Thus the distribution on these variables

is truly uniform, and moreover, conditioned on their values, the distribution

of the output of the generator in each bucket is (k− 1)-wise independent. We

then use the fact that the combinatorial sum restricted to each bucket has

very small total variance and show that bounded independence fools the sum

restricted to a bucket in statistical distance. Finally we take a union bound

across the different buckets to show the desired claim. As mentioned in the

introduction, we use the “sandwiching polynomials” technique introduced by

Bazzi to show a sufficiently strong bound for fooling the sum in each bucket

so as to apply a union bound.

Theorem 9.2.1 (Fooling Small Combinatorial Sums). Let f ∈ CSum(m,n)

with Var[f ] ≤ 6/ε2. For k = 35 and t = C/ε15, the generator GH,k,t O(ε)-fools

f in statistical distance.

Fix a f ∈ CSum(m,n) with σ2 ≤ 6/ε2 and let k, t be as above. Let

L = {i : σ2
i ≥ ε5}. Since σ2 =

∑
i σ

2
i ≤ 6/ε2, we have |L| ≤ 6/ε7. For each

bucket Bj we define the variable Tj =
∑

i∈Bj\L σ
2
i . We say a hash function

h ∈ H is good if the following conditions hold:

1. All variables in L are mapped to distinct buckets.

2. For every bucket Bj, Tj ≤ ε.

168



Lemma 9.2.2. A random hash function h ∈u H is good with probability at

least 1− 2ε.

Proof. By the pairwise independence of H, each pair of variables i 6= j ∈ L

maps to the same bucket with probability 1
t
. By a union bound, the probability

that condition (1) fails is at most |L|2/2t ≤ ε.

Fix j ∈ [t] and for i ∈ Lc, let Ii be the indicator of the event h(i) = j.

Then Tj =
∑

i∈Lc σ
2
i Ii,

E[T 2
j ] = E[ (

∑
i∈Lc

σ2
i Ii)

2 ] ≤
∑
i∈Lc

σ4
i

t
+
∑
i 6=l∈Lc

σ2
i σ

2
l

t2

≤ (max
i∈Lc

σ2
i )
∑
i∈Lc

σ2
i

t
+

1

t2

(∑
i∈Lc

σ2
i

)2

≤ ε5σ2

t
+
σ4

t2
≤ 12ε3

t
.

Therefore, by Markov’s inequality

Pr[Tj > ε] <
E[T 2

j ]

ε2
≤ ε

t

By a union bound, Tj ≤ ε holds for all j ∈ [t] except with probability ε.

Thus overall h is good with probability 1− 2ε.

The above lemma essentially reduces us to the case where all the indi-

cator random variables in each bucket have very small variance, and thus have

bias very close to 0 or 1. The following lemma lets us handle such variables.

Lemma 9.2.3. Let X =
∑n

i=1 Xi and Y =
∑n

j=1 Yj be sums of indepen-

dent indicator random variables such that E[X],E[Y ] ≤ ε. Let D be a (2d +

2)-wise independent distribution over {0, 1}2n with the same coordinate-wise
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marginals as (X1, . . . , Xn, Y1, . . . , Yn). Then, for (X ′1, . . . , X
′
n, Y

′
1 , . . . , Y

′
n) ←

D, (
∑

iX
′
i,
∑

i Y
′
i ) is Od(ε

d)-close in statistical distance to (X, Y ).

We note that a bound of O(ε) is trivial for the lemma above: each of X

and Y are non-zero with probability at most ε under a pairwise independent

distribution. However we need a stronger O(εd) bound so that we can use the

union bound over all buckets, and this requires more work. We first prove

Theorem 9.2.1 assuming the above lemma.

Proof of Theorem 9.2.1. Let x ∈ [m]n be the string generated by GH,k,t and

let y ∈u [m]n. Let Xi = 1Ai(xi) and Yi = 1Ai(yi) be the indicator variables

on each co-ordinate. Assume that the hash function h is good in the sense of

Lemma 9.2.2. Then, each variable in L is mapped to a distinct bucket, so the

values of {xi}i∈L are uniform and independent. By coupling the variables xi

and yi for i ∈ L, it suffices to show that
∑

i∈Lc Xi and
∑

i∈Lc Yi are close in

statistical distance when the distribution within each bucket Bj is (k−1)-wise

independent, and the buckets are independent. To simplify our notation, we

henceforth assume that L = ϕ and Lc = [n].

Fix a bucket Bj. We can partition Bj into B0
j = {i ∈ Bj : pi <

1
2
} and

B1
j = {i ∈ Bj : pi ≥ 1

2
}. Let X̄i = 1−Xi for i ∈ B1

j , so that Pr[X̄i = 1] = 1−pi.

Define variables Zj =
∑

i∈B0
j
Xi and Z ′j =

∑
i∈B1

j
X̄i.∑

i∈Bj

Xi =
∑
i∈B0

j

Xi +
∑
i∈B1

j

(1− X̄i) = Zj − Z ′j + |B1
j |.
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Now, since h is good, Tj ≤ ε, and E[Zj],E[Z ′j] ≤ 2ε. Since the distribution

in each bucket is k − 1 ≥ 34-wise independent, we can apply Lemma 9.2.3

to the collections {Xi : i ∈ B0
j }, {1 − Xi : i ∈ B1

j } with d = 16 to conclude

that (Zj, Z
′
j) is O(ε16)-close in statistical distance to the distribution when the

variables Xi ∈ Bj are truly independent.

This implies that
∑

i∈Bj Xi is O(ε16) close in statistical distance to∑
i∈Bj Yi. Since variables across buckets are independent of one another, we

conclude by a union bound that
∑

i∈[n] Xi =
∑

j∈[t]

∑
i∈Bj Xi is O(tε16) = O(ε)

close in statistical distance to
∑

i∈[n] Yi.

9.2.1.1 Proof of Lemma 9.2.3

We start with a simple concentration bound for k-wise independent

variables.

Lemma 9.2.4. Let X1, . . . , Xn be k-wise independent {0, 1} variables such

that
∑n

i=1 E(Xi) ≤ β. Then for all ` ≥ k,

Pr[
n∑
i=1

Xi ≥ ` ] ≤
(
eβ

`

)k
.

Proof. Let Sk(X1, . . . , Xn) =
∑

J⊆[n];|J |=k
∏

j∈J Xj. By the k-wise indepen-

dence of X1, . . . , Xn,

E[Sk(X1, . . . , Xn)] =
∑

J⊆[n];|J |=k

∏
j∈n

E[Xj].

But since
∑

i E[Xi] ≤ β, it follows that

E[Sk(X1, . . . , Xn)] ≤
(
n

k

)
βk

nk
.
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This can be proved by the power-mean inequality, or a weight-shifting argu-

ment.

Note that if
∑

iXi ≥ `, then Sk(X1, . . . , Xn) ≥
(
`
k

)
. Hence by Markov’s

inequality,

Pr[
∑
i

Xi ≥ ` ] ≤ E[Sk(X1, . . . , Xn)](
`
k

) ≤
(
n
k

)
βk

nk
(
`
k

) ≤ (eβ
`

)k
.

The following easy corollary follows by taking k = `:

Corollary 9.2.5. If indicator random variables X1, . . . , Xn are (fully) inde-

pendent with
∑

i E[Xi] ≤ ε, then for ` ∈ [n],

Pr[
n∑
i=1

Xi ≥ `] ≤
(eε
`

)`
.

Let X =
∑

iXi. Let Ir(X) be the indicator random variable for the

the event X = r. Let U denote the distribution where each Xi is drawn

independently with E[Xi] = pi. We show that there exist constant degree

sandwiching polynomials for Ir(X).

Lemma 9.2.6. Let E[X] ≤ ε. For d ≥ 2 and every r ≤ d, there exist

univariate polynomials Pr, Qr : Z→ Z with deg(Pr), deg(Qr) ≤ d+1 such that

Pr(i) ≤ Ir(i) ≤ Qr(i), for all i ∈ Z+, and

E
U

[Qr(X)− Pr(X)] = O(εd).
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Proof. Assume that d− r is even. Let

Qr(x) =
1

r!(d− r)!
∏

i∈{0,...,d}\{r}

(x− i), Pr(x) = Qr(x) · d+ 1− x
d+ 1− r

.

Clearly Pr(`) = Ir(`) = Qr(`) = 0 for ` ∈ {0, . . . , d} \ {r}. Further, since d− r

is even, we have

Pr(r) = Qr(r) =
1

r!(d− r)!
∏

i∈{0,...,d}\{r}

(r − i) = (−1)d−r = 1.

Thus Pr(`) = Ir(`) = Qr(`) for ` ∈ {0, . . . , d}. For ` ≥ d+ 1 we have Ir(`) = 0

whereas

−`d

r!(d− r)!
≤ Pr(`) ≤ 0, ≤ 0 ≤ Qr(`) ≤

`d

r!(d− r)!
.

Hence Pr(`) ≤ Ir(`) ≤ Qr(`) as claimed. Further, using Corollary 9.2.5

E
U

[Qr(X)− Pr(X)] ≤
∑
`≥d+1

(Qr(`)− Pr(`)) Pr[X ≥ `] ≤
∑
`≥d+1

2`d

r!(d− r)!

(eε
`

)`
≤ 2(eε)d+1

r!(d− r)!
∑
`≥d+1

1

``−d

= O(εd+1).

In the case when d − r is odd, it holds that r ≤ d − 1 and d − 1 − r

is even. So we repeat the above argument with d replaced by d− 1 to get an

error bound of O(εd).

Next we consider the setting where we have two sets X1, . . . , Xn and

Y1, . . . , Yn of {0, 1} variables. LetX =
∑

iXi and Y =
∑

j Yj and E[X],E[Y ] ≤

ε. Let U2 denote the distribution where all 2n variables are independent.
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Corollary 9.2.7. For any d ≥ 2 and r, s ∈ {0, . . . , d} there are polynomials

Pr,s(X, Y ) and Qr,s(X, Y ) where deg(Pr,s), deg(Qr,s) ≤ 2d + 2, Pr,s(X, Y ) ≤

Ir(X)Is(Y ) ≤ Qr,s(X, Y ) and

E
U2

[Qr,s(X, Y )− Pr,s(X, Y )] = O(εd).

Proof. Let Pr,s(X, Y ) = Pr(X)Qs(Y ) and Qr,s(X, Y ) = Qr(X)Qs(Y ). Then,

it follows from the calculations of the previous lemma that Pr,s(X, Y ) ≤

Ir(X)Is(Y ) ≤ Qr,s(X, Y ). Further,

E[Qr,s(X, Y )− Pr,s(X, Y )] = E
U

[Qr(X)− Pr(X)] · E
U

[Qs(Y )] ≤

O(εd(1 + εd)) = O(εd),

where we used Lemma 9.2.6 to bound the error between Pr(X), Qr(X) and

also to bound E[Qs(Y ) using

E
U

[Qs(Y )] ≤ E
U

[Is(Y )] + E
U

[Qs(Y )− Is(Y )] ≤ 1 +O(εd).

We now show that (2d+2)-wise independence on (X1, . . . , Xn, Y1, . . . , Yn)

suffices to fool (X, Y ) in statistical distance. To do this we shall use the fol-

lowing observation due to Bazzi.

Lemma 9.2.8. Let f, g, h : V → {0, 1} be functions on a universe V such

that f ≤ g ≤ h. Further, let D,D′ be two distributions on V such that

Eu←D[h(u)− f(u)] ≤ ε and

| E
v←D′

[f(v)]− E
u←D

[f(u)]| ≤ δ, | E
v←D′

[h(v)]− E
u←D

[h(u)]| ≤ δ.

174



Then,

| E
v←D′

[g(v)]− E
v←D

[g(v)]| ≤ ε+ δ.

Proof. Let u← D, v ← D′. Then,

E[g(v)] ≤ E[h(v)] ≤ E[h(u)] + δ ≤ E[f(u)] + ε+ δ ≤ E[g(u)] + ε+ δ.

A similar chain starting with f instead of h shows the lower bound and the

lemma.

Proof of Lemma 9.2.3. Let X ′ =
∑

iX
′
i, Y

′ =
∑

i Y
′
i . Fix r, s ∈ {0, 1 . . . , d}.

Then, as (2d + 2)-wise independence fools degree (2d + 2) polynomials, by

Corollary 9.2.7 and Lemma 9.2.8 we get that

|Pr[(X, Y ) = (r, s)]− Pr[(X ′, Y ′) = (r, s)]| =

|E[Ir(X)Is(Y ) = 1]− E[Ir(X
′)Is(Y

′)] = 1| = O(εd).

Further, by Lemma 9.2.4, Pr[X ′ ≥ d+ 1 ∨ Y ′ ≥ d+ 1] ≤ O(εd+1). Therefore,

dTV((X, Y ), (X ′, Y ′)) =
∑

0≤r,s≤n

|Pr[(X, Y ) = (r, s)]− Pr[(X ′, Y ′) = (r, s)]|

≤
∑

0≤r,s≤d

|Pr[(X, Y ) = (r, s)]− Pr[(X ′, Y ′) = (r, s)]|+

Pr[X ≥ d+ 1 ∨ Y ≥ d+ 1] + Pr[X ′ ≥ d+ 1 ∨ Y ′ ≥ d+ 1]

≤ d2O(εd) +O(εd) = O(d2εd).
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9.2.2 Fooling Large Combinatorial Sums in Kolmogorov Distance

We next show that the generator GH,k,t fools combinatorial sums in

Kolmogorov distance when the variance σ2 of the sum is large.

Theorem 9.2.9 (Fooling Large Combinatorial Sums). Let f ∈ CSum(m,n)

with Var[f ] ≥ 1/ε2. Then for k ≥ 4 and t ≥ 1/ε2, the generator GH,k,t O(ε)-

fools f in Kolmogorov distance.

We use the following property of pairwise independent hash functions.

For a hash function h ∈u H, Let Bj = {i : h(i) = j} denote the jth bucket

of variables. Let Pj =
∑

i∈Bj pi and Sj =
∑

i∈Bj σ
2
i . Finally, let Sh =

(
∑t

j=1 S
2
j )

1
2 .

Lemma 9.2.10. We have Eh[Sh] ≤ σ + σ2/
√
t.

Proof of Lemma 9.2.10. Fix j ∈ [t]. For each i ∈ [n], let Ii be the indicator

of the event h(i) = j where h ∈R H. Then, Eh[Ii] = 1/t and for l 6= i,

Eh[IiIl] = 1/t2 by pairwise independence. As Sj =
∑n

i=1 Iiσ
2
i ,

E
h
[S2
j ] =

n∑
i=1

σ4
i E
h
[Ii] + 2

∑
i 6=j

σ2
i σ

2
j E[IiIj]

≤ 1

t

n∑
i=1

σ2
i +

2

t2

∑
i 6=j

σ2
i σ

2
j since σ4

i ≤ σ2
i

≤ σ2

t
+
σ4

t2
.

Since S2
h =

∑t
j=1 S

2
j , using linearity of expectation we get

E
h
[S2
h] ≤

t∑
j=1

E
h
[S2
j ] ≤ σ2 +

σ4

t
.
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The claim now follows using Eh[Sh] ≤
√
Eh[S2

h].

Proof of Theorem 9.2.9. Let random variable Y = f(y) for y ∈u [m]n. Then,

Y has a multinomial distribution with variance σ2 =
∑

i pi(1 − pi) > 1/ε2.

Therefore, by Corollary 4.2.1,

dcdf

(
Y − µ
σ

,N(0, 1)

)
≤ 1

σ
= ε. (9.2.2)

Let x ∈ [m]n be generated according to the generator GH,k,t with pa-

rameters as in the theorem and let indicator random variables Xi = 1Ai(xi)

and let X =
∑

iXi. We shall show that (X − µ)/σ is also close to N(0, 1).

Fix a hash function h ∈ H. Let Zj =
∑

i∈B(j) Xi. Since the Xis are 4-wise

independent, E[Zj] = Pj, Var[Zj] =
∑

i∈Bj σ
2
i = Sj. Further, we have

E[(Zj − Pj)4] = E[(
∑
i∈Bj

(Xi − pi))4]

=
∑
i∈Bj

E[(Xi − pi)4] + 3
∑
i 6=l∈Bj

E[(Xi − pi)2]E[(Xl − pl)2]

≤
∑
i∈Bj

σ2
i + 3

∑
i 6=l∈Bj

σ2
i σ

2
l since(Xi − pi)4 ≤ (Xi − pi)2

= Sj + 3S2
j .

Therefore, summing over all j we get

t∑
j=1

E[(Zj − Pj)4] ≤
t∑

j=1

Sj + 3
t∑

j=1

S2
j = σ2 + 3S2

h.

Using the Berry-Esséen theorem applied to independent random variables

Z1, . . . , Zt, for a fixed hash function h,

dcdf

(
X − µ
σ

,N(0, 1)

)
≤ (σ2 + 3S2

h)
1/2

σ2
≤ 2

(
1

σ
+
Sh
σ2

)
.
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Further, as dcdf is a convex function, using Lemma 9.2.10,

dcdf

(
X − µ
σ

,N(0, 1)

)
≤ 2

(
1

σ
+

Eh[Sh]
σ2

)
≤ 2

(
2

σ
+

1√
t

)
≤ 6ε.

By Equation (9.2.2) we get dcdf((X − µ)/σ, (Y − µ)/σ) = O(ε) which implies

dcdf(X, Y ) = O(ε).

9.2.3 Reducing the seed-length via INW

We now derandomize GH,k,t using PRGs for small space sources of Im-

pagliazzo, Nisan, and Wigderson [46] (Theorem 2.3.1), which we call INW

PRG, as was done in Section 7.4.3. The derandomization follows from The-

orems 9.2.1, 9.2.9 and replacing the independent seeds z1, . . . , zt in Equa-

tion 9.2.1 with the output of the INW PRG.

Theorem 9.2.11 (Derandomizing GH,k,t). There exists a generator G ≡

Gm,n,ε : {0, 1}rm,n → [m]n with seed-length rm,n = O(logm+ log n+ log2(1/ε))

with the following properties:

1. G O(ε)-fools all f ∈ CSum(m,n) with Var[f ] < 6/ε2 in statistical dis-

tance.

2. G O(ε)-fools all f ∈ CSum(m,n) with Var[f ] > 1/ε2 in Kolmogorov

distance.

Consider GH,k,t with parameters set so as to satisfy the conditions of

Theorems 9.2.1, 9.2.9. Note that the seed length ofGH,k,t isO((log n)poly(1/ε)).

We will reduce the seed length by choosing the seeds z1, . . . , zt from the output
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of the INW PRG (instead of independently as before). The analysis proceeds

roughly by arguing that for any (m,n)-combinatorial sum f and hash function

h ∈ H, f(GH,k,t(h, z
1, . . . , zt)) ≡ gh(z

1, . . . , zt) is computable by a small-space

machine when viewed as a function of z1, . . . , zt.

Let INW : {0, 1}r → ({0, 1}rk)t be the INW generator that ε-fools

(10 log(1/ε), rk, t), read-once branching programs. Define

G : H× {0, 1}r → [m]n by G(h, y) = GH,k,t(h, INW(y)).

We claim that G satisfies the conditions of Theorem 9.2.11.

Proof of Theorem 9.2.11. The claim on the seed length of G follows from the

seed length of the INW generator, Theorem 2.3.1, which uses r = O(rk +

(log(1/ε) + log(t/ε)) log t) = O(logm+ log n+ log2(1/ε)) bits. We next show

that G satisfies properties (1), (2).

Fix an (m,n)-combinatorial sum f and let x be the output of generator

GH,k,t with parameters as above. Fix a hash function h ∈ H and define

gh : ({0, 1}rk)t → [n] by gh(z
1, . . . , zt) = f(GH,k,t(h, z

1, . . . , zt)). For ` ∈ [t],

let B` = {i : h(i) = `} and let random variable Y` =
∑

j:j∈B` 1Aj(xj). Then,

Y` depends only on z` and gh(z
1, . . . , zt) =

∑
` Y`.

There is a natural (log n, rk, t)-ROBP M for computing gh: the vertices

of M are labeled {1, . . . , n} with states in layer ` corresponding to the possible

values of the partial sum
∑

i≤` Yi and the edges out of layer ` are drawn accord-

ing to the change in the value of the partial sum. However, using M directly

179



to do the derandomization is problematic as GS only fools O(log(1/ε)) space

ROBPs. We get over this hurdle by appropriately sandwiching M between

smaller-width branching programs.

Case 1: Var[f ] < 6/ε2. Observe that x1, . . . , xn are k-wise independent.

Therefore, by an argument similar to that of Lemma 9.2.4, it follows that for

` ∈ [t],

Pr[ |
∑
j≤`

(Yj − µ(Yj))| > 6e/ε4 ] ≤ ε2k. (9.2.3)

We exploit this fact by ignoring all states of M corresponding to partial sums

not in I = [−6e/ε4, 6e/ε4].

Fix a statistical test function F : [n] → {0, 1}. Let z̄ = (z1, . . . , zt) ∈u

({0, 1}rk)t. Observe that F (z̄) ≡ F (gh(z̄)) = F (M(z)) is computable by a

(log n, rk, t)-ROBP, say M ′. We now sandwich F between two small-width

branching programs. Let Mu be a ROBP that works the same as M ′ except

that it accepts all strings z̄ that lead to a partial sum
∑

i≤`(Yi − µ(Yi)) /∈ I.

Similarly, let Ml be a machine a ROBP that works the same as M ′ except that

it rejects all strings z̄ that lead to a partial sum
∑

i≤`(Yi − µ(Yi)) /∈ I. Then,

Ml ≤ M ′ ≤ Mu and Ml,Mu are computable by ((log |I|) + 1, rk, t)-ROBPs.

Further, from Equation 9.2.3 and a union bound over ` ∈ [t],

Pr[Mu(z) = 1]− Pr[Ml(z) = 1] ≤ tε2k = O(ε).

Now, as GS fools Mu,Ml with error at most ε, it follows from the above equa-

tion and the sandwiching property (Lemma 9.2.8) that GS fools M ′ with error

180



at mostO(ε). The theorem now follows from the above fact and Theorem 9.2.1.

Case 2: Var[f ] > 1/ε2. This case follows straightforwardly from Theo-

rem 9.2.9 and the monotone trick argument we used in Section 7.4.3. We skip

the details to avoid repetition.

9.2.4 Fooling Combinatorial Sums

We now combine the generators from the previous section to get our

final generator fooling combinatorial sums in statistical distance. The basic

idea is as follows: we partition the n variables into two subsets L,R with

|L| ∼ n/2, and then use Gm,n/2 for the variables in L and an independent

Gm,n/2 on the variables in R. We analyze the construction by induction and

considering two cases. If the variance of the combinatorial sum is small, we

invoke Theorem 9.2.11 (1). So now assume that the variance is large.

Let f be a combinatorial sum with Var[f ] > 6/ε2 and write f = fL+fR,

where fL, fR are the combinatorial sums obtained by restricting to variables in

L,R respectively. We use the induction hypothesis to get a statistical distance

guarantee for fL and use Theorem 9.2.11 (2) to get a Kolmogorov distance

guarantee for fR. We then argue that the combinatorial sum fL has high

variance and hence is shift invariant. We then apply Lemma 4.3.1 and get a

statistical distance guarantee for f = fL + fR.

Fix ε ∈ [1/
√
n, 1/ log n] and let s = log(n+1). LetH1 = {π : [n]→ [n]}

be a family of pairwise independent permutations. Efficient constructions of
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H1 with H1 = poly(n) are known. We pick π ∈u H1 and use it to partition

[n] into s buckets of geometrically increasing sizes. We define sets B1, . . . , Bs

where Bj = {π(2j−1), . . . , π(2j − 1)}, thus |Bj| = 2j−1. Let rj be the seed-

length of the generator Gm,2j−1,ε from Theorem 9.2.11. Our main generator

G : H1 × {0, 1}r1 × · · · × {0, 1}rs → [m]n uses an independent sample from

Gm,2j−1,ε for each bucket Bj:

G(π, z1, . . . , zs) = x, where xBj = Gm,2j−1,ε(z
j). (9.2.4)

As before, let f(x1, . . . , xn) =
∑n

i=1Xi where Xi = 1Ai(xi) has mean pi

and variance σ2
i . For each bucket Bj, let Sj =

∑
i∈Bj σ

2
i . Let q ∈ {1, . . . , s}

be the least index such that E[Sq] > 3/ε2.

Call a permutation π bad if one of the following conditions holds and

good otherwise:

1. There exists an index j ∈ {q, . . . , s} such that Sj /∈ [0.5E[Sj], 1.5E[Sj]].

2. There exists j ∈ {1, . . . , q − 1} such that Sj ≥ 6/ε2.

Note that the sequence {E[Sj]}sj=1 is in geometric progression. If π is good,

then {Sj}sj=q is roughly geometric, and none of {Sj}j≤q are too large.

Claim 9.2.12. Prπ∈uH1 [π is bad] ≤ 2ε.

Proof. Fix j ∈ {q, . . . , s}. Let Zi be the indicator of the event π−1(i) ∈

{2j−1, . . . , 2j − 1} and hence i ∈ Bj. Then

Sj =
n∑
i=1

σ2
iZj ⇒ E[Sj] =

σ22j−1

n
.

182



By the pairwise-independence of π,

E[S2
j ] =

∑
i

σ2
i E[Zi] +

∑
i 6=l

2σ2
i σ

2
l E[ZiZl] ≤

σ22j−1

n
+
σ22j−1(2j−1 − 1)

n(n− 1)

≤ σ22j−1

n
+
σ422(j−1)

n2
,

hence, Var[Sj] ≤ E[S2
j ]− E[Sj]

2 ≤ σ22j−1/n = E[Sj].

We now bound the probability of bad event (1). Fix j ∈ {q, . . . , s} so

that E[Sj] ≥ 3
ε2

. By Chebychev’s inequality

Pr

[
|Sj − E[Sj]| >

E[Sj]

2

]
≤ 4 Var[Sj]

(E[Sj]2)
≤ 4

E[Sj]
≤ 2ε2.

Similarly, to bound bad event (2), we observe that E[Sj] ≤ 3/ε2 for j ≤ q− 1,

hence

Pr[Sj ≥ 6/ε2] ≤ Pr[|Sj − E[Sj]| > 3/ε2] ≤ ε4 Var[Sj]/9 ≤ ε2.

Since ε < 1/ log n, the claim follows by a union bound over i ∈ {1, . . . log n}.

Theorem 9.2.13. The Generator G fools CSum(m,n) with error O(log n√
ε log(1/ε)).

Proof. Let x ∈ [m]n be sampled fromG, while y ∈u [m]n. LetXi = 1Ai(xi), Yi =

1Ai(yi) and

Xj =
∑
i∈Bj

Xi, Y j =
∑
i∈Bj

Yi, X≤j =
∑
l≤j

X l, Y ≤j =
∑
l≤j

Y l.
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We assume from now on we condition on the chosen permutation π being good.

Observe that E[Xj] = E[Y j] and

Var[Xj] = Var[Y j] =
∑
i∈Bj

Var[Xi] =
∑
i∈Bj

σ2
i = Sj.

We claim that there is a constant C such that for j ∈ [s],

dTV(X≤j, Y ≤j) ≤ Cj
√
ε(log(1/ε)). (9.2.5)

The proof is by induction on j. It is easy to prove for j ≤ q. Since Var[X l] =

Var[Y l] = Sl < 6/ε2 for all l ≤ j, by Theorem 9.2.11 (1), dTV(X l, Y l) ≤ ε.

As X1, . . . , Xj are independent of one another, we have dTV(X≤j, Y ≤j) ≤ jε.

Now consider j ∈ {q + 1, . . . , s}. We have

dTV(X≤j−1 +Xj, Y ≤j−1 + Y j) ≤

dTV(X≤j−1 +Xj, Y ≤j−1 +Xj) + dTV(Y ≤j−1 +Xj, Y ≤j−1 + Y j). (9.2.6)

The first term can be bounded using the induction hypothesis:

dTV(X≤j−1 +Xj, Y ≤j−1 +Xj) ≤ dTV(X≤j−1, Y ≤j−1) ≤ C(j − 1)
√
ε(log(1/ε)).

(9.2.7)

To bound the second term, we will apply Corollary 4.3.2. As π is good and

j > q, Var[Xj] = Var[Y j] = Sj ≥ E[Sj]/2 > 1/ε2. Thus the variance is

sufficiently large to apply Theorem 9.2.11 (2), which gives dcdf(X
j, Y j) < ε.

Moreover, by Fact 4.2.4,

Pr

[
|Y j − E[Y j]| > 3

√
Sj log(1/ε)

]
≤ ε.
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Since Xj and Y j have the same mean and dcdf(X
j, Y j) < ε, we get similar

concentration for Xj:

Pr

[
|Xj − E[Xj]| > 3

√
Sj log(1/ε)

]
≤ 3ε.

Thus, with probability 1− 4ε, we have Xj, Y j ∈ [E[Xj]− b,E[Xj] + b], where

b = 3
√
Sj log(1/ε). Further, since π is good, we have

Var[Y ≤j−1] ≥ Var[Y j−1] = Sj−1 > E[Sj−1]/2 ≥ E[Sj]/4 > Sj/6.

Hence by Fact 4.2.3, Y ≤j−1 is α = (6/
√
Sj)-shift invariant.

We can now apply Corollary 4.3.2 with α = 6/
√
Sj and b = 6

√
Sj log(1/ε)

to get

dTV(Y ≤j−1 +Xj, Y ≤j−1 + Y j) ≤ 24
√
ε log(1/ε) + 4ε. (9.2.8)

Substituting the bounds from Equations (9.2.7) and (9.2.8) back into

Equation (9.2.6) gives

dTV(X≤j, Y ≤j) ≤ C(j − 1)
√
ε log(1/ε) + 24

√
ε log(1/ε) + 4ε ≤ Cj

√
ε log(1/ε),

where C = 30.

We now derandomize the generator of Theorem 9.2.13 to get our main

result for fooling combinatorial shapes.

Proof of Theorem 9.1.1. We derandomize the generator G of Equation 9.2.4 as

was done in Theorem 9.2.11 by choosing the seeds z1, . . . , zs from the output of
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PRGs for ROBPs. Fix δ > 0 and set the parameters of G as in Theorem 9.2.13

with ε = δ/(log(1/δ) · log n). Fix a (m,n)-combinatorial shape f and note that

for a hash function g ∈ H1, f(G(g, z1, . . . , zs)) when viewed as a function of

z1, . . . , zs is computable by a (S,D, T )-ROBP, where S = log n, D = O(logm+

log n + log2(1/ε)), and T = s = O(log n). Further, as T = O(S + D), such

ROBPs can be fooled with error ε and seed length O(logm+log n+log2(1/ε))

by using the PRG of [81].

Let G be the generator obtained from G by using the PRG of [81]

with parameters as above to generate the seeds z1, . . . , zs of Equation 9.2.4

instead of independently as before. Then, by Theorem 9.2.13, G O(δ)-fools

(m,n)-combinatorial sums with seed length O(logm + log n + log2(1/ε)) =

O(logm+ log n+ log2(1/δ)).

9.3 PRGs for Combinatorial Rectangles

We prove that the generatorGH,k,t of Section 7.3 with k = O(
√

log(1/ε))

and t = exp(O(
√

log n)) and H k-wise independent fools combinatorial rect-

angles. We then derandomize the generator using the INW generator as in

the proofs of Theorems 9.2.11 and 9.1.1 to get our final PRG for combinato-

rial rectangles. As mentioned before, though our result is weaker than Lu’s

generator, our construction is perhaps simpler than Lu’s and our analysis is

different from Lu’s. Moreover, we match Lu’s parameters for the important

case when the desired error ε = poly(n).

Theorem 9.3.1. The generator GH,k,t with k = 5
√

log(1/ε)), t = exp(5
√

log(1/ε))
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and H a k-wise independent family of hash functions, fools combinatorial rect-

angles with error at most O(ε).

We use the following properties of a k-wise independent family of hash

functions.

Lemma 9.3.2. For H = {h : [n] → [t]}, k-wise independent, the following

properties hold.

1. For any L ⊆ [n], |L| ≤ r, Pr[ ∃`, |h−1(`) ∩ L| ≥ k/2 ] ≤ t · (2re/kt)k/2.

2. Let q1, . . . , qn ∈ [0, 1],
∑

i qi = Q and maxi qi ≤ βQ. Then, for any

` ∈ [t],

Pr[
∑

i:h(i)=`

qi ≥ Q/t+ β1/4Q ] ≤ 2(kβ1/2 log(1/β))k/2.

Proof. (1). Without loss of generality, let L = {1, . . . , r}. Fix ` ∈ [t] and let

X1, . . . , Xn be indicator random variables with Xi = 1 if h(i) = ` and 0 else.

Then, X1, . . . , Xr are k-wise independent and

Pr[
∑
i

Xi ≥ k/2 ] ≤ E[
∑

J⊆[r],|J |=k/2

∏
j∈J

Xj ] =

(
r

k/2

)
1

tk/2
≤
(

2re

kt

)k/2
.

The claim now follows by taking a union bound over ` ∈ [t].

(2). Fix ` ∈ [t] and letX1, . . . , Xn be as above. Then, X =
∑

i:h(i)=` qi =∑
i qiXi, where the Xi are k-wise independent with Pr[Xi = 1] = 1/t. Let
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Y1, . . . , Yn be independent random variables with Pr[Yi = 1] = 1/t and Y =∑
i qiYi. Then, by Hoeffding’s inequality, for all γ > 0,

Pr[ |Y −Q/t| ≥ γ ] ≤ 2 exp(−2γ2/
∑
i

q2
i ) ≤ 2 exp(−2γ2/βQ2).

Let k be even and fix γ > 0 to be chosen later. Then, as Y ≤ Q,

E[ (Y −Q/t)k ] ≤ γk +Qk Pr[ |Y −Q/t| ≥ γ ] ≤ γk +Qk2 exp(−2γ2/βQ2).

Since E[(X−Q/t)k] = E[(Y −Q/t)k], it follows from Markov’s inequality that

for any θ > 0,

Pr[ |X −Q/t| > θ ] ≤ γk +Qk2 exp(−2γ2/βQ2)

θk
.

Setting θ = β1/4 ·Q, γ = (2kβ log(1/β))1/2Q, we get

Pr[ |X −Q/t| > β1/4Q ] ≤ 2(kβ1/2 log(1/β))k/2.

Proof of Theorem 9.3.1. Fix an (m,n)-combinatorial rectangle f : [m]n →

{0, 1} with f(x1, . . . , xn) = 1A1(x1) ∧ 1A2(x2) · · · 1An(xn). Let y ∈u [m]n and

Yi = 1Ai(yi), qi = 1 − E[Yi]. Let x be the output of the generator with

parameters as in the statement. Let Xi = 1Ai(xi) and X =
∑

iXi. Note that

Pr[f(y) = 1] = (1− q1)(1− q2) · · · (1− q)n ≤ exp(−
∑
i

qi).

Therefore, if
∑

i qi > log(1/ε), then Pr[f(y) = 1] < ε. We accordingly consider

two cases to analyze our generator.
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Case 1: Q =
∑

i qi ≤ 3 log(1/ε). Let L = {i : qi > Q/
√
t}, Lc =

[n]/L. Then, |L| <
√
t and by Lemma 9.3.2 (1) it follows that for h ∈u

H, max` |h−1(`) ∩ L| ≤ k/2 with probability at least 1 − 1/tΩ(k) = 1 − ε.

Consequently, for a random h we can assume that the variables in L are truly

independent of one another. Moreover, when conditioned on the variables in

L, the variables from Lc in each bucket, {xi : i ∈ B` = h−1(`), ∧i /∈ Lc}

for ` ∈ [t], are (k/2)-wise independent. To simplify notation we assume that

L = ∅ and analyze the case where the Xi’s in a single bucket are (k/2)-wise

independent.

Now, for β = 1/
√
t, maxi qi < βQ. Therefore, by Lemma 9.3.2 (2),

for h ∈u H with probability at least 1 − ε, Q` =
∑

i:h(i)=` q
i < 6 log(1/ε)/t1/8

for all ` ∈ [t]. Further, by the principle of inclusion-exclusion and (k/2)-wise

independence of Xi, i ∈ B`,

|Pr[∧i∈B`Xi]− Pr[∧i∈B`Yi]| ≤
∑

J⊆B`,|J |=k/2

Pr[∧i∈JXi]

≤
(
|B`|
k/2

)(
Q`

|B`|

)k/2
(power-mean inequality)

≤
(

2eQ`

k

)k/2
=

(
O(
√

log(1/ε))

t1/8

)k/2

= O(ε/t).

Therefore, as the Xi’s in different buckets are independent of one another, by

a union bound over ` ∈ [t] it follows that |Pr[∧iXi = 1]−Pr[∧iYi = 1]| = O(ε).
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Case 2:
∑

i qi > 3 log(1/ε). Let j ∈ [n] be the maximum index such

that
∑

i qi ≤ 3 log(1/ε). Then,
∑

i≤j qi ≥ 3 log(1/ε) − 1 > 2 log(1/ε). There-

fore, Pr[∧i≤jYi = 1] ≤ exp(−
∑

i≤j qi) ≤ ε. Now, by applying the argument

of the previous case to the collection of variables X1, . . . , Xj it follows that

Pr[∧i≤jXi = 1] = O(ε). Therefore, Pr[∧iXi = 1] = O(ε) from which the claim

follows.

Proof of Theorem 9.1.2. The theorem follows by derandomizing GH,k,t with

parameters as above by using the INW PRG to generate z1, . . . , zt of Equa-

tion 7.3.1 instead of independently as before.
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Chapter 10

Open Problems

10.1 Invariance Principles

An obvious question arising from our invariance principle for polytopes,

Theorem 3.3.1, is to improve the error estimate logO(1)(k) · εΩ(1). To this end,

we conjecture that the right bound should be of the same order as Nazarov’s

bound on the Gaussian noise-sensitivity of polytopes:

Conjecture 10.1. For any ε-regular polytope K ⊆ Rn,∣∣∣∣ Pr
X∈u{1,−1}n

[X ∈ K]− Pr
Y←Nn

[Y ∈ K]

∣∣∣∣ = O(ε
√

log k).

In contrast to the above question, we could also ask how good an in-

variance principle we can get for polytopes. For a single halfspace it is easy

to see that the right bound is Θ(ε). Embarrassingly, we do not know of any

better lowerbounds for polytopes.

Question 10.2. For every sufficiently small 0 < ε < 1, does there exist an

ε-regular polytope K ⊆ Rn, with k = poly(n) faces such that∣∣∣∣ Pr
X∈u{1,−1}n

[X ∈ K]− Pr
Y←Nn

[Y ∈ K]

∣∣∣∣ = ω(ε)?
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10.2 Sensitivity of Boolean Functions

The foremost question here is of course to prove the Gotsman-Linial

conjecture. We restate their conjecture below:

Conjecture 10.3 (Gotsman and Linial, [39]). For any degree d PTF f :

{1,−1}n → {1,−1}, NSδ(f) = O(d
√
δ).

In this regard, it would be of great interest to even obtain a bound on

noise sensitivity of the form Od(δ
Ω(1)), as our techniques do not seem capable of

avoiding a δΩ(1/d) dependency due to a similar loss in the invariance principle,

Theorem 2.2.5.

One obvious weakness of our sensitivity bounds for polytopes, Chap-

ter 6, is the regularity requirement. A natural approach to remove the restric-

tion would be to use a suitable regularity lemma to “reduce” the problem for

arbitrary polytopes to the regular case as we did for the case of PTFs. Unfor-

tunately, applying the reductions to the regular case as in the case of PTFs

leads to bounds that are at least linear in k, even when using our stronger

bounds for the regular case. We (optimistically) believe that the above dif-

ficulty could be overcome and a better reduction to the regular case can be

achieved.

10.3 Pseudorandom Generators

The main open question here is to get better PRGs for low-degree

PTFs. It would be interesting to even obtain improvements over our results
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in any of the following directions:

1. A PRG for degree d PTFs with error ε and seed-lengthOd(log n· poly(log(1/ε))).

2. A PRG for degree d PTFs with error ε and seed-length O(log n ·poly(d) ·

poly(1/ε)).

3. A PRG for halfspaces with error 1/poly(n) and seed-length o(log2 n)

(say, log3/2 n).

As we explain below, the first two questions seem particularly challenging for

our current techniques.

The issue with (1) is that the main technique leading to our improve-

ment for halfspaces - PRGs for ROBPs of Nisan [80], and Impagliazzo, Nisan

and Wigderson [46] seems inapplicable here as allowing even degree d = 2 spoils

the read once structure. One plausible approach is to try an idea similar to

that of Bogdanov, Viola [20] and Lovett [66] and Viola [97] for constructing

PRGs fooling low-degree polynomials over finite fields:

Question 10.4. Fix d > 1. Do there exist functions f, g : N→ N such that the

XOR (sum modulo 2) of f(d) pseudorandom generators for halfspaces with

error ε fools degree d PTFs with error Od(ε
1/g(d))?

The problem with (2) is that our current analysis, as well as the invari-

ance principle for PTFs of Mossel et al. [76] uses hypercontractivity for degree

d polynomials critically, and any use of hypercontractivity seems to incur a

loss of at least 2O(d). To this end, the first more principled question is to ask
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for an improvement to the invariance principle, Theorem 2.2.5, to get an error

bound that is not exponential in d.

Finally, question (3) seems more tractable to us. In particular, we

believe that the generator GH,k,t from Section 7.3 with k = O(
√

log n), t =

1/ exp(O(
√

log n)) and H a k-wise independent hash family would fool half-

spaces with error 1/poly(n). Combined with the monotone trick as in Sec-

tion 7.4.3, such a result would lead to a PRG for halfspaces with seed-length

O(log3/2 n) and error 1/poly(n).
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